Power Cable Engineering With HP-41 Programs

Robert W. Parkin

Power Cable Engineering With HP-41 Programs

Robert W. Parkin

POWER CABLE ENGINEERING WITH HP-41 PROGRAMS.

COPYRIGHT © 1988, ALL RIGHTS RESERVED BY THE AUTHOR, R.W. PARKIN.

PUBLISHER, MCM SOFTWARE 123 LEWIS COURT WASHINGTONVILLE, N.Y. 10992

All rights reserved. No part of this work covered by the copyrights hereon may be reproduced or copied in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems - without written permission of the author.

\$69.95

The user accepts and uses this program material at his own risk, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material. Neither HP nor the author makes any express or implied warranty of any kind with regard to this program material, including but not limited to the implied warranties of merchantability and fitness for a particular purpose. Neither HP nor the author shall be liable for incidental or consequential damages in connection with or arising out of the furnishing, use, or performance of this program material.

PREFACE

<u>POWER CABLE ENGINEERING WITH HP-41</u> <u>PROGRAMS</u> (PCE) represents a culmination of essential design and application programs required in the power industry to help determine maximum operating performance of polymer insulated power cables and distribution systems. As well, <u>PCE</u> outlines program applications and parameters, creating a unique power cable handbook for those involved with the design, application, and installation of power cables and distribution systems.

The programs are written in standard HP-41 language (FOCAL) and can run on HP-41 models or other compatible computers. Many of these programs are new or updated; in this regard, PCE fills a gap in current literature and computer software by providing as large a base of useful information as possible in one publication.

The book is divided into three sections with each section subdivided into program-chapters. Section one covers **Electrical Programs**, section two deals with **Polymer Insulated Cable Design**, and section three covers **Installation Programs and Guidelines**. Each program-chapter includes a cover sheet, subject material, step by step program operating instructions, sample problems, and a program printout; so that each is complete within itself, although many tables and programs are interrelated.

The appendix helps locate various tables, drawings, example specifications and other reference aids used with the programs. Software, HP-41 hardware and user support can be obtained by contacting the author or distributors located in the back section.

I would like to acknowledge the technical help extended by Walter Zenger, Joseph L. Steiner, Ed Walcott and Albert McGrath and other members of Cablec Corporation who helped make this work possible, and to the standard associations and authors referenced herein for data tables, and of course to Hewlett Packard Ltd. and their employees.

RWP

TABLE OF CONTENTS

SECTION ONE

ELECTRICAL PROGRAMS

1.	CABLE SYSTEM AMPACITIES 3
2.	INDUCED SHIELD VOLTAGES AND LOSSES
з.	CABLE EMERGENCY OVERLOAD CAPABILITIES
4.	SHORT CIRCUIT RATINGS FOR PHASE CONDUCTORS
5.	SHORT CIRCUIT RATINGS OF METALLIC SHIELDS
6.	POSITIVE AND ZERO SEQUENCE IMPEDANCES OF CABLES85 Single and Three Conductor Underground Cables
7.	DIRECT CURRENT SHIELD RESISTANCE
8.	A-C RESISTANCE OF CONDUCTORS
9.	VOLTAGE REGULATION AND VOLTAGE DROP OF CABLES
10.	. INDUCTIVE REACTANCE AND INDUCTANCE IN CABLES

SECTION TWO

POLYMER INSULATED CABLE DESIGN

- 13. TRIPLEXED AND QUADRUPLEXED SECONDARY CABLE DESIGN198 600V Rated Secondary Cables in Accordance with ICEA S-66-524 and S-68-516, and UL Standards.

SECTION THREE

INSTALLATION PROGRAMS AND GUIDELINES

- 21. PULLING TENSIONS AND INSTALLATION GUIDELINES FOR CABLE...247 Pulling Tensions, Sidewall Loads, Clearance, Jam Ratio, and Percent Fill, for Cable Pulled in Duct.

- 24. D-C HIGH POTENTIAL TESTING OF MEDIUM VOLTAGE CABLES305 Withstand, acceptance, and proof test levels in accordance with AEIC during and after installation.

SOFTWARE	AND	HARDWARE	DISTRIBUTORS	 1-2
APPENDIX				 3-5

Section One

Electrical Programs

CABLE SYSTEM AMPACITIES

Robert W. Parkin

FUNCTION: This program provides a method for assessing ampacities of underground power cables or groups of cables, that are spaced or in trefoil configurations, based on the J.H Neher and M.H. McGrath method [1]. The program utilizes analytical techniques and boundary geometries for approximations of thermal circuit parameters and configurations, and is further enhanced by its ability to retain original values of previous calculations to compare alternative ambient operating temperatures, and losses associated when the metallic shields are bonded and grounded at multiple points . Different configurations can be explicated along with the ability to use non-unity load factors.

ACCESSORIES: HP-41 CX or HP-41CV, printer optional

OPERATING LIMITS AND WARNINGS: Solutions assume that conductor currents of all phases are equal in magnitude, which is important to consider where two parallel circuits are used. Conduit is assumed to be non-magnetic.

REFERENCES:

- [1] The Calculation of the Temperature Rise and Load Capability of Cable Systems, J.H. Neher and M.H. McGrath. AIEE Paper 57-660 published October, 1957.
- [2] The Temperature Rise of Cables in a Duct Bank, J.H. Neher, AIEE Trans. Vol. 68, Part I, 1949, pg. 540-9.
- [3] Thermal Transients on Buried Cables, F.H. Buller, AIEE Trans Vol. 70 Part I, 1951, pg. 45-55.
- [4] Ampacities Including Effects of Shield Losses, IPCEA Pub. No. P-53-426 NEMA Pub. No. WC-50-1976
- [5] El-Kady, M.A., Horrocks, D.J., "Extended Values for Geometric Factor for External Thermal Resistance of Cables in Duct Banks", IEEE Trans. on Power Apparatus and Systems, Vol. PAS-104, No. 8, August 1985, pp 1958-1962.

[6] Induced Shield Voltages and Losses, R.W. Parkin

Introduction

One of the most important needs of power cable engineering and operation is to have information about maximum currentcarrying capacity which a cable can tolerate throughout its life without degradation to the cable and circuit. This becomes increasingly more important when cable systems are operated at maximum continuous current ratings.

The voltage rating and the environmental hazards of intended applications determine the type and the thickness of the insulations and other coverings applied over conductors.

The Neher/McGrath Standard Publication 57-660 is intended primarily for transmission cable computations. During development of this program, it became apparent that additional enhancements to the above methods would have to be made to account for the specific nature of modern distribution cables and adapted for efficient calculation on a computer. These enhancements are based on reference [4] and described with program algorithms.

Shield Current Effect on Cable Ampacity

When shields are bonded and grounded at multiple points, circulating currents, dependent on shield impedance, will flow in the metallic shield (or concentric neutrals). These currents are heat (I^R) generators and must be included in the thermal circuit when computing the system ampacity. The highest losses occur mostly with concentric neutral cables, and the lowest cable ampacities occur when the mutual reactance between the concentric neutral and the conductor equals the resistance of one concentric neutral.

To reduce the circulating currents, it is necessary to change parameters to make the unit values of concentric neutral resistance and the mutual reactance as divergent as possible while still meeting the other criteria of the circuit. This generally is accomplished by reducing the axial spacing (and the mutual reactance), or by increasing the resistance of the concentric neutral by decreasing the number of wires and/or decreasing the size of the wires. It is also possible to accomplish the same by increasing the spacing and increasing the number and size of the concentric neutral wires; the latter, however is not economical. These circulating currents, and associated losses can be eliminated or minimized by bonding and grounding the shields at one point in a cable run or by special shield bonding techniques. This method will result in voltages between the shield and ground both under steady-state and transient operating conditions. The mutual reactance is computed in the ampacity program and also can be determined in the shield loss program; which should be used first to obtain shield loss values associated with configuration and spacing if multi-point grounding is used, also the mutual heating of single conductors as they get closer together decreases the ampacity capabilities of the cable system.

The resistance of the concentric neutral can be increased by decreasing the number of wires and decreasing the size of the individual wires. ICEA recommends that concentric neutral wires should not be reduced below $6 \times #14$ AWG wires. It should also be noted that the concentric neutral should not be reduced below the capability to handle the fault current available to the cable system. The fault current capabilities for metallic shields can be determined in the fault program.

