HEWLETT-PACKARD

HP.41C

NAVIGATION PAC

NOTICE

The program material contained herein is supplied without representation or warranty of any kind. HewlettPackard Company therefore assumes no responsibility and shall have no liability, consequential or otherwise, of any kind arising from the use of this program material or any part thereof.

HEWLETT-PACKARD LISTENS

To provide better calculator support for you, the Application Engineering group needs your help. Your timely inputs enable us to provide higher quality software and improve the existing application pacs for your calculator. Your reply will be extremely helpful in this effort.

1. Pac name \qquad
2. How important was the availability of this pac in making your decision to buy a HewlettPackard calculator?
\square Would not buy without it.
\square Important
Not important
3. What is the major application area for which you purchased the pac?
4. In the list below, please rate the usefulness of the programs in this pac.

	$\begin{aligned} & \stackrel{\rightharpoonup}{\mathbb{x}} \\ & \underset{\sim}{\underset{\sim}{w}} \\ & \underset{\sim}{2} \end{aligned}$					$\stackrel{\rightharpoonup}{4}$ $\underset{\sim}{\sim}$ $\underset{\sim}{u}$			
1					9				
2					10				
3					11				
4					12				
5					13				
6					14				
7					15				
8					16				
5. Did you purchase a printer? \square YES \square NO If you did, is the printing format in this pac useful?							ES	NO	

6. What programs would you add to this pac?
7. What additional application pacs would you like to see developed?
\qquad
THANK YOU FOR YOUR TIME AND COOPERATION.

Name	Position
Company	
Address	State
City	Phone

NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by
Hewlett-Packard 1000 N.E. Circle Blvd.
Corvallis, Oregon 97330

INTRODUCTION

The programs in the Navigation Pac were selected to solve the problems that are common to all marine navigators.
Each program in this pac is represented by one program in the Application Module and a section in this manual. The manual provides a description of the program, a set of instructions for using the program, and one or more example problems each of which includes a list of the keystrokes required for its solution.
Before plugging in your Application Module, turn your calculator off, and be sure you understand the section "Inserting and Removing Application Modules." Before using a particular program, take a few minutes to read "Format of User Instructions" and "A Word About Program Usage."
You should first familiarize yourself with a program by running it once or twice while following the complete User Instructions in the manual. Thereafter, the program's prompting should provide the necessary instructions, including which variables are to be input, which keys are to be pressed and which values will be output.
We hope that Navigation Pac I will assist in your course planning and celestial navigation. We would appreciate knowing your reactions to the programs in this pac, and to this end we have provided a questionnaire inside the front cover of this manual. Would you please take a few minutes to give us your comments on these programs? It is from your comments that we learn how to increase the usefulness of our programs.

CONTENTS

Introduction 1
Contents 2
Inserting and Removing Applications Modules 4
Format of User Instructions 6
A Word About Program Usage 8
Notation Used in This Pac 10
Symbols Used in This Pac 10
Course Planning Programs
These programs simplify the job of combining the best features of rhumb-line and great-circle sailing. You can obtain a printed list showing your vessel's predicted position after each day's run along with the rhumb-line course between the positions.
Great-Circle Course and Distance 12
Great-Circle Position 13
Rhumb-Line Course and Distance 14
Rhumb-Line Position 16
Great-Circle Plotting and Voyage Planning 17
Dead Reckoning 24
Celestial Navigation Programs
Reducing celestial sights is simplified to keying in date, time, sextantheight, and the name of the object sighted. Permissible objects include57 navigational stars, Polaris, the Sun, the Moon, Venus, Mars,Jupiter, and Saturn. Provision is made for substituting nauticalalmanac values for the computer almanac. After reducing a sight, youcan use one of the Course-Planning programs to update your deadreckoning position.
Sight Reduction 26
Perpetual Almanac-Stars, Sun, Planets, Moon 28
Almanac Interpolater 30
Subroutines Used in this Pac
An important feature of these programs is their use of companion programs which are callable as subroutines. Thus a navigator who wishes to write a program of his own can still use many of the valuable routines of Navigation Pac.
Sight Reduction Table 35
Calendar Functions 37
Greenwich Sidereal Time 38
Star Almanac 39
Fundamental Arguments 41
Astronomical Coordinate Conversion 42
Longitude to Latitude 45
Input/Output Routines 46
Appendices
A Almanac Objects
B Data Structure

INSERTING AND REMOVING APPLICATION MODULES

Before you insert an Application Module for the first time, familiarize yourself with the following information.
Up to four Application Modules can be plugged into the ports on the HP-41C. While plugged in, the names of all programs contained in the Module can be displayed by pressing CATALOG 2 .

CAUTION

Always turn the HP-41C off before inserting or removing any plug-in extension or accessories. Failure to turn the HP-41C off could damage both the calculator and the accessory.

To insert Application Modules:

1. Turn the HP-41C off! Failure to turn the calculator off could damage both the Module and the calculator.
2. Remove the port covers. Remember to save the port covers; they should be inserted into the empty ports when no extensions are inserted.
3. Insert the Application Module with the label facing downward as shown, into any port after the last Memory Module. For example, if you have a Memory Module inserted in port 1, you can insert an Application Module in any of ports 2,3 , or 4 . (The port numbers are shown on the back of the calculator.) Never insert an Application Module into a lower numbered port than a Memory Module.
4. If you have additional Application Modules to insert, plug them into any port afte the last Memory Module. Be sure to place port covers over unused ports.
5. Turn the calculator on and follow the instructions given in this book for the desired application functions.

To remove Application Modules:

1. Turn the HP-41C off! Failure to do so could damage both the calculator and the Module.
2. Grasp the desired Module handle and pull it out as shown.

3. Place a port cap into the empty ports.

Mixing Memory Modules and Application Modules

Any optional accessories (such as the HP 82104A Printer) should be treated in the same manner as Application Modules. That is, they can be plugged into any port after the last Memory Module. Also, the HP-41C should be turned off prior to insertion or removal of these extensions.

The HP-41C allows you to leave gaps in the port sequence when mixing Memory and Application Modules. For example, you can plug a Memory Module into port 1 and an Application Module into port 4, leaving ports 2 and 3 empty.

FORMAT OF USER INSTRUCTIONS

The User Instruction Form-which accompanies each program-is your guide to operating the programs in this Pac.
The form is composed of five labeled columns. Reading from left to right, the first column, labeled STEP, gives the instruction step number.
The INSTRUCTIONS column gives instructions and comments concerning the operations to be performed.
The INPUT column specifies the input data, the units of data if applicable, or the appropriate alpha response to a prompted question. Data input keys consist of 0 to 9 and the decimal point (the numeric keys), EEXX (enter exponent), and CHS (change sign).
The FUNCTION column specifies the keys to be pressed after keying in the corresponding input data.
The DISPLAY column specifies prompts, intermediate and final answers, and their units, where applicable.
Above the DISPLAY column is a box which specifies the minimum number of data storage registers necessary to execute the program. Refer to the Owner's Handbook for information on how the SIZE function affects storage configuration.

The following illustrates the User Instruction Form.

				SIZE: 054
STEP	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
STE	Initialize program.		XEQ SIGHT	DRL $=0: 00: 00$?
2	Key in DR latitude.	DRL, d.ms	R/S	DRLO $=0: 00: 00$?
3	Key in DR longitude.	DRLo, d.ms	R/S	DATE = 0.000000 ?
4	Key in date.	mm.ddyyyy	R/S	TIME $=0: 00: 00$?
5	Key in Greenwich Mean Time.	GMT, h.ms	R/S	$\mathrm{HE}=0.0$?
6	Key in height of eye in ft . or	HE, ft.	R/S	
	-HE in m .	HE, m	CHS R/S	$\mathrm{HS}=$?
7	Key in sextant height.	HS, d.ms	R/S	WHICH BODY?
9	Select which body. a) Key in name. or b) Take HP-41C out of alpha and key in star number.	NAME* star \#	(R/S	
9	HP-41C will display intercept and azimuth.		R / S	$\begin{array}{ll} & \mathrm{A} \\ \text { Name } \mathrm{a}=0.0 & \begin{array}{l} \text { or } \\ \\ \mathrm{TN}=0.0 \end{array} \\ \mathrm{~T} \end{array}$
	- Note (NAME) is any member of the list of objects shown in the appendix.			

