Power Cable Engineering With HP-41 Programs

Robert W. Parkin

Power Cable Engineering
 With HP-41 Programs

Robert W. Parkin

POWER CABLE ENGINEERING WITH HP-41 PROGRAMS.

COPYRIGHT (C) 1988, ALL RIGHTS RESERVED BY THE AUTHOR, R.W. PARKIN.

PUBLISHER, MCM SOFTWARE 123 LEWIS COURT WASHINGTONVILLE, N.Y. 10992

All rights reserved. No part of this work covered by the copyrights hereon may be reproduced or copied in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems - without written permission of the author.

The user accepts and uses this program material at his own risk, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material. Neither HP nor the author makes any express or implied warranty of any kind with regard to this program material, including but not limited to the imolied warranties of merchantability and fitness for a particular purpose. Neither HP nor the author shall be liable for incidental or consequential damages in connection with or arising out of the furnishing, use, or performance of this program material.

PREFACE

POWER CABLE ENGINEERING WITH HP-41 PROGRAMS (PCE)

 represents a culmination of essential design and application programs required in the power industry to help determine maximum operating performance of polymer insulated power cables and distribution systems. As well, PCE outlines program applications and parameters, creating a unique power cable handbook for those involved with the design, application, and installation of power cables and distribution systems.The programs are written in standard HP-41 language (FOCAL) and can run on HP-41 models or other compatible computers. Many of these programs are new or updated; in this regard, PCE fills a gap in current literature and computer software by providing as large a base of useful information as possible in one publication.

The book is divided into three sections with each section subdivided into program-chapters. Section one covers Electrical Programs, section two deals with Polymer Insulated Cable Design, and section three covers Installation Programs and Guidelines. Each program-chapter includes a cover sheet, subject material, step by step program operating instructions, sample problems, and a program printout; so that each is complete within itself, although many tables and programs are interrelated.

The appendix helps locate various tables, drawings, example specifications and other reference aids used with the programs. Software, HP-41 hardware and user support can be obtained by contacting the author or distributors located in the back section.

I would like to acknowledge the technical help extended by Walter Zenger, Joseph L. Steiner, Ed Walcott and Albert McGrath and other members of Cablec Corporation who helped make this work possible, and to the standard associations and authors referenced herein for data tables, and of course to Hewlett Packard Ltd. and their employees.

TABLE OF CONTENTS

SECTION ONE

ELECTRICAL PROGRAMS

1. CABLE SYSTEM AMPACITIES 3
2. INDUCED SHIELD VOLTAGES AND LOSSES 43
In Six Arrangements: Single Phase, Equilateral, Flat, Rectangular, and Two Circuit.
3. CABLE EMERGENCY OVERLOAD CAPABILITIES 57
4. SHORT CIRCUIT RATINGS FOR PHASE CONDUCTORS 65
Copper and Aluminum Conductors.
5. SHORT CIRCUIT RATINGS OF METALLIC SHIELDS 71
Concentric Wires, Copper Tape, and Longitudinal Corrugated Metallic Shields.
6. POSITIVE AND ZERD SEQUENCE IMPEDANCES OF CABLES 85
Single and Three Conductor Underground Cables
7. DIRECT CURRENT SHIELD RESISTANCE 97
Concentric Wires, Copper Tapes, Longitudinal Corrugated Tapes, Lead and Aluminum Sheaths.
8. A-C RESISTANCE DF CONDUCTORS 109
Considering Skin and Proximity Effects for Single and Three Phase Circuits
9. VOLTAGE REGULATION AND VOLTAGE DROP OF CABLES 119
10. INDUCTIVE REACTANCE AND INDUCTANCE IN CABLES 127
Single and Three Phase Circuits
11. DIELECTRIC CHARACTERISTICS OF CABLES 139
Capacitance, Charging Current, Dielectric Loss, Capacitive Reactance, and Ins'Alation Resistance.

SECTION TWO
 POLYMER INSULATED CABLE DESIGN

12. PRIMARY CABLE DESIGN 147
Medium Voltage Shielded Power Cables in Accordance with AEIC CS5, CS6, C57, ICEA 5-66-524, 5-68-516 and UL 1072 Standards for cables rated 5 kV through 138 kV .
13. TRIPLEXED AND QUADRUPLEXED SECONDARY CABLE DESIGN 198 GOOV Rated Secondary Cables in Accordance with ICEA S-66-524 and 5-68-516, and UL Standards.
14. CONTROL AND INSTRUMENTATION CABLE DESIGN 200
Rated O through 2OOOV in Accordance with ICEA 5-66-524 and 5-68-516.
15. PERCENT COVERAGE OF CONCENTRIC WIRES OR STRAPS 226
16. METALLIC SHIELDING CONSTRUCTIONS 227
17. CONCENTRIC NEUTRAL WIRE SIZES AND SELECTION 231
18. FLAT STRAP NEUTRALS 235
19. METRIC STRAND CONDUCTOR DESIGN 239
20. METRIC CONVERSION FACTORS FOR CABLES 244
SECTION THREE
INSTALLATION PROGRAMS AND GUIDELINES
21. PULLING TENSIONS AND INSTALLATION GUIDELINES FOR CABLE 247
Pulling Tensions, Sidewall Loads, Clearance, Jam Ratio, and Percent Fill, for Cable Pulled in Duct.
22. PACKAGING OF WIRE AND CABLE 279
Shipping lengths, Reel Sizes, and Maximum Weight Capabilities for Round Wire and Cable.
23. MECHANICAL DESIGN OF OVERHEAD SPANS 293
Unit conductor tensions, mid-point and apparent sags, horizontal weight spans, pull-off angles and relative or absolute elevations for overhead transmission line or distribution circuits based on catenary equations.
24. D-C HIGH POTENTIAL TESTING OF MEDIUM VOLTAGE CABLES 305
Withstand, acceptance, and proof test levels inaccordance with AEIC during and after installation.
SOFTWARE AND HARDWARE DISTRIBUTORS $1-2$
APPENDIX 3-5

Section One

Electrical Programs

CABLE SYSTEM AMPACITIES

Robert W. Parkin

FUNCTION: This program provides a method for assessing ampacities of underground power cables or groups of cables, that are spaced or in trefoil configurations, based on the J.H Neher and M.H. McGrath method [1]. The program utilizes analytical techniques and boundary geometries for approximations of thermal circuit parameters and configurations, and is further enhanced by its ability to retain original values of previous calculations to compare alternative ambient operating temperatures, and losses associated when the metallic shields are bonded and grounded at multiple points . Different configurations can be explicated along with the ability to use non-unity load factors.

ACCESSORIES: HP-41 CX or HP-41CV, printer optional

OPERATING LIMITS AND WARNINGS: Solutions assume that conductor currents of all phases are equal in magnitude, which is important to consider where two parallel circuits are used. Conduit is assumed to be non-magnetic.

REFERENCES:

[1] The Calculation of the Temperature Rise and Load Capability of Cable Systems, J.H. Neher and M.H. McGrath. AIEE Paper 57-660 published Dctober, 1957.
[2] The Temperature Rise of Cables in a Duct Bank, - J.H. Neher, AIEE Trans. Vol. 68, Part I, 1949, pg. 540-9.
[3] Thermal Transients on Buried Cables, - F.H. Buller, AIEE Trans Vol. 70 Part I, 1951, pg. 45-55.
[4] Ampacities Including Effects of Shield Losses, IPCEA Pub. No. P-53-426 NEMA Pub. No. WC-50-1976
[5] El-Kady, M.A., Horrocks, D.J., "Extended Values for Geometric Factor for External Thermal Resistance of Cables in Duct Banks", IEEE Trans. on Power Apparatus and Systems, Vol. PAS-104, No. 8, August 1985, pp 1958-1962.
[6] Induced Shield Voltages and Losses, R.W. Parkin

Intraduction

One of the most important needs of power cable engineering and operation is to have information about maximum currentcarrying capacity which a cable can tolerate throughout its life without degradation to the cable and circuit. This becomes increasingly more important when cable systems are operated at maximum continuous current ratings.

The voltage rating and the environmental hazards of intended applications determine the type and the thickness of the insulations and other coverings applied over conductors.

The Neher/McGrath Standard Publication 57-660 is intended primarily for transmission cable computations. During development of this program, it became apparent that additional enhancements to the above methods would have to be made to account for the specific nature of modern distribution cables and adapted for efficient calculation on a computer. These enhancements are based on reference [4] and described with program algorithms.

Shield Current Effect on Cable Ampacity

When shields are bonded and grounded at multiple points, circulating currents, dependent on shield impedance, will flow in the metallic shield (or concentric neutrals). These currents are heat (I_{R}) generators and must be included in the thermal circuit when computing the system ampacity. The highest losses occur mostly with concentric neutral cables, and the lowest cable ampacities occur when the mutual reactance between the concentric neutral and the conductor equals the resistance of one concentric neutral.

To reduce the circulating currents, it is necessary to change parameters to make the unit values of concentric neutral resistance and the mutual reactance as divergent as possible while still meeting the other criteria of the circuit. This generally is accomplished by reducing the axial spacing (and the mutual reactance), or by increasing the resistance of the concentric neutral by decreasing the number of wires and/or decreasing the size of the wires. It is also possible to accomplish the same by increasing the spacing and increasing the number and size of the concentric neutral wires; the latter, however is not economical. These circulating currents, and associated losses can be eliminated or minimized by bonding and grounding the shields at one point in a cable run or by special shield bonding techniques. This method will result in voltages between the shield and ground both under steady-state and transient operating conditions.

The mutual reactance is computed in the ampacity program and also can be determined in the shield loss program; which should be used first to obtain shield loss values associated with configuration and spacing if multi-point grounding is used, also the mutual heating of single conductors as they get closer together decreases the ampacity capabilities of the cable system.

The resistance of the concentric neutral can be increased by decreasing the number of wires and decreasing the size of the individual wires. ICEA recommends that concentric neutral wires should not be reduced below $6 \times$ \#14 AWG wires. It should also be noted that the concentric neutral should not be reduced below the capability to hande the fault current available to the cable system. The fault current capabilities for metallic shields can be determined in the fault program.

Observations

Ampacities up to size 4/O AWG are affected slightly by varying the concentric neutral. In intermediate sizes, from approximately \#4/O AWG to 500 kcmil, the reduction in ampacity due to mutual heating is generally larger than the reduction in ampacity due to short circuit shield currents caused by spacing of the phase conductors. For the larger sizes, it is generally more efficient to keep the cables as close together as possible because the circulating neutral currents of the spaced cables provide greater losses and lower ampacities than the mutual heating effect of a close configuration.

The variation in ampacity with shield resistance for a given conductor size is a function of the slope of the loss ratio curve. In particular, the variation in ampacity increases as the shield resistance decreases except near the peak of the loss ratio curve. In general, the variation is greater for spaced than for trefoil configurations; separating the phases increases shield losses at a rate that exceeds the advantage gained by the reduction in mutual conductor heating.

Temperature Rise and Losses

All losses are developed on the basis of watts per conductor foot. The heat flows and temperature rises due to dielectric loss and to current produced losses are treated separately, and in the latter case all heat flows will be expressed in terms of the current produced loss originating in one foot of conductor by means of multiplying factors which take into account the added losses in the sheath and conduit.

In the case of underground cable systems, it is convenient to utilize an effective thermal resistance for the earth portion of the thermal circuit which includes the effect of the loading cycle and mutual heating effect of the other cables of the system. All cables in the system will be considered to carry the same load currents and to be operated under the same load cycle. The method employed by Neher-McGrath has been selected as it is the most consistent and most readily handled over the full scope of the problem.

PROGRAM STRUCTURE

The program is formatted to display four ampacities for four different configurations:

1) $\operatorname{Triplexed}-$ direct bury
2) Triplexed- in duct bank
3) Spaced- direct bury
4) Spaced- in duct bank

Program will repetitively loop after each sequence to reenter different ambient and operating temperatures, and prompt for circuit operation (if multi-bonded). The shield losses in watts/foot should be determined in the shield loss program before loading "AMP". Refer to the user instructions for input structure.

Tables are provided in the proceeding sections that cover all input parameters. Data not found in this section can be located in other program-chapters.

Table V
Constants for use in Equations 41 and 41 a

Condition	\underline{A}	\underline{B}	\underline{C}	$\underline{A^{\prime}}$	$\underline{B^{\prime}}$
In metallic conduit	17	3.6	0.029	3.2	0.19
In Fiber Duct in Air	17	2.1	0.016	5.6	0.33
In Fiber Duct in Concrete	17	2.3	0.024	4.6	0.27
In Transite Duct in Air	17	3.0	0.014	4.4	0.26
In Transite Duct in Concrete	17	2.9	0.029	3.7	0.22
Gas-Filled Pipe Cable at 200 psi	3.1	1.16	0.0053	2.1	0.68
Oil-Filled Pipe Cable	0.84	0	0.0065	2.1	2.45

Table II
Recommended Values of ks and kp

Notes:

(1) Proximity effect on compact sector conductors may be taken as $1 / 2$ of that for compact round having the same CSA and insulation thickness.

* Untreated compact round ko $=0.8$

CALCULATION OF THERMAL RESISTANCE

Table IV

Thermal Resistivity of Various Materials

Materials	P in Ccm/watt
Paper Insulation (Solid Type)	700 (IPCEA Value)
Varnished Cambric	$600($ IPCEA Value)
Paper Insulation (Other Type)	$500-550$
Rubber and Rubberlike	500 (IPCEA Value)
Jute and Textile Protective Covering	500
Fiber Duct	480
Polyethylene	450
Transite Duct	200
Somastic	100
Concrete	850
Polyvinyl Chloride	500

GEDMETRIC FACTOR

Geometric factor Gb, associated with the external thermal resistance between cable duct banks and the ambient are based on approximating the rectangular duct bank by an isothermal circle of equivalent radius which is a function of the bank height and width dimensions. This approximation is valid only for height/width ratios in the range of $1 / 3$ to 3 . The values of Gb shown below are intended to provide accurate values over a wide range of Lb/h and h / w suitable for direct use. The technique that this table is derived from is based on the assumption that the duct bank surface represents an isothermal boundary.

The most troublesome variable in making an accurate calculation is soil resistivity. Ampacities taken from IPCEA P-46-426 include columns for rhos of 60,90 , and 120 , but the NEC tables are limited to a rho of 90. The true resistivity may vary from around 40 for some wet clayey soils to over 300 for dry gravel. The true resistivity may be determined only by testing, but the measured value changes greatly with changes in soil moisture. Cable ampacities decrease considerably when soil thermal resistivity increases. Lowering the duct bank by 50 cm results in a reduction of cable ampacities between 2% for low soil resistivity and 4% for resistivity in the upper range.

Underground Duct Installations

For underground ducts consisting of one, three, six, or nine cables or circuits, the applicable tables in the NEC can be applied. These ampacities are only valid for the burial depths, spacing between ducts, and thermal resistivities shown in the tables and figure 1. For duct banks consisting of configurations different from those above, the computer program must be applied to determine ampacity. In general, the following rules apply to duct bank applications.

1) The maximum number of circuits in an underground duct bank is normally 12.
2) Equally sized cables in an underground duct bank have approximately two-thirds the ampacity of the same cable in a direct burial configuration. Therefore, direct burial applications are more economical.
3) In duct banks, as in all underground applications the NEC tables show ampacity ratings for applications where cables are all the same size. Where this is not true, special calculations must be made.
Where underground ducts are required as part of a direct bury buried cable system (under roadways,buildings etc.). It has been determined the cables in the duct bank portion will have the same ampacity rating as that for the cables in the direct buried system if the underground duct length does not exceed 25 feet, or if over 25 ft. long, the ducts are filled with a heat transfer medium; used to minimize the thermal resistance of the air void in the ducts.

Effect of Position of Cable in Duct Bank

When several equally loaded cables are located in the same duct bank, the maximum permissible loading will be the root mean square peak load of all the cables in the duct bank. If all the cables were actually carrying this load, the operating temperature of those in the interior ducts would exceed the safe operating temperature of the insulation, whereas the operating temperature of those in the outer ducts would not reach this value. The cables in the inner would accordingly be overloaded and those in the outer ducts underloaded. In order to equalize the operating temperatures of cables in different locations as near as possible at a value corresponding to the safe maximum temperature, the load must be multiplied by a position factor, which will decrease it for the inner ducts and increase it for the outer ducts, but will not change the root mean square of the loads when so modified. The same adjustment for the position of the cable in the duct bank should be made for unequally loaded cables.

The charts below display the relative watt losses for individual ducts and bank of ducts per foot of cable for the same temperature rise (percent of 2 by 2 bank)

Position Factor $=\sqrt{\frac{\text { Relative Loss for any Duct }}{\text { Average loss }}}$

Average $=89$

93	93
80	80
78	78
76	76
76	76
78	78
80	80
93	93

Average=82

Average=70

Average=51

Assumed duct bank configuration for typical calculations

AMPACITY CALCULATION PARAMETERS

```
The following outline lists the parameters needed to calculate the ampacities of various types of cable installations.
```

1. Circuit characteristics
A. Frequency
B. Single or three phase
C. Source voltage; phase-to ground
D. Neutral grounded or ungrounded
E. Time required to clear a ground fault
F. Load factor
G. Loss factor
H. Phase sequence

Note: The load factor is defined as the ratio of the average load current for any 24 hour period to the maximum average current for the peak one hour period during the same 24 hour period. The more customers that are included in the study area, the more nearly constant will be this ratio from one period to the next. This factor is not governed at all by the cable system, but is extremely important in cable size determination especially if the cable is buried or placed in underground ducts.

The loss factor is a number similar to the load factor, but is the ratio of the average of the square of the load currents over a 24 hour period to the maximum average square of the current for the peak one hour period during the same 24 hour period. The loss factor is actually the number that is used for cable sizing, while the load factor is the number usually given as a system parameter.

2. Cable construction

A. Temperature rating of cable
B. Conductor metal
C. Size and number of conductors
D. Conductor design (solid, compressed, compact etc.)
E. Type and $O . D$ of insulation
F. Type and dimension of shielding system
G. Shields single or multi-point grounded
H. Type and dimension of cable overall jacket or sheath
I. Dielectric constant and power factor of insulation

3. Cables in underground ducts or conduits

B. Earth thermal resistivity
C. Duct dimensions
D. Duct material
E. Duct configuration and spacing
F. Material and dimensions of duct bank encasement
G. Depth of duct bank encasement below grade
H. Number of loaded cables in each duct
4. Cables buried in Earth
A. Earth ambient temperature
B. Earth thermal resistivity
C. Number of loaded cables in trench
D. Spacing of cable in trench
E. Depth of cable below grade

5.Cables in air

A. Ambient air temperature
B. If single conductor-cables, what is their spacing
6. Cables in conduit air
A. Ambient air temperature
B. Conduit material and dimensions
C. Number of loaded cables in each conduit
D. Number of spacing of loaded conduits
E. Other heat sources near conduits
7. Cables in tray or ladder supports
A. Ambient air temperature
B. Ladder or solid bottom trays
C. Open or solid bottom trays covers
D. Vertical separation between stacked trays
E. Width and depth of tray
F. Is cable spacing maintained
G. Size, number and diameters of cables in each tray

PROGRAM ALGORITHMS

Neher-McGrath Formulation of Temperature Rise

The permissible current rating an a-c cable can be derived from the expression for the temperature rise above ambient temperature due to its own losses, which may be divided into a rise due to current produced (I2R) losses in the conductor, sheath and conduit T_{C} and the rise produced by its dielectric loss Thus:

$$
\begin{equation*}
\mathrm{T}_{\mathrm{C}}-\mathrm{T}_{\mathrm{a}}=\Delta \mathrm{T}_{\mathrm{C}}+\Delta \mathrm{T}_{\mathrm{d}} \quad \text { degrees Centigrade } \tag{1}
\end{equation*}
$$

Since the losses occur at several positions in the cable system, the heat flow in the thermal circuit will increase in steps. It is convenient to express all heat flows in terms of the loss per foot of conductor, and thus

$$
\begin{equation*}
\Delta T_{C}=W_{C}\left(\underline{R}_{i}+q_{s} \underline{R}_{s e}+q_{e} \underline{R}_{e}\right) \text { degrees } C \tag{2}
\end{equation*}
$$

Load Capability
From equation (1) it follows that:

$$
\begin{equation*}
I=\sqrt{\frac{T_{C}-\left(T_{a}+\Delta T_{d}\right)}{R_{d c}\left(1+Y_{C}\right) R_{C a}}} \quad \text { kiloamperes } \tag{9}
\end{equation*}
$$

Where the term $R_{\text {ca }}$ (thermal resistance from conductor surface to ambient) is composed of a number of variables, including:

1. Thermal resistance of the conductor insulation
2. Thermal resistance of the air between the conductor surface and the duct wall
3. Thermal resistance of the duct wall
4. Thermal resistance of the concrete surrounding the duct bank
5. Thermal resistance of the earth surrounding the duct bank
6. Conductor load factor; and
7. Effect of mutual heating due to proximity of other conductors.

For buried cable systems T_{a} should be taken as the ambient temperature at the depth of the "hottest" cable.

Equation 21 of reference 1 has been replaced with:
(F1) $\quad Y_{C S}=F_{s p}(x)$

Where $\mathrm{x}=\mathrm{R}_{\mathrm{dc}} / \mathrm{k}_{\mathrm{S}}$
and:
$F_{s p}(x)=\frac{11.0}{\left(x+\frac{4}{x}-\frac{2.56}{x^{2}}\right)^{2}}$
except where x has a value less than 7.2 , where:
$F_{s p}(x)=11.0(1-0.11 .02 / x)$

$$
\begin{equation*}
\left(x+\frac{4}{x}-\frac{2.56}{x^{2}}\right)^{2} \tag{F3}
\end{equation*}
$$

(3) For Aluminum : $R_{2}=R_{1}\left(228.1+T_{2}\right)$

$$
228.1+\mathrm{T}_{1}
$$

For Copper:

$$
R_{2}=R_{1} \frac{\left(234.5+T_{2}\right)}{234.5+T_{1}}
$$

(16) $W_{S}=I^{2} R_{d c} Y_{S}$ watts per conductor foot

PROGRAM ALGORITHMS
(22) $\quad x_{S}=0.875 \sqrt{\frac{f k_{S}}{R d c}} \quad \frac{6.80}{\sqrt{R d c / k_{S}}} \quad$ at 60 cycles
(21) \quad YCs $=F\left(x_{S}\right)$
(25) $\quad x_{p}=\frac{6.80}{\sqrt{R d c / k_{p}}} \quad$ at 60 cycles
(24) $\quad Y c p=F\left(x_{p}\right)\left(\frac{D C}{S}\right)^{2}\left[\frac{1.18}{F\left(x_{p}\right)+0.27}+0.312\left(\frac{D C}{S}\right)\right] 2$
(29a) $\quad X m=52.9 \log 2.3$ S/Dsm
(27) $\quad \mathrm{Ysc}=\frac{\mathrm{Rs} / \mathrm{Rdc}}{1+(\mathrm{Rs} / \mathrm{Xm})^{2}}$
(18) $\quad \mathrm{qs}=\frac{\mathrm{Wc}+\mathrm{Ws}}{\mathrm{Wc}}=1+\frac{\mathrm{Ys}}{1+\mathrm{Yc}}$
(36) $\quad W d=\frac{0.00276 E^{2} \varepsilon_{r} \cos \theta}{\log (2 T+D C) / D C}$ watts per conductor foot at 60 cycles
$R_{i}=0.012 f_{i} \quad \log D_{i} / D_{C} \quad$ Thermal ohm feet

PROGRAM ALGORITHMS

(41) $R_{S d}=\frac{n^{\prime} A}{1+(B+C T m) D_{s}^{\prime}}$
(40) $R=0.0104 n^{\prime}\left(\frac{t}{D-t}\right)$ thermal ohm feet
(44) $R_{e}=0.012 \not \mathcal{F e n}^{\prime}$

$$
\left[\log \frac{D_{x}}{D e}+(L F) \log \left(\frac{4 L}{D_{x}} x \quad F\right)\right]
$$

in thermal ohm feet
(44a) $R_{e}^{\prime}=0.012 f_{c}^{f} n^{\prime}\left[\log \frac{D_{x}}{D e}+(L F) \log \frac{4 L}{D x} x F\right]$

$$
+0.012\left(f_{e}-f_{c}\right) n^{\prime} N(L F) G_{b} \quad \text { thermal ohm feet }
$$

(8) $R_{c}^{\prime} a=R_{i}+q_{s} R_{s e}+q_{e} R e ̀ \quad t h e r m a l$ ohm feet
(28a) $X m=52.9 \log 2 S / D_{s m}$ microhms per foot at 60 cycles
(14) $\mathrm{R}_{\mathrm{ac}} / \mathrm{R}_{\mathrm{dc}}=1+Y \mathrm{Yc}+\mathrm{Ys}+\mathrm{Y}_{\mathrm{p}}$
(26) $\mathrm{W}_{\mathrm{S}}=\mathrm{I}^{2}$ Rda (Ysc + Yse) watts per conductor foot

* (30) $\mathrm{Y}_{\mathrm{se}}=\frac{3 \mathrm{Rs} / \mathrm{Rdc}}{\left(\frac{5.2 \mathrm{Rs}}{\mathrm{f}}\right)^{2}+\frac{1}{5}\left(\frac{2 \mathrm{~S}}{\mathrm{Dsm}}\right)}\left(\frac{\mathrm{Dsm}}{2 \mathrm{~s}}\right)^{2}\left[1+\frac{5}{12}\left(\frac{\mathrm{Dsm}}{2 \mathrm{~s}}\right)^{2}\right]$
* When the sheaths are short-circuited, the sheath eddy loss will be reduced and may be multiplied by $R_{S}{ }^{2} / R_{S}{ }^{2}+X_{m}{ }^{2}$

PROGRAM ALGORITHMS

$$
\begin{equation*}
(L F)=0.3(1 f)+0.7(1 f)^{2} \text { per unit } \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
T_{C}=W C\left(R_{i}+q_{s} R_{s e}+q_{e} R_{e}\right) \text { degrees Centigrade } \tag{2}
\end{equation*}
$$

(46) The factor F accounts for the mutual heating effect of the other cables of the cable system, and consists of the product of the ratios of the distance from the reference cable to the image of each of the other cables to the distance to that cable. Thus,
$F=\frac{d_{12}^{1}}{d_{12}} \quad x \frac{d_{13}^{1}}{d_{13}} \quad x--\frac{d_{1 N}^{1}}{d_{1 N}} \quad(N-1$ terms $)$

It will be noted that the value of F will vary depending upon which cable is selected as the reference, and the maximum conductor temperature will occur in the cable for which F is a maximum. N refers to the number of cables or pipes, and F is equal to unity when $\mathrm{N}=1$.

NOMENCLATURE


```
R_da= effective between conductor and ambient for
        dielectric loss
R int = of the interference effect
Rya= between a steam pipe abd ambient earth
```

```
= Electric resistivity - circular mil - ohms per foot
```

```
= Thermal resistivity - degrees Centigrade centimeters per watt
```

= distance in three-conductor cable between the effective
current center of the conductor and the axis of the cable -
inches
= Axial spacing between adjacent cables - inches
= Axial spacing between outside cables in a cradled configura-
tion - inches
t, T = Thickness (as indicated) - inches
$\mathrm{T}=$ Temperature - degrees Centigrade
$\mathrm{T}_{\mathrm{a}}=$ of ambient air or earth
$T_{C}=$ of conductor
$\mathrm{T}_{\mathrm{m}}=$ mean temperature of medium
= Temperature rise - degrees Centigrade
$\Delta T_{C}=$ of conductor due to current produced losses
$\Delta \mathrm{T}_{\mathrm{d}}=$ of conductor due to dielectric loss
$\Delta T_{i n t}=$ of a cable due to extraneous heat source
$=$ Losses developed in a cable - watts per conductor foot
$W_{C}=$ portion developed in the conductor
$W_{S}=$ portion developed in the sheath or shield
$W_{p}=$ portion developed in the pipe or conduit
$\mathrm{W}_{\mathrm{d}}=$ portion developed in the dielectric
$X_{m} \quad=$ Mutual reactance, conductor to sheath or shield in
microhms per foot
$Y \quad=$ The increment of $a-c / d-c$ ratio - per unit
$Y_{C}=$ due to losses originating in the conductor, having
components $Y_{C S}$ due to skin effect and $Y_{C p}$ due to
proximity effect
$Y_{S}=$ due to losses originating in the sheath or shield
having components $Y_{S C}$ due to circulating current
effect and $Y_{s a}$ due to eddy current effect
$Y_{p}=$ due to losses originating in the pipe or conduit
$Y_{a}=$ due to losses originating in the armor

AMPACITY PROBLEM

Cable:B.

```
750 kcmil Aluminum Compressed Class B Strand, rated 15kV, .025"
ESS, O.175" XLPE, .O5O" EIS, 15 x #10 AWG (1/3 neutral), .O8O"
encapsulating LDHMWPE jacket.
```


To Be Installed:

1. Triplexed in a duct (4 way bank in concrete)
2. One conductor per duct (6 way bank in concrete)
3. Triplexed direct buried
4. On 8" centers (flat) directly buried

Conditions:

Maximum Conductor Temperature	$90^{\circ} \mathrm{C}$
System Voltage	$13.2 / 7.6 \mathrm{kV}$
Earth Ambient Temperature	$20^{\circ} \mathrm{C}$
Duct	Fibre
Burial Depth	$36^{\prime \prime}$
Load Factor	75%

Cable and Duct Dimensions

Q.D. Conductor (Dc)
O.D. ESS
O.D. Insulation (Di)
O.D.EIS

Mean Neutral Diameter
O.D. Overall
O.D. Triplexed

5" I.D. Fibre Duct
$0.968^{\prime \prime}$
1.020
$1.400^{\prime \prime}$
$1.520^{\prime \prime}$
$1.620^{\prime \prime}$
$1.91^{\prime \prime}$
$4.12^{\prime \prime}$
0.25" wall

YEQ *RMP"

C?	. 2248	
		RUN
TH?		
	65.8009	RUN
B?		
	2.3000	RUN
A?		
	17.8800	RUJ
TR : DUCT?		
	480.0000	RUN
T?: DUCT		
	. 2500	RUN
O.D: DUCT?		
	5.5800	RUN
JKT? : Y/N?		
Y		RUN
TR?: JKT		
	450.0800	RUN
T?: JKT		
	. 8880	RUN
N ?		
	1.8000	RUN
RHO?		
	98.8009	RJJN
L?: DB		
	36.0000	RUN
LOSS F?		
	. 6190	RUN
TR?		
	85.8800	RUN
De?		
	5.8478	RUN
L?: DUCT		
	36.0000	RUN
N?		
	1.8080	RUN
Gb: TX: DT?		
	. 9900	RUN
F? SP:DB		
	82.8800	RUN
F? SP: DT		
	82.8080	RUN
N ?		
	3.8080	RUN
Gb? SP:DT		
	. 8480	RUN

Tis?		
	29.0909	RUN
I:TX:DB=	666	
I:TX:DT=	498	
I:SP:DB=	599	
I:SP:DT=	485	
M:BOND? Y/N?		
Y		RUN
I?		
	666	RIJN
TX: $3 / 5 \mathrm{P}: 8$?		
	3	RUN
$H_{C}=13.4976$		
WS?: W/FT		
	4.5808	RUN
$Q S=1.3393$		
Ta ?		
	29.0808	RUN
I:TX:DB=	6.35	
I:TX:DT=	474	
I : SP : DB=	599	
I:SP:DT=	538	
H:BOND? Y/N?		
Y		RUN
I?		
	498	RUN
TX: $3 / 5 \mathrm{P}: 8$?		
	3	RIJN
$H_{c}=7.5469$		
HS? : H/FT		
	4.5898	RUN
$Q S=1.6069$		
Ta?		
	20.8980	RUN
I:TX:DB=	586	
I:TX:DT=	435	
I:SP:DB=	599	
I:SP:DT=	522	
M:BOND? Y/N?		
Y		RIJN
I?		
	599	RUN
TX: $3 / \mathrm{SP}: 8$?		
	θ	RIJN
$H_{c}=10.7823$		
US?: W/FT		
	18.9100	RUN
$Q S=2.0118$		
Ta?		
	28.8000	RUN
$I: T X: D B=586$		
$I: T X: D T=435$		
$I: S P: D B=584$		
$I: S P: D T=487$		
M: BDND? Y/N?		

USER INSTRUCTIONS

INPUT
DISPLAY

1. Connect printer if a hardcopy is desired. R/S after each display if no printer is attached.
2. Set printer switch to manual or normal mode.
3. Load program "SV" if shield losses by configuration is desired. Record values for input to ampacity program.
4. Load programs "AMP" "VW"
5. Check status
6. Initialize: XEQ "AMP"
7. Enter D-C resistance of Rde Rdc? 25C conductor in ohms per 1000 feet at 25 C
8. Enter type metal of conductor

Aluminum $=1$
Copper $=0$
9. Enter operating temperature of conductor in degrees C.
10. Display Rdc in microhms per foot at temperature T2.
11. Enter $k s$ value from Table II

Ks KS?
12. Display losses due to skin effect component
13. Enter kp value from Table II
$K p$
$K P ?$
14. Enter O.D. of conductor, inches Dc Dc?

STEP INSTRUCTIONS	INPUT	DISPLAY
15. Enter axial spacing between adjacent cables - inches	s	S?
16. Display increment of a-c/d-c ratio per unit due to losses orginating in the conductor having components Ycs and Ycp for spaced cables	-	Yc: SP=
17. Enter spacing for triplexed cables, inches	SP	SP? : TX:
18. Display increment of $a-c / d-c$ ratio per unit due to losses orginating in the conductor having components Yes and Ycp for triplexed cables	-	Yc:TX=
19. Enter d-c resistance for metallic shield component in microhms per foot at 20 C	RS	RS?
20. Enter mean diameter of sheath or shield, inches	DSM	DSM?
21. Display mutual reactance between conductor and shield or sheath in microhms per foot at 60 cycles for spaced cable configuration.	-	$X M=$
22. Select circuit operation for spaced cables Open circuit $=1$ Short circuit $=0$	10 O	O.C:1/S.C:O
23. Display losses originating in sheath or shield, having components YSC and YSE, for spaced cables.	-	$Y S=$

STEP INSTRUCTIONS	INPUT	DISPLAY
		TRPX:
24. Display mutual reactance between conductor and shield or sheath in microhms per foot at 60 cycles for triplexed cables.	-	$X M=$
25. Select circuit operation for triplexed cables	1 oro	O.C: $1 /$ S.C: 0
Open circuit $=1$ Short circuit $=0$		
26. Display losses originating in sheath or shield, having components YSC and YSE, for triplexed cables.	-	$Y S=$
27. Display ratio of the sum of the losses in the conductors and sheaths to the losses in the conductors for spaced cables.	-	QS: SP=
28. Display QS for triplexed cables	-	QS: $T X=$
29. Enter phase to neutral voltage in kilovolts.	Vg	VG?
30. Enter dielectric constant (SIC)	e	e?
31. Enter dissipation factor in decimal form	DF	DF?
32. Enter insulation thickness in inches	T	T: INSL?
33. Display Dielectric loss in watts per conductor foot at 60 cycles	-	$\omega D=$

STEP INSTRUCTIONS	INPUT	DISPLAY
34. Enter thermal resistivity of insulation	TR	TR: INSL?
35. Enter diameter over insulation, inches	Di	O.D.INSL?
36. Enter constant C from table V	C	C?
37. Enter mean temperature of medium degrees C	TM	TM?
38. Enter constant B from table V	B	B?
39. Enter constant A from table V	A	A ?
40. Enter thermal resistivity for duct in Cem/watt. Table IV	TR	TR: DUCT?
41. Enter thickness of duct wall in inches	T	T: DUCT?
42. Enter O.D. of duct, inches	O.D	O.D:DUCT?
43. Does cable have an overall outer jacket?	Y or N	JKT? Y/N?
$\begin{aligned} & Y=Y e s \\ & N=N o \end{aligned}$		
44. If yes, enter thermal resistivity of jacket material, if no proceed to step 47	TR	TR?: JKT
45. Enter thickness of jacket in inches.	T	T?: JKT
46. Enter number of cables or cable groups in a system	N	N ?

STEP INSTRUCTIONS	INPUT	DISPLAY
47. Enter thermal resistivity of earth	RHO	RHO?
48. Enter depth of reference cable below earth's surface for direct buried cable in inches	L	L? DB
49. Enter Loss factor per unit	LF	LOSS F?
Load Factor Loss Factor		
$\begin{array}{ll}50 \% & 0.325 \\ 75 \% & 0.619\end{array}$		
$\begin{array}{ll}100 \% & 1.000\end{array}$		
50. Enter thermal resistivity of concrete or other duct surrounding medium	TR	TR?
51. Enter De, Diameter at start of the earth portion of the thermal circuit in inches, for cable in duct	De	De?
52. Enter Depth of reference cable below earth's surface in inches for cable in duct.	L	L? DUCT
53. Enter number of cables of cable groups in duct system	N	N ?
54. Enter geometric factor applying to duct bank for triplexed cable	Gb	Gb:TX:DT?
55. Enter F, Fint, product of ratios of distance for spaced cables directly buried.	F	F? SP: DB?
56. Enter F, Fint, product of ratios of distance for spaced cable in duct	F	F? SP:DT

STEP

INSTRUCTIONS

57. Enter number of cables or cable groups in a system
58. Enter Geometric factor applying to duct bank for spaced cables in duct
59. Enter temperature of ambient air or earth in degrees C

[TRIPLEXED]

60. Display conductor current in amperes for triplexed direct buried cable
61. Display conductor current in amperes for triplexed cable in duct
[SPACED]
62. Display conductor current in amperes for spaced cables direct bury
63. Display conductor current in
amperes for triplexed cables
in duct
64. Is system grounded or bonded at multiple points?
$Y=Y e s$
$N=N o$
65. If Yes. enter conductor current in amperes, if no proceed to step 70 .
66. Which group; triplexed or spaced?
$3=\operatorname{Triplexed}$
$0=$ Spaced
67. Display losses developed in conductor - watts per conductor foot
68. Enter losses developed in sheath or shield (from program "SV") in watts per foot
69. Display Qs
70. Re-enter or enter new ambient temperature in degrees C
71. Ampacities are displayed, see step 60.

Cable System Ampacities

```
01*LEL "AMP Intialize
*
    02 FIX 4
    05 0
    06 ST0 31
    07 STO 32
    08 "Rdc? 25 Enter Rdc
C
    09 PROMPT
    10 STO 00
    11 "AL:1 <C
1|:0.
    12 PROMPT
    13 X=0?
    14 GTO 14 Aluminum
    15 "T2?"
    16 PROMPT
    17 STO 33
    18 228.1
    19+
20 253.1
21 GTO 15
22*LBL 14
23 "T2?"
24 PROMPT Eopper
25 STO 33 (3)
26 234.5
27 +
28 259.5
29*LBL 15
30
31 RCL 00
32*
33 1 E3
34 *
35 "Rdc:T2= Rdc at operating
:*
36 XEQ "VW."
37 STO 00
38 "KS?"
39 PROMPT Enter ks
4 0
41 XEQ "F1"
4 2 ~ S T O ~ 0 1 ~
43 "YCS=*
4 4 \text { XEQ "VW"}
45 RCL 00
46 "KP?"
47 PROMPT Enter kp
4 8
49 XEQ "F1"
50 STO 01
```

51	" $\mathrm{Dc} \mathrm{c}^{\text {? }}$	(25)
52	PROMPT	
53	STO 02	
54	"S?	
55	PROMPT	
56	STO 03	
57	STO 04	
58	XEQ "YCP	(24)
59	STO 14	
60	"Yc: SP= ${ }^{\text {Y }}$	
61	XEQ "VW"	
62	-SP? : TX	
-		
63	PROMPT	
64	STO 03	
65	XEQ - YCP	(24)
66	STO 15	
67	"Yc: TX= ${ }^{\text {Y }}$	
68	XEQ "VW"	
69	"RS? ${ }^{\text {P }}$	
70	PROMPT	
71	STO 07	(29a)
72	RCL 04	
73	"DSM?"	
74	PROMPT	
75	STO 06	
76	-	
77	2.3	
78	*	
79	LOG	
80	52.9	
81	*	
82	STO 09	
83	XEQ "'SC	(27)
-		
84	RCL 03	
85	RCL 06	
36	-	
87	2	
88	*	
89	LOG	
90	52.9	
91	*	
92	STO 09	
93	SF 03	
94	RCL 04	(28a)
95	STO 08	
96	RCL 03	
97	STO 04	
98	XEQ - TPX	
"		
99	XEQ -YSC	
-		
100	RCL 16	

151
152 LOG
153 *
154 STO 20
155 "C?"
156 PROMPT
157 . TM?
158 PROMPT
159 *
160 "B?
161 PROMPT
$162+$
163 STO 10
164 RCL 03
165 *
1661
$167+$
168 "A?
169 PROMPT
170 STO 11
$171 X<>Y$
172
173 STO 21
174 RCL 03
1752.155

176 *
177 RCL 10
178 *
1791
$180+$
181 RCL 11
1823
183 *
$184 X<>Y$
185
186 STO 22
187 "TR:DUCT
?
188 PROMPT
189 . 0104
190 *
191 "T?: DUCT
192 PROMPT
193 STO 12
194 -0.D: DU
СТ?
195 PROMPT
196 RCL 12
197 -
198 /
199 *
200 STO 23
(41)

201	3
202	*
203	ST0 24
204	- ${ }^{\prime}$ '
205	ASTO r
206	"JKT?
Y/N?	.
207	AVIEW
208	AOH
209	STOP
210	AOFF
211	ASTO x
212	$x=y ?$
213	GTO 03
214	GTD 04
$215 *$	LBL 03
216	"TR?: JK
T ${ }^{\text {• }}$	
217	PROMPT
218	-0104
219	*
220	"T?: لKT
-	
221	PROMPT
222	STO 12
223	RCL 03
224	RCL 12
225	-
226	γ
227	*
228	ST0 31
229	"以?
230	PRDMPT
231	*
232	ST0 32
$233+$	LBL 04
234	"RHO? ${ }^{\text {P }}$
235	PROMPT
236	ST0 05
237	3
238	*
239	- 012
240	*
241	8.3
242	RCL 03
243	2.155
244	*
245	γ
246	LOG
247	"L?: DB'"
248	PROMPT
249	STO 27
250	4

(40)
(40)

221 PROMPT
222 STO 12
223 RCL 03
224 RCL 12
225 -
26
228 STO 31
229 "N?.
230 PROMPT
231 *
232 ST0 32
233 *LBL 04
234 "RHO?"
235 PROMPT
236 STO 05
3
239.012

240 *
2418.3

242 RCL 03
2432.155

244 *
245
247 "L?: DB"
248 PROMPT
2504

$\begin{aligned} & 251 \\ & 252 \end{aligned}$	8.3	
253	,	
254	LOG	(44)
255	"Loss F?	
.		
256	PROMPT	
257	STO 10	
258	*	
259	+	
260	*	
261	RCL 32	
262	+	
263	STO 25	
264	"TR? ${ }^{\text {P }}$	
265	PROMPT	
266	STO 13	
267	3	
268	*	
269	. 012	
270	*	
271	STO 12	
272	8.3	
273	"De? ${ }^{\text {P }}$	
274	PROMPT	
275	STO 28	
276	-	
277	LOG	
278	"L?: DUC	
T*		
279	PROMPT	
280	STO 09	
281	4	
282	*	
283	8.3	
284	/	
285	LOG	
286	RCL 10	
287	*	
288	+	
289	RCL 12	
290	*	
291	STO 12	
292	RCL 05	
293	RCL 13	
294	-	
295	3	
296	*	
297	. 012	
298	*	
299	RCL 10	
300		

256 PROMPT
257 STO 10
258 *
259 +
260 *
261 RCL 32
$262+$
263 STO 25
264 TR?
265 PROMPT

269-012
271 STO 12
2728.3

273 De?
PROMP
27S STO 28
277 LOG
278 "L?: DUC
T.
279 PROMPT
STO 09
2814
283
284
285 LOG
286 RCL 10
287 *
288 +
289 RCL 12
291 STO 12
292 RCL 05
293 RCL 13
294 -
2953
296 *
298 *
300 *

301 302	$\begin{aligned} & " N ? " \\ & \text { PROMPT } \end{aligned}$	
30.3	*	
304	-Gb:TX:	
T?		
305	PROMPT	(44a)
306	*	
307	RCL 12	
308	+	
309	RCL 32	
310	+	
311	ST0 26	
312	RCL 05	
313	-012	
314	*	
315	ST0 06	
316	8.3	
317	RCL 03	
318	<	
319	LOG	
320	RCL 27	
321	4	
322	*	Enter
323	8.3	
324	/	
325	"F? SP: D	(46)
B ${ }^{\text {- }}$		
326	PROMPT	
327	*	
328	LOG	
329	RCL 10	
330	*	
331	+	
332	RCL 06	
333	*	
334	RCL 31	
335	+	
336	STO 29	
337	RCL 13	
338	. 012	(44)
339	*	
340	ST0 08	
341	8.3	
342	RCL 28	
343	\checkmark	
344	LOG	
345	RCL 09	
346	4	
347	*	
348	8.3	
349	\checkmark	
350	"F? SP:	
T ${ }^{\text {• }}$		

351	PROMPT
352	*
353	LOG
354	RCL 10
355	STO 06
356	*
357	+
358	RCL 08
359	*
360	STO 08
361	RCL 05
362	RCL 13
363	-
364	. 012
365	*
366	RCL 06
367	*
368	"N?"
369	PROMPT
370	*
371	-Gb? SP
DT ${ }^{\text {- }}$	
372	PROMPT
373	*
374	RCL 08
375	+
376	LBL 05
377	CF 03
378	RCL 31
379	+
380	STO 30
381	RCL 18
382	RCL 25
383	*
384	RCL 20
385	+
386	STO 01
387	RCL 26
388	RCL 24
389	+
390	RCL 22
391	+
392	RCL 18
393	*
394	RCL 20
395	+
396	STO 02
397	RCL 20
398	2
399	/
400	RCL 25

401	+ RCL	19
403	*	
404	STO	03
405	RCL	26
406	RCL	24
407	+	
408	RCL	22
409	+	
410	RCL	20
411	2	
412	\checkmark	
413	+	
414	RCL	19
415	*	
416	ST0	04
417	RCL	29
418	RCL	17
419	*	
420	RCL	20
421	+	
422	STD	05
423	RCL	30
424	RCL	23
425	+	
426	RCL	21
427	+	
428	RCL	17
429	*	
430	RCL	20
431	+	
432	ST0	06
433	RCL	29
434	RCL	20
435	2	
436	/	
437	+	
438	RCL	19
439	*	
440	ST0	07
441	RCL	30
442	RCL	23
443	+	
444	RCL	21
445	+	
446	RCL	20
447	2	
448	7	
449	+	
450	RCL	19
451	*	
452	$5 T 0$	08
453	LBL	02
454	RCL	33
455	ST0	09

$401+$
402 RCL 19
404 STO 03
405 RCL 26
406 RCL 24
407 +
408 RCL 22
$409+$
410 RCL 20
4112
412
414 RCL 19
415 *
416 STO 04
417 RCL 29
418 RCL 17
419 *
420 RCL 20
421 +
422 STO 05
424 RCL 23
425 +
426 RCL 21
427 +
428 RCL 17
429 *
430 RCL 20
431 +
432 STO 06
433 RCL 29
434 RCL 20
4352
436 ,
437 +
438 RCL 19
4.39 * 407
441 RCL 30
442 RCL 23
443 +
444 RCL 21
445 +
4472
448 ,
$449+$
450 RCL8
453 * LBL 02
4.54 RCL 33
(8)
(8)
4.56 "Ta?"
457 PROMPT
458 STO 10
459 FIX 0
460 RCL 09
461 RCL 10
462 RCL 03
463 +
464 -
465 RCL 00
466 RCL 15
4671
468 +
469 *
470 RCL 01
471 *
472
473 SQRT
4741 E3
475 *
476 "I : TX: DB
="
477 XEQ "VW"
478 RCL 09
479 RCL 10
480 RCL 04
481 +
482 -
483 RCL 00
484 RCL 15
4851
486 +
487 *
488 RCL 02
489 *
490
491 SQRT
4921 E3
493 *
494 - I : TX : DT
= "
495 XEQ "VW"
496 RCL 09
497 RCL 10
498 RCL 07
499 +
500 -
501 RCL 00
502 RCL 14
5031
504 +
505 *
(9)

506	RCL 05
507	＊
508	／
509	SQRT
510	1 E3
511	＊
512	＂I ：SP ：DB
－	
513	XEQ ${ }^{\text {VW }}$
514	RCL 09
515	RCL 10
516	RCL 08
517	＋
518	－
519	RCL 00
520	RCL 14
521	1
522	＋
523	＊
524	RCL 06
525	＊
526	7
527	SQRT
528	1 E3
529	＊
530	＂I ：SP ：DT
＝${ }^{\text {－}}$	
531	XEQ－WW＂
532	${ }^{*}{ }^{\prime} \cdot$
533	ASTO＇${ }^{\prime}$
534	＂M ：BOHD？
＇r＇r	＂
535	AVIEW
536	AON
537	STOP
538	AOFF
539	ASTO x
540	$x=\gamma^{\prime} ?$
541	GT0 06
542	GTO 02
543	LBL 06
544	＂I？${ }^{\text {－}}$
545	PROMPT
546	1 E3
547	／
548	ぶ2
549	STO 12
550	$\cdots \mathrm{TX}: 3-5$
P：0？	
551	PROMPT
552	$x=0 ?$
553	GT0 07
554	SF 03
555	RCL 15

506 RCL 05
507 *
508
509 SQRT
5101 E3
$512 \quad \cdot I: S P: D B$
=
513 XEQ "VW."
514 RCL 09
515 RCL 10
516 RCL 08
$517+$
518 -
519 RCL 14
5211
$522+$
523 *
524 RCL 06
525 *
526
527 SQRT
5281 E3
529 *
530 "I : SP: DT
=
531 XEQ "VW"
532 "Y"
533 ASTO '
534 "M: BOND?
Y/N?
536 AON
537 STOP
538 ADFF
539 AST0 x
540 X='?
541 GTO 06
542 GTO 02
$543+L B L 06$
544 "I?
545 PROMPT
5461 E3
547
548 ぶ2
549 STO 12
550 "TX:3 $\quad \mathrm{S}$
P: 0?
551 PROMPT
ห=0?
554 SF 03
555 RCL 15

）

$\begin{aligned} & 606 \\ & 607 \end{aligned}$	$\stackrel{+}{\text { RCL }}$	
608	＊	
699	RCL	
610	＋	
611	RTN	
612	LBL	－YSC
．		
613	RCL	
614	＂$\times 1 \mathrm{M}=$	
615	XEQ	＂VW＂
616	RCL	07
617	$x<>\gamma$	
618	－	
619	メ个2	
620	1	
621	＋	
622	RCL	07
623	RCL	00
624	／	
625	$X<>\gamma$	
626	－	
627	STO	11
628	RCL	07
629	RCL	00
630	－	
631	3	
632	＊	
633	5.2	
634	RCL	07
635	＊	
636	60	
637	－	
638	入个2	
639	RCL	04
640	2	
641	＊	
642	RCL	06
643	－	
644	． 2	
645	＊	
646	＋	
647	－	
648	STO	12
649	RCL	06
650	RCL	04

613 RCL 09
614 ＂$\times \mathrm{M}=$
616 RCL 07
$617 X<>Y$
618
619 メ个2
6201
621 ＋
RCL 0 ？

625 X＜$>\gamma$
626
627 STO 11
628 RCL 07
629 RCL 00
6.30

6313
6335.2

634 RCL 07
635 ＊
63660
637
638 メ个2
639 RCL 04
6402
641
RCL 06
643 ／
644.2

645 ＊
646 ＋
647
648 STO 12
65 RCL 04

6512
652 ＊
653
654 久个2
655 ST0 05
656 － 4166667
657 ＊
6581
659 ＋
660 RCL 12
661 ＊
662 RCL 05
663 ＊
664 STO 13
665 ＂O．C：1 S．C： 0
666 PROMPT
$667 x=0$ ？
668 GTO 12
669 LRL 13
670 RCL 11
671 RCL 13
$672+$
673 ＂YS＝＂
674 XEQ ．VW＂
675 FS？ 01
676 GTO 00
677 STO 16
678 ＊LBL 01
679 SF 01
680 RTN
681 LBL 00
682 STO 01
683 GTO 01
684 LRL＂F1＂
685 STO 02
686 7． 2
687 X＞Y？
688 GTO＂F3＂
68911
690 ENTERT
6914
692 RCL 02
693 ，
694 RCL 02
695 ＋
6962.56

697 RCL 02
698 X个2
699
$700-$
701 ×个2
702 ，
703 RTN

INDUCED SHIELD VOLTAGES AND LOSSES

Robert W. Parkin

FUNCTION: Program calculates the induced shield voltages and shield losses for single conductor cables in six arrangements: single phase, equilateral, flat, rectangular, and two circuit. This program can be used in conjunction with the ampacity program to determine the input value for shield losses.

