
HP 41 C/ HP 41 CV/ HP 41 CX

PANAME ROM

USER MANUAL

FOREWARD

WARNING

FINDAID

AID

Appendix C

ID

OouUT

OUTAX

OUTCR OUTLF OUTLFX

OUTSPX

OUTXB OUTYBX

OUTa OUTaX

RCLSEL

82163 FUNCTIONS GROUP
CLEAR CLEARO CSRDN CSRHX
CSRL CSROFF CSRON CSRR CSRVX
CSRUP CTYPE HOME SCRLDN SCRLUP
SCRLX XYTAB
Appendix V

82162 FUNCTIONS GROUP
8BIT ESCAPE PARSE CLBUF
UNPARSE TABCOL

82905 FUNCTIONS GROUP

BELL CHARSET FFEED FORMLN GRAPHX

MODE SKIPOFF SKIPON TEXTLEN

VSPAC

Appendix P

Roman8 Characters

MINIPLOTTER

AXIS

*LDIR *LTYPE *MOVE *PLREGX RDRAW RESET

REVLF REVLFX RMOVE SETORG

BACKSP BACKSPX BOX *COLOR *CSIZE *DRAW *HOME

*LABEL

STATUS

Appendix T2

UTILITIES
/MOD
AD-LC
ALENG
ANUM
ANUMDEL
APPX
AROT
ATOXL ATOXR ATOXX
BLDPT
BRKPT
CHFLAG

CLINC

COLPT

GETRGX

LC-AD

LINPT

NOP

POSA

PSIZE SIZE?

READEM

RG

RG+- RG* RG/

RG+Y RG*Y RG/Y

RGAX

RGCOPY

RGINIT

RGND

RGSUM

RGVIEW

SORT

STO>L

SUB$
TF55

VKEYS

WRTEM

X<>F

X...NN?

Y/N

Appendix ON

59
60
61
63
64
65
66
67
68
69
70
73
75
77
79
81
82
84
87
89
91
93
94
95
96
98
99
100

FOREWORD

When the HP-41 was realeased, in 1979, it represented a great improvement in its
field ; 1t was able to receive, process, and display alphabetical strings. A real dialogue was

now possible between the user and the calculator, this new flexibility was even improved

by some sound possibilities.

In fact these advantages were only the most visible improvements. The alphanumeric
keyboard induces other new and powerful capacities.

The first possibility is very useful in program mode. Instructions are not in code,

but in plain language. Now "specialised machine language" is not adequated for the HP-
41, "specialised assembly language" is better. In fact, for this calculator, HEWLETT-
PACKARD has developed an advanced language, Forth-like, which places the HP-41 in a

class of its own.

The comprehension of this potentialities induces the way one will use the HP-41.

THIS LANGUAGE IS AN INTERPRETED ONE.

The instructions inserted in the calculator memory are not directly intelligible to the
microprocessor. Prior to execution they must be translated into a succession of micro-

instructions, which are understandable by the HP-41 chip. This deciphering operation is

called interpretation.

A SYMBOLIC LANGUAGE FOR THE HP-41.

A computer spends most of its time searching its memory to transfer informations
from one place to an other. This information can be transformed in the process, but it is

not always necessary. To execute these transfers the microprocessor must know the data

origin and destination, both are absolute addresses.

There are two types of informations :

- data : numeric values or characters strings.

- instructions : whose sequence represents a program.

At the machine language level all these informations are numbers. But the common
users are very different from a microprocessor, they find it easier to remember words
than numbers or instructions sequences : programmers prefer symbols to numbers. So the
microprocessor must link, one way or another, the symbol and the address to get a given
information. It can use catalogs which can be compared to a directory, where a telephone

number is found using a surname. A language is characterized by its degree of symbolism.

THE HP-41 IS MODULAR.

In the world of micro-computers the HP-41 is one of the few machines which can

contain an undetermined number of programs. They can be created, edited, erased, and (if

you own a mass storage device) saved or loaded independently.

Page 1

At this physical independence, is opposed a logical dependence. Any program can

call a group of instructions belonging to another program. This sequence has only to begin
by an alphabetical label : LBL "X..." and end by RTN or END.

Therefore it is possible to divide a complicated program, in a sequence of easier
ones (and so on) according to the valuable principles of top-down programming. The

problems of data handling are left to lower levels subroutines, while the logical sequence
of the program is clearly visible at the higher levels. This programming technique has
numerous advantages :

- It becomes very difficult to make mistakes while conceiving the different stages of
a program. If it happens, it is easy to correct it because the mistake is quickly located

within a small number of instructions.

- It is also very easy to test each subroutine to see if the output is consistent with a
given input.

- Finally, some subroutines happen to be so useful that one wish to have an

assembly language version of them. This module is a good illustration of it : most
functions included in the PANAME ROM, where first created as subroutines in user

language. The conception of the array handling techniques and of most functions were

done in 1982.

PROGRAMMING THE HP-41.

The HP-41 has three programming levels.

- Programs are, in fact, a sequence of routines with tests in between. Always

designed for a specific purpose, the program illustrates the stategical importance of the

programmer’s ability. A program must be understandable when reading it, and it must
include its documentation.

- Routines, represent the tactical side of programming. A routine should be short,
fast, memory saving, and modify as few variables as possible. It performs a specific task.

They are general enough to be used several times in a program, even in different
programs. So, they should always be in memory. A standardisation of programming
technics saves time and efforts. If a routine meets all these requirements it can be

considered as a new function for the HP-41 language : an illustration of the last quality of

this language : its capacity of evolution.

- Assembly language functions. They are the elements of the language itself. A
function should be general, even more than a routine. The two authors of this module
provide us with a coherent group of more than 120 new functions.

FIRST CONCEPT : PERIPHERALS HANDLING.

Using the functions in this module is realizing what simplifications they offer when
dealing with peripheral. Either using video or printer functions, a lot of time is saved

when running a program or creating it. Plain language instructions instead of escape
sequences, represents the same enhancement than reading "SIN" instead of "31 04".

"CLEAR" is better than "27 ACCHR 69 ACCHR": it is more intelligible, and it works in
trace mode. From this point of view the "PANAME" ROM is a great enhancement and it

solves problems which had virtually no solution before.

Page 2

Page 3

ANOTHER CONCEPT : ARRAYS HANDLING.

How many times did we hear that the HP-41 was not designed for array handling.
Now, every one will see how the use of the stack, that we have recommended, prepared

us to these new functions. The rise of to FORTH language will give another evidence of

this conception. Those lucky enough to use RPN logic will be prepared for FORTH,
which perhaps, will replace BASIC.

We hope that all HP-41 programmers will appreciate the power of the "PANAME"

ROM.

PHILIPPE DESCAMPS

WARNING

The PANAME ROM includes new functions for the HP-41, and they induce lots of

different applications. But, as for other functions of the HP-41, either original ones or

new ones, Users with their wide range of applications, are the only ones, who can show

the interest of these functions.

This module would have been impossible without our PPC club, because it facilitates

the exchange of solutions : it is very useful to share with other people knowledge and

programming skills.

For the moment the PANAME ROM has a user manual, which has been made as

clear and precise as possible. But we are aware of our limits. Therefore, we have decided

to write, with evereybody’s help, a document following the spirit which was at the origin
of the PPC Module.

If you are interested in a Solution Book for the PANAME ROM, you can put your

name down with J.J. DHENIN, BCMVW 2 bis rue N. HOUEL 75005 PARIS. When the
solution book is ready you will be notified.

How do we intend to write this collective book ?

Everyone will find unclear points in the original manual. We hope you will send us

written questions. It will be better if a new redaction of these points is also proposed. As

a matter of fact, we are so accustomed to these new functions that we are unable to

evaluate the difficulties faced by a new user. So you are the only ones who can help us to
enhance this manual.

Finaly, examples are the best explanation, especially when the manual is not written
in author native language. So we hope you will send us your own applications, short if
possible.

According to your suggestions and to your work, we will be able to send you a new
and better document in the future.

Happy programming.

Page 4

Page 5

- Find device according to its Accessory ID - FINDAID

FINDAID (FIND by Accessory ID) allows the HP-41 to find the location on the loop, of a
device specified by its accessory ID. This function is the complement of the function
FINDID in the HP82160A HPIL ROM, which allows searching for a device according to

its device ID.

For greater ease-of-use, the FINDAID function can also locate a device of a specific

class. A device class representing devices whose AID is in a specific range. For instance,

the "Mass Storage" device class regroups all devices with an AID between 16 and 31. For

the different class definitions refer to Appendix C.

INSTRUCTIONS FOR FINDAID

FINDAID allows the HP-41 to search a device of a given class or type which you specify

with a number in the X-register. To specify a class, put in the X-register a negative

number, which absolute value corresponds to the device class. Refer to Appendix C to set
the number corresponding to each device class.

The FINDAID function starts its search at the primary device.

-If the specified device is found, its HP-IL address is returned to the X-register.

-If the search is unsuccessful 0 is returned to the X-register.

The old value of the X-register is always saved in LASTX.

EXAMPLE

1) To find the first printer on the loop, put -32 (Class number for "printer") in the X-
register, and execute FINDAID.

2) Application program for FINDAID : 'FNDAIDN’

FNDAIDN searches the loop for the Nth device of a given class or AID.

To use FNDAIDN :

- Put N in the Y-register.

- Put the device class number or AID in the X-register. (As with FINDAID.)
- The result is left in the X-register; all other stack registers, including LASTX, are
destroyed.

FNDAIDN listing :

LBL "FNDAIDN"™ RCLSEL STO 00 ST/ X

LBL 01 SELECT RCLSEL X#Y? GTO 02 R™ R” FINDAID X=0?

GTO 03 X<> L ISG L NOP LASTX DSE Z GTO 01 DSE X GTO 03

LBL 02 CLX LBL 03 RCL 00 SELECT RDN END

Related functions :

- HP-IL ROM: FINDID, SELECT, AUTOIO, MANIO.
- PANAME ROM: AID, ID, RCLSEL.

- Accessory Identity -

Page 6

AID

AID returns the Accessory ID of the primary device. The Accessory ID is an integer in

the range 0 to 255 which identifies the device type.

For instance, the Accessory ID of the HP82162A thermal printer is 32. If the primary

device is a HP82162A printer, the AID function returns 32 to the X register.

AID INSTRUCTIONS

The AID function returns to the X register an integer representing the Acessory Identity
of the primary device. To compute the AID number of a device, refer to the description
of the HPIL message "Sent Accessory Identity" in the device owner’s manual.

If the primary device has no Accessory Identity, the error message NO RESPONSE is

displayed.

Related functions

EXTENDED I/0 MODULE : FINDAID, ID

HPIL ROM : FINDID, SELECT, AUTOIO, MANIO
PANAME ROM : RCLSEL

For every type of accessory, this list gives the name, identity range and number related to

a device type.

To find a device of a given type, store the type identifier into the X register and execute
FINDAID.

Type

controller

mass storage

printer

display

interface

graphic device

32

48

64

80

96

112

128

144

160

176

192

208

240

to

to

to

to

to

to

to

to

to

to

to

to

to

to

to

Appendix C

Type identifier

15

31

47

63

79

95

1M1

127

143

159

175

191

207

239

255

- 32

- 48

- 64

- 80

- 96

-112

-128

-144

-160

-176

-192

-224

-240

Page 7

- Device Id -

Page 8

ID

ID (Device ID) returns the Device ID of the SELECTed device. The Device ID is an

alphanumeric string which identifies the device. Generally the ID string indicates the
device manufacturer and reference.

For instance, the Device ID of the HPIL-RS232 interface is "HP82164A". If the

SELECTed device is the HPIL-RS232 interface, the ID function returns "HP82164A" to

the ALPHA register.

INSTRUCTIONS FOR ID

The ID function returns the Device ID of the SELECTed device to the ALPHA register.
To get the ID string of a device, refer to the description of the HPIL message "Sent
Device Identity" in the device owner’s manual.

If the SELECTed device has no device identity, the error message

NO RESPONSE is returned.

RELATED FUNCTIONS:

HPIL ROM : FINDID, SELECT, AUTOIO, MANIO
PANAME ROM : AID, FINDAID, RCLSEL

- Input prefix for OUT functions -

Page O

ouT

Easy keyboard input of functions beginning with OUT is possible thanks to the [OUT]
function. This function is very useful when it is assigned to a key. For instance assign
OUT to the [LN] key.

Keystrokes : [ASN]JALPHA][OJJU][TJALPHA][LN]
Put the calculator in USER mode, then execute or program a function whose name begins
with OUT, for instance OUTAX.

Keystrokes : [OUT]([LN] key)JALPHAJ[A][X][ALPHA]

Without the OUT function the keystrokes would have been [XEQJALPHA]
[OU]TIAIIXIIALPHA], so you save 3 keystrokes every time you type a function
beginning with OUT.

OUT INSTRUCTIONS

1) Assign OUT to a key and set the calculator to USER mode.

2) To execute or program a function beginning with OUT, strike :

[OUT] (It is assigned to a key)

[ALPHA]

...characters of the function name without the first three one.

...(for instance YBX for the OUTYBX function).

[ALPHA]

Page 10

- OUTA with repetition according to X - OUTAX

OUTAX performs one or several OUTAs functions, it sends the ALPHA register contents

to the SELECTed device. The absolute value of the X register indicates the number of
OUTASs to be performed.

If flag 17 is cleared, an End Line sequence is added to the ALPHA string each time. (End

Line : characters CR and LF, decimal code 13 and 10).

If Flag 17 is set, the ALPHA string is sent several time without any separation character.

INSTRUCTIONS FOR OUTAX

The string to be sent several times must be put in the ALPHA register, the number of
repetitions in the X register, and Flag 17 must be set or cleared according to the required

effect (as mentioned above) then execute OUTAX.

EXAMPLE :

To draw a line of 40 "*' on a HP82905B printer, use the following sequence. (The
printer must be the SELECTed device)

nkn SF 17 40 OUTAX ADV

RELATED FUNCTIONS:

Any function beginning with OUT.

HPIL ROM : MANIO, SELECT are used to select the device.

Page 11

- OUTput Carriage Return - OUTCR

OUTCR sent a CR character to the SELECTed device. (Carriage Return : decimal code
13).

- OUTput Line Feed - OUTLF

OUTLF sends a LF character to the SELECTed device. (Line Feed : decimal code 10).

- OUTput Line Feeds by X - OUTLFX

OUTLFX Sends one or several LF characters to the SELECTed device. (Line Feed :

decimal code 10). The number of characters is specified by the absolute value of the X
register.
(0<= X <= 999).

INSTRUCTIONS FOR OUTLFX.

Put the number of LF characters to be sent in the X register and execute OUTLFX.

Page 12

- Output space characters - OUTSPX

OUTSPX (OUTput SPaces by X) sends the number of space characters (decimal code 32)

specified by the absolute value of the X-register, (0<=X<=999),to the primary device.

INSTRUCTIONS FOR OUTSPX

Put in the X-register the number of space characters to be sent to the primary device, and

execute OUTSPX.

EXAMPLE

Numerous printers have no tabulation functions. The OUTSPX function replaces it quite
well. For instance, the program OUTAT sends to the printer an alphabetical string of a
given length L, representing the string in the ALPHA register followed, if necessary, by

several space characters. If the string in the ALPHA register is longer than L, it is

shortened to the first L characters (1).

The string length is limited to 24 characters because of the size of the ALPHA register.

OUTAT use :

- Put the string length (L) in the X-register.

- Type the string in the ALPHA register.

- Execute OUTAT.

The OUTAT program destroys registers X, T, LASTX and sets flag 17.

Note : L must be a positive integer number.

Listing of OUTAT :

LBL "OUTAT" ALENG X>Y? GTO 01
LBL 02 SF 17 OUTA OUTSPX RTN

LBLO1 DSEY NOP CLX 1E2 / SUB$

CLX GTO 02 END

N.B. : The text is left-justified. To print a text right-justified just swap OUTA and
OUTSPX in OUTAT.

