HEWLETT-PACKARD

HP.41C

CIRCUIT
ANALYSIS PAC

\square

NOTICE

The program material contained herein is supplied without representation or warranty of any kind. Hewlett-Packard Company therefore assumes no responsibility and shall have no liability, consequential or otherwise, of any kind arising from the use of this program material or any part thereof.

HEWLETT-PACKARD LISTENS

To provide better calculator support for you, the Application Engineering group needs your help. Your timely inputs enable us to provide higher quality software and improve the existing application pacs for your calculator. Your reply will be extremely helpful in this effort.

1. Pac name \qquad
2. How important was the availability of this pac in making your decision to buy a HewlettPackard calculator?
\square Would not buy without it.
\square Important
Not important
3. What is the major application area for which you purchased the pac?
4. In the list below, please rate the usefulness of the programs in this pac.

1				
2				
3				
4				
5				
6				
7				
8				

5. Did you purchase a printer? \square YES

	$\begin{aligned} & \stackrel{\rightharpoonup}{4} \\ & \stackrel{\rightharpoonup}{\underset{u}{u}} \\ & \underset{\sim}{u} \end{aligned}$			
9				
10				
11				
12				
13				
14				
15				
16				

NO

If you did, is the printing format in this pac useful? YES

NO
6. What programs would you add to this pac?
7. What additional application pacs would you like to see developed?

THANK YOU FOR YOUR TIME AND COOPERATION.

Name	Position
Company	
Address	State
City	Phone

NO POSTAGE
NECESSARY
IF MAILED IN THE UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 33 CORVALLIS, OREGON

Postage will be paid by
Hewlett-Packard
1000 N.E. Circle Blvd.
Corvallis, Oregon 97330

INTRODUCTION

The Circuit Analysis Pac consists of a general network analysis program, GNAP, and a ladder network analysis program, LNAP. This manual provides a description of each program, relevant equations, a set of instructions for using the programs, and several example problems, each of which includes a list of keystrokes required for its solution.
Before plugging in your Application Module, turn the calculator off, and be sure you understand the section "Inserting and Removing Application Modules.', Before using a particular program, take a few minutes to read "Format of User Instructions'" and "A Word About Program Usage."

You should first familiarize yourself with a program by running it once or twice following the user instructions in the manual. Thereafter, the program's prompting or the mnemonics on the overlays should provide the necessary instructions, including which variables are to be input, which keys are to be pressed, and which values will be output.

We hope that the Circuit Analysis Pac will assist you in the solution of numerous problems. We would appreciate knowing your reactions to the programs in this pac, and to this end we have provided a questionnaire inside the front cover of this manual. Would you please take a few minutes to give us your comments on these programs? It is from your comments that we learn how to increase the usefulness of our programs.

CONTENTS

Introduction 1
Contents 2
Inserting and Removing Application Modules 3
Format of User Instructions 5
A Word About Program Usage 6
General Network Analysis Program 8
Analyzes general networks of up to 9 nodes and 21 branches.
Ladder Network Analysis Program 20
Analyzes ladder networks of up to 107 branches.
Appendix A Register Usage 29
Appendix B Subroutines 33

INSERTING AND REMOVING APPLICATION MODULES

Before you insert an Application Module for the first time, familiarize yourself with the following information.
Up to four Application Modules can be plugged into the ports on the HP-41C. While plugged in, the names of all programs contained in the Module can be displayed by pressing CATALOG 2.

CAUTION

Always turn the HP-41C off before inserting or removing any plug-in extension or accessories. Failure to turn the HP-41C off could damage both the calculator and the accessory.

To insert Application Modules:

1. Turn the HP-41C off! Failure to turn the calculator off could damage both the Module and the calculator.

2. Remove the port covers. Remember to save the port covers; they should be inserted into the empty ports when no extensions are inserted.
3. Insert the Application Module with the label facing downward as shown, into any port after the last Memory Module. For example, if you have a Memory Module inserted in port 1 , you can insert an Application Module in any of ports 2, 3 , or 4. (The port numbers are shown on the back of the calculator.) Never insert an Application Module into a lower
 numbered port than a Memory Module.
4. If you have additional Application Modules to insert, plug them into any port after the last Memory Module. Be sure to place port covers over unused ports.
5. Turn the calculator on and follow the instructions given in this book for the desired application functions.

To remove Application Modules:

1. Turn the HP-41C off! Failure to do so could damage both the calculator and the Module.
2. Grasp the desired Module handle and pull it out as shown.

