HEWLETT-PACKARD

HP.41C

STRESS
ANALYSIS PAC

The program material contained herein is supplied without representation or warranty of any kind. HewlettPackard Company therefore assumes no responsibility and shall have no liability, consequential or otherwise, of any kind arising from the use of this program material or any part thereof.

INTRODUCTION

The HP-41C Stress Analysis Pac provides ready solutions for beam, cross section, column, fatigue, stress state and vector problems.

Each program in this pac is represented by one program in the Application Module and a section in this manual.

The manual provides a description of each program, a set of instructions for using each program, and one or more example problems, each of which includes a list of the keystrokes required for its solution.

Before plugging in your Application Module, turn your calculator off, and be sure you understand the section Inserting and Removing Application Modules. Before using a particular program, take a few minutes to read Format of User Instructions and A Word About Program Usage.
You should first familiarize yourself with a program by running it once or twice while following the complete User Instructions in the manual. Thereafter, the program's prompting or the mnemonics on the overlays should provide the necessary instructions, including which variables are to be input, which keys are to be pressed, and which values will be output.

We hope this pac will assist you in the solution of numerous problems in your discipline. We would appreciate knowing your reactions to the programs, and to this end we have provided a questionnaire inside the front cover of this manual. Would you please take a few minutes to give us your comments on these programs? It is from your comments that we learn how to increase the usefulness of our programs.

CONTENTS

Introduction 1
Contents 2
Inserting and Removing Application Modules 3
Format of User Instructions 5
A Word About Program Usage 6
Section Properties 8Computes the moments of inertia for polygonal sections.
Beams 18
Computes and/or plots deflection, slope, moment and shear for simple, cantilever, fixed, and propped cantilever beams.
Simply Supported Continuous Beams 30
Computes internal bending moments at intermediate supports for continuous beams.
Columns 40
Computes the axial compressive working load for columns.
Mohr Circle Analysis 44
Given a stress configuration and orientation, computes principal stresses and/or the stress configuration for any orientation.
Strain Gage Data Reduction 48
Reduced strains from rectangular and delta strain gages to principal strains and principal stresses.
Soderberg's Equation for Fatigue 52
Calculates the sixth variable from the other five variable of Soderberg's equation.
RPN Vector Calculator 55
Converts the HP-41C to a four high vector stack. Functions include plus, minus, cross product, dot product, X exchange Y roll down, roll up, last X, store, recall, and change sign.
Appendix A-Program Data 59

INSERTING AND REMOVING APPLICATION MODULES

Before you insert an Application Module for the first time, familiarize yourself with the following information.
Up to four Application Modules can be plugged into the ports on the HP-41C. While plugged in, the names of all programs contained in the Module can be displayed by pressing CATALOG 2 .

CAUTION

Always turn the HP-41C off before inserting or removing any plug-in extension or accessories. Failure to turn the HP-41C off could damage both the calculator and the accessory.

To insert Application Modules:

1. Turn the HP-41C off! Failure to turn the calculator off could damage both the Module and the calculator.

2. Remove the port covers. Remember to save the port covers; they should be inserted into the empty ports when no extensions are inserted.

3. Insert the Application Module with the label facing downward as shown, into any port after the last Memory Module. For example, if you have a Memory Module inserted in port 1, you can insert an Application Module in any of ports 2,3 , or 4 . (The port numbers are shown on the back of the calculator.) Never insert an Application
 Module into a lower numbered port than a Memory Module.
4. If you have additional Application Modules to insert, plug them into any port after the last Memory Module. Be sure to place port covers over unused ports.
5. Turn the calculator on and follow the instructions given in this book for the desired application functions.

To remove Application Modules:

1. Turn the HP-41C off! Failure to do so could damage both the calculator and the Module.
2. Grasp the desired Module handle and pull it out as shown.

3.Place a port cap into the empty ports.

Mixing Memory Modules and Application Modules

Any optional accessories (such as the HP-82104A Card Reader, or the HP-82143A Printer) should be treated in the same manner as Application Modules. That is, they can be plugged into any port after the last Memory Module. Also, the HP-41C should be turned off prior to insertion or removal of these extensions.

The HP-41C allows you to leave gaps in the port sequence when mixing Memory and Application Modules. For example, you can plug a Memory Module into port 1 and an Application Module into port 4, leaving ports 2 and 3 empty.

FORMAT OF USER INSTRUCTIONS

The completed User Instruction Form—which accompanies each programis your guide to operating the programs in this Pac.
The form is composed of five labeled columns. Reading from left to right, the first column, labeled STEP, gives the instruction step number.
The INSTRUCTIONS column gives instructions and comments concerning the operations to be performed.
The INPUT column specifies the input data, the units of data if applicable, or the appropriate alpha response to a prompted question. Data input keys consist of 0 to 9 and the decimal point (the numeric keys), EEX (enter exponent), and CHS (change sign).
The FUNCTION column specifies the keys to be pressed after keying in the corresponding input data.
The DISPLAY column specifies prompts, intermediate and final answers, and their units, where applicable.
Above the DISPLAY column is a box which specifies the minimum number of data storage registers necessary to execute the program. Refer to the Owner's Handbook for information on how the SIZE function affects storage configuration.

A WORD ABOUT PROGRAM USAGE

Catalog

When an Application Module is plugged into a port of the HP-41C, the contents of the Module can be reviewed by pressing CATALOG 2 (the Extension Catalog). Executing the CATALOG function lists the name of each program or function in the Module, as well as functions of any other extensions which might be plugged in.

Overlays

Overlays have been included for some of the programs in this Pac. To run the program, choose the appropriate overlay, and place it on the calculator. The mnemonics on the overlay are provided to help you run the program. The program's name is given vertically on the left side. When the calculator is in USER mode, a blue mnemonic identifies the key directly above it. Gold mnemonics are similar to blue mnemonics, except that they are above the appropriate key and the shift (gold) key must be pressed before the re-defined key. Once again, USER mode must be set.

ALPHA and USER Mode Notation

This manual uses a special notation to signify ALPHA mode. Whenever a statement on the User Instruction Form is printed in gold, the ALPHA key must be pressed before the statement can be keyed in. After the statement is input, press ALPHA again to return the calculator to its normal operating mode, or to begin program execution. For example, XEQ SECTION means press the following keys: XEQ ALPHA SECTION ALPHA.
When the calculator is in USER mode, this manual will use the symbols $A-J$ and $-\square-E$ to refer to the reassigned keys in the top two rows. These key designations will appear on the User Instruction Form and in the keystroke solutions to sample problems.

Optional Printer

When the optional printer is plugged into the HP-41C along with this Application Module, all results will be printed automatically. You may also want to keep a permanent record of the values input to a certain program. A convenient way to do this is to set the Print Mode switch to NORMAL before running the program. In this mode, all input values and the corresponding keystrokes will be listed on the printer, thus providing a record of the entire operation of the program.

Downloading Module Programs

If you wish to trace execution, to modify, to record on magnetic cards, or to print a program in this Application Module, it must first be copied into the HP-41C's program memory. For information concerning the HP-41C's COPY function, see the Owner's Handbook. It is not necessary to copy a program in order to run it.

Program Interruption

These programs have been designed to operate properly when run from beginning to end, without turning the calculator off (remember, the calculator may turn itself off). If the HP-41C is turned off, it may be necessary to set flag 21 (SF 21) to continue proper execution.

Use of Labels

You should generally avoid writing programs into the calculator memory that use program labels identical to those in your Application Module. In case of a label conflict, the label within program memory has priority over the label within the Application Pac program.

Label Conflicts With Other Application Pacs

Several labels used in the Stress Analysis module have the same name as those used in other modules. If you have this module and another module plugged into your HP-41C at the same time, you should make sure that the module whose programs you want to use is in the lowest-numbered port to avoid conflicting use of these labels.

Label			Pac
ATANY/X	PROPPED	*L1	Structural Analysis
BEAM	SECTION	*M	
CANT	SIMPLE	${ }^{*} \mathrm{M} 1$	
FIXED	SPAN	*P	
FIXL	VECTOR	* P 1	
FIXR	*AI	*W	
MOMENTS	*B	*W1	
NSPAN	*L		
SIZE?			Structural Analysis, Games, Real Estate

Assigning Program Names

Key assignments to keys $\Delta-\Omega$ and $\square A-\square$ take priority over the automatic assignments of local labels in the Application Module. Be sure to clear previously assigned functions before executing a Module program.

SECTION PROPERTIES

The properties of polygonal sections (see figure 1) may be calculated using this program. The (x, y) coordinates of the vertices of the polygon (which must be located entirely within the first quadrant) are input sequentially for a complete, clockwise path around the polygon. Holes in the cross section, which do not intersect the boundary, may be deleted by following a counter-clockwise path.

