HEWLETT-PACKARD

HP.41C

MACHINE DESIGN PAC

NOTICE

The program material contained herein is supplied without representation or warranty of any kind. HewlettPackard Company therefore assumes no responsibility and shall have no liability, consequential or otherwise, of any kind arising from the use of this program material or any part thereof.

HEWLETT-PACKARD LISTENS

To provide better calculator support for you, the Application Engineering group needs your help. Your timely inputs enable us to provide higher quality software and improve the existing application pacs for your calculator. Your reply will be extremely helpful in this effort.

1. Pac name \qquad
2. How important was the availability of this pac in making your decision to buy a HewlettPackard calculator?
\square Would not buy without it.
\square Important
\square Not important
3. What is the major application area for which you purchased the pac?
4. In the list below, please rate the usefulness of the programs in this pac.

	$\stackrel{\rightharpoonup}{\mathbb{4}}$			
1				
2				
3				
4				
5				
6				
7				
8				

5. Did you purchase a printer?

	$\begin{aligned} & \stackrel{\rightharpoonup}{\mathbb{~}} \\ & \underset{\sim}{\underset{\sim}{w}} \\ & \underset{\sim}{w} \end{aligned}$			$\begin{aligned} & \text { u} \\ & \underset{\sim}{0} \\ & \underset{\sim}{w} \\ & \stackrel{\rightharpoonup}{z} \end{aligned}$
9				
10				
11				
12				
13				
14				
15				
16				

\square NO
If you did, is the printing format in this pac useful?
\square YES
NO
6. What programs would you add to this pac?
7. What additional application pacs would you like to see developed?

THANK YOU FOR YOUR TIME AND COOPERATION.

Name	Position
Company	
Address	State
City	Phone

\qquad

```
NO POSTAGE
NECESSARY
    IF MAILED
        IN THE
UNITED STATES
```


BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 33 CORVALLIS, OREGON
Postage will be paid by
Hewlett-Packard
1000 N.E. Circle Blvd.
Corvallis, Oregon 97330

INTRODUCTION

The Machine Design Pac is a collection of programs for mechanical engineers involved in design or analysis. Topics include cams, gears, linkages, springs, mechanical motions and machine geometries.

Each program in this pac is represented by one program in the Application Module and a section in this manual.

The manual provides a description of each program, a set of instructions for using each program, and one or more example problems, each of which includes a list of the keystrokes required for its solution.

Before plugging in your Application Module, turn your calculator off, and be sure you understand the section Inserting and Removing Application Modules. Before using a particular program, take a few minutes to read Format of User Instructions and A Word About Program Usage .

You should first familiarize yourself with a program by running it once or twice while following the complete User Instructions in the manual. Thereafter, the program's prompting should provide the necessary instructions, including which variables are to be input, which keys are to be pressed, and which values will be output.

We hope this pac will assist you in the solution of numerous problems in your discipline. We would appreciate knowing your reactions to the programs, and to this end we have provided a questionnaire inside the front cover of this manual. Would you please take a few minutes to give us your comments on these programs? It is from your comments that we learn how to increase the usefulness of our programs.

CONTENTS

Introduction 1
Contents 2
Inserting and Removing Application Modules 3
Format of User Instructions 5
A Word About Program Usage 6
Circular Cams 7Computes the dynamic properties and the design parameters forcams with flat or roller, radial followers.
Generation of a Four Bar Linkage 19
Given three angular orientations of the input and output of a four bar linkage, the program sizes the links to conform to the angular orientations.
Progression of a Four Bar System 22
Calculates angular displacement, velocity, and acceleration for the output link of a four bar system.
Progression of a Slider Crank 29
Calculates displacement, velocity, and acceleration of the slider and angular velocity and acceleration of the connecting rod for the progression of a slider crank system.
Gear Forces 33
Computes the reaction forces resulting from torque applied to helical, bevel, and worm gears.
Standard External Involute Spur Gears 38
Calculates parameters necessary for the design, manufacture, and testing of standard, external, involute, spur gears.
Helical Spring Design 42
Performs one or two point design for helical compression springs.
Forced Oscillator With Arbitrary Function 51
Computes displacement, velocity and acceleration for a mass, spring, damper system being driven by an arbitrary function of time.
Coordinate Transformation 56Converts Cartesian coordinates in one system to the equivalentCartesian coordinates in a translated rotated Cartesian system.
Points on a Circle 59
Computes the Cartesian coordinates of points on a circle.
Circle by Three Points 62
Given three non-collinear points, defines the circle through all three points.
Unit Conversions 64
Program provides a virtually unlimited number of unit conversionsuseful to mechanical engineers.
Appendix A: Program Data 68

INSERTING AND REMOVING APPLICATION MODULES

Before you insert an Application Module for the first time, familiarize yourself with the following information.

Up to four Application Modules can be plugged into the ports on the HP-41C. While plugged in, the names of all programs contained in the Module can be displayed by pressing CATALOS 2 .

CAUTION

Always turn the HP-41C off before inserting or removing any plug-in extension or accessories. Failure to turn the HP-41C off could damage both the calculator and the accessory.

To insert Application Modules:

1. Turn the HP-41C off! Failure to turn the calculator off could damage both the Module and the calculator.

2. Remove the port covers. Remember to save the port covers; they should be inserted into the empty ports when no extensions are inserted.
3. Insert the Application Module with the label facing downward as shown, into any port after the last Memory Module. For example, if you have a Memory Module inserted in port 1, you can insert an Application Module in any of ports 2,3 , or 4 . (The port numbers are shown on the back of the calculator.) Never insert an Application Module into a lower numbered port than a Memory Module.
4. If you have additional Application Modules to insert, plug them into any port after the last Memory Module. Be sure to place port covers over unused ports.
5. Turn the calculator on and follow the instructions given in this book for the desired application functions.

To remove Application Modules:

1. Turn the HP-41C off! Failure to do so could damage both the calculator and the Module.
2. Grasp the desired Module handle and pull it out as shown.

3. Place a port cap into the empty ports.

Mixing Memory Modules and Application Modules

Any optional accessories (such as the HP 82104A Card Reader, or the HP 82153A Wand) should be treated in the same manner as Application Modules. That is, they can be plugged into any port after the last Memory Module. Also, the HP-41C should be turned off prior to insertion or removal of these extensions.
The HP-41C allows you to leave gaps in the port sequence when mixing Memory and Application Modules. For example, you can plug a Memory Module into port 1 and an Application Module into port 4, leaving ports 2 and 3 empty.

FORMAT OF USER INSTRUCTIONS

The completed User Instruction Form—which accompanies each programis your guide to operating the programs in this Pac.

The form is composed of five labeled columns. Reading from left to right, the first column, labeled STEP, gives the instruction step number.

The INSTRUCTIONS column gives instructions and comments concerning the operations to be performed.

The INPUT column specifies the input data, the units of data if applicable, or the appropriate alpha response to a prompted question. Data input keys consist of 0 to 9 and the decimal point (the numeric keys), EEX (enter exponent), and CHS (change sign).

The FUNCTION column specifies the keys to be pressed after keying in the corresponding input data.

The DISPLAY column specifies prompts, intermediate and final answers, and their units, where applicable.

Above the DISPLAY column is a box which specifies the minimum number of data storage registers necessary to execute the program. Refer to the Owner's Handbook for information on how the SIZE function affects storage configuration.

A WORD ABOUT PROGRAM USAGE

Catalog

When an Application Module is plugged into a port of the HP-41C, the contents of the Module can be reviewed by pressing CATALOG 2 (the Extension Catalog). Executing the CATALOG function lists the name of each program or function in the Module, as well as functions of any other extensions which might be plugged in.

ALPHA and USER Mode Notation

This manual uses a special notation to signify ALPHA mode. Whenever a statement on the User Instruction Form is printed in gold, the ALPHA key must be pressed before the statement can be keyed in. After the statement is input, press ALPHA again to return the calculator to its normal operating mode, or to begin program execution. For example, XEO SECTION means press the following keys: XEO ALPHA SECTION ALPHA.
When the calculator is in USER mode, this manual will use the symbols $\Delta-\Omega$ and a-E to refer to the reassigned keys in the top two rows. These key designations will appear on the User Instruction Form and in the keystroke solutions to sample problems.

Optional Printer

When the optional printer is plugged into the HP-41C, all inputs and results will be printed. The printer should be set in MANUAL mode.

Label Conflicts With Other Application Pacs

Four labels used in the Machine Design Pac have the same name as those used in other Pacs. If you have this Pac and another Pac plugged into your HP-41C at the same time, you should make sure that the Pac whose programs you want to use is in the lowest-numbered port to avoid conflicting use of these labels.

Label	Pac
INI	Games
INV	Math
KEY	Thermal and Transport Science
${ }^{*}$ IN	Clinical Lab, Navigation, Surveying

Assigning Program Names

Key assignments to keys $A-\Omega$ and \square - 国 take priority over the automatic assignments of local labels in the Application Module. Be sure to clear previously assigned functions before executing a Module program.

CIRCULAR CAMS

This program computes the parameters necessary for the design of harmonic, cycloidal or parabolic circular cams with roller, point or flat radial followers.

Equations:

Harmonic: $\quad y=\frac{h}{2}\left[1-\cos \left(\frac{\pi \cdot h}{\beta}\right)\right]$

Cycloidal: $\quad y=h\left[\frac{b}{\beta}-\frac{1}{2 \pi} \sin \frac{2 \pi b}{\beta}\right]$

Parabolic: $\quad y=h \begin{cases}2\left(\frac{L}{\beta}\right)^{2} & \text { if }\left(\frac{L}{\beta}\right) \leqslant 0.5 \\ \left(1-2\left(1-\frac{L}{\beta}\right)^{2}\right) & \text { if }\left(\frac{L}{\beta}\right)>0.5\end{cases}$

Dwell: $\quad y=0$

$$
\begin{aligned}
& \alpha=\tan ^{-1}\left(\frac{180}{\pi \mathrm{r}} \frac{\mathrm{dy}}{\mathrm{~d} h}\right) \\
& \mathrm{r}=\mathrm{R}_{\mathrm{b}}+\mathrm{y}
\end{aligned}
$$

8 Circular Cams

Roller followers:

Center of cutter or grinding wheel

$$
\begin{gathered}
r_{g}=\left(r^{2}+\left(R_{g}-R_{r}\right)^{2}+2 r\left(R_{g}-R_{r}\right) \cos \alpha\right)^{1 / 2} \\
\phi=\sin ^{-1} \frac{R_{g}-R_{r}}{r_{g}}+\theta
\end{gathered}
$$

Flat followers:

$$
r_{c}=\left(r^{2}+\left(\frac{180}{\pi} \frac{d y}{d h}\right)^{2}\right)^{1 / 2}
$$

$$
\mathrm{r}_{\mathrm{g}}=\left(\mathrm{R}_{\mathrm{g}}^{2}+\mathrm{r}_{\mathrm{c}}^{2}+2 \mathrm{R}_{\mathrm{g}} \mathrm{r}_{\mathrm{c}} \cos \alpha\right)^{1 / 2}
$$

$$
\phi=\cos ^{-1}\left(\frac{\mathrm{r}_{\mathrm{c}}+\mathrm{R}_{\mathrm{g}} \cos \alpha}{\mathrm{r}_{\mathrm{g}}}\right)-\alpha+\measuredangle
$$

where:
β is the duration of lift h .
h is the total cam lift over angle β.
R_{b} is the base circle radius.
R_{g} is the grinder radius (set to zero for cam profile).
R_{r} is the roller radius (set to zero for point follower).
b is the cam angle.
y is the follower lift.
$\frac{\mathrm{dy}}{\mathrm{d} \ell}$ is the follower velocity.
$\frac{d^{2} y}{d \hbar^{2}}$ is the follower acceleration.
α is the pressure angle.
ϕ is the angle from zero to grinder center.
r_{g} is the center to center distance of grinder and cam.
r_{c} is the center to center distance of follower and cam. r is the cam radius at the point of contact.