3. Place a port cap into the empty ports.

Mixing Memory Modules and Application Modules

Any optional accessories (such as the HP-82104A Card Reader, or the HP-82143A Printer) should be treated in the same manner as Application Modules. That is, they can be plugged into any port after the last Memory Module. Also, the HP-41C should be turned off prior to insertion or removal of these extensions.
The HP-41C allows you to leave gaps in the port sequence when mixing Memory and Application Modules. For example, you can plug a Memory Module into port 1 and an Application Module into port 4, leaving ports 2 and 3 empty.

FORMAT OF USER INSTRUCTIONS

The completed User Instruction Form- which accompanies each program is your guide to operating the programs in this Pac.
The form is composed of five labeled columns. Reading from left to right, the first column, labeled STEP, gives the instruction step number.
The INSTRUCTIONS column gives instructions and comments concerning the operations to be performed.
The INPUT column specifies the input data, the units of data if applicable, or the appropriate alpha response to a prompted question. Data input keys consist of 0 to 9 and the decimal point (the numeric keys), EEX (enter exponent), and CHS (change sign).
The FUNCTION column specifies the keys to be pressed after keying in the corresponding input data.
The DISPLAY column specifies prompts, intermediate and final answers, and their units, where applicable.
Above the DISPLAY column is a box which specifies the minimum number of data storage registers necessary to execute the program. Refer to the Owner's Handbook for information on how the SIZE function affects storage configuration.
The following illustrates the User Instruction Form for the GNAP program.

				SIZE>40
STEP	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
1	Initialize the GNAP program		$\begin{gathered} \text { XEQ GNAP } \\ \pi^{R / s} \mathbf{s}^{2} \end{gathered}$	$\begin{aligned} & \text { GNAP } \\ & \text { NODES=? } \end{aligned}$
2	Key in: number of nodes number of branches	$\begin{aligned} & \mathrm{N} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & R / S \\ & R / S \\ & R / S S^{2} \end{aligned}$	$\begin{aligned} & \text { BRANCHES=? } \\ & \mathrm{N}=(\mathrm{N}) \mathrm{B}=(\mathrm{B})^{1} \\ & \text { BRANCH } 1 \end{aligned}$
3	Key in each branch element: a) Resistance (Ohms)	R	(NODES: FR. $\mathrm{TO}=$?
	or b) Capacitance (Farads)	C	B	NODES: FR. $\mathrm{TO}=$?
	or c) Inductance (Henrys)	L	c	NODES: FR. $\mathrm{T} 0=$?
	and enter branch nodes or d) Transconductance (Siemens)	FR. TO gm	R/S D	$\text { BRANCH }(\mathrm{n}+1)$ INPUT: $V+. V-=?$

A WORD ABOUT PROGRAM USAGE

Catalog

When an Application Module is plugged into a port of the HP-41C, the contents of the Module can be reviewed by pressing CATALOG 2 (the Extension Catalog). Executing the CATALOG function lists the name of each program or function in the Module, as well as functions of any other extensions which might be plugged in.

Overlays

Overlays have been included for some of the programs in this Pac. To run the program, choose the appropriate overlay, and place it on the calculator. The mnemonics on the overlay are provided to help you run the program. The program's name is given vertically on the left side. When the calculator is in USER mode, a blue mnemonic identifies the key directly above it. Gold mnemonics are similar to blue mnemonics, except that they are above the appropriate key and the shift (gold) key must be pressed before the re-defined key. Once again, USER mode must be set.

ALPHA and USER Mode Notation

This manual uses a special notation to signify ALPHA mode. Whenever a statement on the User Instruction Form is printed in gold, the ALPHA key must be pressed before the statement can be keyed in. After the statement is input, press ALPHA again to return the calculator to its normal operating mode, or to begin program execution. For example, XEQ GNAP means press the following keys: XEO ALPHA GNAP ALPHA.
When the calculator is in USER mode, this manual will use the symbols (A) - \triangle and - \quad - to refer to the reassigned keys in the top two rows. These key designations will appear on the User Instruction Form and in the keystroke solutions to sample problems.

Optional HP-82143A Printer

When the optional printer is plugged into the HP-41C along with the Circuit Analysis Application Module, all results will be printed automatically. You may also want to keep a permanent record of the values input to a certain program. A convenient way to do this is to set the Print Mode switch to NORMAL before running the program. In this mode, all input values and the corresponding keystrokes will be listed on the printer, thus providing a record of the entire operation of the program.

Using Programs as Subroutines

The programs in this Pac may be called as subroutines for user programs in the HP-41C's program memory. Refer to Appendix B for information on special subroutine calling points.

