HEWLETT-PACKARD

HP.41C

STRUCTURAL ANALYSIS PAC

NOTICE

The program material contained herein is supplied without representation or warranty of any kind. HewlettPackard Company therefore assumes no responsibility and shall have no liability, consequential or otherwise, of any kind arising from the use of this program material or any part thereof.

HEWLETT-PACKARD LISTENS

To provide better calculator support for you, the Application Engineering group needs your help. Your timely inputs enable us to provide higher quality software and improve the existing application pacs for your calculator. Your reply will be extremely helpful in this effort.

1. Pac name \qquad
2. How important was the availability of this pac in making your decision to buy a HewlettPackard calculator?
\square Would not buy without it.
\square Important
Not important
3. What is the major application area for which you purchased the pac?
4. In the list below, please rate the usefulness of the programs in this pac.

1				
2				
3				
4				
5				
6				
7				
8				

5. Did you purchase a printer?

YES

	$\begin{aligned} & \stackrel{\rightharpoonup}{ك} \\ & \stackrel{\rightharpoonup}{を} \\ & \underset{\sim}{u} \\ & \hline \end{aligned}$			
9				
10				
11				
12				
13				
14				
15				
16				

NO If you did, is the printing format in this pac useful?
\square YES
NO
6. What programs would you add to this pac?
7. What additional application pacs would you like to see developed?

THANK YOU FOR YOUR TIME AND COOPERATION.

Name	Position
Company	
Address	State
City	
Zip	Phone

:słuəسسos ןeuo!!!ppy

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 33 CORVALLIS, OREGON
Postage will be paid by
Hewlett-Packard
1000 N.E. Circle Blvd.
Corvallis, Oregon 97330

INTRODUCTION

This pac contains programs tailored for structural engineers.
Two programs deal with beam analysis. The first computes deflection, slope, moment and shear at any point for simply supported, fixed, propped and cantilevered beams. Applied moments, distributed loads, point loads, and trapezoidally distributed loads may be applied in virtually any combination. If your HP-41C system includes an optional HP 82143A printer, plots of deflection, slope, moment, and shear are easily generated.

The second beam analysis program provides solutions for multispancontinuous beams. Over 50 spans, under virtually any loading, can be accommodated with three optional memory modules.
Other programs concern steel columns, reinforced concrete, concrete columns, section properties, and continuous frame analysis.

Each program in this pac is represented by one program in the Application Module and a section in this manual.

The manual provides a description of each program, a set of instructions for using each program, and one or more example problems, each of which includes a list of the keystrokes required for its solution.

Before plugging in your Application Module, turn your calculator off, and be sure you understand the section Inserting and Removing Application Modules. Before using a particular program, take a few minutes to read Format of User Instructions and A Word About Program Usage.

You should first familiarize yourself with a program by running it once or twice while following the complete User Instructions in the manual. Thereafter, the program's prompting or the mnemonics on the overlays should provide the necessary instructions, including which variables are to be input, which keys are to be pressed, and which values will be output.

We hope this pac will assist you in the solution of numerous problems in your discipline. We would appreciate knowing your reactions to the programs, and to this end we have provided a questionnaire inside the front cover of this manual. Would you please take a few minutes to give us your comments on these programs? It is from your comments that we learn how to increase the usefulness of our programs.

CONTENTS

Introduction 1
Contents 2
Inserting and Removing Application Modules 4
Format of User Instructions 6
A Word About Program Usage 7
Section Properties 9Computes the moments of inertia for polygonal sections.
Beams 19
Computes and/or plots deflection, slope, moment and shear for simple, fixed, propped and cantilevered beams.
Simply Supported Continuous Beams 31
Computes internal bending moments at intermediate supports for continuous beams.
Settling of Continuous Beams 41
Supplements the continuous beam program by providing for settling or uplift at the supports.
Continuous Frame Analysis 44
Uses the method of moment distribution to compute beam and column bending moments at the supports of a multispan rigid con- tinuous frame.
RPN Vector Calculator 50
Converts the HP-41C to a four high vector stack. Functions include plus, minus, cross product, dot product, X exchange Y , roll down, roll up, last X, store, recall, and change sign.
Steel Column Formula 54
Computes the allowable axial compressive load for steel columns using the American Institute of Steel Construction formula. Option- ally solves for allowable loads for secondary members.
Reinforced Concrete Beams 58
Follows the ultimate strength design method of the American Concrete Institute Building Code (ACI 318-77). Includes rectangular and T beams with tension and compression reinforcement.
Reinforced Concrete Columns 66
Follows the ultimate strength design method of the American Con- crete Institute (ACI 318-77). Calculates the ultimate capacity of square or rectangular short concrete columns with reinforcing placed about and parallel to either axis.
Effective Moment of Inertia for Concrete Sections 72
Computes the cracked and effective moment of inertia for T -sections and rectangular sections.
Appendix A-Program Data 76

INSERTING AND REMOVING APPLICATION MODULES

Before you insert an Application Module for the first time, familiarize yourself with the following information.
Up to four Application Modules can be plugged into the ports on the HP-41C. While plugged in, the names of all programs contained in the Module can be displayed by pressing Catalog 2 .

CAUTION

Always turn the HP-41C off before inserting or removing any plug-in extension or accessories. Failure to turn the HP-41C off could damage both the calculator and the accessory.

To insert Application Modules:

1. Turn the HP-41C off! Failure to turn the calculator off could damage both the Module and the calculator.
2. Remove the port covers. Remember to save the port covers; they should be inserted into the empty ports when no extensions are inserted.
3. Insert the Application Module with the label facing downward as shown, into any port after the last Memory Module. For example, if you have a Memory Module inserted in port 1, you can insert an Application Module in any of ports 2,3 , or 4 . (The port numbers are shown on the back of the calnumbers are shown on the back of the cal-
culator.) Never insert an Application
 Module into a lower numbered port than a Memory Module.
4. If you have additional Application Modules to insert, plug them into any port after the last Memory Module. Be sure to place port covers over unused ports.
5. Turn the calculator on and follow the instructions given in this book for the desired application functions.

To remove Application Modules:

1. Turn the HP-41C off! Failure to do so could damage both the calculator and the Module.
2. Grasp the desired Module handle and pull it out as shown.

3. Place a port cap into the empty ports.

Mixing Memory Modules and Application Modules

Any optional accessories (such as the HP-82104A Card Reader, or the HP-82143A Printer) should be treated in the same manner as Application Modules. That is, they can be plugged into any port after the last Memory Module. Also, the HP-41C should be turned off prior to insertion or removal of these extensions.
The HP-41C allows you to leave gaps in the port sequence when mixing Memory and Application Modules. For example, you can plug a Memory Module into port 1 and an Application Module into port 4, leaving ports 2 and 3 empty.

FORMAT OF USER INSTRUCTIONS

The completed User Instruction Form-which accompanies each programis your guide to operating the programs in this Pac.
The form is composed of five labeled columns. Reading from left to right, the first column, labeled STEP, gives the instruction step number.

The INSTRUCTIONS column gives instructions and comments concerning the operations to be performed.
The INPUT column specifies the input data, the units of data if applicable, or the appropriate alpha response to a prompted question. Data input keys consist of 0 to 9 and the decimal point (the numeric keys), EEX (enter exponent), and CHS (change sign).
The FUNCTION column specifies the keys to be pressed after keying in the corresponding input data.
The DISPLAY column specifies prompts, intermediate and final answers, and their units, where applicable.
Above the DISPLAY column is a box which specifies the minimum number of data storage registers necessary to execute the program. Refer to the Owner's Handbook for information on how the SIZE function affects storage configuration.

A WORD ABOUT PROGRAM USAGE

Catalog

When an Application Module is plugged into a port of the HP-41C, the contents of the Module can be reviewed by pressing CATALOG 2 (the Extension Catalog). Executing the CATALOG function lists the name of each program or function in the Module, as well as functions of any other extensions which might be plugged in.

Overlays

Overlays have been included for some of the programs in this Pac. To run the program, choose the appropriate overlay, and place it on the calculator. The mnemonics on the overlay are provided to help you run the program. The program's name is given vertically on the left side. When the calculator is in USER mode, a blue mnemonic identifies the key directly above it. Gold mnemonics are similar to blue mnemonics, except that they are above the appropriate key and the shift (gold) key must be pressed before the re-defined key. Once again, USER mode must be set.

ALPHA and USER Mode Notation

This manual uses a special notation to signify ALPHA mode. Whenever a statement on the User Instruction Form is printed in gold, the ALPHA key must be pressed before the statement can be keyed in. After the statement is input, press ALPHA again to return the calculator to its normal operating mode, or to begin program execution. For example, XEQ SECTION means press the following keys: XEO ALPHA SECTION ALPHA.
When the calculator is in USER mode, this manual will use the symbols ($\rightarrow-\square$ and \triangle - \square to refer to the reassigned keys in the top two rows. These key designations will appear on the User Instruction Form and in the keystroke solutions to sample problems.

Optional HP-82143A Printer

When the optional printer is plugged into the HP-41C along with this Application Module, results will be printed automatically. You may also want to keep a permanent record of the values input to a certain program. A convenient way to do this is to set the Print Mode switch to NORMAL before running the program. In this mode, all input values and the corresponding keystrokes will be listed on the printer, thus providing a record of the entire operation of the program.

Downloading Module Programs

If you wish to trace execution, to modify, to record on magnetic cards, or to print a program in this Application Module, it must first be copied into the HP-41C's program memory. For information concerning the HP-41C's COPY function, see the Owner's Handbook. It is not necessary to copy a program in order to run it.

Program Interruption

These programs have been designed to operate properly when run from beginning to end, without turning the calculator off (remember, the calculator may turn itself off). If the HP-41C is turned off, it may be necessary to set flag 21 (SF 21) to continue proper execution.

Use of Labels

You should generally avoid writing programs into the calculator memory that use program labels identical to those in your Application Module. In case of a label conflict, the label within program memory has priority over the label within the Application Pac program.

Assigning Program Names

Key assignments to keys $A-D$ and \square - \square take priority over the automatic assignments of local labels in the Application Module. Be sure to clear previously assigned functions before executing a Module program.

Incompatible Application Module

This Pac contains a type X Application Module. Type X Modules have incompatible XROM instructions. You should never plug two type X Application Modules into your HP-41C at the same time. Type X Modules may be identified by an ' X '" on the Application Module label.

SECTION PROPERTIES

The properties of polygonal sections (see figure 1) may be calculated using this program. The (x, y) coordinates of the vertices of the polygon (which must be located entirely within the first quadrant) are input sequentially for a complete, clockwise path around the polygon. Holes in the cross section, which do not intersect the boundary, may be deleted by following a counter-clockwise path.

Figure 1

Figure 2
The keyboard overlay (see figure 2) defines the keys according to their function in SECTION. The shifted A key can be used to clear an existing section and restart a new input sequence. The shifted \boldsymbol{B} key restarts the input sequence but does not clear the existing section. Its' use allows deletion, addition, and correction of existing sections.
A special feature on the shifted key allows addition or deletion of circular areas. After the point by point traverse of the section has been completed, circular deletions or additions are specified by the (x, y) coordinates of the circle centers and by the circle diameters. If the diameter is specified as a
positive number, the circular areas are added. A negative diameter causes circular areas to be deleted. Example 4 shows an application of this feature.
After all values have been input, the coordinates of the centroid ($\overline{\mathrm{x}}, \overline{\mathrm{y}}$) and the area A of the section may be output using key \triangle. The moment of inertia about the original x axis I_{x}, about the original y axis I_{y} and the product of inertia I_{xy} are output using B. Similar moments, $\mathrm{I}_{\overline{\mathrm{x}}}, \mathrm{I}_{\overline{\mathrm{y}}}$, and $\mathrm{I}_{\overline{\mathrm{x}}}$, about an axis translated to the centroid of the section are calculated when is pressed.
Pressing calculates the moments of inertia, $\mathrm{I}_{\overline{\mathrm{x}} \Delta}$ and $\mathrm{I}_{\overline{\mathrm{y}} \Delta}$, about the principal axis. The rotation angle Δ between the principal axis and the axis which was translated to the centroid is also calculated. The moments of inertia $\mathrm{I}_{\mathrm{x}}{ }^{\prime}, \mathrm{I}_{\mathrm{y}}{ }^{\prime}$, the polar moment of inertia J and the product of inertia $\mathrm{I}_{\mathrm{x} y}{ }^{\prime}$ may be calculated about any arbitrary axis by specifying its location and rotation with respect to the original axis and pressing \mp.