Figure 1

Figure 2

The keyboard overlay (see figure 2) defines the keys according to their function in SECTION. The shifted A key can be used to clear an existing section and restart a new input sequence. The shifted B key restarts the input sequence but does not clear the existing section. Its' use allows deletion, addition, and correction of existing sections.
A special feature on the shifted cey key allows addition or deletion of circular areas. After the point by point traverse of the section has been completed, circular deletions or additions are specified by the (x, y) coordinates of the circle centers and by the circle diameters. If the diameter is specified as a
positive number, the circular areas are added. A negative diameter causes circular areas to be deleted. Example 4 shows an application of this feature. After all values have been input, the coordinates of the centroid (\bar{x}, \bar{y}) and the area A of the section may be output using key A. The moment of inertia about the original x axis I_{x}, about the original y axis I_{y} and the product of inertia I_{xy} are output using \boldsymbol{B}. Similar moments, $\mathrm{I}_{\overline{\mathrm{x}}}, \mathrm{I}_{\overline{\mathrm{y}}}$, and $\mathrm{I}_{\overline{\mathrm{xy}}}$, about an axis translated to the centroid of the section are calculated when \mathbf{C} is pressed.
Pressing D calculates the moments of inertia, $\mathrm{I}_{\overline{\mathrm{x}} \measuredangle}$ and $\mathrm{I}_{\overline{\mathrm{y}} \measuredangle}$, about the principal axis. The rotation angle b between the principal axis and the axis which was translated to the centroid is also calculated. The moments of inertia $\mathrm{I}_{\mathrm{x}}{ }^{\prime}, \mathrm{I}_{\mathrm{y}}{ }^{\prime}$, the polar moment of inertia J and the product of inertia $\mathrm{I}_{\mathrm{xy}}{ }^{\prime}$ may be calculated about any arbitrary axis by specifying its location and rotation with respect to the original axis and pressing F.

Equations:

$$
\begin{gathered}
A=-\sum_{i=0}^{n}\left(y_{i+1}-y_{i}\right)\left(x_{i+1}+x_{i}\right) / 2 \\
\bar{x}=\frac{-1}{A} \sum_{i=0}^{n}\left[\left(y_{i+1}-y_{i}\right) / 8\right]\left[\left(x_{i+1}+x_{i}\right)^{2}+\left(x_{i+1}-x_{i}\right)^{2} / 3\right] \\
\bar{y}=\frac{1}{A} \sum_{i=0}^{n}\left[\left(x_{i+1}-x_{i}\right) / 8\right]\left[\left(y_{i+1}+y_{i}\right)^{2}+\left(y_{i+1}-y_{i}\right)^{2} / 3\right] \\
I_{x}=\sum_{i=0}^{n}\left[\left(x_{i+1}-x_{i}\right)\left(y_{i+1}+y_{i}\right) / 24\right]\left[\left(y_{i+1}+y_{i}\right)^{2}+\left(y_{i+1}-y_{i}\right)^{2}\right] \\
I_{y}=-\sum_{i=0}^{n}\left[\left(y_{i+1}-y_{i}\right)\left(x_{i+1}+x_{i}\right) / 24\right]\left[\left(x_{i+1}+x_{i}\right)^{2}+\left(x_{i+1}-x_{i}\right)^{2}\right] \\
I_{x y}=\sum_{i=0}^{n} \frac{1}{\left(x_{i+1}-x_{i}\right)}\left[\frac{1}{8}\left(y_{i+1}-y_{i}\right)^{2}\left(x_{i+1}+x_{i}\right)\left(x_{i+1}^{2}+x_{i}^{2}\right)\right. \\
+\frac{1}{3}\left(y_{i+1}-y_{i}\right)\left(x_{i+1} y_{i}-x_{i} y_{i+1}\right)\left(x_{i+1}^{2}+x_{i+1} x_{i}+x_{i}^{2}\right) \\
\left.+\frac{1}{4}\left(x_{i+1} y_{i}-x_{i} y_{i+1}\right)^{2}\left(x_{i+1}+x_{i}\right)\right]
\end{gathered}
$$

$$
\begin{gathered}
\mathrm{I}_{\overline{\mathrm{x}}}=\mathrm{I}_{\mathrm{x}}-A \overline{\mathrm{y}}^{2} \\
\mathrm{I}_{\overline{\mathrm{y}}}=\mathrm{I}_{\mathrm{y}}-A \overline{\mathrm{x}}^{2} \\
\mathrm{I}_{\overline{\mathrm{xy}}}=\mathrm{I}_{\mathrm{x} \mathrm{y}}-A \overline{\mathrm{x}} \overline{\mathrm{y}} \\
\mathrm{~L}=\frac{1}{2} \tan ^{-1}\left(\frac{-2 \mathrm{I}_{\overline{\mathrm{xy}}}}{\mathrm{I}_{\overline{\mathrm{x}}}-\mathrm{I}_{\bar{y}}}\right) \\
\mathrm{I}_{\mathrm{x}}^{\prime}=\mathrm{I}_{\overline{\mathrm{x}}} \cos ^{2} \theta+\mathrm{I}_{\overline{\mathrm{y}}} \sin ^{2} \theta-\mathrm{I}_{\overline{\mathrm{xy}}} \sin 2 \theta \\
\mathrm{I}_{\mathrm{y}}^{\prime}=\mathrm{I}_{\overline{\mathrm{y}}} \cos ^{2} \theta+\mathrm{I}_{\overline{\mathrm{x}}} \sin ^{2} \theta+\mathrm{I}_{\overline{\mathrm{xy}}} \sin 2 \theta \\
\mathrm{~J}=\mathrm{I}_{\mathrm{x}}^{\prime}+\mathrm{I}_{\mathrm{y}}^{\prime} \\
\mathrm{I}_{\mathrm{xy}}^{\prime}=\frac{\left(\mathrm{I}_{\overline{\mathrm{x}}}-\mathrm{I}_{\overline{\mathrm{y}}}\right)}{2} \sin 2 \theta+\mathrm{I}_{\overline{\mathrm{xy}}} \cos 2 \theta \\
\mathrm{~A}_{\text {circle }}=\frac{\pi \mathrm{d}^{2}}{4} \\
\mathrm{I}_{\text {circle }}=\frac{\pi \mathrm{d}^{4}}{64}
\end{gathered}
$$

where:
$\mathrm{x}_{\mathrm{i}+1}$ is the x coordinate of the current vertex point;
y_{i+1} is the y coordinate of the current vertex point;
x_{i} is the x coordinate of the previous vertex point;
y_{i} is the y coordinate of the previous vertex point;
A is the area;
$\overline{\mathrm{x}}$ is the x coordinate of the centroid;
\bar{y} is the y coordinate of the centroid;
I_{x} is the moment of inertia about the x -axis;
I_{y} is the moment of inertia about the y -axis;
I_{xy} is the product of inertia;
$\mathrm{I}_{\overline{\mathrm{x}}}$ is the moment of inertia about the x -axis translated to the centroid;
$\mathrm{I}_{\overline{\mathrm{y}}}$ is the moment of inertia about the y -axis translated to the centroid;
$\mathrm{I}_{\overline{\mathrm{xy}}}$ is the product of inertia about the translated axis;
Δ is the angle between the translated axis and the principal axis;
$\mathrm{I}_{\overline{\mathrm{x}}}{ }_{\Delta}$ is the moment of inertia about the translated, rotated, principal x -axis;
$\mathrm{I}_{\overline{\mathrm{y}} L}$ is the moment of inertia of inertia about the translated, rotated, principal y-axis;
$\boldsymbol{\theta}$ is the angle between the original axis and an arbitrary axis;
$\mathrm{I}_{\mathrm{x}}{ }^{\prime}$ is the x moment of inertia about the arbitrary axis;
$I_{y}{ }^{\prime}$ is the y moment of inertia about the arbitrary axis;
\mathbf{J} is the polar moment of inertia about the arbitrary axis;
$\mathrm{I}_{\mathrm{xy}}{ }^{\prime}$ is the product of inertia about the arbitrary axis;
d is the diameter of a circular area.

Reference:

Wojciechowski, Felix; Properties of Plane Cross Sections; Machine Design; p. 105, Jan. 22, 1976.

Remarks:

The polygon must be entirely contained in the first quadrant.
Rounding errors will accumulate if the centroid of the section is a large distance from the origin of the coordinate system.
Curved boundaries may be approximated by straight line segments.

STEP	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
9	Calculate any or all of the following*:			
	Centroid and area;		(A)*	CENTROID
	Properties about original axis;		[${ }^{\text {* }}$	ORIGINAL AXIS
	lated to centroid		C*	CENTROID AXIS
	Properties about principal axis and angular orientation of principal axis;		(0)	PRINCIPAL AXIS
	Specify an arbitrary axis and rota-			
	tion angle and calculate properties	x^{\prime}	ENTER ${ }^{\text {a }}$	
	about that axis.	y^{\prime}	ENTER	
		θ	F*	YOUR AXIS
10	For a new problem, press \square and go to Step 2. To modify the current section, go to Step 6 or Step 7.		- \square^{\square}	$\mathrm{X} 0=$?
	* If your HP-41C does not have a printer, you must press R/S for output of each section property.			

Example 1:

What is the moment of inertia about the x -axis $\left(\mathrm{I}_{\mathrm{x}}\right)$ for the rectangular section shown? What is the amount of inertia about the neutral axis through the centroid of the section ($\mathrm{I}_{\mathrm{x} \measuredangle}$)?