Downloading Module Programs

If you wish to trace execution, to modify, or to record on magnetic cards a program in this Application Module, it must first be copied into the HP-41C's program memory. For information concerning the HP-41C's COPY function, see the Owner's Handbook. It is not necessary to copy a program in order to run it.

Program Interruption

These programs have been designed to operate properly when run from beginning to end, without turning the calculator off (remember, the calculator may turn itself off). If the HP-41C is turned off, it may be necessary to set flag 21 (SF 21) to continue proper execution.

Use of Labels

You should generally avoid writing programs into the calculator memory that use program labels identical to those in your Application Module. In case of a label conflict, the label within program memory has priority over the label within the Application Pac program.

Assigning Program Names

Key assignments to keys $A-D$ and A - \square take priority over the automatic assignments of local labels in the Application Module. Be sure to clear previously assigned functions before executing a Module program.

GENERAL NETWORK ANALYSIS PROGRAM

This program analyzes electrical networks, computing amplitude and phase of the transfer function $\mathrm{V}_{2}(\mathrm{~s}) / \mathrm{V}_{1}(\mathrm{~s})$. If the optional HP-82143A printer is used, the results may be either printed or plotted. The network elements allowed are resistors, capacitors, inductors, and voltage-controlled current sources. The size of the circuit that can be handled by the program depends on the number of memory registers available. The following table indicates the number of nodes, N , and branches, B, that can be analyzed with three memory modules. The number of registers needed for a circuit is $2 \mathrm{~N}^{2}+3 \mathrm{~B}+29$.

POSSIBLE CIRCUIT CONFIGURATIONS

Number of Memory Modules

0		1		2		3	
N	B	N	B	N	B	N	B
2	8	2	30	2	51	2	72
3	5	3	26	3	48	3	69
		4	22	4	43	4	64
		5	16	5	37	5	58
		6	8	6	30	6	51
				7	21	7	42
				8	11	8	32
							21

Assuming you have set the minimum size of 28, the GNAP program begins by asking you for the size of your circuit and then tests to determine if there is enough storage before it begins. If there is insufficient storage, the message "SET SIZE NNN" warns you that the number of data registers must be increased. When numbering the nodes in your circuit, be sure that node 0 is ground, node 1 is the input node, and node 2 is the node whose voltage you wish to determine.

Analysis Algorithm

For any network, a matrix called the "nodal admittance matrix" can be written." This matrix gives the relationship between the node voltages and the branch currents:

$$
\begin{equation*}
\mathbf{Y}_{\mathrm{n}} \mathbf{V}_{\mathrm{n}}=\mathbf{A} \mathbf{I} \tag{1}
\end{equation*}
$$

where:
\mathbf{A} is the incidence matrix
\mathbf{V}_{n} is the node-voltage vector
\mathbf{I} is the source-current vector
\mathbf{Y}_{n} is the nodal admittance matrix
The algorithm assumes that our network is driven only by a current source of 1 ampere flowing from the ground node, node 0 , into the input node, node 1 . Equation (1) can then be written as

$$
\mathbf{Y}_{\mathrm{n}} \mathbf{V}_{\mathrm{n}}=\left[\begin{array}{c}
1 \tag{2}\\
0 \\
0 \\
. \\
. \\
.
\end{array}\right]
$$

This equation could be solved explicitly for each node voltage by multiplying both sides on the left by $\mathbf{Y}_{\mathrm{n}}{ }^{-1}$.

$$
\mathbf{V}_{\mathrm{n}}=\mathbf{Y}_{\mathrm{n}}{ }^{-1}\left[\begin{array}{l}
1 \tag{3}\\
0 \\
0 \\
\cdot \\
\cdot \\
\cdot
\end{array}\right]
$$

But since we only need the ratio V_{2} / V_{1}, it is not necessary to invert \mathbf{Y}_{n}. Instead, we can use Gaussian elimination to transform \mathbf{Y}_{n} into a lower triangular matrix.

Then we compute the desired ratio by solving the second equation, obtained from (4).

$$
\begin{equation*}
\frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}=-\frac{\mathrm{a}_{21}}{\mathrm{a}_{22}} \tag{5}
\end{equation*}
$$

To illustrate this procedure, consider this circuit:

By using the techniques of Sec. 2.4 of Balabanian, we can write the Y_{n} matrix

$$
Y_{n}=\left[\begin{array}{rrr}
4 & 0 & -4 \\
0 & 3 & -2 \\
-4 & -2 & 9
\end{array}\right]
$$

Multiplying the third row by $\frac{2}{9}$ and adding it to the second, we get

$$
Y_{n}=\left[\begin{array}{rrr}
4 & 0 & -4 \\
-\frac{8}{9} & \frac{23}{9} & 0 \\
-4 & -2 & 9
\end{array}\right]
$$

Since we don't need to triangularize past the second row, we have

$$
\frac{V_{2}}{V_{1}}=\frac{8}{23}=-9.17 \mathrm{~dB}
$$

For circuits containing reactive components, the above procedure is carried out in the same way except that all operations are done with complex numbers. The GNAP program works with a real conductance matrix, G, and an imaginary susceptance matrix, B.