Equations:

$$
\begin{gathered}
A=-\sum_{i=0}^{n}\left(y_{i+1}-y_{i}\right)\left(x_{i+1}+x_{i}\right) / 2 \\
\bar{x}=\frac{-1}{A} \sum_{i=0}^{n}\left[\left(y_{i+1}-y_{i}\right) / 8\right]\left[\left(x_{i+1}+x_{i}\right)^{2}+\left(x_{i+1}-x_{i}\right)^{2} / 3\right] \\
\bar{y}=\frac{1}{A} \sum_{i=0}^{n}\left[\left(x_{i+1}-x_{i}\right) / 8\right]\left[\left(y_{i+1}+y_{i}\right)^{2}+\left(y_{i+1}-y_{i}\right)^{2} / 3\right] \\
I_{x}=\sum_{i=0}^{n}\left[\left(x_{i+1}-x_{i}\right)\left(y_{i+1}+y_{i}\right) / 24\right]\left[\left(y_{i+1}+y_{i}\right)^{2}+\left(y_{i+1}-y_{i}\right)^{2}\right] \\
I_{y}=-\sum_{i=0}^{n}\left[\left(y_{i+1}-y_{i}\right)\left(x_{i+1}+x_{i}\right) / 24\right]\left[\left(x_{i+1}+x_{i}\right)^{2}+\left(x_{i+1}-x_{i}\right)^{2}\right] \\
I_{x y}=\sum_{i=0}^{n} \frac{1}{\left(x_{i+1}-x_{i}\right)}\left[\frac{1}{8}\left(y_{i+1}-y_{i}\right)^{2}\left(x_{i+1}+x_{i}\right)\left(x_{i+1}^{2}+x_{i}^{2}\right)\right. \\
+\frac{1}{3}\left(y_{i+1}-y_{i}\right)\left(x_{i+1} y_{i}-x_{i} y_{i+1}\right)\left(x_{i+1}^{2}+x_{i+1} x_{i}+x_{i}^{2}\right) \\
\left.+\frac{1}{4}\left(x_{i+1} y_{i}-x_{i} y_{i+1}\right)^{2}\left(x_{i+1}+x_{i}\right)\right]
\end{gathered}
$$

$$
\begin{gathered}
\mathrm{I}_{\overline{\mathrm{x}}}=\mathrm{I}_{\mathrm{x}}-\mathrm{A} \overline{\mathrm{y}}^{2} \\
\mathrm{I}_{\overline{\mathrm{y}}}=\mathrm{I}_{\mathrm{y}}-\mathrm{A} \overline{\mathrm{x}}^{2} \\
\mathrm{I}_{\overline{\mathrm{x}}}=\mathrm{I}_{\mathrm{xy}}-\mathrm{A} \overline{\mathrm{x}} \overline{\mathrm{y}} \\
\mathrm{~L}=\frac{1}{2} \tan ^{-1}\left(\frac{-2 \mathrm{I}_{\overline{\mathrm{x}}}}{\mathrm{I}_{\overline{\mathrm{x}}}-\mathrm{I}_{\bar{y}}}\right) \\
\mathrm{I}_{\mathrm{x}}^{\prime}=\mathrm{I}_{\overline{\mathrm{x}}} \cos ^{2} \theta+\mathrm{I}_{\overline{\mathrm{y}}} \sin ^{2} \theta-\mathrm{I}_{\overline{\mathrm{xy}}} \sin 2 \theta \\
\mathrm{I}_{\mathrm{y}}^{\prime}=\mathrm{I}_{\overline{\mathrm{y}}} \cos ^{2} \theta+\mathrm{I}_{\overline{\mathrm{x}}} \sin ^{2} \theta+\mathrm{I}_{\overline{\mathrm{xy}}} \sin 2 \theta \\
\mathrm{I}=\mathrm{I}_{\mathrm{x}}^{\prime}{ }^{\prime}+\mathrm{I}_{\mathrm{y}}{ }^{\prime} \\
\mathrm{I}_{\mathrm{x}}^{\prime}=\frac{\left(\mathrm{I}_{\overline{\mathrm{x}}}-\mathrm{I}_{\overline{\mathrm{y}}}\right)}{2} \sin 2 \theta+\mathrm{I}_{\overline{\mathrm{xy}}} \cos 2 \theta \\
\mathrm{~A}_{\text {circle }}=\frac{\pi \mathrm{d}^{2}}{4} \\
\mathrm{I}_{\mathrm{circle}}=\frac{\pi \mathrm{d}^{4}}{64}
\end{gathered}
$$

where:
$\mathrm{x}_{\mathrm{i}+1}$ is the x coordinate of the current vertex point;
y_{i+1} is the y coordinate of the current vertex point;
x_{i} is the x coordinate of the previous vertex point;
y_{i} is the y coordinate of the previous vertex point;
A is the area;
\bar{x} is the x coordinate of the centroid;
\bar{y} is the y coordinate of the centroid;
I_{x} is the moment of inertia about the x -axis;
I_{y} is the moment of inertia about the y-axis;
I_{xy} is the product of inertia;
$\mathrm{I}_{\overline{\mathrm{x}}}$ is the moment of inertia about the x -axis translated to the centroid;
$\mathrm{I}_{\bar{y}}$ is the moment of inertia about the y -axis translated to the centroid;
$\mathrm{I}_{\overline{\mathrm{x}} \bar{y}}$ is the product of inertia about the translated axis;
\measuredangle is the angle between the translated axis and the principal axis;
$\mathrm{I}_{\overline{\mathrm{x}}}{ }^{\text {is }}$ is the moment of inertia about the translated, rotated, principal x -axis;
$\mathrm{I}_{\overline{\mathrm{y}}}^{6}$ is the moment of inertia of inertia about the translated, rotated, principal y-axis;
θ is the angle between the original axis and an arbitrary axis;
$\mathrm{I}_{\mathrm{x}}{ }^{\prime}$ is the x moment of inertia about the arbitrary axis;
$\mathrm{I}_{\mathrm{y}}{ }^{\prime}$ is the y moment of inertia about the arbitrary axis;
J is the polar moment of inertia about the arbitrary axis;
$\mathrm{I}_{\mathrm{xy}}{ }^{\prime}$ is the product of inertia about the arbitrary axis;
d is the diameter of a circular area.

Reference:

Wojiechowski, Felix, "Properties of Plane Cross Sections," Machine Design, p. 105, Jan. 22, 1976.

Remarks:

The polygon must be entirely contained in the first quadrant.
Rounding errors will accumulate if the centroid of the section is a large distance from the origin of the coordinate system.
Curved boundaries may be approximated by straight line segments.

				SIZE: 017
STEP	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
1	Initialize program.		XEO SECTION	$X 0=$?
2	Key in x value at initial vertex.	x	R/S	$\mathrm{YO}=$?
3	Key in y value at initial vertex.	y	R/S	$\mathrm{X} 1=$?
4	Key in (x, y) coordinates of next	x	R/S	$\mathrm{YN}=$? $\mathrm{XN}=$?
5	Repeat Step 4 for each point of the polygon including the initial point.			
6	To delete subsections within the section, press \square and go to Step 2, but traverse in a counter-clockwise direction.		B	$\mathrm{XO}=$?
7	To add subsections to the section, press \square and go to Step 2.		B	$\mathrm{XO}=$?
8	Add any circular areas	x	ENTER ${ }^{\text {a }}$	
		y	[ENTER ${ }_{\text {c }}^{\text {c }}$	0.00000
	or delete any circular areas.	x	ENTER	
		$\begin{aligned} & y \\ & d \end{aligned}$	$\begin{aligned} & \text { ENTERQ } \\ & \text { CHS C } \\ & \hline \end{aligned}$	0.00000

STEP	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
9	Calculate any or all of the following＊			
	Centroid and area；		里＊	CENTROID
	Properties about original axis；		回＊	ORIGINAL AXIS
	Properties about an axis trans－			
	lated to centroid；		©＊	CENTROID AXIS
	Properties about principal axis			
	and angular orientation of principal axis：		回＊	PRINCIPAL AXIS
	$O_{O R}^{p r}$			
	Specify an arbitrary axis and rota－			
	tion angle and calculate properties	x^{\prime}	Ement	
	about that axis．	y^{\prime}	Enten	
		θ	■＊	YOUR AXIS
10	For a new problem，press $\quad \square$ and go to Step 2．To modify the current section，go to Step 6 or Step 7.			
	Step 7.		\pm	$x 0=$ ？
	＊If your HP－41C does not have a printer，you must press［R／S for output of each section property			

Example 1：

What is the moment of inertia about the x －axis $\left(\mathrm{I}_{\mathrm{x}}\right)$ for the rectangular section shown？What is the amount of inertia about the neutral axis through the centroid of the section（ $\mathrm{I}_{\overline{\mathrm{x}} \measuredangle}$ ）？

14 Section Properties

Keystrokes:	(SIZE 017)	Display:
XEQ ALPHA	SECTION ALPHA	$\mathrm{XO}=$?
0 R/S		$\mathrm{YO}=$?
0 R/S		$\mathrm{X1}=$?
0 R/S		$\mathrm{Y} 1=$?
$5 \mathrm{R} / \mathrm{S}$		$\mathrm{X} 2=$?
$3 \mathrm{R} / \mathrm{S}$		$Y 2=$?
$5 \mathrm{R} / \mathrm{S}$		X3 $=$?
$3 \mathrm{R} / \mathrm{S}$		Y3 $=$?
$0 \mathrm{R} / \mathrm{S}$		X4 $=$?
0 R/S		Y4 $=$?
0 R/S		X5 $=$?
B		ORIGINAL AXIS
R/S *		$I X=125.0 E 0$
R/S *		$I Y=45.00 E 0$
R/S *		$I X Y=56.25 E 0$
D		PRINCIPAL AXIS
R/S *		IX $=31.25$
R/S *		$I Y=11.25 E 0$
R/S *		IXY $=0.000 E 0$
R/S *		$\measuredangle=0.000 E 0$

Since $\measuredangle=0$ we would expect $\mathrm{I}_{\overline{\mathrm{x}} \measuredangle}$ to equal $\mathrm{I}_{\overline{\mathrm{x}}}$. Press \square to calculate $\mathrm{I}_{\overline{\mathrm{x}}}$, $\mathrm{I}_{\overline{\mathrm{y}}}$, and $\mathrm{I}_{\overline{\mathrm{x}}}$ and you will see that this prediction is correct. Also, $\mathrm{I}_{\overline{\mathrm{x}} \bar{y}}$ is zero about the principal axis.

Keystrokes:

R/S * R/S *

Display:
CENTROID AXIS
IX=31.25EO
$\mid Y=11.25 E 0$
IXY=0.000EO

Example 2:

Calculate the section properties for the beam shown below.

Keystrokes: (SIZE 017)
XEQ ALPHA SECTION ALPHA
$0 R / S 0 R / S 0 R / S 14 R / S$
$16 R / S 14 R / S 16 R / S 13 R / S$
1 R/S $13 R / \mathbf{R} 1$ R/S $2 R / S$
$11 R / S 2 R / S 11 R / S 0 R / S$
$0 R / S 0 R / S$
A
R / S
R / S
R / B
R / S

Display:
$X 0=$? ?

I

$$
3
$$

16 Section Properties

Keystrokes:
C
R/S *
R/S *
R/S *
D
R/S *
R/S *
R/S *
R/S *

Display:

CENTROLI AXIS
IX $\mathrm{X}=1.580 \mathrm{E} 3$
I $Y=934.5 \mathrm{E}=$
IXY=225.6E0
PRINCIPAL AXIS
$\mathrm{I} \mathrm{Z}=1.651 \mathrm{E} 3$
I $Y=863.5 E[$
I $\mathrm{XY}=0.00 \mathrm{010ED}$
$\leq=-17.48 \mathrm{Eg}$

Below is a figure showing the translated axis and the rotated, principal axis of example 2. Notice that the sign of the angle is negative, representing a clockwise rotation.

[^0]
Example 3:

What is the centroid of the section below? The inner triangular boundary denotes an area to be deleted.

