HP.41C

STAT PAC

NOTICE

Hewlett-Packard Company makes no express or implied warranty with regard to the keystroke procedures and program material offered or their merchantability or their fitness for any particular purpose. The keystroke procedures and program material are made available solely on an "as is" basis, and the entire risk as to their quality and performance is with the user. Should the keystroke procedures or program material prove defective, the user (and not Hewlett-Packard Company nor any other party) shall bear the entire cost of all necessary correction and all incidental or consequential damages. Hewlett-Packard Company shall not be liable for any incidental or consequential damages in connection with or arising out of the furnishing, use, or performance of the keystroke procedures or program material.

INTRODUCTION

The programs in the Stat Pac have been drawn from the fields of general statistics, analysis of variance, regression, test statistics, and distribution functions.
Each program in this pac is represented by one program in the Application Module and a section in this manual. The manual provides a description of the program with relevant equations, a set of instructions for using the program, and one or more example problems, each of which includes a list of the keystrokes required for its solution.
Before plugging in your Application Module, turn your calculator off, and be sure you understand the section "Inserting and Removing Application Modules." Before using a particular program, take a few minutes to read "Format of User Instructions" and "A Word About Program Usage."
You should first familiarize yourself with a program by running it once or twice while following the complete User Instructions in the manual. Thereafter, the program's prompting should provide the necessary instructions, including which variables are to be input, which keys are to be pressed, and which values will be output. A quick-reference card with a brief description of each program's operating instructions has been provided for your convenience.

We hope the Stat Pac will assist you in the solution of numerous problems in your discipline. If you have technical problems with this Pac, refer to your HP-41 owner's handbook for information on Hewlett-Packard "technical support" or "programming assistance."

Note: Application modules are designed to be used in all HP-41 model calculators. The term "HP-41C" is used throughout the rest of this manual, unless otherwise specified, to refer to all HP-41 calculators.

CONTENTS

Introduction 1
Contents 2
Inserting and Removing Application Modules 4
Format of User Instructions 7
A Word About Program Usage 8
Programs
General Statistics
Basic Statistics for Two Variables 10
Basic Statistics for two variables, grouped or ungrouped.
Moments, Skewness and Kurtosis (For Grouped or Ungrouped Data) 14
This program provides geometric descriptions (symmetry, relative peakness and flatness) of a distribution.
Analysis of Variance
Analysis of Variance (One Way) 18
This program is used to test the observed differences among k sample means.
Analysis of Variance (Two Way, No Replications) 22
The row effects and the column effects are tested independently in the analysis of the total variability of a set of data.
Analysis of Covariance (One Way) 26
This program tests the effect of one variable separately from the effect of the second variable.
Curve Fitting
Curve Fitting 32
This program fits a set of data points to any of the following four curves: straight line, exponential curve, logarithmic curve, and power curve.
Multiple Linear Regression 38
Linear regression for two or three independent variables, using least squares method.
Polynomial Regression 44
This program fits a set of data points to either a cubic or a parabolic polynomial, using least squares method.
Test Statistics
t Statistics 50
Paired t statistic tests the null hypothesis $\mathrm{H}_{0}: \mu_{1}=\mu_{2}$ for paired observations. t statistics for two means tests the null hypothesis $H_{0}: \mu_{1}-\mu_{2}=d$ for two independent random samples.
Chi-Square Evaluation 54
This program calculates the value of the χ^{2} statistic for the goodness of fit test.
Contingency Table 58
$2 \times \mathrm{k}$ and $3 \times \mathrm{k}$ contingency tables test the null hypothesis that two variables are independent.
Spearman's Rank Correlation Coefficient 62
This program tests whether 2 rankings are substantially in agree- ment with one another.
Distribution Functions
Normal and Inverse Normal Distribution 66
Polynomial approximation is used to calculate normal and inverse normal distribution.
Chi-Square Distribution 70
This program evaluates the chi-square density. A series approxi- mation is used to evaluate the cumulative distribution.
Appendix A: Program Data 73
Appendix B: Program Labels 74

INSERTING AND REMOVING APPLICATION MODULES

Before you insert an application module for the first time, familiarize yourself with the following information.
Up to four application modules can be plugged into the ports on the HP-41C. While plugged in, the names of all programs contained in the module can be displayed by pressing CATALOG 2 .

CAUTION

Always turn the HP-41C off before inserting or removing any plug-in extensions or accessories. Failure to turn the HP-41C off could damage both the calculator and the accessory.

Here is how you should insert application modules:

1. Turn the HP-41C off! Failure to turn the calculator off could damage both the module and the calculator.

2. Remove the port covers. Remember to save the port covers, they should be inserted into the empty ports when no extensions are inserted.

3. With the application module label facing downward as shown, insert the application module into any port after the last memory module presently inserted.

4. If you have additional application modules to insert, place them into any port after the last memory module. For example, if you have a memory module inserted in port 1 , you can insert application modules in any of ports 2,3 , or 4 . Never insert an application module into a lower numbered port than a memory module. Be sure to place port covers over unused ports.
5. Turn the calculator on and follow the instructions given in this book for the desired application functions.

To remove application modules:

1. Turn the HP-41C off! Failure to do so could damage both the calculator and the module.
2. Grasp the desired module handle and pull it out as shown.

3. Place a port cap into the empty port.

Mixing Memory Modules and Application Modules

Any time you wish to insert other extensions (such as the HP-82104A Card Reader, or the HP-82143A Printer) the HP-41C has been designed so that the memory modules are in lower numbered ports.

So, when you are using both memory modules and application modules, the memory modules must always be inserted into the lower numbered ports and the application module into any port after the last memory module. When mixing memory and application modules, the HP-41C allows you to leave gaps in the port sequence. For example, you can plug a memory module into port 1 and an application module into port 4, leaving ports 2 and 3 empty.

FORMAT OF USER INSTRUCTIONS

The completed User Instruction Form-which accompanies each programis your guide to operating the programs in this Pac.

The form is composed of five labeled columns. Reading from left to right, the first column, labeled STEP, gives the instruction step number.

The INSTRUCTIONS column gives instructions and comments concerning the operations to be performed.

The INPUT column specifies the input data, the units of data if applicable, or the appropriate alpha response to a prompted question. Data Input keys consists of 0 to 9 and the decimal point (the numeric keys), EEX (enter exponent), and CHS (change sign).
The FUNCTION column specifies the keys to be pressed after keying in the corresponding input data.

Whenever a statement in the INPUT or FUNCTION column is printed in gold, the ALPHA key must be pressed before the statement can be keyed in. After the statement is keyed in, press ALPHA again to return the calculator to its normal operating mode, or to begin program execution. For example, XEO $2 B S T A T$ means press the following keys: XEQ ALPHA ミBSTAT ALPHA

The DISPLAY column specifies prompts, intermediate and final answers and their units, where applicable.

Above the DISPLAY column is a box which specifies the minimum number of registers necessary to execute the program. Refer to pages 73 and 117 in the Owner's Handbook for a complete description of how to size calculator memory.

A WORD ABOUT PROGRAM USAGE

Catalog

When an Application Module is plugged into a port of the HP-41C, the contents of the Module can be reviewed by pressing CATALOG 2 (the Extension Cata\log). Executing the CATALOG function lists the name of each global label in the module, as well as functions of any other extensions which might be plugged in. Remember that the catalog function lists the extension in port 1 first, followed by the extensions in ports 2-4.

ALPHA and USER Mode Notation

This manual uses a special notation to signify ALPHA mode. Whenever a statement on the User Instruction Form is printed in gold, the ALPHA key must be pressed before the statement can be keyed in. After the statement is input, press ALPHA again to return the calculator to its normal operating mode, or to begin program execution. For example, XEQ Σ BSTAT means press the following keys: XEQ ALPHA IBSTAT ALPHA.

In USER mode, when referring to the top two rows of keys (the keys have been re-defined), this manual will use the symbols A, C, E, A and R / \mathbf{S} on the User Instruction Form and in the keystroke solutions to sample problems.

Using Optional Printer

When the optional printer is plugged into the HP-41C along with this Applications Module, all results will be printed automatically. You may also want to keep a permanent record of the values input to a certain program. A convenient way to do this is to set the Print Mode switch to NORMAL before running the program. In this mode, all input values and the corresponding keystrokes will be listed on the printer, thus providing a record of the entire operation of the program.

Downloading Module Programs

If you wish to trace execution, to modify, to record on magnetic cards, or to print a program in this Application Module, it must first be copied into the HP-41C's program memory. For information concerning the HP-41C COPY function, see the Owner's Handbook. It is not necessary to copy a program in order to run it.

Program Interruption

These programs have been designed to operate properly when run from beginning to end, without turning the calculator off (remember, the calculator may turn itself off). If the HP-41C is turned off, it may be necessary to set flag 21 (SF 21) to continue proper execution.

Use of Labels

You should generally avoid writing programs into the calculator memory that use program labels identical to those in your Application Module. In case of a label conflict, the label within program memory has priority over the label within the Application Pac program. All program labels used in this Pac are listed in appendix B, "Program Labels."

Key Assignments

If you have customized your keyboard with the ASN function, those reassignments will take precedence over the local labels A, C, and E used in this Pac.

Flag 03

If flag 03 is set when a Stat Pac program is executed, the statistical registers may not be cleared and incorrect results may occur.

BASIC STATISTICS FOR TWO VARIABLES

This program calculates means, standard deviations, covariance, correlation coefficient, coefficients of variation, sums of data points, sum of multiplication of data points, and sums of squares of data points derived from a set of ungrouped data points $\left\{\left(x_{i}, y_{i}\right), i=1,2, \ldots, n\right\}$, or grouped data points $\left\{\left(x_{i}, y_{i}, f_{i}\right), i=1,2, \ldots, n\right\} . f_{i}$ denotes the frequency of repetition of $\left(x_{i}, y_{i}\right)$.

$$
\text { means } \overline{\mathrm{x}}=\frac{1}{\mathrm{n}} \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{x}_{\mathrm{i}} \quad \overline{\mathrm{y}}=\frac{1}{\mathrm{n}} \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{y}_{\mathrm{i}}
$$

standard deviations $s_{x}=\sqrt{\frac{\sum_{x_{i}}^{2}-\mathrm{n}^{2}}{n-1}}$ (of sample)

$$
\text { or } \mathrm{s}_{\mathrm{x}}^{\prime}=\sqrt{\frac{\sum_{\mathrm{x}_{\mathrm{i}}^{2}}-\mathrm{n} \overline{\mathrm{x}}^{2}}{\mathrm{n}}} \text { (of population) }
$$

$$
s_{y}=\sqrt{\frac{\sum y_{i}^{2}-n \bar{y}^{2}}{n-1}} \text { (of sample) }
$$

$$
\text { or } \mathrm{s}_{\mathrm{y}}^{\prime}=\sqrt{\frac{\Sigma \mathrm{y}_{\mathrm{i}}^{2}-\mathrm{n} \overline{\mathrm{y}}^{2}}{\mathrm{n}}} \text { (of population) }
$$

covariance $\quad s_{x y}=\frac{1}{n-1}\left(\Sigma x_{i} y_{i}-\frac{1}{n} \Sigma x_{i} \Sigma y_{i}\right) \quad$ (of sample)

$$
\text { or } \mathrm{s}_{\mathrm{xy}}^{\prime}=\frac{1}{\mathrm{n}}\left[\Sigma \mathrm{x}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}-\frac{1}{\mathrm{n}} \Sigma \mathrm{x}_{\mathrm{i}} \Sigma \mathrm{y}_{\mathrm{i}}\right] \text { (of population) }
$$

$$
\text { correlation coefficient } \gamma_{\mathrm{xy}}=\frac{\mathrm{S}_{\mathrm{xy}}}{\mathrm{~s}_{\mathrm{x}} \mathrm{~s}_{\mathrm{y}}}
$$

Coefficients of variation $V_{x}=\frac{s_{x}}{\bar{x}} \cdot 100, \quad V_{y}=\frac{s_{y}}{\bar{y}} \cdot 100$

NOTE: "DATA ERROR" will be displayed if \bar{x} or \bar{y} is zero. Press R/s and proceed.