A WORD ABOUT PROGRAM USAGE

Catalog

When an Application Module is plugged into a port of the HP-41C, the contents of the Module can be reviewed by pressing CATALOG 2 (the Extension Catalog). Executing the CATALOG function lists the name of each program or function in the Module, as well as functions of any other extensions which might be plugged in.

ALPHA and USER Mode Notation

This manual uses a special notation to signify ALPHA mode. Whenever a statement on the User Instruction Form is printed in gold, the ALPHA key must be pressed before the statement can be keyed in. After the statement is input, press ALPHA again to return the calculator to its normal operating mode, or to begin program execution. For example, XEO SIGHT means press the following keys: XEO ALPHA SIGHT ALPHA.

When the calculator is in USER mode, this manual will use the symbols $A-J$ and A - E to refer to the reassigned keys in the top two rows. These key designations will appear on the User Instruction Form and in the keystroke solutions to sample problems.

Optional HP 82143A Printer

When the optional printer is plugged into the HP-41C along with the Navigation Application Module, all results will be printed automatically. You may also want to keep a permanent record of the values input to a certain program. A convenient way to do this is to set the Print Mode switch to NORMAL before running the program. In this mode, all input values and the corresponding keystrokes will be listed on the printer, thus providing a record of the entire operation of the program.

Downloading Module Programs

If you wish to trace execution, to modify, or to record on magnetic cards a program in this Application Module, it must first be copied into the HP-41C's program memory. For information concerning the HP-41C's COPY function, see the Owner's Handbook. It is not necessary to copy a program in order to run it.

Program Interruption

These programs have been designed to operate properly when run from beginning to end, without turning the calculator off (remember, the calculator might turn itself off). If the HP-41C is turned off, it may be necessary to set flag 21 (SF 21) to continue proper execution.

Size

Size 054 is sufficient for programs in this pac. A smaller size is accepted where indicated.

Use of Labels

You should generally avoid writing programs into the calculator memory that use program labels identical to those in your Application Module. In case of a label conflict, the label within program memory has priority over the label within the Application Module.

Assigning Program Names

Key assignments to keys $A-\square$ and A - 国take priority over the automatic assignments of local labels in the Application Module. Be sure to clear previously assigned functions before executing a Module program.

NOTATION USED IN THIS PAC

This pac is written to recognize angles expressed as degrees, minutes, and tenths of minutes as well as angles expressed as degrees, minutes, and seconds. Flag 0 is used to distinguish the two. Those who prefer the former notation should be sure that flag 0 is set (SF 00). Although time is also an angular measurement, it is always expressed as hours, minutes, and seconds.

When the User Instructions indicate the units of an angle which is to be input, d.ms will be used. Usually the display will prompt with old values and the form of the number to be input will be immediately recognized. Negative values must be used for southerly latitudes and declinations and for easterly longitudes and hour angles. On output, the signs are removed and the letters $\mathrm{N}, \mathrm{S}, \mathrm{E}$, and W are used instead.

When a program prompts for data, it recalls the value used previously and affixes a question mark. If there is no change in the data, simply press R/S to skip to the next prompt. Prompts shown in the examples usually have the value zero. Values in actual applications will be nonzero and will depend on the order in which the programs are run. Sometimes much of the data the examples require will be in place already and no further action beyond pressing R / S will be required to solve the problem.

SYMBOLS USED IN THIS PAC

SYMBOL	MEANING
β	celestial latitude
δ	declination
$\delta \lambda$	precession of equinox
$\delta \odot$	Sun's declination
ϵ	obliquity of the ecliptic
λ	longitude
Π	longitude of perihelion
ρ	radius vector
Ω	longitude of Moon's ascending node
a	altitude intercept
C	declination
dec	day of month, distance
D	difference in longitude

DRL	dead-reckoning latitude
DRLo	dead-reckoning longitude
d.ms	degrees, minutes and seconds
d.mt	degrees, minutes and tenth-minutes
e	eccentricity of the spheroid
F	latitude argument
G	mean anomaly
GC	great circle
GHA	Greenwich hour angle
GHA	Greenwich hour angle of the Vernal Equinox
GMT	Greenwich mean time
GST	Greenwich sidereal time
HA	hour angle
Hc	computed height
HE	height of eye
Hi	initial heading
Ho	corrected sextant height
HP	horizontal parallax
hs	uncorrected sextant height
h.ms	hours, minutes and seconds
JD	Julian date
L	latitude, celestial longitude
Lx	mean longitude of object x
LHA	local hour angle
Lo	longitude
M	month
mm.ddyyyy	month, day and year
S	speed
SD	semidiameter
SHA	sidereal hour angle
T	centuries from 1900.0
t	Julian days from 2000.0, meridian angle
Y	year

GREAT-CIRCLE COURSE AND DISTANCE

This program calculates the great-circle distance and initial heading between any two points. A subroutine entry point is provided.

				SIZE: 011
STEP	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
1	Initialize program.		XEQ GC	$\mathrm{L1}=0: 00: 00 \mathrm{~N}$?
2	Key in source latitude.	L1,d.ms	R/S	L01 $=0: 00: 00 \mathrm{~W}$?
3	Key in source longitude.	L01,d.ms	R/S	L2 $=0: 00: 00 \mathrm{~N}$?
4	Key in destination latitude.	L2, d.ms	R/S	LO2=0:00:00W?
5	Key in destination longitude and compute distance and initial heading.	$\begin{aligned} & \text { Lo2,d.ms } \\ & \text { Lo2,d.ms } \end{aligned}$	$\begin{aligned} & \mathrm{R} / \mathrm{S} \\ & \mathrm{R} / \mathrm{S} \end{aligned}$	$\begin{aligned} & \mathrm{D}=0.0 \mathrm{NMI} \\ & \mathrm{HI}=0.0 \end{aligned}$
	*Press R/S if you are not using a printer.			

To use this program as a subroutine, store L1, Lo1, L2, and Lo2 in decimal form in registers 7 through 10 respectively. Then execute the function *GC. The outputs D and Hi will be in the X- and Y-registers, respectively.

Example:

Determine the great-circle distance and initial heading from $\left(33^{\circ} 31^{\prime} 07^{\prime \prime} \mathrm{N}, 118^{\circ} 38^{\prime} 32^{\prime \prime} \mathrm{W}\right)$ to ($21^{\circ} 16^{\prime} \mathrm{N}, 157^{\circ} 44^{\prime} 42^{\prime \prime} \mathrm{W}$).

Keystroke
XEQ ALPHA GC ALPHA
33.3107 R/S
$118.3832 \mathrm{R} / \mathrm{S}$
21.16 R/S
$157.4442 \mathrm{R} / \mathrm{S}$
R/S

Display

$$
\begin{aligned}
& L 1=0: 00: 00 \mathrm{~N} ? \\
& L O 1=0: 00: 00 \mathrm{~W} ? \\
& L 2=0: 00: 00 \mathrm{~N} ? \\
& L O 2=0: 00: 00 \mathrm{~W} ? \\
& D=2.193 .8 \mathrm{NMI} \\
& H I=260.6
\end{aligned}
$$

GREAT-CIRCLE POSITION

This program calculates a point on a great circle at a specified distance and initial heading. A subroutine entry point is provided.

				SIZE: 011
STEP	INSTRUCTIONS	InPUT	FUNCTION	dISPLAY
1	Initialize program.		XEQ GCPOS	$\mathrm{L} 1=0: 00: 00 \mathrm{~N}$?
2	Key in source latitude.	L1,d.ms	R/S	L01 $=0: 00: 00 \mathrm{~W}$?
3	Key in source longitude.	Lo1,d.ms	R/S	$\mathrm{D}=$?
4	Key in distance.	D, n.mi.	R/S	$\mathrm{HI}=$?
5	Key in initial heading and compute new position.	Hi, d.ms	$\begin{aligned} & \mathrm{R} / \mathrm{S} \\ & \mathrm{R} / \mathrm{S} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{L} 2= \\ & \mathrm{LO2}= \end{aligned}$
	*Press R/S if you are not using a printer.			

To use this program as a subroutine, store L1 and Lo1 in decimal form in registers 7 and 8 and store distance and course in registers 1 and 6. Then execute the function *GCPOS. The values L2 and Lo2 will be stored in decimal form in registers 9 and 10 , respectively.

