

INSIDE THE HP-41

| HP-v |

x4 1/x| VT‘l | LNI
A ‘B C DV E 7

Y RLI siN] |
- L;\‘

[STO

[ENTER®
‘ N

7

2 h-,:—‘

+ | 4
U V

1.
0

SSSSS

Jean-Daniel Dodin

INSIDE
THE HP-41C

Translated from French by:
Mary-Denise Dodin

and

John Vandenabbeele

Revised and Edited by:

Wilson W. Holes

Published by:

Keith Jarett

SYNTHETIX

P.O. Box 1080

Berkeley, California 94701

U.S.A.

ISBN 0-9612174-4-8
Library of Congress #84-51921

Also available from SYNTHETIX:

HP-41 Extended Functions Made Easy, by Keith Jarett
HP-41 Synthetic Programming Made Easy, by Keith Jarett
HP-41 Quick Reference Card for Synthetic Programming
ENTER (A Book for HP Series 10 Calculator Users),
3y Jean-Daniel Dodin, revised and expanded by Keith
arett

French 1language publications on Hewlett-Packard
calculators are available from:

Editions du Cagire
71 rue du Cagire
31100 Toulouse FRANCE

Copyright 1985 SYNTHETIX and Editions du Cagire

This book may not be reproduced, either in whole or
in part, without the written consent of the publisher
and the author. Permission is hereby given to repro-
duce short portions of this book for purpose of re-
View.

FOREWORD

This book is especially for owners of the HP-41C,
HP-41CV and HP-41CX calculators. It has been
written to help you better understand the opera-
tion of your machine. It contains few programs,
and most of you will never have the opportunity
to use some of the chapters. But after all, I'l1
never have the opportunity to climb Mount Ever-
est, and yet I've enjoyed reading the account.

ABOUT THE AUTHOR

The author is French. He teaches drafting and
engineering calculations at a high school in
Toulouse, France.

He was introduced to Reverse Polish Notation in
1975, with the non-programmable HP-21 calculat-
or. In 1979, when the HP-41C first became avail-
able, it was natural for him to order one. He
learned about the PPC in early 1981 through Bill
Wickes's book “Synthetic Programming on the
HP-41C," and in September of the same year found-
ed a PPC chapter in Toulouse. This chapter, with
400 members, was at the time the largest French
speaking chapter. The author is also the editor
of the French chapter newsletter, PPC-T.

DISCLAIMER

The material in this book is supplied without
representation or warranty of any kind. The pub-
lisher, the editor, the translators, nor the
author shall have any liability, consequential or
otherwise, arising from the use of any material
contained in this book.

-ji-

TABLE OF CONTENTS

-iii-

TABLE OF CONTENTS

Chapter 1: Introduction.......c.cceviveinennnenennennnnn 1

Chapter 2: Geography.....cieeiveeeieeeeeeeeeoneeennanas 7

2.1: Geography of the Hardware..... cetscccecsssaccns 9

2.2: Electrical Structure......coeeveeeeeeeeeencennas 14

2.3: Geography of Random Access Memory (RAM)..... eee 17

2.3.1: Status Registers....veeeeeeeeeececcocnns .. 19

2.3.2: Empty Registers.....cceeeeeeeeennns ceeeens 19

2.3.3: X-MemMOrieS..ceeeeeeeeeeceeesoococcaccconas 20

2.3.4: ASSigNMENtS....ceceeeeeecececcccoaccnnnns . 20

2.3.5: Alarms......ceeeeeen ceccccccscssssssssnnas 23

2.3.6: The Buffer....cceeceecceccecccscccsccnnes . 23

2.3.7: ProgramsS......ccecececeeccccccccoccccccnans 24

2.3.8: Data...iiceecercercencoccncascecasccncnnas 25

2.4: Central Processing Unit (CPU) Geography........ 26

2.5: Organization of the Read Only Memory (ROM)..... 28

2.6: ROM PageS..civieeececeecececcacecaccacoanacanns 29

Chapter 3: Meaning of the Digits...c.cceeeeeieeeeneeceens 35

3.1: Numbers or Letters, NNN, Normalization......... 37

3.2: Characters.....cceeeeecceeceancans cececcccccnas . 40

3.3: InstructionS....cececececececenececscnsococncnns 49

3.3.1: One-Byte FunctionsS.......ecceveececnccanss 49

-jv-

3.3.2: Two-Byte FunctionS..eeeceeecccecosccsccces 50

3.3.3: Three-Byte FunCtionS...eeeeceeccceccecccsns 56

3.3.4: Variable Byte InstructionS...ceeeeeeeecess 57

3.3.5: Global Labels - ENDeveveeonnnn cesecennsae . 59

3.4: Organization of Programs in ROM......... cessaee 62

3.4.17: The Control WordsS.ceeeeeeeseceessccennanse . 62

3.4.2: The LinkSeeeeeeeeeessscessssccsscscoasscans 62

Chapter 4: A Special Aredceeececess cecscccsscccenne cseess DD

4.7: The StaCKeessseeeeossocsccccocsoscnas cecessscccns 67

4.2: The Alpha Registereccceececeseccceseccennccans . 69

4.3: Register P (Address PP8).cceeeececcccoccccancns 71

4.4: Register Q (Address @09)..ccececcececescccccess . 71

4.5: Register F (Address PPA).cceeeeeecceccccscscnnes 71

4.6: Registers a and b (Addresses @@B and @#0C)...... 72

4.7: Register ¢ (Address PBD).eeeeceeeeeeececccancns 77

4.8: Register d (Address @QE)....... cececscscsescans 78

4.9: Register e (Address PBF)eceeeeeeeceecceccoanaen 79

Chapter 5: Thieftieeceeeeeesceecsccccsccsscscscscoscsscsss 81

5.1: The Byte Grabber.ccccececcccececececanns ceessecsas 83

5.2: What is the Byte Grabber (BG)?...ceececececncans 87

5.3: The Synthetic PostfiXxeSececeeeeeccccccccccnans . 93

5.4: Key AssignmentS.ccceeecccccces cessessnnR .o 94

5.5: The Heavy Artillery...ceeeeeeeeeeeeeeocecncacss 99

5.5.1: Use of "LB".eiiineiieeiieenieeenennnnenns 99

5.5.2: Description of "LB"..iireirieireenencnnns 101

5.6: In Case of Disaster...c.ccieieeeeeeeneneennnnnns 103

Chapter 6: MiCroCode....cueveeeeeeeeeeeecencacacononnnns 105

6.1: How to Use It..iiuieeiieieeeeneeeennanencncannnns 107

6.2: Microcode: What is It?....ccivivieeeeecnceacens 110

6.3: The Functioning Principle...cccceeeeeceeecennneas 111

6.4: Geography of the Microprocessor.......ceceeeee.. 112

6.4.1: The Internal Registers....cceceeecececeeens 114

6.5: Microcode CommandS.....ceceeeeececcccccccocncnns 123

6.5.1: Type @ CommandS....cccceeeeeeceecceccacoans 124

6.5.2: Type 1 CommandS....ceeeeeeeeeeeceeccnanens 129

6.5.3: Type 2 CommandS....cccceeeerccsccccceananns 130

6.5.4: Type 3 CommandS....cceeeeeeeccecccccccnnes 130

Chapter 7: Using Microcode.....ccceceeeeeccecccccconcaans 137

7.1: Logic Geography of a Module.....ceceeeeeeeenenen 139

7.2: First Example: RA...ieeieieeeeeeeeeeececccccnns 147

7.3: Second Example: Operation of the Display...... 148

7.4: MeSSAQES.ceriecerceccocescsscsccsccscsacsascans 151

7.5: Hot or Cold Start?.....cceeeeeeeceecnccccccnnns 152

7.6: A Little Bit of MUSTC.ciieeeeerneeeeeeececcnnns 158

-v-i..

7.7: Using Microcode: REP and XCAT..... cesssessessslb?

7.7.1: First a Very Simple Example: REP.........162

7.7.2: A More Serious Application: XCAT..eeeeess 165

7.8: Charge.ceeeeeeecccnne cecessessssesssrsanss ceees 168

APPENDIX I: Number SysStemS..cceeeeecccccscssssccccnns 171

APPENDIX II: DefinitionS..ceeeeee ceccessscsscnsscessell]

APPENDIX III: User Clubs and PublicationS.eceeecececees 181

APPENDIX IV: Further Reading and Reference...eeeeecsee 187

APPENDIX V: Microcode Storage and

Development Equipment...cceees cecsesesesal9l

APPENDIX VI: Program Assembler...ceeececssscccccessns 197

APPENDIX VII: Addressing ROM and RAM, by Didier Jehl1..203

APPENDIX VIII: AlarmSeceeecesces cecesssssssacs ceeesssssesll9

APPENDIX IX: Commentary on the Schematic

of the HP-41C....... cecsscscssssenns ceesllb

APPENDIX X: The Display of the HP-41C.....cccce... eee219

APPENDIX XI: The HP-41C Operating System,

by Bill ReggusSy.eeeeececeececccccccccces .225

APPENDIX XII: EPROM Structures, by Jim DeArras........231

APPENDIX XIII: Register Selection by RAM Select........235

APPENDIX XIV: Bar Code for Program "KA"..eeeeeeeocenns 239

APPENDIX XV: Bar Code for Program "LB"...... cececcns .243

APPENDIX XVI: Bar Code for Programs "ASM", "BD"

and"QR"..... cecesssscccccnns cecessssacns 247

INDEX OF FIGURES.:eeeeeeoesceccossssccccans cecssssens eese25]

-vii-

CHAPTER 1

INTRODUCTION

INTRODUCTION

ACKNOWLEDGEMENTS:

This book would not have been possible without
the existence of PPC (Personal Programming Cen-
ter) which gathers what surely must be the best
Hewlett-Packard hand-held calculator experts.
The amount of knowledge that the club has accumu-
lated on the HP-41 is bewildering. Out of the
roughly 6,000 members of the club, many are
those who have brought their stone to the build-
ing. The main workers themselves are too numer-
ous for me to be able to quote all of them. I'11
have to 1limit myself to the architects; the
others must excuse me.

First, I am very grateful to Richard J. Nelson,

the founder of PPC and publisher of the PPC Jour-
nal for many years. Without him, this work would
not have been possible. Others are Bill Wickes,
whose book on synthetic programming has opened my
eyes on a new world; and finally John McGechie,
the Australian Chapter Coordinator of PPC who was
first to spread general knowledge on microcode.

And so many others...John Dearing, Paul Lind,

Cary Reinstein, Robert Groom, Keith Jarett, Lynn
Wilkins...Thanks to all of them.

Thanks also from the editor to all of those who
helped produce this English version of "Au Fond
de 1a 41C." Thanks to Mary-Denise Dodin and John
Vandenabbeele for the translation of the French
text and to Bobbi Stevenson, who spent many hours
deciphering my scribbles while keying this book
into the Wang word processor.

-3-

WHAT ARE WE GOING TO TALK ABOUT?

Chapter 2, "Geography," will give you a descrip-
tion of the structure of your HP-41, and of the
various areas sharing the memory: 1like so many
drawers being able to hold treasures.

Chapter 3, "Meaning of the Digits," will explain
the number bases the HP-41 uses in its operating
system and allow you to better understand the
structure of the programs.

Chapter 4, "A Special Area," analyzes the main
memory of the HP-41, the one which defines all
the rest. The main memory is intended for the
calculator's own use, but here you will be shown
how to open and access it.

Chapter 5, "Thief.," will show you a particular
method of building artificial statements which
will allow you to solve most synthetic program-

ming problems and will give you some examples of
applications.

Chapter 6, "Microcode," will unveil the "Holy of
the Holies," microcode. You will see the user
statements and their operating mode.

Chapter 7, "Using Microcode," at last will give
you some examples of programming in Microcode,
taken from the calculator or written by the
author.

Finally, the Appendix will try to answer some re-
maining questions.

WARNINGS:

The manipulations on software, whether it is nor-
mal, synthetic, or in microcode, present no risk
to the HP-41. The worst which may happen to you
is a one night unavailability for your calculator
(Chapter 5).

It isn't the same thing with hardware modifica-
tions, which can lead to destruction of the cen-
tral processing unit with a repair cost of about
$80. That's why this kind of modification is not
described here.

The content of this book is by no means guaran-
teed by Hewlett-Packard. Synthetic programming
and microcode are not supported by Hewlett-
Packard.

This is NOMAS (NOt MAnufacturer Supported).

This book won't teach you everything (far from
it) about HP-41 programming, be it normal, syn-
thetic, or microcode. Moreover, this isn't its
purpose. It is a basic working tool from which
everyone is free to elaborate one's own applica-
tions.

The best means to progress is to exchange one's
store of knowledge with other people. This is
the aim of the PPC club. Indeed, many users
working singly rediscover every day facts that
are already known, for the sources are often for-
eign or inaccessible. If you appreciate this
book, PPC fits you.

CHAPTER 2

GEOGRAPHY

GEOGRAPHY

Our favorite calculator has many capabilities,

consequently its internal structure is complicat-
ed and it is thus worth lingering over it.

We are all familiar with the HP-41C, the HP-41CV

(C5), and now the HP-41CX (C10). Although
similar, each successive model has additional
capabilities its predecessor did not. All that
hasn't simplified anything.

2.1 Geography of the Hardware

The HP-41C 1is essentially made up of six
independent parts (Figure 1).

1. The Display: comprised of liquid crys-

tal cells and their control circuits
including a control timer.

2. The Keyboard: made of a special print-
ed circuit, it serves not only its ob-
vious function but also as the 1link be-
tween the display, logic board and in-
terface (port) connectors.

3. The Logic Board: the brain and memory
of the HP-41, it is composed of a spe-
cial microprocessor, internal Read Only
Memory (ROM) and standard Random Access
Memory (RAM), as well as a control
timer and supplementary circuits. The
new calculators, HP-41CV and HP-41CX,
are expanded at this level.

4. Interface (Port) Connectors: These
connecting circuits are visible in the
ports at the upper part of the HP-41,
and are mechanically independent and
therefore easily interchangeable. In
fact, they are made up of a flexible
printed circuit; this circuit idisn't
soldered, but simply pressed against
the printed circuit of the keyboard.
This also serves as the connection to
the power supply.

5. Power Supply: made up of either "N"
size dry cells or "N" size rechargeable
Ni-Cads recharged outside the calculat-
or, or a battery pack of HP recharge-
able Ni-Cads recharged either inside or
outside the calculator.

6. The Case: made in three parts of stur-
dy plastic assembled with screws hidden
under the rubber feet. The screws are
threaded into the plastic, and you
mustn't force them too much.

Taking account of the necessity of adding
some components, the latest HP circuit
boards use the so-called "piggy back"
method consisting of setting two integrated
circuits one upon the other.

-10-

Top T0P

1

101 13579 11 [13579 11 102
246810 12246810 12

103 13579 11 [13579 11 104
246810 12246810 12 Ay 1

;______——_—/ BAT- BAT BAT+

1/0 Ports COMMON

 AC+ —» || (battery compartment)

DISPLAY ASSEMBLY

[- """ttt A

2 | LOGIC BOARD !
l ' |

! 19 | (under case back) ;
|

J1 | :

BOTTOM 1 21 ! 1
VIEW L

(case off) O Ac-

O AC+

HP-41C POWER CONNECTORS

KEYBOARD

LOGIC BOARD

N
A
I
- T T TSy T T

Lo

HP-4 1C MAIN INTERCONNECTS

Structure of the HP-41C

FIGURE 1

The logic board reproduced here in Figure 2 was copied from a drawing made in
October of 1979 and that of Figure 3 in October of 1982. Within three years,

it has lost many of its main components. The transistors have all but dis-
appeared. Is this the result of the new RESET mode (see Chapter 5) or of more
advanced integration? The fact remains that there is much room for future
components, some of which has been consumed in the new HP-41CX.

C = Condenser
R = Resistor

CR = Diode
L = Coil
U = Integrated Circuit

LOGIC BOARD COMPONENT LOCATIONS

U6 u19 vl

ROM RAM
Processor ¢ reyboard Interface

ua
I RAM

;
RAM

Beeper

BERY,
-

1979 Logic Board

FIGURE 2

LOGIC BOARD COMPONENT LOCATIONS

[__;__g: — o
— —

U9

L o wfen =
O O —

N

u10

—/
@ Processor ¢+ keyboard Interface

P

£
x

o
o

<
=3

2
>

s
=

x
z

x
x

° 2 3

L
s
g
-

1983 Logic Board

Taking account of the necessity of adding some components, the latest HP cir-
cuit boards use the so-called "piggy back" method consisting of setting two
integrated circuits one upon the other.

—| |-

="
| |

|

FIGURE 3

2.2 Electrical Structure

First, let's examine the port connectors.

Notice particularly (Figures 4 and 5) the
use of ports 2 and 4. These are not con-
nected directly inside the HP-41 but only,
possibly, at port 3. This is how the HP-41
recognizes the setting of the modules and
numbers ports 1, 2, 3 and 4 (see the pic-
ture on the back of the HP-41).

Notice as well (Figures 1 and 5) the con-
figuration of the power supply allowing the
connection of external batteries or a 6V
power supply. Beware, it is possible that
on the future models this configuration may
be modified.

The early HP-41s were planned to receive a
6V power supply by the lateral port used by
the battery charger. If you took off the
small plastic overlay on older models, two
yellow gold connectors were visible pro-
truding from the plastic.

Unfortunately, Hewlett-Packard gave up the
idea of making a 6V adaptor when its "bat-
tery pack" came out and since has sup-
pressed those gold connectors as well as
their plastic guide and the 1little contact
springs. For some time now, the keyboard
circuit has not been modified and still
maintains the connections. The tinkerers
need only to rebuild the gold connectors to
be able to connect an external power sup-
ply. It is still possible on the latest
models, but for how long?

-14-

|

Port Connector

Electrical Diagram

FIGURE 4

<Vcc

<V+

L2 CR4
+— T
I CRS5 cn3| |+ +

C9 C5 U9
1/o - ™ a7 uf 12 uf
PORT -L_ AC+ CR2 + 10

- -
— AC— c2 141
— c 470 uf 1,11

N
£

Power Supply Circuit Diagram

Component Functions

c2
C5
c9
CR2

CR3

CR4

CR5

Constant Memory (without batteries) Capacitor
DC to DC Converter Output Filter
DC to DC Converter Input Filter
Path from battery into C2, also blocks cur-
rent from the AC adapter into the battery,
protects against reversal.
Path from V+ to C2, keeps C2 from discharg-
ing to plug-ins or AC adapter.
Rectifies pulses from L2 to charge C5 for
Vcc voltage.
Path from battery to plug-ins and to DC to
DC converter, also blocks the current from
the adapter into the batteries and protects
the plug-ins from battery reversal.

FIGURE 5

2.3 Geography of Random Access Memory (RAM)

A1l RAM memory of the HP-41 is now access-
ible to the shrewd user. It is no more a
matter of hardware but a matter of soft-
ware, but it is still geography.

The basic measure of the RAM unit in the
HP-41 is a register. A register has as
submultiples the byte, the nibble and the
bit, (Appendix II). Unless explicitly men-
tioned, we will compute in hexadecimal
(base 16).

The first register of RAM is R(000).
This numbering has nothing to do with the
one which you use with RCL and STO (see
Chapter 4). The hexadecimal digit (hhh)
will be called the "absolute address" of
the register. The last register which is
possible (in 1984...) is R(3FF). As
3FF = 1023 decimal, there are therefore
from @ to 1023 = 1024 possible regis-
ters, that is to say exactly 1K registers
and therefore with 7 bytes a register, 7K
bytes. Alas, not all these registers exist.

A RAM map is included as Figure 6 which
shows all defined areas of RAM,

-17-

| BYTE NO |

HEX 61514]3)2]1]0]1
IFF 21211 103FF

TOP OF MEMORY 1[vOoID
3F0
3ET

1co 3co

o~
DATA ol

z

N>
i

> wio

180 o 38 9214
= Ols
w > w
= o o« EI

ROO Noo _ __cymtan _| ss old
15t PROGRAM <|q oz

xir E

z 340 x140 = w

=

PROGRAM

MEMORY

301_JooJooJo2 Jo1 JooJo3]eF
100 LAST PRGM __| .EnD.__] 300 VoD
—————— 2F0

FREE 2EF

REGISTERS

[_ioBurreRs]
| __ ALARM BUFFER |

oco KEY ASGN BUFFER »c
0BF -

n ol
z z

0| n|>g £O S
== o
Qs 0w

080 8 w 28| (u.’).' =

(:E o 8
© o0
~(Z m|Z

FILE NO© - E ~ E

x x
w w

a0 —}° Jow fwo Joo J2€ [FoJer 240

020
voID 20100F 0000 JooJao[ae [r2er

o STATUS
200 elslalalaTliTo

| BYTE |

| I

RAM Memory Map

FIGURE 6

The following areas are part of RAM:

o
o
~
W
~

2.3. -
t

2.3.2

- Status Registers
- Empty Registers
- X-Memory

- Assignments
- Alarms
- Buffers
- Programs
- Data

Status Registers

From R(@PP) to R(GOF) is the in-
ternal operating system status mem-
ory of the HP-41. Normally, you
shouldn't have access to it, but we
aren't normal people. These regis-
ters are so important that a whole
chapter is devoted to them.

Empty Registers

Some locations have an address but
not any content: On a standard
HP-41, this is the case from
R(@10) through R(@GIF) and from
R(200) through R(3FF). The RAM
of the extended functions/memory
module occupies from R(Q40) to
R(@BF) (standard on the HP-41CX) and
the X-memories above R(1FF). How-
ever, some empty registers still
remain. They are not all useless,
especially registers R(@18) through
R(@1F) which must stay empty so that
the HP-41 can function as it does
(see Chapter 7).

-19-

2.3.3

2.3.4

X-Memories

These are ordinary registers, but

normally are accessed only by the
special functions of the X-Functions
Module. They are Tlocated from
R(@40) to R(@BF) for memories being
placed side by side with the X-Func-
tions, from R(201) to R(2EF) and
from R(301) to R(3EF) for all the
possible modules of X-Memories.

If you observe a few limitations,
you can extend their use and even
make programs execute inside these
registers. Yet this idisn't their
main use. Their complete study ex-
ceeds this work. We mustn't confuse
them with the other RAM registers.

Assignments

These are registers holding the ref-
erences to assigned keys. These
registers start at R(@C@) and
extend upward according to the num-
ber of assigned keys. They are or-
ganized as follows:

FO is followed by a function
code of 4 digits, + key code of 2
digits + function code + key code,
to fill the entire 14 digits. There
are therefore two assignments per

-20-

register. These registers are
filled from right to left and from
bottom to top. The function code is
the one described in Chapter 3. If
the function uses only one byte, the
2 nibbles on the left of the func-
tion code are 04.

For example, assigning LN function
to the key A gives the following
(ass?ming no other assignment ex-
ists):

R(GCP) = :F:0:0:0:0:0:0:0:0:4:5:0:0:1:

If we assign another function, the
HP-41 will first check to see if the
left side of R(@GCP) is free. If
it is, it uses the 1latter as an
available place. If not, the HP-41
pushes the assignments registers up-
wards and moves the content of
R(ACA) to R(GC1). R(@C@) then
becomes available.

Figure 7 gives the code used in the
assignment registers to represent
the keys. This code is different
from the one visible on the display.

-21-

AL A

f XKT D KK

[on[]user] =

——————————{p—
[03 13 23 33 43

31)
Yy (Y33 3

0A 1A 2A 3A 4A

oB iB 2B 3B 4B

3 2] 23] BY B

ocC 2C 3C 4

24) (34) (24
Y C—y 1y —

oD 1D 2D 3D

=3 3% U)3

OE 1E 2E 3E

P P R3 3y 3

OF 1F 2F 3F

1 F RO— —Y —3y —3

40 10 20 30

A
® HEWLETT P ACKARD 41C

Keycodes (hexadecimal) found in the assignment registers. Above the keys, the
keycode of the shifted keys. Note that if one knows how to do it, one can
assign a function to the SHIFT key (@3) and even to the shifted SHIFT key
(9B).
USER,
-31). graphic assist by RJS

To use this last one, we must get out of the User mode, press SHIFT,
and a second SHIFT. The "keyboard" code is the one expected (31 and
Try it after seeing KA (Chapter 4).

Key Assignment Keycodes

FIGURE 7

2.3.5

2.3.6

When you delete an assignment, the 3
bytes are not all suppressed at
once, only the byte giving the key
code is set to zero (and the key in-
dex in the registers F or e). This
location is reused by a new assign-
ment, but it isn't cleared by a
PACK. However, it is cleared by PK
from PPC ROM.

Alarms

For those who have the time module
or a HP-41CX, they already know that

the HP-41 uses the registers located
above the assignment registers to
store alarms and their messages.
The registers used in this way are
enclosed between an upper status
register and a lower status register
(see Appendix VIII).

The Buffer

Another type of memory is used by
HP-41, mainly in a module called
HP-IL development. A buffer is an
intermediate memory intended to tem-
porarily receive data, for example,

during a transfer on the HP-IL 1loop
between mass memory and the print-
er. The buffer normally is located
above the assignment registers and
above (or below, by chronological
order) the alarms.

-23-

2.3.7

It is composed of a lower status
register, an upper status register
and between them the buffer itself.
The lower status register looks 1like:

BBF564¢

BB is (always in hex, don't forget)
the reference mark of the register,

as F@ is for the assignments and
AA is for the alarms, F5 is the
whole number of the registers, stat-
us included, here, 245 registers.
640 is the position of the
pointer in the buffer. Here, the
pointer points out the byte 640
(decimal 160@). As the upper
status register, it has for content:

:1:0:4:D:4:F:4:E:4:9:5:4:5:2:

This 1is an inside joke by Hewlett-
Packard. The meaning can be easily
deciphered by those of you familiar
with the internal workings of the
HP-41. The beginner will find the
solution in Chapter 3.

Programs

The programs are located in an area
above the three types of memories
previously described. This area is
located between two 1limits defined
by addresses stored in the status

registers of the HP-41 (see Chap-
ter 4).

-24-

2.3.8

The Tower 1imit is the address of
the register containing the perma-
nent .END. The statement .END. is
the end of the last program in mem-
ory in the order of the CAT 1. It
is Tlocated somewhere above the
assignment-alarms-buffer area. Be-
tween the .END. and these special-

ized registers, there are available
registers which are allocated ac-
cording to need.

This allocation is automatic. In
the case of an insufficient number

of registers, this is usually shown
by a message "PACKING" followed by
"TRY AGAIN".

The upper 1imit of the program area
is in fact the lower 1limit of the
data area.

Data

The data registers are located be-
tween the program registers and the
top point of the standard memory,
varying with the number of RAM mem-
ory modules, with a maximum of 1FF.

There is no upper 1limit recorded.
This is due to the ability to remove
RAM memory modules without the
knowledge of the calculator.

-25-

2.4

The Tower 1imit is the absolute ad-
dress of R@P (notice: no paren-
theses around the digits), the reg-
ister to which you have access by

STO #@ or RCL P@.