Observations

Ampacities up to size 4/0 AWG are affected slightly by varying the concentric neutral. In intermediate sizes, from approximately #4/0 AWG to 500 kcmil, the reduction in ampacity due to mutual heating is generally larger than the reduction in ampacity due to short circuit shield currents caused by spacing of the phase conductors. For the larger sizes, it is generally more efficient to keep the cables as close together as possible because the circulating neutral currents of the spaced cables provide greater losses and lower ampacities than the mutual heating effect of a close configuration.

The variation in ampacity with shield resistance for a given conductor size is a function of the slope of the loss ratio curve. In particular, the variation in ampacity increases as the shield resistance decreases except near the peak of the loss ratio curve. In general, the variation is greater for spaced than for trefoil configurations; separating the phases increases shield losses at a rate that exceeds the advantage gained by the reduction in mutual conductor heating.

Temperature Rise and Losses

All losses are developed on the basis of watts per conductor foot. The heat flows and temperature rises due to dielectric loss and to current produced losses are treated separately, and in the latter case all heat flows will be expressed in terms of the current produced loss originating in one foot of conductor by means of multiplying factors which take into account the added losses in the sheath and conduit.

In the case of underground cable systems, it is convenient to utilize an effective thermal resistance for the earth portion of the thermal circuit which includes the effect of the loading cycle and mutual heating effect of the other cables of the system. All cables in the system will be considered to carry the same load currents and to be operated under the same load cycle. The method employed by Neher-McGrath has been selected as it is the most consistent and most readily handled over the full scope of the problem.

PROGRAM STRUCTURE

The program is formatted to display four ampacities for four different configurations:

- 1) Triplexed- direct bury
- 2) Triplexed- in duct bank
- 3) Spaced- direct bury
- 4) Spaced- in duct bank

Program will repetitively loop after each sequence to reenter different ambient and operating temperatures, and prompt for circuit operation (if multi-bonded). The shield losses in watts/foot should be determined in the shield loss program before loading "AMP". Refer to the user instructions for input structure.

Tables are provided in the proceeding sections that cover all input parameters. Data not found in this section can be located in other program-chapters.

Т	a	Ь	1	e	v
_		_	_		_

Constants for use in Equations 41 and 41a

<u>Condition</u>	<u>A</u>	B	<u>C</u>	<u>A'</u>	<u>B'</u>
In metallic conduit	17	3.6	0.029	з.2	0.19
In Fiber Duct in Air	17	2.1	0.016	5.6	0.33
In Fiber Duct in Concrete	17	2.3	0.024	4.6	0.27
In Transite Duct in Air	17	з.0	0.014	4.4	0.26
In Transite Duct in Concrete	17	2.9	0.029	3.7	0.22
Gas-Filled Pipe Cable at 200 psi	З.1	1.16	0.0053	2.1	0.68
Oil-Filled Pipe Cable	0.84	0	0.0065	2.1	2.45

<u>Table II</u>

Recommended Values of ks and kp

<u>Conducto</u> Construc	or tion	<u>Coating</u> <u>on Strands</u>	Treatment	ks	kp
Concentr	ic Round	None	None	1.0	1.0
		Tin or Alloy	пп	1.0	1.0
		None	Yes	1.0	0.8
Compact	Round		n	1.0 *	• 0.6
Compact	Segmental		None	0.435	0.6
	ч	Tin or Alloy	п	0.5	0.7
	U	None	Yes	0.435	0.37
Compact	Sector	· • •	11	1.0	(see note)

Notes:

(1) Proximity effect on compact sector conductors may be taken as 1/2 of that for compact round having the same CSA and insulation thickness.

CALCULATION OF THERMAL RESISTANCE

<u>Table IV</u>

Thermal Resistivity of Various Materials

<u>Materials</u>	<u>P in Ccm/watt</u>
Paper Insulation (Solid Type)	700(IPCEA Value)
Varnished Cambric	600(IPCEA Value)
Paper Insulation (Other Type)	500-550
Rubber and Rubberlike	500 (IPCEA Value)
Jute and Textile Protective Covering	500
Fiber Duct	480
Polyethylene	450
Transite Duct	200
Somastic	100
Concrete	85
Polyvinyl Chloride	500
Polystyrene	250

GEOMETRIC FACTOR

Geometric factor Gb, associated with the external thermal resistance between cable duct banks and the ambient are based on approximating the rectangular duct bank by an isothermal circle of equivalent radius which is a function of the bank height and width dimensions. This approximation is valid only for height/width ratios in the range of 1/3 to 3. The values of Gb shown below are intended to provide accurate values over a wide range of Lb/h and h/w suitable for direct use. The technique that this table is derived from is based on the assumption that the duct bank surface represents an isothermal boundary.

Soil Thermal Resistivity

The most troublesome variable in making an accurate calculation is soil resistivity. Ampacities taken from IPCEA P-46-426 include columns for rhos of 60,90, and 120, but the NEC tables are limited to a rho of 90. The true resistivity may vary from around 40 for some wet clayey soils to over 300 for dry gravel. The true resistivity may be determined only by testing, but the measured value changes greatly with changes in soil moisture. Cable ampacities decrease considerably when soil thermal resistivity increases. Lowering the duct bank by 50 cm results in a reduction of cable ampacities between 2% for low soil resistivity and 4% for resistivity in the upper range.

Underground Duct Installations

For underground ducts consisting of one, three, six, or nine cables or circuits, the applicable tables in the NEC can be applied. These ampacities are only valid for the burial depths, spacing between ducts, and thermal resistivities shown in the tables and figure 1. For duct banks consisting of configurations different from those above, the computer program must be applied to determine ampacity. In general, the following rules apply to duct bank applications.

- 1) The maximum number of circuits in an underground duct bank is normally 12.
- Equally sized cables in an underground duct bank have approximately two-thirds the ampacity of the same cable in a direct burial configuration. Therefore, direct burial applications are more economical.
- 3) In duct banks, as in all underground applications the NEC tables show ampacity ratings for applications where cables are all the same size. Where this is not true, special calculations must be made.

Where underground ducts are required as part of a direct bury buried cable system (under roadways, buildings etc.). It has been determined the cables in the duct bank portion will have the same ampacity rating as that for the cables in the direct buried system if the underground duct length does not exceed 25 feet, or if over 25 ft. long, the ducts are filled with a heat transfer medium; used to minimize the thermal resistance of the air void in the ducts.

Effect of Position of Cable in Duct Bank

When several equally loaded cables are located in the same duct bank, the maximum permissible loading will be the root mean square peak load of all the cables in the duct bank. If all the cables were actually carrying this load, the operating temperature of those in the interior ducts would exceed the safe operating temperature of the insulation, whereas the operating temperature of those in the outer ducts would not reach this value. The cables in the inner would accordingly be overloaded and those in the outer ducts underloaded. In order to equalize the operating temperatures of cables in different locations as near as possible at a value corresponding to the safe maximum temperature, the load must be multiplied by a position factor, which will decrease it for the inner ducts and increase it for the outer ducts, but will not change the root mean square of the loads when so modified. The same adjustment for the position of the cable in the duct bank should be made for unequally loaded cables.

The charts below display the relative watt losses for individual ducts and bank of ducts per foot of cable for the same temperature rise (percent of 2 by 2 bank)

	93	93	
	80	80	
	78	78	
	76	76	
	76	76	
	78	78	
	80	80	
	93	93	
A	vera	age=	82

90	77	90
73	55	73
71	52	71
70	47	70
71	52	71
73	55	73
90	77	90
Aver	age	=70

	85	65	62	62	65	85		
	65	38	31	31	38	65		
	62	31	20	20	31	62		
	62	31	20	20	31	62	,	
	65	38	31	31	38	65		
	85	65	62	62	65	85		

Average=51

AMPACITY CALCULATION PARAMETERS

The following outline lists the parameters needed to calculate the ampacities of various types of cable installations.

1. Circuit characteristics

A. Frequency
B. Single or three phase
C. Source voltage; phase-to ground
D. Neutral grounded or ungrounded
E. Time required to clear a ground fault
F. Load factor
G. Loss factor
H. Phase sequence

Note: The load factor is defined as the ratio of the average load current for any 24 hour period to the maximum average current for the peak one hour period during the same 24 hour period. The more customers that are included in the study area, the more nearly constant will be this ratio from one period to the next. This factor is not governed at all by the cable system, but is extremely important in cable size determination especially if the cable is buried or placed in underground ducts.

