LAND NAV

USER'S MANUAL

LAND NAV
LSER'S MANUAL

Contents
Introduction
Section 1: HP-4I
I.I Compatability with the HP-41
1.2 HP-4l Marning̣s and Care
1.3 Using the $\mathrm{HP}-41$ with Land Nav
1.4 Using the HP-41 as a Calculator

Section 2: military Grid System
Section 3: Land Nav Example
3.1 Installing Land Nav
3.2 Lend Nav Example
3.3 Rules to Remember

Section 4: Land Nav Functions in Depth
infin Routines
4.1 NAV
4.2 INIT ...

4.4 CHG ..
4.5 RV ..
4.6 UPDT
4.7 DOC
4.8 DST
4.9 TGI
4.19 LTGI

Conversion Routines
Section 5: Using the Land Nav LOG
Section 6: Practical Exercise :
Section 7: Practical Exercise 2
Section 8: Glossary

Introduction

The Land Nav plug-in module has been designed as an advanced tool to supplement conventional land navigation skills. It allows new flexibility and precision to the orienteer while minimizing complexity. This user's manual orovides detailed examoles and explanations of the module as well as information on the HP-4I conputer. Ine following is e brief summary of Land Nav's capaoilities:

Course_chenges enci_Recalculetions
Before walking, you lay out a course with a number of sequential that points you wish to move to. The computer gives you the distance and direction between each point. Orsinarily, you would have to walk each leg and not be able to change direction. but with Land Nav, you can change course and walk wherever you want, as long as you keep the computer properly informed. hhen you are ready to go to the next point, you can recompute the distance end direction to it based on your current location. This capability can be very useful because the course you choose on the mas may not be the best actual course.

Eind_n_Unknown_Point

The Target routine allows you to find the location of unknown points in eight digit grid coordinates. There are several different cases, depending on how much information you have. For one, you have one known point and distance and direction to an unknown point. For an intersection problem. you have two known points and a direction from each to the unknown point. Resection problems are similar, using the back azimuth. Certain situations involving moving targets can also be solved.

If there is an explosion at the unknown point you can find the distance from you by using the flash-Banc routine. Press FB when you see the flash, and again when you hear the bang. The computer calculates the distance by using the speed of sound and the time elapsed. (forks for HP-4lC/CV with time module or HP-4ICX.)

For detailed information on the operation of the $H P-41$, read your HP-41 Owner's inanuel, It is well written and will tell you everything you want to know. This section is a short course that covers the things you need to know to use Lend Nav.

Feel free to "play" with the fip-4l to get familiar with it. You can not demage the fip-41 by entering strange functions and a MASTER CLEAR will reset anything you change. Experiment now. once you actually start Land Nay you will not want to try unknown commands.

Li Comostability with_the_HP=4.l
Hewlett-Packard produces tiree 4l-series hand-held computerst the HP-4IC, 41 CV and 41 CX . Land Nav will not work in the HP-4ic unless a Hewlett Packard उuad Memory Module is used. feost s35- The functions FB and ETA which relate to time will not work in the 41C or 41 CV without a time module, but will work in the 41 CX . which has a ouilt-in time module.
1.2.HP-41_maraings for cire

It is important that you to protect your HP-4l. because it is a sensitive device and will not take certain types of abuse.

Never remove or replace any plug-in module, device or battery oack with the Hip-4l turned on. It may clear the memory or even damage the circuitry.
 Avoid extreme temperatures. The operating rance is 32-113 degrees F.

If the ip 41 is dropped, it is possible for it to lose memory or start doing strange things. Protect the calculator by using some type of padded shock-resistant case. The vinyl carrying case does not offer much protection for field use.

Avoid static electricity and strong electromanetic fields such as X-Rays.
innen the BAI indicator comes on in the display. you have at least several more hours left of continuous operation and much more time if inactive, before the batteries go dead. Do not allow batteries to sit in the calculator for extended periods of time, especially if they are olf. Corrosion from batteries is a sure killer of an HP-4i. Also, if you use rechargable battery packs, throw them away after the warranty on the pack runs out (1 year). Your calculator's warranty is void if it is dameged by rechargable batteries that are out of warranty. Rechargable packs may vent corrosive chemicals if they ere old.

If your calculator starts doing "weird" things like displaying odd characters, not working properly or "locking up". it may lose
memory. To get control back. follow these 5 teps:

1. Check for fresh batteriec, proper installation and clean contacts.
2. Remove battery pack (with calculator off. if possible), wait a few seconds and replace it and execute a GIO .. To do this make sure USER mode is off, and press SHIFT GTO and decimal point twice. This will not clear menory.
3. If still not responding or acting abnormelly, XEO ALPHA N \& V ALPHA to clear the memory.
4. If this is not possible execute a MEMORY LOST. (Turn calculator off. hold down backarrow key, turn on, and release backarrow). You will get a memory LOST nessage if successful. and then have to execute iNav to restari.
5. In almost all cases, if you continue to do the above steos you will eventually get control. As a last resort. remove batteries and let the computer sit for several hours.
ahen installing batteries, pay attention to the + and - symiols on the battery holder. Jse type in outteries.

Refer to HiP Owner's ihanual.
L.3_llsiog, the $\mathrm{HP}=$ 住

Find the following keys on ycur keyboard and try them out.
ON - Toggles computer on/off.
USER - Toggles user mode omoff. Key assionments are active in USER mode.
PROM - Toggles in and out of orogram mode. Stay out of program mode.
ALPiA - Ioggles in and out of aloha mode. Alpha mode activates the blue letters on the lower face of the keys.
SHIFT - This is the gold key. It toggles shift mode on/off.
Notice that there are indicators in the display for USER. PRGM, ALPHA, and SHIFI.

Almost every key has two functions associated with it.
UNSHIFFE functions are in white and on the face of the keys. To activate an unshifted function, simply press that key.
SHIFTED functions are in gold and above the keys.
To activate a shifted finction you must oress SiIFT first. Example: To exectate BEEP. press SHIFT (oold key) and then press 4. Do not hold the shift key down, press and release.