Central Processing Unit (CPU) Geography

How can you get your bearings in all of
these memory areas? It all seems quite
confusing. Yet the HP-41 does. It also
knows how to perform the functions de-
scribed in Chapter 3.

But what is that "IC"? It is an integrated
electronic circuit whose principle is now
well known and which is called the micro-
processor.

This microprocessor is by itself a small
calculator with RAM and ROM and special
statements. The ROMs of the microprocessor
are photo engraved, and we can't read
them. So, we must be satisfied with ob-
serving the effects of the instructions,
giving them a name and using them as best
we can.

We will see in Chapter 4 how the RAM of the
microprocessor is organized. Figure 8
gives you an idea of the standard scheme of
the microprocessor. The HP-41 CPU consid-

ers the display and the RAM as peripherals,
as well as the printer and the card read-
er. It takes its statements from ROM which
is described next.

-26-

ADDRESS DATA BUS

1
INTERNAL BUS DATA AND COMMANDS

[apor]

INTERNAL

ADDRESS BUS

P . R
oM y CPU

l

WORK

 —HREGR B

 EXTERNAL COMMAND BUS

Geography of the Microprocessor

FIGURE 8

-27-

2.5 Organization of Read Only Memory (ROM)

If the RAM has the register as a unit, the
ROM has the word as a unit. This is due to
historical reasons rather than some grand
design. The HP-41 inherited its micropro-
cessor from earlier HP calculators. The
instruction word of the HP-41's micropro-
cessor is 10 bits, a byte with two more
bits.

In hexadecimal, a byte is represented by
two digits (for example: 3E). To repre-
sent the two supplementary bits of a ROM
word, you must therefore use one more dig-
it. The problem is to know if these two
supplementary bits are taken on the left or
on the right. Let's explain an example:

The statement RTN, for the micropro-
cessor must be coded:

1111100000

Given 1@ bits, to represent them in
hex, we can use 2 bits on the 1left,
then 4 bits, then the last 4 bits, ob-
taining the 244 code. In this code,
RTN is written:

11 11190 0000
3 E @ = 3E(

_28-

2.6

Or we can start with the 4 7leftmost

bits, then the next 4 bits and let the
two last ones from the right alone. We
now have the 442 code:

1111 1000 00
F 8 @ = F8p

These words are counted one by one, there
is no structure similar to the register.
The 244 code is most commonly used, but you
may encounter the 442 format as well. Just
to make things more complicated, HP's an-
notated listings of the operating system
use octal notation: The format is 1333.

To sum it all up, the processing unit of

ROM is the word. The ROM is organized in
columns of 16 words, in pages of 16 columns
and 256 words and in modules of 16 pages or
4096 words (4K). The microprocessor is
able to recognize 16 different modules ex-
isting simultaneously 1in memory, numbered
from @ to F, or 65,536 words (64K).
Since the introduction of the HP-41CX it is
even possible to have "hidden" modules,
that is, more than one module at a single
address.

ROM Pages

Pages @, 1 and 2 are reserved for the
functions built into the HP-41, it is the
internal operating system. It's the con-
tent of these modules that makes the HP-41
what it is.

-29-

Page 3 is used only on the HP-41CX, and
holds the X-Functions. This page is unused
on the HP-41C and HP-41CV.

Page 4 is reserved for the service module.
In its workshop, Hewlett-Packard uses a
service module assigned to checking the op-
eration of the HP-41 and is set to this ad-
dress. In fact, the HP-41 tests for the
presence of this module each time it is
turned on. This module seizes control of
the calculator and overrides the internal
operating system.

ROM page 4 could be used by a computer ex-
pert to completely modify the operation of
the HP-41. This address is also used by
the HP-IL module. The address of the
printing portion of this module is in bina-

ry 0110 (6). When you use a non-IL
printer, you must DISABLE the IL module
with the switch located under the case of
the module.

This switch simply changes (to @) one
of the address 1lines. Transform 0110
(6) into @199 (4) and the address goes
from 6 to 4. This works because the first
words of this module, when read as instruc-
tions, lead to a return. The exact in-
structions are:

4000 91D Carry is not set
4001 91B ?C GO @607 therefore doesn't jump
4002 907 JC +00 doesn't jump
40@3 1BB JNC +37 jumps and arrives on

a403A 3EQ RTN RTN

~30-

You will understand this better after read-
ing Chapter 7.

Page 5 is the time module. The presence of
this module is sometimes tested for by the
HP-IL. Using this address should be avoid-
ed if the HP-IL is in memory unless also
using the time module. The time module is
present internally on the HP-41CX. On the
HP-41CX this same address is used for the
supplementary functions. There is a "hid-
den" module in the HP-41CX that can be se-
lected in place of the time module.

Page 6 is the printer module (IL and
non-IL); ports 3 and 4 of the HP-41 are
often tested by the internal operating sys-
tem for this module. If we remember this,
we can use page 6, particularly for a video
extension that could take into account
these calls to the printer. This isn't
possible now. Page 7 is the HP-IL, mass
memory and controls. If the HP-IL is miss-
ing, you can use page 7 without any problem.

Pages (8 through F) are free except for
Page E if the card reader is present, be-
cause the card reader always takes this
page.

It's important to note this: The accessor-
jes listed above have their programs locat-
ed at the addresses listed regardless of
their physical Tlocation. The accessories
may be plugged into any port, a port-
extender, or (as in the case of the
HP-41CX) built into the calculator.

-31-

A1l the other accessories have an address
corresponding to that of the port in which
they are physically located. If two ac-
cessories have the same address, nothing
works. Most of the time, the HP-41 crashes
when turned on. Therefore, it's important
to note the ROM map of your HP-41 if you
use a port-extender or an Eprom box.

The Eprom box, which we will describe fur-
ther, is a special case since its address
is internally switchable (refer to its own-
er's manual).

If you use a "lower" 4K module, its address
will be 8, A, C or E depending on its phys-
ical location (port 1, 2, 3 or 4). Some
modules are hard-wired to the "“upper" ad-
dresses, that is 9, B, D, or F, i.e., the
Auto Start/Duplication ROM and ZENROM-3B.

If it's an 8K module, it holds the address-
es 8 and 9, A and B, C and D, or E and F,
depending again on its physical port Tloca-
tion.

-32-

4K

 PORT 4
E |CARD READER

m

PORT 2

>
@

O

PORT 1

]
- JporT s

]

)

7 HP-IL

6 PRINTER

5 TIME MODULE X

4L SERVICE MODULE

*
3 X-FUNC MODULE

 2 INTERNAL ROMS

! OPERATING SYSTEM __|

g
J

% These pages consist of internal ROMs in the

HP-41CX. Page 5 of the CX consists of two (2) 4K
blocks, one being the hidden page referred to

previously.

HP-41C ROM Pages

FIGURE 9

CHAPTER 3

MEANING OF THE DIGITS

-35-

MEANING OF THE DIGITS

The HP-41C, 1like all other calculators, deals

only with electronic signals. Whatever the mem-
ory is, these signals are in the form of digits
@ or 1. These digits are brought together
into registers, bytes, or set of bytes.

3.1 NUMBERS OR LETTERS, NNN, NORMALIZATION

Some statements of the HP-41 act on a com-
plete register. The most familiar are STO
or RCL, but we have as well ASTO, ARCL, VIEW
and AVIEW. The contents of these registers
can be considered either as numbers or as
letters.

a. An HP-41 register contains 7 bytes or 14
digits or 56 bits. These three ways of
speaking designate the same contents.

b. We agree, for convenience, on giving
some areas of a register a name connect-
ed with the representation of numbers
and numbering the digits from 13 to
@ (from left to right). The number
+1.234567899 19121, for example, is
represented by:

number of bit

Sign of the l T
Mantissa (MS) exponent (XP)

Mantissa (M) Sign of the
exponent (XS)

-37-

C. A register can contain:
-- a positive or negative number, with

a positive or negative exponent
-- alphanumerical characters
-- another thing that we will call Non-

Normalized Numbers (NNN)

If the digits 1in positions ® and 1
and 3 to 12 are between @ and 9, and
if MS=@ or 9 and XS=0 or 9, the reg-
ister contains a decimal number. In the
MS and XS positions, the sign + is rep-
resented by @, the sign - by 9.
Moreover, if the exponent is negative,

it is represented by its complement.
For example, to find the internal repre-
sentation of E-21 (E for exponent of
18) do 10@@-21=979. The result
(979) is the 3 rightmost digits (the
sign is implicitly included):

+1.234567890 - 21 =

:0:1:2:3:4:5:6:7:8:9:0:9:7:9:

Let's notice as well that the number is
always stored in SCI 9 format and that
neither the decimal point nor the E of
the exponent are coded. The FIX or ENG
modes apply only to the display of a
number.

If the first digit (position 13) is 1,
the HP-41 knows it is not a number but
rather an alpha string. The next six
bytes are characters and are displayed

as such. The null bytes present on the
left and the right or in the middle of a

-38-

string of characters are ignored when
displayed, and the non-null characters
are left justified.

Any other value of digits, for example a
value above 9, yields a non-normalized

number (NNN). A NNN can be stored and
recalled easily in a status register. A
NNN can be stored in a RAM register, but
it is modified by the statements RCL,
VIEW, etc. Beware, this modification
intervenes not only on the recalled val-
ue, but also on the register itself.
This modification is called normaliza-
tion.

If the sign of the Mantissa is @ or
9, the NNN is transformed into an ordin-
ary decimal number, holding a digit
above 9. A digit above 9, for example
B, is then interpreted as its decimal
counter value 11 or that of a Carry
added to the digit on the left.

1B ===> 2]

If only the exponent sign (XS) is abnor-
mal, the normalization of the digit will
cause a carry. If so, a @ remains
in XS.

If the mantissa sign is not @ or 9,
the "normalization" 1is the same as re-
placing the value of the mantissa sign
(MS) by 1. The register contents then
are considered as alpha data.

-39-

Synthetic programming now permits us to
avoid the inconveniences of normaliza-
tion, and microcode functions have been
created by the PPC Club members which
also avoid normalization. (To use them,
See Chapter 6.)

The NNN are in fact composed of hex dig-

its. Under some conditions (FIX 9...)
the HP-41 1is able to display these hex
digits. They are the available charact-
ers after digits ©0-9 in the hex
table. It's called "natural notation."

NATURAL NOTATION

l [|
} Hex = Display I

| [|
A	B
B	;
¢	<
D	=
E	>
F	? I

3.2 CHARACTERS

a. We have seen that the HP-41 deals only
with numbers, but these numbers are
sometimes interpreted as characters,
letters, flags or digits.

-40-

Why should we do in a simple way that
which we can do in a complex way? De-
pending on the situation, the same char-
acter can be represented by one code or
another.

For the moment, three cases are listed:

-- the display
-- the printers
-- microcode

The first two cases that any programmer
may meet are indicated in the byte
table. The third case is given in Fig-
ure 10.

Let's notice that in the three cases
these codes will be considered as char-
acters only if the HP-41 has been
"warned" that it must be so. That is to
say:

-- When you use the function AON, the
HP-41 then considers all that is
found in the Alpha register repre-
sents characters.

-- When a normal register is called
with the ARCL function, the register
contents are transformed into the
character equivalents and Tloaded
into alpha.

-41-

 wl
ol

I
[
N
\
~

]|d

w
|
Z
|
<
—
|

+
[
N

o
l
=
|
—
|

]|
"
y

U
l
/
Y
N

m
X
x
|

—
|
+
]
|

»n|lHk

<
|
|

~
N
X
|
B
B
|
e

A
N
l
r
—
>
0

o
|
T
|
X
|
w
r
|
o
|
K
~

~
|
O
|
=

|
k

o
l

|
=
|
c
s
|
0
|
]

N
(
D
=

o

S
F
|
O
|
—
[
e
A
a
|
F
O

M
W
K

M
|

YV

N
l

x
|
=

N
|
0

—
|
|

T
|
s
<
|
~
—

O

=
|
B
)
|
a

S
|
4

N
|
e
—
|
N
|
M
|
T
F

DISPLAY

?

]

N\

P24

[

JIK|LIM|N|O

B

CLD X[+

1

die |

|5 |%|&

C

2|3 |4|5(6|7|8|9|A|B|C|D|E|F

213[4{5(6]7]8]9

1

1

alb

2

PIQIR|S|T|U|VIW|X|Y|Z

0

giC|A|B|C|D|E|F|G|H

1

3
L

PRINTER

Microcode Character Set
REFERENCE: PPC-TN BY ROBERT GROOM & JOHN MC GECHIE

FIGURE 10

b.

Do you understand now that, in any reg-
ister:

10 4D 4F 4E 49 54 52

means the following:

10: characters are all alpha-
numerical

4D: M If we could recall this regis-
4F: 0 ter we would have MONITR in
4E: N the display. In fact, if you
49: I have the means of interacting
54: T with the buffer, you probably
52: R also have access to the micro-

code functions of the PPC-ROM
and monitor EPROMs.

We must notice that the initial version
of the HP-IL development, released on
EPROM, was called the HP-IL MONITOR.

In a master cleared calculator (MEMORY
LOST) do: 5, BSIZEX (SETBUFX with the

MONITOR EPROM), followed by either 194
CHS NRCL (Microcode) or 194 RX (PPC
ROM), and you will see "MONITR" in the
display.

The byte table (Figure 11) is a summary
of the most current meanings of the
HP-41 codes. It 1is organized so that
every possible value able to be assumed
by a byte is represented.

-43-

HP-41C QUICK REFERENCE CARD FOR SYNTHETIC PROGRAMMING @ ° ™ ~ b1

LBL
05 ~

11 1"

- Weo
7v regnrer

HP-41C QUICK REFERENCE CARD FOR SYNTHETIC PROGRAMMING

4 7 A
@ 1982 SYNTHETIX

F

0 04|1ND 05 06 07 o8 10(IND 11 IND 14
129 - 1 a {133 8134 [135 3 J136 & v 142 «

+ - - /

IND 17 20(INO 20 22 23 u IND 30
1 Q 48 a [149 A a 10]152 o 1 £

47 6 IND
33 34 3 36 [IND 37 2 3 4

649 174 .

05 1
52|IND 53 54 IND 62

181 : -)

X<>

68 6 70 n 72 7 INO 78
F 199 C H K N

-- -- GT0 --
86 87 88 IND 94

4 V(215|216 X217 1

IND 97 1 INDTY
225 a n

1 6 4
IND 7 IND d

x1 a

0 1 2 A C 0 E F
1 110) 1) 111

For prca stwrmanen e o 1! of Geseny © rewr ew send o sadiresesd stemped wveiepe 'e SYNTHETIX 1540 Mathews Ave Murvwrien Besch (A %0264 USA

HP-41C Byte Table

REFERENCE: BY KEITH JARETT, SYNTHETIX

AVAILABLE IN CARD FORM FROM SYNTHETIX

SEE APPENDIX IV.

FIGURE 11

-44-

A byte can be represented by two hexa-
decimal characters. For example, 3A =
character 3 and nibble A. The nibble 3

indicates the fourth line (row) from the
top of the table, the one beginning by
STO 0@.

The right nibble is the number of the
column. It can be read from above or
beTow the table. The character A indi-
cates then the column beginning by LBL
09.

At the intersection of row 3 and column
A is the diagram of the byte 3A.

STO 10 Area 1
Area 4— 58 : &[-Area 2 (2 characters)
Area 5— 58 : FArea 3

We can distinguish five areas in this
diagram which will be analyzed below.
Area 5 simply represents the decimal
value of the byte considered (hexadeci-
mal 3A = decimal 5B).

Area 2 of the diagram is the representa-
tion of the code as shown as an alpha
character in the display. Never forget
that the display is an HP-41 peripheral
as well as the card reader and the
printer. The HP-41 sends codes, but the
display does as it likes. See Appendix
X for its exact behavior. The bytes 2C,
2E and 3A (that of this example) have

-45-

two characters shown in the area 2. The

second character is visible only in very
unusual situations.

The display shows the starburst & for
each character of the second half of the
table. This area has therefore been
omitted in the second half of the table.

Area 3 of the diagram represents the
code printed by most of the HP thermal
printers. The new Thinkjet printer does
not print all of these characters. The
HP-IL printer can also, in some cases,
react differently (refer to the owner's
manual). It is important to note that
the printer reacts normally only with
characters from the first half of the
table.

The codes of the second half of the
table are sometimes ignored, sometimes
printed. Certain codes from the second
half of the table, when they are trans-
mitted to the printer (for example, as
part of a text line in a program list-
ing), can cause the execution of various
printer functions. We can provoke a
skip of characters or of columns (SKPCHR
or SKPCOL), print the printer buffer or
get the same effect as the flags 12 and
13 (double width or 1lower cases, see
Figure 12). The HP-IL printer goes even
further.

-46-

Printer Control Codes

I
AQ to AF | Jumps @ to F characters
B@ to B7 | Jumps 1P to 17 (Decimal 16 to 23) characters
B8 to BF { Jumps @ to 7 columns

| I [Capitals
| Mode Width | Output Type | Small Letters
| | |
[I |

D@ | Single | Characters | M
D1 | Single | Characters | m
D2 | Single | Columns | M
D3 | Single | Columns | m
D4 | Double | Characters | M
D5 | Double | Characters | m
D6 | Double | Columns | M
D7 | Double f Columns | m

| |
| [|

EQ | As PRBUF | |
E8 , As ADV : |

|

And more, for the HP-IL printer:

@D
PA
8@ through 8F

o)

FC and FD

Carriage Return
On Line

16 octets of bar code

the other one right)
Escape mode
Advance activated

Advance ignored

&
a

Column mode, prepare to read and print 1 through

Format: If in first cell, text centered, if in

center, text separated in 2 (one left justified,

Printer Control Codes FIGURE 12

PRP “E33AI"
AleLBL “€33RI" -

92 LY~ AleLBL "ESSAL"

83 AYIEW A2 “CN'
B3 RYIEW

Ad4eL BL 99
85 “K ad4eLBL B9

=2 8BS K
2

Certain programs are very difficult to list on the printer. For example: in
a program you may see in the display these four (4) text lines:

02 " C BV

05 T K B K
08 T 2 gD
11 TY B 8

Draw your own conclusions.

*(2Y 4930BJURYD 343Y) 9[QeILNS SL UdIBURYD [043UOD
e BuLaq J0u “31qe} BY3} JO J|BY PUOI3S 33 4O J4I3JeURYD AuP 9 dY3 4334y °9|qe}

3yl 4O jLeY puodds ay3 4apun dn 31 BULYOO| 4O UOLLPUOD 3Y3 43pun Ua}deURYD
pajuLud puodds ay3 Aq udALb SL 8pod |[043u0D 3yl :uoLIN|OS 3y} SaALb NNy

uotynios

Printer Demonstration Program

FIGURE 13

3.3

Notice that certain codes in a pro-
gram listing give quite curious re-
sults. You can see this with the
demonstration program, Figure 13.

INSTRUCTIONS

In hexadecimal code, there are 256 possible
combinations, or bytes. This number is not
high enough to account for all possible
HP-41 instructions, and certain instruc-
tions must use several bytes.

3.3.1 One-Byte Functions

One-byte functions appear in area 1
of the table. They use the codes
@1 to 8F except the codes 1D, 1E
and 1F. When the HP-41 encounters
these codes in a program, it exe-
cutes the corresponding function.
There 1is no particular problem to
printout, except...

The byte @@ (null) when found in
a program is just ignored and gener-

ally will be deleted during the next
PACKING. During the modification of
a program, an erased (backarrowed)
function 1is replaced by as many
bytes as it used. These replacement
bytes are @@ (nulls). An in-
serted instruction takes the place
of the available nulls wherever you
want to put it. If there are not
enough, the HP-41 liberates a whole
register by pushing the following
instructions down. This register is
filled with nulls.

-49-

3.3.2

If two numbers are present in pro-
?ram memory without a separator
press 1 alpha, alpha 2), they will

be separated by a null which cannot
be removed. Nulls can also exist in
multi-byte functions. The Dbyte
F@ at the bottom Tleft of the
table is also a one-byte instruction.

Bytes 1B and 1C represent EEX and
NEG, respectively. EEX is the entry
of an exponent and appears under the
form of E (1 E2 for example).

NEG is the effect of CHS acting di-
rectly on a numerical entry (nega-
tion 9 as the - of 1E-2). Curious-
1y, 25 CHS in a program is executed
more swiftly than -25 executes.

Two-Byte Functions

The first byte is called the Prefix
byte and the second one the Postfix
byte. The prefixes are shown in the
byte table 98 through BF plus CE
and CF. Area 1 represents the func-
tion Prefix. A1l the bytes from
@@ through FF can be wused as
Postfix bytes.

RCL 79 is coded as 90 4F
RCL IND 32 is coded as 90 AQ

For the <codes 0@ to 63, the
value of the Postfix byte is the
same as the decimal value of the
byte.

-50-

It is possible to assign any two-
byte functions to any key, but the
result is not always useful. This
will be described later in Chapter 5.

Area 4 gives the way the postfix
byte is shown by the HP-41 display,
and where it differs, Area 3 shows
the way it is printed by the printer.

M= [P =4
N =\ Q = _
0=] F=T

Let's notice as well that the post-

fixes of the second half of the table
correspond to the indirect functions.
The indirection is indicated by the
postfix byte and not by the prefix
byte.

Byte AE has a unique double function.
It is GTO IND if the postfix comes
from the bytes @0 through 7F, XEQ
IND if the postfix comes from the
bytes 83 through FF.

AE @8 is GTO IND @8
AE 88 is XEQ IND @8

The bytes from AQ@ through A7 are
called XROM. These bytes are prefix
bytes, but not exactly with the same
meaning as the others. Each function
of a peripheral is associated with a
two-byte code. XROM numbers appear
when the peripheral is not there or if

-51-

the program, previously recorded on a
card or cassette tape, is read into a
calculator devoid of these functions.
This is the case with such functions
as WDTA (write data, card reader data
recording), or ACSPEC (accumulate spe-
cial character of the printer). This
also includes the non-programmable
functions such as the names of the
modules such as CARD RDR IF, -PRINTER
2E, etc. even if the module is plugged
into the calculator or included in the
calculator such as the time functions
of the HP-41CX. We will have to go
down to the bit 1level in order to
understand the structure of these XROM
instructions. Two bytes are equiva-

lent to 16 bits. The first five bits
(on the left) are used as the prefix
(10100) leaving 11 bits for the
postfix. These 11 bits are divided
into five bits for the peripheral num-
ber and six bits for the function num-
ber within the peripheral.

With six bits we can count in decimal
up to 64 (in fact, from @ to 63),
with five bits, we can count up to
32. There are thus 32 possible num-
bers for the peripherals and 64 possi-
ble functions in each peripheral.

Let's Took at an example:

WDTA has the number XROM 3@, @7.
That is to say in binary:

_52-

10100 (5 bits = prefix)
1110 (peripheral number 30)30 =1

PP2111 (function number 97)

XROM

@7 =

Putting all 16 bits together in groups
of 4 bits each gives us:

1010 2111 1000 0111
1010 = A
111 =7

1000 = 8
111 = 7

Therefore, XROM 3@, @7 consists of
codes A7 87.

Notice also that the prefix byte con-
tains all but the two rightmost bits
of the peripheral number. This ex-
plains why each entry of the table
corresponds to four peripherals (two
bits = four possibilities). For ad-
ditional information on XROMS, see
Figure 14.

Consider boxes 98 and 91 of the
byte table. In order to save room in
program memory, Hewlett-Packard al-
lowed for STO and RCL to be one-byte
functions for the most used registers
(rows 2 and 3 of the table). It is
possible, but not profitable to build
RCL and STO two-byte functions with
prefix 99 and 91 and postfixes
from 00 to OF. In fact, before
executing these in microcode, the HP
transforms them from two-byte func-
tions to one-byte functions.

-53-

Supplementary Information about XROM Numbers:

People wonder why the XROM number prefix consists of five bits. This is due
to the fact that the XROM uses only half of 1line A, the fifth bit is always
null (@). However, we do have to underline here a particular phenomenon
which is that of synthetic XROM displays.

Later you will see a program (KA) which allows you to assign to a key any pair
of codes. The only functions which can legally hold two bytes of the assign-
ment registers are the XROM functions. When the HP-41 reads a function
assigned to a key, the program which displays the name of the function only
checks to see that the first nibble of the function is not @ and then dis-
plays an XROM number calculated from the three following nibbles. The HP-41
assumes that if the first nibble is not zero, it must be A. The message XROM

——, - corresponds to 15 functions (first nibble between 1 and F). This
kind of XROM may appear up to XROM 63, 63.

If x is the decimal value of the first byte of the function and y the value of
the second byte, XROM i, j is calculated by:

4 (x MOD 16) + INT (y/64)
y MOD 64

ij

We can deduce from this formula a method to find without calculators the XROM
number from the byte table (a method described by Keith Jarett).

To find the XROM number of an instruction (ST + IND M for example), notice
that ST + (92 - the first byte) is in the same column as XR 8-11 (A-2). The
column number of the first byte x is, in fact, x mod 16. This pins down i to
four possible values, which are shown in row A of the byte table, at least for
columns @ through 7. For example, ST+ is in column 2. Checking column 2
of row A we see the notation XR 8-11, indicating that the first of the two
XROM numbers displayed will be 8, 9, 10 or 11.

The exact value of i is determined by which block of four rows the second byte
y is in. The heavier horizontal lines on the byte table help you to visualize
the block boundaries. Rows @ to 3 correspond to the first value of i,
rows 4 through 7 to the second, rows 8 through B to the third, and rows C
through F to the fourth. If you then visually move the second byte up to a
corresponding box in rows @ to 3 (this is equivalent to taking y mod 64),
you can read off the value of j from the Area 4 or 5 of the box.

In the same way, if you assign ADV IND e (decimal 143, 255), using the KA pro-

gram, you will have XROM 63, 63 and in program mode will display simply ADV.
Of course, ADV IND e isn't very useful, and using the byte table isn't very
convenient for any XROM above 31.

FIGURE 14

A similar circumstance arises with
the numerical tables. A supplement-
ary remark 1is essential here when

you assign to a label (prefix CF) a
postfix byte 66 through 6F. The
table shows that you obtain LBL A to
LBL J which are the "local" 1labels
A-d. We can see that the 1local
labels are actually numerical 1labels
(192 through 111).

In Row B, except for the case of
B# which isn't used as a prefix,
we deal with a particular case of
two-byte functions. The prefix is
by itself the function GTO @1 or
GTO 13. The second byte is null
when keying the program. At the
first execution of GT0 __ (@1
through 13), the HP-41 calculates
the absolute jump distance to the
LBL and stores it in this free
byte. This operation is called com-
pilation.

If the second byte is null, it indi-

cates that a compilation hasn't been
performed. After compiling, this
second byte is organized such that
if you number the bits 7 6 5 4 3 2 1
@ you have:

Bit 7 indicates the direction of
the jump. 1 if the jump is for-
ward to a program line of a
greater number, and @ if the
jump is backwards to a program
line of a lesser number.