The loss factor is a number similar to the load factor, but is the ratio of the average of the square of the load currents over a 24 hour period to the maximum average square of the current for the peak one hour period during the same 24 hour period. The loss factor is actually the number that is used for cable sizing, while the load factor is the number usually given as a system parameter.

2. Cable construction

- A. Temperature rating of cable
- B. Conductor metal
- C. Size and number of conductors
- D. Conductor design (solid, compressed, compact etc.)
- E. Type and O.D of insulation
- F. Type and dimension of shielding system
- G. Shields single or multi-point grounded
- H. Type and dimension of cable overall jacket or sheath
- I. Dielectric constant and power factor of insulation

3. Cables in underground ducts or conduits

- B. Earth thermal resistivity
- C. Duct dimensions
- D. Duct material
- E. Duct configuration and spacing
- F. Material and dimensions of duct bank encasement
- G. Depth of duct bank encasement below grade
- H. Number of loaded cables in each duct
- 4. Cables buried in Earth
- A. Earth ambient temperature
- B. Earth thermal resistivity
- C. Number of loaded cables in trench
- D. Spacing of cable in trench
- E. Depth of cable below grade

5.Cables in air

A. Ambient air temperature B. If single conductor-cables, what is their spacing

6.Cables in conduit air

- A. Ambient air temperature
- B. Conduit material and dimensions
- C. Number of loaded cables in each conduit
- D. Number of spacing of loaded conduits
- E. Other heat sources near conduits

7. Cables in tray or ladder supports

- A. Ambient air temperature
- B. Ladder or solid bottom trays
- C. Open or solid bottom trays covers

D. Vertical separation between stacked trays

- E. Width and depth of tray
- F. Is cable spacing maintained
- G. Size, number and diameters of cables in each tray

PROGRAM ALGORITHMS

Neher-McGrath Formulation of Temperature Rise

The permissible current rating an a-c cable can be derived from the expression for the temperature rise above ambient temperature due to its own losses, which may be divided into a rise due to current produced (I²R) losses in the conductor, sheath and conduit T_C and the rise produced by its dielectric loss Thus:

 $T_{C} - T_{a} = \Delta T_{C} + \Delta T_{d}$ degrees Centigrade (1)

Since the losses occur at several positions in the cable system, the heat flow in the thermal circuit will increase in steps. It is convenient to express all heat flows in terms of the loss per foot of conductor, and thus

 $\Delta T_{c} = W_{c} (\underline{R}_{i} + q_{s} \underline{R}_{se} + q_{e} \underline{R}_{e}) \text{ degrees } C \qquad (2)$

Load Capability

From equation (1) it follows that:

$$I = \sqrt{\frac{T_{c} - (T_{a} + \Delta T_{d})}{R_{dc} (1+Y_{c}) R_{ca}}} \quad \text{kiloamperes}$$
(9)

Where the term R_{Ca} (thermal resistance from conductor surface to ambient) is composed of a number of variables, including:

- 1. Thermal resistance of the conductor insulation
- 2. Thermal resistance of the air between the conductor surface and the duct wall
- 3. Thermal resistance of the duct wall
- 4. Thermal resistance of the concrete surrounding the duct bank
- 5. Thermal resistance of the earth surrounding the duct bank
- 6. Conductor load factor; and
- 7. Effect of mutual heating due to proximity of other conductors.

For buried cable systems ${\rm T}_{\rm a}$ should be taken as the ambient temperature at the depth of the "hottest" cable.

PROGRAM ALGORITHMS

Equation 21 of reference 1 has been replaced with:

(F1) $Y_{CS} = F_{SP}(x)$

Where
$$x=R_{dC}/k_{s}$$

and:
 $F_{sp}(x) = \frac{11.0}{\left(x + \frac{4}{x} - \frac{2.56}{x^2}\right)^2}$ (F2)

except where x has a value less than 7.2, where:

$$F_{sp}(x) = \frac{11.0 (1 - 0.1102/x)}{\left(x + \frac{4}{x} - \frac{2.56}{x^2}\right)^2}$$
(F3)

(3) For Aluminum :
$$R_2 = R_1 (228.1 + T_2)$$

 $\overline{228.1 + T_1}$
For Copper: $R_2 = R_1 \frac{(234.5 + T_2)}{234.5 + T_1}$

(16) $W_s = I^2 R_{dc} Y_s$ watts per conductor foot

(22)
$$x_s = 0.875 \sqrt{\frac{fk_s}{Rdc}} = \frac{6.80}{\sqrt{Rdc/k_s}}$$
 at 60 cycles

(21)
$$Y_{CS} = F(x_S)$$

(25)
$$x_p = \frac{6.80}{\sqrt{Rdc/k_p}}$$
 at 60 cycles

(24)
$$\operatorname{Ycp} = F(x_p) \left(\frac{Dc}{S}\right)^2 \left[\frac{1.18}{F(x_p) + 0.27} + 0.312 \left(\frac{Dc}{S}\right)\right]^2$$

(29a) Xm= 52.9 log 2.3 S/Dsm

(27)
$$Ysc = \frac{Rs/Rdc}{1 + (Rs/Xm)^2}$$

(18)
$$qs = \frac{Wc + Ws}{Wc} = 1 + \frac{Ys}{1 + Yc}$$

(36) Wd =
$$\frac{0.00276 \ E^2 \epsilon \cos \theta}{\log (2T + Dc)/Dc}$$
 watts per conductor foot
at 60 cycles

(38)
$$R_i = 0.012 f_i \log D_i / D_c$$
 Thermal ohm feet

(41)
$$R_{sd} = \frac{n'A}{1 + (B+CTm) D'_{s}}$$

(40) R = 0.0104 n'
$$\left(\frac{t}{D-t}\right)$$
 thermal ohm feet

(44)
$$R_e = 0.012 \neq e n'$$
 $\left[log \frac{D_x}{De} + (LF) log \left(\frac{4L}{D_x} \times F \right) \right]$

in thermal ohm feet

(44a)
$$R'_{e} = 0.012 \frac{f}{c} n' \left[\log \frac{D_{x}}{D_{e}} + (LF) \log \frac{4L}{Dx} \times F \right]$$

+ 0.012 $\left(\frac{f}{f_{e}} - \frac{f}{c} \right) n' N (LF) G_{b}$ thermal ohm feet

(8) $R'_{ca} = R_i + q_s R_{se} + q_e R'_e$ thermal ohm feet

(28a) Xm = 52.9 log $2S/D_{sm}$ microhms per foot at 60 cycles

(14) $R_{ac}/R_{dc} = 1 + Yc + Ys + Y_p$ (26) $W_s = I^2 Rdc$ (Ysc + Yse) watts per conductor foot

*(30)
$$Y_{se} = \frac{\frac{3 \text{ Rs/Rdc}}{5.2 \text{ Rs}}}{\left(\frac{5.2 \text{ Rs}}{\text{f}}\right)^2 + \frac{1}{5}\left(\frac{2\text{S}}{\text{Dsm}}\right)^{\left(\frac{1}{2}\text{S}\right)^2}} \left[1 + \frac{5}{12}\left(\frac{\text{Dsm}}{2\text{s}}\right)^2\right]$$

* When the sheaths are short-circuited, the sheath eddy loss will be reduced and may be multiplied by $R_s^2 / R_s^2 + X_m^2$

PROGRAM ALGORITHMS

(3) $(LF) = 0.3 (1f) + 0.7 (1f)^2$ per unit

(2) $T_c = Wc (R_i + q_s R_{se} + q_e R_e)$ degrees Centigrade

(46) The factor F accounts for the mutual heating effect of the other cables of the cable system, and consists of the product of the ratios of the distance from the reference cable to the image of each of the other cables to the distance to that cable. Thus,

$$F = \frac{d_{12}^{1}}{d_{12}} \quad X \quad \frac{d_{13}^{1}}{d_{13}} \quad X \quad --- \quad \frac{d_{1N}^{1}}{d_{1N}} \quad (N-1 \text{ terms})$$

It will be noted that the value of F will vary depending upon which cable is selected as the reference, and the maximum conductor temperature will occur in the cable for which F is a maximum. N refers to the number of cables or pipes, and F is equal to unity when N = 1.