Reference:

M.F. Spotts, Design of Machine Elements, Prentice-Hall 1971.

Remarks:

A flat follower will not properly follow a cam profile with any concave sections, e.g., see figure 1 .

Figure 1
Note two points of contact

A roller follower will not properly follow a cam profile with a concave section whose radius is less than the roller radius, e.g., see figure 2.

Figure 2
Note two points of contact

				SIZE: 020
STEP	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
1	Initialize program.		XEO CAM	FLAT? Y/N
2	For flat followers key " \mathbf{Y} " for roller followers key " N ".	Y or N	R/S	GRNDR=?
3	Key in grinder radius (if no grinder is being used key zero).	R_{g}	R/S	$\mathrm{Rb}=$?
4	Key in base radius (to center of roller follower).	R_{b}	R/S	$\mathrm{RR}=$?
5	Key in radius of roller follower (this step is skipped for flat followers).	R_{r}	8/5	PROFILE?
6	Key in abbreviation for cam profile ("CYC", "HAR", "PAR" or "DWELL").		R/S	DUR=?
7	Key in duration of lift.	β	[/s/s	LIFT=?
8	Key in lift.	h	R/S	N INT $=$?
9	Key in number of intervals and initiate calculation:	N INT	\%/S	$L=$
			R/S *	$Y=$
	follower radius,		R/S *	$\mathrm{R}=$
	follower velocity,		R/S *	$\mathrm{dY} / \mathrm{d} L=$
	follower acceleration,		R/S *	$\mathrm{d} 2 \mathrm{Y} / \mathrm{d} \angle 2=$
	pressure angle,		R/S *	PRS $1=$
	grinder angle,		R/S *	$\triangle \mathrm{G}=$
	grinder radius, cam surface contact		R/S *	$\mathrm{RG}=$
	point,		R/S *	$\triangle \mathrm{RC}=$
	radius of contact,		(8/5 *	$\mathrm{RC}=$
	angle of next increment,		R/S *	\triangle
			$\begin{aligned} & \text { etc. } \\ & \text { R/S * } \end{aligned}$	etc. PROFILE?
10	For next section of cam go to step 6. For a new case go to step 1 . Key in only values which change.			
	*Press R/S if you are not using a printer.			

Example:

Using 10 degree increments design a cam with a roller follower which does the following:

SECTION \#	LIFT	DURATION	PROFILE
1	-4.5	130°	Parabolic
2	+2.0	100°	Harmonic
3	0	30°	Dwell
4	+2.5	100°	Cycloidal

Grinder radius $=0.500$
Base radius $=12.000$
Roller radius $=1.000$

Keystrokes (SIZE $\geqslant 020$)
XEQ ALPHA DEG ALPHA
ENG 3
XEQ ALPHA CAM ALPHA
$N R / S$
.5 R/S
12 R/S
1 R/S
PAR R/S
130 R/S
4.5 CHS R/S

13 R/S
R/S *
etc.

Display

FLAT? Y/N

GRNDR=?
$R b=$?
$R R=$?
PROFILE?
DUR=?
LIFT=?
N INT=?
$\therefore=0.000 \mathrm{~Eb}$
$Y=0.006 \mathrm{E} 0$
$\mathrm{R}=12 . \mathrm{EDED}$
$\mathrm{dH} / \mathrm{d}=0.000 \mathrm{ED}$
$\mathrm{d} 2 \mathrm{Y} / \mathrm{d} / 2=-1.065 \mathrm{E}-3$
PRS $\angle=0$, 日60ED
$\angle \mathrm{G}=0.660 \mathrm{E} 0$
$\mathrm{RG}=11,50 \mathrm{E}$
$\therefore \mathrm{RC}=0.00 \mathrm{0} 0$
$\mathrm{RC}=11.60 \mathrm{E}$
$\Delta=10.00 \mathrm{ED}$
$Y=-53.25 E-3$
$R=11.95 E 6$
$\mathrm{dY} / \mathrm{d} \Delta=-10.65 \mathrm{E}-3$
$\mathrm{d} 2 \mathrm{~V} / \mathrm{d} / 2=-1.065 \mathrm{E}-3$
PRS $:=-2.924 E 0$
$\langle\bar{G}=9.87 \mathrm{EE}$
$R \mathrm{G}=11.45 \mathrm{E} 0$
$\angle \mathrm{RC}=9.733 \mathrm{D}$
$\mathrm{RC}=10.95 \mathrm{E} 0$
:
etc.
$\therefore=126.6 \mathrm{E} 6$
$Y=-4.447 \mathrm{ED}$
$R=7.553 E 0$
$\mathrm{d} / / \mathrm{d}\langle=-19.65 \mathrm{E}-3$
$\mathrm{d} 2 \mathrm{~T} / \mathrm{d} / 2=1.665 \mathrm{E}-3$
PRS $4=-4.619 \mathrm{E}$
$\angle \mathrm{G}=119.7 \mathrm{ED}$
$\mathrm{RG}=7.055 \mathrm{E}$
$\therefore R \mathrm{RC}=119.3 \mathrm{ED}$
$\mathrm{RC}=6.55 \mathrm{E} 5$
$\therefore=130.6 \mathrm{E}$
$Y=-4.500 \mathrm{ED}$
$R=7.501000$
$\mathrm{dY} / \mathrm{d} \alpha=6.6 \mathrm{BED}$
$\mathrm{d} 2 \mathrm{Y} / \mathrm{d} 22=1.065 \mathrm{E}-3$
PRS $<=6.00050$
$\angle \mathrm{G}=13 \mathrm{~B}$. DED
$\mathrm{RG}=7.06 \mathrm{BE}$
$\therefore \mathrm{RC}=130 . \mathrm{BE} 0$
$\mathrm{RC}=6.506 \mathrm{E}$

R/S *

HAR R/S
100 R/S
2 R/S
PROFILE?
DUR=?
LIFT=?
N INT=?

10 R/S

R/S
etc.
$\therefore=130 . \operatorname{aED}$
$Y=6.600 \mathrm{~b}$
$\mathrm{R}=7.50 \mathrm{BE} \mathrm{b}$
$\mathrm{dY} / \mathrm{d}=6.606 \mathrm{E}$
d2Y/d $2=987.0 \mathrm{E}-6$
PRS $4=0.606 \mathrm{E}$
$\angle \mathrm{G}=130.8 \mathrm{ED}$
$\mathrm{FG}=7.966 \mathrm{E} 0$
$\angle \mathrm{RC}=130.0 \mathrm{BE}$
$\mathrm{RC}=6.50 \mathrm{ED}$

```
<=140.0E0
Y=48.94E-3
R=7.549E0
dY/d< =9.768E-3
d2\/d}/2=938.7E-
PRS < 4.214ED
AG=140.3ED
RG=7.050E0
\angleRC=140.6E0
RC=6.552E0
!
etc.
```

$\therefore=220.0 E 0$
$\because=1.951 E 0$
$\mathrm{R}=9.45 \mathrm{iE} \mathrm{E}$
$\mathrm{dY} / \mathrm{d} 4=9.768 \mathrm{E}-3$
$\mathrm{d} 2 \mathrm{Y} / \mathrm{d} 22=-938.7 \mathrm{E}-6$
PRS $4=3.366 \mathrm{E}$
$\angle \mathrm{G}=220.2 \mathrm{E} 0$
$\mathrm{RG}=8.952 \mathrm{E}$
$\angle \mathrm{RC}=220.4 \mathrm{ED}$
$\mathrm{RC}=8.453 \mathrm{ED}$
$\Delta=236$. 9 ED
$\mathrm{Y}=2.600 \mathrm{E} 0$
$R=9.500 E b$
$\mathrm{dY} / \mathrm{d} \alpha=0.090 \mathrm{ED}$
$\mathrm{d} 2 \mathrm{Y} / \mathrm{d} 42=-987 . \mathrm{EE}-6$
PRS $4=0.066 \mathrm{E}$
$\angle \mathrm{G}=230.6 \mathrm{E} 0$
$\mathrm{RG}=9.080 \mathrm{E} 0$
$\triangle R C=230.0 E 0$
$R C=8.566 E 6$

R/S

DWELL R/S
PROFILE?
30 R/S
0 R/S
DUR=?
LIFT=?
N INT=?

3 R/S
 R/S

:
etc.
$\therefore=230.0 \mathrm{DC}$
$Y=0.000 \mathrm{E}=$
$R=9.500 \mathrm{ED}$
$\mathrm{dH} / \mathrm{d}=\mathrm{b} .0 \mathrm{0} 0 \mathrm{ED}$
$d 2 Y / d 22=0.800 \mathrm{E}$
PRS $4=0.060 \mathrm{ED}$
$\triangle \mathrm{j}=239$. 0 ED

- $\mathrm{RC}=230.0 \mathrm{OED}$
$\mathrm{RC}=8.50 \mathrm{BEO}$
≤ 246. 6 E 6
$Y=0.000 \mathrm{Co}$
$\mathrm{R}=9.500 \mathrm{E}$

PRS $=0=0.000 \mathrm{C}$
$\alpha \mathrm{C}=246.0 \mathrm{ED}$
$\mathrm{RG}=9.006 \mathrm{ED}$
- $\mathrm{RC}=240.0 \mathrm{ED}$

RC=8.500E
$4=256$. 0 E 0
$Y=0.606 \mathrm{C}$
$\mathrm{R}=9.500 \mathrm{ED}$

$\mathrm{d} 2 \mathrm{Y} / \mathrm{d} \angle 2=0.0006 \mathrm{E}$

$\mathrm{RC}=9.00 \mathrm{ED}$
$\angle \mathrm{RC}=250.0 \mathrm{CO}$
$\mathrm{RC}=6.500 \mathrm{ED}$
$\therefore=260.0 \mathrm{ED}$
$Y=6.00150$
$R=9.500 E 1$
$\mathrm{dY} / \mathrm{d}=6.000 \mathrm{E}=0$
$\mathrm{d} 2 \mathrm{Y} / \mathrm{d} 22=0.000 \mathrm{E} 0$
PRS $\angle=0.000 \mathrm{E} 0$
$\angle \mathrm{G}=266.0 \mathrm{ED}$
$\mathrm{RC}=9.00 \mathrm{BED}$
$\angle \mathrm{RC}=260.0 \mathrm{CD}$
$\mathrm{RC}=8.500 \mathrm{E}$

R/S *
CYC R/S
100 R/S
$2.5 \mathrm{R} / \mathrm{S}$
10 R/S
R/S *
\vdots
etc.

```
PROFILE?
DUR=?
LIFT=?
N INT=?
<=260. घE0
Y=0.000E0
R=9.500E0
dY/d<=0.000E0
d2Y/d<2=0.090E0
PRS < =9.000E0
```



```
RG=9.006E0
\triangleRC=260.6ED
RC=8.500E0
<=276. 1ED
Y=16.13E-5
R=9.516ED
dY/di=4.775E-3
d2Y/d/2=923.3E-6
PRS < =1.647E0
AG=270.1ED
RG=9.016E0
< RC=270.2E0
RC=0.517E0
etc.
```

```
<=350. 6E06
Y=2.484Eb
R=11.98Eb
dY/di=4.775E-3
d2Y/d/2=-923.3E-6
PRS < = 1.308E0
\G=350.1E0
RG=11.48E0
< RC=350.1E0
RC=10.98E0
```

$4=360$. 日6 0
$Y=2.500 E 0$
$\mathrm{R}=12.00 \mathrm{ED}$

$\mathrm{d} 2 \mathrm{~T} / \mathrm{d} \alpha=0 \mathrm{O} .0 \mathrm{\theta} 0 \mathrm{E} \mathrm{E}$
PRS $4=6.006 \mathrm{CD}$
$\angle \mathrm{G}=360.0 \mathrm{ECO}$
$\mathrm{RG}=11.50 \mathrm{E}$
$\angle \mathrm{RC}=36 \mathrm{E} .0 \mathrm{VED}$
$\mathrm{RC}=11.00 \mathrm{E} 0$

* Press R / \mathbf{s} if you are not using a printer.

