

HP-41

MCODE

FOR

BEGINNERS

by Ken Emery

LOTAC K071 (AL e Ut ey ne

j

published by:

SYNTHETIX

P.O. Box 1080

Berkeley, CA 94701-1080 USA

ISBN 0-9612174-7-2

Library of Congress 85-61881

Also available from SYNTHETIX:

HP-41 Synthetic Programming Made Easy

by Keith Jarett

HP-41 Extended Functions Made Easy

by Keith Jarett

Inside the HP-41

by Jean-Daniel Dodin

HP-71 Basic Made Easy

by Joseph Horn

ENTER (for the HP-11, 12, 15, and 16)

by Jean-Daniel Dodin

Quick Reference Card for Synthetic Programming

Copyright 1985 SYNTHETIX

This book may not be reproduced, either in whole or in part, without the

written consent of the publisher and the author. Permission is hereby given

to reproduce short portions of this book for purpose of review.

The material in this book is supplied without representation or warranty of

any kind. Neither the publisher nor the author shall have any liability,

consequential or otherwise, arising from the use of any material or sugges-

tions in this book.

-ii-

ACKNOWLEDGEMENT

There are six people who, through their tremendous contributions, helped to

make this book a reality.

The primary program contributor for this book is a person known only as

SKWID. He has written articles for the PPC JOURNAL on beginning MCODE

programming, as well as some advanced User code programs. Other programs

were written by Clifford Stern, who also served as technical consultant.

David Johanson, Pete Graves, and David Hovik provided a great deal of

insight into how the book should be structured, as well as correcting some

of the more blatant English errors. I would also like to thank David E.

White, Editor of the PPC Journal, for the editorial comments he made during

the creation of the book. I would also like to thank Blaine Albios for

drawing all of those great pictures of SKWID.

ABOUT THE AUTHOR

Ken Emery is a Chemical Engineer who graduated from Cal Poly Pomona in March

of 1985. His first calculator was an HP-41CV purchased in August of 1981

(talk about starting at the top!). He has been addicted to HP calculators

ever since. First, he worked on becoming familar with the HP-41 operating

system through the use of Synthetic programming. With the advent of MCODE,

and the possibility of newer, faster programs, he had to enter this field to

satisfy his craving for more speed out of the little box called a 41.

-iii-

WHAT IS MCODE?

MCODE is the internal machine code used by the HP-41, one level below the

set of "user code" instructions that users and programmers are accustomed to

dealing with. Some user code instructions like CLX are implemented by the

HP-41 in just a few MCODE instructions; other user code instructions like

TAN consist of hundreds of MCODE operations.

HISTORICAL BACKGROUND

When Hewlett-Packard announced the HP-41C in July 1979 they described it as:

"A Calculator, A System, A Whole New Standard." Six years later we know

these bold statements to be true. The HP-41 has been successful beyond HP’s

most optimistic expectations.

By the end of 1979, only five months after the introduction of the HP-41,

the beginnings of a new form of programming appecared. Pionecered by Dr.

William C. Wickes, it is now called synthetic programming, or SP. Synthetic

programming encompasses the creation and wuse of new undocumented

instructions to which the HP-41 responds. Synthetic programming is only an

extension of wuser code programming. Its study, however, provided an

important general overview of the HP-41’s operating system and its mecmory

management. The next step was to find ways to list and study the internal

machine code, now called MCODE.

User community programming in MCODE was discouraged by HP. "It’s too

complicated and in many cases doesn’t offer an advantage,” was the usual

reason given by HP’s technical support staff. By the spring of' 1982,

however, the first MCODE programs were written, hand compiled, and burned

into EPROM by Jim De Arras.

Four problems had to be overcome before MCODE could become popular. First,

the user community had to discover that MCODE programming is not beyond

the grasp of talented programmers. The second problem was the documentation

-jv-

of the HP-41’s operating system. HP eventually released the annotated

operating system listings, but only after Jim De Arras produced his own

version, a monumental feat. The third problem was the lack of a means to

generate and store MCODE instructions. Several small manufactures now offer

the necessary hardware to the user community. The fourth and last problem

was documenting in one place the basics of MCODE programming. This book is

the result of that effort.

WHY SHOULD YOU USE MCODE?

The first reason to use MCODE is speed. MCODE programs run from 7 to 120

times faster than user code. The second reason is that you get full system

control. More efficient data register usage (data packing) and access to

all of system memory are but two examples. A third reason to use MCODE is

that greater accuracy 1is possible by wusing the internal 13-digit math

routines. A fourth reason for using MCODE is the ease of dealing with

hexadecimal (base 16) numbers. The HP-41 has MCODE instructions to do

hexadecimal arithmetic at least as easily as decimal arithmetic. Finally,

your MCODE programs are immune to MEMORY LOST because they donot reside in

normal user code program memory.

MCODE programming requires additional hardware, costing from $100 to $400.

But once you enter the world of MCODE there is nothing you can’t do. To get

started, however, you need to understand the basics of MCODE. That’s where

this book fits in. It will give you the background you need to write your

own MCODE programs and to start to understand the HP-41’s operating system.

Understanding the operating system is the key to the most advanced

applications of MCODE.

Richard J. Nelson

Editor, CHHU Chronicle

PREFACE

With the introduction of the HP-41C in July of 1979, the world of truly

personal computing was set on its ear. In one hand, the computer user was

now able to hold what once took an entire room full of hardware. At the

time of its introduction, the HP-41C was expected to have a product life of

five years. Based on the results of a survey made of the user community in

late 1984, the projected life of the current 41 series (CV/CX) is still 5

years. The overwhelming success of the 41 is due in large part to enter-

prising users who managed to tickle ever more power out of their 41. Dr.

William Wickes first discovered and utilized "synthetic programming" for the

HP-41, with Keith Jarett, Roger Hill, and others expanding the bounds of

knowledge significantly. In 1981, members of the Personal Programming

Center (PPC) created an astounding collection of programs for the PPC ROM,

which combined synthetic programming techniques with improved algorithms to

come up with what is still the most advanced non-MCODE ROM around.

Hewlett-Packard has responded to the success of the HP-41 by introducing new

products (such as Extended Memory, HP-IL, and the Time module) that expand

the capabilities of the 41 manyfold. Pioneering work by Steve Jacobs and

Jim De Arras in the disassembly of HP-41 instructions led HP to unofficially

release the operating system listings for the 41, along with the original

programmers’ annotations. Thus was born the art of MCODE programming.

MCODE programs can normally be executed only as part of an internal or plug-

in ROM (Read Only Memory) module. As the name implies, ROM modules cannot

be reprogrammed. Lynn Wilkins and Paul Lind originally developed the

Machine Language Development Lab (MLDL) to enable programmers to

conveniently write, test, and use MCODE programs. Later refinements by

Lynn Wilkins, Paul Lind, Nelson Crowle, and the ERAMCO company led to

today’s state-of-the-art MLDL. An MLDL contains ordinary memory (RAM) that

looks like ROM to the HP-41. It also contains sockets that allow you to

plug in EPROM (erasable, programmable, read-only memory) chips. EPROM’s,

which can be programmed using third-party hardware that connects to the HP-

41, let you create your own custom ROMs inexpensively.

-vi-

Most of the MLDL-type devices available today have some, if not all, of the

following features:

o 4K to 16K of RAM that emulates HP-41 ROM (with battery back-up)

o Sockets for 4K to 24K of EPROM’s that emulate HP-41 ROM

o Development software to aid in MCODE programming

Once the hardware problem was solved, software needed to be tackled. MCODE

programmers all over the world developed assemblers, dissassemblers,

editors, and general-purpose MCODE programming tools. These software

development tools, which are standard on computer systems, are now available

for the HP-41.

But alas! With all of this programming power available, HP-41 users still

had a tough time trying to learn how to program in MCODE. To make it easy

on yourself, you needed to speak fluent Jacobs-DeArras, Hewlett-Packardian,

and ZENGRANGEish to be able to understand the various mnemonics. Further,

the only method of learning for each programmer was to start at the bottom,

with all of the appropriate documents in hand, and pull himself up by his

bootstraps. One evening, Ken Emery was bemoaning the lack of a tutorial on

MCODE to several local PPC members. "Write it yourself!", they told him.

So he did, and the rest is history.

This book will do its best to try and guide you through all of the vagaries

of HP-41 MCODE programming that you are likely to experience as a beginning

MCODE programmer. Intermediate programmers will find a fair amount of

useful information as well, perhaps a few little-known tricks that will cut

program size or execution time. And advanced MCODE programmers will get a

kick out of remembering how they first discovered these secrets.

David E. White

Editor, PPC Journal

-vii-

TABLE OF CONTENTS

TOPIC PAGE

INTRODUCTION ..ee eetttet1

THE BASICS

Binary Number Representationsouuiiiinneenneennnnnnennn3

The MICIOPIOCESSOT v vttt it ettt et ettt et ettt e et ettt et ee6

The CPU Registers of the HP-41i7

YVoCabULaTY.oteeee8

The Hardwareoeet13

The SoftWare ...eee15

Source Listings for the HP-41’s Operating System 16

The ROM Address SPacCe .. ov vttt ettt e et et e et e e e etet17

The ROM Wordeee18

How a 4K Page is Divided19

THE TOOLS

The Instruction Setteete25

Jumps and JUMDPINGttt45

-viii-

Absolute Execute’s and Goto’Sttt57

The Normal Function Returnttt61

Relative Execute’s and Goto’S ..ottt it e e ee75

Tips, Short Routines, and Other Little Goodies80

THE VISUALS

Accessing the Display ...e107

Custom Error MeSSages oo vttt ittt it eee122

APPENDICES

Appendix A: List of Suppliers...129

Appendix B: What’s Up on Entry to an MCODE Routine 132

Appendix ZZZzzz...: The Three CPU Modes 133

Appendix C: Other Advanced Stuff 134

Appendix D: Using the Polling Points iiiiinn... 151

Appendix E: MCODE Debugging Programcooun... 154

Appendix V: OCTal-HEX Conversion Programs. 166

Appendix F: Table of MNemonicCsunti,174

INDEX otttee189

-ix-

INTRODUCTION

This book will introduce you to machine language programming on Hewlett-

Packard Series 40 calculators (the HP-41C, CV, and CX). This book is suit-

able for total beginners in machine language, but experience in normal HP-41

programming will prove helpful.

Machine language (also known as MCODE) is the language used to program the

internal functions of the calculator. With machine language (MCODE), you

have total control of the calculator. The execution speed of an MCODE

program can be anywhere from 5 to 120 times as much as that of a similar

User code program.

To help you better understand HP-41 machine language programming, we will

first review the structure of the CPU registers. Next we will discuss the

instruction set, and finally we will provide examples of how to use the

various instructions. In the process, several practical routines will be

demonstrated. Each routine is fully documented to provide a clear under-

standing of why a particular instruction was chosen at each step.

Throughout this book we shall refer to machine language programming on the

HP-41 as MCODE. The term MCODE is derived from both Machine language pro-

gramming and microCODE. Machine language is the language determined by the

instruction set of the CPU. Microcode is the electronic programming that

actually determines what the CPU’s instruction set will be. When machine

language programming first became possible on the HP-41, the term MCODE was

coined, and it remains in use to this day.

In order to program in MCODE, you must have an accessory that simulates the

ROM (Read Only Memory) of the HP-41. This is because the HP-41’s operating

system is not designed to run MCODE programs from its normal RAM (Random

Access Memory) area. Extensive internal ROM contains the permanent code

that determines the function set of the HP-41. Several types of devices are

available for this purpose, and they are commonly referred to as MLDL’s

(short for Machine Language Development Lab). These devices plug into one

of the four ports at the top of the 41. They contain RAM, memory that may

be altered by the user, suitable for holding MCODE programs. Further

explanation will be provided in the hardware section of this book.

THE BASICS

BINARY NUMBER REPRESENTATION

The CPU can only interpret binary numbers. Binary numbers are base 2 num-

bers. They can only be represented using a one or zero. For example, 6 in

base ten would become 110 in binary. Let’s examine how this is done. The

rightmost digit is the one’s place; it may be either one or zero. When we

get to 2 we must go to the next digit to the left. This is the two’s digit.

If it is a 1 then we add 2 to the total. If the one’s and two’s digits

are set to one we have 3 (1 + 2 is 3). If we want to continue counting,

then we must move to the next digit to the left, which is the four’s digit

(four comes after three). If this digit is one, then we add 4 to the total.

In our example the four’s digit and the two’s digit are one. This means

that we have 4 + 2 (or 6). Since the one’s digit is zero, we don’t add one

to the total.

As you can see, counting in binary can be rather difficult (unless you only

have two fingers). When writing programs for the HP-41’s CPU in binary it

is very easy to make a mistake. In the CPU of the 41 the instructions are

ten binary digits long. Each of these digits is known as a BIT (for Blnary

digiT). Now, if you have a program that is 100 instructions long, then you

would have to check 1,000 (100 instructions times 10 bits per instruction)

bits to make sure that you have made no errors. As you can see, writing

programs in binary makes them difficult to debug. Binary numbers all look

the same, particularly after a few hours of debugging.

Since computers never get tired, and love to work with binary numbers, we

write programs to translate our inputs into binary. We input in hexadecimal

(hex for short) or base 16. Since numbers only cover from 0 to 9, we must

borrow letters from the alphabet for the last 6 hex digit values. We use

the letters A through F, with A corresponding to 10, B to 11, and so on

until we get to F, which is 15 in base ten.

Here’s an example of how much easier hex is than binary. We will use ten-

bit binary numbers since this is what the 41 CPU uses.

Binary Hex

0110011110 19E

1100101001 329

0000010000 010

1111101001 3E9

1000110111 237

If you make a mistake keying in the binary instructions, then you must

examine 50 bits to see where the mistake is. Using hex, only 15 digits must

be examined. This is a reduction of 70% in the number of digits you must

check.

How do we get the CPU to use these hex digits if it only recognizes binary

numbers? We use a program which will translate our hex codes to binary.

This program is called a hex assembler. Since computers don’t make mis-

takes, the translation from hex to binary will be performed without any

mistakes.

Since most people can’t count too well in hex (we haven’t seen anyone with

16 fingers), the hexcodes are given alphanumeric representations of the

operations that they perform. These alphanumeric representations are called

mnemonics. The program that translates these mnemonics into binary is

called an assembler. These programs are usually rather elaborate. However,

they make programming much easier, since you can actually see what each

instruction does, and you may follow the logic of the program. For example,

the binary number 0000001110 (00E in hex) is the A=0 ALL instruction in the

microprocessor of the 41. It is much easier to figure out what the A=0 ALL

instruction does (sets all of CPU register A equal to zero), than to trans-

late 0000001110 to a number which you may then look up on a chart.

The opposite of the assembler is the dissassembler. This is a program which

takes the binary codes at specified locations in memory and translates them

to mnemonics so that you may easily examine what instructions are in memory.

You may be wondering why the HP-41’s main CPU registers are 56 bits wide.

The 41 was designed with numerical computation in mind. The number 56 is

divisible by 4, therefore it may be partitioned into 14 sections of four

bits each. The reason for using four bits is because the numbers zero to

nine may be represented using four bits. The leftmost four bits (one nyb-

ble) are used to tell whether the number is negative or positive. If this

nybble is 0, then the number is positive. If it is equal to nine (1001 in

binary), the number is negative.

The next ten nybbles are used to hold the mantissa of the number. Because

there are only ten mantissa digits the 41 is accurate in calculations to ten

decimal places. For example, the mantissa of PI is 3141592654. These are

the ten digits you see when PI is in the display and you are in FIX 9 mode.

The three rightmost nybbles are the exponent sign and the exponent. The

leftmost of the three is the sign of the exponent. This is encoded in the

same way as the sign on the mantissa. It is nine if the exponent is nega-

tive, and zero if it is positive. The next two nybbles form the exponent.

The 41 stores all numbers in scientific notation, that is, with the exponent

set so that the mantissa has only one number to the left of the decimal

point. You may remember that the exponent on the 41 may range from 0 to 99.

This is because the largest decimal number in two digits is 99. The CPU

cannot handle an exponent greater than 99 because there is no room to store

the three digits (100 and greater) needed to represent this. For numbers

with negative exponents the number stored in the exponent is 100 minus the

exponent. For example, for a negative exponent of 2 the actual number

stored is 98 (100-2). The reason numbers aren’t always displayed in scien-

tific format is because HP was kind enough to give you a choice of whether

you want scientific, engineering, or no exponent (FIX format) displayed.

The display routines take care of all of the work to make sure the number is

displayed in the format you want.

THE MICROPROCESSOR

A microprocessor is the heart of any computer. The microprocessor chip is

made of silicon, just like any of the other integrated circuits that com-

prise a computer. However, it has been designated as the controller of the

whole show. The microprocessor has been manufactured so that it recognizes

certain inputs, and then it tells everything else what to do. It is the

brain of the computer.

When this chip is manufactured, a set of commands that will delegate the

work is etched into the chip. These commands are known as the instruction

set. The microprocessor has a set of registers where all of the operations

are carried out. These registers are known as the CPU registers. The CPU

registers are completely separate from the memory registers, as you’ll see

later.

In many texts, you may have noticed references to Microprocessor, Micro

Processing Unit (MPU), and Central Processing Unit (CPU). These terms all

mecan the same thing. To maintain some semblance of consistency, we will use

the term CPU throughout the book when referring to the HP-41 microprocessor.

In the CPU of the 41, ROM (Read Only Memory which may NOT be altered by

the user), and User RAM arec not the same. In the ROM address space the

bytes are each 10 bits long. The CPU has a 64 Kilobyte address space for

ROM. Therefore it can have up to 65,536 bytes of functions and programs.

The way the 41 CPU was designed was to treat this whole area as ROM. The

User RAM is treated as a peripheral by the CPU, and is not part of the 64K

ROM address space. The RAM bytes are each eight bits long. The 41 CPU

further complicates matters by storing the eight bit bytes of User RAM in

56-bit registers (7 bytes per register).

Each 10-bit word of an MCODE instruction takes 155 microseconds to execute.

The only exception is FETCH S&X (introduced on page 50), which takes twice

as long. The CPU thus processes an amazing 6452 words of MCODE per second.

-6-

THE CPU REGISTERS OF THE HP-41

In order to program in MCODE you MUST know how the internal CPU

registers interact with each other. This is not like User RAM, where you do

not have to worry about the partitioning of programs and data. Remember,

with MCODE you are in command of the calculator at the most fundamental

level. Therefore you must know what you are doing in similar detail.

Almost anything you want to do can be done. Like a good synthetic

programmer, who must know that there are 16 status rcgisters and how they

are used by the calculator, you must know how the data flows through the

internal CPU registers. A diagram of the flow of data in the CPU registers

is given below. The numbers in parentheses are the lengths of each register

in bits. Each register is named by a letter(s).

Subr.

A (56) Stack

4-Levels

(16)
B (56)

To — PC (16) 1— KY (8)

C (56)
RAM i

Registers | G (¥)

M (56) ‘ ST (8) XST (6)

‘j T (8)

N (56)

FI (14)

P (4) Q (4)

Figure 1

Now for a short vocabulary lesson, followed by a little explanation of the

uses of each of these registers.

Word

Bit

BCD

Hexcodes

Mnemonics

Nybble

NOP

Byte

Shift

Definition

Binary digit. One bit can have a value of either 1 or 0. It is

like a switch, either on or off.

Binary Coded Decimal. This is how the CPU represents the

numbers you see. Each decimal digit is represented by four

bits (one nybble). Each of the nybbles is separate from the

other, and may have a value from zero to nine. When one of the

nybbles tries to become ten, a one is added to the nybble to

the left, and the original nybble is set to zero.

The three hex digits used to symbolize the ten-bit MCODE words.

Alphanumeric representations of what certain hexcodes do. For

example, the hexcode 00E has a mnemonic of A=0 ALL. From the

mnemonic you can deduce that hex 00E sets all of CPU register A

equal to zero. This is much easier than having to memorize

what each hexcode stands for.

Four bits put together. The highest value that may be obtained

is when all 4 bits are set to 1. This is 15 decimal, or F in

hexadecimal. One nybble is also one hexadecimal (hex) digit.

No OPeration (do nothing instruction).

Two consecutive nybbles or eight consecutive bits.

Movement of data within a register, either left or right. Any

data pushed off the end of the register is lost forever. For

example, if we shift the binary number 10110111 right by 2 bits

-8-

Wraparound

Word

Underflow

Overflow

the two rightmost bits will be lost and zeros will be placed on

the left. We then end up with 00101101.

Movement of digits from one side of a register to the other,

during rotation of a register. Rotation is like shifting right

except instead of losing the rightmost digits they are wrapped

around to the left. For instance, if the above example was

rotated instead of shifted, we would get 11101101 as our an-

swer. Notice that the last two digits were placed on the left

end of the number and were not lost. This is wraparound. You

may also be familiar with this term as logical rotation.

The CPU instructions of the HP-41 are 10 bits long. So the

term Word describes a ROM memory cell that holds a single CPU

instruction. The term Byte is avoided in this context in order

to distinguish ROM words from the 8-bit bytes in RAM. However,

you will occasionally see CPU instructions referred to as

bytes, for example when the "byte count" of a routine is

quoted.

Underflow occurs when a negative number would result from an

operation. The CPU does not know what negative numbers are, so

it gives a result as if it had borrowed a one from the next

most significant digit. For example, the operation 1001 minus

1100 would result in an underflow, since 1100 is greater than

1001. The result would be 1101, which is 11001 minus 1100.

The Carry, which will be explained later, is set whenever an

underflow occurs.

Overflow is the opposite of the underflow. It is much like the

OUT OF RANGE error message we get when a number greater than

9.999999999 E99 would result from a mathematical operation. If

the operation were carried out, there would be an overflow,

since the wanted number would be too large for the CPU to

handle. The CPU just chops off anything that would be larger

-9-

than it can handle. For example, 1001 plus 1000 would be

10001. But since we are using only four bits for our example,

the leftmost bit would be eliminated and the answer would be

0001. The Carry bit is set after one of these operations.

Here is an explanation of how the CPU registers function.

Register

C

M and N

Usage

This is the main register. All communication with the RAM

registers is done through the C register. This is the only

register that can directly interact with all of the other CPU

registers (except T). This register can either be shifted one

nybble right or the whole register may be rotated from 1 to 13

nybbles to the right. 4-bit digits (0 to F in hex) may be

loaded into any nybble of this register. This register cor-

responds to the accumulator on other CPUs. It may be incremen-

ted or decremented by one, and it may also be zeroed.

The A register may interact with only the C and B registers.

These registers may be added to A and they may also subtracted

from A. A can also be added to C. It can be incremented or

decremented by one, shifted left or right one nybble, or

zeroed.

This register may be added to or subtracted from only the A

register. However, it may be exchanged with the A and C regis-

ters in whole or in part. It may also be shifted right one

nybble, or zeroed.

These registers may interact with only the C register. They

can not interact with each other, or with any register other

than C. They are usually used for storage.

-10-

P and Q

PC

Subroutine

Stack

ST

XST

These 2 four-bit registers are the pointers. They may be set

to any value from 0 to 13. They are used to point to digits in

the A, B, and C registers. Only one of the pointers may be

selected as the active pointer at any time. The active pointer

may be incremented or decremented by one. The active pointer

is sometimes referred to as the 'R’ register.

This is the program counter. It contains the address of the

MCODE instruction that is currently being executed. It may be

modified using certain instructions.

The subroutine stack has space for 4 pending returns. These

returns may be popped into the C register. Part of the C

register may be pushed onto the subroutine stack. This stack

should not be confused with the subroutine stack used for User

code programs.

This register interacts with the C register at the nybble

pointed to by the active pointer, and the next highest nybble.

If the nybble pointed to is 13, then wraparound occurs.

This is the flag register. Flags 0 to 7 reside in this regis-

ter. They may be set, cleared, and tested. The ST register

may be zeroed and exchanged with, or set equal to, nybbles 0

and 1 of the C register. Nybble 0 is flags 0-3 and nybble 1 is

flags 4-7. Note that these flags are independent from the User

flags of the 41, although they are frequently set to match User

flags 48 to 55.

This register contains CPU flags 8 to 13. XST cannot be

directly accessed by any other register. These flags may be

set, cleared, or tested.

Note on ST and XST: Flags 0-13 are also referred to as status

bits in HP documentation.

-11-

KY This is the keyboard register. When a key is pressed, KY is

loaded with a two-digit hexcode from a table built into the CPU

(see the table on page 150). Part of registers C and PC may be

set equal to KY.

FI Peripheral flag register. These flags may only be tested by

the CPU. They must be set by a peripheral.

Carry This one bit is set when an overflow or underflow occurs. It

is also set if a test is true. After the carry is set, the

next MCODE instruction clears the carry, regardless of whether

that MCODE instruction tests the carry bit.

What follows is the ROSETTA STONE of MCODE programming. Figure 2 shows

the fields of a 56 bit register. These 56 bits are divided into 14 nybbles.

These are numbered 0 to 13 (starting from the right). The fields are used

extensively to operate on all or part of the A, B, or C registers.

Nybble: 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Field: <--- - ALL - - >

Field: <-MS->< M --=-><-XS->

Field: Kmmmmmen ADR --------><---- S&X ---->

Field: <-- KY -->

Figure 2

Note that these fields also function as postfixes for a number of instruc-

tions. Here are the functions of the fields in Figure 2:

Field Usage

ALL All 14 nybbles.

S&X Exponent and exponent sign (nybbles 0-2).

-12-

XS Exponent sign only. (nybble 2)

M The 10 nybbles of the Mantissa (nybbles 3-12).

ADR Nybbles 3-6. This is where the address is taken from when a return

is pushed onto the subroutine stack; it is also placed here when a

return is popped from the subroutine stack.

KY Nybbles 3 and 4. This is where the contents of the KY register are

placed. C cannot be placed into KY.

@R At the nybble pointed to by the active pointer.

P-Q Uses the nybbles pointed to by each pointer. The nybbles used

depend on whether P is larger than Q. If P<=Q, digits P through Q

are used. If P>Q, digits P through 13 are used.

For example; if P=12 and Q=2 and we execute the instruction C=0 P-

Q, then nybbles 12 and 13 of C will be zeroed since P is greater

than Q. If the values were reversed, then nybbles 2 through 12

would have been zeroed. For the field designation P-Q it does not

matter which pointer is selected as the active pointer.

R< All digits from 0 through the digit pointed to by the active poin-

ter.

The last three items (@R, P-Q, and R<) are not actually fields. They are

postfixes to a group of instructions, as are the field definitions. These

last three can change position, and can not be rigidly defined as being in

one place (like the rest of the postfixes). Table 1, on page 27, contains

all of the prefix instructions for use with the postfixes mentioned above.

(By the way, a word about prefixes and postfixes. These are not before and

after fixes for something you may be considering to do or did do wrong,

rather they are descriptions of which half of the mnemonic is being

discussed. The first half is the prefix; the second half is the postfix.)

THE HARDWARE

The hardware accessory needed to program in MCODE is called a Machine Lan-

guage Development Lab, or MLDL for short. This device contains the neces-

sary electronics to interface at least one 4 Kilobyte block of CMOS RAM

-13-

with one of the ports at the top of the calculator. The total amount of RAM

available for writing MCODE depends on the device.

At the present there are several popular versions of this box. One of

these, the ERAMCO MLDL, has 8K of RAM (two 4K blocks) and space for 24K of

EPROM (Erasable Programmable ROM). This device uses a hex code that the CPU

regards as a NOP to trigger its write mode. Reading and writing to this

device is very fast. However, in order to write MCODE to this device, you

must have software written in MCODE. The ERAMCO MLDL is supplied with

one 4K EPROM sct to help you get started writing MCODE.

Another MLDL device is called the Protocoder II. This device uses the ABS

function in the calculator to trigger its read and write functions. Because

of this, it takes longer to read from and write to this unit. However,

programs will run at the same speed when they are executed in either device.

The main advantage of the Protocoder II is that software written in MCODE is

not necessary, it just makes things much easier.

For those of you with an adventurous spirit, Volume 9 Number 3 of the PPC

Calculator Journal contains schematics and instructions to build your own 4K

RAM MLDL (with provision for 4K of EPROM).

Another type of add-on for the 41 is the EPROM box. This box provides the

electronic circuitry enabling you to plug in EPROM (Erasable Programmable

Read Only Memory) chips into the interface box. The calculator sees these

as Application Pacs. With this capability you can write one-of-a kind ROMs

for only the cost of a set of EPROMs (approx. $15 U.S.) and the cost of

burning (programming) the EPROMSs. This is much cheaper than having a custom

ROM manufactured for you by HP (about $10,000+).

The ERAMCO MLDL comes with sockets that allow you to plug in up to 24K (six

4K sets) of these EPROMs. The Protocoder II requires the addition of an

extra board that addresses up to 16K of EPROM memory. A company called

Hand Held Products makes a variety of EPROM boxes. They even have one that

uses an HP Card Reader case. You can put up to 32K of EPROM in this device.

-14-

A company called Corvallis MicroTechnology also makes an EPROM box that

only uses one EPROM instead of the usual two. This device can hold either

4K or 8K of ROM. CMT also makes a plug-in module that has an EPROM

built into it. This module looks exactly like a HP application pac except

for the window on one side. With this module there are no extra boxes or

extentions of the calculator. This module comes in 4K, 8K, and 16K

versions. For more information about these manufacturers see Appendix A.

THE SOFTWARE

In order to efficiently program one of these boxes, some sort of software is

needed to allow you to write to the RAM. This can be accomplished using

either hexcodes or mnemonics; however, the software for writing to the boxes

using hexcodes is much more prevalent. The main piece of software that you

will need is an assembler. An assembler takes the mnemonics (alphabetic

representations of what the hex instruction does) that you input and calcu-

lates the correct hexcodes to place into the RAM of your MLDL. A disassem-

bler will output these hexcodes, along with the corresponding mnemonics, to

a printer, video display, or the display of the 41.

The EPROM set that comes with the ERAMCO MLDL has the hexcode kind

of assembler. This EPROM set also contains many utility routines not

found elsewhere.

A 4K EPROM set written in Australia is known as the Assembler 3 EPROM.

This set contains a disassembler, as well as an assembler that can assemble

MCODE from mnemonics in the Alpha register. Working with the other func-

tions of this EPROM is also a delight.

The Nelson F. Crowle ROM (NFCROM for short), another such set, is for use

with the Protocoder II. It contains read/write functions for this device and

many other useful functions.

A new 4K EPROM came out in May of 1984 that allows you to key in mnemonics

from the keyboard. This revolutionary ROM 1is called DAVID ASSEM.

-15-

In order to enter instructions directly from the keyboard, each key is

redefined with a mnemonic or mnemonic prefix (more on this later). This

EPROM makes MCODE program input as easy as keying in a User code

program.

With the use of software like this you should have no problem keying in any

of the routines in this book.

For those of you who have User code (RPN) programs that you wish to put into

your MLDL RAM, Phi Trinh has written a routine that will do this for you.

The only input required is the name of the User program you wish to load

into the MLDL. The routine compiles all GTOs and XEQs and has the most

complete error checking of any routine yet written for this purpose. This

routine is intended to be used only for creating User Code ROMs with your

MLDL. The ERAMCO MLDL EPROM also has a routine that is somewhat similar

to Phi’s. ERAMCO’s program allows you to mix MCODE and User code.

Instructions on how to use these software packages will not be covered in

this book. Review their respective manuals for specifics of operation.

The manufacturers’ addresses for these software packages may be found in

Appendix A.

SOURCE LISTINGS FOR THE HP-41’'S OPERATING SYSTEM

Another very important piece of software is the operating system that is

built into your HP-41. The so-called "mainframe" of the HP-41 contains 12

kilobytes of delicately interwoven MCODE programs that make the HP-41 what

it is. The mainframe contains many routines to read the keyboard, access

the display, and perform other frequently needed "housekeeping" functions.

Rather than write a complicated subroutine every time you need a

housekeeping function in your programs, you can simply execute one of these

mainframe routines as a subroutine from your program. The variety of

mainframe functions is practically unlimited. If what you want to do has a

counterpart in normal operation of the HP-41, chances are that the task

-16-

exists as a subroutine in the HP-41’s mainframe.

A mainframe routine begins at an entry point. In order to correctly use

mainframe routines, you need to know the following:

1) The location of the entry point.

2) The initial conditions required, including which registers are used for

input, correct flag settings, mode and peripheral selection, etc. Some

routines require detailed setup; others do most of their own setup.

3) The routine’s register and subroutine stack usage.

4) The output specifications, including what values are output and where,

and how the routine ends (return to calling program, or return to the

operating system).

To get this information, you need a copy of HP’s annotated listings for the

operating system. These listings are commonly referred to as the VASM

listings (HP’s terminology). Appendix A has a list of organizations that

sell VASM listings. Don’t ask HP, because HP does not support MCODE.

All serious MCODE programmers should spend some time studying the VASM

listings. The listings will give you a much better idea of how the HP-41

works, and you are bound to run across some entry points that you can use

later in your programs. You’ll also get an appreciation for the complexity

of this operating system, which was written by a team of 2 or 3 very skilled

programmers.

THE ROM ADDRESS SPACE

The 64 kilobyte (64K) ROM address space of the 41 is divided into 16 pages -

each of which is 4K in length. Each of these pages contains 4096 ROM words

that are each 10 bits long. The RAM that is used for User code programs is

not included in this 64K, since it is addressed in a different manner.

Some of these 4K pages have been allocated by HP for specific uses. A list

of how these pages are allocated is given below in Figure 3.

-17-

Page Number Use

0

1 Mainframe

ROMs

2

3 Extended Func. (CX only)

Not used (CV and C)

4 Service module or

Disabled IL Printer

5 Timer Module

6 Printer ROM

7 HP-IL Control

Functions

Figure 3

Note that the first 8 (0-7) 4K pages are

The upper 8 pages are the ROM address space into which we plug all of our HP

application PACs. If you plug a 4K ROM into port 1, it will use page 8.

This leaves page 9 inaccessible since nothing else can be placed into this

port.

THE ROM WORD

In the architecture of the 41, the ROM words are 10 bits long instead of the

conventional 8 bits. The nomenclature used in this book will list these 10-

bit words in hexadecimal (hex). In order to do this, 3 hex digits must be

used. All ROM words will be of the form:

-18-

Page Number Use

Lower half

Port 1

Upper half

Port 1

Lower half

Port 2

Upper half

Port 2

Lower half

Port 3

Upper half

Port 3

Lower half

Port 4

Upper half

Port 4

reserved for specific purposes.

VNN Where V can range from 0 to 3, and N can be from 0 to F.

There are alphabetic descriptions or mnemonics for each of these different 3

digit hex codes, but that’s the subject of another chapter.

HOW A 4K PAGE IS DIVIDED

In addition to assigning specific purposes to pages, HP has assigned speci-

fic purposes to individual address arecas within each 4K page. The first

section of a 4K page assigns the XROM number, the number of functions, and

the addresses of the functions within the 4K page.

Let’s give the section of the ROM we are about to describe the acronym FAT,

short for Function Address Table. The first word, at address P00O, is the

XROM number. ’P’ is the page number (any value from 5 to F). The number at

this address, called the XROM ID, may be from 001 to OIF in hex (1 to 31 in

decimal). This is the first number that is displayed when you see a

function displayed as an XROM. For example, the Standard Applications Pac

function CLSTK is displayed as XROM 05,01 when the ROM is not plugged in.

The 05 is the decimal equivalent of the hex number at address P00O.

The word at address POO1 indicates the number of functions for that 4K ROM.

This number may range from 001 to 040 hex (1 to 64 in decimal). The

functions include any global labels from User code programs contained in the

ROM, as well as any MCODE functions that are programmed into the ROM. This

number also includes any headers that are in the ROM. A hecader is nothing

more than an MCODE function with a name that is between ecight and eleven

characters. A ROM may have more than one header. An example of this is the

HP-IL module. It has two headers, -MASS ST 1H and -CTL FNS.

Now comes the tricky part. This next set of words is grouped into pairs.

They indicate to the calculator the address of the first executable instruc-

tion in a ROM routine, be it User code or MCODE. The words are of the

following format:

-19-

Address Word Description

P002 UVW This pair of words specifies a function whose starting

P003 XYZ address is PWYZ. If U is zero, it is an MCODE function; if

U is two, it is a User code program. Digits V and X are

normally set to zero. W, Y, and Z correspond to the last

three digits of the starting address of the function.

P004 UVW This pair of words has the same format as the first pair

P005 XYZ except they point to the address of the second ROM

function.

We continue with this format of pairing the words together until all of the

functions in our ROM have an address in the FAT. The two words after the

last entry are set to 000. This signals to the calculator that the FAT has

ended. You may start putting your programs after these final two words in

the FAT.

Let’s do an example. This ROM will have two functions. The first one, a

User code program, will be located at address P119. A function written in

MCODE will be at address P387. The XROM number for our ROM will be 14

decimal (OE hex).

Address Hexcode Description

P000 00E This is the XROM number in hex. 00E is 14 in hex. We do

not want to put 014 here since this would be an XROM

number of 20 in decimal (014 in hex is 20 in decimal).

P001 002 This is the number of functions in our ROM, as specified

above. It is also in hex. If we had 31 functions in our

ROM this hexcode would be O1F.