ACCESSORIES: HP-41 CX or HP-41CV, printer optional

OPERATING LIMITS AND WARNINGS: program assumes that the cables are carrying balanced currents. Formulas neglect proximity loss, but are accurate enough for practical purposes.

For cables installed three per conduit use arrangement I I (equilateral). The spacing S in this case will be equal to the outside diameter of the cable increased by 20 percent to allow for random spacing in the conduit.

REFERENCES:

[1] Underground Systems Reference Book, Edison Electric Institute [2] ICEA S-66-524 NEMA Pub. No. WC-7
[3] ICEA Ampacities Including Effect of Shield Losses for Single Conductor Solid Dielectric Power Cables P-53-426 NEMA Pub. No 50-1976
[4] Essex Underground Cable Engineering Handbook, Cablec Corp

GROUNDING OF POWER CABLE SHIELDS

The purpose of the shielding system on a power cable is to provide a fixed, known path to ground for the cable charging or displacement current. To perform that function the shield must be solidly grounded. Where conductors are individually shielded each conductor must have its shield grounded. Where grounding conductors are part of a cable assembly, they must be connected with the shielding at both ends of the cable.

For safe and effective operation, the shielding should be grounded at each end of the cable and at each splice. For short lengths or where special bonding arrangements are used, grounding at one point only may be satisfactory.

All grounding connections should be made to the cable shield in such a way as to provide a permanent low resistance bond. Soldering the connection to the cable shield is usually preferable to a mechanical clamp, as there is less danger of a poor connection, loosening, or injury to the cable. The area of contact should be ample to prevent the current from heating the connection and melting the solder.

For additional security, a mechanical device, such as a nut or bolt, may be used to fasten the ends of the connection together. This combination of a soldered and mechanical connection provides permanent low resistance which will maintain contact even though the solder melts.

The wire or strap used to connect the cable shield ground connection to the permanent ground must be of ample size to carry fault currents.

If there is an insulating jacket over the shield and if, because of an accident or corrosion, the shield ground connection is broken, the voltage between that shield and ground can approach the conductor to ground voltage that is on the insulated conductor. This one good reason for multi-point shield ground. Installations of shielded single conductor cables must be studied to determine the best method of grounding. This is necessary as voltage is induced in the shield of a single conductor cable carrying alternating current due to mutual inductance between its shield and any other conductors in its vicinity. This induced voltage can result in two conditions.

1. Single Point Grounding

The current in the conductor induces a voltage along the shield. The amount of induced voltage depends on many factors, including cable geometry, cable spacing, conductor current, and frequency. Some systems are designed with a particular maximum value of shield voltage in mind. Values are selected for safety and sometimes to reduce the possibility of corrosion due to $a-c$ electrolysis. As distance increases from the grounded point, so does the voltage of the shield. These values are displayed in the program. The usual safe potential is about 25 volts for cables having non-metallic coverings over the sheath.

2. Multiple Point Grounding

When the cable shields are bonded and grounded at multiple points, the shield to ground voltages are essentially eliminated. However, the longitudinal voltage induced along the shield by the conductor current causes a current to flow in the shield which results in additional heating known as shield losses. The additional heating caused by shield losses may require a derating of the cable ampacity. The amount of derating depends on many factors, including cable size, cable separation, and frequency. The shield resistance is a major factor affecting the shield losses. If the shield loss exceeds 5 percent of the copper loss, the current carrying capacity should be reduced.

If operating conditions permit, it is desirable to bond and ground cable shields at more than one point, to improve the reliability and safety of the circuit. This decreases the reactance to fault currents and increases the human safety factor.

General recommendations may be made to operate single conductor cables (a-c) with multisheath grounds, however variations in insulation wall thickness, conductivity of sheath, spacing of conductors and the current being carried all affect these recommendations.

1. Shielded cables installed with all three phases in the same duct.
2. Cables of any size may be installed with multi-shield grounds, provided allowance is made for heating due to currents induced in the shield. Cables carrying direct current may always be solidly grounded at more than one point, except where insulating joints are required to isolate earth currents or to permit cathodic protection.
3. Shielded cables up to and including 250 MCM with phases in separate ducts. Cables in a-c circuits should not be installed with each phase in separate magnetic conduits due to the high inductance under such conditions. Cables in a-c circuits should not be installed with each phase in separate metallic nonmagnetic conduit when their size exceeds \#4/0 AWG unless the conduit is insulated to prevent circulating currents.

The table below gives the formulas for calculating the induced voltage and shield loss that the program is based.

Note: Where double sign, $+/-$ is shown, use the upper sign for lagging and lower one for leading power factor.

FORMULAS FOR CALCULATING SHIELD VOLTAGES-CURRENTS AND LOSSES FOR SINGLE-CONDUCTOR CABLES

Cable Arrangement	$\begin{gathered} 1 \\ \text { One phase } \end{gathered}$	II Equilateral	$\begin{gathered} \text { III } \\ \text { Rectangular } \end{gathered}$	$\begin{aligned} & \text { IV } \\ & \text { Flat } \end{aligned}$	V Two circuit	VI Two circuit
Number and Diagram	$1-s-1$	$\stackrel{(8)}{1+s \rightarrow 1}$		$\mathrm{F}_{\mathrm{A}} \mathrm{~s}+\mathrm{s}-\mathrm{C}$		

INDUCED SHIELD VOLTAGE-SHIELDS OPEN CIRCUITED
MICRO VOLTS TO NEUTRAL PER FT.
(MULTIPLY BY 10^{6} TO OBTAIN VOLTS PER FT.)

To facilitate calculating the shield resistance, the following formulas may be used:
$X_{M}=2 \pi f\left(0.1404 \log _{10} \frac{S}{r_{m}}\right.$ micro-ohms per ft .
$A=2 \pi f\left(0.1404 \log _{10} 2\right)$ micro-ohms per ft.
$B=2 \pi f\left(0.1404 \log _{n} 5\right)$ micro-ohms per ft .
$\mathrm{R}_{\mathrm{s}}=\frac{\rho}{8 \mathrm{r}_{\mathrm{m}} \mathrm{t}}$ micro-ohms per ft .
$\mathrm{R}_{\mathrm{s}}=$ resistance of shield (micro-ohms per ft .)
$t=$ thickness of metal tapes used for shielding (inches)
$\mathrm{f}=$ frequency (60 cycles)
$\mathbf{S}=$ spacing between center of cables (inches)
$\mathrm{r}_{\mathrm{m}}=$ mean radius of shield (inches)
$\mathrm{I}=$ conductor current (amperes)
for 60 cycles
$\mathrm{X}_{\mathrm{M}}=52.92 \log _{10} \frac{\mathrm{~S}}{\mathrm{r}_{\mathrm{m}}}$ micro-ohms per ft.
$A=15.93$ micro-ohms per ft.
$B=36.99$ micro-ohms per ft .
$\rho=$ apparent resistivity of shield in ohms/cir mil ft. at operating temperature (assumed 50 degrees C.). This includes allowance for the spiraling of the tapes or wires.
Typical Values of ρ
Overlapped tinned copper tape
.30 ohms/cir mil ft.
Lead sheath ... 150 ohms/cir mil ft. Aluminum sheath ... 20 ohms/cir mil ft.

USER INSTRUCTIONS

1. Connect printer if a hardcopy is desired. R/S after each display if no printer is attached.
2. Set printer switch to manual or normal mode.
3. Load programs "SV","VW"
4. Check status
5. Initialize: XEQ "SV"
6. Enter frequency in hertz
7. Enter spacing between center of cable, inches
8. Enter mean radius of shield, inches HZ
s
rm
RM ?
9. Display mutual reactance in microohms per foot
10. Enter ampacity of cable, amperes
amps
AMPS ?
11. Select cable arrangement:

Label
Arrangement
A One Phase
B Equilateral
C Rectangular
D Flat Spacing
E Two Circuit
Two Circuit
[XEQ "A" One Phase]
12. Display Induced Shield Voltage for cable A and B in micro-volts to neutral/foot

STEP
INSTRUCTIONS
13. Enter shield resistance in micro-
ohms/foot
14. Display shield loss in watts/foot
15. Total shield loss in watts/foot
[XEQ "B" Equilateral]
12. Shield voltage for cable A and C
13. Shield voltage for cable B
14. Enter shield resistance
15. Shield loss watts/foot
16. Total shield loss
[XEQ "C", "D", or "E" Rectangular,
Flat Spacing and Two Circuit]
12. Enter shield resistance
13. Shield voltage for cables $A+C$
14. Shield Voltage for Cable B
15. Shield loss for cables A and C (with upper sign for lagging power factor)
16. Shield loss for cables A and C (with lower sign for leading power factor)
17. Shield loss for cable B
18. Total shield loss

INPUT

RS
-
$T L=$
RS ?
$S L=$

D ISPLAY

RS ?

XEQ ${ }^{-S V}$

SELECT A-E
XEQ A
$S \psi: A+B=25580.2$ 841
RS?
71.0600 RUN
$S L=6.0664$
$T L=12.1328$

XEQ -sy"

XER -SU-
HZ?
s?
RH? DSH?
$X H=56.4731$ AMPS?

$\text { SELECT }{ }^{50-E}$	

RS?
71.8890 RIJN
$54: A+C=40489.0$
110
$54: B=32219.07$
44
$\mathrm{SL}: A+C=8.1567$
SL:A+C= 3.3699
$\mathrm{SL}: \mathrm{B}=6.7501$
$T L=26.6612$

XEQ -Sy-		XEQ -SU*		
HZ?		HZ?		
60.9808	RUN		60.0000	RUN
S?		S?		
1.9000	RUN		9.4500	RUN
RH? DSM?		RH? DSH?		
1.6280	RIJN		1.6200	RUN
$x_{H}=19.5982$		$\mathrm{XH}=56.4731$		
AMPS?		AMPS?		
500.8808	RUN		500.0800	RUN
SELECT A-E		SELECT A-E		
XEQ B		XEQ D		
S4:A+C= 9799.09		RS?		
82			71.8000	RUN
$\mathrm{Sy}: \mathrm{B}=9799.098$		S4:A+C= 32949.1		
2		984		
RS?		$54: 8=28236.57$		
71.88009	RUN	44		
$S L=1.2567$		SL:A+C= 7.2128		
$T L=3.7700$		SL:A+C= 3.2081		
		$\mathrm{SL}: \mathrm{B}=6$. 0668	
		$T L=22$. 6732	

Inciuced Shield Voltages and Shield Losses

01*LBL "Sv"		Enter Frequency in Hertz
02	"HZ? ${ }^{\text {P }}$	
03	PROMPT	f/60
04	60	
0.5	-	
06	ST0 90	$A=2 \pi \mathrm{f}\left(0.1404 \log _{10} 2\right)$ Micro-Ohms per Foot
07	15.93	
08	*	
99	STO 04	Enter Spacing Between Center of Cables, Inches
10	" 5 ? ${ }^{\text {. }}$	
11	PROMPT	
12	2	Enter Mean Radius of Shield, Inches
13	*	
14	-RM? DSM	
\cdots		$X m=2 \pi f\left(0.1404 \log _{10} \frac{2 \mathrm{~S}}{\mathrm{rm}}\right)$, Micro-Ohms per Foot
16		
17	LOG	
18	. 1404	
19	*	Display Xm
20	376.992	
21	*	Enter Ampacity of Cable
22	RCL 00	
23	*	
24	STO 01	
25	" $\times 1 \mathrm{M}=\cdots$	
26	XEQ "VW*	Select Cable Arrangement
27	"RMPS?	
28	PROMPT	
29	STO 02	One Phase (B) (A)
30	SF 27	
31	- SELECT	
A-E.		IXm
32	PROMPT	
33*	LBL ${ }^{\text {a }}$	
34	RCL 01	
35	RCL 02	for Cables A and B in Micro Volts to Neutral Per Foot
36	*	
37	- SV: $\mathrm{A}+\mathrm{B}=$	
"		Total Shield Loss-Shields Solidly Bonded
38	XEQ "VW"	in Watts per Foot
39	XEQ "TL"	Equilateral (E) (C) $\quad 2 I^{2} \mathrm{Rs} \frac{\mathrm{Xm}^{2}}{\mathrm{Rs}^{2}+\mathrm{Xm}^{2}}$
49	2	
42	"TL= ${ }^{\text {c }}$	
43	XEQ "VW"	Shield Voltage Cables A + C
44	STOP	
45	LBL B	
46	RCL 01	
47	RCL 02	
48	*	
49	-SV: $\mathrm{A}+\mathrm{C}=$	
50	XEQ "YW"	Total Shield Loss $3 \mathrm{I}^{2} \mathrm{Rs} \quad \frac{\mathrm{Xm}^{2}}{}{ }^{2}$
51	XEQ .IX.	$\mathrm{Rs}^{2}+\mathrm{Xm}^{2}$
52	XEQ "TL"	
53	3	
54	*	
55	" TL= ${ }^{\text {c }}$	


```
174 SQRT
175 RCL 02
1762
177 <
178 * Find Shield Loss-Shields Solidly Bonded
179 -SV:A+C=
*
180 XEQ "VW.
181 RTN ..BC.
183 RCL 05
184 RCL 06
185 -
186 3.4641
187 *
1884
189 +
190 STO 12
191 RCL 05
192 X个2
193 RCL 06
194 XT2
1953
196*
197 +
198 STO 07
199 RCL 06
200 从个2
201 1
202 +
203 RCL 05
204 メナ2
205 1
206 +
207 *
208 STO 08
2094
210*
211 STO 13
212 RCL 07
213 RCL 12
214+
215 XEQ "LL"
216 RCL 07
217 RCL 12
218
219 XEQ "LL"
220 RCL 06
221 犬个2
222 1
223 +
224 1/x
225 RCL 03
226 *
227 RCL 02
228 ※个2
229 *
230 1 E6
```

```
231
232 "SL:B=*
233 XEQ "VW"
234 RCL 05
235 x个2
236 RCL 06
237 从12
238 +
239 2
240 +
241 RCL 08
242 2
243 *
244
245 RCL 03 Display Total Loss in Watts per Foot
247 RCL 02
248 X个2
249 *
250 3
251 *
252 1 E6
253
254 "TL="
255 XEQ "VW"
256 RTN
257*LBL "IX"
258 RCL 01
259 RCL 02
260 *
261 "SV:B=" Display Routine for SL : A + C
262 XEQ "VW"
263 RTN
264*LBL "LL"
265 RCL 13
266
267 RCL 03
268 *
269 RCL 02
270 从个2
271 *
END
272 1 E6
273
274 -SL:A+C=
"
275 XEQ "VW"
276 RTN
2ア7 END
```

STEP/KEY CODE

CABLE EMERGENCY OVERLOAD CAPABILITIES
 Robert W. Parkin

FUNCTION: This program determines the current-temperature-time relationship of a cable when operated under overload-emergency conditions. Four separate program modules can be called:

PROGRAM

FUNCTION

Temperature r ise during time t (deg C)
Total temperature rise

Maximum permissible time overload
Cable overload current rating

ACCESSORIES: HP-41 CX or HP-41CV, printer optional

OPERATING LIMITS AND WARNINGS: None

REFERENCES:

[1] Essex Underground Cable Handbook, 1971
[2] Electric Power Distribution System Engineering, Turan Gonen
[3] Aluminum Electrical Conductor Handbook, The Aluminum Association

EMERGENCY RATINGS

Maximum conductor operating temperature limits are based on maintaining insulation stability indefinitely, it is recognized that certain short periods of overloading are not only reasonably safe but inevitable in service.

Emergency overload ratings always specify both a temperature and duration limit, and a limit on the total number of emergency events. They are subject to revision as better thermal performance is developed for insulating materials and more reliable field data are obtained.

Emergency current ratings of cable may be used as a design basis in special cases, (such a case could be where a load occurring only on start-up would overload a main cable and transformer, but not breaker, of a secondary-selective substation operating single ended).

The table below gives cable emergency ratings of single circuits in percent of normal rating at 100% load factor for the same ambient temperatures for periods of overload not exceeding a total of 100 hours per year.

	Voltage			Emergency Rating \% Ambient Temperature				0 C
Cable Type	Rating	Tc	Te	10	20	30	40	50
XLPE	600 V	90	125	114	116	120	124	130
XLPE	15 kV	90	125	114	116	120	124	130
EPR	$0-35 k v$	90	125	116	118	122	127	133
(EPM or EPDM)								
PVC	600 V	75	87	107	108	110	114	119

Where:

```
Tc = Normal conductor temperature
Te = Emergency conductor temperature
```

The increase of a load current in a cable does not produce an immediate rise in the cable temperature to the overload temperature equilibrium level. It is possible to take advantage of this fact when a cable must be overloaded, for a limited, during an emergency.

The equations describing the current-temperature-time relationship are as follows:

- (t / k)

$$
T=T f[1-e \quad]
$$

Where:

```
T= temperature rise during time t (deg C)
Tf= Total temperature rise if emergency current is maintained
        indefinitely (deg C)
    t= Overload duration (hours)
    k= Thermal time constant (hours)
```

The total temperature rise, Tf, can be approximated by the following equation:

$$
T f=(T c-T a)(I o / I c)
$$

Where:

Tc= Rated normal conductor temperature (deg C)
Ta= Ambient temperature (deg C)
Io = Overload current in amperes
Ic= Rated normal conductor current to produce a temperature of Tc at 100% load factor with an ambient temperature of Ta.

The thermal time constant, k, is defined as the time required for the conductor to complete 63% of the total temperature rise, Tf. The constant depends on the two following parameters:

1) The thermal resistance between the conductor and the surrounding environment.
2) The thermal capacity of the cable and its surroundings. Approximate values of k, for estimation, are given below.

$$
I_{0}=I c \frac{(T o-T a)+B(T o-T c 1)}{(T c-T a)}
$$

Where:

```
Ic = Cable overload current rating in amperes
To = Maximum overload conductor temperature (deg C)
Tc1 = Conductor temperature at time overload is applied (deg
```

C)
$B=\frac{e^{-[t / k]}}{1-e^{-[t / k]}}$

USER INSTRUCTIONS

1. Connect printer if a hardcopy is desired. R/S after each display if no printer is attached.
2. Set printer switch to manual or normal mode.
3. Load programs "TR","VW"
4. Check status
5. Initialize: XEQ either "TR","TF", "TM", or "I口"
[XEQ "TR"]
6. Enter overload duration (hours) T
$T \quad T$?

K
K ?
7. Enter thermal time constant (hours) emergency current is maintained indefinitely (deg C)
9. Display temperature r ise during time T (deg C)
5. [XEQ "TF"]
6. Enter overload current (amperes) IO
7. Enter rated normal conductor current

IC to produce a temperature of $T c$ at 100% load factor with an ambient temperature, Ta
8. Enter rated normal conductor

Tc
TC?
9. Enter ambient temperature (deg. C)

Ta
Ta ?
10. Display total temperature rise

5. [XEQ "TM"]

6. Enter total temperature rise (deg.C)
7. [XEQ "IO"]
8. Enter overload duration in hours
9. Enter thermal constant (hours)
10. Display B
11. Enter maximum overload conductor temperature (deg. C)
12. Enter conductor temperature at time overload is applied (deg. C)
13. Enter ambient temperature (deg. C)
14. Enter rated normal conductor temperature (deg. C)
15. Enter rated normal conductor current to produce a temperature of Tc at 100% load factor with ambient temperature of Ta
16. Display cable overload current rating in amperes

TF
TR

K
K ?
$T=$
TF ?
TR ?

T ?
K ?
$B=$
TO ?

Tc $1 ?$

TA?
TC ?

IC ?
IC
IC ?
$10=$
15.8000 RUN
$T R=11.7793$

XEQ "TF"
I0?

	50.0900	RUN
Ic?		
TC?	40.0980	RUN
TR?	108.0800	RUN
$T F=$	98.0900	RUN
	15.6250	

XEQ "TM"
TF?
15.8908 RUN
T ?

K?	7.8000	RUN
	1.3000	RUN

$T=0.9542$

$T ?$	XEQ " 10 "	
	7.8008	RUN
K ?		
	1.3090	RUN
$B=0.0025$		
T0?		
	90.9008	RUN
Tc1?		
	80.9996	RUN
TR?		
	60.9888	RUN
$T C$?		
	70.8909	RUN
IC?		
	108.9808	RUN
	173.27	

	LBL＂TR＂	
02	＂T？	Enter T
03	PROMPT	
04	＂K？	
05	PROMPT	
06	－	
07	CHS	
08	EヶX	
09	1	
10	$X<>Y$	$\mathrm{T}=\mathrm{Tf}$
11	－	
12	＂TF？${ }^{\text {P }}$	
13	PROMPT	
14	＊	
15	－TR＝${ }^{\text {c }}$	
16	XEQ＂VW＂	
17	STOP	
18	LBL＂TF＂	
19	－I0？${ }^{\text {c }}$	
20	PROMPT	
21	＂Ic？	
22	PROMPT	
23	－	
24	※ヶ2	
25	＂Tc？	
26	PROMPT	
27	＂TA？${ }^{\text {P }}$	
28	PROMPT	
29	－	
30	＊	
31	＂TF＝＂	
32	XEQ＂VW＂	
33	STOP	
34	LBL＂TM＂	
35	＂TF？${ }^{\text {P }}$	
36	PROMPT	
37	ENTERT	
38	＂T？	
39	PROMPT	
40	－	
41	／	
42	LN	
43	＂K？	
44	PROMPT	
45	＊	
46	＂T＝＂	
47	XEQ＂VW＂	
48	STOP	

49＊LBL＂IO＂ 50 ．T？．
51 PROMPT
52 ＂K？
53 PROMPT
54
55 CHS
56 ETX
57 STO 00
581
59 RCL 00
60 －
61 ／
62 ＂B＝＂
63 XEQ＂VW＂
64 ＂TO？＂
65 PROMPT
66 STO 01
67 ＂Tc1？
68 PROMPT
69 －
70 ＊
71 RCL 01
72＂TA？＂
73 PROMPT
74 STO 02
75 －
76 ＋
ア7＂Tc？
78 PROMPT
79 RCL 02
80 －
81 ／
82 SQRT
83 ＂Ic？＂
84 PROMPT
85 ＊
86 －I O＝＂
87 XEQ＂VW＂
88 ．END．

SHORT CIRCUIT RATINGS OF PHASE CONDUCTORS

Robert W. Parkin

FUNCTION: Program calculates either the maximum allowable short circuit current for, or the minimum cross-sectional area of, a cable passing fault current, given the cross-sectional area of a conductor in kcmil, or fault current in amperes to be withstood. Fault duration is entered in cycles per second and will double in value for each program loop,i.e., enter 8 cycles per second originally and the second calculation will be based on 16 cycles per second, etc. This determines the maximum time a cable may be subjected to a particular short circuit load without damage to the insulation.

ACCESSORIES: HP-41 CX or HP-41CV, printer optional

OPERATING LIMITS AND WARNINGS: Program can be used for copper and aluminum phase conductors that have cross-linked polyethylene (XLPE) or ethylene propylene rubber (EPR) insulations rated 90 C at maximum operating temperature, and 250 C maximum short circuit temperature. Fault currents are assumed to be symmetrical amperes and deals only with the thermal effects of short circuit current; not the electromagnetic, or bursting effects. It is assumed that all heat created is stored in the conductor, and that short currents will not persist for longer than ten seconds.

The maximum fault current is based on the following assumptions:

1) All generators are connected, i.e., in service
2) The fault is a bolted one; i.e., the fault impedance is zero.
3) The load is maximum, i.e., on-peak load.

REFERENCES:

[1] ICEA Pub. No. P-32-382 Short Circuit Characteristics of Insulated Cables.
[2] Electric Power Distribution System Engineering, Turan Gonen [3] Short Circuit Ratings of Cables, Ross D. Guppy

USER INSTRUCTIONS

Mode: [Conductor cross-section known]

STEP
INSTRUCTIONS
INPUT
DISPLAY

1. Connect printer if a hardcopy is desired. R/S after each display if no printer is attached.
2. Set printer switch to manual or normal mode.
3. Load programs "SCP","VW","AE","CY"
4. Check status
5. Initialize: XEQ "SCP"
6. Enter cross-sectional area Enter zero if fault current is known.
7. Select type of metal conductor

1 or 0
AL:0/CU: 1
$0=$ Aluminum
1 = Copper
8. Enter fault duration in cycles
cycle
CYCLES ? per second
9. Display Fault duration in seconds
10. Total fault current displayed
11. Display two times original

Mode: [Conductor cross-section not known]

STEP	INSTRUCTIONS	INPUT	DISPLAY
6.	Enter zero	0	KCMIL ?
7.	Enter fault current in amperes	Amp	AMPS?
8.	Select metal type:	O or 1	AL:0/CU: 1
	0 = Aluminum		
	1 = Copper		
$9 .$	Enter duration in cycles per second	cycles	CYCLES?
10. Display Fault duration in seconds			T SEC $=$
11. Total Area in circular mils required for conductor			CMA $=$

```
    XEQ "SCP"
KCMIL?
            350. RINN
CMA=350,80日.
AL:G / CJ:1
日. RUN
ALIMINUM
CYCLES?
2. RUN
CYCLES= 2.
T:SEC= 0.0.033
AMPS= 90,182.
CYCLES= 4.
T:SEC= 0.0667
AMPS=63,768.
CYCLES= 8.
T:SEC= 0.1333
AMPS= 45,091.
CYCLES= 16.
T:SEC=0.2667
AMPS= 31,884.
CYCLES= 32.
T:SEC= 0.5333
AMPS=22,545.
CYCLES= 64.
T:SEC= 1.0667
AMPS= 15.942.
CYCLES= 128.
T:SEC= 2.1333
AMPS= 11,273.
CYCLES= 256.
T:SEC= 4.2667
AMPS= 7,971.
```

Short Circuit－Phase Conductor

02	FIX 0	
03	SF 29	
04	CF 12	Enter Conductor
05	＂KCMIL？${ }^{\text {P }}$	Cross－Section
06	PROMPT	kcmil
97	$x=0$ ？	
08	XEQ＂PE＂	Enter Zero if Fault
09	1 E3	Current is Known
10		
11	CF 12	
12	＂CMA＝${ }^{\text {c }}$	
13	ARCL X	
14	AVIEW	
15	STO 01	
16	－ PL ： 0 －	
CU： 1 ＂		
17	PROMPT	
18	$x=0$ ？	
19	GTO 00.	－${ }^{2}$
20	－COPPER＂	$I=0.00518 \mathrm{x} \mathrm{A}$
21	AVIEW	$v \frac{t}{t}$
22	RCL 01	
23	※ヶ2	
24	． 00518	
25	＊	
26	STO 00	Aluminum
27	XEQ＂YC＂	
28	LBL 00	$=\sqrt{\underline{0.002213 ~} \mathrm{x} \mathrm{A}^{2}}$
$\underset{\text { M }}{ }$	－PLUMINU	t
M ${ }^{\text {－}}$		
30	AVIEW	
31	RCL 01	
32	入个2	
33	． 002213	Enter Fault Duration
34	＊	in Cycles per Second
35	STO 00.	（ 60 HZ ）
	"LBL "YC" "CYCLES?	
＂		
38	PROMPT	
39	STO 02	
40	LBL 01	
41	RCL 02	
42	＂CYCLES＝	
＂ 43 XEQ ．．YW．．		
43	XEQ＂VW＂	
44	60	Fault Duration in
45	FIX	Seconds
46	FIX 4	
47	＂T：SEC＝${ }^{\text {P }}$	
48	XEQ＂VW．	
49	FIX 0	
50	RCL 09	

51 X＜＞Y
52 SQRT
54 ＂ $\mathrm{AMPS}=$＂
55 XEQ＂VW＂
56 RCL 02
572
58 ＊
59 STO
60 FS？ 55
61 ADV
62 GTO 01
63 STOP
64 END

01＊LBL＂AE＂	Finds Area
02 ＂AMPS？	Required
03 PROMPT	
04 XEQ＂PV＂	
05 STO 00	
06 －PL： 0 ，	
CU： 1 ．	
07 PROMPT	
$08 \mathrm{X}=0$ ？	
09 GT0 02	
10 XEQ＂CY＂	
11.07197	
12 GTO 03	
$13 *$ LBL 02	
14 XEQ－CY＊	$\frac{1}{\mathrm{~A}}=\frac{\mathrm{n} / \mathrm{t}}{\mathrm{I}}$
15.047043	
16＊LBL 03	
$17 \times<>\gamma$	
18 ／	
19 RCL 00	
20 －	
21 1／X	
22 SF 29	
23 － 2 MA＝${ }^{\text {－}}$	
24 XEQ＂VW＂	
25 STOP	
$26 . E N D$.	

SHORT CIRCUIT RATINGS OF METALLIC SHIELDS

Robert W. Parkin

FUNCTION: This program calculates either the maximum allowable short circuit current for, or the minimum effective crosssectional area required of a metallic shield carrying a short circuit current. The types of shields covered are:

A - Wires applied either helically, as a braid or serving, or longitudinally with corrugations

B - Helically applied tape, not overlapped

C - Helically applied flat tape, overlapped
D - Corrugated tape, longitudinally applied
The effective area of composite shields is the sum of the effective areas of the components,i.e., the effective area of a helically applied tape and concentric wires would be the sum of the areas. Program incorporates a loop function to re-enter different wire sizes so that the best arrangement and least amount of copper is used to carry the fault.

ACCESSORIES: HP-41 CX or HP-41CV, printer optional

OPERATING LIMITS AND WARNINGS: Calculation method applies for cables that are:

1) Shielded or sheathed
2) Voltage ratings up to 69 kV
3) Insulated with thermoplastic, XLPE,EPR, impregnated paper or varnished cloth.

It is assumed that all heat generated by the fault current will be effective in raising the temperature of the shield,i.e.; no heat will be dissipated into adjacent cable components. This assumption is accurate only for short fault durations. For faults re-established with automatic reclosing of circuit protective devices, a significant amount of heat may be dissipated because of the relatively long cooling periods involved, and therefore will yield conservative results for faults of longer time durations.

REFERENCES:

[1] ICEA Pub. No. P-45-482, Short Circuit Performance of Metallic Shields and Sheaths of Insulated Cable, second edition.
[2] EPRI EL-3014, Optimization of the Design of Metallic Shield-Concentric Conductors of Extruded Dielectric Cables Under Fault Conditions.

PROGRAM PARAMETERS AND NDMENCLATURE

With the increasing use of solid dielectric power cable on electric utility distribution systems with higher fault currents and multiple circuit breaker reclosures emphasizes the importance in determining the optimum metallic shield structure, its performance under fault conditions and its influence on the design and operating characteristics of the cable.

The temperature of the shield is limited to the material in contact with it. Upon conclusion of any program module, XEQ "TP" to enter a different maximum allowable shield transient temperature in degrees Celsius, T2, or operating temperature T1. The original calculation uses 200 C as T2.

The maximum withstand temperature under short-circuit conditions for cables with extruded thermoplastic jackets, is highly dependent on jacket thickness over the metallic shield. This dependence is less pronounced in the case of cross-linked polyethylene jackets. Values of T2 are given below in degrees Celsius.

Cable Material in Contact with Shield

Crosslinked (thermoset)
Thermoplastic 200

Impregnated Paper 200

Varnished Cloth 200

Program Nomenclature:

```
I = Short circuit current, amperes
A = Effective cross-sectional area of shield
t = Time of short circuit,seconds (program in cycles)
    = Inferred temperature of zero resistance for shield at
        temperature T , microhm-cm
T2 = Maximum allowable shield transient temperature, C
T1 = Operating temperature of shield, C
```

There has been serious concern as to the capability of helically applied copper tape and conventional ICEA wire shields to handle the increasingly high fault currents that are normally experienced on a typical utility underground distribution system and on large industrial systems. This concern is based on considerations of circular mil area (5000 circular mils per inch of core diameter based on ICEA standards) in the case of wire shields and the fact that contact resistance at the tape overlap significantly increases the resistance and inductance of the helically applied copper tape shield. Where such shielded cables are installed with a separate neutral conductor, the influence of the neutral conductor and its spacing from the power cable in carrying high fault current has not been well established.

The effective area of helically applied overlapped tapes depends upon the degree of electrical contact resistance of the overlaps. Program "C" may be used to calculate the effective cross-sectional area of the shield for new cable. However, an increase in contact resistance may occur after cable installation; during service exposed to moisture and heat. Under these conditions the contact resistance may approach infinity, where program "B" could apply.

Longitudinal Corrugated Tape Shield

A Longitudinal Corrugated (LC) shield consists of corrugated copper tape longitudinally folded and overlapped over the extruded insulation shield. Material specifications should comply with ASTM standard B248. It was developed for use on solid dielectric power cable in the interest of eliminating the deficiencies and questionable performance characteristics of concentric neutral wires (shield losses) and the uneven restraint of helically applied copper tape shields (increase in contact resistance and possible tearing due to the high coefficient of expansion of XLPE under emergency operating conditions).

Type LC shield provides a permanently low resistance, low reactance, tubular metallic shield covering 100% of the cable core to insure distribution of fault current. It does not adhere to other cable components or itself at the overlap, and hence is capable of adjusting itself to the changing cable core diameter due to the expansion and contraction of the insulation structure under load cycling and particularly under emergency operating conditions. Under this action, unlike that of the helically applied copper tape shield, little if any resistance is exposed on expansion and contraction of the cable during load cycling. In caparison with wire and tape shields, type LC shield impedes the ingress of moisture into the insulation structure of the cable.

TAPE SHIELDS

The two formulas applicable for tape shields are used when:

1) Perfect interturn contact exits (a tubular current path)
or when
2) No interturn contact exists (a helical current path)

ICEA P-45-482 allows that new cable may have perfect contact resistance, but that contact resistance may increase after installation. This increase is caused by corrosion of the tape in wet and dirty environments. Wrinkling and separation of the shield tape during installation also causes an increase in contact resistance. At points of heavy resistance or total separation, the path of charging current changes from a tube to a helix. Resistance decreases the fault current capacity of the shield. The reality of these situations in tape shields is that contact resistance is unknown and may approach infinity.

The effective area of a shield increases as the overall diameter of the cable increases. It is impossible to determine the effective area of a tape shield where perfect contact no longer exists. Therefore during the lifetime of a cable's life, the actual effective shield area of a copper tape shield falls somewhere between perfect contact and that of no contact.

The selection of the type shield to carry fault currents must first be based on the magnitude of the fault current and the time interval between fault occurrence and breaker operation. Generally, the latter is a function of the former and can be provided by the breaker manufacture. Secondly, the type of shield selected should be adequate to carry nominal charging currents with a shielding system designed to carry fault currents if the circuit operation dictates. Most conventional shields are inadequate to carry faults without serious degradation to the cable, therefore a supplementary neutral is sometimes added, or the shielding system is within system capabilities. This program offers the user multi-shield design options to help select the most suitable shielding system incorporated within the cable.

USER INSTRUCTIONS

Size: 007

| STEP INSTRUCTIONS | INPUT |
| :--- | :--- | DISPLAY

STEP
INSTRUCTIONS
12. Enter percent lap of copper tape shield, if applicable, or Enter zero if wires only are used without a tape shield.
13. Enter mean diameter of shield, mils
14. Enter thickness of tape shield, mils
15. Display total effective crosssectional area required in circular mils
16. Effective cross sectional area in circular mils of copper tape shield
17. Display difference in CSA

NOTE: If positive, cable needs additional metallic cross - sectional area, and if negative, copper tape alone will carry fault.
18. Enter cross-sectional area of wire in circular mils
19. Display number of wires required to carry fault; without copper tape
20. Display number of wires required to carry fault; with copper tape
21. Program loop to step 18 to re-enter different wire size.
22. Option: can $X E Q$ "TP" to determine fault current at higher shield or sheath operating or maximum temperatures; see last page.

INPUT
DISPLAY

CSA
-
NO. WIRES=
DM

T

- A:TOT =
- A:TAPE =
A.TAPE

A: DIFF =

CMA: WIRE ?

WITH TAPE =

CMA: WIRE ?

MODE: [FAULT NOT KNOWN]

STEP INSTRUCTIONS	INPUT	DISPLAY
6. Enter zero; if fault current is not known, to find maximum fault current.	0	AMPS ?
7. Select type shield:	ABCD	Select:ABCD
Label Shield		
A Wires		
B Copper Tape (worst case)		
C Copper Tape (best tape)		
D LC Shield		
$\underline{[1]}$ " $=$ WIRES $]$	A	
8. Enter number of wires	N	No. Wires ?
9. Enter diameter of wires in mils	Dia.	DIA.MILS ?
10. Display cross-sectional area required in circular mils	-	CMA $=$
11. Enter system voltage in kV	kV	Kv?
12. Enter fault duration in cycles per second	cycles	CYCLES?
13. Display duration of fault in seconds	-	T: SEC=
14. Display maximum fault current in amperes	-	AMPS $=$

STEP INSTRUCTIONS	INPUT	DISPLAY
["B" = COPPER TAPE 2 WORST CASE		
8. Enter number of tapes	N	NO. TAPES?
9. Enter width of tape, mils	W	W ? MIL
10. Enter thickness of tape, mils	T	T? MIL
11. Display cross-sectional area required in circular mils	-	$C M A=$
12. Enter KV ; continue to step 11 in wire shield		
["C" $=$ COPPER TAPE SHIELD $=$ BEST CASE $]$		
8. Enter percent overlap of tape	\%lap	\% LAP?
9. Enter mean diameter of shield, mils	Dm	DM?
10. Enter tape thickness, mils	T	T: TAPE?
11. Display effective CSA	-	CMA $=$
12. Enter kV ; continue to step 11 in wire shield		

STEP INSTRUCTIONS	INPUT	DISPLAY
$\underline{\underline{L}}$ "D" $=\underline{\text { LC }}$ SHIELD $]$		
8. Enter minimum O.D. over insulation shield	O.D	MIN:O.D:EIS?
9. Enter tape overlap, mils	1 ap	QVERLAP:MIL?
10. Enter thickness of tape, mils	T	T?
11. Display CSA required	-	CMA ?
12. Enter kV ; continue to stepp 11 in wire shield		

MODE: [FAULT CURRENT AT MAXIMUM SHIELD OPERATING TEMPERATURE]

1. XEQ "TP" after concluding any one program
2. Enter maximum allowable shield T2 T2? MAX or sheath temperature, TZ, deg. C
3. Enter operating shield
4. Display maximum fault current

T1? OP in amperes.

Short Circuit

 Shields| Q1*LBL "ST. | | Initialize |
| :---: | :---: | :---: |
| 02 | CF 01 | |
| 03 | SF 29 | |
| 04 FIX 0 | | |
| 05 | "AMPS? | Enter Fault Current |
| 06 | PROMPT | |
| 07 | XEQ "VW" | Enter Zero if Not |
| 08 | $x=0$? | Known |
| 09 | XEQ "AR" | XEQ Area Program to Find Fault Current |
| 10 | STO 05 | |
| 11 | STO 00 | |
| 12 | XEQ "CY" | Cycle Module |
| 13 | FIX 0 | |
| 14 | RCL 00 | |
| 15 | * | |
| 16 | STO 00 | |
| 17 | XEQ "VK" | VK Module Determine |
| 18 | RCL 00 | M Value |
| 19 | $X<>Y$ | |
| 20 | - | $A=\frac{\sqrt{t}}{M}$ |
| 21 | FIX 0 | |
| 22 | ST0 06 | |
| 23 | SF 29 | |
| 24 | -CMA : TOT | |
| \cdots | | Required View Module |
| 25 | XEQ "VW" | |
| 26 | RCL 05 | |
| 27 | RCL 01 | |
| 28 | 1 E3 | Calculates MVA |
| 29 | * | Rating |
| 30 | 1.7321 | |
| 31 | * | $E \sqrt{3}$ * I |
| 32 | * E6 | |
| 34 | 2 | MVA $=\frac{1}{10^{6}}$ |
| 35 | "MVA = " | (3 Phase) |
| 36 | XEQ "VW" | |
| 37 | LBL 02 | |
| 38 | CF 29 | |
| 39 | FIX 0 | Calculate CMA For Tape Shield (if Present) |
| 40 | 100 | |
| 41 | $" \% \text { LAP?" }$ PROMPT | |
| 43 | XEQ "VW" | |
| 44 | X=0? | Enter Zero if No Tape |
| 45 | GTO 00 | |
| 47 | 2 | $4 \mathrm{bdm} \sqrt{\frac{100}{2(100-L)}}$ |
| 48 | * | |
| 49 | 100 | |

Full Contact
Resistance

51	-	Enter d_{m}
52	SQRT	$\left(\frac{\text { Dia.Over }+ \text { Dia. Under }}{2}\right)$
53	DMP	
54	PROMPT	
55	XEQ "VW"	View
56	*	
57	" T : TAPE?	Enter Copper Tape
*		Thickness in
58	PROMPT	Mils
59	XEQ "VW"	
60	*	
61	4	
62	*	$A=I \sqrt{t}$
63	RCL 06	
64	- $\mathrm{A}:$ TOT $=$	M
*		
65	XEQ "VW"	Effective Crosssectional Area
66	SF 01	
67	RCL γ	
68	" A : TPPE $=$	CMA of Tape
69	XEQ "VW"	
70	RCL 06	
71	X< ${ }^{\text {P }}$	
72	-	
73	STO 02	Display Difference of
74	"P:DIFF=	
-		CMA Required
75	XEQ "VW"	to CMA of Tape
76	FS? 55	
77	ADV	
78	LBL 00	
79	FIX 0	Enter CMA of
80	-CMA : WIR	Round Wire
E? ${ }^{\text {P }}$		
81	TONE 9	
82	PROMPT	If Zero Entered
83	$x=0$?	Returns to
84	GTO 02	Shield Tape (Tape Shield Only)
85	XEQ "VW"	
86	ST0 03	
87	FIX 1	
88	RCL 06	
89	$X<>Y$	
90	/	
91	*NO.WIRE	Number of Wires
S="		Required Displayed Without Tape
92	XEQ "VW"	
93	FS? 01	and Then With
94	GTO 01	Tape
95	GTO 00	
96	LBL 01	
97	RCL 03	
98	RCL 02	
99	$X<>Y$	
100	/	

STEP/KEY CODE
1 G1 .WITH TA

$\mathrm{FE}={ }^{\prime}$
102 XEQ "VW"
103 FS? 55
104 ADV
105 GTO 00 Return to Enter
106 STOP Different Wire
107 END Size
End

ASSIGNMENTS			
FUNCTION	KEY	FUNCTION	KEY
Wires	A		
CU Tape-			
Wor̃st	B		
CU Tape-	C		
Best			
CC Shield	D		

01	LBL " ${ }^{\text {VW* }}$	VIEW Module
02	CF 21	
03	FC? 55	
04	GTO 01	
05	SF 21	
06	ACA	
07	SF 12	Accumulate and
08	ACX	Printout if Printer
09	PRBUF	Attached, Alpha-
10	TONE 5	Display if No Printer
11	CF 12	
12	RTN	
13	LBL 01	
14	ARCL X	
15	PVIEW	
16	TONE 5	
17	STOP	
18	RTH	
19	LBL "VK"	Find M Module By KV
20	"KV?"	Rating
21	PROMPT	
22	XEQ "VW"	Voltage M Value
23	STO 01	$5-25 \mathrm{kV}$. 063
24	25	35 kV . 065
25	$X<>Y$	46 kV . 065
26	$x<=Y$?	$69 \mathrm{kV} \mathrm{}$.
27	GTO 01	
28	46	
29	RCL 01	
30	X<=Y?	
31	GTO 02	
32	69	
33	RCL 01	
34	$X<=Y$?	
35	GTO 03	
36	LBL 01	
37	. 063	
38	GTO 05	
39	LBL 02	
40	. 065	
41	GTO 05	
42	LBL 03	
43	. 066	
44	LBL 05	
45	RTN	
46	LBL "TP"	Module for Maximum
47	-T2?: MA	Shield Temperture
¢"		
48	PROMPT	
49	KEQ "VW "	
50	234	

$\begin{aligned} & 101 \\ & 102 \end{aligned}$	"W? MIL" PROMPT	Width of Tape, Mils
103	"T? MIL"	
104	PROMPT	Thickness of Tape,
105	*	
106	*	1.27 nwb
107	1.27	
108	*	
109	GTO CMA	
110	LBL C	CU Tape (Best Case)
111	FIX 0	
112	CF 27	
113	100	
114	"\% LAP? ${ }^{\text {\% }}$	
115	PROMPT	$\sqrt{\frac{100}{2(100} \text {) }}$
116	XEQ "VW"	4bdm $\sqrt{2(100-L)}$
117	-	
118	2	
119	*	
120	100	
121	$x<>\gamma$	
122	-	
123	SQRT	ENTER D_{m}
124	"DM?"	ENTER ${ }_{\text {m }}$
125	PROMPT	
126	XEQ "VW"	
127	*	
128	"T : TAPE?	Thickness, Mils
129	PROMPT	
130	XEQ "VW	
131	*	
132	4	
133	*	
134	GTO - CMA	
135	LBL D	LC Shield
136	CF 27	Min O.D. EIS, Mils
137	"MIN: O.D	
: EIS	? ${ }^{\text {P }}$	
138	PROMPT	
139	XEQ "VW"	
140	50	
141	+	
142	PI	$1.27 \pi(d+50)+B$
143	*	
144	-OVERLAP	
? : M	L? ${ }^{\text {P }}$	
145	PROMPT	
146	XEQ "VW"	
147	+	
148	"T?	Thickness, Mils
149	PROMPT	
150	XEQ "VW"	

```
151 *
1521.27
153 *
154 *LBL .CMA CNA Module
-
155 "CMA="
156 XEQ "VW"
157 STO 06
158 XEQ "VK"
159 RCL 06
160 *
161 STO 00
162 SEQ "CY.. \(\quad=\frac{M A}{\sqrt{t}}\)
163 RCL 00
\(164 X<>Y\)
165 /
166 "AMPS = "
167 XEQ "VW"
168 STOP
169 END
```


POSITIVE AND ZERO SEQUENCE IMPEDANCES OF CABLES

Robert W. Parkin

FUNCTION: Program determines the positive sequence reactance and the mutual reactance between the central conductor and metallic shield or sheath, and calculates the zero sequence impedance of a single or multi-conductor cable, based on three theoretical installation conditions:

1) Return current in sheath and grounded in parallel
2) All return current in sheath, none in ground
3) All return current in ground, none in sheath

ACCESSORIES: HP-41 CX or HP-41CV, Hewlett Packard Math Pac module is required for multiplication and division of complex impedance operations, printer is optional.

OPERATING LIMITS AND WARNINGS: None

REFERENCES:

[1] Electrical Transmission and Distribution Reference Book, Westinghouse Electric Corporation, Pittsburgh, 1964.
[2] Wagner, C.F., and R.D. Evans, Symmetrical Components, McGraw-Hill Book Co. N.Y. 1933
[3] Rome Cable UD Technical Manual, Third edition, Rome N.Y 13440
[4] Clarke, Edith, Circuit Analysis of A-C Power Systems, Vol. I John Wiley and Sons N.Y. 1950

SEQUENCE IMPEDANCE OF UNDERGROUND CABLES

Many primary distribution circuits involve a mixture of both overhead conductor and underground cable. Fault calculations for such circuits require a knowledge of the sequence impedances of the underground, as well as the overhead, portion of the circuits. This program deals with the sequence impedances and currents of underground cables.

