NOTICE

The program material contained herein is supplied without representation or warranty of any kind. Hewlett-Packard Company therefore assumes no responsibility and shall have no liability, consequential or otherwise, of any kind arising from the use of this program material or any part thereof.
HEWLETT-PACKARD LISTENS

To provide better calculator support for you, the Application Engineering group needs your help. Your timely inputs enable us to provide higher quality software and improve the existing application pacs for your calculator. Your reply will be extremely helpful in this effort.

1. Pac name __

2. How important was the availability of this pac in making your decision to buy a Hewlett-Packard calculator?
 □ Would not buy without it. □ Important □ Not important

3. What is the major application area for which you purchased the pac?

4. In the list below, please rate the usefulness of the programs in this pac.

<table>
<thead>
<tr>
<th>PROGRAM NUMBER</th>
<th>ESSENTIAL</th>
<th>IMPORTANT BUT NOT REQUIRED</th>
<th>INFREQUENTLY USED</th>
<th>NEVER USED</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PROGRAM NUMBER</th>
<th>ESSENTIAL</th>
<th>IMPORTANT BUT NOT REQUIRED</th>
<th>INFREQUENTLY USED</th>
<th>NEVER USED</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5. Did you purchase a printer? □ YES □ NO
 If you did, is the printing format in this pac useful? □ YES □ NO

6. What programs would you add to this pac?

7. What additional application pacs would you like to see developed?

THANK YOU FOR YOUR TIME AND COOPERATION.

Name __ Position ________________________________

Company __

Address __

City ____________________________________ State ____________________________

Zip __________________________________ Phone ____________________________
BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 CORVALLIS, OREGON

Postage will be paid by

Hewlett-Packard
1000 N.E. Circle Blvd.
Corvallis, Oregon 97330
INTRODUCTION

The Circuit Analysis Pac consists of a general network analysis program, GNAP, and a ladder network analysis program, LNAP. This manual provides a description of each program, relevant equations, a set of instructions for using the programs, and several example problems, each of which includes a list of keystrokes required for its solution.

Before plugging in your Application Module, turn the calculator off, and be sure you understand the section “Inserting and Removing Application Modules.” Before using a particular program, take a few minutes to read “Format of User Instructions” and “A Word About Program Usage.”

You should first familiarize yourself with a program by running it once or twice following the user instructions in the manual. Thereafter, the program’s prompting or the mnemonics on the overlays should provide the necessary instructions, including which variables are to be input, which keys are to be pressed, and which values will be output.

We hope that the Circuit Analysis Pac will assist you in the solution of numerous problems. We would appreciate knowing your reactions to the programs in this pac, and to this end we have provided a questionnaire inside the front cover of this manual. Would you please take a few minutes to give us your comments on these programs? It is from your comments that we learn how to increase the usefulness of our programs.
CONTENTS

Introduction ...1
Contents ..2
Inserting and Removing Application Modules ...3
Format of User Instructions ..5
A Word About Program Usage ...6
General Network Analysis Program ...8
 Analyzes general networks of up to 9 nodes and 21 branches.
Ladder Network Analysis Program ...20
 Analyzes ladder networks of up to 107 branches.
Appendix A Register Usage ...29
Appendix B Subroutines ...33
INSERTING AND REMOVING
APPLICATION MODULES

Before you insert an Application Module for the first time, familiarize yourself with the following information.

Up to four Application Modules can be plugged into the ports on the HP-41C. While plugged in, the names of all programs contained in the Module can be displayed by pressing [Catalog] 2.

CAUTION
Always turn the HP-41C off before inserting or removing any plug-in extension or accessories. Failure to turn the HP-41C off could damage both the calculator and the accessory.

To insert Application Modules:

1. Turn the HP-41C off! Failure to turn the calculator off could damage both the Module and the calculator.

2. Remove the port covers. Remember to save the port covers; they should be inserted into the empty ports when no extensions are inserted.

3. Insert the Application Module with the label facing downward as shown, into any port after the last Memory Module. For example, if you have a Memory Module inserted in port 1, you can insert an Application Module in any of ports 2, 3, or 4. (The port numbers are shown on the back of the calculator.) Never insert an Application Module into a lower numbered port than a Memory Module.
Inserting and Removing Application Modules

4. If you have additional Application Modules to insert, plug them into any port after the last Memory Module. Be sure to place port covers over unused ports.

5. Turn the calculator on and follow the instructions given in this book for the desired application functions.

To remove Application Modules:

1. Turn the HP-41C off! Failure to do so could damage both the calculator and the Module.

2. Grasp the desired Module handle and pull it out as shown.

3. Place a port cap into the empty ports.

Mixing Memory Modules and Application Modules

Any optional accessories (such as the HP-82104A Card Reader, or the HP-82143A Printer) should be treated in the same manner as Application Modules. That is, they can be plugged into any port after the last Memory Module. Also, the HP-41C should be turned off prior to insertion or removal of these extensions.

The HP-41C allows you to leave gaps in the port sequence when mixing Memory and Application Modules. For example, you can plug a Memory Module into port 1 and an Application Module into port 4, leaving ports 2 and 3 empty.
FORMAT OF USER INSTRUCTIONS

The completed User Instruction Form—which accompanies each program is your guide to operating the programs in this Pac.

The form is composed of five labeled columns. Reading from left to right, the first column, labeled STEP, gives the instruction step number.

The INSTRUCTIONS column gives instructions and comments concerning the operations to be performed.

The INPUT column specifies the input data, the units of data if applicable, or the appropriate alpha response to a prompted question. Data input keys consist of 0 to 9 and the decimal point (the numeric keys), (EEx\(\text{[]}\)) (enter exponent), and (CHS) (change sign).

The FUNCTION column specifies the keys to be pressed after keying in the corresponding input data.

The DISPLAY column specifies prompts, intermediate and final answers, and their units, where applicable.

Above the DISPLAY column is a box which specifies the minimum number of data storage registers necessary to execute the program. Refer to the Owner’s Handbook for information on how the SIZE function affects storage configuration.

The following illustrates the User Instruction Form for the GNAP program.