~55-

Bits 6, 5 and 4 indicate the num-
ber of remaining bytes.

Bits 3, 2, 1 and @ indicate
the number of registers.

The distance is counted such that
the number of bytes located between
the end of the GTO and the beginning
of the LBL in a forward jump are the
only bytes counted, whereas in a
backward jump the two bytes of GTO
and the byte of the LBL are count-
ed. The maximum distance of the
label is F registers and F bytes or
112 bytes. The minimum distance is
zero. If the label is too far, the

second byte of the GTO is Tleft at

@ and the HP-41 performs all
this work each time it 1is encoun-
tered in a program.

3.3.3 Three-Byte Functions

These are rows D (GTO __) and E
(XEQ __). These are similar to
the two-byte GTOs but with a greater
jumping distance which justifies the
extra byte required. Note that this
is the only possible form for XEQ:

3 bytes = 24 bits, therefore:

2 bits are used as the prefix: 11
2 bits give the type GT0=@1, XEQ=10
3 bits give the number of remain-
ing bytes (from @ to 7).

-56-

3.3.4

9 bits give the number of regis-
ters from @ to 511
1 bit gives the direction.
1 = Forward, @ = Backwards.
/ bits are reserved for the de-
scription of the label

For example:

11901: 100 P:0000:0010: 1 00P0:0100
GTO 4 bytes 2 registers + LBL 04

This example has been selected to
show that it 1is quite possible to
use a three-byte GTO to seek a one-
byte label. Here the codes are D8
@2 84.

The byte count is done between the
end of the first byte of GTO or XEQ
and the Dbeginning of the LBL.
Therefore, in a forward jump the two
compilation bytes of the GTO or XEQ
are counted, but not the LBL. In a
backward jump, the first byte of the
GTO or XEQ is counted as well as the
1 or 2 bytes of the LBL.

Variable Byte Instructions

Character Strings

The bytes of row F are prefix bytes
announcing strings of characters in
a program. We have seen how to

identify the characters in a regis-
ter. In a program, this identifica-
tion is done by a byte Fn where n is

-57-

the number of bytes to be read after
the prefix. These are considered as
alpha characters and placed in the
alpha register.

The maximum is therefore FF, or 15
characters, and the minimum is F@ or
@ characters. When F@ is used, no
characters are placed in alpha and
effectively alpha is not disturbed.

In addition, this code (F@) is
used to identify the assignment reg-
isters.

When incorporated into a program by
means of synthetic programming, the
F@ byte turns out to be a non-
operating instruction (NOP) and
hence useful as a filler in some
cases, after ISG or DSE for example.

Multi-byte example:

TDODIN = F5 44 4F 44 49 4E

The character F (7F) placed Jjust
after the prefix warns the HP-4]
that the alpha register mustn't be
deleted Dbefore adding the new
string. This is the APPEND function.

-58-

3.3.5 Global labels - END

The bytes C@ through CD "Global,"
perform a double role: they identi-
fy both the END and alphanumeric
labels.

The END

If the third byte of a line starting
with the byte C2 (with "a" being be-
tween @ and D) 1is a Fn text
byte, the line is a 1label. Other-
wise, it is a three-byte end.

In both cases, the second, third and
fourth nibble (from the left) give
the distance to the preceding END or
LBL in Catalog 1. This distance is
coded just as for a three-byte GTO.
It is counted from the label begin-
ning to END beginning. A label (or
END? begins by Cx in binary:

1100 abc d

1100 = C
abc = remaining bytes counting the
distance
d = added to the following byte =
number of registers

WARNING: CE = X<>__ and CF =
numerical LBL, therefore, it is im-
possible to have abc = 111. If so,
we would have CE = CF. This isn't
too serious, except that when the

~59-

the number of registers is maximum,
we can add only six bytes. With the
three-byte GTO and XEQ, it is possi-
ble to add seven bytes. This cap-
ability is not needed in normal pro-
gramming.

This storage of the distance between
elements of Catalog 1 provides for
the "chaining" of 1labels in memory.
A GTO or XEQ alpha begins to seek a
label from the end of memory (the
permanent .END.) and proceeds back-
wards through Catalog 1 up to the
first label which is then identified
by the two first bytes, CO 0@.

The fifth and sixth nibbles of the
end (from the left) are used to pro-
vide status information. The fifth

nibble is a 2 (@@18) for a per-
manent .END., 4 (0190) for a
private END, and 6 (@119) if
it's the .END. and it's private.

The sixth nibble is @ (0@@@) for
the .END. after a Memory Lost, 9

(1001) if the program isn't
packed, and D (1101) if the pro-
gram is packed.

The Labels

Let's talk about alphabetical 1lab-
els. The first two bytes are then

composed of C followed by 3 distance

-60-

nibbles. The third byte is a text
prefix, the fourth byte is a null

character. Invisible to the user,
the null character is used to record
a possible eventual key assignment
(the key code). The following bytes
spell the name. Because of the
null, the n of Fn is 1 greater than
the number of letters of the name.

A LBL "DE" alone in memory assigned
to the key (A) will be coded as
CO 00 F3 01 44 45.

The codes 1D and 1E are codes of GTO
and XEQ alpha, they are followed by
an ordinary string of characters.
For example:

GTO "DODIN" = 1D F5 44 4F 44 49 4E

The byte 1F displays W!. This
byte is inactive as a prefix. At
the end of 1983, different uses of
this code were discussed by the
PPC-T club without any convenient
applications being found.

The XEQ "ALPHA" are substituted by
XROM "ALPHA" if the so-called pro-
gram "ALPHA" 1is a program in user
language and not in microcode locat-
ed within a ROM. This is the case
for the math module and its programs.

-61-

3.4 ORGANIZATION OF PROGRAMS IN ROM

This organization is mostly required due to
the possibility of using the COPY function
which allows one to copy a program from ROM
into RAM.

3.4.1 The Control Words

A program in ROM is preceded by a
code word indicating the number of
registers required to copy the pro-
gram into RAM.

The second word determines (Code
244) if the program is private. The
middle nibble gives the number of
bytes used in an incomplete register.

The following words are the program
bytes. The two extra bits (since
the words in ROM are 10 bits
versus the 8 in RAM) are on the left
(244 Code). They are equal to 01
if the byte is the first byte of an
instruction and @@ otherwise.

At the end of a program, the last
byte of END (and therefore of the
program) is 22F (244 code).

3.4.2 The Links

Once the corresponding GTO's and
XEQs are compiled, 1labels are no
longer useful (except for GTO IND,
XEQ IND, and copying the program

-62-

from ROM into RAM). The distance is
calculated with the address of the
last included byte, less the address
of the first byte included plus 1.

The 1linking of alphabetical labels
is done the same as in RAM. For the
first label, a remark is required.

During a copy into RAM, the HP-4]
frees the required number of regis-
ters below the .END. . This .END.
is then transformed into a normal
END. The block of registers so 1ib-
erated is at the bottom of program
memory. The .END. 1is therefore the
new END and must be located on the
right of its register. The whole
program copied 1is therefore com-
pressed down and the first register
is incomplete. We have:

XX xxEND program residing
X xxLABE in RAM

L X x X Xx x X

The number of bytes of this first

register is the number shown in the
second header word. We must take
this into account to calculate the
distance between the first 1label of
the program and the following END.
The empty bytes of the first regis-
ter must be counted.

-63-

CHAPTER 4

A SPECIAL AREA

-65-

A SPECIAL AREA

The Status Registers

The status registers are the 16 registers whose
address is included between absolute addresses
P09 and Q@F.

A detailed map of these registers is shown in
Figure 15.

4.1 The Stack

The famous automatic stack of the HP-41 is
a set of five registers: X, Y, Z, T, and L
(LASTX). These registers are are available
to any user through normal means. They are
located at the bottom of RAM memory. T is
the register R(P9@), Z is R (§@1), Y is
R(PP2) and X is R(9PG3). Register L
(LASTX) is R(004).

These registers don't have any other spe-
cial feature. Their manipulation by the
microcode functions of the HP-41 1is what
makes them special.

Yet, there is another detail. We have just
seen that the stack is just another address
in memory but at a constant location
(PPP-004). On the other hand, the user
registers (RPP..R99..R319) are at vari-
able locations and at times do not even ex-
ist. The HP-41 must check the existence of

these registers, then calculate their posi-
tion each time it uses them.

-67-

6 5 | 4 | 3 4 2 1, g

e FT GNMENTS - PRGHSHIFTED KEY ASSIGNMEN LINE NUMBER 2pF

4 g2 FLAG REGISTER s3.505 9E
L

IREG 3 13 1coLD START REG 22 LEND.
¢ [aBsoLuTe ADDRI PRINTER “consTanT aBSoLuTE ADDR [aBSOLUTE ADDR 20

b SUBROUTINE RETURN STACK PRGM POINTER 0
3rd . _2nd | ! , st BYTC RECISTER ADDR} L } ; ——

a ; ; ! 298
! 6th : Sth ‘ 4th . 3rd
: LAST TKE YCO0E
i UNSHIFTED KEY ASSIGNMENTS INSTRUCTION (OURING ggp

EXECUTED | { PASN

Q TEMPORARY ~ALPHA SCRATCH 299

P ALPHA (REG 25-28) I ALPHA (REG 22-24) g8

0 ALPHA REGISTER 15-2) 207

N ALPHA REGISTER 8-14 206

M ALPHA REGISTER 1-7 205

T
L ! USER STACK REGISTERS Pl 284

X ; P 203
+ } + 4 —

Y : o po2
: + + + + ' +

z : P 901
—t —

T) 00

. 1 \ \ \ ' | 1

SIGN, MANTISSA R XPONENTL ‘ . 51N} EXPONEN
1 1 T137121 gle g T Te s T4 37 2T 1 g

KEY ASSIGNMENTS .
T T I

L—H:I:ekBEREREERERRRE] kR0k :%
—

(RRREFeTEE
r 131 12 I 11 T 19 l g |) ' 71 3 I 5T

The Status Register Map

FIGURE 15

4.2

In contrast, the stack registers are always

there. That is why an ISG or a DSE state-
ment is far faster in the stack than in a
user register.

Well, have you noticed that the statements
STO L (STO.L) or RCL L (RCL.L) exist ini-
tially? Although the first one is some-
times useful, the second does the same
thing as LASTx but uses one more byte.

The Alpha Register

Here it becomes more interesting. The
"alpha" register is known to hold 24 char-
acters, right? Well, in fact, this regis-
ter is not one register but, in fact, four
normal 7 byte registers called M, N, 0 and
P which are the registers R(0@5),
R(P@6), R(GA7) and R(PA8), respectively.

Still more interesting is that these regis-
ters can be used as any other ordinary reg-
isters. Remember that we have said that
any given prefix can be used with any given
postfix. Well, from @ to 99 (decimal)
we have the normal registers, from 100
to 111 we have the same normal registers,
and from 112 to 127 we obtain status regis-
ters: The code 99 75 or RCL 117 dis-
plays in fact RCL M. This is the status
register M, the rightmost register of Alpha.

When you enter a character into the alpha
register, it is always right justified in
the M register. That is, the rightmost
byte always contains the rightmost charac-
ter, and the next byte contains the second

-69-

to the last character, and so on. If the
alpha register contains 7 or fewer charac-
ters, only the M register is used.

As you enter characters into alpha, the
first character is pushed toward the left
in N, into O, then into P. An even more
extraordinary thing is that the character
is pushed up to the far left side of P be-
fore completely disappearing. We then have
28 characters in alpha. But this won't
last very long, for the four bytes on the
left of P are often used as scratch by the
HP-41. Moreover, the characters which are

located there are not visible on the dis-
play. Although not readi]¥ apparent, this
property is sometimes useful.

Registers M, N, 0, and P can therefore be
used:

-- normally with the alpha functions
-- Directly with STO, RCL, VIEW, ISG...and

so on, as storing and counting regis-
ters, with the same advantages of speed
as the stack.

The mixture of these two ways of working
allows increased control of the content of
these registers.

The other status registers which are nor-
mally invisible to the user but not for us
are Q, +, a, b, ¢, d, and e. They aren't
generally used completely by the HP-41, but
several areas of certain registers have a
specific use.

-70-

4.3

4.4

4.5

Register P (Address @@8)

As mentioned previously, the four leftmost
bytes of the P register are used as scratch
by the HP-41. For example, during a "cata-
log" the nibble 1located at the far 1left
(MS) of P contains the catalog number (1,
2, or 3), and the other nibbles contain the
number of functions which have already been
?isp1ayed during the execution of the cata-
0g.

It would be tedious and unnecessary to list
all the different cases of using the P reg-
ister by the HP-41. A test is better if
you intend to use it. However, be careful
when using peripherals, for they also some-
times use the four leftmost bytes of the P
register.

Register Q (Address @@9)

This register is also a scratch register,
but it is a very important one, since the
HP-41 uses this register for the name of
the functions that you spell after an XEQ.
This name is loaded into Q, written from
right to left. The non-used bytes are null

(@@). This register is also used in
many other cases, particularly by the
printer. In fact, it is used so often that
it is near impossible to use it for storage
with any sense of security.

Register + (Address @PA)

The append register is named for its dis-
play by the HP-41. The five right nibbles

-71-

4.6

are used as scratch, but the others are far
more interesting. They represent the key
map of assigned unshifted keys.

You know that each key of the HP-41 can be

assigned. It would take far too much time
for the HP-41 to 1look for an occasional
assignment in the entire memory when you

press each key. Consequently, the calcula-
tor keeps an up-to-date index of the keys
which have been assigned and starts the re-
search only if this index points out the
existence of an assignment.

There are 35 keys on the keyboard. There-

fore, it is necessary to have 35 index po-
sitions, therefore, 35 bits. Four bytes
yield 4 x 8 = 32 bits, so we must have one
more nibble. That is to say 36 bits for
the key map. There is one unused bit, but
that is not a problem. The correspondence
between bits and keys is shown in Figure 15.

Registers a and b (Addresses @@B and @@C)

These registers are generally pointer reg-
isters.The main pointer 1is the program
pointer, the one which tells us which pro-
gram byte is performing. This pointer is
composed of the two rightmost bytes of reg-
ister b.

a. ROM:
When the pointer is in a ROM module,
for example in the PPC ROM, the program
pointer represents the address of the

-72-

byte expressed in four nibbles from
PPPP to FFFF, which allows 65,536
bytes. These bytes have a number in-

creasing in the same sense as the pro-
gram lines.

RAM:
When the pointer is in RAM, for example

running your favorite program, it has a
different form. The three rightmost
nibbles of register b give the address
of the register in which the byte is
located and nibble number 3 gives the
number of the byte in the register.
The register and byte numbers decrease
as the line numbers increase.

The Subroutine Stack:

When you use the XEQ statement in a
program, the HP-41 must note the posi-
tion of the XEQ to be able to come back
after executing the sub-routine. Where
is this address stored?

It is next to the program pointer in
bytes number 2 and number 3 of register
b. Register b contains the first and
second return pointers, and half of the
third return pointer. Register a con-
tains the other half of the third re-
turn pointer and the fourth, fifth and
sixth return pointers. Each pointer
consists of two bytes. The pointers
are pushed to the left upon each return
from an XEQ (subroutine call). In
fact, the entire register b 1is pushed
to the left, and that which goes out on

-73-

the left of b goes in on the right of
a. Bytes pushed to the left of a are
lost. This is why, if a seventh call

occurs without a RTN, the first call is
lost.

Bytes 1 and @ of register b contain
the current program pointer. When an
XEQ instruction 1is encountered, this
pointer is pushed onto the return
stack; that is, into bytes 3 and 2 of
register b. If another XEQ is encoun-
tered before the RTN from the first
one, the program pointer and the first
return are pushed leftward two more
bytes. In this way, the return stack
in registers a and b can accommodate up
to six pending return addresses.

When a RTN instruction is encountered,
the first return address in bytes 3 and

2 of register b is checked. If its
value 1is zero, the current program
pointer is retained and control returns

to the keyboard. Otherwise, the return
stack is shifted right two bytes, with
the former first return address being
moved 1into the program pointer slot.
Execution continues from that location
in program memory, one step past the
XEQ instruction that caused the return
address to be pushed onto the return
stack.

Now for a Tlittle technical detail on
program pointers. The four hexadecimal
digits of the program pointer are in-
terpreted one way for RAM and another

-74-

way for ROM pointers (those from a
plug-in Read Only Memory). For RAM,
the first four bits denote the byte
number within the register, while the
other 12 bits denote the register's ab-
solute address from the bottom of mem-
ory. The format is:

@bbb,@@ddr,rrrr,rrrr

where bbb denotes the byte number

(expressible in three bits since the
maximum value is 6 = @119 base 2)
and where r,rrrr,rrrr denotes the reg-
ister number (expressible in 9 bits
since the maximum value 1is 511 =
PP31,1111,1111 base 2). For example,
P101,0001,1010,1110 = hex 51AE de-
notes byte 5 of register 1AE (= 430
decimal). Byte numbers range from 6 to

@ as the program pointer moves
downward through one register of a pro-
gram. Thus, 61AE is above 41AE in a
program, and 41AE is above 61AD.

RAM return address pointers are the
same as ordinary RAM pointers, except
that the three bits that designate the
byte number within the register are
shifted to the right. These bits, nor-
mally the second, third and fourth from
the 1left of the 16-bit pointer, are
shifted three positions over, to the
fifth, sixth and seventh bit posi-
tions. The RAM return pointer format
is:

@000 ,bbbr,rrrr,rrrr

-75-

ROM pointers consist of a port address
in the first four bits plus a 12-bit

byte number within that port:

pppp,bbbb,bbbb,bbbb

The port address part of a ROM pointer
is not the same as the physical port

number. The correspondence is:

Port Physical Port
Address or Device

internal ROM @

internal ROM 1
internal ROM 2
X Functions (CX only)
Service module
Time module
Printer
Tape Drive (IL monitor)
Port 1, Lower 4K
Port 1, Upper 4K

Port 2, Lower 4K
Port Upper 4K
Port Lower 4K
Port Upper 4K
Port Lower 4K
Port 4, Upper 4K

L

T
M
M
O
O
m
M
P
>
O
O

N
O
O
O
T
P
,
W
L
W
N
—
S

P
P
W
W
N
N
—

-

Each port address can accommodate a 4
kilobyte ROM (4096 = hex FFF + 1
bytes). The 12-bit byte number starts
at zero and increases toward FFF as se-
quential ROM program instructions are
executed.

-76-

4.7

Another important detail: When you RCL
b in RUN mode at a specific 1line of
program memory, the pointer value is
usually one byte above the Tlocation
where the instruction resides. Thus,
if a RCL M instruction is located in
bytes 6 and 5 of register 1AE, and you
RCL b at this line of program memory,
the resulting pointer value will be
@1AF hex, one byte above the actual

location of the RCL M instruction.
Where nulls are present, the pointer
will be farther above the instruction.
In fact, it will be one byte above the

group of nulls preceding the instruc-
tion.

Register ¢ (Address @@D)

This is one of the more dangerous and in-
teresting registers among the status regis-
ters. This register holds, from right to
left:

The right 3 nibbles give the address of the
register in which the permanent .END. is
located. As the .END. is always located in
the 3 rightmost bytes of its register, 3
nibbles are enough to define this address.

Next is the address of the first data reg-
ister, the one which we call R@@. This
also consists of 3 nibbles. This is the
lower 1imit of the data registers and the
upper limit of the program storage area.
We call this the "curtain" between programs
and data registers.

_77-

4.8

Next to this is the "Cold Start Constant"
which 1is the number 169. It 1is a value
which must not be disturbed unless caution
is used. The HP-41 checks it whenever a
program is not running, and even sometimes

in a running program. If it finds 169 in
this area everything goes right. Other-
wise, it runs a "cold start", and you again
are unlucky enough to see the foreboding
“"Memory Lost."

However, while a program is running, this
checking is infrequent and you can play a
bit, but don't forget to replace the 169
prior to stopping the program.

The 3 leftmost nibbles point to the abso-
lute address of the first statistic regis-
ter (IREG).

The two remaining nibbles (9 and 10)
are used by the printer.

Register d (Address @QE)

In this register are the 56 flags of the
HP-41 (see Figure 16). Each flag is repre-
sented by one bit. The capability of ac-
cessing this register allows you total con-
trol of all flags. In fact, all 56 flags
can be manipulated by one single state-
ment. As the flags are tested by the HP-41
only from time to time, we can, most of the
time, manipulate them without any problem.
When manipulated within a program, it is
good practice to restore the original value
of the register before stopping the pro-
gram. Beware of specialized flags 1like

-78-

4.9

flag 45 (data input) or flag 21. This reg-
ister is one of the most used, so much so
that Hewlett-Packard finally recognized it
by including functions in the X-function
module for working on this register.

Register e (Address @@F)

The three rightmost nibbles hold the num-
ber of the program line in the case of a
running program. The two following nib-
bles are used as scratch on several occa-
sions by the HP-41. The other nibbles,
from 8 through 13, are the key map of the
shifted key assignments.

-79-

 FIGURE 16

The HP-41C Flag Map

A
U
T
O

E
X
E
C
U
T
E

N
U
M
B
E
R E
N
T
R
Y

E
N
A
B
L
E

N
U
M
B
E
R

O
F

D
I
G
I
T
S

CHAPTER 5

THIEF.

-81-

THIEF

Since the discovery of the status registers and
the commands with abnormal postfixes, many appli-
cations have been created. The best application
is the module created by the PPC club and named
the PPC ROM. This module contains, amongst many
programs of general interest, a certain number of
small programs utilizing a lot of synthetic pro-
gramming. These programs have minor flaws but
bring to the programmer an evident improvement.
Believe me, the advertising that I am doing for
PPC ROM is free: It is available to all by mail
in the United States, even to non-members of the
club, at a price of about $100.

But the PPC ROM is not a requirement, luckily. A
very simple method has been found to create a
byte grabber.

5.1 The Byte Grabber

Follow to the letter the instructions below
(one bare HP-41 is the only requirement;
howe\)/er, a card reader is a welcome addi-
tion).

This procedure works with all machines.
Certain accessories might sometimes disturb
this operation. Therefore, use a bare (no
module) machine (HP-41C, CV or CX). Be
patient on all steps.

-83-

SEE
DO (In the Display)

1. Master Clear MEMORY LOST

2. Assign + to the LN Key ASN +15

Assign DEL to the
LOG Key ASN DEL 14

4, Put the calculator
in User mode ?.0000

5. Put the calculator
in PRGM mode @@ REG 45

a. Shift LBL T
Alpha T Alpha @1 LBL 'T

b. Shift CAT 1 and T
immediately R/S LBL'T

c. LOG z+ DEL 901
4994

.END. Reg 44

d. BST 4093
4093 DEC

e. Shift GTO. LN GTO.0P05

@5 LBL @3

f. LOG :z+ DEL 903
@4 STO @1

g. Alpha ?AAAAAA A]pha Tep-----
(on the CX or ¥ou have X Func-
tions you will see '?AAAAAA).

Get out of Program Mode, do GTO.. and it's

finished.

Press and hold LN; see XROM 28,63. If you
don't see this, start over from step 1.

-84-

Explanation

Before going further, if you have a card
reader, record a status card (WSTS) on both
track 1 and 2.

Steps a, b, and c utilize a peculiarity of
the machine called "BUG 9" discovered by
the PPC Club.

The Tline number 4094 appearing on the

display then the number 4093 preceding
DEC don't have any meaning, except to show
you that you are now below the .END., in
fact in the (010) register, the first
register of the shifted key assignment reg-
isters (Status Register e).

Do again the operations from 1 to 5d, then,
instead of doing a GT0.005, do many BST (be
patient because each BST 1is slow). You
will see:

Code

agg6 T F@
4087 LBL @3 @4
4088 LBL 01 @2 Equivalent of DEL
4089 STO @1 31 Key Code for LOG
4090 LBL 03 g4
4091 + 40 Equivalent of +
4092 - 41 Key Code for LN

Here 176 empty registers --—----—ceeeee--

4093 DEC Now you are in the
status registers

-85-

When you do GTO0.0@5, the HP-41 shakes a
little and retakes a "normal" count of the
lines starting from F@, the @5 LBL @3

appearing is thus the one preceding the +.

DEL.P@3 erases the LBL @3, + and -,
leaving three nulls.

When you introduce the chain of characters

(?AAAAAA), the HP-41 displays nulls: the
first byte is the Fn byte where n will vary.

The n increases from 1 to 7 with the gra-
dual introduction of letters, first ?, byte
3F, then A, byte 41 (look here, the same
code as -.), and the three nulls opened by
DEL@@3 are used. But now you are to
the right of R(@CA) and there is no-
thing below, so the following letters fall
into emptiness and cannot be recorded.
However, the n of Fn increases each time by
one unit and the display shows as nulls

(----) the part of "emptiness" included in
the chain.

NOTE: If X Functions are present, you will

see A's instead of nulls because R(@BF)
is present.

You end up with a chain of seven characters

(?, A and 5 nulls), the first character
being ? and the second A. This A is taken

by the machine as key code. Try another

key: TAN has for assignment code 42, cor-

responding to the letter B. Try ? and six

times B.

-86-

5.2

Well, it doesn't work? Did you think it
would? Yes, it is now the TAN key that has
to be assigned in Step 2.

Let's go back to the first example (for in-
stance by reading the card just recorded).
Pressing and holding the LN key in User
mode: —

XROM 28,63

This is one of the many possible byte grab-
bers.

What is the Byte Grabber (BG)?

First, it is principally useful in program
mode and must never be used before an .END.
or in empty program memory (no kidding,
this is really important).

The BG creates in program memory a text
line of seven characters. In order to put
it in place, the HP-41 frees a register of
seven bytes. But before the chain there is
a F7 byte and thus this chain of seven
bytes requires eight bytes of memory. We
have thus created a chain:

F7 00 3F 00 00 09 0@ = 7 bytes, but the
HP-41 will by any means find the seventh
character that is missing. The HP-41 pure-
ly and simply appends the first byte, null
or not null that will come forward (for de-
tails see Figure 17).

-87-

Example:
g1 LBLTT
g2 +
g3 +
g4 +

Then do GTO0.P@1 and BG (press LN in
user program mode) you will see:

OZT'?""@. You see the character with

code 4@, the same code as +, stolen and

introduced into the chain.

BackaFrow this line and type:
@2'ABCDEFG
BST and BG

8i1elLBL -T"
B2 “e+2¢eee"

83 -
B84 *
85 -
86 XIY7?
87 X>¥Y7?
a8 X<=Y7
89 =+
186 +
11 +
12 .END.

-88-

Where are these program lines coming from?
As you can see from the code tables, these

are simply the instructions having the same
code as the letters previously entered. It
is the masking of the F7 byte at the begin-
ning of the "ABCEDFG" text line by the BG
that keeps the HP-41 from knowing they are
letters. You can SST or BST in this "pro-
gram" without worries.

GT0.0@1, BG and you will see

AlelLBL =T"
AZ "e¢2e¢see"

Bz STO 15
B84 “"HBCIDEFLG

us +
s +

B7 JEND.