GENERATION OF A FOUR BAR LINKAGE

Given three angular orientations of the input crank and three corresponding angular orientations of the output crank, this program will size the link members to conform to these orientations. Thus, a linkage can be designed to conform exactly at three angular orientations.

Equations:

$$
\begin{gathered}
\mathrm{R}_{1} \cos \measuredangle \mathrm{~b}_{1}-\mathrm{R}_{2} \cos \measuredangle \mathrm{~d}_{1}+\mathrm{R}_{3}=\cos \left(\Delta \mathrm{b}_{1}-\measuredangle \mathrm{d}_{1}\right) \\
\mathrm{R}_{1} \cos \measuredangle \mathrm{~b}_{2}-\mathrm{R}_{2} \cos \measuredangle \mathrm{~d}_{2}+\mathrm{R}_{3}=\cos \left(\Delta \mathrm{b}_{2}-\measuredangle \mathrm{d}_{2}\right) \\
\mathrm{R}_{1} \cos \measuredangle \mathrm{~b}_{3}-\mathrm{R}_{2} \cos \measuredangle \mathrm{~d}_{3}+\mathrm{R}_{3}=\cos \left(\Delta \mathrm{b}_{3}-\measuredangle \mathrm{d}_{3}\right) \\
\mathrm{R}_{1}=\mathrm{a} / \mathrm{d} \\
\mathrm{R}_{2}=\mathrm{a} / \mathrm{b} \\
\mathrm{R}_{3}=\frac{\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{d}^{2}-\mathrm{c}^{2}}{2 \mathrm{bd}}
\end{gathered}
$$

where:
a is the length of the fixed link.
b is the length of the input link.
c is the length of the connecting link.
d is the length of the output link.
$\Delta \mathrm{b}$ is the angular orientation of the input link.
Δd is the angular orientation of the output link.

Remarks:

$\measuredangle b_{1}$ may not equal 90 or 270 degrees.

Reference:

Martin, G.H., Kinematics and Dynamics of Machines, McGraw-Hill, 1969.

Example:

Design a linkage which will have the following correspondence between input and output links:

$\#$	b	d
1	70	100
2	83.3	116
3	110	140

The fixed link is 3.75 units long.
Keystrokes (SIZE $\geqslant \mathbf{0 2 2}$)
XEQ ALPHA DEG ALPHA

FIX 4

XEO ALPHA GEN4BAR ALPHA
70 R/S
100 R/S
$83.3 \mathrm{R} / \mathrm{S}$
116 R/S
110 R/S
140 R/S
3.75 R/S

R/S *
R/S *
R/S *

Display

$$
\begin{aligned}
& \measuredangle b 1=? \\
& \measuredangle d 1=? \\
& \measuredangle b 2=? \\
& \measuredangle d 2=? \\
& \measuredangle b 3=? \\
& \measuredangle d 3=? \\
& a=? \\
& a=3.7500 \\
& b=-10.6413^{\star \star} \\
& c=2.9170 \\
& d=-12.2875^{\star *}
\end{aligned}
$$

*Press R/S if you are not using a printer.
**The negative signs indicate that the links are opposite to the assumed directions. Thus, all angles are 180 degrees from the originally specified orientations.

PROGRESSION OF A FOUR BAR SYSTEM

This program calculates angular displacement, velocity and acceleration for the output link of a four bar system (figure 1). (Either the 'connecting link'' (c) or the "output link"' (d) may be selected as the program's output link.)

Two modes of program operation are provided; manual and automatic progression. Manual mode is useful for analysis of discrete linkage orientations. Automatic mode can be used to simulate link movements through a range of motion. Constant angular velocity of the input link is required for automatic progression.

Figure 1 - Four Bar System Showing Positive Angular Conventions

Output Link

$$
\phi=\sin ^{-1}\left(\frac{\mathrm{~b}}{\mathrm{e}} \sin \theta\right)+\cos ^{-1}\left(\frac{\mathrm{~d}^{2}+\mathrm{e}^{2}-\mathrm{c}^{2}}{2 \mathrm{de}}\right)
$$

Connecting Link

$$
\begin{gathered}
\alpha=\sin ^{-1}\left(\frac{\mathrm{~b}}{\mathrm{e}} \sin \theta\right)+\cos ^{-1}\left(\frac{\mathrm{c}^{2}+\mathrm{e}^{2}-\mathrm{d}^{2}}{-2 \mathrm{ce}}\right) \\
\mathrm{e}=\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}+2 \mathrm{abcos} \theta} \\
\frac{\mathrm{~d} \phi}{\mathrm{~d} \theta}=\frac{\mathrm{R}_{1} \sin \theta-\sin (\theta-\phi)}{\mathrm{R}_{2} \sin \phi-\sin (\theta-\phi)}
\end{gathered}
$$

$$
\begin{aligned}
& \mathrm{R}_{1}=\frac{\mathrm{a}}{\mathrm{~d}} \quad \mathrm{R}_{2}=\frac{\mathrm{a}}{\mathrm{~b}} \\
& \frac{\mathrm{~d} \alpha}{\mathrm{~d} \theta}=\frac{\mathrm{S}_{1} \sin \theta-\sin (\theta-\alpha)}{\mathrm{S}_{2} \sin \alpha-\sin (\theta-\alpha)} \\
& S_{1}=-\frac{a}{c} \quad S_{2}=\frac{a}{b} \\
& \frac{\mathrm{~d}^{2} \phi}{\mathrm{~d} \theta^{2}}=\frac{\mathrm{R}_{1} \cos \theta-\mathrm{R}_{2} \cos \phi\left(\frac{\mathrm{~d} \phi}{\mathrm{~d} \theta}\right)^{2}-\left(1-\frac{\mathrm{d} \phi}{\mathrm{~d} \theta}\right)^{2} \cos (\theta-\phi)}{\mathrm{R}_{2} \sin \alpha-\sin (\theta-\alpha)} \\
& \frac{\mathrm{d}^{2} \alpha}{\mathrm{~d} \theta^{2}}=\frac{\mathrm{S}_{1} \cos \theta-\mathrm{S}_{2} \cos \alpha\left(\frac{\mathrm{~d} \alpha}{\mathrm{~d} \theta}\right)^{2}-\left(1-\frac{\mathrm{d} \alpha}{\mathrm{~d} \theta}\right)^{2} \cos (\theta-\alpha)}{\mathrm{S}_{2} \sin \alpha-\sin (\theta-\alpha)} \\
& \dot{\phi}=\frac{\mathrm{d} \phi}{\mathrm{~d} \theta} \dot{\theta} \quad \dot{\alpha}=\quad \frac{\mathrm{d} \alpha}{\mathrm{~d} \theta} \dot{\theta} \\
& \ddot{\phi}=\frac{\mathrm{d}^{2} \theta}{\mathrm{dt}^{2}}=\frac{\mathrm{d}^{2} \phi}{\mathrm{~d} \theta^{2}}\left(\frac{\mathrm{~d} \theta}{\mathrm{dt}}\right)^{2}+\frac{\mathrm{d}^{2} \theta}{\mathrm{dt}^{2}} \frac{\mathrm{~d} \phi}{\mathrm{~d} \theta} \\
& =\dot{\theta}^{2} \frac{\mathrm{~d}^{2} \theta}{\mathrm{~d} \boldsymbol{\theta}^{2}}+\ddot{\theta} \frac{\mathrm{d} \boldsymbol{\theta}}{\mathrm{~d} \theta} \quad \alpha=\dot{\theta}^{2} \frac{\mathrm{~d}^{2} \alpha}{\mathrm{~d} \boldsymbol{\theta}^{2}}+\alpha \frac{\mathrm{d} \ddot{\boldsymbol{\alpha}}}{\mathrm{~d} \boldsymbol{\theta}}
\end{aligned}
$$

where:
$\Delta b(\operatorname{or} \theta)$ is the orientation of the input link.
$\Delta \mathrm{c}$ (or α) is the orientation of the connecting link.
$\Delta \mathrm{d}(\operatorname{or} \phi)$ is the orientation of the output link.
L.b (or $\mathrm{d} \theta / \mathrm{dt}$) is the angular velocity of the input link.
b.c (or $\mathrm{d} \alpha / \mathrm{dt}$) is the angular velocity of the connecting link.
L. d (or $\mathrm{d} \phi / \mathrm{dt}$) is the angular velocity of the output link.
$h: b$ (or $\mathrm{d}^{2} \theta / \mathrm{dt}^{2}$) is the angular acceleration of the input link.
$b: c$ (or $\mathrm{d}^{2} \alpha / \mathrm{dt}^{2}$) is the angular acceleration of the connecting link.
$\Delta: \mathrm{d}$ (or $\mathrm{d}^{2} \phi / \mathrm{dt}^{2}$) is the angular acceleration of the output link.
a is the length of the fixed link.
b is the length of the input link.
c is the length of the connecting link.
d is the length of the output link.

Remarks:

Two possible configurations exist for a given set of links:

Configuration A

Configuration B

The program allows either configuration to be selected.
All angular inputs should be consistent with the angular mode of the machine.

				SIZE: 020
STEP	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
1	Initialize program.		XEO 4BAR	$\mathrm{a}=$?
2	Key in length of fixed link.	a	R/S	$\mathrm{b}=$?
3	Key in length of input link.	b	R/S	$\mathrm{c}=$?
4	Key in length of connecting link.	c	R/S	$\mathrm{d}=$?
5	Key in length of output link.	d	R/S	TYPE B? Y/N
6	See Remarks. Key in "N" for type A or " Y " for type B.	Y or N	R/S	LINK c? Y/N
7	Key in " Y '' for the connecting link or " N " for the output link.	Y or N	R/S	AUTO? Y/N
8	Key in " Y "' for automatic link progression or " N " for analysis of individual orientations.	Y or N	R/S	$\triangle \mathrm{b}=$? or $\angle \mathrm{b} 0=$?
9	If you keyed " N " in step 8, go to step 15.			
10	Key in initial angle of link b.	Lb0	R/S	$\mathrm{N}=$?
11	Key in number of increments.	N	[/Es	4 INC?
12	Key in angular increment.	$\triangle I N C$	8/5	$\Delta . b=$?

STEP	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
13	Key in angular velocity of input link.	4.b		$\begin{gathered} \measuredangle b= \\ \measuredangle c=\text { or } \measuredangle d= \\ \measuredangle . c=\text { or } \measuredangle . d= \\ \Delta: c=\text { or } \Delta: d= \\ \measuredangle b= \\ \measuredangle c=\text { or } \angle d= \\ \text { etc. } \\ \vdots \\ \vdots \\ a=? \end{gathered}$
14 15	For a new case, go to step 2. Key in only values which change. Key in angle of input link and calculate angle of output link.	$\angle b$	$\begin{aligned} & R / \mathrm{R} \\ & \mathrm{R} / \mathrm{S} \text { * } \end{aligned}$	$\begin{gathered} \Delta c=\text { or } \measuredangle d= \\ \Delta \cdot b=? \end{gathered}$
16	Key in angular velocity of input link and calculate angular velocity of output link.	4.b	R/S	$\begin{gathered} \text { L. } C=\text { or } L \cdot d= \\ \Delta: b=? \end{gathered}$
17	Key in angular acceleration of input link and calculate acceleration of output link.	L:b	$\begin{aligned} & R / S \\ & R / \\ & R / S \\ & R / S \end{aligned}$	$\begin{gathered} b: c=\text { or } b: d= \\ \Delta b=? \end{gathered}$
18 19	For another orientation go to step 15. Key in only values which change. For a new case, go to step 1. Key in only the values which change. *Press $\overline{\text { B/S }}$ if you are not using a printer.			