Example 1:

For the following set of data, find the means, standard deviations, covariance, correlation coefficient, coefficients of variation, and the sums.

x_{i}	26	30	44	50	62	68	74
y_{i}	92	85	78	81	54	51	40

Keystrokes:

XEQ ALPHA SIZE ALPHA 012	
XEQ ALPHA EBSTAT ALPHA	EBSTAT
26 ENTER4 92 A	
100 ENTER4 100 A	
100 ENTER4 100 C	
30 ENTER4 85 A	
44 ENTER4 78 A	
50 ENTER4 81 A	
62 ENTER4 54 A	
68 ENTER4 51 A	
74 ENTER4 40 A	7.00
E	$X B A R=50.57$
R/S	$Y B A R=68.71$
R/S	$S X=18.50$
R/S	SX. $=17.13$
R/S	$S Y=20.00$
R/S	SY. $=18.51$
R/S	$V X=36.58$
R/S	$V Y=29.10$
R/S	SXY $=-354.14$
R/S	SXY. $=\mathbf{- 3 0 3 . 5 5}$
R/S	$\mathbf{G X Y}=\mathbf{- 0 . 9 6}$
R/S	$\Sigma X=354.00$
R/S	$\Sigma Y=481.00$
R/S	$\Sigma X Y=22200.00$
R/S	$\Sigma X 2=19956.00$
R/S	$\Sigma \mathbf{Y} 2=35451.00$

Example 2:

Apply the program to the following set of grouped data.

x_{i}	4.8	5.2	3.8	4.4	4.1
y_{i}	15.1	11.5	14.3	13.6	12.8
f_{i}	1	3	1	6	2

Keystrokes:

XEQ ALPHA	SIZE ALPHA 012	
XEQ ALPHA	EBSTG ALPHA	EBSTG
4.8 ENTER ${ }^{\text {a }}$	15.1 ENTER4 1 A	
5.2 ENTER4	11.5 ENTER4 3 A	
3.8 ENTER ${ }^{\text {a }}$	14.3 ENTER ${ }^{4} 1$ A	
4.4 ENTER4	13.6 ENTER ${ }^{4} 6$	
4.1 ENTER4	12.8 ENTER4 2 A	13.00
E		$X B A R=4.52$
R/S		$Y B A R=13.16$
R/S		$S X=0.45$
R/S		SX. $=0.43$
R/S		$S Y=1.11$
R/S		SY. $=1.07$
R/S		$V X=9.93$
R/S		$V Y=8.42$
R/S		$S X Y=-0.31$
R/S		SXY. $=-0.28$
R/S		GXY $=-0.62$
R/S		$\Sigma X=58.80$
R/S		$\Sigma Y=171.10$
R/S		$\Sigma X Y=770.22$
R/S		$\Sigma X 2=268.38$
R/S		$\Sigma Y 2=2266.69$

MOMENTS, SKEWNESS AND KURTOSIS (FOR GROUPED OR UNGROUPED DATA)

For grouped or ungrouped data, moments are used to describe sets of data, skewness is used to measure the lack of symmetry in a distribution, and kurtosis is the relative peakness or flatness of a distribution. For a given set of data

$$
\begin{array}{ll}
& \left\{x_{1}, x_{2}, \ldots, x_{n}\right\}: \\
1^{\text {st }} \text { moment } & \bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i} \\
2^{\text {nd }} \text { moment } & m_{2}=\frac{1}{n} \sum x_{i}^{2}-\bar{x}^{2} \\
3^{\text {rd }} \text { moment } & m_{3}=\frac{1}{n} \sum x_{i}^{3}-\frac{3}{n} \bar{x} \sum x_{i}^{2}+2 \bar{x}^{3} \\
4^{\text {th }} \text { moment } & m_{4}=\frac{1}{n} \sum x_{i}^{4}-\frac{4}{n} \bar{x} \sum x_{1}^{3}+\frac{6}{n} \bar{x}^{2} \sum x_{i}^{2}-3 \bar{x}^{4}
\end{array}
$$

Moment coefficient of skewness

$$
\gamma_{1}=\frac{\mathrm{m}_{3}}{\mathrm{~m}_{2}^{3 / 2}}
$$

Moment coefficient of kurtosis

$$
\gamma_{2}=\frac{\mathrm{m}_{4}}{\mathrm{~m}_{2}^{2}}
$$

This program also provides the option for calculating those statistics for grouped data (using similar formulas as for ungrouped data):

data	x_{1}	x_{2}	\ldots	x_{m}
frequency	f_{1}	f_{2}	\ldots	f_{m}

Note that for this case, $1^{\text {st }}$ moment

$$
\bar{x}=\frac{\sum_{i=1}^{m} f_{i} x_{i}}{\sum_{i=1}^{m} f_{i}}
$$

Reference:

Theory and Problems of Statistics, M.R. Spiegel, Schaum's Outline, McGrawHill, 1961

16 Moments, Skewness and Kurtosis

Examples:

1. Ungrouped data

i	1	2	3	4	5	6	7	8	9
x_{i}	2.1	3.5	4.2	6.5	4.1	3.6	5.3	3.7	4.9

$$
\begin{aligned}
\overline{\mathrm{x}}=4.21, \mathrm{~m}_{2} & =1.39, \mathrm{~m}_{3}=0.39, \mathrm{~m}_{4}=5.49 \\
\gamma_{1} & =0.24, \gamma_{2}=2.84
\end{aligned}
$$

Keystrokes:

XEQ	ALPHA	SIZE	ALPHA	HA 012
XEQ	ALPHA	$\Sigma M M$	TUG AL	ALPHA
2.1	3.5	A 4.0	A 4.0	4.0 C
4.2	6.5	A 4.1	(A) 3.6	3.6 A
5.3	3.7	A 4.9	A	
E				
R/S				

Display:

IMMTUG

$$
\begin{aligned}
& 9.00 \\
& X B A R=4.21 \\
& M 2=1.39 \\
& M 3=0.39 \\
& M 4=5.49 \\
& G M 1=0.24 \\
& G M 2=2.84
\end{aligned}
$$

2. Grouped data

$$
\begin{aligned}
& \overline{\mathrm{x}}=3.13, \mathrm{~m}_{2}=1.98, \mathrm{~m}_{3}=2.14, \mathrm{~m}_{4}=11.05 \\
& \gamma_{1}=0.77, \gamma_{2}=2.81
\end{aligned}
$$

Keystrokes:

Display:

```
\SigmaMMTGD
```

$$
5.00
$$

$$
X B A R=3.13
$$

$$
M 2=1.98
$$

$$
M 3=2.14
$$

$$
M 4=11.05
$$

$$
\text { GM1 }=0.77
$$

$$
G M 2=2.81
$$

ANALYSIS OF VARIANCE (ONE WAY)

The one-way analysis of variance is used to test if observed differences among k sample means can be attributed to chance or whether they are indicative of actual differences among the corresponding population means. Suppose the $i^{\text {th }}$ sample has n_{i} observations (samples may have equal or unequal number of observations). The null hypothesis we want to test is that the k population means are all equal. This program generates the complete ANOVA table.

1. Mean of observations in the $\mathrm{i}^{\text {th }}$ sample $(\mathrm{i}=1,2, \ldots, \mathrm{k})$

$$
\bar{x}_{i}=\frac{1}{n_{i}} \sum_{j=1}^{n_{i}} x_{i j}
$$

2. Standard deviation of observations in the $i^{\text {th }}$ sample

$$
s_{i}=\left[\left(\sum_{j=1}^{n_{i}} x_{i j}^{2}-n_{i} \bar{x}_{i}^{2}\right) /\left(n_{i}-1\right)\right]^{1 / 2}
$$

3. Sum of observations in the $i^{\text {th }}$ sample

$$
\operatorname{Sum}_{\mathrm{i}}=\sum_{\mathrm{j}=1}^{\mathrm{n}_{\mathrm{i}}} \mathrm{x}_{\mathrm{i} j}
$$

4. Total sum of squares

$$
\operatorname{TSS}=\sum_{i=1}^{k} \sum_{j=1}^{n_{i}} x_{i j}^{2}-\frac{\left(\sum_{i=1}^{k} \sum_{j=1}^{n_{i}} x_{i j}\right)^{2}}{\sum_{i=1}^{k} n_{i}}
$$

5. Treatment sum of squares

$$
\operatorname{TrSS}=\sum_{i=1}^{k} \frac{\left(\sum_{j=1}^{n_{i}} x_{i j}\right)^{2}}{n_{i}}-\frac{\left(\sum_{i=1}^{k} \sum_{j=1}^{n_{i}} x_{i j}\right)^{2}}{\sum_{i=1}^{k} n_{i}}
$$

6. Error sum of squares

$$
\mathrm{ESS}=\mathrm{TSS}-\mathrm{TrSS}
$$

7. Treatment degrees of freedom

$$
\mathrm{df}_{1}=\mathrm{k}-1
$$

8. Error degrees of freedom

$$
\mathrm{df}_{2}=\sum_{\mathrm{i}=1}^{\mathrm{k}} \mathrm{n}_{\mathrm{i}}-\mathrm{k}
$$

9. Total degrees of freedom

$$
\mathrm{df}_{3}=\mathrm{df}_{1}+\mathrm{df}_{2}=\sum_{\mathrm{i}=1}^{\mathrm{k}} \mathrm{n}_{\mathrm{i}}-1
$$

10. Treatment mean square

$$
\mathrm{TrMS}=\frac{\mathrm{TrSS}}{\mathrm{df}_{1}}
$$

11. Error mean square

$$
\mathrm{EMS}=\frac{\mathrm{ESS}}{\mathrm{df}_{2}}
$$

12. The F ratio

$$
\mathrm{F}=\frac{\mathrm{TrMS}}{\mathrm{EMS}}\left(\text { with degrees of freedom } \mathrm{df}_{1}, \mathrm{df}_{2}\right)
$$

Reference:

J.E. Freund, Mathematical Statistics, Prentice Hall, 1962.

				SIZE: 020
STEP	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
1.	Initialize the program.		[EQ SAOVONE	EAOVONE
2.	Repeat step 2~5 for $\mathrm{i}=1,2, \ldots, \mathrm{k}$.			
3.	Repeat step $3 \sim 4$ for $j=1,2, \ldots, n_{i}$. Input X_{ij}.	x_{ij}	(A)	(j)
4.	If you made a mistake in inputting x_{im}, then correct by	$\mathrm{x}_{\text {im }}$	c	$(m-1)$
5.			$\begin{aligned} & R / \mathrm{S} \\ & \mathrm{R} / \mathrm{S} \\ & \mathrm{R} / \mathrm{S} \end{aligned}$	$\begin{aligned} \text { XBAR } & =\left(\overline{\mathrm{x}}_{\mathrm{i}}\right) \\ \mathrm{S} & =\left(\mathrm{s}_{\mathrm{i}}\right) \\ \text { SUM } & =\left(\text { Sum }_{\mathrm{i}}\right) \end{aligned}$
6.	To calculate ANOVA Table: TSS		(E)	TSS $=$ (TSS)
	TrSS		R/S	TRSS = (TrSS)
	ESS		R/S	ESS $=($ ESS $)$
	df_{i}		R/S	$\mathrm{DF} 1=\left(\mathrm{df}_{1}\right)$
	df_{2}		R/S	DF2 $=\left(\mathrm{df}_{2}\right)$
	df_{3}		R/S	DF3 $=\left(\mathrm{df}_{3}\right)$
	TrMS		R/S	TRMS $=($ TrMS $)$
	EMS		R/S	EMS $=(\mathrm{EMS})$
	F		R/S	$\mathrm{F}=(\mathrm{F})$
7.	Repeat step 6 if you want the results again.			
8.	For another set of data, initialize the program by \rightarrow then go to step 2.		- ${ }^{\text {a }}$	£AOVONE

Example:

The following random samples of achievement test scores were obtained from students at four different schools:

i	1	2	3	4	5	6	7
School 1	88	99	96	68	85		
School 2	78	62	98	83	61	88	
School 3	80	61	74	92	78	54	77
School 4	71	65	90	46			

Calculate the ANOVA table and test the null hypothesis that the differences among the sample means can be attributed to chance. Use significance level $\alpha=0.01$.