Keystrokes:	$(\mathrm{SIZE} \geqslant 017)$	Display:
XEQ ALPHA	SECTION ALPHA	$\mathrm{XO}=$?
0 R/S		$Y 0=$?
0 R/S		$\mathrm{X} 1=$?
$0 \mathrm{R} / \mathrm{S}$		Y1 $=$?
$5 \mathrm{R} / \mathrm{S}$		$\mathrm{X} 2=$?
$3 \mathrm{R} / \mathrm{S}$		Y2 $=$?
5 R/S		X3 $=$?
$3 \mathrm{R} / \mathrm{S}$		Y3 $=$?
$0 \mathrm{R} / \mathrm{S}$		X4 $=$?
$0 \mathrm{R} / \mathrm{S}$		Y4 $=$?
0 R/S		X5 $=$?
B		ORIGINAL AXIS
R/S *		$I X=125.0 E 0$
R/S *		IY=45.00E0
R/S *		$I X Y=56.25 E 0$
D		PRINCIPAL AXIS
R/S *		IX $=31.25$
R/S *		$I Y=11.25 E 0$
R/S *		$I X Y=0.000 E 0$
R/S *		$\measuredangle=0.000 E 0$

Since $\measuredangle=0$ we would expect $\mathrm{I}_{\overline{\mathrm{x}}\llcorner }$ to equal $\mathrm{I}_{\overline{\mathrm{x}}}$. Press C to calculate $\mathrm{I}_{\overline{\mathrm{x}}}$, $\mathrm{I}_{\overline{\mathrm{y}}}$, and $\mathrm{I}_{\overline{\mathrm{x}} \bar{y}}$ and you will see that this prediction is correct. Also, $\mathrm{I}_{\overline{\mathrm{x}} \overline{\bar{y}}}$ is zero about the principal axis.

Keystrokes:

C

R/S *
R/S *
R/S *

Display:
CENTROID AXIS
IX=31.25E0
$I Y=11.25 E 0$
$I X Y=0.000 E 0$

Example 2:

Calculate the section properties for the beam shown below.

Keystrokes: $(S I Z E \geqslant 017)$
XEQ ALPHA SECTION ALPHA
0 R/S 0 R/S 0 R/S 14 R/S
$16 R / S 14 R / S 16 R / S 13 R / S$
1 R/S $13 R / S 1 R / S 2 R / S$
$11 R / S 2 R / S 11 R / S 0 R / S$
0

R / S	$*$
R / S	$*$
R / S	

(B)

R/S *
R/S *
R/S *

Display:

$$
x 0=?
$$

X9=?

CENTROID
$X=5.194 E 6$
$Y=6.541 \mathrm{E}=$
AREA $=49$. ИOED
ORIGINAL AXIS
$I X=3.676 E 3$
$\mathrm{IY}=2.256 \mathrm{E} 3$
$\mathrm{IXY}=1.890 \mathrm{E} .3$

Keystrokes:

D
R/S *
R/S *
R/S *
R/S *

Display:
CENTROID AXIS
$\mathrm{IX}=1.580 \mathrm{E} 3$
$I Y=934.5 E 0$
$\mathrm{IXY}=225.6 \mathrm{E} 0$
FRINCIPAL AXIS
$I X=1.651 E 3$
$I Y=863.5 E \square$
IXY=0.000ED
$\langle=-17.48 \mathrm{E} 0$

Below is a figure showing the translated axis and the rotated, principal axis of example 2. Notice that the sign of the angle is negative, representing a clockwise rotation.

Example 3:

What is the centroid of the section below? The inner triangular boundary denotes an area to be deleted.

Keystrokes: (SIZE $\geqslant 017$)
Input for the outer triangle:
XEO ALPHA SECTION ALPHA
3 R/S 1 R/S 3 R/S 7 R/S
$14 R / S 7 R / S 3 / S 1 R / S \quad X 4 ?=$
Delete inner triangle:

B
$4 \mathrm{R} / \mathrm{S}$
$4 \mathrm{R} / \mathrm{S}$
A
R / S
R / S
R / S

Display:
$X 0 ?=$
$X 0 ?=$

X4 $=$?
CENTROID
$X=6.845 E 0$
$Y=4.940 E 0$
AREA $=28.00 E 0$

Example 4:

For the part below, compute the polar moment of inertia about point A . Point A denotes the center of a hole about which the part rotates. The area of the hole must be deleted from the cross section.

Keystrokes: (SIZE $\geqslant 017$)
Display:
XEQ ALPHA SECTION ALPHA XO=?

Delete hole:
4 ENTER4 6 ENTER4 .5 CHS
C
0.00000

Compute J about $(0.4,0.6)$ with θ of zero.

[^0]
BEAMS

This program calculates deflection, slope, moment and shear at any point for:
simple beams;

cantilever beams;

fixed beams;

and propped cantilever beams.

Beam loading may include combinations of point loads, distributed loads, applied moments and trapezoidally distributed loads. Any number or combination of loads may be used assuming sufficient data storage registers are available. Minimum size must be set according to the formula below:

$$
\begin{aligned}
\text { SIZE }_{\min }=20 & +2 * \text { Number of distributed loads } \\
& +3 * \text { Number of point loads } \\
& +3 * \text { Number of applied moments } \\
& +5 * \text { Number of trapezoidal loads }
\end{aligned}
$$

A size setting of 40 is adequate for most loadings.
If the size is set larger than 23 but smaller than necessary for program execution the message:

$$
S I Z E>=N N N
$$

will be displayed. This message tells you that your last input was ignored and you must increase register size to at least NNN to continue program execution.

If you have an optional printer this program will list and plot values of deflection, angle, moment or shear for evenly spaced points along the beam.

The program can be divided into four operating functions: input, editing, calculation, and printing/plotting. The input section is initialized by executing SIMPLE, CANT, FIXED, or PROPPED. This selects the type of beam to be analyzed and prompts for the length of the beam. Key in the length and press R/S. The display will prompt RDY A-I. This indicates that the keys are defined according to the overlay below:

The shifted top row keys allow input of the beam variables. The unshifted top row keys A - D allow computation of deflection, slope, moment or shear for a given x. Key E provides an editing option. The editing option allows you to review all inputs and change input errors. The second row of keys provides printout of beam properties and plotting of beam deflection, slope, moment or shear with the optional printer.

Equations:

For equations, refer to cited reference.

Definitions:

I is the moment of inertia of the section;
E is the modulus of elasticity of the material;
L is the length of the beam;
a is the displacement of the concentrated load from the left end of the beam;
P is the amount of the concentrated load;
c is the displacement of the applied moment from the left end of the beam;
M is the amount of the applied moment;
W is the amount of a uniformly distributed load over the entire beam with dimensions force per unit length;
d is the distance to the beginning of a trapezoidal load;
W_{d} is the initial value of a trapezoidal load with units of force per unit length;
e is the distance to the end of a trapezoidal load;
W_{e} is the final value of a trapezoidal load;
x is the point of interest along the beam;
y is the deflection at x;
Δ is the slope (change in y per change in x) at x;
M_{x} is the internal bending moment at x ;
V is the shear at x .
A simply supported beam with one of each type of load is shown below:

SIGN CONVENTIONS FOR BEAMS

NAME	VARIABLE	SENSE	SIGN
DEFLECTION	y	\uparrow	+
SLOPE	Δ	+	+
INTERNAL MOMENT	M_{x}	\square	+
SHEAR	V	$\uparrow \square$	+
EXTERNAL FORCE OR LOAD	P or W	\downarrow	+
EXTERNAL MOMENT	M	+	+

Remarks:

Deflections must not significantly alter the geometry of the probiem.
Beams must be of constant cross section for deflection and slope equations to be valid.

Stresses must be in the elastic region.
Programs are not unit dependent. Any mutually consistent set of units will work.

Reference:

Roark, Raymond J., Young, Warren C., Formulas for Stress and Strain, McGraw-Hill Book Company, 1975.

Beams

STEP	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
5	Trapezoidal load starting point, starting load, end point, and ending load.	$\begin{gathered} \mathrm{d} \\ \mathrm{~W}_{\mathrm{d}} \\ \mathrm{e} \\ \mathrm{~W}_{\mathrm{e}} \end{gathered}$		$\begin{gathered} \mathrm{d} \\ \mathrm{~W}_{\mathrm{o}} \\ \mathrm{e} \\ 0.000 \end{gathered}$
	Applied moment location and applied moment.	$\begin{gathered} \text { C } \\ \text { M } \end{gathered}$	$\begin{aligned} & \text { ENTERA } \\ & \square E \end{aligned}$	C
	OPTIONAL: Review and/or edit your inputs (e.g. if you wish to modify L, key in a new L and press R/S, otherwise just press R/S).	$\begin{gathered} (\mathrm{L}) \\ \left(\mathrm{E}^{*} \mathrm{I}\right) \end{gathered}$	E R/S R/S R/S	$\begin{gathered} \text { BEAM TYPE } \\ L= \\ E^{*} \mid= \\ \text { LOAD } \end{gathered}$
	An "END" signifies that all data has been displayed. Pressing R/s again will start the edit routine over.		R/S	END
6	If you have an optional HP-82143A printer and wish to plot, go to Step 9			
7	Key in x to specify the point of interest and calculate deflection or slope or moment or shear.	$\begin{aligned} & x \\ & x \\ & x \\ & x \\ & x \end{aligned}$	A B C D	$\begin{gathered} \mathrm{y}= \\ b= \\ \mathrm{MX}= \\ \mathrm{V}= \end{gathered}$
8	For a new calculation with the same loading, go to Step 6. For new loads, go to Steps 4 or 5 . For new section properties, go to Step 3 but skip Step 4 if no loads change.			
9	Plot deflection or slope or moment or shear.		$\begin{aligned} & \Phi \\ & G \\ & G \\ & \hline \\ & \hline \end{aligned}$	
				$\begin{gathered} \text { BEAM TYPE } \\ L= \\ E^{*} \mid= \\ \text { LOADS } \\ \times \text { INC }=? \end{gathered}$
	Key in x increment. Go to Step 8.	XINC	R/S	LIST/PLOT

Example 1:

What is the total moment at the center of the beam below? (It is not necessary to know the values of E or I to solve this problem.)