Example:

We depart from ($33^{\circ} 31^{\prime} 07^{\prime \prime} \mathrm{N}, 118^{\circ} 38^{\prime} 32^{\prime \prime} \mathrm{W}$) at 0845 in the direction 260.6 . If we could follow a great circle, where would we be at noon assuming a speed of 16 knots?
Keystroke
XEQ ALPHA GCPOS ALPHA
$33.3107 \mathrm{R} / \mathrm{S}$
$118.3832 \mathrm{R} / \mathrm{S}$
3.15 XEQ ALPHA HR ALPHA
16 漛 R / S
$260.6 \mathrm{R} / \mathrm{S}$
R / S
Display
$\angle 1=0: 00: 00 \mathrm{~N}$?
$\angle O 1=0: 00: 00 \mathrm{~W}$?
$D=?$
3.2500
$H I=?$
$L 2=33: 22: 22 \mathrm{~N}$
$L O 2=119: 39: 57 \mathrm{~W}$

Comments

Displayed values assume cleared registers. Actual displays will show previous values of the variable.

RHUMB-LINE COURSE AND DISTANCE

This program calculates the rhumb-line distance and course between any two points. A subroutine entry point is provided.
For those who wish to be more precise, this program will compute rhumb lines on aspherical surfaces. The following table shows eccentricity values for some spheroids.

Spheriods in Common Use

Spheroid	Eccentricity
Sphere	0.0
Clarke Spheroid of 1866	0.08227185422
Clarke Spheroid of 1880	0.08248340005
International Spheroid	0.08199188998

				SIZE: 052
STEP	INSTRUCTIONS	INPUT	FUNCTION	display
1	Initialize program. Key in eccentricity. Key in source latitude. Key in source longitude. Key in destination latitude. Key in destination longitude and compute distance and course. *Press R/S if you are not using a printer.	L1,d.ms Lo1,d.ms L2, d.ms Lo2,d.ms	$\begin{gathered} \mathrm{XEQ} \mathrm{RL} \\ \mathrm{R} / \mathrm{S} \\ \mathrm{R} / \mathrm{S} \\ \mathrm{R} / \mathrm{S} \\ \mathrm{R} / \mathrm{S} \\ \hline \mathrm{R} / \mathrm{S} \\ \hline \mathrm{R} / \mathrm{S} \end{gathered}$	$\begin{aligned} & \mathrm{e}=0.00000 \mathrm{E} 0 ? \\ & \mathrm{LI}=0: 00: 00 \mathrm{~N} \\ & \mathrm{LO}=0: 00: 00 \mathrm{~W} ? \\ & \mathrm{LL}=0: 00: 00 \mathrm{~N} ? \\ & \mathrm{LO}=0: 00: 00 \mathrm{~W} ? \\ & \mathrm{D}=0.0 \mathrm{NMI} \\ & \mathrm{C}=0.0 \end{aligned}$

To use this program as a subroutine, store L1, Lo1, L2, and Lo2 in decimal form in registers 7 through 10 respectively. Be sure the desired eccentricity is stored in R11, then execute the function $* R L$.
The outputs D and C will be in the X - and Y-registers, respectively.

Example:

Determine the rhumb-line distance and course on a sphere from ($33^{\circ} 31^{\prime} 07^{\prime \prime} \mathrm{N}, 118^{\circ} 38^{\prime} 32^{\prime \prime} \mathrm{W}$) to ($21^{\circ} 16^{\prime} \mathrm{N}, 157^{\circ} 44^{\prime} 42^{\prime \prime} \mathrm{W}$).
Keystroke

XEQ ALPHA RL ALPHA
R / S
$33.3107 \mathrm{R} / \mathrm{S}$
$118.3832 \mathrm{R} / \mathrm{S}$
$21.16 \mathrm{R} / \mathrm{S}$
$157.4442 \mathrm{R} / \mathrm{S}$
R / S

Display
$e=0.00000 E 0$?
L1 $=0: 00: 00 \mathrm{~N}$?
LO1 =0:00:00W?
L2=0:00:00N?
LO2=0:00:00W?
$D=2,203.2$ NMI
$C=250.5$

RHUMB-LINE POSITION

This program calculates a point on a rhumb line at a specified distance and initial course. An appropriate value for the Earth's eccentricity should be selected from the table accompanying the Rhumb-Line Course and Distance program.

To use this program as a subroutine, store L1 and Lo1 in decimal form in registers 7 and 8 and store distance and course in registers 1 and 6 . Then execute the function *RLPOS. The values L2 and Lo2 will be stored in decimal form in registers 9 and 10 .

Example:

We depart from ($33^{\circ} 31^{\prime} 07^{\prime \prime} \mathrm{N}, 118^{\circ} 38^{\prime} 32^{\prime \prime} \mathrm{W}$) at 0845 in the direction 250.5 . Where will we be at noon if we are able to make good a speed of 16 knots? Assume that the Earth is a sphere.

Keystroke
XEQ ALPHA RLPOS ALPHA
R / S
$33.3107 \mathrm{R} / \mathrm{S}$
$118.3832 \mathrm{R} / \mathrm{S}$
$3.15 \mathrm{XEQ} \mathrm{ALPHA} H R$ ALPHA
16 R/S
$250.5 \mathrm{R} / \mathrm{S}$
R / S

Display	Comments
$e=0.000000^{\text {a }}$	Display
L1=0:00:00N?	values assume
LO1=0:00:00W?	eared regis-
D=?	ters. Actual
3.25	displays will
C=	how previous
L2=33:13:45N	es of t
LO2=119:37:13W	variable.

GREAT-CIRCLE PLOTTING
 AND VOYAGE PLANNING

These programs allow you to plot a great-circle track in two ways. You can specify a longitude increment to obtain a list of points on the great circle spaced by that interval, or you can specify a distance to obtain equally-spaced points. The former technique is useful for plotting on a chart, and the latter is useful for predicting daily positions. Both programs provide the rhumb-line course and distance between successive great-circle points. A subroutine entry point is provided.

				SIZE: 054
STEP	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
To Plot a Great-Circle Track (constant longitude increment)				
1	Initialize program. Key in source latitude. Key in source longitude. Key in destination latitude. Key in destination longitude. Key in the longitude increment and the calculator will produce a list of great-circle points with rhumb line course and distance between them. *Press R/S if you are not using a printer.	L1,d.ms Lo1,d.ms L2, d.ms Lo2, d.ms DLo, d.ms	XEQ GCPLOT R/S R/S R/S R/S R/S *	$\begin{aligned} & L 1=0: 00: 00 \mathrm{~N} ? \\ & L 01=0: 00: 00 \mathrm{~W} ? \\ & L 2=0: 00: 00 \mathrm{~N} ? \\ & L 02=0: 00: 00 \mathrm{~W} ? \\ & \mathrm{DLO}=0: 00: 00 \mathrm{~W} ? \end{aligned}$

18 Great-Circle Plotting and Voyage Planning

Example 1:

Produce a plot of the great circle from ($33^{\circ} 31^{\prime} 07^{\prime \prime} \mathrm{N}, 118^{\circ} 38^{\prime} 32^{\prime \prime} \mathrm{W}$), off Catalina, to ($21^{\circ} 16^{\prime} \mathrm{N}, 157^{\circ} 44^{\prime} 42^{\prime \prime} \mathrm{W}$), east of Diamond Head, using a longitude increment of 5 degrees.

Display

XEQ ALPHA GCPLOT ALPHA

 $33.3107 \mathrm{R} / \mathrm{S}$$118.3832 \mathrm{R} / \mathrm{S}$
21.16 R/S
$157.4442 \mathrm{R} / \mathrm{S}$
$L 1=0: 00: 00 \mathrm{~N}$?
L01 $=0: 00: 00 \mathrm{~W}$?
L2=0:00:00N?
LO2=0:00:00W?
$D L O=0: 00: 00 \mathrm{~W}$?
5 R/S