The type of Cable insulation (continuous full-load temperature rating), cable spacing, earth resistivity, size of neutral (full or reduced), or type metallic shield or sheath affect the impedance of cables in single phase and three phase circuits.

The Insulation thickness has only minor effect on cable impedances when changed from 100% to 133% insulation levels. However, going from a reduced neutral to a full size has a significant effect for both positive and zero sequence impedance components.

On an overhead circuit, the neutral conductor has negligible effect on the positive and negative sequence components. This is not true for URD concentric neutral cable. When positive sequence currents flow in the phase conductors of this type circuit, circulating currents are induced in the nearby concentric neutrals which modify the positive and negative sequence components of the circuit. As the neutral size is increased, the effect becomes greater. In general, this means both positive, negative and zero sequence components should be recalculated for situations calling for three phase cable with full size neutrals.

When zero-sequence current flows along the phase conductors of a three-phase cable circuit, it must return in either the ground, or the sheaths, or in the parallel combination of both ground and sheaths. As zero-sequence flows through each conductor it encounters the a-c resistance of that conductor, and as it returns in the ground or sheaths it encounter the resistance of those paths. The zero-sequence current flowing in any one phase encounters also the reactance arising from conductor self-inductance,from mutual inductance of the return paths. Each of these inductive effects cannot always be identified individually from the equations to be used for reactance calculations because the theory of the earth return circuits, and use of one GMR to represent a parallel conductor group, present in combined form some of the fundamental effects contributing to total zero-sequence reactance. the resistance and reactance effects are dealt with so closely they are best dealt with simultaneously.

Cable sheaths are frequently bonded and grounded at several points, which allows much of zero-sequence return current to flow in the sheath. On the other hand when any of the other various devices used to limit sheath current are employed, much or all of the return current flow in the earth. The method of bonding and grounding, therefore has an effect on the zero-sequence impedance of the cable.

EARTH RESISTIVITY

A common value for earth resistivity used in calculating the impedances is 100 ohm meters. Since there can be a wide variation of earth resistivity from one geographical area to another it is of interest to estimate its effect on impedance. A change in earth resistivity does not affect the positive sequence impedance, but does affect the zero sequence impedance. An increase or decrease in value of earth resistivity from 100 ohm meters by a factor of ten produces approximate change of two percent in the magnitude of zero sequence impedance Zo. For a given cable, a large change in earth resistivity has a relatively small effect on $Z o$ and $i t s$ components.

Thus, using a value of 100 ohm meters for earth resistivity should give impedances sufficiently accurate for most situations.

Below is a table with earth resistivity values and other program parameters.

Earth
Resistivity
(meter-ohm)

Equivalent Depth of Earth Return, De Inches feet

Equivalent Earth Resistance, re (ohms per mile)

Equivalent Earth
Reactance, Xe (ohms per mile)

1
5
10
50
100
500
1000
5000
10000
$3.36 \times 10^{\sim} 3280$
0.286
2.05
0.286
2.34
0.286
2.47
0.286
2.76
0.286
2.89
0.286
2.89
0.286
3.31
0.286
3.60
0.286
3.73

USER INSTRUCTIONS

Size: 016

STEP
INSTRUCTIONS
INPUT
DISPLAY

1. Connect printer if a hardcopy is desired. R/S after each display if no printer is attached.
2. Set printer switch to manual or normal mode.
3. Load programs "ZO", 23 ","VW"
4. Check status
5. Initialize: XEQ "ZO"
6. Enter frequency of circuit HZ in hertz
7. Enter a-c resistance of one conductor in ohms per 1000 feet
8. Enter a-c resistance of Earth return in ohms per 1000 feet
9. Enter distance to equivalent

De
HZ ?

Rac
Rac ?

Earth return path in inches (see table)
10. Enter Geometric Mean Distance

GMD
GMD ? amoung conductors centers, inches
11. Enter Geometric Mean Radius of conductor, inches
12. Enter outside radius of sheath, inches

Ro
RO ?
13. Enter inside radius of sheath, inches

Ri
RI?
14. Enter resistance of metallic shield

Rs
RS? or sheath in ohms per 1000 feet
15. Display mutual reactance between conductor and shield/sheath

```
STEP
INSTRUCTIONS
INPUT
DISPLAY
16. Display positive sequence reactance
- X1 =
    in ohms per 1000 feet
17. Select cable assembly:
1 or 3
1/C:1 / 3/C:3
    1 = Single conductors
    3 = Three conductor assembly
        (with common sheath)
18. Display Impedance of conductors
    ZC=
    in terms of impedance to zero
    sequence currents, ohms per 1000 ft
19. Display the impedance of the sheath,
    ZS =
    considering the presence of the
    earth return path but ignoring
    the presence of the conductor
    group. Given in terms of impedance
    to zero sequence currents in ohms
    per 1000 feet.
20. Display the mutual impedance between
    ZM =
    conductors and sheath, considering
    the presence of the earth return path
    which is common to both sheath and
    conductors, in zero-sequence terms,
    ohms per 1000 feet.
```

[Display Calculation parameters in Rectanqular form]
21. Mutual impedance above; squared $2 M^{-2}$

Note: $U=$ Real Component
$U=$
$V=$ Imaginary Component $V=$
22. $2 M^{\sim 2} / 25$

ZM^2/Z5:
$U=$
$V=$

23. Display total zero sequence	-
impedance when both ground and	$\mathrm{T}:$
sheath path exist in ohms per	$\mathrm{V}=$
phase per 1000 feet	

24. Display total zero sequence - 20: S:
impedance when current returns
in sheath only, with none in
$U=$
ground, ohms per 1000 feet
[Total Zero Sequence Impedance]

$$
Z O: G=(Z C-Z m)+Z m
$$

25. Zc - Zm
$U=$
$v=$
$\begin{array}{ll}\text { 27. Display total zero sequence } & U= \\ \text { impedance when current returns } & \mathrm{V}= \\ \text { in the ground only, ohms per } 1000 & V= \\ \text { feet } & \end{array}$

Note: [Three Conductor]

Instructions are in the same format. Flag 03 will be set and display will show 3/C, where applicable.

RI?
.5630 RU
RS?
$.4860 \quad \mathrm{RU}$
$X M=0.0173$
$x 1=0.0458$
$1 /: \mathrm{C}: 1 / \mathrm{3} / \mathrm{C}: 3$?
1.9000 RUN
$z c=0.2219 \mathrm{~J} 9.7562$
RUH
$2 S=9.5401 \mathrm{~J} 0.7277$
RUN
$\mathrm{ZH}=0.0541 \mathrm{~J} 0.7277$
$2 \mathrm{H}+2$:
$\mathrm{J}=-\mathrm{P} .5266$
$\psi=0.0787$
Zh+2/2s:
$\mathrm{U}=-\mathrm{Q} .2766$
$\psi=0.5184$
20: T:
$\mathrm{l}=0.4985$
$Y=0.2377$
20:S:
$\mathrm{V}=0.6538$
$\psi=0.0285$
20:G:
$1 \mathrm{I}=0.1678$
$Y=0.0285$
$\mathrm{U}=0.2219$
$\psi=0.7562$

Positive and Zero Sequence Impedance of Single (1/c) and
Three Conductor ($3 / c$) Cable

51	LBL " 20.	Intialize Then Enter Data:
02	CF 0.3	Fracuency in Hertz
03	FIX 4	
04	"H2?	
05	PROMPT	
06	60	
07	\checkmark	f /60
08	STO 14	
09	"Rac? ${ }^{\text {PROMPT }}$	AC Resistance of One Conductor in Ohms per 1000 Feet (MFT)
10	PROMPT	AC Resistance of One Conductor in Ohm per 1000 Feet (MFT)
11	STO 13	
12	"Re?	AC Resistance of Earth Return in Ohms per MFT
13	PROMPT	
14	STO 04	
15	+	
16	STO 05	
17	"De? ${ }^{\text {D }}$	Distance to Equivalent Earth Return Path, in Inches
18	PROMPT	Distance to Equivalent Earth Return Path, in Inches
19	STO 01	
20	"GMD?	Geometric Mean Spacing of Conductors
21	PROMPT	
22	STO 02	
23	从12	
24	"GMR? ${ }^{\text {P }}$	Geometric Mean Radius
25	PROMPT	
26	STO 03	$\mathrm{GMR}_{3 \mathrm{c}}=\sqrt[3]{\left(\mathrm{GMR}_{1 \mathrm{c}}\right)\left(\mathrm{GMD}_{3 \mathrm{c}}\right)^{2}}$
27	*	
28	3	
29	1-X	
30	YナX	
31	STO 11	
32	XEQ 00	
3.3	STO 06	
34	RCL 04	
35	"RO? ${ }^{\text {P }}$	Outside Radius of Sheath rotri
36	PROMPT	$\frac{\text { rotri }}{2}=\mathrm{pd}$
37	"RI? ${ }^{\text {PR }}$	Inside Radius of Sheath ${ }^{\text {a }}$
38	PROMPT	pd= Pitch Diameter
39	+	
40	STO 15	
41	2	Calculate $\mathrm{GMR}_{3 \mathrm{~s}}$ (Conducting Path Made Up of the 3 Sheaths
42	<	(in Parallel)
43	RCL 02	
44	XT2	
45	*	
46	3	$\sqrt{(\underline{r o t r i})\left(\mathrm{GMD}_{3 \mathrm{c}}\right)^{2}}$
47	1-x	$\sqrt{\frac{r o t r i}{2}}$
48	YTX	
49	STO 10	
50	XEQ 00	

51 STO 67

52 "RS?"
53 PROMPT
54 STO 12
55 RCL 04
$56+$
57 STO 08
58 RCL 02

Resistance of Metallic Shield or Sheath in Ohms per MFT

Calculate Mutual Reactance
$X m=0.05292 \log _{10} \frac{\mathrm{GMD}}{\mathrm{pd}}$

Display Xm in Ohms per MFT

Calculate Positive Sequence Reactance
$0.05292 \log _{10} \frac{\operatorname{GMD}_{3 c}}{\operatorname{GMR}_{1 c}}-\frac{\mathrm{Xm}^{3}}{\mathrm{Xm}^{2}-\mathrm{r}_{\mathrm{s}}}{ }^{2}$

Display Positive Sequence Reactance Ohms per MFT
Enter Cable Assembly
1/c: $\quad 1=$ Single Conductors
3/c: 3 = Three Conductor Assembly (With Common Sheath)
$94 X=Y$?
95 XEQ " 23 "
96 "Zc="
97 ARCL 05
98 "ト J" 96
100 AVIEW
101 STOP

$\begin{aligned} & 158 * \\ & 159 \end{aligned}$	$\begin{aligned} & \text { LBL } \quad 02 \\ & \because Z O: G: \cdot \end{aligned}$	If Current Return in the Ground Only: (1/c) (3/c)
160	AVIEW	
161	RCL 06	$\mathrm{ZO}: \mathrm{G}=(\mathrm{Zc}-\mathrm{Zm})+\mathrm{Zm}$
162	RCL 0.5	
163	RCL 07	
164	RCL 04	
165	XROM "C-	
.		
166 RCL X		
167	ST0 02	
168	RCL 2	
169	RCL 02	
170	RCL 07	
171	RCL 04	
172	XROM "C+	
.		
173*LBL 00		
174	RCL 01	Routine Used in Most Calculations
175 X< ${ }^{\prime}{ }^{\prime}$. $15875 \mathrm{f} / 60 \mathrm{log}_{10} \frac{\mathrm{De}}{}$
177 LOG		$.15875 \mathrm{f} / 60 \mathrm{log}_{10} \frac{\mathrm{GMR}_{3 \mathrm{c}}}{}$
178.15875		
179*		
180	RCL 14	
181 *	*	
182 R	RTN	
183 L	LBL 01	
184	-3/C 20:	3/c zo:S = If Current Returns in Sheath Only With None
	S: ${ }^{\text {¢ }}$	in Ground (3/c):
185	RVIEW	
186	RCL 12	
187	3	
188	*	
189	RCL 13	
190 191		$r c+3_{r s}+j 0.15875 \mathrm{f} / 60 \log _{10} \frac{10+1_{1}}{2\left(g m r_{3 c}\right)}$
192	XEQ - VW *	
193	RCL 15	
194	RCL 11	
195	2	
196	*	
197	-	
198	LOG	
199	RCL 14	
200	*	
201	. 15875	
202	*	
203	$\cdots \mathrm{V}=\cdots$	
204	XEQ "VW"	
205	GTO 02	
206	END	End

DIRECT CURRENT SHIELD RESISTANCE

Robert W. Parkin

FUNCTION: This Program calculates the d-c resistance of various metallic shields and sheaths at 25 degrees Celsius or at any operating temperature desired.

ACCESSORIES: HP-41 CX or HP-41CV, printer optional

OPERATING LIMITS AND WARNINGS: None

REFERENCES:

[1] IPCEA PUB. NO. P-53-426 (second edition), NEMA PUB. NO. WC 50-1976.
[2] The Calculation of the Temperature Rise and Load Capability of Cable Systems, J.H. Neher, M.H. McGrath, ibid., vol. 7b, Oct. 1957.

BASIC DEFINITION

METALLIC SHIELD: any non-magnetic metallic structure applied over the semiconducting insulation shield for the purpose of controlling and confining the electrostatic field. It may also serve as the neutral conductor.

SHIELD RESISTANCE

When the metallic shields of single conductor cables are bonded and grounded at multiple points, cable ampacities may be significantly reduced by the resultant circulating current losses. This is particularly true of spaced single conductor cables in the larger conductor sizes with lower resistance shields.

Metallic shield resistance is calculated to help determine an accurate ampacity rating of cable. The circulating current losses affect ampacity, and is influenced by the resistance of the metallic shield. This program provides a multi-source means of determining the d-c resistance of metallic shields and sheaths.

Three important observations of shield resistance on ampacity are given below:

1) For the smaller conductor sizes the variation of ampacity with shield resistance is relatively small.
2) For the larger conductor sizes, the variation of ampacity with shield resistance is relatively large.
3) The variation in ampacity with shield resistance for a given conductor size is a function of the slope of the loss ratio curve. In particular, the variation in ampacity increases as the shield resistance decreases except near the peak of the loss ratio curve. In general, the variation is greater for spaced than for trefoil configurations.

Abstract

Calculation of d-c shield resistance at 25 degrees Celsius is determined from the formulas given with program documentation; corresponding program labels are:

LABEL
TYPE SHIELD
[A] - Concentric and Longitudinal applied crimped wire shield
[B] - Helical Applied Tape Shield (Open gap or intercalated)
[C] - Helical Applied and Overlapped Tape Shield
[D] - Longitudinally Folded Corrugated Tape Shield
[E] - Lead Sheath
[F] - Aluminum Sheath (61% IACS)

Nomenclature:


```
l = Length of lay of shielding tape in inches.
Lf = Lay factor is the increase in length of wires due to helical
    application.
n = Number of wires
t = Thickness, inches
w = width, inches
ps = Electrical resistivity, ohms - circular mil/foot. The
    electrical resistivity of copper, aluminum, and lead are as
    follows:
```


Material

Resistivity at 25 C

Uncoated annealed copper	
(100\% IACS)	10.575
Coated annealed copper	
ribbons and tape (98\% IACS)	10.787
Coated annealed copper wire:	
(under 0.103 to 0.020	
incl.,97.16\% IACS)	
(Under 0.290 to 0.103 incl.,	
96.16% IACS)	10.878
Aluminum (61\% IACS)	10.989
Lead (7.84\% IACS)	

USER INSTRUCTIONS

```
                                    Size 003
STEP
INSTRUCTIONS
INPUT
DISPLAY
1. Connect printer if a hardcopy is
        desired. R/S after each display
        if no printer is attached.
2. Set printer switch to manual or
        normal mode.
3. Load programs "DCR","VW"
4. Check status
5. Initialize: XEQ "DCR"
6. Enter electrical resistivity of
Ps PS ?
        of shield component in ohms-
        circular mil/foot
7. Select type of shield/sheath
A-F
Select A-F
\begin{tabular}{ll} 
Label & Type Shield \\
A & Wire Shield \\
B & Copper Tape \\
C & Copper Tape (new) \\
D & LC Shield \\
E & Lead \\
F & Aluminum
\end{tabular}
8. Concentric and longitudinally applied crimped wire shield
9. Enter lay as multiple of diameter
\begin{tabular}{|c|c|c|}
\hline STEP INSTRUCTIONS & INPUT & DISPLAY \\
\hline 10. Enter wire diameter, inches & Dia. & DIA \\
\hline 11. Enter number of wires & \(N\) & N ? \\
\hline 12. Display \(D-C\) shield resistance in micro-ohms per foot at 25 deg \(C\) & - & \(\mathrm{RS}=\) \\
\hline 13. D-C Resistance per kilometer & & /KM \\
\hline 14. Enter operating temperture degrees Celcius & T2 & T2? \\
\hline 15. D-C Shield resistance per foot D ( T2 & - & RS \(=\) \\
\hline 16. D-C Resistance per kilometer (loop repeats for different T2 operating temperatures) & & /KM \\
\hline 8. Helically applied tape shield Open gap, butted or intercalated (essentially infinite contact resistance) & B & Select A-F \\
\hline 9. Enter mean diameter of metallic sheath or shield in inches & DSM & DSM ? \\
\hline 10. Enter length of lay of shielding tape in inches & L & L ? \\
\hline 11. Enter tape thickness in inches & T & T ? \\
\hline
\end{tabular}



\begin{tabular}{|c|c|c|}
\hline & \multicolumn{2}{|r|}{XEO C} \\
\hline \multicolumn{3}{|l|}{\(k ?\)} \\
\hline & 2.9608 & RUN \\
\hline \multicolumn{3}{|l|}{DSM?} \\
\hline & 1.4200 & RIJN \\
\hline \multicolumn{3}{|l|}{\(T\) ?} \\
\hline & .8050 & RUN \\
\hline \multicolumn{3}{|l|}{\(R S=757.0423\)} \\
\hline \multicolumn{3}{|l|}{\(/ \mathrm{KH}=2.4839\)} \\
\hline T2? & & \\
\hline
\end{tabular}

YEO D


XEQ E
DSM?
\(T ?\)
1.6300 RUN
.0890 RUN
\(R S=258.4356\)
\(/ K H=0.8479\)
T2?

\section*{DC Shield Resistance}
```

01*LBL " ICR
.
02 FIX }
03 234.5 Inferred Zero Resistance Temperture for Copper(}\lambda\mathrm{)
04 STO 02
05 "PS?"
0 6 ~ P R O M P T
07 STO 01
08 SF 27
09 "SELECT:
A-F..
10 PROMPT
11*LBL A
12 PI
13 "LAY'?"
14 PROMPT
15
1 6 ~ A T A N ~
17 cos
18 1/X
19 RCL 01
20 *
21 "DIA?*
22 PROMPT
23 从\uparrow2
24 "N?"
25 PROMPT
26 *
27
28 GTO 00
29*LBL B
30 "DSM?"
31 PROMPT
32 PI
33 *
34 "L?"
35 PROMPT
36
37
38 1
39 +
4 0 ~ S Q R T
4 1 ~ S T O ~ 0 0 ~ 0 , ~
4 2 ~ R C L ~ 0 1 ~
43 PI
44 *
45 "T?"
4 6 ~ P R O M P T
47 "W?"
4 8 ~ P R O M P T
49 *
504

```

\begin{tabular}{|c|c|}
\hline 51 & * \\
\hline 53 & RCL 00 \\
\hline 54 & * \\
\hline 55 & GTO 00 \\
\hline 56 & LBL C \\
\hline 57 & "K? \({ }^{\circ}\) \\
\hline 58 & PROMPT \\
\hline 59 & RCL 01 \\
\hline 60 & * \\
\hline 61 & *DSM? \({ }^{\text {P }}\) \\
\hline 62 & PROMPT \\
\hline 63 & "T? \({ }^{\text {P }}\) \\
\hline 64 & PROMPT \\
\hline 65 & * \\
\hline 66 & 4 \\
\hline 67 & * \\
\hline 68 & - \\
\hline 69 & GTO 00 \\
\hline 70 & LBL D \\
\hline 71 & "PF? \\
\hline 72 & PROMPT \\
\hline 73 & RCL 01 \\
\hline 74 & * \\
\hline 75 & STO 00 \\
\hline 76 & "DIS? \\
\hline 77 & PROMPT \\
\hline 78 & . 05 \\
\hline 79 & + \\
\hline 80 & P I \\
\hline 81 & * \\
\hline 82 & "B? \({ }^{\text {P }}\) \\
\hline 83 & PROMPT \\
\hline 84 & + \\
\hline 85 & 1.273 \\
\hline 86 & * \\
\hline 87 & "T? \\
\hline 88 & PROMPT \\
\hline 89 & * \\
\hline 90 & RCL 00 \\
\hline 91 & \(X<>Y\) \\
\hline 92 & - \\
\hline 93 & GTO 00 \\
\hline 94 & LBL E \\
\hline 95 & 236 \\
\hline 96 & ST0 02 \\
\hline 97 & 33.7 \\
\hline 98 & "DSM? \({ }^{\text {P }}\) \\
\hline 99 & PROMPT \\
\hline 100 & "T? \\
\hline
\end{tabular}
C = Helically Applied and Overlapped Tape Shield

Enter: Factor for Increase in Resistance
1 = New Cable
2 = Installed, Used
Mean Diameter of Metallic Sheath or Shield in Inches
Thickness Inches
\[
R s=\frac{P s K}{4 D s m \cdot t}
\]

D = Longitudinally Folded Corrugated Tape Shield Enter: Increase in Tape Shield Length Due to Corrugations (Typical Value 1.20)

Diameter Over Insulation Shield in Inches

Tape Overlap. Typical Value is 0.375 or 0.250 Inches

Thickness, Inches
\(R s=\frac{\text { Ps Af }}{1.273\left[\pi\left(D_{i s}+.05\right)+B\right] t}\)

E = Lead Sheath

Mean Diameter of Lead Sheath in Inches Thickness, Inches
-108-
\begin{tabular}{ll}
101 & PROMPT \\
102 & \(*\)
\end{tabular}\(\quad\) Rs \(=\frac{33.7}{\text { Dsm.t }}\)

103
104 GTO 00
\(105+L B L \quad F\)
106228.1

107 STO 02
1084.34

109 "DSM?"
110 PROMPT
111 - T? .
112 PROMPT
113 *
114 /
\(115+\) LBL 00
116 "RS = "
117 XEQ
11
118 STO 00
119 - 003281

Dc Resistance in
Micrchms/Foot@25
121 " \(/ \mathrm{KM}=\cdot\)
122 XEQ "VW"
123 "T2?"
124 PROMPT
Same/Kilometer
Enter Operating
Temperture T2
125 RCL 02
\(126+\)
127 RCL 02 Return Loop
12825
\(129+\)
130
131 RCL 00
132 *
133 GTO 00
134 END
Mean Diameter of
Sheath in Inches
Mhickness, Inches
\(R s=\frac{4.34}{\text { Dsm.t }}\)

Display Rs
\begin{tabular}{|l|l|l|l|}
\hline 00 & Program & & \\
\hline 01 & PS & & \\
\hline 02 & \(\lambda\) & & \\
\hline & & & \\
\hline th & & & \\
\hline \hline & & & \\
\hline & & & \\
\hline \hline & & & \\
\hline \hline \hline & & & \\
\hline & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline * & \(\underset{\text { S/C }}{\text { INTT }}\) & FLAGS SET INDICATES & Clear indicates \\
\hline & & & \\
\hline
\end{tabular}

\section*{A-C RESISTANCE OF CONDUCTORS}

Robert W. Parkin

FUNCTION: This program determines the a-c resistance of conductors including skin and proximity effects.

ACCESSORIES: HP-41 \(C X\) or \(H P-41 C V\), printer optional

OPERATING LIMITS AND WARNINGS: Largest conductor size up to 1500 kcmil.

\section*{REFERENCES:}
[1] Underground Systems Reference Book, Edison Electric Institute.
[2] Anaconda Wire and Cable Handbook, Cablec Corporation
[3] ICEA 5-66-524 NEMA Pub. No. WC-7
[4] National Bureau of Standards, Bulletin 169

\section*{A-C RESISTANCE}

A conductor offers a greater resistance to the flow of alternating current than it does to direct current. The magnitude of the increase usually is expressed as an "ac/dc ratio". This ratio of a-c resistance to d-c resistance is almost unity for small conductors but increases proportionally with conductor size and conductivity.

The reasons for the a-c resistance increase is primarily due to skin effect which results in a decrease of current density toward the center of a cylindrical conductor (the current tends to crowd the surface to the surface).

A longitudinal element of the conductor near center is surrounded by more magnetic lines of force than is an element near the rim, hence the induced counter emf is greater in the center element. The net driving emf at the center is thus reduced with consequent reduction of current density.

For close spacings such as multi-conductor cables or several cables in the same conduit, there will be an additional apparent resistance due to proximity effect,the distortion of current distribution due to the magnetic effects of other nearby currents; hysteresis and eddy current losses in nearby ferromagnetic materials and induced losses in short circuited nearby non-ferromagnetic materials.

\section*{SKIN EFFECT}

For isolated tubular conductors ranging from solid round wire to an infinitely thin tube the curves of Ewan [1] customarily are used. The skin effect ratio is shown in terms of the frequency in hertz, the conductor dimensions, inches, and the \(d-c\) resistance, ohms per 1000 feet.

For copper (and other non-magnetic materials), a parameter is given by:
\[
x=0.027678 \quad \sqrt{f / R o}
\]

Where:
\[
\begin{aligned}
f= & \text { Frequency in hertz } \\
\text { Ro }= & \text { Conductor d-c resistance at operating } \\
& \text { temperature, ohms per } 1000 \text { feet }
\end{aligned}
\]

The table on the following page is reproduced from the National Bulletin 169, and gives factors for skin effect ratio R/Ro as a function of \(x\), where Ro is the d-c (zero frequency) resistance and \(R\) is the \(a-c\) resistance.

The nonuniform cross-sectional distribution of current also affects the inductance. The inductance is less than if the current density were uniform. The table of skin effect ratios therefore lists the inductance ratio L/Lo, where lo is the inductance assuming uniform current density and \(L\) is the inductance due to a nonuniform current density.

The above formulae are independent of the number of strands for conductors up to about 1,500,000 circular mils. For larger conductors, other methods must be used for great accuracy.

\section*{PROXIMITY EFFECT}

The flux linking a conductor (current) due to nearby current distorts the cross-sectional current distribution in the conductor in the same way as the flux from the current in the conductor itself. The latter effect is skin effect and has been discussed, the former is called proximity effect. The two effects are seldom separable in cable work and the combined effects are not directly cumulative.

The result of proximity effect in 3-conductor cables ordinarily is to reduce slightly the effect of skin effect alone.

The further effect of proximity effect may be approximately calculated by:

1 - phase fp \(=4\left(\frac{G M R}{G M D}\right)^{2}\)

\(3-\) phase fp \(=6\left(\frac{G M R}{G M D}\right)^{2} \quad\left(\begin{array}{ll}R \\ R o & -1\end{array}\right)\)
Where:
\[
\begin{aligned}
& \text { R/Ro }=\text { the skin effect ratio } \\
& \text { GMR }=\text { GMR of conductors } \\
& \text { GMD }=\text { GMD of conductors } \\
& \text { fp }=\text { the factor to account for proximity effect }
\end{aligned}
\]

Then the resistance of a conductor considering only skin effect and proximity effect is：
\[
r=R_{0}\left(\begin{array}{cc}
R \\
R_{0}
\end{array} \quad+\quad f p\right)
\]

\section*{INTER－STRAND RESISTANCE}

The effect of inter－strand resistance is of additional significance with regard to a－c resistance．If the current is（or can be）confined to the individual strands，skin effect will materially be reduced below that for an effectively solid conductor．The difference may be two percent or more．

Table III－Resistance and Reactance Ratio Due to Sifin Effect
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(x\) & \(R / R\) 。 & \(L / L\) 。 & \(x\) & \(R / R\) 。 & \(L / L\) 。 & \(x\) & \(R / R\) 。 & \(L / L\) 。 & \(x\) & \(R / R\) 。 & \(L / L\) 。 \\
\hline 0.0 & 1.00000 & 1.00000 & 2.9 & 1.28644 & 0.86012 & 6.6 & 2.60313 & 0.42389 & 17.0 & 6.26817 & 0.16814 \\
\hline 0.1 & 1.00000 & 1.0000 & 3.0 & 1.31809 & 0.84517 & 6.8 & 2.67312 & 0.41171 & 18.0 & 6.62129 & 0.15694 \\
\hline 0.2 & 1.00001 & 1.00000 & 3.1 & 1.35102 & 0.82975 & 7.0 & 2.74319 & 0.40021 & 19.0 & 6.97446 & 0.14870 \\
\hline 0.3 & 1.00004 & 0.99998 & 3.2 & 1.38504 & 0.81397 & 7.2 & 2.81334 & 0.38933 & 20.0 & 7.32767 & 0.14128 \\
\hline 0.4 & 1.00013 & 0.99993 & 3.3 & 1.41999 & 0.79794 & 7.4 & 2.88355 & 0.37902 & 21.0 & 7.68091 & 0.13456 \\
\hline 0.5 & 1.00032 & 0.9998 & 3.4 & 1.45570 & 0.781 & 7.6 & 2.95380 & 0.36923 & 22.0 & 8.03418 & 0.12846 \\
\hline 0.6 & 1.00067 & 0.9996 & 3.5 & 1.49202 & 0.76 & 7.8 & 3.02411 & 0.35992 & 23.0 & 8.38748 & 0.12288 \\
\hline 0.7 & 1.00124 & 0.99937 & 3.6 & 1.52879 & 0.74929 & 8.0 & 3.09445 & 0.35107 & 24.0 & 8.74079 & 0.11777 \\
\hline 0.8 & 1.00212 & 0.99894 & 3.7 & 1.56587 & 0.73320 & 8.2 & 3.1648 & 0.34263 & 25.0 & 9.09412 & 0.11307 \\
\hline 0.9 & 1.00340 & 0.99830 & 3.8 & 1.60314 & 0.71729 & 8.4 & 3.23518 & 0.3346 & 28.0 & 9.44748 & 0.10872 \\
\hline 1.0 & 1.00519 & 0.997 & 3.9 & 1.64051 & 0.701 & 8.6 & 3.30557 & 0.32692 & 28.0 & 10.15422 & 0.10096 \\
\hline 1.1 & 1.00758 & 0.99621 & 4.0 & 1.677 & 0.686 & 8.8 & 3.37597 & 0.319 & 30.0 & 10.86101 & 0.09424 \\
\hline 1.2 & 1.01071 & 0.99465 & 4.1 & 1.71516 & 0.67135 & 9.0 & 3.4463 & 0.31257 & 32.0 & 11.56785 & \\
\hline 1.3 & 1.01470 & 0.99266 & 4.2 & 1.75233 & 0.65677 & 9.2 & 3.51680 & 0.30585 & 34.0 & 12.27471 & \\
\hline 1.4 & 1.01969 & 0.99017 & 4.3 & 1.78933 & 0.6426 & 9.4 & 3.58723 & 0.29941 & 38.0 & 12.98160 & 0.07854 \\
\hline 1.5 & 1.02582 & 0.9871 & 4.4 & 1.82614 & 0.628 & 9.6 & 3.65768 & 0.293 & 38.0 & 13.68852 & 0.07441 \\
\hline 1.6 & 1.03323 & 0.98342 & 4.5 & 1.86275 & 0.6156 & 9.8 & 3.72812 & 0.28731 & 40.0 & 14.39545 & 0.07069 \\
\hline 1.7 & 1.04205 & 0.97904 & 4.6 & 1.89914 & 0.6028 & 10.0 & 3.79857 & 0.28162 & 42.0 & 15.10240 & 0.06733 \\
\hline 1.8 & 1.05240 & 0.97390 & 4.7 & 1.93533 & 0.59044 & 10.5 & 3.97477 & 0.26832 & 44.0 & 15.80938 & 0.06427 \\
\hline 1.9 & 1.06440 & 0.96795 & 4.8 & 1.97131 & 0.57852 & 11.0 & 4.15100 & 0.25622 & 46.0 & 16.51634 & 0.06148 \\
\hline 2.0 & 1.07816 & 0.96113 & 4.9 & 2.00710 & 0.5670 & 11.5 & 4.32727 & 0.24516 & 48.0 & 17.22333 & 0.05892 \\
\hline 2.1 & 1.09375 & 0.95343 & 5.0 & 2.04272 & 0.55597 & 12.0 & 4.50358 & 0.23501 & 50.0 & 17.93032 & 0.05856 \\
\hline 2.2 & 1.11128 & 0.94482 & 5.2 & 2.11353 & 0.5350 & 12.5 & 4.67993 & 0.22567 & 80.0 & 21.46541 & 0.04713 \\
\hline 2.3 & 1.13069 & 0.93527 & 5.4 & 2.18389 & 0.51566 & 13.0 & 4.85631 & 0.21703 & 70.0 & 25.00063 & 0.04040 \\
\hline 2.4 & 1.15207 & 0.92482 & 5.6 & 2.253 & 0.4976 & 13.5 & 5.03272 & 0.209 & 80.0 & 28.5359 & 0.03535 \\
\hline 2.5 & 1.17538 & 0.91347 & 5.8 & 2.32380 & 0.48086 & 14.0 & 5.20915 & 0.20160 & 90.0 & 32.07127 & 0.03142 \\
\hline 2.6 & 1.20056 & 0.90126 & 6.0 & 2.39359 & 0.46521 & 14.5 & 5.38560 & 0.19468 & 100.0 & 35.60686 & 28 \\
\hline 2.7 & 1.22753 & 0.88825 & 6.2 & 2.46338 & & 15.0 & 5.56208 & 0.18822 & & & 0 ． \\
\hline 2.8 & 1.25620 & 0.87451 & 6.4 & 2.53321 & 0.4368 & 16.0 & & 0.17 & & & \\
\hline
\end{tabular}
\(R / R_{0}=\) Resistance ratio due to skin effect．\(\quad L_{0}=\) Inductance for uniform current density．
\(L / L_{0}=\) Inductance ratio due to skin effect．\(\quad \boldsymbol{R}_{0}=\mathrm{D}-\mathrm{C}\)（zero－frequency）resistance．
\(R=\mathrm{A}-\mathrm{C}\) resistance．
\(L=\) Inductance for nonuniform current density．
\(f=\) Frequency，cycles per second． Reproduced from National Bureau of Stand－ ards，Bulletin 169.

\section*{USER INSTRUCTIONS}
1. Connect printer if a hardcopy is desired. R/S after each display if no printer is attached.
2. Set printer switch to manual or normal mode.
3. Load programs "AC" "VW"
4. Check status
5. Initialize: XEQ "AC"
6. Enter DC resistance of conductor Rdc
\(R: d c ?\) at 25 degrees \(C\)
7. Select type metal:
\[
\begin{aligned}
& 1=\text { Aluminum } \\
& 0=\text { Copper }
\end{aligned}
\]
8. Enter operating temperature in degreess celsius
9. Display D-C resistance at operating temperture
10. Enter frequency in Hertz
11. Skin effect ratio, X

T2
-
f
- \(\quad X=\)
\begin{tabular}{|c|c|c|c|}
\hline TEP & INSTRUCTIONS & INPUT & DISPLAY \\
\hline \[
12
\] & Enter higher R/Ro (function of \(X\) ) & High & R/RO: High \\
\hline 13. & Enter lower R/Ro & Low & R/Ro: Low \\
\hline 14. & Display actual R/Ro & - & \(R / R O=\) \\
\hline 15. & Enter GMR of conductor & GMR & GMR ? \\
\hline 16. & Enter GMD & GMD & GMD ? \\
\hline \multirow[t]{3}{*}{17.} & Select type circuit: & 1 or 3 & \(\mathrm{PH}: 1 / 3\) ? \\
\hline & Single phase \(=1\) & & \\
\hline & Three phase \(=3\) & & \\
\hline & A-c resistance of conductor considering skin and proximity effects in ohms per 1000 feet & & \(\mathrm{R}: \mathrm{ac}=\) \\
\hline \[
19 .
\] & A-c resistance above in ohms per kilometer & & \(/ K M=\) \\
\hline
\end{tabular}
```

19. A-c resistance above in
ohms per kilometer
```

NOTE: R/Ro \(=\) Resistance ratio due to skin effect
\begin{tabular}{|c|c|c|}
\hline 01 & LEL "AC. & \multirow[t]{2}{*}{AC Resistance of a Conductor Considering Skin and Proximity Effects} \\
\hline 02 & FIX 4 & \\
\hline 03 & "R:de? \({ }^{\text {P }}\) & \\
\hline 04 & PROMPT & Enter D-C Resistance of Conductor at \(25^{\circ} \mathrm{C}\) \\
\hline 0.5 & STO 6a & \\
\hline 06 & "AL: 1 & Select: 1 = Aluminum \\
\hline \multicolumn{3}{|l|}{} \\
\hline 07 & \multicolumn{2}{|l|}{PROMPT \(0=\) Copper} \\
\hline 08 & \multicolumn{2}{|l|}{\(x=0\) ?} \\
\hline 09 & GTO 00 & \multirow[b]{2}{*}{Enter Operating Temperature in Degrees C} \\
\hline 10 & "T2? \({ }^{\text {P }}\) & \\
\hline 11 & PROMPT & Calculate Temperature Conversion: \\
\hline 12 & 228.1 & \\
\hline 13 & + & For Aluminum: \\
\hline 14 & 253.1 & \multirow[b]{2}{*}{\(\mathrm{R}_{2}=\mathrm{R}_{1}\left(\underline{228.1}+\mathrm{T}_{2}\right)\)} \\
\hline 15 & GTO 04 & \\
\hline 16 & LBL 90 & \(\mathrm{R}_{2}=\mathrm{R}_{1}\left(\frac{228.1}{228.1+\mathrm{T}_{1}}\right.\) \\
\hline 17 & "T2?" & \\
\hline 18 & PROMPT & For Copper: \\
\hline 19 & 234.5 & \multirow[t]{3}{*}{\(\mathrm{R}_{2}=\mathrm{R}_{1}\left(\frac{234.5+\mathrm{T}_{2}}{234.5+\mathrm{T}_{1}}\right.\)} \\
\hline 20 & \(+\) & \\
\hline 21 & 259.5 & \\
\hline 22 & \multicolumn{2}{|l|}{LBL 04} \\
\hline 23 & \multicolumn{2}{|l|}{-} \\
\hline 24 & \multicolumn{2}{|l|}{RCL 00} \\
\hline 25 & * & \\
\hline 26 & "R2:dc=" & \\
\hline 27 & XEQ "VW" & Display Dc Resistance at Operating Temperature \\
\hline 28 & STO QG & \\
\hline 29 & "HZ? & Enter Frequency in Hertz \\
\hline 30 & PROMPT & \\
\hline 31 & RCL 00 & Calculate Skin Effect Ratio \\
\hline 32 & - & \multirow[t]{3}{*}{\(x=0.027678 \sqrt{f / R_{o}}\)} \\
\hline 33 & SQRT & \\
\hline 34 & . 027678 & \\
\hline 35 & * & \\
\hline 36 & " \(\mathrm{x}=\cdots\) & Display x Parameter \\
\hline 37 & XEQ "VW" & \\
\hline 38 & FRC & \\
\hline 39 & 10 & \multirow[t]{2}{*}{Input Higher and Lower \(\mathrm{R} / \mathrm{R}_{\mathrm{o}}\) Value for Interpolation} \\
\hline 49 & * & \\
\hline 41 & \multicolumn{2}{|l|}{FRC (see table)} \\
\hline 42 & \multicolumn{2}{|l|}{10} \\
\hline 43 & \multicolumn{2}{|l|}{*} \\
\hline 44 & STO 02 & \\
\hline 45 & "R/RO: H & Enter Higher R/Ro (By X) \\
\hline IGH? & \multicolumn{2}{|l|}{} \\
\hline 46 & PROMPT & \multirow[b]{2}{*}{Enter Lower R/Ro (By X)} \\
\hline 47 & "R/RO: L & \\
\hline 0以?" & & \\
\hline 48 & \multicolumn{2}{|l|}{PROMPT} \\
\hline 49 & STO 01 & \multirow[t]{6}{*}{Take Difference and Interpolate} \\
\hline 50 & - & \\
\hline 51 & 10 & \\
\hline 52 & - & \\
\hline 53 & RCL 02 & \\
\hline 54 & * & \\
\hline
\end{tabular}


58 "R/RO=" Disŋlay Actual R/Ro

Calculate Proximity Effect
Enter Geometric Mean Radius
rac \(=R o\left(R / R o+f_{p}\right)\) and Proximity Effect

Enter Geometric Mean Spacing of the Conductors

Select Circuit: \(1=\) Single Phase
3 = Three Phase
1 - Phase \(f_{p}=4\left(\frac{\text { GMR }}{\text { GMD }}\right)^{2}(R / R o-1)\)
3-Phase \(f_{p}=6\left(\frac{G M R}{\text { GMD }}\right)^{2}(R / R o-1)\)

Resistance of Conductor Considering Skin Effect
rac in Ohms per MFT and in Ohms per Kilometer


\title{
VOLTAGE REGULATION AND VOLTAGE DROP
}

Robert W. Parkin

FUNCTION: This program determines the percent voltage drop of a line (e.g., a feeder) with respect to the receiving end voltage, and the difference between the sending end and the receiving end voltage of a section of cable.

ACCESSORIES: HP-41 CX, or HP-41 CV, printer optional.

OPERATING LIMITS AND WARNINGS: Values given apply directly for single phase lines when resistance and reactance are loop values and voltage is voltage between the lines. For three phase circuits, use the voltage to neutral and the resistance and reactance of each conductor to neutral. To obtain voltage drop line-to-line, multiply voltage drop by \(\sqrt{3}\). The percent voltage drop is the same between conductors as from conductor to ground, and should not be multiplied by \(\sqrt{3}\).

\section*{REFERENCES:}
[1] Electric Power Distribution Engineering, Turan Gonen.
[2] Anaconda Wire and Cable Engineering Handbook, Cablec Corp
[3] Standard Handbook for Electrical Engineers, Fink and Beaty.
[4] Voltage Regulation of Cables Used for Low-Voltage A-C Distribution, H.R. Searing and E.R. Thomas - AIEE Transactions, Vol. 52.
[5] Voltage Ratings for Electric Power Systems and Equipment, ANSI C84.1-1977.
[6] Westinghouse Electric Corp: Electric Utility Engineering Reference Book - Distribution Systems, vol. 3, East Pittsburgh, Pa. 1965.

\section*{BASIC DEFINITIONS}

Voltage requlation: the percent voltage drop of a line with respect to the receiving end voltage

Voltage drop: the difference between the sending end and the receiving end voltage of a line.

Nominal voltage: the nominal value assigned to a line or apparatus or a system of a given voltage class.

Rated voltage: the voltage at which performance and operating characteristics of apparatus are referred.

Service voltage: the voltage measured at the ends of the service entrance apparatus.

Utilization voltage: the voltage measured at the ends of an apparatus.

Base voltage: the reference voltage, usually 120 V .
Maximum voltage: the largest 5- min average voltage
Minimum voltaqe: the smallest 5 -min voltage
Voltage spread: the difference between the maximum and minimum voltages, without voltage dips due to motor starting.

In general, the primary objective of an electrical distribution system is to provide power users with a supply voltage compatible with their utilization equipment and freedom from interruptions. An ideal electric system provides constant voltage to all users under all loading conditions. However it is economically impractical to attempt such an ideal system approach. A common practice among utilities is to stay with preferred voltage levels and ranges of variation for satisfactory operation as set forth by the American National Standards Institute (ANSI).

Supplying either a too-high steady state voltage or a toolow steady state voltage is detrimental to the operation of electrical equipment. The nominal voltage standards for a majority of the electric utilities in the United States to serve residential and commercial customers are:
1. \(120 / 240-V\) three wire single phase
2. \(240 / 120-V\) four wire three phase delta
3. \(208 Y / 120-V\) four wire three phase wye
4. \(480 Y / 277-V\) four wire three phase wye

Voltage on a distribution circuit varies from a maximum value at the customer nearest to the source to a minimum value at the end of the circuit. The voltage limits given below are classified as "favorable zone" ranges for secondary voltage systems.


120/240-V and
240-v / 120-v
3 phase delta
126/252
\(114 / 228\)
110/220
\(\begin{array}{llll}208 Y / 120-V & \text { phase } & 218 Y / 126 & 197 Y / 114 \\ & & 191 Y / 110 \\ 408 Y / 277-V & \text { phase } & 504 Y 291 & 456 Y / 263\end{array}\)
408Y/277-V 3 phase 504 Y 291 456Y/263 440Y/254

Voltages outside of these limitations move into a tolerable or extreme-emergency zone.

Voltage regulation is often the limiting factor in the choice of either conductor type or insulation. While heat loss in the cable determines the maximum current it can carry without deterioration, it is often necessary to limit current to an even lower value because of excessive voltage drop. This problem is usually confined to high current, secondary or distribution circuits. For this reason it is advantageous to carry the primary circuit as close to the load before transforming; so that the voltage drop in the secondary runs, where most of the voltage drop occurs will be small.

The voltage drop of a cable is determined as follows:
\[
V R(\% \text { Regulation })=\frac{|V s|-|V L|}{|V L|} \times 100
\]

Where:
\[
\begin{aligned}
& V R=V o l t a g e ~ r e g u l a t i o n ~ i n ~ p e r c e n t ~ \\
& V L=V o l t a g e ~ a c r o s s ~ l o a d \\
& V s=V o l t a g e ~ a t ~ s o u r c e ~
\end{aligned}
\]

Where:
```

O = Angle by which the current lags the voltage across
the load (cos 0 = power factor of load)
R = Total a-c resistance of cable
I = Load current

```

Approximate formula for voltage drop:
\(\left(V_{s}-V L\right)=R I \cos \theta+X I \sin \theta\)

This formula is satisfactory where the power factor angle is nearly the same as the impedance angle. It is exact when they are equal, i.e.; \(\tan O=X / R\).

The National Electric Code recommends maximum voltage drops of \(3 \%\) for for power loads and \(1 \%\) for lighting or combined lighting power loads.

There are numerous ways to improve voltage regulation and keeping distribution circuit voltages within permissible limits. The complete list is given by Lokay [6] as:
1. Use generator voltage regulators
2. Application of voltage-regulating equipment in the distribution substations.
3. Applications of capacitors in the distribution substation
4. Balancing of the loads on the primary feeders
* 5. Increasing of feeder conductor size
6. Changing of feeder sections from single phase to multi-phase
7. Transferring of loads to new feeders
8. Installing of new substations and primary feeders
9. Increasing of primary voltage levels
10. Application of voltage regulators out on the primary feeders
11. Application of shunt capacitors on the primary feeders
12. Application of series capacitors on the primary feeders

The selection of a technique or techniques depends upon the particular system requirement.
* Using a larger conductor reduces the resistance and is effective in the case of direct current or unity - power- factor \(a-c\). In general, however, power distribution is accomplished with \(a-c\) at power factors less than unity. In this case, it is necessary also to consider reducing the reactance. This is accomplished by reducing the conductor spacing (for open wiring) or by dividing circuits (in conduit), e.g.; by using twin circuits, of \# 4/0 AWG instead of a single circuit 500 kcmil and properly arranging conductor configuration, it is possible to reduce the voltage regulation about \(30 \%\).

Practically, where voltage regulation is important, it is desirable to avoid the use of spaced open wiring and to consider divided circuits for conductor sizes over 500 kcmil.

\section*{USER INSTRUCTIONS}

Size: 004
```

STEP INSTRUCTIONS INPUT DISPLAY

1. Connect printer if a hardcopy is
desired. R/S after each display
if no printer is attached.
2. Set printer switch to manual or
normal mode.
3. Load programs "VR" VW"
4. Check status
5. Initialize: XEQ "VR"
6. Enter Voltage at load
7. Enter total a-c resistance
of cable
8. Enter load current
9. Enter angle by which current
lags the voltage across
the load, degrees
10. Enter total Reactance of
conductor
11. Voltage at source
12. Voltage drop in percent
```

VL

Rac
Rac?

I
angle
\(x\)
\(x\) ?
10. Enter total Reactance of conductor
11. Voltage at source
12. Voltage drop in percent

INPUT
DISPLAY

\section*{Voltage Regulation}
```

G1+LBL "VR"
02 "VL?"
0 4 ~ 5 T 0 ~ 0 0 , ~
05 "Rac?"
06 PROMPT
07 "I?"
08 PROMPT
09 STO 01
10 *
11 "\&?" Enter Angle by Which the Current Lags the Voltage
12 PROMPT
13 STO 62
14 C0S
15 RCL 0G
16*
17+
18 <゙ご
19 ST0 03
20 "x?"
2 1 ~ P R O M P T ~ T
22 RCL 01
23*
24 RCL 02
25 SIH
26 RCL DO
27 *
28+
<9+2
30 RCL 03
31+
32 SQRT
33 "V5="
34 XEQ "YW"
35 RCL 00
36 -
37 "V:DROP=
"
38 XEQ "VW" Voltage Drop , Line to Neutral in volts (VS - VL)
39 100
40 *
4 1 ~ R C L ~ B C ~
42
43 "Y'R="
44 <EQ "WW"
4 5 ~ E H D

```


\title{
Inductive reactance and inductance in cables \\ Robert W. Parkin
}

FUNCTION: This program determines the series inductive reactance to neutral of cables in conduit, direct bury, or in air for single and three phase circuits, and the inductance in cable for single and multi-conductor cables.

ACCESSORIES: HP-41 CX, or HP-41 CV, printer optional.

\section*{REFERENCES:}
[1] Aluminum Electrical Conductor Handbook
[2] Anaconda Wire and Cable Engineering Handbook,
[3] Electric Power Transmission, Woodruff. Standard Handbook for Electrical Engineers, Fink and Beaty.

INDUCTIVE REACTANCE: The inductance and consequently, the inductive reactance of a cable is a function of its geometry and its physical relationship to other cables. General equations and configurations are given with program documentation.

Reactance depends on:
```