<table>
<thead>
<tr>
<th>STEP</th>
<th>INSTRUCTIONS</th>
<th>INPUT</th>
<th>FUNCTION</th>
<th>DISPLAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Initialize the GNAP program</td>
<td></td>
<td>XEO GNAP</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Key in: number of nodes</td>
<td>N</td>
<td>R/S</td>
<td>NODES=?</td>
</tr>
<tr>
<td></td>
<td>number of branches</td>
<td>B</td>
<td>R/S</td>
<td>N=(N)B=(B)'</td>
</tr>
<tr>
<td>3</td>
<td>Key in each branch element: a) Resistance (Ohms)</td>
<td>R</td>
<td>A</td>
<td>NODES: FR. TO=?</td>
</tr>
<tr>
<td></td>
<td>or b) Capacitance (Farads)</td>
<td>C</td>
<td>B</td>
<td>NODES: FR. TO=?</td>
</tr>
<tr>
<td></td>
<td>or c) Inductance (Henrys)</td>
<td>L</td>
<td>C</td>
<td>NODES: FR. TO=?</td>
</tr>
<tr>
<td></td>
<td>and enter branch nodes</td>
<td>FR. TO</td>
<td>R/S</td>
<td>BRANCH(n+1)</td>
</tr>
<tr>
<td></td>
<td>or d) Transconductance (Siemens)</td>
<td>gm</td>
<td>D</td>
<td>INPUT: V+.V-=?</td>
</tr>
</tbody>
</table>
A WORD ABOUT PROGRAM USAGE

Catalog

When an Application Module is plugged into a port of the HP-41C, the contents of the Module can be reviewed by pressing \(\text{CATALOG} \) 2 (the Extension Catalog). Executing the \(\text{CATALOG} \) function lists the name of each program or function in the Module, as well as functions of any other extensions which might be plugged in.

Overlays

Overlays have been included for some of the programs in this Pac. To run the program, choose the appropriate overlay, and place it on the calculator. The mnemonics on the overlay are provided to help you run the program. The program’s name is given vertically on the left side. When the calculator is in USER mode, a blue mnemonic identifies the key directly above it. Gold mnemonics are similar to blue mnemonics, except that they are above the appropriate key and the shift (gold) key must be pressed before the re-defined key. Once again, USER mode must be set.

ALPHA and USER Mode Notation

This manual uses a special notation to signify ALPHA mode. Whenever a statement on the User Instruction Form is printed in gold, the \(\text{ALPHA} \) key must be pressed before the statement can be keyed in. After the statement is input, press \(\text{ALPHA} \) again to return the calculator to its normal operating mode, or to begin program execution. For example, \(\text{XEQ} \) GNAP means press the following keys: \(\text{XEQ} \) \(\text{ALPHA} \) GNAP \(\text{ALPHA} \).

When the calculator is in USER mode, this manual will use the symbols \(\text{[A]} \) \(\text{[J]} \) and \(\text{[A]} \) \(\text{[E]} \) to refer to the reassigned keys in the top two rows. These key designations will appear on the User Instruction Form and in the keystroke solutions to sample problems.

Optional HP-82143A Printer

When the optional printer is plugged into the HP-41C along with the Circuit Analysis Application Module, all results will be printed automatically. You may also want to keep a permanent record of the values input to a certain program. A convenient way to do this is to set the Print Mode switch to NORMAL before running the program. In this mode, all input values and the corresponding keystrokes will be listed on the printer, thus providing a record of the entire operation of the program.

Using Programs as Subroutines

The programs in this Pac may be called as subroutines for user programs in the HP-41C’s program memory. Refer to Appendix B for information on special subroutine calling points.
Downloading Module Programs

If you wish to trace execution, to modify, or to record on magnetic cards a program in this Application Module, it must first be copied into the HP-41C’s program memory. For information concerning the HP-41C’s COPY function, see the Owner’s Handbook. It is not necessary to copy a program in order to run it.

Program Interruption

These programs have been designed to operate properly when run from beginning to end, without turning the calculator off (remember, the calculator may turn itself off). If the HP-41C is turned off, it may be necessary to set flag 21 (SF 21) to continue proper execution.

Use of Labels

You should generally avoid writing programs into the calculator memory that use program labels identical to those in your Application Module. In case of a label conflict, the label within program memory has priority over the label within the Application Pac program.

Assigning Program Names

Key assignments to keys A – J and A – E take priority over the automatic assignments of local labels in the Application Module. Be sure to clear previously assigned functions before executing a Module program.
This program analyzes electrical networks, computing amplitude and phase of the transfer function \(V_2(s)/V_1(s) \). If the optional HP-82143A printer is used, the results may be either printed or plotted. The network elements allowed are resistors, capacitors, inductors, and voltage-controlled current sources. The size of the circuit that can be handled by the program depends on the number of memory registers available. The following table indicates the number of nodes, \(N \), and branches, \(B \), that can be analyzed with three memory modules. The number of registers needed for a circuit is \(2N^2 + 3B + 29 \).

Assuming you have set the minimum size of 28, the GNAP program begins by asking you for the size of your circuit and then tests to determine if there is enough storage before it begins. If there is insufficient storage, the message "SET SIZE NNN" warns you that the number of data registers must be increased. When numbering the nodes in your circuit, be sure that node 0 is ground, node 1 is the input node, and node 2 is the node whose voltage you wish to determine.
Analysis Algorithm

For any network, a matrix called the "nodal admittance matrix" can be written. This matrix gives the relationship between the node voltages and the branch currents:

\[Y_n \ V_n = A \ I \]

(1)

where:
- A is the incidence matrix
- \(V_n \) is the node-voltage vector
- I is the source-current vector
- \(Y_n \) is the nodal admittance matrix

The algorithm assumes that our network is driven only by a current source of 1 ampere flowing from the ground node, node 0, into the input node, node 1. Equation (1) can then be written as

\[Y_n \ V_n = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \]

(2)

This equation could be solved explicitly for each node voltage by multiplying both sides on the left by \(Y_n^{-1} \).

\[V_n = Y_n^{-1} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \]

(3)

But since we only need the ratio \(V_2/V_1 \), it is not necessary to invert \(Y_n \). Instead, we can use Gaussian elimination to transform \(Y_n \) into a lower triangular matrix.