Keystrokes: (SIZE 017)
Input for the outer triangle:
XEQ ALPHA SECTION ALPHA
3 R/S 1 R/S 3 R/S 7 R/S
$14 R / S 7 R / S 3 R / S 1 R / S$
Delete inner triangle:

6 R/S
4 R/S 6 R/S 4 R/S 4 R/S
A
R/S *
R/S *
R/S *

Display:
$x 0$? $=$
$X 4$? =
$X 0 ?=$

X4 = ?
CENTROID
$X=6.845 E 0$
$Y=4.940 E 0$
AREA $=28.00 \mathrm{EO}$

Example 4:

For the part below, compute the polar moment of inertia about point A. Point A denotes the center of a hole about which the part rotates. The area of the hole must be deleted from the cross section.

Keystrokes: (SIZE 017)
XEQ ALPHA SECTION ALPHA

Display:
$\mathrm{X} 0=$?
0 R/S 0 R/S 0 R/S $2 R / \mathbf{S}$
5 R/S 2 R/S 5 R/S 1.4 R/S
.8 R/S 1.4 R/S .8 R/S 0 R/S
0 R/S 0 R/S

Delete hole:
4 ENTERA 6 ENTERA 5 CHS
C]
Compute J about ($0.4,0.6$) with θ of zero.

4 ENTERA . 6 ENTERA 0 F	YOUR AXIS
R/S *	IX=3.911E0
R/S *	IY=19.54EO
R/S *	$1 \mathrm{XY}=6.930 \mathrm{EO}$
R/S *	$J=23.45 E 0$

[^1]
BEAMS

This program calculates deflection, slope, moment and shear at any point for:
simple beams;

cantilever beams;

fixed beams;

and propped cantilever beams.

Beam loading may include combinations of point loads, distributed loads, applied moments and trapezoidally distributed loads. Any number or combination of loads may be used assuming sufficient data storage registers are available. Minimum size must be set according to the formula below:

$$
\begin{aligned}
\text { SIZE }_{\min }=20 & +2 * \text { Number of distributed loads } \\
& +3 * \text { Number of point loads } \\
& +3 * \text { Number of applied moments } \\
& +5 * \text { Number of trapezoidal loads }
\end{aligned}
$$

A size setting of 40 is adequate for most loadings.
If the size is set larger than 23 but smaller than necessary for program execution the message:

SIZE > NNN

will be displayed. This message tells you that your last input was ignored and you must increase register size to at least NNN to continue program execution.

If you have an optional HP-82143A thermal printer this program will list and plot values of deflection, angle, moment or shear for evenly spaced points along the beam.

The program can be divided into four operating functions: input, editing, calculation, and printing/plotting. The input section is initialized by executing SIMPLE, CANT, FIXED, or PROPPED. This selects the type of beam to be analyzed and prompts for the length of the beam. Key in the length and press R/S . The display will prompt RDY A-I. This indicates that the keys are defined according to the overlay below:

The shifted top row keys allow input of the beam variables. The unshifted top row keys A - allow computation of deflection, slope, moment or shear for a given x . Key \boldsymbol{E} provides an editing option. The editing option allows you to review all inputs and change input errors. The second row of keys provides printout of beam properties and plotting of beam deflection, slope, moment or shear with the optional HP-82143A printer.

Equations:

For equations, refer to cited reference.

Definitions:

I is the moment of inertia of the section;
E is the modulus of elasticity of the material;
L is the length of the beam;
a is the displacement of the concentrated load from the left end of the beam;
P is the amount of the concentrated load;
c is the displacement of the applied moment from the left end of the beam;
M is the amount of the applied moment;
W is the amount of a uniformly distributed load over the entire beam with dimensions force per unit length;
d is the distance to the beginning of a trapezoidal load;
W_{d} is the initial value of a trapezoidal load with units of force per unit length;
e is the distance to the end of a trapezoidal load;
W_{e} is the final value of a trapezoidal load;
x is the point of interest along the beam;
y is the deflection at x ;
b is the slope (change in y per change in x) at x;
M_{x} is the internal bending moment at x ;
V is the shear at x .
A simply supported beam with one of each type of load is shown below:

SIGN CONVENTIONS FOR BEAMS

NAME	VARIABLE	SENSE	SIGN
DEFLECTION	y	\uparrow	+
SLOPE	\llcorner	\uparrow	+
INTERNAL MOMENT	M_{x}	$\square \square$	+
SHEAR	V	\uparrow	\square
EXTERNALFORCE ORLOAD	P or W	\downarrow	+
EXTERNAL MOMENT	M	\square	+

Remarks:

Deflections must not significantly alter the geometry of the problem.
Beams must be of constant cross section for deflection and slope equations to be valid.

Stresses must be in the elastic region.
Programs are not unit dependent. Any mutually consistent set of units will work.

Reference:

Roark, Raymond J., Young, Warren C., Formulas for Stress and Strain, McGraw-Hill Book Company, 1975.

STEP	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
5	Trapezoidal load starting point, starting load, end point, and ending load.	$\begin{gathered} d \\ W_{d} \\ e \\ W_{e} \end{gathered}$	ENTERA ENTER ENTERA (D)	$\begin{gathered} \mathrm{d} \\ \mathrm{~W}_{\mathrm{o}} \\ \mathrm{e} \\ 0.000 \end{gathered}$
	Applied moment location and applied moment.	$\begin{gathered} \mathrm{C} \\ \mathrm{M} \end{gathered}$	$\begin{aligned} & \text { ENTERQ } \\ & \square E \end{aligned}$	c
	OPTIONAL: Review and/or edit your inputs (e.g. if you wish to modify L, key in a new L and press R / \mathbf{R}, otherwise just press R/S).	$\begin{gathered} (\mathrm{L}) \\ \left(\mathrm{E}^{*} \mathrm{I}\right) \end{gathered}$	$\begin{aligned} & \mathrm{E} \\ & \mathrm{R} / \mathrm{S} \\ & \mathrm{R} / \mathrm{S} \\ & \mathrm{R} / \mathrm{S} \end{aligned}$	BEAM TYPE L= E*I= LOAD
	An "END" signifies that all data has been displayed. Pressing R/s again will start the edit routine over.		R/S	END
6	If you have an optional HP-82143A printer and wish to plot, go to Step 9.			
7	Key in x to specify the point of interest and calculate deflection or slope or moment or shear.	$\begin{aligned} & x \\ & x \\ & x \\ & x \end{aligned}$	$\begin{aligned} & \hline A \\ & \hline B \\ & \hline C \\ & \hline 0 \end{aligned}$	$\begin{gathered} \mathrm{y}= \\ b= \\ \mathrm{MX}= \\ \mathrm{V}= \end{gathered}$
8	For a new calculation with the same loading, go to Step 6. For new loads, go to Steps 4 or 5 . For new section properties, go to Step 3 but skip Step 4 if no loads change.			
9	Plot deflection or slope or moment or shear.		$\begin{aligned} & \text { G } \\ & \hline G \\ & \hline \\ & \hline \\ & \hline \end{aligned}$	
				$\begin{gathered} \text { BEAM TYPE } \\ \text { L= } \\ \text { E*I }= \\ \text { LOADS } \\ \text { X INC }=? \end{gathered}$
10	Key in x increment. Go to Step 8.	XINC	R/S	LIST/PLOT

Example 1:

What is the total moment at the center of the beam below? (It is not necessary to know the values of E or I to solve this problem.)

Keystrokes: (SIZE >=31)
ENG 3

XEQ ALPHA	SIMPLE ALPHA	$L=?$	
70 R/S		RDY A-I	
20 ENTER4	$400 \square$	0.000	00
50 ENTER4	1000 C	0.000	00
37 B		0.000	00
70 ENTER4	10000CHS E	0.000	00
35 C		$M X=31.66 E 3$	

Example 2:

For the beam below, what are the values of deflection, slope, moment, and shear at an x of 114 inches?

Keystrokes: (SIZE >= 25)
ENG 3
XEO ALPHA FIXED ALPHA
140 R/S
4.74 ENTER 30 EEX $6 \square A$

14 B 30 ENTER4
147000 E

114 A
114 B
114 C
114 D
147000 E
114 A

Display:

$$
L=?
$$

RDY A-I
$y=43.72 E-3$
$\Delta=-3.155 E-3$
$M X=13.05 E 3$
$V=444.7 E 0$

Using the edit feature, change the location of the applied moment to 50.

E
R / S
$50 \mathrm{R} / \mathrm{S}$

$$
\begin{aligned}
& \text { FIXED } \\
& L=140.0 E O \\
& E^{\star}=142.2 E 6 \\
& W=14.00 E O \\
& C=30.00 E O \\
& M=147.0 E 3
\end{aligned}
$$

Now calculate the bending moment at $\mathrm{x}=70$.

70 C
$M X=-41.07 E 3$

Example 3:

Repeat Example 1, but plot bending moment in increments of 2.5 inches along the length of the beam. An optional HP-82143A thermal printer is required for this problem.

Keystrokes: (SIZE >= 31)

ENG 3		
XEQ ALPHA	SIMPLE	ALPHA
70 R/S		
20 ENTER ${ }^{\text {a }}$	$400-\mathrm{C}$	50 ENTER4
1000 C	37 B	70 ENTER ${ }^{\text {d }}$
10000 CHS	E	

XEQ ALPHA SIMPLE ALPHA

20 ENTER4 $400 \square$ C 50 ENTER4
1000 C 37 B 70 ENTER4 10000 CHS E

$$
L=?
$$

RDY A-I
0.00000

Keystrokes：
H
Display：
SIMPLE

ExI＝0．000EE＊
$\mathrm{a}=20.00 \mathrm{ED}$
$\mathrm{F}=46 \mathrm{~B}$ ． BE E
$\mathrm{A}=56.04 \mathrm{0} 6$
$P=1.060 \mathrm{E}$
$\mathrm{H}=37$. 日月E
$6=70.06 \mathrm{co}$
$M=-16.00 \mathrm{E}^{3}$
END

XINC？

$\mathrm{X}=2.500 \mathrm{ed}$
MX＝4．193E3
$X=5.004 E 6$
HX＝8．155E3
$\mathrm{X}=7.5$ 5月е
$m \times 11.8953$
$X=19.0950$
Mx $=15.39 \mathrm{E} 3$
＊May take any value in this problem．

$$
\mathrm{y}=20 . \text {.иec }
$$

$$
\mathrm{M}=27.07 \mathrm{E}
$$

$\mathrm{Y}=2.50 \mathrm{E}$
$\mathrm{mH}=2 \mathrm{O} .4 \mathrm{E}$
$\mathrm{X}=25.0 \mathrm{ben}$
M=29.53E
$\mathrm{X}=27.50 \mathrm{E}$
$\mathrm{HX}=30.4 \mathrm{EJ}$
$\mathrm{x}=36.96 \mathrm{E}$
$\mathrm{MP}=31 . \mathrm{BEE}$
$\mathrm{X}=32.50 \mathrm{ED}$
M=31.485
$X=35.89 E 0$
M $4=31.66 E 3$
$X=37.56 E \square$
$M=31.62 \mathrm{E}$
$\mathrm{X}=49.06 \mathrm{ED}$
$\mathrm{mX}=31.34 \mathrm{E} 3$

Display:

```
X=42.50E6
```

$\mathrm{MX}=30.84 \mathrm{E} 3$
$Y=45.00 \mathrm{OD}$
MX 30.10 E
$X=47.50 \mathrm{E}$
$\mathrm{H}=29.13 \mathrm{E}$
X=50.0060
M-27.93E
$X=52.50 \mathrm{E} 0$
H2-24. Ble 3
$\mathrm{X}=55 . \mathrm{men}$
M19.83E
$\mathrm{X}=57.50 \mathrm{E}$
M $\mathrm{M}=15.44 \mathrm{E} 3$
$\mathrm{X}=6 \mathrm{6} .0 \mathrm{0} \mathrm{C}$
H $\mathrm{H}=10.81 \mathrm{E}$
$\hat{Y}=62.50 \mathrm{CD}$
MX=5.95853
X=65. 90E 6
$\mathrm{mx}=869.6 \mathrm{E} 0$
$y=67.50 \mathrm{ED}$
MK=-4.450E3
$8=76$. 日电

Keystrokes:

Display:

Note that the value of moment at $X=70.00$ does not equal the applied moment of $-10,000$. This is due to the fact that internal moment is undefined at the point of application of an applied moment. Similarly, shear is undefined directly under a point load.