1 - Size of conductor
2 - Spacing between it and other current carrying conductors
3 - Position of conductors in relation to other conductors
4 - Frequency of current
5 - Presence of magnetic materials close to the conductor

```

Reactance is reduced by:
1 - Placing conductors close together
2 - Non-magnetic raceways (instead of steel)
Geometric Mean Radius (or self GMD) of Solid and Stranded Conductors can be determined by the following table. The GMR is merely a mathematical convenience and is not an intrinsically useful physical concept.
\begin{tabular}{ll} 
Conductor Stranding & GMR,mils \\
solid & 0.3894004 d \\
7-wires & 0.3627837 d \\
12-wire & 0.3803203 d \\
19-wire & 0.3788277 d \\
27-wire & 0.3866393 d \\
37-wire & 0.3840227 d \\
61-wire & 0.3860303 d \\
91 -wire & 0.3871463 d \\
\(127-\) wire & 0.3877845 d \\
\(169-\) wire & 0.3881861 d \\
217-wire & 0.3884543 d \\
271-wire & 0.3887594 d
\end{tabular}

Where: d \(=\) diameter of conductor, mils

Geometric Mean Distance (GMD) Equivalent conductor spacing.
1. Equilateral Triangular

2. Right Angle Triangle

3. Unequal Triangular

4. Symmetrical Flat

GMD \(=1.26 \mathrm{~A} \quad A=B\)

5. Unsymmetrical Flat


Program is based on the following formulas, symbol notations are given with program documentation.
1. Inductive reactance in ohms per 1000 feet at loop for single phase two conductor concentric URD cable, 60 hertz.
\[
X L=0.5292 \log _{10}(D 2 / D 1)+0.0115\left(1 / 2+D 1^{2} / 3 * D 2^{2}\right)
\]
2. Inductive reactance ohms to neutral per 1000 feet for URD and UD cables direct bury or in non-magnetic duct, three phase, 60 hertz.
\[
X L=0.05292 \log _{10} G M D / G M R
\]
3. Inductive reactance in ohms per 1000 feet of circuit for single phase (two wire) circuit direct bury in air or nonmagnetic duct.
\[
X L=0.10584 \log _{10} S / G M R
\]

Note 1: For frequencies other than 60 hertz, multiply by f/60.
Note 2: For magnetic conduit implement the following corrections:

Single conductor - Increase 50\% for magnetic effect and random lay

Multiple cables - Use the following multiplying factors for round cables:

Conductor size
kcmil -up to
Multiplying factor
\begin{tabular}{ll}
250 & 1.149 \\
300 & 1.146 \\
350 & 1.140 \\
400 & 1.134 \\
500 & 1.122 \\
& \\
600 & 1.111 \\
700 & 1.100 \\
750 & 1.095
\end{tabular}

INDUCTANCE: The inductance relationships used in predicting the performance of power transmission systems often involve the effects of stranded and bundled conductors operating in parallel as well as single phase systems coordinated with polyphase systems. The current carrying conductors of a phase are considered mathematically as a cylindrical shell of current of radius called self geometric mean radius of the phase or GMR. The mutual distance between the current in a particular phase and the other (return) currents in the other phase are replaced by the mutual geometric mean distance to the return or GMD. The inductance of all phases may be balanced by transposing the conductors over the length of the transmission line, so that each phase occupies all positions equally in the length of the line. Inductance in multi-conductor cables is essentially the same as for other arrangements of conductors; the equation is:
\[
L=0.1404 \log _{10} \quad \frac{G M D}{G M R} \times 10^{-3}
\]

Where: \(L=\) Inductance in henries to neutral per 1,000 feet
GMD \(=\) Distance between centers of conductors, inch
GMR = GMR of conductor, inch

MUTUAL INDUCTANCE: When two independent circuits are in proximity to each other, a change in current in one is accompanied by a change in its magnetic field, which induces an electromotive force in the other. In single conductor, metallic-covered cables, current flowing in the conductor will produce, by mutual conductance, an emf in the sheath. If by any means the sheath forms part of a closed circuit, current will flow in the sheath. The inductance in the sheath is expressed by:
\[
L_{m}=0.1404 \quad \log _{10} \frac{G M D}{}
\]

Where :
\[
\begin{aligned}
& \text { Lm }=\text { Inductance in henries to neutral per } 1,000 \text { feet } \\
& \text { rm }=\text { Mean sheath radius, inch }
\end{aligned}
\]

\section*{USER INSTRUCTIONS}

Size: 005
MODE: Single Phase, Concentric Neutral Wires

STEP
INSTRUCTIONS
INPUT
DISPLAY
1. Connect printer if a hardcopy is desired. R/S after each display if no printer is attached.
2. Set printer switch to manual or normal mode.
3. Load programs "XL","VW","AV"
4. Check status
5. Initialize: XEQ "XL"
6. Enter Geometric mean radius of GMR GMR? Inch center conductor, inches.
7. Select Type Circuit:

1 = Single phase
3 = Three phase
8. Are concentric neutrals used?

Y = Yes
\(\mathbf{N}=\mathbf{N o}\)
9. Enter diameter of conductor, inches
10. Enter diameter under neutral wires, inches
11. Inductive reactance in ohms
- XL/MFT= per 1000 feet
12. Inductive reactance in ohms per kilometer

Phase:1/3?

CNW? Y?N

D \(1=\) ?
\(\mathrm{D} 2=\) ?
\(X L / K M=\)

\section*{MODE: [Single Phase, Without Concentric Neutral Wires]}
\begin{tabular}{|c|c|c|c|}
\hline STEP & INSTRUCTIONS & INPUT & DISPLAY \\
\hline \multirow[t]{3}{*}{8.} & Are concentric neutrals used? & \(N\) & CNW? \(\mathrm{Y} / \mathrm{N}\) \\
\hline & \(Y=Y E S\) & & \\
\hline & \(N=N 0\) & & \\
\hline \[
9
\] & Enter spacing between conductor centers, inches & 5 & \(S=\) ? Inch \\
\hline 10. & Inductive reactance per 1000 feet & & \(X L / M F T=\) \\
\hline 11. & Inductive reactance per kilometer & & \(X L / K M=\) \\
\hline
\end{tabular}

\section*{MDDE: [Three Phase]}
```

9. Enter geometric mean
GMD
GMD?: Inch
Distance of cables, inches
10. Inductive reactance per 1000 feet
11. Inductive reactance per kilometer
```
-
```

$X L / M F T=$
$X L / K M=$

```

\section*{USER INSTRUCTIONS}

MODE: Single and Multiconductors

STEP INSTRUCTIONS INPUT DISPLAY
1. Connect printer if a hardcopy is desired. R/S after each display if no printer is attached.
2. Set printer switch to manual or normal mode.
3. Load programs "LL", "VW"
4. Check status
5. Initialize: XEQ "LL"
6. Enter Geometric Mean Distance

GMD

1 or 0
MC: \(1 / 1 C: 0\)
\(1=\) Multiconductor
\(0=\) Single Conductor
8. Enter GMR, inches

GMR
GMR?
9. Display Inductance in henries to neutral per 1000 feet.
[For Multiconductors]
7. Select O
8. Enter Mean Sheath radius in inches
9. Display Inductance in henries

0

Rm
MC: 1/1C: O

RM? to neutral per 1000 feet



Inductance in Cable
\(01+\) LBL "LL"
02 GMD?
03 PROMPT
04 STO 日G
05 MC: 1

C: \(0^{-}\)
06 PROMPT
Q7 \(x=0\) ?
08 GTO 00
09 -GMR? .
10 PROMPT
11 -LBL 01
12 RCL 00
\(13 x<>\gamma\)
14
15 LOG
16.1404

17 *
181 E-3
19 *
20 ENG 3
21 "L="
22 XEQ "VW."
23 STOP
\(24 *\) LBL 00
25 "RM?"
26 PROMPT
27 GTO 01
28 .END.
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{4}{|c|}{ ASSIGNMENTS } \\
\hline FUNCTION & KEY & FUNCTION & KEY \\
\hline & & & \\
\hline
\end{tabular}
-138-

\title{
DIELECTRIC CHARACTERISTICS OF CABLES
}

Robert W. Parkin

PROGRAM: "DC"
FUNCTION: This program covers the general dielectric
characteristics associated with insulated power cables.
Capacitance, Charging Current, Dielectric Loss, capacitive
Reactance, and Insulation Resistance of the cable are calculated.
The values derived can be applied in the other electrical
programs.

ACCESSORIES: HP-41 CX or CV, printer optional

OPERATING LIMITS AND WARNINGS: None

REFERENCES: CABLEC Corp, Essex Underground Cable Engineering Handbook, Bartnikas/McMahon, Engineering Dielectrics.

\section*{PROGRAM DESCRIPTION AND PARAMETERS}

Many factors affect the dielectric properties of an insulated cable; among them being the permittivity (dielectric constant), power factor, leakage current, dielectric strength, impulse strength and operating temperature. Both Cross-Linked Polyethylene (XLPE) and Ethylene Propylene Rubber (EPR) insulating compounds exhibit good electrical properties. However, EPR insulated cables have higher dielectric losses proportional to rated circuit voltage as compared to XLPE.

DIELECTRIC CONSTANT: The permittivity, dielectric constant, or specific inductive capacity of any material used as a dielectric is equal to the ratio of a materials capacitance to the capacitance using a vacuum as the dielectric medium. The permittivity of dry air is approximately equal to one. The dielectric constant is an indicator of chemical or physical changes of the dielectric material; values are given with program documentation.

DIELECTRIC STRENGTH: The ultimate dielectric strength of a material is determined by the voltage at which it breaks down. The stress in volts/mil at which this occurs depends on the thickness of the insulation, temperature, frequency, waveform of the testing voltage and the method of application. The time for which the voltage is applied is important; most dielectrics will withstand a much higher voltage for brief periods. Dielectric strength is reduced when it is operated at high temperatures or if moisture is present.

POWER FACTOR: (or Tangent Delta) is a measure of the loss angle in the dielectric. The cable dielectric is an imperfect capacitor of high resistance and capacitive reactance. Therefore, the current passing through the dielectric leads the voltage across the dielectric by almost 90 degrees. The cosine of this angle is the power factor. Typical power factor values for dielectrics are:

Material

\section*{Power Factor}
\begin{tabular}{ll} 
HMWPE & \(0.01 \%\) \\
XLPE & \(0.1 \%\) \\
TR-XLP & \(0.5 \%\) \\
EPR & \(1.0 \%\)
\end{tabular}

Power factor varies with temperature, voltage, water absorption and age of insulation, and is used to determine the dielectric loss dissipated as heat in the insulation, expressed in watts/ft. of cable.

CAPACITANCE: from the viewpoint of electrokinetics is the property of an electric system comprising insulated conductors and associated dielectrics which determines for a given time rate of change of potential difference between th conductors, the displacement currents in the system.

Capacitance in cable can be calculated by:
\(C=\frac{7.354 \times 10^{-3} \times K}{10}\)

10

Where:
\[
\begin{aligned}
& C=\text { Capacitance in microfarads per } 1000 \mathrm{ft} . \text { (MFT) } \\
& K=\text { Dielectric Constant } \\
& D=\text { Diameter over Insulation } \\
& d=D i a m e t e r ~ o v e r ~ c o n d u c t o r ~
\end{aligned}
\]

CHARGING CURRENT: Where extremely long primary circuits are involved (apprx. 10 miles or more), lower cable capacitance may be required to reduce the 60 cycle charging currents; which could account for an appreciable voltage drop. This can be accomplished by increasing the cable insulation thickness, thereby reducing cable capacitance. The charging current can be calculated as follows:


Where:
\(I=C h a r g i n g\) current in amperes
\(E=\) Circuit voltage to ground, \(k V\)
\(f=\) Frequency in cycles per second
\(C=\) Electrostatic Capacitance in microfarads

DIELECTRIC LOSS: The power dissipated by a dielectric is computed from the general formula:
\[
W=2 P I f K C n e^{2} F p \times 10^{-6}
\]

Where:
```

K = Dielectric Constant
f = Frequency, cycles per second
C = Capacitance of insulation per foot, one conductor
to neutral when K = 1, in micro-microfarads
n = Number of conductors in cable
e = Voltage, conductor to neutral, kV
Fp = Power factor of insulation, expressed as decimal
W = Dielectric Loss in watts/ft.

```

INSULATION RESISTANCE: Is the volume d-c resistance measured in terms of surface resistivity in megohms per 1000 feet at 15.6 degrees \(C\). It is useful in estimating leakage current when d-c proof testing cables after installation.
```

R = k Log D/d

```

Where:
```

R = Insulation Resistance in Megohms/MFT
k = k constant (see table with program)
D = Diameter over insulation
d = Diameter over conductor

```

\section*{USER INSTRUCTIONS}
1. Connect printer if a hardcopy is desired. R/S after each display if no printer is attached.
2. Set printer switch to manual or normal mode.
3. Load programs "DC","VW"
4. Check status
5. Initialize: XEQ "DC"
6. Enter dielectric constant
e
7. Enter diameter over insulation

D
\(d\)
9. Capacitance in Microfarads/MFT
10. Capacitance in Microfarads/km
11. Enter voltage to ground, \(k V\)
12. Charging current in Amperes/MFT
13. Enter power factor as decimal

Vg
\(d ?\)
e?

D?
\(C: M F T=\)
\(C: / K M=\)

Vg?
AMPS =
\(N ?\)
\(W / F T=\)
\(x \subset=\)
\(K\) ?
18. Insulation Resistance in Megohms/MFT © 15.6 degrees \(C\).

\section*{Dielectric Characteristics}
\begin{tabular}{|c|c|c|}
\hline & LBL "IIC" & \\
\hline 02 & FIX 4 & \multirow[t]{2}{*}{*Enter Dielectric Constant} \\
\hline 0.3 & " \(\begin{aligned} \\ \\ \\ \end{aligned}\) & \\
\hline 04 & PROMPT & \\
\hline 0.5 & STO 01 & \\
\hline 06 & . 007354 & \\
\hline 07 & * & \\
\hline 08 & "D? \({ }^{\text {P }}\) & Enter Diameter Over \\
\hline 09 & PROMPT & Insulation \\
\hline 16 & "d? \({ }^{\text {P }}\) & \\
\hline 11 & PROMPT & Enter Diameter Over \\
\hline 12 & - & ESS \\
\hline 13 & LOG & C \(7.354 \mathrm{x} 10^{-3} \mathrm{x} \in\) \\
\hline 14 & STO 00 & \(C=\frac{109}{\log } \mathrm{D} / \mathrm{d}\) \\
\hline 15 & \(\checkmark\) & \(\mathrm{log}_{10} \mathrm{D} / \mathrm{d}\) \\
\hline 16 & ST0 03 & \\
\hline 17 & "C:MFT= " & \\
\hline 18 & XEQ "VW" & Capacitance in Micro- \\
\hline 19 & 3.281 & farads/1000 Feet \\
\hline 20 & * & \\
\hline 21 & "C: \(/ K M="\) & Capacitance in Micro- \\
\hline 22 & XEQ "VW" & farads/Kilometer \\
\hline 23 & "VG? \({ }^{\text {P }}\) & \\
\hline 24 & PROMPT & Enter Circuit Voltage \\
\hline 25 & STO 02 & to Fround in KV \\
\hline 26 & 376.99 & (2Tヶ) @ 60Hz \\
\hline 27 & * & \\
\hline 28 & RCL 03 & \\
\hline 29 & * & \\
\hline 30 & 1 E3 & \(2 \pi f \mathrm{cVg}\) \\
\hline 31 & \(\checkmark\) & 1000 \\
\hline 32 & " \(\mathrm{AMPS}={ }^{\text {e }}\) & \\
\hline 33 & XEQ "VW" & Charging Current in \\
\hline 34 & 7.354 & Amperes/MFT \\
\hline
\end{tabular}
* Typical Values of \(\epsilon\) (SIC)

PVC
3.5-8.0

EPR
2.8-3.5

Polyethylene
2.3

XLPE
2.3-6.0
\begin{tabular}{|c|c|c|}
\hline 35 & RCL 00 & C, When \(\epsilon=1\) \\
\hline 36 & , & \\
\hline 37 & "PF? \({ }^{\text {P }}\) & Enter Power \\
\hline 38 & PROMPT & Factor of Di- \\
\hline 39 & * & electric as a \\
\hline 40 & 376.99 & Decimal \\
\hline 41 & * & \\
\hline 42 & "N? & Enter Number of \\
\hline 43 & PROMPT & Conductors in \\
\hline 44 & * & Cable \\
\hline 45 & RCL 02 & \\
\hline 46 & ※个2 \(\mathrm{W}=\) & \(2 \pi f \in\) Cne \({ }^{2} \mathrm{P} \times 10^{-6}\) \\
\hline 48 & RCL 01 & \\
\hline 49 & * & \\
\hline 50 & 1 E-6 & \\
\hline 51 & * & \\
\hline 52 & "W/FT= \({ }^{\text {c }}\) & Dielectric Loss \\
\hline 53 & XEQ "VW" & in Cable Insulation \\
\hline 54 & 376.99 & in Watts/Foot \\
\hline 55 & RCL 03 & \\
\hline 56 & * & \\
\hline 57 & 1/X & \(\mathrm{X}=-\) \\
\hline 58 & CHS & \(\mathrm{C} \quad \overline{2 \pi \zeta} \mathrm{C}\) \\
\hline 59 & "Xc= " Cap & pacitive Reactance \\
\hline 60 & XEQ "VW & \\
\hline 61 & "K? & Enter K Constant \\
\hline 62 & PROMPT & For the Insulation \\
\hline 63 & RCL 00 & For the Insuiation \\
\hline 64 & * & \\
\hline 65 & FIX 0 & \\
\hline 66 & - IR = " & Insulation Resis \\
\hline 67 & XEQ "VW. & tance in Megohms \\
\hline 68 & END & @ \(15.6{ }^{\circ} \mathrm{C}(60 \mathrm{~F})\) \\
\hline
\end{tabular}
\[
\begin{aligned}
& I R= K \log _{10} \mathrm{D} / \mathrm{d} \\
& \mathrm{~K}= \text { Specfic Insulation } \\
& \text { Resistance in Meg- } \\
& \text { ohms } / 1000 \\
& \text { Typical Values of } K \\
& \hline
\end{aligned}
\]

Synthetic Rubber, Heat and
Moisture Resisting 75C...... 2000
EP Insulation................... 20000
Polyethylene. . . . . . . . . . . . . . . . 50000
PVC. . . . . . . . . . . . . . . . . . . . . . . . . . . 2000
Crossed Linked Polyethylene... 20000

XEQ "DC"
e?
\(2.3000 \quad \begin{array}{r}R \\ U N\end{array}\)
D?
1,080.0000 RUN
\(d ?\)
392.0000

RUN
\(C: M F T=0.0 .38\)
4
\(C: / K M=0.1261\)
YG?
AMPS= 0.2926
PF?
. 0910 RUN
N? 1.8909 RUN
\(\mathrm{W} / \mathrm{FT}=0.0059\)
\(x_{c}=-0.0690\)
k ?
20,000.0000 RIJN
IR \(=8,803\).

\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{4}{|c|}{ ASSIGNMENTS } \\
\hline FUNCTION & KEY & FUNCTION & KEY \\
\hline & & & \\
\hline
\end{tabular}

\section*{DATA REGISTERS}


\section*{Section Two}

\section*{Polymer Insulated Cable Design}

\section*{SOLID DIELECTRIC CABLE DESIGN}

Robert W. Parkin

PRQGRAM: "CD"

FUNCTION: This program designs control, secondary, and Mediumhigh voltage power distribution cables rated from 600 V to 138 kV . Outer diameters, component thicknesses, and weights are displayed in accordance with industry standards and codes, i.e.; AEIC, ICEA, NEMA, UL, NEC, EPRI, AND IEEE. Original dimensions can be employed for custom cable designs. Drawings, tables, and example cables specifications are included in this section.

ACCESSORIES: HP-41 CX, or HP-41 CV model with extended memory functions module, printer optional, recommend card reader or wand to load in data.

OPERATING LIMITS AND WARNINGS: Enter AWG sizes \(1 / 0,2 / 0,3 / 0\), and \(4 / 0\) as \(10,20,30\), or 40 . Maximum number of wires in control cables is 20 wires per cable. System voltage adders are incorporated up to 69 kV , if above 69 kV adders can be entered manually.

REFERENCES: are given in back

\section*{PROGRAM DESCRIPTION AND PARAMETERS}

This program covers the construction and design of cables for use on the following Utility and Industrial Systems:
1) Medium Voltage Primary Distribution (5-138 kV)
2) Low Voltage Secondary Distribution ( 600 V )
3) Control and Instrumentation (0-2000 V)

The user should recognize that many options exist and should consider all circuit parameters in the selection and design of the cable. As a minimum, the following system characteristics should be specified in cable specifications assuming a 60 hertz \(a-c\) circuit:
1) Normal operating voltage between phases or, if direct current, between conductors.
2) Number of phases and conductors. If series street lighting, give the open circuit voltage and state whether system is operated with or without protection.
3) Cable insulation level ( \(100 \%\) or \(133 \%\) ) or grounded or ungrounded circuit.
4) Minimum temperature at which cable will be installed.
5) Maximum conductor temperatures for normal (continuous), emergency, and short circuit operation.
6) Description and conditions of installation.

The following component thicknesses and diameters are displayed in accordance with AEIC and ICEA: center conductor; strands and diameter, extruded strand and insulation shield, and outer jackets over single or multi-conductor assemblies. The user has the option of overriding any industry standard value and entering original input values.

This allows the designer to construct an accurate and complete cable in accordance with industry standards or internal specifications.

\section*{SPECIFICATIONS}
1. Association of Edison Illuminating Companies (AEIC) 51 East St., New York, N.Y. 10017
\begin{tabular}{ll} 
CS5-87 (XLPE) & \(5-35 \mathrm{kV}\) \\
CS6-87 (EPR) & \(5-69 \mathrm{kV}\) \\
CS7-87 (XLPE) & \(46-138 \mathrm{kV}\)
\end{tabular}

Covers: Shielded Power Cables for outside plant utility service. Outlines qualification tests for cable core and insulation, with the addition of a thermomechanical type test for jacketed cables to determine electrical performance characteristics.
2. Insulated Cable Engineers Association (ICEA)

National Electrical Manufacturers Association (NEMA) 2101 L Street, N.W., Washington D.C. 20037
\begin{tabular}{ll} 
S-66-524 (XLPE) & NEMA WC-7 \\
S-68-516 (EPR) & NEMA WC-8 \\
S-61-402 (PE) & NEMA WC-5
\end{tabular}

Covers: Processes, materials, properties and testing of power cables rated from 0 through 35 kV . NEMA standards are adopted in the public interest and are designed to eliminate misunderstandings between the manufacturer and the purchaser and to assist the purchaser in selecting and obtaining the proper product for its particular need.

\section*{SPECIFICATIONS}
3. Underwriters Laboratories (UL) 1285 Walt Whitman Road, Melville, L.I., N.Y. 11747

UL 1072 (XLPE \& EPR)

Note: UL is a nationally recognized product testing and certifying organization.

1072 Covers: Processes, materials, properties and testing of shielded and non-shielded cable rated 5 - \(35 k V\), with emphasis on adequate safeguards for personnel and property. Type MV-90, MV-75, MC cable, "Sunlight Resistant", "For CT Use", and "Oil Resistant" cables included; these do not cover URD/UD power cables that have concentric neutral wires.
4. United States Department of Agriculture Rural Electrification Administration Washington D.C. 20250

REA 50-70 (U-1)
REA U-2 ( 600 V Underground Cable)

REA maintains a system of bulletins that contains construction standards and specifications for materials and equipment which are applicable to electric system facilities constructed by REA electric borrowers in accordance with the REA loan contract.

Covers: REA Bulletin 50-70 (U-1) is the REA specification for Primary Underground Power Cable rated 15 kV and 25 kV . It contains REA's requirements relative to the purchase of underground power cables by REA electric borrowers. The requirements in bulletin 50-70 (U-1) are minimum requirements and are based primarily on specifications of national standard organizations, i.e., AEIC and ICEA.

\section*{SPECIFICATIONS}

\section*{5. The National Electric Code (NEC)}

Covers: \(0-35 \mathrm{kV}\) wire and cable, and is recognized as the legal criterion of safe electrical design and installation.

Note: Any wire or cable to be used in a NEC installation must carry a listing from a nationally recognized laboratory, of which UL is most predominant. When a cable type from a manufacturer is submitted to UL for testing, and passes the appropriate tests, it is assigned a specific listing which designates the type of installation in which the cable may be used. The most common UL standards and types for \(600 V\) - \(2000 V\) rated cables are given below:

Cable Listing
UL Reference Pub. Voltage
Cable Type
\begin{tabular}{|c|c|c|c|}
\hline USE & 854 & 600 V & Underground Service \\
\hline UF & 493 & 600 V & Underground Feeder \\
\hline NM & 719 & 600 V & Nonmetallic sheathed \\
\hline TC & 1277 & 600 V & Tray cable \\
\hline MC & 1072 & \(600 \mathrm{~V}-35 \mathrm{kV}\) & Metal Clad \\
\hline RHH (90 C) & 44 & 600V-2 kV & Heat resistant rubber \\
\hline RHW (75 C) & 44 & 600V-2 kV & Moisture and heat resistant rubber \\
\hline THW (75 C) & 83 & 600 V & Moisture and heat Resistant thermoplastic \\
\hline THHN (90 C) & 83 & 600 V & Heat resistant TP \\
\hline XHHW (90 C) & 44 & 600 V & Moisture and heat Resistant XL polymer \\
\hline VW-1 & 44 & 600 V & Pass vertical flame test \\
\hline
\end{tabular}

\section*{SPECIFICATIONS}

The following summary of NEC letter-designations used for describing insulations and cable constructions may be helpful for understanding specifications that include NEC abbreviations. This summary relates only to power cables of the usual kinds. There are limitations and exceptions, so the abbreviations must be used with caution. Refer to NEC for full information.

\section*{INSULATION MATERIALS}

\section*{HEAT-RESISTANT QUALITY}
```

R = Rubber (natural or synthetic) H = Suitable for 75C
T = Thermoplastic }\quadHH=\mathrm{ Suitable for 90C
(except XHHW dry)
X = XLPE,i.e., XHHW

```
FEP= Fluorinated ethylene
    propylene
Without "H" = Suitable for
60C.

\section*{MOISTURE AND OIL RESISTANT QUALITY}
```

Without "W"= Usually suitable for dry locations.
W = Usually suitable for wet and dry locations.
$M=$ Usually suitable for oily conditions (machine-tool
circuits).

```
Do not confuse with "M" for metal as part of MC (metal-
clad).

Note: Listed separately by Underwriters Laboratories (UL) and governed by separate articles in the National Electric Code, AC and MC cables overlap a great deal both structurally and functionally. The numbers and sizes of conductors permitted in MC cable completely overlap and include the range permitted in AC cable. AC cable typically has 2,3 or 4 copper conductors in sizes ranging from 14 AWG through 1 AWG. MC cable may have multiple conductors, commonly from 18 AWG (copper) or 6 AWG (aluminum) up to 2000 kcmil.

\section*{CABLE DESIGN AND MATERIALS}

Power, control or instrumentation cables use similar designs and materials determined by operating voltage, insulation level, installation conditions, wet or dry locations etc.
boov, low voltage power cables are generally rated at 600 V regardless of the use voltage, whether 120,240,277,480, or 600V. The selection of 600 V power cable is oriented more to physical rather than to electrical service requirements. Resistance to forces such as crush, impact, and abrasion becomes a predominant factor, although good electrical properties for wet locations are also needed.

Material Data for components utilized by these programs are required only if weights are desired. Set flag os activities "weight mode" and will execute weight modules "WGT" and "SG" which require the specific gravity of extruded components.

A generalized specific gravity table for common compounds used in the industry today is given below.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{INSULATIONS:} & EPR & & 1.19 \\
\hline & XLPE & UC 4201 & 0.92 \\
\hline & TRXLP & UC 4202 & 0.92 \\
\hline \multirow[t]{2}{*}{SHIELDS:} & ESS & UC 0581 & 1.14 \\
\hline & EIS & UC 0691 & 1.14 \\
\hline \multirow[t]{3}{*}{METALS: \({ }^{* *}\)} & LEAD & & 11.37 \\
\hline & COPPER & & 8.89 \\
\hline & Aluminum & & 2.703 \\
\hline \multirow[t]{4}{*}{JACKETS:} & pVC & & 1.35 \\
\hline & LDPE & & 0.93 \\
\hline & HDPE & & 0.96 \\
\hline & SCPE & UC 7707 & 1.12 \\
\hline
\end{tabular}

\footnotetext{
* When worked and annealed
** Hard Drawn
}

\section*{CONDUCTORS}

\section*{Program Selection of Conductors}

Select type of phase conductor:
Label Conductor Type

\section*{A Solid Aluminum}

B Compact Class B strand
C Compressed Class B strand
```

Input the conductor in kcmil or AWG size ; the diameter and

```
number of strands per conductor are then displayed.

NOTE: \# 1/0 Input as 10
\# 2/0 Input as 20
\# 3/0 Input as 30
\# 4/0 Input as 40
Any conductor diameter not stored in the program can be entered manually (in inches).

\section*{CONDUCTOR PROPERTIES}

Copper and aluminum are the metals employed for the transmission and distribution of electrical energy.

COPPER: Copper is the best practical conductor of heat and electricity. When used as conductors for underground cable it is soft-drawn - annealed, and can be either uncoated (bare) or tin or lead alloy coated per ASTM B 33 or B 189. When metal coatings are applied to copper the electrical resistance of the wire or strand is increased.

The electrical properties of concern are electrical resistivity and conductivity. The volume resistivity of annealed bare copper is 10.371 ohms cir-mil/ft. at \(20^{\circ} \mathrm{C}\). The resistivity of metal coated copper varies according to wire diameter and the temperature coefficients of resistance.

ALUMINUM: Aluminum is widely used and consists of 1350 EC Alloy available as full hard per ASTM B23O and intermediate tempers per ASTM B609:

TEMPER DESIGNATION
[1]
H24
H26 annealed 3/4 hard
H14 drawn \(1 / 2\) hard
H16 drawn 3/4 hard
H19 drawn full hard
Its conductivity is about two-thirds that of copper. Compared with a copper wire of the same physical size, aluminum wire has \(61 \%\) conductivity of copper IACS., \(45 \%\) of the tensile strength, and \(33 \%\) of the weight. An aluminum conductor must be 100/61 = 1.64 times as large as copper wire in cross section to have the same conductivity. Equivalent Aluminum AWG size are two sizes larger than copper i.e. \#4/O AWG aluminum is equivalent to a \# 2/0 AWG copper. This does not apply to kemil sizes.

The volume resistivity of hard drawn aluminum is 17.002 ohms cmil/ft.

\section*{Conductor Classes}

Conductors are classified as solid or stranded. A solid conductor is a single conductor of solid circular section. (Commonly sized \(1 / 0\) and below for aluminum). A stranded conductor is composed of a group of wires helically applied around each successive layer in opposite lay starting from one central wire to six, to 12 , to \(18 . . . e t c\). This progression of six additional wires in each layer will produce a conductor of any diameter. The same size wire is used in each layer. This method makes the cable as flexible as possible thus facilitating bending. The weight and resistance increase of a stranded conductor versus a solid is approximately \(2 \%\).

The nominal direct current resistance in ohms per 1000 feet at \(25^{\circ} \mathrm{C}\) of solid and concentric lay stranded conductors are taken from ICEA \(5-66-524\) Table 2-4. Nominal conductor diameters are from table 2-7, and weights of conductors are from Table 0-2.

\section*{CONDUCTOR TYPES}

Solid Conductors: Provides an excellent water block and smooth circumference for Aluminum power cable conductors. Drawn at imtermiediate tempers either \(1 / 2\) or \(3 / 4\) hard per ASTM B 609. Conductors larger than a \(4 / 0\) must be stranded.

Compressed Stranding: This is the most common conductor configuration. The outer conductor diameter is compressed to \(97 \%\) of the regular concentric round diameter per ASTM B231 for aluminum and ASTM B8 for copper. This compression of the conductor strands blocks the penetration of the extruded strand shield from flowing in the outer interstice of the strand and thereby making it easily removable in the field.

Compact Stranding: The outer conductor diameter is compacted (each stranded layer) to approximately \(90 \%\) of concentric conductor diameters per ASTM B496 for aluminum and ASTM B400 for copper. This reduced conductor size results in an overall cable diameter proportionally lower and smooth outer surface for following applied components. Compacting does produce however a harder conductor especially in the case of copper.

Strandfill: The interstand area within the conductor can be filled with a semiconducting, polymeric material during the stranding process. The strandfill compound is designed to prevent water from penetrating the stranded cable conductor during storage, installation, splicing, and termination the cable. This eliminates the possibilities of water being trapped in the conductor given rise to electrochemical trees which could cause premature failure.

The strandfill material should be compatible with all cable components and exhibit testing characteristics in accordance with ICEA procedures.

Consideration should be given to 7 wire strands (\#2 AWG) as solid aluminum; which would serve as the best type of water block.

\section*{SEMI-CONDUCTING SHIELDING}

Conventional semi-conducting shielding consists of an extruded thermosetting polymer material with conductive carbon black dispersed in the polymer material to achieve the require semiconducting properties. Voids and protrusions at the Insulation interface should comply with AEIC requirements.

The significant electrical property of semiconducting materials is volume resistivity. ICEA defines volume resistivity as a maximum of 500 ohm-meters at room temperature.

Conductor or Strand Shield: A strand shield eliminates excessive voltage stress in voids between the conductor and insulation, thus eliminating the stress concentration at the individual strand, and presents a smooth electrode to the inner surface of the insulation.

It may be a conducting non-metallic tape, conducting compound or a combination of both. An extruded conducting compound is preferable to eliminate irregularities introduced by lapped tapes.

\section*{CONDUCTOR SHIELD}

The extruded strand shield (ESS) thickness per AEIC are as follows:
[2]
Conductor Size AWG or kcmil

\section*{Conductor Shield Thickness (mils) \\ Minimum Minimum Point Average}

8-4/0 \(12 \quad 15\)
250-500
600-1000
16
20
\(20 \quad 25\)
1001 and larger
24
30

For compact round conductors having a diameter eccentricity tolerance verified by measurement of \(0-2\) mils before covering, the conductor shielding thickness may be 50 percent of Table C1 values if stated by manufacturer at time of quotation. Also, criteria for conductor shield protrusions per C.1.3 are 5 and 5 mils respectively.

\section*{INSULATION SHIELD}

The insulation shield system consists of two parts. The first is a non-metallic covering directly over the insulation. The second Part is a non-magnetic metal component directly over or embedded in the non metallic covering.

NEC Section 310-6 contains rules on insulation shielding that must be observed. Solid dielectric insulated conductors operated above \(2000 V\) in permanent installations must have an ozoneresistant insulation and be shielded. However, non-shielded insulated conductors listed by a nationally recognized test laboratory are permitted for use up to 8000 u under the condition given in Section 310-6 of NEC.

In general, shielding should be applied for non-metallic covered cables operating at a circuit voltage above cooov for single conductor cable and 5000V for multi-conductor with common overall jacket.

There are three principal functions of an insulated shield.
1. To obtain symmetrical radial stress distribution within the insulation and to eliminate, for practical purposes, tangential and longitudinal stresses on the surface of the insulation or jacket.
2. To provide a definite capacitance to ground for the insulated conductor, thereby presenting a uniform surge impedance and minimizing the reflection of voltage waves within the cable run.
3. To reduce the hazard of shock and danger to life and property.

Insulation shield thickness per AEIC is given below:
[1]
Calculated
Minimum
Diameter Over
Insulation
(inches)
\(0 \quad-1.000\)
\(1.001-1.500\)
\(4.501-2.000\)
\(2.001-\) and larger

For Cables With or Without and Qverall Jacket
Insulation Shield Thickness (mils) Nominal Minimum Maximum Maximum Value Point Point Indent
\begin{tabular}{rrrr}
40 & 30 & 70 & 15 \\
50 & 40 & 85 & 15 \\
70 & 55 & 100 & 20 \\
70 & 55 & 115 & 20
\end{tabular}

Note 1: The minimum point does not apply to locations under the metallic shield indent.

Note \(2:\) Nominal thickness represents the value used to calculate diameters measured over the insulation shield.

\section*{METAL COMPONENT}

The metallic portion or the insulation shield serves as a current carrying medium to carry charging and leakage currents. In some cases, the shield may be required to carry more than the cable charging current. Fault or short circuit current can be carried with larger types of shielded depending on the duration of the fault and the time cycles per second. Program "ST" designs shields for short circuit current durations.

The types of shields available are given below:
1. Copper wire shield helically applied
a) \#16 AWG and smaller referred to as wire shield
b) \#14, \#12, \#10, \#9, and \#8 AWG referred to as concentric neutrals
2. Copper tape helically applied with overlap
3. Longitudinally applied and corrugated tape (LC)
4. Sheaths (lead sheath)
5. Flat strap neutrals
6. combination of wire and tape
7. Corrugated drain wires longitudally embedded in an extruded outer jacket (CPE)

\section*{Concentric Neutral Conductors}

Concentric neutral conductors should consist of a number of copper wires meeting the chemical requirements of ASTM BS and the resistivity,tensile, and elongation requirements of ASTM B3 for uncoated wires, ASTM B 33 for tin coated wires or ASTM B189 for lead alloy coated wires. The diameter and tolerance of these wires shall comply with ICEA S-66-524 section 7.1.5.

Program "CN" covers sizing of concentric neutral wires. URD cables are single phase and normally have the same current carrying capacity as the central phase conductor, and UD cables carry \(1 / 3\) the current as they are employed in three phase circuits.

It is recommended to encapsulate an overall jacket over Bare uncoated copper neutral wires. To prevent concentric neutral corrosion; which can cause reduction or even complete loss of cross-section, affecting the cable neutral ampacity, fault current capability, voltage drop, and metallic shield capability that lead to reduced service life and accelerated replacement of the cable.

\section*{INSULATION}

The extruded dielectric is the most important component of a cable, as it serves the primary function of containing the voltage within the cable system. The most common solid dielectric insulation materials in use today for medium voltage cables are Cross-Linked Polyethylene (XLPE) and varieties of Ethylene Propylene Rubber (EPR). Some general characteristic properties are given below:

Cross-Linked Polyethylene (XLPE, XHHW): This insulation is listed in NEC as Type XHHW and also suitable for underground service entrance (USE), and is classified as thermosetting, 90 C operating temperature, rated from 600 V to 138 kV . It has seen over 20 years utility service, demonstrates strong resistance to thermal deformation, has excellent electrical and physical aging properties, and is light-weight. It is also environmental safe, and Least costly compared to TRXLP and EPR.
If operated increasingly under overload conditions, thermal expansion becomes a problem and can lead to cable degradation and failure when the insulation is susceptible to corona.

Tree Retardant Cross-Linked Polyethylene (TRXLPE): Has the same general properties as XLPE, except is mineral filled (noncarbon) to retard tree growth within the cable. TRXLP is superior to cables with standard XLPE in accelerated water tests and breakdown strength ( AEIC water tree test). Slightly higher cost, with approximately six years field service. Its Dielectric strength is slightly reduced as compared to XLPE.

Ethylene Propylene Rubber (EPR): This insulation consists substantially of ethylene-propylene copolymer (EPM) or ethylenepropylene terpolymer (EPDM). It is UL approved and is recognized under the RHH-RHW type. EPR is a very highly filled material, in that most contain no more than \(50 \%\) of the base ethylene propylene copolymer. The balance of the EP material consists of carefully selected and treated clays,cross-linking agents, antioxidants and possibly, filling materials to enhance flame-retardance or some property which is of interest to the compounder. Since the EP is highly filled its electrical properties are not as good as XLPE, however, these properties are quite acceptable for the purpose to which the cable is applied and the methods in which the cable is manufactured. It has higher dielectric losses than XLPE, affecting higher voltage distribution systems, and has approximately 20 years field service, more flexibility and superior physical characteristics at high temperature, and is normally more costly. Recent studies have shown that EPR insulations are \(30 \%\) more efficient than XLPE in dissipating heat, particularly at the emergency overload temperature. EPR is also more flexible than XLPE over a wide range of temperatures, having a modulus at \(100 \%\) extension only \(60 \%\) as large as XLPE's. Greater flexibility in a wide range of climates means it can be installed easily and cost-effectively with smooth, reliable splices and terminations. These advantages are very important in areas where cable must be installed in extremely cold weather.

Insulation thicknesses in accordance with ICEA 5-66-524 (XLPE) and S-68-516 (EPR) for cables rated 2000 volts and less:
\begin{tabular}{|c|c|c|c|}
\hline Rated Circuit Voltage Phase-to-Phase & \begin{tabular}{l}
Conductor Size \\
AWG or kcmil
\end{tabular} & Single Cable & Multiple and Single with Outer Jacket \\
\hline \multirow[t]{5}{*}{0-600V} & \#14-\#9 & 45 & 30 \\
\hline & \#8 - \#2 & 60 & 45 \\
\hline & \#1-4/0 & 80 & 55 \\
\hline & 225-500 & 95 & 65 \\
\hline & 525-1000 & 110 & 80 \\
\hline \multirow[t]{5}{*}{601-2000V} & \#14-\#9 & 60 & 45 \\
\hline & \#8 - \#2 & 70 & 55 \\
\hline & \#1-4/0 & 90 & 65 \\
\hline & 225-500 & 105 & 75 \\
\hline & 525-1000 & 120 & 90 \\
\hline
\end{tabular}

Insulation thickness in accordance with ICEA S-66-524 (XLPE) for Type A,B,C,D Control Cables:
\begin{tabular}{lccc}
\begin{tabular}{l} 
Conductor \\
Size AWG \\
\#
\end{tabular} & \(\underline{300}\) Volts & \(\underline{600}\) Volts & 1000 Volts \\
\#20- \#18 & 20 & 25 & -- \\
\#16 & 20 & 25 & 45 \\
\(\# 14\) & 25 & 30 & 45 \\
\(\# 12-\# 9\) & -- & 30 & 45
\end{tabular}

ICEA S-68-516 covers composite insulation thicknesses, and UL 854 and UL 44 cover 600 V and 2000V single and multi-conductor cables.

NOTE: The minimum thickness at any point should not be less than 90 percent of the minimum average values given above.

Insulation thicknesses per AEIC CSS,CS6, and CS7 are given below:
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{Rated Voltage Phase to Phase kV} & \multirow[t]{2}{*}{Conductor Size AWG or kcmil} & \multicolumn{2}{|l|}{Minimum Average Insulation Thickness Mils} \\
\hline & & A & B \\
\hline \multirow[t]{2}{*}{5} & 8 to 1000 & 90 & 115 \\
\hline & Above 1000 & 140 & 140 \\
\hline \multirow[t]{2}{*}{8} & 6 to 1000 & 115 & 140 \\
\hline & Above 1000 & 175 & 175 \\
\hline \multirow[t]{2}{*}{15} & 2 to 1000 & 175 & 220 \\
\hline & Above 1000 & 220 & 220 \\
\hline 25 & 1 to 2000 & 260 & 320 \\
\hline 28 & 1 to 2000 & 280 & 345 \\
\hline 35 & 1/0 to 2000 & 345 & 420 \\
\hline 46 & \(4 / 0\) to 2000 & 445 & 580 \\
\hline 69 & 500 to 2000 & 650 & - \\
\hline 115 & 750 to 3000 & 800 & - \\
\hline 138 & 750 to 3000 & 850 & - \\
\hline
\end{tabular}

Note 1: For \(25 k V 133 \%\), ICEA specifies a greater thickness of 345 mils versus 320.

Note 2: For cables intended for three-phase systems, the Rated Voltage is expressed in terms of phase-to-phase voltage. For cables intended for other systems, it should be expressed in suitable terms that will make clear the voltages involved.

Note 3: Ratings for above; CS5-87 5-35kV, CS6-87 5-69kV, CS7-87 \(46-138 \mathrm{kV}\).

Note 4: The selection of the cable insulation level to be used in a particular installation shall be made on the basis of the applicable phase-to-phase voltage and the general system category as outlined below.

\begin{abstract}
a. 100 Percent Level - Cables in this category may be applied where the system is provided with relay protection such that ground faults will be cleared as rapidly as possible, but in any case within one minute. While these cables are applicable to the great majority of cable installations which are on grounded systems, they may also be used on other systems for which the application of cables is acceptable, provided the above clearing requirements are met in completely deenergizing the faulted section.
\end{abstract}
b. 133 Percent Level - This insulation level corresponds to that formerly designated for ungrounded systems. Cables in this category may be applied in situations where the clearing time requirements of the 100 percent level category cannot be met, and yet there is adequate assurance that the faulted section will be deenergized in a time not exceeding one hour. Also, they may be used when additional insulation strength over the 100 percent level category is desirable.

Note 5: It is recommended that the minimum size conductor be in accordance with Table B1. For cables or conditions of service where mechanical stresses govern, such as in submarine cables or long vertical risers, these minimum conductor sizes may not provide sufficient strength.

\section*{JACKETS AND SHEATHS}

Outer jackets can be applied to protect the cable core from physical damage and impede corrosion of metallic shields or neutral wires.

Some of the general properties associated with jacket materials are given below:
PVC - Polyvinyl Chloride
LDPE - Low Density Polyethylene
LLDPE - Linear Low Density Polyethylene
HDPE - High Density Polyethylene
MDPE - Medium Density Polyethylene
SCPE - Semiconducting Polyethylene
CSP - Chlorosulfonated Polyethylene
CPE - Chlorinated Polyethylene

\section*{TYPE}
1. PVC \(\qquad\)

\section*{PROPERTIES}

> Thermoplastic, excellent resistance to oils, gasoline acids, alkalis and moisture. Good flame and sunlight resistance, low cost. Physical requirements comply with section 4.4 .1 in ICEA S-66-524.
2. Polyethylene, Black
a) LDPE
b) LLDPE

Same as PVC except has reduced resistance to petroleum products fire, and lower melting point. Physical Requirements comply with section 4.4 .2 of ICEA, and ASTM Standard D 1248 for classifications, types, and grades. i.e, Type I, Category 4, Grades E'4, E5, J1.

Same as LDPE with Greater tensile and tear strength and higher impact and abrasion resistance. Also has improved low and high temperature performance.
c) HDPE
d)

SCPE
4) Neoprene
5) CPE

Superior mechanical and physical properties, has excellent abrasion resistance, and can be used as an outer jacket or coilable duct. ASTM D 1248 Type III Category 5 Class C, Grades are associated with the appropriate type, class and category designations. Medium density \(P E\) material is Type II.

Properties are given in ICEA 5-68-516 Table 7.6-7 and ICEA S-66-524 as Type I and II requirements. Material used should have excellent stress crack resistance, volume resistivity, and compatibility with other cable materials. Compared to insulating LDHMWPE materials, an increase in cost from 20 to 30\% usually applies and the carbon black content will cause the jacket to absorb water at a faster rate. Electrical contact with the ground along the cables entire length places the cable at local ground potential at all points; and should be treated as such.

Thermoset, highly resistant to abrasion, impact, oil and ozone, and provides excellent flexibility, and high Cost. Properties comply to section 4.4.10 of s-68-516.

Thermoset provides excellent resistance to high temperatures, tears. Mechanical abrasion and moisture. Very flexible with high cost.

Thermoplastic (or thermoset), same properties as Hypalon with better flame resistance, low temperature performance, low coefficient of friction. Physical properties comply to section 4.4.7 of S-68-516.

\section*{JACKET COMPARISONS}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & PVC & LDPE & HDPE & Hypalon & Neoprene & CPE \\
\hline Abrasion Resistance & G & F-G & E & G & G & G \\
\hline Flame Resistance & G & P & P & G & G & G \\
\hline Moisture Resistance & G & E & E & G-E & G & G \\
\hline Oil Resistance & G & F-G & F-G & G & G & G-E \\
\hline Low Temperature Flexibility & P-G & G-E & E & F & F-G & F-G \\
\hline Sunlight Resistance & G-E & E & E & E & G & G-E \\
\hline Acid Resistance & G-E & G-E & G-E & E & G & E \\
\hline \begin{tabular}{l}
Alkali Resistance \\
Sodium Hydroxide (Lye) \\
Potassium Hydroxide (Potas \\
Calcium Hydroxide (Lime)
\end{tabular} & G-E & G-E & G-E & E & G & G-E \\
\hline Paraffinic Hydrocarbons Gasoline Kerosene & G & P-F & P-F & P & P & P \\
\hline ```
Aromatic Hydrocarbons
    Benzol
    Tolul
``` & P-F & P & P & F & P-F & F \\
\hline Halogenated Hydrocarbons Chloroform Carbon Tetrachloride Methylene Chloride & P & P & P & P & P & P \\
\hline Alcohol Resistance Isopropyl Wood Grain & F & E & E & G & F & G \\
\hline Relative Cost & 2 & 1 & 3 & 6 & 4 & 5 \\
\hline \multicolumn{7}{|l|}{E - Excellent} \\
\hline \multicolumn{7}{|l|}{G - Good} \\
\hline \multicolumn{7}{|l|}{F Fair 1 - Lower} \\
\hline P - Poor 6- & igher & & & & & \\
\hline
\end{tabular}

CPE resins can be compounded with other materials to produce either thermoplastic or thermoset jacketing materias. Low halogen containing thermoplastic CPE compounds have attained prominence in cable jacketing applications. These materials compare quite favorably with thermoset jacketing materials, such as CSP in virtually all of the critical performance characteristics including its fire resistant properties.

An excellent IEEE guide for the selection of power cable jackets [14] is available.

The thicknesses of outer jackets are given in the following tables in accordance with ICEA 5-66-524 and 5-68-516.

Outer jackets that are extruded to fill the area between concentric neutral wires are referred to as encapsulating jackets. The program displays the sleeved on outer jacket thickness with a double beep; if no jacket is required enter zero, if an encapsulated jacket is required, use the thickness given in the table below in accordance with ICEA S-6b-524 section 7.1.6.1:

\section*{Diameter Over}

Concentric Wires
\(0-1.500^{\prime \prime} \quad 50 \mathrm{mils}\)
Over \(1.500^{\prime \prime} \quad 80 \mathrm{mils}\)

The minimum spot thickness will be \(80 \%\) of the minimum average value.

The encapsulated jacket material (either semiconducting ainsulating) should be free stripping from the concentric neutral wires and insulation shield.