If you press a key and immediately release it, the function will execute. If you press a key and hold it momentarily, the name of the function will flash before it executes. Finally, if you press a key and do not release it, the name will flash and then NULL will display. This means the function is cancelled anciwill not execute
when you release tine key. Try this with BEEP.

```
You will also need to know the following functions:
    The number keys: through }
    The decimal point:
    The run/stop key: f/fs (For "running" the program)
    The backarrow key; a lefthand arrow (Deletes orevious
        number or letter or clears the disolay)
    The change sign key: CHS (Makes a positive number
        negative and vice verse)
    The X exchange Y key: X<>Y (This exchanges the contents
        of the X and Y registers, more on this later.)
    These keys will be useful to you when you learn how to use
        the computer as a celculator: - + * / ENTEF EEX
        and others.
```

 The XEQ key
 Alpha and_Key_Assignmeats
You also need to understand ebout key assionments. You already know that every key has two functions, shifted and unshifted, but it is not that simple. Most keys can have shifted and unshifted key assignments. An assignment takes the place of the original function, but only when in USER mode. If USER mode is off, assignments are not active. If USER mode is on, all koys have their normal functons except those that are assiqned over. The key assignments will be controlled by Land Nav.
when you are in ALPHA mode, the alpha keyboard becomes active. You then have access to two more functions per key. Actually, most of these are simply letters. The UNSHIFTED ALPHA functions are the blue letters on the lower face of most keys. The SHIFTED ALPHA functions are written on the back of the computer. Assianments are not active in ALPHA mode. ALPiAA letters are written in this text in double quotes.

Therefore, most keys can have up to six functions; the original shifted and unshifted functions, assigned shifted and unshifted functions when in USEn mode, and shifted and unshifted alphe letters when in AlPHA mode.

XEO (Execute)

Find the XEQ function on your keyboard and oress it. when you see XEQ _ - press AlP PiA. Now use the blue letters to suell out "EEEP" and press ALPHA again. The calculator should beep just as when you pressed SHIFT 4. You have executed a function by naming it. There exist meny more functions then you see on the keyboard and you can now execute any program by name also. In the text, functions and programs are written in all upsercase letters.

Elass

The AP-4l also has what are known as "flags". A flag is either set or clear. If a flag is set its actual value is equal to the number I and if clear equal to 0 . Flags $D-4$ will appear in the display when they are set. Land Nav uses flacs for several different purposes. For instance, flac 1 determines the units of distance. If flag l is clear, distances will be in meters. If fleq i is set,
distances will be in feet. f flag simply causes one thina to happen if set and another if clear.

The iP-4] uses RPN (Reverse Polish Notation) logic. It will seem strange at first, but when you learn it, yout will see the advantages.

$$
53+21=74
$$

When you enter this in an alceoraic calculator, you enter it exactly as you see it, reading left to right.

With RPiv, you punch in 53 ENTEE $21+$ and the answer appears. Think of it like this:

$$
\begin{array}{r}
53 \\
\pm-21 \\
\hline 74
\end{array}
$$

You write down the two numbers first and then you perform the adition. This is known as e postfix operation. nhen you execute a math functon ($+-*$ or $/$), that function computes the answer from the two numbers already in the stack.

The stack consists of four registers: X, Y, Z and I. They are arranged as follows:

The number you see in the display is the number in the x register. You cen exchange the contents of the X and Y registers with the function $X<>Y$. Every time you hit ENTER everything in the stack moves up to the next register, except the number originally in the I and the number in the X. The T contents are lost and the X contents stay the same. Observe the siack for the oroblem: $(53+21) *(43+33)$

T	0								
Z	0					74	74		
Y	0	53	53		74	43	43	74	
X	53	53	21	74	43	43	83	126	9324
You key in:	53	ENTER	21	+	43	ENTER	33	+	$*$

For a conventional calculator you would nave to key in the problem with parentheses or you woulc get an error. RpN is simpler and once you are familiar with it, you will see thet error recovery is much easier. To fully understand, try several problems on your own and read the Onner's manuel.

Section＿2：dilitery Grid Sustem

Study For 2l－26 chapter 3 if you are unfamilier with grid zones and grid coordinates．

Grid＿Zones

Land Nav will ask for the grid zone you are in．Since orid zones are so huge and it is very herd to convert coordinetes from one grid zone to another．you will not change the arid zone once you enter it．when you give the grid zone．you enter a munber from 1 to σQ and press Alpha and enter a letter from C to X ．（Excluding I and o）You will see this in the example later．Actually the grid zone is not vitally important to Land Nev and you can skip it if you don＇t know it，but give it if you do．

边T近＿Suares

The HTM（hundred thousand meter）square that you are in should be written on your mep in two weys．First，you should find a two letter combination in the marginal information．This is assigned oy the military and when reporting a coordinate in the military， you stick this on the front ef the coordinate．Second．you should find the actulal mumbers of the sotuare．These are the small numbers along the horizontal and vertical edoes of the map．The number along the horizontal is always a single digit from 1 to 9 ，bttt the vertical can range from 1 to 99 ．You ignore the larger numbers and combine the smaller with a decimal point seperating them．For example，on page ？the small numbers ere 5 and 13 ．You give this to Land Nav as 5.13 and then press ALPHA and oive the two letters． This will be demonstrated in the example later．

Grid＿Coordinates

You should alregdy know how to read a military map from Fin 21－26． but to refresh，remember FEAD RIGiT THEN UP and read the larger numbers along the edges，ignoring the 5 maller HTH numbers．All grid coorcinates are given to eight digits in Land Nav and the horizontal part is seperated from the vertical with a decimal point．In the map on page ？the initial locetion would be given to Land Nav as 3016.5032 and this is givon rioht after you give the HI旗 data．