(1) : In this case, the ALPHA register is modified by OUTAT.

-~

Page 13

- Sent a character by its decimal code - OUTXB

OUTXB sends to the primary device, the character, whose decimal code is specified by

the absolute value of the X-register. This value must be in the range 0-255.

INSTRUCTIONS FOR OUTXB

Put the decimal code of the character in the X-register, and execute OUTXB.

EXAMPLE

To sent to the printer the character "\" (Decimal code 92), use the sequence : 92 OUTXB.

- Send a character, several time, by its decimal code - OUTYBX

OUTYBX sends to the primary device, one or several times, a character whose decimal

code is specified by the absolute value of the Y-register. The absolute value of the X-
register specifies the number of characters to sent.

Restrictions : 0<=ABS(X)<=999 and 0<=ABS(Y)<=255.

INSTRUCTIONS FOR OUTYBX

Put in the Y-register the decimal code of the character and the character count in the X-
register, then execute OUTYBX.

EXAMPLES

1) To send 20 ™" characters to the printer (Decimal code 39), use the sequence :

39 ENTER” 20 OUTYBX.

2) 'PRNBLZ’ (PRint Number with Leading Zeroes)

This program prints numbers with leading zeroes. The entry conditions are :

- The X-register holds the number to be printed.

- The Y-register holds the length of the printing field (maximum number of digits) .

- Select the display format.

- Execute PRNBLZ.

It the printing field cannot hold the formatted number, it is field with "*" characters.

After execution, registers X, Y, LASTX and ALPHA are lost.

Listing of PRNBLZ :

LBL "PRNBLZ" CLA ARCL X X<0? XEQ 00

CLX ALENG X>Y? GTO O1 - 48 X<>Y OUTYBX OUTA

LBL 00 CLX ATOXL OUTXB RTN

LBL 01 CLX 42 X<>Y OUTYBX END

RTN

Page 14

Page 15

OUTA with 7th bit set - OUTa

OUTa works like OUTA except that the 7th bit of every character sent is set. Therefore
128 is added when the character code is smaller than 128 with two important exceptions :

LF and CR characters which are automatically sent after an ALPHA string when flag 17

is clear. (CR : carriage return, decimal code 13. LF : line feed decimal code 10).

INSTRUCTIONS FOR OUTA

Put in the ALPHA register the string to be sent, set or clear flag 17 (see above), execute

OUTa.

EXAMPLES

1) To display a string in "reverse video" mode on the HP82163 video interface, you have
to add 128 to each character code before sending the string to the interface.The OUTa
function does it automatically. So to display a string in reverse video, select the interface
as the primary device, put the string in the ALPHA register and execute OUTa. Flag 17
enables or disables the sending of an "End-of-line" sequence.

2) Some printers can automatically underline if you add 128 to the code of the character
code to be underline. The OUTa function makes this operation easier with such printers.

3) There are two ways to use special characters on the HP82905B :

- Using the secondary character set mode, which give new meanings to the codes 32 to
127.

- Using characters with codes higher than 127.

The second method is very easy using the OUTa function.

- OUTa with repetion by X - OUTaX

OUTaX executes several times the OUTa function (refer to it). The absolute value of the
X-register specifies the number of OUTas.to be performed.

If flag 17 is clear, an "End-of-line indicator (CR and LF, decimal codes 13 and 10) is
sent after each string.
If flag 17 is set the string is sent several times without any other character.

INSTRUCTIONS FOR OUTAX

Put the string in the ALPHA register, the number of OUTAs to be performed in the X-

register, set or clear flag 17 (see above), then execute OUTaX.

EXAMPLE

To display a line of 16 "-*" strings in "reverse video" on the HP82163 video interface
(which has to be the primary device), use the following sequence :

"-*" SF 17 16 OUTaX

Page 16

- Recall primary device address - RCLSEL

RCLSEL (ReCaLl SELected address) returns in the X-register, after stack lift if it is
enabled, the HP-IL address of the primary device. This address i1s an integer number. The
RCLSEL function also checks the loop integrity (for device in standby mode it has the

same effect as the PWRUP function, refer to the HP82160A HPIL ROM manual). There is

a difference between the "EXTENDED I/O ROM" RCLSEL function and the "PANAME
ROM" one : The "PANAME ROM" RCLSEL function can return a value, different from

the last address specified by the SELECT function. This happens when the SELECT

function has been executed with an address greater than the number of devices on the
loop ; in this case the address returned by RCLSEL is 1. This characteristic is useful in
programs with a routine executed once for every device on the loop. A test between the

SELECT address and the address returned by RCLSEL will check if all devices have been
tested. Refer to the programs LOOP in the Example section of AID and ID, and
FNDAIDN in the example section of FINDAID, to see how this method is used.

INSTRUCTIONS FOR RCLSEL

Execute RCLSEL ; an integer number, which represents the address of the primary device
is returnrd to the X-register as specified above.

EXAMPLE

RCLSEL can be used to save the primary device selection at the beginning of a program,
which might modify it, and to restore it upon program termination. Use RCLSEL STO nn

at the beginning and RCL nn SELECT at the end.

82163 FUNCTIONS GROUP

This group of functions will make the HP 826163 video easier to use. A full control of

the video interface is possible without escape sequences or control characters. For instance

to clear the screen or to move the cursor down, CLEAR and CRSDN (CuRSor DowN) are

used.

For all these functions the primary device must be the video interface. For the different
ways to select a device refer to the functions FINDAID (in this manual) and FINDID (in
the HPIL ROM HP82160A owners manual).

In AUTOIO mode, if the primary device has a device identity other than 48 (standard
video interface) an AID ERR error message is displayed.

However in MANIO mode, this error checking is not performed. So it is possible to use
these functions with video interfaces, such as the Mountain Computer MC00701A (AID
50), PAC-TEXT, or KRISTAL(*) MINITEL interface.

For further informations on escape sequences, refer to Appendix V.

* KRISTAL, Chemin des Clos Zirst 38240 MEYLAN (FRANCE), is an HP ICC.

Page 17

Page 18

- Clear the display - CLEAR

CLEAR clears the display, sets the cursor to position (0,0) and selects the replacement

cursor.(*)

INSTRUCTIONS FOR CLEAR

Execute CLEAR.

EXAMPLE

ESC E, which is sent by the function CLEAR, is the reset sequence of the HP82905B
printer. So CLEAR can be used to reinitialize this printer, but it must be performed in

MANIO mode because the Accessory ID of the HP 82905B is 33.

- Clear the display from the cursor - CLEARO

CLEARO clears the display, starting from the cursor and down to the end of the display.

Cursor type and position are unchanged.

INSTRUCTIONS FOR CLEARO

Execute CLEARO.

(*) This is not true for all non-HP video interface.

- Move cursor down - CSRDN

CSRDN (CurSoR DowN) moves the cursor one position down. If the cursor is on the
bottom line of the display, the cursor is not moved.

- Move cursor Horizontally by X - CSRHX

CSRHX (move CurSoR Horizontaly by X) moves the cursor horizontally. The absolute

value of X specifies the number of characters of the move and its sign the direction:

- For X<0, CSRHX performs (-X) CSRLs (moves the cursor left by (-X) characters).

- For X>=0, CSRHX performs X CSRRs (moves the cursor right by X characters).

For instance -1 CSRHX is equivalent to CSRL and 1 CSRHX is equivalent to CSRR.

INSTRUCTIONS FOR CSRHX

Put in X the number corresponding to the desired move, then execute CSRHX.

Page 19

- Move the cursor to the left - CSRL

CSRL (CurSoR Left) moves the cursor one position to the left. If the cursor is at position

(0,0), it is not moved.

- Suppress the cursor - CSROFF

CSROFF (CurSoR OFF) suppresses the cursor. The cursor is not visible until the next
execution of CLEAR or CSRON or the next interface initialization (Power on or HPIL
message -DCL- or -SDC-).

- Display the cursor - CSRON

CSRON (CurSoR ON) switches the cursor on. It can be swiched off using CSROFF.

- Move the cursor to the right - CSRR

CSRR (CurSoR Right) moves the cursor one position to the right. If the cursor is at the
end of a line, the cursor is sent to the beginning of the next line, except if it is at the end
of the last line, in which case it is not moved.

- Move the cursor down according to X - CSRVX

CSRVX (move CurSoR Vertically by X) moves the cursor vertically. The absolute value of

X specifies the number of lines of the move and its sign the direction :

- For X<0, CSRVX performs (-X) CSRUPs (moves the cursor up by (- X) lines).
- For X>=0, CSRVX performs X CSRDNs (Moves the cursor down by X lines).

INSTRUCTIONS FOR CSRVX

Put in X, the number corresponding to the desired move, then execute CSRVX.

Page 20

- Move the cursor up - CSRUP

CSRUP (CurSoR UP) moves the cursor one position up. If the cursor is on the top line of

the display, it is not moved.

- Select the type of cursor - CTYPE

CTYPE (Cursor TYPE) selects the type of cursor acording to the value of X :

- For X=0, selects the "insertion" cursor (blinking arrow) ;

- For X=1 or -1, selects the "replacement" cursor (blinking block).

INSTRUCTIONS FOR CTYPE

Put in X the value specifing the desired type of cursor and execute CTYPE. Beware that
when using the Video interface Mountain Computer MCO00701A, the selection of the
insertion cursor (Blinking underline) selects neither "character insertion" mode nor "line
insertion" mode.

- Put the cursor at the upper left position of the display - HOME

HOME moves the cursor to position (0,0).

- Scroll the display down - SCRLDN

SCRLDN (SCRolLL. DowN) scroll the display on line down. (So the bottom line disappears
and a new line appears at the display top.)

- Scroll the display one line up - SCRLUP

SCRLUP (SCRolL UP) scroll up the display by one line. (So the top line of the display

disappears and a new line appears at the bottom of the screen.)

Page 21

- Scroll the display according to X - SCRLX

SCRLX (SCRolL as specified by X) the display is scroll according to X. The absolute
value of X specifies the number of lines of the scroll, and its sign the direction.

- For X<0 SCRLX performs (-X) SCRLUPs. (Scrolls the display up by (-X) lines.)

- For X>=0, SCRLX performs X SCRLDNSs. (Scrolls the display down by X lines.)

INSTRUCTIONS FOR SCRLX

Put in X, the number corresponding to the desired scrolling, and execute SCRLX.

- Move the cursor to position (X,Y) - XYTAB

XYTAB ((X,Y) TABulate) moves the cursor to position (x,y), The column number is
specified by the absolute value of X and the line number by that of Y.

INSTRUCTIONS FOR XYTAB

Put in X the column number, in Y the line number and execute XYTAB.

Sequences sent to the primary device by the HP82163 FCNS group.

Appendice V

"ESC" represents the escape character, decimal code 27.

Function(s)

CLEAR

CLEARO

CSRDN, CSRVX for X>=0

CSRL, CSRHX for X<O0

CSROFF

CSRON

CSRR, CSRHX for X>=0

CSRUP, CSRVX for X<0

CTYPE for X=0

CTYPE for X=1 or -1

HOME

SCRLDN, SCRLX for X>=0

SCRLUP, SCRLX for X<0

XYTAB

Sequence

ESC

ESC

ESC

BS

ESC

ESC

ESC

ESC

ESC

ESC

ESC

ESC

ESC

ESC

@
-

X
X
V
O

P
O

V
A

S

% {c) (1)

Characters codes

27 69

27 74

27 66

08

27 60

27 62

27 67

27 65

27 81

27 82

27 72

27 84

27 83

27 37 col Ln

Page 22

82162 FUNCTIONS GROUP

This group of functions makes easier the operation of the HP82162A Thermal Printer.
You will be able to use every features of this printer, even those not described in the
manual.

These features are :

- Two different character sets ;

- A "parse" mode ;

- A absolute dot-level tabulation function, independent from any data already in the
printer buffer ;

- The possibility to obtain status information from the printer.

These functions work on the first HP82162A printer on the loop starting from the
primary device. If no HP82162A printer is found on the loop, the error message "NO
82162" i1s displayed. The STATUS function of the "PANAME ROM" is the only exception

to this rule; refer to this function for further details.

Page 23

Page 24

- Select "8 bit mode" - 8BIT

8BIT selects "8 bit mode", which validates the HP41 character set. This mode is
automatically selected when a specific printer function is used. (One of the -PRINTER 2E
functions of the HP-IL ROM.) This function is useful only if the HP82162A printer is
used with non-specific printer functions, such as OUTA or OUTYBX.

- Select "Escape" mode - ESCAPE

ESCAPE selects the "escape" mode, which activates the ASCII (non HP-41) character set .

In this mode, you cannot use specific printing functions to send characters to the printer
because they automatically select the "8 bit mode". However some applications may require
the use of the ASCII character set. The ESCAPE function enables the use of this set, but
printing must be done with the OUTA function, or related functions, which only send
characters to the primary device. Beware that in this case, the primary device must be the
printer, even though this is not necessary with specific printer functions such as PRA.

-Select "Line feed on space" mode - PARSE

PARSE selects parse mode, which enables automatic word-wrap at end of lines. A line
feed is performed by the printer on the space, when the next word cannot be printed

completely on the current line.

- Clear the buffer - CLBUF

CLBUF returns the printer to power on status :

- The printer head is at the right ;

- The printer buffer is empty ;

- selected modes are : "escape", single width, uppercase letters, left justification, line-feed

on the 24th character.

This function is mainly used to clear the printer buffer of any data, it is the only way to
do it.

Page 25

- select the "line-feed on the 24th character mode" - UNPARSE

UNPARSE disables the special mode selected by UNPARSE.

- Column tabulation - TABCOL

TABCOL enables an absolute tabulation on the dot level as opposed to SKIPCOL, which

permits a relative tabulation.

Using TABCOL, it is easy to print a output with several columns (Only two columns with
FMT !).

INSTRUCTION FOR TABCOL

Put the column number (0 to 167) in X and execute TABCOL.

EXAMPLE

To print the following chart :

A= 123.00 FF

B= 23.95 FS

C= 1115.70 FB

You can use the following sequence :

FIX 2 CLBUF "A=" ACA 28 TABCOL 123 ACX 91 TABCOL "FF" ACA PRBUF

"B=" ACA 28 TABCOL 23.95 ACX 91 TABCOL "FS"™ ACA PRBUF

"C=" ACA 28 TABCOL 1115.7 ACX 91 TABCOL "“FB" ACA PRBUF

82905 Functions Group

This group of functions will make the HP82905B 80-column printer much easier to
use. Thanks to them you can completely control the printer without knowing escape
sequences or control characters normally needed to perform a specific task. These

functions permits an easier writing or reading of programs using the various modes of the
HP82905B.

For all these functions the printer must be the primary device. Refer to FINDAID
(in this manual) or to FINDID (in the HP82160A HPIL ROM manual) to find how to
select a given device.

In AUTOIO mode, if the primary device does not have an AID of 33, the error
message AID ERR is displayed.

However, this check is not performed in MANIO mode. So they can be used with

other printers using the same escape sequences or control characters.

For more informations on sequences sent by these functions, refer to Appendix P.

Page 26

Page 27

- Beep signal - BELL

BELL rings the "bell" of the printer for one second. This function can be used to call the

attention of the user.

- Character set selection - CHARSET

CHARSET selects the primary character set if X=0, and the secondary one if X=1. Refer
to the HP82905B printer User’s Manual for informations on both character sets.

- Form feed - FFEED

FFEED sends to the printer a "form feed" command, which sets the printer to the top of
the next page. Beware that you must position the paper correctly and set the number of
lines per page (using FORMLEN) prior to using FFEED.

- Page length - FORMLEN

FORMLEN defines the number of lines per page (It is related to the paper’s physical form
length and line spacing selected with VSPAC).