P002 201 Since this is a User code program the U digit is set to 2.

This tells the calculator to interpret the code starting

at this address as RPN instructions. Notice that the V

-20-

digit is zero. The 1 corresponds to the W digit in the

starting address of the program.

P003 019 This is the second word of the two word set for the

address of the first program. The X digit is set to O.

The 1 corresponds to the Y digit in the starting address,

and the 9 is the Z digit.

P004 003 This is the first word of the two word FAT set for an

MCODE function, so the U digit is set to zero. The V

digit is 0, and 3 is the W digit.

P005 087 Here is the second word of this FAT entry. The X digit is

0. The 8 is the Y digit and the 7 corresponds to the Z

digit.

Now come the two 000 words at addresses P0O06 and P007. You could start

programming immediately following these instructions, but you don’t have to.

It is advisable to leave space between the last FAT entry and your first

program so that more entries may be added to the FAT as you add more fun-

ctions to your ROM. If you were to start programming your ROM at address

P008, right after address P007, you would not be able to add any more

functions to the FAT, since there would be no space to insert two more words

into the FAT for the function. To leave room for a FAT containing the

maximum number of functions (64), begin your programming at P084.

The rest of the 4096 words may be used for programs, until we reach PFF4.

PFF4 to PFFA have been defined by HP as polling (interrupt) points. You

should always leave these set to zero unless you know exactly what you are

doing.

PFFB to PFFE are reserved for the ROM revision. The 4 hexcodes at these

addresses correspond to letters which are read in reverse order starting

with address PFFE. An example of this is the HP-IL Development ROM. The

revision is PD-1B. The ’-’ is put in the display by the ROM-checking pro-

gram. An example should help clarify this. Here are the words at addresses

PFFB to PFFE in the HP-IL Development ROM.

21-

Address Hexcode Alpha code

PFFB 002 B

PFFC 031 1

PFFD 004 D

PFFE 010 P

As you can sce, the revision is read from the highest address, the address

with the highest number value, to the lowest address.

The last word in the ROM is reserved for the checksum of the ROM. It is

used by the Service Module and other modules to verify that a module is

good. It is not used by the HP-41 itself. The checksum is calculated by

adding the the total of all the words in the ROM up to, but not including,

the last one. Anytime there is a carry into the 11th bit (ROM words are

only 10 bits long) we add one to the total. To get the final checksum the

2’s complement is taken. With the correct checksum in place, this process

will give a result of zero if applied to all 4096 words.

-22-

M CODE

INSTRUCTIONS

-23-

THE TOOLS

THE INSTRUCTION SET

And now, without further ado, the HP-41 Instruction Set!

Instruction

A=0

B=0

C=0

A<>B

C<>B

A=C

A=A+B

A=A+C

A=A+l

A=A-B

A=A-1

A=A-C

C=C+C

C=C+A

Function

Sets the part of register A specified by the postfix to zero.

Does the same as above, but for the B register.

Does the same but for C.

Exchanges the contents of the A and B registers, much like

the function X<>Y in User code.

Copies the specified field of the A register into the B

register. The old contents of B at that position are lost.

Exchanges the contents of the A and C registers. This is the

only direct way to place the contents of A into C.

Set C equal to B as specified by the postfix. The contents

of B remain the same. Only the C register is altered.

Exchange the contents of the C and B registers.

Set A equal to C. The contents of C remain unchanged. A is

changedas specified by the postfix.

Adds the A and B registers and puts the result into A. The

contents of B are undisturbed.

Same as above except use C instead of B.

Add 1 to A as specified by the postfix.

Subtract B from A. The contents of B are not disturbed. A

contains the result.

Subtract 1 from A as specified by the postfix.

Subtract C from A. The result is in A. C is not disturbed.

Add C to itself. This shifts all of the bits in the

specified portion of C left by one bit. This is commonly

used as a quick multiply-by-2.

Add the C and A registers. The result ends up in C; the A

register is left undisturbed.

225-

C=C+1

C=A-C

C=C-1

C=0-C

?7B#0

7C#0

7A<C

7A<B

2A#0

2A#C

RSHFA

RSHFB

RSHFC

LSHFA

Add one to the C register as specified by the postfix.

Subtract C from A and put the result into the C register.

Subtract one from the C register.

Gives the I's or 9’s complement of the designated field,

according to whether the CPU is in hex or decimal mode. In

hex mode, each bit is inverted; in decimal mode each digit is

subtracted from 9. For example the 1’s complement of 1101 is

0010, and the 9’s complement of 43 is 56.

2’s or 10’s complement of the specified field, according to

the CPU mode (hex or decimal). This is the 1’s or 9’s com-

plement plus one. For example, the 2’s complement of EC is

13+1 = 14 hex; the 10’s complement of 67 is 32+1= 33 decimal.

Two’s complement is ordinarily used to represent negative

numbers in computers. In the HP-41, 10’s complement is used

for both the exponent and mantissa fields of numbers. For

example, an exponent of -54 is represented as 946 = 999-

054+1. The sign digit can actually be regarded as part of

the number under the 10’s complement convention.

Sets the carry bit if the specified field is not zero.

Same as above but for the C register.

Sets the carry bit if A 1is less than C. All register

comparisons are done on a hex basis, even if the CPU is in

decimal mode.

Sets the carry bit if Ais less than B.

Sets the carry bit if A is not equal to zero.

Sets the carry if A does not equal C.

Shifts the A register right by one nybble. The rightmost

nybble of the section being shifted is lost and a zero is put

into the leftmost nybble.

Same as above but for B.

Same as above but for C.

Shifts the A register left by one nybble. The leftmost

nybble of the section being shifted is lost and a zero is put

into the rightmost nybble. The A register is the only

register that may be shifted left.

-26-

%
o=

M
o
M
o

POSTFIX

Instruction ALL S&X M R< @R MS XS P-Q

A=0 00E 006 0lA 00A 002 01E 016 012

B=0 02E 026 03A 02A 022 03E 036 032

C=0 04E 046 05A 04A 042 05E 056 052

A<>B 06E 066 07A 06A 062 07E 076 072

B=A 08E 086 09A 08A 082 09E 096 092

A<>C 0AE 0A6 O0BA O0AA 0A2 OBE 0B6 0B2

C=B 0OCE 0C6 ODA O0CA 0C2 ODE O0D6 0D2

C<>B OEE O0E6 OFA OEA O0E2 OFE O0F6 OF2

A=C 10E 106 I11A 10A 102 11E 116 112

A=A+B 12E 126 13A 12A 122 13E 136 132

A=A+C 14E 146 15A 14A 142 I15E 156 152

A=A+l 16E 166 17A 16A 162 17E 176 172

A=A-B 18E 186 19A 18A 182 19E 196 192

A=A-1 IAE 1A6 I1BA 1AA 1A2 IBE 1B6 1B2

A=A-C ICE 1C6 IDA 1CA IC2 IDE 1D6 1D2

C=C+C IEE 1E6 IFA 1EA 1E2 IFE 1F6 1F2

C=C+A 20E 206 21A 20A 202 21E 216 212

C=C+1 22E 226 23A 22A 222 23E 236 232

C=A-C 24E 246 25A 24A 242 25E 256 252

C=C-1 26E 266 27TA 26A 262 27E 276 272

C=0-C 28E 286 29A 28A 282 29E 296 292

C=-C-1 2AE 2A6 2BA 2AA 2A2 2BE 2B6 2B2

?7B#0 2CE 2C6 2DA 2CA 2C2 2DE 2D6 2D2

7C#0 2EE 2E6 2FA 2EA 2E2 2FE 2F6 2F2

7A<C 30E 306 31A 30A 302 31E 316 312

?7A<B 32E 326 33A 32A 322 33E 336 332

7A#0 34E 346 35A 34A 342 35E 356 352

7A#£C 36E 366 37A 36A 362 37E 376 372

RSHFA 38E 386 39A 38A 382 39E 396 392

RSHFB 3AE 3A6 3BA 3AA 3A2 3BE 3B6 3B2

RSHFC 3CE 3C6 3DA 3CA 3C2 3DE 3D6 3D2

LSHFA 3EE 3E6 3FA 3EA 3E2 3FE 3F6 3F2

TABLE 1

227-

All of the above instructions use the same eight postfixes. Table 1 gives

the hexcode of these instructions with these eight postfixes.

There is another class of instructions whose postfixes are numeric.

Instruction Description

READ n Reads the contents of a RAM register into C. RAM is divided

into 16 register blocks, or chips, that may be individually

selected (More on how to do this later) A READ 3 instruction

would put the contents of the fourth register of that chip

into the C register (counting starts from zero). Allowed

values of n range from 1 to 15 There is no READ 0

instruction.

WRIT n Same as for a READ except the contents of C are written to the

specified RAM register. N ranges from 0 to 15.

RCR n Rotate register C right by n nybbles. N can range from 1 to

13.

SETF n Set flag n. The 14 flags are numbered from 0 to 13.

CLRF n Same as above but will clear the flag.

?FSET n Sets the carry bit if the specified flag is set. All 14 flags

may be tested.

R=n Sets the active pointer equal to n (0 to 13).

7R=n Sets the carry bit if the active pointer is equal to n (0 to

13).

LD@R n Load the value n into the digit pointed to by the active

pointer. The active pointer is decremented by one to make

loading of consecutive numbers easy. This can only be done in

the C register.

?FI n Sets the carry flag if the specified peripheral flag is set.

Peripheral flags can not be set by the User; the peripheral

must set them. They range from 0 to 13.

SELP n Selects peripheral device n. The CPU is inactive during this

-28-

time while special instructions are being executed by the

selected peripheral.

Now we present a table of the hexcodes for all of these functions.

0

R W S C F L S

R E R R E L S ? D ? E

E A I C T R E R R @ F L

G. D T R F F T = = R I P

0 T XXX 028 XXX 388 384 38C 39C 394 010 3AC 024

1 Z 078 068 33C 308 304 30C 31C 314 050 32C 064

2 Y 0B8 O0A8 23C 208 204 20C 21C 214 090 22C O0A4

3 X OF8 OE8 03C 008 004 00C 0I1C 014 ODO 02C OE4

4 L 138 128 07C 048 044 04C 05C 054 110 06C 124

5 M 178 168 OBC 088 084 08C 09C 094 150 OAC 164

6 N IB8 1A8 17C 148 144 14C 15C 154 190 16C 1A4

7 O 1F8 1E8 2BC 288 284 28C 29C 1294 1D0 2AC 1E4

8§ P 238 228 13C 108 104 10C 11C 114 210 12C 224

9 Q 278 268 27C 248 244 24C 25C 254 250 26C 264

10 - 2B8 2A8 OFC 0C8 0C4 0CC ODC 0D4 290 OEC 2A4

I1 a 2F8 2E8 IBC 188 184 18C 19C 194 2D0 1AC 2E4

12 b 338 328 37C 348 344 34C 35C 354 310 36C 324

13 ¢ 378 368 2FC 2C8 2C4 2CC 2DC 2D4 350 2EC 364

14 d 3B8 3A8 XXX XXX XXX XXX XXX XXX 390 XXX 3A4

15 ¢ 3F8 3E8 XXX XXX XXX XXX XXX XXX 3D0 XXX 3E4

TABLE 2

Since we now have the hexcodes for the read/write instructions, we should

learn how the RAM of the calculator is structured. There are basically

three different parts: the status registers, main memory, and extended

memory. The status registers receive the most use in MCODE programs since

-29.

they contain vital information about the structure of the rest of RAM. We

The first will be the memorywill now show two tables in figures 4 and 5.

structure of the calculator as a whole, and the second will highlight the

status registers.

\

N
\

I
S
R

A
N

W
2
a
,

L
l

{\w
h
i
t
p
g
t
y

p
u
n

it
\ \

-30-

Address RAM

3FF

300

2FF

200

1FF

0CO

OBF

040

00F

000

Extended Memory

#2

Extended Memory

#1

Top of Main Memory

top of User programs

I/O Buffer area

Key Assignments

------------data register 0-------------

------------------2513}»J——

Top of X-funct. X-Mem.

Bottom of X-Funct. X-Mem
Nonexistent Registers

(VOID)

Status Registers

Figure 4

-31-

RAM address limit

Now a little explanation on Figure 4. The addresses on the left are the

absolute addresses of the register blocks starting from zero. They are

given in hex. The solid lines are fixed addresses; the dashed lines are

moveable address points. We will explain each section of the diagram,

starting from the top of the diagram and working our way down.

Name Description

Extended This is the location of the second set of extended memory

Memory #2 module registers in the addressing scheme of the calculator

RAM. The addresses of these registers are from 301 to 3EF.

There is one nonexistent register (300) at the bottom of the

module. The RAM at addresses 3F0 to 3FF are used by some

peripherals and are NONEXISTENT for storing any data.

Extended Just like Extended Memory #2, except that the addresses are

Memory #1 changed to protect the innocent. The new addresses of the

RAM that exists are from 201 to 2EF.

Main Memory 1FF is the top register in the Main Memory of a 41CV, 41CX,

or a 41C with a quad memory module. The bottom of Main

Memory is at address 0CO. The main memory is divided into

four major sections. They are: data registers, User

programs, the I/O buffer, and key assignments. If this order

isn’t always followed your calculator will probably lock up.

The data registers start at address 1FF and go down until the

imaginary line between data and program memory is reached.

The address of this line is kept in one of the status

registers (more on this later). The next area is where the

User programs that you write are placed. Then comes the

.END.. After this is the free register areca, or I/O buffer.

These are the unused program registers. This area also

includes the buffers set up by some of HP’s ROMs, the most

famous being the Time module. This is the area where the

timer alarm information is stored. Right below these

-32-

registers are the User key assignments. They start at

register 0CO and are pushed upward every time a new assign-

ment register is needed. These assignments do not include

those for programs in User RAM. Two assignments are put in

each register before a new register is used.

Extended This is the Extended memory that comes with the Extended

Functions/ Functions module. It is addressed from OBF to 040. There

Extended are no voids between this and main memory, as there are with

Memory the other extended memory modules.

Void A void occupies the RAM address space from 010 to 03F. These

registers are NONEXISTENT.

Here i1s a diagram of the 16 status registers located at absolute addresses

000 to OOQF:

-33-

Nybble 13 12 11 10 9 8 7 6 5 4 3 2 1 O

e Shifted Key Assign. Bit Map PTEMP2 Line #

|S6UserFlags

¢ |TREGstartunusedColdstartReg0addr..END.

|RewrasmekPrempointer

LRewrnsack

- |UnshiftedKeyAssign.BitMapSerateh

o| semen

p| serateh AlphaCharacters221024

olAlphaCharacters15021

NAlphaCharacters8to14

M|AlpheCharacters1107

oLastXRegister

x|XRegister

|YRegister

2|ZRemse

o

Figure 5

-34-

Here is how the registers listed in Figure 5 are used:

Register Description

The 36 leftmost bits of this register are used for a shifted key

assignment bit map. When a shifted key is pressed while in USER

mode, the calculator looks in this register to see if the key

being pressed has been assigned. If the corresponding bit has

been set, then the search for the key assignment starts. If the

bit 1s not set, then the built-in (keyboard) function is

executed. Nybbles 3 and 4 contain a set of status bits from the

last partial key sequence (see Appendix C). The right three

nybbles store the current program line number.

This 1s the register where all 56 User flags of the calculator

are kept. Flag zero is on the left and flag 55 is on the far

right.

This register holds a number of interesting goodies. Starting

from the left, the first three nybbles are used as the absolute

address of the first register of the Statistics Registers. The

next two nybbles are not used by the calculator (they are used by

some custom ROMs). Nybbles 6, 7, and 8 are the cold start

constant. They are set to 169 hex. If changed from this value,

the calculator will give MEMORY LOST (no accommodations for

errant MCODE programming). The next three nybbles hold the

absolute address for data register zero. The last three nybbles

are the absolute address of the register in which the .END.

resides. Don’t mix this register up with the CPU C register.

You will notice that this is a small ¢ and the internal CPU

register is a capital C. This is an easy way to tell them apart.

The four rightmost nybbles of this register hold the pointer to

the address where you happen to be in program memory. The other

ten nybbles are the first two and one half return addresses on

-35-

Last X

the user subroutine return stack. Each return address takes up

four nybbles.

This register is the last three and one half returns on the user

subroutine return stack.

The leftmost 36 bits of this register hold the unshifted key

assignment bit map. These are used in the same way as the bits

for the shifted keys in register e. The rest of the register is

used by the calculator as a scratch area.

This register is used by the calculator as a scratch register.

Scratch means that there is no set purpose for that register

arca. It may have several different uses.

The eight leftmost nybbles are used as a scratch area. The other

six nybbles are the last three characters of the Alpha register

when there are 24 characters.

These three registers are the first 21 characters of the Alpha

register. The M register is filled with the first seven

characters. At the ecighth character the N register starts

filling with characters. It will accumulate characters until we

get to the fifteenth character. Then the O register starts to

accumulate characters. It takes characters until there are 21 of

them. Finally, the P register takes the last three characters of

the Alpha register.

This is the Last X register and is accessed with the Last X

function.

This is the familiar X register where all of the numbers we see

are placed.

The second register in the RPN stack.

-36-

Z

T

The third register in the RPN stack.

The top (fourth) register in the RPN stack.

If you don’t quite understand this the first time, read it a few times and

let the subject matter sink in.

creating simple MCODE routines.

This knowledge will be very helpful for

You might consult a copy of "HP-41

Synthetic Programming Made Easy" for more detailed information on the status

registers.

Here is a hexcode list of alpha characters displayable in the names of

MCODE functions.

01

02

03

04

CHARACTER TABLE FOR MCODE FUNCTION NAMES

sp. = blank space

6 7 8

F G H

vV W X

& 7

6 7 8

TABLE 3

9 A B C D

J K L M

Zz [\ 1

* o+ o« -

g8 ., < =

TR

Let’s look at how the name of a function is coded. The name of

is put in reverse order from what would be read.

Let’s do the name for a Y<>Z function.

-37-

An example

E F

N O

-/

> 9

P

the function

should help.

Hexcode Letter

0M9A 'z
03E "'
03C "<
019 "Y"
start of executable code.

You will notice that the letters are in the reverse order from what we would

expect. They start with the last letter and work down to the first. Notice

that the last letter in the function name (Z) has hex 080 added to its

hexcode (09A = 01A + 080 in hex). This signals to the processor that this

is the last letter in the function name. Function names may be up to seven

characters in length.

Now we have the knowledge to write a Y<>Z routine. But first, let’s set up

our 4K block of RAM. First set your MLDL address switches to page 8 and

clear out the entire 4K block of RAM. The software you have probably has a

function to do this. Consult the instruction manual of your software

package on how to clear the RAM block.

We are going to use XROM 1, so the hexcode at address 8000 will be 001. We

shall leave space in the FAT for the maximum number of functions (64) or 40

hex, so that our ROM name can start at address 8084 (JJ*2+4, where JJ=40

hex). If you don’t want to be able to have 64 functions in your RAM, then

you just decrease the JJ number to however many functions you want and use

that hex number instead of 040 in the formula to find the address of the

first instruction. The name of our ROM shall be SKWID 1A. (At least 8

letters must be used so that the header will show up in the CAT 2 listing of

a CX. Up to 11 letters may be used in this name). The code for the ROM

name is shown in the following listing:

-38-

Address Hexcode Letter or function

8000 001 XROM number in hex

8001 001 Number of functions in the FAT.

8002 000 Address of the first executable instruction in the ROM

8003 08C header.

8004 000 Indicates end ofFAT.

8005 000

We now jump down to 8084 so that there will be room for

more entries in the FAT. This entire area is clear.

8084 081 "A" Recall that hex 080 is added to the hexcode

for the letter A.

8085 031 "l

8086 020 "

8087 004 "D"

8088 009 "T"

8089 017 "W

808A 00B "K"

808B 013 "S"

808C 3EO0 RTN This is the return function, so that if this

function is synthetically entered into a

program, the function just executes the return

and acts as a NOP.

There is one entry in the FAT, as shown by the hex code at address 8001.

This is the ROM header. When you execute CAT 2 you should see SKWID 1A in

the display; if you don’t, make sure that you keyed everything in correctly.

We shall now write our Y<>Z routine. First we must update the FAT. The

number at address 8001 must be increased by 1 and the address of the first

executable instruction must be added to the FAT. Since the name is 4

letters long and the last instruction was entered at 808C, we will then add

5 to this address to come up with the address of the first executable

instruction for the FAT. 808C+5 is 8091 in hex, so the FAT now looks like

the following:

-39-

Address

8000

8001

8002

8003

8004

8005

001

002

000

08C

000

091

Hexcode Function

XROM Number

Number of functions in the FAT.

Address of ROM header.

Address of Y<>Z function.

The rest of the FAT is zeros since there are no more functions. Now that

this is done we can get down to the real business of writing the Y<>Z

routine.

Address

808D

808E

808F

8090

8091

8092

8093

Hexcode

09A

03E

03C

019

0OB8

10E

078

Mnemonic

"Z"

" _n
<

"Y"

READ 2(Y)

A=C ALL

READ 1(Z)

"Y<>Z"

Description

Last letter of function name. Has hex 080

added to its hexcode.

The rest of the name is the next 3

hexcodes.

Put the Y register into C. We may now

manipulate the contents of the Y register

or save them for later usage.

Save Y, which is in C, in A. This will

allow us to use the C register for another

purpose. The choice of register A is

arbitrary; any of the other 56-bit CPU

registers would do just as well.

Put the Z register into C. The old

contents of C, the Y register, are lost

from C. This is why we had to save them

-40-

elsewhere.

8094 0AS8 WRIT 2(Y) We shall now write the Z register out to

the Y register. We can do this since Z is

in the C register.

8095 0AE A<>C ALL We now bring back the original contents of

the Y register to C. You can only write

to RAM registers through the C register.

8096 068 WRIT 1(Z) Put the contents of the original Y

register out to the Z register.

8097 3EQ RTN Return.

In case you’re wondering, the letter behind the number in the read and write

instruction 1is the letter of the status register that corresponds to that

number. This is used since these instructions are usually used only on the

status registers. The letters would not be appropriate for any other part

of RAM.

THE CPU FLAGS

The 14 flags of the CPU should not be confused with the 56 User flags that

are in the calculator. Flags zero to seven are contained in the ST regis-

ter. This register may be zeroed. It may also be set equal to, or ex-

changed with, nybbles zero and one of the C register. These flags may be

set, cleared, and tested. Flags eight and nine have no special meaning.

Although they may be set, cleared, and tested, they are contained in a

special register (XST) which we cannot access except by instructions that

manipulate the individual flags. Flags 10, 11, 12, and 13 are given a

special meaning by the CPU. Otherwise they share the same characteristics

as flags eight and nine. The designations of these flags are given below.

-41-

Flag If Set

10 The User code program counter (contained in status register b) points

to a ROM program.

11 The RPN stack lift is enabled.

12 The User program pointer is in a private program.

13 A User code program is being run.

Now let’s write a program to show the use of some of these flags. The

program we will write is a "go to .END." program. This program will put

you at the top of the last program in User RAM. That is the one with the

.END. as its END. This is useful to avoid having to go through Catalog 1 to

get to the scratch area at the end of User program memory.

The strategy of this program 1is to execute the permanent .END. with no

pending return in the return stack, so that the program pointer will be set

to the top of the last program in User RAM. This is accomplished by forming

the address which points to the permanent .END., and placing it along with a

zeroed pending return in the status register b. CPU flag 13 is then set to

force the HP-41 to execute the .END. as a program instruction.

We now write the program to implement this procedure. It shall be called

GE. Here is the annotated listing:

IIGE"

Address Hexcode Mnemonic Description

8098 085 "E" Last letter of name. Hex 080 is added to

the hexcode for E.

8099 007 "G" First letter of name.

809A 378 READ 13(¢) Get the address of the .END. register. It

is in nybbles 0-2 of c.

809B 05A C=0M Zero the mantissa of register C. This is

nybbles 3-12. This clears the Ist return

so that the calculator will return control

-42-

809C

805D

809E

809F

80A0

80A1

01C

0DO0

0C4

2C8

328

3E0

R=3

LD@R 3

CLRF 10

SETF 13

WRIT 12(b)

RTN

to the keyboard when the .END. is

executed.

Set the active pointer to 3 so that the

required digit may be loaded into nybble

3.

Load a 3 into nybble 3 so that the first

byte of the .END. will be executed.

Clear flag 10 so that the calculator is

set to RAM.

Set flag 13 so the calculator thinks a

program is running, even if this routine

is executed from the keyboard. This will

allow us to execute the .END.

Write the address of the .END. to the b

register. This will put the program

pointer, which is in the last four nybbles

of status register b, at the first byte of

the .END.

Return.

Now that the routine is written the FAT must be updated. The first execu-

table instruction, Read 13(c), is at address 809A. So the update of the FAT

would be:

Address Hexcode Meaning

8000

8001

8002

8003

8004

8005

8006

8007

001

003

000

08C

000

091

000

09A

XROM number

This was increased to 3. This is the number of functions

in our sample ROM.

First ROM function. SKWID 1A header.

Address of Y<>Z function.

Address of GE function.

-43-

That’s what the FAT should now look like. These two functions we’ve just

created may be used in programs and from the keyboard just like any of the

functions that are built into the calculator. However, the MLDL box they

are in must be plugged into your calculator at the time they are executed or

you will get NONEXISTENT in the display.

-44-

JUMPS and JUMPING

Okay everyone, now it is time for you to put on your bunny suits (in Aus-

tralia you may substitute Kangaroo suits), as we are going to introduce jum-

ping. There are two kinds of jumps. For those of you who like to travel

light, there is the Jump No Carry (JNC). Or, if you like to bring along the

kitchen sink, there is the Jump on Carry (JC). The length of the jump may

be up to 63 (3F in hex) steps forward (+) or 64 (40 in hex) steps backwards

(-). The Jump on Carry instruction will only jump if the step preceding it

sets the carry bit. Otherwise, the Jump on Carry instruction will be

treated as if it were a NOP. The same is true for the Jump No Carry, except

that the carry bit must not be set for the jump to occur. If the carry bit

is set, the JNC instruction will be treated as a NOP. Table 4 shows the

hexcodes for the JC and JNC instructions.

--

SKWID practicing his jumps.

-45-

DIST

ANCE

01

03

05

07

09

0B

0D

OF

11

13

15

17

19

1B

1D

IF

21

23

25

27

29

2B

2D

2F

31

33

35

37

39

3B

3D

3F

INC

3FB

3EB

3DB

3CB

3BB

3AB

39B

38B

37B

36B

35B

34B

33B

32B

31B

30B

2FB

2EB

2DB

2CB

2BB

2AB

29B

28B

27B

26B

25B

24B

23B

22B

21B

20B

JC

3FF

3EF

3DF

3CF

3BF

3AF

39F

38F

37F

36F

35F

34F

33F

32F

31F

30F

2FF

2EF

2DF

2CF

2BF

2AF

29F

28F

27F

26F

25F

24F

23F

22F

21F

20F

INC

+

00B

01B

02B

03B

04B

05B

06B

07B

08B

09B

0AB

0BB

0CB

0DB

0OEB

OFB

10B

11B

12B

13B

14B

15B

16B

17B

18B

19B

1AB

1BB

I1CB

1DB

1EB

17F

JC

+

00F

OlF

02F

03F

04F

O5F

06F

07F

08F

09F

OAF

OBF

0CF

ODF

OEF

OFF

10F

11F

12F

13F

14F

15F

16F

17F

18F

19F

1AF

IBF

1CF

IDF

1EF

IFF

TABLE 4

-46-

DIST

ANCE

02

04

06

08

0A

0C

OE

10

12

14

16

18

1A

1C

1E

20

22

24

26

28

2A

2C

2E

30

32

34

36

38

3A

3C

3E

40

INC

3F3

3E3

3D3

3C3

3B3

3A3

393

383

373

363

353

343

333

323

313

303

2F3

2E3

2D3

2C3

2B3

2A3

293

283

273

263

253

243

233

223

213

203

JC

3F7

3E7

3D7

3C7

3B7

3A7

397

387

377

367

357

347

337

327

317

307

2F7

2E7

2D7

2C7

2B7

2A7

297

287

277

267

257

247

237

227

217

207

JNC JC

+ +

013 017

023 027

033 037

043 047

053 057

063 067

073 077

083 087

093 097

0A3 0A7

0B3 0B7

0C3 0C7

0D3 0D7

0E3 O0E7

OF3 O0F7

103 107

113 117

123 127

133 137

143 147

153 157

163 167

173 177

183 187

193 197

1A3 1A7

IB3 1B7

1C3 1C7

ID3 1D7

1E3 1E7

1F3 1F7

XXX XXX

To use Table 4 the jump distance must be known. This is the 2-digit hex

number listed under distance. Next, you must decide whether the jump is a

JNC or a JC. Then look down the appropriate column and use the ones with

the + for forward jumps and the columns with the - for backward jumps.

Now we will introduce a few miscellaneous instructions. A table of their

hex codes and mnemonics is given below.

ST=0 3C4 XQ>GO 020 N=C 070

CLRKEY 3C8 POWOFF 060 C=N 0BO

KEY 3CC SLCT P 0A0 C<>N 0FO0

R=R-1 3D4 SLCT Q O0EO LDI S&X 130

R=R+1 3DC 7P=Q 120 PUSH ADR 170

G=C 058 7LOWBAT 160 POP ADR 1BO

C=G 098 A=B=C=0 1A0Q GTO KEY 230

C<>G 0D8 GOTO ADR 1EO RAMSLCT 270

M=C 158 C=KEY 220 WRITE DATA 2F0

C=M 198 SETHEX 260 READ DATA 038

C<>M 1D8 SETDEC 2A0 FETCH S&X 330

T=ST 258 DSPOFF 2EO0 C=C OR A 370

ST=T 298 DSPTOG 320 C=C AND A 3B0

ST<>T 2D8 ?7C RTN 360 PRPH SLCT 3F0

ST=C 358 INC RTN 3A0 RTN 3EQ

C=ST 398 C<>ST 3D8

TABLE 5

Explanations on how most of these instructions operate follows.

Instruction Description

ST=0 Clears the ST register (flags 0 through 7).

CLRKEY Clears the KY register. Usually followed by ?KEY. If a key is

still down then the keyboard flag will be immediately reset.

-47-

KEY

R=R+1

XQ>GO

POWOFF

SLCT P

SLCT Q

P=Q

LOWBAT

A=B=C=0

If no key is being pressed the key flag will stay clear. An

example will be shown in the next program.

Sets the carry bit if there is anything in the KY register;

i.e., if a key has been pressed.

Decrements the active pointer by one.

Increments the active pointer by one.

Deletes the next return on the return stack and pushes the

the second becomes the

A 0000

other returns down one notch. i.e.

first return and the third becomes the second return.

is put in for the fourth return spot.

This instruction places the calculator into standby mode or

deep sleep depending on whether the display is on or off. If

the display is on then we go into standby mode, in which the

If the

display is off then the result is the same as if we turn the

calculator is on and just sitting there doing nothing.

calculator off using the ON button. This instruction must be

followed by the 000 instruction. The PC register is reset to

0000 and the CPU stops there waiting for a key to be pressed.

Selects register P as the active pointer. Does not change the

value of either of the pointer registers.

As above but selects the Q register.

Sets the carry bit if the values of the P and Q registers are

the same.

Sets the carry bit if the battery voltage is low.

Sets the A, B, and C registers equal to zero.

-48-

GOTO ADR

C=KEY

SETHEX

SETDEC

DSPOFF

DSPTOG

7C RTN

INC RTN

LDI S&X

PUSH ADR

POP ADR

Replaces the program counter (PC) register with nybbles three

through six of the C register.

Places the contents of the KY register into nybbles 3 and 4 of

the C register.

Puts the CPU into hexadecimal mode. All calculations are now

done using the digits 0 to F.

Puts the CPU into decimal mode. All calculations are done

using the digits 0 to 9. However, register exchanges may still

be done with hex numbers while in this mode.

Turns off the display.

Toggles the display between on and off. This switches it to

which ever state it was not in before the instruction was

executed.

Return if the carry bit was set by the preceding instruction.

Return if the carry bit was not set by the preceding

instruction.

This instruction places the hexcode of the next ROM word into

the S&X field of the C register.

Places nybbles 3 - 6 of the C register onto the subroutine

stack. All pending returns are moved up one. The C register

is not changed.

Takes the 1st return from the subroutine stack and places it at

digits 3 - 6 of the C register. All of the remaining returns

are moved down one and 0000 is placed into the fourth return

-49-

FETCH S&X

C=C AND A

PRPH SLCT

position on the stack.

Places the contents of the KY register into the last two

nybbles of the program counter (PC) register.

Uses the address in nybbles 3 - 6 of the C register to copy the

ROM word at that location into the S&X field of the C register.

Performs a logical OR of the A and C registers and puts the

answer in C. Looks at each bit position in both registers and

sets the corresponding bit in the C register result if it is

set in either the original C register or the A register.

Same as above except that both matching bits in the A and C

registers must be set in order for that bit to be set in the C

register. Neither of these functions disturb the A register.

Uses digits 1 and 0 of register C as the number of the peri-

pheral to select.

As an example, the program below is a counting program. It will count by

ones (in MCODE of course) from the moment the program is executed until a

key on the keyboard is pressed. We shall input the program to show the use

of some of the functions that are described above, and also to show how the

JC and JNC instructions work.

"COUNT"

Address Hexcode Mnemonic Description

"T" Last letter of the name of the routine

COUNT. Hex 080 is added to the hex code

for T.

"N" The next four words are the rest of the

name.

-50-

80A4

80AS5

80A6

80A7

80AS8

80A9

80AA

80AB

80AC

80AD

80AE

80AF

80BO

80B1

80B2

80B3

80B4

015

O00F

003

2A0

04E

23A

3CC

3F3

130

009

35C

11A

342

027

266

3FA

3E3

-

"0
o

SETDEC

C=0 ALL

C=C+1 M

7KEY

JNC -02

LDI S&X

HEX: 009

R= 12

A=C M
7A#£0 @R

JC +04

C=C-1 S&X

LSHFA M
INC -04

Set the CPU so that counting will be in

decimal mode.

Zero C so that counting will start at

zero.

Add one to the Mantissa of C. This is the

start of the counting loop.

If a key is pressed the carry bit will be

set, and the JNC instruction will act as a

NOP. If no key is pressed, the carry will

not be set and we jump back to the

beginning of the loop.

The largest exponent a 10 digit number may

may have is nine. This is loaded into the

exponent field. The number that we

counted up to is right justified in the

mantissa of C. If this number is not 10

digits long, we will decrement the expo-

nent.

Set the active pointer to the leftmost

nybble of the mantissa. This allows us

to check if this digit is zero. If it is,

we shift the whole mantissa left one and

subtract one from the exponent. If it is

not zero, the carry will be set and we

jump out (JC) to the rest of the routine.

check for

zeros, that 1is, the zeros in the leftmost

The reason we leading

nybbles of the mantissa, is because the

number we counted up to is right justified

in the mantissa of C. We shift this left

to remove these leading zeros, if

necessary. If there are leading zeros, we

-51-

loop around to check for more leading

Zeros again.

80B5 3C8 CLRKEY Loop to check if the key that stopped the

80B6 3CC 7«KEY counting has been released. If it is still

80B7 3F7 JC -02 down, the carry will be set during the

?7KEY step. If it is not down, the ?KEY

will not set the carry, and the JC

instruction will not be executed.

80B8 0BA A<>C M Get back the mantissa and write out the

80B9 0ES8 WRIT 3(X) number to X. The exponent is in C so we

only need to retrieve the mantissa from A.

80BA 3E0 RTN Return.

To update the FAT you should increase the number at address 8001 from 003 to

004. The rest of the FAT update looks like the following:

Address Hexcode Description

8001 004 Number of functions in our sample ROM.

8008 000 First word of the address of the COUNT function.

8009 0A7 Second word of the FAT Address for COUNT.

Running this program on one calculator for 60 seconds produced an answer of

129,686. Compare this with 1,056 for a User code version of the same

program and the MCODE version is about 120 times as fast. This program

really shows you what kind of speed advantage can be enjoyed using MCODE.

We will now write another program, using jumps, that introduces a few more

instructions to your vocabulary. We shall introduce the RAMSLCT, WRITE

DATA, and READ DATA instructions.

The RAMSLCT instruction uses the S&X field of register C for the number of

the RAM register to be selected. The number in the S&X field of C is

interpreted as a hex number, not a decimal number. First, some explanation

on how the User RAM is set up from the CPU’s point of view. RAM is divided

-52-

into 16 register blocks, or chips, as they are known. The addresses of chip

xy are xy0 to xyF; xy may be from 00 to 3F (0 to 63 in decimal). Each of

these chips may only be accessed if a register in that chip has been

selected using the RAMSLCT instruction. The RAMSLCT instruction selects

both a chip and a register within that chip. If S&X of C is xyz, RAMSLCT

selects chip xy and register xyz. The 15 read/write instructions introduced

ecarlier will only operate on a register within the selected chip. In addi-

tion, the read and write instructions change the RAMSLCT pointer to the

designated register within the selected chip. Thus if chip xy is selected,

READ n or WRIT n will address register xyn and change the RAMSLCT pointer to

register xyn. Here’s an example to clarify this mess.