L1=33:31:87N	$\mathrm{L} 6=28: 34: 55 \mathrm{~N}$
$\underline{L} 1=118: 38: 32 \mathrm{H}$	L06=149:090:084
$\mathrm{C}=260.3$	$[=248.3$
$\mathrm{I}=68.99 \mathrm{NHI}$	$\mathrm{II}=28 \mathrm{~S}, 7 \mathrm{P} \mathrm{MmI}$
$L 2=33: 19: 264$	$17=26: 49: 25 \mathrm{H}$
L02-129:08:094	$\angle 07=145: 80 \cdot 804$
$C=258.5$	C=24. 1
$\mathrm{D}=257.83 \mathrm{MmI}$	$[\mathrm{i}=295.38 \mathrm{MmI}$
$L 3=32: 28: 174$	L8=24:49:39N
L03=125:98:084	L08=158:98: 80 n
0255.8	$\bar{C}=244.0$
$\mathrm{I}=262.57 \mathrm{MMI}$	$\mathrm{B}=335.62 \mathrm{NmI}$
L4=31:24:82N	19-22:35:36N
L04=138:90:904	L09=155:98:804
$\mathrm{C}=253.2$	$[=242.5$
$\mathrm{D}=269.25 \mathrm{NMI}$	$\mathrm{I}=172.36 \mathrm{NmI}$
$L 5=30: 86: 22 \mathrm{~N}$	L18=21:16:09\%
$L^{4} 5=135: 80.804$	L016=157:44:42\%
$C=250.7$	
$\mathrm{I}=277.82 \mathrm{kmI}$	

				SIZE: 011
STEP	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
To Plan a Voyage (equally spaced points)				
$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	Initialize program. Key in source latitude Key in source longitude Key in destination latitude Key in destination longitude Key in the distance increment and the calculator will produce a list of great-circle points with rhumb-line course and distance between them. *Press R/S if you are not using a printer.	L1,d.ms Lol,d.ms L2, d.ms Lo2, d.ms D, n.mi.	$\begin{gathered} \mathrm{XEQ} \text { GCPLAN } \\ \mathrm{R} / \mathrm{S} \end{gathered}$	$\begin{aligned} & L 1=0: 00: 00 \mathrm{~N} \\ & L 01=0: 00: 00 \mathrm{~W} \\ & L 2=0: 00: 00 \mathrm{~N} ? \\ & L 02=0: 00: 00 \mathrm{~W} \\ & D=0.0 ? \end{aligned}$

To use these programs as subroutines, store L1, Lo1, L2, and Lo2 in decimal form in registers $12,13,14$, and 15 . Store the distance in register 1 and execute *GCPLOT or store the longitude increment in register 5 and execute ${ }^{*}$ GCPLAN. The programs will proceed as if you had performed step 6 of either set of instructions.

Example 2:

Produce a list of daily positions from ($33^{\circ} 13^{\prime} 45^{\prime \prime} \mathrm{N}, 119^{\circ} 37^{\prime} 13^{\prime \prime} \mathrm{W}$) to ($21^{\circ} 16^{\prime} \mathrm{N}, 157^{\circ} 44^{\prime} 42^{\prime \prime} \mathrm{W}$), assuming a vessel speed of 16 knots.

Keystroke
XEQ ALPHA GCPLAN ALPHA
$33.1345 \mathrm{R} / \mathrm{S}$
$119.3713 \mathrm{R} / \mathrm{S}$
$21.16 \mathrm{R} / \mathrm{S}$
$157.4442 \mathrm{R} / \mathrm{S}$
16 ENTERT 24 㒺
R / S

Display

$L 1=0: 00: 00 \mathrm{~N}$? LO1 =0:00:00W?
L2=0:00:00N?
LO2 $=0: 00: 00 \mathrm{~W}$?
$D=0.0$?
384.

```
L1=37:13:45N
LII=119:37:13k
C=258.3
D=304.08 NMI
```

L2=31:55:43H
L02-127: 63 :31
$C=254,4$
$[I=384.87 \mathrm{MHI}$
$L .3=3 \mathrm{~B}: 12: 31 \mathrm{H}$
L03:134:15:27W
$[=259.9$
$\mathrm{D}=384.96 \mathrm{kMI}$
L4=28:06:35N
L04=141:10:58n
$C=247.7$
$\mathrm{II}=384.04 \mathrm{NMI}$
$L 5=25: 40: 39 \mathrm{H}$
$L 05=147: 49: 19 \mathrm{~W}$
$\mathrm{C}=244.8$
$\mathrm{D}=384.03 \mathrm{MMI}$
$16=22: 57: 26 \mathrm{~N}$
L06=154:10:50H
$C=242.9$
$\mathrm{D}=222.57 \mathrm{NMI}$
$L T=21: 16: 88 \mathrm{~N}$
$L 07=157: 44: 42 \mathrm{~W}$

Example 3:

A ship leaves Tokyo ($35^{\circ} 40^{\prime} \mathrm{N}, 139^{\circ} 45^{\prime} \mathrm{E}$) bound for Coos Bay, Oregon, $\left(43^{\circ} 22^{\prime} \mathrm{N}, 124^{\circ} 13^{\prime} \mathrm{W}\right)$. Plot her position every 336 miles.

Display

XEQ ALPHA GCPLAN ALPHA
$35.40 \mathrm{R} / \mathrm{S}$
$139.45 \mathrm{CHS} \mathrm{R} / \mathrm{S}$
$43.22 \mathrm{R} / \mathrm{S}$
$124.13 \mathrm{R} / \mathrm{S}$
$336 \mathrm{R} / \mathrm{S}$
$L 1=0: 00: 00 N$? LO1 $=0: 00: 00 \mathrm{~W}$?
L2=0:00:00N?
LO2=0:00:00W?
$D=0.0$?

$L 1=35: 40: 80 \mathrm{~N}$	$\underline{L 6}=49: 22: 28 \mathrm{~N}$	$L 11=49: 13: 98 \mathrm{~N}$
L01-139:45:89E	L06-173:23:12E	L011-143: 93 : 480
$\mathrm{C}=51.8$	$\mathrm{C}=76.7$	$c=110.1$
$\mathrm{B}=376.05 \mathrm{MmI}$	$\mathrm{I}=336.18 \mathrm{NmI}$	$\mathrm{D}=336.15 \mathrm{NmI}$
$L 2=79: 87: 35 \mathrm{~N}$	L7 7 50:39:55N	L12=47:17:27
$L 02=145: 17: 44 E$	L07=176:97:36H	L012=135:89:41N
$\mathrm{C}=55.5$	$\mathrm{C}=87.4$	$\mathrm{C}=115.7$
$\mathrm{B}=376.07 \mathrm{Mmi}$	$\mathrm{I}=336.28 \mathrm{NmI}$	$\mathrm{I}=37 \mathrm{E} .12 \mathrm{NHI}$
$L .3=42: 17: 51 \mathrm{~N}$	L8=51:18:39N	L13=44:51:39N
$L 03=151: 27: 19 E$	L08=169:17:83	101] 127:53:01世
C=59.8	$\mathrm{C}=90.3$	$C=119.6$
$\mathrm{D}=336.69 \mathrm{NmI}$	$\mathrm{n}=336.21 \mathrm{NmI}$	$\mathrm{D}=131.63 \mathrm{NMI}$
L4=45:86:47N	L9 5 51-16:42 H	L14=43:22:88N
L04-158:05:21E	L09-168:19:24H	L014=124:13: 80 W
$\mathrm{C}=64.8$	$\mathrm{C}=72.3$	
$\mathrm{D}=336.12 \mathrm{NMI}$	$\mathrm{D}=336.29 \mathrm{MmI}$	
L5=47:29:54N	L18-58.34:084	
L0.5=165:25:42E	$L 010=151: 38: 190$	
$\mathrm{C}=70.4$	$\mathrm{C}=103.9$	
$\mathrm{D}=3.36 .15 \mathrm{NHI}$	$\mathrm{I}=336.18 \mathrm{~mm}$	

DEAD RECKONING

This program calculates a point on a rhumb line at a specified distance and initial course and stores that point as your new position. Thus it can be used to determine a position from a vessel's sailing history, or to update a DR position using the data reduced from a celestial sight.

				SIZE: 012
STEP	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
1	Initialize program.		XEQ DR	L1 $=0: 00: 00 \mathrm{~N}$?
2	Key in source latitude.	L1,d.ms	R/S	L01 $=0: 00: 00 \mathrm{~W}$?
3	Key in source longitude.	L01,d.ms	R/S	$\mathrm{D}=$?
4	Key in distance.	D, n.mi.	R/S	$\mathrm{HI}=$?
5	Key in course and compute new position.	C, d.d	$\begin{array}{\|l} \hline R / S \\ \hline R / S \\ \hline \end{array}$	$\begin{aligned} & \text { DRL= } \\ & \text { DRLO }= \end{aligned}$
	*Press R/S if you are not using a printer.			

To use this program as a subroutine, store L1 and Lo1 in decimal form in registers 7 and 8 and store distance and course in registers 1 and 6 . Then execute the function *DR. The values DRL and DRLo will be stored in decimal form in registers 9 and 10 and also in registers 7 and 8 .