Example 4:

Calculate deflection, slope, moment and shear for the beam above at the point $\mathrm{x}=40$.

Keystrokes: (SIZE >= 25)

75 R/S
23 ENTER4 35 ENTER4 47 ENTER4
$27 \square$ De
5 ENTER4 30 EEX $6 \square \square$
40 A
40 B
40 C
40 D

Display:
$L=$?
RDY A-I
0.00000
150.006
$y=-87.66 E-3$
$b=4.006 E-3$
$M X=-4.785 E 3$
$V=-546.8 E 0$

SIMPLY SUPPORTED CONTINUOUS BEAMS

This program, in combination with the beam program SIMPLE, solves for the intermediate couples present at the supports of a continuous beam.

Each span of the beam may have a unique length, cross section, modulus of elasticity and/or loading. Beam ends may be rigidly fixed or simply supported.

The program SIMPLE is used to input the length, section moment of inertia, and loading for each span of the continuous beam. After the data for a particular span has been keyed in using SIMPLE, program SPAN is executed to transform the data. MOMENTS, which is called after all spans have been entered, computes the internal bending moments at each intermediate support.

If the left end of the continuous beam is rigidly fixed, execute FIXL instead of SIMPLE. After some computation time the prompt $L=$? will be displayed indicating that the calculator is ready for the first span.

If the right end of the continuous beam is rigidly fixed, key in the span properties as usual. After all spans (including the last span) have been completed, execute FIXR.

If you find that you have made an error during input of a span or wish to modify a span after initial computation, the NSPAN program may be used. Simply key in your data, key in the span number ($1=$ leftmost span $)$ and execute NSPAN.

The number of spans is limited only by the number of data storage registers.
A rule of thumb for the required size is:

$$
\begin{aligned}
\text { SIZE }=35 & +4 * \text { (Number of spans) } \\
& +4 * \text { (Number of fixed ends) }
\end{aligned}
$$

A moderately complex problem with 3 spans takes less than 50 registers. With three optional plug in memory modules, over 50 spans could be combined.
If you set the size larger than 23* but smaller than necessary for problem solution, the prompt
SIZE > NNN
will be displayed during data input. This indicates that the size should be increased to at least NNN.

Algorithm:

The program starts by assuming that all internal moments are zero. Based on this assumption it calculates the moment across the first intermediate supports using:

$$
M_{1}=\frac{\left(L_{1}-L_{2}\right)-\frac{M_{0} L_{1}}{6 E_{1} I_{1}}-\frac{M_{2} L_{2}}{6 E_{2} I_{2}}}{\left(\frac{L_{1}}{3 E_{1} I_{1}}+\frac{L_{2}}{3 E_{2} I_{2}}\right)}
$$

The following definitions apply:

Δ_{1} is the slope at the right end of beam one assuming $M_{1}=0$. L_{2} is the slope at the left end of beam two assuming $M_{1}=0$.

After calculation M_{1} is used in an analogous equation for the next support. This is repeated until the end of the beam is reached. The program repeats this procedure until all calculated moments remain unchanged within the ENG 3 display setting for one complete cycle of moment calculations.

Reference:

Roark, Raymond J., Young, Warren C.; Formulas for Stress and Strain, McGraw-Hill, 1975.

[^2]
Remarks:

If a span has no loads, use a point load of zero located anywhere in the span.
If a fixed end is specified, the wall reactions are computed and output as if the fixed end constituted another intermediate support.

				SIZE: >30
STEP	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
1	Select a simply supported beam or a beam with a fixed left end. Key in length of span. If you know the moment of inertia, key it in (otherwise use 1.00).		XEO SIMPLE XEQ FIXL	$\begin{aligned} & \mathrm{L}=\text { ? } \\ & \mathrm{L}=\text { ? } \end{aligned}$
$\begin{aligned} & 2 \\ & 3 \end{aligned}$		L	R/S	RDY A-I
		I(1)	ENTER	1
4	If you know the modulus or elasticity key it in (otherwise use 1.00).	$E(1)$	(4)	E*I
5	Key in all loadings: Distributed load.	W	B	0.00000
	Point load location and load.	$\begin{aligned} & \mathrm{a} \\ & \mathrm{P} \end{aligned}$	$\begin{aligned} & \text { ENTERD } \\ & \hline \square \end{aligned}$	$0.000^{\mathrm{a}} 00$
	Trapezoidal load starting point, starting load, end point, and ending load.	$\begin{gathered} d \\ \mathrm{~W}_{\mathrm{d}} \\ \mathrm{e} \\ \mathrm{~W}_{\mathrm{e}} \end{gathered}$	ENTER ENTERA ENTERA D	$\begin{gathered} \mathrm{d}_{\mathrm{w}} \\ \mathrm{~W}_{\mathrm{d}} \\ \mathrm{e} \\ 0.000^{2} \end{gathered}$
	Applied moment location and applied moment.	$\begin{gathered} \text { C } \\ \text { M } \end{gathered}$	$\begin{aligned} & \text { EMIER } \\ & \hline E \end{aligned}$	$\begin{array}{cc} \text { c } \\ 0.000 & \\ & 00 \end{array}$
6	OPTIONAL: Review and/or edit your inputs (e.g. if you wish to modify L, key in a new L and press R/S. Otherwise just press R/S.S.)	$\begin{gathered} (\mathrm{L}) \\ \left(\mathrm{E}^{*} \mathrm{I}\right) \end{gathered}$	$\begin{aligned} & \text { E } \\ & \text { (R/S } \\ & \hline \text { R/S } \\ & \hline \text { R/S } \end{aligned}$	$\begin{gathered} \text { SIMPLE } \\ L= \\ \text { E*I }= \\ \text { LOAD } \end{gathered}$
	An "END" signifies that all data has been displayed. Pressing B / \mathbf{s} again will start the edit routine over.		日/5	END
7	OPTIONAL: Document your inputs on your optional HP-82143A printer.		F	
8	Add this span to the beam OR		XEO SPAN	$\mathrm{L}=$?
	Replace a previous span with new data.	SPAN\#	XEO NSPAN	$\mathrm{L}=$?
9	Go to Step 2 for next span. Skip steps 3 and 4 if the section properties do not change.			

STEP	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
10	If the right end is fixed rather than simply supported.		XEO FIXR	$\mathrm{L}=$?
11	Calculate internal moments (L and R refer to the left and right sides of each support).		XEO MOMENTS R/S ${ }^{\text {B }}$ R/S * R/S* R/S ${ }^{*}$	INT MOMENTS $\begin{aligned} & \text { M1L }= \\ & \text { M1R }= \\ & \text { M2L }= \\ & \text { M2R }= \end{aligned}$
12	For a new case, go to step 2. * Use R/S if you do not have a printer.		8/5	$\mathrm{L}=$?

Example 1:

Compute the couples at the wall and the intermediate support for the beam above. Prove that these moments are correct by matching the slope at the left side of the support with the slope at the right side of the support. If we assume that the section properties are constant along the beam, they cancel out of the equation and we may use:

$$
E=I=1
$$

Keystrokes: $(S I Z E \geqslant 34)$

Display:

ENG 3

Fixed left end:
XEQ ALPHA FIXL ALPHA $L=$?

Span 1:

100 R/S		RDY A-I	
1 ENTERA 1	A	1.000	00
25 B		0.000	00
XEQ ALPHA	SPAN ALPHA	$L=$?	

Span 2:
90 R/S 25 B
$0.000 \quad 00$

Include cantilevered end as an applied moment at $\mathrm{c}=90$ in span 2.

$$
\mathrm{M}=-(30 * 1000)-(30 *(30 / 2) * 25)
$$

90 ENTERA 1000 CHS ENTERA	
$30 \times$	
LASTX ENTER $\triangle 2 \rightarrow$	
25 区	-41.25 03
(E)	0.00000
XEO ALPHA SPAN ALPHA	$L=$?
XEQ ALPHA MOMENTS ALPHA	INT MOMENTS
R/S *	M1L $=-25.24 E 3$
R/S *	$M 1 R=25.24 E 3$
R/S *	$M 2 L=-12.03 E 3$
R/S *	$M 2 R=12.03 E 3$

Check results:
First compute slope at right end of first section.

Compute slope at left end of second section.

XEO ALPHA SIMPLE ALPHA	$L=$?	
90 R/S 0 ENTER 4		
12.03 EEX 3 E	0.00000	
25 B 90 ENTER4		
1000 CHS ENTER4 $30 \times$ LASTX		
ENTERA \triangle		
$2 \square 25$ 区	0.000	00
0 B	$\triangle=220.3 \mathrm{E} 3$	

Since the slopes agree, the moments have been correctly balanced.**

[^3]
Example 2:

Find the moments at points S_{2} and S_{3} for the configuration above. Assume the product of EI is the same for all sections and thus cancels out of the solutions (use 1 for E and I).

Keystrokes: $(S I Z E \geqslant 39)$
XEO ALPHA SIMPLE ALPHA
177.17 R/S
1 ENTERA 1 A
88.58 ENTERA 26976 C
XEO ALPHA SPAN ALPHA
147.64 R/S
49.21 ENTERA 15736 C
49.21 ENTER $\square 15736$ C

XEO ALPHA SPAN ALPHA
147.64 R/S 335 B
147.64 ENTER4 47.24 ENTER4

11240 CHS \times E E E
XEQ ALPHA MOMENTS ALPHA
R/S *
R/S *
R/S *
R/S *

Display:
$L=$?
RDY A-I
1.00000
0.00000
$L=?$
0.00000
0.00000
$L=$?
0.00000
$0.000 \quad 00$
L=?
INT MOMENTS
$M 1 L=-720.2 E 3$
$M 1 R=720.2 E 3$
$M 2 L=-530.8 E 3$
$M 2 R=530.8 E 3$

If the concentrated load on span one (26976) were replaced with a load of 30000 , what would the moments be?

R/S *	$L=$?
177.17 R/S	
88.58 ENTER4 30000 C	
1 XEQ ALPHA NSPAN ALPHA	$L=?$
XEO ALPHA MOMENTS ALPHA	INT MOMENTS
R/S	$M 1 L=-778.3 E 3$
R/S	M1R $=778.3 \mathrm{E} 3$
R/S	$M 2 L=-516.3 E 3$
R/S	M2R $=516.3 E 3$

If you do have the optional HP-82143A thermal printer, plot the moment distribution for span 1. Use an increment of 10.

XEQ ALPHA SIMPLE ALPHA	$L=$?
177.17 R/S 88.58 ENTER4	
30000 C	0.00000
177.17 ENTER4	
778.3 CHS EEX 3 E	0.00000
H	SIMPLE
	$\begin{aligned} & L=177.2 E 0 \\ & E \equiv I=0.000 E 0^{*} \end{aligned}$
	$\begin{aligned} & \mathrm{a}=88.58 \mathrm{E} 6 \\ & \mathrm{~F}=36.00 \mathrm{~B} \end{aligned}$
	$\begin{aligned} & c=177.2 E 0 \\ & M=-770.3 E 3 \end{aligned}$
	EHI XINC?
10 R/S	X=0. 6 日日E0
	M $=16.606 E 6$
	$\begin{aligned} & X=10,80 E 0 \\ & M x=106,1 E 3 \end{aligned}$

[^4]38 Simply Supported Continuous Beams

Keystrokes:

Display:

```
8=26.06E0
NH=212.2E3
X=36.00E6
Mx=316.2E3
```

$8=40$. 04 E
HX $=424.3 \mathrm{E}$

M $\mathrm{M}=5.30 .4 \mathrm{E} 3$
$8=6$. BE E
M1 $=636.55^{3}$
$\mathrm{X}=7 \mathrm{7a} .0 \mathrm{be⿻}$
N $\mathrm{N}=742.6 \mathrm{E} 3$
$\mathrm{X}=8 \mathrm{~B} . \mathrm{anc}$
$\mathrm{M}=348.6 \mathrm{E} 3$
$8=90.04 \mathrm{E}$
MX $\mathrm{m}=9 \mathrm{~L}, 1 \mathrm{E} 3$
$\mathrm{X}=1$ ดn, BE
$\mathrm{m}=716.2 \mathrm{E} 3$
$\mathrm{X}=110 . \mathrm{BED}$
䐆 $=524.3 \mathrm{E}$
$\mathrm{X}=120 . \mathrm{BED}$
H $\mathrm{x}=33 \mathrm{~B} .3 \mathrm{E}$
$X=130.806$
$\mathrm{M}=136.4 \mathrm{E} .3$

M $=-57.50 \mathrm{E}$
\% $=150$. . 0 [6
M1: $=-251.4 E 3$

Keystrokes:

Display:

$$
\begin{aligned}
& X=168.9 E 6 \\
& M=-44.353 \\
& Y=170.9 E 6 \\
& M=-639.3 E 3
\end{aligned}
$$

PLOT OF EEAM	
	Cunts= i. -
	UHITS= E 5.) +
-6.3 0.00	
0.8	
10.	
20.	
30.	
40.	
50.	
66.	
76.	
86.	
99.	
160.	
110.	
120.	
130. :	
146.	
150. $=$	
160.	!
176.	