You might get the message DATA ERROR if there is a resonant subnetwork in your circuit and the frequency being used is the exact resonant frequency. If this condition occurs, it will be necessary to alter your input frequency slightly.

12 General Network Analysis Program

STEP	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
7	To plot the results（assuming you have an HP－82143A printer attached），select desired plot： a）magnitude or b）magnitude in dB or c）Phase		$\begin{aligned} & \text { G } \\ & \hline ⿴ 囗 十 \\ & \hline 1 \end{aligned}$	$\begin{aligned} & \mathrm{YMIN}=? \\ & \text { YMIN }=? \\ & \text { YMIN }=? \end{aligned}$
8	Specify plot parameters： Key in a）$Y_{\text {MIN }}$ b）$Y_{\text {max }}$ c）x－axis（ y－intercept）	$Y_{\text {MIN }}$ $Y_{\text {max }}$ x－axis ${ }^{5}$	$\begin{aligned} & \mathrm{R} / \mathrm{S} \\ & \mathrm{R} / \mathrm{S} \\ & \mathrm{R} / \mathrm{S} \end{aligned}$	$\mathrm{YMAX}=?$ AXIS =?
	${ }^{5}$ You may suppress printing of the x －axis by placing any alpha character in the alpha display， e．g．；ALPHA NO AXIS R／s causes＂NO AXIS＂to be stored as the y－intercept and no axis will be plotted．			

Example 1：

Compute the magnitude and phase response for this active filter．It was designed to be a high－pass filter with a $10-\mathrm{Hz}$ cutoff frequency，passband gain of 20 dB ，and α－peaking factor of 1 ．

Keystrokes

R/S

4 R/S
7 R/S
R/S
1 EEX CHS 6B
$1.03 \mathrm{R} / \mathrm{S}$
7579 A
3 R/S
1 EEX CHS 6B
3.04 R/S

100 EEX CHS 9 B
3.02 R/S

334200 A
4.02 R/S

10000
. 04 R/S
. 02 R/S
10 Δ
2 R/S
F
1 R/S
100 R/S
10 USER \sqrt{x} USER CHS R/S

Display

NODES?
BRANCHES?
$N=4 B=7$
BRANCH 1
NODES: FR.TO=?
BRANCH 2
NODES: FR.TO=?
BRANCH 3
NODES: FR.TO=?
BRANCH 4
NODES: FR.TO=?
BRANCH 5
NODES: FR.TO=?
BRANCH 6
INPUT: V+.V-=?
OUTPUT: IL.IE=?
BRANCH 7
NODES: FR.TO=?
DONE
FMIN=?
FMAX=?
F INCR=?
READY

These keystrokes
assume the printer is not being used.

Keystrokes	Display
J	$F=1.00$
R/S	$\boldsymbol{H}=0.10$
R/S	$H=-19.96 d B$
R/S	$L=-5.77$
R/S	$F=3.16$
R/S	$H=1.05$
R/S	$H=0.41 \mathrm{~dB}$
R/S	$L=-19.36$
R/S	$F=10.00$
R/S	$H=10.00$
R/S	$H=20.00 d B$
R/S	$L=-90.00$
R/S	$F=31.62$
R/S	$H=10.48$
R/S	$H=20.41 d B$
R/S	$L=-160.64$
R/S	$F=100.00$
R/S	$H=10.05$
R/S	$H=20.04 d B$
R/S	$L=-174.23$

Example 2:

Create a Bode plot for this transistor amplifier.

First transform the circuit using an h-parameter model.
$0.638 \mu \mathrm{~F}$

Then replace the current-controlled current source with a voltage-controlled current source.

Keystrokes
XEO ALPHA SIZE ALPHA 062
XEQ ALPHA GNAP ALPHA
$3 R / S$
5 R/S
.638 EEX CHS 6 B
1.03 R/S

2494 A
3 R/S
.04D
3 R/S
2 R/S
5000 A
2 R/S
3183 EEX CHS 12 B
2 R/S
E

Display

GNAP
NODES?
BRANCHES?
$N=3 B=5$
BRANCH 1
NODES: FR.TO=?
BRANCH 2
NODES: FR.TO=?
BRANCH 3
INPUT: V+.V-=?
OUTPUT:IL.IE=?
BRANCH 4
NODES: FR.TO=?
BRANCH 5
NODES: FR.TO=?
DONE
B 1.
$C=638.0 E-9$
NODES: 1.0300

B 2.