Example:

We depart from ($33^{\circ} 31^{\prime} 07^{\prime \prime} \mathrm{N}, 118^{\circ} 38^{\prime} 32^{\prime \prime} \mathrm{W}$) at 0845 in the direction 250.0 . What is our position at noon if we are able to make good a speed of 16 knots?

Keystroke
XEQ ALPHA DR ALPHA
33.3107 R/S
118.3832 R/S
3.15 XEO ALPHA HR ALPHA

16 圈 R/S
250.5 R/S

R/S

Display

L1 =0:00:00N?
L01=0:00:00W?
$D=0.0000$?
3.2500

C=0.0000?
DRL=33:13:45N
DRLO=119:37:13W

Comments

Displayed values assume cleared registers. Actual displays will show previous values of the variable.

SIGHT REDUCTION

This program calculates an altitude intercept for any of the objects listed in The Nautical Almanac: 58 stars, including Polaris, the Sun, Venus, Mars, Jupiter, Saturn, and the Moon. The inputs required are date, time, height of eye, sextant height (angle), and which body sighted. The suffixes U and L are used with SUN and MOON to indicate upper or lower limb.
Mean refraction and dip corrections are applied to the sextant height for all bodies. For the Sun and Moon, semidiameter corrections are made for upper- or lower-limb sights. For the Moon, horizontal parallax is computed and included in the corrections.

Example:

At 19:45:20 GMT on May 12, 1980, a navigator shoots the lower limb of the noon Sun. His height of eye is 10 feet and the sextant reading is $73^{\circ} 50^{\prime}$. His DR is ($33^{\circ} 13^{\prime} 45^{\prime \prime} \mathrm{N}, 119^{\circ} 67^{\prime} 13^{\prime \prime} \mathrm{W}$). What is the intercept resulting from this sight.

If the dead reckoning example has just been run, the DR position will be correctly stored. If other values are stored, key in the proper ones when prompted.

	Display
XEQ ALPHA SIGHT ALPHA	DRL $=33: 13: 45 N$?
R/S	DRLO=119:37:13W?
R/S	DATE $=0.000000$?
$5.121980 \mathrm{R} / \mathrm{S}$	TIME $=0.0000 ?$
$19.4520 \mathrm{R} / \mathrm{S}$	HE=O. FT?
$10 \mathrm{R} / \mathrm{S}$	$H S=$?
$74.40 \mathrm{R} / \mathrm{S}$	WHICH BODY?
SUNL R/S	SUN a=4.1 A
R/S	ZN=171.4

This program is based on equations developed at the United States Naval Observatory†. It calculates the Greenwich hour angle and declination for the celestial bodies most commonly used by navigators: 57 navigational stars, Polaris, the Sun, Venus, Mars, Jupiter, Saturn, and the Moon.

Star positions are corrected for the effects of precession, nutation, aberration, and proper motion.

For the stars and the Sun, accuracy is much better than one minute of arc. For the inner planets, Venus and Mars, it is better than two minutes of arc, and for the outer plants, Jupiter and Saturn, it is approximately three minutes of arc. The Moon, always more difficult to predict, may be in error by as much as five minutes of arc.

The inputs required are date, time, and the name of the body observed. If the index number of a particular star is known, it can be used instead of spelling out the name. The stars $\mathrm{Al} \mathrm{Na'ir} \mathrm{and} \mathrm{Zubenelgenubi} \mathrm{are} \mathrm{spelled}$ using commas instead of apostrophes: "AL NA,IR" and "ZUBEN, UBI".

				SIZE: 054
STEP	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
1	Initialize program.		XEO BODY	$\begin{aligned} & \text { DATE }= \\ & 0.000000 ? \end{aligned}$
2	Set or clear flag 21 as desired.			
3	Key in date.	mm.ddyyyy	R/S	TIME $=0.0000$?
4	Key in GMT.	GMT, h.ms	R/S	WHICH BODY?
5	Select which body. a) Key in name. or b) Take HP-41C out of alpha and key in star number.	NAME * star \#	$\frac{\mathrm{R} / \mathrm{S}}{\mathrm{ALPHA}}$ R / S	
6	HP-41C will display GHA and and declination. *Note NAME is any member of the list of objects shown in the appendix.		R/S	$\begin{aligned} & \text { NAME GHA }= \\ & \text { DEC }= \end{aligned}$

[^0]
Example:

On March 8, 1980, Regulus, Mars, and Jupiter formed a small triangle. What were the coordinates of these bodies at 0600 GMT?

Keystroke	Display
SF 21	
XEQ ALPHA BODY ALPHA	DATE $=0.00000$?
$3.081980 \mathrm{R} / \mathrm{S}$	TIME=0.0000?
$6.0000 \mathrm{R} / \mathrm{S}$	WHICH BODY?
REGULUS R/S	REGULUS GHA= 104:1 6:33
R/S	DEC=12:03:51N
XEQ ALPHA BODY ALPHA	DATE $=3.081980$?
R/S	TIME=6.0000?
R/S	WHICH BODY?
MARS R/S	MARS GHA =
	101:19:49
R/S	$D E C=14: 55: 26 N$
XEQ ALPHA BODY ALPHA	DATE $=3.081980$?
R/S	TIME=6.0000?
R/S	WHICH BODY?
JUPITER R/S	JUPITER GHA =
	100:00:11
R/S	DEC=11:23:25N

Comments

If a printer is
attached, flag 21
may be ignored.

ALMANAC INTERPOLATER

This program provides the SIGHT program with a method of obtaining positions of celestial bodies using The Nautical Almanac. It is ordinarily run by first executing SIGHT. You will be prompted for date, time, height of eye, and sextant height as with any other sight. When the prompt WHICH BODY? appears, key in NA (Nautical Almanac). The program determines what kind of sight (star, planet, Sun, or Moon) you desire by inspecting your answer to the question SD OR HP? A semidiameter of zero is used for stars; one near zero (say .01), for planets; and one of about 16^{\prime} for the Sun. If a value near 60' is used, the program interprets it as the Moon's horizontal parallax. For upper limb sights, SD or HP must be entered as a negative quantity (i.e. press CHS).

				SIZE: 054
STEP	INSTRUCTIONS	INPUT	FUNCTION	dISPLAY
1	Initialize program.		XEO SIGHT	DRL=0:00:00N?
2	Key in latitude of DR.	L, d.ms	R/S	$\begin{aligned} & \text { DRLO }= \\ & 0: 00: 00 W ? \end{aligned}$
3	Key in longitude of DR.	Lo, d.ms	R/S	DATE= 0.000000 ?
4	Key in the date.	mm.ddyyy	R/S	TIME $=0.0000$?
5	Key in GMT.	GMT, h.ms	R/S	$\mathrm{HE}=0 . \mathrm{FT}$.?
6	Key in HE in ft. or	HE, ft.	R/S	
	-HE in m .	HE, m	CHS R/S	HS=?
7	Key in sextant height.	HS, d.ms	R/S	WHICH BODY?
8	Now select the almanac.	NA	R/S	SD OR HP?
For star sights:				
9	Use 0 for SD.	0	R/S	$\begin{aligned} & \text { GHAY }<\text { hh }>= \\ & 0: 00: 00 \text { ? } \end{aligned}$
10	Key in GHA Aries at previous whole hour.	GHAY, d.ms	R/S	$\begin{aligned} & \text { GHAY }<\text { hh }>= \\ & 0: 00: 00 \text { ? } \end{aligned}$
11	Key in GHA Aries at next whole hour.	GHAY, d.ms	R/S	SHA $=0: 00: 00$?
12	Key in SHA.	SHA, d.ms	R/S	DEC $=0: 00: 00 \mathrm{~N}$?
13	Key in DEC and compute	DEC, d.ms	R/S	$\begin{array}{lc}\text { STAR } \mathrm{a}=<\mathrm{a}> & \begin{array}{c}\text { A } \\ \text { or } \\ \text { T }\end{array}\end{array}$
14	Compute azimuth.		R/S ${ }^{\text {* }}$	$\mathrm{ZN}=$