For phase or circuit identification outer polyethylene jackets can have colored stripes (primary cable normally red: extruded into the jackets. The width of these stripes will depend on the circumference of the cable and should be equally spaced 120 degrees apart for three stripes, and 90 degrees apart for four.

\section*{METALLIC SHEATHS}

Sheaths are generally defined as the protective covering of a cable core which includes at least one metallic component. ICEA defines "jacket" as a continuous nonmetallic covering and "sheath" as a continuous metallic covering. Lead sheathing is still used to protect paper insulated cables and on some solid dielectric cables for maximum protection in underground manhole and tunnel, or underground duct distribution systems subject to flooding. While not as resistant to crushing loads as interlocked armor, its very high degree of corrosion and moisture resistance makes lead attractive in the above applications. The refined lead used should be produced from lead-bearing materials meeting the requirements of ASTM specification B29.

\section*{INTERLOCKED ARMOR}

Where added mechanical protection is required, armored cable may be utilized. Interlocked armors made from galvanized steel, or aluminum are widely used. Where corrosion and moisture resistance are required in addition to mechanical protection, an overall jacket of extruded material may be used. The use of interlocked galvanized steel armor must be avoided on singleconductor a-c power circuits due to high hysteresis and eddy current losses. This effect, however is minimized in three conductor cables with armor overall and with aluminum armor on single-conductor cables.

\section*{NONSHIELDED CABLES}

Nonshielded cables rated 2001 to 5000 Volt are mainly used under conditions where shields cannot be adequately grounded, or where space is inadequate for proper termination of the shielding system. ICEA S-66-524 table 3-1, and sections 7.5 and 7.6 cover the requirements for non-shielded cables. Nonshielded cables without protective coverings should have a carbon black pigmented insulation which is resistant to sunlight.

If the cable is Type MV listed per UL 1072 having interlocked aluminum or steel armor, a grounding conductor should be placed within the cable assembly sized in accordance with table 20.1. Tables 12.1 and 12.2 give the insulation thicknesses for nonshielded cables rated 5000 or 8000 Volt at the desired percent level catagory.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{JACKET MINIMIJM AVERAGE WALL - DVER LEAD SHEATH OR GAMOP GBLE} \\
\hline MIN DIA DF & MIN DIA OF & (MIN AVG WALL) & MIN AVG wiAle, \\
\hline LGGT DPER. & LAST OPER. & FOR JACKET & FOP IACKET \\
\hline (MINIMUM) & (MAXIMUM) & DVER LEAD SHEATH & OVER \(\triangle\) APMDR \\
\hline O. 0 O\% & 0.750 & .050 & . 050 \\
\hline a.51 & 1.500 & . 065 & . 50 \\
\hline :.501 & 2.250 & . 080 & . 060 \\
\hline 2.251 & 3.000 & . 095 & . 075 \\
\hline 3.001 & 9.999 & . 110 & . 085 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{JACKET MINIMUM AVERAGE WALL -STANDARD TABLE} \\
\hline MIN DIA OF & MIN DIA OF & JACKET OVERALL & (MIN AVİ WALL) & (MIN AVG WALL: \\
\hline LAST DPER. & LAST OPER. & FOR SINGLE OR & FOR JACKET & IJVER SINGLE [N \\
\hline (MINIMUM) & (MAXIMUM) & MUL TICONDUC゙TOR & UNDER ARMOR & MULTECONDUCTOR \\
\hline 0.000 & 0.249 & . 045 & . 045 & . 015 \\
\hline 0.2 .50 & 0.425 & .045 & . 045 & . 025 \\
\hline 0.426 & 0.700 & . 060 & . 045 & . 030 \\
\hline 0.701 & 1.500 & . 080 & . ORO & . 050 \\
\hline 1.501 & 2.500 & .110 & . 080 & . 980 \\
\hline 2.501 & 0.999 & .140 & . 110 & .000 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{LEAD SHEATH WALL DIMENSIONS TABLE} \\
\hline MIN DIA DF & MIN DIA OF & (MIN AVG WALL) & (MIN AVG WALL) \\
\hline LAST OPER. & LAST OPER. & NO JACKET & JACKET \\
\hline (MINIMUM) & (MAXIMUM) & ON 1/C CABLE & ON 1/C CABLE \\
\hline 0.000 & 0.425 & . 045 & . 045 \\
\hline 0.426 & 0.700 & . 065 & . 055 \\
\hline 0.701 & 1.050 & . 080 & . 070 \\
\hline 1.051 & 1.500 & . 095 & . 085 \\
\hline 1.501 & 2.000 & . 110 & . 095 \\
\hline 2.001 & 3.000 & . 125 & . 110 \\
\hline 3.001 & 9.999 & . 140 & . 125 \\
\hline
\end{tabular}

INTERLOCKED ARMOR THICKNESS TABLE
```

LAST OPER
MIN DIA
(MINIMUM)
0.000
1.501

```

LAST OPER
MIN DIA
(MAXIMUM)
1.500
9.999

ARMOR
THICKNESS
STEEL
0.020
0.025

ARMOR
THICKNESS
ALUMINUM
0.025
0.030

FACTORY TEST VOLTAGES

Medium Voltage AEIC
\begin{tabular}{ccccccc}
RATED & INSUL & MIN & AC & DURATION & DC & DURATION: \\
VOLTAGE & LEVEL & AVG & VOLTAGE & IN & VOLTAGE & IN \\
(KV) & PERCENT & WALL & \((K V)\) & MINUTES & \((K V)\) & MINUTES \\
005 & 100 & .090 & 018 & 5 & 0.35 & 15 \\
005 & 133 & .115 & 023 & 5 & 045 & 15 \\
008 & 100 & .115 & 023 & 5 & 045 & 15 \\
008 & 133 & .140 & 028 & 5 & 055 & 15 \\
015 & 100 & .175 & 035 & 5 & 070 & 15 \\
015 & 133 & .220 & 044 & 5 & 080 & 15 \\
023 & 100 & .295 & 044 & 5 & 110 & 15 \\
025 & 100 & .260 & 052 & 5 & 100 & 15 \\
025 & 133 & .345 & 069 & 5 & 125 & 15 \\
027 & 100 & .275 & 055 & 5 & 126 & 15 \\
028 & 100 & .280 & 056 & 5 & 105 & 15 \\
028 & 133 & .345 & 069 & 5 & 125 & 15 \\
035 & 100 & .345 & 069 & 5 & 125 & 15 \\
035 & 133 & .420 & 084 & 5 & 155 & 15 \\
046 & 100 & .445 & 089 & 5 & 165 & 15 \\
045 & 133 & .580 & 116 & 5 & 215 & 15
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & MEDIUM & voltage & TEST FOR & I ICEA S & 5-68-524 AND & UL 1072 & \\
\hline RATED & INSUL & MIN EXT & MIN & AC & duration & DC & DURATIUN \\
\hline vol tage & LEVEL & LEVEL & avg & voltage & - IN & voltage & IN \\
\hline (KV) & PERCENT & (KV) & WALL & (KV) & minutes & (KV) & Minutes \\
\hline 005 & 100 & 04 & . 090 & 13 & 5 & 000 & 00 \\
\hline 005 & 133 & 05 & . 090 & 13 & 5 & 000 & 15 \\
\hline 008 & 100 & 06 & . 115 & 18 & 5 & 045 & 15 \\
\hline 008 & 133 & 08 & . 140 & 22 & 5 & 045 & 15 \\
\hline 015 & 100 & 11 & . 175 & 27 & 5 & 070 & 15 \\
\hline 015 & 133 & 15 & . 215 & 33 & 5 & 080 & 15 \\
\hline 025 & 100 & 19 & . 260 & 38 & 5 & 100 & 15 \\
\hline 025 & 133 & 26 & . 345 & 49 & 5 & 125 & 15 \\
\hline 028 & 100 & 21 & . 280 & 42 & 5 & 105 & 15 \\
\hline 035 & 100 & 26 & . 345 & 49 & 5 & 125 & 15 \\
\hline
\end{tabular}

Table 2-7
Nominal Diameters for Copper and Aluminum Conductors
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{\multirow[b]{2}{*}{Conductor}} & \multicolumn{6}{|c|}{Nominal Diameters*} \\
\hline & & \multicolumn{6}{|c|}{Concentric Lay Stranded} \\
\hline \multicolumn{2}{|c|}{Size} & Solid & Compact & Compressed & Class B & Class C & Class D \\
\hline AWG & kcmil & Inch & Inch & Inch & Inch & Inch & Inch \\
\hline 22 & 0.812 & 0.0253 & & \(\ldots\) & \(\ldots\) & \(\ldots\) & \\
\hline 20 & 1.02 & 0.0320 & \(\ldots\) & & & & \\
\hline 19 & 1.29 & 0.0359 & \(\ldots\) & \(\ldots\) & \(\ldots\) & \(\ldots\) & \(\ldots\) \\
\hline 18 & 1.62 & 0.0403 & \(\ldots\) & \(\ldots\) & \(\ldots\) & \(\ldots\) & \\
\hline 17 & 2.05 & 0.0453 & \(\ldots\) & \(\cdots\) & \(\ldots\) & ... & \\
\hline 16 & 2.58 & 0.0508 & ... & \(\ldots\) & \(\ldots\) & \(\ldots\) & \(\ldots\) \\
\hline 15 & 3.26 & 0.0571 & \(\ldots\) & 0.0629 & 0.0648 & & \\
\hline 14 & 4.11 & 0.0641 & \(\ldots\) & 0.0704 & 0.0727 & 0.0735 & 0.0735 \\
\hline 13 & 5.18 & 0.0720 & ... & 0.0792 & 0.0816 & 0.0825 & 0.0826 \\
\hline 12 & 6.53 & 0.0808 & \(\ldots\) & 0.0888 & 0.0915 & 0.0925 & 0.0931 \\
\hline 11 & 8.23 & 0.0907 & & 0.0998 & 0.103 & 0.104 & 0.104 \\
\hline 10 & 10.38 & 0.1019 & \(\ldots\) & 0.112 & 0.116 & 0.117 & 0.117 \\
\hline 9 & 13.09 & 0.1144 & & 0.126 & 0.130 & 0.131 & 0.132 \\
\hline 8 & 16.51 & 0.1285 & 0.134 & 0.141 & 0.146 & 0.148 & 0.148 \\
\hline 7 & 20.82 & 0.1443 & & 0.158 & 0.164 & 0.166 & 0.166 \\
\hline 6 & 26.24 & 0.1620 & 0.169 & 0.178 & 0.184 & 0.186 & 0.186 \\
\hline 5 & 33.09 & 0.1819 & & 0.200 & 0.206 & 0.208 & 0.209 \\
\hline 4 & 41.74 & 0.2043 & 0.213 & 0.225 & 0.232 & 0.234 & 0.235 \\
\hline 3 & 52.62 & 0.2294 & 0.238 & 0.252 & 0.260 & 0.263 & 0.264 \\
\hline 2 & 66.36 & 0.2576 & 0.268 & 0.283 & 0.292 & 0.296 & 0.297 \\
\hline 1 & 83.69 & 0.2893 & 0.299 & 0.322 & 0.332 & 0.333 & 0.333 \\
\hline 1/0 & 105.6 & 0.3249 & 0.336 & 0.361 & 0.372 & 0.374 & 0.374 \\
\hline 2/0 & 133.1 & 0.3648 & 0.376 & 0.406 & 0.418 & 0.420 & 0.420 \\
\hline 3/0 & 167.8 & 0.4096 & 0.423 & 0.456 & 0.470 & 0.471 & 0.472 \\
\hline \multirow[t]{27}{*}{4/0} & 211.6 & 0.4600 & 0.475 & 0.512 & 0.528 & 0.529 & 0.530 \\
\hline & 250 & 0.5000 & 0.520 & 0.558 & 0.575 & 0.576 & 0.576 \\
\hline & 300 & 0.5477 & 0.570 & 0.611 & 0.630 & 0.631 & 0.631 \\
\hline & 350 & 0.5916 & 0.616 & 0.661 & 0.681 & 0.681 & 0.682 \\
\hline & 400 & 0.6325 & 0.659 & 0.706 & 0.728 & 0.729 & 0.729 \\
\hline & 450 & 0.6708 & 0.700 & 0.749 & 0.772 & 0.773 & 0.773 \\
\hline & 500 & 0.7071 & 0.736 & 0.789 & 0.813 & 0.814 & 0.815 \\
\hline & 550 & \(\cdots\) & 0.775 & 0.829 & 0.855 & 0.855 & 0.855 \\
\hline & 600 & ... & 0.813 & 0.866 & 0.893 & 0.893 & 0.893 \\
\hline & & & 0.845 & 0.901 & 0.929 & 0.930 & 0.930 \\
\hline & 700 & \(\ldots\) & 0.877 & 0.935 & 0.964 & 0.965 & 0.965 \\
\hline & 750 & \(\ldots\) & 0.908 & 0.968 & 0.998 & 0.999 & 0.998 \\
\hline & 800 & \(\ldots\) & 0.938 & 1.000 & 1.030 & 1.032 & 1.032 \\
\hline & 900 & \(\ldots\) & 0.999 & 1.061 & 1.094 & 1.093 & 1.095 \\
\hline & 1000 & \(\ldots\) & 1.060 & 1.117 & 1.152 & 1.153 & 1.153 \\
\hline & 1100 & \(\ldots\) & \(\ldots\) & 1.173 & 1.209 & 1.210 & 1.211 \\
\hline & 1200 & ... & \(\ldots\) & 1.225 & 1.263 & 1.264 & 1.264 \\
\hline & 1250 & \(\ldots\) & ... & 1.251 & 1.289 & 1.290 & 1.290 \\
\hline & 1300 & \(\ldots\) & \(\ldots\) & 1.275 & 1.314 & 1.316 & 1.316 \\
\hline & 1400 & \(\ldots\) & \(\ldots\) & 1.323 & 1.365 & 1.365 & 1.365 \\
\hline & 1500 & ... & \(\ldots\) & 1.370 & 1.412 & 1.413 & 1.413 \\
\hline & 1600 & \(\ldots\) & \(\ldots\) & 1.415 & 1.459 & 1.460 & 1.460 \\
\hline & 1700 & ... & \(\cdots\) & 1.459 & 1.504 & 1.504 & 1.504 \\
\hline & 1750 & \(\ldots\) & \(\ldots\) & 1.480 & 1.526 & 1.527 & 1.527 \\
\hline & 1800 & & & 1.502 & 1.548 & 1.548 & 1.549 \\
\hline & 1900 & & & 1.542 & 1.590 & 1.590 & 1.591 \\
\hline & 2000 & \(\ldots\) & \(\cdots\) & 1.583 & 1.632 & 1.632 & 1.632 \\
\hline
\end{tabular}
- Diameters in millimeters shall be obtained by multiplying the above values in inches by 25.4 .

Nominal Direct Current Resistance in Ohms Per 1000 Feet** at \(25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)\) of Solid and Concentric Lay Stranded Conductor
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Conductor & \multicolumn{3}{|c|}{Solid} & \multicolumn{5}{|c|}{Concentric Lay Stranded*} \\
\hline Size & Aluminum & \multicolumn{2}{|l|}{Copper} & Aluminum & \multicolumn{4}{|c|}{Copper} \\
\hline \multirow[t]{2}{*}{AWG or kemil} & & Uncoated & Coated & Class, B, C, D & Uncoated & & Coated & \\
\hline & & & & & Class B, C, D & Class B & Class C & Class D \\
\hline 22 & 27.1 & 16.5 & 17.2 & 27.4 & 16.7 & 17.9 & \(\ldots\) & \(\ldots\) \\
\hline 20 & 16.9 & 10.3 & 10.7 & 17.3 & 10.5 & 11.1 & \(\ldots\) & \\
\hline 19 & 13.5 & 8.20 & 8.52 & 13.7 & 8.33 & 8.83 & \(\ldots\) & \\
\hline 18 & 10.7 & 6.51 & 6.76
5 & 10.9 & 6.67
5 & 7.07
5 & \(\ldots\) & \\
\hline 17 & 8.45 & 5.15 & 5.35 & 8.54 & 5.21 & 5.52 & & \\
\hline 16 & 6.72 & 4.10 & 4.26 & 6.85 & 4.18 & 4.43 & \(\ldots\) & ... \\
\hline 15 & 5.32 & 3.24 & 3.37 & 5.41 & 3.30 & 3.43 & & \\
\hline 14 & 4.22 & 2.57 & 2.67 & 4.31 & 2.63 & 2.73 & 2.79 & 2.83 \\
\hline 13 & 3.34 & 2.04 & 2.12 & 3.41 & 2.08 & 2.16 & 2.21 & 2.22 \\
\hline 12 & 2.66 & 1.62 & 1.68 & 2.72 & 1.66 & 1.72 & 1.75 & 1.75 \\
\hline 11 & 2.11 & 1.29 & 1.34 & 2.15 & 1.31 & 1.36 & 1.36 & 1.39 \\
\hline 10 & 1.67 & 1.02 & 1.06 & 1.70 & 1.04 & 1.08 & 1.08 & 1.11 \\
\hline 9 & 1.32 & 0.808 & 0.831 & 1.35 & 0.825 & 0.856 & 0.856 & 0.874 \\
\hline 8 & 1.05 & 0.640 & 0.659 & 1.07 & 0.652 & 0.678 & 0.678 & 0.680 \\
\hline 7 & 0.833 & 0.508 & 0.522 & 0.851 & 0.519 & 0.538 & 0.538 & 0.538 \\
\hline 6 & 0.661 & 0.403 & 0.414 & 0.675 & 0.411 & 0.427 & 0.427 & 0.427 \\
\hline 5 & 0.524 & 0.319 & 0.329 & 0.534 & 0.325 & 0.338 & 0.339 & 0.339 \\
\hline 4 & 0.415 & 0.253 & 0.261 & 0.424 & 0.258 & 0.269 & 0.269 & 0.269 \\
\hline 3 & 0.329 & 0.201 & 0.207 & 0.336 & 0.205 & 0.213 & 0.213 & 0.213 \\
\hline 2 & 0.261 & 0.159 & 0.164 & 0.266 & 0.162 & 0.169 & 0.169 & 0.169 \\
\hline 1 & 0.207 & 0.126 & 0.130 & 0.211 & 0.129 & 0.134 & 0.134 & 0.134 \\
\hline 1/0 & 0.164 & 0.100 & 0.102 & 0.168 & 0.102 & 0.106 & 0.106 & 0.106 \\
\hline 2/0 & 0.130 & 0.0794 & 0.0813 & 0.133 & 0.0810 & 0.0842 & 0.0842 & 0.0842 \\
\hline 3/0 & 0.103 & 0.0630 & 0.0645 & 0.105 & 0.0642 & 0.0667 & 0.0669 & 0.0669 \\
\hline \(4 / 0\) & 0.0819 & 0.0500 & 0.0511 & 0.0836 & 0.0510 & 0.0524 & 0.0530 & 0.0530 \\
\hline 250 & 0.0694 & ... & ... & 0.0707 & 0.0431 & 0.0448 & 0.0448 & 0.0448 \\
\hline 300 & 0.0578 & ... & ... & 0.0590 & 0.0360 & 0.0374 & 0.0374 & 0.0374 \\
\hline 350 & 0.0495 & . & \(\ldots\) & 0.0505 & 0.0308 & 0.0320 & 0.0320 & 0.0320 \\
\hline 400 & 0.0433 & ... & \(\ldots\) & 0.0442 & 0.0269 & 0.0277 & 0.0280 & 0.0280 \\
\hline 450 & 0.0385 & \(\ldots\) & ... & 0.0393 & 0.0240 & 0.0246 & 0.0249 & 0.0249 \\
\hline 500 & 0.0347 & \(\ldots\) & \(\ldots\) & 0.0354 & 0.0216 & 0.0222 & 0.0224 & 0.0224 \\
\hline 550 & ... & \(\ldots\) & \(\ldots\) & 0.0321 & 0.0196 & 0.0204 & 0.0204 & 0.0204 \\
\hline 600 & ... & ... & ... & 0.0295 & 0.0180 & 0.0187 & 0.0187 & 0.0187 \\
\hline 650 & \(\ldots\) & \(\ldots\) & \(\ldots\) & 0.0272 & 0.0166 & 0.0171 & 0.0172 & 0.0173 \\
\hline 700 & ... & \(\ldots\) & \(\cdots\) & 0.0253 & 0.0154 & 0.0159 & 0.0160 & 0.0160 \\
\hline 750 & \(\ldots\) & \(\ldots\) & ... & 0.0236 & 0.0144 & 0.0148 & 0.0149 & 0.0150 \\
\hline 800 & \(\ldots\) & \(\ldots\) & \(\ldots\) & 0.0221 & 0.0135 & 0.0139 & 0.0140 & 0.0140 \\
\hline 900 & & . & \(\ldots\) & 0.0196 & 0.0120 & 0.0123 & 0.0126 & 0.0126 \\
\hline 1000 & \(\cdots\) & \(\cdots\) & \(\ldots\) & 0.0177 & 0.0108 & 0.0111 & 0.0111 & 0.0112 \\
\hline 1100 & \(\ldots\) & \(\ldots\) & \(\ldots\) & 0.0161 & 0.00981 & 0.0101 & 0.0102 & 0.0102 \\
\hline 1200 & ... & ... & & 0.0147 & 0.00899 & 0.00925 & 0.00934 & 0.00934 \\
\hline 1250 & \(\cdots\) & \(\cdots\) & \(\cdots\) & 0.0141 & 0.00863 & 0.00888 & 0.00897 & 0.00897 \\
\hline 1300 & \(\ldots\) & \(\ldots\) & \(\ldots\) & 0.0136 & 0.00830 & 0.00854 & 0.00861 & 0.00862 \\
\hline 1400 & \(\ldots\) & ... & \(\ldots\) & 0.0126 & 0.00771 & 0.00793 & 0.00793 & 0.00801 \\
\hline 1500 & \(\ldots\) & ... & \(\ldots\) & 0.0118 & 0.00719 & 0.00740 & 0.00740 & 0.00747 \\
\hline 1600 & \(\ldots\) & \(\ldots\) & \(\ldots\) & 0.0111 & 0.00674 & 0.00694 & 0.00700 & 0.00700 \\
\hline 1700 & & & \(\ldots\) & 0.0104 & 0.00634 & 0.00653 & 0.00659 & 0.00659 \\
\hline 1750 & \(\ldots\) & \(\cdots\) & ... & 0.0101 & 0.00616 & 0.00634 & 0.00640 & 0.00640 \\
\hline 1800 & \(\ldots\) & \(\ldots\) & \(\ldots\) & 0.00982 & 0.00599 & 0.00616 & 0.00616 & 0.00622 \\
\hline 1900 & & \(\ldots\) & \(\ldots\) & 0.00931 & 0.00568 & 0.00584 & 0.00584 & 0.00589 \\
\hline 2000 & ... & \(\ldots\) & ... & 0.00885 & 0.00539 & 0.00555 & 0.00555 & 0.00560 \\
\hline 2500 & \(\ldots\) & \(\ldots\) & \(\ldots\) & 0.00715 & 0.00436 & 0.00448 & \(\ldots\) & \(\ldots\) \\
\hline 3000 & ... & , & \(\ldots\) & 0.00596 & 0.00363 & 0.00374 & \(\ldots\) & ... \\
\hline 3500 & \(\ldots\) & \(\ldots\) & \(\ldots\) & 0.00515 & 0.00314 & 0.00323 & \(\ldots\) & \(\ldots\) \\
\hline 4000 & & \(\ldots\) & \(\ldots\) & 0.00451 & 0.00275 & 0.00283 & \(\ldots\) & \(\ldots\) \\
\hline 4500 & \(\ldots\) & \(\ldots\) & \(\ldots\) & 0.00405 & 0.00247 & 0.00254 & ... & \(\ldots\) \\
\hline 5000 & . . & ... & \(\ldots\) & 0.00364 & 0.00222 & 0.00229 & \(\ldots\) & \(\ldots\) \\
\hline
\end{tabular}
* Concentric lay stranded includes compressed and compact conductors.
* Resistance values in milliohms per meter shall be obtained by multiplying the above values by \(\mathbf{3 . 2 8}\).

Table O-2
Concentric Stranded Class B Aluminum and Copper Conductors
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{4}{*}{Conductor Size, AWG or kcmil} & \multirow[b]{4}{*}{Number of Strands} & \multicolumn{2}{|l|}{\multirow[b]{3}{*}{Approximate Diameter of Each Strand}} & \multicolumn{2}{|l|}{\multirow[b]{3}{*}{Approximate Outside Diameter}} & \multicolumn{4}{|c|}{Approximate Weight} \\
\hline & & & & & & \multicolumn{2}{|c|}{Aluminum} & \multicolumn{2}{|c|}{Copper} \\
\hline & & & & & & Pounds per & & Pounds per & \\
\hline & & mils & mm & inches & mm & 1000 Feet & \(\mathrm{g} / \mathrm{m}\) & 1000 Feet & g/m \\
\hline 22 & 7 & 9.6 & 0.244 & 0.029 & 0.737 & \(\ldots\) & \(\ldots\) & 1.975 & 2.941 \\
\hline 20 & 7 & 12.1 & 0.307 & 0.036 & 0.914 & \(\ldots\) & \(\cdots\) & 3.154 & 4.705 \\
\hline 19 & 7 & 13.6 & 0.345 & 0.041 & 1.04 & \(\ldots\) & & 3.974 & 5.922 \\
\hline 18 & 7 & 15.2 & 0.386 & 0.046 & 1.17 & \(\ldots\) & \(\ldots\) & 5.015 & 7.462 \\
\hline 17 & 7 & 17.2 & 0.437 & 0.052 & 1.32 & \(\ldots\) & \(\ldots\) & 6.324 & 9.429 \\
\hline 16 & 7 & 19.2 & 0.488 & 0.058 & 1.47 & \(\ldots\) & ... & 7.974 & 11.86 \\
\hline 15 & 7 & 21.6 & 0.549 & \(\ldots\) & \(\ldots\) & \(\ldots\) & \(\ldots\) & 9.959 & 14.98 \\
\hline 14 & 7 & 24.2 & 0.615 & \(\ldots\) & \(\ldots\) & \(\ldots\) & & 12.68 & 18.88 \\
\hline 13 & 7 & 27.2 & 0.691 & \(\cdots\) & \(\ldots\) & & & 16.01 & 23.82 \\
\hline 12 & 7 & 30.5 & 0.775 & ... & ... & 6.13 & 9.12 & 20.16 & 30.00 \\
\hline 11 & 7 & 34.3 & 0.871 & \(\ldots\) & & 7.72 & 11.5 & 25.49 & 37.80 \\
\hline 10 & 7 & 38.5 & 0.978 & \(\ldots\) & \(\ldots\) & 9.75 & 14.5 & 32.06 & 47.71 \\
\hline 9 & 7 & 43.2 & 1.10 & \(\ldots\) & \(\ldots\) & 12.3 & 18.3 & 40.42 & 60.14 \\
\hline 8 & 7 & 48.6 & 1.23 & \(\ldots\) & \(\ldots\) & 15.5 & 23.1 & 51.0 & 75.9 \\
\hline 7 & 7 & 54.5 & 1.39 & \(\ldots\) & \(\ldots\) & 19.5 & 29.1 & 64.2 & 95.7 \\
\hline 6 & 7 & 61.2 & 1.56 & \(\ldots\) & \(\ldots\) & 24.6 & 36.7 & 80.9 & 121 \\
\hline 5 & 7 & 68.8 & 1.75 & \(\ldots\) & \(\ldots\) & 31.1 & 46.2 & 102 & 152 \\
\hline 4 & 7 & 77.2 & 1.96 & \(\cdots\) & \(\ldots\) & 39.2 & 58.3 & 129 & 192 \\
\hline 3 & 7 & 86.7 & 2.20 & \(\ldots\) & \(\ldots\) & 49.4 & 73.5 & 162 & 242 \\
\hline 2 & 7 & 97.4 & 2.47 & \(\ldots\) & \(\ldots\) & 62.3 & 92.7 & 205 & 305 \\
\hline 1 & 19 & 66.4 & 1.69 & \(\ldots\) & \(\ldots\) & 78.6 & 117 & 259 & 385 \\
\hline 1/0 & 19 & 74.5 & 1.89 & \(\ldots\) & \(\ldots\) & 99.1 & 147 & 326 & 485 \\
\hline 2/0 & 19 & 83.7 & 2.13 & \(\ldots\) & \(\ldots\) & 125 & 186 & 411 & 611 \\
\hline 3/0 & 19 & 94.0 & 2.39 & ... & ... & 157 & 234 & 518 & 771 \\
\hline 4/0 & 19 & 105.5 & 2.68 & \(\ldots\) & \(\ldots\) & 199 & 296 & 653 & 972 \\
\hline 250 & 37 & 82.2 & 2.09 & \(\ldots\) & \(\ldots\) & 235 & 349 & 772 & 1150 \\
\hline 300 & 37 & 90.0 & 2.29 & \(\ldots\) & \(\ldots\) & 282 & 419 & 925 & 1380 \\
\hline 350 & 37 & 97.3 & 2.47 & \(\ldots\) & \(\ldots\) & 329 & 489 & 1080 & 1610 \\
\hline 400 & 37 & 104.0 & 2.64 & \(\ldots\) & \(\ldots\) & 376 & 559 & 1236 & 1840 \\
\hline 450 & 37 & 110.3 & 2.80 & ... & ... & 422 & 629 & 1390 & 2070 \\
\hline 500 & 37 & 116.2 & 2.95 & \(\ldots\) & \(\ldots\) & 469 & 699 & 1542 & 2300 \\
\hline 550 & 61 & 95.0 & 2.41 & \(\ldots\) & \(\ldots\) & 517 & 768 & 1700 & 2530 \\
\hline 600 & 61 & 99.2 & 2.52 & \(\ldots\) & \(\ldots\) & 563 & 838 & 1850 & 2760 \\
\hline 650 & 61 & 103.2 & 2.62 & \(\ldots\) & \(\ldots\) & 610 & 908 & 2006 & 2990 \\
\hline 700 & 61 & 107.1 & 2.72 & \(\ldots\) & \(\ldots\) & 657 & 978 & 2160 & 3220 \\
\hline 750 & 61 & 110.9 & 2.82 & \(\cdots\) & \(\cdots\) & 704 & 1050 & 2316 & 3450
3680 \\
\hline 800 & 61 & 114.5 & 2.91 & & & 751 & 1120 & 2469 & 3680 \\
\hline 900 & 61 & 121.5 & 3.09 & \(\ldots\) & \(\ldots\) & 845 & 1260 & 2780 & 4140 \\
\hline 1000 & 61 & 128.0 & 3.25 & \(\ldots\) & \(\ldots\) & 939 & 1400 & 3086 & 4590 \\
\hline 1100 & 91 & 109.9 & 2.79 & & \(\ldots\) & 1032 & 1540 & 3394 & 5050 \\
\hline 1200 & 91 & 114.8 & 2.92 & \(\ldots\) & \(\ldots\) & 1126 & 1680 & 3703 & 5510 \\
\hline 1250 & 91 & 117.2 & 2.98 & \(\ldots\) & \(\ldots\) & 1173 & 1750 & 3859 & 5740 \\
\hline 1300 & 91 & 119.5 & 3.04 & \(\ldots\) & \(\ldots\) & 1220 & 1820 & 4012 & 5970 \\
\hline 1400 & 91 & 124.0 & 3.15 & \(\ldots\) & \(\ldots\) & 1313 & 1960 & 4320 & 6430 \\
\hline 1500 & 91 & 128.4 & 3.26 & \(\ldots\) & \(\ldots\) & 1408 & 2100 & 4632 & 6890 \\
\hline 1600 & 127 & 112.2 & 2.85 & \(\ldots\) & \(\ldots\) & 1501 & 2240 & 4936 & 7350 \\
\hline 1700 & 127 & 115.7 & 2.94 & & \(\ldots\) & 1596 & 2370 & 5249 & 7810 \\
\hline 1750 & 127 & 117.4 & 2.98 & \(\ldots\) & \(\ldots\) & 1643 & 2440 & 5403 & 8040 \\
\hline 1800 & 127 & 119.1 & 3.02 & ... & ... & 1691 & 2510 & 5562 & 8870 \\
\hline 1900 & 127 & 122.3 & 3.11 & \(\cdots\) & \(\ldots\) & 1783 & 2650 & 5865 & 8730 \\
\hline 2000 & 127 & 125.5 & 3.19 & ... & \(\ldots\) & 1877 & 2790 & 6176 & 9190 \\
\hline
\end{tabular}

DECIMAL EQUIVALENTS OF FRACTIONS

\section*{CABLE SPECIFICATIONS}

This example specification section is intended to be used as a basis for the development of individual specifications, or in the preparation of specifications for a particular project. In either case, these guide specifications must be edited to fit the conditions of use and adapted to a particular cable size, or group.

For a specification that covers a group of cables, it is advisable to incorporate a table or chart in the back of the specification to outline or reiterate specific construction details and parameters. Assigning an item code number also helps identify individual cables, especially items with similar constructions; i.e., same item with reduced neutral, or same item triplexed or parallel.

Ideally a specification should relate the performance desired and expected from the product. To avoid writing a specification that precludes the implementation of good, sound manufacturing techniques, or the use of compatible, good materials (maybe better), is the responsibility of the specification writer.

The specification writer should analyze available data to prove the need for a particular requirement. Should a limiting or restricting requirement be offered for inclusion in a specification; supporting data should be solicited and carefully examined before that requirement is in fact, included. This simple step will reduce the proliferation of specification requirements which do little more than reduce technically sound, and competitive offerings from cable manufacturers.

600V UL TYPE TC POWER AND CONTROL TRAY CABLE

Multiconductor power cable rated 600 volts, 90 C normal continues for critical circuits in tray application UL listed as Type TC.
\begin{tabular}{|c|c|}
\hline Conductor: & Bare copper Class B strand per ICEA 5-68-516, Part 2. \\
\hline Insulation: & Shall be Type I Ethylene Propylene in accordance with ICEA S-68-516, Part 3.7. Thickness shall be per Table 3-1. \\
\hline Fillers: & (optional) Shall be suitable \\
\hline
\end{tabular}

Grounding Conductors: Shall be bare copper Class B per ICEA S-68-516, Part 2. Size shall be in accordance with UL 1277, Part 6.

Cabling Insulated conductors shall be assembled per ICEA S-68-516, Part 5.

Overall Cable Jacket: Shall be Chlorosulphonated polyethylene per ICEA S-68-516, Part 4 or Chlorinated Polyethylene (CPE) meeting the following physical requirements:

Tensile Strength, min. 1400 psi
Elongation, min. \(150 \%\)
Air Oven Test Percent of Original 168 hours at 121 C

Tensile 85 Elongation 50

\section*{Identification:}

\section*{Tests:}

Documentation:

Individual conductors shall be UL listed as \(V W-1\) and colored or printed by the sequence detailed in Table L-2 of ICEA \(5-66-\) 524. Surface printing on the overall jacket shall be a contrasting color consisting of manufacturer's name, locatin, cable type, cable size, and voltage rating.

Finished cable shall be tested in accordance with ICEA S-68-516 and shall meet UL 1277 flame test.

Manufacturere shall furnish certified test reports showing compliance with electrical requirements of ICEA S-68-516 and UL 1277 flame test.

Cable and materials shll meet the following standards, most recent editins, as cited herein:

ICEA S-68-516
UL 1277
ICEA S-66-524 (Color Code only).

\section*{600V SINGLE CONDUCTOR POWER CABLE}
Single conductor, copper power cable, rated boo volts, 90 C
normal operating, 130 emergency, 250 C short circuit. UL
listed Type RHHH, RHW, USE and VW-1. For critical circuits.
\begin{tabular}{|c|c|}
\hline Conductor: & Bare copper class B strand per ICEA S-68-516, Part 2. \\
\hline Separator Tape: & If required, shall be of an opaque Mylar tape, applied between conductor and insulation material. \\
\hline Insulation: & Ethylene propylene rubber per ICEA S-68516, Part 3. Thickness shall be accordance with ICEA S-68-516, Table 3-1. \\
\hline Jacket: & If required, shall be chlorosulfonated polyethylene in accordance with ICEA 5-68516, Part 4.4.9. \\
\hline Identification: & Cable shall be surface printed with a contrasting color consisting of the manufacturer's name, location, cable size, cable type and voltage rating. \\
\hline Finished Cable Test & Manufacturer shall furnish certified test reports showing compliance with ICEA S-68-516, Part 3 and UL 44. \\
\hline Listings: & Finished cable shll be UL listed as Type RHH, RHW, USE, and VW-1 rated. Size 250 MCM and larger shll be listed "For CT Use". \\
\hline Standards: & Cable and materials shall meet the following standards, most recent editions as cited herein: \\
\hline & UL 44, Eleventh Ed., Rev. May 83. \\
\hline
\end{tabular}

SPECIFICATION FOR
5kV THROOGH 35kV SHIELDED
POWER CABLE

\section*{\(1 . \varnothing\) SCOPE}
1.1 This specification covers single conductor Solid Dielectric TRXLPE insulated power cable for use on a single phase or three phase \(15 \mathrm{kV} 6 \varnothing\) Hertz grounded neutral system.
1.2 The cable shall be suitable for use in wet and dry locations in underground conduits or ducts and direct earth burial.
1.3 Finished cable shall be UL listed as Type MV-9ø and Sunlight Resistant.
1.4 The insulation level shall be \(133 \%\).

\section*{2.ø GENERAL}

The cable specified herein shall meet the requirements of the latest edition of AEIC Specification CS-5, UL 1072, and ICEA Standard S-66-524. Where a difference between this specification and others referenced herein exist, this specification shall govern. The cable and all its components shall be designed to operate satisfactorily at a normal temperature of \(9 \varnothing\) degrees \(C\) conductor, an emergency temperature of 130 degrees \(C\) conductor and short circuit temperature of \(25 \varnothing\) degrees \(C\).

\section*{\(3 . \varnothing\) CONDOCTOR}
A. Copper conductor (when specified), shall be uncoated soft drawn-annealed,Class \(B\) compressed concentric lay strand in accordance with ASTM Standard B3.
B. Aluminum conductor shall be Class B compressed concentric lay stranded EC 1350 Alloy, H19 temper in accordance with ASTM Standard B23ø. If a solid aluminum conductor is specified the intermediate temper shall be \(1 / 2\) or \(3 / 4\) hard per ASTM B6ø9.
3.2 The inner interstices of the stranded conductor shall be continuously filled with a semi-conducting compound so as to render the conductor incapable of transmitting moisture. The compound shall be flexible and stable under the conditions imposed by cable operation according to the test requirements per ICEA No. P-XX-61ø, "Guide for performance of a Longitudinal Water Penetration Resistance Test for Sealed Conductors" and be fully compatible with the conductor, conductor shield and insulation.

\section*{4.Ø CONDOCTOR SHIELD}
4.1 The conductor shield shall be extruded and the material used shall be a conducting, thermosetting polymer that is compatible with the underlying conductor metal and the overlying insulation.
4.2 The conductor shield shall be thoroughly bonded to the overlying insulation and shall be tight fitting, yet strippable from the underlying conductor.
4.3 The thickness of the extruded conductor shield shall be in accordance with AEIC CS5 or AEIC C56.

\section*{\(5 . \varnothing\) INSULATION}
5.1 The insulation shall be unfilled, clean tree retardant crosslinked polyethylene (TRXLPE). It shall be applied at the same time as the conductor and insulation shields and cured or crosslinked simultaneously with those components.
5.2 The minimum average insulation thickness shall be \(22 \varnothing\)
mils.
5.3 The insulation shall comply with the requirements of the latest editions of AEIC CS5 and ICEA S-66-524.

\section*{6.Ø INSULATION SHIELD}
6.1 The cable shall have extruded directly over the insulation a semi-conducting, thermoset polymer in accordance with AEIC CS5.
6.2 The extruded insulation shield shall adhere tightly yet be readily strippable from the underlying insulation and shall be compatible with all materials with which it comes in contact. The tension required to strip the insulation shield shall be in accordance with AEIC CS5.
6.3 The average thickness of the extruded shielding material shall be in accordance with AEIC CS5.

\section*{7.Ø METALLIC SHIELD}
7.1 Metallic shielding component shall be in accordance with ICEA S-66-524 as a minimum requirement.
7.2 Fault current sizing (if applicable) will be specified with request for quotation.
\(8 . \varnothing\) JACKET
8.1 An outer black PVC jacket meeting the requirements of ICEA section 4 shall be provided, extruded over the mylar separator tape if drain wires are supplied or extruded directly over the copper tape shield.
8.2 The jacket shall be of smooth and uniform composition and free of porosity, holes, cracks, blisters, or other imperfections.

\section*{9.ø IDENTIFICATION OF CABLE}

Cable shall have identification according to UL 1072 Type MV-9ø with a sequential footage marker. The sequential number shall be printed every 2 feet.

\section*{\(10 . \varnothing\) CABLE REELS}
10.1 The cable shall be shipped on non-returnable wood reels in lengths specified in the Quotation Request.
10.2 The reel drum diameter shall be in accordance with NEMA Publication No. WC 26-1984.
10.3 The inner drum end of the cable, when allowed to project through the flange of the reel, shall be protected to avoid injury to the cable or cable seal.

\section*{11.Ø IDENTIFICATION OF REEL}

Reel shall have identification according to AEIC CS-5 (latest edition).

\section*{12.Ø PACKING, SEALING AND SHIPPING}
12.1 Each end of each lengths of cable shall be durably sealed before shipment to prevent entrance of moisture.
12.2 The cable shall be placed on the reels in such a manner that it will be protected from injury during shipment. Care shall be taken to prevent the reeled cable from becoming loose. Each end of the cable shall be firmly and properly secured to the reel.
12.3 The reels shall be covered with suitable material to provide physical protection for the cables during transit and during ordinary handling operations and storage.
12.4 Reels shall be securely blocked in position so that they will not shift during transit.

\section*{\(13 . \varnothing\) TESTS AND TEST REPORTS}
13.1 All tests indicated in this specification shall be performed in accordance with the test procedures as described in ICEA Standard S-66-524 and AEIC CS-5 (latest edition) as applicable.
13.2 An \(X-Y\) recording of the apparent discharge (ADC) level of each reel, tested in accordance with procedure described in AEIC CS-5 (latest edition), shall become a part of the certified test reports specified in 13.3 of this Specification.
13.3 The Manufacturer shall furnish a copy of a certified test report of tests covered in this specification and of all non-listed standard tests.

\section*{14.Ø QUALIFICATION TYPE TESTS}
14.1 The manufacturer shall have on file a copy of the latest AEIC qualification test report that represents the cable being supplied. A change in compound material would require re-qualification and new reports should be submitted.

\section*{SPECIFICATION}

FOR
15kV RATED ORD CABLE

\section*{\(1 . \varnothing\) SCOPE}
1.1 This specification covers single conductor Solid Dielectric TRXLPE insulated underground residential distribution (URD) cable for use on a single phase 15 kV \(6 \varnothing\) Hertz grounded neutral system.
1.2 The cable shall be suitable for use in wet and dry locations in underground conduits or ducts and direct earth burial.
1.3 The insulation level shall be \(133 \%\).

\section*{2.Ø GENERAL}

The cable specified herein shall meet the requirements of the latest edition of AEIC Specification CS-5 and ICEA Standard S-66-524. Where a difference between this specification and others referenced herein exist, this specification shall govern. The cable and all its components shall be designed to operate satisfactorily at a normal temperature of \(9 \varnothing\) degrees \(C\) conductor, an emergency temperature of \(13 \emptyset\) degrees \(C\) conductor and short circuit temperature of 250 degrees \(C\).

\section*{\(3 . \varnothing\) CONDOCTOR}
A. Copper conductor (when specified), shall be uncoated soft drawn-annealed,Class B compressed concentric lay strand in accordance with ASTM Standard B3.
B. Aluminum conductor shall be Class \(B\) compressed concentric lay stranded EC 1350 Alloy, H19 temper in accordance with ASTM Standard B230. If a solid aluminum conductor is specified the intermediate temper shall be \(1 / 2\) or \(3 / 4\) hard per ASTM B6ø9.
3.2 The inner interstices of the stranded conductor shall be continuously filled with a semi-conducting compound so as to render the conductor incapable of transmitting moisture. The compound shall be flexible and stable under the conditions imposed by cable operation according to the test requirements per ICEA No. P-XX-610, "Guide for performance of a Longitudinal Water Penetration Resistance Test for Sealed Conductors" and be fully compatible with the conductor, conductor shield and insulation.

\section*{4.Ø CONDOCTOR SHIELD}
4.1 The conductor shield shall be extruded and the material used shall be a conducting, thermosetting polymer that is compatible with the underlying conductor metal and the overlying insulation.
4.2 The conductor shield shall be thoroughly bonded to the overlying insulation and shall be tight fitting, yet strippable from the underlying conductor.
4.3 The thickness of the extruded conductor shield shall be in accordance with AEIC CS5 or AEIC C56.

\section*{\(5 . \varnothing\) INSOLATION}
5.1 The insulation shall be unfilled, clean tree retardant crosslinked polyethylene (TRXLPE). It shall be applied at the same time as the conductor and insulation shields and cured or crosslinked simultaneously with those components.
5.2 The minimum average insulation thickness shall be 220 mils.
5.3 The insulation shall comply with the requirements of the latest editions of AEIC CS5 and ICEA S-66-524.

\section*{6.Ø INSULATION SHIELD}
6.1 The cable shall have extruded directly over the insulation a semi-conducting, thermoset polymer in accordance with AEIC CS5.
6.2 The extruded insulation shield shall adhere tightly yet be readily strippable from the underlying insulation and shall be compatible with all materials with which it comes in contact. The tension required to strip the insulation shield shall be in accordance with AEIC CS5.
6.3 The average thickness of the extruded shielding material shall be in accordance with AEIC CS5.

\section*{7.Ø CONCENTRIC NEUTRAL}
7.1 A concentric neutral conductor shall be tightly applied over the extruded semi-conducting insulation shield. It shall meet the requirements in accordance to ICEA S-66-524 Section 7.1.5.
7.2 The cable shall be supplied with a full neutral concentric conductor.
7.3 The concentric neutral conductor shall consist of bare soft drawn copper wires.

\section*{\(8 . \varnothing\) JACKET}
8.1 The cable shall have an encapsulating outer jacket to cover the concentric neutral conductor and fill the spaces between the wires, and be free stripping from the extruded insulation shield and concentric neutral wires.
8.2 The jacket shall be of smooth and uniform composition and free of porosity, holes, cracks, blisters, or other imperfections.
8.3 The jacket material shall be Linear Low Density Polyethylene and it shall meet the applicable requirements specified in ICEA Publication S-66-524 Section 4.4.2. The jacket thickness shall be per ICEA S-66-524 Section 7.1.6.1.

\section*{9.Ø IDENTIFICATION OF CABLE}

Cable shall have identification according to AEIC CS-5 (latest edition) and a sequential footage marker. The sequential number shall be printed every 2 feet.

\section*{\(10 . \varnothing\) CABLE REELS}
10.1 The cable shall be shipped on non-returnable wood reels in lengths specified in the Quotation Request.
10.2 The reel drum diameter shall be in accordance with NEMA Publication No. WC 26-1984.
10.3 The inner drum end of the cable, when allowed to project through the flange of the reel, shall be protected to avoid injury to the cable or cable seal.

\section*{\(11 . \varnothing\) IDENTIFICATION OF REEL}

Reel shall have identification according to AEIC CS-5 (latest edition).

\section*{12.Ø PACKING, SEALING AND SHIPPING}
12.1 Each end of each lengths of cable shall be durably sealed before shipment to prevent entrance of moisture.
12.2 The cable shall be placed on the reels in such a manner that it will be protected from injury during shipment. Care shall be taken to prevent the reeled cable from becoming loose. Each end of the cable shall be firmly and properly secured to the reel.
12.3 The reels shall be covered with suitable material to provide physical protection for the cables during transit and during ordinary handling operations and storage.
12.4 Reels shall be securely blocked in position so that they will not shift during transit.

\section*{13.ø TESTS AND TEST REPORTS}
13.1 All tests indicated in this specification shall be performed in accordance with the test procedures as described in ICEA Standard S-66-524 and AEIC CS-5 (latest edition) as applicable.
13.2 An \(X-Y\) recording of the apparent discharge (ADC) level of each reel, tested in accordance with procedure described in AEIC CS-5 (latest edition), shall become a part of the certified test reports specified in 13.3 of this Specification.
13.3 The Manufacturer shall furnish a copy of a certified test report of tests covered in this specification and of all non-listed standard tests.

\section*{14.ø QUALIPICATION TYPE TESTS}
14.1 The manufacturer shall have on file a copy of the latest AEIC qualification test report that represents the cable being supplied. A change in compound material would require re-qualification and new reports should be submitted.

\section*{REFERENCES}
[1] ICEA S-66-524 NEMA PUB. NO. WC-7, ICEA 5-68-516, NEMA PUB. NO. WC-8 for XLPE and EPR wire and cables.
[2] AEIC CS5, CS6, CS7 for XLPE and EPR shielded power cables.
[3] Electric Cables Materials and Constructions, J.L. Steiner
[4] National Electrical Code 1987, NFPA Publ.
[5] Standard Handbook for Electrical Engineers, Fink and Beaty
[6] Material Data Sheet, Union Carbide
[7] Aluminum Electrical Conductor Handbook, The Aluminum Assc.
[8] Underground Systems Reference Book, Edison Electric Institute.
[9] UL 1072 Medium Voltage Power Cables
[10] Specification REA U-1
[11] ASTM Standard D 1248, Standard Specifications for Polyethylene Plastics Molding and Extrusion Materials
[12] ASTM Standards: B230, B231, B406, B3, B8
[13] ASTM Standards: B33, B189, B29.
[14] Guide for Selecting and Testing Jackets for Cables, IEEEANSI Standard 532-1982,1983.
[15] Guide for Selection and Design of Aluminum Sheaths for Cables, IEEE/ANSI Standard 635,1980.
[16] EPR-Based URD Insulation: "A Question of Confidence" Morton Browm.
[17] IEEE Recommended Practice for Electrical Power Distribution for Industrial Plants, STD 141-1976

\section*{DATA REGISTER LOADING INSTRUCTIONS}

An example is given below on how to load data in main memory to a data file in extended memory. Note, that a data file contains two data header registers along with the data registers.