$R=2.494 E 3$
NODES: 3.0000

These keystrokes assume a printer is being used.

Review the circuit description

Keystrokes	Display B 3. GM $=40.00 E-3$ NODES: 300.0200 B 4. $R=5.000 \mathrm{E} 3$ NODES: 2.0000 B 5. $C=3.183 E-9$ NODES: 2.0000	$(\mathrm{V}+\mathrm{V}-. \mathrm{ILIE})$
F	FMIN=?	
10R/S	$F M A X=$?	
1 EEX 5 R/S	F INCR = ?	Four steps per
10 USER $\sqrt{x} \sqrt{x}$ USER CHS R/S	READY	decade.
H	YMIN $=$?	
20 R/S	YMAX $=$?	
50R/S	AXIS $=$?	
50R/S		

Example 3:

Analyze this circuit from 100 Hz to 100 kHz . Make Bode plots using a multiplicative frequency increment of $10^{1 / 8}$.

Keystrokes
XEO ALPHA SIZE ALPHA 059
XEQ A
3 R/S
$4 R / \mathrm{S}$

200 EEX CHS 6C
1.02 R/S
.33 A
2.03 R/S

220 EEX CHS 6 B
3 R/S
20 A
2 R/S
F
100 R/S
1 EEX 5 R/S
10 USER $\sqrt{x} \sqrt{x} \sqrt{x}$ USER CHS

```
R/S
READY
```

H. (J if you have no printer)

50 CHS R/S
10 R/S
0 R/S

Display

GNAP
NODES?
BRANCHES?
$N=3 B=4$
BRANCH 1
NODES: FR.TO=?
BRANCH 2
NODES: FR.TO=?
BRANCH 3
NODES: FR.TO=?
BRANCH 4
NODES: FR.TO=?
DONE
FMIN=?
FMAX=?
F INCR = ?

YMIN=?
YMAX = ?
AXIS $=$?

If SIZE > 59,
ignore this line.
These keystrokes assume a printer is being used.

Keystrokes
Display
I
YMIN=?
188 CHS R/S
188 R/S
0 R/S

Example 4:

You can use programs of your own to put any desired label on a plot. Store Ymin, Ymax, Axis, and the Label. Then execute PRPLOTP.
This example shows how to use a Voltage-Controlled Current Source to determine the input impedance of a circuit and how to plot it with the label "Z IN."

First build the circuit.

Keystrokes
XEQ ALPHA SIZE ALPHA 076
XEQ ALPHA GNAP ALPHA
$4 R / S$
$5 R / S$

10

Display

GNAP
NODES?
BRANCHES?
$N=4 B=5$
BRANCH 1
INPUT: $V+. V-=$?

These key-
strokes assume
the printer is being used.

Keystrokes
1 R/S
. 02 R/S
4.85 EEX CHS 12 B

2 R/S
138.5 EEX CHS 18B
$2.03 \mathrm{R} / \mathrm{S}$
500 EEX CHS 3C
3.04 R/S

10 A
4 R/S
F
19125300 R/S
19125800 R/S
50 R/S
Then write this short program.
Keystrokes
GTO $\bullet \bullet$
PRGM
LBL ALPHA Z IN ALPHA 01 LBLZ IN
GTO ALPHA $\mathrm{H}<\mathrm{F}>$ ALPHA 02 GTO $\mathbf{H}<\boldsymbol{F}>$
PRGM

0 STO 00	Ymin*
50000 STO 01	Ymax
ALPHA Z IN STO 04	No Axis
STO 11 ALPHA	Name
XEQ ALPHA PRPLOTP ALPHA	

[^0]
LADDER NETWORK ANALYSIS PROGRAM

This program analyzes ladder networks of up to 107 branches providing amplitude and phase of various transfer functions, either printed or plotted. Network elements allowed are resistors, capacitors, inductors, series and parallel inductor-capacitor combinations, voltage-controlled current sources, current-controlled current sources, transformers, gyrators, transmission lines, open stub lines, and shorted stub lines. Transfer functions computed are $\mathrm{V}_{2} / \mathrm{V}_{1}, \mathrm{I}_{2} / \mathrm{I}_{1}, \mathrm{P}_{2} / \mathrm{P}_{1}$ and $\mathrm{Z}_{\text {in }}$.
Network size is determined by the number of memory modules present. The maximum number of branches possible is 107 .