\[
\begin{bmatrix}
1 & 0 & 0 \\
a_{21} & 1 & 0 \\
a_{31} & a_{32} & 1 \\
\cdots & \cdots & \cdots \\
\end{bmatrix}
\begin{bmatrix}
V_1 \\
V_2 \\
V_3 \\
V_n \\
\end{bmatrix}
=
\begin{bmatrix}
1 \\
0 \\
0 \\
\cdots \\
0 \\
\end{bmatrix}
\]

(4)

Then we compute the desired ratio by solving the second equation, obtained from (4).

\[
\frac{V_2}{V_1} = -\frac{a_{21}}{a_{22}}
\]

(5)

To illustrate this procedure, consider this circuit:

By using the techniques of Sec. 2.4 of Balabanian, we can write the Y, matrix

\[
Y_n = \begin{bmatrix}
4 & 0 & -4 \\
0 & 3 & -2 \\
-4 & -2 & 9
\end{bmatrix}
\]

Multiplying the third row by \(\frac{2}{9}\) and adding it to the second, we get

\[
Y_n = \begin{bmatrix}
4 & 0 & -4 \\
-\frac{8}{9} & \frac{23}{9} & 0 \\
-4 & -2 & 9
\end{bmatrix}
\]

Since we don’t need to triangularize past the second row, we have

\[
\frac{V_2}{V_1} = \frac{8}{23} = -9.17 \text{ dB}
\]

For circuits containing reactive components, the above procedure is carried out in the same way except that all operations are done with complex numbers. The GNAP program works with a real conductance matrix, G, and an imaginary susceptance matrix, B.

You might get the message DATA ERROR if there is a resonant subnetwork in your circuit and the frequency being used is the exact resonant frequency. If this condition occurs, it will be necessary to alter your input frequency slightly.
<table>
<thead>
<tr>
<th>STEP</th>
<th>INSTRUCTIONS</th>
<th>INPUT</th>
<th>FUNCTION</th>
<th>DISPLAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Initialize the GNAP program</td>
<td></td>
<td>XEQ GNAP</td>
<td>GNAP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>R/S ²</td>
<td>NODES=?</td>
</tr>
<tr>
<td>2</td>
<td>Key in: number of nodes</td>
<td>N</td>
<td>R/S</td>
<td>BRANCHES=?</td>
</tr>
<tr>
<td></td>
<td>number of branches</td>
<td>B</td>
<td>R/S ²</td>
<td>N=(N)B=(B)¹</td>
</tr>
<tr>
<td></td>
<td>Key in each branch element:</td>
<td>R</td>
<td>A</td>
<td>NODES:</td>
</tr>
<tr>
<td></td>
<td>a) Resistance (Ohms)</td>
<td>FR. TO</td>
<td>R/S</td>
<td>FR. TO=?</td>
</tr>
<tr>
<td></td>
<td>or b) Capacitance (Farads)</td>
<td>C</td>
<td>B</td>
<td>NODES:</td>
</tr>
<tr>
<td></td>
<td>or c) Inductance (Henrys)</td>
<td>L</td>
<td>C</td>
<td>FR. TO=?</td>
</tr>
<tr>
<td></td>
<td>and enter branch nodes³</td>
<td>FR. TO</td>
<td>R/S</td>
<td>BRANCH(n+1)</td>
</tr>
<tr>
<td></td>
<td>or d) Transconductance</td>
<td>gm</td>
<td>D</td>
<td>INPUT:</td>
</tr>
<tr>
<td></td>
<td>(Siemens)</td>
<td>V+.V−</td>
<td>R/S</td>
<td>V+.V−=?</td>
</tr>
<tr>
<td></td>
<td>and enter voltage control</td>
<td>IL.IE</td>
<td>R/S</td>
<td>OUTPUT:</td>
</tr>
<tr>
<td></td>
<td>and current nodes (current leaves . current enters)</td>
<td></td>
<td></td>
<td>IL.IE=?</td>
</tr>
<tr>
<td></td>
<td>Repeat step 3 for all branches.</td>
<td></td>
<td></td>
<td>BRANCH (n+1)</td>
</tr>
<tr>
<td></td>
<td>When done with all,</td>
<td></td>
<td></td>
<td>DONE</td>
</tr>
<tr>
<td>4</td>
<td>(OPTIONAL) To review the circuit:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Specify the frequency sweep:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Key in: Lowest Frequency</td>
<td>fMIN</td>
<td>R/S</td>
<td>FMIN=?</td>
</tr>
<tr>
<td></td>
<td>Highest Frequency</td>
<td>fMAX</td>
<td>R/S</td>
<td>FMAX=?</td>
</tr>
<tr>
<td></td>
<td>frequency increment⁴</td>
<td>Δf</td>
<td>R/S</td>
<td>F INCR=?</td>
</tr>
<tr>
<td></td>
<td>To compute and list results:</td>
<td></td>
<td></td>
<td>READY</td>
</tr>
<tr>
<td></td>
<td>Press R/S until results have been obtained for all frequencies.</td>
<td></td>
<td></td>
<td>frequency</td>
</tr>
<tr>
<td></td>
<td>¹If SET SIZE NNN appears, you need more data registers.</td>
<td></td>
<td></td>
<td>magnitude</td>
</tr>
<tr>
<td></td>
<td>Set SIZE as indicated and continue by pressing R/S.</td>
<td></td>
<td></td>
<td>magnitude,dB</td>
</tr>
<tr>
<td></td>
<td>²If you are using the printer these Run/StopEs are not required.</td>
<td></td>
<td></td>
<td>phase</td>
</tr>
<tr>
<td></td>
<td>³The grounded NODE of a passive branch must be the TO node.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>⁴If Δf is entered as a negative value, the program uses Δ as a multiplicative increment.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STEP</td>
<td>INSTRUCTIONS</td>
<td>INPUT</td>
<td>FUNCTION</td>
<td>DISPLAY</td>
</tr>
<tr>
<td>------</td>
<td>--------------</td>
<td>-------</td>
<td>----------</td>
<td>---------</td>
</tr>
</tbody>
</table>
| 7 | To plot the results (assuming you have an HP-82143A printer attached), select desired plot:
a) magnitude
or b) magnitude in dB
or c) Phase | | G | YMIN=? |
| | | | H | YMIN=? |
| | | | I | YMIN=? |
| 8 | Specify plot parameters:
Key in
a) \(Y_{\text{MIN}} \)
b) \(Y_{\text{MAX}} \)
c) x-axis (y-intercept) | | \(Y_{\text{MIN}} \) | R/S | YMAX=? |
| | | | \(Y_{\text{MAX}} \) | R/S | AXIS=? |
| | | | x-axis 5 | R/S | |
| 5 | You may suppress printing of the x-axis by placing any alpha character in the alpha display, e.g.; \text{\textsc{alpha}} \text{\textsc{no axis}} [R/S] causes "NO AXIS" to be stored as the y-intercept and no axis will be plotted. |