STEP	INSTRUCTIONS	INPUT	FUNCTION	dISPLAY
For Sun Sights:				
9	Use Sun's semidiameter. (CHS for upper limb)	SD, m.m	R/S	$\begin{aligned} & \text { GHA<h>=} \\ & 0: 00: 00 \text { ? } \end{aligned}$
10	Key in GHA at previous whole hour.	GHA(h)	R / S	$\begin{aligned} & \mathrm{GHA}<\mathrm{h}+1>= \\ & 0: 00: 00 \text { ? } \end{aligned}$
11	Key in GHA at next hour.	GHA $(\mathrm{h}+1)$	R / S	$\begin{aligned} & D E C<h>= \\ & 0: 00: 00 N ? \end{aligned}$
12	Key in DEC at previous whole	DEC(h)	R/S	$\begin{aligned} & D E C<h+1)= \\ & 0: 00: 00 \mathrm{~N} \text { ? } \end{aligned}$
13	Key in DEC at next hour and compute intercept.	DEC(h+1)	R / S	$\text { SUN } a=<a>\begin{array}{ll} A \\ \text { or } \\ \text { T } \end{array}$
14	Compute azimuth		R/S*	$\mathrm{ZN}=$
For Moon Sights:				
9 10	Use Moon's horizontal parallax. (CHS for upper limb) Continue with step 10 under Sun Sights. - Press R/S if you are not using a printer.	HP, m.m	R/S	$\begin{aligned} & \mathrm{GHA}<\mathrm{h}>= \\ & 0: 00: 00 \text { ? } \end{aligned}$

To use this program as a subroutine, store the date, time, and semidiameter and then press XEO NA. The GHA and declination will be stored in registers 45 and 46 .
Note that you can also use this program with BODY to compute and display a body's GHA and DEC.

Example:

Use the extract from The Nautical Almanac shown here to reduce a Venus sight from June 19, 1975 at 1625 GMT. The navigator's height of eye was 4 m and the sextant height was $66^{\circ} 55.3^{\prime}$. His DR was ($38^{\circ} \mathrm{N}$, $32^{\circ} \mathrm{W}$).

Keystroke
SF00
XEO ALPHA SIGHT ALPHA 38 R/S
32 R/S
6.191975 R/S
16.25 R/S
$4 \mathrm{CHS} \mathrm{R} / \mathrm{S}$
66.553 R/S

NA R/S
$.01 \mathrm{R} / \mathrm{S}$
11.066 R/S
26.067 R/S
18.402 R/S
18.394 R/S
R / S

Display	Comment
	Select D.MT

1975 JUNE 18, 19, 20 (WED., THURS., FRI.)

SUBROUTINES

This module contains many subroutines that are valuable to anyone concerned with navigational astronomy. Most programs documented elsewhere in this book can be used as subroutines with or without their associated prompts. In addition there are a number of subroutines which are not of interest to most navigators but might very well be useful to people writing their own programs.

The programs are listed here and documented more fully in the following pages.

	Subroutine Name	Meaning
	*SRT	Sight Reduction Table
	JD	Julian Date
Astronomy	D+T	Date \& Time
	GST	Greenwich Sidereal Time
Routines	STAR	Star Almanac
	FA	Fundamental Arguments
	LBRYZX	Convert LBR to YZX
	ZYXdHA	Convert ZYX to dHA
	LOTOL	LOngitude TO Latitude
	DSPHAd	Display HA and dec
Input/	*IN1	INput 1 point
	* ${ }^{\text {N }}$	INput points
Output	*DMT	Degrees, Minutes, and Tenths
	*DMS	Degrees, Minutes, and Seconds
Routines	*HR	HouRs
	*T	Time
	DSPP2	DiSPlay Point
	DSPL	DiSPlay Latitude
	DSPLO	DiSPlay LOngitude

SIGHT REDUCTION TABLE

This program evaluates the sight reduction table equation

$$
\begin{aligned}
& Z_{n}=180+\tan ^{-1} \frac{\sin t}{\cos t \sin L-\tan d \cos L} \\
& H_{c}=\sin ^{-1}(\sin d \sin L+\cos d \cos L \cos t)
\end{aligned}
$$

```
where \(t=\) meridian angle (negative if east)
    \(\mathrm{L}=\) latitude (negative if south)
    \(\mathrm{d}=\) declination (negative if east)
    \(\mathrm{Hc}=\) computed altitude
    \(\mathrm{Zn}=\) azimuth from north
```

In addition to the altitude and azimuth problem, the sight reduction table can also be employed to solve star identification, great-circle heading and distance, and great-circle position problems. The trick is to call the program with altered inputs as shown.

Star identification	Great Circle Heading and Distance
Use Zn instead of t	Use DLo instead of t
Use Ho instead of d	Use L2 instead of Hc
Get tinstead of Zn	Get Hi instead of Zn
Get d instead of Ho	Get $(90-$ D/60) instead of Hc

Great Circle Position
Use Hi instead of t
Use ($90-\mathrm{D} / 60$) instead of d
Get DLo instead of Zn
Get L2 instead of Hc

				SIZE: 054
STEP	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
1	Initialize program.		XEQ SRT	$\mathrm{T}=$?
2	Set or clear flag 21 as desired.			
3	Key in meridian angle.	t , deg	R/S	$\mathrm{L}=$?
4	Key in latitude.	L, deg	R/S	$d=$?
5	Key in declination and compute altitude.	d, deg	R/S	$\mathrm{Hc}=$
6	Display azimuth. *Press R/S if you are not using a printer.		R/S	$\mathrm{ZN}=$

To use this program as a subroutine, first set up the stack with t, L, and d in Z, Y, and X respectively. Then press XEO *SRT and the computed altitude and azimuth wil be returned in X and Y .

Example 1:

What is the altitude of the Sun on the date of the Vernal Equinox observed from $45^{\circ} \mathrm{N}$ when its LHA is 30° ?

Keystroke

XEQ ALPHA SRT ALPHA
30 R/S
45 R/S
0 R/S
$X \gtrless Y$

Display
0.00
$T=$?
L=?
$D=$?
Hc=37.76
$Z N=219.23$

Example 2:

What is the distance from $\left(0^{\circ} \mathrm{N}, 150^{\circ} \mathrm{W}\right)$ to $\left(45^{\circ} \mathrm{N}, 120^{\circ} \mathrm{W}\right)$?

Keystroke

Display

120 ENTERT $150 \square$
-30.00
0 ENTERT
45 XEO ALPHA \because SRT ALPHA
0.00
$90 \square 60 \mathrm{CHS}$
$X \gtrless Y$
37.76

3,134.33
26.57

D in nautical miles in degrees

Example 3:

A star is observed through the clouds in the approximate direction 115°. Our latitude is approximately $33.5^{\circ} \mathrm{N}$, and the star's direction is $57^{\circ} 35^{\prime}$. Which star did we observe?

Keystroke

115 ENTERT
33.5 ENTERT
57.35 XEO ALPHA HR ALPHA XEQ ALPHA \because SRT ALPHA $X \gtrless Y$

Display

115.00
33.50
57.58
16.08
329.63

This is the star's declination, so it must be
Aldebaran.
This is the star's local hour angle.

CALENDAR FUNCTIONS

These routines consist of a date and time input routine, $\mathrm{D}+\mathrm{T}$, and a Julian date calculator, JD. The routine $\mathrm{D}+\mathrm{T}$ prompts you for date and time and stores them in registers 30 and 34 . The JD routine converts a date of the form mm.ddyyyy in the X-register and a time in register 34 to a Julian date which it leaves in the X-register. It also stores t, the number of Julian centuries from 1900.0, and T, the number of Julian days until 2000.0. The calendar routine works correctly from October 15, 1582, onwards.

				SIZE: 037
STEP	INSTRUCTIONS	INPUT	FUNCTION	dISPLAY
To input date and time.				
$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	Initialize program. Key in date. Key in GMT.	mm.ddyyyy GMT, h.ms	$\begin{gathered} \text { XEQ } D+T \\ R / S \\ R / S \end{gathered}$	DATE= 0.000000? $\text { TIME }=0.0000 ?$ GMT, hours
To compute Julian date.				
1 2	Be sure time is stored by running $\mathrm{D}+\mathrm{T}$ or by storing it directly in R34. Key in date or recall it from R30. Compute Julian date. *Press R/S if you are not using a printer.	DATE	$\begin{aligned} & \mathrm{RCL} 30 \\ & \mathrm{XEQ} \mathrm{JD} \end{aligned}$	$\begin{aligned} & \text { Date } \\ & \text { JD } \end{aligned}$

These programs use storage registers as follows:

29 Year	34 GMT
30 Date	35 T (Centuries from 1900.0)
31 Month	36 t (JD from 2000.0)
32 Day	

Example:

What is the Julian date corresponding to Greenwich mean noon on September 26, 1980?

