

HP-41C Clinical Lab and Nuclear Medicine Quick Reference Card

Beer's Law

(Minimum Size 015)

Begin program: **XEO** BEERS.

Input patient number (optional) **[R/S]**, and see prompt **A STD=?**

Input absorbance (A), of standard solution, \mathbb{R}/\mathbb{S} or, press \mathbb{R}/\mathbb{S} without prior data entry, and input % transmittance (%T) of the standard, followed by \mathbb{R}/\mathbb{S} .

Likewise, input A or %T for the unknown and press $[\mathbf{R}/\mathbf{S}]$.

See **C STD=?**, input concentration of standard solution [R/S] and obtain concentration of the unknown.

For a new calculation press **C**.

To Convert A to %T:

Press \blacksquare , see A=?. Input A \blacksquare/s , obtain %T.

To Convert %T to A:

Press **B**, see **%T=?**. Input %T **R/S**, obtain A. For a reprint press **E**. Press **R/S** for results. For a new case press **E**.

Body Surface Area

(Minimum Size 014)

Begin program: **XEO** BSA.

Input patient number (optional) **R/S**.

See HT=? Input height in centimeters (or inches **CHS**) **[R/S**].

See **WT=?** Input weight in kilograms (or pounds **CHS**) **(R/S**).

See DUBOIS/BOYD?

Press **D** $\overline{\mathbf{R/S}}$ for BSA by Du Bois method, *or*, press **B** $\overline{\mathbf{R/S}}$ for BSA by Boyd method.

For alternative calculation:

Press D for Du Bois.

Press **B** for Boyd.

For reprint, press **E** . Press **R/S** for results.

For new inputs, press A.

For a new patient, press **E**.

Creatinine Clearance

(Minimum Size 015)

Begin program: **XEO** CREAT. Input patient number (optional) **R/S**. See prompt: **BSA CALC?**

If Correction for BSA is not Required:

Press **R/S** without prior data entry, and go to Data Input section.

or, if Correction for BSA is Required:

and BSA is known, press $N \mathbb{R}/S$ and see **BSA?** Input known value of BSA \mathbb{R}/S and go to Data Inputs section.

If BSA must be calculated answer $\mathbf{Y} \in \mathbf{R}/\mathbf{S}$ and follow instructions under Body Surface Area program. Then go to Data Inputs (below).

Data Inputs:

See prompt **FLOW**=?. Input urine flow rate (ml/min) **R**/**S**, or if unknown, press **R**/**S** without prior data entry and see prompt **VOL**=?. Input urine volume **R**/**S** and time (min) **R**/**S**.

If flow is corrected for BSA, see **FLOW CORR**= (ml/min). Press **R/S**.

See prompt **U CREAT=?**. Input conc. of creatinine in the urine \mathbb{R}/\mathbb{S} and conc. of creatinine in the plasma \mathbb{R}/\mathbb{S} and obtain **CREAT CLEAR** = (ml/min).

For reprint press **E**. Press **R/S** for results.

For a new clearance, press A.

For a new case, press **E**.

Blood Acid-Base Status

(Minimum Size 016)

Begin program: **XEQ** BLOOD.

Input patient number (optional) **R/S**.

Input body temp BT **R/s**. See **BT CORR?**

If calculations are to be corrected for body temp. answer: Y [R/S].

If no correction: **N R**/**S**.

See **PC02=?** Input partial pressure of CO_2 (mm Hg) \mathbb{R}/\mathbb{S} (corrected value, if calculated, will be displayed; press \mathbb{R}/\mathbb{S}).

See **PH=?** Input pH $\boxed{\mathbb{R}/\mathbb{S}}$ (corrected value, if calculated, will be displayed; press $\boxed{\mathbb{R}/\mathbb{S}}$). Total plasma CO₂ (TCO₂) (mmol/l) is calculated and displayed.

Press **R/S**, see **HGB=?** Input hemoglobin conc. (g/100ml) **R/S** and see base excess (BE).

Press **R/S** for plasma bicarbonate conc. (HCO3in mmol/l).