Hexcode Mnemonic Description

130 LDI S&X Load hex 0CO into C register S&X field. The RAMSLCT

0CO0 HEX: 0CO0 instruction will then select this register (number

270 RAMSLCT 192). This is register zero of the selected chip

(the last digit in the hex number is the register

number in the chip that is selected).

OF8 READ 3(X) Reads the fourth register in this chip (decimal 195)

into the C register. The selected RAM register is

now 0C3. This would be the same if we used a write

instead of a read.

Sometimes we don’t know exactly where in a RAM chip we will be, and we can’t

have the RAMSLCT pointer being moved on us. How do we read or write to the

selected RAM register without moving the RAMSLCT pointer? We use the READ

DATA and WRITE DATA instructions. These instructions read and write data

between the C register and RAM without modifying the RAMSLCT pointer.

The READ DATA instruction is sometimes listed as READ 0 by some disassem-

blers. THIS IS INCORRECT! There is no such thing as a READ 0 instruction.

This was a mistake made by some of the early pioneers in the MCODE field,

working without factory documentation that appeared later.

-53-

Disassemblers typically place a letter after the register number of each

read/write instruction. These letters correspond to the status registers,

and only apply if chip 0 is selected.

Next we will write a combination Alpha-to-Memory and Memory-to-Alpha

routine. These programs will take the four registers that comprise the

Alpha register and put them into User data registers. This data can not be

safely recalled from the data registers using the RCL function.

These routines are good for storing the contents of Alpha and then retriev-

ing the Alpha register unaltered. The routine will use four data registers

starting with data register 0. The next 3 data registers will also be used.

Fill the Alpha register with the desired characters. You now can execute

the AM (Alpha to Memory) function. Next, clear the Alpha register. Then

execute the MA (Memory to Alpha) function. The old Alpha data reappears.

That was pretty fast wasn’t it? One other note: this routine assumes that

you have a HP-41CX, HP-41CV, or a HP-41C with a quad memory module. Now

here’s the routine:

"AM & MA"

Address Hexcode Mnemonic Description

80BB 081 "A" Second letter of the Memory to Alpha name.

80BC 00D "M" First letter of the name.

80BD 248 SETF 9 We set this flag to tell which routine we

are executing. If it is set we are using

MA. If it is clear we are using AM.

80BE 023 JNC +04 Jump to READ 3(X) instruction. We do this

so that the AM name is not executed as

MCODE instructions.

80BF 08D "M" Name for Alpha to Memory routine.

80C0 001 "A"

80C1 244 CLRF 9 Clearing flag nine means we are in AM

routine (see address 80BD).

-54-

80C2

80C3

80C4

80C5

80C6

80C7

80C8

80C9

80CA

80CB

80CC

80CD

80CE

80CF

80D0

80D1

80D2

378

03C

106

130

1FD

306

027

04E

OE8

3E0

39C

130

005

24C

013

0A6

270

READ 13(c)

RCR 3

A=C S&X

LDI S&X

HEX: 1FD

7A<C S&X

JC +04

C=0 ALL

WRIT 3(X)

RTN

R=10

LDI S&X

HEX: 005

?7FSET 9

JNC +02

A<>C S&X

RAMSLCT

Get the absolute address of data register

zero. It 1s in nybbles 3, 4, and 5 of

status register c.

Rotate the address of data register zero

into the S&X field of the C register.

Save the address of data register zero in

A. Load the highest absolute address that

can be used without overflowing main

memory.

If A is less than C, then the registers

wanted will not overflow into extended

memory. The carry bit will be set and we

will jump out. Otherwise we will zero the

C register and write it out to X, so X

will be zero if we error. We then return

to the calling program without finishing

the routine.

Set active pointer to zero for use as a

counter.

Load the absolute address of the start of

the Alpha register. This is the M

register. As you remember, the other

three registers that comprise the Alpha

register are numbered 6, 7, and 8 (for N,

O, and P).

Check which of the two routines is being

run. Right now the address pointer to the

the Alpha registers is in C and the data

register pointer is in A. If we are run-

ning the MA routine then we want to

reverse this and not jump over the A<>C

S&X instruction.

C after this will be the one from which

The register pointer in

the data is transferred.

Select the RAM register of the pointer in

-55-

C. This is the beginning of the loop.

80D3 226 C=C+1 S&X Increment the register pointer of the RAM

register from which the data is being

transferred.

80D4 0E6 C<>B S&X Save the RAM register pointer in B.

80D5 038 READ DATA Read the selected RAM register into C.

80D6 0AE A<>C ALL Exchange the data with the other RAM

pointer.

80D7 270 RAMSLCT Select the other set of RAM registers.

80D8 0AE A<>C ALL Get the data back and put the second RAM

pointer back into A.

80D9 2F0 WRITE DATA Write out the data to the selected regis-

ter.

80DA 166 A=A+1 S&X Increment the second RAM pointer.

80DB 3DC R=R+1 Increment the active pointer.

80DC 0E6 C<>B S&X Put the first RAM pointer back into C.

80DD 054 7R= 4 Have we been through the loop 4 times?

80DE 360 7C RTN Remember there are 4 registers that make

80DF 39B JNC -0D up the Alpha register. If so, the carry

will be set and we return. Otherwise,

jump back to the beginning of the loop.

Well, that’s the end of the routine. Hope you liked it and learned how the

RAM registers may be selected and written to. For these routines there are

2 entries in the FAT. One for the MA routine and one for the AM routine.

It does not matter that the two routines are combined. The names must still

have an address in the FAT in order to show up in Catalog 2. The entries

into the FAT are shown below. The number at address 8001 should be in-

creased by 2 from 004 to 006 since we are adding two routines to the FAT.

Address Hexcode Description

8001 006 This is the number of functions in our sample ROM. Notice

it has been increased by 2 since the last time we modified

the FAT since we have two new routines.

-56-

800A 000 First word of the address of the MA routine.

800B 0BD Second word of the address of the MA routine.

800C 000 First word of the address of the AM routine.

800D 0Cl1 Second word of the address of the AM routine.

Before we demonstrate the use of any more instructions, we need to introduce

a new subject area which will make our programming easier and far more

versatile.

ABSOLUTE EXECUTEs AND GOTOs

There are 4 different types of instructions in this group. If the last two

bits of the first word of an instruction are 0l then they fall into this

category. These instructions all use two words to form one instruction.

They differ based on how the last two bits in the second word are set. The

4 types of instructions are:

Instruction Mnemonic How it Works

INC XQ ---- This is the No Carry EXecute. This instruction will

only jump to the specified address if the carry bit

is not set when the instruction is executed. If

the carry bit is set the instruction is treated as a

NOP.

7C XQ ---- This is the EXecute on Carry. This instruction is

the same as the one above except the carry must be

set for it to jump.

INC GO ---- This is the No Carry GOTO instruction. It will go

to the specified address only if the carry bit is

not set when the instruction is executed. If the

carry is set it is treated as a NOP instruction.

7C GO ---- Here is the GOTO on Carry. This is the opposite of

the above instruction. If the carry bit is set the

instruction will go to the specified address.

-57-

Don’t forget, the Carry bit is cleared by any instruction. To use a jump on

Carry, the Carry bit must be set by the instruction immediately preceding

the jump instruction.

The dash after each instruction is the address you want to GOTO/EXECUTE,

when the instruction is displayed as a mnemonic.

An EXECUTE 1is a subroutine call: it loads a return address onto the

subroutine return stack. A GOTO is merely an exit to a specified address.

If the first word that an EXECUTE branches to is the NOP 000, then that

instruction produces an immediate return. This feature of the EXECUTE

instructions allows calls to possibly nonexistent ROM:s.

Now we will show you how these 4 instructions are put into hexcodes. The way

the CPU tells that the instruction is either a GOTO or an EXECUTE is by the

last two bits in the first word. If these are set to 01 the next word is

interpreted as the second half of a GOTO or EXECUTE instruction. The way it

differentiates between these is by the last two bits of the second word. A

table for the interpretation of these two bits is given below.

Instruction VYalue of bit 1 0

from 2nd word

INC XQ 0 0
7C XQ 0 1

INC GO 1 0

2C GO 11

Note that the 0 bit corresponds to the setting of the Carry flag (1 for

Carry set, 0 for Carry clear).

The numbers are the values of the last two bits of the second word of the

instruction, the two least significant bits. Now we will show you how the

rest of the instruction is formatted.

-58-

Instruction Bit number 9 8 76 5432 10

Value of the four bits 3 2

INC XQ 8432 first word 0011 0010 01

Value of the four bits 8 4

second word 1 000 0100 00

You will notice that after taking away the 0 and 1 bits we are left with the

digits from the address that we want in the remaining 4 nybbles. The first

hex digit of the address is in the 4 most significant bits (6 to 9) of the

second word. The second digit of the address is in the next 4 bits (2 to 5)

of the second word. Then we jump up to bits 6 to 9 of the first word for

the third digit of the address. That leaves bits 2 through 5 of the first

word for the last digit in the address.

Again, notice that bit 1 is zero and bit 0 is equal to one in the first

word. This signals to the CPU that the instruction is a GOTO/EXECUTE in-

struction. Since both bits 0 and 1 are zero in the second word, the CPU

knows that it is a ?NC XQ instruction. For a ?C XQ to the same location

only bit zero of the second word would have to be changed, since the address

information is coded in the same way for all 4 types of instructions. In

order to make the input of these instructions into your MLDL box easier, it

is recommended that you use an assembler to figure out the details of the

hexcode. This way, all you have to do is input the mnemonic, such as ?C GO

14E2. The assembler program does the rest.

These instructions are usually not used to EXECUTE or GOTO another part of a

routine that you are writing in MCODE. This is because if we put a ?2NC XQ

8432 in our example ROM page and then move the page to another port, the

code we wish to execute will no longer be at address 8432. However, the

EXECUTE may still end up going there, sometimes with fatal results. There

is another kind of EXECUTE and GOTO for use within a 4K page, which will be

discussed later.

-59-

The absolute EXECUTEs and GOTOs are used for accessing code in the

mainframe ROMs. These are the 12K of ROM that contain the code for con-

trolling the User portion of the calculator. They contain many useful

routines that may be used as subroutines in our programs.

If you remember, the MA and AM routines that we programmed earlier could

only save data in registers 0 to 3. Now we shall rewrite them to use some

entry points in the mainframe ROMs so that you can specify the first data

register to be used by entering its number in the X register.

We shall use two entry points, one to convert the number in X to a

hexadecimal number in the S&X field of C, and another entry point for the

NONEXISTENT error routine in case the registers that would be used are not

part of the calculator’s RAM memory. We still assume that you have a 41CX,

41CV, or 41C. So let’s rewrite the routine.

"AM & MA" revised

Address Hexcode Mnemonic Description

80BB 081 "A" Name for the MA routine. Notice that the

80BC 00D "M" address of the first executable instruc-

80BD 248 SETF 9 tion for each routine has not changed.

80BE 023 JNC +04 The first seven instructions are exactly

the same.

80BF 08D "M"

80CO0 001 "A"

80C1 244 CLRF 9

80C2 OF8 READ 3(X)

80C3 38D INC XQ This execute instruction accesses a sub-

80C4 008 02E3 routine that takes the number in C and

[BCDBIN] converts the number to its hexadecimal

equivalent in the S&X field of C. For

example, the conversion for 999 decimal

-60-

would be 3E7. This mainframe entry point

is called BCDBIN (BCD to binary) in HP’s

annotated VASM listings for the operating

system of the 41.

80C5 106 A=C S&X We save the result in A and get the

80C6 378 READ 13 absolute address of data register zero

80C7 03C RCR 3 from the c register and rotate it into the

80C8 146 A=A+C S&X S&X field of C. We then add these two to

get the absolute address of the first data

register to which we will write.

80C9 130 LDI S&X Load the largest absolute address that can

80CA 1FD HEX: 1FD be used without overflowing main memory

when we store data in the following 3

registers.

80CB 306 7A<C S&X If A is less than C, the registers used

80CC 381 INC GO by the routine will not be NONEXISTENT,so

80CD 00A 02EO the carry will be set and the ?NC GO

[ERRNE] instruction will be ignored. If A is

greater than or equal to C, we go to the

entry point at 02EQ, called ERRNE (error -

NONEXISTENT), which is the NONEXIS-

TENT error message routine.

The instructions from 80CC to 80DF have been moved down to 80CE through

80DF. This routine is much more versatile. In order to use it you just

place the number of the data register where you want to start saving data

into X, and place the Alpha characters to be saved into Alpha. Then just

execute the revised routine, and bingo, it’s all done.

THE NORMAL FUNCTION RETURN

Before a function is executed, a special return address called the Normal

Function Return is loaded into the CPU subroutine return stack; this is

address 00F0. The code at this address does the necessary processing that

is required after any function is executed. If you use all four levels of

61-

the subroutine return stack, this address will have been pushed off and you

will have to end your program by exiting to address O0F0. Otherwise, the

pending return will be 0000 if you try to finish with a RTN, and you will

end up at that address of the mainframe. This sends the 41 directly into

standby mode whether you should be there or not, and fails to do the

necessary processing that follows function execution. When this happens,

the calculator appears to have crashed, because the display freezes instead

of reverting to a default display such as the X-register. However, unlike

an ordinary crash, the calculator will respond to keystrokes, and you can

then conclude that your routine has not exited through the Normal Function

Return. You should place an ?NC GO 00F0 as the ending instruction of your

program instead of a return. If the calculator does not respond to

keystrokes, then you are in an infinite loop and something else is wrong

with your program.

Another interesting routine that we have provided for your programming

pleasure is an Invert Flag routine. This routine takes the number in X to

be the flag that you wish to invert. Invert means that if the flag was set

the routine will clear it; and if the flag was clear, the routine will set

it. The routine may be used with all 56 User flags (0 to 55).

This routine utilizes three mainframe ROM entry points. These are: BCDBIN

at address 02E3 (converts a decimal number into hexidecimal in S&X of C),

the clear flag routine at address 164D, and the set flag routine at address

164A. This program also introduces some other interesting tricks. It uses

the C=C+C ALL instruction to shift the C register left by only one bit at a

time. The other instruction that will be introduced is the C=C AND A

instruction. Its use will be explained with the routine.

IIIF"

Address Hexcode Mnemonic Description

80E2 086 "F" Name of routine.

80E3 009 "I"

-62-

80E4

80ES5

80E6

80E7

80E8

80E9

80EA

80EB

80EC

80ED

80EE

80EF

80F0

80F1

80F2

80F3

80F4

80F5

80F6

80F7

80F8

80F9

0F8

38D

008

10E

130

037

0AE

1C6

381

00B

04E

226

1A6

OlF

1EE

3EB

OEE

3B8

10E

0CE

3B0

2EE

READ 3(X)

INC XQ

02E3

[BCDBIN]

A=C ALL

LDI S&X

HEX: 037

A<>C ALL

A=A-C S&X

?7C GO

02EO0

C=0 ALL

C=C+1 S&X

A=A-1 S&X

JC +03

C=C+C ALL

JNC -03

C<>B ALL

READ 14(d)

A=C ALL

C=B ALL

C=C AND A

7C#0 ALL

Get the flag number from the X register

and convert it to binary in the S&X field

of C.

the decimal number that is in X (46

decimal would be 02E in hex).

Save the answer in A. Load S&X of C with

the largest value the number may have (55

This is the hex representation of

decimal) because there are only flags 0

to 55 and for numbers over 55 the flag is

NONEXISTENT. Exchange the two numbers

and then subtract them. If the carry is

set, there was an underflow during the

subtraction and the number in X was

greater than 55. This causes us to go to

the NONEXISTENT error routine at 02EOQ in

ROMs.

continue on with the routine.

the mainframe Otherwise, we

We now have 55 minus the original flag

number in S&X of A. We zero C and then

add one to it. This sets only the least

significant bit of register C. Then one

is subtracted from S&X of A. This serves

as a counter for the number of times we

must go through the bit shifting loop. If

we have an underflow (0 minus 1) then the

carry will be set and we jump out of the

loop. The next step shifts the bit in C

one to the left and the following step

jumps back to the start of the loop.

In order to use the set flag and clear

flag entry points you need a mask with the

bit set corresponding to the flag that you

want to manipulate. This mask must be put

into B. Register A must contain the flag

register, which is register d of the RAM

-63-

80FA 135 7C GO status registers. These conditions are

80FB 05B 164D met and then the mask is put back into C.

[XCF] We next AND it with the flag register

80FC 129 INC GO which is now in A. If the bit in the flag

80FD 05A 164A register that corresponds to the bit set

[XSF] in the mask is also set, then this bit

will be set. All other bits in the mask

are 0 so the answer when these are AND’ed

will always be 0. If the corresponding

bit is not set in A, then C will be

zeroed. We then check whether or not C is

0. If not, the carry will be set and we

want to go to entry point XCF (execute

CF), the clear flag routine (164D). If C

is 0 the flag was clear and we want to set

it; so, we go to XSF (execute SF), the set

flag routine (164A). The routine returns

through one of the mainframe flag rou-

tines.

Remember to update the FAT. We now have seven functions. The address of

the first executable instruction in this routine is at 80EA4.

The next routine has a pair of functions HP should have built as standard

functions into the calculator. These are the FS?S and FC?S functions.

These functions are analogous to the FS?C and FC?C functions built into the

calculator. They leave the specified flag set and check to see whether the

test is true or not. If it is not true, one step is skipped in a running

program. A YES or NO will appear in the display if they are executed from

the keyboard.

We have another one of those handy entry points to help in these functions.

The only difference is that our routines take the flag number from X, while

the HP routines prompt for the flag number. One advantage of our routines

is that they work on all 56 flags. HP’s only work for flags 0 to 29. These

-64-

programs use the FS? and FC? routines in the mainframe ROMs. They test the

flag and automatically skip a step in a program if the test is false. They

share a lot of code with the IF routine as well.

ning of these two routines as an exercise for you to do.

takes a total of 60 words.

the FS?S and FC?S routines.

Address Hexcode Mnemonic

80FE

80FF

8100

8101

8102

8103

8104

8105

8106

8107

8108

8109

810A

810B

810C

093

03F

013

006

244

033

093

03F

003

006

248

OF8

38D

008

106

ngn

now

g

"

CLRF 9

JNC +06

g

now

nen

nEn

SETF 9

READ 3(X)

INC XQ

02E3

[BCDBIN]

A=C S&X

See if you can match this.

We will leave the combi-

The combination

For now, here are

"FS?S & FC?S"

Description

Name for the FS?S routine.

This flag is used to tell which routine is

being executed. Clear is the FS?S routine

and with flag nine set the FC?S routine as

being executed. This flag is used later

in the routine to figure out which routine

was executed.

Jump over the FC?S name to the READ 3(X)

instruction.

Name for the FC?S routine.

See the description for the CLRF 9

instruction.

Get the flag number from the X register.

Convert the flag number to hex in S&X of

C.

Save this in A. Then load the largest

-65-

810D

810E

810F

8110

8111

8112

8113

8114

8115

8116

8117

8118

8119

811A

811B

811C

811D

811E

811F

8120

8121

8122

8123

130

037

0AE

1C6

381

00B

04E

226

1A6

O1F

1EE

3EB

10E

OEE

3B8

070

370

3A8

0BO

10E

24C

169

047

LDI S&X

HEX: 037

A<>C ALL

A=A-C S&X

?2C GO

02E0

[ERRNE]

C=0 ALL

C=C+1 S&X

A=A-1 S&X

JC +03

C=C+C ALL

JNC -03

A=C ALL

C<>B ALL

READ 14(d)

N=C

C=COR A

WRIT 14(d)

C=N

A=C ALL

?FSET 9

?7C GO

115A

flag number (55) into S&X of C.

Exchange the number of the flag to be

possible

tested and the highest possible flag num-

If the

underflow

ber. These are then subtracted.

carry is set, we will have an

since the flag number to be tested is

greater than 55 (037 hex) and we will go

to the NONEXISTENT routine. Otherwise,

we have the number of times we wish to go

through the bit shifting loop in the S&X

field of A. We now have a counter for the

number of times we wish to move the bit in

the mask over from the rightmost position.

We first zero C and set the rightmost bit

using the C=C+1 instruction.

This is the mask making loop. We want to

set the bit that corresponds to the number

in X. If A is zero (55 minus 55), then an

underflow will occur and the carry will be

set and we jump out of the loop. If

there is no underflow, we shift the bit

left by one and jump back to the start of

the loop to try again.

Save the mask in A. Then put it into B

for later use by the mainframe routines.

Get the flag register. We save this in N

for later use.

are ORed so that the mask bit will be set

This is then writ-

The flag register and mask

in the flag register.

ten out to the flag register.

Get back the original flag register con-

tents and place them into A for use with

the mainframe routines. Check to see

which routine is being executed. These

routines require that the flag register is

-66-

[FC?] in A and that the mask is in B upon entry

8124 115 INC GO to them. If the carry is set we GOTO the

8125 05A 1645 FC? routine (115A). Otherwise we GOTO the

[XFS?] XFS? (eXecute FS?) entry point (1645).

The programs return through these main-

frame routines.

Don’t forget to update the FAT. These two programs are combined into one.

But we still need two entries in the FAT to be able to access both of the

routines. Here is what the FAT should look like.

Address Hexcode Description

8010 001 Since the third digit from the right of the address of the

FS?S routine is not zero we have to put the number of this

digit into the rightmost digit of the first word of the

two word FAT entry (see page 20). The starting address

for this routine is 8§102.

8011 002 The last two digits of this word are the last two digits

of the address of the FS?S routine. This is no different

than the entries we did before.

8012 001 The purpose of this word is the same as the one at address

8010 except that the second word of the two word FAT set

will be different. It will be the starting address of the

FC?S routine.

8013 008 These are the two rightmost digits of the first executable

instruction in the FC?S routine.

Remember to update the word at address 8001. This tells the calculator the

number of entries in the FAT. It is now 009.

The next routine uses an entry point called GENNUM (generate number) in the

mainframe ROMs to decode a 3 digit hex number into decimal. This entry

point is at address 05E8 in the mainframe. This routine takes a binary

number in the S&X field of the A register and converts it to a decimal

-67-

number. The answer ends up in the mantissa of the A register. However,

things are never simple and this routine is no exception. It does not place

an exponent on the decimal number, and in addition leaves garbage in the

rest of A. Since the mainframe routine assumes that the display is selec-

ted, a nonexistent chip must be selected in order to keep the mainframe

routine from writing to RAM registers. The number of digits output by the

routine can be from 1 to 4. In order to guarantee a fixed number of output

digits, a number from 1 to 4 is placed in the mantissa sign of A as an input

to the routine. We shall use the number 4 to provide a 4-digit result

(possibly with leading zeros). Basically, that 1is all there is to the

routine; it is called BIN-BCD (binary to binary coded decimal).

-68-

Address

8126

8127

8128

8129

812A

812B

812C

812D

812E

812F

8130

8131

8132

8133

8134

8135

8136

8137

8138

8139

813A

Hexcode Mnemonic

084

003

002

02D

00E

009

002

OF8

106

130

010

270

2DC

110

11E

3A1

014

0AE

11C

04A

270

"D"

"C"

"B"

"N"

"I"

"B"

READ 3(X)

A=C S&X

LDI S&X

HEX: 010

RAMSLCT

R= 13

LD@R 4

A=C MS

INC XQ

05ES8

[GENNUM]

A<>C ALL

R= 8

C=0 R«

RAMSLCT

"BIN-BCD"

Description

Last letter of the routine name with hex

080 added to its hexcode.

The next six words are the rest of the

routine name.

Get the number to be decoded from the X

register.

Put the number into the A register.

Load the address of a nonexistent RAM chip

into the S&X field and RAMSLCT it.

Set the pointer to the mantissa sign so

that a 4 may be loaded. This number will

be put into the A register. The mainframe

routine uses this number to set the number

of output digits. If the number output is

not 4 digits, leading zeros are inserted.

Execute the mainframe routine to do most

of the dirty work. The result is in the

mantissa of A.

Put the answer into C. Set the pointer to

8. The digit of the

mantissa of the answer will be in nybble

least significant

9. Zero register C from digit 8, the

digit pointed to by the pointer, to digit

0.

Select the RAM status registers, chip O.

-69-

813B

813C

813D

813E

813F

8140

8141

8142

8143

8144

8145

8146

8147

8148

8149

39C

0DO0

010

0AE

342

027

3FA

1A6

3E3

0AE

2FA

017

04E

OES8

3EOQ

R=0

LD@R 3

LD@R 0

A<>C ALL

7A#0 @R

JC +04

LSHFA M

A=A-1 S&X

JNC -04

A<>C ALL

C40 M

JC +02

C=0 ALL

WRIT 3(X)

RTN

The S&X field of C was zeroed by the

previous instruction.

Set the pointer equal to 0 so that we may

load in the exponent. Remember the main-

frame routine does not provide this. The

possible is 3. Fourlargest exponent

decimal digits are i.jkl * 103, The man-

tissa sign is then zeroed because garbage

is left there by the routine. Remember

that LD@R decrements the pointer by one.

After loading the value 3 in nybble zero,

we wrapped back around to nybble 13, the

mantissa sign digit.

Put everything back into A. Check to sece

if there are any leading zeros in the

mantissa of A. If there are no leading

zeros, jump out (the carry will be set).

Otherwise, we can shift out any leading

zeros 1in the mantissa (nybble 12 will be

zero) using the LSHFA M instruction. We

decrement the exponent by one since there

is one less digit in the mantissa than

before. We loop around again to check

for more leading zeros in the mantissa.

Put the final answer into the C register.

Check to see if the mantissa is zero. If

If not

zero, the carry will be set and we jump

to the WRIT 3(X) instruction and return.

If the mantissa 1is zero, then zero the

it is the exponent will be FFF.

whole C register, write it out to X, and

return.

Don’t forget to update the FAT. We now have ten functions. The hexcode at

address 8001 would be 00A (ten in hex), not 010 (which is sixteen).

-70-

The way you may use the above routine, in a program or from the keyboard, is

to put the number you want to decode into X. The last three nybbles of

whatever is in X will be decoded and placed into X. For example, if the

number in X is 987234.92 the BIN-BCD routine will give an answer of 5. This

is because the exponent of this number is 5 and the exponent sign is zero.

The S&X field of X upon entry would be 005 in hex.

However, the real use of this routine is as a subroutine to decode binary

numbers that we get as results in MCODE routines that we write. Our next

routine is a Free Register Finder routine. It finds the number of empty

registers below the permanent .END.. This result is the same number you see

after you key GTO .. in program mode. The routine is very short (only 3

words long) and shows the power of MCODE. In particular, it illustrates how

useful the BIN-BCD routine can be.

npon

Address Hexcode Mnemonic Description

814A OBF " Name

814B 006 "F"

814C 285 INC XQ This routine in the mainframe calculates

814D 014 05A1 the number of free registers left (MEMory

[MEMLFT] LeFT). No inputs are nceded. The answer

is given in binary form in the S&X field

of C.

814E 303 JNC -20 This jump goes back to the A=C S&X in-

struction at address 812E of the BIN-BCD

routine. This routine will decode the

contents of the S&X field of C and put the

answer into the X register.

-71-

Many of the outputs from routines in the mainframe ROMs are in binary

format. We need this routine, or one like it, to decode the binary form to

decimal so we can output it to the X register for use in our programs.

Don’t forget to update the FAT. We now have 11 functions in our sample ROM.

Now, what about taking decimal numbers from the X register and converting

them to binary? This can be done in 2 ways. The easiest way, as we have

seen is to execute the routine in the mainframe ROMs at address 02E3. But

what if we want to code a number greater than 999 into the S&X field of X?

After all, 3 hex digits may be a number as large as 4,095 (FFF). To do so

we must write our own routine to decode numbers greater than 999. This

routine will decode numbers from 0 to 9,999. For numbers greater than 4,095

the answer will be the remainder of the original number divided by 4,096.

This conversion routine is called BCD-BIN.

"BCD-BIN"

Address Hexcode Mnemonic Description

814F 08E "N" Last letter of the name. Notice that hex

080 is added to the hexcode for "N".

8150 009 "T" Now come the next six letters.

8151 002 "B"

8152 02D "

8153 004 "D"

8154 003 "C"

8155 002 "B"

8156 OF8 READ 3(X) Get the decimal number to be converted and

put it into C.

8157 10E A=C ALL Save the integer number in A for later

8158 1BE A=A-1 MS use. Check for alpha data. If the number

8159 IBE A=A-1 MS is alpha data, then the mantissa sign will

815A 389 7C GO be 1. By subtracting 1 twice, we first

815B 053 14E2 hit zero then create an underflow (sub-

-72-

815C

815D

815E

815F

8160

8161

8162

8163

8164

8165

8166

8167

8168

8169

816A

816B

816C

130

004

306

289

002

266

0AE

366

023

38D

008

07B

27C

11A

05A

3E1

008

[ERRAD]

LDI S&X

HEX: 004

7A<C S&X

INC GO

00A2

[ERROF]

C=C-1 S&X

A<>C ALL

7A#C S&X

JNC +04

INC XQ

02E3

[BCDBIN]

JNC +0F

RCR 9

A=C M

C=0 M

INC XQ
02F8

[GOTINT)]

tract 1 from 0) which will set the carry

if the mantissa sign is 1. The GOTO is to

the ALPHA DATA error message (ERRAD =

ERRor - Alpha Data) only if the carry is

set.

Load the exponent that the number cannot

be greater than or equal to (exponent for

10,000). Then

exponent of the decimal number 1is less

check to see if the

than this number. If it 1is less, the

carry will be set and the next instruction

will not be executed. However, if the

carry is not set, the instruction will be

executed. This instruction is a GOTO to

the OUT OF RANGE error message (ERROF =

ERRor - OverFlow).

Now we check if the number is less than

If the

exponents are not equal (3) then the

1,000 (the exponent is 2 or less).

number is less than 1,000 (the exponent

will be 0, 1, or 2).

set and the JNC is treated as a NOP.

If the carry is set we end up here. We

BCDBIN

mainframe and then jump to the spot in our

The carry will be

execute the routine 1in the

routine that clears the rest of C and

writes it to X.

If we got this far we know that the number

is between 1,000 and 9,999; ie., it is 4

digits long. The mainframe subroutine

will only take up to 3 digits. So we peel

off the 1000’s digit and save it in the

last nybble of the mantissa of A by ro-

ating it to nybble three of C and then

saving it in A. We must then zero the

-73-

816D

816E

816F

8170

8171

8172

8173

8174

8175

8176

8177

8178

8179

Make sure that you update the FAT. There are now 12 functions.

106

01C

130

3E8

1A2

146

1A2

3F3

0A6

05E

05A

OES8

3EO

A=C S&X

R= 3

LDI S&X

HEX: 3E8

A=A-1 @R
A=A+C S&X

A=A-1 @R
JNC -02

A<>C S&X

C=0 MS

C=0 M

WRIT 3(X)

RTN

mantissa of C because the subroutine at

The last three digits

of the original decimal number are now in

the S&X field of C. The GOTINT subroutine

then converts them to binary in the S&X

field of C.

Save the binary equivalent of the last 3

digits in A. The number of 1000’s to add

to this number is in nybble 3 of A. We

load 1,000 into the S&X of C. We subtract

1 from the 1000’s counter and add 1,000 to

the answer in A. If there

1,000’s to add, the carry will be set

(there will be an underflow) and we will

If the

around to

02F8 requires this.

ar¢ no more

not jump back to add more 1,000’s.

carry is not set we will loop

add more 1000’s until it does get set. We

then place the answer in the S&X of C so

that it may be written out to X. The

mantissa and its sign are cleared to get

rid of extraneous digits. We then write

the answer out to X so we it may be used

in some way by one of our User code pro-

grams.

The last

entry in the FAT should look like this:

Address Hexcode Description

8018

8019

001

056

The first word of the FAT entry for BCD-BIN. The number

is one because we have now reached the portion of RAM

where there is not a zero in the third digit from the

right in the starting address of the routine.

This is the 2 least significant digits of the address.

-74-

Now let us go on to another subject: how to call a routine as a subroutine

from another program in our example ROM.

RELATIVE EXECUTEs and GOTOs

In order to call any program as a subroutine from another MCODE routine in

our example ROM, you must use a 3-word execute instruction. These

instructions are known as relative executes. This is because it does not

matter in which page the MCODE routine resides; the execute statement will

always jump the same number of steps ahead or back and then return. The

absolute executes that we described before always jumped to the same place

regardless of the location of these instructions. These relative execute’s

and goto’s are usually referred to as Port Dependent Execute’s and Goto’s.

A drawback to this type of execute is that the C register is used by the

routine that computes the branching address. Now for an explanation on how

these three words are coded. The CPU of the 41 does not contain any three

word instructions, so we shall describe how we come up with the mnemonics

for them.

First, a discussion of how ROMs are divided up by these instructions. The

4K ROM page is divided into four blocks of 1024 words each. These 1024 word

blocks are known as quads. The beginning addresses of each of the quads are

at P000, P400, P800, and PCO0O0 (in our example P = 8). The quads are numbered

from zero to three. The first two words of the instruction is a subroutine

call to a routine in the mainframe. There are 5 such routines. The first

four handle subroutine calls to a specific quad. They take the third word of

the execute instruction and add it to the number that is the start of their

quad. The fifth entry point is used only when the subroutine being executed

is in the same quad as the execute instruction. All five of these executes

may only be of the No Carry execute variety. The hexcodes of these five

entry points are given below.

In order for these relative execute’s and goto’s to properly function, the

CPU must be in HEX mode, or you WILL end up at the wrong spot.

-75-

Hexcodes Description

349 This is the routine you call when you want to use an execute

08C statement to access code in quad 0. This is at addresses 8000 to

83FF. The third word would be the 3 least significant digits of

the address being called. For example, on a call to 8291, the

third word would be 291.

36D This is the code for the first two words of a call to quad 1,

08C which is at addresses 8400 to 87FF. The third word is the number

of words after address 8400 at which you want to start executing

the code. An example: for an execute to 8567 the third word would

be 167 (167 + 8400 = 8567 in hex).

391 These are the hexcodes for the first two words of an execute

08C statement that calls a subroutine in quad 2. These are at

addresses 8800 to 8BFF. The third word is added to 8800 to get

the starting address of the subroutine that is being called.

Therefore, to call a subroutine at address 8BFE, hex 3FE would be

the third word of the instruction (3FE + 8800 = 8BFE).

3B5 These are the hexcodes for subroutine calls to quad 3, at

08C addresses 8C00 to 8FFF. The third word is added to 8C00 and the

value for the starting address of the subroutine is obtained. For

example, to execute code at 8E34, the third word would be 234

(234 + 8C00 = 8E34).

These instructions are subroutine calls themselves, and each wuses an

additional subroutine call of its own. They can therefore only be called

when there are no more than two pending returns in the subroutine return

stack. Otherwise the third and fourth subroutine returns, if any, will be

lost. Don’t confuse this with the User subroutine stack of the calculator.

This is the CPU subroutine return stack, and may only have four pending

returns, not six like the User subroutine stack.

The fifth set of hexcodes has the advantage of not using the additonal

subroutine level required for each of the above types. This means that you

-76-

can have three pending returns on the subroutine stack. However, its use is

restricted to branches within the same quad. Also, it destroys the C

register just like the other four types of calls. Here are the hexcodes and

a description of them.

Hexcodes Description

379 This pair of words is always the same regardless of which quad is

03C involved. The third word is the difference between the address of

the first word in the quad you are in, and the address of the

subroutine you are calling. For example, if you are in quad 2

(8800-8BFF), and the subroutine is at 8964 then the third word

would be 164 (8964 - 8800 = 164). A call to a subroutine outside

of quad 2 if the subroutine call originates from inside quad 2

would have to use one of the instruction hexcodes described above.

All addresses have been given with the most significant digit being 8 since

our sample ROM is in page 8. However, this digit may be changed to any

other page without affecting any of the values of the hexcodes.

If you want a relative GOTO instruction, then subtract hex 008 from the

first word of the three word instruction. This only applies to the first

four hexcode sets. For the last one given subtract hex 010 from the first

of the three words. The interpretation of the third word is the same as for

the execute instructions. These relative GOTO’s use only one subroutine

level, so each allows three pending returns on the stack. Again, to make

things easy on yourself, it is highly recommended that you get an assembler.

There are actually no three word instructions in the instruction set of the

41 CPU. The relative execute’s and goto’s are disassembled correctly by

most dissassemblers since whomever wrote the dissassembler knew that the

five entry points mentioned above would use the ROM word directly after them

to form a relative jump instruction. This type of dissassembly is called a

MACRO. The actual instruction dissassembled is a combination of two or more

instructions. The HP mainframe ROM listings use C=A even though there is no

-77-

such instruction in the CPU instruction set. The actual dissassembly is

A<>C, A=C.

Now we shall use one of these execute instructions to modify the BCD-BIN

routine that we just wrote so that it may be used as a subroutine by other

programs in our sample ROM. It may be called as a subroutine right now as

is, except that it overwrites the decimal number in the X register with the

hex equivalent of the original number. Since it would be nice to leave the

X register alone as much as possible, we will modify the routine so this

won’t happen.