Example 1:

Compute the magnitude and phase response for this active filter. It was designed to be a high-pass filter with a 10-Hz cutoff frequency, passband gain of 20 dB, and \(\alpha \)-peaking factor of 1.

![Filter Circuit Diagram](image-url)
General Network Analysis Program

Keystrokes

```
XEQ ALPHA  SIZE ALPHA 082
XEQ ALPHA GNAP ALPHA
R/S
4 R/S
7 R/S
R/S
1 EEX CHS 6 B
1.03 R/S
7579 A
3 R/S
1 EEX CHS 6 B
3.04 R/S
100 EEX CHS 9 B
3.02 R/S
334200 A
4.02 R/S
10000 D
.04 R/S
.02 R/S
10 A
2 R/S
F
1 R/S
100 R/S
10 USER X USER CHS R/S
```

Display

```
GNAP

NODES?
BRANCHES?
N=4 B=7
BRANCH 1
NODES: FR.TO= ?
BRANCH 2
NODES: FR.TO= ?
BRANCH 3
NODES: FR.TO= ?
BRANCH 4
NODES: FR.TO= ?
BRANCH 5
NODES: FR.TO= ?
BRANCH 6
INPUT: V+.V-= ?
OUTPUT: IL.IE= ?
BRANCH 7
NODES: FR.TO= ?
DONE
FMIN= ?
FMAX= ?
F INCR= ?
READY
```
Keystrokes

<table>
<thead>
<tr>
<th>Keystrokes</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td>$F=1.00$</td>
</tr>
<tr>
<td>R/S</td>
<td>$H=0.10$</td>
</tr>
<tr>
<td>R/S</td>
<td>$H=-19.96,\text{dB}$</td>
</tr>
<tr>
<td>R/S</td>
<td>$L=-5.77$</td>
</tr>
<tr>
<td>R/S</td>
<td>$F=3.16$</td>
</tr>
<tr>
<td>R/S</td>
<td>$H=1.05$</td>
</tr>
<tr>
<td>R/S</td>
<td>$H=0.41,\text{dB}$</td>
</tr>
<tr>
<td>R/S</td>
<td>$L=-19.36$</td>
</tr>
<tr>
<td>R/S</td>
<td>$F=10.00$</td>
</tr>
<tr>
<td>R/S</td>
<td>$H=10.00$</td>
</tr>
<tr>
<td>R/S</td>
<td>$H=20.00,\text{dB}$</td>
</tr>
<tr>
<td>R/S</td>
<td>$L=-90.00$</td>
</tr>
<tr>
<td>R/S</td>
<td>$F=31.62$</td>
</tr>
<tr>
<td>R/S</td>
<td>$H=10.48$</td>
</tr>
<tr>
<td>R/S</td>
<td>$H=20.41,\text{dB}$</td>
</tr>
<tr>
<td>R/S</td>
<td>$L=-160.64$</td>
</tr>
<tr>
<td>R/S</td>
<td>$F=100.00$</td>
</tr>
<tr>
<td>R/S</td>
<td>$H=10.05$</td>
</tr>
<tr>
<td>R/S</td>
<td>$H=20.04,\text{dB}$</td>
</tr>
<tr>
<td>R/S</td>
<td>$L=-174.23$</td>
</tr>
</tbody>
</table>

Example 2:

Create a Bode plot for this transistor amplifier.
First transform the circuit using an h-parameter model.

\[0.638 \, \mu F \]

Then replace the current-controlled current source with a voltage-controlled current source.

Keystrokes

<table>
<thead>
<tr>
<th>XEQ</th>
<th>ALPHA</th>
<th>SIZE</th>
<th>ALPHA</th>
<th>062</th>
</tr>
</thead>
</table>

3 \(R/S \)

5 \(R/S \)

.638 \(EEX \) CHS 6 \(B \)

1.03 \(R/S \)

2494 \(A \)

3 \(R/S \)

.04 \(D \)

3 \(R/S \)

2 \(R/S \)

5000 \(A \)

2 \(R/S \)

3183 \(EEX \) CHS 12 \(B \)

2 \(R/S \)

\(E \)

Display

GNAP

NODES?

BRANCHES?

\(N=3 \) \(B=5 \)

BRANCH 1

NODES: \(FR.TO=? \)

BRANCH 2

NODES: \(FR.TO=? \)

BRANCH 3

INPUT: \(V+.V-=? \)

OUTPUT: \(IL.IE=? \)

BRANCH 4

NODES: \(FR.TO=? \)

BRANCH 5

NODES: \(FR.TO=? \)

DONE

B 1.

\(C=638.0E-9 \)

NODES: 1.0300

B 2.

\(R=2.494E3 \)

NODES: 3.0000

These keystrokes assume a printer is being used.

Review the circuit description.
Example 3:
Analyze this circuit from 100 Hz to 100 kHz. Make Bode plots using a multiplicative frequency increment of $10^{1/4}$.
Keystrokes

<table>
<thead>
<tr>
<th>XEQ</th>
<th>ALPHA</th>
<th>SIZE</th>
<th>ALPHA</th>
<th>059</th>
</tr>
</thead>
<tbody>
<tr>
<td>XEQ</td>
<td>ALPHA</td>
<td>GNAP</td>
<td>ALPHA</td>
<td></td>
</tr>
</tbody>
</table>

3 \(R/S \)
4 \(R/S \)

200 \(EEX \) CHS 6 \(C \)
1.02 \(R/S \)
.33 \(A \)
2.03 \(R/S \)
220 \(EEX \) CHS 6 \(B \)
3 \(R/S \)
20 \(A \)
2 \(R/S \)

\(F \)
100 \(R/S \)
1 \(EEX \) 5 \(R/S \)
10 USER \(\bar{x} \) \(\bar{x} \) \(\bar{x} \) USER CHS \(R/S \)

H (J if you have no printer)
50 CHS \(R/S \)
10 \(R/S \)
0 \(R/S \)

Display

If SIZE > 59, ignore this line.
These keystrokes assume a printer is being used.