For reprint press **E**. Press **R/S** for results.

For new data, press **A**.

For new case, press **E**.

Oxygen Saturation and Content

(Minimum Size 016)

Begin program: **XEO** 02SAT.

Follow instructions for Blood Acid-Base Status program until prompt **PO2=?** is displayed. Input PO₂ [R/S] and obtain % saturation (%SAT).

Press [R/S], input hemoglobin concentration (g/ 100ml) [R/S] and obtain O₂ content as volume %.

Optional: VPO₂ or P_AO_2 may be input in place of PO₂. Press **B**, input VPO₂, or P_AO_2 , **CHS R/S**. For a reprint, press **E**. Press **R/S** for results.

Optional: For known % O_2 saturation, press C, input % O_2 saturation \mathbb{R}/S , input hemoglobin conc. \mathbb{R}/S and calculate O_2 content.

For new data, press **A**.

For a new case, press **E**.

Red Cell Indices

(Minimum Size 014)

Begin program: **XEO** RCI.

Input patient number (optional) **R/S**.

See prompts and input:

• red cell count, (10⁶/mm³) **R/S**

- hematocrit, (%) **R/S**
- hemoglobin, (g/dl)

Press **R/S** to calculate:

- mean corpuscular colume (MCV), **R/S**
- mean corpuscular hemoglobin (MCH), **R/S**

• mean corpuscular hemoglobin concentration (MCHC)

For reprint, press \blacksquare E. Press \blacksquare/S for results. For new data, press \blacktriangle . For a new case, press E.

Total Blood Volume

(Minimum Size 014)
Begin program: xE0 TBV.
Input patient number (optional) R/S.
See prompts and input:
background counts R/S
volume of fluid injected R/S
dilution of standard R/S
standard counts/min R/S
whole blood counts/min R/S
Total blood volume is calculated.
For reprint, press E. Press R/S for results.
For new data, press A.

Thyroid Uptake

(Minimum Size 015)

Begin program: **XEO** THY.

Input patient number (optional) **R/S**.

See PTNT PRERAD?

To correct for prior patient radioactivity: input Y (R/S), see ISOTOPE?

Follow isotope entry instructions for Radioactive Decay Corrections program until A0=? is displayed, input 1 ($\overline{R/S}$), then input time elapsed (dd.hh) ($\overline{R/S}$) and see decay factor, press ($\overline{R/S}$).

No correction for prior patient radioactivity:

Input N R/S

For either case:

See prompts and input:

- counts/min for the standard **R/S**
- background counts/min for standard **R/S**

See net standard counts displayed.

Press **R/S**, see prompt and input:

- counts/min for the patient **R/S**
- background counts/min for patient **R/S**.

See net patient counts displayed.

Press **R/S** to calculate % thyroid uptake.

Corrections:

To correct for prior radioactivity:

Press **R/S**, input:

- predose counts **R/S**
- predose background **R/S**.

See % uptake corrected for prior radiation.

To correct for differences in dose and standard: Press **C**, input:

• standard precounts **R/S**

• dose precounts **R/S**.

See % uptake corrected for activity difference.

For reprint, press E. Press R/S for results.

For new data, press A.

For a new case, press E.

Radioactive Decay Corrections

(Minimum Size 007)

Begin program: **XEO** RADCORR.

See **ISOTOPE?**, key in chemical symbol for isotope, press **R/S** and see half-life in hours. Press **R/S**, see **A9=?** Input 2 of the three variables:

- activity at time zero (A0), **R/S**
- time elapsed (dd.hh format) **R/S**
- present activity (A) **R/S**.

(For the unknown, do not input data, simply press \mathbb{R}/\mathbb{S} without data entry.)

Unknown is calculated and displayed.

For new data, press A.

Radioimmunoassay

(Minimum Size 016)

Begin program: **XEO** RIA.

(optional: if printer is used and inputs are to be printed answer the following prompt; **PRINT INPUT**?; **Y** [R/S]. Otherwise **N** [R/S].)