The absolute value of X indicates the number of lines, which must be in the range 1-128.
At power on or after reinitialization with the CLEAR function (refer to this function for
futher information) the default line count is 66.

- Graphic output - GRAPHX

GRAPHX indicates to the printer that the next X bytes received are binary data, not
characters, each value representing a dot column. Refer to the printer User’s Manual to
find the relations between data sent and printer output (Graphic mode section).

The absolute value of X represents the number of bytes to be considered as graphic data.

Page 28

- Printing mode - MODE

MODE selects the printing mode according to the absolute value of X :

X value : Mode : Nb char./line :

0 Normal 80

1 Expanded 40

2 Compressed 132

3 Compressed-Expanded 66

9 Bold 80

You can combine modes "0" and "1" or "2" and "3" ; other combinations give impredictable
results.

If X has other values than "0", "1", "2", "3", or "9", the error message DATA ERROR is
displayed.

- Disables perforations skip - SKIPOFF

SKIPOFF cancels the SKIPON function.

- Enables perforation skip- SKIPON

SKIPON enables perforations skip mode on the printer. When this mode is on, the
printing of the last text line of a page generates a form feed : the paper is set to the
beginning of thhe next page. (the number of text line per page is selected with the
TEXTLEN function), So nothing will ever be printed accross two pages.

Perforations skip mode is off, at power on or upon excution of the CLEAR function.
(Refer to this function for further information).

- Text length - TEXTLEN

TEXTLEN sets the number of number of lines in the "text area" equal to the absolute

value of X. This number must be in the range 1 to the number of line per page (selected
with FORMLEN). At power on or after executing the CLEAR function, the default is 60
text (useable) lines per page.

Page 29

VSPAC- Vertical spacing -

VSPAC selects the vertical spacing in lines per inch according to the absolute value of X.

This number must be 6,8,9,12,18,24,36 or 72. Any other value will cause a DATA

ERROR.

Appendix P

Page 30

Sequences sent to the primary device by the 82905 FNCS functions.

- ESC represents the escape character, decimal code 27.

- {#) symbolises the ASCII representation of a number and {parm} the related character

codes .

Function(s)

BELL

CHARSET for X=0

CHARSET for X=1 or -1

FFEED

FORMLEN

GRAPHX

MODE

SKIPOFF

SKIPON

TEXTLEN

VSPAC

Sequence

BEL
sl
SO
FF
ESC &l (#P

ESC *b {#} G

ESC &k (#) S

ESC &lOL

ESC &Ll1L

ESC &L (#) F

ESC &l (#> D

Codes

07

15

14

12

27 38 108 {parm)

80

27 42 98 {parm}

71

27 38 107 {parm}

83

27 38 108 48 76

27 38 108 49 76

27 38 108 {parm}

70

27 38 108 {parm}

68

Thinkjet

Normal

Bold

FF

FL

0 Normal (80 c/l)

1 expanded (40 c/l)

2 compressed (142 c/l)

3 expanded-compressed (71 c/l)

skipoff

skipon

textlen

vspac

Page 31

Roman-8 Characters (ASCII)
CHAR. DEC. HEX.CHAR. DEC. HEX.CHAR. DEC. HEXCHAR. DEC. HEX

S
I
c
|
F
B
I
|
B
|
B
I
S
|
I
B
|
B
I
S
I
B
I
B
I
B
B
|
S
|
I
R
I
T
I
N
I
R
I
N
I
L
R
I
R
I
K
I
R
I
R
I
Z
I
R
I
R
I
R
|
¥
I
|
K

8
5
|
R
|
B
|
8
(
2
|
8
|
8
(
2
|
8
|
8
|
5
|
8
|
8
I
Z
|
Z
|
Z
(
2
[
Z
|
2
|
2
|
Z
I
2
|
Z
|
R
|
E
|
8
|
E
|
S
|
E
|
E
|
S

s
l
o
l
o
|
l
v
]
l
e
o
|
—
l
o
e
|
~
-
|
—
~
|
l
x
]
|
]
—
|
E
l
e
c
j
o
|
j
l
a
l
o
]
l
-
]
l
u
o
n
|
l
—
~
|
2
2
|
>
|
B
|
X
]
>
|
N
|
~
|
—
|
—
~
|
?
|
®

Q
I
F
T
I
F
L
T
I

I
L
I
L
I
S
I
Q
I
Q
T
I
Q
I
Q
P
I
R
I
Y

IS
B
R
I

B
I
|
B
I
B
R
|
G
I
B
|
B
|
S
(
B
|
I
B
|
W
=

I
8
|
B
|
S
|
B
I
B
|
R
I
R
I
N
I
R
I
N
I
R
I
R
I
K
R
I
R
I
R
|
I
B
|
Z
|
(
R
|
B
I
|
B
|
8
|
S
(
B
|
(
B
8
[
5
|
8
|
R
F
(
8

S
l
<
s
|
m
d
j
o
|
j
l
o
j
l
w
|
l
w
]
|
l
o
|
l
x
z
]
|
-
|
|
x
|
v
|
Z
F
]
|
Z
|
o
|
l
a
|
o
|
l
a
c
|
n
n
|
~
|
D
]
|
>
|
]
|
x
X
|
>
|
N
|
—
|
~
-
|
—

R
I
S
I
N
I
Q
I
I
I
L
I
L
I
N
I
B
I
L
I
I
B
I
R
L
[
N
E
W
K

(
S
R
8

R
B
5
|
8
B
|
[
I
J
I
[
V
N
[

N
I
B
I
I

B
R
S
B

B
Q
P
I
T
F
I
V
Q
I
F
Q
?
C
I
F
I
P
I
Q
I
B
F
B
A
I
I
B
R
I
R
|
G
F
I
R
B
|
B
|
c
|
S

B

-
|
w
m
|
o
n
]
a
t
]
e

|
~
|
|
+

|
~
|
l
o
|
l
~
|
l
a
|
l
m
|
l
e
|
l
v
]
|
o
|
~
|
o
|
o

v
i
n
f
a
l
e

glz|a|gl|z|els(s|s|a|s|s|s|a|s(s|e|=|xn]|e|e|x|e|2|z|e|e|o]|w|x

S
l
T
I
N
v
(
T
P
|
T
|
(
e
I
~
R
o
Y

l
|
T
I
L
|
I
L
I
T
I
2
2
I
R
I
T
I
N
I
S
|
I

L
I8

|IX
B
I
R
I
K
|
&

2
|

S
|
A
L

P
l
]

@
|
2
|
I
|
|
K
P
P
|
e
e
N

&
7
o
|
|
|
T
B
P
P
w
7
&

¢
i
s
i
a
l
e

Q
2
|
y
l

s
3
S
I

N
2
=
l

2
A
R
E
H
E
H
E
H
E
H
E
E
E
E
H
E
H
E
E
H
E
E
H
E
H
E
E
H
E
E
H
E
E
E
H
E
E
B
E
H
E

MINIPLOTTER

Several Miniplotters can be used with the HP-41. TANDY, CANON ... have the same

mechanism and the same command set. Of course, the miniplotter should be interfaced

with the HP-IL loop with the HP82166A converter.

Several companies produce HP-IL interfaced miniplotters, or a converter and parallel
interface, which can be used with such miniplotters.

The main features of those miniplotters are :

- 4 colors . The printhead is in fact a cylinder of 4 mini ball pens. The color can be
changed, either by program or by a switch, during plotting.

- 11.4 cm in roll paper. It is possible to draw, or plot on the length of the paper, so one

can print large charts.

- Horizontally you can print 80 c/I.

- Of course, these miniplotters can be used with other HP-IL controllers such as the HP-

75, HP-85, HP-71. So these devices will not be obsolete soon.

Page 32

Page 33

- Axis drawing - AXIS

AXIS draws several kind of axis on the mini-plotter.

INSTRUCTIONS FOR AXIS

AXIS uses four parameters, which must be on the stack before executing the function:
T: half-length of a tick
Z: vertical distance between two ticks
Y: horizontal distance between two ticks

X: number of ticks

The axis is drawn from the current pen position, and the direction depends on the values
in the Y and Z registers.
However, ticks are always either vertical or horizontal according to the axis inclination
from the horizontal (X direction) : under 45 degrees, ticks are vertical, over they are
horizontal.

The parameter in T makes the drawing of charts easier. For instance with arrays.

Example : The following program draws a chart with 2 lines and C columns. Each column

has a width of W and each line an height of H. To use it, only type XEQ’CHART’ and
answer the questions. (Input the value and R/S).

01 LBL "CHART"

02 "HP82166" GP-IO Converter identification.

03 FINDID Search the address of the mini-plotter.

04 SELECT Select the miniplotter.

05 RESET Reinitialization.

06 "Nb. COL. ?"

07 PROMPT Input the number of columns (C).

08 STO 00 R00= Number of columns.
09 "COL. WIDTH 7"
10 PROMPT Input the columns width.

1"

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

STO0 01
*

"HT. LINE 2"

PROMPT

STO 02

ST+ X

CHS

X<>Y

0

ENTER"

BOX

RCL 02

CHS

0

*MOVE

RCL 02

0

RCL 01

RCL 00

AXIS

END

XEQ "CHART"
Nb. COL. ?
4.0000 RUN
COL. WIDTH ?
100.0000 RUN
HT. LINE ?
50.0000 RUN

RO1= Columns width.

First chart dimension.

Input the line height.
R02= Height of each line.
There are 2 lines, the 2nd dimension is 2*X.
The displacement will be down !

BOX uses the 4 parameters T, Z, Y and X.

Starting position.

Drawing of inside lines.

Will print:

Page 34

Page 35

- Writing direction in graphic mode - *LDIR

*LDIR specifies the writing direction for *LABEL. There are four possibilities :

0 to the right, 1 down, 2 to the left, 3 up.

- Line Type - *LTYPE

*LTYPE (Line TYPE) specifies one of the 16th possible line types of the miniplotter.

The value of the X-register is considered modulo 16. The line type will be used with the
DRAVW and RDRAVWfunctions.

- Move pen up - *MOVE

*MOVE moves the pen, without plotting, to the (X,Y) coordinates.

- Broken line plotting - *PLREGX

*PLREGX (PLot REGisters by X) joins the points, whose coordinates are specified by
successive registers.

The X-register contains a bbb,eee pointer; the integer part (bbb) specifies the register
storing the first coordinate of the first point, the fractional part (eee) specifies the register
storing the second coordinate of the last point. If in the succession of data the calculator

finds one or several ALPHA strings the pen skip to the next cordinate (numeric data)
without plotting (*MOVE), then it resumes plotting (DRAW).

- Relative Drawing - RDRAW

RDRAVW (Relative DRAWing) draws a line up to the position (x,y) relative to the current
position of the pen.

- Reinitialization - RESET

RESET moves the pen to the left margin and selects Text mode.

Page 36

- Reverse line feed - REVLF

REVLF (REVerse Line Feed) moves the pen one line upward.

- Reverse line feed by X - REVLFX

REVLFX (REVerse Line Feed by X) moves the pen upward of the number of lines
specified by the absolute value of the X-register.

- Relative MOVEment - RMOVE

RMOVE (Reltive MOVEment) moves to the (x,y) position relative to the current pen
position.

- Set origin - SETORG

SETORG (SET ORiGin) sets the current pen position has the origin (0,0).

Page 37

- BACKSPACE - BACKSP

BACKSP moves the pen one character backward

- BACKSPACE BY X - BACKSPX

BACKSPX moves the pen backward by the number of characters specified by the absolute
value of the integer part of the X-register.

- Box drawing - BOX

BOX draws a rectangle, whose 2 opposite angles have the coordinates :

(x1,yl) and (x2,y2), with T=y2, Z=x2, Y=yl, X=xI1.

- Color selection - *COLOR

*COLOR selects one of the four colors according to the value of the X-register.

- Character size - *CS'ZE

*CSIZE (Character SIZE) selects the character size. The value of the X-register must be
in the range 0-63.

- Draw a segment - *DRAW

*DRAYV draws a line segment from the current pen position to the (X,Y) coordinates.

- Sent pen to origin - *HOME

*HOME move pen to (0,0) coordinates.

Page 38

- Print the ALPHA register - *LABEL

*LABEL prints the ALPHA register. This function is useful because the drawing can be

done in four directions in text mode : these four directions are specified by the *LDIR
function.

Page 39

- Recall printer status - STATUS

STATUS returns to the Y-register an integer, which is the printer first status byte, and in
the X-register an integer, which is the printer second status byte. The effect of STATUS
on the stack depends on whether stack lift is enabled or not when the function is executed

- If stack lift is enabled :

Before After

T: t T: vy

2: 2 2: X

Y: y Y: 1st status byte

X: X X: 2nd status byte

- If stack lift is disabled :

Before After

T:t T: z

2: z 2:y

Y: y Y: 1st status byte

X: X X: 2nd status byte

However, the LASTX-register is not modified.

The STATUS function has a specific feature : in MANIO mode,it returns to the X and Y

registers two numbers, which specify the primary device status.

- If the primary device has no status bytes, STATUS returns 97 to the X and Y registers;

- If the primary device has only one status byte, STATUS returns the decimal
representation of this byte to Y register, and returns 64 to the X-register;

- If the primary device has, at least, two status bytes, STATUS works with the primary

device, as with the HP82162A printer in AUTOIO mode.

Status bytes after the second one are ignored.

To compute the number, and definition of the status bytes of a device, refer to the
description of the HP-IL message "SENT STATUS" in the device manual.

The appendix S1 gives the detailed definition of the two status bytes of the HP82162A
printer.

Page 40

APPENDICE T2

Minimum function set needed to use a 4 color mini-plotter with the PLOT FCNS

functions group.

Refer to JPC nl5 june 1984 for a description of the mini-plotter.

Representation convention :

- # represents a numeric character string, with an optional minus sign and no more than 4
digits (For instance : -230; 0024);

The syntax column specifies the signification of each parameters;

Control characters (Decimal values) :

17: Select TEXT mode

18: Select GRAPHICS mode

11: Reverse line feed (Text mode only)

08: Backspace (Text mode only)

GRAPHICS mode instructions

Syntaxe Format Action

A A Initialization

H H Home (Position (0,0))

Mx,y M#,# Move to position (x,y)

DX,y D#,# Drawing to position (x,y)

RX,Yy R¥#,# Relative move of (x,y)

X,y J#,# Relative drawing of (x,y)

Pstring Pstring Printing of the characters string "string"

Lx L# Select line type x

Cx C# Select pen x (Change color)

Sx S# Select character size x

Qx Q# Select printing direction x (For P instruction only).

GRAPHICS mode functions

The mini-plotter instructions, which correspond to these functions, require the Graphics

mode. So these functions set Graphic mode before executing the operation, and leave the

mini-plotter in this mode after execution.

Functions that are not mode specific

These mini-plotter instructions must be executed in Graphic mode. So these functions set
Graphic mode before executing the instruction. However these functions are oftenly used
in Text mode. The user can control in which mode the mini-plotter is left after execution.

Page 41

UTILITIES

This function group has a wide range of applications :

- Character string manipulation ;

- Manipulation of numeric and alphanumeric arrays (one or two dimensions) ;

- Numeric or alphanumeric sorting ;

- Extended memory management (HP82180A XFUNCTIONS and HP82181A
XMEMORY);

- Wide range of other applications...!

Page 42

- Euclidian division - /MOD

/MOD (Divide MOD) computes the remainder and the quotient of an Euclidian division
(i.e. with integers). It is an extension of the built-in [MOD] function.

EXAMPLE

- Calculation of the modulus and quotient of the division of 13 by 3.

Input Display

13 13_ Dividend input.

[ENTER"] 3 3_ Divisor input.

[XEQ] "/MOD"™ 1,0000 Remainder.

[X<>Y] 4,0000 Division quotient.

[LASTX] 3,0000 The divisor is saved in the L-register.

INSTRUCTIONS FOR /MOD

1) To compute the modulus and quotient of the division of Y by X.