Keystrokes:

XEQ	ALPHA SIZE ALPHA 020	
XEQ	ALPHA IAOVONE ALPHA	SAOVONE
88 A	99 A 96 A 68	
85 A		5.00
R/S		$X B A R=87.20$
R/S		$S=12.15$
R/S		SUM $=436.00$
78 A	62 A 98 A 83 A	
61 A	88 A	6.00
R/S		$X B A R=78.33$
R/S		$S=14.62$
R/S		SUM $=470.00$
80 A	61 A 74 A 92	
78 A	54 A 77 A	7.00
R/S		$X B A R=73.71$
R/S		$S=12.61$
R/S		SUM $=516.00$
71 A	66 A 66 C 65	
90 A	46 A	4.00
R/S		$X B A R=68.00$
R/S		$S=18.13$
R/S		SUM $=272.00$
E		TSS $=4530.00$
R/S		TRSS $=930.44$
R/S		$E S S=3599.56$
R/S		DF1 $=3.00$
R/S		$D F 2=18.00$
R/S		$D F 3=21.00$
R/S		TRMS $=310.15$
R/S		$E M S=199.98$
R/S		$F=1.55$

ANOVA Table

	SS	df	MS	F
Treatments	930.44	3	310.15	1.55
Error	3599.56	18	199.98	
Total	4530.00	21		

Since $\mathrm{F}=1.55$ does not exceed $\mathrm{F}_{.01,3,18}=5.09$, the null hypothesis can not be rejected. Thus we have no evidence to conclude that the means of the scores for the four schools are significantly different.

ANALYSIS OF VARIANCE (TWO WAY, NO REPLICATIONS)

The analysis of variance is the analysis of the total variability of a set of data (measured by their total sum of squares) into components which can be attributed to different sources of variation.

The two way analysis of variance tests the row effects and the column effects independently. This program will generate the ANOVA table for the case such that (1) each cell only has one observation and (2) the row and column effects do not interact.

Equations:

1. Sums

$$
\begin{aligned}
& \text { Row } \mathrm{RS}_{\mathrm{i}}=\sum_{\mathrm{j}} \mathrm{x}_{\mathrm{ij}} \quad \mathrm{i}=1,2, \ldots, \mathrm{r} \\
& \text { Column } \mathrm{CS}_{\mathrm{j}}=\sum_{\mathrm{i}} \mathrm{x}_{\mathrm{ij}} \quad \mathrm{j}=1,2, \ldots, \mathrm{c}
\end{aligned}
$$

2. Sums of squares

$$
\begin{gathered}
\text { Total TSS }=\Sigma \Sigma \mathrm{x}_{\mathrm{ij}}{ }^{2}-\left(\Sigma \Sigma \mathrm{x}_{\mathrm{ij}}\right)^{2 / \mathrm{rc}} \\
\text { Row RSS }=\sum_{\mathrm{i}}\left(\sum_{\mathrm{j}} \mathrm{x}_{\mathrm{ij}}\right)^{2} / \mathrm{c}-\left(\Sigma \Sigma \mathrm{x}_{\mathrm{ij}}\right)^{2 / r \mathrm{c}} \\
\text { Column CSS }=\sum_{\mathrm{j}}\left(\sum_{\mathrm{i}} \mathrm{x}_{\mathrm{ij}}\right)^{2} / \mathrm{r}-\left(\Sigma \Sigma \mathrm{x}_{\mathrm{ij}}\right)^{2 / \mathrm{rc}} \\
\text { Error ESS }=\mathrm{TSS}-\mathrm{RSS}-\mathrm{CSS}
\end{gathered}
$$

3. Degrees of freedom

$$
\begin{gathered}
\text { Row } \mathrm{df}_{1}=\mathrm{r}-1 \\
\text { Column } \mathrm{df}_{2}=\mathrm{c}-1 \\
\text { Error } \mathrm{df}_{3}=(\mathrm{r}-1)(\mathrm{c}-1)
\end{gathered}
$$

4. F ratios

$$
\begin{gathered}
\text { Row } \mathrm{F}_{1}=\frac{\mathrm{RSS}}{\mathrm{df}_{1}} / \frac{\mathrm{ESS}}{\mathrm{df}_{3}} \\
\text { Column } \mathrm{F}_{2}=\frac{\mathrm{CSS}}{\mathrm{df}_{2}} / \frac{\mathrm{ESS}}{\mathrm{df}_{3}}
\end{gathered}
$$

Reference:

Dixon and Massey, Introduction to Statistical Analysis, McGraw-Hill, 1969.

Example:

Apply this program to analyze the following set of data.

			Column			
Row	1	7	6	8	7	
	2	2	4	4	4	
		3	4	6	5	3

Keystrokes:

XEQ	ALPHA	SIZE ALPHA	018	
XEQ	ALPHA	इAOVTWO	ALPHA	ミAOVTWO
7 A	6 A	8 A 7		4.00
R/S				SUM $=28.00$
2 A	4 A	4 A 4		4.00
R/S				$S U M=14.00$
4 A	7 A	7 C 6 A	A	
3 A				4.00
R/S				SUM = 18.00
R/S				COLUMN-WISE
7 A	2 A	4 A		3.00
R/S				SUM = 13.00
6 A	4 A	6 A		3.00
R/S				SUM = 16.00
8 A	4 A	5 A		3.00
R/S				SUM = 17.00
7 A	4 A	3 A		3.00
R/S				SUM = 14.00
E				RSS $=26.00$
R/S				CSS $=3.33$
R/S				TSS $=36.00$
R/S				$E S S=6.67$
R/S				DF1 $=2.00$
R/S				DF2 $=3.00$
R/S				DF3 $=6.00$
R/S				$F 1=11.70$
R/S				$F 2=1.00$

ANOVA

	SS	df	F ratio
Row	26.00	2	11.70
Column	3.33	3	1.00
Error	6.67	6	
Total	36.00		

ANALYSIS OF COVARIANCE (ONE WAY)

The one way analysis of covariance program tests the effect of one variable separately from the effect of a second variable, if the second variable represents an actual measurement for each individual (rather than a category).
Suppose ($\mathrm{x}_{\mathrm{ij}}, \mathrm{y}_{\mathrm{ij}}$) represents the $\mathrm{j}^{\text {th }}$ observation from the $\mathrm{i}^{\text {th }}$ population $(\mathrm{i}=1,2$, $\left.\ldots, k, j=1,2, \ldots, n_{i}\right)$. Note that samples may have equal or unequal number of observations. The analysis of covariance tests for a difference in means of residuals. The residuals are the differences of the observations and a regression quantity based on the associated second variable. The analysis of covariance procedure is based on the separations of the sums of squares and the sums of products into several portions. This program will generate the complete ANOCOV table.

Equations:

1. Sums and sums of squares

$$
\begin{aligned}
& S x_{i}=\sum_{j} x_{i j}(i=1,2, \ldots, k) \\
& T S S x=\Sigma \Sigma x_{i j}^{2}-\frac{\left(\Sigma \Sigma x_{i j}\right)^{2}}{\sum_{i} n_{i}} \\
& \text { ASSx }=\sum_{i} \frac{\left(\sum_{j} x_{i j}\right)^{2}}{n_{i}}-\frac{\left(\Sigma \Sigma x_{i j}\right)^{2}}{\sum_{i} n_{i}} \\
& W S S x=T S S x-A S S x
\end{aligned}
$$

2. Degrees of freedom

$$
\begin{gathered}
\mathrm{df}_{1}=\mathrm{k}-\mathrm{l} \\
\mathrm{df}_{2}=\sum_{\mathrm{i}} \mathrm{n}_{\mathrm{i}}-\mathrm{k}
\end{gathered}
$$

3. Mean squares and F statistic

$$
\begin{gathered}
\mathrm{AMSx}=\frac{\mathrm{ASSx}}{\mathrm{df}_{1}} \\
\mathrm{WMSx}=\frac{\mathrm{WSSx}}{\mathrm{df}_{2}} \\
\mathrm{~F}_{\mathrm{x}}=\frac{\mathrm{AMSx}}{\mathrm{WMSx}} \text { with degrees of freedom } \mathrm{df}_{1}, \mathrm{df}_{2}
\end{gathered}
$$

By changing x_{ij} to y_{ij}, similar formulas for y_{ij} can be obtained.
4. Sums of products

$$
\begin{gathered}
T S P=\Sigma \Sigma \mathrm{x}_{\mathrm{ij}} \mathrm{y}_{\mathrm{ij}}-\frac{\left(\Sigma \Sigma \mathrm{x}_{\mathrm{ij}}\right)\left(\Sigma \Sigma \mathrm{y}_{\mathrm{ij}}\right)}{\sum_{\mathrm{i}} \mathrm{n}_{\mathrm{i}}} \\
\mathrm{ASP}=\sum_{\mathrm{i}} \frac{\left(\sum_{\mathrm{j}} \mathrm{x}_{\mathrm{ij}}\right)\left(\sum_{\mathrm{j}} \mathrm{y}_{\mathrm{ij}}\right)}{n_{i}}-\frac{\left(\Sigma \Sigma \mathrm{x}_{\mathrm{ij}}\right)\left(\Sigma \Sigma \mathrm{y}_{\mathrm{ij}}\right)}{\sum_{\mathrm{i}} \mathrm{n}_{\mathrm{i}}} \\
W S P=\mathrm{TSP}-\mathrm{ASP}
\end{gathered}
$$

5. Residual sums of squares

$$
\begin{gathered}
\mathrm{TSS} \hat{y}=\mathrm{TSSy}-\frac{(\mathrm{TSP})^{2}}{\mathrm{TSSx}} \\
\mathrm{WSS} \hat{y}=\mathrm{WSSy}-\frac{(\mathrm{WSP})^{2}}{\mathrm{WSS} x} \\
\text { ASS } \hat{y}=\mathrm{TSS} \hat{y}-\mathrm{WSS} \hat{y}
\end{gathered}
$$

6. Residual degrees of freedom

$$
\begin{gathered}
\mathrm{df}_{3}=\mathrm{k}-1 \\
\mathrm{df}_{4}=\sum_{\mathrm{i}} \mathrm{n}_{\mathrm{i}}-\mathrm{k}-1
\end{gathered}
$$

28 Analysis of Covariance
7. Residual mean squares and F statistic

$$
\begin{gathered}
\mathrm{AMS} \hat{y}=\frac{\mathrm{ASS}_{\mathrm{y}}}{\mathrm{df}_{3}} \\
\mathrm{WMS} \hat{y}=\frac{\mathrm{WSS} \hat{y}}{\mathrm{df}_{4}} \\
\mathrm{~F}=\frac{\mathrm{AMS} \hat{\mathrm{y}}}{\mathrm{WMS} \hat{y}} \text { with degrees of freedom } \mathrm{df}_{3}, \mathrm{df}_{4}
\end{gathered}
$$

ANOCOV Table

	degrees of freedom	SSx	SP	SSy	degrees of freedom	SSŷ	MSy	F statistic
Among means	df_{1}	ASSx	ASP	ASSy	df_{3}	ASSŷy	AMSŷy	F
Within groups	df_{2}	WSSx	WSP	WSSy	df_{4}	WSSy	WMSŷy	
Total		TSSx	TSP	TSSy	TSSŷ			

Remarks:

- F_{x} can be used to test if the X means are equal (ANOVA for X).
- F_{y} can be used to test if the Y means (not making use of the X values) are equal (ANOVA for unadjusted Y).

Reference:

Dixon and Massey, Introduction to Statistical Analysis, McGraw-Hill, 1969.