The following procedure can be applied to load desired data registers:

DATA REGISTER
* "STC", "STA", "SAL"
"A", "B", "C"
"AWG"
* "CTD"

\section*{FUNCTION}

Weights
Conductor diameters

AWG diameters

Control Cable Factors
* Optional
\begin{tabular}{|c|c|}
\hline STEP & INSTRUCTION \\
\hline 1. & Execute size \\
\hline 2. & Load data by card or enter manually into main memory \\
\hline 3. & Put file name in alpha \\
\hline 4. & Enter 20 (18+2) \\
\hline 5. & Create data file \\
\hline 6. & Put file name in alpha \\
\hline 7. & Enter index value (05.022 +1) \\
\hline 8. & Move data to data file \\
\hline
\end{tabular}

\section*{EXAMPLE}

XEQ 025

18 Registers
(05-022)
"C"
20

XEQ CRFLD
"C"
05.023

XEQ "SAVERX"

\section*{USER INSTRUCTIONS}

MODE: Medium Voltage Without Component Weights

STEP
INSTRUCTIONS
1. Connect printer if a hardcopy is desired. R/S after each display if no printer is attached.
2. Set printer switch to manual or normal mode.
3. Load programs "CD", "TT", "MN", "kV", "IS", "ESS", "JK".

\section*{Optional Programs:}

Control: "CT"
Secondary: "VV" Weights: "WGT", "SG" Weight Components: "CNW", "FS", "LC", "CU", "JKT", "CW"
4. Clear Flag 05
5. Initialize: XEQ "CD"
6. Select conductor type:
\(A=\) Solid
B = Compact
C = Compressed
7. Enter conductor size in AWG or kcmil.Note: \(1 / 0=10,2 / 0=20\) \(3 / 0=30,4 / 0=40\).
8. Number of strands and Diameter of Conductor, mils.
9. Enter system voltage rating, kV. (displayed only if conductor size is greater than 4/O AWG).
10. Display/Enter adder (enter if voltage rating over 69 kV), mils.

A,B,C

AWG or AWG?:KCMIL?
kV ?
\(\mathrm{kV}=\)
11. Extruded Strand Shield thickness per AEIC; R/S or enter desired ESS thickness, mils.
12. Enter Insulation Thickness, mils
13. Diameters over insulation Minimum ---- Maximum, mils
14. Extruded Insulation Shield

Thickness (nominal) per AEIC; R/S or enter desired EIS, mils.
15. Diameters over EIS

Minimum ---- Maximum, mils
16. Enter AWG wire size \#8 AWG - \#24 AWG

Note: Enter zero if no concentric wires apply
17. Minimum Diameter over Wires in inches.
18. Enter Adder for Tape Shields, Separator tapes, LC shield, Metallic Sheaths, in mils
19. Display outer Jacket Thickness for sleeved on (non-encapsulating) type jackets per ICEA. R/S, or enter desired thickness, mils. (See comment on last page)

NOTE: Enter zero if non Jacketed construction.
\(X X X X---X X X X\)
* ESS

ESS/AEIC= ESS=

INSL
-
* EIS

AWG or
AWG? zero
-

Adder
* JKT

JKT: \(\mathrm{ICEA}=\)
\begin{tabular}{|c|c|c|c|}
\hline STEP & INSTRUCTIONS & INPUT & DISPLAY \\
\hline \[
20 .
\] & \begin{tabular}{l}
Diameters over outer jacket (or Metallic shield/sheath) if nonjacketed, mils. \\
Minimum ---- Maximum
\end{tabular} & - & \(x \times x x-\cdots x x^{x}\) \\
\hline 21. & Display Circumscribed Nominal Triplexed O.D. of 3 Single cables, inches. & - & 3/C O.D \(=\) \\
\hline 22. & Enter Adder for Binder tapes, or Sheaths mils. & Adder & ADDER? \\
\hline 23. & Display Minimum O.D over Adder Component. inches & - & MIN \(=\) \\
\hline \[
24
\] & Overall Outer Jacket thickness per ICEA for multiconductor cables without Metallic armor, mils. R/S, or enter desired thickness. & * JKT & JKT: \(1 C E A=\) \\
\hline 25. & Overall Nominal Diameter of complete multiconductor assembly, inches. & - & 3/C O.D \(=\) \\
\hline \[
26
\] & Display Maximum Diameter of Ground Wire that can fit in the outer Interstice of the cable, inches. & - & MX.GW.DIA \(=\) \\
\hline
\end{tabular}

\section*{USER INSTRUCTIONS}

\section*{MODE: Medium Voltage With Component Weights}

SIZE: 026

\section*{STEP}

INSTRUCTIONS
INPUT
DISPLAY
1. Connect printer if a hardcopy is desired. R/S after each display if no printer is attached.
2. Set printer switch to manual or normal mode.
3. Load programs "CD", "TT", "MN", "KV", "IS", "ESS", "JK"."WGT" "SG"

\section*{Optional Programs:}

Control: "CT"
Secondary: "VV"
Weights: "WGT", "SG"
Weight Components: "CNW", "FS", "LC", "CU", "JKT", "CW"
4. SET Flag 05
5. Initialize: XEQ "CD"
6. Select conductor type:

SF 05

Select A, B, C
\(A, B, C\)

AWG or
AWG?:KCMIL?
7. Enter conductor size in AWG or kcmil.Note: \(1 / 0=10,2 / 0=20\) \(3 / 0=30,4 / 0=40\)
8. Number of strands and Diameter of Conductor, mils.
9. Enter system voltage rating, kV. (displayed only if conductor size is greater than 4/O AWG).
10. Display/Enter adder (enter if kCmil

XXW ロ.D=
```

kV kV?
kV=
*
0,10,15,or 20

```
\begin{tabular}{|c|c|c|c|}
\hline STEP & INSTRUCTIONS & INPUT & DISPLAY \\
\hline 11. & Select Type Metal: & 1 or 0 & AL: 1 / CU: 0 \\
\hline & \[
\begin{aligned}
& 1=\text { Aluminum } \\
& 2=\text { Copper }
\end{aligned}
\] & & \\
\hline 12. & Weight per 1000 Feet of ESS and Metal Conductor, lbs. & - & WT/MFT \(=\) \\
\hline 13. & Extruded Strand Shield thickness per AEIC; R/S or enter desired ESS thickness, mils. & * ESS & \[
\begin{aligned}
& \text { ESS/AEIC= } \\
& \text { ESS= }
\end{aligned}
\] \\
\hline 14. & Enter Insulation Thickness, mils & INSL & INSL? \\
\hline 15. & Diameters over insulation Minimum ---- Maximum, mils & - & \(x \times x x---x x x x\) \\
\hline 16. & Enter Specific Gravity of Insulation. & SG & SG? \\
\hline 17. & Weight of Insulation Compound per 1000 ft , lbs. & - & \(x \times x . x \times\) LB \\
\hline 18. & Extruded Insulation Shield Thickness (nominal) per AEIC; R/S or enter desired EIS, mils. & * EIS & \[
\begin{aligned}
& \text { AEIC= } \\
& \text { EIS= }
\end{aligned}
\] \\
\hline 19. & \begin{tabular}{l}
Diameters over EIS \\
Minimum ---- Maximum, mils
\end{tabular} & - & \(x \times x x---x x x x\) \\
\hline 20. & Enter Specific Gravity of EIS & SG & SG? \\
\hline 21. & Weight of EIS compound/MFT & - & \(x \times x . x \times\) LB \\
\hline 22. & Recall Register 25 to display total core weight at this point & RCL 25 & XXX.XX LB \\
\hline 23. & Enter AWG wire size \#8 AWG - \#24 AWG & AWG or zero & AWG? \\
\hline & Note: Enter zero if no concentric wires apply & & \\
\hline 24. & Minimum Diameter over Wires in inches. & - & MIN= \\
\hline \[
25 .
\] & Enter Adder for Tape Shields, Separator tapes, LC shield, Metallic Sheaths, in mils & Adder & Adder? \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 26 & Display outer Jacket Thickness for sleeved on (non-encapsulating) type jackets per ICEA. R/S, or enter desired thickness, mils. & * JKT & JKT: 1 CEA \(=\) \\
\hline & NOTE: Enter zero if non Jacketed construction. & & \\
\hline 27. & \begin{tabular}{l}
Diameters over outer jacket (or Metallic shield/sheath) if nonjacketed, mils. \\
Minimum ---- Maximum
\end{tabular} & - & \(x \times X X---x \times x \times\) \\
\hline 28. & Display Circumseribed Nominal Triplexed O.D. of 3 Single cables, inches. & - & 3/CD.D= \\
\hline 29. & Enter Adder for Binder tapes, or Sheaths mils. & Adder & ADDER? \\
\hline 30. & Display Minimum O.D over Adder Component. inches & - & MIN = \\
\hline 31. & Overall Outer Jacket thickness per ICEA for multiconductor cables without Metallic armor, mils. R/S, or enter desired thickness. & * JKT & JKT: \(1 C E A=\) \\
\hline 32. & Overall Nominal Diameter of complete multiconductor assembly, inches. & - & 3/C D.D \(=\) \\
\hline 33. & Display Maximum Diameter of Ground Wire that can fit in the outer Interstice of the cable, inches. & - & MX.GW.DIA \(=\) \\
\hline
\end{tabular}
* Input only if applicable

NOTE: Encapsulating Jacket thickness per ICEA is 50 mils when the minimum 0.D given in step 24 is less than or equal to \(1.5^{\prime \prime}\) and 80 mils if greater than 1.5" (over concentric neutral wires).

\section*{USER INSTRUCTIONS}

MODE: TRPX \& QUAD 6OOV Secondary Cables

SIZE: 026

INPUT
DISPLAY
1. Connect printer if a hardcopy is desired. R/S after each display if no printer is attached.
2. Set printer switch to manual or normal mode.
3. Load programs "CD", "TT", "MN", "KV", "IS", "ESS", "JK", "VV".

\section*{Optional Programs:}

Control: "CT"
Secondary: "VV"
Weights: "WGT", "SG"
Weight Components: "CNW", "FS", "LC", "CU", "JKT", "CW"
4. Clear Flag 05
5. Initialize: XEQ "CD"
6. Select conductor type:
\(A=\) Solid
\(B=\) Compact (Class B)
\(C=\) Compressed (Class B)
7. Enter Phase Conductor size in AWG or kemil. Note: \(1 / 0=10,2 / 0=20\) \(3 / 0=30,4 / 0=40\).
8. Number of strands and Diameter of Conductor, mils.
9. Enter system voltage rating, kV. (displayed only if conductor size is greater than 4/0 AWG).

A, B, C

AWG or
AWG?:KCMIL?
kemil

XXW \(0 . D=\)
Select \(A, B, C\)
ᄃ,
kV
kV?
kV=
\begin{tabular}{|c|c|c|c|}
\hline STEP & INSTRUCTIONS & INPUT & DISPLAY \\
\hline 10. & Extruded Strand Shield thickness per AEIC; Enter Zero & 0 & \[
\begin{aligned}
& \text { ESS/AE IC= } \\
& E S S=0
\end{aligned}
\] \\
\hline \[
11
\] & \begin{tabular}{l}
Select type of Cable: \\
\(0=\) Control \\
1 = Secondary
\end{tabular} & 1 & CT:0/ SC: 1 ? \\
\hline 12. & Enter Insulation Thickness, mils & INSL & INSL? \\
\hline 13. & Nominal Diameter over insulation in mils. & - & NOM = \\
\hline 14. & Enter Neutral Conductor size AWG or kemil. & AWG or kcmil & AWG/: KMIL? \\
\hline \[
15 .
\] & Number of strands and diameter of conductor. & - & \(x \times \omega:\) O.D \(=\) \\
\hline 16. & Enter Insulation Thickness of Neutral Conductor (zero if bare). & INSL & INSL? \\
\hline 17. & Nominal O.D of Neutral Cable. & - & NOM \(=\) \\
\hline 18. & Choose Assembly: & 1 or 0 & \(T X: 1, D D: O\) \\
\hline & \(1=\) Triplexed & & \\
\hline & \(0=\) Quadruplexed & & \\
\hline 20. & Nominal D.D. over complete Triplexed or Quadruplexed Assembly. & - & NOM: \(\urcorner .0=\) \\
\hline
\end{tabular}

\section*{USER INSTRUCTIDNS}

\section*{MODE: Control \& Instrumentation Cables}

SIZE: 026

STEP
INSTRUCTIONS
INPUT
DISPLAY
1. Connect printer if a hardcopy is desired. R/S after each display if no printer is attached.
2. Set printer switch to manual or normal mode.
3. Load programs "CD", "TT", "MN", "KV", "IS", "ESS", "JK", "CT".

\section*{Optional Programs:}

Control: "CT"
Secondary: "VV"
Weights: "WGT", "SG" Weight Components: "CNW", "FS", "LC", "CU", "JKT", "CW"
4. Clear Flag 05
5. Initialize: XEQ "CD"
6. Select conductor type:
\(A=\) Solid
\(B=\) Compact (Class B)
\(C=\) Compressed (Class B)
7. Enter Conductor size in AWG
or kcmil.Note: \(1 / 0=10,2 / 0=20\) \(3 / 0=30,4 / 0=40\).
8. Number of strands and Diameter of Conductor, mils.
9. Enter system voltage rating, kV. ? displayed only if conductor size is greater than 4/0 AWG).

Select \(A, B, C\)

A,B,C

AWG or
AWG?:KCMIL?
kcmil

XXW O.D \(=\)
kV
\(k V ?\)
\(k V=\)
```

10. Extruded Strand Shield thickness
per AEIC; Enter Zero
11. Select type of Cable:
O = Control
1 = Secondary
12. Enter Insulation Thickness, mils
INSL
INSL?
13. Nominal Diameter over insulation
in mils.
14. Enter number of conductors in
assembly.
15. Enter adder for Binder or separator
tapes, mils.
16. Minumum O.D. over binder tape
17. Outer jacket thickness per ICEA. R/S, or enter desired thickness, mils.
18. Minimum Diameter over complete assembly.
```
* Input only if applicable

\section*{USER INSTRUCTIONS}

```

01*LBL "VW"
G2 CF 21
03 FC? 55
04 GTO 01
0 5 ~ 5 F ~ 2 1 ~
0. ACA
07 SF 12
08 ACX
09 PRBUF
10 TONE 5
11 CF 12
1 2 ~ R T N
13*LBL 01
14 ARCL X
15 AVIEW
16 TONE 5
17 STOP
18 RTN
19 END

```

XEQ "CD" SELECT: \(\mathrm{A}, \mathrm{B}\). C:

AUG?: KCMIL?
XEQ C (100日 RUN AHG?: KCMIL? 1000
61W O.D=1117
KV?
25 RUH
\(K \mathrm{~K} ? 25 \mathrm{KV}\)
10
ESS/AEIC=25
RUN
\(E S S=25\)
INSL?
260
RUN
INSL? 260 MILS
1695-- 1755
AEIC= 70
RUN
EIS=70
1835-- 1935
AWG?
12 RUN
AWG? 12
\(\mathrm{MIH}=1.995\) ADDER?
16
RUN

ADDER? 16 MILS
JKT : ICEA=110
RUN
JKT \(=110\) MLS
2235---2385
\(3 / C \quad 0 . D=4.98\) ADDER?

30 RUN
ADDER? 30 MILS
\(\mathrm{MIN}=5.010\)
RUN
\(J K T: I C E A=140\)
RUN
\(. J K T=140 \mathrm{MILS}\)
\(3 / \mathrm{C} 0 . \mathrm{D}=5.32\)
MX. GU. DIA \(=1.152\)

XEQ "CD" SELECT: \(A, B\), C:

AMG?: KCMIL?
\(X E Q \quad C\)

ANG?: KCHIL? 1800
\(61 \mathrm{~W} 0 . \mathrm{D}=1117\)
KV?
\(\mathrm{KV} ?^{35} 35 \mathrm{KV}\) RUN
\(\mathrm{HL}: 1\) CU:
0
a RUN
\(W T / M F T=3154\)
RUN
ESS/REIC=25 RUN
\(E S S=25\)
IHSL?
345
RUN
INSL? 345 MILS
1870--1930
SG?
-920 RUN
699.57 LB

RUH
HEIC= 70
RUN
\(E I S=70\)
2010---2110
SG?
\begin{tabular}{cr}
1.140 & RU \\
225.48 & LB \\
RUG? & RUH \\
12.00 & RU
\end{tabular}

AWG? 12.00
MIN = 2.170
ADDER?
16 RUH
ADDER? 16 MILS
\(J K T: I C E A=110\) RUN
JKT \(=116\) MILS
\(2410--2560\)
\(3 / \mathrm{C} 0 . \mathrm{D}=5.36\) ADDER?

ADDER? 39 MLLS
MIN \(=5.385\)
RUN
JKT: ICEA \(=14 \mathrm{C}\) RUH
\(J K T=140 \mathrm{MILS}\) \(3 / \mathrm{C} 0 . \mathrm{D}=5.69\) MX. GH. DIA \(=1.236\)

XEQ "CD" SELECT: \(A, B\), C:

XEQ C
AMG?: KCMIL?

ESS/AEIC=15
日 RUN
\(E S S=0\)
\(C T: 0, S C:\)
\(1 ?\)
- RUN

IHSL?
30
RUN
INSL? 30 MILS
NOM : OD=0.130
NO. CDTR?
12 RUN
NO. CDTR? 12 ADDER?

JKT \(=60 \mathrm{MLLS}\)
M/C: OD:
MIN \(=0.680\)

XEQ "CD.
SELECT: \(A, B\), C:

XEQ C
AHG?: KCMIL?
49 RUN
AHG?: KCMIL? 49
\(19 \mathrm{~W} 0 . \mathrm{D}=512\)
ESS/AEIC=15

\(1 ?\)
\(\begin{array}{rr}1 & \text { RUH } \\ \text { IHSL? } & \text { RUN }\end{array}\)
INSL? 60 MILS
NOM : OD=0.638 ANG?: KCMIL?
RUG?: KCMIL? 10
\(19 \mathrm{~W} \quad 0 . \mathrm{D}=362\)

INSL?
60 RUN
INSL? 60 MILS
NOM : OD=0. 488
TX:1/QD: 0
1 RUN
M/C 0.D:
NOM : OD=1.276
DATA REGISTERS FOR WEIGHTS \#2 AWG - 1000 kcmil

 "I \| \| \| \| \| N N || || || || || || || || || || || || || || ||
 ANG - \(\cdot\). NN
 \&

AWG

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Q1*LBL "CD" "Cable Design"} \\
\hline Q2 CF 03 & Initialize \\
\hline 03 CF 04 & \\
\hline 04 SF 27 & \\
\hline 0.5 - SELECT: & Choose Conductor Type \\
\hline \multicolumn{2}{|l|}{A.B.E: \({ }^{\text {C }}\)} \\
\hline \multicolumn{2}{|l|}{06 TONE \(0^{\text {a }}\)} \\
\hline 07 PROMPT & \\
\hline -8*LBL \(\quad\) (& Solid (Aluminum) \\
\hline \multicolumn{2}{|l|}{09 SF 03} \\
\hline \multicolumn{2}{|l|}{10 " A "} \\
\hline 11 GTO "QQ. & \\
\hline 12*LBL B & Compact Strand \\
\hline \multicolumn{2}{|l|}{13 "B"} \\
\hline \multicolumn{2}{|l|}{14 GTO "QQ*} \\
\hline \(15 *\) LBL C & Compressed Strand \\
\hline 16 "C. & (Class B) \\
\hline \multicolumn{2}{|l|}{17*LBL "QQ"} \\
\hline \multicolumn{2}{|l|}{18 CF 01} \\
\hline \multicolumn{2}{|l|}{190} \\
\hline \multicolumn{2}{|l|}{20 SEEKPTA} \\
\hline 2105.023 & Index Value for Data \\
\hline \multicolumn{2}{|l|}{22 GETRX Registers} \\
\hline \multicolumn{2}{|l|}{23*LBL "EA"} \\
\hline \multicolumn{2}{|l|}{245} \\
\hline \multicolumn{2}{|l|}{25 STO 04} \\
\hline \multicolumn{2}{|l|}{26 FIX 0} \\
\hline \multicolumn{2}{|l|}{27 CF 27 Initialize Counter} \\
\hline \multicolumn{2}{|l|}{28 CF 02} \\
\hline \multicolumn{2}{|l|}{29 CF 29} \\
\hline \multicolumn{2}{|l|}{30 CF 12} \\
\hline 31 -AWG?: K & Enter Conductor Size \\
\hline \multicolumn{2}{|l|}{CMIL? . \({ }^{\text {a }}\) (AWG or kcmil} \\
\hline 32 TONE 8 & Note: 1/0 Enter 10 \\
\hline 33 PROMPT & 2/0 Enter 20 \\
\hline 34 STO 03 & \\
\hline 35 XEQ "VA" & Direct Address for \\
\hline 36 STO 00 & 1000 kcmil \\
\hline \multicolumn{2}{|l|}{371 E3} \\
\hline \multicolumn{2}{|l|}{\(38 \mathrm{X}=\mathrm{Y}\) ?} \\
\hline 39 GTO 06 & \\
\hline \multicolumn{2}{|l|}{40*LBL 00} \\
\hline 41 RCL 04 & Indirect Recall \\
\hline 4222 & to find Diameter and \\
\hline \(43 \mathrm{X}=\mathrm{Y}\) ? & Number of Strands in \\
\hline 44 GTO 03 & Conductor \\
\hline 45 RDN & \\
\hline 46 RCL IND & \\
\hline \multicolumn{2}{|l|}{\(x\)} \\
\hline \multicolumn{2}{|l|}{47 INT} \\
\hline 48 RCL T & \\
\hline \multicolumn{2}{|l|}{\(49 \mathrm{X}=\mathrm{Y}^{\prime}\) ?} \\
\hline \multicolumn{2}{|l|}{50 GTO 02} \\
\hline \multicolumn{2}{|l|}{511} \\
\hline \multicolumn{2}{|l|}{\(52 \mathrm{ST}+04\)} \\
\hline 53 GTO 00 & \\
\hline 54 *LBL 02 & Take Fraction of \\
\hline \(55 \mathrm{RCL} L\) & Data Value \\
\hline 56 FRC & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 57 & GTO 05 & Diameter not in \\
\hline 58 & LBL 03 & Register Enter \\
\hline 59 & BEEP & Manually \\
\hline 60 & "DIA: IN & \\
\hline \multicolumn{3}{|l|}{CH?} \\
\hline 61 & PROMPT & \\
\hline 62 & GTO 05 & \\
\hline 63 & LBL 06 & \\
\hline 64 & RCL 22 & \\
\hline 65 & LBL 05 & \\
\hline 66 & 1 E3 & \\
\hline 67 & * & \\
\hline 68 & EHTERT & \\
\hline 69 & INT & \\
\hline 70 & STO 00 & \\
\hline 71 & RCL \({ }^{\prime}\) & \\
\hline 72 & FRC & \\
\hline 73 & 100 & \\
\hline 74 & * & \\
\hline 75 & SF 12 & Display Diameter \\
\hline 76 & CLA & and Number of Wires \\
\hline 77 & ARCL \(X\) & \\
\hline 78 & "トW 0.D= & \\
\hline \multicolumn{3}{|l|}{"} \\
\hline 79 & ARCL 00 & \\
\hline 80 & AVIEW & \\
\hline 81 & TONE 5 & \\
\hline 82 & FC? 21 & \\
\hline 83 & STOP & \\
\hline 84 & RCL 00 & \\
\hline 85 & FS? 55 & \\
\hline 86 & ADV & \\
\hline 87 & 514 & Greater Than 4/0? \\
\hline 88 & \(x>y ?\) & Enter Voltage \\
\hline 89 & GTO 07 & \\
\hline 90 & XEQ "KV" & Adders for Voltage \\
\hline 91 & VIEW \(X\) & Rating \\
\hline 92 & \(5 T+00\) & Add to Core Diameter \\
\hline 93 & LBL 0? & If Set GOTO 600V/ \\
\hline 94 & FS? 01 & If Set GOTO 600V/ \\
\hline 95 & GTO "VV" & Control- \\
\hline 96 & SF 12 & Low Voltage Cable \\
\hline 97 & FS? 05 & XEQ Component Weight \\
\hline 98 & XEQ "WGT & XeQ Component Weight \\
\hline "99 & & Strand Shield \\
\hline 100 & TONE 9 & Thickness in Mils. \\
\hline 101 & XEQ - ESS & No Strand Shield (0) \\
\hline . & KEQ ESS & Automatically Goes \\
\hline 102 & \(x=0 ?\) & to low Voltage \\
\hline 103 & GTO "VV" & \\
\hline 104 & FS? 55 & \\
\hline 105 & ADV & \\
\hline 106 & 2 & \\
\hline 197 & * & Enter Insulation \\
\hline 108 & RCL 00 & Thickness Mils \\
\hline 109 & \(+\) & Store Thickness in \\
\hline 110 & "INSL? & REG 23 (t) for \\
\hline 111 & PROMPT & Weight \\
\hline 112 & STO 23 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 113 & \(X E Q \quad * V^{\prime}\) & Display \\
\hline 114 & 2 & \\
\hline 115 & * & \\
\hline 116 & + & \\
\hline 117 & XEQ "TT" & Round-Off per ASTM \\
\hline 118 & CLA & \\
\hline 119 & ARCL \(x\) & \\
\hline 120 & ST0 00 & \\
\hline 121 & FS? 02 & Above 35kv? \\
\hline 122 & XEQ "HY' & HV Deltas for Insula- \\
\hline 123 & 60 & tion \\
\hline 124 & LBL MD" & \\
\hline 125 & + & \\
\hline 126 & ※EQ "MT" & Display Diameter Min/ \\
\hline 127 & FS? 05 & Max \\
\hline 128 & XEQ -SG" & Weight of Extrusion \\
\hline 129 & SF 12 & Component \\
\hline 130 & FIX 0 & \\
\hline 131 & XEQ "IS" & Insulation Shield \\
\hline 132 & "PEIC= " & Thickness per AEIC \\
\hline 133 & ARCL \(X\) & \\
\hline 134 & AVIEW & \\
\hline 135 & TONE 8 & \\
\hline 136 & STOP & Can Override AEIC \\
\hline 137 & "EIS = " & Enter EIS \\
\hline 138 & ARCL \(\times\) & \\
\hline 139 & STO 23 & For Weight Calc \\
\hline 140 & AVIEW & \\
\hline 141 & 2 & \\
\hline 142 & * & \\
\hline 143 & \(5 T+00\) & \\
\hline 144 & RCL OG & \\
\hline 145 & CLA & \\
\hline 146 & ARCL \(X\) & \\
\hline 147 & FS? 02 & Above 35kv? \\
\hline 148 & XEQ "VH" & HV Deltas EIS \\
\hline 149 & 100 & \\
\hline 150 & - \({ }^{\text {a }}\) "CC* & \\
\hline 151 & + & \\
\hline 152 & XEQ "MT" & \\
\hline 153 & STO 04 & Store Max O.D. \\
\hline 154 & FS? 05 & \\
\hline 155 & XEQ "SG" & \\
\hline 156 & " PWG" & \\
\hline 157 & 0 & \\
\hline 158 & SEEKPTA & \\
\hline 159 & 05.020 & \\
\hline 160 & GETRX & \\
\hline 161 & 5 & Indirect Access Loop \\
\hline 162 & STO 01 & for AWG Diameter \\
\hline 163 & - 10 & \\
\hline 164 & "PWG? " & \\
\hline 165 & PROMPT & Enter Concentric \\
\hline 166 & ENTERT & Neutral or Drain wire \\
\hline 167 & \(X=0\) ? & Size(\#8-\#24 AWG.) \\
\hline 168 & GTO 14 & \\
\hline 169 & XEQ - YA" & \\
\hline 170 & -LBL D1 & Enter 0 if No Wire \\
\hline 171 & RCL 01 & \\
\hline 172 & 20 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 173 & \(x=r^{\prime} ?\) & & \\
\hline 174 & GTO & 10 & \\
\hline 175 & RDN & & \\
\hline 176 & RCL & IHD & Indirect Recall \\
\hline \(x\) & & & Find Diameter of \\
\hline 177 & INT & & Wire \\
\hline 178 & RCL & T & \\
\hline 179 & \(X=Y\) ? & & \\
\hline 180 & GTO & 11 & \\
\hline 181 & 1 & & \\
\hline 182 & ST+ & 01 & \\
\hline 183 & GTO & 01 & \\
\hline 184 & LBL & 11 & \\
\hline 185 & RCL & L & \\
\hline 186 & FRC & & Take Fraction of \\
\hline 187 & 1 EJ & & Data Value \\
\hline 188 & * & & \\
\hline 189 & LBL & 08 & \\
\hline 190 & ST+ & 00 & \\
\hline 191 & RCL & 00 & \\
\hline 192 & XEQ & "MN" & Display Min. O.D. \\
\hline 193 & FC? & 21 & Over Wire \\
\hline 194 & STOP & & \\
\hline 195 & LBL & 14 & \\
\hline 196 & "月DD & ER? \({ }^{\text {- }}\) & Enter Adder to \\
\hline 197 & PROM & PPT & Core for Tapes \\
\hline 198 & ST+ & 04 & \\
\hline 199 & XEQ & * \({ }^{\text {PV** }}\) & \\
\hline 200 & ST+ & 00 & \\
\hline 201 & XEQ & - JK* & 1/c Jacket \\
\hline 202 & \(x=0 ?\) & & Thickness \\
\hline 203 & GTO & 12 & Displayed per \\
\hline 204 & 2 & & ICEA (Can Over- \\
\hline 205 & * & & ride) \\
\hline 206 & ST+ & 00 & \\
\hline 207 & RCL & 00 & \\
\hline 208 & 3EG & "TT" & \\
\hline 209 & ST0 & 00 & \\
\hline 210 & CLA & & \\
\hline 211 & ARCL & \(x\) & \\
\hline 212 & 150 & & \\
\hline 213 & + & & \\
\hline 214 & צEQ & " MT \({ }^{\text {- }}\) & \\
\hline 215 & STD & 04 & +/-75 Mil Spread \\
\hline 216 & 75 & & \\
\hline 217 & - & & \\
\hline 218 & ST0 & 02 & \\
\hline 219 & GTO & 13 & Store Max O.D. \\
\hline 220* & LBL & 12 & \\
\hline 221 & RCL & 00 & \\
\hline 222 & XEEQ & * TT * & Nominal 1/c Dia- \\
\hline 223 & CLA & & meter \\
\hline 224 & ST0 & 00 & Non-Jacketed \\
\hline 225 & ARCL & K & \\
\hline 226 & 100 & & \\
\hline 227 & + & & \\
\hline 228 & YEQ & "MT" & +/- 50 Mil \\
\hline 229 & 50 & & \\
\hline 230 & - & & \\
\hline 231 & ST0 & 02 & \\
\hline
\end{tabular}

Nominal \(1 / \mathrm{C}\)
Diameter

Triplexed O.D.
Display for 3/c Enter Adder for Tapes or Armor

Overall Jacket Thickness Displayed Per ICEA

Extrusion Adder

Display 3/c O.D.
Max O.D. \(1 / \mathrm{c}\)

Interstice Check

Display Maximum Ground Wire Diameter in Outer Interstice

End

\section*{STATUS}

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{ ASSIGNMENTS } \\
\hline FUNCTION & KEY & FUNCTION \\
\hline SOLID & A & & \\
\hline COMPACT & B & & \\
\hline STRAND & C & & \\
\hline & & & \\
\hline EA & E & & \\
\hline & & & \\
\hline & & & \\
\hline
\end{tabular}

DATA REGISTERS
\begin{tabular}{|c|c|c|c|}
\hline م- & Program Use & & \\
\hline 01 & Program Use & & \\
\hline 02 & 1/c Diameter & & \\
\hline 03. & Program Use & & \\
\hline 04 & Max O.D. \(1 / \mathrm{c}\) & & \\
\hline 05 & Data & & \\
\hline 06 & Register & & \\
\hline 07 & See Separate & & \\
\hline 08 & Listings & & \\
\hline 09 & & & \\
\hline 10 & & & \\
\hline 11 & & & \\
\hline 12 & & & \\
\hline 13 & & & \\
\hline 14 & & & \\
\hline 15 & & & \\
\hline 16 & & & \\
\hline 17 & & & \\
\hline 18 & & & \\
\hline 19 & & & \\
\hline 20 & & & \\
\hline 21 & 1 & & \\
\hline 22 & & & \\
\hline 23 & t=thickness & & \\
\hline & in weight & & \\
\hline 24 & d (weight) & & \\
\hline & ESS EST O.D. & & \\
\hline 25 & Core Weight & & \\
\hline & (Total) & & \\
\hline & & & \\
\hline
\end{tabular}

FLAGS
\begin{tabular}{|c|c|c|c|}
\hline \[
*
\] & \[
\begin{gathered}
\text { INIT } \\
\text { S/C }
\end{gathered}
\] & SET INDICATES & CLEAR INDICATES \\
\hline 01 & c & 600V/ Control & Med-High kV \\
\hline & & cable & \\
\hline 02 & C & Above 35 kV & Below 35 kV \\
\hline 03 & c & Solid cdtr. & Strand Cdtr. \\
\hline 04 & c & Copper & Aluminum \\
\hline 05 & -- & With Weights & Without \\
\hline & & & Weights \\
\hline 12 & C & Print Double & Normal Print \\
\hline & & Wide & \\
\hline 21 & C & Printer on/of & Disables \\
\hline & & & Printer \\
\hline 27 & C & Turns on User & Turns Off \\
\hline & & Mode & User Mode \\
\hline 29 & c & Digit Groun & Digit Group \\
\hline & & On & Off \\
\hline 55 & C & Printer Exist & No Printer \\
\hline & & & \\
\hline
\end{tabular}
```

G1*LBL "VV"
02 FS? 01
03 GTO 0G
04 "CT: 0
SC: 1?
05 PROMPT
06 x=0?
07 XEQ "CT"
08*LBL 0日
09 SF 12
10 "INSL?"
1 1 ~ P R O M P T ~ E n t e r ~ I n s u l a t i o n ~ T h i c k n e s s ~ o f ~ P h a s e ~ C o n d u c t o r ~ ( o r ~ N e u t r a l ~
12 XEQ "AY
13 2.1
14*
15 RCL DO
16+
17 XEQ "NM* 2.1 x (Nominal Multipl\epsilon)
18 ※\uparrow2
19FS? 01
20 GTO 01
21 STO 02
22 SF 01
23 GTO "EA" Back to CD at Label EA to Select Neutral Size
24*LBL 01
25 5T0 04
26 "TX:1
QD: O"
27 PROMPT
28 x=0?
29 GTO 19
30 RCL 02
312
32*
33 RCL 04
34+
35
36
37 SQRT
38 2.155
39 *
40 GTO 20
41*LBL 19
42 RCL 02
4 3 3
44 *
45 RCL 04
46+
474
48
4 9 ~ S Q R T ~
50 2.414
51 *
52*LBL 20
53 CF 01
54 "M/C O.D a = Phase Conductor (dia)
55 AVIEW
Triplex
(a+(2x b)\mp@subsup{)}{}{2}*2+c
Quadruplex
(a+(2xb) 2 * 3+c}*2.41
56 XEQ *MM"
57.END.

```

日1*LBL "CT" Control Cable Module
02 "CTD"
030
04 SEEKPTA
0505.024 Index Value

06 GETRX Load Register with
07 SF 12 . Multiple Factors up
08 "INSL? " to 24 Cables per
09 PROMPT
10 XEQ .AY.. Conductor
112
12 *
13 RCL 00
14 +
15 STO 00
16 XEQ "NM"
\(17 *\) LBL 00
185
19 STO 04
20 "NO. CDT
R?. \(\quad\) Enter Number of
21 PROMPT
Conductors in Cable
22 XEQ "VA"
23 STO 02
\(24 * L B L \quad 01\)
25 RCL 04
2624
\(27 X=Y\) ?
28 GTO O日 Recall Indirect Loop
29 RDN
30 RCL IND
\(x\)
31 INT
32 RCL 02
\(33 X=Y\) ?
34 GTO 03
351
\(365 T+04\)
37 GTO 01
38*LBL 03
39 RCL L
40 FRC
```

    410
    4 2
    ```

```

    44 *
    45 "ADDER?
    * 4 6 ~ P R O M P T
47 XEQ "VA "
48 +
49 STO 00
50 XEQ "MN"
51 XEQ "JK" Jacket Thickness
522
53 *
54 RCL 00
55 +
56 "M/C: OD Display Minimum
:" Nominal O.D. of
57 RVIEW Cable
58 XEQ "MN"
5 9 ~ E N D

```

Enter Adder for
Tapes or Armor
per ICEA

Cable
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Q1＊LBL＊TT \({ }^{\text {c }}\)} & Rounds Off Numbers & \multirow[t]{2}{*}{51} & & \multirow[b]{3}{*}{01} \\
\hline 02 & EHTERT & \multirow[t]{2}{*}{When Called in Accordance With ASTM} & & RCL & \\
\hline 0.3 & INT & & 5 & RCL & \\
\hline 04 & 100 & \multirow[t]{6}{*}{Standards：} & 53 & \(x=Y ?\) & \\
\hline 05 & \(\checkmark\) & & 54 & GTO & 03 \\
\hline 06 & FRC & & 55 & RCL & 01 \\
\hline 07 & 10 & & 56 & 1 & \\
\hline 08 & ＊ & & 57 & ＋ & \\
\hline 09 & FRC & & 58 & ST0 & 01 \\
\hline 10 & 10 & \multirow[b]{2}{*}{Last Digit：} & 59 & GTO & 06 \\
\hline 11 & ＊ & & 60 & LBL & 07 \\
\hline 12 & STO 01 & \multirow[b]{2}{*}{\(0,1,2 \longrightarrow 0\)} & 61 & 5 & \\
\hline 13 & \(x<>\gamma\) & & 62 & RCL & 01 \\
\hline 14 & RCL Y & \multirow[b]{2}{*}{\(3,4,5,6,7 \longrightarrow 5\)} & 63 & メ゙＝「＇？ & \\
\hline 15 & － & & 64 & GTO & 03 \\
\hline 16 & ST0 03 & \multirow[b]{2}{*}{\(8,9,10 \rightarrow 10\)} & 65 & RCL & 01 \\
\hline 17 & RCL E1 & & 66 & \multicolumn{2}{|l|}{1} \\
\hline 18 & 7 & & 67 & － & \\
\hline 19 & \(x<>\gamma\) & & 68 & STO & 01 \\
\hline 20 & \(x>\gamma ?\) & & 69 & GTO & 07 \\
\hline 21 & GTO 01 & & 70 & LBL & 05 \\
\hline 22 & GTO 02 & & 71 & STO & 01 \\
\hline \(23+\) & LBL 01 & & 72 & \(x=0\) ？ & \\
\hline 24 & 10 & & 73 & GTO & 03 \\
\hline 25 & RCL 01 & & 74 & 1 & \\
\hline 26 & X＝＇\({ }^{\text {c }}\) & & 75 & － & \\
\hline 27 & GT0 03 & & 76 & GTO & 05 \\
\hline 28 & RCL 01 & & 77 & LBL & 03 \\
\hline 29 & 1 & & 78 & RCL & 03 \\
\hline 30 & \(+\) & & 79 & ＋ & \\
\hline 31 & ST0 01 & & 80 & RTN & \\
\hline 32 & GTO 01 & & 81 & END & \\
\hline \(33+\) & LBL 02 & & & & \\
\hline 34 & ST0 01 & & & & \\
\hline 35 & 7 & & & & \\
\hline 36 & \(x<>\gamma\) & & & & \\
\hline 37 & \(x<=Y ?\) & & & & \\
\hline 38 & RCL D1 & & & & \\
\hline 39 & 2 & & & & \\
\hline 40 & \(x<>\gamma\) & & & & \\
\hline 41 & \(x>Y ?\) & & & & \\
\hline 42 & GT0 04 & & & & \\
\hline 43 & GT0 05 & & & & \\
\hline \(44 *\) & LBL 04 & & & & \\
\hline 45 & 5 & & & & \\
\hline 46 & RCL 01 & & & & \\
\hline 47 & X＜＝「？ & & & & \\
\hline 48 & GT0 06 & & & & \\
\hline 49 & GT0 07 & & & & \\
\hline 50 & LBL 06 & & & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline 01 & LBL "KV" & Kilovolt Adder & 01 -LBL & "IS" & Insulation \\
\hline 02 & "KV? & \multirow[t]{5}{*}{Module} & 02 RCL & 00 & Shield Thick- \\
\hline 03 & PROMPT & & 031 E & & ness per AEIC \\
\hline 04 & ARCL \(\times\) & & 04 X<> & & See Table \\
\hline 05 & " & & \(05 x<=\gamma\) & & \\
\hline 06 & RVIEW & & 06 GTO & & \\
\hline 07 & STO 01 & \multirow[t]{6}{*}{\(15 \mathrm{kv}=10 \mathrm{mils}\)} & 071500 & & \\
\hline 08 & 15 & & 08 RCL & 00 & \\
\hline 09 & \(\mathrm{X}<\gg\) & & \(09 \mathrm{X}<=Y\) & & \\
\hline 10 & X<= \({ }^{\prime}\) ? & & 10 GTO & 02 & \\
\hline 11 & GTO 01 & & 11 GTO & 03 & \\
\hline 12 & 28 & & \(12+L B L\) & 01 & \\
\hline 13 & RCL 01 & \multirow[t]{4}{*}{\(25 \mathrm{kv}=10 \mathrm{mils}\)} & 1340 & & \\
\hline 14 & \(X<=Y\) ? & & 14 GTO & 04 & \\
\hline 15 & GTO 02 & & 15*LBL & 02 & \\
\hline 16 & 35 & & 1650 & & \\
\hline 17 & RCL 01 & \multirow[t]{2}{*}{\(28 \mathrm{kv}=10 \mathrm{mils}\)} & 17 GTO & 04 & \\
\hline 18 & \(X<=Y\) ? & & 18 -LBL & 03 & \\
\hline 19 & GTO 03 & \multirow[t]{2}{*}{\(35 \mathrm{kv}=15 \mathrm{mils}\)} & 1970 & & \\
\hline 20 & 69 & & 20*LBL & 04 & \\
\hline 21 & RCL 01 & \multirow[t]{3}{*}{\(69 \mathrm{kv}=20 \mathrm{mils}\)} & 21 RTN & & \\
\hline 22 & X<=Y? & & 22*LBL & "HV" & \\
\hline 23 & GTO 04 & & 2380 & & \\
\hline 24 & - ADD? 69 & \multirow[t]{20}{*}{Greater Than 69kv Enter Adder Manually} & 24 GTO & " DD \({ }^{\text {P }}\) & \\
\hline +" & & & 25*LBL & "VH" & \\
\hline 25 & PROMPT & & 26120 & & \\
\hline 26 & SF 02 & & 27 GT0 & "CC" & \\
\hline 27 & GTO 05 & & 28 END & & \\
\hline 28 & LBL 01 & & & & \\
\hline 29 & 0 & & & & \\
\hline 30 & GTO 05 & & & & \\
\hline 31 & LBL 02 & & & & \\
\hline 32 & 10 & & & & \\
\hline 33 & GTO 05 & & & & \\
\hline 34 & LBL 03 & & & & \\
\hline 35 & 15 & & & & \\
\hline 36 & GTO 05 & & & & \\
\hline 37 & LBL 04 & & & & \\
\hline 38 & SF 02 & & & & \\
\hline 39 & 20 & & & & \\
\hline 40 & LBL 05 & & & & \\
\hline 41 & RTN & & & & \\
\hline 42 & END & & & & \\
\hline
\end{tabular}

Jacket Module Automatically Selects Outer Extruded Jacket Thickness For Shielded Single Cable and Outer Jacket For Mutiple Cable Assemblies in Accordance With ICEA S - 66-524, S - 68-516

Calculated Diameter of Cable Under Jackat

Inches
0.425 or Less
\(0.426-0.700\)
\(0.701-1.500\)
\(1.501-2.500\)
2.501 and Larger

Display Jacket Thickness per ICEA
33 .J.JKT: ICE \(\mathrm{A}={ }^{-}\)

34 ARCL X
35 AVIEW
36 STOP
37 ".JKT= "
38 XEQ "AV"
39 RTH
40 . END.

Jacket
Thickness

Mils 456080110140

Override Stop to Enter Different Thickness i,e, Encapsulated, Zero, (non Jacketed) Larger or Smaller

Extruded Strand Shield Thickness
in Accordance with AEIC
\begin{tabular}{|c|c|c|c|c|}
\hline \(01+\) & LBL "ESS & Conductor Size & Strand Shield & Thickness \\
\hline & & AWG or kcmil & (Mils) & \\
\hline 02 & \[
\begin{aligned}
& \text { RCL } \\
& 512
\end{aligned}
\] & & & \\
\hline 04 & \(x<\gg\) & 8-4/0 & 15 & \\
\hline 05 & X<= ' \({ }^{\text {? }}\) & & & \\
\hline 06 & GTO 01 & 250-500 & 20 & \\
\hline 07 & 789 & & & \\
\hline 08 & RCL 00 & 600-1000 & 25 & \\
\hline 09 & \(X<=Y\) ? & & & \\
\hline 10 & GTO 02 & 1001 and Larger & 30 & \\
\hline 11 & 1117 & & & \\
\hline 12 & RCL 00 & & & \\
\hline 13 & X<=Y? & & & \\
\hline 14 & GTO 03 & & & \\
\hline 15 & 30 & & & \\
\hline 16 & GTO 04 & & & \\
\hline 17 & LBL 01 & & & \\
\hline 18 & 15 & & & \\
\hline 19 & GTO 04 & & & \\
\hline 20 & LBL 02 & & & \\
\hline 21 & 20 & & & \\
\hline 22 & GTO 04 & & & \\
\hline \(23+\) & LBL 03 & & & \\
\hline 24 & 25 & & & \\
\hline 25 & LBL 04 & & & \\
\hline 26 & - ESS/AEI & & & \\
\hline \(\mathrm{C}={ }^{\text {- }}\) & & & & \\
\hline 27 & ARCL \(X\) & & & \\
\hline 28 & AVIEW & & & \\
\hline 29 & TONE 9 & & & \\
\hline 30 & STOP & & & \\
\hline 31 & "ESS= \({ }^{\text {P }}\) & & & \\
\hline 32 & ARCL \(X\) & & & \\
\hline 33 & RVIEW & & & \\
\hline 34 & RTN & & & \\
\hline 35 & . END. & & & \\
\hline
\end{tabular}
```

日1*LBL "SG" Specific Gravity for Extrusion Weights
日2 RCL 23
031 E3
04
052.1
06 *
07 RCL 24 Determines Weight of Extrusion Component
08 ST0 2
$09+$
10 FIX 3
11 RND
$125 T 024$
13 ふャ2
14 RCL $r \quad W=\left(D^{2}-d^{2}\right)(340.2 x$ S.G. $)$
15 ふャ2
16 -
17 "SG?"
18 PROMPT
19340.2
20 *
$21 *$
22 FIX 2
23 CLA
24 ARCL X
25 "ト LB"
26 AVIEW
$275 T+25$
28 STOP
29 RTN
30 EHD

```
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{1*LBL *WGT} & Weight Module \\
\hline \multicolumn{2}{|l|}{92 . PL : 1} & Set Flag 05 \\
\hline cu: & \(0 \cdot\) & Actuates This Weight \\
\hline 03 TONE 9 Actuates This Weight & TONE 9 & Module for Cable \\
\hline \multicolumn{3}{|l|}{04 PROMPT Core (Metal CDTR} \\
\hline 05 & X=0? & ESS, Insulation, EIS) \\
\hline \multicolumn{3}{|l|}{06 GTO 15 LSS, Insulation, EIS)} \\
\hline \multicolumn{3}{|l|}{07 FS? 03} \\
\hline 08 & GTO 23 & \\
\hline \multicolumn{3}{|l|}{09 "STA"} \\
\hline \multicolumn{3}{|l|}{10 GTO "GWT} \\
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{11*LBL 23}} & \multirow[t]{4}{*}{Metal Conductor Aluminum or Copper Solid or Strand} \\
\hline & & \\
\hline 12 & "SAL". & \\
\hline 13 & GTO "GWT & \\
\hline \multicolumn{3}{|l|}{14*LBL 15} \\
\hline \multicolumn{3}{|l|}{15 FS? 03} \\
\hline 16 & GTO *WGT & \\
\hline \multicolumn{3}{|l|}{. 16 GTO} \\
\hline \multicolumn{3}{|l|}{17 SF 04} \\
\hline \multicolumn{3}{|l|}{18 "STC"} \\
\hline \multicolumn{3}{|l|}{19*LBL *GWT} \\
\hline \multicolumn{3}{|l|}{200} \\
\hline 21 & SEEKPTA & Index Value to Load \\
\hline 22 & 05.023 & Data Register \\
\hline 23 & GETRX & 1000 kcmil and \\
\hline 24 & 5 & 750 kcmil Direct \\
\hline 25 & STO 04 & Access \\
\hline \multicolumn{3}{|l|}{\(261 \mathrm{E3}\) 3} \\
\hline \multicolumn{3}{|l|}{27 RCL 03} \\
\hline \multicolumn{3}{|l|}{\(28 \mathrm{X}=\mathrm{Y}\) ?} \\
\hline \multicolumn{3}{|l|}{29 GTO 18} \\
\hline \multicolumn{3}{|l|}{30750} \\
\hline \multicolumn{3}{|l|}{\(31 \mathrm{X}=\mathrm{Y}\) ?} \\
\hline 32 & GTO 21 & \\
\hline \multicolumn{2}{|l|}{\(32+\) LBL 16} & \\
\hline \multicolumn{3}{|l|}{34 RCL 04} \\
\hline \multicolumn{3}{|l|}{3522} \\
\hline \multicolumn{3}{|l|}{\(36 \mathrm{X}=Y\) ?} \\
\hline 37 & GTO 24 & Loop to Find Conductor \\
\hline 38 & RDN & Weight \\
\hline 39 & RCL IND & \\
\hline \multicolumn{3}{|l|}{\(\times\)} \\
\hline \multicolumn{3}{|l|}{40 INT} \\
\hline \multicolumn{3}{|l|}{41 RCL 03} \\
\hline \multicolumn{3}{|l|}{\(42 \mathrm{X}=\mathrm{Y}\) ?} \\
\hline \multicolumn{3}{|l|}{43 GTO 20} \\
\hline \multicolumn{3}{|l|}{441} \\
\hline \multicolumn{3}{|l|}{\(45 \mathrm{ST}+04\)} \\
\hline \multicolumn{3}{|l|}{46 GTO 16} \\
\hline \multicolumn{3}{|l|}{47*LBL 20} \\
\hline \multicolumn{3}{|l|}{48 RCL L} \\
\hline \multicolumn{3}{|l|}{49 FRC} \\
\hline 50 & +LBL 17 & \\
\hline
\end{tabular}