Keystrokes: (SIZE >=31) Display:

ENG 3	SIMPLE ALPHA	$L=?$	
XEQ ALPHA			
70 R/S		RDY	
20 ENTER	$400-C$	0.000	00
50 ENTER4	1000 C	0.000	00
37 B		0.000	00
70 ENTER4	10000CHS E	0.000	00
35 C		MX $=3$.66E3

Example 2:

For the beam below, what are the values of deflection, slope, moment, and shear at an x of 114 inches?

$$
\begin{aligned}
& \mathrm{W}=14 \mathrm{lb} / \mathrm{in} \\
& \mathrm{E}=30 \times 10^{6} \mathrm{psi} \\
& \mathrm{I}=4.74 \mathrm{in}^{4}
\end{aligned}
$$

140 in

Keystrokes: (SIZE >= 25)

ENG 3		
XEQ ALPHA FIXED	ALPHA	$L=$?
140 R/S		RDY A-I
4.74 ENTER4 30 EEX	$6 \square$	
14 B 30 ENTER4		
147000 E		
114 A		$y=43.72 E-3$
114 B		$\Delta=-3.155 E-3$
114 C		$M X=13.05 E 3$
114 D		$V=444.7 E 0$

Display:
$L=$?
RDY A-I

$$
\begin{aligned}
& y=43.72 E-3 \\
& \Delta=-3.155 E-3 \\
& M X=13.05 E 3 \\
& V=444.7 E O
\end{aligned}
$$

Using the edit feature, change the location of the applied moment to 50.

E	FIXED
R / S	$L=140.0 E 0$
R / S	$E \star=142.2 E 6$
R / S	W=14.00EO
R / S	$\mathrm{C}=30.00 E 0$
$50 \mathrm{R} / \mathrm{S}$	$M=147.0 E 3$

Now calculate the bending moment at $\mathrm{x}=70$.
70 C
$M X=-41.07 E 3$

Example 3:

Repeat Example 1, but plot bending moment in increments of 2.5 inches along the length of the beam. An optional HP-82143A thermal printer is required for this problem.

Keystrokes: (SIZE >= 31)
Display:

70 R/S
20 ENTERA 400 C 50 ENTER4
1000 [C] 37 (70 ENTERA
10000 CHS E $0.000 \quad 00$

Keystrokes:

H

| |
| :--- | :--- |

$2.5 \mathrm{R} / \mathrm{S}$

Display:

```
SIMPE
\(1=76.80 \mathrm{E}\)
E*Th. \(109 \mathrm{E} 0^{*}\)
```

$a=20.00 \mathrm{E}$
$\mathrm{P}=46 \mathrm{~B}$. EE E
$\mathrm{a}=59.60 \mathrm{E}$
$\mathrm{F}=1.60 \mathrm{e}=3$
$\mathrm{H}=37 . \mathrm{BEED}$
$6=76.106 \mathrm{E}$
$\mathrm{H}=-1 \mathrm{1} .6 \mathrm{ge} 3$
EHI
XINC?
$\mathrm{X}=0 . \mathrm{Bn日E} \mathrm{E}$
MX=6. 606 E
$\mathrm{X}=2.560 \mathrm{E} 0$
HY=4.19353
$\mathrm{X}=5.00 \mathrm{EE}$
HX=8. 155 E 3
$\mathrm{Y}=7.506 \mathrm{E}$
MX=11.89E3
$\mathrm{X}=16.90 \mathrm{E}$
HX=15.39E3

Keystrokes:

Display:
$8=12.5050$
$M=18.655$
$\mathrm{X}=15,6 \mathrm{ED}$
$\mathrm{HX}=21.695$
$\mathrm{X}=17.5 \mathrm{ED}$
MX=24. 50E
$\mathrm{X}=20.60 \mathrm{E}$
ME27. 17 E 3
$\mathrm{X}=22.5 \mathrm{DE}$
HX=28.4IE3
$\mathrm{X}=25.04 \mathrm{E}$
HR=29.5.5E
$\mathrm{X}=27.5 \mathrm{DE} 5$
$\mathrm{HE}=39.41 \mathrm{E}$
$\mathrm{x}=36.00 \mathrm{E}$
HX=31. UEE
$\mathrm{X}=32.5 \mathrm{ED}$
ME $=31.485$
$\mathrm{X}=35 . \operatorname{BED}$
$\mathrm{HX}=31.66 \mathrm{E}$
$\mathrm{X}=37.5 \mathrm{EE}$
MK=31.62E3
$\mathrm{O}=49.06 \mathrm{E} 0$
$\mathrm{MX}=31.34 \mathrm{E} 3$

Keystrokes:

Display:
$\mathrm{X}=42.5 \mathrm{EE} 6$
HX=30.84E3

MX=36.1063
$8=47.50 \mathrm{E} 0$
HK29.13E3

X=50. 00 ED
MX=27.93E3

Y=5.5日E
HK=24. BDE^{3}
$\mathrm{Y}=55.04 \mathrm{E} 0$
$\mathrm{mx}=19.83 \mathrm{E} 3$
$\mathrm{X}=57.50 \mathrm{E}$
$\mathrm{MX}=15.44 \mathrm{E} 3$
$8=69.06 \mathrm{E} 0$
$\mathrm{mx}=10.81 \mathrm{E} 3$
$\mathrm{Y}=62.50 \mathrm{ED}$
HX=5.958E3
$X=65.06 \mathrm{E} 0$
$\mathrm{HX}=869.6 \mathrm{E}$

Y 67.5 BE 9
$\mathrm{MX}=-4.45 \mathrm{EE} 3$
$\mathrm{x}=70.86 \mathrm{E} 0$
H: H .90 ED

Keystrokes:

Display:

Note that the value of moment at $X=70.00$ does not equal the applied moment of $-10,000$. This is due to the fact that internal moment is undefined at the point of application of an applied moment. Similarly, shear is undefined directly under a point load.

Example 4:

Calculate deflection, slope, moment and shear for the beam above at the point $x=40$.

Keystrokes: (SIZE >= 25)
ENG 3
XEQ ALPHA CANT ALPHA
75 R/S
23 ENTER 35 ENTER 47 ENTER 4

Display:
$L=$?
RDY A-I
0.00000
150.006
$y=-87.66 E-3$
$\Delta=4.006 E-3$
$M X=-4.785 E 3$
$V=-546.8 E 0$

SIMPLY SUPPORTED CONTINUOUS BEAMS

This program, in combination with the beam program SIMPLE, solves for the intermediate couples present at the supports of a continuous beam.

Each span of the beam may have a unique length, cross section, modulus of elasticity and/or loading. Beam ends may be rigidly fixed or simply supported.

The program SIMPLE is used to input the length, section moment of inertia, and loading for each span of the continuous beam. After the data for a particular span has been keyed in using SIMPLE, program SPAN is executed to transform the data. MOMENTS, which is called after all spans have been entered, computes the internal bending moments at each intermediate support.

If the left end of the continuous beam is rigidly fixed, execute $F I X L$ instead of SIMPLE. After some computation time the prompt $L=$? will be displayed indicating that the calculator is ready for the first span.

If the right end of the continuous beam is rigidly fixed, key in the span properties as usual. After all spans (including the last span) have been completed, execute FIXR.

If you find that you have made an error during input of a span or wish to modify a span after initial computation, the NSPAN program may be used. Simply key in your data, key in the span number ($1=$ leftmost span $)$ and execute NSPAN.

The number of spans is limited only by the number of data storage registers.
A rule of thumb for the required size is:

$$
\begin{aligned}
\text { SIZE }=35 & +4^{*} \text { (Number of spans) } \\
& +4^{*} \text { (Number of fixed ends) }
\end{aligned}
$$

A moderately complex problem with 3 spans takes less than 50 registers. With three optional plug in RAM modules, over 50 spans could be combined.

If you set the size larger than 23^{*} but smaller than necessary for problem solution, the prompt

$$
S I Z E>=N N N
$$

will be displayed during data input. This indicates that the size should be increased to at least NNN.

