

HP-41
 Petroleum Fluids Pac Quick Reference Card

Program Names and Titles

Title

PROP
CO
BO
UO
RS
PBP
BT
CW
BW
UW
RSW
CFR
CT

Z Factor
Gas Isothermal Compressibility
Gas Formation Volume Factor
Gas Viscosity
Pseudocritical Temperature and
Pressure From Gas Gravity
Gas Properties From Composition
Oil Isothermal Compressibility
Oil Formation Volume Factor
Oil Viscosity
Gas-Oil Ratio
Bubble Point Pressure
Two-Phase Formation Volume Factor
Water Isothermal Compressibility
Water Formation Volume Factor
Water Viscosity
Gas-Water Ratio
Rock Compressibility
Total Isothermal Compressibility

Input and Output Variables

Symbol	Variable Name
BG	Gas Formation Volume Factor
BO	Oil Formation Volume Factor (above PBP)
BOBP	Oil Formation Volume Factor (at PBP)
BOb	Oil Formation Volume Factor (below PBP)
BT	Two-Phase Formation Volume Factor (above PBP)
BTBP	Two-Phase Formation Volume Factor (at PBP)
BTb	Two-Phase Formation Volume Factor (below PBP)
BW	Water Formation Volume Factor
CFR	Rock Compressibility
CG	Gas Isothermal Compressibility
CO	Oil Isothermal Compressibility (above PBP)
cob	Oil Isothermal Compressibility (below PBP)
CP	Specific Heat (constant pressure)
CT	Total Isothermal Compressibility (above PBP)
CTb	Total Isothermal Compressibility (below PBP)
CV	Specific Heat (constant volume)
CW	Water Isothermal Compressibility
CWA	Wichert-Aziz Correction
GAS G	Gas Gravity (relative to air)
GAS GS	GAS G Corrected for Separator Conditions
GHVD	Gross Heating Value (dry)

GHVW K
MW
NHV
OIL G
P
PBP
PPM
PR
PSAT
Pc
Pc*
RS
RSI
RSW
RSb
SEP P
SEPT
STD P
STD T

T
TR
Tc

Tc*
UG
UO
UOBP
UOb
UOd
UW
Z
\%CO2
\%ETH

Gross Heating Value (wet)
Specific Heat Ratio (CP/CV)
Molecular Weight (GAS G * 28.964)
Net Heating Value
Oil Gravity (relative to water)
Pressure
Bubble Point Pressure
Parts Per Million (\%NACL/10000)
Reduced Pressure (P / Pc)
Saturation Pressure of Water
Critical or Pseudocritical Pressure
Pc Corrected for Sour Gas Content
Gas-Oil Ratio (above PBP)
Initial Gas-Oil Ratio (above PBP)
Gas-Water Ratio
Gas-Oil Ratio (below PBP)
Separator Pressure (absolute P)
Separator Temperature
Pressure at Standard Conditions
Temperature at Standard
Conditions
Temperature
Reduced Temperature (T/Tc)
Critical or Pseudocritical
Temperature
Tc Corrected for Sour Gas Content
Gas Viscosity
Live Oil Viscosity (above PBP)
Live Oil Viscosity (at PBP)
Live Oil Viscosity (below PBP)
Dead Oil Viscosity
Water Viscosity
Z Factor
Mole Percent Carbon Dioxide
Mole Percent Ethane

\%He	Mole Percent Helium
\%H2	Mole Percent Hydrogen
\%H2O	Mole Percent Water Vapor
\%H2S	Mole Percent Hydrogen Sulfide
\%IBUT	Mole Percent Isobutane
\%IPEN	Mole Percent Isopentane
\%METH	Mole Percent Methane
\%NACL	Weight Percent Sodium Chloride
\%N2	Mole Percent Nitrogen
\%N-BUT	Mole Percent N-Butane
\%N-DEC	Mole Percent N-Decane
\%N-HEP	Mole Percent N-Heptane
\%N-HEX	Mole Percent N-Hexane
\%N-NON	Mole Percent N-Nonane
\%N-OCT	Mole Percent N-Octane
\%N-PEN	Mole Percent N-Pentane
\%O2	Mole Percent Oxygen
\%POR	Percent Porosity
\%PROP	Mole Percent Propane
\%SG	Volume Percent Gas Saturation
\%SO	Volume Percent Oil Saturation
\%SW	Volume Percent Water Saturation
\%TOT	Total of Mole Percentages

Yes/No Questions

Question
Meaning
CLEAR? Yes: Clear constituent registers No: Leave constituent registers unchanged

COND? Yes: Condensate well fluid No: Miscellaneous reservoir gas
$\boldsymbol{R S W}>$ O? Yes: Gas-saturated water or brine No: Gas-free water or brine

Unit Management System

Selecting English or SI Default Units

If you set flag 09 (\square 09), all input and output prompts will use SI default units automatically. If you clear flag 09 (CF 09), all input and output prompts will use English default units automatically. You may want to use units that are not the English or SI default units. The available units are listed in the table of Petroleum Engineering Basic Units (shown later).