"BCD-BIN" revised

Address Hexcode Mnemonic Description

814F 08E "N" Name of the routine.

8150 009 "T"

8151 002 "B"

8152 02D "

8153 004 "D"

8154 003 "C"

8155 002 "B"

8156 379 This is the call to the entry point in our

8157 03C GOSUB ROM which is at 815B. This is just the

8158 15B 815B BCD-BIN routine without the WRIT 3(X)

8159 0ES8 WRIT 3(X) instruction as the second to last step.

815A 3E0 RTN Instead, this step 1is placed after the

subroutine call and will be executed when

the routine returns.

815B 0F8 READ 3(X) This is the entry point to be used by

815C 10E A=C ALL other programs in our ROM. The rest of

815D 1BE A=A-1 MS the routine is the same from this point

815E 1BE A=A-1 MS on until we get to the second to last

815F 389 7C GO step of the original routine. The WRIT

8160 053 14E2 3(X) instruction should be removed and the

-78-

[ERRAD] RTN instruction should be moved up 1 word

So essentially the rest of the routine is

just moved down by 5 words.

i

SKWID relaxing after a hard day of MCODE

-79-

TIPS, SHORT ROUTINES, and OTHER LITTLE GOODIES

This section will cover some exciting ways of programming useful functions

that HP did not provide in the calculator. We will discuss how to shift

bits right in the C register (you already learned how to shift bits left in

the IF routine) and some other interesting tidbits.

In our first tip we will shift the C register right by one bit. In order to

do this the following sequence of instructions are used.

Mnemonic Description

C=C+C ALL We shift the C register left by three bits (use C=C+C

C=C+C ALL three times) and then shift right by one nybble. The

C=C+C ALL end result is that the bit(s) are shifted right one.

RSHFC ALL However, this does have its drawbacks. If there is a

bit that is within the last three bits of the left

side of register C when we start this sequence, then

that bit will be lost (because it will cause an

overflow when you do C=C+C with the leftmost bit

set). So this routine does not work for the three

leftmost bits of C.

The above sequence can be done on all or part of the C register. The same

rules apply. The three leftmost bits of the field should be zero.

Some of you computer scientists will appreciate this next short routine. It

is an XOR routine. HP gave us functions for AND and OR, so why not make one

for EXCLUSIVE OR? The XOR function is a bit flipping function. We

synthesized this in the IF flag routine by using calls to the mainframe

ROMs. However, what if you want to do an EXCLUSIVE OR on the whole 56 bits

of two registers? You should use the eight word routine below. This routine

uses the A, B, and C registers. There are two inputs: the number to be

changed, and the mask against which it will be compared. At the start the

mask is in C and the number to be changed is in A. The way this routine

-80-

works can best be illustrated by an example. For this example let’s use

just eight bits. The number to be changed will be 01001110 and the mask

will be 00111011. The only bits that get inverted from their original

position will be the ones that correspond to a bit in the mask that is equal

to one.

bit number 76 543210

Mask 00111011

Number 01001110

Since bits 0, 1, 3, 4, and 5 are one in the mask, these bits will be

inverted in the original number; all of the other bits in the original

number are left unchanged. Therefore, the final answer is 01110101. We

assume the CPU is set to hex mode upon entry to this routine. The routine

is given below.

Hexcode Mnemonic Description

0EE C<>B ALL Save the mask in B for later use, and get it

0CE C=B ALL back into C. B was picked because register A

will be used for something else and we need to

have a register that can interact with A. B

meets all of these requirments.

370 C=COR A Set all of the bits in the C register which are

0OEE C<>B ALL set in either the A or C registers. Then

exchange this result with the original mask

value.

3B0 C=C AND A Set all of the corresponding bits in register C

2AE C=-C-1 ALL that are set in C and A. This tells us which

bits must be cleared. The next instruction in-

verts every bit in the whole register. We now

have set all of the bits that were not set in

both registers.

-81-

06E A<>B ALL Get back the answer from the OR instruction.

3B0 C=C AND A Since we have zeroed all of the bits that were

set in the previous AND instruction, these bits

will now be cleared. The bits set by the OR

instruction and C=-C-1 will now be set.

Well, that’s the routine. There is no entry in the FAT for this routine.

It is just a sample of how short instruction sequences may be used to form

instructions that are not in the CPU chip. The answer is left in the C

register. Maybe you can find a place to put it in one of your programs.

You may wonder how it’s possible to save four nybbles away someplace without

altering the contents of the C register or any of the other 56-bit regis-

ters. There are many places that you could use for storage, but the follow-

ing procedure is used in several mainframe routines. If you are not using

the G register or any of the flags in ST, you can rotate the desired nybbles

until they are right justified in the C register (in positions 0 thorugh 3).

Then you can put 2 nybbles in ST and the other 2 nybbles in G. When you

need the data again, the reverse of this procedure brings the 4 nybbles back

into C. Here are the instructions you need:

Hexcode Mnemonic Description

RCR n Rotate C right by n nybbles so that the nybbles you

want to store are in positions 0 through 3. The

value of n depends on which nybbles are to be saved.

358 ST=C Copy nybbles 0 and 1 into the ST register.

21C R=2 Set the pointer to 2.

058 G=C Copy nybbles 2 and 3 into G.

RCR m Rotate C right by m = 14-n nybbles so that the four

nybbles you stored away are put back in their

original positions.

This represents the rest of the routine before you

bring back the four saved nybbles. This section

. should not use G or ST. To recover the data, use:

398 C=ST Copy ST into nybbles 0 and 1 of C.

-82-

21C

098

R=2

C=G

Set the pointer to 2.

Copy G into nybbles 2 and 3 of C.

Our next routine will be very helpful to some of you. It is a routine to

check if a RAM register exists. If you remember, when we wrote our AM and

MA routines, we assumed that you had a 41CV, 41CX, or 41C with a Quad memory

With the following routine you can find out whether or not a RAMmodule.

register actually exists without putting any constraints on the user of the

program. The routine assumes that the register to be checked has been

selected using the RAMSLCT instruction and that the CPU is in hex mode.

Hexcode Mnemonic

038

2A6

10E

2F0

038

36E

381

00B

READ DATA

C=-C-1 S&X

A=C ALL

WRIT DATA

READ DATA

2A#C ALL
2C GO
02E0
[ERRNE]

Description

Reads the contents of the selected RAM register

into C; remember the register to be tested must be

selected before starting this routine.

This instruction inverts all of the bits in S&X of

C. All of the 1 bits, in the sign and exponent,

become 0’s, and all of the 0 bits become 1’s.

This result is then stored there because we will

later test the A and C registers to see if they

are not equal. These are the only two CPU regis-

ters that may be used if a not equal test is

wanted between registers.

We write the results of the bit inversion out to

the RAM register we are checking for existence.

We immediately read back this same register. If

the register exists then the data will not change;

the test will not be true, and we skip the GOTO

to the NONEXISTENT error routine. If the

register does not exist then the data we storea

there will not be the same since there is no RAM

in which to save it. Therefore the two values

will test unequal so we exit to the NONEXISTENT

-83-

Crror message.

2A6 C=-C-1 S&X If we get this far, then A and C are equal so we

2F0 WRIT DATA invert C back to what was originally read from the

3E0Q RTN RAM register. If you do C=-C-1 twice, each logic

1 bit will have been inverted to zero and then

back to 1, so, we should get the same answer

returned. The same applies for the 0 bits. We

then write the result out to the RAM register and

then return. The contents of the register that is

selected are in C at the end of this routine. The

RAM select pointer is not changed.

Ten bonus points for anyone who figures out how to integrate this routine

into the AM/MA routine combination. This way we don’t have to put any

constraints on the user of the routine.

Now we will place this routine into our sample ROM and write a program to

use it. The routine we shall write will be a Non-normalized Recall routine.

By using it we shall be able to recall the contents of any RAM register in

the calculator. The number input into the X register before this function

is executed is the absolute address of the register you wish to recall. If

192 is in X, then the bottom register of Main Memory will be recalled (see

page 32 for an explanation on this subject). If a register is recalled that

does not exist, then the NONEXISTENT error message will be displayed. Non-

normalization means recalling the contents of a register without modifying

it. When you use the RCL function on a register which does not contain

ALPHA DATA and there are hex digits greater than 9 in the register, then

those digits are converted to BCD values.

"NR“

Address Hexcode Mnemonic Description

817F 092 "R" Second letter of the routine name.

8180 00E "N" First letter of the name.

-84-

8181

8182

8183

8184

8185

8186

8187

8188

8189

818A

818B

818C

818D

818E

818F

8190

8191

8192

8193

8194

8195

8196

8197

8198

8199

OF8

128

379

03C

15B

270

379

03C

190

10E

04E

270

0AE

OE8

3EO

038

2A6

10E

2F0

038

36E

381

00B

2A6

2F0

READ 3(X)

WRIT 4(L)

GOSUB

815B

RAMSLCT

GOSUB

8190

A=C ALL

C=0 ALL

RAMSLCT

A<>C ALL

WRIT 3(X)

RTN

READ DATA

C=-C-1 S&X

A=C ALL
WRITE DATA

READ DATA

?2A#C ALL

2C GO
02E0

[ERRNE]

C=-C-1 S&X
WRITE DATA

Get the contents of the X register, then

save X in the LASTX register.

This subroutine call is to our entry point

to convert decimal numbers to hexadecimal

numbers (see page 78). We need this in

hex so that we may use RAMSLCT to

select the desired RAM register.

This is a call to another entry point in

our sample ROM. It is at 8190. It is

the routine we wrote to tell whether or

not a RAM register exists. Upon retur-

ning from the subroutine, the contents of

the desired register are in C. We need to

select chip 0 so we may write the answer

out to the X register. Remember, the

tested register must be selected upon

entry to our subroutine and our subroutine

does not change this. We save C in A and

then zero C so the RAMSLCT instruction

will select chip 0.

We now retrieve the contents of the

recalled register from A. This value is

then written out to the X register. Then

we return.

This is the start of our routine to find

out if the register we want to access

exists. 8190 is the address which you

call if you want to execute this as a

subroutine. For an explanation of how this

routine works see page 83.

-85-

819A 3EO RTN

Don’t forget to update the FAT. We now have 13 functions in the FAT.

Therefore, 00D would be placed at address 8001 of our ROM. We would not put

013. The number of functions is in hex and 00D is 13 in hex.

What’s this you are saying? You think the NR routine is a complete waste

and want to get rid of it but you say you like the routine to tell if RAM

registers exist. Well, not everyone is perfect. You can’t just delete the

routine, you must also delete the FAT entry for this routine. We’ll show

you how to do this now. First, let’s see how the whole FAT currently looks.

Address Hexcode Description

8000 001 XROM number of our ROM.

8001 00D This is the number of entries in the FAT, in hex.

8002 000 These two words are the address of the first executable

8003 08C instruction of the ROM header SKWID 1A. All of the

rest of the FAT will be grouped into sets of two words

which are the three rightmost digits of the first executa-

ble instruction of each function (see page 20).

8004 000 Address of first executable instruction of Y<>Z.

8005 091

8006 000 Address of first executable instruction of GE.

8007 09A

8008 000 Address of first executable instruction of COUNT.

8009 0A7

800A 000 Address of first executable instruction of MA.

800B OBD

800C 000 Address of first executable instruction of AM.

800D 0Cl

-86-

800E 000 Address of first executable instruction of IF.

800F 0E4

8010 001 Address of first executable instruction of FS?S.

8011 002

8012 001 Address of first executable instruction of FC?S.

8013 008

8014 001 Address of first executable instruction of BIN-BCD.

8015 02D

8016 001 Address of first executable instruction of F?.

8017 04C

8018 001 Address of first executable instruction of BCD-BIN.

8019 056

S01A 001 Address of first executable instruction of NR.

801B 081

Well, there’s what the FAT should look like. The rest of the FAT words are

000 instructions since we haven’t put anything in them. If it doesn’t look

like this something went wrong somewhere. The problem is probably that you

forgot to add one of the entries into the FAT.

If you want to delete the last entry in the FAT, you must decrease the

number at address 8001 by one. Then you may put a 000 hexcode at addresses

801A and 801B since that is where the last FAT entry is in our ROM. Now you

may delete the NR routine from your ROM starting with address 817F, the

address of the last letter of the NR name, until 819A, the last instruction

in routine. Or you could leave the routine in place and just delete the FAT

entry. The calculator will think that the routine has been deleted and you

will still have the entry point at 8190 for checking if RAM registers exist.

-87-

Now suppose you want to delete the IF routine from the FAT. That is a

little harder. For starters, you can’t just delete the two words that point

to the first executable instruction of IF. This would leave a void of two

000 words in the middle of the FAT. These would tell the calculator that

the first executable instruction of some routine is at 8000. Also, when you

decrease the number at address 8001 by one you are making the last routine

in the FAT (NR), inaccessible.

The best way to illustrate this is for you to try it out. Set the two words

at addresses 800E and 800F to 000. Now do a CATALOG 2. The calculator

starts through the catalog correctly, until the place where the IF function

was. At this point the calculator should lock up with "@" in all twelve

positions of the display. The calculator is looking for a routine that

begins at 8000. It is trying to read the function name from the last few

words of page 7, which immediately precedes address 8000.

To get out of this lockup condition pull the batteries out of the calculator

and put them back in after about 5 seconds. You may be able to use a simpler

method as well. HP-41’s manufactured since the introduction of the HP-41CV

incorporate two hardware reset sequences that permit recovery from most

crashes. To use the first reset method press and hold the ENTER key while

turning the calculator off and on. Then release the ENTER key. The second

method is to hold the backarrow key down while turning the calculator off

and on. Then release the backarrow key. If you have an earlier HP-41, the

only way to recover from a microcode "infinite loop" involves removal of the

batteries and possibly additional steps. See page 214 of "HP-41 Extended

Functions Made Easy" for more crash recovery tips applicable to older

machines.

Now decrease the number at address 8001. Doa CATALOG 2 and the same lockup

will occur. What you have to do to fix this situation is to fill the gap

left in the FAT by the absence of the IF function. One way to fill the gap

is to move all of the FAT entries after the IF function up by two words.

Another way is to just MOVE the FAT entry for NR to the position that was

-88-

occupied by IF. This second approach will naturally change the order of

functions displayed in Catalog 2.

After you have removed the gap in the FAT, decrease the number at address

8001 by one. The FAT should now look like the lisiting that follows. We

will just put the routine name next to the first of the two words that tell

where the first executable instruction is located.

Address Hexcode Description

8000 001 XROM number.

8001 00C Number of functions in the FAT. This is decreased by one

from what it was before.

8002 000 SKWID 1A

8003 08C

8004 000 Y<>Z

8005 091

8006 000 GE

8007 09A

8008 000 COUNT

8009 0A7

800A 000 MA

800B 0BD

800C 000 AM

800D 0Cl1

800E 001 FS?S. This is where the address for the IF function was.

800F 002 The rest of the function addresses are moved up by two

words from where they were before.

8010 001 FC?S

8011 008

8012 001 BIN-BCD

8013 02D

8014 001 F?

8015 04C

8016 001 BCD-BIN

-89-

8017 056

8018 001 NR

8019 081

The words at 801A and 801B should now be set to 000. This will signal to

the calculator that the FAT has ended (see page 20). Now you may do a

CATALOG 2; the IF function will be gone and the calculator will no longer

lock up. You may also use the space where the IF routine resides, addresses

80E2 through 80FD, for some other program. However, the new program must fit

completely into the space left by the IF routine.

SKWID really gets into his programming.

You say that you like math functions. We’ve come up with a neat little

routine for you. It is a Quotient Remainder routine. This routine will

place Y modulo X (integer number of times that the X register will divide

into the original number in the Y register) into the Y register. It places

the remainder in the X register. The formulas used are:

-90-

Input Output

X:x X:y MOD x

Y:y Y: (y - y MOD x)/x

The Z and T stack registers are left undisturbed. The old X register is

saved in LASTX. The routine checks for Alpha Data and also if X is zero

since we can’t divide by zero. Just in case you are not familiar with the

MOD function in the calculator we shall explain its use. The MOD function

uses both the X and Y registers. The formula is the following: Y -

[Y/X]*X, where the brackets denote "integer part". What this gives us is

the remainder of a division represented as a whole number instead of a

decimal number less than 1. It is represented as Y MOD X.

As an example, if Y equals 5 and X is 2 then 5§ MOD 2 is 1. Our program will

call the MOD routine in the mainframe as a subroutine. There are many other

useful math subroutines used in this program. Our program shall be called

QR and will be placed in the vacant space left by the IF program. We will

start QR at address 80E2, the same place where IF started.

"QR"

Address Hexcode Mnemonic Description

80E2 092 "R" Last letter of the routine name; hex 080

has been added to its hexcode.

80E3 011 "Q" First letter of routine name.

80E4 0F8 READ 3(X) Get the X register and put it into C. We

80ES 128 WRIT 4(L) then write it out to the LASTX register.

80E6 10E A=C ALL We now save the X register, which was in

80E7 0B8 READ 2(Y) C, into A and put the Y register into C.

80E8 355 INC XQ The call to the mainframe subroutine at

80E9 050 14D5 14D5 checks both the A and C registers, X

[unlabeled] and Y, to sece if they contain Alpha data.

S80EA 070 N=C If either of them do, then the mainframe

91-

80EB

80EC

80ED

80EE

80EF

80F0

80F1

80F2

80F3

80F4

80F5

80F6

80F7

80F8

171

064

070

2BE

10E

0B8

01D

060

10E

OF8

261

060

0A8

0BO

INC XQ

195C
[MOD10]

N=C

C=-C-1 MS

A=C ALL

READ 2(Y)

INC XQ

1807

[AD2-10]

A=C ALL

READ 3(X)

INC XQ

1898

[DV2-10]

WRIT 2(Y)

C=N

routine exits to the ALPHA DATA error

message. If neither of the registers

contain Alpha data, the routine returns

with the A and C registers exchanged

and with the CPU in decimal mode. This

does exactly what we want for the next

steps. We must then save C in N to

satisfy the requirements of the MOD rou-

tine.

This is a call to the MOD routine. It

requires that the CPU be in decimal mode.

Notice that the call to the routine at

14D5 made sure of that. The MOD10 (modulo

in base 10) routine takes A MOD C. We

want Y to be in the A register and X to be

in C. Also notice that Y was put into A

and X was switched into C by the last

mainframe subroutine.

We now have the answer for the X register,

Y MOD X, but we can’t put it there yet,

so we save it in N. We then invert the

sign of the mantissa. In order to sub-

tract using the mainframe routine you

change the sign and add. We then save this

in A and get the Y register again. The

mainframe subroutine AD2-10 at 1807

performs C=A+C on two normalized decimal

numbers. The answer will end up in C.

We now have Y - (Y MOD X) in C. We place

this in A so we may call the X register

into C for the last step. We must now

divide A by C.

routine at address 1898 of the mainframe

Fortunately there is a

ROMs where this is done. It even checks

for division by zero. After the routine

-92-

80F9 OES8 WRIT 3(X) is done we have (Y- Y MOD X)/X inC and Y

80FA 3EOQ RTN MOD X in the N register. So now we

write C out to Y. Then we retrieve Y MOD

X from N and write this out to X before

returning.

You will notice that this routine barely fits into the space left by IF.

There are only three words left unused. Now we must update the FAT. We do

not have to open up the place where the address for the IF routine was and

place the address of the first executable instruction of QR 1in its place.

Instead, we may place the FAT entry for QR after the last address now in the

FAT. The calculator does not care whether or not the addresses for the

functions are in sequencial order. They may be put into any order you

choose as long as each set of two words points to the first executable

instruction of a routine. There are now 13 functions in our ROM. (We left

the NR routine in and only deleted the IF routine.)

This next routine will be a welcome relief to those of you who need to see

all ten digits of a number but find that the exponent keeps getting in the

way. It is a View Mantissa routine. This routine allows you to view all

ten digits of the mantissa of a number without changing the setting of the

display or getting rid of the exponent of the number. This routine only

views the mantissa and does not change any RAM registers. The way this is

done is to put the value to be displayed into C and execute the mainframe

entry point that places the contents of C into the display. A few other

things must be done so everything will work right. These are explained in

the listing below. This routine will allow you to view all ten mantissa

digits of whatever number is in the X register.

"VM"

Address Hexcode Mnemonic Description

819B 08D "M" Last letter of the routine’s name.

819C 016 A First letter of the routine’s name.

-93-

819D

819E

819F

81A0

81A1

81A2

81A3

81A4

81A5

81A6

81A7

81A8

81A9

81AA

OF8

361

050

260

3B8

158

05C

250

210

3A8

OF8

046

099

02C

READ 3(X)
INC XQ
14D8
[CHK#S]
SETHEX

READ 14(d)

M=C

R= 4

LD@R 9

LD@R 8

WRIT 14(d)

READ 3(X)

C=0 S&X

INC XQ

0B26

[DSPCRG]

First we check X to make sure it is not

alpha data. We read in X and then we use

an entry point that checks the C register

for alpha data. If there is alpha data we

exit to the ALPHA DATA error message.

Otherwise the routine returns with the

original contents of C intact and the CPU

in decimal mode. We want to be in hex

mode so we reselect it.

In order to fool the calculator into

thinking that we are in FIX 9 mode, we

must modify the flag register so that the

mainframe view routine will think we are

in FIX 9. The bits that determine how

many digits are to be displayed are in

nybble 4. To get a setting of 9, we load

a 9 into this spot. The bits for the

current display mode, FIX, SCI, or ENG,

In order to set FIX

notation we must clear bit 2 of this

nybble and set bit 3. We do this by

loading eight into this nybble.

are in nybble 3.

Before we

do all of this we save the original

contents of the flag register so that they

may be restored.

We now write this modified register out to

the flag register. The calculator now

thinks that it is in FIX 9 mode.

Get the contents of the X register.

We then zero the exponent and its sign

since we only want to view the mantissa.

Now we can execute the mainframe view

called DSPCRG (DiSPlay C

What is to be viewed is in C

It sends this

routine

ReGister.)

upon entry to this routine.

-94-

to the display and does not overwrite the

X register.

81AB 198 C=M We now retrieve the old flag register back

81AC 205 INC GO from M. Then we must set flag 50, the

81AD 00E 0381 message flag; the purpose of this flag is

[unlabeled] to tell the calculator to preserve the

contents of the display when we go into

standby mode. Otherwise the 41 defaults

to the display corresponding to the cur-

rent mode. The three modes are RUN,

ALPHA, and PRGM. Fortunately there is a

routine in the mainframe to do this. Ac-

tually we enter three words into the rou-

tine since we are restoring the old con-

tents of the flag register which were

saved in M.

Upon execution of this routine you will notice that the status of the

decimal point does not change. If you normally use the comma as the decimal

point then this is what will be used; if you use the period as the decimal

point the answer will show up in that format. Now execute the routine and

hit the backarrow key. The displayed answer went away but the X register

stayed the same, just like HP’s VIEW functions. Remember to update the FAT.

We now have 14 functions, O0E in hex.

To skip, or not to skip, that is the question. Our next routine will show

you the sequence used for skipping lines in a User code program. This is

the same sequence that all of the functions in the calculator that have a

" use. If the "?" is false they skip a step in your program. The func-

tion we will write is a multiple compare function. It shall be called

X=Y? Z?. It will first check to see if X is equal to Y. If this is true we

will end the routine and the program will continue at the next step.

However, if X does not equal Y, then our routine will cause the User code

program to skip either one or two steps, depending whether X equals Z. So

at this point in the routine, just after we find out that X does not equal

-95-

Y, we skip one User program step. Next we compare the X and Z registers.

If they are equal we exit our routine having skipped only one program line.

If X does not equal Z we skip another program line and then end our routine.

This routine illustrates the sequence of instructions you use to tell the

calculator to skip a User code program line.

Address Hexcode Mnemonic

81B2

81B3

81B4

81B5

81B6

81B7

81B8

81B9

81BA

81BB

81BC

81BD

81BE

81BF

81C0

81Cl1

81C2

O0BF

OIA

020

03F

019

03D

018

244

OF8

10E

0B8

36E

3A0

03B

248

OF8

10E

"?"

"Z"

"?"

"Y"

|lX"

CLRF 9

READ 3(X)

A=C ALL

READ 2(Y)

A#C ALL

INC RTN
IJNC +07

SETF 9

READ 3(X)

A=C ALL

"X=Y? Z?"

Description

This is the last letter of the name of our

routine. Notice that a space separates

the two words. This space must be keyed

in when executing the routine.

This flag is used to tell if we have

reached the X=Z part of the routine. If

it is clear we are doing the X=Y part of

the routine. If it is set then we are in

the X=Z part.

Put the X register into C and then save it

in A. We choose A so that we may use the

?7A#C instruction to compare these two reg-

isters later in the routine. Then we

retrieve the Y register and compare it

with X. If X=Y the carry will not be set

and we can return. If X#Y the carry will

be set and we go to the section of our

routine that has the instructions for

skipping a program line.

Setting this flag tells the routine that

we have reached the X=Z portion of our

routine. We then get X and put it into A

-96-

81C3

81C4

81C5

81C6

81C7

81C8

81C9

81CA

81CB

81CC

81CD

81CE

078

36E

3A0

141

0A4

3ES5

0A8

0BD

08C

24C

360

393

READ 1(2)

7A#C ALL

INC RTN

INC XQ

2950

[GETPC]

INC XQ

2AF9

[SKPLIN]

INC XQ

232F

[PUTPCX]

7FSET 9

?7C RTN

JNC -0E

so we may go through the same sequence of

steps as at addresses 81B8-81BC except we

use Z in place of Y. This is the start of

the sequence for skipping one line of a

User code program. First ?2NC XQ 2950

GETs the Program Counter in the format

required by other mainframe ROM routines.

This format is called "MM form", and

entails doubling the byte digit of the

User code program counter when the pointer

is in RAM.

pointer by the number of bytes in the next

Then we increment this

program line using the mainframe SKPLIN

(skip line) routine at 2AF9. There may be

anywhere from one to sixteen bytes in a

program line. Then we update the User

program pointer by storing the new value

in register b (using the routine at 232F)

so that the program has now skipped a

program line without executing it. PUTPCX

is one of the PUT Program Counter

entry points.

Now we check to see if this is the first

time through the line skipping loop. If

it is, flag 9 will be clear and the carry

will not be set, so the 7C RTN instruction

will not be executed. Since we have not

yet gone through the X=Z section of our

routine we will jump back to this section

(at 81C0) if If flag 9

is set, the carry will be set and the ?7C

flag 9 is clear.

RTN instruction will be executed. This

tells us that we have been through the

loop to skip a program line twice, once

for the X=Y part and once for the X=Z

-97-

part. Since we have asked both questions

we may return.

Try out this function in one of your programs. A sample setup could be as

follows:

Instruction Description

Steps preceding the X=Y? Z? instruction.

X=Y? Z2?

GTO 01 Go to label 01 if X is equal to Y.

GTO 02 Go to label 02 if X is equal to Z but is not equal to Y.

Continue on with the program if X does not equal to either Y

or Z.

Remember to update the FAT. You should get into the habit of doing this

right after you finish writing a routine. We now have 15 functions in our

sample ROM (00F in hex).

The next routine 1is an Alpha View routine that will never stop a program.

The AVIEW function will stop a program for no apparent reason if flag 21 is

set and there is no printer plugged into the calculator. This routine

allows you to view Alpha without sending anything to the printer as does

AVIEW. It is an excellent example of the power of using the mainframe ROM

entry points. The routine is five words long and four of these words are

used to call mainframe entry points. This is very efficient. The routine

is called VA.

"VA"

Address Hexcode Mnemonic Description

81CF 081 "A" Routine name.

81D0 016 A

-98-

81D1 104 CLRF 8 The first mainframe entry point at address

81D2 041 INC XQ 2C10, ARGOUT = Alpha ReGister OUT,

81D3 0BO 2C10 outputs the Alpha register to the display.

[ARGOUT] Clearing flag 8 tells the routine not to

81D4 201 INC GO treat this as a prompt, as this would stop

81D5 00E 0380 the routine. The GOTO instruction to

[unlabeled] address 0380 recalls the contents of the

flag register and then sets the message

flag (50) and restores the flag register

with the message flag set (see page 95).

Our routine returns through this mainframe

routine.

All these addresses for the mainframe entry points we are using came from

HP’s documented listings of the 12K of mainframe ROMs. These listings are

partially annotated by the programmers who developed the HP-41. The entry

points are usually very well described with the kind of setup your routine

needs to do before calling on one of these entry points. They also tell

what the output should be.

One of the drawbacks of these documents is that they are listed in octal,

not hexadecimal. So you need some way of converting from octal to hex.

This little problem should not stop you from getting these documents. They

are much too valuable a tool to let such a little thing like this interfere.

How do you get hold of one of these documents? Well, for starters, don’t

call HP, they will refuse to answer any questions regarding MCODE program-

ming on the 41. In fact, that is one of the reasons for this book. The

place to get these listings, or VASM as they are called, is from a worldwide

HP calculator wuser’s group called PPC. PPC’s address 1is given in

Appendix A.

Since seeing the examples of how entry points can be used, you have probably

ordered your VASM listings and are anxiously awaiting their arrival. But

for now let’s get on with some more examples.

-99-

This next routine is a Random Number generator program. There is nothing

fancy about this program. We use the brute force method on this one. Just

load in the numbers and crank away. This algorithm has been used in the HP-

34C Applications book and the 41C Standard Applications Pac. The input for

the program is in the X register. It can be any number; just don’t make it

too big. This input is the seed for the algorithm. The program takes this

seed and then multiplies it by 9,821, adds 0.211327, then takes the

The old X is saved in

LASTX. This program is just over 7 times as fast as a User code program

fractional portion. The answer is output to X.

that performs the same calculations. Arithmetic operations are already

relatively efficient in User code, because most of the work is done within

highly optimized mainframe MCODE routines. The overhead of going to the

User level (approximately 10 milliseconds per instruction) is less on a

percentage basis for the more complicated User code instructions. Guess we

can’t always be 100 times faster.

"RN"

Address Hexcode Mnemonic Description

81D6 08E "N" Routine name.

81D7 012 "R"

81D8 00E A=0 ALL First we zero A and get the Random number

81D9 OF8 READ 3(X) seed. Then we save the seed in the LASTX

81DA 128 WRIT 4(L) register.

81DB 355 INC XQ The reason we zeroed A was so that there

81DC 050 14D5 would not be Alpha data there when we

executed the mainframe routine at address

14D5. This routine checks A and C for

Alpha data and sets the CPU to decimal

mode. It then exchanges A and C from what

they were originally.

81DD 35C R= 12 We now set the pointer to the first digit

81DE 250 LD@R 9 of the mantissa so we can load in our

81DF 210 LD@R 8 first constant. It is 9,821. We load in

-100-

81E0

81E1

81E2

81E3

81E4

81E5

81E6

81E7

81E8

81E9

81EA

81EB

81EC

81ED

81EE

81EF

81F0

81F1

81F2

81F3

81F4

81F5

81F6

81F7

81F8

81F9

090

050

130

003

135

060

10E

35C

04E

090

050

050

0DO0

090

1D0

21C

250

250

250

01D

060

084

0OED

064

OE8

3EO

LD@R 2

LD@R 1

LDI S&X

HEX: 003

INC XQ

184D

[MP2-10]

A=C ALL

R= 12

C=0 ALL

LD@R 2

LD@R 1

LD@R 1

LD@R 3

LD@R 2
LD@R 7

R=2

LD@R 9

LD@R 9
LD@R 9

INC XQ

1807
[AD2-10]

CLRF 5

INC XQ

193B
[INTFRC]

WRIT 3(X)

RTN

the mantissa and also the exponent (003).

We are now set up to do the multiplication

of these two numbers. Mainframe routine

MP2-10 at 184D multiplies A times C.

The answer is left in C.

We save the answer from the multiplica-

tion in A so we may load C with the next

constant. Before we start to load C with

the constant, we zero it so that we start

with a clean slate. We set the pointer to

the first digit of the mantissa and start

to load the mantissa of the constant. We

set the pointer to the first digit of the

exponent sign. The exponent sign is 9

since the exponent is negative (see page

5). Why is the exponent 99 instead of

01? The calculator represents negative

exponents by subtracting them from 100

(100-1=99) so for a number with a negative

exponent of 3 the exponent would be 97

(100-3).

last four instructions is to use a C=C-1

S&X.

Now that we have the two numbers all set

Another way to accomplish the

up, we call on the mainframe routine that

will add the normalized values in the A

and C registers. The answer from this is

left in C. The routine at address 193B is

a dual-purpose integer/fraction routine.

Here we use it as a fraction routine by

(Setting flag 5 gives

INC XQ 193B takes

the fractional portion of the number in C

clearing flag 5.

the integer routine.)

-101-

and outputs it back to C. We then write

our answer out to X and return.

Don’t forget to update the FAT. There are now seventeen functions in our

ROM. Therefore you would put 011 hex at address 8001.

The next routine sounds like it will be very easy to program. However, this

is deceiving. It is a SIZE-finder routine. It will give the number of RAM

registers that are allocated for data storage. This number will be put into

the X register. This routine will work on any 41 Calculator with any amount

of memory. The object of this routine is to find the largest existent RAM

register in the calculator. Since RAM may be added in blocks of 64 (one

memory module for the 41C) we start at the highest possible RAM address and

check to see if it exists. If the register exists we’ve found the top of

RAM. This is why we start from the highest possible address and work our

way down. We do some manipulations before calling on the BIN-BCD routine

that we wrote earlier. The routine will be called "S?".

"S?"

Address Hexcode Mnemonic Description

81FA OBF " Second letter of name.

81FB 013 "S" First letter of name.

81FC 130 LDI S&X We load into C the highest possible

81FD 1FF HEX: IFF address of an existent RAM register. If

you have the full 320 RAM registers in

your calculator the top address will be

1FF.

81FE 158 M=C This is the start of the loop to find out

81FF 270 RAMSLCT the address of the topmost RAM register.

We first save the RAM register pointer in

M and then select that register. Now we

will check to see if the register exists.

-102-

8200

8201

8202

8203

8204

8205

8206

8207

8208

8209

820A

820B

820C

820D

820E

820F

8210

8211

8212

8213

038

2A6

10E

2F0

038

36E

077

2A6

2F0

198

106

046

270

378

03C

166

1C6

369

03C

12F

READ DATA

C=-C-1 S&X

A=C ALL

WRITE DATA

READ DATA

?A#C ALL

JC +0E

C=-C-1 S&X

WRITE DATA

C=M

A=C S&X

C=0 S&X

RAMSLCT

READ 13(c)

RCR 3

A=A+]1 S&X

A=A-C S&X

GOTO

812F

This is the start of the section that

figures out whether or not the RAM regis-

ter exists. You are probably wondering

why we did not jump to the entry point in

our ROM that does this. The only problem

with that approach is that if the RAM

register does not exist we would go to the

NONEXISTENT error message. In this rou-

tine if the register does not exist then

we decrement the RAM register pointer by

64 and check again. We do this until we

find a register that exists. This section

is exactly like the entry point in our ROM

except that instead of going to the NON-

EXISTENT error message we jump to another

part of the routine (JC +0E to 8214). For

an explanation of this routine see page

83.

We now retrieve the RAM register pointer

into C and save it in A for later use.

This pointer is the address of the top-

most existent RAM data register. Chip 0

is then selected (remember the last regis-

ter selected was the topmost register of

RAM) and the address of data register 0 is

obtained from nybbles 3, 4, and 5 of

status register ¢ (see page 35). In order

to put this into the S&X field of C, we

must rotate right 3 nybbles. We then add

one to the address of the topmost existent

RAM register. This is because the actual

top address is one more than the highest

register we can address. These two num-

bers are then subtracted and the answer is

left in A. This is done because the GOTO

-103-

812F statement uses the C register. This

is 2 GOTO to the BIN-BCD routine that we

wrote earlier. The answer is placed into

X.

8214 198 CcC=M This section of our routine gets the RAM

8215 106 A=C S&X register pointer from M and then puts it

8216 130 LDI S&X into A. We then load 040 (64 decimal) into

8217 040 HEX: 040 C. Since the calculator memory is ar-

8218 246 C=A-C S&X ranged into blocks of 64, the next try

8219 32B JNC -1B will be a register that is 64 less than

the previous one. This is subtracted from

the current RAM register pointer. Then we

go back to the start of the loop at ad-

dress 81FE.

Remember to update the FAT. There are now 18 functions in our ROM. The

number at address 8001 should be 012. The last entry in the FAT should look

like this:

Address Hexcode Description

8024 001 The 1 1is the third digit from the right in the address of

the first executable instruction of the "S?" routine. It

has the two leading zeros like all of the other functions.

8025 OFC This is the two rightmost digits of the address of the

first executable instruction. As always, the leading 0

has been placed in front.

The next routine will be one of the comparison functions that HP left out of

the calculator mainframe. It is the "X>=Y?" function. This routine is

rather short and is an excellent routine to show how a good knowledge of the

mainframe entry points can be put to use. In this routine we shall use two

such entry points. The first will be at address 1619. This will tell the

calculator not to skip a line if we are running or single-stepping a

program. If we execute it from the keyboard then a YES is put into the

-104-

display. The other entry point is to address 15F8. This is just the

routine to see if X is greater than Y. The necessary setup must be done

before either routine can be executed.