```

    -1*LBL "CW"
    02 EF 27
Q3 "DIAM L. Enter Diameter Uf Last Operation
$0 .=$ ?
04 PROMPT
05 STO 00
062.1
日7 "T?.. Input Thickness of Extruded Component in Inches
08 PROMPT
09 *
$10+$
11 ふ七2
12 RCL 00
13 ※け2
14 -
15340.2
$16 *$
17 "S.G.=?" Input Specfic Gravity of Material to be Used
18 PROMPT
19 *
20 FIX 2
21 "WGT="
22 ARCL $X$
23 AVIEW
24 STOP
25 .END.

```
\[
W=\left[(D+2.1(T))^{2}-D^{2}\right] \quad x \quad(340.2 \times S . G)
\]

Where：
 D = Diameter of Last Operation
 \(T=\) Thickness in Inches
 S.G. = Specfic Gravity
 340.2 = Conversion Factor

\author{
Weight of Concentric Neutral Wires
}
\begin{tabular}{|c|c|c|}
\hline 02 & CF 27 & \multirow[t]{2}{*}{Deactivate User Mode} \\
\hline 0.3 & PI & \\
\hline 04 & "LAY? & \\
\hline 05 & PROMPT & Input Lay as a \\
\hline 06 & - & Mutiple of the \\
\hline 07 & ATAN & Estimated O.D. Over \\
\hline 08 & \(\cos\) & the Concentric \\
\hline 09 & \(1 / X\) & Neutral \\
\hline 10 & -WIRE WT & Neutral \\
\hline \multicolumn{3}{|l|}{?. W} \\
\hline 11 & PROMPT & Input the Weight \\
\hline 12 & * & Per MFT of One \\
\hline 13 & - NO WIRE & Neutral Wire \\
\hline S?* & & \\
\hline 14 & PROMPT & Input the Number of \\
\hline 15 & * & \multirow[t]{2}{*}{Wires to be Used} \\
\hline 16 & FIX 2 & \\
\hline 17 & "WGT = " & Displays the Weight \\
\hline 18 & ARCL \(X\) & of the Neutral Wire \\
\hline 19 & AVIEW & Per MFT \\
\hline 20 & "STOP" & \\
\hline 21 & END & \\
\hline
\end{tabular}
\[
\begin{aligned}
& \mathrm{W}=\mathrm{N} x \mathrm{~W} \mathrm{x} \text { S.F. } \\
& \text { Where: } \\
& \mathrm{N}=\text { Number of Wires } \\
& \text { W = Weight of One } \\
& \text { Wire } \\
& \text { S.F. = Secant Factor } \\
& \frac{1}{\cos \left(\tan ^{-1}\left(\frac{\Pi I}{\operatorname{La} y}\right)\right)}
\end{aligned}
\]

Weight of Concentric Neutral
Flat Straps

日 1 +LBL "FS"
\begin{tabular}{|c|c|c|}
\hline 02 & CF 27 & Deactivate User \\
\hline 03 & PI & Mode \\
\hline 04 & "LAY?" & \\
\hline 05 & PROMPT & Input Lay as a \\
\hline 06 & - & Multiple of the \\
\hline 07 & ATAN & Estimated O.D. \\
\hline 08 & cos & Over the Flat \\
\hline 09 & 1/x & Straps \\
\hline 10 & "T? & \\
\hline 11 & PROMPT & Input the Thick- \\
\hline 12 & "WIDTH=? & ness of One Strap \\
\hline & & Strap \\
\hline 13 & PROMPT & \\
\hline 14 & * & \\
\hline 15 & 3850.06 & \\
\hline 16 & * & \\
\hline 17 & * & \\
\hline 18 & -NO STRA & Input the Number \\
\hline S \(=\) & . & of Straps \\
\hline
\end{tabular}

19 PROMPT
20 *
21 FIX 2
22 "WGT="
23 ARCL \(X\)
24 AVIEW
25 STOP
26 .END.
\[
\mathrm{W}=\mathrm{N} \times \mathrm{W} \mathrm{x} \text { S.F. }
\]

Where:
\[
N=\text { Number of Straps }
\]
S.F. = Weight Factor of CU
\[
\begin{aligned}
& \left.=\frac{1}{\cos \left(\tan ^{-1}\left(\frac{\pi}{1 a y}\right)\right.}\right) \\
\mathrm{W} & =\text { Weight of One Stral } \\
& =T \mathrm{x} \text { W } \mathrm{x} \text { WF } \mathrm{x} 1.273
\end{aligned}
\]

Where:T = Thickness
\(\mathrm{W}=\mathrm{Width}\)
W.F. = Weight Factor
of - CU
\(=3024.4\)
1.273 = 4/ Conversion

Factor to Square Mils
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Weight of Eongitudinally Applied Copper Tape} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\(01+L B L\) "LC.
02 CF 27
03 - DIA: L. Input the Max}} \\
\hline & \\
\hline & \\
\hline 0. MAX? \({ }^{\text {a }}\) & Average Diameter of \\
\hline 04 TONE 8 & the Last Operation \\
\hline 05 PROMPT & \\
\hline 06 PI & \\
\hline 07 * & \\
\hline 08.6 & \\
\hline \(09+\) & \\
\hline 10 FIX 3 & \\
\hline 11 "WIDTH=" & Displays the Width \\
\hline 12 ARCL \(X\) & of the Tape - Inches \\
\hline 13 AVIEW & \\
\hline 14 STOP & \\
\hline 154625 & \\
\hline 16 * & \\
\hline 17 "T? & \\
\hline 18 PROMPT & Input the Corrugated \\
\hline 19 * & Tape Thickness - \\
\hline 20 FIX 1 & Inches \\
\hline 21 "WGT=* & Displays the Weight \\
\hline 22 ARCL \(X\) & of Corrugated Tape \\
\hline 23 AVIEW & Per MFT \\
\hline \multicolumn{2}{|l|}{24 STOP} \\
\hline 25 END & \\
\hline
\end{tabular}

Weight \(=\mathrm{W}\) x 4625 x t
Where:
\[
\begin{aligned}
\mathrm{W}= & \text { Width }=\quad \mathrm{D}+.6 \\
4625= & \text { Conversion Factor } \\
\mathrm{t}= & \text { Corrugated Tape } \\
& \text { Thickness } \\
\mathrm{D}= & \begin{array}{l}
\text { Max. O.D. of Last } \\
\end{array}
\end{aligned}
\]

Weight of Helically Applied Copper Tape
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Q1*LBL "Cu"} \\
\hline 02 & CF 27 & \\
\hline 03 & "THICK: & \\
\hline \multicolumn{3}{|l|}{NCH? \({ }^{\text {P }}\)} \\
\hline 04 & PROMPT & Enter the Tape \\
\hline 05 & STO 00 & Thickness-Inches \\
\hline 06 & 8.89 & \\
\hline 07 & * & \\
\hline 08 & PI & \\
\hline 09 & * & \\
\hline 10 & 433.5 & \\
\hline 11 & * & \\
\hline & "EST. DIA & \\
\hline \multicolumn{3}{|l|}{: Lo? \({ }^{\text {. }}\)} \\
\hline 13 & PROMPT & Enter Estimated \\
\hline 14 & ENTERT & Diameter of the \\
\hline 15 & RCL 00 & Last Operation \\
\hline 16 & + & Under Tape \\
\hline 17 & * & \\
\hline 18 & STO 01 & \\
\hline 19 & 1 & \\
\hline 20 & ENTERT & \\
\hline 21 & - OVERLAP & \\
\hline \multicolumn{3}{|l|}{? \({ }^{\prime}\)} \\
\hline 22 & PROMPT & Enter Nominal Per- \\
\hline 23 & ENTERT & cent of Overlap \\
\hline 24 & 5 & \\
\hline 25 & \(+\) & \\
\hline 26 & 100 & \\
\hline 27 & - & \\
\hline 28 & - & \\
\hline 29 & 1/X & \\
\hline 30 & RCL 01 & \\
\hline 31 & * & \\
\hline 32 & FIX 2 & \\
\hline 33 & "T \(: W T=*\) & Weight of Copper \\
\hline 34 & PRCL \(X\) & Tape in MFT \\
\hline 35 & PVIEW & \\
\hline 36 & STOP & \\
\hline 37 & END & \\
\hline
\end{tabular}
\[
\mathrm{W}=433.5 \mathrm{x} \text { S.G. } \mathrm{x} \text { T } \mathrm{x} x(\mathrm{D}+\mathrm{T})
\]
\[
x\left(\frac{1}{1-\frac{L}{100}}\right)
\]

Where:
L = Overlap
433.5 = Conversion Factor
S.G. = Specific Gravity

T = Thickness of Tape
D = Estimated Diameter Under

Weight of Encapulating Jackets

\[
\mathrm{W}=\left[\left(\mathrm{D}^{2}-\mathrm{d}^{2}\right) \mathrm{WF}_{1}\right]-\left(\frac{\mathrm{WF}_{1}}{\mathrm{WF}_{2}} \mathrm{~W}_{1}\right)
\]

Where:
\[
\begin{aligned}
\mathrm{W} & =\text { Jacket Weight Per MFT } \\
\mathrm{D} & =\text { Estimated O.D. Over Jacket in Inches } \\
\mathrm{d} & =\text { Estimated O.D. Under Neutral in Inches } \\
\mathrm{WF}_{1} & =\text { Weight Factor for Jacket Compound(S.G. } \mathrm{x} 340.2) \\
\mathrm{WF}_{2} & =\text { Weight Factor for Neutral Wires(S.G. } \mathrm{x} 340.2) \\
\mathrm{W}_{1} & =\text { Weight of Neutral Wires Per MFT }
\end{aligned}
\]

\section*{USER INSTRUCTIONS}
1. Connect printer if a hardcopy is desired. R/S after each display if no printer is attached.
2. Set printer switch to manual or normal mode.
3. Load programs "Cov"
4. Check status
5. Initialize: XEQ "COV"
6. Enter Lay of Wires as multiple of O.D.
7. Enter number of wires or straps
8. Enter width of wires or straps in inches
9. Enter maximum O.D. over Insulation shield

Max MAX:OD:EIS?
O.D.
10. Percent coverage of wires or Straps displayed
\% Coverage of Wire or Straps over Insulation Shield

Enter Lay
Multiple (6-10 times)

Secant Factor \(\overline{\cos } \tan =\frac{1}{\pi / \text { Lay }}\)
Enter number of Wires or Straps

Width in Inches
\(?\)
13 PROMPT
14 *
15 "MAX: OD: Max. O.D. over EIS
EIS?
16 PROMPT
17 PI
18 *
29100
21 *
\(22 F I X 0\)
\(23 \quad \because \%=\)
24 ARCL \(X\)
25 AVIEW
26 STOP
27 END
```

K = % coverage
F
N = Number of Wires
W = Width of Wires
D = O.D. (Max) over EIS

```


LAY?
7
HO. WIRES?
32
W: INCH?
- 0808

MAX: OD:EIS?
.98
\(\%=92\)

\title{
METALLIC SHIELDING CONSTRUCTIONS
}

Robert W. Parkin

PROGRAM: "MS"

\begin{abstract}
FUNCTION: This program covers the metal shield component of URD/UD and power cables; specifically wire shields. If a copper tape shield is used it must be at least 2.5 mils thick in accoradance with ICEA S-66-524. Wires , straps, or sheaths should be copper and have a total area at any cross section of at least 5000 circular mils per inch (\(0.1 \mathrm{~mm}^{\wedge} 2 / \mathrm{mm}\)) of insulated conductor diameter. Metal tapes, wires, straps, and sheaths may be used in combination providing they are compatible.

The program first displays the minimum cross-sectional area required per ICEA 5-64-524 and the number of wires needed. Then a comparison of the first group of wires "1W" can be made, to determine how many wires are needed to equal the cross-sectional area of the original group.
\end{abstract}

ACCESSORIES: HP-41 CX, CV printer optional

OPERATING LIMITS AND WARNINGS: None

\section*{USER INSTRUCTIONS}
```

STEP
INSTRUCTIONS
INPUT
DISPLAY

1. Connect printer if a hardcoov is desired. R/S after each display if no printer is attached.
2. Set printer switch to manual or normal mode.
3. Load programs "MS", "VW"
4. Check status
5. Initialize: XEQ "MS"
6. Enter O.D. over the insulation,
O.D.
O.D.:INSL? inches.
7. Display minimum cross-sectional $C M A=$ area required, per ICEA in circular mils.
8. Enter CSA of copper wire in circular mils
9. Display minimum number of copper wires for cable.
10. Enter first wire size in circular mils.
11. Enter number of wires
12. CSA Displayed
13. Second size: Enter CSA
14. Display number of wires
15. Back to step 13 for
1:CSA.
1W:CMIL?
comparison of different wire sizes
```

XEQ "MS"
0.D: IHSL?
1.5 RUN CMA \(=7500.0\) CMIL?
812.0 RUH
9.2 UIRES
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{1H: CMIL?} & \\
\hline & 1290.8 \\
\hline \multicolumn{2}{|l|}{N ?} \\
\hline & 36.8 \\
\hline \(\mathrm{CMR}=\) & 440.0 \\
\hline 2 H : CMIL? & \\
\hline
\end{tabular}
1620.8 RUN
28.7 HIRES
\begin{tabular}{ll}
2W: CMIL? & RUN \\
18.0 HIRES & 2589.8
\end{tabular}

XEQ "MS"
0.D: INSL?
1.5 RUN
\(C M A=7500.0\)
CMIL?
2589.0 RUN
2.9 WIRES

\section*{CONCENTRIC NEUTRAL WIRE SIZES AND SELECTION}

Robert W. Parkin

PROGRAM: "NL"

FUNCTION: This program covers two-conductor concentric neutral underground distribution cables (URD/UD), consisting of an insulated central conductor and one copper concentric conductor applied helically over the insulation shield. URD/UD cables are intended for use on single phase and three phase primary underground distribution systems operating at 2001 through 35000 volts phase to phase.

Given the area in kemil and type metal (copper or aluminum) for the phase conductor, the number of concentric neutral wires to equal the conductivity of the phase conductor (full neutral) is displayed, and continues in reduced neutral sizes, i.e., 1/3, 1/6,1/9 etc., for that conductor.

ACCESSORIES: HP-41 CX or CV, printer optional

OPERATING LIMITS AND WARNINGS: Use the coverage program "COV" to insure that the number of wires applied for a full neutral can fit around the circumference of the cable under the wires.

REFERENCES: ICEA S-66-524

\section*{USER INSTRUCTIONS}
1. Connect printer if a hardcopy is desired. R/S after each display if no printer is attached.
2. Set printer switch to manual or normal mode.
3. Load programs "NL","VW"
4. Check status
5. Initialize: XEQ "NL"
6. Enter Phase Conductor size in kemil
7. Enter Concentric Neutral

Phase kcmil? CDTR
kemil
AWG?
wire size in kcmil
8. Select Type Metal of Phase Conductor:
\[
\begin{aligned}
& 1=\text { Aluminum } \\
& 2=\text { Copper }
\end{aligned}
\]
9. Display Number of Wires
for full neutral capacity
10. Number of wires required 13=
for \(1 / 3\) neutral
11. Number of wires for \(1 / 6\)
\(16=\)
1/9, 1/12, etc. - Press
R/S to stop if printer is connected.

\section*{FLAT STRAP NEUTRALS}

Robert W. Parkin

PROGRAM: "STP"

FUNCTION: This program determines helical flat strap neutral
arrangements, given the equivalent cross-sectional area required.

The best type of metallic shield or sheath to provide the most copper, (and conductance) with the smallest overall cable diameter is helically applied flat straps. These straps can be sized for service as a full or reduced neutral and carry fault currents while providing mechanical protection to the cable itself.

Tinning the wires in accordance with ASTM B33 is common, and will increase the electrical resistance of the straps. For added protection against physical damage or corrosion an overall sleeved on or encapsulated jacket can be applied.

ACCESSORIES: HP-41 CX or CV, printer optional

OPERATING LIMITS AND WARNINGS: Use the coverage program "COV" to insure that the number of straps applied can fit around the circumference of the cable.

\section*{REFERENCES}
[1] ASTM B272 Copper Flat Products with Finished (rolled or Drawn) Edges (Flat Wire and Strip)
[2] ASTM B33, ASTM B189
[3] ICEA 5-66-524, NEMA WC-7

\section*{USER INSTRUCTIONS}
1. Connect printer if a hardcopy is desired. R/S after each display if no printer is attached.
2. Set printer switch to manual or normal mode.
3. Load programs "STP","VW"
4. Check status
5. Initialize: XEQ "STP"
6. Enter effective cross-sectional area required in circular mils

NOTE: Aluminum conductors; multiply by .61 if copper straps are used
7. Enter thickness of strap in mils
8. Enter width of strap in mils
9. Equivalent cross-sectional area of one strap
10. Display number of straps needed
11. Loop to re-enter thickness and

T
T ?

\section*{Flat Strap Neutrals}
```

    01+LBL "STP
    * G2 FIX 1
03 "CMA?"
04 FROMPT
0 5 ~ S T O ~ 0 0 , ~
06*LBL 01
07 "T?"
08 PROMPT
09 "W?"
10 PROMPT
11 *
12 1.2732
13*
14 "CMA:FS=
* 15 XEQ "VW"
16 RCL 00 Display Number of Straps Required
17 x<>Y
18
19 CLA
20 ARCL X
21 "\vdash STRAP Loop to Re-enter t and W
S"
22 TONE 9
23 AVIEW
24 STOP
25 GTO 01
26.END.

```

Enter Effective Copper Equalvalent, CrossSectional Area Required

Enter Thickness of Strap in Mils

Enter Width of Strap in Mils

Display CSA of One Flat Strap

Display Number of Straps Required

Loop to Re-enter \(t\) and \(W\)

End

\section*{METRIC STRAND CONDUCTOR DESIGN}

\author{
Robert W. Parkin
}
```

PROGRAM: This program determines areas and diameters for
compressed and compact concentric strand conductors in metric
units. Standard and non-standard conductor,sizes can be entered.
Dimensions are given in metric units (mm}\mp@subsup{}{}{2}\mathrm{ ) and American Wire
Gauge (circular mils).
For concentric class B strand, the individual strands are all
equal in size, and consist of successive helical layers that
correspond to the aggregate of wires; which is
7,19,37,61,91,127, or 169 wires.
Formulas applied are given with program documentation.

```

ACCESSORIES: HP-41 CX or CV, printer optional.

OPERATING LIMITS AND WARNINGS: Maximum number of wires can be 169.

REFERENCES: Underground Systems Reference Book, Edison Electric Institute.

\section*{USER INSTRUCTIONS}

Size: 004
MODE: COMPRESSED CONDUCTOR
```

STEP
INSTRUCTIONS

1. Connect printer if a hardcopy is
desired. R/S after each display
if no printer is attached.
2. Set printer switch to manual or
normal mode.
3. Load programs "MET" "VW"
4. Check status
5. Initialize: XEQ "MET"
6. Enter cross section in mm^2
7. Circular mil area displayed
8. Select type conductor
O = Compact
1 = Compressed
9. Enter number of wires
in conductor (7,19,37,61,
91,127,169)
10. Diameter of one wire

| STEPINSTRUCTIONS INPUT |  |
| :--- | :--- |
| 11. Diameter of conductor, mils | D:MIL $=$ |
| 12. Diameter of conductor, mm | D:MM $=$ |

## MODE: [COMPACT CONDUCTOR]

8. Select type conductor
$0=$ Compact
1 = Compressed
9. Enter area A1, of known
compact conductor in circular mil
10. Enter diameter of known compact conductor in inches
11. Diameter of conductor in inches
12. Diameter of conductor in mm

Dia.
D1

CMT: O/CPS: 1

A? CM

D1? Inch

| 日1*LBL "MET |  | Metric Concuctor |
| :---: | :---: | :---: |
|  |  | Strand Design |
| 02 FIX 1 |  |  |
| 0.3 | "MMTこ?" | Enter Cross Section$\text { in } \mathrm{mm}^{2}$ |
| 04 | PROMPT |  |
| 95 | 1973.55 |  |
| 06 | * |  |
| 07 | STO 63 | Cir-mil Equivalent |
| 08 | "CM= | Select Type: |
| 09 | XEQ "VW" | 0 = Compact Strand <br> 1 = Compressed Strand |
| 10 | "CMT: |  |
| CPS:1" |  |  |
| 11 | PROMPT |  |
| 12 | $x=0$ ? |  |
| 13 | GTO 00 |  |
| 14 | *NO. WIR | Enter Number of Wires in Conductor,$(7,19,37,61,91,127,169)$ |
| ES? |  |  |
| 15 | PROMPT |  |
| 16 | STO 00 |  |
| 17 | 1/X |  |
| 18 | RCL 03 | Dia $1 \mathrm{~W} \sqrt{\text { cmil } \frac{1}{\text { No.of Wire }}}$ |
| 19 | * ${ }^{\text {SRRT }}$ |  |
| 20 | SQRT |  |
| 21 | STO 01 |  |
| 22 | "DIA : $1 W=$ | Diameter of Individual Wires |
| - |  |  |
| 23 | XEQ "VW" |  |
| 24 | XEQ "LY" |  |
| 25 | RCL ${ }^{\text {a }}$ |  |
| 26 | RCL 02 | Compressed . 97 Times |
| 27 | * |  |
| 28 | . 97 |  |
| 29 | * |  |
| 30 | $\cdots \mathrm{D}: \mathrm{MIL}=\cdot$ | Conductor Diameter in Mils |
| 31 | XEQ "VW" |  |
| 32 | . 0254 |  |
| 33 | * |  |
| 34 | - D : MM = " | Conductor Diameter in mm |
| 35 | XEQ "VW" |  |
| 36 | STOP |  |
| 37 | LBL 00 |  |
| 38 | RCL 03 cm | Enter Area ( $\mathrm{A}^{1}$ ) of Compact Conductor Known |
| 39 | - 1 1? : CM |  |
| 40 PROMPT |  |  |
| 41 | - |  |
| 42 | SQRT |  |
| 43 | -D1? : IN | Enter Diameter of Known |
| CH. Compact Conductor |  |  |
| 44 | PROMPT |  |
| 45 | * |  |
| 46 | FIX 3 |  |
| 47 | $\cdots \mathrm{DIA}=\cdots$ | Diameter in Inches |
| 48 |  | $D_{2}=\sqrt{\frac{A_{2}}{A_{1}}}$ |
| 49 50 | $\begin{aligned} & 1 \text { E3 } \\ & * \end{aligned}$ | $D_{2}=\sqrt{\overline{A_{1}}} \quad D_{1}$ |
| 51 | . 0254 |  |
| 52 | * |  |
| 53 | - DIA:MM $=$ |  |



| SAMPLE PROBLEM |
| :---: |

## Conversion Factors

日1*LBL "MM"
02 CF 27
0.3 .0254

04 *
05 STOP
日6*LBL "MIL
-
07 CF 27
$08-0254$
09 ,
10 STOP
11 -LBL "CM"
$12 \quad 1973.5$
13 *
141000
15
16 STOP
17 +LBL "MT"
18 CF 27
193.281

20 *
21 STOP
22 +LBL "KG"
232.205

24 *
25 CF 27
26 STOP
$27+L B L$-CML
"
28 CF 27
29 - 00254
30 *
31 STOP
32 END

CM to mil

## Metric Conversion Chart Metric Conversion Chart AWG/Metric Preferred sizes of conductors

| AWC/MCN: | man ${ }^{\text {a }}$ | cire mille: |
| :---: | :---: | :---: |
| *2000 |  | 2000000 |
|  | +1000 | 1970000 |
| -1750 |  | 1750000 |
|  | + 800 | 1580000 |
| -1500 |  | 1500000 |
| -1250 |  | 1250000 |
|  | + 630 | 1240000 |
| -1000 |  | 1000000 |
|  | $+500$ | 987000 |
|  | + 400 | 789000 |
| - 750 |  | 750000 |
| - 600 |  | 600000 |
|  | + 300 | 592000 |
| - 500 | + 240 | 500000 |
| - 400 | + 240 | 474000 400000 |
|  | + 185 | 365000 |
| - 350 |  | 350000 |
| - 300 |  | 300000 |
|  | + 150 | 296000 |
| - 250 |  | 250000 |
|  | + 120 | 237000 |
| - 4/0 |  | 211600 |
|  | + 95 | 187000 |
| 3/0 |  | 167000 |
|  | + 70 | 138000 |
| $\begin{array}{r} \text { • } 2 / 0 \\ \cdot 1 / 0 \end{array}$ |  | 133100 |
|  |  | 105600 |
|  | + 50 | 98700 |
| 1 |  | 83690 |
|  | + 35 | 69100 |
| - 2 |  | 66360 |
|  |  | 52620 |
| - 4 | + 25 | 49300 |
|  | + 16 | 41740 31600 |
| - 6 | + 16 | 26240 |
|  | + 10 | 19700 |
| - 8 |  | 16510 |
|  | + 6.0 | 11800 |
| - 10 |  | 10380 |
|  | + 4.0 | 7890 |
| - 12 |  | 6530 |
|  | $\pm 2.5$ | 4930 |
| - 14 |  | 4110 |
|  | + 1.5 | 2960 |
| - 16 |  | 2580 |
|  | + 1.0 | 1970 |
|  | 0.90 | 1773 |
| - 18 |  | 1620 |
|  | 0.80 | 1576 |
|  | $+\quad 0.75$ $+\quad 0.60$ | 1480 |
|  | + 0.60 | 1182 |
| - 20 |  | 1020 |
|  | + 0.50 | 987 |
| $-\quad 22$$-\quad 24$ |  | 640 |
|  | + 0.20 | 404 |
| - 26 |  | 253 |
| $\begin{array}{r}\text { - } 28 \\ \hline \text { - } 30\end{array}$ |  | 159 |
|  |  | 100 |
| - 34 | . 05 | 64.0 39.7 |
|  | . 02 | 39.7 25.0 |
| 38$-\quad 40$ | . 002 | 16.0 |
|  | . 005 | 9.61 |

Metric (IEC 228) preterred size
American Wire Gauge preterred sizes

## -246-

## Section Three

## Installation Programs and Guidelines

PULLing TENSIONS AND INSTALLATION GUIDELINES FOR CABLE

Robert W. Parkin

PROGRAM:"PUL" "TEN"

FUNCTION: This program determines the maximum allowable pulling tensions and lengths of extruded solid dielectric power cables. Sidewall bearing pressures on the cable are displayed for curved pulls along with the Clearance, Jam Ratio, and Percent Fill. Four cable configurations can be selected and nine forms of pulling directions are provided.

ACCESSORIES: HP-41CX or CV, printer optional

OPERATING LIMITS AND WARNINGS: A Maximum of four cables per pull can be applied. The shift key should be used to select the lower case labels a,b,c,d when selecting the configuration of cable in duct, and the upper case $A-I$ for individual installing sections.

## PROGRAM DESCRIPTION AND PARAMETERS

The manner in which cable is installed greatly influences not only the immediate cost but also the operational reliability and service continuity of the cable system. Although different cable constructions may demonstrate varying degrees of resistance to physical damage, current technology does not provide damage proof insulated conductors. Installation subjects cables to the highest mechanical stresses they will ever be exposed to, therefore, extreme care should be exercised while handing and installing cable.

The program covers four cable configurations in duct:
a) Single
b) Triangular
c) Cradled
d) Diamond

And Nine forms of pulling directions:
A) Straight
B) Horizontal Bend
C) Slope Up
D) Slope Down
E) Vertical Dip
F) Convex Up
G) Convex Down
H) Concave UP
I) Concave Down

Each program module corresponds to the lower and upper case local label outlined above. Prompts are called sequentially and only if applicable to that section of the installation, keeping input data for each pull section to a minimum. After $T 2$ and sidewall load (if applicable) are displayed the program will loop to reselect the next installing section, using the previous T2 as T1 until the installation layout is completed.

A diagram of the installation should be used in conjunction with the program to determine the best procedure, or re-design of the layout. Both directions of pulling should be evaluated, since the tensions and corresponding sidewall pressures will not be equal for both directions of installation in most cases.

The calculations to determine the forces on a cable as i.t is pulled into a duct depends on several parameters:

Conduit Fill
Clearance
Jam Ratio
Friction Sidewall Load

Weight Correction Factor
Cable Diameter and Weight
Configuration
Bending, Training
Maximum Tension

CONDUIT FILL: Conduit fill mainly affects heat dissipation, ampacity, and installation forces. The NEC regulates the maximum number of conductors that may be pulled into rigid metal conduit, rigid non-metallic conduit, intermediate metal conduit, electrical metallic tubing, flexible metal conduit, and liquidtight flexible metal conduit.

For round conductors and equal diameter cables, percent fill is calculated:

$$
\% \text { Fill }=[d / D]^{2} n * 100 \%
$$

where: $D=i n s i d e ~ d i a m e t e r ~ o f ~ d u c t$

$$
d=\text { overall diameter of a single conductor cable }
$$

The number of conductors permitted in a particular size of conduit is covered in the NEC chapter nine, given below. The table displays the maximum cable cross-sectional area as a percentage of internal conduit or duct area.
[6]
Number of Cables

|  | $\underline{1}$ | $\underline{2}$ | $\underline{3}$ | $\underline{4}$ | over 4 |
| :--- | :---: | :---: | :---: | :---: | ---: |
| Cables (not lead covered) | 53 | 31 | 40 | 40 | 40 |
| Cables Lead Covered | 55 | 30 | 40 | 38 | 35 |

Bigger than minimum conduit should generally be used to provide some measure of spare capacity for load growth, and in many cases the conduit should be upsized considerably to allow for future installation of anticipated large size conductors.

Fill also affects the ampacity rating of the enclosed cables. Consult the NEC Article 310 to determine the influence that the selected fill has on circuit ampacity.

The dimensions of standard high density polyethylene conduit is given below.

## High Density Polyethylene Conduit Dimensions (Inches)

| Nominal | Size | Nominal | O.D. | Nominal | I.D. | * Min. Drum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $3 / 4$ |  | 1.050 |  | 0.920 |  | - |
| 1 |  | 1.315 |  | 1.155 |  | - |
| $11 / 4$ |  | 1.660 |  | 1.448 |  | - |
| $11 / 2$ |  | 1.900 |  | 1.656 |  | 36 |
| 2 |  | 2.375 |  | 2.065 |  | 42 |
| $21 / 2$ |  | 2.875 |  | 2.469 |  | 48 |

* Recommended Minumum drum diameter on shipping reel.

CABLE CLEARANCE: In applications where the NEC limits do not apply, it is necessary to calculate the clearance between the cables and the inside top of the conduit to ensure that the cable can be pulled through.
[1] It is recommended that the calculated clearance be not less than 0.5 inches. A lesser clearance, as low as 0.25 inches may be acceptable for essentially straight pulls. The clearance should be adequate to accommodate the pulling eye or grip which will be used in the cable pull.

The clearance for each configuration is displayed first for each operation as "CL=". Formulas for clearance are shown in the program documentation.

JAM
RATID: Jamming is the wedging of cables in a conduit only when three (3) cables lay side by side in the same plane. Compute this using the nominal (or maximum) overall outer diameter of the cable (d) and 1.05 times the inside diameter of the conduit (D). A proper ratio of $\mathrm{D} / \mathrm{d}$ must be maintained to avoid a $3 / 1$ ratio.

The program will display this ratio, and then a "JAM" or "NO JAM" message. The "JAM" message will sound a warning BEEP if the ratio is between 2.8-3.2. Within this range jamming might occur because of slight ovality in bends that increase I.D. to give a jam ratio of 3.O. Serious jamming can probably be avoided if the ratio is less than 2.8. If D/d is less than 2.5 , jamming is impossible because cables will be confined to a triangular configuration which also reduces electrical losses, but check the clearance to make sure the cable will fit.

FRICTION: The dynamic coefficient of friction between a cable and conduit can vary from 0.25 to 1.050 depending on the number of cables, type outer covering of cable, type conduit material installation temperature and of course type of pull and lubricant. This factor is generally divided with sidewall bearing pressures less than, or greater than 150 lbs/ft.

The value of 0.5 is used as a general value for lubricated cables being pulled into conduit or ducts without other cables. 0.15 for cables being pulled over ball or roller bearing rollers in cable trays, 0.4 for cables being pulled over rollers/sheaves without roller or ball bearing. Higher installation temperatures cause the coeffient of friction to be higher for cables having a nonmetallic jacket.

NOTE: Once a cable installation has begun, if possible, pulling should continue until completed. Once stopped, restarting will require pulling tension to be increased to overcome frictional and inertial resistance.
[3] Recomended Basic Dynamic Coefficients of Friction

Duct Material

PVC

| XLPE | 0.40 | 0.40 |
| :--- | :--- | :--- |
| PE | 0.40 | 0.35 |
| PVC | 0.50 | 0.25 |
| $N$ | 0.90 | 0.55 |
| CN | 0.40 | 0.40 |
| Pb | 0.25 | 0.25 |

Straight pulls and bends with bearing pressure less than 150 lb/ft with soap and water base luricants.

Three Cables/Duct 75 F

$$
0.60
$$

$$
0.45
$$

$$
0.60
$$

$$
1.50
$$

$$
--
$$

--
[7] SIDEWALL LOAD: The cable Sidewall load (or bearing pressure) is the radial force exerted on the cables as is being pulled through a curved section.

For a single cable in conduit pulls:
$S W L=T / R$
Cradled formation three conductors:
SWL = (3 Wc - 2) T/ (3R)
In triangular formation:

> SWL = Wc T / (2R)

For four cables in diamond configuration:

$$
S W L=(W C-1) \quad T / R
$$

Where:
SWL = Sidewall bearing pressure on cable with greatest radial bend in lbs / ft
$T=$ Maximum combined tension of cables for multiple cable pulls or tension on one cable for single cable pulls when exiting the bend in pounds
$R=$ Inner radius of conduit bend
Wc $=$ Weight correction factor for multiple cable pulls

It should be noted that the $T / R$ ratio is independent of the angular change of direction produced by the conduit bend. It depends on the tension out of the bend and the bend radius, with the effective radius taken as the inside of the bend. If a limit is exceeded the bend radius can be satisfied by increasing the radius of the bend.

The following maximum sidewall loads are generally considered good installation practice:

## Cable Type

$600 V$ nonshielded control
600 V and 1 kV EP power
Medium Voltage EPR and XLPE
Inter locked Armor

SWL ( 1 b (ft)
300
500

500

300

Sidewall bearing pressure on the cable can be kept to a minimum by obsevering these guidelines:
(1) Keep conduit runs as straight as possible
(2) Make the bend radius as large as possible
(3) Keep offsets to a minimum
(4) Where elbows or bends are unavoidable, locate the cable feed-in point as close to the bend as possible so that pulling tension at the bend is low.

WEIGHT: Use the total weight per unit length of cables being pulled. Triplexed cables will weigh more than parallel cables. For triplexed cables multiply the weight of a single cable by 3.009 for the total weight of assembly.

WEIGHT CORRECTION FACTOR: This takes into account the uneven forces placed on the cables while being pulled through the conduit, due to the geometric configuration of the cables. This imbalance results in additional frictional drag on the cables during the pull, effectivly increasing the weight of the cable. Formulas applied are shown with program documentation.

The weight correction factor for a single cable is unity.

CONFIGURATION: The configuration of the cable as it lavs in the duct directly affects drag. Four configurations are given in the program and shown below. The cradled configuration is assumed to result from pulling cables from individual reels in oarallel with D/d greater than 2.5. This is also called the parallel configuration. The triangular configuration results from the cables being triplexed, or parallel cables in a conduit less than 2.5. Use cradled for paralleled cables with D/d greater than 2.5.

## Cable Configuration in Conduit

Single
Triangular
Cradled
Diamond


MINIMUM BENDING RADIUS OF CABLES: There are two different forns of bends that place stresses on cables:

- Cables under tension (Bending)
- Cables not under tension (Training)

For both training and bending, computations are to be based on the inside radius. These limits do not apply to conduit bends, sheaves or other curved surfaces around which the cable may be pulled under tension while being installed.

The minimum bending radius as a multiple of Cable Diameter for both single and multiple conductor cables rated up to and including $35 k V$ are as follows, based on these conditions:

- Single or multiple conductors
- Non-shielded cabled
- Without lead sheath
- Wire shielded cables


## MINIMUM BENDING RADIUS

[4]


Single conductor tape shielded cables have a minimum bending radius of 12 times the overall diameter. For multiple assemblies and multiplexed cables having individual tape shields, the minimum bending radius is the same as for a single conductor or seven times the overall diameter, whichever is greater. For assemblies having an overall tape shield over the multi-conductor assembly, the minimum bending radius is 12 times the overall diameter of the cable.

For multi-conductor interlocked armor cables, except tape shielded cables: Per above table but not less than seven times the 0.D.

MAXIMUM TENSIONS: The metallic phase conductors are the tensile members of a cable. Thus all pulling forces must ultimately be transferred to them, unless the cable is of custom design having special tension members.

The maximum allowable pulling tension applied to a cable varies with:

- The number of cables
- Size and type of conductor
- Number of conductors
- Method of attachment between pulling line and cable

1) Cables with pulling eyes or bolts should not exceed:

Where Tm is the maximum allowable tension, in pounds,

$$
\begin{aligned}
T m= & B \times n \times A \\
& A=\text { Conductor area in circular mils } \\
n & =\text { Number of conductors } \\
B & =\text { Conductor Tension Constant }
\end{aligned}
$$

| Material | Cable Type | Temper | B |
| :--- | :--- | :--- | :--- |
| Copper | All | Soft drawn | 0.008 |
| Aluminum | Power | Hard | 0.008 |
| Aluminum | Power | $3 / 4$ Hard | 0.006 |
| Aluminum | Power | "AWM" | 0.005 |
| Aluminum | URD (solid) | Soft (1/2 hard) | 0.003 |
| All | Thermocouple |  | 0.008 |

Three-quarter hard aluminum is allowed for power cable. AWM is required for UL labeled bOOV aluminum solid wired \#8 AWG and smaller; it may be used in larger sizes. Soft is sometimes used for large solid aluminum. $A W M$ is a UL designated aluminum.

NOTE: Do not consider area of neutral or ground conductors in the cable when calculating maximum pulling tensions.

In pulling three single conductors, a value of $n$ equal to two is recommended since two of the conductors may sustain the total pulling tension in a triangular configuration, and one of the conductors may sustain more than 50 percent of the total tension in a cradled arrangement. The maximum tension for a single conductor cable should not exceed 5000 lb., and the maximism tension for two or more conductors should not exceed 60001b even though calculations may yield higher values.
2) Basket Grip: The maximum tension on copper or aluminum conductors should not exceed 1000 lb. per grip or the val:e calculated with $T m=B \times n \times A$, whichever is smaller. The limit applies to a single conductor cable, a multi-conductor cable with a common jacket, two or more twisted cables or parallel cables using a basket grip. Use $n=2$ for three grips, one per conductor to determine the maximum allowable tensions. Do not pull on metal sheaths or armors - pull on their phase conductors. If the basket grip is applied to the metal conductor then the limits of tension on the conductor apply. If the basket grip $1 \equiv$ applied over the insulated cable then a tension up to 1000 lb. is allowed per grip.

All of the limits are applicable to all pulls and the installation of cables shall not cause the limits to be exceeded. In particular, cable pulling tension must not exceed the smaller of these values:

```
- Allowable Tension on Conductor
- Allowable Tension on Pulling Device
- Allowable Sidewall Loads
```

NOTE (1): Extreme care must be observed in the storage, movement, and set-up of non-returnable wood and steel reels. Cable reels must be rolled on smooth and firm surface that is clean and free of debris that could damage the cable. Fork-lifts should approach the reels from the side and never come in contact with the cable. Arrows on the flange should indicate the direction of roll which should always be in the direction opposite to the cable wind on the reel. This prevents loosening of the cable turns on the reel, which may cause problems during installation.
(2) Reel back tensions and braking during a pull should be monitored, and kept within allowable limits. Braking of the reel should be done only to prevent an overrun when the pull is slowed or stopped, or on steep down-hill runs or vertical drops where cable weight is enough to overcome cable - duct friction.

This program offers nine forms of pulling directions, which can be selected via the programable assigned alpha keys,A through I; providing subdivision of specific pulling sections. The sketches provided show the pulling directions. The formulas associated with each direction gives the cumulative tension T2 on the loading end of the cable as it exits from a specific section when $T 1$ is the tension in the cable entering that section. Each section can be used as many times as needed.

## DEFINITION OF SYMBOLS

Symbol

| T1 | Incoming cable tension | Pounds |
| :---: | :---: | :---: |
| T2 | Outgoing cable tension | Pounds |
| R | Inside radius of conduit bend | Feet |
| w | Total weight of cables in duct | 1bs/foot |
| $\theta$ | Angle subtended by bend for curved sections, or angle of slope measured from horizontal for inclined planes | Radians |
| K | Effective coefficient of friction | ---- |
| L | Length of cable in section | Feet |
| $D^{\prime}$ | Depth of dip from horizontal axis | Feet |
| 25 | Horizontal length of dip section | Feet |

## REFERENCES

```
[1] [3] EPRI EL-333-CM-CCM,V2 Cable - Pulling Guidelines for
 Solid Dielectric Cables Feb }198
[2] [5] Anaconda (CABLEC CORP) Cable Installation Manual
[4] Insulated Cable Engineers Association Pub no. S-66-514,
 National Electrical Manufactuers Association Pub no. WC-8-1984,
 and WC-26 Wire and Cable Packaging 1984
[6] National Electric Code 1984
[7] R.C. Rifenburg "Pipe-line design for pipe-type Feeders" AIEE,
 pp 1275-1288, Dec 1953
[8] Underground Systems Reference Book, Edison Electric
 Institute, 1957
```


## CABLE INSTALLATION DATA



## A. Straight Pull


B. Horizontal Bend Pull

C. Slope - Upward Pull

D. Slope-Downward Pull

E. Vertical Dip Pull - (Small Angle)

Where $D^{\prime}$ is Small Compared to $S\left(i . e \cdot \tan \theta / 2=\sin \theta / 2=D^{\prime} / S\right.$ )

F. Convex Bend - Upward Pull

For Angle $\Theta$ Measured From Vertical Axis

G. Convex Bend - Downward Pull

For Angle e Measured From Vertical Axis

H. Concave Bend - Upward Pull For Angle $\theta$ Measured From Vertical Axis

I. Concave Bend - Downward Pull

For Angle $\theta$ Measured From Vertical Axis


## USER INSTRUCTIONS

STEP
1.

Connect Printer if a hardcopy is desired. R/S after each display if no printer attached.
2. Set Printer switch to manual or normal mode.
3.
4.
5.
6.
7.
8.

Load programs "PUL" AND "VW"

Check Status

Initialize: XEQ "PUL"

Enter I.D. of Duct

Enter nominal O. D. of Cable
Choose cable confguration
$a=$ Single
$b=\operatorname{Tr} i a n g u l a r$
c = Cradled
d $=$ Diamond
9.
10.

Display Clearance

Display Jam Ratio

Enter number of cables

Display Percent Fill
13.
14.
15.

Enter coefficient of friction
Enter section of incoming cable tensions. T1, Pounds.

Enter weight of cable per foot
11.
12.

INPUT
DISPLAY

## D ?

$d ?$
Select:abcd
shift $a, b, c, d$
$N$

F

T 1

W

CL =

JR = "No Jam"
or
"Jam"
$N ?$
\% Fill=

F?

T1?
$W / F t ?$

STEP
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.

INSTRUCTIONS
Select Pull layouts
A = Straight Pull
B = Horizontal Bend
C = Slope Upward
D = Slope Downward
E = Vertical Dip
F = Convex Bend Up
G = Convex Bend Down
H = Concave Bend Up
I = Concave Bend Down

Input data depends on the layout selected, (straight,curved, or dip pulls). Each module will loop back to step 16 after displaying T2 and SWL (if applicable).

Straight Pulls:
Enter length of section, feet
Section outgoing cable tension
Select next Pull (step 16)
Curved Pulls:

Enter inside radius of conduit bend.

Enter angle in degrees

T2 Displayed
Sidewall Load displayed
Select next Pull (Step 16)
Vertical Dip:
Enter depth of dip from horizontal axis, feet

Enter horizontal length of dip section, feet.

T2 Displayed
SWL Displayed
Select next Pull (Step 16)
"B,F,G, H, I
$R \quad R$ ?
? DEG
$\mathrm{T} 2=$

SWL =

Select: A-I

D?FT

S?

T2 =

SWL =


## Cable Pulling/Installation Program

```
 @1*LEL "FUL
"
 02 RMD
 玉FIX1 Intialize
 04 CF E1
 05 EF 02
 06 EF 03
 07 CF 04
 08 CF 55 Enter: Inside Diameter of Conduit, Inches
 09 "D?"
 10 PROMPT
 11 STO ED
 12 "d?"
 13 FROMPT
 14 STO 01
 15-
 16 STO 62
 17 SF 27
 18 "SELECT:
abod"
```




```
1日1 RCL E1
102 RCL Q2
103 < < % Wc = 1 + 4/3[d/(D - d)]
105 1.3333
106 *
107 1
108 +
109 STO 04
110 XEQ "JAM
111 XEQ "TEN
112*LBL 03
113 FS? 05
114 GTO GO
115 RCL 04
116 3
117* SWL = (3Wc - 2) [T/ (3R)]
1182
119 -
120 RCL 06
121 RCL 08
122 3
123 *
124
125 *
126 "SWL=" Display and Return
128 GTO 00
129*LBL d
130 SF 04
131 RCL 02
132 RCL 01
133 人ヶ2
134 2
1.35 *
136 RCL 02
137/
138 -
139 XEQ "CR"
140 RCL 01
141 RCL 02
142
143 < 个2
```



```
1442
145 *
146 1
147 +
148 STO 04
149 XEQ "JAM
150 XEQ "TEN
```



```
201 *
202 <七2
20.3 RCL 06
204 <けこ
205 +
207 *
208 RCL 10
209 RCL 03
210 *
211 XEQ "COS
H"
212 RCL 06
213 *
214 + Display T2
215 XEQ "T2"
216*LBL C
217 SF 05
218 RCL 10
219 COS
220 RCL 03
221 *
2 2 2 ~ R C L ~ 1 0 , ~
223 SIN
224 +
225 RCL 07
226 *
227 "L?" Enter Length of Section
228 PROMPT
229 *
230 RCL 06
231 +
232 XEQ "Tこ"
233+LBL D
234 SF 05
235 RCL 10
236 cos
237 RCL 03
238 *
239 STO 16
240 RCL 10
241 SIN
242 RCL 16
243
244 RCL 07
245 *
246 "L?"
247 PROMPT
248 *
249 RCL 06
259 X<>Y
251 -
252 XEQ "T`" Display T T
```

Vertical Dip Pull

```
253 -LBL E
254 "D? FT" Enter Depth of Dip From Horizontal Axis, Feet
255 PROMPT
256 STO 11
2572
258 *
259 " 5 ? "
260 PROMPT
261 STO 12
262
263 STO 10
264 RCL 12
265 Xけ2
266 RCL 11
2674
268 *
269
270 STO 08
271 RCL 07
272 *
273 STO 13
274 RCL 03
275 RCL 10
276 *
277 STO 14
278 ETX
2791
280 -
281 RCL 13
282 *
283 RCL 14
284 E个X
285 RCL 06
286 *
287 +
288 RCL 13
289 X< \(\gg Y\)
\(290 \quad X<=Y ?\)
291 GTO 05
292 RCL 14
2934
294 *
295 ETX
296 RCL 14
2973
298 *
299 E个X
3002
301 *
302 -
30.3 RCL 14
304 ETX
30.52
\(306 *\)
```

```
307 1
308 -
309 +
310 RCL 07 For T\leqslant RW
311 *
312 FCLL G8
313 *
314 RCL 14
3154
316 *
317 ETX
318 RCL 06
319 *
320 +
321 XEQ "T2" T T N = T
323 RCL 12
324 2
325 *
326 RCL 03
327 *
328 RCL 07
329 *
330 RCL 06
331 +
332 XEQ "T2"
333*LBL F "BD" Convex Bend Upward Pull
3351
336 RCL 14
337-
338 RCL 10
339 cos
340 +
341 1
342 RCL 03
343 ※七2
344 -
345 *
346 STO 09
347 RCL 14
348 RCL 03
349 *
350 2
351 *
352 RCL 10
353 SIN
354 *
355 RCL 09
356 +
357 STO 16
358 XEQ "WR"
359 RCL 16
360 *
361 RCL 14
362 RCL 06
36.3 *
364 +
365 XEQ "T2"
```

```
\(366 *\) LBL
367 KEQ "BD" Convex Bend-Downward Pull
368 XEQ "CB"
369 RCL 14
370 RCL 06
371 *
\(372+\)
373 ※EQ "T2"
374*LBL H
375 XEQ "BD"
376 XEQ "CB"
377 RCL 14
378 RCL 06
379 *
380 X<>Y
381 -
382 XEQ "T2"
383*LBL I
384 XEQ -BD
385 RCL 14
386 RCL 03
387 *
3882
389 *
390 RCL 10
391 SIN
392 *
393 STO 00
3941
395 RCL 03
396 XT2
397 -
3981
399 ENTERT
400 RCL 14
401 RCL 10
402 cos
403 *
404 -
49.5 *
406 RCL 00
407 +
408 STO 16
499 XEQ "WR"
410 RCL 16
411 *
412 RCL 14
413 RCL 06
414 *
415 X< \(>\gamma\)
416 -
417 XEQ "T2"
```

| $418 * \text { LBL "JAM }$ |  | Jam Module |
| :---: | :---: | :---: |
| 419 | RCL 00 |  |
| 420 | PCL E1 | D／d＜2．8 |
| 421 |  |  |
| $422 \cdot J R={ }^{4}$ |  |  |
| 423 | XEQ＂VW＂ | Jam Ratio 2．8－3．2 Leaves Serious Possibility |
| 424 | $2.8$ | of Cables Jamming |
| 425 x＞y？ |  |  |
| 426 | GT0 06 |  |
| 427 RCL＇r＇ |  |  |
| 428 | 3.2 | $\mathrm{D} / \mathrm{d}>3.2$ |
| 429 X＜＝r？ |  |  |
| 430 | GTD 66 | Display＂Jam＂if Within 2．8－3．2 With Warning Beep |
|  |  |  |
| 432 AWIEW |  |  |
| 433 BEEP |  |  |
| 434 STOP |  |  |
| 435 | GTO 07 |  |
| $436+L B L 06$ |  |  |
| 437 | ＂MO JAM＂ | Display＂No Jam＂ |
| 438 | AVIEW |  |
| 439 | TONE 9 |  |
| 440 STOP |  |  |
| 441 －LBL 07 |  |  |
| 442 RCL 01 |  |  |
| 443 RCL O日 |  |  |
| 444 |  |  |
| $445 \times 12$ |  |  |
| 446 | ＂N？ | Enter Number of Cables |
| 447 PROMPT |  |  |
| $448 *$ |  |  |
| 449100 |  |  |
| 450 ＊ |  |  |
| 451 |  |  |
| 452 | ＂\％FILL $=$ | $\% \text { Fill }=[d / D]^{2} n \cdot 100 \%$ |
|  |  |  |
| 454 RTH |  |  |
| 455＊LBL＂CR＂ |  |  |
| 456 CF 27 |  |  |
| 457 | ＂CL＝＂ | Clearance Display |
| 458 XEQ＂VW＊ |  |  |
| 459 RTN |  |  |
| 460 | LBL－SIN | Sinh Module |
| H＊ |  |  |
| 461 ST0 00 |  |  |
| 462 ETX －1 |  |  |
| 463 RCL O日 |  |  |
| 464 E个X |  |  |
| 46.5 | ぐ |  |
| 466 | RCL EO | Sinh $=1 / 2\left[e^{x}-1+\frac{e^{x}-1}{x}\right]$ |
| 467 | EイXー1 |  |
| 468 | ＋ |  |
| 469 | 2 |  |
| 470 | $\checkmark$ |  |
| 471 | RTH |  |




Robert W. Parkin

FUNCTION: This program determines the total capacity of round wire or cable that a given reel size can accommodate; based on total length and/or weight capacity of the reel. Cable diameter, flange diameter, traverse width, and drum diameter are the required inputs for length capacity, and cable and reel weights are optional inputs if the total packaging weight is required.