NOMENCLATURE

(AF)	=	Attainment Factor - per unit
As	=	Cross-section area of a shielding tape or skid wire-
		square inches
\propto	=	Thermal diffusivity - square inches per hour
CI	=	Conductor Area - circular inches
d	=	distance inches
		d_{12} etc. = from center cable #1 to center of cable #2 etc.
		d'_{12} etc. = from center of cable #1 to image of cable #2 etc.
		d ₁₁ etc. = from center of cable #1 to point of interference
		d'_{11} etc. = from image of cable #1 to point of interference
D	=	Diameter - inches
		D _o = inside of annular conductor
		Dc = outside of conductor
		D _i = outside of insulation
		D _s = outside of sheath
		D _{sm} = mean diameter of sheath
		D _j = outside of jacket
		D ¹ s= effective(circumscribing circle) of several cables in contact
		D _p = inside of duct wall, pipe or conduit
		D _e = diameter at start of the earth portion of the
		thermal circuit
		$\mathtt{D}_{\mathbf{X}}$ = fictitious diameter at which the effect of loss
		factor commences
E	=	Line to neutral voltage - kilovolts
6	=	Coefficient of surface emissivity
Er	=	Specific inductive capacitance of insulation
f	=	Frequency - cycles per second
F,Fint	=	Products of ratios of distance
F(x)	=	Derived Bessel function of x (Table VIII and Figure 1)
I	=	Conductor current - kiloamperes
ks	=	Skin effect correction factor for annular and segmental
		conductors
kp	=	Relative transverse conductivity factor for calculating
-		conductor proximity effect

X = Lay of shielding tape or skid wire - inches G = Geometric factor G1 = applying to insulation resistance (Figure 2 of Reference 1) G2 = applying to dielectric loss (Figure 2 of Reference 1) Gb = applying to a duct bank (Figure 2) L = Depth of reference cable below Earth's surface - inches = Depth to center of duct bank (or backfill) - inches Lb = Load factor-per unit (1f) (LF) = Load factor-per unit n = Number of conductors per cable n^{1} = Number of conductors within a stated diameter = Number of cables or cable groups in a system Ν = Perimeter of a duct bank or backfill - inches Ρ = Power factor of the insulation cos O = Ratio of the sum of the losses in the conductors and q_s sheaths to the losses in the conductors = Ratio of the sum of the losses in the conductors, sheath qe and conduit to the losses in the conductors = Electrical resistance - Ohms R R_{dc} = d-c resistance of conductor R_{ac} = total a-c resistance per conductor $R_s = d-c$ resistance of sheath or of the parallel paths in a shield-skid wire assembly = Thermal Resistance (per conductor losses) -R thermal ohm feet $R_i = of insulation$ <u>R</u>i = jacket $\underline{\mathbb{R}}$ sd= between cable surface and surrounding enclosure $\underline{\mathbf{R}}_{\mathbf{d}}$ = of duct wall or asphalt mastic covering \underline{R}_{se} = total between sheath and diameter D_e including \underline{R}_i , \underline{R}_{sd} and \underline{R}_{d} \underline{R}_{e}^{1} = between cable surface and ambient air $\frac{R}{2}$ ca= effective between conductor and ambient for conductor loss \underline{R}_{C}^{1} t= effective transient thermal resistance of cable system

$\frac{R_{int}}{P} = \text{ f the interference effect}$ $\frac{R_{ya}}{P} = \text{ between a steam pipe abd ambient earth}$ $= \text{ Electric resistivity} - \text{ circular mil - ohms per formula}$	
\underline{R}_{int} - of the interference effect \underline{R}_{ya} = between a steam pipe abd ambient earth = Electric resistivity - circular mil - ohms per fo	
$\frac{\pi}{2}$ ya= between a steam pipe abd ambient earth = Electric resistivity - circular mil - ohms per fo	
\mathcal{P} = Electric resistivity - circular mil - ohms per fo	
	oot
\neq = Thermal resistivity - degrees Centigrade centimet	ters per watt
<pre>s = distance in three-conductor cable between the eff</pre>	fective
current center of the conductor and the axis of t	the cable -
inches	
S = Axial spacing between adjacent cables - inches	
S ¹ = Axial spacing between outside cables in a cradled tion - inches	l configura-
t,T = Thickness (as indicated) - inches	
T = Temperature - degrees Centigrade	
$T_a = of ambient air or earth$	
$T_{C} = of conductor$	
T _m = mean temperature of medium	
ΔT = Temperature rise - degrees Centigrade	
ΔT_{C} = of conductor due to current produced loss	ses
ΔT_d = of conductor due to dielectric loss	
ΔT_{int} of a cable due to extraneous heat source	
W = Losses developed in a cable - watts per conductor	c foot
W_{C} = portion developed in the conductor	
$W_{\rm S}$ = portion developed in the sheath or shield	
w_p - portion developed in the pipe of conduct	
w_d - portion developed in the diffectific	in
$m_{\rm m}$ = Mutual feactance, conductor to sheath of shield f	
Y = The increment of a-c/d-c ratio - per unit	
	, having
Y_{c} = due to losses originating in the conductor.	,
Y_{C} = due to losses originating in the conductor, components Y_{CS} due to skin effect and Y_{CD} of	lue to
Y _C = due to losses originating in the conductor, components Y _{CS} due to skin effect and Y _{CP} of proximity effect	due to
Y_{C} = due to losses originating in the conductor, components Y_{CS} due to skin effect and Y_{CP} of proximity effect Y_{S} = due to losses originating in the sheath or	due to shield
Y _C = due to losses originating in the conductor, components Y _{CS} due to skin effect and Y _{CP} of proximity effect Y _S = due to losses originating in the sheath or having components Y _{SC} due to circulating curves.	due to shield ırrent
Y_C = due to losses originating in the conductor, components Y_{CS} due to skin effect and Y_{CP} of proximity effect Y_S = due to losses originating in the sheath or having components Y_{SC} due to circulating cureffect and Y_{Sa} due to eddy current effect	due to shield urrent
Y_C = due to losses originating in the conductor, components Y_{CS} due to skin effect and Y_{CP} of proximity effect Y_S = due to losses originating in the sheath or having components Y_{SC} due to circulating cu effect and Y_{Sa} due to eddy current effect Y_p = due to losses originating in the pipe or co	due to shield urrent onduit
AMPACITY PROBLEM

Cable:B.

750 kcmil Aluminum Compressed Class B Strand, rated 15kV, .025" ESS, 0.175" XLPE, .050" EIS, 15 x #10 AWG (1/3 neutral), .080" encapsulating LDHMWPE jacket.

To Be Installed:

- 1. Triplexed in a duct (4 way bank in concrete)
- 2. One conductor per duct (6 way bank in concrete)
- 3. Triplexed direct buried
- 4. On 8" centers (flat) directly buried

Conditions:

. .	0
Maximum Conductor Temperature	90 L
System Voltage	13.2/7.6kV
	0
Earth Ambient Temperature	20 C
Duct	Fibre
Burial Depth	36"
Load Factor	75%

Cable and Duct Dimensions

0.D.	Conductor (Dc)	0.968'	•
0.D.	ESS	1.020	
0.D.	Insulation (Di)	1.400'	•
0.D.	EIS	1.520'	•
Mean	Neutral Diameter	1.620'	•
0.D.	Overall	1.91"	
0.D.	Triplexed	4.12"	
5" I.	.D. Fibre Duct	0.25"	wall

SAMPLE PROBLEM

XEQ -AMP-Rdc? 250 .0236 RUN AL:1 /CU:0 1.0000 RUN T2? 90.0000 RUN Rdc:T2= 29.6608 KS? RUN 1.0000 YCS= 0.0124 KP? 1.0000 RUN Dc? .9680 RUN S2 8.0000 RUN Yc:SP= 0.0132 SP? :TX: 1.9100 RUN Yc:TX= 0.0259 RS? 71.0000 RUN DSM? 1.6200 RUN XM= 55.8255 0.C:1 / S.C:0 RUN 0.0000 YS= 0.9156 TRPX : XM= 19.7078 0.C:1 / S.C:0 RUN 0.0000 YS= 0.2049 QS:SP:= 1.9038 QS:TX= 1.1997 ¥G? 7.6000 RUN e? RUN 2.3000 DF? .0150 RUN T: INSL? .1750 RUN WD= 0.0410 TR: INSL? 400.0000 RUN 0.D: INSL? 1.4000 RUN