What has happened? The new BG has stolen
the F7 byte from the first BG. The thief
has been robbed. The nulls are not visi-
ble, STO 15 has the same code as ?, the F7
of the chain is freed and the "ABCDEFG"
text l1line takes back its normal existence.
You can backarrow lines 2 and 3, pack, and
you are back at the start. We will call
this operation "to suppress the BG." Do
it. And let's see the use of this new
function.

Again BG at 1line @1, you will be back

to the configuration shown in the first
figure. Backarrow line @6 X<>Y? and

-89-

replace it by LBL @@ then GTO0.0A1 and
suppress the BG. You will see:

" ABCAEFG

You have replaced the D, in the text 1line
by a symbol called "the complete man." If
you make a mistake during the operation,
simply XEQ PACK. Enjoy yourself by trying
other characters.

Introduce a null: the nulls necessarily
must be introduced last, because one can no
longer XEQ PACK (PACK removes all nulls).
Thus, you cannot make an error. By start-
ing from the situation above, Tlet's do
GT0.001, BG.

NOTE: If, after a BG, there are no charac-
ters at the right of the BG text, it is be-
cause there were some null bytes 1lagging
behind. Don't worry; simply do BG many
times and leave the cleaning for later. In
this case, it can happen that the BG steals
more than one byte. If this bothers you,
sugpress the BG by the usual way and XEQ
PACK before restarting. Otherwise, contin-

ue as if nothing had happened.

Backarrow LBL @0 and, without doing
PACK, BST up to the line containing the be-
ginning of your character chain, suppress
the BG, and you will see:

"ABC-EFG

A 1little bit of housekeeping and a PACK
wouldn't do any harm, would it?

NOTE: Before the execution of BG, you must
see on the display the line preceding the
command that you want to steal.

These explanations may seem complex, but

with practice they become so practical that
apagvays have a BG assigned to a key of my

You probably asked yourself why one can see
a line 4094 appear during the creation
of the BG. In fact, during the program,
the HP-41 does not calculate the program
line numbers, it does not need to. But if
one stops the program to look at it, it has
to recalculate everything. So that it
would be aware of the necessity of this
calculation, the HP-41 places in register e
the 1ine number FFF, which is clearly not a
valid 1line number.

Now FFF equals 4095 in decimal. In the
procedure of creating the BG, at the moment
we erase the LBL "T", the HP-41 goes back
one line from the FFF without noticing that
this number is invalid, from where 4095
-1 = 4094,

-91]-

The Operation of the Byte Grabber Unveiled

After assigning the byte grabber (XROM 28,63), GTO.. enter the following program:

N ENTER4
92 ENTER4
03 ENTER4
P4 ENTER4
95 ENTER4

96 ENTER4
97 ENTERt

p8 "ABCDEFGHIJ" the FA byte followed by ten characters = 11 bytes

Accounting for the three bytes of the .END., you have thus filled 7 + 11 + 3 =
21 bytes or 3 registers.

An XEQ "Pack" will confirmm it for you. Place yourself at Line @7 ENTER and
backarrow 3 lines you see:

@4 ENTER4

BG (press and release the LN key in user mode) you will see:
@5 ~"®&ABCD

What Happens? When you want to introduce a function in memory, the HP-41 knows
nks it knows.) that this function occupies at the most three bytes. (There

is a function of three bytes that can be assigned, it's the function END.) In
fact only the byte C@ figures in the assignment register, and the following
bytes are built at the moment of the introduction of the function in the mem-
ory. If there is not enough room available to introduce the desired function,
the HP-41 frees an entire register, i.e. 7 bytes. That appears more than suf-
ficient to the calculator to hold a command that can use only three bytes.

But the byte grabber has two characteristics: it is a three byte function which
puts into memory one F7 byte. The following chain of characters thus contains
seven characters. Let's investigate the different cases:

1. No null bytes are present. The HP-41 frees one register and places the BG
to the left of this register. The chain so created includes the F7 byte,
the six following bytes from the register and one byte from the following
register, the stolen byte. This is the usual case.

2. A single byte is free. The F7 puts itself in place of the free byte, and
the chain occupies the following register, freed for that purpose, nothing
}? stolen, but all the null bytes have been covered, and we are back to the

rst case.

3. Two bytes are free. The F7 puts itself in the free byte, and the chain
occupies the following register, but one null byte is left. This takes us
back to the second case.

4, Three bytes are free. That's enough for the byte grabber (don't forget that
the byte grabber is a function that copies again in memory the three bytes
contained in the corresponding assignment register). With that move no reg-
ister is free and the BG steals five characters. This is the case experi-
enced above.

If one increases the number of nulls, one can choose between @ and 5 the
number of stolen characters.

FIGURE 17

5.3 The Synthetic Postfixes

The byte grabber can be used to fabricate
1n program memory all the synthetic func-
tions that you want. Consider the two byte
functions, for instance RCL, ISG, VIEW, FIX
or TONE. The prefix codes of these func-
tions are from Row 9. We can build in mem-
ory a byte chain that will put this prefix
and one byte that we will transform into a
postfix. We will try to use the byte 75 as
a postfix.

Using the following bytes:

99 98 75

99 = RCL, after RCL, the HP-41
seeks a postfix and takes the 98 as the
postfix. 98 is IND 24, there thus re-
mains one 75 byte all alone, which is
RDN and the HP writes:

RCL IND 24
RDN

Are you capable of creating these two pro-
gram lines? Yes? Then you can do every-
thing. Did you understand? We will steal
(BG) the 98 and then simply erase the
chain of characters given by the BG. Re-
maining will be the two bytes 98 and 75.

~93-

5.4

DO

@1 LBL
@2 RCL IND 24
@3 RDN
BST
BST
BG

Backarrow
SST

SEE
@2 VIEW M

Try this also with:

RCL IND 16 & RDN (RCL M)
RCL IND 22 & RDN (ISG M)
RCL IND 28 & RDN (FIX M)
RCL IND 31 & RDN (TONE M)

Enjoy yourself...there are still many
things to explore...

Key Assignments

The following program (Figure 18) is an
alternate of a very common program from the
PPC Club traditionally called KA (Key
Assignment), modified to be absolutely
without risk of memory 1lost. Watch out,
however, you can stop the program, and SST,
but it is imperative that you complete the
two assignments if you want to find your
machine back in its starting position.

-94-

Before using "KA", each time you must man-
ually assign (using ASN) any function to
two keys. When you execute "KA", these
dummy assignments will be replaced by the
synthetic functions that you specify.

Program Description: This program fabri-
cates in Alpha the contents of a synthetic
assignment register and places this con-
tents in R(@CP) that was previously
occupied when we assigned the two keys.
This assignment serves also to update the
index in the registers F or e.

The building of this dummy assignment reg-
ister 1is started on 1line @5 where the
character F@ is placed in alpha.

When ??? appears in the display, enter in
decimal the prefix of the function to be
assigned, ENTER+, next the postfix;
ENTERY, then the row/column key code,
then R/S.

The subprogram @2 converts the prefix
and then the postfix to hexadecimal and
places these in alpha, the key code is then

put in the correct form and placed in
alpha. Then a second ??? asks for the sec-
ond key assignment. You absolutely must
answer this demand, if needed simply enter
zeros or repeat the first assignment.

-95-

Then the machine places the curtain at
R(@OF) (this is the effect of 1line
12). The register R(@C@) to be filled
has then the relative address R177, from
where the recourse to indirect storing,
then we reconstitute the initial state.

It is this part of the program that consti-
tutes its originality. Indeed, in general,
one satisfies himself by placing the cur-
tain in R(@CP), a simple STO PP will
then suffice for filling the register. But
if at this moment the program is interrupt-
ed, or SST, there results Memory Lost. In-
deed the HP-41 tests for the existence of
the register immediately under the cur-
tain: there is always at least one program
register at this place, the one of .END.

If the curtain is in R(@C@) there is
nothing below and the HP-41 reacts brutally.

One can execute this program indefinitely
and thus enter as many assignments as de-

sired (within the 1imits of the calculat-
or). Each time you need to make two as-
signments manually before executing "KA".

Watch out: If you have some keys assigned
beforehand and you have deassigned some of
them before using KA, the program will
probably not work. It is much better, at
least at the beginning, to use KA on a
machine without any key assignments other
than the two used by KA to make the assign-
ments.

BlelLEBL “"KA"™

azeLBL @1

az "ASN. 2

KEYS™

a4

a5

20

PROMPT

XEQ @z

XEQ @z
»<> .

RCL <

RL>Y
“xien

ASTO

177

RV

STO IND

0

RT
RT
STO c
CLST
GTO @1

21eLEBL G2

ASTO L
“ oo

PROMFT

CLRA

ARCL L

X<>» 2

XER@ A4

XEG ©64

E1l

ST~ ¥

XL>Y

STO 1

AES

INT

LASTX

FRC

.1

ST* 2

xX=a7?

GTO a3

RDHN
4
RK=¥"7?

I1SG 2

47eLBL A=

48 RDN

49 XY

58 16

51 *

52 +

53 .

54 X<> 1

S5 SIGHN

56 8

57 *

58 X>a7?

59 CL=x

6a -

61«LBL @4

62 INT

63 X=87
64 “"FHeeee

65 0CT

66 E3

67 -

&8 E1l

69 +

A X<> d

71 FS?C 19

72 SF 2a

732 FS?C 182

74 SF 19

7S FES?C 17

76 SF 18

77 FS?C 15

78 SF 17

79 FS?C 14

88 SF 16

81 CF @7

82 SF 832

83 XI> d

84 ARCL =
85 hkokok

26 .

87 XI{> ™~

88 STO [

89 RDH

9@ RDHN

91 END

KA Program Listing

FOR BAR CODE SEE APPENDIX XIV

FIGURE 18

COMMENTARY OF THE KA PROGRAM

The 1ine P3 is "ASN. 2 KEYS". You will have to assign any function to the
two keys that you are planning to assign with the program. This results in
updating the key indexes in register e and reserving a space in the register
P19 that KA will replace by the synthetic assignment.

Two interesting assignments: The BG and eG@BEEP.

The BG that we have created places in the assignment register the bytes F7 and
3F (decimals 247/63), but try to assign F7 8@ (247/128). With the same
XROM, same display, here with the card reader you have the appearance of CARD
READER, an easy identification (F7 89 = XROM 30,00).

eGPBEEP is the assignment XX/167, XX being between @ and F (@ to 15 deci-
mal). It is an "unexpected function" like the byte grabber. This function
has the property of creating (and eventually executing) the functions XROM 28
and 29, the functions of the HP-IL cassette and of the printers.

This function displays eG@BEEP __. If you answer the prompts by a num-
ber from @ to 41, you create an XROM 28, which corresponds to the HP-IL.
For instance, the number 12 gives XROM 28, 12, which is function RENAME. If
the IL is present as well as the cassette, this function executes itself (or
writes rename in a program). Otherwise, we have a nonexistent (or XROM 28,12
in the program).

Between 42 and 63 there are no functions for eG@BEEP's prompts. From 64
to 89, one obtains XROM 29 (number 64) which are the functions of the printer.

Watch out: 89 is FMT (format) and exists only on the HP-IL; furthermore, we
can also assign and "execute" the titles mass storage or printer....with vary-
ing fortune, usually bad.

FIGURE 19

5.5 The Heavy Artillery

When there are many synthetic program lines
that need to be created, the BG becomes
tedious. On top of that, it is not possi-
ble to obtain certain codes for rows C
through E of the table. The following pro-
gram written by Lionel Ancele and published
in the "Journal" of the PPC-Toulouse, cre-
ates in memory all the necessary bytes. It
is a version of a well-known program in the
Club with the <classic name LB (Load
Bytes). See Figure 20.

5.5.1 Use of "LB"

After having introduced LB into pro-
gram memory, do GTO.. Enter in pro-
gram mode LBL"++" followed by more
than 12 +'s. You must have 12 +'s
over the number of synthetic bytes
you wish to introduce, then XEQ"LB",
END. Be sure not to have the .END.
too close or you might overwrite it
accidentally. BST to the XEQ "LB"
line and go out of PRGM Mode. Then
press R/S. After a few seconds, a
number in the form 1,nnn is dis-
played. That means that you are
asked to give the first byte of a
program that might contain nnn
bytes. If you did not enter enough
+'s, an alpha chain or an odd number
is displayed. Enter then the deci-
mal value of the byte you wish to
introduce, R/S and so on.

-99-

AlelLBL "LE"

az FS? 48

GTOD @aa

AON

CLST

E

RDHN
GTO “++-

a9«EL BG

10

11

12

13

14

15

AOFF

RCL b

STO L
“Feee"

RCL

<> d

CF 1&

FS?C @av

SF 16

FS?C @6

SF a7

FS?C a5
SF @&
FS?C @4

SF 85

»<> d

FRC

STO

LASTHX

INT

RT
+

E

STO @o

7
MOD

ST- @o

ST~ @a
RCL €

®X<> d

FS? 12

SF 832

<> d

45 “Qexi-

46 X<> [

47 STO ~
48 “Feee-

49 RCL ~

586 STO @i

51 FIX 2

52 SF 22

53 CLA

5S4 GTO ©a

S5eLBL 01

56 SF 22

57 E

58 RCL @ea

59 INT

68 X=Y7?

61 GTDO @82

62 7

63 MOD

64 XY

65 XK=¥Y7?

66 LASTX

67 ST-— @06

68 E1l

69 ARCL X

71 X{> o~

72 STO [

73eLBL @2

74 RCL @@

7S FS?C 22

76 STOP

77 FC? 22

79 256
88 MOD
81 LASTX

+
83 OCT
84 X<> d

85 FS?C 11

86 SF 12

87 FS?C 1@

88 SF 11

LB Program Listing

FOR BAR CODE SEE APPENDIX XV

189

110

111

112

113

114

115

116

117

118

119

12a

121

122

123

124

4

125

126
127

FS?C ©69

SF 18

FS? @7

SF 89

FS? a6

SF ©eg

X<> d

<> L
e

STO ~
e

RCL ~

CLA

STO €

RCL ea

INT

7

MOD

xX+a?

GTO @o

RCL @a

FRC

E3
*

RCL @@

INT

7
s
INT

E
+

RCL @1
X<> ©

RCL [

STO IND

X<V

STO c

CLA

128eLBL @@a

129

138

131

ISG a8

GTO ez

END

FIGURE 20

5.5.2

If you don't want to enter any
bytes, do R/S without introducing
anything. The program then enters
the terminal phase.

When "LB" stops, a SST brings you
back to the LBL "++". The only
thing left to do is to check your
program and backarrow the remaining
unnecessary commands.

There is a correction procedure. If
you made an error, do XEQ @1 in-
stead of the R/S and restart on the
number of the requested byte, 1 step
or 1 register of 7 bytes backwards
depending on the case.

Description of LB

When you XEQ"LB", the machine is not
in the alpha mode, thus the flag 48
is clear. Thus the execution jumps
to step @4. AON sets the flag
48, CLST, E, RDN, erases the stack
and places 1 in register T. The ex-
ecution is then transferred to
LBL"++"; the remaining +'s assure
the counting of the bytes, and we
come to step XEQ"LB". This pushes
into the b register the return ad-
dress of the XEQ in compacted form
and the execution 1is given back to
the LB program. Since this time the
flag 48 is set, the execution jumps
to the LBL @p. AOFF clears flag
48, and the commands 11 to 39 calcu-
late the available bytes. The com-

-101-

mands 40 through 50 decode the
return address, the location of the
XEQ "LB" instruction and use it to

build a temporary c¢ register, to
store the address of a R@O tem-
porary register. The synthetic

bytes will be grouped by sevens and
stored register by register.

The main loop of the program is lo-
cated on the 1lines 73 through
130: register R@P@ contains the
byte pointer; its contents are dis-
played at 1line 76 when the program
stops to ask for a byte. If R/S has
been punched without entering a
byte, the value @ is wused (lines
77 and 78). Lines 79 and 8¢
make sure that the number entered is
in the range @ through 255, and
the 1lines 81 through 102 build
in alpha the character corresponding
to the decimal code entered. (For
those who have the X-Function mod-
ule, these lines can be replaced by
XTOA.)

Then the program looks to see if one
has completed enough to constitute a
full register of 7 bytes. If this
is the case, the address relative to
the temporary R@P@ register s
calculated on lines 109 through
120, then the contents of ¢ are
modified so as to place R@P in
the right 1location (lines 121 and
122). Lines 123 and 124 store the
register constituted of the 7 1last

-102-

5.6

bytes which were entered at the ad-
dress previously calculated, then

the contents of ¢ is restored to its
initial value. Alpha is then
cleared and if it is still possible
to enter bytes, we continue.

Steps 55 to 72 contain the correc-
tion procedure. Register R@P is
decremented, and the last character
of the alpha register is erased.

Finally, the hexadecimal code of
line 45 is:

F4 10 90 @1 69

The sequence LBL "++" + +,...XEQ
"LB" is tedious to key in. Think
about copying it on a card; it is
easy then to work on the last pro-
gram (the end is the .END.) and to
enter the sequence by doing
XEQ"MRG". Maybe by doing this you
will finally discover a use for the
card reader function MRG.

In Case of Disaster

It might happen (more often than you may
desire) that, because of a harmless manipu-
lation the HP-41 does not react or reacts
in an abnormal way. One can either reset
or cause memory lost to return to normal
functioning.

-103-

Reset is a function of the microprocessor
originally provided by Hewlett-Packard to
be accessible to the user. On an older

model, one must pull out the batteries and
put them back. Make sure the printer is
disconnected as it will supply power to the
HP-41. (In fact, except for the display,
the HP-41 works very well without batteries
when the printer is connected.) In some
very serious cases, the HP-41 must remain
without batteries for many days.

On recent models, one must press the back-
arrow key and give one or two presses to
the ON key. If CLX appears, it is unlocked.

Memory 1lost 1is obtained by pressing and
holding the backarrow key then pressing and
releasing the ON key.

-104-

CHAPTER 6

MICROCODE

-105-

MICROCODE

Now we will explore the very depths of the calcu-
lator. As already explained, you may be frus-

trated by reading this chapter, because you may
not own the necessary hardware required for using
microcode.

Don't forget that Hewlett-Packard will not pro-
vide any help or material concerning microcode.
A11 that follows is the work of the PPC Club and
accounted for by the PPC Club. For further in-
formation and "NOMAS" Hewlett-Packard publica-
tions on microcode, the interested user must con-
tact PPC. On a closer view, these conditions are
not really as harsh as they may seem.

6.1 HOW TO USE IT

It might seem paradoxical to discuss how to
use microcode before having seen it, but

this point is very important.

Let us first say that it is materially im-
possible to program 1in microcode in the
live RAM of the HP-41; one must do it then
in the depth of memory. However, two types
of hardware allow for this type of program:

- An EPROM Reader
- A ROM Simulator

The first hardware, EPROM Reader, is avail-
able from several retail sources (see ad-
dresses for manufacturers in Appendix IV).
The price is slightly higher than a magnet-
ic card reader, the size normally approxi-

-107-

mates that of the HP-41 to which it is con-
nected via a standard Hewlett-Packard
printer cable; this 1is the only Hewlett-
Packard original part of most EPROM read-
ers. One EPROM unit available from retail
sources is self-contained within a standard
Hewlett-Packard magnetic card reader case.
This unit, of course, plugs into port 4 but
may be internally addressed to any other
desired port via internal switches.

EPROM readers allow for the reading of com-
mands previously recorded on the EPROMs
which are located in the box. EPROMs are
readily interchanged in all EPROM readers.

The memories used are standard commercial
integrated circuits, called EPROMs (Eras-
able Programmable Read Only Memories).
These memories can beerased by uTtraviolet
light and reprogrammed many times over.
They are programmed by means of special
hardware called EPROM programmers. There
are some very cheap EPROM programmers on
the market generally to be assembled by
amateurs, but most are not very easy to
use. Professional hardware is very expen-
sive and generally must be connected to a
computer. There are also a few in-between
models of reasonable prices for the ama-
teur, but their use is limited. It is in
the interest of the amateur to generally go
to a club or a professional offering EPROM
programming services (Appendix V). PPC-T
has an EPROM programmer as do several local
PPC chapters throughout the world.

-108-

These EPROMs once programmed are placed in
the EPROM reader. The EPROM reader then
works exactly 1like a standard Hewlett-
Packard plug-in module (Math, PPC-ROM, Sta-
tistics, etc.).

In an EPROM, one can also record programs
programmed in our regular "user" language.
These programs are then available at will
and free the main RAM registers of the
HP-41 for other uses.

One can also enter microcode programs and
use them exactly as if they were standard
internal functions, LOG, SDEV, +, etc.

An EPROM holds up to 32K bytes, the equiva-
lent of eight full modules, depending on
the model...just think about it.

The second type of hardware which is also
available through several retail sources is
the ROM Simulator (see addresses for manu-
facturers in Appendix IV).

It consists of a live RAM memory that can
be programmed directly from the HP-41, and
appears to the HP-41 as a ROM plug-in mod-
ule. It 1is therefore a very interesting
system. There are, however, some draw-
backs. The major one is that it is a cum-
bersome, hard-to-carry unit, especially if
made by an amateur. Also, it normally has
only a 4K memory, equivalent to one mod-
ule. Some 8K memory units are available,
and one unit in particular may be stacked
to provide the user 32K of memory. This

-109-

6.2

configuration, however, would be quite cum-
bersome and very expensive. All these
units have one of the same drawbacks of the
internal RAM memory: the possibility of
erasure 1in case of prolonged power fail-
ure. It 1is, however, possible to record
some short programs on magnetic cards or
the entire memory contents on a casette.
Furthermore, this type of memory is immune
to MEMORY LOST. This 1is, therefore, the
ideal hardware for developing programs in
microcode.

MICROCODE: WHAT IS IT?

You may have seen the Russian dolls con-
taining another doll, and in turn contain-
ing another...your HP-41 is a 1little bit
like that.

For instance, using the LB program, you are
in dialogue with a program, not with the
HP-41. The messages have been provided by
the programmer, not by the HP-41. You have
to get used to it; you are in dialogue with
a program, not with the machine. If you do
CLX, LN you will see data error. You are
in dialogue with a program. If you use the
math module or the PPC-ROM, you call for
the programs names and wait for the out-
come. When you use the function LN, + or
ENTER, you do the same thing.

The commands themselves for the microcode

programs are similar to LN or +. The dif-
ference is that these commands are under-

-110-

6.3

stood by the HP-41 thanks to a particular
arrangement of the transistors reacting to
electrical impulses.

The different levels are as follows:

- The program "wired" internally within
the microprocessor of the HP-41, which,
when it receives electrical impulses on
certain wires, reacts accordingly.

- A coded definition of these electrical

impulses forming what is called micro-
code.

- A grouping of internal modules contain-
ing microcode programs reacting to the
touch of the keyboard to obey these com-
mands forming the functions that we use
every day.

- The programs that we write in "User"
language are simply our organized link-
age of the microcode programs contained
within these modules.

THE FUNCTIONING PRINCIPLE

Our machine is like a marmot. It goes to
sleep each time a function is finished.
This is called a "light sleep."”

Do: 2, ENTER4, 3, +, Output = 5. A few
microseconds later, the microprocessor of
the HP-41 is stopped. Only the display re-
mains alive, but not for long. After a few
minutes, the display will also go off; it
is then in "deep sleep." But the slightest

-111-

6.4

touch of the key awakes the monster. The
HP-41 then starts a race to put all the
memory 1in order before returning to the
keyboard to see what is asked of it.

Depending on the key punched, a function is
executed. When the work is complete, a new
purging is done and the HP-41 goes back to
sleep.

It should be noted that microcode does not

know, for instance, the LN function, but it
will notice that the key pressed was the
fifth of the top row, that the user flag is

not set, and that no program is being exe
cuted. In that case, it will go ahead with
the execution of the LN internal microcode
program from a particular point of the mem-
ory, then back to sleep.

If a program is being executed, there is a
continuous functioning, with, however, a
purging being performed after each function
is completed. This precautionary purging
is the major part of the execution time of
the function. It is this time economy that
produces the quickness of execution of
microcode (up to 10P@ times faster).

GEOGRAPHY OF THE MICROPROCESSOR

The microprocessor (CPU: Central Process-

ing Unit) has, for its own needs, special
memory registers. I will use here the no-
tations (mnemonics) given to us by the
American pioneers of the PPC club who have
deciphered the whole thing.

-112-

INTERNAL DATA BuUS

INSTRUC M G
REG [y (56 N (56)] (8)

vViC—»
(23 P L) Q)

INSYRUUION SB] SB2
—— DECODER (16) (16)

GND—+ AND SB3

|

SB.(221 o MACHINE (16) (16)+
CYCLE

ENCODING PC 116)

TIMING AND CONTROL e e
(DATA"/ ADDRE5 I

BUFFER

LLD

 elKC KR Xy X By By PWo v(.v(0

13-82 19) non m 14) 15) 16-7-
*pop SYNC DPWO ISA

() (30) 2l ()

The Microcode Registers

and Instruction Flow

FIGURE 21

6.4.1 The Internal Registers

da. The "C" Register

This register consisting of 56
bits is the main register of
the microprocessor memories,
the forced passage point for
all entries and exits. It
plays, but more strongly, the
same role that the X register
of the stack wusually plays.
Most of the arithmetic calcula-
tions begin and finish with the
C register. It is the princi-
pal accumulator.

The "A" and "B" Registers

These are also main registers
consisting of 56 bits each
working in relation with the C
register or with themselves.
The 56 bits of the C, A and B

registers are divided into 14
digits of 4 bits each (4 x 14 =
56). Each digit can be a bina-
ry number from @ through F
Hex. The A and B registers are
"almost" the equivalent of the
Y and Z registers of the stack.

NOTE: There 1is no automatic
register stack except SBR in
the microprocessor; everything
has to be foreseen and provided
for by the programmer.

-114-

Fi |T KeY

R s|BlrR|2|s|B|R|1 PlcC

§K T Ju:] Pla|ls|B|R|&]|S|B

1
N
L |
T T T T T |

M
L |
T T T T T T 1 T

B
L |
T T T 1 |

A
L |
T T T T |

C
MS L1 UM 1 XS X [P

 Microcode Register Map

FIGURE 22

The C, A and B registers are
each 56 bits 1long, as are any
of the user registers of the
HP-41. As in the user regis-
ters, digit 13 is named MS
(mantissa sign), digits 12 to 3
are named M (Mantissa), digit 2
is named XS (Exponent Sign),
digits 2 through @ are
named X (Exponent). In addi-
tion to this, two supplementary
fields can also be distin-
guished: the digits 4 and 3
named KY (Key Buffer) and a
zone consisting of digits 6 to
3 named ADR (Address). Later,
we will see the use of these
fields as well as the complete
microcode commands to use these
only internal registers of the
HP-41 in which arithmetic can
be performed. All arithmetic,
logical and I/0 operations are
performed by Registers C, A and
B.

The M and N Registers

Registers M and N are used for
temporary storage. These are
both main registers of 56 bits
each, but they cannot do arith-

metic or Tlogical operations.
They can only input storage
(STO) from C, recall (RCL) or
exchange (EX) their contents
with the contents of C and this
only for the entirety of the
register.