NOTES

SETTLING OF CONTINUOUS BEAMS

This program accounts for deviations from level in the supports of continuous beams.

The beam's geometry, section properties, and loads are derived using Continuous Beams. Then SETTLE is run to account for low and/or high supports. After SETTLE has been completed, MOMENTS is run to obtain the internal bending moments at each intermediate support.

Equations:

$$
\begin{aligned}
& \zeta_{n r}^{\prime}=\measuredangle_{n r}+\frac{\text { DELTA }_{n}}{L_{n}}-\frac{\text { DELTA }_{n-1}}{L_{n}} \\
& \measuredangle_{n L}^{\prime}=\hbar_{n L}-\frac{\text { DELTA }_{n}}{L_{n+1}}-\frac{\text { DELTA }_{n+1}}{L_{n+1}}
\end{aligned}
$$

where:
$\zeta_{n r}^{\prime}$ is the adjusted angle at the right end of beam section $n ; \iota_{n L}^{\prime}$ is the adjusted angle at the left end of beam section $\mathrm{n}+1$; DELTA $_{\mathrm{n}}$ is the height deviation of support n relative to the left-most support (up is positive, down is negative); L_{n} is the length of span n .

Reference:

Roark, Raymond J.; Young, Warran C.; Formulas for Stress and Strain, McGraw-Hill, 1975.

Remarks:

Unlike Continuous Beams, actual values for the moment of inertia and the modulus of elasticity must be used.

				SIZE:
STEP	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	Run Continuous Beams through step 10 of its listed instructions. Start Settle. Key in the length of the span. Key in the height of the support relative to the height of the first support (up is positive, down is negative).	L DELTA	XEO SETTLE R / S R / S	$\begin{gathered} \mathrm{L1}=? \\ \text { DELTA } \mathrm{N}=? \\ \\ \mathrm{LN}=? \end{gathered}$

Example:

Calculate the internal bending moments at the supports for the continuous beam shown below:

For all three spans

$$
\mathrm{E}=30 \times 10^{6} \mathrm{psi}
$$

and

$$
\mathrm{I}=5 \mathrm{in}^{4}
$$

Keystrokes $($ Size $\geqslant 040)$
ENG 3
Fixed left end:
XEQ ALPHA FIXL ALPHA
SPAN 1:
110 R/S
5 ENTER4 30 EEX 6 A
Use dummy load of zero:
0 ENTERA 0 C
XEQ ALPHA SPAN ALPHA
Span 2:
80 R/S
0 ENTERA 0 C
XEQ ALPHA SPAN ALPHA
Span 3:
120 R/S
75 ENTERA $5000 \square$ C
XEQ ALPHA SPAN ALPHA
XEQ ALPHA SETTLE ALPHA
110 R/S
$3.6 \mathrm{R} / \mathrm{S}$
80 R/S
0 R/S
120 R/S
4 CHS R/S
XEQ ALPHA MOMENTS ALPHA

Display:

$$
L=?
$$

RDY A-I
$L=?$
$L=?$
$L=$?
L1 $=$?
DELTA2 $=$?
L2 $=$?
DELTA3 $=$?
L3 =?
DELTA4 =?
END
INT MOMENTS
M1L $=266.8 \mathrm{E} 3$
$M 1 R=-266.8 E 3$
$M 2 L=-265.8 E 3$
$M 2 R=265.8 \mathrm{E} 3$
M3L $=21.41 E 3$
$M 3 R=-21.41 E 3$

[^5]
CONTINUOUS FRAME ANALYSIS

Using the method of moment distribution, this program solves for the beam and column end moments in continuous frames.

Definitions:

FEM is the fixed end moment (use the right hand rule to maintain sign consistency within this Pac [$(\checkmark$ is positive]);
K is the beam or column stiffness $(K=4 E I / L)$;
Ku is the upper column stiffness;
Kl is the lower column stiffness;
Kb is the beam stiffness;
DF is the moment distribution factor at a joint;
$\mathrm{DF}=\mathrm{K} /\left(\mathrm{Ku}+\mathrm{Kl}+\mathrm{Kb}_{\mathrm{L}}+\mathrm{Kb}_{\mathrm{R}}\right)$.
where:
K is the beam or column stiffness of any member of the joint. The subscripts ' L '" and ' R '" refer to the beams left and right of the joint; E is the modulus of elasticity; I is the moment of inertia;
L is the length of the span.

Remarks:

The number of spans the program can handle is dependent on the number of storage registers available in memory. The size required for storage is $5 \mathrm{~N}+3$, where N is the number of spans being considered.

\# of Spans	Memory Modules Required
$1-12$	None
$13-24$	1
$25-37$	2
$38-50$	3

Be aware that expansion joint requirements, building code requirements and practicality place limitations on the number of spans in the frame. Also, a large number of spans will require a long computation time.
By assuming that the far ends of the columns are fixed, beams in one floor may be analyzed without regard to the beams above or below. This allows analysis of multistory structures.
The program may also be used for single or multibay, one story frames with the far ends pinned. When the ends are pinned, multiply the stiffness factors by 0.75 .

46 Continuous Frame Analysis

The ends of the first and last span may also be pinned or fixed. Use 1.0 for the value of the distribution factor at pinned ends and 0.0 at fixed ends.

The program solves for gravity loads only. Wind and seismic loads must be considered independently.
When calculating the fixed end moments (FEM) use the FIXED beam program from the BEAMS section of this applications pac. Change the sign of the left end, fixed end moments calculated by FIXED before input to this program.
After all moments are known, the BEAMS program of this pac can be used to compute or plot shear, moment, slope or deflection. Use the computed moments as applied moments at each end of the simple beam under consideration.

References:

Continuity in Concrete Building Frames, Portland Cement Association, $4^{\text {th }}$ Ed, 1959.

Lothers, John E., Advanced Design in Structural Steel, Prentice Hall, 1960.
Borg, Genaro, Modern Structural Analysis, Van Nostrand Reinhold Co., 1969.

Example:

Solve for the moments in the frame below. For all columns $K=1.00$.

Calculate Distribution Factors:
$\mathrm{DF}_{1}=1 /(1+1+1)=0.333$
$\mathrm{DF}_{2 \mathrm{~L}}=1 /(1+1+1+2)=0.20$
$\mathrm{DF}_{2 \mathrm{R}}=2 /(1+1+1+2)=0.40$
$\mathrm{DF}_{3 \mathrm{~L}}=2 /(1+1+1+2)=0.40$
$\mathrm{DF}_{3 \mathrm{R}}=1 /(1+1+1+2)=0.20$
$\mathrm{DF}_{4}=1 /(1+1+1)=0.333$
Use the beam program 'FIXED', to solve for fixed end moments. Note that bay \# 3 is the same as bay \# 1 and thus need not be calculated. Also, note that the sign convention for the internal bending moments must be converted to the right hand rule for use in this application.

Keystrokes: $($ Size $\geqslant 024)$

FIX 2	
XEQ ALPHA	FIXED ALPHA
20 R/S	B . 2 B
0 C	
20 C	
XEQ ALPHA	FIXED ALPHA
10 R/S . 2	B 0 C
10 C	

Display:
$L=$?
$M X=-40.00$
$M X=-40.00$
$L=$?
$M X=-1.67$
MX=-1.67

Solve for moments at joints:

Keystrokes:	Display:
XEO ALPHA CFRAME ALPHA	NO. OF SPANS?
$3 \mathrm{R} / \mathrm{S}$	DF \uparrow FEM?
. 333 ENTER4 40 R/S	DF \uparrow FEM?
. 2 ENTER4 40 CHS R/S	$D F \uparrow F E M ?$
. 4 ENTER4 1.67 R/S	DF \uparrow FEM?
. 4 ENTER4 1.67 CHS R/S	DF \uparrow FEM?
. 2 ENTER4 40 R/S	DF \uparrow FEM?
. 333 ENTER4 40 CHS R/S	CYCLES?
8 R/S	BEAM MOMENTS
R/S *	S1. $=30.51$
R/S *	S2. $=-36.13$
R/S *	13.16
R/S *	S3. $=-13.16$
R/S *	36.13
R/S *	S4. $=-30.51$
R/S *	COL. MOMENTS
R/S *	KU \uparrow KL?
1 ENTER4 1 R/S	S1. $=-15.26$
R/S *	-15.26
R/S *	$K U \uparrow K L ?$
1 ENTER4 1 R/S	S2. $=11.49$
R/S *	11.49
R/S *	$K U \uparrow K L ?$
1 ENTER4 1 R/S	S3. $=-11.49$
R/S *	-11.49
R/S *	$K U \uparrow K L ?$
1 ENTER4 1 R/S	S4. $=15.26$
R/S *	15.26

Execution of VECTOR transforms the HP-41C into a four-register-stack, RPN, vector calculator. Vectors are displayed in the magnitude/angle format. The character " \llcorner " is used to separate the magnitude and angle in the display. The top two rows of keys are redefined as vector add, subtract, cross product, dot product, angle subtraction, X exchange Y , roll down, store, recall, LAST X, rectangular display, roll up, change sign and unit vector. In addition, ENTER is used to separate between magnitude and angle in vector entry and R/S is used to terminate vector entry. These operations are analogous to their scalar counterparts in the HP-41C with the following exceptions:

1. Cross product, dot product, vector angle subtraction, and rectangular display do not change the content of the stack or LAST X. They modify the display only.
2. Store and recall apply to only one vector register.
3. When a vector is terminated using R/S only one copy is generated in the vector stack.

Vector Calculator
 Data Structure

				SIZE: 016
STEP	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
1	Initialize program.	MAG ANGLE	xEa VECTOR	0.00¢0.00*
2	Key in magnitude.		ENTER	MAG
3	Key in angle.		R/S	MAGLANGLE
4	Perform any of the following operations:			
	terminate vector entry		R/S	MAGLANGLE
	cr add vectors		(A)	MAGLANGLE
	or subtract vectors		B	MAGLANGLE
	or take cross product		c	$Y \times X=$
	or take dot product		D	DOT=
	or find acute angle between vectors		E	$\mathrm{V} \Delta=$
	or exchange vectors		F	MAGLANGLE
	or roll vector stack down		G	MAGLANGLE
	or store vector		H	MAGLANGLE
	or recall vector		1	MAGLANGLE
	or recall LAST X vector		\square	MAGLANGLE
	or display vector in rectangular form		\square	HORZ \uparrow VERT
	or roll vector stack up		B	MAGLANGLE
	or change sign of vector		(c)	MAGLANGLE
	or change to unit vector.		[MAGLANGLE
5	To key in another vector, go to Step 2. To perform another operation, go to Step 4.			
	* Assumes FIX 2 display setting.			

52 RPN Vector Calculator

Example 1:

Resolve the following three loads along a 175 degree line.

Keystrokes:

Display:

First add L_{1} and L_{2}.
FIX 2

XEQ ALPHA	VECTOR ALPHA	0.0040 .00
185 ENTERA	62 R/S	$185.00<62.00$
170 ENTER4	143 A	$270.12 \triangle 100.43$

Add L_{3}.
100 ENTER 261 A
$178.94 \triangle 111.15$
Resolve vector along 175 degree line by using dot product.
1 ENTER 175 D

$$
D O T=78.86
$$

If L_{3} is doubled, what is the resolution along the 175 degree line? Take advantage of vector store, vector recall and the fact that L_{3} is in vector LAST X.
Store the 175 degree vector.