Input Prompts

When a program prompts for an input (i.e., $\boldsymbol{P}=?$), respond by keying in a number and, optionally, its units. Press ALPHA and spell the abbreviation (up to 12 characters) for the desired units. Then press R / S to continue running the program.

When the prompt appears, you may press \square to see the current value of that variable. The number you see is always in the units that are in the ALPHA register. To see if these units are acceptable, press ALPHA. If they are, press R / S. If not, key in the desired units and press R / S. (If the display is blank, the variable is dimensionless, and no units are required.)

If you make an error in specifying units, the letters you keyed in followed by a question mark will be displayed. Simply key in correct units and press R/S.
Each input variable has its own unique storage location, so its value only needs to be entered once. If the prompt reappears at a later time, simply press R / S, and the previously stored value will be retained.

Output Prompts

When a program beeps, stops in ALPHA mode, and shows you the output units that will be used (i.e., BG, FT3/SCF?), respond by keying in the units you want (optional), and pressing R / S. If the printer is not plugged in, the program then stops a second time to show the output value converted to the units you specified. To see the units, press ALPHA. Then press R/S to continue running the program.
If you make an error, the prompt is repeated, followed by the letters you keyed in instead of the original units. Simply key in correct units and press R/S.
If you want the program to stop and prompt for output units as described above, set flag 10 (SF 10). If you do not want the program to stop, clear flag 10 (CF 10), and either English or SI default units will be selected automatically.

Petroleum Engineering Basic Units

HP-41
Abbreviation
Name

ACRE	acre
API	degree API
ATM	atmosphere
BAR	bar
BBL	barrel of petroleum
BCF	billion SCF
BTU	British Thermal Unit
C	degree Celsius
CAL	calorie
CM	centimeter
CP	centipoise
CST	centistoke
D	darcy
DAY	day
DYNE	erg
ERG	degree Fahrenheit
F	foot
FT	foot of water
FTH2O	gram
G	gallon (U.S.)
GAL	gallon (U.K.)
GALUK	horsepower
HP	hour
HR	inch
IN	inch of mercury
INHG	inch of water
INH2O	joule
J	Kelvin
K	kilocalorie
KCAL	

KG	kilogram
KGF	kilogram force
KIP	kilopound force
KJ	kilojoule
KM	kilometer
KMOL	kilomole
KPA	kilopascal
KSI	kip per square inch
KT	kilotonne
KW	kilowatt
L	liter
LBF	pound force
LBM	pound mass
M	meter
MBAR	millibar
MCF	thousand SCF
MD	millidarcy
MG	megagram
MI	mile
MIN	minute
MJ	megajoule
ML	milliliter
MM	millimeter
MMCF	million SCF
MMHG	millimeter of mercury
MN	meganewton
MO	month
MOL	mole
MPA	megapascal
MT	megatonne
MW	megawatt
N	newton
P	poise
PA	pascal
PSF	pound force per square foot
PSI	pound force per square inch

R	degree Rankine
S	second
SCF	standard cubic foot
SCM	standard cubic meter SCMZ
standard cubic meter at O C	
SPGR	specific gravity relative to water
ST	stoke
T	tonne (metric ton, 1000 kg)
THERM	10^{5} Btu
TON	short ton (2000 lbm$)$
TONUK	long ton $(2240 \mathrm{lbm})$
TORR	torr
UM	micrometer
W	watt
YD	yard
YR	year

The above basic units may be combined into unit strings using unit control characters: * (multiply), / (divide), - ("converted to"), and 1-9 (exponents). A unit string can only have one divide sign; all units to the right of it are included in the denominator.

To use CON (conversion) and INCON (inverse conversion), place a unit equation (up to 24 characters) in the ALPHA register, and a number in X . The unit equation is a unit string, a dash, and another unit string. Execute CON to perform a left-to-right conversion or INCON to perform a right-to-left conversion. An invalid conversion will cause the INVALID CONV error message to be displayed.

1000 N.E. Circle Blvd., Corvallis, OR 97330
©Hewlett-Packard Company 1981