62		
	.0240	RUN
182	65.0000	RUN
B?	2.3000	RUN
A?	17 9999	DIIN
TR:DUCT?	400 0000	
T?: DUCT	480.0000	KUN
O.D: DUCT	.2500 ?	RUN
.IKT? : Y/	5.5000 N2	RUN
ץ דעו כיסד		RUN
	450.0000	RUN
T?: JKT	. 0800	RUN
N?	1.0000	RUN
RHO?	90 0000	DIIN
L?: DB	70.0000	KUN
LOSS F?	36.0000	RUN
TR?	.6190	RUN
D-0	85.0000	RUN
Dev	5.0470	RUN
L?: DUCT	36.0000	RUN
N?	1.0000	RUN
Gb:TX:DT?	9999	DIIN
F? SP:DB		NUM
F? SP:DT	82.0000	KUN
N?	82.0000	RUN
CH2 CP-NT	3.0000	RUN
וע וע נטי	. 8400	RUN

SAMPLE PROBLEM

Ta?	
20.0000 I:TX:DB= 666 I:TX:DT= 498 I:SP:DB= 599 I:SP:DT= 485 M:BOND2 Y/N2	RUN
Y 12	RUN
666 TV-7 /CP-02	RUN
3 Wc= 13.4976	RUN
4.5800 QS= 1.3393	RUN
Ta? 20.0000 I:TX:DB= 635 I:TX:DT= 474 I:SP:DB= 599 I:SP:DT= 538	RUN
H:BUNU? 17N? Y T2	RUN
498 17	RUN
Kc= 7.5469	RUN
4.5800 QS= 1.6069	RUN
20.0000 I:TX:DB= 586 I:TX:DT= 435 I:SP:DB= 599 I:SP:DT= 522 M:BOND? Y/N?	RUN
Y I?	RUN
599 TX:3_/SP:02	RUN
0 Wc= 10.7823	RUN
10.9100 QS= 2.0118 Ta?	RUN
20.0000 I:TX:DB= 586 I:TX:DT= 435 I:SP:DB= 584 I:SP:DT= 487 M:BOND? Y/N?	RUN

USER INSTRUCTIONS

Size:034

STE	P INSTRUCTIONS	INPUT	DISPLAY
1.	Connect printer if a hardcopy is desired. R/S after each display if no printer is attached.		
2.	Set printer switch to manual or normal mode.		
з.	Load program "SV" if shield losses by configuration is desired. Record values for input to ampacity program.		
4.	Load programs "AMP" "VW"		
5.	Check status		
6.	Initialize: XEQ "AMP"		
7.	Enter D-C resistance of conductor in ohms per 1000 feet at 25 C	Rdc	Rdc? 25C
8.	Enter type metal of conductor	1or0	AL:1/CU:0
	Aluminum = 1 Copper = O		
9.	Enter operating temperature of conductor in degrees C.	T2	Τ2?
10.	Display Rdc in microhms per foot at temperature T2.	-	Rdc:T2=
11.	Enter ks value from Table II	Ks	KS?
12.	Display losses due to skin effect component	-	YCS=
13.	Enter kp value from Table II	Кр	KP?
14.	Enter O.D. of conductor, inches	Dc	D⊂ ?

	STE	P INSTRUCTIONS	INPUT	DISPLAY
	15.	Enter axial spacing between adjacent cables - inches	S	S?
	16.	Display increment of a-c/d-c ratio per unit due to losses orginating in the conductor having components Ycs and Ycp for spaced cables	-	Yc:SP=
	17.	Enter spacing for triplexed cables, inches	SP	SP? :TX:
•	18.	Display increment of a-c/d-c ratio per unit due to losses orginating in the conductor having components Ycs and Ycp for triplexed cables	_	Yc:TX=
	19.	Enter d-c resistance for metallic shield component in microhms per foot at 20 C	RS	RS?
	20.	Enter mean diameter of sheath or shield, inches	DSM	DSM?
	21.	Display mutual reactance between conductor and shield or sheath in microhms per foot at 60 cycles for spaced cable configuration.	_	XM=
	22.	Select circuit operation for spaced cables Open circuit = 1 Short circuit = 0	1 0 r0	D.C:1/S.C:0
	23.	Display losses originating in sheath or shield, having components YSC and YSE, for spaced cables.	-	YS=

STE	PINSTRUCTIONS	INPUT	DISPLAY
			TRPX:
24.	Display mutual reactance between conductor and shield or sheath in microhms per foot at 60 cycles for triplexed cables.	_	X M=
25.	Select circuit operation for triplexed cables	1or0	0.C:1/S.C:0
	Open circuit = 1 Short circuit = 0		
26.	Display losses originating in sheath or shield, having components YSC and YSE, for triplexed cables.	-	YS=
27.	Display ratio of the sum of the losses in the conductors and sheaths to the losses in the conductors for spaced cables.		QS:SP=
28.	Display QS for triplexed cables	-	QS:TX=
29.	Enter phase to neutral voltage in kilovolts.	Vg	VG?
30.	Enter dielectric constant (SIC)	e	e?
31.	Enter dissipation factor in decimal form	DF	DF?
32.	Enter insulation thickness in inches	т	T:INSL?
33.	Display Dielectric loss in watts per conductor foot at 60 cycles	-	WD=

-28-

STE	P INSTRUCTIONS	INPUT	DISPLAY
34.	Enter thermal resistivity of insulation	TR	TR:INSL?
35.	Enter diameter over insulation, inches	Di	O.D.INSL?
36.	Enter constant C from table V	С	C?
37.	Enter mean temperature of medium degrees C	TM	TM?
38.	Enter constant B from table V	В	B?
39.	Enter constant A from table V	A	A?
40.	Enter thermal resistivity for duct in Ccm/watt. Table IV	TR	TR:DUCT?
41.	Enter thickness of duct wall in inches	т	T:DUCT?
42.	Enter O.D. of duct, inches	0.D	O.D:DUCT?
43.	Does cable have an overall outer jacket?	Y or N	JKT? Y/N?
	Y = Yes N = No		
44.	If yes, enter thermal resistivity of jacket material, if no proceed to step 47	TR	TR?: JKT
45.	Enter thickness of jacket in inches.	т	T?: JKT
46.	Enter number of cables or cable	Ν	N?

groups in a system

STE	P INSTF	RUCTIONS	INPUT	DISPLAY
47.	Enter thermal r	esistivity of earth	RHD	RHO?
48.	Enter depth of below earth's e buried cable i	reference cable surface for direct n inches	L	L? DB
49.	Enter Loss fact	or per unit	LF	LOSS F?
L	oad Factor L	oss Factor		
	50% 75% 100%	0.325 0.619 1.000		
50.	Enter thermal r or other duct s	esistivity of concrete surrounding medium	TR	TR?
51.	Enter De, Dia earth portion o in inches, for	ameter at start of the of the thermal circuit cable in duct	De	De?
52.	Enter Depth of earth's surface cable in duct.	reference cable below n inches for	L	L? DUCT
53.	Enter number of groups in duct	cables of cable system	Ν	N?
54.	Enter geometric duct bank for t	: factor applying to riplexed cable	GЬ	Gb:TX:DT?
55.	Enter F, Fint, of distance for directly buried	product of ratios spaced cables	F	F? SP:DB?
56.	Enter F, Fint, of distance for	product of ratios spaced cable in duct	F	F? SP:DT

STE	P INSTRUCTIONS	INPUT	DISPLAY
57.	Enter number of cables or cable groups in a system	Ν	N?
58.	Enter Geometric factor applying to duct bank for spaced cables in duct	GЬ	Gb? SP:DT
59.	Enter temperature of ambient air or earth in degrees C	Та	Ta?
	[TRIPLEXED]		
60.	Display conductor current in amperes for triplexed direct buried cable	_	I:TX:DB=
61.	Display conductor current in amperes for triplexed cable in duct	-	I:TX:DB=
	[SPACED]		
62.	Display conductor current in amperes for spaced cables direct bury	-	I:SP:DB=
63 .	Display conductor current in amperes for triplexed cables in duct	-	I:SP:DT=

-31-

STE	P INSTRUCTIONS	INPUT	DISPLAY
64.	Is system grounded or bonded at multiple points?	Y or N	M:BOND? Y/N?
	Y = Yes N = No		
65.	If Yes. enter conductor current in amperes, if no proceed to step 70.	I	Ι?
66.	Which group; triplexed or spaced?	3 or 0	TX:3 / SP:0?
	3 = Triplexed O = Spaced		
67.	Display losses developed in conductor – watts per conductor foot	-	Wc=
<u> </u>	Enter losses developed in sheath or shield (from program "SV") in watts per foot	Ws	Ws? W/ft
69.	Display Qs	-	QS=
70.	Re-enter or enter new ambient temperature in degrees C	Ta	Ta?
71.	Ampacities are displayed, see step 60.		