Example 1:

The input link of the four bar linkage below is instantaneously rotating at 150 degrees/second with an angular acceleration of 0.23 degrees/second squared. The input link is at 116°. What are the values of position, velocity, and acceleration of link d? Link c?

Keystrokes (SIZE $\geqslant \mathbf{0 2 0)}$
FIX 4
XEQ ALPHA
XEO ALPHA 4 BAR ALPHA

2 R/S
$1.5 \mathrm{R} / \mathrm{S}$
2 R/S
1 R/S
$N R / S$
$N R / S$
$\mathrm{N} R / \mathrm{S}$
116 R/S
R/S
150 R/S
R/S *
.23 R/S
R/S *
For link c.

XEQ

ALPHA
4 BAR

Display

$$
a=?
$$

b=?
$c=$?
$d=$?
TYPE B? Y/N
LINK c? Y/N
AUTO? Y/N
$\Delta b=$?
$\measuredangle d=125.7484$
L. $b=$?
L. $d=235.7572$
$\mathrm{L}: \mathrm{b}=$?
L:d=227.9894
$\Delta b=$?
$a=$?
$b=$?
c=?
$\mathrm{d}=$?
TYPE B? Y/N
LINK c? Y/N
AUTO? Y/N

$$
\begin{aligned}
& \measuredangle b=? \\
& \measuredangle c=195.5632 \\
& \measuredangle \cdot b=? \\
& \Lambda \cdot c=20.2953 \\
& \measuredangle: b=? \\
& \measuredangle: c=204.9014 \\
& \measuredangle b=?
\end{aligned}
$$

Example 2:

A four bar linkage is to be used to convert rotary motion from an electric motor to the reciprocating motion necessary to activate a shaking conveyor system which moves fruit between two process stations.

九. $b=-360$ degrees/second
For the geometry shown above, what is the motion of the output link? Start at $\Delta \mathrm{b}=0^{\circ}$ and go to -330° by $12,30^{\circ}$ increments.

Four Bar Shaker Mechanism

Keystrokes (SIZE \geqslant 020)	Display
FIX 4	
XEQ ALPHA DEG ALPHA	
XEQ ALPHA 4 BAR ALPHA	$\mathrm{a}=$?
6 R/S	$b=$?
. $5 \mathrm{R} / \mathrm{S}$	$\mathrm{c}=$?
7 R/S	$d=$?
$3 \mathrm{R} / \mathrm{S}$	TYPE B? Y/N
N R/S	LINK c? Y/N
NR/S	AUTO? Y/N
Y R/S	$\triangle \mathrm{bO}=$?
0 R/S	$N=$?
$12 \mathrm{R} / \mathrm{S}$	\triangle INC=?
30 R/S	$4 . b=$?
360 CHS R/S	$\measuredangle b=0.0000$
R/S *	$\Delta d=86.6926$
R/S *	L. $\mathrm{d}=-27.6923$
R/S *	$4: d=339.2909$
R/S *	$\triangle b=330.0000$
etc.	etc.
:	:
R/S *	$\measuredangle b=30.0000$
R/S *	$\measuredangle d=90.0799$
R/S *	L. $d=-52.2294$
R/S *	$h: d=240.4647$
R/S *	$a=$?

PROGRESSION OF A SLIDER-CRANK

This program calculates the slider displacement, the rod orientation, the slide velocity, the rod velocity, the slider acceleration and the rod acceleration for a slider-crank mechanism rotating at a constant angular velocity.

Equations:

$$
\begin{gathered}
\mathrm{x}=\mathrm{R} \cos L+\mathrm{L} \cos \phi \\
\phi=\sin ^{-1}\left(\frac{\mathrm{E}+\mathrm{R} \sin L}{\mathrm{~L}}\right) \\
\mathrm{v}=\frac{\mathrm{dx}}{\mathrm{dt}}=\mathrm{R} \omega\left(\frac{-\sin (L+\phi)}{\cos \phi}\right) \\
\mathrm{a}=\frac{\mathrm{d}^{2} \mathrm{x}}{\mathrm{dt}^{2}}=\mathrm{R} \omega^{2}\left(\frac{-\cos (L+\phi)}{\cos \phi}-\frac{\mathrm{R} \cos ^{2} \measuredangle}{\mathrm{~L} \cos ^{3} \phi}\right) \\
\dot{\phi}=\frac{\mathrm{d} \phi}{\mathrm{dt}}=\omega \frac{\mathrm{R} \cos L}{\mathrm{~L} \cos \phi} \\
\ddot{\phi}=\frac{\mathrm{d}^{2} \phi}{\mathrm{dt}^{2}}=\omega^{2}\left[\left(\frac{\mathrm{~d} \phi}{\mathrm{~d} \measuredangle}\right)^{2} \tan \phi-\frac{\mathrm{R} \sin L}{\mathrm{~L} \cos \phi}\right.
\end{gathered}
$$

where:
E is the slider offset.
L is the connecting rod length.
R is the crank radius.
ω is the crank angular velocity.
Δ is the crank angle.
x is the slider displacement.
v is the slider velocity.
a is the slider acceleration.
ϕ is the connecting rod angular displacement.
$\dot{\phi}$ is the angular velocity of connecting rod.
$\ddot{\phi}$ is the angular acceleration of connecting rod.

References:

H.A. Rothbart, Mechanical Design and Systems Handbook, McGraw-Hill, 1964.
V. M. Faires, Kinematics, McGraw-Hill, 1959.

Remarks:

Angular inputs must be consistent with the angular mode of the machine. Angular outputs are also consistent with the angular mode of the machine. If the calculator is in degree mode ϕ is output in degrees per unit time.

				SIZE: 013
STEP	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
1	Initialize program.		XEQ CRANK	CRANK=?
2	Key in crank radius.	R	R/S	ROD $=$?
3	Key in connecting rod length.	L	R/S	ECCEN=?
4	Key in eccentricity.	E	8/5	$\mathrm{INI} L=$?
5	Key in initial crank angle.	INIL	R/S	$\triangle I N C=$?
6	Key in angular increment.	$\triangle I N C$	R/S	$\mathrm{N}=$?
7	Key in number of increments.	N	R/S	$\triangle \mathrm{VEL}=$?
8	Key in angular velocity of crank and initiate cal-			
	culation.	$\triangle \mathrm{VEL}$	R/S	
			R/S/ ${ }_{\text {R/S }}$ *	$\begin{gathered} \mathrm{X}= \\ \mathrm{PHI}= \end{gathered}$
			R/S *	$\mathrm{V}=$
			R/S *	PHI. $=$
			R/S ${ }^{\text {R }}$ *	a=
			R R/S ${ }^{\text {R/S }}$ *	PHI:=
				etc.
				CRANK= ?
9	For a new case, go back to step 2. Key in only values which change.			
	*Press \quad R/S if you are not using a printer.			

Example:

For a slider crank mechanism with an eccentricity of 1.5 inches, a 2.0 inch crank radius, a 7.0 inch rod and an angular velocity of 4800 RPM, compute the motion for crank angles 0.0 degrees through 330 degrees in 30 degree increments.

Keystrokes (SIZE $\geqslant 013$)
RIX
XEQ ALP
XEQ ALP
2 R/S
7 R/S
1.5 R/S
0 R/S
30 R/S
12 R/S

Convert RPM to degrees per second.
4800 ENTER4 $360 \times 60 \rightarrow R / S$

R/S
$R /$
$R /$
R / S
$R /$
R
R
R

etc.

R/S *
R/S *

Display

$$
\begin{aligned}
& \text { CRANK=? } \\
& \text { ROD }=? \\
& \text { ECCEN=? } \\
& \text { INI } \measuredangle=? \\
& \measuredangle \text { INC=? } \\
& N=? \\
& \measuredangle V E L=?
\end{aligned}
$$

$$
\measuredangle 0.00
$$

$$
X=8.84
$$

$$
P H I=12.37
$$

$$
V=-220.55
$$

$$
\text { PHI. }=8,424.26
$$

$$
a=-660,249.41
$$

PHI:=271,732.24

$$
\Delta=30.00
$$

:
etc.

$$
\Delta=330.00
$$

$$
X=8.71
$$

$$
P H I=4.10
$$

$$
V=440.31
$$

$$
P H I .=7,144.40
$$

$$
a=-564,834.37
$$

PHI:=2,137,157.26
CRANK=?

GEAR FORCES

This program computes three mutually perpendicular forces, resulting from input torque, on spur, helical, bevel or worm gears.

Helical gear equations:

$$
\mathrm{F}_{\mathrm{t}}=\frac{\mathrm{T}}{\mathrm{R}}
$$

$$
\mathrm{F}_{\mathrm{gs}}=\mathrm{F}_{\mathrm{t}} \tan \phi
$$

$$
\mathrm{F}_{\mathrm{gax}}=\mathrm{F}_{\mathrm{t}} \tan \Delta
$$

$$
\tan \phi=\frac{\tan \phi_{\mathrm{n}}}{\cos \measuredangle}
$$

Figure 1 - Helical Gear
where:
T is the input torque.
R is the pitch radius of the input gear.
F_{t} is the tangential force.
Δ is the helix angle measured from the axis of the gear (for spur gears $\Delta=0$).
ϕ_{n} is the pressure angle measured perpendicular to the gear tooth.
F_{gs} is the radial force trying to separate the gears.
$\mathrm{F}_{\mathrm{gax}}$ is the force parallel to the gear axis.

Bevel gear equations:

$$
\mathrm{F}_{\mathrm{t}}=\frac{\mathrm{T}}{\mathrm{R}}
$$

$$
\begin{aligned}
& F_{\text {bpax }}=F_{\mathrm{t}}\left(\frac{\tan \phi_{\mathrm{n}} \sin (\operatorname{cone} \measuredangle)}{\cos \measuredangle}+\tan \measuredangle \cos (\operatorname{cone} \measuredangle)\right) \\
& \mathrm{F}_{\text {bgax }}=\mathrm{F}_{\mathrm{t}}\left(\frac{\tan \phi_{\mathrm{n}} \cos (\operatorname{cone} \measuredangle)}{\cos \measuredangle}-\tan \measuredangle \sin (\operatorname{cone} \measuredangle)\right)
\end{aligned}
$$

where:
T is the input (pinion) torque.
R is the pitch radius of the pinion gear.
F_{t} is the tangential force.
Δ is the pinion spiral angle (zero for straight tooth bevel gears).
ϕ_{n} is the pressure angle measured perpendicular to the gear tooth.
Cone L is the pitch cone angle of the pinion.
$\mathrm{F}_{\text {bpax }}$ is the force along the axis of the bevel pinion.
$\mathrm{F}_{\text {bgax }}$ is the force along the axis of the bevel gear.

Worm gear equations:

$$
\left.\begin{array}{c}
\mathrm{F}_{\mathrm{t}}=\frac{\mathrm{T}}{\mathrm{R}} \\
\mathrm{~F}_{\mathrm{gax}}=\mathrm{F}_{\mathrm{t}} \frac{1-\frac{\mathrm{f} \tan \measuredangle}{\cos \phi_{\mathrm{n}}}}{\tan \measuredangle+\frac{\mathrm{F}}{\cos \phi_{\mathrm{n}}}} \\
\mathrm{~F}_{\mathrm{ws}}=\mathrm{F}_{\mathrm{t}}\left(\frac{\sin \phi_{\mathrm{n}}}{\cos \phi_{\mathrm{n}} \sin \measuredangle+\mathrm{f} \cos \measuredangle}\right.
\end{array}\right)
$$

Driver: Worm (Right hand)

Figure 3
Worm Gear
where:
T is the input (worm) torque.
R is the pitch radius of the worm.
F_{t} is the tangential force on the worm.
Δ is the lead angle of the worm $\left(\alpha=\tan ^{-1}(\mathrm{~L} / 2 \pi r)\right.$, where L is the lead of the worm).
ϕ_{n} is the pressure angle measured perpendicular to the worm teeth.
f is the coefficient of friction.
$F_{w s}$ is the separating force between the worm and gear.
$\mathrm{F}_{\mathrm{gax}}$ is the force parallel to the gear axis.