Algorithm:

The program starts by assuming that all internal moments are zero. Based on this assumption it calculates the moment across the first intermediate supports using:

$$
M_{1}=\frac{\left(L_{1}-L_{2}\right)-\frac{M_{0} L_{1}}{6 E_{1} I_{1}}-\frac{M_{2} L_{2}}{6 E_{2} I_{2}}}{\left(\frac{L_{1}}{3 E_{1} I_{1}}+\frac{L_{2}}{3 E_{2} I_{2}}\right)}
$$

The following definitions apply:

Δ_{1} is the slope of the right end of beam one assuming $M_{1}=0$. Δ_{2} is the slope at the left end of beam two assuming $M_{1}=0$.

After calculation M_{1} is used in an analogous equation for the next support. This is repeated until the end of the beam is reached. The program repeats this procedure until all calculated moments remain unchanged within the ENG 3 display setting for one complete cycle of moment calculations.

Reference:

Roark, Raymond J., Young, Warren C.; Formulas for Stress and Strain, McGraw-Hill, 1975.

[^1]
Remarks:

If a span has no loads, use a point load of zero located anywhere in the span. If a fixed end is specified, the wall reactions are computed and output as if the fixed end constituted another intermediate support.

STEP	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
10	If the right end is fixed rather than simply supported.		XEQ FIXR	$\mathrm{L}=$?
11	Calculate internal moments (L and R refer to the left and right sides of each support).			$\begin{aligned} & \text { INT MOMENTS } \\ & \text { M1L }= \\ & \text { M1R= } \\ & \text { M2L }= \\ & \text { M2R }= \end{aligned}$
12	For a new case, go to step 2. * Use R/S if you do not have a printer.		R/S	$\mathrm{L}=$?

Example 1:

Compute the couples at the wall and the intermediate support for the beam above. Prove that these moments are correct by matching the slope at the left side of the support with the slope at the right side of the support. If we assume that the section properties are constant along the beam, they cancel out of the equation and we may use:

$$
\mathrm{E}=\mathrm{I}=1
$$

Keystrokes: (SIZE $\geqslant 34$)

ENG 3

Fixed left end:
XEQ ALPHA FIXL ALPHA $\quad L=?$

Span 1:
100 R/S
1 ENTER 1 A

25 B

XEQ ALPHA
ALPHA SPAN
ALPHA

Display:

$L=?$

L=?

RDY A-I
1.00000
0.00000

Span 2:
90 R/S 25 B $0.000 \quad 00$

Include cantilevered end as an applied moment at $\mathrm{c}=90$ in span 2.

$$
\mathrm{M}=-(30 * 1000)-(30 *(30 / 2) * 25)
$$

90 ENTERT 1000 CHS ENTER
30 区
LASTX ENTER $x 2 \rightarrow$

$25 \times$		-41.25 03
E		0.00000
XEQ ALPHA	SPAN ALPHA	L=?
XEO ALPHA	MOMENTS ALPHA	INT MOMENTS
R/S *		M1L $=-25.24 \mathrm{E} 3$
R/S *		$M 1 R=25.24 E 3$
R/S *		M2L $=-12.03 E 3$
R/S *		M2R=12.03E3

Check results:
First compute slope at right end of first section.

XEO ALPHA SIMPLE ALPHA	$L=$?	
100 R/S 0 ENTER		
25.24 EEX 3 -	0.000	00
25 B 100 ENTER4		
12.03 CHS EEX 3 -E	0.000	00
100 B	$\triangle=220.0 E 3$	

Compute slope at left end of second section.

XEQ ALPHA SIMPLE ALPHA	L=?	
90 R/S 0 ENTER		
12.03 EEX 3 E	0.000	00
25 B 90 ENTER4		
1000 CHS ENTER4 30 x LASTX		
ENTER4 x		
$2 ¢ 25 \times \square \square$	0.000	00
0 B	$\measuredangle=22$.3E3

Since the slopes agree, the moments have been correctly balanced.**

[^2][^3]

Find the moments at points S_{2} and S_{3} for the configuration above. Assume the product of EI is the same for all sections and thus cancels out of the solutions (use 1 for E and I).

Keystrokes: $($ SIZE $\geqslant 39)$	Display:	
XEQ ALPHA SIMPLE ALPHA	$L=$?	
177.17 R/S	RDY A-I	
1 ENTER4 1 A	1.000	00
88.58 ENTER4 $26976 \square \square$	0.000	00
XEO ALPHA SPAN ALPHA	$L=$?	
147.64 R/S		
49.21 ENTER4 15736 C	0.000	00
49.21 ENTER4 +15736 -	0.000	00
XEO ALPHA SPAN ALPHA	L=?	
147.64 R/S 335 B	0.000	00
147.64 ENTER4 47.24 ENTER		
11240 CHS X E	0.000	00
XEQ ALPHA SPAN ALPHA	L=?	
XEQ ALPHA MOMENTS ALPHA	INT MOMENTS	
R/S *	M1L $=-720.2 E 3$	
R/S *	M1R $=720.2 \mathrm{E} 3$	
R/S *	M2L $=-530.8 \mathrm{E} 3$	
R/S *	M2R $=530.8 \mathrm{E} 3$	

[^4]If the concentrated load on span one (26976) were replaced with a load of 30000 , what would the moments be?

R/S *		$L=$?
177.17 R/S		
88.58 ENTER ${ }^{\text {a }}$	30000 C	
1 XEQ ALPHA	NSPAN ALPHA	$L=$?
XEQ ALPHA	MOMENTS ALPHA	INT MOMENTS
R/S		M1L $=-778.3 E 3$
R/S		M1R $=778.3 E 3$
R/S		$M 2 L=-516.3 E 3$
R/S		M2R $=516.3 E 3$

If you do have the optional HP-82143A thermal printer, plot the moment distribution for span 1. Use an increment of 10.

XEQ ALPHA SIMPLE ALPHA	$L=$?
177.17 R/S 88.58 ENTER4	
30000 C	0.00000
177.17 ENTER4	
778.3 CHS EEX 3 E	0.00000
H	STMPLE
	$\begin{aligned} & L=177.2 E 0 \\ & E \equiv I=6 . \operatorname{ABCED} \end{aligned}$
	$\begin{aligned} & a=80.58 \mathrm{E} 日 \\ & \mathrm{~F}=30.09 \mathrm{C} \end{aligned}$
	$0=177.220$
	$\mathrm{M}=-778.3 \mathrm{E}^{3}$
	END
$10 \mathrm{R} / \mathrm{S}$	XINC? $x=0.090 \mathrm{E} 0$
	MX $=6.604 E 0$
	$\begin{aligned} & Y=10.0060 \\ & M X=106.1 E 3 \end{aligned}$

*May take any value in this problem.

Keystrokes:
Display:

```
X=2, 10E0
MK212.2E3
Y=36.60E0
#%=316.2E3
```

$\mathrm{X}=4 \mathrm{D} .6 \mathrm{~g} \mathrm{E}$
$\mathrm{HX}=424$: 3 E 3
$8=50.00 \mathrm{E} 0$
M $=57 \mathrm{D}, 4 \mathrm{E} 3$
$8=66.09 \mathrm{E}$
M $\mathrm{H}=636.5 \mathrm{E} 3$
$8=70.010 \mathrm{E}$
HK=742.6E3
$\mathrm{Y}=8 \mathrm{6} .00 \mathrm{E} 0$
$\mathrm{MH}=848.6 \mathrm{E} 3$
$8=90.66 E 6$
MX=912.1E3

$\mathrm{M}=710.2 \mathrm{E} 3$
$\mathrm{X}=11 \mathrm{~A} .6 \mathrm{E}$
MX=524.3E3
$\mathrm{X}=12 \mathrm{~B}$. BE B
HX=334. 3 E 3
$\mathrm{X}=136 . \mathrm{BED}$
MK=136.4E3
$\mathrm{X}=14 \mathrm{~B}$. BE E
M $=-57.50 \mathrm{E} 3$
$8=150$. 8 E 0
MY $=-251.4 E 3$

38 Simply Supported Continuous Beams

Keystrokes:

Display:

$$
\begin{aligned}
& X=160.9 E 0 \\
& M X=-445.3 E 3 \\
& X=170.9 E 0 \\
& M X=-639.3 E 3
\end{aligned}
$$

NOTES

COLUMNS

This program computes the axial compressive working load for columns.

Keys A through \square are used to input the properties of the column. Key J initiates calculation of the working load. The shifted E key initiates calculation of the maximum stress in the column.

Keying in the radius of a circular column and pressing A is equivalent to keying in the area A, moment of inertia I, and distance from the neutral axis to the edge of the column c .
The effective length factor K is used to account for various column end conditions. If both ends are free to rotate but not translate, the value of K is one. Since this is the most common case, K is automatically set to one when the program is initialized. As the ends become more constrained against rotation and motion the value of K goes down approaching a theoretical minimum of 0.5 . As the ends become less constrained, K values may rise above two. The table below may be used to estimate K values.

EFFECTIVE LENGTH FACTORS, K

End Conditions	Recommended \mathbf{K} values (Theoretical conditions approximated)	Theoretical K values
FIXED-FIXED	0.65	0.5
PINNED-FIXED	0.80	0.7
ROTATION FIXED-FIXED	1.2	1.0
PINNED-PINNED	1.0	1.0
FREE-FIXED	2.1	2.0
ROTATION FIXED-PINNED	2.0	2.0

The initial crookedness a, is initialized equal to zero by the program. The factor of safety FS, is initialized to one by the program.