				SIZE: 026
STEP	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
1.	Initialize the program.		XEQ इANOCOV	$\begin{gathered} \text { SANOCOV (pse) } \\ \text { NEW I }=1.00 \end{gathered}$
2.	Repeat step 2~6 for $\mathrm{i}=1,2, \ldots, \mathrm{k}$.			
3.	Repeat step 3~4 for $\mathrm{j}=1,2, \ldots, \mathrm{n}_{\mathrm{j}}$. Input x_{ij} and y_{ij}.	$\begin{aligned} & x_{i j} \\ & y_{i j} \end{aligned}$	EsTER ${ }_{\text {a }}$	(j)
4.	If you made a mistake in inputting x_{im} and y_{im}, then correct by	$\begin{aligned} & x_{i m} \\ & y_{i m} \end{aligned}$	[ENTER +	(m-1)
5.	Calculate the $\mathrm{i}^{\text {th }}$ sums: Sx $S y_{i}$		R/S	$\begin{aligned} & S X=\left(S x_{i}\right) \\ & S Y=\left(S y_{i}\right) \end{aligned}$
$\begin{aligned} & 6 . \\ & 7 . \end{aligned}$	Initialize for new i .		R/S	NEW I=(i)
	To calculate ANOCOV Table: TSSX		E	TSSX $=(\mathrm{TSSx}$)
	ASSx		R/S	ASSX $=($ ASSx $)$
	WSSx		R/S	WSSX $=$ (WSSx)
	TSSy		R/S	TSSY $=($ TSSy $)$
	ASSy		R/S	ASSY $=($ ASSy $)$
	WSSy		R/S	WSSY= (WSSy)
	df_{1}		R/S	DF1 $=\left(\mathrm{df}_{1}\right)$
	df_{2}		R/S	DF2 $=\left(\mathrm{df}_{2}\right)$
	Fx		R/S	$\mathrm{FX}=(\mathrm{Fx})$
	Fy		R/S	$\mathrm{FY}=(\mathrm{Fy})$
	TSP		R/S	TSP $=(\mathrm{TSP}$)
	ASP		R/S	ASP $=($ ASP $)$
	WSP		R/S	WSP $=($ WSP $)$
	TSSŷ		R/S	TSSY. $=($ TSSŶ $)$
	WSSŷ		R/S	WSSY $=($ WSSy $)$
	ASSŷ		R/S	ASSY. $=($ ASSŜ $)$
	df_{3}		R/S	$\mathrm{DF} 3=\left(\mathrm{df}_{3}\right)$
	df_{4}		R/S	$\begin{aligned} \text { DF4 } & =\left(\mathrm{df}_{4}\right) \\ \text { AMSY } & =(\text { AMSy }) \end{aligned}$
	AMSŷ WMSŷ		R/S	$\begin{aligned} \text { AMSY. } & =(\text { AMSŷ) } \\ \text { WMSY. } & =(\text { WMSý }) \end{aligned}$
			R/S	$\mathrm{F}=(\mathrm{F})$
8.	Repeat step 7 if you want the results again.			
9.	For another set of data, initialize the program by \rightarrow then go to step 2.		- (A)	$\begin{gathered} \text { こANOCOV (pse) } \\ \text { NEW I }=1.00 \end{gathered}$

Example:

$\left(\mathrm{k}=3, \mathrm{n}_{1}=\mathrm{n}_{2}=\mathrm{n}_{3}=4\right)$

Keystrokes:

| XEQ ALPHA SIZE ALPHA 026 | |
| :--- | :--- | :--- |
| XEQ ALPHA | |

Display:

3 ENTER 410 A 2 ENTER 48
5 ENTER4 5 A ENTER 55 C
1 ENTER4 8 A 2 ENTER 11 A 4.00
R/S
R/S
R/S
4 ENTER4 12 A 3 ENTER4 12Δ
3 ENTER4 10 A 5 ENTER4 13Δ
R / S
R / S
R / S
1 ENTER4 6 A 2 ENTER4 5 A

3 ENTER4 8 A 1 ENTER4 7Δ R/S
R/S
R/S
E
R/S
R/S
R/S
R/S
R/S
R/S
R/S
R/S

IANOCOV (Pse)
NEW I=1.00
$S X=8.00$
$S Y=37.00$
NEW $I=2.00$
4.00
$S X=15.00$
$S Y=47.00$
NEW I $=3.00$

$$
4.00
$$

$S X=7.00$
$S Y=26.00$
NEW $I=4.00$
TSSX=17.00
ASSX $=9.50$
WSSX=7.50
$T S S Y=71.67$
ASSY $=55.17$
$W S S Y=16.50$
DF1 $=2.00$
$D F 2=9.00$
$F X=5.70$

R / S	$F Y=15.05$
R / S	$T S P=27.00$
R / S	$A S P=20.75$
R / S	$W S P=6.25$
R / S	TSSY.
R / S	WSSY. $=11.29$
R / S	ASSY. $=17.49$
R / S	$D F 3=2.00$
R / S	DF4 $=8.00$
R / S	AMSY. $=8.75$
R / S	$F=6.20$
R / S	

ANOCOV Table

	Residuals							
	df	SSx	SP	SSy	df	SSŷ	MSŷ	F
Among means	2	9.50	20.75	55.17	2	17.49	8.75	6.20
Within groups	9	7.50	6.25	16.50	8	11.29	1.41	
Total		17.00	27.00	71.67		28.78		

CURVE FITTING

For a set of data points $\left(x_{i}, y_{i}\right), i=1,2, \ldots, n$, this program can be used to fit the data to any of the following curves:

1. Straight line (linear regression); $y=a+b x$.
2. Exponential curve; $y=a e^{b x}(a>0)$.
3. Logarithmic curve; $y=a+b \ln x$.
4. Power curve; $y=a x^{b}(a>0)$.

The regression coefficients a and b are found from solving the following system of linear equations:

$$
\left[\begin{array}{cc}
n & \Sigma X_{i} \\
\Sigma X_{i} & \Sigma X_{i}^{2}
\end{array}\right] \quad\left[\begin{array}{c}
A \\
b
\end{array}\right]=\left[\begin{array}{c}
\Sigma Y_{i} \\
\Sigma Y_{i} X_{i}
\end{array}\right]
$$

where the variables are defined as follows:

Regression	\mathbf{A}	\mathbf{X}_{i}	\mathbf{Y}_{i}
Linear	a	x_{i}	y_{i}
Exponential	$\ln \mathrm{a}$	x_{i}	$\ln \mathrm{y}_{\mathrm{i}}$
Logarithmic	a	$\ln \mathrm{x}_{\mathrm{i}}$	y_{i}
Power	$\ln \mathrm{a}$	$\ln \mathrm{x}_{\mathrm{i}}$	$\ln \mathrm{y}_{\mathrm{i}}$

The coefficient of determination is:

$$
R^{2}=\frac{A \Sigma Y_{i}+b \Sigma X_{i} Y_{i}-\frac{1}{n}\left(\Sigma Y_{i}\right)^{2}}{\Sigma\left(Y_{i}^{2}\right)-\frac{1}{n}\left(\Sigma Y_{i}\right)^{2}}
$$

Linear Regression

Logarithmic Curve Fit

Exponential Curve Fit

Power Curve Fit

Remarks:

- The program applies the least square method, either to the original equations (straight line and logarithmic curve) or to the transformed equations (exponential curve and power curve).
- Negative and zero values of x_{i} will cause a machine error for logarithmic curve fits. Negative and zero values of y_{i} will cause a machine error for exponential curve fits. For power curve fits, both x_{i} and y_{i} must be positive, non-zero values.
- As the differences between x and/or y values become small, the accuracy of the regression coefficients will decrease.

				SIZE: 016
STEP	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
1.	Initialize the program. - for STRAIGHT LINE \rightarrow or • for EXPONENTIAL CURVE \rightarrow or • for LOGARITHMIC CURVE \rightarrow or • for POWER CURVE \rightarrow			$\begin{gathered} \Sigma L I N \\ \Sigma E X P \\ \Sigma L O G \\ \Sigma P O W \end{gathered}$
2.	$\begin{aligned} & \text { Repeat step } 2-3 \text { for } I=1,2 \ldots, n \text {. } \\ & \text { Input } x_{i} \\ & y_{i} \end{aligned}$	$\begin{aligned} & x_{i} \\ & y_{i} \end{aligned}$	ENTERA (A)	(i)
3.	If you made a mistake in inputting x_{k} and y_{k}, then correct by	$\begin{aligned} & x_{k} \\ & y_{k} \end{aligned}$	ENTERA c	(k-1)
4.	Calculate R^{2} and regression coefficients a and b .		$\begin{aligned} & \text { E } \\ & \frac{\mathrm{R} / \mathrm{S}}{} \\ & \hline \mathrm{R} / \mathrm{S} \end{aligned}$	$\begin{aligned} R 2 & =\left(R^{2}\right) \\ a & =(a) \\ b & =(b) \end{aligned}$
5.	Calculate estimated y from regression. Input x.	x	R/S	$\mathrm{Y} .=(\hat{y})$
6.	Repeat step 5 for different x's.			
7.	Repeat step 4 if you want the results again.			
8.	To use the same program for another set of data, initialize the program by \rightarrow		- $\square^{\text {a }}$	$\begin{gathered} \Sigma L I N \text { or } \\ \Sigma E X P \text { or } \\ \Sigma L O G \text { or } \\ \Sigma P O W \end{gathered}$
9.	To use another program, go to step 1.			

Example 1:

Fit the following set of data into a straight line.

x_{i}	40.5	38.6	37.9	36.2	35.1	34.6
y_{i}	104.5	102	100	97.5	95.5	94

Solution:

$$
\begin{aligned}
& \mathrm{a}=33.53, \mathrm{~b}=1.76 \\
& \mathrm{R}^{2}=0.99 \\
& \text { i.e., } \mathrm{y}=33.53+1.76 \mathrm{x} \\
& \text { For } \mathrm{x}=37, \hat{y}=98.65 \\
& \text { For } \mathrm{x}=35, \hat{y}=95.13
\end{aligned}
$$

Keystrokes:
XEQ ALPHA
SIZE ALPHA
XEO ALPHA
ILIN ALPHA
40.5 ENTER4 104.5 A
38.6 ENTER4 102 A
37.9 ENTER4 100 A
36.2 ENTER 97.5 A
35.2 ENTER4 95.5 A
35.2 ENTER 95.5 C
35.1 ENTER4 95.5 A
34.6 ENTER4 94 A

E
R/S
R/S
37 R/S
$35 R / S$
,

Display:
SLIN

 $+$

Keystrokes:

XEQ	ALPHA	SIZE AL
XEQ	ALPHA	IEXP A
. 72 ENTER4		2.16 A
1.31	ENTER 4	1.61 A
1.95	ENTER 4	1.16 A
2.58	ENTER ${ }^{\text {d }}$. 85 A
3.15	ENTER 4	. 05 A
3.15	ENTER 4	. 05 C
3.14	ENTER 4	0.5 A

E
R/S
R/S
$1.5 \mathrm{R} / \mathrm{S}$
2.0 R/S

Display:

SEXP

$$
5.00
$$

$$
R 2=0.98
$$

$$
a=3.45
$$

$$
b=-0.58
$$

$$
Y .=1.44
$$

$$
Y .=1.08
$$

Example 3:

Fit the following set of data into a logarithmic curve.

x_{i}	3	4	6	10	12
y_{i}	1.5	9.3	23.4	45.8	60.1

Solution:

$$
\begin{aligned}
& a=-47.02, b=41.39 \\
& y=-47.02+41.39 \ln x \\
& R^{2}=0.98 \\
& \text { For } x=8, \hat{y}=39.06 \\
& \text { For } x=14.5, \hat{y}=63.67
\end{aligned}
$$

Keystrokes:

XEQ ALP	A SIZE
XEQ ALPHA	A
3 ENTER4 1.5 A	
4 ENTER4	9.3 A
6 ENTER4	23.4 A

10 ENTER4 45.8 A
12 ENTER4 6.01 A
12 ENTER4 6.01 C
12 ENTER4 60.1 A
Display:

ELOG
3 ENTER4 1.5 A
4 ENTER4 9.3 A
6 ENTER4 23.4 A

4
ALPHA 016
ALPHA

,

5.00

E	$\mathrm{R2}=0.98$
R / S	$\mathrm{a}=-47.02$
R / S	$\mathrm{b}=41.39$
$8 \mathrm{R} / \mathrm{S}$	$\mathrm{Y}=39.06$
$14.5 \mathrm{R} / \mathrm{S}$	$\mathrm{Y}=63.67$

Example 4:

Fit the following set of data into a power curve.

x_{i}	10	12	15	17	20	22	25	27	30	32	35
y_{i}	0.95	1.05	1.25	1.41	1.73	2.00	2.53	2.98	3.85	4.59	6.02

Solution:

$$
\begin{aligned}
& \mathrm{a}=.03, \mathrm{~b}=1.46 \\
& \mathrm{y}=.03 \mathrm{x}^{1.46} \\
& \mathrm{R}^{2}=0.94 \\
& \text { For } \mathrm{x}=18, \hat{\mathrm{y}}=1.76 \\
& \text { For } \mathrm{x}=23, \hat{\mathrm{y}}=2.52
\end{aligned}
$$

Keystrokes:

XEQ ALPHA	SIZE ALPHA 016	
XEQ ALPHA	IPOW ALPHA	SPOW
10 ENTER4	0.95 A	
12 ENTER4	1.05 A	
15 ENTER4	1.25 A	
17 ENTER4	1.41 A	
20 ENTER4	1.73 A	
22 ENTER4	2.00 A	
25 ENTER4	2.53 A	
27 ENTER4	2.98 A	
30 ENTER4	3.85 A	
32 ENTER4	4.59 A	
35 ENTER4	60.2 A	
35 ENTER4	60.2 C	
35 ENTER4	6.02 A	11.00
E		$\boldsymbol{R 2}=0.94$
R/S		$a=0.03$
R/S		$b=1.46$
18 R/S		Y. $=1.76$
23 R/S		Y Y $=2.52$

MULTIPLE LINEAR REGRESSION

Three Independent Variables

For a set of data points $\left\{\left(x_{i}, y_{i}, z_{i}, t_{i}\right), i=1,2, \ldots, n\right\}$, this program fits a linear equation of the form:

$$
\mathrm{t}=\mathrm{a}+\mathrm{bx}+\mathrm{cy}+\mathrm{dz}
$$

by the least squares method.

Regression coefficients a, b, c, and d are calculated by solving the following system of equations. Gauss's elimination method with partial pivoting is used.

$$
\left[\begin{array}{cccc}
n & \Sigma x_{i} & \Sigma y_{i} & \Sigma z_{i} \\
\Sigma x_{i} & \Sigma\left(x_{i}\right)^{2} & \Sigma\left(x_{i} y_{i}\right) & \Sigma\left(x_{i} z_{i}\right) \\
\Sigma y_{i} & \Sigma\left(y_{i} x_{i}\right) & \Sigma\left(y_{i}\right)^{2} & \Sigma\left(y_{i} z_{i}\right) \\
\Sigma z_{i} & \Sigma\left(x_{i} z_{i}\right) & \Sigma\left(y_{i} z_{i}\right) & \Sigma\left(z_{i}\right)^{2}
\end{array}\right] \quad\left[\begin{array}{c}
a \\
b \\
c \\
d
\end{array}\right]=\left[\begin{array}{c}
\Sigma t_{i} \\
\Sigma x_{i} t_{i} \\
\Sigma y_{i} t_{i} \\
\Sigma z_{i} t_{i}
\end{array}\right]
$$

The coefficient of determination R^{2} is defined as:

$$
R^{2}=\frac{a \Sigma t_{i}+b \Sigma x_{i} t_{i}+c \Sigma y_{i} t_{i}+d \Sigma z_{i_{i}} t_{i}-\frac{1}{n}\left(\Sigma t_{i}\right)^{2}}{\Sigma\left(t_{i}^{2}\right)-\frac{1}{n}\left(\Sigma t_{i}\right)^{2}}
$$

Two Independent Variables

For a set of data points $\left\{\left(x_{i}, y_{i}, t_{i}\right), i=1,2, \ldots, n\right\}$, this program fits a linear equation of the form:

$$
t=a+b x+c y
$$

by the least squares method.

Regression coefficients a , b , and c are calculated by solving the following system of equations. Gauss's elimination method with partial pivoting is used.

$$
\left[\begin{array}{ccc}
n & \Sigma x_{i} & \Sigma y_{i} \\
\Sigma x_{i} & \Sigma\left(x_{i}\right)^{2} & \Sigma x_{i} y_{i} \\
\Sigma y_{i} & \Sigma y_{y_{i} x_{i}} & \Sigma\left(y_{i}\right)^{2}
\end{array}\right] \quad\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{c}
\Sigma_{t_{i}} \\
\Sigma x_{i} t_{i} \\
\Sigma y_{i} t_{i}
\end{array}\right]
$$

The coefficient of determination R^{2} is defined as:

$$
R^{2}=\frac{a \Sigma t_{i}+b \Sigma x_{i} t_{i}+c \Sigma y_{y_{i}} t_{i}-\frac{1}{n}\left(\Sigma t_{i}\right)^{2}}{\Sigma\left(t_{i}^{2}\right)-\frac{1}{n}\left(\Sigma t_{i}\right)^{2}}
$$

Remarks:

- If the coefficient matrix has determinant equal to zero, indicating no solution or more than one solution, "DATA ERROR" will be displayed.
- There is no restriction on the maximum number of data points n, but the following minimum condition for n must be satisfied:
$n \geqslant 3$ for the case of two independent variables
$n \geqslant 4$ for the case of three independent variables

Refernce:

				SIZE: 045
STEP	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
$\begin{aligned} & 1 . \\ & 2 . \end{aligned}$	Three Independent Variables Initialize the program. Repeat step 2~3 for $i=1,2, \ldots, n$. Input: x_{i} y_{i} z_{i} t_{i}	$\begin{aligned} & x_{i} \\ & y_{i} \\ & z_{i} \\ & t_{i} \end{aligned}$	XEO EMLRXYZ ENTER ENTER 4 ENTER4 (A)	£MLRXYZ
3.	If you made a mistake in inputting x_{k}, y_{k}, z_{k}, and t_{k}, then correct by	$\begin{aligned} & x_{\mathrm{k}} \\ & \mathrm{y}_{\mathrm{k}} \\ & \mathrm{z}_{\mathrm{k}} \\ & \mathrm{t}_{\mathrm{k}} \end{aligned}$	 [(k-1)
4.	Calculate R^{2} and regression coefficients a,b,c, and d.		$\begin{aligned} & \text { E } \\ & \text { R/S } \\ & \hline R / \mathbf{S} \\ & \hline R / \mathbf{S} \\ & \hline R / \mathbf{S} \end{aligned}$	$\begin{aligned} \mathrm{R} 2 & =\left(\mathrm{R}^{2}\right) \\ \mathrm{a} & =(\mathrm{a}) \\ \mathrm{b} & =(\mathrm{b}) \\ \mathrm{c} & =(\mathrm{c}) \\ \mathrm{d} & =(\mathrm{d}) \end{aligned}$
5.	Calculate estimated t from regression. Input: x y z	x	$\begin{aligned} & \text { ENTER4 } \\ & \text { ENTER4 } \end{aligned}$ R / S	$T .=(\hat{t})$
$\begin{aligned} & 6 . \\ & 7 . \end{aligned}$	Repeat step 5 for different (x, y, z)'s. To recall sums used in calculation: Σx_{i} Σy_{i} Σz_{i} Σt_{i} $\Sigma x_{i}{ }^{2}$ ミyi ${ }^{2}$ Ezi ${ }^{2}$ $\Sigma \mathrm{t}_{\mathrm{i}}{ }^{2}$ $\sum x_{i} y_{i}$ $\sum x_{i} z_{i}$ $\sum x_{i} t_{i}$ $\sum y_{i} z_{i}$ $\Sigma y_{i} t_{i}$ $\Sigma z_{i} \mathrm{t}_{\mathrm{i}}$		[RCL 32 $\boldsymbol{R C L} 33$ RCL 34 RCL 41 RCL 35 RCL 38 RCL 40 RCL 30 RCL 36 RCL 37 RCL 42 RCL 39 RCL 43 RCL 44	$\left(\sum x_{i}\right)$ $\left(\sum y_{i}\right)$ $\left(\sum z_{i}\right)$ $\left(\sum t_{i}\right)$ $\left(\sum x_{i}{ }^{2}\right)$ $\left(\sum y_{i}{ }^{2}\right)$ $\left.\left(\sum z_{i}\right)^{2}\right)$ $\left(\sum t_{i}{ }^{2}\right)$ $\left(\sum x_{i} y_{i}\right)$ $\left(\sum x_{i} z_{i}\right)$ $\left(\sum x_{i} i_{i}\right)$ $\left(\sum y_{i} z_{i}\right)$ $\left(\sum y_{i} i_{i}\right)$ $\left(\sum z_{i} i_{i}\right)$
8. 9.	Repeat step 4 if you want the results again. To use the program for another set of data, initialize the program by \rightarrow then go to step 2.		- $\square^{\text {(}}$	ミMLRXYZ

Example 1:

For the following set of data, find the regression line with three independent variables. i.e. $t=a+b x+c y+d z$

$>i$	1	2	3	4	5
x_{i}	7	1	11	11	7
y_{i}	25	29	56	31	52
z_{i}	6	15	8	8	6
t_{i}	60	52	20	47	33

Solution:

The regression line is described by $\mathrm{t}=103.45-1.28 \mathrm{x}-1.04 \mathrm{y}-1.34 \mathrm{z}$.

$$
\begin{aligned}
& R^{2}=1.00 \\
& \text { For } x=7, y=25, z=6, \hat{t}=60.50 \\
& \text { For } x=1, y=29, z=15, \hat{t}=52.00
\end{aligned}
$$

Keystrokes:
XEQ ALPHA SIZE ALPHA 045
XEQ ALPHA $\Sigma M L R X Y Z$ ALPHA $\Sigma M L R X Y Z$
7 ENTER4 25 ENTER 4
6 ENTER4 60 A
1 ENTER4 29 ENTER 4
15 ENTER4 52 A
11 ENTER4 56 ENTER 4
8 ENTER4 20 A
11 ENTER4 31 ENTER 4
8 ENTER4 47 A
7 ENTER4 53 ENTER4
6 ENTER4 33 A
7 ENTER4 53 ENTER4
6 ENTER4 33 C
7 ENTER4 52 ENTER4
6 ENTER4 33 A
E
R/S
R/S
R/S
R/S
7 ENTER4 25 ENTER4 6 R/S
1 ENTER4 29 ENTER 15 R/S

Display:

(2)

Example 2:

For the following set of data, find the regression line with two independent variables. i.e. $t=a+b x+c y$

	1	2	3	4
	1.5	0.45	1.8	2.8
y_{i}	0.7	2.3	1.6	4.5
t_{i}	2.1	4.0	4.1	9.4

Solution:

The regression line is $t=-0.10+0.79 x+1.63 y$

$$
\begin{aligned}
& \mathrm{R}^{2}=1.00 \\
& \text { For } \mathrm{x}=2, \mathrm{y}=3, \hat{\mathrm{t}}=6.37 \\
& \text { For } \mathrm{x}=1.5, \mathrm{y}=0.7 \hat{\mathrm{t}}=2.23
\end{aligned}
$$

Keystrokes:

XEQ ALPHA SIZE ALPHA 045

XEQ ALPHA	£MLRXY	ALPHA	SMLRXY
1.5 ENTER4	0.7 ENTER ${ }^{\text {a }}$	2.1 A	
0.46 ENTER4	2.3 ENTER4	4.0 A	
0.46 ENTER4	2.3 ENTER4	4.0 C	
0.45 ENTER4	2.3 ENTER4	4.0 A	
1.8 ENTER4	1.6 ENTER4	4.1 A	
2.8 ENTER4	4.5 ENTER4	9.4 A	4.00
E			$R 2=1.00$
R/S			$\mathrm{a}=-\mathbf{0 . 1 0}$
R/S			$b=0.79$
R/S			$c=1.63$
2 ENTER4 3	R/S		$T .=6.37$
1.5 ENTER4	0.7 R/S		$T .=2.23$

POLYNOMIAL REGRESSION

Cubic Regression

For a set of data points $\left(x_{i}, y_{i}\right), i=1,2, \ldots, n$, this program fit a cubic equation of the form:

$$
y=a+b x+c x^{2}+d x^{3}
$$

by the least squares method.