2) [XEQ] "/MOD". The quotient and modulus of the division are returned respectively to
the Y and X registers. The divisor is saved in the L-register, the dividend is lost. T and Z
registers are left unchanged.

3) If the X-register contains 0, the calculator displays DATA ERROR.

STACK

Input: Output:

T: t T: t

Z: 2 2: 2

Y: Dividend Y: quotient

X: Divisor X: Remainder

L:L L: Divisor

APPLICATION PROGRAMS FOR /MOD

1) A fairly quick way to compute the decimals of the division of A by B when A<B and
the last digit of B is 9 :

LBL "DIVS" 10 / INT 1 + STO 01 RDN SF 21 LBL 01 RCL 01 /MOD VIEWY
10 * + GTO 01 END ‘

So to divide 153 by 209

153/209=0,732057...

2) [/MOD] can be used in a short subprogram as a small base conversion ! This short
program, "YBX", gives the digits of the new number; but in reverse order. X and Y must
be integers.

For instance 1103 [ENTER*] 8 [XEQ] "YBX" returns 7 [R/S] 1 [R/S] 1 [R/S] 2 [R/S] O.

Page 43

That means : 1103 (DEC) = 2117 (OCT). This results can be check with the DEC and OCT
functions.

N.B : If it is possible to get the divisor back with X<>Y LASTX * + for a quotient >0

and with X<>Y X<0? DSE X NOP * LASTX * + for a quotient <0, it is impossible
for a quotient equal to 0.

Page 44

- ADDRESS TO LINE AND COLUMN - AD-LC

AD-LC returns the coordinates (line,column) of an array element from its address (Rnn)
and the array pointer.

Example : Compute the coordinates of register 36 in the array A (Below), which array
pointer 25,04405 is in R00. R25= first array element, R44= last aray element.

column no1 no2 no3 no4 nodS

| R25 | R26 | R27 | R28 | R29 |

line no1l | | | | | |

| R30 | R31 | R32 | R33 | R34 |

line no2 | | | | | |

| R35 | R36 | R37 | R38 | R39 | ARRAY A
line no3 | | | | | |

| RGO | R4T | R42 | RA3 | R4S |

line no4 | | | | | |

Input : Display :

36 [ENTER"] 36,0000 Input register no .

[RCL] 00 25,04405 Recall the array pointer.

[XEQ] "AD-LC" 2,00000 Column no2.

[RDN] 3,00000 Line no3.

[LAST X1 25,04405 The pointer is saved in L.

- INSTRUCTIONS FOR AD-LC

To get the line,column coordinates of an array element when you know the array pointer
and the register address of this element : Input the register number, [ENTER”], array

pointer, [XEQ] "AD-LC". The column number is returned in the X-register and the line
number in the Y-register. The array pointer is saved in L, registers Z -and T are
unchanged.

STACK

Input : Output :

T: t T: ¢t

2: 2z 2: z

Y: Register no Y: Lline no

X: Array pointer X: Column no

L: L L: Array pointer

NOTA : This function does not check if the register is part of the array.
If registers X or Y contains an Alpha string, ALPHA DATA is displayed.

Page 45

- Alpha LENGth - ALENG

[ALENG] returns to the X-register the length of the current string in the ALPHA register.

Example 1: In a program, the HP-41 stops and waits for an ALPHA input.
The string length is needed to store the string in several registers. An other solution is the
RGAX function which is described in this manual.

INSTRUCTION FOR ALENG

Place in ALPHA the string, [ALENG] returns in the X-register the string length and the
stack is lifted (if it is enable).

THE STACK

Input: Output:

T: t T: z

2: z Z: Yy

Y: vy Y: X

X: X X: String length.

L l L: l

Application program for ALENG.

Example 2 : The following routine upercases in the ALPHA register. It uses [ALENG] to provide a loop

counter initially equal to the number of characters in the string (which must not contain null

characters).

01 LBL “CAP™

02 ALENG counts characters in ALPHA register.

03 LBL 00

04 ATOXL Places code of leading characters into X.

05 97 The lowercase letters are in the range 97 to 122.

06 X>Y?

07 GTO 01

08 CLX

09 122

10 X<Y?

11 GTO 01 If not lower case character, go to [LBL] 01

12 CLX The character codes for uppercase letters

13 32 are determined by substracting 32 from their

14 - lowercase counterparts.

15 R*

16 LBL 01

17 RDN

18 XTOAR restores capitalized letter to ALPHA.

19 RDN

20 DSE X

21 GTO 00 branches if their is any character left.

22 AON

23 .END.

Page 46

- Search number in ALPHA - ANUM

[ANUM] (Alpha to NUMber) searches the ALPHA register, from left to right, for a

number (in ASCII form). The first number found is returned to the X-register.

Example : The ALPHA register contains the string : "PRICE: 1.234,50" read from an
extended memory ASCII file. To extract the numeric value for further use: [XEQ]
"ANUM" and the number is returned to the X-register.

INSTRUCTIONS FOR ANUM

1) The ANUM function searches for a numeric value in the ALPHA register string. If a
number is found, it is returned to the X-register and flag 22 is set. If a number is not
found, the X-register and flag 22 are left unchanged.

2) Numbers in the ALPHA register are processed according to the status of flags 28 and
29. If a number in the ALPHA register has a "-" sign, a negative number is returned to
the X-register when the function is executed. Suppose that the ALPHA register contains

the string of example 1 :

| Flag | Flag | Display |

| 28 | 29 | |

I | I I
| set | set | 1,234.5000 |

I I I I
| set | clear | 1,0000 |

I I I I
| clear | set | 1,2345 |

I I I I
| clear | clear | 1,2340 |

I I I I

STACK

Input : Output :

T: t T: z

2: z Z: Yy

Y: vy Y: X

X: x X: number found in ALPHA.

L: L L: l

Page 47

-Search ALPHA number and delete - ANUMDEL

ANUMDEL searches the current string in the ALPHA register, from left to right, for a
number (in ASCII form) and returns to the X-register the value of the number. It also
deletes all characters in the string from the start of the string to the last numerical
character used.

Example 1 : Suppose that the ALPHA register contains the string "PRICE: $1,234.5XYZ",
to extract the numeric value for futher use, [XEQ] "ANUMDEL" stores this number in the
X-register; The ALPHA string is deleted up to "5" included.

INSTRUCTIONS FOR ANUMDEL

1) ANUMDEL searches the string in the ALPHA register for a numeric value . If a
number is found, it is stored in the X-register and the string is deleted up to the last
numerical character used to build the number.

2) If the ALPHA string contains more than one number separated by non-numeric
characters, ANUMDEL uses only the first number. ANUMDEL is identical in operation
to the ANUM function, except that the ANUM function does not alter the string. The
HP-41 considers execution of ANUMDEL as a numeric entry, and sets flag 22, if a
number is returned to the X-register. If the ALPHA string contains no numeric
characters, ANUMDEL clears the ALPHA register but has no effect on the stack.

3) The characters "+", "-", ", ",", "E" (for exponent) are interpreted by ANUMDEL as
numeric or non-numeric characters according to their context in the ALPHA string. An
isolated "+", is not treated as a numeric character. A "+" or "-" symbol immediately
preceding, embedded in, or following a sequence of number digits will be interpreted
exactly as if the symbols and numbers had been keyed into the X-register (with [CHS]
representing "-" and [CHS][CHS] representing "+".) For instance, ANUMDEL returns the

value -3425 if executed when the ALPHA register contains the string "34-2+5".

The status of the numeric display control flags (flags 28 and 29) determines how the
Alpha string is interpreted by ANUMDEL. For example, if flags 28 and 29 are both set,
commas are treated as digit separators. But commas are considered as non-numeric if flag
28 is set and flag 29 is clear. Suppose that the Alpha register contains the string of
example 1 : "PRICE: $1,234.5XYZ". Set FIX 4 and execute ANUMDEL; the following
table shows the result according to the setting of flags 28 and 29.

| Flag 28 | Flag 29 | X-Register | Modified Alpha String |

| set | set | 1,234.5000 | XYz |

| set | clear | 1,0000 | ,234.5XY2 |

| clear | set | 1,2345 | Xvz |

| clear | clear | 1,2340 | .5xYz |

STACK

Input :

L:

X
<

N
-

X
X
N

l : L

Page 48

: First numeric value found in ALPHA.

APPLICATION PROGRAM FOR ANUMDEL

Example 2 : The HP 7470A Graphics Plotter can send on HP-IL an ASCII character string

that describes the current pen position. The string contains three integer numbers

separated by commas : X,Y,P. X is the pen’s x-coordinate; Y is the pen’s y-coordinate; P
has a value of 1 if the pen is down, or 0 if the pen is up.

Suppose that the plotter has sent the string "123,456,1" to the HP-41’s ALPHA register.

You could use the following keystrokes to decipher the string :

Keystrokes

[SF 28]

[ANUMDEL]

[ANUMDEL]

[ANUMDEL]

Display

123.0000

456.0000

1.0000

Ensures that a comma is not interpreted as a radix.

X-coordinate.

Y-coordinate.

Pen is down.

Example 3 : ALPHA has the string "34/-2/5"

[CF 28]

[ANUMDEL]

[ALPHA]

[ALPHA] [ANUMDEL]

[ALPHA]

[ALPHA] [ANUMDEL]

34.0000

/-2/5

-2.0000

/5

5.0000

This example shows that "/" and "*" are not considered as "+", "-", or ".".

Page 49

- Append the integer part of X to ALPHA - APPX

APPX (APPend X) appends the integer part of the X-register to the right of the ALPHA
register string.

Example : The result of an area computation is in the X-register: 1,225.7 , and the

message "AREA: " is in the ALPHA register, the APPX function appends the X-register

value after the message, without rounding: ALPHA = "AREA: 1,225"

INSTRUCTIONS FOR APPX

1) [APPX] appends the integer part of the X-register to the left of the ALPHA register.
[APPX] results depends on flags 28 and 29. The number is written as in FIX 0 mode,
except that the decimal separator is not appended, and the number is not rounded. As for
[ASTO] [APPX] does not beep, when its execution overflows the ALPHA register
capacity.

2) If at the execution of [APPX], the X-register contains an alpha string, ALPHA DATA

is displayed.

Page 50

- ALPHA Rotation - AROT

AROT (Alpha ROTate) rotates the ALPHA register string of the number of characters

specified by the X-register.

Example : The ALPHA register contains the string "AROT". To display "TARQO" then
"ROTAX".

Input : Display :

[ALPHA] AROT AROT_

[ALPHA] 1 [CHS] -1_
[XEQ] "AROT" [ALPHA] TARO

[ALPHA] 2 2_

[XEQ] "AROT" [ALPHA] ROTA

INSTRUCTIONS FOR AROT

[AROT] rotates the ALPHA register string of the number of characters specified by the
value, modulo 24, of the X-register. The rotation is done to the left, if the X-register
contains a positive number, and to the right if it is negative. (Refer to the appendix for
futher information on the effect of [AROT] on null characters).
The execution of [AROT] does not modify the stack.

APPLICATION PROGRAMS FOR AROT

1) The [AROT] function can be used with the [ANUM] and [POSA] functions to get the
number of repetition of a given string, or character, in the ALPHA register without
destruction.

2) An operation on a device returns to the ALPHA register the following string "68.2
69.88" (a number, a space, a number). To extract separately two numbers to use them in

a program, the following sequence can be used :

Input : Display :

[CF] 28

[XEQ] Y“ANUM" 68.2000 Return the first number to the X-register.

[STO] 20 68.2000 Store for future use.

32 32_ Space code.

[XEQ] U“XTOAR™ 32.0000 Add a space to the right of the ALPHA string.

[XEQ] "“POSA" 4.0000 Search the first space in the ALPHA register.

[XEQ] M“AROT" 4.0000 Rotate the string; ALPHA contains 69.88 68.2;

Without a space ALPHA would contain 69.8868.2.

[XEQ] "ANUM™" 69.8800 Return 69.88 to the X-register.

Page 51

- Character transfer between ALPHA and X

- Transfer leftmost character of ALPHA to X - ATOXL

[ATOXL] (Alpha-TO-X Left) deletes the first character of ALPHA and returns its
decimal code to the X-register.

- Transfer rightmost character of ALPHA to X - ATOXR

[ATOXR] (Alpha-TO-X Right) deletes the last character of ALPHA and returns its

decimal code to the X-register.

- Transfer specified character of ALPHA to X - ATOXX

[ATOXX] (Alpha-TO-X by X) returns to the X-register the character of ALPHA
specified by the value of the X-register. The ALPHA register is left unchanged.

INSTRUCTIONS FOR ATOXL, ATOXR, ATOXX

1) [ATOXL] deletes the leftmost character of the ALPHA register string and returns its
decimal code to the X-register. If the first character is followed by one, or several null
characters, the string is moved, to the left, up to the first non null character. If the
ALPHA register is empty, [ATOXL] returns -1 to the X-register.

2) [ATOXR] deletes the rightmost character of the ALPHA register string, and returns its
decimal code to the X-register. If the ALPHA register is empty, -1 is returned to the X-
register.

3) [ATOXX] returns to the X-register the decimal code of the character, whose position
in the string, is specified in the X-register. The ALPHA register is left unchanged.

A positive value in the X-register specifies a position in the ALPHA register string,
starting form the first non null character. This first character is in position 0. This

convention is the one used for the POSA function in the XFUNCTION module.

On the contrary, a negative number specifies an absolute position in the ALPHA register,
it is independent from the string. Positions are considered from right to left, -1 for the
rightmost position and -24 for the left most position. The following chart illustrates the

[ATOXX] interpretation of the character positions.

Page 52

Character position character

DATA ERROR

Nth character after the

leftmost

Fist character starting

from the left

Nth character starting

from the right and up to

the register end

DATA ERROR

n > 23 ou r >= string length

0 <= n < string length

n < -24

If the X-register contains an Alpha string ,ALPHA DATA is displayed.

Example :

In this example, the ALPHA register is completely represented, null characters at the left
of the register are represented with horizontal marks, but they cannot be displayed by the

calculator.

Input : Display

[ALPHA] DECAMETRE [ALPHA] DECAMETRE

0 [XEQ] MATOXX" 68.0000 Code of "D"

4 [XEQ] M"ATOXX" 77.0000 Code of "M"

6 [CHS] [XEQ] "ATOXX" 65,0000 Code of "A"

10 [CHS] [XEQ] “ATOXX" 0.0000 Null character

Page 53

- Build a pointer - BLDPT

[BLDPT] (BuiLD PoinTer) builds a pointer bbb.eeeii if X>0 or an array pointer if X<O0.

Example 1 : A program has left in the Z-register the number of the first register of a set
of data, in the Y-register the number of the last register of the set, and in the X-register

the number of registers between two data. Z=25 Y=40 X=5

To compute the pointer: [XEQ] "BLDPT", [FIX] 5. X= 25.04005 will give the address of
R25, R30, R35, R40.

Example 2 : A previous program has left, in the Z-register the first register number of an
array, in the Y-register the number of lines, in the X-register the number of columns :

Z=25 Y=4 X=5.
To get the array pointer, [CHS] [XEQ] "BLDPT", X=25.04405

column no1 nor2 no3 no4 nodS

line no1 | | | | | |

| R30 | R31 | R32 | R33 | R34 |

line no2 | | | | | |

| R35 | R36 | R37 | R38 | R39 | ARRAY A
line no3 | | | | | |

| R40 | R41 | R42 | R43 | R44 |

line no4 | | | | | |

INSTRUCTIONS FOR BLDPT

1) To build a bbb.eeeii pointer :

- Put bbb in the Z-register;
- Put eee in the Y-register;
- Put ii in the X-register;
- Execute [BLDPT].

Page 54

2) To build a bbb.eeecc array pointer; where bbb specifies the address of the first register
used by the array, eee specifies the last register used by the array and cc the number of
columns :

- Put bbb in the Z-register;
- Put the number of lines 11l of the array in the Y-register;
- Put the number of columns cc of the array in the X-register, with a negative sign;
- Execute [BLDPT].