Remarks:

For bevel gears, the pinion spiral angle is positive if the concave face of the pinion teeth are facing the direction of rotation (see figure 2). The pinion spiral angle is negative if the convex surface of the pinion teeth face the direction of rotation.

Example 1:

A helical gear with pitch radius 12 cm sustains a torque of 450,000 dyne-cm. The helix angle is 30° and the normal pressure angle, measured perpendicular to a tooth is 17.5°. Find the tangential, separating, and thrust forces.

Keystrokes (SIZE $\geqslant 009$)
XEQ ALPHA
FIX 2
XEQ ALPHA

DEG
ALPHA

A
450000 R/S
$12 \mathrm{R} / \mathrm{S}$
R/S *
30 R/S
17.5 R/S

R/S *
R/S

Display

"SELECT KEY:"

HEL WRM BEL

$$
T R Q=?
$$

PCH $R=$?
FT=37,500.00
HLX $\&=$?
$N P R L=$?
FGS $=13,652.84$
$F G A X=21,650.64$
$T R Q=$?

Example 2:

A spiral bevel pinion with mean radius 1.73 inches is subjected to a torque of 745 in-lb. The pinion is cut with a normal pressure angle of 20°, a spiral angle of 35°, with a pitch cone of 18°. Find the forces acting on the pinion. Rotation is in the direction of the concave side of the pinion teeth, so α is positive 35°.

Keystrokes (SIZE $\geqslant 009$)
XEQ ALPHA DEG ALPHA

E
745 R/S
$1.73 \mathrm{R} / \mathrm{S}$
R/S *
35 R/S
20 R/S
18 R/S
R/S *
R/S *

Display
"SELECT KEY:" HEL WRM BEV
$T R Q=$?
PCH R=?
$F T=430.64$
SPR $\angle=$?
$N P R L=$?
CON $1=$?
FbPAX=345.90
FbGAX=88.80
$T R Q=$?

STANDARD EXTERNAL INVOLUTE SPUR GEARS

This program calculates various parameters for standard external involute spur gears. Given the diametral pitch, number of teeth, pressure angle, and pin diameter, program will calculate the pitch diameter, tooth thickness, the involute and corresponding flank angle.

The program also calculates various measurements over pins, namely, the theoretical values of the measurement over pins, the radius to the center of the pin, and the measurement over one pin. In addition, given the value of the tooth thinning, the program will return the measurement over pins with tooth thinning.

Equations:

$$
\begin{gathered}
D=\frac{N}{P} \\
T=\frac{\pi}{2 P} \\
\operatorname{inv} L_{w}(\text { radians })=\frac{T}{D}+\tan L-L+\frac{d_{w}}{D \cos L}-\frac{\pi}{N} \\
M=\left\{\begin{array}{l}
d_{w}+2 Q \\
d_{w}+2 Q \cos \left(\frac{90}{N}\right) \quad \text { (N odd) } \\
Q=\frac{D \cos L}{2 \cos L_{w}} \\
R_{w}=Q+\frac{d_{w}}{2} \\
M_{t}=M-T H I N \frac{\cos L}{\sin L_{w}}
\end{array}\right.
\end{gathered}
$$

where:

D is the pitch diameter.
P is the diametral pitch.
N is the number of teeth.
Δ is the pressure angle.
T is the tooth thickness.
Δ_{w} is the flank angle.
M is the measurement over pins.
R_{w} is the measurement over one pin.
Q is the radius to the pin center.
THIN is the amount of tooth thinning.
M_{t} is the measurement over pins with tooth thinning.
d_{w} is the pin diameter.
$\operatorname{inv} \Delta_{w}$ is the involute of the flank angle.

Remarks:

Angular inputs and outputs match the mode of the calculator.

Reference:

Adapted from a program submitted to the HP-65 Users' Library by Mr. John Nemcovich, Los Angeles, CA.
Dudley, D.W., Gear Handbook, McGraw-Hill, 1962.

				SIZE: 012
STEP	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
1	Initialize program.		XED SPUR	$\mathrm{N}=$?
2	Key in number of gear teeth.	N	R/S	$\mathrm{P}=$?
3	Key in diametral pitch and calculate pitch diameter and tooth thickness.	P	$\begin{aligned} & \frac{R / S}{} \\ & \begin{array}{l} \text { R/S } \\ \hline R / S]^{*} \end{array} \end{aligned}$	$\begin{aligned} \mathrm{D} & = \\ \mathrm{T} & = \\ \mathrm{dW} & =? \end{aligned}$
4	Key in pin diameter.	d_{w}	R/S	$\Delta=$?
5	Key in pressure angle and calculate involute of flank angle, flank angle, measurement over pins, radius over one pin, and radius to the center of pin.	Δ		INV $\Delta W=$ $\Delta W=$ $M=$ RW= $Q=$ THIN =?
6	Key in tooth thinning and calculate measurement over pins with thinning.	THIN	$\begin{aligned} & \mathrm{R} / \mathrm{S} \\ & \mathrm{R} / \mathrm{S} \end{aligned}$	$\begin{gathered} \mathrm{MT}= \\ \text { THIN}=? \end{gathered}$
7	For a new tooth thinning go back to step 6. For a new case go to step 1. *Press B / \mathbf{s} if you are not using a printer.			

Example:

A 27-tooth gear with pitch 8 is cut with a 20° pressure angle. The pin diameter is 0.24 inches, and tooth thinning is reckoned at 0.002 inches. Calculate the unknown parameters.

Keystrokes (SIZE \geqslant 012)	Display
FIX 4	
XEQ ALPHA DEG ALPHA	
XEO ALPHA SPUR ALPHA	$N=$?
27 R/S	$\mathrm{P}=$?
8 R/S	$D=3.3750$
R/S *	$\boldsymbol{T}=0.1963$
R/S *	$d W=$?
. $24 \mathrm{R} / \mathrm{S}$	$\Delta=$?
$20 \mathrm{R} / \mathrm{S}$	INV $\backslash W=1.8565$
R/S *	$\Delta W=25.6215$
R/S *	$M=3.7514$
R/S *	$R W=1.8787$
R/S *	$Q=1.7587$
R/S *	THIN = ?
. 002 R/S	$\boldsymbol{M T}=\mathbf{3 . 7 4 7 0}$

HELICAL SPRING DESIGN

This program performs one or two point design for helical compression springs, of round wire, with ends square and ground. The design procedure is as follows:

1. The program prompts for design inputs.
2. After you supply these inputs the calculator checks for adequate clearance between coils. If clearance is not adequate the calculator outputs:

NO CLEARANCE
3. The calculator then checks for high stresses and outputs:

HIGH STRESS
if stresses are too high.
4. If only one of the tests above fails the calculator recommends a possible solution to the problem:

SMALLER WIRE

or,

LARGER WIRE

and prompts for a new wire diameter.
If both of the tests above fail no recommendation is given since major changes in the design parameters are required. The calculator restarts the prompt sequence from the beginning.
5. If both of the tests above succeed, the design is at worst uneconomical and the calculator outputs the specifications of the spring. If stresses are extremely low the calculator will recommend smaller wire for a more economical design and prompt for a new wire diameter.

If stresses are moderate the calculator will say:

GOOD

and go back to the beginning of the input sequence. Even with a 'GOOD'' design, smaller wire, different material, or a different spring diameter may yield a more economical solution.

Equations:

$$
\begin{gathered}
k=\frac{P_{2}-P_{1}}{L_{1}-L_{2}} \\
s_{1}=\frac{8 P_{1} D W}{\pi d^{3}} \\
s_{2}=\frac{8 P_{2} D W}{\pi d^{3}} \\
N=\frac{G_{d}}{8 \mathrm{D}^{3} k} \\
L_{s}=(\mathrm{N}+2) \mathrm{d} \\
L_{f}=\frac{P_{1}}{k}+L_{1} \\
\mathrm{~s}_{\mathrm{s}}=\frac{\left.8 \mathrm{D} \mathrm{k} \mathrm{(L}_{f}-\mathrm{L}_{\mathrm{s}}\right) \mathrm{W}}{\pi \mathrm{~d}^{3}} \\
\mathrm{~s}_{\text {max }}=\frac{4(\mathrm{D} / \mathrm{d})-1}{4(\mathrm{D} / \mathrm{d})-4}+\frac{0.615}{(\mathrm{D} / \mathrm{d})} \\
\mathrm{YS}=\left\{\begin{array}{l}
.45 \mathrm{TS} \text { for ferrous materials. } \\
.35 \mathrm{TS} \text { for non-ferrous materials. } \\
.65 \mathrm{TS} \text { for ferrous materials. } \\
.55 \mathrm{TS} \text { for non-ferrous materials. } \\
\mathrm{TS}=\mathrm{b} \text { ln } \mathrm{d}+\mathrm{a}
\end{array}\right.
\end{gathered}
$$

Design checking logic:

If $\left(L_{2}-L_{s}\right)<0.1\left(L_{f}-L_{2}\right)$ and $s_{s}>s_{\text {max }}$, the spring lacks sufficient clearance between coils and stresses are too high.

If $\left(L_{2}-L_{s}\right)<0.1\left(L_{f}-L_{2}\right)$ and $s_{s} \leqslant s_{\text {max }}$, clearance between coils is insufficient.

If $\left(L_{2}-L_{s}\right) \geqslant 0.1\left(L_{f}-L_{2}\right)$ and $s_{s}>Y S$, stress is too high.
If $\left(L_{2}-L_{s}\right) \geqslant 0.1\left(L_{f}-L_{2}\right)$ and $s_{s} \leqslant Y S$, design is satisfactory. If $s_{s} \leqslant 0.3 \mathrm{TS}$, stresses are quite conservative. If $\mathrm{s}_{\mathrm{s}}>0.3 \mathrm{TS}$, design is acceptable.
where:
G is the torsional modulus of rigidity.
a and b are tensile strength regression coefficients from table 1 (metric) or table 2 (English).
P_{1} is the spring load at the most extended operating point (see figure 1).
L_{1} is spring length, at the most extended operating point.
P_{2} is spring load at the most compressed operating point.
L_{2} is the spring length, at the most compressed operating point.
K is the spring constant.
d is the wire diameter.
D is the mean spring diameter.
OD is the outside spring diameter.
ID is the inside spring diameter.
s_{1} is the Wahl-corrected shear stress at operating point 1.
s_{2} is the Wahl-corrected shear stress at operating point 2.
N is the number of active coils.
s_{s} is the Wahl-corrected shear stress when the spring is fully compressed to solid (coils touching).
L_{f} is the free length of the spring.
L_{s} is the fully compressed or solid spring length.
W is the Wahl factor which corrects stresses for curvature.
$S_{\text {max }}$ is the maximum allowable working stress for the material.
YS is the yield strength of the material.
TS is the tensile strength of the material.