Keystroke

FIX 3
0 STO 34
9.261980 XEQ ALPHA JD

ALPHA

Display

2,444,508.500

GREENWICH SIDEREAL TIME

This program calculates Greenwich sidereal time from the Greenwich mean time stored in R34 and the value of T, the centuries from 1900.0, stored in R35. The value for GST is stored in the X-register.

				SIZE: 011
STEP	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
1	Store date and time directly or by using $\mathrm{D}+\mathrm{T}$.			
2	Compute T using JD. (Date must be in X .)		$\begin{aligned} & \hline \mathrm{RCL} 30 \\ & \hline \mathrm{XEO} \mathrm{JD} \end{aligned}$	Date
3	Compute GST.		XEQ GST	GST

Example:

What is the Greenwich Sidereal Time at 1500 GMT on October 27, 1980?

Keystroke

XEQ ALPHA D + T ALPHA
$10.271980 \mathrm{R} / \mathrm{S}$
15 R/S RCL 30
XEQ ALPHA JD ALPHA
XEQ ALPHA GST ALPHA

Display

DATE $=0.000000$?
TIME $=0.0000$?
10.2720

2,444,540.125
261.1238

STAR ALMANAC

This program is a subroutine of the BODY program documented earlier, but it is interesting in its own right. The routine is used to determine a star's Greenwich hour angle and declination.

				SIZE: 011
STEP	INSTRUCTIONS	INPUT	FUNCTION	display
1	Initialize program. Key in date. Key in time. Key in star number. The results are now stored as follows: NAME in ALPHA GST in R44 GHA * in R45 dec $\begin{array}{r}\text { ri } \\ \text { in R } \\ \text { R46 }\end{array}$	mm.ddyyyy GMT, h.ms star no.	$\begin{gathered} \text { XEQSTAR } \\ \mathrm{R} / \mathrm{S} \\ \mathrm{R} / \mathrm{S} \\ \mathrm{R} / \mathrm{S} \end{gathered}$	$\begin{aligned} & \text { DATE }=0.000000 ? \\ & \text { TIME }=0.0000 ? \\ & \text { STAR NO. }=? \\ & 0.0000 \end{aligned}$

Example 1:

What is the declination of POLARIS on 1 JAN 1980? What will it be on 1 JAN 2080 ?

Keystroke

XEQ ALPHA STAR ALPHA	DATE $=0.000000$?	
1.011980 R/S	TIME $=0.0000$?	
R/S	STAR NO. =	
0 R/S	0.0000	
RCL 46	89.1721	Declination 1 JAN 1980
XEO ALPHA STAR ALPHA	DATE $=1.011980$?	
1.012080 R/S	TIME $=0.00007$	
R/S	STAR NO. = ?	
0 R/S	0.0000	
RCL 46	89.6531	Declination 1 JAN 2080

A useful feature of this routine is that it can be called without prompts with the name *STAR. The routine expects the fundamental arguments subroutine, FA, to have been run already. You can skip some of the computation by setting flag 6 if all you want are approximate answers.
An example will clarify the reasons for some of these features.

Example 2:

Construct a routine which searches the star list for stars having nearly the same declination as you specify.
There are many ways to do this job, some nicer than others, but the following routine is a reasonable place to start.

B1*LBL -HHICH?"	12 RND
$82 \mathrm{ST0} 95$	$13 \mathrm{X}=\mathrm{Y}$?
031.857	14 GTO 00
04 ST0 47	15 IS6 47
850LBL 47	16 GTO 47
96 SF 96	17 STOP
67 XROM "*STAR"	160LEL 88
08 XOY	19 AYIEH
09 FIV 0	20 ISG 47
10 RNJ	216947
11 PCL 85	$22 . E N D$.

This little program is used by keying in the declination of the unknown star and then executing WHICH?. All stars having the specified declination will be listed.

Example:

A star's declination is determined to be 16°. Which star is it?

Keystroke
16 XEOWHICH?

Display
ALDEBARAN

FUNDAMENTAL ARGUMENTS

This subroutine is basic to the entire long-term almanac. It computes mean longitude L , mean anomaly G , and latitude argument F for the navigational planets, the Sun and the Moon. All 33 arguments used by Van Flandern and Pulkkinen* are not calculated by this program, because the series for the various objects are truncated. The truncation is such that the maximum error due to missing terms should not exceed 1 minute of arc. The routine requires the time stored in R34 (decimal hours) and the date (mm.ddyyyy) in the X-register. Its outputs are located from R12 to R36 as shown.

R12	Lm	R25	G6
R13	Gm	R26	L2
R14	Fm	R27	L4
R15	D $=$ Lm-Ls	R28	$\Omega \mathrm{m}=\mathrm{Lm}-\mathrm{Fm}$
R16	Ls	R29	ϵ
R17	Gs	R30	Date
R18	G2	R31	$-\delta \lambda$
R19	F2	R32	Day of month
R20	G4	R33	(not used)
R21	F4	R34	GMT
R22	L5	R35	T(Centuries from 1900.0)
R23	G5	R36	t(JD from 2000.0$)$
R24	L6		

ASTRONOMICAL COORDINATE CONVERSION

These programs interconvert spherical and rectangular coordinates in equatorial and ecliptic coordinate systems. They are used as subroutines by the perpetual almanac program.
Ecliptic spherical coordinates are longitude, latitude, and radius vector. Equatorial rectangular coordinates are X , the direction of the Vernal equinox; Y , the direction of 90° longitude on the equator; and Z , the direction of the north celestial pole. Equatorial spherical coordinates are hour angle, declination, and radius vector (which is ignored, because it is not needed).

When converting from spherical coordinates to rectangular coordinates, the value in R29 is used for the obliquity of the ecliptic. An obliquity of zero results in conversion from equatorial coordinates rather than from ecliptic coordinates. The fundamental arguments routine, FA, can be used to calculate the obliquity of the ecliptic when it is needed.
The names of these two functions are intended to indicate the stack contents on entry and exit. Thus, LBRYZX expects Longitude, Beta, and Radius vector and produces Y, Z, and X. ZYXdHA converts Z, Y, and X to declination and Hour Angle.

				SIZE: 030
STEP	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
To convert equatorial spherical to equatorial rectangular coordinates				
$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	Store zero for the obliquity. Key in negative longitude. Key in latitude. Key in radius vector (usu. 1). Inspect other coordinates.	$\begin{gathered} \hline 0 \\ - \text { L0, d.ms } \\ \text { L. d.ms } \\ \text { r } \end{gathered}$	STO 29 ENTER 1 ENTERT XEQLBRYZX RDN $\mathrm{X} \gtrless \mathrm{Y}$	$\begin{aligned} & X \\ & Z \\ & Y \end{aligned}$
To convert ecliptic spherical to equatorial rectangular coordinates				
1 2 3 4 5	Store obliquity of ecliptic. (Use FA to compute obliquity if desired) Key in celestial longitude. Key in celestial latitude. Key in radius vector. Inspect other coordinates.	ϵ Lo β ρ	STO 29 ENTER 1 ENTER XEQ LBRYZX $\begin{array}{\|l\|} \hline \mathrm{RDN} \\ \hline \mathrm{X} \gtrless \mathrm{Y} \\ \hline \end{array}$	$\begin{aligned} & X \\ & Z \\ & Y \end{aligned}$
To convert equatorial rectangular to equatorial spherical coordinates				
1 2 3 4	Key in Z-coordinate. Key in Y -coordinate. Key in X-coordinate and compute hour angle. Inspect declination.	$\begin{aligned} & \mathrm{Z} \\ & \mathrm{y} \\ & \mathrm{X} \end{aligned}$	ENTER ${ }^{1}$ ENTER ${ }^{1}$ XEQ ZYXdHA $X \gtrless Y$	$\begin{aligned} & H A \\ & d \end{aligned}$

Example 1:

An ephemeris lists the coordinates of the Sun as $\mathrm{X}=0.1487897, \mathrm{Y}=$ -0.8917501 , and $Z=-0.3866720$. What are its hour angle and declination?

Keystroke
FIX 8
.3866720 CHS ENTER
.8917501 CHS ENTER
.1487897 XEQ ALPHAZYXdHA
ALPHA
360 XEQ ALPHA MOD ALPHA $X \gtrless Y$

Display

Example 2:

The ephemeris also lists the coordinates of the Sun in terms of ecliptic longitude, $278^{\circ} 42^{\prime} 11.61^{\prime \prime}$, ecliptic latitude, $-0.58^{\prime \prime}$, and radius vector, 0.9832965 . For an obliquity of 23.441884°, compute the equatorial rectangular coordinates of the Sun.