NOTA : If either the X, Y, Z register contains an Alpha string, ALPHA DATA is
displayed.
The pointer is built with the absolute values of bbb and eee.

STACK :
for X>0 For X<0

Input : Output : Input : Output :

T: t T: t T: t T: t

Z: bbb Z: t Z: bbb Z: t

Y: eee Y: t Y: LUl Y: t

X: 1ii X: bbb.eeeii X: cc X: bbb.eeecc

L: L : eee L: L: Lt

Page 55

- Break pointer - BRKPT

[BRKPT] (BReaK PoinTer) splits into its three components a bbb.eeeii pointer if X>0, or
an array pointer if X<0.

EXAMPLES:

1) A program needs the elements of a bbb.eeeii pointer, where bbb is the first register of

a set of data, eee is the last one and ii the number of values between two data in the set.
X= 25.04005 specifies registers R25, R30, R35, R40 [XEQ] "BRKPT" returns Z=25, Y=40,
X=5.

2) The array pointer is 25.04405, it specifies that the array begins at R25, ends at R44,

and has 5 columns. The array number of lines is returned by : [CHS] [XEQ] "BRKPT". So
Z=25 (1st register), Y=4 (number of lines), X=-5(number of columns).

column no1 no?2 no3 no4 no5

line no1l | | | | | |

| R30 | R31 | R32 | R33 | R34 |

line no2 | | | | | |

| R35 | R36 | R37 | R38 | R39 | ARRAY
line no3 | | | | | |

| R4O | R4T | R42 | R43 | R44 |

line no4 | | | | | |

INSTRUCTIONS FOR BRKPT

1) To split up a bbb.eeeii pointer where bbb, in the range 0-999, is the first element of a
loop or a vector; where eee, in the same range, is the last element; and where ii is the
increment. One must check that the number in the X-register is positive, for instance
with [XEQ] "ABS"; then [XEQ] "BRKPT" will return the integer part of the X-register to
the Z-register, the first 3 digits of the decimal part to the Y-register, and the 4th and 5th
digits of the decimal part to the Z-register.

The pointer is saved in LASTX.

2) To break a bbb.eeecc array pointer, where bbb is the register of the first element of
the array, eee is its last register, and cc is the number of columns. One must insure that
the number in the X-register is negative, for instance with [ABS] [CHS]; then [XEQ]
"BRKPT" returns the first register (bbb) to the Z-register, the number of lines lll=(eee+1-
bbb)/cc to the Y-register, and the number of columns (cc) to the X-register.
The array pointer is saved in LASTX.

Nota : If there is an Alpha string in the X-register, ALPHA DATA is displayed.

STACK :
for X>0 For X<0

Input : Output : Input : Output :

T: t T: X T ¢t T: X

Z: z 2: bbb 2: 2z Z: bbb

Y: vy Y: eee Y: Yy Y: tt

X: bbb.eeeii X ii X: bbb.eeecc X: cc

L: L: bbb.eeeii L: L: bbb.eeecc where eee=(ll*|cc|)-1+bbb

Page 56

Page 57

- Load flag set - CHFLAG

[CHFLAG] (CHange FLAGS) restores the flag set that was current when the CHFLAG
function was written in the program.

Example : At the beginning of a program, you want to be in DEGree mode, 3 digits ENG
and with the 5 first flags (0-4) set.

While in RUN mode (PRGM indicator off) initialize the calculator as needed, then in
PRGM mode [XEQ] "CHFLAG". It writes two lines in the program : the first line is
CHFLAG, the second one is a 7 character string. When the program is executed the
calculator is initialized to the needed state.

INSTRUCTIONS FOR CHFLAG

1) In RUN mode, initialize the calculator to the state needed by the program.

2) In PRGM mode, [XEQ] "CHFLAG" writes two lines, the first one is CHFLAG, the
second one contains a seven character string, which represents the current flag set. This
string begins with a configuration indicator. If this string is destroyed or replaced by a

wrong one, CHFLAG execution will halt program execution and CHFLAG ERR will be
displayed.

STACK :

[CHFLAG] execution does not affect the stack.

N.B : The ALPHA register is not modified by [CHFLAG]. The character string represents
a set of flags, it is not for the ALPHA register.

One must not put a test instruction before CHFLAG as ISG or X=Y?.

E.g. : FS? 01 If the flag is set

CHFLAG Reinitializes the calculator.

leve-- ! Initialization string.

If the test is negative (Flag 01 clear) the ALPHA register is destroyed by the
configuration string.

[CHFLAGT]only saves flags 00 to 43.

FOO to F10 : user’s flags.

F11 : Automatic execution of current program, at power on; or after reading one from
mass memory.

F12 to F20 : External device commands.

F12 Double width.

F13 Lower case letters.

F15 F16 Printing mode of HP-IL printer.

0 0 Manual

0 1 Normal

1 0 Trace

1 1 Trace and stack printing.

F16

F17 CR-LF ignored

F18

F19

F20

F21 Print enabled

F22 set by a numeric input.

F23 set by an alphanumeric input

F24 Out of range ignored.

F25 Error ignored

F26 Beep on

F27 User mode

F28 Decimal separator type.

F29 Three digit groups separator.

F31 DMY mode of TIME module.

F32 MANIO mode on HP-IL module.

F34 ADROFF mode on EXTENDED 1/0.

F35 Auto start enable (AUTOSTART/DUPLICATION ROM).

F36 to F39 Number of digits for FIX, SCI, ENG.

F40 and F41 Display mode.

F42 and F43 Angular mode.

Page 58

Page 59

- Clear Increment - CLINC

[CLINC] (CLear INCrement) truncates the number in the X-register from the 4th digit of
the decimal part.

Example : You want to compute the first and last registers of an array.
The array pointer is saved in R00. Use the following sequence :

Keystrokes : Display

[RCL] 00 25.04405 Recall the array pointer

[XEQ] "CLINC" 25.04400

[XEQ] "INT" 25.00000 1st register

[LASTxX] 25.04400

[XEQ] "FRC" 0.04400

[EEX] 3 [*] 44,00000 Last register

INSTRUCTIONS FOR CLINC

[CLINC] replaces, in the X-register, any decimal digits after the 3rd one by 0. The old
value 1s saved in LASTX.

STACK

Input : Output :

T: ¢t T: t

2: 2z 2: z

Y: vy Y: Y

X: bbb.eeeii X: bbb.eee

L: L L: bbb.eeei i

NOTA : If the X-register contains an Alpha string, ALPHA DATA is displayed.

Page 60

Create column pointer - COLPT

[COLPT] (COLumn PoinTer) returns a column pointer to the X-register, from the column
number in the Y-register, and the array pointer in the X-register.

Example : to gets the second column pointer of the array A, which pointer is in register
00.

Keystrokes : Display :

2 2_ Column number.

[RCL] 0O 25.04405 Recall pointer.

[XEQ] "COLPT™ 26.04105 2nd column pointer.

column no1 no2 no3 no4 nobS

R25 | R26 | R27 | R28 | R29 |

l
line no1 | | | | | |

| R30 | R31 | R32 | R33 | R34 |
line no2 | | | | | |

| R35 | R36 | R37 | R38 | R39 | ARRAY A
line no3 | | | | | |

| RGO | R&1 | R42 | R43 | R44 |
line no4 | | | | | |

INSTRUCTIONS FOR COLPT

1) Input the column number.

2) Put the array pointer in the X-register.

3) [XEQ] "COLPT" returns the column pointer to the X-register, and saves the array
pointer in LASTX.

STACK :

Input : Output :

T: t T: t

2: 2 Z: t

Y: Column NO Y: z

X: bbb.eeeii X: bbb.eeeii

L: 1 L: bbb.eeeii

N.B. ¢ i'i'=ii

Page 61

- Recall registers from X-memory - GETRGX

[GETRGX] (GET ReGisters by X) copies in the registers specified by the X-register, the
data of the current Extended Memory file (file where the pointer is), starting from
pointer position, and according to the increment in the X-register.

Example : The pointer in the curent file is on 10, 25.0440510 [XEQ] "GETRGX" copies
register 10, 20, 30,... from the X-Memory file, to registers 25, 30, 35,... in main memory.

INSTRUCTIONS FOR GETRGX

1) Set the current file pointer to the right position with [SEEKPT] or [SEEKPTA].

2) The number in the X register is a bbb.eeeiijj pointer, where bbb is the first main
memory register, eee the last main memory register where you want to copy the X-
Memory data set, ii is the increment for the main memory registers, and jj the increment
for the X-Memory registers.

3) [XEQ] "GETRGX" copies the registers from the X-Memory current file to the main
memory registers as specified by the pointer in the X-register.

STACK :

The stack is unchanged by [GETRGX].

EXAMPLE

The drawings below represents two arrays, the left one is in main memory, the right one
is in X-Memory. In each square is indicated the register number, and its value (a letter).

Set the X-Memory pointer to the first register to copy, with 12 [SEEKPT].

To copy the second column of the array B, in X-Memory to the 3rd column of array A in
main memory, put in the X-register the pointer of the 3rd column of array A (27,04205),
and add the increment for the X-Memory registers (03) as 6th and 7th decimal digits :

X= 27.0420503 .

27 = bbb 1st register in main memory.
42 = eee last register in main memory.
05 = i1 increment for main memory registers.
03 = jj increment for X-Memory registers.

[XEQ] "GETRGX" copies the registers as specified by the pointer in the X-register; the

result is represented on the second drawing.

Page 62

BEFORE [GETRGX]
Array B

X-Memory

Array A main

memory

no2 no3no1colno2 no3 no4 no5no1col

M
0

O
N

-
O

«
—
-

-
-

N
-

o
o

o
<

o

o
w
n

-
]

-
—

Q
0

-
O

-
c

N
X

o
o

o
L

o

L
l

~
N
~

o
—

@®
«
—
T

-
O
N

o
o

o
o

-
N

M
~

o
o

o
o

c
c

c
=

c
c

c
c

—
—

—
—

o
~

O
4

W
M

-
M
m
O

<
O

o
<

o
o

o

=
]

M
o
]

M
N

O
L
l

M
Z

5
-

o
o

o
o

N
N

N
N

N
O
M

M
=

<
!

o
o

o
[
«

0
-

0
-

N
o

M
O

M
d

<
&
o

o
<

o
o

o

w
n

o
w
n

o
N

<
M

W
M

M
>

O
o

o
L

o
o

-
N

M
5

AFTER [GETRGX]

Array B

X-Memory

Array A main

memory

no2 no3no1colno2 no3 no4 nodScol no1

M
0

O
N

-
O

«
—

Y
-

-
-

N
-

o
o

o
o

N
w
n

0
-

—
Q
0

-
QO
-

N
¢

o
o

o
o

-
&

N
o

-
©

«
—
T

—
O

A
N

o
o
<

4
o

-
o

M
5

o
o

o
o

c
C

|
c

c
c

c
c

—
—

—
—

O
<

O
~

N
w

M
m
D

M
m
O

S
O

o
o

o
o

e
l

M
«

M
N

A
o
M

M
=
z

S
-

o
o

o
o

N
o

N
A

N
O

M
m

o
M

o
<

X
o

o
o

o

0
-
—

0
-

N
o
o

M
m
O
M

g
<

o
o

o
o

w
n

o
N

o
N

<
M

M
M

<
O

o
c

o
<

o
o

-
o

2
]

~

C
C

C
c

—
—

—
—

Page 63

- Line-column to address - LC-AD

[LC-AD] (Line-Column-ADDress) returns the register number of an array element from

its line number, column number, and array pointer.

Example : Register number of the element on line 2 and column 3 of array A, which

array pointer (25.04405) is saved in R00.$

column no1 no2 no3 noé4 no5

R25 | R26 | R27 | R28 | R29 |

I
line no1 | | | | | |

| R30 | R31 | R32 | R33 | R34 |

line no2 | | | | | |

| R35 | R36 | R37 | R38 | R39 | ARRAY A

line no3 | | | | | |

| R&O | R41 | R42 | R43 | R4S |

line no4 | | | | | |

Keystrokes : Display :

[2] [ENTER"] 2.0000 Input line number.

[3] 3_ Input column number.

[RCL]1 00 25.04405 Recall array pointer.

[XEQ] "LC-AD" 32.00000 Register NO.

INSTRUCTIONS FOR LC-AD

To compute the register number of an array element, when you know its line number,
column number, and array pointer : Input line number, [ENTER”], Column number,
[ENTER"], array pointer. [XEQ] "LC-AD" returns the register number to the X-register,
and saves the pointer in LASTX.

STACK :

Input : Output :

T: T T T

Z: Lline no Z: T

Y: column no Y: T

X: Array Pointer X: register no

L: L L: Array pointer

Page 64

- Create line pointer - LINPT

[LINPT] (LINe PoinTer) returns a line pointer to the X-register, given the line number in
the Y-register and the array pointer in the X-register.

Example : To compute the registers used by the 2nd line of array A, whose array pointer

is assumed to be found in register R0O :

Keystrokes : Display :

2] 2_ Line number.

[RCL]1 [0] (O] 25.04405 Recall array pointer.

[XEQ] “LINPT® 30.03400 2nd line pointer.

column nol no2 no3 no4 no5

line not | | | | | |

| R30 | R31 | R32 | R33 | R34 |
line no2 | | | | | |

| R35 | R36 | R37 | R38 | R39 | ARRAY A
line no3 | | | | | |

| R4O | R4T | R42 | R43 | R4 |

line no4 | | | | | |

INSTRUCTIONS FOR LINPT

1) Input the line number, whose pointer is needed.

2) Put the array pointer in the X-register.

3) [XEQ] "LINPT" returns the line pointer to the X-register and saves the array pointer in
LASTX.

STACK :

Input : Output :

T: t T: t

2: 2z 2: t

Y: Lline NO Y: z

X: bbb.eeeii X: bbb.eeeii

L: L: bbb.eeeii

Page 65

- No Operation - NOP

[NOP] (No OPeration) is used after a test, when the conditional goto is not used.

Example : To increment the X and Y registers in a loop.

The following sequence will do it :

ISG Y Increment the Y-register.

NOP No OPeration.

ISG X Increment the X-register,

GTO 03 and looped if higher.

Page 66

- Position of an string in ALPHA - POSA

[POSA] (POSition in Alpha) searches the ALPHA register, from left to right, for the
character or string specified in the X-register.

Example 1 : The string "ABCDEFGHIJ" is in the ALPHA register, what is the position of

the 1st "D" character ?

Keystrokes : Display :

68 68_ "D" character code.

[XEQ] "POSA™" 3.0000 1st "D" character position.

Example 2 : [ALPHA] [CLA] DEF [ASTO] . X ABCDEFGHIJ [ALPHA]
[XEQ] "POSA" X=3.00

INSTRUCTIONS FOR POSA

1) [POSA] searches the ALPHA register, from left to right, for the character or string
specified in the X-register. The string can be specified either by giving a character code,
or by storing the string or character in the X-register with [ASTO] [.] [X]. If the
calculator finds the string in the ALPHA register, it returns the 1lst character position to
the X-register.

2) Positions are considered from left to right and start with position 0. If the string or
character appears several time in the ALPHA register, the calculator returns only the first

position. If the string or the character does not exist in the ALPHA register, -1 is
returned.

3) The string or character code is saved in LASTX.

STACK :

Input : Output :

T: t T: t

2: 2 2: z

Y: vy Y: Yy

X: code or string X: position in ALPHA

L: L L: code or string

Page 67

- MEMORY ALLOCATION FUNCTIONS -

- Programmable SIZE - PSIZE

[PSIZE] (Programmable SIZE) allocates the number of data registers specified by the X-

register.

- Number of data registers - SIZE

[SIZE?] returns to the X-register the number of data registers.

[SIZE?] and [PSIZE] can be used in the same program to change the number of data
registers without loosing any data.