STEP/KEY CODE	COMMENTS	STEP/KEY CODE	CO
Cable System Am	<u>pacities</u>	51 "Dc?"	(25)
01◆LBL "AMP " 02 FIX 4 03 CF 03 04 CF 01 05 0	Intialize	52 PROMPT 53 STO 02 54 "S?" 55 PROMPT 56 STO 03 57 STO 04 58 XEQ "YCP	(24)
06 STO 31 07 STO 32 08 "Rdc? 25 C" 09 PROMPT 10 STO 00 11 "PL:1 20	Enter Rdc	" 59 STO 14 60 "Yc:SP=" 61 XEQ "VW" 62 "SP? :TX :" 63 PROMPT	
U:0" 12 PROMPT 13 X=0? 14 GTO 14 15 "T2?"	Aluminum	64 STO 03 65 XEQ "YCP " 66 STO 15 67 "Yc:TX="	(24)
16 PROMPT 17 STO 33 18 228.1 19 + 20 253.1 21 GTO 15 22+LBL 14 23 "T2?"	(3)	68 XEQ "VW" 69 "RS?" 70 PROMPT 71 STO 07 72 RCL 04 73 "DSM?" 74 PROMPT 75 STO 06	(29a)
24 PROMPT 25 STO 33 26 234.5 27 + 28 259.5 29+LBL 15 30 / 31 RCL 00	<u>Copper</u> (3)	75 2.3 78 * 79 LOG 80 52.9 81 * 82 STO 09 83 XEQ "YSC	(27)
32 * 33 1 E3 34 * 35 "Rdc:T2= " 36 XEQ "VW"	Rdc at operating temperature	84 RCL 03 85 RCL 06 36 / 87 2 88 * 89 LOC	
37 STO 00 38 "KS?" 39 PROMPT 40 / 41 XEQ "F1"	Enter ks	90 52.9 91 * 92 STO 09 93 SF 03 94 RCL 04	(28a)
42 STO 01 43 "YCS=" 44 XEQ "VW" 45 RCL 00 46 "KP?" 47 PROMPT	(21) Enter kp	95 STO 08 96 RCL 03 97 STO 04 98 XEQ "TPX " 99 XEQ "YSC	()
48 / 49 XEQ "F1" 50 STO 01	L	100 RCL 16	

STEP/KEY CODE

COMMENTS

101 1 102 RCL 14 103 + 104 / 105 1 106 + 107 "QS:SP:=	(18)	151 / 152 LOG 153 * 154 STO 20 155 "C?" 156 PROMPT 157 "TM?"	
108 XEQ "VW" 109 STO 17 110 RCL 01 111 1 112 RCL 15 113 + 114 /		158 PROMPT 159 * 160 "B?" 161 PROMPT 162 + 163 STO 10 164 RCL 03 165 *	
115 1 116 + 117 "QS:TX=" 118 XEQ "VW" 119 STO 18 120 "VG?"	(18)	165 # 166 1 167 + 168 "A?" 169 PROMPT 170 STO 11	(41)
121 PROMPT 122 X↑2 123 "e?" 124 PROMPT 125 * 126 "DF?" 127 PROMPT	(36)	171 XC) 172 / 173 STO 21 174 RCL 03 175 2.155 176 * 177 RCL 10	
128 * 129 .00276 130 * 131 "T:INSL? " 132 PROMPT		178 * 179 1 180 + 181 RCL 11 182 3 183 *	(41)
133 2 134 * 135 RCL 02 136 + 137 RCL 02 138 /		184 X<>Y 185 / 186 STO 22 187 "TR:DUCT ?" 188 PROMPT	
139 LOG 140 / 141 "WD=" 142 XF0 "VW"	(38)	189 .0104 190 * 191 "T?:DUCT "	
143 STO 19 144 "TR:INSL ?" 145 PROMPT		192 PROMPT 193 STO 12 194 "O.D: DU CT?"	(40)
146 .012 147 * 148 "O.D: IN SL2"		195 PROMPT 196 RCL 12 197 - 198 /	
149 PROMPT 150 RCL 02		199 * 200 STO 23	

STEP/KEY CODE

COMMENTS

201 3 202 * 203 STO 24 204 "Y" (40) 205 ASTO Y 206 "JKT? : Y/N?" 207 AVIEW	251 * 252 8.3 253 / 254 LOG 255 "LOSS F? "
208 AON	256 PROMPT
209 STOP	257 STO 10
210 AOFF	258 *
211 ASTO X	259 +
212 X=Y?	260 *
213 GTO 03	261 RCL 32
214 GTO 04	262 +
215+LBL 03	263 STO 25
216 "TR?: JK	264 "TR?"
T" 217 PROMPT 218 .0104 219 * 220 "T?: JKT (40)	265 PRUMPT 266 STO 13 267 3 268 * 269 .012 270 *
221 PROMPT	271 STO 12
222 STO 12	272 8.3
223 RCL 03	273 "De?"
224 RCL 12	274 PROMPT
225 -	275 STO 28
226 /	276 /
227 *	277 LOG
228 STO 31	278 "L?: DUC
229 "N?"	T"
230 PROMPT	279 PROMPT
231 *	280 STO 09
232 STO 32	281 4
233+LBL 04	282 *
234 "RHO?"	283 8.3
235 PROMPT	284 /
236 STO 05	285 LOG
237 3	286 RCL 10
238 *	287 *
239 .012	288 +
240 *	289 RCL 12
241 8.3	290 *
242 RCL 03	291 510 12
243 2.155	292 RCL 05
244 *	293 RCL 13
245 /	294 -
246 LOG	295 3
247 "L?: DB"	296 *
248 PROMPT	297 .012
249 STO 27 250 4	298 * 299 RCL 10 300 *

(44)

COMME
COMME 4a)
)

COMMENTS

STEP/KEY CODE

(8)

(8)

401	+	
402	RCL	19
403	*	
404	STO	03
405	RCL	26
406	RCL	24
407		22
408	RUL	22
410	RCL	20
411	2	
412	1	
413	+	
414	RCL	19
415	*	04
410	BCI	29
418	RCL	17
419	*	
420	RCL	20
421	+	
422	STO	05
423	RUL	30
424	KUL 1	23
426	RCI	21
427	+	
428	RCL	17
429	*	
430	RCL	20
431	+	94
432	BUD BUD	29
434	RCL	20
435	2	
436	1	
437	+	
438	RCL	19
439	*	07
440	RCI	30
442	RCL	23
443	+	
444	RCL	21
445	+	
446	RCL	20
447	2	
449	+	
450	RCL	19
451	*	
452	STO	08
453	+LBL	02
454	RUL	33 00
433	310	07

456 "Ta?" 457 PROMPT 458 STO 10 459 FIX 0 460 RCL 09 461 RCL 10 462 RCL 03 463 + 464 - 465 RCL 00 466 RCL 15 467 1	(9)
468 + 469 * 470 RCL 01 471 * 472 / 473 SQRT 474 1 E3 475 * 476 "I:TX:DB ="	(9)
477 XEQ "VW" 478 RCL 09 479 RCL 10 480 RCL 04 481 + 482 - 483 RCL 00 484 RCL 15 485 1	
486 + 487 * 488 RCL 02 489 * 490 / 491 SQRT 492 1 E3 493 * 493 * 494 "I:TX:DT =" 495 XEQ "VW"	(9)
496 RCL 09 497 RCL 10 498 RCL 07 499 + 500 - 501 RCL 00 502 RCL 14 503 1 504 + 505 *	(9)
1	

(9)