Memory Modules Branches (maximum)
$0 \quad 11$
$1 \quad 43$
$2 \quad 75$
3
107
If SIZE is not large enough, the display will show '"NONEXISTENT." You may execute SIZE with a larger argument and then press $\boldsymbol{R / S}$ to resume execution of the program. You need at least $40+2 \times$ (number of elements) data registers to run this program. Some elements require three storage registers.

Theoretical Basis of Ladder Network Analysis Program

The operation of this program is based on the fact that the chain-parameter matrix of two cascaded circuits is equal to the product of their individual chain-parameter matrices. Circuit elements are stored as they are input from left to right. Then at each frequency the individual chain-parameter matrices are formed and multiplied to gradually compute the overall matrix. Finally, the desired transfer function is computed.

The chain-parameter matrix is defined by the following sketch and matrix equation. Ψ is the Cyrillic letter "cha".

The circuit elements allowed by this program are shown below with their Ψ-matrices.

GY Gyrator	$\mathbf{Y}=$	$\left[\begin{array}{lr}0 & \alpha \angle 0 \\ \frac{1}{\alpha} \angle 0 & 0\end{array}\right]$	
VCIS VoltageControlled Current Source		$\left[\begin{array}{ll} 0 & -\frac{1}{\mathrm{~g}_{\mathrm{m}}} \angle 0 \\ 0 & -\frac{1}{\mathrm{r}_{\mathrm{b}} \mathrm{~g}_{\mathrm{m}}} \angle 0 \end{array}\right.$	
ICIS CurrentControlled Current Source	$\left.\stackrel{1_{1}}{r_{0}}\right\} \\|_{\beta 1_{1}}^{\circ} \mathbf{Y}=$	$\left[\begin{array}{ll} 0 & -\frac{\mathrm{r}_{\mathrm{b}}}{\beta} L 0 \\ 0 & -\frac{1}{\beta} \angle 0 \end{array}\right.$	
LINE Transmission Line	$\Psi=$	$\left[\begin{array}{lr} \cos \theta \angle 0 & \mathrm{Z}_{0} \sin \theta \angle 90 \\ \frac{\sin \theta}{\mathrm{Z}_{0}} \angle 90 & \cos \theta \angle 0 \end{array}\right]$	
STUBO Open Stub		$\left[\begin{array}{lr} 1 \angle 0 & 0 \\ \frac{\tan \theta}{\mathrm{Z}_{0}} \angle 90 & 1 \angle 0 \end{array}\right]$	
STUBS Shorted Stub	$\mathbf{Y}=$	$\left[\begin{array}{lr} 1 \angle 0 & 0 \\ \frac{\cot \theta}{\mathrm{Z}_{0}} L-90 & 1 \angle 0 \end{array}\right]$	

Any of the following transfer functions may be computed from the overall chain-parameter matrix.

Input impedance

$$
\left|Z_{i n}\right|=\frac{\mathrm{Y}_{11} Z_{L}+\mathrm{Y}_{12}}{\mathrm{Y}_{21} Z_{\mathrm{L}}+\mathrm{Y}_{22}}
$$

Power Gain

$$
\left|\frac{\mathrm{P}_{\text {out }}}{\mathrm{P}_{\text {in }}}\right|=\left|\frac{\mathrm{I}_{2}}{\mathrm{I}_{1}}\right|^{2} \frac{\operatorname{Re}\left\{\mathrm{Z}_{\mathrm{L}}\right\}}{\operatorname{Re}\left\{\mathrm{Z}_{\mathrm{in}}\right\}}
$$

Voltage transfer ratio

$$
\left|\frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}\right|=\frac{\mathrm{Z}_{\mathrm{L}}}{\mathrm{U}_{11} \mathrm{Z}_{\mathrm{L}}+\mathrm{Y}_{12}}
$$

Forward transfer admittance

$$
\left|\frac{\mathrm{I}_{2}}{\mathrm{~V}_{1}}\right|=\frac{-1}{\mathrm{Y}_{11} \mathrm{Z}_{1}+\mathrm{Y}_{12}}
$$

Current transfer ratio

$$
\left|\frac{\mathrm{I}_{2}}{\mathrm{I}_{1}}\right|=\frac{-1}{\mathrm{Y}_{21} \mathrm{Z}_{\mathrm{L}}+\mathrm{Y}_{22}}
$$