Address Hexcode Mnemomic

821A

821B

821C

821D

821E

821F

8220

8221

8222

8223

8224

8225

8226

8227

OBF

019

03D

03E

018

0B8

10E

OF8

070

36E

065

05A

3El

056

won

o

"

_—

READ 2(Y)

A=C ALL

READ 3(X)

N=C

?A#C ALL
INC GO
1619
[NOSKP]

INC GO

15F8

[XX>Y?]

"X>=Y?"

Description

Routine name.

We put the Y register into C and then save

it in A. Then we get the X register into

C and place it into N. These two condi-

tions must be met because the entry point

at address 15F8 must have X in N and Y in

A in order to correctly perform its du-

ties.

We now check to see if X (C) is equal to Y

(A). If it is, the carry will not be set

and we will not want to skip a step if a

program is running. The NOSKP routine

at 1619 does this and will put YES into

the display if the function is executed

from the keyboard.

This is the call to the routine to check

if X 1is greater than Y. Since we know

that they are not equal (if we get this

far) X is either greater or less than Y.

The XX>Y? routine (eXecute X>Y?) will

figure out which is true and skip a pro-

gram step if X is less than Y or put a NO

into the display if it was executed from

-105-

the keyboard. If X is greater than Y a

program step will not be skipped or a YES

will be placed into the display.

Remember to update the FAT. You can program the X>=0? function by just

replacing the READ 2(Y) statement with a C=0 ALL instruction. This will

compare X with zero instead of Y.

-106-

THE VISUALS

ACCESSING THE DISPLAY

The display is treated by the CPU as a peripheral. In order to access the

display you must select it using the PRPH SLCT command. This instruction

uses digits 1 and 0 of C to specify the peripheral to be selected. This is

much like the RAMSLCT instruction, except that in order to select the

display you must always use the same value in digits 1 and 0 of C. This

number is FD. Once the display is selected it may be read from and written

to. To do this you use the READ/WRIT instructions. If we write to the

display wusing these functions and RAM registers are sclected that exist,

then these registers will also be written to. Therefore we should select a

nonexistent chip whenever we select a peripheral. The nonexistent RAM chip

that is usually used is chip 1 which starts at address 010 and goes through

address 01F. To select this chip we must put 010 into the S&X field of C

and use the RAMSLCT instruction to select the nonexistent RAM at this

address.

There have been three different displays in the life of the 41. The first

appeared in 41C’s manufactured before 1981. The second display appeared in

1981 and has been in all HP-41 calculators manufactured up until about the

time this book came out. These two displays cannot access the last three

rows of the LCD character table (see next page). If a hexcode from these

last three rows is used, a space will be displayed. The third display can

access the entire LCD table and also allows you to change the contrast

(viewing angle).

-107-

LCD CHARACTER TABLE

o 1 2 3 4 5 6 7 8 9 A B C D E F

0 > A 3 C o & & Lo H I 4 K L M N O

1 AR S Ty WX vy 2 L N

2 " Hd 5 % X0 O x - o« -/

3 Z P2 3 4 5 B T B 9 B £ = N @

10 Foosobh e d e T T O r % M ¢ L L

11 ” Y LS - T T X P M £ N L

12 T N Rk e a0 e £ 9 h | J K) mo D

13 P L, - - 5] v WA ™ 2 ¢ A ? > 3

The display is divided into three registers. They are called the A, B, and

C registers. These are not the same as the main CPU registers and should

not be confused with them. The A register contains the lower four bits of

each character, the B register contains bits four to seven of each

character, and the C register holds bit 8 of each character.

The display READ/WRIT functions each have certain, well-defined, tasks that

they perform. Data transfers can be in 1, 4, 8, or 9 bit format. These may

be transferred one character at a time, or in multicharacter formats, depen-

ding on the instruction. The READ instructions give varied outputs

depending upon which display your calculator has. These variations only

apply to the bits and nybbles which are not the recipient of the data

obtained during a READ instruction. The scope of these output variations

will not be covered in this book, so your programs should not depend on

getting particular values in these "unused" bits or nybbles.

-108-

The display is set up so that each of the 12 character positions in the

display uses 9 bits (4 bits from A, 4 bits from B, and 1 bit from C). Bits

0 through 5 specify a character from rows 0 to 3 of the LCD character table.

Bits six and seven are the punctuation field. The table below shows how to

set/clear bits 6 and 7 for various punctuation symbols.

bit 7 6 punctuation symbol

0 0 no punctuation symbol

0 1 period

1 0 colon

1 1 comma

Here is the table of all of the HP display mnemonics which correspond to the

READ/WRIT instructions. These instructions, which appear in the HP

documentation for the display and mainframe, are not correctly dissassembled

by any of the currently available dissassemblers.

 READ WRIT

15 FLSABC* SLSABC

14 FRSABC** SRSABC

13 FLSDAB SLSDAB

12 FRSDAB SRSDAB

11 FLSDB SLSDB READ DATA : FLLDA

10 FLSDA SLSDA WRITE DATA : WRTEN

9 FRSDC SRSDC

8 FRSDB SRSDB

7 FRSDA SRSDA

6 FLSDC SLLABC

5 READEN SLLDAB

4 FLLABC SRLABC

3 FLLDAB SRLDAB

2 FLLDC SRLDC

1 FLLDB SRLDB *appears as RABCL in HP listings

0 - SRLDA **31so given as RABCR in HP listings

-109-

Now we shall describe how to decipher these mnemonics.

The first character is either F or S corresponding to FETCH or SHIFT. The

second letter is an L or R for LEFT or RIGHT. The third character is an S

or L for SHORT or LONG. The remaining characters identify the registers on

which the operation is to be performed: A, B, C, AB, or ABC. All one-or

two-letter suffixes are preceded by the character D (display), which has no

significance other than its value as a mnemonic.

FETCH reads data from the display into the C register. SHIFT pushes data

from the C register into the display. LEFT or RIGHT specifies which

direction the designated fields rotate within the display. (Rotation only

occurs for the specified register or registers.) SHORT or LONG specifies

the number of character positions which are to be read from or written to.

SHORT means a single character position. LONG is the maximum number of

character positions for which the corresponding data can fit in 12 nybbles.

This is 4 positions for ABC, 6 for AB, and 12 for A, B, or C.

For example, consider SLSABC. This instruction writes data to the display

(SHIFT), shifting in a single character (SHORT) in from the right (forcing a

shift to the LEFT). The data written is 9 bits (ABC), which completely

defines the character and punctuation.

Next consider FRLDC. This instruction FETCHes data from the right side of

the display (forcing rotation to the RIGHT). The rightmost bit is placed

into bit zero of nybble 0 of C and the second bit is put into nybble two and

so on until the last bit is placed into nybble 11 of C. The display is not

affected by this instruction since twelve characters are involved and the

display will be rotated all the way around.

What follows are descriptions of the display instructions that are most

commonly used within the HP-41’s operating system ROMs. They are all 9 bit

transfers, operating simultaneously on A, B, and C.

-110-

Instruction

READ 14(d)

(RABCR or

FRSABC)

READ 15(e)

(RABCL or

FRSABC)

WRIT 14(d)

(SRSABC)

WRIT 15(e)
(SLSABC)

WRIT 4(L)

(SRLABC)

Description

Reads the rightmost character in the display into the S&X of

C. All characters are rotated right by one.

Reads the leftmost character in the display into the S&X of C

and rotates the display left by one character.

Takes the rightmost 9 bits of the S&X of C and pushes them

into the leftmost position of the display. All of the

existing characters are shifted right by one.

Takes a single nine-bit character from S&X of C and writes it

to the rightmost character of the display. The characters in

the display are shifted left by one.

Writes four characters from C to the left of the display. The

characters that were in the display are shifted right by four.

The first character is in digits 0 to 2 of C, the second is in

digits 3 to 5 and so on. The character in digits 0 to 2 is

pushed onto the left of the display first then the character

in digits 3 to 5 is pushed to the left of that character and

SO on.

Now that we have gone through the instructions for writing and reading the

display characters, we still have to deal with the annunciators at the

bottom of the display. The status of these 12 annunciators is kept in a

fourth display register, called E. Annunciators are set using the WRITE

DATA (WRTEN) instruction. They may be read by using READ 5(M) (READEN).

The transfer is to and from the S&X field of C. Below is a list of the bit

in the S&X field of C which corresponds to each annunciator.

bit Annunciator bit Annunciator

ALPHA 3 Flag 3

PRGM 4 Flag 2

Flag 4 5 Flag 1

-111-

Flag 0 9 G (for GRAD)

SHIFT 10 USER

RAD 11 BAT

As can be seen, the leftmost bits are for the leftmost annunciators. In

normal operation, these annunciators do not stay on unless the corresponding

condition is actually in effect. For instance, if you write a program that

turns the ALPHA annunciator on and makes the standard exit to the normal

function return, then you must be in Alpha mode or the annunciator will

turn off.

Now let’s have some fun and write a routine using some of these display

instructions. We shall write a display test routine. This routine first

displays twelve commas and pauses for a second or so. Then there are twelve

starbursts in the display. Each of these is followed by a colon. The

annunciators at the bottom of the display are also lit up. Now every

display segment is on except the comma tails, which is why we viewed them

first. This routine does not use any RAM registers, only the display. Ah,

the beauty of MCODE. We shall call the routine DISTEST.

"DISTEST"

Address Hexcode Mnemonic Description

8228 094 "T" Routine name.

8229 013 "S"

822A 005 "E"

822B 014 "T"

822C 013 "S"

822D 009 "T"

822E 004 "D"

822F 130 LDI S&X First we shall enable the display by

8230 OFD HEX: OFD selecting peripheral FD. We must then

8231 3F0 PRPH SLCT disable the RAM. Since we will be using

8232 130 LDI S&X WRIT instructions we must choose a non-

-112-

8233

8234

8235

8236

8237

8238

8239

823A

823B

823C

823D

823E

823F

8240

8241

010

270

130

00B

106

130

020

3A8

1A6

3F3

19C

390

010

2D4

3EB

HEX: 010

RAMSLCT

LDI S&X

HEX: 00B

A=C S&X

LDI S&X

HEX: 020
WRIT 14(d)

A=A-1 S&X

IJNC -02

R= 11

LD@R E

LD@R 0

R= 13

INC -03

existent RAM chip so that RAM won’t be

written to.

We shall now fill the display with spaces.

This is what the calculator places into

the display when it clears it. It is good

practice to clear the display at the

beginning of any routine that directly

accesses the display. First we load a

counter into C and save it in A. This

will be decremented, and when underflow

occurs, we jump out of the loop that fills

the display with spaces. The hexcode for

a space is 020. We load this into the S&X

field of C and write it out to the display

using the nine bit transfer instruction

WRIT 14(d). This places a space into the

left of the display and shifts all of the

other characters right by one. The

counter in A is then decremented and we

jump back to the WRIT instruction and

When

the counter underflows we drop out of the

write another space to the display.

loop.

The pointer is set to 11, the largest

digit used when six characters (12 nybbles

of data), are sent to the display using an

We load

up each eight bits with the value E0 =

1110 0000.

signify a comma. The lower six bits are

eight bit transfer instruction.

Bits six and seven are set to

set to the hexcode for a space (20 in hex

or 100000 in binary).

loading loop is cycled 6 times.

The character-

After the

sixth time through, the pointer will equal

thirteen since we just loaded a number

-113-

8242

8243

8244

8245

8246

8247

8248

8249

824A

824B

824C

824D

824E

824F

8250

OE8

OE8

046

2A6

266

3FB

19C

2D0

290

2D4

3EB

OE8

OE8

046

2A6

WRIT 3(X)

WRIT 3(X)

C=0 S&X

C=-C-1 S&X

C=C-1 S&X

JNC -01

R= 11

LD@R B

LD@R A

MR= 13

INC -03

WRIT 3(X)

WRIT 3(X)

C=0 S&X

C=-C-1 S&X

into nybble zero. (The pointer decrements

when we use the LD@R instruction.) When

this happens, the carry will be set and we

will not jump back to load more digits.

These two instructions fill the display

with commas. The first puts six commas

into the display. There are spaces be-

tween the commas. The spaces we original-

ly put into the display are shifted to the

right by six characters. The second WRIT

instruction finishes filling the display

with commas.

This is the delay loop so that you can see

the twelve commas in the display. First C

is zeroed and then all twelve bits are

inverted to ones using the C=-C-1 instruc-

tion. Then we subtract one from the S&X

field until the carry is set. The carry

will be set when we subtract 1 from O.

When this happens we will not jump back

and the pause will be over.

This is the loop to fill the display with

the starburst character and the colon.

The LD@R B instruction sets bit 7 which is

The other

six bits are set so that the starburst

the colon if bit 6 is not set.

character (hex 3A) is put into the dis-

play. The logic behind the loop is the

same as for the steps at 823D to 8241.

These two steps write six starbursts each

out to the display. The commas are shif-

ted off the display after the second in-

struction.

First we zero the S&X field of C so that

when we invert all the bits, using C=-C-1,

-114-

8251 2F0 WRITE DATA they will all go to one. Then we use the

WRITE DATA instruction to turn on all of

the annunciators at the bottom of the

display.

8252 046 C=0 S&X Now the message flag is set only to keep

8253 3F0 PRPH SLCT the X register from being cleared when the

8254 IFD INC XQ user presses the backarrow key to clear

8255 00C 037F the display. Normally the message flag is

set for the main purpose of preventing the

display from being altered upon return of

control to the operating system. Here we

are not returning control to the operating

system, but we still need to set the

message flag. First we must deselect the

display as a peripheral and then we enter

the mainframe routine at a spot which

selects chip 0 and sets the message flag.

8256 060 POWOFF Since we want the display to stay as it is

8257 000 NOP we go directly into standby mode so as to

skip over the processing normally done

after a function is executed in order to

avoid having the annunciators updated.

Remember that a NOP is required after the

POWOFF instruction.

When the DISTEST routine is executed every display segment will have been

lit up. You can amaze your friends with this little routine.

For those of you with the new display (the one with rounded edges) HP has

added a new peripheral address, hex 10. This allows you to make use of six

new READ/WRIT commands. Two of these, READ 5(M) and WRIT 5(M), are

extremely useful. When peripheral 10 is selected these instructions read or

write the contrast nybble of the display to or from digit zero of C. This

allows you to control the contrast of the display. The default setting is

5. Here’s an example of how to change the contrast setting.

-115-

Hexcode Mnemonic Description

130 LDI S&X Load the address of a nonexistent RAM chip and

010 HEX: 010 the new peripheral.

270 RAMSLCT Deselect RAM and Select the peripheral.

3F0 PRPH SLCT

130 LDI S&X Load in a value for the contrast. Let’s try O.

000 HEX: 000

168 WRIT 5(M) Write the zero to the contrast nybble.

3EQ RTN Return.

The display should become very dim, except when viewed from a shallow angle.

Place 00F in place of the 000 and see what happens. The display should

become very dark. If nothing happens when you execute this routine, then

you have an older display that does not have this feature.

The other READ/WRIT commands are not fully understood at this time. However

it is known that the WRIT 15(e) instruction with this peripheral seclected

will crash the display, simultaneously lighting all segments, including the

comma tails. The only way to recover from this particular crash is to

remove the batteries for about one minute and then replace them.

A SKWID display test.

-116-

Our next routine will be a little more wuseful. It’s a base conversion

routine. This little beauty will convert a decimal number in X into a

number of base b. The answer for the base b will end up in the display.

Any base from two to thirty-six may be used. Sorry, but for bases over

thirty-six we run out of letters in the alphabet. This base number is put

into Y and the decimal number to be converted is put into X. Since the

answer comes out in the display it will be lost if you clear the display.

The algorithm for this routine is taken from the PPC ROM routine "TB". This

routine converts base ten to base b. First we compute X MOD Y. This gives

us the value of the rightmost digit of the base b number. This number is

then output to the display. Then we divide X, the decimal number, by Y, the

base b, and take the integer of the result to get rid of the remainder that

we already stripped off using the MOD function. We then check to see if we

are at zero and jump back to the beginning of the loop if zero has not been

reached. The routine is called 10-BASE.

"10-BASE"

Address Hexcode Mnemonic Description

8258 085 "E" Routine name.

8259 013 "S"

825A 001 "A"

825B 002 "B"

825C 02D "

825D 030 "0"

825E 031 "1"

825F 0BS8 READ 2(Y) First we read Y and place it into A and

8260 10E A=C ALL then get X and put it into C. We then

8261 OF8 READ 3(X) check to see if either of them contain

8262 355 INC XQ Alpha data (call to 14D5). If so, the

8263 050 14D5 mainframe call willexittothe ALPHA DATA

[unlabeled] error message. At the end of this routine

Y is in C and X is in A. This routine

-117-

8264

8265

8266

8267

8268

8269

826A

826B

826C

826D

826E

826F

8270

8271

8272

8273

8274

8275

8276

82717

088

OED

064

0A8

260

38D

008

266

2E6

0B5

0A2

106

130

024

306

0B5

0A2

130

00C

268

SETF 5

INC XQ

193B

[INTFRC]

WRIT 2(Y)

SETHEX

INC XQ

02E3
[BCDBIN]

C=C-1 S&X

2C#0 S&X

INC GO
282D

[ERRDE]

A=C S&X

LDI S&X

HEX: 024

?7A<C S&X

INC GO

282D

[ERRDE]

LDI S&X

HEX: 00C

WRIT 9(Q)

also sets decimal mode so that we may do

decimal number manipulations.

Y is left in C by the routine at address

14D5. So then we take the integer of this

and write it out to Y. This ensures that

If it is

not an integer the rest of the routine

will not work correctly. The ?NC XQ 193B

calls the integer/fraction

this number will be an integer.

routine in the

mainframe ROMs. Flag 5 must be set to get

the integer portion of the number in C.

(the fractional part is taken when flag 5

is clear.) Hex mode is then selected.

Since we have the base number in C, we can

convert it to binary in S&X of C. Then

one is subtracted and we sece if the S&X

field of C is equal to zero. If it is,

the carry will not be set and we go to the

DATA ERROR message since a base of one is

not valid. If we get through this we save

the base b-1 number in A. We then load

one greater than the highest allowable

base minus one (37-1 dec. or 25-1 in hex).

Then we compare these two numbers to see

if the base b number is greater than 36.

If it is, the carry will not be set and we

go to the DATA ERROR error message.

Now we load the digit counter into the Q

register. If you remember, this register

is used as a scratch register by the main-

frame. All we have to do is make sure

that none of the routines we call use this

register for scratch. The hex number 00C

is loaded into Q to count the number of

-118-

8278

8279

827A

827B

827C

827D

827E

827F

8280

8281

8282

8283

8284

8285

8286

8287

8288

3C1

0BO

149

024

OF8

2A0

088

OED

064

2FA

201

00E

158

10E

0B8

070

171

INC XQ

2CF0

[CLLCDE]

INC XQ
0952

[ENCPO0]

READ 3(X)

SETDEC
SETF 5

INC XQ

193B

[INTFRC]

7C#0 M

INC GO

0380

[unlabeled]

M=C

A=C ALL

READ 2(Y)

N=C

INC XQ

characters loaded into the display. It is

decremented each time a number is loaded

into the display.

This call to the mainframe enables the

display and then clears it (fills it with

spaces). This does the same thing that we

did at addresses 822F to 823C of the DIS-

TEST routine. The only difference is that

this only takes two words instead of four-

teen.

This call to the mainframe ROMs disables

the display and selects chip 0.

We retrieve X and set the CPU to decimal

mode as required by the next steps.

This is the beginning of the loop to con-

vert the decimal number to base b. The

first thing we do is take the integer of

the number in C. The first time through

this i1s done to make sure the number in X

is an integer. The next time through,

when we loop back, we get rid of the

fractional portion of the number in C.

The mantissa is checked to see if it is

zero. If it is not zero we skip over the

mainframe GOTO so we may continue on

with the routine. Otherwise, we go to

the subroutine in the mainframe that sets

the message flag (User flag 50, see page

95 for full details).

First we save the decimal number in M so

that we may use it later. Now we set up

for the MOD function. We do a decimal MOD

base b.

number into A and get the base b from Y.

To do this we put the decimal

-119-

8289

828A

828B

828C

828D

828E

828F

8290

8291

8292

8293

8294

8295

8296

8297

8298

8299

829A

829B

829C

064

260

38D

008

106

130

030

146

130

03A

306

O0lF

1C6

166

3D9S

01C

0A6

328

149

024

195C

[MOD10]

SETHEX

INC XQ

02E3

[BCDBIN]

A=C S&X

LDI S&X

HEX: 030

A=A+C S&X

LDI S&X

HEX: 03A

7A<C S&X

JC +03

A=A-C S&X

A=A+1 S&X

INC XQ

07F6

[ENLCD]
A<>C S&X

WRIT 12(b)

INC XQ

0952

[ENCP00]

This must be copied into N before entry

into the MOD routine.

We now have the remainder of the decimal

number in C. This is the number we want

to convert to an LCD display character.

The representation of these characters are

the same as for the characters that you

use for the names of your functions. We

SETHEX since the BCD-BIN routine requires

this setting. Then we convert the decimal

remainder to hex in S&X of C. This is

saved in A so we may add 030 hex to it to

get the LCD character representation of

this number. The numbers are in row three

and start at zero and work up to nine.

This result ends up in A.

Now we will check to see if the number we

want to display is greater than 9. This

would mean that the hexcode in A would be

03A or greater. We load 03A into C and

check to see if A is less than C. If it

is, we want to display a decimal number

and skip the next two steps. If the num-

ber we want is greater than 9, ie. an

Alpha character, we subtract 03A from it

and add one to get the Alpha LCD repre-

sentation of the number.

Now we enable the display but do not clear

it. We get the LCD character we want to

write to the display into the S&X of C so

that it may be written out to the left

side of the display using the WRIT 12(b)

instruction. We then call the mainframe

routine to disable the display and select

chip 0.

-120-

829D 278 READ 9(Q) Now we shall decrement the display counter

829E 266 C=C-1 S&X number that is kept in Q. If this number

829F 289 7C GO should reach zero we have twelve digits in

82A0 003 00A2 the display. If we go through the loop

[ERROF] again we will push the rightmost digit off

82A1 268 WRIT 9(Q) the display. To prevent this we put a

call to the OUT OF RANGE error message.

This tells us that the number of digits

wanted was larger than the display could

hold. The carry will be set on the

thirteenth time through the loop since we

will be subtracting one from zero. Then

we shall go to the error message. If we

make it past the error message the decre-

mented counter is restored to Q.

82A2 2A0 SETDEC Now we shall divide the decimal number by

82A3 198 C=M the base b number. This puts the remain-

82A4 10E A=C ALL der into the fractional portion of the

82A5 0BS8 READ 2(Y) number which is removed when we loop back.

82A6 261 INC XQ First we must set the CPU back to decimal

82A7 060 1898 mode so we may do a decimal divide. We

[DV2-10] get the decimal number from M and put it

82A8 2B3 JNC -2A into A and put the base b into C. Then

the divide routine in the mainframe ROMs

is executed and we loop back to the start

of the loop at address 827E.

Try this routine a few times. Place sixteen into Y and 999 into X. Then

execute 10-BASE. The result in the display will be 3E7 pushed to the left

of the display. Now if you hit the CLX button the characters in the display

will be erased. The number in the X register will not be changed. If you

hit the CLX button again then the number in the X register will be cleared.

This routine does not provide for an input of zero in the X register. Don’t

forget to update the FAT before you try to execute this routine or you will

get NONEXISTENT.

-121-

WRITING CUSTOM ERROR MESSAGES

This section will deal with how to place your own error messages into the

display. For example, if the base b in the last routine is greater than 36,

you might want to display the error message BASE > 36. This would be much

better than using the DATA ERROR message, which is used for many other

purposes by the HP-41 system. A customized message would also give you the

exact problem with your inputs to the routine. In order to do this we will

show you how to program a routine that will output a message of up to

twelve characters to the display. Three instructions will be introduced.

They are FETCH S&X, POP ADR, and GOTO ADR. First we will show you

a sample of what you would have to do for setup to use the routine that

displays the message for you. We will use the addresses starting at 8400

for our example. The message we will display in our example will be

BASE > 36.

Address Hexcode Mnemonic Description

8400 3A1 INC XQ This routine checks if wuser flag 25 is

8401 088 22ES8 set; if this is the case we exit to a

[ERRSUB] Normal Function Return, otherwise we re-

turn and continue on with this error pro-

cessing.

8402 379 This is the call to our subroutine that

8403 03C GOSUB will output the characters in the message

8404 020 8420 we wish to display. The characters are

input immediately after the subroutine

call.

8405 002 "B" This is the first letter in the message we

will display. Notice that the message is

not in reverse order like the names of our

routines.

8406 001 "A" These are the second through the next to

8407 013 "S" last letters. The hexcodes are just the

-122-

8408 005 "E"

8409 020 "

840A O03E "

840B 020 "

840C 033 "3"

840D 236 "6"

840E 201 INC XQ

840F 070 1C80
[MSG105]

8410 3ED INC GO
8411 08A 22FB

[ERR110]

LCD representation of the characters as

presented on page 108.

This is the last letter of our

message. Notice that the leftmost

digit in the hexcode has been set to 2.

In our routine when bit nine is set, the

leftmost hexcode digit is either 2 or 3.

This signals to the routine that this word

contains the last character to be

displayed.

This mainframe routine enables chip O,

sets the message flag, and prints the

message if the printer is in trace mode.

This routine checks if we need to back-

step, due to an error while we were

single-stepping or running a program,

stops a running program, and computes a

valid line number. It then exits to a

Normal Function Return.

Now we know how to set up for the routine but don’t know how to get the

message out to the display. This next little routine will send the

characters out to the display and then left justify them.

Address Hexcode Mnemonic

8420 3Cl1 INC XQ

8421 0BO 2CF0

[CLLCDE]

8422 1BO POP ADR

8423 330 FETCH S&X

Description

This is a call to the mainframe routine

that enables the display and then clears

it (fills it with spaces).

This instruction places the return address

from the GOSUB statement into nybbles 3 to

6 of C. This is the address of the first

-123-

8424

8425

8426

8427

8428

8429

842A

842B

842C

842D

842E

23A

3E8

276

3E7

276

3D7

130

020

10E

31C

3F8

C=C+1 M

WRIT 15(e)

C=C-1 XS

JC -04

C=C-1 XS

JC -06

LDI S&X

HEX: 020

A=C ALL

R=1

READ 15(e)

instruction after the GOSUB statement.

This would be the "B" character. We then

use the FETCH S&X instruction to get the

hexcode of the instruction at the address

in nybbles 3 to 6 of C. The hexcode for

this instruction is placed into the S&X

field of C. The FETCH S&X instruction is

the beginning of the loop to output the

characters to the display.

We now increment the return address by one

so that we may get the next instruction if

we loop back again to the FETCH S&X in-

struction.

Now the character in the S&X of C is

written out to the display using a nine

We then sub-

If the

exponent sign is zero we get an underflow

bit transfer instruction.

tract one from the exponent sign.

which sets the carry and we jump back. We

subtract one again to see if the exponent

sign was one. If this was the case then

we will get an underflow which sets the

carry and we jump back. If the carry

still has not been set then we know the

9th bit was logic one and the character

is the last in the message.

This loads the hexcode for the space

character into C and then it is saved in

A. This part of the routine will strip

off the spaces to the left of the message

if there are any. The contents of the ADR

field of C is also saved in A.

Set pointer to 1 so we may compare digits

0 and 1 of A and C.

This instruction reads the leftmost char-

-124-

842F

8430

8431

8432

8433

36A

3F3

3A8

0AE

1EO

A#C R«

JNC -02

WRIT 14(d)

A<>C ALL

GOTO ADR

acter in the display iato S&X of C and

rotates the display left by one character.

The character just read in becomes the

rightmost character in the display.

This is now compared to the hexcode for a

space. If the two are equal we want to

rotate the display so that the message

will be moved toward the left and a space

will be put at the right. Then we jump

back to the READ instruction to get the

next character. If A and C are not equal,

we have hit a character that is not a

space, i.e., the beginning of our message;

we don’t want to rotate this to the left

of the display so we use the WRIT 14(d)

instruction. This will write out the

hexcode to the left of the display and

shift all of the other characters right by

one.

Now we get the address of the next

instruction, which we saved in nybbles 3

to 6 of register A, and push it into the

PC register wusing the GOTO ADR

instruction.

If you want to use this routine, you must change the call to the DATA ERROR

message at address 8273.

this call.

Address Hexcode Mnemonic

8273

8274

8275

8276

027

365

08C

000

JC +04

GOTO

8400

The new sequence should be put into the place of

Description

If the carry is set by the preceding in-

struction (?A<C), we don’t want to go to

the error message. We jump over the error

exit because the calculator will interpret

-125-

the first two words as a ?NC XQ. If the

carry is set, then this instruction will

be skipped, but the third word of the

relative GOTO will then be executed as

an instruction. If the carry is not set,

the JC instruction will be skipped and we

shall go to the error message. The rest

of the routine must be moved down by two

words. None of the instructions after the

GOTO change, they are just moved down.

Now try the 10-BASE routine with a base greater than 36 and the error

message BASE > 36 should come into the display.

The mainframe ROMs have a routine that does almost the same thing as the

routine that we wrote to display messages. There is one main difference

between the routine we wrote and the one in the mainframe. With ours you

may put characters from rows 10-13 of the LCD character table into the

message at any point. With the one in the mainframe ROMs you may only have

the last letter of the message from rows 10-13 of the LCD table. This is

because the mainframe ROM routine only checks to see if the exponent sign

(bits 8 and 9) of the character is not equal to zero. If it does not equal

zero then the end of the message is reached. In our routine we check to see

if bit 9 is set before we end our message. If bit eight is set and the

middle digit is zero, then the character to be displayed will be from row 10

of the LCD table. This only occurs if we are using nine bit transfers. The

character "a" would have the hexcode 101. Our routine also left justifies

the message in the display. The mainframe routine at address O7EF leaves

the message right justified. In order to use the routine at O7EF you just

replace the GOSUB 8420 statement in the error message with the 2NC XQ 07EF

instruction.

Well, that’s all folks. I hope this book has helped to give you an insight

into how to program in the native language of the 41. There are many

routines that need to be programmed using MCODE because of the speed

-126-

advantage or just because the desired result cannot be achieved using User

code programming.

-127-

THE END

-

W1(1 O\i Q{f{\\\\
(1o t\»
< 5’1/,\\\\\,\\'\

-128-

APPENDIX A-List of suppliers

You may obtain MCODE storage devices (MLDL) from the following

organizations.

ERAMCO MLDL - ERAMCO Systems, Valentynkade 27-11,

NL-1094 SR Amsterdam, The Netherlands.

In the U.S.A. contact: PPC, P.O. Box 9599

Fountain Valley CA 92728-9599 USA.

phone 714-754-6226

or EduCalc Mail Store, 27953 Cabot Road,

Laguna Niguel CA 92677 USA.

phone 714-831-2637

PROTOCODER II - ProtoTECH Inc., P.O. Box 12104 Boulder, CO 80303 USA

Phone 303-499-5541

For the annotated listing of the HP-41 mainframe ROMs contact:

PPC, P.O. Box 9599

Fountain Valley, CA 92728-9599 USA.

phone 714-754-6226

or Zengrange LTD., Greenfield road,

GB-Leeds, WYORKS LS9 8DB, England.

phone 0532 489048

or Editions de Cagire, 77 rue de Cagire,

F-31100 Toulouse, France.

ZENROM: The ZENROM is a custom programmers module manufactured by

Hewlett-Packard for Zengrange Ltd. It has the Dbest

dissassembler for MCODE to date. With this module you can key

-129-

in any synthetic instructions from the keyboard without the

help of key assignments. To obtain the ZENROM write to:

Zengrange Ltd., Greenfield Road,

GB-Leeds, WYORKS, LS9 8DB, England

Phone 0532 489048

In the United States: EduCalc Mail Store, 27953 Cabot Road,

Laguna Nigel CA 92667 USA.

phone 714-831-2637

or PPC, P. O. Box 9599,

Fountain Valley CA 92728-9599 USA.

phone 714-754-6226.

Information on EPROM boxes may be obtained from the following sources.

Contact them for the dealer nearest you.

Corvallis MicroTechnology, Inc. 33815 Eastgate Circle, Corvallis OR 97333

USA. phone 503-752-5456

Hand Held Products, P.O. Box 2388, Charlotte, North Carolina 28211 USA

Phone 704-541-1380

Prototech Inc., P. O. Box 12104, Boulder, CO 80303 USA. Phone 303-499-5541

The ASSEMBLER 3 EPROM may be obtained from:

Deep Thinking Software C/O Michael Thompson, 24 Canterbury Road,

Camberwell, Victoria 3124, Australia.

The DAVID ASSEMBLER EPROM may be obtained from:

ERAMCO Systems, Kromboomsloot 16-3

1011 GW Amsterdam, The Netherlands

-130-

Phi Trinh’s LOADP software package may be obtained from:

Phi Trinh, P.O. Box 184, Rockport WA 98283 USA

Here are the two major English language Users’ Groups that support the

HP-41. For information on either one, send $1 or a self-addressed envelope

with 3 ounces of postage to:

Club for HP Handheld Users, 2545 W. Camden PIl., Santa Ana, CA 92704 USA.

Phone 714-754-7757, noon to 4 AM Pacific time. Publishes the CHHU Chronicle.

PPC, P.O. Box 9599, Fountain Valley, CA 92728-9599 USA. Phone 714-754-6226.

Publishes the PPC Journal.

Other HP-41 Users’ Groups include:

CCD (ComputerClub Deutschland),

Postfach 2129, D - 6242 Kronberg 2, West Germany.

Publishes PRISMA (German) supporting synthetic programming and MCODE.

PPC-Holland, c/o TH Boekhandel Prins, Binnenwatersloot 30, NL-2611 BK Delft,

The Netherlands.

PPC-Melbourne, P.O. Box 512, Ringwood, Victoria 3134, Australia.

Membership enquiries: Editions du Cagire, 77 rue du Cagire, F-31100

Toulouse, France. Publishes PPC Technical Notes, supporting advanced

synthetic programming and MCODE.

PPC-Toulouse, 77 rue du Cagire, F-31100 Toulouse, France.

Publishes PPC-T (French) supporting synthetic programming and MCODE.

PPC-UK, c/o Astage, Rectory Lane, GB - Windlesham, Surrey, GU20 6BV,

England. Membership enquiries: ¢c/o Dave Bundy, 9 Kings Court, Kings Avenue,

GB - Buckhurst Hill, Essex, IG9 5LP, England. Publishes "Datafile"

(English) supporting synthetic programming and beginning MCODE.

-131-

APPENDIX B - What’s up on entry to an MCODE routine

Here we shall explain the status of the CPU upon entry to an XROM function.

Here’s the low down on what’s up:

1.) CPU is set to hex mode.

2.) Pointer P is selected and set to 1. The value of Q is variable.

3.) Flags 48 to 55 of the user flag register are placed into ST. CPU flag

7 corresponds to user flag 48 and 0 to 55. This is called Status Set 0

(SS0). When this is contained in ST the User flag number may be

calculated from a bit in ST by subtracting its number from 55 (i.e.

status bit 5 is the message flag (50) since 50 = 55 - 5). Flags 1 and

2 can be assumed to be clear upon entry to an XROM function since they

correspond to the pause and I/O flags (the pause flag is cleared

whenever any function is executed).

4)) RAM chip zero is selected.

5.) G is equivalent to the first byte of the XROM instruction. This is Aj

in hex, where j may range from 0 to 7. Therefore bit three is always

clear upon entry to an XROM function. This is useful for partial key

sequencing which will be explained in detail later.

6.) The address of the first line of the MCODE program is in nybbles 3 to 6

of C. Nybbles 12 and 13 are always zero.

If your function is executed as a global execute in a program (XEQ

"ABCDEFG"), then some of the above are different. In particular, the

pointer is set to 3 instead of 1, register G contains the ROM ID number (1

to 31), and it cannot be assumed that nybbles 12 and 13 of C are zero. You

will not normally encounter this situation, because the instruction will

change to an XROM when it is keyed into the program, unless the correspon-

ding module is not present at that time.

-132-

APPENDIX ZZZzzz... - The 3 CPU modes

There are three principal CPU modes. They are Deep sleep (calculator is

off), Light sleep (41 on but CPU not running; also known as standby mode.),

and Running (41 is executing code). If the CPU PC is at address 0000 as the

result of a POWOFF instruction, it is fixed there and the 41 is in light

sleep or deep sleep, waiting for a key to be pressed. If the ON key is

pressed while in deep sleep, the carry is set, providing for a branch to the

deep sleep wakeup routine at 01AD. If any key is pressed while in standby

mode, the carry flag is clear and the light sleep wakeup routine at 0180 is

executed.

-133-

APPENDIX C - Other Advanced Stuff

In this section we shall cover the various keycodes used by the mainframe,

and how to make your MCODE programs nonprogrammable and/or prompting. First

we cover the special key tables.