5	0	6	R	С	L		0	5			
5	ø	7	*								
5	ø	8	/								
5	ø	9	s	Q	R	т					
5	ī	Ō	1		E	ż					
5	ī	1	*		_	_					
5	1	2	••	Ι	:	s	Ρ	:	D	в	
=	••										
5	1	3	X	Ε	Q		••	۷	μ	••	
5	1	4	R	С	L		0	9			
5	1	5	R	С	L		1	0			
5	1	6	R	С	L		0	8			
5	1	7	+								
5	1	8	_	_			_	_			
5	1	9	R	C	Ŀ		9	9			
5	2	0	Ŗ	C	L		1	4			
2	2	1	1								
5	2	27	т -								
5	2	3 1	Ē	c	1		a	2			
ະ	2 つ	45	г. 	C	L		U	0			
ະ	22	6	2								
5	ົ້	7	s	n	R	т					
š	2	8	ĭ	~	E	ż					
5	2	9	*		_	-					
5	3	0	••	I	:	s	Р	:	D	Т	
=											
5	3	1	X	Ε	Q		••	۷	μ		
5	3	2	••	Y	••						
5	3	3	A	S	Т	0	_	Y		_	
5	3	4		M	:	В	0	Н	D	?	
_	Y	<u> </u>	?		_	_					
5	3	5	H	Y	1	F	Μ				
5	3	5	Н	u T	N	_					
2	37	Ś	3		Ľ	r F					
5	27	a	п	c	г т	г Л		v			
5	С А	7 0	ÿ	-	÷	2		^			
š	ፈ	1	ົລ	т	'n	•	Ø	6			
š	4	2	ā	÷	ň		ă	ž			
š	4	3+	Ľ	B	Ľ		õ	6			
5	4	4		I	$\overline{?}$						
5	4	5	Ρ	R	0	M	Ρ	Т			
5	4	6	1		Ε	3					
5	4	7	/								
5	4	8	Х	t	2						
5	4	9	S	T	0		1	2		_	
5	5	0	••	T	X	:	3		/	S	
P	:	0?	-	-	~		~	-			
5	5	1	۲ U	к 	U	2	۲	١			
D	5	2	X C	=	0	?	P	7			
2	2	3 1	G	I F	υ	P	5	٢			
5	5	45	Э Р	г С		Ø	3	5			
ر ا	ر.	.	15	ັ	_			~			

556 557	+LBL 1	08	
559	+ RCL	00	
560 561	* RCL	12	
562 563	* FIX	4	
564	"Wc:	= "	
565	XEQ	" YW "	
566	STU "We'	11 7. Hz	(WC)
FT"	MO	5 · M2	(MS)
568	PRO	1PT	
569	+		
570	RCL	11	
572		= "	
573	XEQ	" VW "	
574	FS?	03	
575	GTO	11	
577	510 6T0	17 05	
578	+LBL	07	
579	RCL	14	
580	GTO	08	
581	+LBL	11	
583	GTO	05	
584	+LBL	"TPX	
585		2X:" =W	
587		23	
588	RTN		
589	+LBL	"YCP	(24)
" 590	PCI	02	
591	RCL	03	
592	/		
593	X12	~ -	
594	STO	05 01	
596	*	01	
597	STO	12	(27)
598	RCL	05	
599	.312	2	
600 601		3	s
602	RCL	01	
603	.27		
604 605	+		
600	<i>·</i>		

606 + 607 RCL 12 608 * 609 RCL 01 610 + 611 RTN 612 • LBL "YSC " 613 RCL 09 614 "XM=" 615 XEQ "VW" 616 RCL 07 617 X<>Y 618 / 619 X+2 620 1	(27)	651 2 652 * 653 / 654 X†2 655 STO 05 656 .4166667 657 * 658 1 659 + 660 RCL 12 661 * 662 RCL 05 663 * 664 STO 13 665 "0.C:1 /	(30)
621 + 622 RCL 07 623 RCL 00 624 / 625 X $\langle \rangle$ Y 626 / 627 STO 11 628 RCL 07 629 RCL 00 630 / 631 3 632 * 633 5.2 634 RCL 07 635 * 636 60 637 / 638 X \uparrow 2 639 RCL 04 640 2 641 * 642 RCL 06 643 / 644 .2 645 * 646 + 647 / 648 STO 12 649 RCL 06 650 RCL 04	(30)	666 PROMPT 667 X=0? 668 GTO 12 669+LBL 13 670 RCL 11 671 RCL 13 672 + 673 "YS=" 674 XEQ "VW" 675 FS? 01 676 GTO 00 677 STO 16 678+LBL 01 679 SF 01 680 RTN 681+LBL 00 682 STO 01 683 GTO 01 684+LBL "F1" 685 STO 02 686 7.2 687 X>Y? 688 GTO "F3" 689 11 690 ENTER† 691 4 692 RCL 02 693 / 694 RCL 02 695 + 696 2.56 697 RCL 02 698 X†2 699 / 700 - 701 X†2 702 / 702 / 702 / 702 / 703 PTN	(3)

-39-Comments Step/Key Code

COMMENTS

7044 705		"F3"
707	110	20
700		02 02
700	KUL	02
710	2	
710		
712	11 4	
717	т Л	
714		02
715		02
716	PCI	9 2
717	+	95
718	2.56	5
719	RCL	02
720	X12	
721	/	
722	_	
723	X†2	
724	1	
725	RTN	
7264	LBL	12
727	RCL	07
728	X†2	
729	RCL	09
730	X†2	
731	RCL	07
732	X†2	
733	+	
734	/	
735	RCL	13
736	*	
737	STO	13
738	GTO	13
739	END	

(3)

-41-DATA REGISTERS

00	Rdc:CDTR	01 RCA:DB:TX				
01	FX, Ycs, YsTX	02 RCA:DT:TX				
02	Dc	03 Δ TD:TX:DB				
03	Cable O.D.	04 Δ TD:TX:DT				
04	Spacing	05 RCA:SP:DB				
05	Program	06 RCA:SP:DT				
06	Dsm	07 \triangle TD:SP:DB				
07	Rs	08 Δ TD:SP:DT				
08	Program	09 TC				
09	XM	10 TA				
10	Program (LF)	11 WC				
11	Ysc					
12	Program					
13	Program					
14	Yc- SP					
15	Yc-TRPX					
16	Ys- SP	STATUS				
17	QS-SP	Size: 033				
18	QS-TX	All modes automatically set				
19	Wd	Flag 01 set for single or spaced cables				
20	Ri	Flag 03 set for triplexed cables				
21	Rsd:sp	No function assignments keys used				
22	Rsd:TX	Note: Data registers 01-10 have				
23	RDE:SP	double use				
24	RDE:TX					
25	Re:TX:DB					
26	Re:TX:DT					
27	L					
28	De					
29	Re:SP:DB					
30	Re:SP:DT					
31	RJE:SP					
32	RJE:TX					
33	Тс					

INDUCED SHIELD VOLTAGES AND LOSSES

Robert W. Parkin

FUNCTION: Program calculates the induced shield voltages and shield losses for single conductor cables in six arrangements: single phase, equilateral, flat, rectangular, and two circuit. This program can be used in conjunction with the ampacity program to determine the input value for shield losses.

ACCESSORIES: HP-41 CX or HP-41CV, printer optional

OPERATING LIMITS AND WARNINGS: program assumes that the cables are carrying balanced currents. Formulas neglect proximity loss, but are accurate enough for practical purposes.

For cables installed three per conduit use arrangement II (equilateral). The spacing S in this case will be equal to the outside diameter of the cable increased by 20 percent to allow for random spacing in the conduit.

REFERENCES:

- [1] Underground Systems Reference Book, Edison Electric Institute
- [2] ICEA S-66-524 NEMA Pub. No. WC-7
- [3] ICEA Ampacities Including Effect of Shield Losses for Single Conductor Solid Dielectric Power Cables P-53-426 NEMA Pub. No 50-1976
- [4] Essex Underground Cable Engineering Handbook, Cablec Corp

GROUNDING OF POWER CABLE SHIELDS

The purpose of the shielding system on a power cable is to provide a fixed, known path to ground for the cable charging or displacement current. To perform that function the shield must be solidly grounded. Where conductors are individually shielded each conductor must have its shield grounded. Where grounding conductors are part of a cable assembly, they must be connected with the shielding at both ends of the cable.

For safe and effective operation, the shielding should be grounded at each end of the cable and at each splice. For short lengths or where special bonding arrangements are used, grounding at one point only may be satisfactory.

All grounding connections should be made to the cable shield in such a way as to provide a permanent low resistance bond. Soldering the connection to the cable shield is usually preferable to a mechanical clamp, as there is less danger of a poor connection, loosening, or injury to the cable. The area of contact should be ample to prevent the current from heating the connection and melting the solder.

For additional security, a mechanical device, such as a nut or bolt, may be used to fasten the ends of the connection together. This combination of a soldered and mechanical connection provides permanent low resistance which will maintain contact even though the solder melts.

The wire or strap used to connect the cable shield ground connection to the permanent ground must be of ample size to carry fault currents.