Section 3：＿Lind＿Nay＿Example

3．1 Lastilifana and＿Ney
1．Turn calculator orf．
2．Insert LAND NAV module in eny slot．
3．XEQ ALPHA N A V ALPHA
Land Nav is now installed anc active．It has zutomatically set all necessary flags and modes anc assigned its functions to your keys． It has also cleared the entire computer of any previously stored data．
3.2 Lsad＿Nav＿Exemple

The following is a brief example that will give you some idea how Land Nav works．

You are located at wD80165030 at the symbol
 which is the military symbol for an airborne infantry platcon．You must move to ND82565237 at the symbol（－bally which is en airmobile rally point．You also know there is a friendly observation post at the symbol at $\ln 83235222$ ，and you heve radio contact with them．A map check tells you that there is a steep mountain between you and your rally doint．You have already cleared and reset everything with $\underset{\text { idg }}{ }$ ，sc next you will initialize the units and gric zone with INIT．Then．with PTS you will enter the three points mentioned above．Next，because you don＇t want to walk over the mountain．you will start out walking around it and then compute a new course to the rally point when clear of it．Then．you will spot an enemy tank company and use the target routine to find their location．

Before you move out，you need to set up the proaram．

You：INIT
41：的ETERS－b？
You：R／S

41：DEG5＝02
You：h／S
41：Gニ近 日
You： $14 \mathrm{R} / \mathrm{S}$

（Initialize routine SHIFT E＋）
It is asking if you want ofstances
in meters．
By just pressing R / S you make no change．

It is asking if you want degrees． No change．

It wents the grid to megnetic angle foune on the map． G－M angle is also called ceclinetion．

This is the place to give the arid to true angle（also called orid convergence）found in the maroinal

You:	\ldots.	information on the may.
	$10.1 .1 \mathrm{R} / 5$	Ten cearees and eleven mimutes and p/s. (With a decimal ooint)
41:	62_82?	It now wants the grid zone found on
	R	the map.
	R	to ALPriA mode to give the letter R and R/S.

You just gave the conouter the !nits you want to work in, the declination and the grid zone. The computer will automatically go to the PTS routine to get yorr points, Anything the computer outputs to you will be underlimed and next to thet will be what you punch in.
20. NAME? START F/S You name every point for convenience and since you start at point zero. you can name it "START". Note that it puts you in ALPHA mode autonatically so you simply enter "START" and press R/S
 (hundred thousand meter) square the ooint is in. It is aiven two ways, by meters from the center of the arid zone and by a two digit letter code assigned by the military. The five is the small horizontal number and the tinirteen is the vertical. Note that a decimal point is given in between them. The wi is given on the map sheet as the HTM identification.

PD 0000 ag gh? $8616.5030 \mathrm{R} / \mathrm{S}$ This is the eight-digit orid coordinate of the point. Note the decimal point is placed between the horizontal and vertical parts to make the number easier to read. Do not forget it.
L. OOgQ R/S The progran stopoed because you finished point 0 (PD) and it left the next point number in the display. R/S starts PTS for PI.

PL_NAKE? RALLY G/S You nare the next point.
R1_2.13 WD? R/S The computer automatically assumes the HTh square is the same and you meke no change by simply hitting R/S. If it were not the same for this point you would enter the correct data.

2L $1002.020028256 .5237 \mathrm{~F} / \mathrm{S}$? The coordinate for P1.
R首: 1 _3169<35 R/S Notice there is no question mark. The computer is not asking, but teliing you that the distance and direction from PG to Pl is 3169 meters and 35 degrees MAGNETIC. Tine colon always means "to". You nit k / S to go on.
2. 6 and R / S Pl is finished and $P 2$ is next.

R2_NauE? $O P h / S$ The next point is the observation post and even
though you will not be moving to it，you give it as a point．
R2＿5．13＿⿴囗玉 R 2 5 No change．
R2 2020 ekd $8323.3222 \mathrm{R} / 5$ Give it the coordinate．
R1：2＿686＜89 The computer calculated the vector（distance and direction）from P1 to P2．You will not be traveling to P2，so this is not useful to you．

Now you have given three points：your current location，the point you want to travel to，and an extra point．You are now ready to move out．You take e sighting on yotrr compass and deterinine that if you travel at an azimuth of 359 degrees MAGNETIC，you won＇t have to go over the mountain．You start walking and after 1080 meters you clear the mountain and make a brief stoo．You will aive the computer the distance and direction you just finished walking so that it can compute your new location and compute a new distance and direction to the destination coint．

Execute CHS（Change routine，press the Ef key）
2Y1＿3169＿ $1680 \mathrm{R} / \mathrm{S}$ The computer is asking for the first distance you have traveled，essuming the suggested distance of 3169．Since you have made a course change，you give the computer the actual distance of 1080 ．PVI means Permanent Vector One．A vector is a distance and direction．

PY1＿35＿DG2 359 R／S fiere you give the actual azimuth．
The routine ends after the computer stores $V 1$ and calculates your new location．

Execute LOC（location）
L HD8Q40． 5135 This allows you to see your cerrent location． Find this point on the map．L means Location．

Execute DEST（Destination）
DEST PL＿EALLY？R／S The computer is asking if the destination is $p i$ and the name RALLY is added as a reminder．You make no change to this．

L：P1＿2385 51 The computer is telling you that to go from your location to Pi．you need to travel 2385 meters at 51 degrees magnetic．This is a suggested course，and you don＇t have to follow it．

Now you want to go straight to Pl so you will use the suggested course．Because you have changed your course you will start your pace count over．You walk $6 \mathbb{O} 0$ meters and spot an enemy tank company as represented by the symbol：You are unable to proceed without being seen sc you must get ric of them．You estimate that they are approximately 2006 meters away and using your compass you see they are at an azimuth of ll4 degrees magnetic
to you.
Now it is vitally important that you update the computer on your posftion before you use the target fumction or else the answer will be in reference to your lest updated position. Because you are not making a course change you use UPDT.

Execute UPDT (Update)
[Y2 DESI_d. $600 \mathrm{R} / \mathrm{S}$ The computer is asking for Temporary Vector Two distance. This is temporary because you have not finished walking it and will make it permanent later with CHG.