Regression coefficients a, b, c and d are calculated by solving the following system of equations. Gauss's elimination method with partial pivoting is used.

The coefficient of determination is:

$$
R^{2}=\frac{a \Sigma y_{i}+b \Sigma x_{i} y_{i}+c \Sigma x_{i}^{2} y_{i}+d \Sigma x_{i}^{3} y_{i}-\frac{1}{n}\left(\Sigma y_{i}\right)^{2}}{\Sigma\left(y_{i}^{2}\right)-\frac{1}{n}\left(\Sigma y_{i}\right)^{2}}
$$

Parabolic Regression

For a set of data points $\left(x_{i}, y_{i}\right), i=1,2, \ldots, n$, this program fits a parabola of the form:

$$
y=a+b x+c x^{2}
$$

by the least squares method.

Regression coefficients a, b, and c are calculated by solving the following system of equations. Gauss's elimination method with partial pivoting is used.

The coefficient of determination is:

$$
R^{2}=\frac{a \Sigma y_{i}+b \Sigma x_{i} y_{i}+c \Sigma x_{i}^{2} y_{i}-\frac{1}{n}\left(\Sigma y_{i}\right)^{2}}{\Sigma\left(y_{i}^{2}\right)-\frac{1}{n}\left(\Sigma y_{i}\right)^{2}}
$$

Remarks:

- If the coefficient matrix has determinant equal to zero, indicating no solution or more than one solution, $\boldsymbol{D E T}=\mathbf{O}$ will be displayed.
- There is no restriction on the maximum number of data points n, but the following minimum condition for n must be satisfied:
$\mathrm{n} \geqslant 3$ for Parabolic Regression
$\mathrm{n} \geqslant 4$ for Cubic Regression

Reference:

HP-67/97 Math Pac I, program MA1-07

STEP	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
$\begin{aligned} & 1 . \\ & 2 . \end{aligned}$	Cubic Regression Initialize the program． Repeat step 2～3 for $i=1,2, \ldots, n$ ． Input：x_{i} y_{i}	$\begin{aligned} & x_{i} \\ & y_{i} \end{aligned}$	XEO ミPOLYC ENTER 4 A	£POLYC （i）
3.	If you made a mistake in inputting x_{k} and y_{k} ，then correct by	$\begin{aligned} & x_{k} \\ & y_{k} \end{aligned}$	［ENTER	（k－1）
4.	Calculate R^{2} and regression coefficients a, b, c ，and d ．		E R／S R／S R／S R／S	$\begin{aligned} \mathrm{R} 2 & =\left(\mathrm{R}^{2}\right) \\ \mathrm{a} & =(\mathrm{a}) \\ \mathrm{b} & =(\mathrm{b}) \\ \mathrm{c} & =(\mathrm{c}) \\ \mathrm{d} & =(\mathrm{d}) \end{aligned}$
5.	Calculate estimated y from regression．Input x ．	x	R／S	$Y .=(\hat{y})$
	Repeat step 5 for different x ＇s．			
7.	To recall sums in calculation： Ex		RCL 32	$\left(\Sigma x_{i}\right)$
	$\sum x_{i}{ }^{2}$		RCL 33 RCL	$\left(\Sigma x_{i}^{2}\right)$
			RCL RCL RCL 1	$\left(\sum x_{i}{ }^{3}\right)$ $\left(\Sigma x_{i}^{4}\right)$
	${ }^{\sum 1} \mathrm{x}_{1}{ }^{5}$		［ RCL 39	（ $\sum x_{i}{ }^{5}$ ）
	$\sum x_{i}{ }^{6}$		RCL 40	（ $\sum \mathrm{x}_{i}{ }^{6}$ ）
	ミy ${ }^{\text {i }}$		RCL 41	（ Σy_{i} ）
	$\pm x_{i} y_{i}$		（RCL 42	（ $\Sigma_{x_{i} y_{i}}$ ）
			（RCL RCL 43	$\begin{aligned} & \left(\sum x_{i}^{2} y_{i}\right) \\ & \left(\Sigma x_{i} y_{i} y_{i}\right) \end{aligned}$
8.	Repeat step 4 if you want the results again．			
9.	To use the program for another set of data，initialize the program by \rightarrow then go to step 2.		－\square	ミPOLYC

Example 1:

For the following set of data, perform a cubic regression, i.e., find suitable coefficients for:

$$
y=a+b x+c x^{2}+d x^{3}
$$

xi	1	2	3	4	5
x	.8	1	1.2	1.4	1.6
y	24	20	10	13	12

Solution:

$$
\begin{aligned}
& y=47.94-9.76 x-41.07 x^{2}+20.83 x^{3} \\
& R^{2}=0.87
\end{aligned}
$$

$$
\text { For } \mathrm{x}=1, \hat{\mathrm{y}}=17.94
$$

$$
\text { For } \mathrm{x}=1.4, \hat{\mathrm{y}}=10.94
$$

Keystrokes:
XEQ ALPHA SIZE
XEQ ALPHA IPO
.8 ENTER 24 A
1 ENTER4 20 A
1.3 ENTER4 10 A
1.3 ENTER4 10 C
1.2 ENTER4 10 A
1.4 ENTER 13 A
1.6 ENTER4 12 A

E

R/S

R/S
R/S
R/S
1 R/S
$1.4 \mathrm{R} / \mathrm{S}$

Display:

ミPOLYC

Example 2:

For the following set of data, perform a parabolic regression, i.e., find suitable coefficients for:

$$
y=a+b x+c x^{2}
$$

	1	2	3	4	5	6	7
x	1	2	3	4	5	6	7
y	5	12	34	50	75	84	128

Solution:

$$
\begin{aligned}
& y=-4.00+6.64 x+1.64 x^{2} \\
& R^{2}=0.98
\end{aligned}
$$

$$
\text { For } x=2, \hat{y}=15.86
$$

$$
\text { For } x=4, \hat{y}=48.86
$$

Keystrokes:

E

R/S
R/S
R/S
2 R/S
$4 R / S$

Display:

SPOLYP

$R 2=0.98$
$a=-4.00$
$b=6.64$
$c=1.64$
Y. $=15.86$
Y. $=48.86$

t STATISTICS

Paired t Statistic

Given a set of paired observations from two normal populations with means μ_{1}, μ_{2} (unknown)

x_{i}	x_{1}	x_{2}	\cdots	x_{n}
y_{i}	y_{1}	y_{2}	\cdots	y_{n}

let

$$
\begin{gathered}
D_{i}=x_{i}-y_{i} \\
\bar{D}=\frac{1}{n} \sum_{i=1}^{n} D_{i} \\
s_{D}=\sqrt{\frac{\sum D_{i}^{2}-\frac{1}{n}\left(\sum D_{i}\right)^{2}}{n-1}}
\end{gathered}
$$

The test statistic

$$
t=\frac{\bar{D}}{s_{D}} \cdot \sqrt{n}
$$

which has $n-1$ degrees of freedom (df) can be used to test the null hypothesis

$$
\mathrm{H}_{0}: \mu_{1}=\mu_{2}
$$

Reference:

Statistics in Research, B. Ostle, Iowa State University Press. 1963.

t Statistic For Two Means

Suppose $\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n} 1}\right\}$ and $\left\{\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n} 2}\right\}$ are independent random samples from two normal populations having means μ_{1}, μ_{2} (unknown) and the same unknown variance σ^{2}.

We want to test the null hypothesis

$$
\mathrm{H}_{0}: \mu_{1}-\mu_{2}=\mathrm{d}
$$

Define

$$
\begin{gathered}
\bar{x}=\frac{1}{n_{1}} \sum_{i=1}^{n_{1}} x_{i} \\
\bar{y}=\frac{1}{n_{2}} \sum_{i=1}^{n_{2}} y_{i} \\
\bar{x}-\bar{y}-d \\
\sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}} \sqrt{\frac{\sum x_{i}^{2}-n_{1} \bar{x}^{2}+\sum y_{i}^{2}-n_{2} \bar{y}^{2}}{n_{1}+n_{2}}-2}
\end{gathered}
$$

We can use this t statistic which has the t distribution with $n_{1}+n_{2}-2$ degrees of freedom (df) to test the null hypothesis H_{0}.

Reference:

Statistical Theory and Methodology in Science and Engineering. K.A. Brownlee, John Wiley \& Sons, 1965.

\begin{tabular}{|c|c|c|c|c|}
\hline \& \& \& \& SIZE: 015 \\
\hline STEP \& INSTRUCTIONS \& INPUT \& FUNCTION \& DISPLAY \\
\hline \[
\begin{aligned}
\& 1 . \\
\& 2 .
\end{aligned}
\] \& \begin{tabular}{l}
Paired \(t\) Statistic \\
Initialize the program. \\
Repeat step 2~3 for \(\mathrm{i}=1,2, \ldots, \mathrm{n}\). Input: \(x_{i}\) \\
\(y_{i}\)
\end{tabular} \& \[
\begin{aligned}
\& x_{i} \\
\& y_{i}
\end{aligned}
\] \& \begin{tabular}{l}
XEO IPTST \\
ENTER 4 \\
A
\end{tabular} \& EPTST

(i)

\hline 3. \& If you made a mistake in inputting x_{k} and y_{k}, then correct by \& $$
\begin{aligned}
& x_{k} \\
& y_{k}
\end{aligned}
$$ \& [ENTER ${ }_{\text {c }}^{\text {c }}$ \& (k-1)

\hline 4. \& $\frac{T}{D} 0$ calculate the test statistic:
$\frac{S_{D}}{}$
t

$d f$ \& \& | E/ |
| :---: |
| R / S |
| R / S |
| R / S | \& \[

$$
\begin{gathered}
\text { DBAR }=(\overline{\mathrm{D}}) \\
\mathrm{SD}=\left(\mathrm{S}_{\mathrm{o}}\right) \\
\mathrm{T}=(\mathrm{t}) \\
\mathrm{DF}=(\mathrm{df})
\end{gathered}
$$
\]

\hline 5. \& Repeat step 4 if you want the results again. \& \& \&

\hline 6. \& | To use the same program for another set of data, initialize the program by \rightarrow then go to step 2. |
| :--- |
| t Statistic for Two Means | \& \& - 4 \& 2PTST

\hline 7. \& Initialize the program. \& \& XEO \& ミTSTAT

\hline 8. \& Repeat step 8~9 for $i=1,2, \ldots, n_{1}$ Input x_{i}. \& x_{i} \& (A) \& (i)

\hline 9. \& If you made a mistake in inputting x_{k}, then correct by \& x_{k} \& C \& (k-1)

\hline 10. \& Initialize for the $2^{\text {nd }}$ array of data \& \& R/S \& 0.00

\hline 11. \& Repeat step $11 \sim 12$ for $j=1,2$, n_{2}. Input y_{j}. \& y_{i} \& (A) \& (j)

\hline 12. \& If you made a mistake in inputting y_{h}, then correct by \& y_{n} \& c \& (h-1)

\hline 13. \& Input d to calculate test statistic: df \& d \& $$
\underset{E}{E}
$$ \& \[

$$
\begin{aligned}
\mathrm{T} & =(\mathrm{t}) \\
\mathrm{DF} & =(\mathrm{df})
\end{aligned}
$$
\]