Forward transfer impedance

$$
\left|\frac{\mathrm{V}_{2}}{\mathrm{I}_{1}}\right|=\frac{\mathrm{Z}_{\mathrm{L}}}{\mathrm{U}_{21} \mathrm{Z}_{\mathrm{L}}+\mathrm{U}_{22}}
$$

STEP	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
5	Select frequency sweep		F	FMIN=?
	Minimum frequency	$\mathrm{f}_{\text {MIN }}$	[/5/5	FMAX $=$?
	Maximum frequency	$\mathrm{f}_{\text {MaX }}$	8/5	FINCR=?
	Frequency increment (nega-			
	tive value indicates multiplicative increment)	Δf	R/S	FUNCTION?
6	To output results, key in a			
	list-function name.			
	(The calculator is already			
	in ALPHA mode.)			
	Transfer voltage ratio	V2N1	R/5	
	Transfer current ratio	12/11	R/S	
	Power ratio	P2/P1*	R/S	
	Input Impedance	ZIN	R/S	
	All of the above	ALL	R/S	
7	To plot results, key in the desired plot-function name. (The calculator is already in ALPHA mode.)			
	Plot Magnitude of V2N1		PV	YMIN $=$?
	Plot Magnitude of V2N1 in dB		PVdB	YMIN=?
	Plot Angle of V2N1		PLV	YMIN $=$?
	Plot Magnitude of 12/11		PI	YMIN=?
	Plot Magnitude of $12 / 11$ in dB		PldB	YMIN=?
	Plot Angle of 12/11		PLI	YMIN = ?
	Plot Magnitude of ZIN		PZIN	YMIN $=$?
	Plot Angle of ZIN		PLZIN	YMIN $=$?
8	Specify plotting information	$Y_{\text {min }}$	R/S	YMAX $=$?
		$Y_{\text {Max }}$	R/S	AXIS $=$?
	(Any alpha-data input yields no axis)	axis	R/S	
9	When the plot is complete, you may return to step 1, step 3, or step 5. If you wish to return to step 6, press		\bigcirc	FUNCTION?
	*This is the real power ratio as only the real portions of $Z_{\text {L }}$ and $Z_{\text {in }}$ are considered			

Example 1:

Make Bode plots (magnitude and phase) of $\mathrm{V}_{2} / \mathrm{V}_{1}$ for this transistor amplifier.

Transform the circuit using an h-parameter model.

Keystrokes

FIX 2	
XEQ ALPHA SIZE ALPHA 051	
XEQ ALPHA LNAP ALPHA	LNAP
R/S	BEGIN INPUT
.638 EEX CHS 6B	$C S=6.38 E-7$
1 EEX 6 A	$R P=1,000,000.00$
2500 ENTER4 100 D	ICIS $=2,500.00,100.00$
3183 EEX CHS 12 B	CP $=3.18 \mathrm{E}-9$
5000 ENTER4 0 E	ZL=5,000.00 + J0.00
F	FMIN = ?
10 R/S	FMAX = ?
100000 R/S	FINCR = ?
10 USER $\sqrt{x} \sqrt{x}$ USER CHS R/S	FUNCTION?

PVdB R/s
20 R/s
50 R/S
50 R/S

YMIN $=$?
YMAX = ?
AXIS = ?

If you have no printer, V2/V1 R/S will cause individual values to be output.

Example 2:

If the stub lengths, d 1 and d 2 , are 54° and 49.68° respectively, what is the input impedance of this double-stub tuner? (Z_{0} is 100Ω)

Keystrokes
FIX 2

XEO ALPHA SIZE ALPHA 053		
XEQ ALPHA LNAP ALPHA	LNAP	
R/S		BEGIN INPUT

54 ENTERA

100 XED ALPHA STUBS ALPHA STUBS $=\mathbf{5 4 . 0 0 , 1 0 0 . 0 0}$ You might like to 45 ENTER4
100 XEQ ALPHA LINE ALPHA LINE $=45.00,100.00$
49.68 ENTERA

Display

BEGIN INPUT

Example 3:

What is the input impedance of the circuit shown at 1 MHz and 10 MHz ?

Keystrokes

XEQ ALPHA SIZE ALPHA 048
XED ALFA LNAP ALPHA
R/S
50 A
100 EEX CHS 12 B
10 EEX CHS 6 C
50 EEX CHS 12 B
50 ENTER 0 E

Display

LNAP
BEGIN INPUT
$R S=50$.
$C P=1 . E-10$
$L S=1 . E-5$
$C P=5 . E-11$
ZL $=50 .+\mathrm{J} 0$.