TV2 $51.0 \leq$? R / S It assumes your suggested course which you did not change.

The computer know knows where you are, and if you want to see for yourself...

Execute LOC
L. $\dot{1} \mathrm{DB6} 25,5161$

Now you are ready to find the enemy.
Execute LUKN (Location to Lnknown
 Location to the target which you ouess to be $2 \theta 20$ meters. The H stands for Unknown.

L:U_AZ DGG? $114 \mathrm{R} / 5 \mathrm{It}$ is asking for the azimuth which is ll4 óegrees.

U_uDe252. 5 等 39 This location is about 400 meters away from the target and could be used as a starting point for artillery, but there is also another method that is much more accurate in this cese. It is possible to use the observation post to siaht on the enemy. You use the radio and find that the op sees the enemy at an azimuth of 176.

Execute
LEU_DIST 近? R/S You don't know the exact distance so you leave it undefined. If you don't define the distance, the computer autonatically assumes you are trying to solve an intersection problen.

Liblaz DG? 114 R/S The azimuth from you to the unknown.
$K 2$ PI_duk 2 R/S The computer is asking for the oont number of the second known point which is P2. Your locetion is the first known point ($K 1$) and the $O P$ is the second known point (K2).

Qe:llaz_DG? $176 \mathrm{R} / \mathrm{S}$ The azimuth from the op to the unknown. ULEU2_DISI $A T 3$ This is for the special case of a movino unknown which will be discussed later.

U_ND8286.5011 This is much closer and would allow very accurate ifist round artillery hit, providing the enemy with maximum surprise.

You may continue on V2...
Execute DEST
DESI Pl_RALLY? R/S No change.
L:PL 1785<51 Remaining distance.
Hopefully by now you have some idea of how things work. There are still many details to cover before you can use this proaram. 50 you must read the mext section "Functions in Depth" very carefully.
3.3 You must remember these rules:

You must update your position with CHG or UPDT before using LTGT or Loc.

You start your pace count over when you execute CHG.
whenever you change direction, use CHG and give it the distance and azimuth you just finished walkinọ.
then you want to find your location but are not changing direction. use UPDT giving it the distance and direction from the last direction change to where you are.

The azimuths you give to the computer and those you get from it are :AGNETIC azimuths. If you went grid there are conversion routines.

Don't Panic!

Section_4: Land.Niv Eunctions. in_Depth

4sin_Routines

4.L_NAV (Land. NaV)
when you execute NAV, the entire memory of the computer is cleared, the Land Nav key assionments are created and the computer is put in USER mode. You execute NAV whenever you want to start clear again.

It is not necessary to execute a MEMORY LOST before executing Land Nav, unless something weird happens to your computer and you can't get get control. This is rare, but may be incuced throuth very low batteries, mechanical vibration or shock, or strong electromegnetic fields.

Nav is the only routine that is not assioned on the keyboard. This is to prevent you from accidently clearing memory.

4.2 INII (faitilize)

INIT stores the units, declination, grid divergence and grid zone.
The first prompt is for the units of distance showing either:
YETERS= x ? or
EEEI-1?
depending upon which units you have alresay selected. Then you first execute NAV, the units will be set to meters and to degrees. The next prompt will ask for:

REGS-0? or
MILS=1?
Again this depends on which you heve already selected. To change units, you must remember that the default units (meters and degrees) are both selected with a and feet and mils are both selected with a 1. To make no change you sinoly R/S and continue.

UETERS-6? $6 \mathrm{~h} / \mathrm{S}$ thakes no change
MECERS*R? R/S Nakes no change
MEIERS-货? 1 R/S Changes to feet
EEET-1? $2 \mathrm{R} / \mathrm{S}$ Changes to meters
EEEI-13 R/S Miakes no change
The same applies for degrees and mils:
DECSET? R/S Makes no change
$4 \mathrm{MLS}=1$? B / S Changes to degrees
You will notice that a small 1 appears on the disblay if you select feet and a small 2 if you select mils. These are flags 1 and 2 and they appear when they are set. A flag is set if it is equal to 1 and clear it equal to $\%$. If you remember the rule DISTANCE BEFORE AZImUTH, you will not confuse flacs 1 and 2 . You may change these
ctnits as much as you want.
Next, INIT will ask for the G-in and G-T angles. The G-M angle is also called declination and it is the angle from orid north to the magnetic north pole. On most maps, grid north is shown as a ine with the letters GN छbove it and magnetic north is a line with a pointer on it and maybe the letters inN.

When you read an ezimuth off a map, you will have to convert grid to magnetic to get the same azimuth when you point your compass. You will either add or stabtract depending on whether the $G-M$ angle is East or flest and whether you are going from G to N or M to G. Land Nav needs this angle to compute all of its azimuths, so be accurate.

An angle can be either positive or negative. If the G-M angle is requested, then give the sign according to whether the angle from the σ-Iine is clockwise or counter clockwise to the m-line in the declination diagram. Look at a protractor and you will see that clockwise angles increase and are therefore positive. You can also remember East is positive and ivest is negative. The sign is changed with the CHS (change sign) function on your keyboard. It makes a positive negative and a negative positive.

The G-T angle is also called grid convergance and it is the angle from grid north to true north. It is needed for the conversion routines involving true north only and can be left \Rightarrow if you wish. True north is indicated with a line and a star at the end and maybe the letters "Tis".

$$
\begin{aligned}
& G-T=10.11 \\
& G-M=14 \\
& T-M=3.49 \\
& T-G=-18.11 \\
& M-G=-14
\end{aligned}
$$

The orompts will look like:

14
R/S
and

Q=T_R.20_DG?

10.11 R/S
depending upon which units are selected, and what date you have already given. If you have selected mils, the DG will be replaced with Mi and the angle will be in mils. Again. like the other prompts in Land Nav, if you co not want to change anything simply R/S. If you want to change the data then enter the new data and R/S. To clear the prompt anc see the X register, press the backarrow. It is possible for you to change these angles as much as you want, but don't because it will change the magnetic angles Land Nav gives yout and cause confusion.