Table 1

MINIMUM TENSILE STRENGTH REGRESSION COEFFICIENTS (Metric Units)

MATERIAL	MODULUS OF RIGIDITY $\mathrm{G}, \mathrm{N} /(\mathrm{mm})^{2}$	WIRE DIAMETER RANGEMILLIMETERS	TENSILE STRENGTH COEF.	
			$\mathrm{a}, \mathrm{N} /(\mathrm{mm})^{2}$	$\mathrm{b}, \mathrm{N} /(\mathrm{mm})^{2}$
Music Wire ASTM-A228	7.93×10^{4}	0.41-6.35	2205	-346.1
Alloy Steel ASTM-A232	7.93×10^{4}	0.64-7.62	1921	-249.7
Stainless Steel ASTM-A313	6.90×10^{4}	$0.41-1.91$	1851	-209.6
		1.91-5.08	1950	-393.6
		5.08-9.40	2221	-560.4
Oil Tempered ASTM-A229	7.93×10^{4}	0.51-6.86	1827	-304.7
Hard Drawn ASTM-A227	7.93×10^{4}	$\begin{aligned} & 0.51-3.56 \\ & 3.56-12.7 \end{aligned}$	$\begin{aligned} & 1773 \\ & 1757 \end{aligned}$	$\begin{aligned} & -283.4 \\ & -270.8 \end{aligned}$
Tempered Valve Spring ASTM-A230	7.93×10^{4}	2.36-5.08	1586	-153.1
Phosphor Bronze ASTM-B159	4.07×10^{4}	0.64-9.40	957	- 63.97

Table 2
 MINIMUM TENSILE STRENGTH REGRESSION COEFFICIENTS (English Units)

MATERIAL	MODULUS OF RIGIDITY G,psi	WIRE DIAMETER RANGEINCHES	TENSILE STRENGTH COEF.	
			a,psi	b,psi
Music Wire ASTM-A228	11.5×10^{6}	0.016-0.25	157400	- 50200
Alloy Steel ASTM-A232	11.5×10^{6}	0.025-0.30	161400	-36220
Stainless Steel ASTM-A313	10.0×10^{6}	0.016-0.075	170200	-30400
		0.075-0.20	98110	-57090
		0.20-0.37	59190	-81280
Oil Tempered ASTM-A229	11.5×10^{6}	0.020-0.27	122100	-44190
Hard Drawn				
ASTM-A227	11.5×10^{6}	0.020-0.14	124200	-41110
		0.14-0.50	127800	-39280
Tempered Valve Spring				
ASTM-A230	11.5×10^{6}	0.093-0.20	158300	-22200
Phosphor Bronze ASTM-B159	5.9×10^{6}	0.025-0.37	108800	-9278

Reference:

Design Handbook-Springs, Custom Metal Parts, Associated Spring Corporation, Bristol, Connecticut, 1970.

Remarks:

The assumptions implicit to this program are based on engineering practice and experience. Generally, designs found by this program will be conservative, however, caution must be exercised when high or low temperatures, corrosive media or other adverse environmental circumstances exist.

For one point design, specify the free length $\left(\mathrm{L}_{1}\right)$ and a corresponding zero load $\left(\mathrm{P}_{1}\right)$, then specify the length $\left(\mathrm{L}_{2}\right)$ and corresponding load $\left(\mathrm{P}_{2}\right)$.

Some designs achieved by this program may required coiling the spring wire in such a small radius that the spring material would fail in the manufacturing process. No program check is made for this condition.

			Helical Spring Design	
				SIZE: 019
STEP	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
$\begin{aligned} & 1 \\ & 2 \end{aligned}$	Initialize program. Key in " Y " for ferrous materials or " N ' for nonferrous materials (stainless steel should be considered non-ferrous).	Y or N	(XE0 SPRING	FERROUS?Y/N
3	Refer to tables 1 and 2 for the next three inputs. Use table 1 for forces in newtons and lengths in millimeters or table 2 for forces in pounds and lengths in inches.			
4	Key in modulus of rigidity.	G	R/S	$\mathrm{a}=$?
5	Key in first tensile coefficient.	a	R/S	$\mathrm{b}=$?
6	Key in second tensile coefficient.	b	R/S	P1 = ?
7	Key in load at point 1.	P1	R/S	L1 $=$?
8	Key in spring length 1.	L1	R/S	$\mathrm{P} 2=$?
9	Key in load at point 2.	P2	R/s	$\mathrm{L} 2=$?
10	Key in spring length 2.	L2	R/S	OD=?
11a	Key in spring outside diameter.	OD	[B / s	$d=?(1 \mathrm{D}=\text { ? })^{\star *}$
11b	Key in spring inside diameter.	ID	R/S	$\mathrm{d}=$?
12	Key in diameter of spring wire and start checking procedure.	d	R/S	DIAGNOSTIC
13	If the diagnostic is not "GOOD" or "OK" change inputs. See the program description for more details.			
14	For "GOOD" or "OK, BUT STRESS LOW'" cases see			
	outputs.		[R / S *	GOOD
			R/s *	$\mathrm{N}=$
			R/S *	LF=
			R/S *	LS=
			R/S *	ID=
			R/S *	OD $=$ S1
			R/S *	S1 =
			R/S *	$\mathrm{S} 2=$ $\mathrm{SS}=$
			(8/5 *	$\mathrm{SS}=$ FERROUS? Y/N
				FERROUS? Y/N or, IF "OK", $\mathrm{d}=$?

STEP	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
15	For a new case go to step 1. If you wish to see the current value of the variable being prompted for, press v.			
*PressR/S if you are not using a printer. **If you do not key in 0D in step 11a, you will be prompted for ID in step 11b.				

Example 1:

Using Oil Tempered Wire (ASTM-A229), design a spring which supports a load of 270 newtons at a length of 62 millimeters and a load of 470 newtons at 50 millimeters. Wire is available in 0.5 mm increments. Try 4.0 mm wire first. Space available limits the spring diameter to 38.00 mm .

Variables:

$$
\begin{aligned}
& \mathrm{P}_{1}=270 \mathrm{~N} \\
& \mathrm{~L}_{1}=62 \mathrm{~mm} \\
& \mathrm{P}_{2}=470 \mathrm{~N} \\
& \mathrm{~L}_{2}=50 \mathrm{~mm} \\
& \mathrm{~d}=4.0 \mathrm{~mm} \\
& \mathrm{OD}=38 \mathrm{~mm} \\
& \mathrm{G}=7.93 \times 10^{4} \mathrm{~N} / \mathrm{mm}^{2} \\
& \mathrm{a}=1827 \mathrm{~N} / \mathrm{mm}^{2} \quad \\
& \mathrm{~b}=-304.7
\end{aligned}
$$

Keystrokes $(S I Z E \geqslant 019)$

ENG 3	
XEQ ALPHA SPRING ALPHA	FERROUS? Y/N
Y R/S	G=?
7.93EEX 4 R/S	$\mathrm{a}=$?
1827 R/S	$b=$?
304.7 CHS R/S	P1=?
270 R/S	L1=?
$62 \mathrm{R} / \mathrm{S}$	P2=?
470 R/S	L2 $=$?
$50 \mathrm{R} / \mathrm{S}$	$O D=$?
38 R/S	$d=$?
4R/S	HIGH STRESS
R/S *	LARGER WIRE
R/S *	d=?

Check to see what the current wire diameter is.

\square	4.000
Try 4.50 mm .	
4.5 R/S	GOOD
R/S *	$K=16.16 E 0$
R/S *	$N=6.487 E 0$
R/S *	$L F=78.20 E 0$
R/S *	$L S=38.19 E 0$
R/S *	$I D=29.00 E 0$
R/S *	$O D=38.00 E 0$
R/S *	S1 $=303.1$ E
R/S *	S2=527.5E0
R/S *	SS $=748.4 \mathrm{E} 0$

Example 2:

Using music wire (ASTM-A228), design a spring for the loading below:

$$
\begin{array}{ll}
P_{1}=1 \mathrm{lb} & \mathrm{~L}_{1}=1.5 \mathrm{in} \\
\mathrm{P}_{2}=10 \mathrm{lb} & \mathrm{~L}_{2}=1.0 \mathrm{in} \\
\mathrm{G}=11.5 \times 10^{6} \mathrm{psi} & \\
\mathrm{a}=157.4 \times 10^{3} \mathrm{psi} & \text { From table } 2 . \\
\mathrm{b}=-50.20 \times 10^{3} \mathrm{psi} & \\
\mathrm{~d}=0.035 \text { or } 0.040 & \\
\mathrm{OD}=0.225 \mathrm{in} &
\end{array}
$$

Keystrokes (SIZE $\geqslant 019$)
ENG 3
XEQ ALPHA SPRING ALPHA
Y R/S
11.5 EEX 6R/S
157.4 EEX 3 R/S
50.2 CHS EEX 3 R/S

1 R/S
$1.5 \mathrm{R} / \mathrm{S}$
$10 R / S$
1 R/S
. 225 R/S
. 035 R/S

Display

FERROUS? Y/N

$G=$?
$a=$?
b=?
P1=?
L1=?
P2=?
L2 $=$?
$O D=$?
d=?
HIGH STRESS

$R / S *$	LARGER WIRE
$R / S *$	$d=?$
.04 R/S	NO CLEARANCE
$R / S *$	SMALLER WIRE
$R / \mathbf{S} *$	$d=?$

Since neither available wire will work, a change in design constraints is required. After considering the alternatives, it is decided that P_{2} can be reduced to 9.0 pounds.

XEQ ALPHA	SPRING ALPHA	FERROUS Y/N
R/S		G=?
R/S		$\mathrm{a}=$?
R/S		$b=$?
R/S		P1 = ?
R/S		L1 $=$?
R/S		P2 = ?
9 R/S		L2=?
R/S		$O D=$?
R/S		$I D=$?
R/S		$\mathrm{d}=$?
R/S		NO CLEARANCE
R/S *		SMALLER WIRE
R/S *		$\mathrm{d}=$?
0.035 R/S		GOOD
R/S *		$K=16.00 E 0$
R/S *		N=19.66E0
R/S *		$L F=1.563 E 0$
R/S *		$L S=758.0 \mathrm{E}-3$
R/S *		ID $=155.0 \mathrm{E}-3$
R/S *		$O D=225.0 \mathrm{E}-3$
R/S *		S1 $=14.47 E 3$
R/S *		$S 2=130.3 \mathrm{E} 3$
R/S *		$S S=186.3 E 3$

FORCED OSCILLATOR WITH ARBITRARY FUNCTION

This program determines the displacement x , velocity $\dot{\mathrm{x}}$, and acceleration $\ddot{\mathrm{x}}$ of a damped oscillating mass m that is being driven by some forcing function. A numerical solution is computed for the nonhomogeneous differential equation

$$
m \ddot{x}+c \dot{x}+k x=f(t)
$$

where:
c is the damping constant.
k is the spring constant.
$f(t)$ is the driving force as a function of time.
The damped natural frequency for the system is also calculated if it exists.

$$
\omega=\sqrt{\frac{\mathrm{k}}{\mathrm{~m}}-\left(\frac{\mathrm{c}}{2 \mathrm{~m}}\right)^{2}}
$$

The driving function must be programmed into the HP-41C using an alpha label as the first step. The name of this alpha label is required as a program input. When called, the function will receive time in the X register, and may access displacement from register 10 and/or velocity from register 11 . Registers 16 and up are available to the function for scratch purposes.

Remarks:

This program uses an improved Euler method to reach a numerical solution. Thus, the smaller the time increment between calculations the more accurate the solution will be. To improve accuracy either decrease the time interval between outputs or increase the number of calculations in the time interval.