Equations:

$$
\left.\begin{array}{c}
\mathrm{P}^{2}-\left[\mathrm{s}_{\mathrm{yp}} \mathrm{~A}+\left(1+\frac{\mathrm{acA}}{\mathrm{I}}\right) \mathrm{P}_{\mathrm{e}}\right] \frac{\mathrm{P}}{\mathrm{FS}}+\frac{\mathrm{s}_{\mathrm{yp}} \mathrm{AP}_{\mathrm{e}}}{(\mathrm{FS})^{2}}=0 \\
\mathrm{~s}_{\max }=\frac{\mathrm{P}}{\mathrm{~A}}\left[1+\frac{\mathrm{acA} \mathrm{P}}{\mathrm{e}} \mathrm{I}\right. \\
\mathrm{I}\left(\mathrm{P}_{\mathrm{e}}-\mathrm{P}\right)
\end{array}\right]=\left[\mathrm{P}_{\mathrm{e}}=\frac{\pi^{2} \mathrm{EI}}{(\mathrm{KL})^{2}} .\right.
$$

For circular columns:

$$
\begin{gathered}
\mathrm{A}=\pi \mathrm{r}^{2} \\
\mathrm{I}=\frac{\pi \mathrm{r}^{4}}{4} \\
\mathrm{c}=\mathrm{r}
\end{gathered}
$$

where:
A is the section area;
a is the initial crookedness of the column;
c is the distance from the minimum neutral axis to the edge of the cross section;
$s_{y p}$ is the yield point stress of the material;
E is the modulus of elasticity of the material;
FS is the factor of safety for the column;
K is the effective length factor for the column;
L is the length of the column;
I is the minimum moment of inertia of the column;
P is the column working load;
$\mathrm{s}_{\text {max }}$ is the maximum stress in the column;
P_{e} is the Euler load for the column;
r is the radius of a circular column.

Reference:

Spotts, M. F.; Design of Machine Elements, Prentice-Hall, 1971.
Johnson, Bruce G.; Lin, Fung-Jen; Basic Steel Design, Prentice-Hall, 1974.

Remarks:

Columns must be nominally straight (a must be small), homogeneous, and of uniform cross section.

The program does not check for local buckling within the section.

				SIZE: 012
STEP	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
1	Initialize program. (At this point, $F S=1, a=0$, and $K=1$).		XEO COLUMN	RDY A-J
2	OPTIONAL: If your column is circular key in radius and skip input of A, c and I in Step 3.	r	(a)	$\begin{aligned} & \mathrm{A}= \\ & \mathrm{C}= \\ & \mathrm{I}= \end{aligned}$
3	Key in, in any order: section area,	A	(4	$A=$
	initial crookedness,	a	B	$\mathrm{a}=$
	distance from neutral axis to edge,	c	c	$\mathrm{c}=$
	yield point stress,	s_{yp}	D	SYP =
	modulus of elasticity,	E	E	E=
	factor of safety,	FS	F	FS $=$
	effective length factor,	K	G	$\mathrm{K}=$
	length,	L	H	L=
	moment of inertia.	1	1	$\mathrm{I}=$
4	Calculate working load and/or maximum stress.		[區	$\begin{gathered} \mathrm{P}= \\ \mathrm{SMAX}= \end{gathered}$
5	OPTIONAL: Recall Euler load.		RCL 00	P_{e}
6	For a new case, go to Step 2 and change any or all inputs.			

Example 1:

A circular steel column 1 meter long, 0.0333 meters in diameter has hinged ends $(K=1)$. The initial crookedness is assumed to be 0.0016 meters. Find the columns capacity if the factor of safety is 4 .

$$
\begin{aligned}
& \mathrm{E}=2.07 \times 10^{11} \\
& \mathrm{~N} / \mathrm{m}^{2} \\
& \mathrm{~s}_{\mathrm{yp}}=3.45 \times 10^{8} \\
& \mathrm{~N} / \mathrm{m}^{2}
\end{aligned}
$$

Keystrokes: $(\mathrm{SIZE} \geqslant 012) \quad$ Display:

FIX 2	
XEQ ALPHA COLUMN ALPHA	RDY A-J
$0.0333 \square A$	$A=3.48 E-3$
	$C=0.03$
	$I=9.66 E-7$

Keystrokes:

.0016 B
1 H
4 F
2.07 EEX 11 E
3.45 EEX 8 D
J

Display:
$a=1.60 \mathrm{E}-3$
$L=1.00$
FS $=4.00$
$E=2.07 E 11$
SYP=345,000,000.0
$\boldsymbol{P}=\mathbf{2 2 2 , 5 3 9 . 1 2}$

Example 2:

An I-beam is used as a column with fixed ends $(\mathrm{K}=0.65)$. Calculate the working load and maximum stress.

$$
\begin{array}{rlrl}
\mathrm{FS} & =4 & \\
\mathrm{E} & =30 \times 10^{6} & \mathrm{psi} \\
\mathrm{~s}_{\mathrm{yp}} & =33,000 & \mathrm{psi} \\
\mathrm{c} & =2.625 & & \text { in } \\
\mathrm{a} & =0.50 & & \text { in } \\
\mathrm{I} & =6.16 & \mathrm{in}^{4} \\
\mathrm{~A} & =5.0 & \mathrm{in}^{2} \\
\mathrm{~L} & =140 & & \text { in }
\end{array}
$$

FIX 2	
XEQ ALPHA COLUMN ALPHA	$R D Y=A-J$
. 65 G	$K=0.65$
4 F	$F S=4.00$
30 EEX 6 E	$E=30,000,000.00$
33000 D	SYP=33,000.00
2.625 C	c=2.63
. 5 B	$a=0.50$
6.16	$\mathrm{I}=6.16$
5 A	A $=5.00$
140 H	$L=140.00$
J	$P=16,389.66$
$\square \mathrm{E}$	SMAX $=7,050.80$

Keystrokes: $($ SIZE $\geqslant 012)$

Display:

$$
\begin{aligned}
& K=0.65 \\
& F S=4.00 \\
& E=30,000,000.00 \\
& S Y P=33,000.00 \\
& C=2.63 \\
& a=0.50 \\
& I=6.16 \\
& A=5.00 \\
& L=140.00 \\
& P=16,389.66 \\
& S M A X=7,050.80
\end{aligned}
$$

MOHR CIRCLE ANALYSIS

This program converts an arbitrary two-dimensional stress configuration to principal stresses, maximum shear stress and rotation angle. It is then possible to calculate the state of stress for an arbitrary orientation angle relative to the original stress state.

Equations:

$$
\begin{gathered}
\tau_{\max }=\sqrt{\left(\frac{\mathrm{s}_{\mathrm{x}}-\mathrm{s}_{\mathrm{y}}}{2}\right)^{2}+\tau_{\mathrm{xy}}^{2}} \\
\mathrm{~s}_{1}=\frac{\mathrm{s}_{\mathrm{x}}+\mathrm{s}_{\mathrm{y}}}{2}+\tau_{\max } \\
\mathrm{s}_{2}=\frac{\mathrm{s}_{\mathrm{x}}+\mathrm{s}_{\mathrm{y}}}{2}-\tau_{\max } \\
\mathrm{b}=1 / 2 \tan ^{-1}\left(\frac{-2 \tau_{\mathrm{xy}}}{\mathrm{~s}_{\mathrm{x}}-\mathrm{s}_{\mathrm{y}}}\right)
\end{gathered}
$$

$$
\begin{gathered}
\mathrm{s}=\frac{\mathrm{s}_{1}+\mathrm{s}_{2}}{2}+\tau_{\max } \cos 2(\mathrm{ARB} \Delta-\Delta) \\
\tau=\tau_{\max } \sin 2(\text { ARB } \Delta-\measuredangle)
\end{gathered}
$$

where:
s is the normal stress, and τ is the shear stress;
s_{x} is the stress in the x direction for Mohr circle input;
s_{y} is the stress in the y direction for Mohr circle input;
τ_{xy} is the shear stress on the element for Mohr circle input;
s_{1} and s_{2} are the principal normal stresses;
$\tau_{\text {max }}$ is the maximum shear stress;
Δ is the orientation angle of the principal axis;
ARB b is an arbitrary rotation angle (positive is counterclockwise).

Reference:

Spotts, M. F., Design of Machine Elements, Prentice-Hall, 1971.

Remarks:

Negative stresses and strains indicate compression. Positive and negative shear are represented below.

				SIZE: 010
STEP	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
1	Initialize program.		XEQ MOHR	SX=?
2	Key in stress in x direction.	S_{x}	E/s	$S Y=$?
3	Key in stress in y direction.	S_{y}	R/S	SHEAR?
4	Key in x , y shear stress and calculate principal stresses.	$\tau_{\text {xy }}$		$\begin{gathered} \mathrm{S} 1= \\ \mathrm{S} 2= \\ \text { TAUMAX }= \\ \Delta= \end{gathered}$
5	For a new case, go to Step 1. For stress at an arbitrary orientation, key in an arbitrary angle.	ARBL	$\begin{aligned} & \text { R/S* } \\ & \text { R/S } \\ & \text { R/S } \end{aligned}$	$\begin{gathered} \operatorname{ARB} \angle=? \\ \operatorname{TAU}= \\ S= \end{gathered}$
6	For another arbitrary orientation, go to Step 5. For a new case, go to Step 1. * Press [i/s if you do not have an optional printer.			