Key
F
1 EEX 6 R/S
10 EEX 6 R/S
9 EEX 6 R/S
ZIN R/S

Display
FMIN = ?
FMAX = ?
FINCR = ?
FUNCTION?
$F=1,000,000$.
ZIN=122.
L31.
$Z I N=104$.

+ J63.
$F=10,000,000$.
ZIN=221.
$L-75$.
ZIN=56.
+J-213.

Program
GNAP

	Flags
5	S: Δ f is multiplicative
	C: Δf is additive
6	S: Don't print fre-
	quency
	C: Print frequency
7	S: Plot magnitude in dB

branches, b nodes, n Component types
 Component values and nodes

	Data Registers
00	Ymin
01	Ymax
02	PRPlot scratch
03	
04	Plotting character
0	Axis

$\stackrel{N}{N}_{\sim}^{\sim}$ N
$q+8 z$
$q+\angle z$
$27+3 b$
$28+3 b$
๗i ì
ㅇ
Program
LNAP

$\begin{aligned} & 8 \text { S: Plot phase } \\ & 9 \text { S: Plot magnitude } \\ & 10 \text { S: Don't increment } f \\ & 20 \text { S: Always execute } \\ & \text { * An } \\ & \text { C: Execute \%An } \\ & \text { only once }\end{aligned}$

Pointer to next element
 RD
XL
$\operatorname{Re}\left\{Y_{1} Z_{L}\right.$
$\operatorname{lm}\left\{Y_{11} Z_{L}\right.$
$\operatorname{Re}\left\{Y_{21} Z_{L}\right.$
$\operatorname{Im}\left\{Y_{22} Z_{L}\right.$
not used

```
|
``` not used List network elements values
\(\left.\mathrm{y}: \operatorname{Im}\left\{\left(\mathrm{U}_{1}+\mathrm{iV}\right)_{1}\right)^{\star}\left(\mathrm{U}_{2}+\mathrm{iV} \mathrm{V}_{2}\right)\right\}\)
\(\mathrm{x}: \operatorname{Re}\left\{\left(\mathrm{U}_{1}+i \mathrm{~V}_{1}\right)^{\star}\left(\mathrm{U}_{2}+i \mathrm{~V}_{2}\right)\right\}\)
\[
\begin{array}{ll}
+ & >^{\sim} \beth^{\sim} \\
\underset{\sim}{\infty} & ++ \\
\underset{\sim}{x} & >5 \\
\ddot{x} & \ddot{x} \ddot{x}
\end{array}
\]
\begin{tabular}{|c|c|c|}
\hline INITIAL REGISTERS & FLAG STATUS & FINAL REGISTERS \\
\hline \(\mathrm{t}: \mathrm{V}_{2}\) & & \\
\hline \(\mathrm{z}: \mathrm{U}_{2}\) & & \(y: \operatorname{lm}\left\{\left(\mathrm{U}_{1}+i \mathrm{~V}_{1}\right)^{*}\left(\mathrm{U}_{2}+\mathrm{iV}\right)\right\}\) \\
\hline \(y: V_{1}\) & & \(\mathrm{x}: \operatorname{Re}\left\{\left(\mathrm{U}_{1}+\mathrm{iV} \mathrm{V}_{1}{ }^{*}\left(\mathrm{U}_{2}+\mathrm{iV} \mathrm{V}_{2}\right)\right\}\right.\) \\
\hline \(\mathrm{x}: \mathrm{U}_{1}\) & & \\
\hline \(\mathrm{t}: \mathrm{V}_{2}\) & & \\
\hline \(\mathrm{z}: \mathrm{U}_{2}\) & & \(y: V_{1}+V_{2}\) \\
\hline \(\mathrm{y}: \mathrm{V}_{1}\) & & \(\mathrm{x}: \mathrm{U}_{1}+\mathrm{U}_{2}\) \\
\hline \(\mathrm{x}: \mathrm{U}_{1}\) & & \\
\hline
\end{tabular}

FLAG STATUS register contents and flag settings. LABEL

\(\pm+\)
*J
SUBROUTINE
Complex Multiply
Complex Add
GNAP PRINT

REMARKS
This label is provided so that a
user-level program can initi-
ate a GNAP analysis after the
user has initially set up the
circuit.

1000 N.E. Circle Blvd., Corvallis, OR 97330

For additional sales and service information contact your local Hewlett-Packard Sales Office or call 800/547-3400. (In Oregon, Alaska, or Hawaii, call (503) 758-1010.)```

[^0]: *For a description of the function PRPLOTP and the registers used to store its plot parameters, see your Printer Owner's Handbook.