Move the current sum back to the display register of the vector stack with vector roll down.
G
$178.94 \triangle 111.15$
Get L_{3} from vector LAST X.

$100.00 \measuredangle 261.00$
Add.
A
$105.22 \measuredangle 139.66$
Recall 175 degree vector.
1
$1.00 \measuredangle 175.00$
Use dot product to resolve the new sum along the 175 degree vector.

Example 2:

What is the moment at the shaft of the crank pictured below? What is the reaction force transmitted along the member?

Keystrokes:
Moment by cross product ($\mathrm{V}_{1} \times \mathrm{F}$).

ALPHA

. 3 ENTER 50 R/S
300 ENTER 205 C
Resolution along the shaft by dot product.

F	$0.30 \measuredangle 50.00$
D	$1.00 \measuredangle 50.00$
D	$D O T=-271.89$

STEEL COLUMN FORMULA

This program computes the allowable axial compressive load for steel columns using the American Institute of Steel Construction formulas for long and short columns. Optionally, the allowable load for secondary columns or the maximum theoretical axial column load can be calculated.

Either SI or English units may be used in problem solution. The initialization routine COLSI selects the newton as the unit of force and the meter as the unit of length. N-M is left in the display after execution to indicate the units selected. COLE selects the pound as the unit of force and the inch as the unit of length. LB-IN is left in the display after execution.
After either initialization routine, the keyboard is defined according to the overlay below:

Key A is used for input of cross sectional area.
Key B and B are used for the input of the minimum moment of inertia or radius of gyration. Only one of the two is needed for problem solution.
Keys C, D and E are used to input the beam length, the effective length factor, and the steel yield point.

The effective length factor K is used to account for various column end conditions. If both ends are free to rotate but not translate the value of K is 1.0 . Since this is the common assumption, K is automatically set to 1.0 when the program is initialized. As the ends become more constrained against rotation and motion the value of K decreases, approaching a theoretical minimum of 0.5 . As the ends become less constrained, K values may exceed 2.0. The following table may be used to select K values.

EFFECTIVE LENGTH FACTORS

End Conditions	Recommended \mathbf{K} values (Theoretical conditions approximated)	Theoretical K values
FIXED-FIXED	0.65	0.5
PINNED-FIXED	0.80	0.7
ROTATION FIXED-FIXED	1.2	1.0
PINNED-PINNED	1.0	1.0
FREE FIXED	2.1	2.0
ROTATION-PINNED	2.0	2.0

Key \mp calculates the allowable, axial compressive load for the cross section assuming the ratio of KL / R is the largest ratio applicable to the section. Local buckling within the section is not checked by the program and must be treated separately.
Key \quad calculates allowable loads for bracing and secondary members.
Key H calculates the theoretical failure load for axially loaded columns and should not be used for design purposes.
A display of $\mathrm{KL} / \mathrm{R}>200$ after pressing \mp, G, or $(\mathbb{H}$ indicates that the member is too thin and long to be treated as a column.
Equations:

$$
\begin{gathered}
P_{a}=\frac{\mathrm{A}\left[1-\frac{(\mathrm{KL} / \mathrm{R})^{2}}{2 \mathrm{C}^{2}}\right] \mathrm{FY}}{\frac{5}{3}+\frac{3(\mathrm{KL} / \mathrm{R})}{8 \mathrm{C}}-\frac{(\mathrm{KL} / \mathrm{R})^{3}}{8 \mathrm{C}^{3}}} \quad \frac{\mathrm{KL}}{\mathrm{R}}<\mathrm{C} \\
\mathrm{P}_{\mathrm{a}}=\frac{12 \pi^{2} \mathrm{EA}}{23(\mathrm{KL} / \mathrm{R})^{2}} \quad \mathrm{C} \leqslant \frac{\mathrm{KL}}{\mathrm{R}} \leqslant 200 \\
\mathrm{C}^{2}=2 \pi^{2} \mathrm{E} / \mathrm{FY} \\
\mathrm{P}_{\mathrm{as}}=\mathrm{P}_{\mathrm{a}} \quad \frac{\mathrm{~L}}{\mathrm{R}} \leqslant 120 \\
\mathrm{P}_{\mathrm{as}}=\frac{1.6-\frac{\mathrm{L}}{200 \mathrm{R}}}{\mathrm{P}_{\mathrm{a}}} \\
\mathrm{P}_{\max }=\mathrm{A}\left[1-\frac{(\mathrm{KL} / \mathrm{R})^{2}}{2 \mathrm{C}}\right] \mathrm{FY} \quad \frac{\mathrm{~L}}{\mathrm{R}}>120 \\
\mathrm{RL}
\end{gathered} \mathrm{C}
$$

Definitions:

P_{a} is the allowable load;
$P_{a s}$ is the allowable load for secondary members;
$P_{\text {max }}$ is the maximum load the column could theoretically carry;
A is the area of the section;
L is the length of the column;
R is the minimum radius of gyration of the column cross section;
I is the minimum moment of inertia of the cross section;
FY is the yield point of the steel;
E is the modulus of elasticity of steel;
K is the effective length factor.

References:

Roark, Raymond J., Young, Warren C., Formulas for Stress and Strain, McGraw-Hill, 1975.
Johnston, Bruce, G., Lin, Fung-Jen, Basic Steel Design, Prentice-Hall, 1974.
Manual of Steel Construction, American Institute of Steel Construction, 1973.

Remarks:

Columns must be nominally straight, homogenous, and of uniform cross section.

Local buckling is not checked for.

Example 1:

Two steel channels are laced together to form the cross section below:

Calculate the allowable load, the allowable secondary load, and the maximum load using the following specifications: $\mathrm{R}=81.0 \times 10^{-3} \mathrm{~m}, \mathrm{~A}=9.46 \times$ $10^{-3} \mathrm{~m}^{2}, \mathrm{FY}=248 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}, \mathrm{~L}=7.5 \mathrm{~m}, \mathrm{~K}=1.0$.

Keystrokes: $($ SIZE $\geqslant 009)$
Display:

N-M
XEQ ALPHA COLSI ALPHA
81 EEX CHS 3 B
9.46 EEX CHS 3 A

248 EEX 6 E
7.5 C
$\mathrm{Pa}=905.9 \mathrm{E} 3$
PaS=905.9E3
PMAX $=1.714 E 6$

What are the allowable loads for $\mathrm{L}=12 \mathrm{~m}$?

12 CF	$P a=443.9 E 3$
G	$P a S=516.6 E 3$
H	$P M A X=850.8 E 3$

Example 2:

For a column with the properties below, what is the allowable load?
$\mathrm{F}_{\mathrm{y}}=33,000 \mathrm{psi} \quad \mathrm{A}=20 \mathrm{in}^{2} \quad \mathrm{I}=223 \mathrm{in}^{4} \quad \mathrm{~L}=350 \mathrm{in} \quad \mathrm{K}=1.0$

Keystrokes: $($ SIZE $\geqslant 009)$

33000 E 20 A 223 B
350 C
F
$P a=237.1 E 3$
LB-IN
$\mathrm{Pa}=310.1 \mathrm{E} 3$

REINFORCED CONCRETE BEAMSULTIMATE STRENGTH DESIGN

Using the ultimate strength method, this program will aid in the design of rectangular or " T "' shaped sections capable of resisting a specified moment. Both tension and compression reinforcement may be incorporated in the design. Special features of the program include:

1. The program checks for minimum reinforcement according to the A.C.I. code. If the calculated reinforcement is less than the minimum, both the calculated reinforcement and the minimum reinforcement are output.
2. Since deflection problems are rarely encountered when the steel reinforcement ratio is less than $0.18 \mathrm{Fc} / \mathrm{Fy}$, a user option is available to limit tension steel. The program prompts LMT REN? Y/N. If you wish to eliminate deflection checks key in ' Y ', ; if you are willing to do deflection checks, key in " N ".
3. If a beam requires compression reinforcement, the calculator prompts for the depth of the compression reinforcement, and automatically calculates both the tension and compression steel areas.
Typical sections:
 + tie diam.

RECTANGULAR SECTION

'T' SECTION
(neutral axis below flange)
'T' SECTION
(neutral axis within flange designed as a rectangular section with b1 $=\mathrm{b}$)

Definitions:

FY is the yield strength of the steel (psi);
F_{c} is the ultimate compressive strength of the concrete (psi);
b is the beam width (flange width for T-beam)(in);
b1 is the stem width (in);
d is the beam depth from compression surface to centroid of tension reinforcing (in);
d1 is the location of compression reinforcing, from compression surface to centroid of compression reinforcing (in);
T is the thickness of flange (in);
A 1 is the total tension reinforcing area $\left(\mathrm{in}^{2}\right)$;
A2 is the compression reinforcing area $\left(\mathrm{in}^{2}\right)$;
$.75 \mathrm{P}_{\mathrm{b}}$ is 75% of allowable balanced steel ratio;
P is the steel ratio $=\mathrm{A}_{\mathrm{s}} / \mathrm{bd}$;
A_{s} is the steel reinforcing required for tensile stress only $\left(\mathrm{in}^{2}\right)$;
A_{sf} is the equivalent steel area to balance the force produced in a concrete flange (in^{2});
Mu is the ultimate design moment (kip-in);
K is the flexural coefficient;
KMAX is the maximum flexural coefficient at balance condition when $\mathrm{P}=.75 \mathrm{P}_{\mathrm{b}}$;

NA is the neutral axis (in);
a is the depth of the equivalent stress block.

Remarks:

This program is intended as a computational aid and is not a replacement for a thorough understanding of reinforced concrete design.
The program deals with flexure only. A complete design requires that shear also be considered.

The program does not check span to depth ratios.
The formulas used in this program may be found in the following two references:

References:

ACI Standard Building Code Requirements for Reinforced Concrete (ACI 318-77), American Concrete Institute.
Winter, Urguhard, O'Rourke and Nilson, Design of Concrete Structures, McGraw-Hill, 1964.

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{For Rectangular Beams:} \& SIZE: 018 \\
\hline STEP \& INSTRUCTIONS \& INPUT \& FUNCTION \& DISPLAY \\
\hline 1 \& Initialize the program. \& \& (EEO RBEAM \& \(\mathrm{FY}=\) ? \\
\hline 2 \& Key in the yield strength of steel (psi). \& FY \& R/S \& \(\mathrm{Fc}=\) ? \\
\hline 3 \& Key in the compressive strength of concrete (psi) and calculate maximum steel ratio and 0.9 times the maximum flexural coefficient. \& Fc \& \[
\begin{aligned}
\& \mathrm{R} / \mathrm{S} \\
\& \mathrm{R} / \mathrm{S} \\
\& \hline \mathrm{R} / \mathrm{S}
\end{aligned}
\] \& \[
\begin{gathered}
.75 \mathrm{~Pb}= \\
.9 \mathrm{KMAX}= \\
\text { WIDTH=? }
\end{gathered}
\] \\
\hline 4 \& Key in the width of section (in). \& b \& R/S \& DEPTH=? \\
\hline 5 \& Key in the depth of section (in). \& d \& R/S \& LMT REN? Y/N \\
\hline 6 \& If you wish to limit reinforcements so that deflections need not be checked, answer " N ", otherwise answer " \(\gamma\) ". \& Y/N \& R/S \& MOMENT \(=\) ? \\
\hline 7 \& Key in the applied moment (in-Kips) and calculate the flexural coefficient. \& M \& \[
\begin{aligned}
\& \mathrm{R} / \mathrm{S})^{*} \\
\& \mathrm{R} / \mathrm{S}^{*}
\end{aligned}
\] \& \[
\begin{gathered}
\mathrm{K}= \\
\text { DEPTH } \mathrm{COMP}=?
\end{gathered}
\] \\
\hline 8 \& If you are prompted for the depth of compression reinforcement, key it in. \& d1 \& R/S \& \\
\hline 9 \& \begin{tabular}{l}
See outputs of minimum steel area (if the computed area is less than the minimum), \\
tension reinforcement area, and, if you were asked for d1, the area of the required compression reinforcement.
\end{tabular} \& \& R/S \({ }^{\text {* }}\)

R/S \& $$
\begin{gathered}
\mathrm{AMIN}= \\
\mathrm{A} 1= \\
\mathrm{A} 2= \\
\mathrm{A} 1=?
\end{gathered}
$$