Example:

If $\mathrm{s}_{\mathrm{x}}=25000 \mathrm{psi}, \mathrm{s}_{\mathrm{y}}=-5000 \mathrm{psi}$, and $\tau_{\mathrm{xy}}=4000 \mathrm{psi}$, compute the principal stresses and the maximum shear stress. Compute the normal stresses, where shear stress is maximum $\left(b+45^{\circ}\right)$.

strokes: $(S I Z E \geqslant 0$	Display:
ENG 3	
XEQ ALPHA MOHR ALPHA	$S X=$?
25000 R/S	$S Y=$?
5000 CHS R/S	SHEAR $=$?
4000 R/S	S1 $=25.52 \mathrm{E} 3$
R/S *	S2 $=-5.524 E 3$
R/S *	TAUMAX $=15.52 \mathrm{E} 3$
R/S *	$\measuredangle=-7.466 E 0$
R/S *	ARB $\measuredangle=$?
7.466 CHS ENTER4 $45 \pm$ R/S	$T A U=15.52 \mathrm{E} 3$
R/S *	$S=10.00 E 3$

* Press R/S if you do not have a printer.

STRAIN GAGE DATA REDUCTION

This program reduces data from rosette strain gage measurements. Given three strains it calculates the principal strains and the orientation of the principal axis. Given the modulus of elasticity of the material and Poisson's ratio the principal stresses can be generated. Using the principal stresses the stress configuration at an arbitrary angle can be found.
Initializing the program with XEQ RECcauses the program to use correlations for a rectangular rosette. Initializing the program with XEO DELTA causes the program to use correlations for a delta (equiangular) rosette.

Strain Gage Equations:

CONFIGURATION CODE	1	2
TYPE OF ROSETTE	RECTANGULAR	DELTA (EQUIANGULAR)
PRINCIPAL STRAINS: $\boldsymbol{\epsilon}_{1}, \boldsymbol{\epsilon}_{2}$	$\frac{1}{2}\left[\epsilon_{0}+\epsilon_{90} \pm \sqrt{2\left(\epsilon_{0}-\epsilon_{45}\right)^{2}+2\left(\epsilon_{45}-\epsilon_{90}\right)^{2}}\right]$	$\begin{aligned} & \frac{1}{3}\left[\epsilon_{0}+\epsilon_{120}+\epsilon_{60}\right. \\ & \left. \pm \sqrt{2\left(\epsilon_{0}-\epsilon_{120}\right)^{2}+2\left(\epsilon_{120}-\epsilon_{60}\right)^{2}+2\left(\epsilon_{60}-\epsilon_{0}\right)^{2}}\right] \end{aligned}$
CENTER OF MOHR CIRCLE $\frac{s_{1}+s_{2}}{2}$	$\frac{\mathrm{E}\left(\boldsymbol{\epsilon}_{0}+\boldsymbol{\epsilon}_{90}\right)}{2(1-\nu)}$	$\frac{\mathrm{E}\left(\boldsymbol{\epsilon}_{0}+\epsilon_{120}+\epsilon_{60}\right)}{3(1-\nu)}$
MAXIMUM SHEAR STRESS: $\tau_{\text {max }}$	$\frac{\mathrm{E}}{2(1+\nu)} \sqrt{2\left(\epsilon_{0}-\epsilon_{45}\right)^{2}+2\left(\epsilon_{45}-\epsilon_{90}\right)^{2}}$	$\frac{\mathrm{E}}{3(1+\nu)} \sqrt{2\left(\epsilon_{0}-\epsilon_{120}\right)^{2}+2\left(\epsilon_{120}-\epsilon_{60}\right)^{2}+2\left(\epsilon_{60}-\epsilon_{0}\right)^{2}}$
ORIENTATION OF PRINCIPAL STRESSES 	$\frac{1}{2} \tan ^{-1}\left[\frac{2 \epsilon_{45}-\epsilon_{0}-\epsilon_{90}}{\epsilon_{0}-\epsilon_{90}}\right]$	$\frac{1}{2} \tan ^{-1}\left[\frac{\sqrt{3}\left(\epsilon_{60}-\epsilon_{120}\right)}{\left(2 \epsilon_{0}-\epsilon_{120}-\epsilon_{60}\right)}\right]$

where:
$\boldsymbol{\epsilon}$ indicates a strain;
s_{1} and s_{2} are the principal normal stresses;
E is the modulus of elasticity;
ν is Poisson's ratio.

Reference:

Beckwith, T. G.; Buck, N.L.; Mechanical Measurements, Addison-Wesley, 1969.

				SIZE: 010
STEP	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
1	Initialize for rectangular or delta rosette.		$\begin{gathered} \times \times 0 \text { REC } \\ \times \times \mathbb{O} \text { DELTA } \end{gathered}$	$\begin{aligned} & \mathrm{e} 0=? \\ & \mathrm{e} 0=? \end{aligned}$
2	Key in strain at zero degrees.	ϵ_{0}	R/S	e45 $=$? or e60=?
3	Key in strain at 45 degrees for rectangular rosette, or strain at 60 degrees for delta rosette.	$\begin{aligned} & \epsilon_{45} \\ & \epsilon_{60} \end{aligned}$	$\begin{aligned} & R / \mathrm{S} \\ & \mathrm{R} / \mathrm{S} \end{aligned}$	$\begin{gathered} \mathrm{e} 90=? \\ \mathrm{e} 120=? \end{gathered}$
4	Key in strain at 90 degrees for rectangular rosette or strain at 120 degrees for delta rosette and calculate principal strains and orientation of principal strains.	$\begin{gathered} \epsilon_{90} \\ \epsilon_{120} \end{gathered}$	R / S B / S R/S * [R / s *	$\begin{aligned} & \mathrm{e} 1= \\ & \mathrm{e} 2= \\ & \mathrm{L}= \end{aligned}$
5	For additional strain calculations, go to Step 1.			
6	For calculation of principal stresses, key in modulus of elasticity and Poisson's ratio.	E	R/S * R/S R/S R/S ${ }^{*}$ R/S ${ }^{\text {B }}$ R/S ${ }^{*}$	$\begin{gathered} \mathrm{E}=? \\ \text { POISSON }=? \\ \text { S1 }= \\ \text { S2 }= \\ \text { TAUMAX }= \\ b= \end{gathered}$
7	For stress configuration at an arbitrary orientation angle, key in angle.	ARBL	$\begin{aligned} & \mathrm{R} / \mathrm{S} \text { * } \\ & \mathrm{R} / \mathrm{S} \\ & \mathrm{R} / \mathrm{S} \text { * } \end{aligned}$	$\begin{gathered} \mathrm{ARB} \mathrm{~A}=? \\ \mathrm{TAU}= \\ \mathrm{S}= \end{gathered}$
8	Go to Step 7 for other arbitrary orientations. Go to Step 1 for a new case. * Press R/S if you do not have an optional thermal printer.			

Example 1:

A rectangular rosette measures the strains below. What are the principal strains and principal stresses?

$$
\begin{array}{rlrl}
\epsilon_{0} & =90 \times 10^{-6} & \epsilon_{45} & =137 \times 10^{-6} \\
\nu & =0.3 & \mathrm{E} & =30 \times 10^{6} \mathrm{psi}
\end{array}
$$

Keystrokes: $(S I Z E \geqslant 010)$

Display:

ENG 3

137 EEX CHS 6 R/S

$$
305 \text { EEX CHS } 6 \mathrm{R} / \mathbf{S}
$$

$$
\begin{aligned}
& e 0=? \\
& e 45=? \\
& e 90=? \\
& e 1=320.9 E-6
\end{aligned}
$$

Keystrokes:
R/S $*$
R/S $*$
R/S $*$
30 EEX 6 R/S
.3 R/S
R/S $*$
R/S $*$
R/S $*$

Display:
$e 2=74.14 E-6$
$\measuredangle=14.69 E 0$
$E=$?
POISSON=?
$S 1=11.31 E 3$
$S 2=5.618 E 3$
TAUMAX $=2.847 E 3$
$\measuredangle=14.69 E 0$

Example 2:

An equiangular rosette measures the strains below. What are the principal strains and stresses?

$$
\epsilon_{0}=400 \times 10^{-6}
$$

Keystrokes: (SIZE $\geqslant 010)$
ENG 3
XEQ ALPHA DELTA ALPHA
400 EEX CHS 6 R/S
200 CHS EEX CHS 6 R/S
20 CHS EEX CHS 6 R/S
R/S $*$
R/S $*$
R/S $*$
30 EEX 6 R/S
.3 R/S

Display:

$$
\begin{aligned}
& e 0=? \\
& e 60=? \\
& e 120=? \\
& e 1=415.5 E-6 \\
& e 2=-295.5 E-6 \\
& \square=-8.498 E 0 \\
& E=? \\
& P O I S S O N=? \\
& S 1=10.78 E 3
\end{aligned}
$$

* Press R/S if you do not have an optional printer.