\hline 14. \& Repeat step 13 if you want to calculate the test statistic for a different value of d . \& \& \&

\hline 15. \& To use the same program for another set of data, initialize the program by \rightarrow then go to step 8. \& \& - 4 \& 2TSTAT

\hline
\end{tabular}

Example 1:

x_{i}	14	17.5	17	17.5	15.4
y_{i}	17	20.7	21.6	20.9	17.2

$$
\begin{aligned}
& \bar{D}=-3.20 \\
& s_{D}=1.00 \\
& t=-7.16 \\
& d f=4.00
\end{aligned}
$$

Keystrokes:

XEQ ALPHA SIZE ALPHA 015
XEQ ALPHA $~ \Sigma P T S T$ ALPHA
14 ENTER 417 A
17.5 ENTER4 20.7 A

17 ENTER4 21.6 A
17 ENTER4 15 A
17 ENTER4 15 C
17.5 ENTER4 20.9 A
15.4 ENTER 417.2 A

E
R/S
R/S
R/S

Display:

EPTST
5.00
$D B A R=-3.20$
$S D=1.00$
$T=-7.16$
$D F=4.00$

Example 2:

x	79	84	108	114	120	103	122	120	
y	91	103	90	113	108	87	100	80	99
$\mathrm{n}_{1}=84$									
$\mathrm{n}_{2}=10$									
If $\mathrm{d}=0\left(\right.$ i.e., $\left.\mathrm{H}_{0}: \mu_{1}=\mu_{2}\right)$									
then $\mathrm{t}=1.73, \mathrm{df}=16.00$									

Keystrokes:
XEO ALPHA SIZE ALP
XEQ ALPHA
ITSTAT
79 A 84 A
99 A 99 C 108 A

8.00

R/S
91 A 103 A 90 A 113 A
108 A 87 A 100 A 80 A
$99 \Delta 54 \Delta$

$$
\begin{aligned}
& 10.00 \\
& T=1.73 \\
& D F=16.00
\end{aligned}
$$

CHI-SQUARE EVALUATION

This program calculates the value of the χ^{2} statistic for the goodness of fit test by the equation

$$
\chi_{1}^{2}=\sum_{i=1}^{n} \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}} \text { with df }=n-1
$$

where

$$
\begin{aligned}
\mathrm{O}_{\mathrm{i}} & =\text { observed frequency } \\
\mathrm{E}_{\mathrm{i}} & =\text { expected frequency } \\
\mathrm{n} & =\text { number of classes }
\end{aligned}
$$

If the expected values are equal

$$
\left(\mathrm{E}=\mathrm{E}_{\mathrm{i}}=\frac{\Sigma \mathrm{O}_{\mathrm{i}}}{\mathrm{n}} \text { for all i}\right)
$$

then

$$
\chi_{2}^{2}=\frac{\mathrm{n} \Sigma \mathrm{O}_{\mathrm{i}}^{2}}{\Sigma \mathrm{O}_{\mathrm{i}}}-\Sigma \mathrm{O}_{\mathrm{i}}
$$

Remarks:

- In order to apply the goodness of fit test to a set of given data, combining some classes may be necessary to make sure that each expected frequency is not too small (say, not less than 5).

Reference:

Mathematical Statistics, J.E. Freund, Prentice Hall. 1962.

Examples 1:

Find the value of χ^{2} statistic for the goodness of fit for the following data set:

O_{i}	8	50	47	56	5	14
E_{i}	9.6	46.75	51.85	54.4	8.25	9.15

$$
\chi_{1}^{2}=4.84
$$

Keystrokes:
XEQ ALPHA SIZE ALPHA 008
XEQ ALPHA $\Sigma X S Q E V$ ALPHA $\Sigma X S Q E V$
8 ENTER4 9.6 A
$\begin{array}{ll}50 \text { ENTER4 } \\ 47 \text { ENTER } 4.75 ~ & \text { A } \\ 41.85 ~ A\end{array}$
56 ENTER 44.4 A
5 ENTER4 8.25 A
88 ENTER4 88 A
88 ENTER 48 C
14 ENTER4 9.15 A
E

Display:

Example 2:

The following table shows the observed frequencies in tossing a die 120 times. χ^{2} can be used to test if the die is fair.

Note: Assume that the expected frequencies are equal.

number	1	2	3	4	5	6
frequency O_{i}	25	17	15	23	24	16
	$\chi_{2}{ }^{2}=5.00$					
	$\mathrm{E}=20.00$					

Since 5.00 is less than 11.07 , the data does not support the statement that the die is "unfair' (5% significance level).

Keystrokes:

XEQ ALPHA SIZE ALPHA 00
XEQ ALPHA
$25 E E F X S Q$ ALPH
22 A 17 A 15 A 22 A
22

23	A	24	A	16
	A	$\mathbf{6 . 0 0}$		
		XSQ $=5.00$		

Display:

```
\SigmaEEFXSQ
```

$$
E=20.00
$$

CONTINGENCY TABLE

Contingency tables can be used to test the null hypothesis that two variables are independent.
This program calculates the χ^{2} statistic for testing the independence of the two variables. Also Pearson's coefficient of contingency C_{c}, which measures the degree of association between the two variables, is calculated.

2 x k CONTINGENCY TABLE

	1	2	\ldots	k	Totals
1	x_{11}	x_{12}	\ldots	$\mathrm{x}_{1 \mathrm{k}}$	R_{1}
2	x_{21}	x_{22}	\cdots	$\mathrm{x}_{2 \mathrm{k}}$	R_{2}
Totals	C_{1}	C_{2}	\ldots	C_{k}	T

$3 \times \mathrm{k}$ CONTINGENCY TABLE

Equations:

$$
\begin{aligned}
& \text { Row sum } R_{i}=\sum_{j=1}^{k} x_{i j} \quad \begin{array}{l}
i=1,2(\text { for } 2 \times k) \\
i=1,2,3(\text { for } 3 \times k)
\end{array} \\
& \text { Column sum } C_{j}=\sum_{i=1}^{n} x_{i j} \quad \begin{array}{l}
j=1,2, \ldots, k \\
n=2(\text { for } 2 \times k) \\
n=3(f o r 3 \times k)
\end{array}
\end{aligned}
$$

$$
\text { Total } \mathrm{T}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \sum_{\mathrm{j}=1}^{\mathrm{k}} \mathrm{x}_{\mathrm{ij}} \quad \begin{aligned}
& \mathrm{n}=2(\text { for } 2 \times \mathrm{k}) \\
& \mathrm{n}=3(\text { for } 3 \times \mathrm{k})
\end{aligned}
$$

Chi-square statistic

$$
\begin{aligned}
& \chi^{2}=\sum_{i=1}^{n} \sum_{j=1}^{k} \frac{\left(x_{i j}-E_{i j}\right)^{2}}{E_{i j}} \text { with df }=(n-1)(k-1) \\
& =T\left(\sum_{i=1}^{n} \sum_{j=1}^{\mathrm{k}} \frac{\mathrm{x}_{\mathrm{ij}}^{2}}{\mathrm{R}_{\mathrm{i}} \mathrm{C}_{\mathrm{j}}}\right)-\mathrm{T} \quad \begin{array}{l}
\mathrm{n}=2(\text { for } 2 \times \mathrm{k}) \\
\mathrm{n}=3(\text { for } 3 \times \mathrm{k})
\end{array}
\end{aligned}
$$

Contingency coefficient

$$
C_{c}=\sqrt{\frac{\chi^{2}}{T+\chi^{2}}}
$$

Reference:

B. Ostle, Statistics in Research, Iowa State University Press, 1972.

STEP	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
11.	(Optional) Calculate column sum C_{h} (correction).		R/S	$C S=\left(-C_{n}\right)$
12.	Calculate: Test statistic χ^{2} Coefficient C_{c} Row sum $1 R_{1}$ Row sum $2 \mathrm{R}_{2}$ Row sum $3 \mathrm{R}_{3}$ ($3 \times \mathrm{k}$ only) Total T		E R/S R/S R/S R/S R/S	$\begin{aligned} X S Q & =\left(\chi^{2}\right) \\ C C & =\left(\mathrm{C}_{\mathrm{c}}\right) \\ \mathrm{R} 1 & =\left(\mathrm{R}_{1}\right) \\ \mathrm{R} 2 & =\left(\mathrm{R}_{2}\right) \\ \mathrm{R} 3 & =\left(\mathrm{R}_{3}\right) \\ \mathrm{T} & =(\mathrm{T}) \end{aligned}$
13.	Repeat step 12 if you want the results again.			
14.	To use the same program for another set of data, initialize by \rightarrow then go to step 2 or step 8.		(\square^{4}	ミCTKK or ミCTKKK
15.	To use the other program, go to step 1 or step 7.			

Example 1:

Find the test statistic χ^{2} and coefficient of contingency C_{c} for the following set of data.

	1	2	3
A	2	5	4
B	3	8	7

Keystrokes:

Example 2:

Find test statistic χ^{2} and coefficient of contingency C_{c} for the following set of data.

i	1	2	3	4
1	36	67	49	58
2	31	60	49	54
3	58	87	80	68

Keystrokes:
XEQ ALPHA SIZE ALPHA 015
XEQ ALPHA Σ CTKKK ALPHA Σ CTKKK
36 ENTER4 31 ENTER4 58 A 1.00

R/S
67 ENTER4 60 ENTER4 87 A
4 ENTER4 49 ENTER 80 A
4 ENTER4 49 ENTER4 80 C
49 ENTER4 49 ENTER4 80 A
58 ENTER 54 ENTER 68 A
E
R/S
R/S
R/S
R/S
R/S

Display:

உСТККК
1.00
$C S=125.00$

4.00
$X S Q=3.36$
$C C=0.07$
$R 1=210.00$
$R 2=194.00$
$R 3=293.00$
$T=697.00$

SPEARMAN'S RANK CORRELATION COEFFICIENT

Spearman's rank correlation coefficient is a measure of rank correlation under the following circumstance: n individuals are ranked from 1 to n according to some specified characteristic by 2 observers, and we wish to know if the 2 rankings are substantially in agreement with one another.
Spearman's rank correlation coefficient is defined by

$$
r_{s}=1-\frac{6 \sum_{i=1}^{n} D_{i}^{2}}{n\left(n^{2}-1\right)}
$$

where $n=$ number of paired observations $\left(x_{i}, y_{i}\right)$

$$
D_{i}=\operatorname{rank}\left(x_{i}\right)-\operatorname{rank}\left(y_{i}\right)=R_{i}-S_{i}
$$

If the X and Y random variables from which these n pairs of observations are derived are independent, then r_{S} has zero mean and a variance equal to

$$
\frac{1}{n-1}
$$

A test for the null hypothesis

$$
\mathrm{H}_{0}: \mathrm{X}, \mathrm{Y} \text { are independent }
$$

is made using

$$
z=r_{s} \sqrt{n-1}
$$

which is approximately a standardized normal variable (for large n, say $n \geqslant 10$). If the null hypothesis of independence is not rejected, we can infer that the population correlation coefficient $\rho(\mathrm{x}, \mathrm{y})=0$, but dependence between the variables does not necessarily imply that $\rho(\mathrm{x}, \mathrm{y}) \neq 0$.

Note:

$-1 \leqslant r_{\mathrm{S}} \leqslant 1$
$\mathrm{r}_{\mathrm{s}}=1$ indicates complete agreement in order of the ranks and $\mathrm{r}_{\mathrm{s}}=-1$ indicates complete agreement in the opposite order of the ranks.

Reference:

Nonparametric Statistical Inference, J. D. Gibbons, McGraw Hill, 1971.