EXAMPLE :

01

02

Your program

07 SIZE? Return to the X-register the number of data registers.

08 125 The new program needs 125 data registers.

The current number of data registers is in the Y-register.

09 X>Y? Does the program needs more data registers ?

10 PSIZE Change if necessary.

Page 68

-Read all extended memory from mass memory - READEM

[READEM] (READ Extended Memory) copies from a mass memory file (HP82161A tape
drive) the whole contents of X-Memory, which was previously saved in the file with the
WRTEM function.

Example : To load the file "MAT3" from the tape.

Keystrokes : Display :

[XEQ] "EMDIR™ DIR EMPTY Checks that the X-Memory is empty.

If two XMEMORY modules are plugged

in, there are 600 registers available.

[ALPHA] "MAT 3" [ALPHA] 600.0000 File name in ALPHA.

[XEQ] '"READEM"

600.0000 the files are loaded into X-Memory.

[XEQ] "EMDIR™ MATRP P012

A D100 All these files have been read

TEXTE A040 by READEM.

INSTRUCTIONS FOR READEM

1) After storing the file name into the ALPHA register, [XEQ] "READEM" copies this
file from the mass memory medium to X-Memory.

2)If there is no HP-IL module, NO HPIL is displayed.

3) If the file is not on the medium, FL NOT FOUND is displayed.

4) If there is not enough space in X-Memory, NO ROOM is displayed. In this case add
one or two X-MEMORY modules

5)If the HP-IL module is plugged in, but there is no mass memory device on the loop,
"NO DRIVE" is displayed.

6)If the file specified was not created by [WRTEM], "FLTYPE ERR" is displayed.

NOTA : Before loading a set of files, [READEM] purges the X-Memory.

STACK :

The stack is unaffected by [READEM].

INVERSE FUNCTION : WRTEM.

Page 69

- RG prefix - RG

[RG] is a function which makes easier the entry of functions beginnings with "RG". This
function should be assigned to a key. For instance, assigne [RG] to the [LN] key.

ASN "RG" 15

Keystrokes : [] [ASN] [ALPHA] [R] [G] [ALPHA] [LN]. Put the calculator in USER
mode. Now to execute or program a function beginning with "RG", for instance
"RGVIEW", stroke the following keys :

[RG] (LN key) [ALPHA] [V] [1] [E] [W] [ALPHA]

This sequence is equivalent to :

[XEQ] [ALPHA] [R] [G] [V] [I] [E] [W] [ALPHA]

So you save 2 keystrokes, every time you use a function beginning with "RG".

INSTRUCTIONS FOR RG

1) Assign [RG] to a key and set USER mode.

2) To execute or input a function beginning with "RG":

[RG] (Assigned previously)

[ALPHA]

...function name without the 1st two letters.

...(e.g. SUM for RGSUM).

[ALPHA]

Page 70

- OPERATIONS BETWEEN REGISTERS -

- Addition or substraction of two vectors - RG+-

[RG+-] (ReGisters + or -) adds or substracts, element by element, two vectors whose
pointers are in registers X and Y. The sign of the X register specifies the type of
operation.

- Multiplication of two vectors, element by element - RG*

[RG*] (ReGisters *) multiplies the two vectors, element by element, whose pointers are in
registers X and Y.

- Divide two vectors, element by element - RG/

[RG/] (ReGisters /) divides, element by element, the two vectors, whose pointers are in
the X and Y registers.

Example : in the Array below :

- replace the 1st column by the addition, element by element, of the 3rd and 1st column ;

- then compute the square of the elements of 4th column;

- finaly, divide each of those squares by the 4 first elements of the first line.

The array pointer is saved in register ROO.

Array before execution :

N.B. In each box are shown the register number and its initial value.

column no1 no2 no3 no4 no5

| R25 | R26 | R27 | R28 | R29 |

line no 1 | 142 | 20 | 857 | 40 | 1 |

I I I I I |
| R30 | R31 | R32 | R33 | R34 |

line no 2 | 285 | 12 | 714 | 14| 2 |
I I I I I I
| R35 | R36 | R37 | R38 | R39 | ARRAY B

line no 3 | 428 | 22 | 571 | 24| 3 |

I I I I I I
| R40 | R41 | R&42 | R43 | R44 |

line no 4 | 714 | 32 | 285 | 34] 4 |

I I I I

Keystrokes : Display :

[CF] 28 [FIX1 5

(11 [RCL] 00 25.04405

[COLPT] 25.04005 First column pointer.

[31 [RCL] 0O 25.04405

[COLPT] 27.04205 3rd column pointer.

[XEQ] "RG+-" 25.04005 Pointer of the output vector.

Now, you can check that registers R25, R30, R35, and R40, which make up the first

column, are equal to 999.

(41 [RCL]1 0O 25.04405

[COLPT] [ENTERI] 28.04305 X and Y contains the 4th column pointer.

[RG] "*n 28.04305

Now, the elements of the 4th column are :

R28= 1600 R33= 196 R38= 576 R&3= 1.156

(11 [RCL] 00 25.04405

[LINPT] 25.02900 First line pointer.

[XEQ] "RG/" 28.04305

At end, the 4th column contains the result of the division, and the array is the following.

column no1 no2 no3 no4 nob5

| R25 | ‘R26 | R27 | R28 | R29 |
line no1 | 999 | 20 | 857 | 1.60] 1 |

I I I I I I
| R30 | R31 | R32 | R33 | R34 |

Line no2 | 999 | 12 | 714 | 9.80] 2 |

I I I I I I
| R35 | R36 | R37 | R38 | R39 | ARRAY C

line no3 | 999 | 22 | 571 | 0.67] 3 |

I I I I I I
| R40 | R41 | R42 | R43 | R44 |

line no4 | 999 | 32 | 285 | 722 | 4 |

I | I I

INSTRUCTIONS FOR RG+- RG* RG

1) Functions [RG+-], [RG*] and [RG/] require two pointers. The operand pointer must be
in the Y-register and the operator pointer in the X-register.

2) The results are stored into the block pointed by the Y-register.

3) After execution, the X-register contains the resulting vector pointer.

Page 71

Input :

T: ¢t

2: z

Y: pointer nol

X: pointer no2

Output :

T: t

Z: t

Y: z

X: pointer no1

pointer no2

Page 73

- SCALAR TO REGISTERS OPERATIONS -

RG+Y- Add constant to registers -

[RG+Y] (ReGisters + Y) adds the Y-register value to the registers specified by the X-
register.

- Multiply registers by constant - RG*Y

[RG*Y] (ReGisters * Y) multiplies the registers specified by the X-register, by the Y-
register value.

- Divide registers by constant - RG/Y

[RG/Y] (ReGisters / by Y) divides the registers specified by the X-register, by the Y-
register value.

Example : In the Array B :

- Substract 5 to the first column ;
- multiply by 2 the 3rd line;
- divide by 6 the 5th column.

The array pointer is saved in register R0O.

column nol no2 no3 no4 no5

| R25 | R26 | R27 | R28 | R29 |

line no1 | 11 2 | 3 | 4 | 5 |

I I I I I I
| R30 | R31 | R32 | R33 | R34 |

line no2 | 6 | 7 | 8 | 9 |10 |

I I I | | |
| R35 | R36 | R37 | R38 | R39 | ARRAY B

line no3 | 1] 12| 13| 14| 15|

| | I I | I
| R40 | R&1 | R42 | R43 | R44 |

line no4 | 16| 17| 18| 19| 20 |

I I | I I I

Keystrokes : Display :

5 [CHS] [ENTER"] -5.00000 Input the constant.

1 [RCL] OO 25.04405

[COLPT] 25.04005 First column pointer.

[RG] "+Yn 25.04405 Pointer of result vector.

You can check that R25, R30, R35, R40 contains respectively 4, 1, 6, and 11 ; it is the

first column of the array.

2 [ENTER"]

3 [RCL] 0O

[LINPT]

[RG] M*yn

Now the 3rd line values have been multiplied by 2. R35= 12, R36= 24, R37= 26, R38=

28, R39= 30.

6 [ENTER™]

5 [RCL] 00

[COLPT]

[RG] "/ym

2.00000

25.04405

35.03900

35.03900

6.00000

25.04405

29.04405

29.04405

Input the constant.

3rd column pointer.

Input constant.

5th column pointer.

After all these transformations, array B is :

line nol

line no2

line no3

line no4

column nol no2 no3 no4 no5

| R25 | R26 | R27 | R28 | R29 |
| <4 | 2 | 3 | 4 | 0.83
I I I I I I
| R30 | R31 | R32 | R33 | R34 |
| 1 | 7 | 8 | 9 | 1.66]
I I I I I I
| R35 | R36 | R37 | R38 | R39 |
| 12| 2| 26| 28| 5 |
I | I I I |
| R4O | R41 | R42 | R43 | R&44
| 11| 17| 18| 19 | 3.33
I I I I |

INSTRUCTIONS FOR RG+Y RG*Y RG/Y

1) [RG+Y], [RG*Y], [RG/Y], need a constant in the Y-register, and a pointer in the X-
register.

2) Operations are directly performed on the register value, so results replace initial values.

STACK :

pointer

L: L

The stack 1is

Output :

T: t

Z: z

Y: scalar

X: pointer

L

ARRAY B

unchanged by [RG+Y], [RG*Y], [RG/Y].

Page 74

Page 75

- Registers to ALPHA or ALPHA to registers - RGAX

[RGAX] (ReGisters-Alpha by X) performs two functions:

DIf X<0, it copies the ALPHA register to the registers specified by the register pointer in
the X-register;

2) If X>=0, it appends to the ALPHA register the contents of the registers specified by

the register pointer in the X-register.

Example : The string "ABCDEFGHIJKLMNOPQRSTUVWX" is in the ALPHA register.
To save it in even registers, starting from R10, use the following sequence :

Keystrokes : Display :

10.00002 [CHS] -10.00002_ Pointer. The negative value indicates that

it stores ALPHA to registers.

[RG] "AX" -17.00002 The pointer specified the register following

the last one used by [RGAX].

[RCL] 10 ABCDEF first 6 characters.

[RCL] 12 GHIJKL next 6 characters.

[RCL] 14 MNOPQR next 6 characters.

[RCL] 16 STUVWX last 6 characters.

Now, if you want to retrieve registers R12 and R16 to the ALPHA register :

12.00004 12.00004 Register pointer to recall the string.

[XEQ] "CLA" 12.00004 clear the ALPHA register.

[RG] MAX™M 17.00004 Indicate next register.

[ALPHA] GHIJKLSTUVWX Recall ends, when the last character of the

string is found.

INSTRUCTIONS FOR RGAX

1) The [RGAX] function can be used, to save all the ALPHA register to the registers
specified by the register pointer in the X-register. In this case the pointer must be
negative. When the calculator saves a string, it adds an End-of-String’ indicator to the
last register used. This indicator is used when the string is recalled ; it is invisible, but a
modification of the last register destroys the indicator.

2) The [RGAX] function can also be used to recall a string that was previously saved in a
set of registers. In this case, the pointer should be positive. The string is appended to the

ALPHA register string. If the new string is more than 24 characters long, only the last 24
ones remains in the ALPHA register. The leftmost characters are lost. Loading stops when
an ’End-of-String’ indicator is recalled, or if there is no indicator, when a numeric value

is found. In this case, the numeric value is appended, in the current format, to the

ALPHA register, as it would be with [ARCL].

3) In both cases, [RGAX] saves the initial pointer in LASTX, and leaves a * bbb,eeeii
pointer in the X-register. bbb is the last register used +1, eeeii is the eeeii part of the
initial pointer. The first three decimal digits of the initial pointer can be anything,
because [RGAX] does not use them.

Page 76

STACK :

Input : Output :

T: t T: t

Z: 2z Z: 2

Y: y Y: y

X: Initial pointer X: New pointer

Lzt L: Initial pointer

Page 77

- Copy or exchange registers - RGCOPY

[RGCOPY] (ReGisters COPY) performs two types of operations :

If X>=0, [RGCOPY] copies the registers specified by the X-register pointer, to the

registers specified by the Y-register pointer.

If X<0, [RGCOPY] swaps the registers specified in the X-register, with the ones specified

in the Y-register.

Example : In the array B, copy the first column to the 3rd one, then swap the 1st and 2nd

columns.

column no no2 no3 no4 nodS

| R25 | R26 | R27 | R28 | R29 |

line nol | v+] 2 | 3] 4 | 5 |

I I I I I I
| R30 | R31 | R32 | R33 | R34 |

line no2 | 6 | 7 | 8 | 9 | 10|

I I I I I I
| R35 | R36 | R37 | R38 | R39 | ARRAY B

line no3 | 11| 12| 13] 14| 15|

I I I I I I
| R&O | R&T | R42 | R43 | R44 |

line no& | 16| 17| 18| 19| 20 |

| I I I I I

Suppose that the array pointer is in register R0O.

Keystrokes : Display :

3 [RCL] 00 [COLPT] 27.04205 Destination pointer.

1 [LAST X1 [COLPT] 25.04005 Oorigin pointer.

[XEQ] '"RGCOPY" 27.04205 Destination pointer.

[RGVIEW] list the 3rd column R27= 1,..., R42= 16.

1 [RCLI 00 [LINPT] 25.02900 1st Pointer.

2 [LAST X1 [COLPT] [CHS] -26.04105 2nd pointer.

[RG] "“coPY™® 25.02900 The stack moved down.

The final array is :

column no1 no2 no3 no4 noS

| R25 | R26 | R27 | R28 | R29 |
line nol | 2 | 7 | 12| 17| 5 |

I | I I I I
| R30 | R31 | R32 | R33 | R34 |

line no2 | 6 | 1| 6 | 9 | 10]

I I I I I I
| R35 | R36 | R37 | R38 | R39 | ARRAY B

line no3 | 11| 1 | 1] 14] 15|

| I I I I |
| R&O | R41 | R42 | R43 | R4S |

line no4 | 16 | 4 | 16 | 19 | 20 |

I I I I I

INSTRUCTIONS FOR RGCOPY

1) The sign of the pointer in the X-register specifies if the registers have to be
copied (X>=0) or swapped (X<0).

2) Copy is performed from the registers specified by the pointer in the X-register to the
registers specified by the pointer in the Y-register.
At the end the stack moves down.

3) Swap is done between the registers specified in the X and Y registers.

If there is no overlapping, swap begins with the lower register number.
If there is overlapping, the calculator begins, one way or another (i.e. upwards or
downwards), so that no information is lost.

STACK :

Input:

T t

2: 2z

Y: Destination pointer

X Origin pointer

L:

X
<

N
-

es
 e

n
se

 w
e

Output :

t

t

z

Destination pointer

origin pointer

Page 78

Initialization of registers by X -

Page 79

RGINIT

[RGINIT] (ReGisters INITialize) performs two kinds of initializations :

If X>=0 [RGINIT] stores zero in all the registers specified by the pointer in the
Xregister.

If X<0 [RGINIT] stores integers, from 1 to N, into the registers specified by the pointer
in the X-register, N being the numbers of registers specified.

Example : In the array B, which pointer is saved in register R00, columns 3 and 5 will be
zeroed, then the columns will be numbered from 1 to 5, throught the first line.

column

line nol

line no2

line no3

line no4

Keystrokes :

3 [RCL] 00 [COLPT]

[XEQ] RGINIT™
5 [LASTx] [COLPT]

[XEQ]

1 [LASTx] [LINPT] [CHS]

[XEQ]

YRGINIT™

"RGINIT™

column

line nol

line no2

line no3

line no4

ARRAY B

Initialize 3rd column to zero.

Initialize 5th column to zero.

Negative sign to indicate an

Initialization with integers 1 to N.