A safety factor incorporated into the program provides a clearance of two-inches, or one cable diameter, whichever is larger. A series of four tones will sound to alert the user that the drum diameter is to small, and needs to be checked from Table 3-1.; excessive or extreme bending can be detrimental to cable.

The program is in two sections; the first part calculates the total footage and weight capacity (optional). The second isolates the calculation parameters and uses less stringent nesting factors and gives the total footage capacity by adding each successive layer. The clearance and footage in the last outer layer are the most important factors to observe when utilizing the successive layer method. The footage of each layer on the reel, summation of layers, number of turns across the traverse, number of layers, footage per turn in the outer layer, and the clearance left between the outer layer of cable and outer edge of reel flange are displayed. If weights are of no concern enter zero at appropriate prompts.

ACCESSORIES: $H P-41 C X$ or $C V$, printer optional

OPERATING LIMITS AND WARNINGS: Accuracy of this program is dependent on an evenly wound reel, constant cable diameter, and circular drums and flanges on reels. A multiple of 14 con line 36) is initially set in the program for drum diameter checks. Selected reel sizes should be in accordance with NEMA WC-26 requirements to insure that the minimum bend radius for the cable is not exceeded and to allow adequate flange support in the reel design.

## REFERENCES:

[1] NEMA Publication No. WC--2b for Wire and Cable [2] Pulling Tensions and Installation Guidelines for Cable. R.W. Parkin

The formula for calculating footage capacities of reels for round cable is shown as follows. A 5 percent nesting factor and 95 percent traverse utilization have been built into the formula. Therefore, cables must be wound evenly to obtain uniformity, compactness, and the nesting of successive turns and layers.
$\frac{\pi}{12}\left[\left(\frac{A-2 \times-B}{1.9 \times D}\right) * \quad x \quad 0.95 \times D+B\right] \times\left(\frac{A-2 \times-B}{1.9 \times D}\right)^{*} \times\left(\frac{C}{D}-1\right) *$
*Take integer of whole number
A = Flange Diameter (inches)
$B=$ Drum Diameter (inches)
$C=$ Traverse Width (inches)

D = Cable estimated diameter (inches)
$X=$ Clearance between outer layer of cable and outer edge of reel flange.
Note: For Triplexed cable $D=2.155 \times 0 . D$ of single (circumscribed diameter)
For paralleling no special allowance need be made.

$\mathrm{H}=\mathrm{D}+\mathrm{X}_{1}$
$\tan 60^{\circ}=\underline{X}$, $\frac{\mathrm{D}}{2}$
$X_{1}=\tan \times \frac{D}{2}$
$X_{1}=1.73 \times \frac{D}{2}$
$X_{1}=0.866 \mathrm{D}$
$\mathrm{H}=\mathrm{D}+0.866 \mathrm{D}$
$H=1.866 D$
Max nesting factor $=1.866 / 2$
$=93 \%$

Maximum nesting factor as determined by geometric center spacing of cables.

$$
\mathrm{H}=\mathrm{D}+\mathrm{X}_{1}
$$



FORMULAS FOR SECOND PART OF PROGRAM

1. Number of Layers ( $n$ )
$n=\frac{A-(B+2 X)}{1.9 \times D} *$
*INTEGER
2. Clearance (X)
$X=\frac{A-B}{2}-(n \times D)$
3. Footage/turn in outer layer (FOL)

$$
\text { FOL }=[B+(2 D \times n \times 0.95)] \frac{\pi}{12}
$$

4. Number of Turns (NT)

$$
N T=\frac{C}{D}-1
$$

5. Footage per layer (FL)

$$
\begin{aligned}
& \quad\{B+[D(2 n i-1)]\} \frac{T}{12} \times N T \\
& 6 . \quad \sum F L \quad \sum_{i=1}^{n} F L
\end{aligned}
$$

## Where:

```
A = Flange Dia
B = Drum Dia
C = Traverse
D = Cable O.D.
x = Clearance
```

```
 n = No. of Layers
```

    n = No. of Layers
    FOL = Foctage/Turn in outer layer
    FOL = Foctage/Turn in outer layer
    NT = No. of turns
    NT = No. of turns
    FL = Footage per layer
    FL = Footage per layer
    <FL = Summation of Layers (Total reel capacity)
    ```
 <FL = Summation of Layers (Total reel capacity)
```

NOTE: The above equations apply for single cables having an even layer wind. Triplexed and Parallel assemblies should use only the first Program with the circumscribal O.D. for Triplexed cables and a 0.89 reduction factor of total length for Parallel cables.

NON RETURNABLE WOOD REELS

FLANGE	TRAV	DRUM	O.A.W.	FEEL SFEC	FiEEL WEIGHT (LES.)	WEIGHT CAPACITY (LRS.)
24	12	10	14.0	NEMA	20.0	5 S
24	18	10	20.0	NEMA	22.0	525
27	18	12	21.0	NEMA	31.0	700
50	18	12	21.0	NEMA	37.0	950
32	24	14	28.0	NEMA	52.0	1500
36	24	17	28.0	NEMA	93.0	2000
40	24	17	28.0	NEMA	108.0	2500
42	26	18	30.0	NEMA	120.0	S000
45	28	21	32.0	NEMA	140.0	3500
50	32	24	37.0	NEMA	212.0	
54	32	28	36.5		240.0	5600
54	50	24	34.5		236.0	5600
58	32	23	37.0	NEMA	274.0	6500
60	32	28	36.5		290.0	6600
66	36	36	41.5	NEMA	468.0	7000
72	36	28	42.5		590.0	8000
72	36	36	4.15	NEMA	608.0	8000
72	48	36	54.5	NEMA	653.0	8000
78	48	42	54.5	NEMA	7ET.0	9000
84	45	42	51.5	NEMA	892	10000
84	54	48	60.5	NEMA	910.0	10000
70	45	42	51.5	NEMA	985	15000
90	54	48	60.5	NEMA	1140.0	15000
76	54	56	60.5	NEMA	1240.0	15000
96	54	48	60.5		1140.0	15000
104	50	48	56.5		1250.0	15000




## Table 3-1

MINIMUM DRUM DIAMETERS OF REELS FOR CABLES

Type of Cable	Minimum Drum Diameter as a Multiple of Outside Diameter ${ }^{\boldsymbol{\dagger}}$ of Cable					
	Type of Insulation					
	Paper		Varnished Cloth	Extruded		
	Solid and Gas	Oil Filled				
A. Single and multiple conductor nonmetallic covered cable						
1. Nonshielded and wire shielded, including cables with concentric wires:   a. 0-2000 volts   b. Over 2000 volts;	14	-	14	10		
(1) Nonjacketed with concentric wires	14	-	14	14		
(2) All others	14	-	14	12		
2. Tape shielded	14	-	14	14		
B. Single- and multiple-conductor metallic-covered cable:   1. Tubular metallic sheathed;						
a. Lead   b. Aluminum;	14	14*	14	14		
(1) Outside diameter - $1.750^{\prime \prime}$ and less	25	25	25	25		
(2) Outside diameter - 1.751' and larger	30	30	30	30		
2. Wire armored	16	18	16	16		
3. Flat tape armored	16	18	16	16		
4. Corrugated metallic sheathed	16	18	14	14		
5. Interlocked armor	14	18	14	14		
C. Multiple single conductors cabled together without common covering, including self-supporting cables						
The circumscribing overall diameter shall be multiplied by the factor given in item $A$ or $B$ and then by the reduction factor at the right	0.85	-	0.85	0.75		
D. Combinations						
For combinations of the types described in items A, B and C, the highest factor for any component type shall be used.						
E. Single- and multiple conductor cable in coilable nonmetallic duct						
0.51-1.00	-	-	-	24		
1.01-1.25	-	-	-	22		
1.26-1.50	-	-	-	21		
Over 1.50	-	-	-	20		

## ${ }^{+}$Outside Diameter -

1. When metallic-sheathed cables are covered only by a thermosetting or thermoplastic jacket, the "outside diameter" is the diameter over the metallic sheath itself. In all other cases, the outside diameter is the diameter outside of all the material on the cable in the state in which it is to be wound upon the reel.
2. For "flat-twin" cables (where the cable is placed upon the reel with its flat side against the drum), the minor outside diameter shall be multiplied by the appropriate factor to determine the minimum drum diameter.
3. The multiplying factors given for item $E$ refer to the outside diameter of the duct.

* For single-conductor cables with more than 500 mils of insulation, this factor is 18 .


## USER INSTRUCTIONS

Size: 011

SIEP	INSTRUCTIONS	INPUT	DISPLAY
	Connect printer if a hardcopy is desired. R/S after each display if no printer is attached.		
2.	Set printer switch to manual or normal mode.		
	Load programs "REEL", "AV", "VW".		
4.	Check status		
5.	Initialize: XEQ "REEL"		
6.	Enter total weight of cable(s) Per 1000 Feet or zero.	WGT	W/MFT?
7.	Enter nominal diameter of cable, for triplexed cables use circumscribed O.D. of assembly: (2.155 x single O.D), inches.	O.D	CABLE D.D?
8.	Enter Flange Diameter, inches.	F	Flange,
9.	Enter Traverse Width, inches.	T	trav?
10.	Enter Drum Diameter, inches.	D	DRUM?
11.	Total Footage Reel can hold.	-	FT $=$
12.	Enter Shipping Length, feet.	SL	SL?
13.	Total Weight of Shipping Length.	-	$x x x x-83$
14.	Enter weight of reel, pounds.	-	REEL: ${ }^{\text {r }}$
15.	Total Package Weight (reel and shipping length).	-	$T: W T=$



1. To select different reel size using the same cable D.D. and weight: XEQ "RT"

F
FLANGE-
2. To print out reel size and cable O.D. load and XEQ "RD"


O1＊LBL＂REE		
L．		
02	FIx ${ }^{\text {c }}$	Initialize
0.3	EF こ7	
04	SF 1ご	
05	CF ごき	
Q6	＂WノMFT？＂	Prompt for Weight
07	TONE 9	of Cable／1000 ft．
08	PROMPT	
09	STO 08	
10	$\because C A B L E:$	
0．D？${ }^{\text {D }}$		
11	PROMPT	Inches
12	ST0 0.3	
13	FIX 0	
14	2	
15	$x<=\gamma ?$	$\mathrm{X} \leqslant 2$ ？Then $\mathrm{CL}=2$
16	GTO 05	
17	GTO 04	
18	LBL 04	If $X>2$ Then
19	ST0 04	$C L=$ Cable O．D．
20	GTO＂RT＂	
21	LBL 05	
22	RCL 03	
23	STO 04	
24	LBL＂RT＂	Return Sabel for
25	CF 27	New Reel
26	＂FLANGE？	Enter Flange Diameter
27	PROMPT	
28	STO 00	
29	＂TRAV？	Traverse Width
30	PROMPT	
31	ST0 02	
32	＂DRUM？	Drum Diameter
33	PROMPT	
34	STO Q1	
35	RCL 03	Multiple Drum Check （14 Times）
3614   （14 Times）		
38 RCL 01		
$39 x<=Y ?$		
40	BEEP	4 Tone Series Warning
41 －LBL＊FT＊		
42	RCL OD	Total Footage Calculation
43	RCL 04	
44	2	
45	＊	
46	RCL 01	
47	＋	
48	－	
49	RCL 03	
50	1．9	


51	＊	
53	INT	$A-2 x-B$
54	STO G6	． $1.9 \times \mathrm{D}$
5.5	． 95	
56	＊	
57	RCL 03	
58	＊	$0.95 \times \mathrm{D}+\mathrm{B}$
59	RCL 01	
60	＋	
61	． 2618	$\pi / 12$
62	＊	
63	RCL 62	
64	RCL 03	
65	－	
66	1	
67	－	
68	INT	
69	＊	
70	SF 12	
71	RCL 06	
72	＊	
73	FIX 0	
74	SF 29	Reel Capacty in
75	$\cdots F T=\cdots$	Feet
76	XEQ＂WW＂	
77	XEQ＂SL＊	Shipping Length
78	＂REEL：WT	Enter Reel Weight
？		
79	PROMPT	
80	＋	
81	＂T： $\boldsymbol{\omega}$ T $=*$	Total Weight of
82	XEQ＊VW＊	Cable and Reel
83	CF 29	
84	RCL Ba	
85	RCL 01	
86	－	
87	2.5	
88	¢＜$=$ ¢？	
89	BEEP	Flange／Drum＜ 2.5
90	RCL ${ }^{\prime}$	
91	FIX 1	
92	＂F－D＝${ }^{\text {a }}$	
93	XEQ＊VW＂	
94	RCL 06	Number of Layers
95	＂NL＝＂	
96	XEQ＂VW＂	
97＊	LBL＂CL＂	Calculate
98	RCL 日0	Clearance
99	RCL 01	
100	－	



151 RCL 05
152 *
$153 \mathrm{ST}+10$
154 CLA
155 ARCL 07 Append $n$
156
157 ARCL $X$
158 AVIEW
159 TONE 8
160 RCL 06
161 RCL 07 Loop
$162 X=Y$ ?
163 GTO 02
164 RCL 07
1651
$166+$
167 GTO 01
168 *LBL 02
169 RCL 10 Summation of
170 " $\Sigma F L=$ " Layers
171 XEQ "YW"
172 XEQ "WT"
173*LBL "SL" Shipping Length
174 "SL?"
175 PROMPT
176 XEQ "WT"
177 RTN
178*LBL "WT" Weight
179 RCL 08
1801 E3
181
182 RCL $Y$
183 *
184 CLA
185 ARCL X
186 "ト LBS"
187 AVIEW
188 FC? 21
189 STOP
190 RTN
191 END

## Reel Calculation <br> Short Form

01*LBL -REE
L.
$\begin{array}{llll}02 & F I X & 日 1 \\ 03 & \text { CF } & 27 & \\ 04 & \text { CF } & 29 & \\ 05 & \text { CABLE } & 0\end{array}$
D?
06 PROMPT
07 STO 03
082
$09 \mathrm{~K}<=\mathrm{Y}$ ?
10 GTO 05
11 GTO 04
$12+$ LBL 04
13 STO 04
14 GTO 06
15 - LBL 05
16 RCL 03
17 STO 04
$18 *$ LBL 06
19 FIX 3
20 "CL= "
21 ARCL $X$
22 RVIEW
23 *LBL "RT"
24 CF 27
25 "FLANGE?
26 PROMPT
27 STO 00
28 "TRAV?"
29 PROMPT
30 STO 02
31 "DRUM? .
32 PROMPT
33 STO 01
34 RCL 03
3514
36 *
37 RCL 01
$38 \quad x<=\gamma$ ?
39 BEEP
40 * LBL "FT"

41 RCL 00
42 RCL 04
432
44 *
45 RCL 01
46 +
47 -
48 RCL 03
491.9

50 *
51
52 INT
53 STO 06
54.95

55 *
56 RCL 03
57 *
58 RCL 01
$59+$
60.2618

61 *
62 RCL 02
63 RCL 03
64 ,
651
66 -
67 INT
68 *
69 SF 12
70 RCL 06
71 *
72 FIX 0
73 -FT= .
74 ARCL $X$
75 AVIEW
76 TONE 0
77 CF 12
78 END
STEP／KEY CODE－291－
$\qquad$

「こint Out
Reel and O．D．
日1＊LBL＂RD＂
02 FIX 0
03 SF 12
04 RCL 00
05 ACX
06 RCL 02
07 ACX
08 RCL 01
09 ACX
10 PRBUF
11 RCL 03
12 FIX 2
13 －0．D＝＂
14 ARCL $X$
15 AVIEW
16 STOP
17 END


ASSIGNMENTS			
FUNCTION KEY	FUNCTION	KEY	
RT			
RD			


-292-

## MECHANICAL DESIGN OF OVERHEAD SPANS

Robert W. Parkin

FUNCTION: This program determines the unit tensions for the conductor, mid-point and apparent sag, horizontal weight spans, pull-off angles and relative or absolute elevations for overhead transmission line or distribution circuits. In addition the distance measured vertically from any point in the conductor to a straight line between its two points of support can be found by inputting the distance from the first structure. English or metric units may be used.

ACCESSORIES: HP-41 CX or HP-41CV, printer optional

OPERATING LIMITS AND WARNINGS: None

## REFERENCES:

[1] Sag Calculations for Suspended Wires, P.H. Thomas Trans. AIEE, 1911, vol 30, p 2229
[2] Computer Aids Weight-on-Line Solutions, Transmission and Distribution, November, 1978
[3] Standard Handbook for Electrical Engineers, Fink and Beaty, Eleventh Edition
[4] National Electrical Safety Code, ANSI Pub. No. C2
[5] NEMA WC-8, ICEA S-68-516

## Conductor Loads

Overhead span design consists of determining the sag at which the conductor should be elevated so that heavy winds, accumulations of ice and snow, and low temperatures will not stress the conductor beyond the elastic limit, and possibly cause a serious permanent stretch, or result in fatigue failures from continued vibrations. The conditions of span design can be divided into three sections:

1) The sag in a span resulting from a conductor of a given weight at a given tension (or the reverse).
2) The sags or tensions resulting from unequal spans or differences in elevation of supports
3) The sags resulting from changes in loading or temperature

## Determination of Ice and Wind Loading

The geographical location of aerial sites determines the ice and wind loading affects on overhead conductors and cables. In the U.S.A, three districts for standard loading conditions are specified in the National Electric Safety Code. The loading's for the various districts are as follows:

Loading District	Heavy	Medium	Light
Radial thickness of ice (inches)	$1 / 2$	$1 / 4$	0
Horizontal wind pressure (lbs./sq.ft.)	4	4	9
Temperature (F)	0	15	30
Constant k (lbs./ft)	0.31	0.22	0.05

The resultant weight of loaded cables is calculated as follows:
$i=$ Weight of ice loading (lbs./ft)
$t=$ Thickness of ice (inches)
$D=$ Diameter of cable (inches)
$i=1.24 t(D+t)$
$h=$ Force due to wind (lbs/ft.)
$P=$ Horizontal wind pressure (lbs./sq. ft.)

```
 h=P(D+2t)
 12
 w'= Weight of unloaded cable
w''= Vertical weight of loaded cable
```

        \(w^{\prime \prime}=w^{\prime}+i\)
    The loaded cable weight of the cable is the resultant of
    the vertical and horizontal weights plus the proper
    constant.
    w''' = Resultant weight of loaded cables
$w^{\prime \prime}=\sqrt{\left(w^{\prime}+i\right)^{2}+h^{2}}+k$

## Messenqer Sizes

Different types and sizes of messengers consist of either composite stranded copper and copper clad steel in accordance with ASTM B 229 , Grade 30 EHS stranded copper clad steel in accordance with ASTM $B 228$, stranded aluminum clad steel in accordance with ASTM $B 416$, stranded aluminum alloy conductors (AAAC) in accordance with ASTM B 399 , or composite stranded aluminum and aluminum clad steel (ACSR/AW) in accordance with ASTM B 549.

The messenger sizes for copper clad steel is given in ICEA s-b8516 Table 7.3-4 and for ACSR/AW in Table 7.3-5. For other types of messenger, consult the manufacturer. Messenger size should be based on normal stringing tensions of 60 F (15.6 C) not exceeding 30 percent of the ultimate strength and a maximum tension not exceeding 50 percent of the ultimate strength for heavy loading conditions (1/2 inch (12.7 mm) ice, 4 lb./sq. ft. (192 Pa) wind force, 0 degrees $F(-17.8 C))$. For further information, see the National Electrical Safety Code.

## Program Parameters

The program will calculate the following information about the span catenary:

1. Mid-point of the span or low point of sag in feet or meters.
2. Apparent sag of span; the maximum departure of the wire in a given span from the straight line between the two points of support of the span, in feet or meters.
3. Conductor tension at both supporting structures in pounds or kilograms.
4. Weight spans for both supporting structures in feet or meters. This is the length of the conductor from the lowest elevation of the catenary curve to the attachment point. The value will be positive if the low point lies to the right of the structure attachment point, and negative if to the left.
5. Conductor pull-off angle at both supporting structures in degrees or radians.

The drawing below is given for reference.


## Program Algorithms

The principal formulas used for computation are based on catenary formulas used in the unit-span dimensions. The equation $Y=P$ cosh ( $X / P$ ) - $P$ is used, where $X$ and $Y$ are rectangular coordinates on the catenary with the orgin at the catenary low point and $P$ is equal to the conductor horizontal tension/conductor weight per foot. Axis translation is performed to allow input of attachment 1 at (O,ELEV 1) and attachment 2 at ( $D_{1-2}$, ELEV 2).

Conductor tension $=P W \cosh \left(-D_{1-2} / 2 P\right)$ where $P$ is determined by iteration

$$
\text { Span midpoint }=x_{m}=P \sinh ^{-1}\left[\begin{array}{l}
\operatorname{ELEV} 2-E L E V 1 \\
2 P \sinh \left(D_{1-2} / 2 P\right)
\end{array}\right]
$$

Attachment 1 catenary location $=x_{1}=x_{m}-D_{1-2} / 2$

```
Y translation = Yt = ELEV 1 - [P cosh (}\mp@subsup{X}{1}{}/P)-P
```

Minimum elevation $=\operatorname{ELEV} 1-Y_{t}$
Apparent $\operatorname{sag}=P \cosh \left(x_{1} / P\right)+(E L E V Z-E L E V 1 / 2)+A[P$ sinh -1
(A) $\left.-x_{m}\right]-P \cosh \left[\left(P \sinh { }^{-1}(A) / P\right)\right]$
where $A=\operatorname{ELEV} 2-\operatorname{ELEV} 1 / \mathrm{D}_{1-2}$
Weight span structure $1=-P \sinh \left(x_{1} / P\right)$
Conductor tension structure $1=P W \cosh \left(x_{1} / P\right)$
Conductor pull-off angle str. $1=\operatorname{Tan}^{-1}\left(\sinh \left(x_{1} / P\right)\right)$
Weight span structure $2=-P \sinh \left(x_{1}+D_{1-2} / P\right)$
Conductor tension structure $2=P W \cosh \left(x_{1}+D_{1-2} / P\right)$
Conductor pull-off angle structure $2=-\operatorname{Tan}^{-1}\left(\sinh \left(x_{1}+\right.\right.$
D 1-2) (P)
Elevation at any point $x=D=P \cosh (x 1+D / P)-P+Y_{C}$

KEQ "SAG"
TEN: -SAG?
3.470 .09

RUN
WT/FT?
2.712

HGT: 1 ?
40.00

DIST. 1-2?
150.00

HGT: 2?
52.00

MIN HGT= 39.
71
MAX. SAG= 2.21
НТ. SI=-27. 02
$\mathrm{T}=3,464.80$
$\Delta 1=1.21$
WT. $52=-177.58$
$T_{2}=3.497 .35$
$\Delta 2=-7.92$

XEQ C
DIST?
50.08 RUN

HGT= 42.04
TOP EL?
30.00 RUN
$C L=12.04$


XEQ C
DIST?
356.09 RUN

HGT $=763.52$
TOP EL?
653.00 RUN
$C L=110.52$

XEQ "SAG"	
TEN: -SAG?	
-20.00	RI
WT/FT?	
1.66	
HGT: 1?	
758.00	
DIST. 1-2?	
741.00	
HGT: 2?	
$801.00$	
$\text { MIN HGT }=753$	
MAX. $S A G=20.000$	
WT.S1 $=171.40$	
$T \mathrm{~L}=5.718 .87$	
$41=-2.85$	
WT. $52=-572.23$	
$\mathrm{T} 2=5.790 .25$	
$\Delta 2=-9.44$	

## USER INSTRUCTIONS

STEP
INSTRUCTIONS

1. Connect printer if a hardcopy is desired. R/S after each display if no printer is attached.
2. Set printer switch to manual or normal mode.
3. Load programs "SAG"
4. Check status (for metric input set to radian mode)
5. Initialize: XEQ "SAG"
6. Enter conductor tension in pounds (or kilograms) for a level span at the desired loading condition; or enter maximum sag in feet (or meters) in the span. This should be entered as a negative number.
7. Enter conductor weight per foot in pounds (or $\mathrm{kg} / \mathrm{m}$ ) at the desired loading condition.
8. Enter height in feet (or meters) of one conductor attachment. This can be either the actual sea level elevation for use with the installation layout or an elevation relative to the other attachment.
9. Enter horizontal distance in feet (or meters) between the two attachment points.
10. Enter height of other attachment location in feet (or meters).
11. Display minimum conductor height (low point on catenary) in feet or meters.
12. Display apparent sag in span in feet (or meters)

INPUT

A

Ten
TEN: - SAG?
or -sag
wt./ft.
WT/FT?

HGT: 1
HGT: 1?

Dist 1-2 DIST 1-2?

Hgt 2 HGT: 2?

MIN HGT= MAX SAG=

```
STEP
13. Display weight span on structure 1 in feet or meters
14. Display conductor tension at structure 1 in pounds or kg
15. Display pull-off angle at structure 1 in degrees or radians.
16. Display weight span on structure ? in feet or meters.
17. Display conductor tension at structure 2 in pounds or kg .
18. Display pull-off angle at structure 2 in degrees or radians.
19. Press \(C\) to find conductor elevation at a distance from structure 1 , (user mode should be on; if not "XEQ" C)
20. Enter Distance from structure in feet or meters.
21. Display height of conductor at

Dist DIST? above distance in feet or meters.
22. Enter top elevation of structure located under conductor in feet or meters.
23. Display clearance over structure in feet or meters.

HGT \(=\)

\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{aligned}
& 51 \\
& 52
\end{aligned}
\] & STO & & Loop to get P \\
\hline 53 & LBL & 02 & \\
\hline 54 & RCL & 04 & \\
\hline 55 & 2 & & \\
\hline 56 & - & & \\
\hline 57 & RCL & & \(\mathrm{T}=\mathrm{PWcosh}\left(-\frac{\mathrm{Dl} 1-2}{2 \mathrm{P}}\right)\) \\
\hline 58 & - & & \\
\hline 59 & CHS & & \\
\hline 60 & XEQ & 31 & \\
\hline 61 & RCL & 06 & \\
\hline 62 & * & & \\
\hline 63 & RCL & 02 & Adjust P if \\
\hline 64 & * & & Necessary \\
\hline 65 & STO & 00 & \\
\hline 66 & RCL & 01 & \\
\hline 67 & - & & \\
\hline 68 & ABS & & \\
\hline 69 & 1 E- & & \\
\hline 70 & \(X>Y\) ? & & \\
\hline 71 & GTO & 03 & \\
\hline 72 & RCL & 01 & \\
\hline 73 & RCL & 00 & \\
\hline 74 & - & & \\
\hline 75 & ST* & 06 & \\
\hline 76 & GTO & 02 & \\
\hline アア & LBL & 03 & Compute Xm, X1 \\
\hline 78 & RCL & 04 & \\
\hline 79 & 2 & & \\
\hline 80 & / & & \\
\hline 81 & RCL & 06 & \\
\hline 82 & - & & \\
\hline 83 & XEQ & 30 & \\
\hline 84 & RCL & 06 & \\
\hline 85 & * & & \\
\hline 86 & 2 & & \\
\hline 87 & * & & \\
\hline 88 & 1/X & & \\
\hline 89 & RCL & 05 & \\
\hline 90 & RCL & 03 & \\
\hline 91 & - & & \\
\hline 92 & * & & \\
\hline 93 & XEQ & 32 & \\
\hline 94 & RCL & 06 & Xm \\
\hline 95 & * & & \\
\hline 96 & STO & 07 & \\
\hline 97 & RCL & 04 & \\
\hline 98 & 2 & & \\
\hline 99 & - & & \\
\hline 00 & - & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 101 & STO 08 & \(\mathrm{X}_{1}\) Calculation Begins \\
\hline 102 & RCL 08 & \\
\hline 103 & XEQ 20 & \\
\hline 104 & RCL 06 & \\
\hline 105 & - & Minimum Elevation \\
\hline 106 & RCL 03 & \\
\hline 107 & - & \\
\hline 108 & CHS & \\
\hline 109 & STO 09 & \\
\hline 110 & *MIN HGT & Yt \\
\hline = 111 & XEQ *VW" & \\
\hline 112 & RCL 05 & Maximum Sag \\
\hline 113 & RCL 03 & Maximum Sag \\
\hline 114 & - & \\
\hline 115 & RCL 04 & \\
\hline 116 & - & \\
\hline 117 & ENTER \(\uparrow\) & \\
\hline 118 & XEQ 32 & \\
\hline 119 & RCL 06 & \\
\hline 120 & * & \\
\hline 121 & STO 00 & \\
\hline 122 & RCL 07 & \\
\hline 123 & - & \\
\hline 124 & * & \\
\hline 125 & RCL 00 & \\
\hline 126 & XEQ 20 & \\
\hline 127 & - & \\
\hline 128 & RCL 05 & \\
\hline 129 & RCL 03 & \\
\hline 130 & - & \\
\hline 131 & 2 & \\
\hline 132 & / & \\
\hline 133 & + & \\
\hline 134 & RCL 08 & \\
\hline 135 & XEQ 20 & \\
\hline 136 & + & \\
\hline 137 & FS? -04 & \\
\hline 138 & GTO 04 & Iteration loop \\
\hline 139 & "MAX. SA & \\
\hline G=* & & \\
\hline 140 & XEQ "VW" & \\
\hline 141 & RCL 08 & Weight Span \\
\hline 142 & RCL 06 & Structure 1 \\
\hline 143 & - & \\
\hline 144 & XEQ 30 & \\
\hline 145 & RCL 06 & \\
\hline 146 & * & \\
\hline 147 & CHS & \\
\hline 148 & "WT.S1=" & \\
\hline 149 & XEQ "VW" & \\
\hline 150 & RCL 08 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 151 & XEQ 20 & Tension at \\
\hline 152 & RCL 02 & Structure 1 \\
\hline 153 & * & \\
\hline 154 & "T1 = " & \\
\hline 155 & XEQ "VW" & \\
\hline 156 & RCL 08 & \\
\hline 157 & RCL 06 & Pull-off angle \\
\hline 158 & - & at Structure 1 \\
\hline 159 & XEQ 30 & \\
\hline 160 & ATAN & \\
\hline 161 & " \(\Delta 1=\) & Weight Span \\
\hline 162 & XEQ "VW" & of Structure 2 \\
\hline 163 & RCL 08 & \\
\hline 164 & RCL 04 & \\
\hline 165 & + & \\
\hline 166 & RCL 06 & \\
\hline 167 & - & \\
\hline 168 & STO 00 & \\
\hline 169 & XEQ 30 & \\
\hline 170 & RCL 06 & \\
\hline 171 & * & \\
\hline 172 & CHS & \\
\hline 173 & "WT. S2= \({ }^{\text {- }}\) & \\
\hline 174 & XEQ "VW" & Tension at \\
\hline 175 & RCL 00 & Structure 2 \\
\hline 176 & XEQ 31 & \\
\hline 177 & RCL 06 & \\
\hline 178 & * & \\
\hline 179 & RCL 02 & \\
\hline 180 & * & \\
\hline 181 & - T2= \({ }^{\text {c }}\) & \\
\hline 182 & XEQ "VW" & \\
\hline 183 & RCL 00 & at Structure 2 \\
\hline 184 & XEQ 30 & \\
\hline 185 & PTAN & \\
\hline 186 & CHS & \\
\hline 187 & - \(42=\) & \\
\hline 188 & XEQ "VW" & \\
\hline 189 & RTN & \\
\hline 190 & LBL C & \\
\hline 191 & "DIST?" & Elevation siven \\
\hline 192 & PROMPT & Distance from \\
\hline 193 & RCL 08 & Structure \({ }^{\text {d }}\) \\
\hline 194 & + \(\times\) EQ 20 & Structure. \\
\hline 196 & RCL 06 & \\
\hline 197 & - & \\
\hline 198 & RCL 09 & \\
\hline 199 & + & \\
\hline 200 & "HGT = " & Display Haigint of Cable \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 201 & XEQ＂VW＂ & Enter Maximum \\
\hline 202 & －TOP EL？ & Elevation of \\
\hline ． & & Structure 1 \\
\hline 203 & PROMPT & \\
\hline 204 & － & \\
\hline 205 & ＂CL＝＂ & Display Clearance \\
\hline 206 & LBL＂VW＂ & \\
\hline 207 & FS？ 04 & \\
\hline 208 & RTN & View Module \\
\hline 209 & CF 21 & \\
\hline 210 & FC？ 55 & \\
\hline 211 & GTO 09 & \\
\hline 212 & SF 21 & \\
\hline 213 & XEQ－ ACA & \\
\hline 214 & SF 12 & \\
\hline 215 & XEQ－ ACX & \\
\hline ＂ & & \\
\hline 216 & XEQ－PRB & \\
\hline UF \({ }^{\text {－}}\) & & \\
\hline 217 & TONE 5 & \\
\hline 218 & CF 12 & \\
\hline 219 & RTN & \\
\hline 220 & LBL 09 & \\
\hline 221 & ARCL \(X\) & \\
\hline 222 & AVIEW & \\
\hline 223 & TONE 5 & \\
\hline 224 & STOP & \\
\hline 225 & RTN & \\
\hline 226 & LBL 20 & \(P * \cosh \left(\frac{x \mathrm{reg}}{P}\right)\) \\
\hline 227 & RCL 06 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 228 & ＜ & \\
\hline 229 & XEQ 31 & \\
\hline 230 & RCL 06 & \\
\hline 231 & ＊ & \\
\hline 232 & RTN & \\
\hline 233 & LBL 30 & Sinh \\
\hline 234 & E个X & \\
\hline 235 & ENTERT & \\
\hline 236 & 1／X & \\
\hline 237 & － & \\
\hline 238 & 2 & \\
\hline 239 & ／ & \\
\hline 240 & RTN & \\
\hline 241 & LBL 31 & Cosh \\
\hline 242 & E†X & \\
\hline 243 & ENTERT & \\
\hline 244 & 1／X & \\
\hline 245 & ＋ & \\
\hline 246 & 2 & \\
\hline 247 & ／ & \\
\hline 248 & RTN & \\
\hline 249 & LBL 32 & A sinh \\
\hline 250 & ENTERT & \\
\hline 251 & 人ヶ2 & \\
\hline 252 & 1 & \\
\hline 253 & ＋ & \\
\hline 254 & SQRT & \\
\hline 255 & ＋ & \\
\hline 256 & LN & \\
\hline 257 & END & \\
\hline
\end{tabular}

229 XEQ 31
230 RCL 06
231 ＊
232 RTH
233 ＋LBL 30
234 E个X
235 ENTER \(\uparrow\)
\(2361 / X\)
237 －
2382
239
240 RTN
241 LRL 31 Cosh
243 ENTERT
244 1／X
245 ＋
2462
248 RTH
249 ＊LBL 32
250 ENTERT
251 メャ2
2521
253 ＋
254 SQRT
\(255+\)
257 END
\begin{tabular}{l}
STEP/KEY CODE \\
\hline
\end{tabular}

\title{
D-C HIGH POTENTIAL TESTING OF MEDIUM VOLTAGE CABLES
}

\author{
Robert W. Parkin
}

FUNCTION: This program determines the \(D-C\) test voltages for medium-high voltage power cables during installation or after installation, (before the cable is placed in regular service). Recommended maintenance test values for cables in service is determined, given the time in years. Results are based on AEIC CS5, CS6, and CS7 specifications for XLPE and EPR cables rated 5 kV through 138 kV .

ACCESSORIES: HP-41 CX or HP-41CV, printer optional

OPERATING LIMITS AND WARNINGS: Medium voltage shielded power cables rated 5 kV through 138 kV . The significance of \(\mathrm{D}-\mathrm{C}\) high voltage tests on nonshielded and non-metallic-sheathed cable is dependent upon the environment in which it is installed; as the characteristics of the return circuits are unknown. The environment must carefully be considered or test results may not be significant, and can possibly damage the cable insulation.

\section*{REFERENCES:}
[1] Association of Edison Illuminating Companies (AEIC) CS5-日7. CS6-87, CS7-87
[2] IEEE Guide for Making High-Direct- Voltage Tests on Power Cable Systems in the Field.
[3] Cable Installation Manual. Anaconda (Cablec Corporation)
[4] NEMA WC-7, ICEA S-66-524 AND NEMA WC-8, ICEA S-68-516
[5] The National Electric Code, 1987 NFPA

\section*{INSTALLATION AND MAINTENANCE PRODF TESTING}

The primary tests for cables are continuity checks and the testing of the insulation system. All cables, including power, lighting, instrumentation, communication, and fire protection circuits should be insulation resistance (IR) tested. All power cable circuits above \(\quad\) oOV should also be d-c high potential tested. These tests must be made after the cable is installed and both ends terminated with the proper terminator, be it a lug for low voltage cable, or a stress cone, pothead, or cable terminator for medium-high voltage cable.

Installation proof or acceptance testing is important in that it provides assurance that no damage has occurred during installation or in the handling after leaving the factory.

Maintenance proof testing on a regular schedule assures trouble free operation by detecting incipient failures or gradual deterioration of cable characteristics. Faults or near faults which are located during maintenance testing may be repaired while the cable is out of service, thereby eliminating service interruptions. It is recommended that all medium-high voltage cables be given installation proof tests followed by regularly scheduled maintenance tests at intervals of from three to five years, depending on the type of circuit.

\section*{HIGH VOLTAGE D-C TESTING}

The most common method of proof testing utilizes a high voltage d-c power supply and equipment for measuring the leakage current of the cable. Because of the size and weight of test transformers and equipment, it is not practical to employ a-c testing at field locations. The use of direct current to detect incipient failures or deterioration also avoids the harmful heating, corona effects and severe burning usually associated with \(a-c\) testing. Because of the low currents involved in d-c testing, the equipment for energizing long lengths of cable is relatively small and portable enough for field testing.

During the test, interpretation of current time curves provides considerable information regarding overall cable performance. Leakage current is dependent on the circuit capacitance, which is dependent on the insulation material, cable construction and more importantly, the circuit length. The initial current is high, and gradually seeks a steady, lower value for a good cable. If the current does not decrease, or falls and then rises, failure or weakness in the system in indicated.

The user should understand how to operate the particular test set being used, and follow safe, stringent and well documented test procedures. More information on testing procedures can be obtained from the cited references.

Table 1 below lists the factory d-c test voltages per AEIC required for input into the program; it should be noted that these levels are higher than those recommended by NEMA WCT and WC 8 for XLPE and EPR cables.

Table 1
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{RATED VOLTAGE KV} & \multicolumn{2}{|l|}{INSULATION} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { DC TEST } \\
& \underline{100 \%}
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { VOLTAGES, kV } \\
\underline{133 \%}
\end{gathered}
\]} \\
\hline & 100\% & 133\% & & \\
\hline 5 & 90 & 115 & 35 & 45 \\
\hline 8 & 140 & 140 & 45 & 55 \\
\hline 15 & 175 & 220 & 70 & 80 \\
\hline 25 & 260 & 320 & 100 & 120 \\
\hline 28 & 280 & 345 & 105 & 125 \\
\hline 35 & 345 & 420 & 125 & 155 \\
\hline 46 & 445 & 580 & 165 & 215 \\
\hline 69 & 650 & - & 240 & - \\
\hline 115 & 800 & - & 300 & - \\
\hline 138 & 850 & - & 315 & - \\
\hline
\end{tabular}

NOTE: Conductor sizes for rated voltages and notations in the cable design section for insulation thicknesses all apply.

\section*{USER INSTRUCTIONS}
```

STEP
INSTRUCTIONS
1. Connect printer if a hardcopy is
desired. R/S after each display
if no printer is attached.
2. Set printer switch to manual or
normal mode.
3. Load programs "DCT", "VW"
4. Check status
5. Initialize: XEQ "DCT"
6. Enter factory D-C test voltage
DC
d.cTEST:ソ-KV
MODE: During Installation, input o
7. Is the test being performed during
O
DRG.O/ AFT:1?
O = DC Test during installation
1 = DC Test performed after and before
cable is placed in regular service

```
8. For input \(O\) (during installation): Display DC test voltage in \(k V\)
9. Display duration of test for five consecutive minutes.

INPUT DISPLAY
1. Connect printer if a hardcopy is desired. R/S after each display if no printer is attached.
2. Set printer switch to manual or normal mode.
3. Load programs "DCT", "VW"
4. Check status
5. Initialize: XEQ "DCT"
6. Enter factory \(D-C\) test voltage from table 1 in kV.

MODE: During Installation, input o
7. Is the test being performed during or after installation? Enter:
\(0=\mathrm{DC}\) Test during installation
\(1=\) DC Test performed after and before cable is placed in regular service
- d.c: KV = 5 Min.
in service - 5 Min.

STEP INSTRUCTIONS

MODE: After Installation - input 1

7a. Is the test being performed during or after installation? Enter:
\(0=D C\) Test during installation
\(1=\mathrm{DC}\) Test performed after and before cable is placed in regular service

8a. For input 1, after installation and before cable is placed in regular service. Display DC test voltage in \(k V\).

9a. Display duration of test for - 15 Min. fifteen consecutive minutes

MODE: Cable completely installed and placed in service.
10. Cable has been placed in service for how many years?
11. Display DC Proof test voltage in \(k V\)
years
SVC: YEGAS?
12. Time duration for cable placed

INPUT DISPLAY

1
d.c: \(K V=\)
```

for cable placed in service.
Based on $65 \%$ within the first five years, and after that time period 40 \% of DC test Voltage.
for cable placed in service.
period 40 % of DC test Voltage.

```
 d.c: Kし 5 MIN.
```

    O1*LBL*DCT
    *
    02 FIX E
    G3 TDNE }
    04 "d.c.TES
    T:V-KV?"
0.5 FROMPT
06 STO 00
07 "DRG:G
AFT:1?`
D8 PROMPT
09 <=0?
10 GTO 03
11 RCL 00
12.80
13*
14 "d.c:KV
=
15 XEQ "WW"
16 "15 MIN.
*
17 AWIEW
18 STOP
19GTO 01
20+LBL 03
21 RCL OG
22.75
23*
24 "d=c:KY
= '
25 XEQ "YN"
26 "S MIN."
27 AVIEW
28 STOP
29*LBL 01
30 "SVC: ''E
ARS?"
31 PROMPT
325
33 x<>%
34 x<='?
35 GTO 02
36 RCL 00
37.40
38 *
39 GTO 06
40+LBL 02
41 RCL OD
42.65
43*
44*LBL 06
45 "d.c: KV
= '
46 XEQ "WW"
47 "5 MIN."
48 AVIEW
49 STOP
50 EHD

```


\section*{SOFTWARE AND HARDWARE}
```

User support questions and software can be obtained by
contacting:

```

MCM SOFTWARE COMPANY
123 Lewis Court
Washingtonville, N.Y. 10992 U.S.A
Attn. Robert Parkin

\section*{SECTION ONE: ELECTRICAL PROGRAMS}
1. CABLE SYSTEM AMPACITIES
2. INDUCED SHIELD vOLTAGES AND LOSSES
3. CABLE EMERGENCY OVERLOAD CAPABILITIES
4. SHORT CIRCUIT RATINGS FOR PHASE CONDUCTORS
5. SHORT CIRCUIT RATINGS OF METALLIC SHIELDS
6. POSITIVE AND ZERD SEQUENCE IMPEDANCES OF CABLES
7. DIRECT CURRENT SHIELD RESISTANCE
8. A-C RESISTANCE OF CONDUCTORS
9. VOLTAGE REGULATION AND VOLTAGE DROP OF CABLES
10. INDUCTIVE REACTANCE AND INDUCTANCE IN CABLES
11. DIELECTRIC CHARACTERISTICS OF CABLES

30 cards ... \(\$ 25.00\)
```

SECTION TWO: POLYMER INSULATED CABILE DESIGN
12. PRIMARY CABLE DESIGN
13. TRIPLEXED AND QUADRUPLEXED SECONDARY CABLE DESIGN
14. CONTROL AND INSTRUMENTATION CABLE DESIGN
15. PERCENT COVERAGE OF CONCENTRIC WIRES OR STRAPS
16. METALLIC SHIELDING CONSTRUCTIONS
17. CONCENTRIC NEUTRAL WIRE SIZES AND SELECTION
18. FLAT STRAP NEUTRALS
19. METRIC STRAND CONDUCTOR DESIGN
20. METRIC CONVERSION FACTORS FOR CABLES
30 Cards ...................................................\$25.00
SECTION THREE: INSTALLATION PROGRAMS AND GUIDELINES
21. PULLING TENSIONS AND INSTALLATION GUIDELINES FOR CABLE
22. PACKAGING OF WIRE AND CABLE
23. MECHANICAL DESIGN OF OVERHEAD SPANS
24. D-C HIGH POTENTIAL TESTING OF MEDIUM VOLTAGE CABLES

```

```

HP-41 hardware can be obtained by contacting :
EduCALC Mail Store
27953 Cabot Road
Laguna Niguel, CA 92677 U.S.A

```

\section*{APPENDIX}
Aerial sag reference drawing 296
Aluminum temper designations 155
Aluminum and copper conductor weights 173
Ampacity constants - Table \(V\) 7
Ampacity nomenclature 20
Ampacity values of \(k s\) and \(k p\) - Table II 7
Ampacity calculation parameters 13
Ampacity program algorithms 15
Cable configurations in conduit 254
Cable installation data sheet 260
Cable emergency ratings 58
Coefficients of friction 251
Comparison of jacket properties 166
Control cable insulation thicknesses 161
Conductor shield thickness table 157
Configurations of cables for shield losses 46
Direct current resistance per 1000 ft 172
Decimal equivalent of fractions 174
Drawings 175
Data register loading instructions for "CD" 191
Data registers for cable weights 206
Data registers for diameters and number of strands 207
Data registers for drain wire diameters 208
Data registers for control cable multiple factors 208
Dielectric constant values 144
Drawings for duct installations 261
Duct dimensions 250

\section*{APPENDIX}
Earth resistivity, depth return, re values for impedance 87
Encapsulated outer jacket thickness 167
Example cable specifications 178
Factory test voltages 170
Formulas for calculating shield voltages and losses 46
Geometric factor Gb 9
Geometric mean radius - GMR multiple values 128
Geometric mean distance - GMD - conductor spacing 129
HDPE duct dimensions/ minimum drum diameters 250
Ice and wind loadings 294
Insulation shield thickness table 158
Interlocked armor 168
Jacket properties 164
K constant values for insulation materials 144
Lead sheath, interlock armor, and jacket thicknesses 169
Load factor and Loss factor values 30
Maximum withstand temperatures of materials 72
Magnetic conduit multiplying factors 130
Medium voltage cable insulation thickness 162
Metallic sheaths 168
Metric conversion chart 245
Maximum sidewall loads 253
Minimum bending radius 255
Minimum drum diameters of reels for cable 284
NEC listing designations 152
Nominal voltage standards for secondary cables 120

\section*{APPEND IX}
Nominal diameters for copper and aluminum conductors 171
Non returnable wood reels 282
Nonshielded cables 168
Percent fill of internal duct area 249
Printer routines "VW" and "AV" 203
Pulling tensions 256
Position factors of cables in duct banks 11
Power factor values for dielectric materials 140
Program listing for ampacity program 33
Proximity effect 111
Reel dimensions and drawings 280
RM steel reels 283
Resistivity of metals for shielding tapes 100
Resistance and reactance ratio due to skin effect 112
Sample ampacity problem 23
Secondary (bOOV) cable insulation thicknesses 161
SIC values 144
Skin effect 110
Specifications - Industry standards 149
Specific gravity of cable materials 153
Thermal resistivity of various materials 8
Thermal time constant \(k\) 60
User instructions for ampacity program 26
User instructions for Induced Shield Voltages and Losses 47
UL listing designations 151
Voltage delivery and utilization limits 121```