After this INIT prompts for the grid zone.

GZN_RG? 11 ALPHA R R / S

To change it, you must enter a number and a letter because the grid zone is a number and letter combination. Enter the number ($1-60$) into the X register and swich to ALPHA and enter one letter (C-X except I and 0). The dəta you enter is not checked by the computer, so if you enter garbage, garbage will be stored. Again, to make no change simply R / S, and to view the number just backarrow and to see the letter switch into ALPHA. You can switch in and out of ALPiA as many times as you want to see the data. once you start entering points, do not change the grid zone even though it is physically possible.

After this. INIT calls PTS to let you enter your points. Now lets run through INIT several times just to be sure you know it.

UETERS- $D \quad 1$ R/S Change to feet. After R/S, a smell 1 should appear on the display after F/S

DEQSED $1 \mathrm{R} / \mathrm{S}$ Change to Mils. A small 2 should appear.
 above.

You should also see a 5 mall 4 . hore on this later.
QutQul? $186 \mathrm{R} / \mathrm{S}$ This is 10 degrees and liminutes.
GZN_0
RQ, NAXE? This is the PTS routine but we are not finisied practicing with INIT.

Now execute INIT again, but first you are still in ALPHA from PTS. so press ALPHA.

EEET=1? Q R/S Let's go back to meters.
QLl.S=L? $\theta R / S$ And back to degrees.

second diagram above. That ciagram shows the G-M angle as counter-clockwise or west. This is aiven as a negative. Enter the number and CHS to make negative.

5 CHS R/S
GuT-10.11-DG? 3 R/S Chenge this also.
GZN_ILR?
Press Backarrow; You shoulc see II.QQVQ which is the X register.

Press ALPHA; You should see R in the ALPHA reqister. Press R/S; make no change.
4.3.ETS (Points)

This routine stores all points and also computes the vector between them. Point zero ($P \|$) is always your starting location and subsequent points are the points you may be traveling to. After you input all points you will be travelind to, you can input other points such as the locations of other peoble or reference points. when YOU execute PTS the first promot you will see is:

Execute PTS
PT_式um? $\quad \sigma$ R/S
This allows you to specifiy the point you would like to change or view. Notice that this prompt does not appear if PTS is atfomatically executed by INIT because INIT specifiys PQ as the first paint you will see.

Next, you will get the name promot.
20.dade?

If the name is undefined you will see "NAME". You may immediately enter the name since yot are already in ALPAA. Use the backarrow to delete the orevious character if you make mistake, and remember only six characters will get stored.

START R/S
Next, you will see the UTM prompts.
QQ 0.0 g 20 ? 5.13 ALPHA MD Enter HTM data and R/S

After this, it will compute the vector between this point and the orevious point and display it. Since there is no point before $P 0$. that part is skipped. Let's go on to pl.

$1.2000 \mathrm{R} / \mathrm{S}$

PTS stops after every point and leaves the number of the next point in the X register. An R/S will skip the $\mathrm{PT} N \mathrm{~N}$? orompt and use the number in the x reigster as the next point.
Pl NABE? RALIY R / S Name the point.

P1_5213 MD?
R1Q020.2cy 8256.5237
2Q: $1-3162 \leq 35$

R/S Name the point.
R/S HTh square.
R/S Eight digit coordinate.
R/S Here it gives the distance and azimuth from $P \emptyset$ to $P 1$. Remember it is a magnetic azimuths. Now every thing will siart over with the next point. PTS will go to P2 and skio over the PT NUM? promot.

2. 20008	
22.NAME2 OP	
22-5.13_ du? 2	
P2 2 ¢96	8323.5222

There is one other case you may use if you do not know the coordinate for some point but you do know the distance and azimuth from the previous point to it, then you would ordinarly give the coordinate simply give a zero or R / S with no number entered if already zero. It does not matter what you oive for the HTM.

You give the vector from P2 to P3 anc the location of P3 will be computed. Then it will go back to the beginning of PTS with the value 3 for P3. Femember thet the point number does not increment or you may start entering data for P4 when you are still on P3.

4.3 CHG_(Ch toge)

This routine prompts you for the distance and direction of the leg you just finished walking. Femember, sake a Cif only when changing the azimuth you are walking and restart your oace count at every change. Every leg or vector of your course is given a number starting at 1 . The first vector is $V \mid$ and is always from pz to wherever you go.

You do not have to walk to $P 1$ on $V t$. There is no correspondence in numbers. You may walk five vectors before finally arriving at pl or you may never go to pl at all. As you will see in DEST, you can walk anywhere you want.
when you have finished walking $V 1$ you give it to the comouter. Press CHG and:

EV1 3162_过?	1080	
	359	

The PVI means Permanent Vector One because you are making a permanent vector. You will notice that there is already some temporary data in Vi. This is the vector from Pb to PI and was stored by PTS to make things fester if you did decide to walk directly to pi. If this is the vector that you walked you make no change to it and simply $R / 5$ to make it permanent.

When you make a vector permanent with cig it is stored just as you geve it in the memory of the comotuter. You do not neec to use it again unless you make an error, and then you use RV.
4.4_By (Beset_Yector)

Resets the vectors, changes the current location back to 90 and makes the destination point Pi. Does not actually clear the vectors, unless they ran out of memory and rolled over. See "ind" error section. For example, if you enter the vectors below:

| $V 1$ | 1880 | in | 359 | $D G$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $V 2$ | 1385 | i | 51 | $D G$ |
| $V 3$ | 1234 | \cdots | 222 | $1 G$ |

and then discover that V_{2} is in error and should actuplly be 2385 it 51 DG, you can execute RV anc start over only having to reenter $V 2$ distance.