\hline 10 \& OPTIONAL: Key in steel areas based on the outputs above and available bar sizes to compute ultimate moment. \& $$
\begin{aligned}
& \text { A1 } \\
& \text { A2 }
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \mathrm{B} / \mathrm{s} \\
& \mathrm{R} / \mathrm{s}
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
\mathrm{A} 2=? \\
\mathrm{M}=
\end{gathered}
$$
\]

\hline 11 \& For a new case, go to step 1. *If you are not using a printer, press R/S \& \& \&

\hline
\end{tabular}

For "T" Beams:				SIZE: 018
STEP	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
1	Initialize the program.		xE0 TBEAM	$\mathrm{FY}=$?
2	Key in the yield strength of steel (psi).	FY	R/S	$\mathrm{Fc}=$?
3	Key in the compressive strength of concrete and calculate the maximum steel ratio, and 0.9 times the maximum flexural coefficient.	Fc	R/s R/S * (R/S*	$\begin{gathered} .75 \mathrm{~Pb}= \\ .9 \mathrm{KMAX}= \\ \mathrm{WIDTH}=? \end{gathered}$
4	Key in the width of the flange (in).	b	8/S	STEM WIDTH=?
5	Key in the width of the stem (in).	b1	R/S	DEPTH=?
6	Key in the depth of the section (in).	d	R/S	THICKNESS = ?
8	Key in the thickness of the flange (in).	T	R/S	LMT REN? Y/N
9	If you wish to limit reinforcement so that deflections need not be checked answer " N ", otherwise answer " Y ".	Y or N	R/S	MOMENT $=$?
10	Key in the applied moment (in-Kips) and calculate the flexural coefficient.	M	$\begin{aligned} & \mathrm{R} / \mathrm{S} \\ & \mathrm{R} / \mathrm{S} \end{aligned}$	$\begin{gathered} \mathrm{K}= \\ \text { DEPTH } \mathrm{COMP}=? \end{gathered}$
11	If you are prompted for the depth of compression reinforcement, key it in.	d1	R/S	
12	See outputs of minimum steel area (if the computed area is less than the ACI minimum), the area of tension reinforcement, and, if you were asked for d1, the area of the required compression reinforcement.		R/S * R/S * R/S *	$\begin{gathered} \mathrm{AMIN}= \\ \mathrm{A} 1= \\ \mathrm{A} 2= \\ \mathrm{A} 1=? \end{gathered}$
13	Optional: Key in the steel areas based on the outputs above, and available bar sizes, to compute the ultimate moment.	$\begin{aligned} & \text { A1 } \\ & \text { A2 } \end{aligned}$	$\begin{aligned} & \mathrm{R} / \mathrm{s} \\ & \mathrm{R} / \mathrm{s} \end{aligned}$	$\begin{gathered} \mathrm{A} 2=? \\ \mathrm{M}= \end{gathered}$
14	For a new case go to step 1. *Press R/S if you do not have a printer.			

Example 1:

Determine the cross section and area of steel for a concrete beam, simply supported, and rectangular in shape, for the following data:

$$
\begin{aligned}
& \mathrm{FY}=40,000 \mathrm{psi} \\
& \mathrm{~F}_{\mathrm{c}}=3,000 \mathrm{psi} \\
& \mathrm{M}_{\mathrm{u}}=2,000 \mathrm{in}-\mathrm{kips}
\end{aligned}
$$

Keystrokes: $($ SIZE $\geqslant 018)$
FIX 2
XEQ ALPHA RBEAM ALPHA
40000 R/S

3000 R/S
(R/S *
R/s *

Display:

$$
F Y=?
$$

Fc=?
.75Pb= 0.03
. 9 KMAX $=782.75$
WIDTH=?

Based on experience, a width of 10 inches is selected.

10 R/S
Since $\mathrm{bd}^{2}=\frac{\mathrm{Mu}}{.9 \mathrm{KMAX}}$

$$
d=\sqrt{\frac{2,000,000}{(10)(782.75)}}
$$

2 EEX 6 ENTERA $10 \leftrightarrows$
$782.75 \square \sqrt{x}$
Therefore, use 16 inches for d .
16 R/S
N R/S
2000 R/S
[B / s *

DEPTH=?

15.98

LMT REN? Y/N
MOMENT=?
$K=868.06$
A1 $=4.44$

Example 2:

Determine the reinforcement for the section determined in Example 1, but limit reinforcement for deflection and compute the ultimate capacity for the bars selected. Use $\mathrm{d} 1=2.38 \mathrm{in} . \mathrm{Mu}=2,000 \mathrm{in}$-Kip.

Keystrokes: (SIZE $\geqslant \mathbf{0 1 8)}$

Display:

FIX 2	
XEO ALPHA RBEAM ALPHA	$\boldsymbol{F Y}=$?
40000 R/S	$\mathrm{Fc}=$?
3000 R/S	.75Pb= 0.03
[R/S *	.9KMAX $=782.75$
R/S *	WIDTH=?
10 R/S	DEPTH=?
16 R/S	LMT REN? Y/N
Y R/S	MOMENT = ?
2000 R/S	$K=868.06$
[R/S *	DEPTH COMP=?

This prompt (for depth of compression reinforcement) indicates compression reinforcement is required.

2.38 R/S	A1 $=3.97$
[R / S *	A2 $=1.81$
R/S	A1 $=$?

The steel areas are closely approximated using 3 , \#7 bars in compression (1.80 in^{2}) and 4, \#9 bars in tension ($4.00 \mathrm{in}^{2}$). Calculate the ultimate moment for this design.
4 R/S
1.8 R/S

A2=?
M=2,013.12

Example 3:

Determine the area of reinforcement for the following rectangular concrete beam.
$\mathrm{Mu}=2,750$ in-kips
$\mathrm{FY}=40,000 \mathrm{psi}$
$\mathrm{Fc}=3000 \mathrm{psi}$
b $=10^{\prime}$ '
d $=16^{\prime \prime}$
$\mathrm{d} 1=2.50 \mathrm{in}$

Keystrokes: (SIZE $\geqslant 018$)

40000 R/S
3000 R/S
R/S *
R/S
10 R/S
16 R/S
N R/S
2750 R/S
R/S *
2.5 R/S

R/S

Display:
$\boldsymbol{F} \mathbf{Y}=$?
$\mathrm{Fc}=$?
$.75 \mathrm{~Pb}=0.03$
. 9 KMAX $=782.75$
WIDTH=?
DEPTH=?
LMT REN? Y/N
MOMENT=?
$K=1,193.58$
DEPTH COMP=?
A1 $=5.99$
$A 1=1.54$

Example 4:

Determine the required reinforcing for the following concrete " T " beam.
$\mathrm{FY}=60,000 \mathrm{psi}$
$\mathrm{Fc}=3000 \mathrm{psi}$
$\mathrm{b}=47.00$ in
$\mathrm{b} 1=11.00$ in
$\mathrm{d}=20.00 \mathrm{in}$
$\mathrm{d} 1=2.50 \mathrm{in}$
$\mathrm{T}=3.00$ in
$\mathrm{M}=6,400 \mathrm{in}$-kips

Keystrokes: $($ SIZE $\geqslant 018)$
FIX 2

XEQ ALPHA TBEAM ALPHA
60000 R/S
3000 R/s
[R / \mathbf{s} *
R/S
47 R/S
11 R/S
20 R/S
3 R/S
N R/S
6400 R/S
[R / s *

Display:
$\boldsymbol{F Y}=$?
Fc=?
$.75 \mathrm{~Pb}=0.02$
.9KMAX $=702.05$
WIDTH=?
STEM WIDTH=?
DEPTH=?
THICKNESS=?
LMT REN? Y/N
MOMENT?
$K=458.23$
A1 $=6.46$

REINFORCED CONCRETE COLUMNSULTIMATE STRENGTH DESIGN

This program computes the ultimate capacity of short concrete columns, either square or rectangular, with any combination of reinforcing. Either axis may be investigated.
The 1977 American Concrete Institute code is followed in determining the allowable fiber stress in the reinforcing and in the concrete. Automatic checks are made for maximum and minimum reinforcing percentages in the computation of the maximum allowable axial force, PMAX. If the required percentages are less than or greater than allowable, the program stops with an alpha description of the problem.
The program uses an iterative technique to determine the capacity which satisfies the design eccentricity. The neutral axis is moved until the calculated eccentricity equals the design eccentricity. For each location of the neutral axis the size of the concrete stress block, the strains on each barset group and the allowable stress are calculated. The total area in each barset is then multiplied by the allowable stress to obtain the force, either tension or compression, which is summed. The force is multiplied by its distance from the center line of the section to determine the moment. This procedure continues until the computed value of the eccentricity agrees with the design eccentricity. At this point the program will output the axial capacity P and moment capacity M of the computed eccentricity. The location of the neutral axis c is also output for any manual checking that may be desired.
If the neutral axis reaches the position of the last barset group from the primary face, the column is considered inadequate as a compression member subject to bending. Beyond this, the section could be considered as a flexure member, which is beyond the scope of this analysis. If this condition occurs the program will return with an alpha message "INADEQUATE".

Definitions:

eb is the eccentricity at the balance point where tension equals compression (inches);
e is the design eccentricity (inches);
c is the location of the neutral axis (inches);
N-BARSETS is the number of barsets;
b is the width of the column (inches);
T is the depth of the column (inches);
d is the depth from the front face to the centroid of the last barset group (inches);
d1 is the distance from the back face to the centroid of the last barset group (assumed equal to the distance from the front face to the centroid of the first barset group) (inches);
FY is the ultimate strength of steel (psi);
Fc is the ultimate compressive strength of concrete (psi);
P is the design axial capacity (kips);
Mb is the balanced moment (kip-in);
Pb is the balanced axial capacity (kips);
M is the design moment capacity (kip-in).

Remarks:

Large columns with large eccentricities and large columns with extremely small eccentricities may take a long time to solve.
The program assumes that the barset spacing is equal.
For ($\mathrm{P} \leqslant .1 \mathrm{Fc} \times$ AREA), the member becomes more of a flexure member, which is beyond the scope of this program.
This program is for short concrete columns only. Slenderness must be taken into account according to the A.C.I. code.
Very small eccentricity (the neutral axis approaches infinity) is an unreasonable situation and probably would take many hours to solve. Therefore, limit e to at least 10 percent of T .
Either axis may be investigated by considering it the major axis.

References:

ACI Standard Building Code Requirements for Reinforced Concrete (ACI 318-77), American Concrete Institute.
Winter, Urguhart, O'Rourke and Nilson, Design of Concrete Structures, McGraw-Hill, 1964.

				SIZE: $21+N$
STEP	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
1	Initialize the program.		XEO CONCOL	$\mathrm{FY}=$?
2	Key in the ultimate strength of steel.	FY	R/s	$\mathrm{Fc}=$?
3	Key in the ultimate strength of concrete.	Fc	R/S	WIDTH=?
4	Key in the width of the column.	b	[/6	THICKNESS = ?
5	Key in the depth of the column.	T	R/S	DEPTH 1ST=?
6	Key in the depth of first barset group.	d1	R/S	N -BARSETS $=$?
7	Key in the number of barset groups.	N-BARSETS	R/S	AREAS 1.. $\mathrm{N}=$?
8	Key in the area of barset groups.	A1	R/S	AREAS 1.. $\mathrm{N}=$?
			R/S	AREAS 1.. $\mathrm{N}=$?
9	Key in the last area and output maximum load, eccentricity at the balance point, balanced moment, and design axial capacity.	AN		$\begin{gathered} \mathrm{PMAX}= \\ \mathrm{eb}= \\ \mathrm{Mb}= \\ \mathrm{Pb}= \\ \mathrm{e}=? \end{gathered}$
10	Key in design eccentricity ($\mathrm{e}=\mathrm{M} / \mathrm{P}$ where M is the design moment and P is the design load).	e		$\begin{aligned} & \mathrm{e}= \\ & \mathrm{M}= \\ & \mathrm{P}= \\ & \mathrm{c}= \end{aligned}$
11	For a new case go to step 1. *Press $\boldsymbol{\text { R/S }}$ if you are not using a printer. **This is a lengthy calculation.			