See DATA FOR PLOT? Answer Y or N R/S.

See **NSB=?** Input non-specific binding counts, $\boxed{R/S}$. Repeat for all NSB, then press $\boxed{R/S}$ without prior data entry and see **AVE NSB=**.

Press \mathbb{R}/\mathbb{S} and see **B0=?** Input zero dose counts \mathbb{R}/\mathbb{S} . Repeat for all B0 then press \mathbb{R}/\mathbb{S} without prior data entry, to see **AVE B0=**.

Press \mathbb{R}/\mathbb{S} and see **STD B**=? Input counts for the first standard, \mathbb{R}/\mathbb{S} .

Repeat for all replicates.

After all replicates are entered press \mathbb{R}/\mathbb{S} without prior data entry, and input concentration of the standard. Press \mathbb{R}/\mathbb{S} for outputs.

Repeat above for all standards.

Press \bigcirc to calculate correlation coefficient (R), press \bigcirc **R/S** for slope and intercept.

Press \mathbb{R}/\mathbb{S} , see **UNKN B=?** and input counts for an unknown, \mathbb{R}/\mathbb{S} . Repeat for all replicates.

Press **R/S** without prior data entry to calculate concentration of unknown.

Press **R/S** for other results.

Repeat above for all unknowns.

Basic Statistics

(Minimum Size 010)

Place overlay on keyboard. Begin program: **XEO** BSTAT.

Ungrouped data: (type A)

Input data point, press A. Repeat for all data points.

Grouped data: (type B)

Input frequency ENTER+, input data points B. Repeat for all data points.

Corrections:

Reinput incorrect data as above, press C. Then input correct data point and continue.

Results:

Press D for mean.

Press [R/S] successively for std dev., std error and coeff. of variation.

For a new case, press **E**.

Chi-Square Evaluation and Distribution

(Minimum Size 007)

Place overlay on keyboard. Begin program: **XEO** CHI.

Expected frequencies equal: (type A)

Input observed value, press \triangle . Repeat for all values, then press \bigcirc for χ^2 Statistic, $\boxed{\mathbb{R}/\mathbb{S}}$ for ave expected frequency (E).

Expected frequencies unequal: (type B)

Input observed value $\boxed{\texttt{ENTER*}}$, expected frequency $\boxed{\texttt{B}}$. Repeat for all values. Press $\boxed{\texttt{D}}$ to calculate χ^2 Statistic.

Corrections:

Reinput incorrect data as above, press C. Then input correct data point and continue.

χ^2 distribution:

Input deg. of freedom **()** A to calculate $\Gamma(\nu/2)$. Input x, **()** B for χ^2 density, or Input x, **()** C for cumulative distribution. For a new case, press **()**.

t Statistics

(Minimum Size 012)

Place overlay on keyboard. Begin program: **XEO** TSTAT.

Paired t statistic: (type A)

Input x **ENTER+**, y A. Repeat for all data pairs.

Press D for paired t statistic.

Press **R/S** for other outputs.

t statistic for two means: (type B)

Input the x-value **B**. Repeat for all x.

Press \mathbb{R}/\mathbb{S} and input the difference to be tested \mathbb{R}/\mathbb{S} . Input the y-value \mathbb{B} . Repeat for all y.

Press D for t Statistic. Press **R/S** for other outputs.

For different value of d, input and press **D**.

For corrections to inputs:

Reinput incorrect data, press C.

Then input correct value and continue.

For a new case, press **E**.

t Distribution

(Minimum Size 015) Begin program: **XEO** TDIST. Input deg. of freedom [R/S] and x [R/S]. See prompt: *I F P*. Press **A** to calculate integral, I(x). Press **B** to calculate density function, F(x). Press E C to calculate cumulative distribution P(x). For other calculations: Input x and press $[\mathbf{R}/\mathbf{S}]$. See I F P. Press 📕 🗛 , 📕 🖪 or 📕 🖸 as desired. For a new case, press **E**. PACKARD November 1979 00041-90148 ©Hewlett-Packard 1979 Printed in U.S.A.