52	Forced Oscillator with Arbitrary Function			
				SIZE: 016
STEP	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
1	Write and key in driving function. (See Examples.)			
2	Initialize program.		XEO MOTION	$\mathrm{M}=$?
3	Input mass of system.	m	R/s	$\mathrm{C}=$?
4	Input damping coefficient of system.	C	R/S	$\mathrm{K}=$?
5	Input system spring constant and calculate damped natural frequency if one exists).	k	$\begin{aligned} & R / \mathbf{S} \\ & R / S \text { * } \end{aligned}$	$\begin{aligned} & \text { OMEGA= } \\ & \text { T INC=? } \end{aligned}$
6	Key in time increment between outputs.	T INC	R/S	END $\mathrm{T}=$?
7	Key in time at which calculation is to end.	END T	R/S	$\mathrm{CAL} / \mathrm{T}=$?
8	Key in number of calculations between outputs positive integer).	CAL/T	R/S	$\mathrm{XO}=$?
9	Key in initial displacement of mass.	X_{0}	R/S	$X .0=$?
10	Key in initial velocity of mass.	\dot{x}_{0}	R/S	FNC NAME?
11	Key in name of driving function and initiate calculation: Displacement, Velocity, Acceleration	NAME		$\begin{gathered} \mathrm{T}= \\ \mathrm{X}= \\ \mathrm{X}= \\ \mathrm{X}:= \\ \mathrm{T}= \\ \vdots \\ \text { etc. } \end{gathered}$
12	For a new case go back to step 1 . Key in only values which change. *Press R/s if you are not using a printer.			

Example 1:

A mass is being driven by a forcing function of the form

$$
f(t)=t^{3}+7 t^{2}-14 t+40
$$

Constants for the system are $\mathrm{m}=5, \mathrm{c}=2$, and $\mathrm{k}=12$. The mass is held at an initial displacement of 20 at time zero. Determine the position, velocity, and acceleration of the mass at 0.05 second intervals for the first $1 / 4 \mathrm{sec}$. of the object's motion. Use 1 calculation per time increment.

Solution:

t sec	0.05	0.10	0.15	0.20	0.25
x	19.95	19.80	19.56	19.22	18.80
\dot{x}	-1.98	-3.92	-5.81	-7.62	-9.36
\ddot{x}	-39.22	-38.22	-37.00	-35.58	-33.97

Keystrokes (SIZE $\geqslant 016$)

Display

First key function into program memory.

PRGM GTO - \bullet	
LBL ALPHA FT ALPHA	
ENTER4 ENTER4 ENTER ${ }^{\text {a }}$	
FIX 2	
XEQ ALPHA MOTION ALPHA	$M=$?
$5 \mathrm{R} / \mathrm{S}$	$\mathrm{C}=$?
$2 \mathrm{R} / \mathrm{S}$	$K=$?
12R/S	OMEGA=1.54
R/S *	T INC=?
0.05 R/S	END $T=$?
. 25 R/S	CAL/T = ?
1 R/S	$X \mathrm{O}=$?
20R/S	$\mathrm{X} .0=$?
$0 \mathrm{R} / \mathrm{S}$	FNC NAME?
FTR/S	$\boldsymbol{T}=0.00$
R/S *	$X=20.00$
R/S *	$\boldsymbol{X} .=0.00$
R/S *	$X:-40.00$

R/S *	$T=0.05$
R/S *	$X=19.95$
R/S *	$X .=-1.98$
R/S *	$X:=-39.22$
\vdots	
etc.	etc.
R/S *	$T=0.25$
R/S	$X=18.80$
R/S *	$X .=-9.36$
R/S *	X:=-33.97

Example 2:

A mass of 20 g stretches a spring 10 cm . The mass is displaced 4 cm , held, and then released. Find the displacement and velocity at 0.1 second intervals up to 1 second. Use 10 calculations per interval. Let the damping constant equal 50 dyne-s/cm.

$$
\mathrm{K}=\frac{\mathrm{F}}{\mathrm{x}}=\frac{\mathrm{mg}}{\mathrm{x}}=\frac{20 \times 980}{10}=1960
$$

Keystrokes (SIZE $\geqslant 016$)

Display

FIX 2

The external force is always zero for this case, but a function must still be supplied.

GTO $\bullet \bullet$
PAGM LBL ALPHA ZERO ALPHA

CLX PRGM

XEO ALPHA MOTION ALPHA	$M=?$
20 R/S	$C=?$
50 R/S	$K=?$
1960 R/S	OMEGA $=9.82$
R/S *	TINC=?
$.1 R / S$	END $T=?$
1 R/S	$C A L / T=?$

10 R/S	$\mathrm{XO}=$?
$4 \mathrm{R} / \mathrm{S}$	$\mathrm{X} .0=$?
0 R/S	FNC NAME?
ZERO R/S	$\boldsymbol{T}=0.00$
R/S *	$X=4.00$
R/S *	$X .=0.00$
R/S *	$X:=-392.00$
R/S *	$T=0.10$
R/S *	$X=2.33$
R/S *	X. $=-29.31$
R/S *	$X:=-154.93$
:	
etc.	etc.

The exact solution to this problem is:

$\boldsymbol{t} \mathbf{s}$	$\mathbf{x ~ c m}$	$\dot{\mathbf{x}} \mathbf{~ c m} / \mathbf{s}$	$\ddot{\mathbf{x}} \mathbf{~ c m} / \mathbf{s}^{2}$
0	4.000	0.000	-392.000
.1	2.334	-29.296	-155.494
.2	-0.827	-28.715	152.880
.3	-2.629	-5.330	270.947
.4	-1.932	17.139	146.511
.5	0.153	20.950	-67.408
.6	1.655	7.187	-180.174
.7	1.503	-9.272	-124.104
.8	0.184	-14.685	18.677
.9	-0.990	-7.173	114.959
1.0	-1.114	4.406	98.133

This solution may be more closely approximated by increasing the number of calculations per time interval.
*Press \quad R/S if you are not using a printer.

COORDINATE TRANSFORMATION

This program provides transformation from a reference coordinate system to a translated rotated system. The new "prime" system is defined by the coordinates of its origin in the original system and a rotation angle relative to the original system. The inverse transformation, from the prime system to the original system, is also provided.

Equations:

$$
\begin{aligned}
& x^{\prime}=\left(x-x_{0}\right) \cos L+\left(y-y_{0}\right) \sin L \\
& y^{\prime}=\left(x-x_{0}\right) \sin L+\left(y-y_{0}\right) \cos b
\end{aligned}
$$

where:
x_{o} is the x coordinate of the origin of the new system.
y_{o} is the y coordinate of the origin of the new system.
Δ is the rotation angle of the new system relative to the original system.
(x, y) are the Cartesian coordinates of a point in the original system.
$\left(x^{\prime}, y^{\prime}\right)$ are the Cartesian coordinates of a point in the translated-rotated prime system.

Remarks:

Any angular mode will work.
For pure translation, input zero for L.
For pure rotation, input zeros for x_{0} and y_{0}.

				SIZE: 006
STEP	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
1	Initialize program.		(xE0 COORD	$\mathrm{XO}=$?
2	Key in x coordinate of translated origin.	x_{0}	R/s	$Y \mathrm{O}=$?
3	Key in y coordinate of translated origin.	yo	R/S	$\Delta=$?
4	Key in rotation angle of translated axis.	Δ	R/S	$\mathrm{X}=$?
5	Optional: Toggle between original and prime transformation by pressing R / \mathbf{S}		R/S	$\mathrm{XP}=$? or $\mathrm{X}=$?
6	Key in x coordinate.	x	R/S	$Y P=$? or $Y=$?
7	Key in y coordinate.	y	$\begin{aligned} & \frac{R / S}{} \\ & \begin{array}{l} R / S \\ R / S \end{array} \\ & \hline R / S \end{aligned}$	$\begin{gathered} X P=\text { or } X= \\ Y P=\text { or } Y= \\ X P=\text { or } X=? \end{gathered}$
8	For next point go to step 5 or step 6. *Press R/S if you are not using a printer.			

Example:

The coordinate systems (x, y) and ($\mathrm{x}^{\prime}, \mathrm{y}^{\prime}$) are shown below:

Convert the points $\mathrm{P}_{1}, \mathrm{P}_{2}$ and P_{3} to equivalent coordinates in the ($\mathrm{x}^{\prime}, \mathrm{y}^{\prime}$) system. Convert the point P_{4}^{\prime} to equivalent coordinates in the (x, y) system.

Keystrokes (SIZE $\geqslant 008$)
XEQ ALPHA DEG ALPHA

FIX 2

XEO ALPHA COORD ALPHA
7 R/S
4 CHS R/S
27 R/S
9 CHS R/S
7 R/S
R/S *
R/S
5 CHS R/S
4CHS R/S
R/S *
R/S *
6 R/S
8 R/S
R/S *
R/S *
Get prompt for prime system
R/S
2.7 R/S
3.6 CHS R/S

R/S *

Display

$$
x 0=?
$$

$$
Y O=?
$$

$$
\Delta=?
$$

$$
X=?
$$

$$
Y=?
$$

$$
X P=-9.26
$$

$$
Y P=17.06
$$

$$
X=?
$$

$$
Y=?
$$

$$
X P=-10.69
$$

$$
Y P=5.45
$$

$$
X=?
$$

$$
\boldsymbol{Y}=?
$$

$$
X P=4.56
$$

$$
Y P=11.15
$$

$$
X=?
$$

$$
X P=?
$$

$Y P=$?
$X=11.04$
$\boldsymbol{Y}=-5.98$

POINTS ON A CIRCLE

This program calculates coordinates on a circle. Points are at regular angular increments from a given starting point on the circle.

Equations:

$$
\begin{aligned}
& x_{i}=x_{0}+R \cos \left(L_{0}+i \Delta L\right) \\
& y_{i}=y_{0}+R \sin \left(L_{0}+i \Delta L\right)
\end{aligned}
$$

where:
$\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right)$ is the $\mathrm{i}^{\text {th }}$ point.
L_{0} is the initial angle.
ΔL is the angular increment.
($\mathrm{x}_{0}, \mathrm{y}_{\mathrm{o}}$) is the circle center.
R is the circle radius.

				SIZE: 008
STEP	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
1	Initialize program.		XEO POINTS	$\mathrm{XO}=$?
2	Key in x coordinate of circle center.	X_{0}	R/S	$\mathrm{YO}=$?
3	Key in y coordinate of circle center.	y_{0}	R/S	$\mathrm{R}=$?
4	Key in radius of circle.	R	R/S	$\angle 0=$?
5	Key in starting angle.	Δ_{0}	R/S	DEL $\measuredangle=$?
6	Key in angular increment and start calculation.	ΔL	$\begin{aligned} & \frac{R / S}{} \\ & \begin{array}{l} \mathrm{B} / \mathrm{S} \end{array} \\ & \mathrm{~B} / \mathrm{S} \end{aligned}$	$\begin{aligned} & L= \\ & X= \\ & Y= \end{aligned}$
			$\begin{aligned} & \frac{R / S}{\mathrm{R} / \mathrm{S}} \\ & \frac{\mathrm{R} / \mathrm{S}}{*} \\ & \hline \mathrm{R} / \mathrm{S} \\ & \vdots \\ & \mathrm{etc} . \\ & \mathrm{R} / \mathrm{S} \end{aligned}$	$\begin{gathered} L= \\ X= \\ Y= \\ \vdots \\ \text { etc. } \\ X 0=? \end{gathered}$
7	For a new case go to step 2. Key in only values which change. *Press R/S if you are not using a printer.			

Example 1:

Two sections of pipe are to be joined by a flange with 16 evenly spaced bolts 9.75 inches from the center of the pipe. Calculate the coordinates of the bolt holes to be drilled. Let $x_{0}=y_{0}=L_{0}=0$.