The mainframe has three tables listed in its coding that define keycodes for

different keyboards. They are the default function keyboard (this is used

when an unassigned key is pressed), the ALPHA keyboard (used when we are in

alpha mode), and the partial key table, which is consulted during a partial

key sequence. There is also a table contained in the hardware of the micro-

processor. Its values are placed into the KY register whenever a key is

pressed. From these values two more key tables are computed. They are the

logical key table and the assignment key table. The tables are shown on

pages 149-150.

In order to make a MCODE function nonprogrammable (so the function will run

instead of being inserted when executed in program mode), just make the

first executable instruction of the function a NOP. For example, if the

first line of the GE routine were a NOP and all of the rest of the code was

pushed down by one word, you could execute "GE" in program mode and you

would end up at line 000 of the last program in memory. It would not be

inserted as a program line. We shall rename the routine and make it nonpro-

grammable. The new name is GEE.

IIGEE"

Address Hexcode Mnemonic Description

82AB 085 "E" Name for GEE function.

82AC 005 "E"

82AD 007 "G"

82AE 000 NOP This is the start of the routine. The

address in the FAT points to this

instruction.

-134-

82AF 378 READ 13(c¢) This was the first instruction in the old

routine. The rest of the routine is the

same as before.

82B0 05A C=0 M
82B1 01C R= 3
82B2 0DO LD@R 3
82B3 0C4 CLRF 10
82B4 2C8 SETF 13
82B5 328 WRIT 12(b)
82B6 3EO RTN

The address in the FAT points to the NOP instruction, not the READ 13(¢c)

instruction. Now if you execute "GEE" in program mode you will end up at

line 000 of the last program in memory; the instruction will not be inserted

as a program line.

In order to allow a function to become prompting, the first and second

letters of the program name have the leftmost digit of their hexcode set to

something other than zero. For example, here is what the name for the COPY

function in the calculator looks like.

Hexcode Letter

099 "y
010 "P"
00F "O"
103 "C
first executable instruction

Notice that leftmost digit of the hexcode of "C" is a one. This signals to

the calculator that some kind of prompt is needed. This digit may also be a

two or three. The leftmost digit in the second letter of the function can

range from zero to three. Here is a chart of the different combinations

that produce prompts.

-135-

Example Leftmost digit of Type of prompt

Ist Chr 2nd Chr

SIN 0 - If the leftmost digit of the first character of

the name is zero, the second character is not

looked at.

COPY 1 0 Alpha input only (null input okay).

DEL 1 1 Three digits or four by pressing EEX.

1 2 Same as for COPY except null input is not

accepted (hitting the ALPHA key twice while

entering no letters).

FIX 1 3 Allows entry of a single digit, an indirect

register, or indirect stack.

STO 2 0 Accepts two digit entries, indirect, indirect

stack, and stack. When the +, -, * or / key

is pressed at the double prompt the function

defaults to the storage arithmetic function.

ASTO 2 1 Same as above except the storage arithmetic

part does not work.

FS?C 2 2 Allows two digit entries, indirect, or indirect

stack.

3 Same as above.

LBL 3 0 Allows non-null alpha input or two digit num-

bers.

XEQ 3 1 Accepts non-null alpha, indirect stack, stack,

or two digits inputs.

Allows two digit input or non-null alpha.

GTO 3 3 Accept two digit entries, non-null alpha,

indirect, indirect stack. If the decimal key

is pressed while there are two prompts showing,

the function changes to GTO . _ _ _

For numeric entries the hex equivalent of the number entered is put into the

S&X field of CPU register A. For example, if you entered 46 at the double

-136-

prompt, then 02E would end up in S&X of A. For indirect inputs just add hex

80 to the hex value of the number entered. NOTE: Stack suffixes (the ones

that appear in the display as ST _) apply only to mainframe functions.

These suffixes will not operate as might be expected in your XROM functions.

Alpha entries are placed into register Q of the status registers. They are

put there in reverse order and right justified with unfilled places being

filled with 00 bytes . For example, if you filled in "QWERTY" at the prompt

the Q register would look like the following: 00 Y T R E W Q. The 00 is the

filler byte since there were only six letters entered.

Any function that uses one of these prompts should also be made nonprogram-

mable. If it is executed in program mode the function will be inserted as a

program line, and the value keyed in at the prompt will be lost. Only

mainframe functions can use that value when inserted in a program.

The prompts for the above functions are dictated by a process called partial

key sequencing. This is an esoteric procedure that has not previously been

documented. Very few people fully understand its intricacies. The leftmost

hex digit of the first two characters of the name in these MCODE functions

are called op bits. These are used by the mainframe to tell what kind of a

prompting function is being executed. The op bits for the first character

are called opl, and the bits for the second character are called op2 (these

are the leftmost hex digits in the first two characters of the name as

previously described).

These op bits form part of a special pair of status bytes called PTEMPI and

PTEMP2. PTEMP2 is saved in register G during partial key sequence proces-

sing and in nybbles 3 and 4 of status register ¢ during standby mode while

in a partial key sequence. The eight bits of PTEMP2 are designated as

follows:

-137-

Bit Description

w
W

N
N
-

O Bit 0 of op2 (bit 8 of the second character of the function name).

Bit 1 of op2 (bit 9 of the second character of the function name).

Bit 0 of opl (bit 8 of the first character of the function name).

This bit is always zero. Bit 1 of opl initially accompanies the

preceding 3 bits, but it is left in bit 3 of ST, before PTEMP2 is fully

formed. Bit 1 of opl is tested at that point, then it is no longer

needed.

If this bit is set the function will be inserted as a line in a program.

This is called the INSERT bit. Before setting this bit, the mainframe

checks that you are in program mode and that the function is

programmable.

This is the XROM bit indicating the function resides in a non-mainframe

ROM. This bit only affects numeric entries. When clear, it indicates

that the numeric entry value from the S&X field of A is to be merged

with the function code as the postfix of a mainframe function. When the

XROM bit is set, the value is left in S&X of A for use by the XROM

program.

This is the IND bit. When set, hex 80 is added to the number in S&X of

A. This bit’s use is associated with the partial key sequencing of

mainframe functions using an indirect operand.

This bit is unused by PTEMP2.

PTEMPI1 is formed by setting aside the rightmost digit of the corresponding

key from the partial key table, and multiplying the two leftmost digits by

4. Bits 0 to 3 of PTEMP2 are then added to this value. Note that there is

no overlap in this addition, since the middle digit of the key table entry

is always divisible by two, and since bit 3 of PTEMP2 is always zero. From

this we get the following definitions for the 8 bits of PTEMPI:

Bit Description

0

1

This is bit 0 from PTEMP2 (bit 0 of op2).

Bit 1 of PTEMP2 (bit 1 of op2).

-138-

2 Bit 2 of PTEMP2 (bit 0 of opl).

If a digit key was pressed then this bit will be set. This is for

digits 0 to 9.

4 If a key from row one or two of the keyboard (A through J) was pushed

then this bit will be set.

When the ALPHA mode key is pressed this bit is set.

This bit is set when the SHIFT key is pushed.

7 When the decimal point is pressed this bit is set.

Upon return from a partial key sequence keystroke, PTEMPI is in register ST,

PTEMP2 is in register G, the rightmost digit of the keycode from the partial

key table is in the mantissa sign of A, and the keycode from the logical key

table is in nybbles 1 and 2 of register N.

In order to write your own partial key sequencing routine you must merely

ensure that bit three of register G is zero upon entry. The rest of PTEMP2

is generally meaningful only for functions whose prompting is dictated by

the op bits in its name, and can usually be ignored when setting up partial

key sequences in the coding of an MCODE program. There are four entry points

used for this purpose. They are at 0E45, 0E48, 0E4B, and OE50. Upon entry

to these locations the display must be enabled. These addresses must be

called as a subroutine so control can be returned to your program once a key

has been pressed. Now we shall describe each entry point.

Address Description

0E45 This entry appends a single underscore to the display. The

[NEXTI1] display is then left justified. The FIX instruction is an

example of a single underscore function.

0E48 Here two underscores are appended to the display before left

[NEXT2] justification takes place. The STO function is an example of

this type of prompt.

0E4B Three underscores are placed into the display by this entry

[NEXT3] point. The display is then left justified. The DEL instruction

is an example of this type of prompt.

-139-

0ESO0 This entry point does not append an underscore to the display.

[NEXT] The display must have at least one character present which is not

a space, otherwise the left justify routine will go into an

infinite loop since it looks for a non-space character.

These routines set the partial key (46) flag and the message flag (50).

(Setting the message flag turns out to be unnecessary in this particular

case.) They then update the annunciators in case the ALPHA key was pressed

in preparation for entry of a function name or the SHIFT key was pressed

during entry of the characters of a function name. Finally the keyboard is

reset, and we go into standby mode.

When a key is pressed, the calculator starts executing code and figures out

that we are in the middle of a partial key sequence (the partial key flag is

set). The partial key table is then consulted in order to construct PTEMPI.

Then the display is right-justified and all of the prompts (underscores) are

removed. Finally a check is made to see if the backarrow key was pressed.

If it was, a return is made to the step immediately following the execute

statement of the partial key sequence routine. If some other key is

pressed, the step immediately after the execute statement is skipped. Your

program may now use PTEMPI and the contents of the mantissa sign of A

(and/or the logical keycode in nybbles 1 and 2 of register N), to figure out

which key was pressed and go off and do the appropriate stuff. If you have

a multiple prompt you will want to place the pertinent character into the

display and call one of the above routines which appends one less prompt

than was previously in the display. When you are finished prompting for

input you should execute the routine at 0385 to clear the message flag (50)

and the partial key flag (46) in order to tell the calculator you are no

longer in a partial key sequence.

We now introduce a program which uses one of the partial key sequence entry

points. It is a routine for entering non-normalized numbers directly from

the keyboard. The 0-9 and A-F keys are reassigned to allow them to be

executed from an unshifted keyboard. The routine places the ASCII digits

into alpha and then codes the rightmost fourteen characters into X upon

-140-

exit. This routine was written by Clifford Stern. It is called HXENTRY.

"HXENTRY"

Address Hexcode Mnemonic Description

82B7 099 "Y" Routine name

82B8 012 "R"

82B9 014 "T"

82BA 00E "N"

82BB 005 "E"

82BC 018 "X"

82BD 008 "H"

82BE 345 INC XQ These first two executes clear the alpha

82BF 040 10D1 register (10D1) and clear and enable the

[CLA] display (2CFO0).

82C0 3Cl1 INC XQ

82C1 0BO 2CF0

[CLLCDE]

82C2 115 INC XQ Next a single underscore is pushed into

82C3 038 0E45 the right of the display which is then

[NEXTI] left justified. Chip 0 is then enabled so

the partial key sequence flag (46) and the

message flag (50) can be set. The key-

board is then reset and we go into standby

mode.

82C4 07B JNC +0F If the backarrow key is pressed we return

here and jump to a routine which deletes

the rightmost character from both the

display and the alpha register.

82C5 04C 7FSET 4 If flag 4 is set, a key from row 1 or 2

82C6 11B JNC +23 has been pressed. We jump to another flag

test if the flag is clear.

82C7 35E 7A#0 MS If we make it to here a row 1 or 2 key has

82C8 3D3 JINC -06 been pressed. The least significant digit

-141-

82C9

82CA

82CB

82CC

82CD

82CE

82CF

82D0

82D1

82D2

82D3

82D4

130

007

33C

31E

3AB

OBE

2FC

3E8

110

OEB

3B8

149

LDI S&X

HEX: 007

RCR 1

7A<C MS

JNC -0B

A<>C MS

RCR 13

WRIT 15(e)

LD@R 4

JNC +1D

READ 14(d)

INC XQ

of the keycode (see partial key table on

page 150) is placed into the mantissa sign

of A.

pressed.

If it is zero, the J key has been

Since this is not a hex digit we

ignore the key and jump back to 82C2.

Now we load a seven and rotate it into the

mantissa sign of C so we may compare it to

the number in the mantissa sign of A.

This has the

clearing what is now digits zero and one

of C.

If the key pressed is not less than G (7)

then we ignore it and jump back to 82C2.

additional feature of

If we get to here we know that a key from

A to F has been pressed. First we place

the least significant digit of the keycode

from the partial key table into nybble 0

of C. Then we send it to the right end of

the display. The partial key sequence

routine leaves the pointer set to one so

we may load a 4 to obtain the ASCII equi-

valent. We then jump to the code that

appends this to alpha.

This is where we jump to if the backarrow

key was pressed. Upon return from a par-

tial key sequence the display is right

justified and the prompts are deleted.

Therefore the character we want to remove

is the rightmost in the display. The READ

14(d)

right by one character. When we return to

instruction rotates the display

82C2 a prompt is pushed into the right of

the display and the character to be de-

leted is shifted off the display.

First chip 0 is enabled and the display is

-142-

82D5

82D6

82D7

82D8

82D9

82DA

82DB

82DC

82DD

82DE

82DF

82E0

82E1

82E2

82E3

82E4

82E5

82E6

82E7

82E8

82E9

82EA

82EB

82EC

82ED

82EE

024

238

10E

1F8

0AA

23C

2F0

1B8

0AA

23C

2F0

178

04A

0AA

23C

2F0

0AE

23C

228

073

00C

07B

OBE

2FC

0DO0

368

0952

[ENCPO00]

READ 8(P)

A=C ALL

READ 7(0)

A<>C R«

RCR 2

WRITE DATA

READ 6(N)

A<>C R«

RCR 2

WRITE DATA

READ 5(M)

C=0 R«

A<>C R«

RCR 2

WRITE DATA

A<>C ALL

RCR 2

WRIT 8(P)

JNC +0E

7FSET 3

JINC +0F

A<>C MS

RCR 13

LD@R 3

WRIT 13(c)

disabled.

one upon exit from the partial key sequen-

The pointer has been left at

ce routine. What is now done is to delete

the rightmost character from the alpha

This is

manipulation of the first and last digits

register. done by successive

of each register of alpha. We then jump

down to a point that enables the display

and goes back to 82C2.

This is where we end up if the key that is

pressed is not a key from row 1 or 2. If

flag 3

pressed.

is set then a numeric key was

If a numeric key was not pressed

then we go to a point to check if the

decimal point was pressed.

Now we know a numeric key has been pres-

sed. The number is retrieved from the

mantissa sign of A and rotated into nybble

zero of C and a three is loaded into

nybble 1.

right of the display.

This is then written out to the

We use an eight bit

display transfer since we can’t depend on

nybble 2 being even.

-143-

82EF

82F0

82F1

82F2

82F3

82F4

82F5

82F6

82F7

82F8

82F9

82FA

82FB

82FC

82FD

82FE

82FF

8300

8301

8302

058

149

024

051

0B4

042

058

3D9

01C

253

28C

01B

2C4

03B

130

370

106

0BO

366

207

G=C
INC XQ
0952
[ENCP00]
INC XQ
2D14
[APNDNW]
C=0 @R
G=C

INC XQ

07F6

[ENLCD]

JNC -36

7FSET 7

JINC +03

CLRF 13

JINC +07

LDI S&X

HEX: 370

A=C S&X

C=N

?A#C S&X

JC -40

This is the place we enter to append

characters to alpha. The pointer is now

zero so nybbles zero and one of C are

saved in G. We then enable chip 0 and

disable the display (0952). The append

routine (2D14) takes the contents of G and

places it as the last character in alpha.

The purpose of this pair of instructions

is to clear bit 3 of register G. This

will provide for PTEMPI to be correct upon

return from the next execution of partial

key sequencing.

We now enable the display so that we may

return to address 82C2.

This routine may be inserted as a line in

a program. If we are in a running program

the R/S key will halt digit entry and the

program will continue. However if the

decimal key is pressed the program will be

terminated. If flag 7 is set the decimal

CPU flag 13 is cleared

in order to halt a running program. We

key was pressed.

then go on to finish the routine.

If flag 7 is not set then a key other than

a hex entry or the decimal point has been

We shall now check if the R/S

key was pushed. We load the logical key-

pressed.

code of R/S into nybbles one and two of C

then transfer this to A. The logical

keycode for the key that was pressed is in

nybbles one and two of N. We retrieve

this into C and they are compared. If the

R/S key was pressed we continue on with

-144-

8303

8304

8305

8306

8307

8308

8309

830A

830B

830C

830D

830E

830F

8310

8311

8312

8313

3D9

0BO

261

000

149

024

215

00C

130

049

23C

OEE

35C

00E

1B8

0AE

33E

INC XQ
2CF6
[CLRLCD]
INC XQ
0098
[RSTKB]
INC XQ
0952
[ENCP00]
INC XQ
0385
[RSTSQ]
LDI S&X
HEX: 049
RCR 2
C<>B ALL

A=0 ALL

READ 6(N)

A<>C ALL

7A<B MS

the routine. Otherwise, we ignore the key

and jump back to 82C2.

The display is cleared (2CF6) to clean it

up. The keyboard is then reset (0098).

This is just waiting for the release of

the key.

could finish and

If this is not done the routine

the function on the

depressed key would be executed.

Chip 0 is now enabled and the display is

disabled (0952).

the partial key sequence (46) flags are

cleared (0385). User flags 48 to 55 are

loaded into register ST.

The message (50), and

This value is used to CODE the rightmost

fourteen digits of alpha. We shall now

rotate these digits into nybbles 12 and 13

of register C. They are then transferred

to register B so we may do a series of

comparisons and possible additions with

register A.

The pointer is set to 12 so we may add the

two nybbles in A and B when an alphabetic

character is processed.

Clear what will become the accumulator

register. If there are fewer than eight

characters in alpha the inner loop won’t

be executed 14 times so we must have

leading zeros in C to account for this.

Characters eight through fourteen are

placed into C so we may begin coding them.

This is the beginning of the outer loop.

The contents of C are either status regis-

ter M or N.

We now check to see if we have an alpha

-145-

8314

8315

8316

8317

8318

8319

831A

831B

831C

831D

017

122

3EE

OBE

3EE

2FC

34E

3C7

30C

02F

JC +02

A=A+B @R

LSHFA ALL

A<>C MS

LSHFA ALL

RCR 13

?A#0 ALL

JC -08

?7FSET 1

JC +05

character, or instead a digit character or

a null byte. If the mantissa sign of A is

less than four the latter is the case (the

most significant hex digit of an alpha

character is four). If that is true then

we skip the addition step because the

least significant digit of that byte is

the correct hex equivalent. For alpha hex

numbers a nine must be added to this digit

to correct it (i.e. A is 41 in ASCII and

we add 9 to get 4A which sets the right-

most digit to the character it repre-

sents). This is the start of the inner

loop.

The A register is shifted left to discard

the left nybble of the character just

examined. This places the desired digit

in the mantissa sign of A. We now place

this into C and shift A left again to

bring up the next character to be coded.

The digit in the mantissa sign of C is now

rotated to the right end.

If there are more characters to be coded,

A will not be equal to zero and we jump

back to the start of the inner loop at

address 8312.

If this is the first time through the loop

this flag will be clear. We know this

because status set zero was placed in

register ST. Status set 0 is in ST as a

result of the call to 0385, and flag 1

corresponds to the pause flag which is

cleared by that routine. If it is set we

jump to the end of the routine and finish

up.

-146-

831E 308 SETF 1 Setting this flag tells us that this is

the second time through the inner loop.

831F 10E A=C ALL The result from the first execution of the

8320 178 READ 5(M) inner loop is temporarily saved in A so we

8321 38B JNC -0F may fetch the rightmost seven characters

of alpha. We then jump back to the begin-

ning of the outer loop at address 8312.

8322 OEE C<>B ALL The final value is in C and we save it in

8323 0B9 INC GO B as required by the routine at address

8324 04A 122E 122E, which sends register B to X accor-

[RCL] ding to the status of the stack enable

flag (CPU flag 11).

To use this routine execute HXENTRY. The program will place a single prompt

in the left of the display. You may now press any key, with only the 0 to F

keys entering digits into the display. The ON, R/S, and Decimal Point keys

will terminate the routine. If the R/S key is pressed when the function was

executed in a running program the program resumes running. With the decimal

point the program is terminated. The backarrow key deletes the rightmost

character in the display and alpha. All other keys are ignored.

We are providing another routine that executes just the CODE section of

HXENTRY; the contents of alpha are coded into X. However, you must enter

the alpha characters manually (or from a program) and then execute CODE.

Here is the routine. It simply uses the CODE portion of HXENTRY to do all

of the dirty work.

-147-

Address Hexcode Mnemonic

8325

8326

8327

8328

8329

085

004

00F

003

313

nEn

"D

ol

e

JNC -1E

CODE

Description

Routine name.

This is a jump back to the CODE section of

HXENTRY.

-148-

61

41

7E

46

Alpha Keyboard

10C

62

42

25

47

10C 10C

63 64 65

43 44 45

ID 3C 3E

48 49 4A

10E 7F 19A 19B 207

10E4B 4C 4D 108

5E

4E

2D

51

2B

55

2A

59

2F

3A

37

34
56

31

5A

30

20

D 24 187

4F 50

38

53

35

57

32

3D

2E

2C

0

39

54

36

58

33

3F

17E

105

MAINFRAME KEY TABLES

Default Function Table

148

147

170

171

10E

10E

10C

153 151

160 152

10C

157

156

14C 15C 15D

175 159 15A

10F 1CF 1DO0

1EO0 191

100 196

183

178

141

146

140

145

142

167

143

1A8

17

186

14

19C

11

172

10

-149-

190

185

I1C 1B

1A9

18

14E

15

19D

12

176

1A

10C

155

150

15E

15B

107

108

177

0

1AC

14F

16

19E

13

198

105

Logical Keycodes

46

08 18

00 10

09 19

01 11

0A 1A

02 12

0B

03

0Cc 1C

04 14

0D 1ID

05 15

OE 1E

06 16

OF 1IF

07 17

28

20

29

21

2A

22

2B

23

45

38

30

39

31

3A

32

3B

33

2C

24

2D

25

2E

26

2F

44

48

40

49

41

4A

42

4B

43

3C

34

3D

35

3E

36

3F

37

MORE MAINFRAME KEY TABLES

PARTIAL KEY TABLE KEYCODES from KY ASSIGNMENT KEY TABLI

000 000 080 18 C6 C5 C4 (top keys not assignable)

09 19 29 39 49
041 042 043 044 045 10 30 70 80 CO 01 11 21 31 41

0A 1A 2A 3A 4A
046 047 048 049 040 11 31 71 81 Cl 02 12 22 32 42

OB 1B 2B 3B 4B
100 000 000 000 000 12 32 72 82 C2 03 13 23 33 43

0C 2C 3C 4C
000 000 000 OOF 13 73 83 (3 04 24 34 44

0D ID 2D 3D
002 027 028 029 14 34 74 84 05 15 25 35

OE IE 2E 3E
001 024 025 026 15 35 75 85 06 16 26 36

OF ITF 2F 3F

003 021 022 023 16 36 76 86 07 17 27 37

10 20 30 40
004 020 200 000 17 37 771 87 08 18 28 38

-150-

APPENDIX D - Using the Polling Points

You may remember when we were describing which words in a 4K page had been

set aside for specific purposes, the words from addresses PFF4 to PFFA were

off limits unless you knew exactly what you were doing. During certain

specific times the 41 conducts a process called polling. This entails

checking a fixed polling point in all ROMs from page 5 to F. In order to

use these points several conditions must be observed. We shall now describe

how these may be used. First, if there is any nonzero word in one of the

polling point addresses and the calculator polls that address then it will

branch there and start executing code. Usually we put a JNC that jumps to

the start of the routine we wish to execute. The seven different polling

points are polled at specified times. These times are given below.

Address Description of poll

PFF4 This is the pause loop interrupt. Any time the calculator

executes the PSE instruction this address is polled.

PFF5 This address is polled after any RPN function is executed, if user

flag 53 or peripheral flag 13 is set. This includes execution of

functions during a User code program, and is called the main

running loop interrupt.

PFF6 This is polled when the calculator is turned on by something other

than the ON button (for example, an alarm).

PFF7 This location is polled when the calculator is being turned off.

PFF8 This is polled whenever the calculator goes into standby mode, and

is called the I/0 interrupt.

PFF9 The calculator polls this address when it is turned on using the

ON button.

PFFA Whenever there is a MEMORY LOST this location is polled.

Once you have taken control by using one of these interrupts you MUST

observe some rules.

-151-

Your routine must exit with the following intact:

1.) Restore nybbles 10 through 3 of register C to what they were when you

took control at the interrupt.

2.) Have P as the selected pointer.

3.)) Load flags 48 to 55 of the user flag register into CPU register ST.

This set of flags is called status set zero (SS0).

4.) Have chip 0 (the status registers) selected.

5.) The CPU must be in HEX mode.

6.) You must do a GOTO to 27F3 to end the interrupt and give control back to

the calculator so that it may continue polling.

If any of these rules are not observed the calculator could end up doing

some strange things (like locking up the keyboard). To clarify this mess we

shall do an example. In our example we shall use the MEMORY LOST interrupt.

Whenever a MEMORY LOST occurs we shall resize the calculator to a size of 25

instead of the normal 273 (CV) or 100 (CX). Here is the routine.

Address Hexcode Mnemonic Description

8FES8 268 WRIT 9(Q) This is the entry to our routine. The

first thing we do is save register C in Q

so that we may retrieve it later as re-

quired.

8FE9 130 LDI S&X We shall now load the size (25 in decimal)

8FEA 019 HEX: 019 into S&X of C and then transfer it to A.

8FEB 106 A=C S&X This is done because the size routine

requires the specified size to be in A

(remember SIZE is a prompting function).

8FEC 244 CLRF 9 We shall now call the routine in the main-

8FED 259 INC XQ frame that changes the size. Flag 9 is

8FEE 05C 1796 cleared in case we should get an error.

If we get an error, the routine will just

return and do nothing if flag 9 is

cleared. If it were set we would go to the

-152-

PACKING error message and would not be

able to return control to the polling

process.

8FEF 25D INC XQ This entry point selects chip zero, and

8FFO0 01C 0797 then places the user flag register into C.

[LDSSTO] Flags 48 to 55 are then placed into the ST

register.

8FF1 278 READ 9(Q) Now we retrieve the original contents of C

upon entry to the poll.

8FF2 3CD INC GO We then exit back to the mainframe after

8FF3 09E 27F3 having satisfied all of the described

conditions. The size routine does not

change the selected pointer so we didn’t

have to do anything about that.

Now we shall place the jump from the MEMORY LOST interrupt location at 8FFA

to the beginning of our routine which is at 8FE8, by using a JNC -12

(hexcode 373). Always remove the word at the interrupt location before you

modify the routine that uses the interrupt. After you have updated the

routine make sure that the interrupt jumps back to the correct place or you

could lose control of the calculator when the interrupt is polled.

If you happen to place the jump to a wrong location and the calculator goes

crazy, try the following: unplug you MLDL and regain control of the

calculator. Now change the selected page of your MLDL to page 2. Then

write NOPs (000) to all of the interrupt locations (2FF4-2FFA). You may now

place your MLDL back to the original page.

-153-

APPENDIX E - MCODE Debugging Program

Clifford Stern has written a program to allow you to interrupt your MCODE

routine. This routine saves the contents of all the CPU registers at the

point of interruption in the RAM of the calculator. The 16 status registers

are also saved away. The name of the routine is BREAK.

To use BREAK you must have the address of the point you wish to insert the

breakpoint in X. Place it there using HXENTRY (example, for address 8967

press the 8, 9, 6, and 7 keys at the prompt and then press R/S). Then

execute BREAK. The breakpoint is inserted automatically by the program and

user flag 1 will be set. Flag 1 should be cleared before you execute BREAK.

You must be sure that the carry is not set by the instruction immediately

preceding the breakpoint. This is because the BREAK routine writes an ?NC

GO to the debugging routine. Now load the appropriate data and execute the

function to be debugged. When the breakpoint is reached during execution of

your function, the CPU and status registers are written into the last 25

data registers of the calculator RAM (1E7-1FF), the original program bytes

are restored, and flag 1 is cleared. The routine assumes that you have a

41CX, 41CV, or a 41C with a quad memory module. If the number of data

registers available is less than 25 then BREAK exits to the NONEXISTENT

error message. If flag 1 is still set when the routine finishes (crashes?)

the breakpoint was not reached. To restore the original bytes just clear X

and execute BREAK. Registers 1FE and 1FF are reserved for use by the BREAK

program, and must not be altered by the routine being debugged.

The Data is saved in the RAM registers in the order shown on the next page.

-154-

abs. Contents of register by nybble

reg.# 13 12 11 10 9 8 7 6 5 4 3 2 1 0

487 0 0 <---RTN #3---> <---RTN #2---> <---RTN #1--->

488 <-KY-> <---RTN #4---> <-XY-> P Q <-G-> <-ST->

Detail of XY:

BIT # 7 6 5 4 3 2 1 0 v=0/1 denotes hex/dec mode

FLAG #13 12 11 10 9 8 v w w=0/1 denotes SLCT P/Q

489 <mmmmmmmmmmmeeeo CPU REGISTER C ------cmmmmmmmieeeeee >

490 Cmmmmmmmme CPU REGISTER A ----c-cmmmmimmieeeeee >

491 <mmmmmmmmmmeee CPU REGISTER B ---------mcmmmcieeeeeo >

492 <mmmmmmmmmmeeeee o CPU REGISTER M ----ccemmmmmmmceeeeo >

493 <mmmmmmmmemeee CPU REGISTER N ----cccmmmmimmieeeee >

494 <mmmmmmmmmmmeoo STATUS REGISTER T ----------cemmmenn- >

495 <mmmmmmmmeeeeee STATUS REGISTER Z ------cccmcmmaaann- >

496 <mmmmmmmmmmeeeee e STATUS REGISTER Y -------c--ccmmoann- >

497 <mmmmmmmmeemeeeee STATUS REGISTER X ----------cmmmoann- >

498 <mmmmmmmmmmmeeee e STATUS REGISTER L ----------cmmmoann- >

499 <mmmmmmmmmeeeee e STATUS REGISTER M -----cccmmcmaan-- >

500 <mmmmmmmemmeeoee STATUS REGISTER N -----ccemmcmmaa- >

501 <mmmmmmmmmeee STATUS REGISTER O ----------cemeennn- >

502 <mmmmmmmmmmeeee e STATUS REGISTER P ---------mmemmoann- >

503 <mmmmmmmmmeeee STATUS REGISTER Q ----------cmoemnn-- >

504 <mmmmmmmemeeeeee STATUS REGISTER - ------cmmmcmmooaan- >

505 <mmmmmmmmmmmeeeee e STATUS REGISTER a ------c-cccenoenn-- >

506 <mmmmmmmmmemee STATUS REGISTER b --------cccoocncnn-- >

507 Cmmmmmmmmmmeeeee STATUS REGISTER ¢ ----------cmmcumn--- >

508 Cmmmmmmmmmmee STATUS REGISTER d ------------------- >

509 <mmmmmmmmmmeeee STATUS REGISTER ¢ -----------cmouuun-- >

510 <breakpoint ADR> <break word>

511 < break ADR +1 > <break word>

-155-

In order to examine this output use the following User-code routine. The

DECODE function is given after the listing for BREAK. It decodes the

contents of X into its hexidecimal representations and puts the result into

alpha and the display. The program is called "RR". To view the contents of

the desired register just place the absolute address in X and XEQ "RR". The

hexidecimal representation of the contents of the desired register will be

viewed, and printed if possible. Just hit R/S to examine each successive

register.

LBL "RR"

NR This is the non-normalized recall from our sample ROM.

DECODE This routine is listed at the end of this appendix.

PROMPT

LASTX

1

+

GTO "RR"

END

In order to efficiently use BREAK you should use the following short User-

code program.

LBL "?"

HXENTRY Enter the address at which you wish to insert the breakpoint.

BREAK

This is where you place the steps to load the data for your

function. Then place the function after the data is loaded.

487 This number points to the lowest register in which data is saved

by BREAK. It may be changed to start at any other register you

wish to examine.

GTO "RR"

END

-156-

After assigning "?" to a key, this routine can be used to efficiently probe

for errors in an MCODE program. To view the contents of the display at the

breakpoint, set user flag 2 and place a STOP instruction before the 487

program line.

There are two values that the BREAK program does not give you. They are the

value of the RAMSLCT pointer and the contents of register T. In order to

obtain these values a second program was integrated into the BREAK program.

It is called RSCLT. This routine uses the breakpoint location that was used

by the last execution of BREAK. So BREAK must be executed before RSLCT is

used. The results from RSLCT are placed in the X register. The RAMSLCT

value is in the S&X field and the contents of register T are placed into

nybbles 3 and 4. If the selected RAM register is nonexistent, the S&X field

of X will be set to FFF. To use this function just execute RSLCT and then

load the same data used for the previous execution of BREAK. Now execute

the function you are debugging. To view the results of RSLCT just execute

DECODE. Thesystem RSLCT uses tocompute the RAMSLCT value was pioneered by

Paul Cooper.

Another routine we are providing for your programming pleasure is called

LOOP. This function allows you to debug a loop within a program. You can

execute the loop a specified number of times before the debugging routine

dumps the CPU registers to RAM for inspection.

In order to use this routine you must be a genius on the order of Albert

Einstein (just kidding). The number of times the breakpoint is bypassed is

taken from the Y register. The address of the breakpoint is placed in X and

is of the same format as for BREAK. The breakpoint location must be at a

pair of NOPs since processing continues past the breakpoint a number of

times. The LOOP routine uses one subroutine level and in addition utilizes

the tone register (T) to store the loop counter. This precludes use of

register T in your program and you cannot have more than three pending

returns in the subroutine stack at the breakpoint. LOOP places the 41 into

buzz mode (nonzero value in register T). If the debugging is not allowed to

finish, the calculator can be removed from buzz mode by executing BEEP with

-157-

flag 26 set.

LOOP requires two NOPs for its 2NC XQ to be inserted into your program. If

this is not possible use the following procedure.

1.) Insert a jump to a location that contains the NOPs.

2.) Place the instruction that was replaced by the jump at the location to

which you jump. Follow this instruction with two NOPs and then a jump

to the step after the first jump instruction. Here’s an example.

Address Mnemonic Description

Pabc ABC This is the instruction that was replaced by the

first jump instruction.

XXXX NOP Here are the two NOPs.

XXXX NOP

XXXX JNC +Pxyz This is the second jump to the instruction after the

first jump.

Pxyy JNC -Pabc This is the spot where the first jump is placed and

the jump goes to the spot where the instruction ABC

is placed.

Pxyz 277? This is where the second jump goes to so the program

may continue.

LOOP can be executed from the keyboard or a running program. An example of

the later is given below.

LBL "??"

RCL 00 This is the register containing the loop counter.

ISG 00 Increment the loop counter by one so the next time you execute

this program the number of loops will be different.

NOP Insert a NOP here. STO X for example.

-158-

"ABCD" This is the address where the LOOP breakpoint is to be placed.

CODE Code the address in the alpha register and push it onto the

stack. The CODE routine is listed on page 148.

LOOP Execution of LOOP to insert the breakpoint and store the loop

counter.

As in BREAK this is where you place the steps to load data for

your function. Then place the function after the appropriate

data is loaded.

489 This number points to the first register you wish to view after

the Nth iteration (N is in register 00) of the loop.

GTO "RR"

END

Simply assign "??" to a key and place a starting loop counter (such as zero)

into register 00. Then press the assigned key repeatedly to obtain

successive outputs from the loop.

LOOP and RSLCT are separable from the BREAK program, and can be omitted if

desired. BREAK runs from 847A to 8545 in the following listing. The BREAK

program must be present in order for RSLCT and LOOP to function.