GNAP

NODES?
BRANCHES?
\(N=3 \) \(B=4 \)

BRANCH 1

NODES: FR.TO=?

BRANCH 2

NODES: FR.TO=?

BRANCH 3

NODES: FR.TO=?

BRANCH 4

NODES: FR.TO=?

DONE

FMIN=?
FMAX=?
F INCR =?

READY

YMIN=?
YMAX=?
AXIS=?
Example 4:

You can use programs of your own to put any desired label on a plot. Store Ymin, Ymax, Axis, and the Label. Then execute PRPLOTNP.

This example shows how to use a Voltage-Controlled Current Source to determine the input impedance of a circuit and how to plot it with the label "Z IN."

First build the circuit.

Keystrokes

Display

1

YMIN = ?

188 CHS R/S

YMAX = ?

188 R/S

AXIS = ?

0 R/S

Example 4:

You can use programs of your own to put any desired label on a plot. Store Ymin, Ymax, Axis, and the Label. Then execute PRPLOTNP.

This example shows how to use a Voltage-Controlled Current Source to determine the input impedance of a circuit and how to plot it with the label "Z IN."

First build the circuit.

Keystrokes

Display

1

YMIN = ?

188 CHS R/S

YMAX = ?

188 R/S

AXIS = ?

0 R/S

Example 4:

You can use programs of your own to put any desired label on a plot. Store Ymin, Ymax, Axis, and the Label. Then execute PRPLOTNP.

This example shows how to use a Voltage-Controlled Current Source to determine the input impedance of a circuit and how to plot it with the label "Z IN."

First build the circuit.

Keystrokes

Display

1

YMIN = ?

188 CHS R/S

YMAX = ?

188 R/S

AXIS = ?

0 R/S
Keystrokes

1 R/S
.02 R/S
4.85 EEX CHS 12 B
2 R/S
138.5 EEX CHS 18 B
2.03 R/S
500 EEX CHS 3 C
3.04 R/S
10 A
4 R/S

F
19125300 R/S
19125800 R/S
50 R/S

Then write this short program.

Keystrokes

01 LBL Z IN
02 GTO H<F>

Display

OUTPUT: ILIE=?
BRANCH 2
NODES: FR.TO=?
BRANCH 3
NODES: FR.TO=?
BRANCH 4
NODES: FR.TO=?
BRANCH 5
NODES: FR.TO=?
DONE
FMIN=?
FMAX=?
FINCR=?
READY

Display

PACKING

01 LBL Z IN
02 GTO H<F>

Ymin*
Ymax
No Axis
Name

*For a description of the function PRPLOT and the registers used to store its plot parameters, see your Printer Owner's Handbook.
This program analyzes ladder networks of up to 107 branches providing amplitude and phase of various transfer functions, either printed or plotted. Network elements allowed are resistors, capacitors, inductors, series and parallel inductor-capacitor combinations, voltage-controlled current sources, current-controlled current sources, transformers, gyrators, transmission lines, open stub lines, and shorted stub lines. Transfer functions computed are V_o/V_i, I_o/I_i, P_o/P_i and Z_{in}.

Network size is determined by the number of memory modules present. The maximum number of branches possible is 107.

<table>
<thead>
<tr>
<th>Memory Modules</th>
<th>Branches (maximum)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>1</td>
<td>43</td>
</tr>
<tr>
<td>2</td>
<td>75</td>
</tr>
<tr>
<td>3</td>
<td>107</td>
</tr>
</tbody>
</table>

If SIZE is not large enough, the display will show "NONEXISTENT." You may execute SIZE with a larger argument and then press $\textbf{R/S}$ to resume execution of the program. You need at least $40 + 2 \times$ (number of elements) data registers to run this program. Some elements require three storage registers.

Theoretical Basis of Ladder Network Analysis Program

The operation of this program is based on the fact that the chain-parameter matrix of two cascaded circuits is equal to the product of their individual chain-parameter matrices. Circuit elements are stored as they are input from left to right. Then at each frequency the individual chain-parameter matrices are formed and multiplied to gradually compute the overall matrix. Finally, the desired transfer function is computed.

The chain-parameter matrix is defined by the following sketch and matrix equation. Ψ is the Cyrillic letter "cha".
The circuit elements allowed by this program are shown below with their \(\Psi \)-matrices.

<table>
<thead>
<tr>
<th>Name</th>
<th>Circuit</th>
<th>Chain-Parameter Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS Series Resistor</td>
<td></td>
<td>(\Psi = \begin{bmatrix} 1 & L & 0 & R & L & 0 \ 0 & 1 & L & 0 \end{bmatrix})</td>
</tr>
<tr>
<td>RP Parallel Resistor</td>
<td></td>
<td>(\Psi = \begin{bmatrix} 1 & L & 0 \ \frac{1}{R} & \frac{1}{L} & 0 \end{bmatrix})</td>
</tr>
<tr>
<td>CS Series Capacitor</td>
<td></td>
<td>(\Psi = \begin{bmatrix} 1 & L & 0 & \frac{1}{\omega C} & L & -90 \ 0 & 1 & L & 0 \end{bmatrix})</td>
</tr>
<tr>
<td>CP Parallel Capacitor</td>
<td></td>
<td>(\Psi = \begin{bmatrix} 1 & L & 0 \ \omega C & L & 90 & 1 & L & 0 \end{bmatrix})</td>
</tr>
<tr>
<td>LS Series Inductor</td>
<td></td>
<td>(\Psi = \begin{bmatrix} 1 & L & 0 & \omega L & L & 90 \ 0 & 1 & L & 0 \end{bmatrix})</td>
</tr>
<tr>
<td>LP Parallel Inductor</td>
<td></td>
<td>(\Psi = \begin{bmatrix} 1 & L & 0 \frac{1}{\omega L} & L & -90 & 1 & L & 0 \end{bmatrix})</td>
</tr>
<tr>
<td>LCS Series L-C</td>
<td></td>
<td>(\Psi = \begin{bmatrix} 1 & L & 0 & \frac{\omega L}{1-\omega^2 LC} & L & 90 \ 0 & 1 & L & 0 \end{bmatrix})</td>
</tr>
<tr>
<td>LCP Parallel L-C</td>
<td></td>
<td>(\Psi = \begin{bmatrix} 1 & L & 0 & \frac{\omega C}{1-\omega^2 LC} & L & 90 & 1 & L & 0 \end{bmatrix})</td>
</tr>
<tr>
<td>TF Transformer</td>
<td></td>
<td>(\Psi = \begin{bmatrix} n & L & 0 \ 0 & \frac{1}{n} & L & 0 \end{bmatrix})</td>
</tr>
</tbody>
</table>
GY Gyrator
\[\Phi = \begin{bmatrix} 0 & \frac{1}{\alpha} L0 \\ 1 \alpha L0 & 0 \end{bmatrix} \]