You would execute $3 V$
Then execute CHS
RVL_1282 eV1 329 0G? A/3

Execute Citg again for V2 2v2_1385_4. 2385 R/S Correct the error 2Yス-51 00? R/5

```
Execute CHG again for v3
```


2V3_1234_出? R/S
 2V3.222_0G? 2/5

And now you are back to where you were before with the error corrected.
4.

This allows you to store temporary data in the current vector so that your current location can be fount. It is used when you are not making a course change, but need your location. The prompts look like:

TV3_D15T M?
 IV3-3引3DG?

whatever valte you give for the distance and azimuth will be made the new temporary vector. You may make as many UPDT's as you want to the same vector and you mey give any data to UPDT without any permanent changes being made. An advantaos of UPDT is once you use it, you have orestored the actual azinutit you are on before you finish the vector. so you will not have to give it then oossibly saving time. Fach time you use UPDT, your location is recalculated from the last permenent change anc the temporary vector you just gave and if there was a previous temorary vector it is forgotten.

4.6_LQC (Locttion)

This routine displays your current location as computed by the last change or update.

L-MD8252. 5238

You may stop here or you may chance your locetion. If you execute UTi, you will be able to modify the data stored in UTit. By pressing R/S when UTh finisies, you will return to LOC and this new data will ae made your location. This should not be necessary if you navigate accurately, but in case you don't, you can make a soot correction to you location. If you do change your location. all vectors are cleared, since they would heve no meaning. If yots were successful in changing your location, DEST will execute afterwards.

To change your location by direct reolacement:
Execute LOC
L_428252.5938
Execute UTM

R/S
$8002.8000 \mathrm{R} / \mathrm{S}$
R $/ 5$ to return to LOC DPL BALLY?

This is where flag 4 is used. LOC sets flag 4, and when UTu gets it, UTh will return to LOC so LOC can change your locetion. This will be explained later, just remember UTM will not return to LOC if flag 4 is clear.

4.7 DESI_(2estinctica)

This routine allows you to define a noint thet you would like to make your destination. It gives you advice on how to get there by displaying the vector from your current location to the destination point. It will also prestore this vector in the current vector if you have not already stored a temporary vector, It first asks for the destination point number and gives you the name of the current destination as a reminder.

Execute DEST
UESI_Rl_RALLY? R/S
You may change it or leave it the same. This point is set to 1 at initialization under the assumotion that you will travel to Pl first. Regardless of where you are, you can soecifiy any point including P to be your destination and it will compute that vector and display it:

L: $21 _222 \leq 353$
If your current location heopens to exactly be your destination you will get a display that looks like:

L:PL_0<180

The azimuth is meaningless if the distance is zero.
There is another thing that chi does when a permanent vector happens to put you within 25 meters of your destination point. Instesd of ending like normal, ChG increments the destination point number and calls DEST. The conputer assumes that if you are within 25 meters of the destination point, you have found it and are proceeding to the next point.
4.8.VKN (ynk nown)

TGT is an sll-in*one routine that solves several different cases of stationary unknown problems. The particular case depends on the data you give for the distance anc azimuth. It does this by checking to see what you left undefined. UkN starts out by asking you for the location of the first point. This point is called Kl for Known Point One and $K 2$ will be called Known Point Two. The unknown is called U. You can make the location of these points to be at any of your prestored points P1. P2, etc. excent PD.

Execute ukN
 KL_RI_NLi

This is asking if Ki is a stored point and if so, which one. If you give it the number of some point. it will use that point's location for KI. The exception is $P D$. PZ canot be soecified as K) in this mamer, beceuse \quad is the undefined value.

R/S	Undefined
$0 \mathrm{R} / \mathrm{S}$	Undefined
$2 \mathrm{R} / \mathrm{S}$	Kl is P2

If you do give it a point, the name of that point will replace "Kl" as the identifier. If you pess an undefined value, ukf will get the exact coordinate of KI.

If undefined.
$K 1 _5=13$ if
K1_0602.000刀?
4.9 LUKN_(LOCation to UNKNOWN)

This is iust like TGT excent that it autonatically defines Kl to be your current location and does not ask you for $k l$.

After you specify K in one way or another. UKN and iukN ask for the distance and azimuth from Kl to the unknown, or with "L" if LiKKN.

K1:URLSI in?
K1: 10
Again "K1" will be replaced with the actual name of the point if one was specified.

BALLY:UOLS工 M
or
L. UU, DLST_u2

Both the distance and azimuth are initially undefined and if you do not change the values, they will go back to the main routine as an undefined value. There are now three cases depending on which ones you define.

If you define both the distance and azimuth, then the unknown point will be calculated from that data alone. You geve a known point and a vector and that is all that is needed to find the unknown.

Execute UKN
Kl_PINL? 2 R/S
QesU DISIM? $100 \mathrm{R} / 5$
2R:U_AZ DG? $76 \mathrm{R} / \mathrm{S}$ (90 deg orid)
U. CH 08333.5222

If you did not define either distance or azimuth, then it is assumed that you know the location of the "unknownt and are seeking the distance and azimuth instead. UKN then prompts you for the location of the other point and just like for Kl, it asks if this point is a stored poinc.

Execute urín
K1_PI_NUMP 1 R/S
RALLY:DDES_M 2/5
RALLY:UAZ DG? R/S
U_PT_NUM? $2 \mathrm{k} / \mathrm{S}$
QP1 $1086 \leq 89$

For the last case，the distance is fndefined and the azimuth is defined．This is called intersection，and it involves another known，K2．KKN gets the location of K2 just like for K1．

Execute LuKin

	R／S
L：U．aZ． Q G？	$114 \mathrm{R} / \mathrm{S}$
く2 PI N W	$2 \mathrm{R} / \mathrm{S}$

Again，if defined it uses the selected point and if undefined it uses UTh to get the location．Again，it uses either the name of the point or it tses＂k2＂．Next．it prompts for the azimuth from $K 2$ to the target．

OR：UNAZDG2 176 R／5

It does not ask for any distance，just the aziauth．UKN now has two known points and an ezimuth from each to the unknown．There is one nore prompt thet will be explained later．