ARRAY B

nol no2 no3 no4 nobS

R25 | R26 | R27 | R28 | R29 |

a | b] c | d] e|
I I I I I

R30 | R31 | R32 | R33 | R34 |

fl g | h | i] J|
I I | I I

R35 | R36 | R37 | R38 | R39 |

k [U] m | n | of
I I I I |

R40 | R41 | R42 | R43 | R44 |

Pl al r | s | t]|
I I I I I

Display :

27.04205 3rd column pointer.

27.04205

29.04405 5th column pointer.

29.04405

-25.02900

-25.02900

nol no2 no3 no4 noS5

R25 | R26 | R27 | R28 | R29 |

T 12| 3| 4] 5|
I I I I I

R30 | R31 | R32 | R33 | R34 |

fl o o] i] o]
I I I | I

R35 | R36 | R37 | R38 | R39 |

k | L] e | n | o |
I I I I I

R40 | R41 | R42 | R43 | R44 |

Pl al| o | s | o |
I I I I

Page 80

INSTRUCTIONS FOR RGINIT

1) When the register pointer, in the X-register, is positive, the specified registers are

initialized to zero.

2) When the register pointer in the X-register is negative, the specified registers are
initialized with integers, starting with 1 and incrementing it by 1 for each register, up to
the last one.

STACK :

The stack is unchanged by the execution of [RGINIT].

Page 8!

- Number of registers specified by a pointer - RGNb

[RGNb] (ReGisters, NumBer of) returns the number of registers specified by the pointer
in the X-register.

Example : Compute the number of elements of an array, whose pointer is saved in register
ROO ; then compute the number of registers per line.

Keystrokes : Display :

[RCL] 00 [CLINC] 25.04400

[XEQ] "RGNb" 20.00000

1 [RCL] 00 [LINPT] 25.02900

[XEQ] "RGNb" 5.00000

INSTRUCTIONS FOR RGNbD

Registers pointer.

The array contains 20 registers.

Line pointer.

There are 5 registers per line.

[RGND] returns to the X-register, the number of registers specified by a bbb.eeeii pointer
to the X-register. The pointer is saved in LASTX.

STACK

Input : Output :

T t T: t

2 z Z: z

Y: vy Y: Yy

X: Pointer X:

L: L: Pointer

Number of elements

Page 82

- Sum of registers - RGSUM

[RGSUM] (ReGisters, SUM of) returns to the X-register the sum of the registers specified
by the pointer in the X-register.

If the pointer is negative, [RGSUM] performs the sum of the absolute values of the

specified registers.

Example : In the array F, whose pointer is saved in register R00, one wants the total of
the Ist column, and the sum of the 4th column, but considering the absolute value of the
elements.

column no1 no2 no3 no4 nobS

| R25 | R26 | R27 | R28 | R29 |

line no1l | %4] 15| 21| 2 | 8 |

I I I I I I
| R30 | R31 | R32 | R33 | R34 |

line no2 | 7 | 13| 19]-20] 1 |

I I I | I I
| R35 | R36 | R37 | R38 | R39 |

line no3 | o | 6 | 12| 18] 24 | ARRAY F

| | | I I |
| R&O | R41 | R42 | R43 | R44 |

line no4 | 23| 4 | 5 | 1| 17|

I I I I I I
| R45 | R46 | R4T | R48 | R49 |

line no5 | 16| 2| 3 | 9 | 10|

I I I I I I

Keystrokes : Display :

1 [RCL] 00 [COLPT] 25.04505 1st column pointer.

[RG] "Sum» 32.00000 Sum of elements.

4 [RCL] 00 [COLPT] 28.04805 4th column pointer.

[CHS] -28.04805 Negative. It specifies a sum of absolute values.

[XEQ] "RGSUM" 60.00000 Sum of absolute values.

INSTRUCTIONS FOR RGSUM

[RGSUM] returns to the X-register, the sum of the registers specified in the X-register.
If the pointer in the X-register is negative, [RGSUM] performs the sum of the absolute
values of the registers.

STACK :

Input : Output :

T t T: t

Z z Z: z

Y: ¥y Y:

X: Pointer X: Sum

L: L: Pointer

Page 83

APPLICATION PROGRAMS FOR RGSUM

1) In the array F, we want to put in the 3rd column, the percentage of the values of the
4th column, related to their sum.

Keystrokes :: Display :

3 [RCL] 00 [COLPT] 27.04705 Destination pointer.

2 [LAST X1 [COLPT] 26.04605 origin pointer.

[RGCOPY] 27.04705 Copy the 2nd column to the 3rd one.

[XEQ] "RGSUM" 60.00000 Sum of elements.

[LAST X1 [X<>Y] 60.00000 Save the pointer.

100 (/] 0.60000 To compute the percentage.

[X<>Y] [RG/Y] 27.04705 End.

Now array F is :

column no1 no2 no3 no4 noS

] R25 | R26 | R27 | R28 | R29 |

line nol | 14| 15| 25| 2 | 8 |

I I I I I I
| R30 | R31 | R32 | R33 | R34 |

line no2 | 7 | 13]21.6] -20 | 1 | ARRAY F

I I I I I I
| R35 | R36 | R37 | R38 | R39 |

line no3 | 0 | 6 | 10| 18| 24 |

I I I I I I
| R40 | R41 | R42 | R43 | R44 |

line no4 | 23 | 4 | 6.6 | 1 | 17 |

I I I I I |
| R45 | R46 | R47 | R48 | R49 |

line no5 | 16 | 22 | 36.6| 9 | 10 |

| I I | I

The 3rd column now holds the percentages !

Page 84

- Registers input or catalog - RGVIEW

[RGVIEW] (ReGisters VIEW) is a multi-mode function to view, and/or edit registers.

Example : the following sequence performs several viewing of the array I. In some cases,
registers are modified.

column no no2 no3 no4 no5

| R25 | R26 | R27 | R28 | R29 |

line no1 | 1] 2| 3| 4] 5|

I I I I I I
| R30 | R31 | R32 | R33 | R34 |

line no2 | 6] 7| 8| 9] 10 |

| | I I I I
| R35 | R36 | R37 | R38 | R39 |

line no3 | 11| 12 13| 1] 15| ARRAYI

I | I I I I
| R&0 | R41 | R42 | R43 | R4S |

line no4 | 16| 17| 18| 19| 20 |

| I I I | I

Keystrokes : Display :

[CF] 28 [FIX] 6 [<-] 0.000000

[RCL] 00 [RGVIEW] 25= 1.000000

30= 6.000000 View the first column.

[R/S] 35= 11.00000 Halt the catalog.

[SST] 40= 16.00000 Single stepping is

[BST] 35= 11.00000 Possible in both direction.

[<-] 25.044050 Exit the catalog .

[CLINC] 25.044000 Register pointer.

[RGVIEW] 25= 1.000000

26= 2.000000 Automatic stepping in the

27= 3.000000 registers and visualization

28= 4.000000 of them.

[ON] Turn the calculator off, then back on.

[ON] [CHS] -25.044000 Pointer to stop at the first value.

[RGVIEW] 25= 1.000000

15 25= 15_ Input directly

[CHS] 25= -15_ Into the register,

[EEX] 25= -15 _ exactly as normal keyboard

2 [CHS] 25= -15 -2_ input.

[R/S] 26= 2.000000 Validate data.

[BST] 25= -0.15000 Verification.

[SST] [ALPHA] 26= 2.000000 Set ALPHA mode.

ABCDEF 26= ABCDEF_ Up to 6 characters

G

[<-1]

[R/S]1 [BST]

[SST] A

[ALPHA]

[EEX] 2

[SST1 [BST]

[<-1]

2 [EEX] 6 [CHS]

[RCL] 00 [+]

[ALPHA] NOTHING G

[ALPHA] [RGVIEW]

[R/S]

[SST] [SSTI]

[BST]

19.5

[R/S] .

[R/S]

[BST]

[<--1 6 [EEX] 6 [CHS]

[RCL] 00 [CHS]

[RGVIEW]

[SST]

[<--1 3 [RCL] 00 [COLPT]

6 [EEX] 6 [CHS] [+]

[CHS] [RGVIEW]

[ALPHA] MONDAY

[R/S] TUESD.

[R/S] WEDN.

[R/S] THUR. [R/S] [ALPHA]

4 [EEX] 6 [CHS] [ENTER]

3 [RCL] 00 [COLPT] [+]

[CHS] [RGVIEW]

29

[R/S1 12

[R/S]1 [BST]

[<--1 1 [EEX] 6 [CHS]

[RCL] 00 [+] [RGVIEW]

26= BCDEFG_
26= BCDEF_
26= BCDEF
27= A_
27= 3.000000
27= 1 2_
27= 3.000000
-25.044000

2 -6
25.044052
NOTHING G_
G1,1= -0.150000

G1,2= BCDEF
G1,3= 3.000000
G1,4= 4.000000
G2,1= 6.000000
G1,5= 5.000000
G1,5= 19.5_
62,1= ._
G2,2= 7.000000
G2,1= 0.000000
6 -6_
-25.044056
G1= -0.1500000
G2= 0.000000
27.042050
27.042056
G1= 3.000000
G1= MONDAY__
G2= TUESD._
G3= WEDN._
-27.042056
0.000004
27.042054
MONDAY=
MONDAY= 29
TUESD.= 12_
12.000000=
1 -6
25= -0.150000
35= 11.000000
40= 16.000000
25.044051

Page 85

are al lowed.

Corrections can be made.

Validation and verification.

The ALPHA mode is still on.

Numeric mode.

Unchanged : no validation with [R/S].

Exit.

Array pointer.

Array name.

Only the last character is used as

the array name.

stepping in the array,

is automatic.

[R/S] halts it.

The element coordinates

are displayed on the left.

Quick and clear array

input is possible.

Vector pointer.

1st element of the 1st column.

2nd element (R30).

3rd column pointer.

1st element (R27).

Input the column,

element per element.

End input and clear ALPHA mode

Creation of a new

pointer.

In this mode, [RGVIEW]

allows inputs while the former

value or string

is still displayed.

In this catalog mode,

Zeroes are ignored.

Page 86

INSTRUCTIONS FOR RGVIEW

1) [RGVIEW] is a general purpose display, input, and print function, for main memory
registers.

2) The X-register pointer specifies registers and [RGVIEW] mode. It is a bbb.eeeiij
pointer.

If X>0 : View in sequence the registers specified , up to the end of the specified block, or

up to an interruption with the [R/S] key.

If X<0 : View and stop on the Ist register specified. Use [SST] to skip to the next register.
The [R/S] key resumes the listing.

When j is an odd number, registers equal to 0 are ignored (skipped).

If j= 0 or 1, it is a standard catalog : the register number and its value are displayed.

If j= 2 or 3, [RGVIEW] displays the array elements to the contents of the array name and
elements coordinates to the left.

If j= 4 or 5 [RGVIEW] displays the register value, followed by "=". Input is performed
with the old value still in the display.

Example : Display LUNDI=

Input LUNDI= 10

If j=6 or 7 [RGVIEW] displays the vector name (1 dimension), the element coordinate
(index), and its value.

In ALPHA mode, only the last six characters input are retained for entry.

A printer in NORMal or TRACE mode prints the register catalog output by [RGVIEW].

3) [RGVIEW] works like a CATalog ([SST] and [BST] are allowed).

STACK :

Input : Output :

T: ¢t T t

Z: 2 Z z

Y: Yy Y: Yy

X: pointer X pointer

L: L L: previous pointer

- Sort numeric and/or alphanumeric data -

Page 87

SORT

[SORT] sorts the registers specified in the X-register.

Example : In the array A below :

1) Sort in increasing order the values in the 2nd col.

2) Sort in decreasing order the values in the 3rd col.

column nol no2 no3 no4 noS5

| R25 | R26 | R27 | R28 | R29 |

line nol | %] B | 219] 2 | 8 |

| I I I I |
| R30 | R31 | R32 | R33 | R34 |

line no2 | 7 | 13| 19] 20| 1 |

I I I I I I
| R35 | R36 | R37 | R38 | R39 | ARRAY A

line no3 | 0 | A | -12] 18| 24 |

I I | I I I
| R4O | R41 | R42 | R43 | R4S |

line no4 | 23] 99|50 | 11| 17|

I I I I I I

Keystrokes : Display :

2 [RCL] 00 [COLPT] 26.04105 Build 2nd column pointer.

[XEQ] "“SORT" SORTING Sorting in progress ...

26.04105 Done.

3 [LASTx] [COLPT] [CHS] -27.04205 3rd column pointer; the negative pointer indicates a

decreasing order.

[XEQ] Y“SORT" SORTING Sorting in progress ...

-27.04205 Done.

colulmn no1 no2 no3 no4 no5

| R25 | R26 | R27 | R28 | R29 |

line no1 | 14| 13| 50| 2 | 8 |

I I | I I I
| R30 | R31 | R32 | R33 | R34 |

line no2 | 7 | 991 21| 20| 1 |

I | I I | I
| R35 | R36 | R37 | R38 | R39 | ARRAY A

line no3 | 0 | A | 19| 18| 24 |

I I I | I I
| R40 | R&1 | R42 | R43 | R44 |

line no4 | 23| B | -12 | 11| 17|

I I I I I

Page 88

INSTRUCTIONS FOR SORT

1) [SORT] sorts either numeric values, or alpha strings. Strings are sorted according to
their ASCII code and they are considered as being greather numeric values.

2) The pointer in the X-register specifies the registers to sort.

3) If X>=0, registers are sorted in increasing order.

4) If X<0, registers are sorted in decreasing order.

5) While sorting is in progress, if there is no message yet in the display, "SORTING" is
displayed.

STACK :

[SORT] leaves the stack unchanged.

Page 89

- Store by L-register - STO>L

[STO>L] (STOre by L) stores the X-register value, into the register specified by the
integer part of the L-register pointer. It also increments this pointer ; stack lift is

disabled.

Example : To input all the elements of the 1st line, of a 4 lines, 5 columns array,

beginning with register R25.

Keystrokes : Display :

1 1_

[RCL] 00 25.04405 Recall the pointer.

[LINPT] 25.02900 Compute 1st line pointer.

[sTtol [.]1 [L] 25.02900 Store it in the L-register.

50 50_ 1st line, 1st element.

[XEQ] “STO>L™ 50.00000 Store it in R25.

[VIEW] [.1 I[L] 26.02900 Pointer has been incremented.

60 60_ 2nd element.

[XEQ] "STO>L" 60.0000 Store 2nd element.

70 70_

[XEQ] "STO>L" 70.0000

80 80_

[XEQ] “STO>L" 80.0000

90 90_

[XEQ] “STO>L" 90.0000

[LASTX] 30.0290

INSTRUCTIONS FOR STO>L

[STO>L] uses the L-register, as an address pointer to store the X-register value.

[STOL>L] transfers the X-register value, to the register specified by the L-register. Stack
lift is not done, so several values can be input, without altering registers Y, Z, T.
Furthermore, the pointer in the L-register is automatically incremented, resulting in
significant code savings within a program.

STACK :

Input : Output :

T t T: t

2 z 2: z

Y: vy Y: Yy

X: value to store X: value stored

L: bbb L: bbb+1

Note : The decimal part of the L-register is ignored.

NOTA : If there is an alpha string in the L-register, ALPHA DATA is displayed.

APPLICATION PROGRAM FOR STO>L

1) [STO>L] was designed, to input register values programmatically. In order to input, the
Ist colonne of the array B, whose pointer is in register R00, use the following sequence :

1 RCL OO COLPT STOL 50 STO>L 60 STO>L 70 STO>L 80 STO>L

column nol no2 no3 no4 no5

| R25 | R26 | R27 | R28 | R29 |

line no 1 | 50 | | | | |

I I I | I I
| R30 | R31 | R32 | R33 | R34 |

line no 2 | 60 | | | | |

I I I I I I
| R35 | R36 | R37 | R38 | R39 | ARRAY A

line no 3 | 70 | | | | |

I I I I I I
| R40 | R41 | R42 | R43 | R4S |

line no 4 | 80 | | | | |

I I |

Page 90

- Extraction or justification of a substring -

Page 91

SUB$

[SUB$] (SUB string) extracts a substring from the ALPHA register, or performs a right or

left justification of a string, adding spaces to it.