VCIS Voltage-Controlled Current Source
\[\Phi = \begin{bmatrix} 0 & -\frac{1}{g_m} L0 \\ 0 & -\frac{1}{r_{bgm}} L0 \end{bmatrix} \]

ICIS Current-Controlled Current Source
\[\Phi = \begin{bmatrix} 0 & -\frac{r_b}{\beta} L0 \\ 0 & -\frac{1}{\beta} L0 \end{bmatrix} \]

LINE Transmission Line
\[\Phi = \begin{bmatrix} \cos\theta L0 & Z_0 \sin\theta L90 \\ \sin\theta Z_0 & L90 \cos\theta L0 \end{bmatrix} \]

STUBO Open Stub
\[\Phi = \begin{bmatrix} 1L0 & 0 \\ \tan \theta Z_0 & L90 1L0 \end{bmatrix} \]

STUBS Shorted Stub
\[\Phi = \begin{bmatrix} 1L0 & 0 \\ \cot \theta Z_0 & L-90 1L0 \end{bmatrix} \]

Any of the following transfer functions may be computed from the overall chain-parameter matrix.

Input impedance
\[|Z_{in}| = \frac{\Phi_{11} Z_L + \Phi_{12}}{\Phi_{21} Z_L + \Phi_{22}} \]

Power Gain
\[\left| \frac{P_{out}}{P_{in}} \right| = \left| \frac{I_2}{I_1} \right|^2 \frac{\text{Re}\{Z_L\}}{\text{Re}\{Z_{in}\}} \]

Voltage transfer ratio
\[\left| \frac{V_2}{V_1} \right| = \frac{Z_L}{\Phi_{11} Z_L + \Phi_{12}} \]

Current transfer ratio
\[\left| \frac{I_2}{I_1} \right| = \frac{-1}{\Phi_{21} Z_L + \Phi_{22}} \]

Forward transfer admittance
\[\left| \frac{I_2}{V_1} \right| = \frac{-1}{\Phi_{11} Z_L + \Phi_{12}} \]

Forward transfer impedance
\[\left| \frac{V_2}{I_1} \right| = \frac{Z_L}{\Phi_{21} Z_L + \Phi_{22}} \]
Ladder Network Analysis Program

<table>
<thead>
<tr>
<th>STEP</th>
<th>INSTRUCTIONS</th>
<th>INPUT</th>
<th>FUNCTION</th>
<th>DISPLAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Initialize the Ladder Network Analysis Program</td>
<td>LNAP</td>
<td>BEGIN INPUT</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Input circuit elements one at a time starting at the left.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Series Resistor R</td>
<td>A</td>
<td>RS= (R)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Parallel Resistor R</td>
<td>A</td>
<td>RP= (R)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Series Capacitor C</td>
<td>B</td>
<td>CS= (C)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Parallel Capacitor C</td>
<td>B</td>
<td>CP= (C)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Series Inductor L</td>
<td>C</td>
<td>LS= (L)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Parallel Inductor L</td>
<td>C</td>
<td>LP= (L)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Voltage-Controlled Current Source</td>
<td>r ENTER+</td>
<td>VCIS= (r), (gm)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Current-Controlled Current Source</td>
<td>r ENTER+</td>
<td>ICIS= (r), (β)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Series L-C L C</td>
<td>ENTER+</td>
<td>LCS= (L), (C)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Parallel L-C L C</td>
<td>ENTER+</td>
<td>LCP= (L), (C)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Transformer n</td>
<td>XEQ TF</td>
<td>TF= (n)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gyrator α</td>
<td>XEQ GY</td>
<td>GY= (α)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Transmission Line (θ) (Z_0)</td>
<td>ENTER+</td>
<td>LINE= (θ) , (Z_0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Open Stub (θ) (Z_0)</td>
<td>ENTER+</td>
<td>STUBO= (θ) , (Z_0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shorted Stub (θ) (Z_0)</td>
<td>ENTER+</td>
<td>STUBS= (θ) , (Z_0)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Input load impedance: (R_L) (X_L)</td>
<td>ENTER+</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>(Optional) Review the circuit. Press R/S to see successive branches.</td>
<td></td>
<td>E</td>
<td></td>
</tr>
</tbody>
</table>

This R/S is not needed if you are using a printer.
Ladder Network Analysis Program