Example 1:

For a $16^{\prime \prime} \times 20^{\prime \prime}$ concrete column with 10-\# 11 bars determine:PMAX, eb, Pb, Mb and the capacity for an eccentricity of 12 inches.
$\mathrm{FY}=60,000 \mathrm{psi}$
$\mathrm{Fc}=4,000 \mathrm{psi}$
Solution SIZE $=21+5=26$

Each barset $=2-$ \# 11
\#11 bar As $=1.56 \mathrm{in}^{2}$
$2(1.56)=3.12$ in 2
Keystrokes: $($ SIZE $\geqslant 026)$

FIX 2	
XEQ ALPHA CONCOL ALPHA	$F Y=$?
60000 R/S	$\mathrm{Fc}=$?
4000 R/S	WIDTH=?
16 R/S	THICKNESS=?
20 R/S	DEPTH 1ST=?
2.71 R/S	$N-$ BARSETS $=$?
5 R/S	AREAS 1..N=?
3.12 R/S	AREAS 1..N=?
$3.12 \mathrm{R} / \mathrm{S}$	AREAS 1..N=?
$3.12 \mathrm{R} / \mathrm{S}$	AREAS 1...N=?
$3.12 \mathrm{R} / \mathrm{S}$	AREAS 1...N=?
$3.12 \mathrm{R} / \mathrm{S}$	PMAX $=1,103.74$
[R/S *	eb $=12.74$
[R/S *	Mb $=4,194.49$
[R/S *	$\mathrm{Pb}=329.34$
R/S *	$\mathrm{e}=$?
12 (R/S **	$e=12.00$
R/S *	M $=4,159.79$
[R/S *	$\mathrm{P}=346.76$
R/S *	$\mathrm{c}=10.38$

[^6]
Example 2:

For a $20^{\prime \prime} \times 20^{\prime \prime}$ concrete column with $8-\# 8$ bars determine: PMAX, eb, Pb, Mb and the capacity, for an eccentricity of 4 inches.
$\mathrm{FY}=60,000 \mathrm{psi}$
$\mathrm{Fc}=5,000 \mathrm{psi}$
Solution: SIZE $=21+2=23$

Each barset $=4 \# 8$
$1 \# 8=.79 \mathrm{in}^{2}$
$4(.79)=3.16 \mathrm{in}^{2}$
Keystrokes:
FIX 2
XEQ ALPHA CONCOL ALPHA
60000 R/S
5000 R/S
20 R/S
20 R/S
2.38 R/S
2 R/S
3.16 R/S
3.16 R/S
R/S $*$
R/S $*$
R/S $*$
R/S $*$
4 R/S
R/S $*$
R/S $*$
R/S $*$

Display:
$\boldsymbol{F} \mathbf{Y}=$?
$\mathrm{Fc}=$?
WIDTH=?
THICKNESS=?
DEPTH 1ST=?
N-BARSETS=?
AREAS 1N=?
AREAS 1N=?
$\operatorname{PMAX}=1,149.31$
eb $=9.95$
Mb=4,844.29
$\mathrm{Pb}=486.98$
e=?
$e=4.00$
M=3,644.62
$P=911.17$
$\mathrm{c}=16.76$

Example 3:

For a $16^{\prime \prime} \times 30^{\prime \prime}$ concrete column with $10-\# 7$ bars determine PMAX, eb, Pb, Mb and the capacity, for an eccentricity $\mathrm{e}=15.00 \mathrm{in}$.
$\mathrm{FY}=40,000 \mathrm{psi}$
$\mathrm{Fc}=3,750 \mathrm{psi}$
SIZE $=21+4=25$

$$
\begin{aligned}
& \text { Barset \#1 }=3-\# 7 A s=1.8 \mathrm{in}^{2} \\
& \text { Barset \#2 }=2-\# 7 \mathrm{As}=1.2 \mathrm{in}^{2} \\
& \text { Barset \#3 }=2-\# 7 \mathrm{As}=1.2 \mathrm{in}^{2} \\
& \text { Barset \#4 }=3-\# 7 \mathrm{As}=1.2 \mathrm{in}^{2}
\end{aligned}
$$

Keystrokes: $($ SIZE $\geqslant \mathbf{0 2 5})$

RIX
XEQ ALP
40000 R
3750 R/S
16 R/S
30 R/S
2.31 R/S
4 R/S
1.8 R/S
1.2 R/S
1.2 R/S
1.8 R/S
R/S $*$
R/S $*$
R/S

Display:
$\boldsymbol{F Y}=$?
$\mathrm{Fc}=$?
WIDTH=?
THICKNESS=?
DEPTH 1ST=?
N-BARSETS=?
AREAS 1..N=?
AREAS 1..N=?
AREAS 1..N=?
AREAS 1..N=?
PMAX=980.49
eb= 8.92
Mb $=5,348.45$
$\mathrm{Pb}=599.49$
e=?
$e=15.00$
M=5,005.42
$P=333.68$
c=11.99

EFFECTIVE MOMENT OF INERTIA FOR CONCRETE SECTIONS

This program calculates the depth of the neutral axis of a cracked section, the cracked moment of inertia, the moment at which cracking occurs, and the effective moment of inertia for a concrete section. Either " T "' or rectangular sections may be analyzed. Both compression and tension reinforcement may be incorporated.

Definitions:

b is the width of the compression flange or face (inches);
bl is the width of the stem of a T-section (inches);
d is the depth from the compression face to the centroid of the tension steel (inches);
d 1 is the depth from the compression face to the centroid of the compression steel (inches);

T is the thickness of the flange for T-beams (inches);
H is the total section height (inches);
Kd is the depth from the compression face to the neutral axis (inches);
A1 is the area of the tension steel $\left(\mathrm{in}^{2}\right)$;
A2 is the area of compression steel (in^{2});
Fc is the compressive strength of the concrete (psi);
Ic is the moment of inertia for a cracked, transformed section (in ${ }^{4}$);
Ie is the effective moment of inertia for deflection computations (in^{4});

Ma is the maximum moment at the point where deflection is being considered;

Mc is the moment at which cracking occurs (units of Ma).

References:

ACI Standard Building Code Requirements for Reinforced Concrete (ACI 318-77), American Concrete Institute.
Winter, Urguhart, O'Rourke and Nilson, Design of Concrete Structures, McGraw-Hill, 1964.

				SIZE: 018
STEP	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
1	Initialize the program for T-section or rectangular section.		XEQ ITCON XEQ IRCON	$\mathrm{Fc}=$?
2	Key in compression strength of concrete.	Fc	R/S	WIDTH $=$?
3 a	Key in width of compression surface.	b	R/S	(STEM WIDTH=?)
3b	For T-section only, key in width of stem.	b1	R/S	DEPTH TEN=?
4	Key in depth of tension steel.	d	R/S	DEPTH COMP = ?
5	Key in the depth of the compression steel (if no compression steel just press R/S).	(d1)	R/S	(THICKNESS = ?
6	For T-sections key in the thickness of the flange.	T	R/S	A TEN=?
7a	Key in the area of tension steel.	A1	R/S	A COMP $=$?
7b	If you keyed in the depth of the compression steel, key in the area of compression steel and calculate the distance to the neutral axis and the moment of inertia of the cracked transformed section.	(A2)	(R/S) ${ }^{\text {(R/S }}$ (R/S R/S ${ }^{*}$	$\begin{aligned} \mathrm{Kd} & = \\ \mathrm{Ic} & = \\ \mathrm{Ma} & =? \end{aligned}$
8	Key in maximum moment where deflection is being checked.	Ma	8/5	TTL HEIGHT=?
9	Key in the total section height and calculate cracking moment and the effective moment of inertia.	H	$\begin{aligned} & R / \mathbf{R} \\ & R^{R / S} ; \end{aligned}$	$\begin{aligned} & \mathrm{Mc}= \\ & \mathrm{le}= \end{aligned}$
10	For a new case, go to step 1. *Press R/S if you are not using a printer.			

Example 1:

Determine the neutral axis, cracked moment of inertia, cracking moment, and effective moment of inertia for the section below.
$\mathrm{Fc}=2500 \mathrm{psi}$
$\mathrm{Ma}=2,000,000.00 \mathrm{in}-\mathrm{lb}$

Keystrokes: $($ SIZE $\geqslant 018)$
Display:

FIX 2
XEa ALPHA
2500 R/S
48 R/S
$12 \mathrm{R} / \mathrm{S}$
24 R/S
R/S
6 R/S
6.32 R/S
[R/S *
R/S *
2000000 R/S
28 R/S
R/S *

Fc=?
WIDTH=?
STEM WIDTH=?
DEPTH TEN=?
DEPTH COMP=?
THICKNESS=?
A TEN=?
$K d=6.77$
lc $=\mathbf{2 3 , 7 2 1 . 5 1}$
$\mathrm{Ma}=$?
TTL HEIGHT=?
Mc=788,928.74
$l e=24,629.15$

Example 2:

Determine the neutral axis, cracked moment of inertia, cracking moment and effective moment of inertia for the section below.
$\mathrm{Fc}=2500 \mathrm{psi}$
$\mathrm{Ma}=2,100,000 \mathrm{lb}-\mathrm{in}$

Keystrokes: $($ SIZE $\geqslant 018)$
FIX 2
XEQ ALPHA IRCON ALPHA
2500 R/S
12 R/S
19.5 R/S
2 R/S
4 R/S
1.2 R/S
R/S $*$
R/S $*$
2100000 R/S
22 R/S
R/S $*$

Display:
$\mathrm{Fc}=$?
WIDTH=?
DEPTH TEN=?
DEPTH COMP=?
A TEN=?
A COMP=?
$K d=7.61$
Ic=8,135.29
Ma=?
TTL HEIGHT=?
Mc=363,000.00
le=8,148.27
APPENDIX A
PROGRAM DATA
$\begin{array}{cc}\text { DISPLAY } \\ \text { FORMAT } & \text { SUBPROGRAMS } \\ \text { CALLED }\end{array}$
\quad FLAGS

00-First Input
01-Used
21-Print
27-User Mode
DATA REGISTERS

\#REGS
TO COPY
๗
PROGRAM
Section
Properties

$$
\begin{aligned}
& \text { 00-Edit } \\
& \text { 01-Angle/Shear } \\
& 02-\text { Shear } \\
& 27-\text { User Mode }
\end{aligned}
$$

ANY

$$
\text { ENG } 3
$$SIZE?

PRPLOT
*W
*P
*L
*M

®
ゼ
Continuous
BeamsSUBPROGRAMS
CALLED
SIZE?$\stackrel{N}{N}$
$\stackrel{N}{\omega}$DISPLAY
FORMAT
$\stackrel{N}{\text { N }}$

22-Input
DATA REGISTERS
$01,06,11, \ldots$ unbalanced
moment storage
$02,05,07,10, \ldots$
distribution factor
storage
$03,04,08,09, \ldots$
moment storage registers
$00 \& R E G R(5 N+3)$ control ...

[^7]$05=$ Register $_{r}$
$06=$ Register $_{\Delta}$
$07=$ Scratch
08=Stack

10=Stack ${ }_{\text {r }}$
11 = Stack 4
\#REGS
8
8
PROGRAM

Continuous Frame Analysis

RPN Vector
Calculator

$\stackrel{N}{N}$	
\cdots	$\stackrel{N}{N}$
ω	

01-English/SI

$\begin{array}{cc}\text { DISPLAY } & \text { SUBPROGRAMS } \\ \text { FORMAT } & \text { CALLED }\end{array}$
FLAGS
01-Used
$27-$ User

no
wo
\#
\#
®

PROGRAM
Concrete
Columns

(h) HEWLETT
 PACKARD

1000 N.E. Circle Blvd., Corvallis, OR 97330

[^0]: * Press R/S if you are not using a printer.

[^1]: * Press R/S if you are not using a printer.

[^2]: * Size of 30 is required to start with the left end fixed.

[^3]: * Press R/s if you are not using a printer.
 ** The term slope is used loosely here since we do not know E or I and thus have assumed the rather arbitrary value of 1.00 . The slight difference in the computed slopes arises because the moments were keyed in as four digit approximations of 10 digit numbers.

[^4]: *May take any value in this problem.

[^5]: * Press R/S if you are not using a printer.

[^6]: * Press R / \mathbf{S} if you are not using a printer.
 ** This is a lengthy calculation.

[^7]: $00=$ Pointer to x_{r}
 $01=$ Pointer to x_{b}
 $02=$ Last x_{r}
 $03=$ Last x_{L}