Example : To extract 7 characters, starting with "C", from the string
>’ABCDEFGHIJKLMNOPQRSTUVW’, which is in the ALPHA register :

Keystrokes : Display :

2.08 2.08 2 is the position of "C".

8 is the position of the 7th character to extract.

[XEQ] "“SUB$™ 2.0800 Extract the string.

[ALPHA] CDEFGHI Substring.

To right-justify in a 10 character field :

[ALPHA]

10 10_ Justification field length.

[CHS] -10_ Specifies right justification.

[XEQ] "suBs" -10.0000

[ALPHA] CDEFGHI Three spaces have been added to the left.

The string in ALPHA register is 10 characters long.

To put 5 spaces at the right of the string :

[ALPHA] -10.0000

15 15_ New justification field length.

[XEQ] "SuBs$" 15.0000 Left justification because the X-register is positive.

[ALPHA] CDEFGHI

[APPEND] DEFGHI _ The ALPHA register scrolls to the left and the

cursor is displayed after the 5 spaces.

INSTRUCTIONS FOR SUB$

[SUBS$] modifies the ALPHA register as specified by the X-register.

- If the X-register number is an integer, the calculator extracts the |X| left most
characters of the initial string. If the initial string has less than |X| characters, spaces are
added to get a |X| character string; spaces are added to the left if X<0, to the right if

X>0.

- If the number in the X-register has a decimal part (bb,ee), the calculator extracts the

substring comprising of the characters from the position bb to the position ee.

(The first character is at position 0). If ee is higher than the position of the last character

of the string, the substring is the initial string, with spaces added to get a ee-bb+l

character string. Spaces are added to the left if X<0, to the right if X>0. Beware that the

sign of the X-register is ignored if ee is not higher than the position of the last character
in the ALPHA register.

If bb is higher than the position of the last character of the initial string, [SUB$] puts a
string of ee-bb+1 space characters in the ALPHA register.

Page 92

STACK :

The stack is not changed by [SUBS$].

NOTA : if the ALPHA register string is 24 character long, the calculator puts in the front
of the string, characters with code 0, which are displayed as small dushes before the
string.

- Toggle printer flag -

Page 93

TF55

[TF55] (Toggle Flag 55) toggles flag 55, which indicates that a printer is connected to the
HP41. This flag cannot be modified by the user without the PANAME ROM. The TF55
function :

1) Sets flag 55 when there is no printer attached to the HP41; this eases the use of some
programs (for instance in Application Pacs), which must be executed with flag 21 set
(Printing enabled). So you can use them as subprograms, because when flag 55 is cleared,
those programs halts at every VIEW or AVIEW instructions. With [TF55] there is no more
interruption.

2) Clears flag 55, when a printer is attached to the HP-41 : this speed up programs when
the printer is not used. Another [TF55] puts the printer back to use.

INSTRUCTIONS FOR TF55

1) To set flag 55, when it is cleared, execute [TF55].

2) To clear flag 55, when it is set, execute [TF55].

Page 94

- View key assignations - VKEYS

[VKEYS] (View KEYS) lists the key assignments to he HP 41 built in display. For
instance, if the PROMPT function is assigned to the "ENG" key (shifted [3], key code -
74), the calculator will display :

-74 PROMPT

Key listing can be :

- Suspended by pressing and holding down any key but [R/S] or [ON] ;

- Terminated with the [ON] or [R/S] key. [ON] also turns off the calculator off.

Nota : [VKEYS] is not programmable.

Page 95

- Write Extended Memory file - WRTEM

[WRTEM] (WRiTe Extended Memory) copies all the extended memory to a mass medium
(HP82161A Tape drive or HP9114 Disk Drive).

Example :

Keystrokes : Display :

[XEQ] “EMDIR™ MATRP P012

A D100 Samples contents of

TEXTE AO040 Extended Memory.

[ALPHA] "MAT 3" [ALPHA] 600.00 Put the file name in ALPHA

[XEQ] "WRTEM" 600.00 All the X-Memory files have been written to the mass medium.

INSTRUCTION FOR WRTEM

1) Put in the ALPHA register the file name in which all the X-Memory should be saved;
then [XEQ] "WRTEM" copie all the X-Memory to this file.

2) If there is no HP-IL ROM, NO HPIL is displayed.

3) If a file exists with the same name on the mass medium, it is replaced by the new one.

STACK :

The stack is unchanged by [WRTEM].

INVERSE FUNCTION : READEM.

Page 96

- Swap the X-register with flags 0-7 - X<>F

The X<>F function swaps the X-register and a imaginary register F, which represents the
status of flags 0-7. This representation is an integer, in the range 0-255, which is the sum
of the values related to the flags set :

Value

1

2

4

8

16

32

64

128

,
_
o «
Q

N
O

UV
W
2
O

For instance, if flags 0, 1, and 3 are set, and flags 2, 4, 5, 6, and 7 are cleared, the "F"

register value is :

1 (value of flag 0)

+2 (value of flag 1)

+8 (value of flag 3)

=11

INSTRUCTIONS FOR X<>F

To swap the current status of flags 0-7, with a new one :

1) Compute (see above), the number related to the new status of flags 0-7 and put it in
the X-register;

2) Execute X<>F.

Now, the X-register number contains the old status of flags 0-7, and flags 0-7 are set to
the new status.

APPLICATION PROGRAM FOR X<>F

The XFLAGS program gives you up to 80 new flags. Usage of these extended-flags (0-
79) 1s as follows :

- Set the Nth X-flag : Put N in the X-register and XSF.

- Clear the Nth X-flag : Put N in the X-register and execute XCF.

- Test the Nth X-flag : Put N in the X-register and execute XFS?.
After XFS?, flag 08 reflects the status of the X-flag being tested.

XSF . XCF and XFS? programs uses the stack and registers R00 to R09. XFS? also uses
flag 08.

XFLAGS program listing :

LBL "XFLAGS" .009 RGINIT RDN RTN

LBL "XSF" XEQ 00 SF IND Y GTO 01

LBL "XCF" XEQ 00 CF IND Y GTO 01

LBL "XFS?" XEQ OO0 CF 08 FS? IND Y SF 08

LBL 01 X<>F STO IND Z R* RTN

LBL 00 STOY 8 /MOD RCL IND Y X<>F .END.

Note : XEQ "XFLAGS" clears all X-flags 00 thru 79.

Page 97

Page 98

- Compare X and a register - X...NN?

Functions X#NN?, X<=NN?, X<NN?. X<=NN?, X>=NN? et X>NN? work as the built-

in test functions (X=Y?) of the HP-41, but they compare the X-register contents with the
contents of any register specified in the Y-register.

Furthermore these functions also compare alphanumeric strings.

INSTRUCTIONS FOR X...NN?

To compare the contents of the X-register with that of data register r :

If the r register is : Put inY :

- a data register Rnnn - the number nnn

- the Z-register - the string '2!

('2' ASTO.Y)

- the T-register - the string 'T!

- the L-register - the string 'L!

In RUN mode, the calculator displays YES or NO according to the result of the test.

In a program, X...NN? behaves like any built-in test function. The line following the test
is executed if the test is true, or it is skipped if the test is false.

These functions compare numeric and alphanumeric functions, according to the following
asoumptions :

1) A number is always less than a string.

2) Strings are compared according to their character codes.
(e.g. : 'AB0’ < ’ABA’ because the code of ’0’ is 48 and that of A’ is 65.

3) A short string identical to the beginning of a larger one is considered as being less than
the larger one (e.g. "ABC" < "ABCD").

- Question Yes/No -

Page 99

Y/N

[Y/N] is useful in programs, which ask for an answer Yes or No.

Example : The following sequence displays the question :

EXIT Y/N?

If the user answers Yes (Y key), the program resumes execution at label 00, if the user
answer NO (N key) the program resumes execution at label 01:

MEXITH 1,000
Y/N
GTO 00
GTO 01

INSTRUCTIONS FOR Y/N

The Y/N function can only be used in a program.

1a) To ask a question in the form :

message Y/N?

Put the message (max. 7 characters) in the ALPHA register and execute Y/N;

1b) To ask another type of question put the message in the ALPHA register, execute
AVIEW then Y/N (one that does not contain Y/N ? explicity).

2) In both cases, when the Y/N function is executed, the calculator suspends program
execution and waits for a keystroke :

- If the key pressed is ON, the calculator is turned off:

- If the key pressed is R/S, program execution is stopped and the program pointer is set

to the line following Y/N ;

- If the key pressed is Y (Yes) or O (Oui), program execution resumes at the line
following immediately Y/N ;

- If the key pressed is N (No), the line following Y/N is skipped, and the program
resumes execution at the second line after Y/N (As for a false test; see the description of
the X=Y? function in the HP41 manual).

- Any other key is ignored.

Page 100

Appendix ON

With the PANAME ROM plugged in, MEMORY LOST is not the only ON/Key

combination that is meaningful to the HP 41 : 6 new functions are possible when you
switch on the HP-41.

Notation : ON/+ represents the function performed when you turn the calculator on with
[ON], while the + key is held down. Also you must release [ON] before +.
For instance, with ON/[<-] you get a MEMORY LOST.

ON/.

Change the mumeric display format : from the "American" one (1,234.25), to the
"European" one (1.234,25). This function is built in the HP-1x calculators.

In fact ON/. toggles flag 28.

ON/K

Clear all user key assignations.

ON/A

Set the "A key assignment set", to the top rows. If one key was already assigned to som

function or program, its key assignment is not modified.

| ATOXL | ALENG | ATOXX | ANUMDEL | ATOXR | shifted 1st row

| XTOAL | AROT | YTOAX | ANUM | XTOAR | Unshifted 1st row

ON/M

| sTooL | BRKPT | COLPT | AD-LC | RGVIEW | shifted 1st row

| RG | BLDPT | LINPT | LC-AD | CLINC | Unshifted 1st row

Page 101

ON/T

Like ON/A, but with the following "T key assignment set".

| AXIS | BOX | SETORG | RMOVE | *csIze | Shifted 1st row

| *HOME | RESET | *LABEL | *MOVE | *LDIR | Unshifted 1st row

| *PLREGX | REVLFX | BACKSPX | RDRAW | *LTYPE | Shifted 2nd row

| | | ouTt | *DRAW | COLOR | Unshifted 2nd row

ON/V

Like ON/A, but with the following "V key assignment set".

| | SCRLUP | CLEAR | XYTAB | CTYPE | shifted 1st row

| HOME | SCRLDN | CLEARO | CSRL | CSRR | Unshifted 1st row

| | SCRLX | CSRVX | CSRUP | CSROFF | shifted 2nd row

| | | CSRHX | CSRDN | CSRON | Unshifted 2nd row

Page 102

The HP-41 uses the "Reverse Polish Notation" (RPN), to solve complex problems, without

requiring parentheses and with a minimum of keystrokes. This system was created by a
famous polish mathematician, Lukasiewicz, and not by the Hewlett-Packard company.

- A TIME SAVING SYSTEM : the access to memory registers is quicker in the stack with
any memory partition, than on any other type of calculator ;

- A SPACE SAVING SYSTEM : an intermediat result, which does not use a register, let it

free for something else ;

- Furthermore the STACK avoid a COMPLEX MEMORY MANAGEMENT : one can use

a subprogram without modifying it, because of the memory implantation of the variables
in the calling program.

So, subprograms parameters are passed through the stack, calculations are done in the

stack, and results are returned to the stack : a subprogram is general, and easy to use.

In general any arithmetic processing, with up to 4 values, can be performed in the stack.

Example 1 : roots of a ax*2 + bx + ¢ = 0 equation.

To use the program given below :

¢ ENTER” b ENTER” a XEQ "ROOTS" .
LBL "ROOTS" ST/ Z CHS ST+ X / ENTER” X*2
RCL Z - SQRT RCLY SIGN * + ST/ Y .END.

For instance to solve the following equation set :

x*2 +x -6 =0 and

3x*2 +2x -1 =0 -6

ENTER” 1 ENTER” XEQ "ROOTS" .
x’= -3 and RDN x"= 2

For the second one -1 ENTER” 2 ENTER” 3 XEQ "ROOTS"
x'= -1 and RDN x"= 0,3333

This example illustrates the easiness given by the arithmetic done directly in the stack.

Example 2 : GCD (Greatest Common Divisor) of 2 numbers.

01 LBL "GCD" LBL 02 MOD LASTX X<Y X#0? GTO 02 + .END.
91 ENTER" 65 XEQ "GCD" . X = 13,00

In this example, you must put the two numbers in the X and Y registers, and the result is

returned to the X-register.

Page 103

Example 3 : reduced fraction.

Generally you compute the GCD to get the reducted form of a fraction. Also with the
GCD of a fraction it is easy to get the LCM (Least Common Multiple).,

01 LBL "RF" STO Z X<>Y STOT XEQ"GCD" ST/ Z ST/Y RDN ST* Z .END.

Application : 91 ENTER” 65 XEQ "RF" returns X= 5 and Y=7 so 91/65 = 7 / 5 ; the
GCD and the LCM of 91 and 65 are Z =455and T = 13

Example 4 : calculation with two fractions.

LBL "F/" X<>Y LBL "F*" ST* Z RDN ST* Z RDN GTO "RF" 09 LBL "F-" CHS
LBL "F+" ST*T X<>Z ST*Z * RCL Z + X<>Y GTO "RF" .END.

Application : what resistance should be put in parallel with a 100 ohms one to get a result
of 80 ohms ?

1 ENTER” 80 ENTER” 1 ENTER” 100 XEQ "F-"1/X . So it is a 400 ohms one.

These examples illustrate, quite well, the powerful capabilities of the stack.

	Cover
	Table of Contents
	Foreword
	Warning
	Miscellaneous Functions
	FINDAID
	AID
	Appendix C
	ID
	OUT
	OUTAX
	OUTCR
	OUTLF
	OUTLFX
	OUTSPX
	OUTXB
	OUTYBX
	OUTa
	OUTaX
	RCLSEL

	82163 Functions Group
	CLEAR
	CLEARO
	CSRDN
	CSRHX
	CSRL
	CSROFF
	CSRON
	CSRR
	CSRVX
	CSRUP
	CTYPE
	HOME
	SCRLDN
	SCRLUP
	SCRLX
	XYTAB
	Appendix V

	82162 Functions Group
	8BIT
	ESCAPE
	PARSE
	CLBUF
	UNPARSE
	TABCOL

	82905 Functions Group
	BELL
	CHARSET
	FFEED
	FORMLN
	GRAPHX
	MODE
	SKIPOFF
	SKIPON
	TEXTLEN
	VSPAC
	Appendix P
	Roman8 Characters

	Miniplotter
	AXIS
	*LDIR
	*LTYPE
	*MOVE
	*PLREGX
	RDRAW
	RESET
	REVLF
	REVLFX
	RMOVE
	SETORG
	BACKSP
	BACKSPX
	BOX
	*COLOR
	*CSIZE
	*DRAW
	*HOME
	*LABEL
	STATUS
	Appendix T2

	Utilities
	/MOD
	AD-LC
	ALENG
	ANUM
	ANUMDEL
	APPX
	AROT
	ATOXL
	ATOXR
	ATOXX
	BLDPT
	BRKPT
	CHFLAG
	CLINC
	COLPT
	GETRGX
	LC-AD
	LINPT
	NOP
	POSA
	PSIZE
	SIZE?
	READEM
	RG
	RG+-
	RG*
	RG/
	RG+Y
	RG*Y
	RG/Y
	RGAX
	RGCOPY
	RGINIT
	RGNb
	RGSUM
	RGVIEW
	SORT
	STO>L
	SUB$
	TF55
	VKEYS
	WRTEM
	X<>F
	X...NN?
	Y/N
	Appendix ON