-116-

The G Register

The G Register consists of 8
bits. This register allows the
user to store, recall, or ex-
change one single byte chosen
at random from the C Register.
The G Register is used for tem-
porary storage of one selected
byte.

The P&Q Registers

The P and Q Registers each con-
sist of 4 bits. Peculiar reg-
isters, these are the point-
ers. This means that a partic-
ular digit of Registers C, A or
B can be pointed to by a number
placed in P or Q. Since reg-
isters P and Q each have 4
bits, they can contain a binary
number from @ through F Hex.

The HP-41 cannot work simultan-

eously with both P and Q, the
user must first choose between
P or Q. The chosen pointer is
then designated by the letter R
(one can thus have R = P or R =

The contents of R can be used
to designate a particular digit
of Register C, A or B. For ex-
ample, a command could be: Is
the digit whose number is in R
null?

-117-

Both registers P and Q can
serve as an iterative adder,
similar to the I register of
certain other Hewlett-Packard
calculators. It is possible to
increment (or decrement) the
selected R register by 1 and
test the contents for "Do if:
else" conditionals.

The PC Register and SBR Regis-
ters

The PC and SBR registers each
consist of 16 bits and thus can
address 65,536 locations. We
have seen that the HP-41 at the

user code level has a program
pointer and six registers (lev-
els) of returns for subpro-
grams. Likewise, the micropro-
cessor has a subroutine regis-
ter (SBR) and a Program Counter
(PC) register. The PC register
contains the line number of the
ROM microcode being executed.
It is normally incremented af-
ter each instruction is execut-
ed, but may be altered by sev-
eral of the microcode instruc-
tions. There are four SBR reg-
isters, each holding a subrou-
tine address. Subroutine re-
turn addresses can either be
pushed onto or popped from the
SBR registers on a LIFO (Last
In, First Out) basis.

-118-

The ST Register

ST is called the Status Regis-
ter, not to be confused with
the "User" status registers.
It is simply a flag register of
14 bits. Fourteen flags are
each represented by one bit,
where 1 = Set and 9 =
Clear.

As the "User" function (from
the X-Function Module) X<>F
allows an exchange between X
and a part of the user flags
register (d), it is also possi-
ble to exchange the ST regis-
ter's 8 rightmost bits (7 to
@) with the C register's
rightmost 8 bits (7 to @).
Therefore, it 1is possible to
set (1) and clear (@) all
14 system flags. This exchange
with C can also serve to test
the flags from the "User" d
register.

The 6 flags 13 through 8 have,
in the internal registers, the
precise following use:

Flag 13 Set = A program is
being executed.

Flag 12 Set = The program is
private.

-119-

h.

Flag 11 Set = The stack Tlift
(XYZT) is enabled.

Flag 10 Set = The pro-
gram pointer is in ROM.

Flag 9 Set General Use.

Flag 8 Set General Use.

Note especially the use of flag
19 allowing the splitting
cf memory between RAM and ROM
as we have seen in Chapter 2.
Most of the time, the ST Flags
7 to ©® hold what Hewlett-
Packard calls the "Byte 0

of the Flags," that is to say
flags 48 to 55 of status regis-
ter d (in positions 7 to
@), which control important
aspects of the machine's state.

The T Register

The T Register consists of 8
bits. A1l transfers to the T
Register must be accomplished
through the ST Register. The T
register seems to have the fol-
lowing behavior:

Inputting - 0@ Hex the
acoustical bender (beeper)
is silent. Inputting FF
Hex, an impulse is sent to

-120-

the beeper. Tones are cre-

ated by alternating 00
Hex and FF Hex into the T
Register.

The frequency 1is obtained by
varying the time between two
exchanges and the duration of
the tone by varying the number
of exchanges performed.

The Key Register

The Key Register consists of 8
bits. By punching a key, a
code is placed in that regis-
ter. The number placed in the
Key Register is shown in Figure
23.

The Carry Register

The Carry Register is one (1)
bit long. It is a special flag

register that is set (1) by a
carry or borrow, and cleared
(@) otherwise.

Only the field concerned by the

operation is considered (maybe
a digit of the pointer, at XS
or MS, or maybe at M, XP...).
The carry bit is set if an ad-
dition gives an outcome higher
than the number formed by put-
ting a 1 in all the bits of the
field (1111, if there is only

-121-

KEY Register Map

(8cé

DODEE
FEEEE
COIREE

Value found 1n

KEY KY by

Pressing a

coluan-row

kevcode.

FIGURE 23

6.5

commands:

one digit; 1111 1111, if SP is
in question, etc.). The carry
bit is also set if a subtrac-
tion gives an outcome below
zero. The Carry Flag can be set
in response to a test (set
carry if...).

NOTE: In microcode, the HP-41
does additions as well in hexa-
decimal as in decimal. By
working in decimal, Carry is
set by addition when the larg-
est number able to be written
in the field is exceeded.

Most important, the carry flag
is cleared by any instruction
that does not set it. It can
only be tested by the instruc-
tion immediately following the
one that set it.

There are other registers, re-
quired by the internal func-
tioning. They are not accessi-
ble and, therefore, not neces-
sary to describe.

MICROCODE COMMANDS

We have said already that microcode com-
mands are all coded in 10 bits.

The two rightmost bits (1 and @) of the
determine the type of command.

There are thus only four possible types of
@, 1, 2 and 3.

-123-

In the tables, the commands are shown using
the 244 codes. In the program listings of
this book, both coding ways are indicated
using the format 244-442.

6.5.1 Type @ Commands

This command type consists of:
parameter (4 bits), instruction (4
bits), type (2 bits). The parame-
ter serves to define on what the
command is acting. See Figure 24.

Example:

0010 9001 0P means:
Parameter 2, Instruction 1,
Type @ and is translated as:
Clear Flag 5

This command might be written
as follows:
442 Code: 219
244 Code: (84

Note that the commands of
classes 6/¢ (13/@8), 8/0 and
C/0 combine with their
parameter to make distinct com-
mands. They are given in Fig-
ures 25 and 26.

These commands 6/0 (identical
to the 13/0 commands) are the
ones giving access to the registers
G, M, T and ST.

-124-

The byte in the G register is the
one made up by the digit located at
the position in C designated by the
pointer and the preceding digit.

The 8/@ instructions are var-
jed. Note the command XQ-GO which
lowers the return stack of the sub-
program one notch, bypassing the
closest return address and placing
@ in SBR 4.

GTO ADR replaces the usual GTO IND
and sends the program to a calcula-
ted address previously placed in
the ADR zone of G.

DSP ON must be done by the sequence
DSP OFF, DSPTOG.

There are many important commands
in the last table (Figure 26).

PUSH ADR places the content of the
ADR field of register C in the re-
turn stack (SBR Registers). This
return stack acts automatically
just as the "User" stack XYZT.
When wusing PUSH, the contents of
the stack raises one notch to make
room for the new address. The con-
tent of SBR 4 is lost.

POP ADR. When this command is exe-
cuted, the contents of the first
register of the stack (SBR 1) is
placed in the ADR field of Register
C and the SBR stack lowers one

-125-

notch. Contrary to the "“User"
stack, XYZT there is no duplication
of SBR 4 which is set to zero.

Sample:

Before: SBR 4 : 9123 After: SBR 4 : 0000
SBR 3 : 6742 SBR 3 : @123
SBR 2 : 2340 SBR 2 : 6742
SBR 1 : 1572 SBR 1 : 2340
C ADR : 6001 C ADR : 1572
The 6001 is lost.

Notes on the SBR Registers (SBR Stack):
This stack is of the LIFO (last-in-
first-out) type. When given the in-
struction XQ, the microprocessor puts
the return address in the stack. In
other terms, the address placed in the
stack is the address of the word fol-
Towing the XQ instruction. In so do-
ing, it is possible to pass parameters
to a subprogram (for instance, a number
of loops to be performed, the code of

the character to be displayed, or the
code of an error message). It is easy
to place after the call to the subpro-
gram.

This parameter can be retrieved by the
FETCH S&X (to fetch) instruction used
after a POP of the SBR registers.

RAM SLCT allows the programmer to se-
lect any register of RAM. This selec-
tion is accomplished from a three-digit
address: it, therefore, appears possi-
ble to select 4096 (FFF) regis-

-126-

ters. In fact, we know by experience,
only the 10 rightmost bytes re-
spond, limiting to 1024 the actual
number of accessible registers.

PRPH SLCT. Select the peripheral whose
number 1is indicated in C(XP). We are
now in an "uncertain zone." It looks
like the digit XS has no influence on
the chosen PRPH. But...this is not
certain.

RAM is a special peripheral. It must
be invalidated before selection of any
other peripheral by selecting an empty
ggggess, in general 010 (sometimes

The display is peripheral Number FD.
The card reader is peripheral Number FC.
The wand is peripheral Number FE.
The time module is peripheral Number FB.

The commands WRITE and READ send or re-
ceive data to or from a peripheral.

In the case of RAM, the parameter indi-
cates the location of the first regis-
ter in the group of 16 registers se-
lected.

In the case of the display, refer to
Appendix X.

The other peripherals (IL, 82143
PRINTER, etc.) use contact commands
with the registers of the selected per-
ipheral.

-127-

Reading: If n is the register number
of the called peripheral, the HP-41
uses three commands:

n9@ SELP n

nE2 These instructions read the n@3
register and put it in C S& (the
exponent sign and exponent field).

Writing of the Variables: n being the
number of the destination register on
the HP-IL module coded in 3 bits, the
HP-41 uses a command which is a NOP of
the microprocessor but which is accept-
ed by the peripheral: in Dbinary,
TnnnPPR@PY. . .. This instruction
writes the C S&X contents to register n
of the peripheral. For example, to
write the contents of the S&X field of
register C to register 2, use

AQQ

Writing of the Constants: First word:
n9@ (Code 442) where n is the per-
ipheral or register number. Second
word: Consists of the byte to be writ-
ten followed by the 2 bits @X. If
X is @, the peripheral retains con-
trol; if X is 1, the HP-41 retains con-
trol.

-128-

Sample: Read Register 3 of the HP-IL
module

390
3E2
303

Write E2 to register @:

@9¢
E2]

Flag tests: The instruction D@3
tests flag 3 of the selected peripheral
and sets the HP-41's carry flag if the
peripheral flag was set.

The ROM listings distributed by the PPC
club are mostly incorrect on these
points.

For more details on the peripheral reg-

isters, see the HP Journal of January
1983 (official Hewlett-Packard Inter-
national newsletter, available from all
major Hewlett-Packard dealerships or
the PPC club) entirely dedicated to the
HP-IL T1oop.

6.5.2 Type 1 Commands

These commands consist of two suc-
cessive words in one program. They
consist of skips to an address
(GOTO) or to a subprogram (XEQ)
given by the 16-bit address of the
first line (there 1is no LBL 1in-
struction in microcode).

-129-

6.5.3

6.5.4

Since there are 16 bits for the ad-
dress, one can skip to any point of

memory (Figure 27).

Type 2 Commands

These are the arithmetic and logic
operations. They can be executed
in hexadecimal or decimal mode and
are only executed within the se-
lected field. (Figure 28).

Type 3 Commands

Relative Jumps: the value of the
jumps is added to the number of the
starting line to obtain the number
of the 1last 1line. By hand, one
counts starting from @ on the
starting line (JNC or JC); don't
forget to count in hexadecimal
(good intellectual exercise). The
negative jumps are counted by their
complements (Figure 27).

Taking into account the method of
notation of the negative Jjumps by
complements and of the 7 bits giv-
ing the length of the jump it is
possible to jump up to 64 words.
In fact +63 (hex) and -64 (hex)
words.

-130-

Type @ Commands

*Cannot be executed immediately after an arithmetic command.

Word: P3 P2P1 PP I3I20IN11Ip @9

Parameter Command Type

[I I |
n | Bits | Mnemonic | Remarks

[T | |
g |ge@® | NOP | No Operation - Parameter Not Utilized
1 19@@1 | *CLRF f | Clear Flag f (1) |
2 |921p | *SETF f | Set Flag (2)
3 |@@11 | *?FSET f | Clear carry if flag f is cleared (3)
4 @100 | LD@R-d | Put d in C at R pointer (4)

5 1¢; | *?R=f | Clear carry if pointer is at f (5)
6 |gNpg | MISC | See Table 6/9
7 1111 | R=f | Place the selected pointer at f
8 |1ggp | MISC | See Table 8/@
9 |1g@1 | SELP d | Select the peripheral d (7)
P 11@1P | WRIT r | Write C to the selected peripheral
1 Ny | FIf | Test the flag peripheral
2 |11ge | MISC | See Table C/@
3 11 | MISC | See Table 6/9
4 1119 | Read r | Read a peripheral and input in C (8)
5 1111 | RCR f | Rotate C f hexadecimal digits to the |

| | | right (9) |
| | | |

1 [f = F(15)] except 3C4= ST=p clears the ST register.
2 [f =F(15)] except 3C8= CLRKEY clears the keyboard K flag.
3 [f = F(15)] except 3CC= ?KEY clears the CARRY bit if flag K is clear.
4 [f =F(15)] subtract 1 from the pointer value after execution.
5 [f = F(15)] except 304= R= R+1 decrement the selected pointer.
6 [f = F(15)] except 3DC= R= R+1 increment the selected pointer.
7 The CPU in inactive during the execution of the special commands.
8 Read P(T) is also written READ DATA.
9 RCR 15 = Reset display (display immobilized 24 cycles).

I I [I |
n_ | bits | d | f | r

| I l f | The decoding of all these
g | ppop | P | 3 I 8(T) | commands is the work of Paul
1 | o 1 | 4 | 1(2) I Lind, Jim De Arras, and Steven
2 | 9P | 2 | 5 | 2(Y) | Jacobs, all members of PPC.
3| een | 2 I ACIB) | 3(X)
4 | p1op | 4 | 8 | 4(L)
5 | o | 6 | 6 | 5(M) |
6 | gp | 6 [B(11) | 6(N)
7 | 21 | 7 | | 7(0) |

8 | 1000 | 8 | 2 | 8(P)
9 |10 I 9 | 9 | 9(Q)

19 : 181? : AE]Q; I 7(3 : 1fi£+; ;
10 B(11 D(1 11{a :e e 1 e | Microcode Type @
1M D(13 C(12 13(c

1118 | EQ8) | | 14(d) | Commands
| 1m ‘ F(15) ‘ l 15(e) i

|
 FIGURE 24

Type @, Under Classes 6/@ (and 13/8) and 8/9

| | | |
| Code 244 | Mnemonic | Remarks
| [[|
| @8 | | Not Used
| 958 | G=C @R, + | Puts the C's, R and R+1 digits in G
| @98 | C=G @R, + | Puts G in C R and R+] |
| @D8 | C<>G @R, + | Exchanges G and two C digits
| 118 | | Not Used |
| 158 | M=C AN | Puts C into M
| 198 | Cc=M AN | Puts M into C
| 1D8 | C<ooM AN | Exchange C with M
| 218 | | Not Used
| 258 | T=ST | Puts in T the contents of ST |
| 298 | ST=T | Puts in ST the contents of T |
| 2D8 | ST<T | Exchange contents of T and ST
| 318 | | Not Used
| 358 | ST=C XP | Puts in ST the C exponent
| 398 | S=ST XpP | Puts in C (XP) the ST register
| 308 | *C<> ST XP | Exchange contents of C (XP) and ST |
| | | |

Note that ST consists of the flags 7 through @. Al11 other flags must be
cleared or set individually.

| | [|
| Code 244 | Mnemonic | Remarks :
@20	XQ-GO	Transform SX in GO while POP the SBR stack
@60	POWOFF	Stops the CPU (no effect on the display) (1)
9Ap	SLCT P	P as active pointer
QEQ	SLCT Q	Q as active pointer
129	?P=Q	Clears CARRY flag if P=Q
160	?LOWBAT	Test battery (clear CARRY flag if stack is
		insufficient)
1AD	A=B=C=@	Erases A, B and C
1EP	GOTO ADR	Puts in PC the C's ADR digits
229	C=Key KY	Puts in C's KY the contents of Key KY
260	SETHEX	Puts the CPU in the hexamode
2AQ	SETDEC	Puts the CPU in decimal mode
2EQ	DSPOFF	Display Off
320	DSPTOG	Toggle the status of the Display (On<>0ff)
360	?C RTN	Return if CARRY is clear
3AQ	2?NC RTN	Return if CARRY is set
3EQ ‘ RTN : Imperative return		

Note 1: POWOFF is a 2 byte command, the second byte always being @@@ NOP.

Microcode Type @, Class 6/@ and 8/0

FIGURE 25

Type @ Under Class C/@

| I I |
{ Code 244 | Mnemonic | Remarks

[[|
| @30 | | Not Used
| @270 | N=C ALL | Put Cin N |

| @B8@ | C=N ALL | Put N inC [
| @Fp | C<>N ALL | Exchange of C and N
139	LDI S&X	Load immediate: Put in C S&X the word
		immediately following.
170	PUSH ADR	Puts C's ADR in SBRI1

| 1B@ | POP ADR | Puts SBR1 in C's ADR |

| 1FQ | | Not Used
| 239 | GOTO KEY | Puts in PC the Key content |
| 279 | RAM SLCT | Select the RAM Address at C (S&X) |
| 2B@ | 2?2 | Clear data registers
2Fp	WRITE DATA	Write C to the selected A Peripheral
339	FETCH S&X	Puts in C (S&X) the word located at the
		ADR address
379	*C=C OR A	Or Logic
3BP	*C=C AND A	And Logic
3FQ : PRPH SLCT	Select the peripheral which N° is in C(S&X)	

LOGIC TABLE OF FUNCTIONS

OR AND

| | | |
: C | A | Cora : ; C | A | CorA
-11T 1T
v 1| 1 | 1 1 1 | 1 |
1 1 9 | 1 | 1 1 8 | 9
2 1 1 | 1 | 8 1 1 | 9 |

Gl e B

Microcode Type @, Class C/0 FIGURE 26

Type 1: GO/XQ Absolute

First Word: A7 A6 A5 A4 A3 A2 Al 91
Second Word: A15 A14 A13 A12 A1l A1 A9 A8 G C

G= GO or XQ C= Condition

| [[T |
|l G | C | Mnemonics | Remarks
[[
@	@	?2NC XQ	Executes if CARRY is set
9		?2C XQ	Executes if CARRY is clear
[17	P	72NCGO	Goes if CARRY is set
1	1	?C GO	Goes if CARRY is clear

| | | | |

Type 3: Relative Skips

S6 S5 S4S3S2S1S@C11

C = Condition

| | T |
| C | Mnemonics | Remarks
| | | |
| | | |
l g | JNC Xss | Skips if CARRY is set |
| 1 | JC Xss | Skips if CARRY is clear |
| | | |

X = sign
ss = length of skip (HEXA) (+63/-64)

EXAMPLES:

Code 244 Mnemonic Remark

3F3 JNC -P2 Skips backward two words
PEF JC +1D Skips forward 1D (29) words

For the complements, do it in Hexadecimal 8@ - Skip (complement of 2).

Microcode Type 1 and 3 Commands

FIGURE 27

Type 2: Arithmetic and Logic Operations

Word: 14131211 19 C2 C1 Cp 19

Command Field Type

| I T [|
| n | Bits | Mnemonic | Remarks
| | [[|
|2 | 00000 | A=Q | Clears the A register
[1 | gppe1 | B=P | Clears the B register
|2 | ggn@g | C=p | Clears the C register
| 3 | 29@11 | A<>B | Exchange A with B
| 4 | 00199 | B=A | Puts A in B
|5 | 90191 | A<>B | Exchange A with C
| 6 | @119 | C=B | Puts B in C

| 7 | 90111 | C<>B | Exchange C&B
| 8 | 91900 | A=C | Put CinA |
|9 | | | |
[19 | | | |
m | 21011 | A=A+] | Increments A |
12 | | | |
113 | p11¢ | A=A-] | Decrements A |
14 | | | |
[15 | #1111 | C=C+C | Multiply the C register by 2. It is also
| ! { } a binary shift of 1 bit to the left. I
116
117 ’ 19001 | C=C+H : Increments C =
18 |
[19 | 19811 | C=C-1 | Decrements C |
|20 | 19199 | C=p-C | Arithmetic Complement |
27 1@ | C=-C- | @-C-1 Complement |
[22 | 10119 | ?B#P | Clears CARRY if B is not equal to @ |
123 | 19111 | ?C#0 | Clears CARRY if C is not equal to § |
|24 | 11999 | ?A<C | Clears CARRY if A is less than C
125 | 11901 | ?A<B | Clears CARRY if A is less than B |
126 | 11010 | ?A#0 | Clears CARRY if A is not equal to @ |
[27 | 11911 | ?A#C | Clears CARRY if A is not equal to C
|28 | 11108 | RSHFA | Shift A right 1 digit |

|29 | 11101 | RSHFB | Shift B right 1 digit |

|39 | 11118 | RSHFC | Shift C right 1 digit |

|31 | 11111 | LSHFA | Shift A one digit to the left |

| | | | |

Definition of the Field

| [[[|
} n I bits : Mnemonic I Remarks I

| I [[|
| 9 | 900 | @R | On the digit specified by R |
1 | om | S&X | Sign and exponent of C |
2 | ;9 | R< | Right of the pointer |
| 3 | N | AN | A1l 14 digits |

| 4 | 100 | P-Q | Between the pointers
|5 | 1M | XS | The sign of the exponent |
|6 | 19 | M | Mantissa alone (digits 12-3)
17 11 | MS I The sign of the mantissa (13)
| | |

Microcode Type 2 Commands FIGURE 28

CHAPTER 7

USING MICROCODE

-137-

USING MICROCODE

Thanks to the ingeniousness of the PPC members,
all the Hewlett-Packard ROM modules including the
internal modules have been deciphered (disassem-
bled), we could say "taken to pieces." However,
knowing the name of the command is not enough;
one must know what its purpose is.

There are over 500 pages of disassembled
listings. We could not finish this study without
analyzing some of these elements, chosen somewhat
arbitrarily as illustrations.

7.1 LOGIC GEOGRAPHY OF A MODULE

As with the HP-41, a module has its own in-
ternal logic geography, or programs. The
following is intended to describe the ex-
ternal plug-in modules. The internal mod-
ules are similar in operation but physical-
ly different in size and shape. As men-
tioned before, each 4K module consists of
4096 10 bit words. Each 4K module be-
gins at Address X@@@ and ends at Ad-
dress XFFF, X being a hex digit from 0
through F depending on the module's page
assignment.

a. Address X000 contains the XROM num-
ber of the module. Address X@@1
contains the number of functions exist-
ing in the module. Remember all num-
bers are hex. Each 4K module may con-
tain 64 functions.

-139-

b. From the Address X@@2 continuing
to, and ending at two (2) NOPS (009
- @PPB) is the catalog of the
functions contained within the module.
Each cat- alog entry consists of two
words per function, giving both the
program type and the function's entry
address within the ROM module.

The first two bits of the first word
indicate the program type. They are
P@ if it is a program 1is a micro-
code function, and 10 if the pro-
gram is in standard “user" language.

The four last bits of the first word
and the eight last bits of the second
word give the three hex digit address
o§ the program residing inside the mod-
u eO

By executing a CAT 2, the addresses of
the functions are read in the order in
which they appear in the module cata-

log. It is thus possible to 1list the
functions in alphabetic order if one
has organized the catalog properly.
Whatever the disposition of the pro-
grams in the module are, the first
function listed is generally the name
of the module. This is not necessary,
but it does provide a means of identi-

fication. The module name is, however,
counted as one of the 64 maximum func-
tions. As such, this name has an XROM
number. It normally is a RTN which
only displays the name during a Catalog
2 execution. The name generally does

-140-

XROM HUMBER

NO. OF FUNCTIONS
£RBA B1E-HT2 3

£aal 825-491 3

£AB2 #OR-4AH

ERRZ B895-15!
£aRd @AR-23
£0BS WeR-122

EARn #B2-92

£A87 WBd-418

£8A3 BR2-wl

£A99 HAE-822
EABR #A3-AA5

EA8B AC2-382
£09C #8p-923

8D ¥39-221

£90E 993-80C 3

£AQF 89D-271

1

i
QU

ot
N
3

o CARD REALER AT EASH

MRGC AT EEB4R

PITA AT E284

RITX AT EZHE

o
.-

e
N

R
T
e

Ca
d

>e
<
n =1 EFF8 JAC-tbe

EFF1 BEE-3B2 COOB

EFF2 3CD-F31

EFF3 #9E-272 NC GO 27F3
EFF4 886-888 NOP DURING PSE

EA18 883-829 H

H

fi EFFS 984-988 NOP AFTER PROGRAM LINE

D
H

ER11 BAC-286
£9i2 888-02
£817 OB3-2E6 1
EBL4 #9B-926
ER1S BA4-41
EAL% B63-829
£817 #51-141
TR13 #91-961

=151
3 9BD-2F1

Eadd 991-081
£945 888-226
Eka6 991-301
£947 BAE-2B2
ER4R 9pA-968
£R49 BF4-308 2
ER¢R 9R9-366
E#4B 9BB-2€3
ER4C A3-96%
Eud]) AaA-588
EM4E #92-242
E44F 995-811

1
@

O
)
D
g
S

B
e
O
=
0

e
O

00
&
O
B

GO
D
W

-
w
n

as
m
o
e
e

-

EFFA 3C3-FB2 JNC *-88 WAKE FROM DEEF SLEEF

EFF7 899-999 NOP FUNCTIONS OFF

i EFF8 29B-A63 JNC +-2) FLAG/STACK LIFT

a EFF9 880-068 NOP RECALL BY ON
EFFA 889-998 NOP NEMORY LOST

. EFFB 904-518 4] REVISION NUMEER
EFFC 831-6C1 49

A EFFD §12-942 18
H EFFE 903-603 3
R EFFF 83D-6F1 61

NAME OF ROM

RBREYIRTED

RO SUK

<

"
o
-

=
=

END OF CRTALOG

£Q5H GA4-316

EBS! wal-4@!

£8S2 #AS-811
EAST 12-342
EAS4 92§-480

£0S5 084-418
EAS6 912-84

EAST 981-341

£ASR #93-982
EAS9 ARB-2CH T=N AL.
EASA Alu-d44h L1EP- 3
EASE 313-943 UNL =+42

EQSC Awa-9i8 [LRF 3

EQSD #37-8D3 JC x+a5 INSTRUCTIONS

EASE 1BB-6ET UNC =+I7

tASF ABi-zCl

Card Reader

M
m
o
o

o
t
v

€l
v

€D
£

F
D

CO
€N
—
&

Microcode Structure

X
0

"A-adl NC Zg @427i
FIGURE 29

not respond to an XEQ instruction.
This 1is not to say, though, that it
cannot also be a function if so desired.

The running of a module's portion of
catalog 2 is terminated when two NOPS
ég?Q - @@0) are encountered (Figure

At the very end of a 4K module, at Ad-
dresses XFFB, XFFC, XFFD and XFFE is
the ROM abridged name, first letter in
FFE, last in FFB (Figure 29).