U1：U2＿DLきエ＿in？2／S

Just R / S to ignore it．It is possible for these two azimuths to be either perfectly perpendicular or parallel．If this happens．you will get a＂JaTA ERROR＂and tiki will halt．Otherwise，the thomown point will display through witi．

4－208286．5011

You may be wondering haw a resection problem is solved．Resection is where you are at the unknown and shooting azimuths to the known points．In a case like tris，you have only to use the back azimuth and sclve it like an intersection problem．There is even a BA function that you can use from within ukk．If you have two hilltops and know both locetions，they will become Ki and K2．You will be at the unknown point called U sighting on the knowns．You will find the azimuths from yourself，the unknown，to Kl and K2． Because K_{k} asks for the azimuth ki：J yors will have to find the back azinuth for each and give hat to akN．

The last case is for a movino Unknown．This is time based with one known point shooting an azimuth to the unknown at the first time and later another known point snooting an azimuth to the unknown． During the time interval，the unknown has moved a distance and azimuth．

It is also for the two known points to be the same if th only the
unknown moving, You would have to enter the same coordinate twice, once for K 1 and once for K2.

Conyersion_Routioes
Any of the conversion routines can be used to convert data for you.

Elea_4_End_Returaing

You should have noticed a smell 4 appear at what seems to be odd times. This is flag 4 and it has special meaning. This is porbably the hardest concept to exolain. so you may need to read this more than once.
rleg 4 appears just before a place in a main routine (INIT, CHG, LoC. etc. when you can use e conversion routine and be able to return to the main routine.

When you execute any routine and then execute another from the middle of the first, the computer will forget your wlace in the first.

If you execute CAG

2Y2_1111 k?
And then execute DEST, the computer will forget your olace in CHG.
This also apolies to conversion routines.

If you execute cig

2V2 1111 M ?
And then enter 1 ald feet and execute $\mathrm{F} \times \mathrm{m}$. you have lost your place in Crig.

EXCEPT that flag 4 allows way around this. then flag 4 is set, a marker is placed in the first routine at the place you left off, and you CAN execute a conversion routine and be able to return to CHG.

If you execute Cig
RV2 Illy 10 Fin Flag 4 appears and marker is set 30.4378
you now have the distance in meters. so all you have to do is R/S and you automatically return to CHG.

R/5 EV2_222_DG?
The R/S at the end of a conversion routine with flad 4 set will return to the marker. If flag 4 is clear R/S will do nothing. Also you will return to the LAST routine that set flag 4.

The only warning with this is do not press ilS aiter a conversion routine if flag 4 should happen to be set and you have forgotten where the marker is or you might wind up returnino anywhere.

Also, the return is not smart, so if you execute a G-T conversion at a distance prompt, everything will run fine, exceot you will get garbage for the answer.

The following ere subroutine roturnable olaces in Land Nev:
At any distance prompt
At any azimuth orompt
At any place where you exchange UTin data.

List_of_Suoroutioes

		Return to:
FB	Flash-3last	Dist
M \gg	weters to Feet	Dist
F>> ${ }_{\text {ch }}$	Feet to meters	Dist
BA	Fack Azimuth	Az
M $\mathrm{L}>\mathrm{DG}$	dils to Degrees	"11
DG> InL	jegrees to kils	"''
in >3	wagnetic to Grid	${ }^{\prime \prime}$
C> ${ }_{\text {d }}$	Grid to magnetic	H"
$F \gg \mathrm{ivi}$	True to $\begin{aligned} & \text { aganetic }\end{aligned}$	" 1
in $>$ T	Vagnetic to True	II
G>I	Grid to True	"'
T>S	Irue to Grid	11

All of the above routines will return to the last return point if R/s is given after their completion.

Kin>似I	Kilometers to miles
$M I>K M$	Miles to Kilometers
$F>C$	Farenheit to Celcius
$C>F$	Celcius to Farenheit
SLDPE	Finds the slope in oercent and dearees
ETA	Finds che trevel time and ETA

These routines do not return to anything and F / S after them does nathing except clear the return flag.

EB (Flashmang)
You press this once and it starts the stopwatch in the $4 P$ time module and sets flag D. When you press it adein it clears flad b and it prompts with the temperature and then calculates the distance besed on the time elapsed and the speed of somn. The temprature must be given in cegrees Farenteit,

Execute FB when you see the flash from the explosion
Execute $\overline{\mathrm{FB}}$ again when you hear the bang
LEing 0 H? $75 \mathrm{k} / \mathrm{S}$ You give the temp and R / S
424.02020 Distance is in X register. (Your distance will be aifferent)

Try it again
FB
FB
TE4P 75? R/S
342.2002

The $C>F$ and $F>C$ routines do not return to here or anywhere. The distance is in either neters or feet depending on flag 1 . The temperature does have a substantial effect on the soeed of sound so you might want to carry a backpacker's thermometer althouoh eccuracy to 10 degrees is adequate.

BA (Back Azimuth)
As mentioned above, BA finds the back ezimuth of any azimuth. A back azimuth is simply the opposite direction. To convert, you add 180 degrees if less tinan 180 and subtract if oreeter.

The back azimuth of $9 \Rightarrow=27 \%$
$254=74$
$160=\varnothing$
The subroutine $3 A$ does this for you. To use it you simply enter the azimuth in the X register and execute 3 A . The back azimuth is put in the x redister and there are no prompts. Yoa can execute it again to find tre back azimuth of the back azimuth which is simply the oricinal azimutin. The beck azimtth works in degrees or mils depending upon flag 2 .

123 BA	
3 B 3.0222	The BA of 123 is 303
123.0202	The $B A$ of 303 is 123

These all do the simole conversion indicated in tine table above and they will all return to a main routine at the lest return point.

These stobroutines provide the user with a means to store e coordinate for latar use. SAVE will work any time and it gets the last coordinate out of UTís registers and outs it somemtere safe. It will return to a mein routine if R/S is given after it. ott does the ogposite, putting the saved data into UTM's registers and then witn R/S returns, allowing a main routine to tse this information.