-159-

Address Hexcode Mnemonic

8440

8441

8442

8443

8444

8445

8446

8447

8448

8449

844A

844B

844C

844D

844E

844F

8450

8451

8452

8453

8454

8555

8556

8457

8458

8459

845A

845B

845C

845D

845E

845F

8460

090

00F

O00F

00C

0B8

38D

008

2F6

0B5

0A3

358

258

308

163

2D8

38C

01B

384

12B

388

30C

01B

304

103

308

20C

01B

204

0DB

208

00C

O01B

004

npn

"o

"o

nLn

READ 2(Y)

INC XQ

02E3 [BCDBIN]

7C#0 XS

7C GO

282D [ERRDE]

ST=C

T=ST

SETF 1

JINC +2C

ST<>T<<<

7FSET 0

JINC +03

CLRF 0

INC +25

SETF 0

7FSET 1

JNC +03

CLRF 1

JINC +20

SETF 1

7FSET 2

JINC +03

CLRF 2

JNC +I1B

SETF 2

7FSET 3

JNC +03

CLRF 3

-160-

Address Hexcode Mnemonic

8461

8462

8463

8464

8465

8466

8467

8468

8469

846A

846B

846C

846D

846E

846F

8470

8471

8472

8473

8474

8475

8476

8477

8478

8479

847A

847B

847C

847D

847E

847F

8480

8481

0B3

008

04C

01B

044

08B

048

08C

01B

084

063

088

14C

01B

144

03B

148

28C

O1F

020

033

284

2D8

3E0

16B

258

3C4

3D8

3F0

3D8

308

208

008

IJINC +16

SETF 3

7FSET 4

JNC +03

CLRF 4

JINC +11

SETF 4

?FSET 5

JINC +03

CLRF 5

JINC +0C

SETF 5

?FSET 6

JNC +03

CLRF 6

IJINC +07

SETF 6

?FSET 7

JC +03

XQ>GO

JNC +06

CLRF 7

ST<>T

RTN

JNC +2D

T=ST<<<

ST=0

C<>ST

PRPH SLCT

C<>ST

SETF 1

SETF 2

SETF 3

Address Hexcode Mnemonic

8482

8483

8484

8485

8486

8487

8488

8489

848A

848B

848C

848D

848E

848F

8490

8491

8492

8493

8494

8495

8496

8497

8498

8499

849A

849B

849C

849D

849E

849F

84A0

84A1

84A2

048

33C

3D8

2FC

270

33C

398

2FC

268

OAE

2A8

0CE

2E8

198

328

0BO

368

046

1BO

07C

1BO

07C

1BO

27C

1E8

1A0

298

3D8

258

27E

260

23E

017

SETF 4

RCR 1

C<>ST

RCR 13

RAMSLCT

RCR 1

C=ST

RCR 13

WRIT 9(Q)

A<>C ALL

WRIT 10(-)

C=B ALL

WRIT 11(a)

C=M

WRIT 12(b)

C=N

WRIT 13(c)

C=0 S&X

POP ADR

RCR 4

POP ADR

RCR 4

POP ADR

RCR 9

WRIT 7(Q)

A=B=C=0

ST=T

C<>ST

T=ST

C=C-1 MS

SETHEX

C=C+1 MS

JC +02

-161-

Address Hexcode Mnemonic

84A3

84A4

84A5

84A6

84A7

84A8

84A9

84AA

84AB

84AC

84AD

84AE

84AF

84B0

84B1

84B2

84B3

84B4

84B5

84B6

84B7

84B8

84B9

84BA

84BB

84BC

84BD

84BE

84BF

84CO

84Cl1

84C2

84C3

308

03C

023

173

23E

3D4

394

3EB

33C

120

03B

35C

0AO

354

06F

388

053

0EO

394

01B

388

0AO

23E

3D4

394

3EB

35C

0D8

23C

38C

O01F

2DC

3D4

SETF 1

RCR 3

IJINC +04

JNC +2E

C=C+1 MS

R=R-1

7R=0

JNC -03

RCR 1

P=Q

JINC +07

R= 12

SLCT P

7R= 12

JC +0D

SETF 0

JNC +0A

SLCT Q

7R=0

JNC +03

SETF 0

SLCT P

C=C+1 MS

R=R-1

7R=0

JNC -03

R= 12

C<>G

RCR 2

?FSET 0

JC +03

R=13

R=R-1

Address Hexcode Mnemonic

84C4

84C5

84C6

84C7

84C8

84C9

84CA

84CB

84CC

84CD

84CE

84CF

84D0

84D1

84D2

84D3

84D4

84D5

84D6

84D7

84D8

84D9

84DA

84DB

84DC

84DD

84DE

84DF

84E0

84E1

84E2

84E3

84E4

098

10C

013

208

24C

013

008

0CC

013

048

18C

013

088

34C

023

013

1A3

148

2CC

013

288

398

2FC

1BO

07C

220

3C8

0BC

228

130

1EE

OE6

39C

C=G

?FSET 8

JINC +02

SETF 2

?FSET 9

JNC +02

SETF 3

?7FSET 10

JINC +02

SETF 4

?FSET 11

JNC +02

SETF 5

?7FSET 12

JNC +04

JNC +02

INC +34

SETF 6

?FSET 13

JNC +02

SETF 7

C=ST

RCR 13

POP ADR

RCR 4

C=KEY

CLRKEY

RCR 5

WRIT 8(P)

LDI S&X

HEX: 1EE

C<>B S&X

R=0

-162-

Address Hexcode Mnemonic

84E5
84E6
84E7
84ES
84E9
$4EA
84EB
84EC
84ED
84EE
84EF
84F0
84F1
84F2
84F3
84F4
84F5
84F6
84F7
84F8
84F9
84FA
84FB
84FC
84FD
84FE
84FF
8500
8501
8502
8503
8504
8505

0A6

270

106

038

OEE

270

226

OEE

2F0

162

3B3

3F8

106

330

0A6

040

0A6

3E8

3B8

106

330

0A6

040

0A6

2F0

046

270

215

00C

2FC

358

20C

027

A<>C S&X

RAMSLCT

A=C S&X

READ DATA

C<>B ALL

RAMSLCT

C=C+1 S&X

C<>B ALL

WRITE DATA

A=A+1 @R

JNC -0A

READ 15(e)

A=C S&X

FETCH S&X

A<>C S&X

WRIT S&X

A<>C S&X

WRIT 15(¢)

READ 14(d)

A=C S&X

FETCH S&X

A<>C S&X

WRIT S&X

A<>C S&X

WRITE DATA

C=0 S&X

RAMSLCT

INC XQ

0385 [RSTSQ]

RCR 13

ST=C

7FSET 2

JC +04

Address Hexcode Mnemonic

8506

8507

8508

8509

850A

850B

850C

850D

850E

850F

8510

8511

8512

8513

8514

8515

8516

8517

8518

8519

851A

851B

851C

851D

851E

851F

8520

8521

8522

8523

8524

8525

208

01B

093

204

398

33C

2F0

20C

027

30C

205

00D

3C1

002

2F3

08B

001

005

012

002

130

1E7

106

378

03C

306

381

00B

OF8

IBC

130

1FE

SETF 2

JNC +03

INC +12

CLRF 2

C=ST

RCR 1

WRITE DATA

PFSET 2

JC +04

?FSET 1

2C XQ

0381

INC GO

00F0 [NFRPU]

INC -22

wA

g

R

vge

LDI S&X

HEX: 1E7

A=C S&X

READ 13(c)

RCR 3

7A<C S&X

2C GO

02E0 [ERRNE]
READ 3(X)

RCR 11

LDI S&X

HEX: IFE

-163-

Address Hexcode Mnemonic

8526

8527

8528

8529

852A

852B

852C

852D

852E

852F

8530

8531

8532

8533

8534

8535

8536

8537

8538

8539

853A

853B

853C

853D

853E

853F

8540

8541

8542

8543

8544

8545

270

2FA

243

130

0B9

30C

01B

130

OES5

286

10E

35D

000

03C

206

2FC

3C6

1E6

1E6

226

IFA

IFA

30C

O1F

23A

23A

106

03C

0AE

2F0

23A

27B

RAMSLCT

7C40 M

JNC -38

LDI S&X

HEX: 0B9

?FSET 1

JNC +03

LDI S&X

HEX: OE5

C=0-C S&X

A=C ALL

INC XQ

00D7 [PCTOC]

RCR 3

C=C+A S&X

RCR 13

RSHFC S&X

C=C+C S&X

C=C+C S&X

C=C+1 S&X

C=C+C M

C=C+C M

?7FSET 1

JC +03

C=C+1 M

C=C+1 M

A=C S&X

RCR 3

A<>C ALL

WRITE DATA

C=C+1 M

JINC -31

Address Hexcode Mnemonic

8546 094 "T"

8547 003 "C"

8548 00C "L"

8549 013 "S"

854A 012 "R"

854B 130 LDI S&X

854C 1IFE HEX: 1FE

854D 270 RAMSLCT

854E 038 READ DATA

854F 130 LDI S&X

8550 020 HEX: 020

8551 2FB JNC -21

8552 293 JNC -2E

8553 038 READ DATA<<<

8554 158 M=C

8555 1A0 A=B=C=0

8556 3F0 PRPH SLCT

8557 21C R=2

8558 310 LD@R C

8559 0E6 C<>B S&X

855A 260 SETHEX

855B 26E C=C-1 ALL

855C 29C R=7

855D 010 LD@R 0

855E 2F0 WRITE DATA

855F 10E A=C ALL

8560 0C6 C=B S&X

8561 270 RAMSLCT

8562 226 C=C+1 S&X

8563 OSF JC +0B

8564 0E6 C<>B S&X

8565 038 READ DATA

8566 36E 7A#C ALL

-164-

Address Hexcode Mnemonic

8567 3CF iC -07
8568 198 C=M
8569 2FO0 WRITE DATA
856A 130 LDI S&X
856B 3FF HEX: 3FF
856C 06E A<>B ALL
856D 3B0 C=C AND A
856E 266 C=C-1 S&X
856F 03C RCR 3
8570 270 RAMSLCT
8571 3C4 ST=0
8572 2D8 ST<>T
8573 398 C=ST
8574 1BC RCR 11
8575 OE8 WRIT 3(X)
8576 05A C=0 M
8577 2DB INC -25

Here’s the DECODE routine, written by Clifford Stern. It places the ASCII

equivalent of the contents of X into ALPHA, and suppresses leading zeros.

The routine ends by viewing alpha and printing if in RUN mode. The method

used to convert hex digits to ASCII characters was invented by Michael

Thompson.

Address Hexcode Mnemonic Address Hexcode Mnemonic

8578 085 "E" 8590 308 SETF 1

8579 004 "D" 8591 30C ?7FSET 1

857A 00F "Oo" 8592 033 JINC +06

857B 003 "C" 8593 062 A<>B @R

857C 005 "E" 8594 206 C=C+A S&X

857D 004 "D" 8595 362 7A#C @R

857E OF8 READ 3(X) 8596 013 JNC +02

857F OEE C<>B ALL 8597 222 C=C+1 @R

8580 2A0 SETDEC 8598 1BA A=A-1 M

8581 04E C=0 ALL 8599 38B JNC -0F

8582 228 WRIT 8(P) 859A 20C 7FSET 2

8583 1E8 WRIT 7(0O) 859B 027 JC +04

8584 01C R=3 859C 208 SETF 2

8585 190 LD@R 6 859D 1A8 WRIT 6(N)

8586 31C R=1 859E 31B JNC -1D

8587 0DO0 LD@R 3 859F 30C ?7FSET 1

8588 10E A=C ALL 85A0 017 JC +02

8589 04E C=0 ALL 85A1 0A6 A<>C S&X

858A 37C RCR 12 85A2 168 WRIT 5(M)

858B 0EE C<>B ALL 85A3 2CC 7FSET 13

858C 2FC RCR 13 85A4 360 7C RTN

858D OEE C<>B ALL 85A5 260 SETHEX

858E 2C2 B#0 @R 85A6 191 INC GO

858F 013 JINC +02 85A7 00E 0364

-165-

APPENDIX V - OCTal-HEX Conversion Programs

OCTal - Hex

The following program converts mainframe addresses from the octal (base 8)

form that appears in HP’s documentation to hexadecimal (base 16), the form

that you will need in constructing an MCODE execute or goto instruction.

To use this program, just execute OCT-HEX. The program uses partial key

sequencing to make your life easier.

The program comes back with the display

0

The first number you should key in is the page number, which may be anywhere

from 0 to 7. Other keys (except backarrow and R/S, as explained below) will

be ignored. The number you select will appear in the display followed by a

dash and another underscore prompt. Next key in the quad number, a digit

from 0 to 3. The program will not accept any other values.

The program comes back with

O p-q-_ ,

where p and q are the page number and quad number, respectively. Now key in

the four-digit octal address within the quad. The range of legal addresses

is 0000 to 1777. Digits outside this range will not be accepted by the

program. If the address is less than 1000, you must key in a leading zero.

If you make a mistake (who me?) while keying in a number, you can use the

backarrow key to remove digits. If there are no digits in the display and

the backarrow key is pressed, the routine is terminated. This behavior of

the backarrow key is consistent with mainframe functions, and you should

strive for this kind of consistency in the behavior of your own programs.

To get the result, just press the R/S key. The hexadecimal equivalent of

your octal address will be put into the display preceded by the word

ADDRESS. Try the routine out a few times on addresses for which you know

the hex equivalent so you can get the hang of it. Here is the listing for

the routine.

-166-

Address Hexcode Mnemonic

85DD

85DE

85DF

85E0

85E1

85E2

85E3

85E4

85E5

85E6

85E7

85E8

85E9

85EA

85EB

85EC

85ED

85EE

85EF

85F0

85F1

85F2

85F3

85F4

85F5

85F6

85F7

85F8

85F9

85FA

85FB

85FC

85FD

130

370

106

0BO

366

18F

3BD

01C

001

004

004

012

005

013

013

220

149

024

215

00C

278

10E

3D9

01C

04E

0BA

33C

20E

03C

05C

106

130

030

LDI S&X

HEX: 370

A=C S&X

C=N

A#C S&X

JC +31

INC XQ

07EF

<

"D"

"D

"R"

nEn

ngn

ngn

INC XQ

0952

INC XQ

0385

READ 9(Q)

A=C ALL

INC XQ

07F6

C=0 ALL

A<>C M

RCR 1

C=C+A ALL

RCR 3

R= 4

A=C S&X

LDI S&X

HEX: 030

-167-

Address

85FE

85FF

8600

8601

8602

8603

8604

8605

8606

8607

8608

8609

860A

860B

860C

860D

860E

860F

8610

8611

8612

8613

8614

8615

8616

8617

8618

8619

861A

861B

861C

861D

861E

Hexcode Mnemonic

146

130

03A

306

O1F

266

1C6

0A6

3E8

046

2FC

3D4

394

383

261

000

046

3F0

1FD

00E

25B

183

149

024

278

0AE

IBE

049

037

35E

OFB

05E

23E

A=A+C S&X

LDI S&X

HEX: 03A

72A<C S&X

JC +03

C=C-1 S&X

A=A-C S&X

A<>C S&X

WRIT 15(e)

C=0 S&X

RCR 13

R=R-1

7R=0

JNC -10

INC XQ

0098

C=0 S&X

PRPH SLCT

INC GO

037E

JINC -35

JNC +30

INC XQ

0952

READ 9(Q)

A<>C ALL

A=A-1 MS

7C GO

0D12

2A#0 MS

JNC +1F

C=0 MS

C=C+1 MS

Address Hexcode Mnemonic

861F

8620

8621

8622

8623

8624

8625

8626

8627

8628

8629

862A

862B

862C

862D

862E

862F

8630

8631

8632

8633

8634

8635

8636

8637

8638

8639

863A

863B

863C

863D

863E

3D9

01C

37E

037

01C

002

130

020

3A8

130

020

3A8

149

024

O0AE

1E6

3C6

268

3D9

01C

083

098

005

008

02D

014

003

O00F

04E

268

3C1

0BO

INC XQ

07F6

A#C MS

JC +06

R=13

A=0 @R

LDI S&X

HEX: 020

WRIT 14(d)

LDI S&X

HEX: 020

WRIT 14(d)

INC XQ

0952

A<>C ALL

C=C+C S&X

RSHFC S&X

WRIT 9(Q)

INC XQ

07F6

JNC +10

G

W™

WH"

T

nen

"o

C=0 ALL

WRIT 9(Q)

INC XQ

2CFO

-168-

Address Hexcode Mnemonic

863F

8640

8641

8642

8643

8644

8645

8646

8647

8648

8649

864A

864B

864C

864D

864E

864F

8650

8651

8652

8653

8654

8655

8656

8657

8658

8659

865A

865B

865C

865D

865E

3BD

01C

O00F

220

115

038

27B

00C

25B

130

038

33C

31E

3BB

OBE

11E

2FC

3E8

149

024

278

2FE

067

23E

OBE

27C

O0BE

268

3D9

01C

130

02D

INC XQ

07EF

Q"

INC XQ

0E45

JINC -31

?FSET 3

JNC -35

LDI S&X

HEX: 038

RCR 1

7A<C MS

JINC -09

A<>C MS

A=C MS

RCR 13

WRIT 15(e)

INC XQ

0952

READ 9(Q)

7C#£0 MS

JC +0C

C=C+1 MS

A<>C MS

RCR 9

A<>C MS

WRIT 9(Q)

INC XQ

07F6

LDI S&X

HEX: 02D

Address Hexcode Mnemonic

865F

8660

8661

8662

8663

8664

8665

8666

8667

8668

8669

866A

866B

866C

866D

866E

866F

8670

8671

8672

8673

8674

8675

8676

8677

8678

8679

867A

867B

867C

867D

3E8

31B

27E

2FE

0A7

2DC

110

31E

03F

3D9

01C

130

020

3A8

2B3

05E

07C

O0BE

IFE

1FE

OFC

23E

23E

323

09E

23E

23E

11E

2DC

1DO0

31E

WRIT 15(e)

JNC -1D

C=C-1 MS

7C#0 MS

JC +14

R= 13

LD@R 4

7A<C MS

JC +07

INC XQ

07F6

LDI S&X

HEX: 020

WRIT 14(d)

JNC -2A

C=0 MS

RCR 4

A<>C MS

C=C+C MS

C=C+C MS

RCR 10

C=C+1 MS

C=C+1 MS

JNC -IC

B=A MS

C=C+1 MS

C=C+1 MS

A=C MS

R= 13

LD@R 7

7A<C MS

-169-

Address Hexcode Mnemonic

867E

867F

8680

8681

8682

8683

8684

8685

8686

8687

8688

8689

868A

868B

868C

868D

868E

868F

8690

8691

8692

8693

8694

8695

8696

8697

8698

8699

869A

869B

353

3DC

0DO0

37E

077

07E

27E

31E

313

05E

33C

OBE

2FC

ODE

268

3D9

01C

2F3

278

1E6

1E6

1E6

0AE

046

ODE

2FC

146

0AE

23E

38B

JNC -16

R=R+1

LD@R 3

7A#C MS

JC +0E

A<>B MS

C=C-1 MS

7A<C MS

JNC -1E

C=0 MS

RCR 1

A<>C MS

RCR 13

C=B MS

WRIT 9(Q)

INC XQ

07F6

IJINC -22

READ 9(Q)

C=C+C S&X

C=C+C S&X

C=C+C S&X

A<>C ALL

C=0 S&X

C=B MS

RCR 13

A=A+C S&X

A<>C ALL

C=C+1 MS

JNC -0F

HEX - OCTal

The HEX-OCT program is an inverse to the OCT-HEX program, allowing you to

convert a hexadecimal entry address to the octal form suitable for looking

up the entry point in HP’s annotated listings.

HEX-OCT starts by placing an H, followed by a space and an underscore in the

left of the display (partial key sequencing to the rescue again). The digit

keys and the A through F keys are the only ones which are allowed for

inputs. Once four digits have been entered, no more may be keyed in. The

functions of the backarrow and run/stop keys are the same as for the OCT-HEX

program. The output is of the form p-q-aaaa, where p is the page number, q

is the quad number in the page, and aaaa is the octal address in the

specified quad. A listing for this program starts on the next page.

-170-

Address Hexcode Mnemonic

869C

869D

869E

869F

86A0

86A1

86A2

86A3

86A4

86A5

86A6

86A7

86A8

86A9

86AA

86AB

86AC

86AD

86AE

86AF

86B0

86B1

86B2

86B3

86B4

86B5

86B6

86B7

86B8

86B9

86BA

86BB

86BC

149

024

278

27E

049

037

I11E

05E

3CE

OBE

268

1BB

094

003

00F

02D

018

005

008

04E

268

3Cl1

0BO

3BD

01C

008

220

115

038

31B

04C

14B

35E

INC XQ

0952

READ 9(Q)

C=C-1 MS

7C GO

0DI12

A=C MS

C=0 MS

RSHFC ALL

A<>C MS

WRIT 9(Q)

INC +37

o

e

"on

e

nE"

nH"

C=0 ALL

WRIT 9(Q)

INC XQ

2CFO0

INC XQ

07EF

WH"

INC XQ

OEA45

JNC -1D

7FSET 4

JINC +29

A#0 MS

-171-

Address Hexcode Mnemonic

86BD

86BE

86BF

86C0

86Cl1

86C2

86C3

86C4

86C5

86C6

86C7

86C8

86C9

86CA

86CB

86CC

86CD

86CE

86CF

86D0

86D1

86D2

86D3

86D4

86D5

86D6

86D7

86D8

86D9

86DA

86DB

86DC

86DD

3D3

130

007

33C

31E

3AB

OBE

2FC

3E8

106

130

009

146

149

024

130

004

33C

I11E

278

O0BE

31E

05B

05E

2FC

39C

0A2

OBE

23E

268

3D9

01C

2D3

JINC -06

LDI S&X

HEX: 007

RCR 1

7A<C MS

JNC -0B

A<>C MS

RCR 13

WRIT 15(e)

A=C S&X

LDI S&X

HEX: 009

A=A+C S&X

INC XQ

0952

LDI S&X

HEX: 004

RCR 1

A=C MS

READ 9(Q)

A<>C MS

7A<C MS

JNC +0B

C=0 MS

RCR 13

R=0

A<>C @R

A<>C MS

C=C+1 MS

WRIT 9(Q)

INC XQ

07F6

JNC -26

Address Hexcode Mnemonic

86DE

86DF

86E0

86E1

86E2

86E3

86E4

86E5

86E6

86E7

86E8

86E9

86EA

86EB

86EC

86ED

86EE

86EF

86F0

86F1

86F2

86F3

86F4

86F5

86F6

86F7

86F8

86F9

86FA

86FB

86FC

86FD

86FE

3D9

01C

130

020

3A8

2A3

00C

043

130

003

OBE

2FC

3E8

106

2F3

130

370

106

0BO

366

22F

149

024

278

39C

102

1EE

3DC

054

3E3

2FC

3DC

102

INC XQ

07F6

LDI S&X

HEX: 020

WRIT 14(d)

INC -2C

7FSET 3

JNC +08

LDI S&X

HEX: 003

A<>C MS

RCR 13

WRIT 15(e)

A=C S&X

JINC -22

LDI S&X

HEX: 370

A=C S&X

C=N

A#C S&X

JC -3B

INC XQ

0952

READ 9(Q)

R=10

A=C @R

C=C+C ALL

R=R+1

7R=4

JNC -04

RCR 13

R=R+1

A=C @R

-172-

Address Hexcode Mnemonic

86FF

8700

8701

8702

8703

8704

8705

8706

8707

8708

8709

870A

870B

870C

870D

870E

870F

8710

8711

8712

8713

8714

8715

8716

8717

8718

8719

871A

871B

871C

871D

871E

871F

042

1EE

1EE

33C

3D4

102

3D9

01C

3BD

01C

00F

003

014

220

0AE

0BC

31C

0DO0

106

130

00A

302

027

262

242

013

0A6

3E8

130

02D

3E8

2FC

3DC

C=0 @R

C=C+C ALL

C=C+C ALL

RCR 1

R=R-1

A=C @R

INC XQ

07F6

INC XQ

07EF

"o

nen

e

A<>C ALL

RCR 5

R=1

LD@R 3

A=C S&X

LDI S&X

HEX: 00A

7A<C @R

JC +04

C=C-1 @R

C=A-C @R

INC +02

A<>C S&X

WRIT 15(e)

LDI S&X

HEX: 02D

WRIT 15(e)

RCR 13

R=R+1

Address Hexcode Mnemonic

8720

8721

8722

8723

8724

8725

8726

8727

8728

8729

872A

872B

872C

872D

872E

0DO0

3E8

130

02D

3E8

2FC

3D8

304

204

004

048

088

144

284

3D8

LD@R 3

WRIT 15(e)

LDI S&X

HEX: 02D

WRIT 15(e)

RCR 13

C<>ST

CLRF 1

CLRF 2

CLRF 3

SETF 4

SETF 5

CLRF 6

CLRF 7

C<>ST

-173-

Address Hexcode Mnemonic

872F

8730

8731

8732

8733

8734

8735

8736

8737

8738

8739

873A

873B

873C

873D

3E8

2FC

056

3DC

3D8

054

3A3

149

024

215

00C

261

000

201

00E

WRIT 15(e)

RCR 13

C=0 XS

R=R+1

C<>ST

R= 4

JNC -0C

INC XQ

0952

INC XQ

0385

INC XQ

0098

INC GO

0380

APPENDIX F - Table of Mnemonics

The following table shows the differences between the three types of

mnemonics in use. We will only tabulate the mnemonics for the single word

instructions. The three types of mnemonics are: HP mnemonics used by HP in

all of the annotated listings of their ROMs; Jacobs/De Arras, developed in

the early days of the development of MCODE programming by the user

community; and ZENROM mnemonics, this version was developed in England and

is used in the disassembler of a ROM that is put out by Zengrange Ltd. The

Jacobs/De Arras mnemonics were used throughout this book.

Hexcode Octal Binary HP

mnemonic

000 0000 0000000000 NOP

00E 0016 0000001110 A=0

006 0006 0000000110 A=0X

01A 0032 0000011010 A=0M

00A 0012 0000001010 A=0 WPT

002 0002 0000000010 A=0PT

Ol1E 0036 0000011110 A=0S

016 0026 0000010110 A=0 XS

012 0022 0000010010 A=0 PQ

02E 0056 0000101110 B=0

026 0046 0000100110 B=0 X

03A 0072 0000111010 B=0M

02A 0052 0000101010 B=0 WPT

022 0042 0000100010 B=0 PT

03E 0076 0000111110 B=0S

036 0066 0000110110 B=0 XS

032 0062 0000110010 B=0 PQ

04E 0116 0001001110 C=0

046 0106 0001000110 C=0X

05A 0132 0001011010 C=0M

04A 0112 0001001010 C=0 WPT

-174-

Jacobs/

De Arras

NOP

A=0 ALL

A=0 S&X

A=0 M

A=0 R«<

A=0 @R

A=0 MS

A=0 XS

A=0 P-Q

B=0 ALL

B=0 S&X

B=0 M

B=0 R<

B=0 @R

B=0 MS

B=0 XS

B=0 P-Q

C=0 ALL

C=0 S&X

C=0M

C=0 R<

ZENROM

mnemonic

NOP
A=0 ALL
A=0 X
A=0 M
A=0 WPT
A=0 PT
A=0 S
A=0 XS
A=0 PQ
B=0 ALL
B=0 X
B=0 M
B=0 WPT
B=0 PT
B=0 S
B=0 XS
B=0 PQ
C=0 ALL
C=0 X
C=0 M
C=0 WPT

Hexcode Octal

042

05E

056

052

06E

066

07A

06A

062

07E

076

072

08E

086

09A

08A

082

09E

096

092

0AE

0A6

0BA

0AA

0A2

OBE

0B6

0B2

0CE

0C6

0DA

0CA

0102

0136

0126

0122

0156

0146

0172

0152

0142

0176

0166

0162

0216

0206

0232

0212

0202

0236

0226

0222

0256

0246

0272

0252

0242

0276

0266

0262

0316

0306

0332

0312

Binary

0001000010

0001011110

0001010110

0001010010

0001101110

0001100110

0001111010

0001101010

0001100010

0001111110

0001110110

0001110010

0010001110

0010000110

0010011010

0010001010

0010000010

0010011110

0010010110

0010010010

0010101110

0010100110

0010111010

0010101010

0010100010

0010111110

0010110110

0010110010

0011001110

0011000110

0011011010

0011001010

HP

mnemonic

C=0 PT

C=0S

C=0 XS

C=0 PQ

AB EX

AB EX X

AB EX M

AB EX WPT

AB EX PT

AB EX S

AB EX XS

AB EX PQ

B=A

B=A X

B=A M

B=A WPT
B=A PT

B=A S

B=A XS

B=A PQ

AC EX

AC EX X

AC EX M

AC EX WPT
AC EX PT

AC EX S

AC EX XS

AC EX PQ

C=B

C=B X

C=B M

C=B WPT

-175-

Jacobs/

De Arras

C=0 @R

C=0 MS

C=0 XS

C=0 P-Q

A<>B ALL

A<>B S&X

A<>B M

A<>B R«

A<>B @R

A<>B MS

A<>B XS

A<>B P-Q

B=A ALL

B=A S&X

B=A M

B=A R<

B=A @R

B=A MS

B=A XS

B=A P-Q

A<>C ALL

A<>C S&X

A<>C M

A<>C R<

A<>C @R

A<>C MS

A<>C XS

A<>C P-Q

C=B ALL

C=B S&X

C=BM

C=B R«

ZENROM

mnemonic

C=0 PT

C=0 S

C=0 XS

C=0 PQ

A<>B ALL

A<>B X

A<>B M

A<>B WPT

A<>B PT

A<>B S

A<>B XS

A<>B PQ

B=A ALL

B=A X

B=A M

B=A WPT

B=A PT

B=A S

B=A XS

B=A PQ

A<>C ALL

A<>C X

A<>CM

A<>C WPT

A<>C PT

A<>C S

A<>C XS

A<>C PQ

C=B ALL

C=B X

C=B M

C=B WPT

Hexcode Octal

0C2

O0DE

0D6

0D2

OEE

OE6

OFA

OEA

0E2

OFE

0F6

OF2

10E

106

I11A

10A

102

11E

116

112

12E

126

13A

12A

122

13E

136

132

14E

146

15A

14A

0302

0336

0326

0322

0356

0346

0372

0352

0342

0376

0366

0362

0416

0406

0432

0412

0402

0436

0426

0422

0456

0446

0472

0452

0442

0476

0466

0462

0516

0506

0532

0512

Binary

0011000010

0011011110

0011010110

0011010010

0011101110

0011100110

0011111010

0011101010

0011100010

0011111110

0011110110

0011110010

0100001110

0100000110

0100011010

0100001010

0100000010

0100011110

0100010110

0100010010

0100101110

0100100110

0100111010

0100101010

0100100010

0100111110

0100110110

0100110010

0101001110

0101000110

0101011010

0101001010

HP

mnemonic

C=B PT

C=B S

C=B XS

C=B PQ

BC EX

BC EX X

BC EX M

BC EX WPT

BC EX PT

BC EX S

BC EX XS

BC EX PQ

A=C

A=C X

A=CM

A=C WPT

A=C PT

A=C S

A=C XS

A=C PQ

A=A+B

A=A+B X

A=A+B M

A=A+B WPT

A=A+B PT

A=A+B S

A=A+B XS

A=A+B PQ

A=A+C

A=A+C X

A=A+C M

A=A+C WPT

-176-

Jacobs/

De Arras

C=B @R

C=B MS

C=B XS

C=B P-Q

C<>B ALL

C<>B S&X

C<>B M

C<>B R«

C<>B @R

C<>B MS

C<>B XS

C<>B P-Q

A=C ALL

A=C S&X

A=CM

A=C R<

A=C @R

A=C MS

A=C XS

A=C P-Q

A=A+B ALL

A=A+B S&X

A=A+B M

A=A+B R«

A=A+B @R

A=A+B MS

A=A+B XS

A=A+B P-Q
A=A+C ALL

A=A+C S&X

A=A+C M

A=A+C R<

ZENROM

mnemonic

C=B PT

C=B S

C=B XS

C=B PQ

B<>C ALL

B<>C X

B<>C M

B<>C WPT

B<>C PT

B<>C S

B<>C XS

B<>C PQ

A=C ALL

A=C X

A=C M

A=C WPT

A=C PT

A=C S

A=C XS

A=C PQ

A=A+B ALL

A=A+B X

A=A+B M

A=A+B WPT

A=A+B PT

A=A+B S

A=A+B XS

A=A+B PQ

A=A+C ALL

A=A+C X

A=A+C M

A=A+C WPT

Hexcode Octal

142

15E

156

152

16E

166

17A

16A

162

17E

176

172

18E

186

19A

18A

182

19E

196

192

1AE

1A6

1BA

1AA

1A2

1BE

1B6

1B2

ICE

1C6

IDA

ICA

0502

0536

0526

0522

0556

0546

0572

0552

0542

0576

0566

0562

0616

0606

0632

0612

0602

0636

0626

0622

0656

0646

0672

0652

0642

0676

0666

0662

0716

0706

0732

0712

Binary

0101000010

0101011110

0101010110

0101010010

0101101110

0101100110

0101111010

0101101010

0101100010

0101111110

0101110110

0101110010

0110001110

0110000110

0110011010

0110001010

0110000010

0110011110

0110010110

0110010010

0110101110

0110100110

0110111010

0110101010

0110100010

0110111110

0110110110

0110110010

0111001110

0111000110

0111011010

0111001010

HP

mnemonic

A=A+C PT

A=A+C S

A=A+C XS

A=A+C PQ

A=A+l

A=A+1 X

A=A+1 M

A=A+1 WPT

A=A+1 PT

A=A+1 S

A=A+1 XS

A=A+1 PQ

A=A-B

A=A-B X

A=A-B M

A=A-B WPT

A=A-B PT

A=A-B S

A=A-B XS

A=A-B PQ

A=A-1

A=A-1 X

A=A-1 M

A=A-1 WPT

A=A-1 PT

A=A-1S

A=A-1 XS

A=A-1 PQ

A=A-C

A=A-C X

A=A-CM

A=A-C WPT

-177-

Jacobs/

De Arras

A=A+C @R

A=A+C MS

A=A+C XS

A=A+C P-Q

A=A+1 ALL

A=A+1 S&X

A=A+1 M

A=A+l R<

A=A+1 @R

A=A+1 MS

A=A+1 XS

A=A+1 P-Q

A=A-B ALL

A=A-B S&X

A=A-B M

A=A-B R«

A=A-B @R

A=A-B MS

A=A-B XS

A=A-B P-Q

A=A-1 ALL

A=A-1 S&X

A=A-1 M

A=A-1 R«

A=A-1 @R

A=A-1 MS

A=A-1 XS

A=A-1 P-Q

A=A-C ALL

A=A-C S&X

A=A-CM

A=A-C R«

ZENROM

mnemonic

A=A+C PT

A=A+C S

A=A+C XS

A=A+C PQ

A=A+1 ALL

A=A+1 X

A=A+1 M

A=A+1 WPT

A=A+1 PT

A=A+1 S

A=A+1 XS

A=A+1 PQ

A=A-B ALL

A=A-B X

A=A-B M

A=A-B WPT

A=A-B PT

A=A-B S

A=A-B XS

A=A-B PQ

A=A-1 ALL

A=A-1 X

A=A-1 M

A=A-1 WPT

A=A-1 PT

A=A-18S

A=A-1 XS

A=A-1 PQ

A=A-C ALL

A=A-C X

A=A-C M

A=A-C WPT

Hexcode Octal

1C2

IDE

1D6

1D2

1EE

1E6

IFA

IEA

1E2

1FE

1F6

1F2

20E

206

21A

20A

202

21E

216

212

22E

226

23A

22A

222

23E

236

232

24E

246

25A

24A

0702

0736

0726

0722

0756

0746

0772

0752

0742

0776

0766

0762

1016

1006

1032

1012

1002

1036

1026

1022

1056

1046

1072

1052

1042

1076

1066

1062

1116

1106

1132

1112

Binary

0111000010

0111011110

0111010110

0111010010

0111101110

0111100110

0111111010

0111101010

0111100010

0111111110

0111110110

0111110010

1000001110

1000000110

1000011010

1000001010

1000000010

1000011110

1000010110

1000010010

1000101110

1000100110

1000111010

1000101010

1000100010

1000111110

1000110110

1000110010

1001001110

1001000110

1001011010

1001001010

HP

mnemonic

A=A-C PT

A=A-C S

A=A-C XS

A=A-C PQ

C=C+C

C=C+C X

C=C+C M

C=C+C WPT

C=C+C PT

C=C+C S

C=C+C XS

C=C+C PQ

C=A+C

C=A+C X

C=A+C M

C=A+C WPT

C=A+C PT

C=A+C S

C=A+C XS

C=A+C PQ

C=C+1

C=C+1 X

C=C+1 M

C=C+1 WPT

C=C+1 PT

C=C+1 S

C=C+1 XS

C=C+1 PQ

C=A-C

C=A-CX

C=A-CM

C=A-C WPT

-178-

Jacobs/

De Arras

A=A-C @R

A=A-C MS

A=A-C XS

A=A-C P-Q

C=C+C ALL

C=C+C S&X

C=C+C M

C=C+C R«

C=C+C @R

C=C+C MS

C=C+C XS

C=C+C P-Q

C=C+A ALL

C=C+A S&X

C=C+A M

C=C+AR«

C=C+A @R

C=C+A MS

C=C+A XS

C=C+A P-Q

C=C+1 ALL

C=C+1 S&X

C=C+1 M

C=C+1 R«

C=C+1 @R

C=C+1 MS

C=C+1 XS

C=C+1 P-Q

C=A-C ALL

C=A-C S&X

C=A-CM

C=A-C R«

ZENROM

mnemonic

A=A-C PT

A=A-C S

A=A-C XS

A=A-C PQ

C=C+C ALL

C=C+C X

C=C+C M

C=C+C WPT

C=C+C PT

C=C+C S

C=C+C XS

C=C+C PQ

C=A+C ALL

C=A+C X

C=A+C M

C=A+C WPT

C=A+C PT

C=A+C S

C=A+C XS

C=A+C PQ

C=C+1 ALL

C=C+1 X

C=C+1 M

C=C+1 WPT

C=C+1 PT

C=C+1 S

C=C+1 XS

C=C+1 PQ

C=A-C ALL

C=A-C X

C=A-CM

C=A-C WPT

Hexcode Octal

242

25E

256

252

26E

266

27A

26A

262

27E

276

272

28E

286

29A

28A

282

29E

296

292

2AE

2A6

2BA

2AA

2A2

2BE

2B6

2B2

2CE

2C6

2DA

2CA

1102

1136

1126

1122

1156

1146

1172

1152

1142

1176

1166

1162

1216

1206

1232

1212

1202

1236

1226

1222

1256

1246

1272

1252

1242

1276

1266

1262

1316

1306

1332

1312

Binary

1001000010

1001011110

1001010110

1001010010

1001101110

1001100110

1001111010

1001101010

1001100010

1001111110

1001110110

1001110010

1010001110

1010000110

1010011010

1010001010

1010000010

1010011110

1010010110

1010010010

1010101110

1010100110

1010111010

1010101010

1010100010

1010111110

1010110110

1010110010

1011001110

1011000110

1011011010

1011001010

HP

mnemonic

C=A-C PT
C=A-C S
C=A-C XS
C=A-C PQ
C=C-1
C=C-1 X
C=C-1 M
C=C-1 WPT
C=C-1 PT
C=C-1S
C=C-1 XS
C=C-1 PQ
C=-C
C=-C X
C=-CM
C=-C WPT
C=-C PT
C=-CS
C=-C XS
C=-C PQ
C=-C-1
C=-C-1 X
C=-C-1 M
C=-C-1 WPT
C=-C-1 PT
C=-C-1S
C=-C-1 XS
C=-C-1 PQ
7B£0
7B#0 X
7B#0 M
7B#0 WPT