The last module word is the ROM check-
sum (optional).

Prior to the ROM name are seven special
and very important addresses called
polling points. These addresses are
questioned by a fetch. If they contain
@, the questioning program contin-
ues without paying any attention to it;
otherwise, it branches to that address.

The address: is questioned when:
XFF4 Pause loop
XFF5 Main running loop
XFF6 Deep sleep wake up,

no key down
XFF7 Off
XFF8 I/0 Service
XFF9 Deep sleep wake up
XFFA Cold Start (memory

lost)

-142-

Between the two NOPS which are at the
end of all catalogs and Address XFF4
are the codes that comprise the follow-
ing:

-- Programs in User language

-- Programs in microcode (functions)

-- Data

A program in User language is in the
following form:

-- Two words "“copy information." The
first word gives the number of re-
quired registers to copy the pro-
gram in RAM. I don't know exactly
the meaning of the second word that
is always (mode 244) 220, 230,
240 or 260.

-- The point of entry of the program
is the first byte of the alphabetic
label designating the program
name. It is imperative that this
label be in the front of the pro-
gram.

-- After the entry point is the Tlist
of program bytes, including the GTO
and XEQ compilation bytes.

The two left bits of the word, use-
less to the program, are set at
¥1 to indicate the first byte
of a multi-byte command or the sole

-143-

byte of single byte command, the
rest of the time is set to zero
(00).

An exception to this rule is that
the last byte of the program (and
third byte from the END) is equal
to 22F.

Microcode commands and data are not

distinct. Only the way of using
the code makes the difference as we
will see in the examples.

The internal functions of the HP-41
are accessed by the machine's de-
coding of the key pressed. But the
ROM functions are executed from the
entry point.

This function entry point gives ac-
cess to two types of information:

- Reading from bottom to top, the
codes preceding the entry point
represent the characters com-
posing the name of the func-
tion, coded in microcode (Fig-
ure 10).

The HP-41 knows that the 1last
character is reached when that
code is increased by 08d0.

-144-

144y

1491

1492

1483
1404

1445

1490

1497

1448

1409

1400
14u8

146C

146D

148t

144F

1419

141D

141E

141F

1420

1440

1441

1442
1443

1444

1445

1446

1447

1448
1449

144

1448

144C

144D

144E
144F

CODE

wls-320

180 -u 30

124-49¢

169-421

6E7-393

213-8ty
292-h42

Bl2-Jue

29E-R72

2H3-HEd
1E7-793

127-493

340-D31

3ty-Foo

343-Dze

#9E-272

3EC-Fbe

v85-211

uB3-2D1

3tu-Foe

JFF-FF3

B4A-122

654-15¢

#5C-17¢

voF-183

383-C26

328-C8e

2F6-6D2

26D-981

221-9C1
632-6C2

045-111

64F-133

661-181

1EC-766

1DC-778
18- 708

FOHCTION

NOH PROGKRHHHBLES

CAT

L10.

DEL
COPY

CLe

RS

SIZE

BST

S81
ON

PACK
t

MUDE

SHIFT

HSH

DIGIT ENTRY

LTU @
MR a

RONS 2 AND 3

ROW 4

1450 1A6-692

1451 veB-1R3

1452 298-Red

1453

1454

1455

1456

1457

1458

1499
1454

1456

145€

1450

145E

145F

1460

1461

1462

1463

1464
1465

1466

1467

1468

1469

146A
1468

146C

146D

146E

146F

1470

1471

1472

1473

1474

1475
1476

1477

1478

1479

147

1478
147C

147D

147

147F

02A-6A2

23R-8E2
147-513

IRC-668

2UA-B22

163-583

288-R26
27C-9Fd

282-hy2

#93-26b

u/h-1F1

BHR-2A

3¢B-(R3

1D6-752

876-1D2

154-55¢

2bC-B76

31A-Ce2
220-864

2E8-BAY

J6E-C32

177-503

17C-5F0

18E-432

28E-832

199-661

193-643

257-953

338-CCo

0F3-3C3

2FC-BFy

242-982

6F9-3E1

268-980

292-942

228-6A0

181-461

314-C50

2£2-B82

337-C03
2EF-BB3

1B9-6E1

162-6C2

#B2-202

0E0-360

LN
Xt2

SART

YtX

CHS

EtX

LOG
16X

EtX-1

SIN

Cos

THHN

ASIN
HCOS
HTAN

DEC

17X
ABS

FRCT

X#0 ?

X)9?

LN1#X

X(8?
X=0?

INT

FRC

ROW S

RON &

RON 7

1486
1481

1482

1483

1484

1485

1486

1487

1488

1489

148

1488

148C
148D

148

148F

1490

1491
1492

1493

1494

1495

1496

1497
1498

1499

149

1498

149C

1490
149

149F

1408

114-450
1IF-473

11A-462

13E-4F2

215-851

25C-97¢
#B6-2E3

6h1-341

#92-242

IFC-7F0

8ED-381

345-D11

33C-CF8

108-720
289-621

14D-531

22E-862

BDH- 302

2be-ACe

2B9-AE1

2A8-HAB

2C1-bal

19E-672

12D-481
2D6-852

277-903

BH4-290

#8C-230

171-5C1

265-991

135-4D1
2by-b4vy

3E7-F93

HP-41C Function Entry Addresses

DEG
RAD

GRAD

ROM §

ENTERT

STOP

RTH

BEEP
CLH

HSHF

PSE

CLRG

ROFF
AON

UFF
PRONPT

HDY

RCL ROW 9

sio

STt

ST-

ST+

ST/

156
DSE

YIEW

LREG

RSTO

HRCL

FIX

Sl
EHG

TONE

XRON (8)

FIGURE 30

125€ @9E-272 158t
125F 812-842 18R

1260 395-E51

1261 852-142 7NC GO 14ES

—|4E9 3B5-tDI [—D- 14ED O4E-132 C=0 ALL

SLCT14E6 858-148 7NHC XQ@ I4ED 14EE 276-9Ch RAN

14E7 3BY-EEI 14kt 638-8E6 KEAD O(T)
14E6 082-882 7NC GO ®OEE

14F8 ORE-2B2 AOXC ALL

14F1 878-1E0 READ 1(2)
14F2 028-0R6 WRIT 6(T)

V 14F3 8B8-2E6 RERD 2(Y)

14F4 068-1R6 WRIT 1(2)

BBEE END OF FUNCTION 14FS OF8-3E@ RERD 3(X)

14F6 BAB-2AB WRIT 2(Y)
14F7 BAE-2B2 ROC ALL

14F8 BEB-3AB WRIT 3(X)

14F9 3E@-FBo RTN

Rf Microcode Example

FIGURE 31

7.2

- Reading from top to bottom fol-
lowing the entry point are the

words of the program, the pro-
gram is in User Code or micro-
code.

FIRST EXAMPLE: R+%

This function can be found in the operating
system ROM Number 1 in a table located in
14xx (Figure 31). This table gives the
addresses of all the internal functions.
In Figure 30, you can see from left to
right the line number from (14xx), followed
by the code in both 244 and 442 notation.

You will find Rt at 1line 1474 with a
260 code. Add a 1 in front of the code
and you will have the address of the R#¢
function, or 1260. Now go back to Fig-
ure 31.

The 1260 1ine is Jjust below the name of

the function, which you can read from bot-
tom to top. The blank space is there be-
cause of the passage of 125F to 12640,
corresponding to a paragraph change.

The 4 code is 1E, since it is the name's
last character it 1is increased by 080
which gives P9E (@1E + @989 = Q9E).

The execution thus starts at line 1260.

You may be frustrated to find out that a

new address is found where the execution

has to go, that is 14ES.

-147-

7.3

This "“subroutine" itself is to execute a
subprogram before ending in @@EE, one
of the starting points of the routines to
terminate all functions.

The control is thus the subprogram starting
at 14eD. If you program in microcode and
you want to execute R4+ it is enough to
call that subprogram located at 14ED.

This subprogram starts by selecting the
R(PP@) register. Then it temporarily
stores the contents of the T register in
the A register. Then we see the stack
raise: Z goes into T, Y into Z, X into Y
and finally recovering T to put it into X.
Simple, is it not?

SECOND EXAMPLE: OPERATION OF THE DISPLAY

The display is one of the several peripher-
als of the HP-41. To activate it and use
it, the following is required:

@7F6 130-4CO LDI S&X
@7F7 910-040 010 16P
@7F8 270-9CO RAM SLCT
@7F9 130-4CO LDI S&X
@7FA QFD-3F1 @FD 253
@7FB 3F@-FC@® PRPH SLCT
@7FC 3EQ@-F8Q RTN
@7FD 000-0P@ NOP

As you can see, RAM memory must first be
invalidated by selecting a now existing
register, @10, the one located Jjust
over the e register, in the empty register
area. After that, the display address

-148-

3BD-EF1

2FFR 913-968 UNUSED
2FF1 B12-842 A=9

2FF2 MAF-933 JC
2FF3 #8D-431

P-g A7F2 23A-8E2 C=0+l 4
81

2FEE ==A7EF 1B8-5C8 POP AIR
2FEF B1C-878 NC %@ A7EF

7FA 338-CCH FETCH 342
7F1 JEB-FRG WRIT 15(e)

 §7F3 2FA-BD2 0+ XS

A7F4 JE3-F33 JNC +-94

2FF4 220-888 NC XQ 3383 2?7?77 <= 37F5 1E8-780 0TO AIR
2FF5 JEB-F98 RTN

\//

2FEE 3BD-EF1
2FEF B1C-878 7NC 2Q 87EF

2FFA 913-968
2FF1 912-842
2FF2 ABF-933

2FF3 9AD-931

2FF4 228-859

2FF5 JEB-F36 RTN

24

1
¢{
13i3

544

1
7

1
A

SPACE

Message Codes

FIGURE 32

ALER

ALEB

BLEC

A1ED

A1EE
A1EF

a1Fa

A1F1

A1F2

31F3
31F4

31F3

A1F6

A1F7

A1F8

81F9
ALFR

A1F8
ALFC

31FD

AFE

ALFF

3299
3291
3292
9293
3284

ICC-F78

348-123

138-4C8

A3-383

186-412
229-380

83C-8F9

31C-C70

J6R-DR2

1FB-7E3
328-C39

3B3-EED

1BC-558

198-068

38C-£3

ICS-FUL
392-982

384-£18
J93-E08

33C-4F9

IA3-ER8

2E8-880

36D-D8B1

#58-168

3208-C28

799-C21

ALE-872

XKEY

JNC *+89

LI 3%
195 ¢

R=C S5&X
C=KEY KY

RCR 3

R= 1

ML K

INC #43F ———==
DSPTOG

READ 14(d)

RCR 1

ST=C XP

IFSET 8

’NC GO #F| ——==

CLRF 9

L=5T %P

RCR 3

NRIT 14(d)

DSPOFF

MNC 3@ 5T
DSPTOG ———

?NC G0 A7

v
RUN

Message Routine

coLd

START

AT 8232

FIG. 34 ==

FUNCTION END

TONE 7

3295
4296

3207

4208

3209

A20R

§288
928C

428D

A28E

920F

8218

#211
3212

3213

3214

8215

9216
8217

3218

9219

3218

9218
A21C

321D
A21E

A21F

9220

3221
3222

8223

3224

9225

922

3227
9228

3229

220

9228

322C
3220
322E
322F

2278

A2t

IC2-F29

3CC-F38
268-288

A4n-112

CLRKEY

TKEY

SETHEX

c=9 543

JFB-FC8 PRPH

278-9C6 RAM
138-4C8 LDI

SLLT

SLET

344

163-3AR1
186-412

378-DER

17C-5F8

166-092
18F-433
1BC-oF3
260-992
279-9C8
AI3-8E8
10E-432
2BR-AE2
2F8-8C8
838-9E8
2BR-RE2
J6E-D8B2
#B7-2D3
2F3-8CH
#46-112
278-9C8

7B3-EEB
358-008
ACC-330

JAB-E30

338-CE9

B45-112

{BC-oF9
338-0C8

2E5-892

368-086
3C4-319

373-DE9

B3C-9F1
81C-A79 R
342-182 ©
18R-422

#BD-2F1
ME-222

R=C

ol

54X

READ 13(c)

RCR

220

JC
RCR
L=C-1

RAN

6

548

s+21

11

54

SLET

READ 3(T}

R=C ALL

C=-C-1 ¥

MRITE DATA

READ A¢T)

C=-C-{ N

7R#C ALL

JC s+1p
WRITE DATA

C=9 54X

RAM SLCT

READ 1d4(q*

3T=C 3P
FSET 18

?HC RTN

READ {2(b)

£=9 5tX

RCR 11
FETCH 5%%

2C#9 SxX

T RN

CLRF
READ (3(c:

RCR 3

Ca) 233F FIGURE 33

7.4

(@FD) 1is 1loaded into the S&X field of
the C register, and the display is then
selected. From that moment on, writing to
the display is possible. You will find in
the Appendix the detail of the commands re-
quired.

MESSAGES

Sometimes we find in memory codes like the
one in Figure 32 on top left. This group
of commands starts with XQ @7EF; 1let's
see what that subprogram does (on the right
side of the figure).

A POP brings into C's ADR field the first
return address. We know that address;
it's the one that is just below the XQ
@7EF, thus 2FF@. The HP-41 fetches the
contents of this address and puts it in the
S&X field of the C register.(That is, XS
becomes @ and X becomes 18.) This code
appears on the display (previously select-
ed) as characters, thus it was not a com-
mand.

The command: C=C+1 adds 1 to the address
which becomes 2FF1 and the HP tests the
XS: is it different from zero? If yes,
load CARRY. It is not the case here, thus
the HP-41 will go back to the FETCH in-
struction.

Thus, the codes @18, @12, @UF, @@D are
sent in sequence to the display then final-
ly 220. Then there is a non-zero value
(2) in the XS field, thus we are out of the

-151-

7.5

loop. The GTO ADR will cause execution to
continue the execution. AT 2FF5 (this val-
ue is in the ADR field of the C register).

Address 2FF5 contains a RTN and ends the
subprogram by return to the principal pro-
gram. But what are those codes doing in
the display? We can tell by correcting the
listing to have the characters appear. See
the bottom of Figure 32.

HOT OR COLD START?

We will now investigate a particular por-
tion of the HP-41 starting procedure (Fig-
ure 33). At @1EA, the machine is just
awakened from "deep sleep". After perform-
ing all the housekeeping chores, it again
returns to see if any key is pressed (other
than ON). Otherwise, it skips to @1F4.

If a key was pressed, it tests to see which
key it is. It Tloads ©C3 1in the S&X
field of register C then in the S&X field
of register A, then takes the key register
contents and moves them to the S&X field of
the C register where it can compare it to
the 0C3 now in A, this comparison being
done on digits 1 and 0.

If the two elements are not different, it

is because the punched key has the C3 code,
the one...guess or see Figure 23. In that
case, go to the cold start (Memory Lost)
routine. If it 1is another key, we come
back in the case where no key was punched
located at Q1F4.

-152-

If no key or a key other than backarrow was
pressed at turn-on, the code at @1F4 is
executed. It is then time to 1light the
display and to verify quickly if Flag 11
(autostart) is set. To check that case,
read the d status register, rotate Flag 11
to the right place to be put into the ST
register and test it.

If this flag is not set, the calculator can
back to light sleep. If the flag is set,
start executing the current user program.

We are then at 1location @2@4. It is
logical to continue through @2@05. How-
ever, in the machine chronology this pas-
sage was executed before the one that we
talk about above. Nothing is simple.

First, in that passage (called CHECKRAM,
test of the RAM) it did an updating of the
keyboard and the CPU calculating methods.
Next was a deactivation of the peripherals
and the selection of RAM @, the status
registers, in order to be able to read
status register ¢ and verify if cold start
constant (that 169 that was just put in
register A) is present in status register
c. If not, a cold start is performed.

RCR 11 rotates into the S&X field of the C
register the address of RAM register @0
and subtracts 1 to get the location of the
beginning of the programs. If the HP-41 is
functioning normally, there must be at
least one register containing the .END.,
the following commands will verify that.

-153-

When there is nothing at the beginning of
the programs, a reading of the registers
will always give a series of 1's or a ser-
ies of @'s in register C. But this
situation might also exist in a normal reg-
ister, how can you tell the difference?

The HP-41 takes the complement of a part of
the C register and writes the outcome in
the selected register (taking the comple-
ment is to replace all the @'s by 1's
and all the 1's by @'s).

A new reading will give the same contents
if the register is good, there will be thus
at the same time @'s and 1's in the C
register. If the register is bad we will
find the same thing returned as 1in the
first read.

The second taking of the complement will
thus establish the content of a correct
register and undo that of a bad register,
controlled by the following word. If the
register is bad, the HP-41 will perform a
cold start, otherwise it will write data to
reestablish the original contents in the
register.

Put back in ST the system flags (48 to 55),
and if the program is not in ROM, the rou-
tine is complete.

Otherwise, the HP-41 proceeds with a pecul-
iar operation: it verifies that during
deep sleep someone has not removed the mod-
ule in which the program pointer is located.

-154-

9232
8233

6234

6235

6236

6237

4238
6239

623A

0238

823C

6230

823t
623F

240

241

4242

243

y244
8249

¥246

8247

¥248

8249

¥24h

8246

824

824D

624k

824k

268-968 SETHEX
1R0-660 R=b=(-8

198-508 H=C HLL

676-1C0 N=C RLL

998-166 G=C ®R,+

358-bew ST=C 4P

258-908 1=5T

176-5C8 PUSH ADK

179-5C8 PUSH ADR

178-5C6 PUSH RDR

176-5C8 PUSH RDK

oEy-386 SLECT Q

2bC-B70 R= 13

BRB-280 SLECT P

204-6160 CLRF 13

344-D16 CLKF 12

184-616 CLRF 11

6Cc4-310 CLRF 19
244-919 CLRF 9

184-416 CLRF 3

1B1-6C1

876-1C8 7HC X@ 1060 —o»

62b-6E1 495
3b9-Fel «

BIL-676 7HC Xa o7Fc —==

261-951 -—

Bue-vod HU Xd 6095 —e=

130-4C0 1l S8x @

3FE-FE3 1623

18E-432 H=C ALL

8258

8251

0252

6253

8254
0235

6256

6257

6258

259
6254

0258

825¢C

825D

825

825F

8260

6261

8262

0263

0264

0265

0266

Q267

Wpes

0269

826

8268

626C

626D

826E

026F

MEMORY LOST

YALID

DISPLAY

KEYBOARD

04E-132 C-8 ALL

2F8-BCO WRITE DATA

2£8-B69 DSPOFF

320-C86 DSPTUG
3F@-FCO PRPH SLCT

ORE-2BZ ROC ALL

270-9C6 RAN SLCT

BAE-2B2 ROXC ALL

2FB-BCO WRITE DATA

1R6-692 R=R-1 StX

3DB-F63 JNC +-85

130-4C0 LI S&X

OEF-383 239

13C-4F6 RCR 8

130-4Co LDI SeX

6FR-3E2 250

63C-0F8 KCR 3

136-4C6 LDI S&X

OEE-382 238

368-DAY WRIT 13(c)

@5a 162 C=0 M
22E-882 C=C+1 ALL

328-CAE WRIT 12(b)

270-9C6 RAN SLCT

vdE-132 C=6 ALL

89C-276 k= 9

310-C46 LDeR- C

139-4Co LDl S&X

620-686 32
JH8-EAB WRIT 14(d)

B4E-132 C=8 ALL

278-9C6 kAN SLCT

8270 29C-R78 k= 7

8271 690-249 LDek- 2

6272 318-C40 LDER- C

0273 @5C-176 R= 4

6274 110-446 LDER- 4

8275 218-846 LDeR- 8

8276 3A8-EAB WRIT 14(d)

8277 088-220 SETF S

8278

8276 399-E61

138-4C6 LDI

6279 686-012

Se¥

6 F

8278 69C-276 7HC XQ 2766 — orp pons

827C 138-4Cé LDI StX <—

827D 169-5A1 Jol

027E 186-412 A=C StX

827F 378-DE@ READ 13(c)

0280 17C-5F6 RCR 6

6281 BA6-292 ACXC StX

0282 13C-4F6 RCR 8

0283 368-DAB WRIT 13(c)

0284 3D5-F51

6285 606-612 “HC GO 8IFS

“MEMORY LOST” Routine

FIGURE 34

So if we read the pointer in status regis-
ter b and load @ into the three right-
most digits, only the port number remains.
The address X@00@, the first ROM word,
is put into ADR and READ. If there is any-
thing else than @, the HP-41 assumes
that the ROM is still there and ends the
control. If there is @, it sends the
pointer back to the beginning of the RAM
program.

This analysis suggests a felony to me. The
HP-41 verifies the existence of a ROM, but
which one? Here is an occasion to get into
microcode.

Therefore, a ROM having a program in user
language and another ROM having at the same
address a microcode program are needed. I
tested it with the PPC ROM and the X-Func-
tion ROM.

Place in one port the PPC ROM. Do GTO
"MK", shut off the machine, and replace the
PPC ROM with the X-Function ROM.

Turn the HP-41 on, turn PRGM ON, you will
see P1 STO @3. There are funny things
in that module! SST will continue to dis-
play the same @1 STO @3, but BST gives
01 P-R, try LIST...Have fun.

Let's come back to microcode. We now ap-
proach the routine of the HP-41 cold
start. You may get a chill (Figure 34).

-156-

The 7 first lines set everything at zero!
Then @'s are loaded into all four

levels of the SBR stack. Place the pointer
Q at R = 13, but leave pointer P in place
where it is.

A1l the flags are then erased (set to
@), and the error message routine is
called at 1C6C. The next word used rou-
tinely indicates the dreadful "MEMORY LOST."

Note that in microcode the memory lost can

be displayed without erasing anything simp-
ly XQ 1C6C...a trap.

@7F6 activates the display, ©@98 clears
the keyboard register.

Now we come to a crucial point. The HP-4]
loads 3FF. It is the address of the high-
est register to be erased. Hewlett-Packard
was foreseeing the X memories already: If
the Hewlett-Packard engineers had chosen
1FF instead, that could have saved the X
memories from "MEMORY LOST." Advantage or
inconvenience? Either way, it must be ac-
cepted.

The C=@ WRITE DATA acts on the display
by erasing the annunciators (BAT, USER...)
After that the HP-41 erases the 3FF possi-
ble registers after having deactivated the
display (C=@ PRPH SLCT).

Then the value @EF for RAM register RO,
and @t for .END. have to be reestab-
lished by default (no program) and @FA
for ZIREG.

-157-

7.6

The HP-41 sets the flags to their default
status. Flag 50, the message flag (for the
MEMORY LOST display) must be set. The HP-41
then checks the peripherals (subprogram
27E6). Then it Tloads the constant 169 for
hot start indicating that all the work has
been completed.

To conclude, it will check in @1F5 to
see if a peripheral has not cleared the
automatic execution flag (case of reading a
magne?ic card). The little HP-41 does quite
a job.

A LITTLE BIT OF MUSIC

We will now see how the "tones" function."

You will see that the synthetic tones (post-
fix greater than 9) have a strange origin!
(Figure 35).

The entry point for TONE is 1line 1200
(after 149F). The HP-41 has already loaded
into register ST the number of the tone to
be executed. This number is saved in ST,

while the HP-41 checks to see if it has the
right to make noise (Flag 26).

Following this, it sets the T register to
@ to prepare the bender (beeper). In-
deed it is the T register that commands the
beeper by its variations. The tone number
is once again saved in the ST register and
FF placed in the XP field of the C register
then swapped into the ST register, the tone
number is brought into the M field of the C

-158-

12CC 885-211

12Ch @vE-0832

12CE 3uF-C33

12CF 114-458

1206 379-DEI

1201 ®89H-102 7HC GO leDE —

133 E

14N

783 0

26 T

—— 16DE

16DF

16E6

16E1

16E2

16€3

16E4
16E9

16E6

16E7

16E8

16E9

16EA

16EB

16EC

16ED

16EE

16EF

16F6

16F1

16F2
16F3

16F4

16F3

16F6

16F7
16F8

16F9

16FR

16FB
16FC

16FD

16FE

16FF

“TONE” Routine

3B5-EE0 READ 14(d)

2BC-HFE RCR 7

3D8-F&o COST XP

38C-C30 ?FSET |

3A0-E86 7NC RTN

3C4-F16 ST=0

2D3-B60 STOT
358-b6@ ST=C XP

B4E-132 C=0 ALL

138-4C6 LDI StX

OFF-3F3 259

3u8-F6l COST XP

1BC-6F8 RCR 11

18E-432 A=C ALL

07C-1F0 RCR 4

2A8-A86 SETDEC

2BE-AF2 C=-C-1 NS

268-986 SETHEX

3F1-FC1
858-166 ?HC X@ 16FC

856-163 9l

865-191 181

673-1C3 19

687-213 135 6

6A1-281 161 !

8C9-321 281 a

16B-423 267 K

13F-4F3 3y 7

18F-633 3990

215-851 RREN]
1Ba-6C6 PUP ADR

21R-862 C=C+A N

338-CCo FETCH StX

BA6-292 ROC SEX

1700 27€-9F2 C=C-1 NS

1781 867-193 JC ++6C

1782 27€-9F2 C=C-1 WS

1703 877-1D3 JC s+bE

1704 27€-9F2 C=C-1 NS

1785 68F-233 JC #+11

1706 11E-472 A=C HSJ

1787 2D8-B68 STOT

1768 IBE-6F2 A=R-1 NS

1789 3FB-FE3 JNC +-81

1760 1A6-692 A=R-1 SLX

1768 3DB-F63 JNC ¢-85
176C 3E8-F8 RTN

178D 2D8-Bo@ STOT

176E 1R6-692 A=A-1 StX

176F 3F3-FC3 JNC »-82

1710 3E6-F8@ RTN
1711 2D8-B68 STOT

1712 668-606 NOP

1713 1R6-692 A=R-1 S&X

1714 3EB-FA3 JNC +-83

1715 3E8-F86@ RTN

1716 208-668 STOT

1717 666-b68 HOP
1718 068-666 NOP

1719 1H6-692 A=A-1 SLX

171R JE3-F83 JNC +-84

1718 3E8-F8@ RTN

FIGURE 35

register, then into the M field of the A
register. A peculiar operation takes place
now: don't forget that the number of the
normal tone is a decimal from @ to 9.
The HP-41 takes a decimal complement of the

tone number 9->¢, 8->1, etc.

The tones all have the same duration but a
variable frequency. A tone cycle of high
frequency does not last as long as a tone
cycle of low frequency. Thus, the number

of tone cycles to be executed for a con-
stant duration varies. The tone number al-
lTows us to choose that number (duration).
That operation is realized in the MS field
of the C register, in a single digit.