SLOP=
Slope prompts for the change in elevation ard then the distance between points.

GELEY?	$260 \mathrm{R} / 5$
DLS土	$420 \mathrm{~B} / \mathrm{S}$

You can give any units for CHS EIEV and DIST as long as they are the SAliz. Don't give the change in elevation in feet and the distance in miles. It does not do any error checking ojther. It responds with the slope in percent and in degrees regerdiess of fleg 2.

$43 \% .2509$

ETA

This routine prompts for the rate of travel and for the distance. Again the units of distance ere not important as long as they ere the same. Don't give the rate in MPH and the distance in kilometers. The rate must be per hour.

```
QAIE? 2.j.E/S (Km/hr for this example)
DISI2 12 R/S (K!!)
```

It returns the time requirec to move this distance at this rate and then with the ETA based on the corrent time set in the time module if there is a time module. The + indicates aciditional calender days. $+\boldsymbol{i}$ means the seme day. +1 indicates the time given is for the next day.

```
INNE 4.48 R/S
EIA_23:14_+6
```

The ETA is in 24 hour mode and boti are in normal Hit Mid formet.

Section_8: Glossicy

amale The measurement between two intersectina lines given in proportion to a full circle.
azimutn A direction.
Back_azimuth The opposite cirection of the (foward) azimuth.
Bearing The direction of travel. tho points and vecjors stored in the AP-4i. At shes not coleat the

Coordinete A number having a vertical and horizontal component that identifies a specific location.

Declination Either the G-if or the T-if angle depending on how your map is ruled. (Either with orid limes or true lines)

Execute The act of exscuting a function.
Elad A flag is a one bit memory cell that is either set ($=1$) or clear (=0).

Eumetion Any instruction whatsoever, either built into the fip-4l or a name of a program.

Qrid_Coordinete Specifically, a coordinate that is read from a military map's grid lines.

Grid_Divergence The angle of divergence that occurs when the perfectly square orid system is overlaid on the aeographically true lines. This G-T angle is zero at the central meridian and increase as distance away fron the central neridian.

Grid_ines A set of vertical and horizontal lines that intersect at perfect right angles and ere used in the military System.
grid_Zone A number and letter combination locating a specific 6 degree by 3 degree aree on the 三arth. It is given in the form NNA where $N \mathrm{~N}$ is $1-6 Q$ and A is $C-X$ (except I and 0).
idd Huncred Thousand ineters.
HTH Squere A square given by either a pair of numbers in the form $X . Y Y$ or a pair of letters in the form AA that identifies one unique square one HTM on each side within each of the bex major grid zones.
wister_clear The process of clearing the entire hP-4l and starting over fresh.

近ils There are 6400 mils in a circle. One mil is one meters
tangent arc distance one kilemeter away. (An object that is five meters wide and one kilometer away will apoear as five mils).

Eace count An accurate measurement of distance by counting paces.
Eroarim A set of instructions stored in memory that causes certain operations to take place.

Erompt A term used to describe the contents of the display at the instant when the computer halts its program and requests data or disoleys data.

Register A memory location in the HP-4l that can be used to store data.

Routine A program is composed of smaller routines that do specialized tasks.

Subroutine In Land Nav, a subroutine is a very small progrem that does some simple task, usually a conversion.

Inmemodile A plug-in module that gives the HP-4l time functions like eclock and a stopwatch. Ihis module is built into the 4ICX. but not the others.

Vector A distance and direction pair describing a leg of a journey or a displacement to another point.

Let's go through the steps in running a land nav course. first you get your map out, find your starting point and pick a number of points you would like to walk to. Then you IMIT the Land Nav module and punch in these points with PTS. PZ is always your starting point and P1. P2, PE, etc. are your cestination points. You have arranged Pl to be the first point you will go to, P2 the second and so forth, but you don't have to stick to that order. The PTS routine gives you the distance and direction from $P Q$ to $P I$ to P2 etc.

Now you start walking and keep track of your pece count and keep a steady azimuth. when you have completed the first leg of the course and go to the second leg, you need to report it to the computer. It is not when you change azimuths that you use Cig. CHG will prompt you for the cistance and direction you just finished walking and will store this data as permanent vector 1. At the end of the second leg. you will store PV2. It is completely up to you where you actually walk to on V Let's go through the steps in rinning a land nav course. First you get your sap out, find your starting point and pick a number of points you would like to walk to. Then you INIT the Land Nav module and punch in these points with PTS. PQ is always your starting point and PI, P2, PE, etc. are your ciestination points. You have erranged P1 to be the first point you will go to, P2 the second and so forth, but you don't have to stick to that order. The PTS routine gives you the distance and direction from PD to Pl to P2 etc.

Now you start walking and keep track of your pace count and keep a steady azimuth. When you have completed the first led of the course and go to the second leg, you need to report it to the computar. It is not when you change azimuths that you use ChG. CHG will prompt you for the distance and direction you just finished walking and will stcre this data as permanent vector 1. At the end of the second leg, you will store PV2. It is completely up to you where you actually walk to on V. you may walk straight to P1 or to P3 or you may walk to olace that is not a stared point at all. Also at the end of V1. you can use LOC to compute your exact locaton and then you can use DEST to tell you the distance and direction to any stored point.

Now suppose you continue on $V 2$ to $P 2$. but somewhere along the way you need your location. This is whre you execute UPDT. You are not changing directios and making a dermanent vector, so you will make a temporary vector. You give UPDI the distance and azimuth from your last change up o your locaton. You can then see your location with LOC or use to with LTGI just like when you make a CHG. Because this V2 is temporary, it cn os modified as much as you want. It would even get modified by DEST if there were nothind stored in ti. That means you can execute UPDT as many times as you want, each time you cn give a different vector and it will compute a location based on the last change. Also, don't worry if you execute CHG and it already contains some incorrect data, because that data is temporary and you can correct it.

LAND NAV KEYBOARD