				SIZE: 003
STEP	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
1.	Initialize the program.		XEQ ISPEAR	こSPEAR
2.	Repeat step 2~3 for $i=1,2, \ldots, n$. Input: R_{i} S_{i}	$\begin{aligned} & R_{i} \\ & S_{i} \end{aligned}$	$\begin{aligned} & \text { ENTER } \\ & \square \end{aligned}$	(i)
3.	If you made a mistake in inputting R_{k} and S_{k}, then correct by	$\begin{aligned} & \mathrm{R}_{\mathrm{k}} \\ & \mathrm{~S}_{\mathrm{k}} \end{aligned}$	[ENTER ${ }_{\text {c }}$	(k-1)
4.	Calculate: r_{s} z		$\underset{\text { E/S }}{\underline{E}}$	$\begin{aligned} \mathrm{RS} & =\left(\mathrm{r}_{\mathrm{s}}\right) \\ \mathrm{Z} & =(\mathrm{z}) \end{aligned}$
5.	Repeat step 4 if you want the results again.			
6.	For another set of data, initialize the program by \rightarrow then go to step 2.		- \square^{4}	こSPEAR

Example:

The following data set is the result of two tests in a class; find r_{s} and z.

Student	x_{i} Math Grade	y_{i} Stat Grade	R_{i} Rank of x_{i}	S_{i} Rank of y_{i}
1	82	81	6	7
2	67	75	14	11
3	91	85	3	4
4	98	90	1	2
5	74	80	11	8
6	52	60	15	15
7	86	94	4	1
8	95	78	2	9
9	79	83	9	6
10	78	76	10	10
11	84	84	5	5
12	80	69	8	13
13	69	72	13	12
14	81	88	7	3
15	73	61	12	14

Keystrokes:
XEQ ALPHA SIZ
XEQ ALPHA ISP
6 ENIERA 7 A
14 ENTER 11 A
3 ENTER 4 A
1 ENTER 2 A
11 ENTERA $8 \triangle A$
5 ENTER 5 A
5 ENTER 5 C
15 ENTERA 15 A
4 ENTER 1 - A
2 ENTER 9 A
9 ENTERA 6Δ
10 ENTERA 10 A
5 ENTER 5 A
8 ENTERA $13 \triangle$
13 ENTER 12 A
7 ENTER 3 A
12 ENTER4 14 A
E
R/S

Display:

ISPEAR

ALPHA 003
ALPHA
ma -

NORMAL AND INVERSE NORMAL DISTRIBUTION

This program evaluates the standard normal density function $f(x)$ and the normal integral $\mathrm{Q}(\mathrm{x})$ for given x . If Q is given, x can also be found. The standard normal distribution has mean 0 and standard deviation 1 .

Equations:

1. Standard normal density

$$
f(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}}
$$

2. Normal integral

$$
Q(x)=\frac{1}{\sqrt{2 \pi}} \int_{x}^{x} e^{-\frac{t^{2}}{2}} d t
$$

Polynomial approximation is used to calculate $Q(x)$ for given x.
Define $R=f(x)\left(b_{1} t+b_{2} t^{2}+b_{3} t^{3}+b_{4} t^{4}+b_{5} t^{5}\right)+\epsilon(x)$
where $|\epsilon(\mathrm{x})|<7.5 \times 10^{-8}$

$$
\mathrm{t}=\frac{1}{1+\mathrm{r}|\mathrm{x}|}, \quad \mathrm{r}=0.2316419
$$

$$
\begin{array}{ll}
b_{1}=.319381530, & b_{2}=-.356563782 \\
b_{3}=1.781477937, & b_{4}=-1.821255978 \\
b_{5}=1.330274429 &
\end{array}
$$

Then $Q(x)=\left\{\begin{aligned} R & \text { if } x \geqslant 0 \\ 1-R & \text { if } x<0\end{aligned}\right.$ with error $|\epsilon(x)|<7.5 \times 10^{-8}$

3. Inverse normal

For a given $0<\mathrm{Q}<1$, x can be found such that

$$
\mathrm{Q}=\frac{1}{\sqrt{2 \pi}} \int_{\mathrm{x}}^{\infty} \mathrm{e}^{-\frac{\mathrm{t}^{2}}{2}} \mathrm{dt}
$$

The following rational approximation is used:

Define $y=t-\frac{c_{0}+c_{1} t+c_{2} t^{2}}{1+d_{1} t+d_{2} t^{2}+d_{3} t^{3}}+\epsilon(Q)$
where $|\epsilon(\mathrm{Q})|<4.5 \times 10^{-4}$

$$
t=\left\{\begin{array}{cc}
\sqrt{\ln \frac{1}{Q^{2}}} & \text { if } 0<Q \leqslant 0.5 \\
\sqrt{\ln \frac{1}{(1-Q)^{2}}} & \text { if } 0.5<Q<1
\end{array}\right] \begin{array}{ll}
c_{0}=2.515517 & d_{1}=1.432788 \\
c_{1}=0.802853 & d_{2}=0.189269 \\
c_{2}=0.010328 & d_{3}=0.001308
\end{array}
$$

Then $x=\left\{\begin{aligned} y & \text { if } 0<Q \leqslant 0.5 \\ -y & \text { if } 0.5<Q<1\end{aligned}\right.$ with error $|\epsilon(Q)|<4.5 \times 10^{-4}$

Reference:

Abramowitz and Stegun, Handbook of Mathematical Functions, National Bureau of Standards, 1970.

				SIZE: 019
STEP	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
$\begin{aligned} & 1 . \\ & 2 . \\ & 3 . \\ & 4 . \\ & 5 . \end{aligned}$	Initialize the program. Input x to calculate $\mathrm{f}(\mathrm{x})$. Input x to calculate $Q(x)$. Input $Q(x)$ to calculate x. Repeat any of the above steps if desired.	$\begin{gathered} x \\ x \\ Q(x) \end{gathered}$	XEO INORMD C E (A)	$\begin{gathered} \text { INORMD } \\ \begin{array}{c} \text { F } \end{array}=(f(\mathrm{f})) \\ \mathrm{Q}=(\mathrm{Q}(\mathrm{x})) \\ \mathrm{X}=(\mathrm{x}) \end{gathered}$

Example 1:

Find $f(x)$ and $Q(x)$ for $x=1.18$ and $x=-2.28$.

Keystrokes:

XEQ ALPHA SIZE ALPHA 019
XEQ ALPHA
INORMD ALPHA
1.18 C
1.18 E
2.28 CHS E
2.28 CHS C

Display:

INORMD

$$
\begin{aligned}
& F=0.20 \\
& Q=0.12 \\
& Q=0.99 \\
& F=0.03
\end{aligned}
$$

Example 2:

Given $\mathrm{Q}=0.12$ and $\mathrm{Q}=0.95$, find x .
(If you have run through Example 1, then you can proceed; otherwise you have to initialize the program as described in Example 1).

Keystrokes:

0.12 A
0.95 A

Display:

$$
\begin{aligned}
& X=1.18 \\
& X=-1.65
\end{aligned}
$$

CHI-SQUARE DISTRIBUTION

This program evaluates the chi-square density

$$
\mathrm{f}(\mathrm{x})=\frac{1}{2^{\frac{\nu}{2}} \Gamma\left(\frac{\nu}{2}\right)} \mathrm{x}^{\frac{\nu}{2}-1 \mathrm{e}^{-\frac{\mathrm{x}}{2}}}
$$

where $\mathrm{x} \geqslant 0$

$$
\nu \text { is the degrees of freedom. }
$$

Series expansion is used to evaluate the cumulative distribution
$P(x)=\int_{0}^{x} f(t) d t$

$$
=\left(\frac{\mathrm{x}}{2}\right)^{\frac{\nu}{2}} \frac{\mathrm{e}^{-\frac{\mathrm{x}}{2}}}{\Gamma\left(\frac{\nu+2}{2}\right)}\left[1+\sum_{\mathrm{k}=1}^{\infty} \frac{\mathrm{x}^{\mathrm{k}}}{(\nu+2)(\nu+4) \ldots(\nu+2 \mathrm{k})}\right]
$$

The program calculates successive partial sums of the above series. When two consecutive partial sums are equal, the value is used as the sum of the series.

Remarks:

- Program requires $\nu<141$. If $\nu>141$, erroneous overflow will result.
- If both x and v are large, $\mathrm{f}(\mathrm{x})$ may result in an overflow error.
- If ν is even,

$$
\Gamma\left(\frac{\nu}{2}\right)=\left(\begin{array}{ll}
\frac{\nu}{2} & -1)!
\end{array}\right.
$$

If ν is odd,

$$
\begin{aligned}
& \Gamma\left(\frac{\nu}{2}\right)=\left(\frac{\nu}{2}-1\right)\left(\frac{\nu}{2}-2\right) \ldots\left(\frac{1}{2}\right) \Gamma\left(\frac{1}{2}\right) \\
& \Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}
\end{aligned}
$$

Reference:

Abramowitz and Stegun, Handbook of Mathematical Functions, National Bureau of Standards, 1970.

				SIZE: 007
STEP	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
$\begin{aligned} & \hline 1 \\ & 2 . \\ & 3 . \\ & 4 . \\ & 5 . \\ & 6 . \end{aligned}$	Initialize the program. Input degrees of freedom ν. Input x to calculate $\mathrm{f}(\mathrm{x})$. Input x to calculate $P(x)$. Repeat step 3 or step 4 if desired. For a different ν, go to step 2 .	$\begin{aligned} & \nu \\ & x \end{aligned}$	XEO ECHISQD (A) C (E)	$\begin{gathered} \text { इCHISQD } \\ (\Gamma(\nu / 2)) \\ \mathrm{F}=(\mathrm{f}(\mathrm{x})) \\ \mathrm{P}=(\mathrm{P}(\mathrm{x})) \end{gathered}$

Examples:

1. If degrees of freedom $\nu=20$, find $\mathrm{f}(\mathrm{x}), \mathrm{P}(\mathrm{x})$ for $\mathrm{x}=9.6$ and $\mathrm{x}=15$.
2. If $\nu=3$, find $\mathrm{f}(\mathrm{x})$ and $\mathrm{P}(\mathrm{x})$ for $\mathrm{x}=7.82$.

Keystrokes:

XEQ ALPHA	SIZE ALPHA 007
XEO ALPHA	
ICHISQD ALPHA	

20 A
9.6 C
9.6 E

15 E
15 C
3 A
7.82 C
7.82 E

Display:

ICHISQD

 362880.00$F=0.02$
$P=0.03$
$P=0.22$
$F=0.06$
0.89
$F=0.02$
$P=0.95$
 N゙N゙N゙NべN゙N゙N゙N゙N゙N゙N゙N
FLAGS
 ুুলুুুুুুুুুুুুু

PROGRAM	
1．	Basic Statistics for Two Variables
2．	Moments，Skewness，and Kurtosis
3．Analysis of Variance（One Way）	
4．	Analysis of Variance（Two Way）
5．	Analysis of Covariance（One Way）
6．	Curve Fitting
7．	Multiple Linear Regression
8．	Polynomial Regression
9．	t Statistics
10．	Chi－Square Evaluation
11．	Contingency Table
12．	Spearman＇s Rank Correlation Coefficient
13．	Normal and Inverse Normal Distribution
14．	Chi－Square Distribution

APPENDIX B
 PROGRAM LABELS

＊ A	EAOVTWO	SLIN	EPOLYP
\％B	EBSTAT	ELOG	SPOW
＊BE	EBSTG	EMLRXY	EPTST
＊ C	ェCHISQD	SMLRXYZ	ミSPEAR
＊MD	こCTKK	ミMMTGO	ETSTAT
＊MT	ミCTKKK	EMMTUG	EXSOEV
SANOCOV	LEEFXSQ	SNORMD	
SAOVONE	SEXP	ミPOLYC	

The labels in this list are not in the same order as they appear in the catalog listing for the module．

Portable Computer Division
1000 N.E. Circle Blvd., Corvallis, OR 97330, U.S.A.

European Headquarters
150, Route du Nant-d'Avril P.O. Box, CH-1217 Meyrin 2 Geneva-Switzerland

HP-United Kingdom
(Pinewood)
Gb-Nine Mile Ride, Wokingham
Berkshire RG11 3LL