We will then choose from the table the re-
quired value (number of tone cycles). Us-
ing a very common procedure in the HP-41,
we skip a zone of data to arrive at a POP
ADR taking the 16F2 address and add the
TONE number (from @ to 9). You can now
see TONE @ wuses @5B cycles, tone 1:
@65, etc. This duration constant is
loaded into the S&X (exponent and sign)
field of the A register, which serves as
the loop index.

Remember that we have in the MS field of
the C register the tone frequency. This
will have various ramifications.

For TONE 9, the MS field of the C register
contains @. Subtracting 1, will clear
the CARRY flag and we skip to 170D
where we produce the number of exchanges

-160-

between the ST register and the T register
(thus values FF and @@) indicated by
register A.

Here there are three lines to execute, the

minimum possible, thus the highest frequen-
cy possible.

For TONE 8, the MS field of register C con-
tains 1, we do not skip on the first sub-
traction, but on the second, and then go to

1711. We have the same principle, but a
NOP is interpolated, thus a lower frequen-
cy. Two NOPS are used for TONE 7. For
higher cycle durations, a double loop is
used.

The synthetic tones (greater than 9) work
as follows:

- The duration constant is taken in order
of the tone numbers. TONE 10 (dec-
imal) takes this as the constant to the
POP ADR code...and so on, the tone dur-
ation depends on codes that were in-
tended to be instructions.

- The value of the tone in the XP field
may be greater than 9. I don't know
how the microprocessor reacts when
asked to take the decimal complement of
a number greater than 9?2 I did not
judge it useful to try it in microcode,

listening is enough.

-161-

1.7 USING MICROCODE: REP AND XCAT

7.7.1 First a very simple example: REP

This function, available on an
EPROM baptized as TOULROM-1B (ROM
1B made in Toulouse) has the
objective of copying X into Y, Z
and T in one command.

This operation is usually performed
by ENTER4, ENTER%, ENTER+.
For example, if you do 1 REP +++...
you will get a computer adding 1 at
each +. It is the system used in
LB to calculate the number of free
bytes.

There are two ways to write a func-
tion (program) in microcode. You
can build your function from the
instructions of microcode, and this
is perfectly possible but it re-
quires a perfect knowledge of
microcode and most of all a perfect
analysis of the problem. Don't
forget that with microcode we work
without a safety net. In normal
programming it 1is always possible
to do R/S if the program refuses to
get out of the cycle. In micro-
code, if you do not test the R/S
key, the HP will not recognize it
as being pressed.

-162-

The second method consists of ex-
tensive use of the internal operat-
ing system routines, kindly provid-
ed by Hewlett-Packard. The only
nuisance is that you have to know
them. This can be difficult con-
sidering the volumes of material on
them that generally can only be
done by collaboration with a club.

It is this last method that I use

here, so that you will see how ef-
ficient it is.

The function REP, at least for the

part that figures in the EPROM, is
limited to its name, a read 3 (X)
and a ?NC GO 19FA (Figure 36).

Difficult to make it simpler, no?
The only thing done is to read the
contents of X and load it into the
C register.

But what 1is the ?NC GO 10QFA?
As you see in Figure 36, it is an
entry point (not the usual one) in-
to the CLST routine. This routine
erases the stack by setting the C
register to @ and recopying C
in the stack. REP uses only the
recopy part of this routine.

Note that the CLST routine also
uses part of the CLX routine.

-163-

A4F3 992-202
A4F2 #31-4C1

R4FA B9D-431

R4FB ABF-333

R4FC A12-942

R4FD H#AC-938

R4FE 915-451
R4FF #AF-933

AS88 A14-458

AS81 JEB-F88 RTN

AS82 #88-998 NOP
ASA3 #90-888 NOP

A584 A98-248

RS8S #9S5-911

R586 A12-442

138 8

-
g
S

—
O
e
e

=
0

K
e

N
-
P

G
O
N

G
o

r
o

L
] “

144 P

SE
i3 R

AS87. AF3-3E8 READ 3(X)

ASe8 3E3-FAL

19F4 B52-142
19F5 494-25
18F6 913-4

19F7

18F3 983

18F9 BdE-132

18FA #28-4RE

18FB #63-1R8

18FC 3R8-2R9

1AFD B2B-#A3
19FE #93-:68

19FF #8C-939
|

| 1189 393-903
; 1181 B4E-132ao1a2 NC &0 13

ASA9 #42-192 “NC GO 19FR ———————— 1192 AE3-309

ASAA. #98-398 NOP
1183 393-C21

1184 282-982

REP Program Listing

A587 AF3-3EA

C=3 ALL

WRIT (T2

ARIT 1023

HRIT 2:7)

JNC #4735
152 %

38
L= AL
WRIT 3ix:

NC 5D 28C2

FIGURE 36

1.7.2 A More Serious Application: XCAT

A1l of you who own many modules
have been, 1like me, exasperated
many times by the difficulty of
listing the functions (programs) by
means of CAT 2. One of my friends
measured approximately 2-1/2 min-
utes for the total duration of his
catalog 2.

XCAT has the feature of starting
the CAT 2 on the module that you
designate by its XROM number. For
instance 30 XCAT starts the
catalog with the card reader. Then
the catalog proceeds normally. It
is also possible to SST and BST at
will.

This program (see Figure 37) starts
with its name (read in reverse) as
usual. It reads from the X regis-
ter the number of ROM whose catalog
is desired, and translates it into
binary by means of the internal
routine starting in @2E3.

This routine takes a decimal number
of three digits in the C register
and translates it into binary in
C's S&X field.

XCAT then initializes registers C
and B of the microprocessor. It
loads the page number of the first
possible module, less 1, in digit 6

-165-

ASAC 394-258 43

AS8D A9 1-981 !

ASBE 783-983 3

RS8F 913-858 4 S
O

XD
—q

ro

AS19 AF3-3E8 READ 3(X)

ASt! 33D-€31
R512 #93-820 “NC %@ 92E3

ASL3 826-492 B=9 5&X

AS!d4 @SR-162 C=9 M

AS1S 1S5C-578 R= 5

AS16 118-448 LDER- 4

ASL7 196-412 A=C S&X

AS13 1SC-578 R= 5
AS19 222-882 C=C+l B8R

ASIA 381-E41

ASIB #AB-923 7C GO0 42ER

AS1C 339-CCO FETCH S&X

ASID 366-D92 M 5

ASIE 843-183 UNC *+a8
ASIF 23R-8E2 C=C+1 N

A520 338-CC8 FETCH 5&X

AS21 #66-192 ROB 5&X

AS22 146-512 A=A+C 54X

523 9#66-192 ROB 542

A524 27R-9€2 C=C-1 A4

A525 3R3-E33 JNC +-4C

AS26 233-3€8 READ 3(P}

AS527 9FC-3FA RCR i3

A528 ACh-312 L=8 5%

RS29 #7C-1FQ RCR 4

AS2R 2DC-B74 R= i3

AS28 #9B-248 LDER- 2

AS2C 231-3C1

A52D 92E-9B2 *NC 50 4B3C

AS2E 998-988 NOP
ASZF #99-488 NOP

XCAT Program Listing

FIGURE 37

of C. This page number is 4, because
the first page normally used is 5.
XCAT loads in the A register the XROM
code, resets the pointer to 6 and
starts the search for the requested ROM.

Thereafter, it increments C at the
pointer (digit 6 of C). If C exceeds F
(hexadecimal) the carry flag is clear
and the following command is executed:
if F is exceeded without having found
the requested ROM, that means the ROM
is not resident in memory, and we go to
@G2EG which causes "NONEXISTENT" to
be displayed.

If the value at the pointer is less
than F, FETCH into the S&X field of the
C register the first tested word of the
ROM. This word, remember, is the XROM
number. Compare it to the code put in
reserve in the A register. If it is
different, take the following word as

being the number of functions it test-
ed. Accumulate the number of these
fgactions in B, then test the following
ROM.

If it is the right ROM, jump to A526
and initiate the CAT 2 by loading into
status register P the number of skipped
functions and the catalog number (2),
then branch to standard catalog 2 rou-
tine starting at the first function of
the requested ROM (in general its name).

-167-

7.8

Since you are in the standard CAT

2, you have all the advantages of
it: go forward or backward, step
by step, slowing down the flow by
pressing one key or faster on the
HP-41CX...all things you could do
otherwise.

A Proof of Microcode Power: Charge
(By Stephane Barizien)

This program was created in France by a
young member of PPC-T, Stephane Barizien,
who quickly became a microcode virtuoso.
It illustrates clearly what I have tried to
demonstrate with REP, that is the efficien-
cy that one can get from the proper use of
the internal modules of the HP-41. This
function is not programmable, and thus can
be executed even if the machine is in pro-
gram mode. It prompts Charge___. and
waits for a decimal number of three dig-
its. When given that number, it introduces
into program memory the corresponding
byte. The only flaw of this simple program
is that it does not show the 1ine numbers,
and it places the byte on top of the dis-
played line. This feature could have been
corrected at the expense of lengthening the
program. The operating mode is as follows:

Assign to a key the function CHARGE.
Switch to program mode.
Press ENTER#t.

Press the assigned key (in mode user)
CHARGE ___.

-168-

Fi11 the prompts with with decimal num-
ber of the byte.

Start all over as many times as there
are codes to be furnished.
When finished, backarrow the ENTER%.

In the procedure that follows, the
HP-41 renumbers the lines.

Example: ENTER4, Charge 242, Charge
@79, backarrow, place "D@" 1in memory.
This program is the microcode equivalent of
LB. The program's 1length, excluding the
name, is 11 words: What could better il-
lustrate the power of microcode programs
that use the internal operating system rou-
tines.

In the program, the NOP indicates a null
(no operation) function. The left bits of
the "C" at the beginning of the name cause
the triple underline prompt that gets the
decimal input from the keyboard. This num-
ber is transformed into binary by the oper-
ating system and stored in A. The program
extracts the decimal input from A and moves
it into C (and then G). Since G only has 8
bits, the number is taken module 256. For
example, if you do CHARGE 303, the re-
sult is CHARGE 44. The number is taken up
again in C and stored in G, which, on the
passage, limits it to 8 bits and thus at
255. If you answer 30@ the program takes
3p@-255.

Next CHARGE recalls the program pointer

from status register b, using routine
2950, "GETPC".

-169-

The Routine 29E6 ("INBYT") inserts the byte
contained in the G Register into
program after having incremented the
Routine 2337 (“PUTPC") reinstates
program counter in Status Register b,
requires R=3. Very simple.

A64C 185-b11 399 E
A64D 187-413 262 G
A64E 112-442 274 F
A64F 181-481 257
RESE 188-426 264
A6S1 183-483 25¢
A652 @Aa-88e NOF
A653 BAE-2B2 ACXC ALL
R654 39C-E7w R= @
A6SS @56-168 G=C @R;+
A6Se 141-581
R657 BR4-298 2NC XG0 2956
A65E 399-Esl
R659 BA4-29@ 2NC X0 Z29EE
A6SA 81C-878 R= 3
A6SE 8DI-37
A6SC B8E-232 ?NC GO 2317

X
D

-170-

the

PC.
the
it

APPENDIX I

NUMBER SYSTEMS

-171-

APPENDIX I
NUMBER SYSTEMS

We know by Tlooking whether a switch is open or
closed (off or on). A binary digit is the
same: @ or 1.

But we are never satisfied, we have the need to

do some mathematics. To represent a switch, we
need to designate two states, and thus count in
base 2, in binary. We thus count:

? Lero

1 One
10 Two
11 Three
Etc.

We call each of these numbers @ or 1 a bit
(binary digit).

But we are used to counting in decimal (base 1),
thus we have some conversions to do. Alas it

comes out that the translation from base 2 to
base 10 does not work out simply. There is
no correspondence between the digits obtained in
Base 10 and the bits in base 2, but only cor-
respondence between the entire numbers. For ex-
ample:

1 in base 2 or base 10 is written the

same.
2 in base 19 gives 10 in base 2 (:i%).
12 in base 10 does not give 1 followed
by 180 in base 2, but 110@. The numbers
must be translated in blocks, and this is
not easy.

-173-

is easz to translate into binary numbers in
aany base that is a power of 2:

241 = 2 No problem
242 = 4 Too close to 2, is not used

243 = 8 Octal base, often wused (OCT
and DEC of the 41C)

244 = 16 Hexadecimal base that we will

constantly use here. A hexa-
decimal number 1is a number
translated exactly by 4 bits.

4 = 0100
6= 0110

46 = Q100 9110 without any problems.

For the numbers higher than 9 hex we use the
alphabet letters from A to F. The bottom line of
the byte table gives the correspondence between
hexadecimal and binary.

We will call a nibble a single hexadecimal dig-
it. A byte (in reference to the binary) is a
group of two hexadecimal digits.

We will mix the decimal and the other bases by
using the decimal to number the elements.

We will say, "There are 162 registers," but, "the
register A2." This 1is hard, but you will get
used to it. If you have money to purchase your-
self a HP-16C, it can do the work for you.

The table in Figure 38 will help somewhat.

-174-

DECIMAL HEXADECIMAL BINARY

BASE 10 BASE 16 BASE 2

o 0 o
1 1 1
2 2 1@
3 3 11
4 a 100
s 5 181
6 6 11@
7 7 111
8 8 1000
9 9 1801

10 A 1010
11 B 1911
12 C 1100
13 D 1101
14 E 1110
15 F 1111
16 10 18600
17 11 18801
18 12 1e01@
19 13 19611
20 14 18180
21 15 19101
22 16 10110
23 17 18111
24 1¢e 110006
25 19 11001
26 1R 11010
27 1B 11011
28 1C 11100
29 1D 11101
30 1E 1111@
31 1F 11111
32 20 180080
33 21 180001
34 22 180010
3s 23 100011

Decimal/Hex/Binary Number Systems

FIGURE 38

APPENDIX II

DEFINITIONS

-177-

BIT

BYTE

DIGIT

EPROM

APPENDIX II
DEFINITIONS

Binary Digit - An element of a binary
number; canbe either @ or 1.

Consisting of eight bits or two dig-
its.

A grouping of four (4) bits to repre-
sent @ to F Hex. Digits are
often referred to as nibbles.

Exponent - Part of a digit string;
e.g., 2E6 = 2,000,000.

Erasable Programmable Read Only Mem-
ory - Sometimes also referred to as
Electrically Programmable Read Only
Memory. EPROMs maintain the pro-

grammed memories without a continuous
power supply. When wused with an
EPROM reader, they appear to the
HP-41 to be a standard Hewlett-
Packard application module.

Generally EPROM readers require the
use of two EPROMS to simulate an
applications module.

Kilo - In general, 2 to the 1@th
power or 1024 elements. A stan-
dard 4K Hewlett-Packard applications
module is 4096 (4 x 1024) bytes.

-179-

MICROCODE

RAM

REGISTER

ROM

A term coined to describe the lowest
level programming language of the
HP-41. This 1language is at times
called "M-Code" for short or "Assem-
bly Language." Microcode, 1in the
true sense of the word, refers to the
"hard wired" internal language of a
computer microprocessor.

Random Access Memory - A semiconduct-
or memory which can be erased and re-

used. The RAM memory of the HP-41
consists of the status registers and
all registers which may contain pro-
grams and/or data. The CPU of the
HP-41 also contains RAM memory which
is used by all microcode functions.
The RAM of the HP-41 requires contin-
uous power to maintain its contents,
although this is only a few micro-
amperes.

The HP-41's registers consist of 56
bits, therefore seven bytes. A reg-
ister of the HP-41 may contain pro-
gram functions or data (alpha or
numerical). The largest or smallest
decimal number that an HP register
can contain is 10 raised to the
+99th power.

Read Only Memory - A semiconductor
memory which cannot be erased. All
application modules and the HP-41's
internal operating system are "ROMs."

-180-

APPENDIX III

USER CLUBS AND PUBLICATIONS

-181-

APPENDIX III
USER CLUBS AND PUBLICATIONS

International:

PPC
P.0. Box 9599
Fountain Valley, California 92728-9599
U.S.A.

Publications: PPC Journal

CHHU
2545 West Camden Place
Santa Ana, California 92704

Publication: CHHU Chronicle

France:

PPC-Toulouse
77 Rue du Cagire
31100 Toulouse
France

Publication: Micro Revue

PPC-Paris

56 Rue J.J. Rousseau
F-75001 Paris
France

Publication: PPC-PC

-183-

Australia:

PPC Melbourne
John McGechie
P.0. Box 512

Ringwood Victoria
3134 Australia

Publication: PPC-Technical Notes

United Kingdom:

PPC-UK
Astage
Rectory Lane, GB
Windlesham Surrey
GU20 GBW
England

Publication: Datafile

Germany:

CcCD
Computerclub Deutchland
Postfach 2129
D-6242 Kronberg 2

West Germany

Publication: PRISMA

-184-

Austria:

CCA

Computerclub Austria
P.0. Box 50

A-1111 Wien, Austria

Publication: CCA Journal

Denmark:

PPC-Danmark
Postboks 2
DK-3500 Yaerloese
Denmark

Publication: USER

-185-

APPENDIX IV

FURTHER READING AND REFERENCE

-187-

APPENDIX IV
FURTHER READING AND REFERENCE

"Synthetic Programming on the HP41C," by
William C. Wickes.

Larken Publications
4516 N.W. Queens Avenue
Corvallis, Oregon 97330
U.S.A.

"HP-41 Synthetic Programming Made Easy," by
Keith Jarett.

Synthetix
P.0. Box 1080
Berkeley, California 94701-1080
U.S.A.

"HP-41 Extended Functions Made Easy," by
Keith Jarett.

Synthetix
P.0. Box 1080
Berkeley, California 94701-1080
U.S.A.

"The PPC ROM Users Manual," by the Members of PPC

PPC
P.0. Box 9599
Fountain Valley, California 92728-9599

U.S.A.

-189-

"The Zenrom-3B Users Manual," by Zengrange, Ltd.

Zengrange, Ltd.
Greenfield Road, GB
Leeds
LS9 8DB
England

"The HP41 Synthetic Quick Reference Guide," by
Jeremy Smith.

Codesmith
2056 Maple Avenue
Costa Mesa, California 92627

U.S.A.

"Exploring Extended Functions on the HP-41," by
Frank Wales.

PPC-UK
Astage
Recotry Lane
Windlesham, Surrey

GU20 6BW
England

"Calculator Tips and Routines," by
John S. Dearing.

Corvallis Software Inc.
P.0. Box 1412
Corvallis, Oregon 97339-1412

U.S.A.

-190-

"HP-41/HP-IL System Dictionary," by
Cary E. Reinstein.

PPC
P.0. Box 9599
Fountain Valley, California 92728-9599
U.S.A.

"The Protosystem Users Manual," by
Nelson F. Crowle.

Prototech, Inc.
P.0. Box 12104
Boulder, Colorado 80203

U.S.A.

"The Synthetic Quick Reference Card," by
Keith Jarett.

Synthetix
P.0. Box 1080
Berkeley, California 94701-1080
U.S.A.

"Curve Fitting on the HP-41," by William M. Kolb.

IMTEC
P.0. Box 1402
Bowie, Maryland 20716
U.S.A.

-191-

"HP-41 VASM Listings," by Employees of Hewlett-
Packard. "NOMAS" Publications.

PPC
P.0. Box 9599
Fountain Valley, California 92728-9599
U.S.A.

"HP-41 IC Specifications," by Employees of
Hewlett-Packard. "NOMAS" Publication.

PPC
P.0. Box 9599
Fountain Valley, California 92728-9599
U.S.A.

Many other HP-41 books are available from various

other sources. One of the most complete selec-
tions of HP-41 books and supplies can be found in
the EduCalc catalog available from:

EduCalc Mail Store
27953 Cabot Road

Laguna Niguel, California 92677
U.S.A.

-192-

APPENDIX V

MICROCODE STORAGE AND DEVELOPMENT EQUIPMENT

-193-

APPENDIX V
MICROCODE STORAGE AND DEVELOPMENT EQUIPMENT

"ProtoCODER" and "ProtoEPROM"
Prototech, Inc.

Nelson F. Crowle, President
P.0. Box 12104
Boulder, Colorado 80303

"HHP EPROM Reader"
F. M. Weaver Associates
6201 Fair Valley Drive
Shgrgotte, North Carolina 28211

"ERAMCO MLDL"
ERAMCO Systems
Valentynkade 27-11
NL-1094 SR Amsterdam
The Netherlands

"HP-41 EPROM ROM Simulator"
Dallas Development Systems
7410 Stillwater
Garland, Texas 75042
U.S.A.

"Redshift EPROM Programming"
Wilson W. Holes
7614 Lakecliff Way
Parker, Colorado 80134

-195-

APPENDIX VI

PROGRAM ASSEMBLER

-197-

APPENDIX VI
PROGRAM ASSEMBLER

Included herein is a program "ASM" that will al-
low you to find the 244 code from the commands
(Figure 39).

This program allows you to write in microcode
without having to worry about the 244 codes. The
program calculates the codes.

The execution of the program does not require the
entry of mnemonics, but instead the order number

of the function as shown in the first column of
the table, which is the command or parameter in
decimal.

The particular tables (6/@¢, 8/@, C/@) giving
the code directly are disregarded by the assem-
bler.

For commands of type @ (T@) and type 2 (T2),
enter the number of the command. ENTER, the
field number, XEQ A for T@ or XEQ C for T2,
you will see the hex code in the display.

For the commands of Type 1, load alpha with the
address of the function and do XEQ D for ?NCXQ,
XEQ E for ?2CXQ, XEQ F for "NC GO and XEQ G for "C
GO.

For Type 3 commands, load X with the decimal val-
ue of xxx of the jump and XEQ H for JNC or XEQ I
for JC.

-199-

The installation of a keyboard overlay as indi-
cated in Figure 39 will allow the assignments by
default of the upper keys of the keyboard for
quick and easy use.

This program uses two routines of PPC ROM: QR
(quotient and remainder) giving MOD and quotient
of a division and BD (base to decimal) to trans-
late the address of the jumps.

For those who do not have the PPC ROM, I have re-
produced these programs (QR and BD). BD uses RO6
to store the base and a required Size 007. Bar-
codes are included in Appendix XVI.

Line 12 is (Hex) F3 F7 99 @8 (synthetic).

You must be able to do everything.

-200-

B1eLBL "ASH-

B2eL6L |

62 SF e

AdeLBL H

5 CLA

86 ¥<@7?

A7 SF @l

g RES

15 FE2C 81

16 -

17 32

18 XROM -QF"

19 XEQ IND Y

28 2

21 XROM -Qk-

22 ¥EQ@ IND ¥

J
oG

l
PO

DD
P
P
O

P
R

=

-

48 GT0 2@

41¢LBL F

42 XEQ 17

43z

44 GTO 24

45¢LEL G

46 XEG 17

47 3

4% GT0 2@

49¢LBL 17

99 16

51 STO 86
52 XROM “BI"

53 2%

54 XROM "OR"

55 XEQ 18

3 1
57 +

58 XEQ IND X
89 kst

68 RDN

61 RDN
62 XEG 15
63 RTN
G4oLBL L
65 CLA
66 KOY
67 8
69 XROM “QR*
69 XEQ IND ¥
76 %Y
71 RIN
728
7
74+
75 4
76 XRON -QR"
77 XEQ IND ¥
76 4
7g *

86 2
g1 610 28
B20LEL R
83 CLA
84 XEQ 16
85 .
86eLEL 26
87 +
88 XEQ IND ¥
89 AYIEW
9% STOP
91eLBL 15
92 16
93 XRON -OR"
94 XY

95eLBL 15
9% 4
97 XRON -@R-
98 XEG IND Y
99 X{3Y

199 RIN
191 16
182 +
163 +
184 4
185 XROM R
106 XEQ IND Y
107 4
18 *
189 RTN
118¢LEL 8%
11 “+e-
112 RTN
1130LBL 8!
114 *H1-
115 RTH
1164LBL 82
17 "k2*
118 RTN
119¢LBL 83
126 "+3-

121 RTN

122¢LBL @4

123 “H4~

124 PTN

125¢LBL 85

126 “F5*

127 RTN

128+LBL 86

129 “+6-

138 RTN

131eLBL @7

132 =k7-

133 RTN

134¢LBL 88

135 -re-

136 RTN

137¢LBL A9

133 =H9-

139 BTN

140BL 19

141 “HA"

142 RN

143¢LBL 11

144 “HB"

145 RTN

146eLBL 12

147 “+C-

148 PN

149¢LEL 13

158 “HD-

151 RN

152eLBL 14

153 "HE"

154 RTN

S9eLBL 15
156 "HF"

157 END

@1eLBL "BD"

82¢LBL R

83 CLST

B4¢LBL 81

Wl
PO
—

s

38 .

31 GT0 @t

J2+LBL 82

23 RDN

34 CLA

35 RTN

@1eLBL "OR"

62 XY

83 ST0)

84 2O0Y

25 oD

86 ST-]

87 LASTX

88 ST/]

89 CLY

18 x5]

11 XY

12 RTN

13 END

D0
?NCGO 7C GO

T2 PNCXQ ?7CcxXQ

JNC JC

1]

ASM Listing

Program Assembler

SEE
MV

APPENDIH
FOR EAR

CODES FIGURE 39

APPENDIX VII

ADDRESSING ROM AND RAM, BY DIDIER JEHL

-203-

APPENDIX VII
ADDRESSING ROM AND RAM BY DIDIER JEHL

ROM Principle
1)

ISA
2)

The HP-41 sends an address

(A15...Ad) on line

Each ROM module compares this address
with the ones assigned to it:

If there is no match, the module
disconnects itself.

If there is a match, it prepares
the data (D@ to D9) correspond-
ing to the specified address
(A15...A@) between phases 31 to
46, and sends them in series start-
ing from the rising edge of the
sync signal.

The two types of HP Modules:

1. Module with fixed address (MFA): This
type of module will have an address
which is totally independent of the
port it 1is plugged in to; i.e., the
time module will be addressed to page 5
regardless of the port (1, 2, 3 or 4)
that it is plugged in to.

Module with variable address (MVA):
This type of module will have an ad-
dress determined by the port in which
it is located; i.e., the Math ROM will

-205-

be addressed in either page 8, A, C or
E depending on whether it is resident
in port 1, 2, 3 or 4, respectively.

Internal Address:

T&C (Timing and Control) connects the ISA line at
the write interface during phases 16 to 31. This
allows for the comparison of the address bits
(A15...A12) with R2, R3, R4 and R5. If there is
a match between R2-R5 and A15-A12, one of the

memory blocks is selected and delivers ten bits

of data D@-D9.

T&C detects the sync rising edge then connects
the ISA line with the read interface and sends
the data D@-D9 until the sync falling edge.

RAM Principle
1. The HP-41 sends on the ISA 1line the

command 270 (RAM SLCT) in order to
warn the registers that it will select
one of them.

2. At the beginning of the next cycle, the
data line sends ten address bits. The
register with the corresponding address
is then selected and remains selected
until another is selected.

3. To write to the selected register, the
HP sends on the ISA 1line the 270
command and at the beginning of next
cycle the 56 bits present on the data
line is written in the selected regis-
ter. These 56 bits are the ones con-
tained in the C register of the micro-
processor.