-179-

Jacobs/

De Arras

C=A-C @R

C=A-C MS

C=A-C XS

C=A-C P-Q

C=C-1 ALL

C=C-1 S&X

C=C-1M

C=C-1 R«

C=C-1 @R

C=C-1 MS

C=C-1 XS

C=C-1 P-Q

C=0-C ALL

C=0-C S&X

C=0-CM

C=0-C R<

C=0-C @R

C=0-C MS

C=0-C XS

C=0-C P-Q

C=-C-1 ALL

C=-C-1 S&X

C=-C-1 M

C=-C-1 R«

C=-C-1 @R

C=-C-1 MS

C=-C-1 XS

C=-C-1 P-Q

?7B#0 ALL

7B#0 S&X

7B#0 M

7B#0 R<

ZENROM

mnemonic

C=A-C PT
C=A-C S
C=A-C XS
C=A-C PQ
C=C-1 ALL
C=C-1 X
C=C-1 M
C=C-1 WPT
C=C-1 PT
C=C-1S
C=C-1 XS
C=C-1 PQ
C=-C ALL
C=-C X
C=-CM
C=-C WPT
C=-C PT
C=-CS
C=-C XS
C=-C PQ
C=-C-1 ALL
C=-C-1 X
C=-C-1 M
C=-C-1 WPT
C=-C-1 PT
C=-C-1S
C=-C-1 XS
C=-C-1 PQ
7B£0 ALL
7B£0 X
7B£0 M
7B#£0 WPT

Hexcode Octal

2C2

2DE

2D6

2D2

2EE

2E6

2FA

2EA

2E2

2FE

2F6

2F2

30E

306

31A

30A

302

31E

316

312

32E

326

33A

32A

322

33E

336

332

34E

346

35A

34A

1302

1336

1326

1322

1356

1346

1372

1352

1342

1376

1366

1362

1416

1406

1432

1412

1402

1436

1426

1422

1456

1446

1472

1452

1442

1476

1466

1462

1516

1506

1532

1512

Binary

1011000010

1011011110

1011010110

1011010010

1011101110

1011100110

1011111010

1011101010

1011100010

1011111110

1011110110

1011110010

1100001110

1100000110

1100011010

1100001010

1100000010

1100011110

1100010110

1100010010

1100101110

1100100110

1100111010

1100101010

1100100010

1100111110

1100110110

1100110010

1101001110

1101000110

1101011010

1101001010

HP

mnemonic

7B#0 PT

?B#0 S

7B#0 XS

7B#0 PQ

2C#0

7C#0 X

7C#0 M

7C#0 WPT

7C#0 PT

2C#0 S

7C#0 XS

7C#0 PQ

7A<C

7A<C X

72A<C M

7A<C WPT

72A<C PT

7A<C S

?7A<C XS

7A<C PQ

7A<B

7A<B X

7A<B M

7A<B WPT

7A<B PT

7A<B S

7A<B XS

?7A<B PQ

7A#0

72A#0 X

7A#0 M

2A#0 WPT

-180-

Jacobs/

De Arras

?7B#0 @R

7B#0 MS

7B#0 XS

7B#0 P-Q

7C#0 ALL

7C#0 S&X

7C#0 M

7C#0 R<

7C#0 @R

7C#0 MS

2C#0 XS

7C#0 P-Q

?7A<C ALL

?2A<C S&X

7A<CM

7A<C R<

7A<C @R

?7A<C MS

7A<C XS

7A<C P-Q

7A<B ALL

7A<B S&X

7A<B M

?7A<B R«

?7A<B @R

?7A<B MS

7A<B XS

?7A<B P-Q

7A#0 ALL

7A#0 S&X

72A#0 M

7A#0 R<

ZENROM

mnemonic

?B#0 PT

7B#0 S

7B#0 XS

7B#0 PQ

7C#0 ALL

7C#£0 X

7C40 M

7C#0 WPT

2C#0 PT

7C#0 S

7C#0 XS

7C#0 PQ

7A<C ALL

7A<C X

7A<C M

?7A<C WPT

7A<C PT

7A<C S

?7A<C XS

7A<C PQ

7A<B ALL

7A<B X

7A<B M

?7A<B WPT

?7A<B PT

?7A<B S

7A<B XS

7A<B PQ

7A#0 ALL

7A#0 X

7A#0 M

?7A#0 WPT

Hexcode Octal

342

35E

356

352

36E

366

37A

36A

362

37E

376

372

38E

386

39A

38A

382

39E

396

392

3AE

3A6

3BA

3AA

3A2

3BE

3B6

3B2

3CE

3C6

3DA

3CA

1502

1536

1526

1522

1556

1546

1572

1552

1542

1576

1566

1562

1616

1606

1632

1612

1602

1636

1626

1622

1656

1646

1672

1652

1642

1676

1666

1662

1716

1706

1732

1712

Binary

1101000010

1101011110

1101010110

1101010010

1101101110

1101100110

1101111010

1101101010

1101100010

1101111110

1101110110

1101110010

1110001110

1110000110

1110011010

1110001010

1110000010

1110011110

1110010110

1110010010

1110101110

1110100110

1110111010

1110101010

1110100010

1110111110

1110110110

1110110010

1111001110

1111000110

1111011010

1111001010

HP

mnemonic

7A#0 PT
2A#0 S
2A#0 XS
2A£0 PQ
2A#C
2A#C X
2A#C M
2A#C WPT
2A#C PT
2A#C S
2A#C XS
2A#C PQ
A SR
A SR X
A SR M
A SR WPT
A SR PT
A SR S
A SR XS
A SR PQ
B SR
B SR X
B SR M
B SR WPT
B SR PT
B SR S
B SR XS
B SR PQ
C SR
C SR X
C SR M
C SR WPT

-181-

Jacobs/

De Arras

7A#0 @R

7A#0 MS

?7A#0 XS

7A#0 P-Q

?A#C ALL

2A#C S&X

72A#C M

7A#C R<

?A#C @R

2A#C MS

?A#C XS

?2A#C P-Q

RSHFA ALL

RSHFA S&X

RSHFA M

RSHFA R<

RSHFA @R
RSHFA MS

RSHFA XS

RSHFA P-Q
RSHFB ALL

RSHFB S&X

RSHFB M

RSHFB R«

RSHFB @R
RSHFB MS

RSHFB XS

RSHFB P-Q
RSHFC ALL

RSHFC S&X

RSHFC M

RSHFC R«

ZENROM

mnemonic

7A#0 PT
2A#0 S
2A£0 XS
2A£0 PQ
?A#C ALL
2A£C X
2A#C M
?A#£C WPT
2A#C PT
2A#C S
2A£C XS
7A£C PQ
ASR ALL
ASR X
ASR M
ASR WPT
ASR PT
ASR S
ASR XS
ASR PQ
BSR ALL
BSR X
BSR M
BSR WPT
BSR PT
BSR S
BSR XS
BSR PQ
CSR ALL
CSR X
CSR M
CSR WPT

Hexcode Octal

3C2

3DE

3D6

3D2

3EE

3E6

3FA

3EA

3E2

3FE

3F6

3F2

038

078

OB8

O0F8

138

178

1B8

1F8

238

278

2B8

2F8

338

378

3B8

3F8

028

068

0A8

OES8

1702

1736

1726

1722

1756

1746

1772

1752

1742

1776

1766

1762

0070

0170

0270

0370

0470

0570

0670

0770

1070

1170

1270

1370

1470

1570

1670

1770

0050

0150

0250

0350

Binary

1111000010

1111011110

1111010110

1111010010

1111101110

1111100110

1111111010

1111101010

1111100010

1111111110

1111110110

1111110010

0000111000

0001111000

0010111000

0011111000

0100111000

0101111000

0110111000

0111111000

1000111000

1001111000

1010111000

1011111000

1100111000

1101111000

1110111000

1111111000

0000101000

0001101000

0010101000

0011101000

HP

mnemonic

C SR PT

CSR S

C SR XS

C SR PQ

A SL

A SL X

A SLM

A SL WPT

A SL PT

ASLS

A SL XS

A SL PQ

C=DATA

C=REGN1

C=REGN 2

C=REGN 3
C=REGN 4

C=REGN 5

C=REGN 6

C=REGN 7

C=REGN 38
C=REGN 9

C=REGN 10

C=REGN 11
C=REGN 12

C=REGN 13
C=REGN 14

C=REGN 15
REGN=C 0

REGN=C 1

REGN=C 2

REGN=C 3

-182-

Jacobs/

De Arras

RSHFC @R

RSHFC MS

RSHFC XS

RSHFC P-Q

LSHFA ALL

LSHFA S&X

LSHFA M

LSHFA R<

LSHFA @R

LSHFA MS

LSHFA XS

LSHFA P-Q

READ DATA

READ 1(Z2)

READ 2(Y)

READ 3(X)

READ 4(L)

READ 5(M)

READ 6(N)

READ 7(0)

READ 8(P)

READ 9(Q)

READ 10(+)

READ 11(a)

READ 12(b)

READ 13(c¢c)

READ 14(d)

READ 15(e)

WRIT 0(T)

WRIT 1(Z)

WRIT 2(Y)

WRIT 3(X)

ZENROM

mnemonic

CSR PT

CSR S

CSR XS

CSR PQ

ASL ALL

ASL X

ASL M

ASL WPT

ASL PT

ASL S

ASL XS

ASL PQ

RDATA

C=REG 1/Z

C=REG 2/Y

C=REG 3/X
C=REG 4/L

C=REG 5/M

C=REG 6/N

C=REG 7/0

C=REG 8/P
C=REG 9/Q

C=REG 10/

C=REG 11/a
C=REG 12/b

C=REG 13/c

C=REG 14/d

C=REG 15/¢
REG=C 0/T

REG=C 1/Z

REG=C 2/Y

REG=C 3/X

Hexcode Octal

128

168

1A8

1E8

228

268

2A8

2E8

328

368

3A8

3E8

33C

23C

03C

07C

0BC

17C

2BC

13C

27C

OFC

IBC

37C

2FC

388

308

208

008

048

088

148

0450

0550

0650

0750

1050

1150

1250

1350

1450

1550

1650

1750

1474

1074

0074

0174

0274

0574

1274

0474

1174

0374

0674

1574

1374

1610

1410

1010

0010

0110

0210

0510

Binary

0100101000

0101101000

0110101000

0111101000

1000101000

1001101000

1010101000

1011101000

1100101000

1101101000

1110101000

1111101000

1100111100

1000111100

0000111100

0001111100

0010111100

0101111100

1010111100

0100111100

1001111100

0011111100

0110111100

1101111100

1011111100

1110001000

1100001000

1000001000

0000001000

0001001000

0010001000

0101001000

HP

mnemonic

REGN=C 4

REGN=C 5

REGN=C 6

REGN=C 7

REGN=C 8

REGN=C 9

REGN=C 10

REGN=C 11

REGN=C 12

REGN=C 13

REGN=C 14

REGN=C 15

RCR 1

RCR 2

RCR 3

RCR 4

RCR 5

RCR 6

RCR 7

RCR 8

RCR 9

RCR 10

RCR 11

RCR 12

RCR 13

S0=1

Sl=1

S2=1

S3=1

S4=1

S5=1

S6=1

-183-

Jacobs/

De Arras

WRIT 4(L)

WRIT 5(M)

WRIT 6(N)

WRIT 7(0)

WRIT 8(P)

WRIT 9(Q)

WRIT 10(+)

WRIT 11(a)

WRIT 12(b)

WRIT 13(c)

WRIT 14(d)

WRIT 15(e)
RCR 1

RCR 2

RCR 3

RCR 4

RCR 5

RCR 6

RCR 7

RCR 8

RCR 9

RCR 10

RCR 11

RCR 12
RCR 13

SETF 0

SETF 1
SETF 2
SETF 3

SETF 4

SETF 5

SETF 6

ZENROM

mnemonic

REG=C 4/L

REG=C 5/M

REG=C 6/N

REG=C 7/0

REG=C 8/P

REG=C 9/Q

REG=C 10/}

REG=C 11/a

REG=C 12/b

REG=C 13/c

REG=C 14/d

REG=C 15/¢

RCR 1

RCR 2

RCR 3

RCR 4

RCR 5

RCR 6

RCR 7

RCR 8

RCR 9

RCR 10

RCR 11

RCR 12
RCR 13

SF 0
SF 1

SF 2
SF 3

SF 4

SF 5

SF 6

Hexcode Octal

288

108

248

0C8

188

348

2C8

384

304

204

004

044

084

144

284

104

244

0C4

184

344

2C4

38C

30C

20C

00C

04C

08C

14C

28C

10C

24C

0CC

1210

0410

1110

0310

0610

1510

1310

1604

1404

1004

0004

0104

0204

0504

1204

0404

1104

0304

0604

1504

1304

1614

1414

1014

0014

0114

0214

0514

1214

0414

1114

0314

Binary

1010001000

0100001000

1001001000

0011001000

0110001000

1101001000

1011001000

1110000100

1100000100

1000000100

0000000100

0001000100

0010000100

0101000100

1010000100

0100000100

1001000100

0011000100

0110000100

1101000100

1011000100

1110001100

1100001100

1000001100

0000001100

0001001100

0010001100

0101001100

1010001100

0100001100

1001001100

0011001100

HP

mnemonic

S7=1

S8=1

S9=1

S10=1

S11=1

S12=1

S13=1

S0=0

S1=0

S2=0

S3=0

S4=0

S5=0

S6=0

S7=0

S8=0

S9=0

S10=0

S11=0

S12=0

S13=0

750=1

2S1=1

7S2=1

783=1

754=1

7S5=1

7S6=1

2S7=1

758=1

7S9=1

7S10=1

-184-

Jacobs/

De Arras

SETF 7

SETF 8

SETF 9

SETF 10

SETF 11

SETF 12

SETF 13

CLRF 0

CLRF 1

CLRF 2

CLRF 3

CLRF 4

CLRF 5

CLRF 6

CLRF 7

CLRF 8

CLRF 9

CLRF 10

CLRF 11

CLRF 12

CLRF 13

?FSET 0

?FSET 1

?FSET2

?FSET3

?FSET4

?7FSET5

?FSET6

?FSET7

?FSET8

?FSET9

?FSET 10

ZENROM

mnemonic

SF 7

SF 8

SF 9

SF 10

SF 11

SF 12

SF 13

CF 0

CF 1

CF 2

CF 3

CF 4

CF 5

CF 6

CF 7

CF 8

CF 9

CF 10

CF 11

CF12

CF13

?FS 0

?7FS 1

?FS 2

?FS 3

?FS 4

?FS 5

?7FS 6

7FS 7

?FS 8

?FS 9

?7FS 10

Hexcode Octal

18C

34C

2CC

39C

31C

21C

01C

05C

09C

15C

29C

11C

25C

0DC

19C

35C

2DC

394

314

214

014

054

094

154

294

114

254

0D4

194

354

2D4

010

0614

1514

1314

1634

1434

1034

0034

0134

0234

0534

1234

0434

1134

0334

0634

1534

1334

1624

1424

1024

0024

0124

0224

0524

1224

0424

1124

0324

0624

1524

1324

0020

Binary

0110001100

1101001100

1011001100

1110011100

1100011100

1000011100

0000011100

0001011100

0010011100

0101011100

1010011100

0100011100

1001011100

0011011100

0110011100

1101011100

1011011100

1110010100

1100010100

1000010100

0000010100

0001010100

0010010100

0101010100

1010010100

0100010100

1001010100

0011010100

0110010100

1101010100

1011010100

0000010000

HP

mnemonic

?2S11=1
?7512=1
7513=1
PT=0
PT=1
PT=2
PT=3
PT=4
PT=5
PT=6
PT=7
PT=8
PT=9
PT=10
PT=11
PT=12
PT=13
PT=0
PT=1
PT=2
PT=3
PT=4
PT=5
PT=6
PT=7
7PT=8
PT=9
7PT=10
PT=11
PT=12
PT=13
LC 0

-185-

Jacobs/

De Arras

?7FSET11

?FSET12

?FSET13

R=0

A
R

A
A
A
R

m
o
w
o
n
o
o

O
0

9
O

L
t
&

L
N

-

~ I

e -
O

LD@R0

ZENROM

mnemonic

?FS 11

?7FS 12

?FS 13

PT=0

PT=1

PT= 2

PT=3

PT= 4

PT=5

PT= 6

PT=7

PT= 8

PT=9

PT= 10

PT= 11

PT= 12

PT= 13

PT=0

PT= 1

PT= 2

PT=3

PT= 4

Hexcode Octal

050

090

0DO0

110

150

190

1D0

210

250

290

2DO0

310

350

390

3D0

3AC

32C

22C

02C

06C

0AC

16C

2AC

12C

26C

O0EC

1AC

36C

2EC

024

064

0A4

0120

0220

0320

0420

0520

0620

0720

1020

1120

1220

1320

1420

1520

1620

1720

1654

1454

1054

0054

0154

0254

0554

1254

0454

1154

0354

0654

1554

1354

0044

0144

0244

Binary

0001010000

0010010000

0011010000

0100010000

0101010000

0110010000

0111010000

1000010000

1001010000

1010010000

1011010000

1100010000

1101010000

1110010000

1111010000

1110101100

1100101100

1000101100

0000101100

0001101100

0010101100

0101101100

1010101100

0100101100

1001101100

0011101100

0110101100

1101101100

1011101100

0000100100

0001100100

0010100100

HP

mnemonic

LC 1

LC 2

LC3

LC 4

LCS5

LC 6

LC 7

LC 8

LC9

LC A

LCB

LCC

LCD

LCE

LCF

?7F0=1

?F1=1

7F2=1

7F3=1

7F4=1

?7F5=1

7F6=1

7F7=1

?7F8=1

?7F9=1

?7F10=1

7F11=1

?7F12=1

?7F13=1

SELPRF 0

SELPRF 1

SELPRF 2

-186-

Jacobs/

De Arras

LD@R 1

LD@R 2

LD@R 3

LD@R 4

LD@R 5

LD@R 6

LD@R 7

LD@R 8

LD@R 9

LD@R A

LD@R B

LD@R C
LD@R D

LD@R E

LD@R F

?FI= 0
?FI= 1

FI= 2

7FI= 3

7FI= 4

7FI= 5

?FI= 6

?FI= 7

7FI= 8

?FI= 9

?FI= 10

?FI= 11

?FI= 12
7FI= 13

SELP 0

SELP 1

SELP 2

ZENROM

mnemonic

LC 1
LC 2
LC 3
LC 4
LC 5
LC 6
LC 7
LC 8
LC 9
LC A
LC B
LC C
LC D
LC E
LC F
PBSY
7CRDR
PWNDB
7PF= 3
7PF= 4
7EDAYV
9IFCR
7SRQR
IFRAV
PFRNS
20RAV
9TFAIL
7ALM
9SERV
PERTCT 0
PERTCT 1
PERTCT 2

Hexcode Octal

OE4

124

164

1A4

1E4

224

264

2A4

2E4

324

364

3A4

3E4

3C4

3C8

3CC

3D4

3DC

058

098

0D8

158

198

1D8

258

298

2D8

358

398

3D8

020

060

0344

0444

0544

0644

0744

1044

1144

1244

1344

1444

1544

1644

1744

1704

1710

1714

1724

1734

0130

0230

0330

0530

0630

0730

1130

1230

1330

1530

1630

1730

0040

0140

Binary

0011100100

0100100100

0101100100

0110100100

0111100100

1000100100

1001100100

1010100100

1011100100

1100100100

1101100100

1110100100

1111100100

1111000100

1111001000

1111001100

1111010100

1111011100

0001011000

0010011000

0011011000

0101011000

0110011000

0111011000

1001011000

1010011000

1011011000

1001011000

1010011000

1111011000

0000100000

0001100000

HP

mnemonic

SELPRF 3

SELPRF 4

SELPRF 5

SELPRF 6

SELPRF 7

SELPRF 8

SELPRF 9

SELPRF A

SELPRF B

SELPRF C

SELPRF D

SELPRF E

SELPRF F

CLR ST

RST KB

CHK KB

DEC PT

INC PT

G=C

C=G

CG EX

M=C

C=M

CM EX

F=SB

SB=F

FEXSB

ST=C

C=ST

CST EX

SPOPND

POWOFF

-187-

Jacobs/

De Arras

SELP 3

SELP 4

SELP 5

SELP 6

SELP 7

SELP 8

SELP 9

SELP A

SELP B

SELP C

SELP D

SELP E

SELP F

ST=0

CLRKEY

7§KEY

R=R-1

R=R+1

G=C

C=G

C<>G

M=C

C=M

C<>M

T=ST

ST=T

ST<>T

ST=C

C=ST

C<>ST

XQ>GO

POWOFF

ZENROM

mnemonic

PERTCT 3

PERTCT 4

PERTCT 5

PERTCT 6

PERTCT 7

PERTCT 8

PERTCT 9

PERTCT A

PERTCT B

PERTCT C

PERTCT D

PERTCT E

PERTCT F

ST=0

CLRKEY

7KEY

-PT

+PT

G=C

C=G

C<>G

M=C

C=M

C<>M

F=ST

ST=F

ST<>F

ST=C

C=ST

C<>ST

CLRRTN

POWOFF

Hexcode Octal

0AO 0240

OEO 0340

120 0440

160 0540

1A0 0640

1EO 0740

220 1040

260 1140

2A0 1240

2EO0 1340

320 1440

360 1540

3A0 1640

3EO 1740

070 0160

0BO 0260

0FO0 0360

130 0460

170 0560

1BO 0660

230 1060

270 1160

2F0 1360

330 1460

370 1560

3B0 1660

3F0 1760

Binary

0010100000

0011100000

0100100000

0101100000

0110100000

0111100000

1000100000

1001100000

1010100000

1011100000

1100100000

1101100000

1110100000

1111100000

0001110000

0010110000

0011110000

0100110000

0101110000

0110110000

1000110000

1001110000

1011110000

1100110000

1101110000

1110110000

1111110000

HP

mnemonic

SEL P
SEL Q
7P=Q
LLD
CLRABC
GOTOC
C = KEYS
SETHEX
SETDEC
DISOFF
DISTOG
RTN C
RTN NC
RTN
N=C
C=N
CN EX
LDI
STK = C
C = STK
GOKEYS
DADD

DATA
CXISA
C=CORA
C=C.A
PFAD=C

C

C

-188-

Jacobs/

De Arras

SLCT P

SLCT Q

7P=Q

72LOWBAT

A=B=C=0

GOTO ADR

C=KEY

SETHEX

SETDEC

DSPOFF

DSPTOG

?7C RTN

INC RTN

RTN

N=C

C=N

C<>N

LDI S&X

PUSH ADR

POP ADR

GTO KEY

RAMSLCT

WRITE DATA

FETCH S&X

C=COR A

C=C AND A

PRPH SLCT

ZENROM

mnemonic

PT=P

PT=Q

P=Q

7BAT

ABC=0

GTOC

C=KEY

SETHEX

SETDEC

DISOFF

DISTOG

CRTN

NCRTN

RTN

N=C

C=N

C<>N

LDI

STK=C

C=STK

GTOKEY

RAMSLCT

WDATA

RDROM

C=CORA

C=CANDA

PERSLCT

"10-BASE", 117-121

? functions, 64,96,104

alpha register, 36,54-56

"AM & MA", 54-56

"AM & MA" revised, 60-61

Annunciators, 111,112,115

Assembler, 4,59

base conversions, 117

BCD, 8,68

BCD-BIN",72-74,87,89

"BCD-BIN" revised, 78,79

"BIN-BCD", 69-71

bit, 3,6,8,108

"BREAK", 154-164

byte, 6,8

Carry, 12,45,57,58

Character tables,

LCD, 108

MCODE function name, 37

"CODE", 148,159

"COUNT", 50-52,86,89

CPU, 1,3,5,6,9,51

CPU

registers, 5,7

A, 7,10,25,26,40

B, 7,10,25,26

C, 7,10,25,26,40

FI, 7,12

G, 7,11,132

KY, 7,12,134

M, 7,10

N, 7,10,66

INDEX

CPU registers (cont.)

P, 7,11

PC, 7,11

Q, 7,11

ST, 7,11

return stack, 7,11,61,76,

77

T, 7

XST, 7,11

Flags, 41

Modes,

deep sleep, 133

light sleep, 133

running, 133

status, 132

crash, 88,116

debugging programs, 154-164

"DECODE", 156,165

display, 107-128

clearing, 119

custim error messages, 122-126

disabling, 119

enabling, 107,120,141

mnemonics, 109-111

type, 107,115-116

display contrast, 115,116

Dissassembler, 5,77,109

"DISTEST", 112-115

.END.,, 35,42

EPROM

box, 14,130

software, 15

-189-

EXECUTEs

Absolute, 57,58,60

Relative, 75,78,85,122

"F?", 71,87,89

FAT, 19,20,21,38,39,40,43,56,63,

67,70,72,74,86,89,93,98,102,104,

121,135

FETCH, 110

fields

ALL, 12,40

ADR, 12,13

KY, 12,13

M, 12,13,42

MS, 12,13,69

S&X, 12,51,52

XS, 12,13,124

@R, 13,51

P-Q, 13,82

R<, 13,69

"FS?S & FC?C", 65-67,87,89

"GE", 42,43,86,89

"GEE",134-135

GOTOs

Absolute, 57,58,61

Relative, 75,77,103,125

Graves, Pete, iii

Hexcodes, 8.28,29,76

Hovik, David, iii

"HXENTRY", 140-147

"IF", 62-64,87,89

I/0 buffers, 32

INSERT, 138

Instruction set

?7A<B, 26,27

7A<C, 26,27,55

Instruction set (cont.)

?7A#0, 26,27,51

?2A#C, 26,27,73

?7B#0, 26,27

?7C#0, 26,27,63

?7C RTN, 47,49,56

?FI n, 28,29

?FSET n, 28,29,55

?KEY, 47,48,51

7LOWBAT, 47,48

INC RTN, 47,49,97

7P=Q, 47,48

7R= n, 28,29,56

A=0, 25,27

A=A+1, 25,27,56

A=A+B, 25,27

A=A+C, 25,27

A=A-1, 25,27,63

A=A-B, 25,27

A=A-C, 25,27,63

A=B=C=0, 47,48

A=C, 25,27,40

A<>B, 25,27,82

A<>C, 25,27,40

B=0, 25,27

B=A, 25,27

C=0, 25,27,42

C=0-C, 26,27

C=B, 25,27

C=C+1, 26,27,56

C=C+A, 25,27

C=C+C, 25,27,63

C=A-C, 26,27

C=C-1, 26,27,51

C=-C-1, 26,27,83

-190-

Instruction set (cont.)

C=C AND A, 47,50,63,82

C=C OR A, 47,50,66,82

C=KEY, 47,49

C=G, 47

C=M, 47,95

C=N,47,66

C=ST, 47

C<>B, 25,27,56

C<>G, 47

C<>M, 47

C<>N, 47

CLRF n, 28,29,43

CLRKEY, 47,51

DSPOFF, 47,49

DSPTOG,47,49

FETCH S&X, 47,50

G=C, 47,144

GOTO ADR,47,49,122

GTO KEY,47,50

JC, 45,46,47,51

JNC, 45,46,47,51

LD@R n, 28,29,43

LDI S&X, 47,49,51

LSHFA, 26,27,51

M=C, 47,94

N=C, 47,66

NOP, 115

POP ADR, 47,49,83,122

POWOFF, 47,48,115

PRPH SLCT,47,50,107,112

PUSH ADR, 47,49,82,122

R= n, 28,29,43

R=R-1, 47,48

R=R+1, 47,48,56

Instruction set (cont.)

RAMSLCT, 47,52,53,55

RCR n, 28,29,55

READ n, 28,29,40

READ DATA, 47,52,53,56

RSHFA, 26,29

RSHFB, 26,29

RSHFC, 26,29,80

RTN, 39

SELP n, 28,29

SETF n, 28,29,43

SETDEC, 47,49,51

SETHEX, 47,49,118

SLCT P, 47,48

SLCT Q, 47,48

ST=0, 47

ST=C, 47

ST=T, 47

ST<>T, 47

T=ST, 47

WRITE DATA, 47,52,56

WRIT n, 28,29,41

XQ>GO, 47,48

interupt (polling) points, 21,

151-153

Johanson, David, iii

Jumps, 45,46

"LOOP", 157-164

MACRO, 77

Mainframe

functions, 16

key tables, 149,150

subroutine, 16,91

entry point, 17,60

MCODE,iii,1,7,126

-191-

MLDL, 1,13,38,44,129

MEMORY LOST, 35

microCODE, 1

Microprocessor, 4,6

mnemonics, 4,8,19,109

MOD, 91,117,119

Negative exponents, 5,101

NOP, 8,115,134

"NR", 84-86,87,90

number systems

base 10, 3

Binary, 3,4

Hex, 3,67,86,99

Hexadecimal, 3

Octal, 99

nybble, 5,8,13,35,82,108

"OCT-HEX", 166-169

op bits, 137-139

overflow, 9

partial key sequencing, 35,137-147

PTEMPI1, 34,35,138

PTEMP2, 138,139

prefix, 13,25-29

Programming,

Machine language, 1

MCODE, 1,12,16,19,20,29,52,

99,139

User code, 1,19

Synthetic, 7,37

pointers, 11,28

postfix, 13,25-29

prompting, 135-147

"QR", 91-93

RAM,

Addresses, 31,32,83

RAM (cont.)

Chip, 53

Extended Memory, 29,31,32

Main Memory,29,31,32

RAM, 1,6,9,13,17,30,52,60

Status Registers, 29,33-37,

VOID, 31,33

random numbers, 100

"RN", 100-102

ROM, 1,6,9,17,19,20

ROM

address space, 6,17

checksum, 22

header, 19,38,86

page, 17,18,19

program name, 37,38

revision, 21

word, 18

"RSLCT", 157,160-164

"S?", 102-104

shift, 8,62,80,110

SKWID,iii

"SKWID 1A", 38-40,86,89

SYNTHETIX,ii

underflow, 9,72

underscores, 136,139

user flag 46, 140,146

user flag 50, 95,115,119,146

"VA", 98,99

VASM, 17,99

VASM octal to hex conversions, 166-

169

"VM", 93-95

White, David, iii

word, 9,77

-192-

wraparound, 9,70

"X=Y? Z?", 96-98

"X>=Y?", 104-106

XOR, 80-82

XROM, 19,20,38,39,40,43,86,89,

132,138

"Y<>Z", 40,41,86,89

ZENROM, 129

-193-

ORDER BLANK

QUANTITY

FOR HP-71'S
HP-71 Basic Made Easy
by Joseph Horn, $18.95 per copy $

FOR HP-41'S
HP-41 M-Code for Beginners
by Ken Emery, $24.95 per copy $

Inside the HP-41
by Jean-Daniel Dodin, $18.95 per copy $

HP-41 Extended Functions Made Easy
by Keith Jarett, $16.95 per copy 3

HP-41 Synthetic Programming Made Easy
(Includes one Quick Reference Card)
by Keith Jarett, $16.95 per copy $

Quick Reference Card for Synthetic Programming
$3.00 cach $

FOR HP-10C, 11C, 15C, AND 16C
ENTER
(Reverse Polish Notation Made Easy)
by Jean-Daniel Dodin, $5.95 per copy $

Sales tax (California orders only, 6 or 6.5%) $

Shipping, per book
within USA, book rate (4th class) $1.50
USA 48 states, United Parcel Service $2.50
USA, Canada, air mail $3.00
elsewhere, air mail $6.05
clsewhere, book rate (6 to 8 week wait) $2.00

Shipping for QRC plastic cards (any number)
Free with book order or stamped envelope
Otherwise $1.00

Enter shipping total here $

Total due $

Checks must be in U.S. funds, and payable through a U.S. bank.

Name

AMOUNT

Address

City State Z1ip

Country

Mail to:

SYNTHETIX
P.O. Box 1080
Berkeley, CA 94701-1080
(415) 339-0601

ORDER BLANK

QUANTITY

FOR HP-71'S
HP-71 Basic Made Easy
by Joseph Horn, $18.95 per copy $

FOR HP-41’S

HP-41 M-Code for Beginners
by Ken Emery, $24.95 per copy $

Inside the HP-41
by Jean-Daniel Dodin, $18.95 per copy $

HP-41 Extended Functions Made Easy
by Keith Jarett, $16.95 per copy 3

HP-41 Synthetic Programming Made Easy
(Includes one Quick Reference Card)
by Keith Jarett, $16.95 per copy $

Quick Reference Card for Synthetic Programming

$3.00 cach $

FOR HP-10C, 11C, 15C, AND 16C
ENTER
(Reverse Polish Notation Made Easy)

by Jean-Daniel Dodin, $5.95 per copy $

Sales tax (California orders only, 6 or 6.5%) $

Shipping, per book
within USA, book rate (4th class) $1.50
USA 48 states, United Parcel Service $2.50
USA, Canada, air mail $3.00
elsewhere, air mail $6.05
elsewhere, book rate (6 to 8 weeck wait) $2.00

Shipping for QRC plastic cards (any number)
Free with book order or stamped envelope
Otherwise $1.00

Enter shipping total here 3

Total due $

Checks must be in U.S. funds, and payable through a U.S. bank.

Name

AMOUNT

Address

City State Z1p

Country

Mail to:

SYNTHETIX
P.O. Box 1080
Berkeley, CA 94701-1080
(415) 339-0601

HP-41 MCODE FOR BEGINNERS
by Ken Emery

MCODE is the internal machine code used by the HP-41, one level below the

set of "user code" instructions that users and programmers are accustomed to

dealing with. Some user code instructions like CLX are implemented by the

HP-41 in just a few MCODE instructions; other user code instructions like

TAN may need hundreds of MCODE operations.

Programs in MCODE are FAST. They run 7 to 120 times faster than user code

programs. But the advantage that enthusiasts will appreciate the most is

that MCODE gives you total control of the machine. You can make the HP-41

do whatever you want it to do, completely redefining its "personality" and

customizing it for your particular applications. MCODE programming requires

additional hardware, generally an external box called an MLDL (Machine

Language Development Lab). But once you enter the world of MCODE there is

nothing you can’t do.

This book is your ticket to the world of MCODE.

Simple programming examples lead you step-by-step to an understanding of the

principles and practice of MCODE programming. Later examples show you how

to use parts of the built-in operating system as subroutines to do input,

output, and other useful functions. Even before you finish the examples,

you will be able to write your own simple MCODE programs.

For advanced MCODE programmers, there are several features of interest.

Complete details of the display instructions are given. This includes the

new display that accesses additional LCD characters, and that allows

alteration of the contrast. Also explained for the first time is partial

key sequencing, which allows you to create functions that prompt for inputs

in the same user-friendly way as the built-in functions like STO and LBL.

Two utility programs are included to help in your programming. A debugging

program allows you to interrupt an MCODE routine at any point, dumping the

contents of the CPU registers for viewing. Also included are base con-

version programs to help you use HP’s annotated operating system listings.

Move into the FAST lane. Get started programming in MCODE today!

ISBN 0-9612174-7-2

	Cover
	What is MCODE?
	Preface
	Table of Contents
	Introduction
	The Basics
	Binary Number Representations
	The Microprocessor
	The CPU Registers of the HP-41
	Vocabulary
	The Hardware
	The Software
	Source Listings for the HP-41's Operating System
	The ROM Address Space
	The ROM Word
	How a 4K Page is Divided

	The Tools
	The Instruction Set
	Jumps and Jumping
	Absolute Executes and Gotos
	The Normal Function Return
	Relative Executes and Gotos
	Tips, Short Routines, and Other Little Goodies

	The Visuals
	Accessing the Display
	Custom Error Messages

	Appendices
	Appendix A: List of Suppliers
	Appendix B: What's Up on Entry to an MCODE Routine
	Appendix ZZZzzz...: The Three CPU Modes
	Appendix C: Other Advanced Stuff
	Appendix D: Using the Polling Points
	Appendix E: MCODE Debugging Program
	Appendix V: OCTal-HEX Conversion Programs
	Appendix F: Table of Mnemonics

	Index