<table>
<thead>
<tr>
<th>STEP</th>
<th>INSTRUCTIONS</th>
<th>INPUT</th>
<th>FUNCTION</th>
<th>DISPLAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Select frequency sweep</td>
<td></td>
<td>f_{MIN}</td>
<td>R/S</td>
</tr>
<tr>
<td></td>
<td>Minimum frequency</td>
<td>f_{MIN}</td>
<td>R/S</td>
<td>FMAX=?</td>
</tr>
<tr>
<td></td>
<td>Maximum frequency</td>
<td>f_{MAX}</td>
<td>R/S</td>
<td>FINCR=?</td>
</tr>
<tr>
<td></td>
<td>Frequency increment (negative value indicates multiplicative increment)</td>
<td>Δf</td>
<td>R/S</td>
<td>FUNCTION?</td>
</tr>
<tr>
<td>6</td>
<td>To output results, key in a list-function name. (The calculator is already in ALPHA mode.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Transfer voltage ratio</td>
<td>V_2/V_1</td>
<td>R/S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Transfer current ratio</td>
<td>I_2/I_1</td>
<td>R/S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Power ratio</td>
<td>P_2/P_1^*</td>
<td>R/S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Input Impedance</td>
<td>Z_{IN}</td>
<td>R/S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>All of the above</td>
<td>ALL</td>
<td>R/S</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>To plot results, key in the desired plot-function name. (The calculator is already in ALPHA mode.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Plot Magnitude of V_2/V_1</td>
<td>PV</td>
<td>R/S</td>
<td>YMIN=?</td>
</tr>
<tr>
<td></td>
<td>Plot Magnitude of V_2/V_1 in dB</td>
<td>PVdB</td>
<td>R/S</td>
<td>YMIN=?</td>
</tr>
<tr>
<td></td>
<td>Plot Angle of V_2/V_1</td>
<td>PLV</td>
<td>R/S</td>
<td>YMIN=?</td>
</tr>
<tr>
<td></td>
<td>Plot Magnitude of I_2/I_1</td>
<td>PL</td>
<td>R/S</td>
<td>YMIN=?</td>
</tr>
<tr>
<td></td>
<td>Plot Magnitude of I_2/I_1 in dB</td>
<td>PldB</td>
<td>R/S</td>
<td>YMIN=?</td>
</tr>
<tr>
<td></td>
<td>Plot Angle of I_2/I_1</td>
<td>PLI</td>
<td>R/S</td>
<td>YMIN=?</td>
</tr>
<tr>
<td></td>
<td>Plot Magnitude of Z_{IN}</td>
<td>PZIN</td>
<td>R/S</td>
<td>YMIN=?</td>
</tr>
<tr>
<td></td>
<td>Plot Angle of Z_{IN}</td>
<td>PLZIN</td>
<td>R/S</td>
<td>YMIN=?</td>
</tr>
<tr>
<td>8</td>
<td>Specify plotting information</td>
<td>Y_{MIN}</td>
<td>R/S</td>
<td>YMAX=?</td>
</tr>
<tr>
<td></td>
<td>(Any alpha-data input yields no axis)</td>
<td>Y_{MAX}</td>
<td>R/S</td>
<td>AXIS=?</td>
</tr>
<tr>
<td></td>
<td>axis</td>
<td>R/S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>When the plot is complete, you may return to step 1, step 3, or step 5. If you wish to return to step 6, press</td>
<td>J</td>
<td></td>
<td>FUNCTION?</td>
</tr>
</tbody>
</table>

This is the real power ratio as only the real portions of Z_1 and Z_m are considered.
Example 1:
Make Bode plots (magnitude and phase) of V_2/V_1 for this transistor amplifier.

Transform the circuit using an h-parameter model.

Keystrokes

Display

- **FIX 2**
- **XEQ ALPHA** SIZE **ALPHA**
- **XEQ ALPHA** LNAP **ALPHA**
- **R/S**
- \[0.638 \text{ Eex} \text{ CHS} 6 \text{ B}\]
- \[1 \text{ Eex} \text{ CHS} \text{ A}\]
- \[2500 \text{ ENTER}\]
- \[3183 \text{ Eex} \text{ CHS} 12 \text{ B}\]
- \[5000 \text{ ENTER}\]
- **F**
- **10 R/S**
- **100000 R/S**
- **10 USER / / USER CHS R/S**

LNAP
BEGIN INPUT
- \(CS = 6.38E-7\)
- \(RP = 1,000,000.00\)
- \(ICIS = 2,500.00,100.00\)
- \(CP = 3.18E-9\)
- \(ZL = 5,000.00 + J0.00\)
- **FMIN = ?**
- **FMAX = ?**
- **FINCR = ?**
- **FUNCTION?**
Example 2:

If the stub lengths, d1 and d2, are 54° and 49.68° respectively, what is the input impedance of this double-stub tuner? (Z₀ is 100Ω)

Keystrokes

<table>
<thead>
<tr>
<th>Keystroke</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIX 2</td>
<td>Set fixed digit mode</td>
</tr>
<tr>
<td>XEQ ALPHA</td>
<td>Place the cursor at the 1st XEQ ALPHA</td>
</tr>
<tr>
<td>SIZE ALPHA 053</td>
<td>Assign a size to ALPHA</td>
</tr>
<tr>
<td>XEQ ALPHA</td>
<td>Place the cursor at the 2nd XEQ ALPHA</td>
</tr>
<tr>
<td>LNAP ALPHA</td>
<td>Place the cursor at the 3rd LNAP ALPHA</td>
</tr>
<tr>
<td>R/S</td>
<td>Execute the keystrokes</td>
</tr>
<tr>
<td>54 ENTER+</td>
<td>Assign the value 54 to the 1st variable</td>
</tr>
<tr>
<td>100 XEQ ALPHA</td>
<td>Place the cursor at the 4th XEQ ALPHA</td>
</tr>
<tr>
<td>45 ENTER+</td>
<td>Assign the value 45 to the 2nd variable</td>
</tr>
<tr>
<td>100 XEQ ALPHA</td>
<td>Place the cursor at the 5th XEQ ALPHA</td>
</tr>
<tr>
<td>49.68 ENTER+</td>
<td>Assign the value 49.68 to the 3rd variable</td>
</tr>
</tbody>
</table>

Display

<table>
<thead>
<tr>
<th>Display</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>STUBS=54.00,100.00</td>
<td>Assign STUBS to the variables</td>
</tr>
<tr>
<td>LINE=45.00,100.00</td>
<td>Assign LINE to a key</td>
</tr>
</tbody>
</table>
Example 3:

What is the input impedance of the circuit shown at 1 MHz and 10 MHz?