-206-

4. To read the selected register, the HP
sends on the ISA 1line the command

@38H (Read ©/T), and at the begin-
ning of the following cycle, the 56
bits of the selected register are sent
on the data line, the C register of the
microprocessor.

Internal Addressing:

For the simple modules B3 and B4 (which value de-
pends only on the port) they are part of the ad-
dresses comparison.

For the quad memory, B3 and B4 = @ (inverted).

A counter connected to the ISA line allows the
microprocessor to detect the different commands
270, 2F@, ©38. When the 270 command is de-
tected, the T&C (Timing and Control) positions
the buffer (in entry and commands) at the begin-
ning of the following cycle, the latch circuit
will latch as soon as 10 address bits are
present on the data line. A comparer compare (.)
the six most significant bits with the addresses
assigned to each chip; the chip with the corre-
sponding address is selected and in turn selects
a register (amongst the 16 that she contains) by
means of the four least significant bits.

T&C waits for the command 2F@ (or ©38) to be
detected in order to command the writing (or
reading) of the selected register and send to (or
from) the register (or on the DATA 1line) the 56
data bits from the cycle following the 2F0
(or @38) command.

-207-

APPENDIX VIII

ALARMS

-209-

APPENDIX VIII

ALARMS
(Module HP82182A)

Let's start the study from the bottom of the
alarm portion of memory and move upward; that's
the way the HP-41 works. Let's follow an exam-
ple: Suppose we desire an alarm to activate on
October 25, 1983 at 12 noon and display "AU FOND
DE LA HP-41C." We introduce this text in Alpha,
2, ENTER4, 10.251983, ENTER4, 12, XEQ
"XYZALM",

We have created a status register starting with
the hexadecimal digits AA, followed by a byte
giving the total numbers of alarm registers. The
following digits are not used. In our example we
have, AA 06 00 00 90 00 90.

The register following (above) this register con-
tains:

- In the 11 1leftmost digits, the time be-
tween the alarm date and January 1,
1990, expressed in binary as the num-
ber of tenths of seconds.

- In the following digit (number 2), the in-
dication of the existence of a repeating
alarm (if digit is 1).

- In the following digit (number 1), the in-
dication of "past due" alarm. A value of
F in digit 1 means that the alarm has past
without having been acknowledged.

-211-

- The 1last digit (number @) indicates
the number of registers occupied by the
alphanumeric message (from @ to 4).

- In our example we have:

The message is located in the following reg-
isters, read from left to right and from bot-
tom to top:

P9 41 55 20 46 4E A4F
A U F 0 N

44 20 44 45 20 4C 4
D D E L A
20 48 50 2D 34 31 43

H P - 4 1 C

For repeating alarms, the repeating interval is
stored between the register giving the alarm date
and the message. The repeating interval in sec-
onds occupies digits 5 to 11 of this register,
which is not present in our example.

A new alarm is immediately located above the pre-
vious.

On top of the last alarm, there is a register
starting with the code hex F@. The rest of
this upper register is empty: F@ 00 00....

-212-

voID

X-MEMORY

SYSTEM USE

voID

X-MEMORY

SYSTEM USE

voID

4
1
C
V

Q
U
A
D

M
4

DATA

PROGRAMS

-END.

M
1
,

M
2

_,
M
3

FREE REGISTERS

BUFFER

4
1
C

ALARMS

ASSIGNMENTS

oco

X-FUNCTIONS

1023

1007

SYSTEM USE

VvoID
 STATUS REGISTERS 000

HEX

HP-41C Memory Map

FIGURE 40

APPENDIX IX

COMMENTARY ON THE SCHEMATIC OF THE HP-41C

-215-

APPENDIX IX

Commentary on the Schematic of the HP-41C micro-
processor.

TERM

KC

KR

POR

X1, X2

g
@2

SYNC
PWO
DPWO

VC1, VCO, LLD

ISA
FO
FI

DATA

SENSE

Key Column: Number of the Column
of the Keyboard
Key Row: Number of the Row of the
Keyboard
Detection-On Key Used (put in or
out of deep sleep)
Connection to the oscillating cir-
cuit
Clock signal for reading data
Clock signal for sending data and
calculations
Synchronization
Power on: microprocessor active
(Display power on) Commands the
Display
Command of different modes (deep
sleep, active, light sleep)
Commands and ROM Addresses
Flag output to the bender (beeper)
Flag in: detection of a nonsyn-
chronized peripheral
Transfer data, RAM addresses

-217-

APPENDIX X

THE DISPLAY OF THE HP-41C

-219-

APPENDIX X
THE DISPLAY OF THE HP-41C

These commands have been detailed by Paul Lind
and published for the first time in the Austral-
ian PPC publication, PPC-TN.

Each character is sent to the display under the
form of a chain of nine bits:

Bit number 8 when set to 1 indicates row 4 of the
character table (Figure 1@) if the bits 5-0
give a number from @ to F. For all other
values of the bits 5-@ the display shows a
space when bit 8 is 1. When bit 8 is zero, bits

5-0 specify a character from rows 0-3 of the
character table. Bit 8 has no effect on the
punctuation position of each display character.

Bits 6 and 7 indicate punctuation: no punctua-
tion: @@, decimal point (.) @, colon (:)
10, or the comma (,) 11.

The information can be sent to the display by 1,
4, 8 or 9 bits, character by character or in
blocks. Here are the results of the commands
transferred by 9 bits:

When a character is pushed into the display, a

character is lost from the other side. A read
causes the display to be scrolled.

Writ 14(d) Take a character from the C regis-
ters S&X field and push it onto the
left side of the display.

-221-

Read 14(d)

Writ 15(e)

Read 15(e)

Writ 4(L)

Read 4(L)

Writ 6(N)

Read 6(N)

Read the character from the right
side of the display into the C reg-
isters S&X field.

Take a character from the C regis-
ters S&X field and push it onto the
right side of the display.

Read a character from the left side
of the display.

Push 4 characters from the C regis-
ter onto the left side of the dis-
play.

Read 4 characters from the left
side of the display.

Push 6 characters onto the right of
the display.

Read 6 characters from the right of
the display.

The following commands handle eight bits only.
Only the considered elements are modified on the
display.

Writ 12(b)

Read 12(b)

Writ 13(c)

Push a XP character from the C reg-
ister to the left side of the dis-
play.

Read the 8 lower bits of the left
most character from the display.

Push the character to the right.

-222-

Read 13(c) Read the character from the right.

Writ 3(x) Push 6 characters to the left.

Read 5(M) Push 6 characters to the left.

Writ 5(M) Push 6 characters to the right.

Read 5(M) Function not well known.

The following commands handle four bits only;
high (bits 4 to 7) or 1low (bits ® to 3),
either 1 or 12 characters:

Write, push, and read

| |
| Command |

I I
I I
IWrit 7(0) |
|[Read 7(0) |
[Writ 10(F) |
|[Read 10(F) }

I
I
I
I
I
I
I
I

— — n
N

— D - fi
x

e
—
c
—
—
—
—
—
—
—
—
—
—
—
—
—
—

—

— o xHigh - -
e

[{
a] = c
t

X
X
X
X x

IWrit O(T)
|[Read 0(T)
|IWrit 8(P)
|Read 8(p)
[Writ 17(

X
X
X
X

X
X

xX
X

|[Read 11(
IWrit 1(Z
|Read 1(Z
I

X
X
X
X
X
X

X
X
X
X
X

—
C
—
a
—
—
—
—
—
—

C
—
—
—
—
—

S
—
—
—
—

—
—

a
—
—
—
—

a
—
—
—
—
—
—
—
—
—
—
—

—
—
—
—
—
—

—
—
—
—
—
—
—
—
—
—
—
—

—
—
—
—
—
—
—
—
—
—

—
—
—
—
—
—
—
—

-223-

The following commands concern only the left bit
(bit 8), and work analogously to the commands on
4 bits:

Writ 9(Q) Like Writ 7(0) (but for Bit 8)
Read 9(Q) Like Read 7(0)
Writ 2(Y) Like Writ fl(Tg
Read 2(Y) Like Read @(T

The two read commands have an amusing result.

The Annunciators:
The Effect of Write Data, Read 5(M) in C S&X

BIT ANNUNCIATOR

ALPHA
PRGM
Flag 4
Flag 3
Flag 2
Flag 1
Flag @
SHIFT
RAD
G (GRAD)
USER
BAT—

R
x
R
O
O
N
O
Y
O
T
P
W
N
—

—
)

-224-

APPENDIX XI

THE HP-41C OPERATING SYSTEM, BY BILL REGGUSY

-225-

APPENDIX XI
Commentary on the HP-41C Operating System

Applications of Unusual Instructions:
1F@h GO->XQ

Complementing XQ->GO, this function allows the
last-execution GOTO to be treated as an XEQ in-
stead. I have found this instruction very useful
where the size of the subroutine return stack has
been too small for my needs.

1D4h ENF14
1DCh DISF14
1C4h CF 14
1C8h SF 14
1CCH ?FS 14

It appears that Jake Schwartz was correct in his
assumption that there were more than fourteen CPU
flags available to the M-coder. The reason this
fifteenth flag has only just been discovered is
that you need to enable the flag (ENF14) before
it can be used. You may well ask yourself why
this flag is "protected" in such a manner -- HP
reveals all. This is a flag you want to be ex-
tremely careful with; it's the carry flag: When-
ever the CPU wakes up, this flag is disabled, but
once enabled, remains so until explicitly dis-
abled (DISF14), or the CPU stops running.

118h ?0FF
@18h POWON
218h ?WKUP

POWON complements POWOF and starts the processor
running, while ?0FF is a simple conditional test
which sets the condition bit if the HP-41 is off

-227-

(i.e., Deep Sleep). ?WKUP sets the condition
bit if the 41 has been asked to wake up. These
three instructions are used in the CPU Master
Control Program (MCP) -- see below.

@30h KEY=C

This instruction causes the digits C(4:3) to be
placed into the keycode register by a rather con-
voluted method -- the key corresponding to this
keycode is pulled for one instruction cycle (156
microseconds), which then causes the keycode to
be read in. Because the key is pulled for one
instruction cycle, the instruction must be fol-
lowed by a NOP (PPPh), as with POWOFF, which
has the effect of disabling the SYNC signal for
one cycle. If not followed by a NOP, the key may
stay down, and in extreme circumstances may even
null itself.

I would 1like to thank my friends at HP for the
information they provided -- this can only con-
firm HP's new policy of "open machines."

I have listed below the Master Control Program
which the HP-41 CPU runs while in Deep Sleep
Mode. This code is resident in the CPU, not in
the internal ROMs. Again, this is courtesy of HP.

HP Master Control Program

@@ 218 ?WKUP is the 41 being asked to
wake up?

@1 3FB JNC -1 no, so try again
@2 2EC ?PF 13 yes, then is it a periph-

eral?
@3 @33 JNC +6 no, keyboard wake-up
@4 130 LDI yes, ON key must be

pulled to effect wake-up

-228-

@5 P18 CON 018

@6 1BC RCR 11
@7 93¢ KEY=C
08 0P@ NOP

@9 1D4 ENF14
10 1C4 CF 14
11 118 ?0FF
12 913 JINC +2
13 1C8 SF 14
14 @18 POWON
15 @F3 checksum

load keycode for ON key
into C(1:0)
place it into C(4:3)
pull the key
ensure the key doesn't
stick
enable carry flag access
get it to a known state
is it from Deep Sleep?
no, so leave carry clear
yes, set carry

switch us on
Used by Service ROM to
verify CPU OK)

The above routine explains why the carry flag is
set on Deep Sleep wake-up, but not Light Sleep
wake-up.

-229-

APPENDIX XII

EPROM STRUCTURES, BY JIM DE ARRAS

-231-

APPENDIX XII
EPROM STRUCTURES
By Jim DeArras

An EPROM, ready for use in an EPROM reader (what-
ever model it might be) consists of two EPROMs at
least, named U2 ?forupper two) and L8 (for Tower
eight). L8 contains simply the 8 least signifi-
cant bits (the rightmost 8) of the word. U2 con-
tains thus the 2 most significant bits (the left-
most 2). These two bits, considered as a pair

and read in order of increasing addresses, are
Tined up in U2 from right to left and from top to
bottom. Example:

Words Bits from Right

Pxx 00
@xx 00
3xx 11

Pxx 0o

are lined up: 00 11 00 0@ to form a byte of
U2, here the byte 30.

In the same manner:

@003 gives 11 00 00 0@ = CO
P3P0 gives 90 00 11 9@ = @C
3000 gives 00 00 00 11 = @3

Address @P@ of U2 corresponds to the address
000, 001, @P2, and 0@P3 of L8. We thus obtain
the address of the preceding byte reconstituted
in U2 by dividing the address of L8 by 4 and us-
ing the integer part. Watch out, you must work

-233-

in hexadecimal. If you have a HP-16C (lucky
duck.), no problem, otherwise, use a base chang-
ing program. BD and TB of the PPC ROM will do
very well.

In an EPROM set of 4K, with a 2732 (4K bytes) and
a 2716 (2K bytes) only the first or the second
half (your choice) of the 2716 is used.

I know that all this is not simple, but if you
really need it, you will certainly have a "Club"
EPROM set or EPROM set furnished by the fabricat-
or of your EPROM reader which will allow you to
experiment. You will see that it is fascinating.

-234-

APPENDIX XIII

REGISTER SELECTION BY RAM SELECT

-235-

APPENDIX XIII
Register Selection by RAM SELECT

RAM Select (RAMSLCT) selects the 16 register
block of the given number. The address is thus
taken modulo 16: 3=@¢ 18=16,... For example,
3 RAM Select selects the status registers, but
@(T) 1is always the register @, not the
register 3. You will find in the code of the in-
ternal modules of the HP-41C, starting at the ad-
dress @3F5, the following instructions:

LDI
2FD
RAMSLCT
PRPHSLCT
READ(Y)
?NCGO @2¢5 (MEMCHEK)

These codes don't have much meaning; it is a mod-
ification which occurred during development of
the machine to remedy the synchronization problem
between the conducting circuits of the display.
But HP uses a trick to save space, using the same
instruction to select the display and to deselect
RAM memory. One must know, in fact, that during
a read or write operation, the 41C microprocessor
always sends the C contents to RAM memories, even
if another peripheral has been selected. If when
using the display, you do not watch that careful-
ly, every message destined to the display sends
the C contents to the previous selected memory.
The problem is solved by selecting a portion of
empty memory. But by doing so, 16 register plac-
es are rendered useless. Usually, the registers
P10 to OIF are the ones playing this role,
but the program example above makes the registers
2FQ to 2FF play the same role. I don't know
if it is the only reason, but when HP built the
X-memory modules, it was forced to leave those 16
register addresses empty. All that to save two
steps, LDI @10 before RAMSLCT and LDI 2F@ be-
fore PRPHSLCT.

-237-

APPENDIX XIV

BAR CODE FOR PROGRAM "KA"

-239-

ROW 6 (27

:

32) | ||"|I|I|I|I|I|I|II||"I|

KA

PROGRAM REGISTERS NEEDED: 25

APPENDIX XV

BAR CODE FOR PROGRAM “LB"

-243-

||||||||II|||I|||||||l|||||I|||II||||I||||III||||||||||I||||||II||II||I|I|A
||||||||II|||I|||I||||||I||III|I|I||lII||IIIII||||||I|I|II||I|I|II|||||||II|||I|III||I||||||IIII|||||I|l|||||||||||IIIIIIIIIIIIIIIII
|||I|||||||||I||I|||II||||||||||||||I|||||||||||||I||I|||||II||I|II|||I|I||IIIIII|I||||III|||I|II|I|I|||I|||||||III|I|||||||||||||||
O
A

IIIIIIIIIII|||II|I|||||||II||I||II|||||||||||I||II|||I|||||||I||||||||||||II|||||||III|||II|||||||||||||I|IIIIII||||||II||III|I|||||
||||||III||||I|I|||||I||||||||||||II||I||||III|I||IIII|||||||I|||||||||||||||||||||I||||||II||III||II||||II||I|||I|III|II||||I|I||I|
O
O
|||||I||||||||I||I|||||||||III|||||III|I||I||I||II|l||||||||||III||||I||||I||II|II|III||II||||I|||II||IIIIIIIIIIIIIIIIIIIIIIIIIIIIII
O
O
O
|||I|II||||||III|I|||||||||I|IIIIIII||III||III|I|IIIIII|I||II|III|||||||||I||I|||||III|II|II|I||I|||III|II||||||||I||I|||||III|II|I|
||I|||||I|||||IIIII||||I|||||||II|I||I|||I||I||I|I||I||||IIIIlI||||||I|III|I||I|II|II|||III|I||||I|||||||||||||||||II||III||||I|II||
A
e
e

LB

PROGRAM REGISTERS NEEDED: 32

APPENDIX XVI

Bar Codes for Programs "ASM", "BD" and "QR"

-247-

ASM

PROGRAM REGISTERS NEEDED: 39

ASM

PROGRAM REGISTERS NEEDED: 39

BD

PROGRAM REGISTERS NEEDED: 9

ROW 1 (1:6)

ROW 2 (7:13)
|I|I|"|II"III""I”"I"ll""l

QR

PROGRAM REGISTERS NEEDED: 4

INDEX OF FIGURES

_251-

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

15:

16:

17:

18:

19:

20:

INDEX OF FIGURES

Structure of the HP-41C..ceveennne. cecesses . 11

1979 Logic Board..... cececcene ceeees cececcces 12

1983 Logic Boardeceeeeeeceeocecsscccosssaees 13

Port Connector Electrical Diagrameceeeceesse 15

Power Supply Circuit Diagrameeeeececceceees . 16

RAM Memory Map.ceceeees. ceseccssssssssscnes . 18

Key Assignment KeycodeSeeeeeeeeeeeeenns ceeee 22

Geography of the Microprocessor...eeeceescsss 27

HP-41C ROM PageSeeececceccenees cessssssssssss 33

Microcode Character Set.ceeeeeeeereeecccenns 42

HP-41C Byte Tableceeeeeeeanss cececccccccccne 44

Printer Control CodeS.ceeveccen cecesssssscns 47

Printer Demonstration Program.....cceceeecee 48

Supplementary Information About

XROM NUMDEYrS.cceececececececccccccccccoccccoccss 54

The Status Register Map.cceeeecccccceesssnss . 68

The HP-41C F1ag Mapescccececeesssccccccccans 80

The Operation of the Byte Grabber Unveiled.. 92

"KA" Program Listing..cceeeececceecee ceeeeesss 97

Commentary of the "KA" Program.....cceeeeeee 98

"LB" Program Listing......... cecesssscnens .. 100

-253-

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

21:

22

23:

24:

25:

26:

27:

28:

29:

30:

31:

32:

33:

34:

35:

36:

37:

38:

39:

40:

The Microcode Registers

and Instruction FloWeeeeeeceees cececcesscns 113

Microcode Register Map.cececesseesscsscesseeslld

KEY Register Map..ccceecececeness cesssceessslld?

Microcode Type @ CommandS.eeecesceccssssasssl3l

Microcode Type @, Class 6/@ and 8/0..ccev... . 132

Microcode Type @, Class C/Beceecessccceseessalldd

Microcode Type 1 and 3 CommandS...ceceeeesee . 134

Microcode Type 2 CommandS.eceecececsceccessss 13D

Card Reader Microcode Structure......... ceoo14]

HP-41C Function Entry AddressSeS..ecececeeees 145

R+ Microcode Example....... cassessssessnssss 146

Message CodeS.ceeeecccccens sesesssssssssccss 149

Message Routine.ceeeeeeceeccececcoacancnsss . 150

"MEMORY LOST" Routine...ceeceee. cesccnnns «.. 155

"TONE" Routin@.eeeececcces cececcsssssesscesslD9

REP Program Listinge..cec.e. cecessssscenes .. 164

XCAT Program Listingeceeeceeccccceeccccccccnns 166

Decimal/Hex/Binary Number SystemS.......... 175

ASM Listing: Program Assembler.............201

HP-41C Memory Mapecesscccccccccccssccccanans 213

-254-

List of PPC members whose cooperation was im-

portant for this book:

Richard J. Nelson (1)
Gary Reinstein (2046)
John Dearing (2791)
John McGechie (3324)
Bill Wickes (3735)
Jim DeArras (4706)
Valentin Albillo (4747)
Steven Jacobs (5358)
Paul Lind (6157)
Didier Jehl1 (8116)
Lionel Ancelet (Paris Chapter)
Lynn Wilkins (?)
Stephane Barisien (?)

The Author:

J. D. Dodin (7726)

The Publisher:
K. Jarett (4360)

The Editor:
W. W. Holes (9026)

-256-

m————————=————=0ORDER BLANK————————————————-

Quantity Amount

HP—41 Extended Functions Made Easy

By Keith Jarett $16.95 per copy $

HP—41 Synthetic Programming Made Easy

By Keith Jarett $16.95 per copy $

(QRC included)

Quick Reference Card (QRC)

$3.00 each $

ENTER (Reverse Polish Notation Made Easy)

By Jean-Daniel Dodin $12.95 per copy $

Inside the HP—41

By Jean-Daniel Dodin $18.95 per copy $

HP—71 Basic Made Easy

By Joseph Horn $18.95 per copy $

Sales Tax (California orders only, 6 or 6.5%) $

Shipping, per book

within USA, book rate (4th class) $1.50

USA 48 states, United Parcel Service $2.50

USA, Canada, air mail $3.00

elsewhere, air mail $6.05

Shipping for QRC plastic cards (any number)

Free with book order or stamped envelope

Otherwise $1.00

Enter shipping total here $

Total Enclosed $

Checks must be payable through a U.S. bank

Name Mail to:

SYNTHETIX
Address

' P.O. Box 1080

City State ZIP Berkeley, CA

94701-1080 U.S.A.

Country (415) 339-0601

m————————-—————ORDER BLANK——————e-

Quantity

HP—41 Extended Functions Made Easy

By Keith Jarett $16.95 per copy

Amount

HP—41 Synthetic Programming Made Easy

 By Keith Jarett $16.95 per copy

(QRC included)

Quick Reference Card (QRC)

$3.00 each

ENTER (Reverse Polish Notation Made Easy)

By Jean-Daniel Dodin $12.95 per copy

Inside the HP—41

By Jean-Daniel Dodin $18.95 per copy

HP—71 Basic Made Easy

By Joseph Horn $18.95 per copy

Sales Tax (California orders only, 6 or 6.5%)

Shipping, per book

within USA, book rate (4th class) $1.50

USA 48 states, United Parcel Service $2.50

USA, Canada, air mail $3.00

elsewhere, air malil $6.05

Shipping for QRC plastic cards (any number)

Free with book order or stamped envelope

Otherwise $1.00

Enter shipping total here

Total Enclosed

Checks must be payable through a U.S. bank

Name

Address

City State ZIP

Country

Mail to:

SYNTHETIX

P.O. Box 1080

Berkeley, CA

94701-1080 U.S.A.

(415) 339-0601

Jean-Daniel Dodin

INSIDE
THE HP-41C

UNLOCK THE SECRETS OF YOUR HP-41

Discover your calculator’s internal workings. Synthetic
programming, the status registers, the byte grabber,
microcode - all are described here.

See how the byte grabber ‘‘steals’ bytes to create
synthetic instructions, an extension of the standard HP-41
program instruction set. Meet the status registers which
hold fascinating secrets and danger for the unwary. Try
several synthetic programs (bar code included). Learn
about microcode, the language used by the machine’s
own microprocessor. Take a walk through the intricate
built-in programming that makes the HP-41 work.

Your HP-41 has many hidden secrets. Isn’t it time you
started discovering them?

ISBN 0-9612174-4-8 $18.95

	Cover
	Table of Contents
	Chapter 1: Introduction
	Chapter 2: Geography
	2.1: Geography of the Hardware
	2.2: Electrical Structure
	2.3: Geography of Random Access Memory (RAM)
	2.3.1: Status Registers
	2.3.2: Empty Registers
	2.3.3: X-Memories
	2.3.4: Assignments
	2.3.5: Alarms
	2.3.6: The Buffer
	2.3.7: Programs
	2.3.8: Data

	2.4: Central Processing Unit (CPU) Geography
	2.5: Organization of the Read Only Memory (ROM)
	2.6: ROM Pages

	Chapter 3: Meaning of the Digits
	3.1: Numbers or Letters, NNN, Normalization
	3.2: Characters
	3.3: Instructions
	3.3.1: One-Byte Functions
	3.3.2: Two-Byte Functions
	3.3.3: Three-Byte Functions
	3.3.4: Variable Byte Instructions
	3.3.5: Global Labels - END

	3.4: Organization of Programs in ROM
	3.4.1: The Control Words
	3.4.2: The Links

	Chapter 4: A Special Area
	4.1: The Stack
	4.2: The Alpha Register
	4.3: Register P (Address 008)
	4.4: Register Q (Address 009)
	4.5: Register Ͱ (Address 00A)
	4.6: Registers a and b (Addresses 00B and 00C)
	4.7: Register c (Address 00D)
	4.8: Register d (Address 00E)
	4.9: Register e (Address 00F)

	Chapter 5: Thief!
	5.1: The Byte Grabber
	5.2: What is the Byte Grabber (BG)?
	5.3: The Synthetic Postfixes
	5.4: Key Assignments
	5.5: The Heavy Artillery
	5.5.1: Use of "LB"
	5.5.2: Description of "LB"

	5.6: In Case of Disaster

	Chapter 6: Microcode
	6.1: How to Use It
	6.2: Microcode: What is It?
	6.3: The Functioning Principle
	6.4: Geography of the Microprocessor
	6.4.1: The Internal Registers

	6.5: Microcode Commands
	6.5.1: Type 0 Commands
	6.5.2: Type 1 Commands
	6.5.3: Type 2 Commands
	6.5.4: Type 3 Commands

	Chapter 7: Using Microcode
	7.1: Logic Geography of a Module
	7.2: First Example: R↑
	7.3: Second Example: Operation of the Display
	7.4: Messages
	7.5: Hot or Cold Start?
	7.6: A Little Bit of Music
	7.7: Using Microcode: REP and XCAT
	7.7.1: First a Very Simple Example: REP
	7.7.2: A More Serious Application: XCAT

	7.8: Charge

	Appendix I: Number Systems
	Appendix II: Definitions
	Appendix III: User Clubs and Publications
	Appendix IV: Further Reading and Reference
	Appendix V: Microcode Storage and Development Equipment
	Appendix VI: Program Assembler
	Appendix VII: Addressing ROM and RAM, by Didier Jehl
	Appendix VIII: Alarms
	Appendix IX: Commentary on the Schematic of the HP-41C
	Appendix X: The Display of the HP-41C
	Appendix XI: The HP-41C Operating System, by Bill Reggusy
	Appendix XII: EPROM Structures, by Jim DeArras
	Appendix XIII: Register Selection by RAM Select
	Appendix XIV: Bar Code for Program "KA"
	Appendix XV: Bar Code for Program "LB"
	Appendix XVI: Bar Code for Programs "ASM", "BD" and "QR"
	Index of Figures