Keystroke	Display
FIX 8	
$23.44184 \bigcirc 5$	23.44188400
278.421161 XEQ ALPHA HR	
ALPHA	278.7032250
. 000058 CHS XEQ ALPHA HR	
ALPHA	-. 00016111
. 9832965 XEQ ALPHA LBRYZX	
ALPHA	0.14878894
RDN	-0.38667203
X<>Y	-0.89175030

LONGITUDE TO LATITUDE

This program calculates the latitude at which a specified longitude is reached on a great circle defined by two points.

				SIZE: 011
STEP	Instructions	INPUT	FUNCTION	DISPLAY
1	Initialize program.		XEQ LOTOL	L1 =0:00:00N?
2	Key in source latitude	L1, d.ms	R/S	L01 =0:00:00W?
3	Key in source longitude	L01, d.ms	R/S	L2 $=0: 00: 00 \mathrm{~N}$?
4	Key in destination latitude	L2, d.ms	R/S	LO2=0:00:00W?
5	Key in destination longitude	Lo2, d.ms	R/S	LOI=?
6	Key in intermediate longitude	Loi, d.ms	R/S	$\mathrm{LI}=$

To use this program as a subroutine, store L1, Lo1, L2, and Lo2 in decimal form in registers $7,8,14$, and 15 . Store the intermediate longitude in register 10, and execute *LOTOL. The corresponding intermediate latitude will be in the X -register.

Example:

At what latitude does the great circle from ($33^{\circ} 31^{\prime} 07^{\prime \prime} \mathrm{N}, 118^{\circ} 38^{\prime} 32^{\prime \prime} \mathrm{W}$) to ($21^{\circ} 16^{\prime} \mathrm{N}, 157^{\circ} 44^{\prime} 42^{\prime \prime} \mathrm{W}$) cross longitude $135^{\circ} \mathrm{W}$?

Keystroke

XEQ ALPHA LOTOL ALPHA
$33.3107 \mathrm{R} / \mathrm{S}$
$118.3832 \mathrm{R} / \mathrm{S}$
$21.16 \mathrm{R} / \mathrm{S}$
$157.4442 \mathrm{R} / \mathrm{S}$
$135 \mathrm{R} / \mathrm{S}$

Display
$L 1=0: 00: 00$?
LO1 =0:00:00?
L2=0:00:00?
LO2=0:00:00?
LOI=?
$L I=30: 06: 22 N$
INPUT/OUTPUT ROUTINES
The Navigation ROM contains several subroutines which are useful to people writing their own
 form, and are input and displayed in degrees, minutes and seconds or degrees minutes and tenths of minutes depending on the status of flag 00.
Final
Stack
Stack

X JD
$\begin{gathered}\text { Final } \\ \text { Registers }\end{gathered}$
30 Date
34 Time
29 Year
30 Date
31 Month
32 Day
34 GMT
35 T
36 t
Initial
Stack
X Date
Initial
Registers
ן日qе7
44 GST
45 GHA
46 DEC
都
$D+T$
7
$\frac{1}{1}$
0
0
0
Subroutine
Date
and
Time

Julian
Day
Display
Hour Angle
and
declination
Remarks

Final Alpha
Stack
\sum_{i}^{+}
$\begin{array}{cc}\underset{j}{\vdash} & \sum_{0}^{\infty} \\ \times & \times\end{array}$
\sum_{i}^{∞}

0
0
\times

$\begin{array}{l}\text { Final } \\ \text { Registers }\end{array}$
7 L 1
8 Lo 1
7
7 LL
8 Lo 1
9
10 LL 2

Subroutine
Input P1
Input P1
and P2
Degrees
minutes
and tenths
Degrees
minutes
and seconds
Hours
Remarks

$\stackrel{\cong}{\circ}$

Final
Registers
$\underset{\text { © }}{\underset{\sim}{E}}$

!
\times
\times

N
0
0
0
0
1
0
0
0
0
0
0
0

Display
Point

Display
Latitude
Display
Longitude

Notes

Appendix A ALMANAC OBJECTS

The objects listed below are in the perpetual almanac programmed in this ROM. There are 57 navigational stars, Polaris, the Sun, Venus, Mars, Jupiter, Saturn, and the Moon. The stars are listed both alphabetically and numerically for your convenience on the back of the fold-out star chart.

	ALMANAC OBJECTS	
Solar system objects		

Stars

ACAMAR	ARCTURUS	GACRUX	RASALHAGUE
ACHERNAR	ATRIA	GIENAH	REGULUS
ACRUX	AVIOR	HADAR	RIGEL
ADHARA	BELLATRIX	HAMAL	RIGILKENTAURUS
ALDEBARAN	BETELGEUSE	KAUS AUSTRALIS	SABIK

ALIOTH	CANOPUS	KOCHAB	SCHEDAR
ALKAID	CAPELLA	MARKAB	SHAULA
AL NA,IR	DENEB	MENKAR	SIRIUS
ALNILAM	DENEBOLA	MENKENT	SPICA
ALPHARD	DIPHDA	MIAPLACIDUS	SUHAIL

ALPHECCA	DUBHE	MIRFAK	VEGA
ALPHERATZ	ELNATH	NUNKI	ZUBEN,UBI
ALTAIR	ELTANIN	PEACOCK	
ANKAA	ENIF	POLLUX	
ANTARES	FOMALHAUT	PROCYON	

All Nautical Almanac Objects
NA (This mnemonic calls up the almanac interpolator program.)

INDEX TO SELECTED STARS

Name	No.	No.	Name
Acamar	7	1	Alpheratz
Achernar	5	2	Ankaa
Acrux	30	3	Schedar
Adhara	19	4	Diphda
Aldebaran	10	5	Achernar
Alioth	32	6	Hamal
Alkaid	34	7	Acamar
Al Na'ir	55	8	Menkar
Alnilam	15	9	Mirfak
Alphard	25	10	Aldebaran
Alphecca	41	11	Rigel
Alpheratz	1	12	Capella
Altair	51	13	Bellatrix
Ankaa	2	14	Elnath
Antares	42	15	Alnilam
Arcturus	37	16	Betelgeuse
Atria	43	17	Canopus
Avior	22	18	Sirius
Bellatrix	13	19	Adhara
Betelgeuse	16	20	Procyon
Canopus	17	21	Pollux
Capella	12	22	Avior
Deneb	53	23	Suhail
Denebola	28	24	Miaplacidus
Diphda	4	25	Alphard
Dubhe	27	26	Regulus
Elnath	14	27	Dubhe
Eltanin	47	28	Denebola
Enif	54	29	Gienah
Fomalhaut	56	30	Acrux

NA VIGATIONAL S

Gacrux	31	31	Gacrux
Gienah	29	32	Alioth
Hadar	35	33	Spica
Hamal	6	34	Alkaid
Kaus Australis	48	35	Hadar
Kochab	40	36	Menkent
Markab	57	37	Arcturus
Menkar	8	38	Rigil Kentaurus
Menkent	36	39	Zubenelgenubi
Miaplacidus	24	40	Kochab
Mirfak	9	41	Alphecca
Nunki	50	42	Antares
Peacock	52	43	Atria
Pollux	21	44	Sabik
Procyon	20	45	Shaula
Rasalhague	46	46	Rasalhague
Regulus	26	47	Eltanin
Rigel	11	48	Kaus Australis
Rigil Kentaurus	38	49	Vega
Sabik	44	50	Nunki
Schedar	3	51	Altair
Shaula	45	52	Peacock
Sirius	18	53	Deneb
Spica	33	54	Enif
Suhail	23	55	Al Na'ir
Vega	49	56	Fomalhaut
Zubenelgenubi	39	57	Markab

Appendix B

 DATA STRUCTURE

(hp) $\begin{aligned} & \text { HEWLETT } \\ & \text { PACKARD }\end{aligned}$

1000 N.E. Circle Blvd., Corvallis, OR 97330

For additional sales and service information contact your local Hewlett-Packard Sales Office or call 800/648-4711. (In Nevada call 800/992-5710.)

[^0]: \dagger Van Flandern and Pulkkinen. "Low-Precision Formulae for Planetary Positions", Astrophysical Journal Supplement Series, 41:391-411, November, 1979.