![Ladder Network Analysis Circuit Diagram]

Keystrokes

1. **STUBS**
2. **LINE**
3. **ZL**
4. **FMIN**
5. **FMAX**
6. **FINCR**
7. **FUNCTION?**
8. **ZIN**

Display

- **STUBS**: 49.68, 100.00
- **LINE**: 90.00, 100.00
- **ZL**: 50.00 + J100.00
- **FMIN**: ?
- **FMAX**: ?
- **FINCR**: ?
- **FUNCTION?**: F = 1.00
- **ZIN**: 97.00
- **L**: -1.27
- **ZIN**: 96.97 + J - 2.15

Keystrokes

1. **FIX 0**
2. **SIZE 048**
3. **LNAP**

Display

- **LNAP**
- **BEGIN INPUT**
- **RS**: 50.
- **CP**: 1.E-10
- **LS**: 1.E-5
- **CP**: 5.E-11
- **ZL**: 50. + J0.
Keystrokes

Display

F

FMIN = ?

1 EEX 6 R/S

FMAX = ?

10 EEX 6 R/S

FUNCTION?

9 EEX 6 R/S

F= 1,000,000.

ZIN R/S

ZIN = 122.

R/S

L 31.

R/S

ZIN = 104.

R/S

+ J 63.

R/S

F = 10,000,000.

R/S

ZIN = 221.

R/S

L - 75.

R/S

ZIN = 56.

R/S

+ J - 213.
PROGRAM DATA

<table>
<thead>
<tr>
<th>Program</th>
<th># Regs. to Copy</th>
<th>Data Registers</th>
<th>Flags</th>
</tr>
</thead>
<tbody>
<tr>
<td>GNAP</td>
<td>195</td>
<td>Ymin</td>
<td>05 S: Δf is multiplicative</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ymax</td>
<td>C: Δf is additive</td>
</tr>
<tr>
<td>01</td>
<td></td>
<td>PRPLOT scratch</td>
<td></td>
</tr>
<tr>
<td>02</td>
<td></td>
<td>Plotting Character</td>
<td>06 S: Node is ground</td>
</tr>
<tr>
<td>03</td>
<td></td>
<td>Axis</td>
<td>07 S: Plot dB</td>
</tr>
<tr>
<td>04</td>
<td></td>
<td>PRPLOT scratch</td>
<td>08 S: Plot phase</td>
</tr>
<tr>
<td>05</td>
<td></td>
<td>f</td>
<td>09 S: Plot magnitude</td>
</tr>
<tr>
<td>06</td>
<td></td>
<td>scaling multiplier</td>
<td></td>
</tr>
<tr>
<td>07</td>
<td></td>
<td>fmin</td>
<td></td>
</tr>
<tr>
<td>08</td>
<td></td>
<td>fmax</td>
<td></td>
</tr>
<tr>
<td>09</td>
<td></td>
<td>Δf</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>Plot Name</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>number of freqs</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>MJ</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>V+</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>JK</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>MM</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>V-</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>JJ</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>IJ</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>IL</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>KJ</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>IM</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>IE</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>KK</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
<td>M.002</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
<td>28+ 3b</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>maximum V2/V1</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td></td>
<td>component-type pointer</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td></td>
<td>component-value pointer</td>
<td></td>
</tr>
<tr>
<td>Program</td>
<td># Regs. to Copy</td>
<td>Data Registers</td>
<td>Flags</td>
</tr>
<tr>
<td>---------</td>
<td>----------------</td>
<td>----------------</td>
<td>-------</td>
</tr>
<tr>
<td>LNAP</td>
<td>283</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

25 branches, b
26 nodes, n
27+ b Component types
28+ b Component values
and nodes
27+ 3b G matrix
28+ 3b (Re {Y})
28+ 3b + n² B matrix
27+ 3b + 2n² (Im {Y})

- S: Don’t print frequency
- C: Print frequency
- 5 S: Δf is multiplicative
- 6 C: Δf is additive
- 7 S: Plot magnitude in dB
05 PRPlot scratch 8 S: Plot phase
06 f 9 S: Plot magnitude
07 Scaling multiplier 10 S: Don't increment f
08 fmin 20 S: Always execute
09 fmax C: Execute % An
 only once

10 f
11 Plot Name
12 Re \{Y_{11}\}
13 Im \{Y_{12}\}
14 Re \{Y_{12}\}
15 Im \{Y_{12}\}
16 Re \{Y_{21}\}
17 Im \{Y_{21}\}
18 Re \{Y_{22}\}
19 Im \{Y_{22}\}
20 Re \{A\}
21 Im \{A\}
22 Re \{B\}
23 Im \{B\}
24 Re \{C\}
25 Im \{C\}
26 Re \{D\}
27 Im \{D\}
28 Re \{temporary\}
29 \(\text{Im}\{\text{temporary}\} \)
30 Pointer to next element
31 Number of elements, n
32 RL
33 XL
34 \(\text{Re}\left\{Y_{11}Z_L + Y_{12}\right\} \)
35 \(\text{Im}\left\{Y_{11}Z_L + Y_{12}\right\} \)
36 \(\text{Re}\left\{Y_{21}Z_L + Y_{22}\right\} \)
37 \(\text{Im}\left\{Y_{21}Z_L + Y_{22}\right\} \)
38 not used
39 not used
40 List of network elements and
45 values

. .

This table provides information necessary to use various portions of the Circuit Analysis Application Module as subroutines.

<table>
<thead>
<tr>
<th>SUBROUTINE</th>
<th>LABEL</th>
<th>INITIAL REGISTERS</th>
<th>FLAG STATUS</th>
<th>FINAL REGISTERS</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complex Multiply</td>
<td>C</td>
<td>t:V₂</td>
<td></td>
<td>y: \text{Im}{(U₁ + iV₁)(U₂ + iV₂)}</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>z:U₂</td>
<td></td>
<td>x: \text{Re}{(U₁ + iV₁)(U₂ + iV₂)}</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>y:V₁, x:U₁, t:V₂</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complex Add</td>
<td>*C+</td>
<td>z:U₂</td>
<td></td>
<td>y: V₁ + V₂</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>y:V₁, x:U₁</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GNAP PRINT</td>
<td>*J</td>
<td>See Appendix A for detailed information regarding register contents and flag settings.</td>
<td></td>
<td></td>
<td>This label is provided so that a user-level program can initiate a GNAP analysis after the user has initially set up the circuit.</td>
</tr>
</tbody>
</table>