Keystrokes (SIZE $\geqslant 008$)

FIX 2		
XEQ ALPHA	POINTS ALPHA	$X 0=$?
$0 \mathrm{R} / \mathrm{S}$		$Y 0=$?
$0 \mathrm{R} / \mathrm{S}$		$R=$?
9.75 R/S		$\triangle 0=$?
$0 \mathrm{R} / \mathrm{S}$		DEL $6=$?
360 ENTER4	$16 \square R / S$	$\therefore=0.60$
R/S		$X=9.75$
A/s		$Y=0.00$
etc.		$4=22.50$
		$X=9.01$
		$Y=3.73$
		$s=45.00$
		$X=6.89$
		$Y=6.89$
		$4=67.50$
		$\mathrm{Y}=3.73$
		$Y=9.01$

*Press R / \mathbf{S} for each output if you are not using a printer.
$\langle=90.00$
$X=0.00$
$Y=9.75$
$\Delta=112.50$
$X=-3.73$
$Y=9.01$
$\leq=135.00$
$X=-6.89$
$Y=6.89$
$\langle=157.56$
$\mathrm{X}=-9.01$
$Y=3.73$
$\langle=180.00$
$X=-9.75$
$Y=0.00$
$\Delta=202.50$
$X=-9.01$
$Y=-3.73$
$\Delta=225.00$
$X=-6.89$
$\mathrm{Y}=-6.89$
$\Delta=247.50$
$X=-3.73$
$Y=-9.01$
$\angle=270.00$
$\mathrm{X}=0.80$
$Y=-9.75$
$4=292.50$
$X=3.73$
$Y=-9.01$
$=315.00$
$X=6.89$
$Y=-6.89$
$\leq=337.50$
$X=9.01$
$Y=-3.73$

CIRCLE BY THREE POINTS

This program calculates the center $\left(\mathrm{x}_{\mathrm{c}}, \mathrm{y}_{\mathrm{c}}\right)$ and the radius (R) of a circle given three non-collinear points.

				SIZE: 017
STEP	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
1	Initialize program.		XED 3POINTS	$\mathrm{X} 1=$?
2	Key in point one.	x_{1}	E/S	$\mathrm{Y} 1=$?
		y_{1}	R/S	$\mathrm{X} 2=$?
3	Key in point two.	x_{2}	[/Es	$\mathrm{Y} 2=$?
		y_{2}	[R/s	X $3=$?
4	Key in point three.	x_{3}	[R / s	$Y 3=$?
		y_{3}	R/S	$\mathrm{Xc}=$
			R/S/ *	$\mathrm{Yc}=$
			$\begin{aligned} & \mathrm{R/S} \text { * } \\ & \text { R/S } \end{aligned}$	$\begin{gathered} \mathrm{R}= \\ \mathrm{X} 1=? \end{gathered}$
5	For a new case go back to step 2. Key in only the values which change.			
	*Press R/s if you are not using a printer.			

Example:

What circle contains the points $(1,1),(3.5,-7.6)$, and $(12,0.8) ?$

Keystrokes (SIZE $\geqslant 017$)

FIX 2	
XEQ ALPHA 3POINTS ALPHA	$\mathrm{X1}=$?
1 R/S	$Y 1=$?
1 R/S	$\mathrm{X} 2=$?
3.5 R/S	$Y 2=$?
7.6 CHS R/S	$X 3=$?
$12 \mathrm{R} / \mathrm{S}$	$Y 3=$?
.8/S	$X c=6.45$
R/S *	$Y c=-2.08$
R/S *	R=6.26

UNIT CONVERSIONS

This program provides unit conversions applicable to mechanical engineering. The program is controlled by unit abbreviations and combinations of unit abbreviations placed in the ALPHA register.
The table below lists individual unit abbreviations recognized by this program.

HP-41C Abbreviation	Name	Multiplicative Conversion Constant	Homogeneous SI Unit
ANG	angstrom	1.0×10^{-10}	m
ATM	atmosphere	1.01325×10^{5}	Pa
BTU	British Thermal Unit (IST)	1.055056×10^{3}	J
C	degree Celsius	$\begin{aligned} & 1.0 \times 10^{0} \\ & (+273.15) \end{aligned}$	K
CAL	calorie (IST)	4.1868×10^{0}	J
CM	centimeter	1×10^{-2}	m
DYNE	dyne	1.0×10^{-5}	N
ERG	erg	1.0×10^{-7}	J
F	degree Fahrenheit	$(F+459.67) \times$	K
		$5.555555555 \times 10^{-1}$	
FT	foot	3.048×10^{-1}	m
G	gram	1.0×10^{-3}	kg
GAL	gallon (U.S.)	$3.785411784 \times 10^{-3}$	m^{3}
HP	horsepower ($550 \mathrm{ft} \cdot \mathrm{lbf} / \mathrm{s}$)	7.4569987×10^{2}	W
HR	hour (mean solar)	3.6×10^{3}	s
IN	inch	2.54×10^{-2}	m
J	joule	1×10^{0}	J
K	Kelvin	1.0×10^{0}	K
KG	kilogram	1.0×10^{0}	kg
KM	kilometer	1×10^{3}	m
KPA	kilopascal	1×10^{3}	Pa
KW	kilowatt	1×10^{3}	W
L	liter	1.0×10^{-3}	m^{3}
LBF	pound force	$4.448221615 \times 10^{\circ}$	N
LBM	pound mass	4.5359237×10^{-1}	kg
M	meter	1.0×10^{0}	m
MI	mile	1.609344×10^{3}	m
MIC	micron	1.0×10^{-6}	m
MIL	1/1000 inch	2.54×10^{-5}	m
MIN	minute	6.0×10^{1}	s
ML	1/1000 liter	1×10^{-6}	m^{3}
MM	1/1000 meter	1×10^{-3}	m
N	newton	1.0×10^{0}	N
PA	pascal	1.0×10^{0}	Pa

PDL	poundal pound force per square foot	$4.382549544 \times 10^{-1}$	N
PSF	pound force per square inch	6.8947572×10^{3}	Pa
PSI	degree Rankine	$5.555555555 \times 10^{-1}$	K
R	second	$1.0 \times 10^{\circ}$	s
S	slug	1.45939029×10^{1}	kg
SLUG	ton (2000 lb)	9.0718474×10^{2}	kg
TON	watt	$1.0 \times 10^{\circ}$	W
W	yard	9.144×10^{-1}	m
YD	null string	$1.0 \times 10^{\circ}$	

Notes On Usage:

The individual abbreviations may be combined into unit strings and equations using the unit control characters $*, /,-$, and 1-9. This allows a virtually unlimited set of unit conversions. For instance, the unit string for an acceleration of feet per second squared could be keyed in as:

FT/S*S

or
FT/S2
Legal options for volumetric flow rate include, but are far from limited to:
$\mathrm{FT} 3 / \mathrm{S}$
$\mathrm{M} * \mathrm{CM}^{*} \mathrm{IN} / \mathrm{S}$
$\mathrm{FT} 3 * \mathrm{HR} / \mathrm{S} 2$
etc.
Only one divide is allowed in a unit string. Thus, all units to the right of the divide sign are included in the denominator.

Two unit strings may be combined in a unit equation using the dash character which stands for 'convert to'". Thus,
FT3-M3
is read 'feet cubed converted to meters cubed". Only one dash is allowed in a unit equation.
If a unit string is not followed by a dash and a second unit string, the conversion defaults to equivalent SI (Standard International) units. For instance, the abbreviated unit equation
and the explicit unit equation

MI/HR-M/S

would both cause conversion from miles per hour to meters per second. This allows shorthand conversions between SI and other units.
Several types of errors are possible in unit conversion syntax. These are:

1. The units keyed in are misspelled, used lower case letters, or were not included in the previous list (e.g., 'FEET"' for 'FT'’).
2. Unit control characters (*, /, -, 1-9) were incorrectly used (e.g., FT/S/S).
3. The units specified on the left side of the unit equation were incompatible with those on the right (e.g., an attempt was made to convert from feet to seconds).
Any of these errors will result in the message "DATA ERROR."

				SIZE: Any
STEP	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
1	Key in unit string.	"String'	$\begin{array}{\|l\|l\|} \hline \text { ALPHA } \\ \hline \text { ALPHA } \end{array}$	
2	Key in numeric value to be converted.	Value		
3 a	For forward conversion		XEQ FCON	Con Value
3 b	For backward conversion		XEO BCON	Con Value
4	For a new case go to steps 1 or 2. The original value is in LASTX. Stack registers T, Z and Y are not modified.			
	Note: You will probably find it convenient to assign FCON and $B C O N$ to keys.			

Example 1:

Convert $212^{\circ} \mathrm{F}$ to kelvins. Convert 0.0 kelvins to degrees Fahrenheit.

Keystrokes
FIX 4
ALPHA F-K ALPHA
212 XEQ ALPHA FCON ALPHA
0 XEQ ALPHA BCON ALPHA

Display

373.1500
-459.6700

Example 2:

Convert 23 pounds per square inch to atmospheres.

Keystrokes

FIX 4
ALPHA PSI-ATM ALPHA
23 XEQ ALPHA FCON ALPHA

Display

1.5651

Example 3:

Convert 88 feet per second to kilometers per hour. Convert 100 kilometers per hour back to feet per second.

Keystrokes

FIX 4
ALPHA FT/S-KM/HR ALPHA
88 XEQ ALPHA FCON ALPHA
100 XEQ ALPHA BCON ALPHA
96.5606

Display

91.1344

Example 4:

Convert 10 feet to meters using the default SI conversion.

Keystrokes

Display

FIX 4
ALPHA FT ALPHA
10 XED ALPHA FCON ALPHA
3.0480

Example 5:

Convert $20(\mathrm{Btu})(\mathrm{in}) /\left({ }^{\circ} \mathrm{F}\right)\left(\mathrm{ft}^{3}\right)(\mathrm{s})$ to $\mathrm{W} /\left(\mathrm{in}^{2}\right)\left({ }^{\circ} \mathrm{C}\right)$.
Keystrokes
Display
FIX 4
ALPHA BTU*IN/F*FT3*S-W/IN2*C ALPHA

20 XEQ ALPHA FCON ALPHA
21.9803
Flags
00 Flat Follower
01 Parabolic,
$2^{\text {nd }}$ half
21 Stop on AVIEW
Data Registers
$00=$ Data Pointer
$01=h$
$02=$ GRNDR
움
Display
妾

Program
Circular Cams

APPENDIX A
PROGRAM DATA

ミ $\underset{*}{\underset{*}{\circ}}$
$\underset{\text { c }}{\text { c }}$

21 Stop on AVIEW

๗

Generation of a
Four Bar Linkage

交
21 Stop on AVIEW

$\underset{+}{\circ}$
๗
Progression of a
Four Bar System
Progression of a
Slider Crank

$$
\begin{aligned}
& \text { 릋 } \underset{*}{\stackrel{\vdash}{?}}
\end{aligned}
$$

$$
\begin{aligned}
& \underset{<}{\lambda}
\end{aligned}
$$

00 First Pass
21 Stop on AVIEW
00 Even Teeth

พ
©

Standard External
Involute Spur Gears

交

00 Non-Ferrous
21 Stop on AVIEW

요齐$\underset{\frac{\lambda}{4}}{\grave{c}}$
21 Stop on AVIEW
23 Alpha Input
25 Omega Output
55 Printer?
$00=$ Data Pointer
$01=\mathrm{M}$
$02=\mathrm{C}$
$03=\mathrm{K}$
$04=\mathrm{T}$ INC
$05=$ CAL/T
$06=$ X0
$07=$ X. 0
$08=$ Function Name
$09=$ Time
$10=x$
$11=\mathrm{dx} / \mathrm{dt}^{2}$
$12=\mathrm{d}^{2} \mathrm{x} / \mathrm{dt}^{2}$
$13=$ USED
$14=$ END T
$15=$ USED $00=$ Data Pointer
$01=X 0$
$02=Y 0$
$03=\measuredangle$
$04=X P, X-X$
$05=Y P, Y-Y$
$06=\cos \measuredangle$
$07=\sin \measuredangle$

Any

21 Stop on AVIEW

\oplus
$\stackrel{\sim}{\sim}$

Points on a Circle
Circle by Three
Points

1000 N.E. Circle Blvd., Corvallis, OR 97330

For additional sales and service information contact your local Hewlett-Packard Sales Office or call (800) 547-3400. (In Oregon, Alaska, or Hawaii, call (503) 758-1010.)