Keystrokes:	Display:
$R / S ~ *$	$S 2=-5.633 E 3$
$R / S ~ *$	TAUMAX $=8.204 E 3$
$R / S ~ *$	$L=-8.498 E 0$

SODERBERG'S EQUATION FOR FATIGUE

This program will calculate the sixth variable from the other five values in Soderberg's equation. It is useful in sizing parts for cyclic loading, calculating factors of safety, choosing materials based on size constraints and estimating the fatigue resistance of available parts. Soderberg's equation is graphically represented in figure 1 .

Equations:

Working Stress Diagram
Figure 1

$$
\frac{\mathrm{s}_{\mathrm{yp}}}{\mathrm{FS}}=\frac{\mathrm{s}_{\max }+\mathrm{s}_{\min }}{2}+\mathrm{K}\left(\frac{\mathrm{~s}_{\mathrm{yp}}}{\mathrm{~s}_{\mathrm{e}}}\right)\left(\frac{\left(\mathrm{s}_{\max }-\mathrm{s}_{\min }\right)}{2}\right)
$$

where:
$s_{y p}$ is the yield point stress of the material;
s_{e} is the material endurance stress from reversed bending tests;
K is the stress concentration factor for the part;
FS is the factor of safety ($\mathrm{FS} \geqslant 1.00$);
$\mathrm{S}_{\text {max }}$ is the maximum stress;
$\mathrm{s}_{\text {min }}$ is the minimum stress.

Reference:

Spotts, M. F.; Design of Machine Elements, Prentice-Hall, Inc., 1971.
Baumeister, T.; Marks Standard Handbook for Mechanical Engineers, McGraw-Hill Book Company, 1967.

Remarks:

This implementation of Soderberg's equation is for ductile materials only.
Values of stress concentration factors and material endurance limits may be found in the referenced sources.

In the presence of corrosive media, or for rough surfaces, fatigue effects may be much more significant than predicted by this program.

54 Soderberg's Equation for Fatigue

Example:

What is the maximum permissible cyclic stress for a part if the minimum stress is 4000 pounds per square inch?

$$
\begin{gathered}
\mathrm{s}_{\mathrm{yp}}=70000 \mathrm{psi} \\
\mathrm{~s}_{\mathrm{e}}=25000 \mathrm{psi} \\
\mathrm{~K}=1.25 \\
\mathrm{FS}=2.0
\end{gathered}
$$

Keystrokes: $(S I Z E \geqslant 007)$
Display:

- FIX 2	
XEO ALPHA SODER ALPHA	RDY A-F
4000 B	SMIN $=4,000.00$
70000 D	SYP $=70,000.00$
25000 E	$\mathbf{S e}=25,000.00$
1.25 A	$K=1.25$
2 F	FS $=2.00$
(c)	SMAX $=17,777.78$

If $s_{\text {max }}$ is changed to 20000 pounds per square inch, what will s_{e} have to be? 20000 C $\mathbf{S e}=\mathbf{3 0 , 4 3 4 . 7 8}$

If s_{e} is changed back to 25000 pounds per square inch, what will the factor of safety be?
25000 E F $F S=1.75$

RPN VECTOR CALCULATOR

Execution of $V E C T O R$ transforms the HP-41C into a four-register-stack, RPN, vector calculator. Vectors are displayed in the magnitude/angle format. The character " \measuredangle '" is used to separate the magnitude and angle in the display. The top two rows of keys are redefined as vector add, subtract, cross product, dot product, angle subtraction, X exchange Y , roll down, store, recall, LAST X, rectangular display, roll up, change sign and unit vector. In addition, ENTER4 is used to separate between magnitude and angle in vector entry and R/S is used to terminate vector entry. These operations are analogous to their scalar counterparts in the HP-41C with the following exceptions:

1. Cross product, dot product, vector angle subtraction, and rectangular display do not change the content of the stack or LAST X. They modify the display only.
2. Store and recall apply to only one vector register.
3. When a vector is terminated using R/S only one copy is generated in the vector stack.

Vector Calculator
 Data Structure

				SIZE: 016
STEP	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
1	Initialize program. Key in magnitude. Key in angle. Perform any of the following operations: terminate vector entry or add vectors or subtract vectors or take cross product or take dot product or find acute angle between vectors or exchange vectors or roll vector stack down or store vector or recall vector or recall LAST X vector or display vector in rectangular form or roll vector stack up or change sign of vector or change to unit vector. To key in another vector, go to Step 2. To perform another operation, go to Step 4. * Assumes FIX 2 display setting.	MAG ANGLE	ENTER4 R / S R/S (A) B C D E F G H 1 J A B C	$\begin{gathered} \hline 0.00 \angle 0.00 * \\ \text { MAG } \\ \text { MAG } \angle A N G L E \\ \\ \text { MAG } \angle A N G L E \\ \text { MAG } \angle A N G L E \\ \text { MAG }\llcorner A N G L E \\ Y \times X= \\ D O T= \\ V \measuredangle= \end{gathered}$ MAGLANGLE MAGLANGLE MAGAANGLE MAG\&ANGLE MAG\&ANGLE HORZYVERT MAGLANGLE MAG $\angle A N G L E$ MAGLANGLE

Example 1:

Resolve the following three loads along a 175 degree line.

Keystrokes: $(\mathrm{SIZE} \geqslant 016)$
Display:
First add L_{1} and L_{2}.

FIX 2
XEQ ALPHA VECTOR ALPHA
185 ENTER4 62 R/S

170 ENTER4 143 A
$0.00 \angle 0.00$
$185.00 \angle 62.00$
$270.12 \measuredangle 100.43$
Add L_{3}.
100 ENTER4 261 A
$178.94 \measuredangle 111.15$

Resolve vector along 175 degree line by using dot product.
1
ENTER4 175 D
$D O T=78.86$

If L_{3} is doubled, what is the resolution along the 175 degree line? Take advantage of vector store, vector recall and the fact that L_{3} is in vector LAST X. Store the 175 degree vector.

H

$1.00 \measuredangle 175.00$
Move the current sum back to the display register of the vector stack with vector roll down.

G

$178.94 \measuredangle 111.15$
Get L_{3} from vector LAST X.
J
$100.00 \measuredangle 261.00$
Add.
A
Recall 175 degree vector.

1

$1.00 \measuredangle 175.00$

Use dot product to resolve the new sum along the 175 degree vector.
D
$D O T=85.83$

Example 2:

What is the moment at the shaft of the crank pictured below? What is the reaction force transmitted along the member?

Keystrokes: $(S I Z E \geqslant 016) \quad$ Display:
Moment by cross product $\left(\mathrm{V}_{1} \times \mathrm{F}\right)$.
FIX 2 XEO ALPHA VECTOR

ALPHA
. 3 ENTER4 50 R/S
300 ENTER4 205 C
$0.00 \measuredangle 0.00$
$0.30<50.00$
$\boldsymbol{Y}^{\star} X=38.04$

Resolution along the shaft by dot product.

F	$0.30 \measuredangle 50.00$
D	$1.00 \measuredangle 50.00$
D	$D O T=-271.89$

SUBPROGRAMS
\quad CALLED
SIZE?
ATANY/X
DISPLAY
FORMAT
ENG 3
\quad FLAGS
00-First Input
01-Used
21-Print
27-User Mode

\#REGS
TO COPY
∞
PROGRAM
Section

en
0
\sum_{u}

Viv

[^5]22-Input/Output ANY SIZE?
27-User Mode

SIZE? $\frac{x}{\frac{x}{\lambda}}$

ANY

27-User Mode
21-Print
$27-$ User

N

Mohr Circle
Analysis

00-Delta 21-Print 27-User Mode	ANY	SIZE? ATANY/X
27-US		

$00=\mathrm{E}$
$01=\nu$
$02=2 h$
$03=$ Scratch
$04=$ Scratch
$05=$ Shear
$06=$ Center of Mohr Circle
$07=\epsilon_{0}$
$08=\epsilon_{45} / \epsilon_{60}$
$09=\epsilon_{90} / \epsilon_{120}$

م

Strain Gage
Data
Reduction

Soderbergs
Equation for
Fatigue

SIZE?

ANY

22-Input

8

1000 N.E. Circle Blvd., Corvallis, OR 97330

For addditional sales and service information contact your local Hewlett-Packard Sales Office or call (800) 547-3400. (In Oregon, Alaska, or Hawaii, call (503) 758-1010.)

[^0]: * Press $\overline{\mathrm{R} / \mathbf{S}}$ if you are not using a printer.

[^1]: * Size of 30 is required to start with the left end fixed.

[^2]: * Press R/S if you are not using a printer.

[^3]: ** The term slope is used loosely here since we do not know E or I and thus have assumed the rather arbitrary value of 1.00 . The slight difference in the computed slopes arises because the moments were keyed in as four digit approximations of 10 digit numbers.

[^4]: * Press R/S if you are not using a printer.

[^5]: Continuous
 $\stackrel{\infty}{\stackrel{\infty}{\overleftarrow{N}}}$