If there is an insulating jacket over the shield and if, because of an accident or corrosion, the shield ground connection is broken, the voltage between that shield and ground can approach the conductor to ground voltage that is on the insulated conductor. This one good reason for multi-point shield ground. Installations of shielded single conductor cables must be studied to determine the best method of grounding. This is necessary as voltage is induced in the shield of a single conductor cable carrying alternating current due to mutual inductance between its shield and any other conductors in its vicinity. This induced voltage can result in two conditions.

1. Single Point Grounding

The current in the conductor induces a voltage along the shield. The amount of induced voltage depends on many factors, including cable geometry, cable spacing, conductor current, and frequency. Some systems are designed with a particular maximum value of shield voltage in mind. Values are selected for safety and sometimes to reduce the possibility of corrosion due to a-c electrolysis. As distance increases from the grounded point, so does the voltage of the shield. These values are displayed in the program. The usual safe potential is about 25 volts for cables having non-metallic coverings over the sheath.

2. Multiple Point Grounding

When the cable shields are bonded and grounded at multiple points, the shield to ground voltages are essentially eliminated. However, the longitudinal voltage induced along the shield by the conductor current causes a current to flow in the shield which results in additional heating known as shield losses. The additional heating caused by shield losses may require a derating of the cable ampacity. The amount of derating depends on many factors, including cable size, cable separation, and frequency. The shield resistance is a major factor affecting the shield losses. If the shield loss exceeds 5 percent of the copper loss, the current carrying capacity should be reduced.

If operating conditions permit, it is desirable to bond and ground cable shields at more than one point, to improve the reliability and safety of the circuit. This decreases the reactance to fault currents and increases the human safety factor.

General recommendations may be made to operate single conductor cables (a-c) with multisheath grounds, however variations in insulation wall thickness, conductivity of sheath, spacing of conductors and the current being carried all affect these recommendations.

1. Shielded cables installed with all three phases in the same duct.

2.Cables of any size may be installed with multi-shield grounds, provided allowance is made for heating due to currents induced in the shield. Cables carrying direct current may always be solidly grounded at more than one point, except where insulating joints are required to isolate earth currents or to permit cathodic protection. 3. Shielded cables up to and including 250 MCM with phases in separate ducts. Cables in a-c circuits should not be installed with each phase in separate magnetic conduits due to the high inductance under such conditions. Cables in a-c circuits should not be installed with each phase in separate metallic nonmagnetic conduit when their size exceeds #4/0 AWG unless the conduit is insulated to prevent circulating currents.

The table below gives the formulas for calculating the induced voltage and shield loss that the program is based.

Where double sign, +/- is shown, use the upper sign Note: for lagging and lower one for leading power factor.

FORMULAS FOR CALCULATING SHIELD VOLTAGES-CURRENTS AND LOSSES FOR SINGLE-CONDUCTOR CABLES						
Cable Arrangement Number and Diagram	I One phase ← s ← ⑧ ④	II Equilateral ⑧ © → s →	III Rectangular	IV Flat → s → → s → ⊗ ® ©	$ \begin{array}{c c} & V \\ Two circuit \\ \hline & & & \\ \hline \end{array} \begin{array}{c} & & \\ & & \\ \hline \\ \hline$	$ \begin{array}{c c} VI \\ Two circuit \\ \hline & & & \\ \hline & & \\ \hline & & \\ & & \\ \hline & & \\ & & \\ \hline & & \\ \hline \hline \hline & & \\ \hline \hline \hline & & \\ \hline \hline$
INDUCED S		SE-SHIELDS	OPEN CIRCUITED	MICRO (MULTIPLY	VOLTS TO NEUTR BY 10 ⁶ TO OBTAIN	AL PER FT. VOLTS PER FT.)
Cable-A Cable-C	IX,	IX,	$\frac{1}{2}\sqrt{3Y^{2}+(X_{M}-A)^{2}}$	$\frac{1}{2}\sqrt{3Y^2+(X_{H}-A)^2}$	$\frac{1}{2}\sqrt{3Y'+\left(X_{M}-\frac{B}{2}\right)'}$	$\frac{I}{2}\sqrt{3Y^{2}+\left(X_{M}-\frac{B}{2}\right)^{2}}$
Cable-B	IX "	IX _M	IX,	IX "	$\frac{I(X_{M} + A)}{2}$	$I(X_{M} + \frac{A}{2})$
SHIE	LD LOSS—SHII		Y BONDED	MULTIPLY B	IICRO WATTS PER / 10 ⁻⁶ TO OBTAIN V	FT. VATTS PER FT.)
Cable-A Cable-C Cable-B	$I^{2}R_{s} \frac{X_{M}^{2}}{R_{s}^{2} + X_{M}^{2}}$ $I^{2}R_{s} \frac{X_{M}^{2}}{R_{s}^{2} + X_{M}^{2}}$	$\frac{I^{2}R_{s} \frac{X_{m}^{2}}{R_{s}^{2} + X_{m}^{2}}}{I^{2}R_{s} \frac{X_{m}^{2}}{R_{s} - X_{m}^{2}}}$	I'R _s I'R,	$\frac{(\mathbf{P}^{2}+3\mathbf{Q}^{2}) \pm 2\sqrt{3} (\mathbf{P}^{2}+3\mathbf{Q}^{2})}{4(\mathbf{P}^{2}+1) (\mathbf{Q}^{2}+3\mathbf{Q}^{2})}$	(P - Q) + 4 + 1)	
Total loss	$\frac{R_{s}^{2} + X_{m}^{2}}{R_{s}^{2} + X_{m}^{2}}$	$3I^{2}R_{s}\frac{X_{M}^{2}}{R_{s}^{2}+X_{M}^{2}}$	31 'R ,	$\frac{\mathbf{P}^{2}+1}{2(\mathbf{P}^{2}+1) (\mathbf{Q}^{2}+1)}$		
	P =	$\frac{\mathbf{R}_{s}}{\mathbf{Y}}$ Y =	$X_{M} + \frac{A}{2}$	X _M +A	$X_{x} + A + \frac{B}{2}$	$X_{y} + A + \frac{B}{2}$
	Q =	$\frac{\mathbf{R}_{s}}{\mathbf{Z}}$ $\mathbf{Z} =$	$X_{M} - \frac{\tilde{A}}{6}$	$X_{v} = \frac{A}{3}$	$X_{y} + \frac{A}{3} - \frac{B}{6}$	$X_{x} + \frac{A}{3} - \frac{B}{6}$

To facilitate calculating the shield resistance, the following formulas may be used:

 $X_M = 2\pi f (0.1404 \log_{10} \frac{S}{\Gamma_m} \text{ micro-ohms per ft.}$

$$A = 2\pi f (0.1404 \log_{10} 2) \text{ micro-ohms per ft}$$

A = $2\pi f$ (0.1404 log₁₀ 2) micro-ohms per ft. B = $2\pi f$ (0.1404 log₁₀ 5) micro-ohms per ft.

$$R_{\rm S} = \frac{\rho}{8r_{\rm m}t}$$
 micro-ohms per ft.

Rs

- R_s = resistance of shield (micro-ohms per ft.)
- t = thickness of metal tapes used for shielding (inches)
- f = frequency (60 cycles)
- S = spacing between center of cables (inches)
- r_m = mean radius of shield (inches) I = conductor current (amperes)

for 60 cycles

 $\chi_{\rm M} = 52.92 \, \log_{10} \frac{3}{r_{\rm m}}$ $\frac{S}{T}$ micro-ohms per ft.

A = 15.93 micro-ohms per ft.

= 36.99 micro-ohms per ft. R

 $\rho =$ apparent resistivity of shield in ohms/cir mil ft. at operating temperature (assumed 50 degrees C.). This includes allowance for the spiraling of the tapes or wires.

Typical Values of *ρ*

Overlapped tinned copper tape	30 ohms/cir mil ft.
Lead sheath	150 ohms/cir mil ft.
Aluminum sheath	20 ohms/cir mil ft.

USER INSTRUCTIONS

STEF	P INS	TRUCTIONS		INPUT	DISPLAY
1.	Connect print desired. R/S if no printer	er if a hardcopy after each disp is attached.	'is lay		
2.	Set printer s normal mode.				
з.	Load programs	"SV","VW"			
4.	Check status				
5.	Initialize: X	EQ "SV"			
6.	Enter frequen	cy in hertz		HZ	HZ ?
7.	Enter spacing cable, inches	between center	of	S	S ?
8.	Enter mean ra	dius of shield,	inches	rm	RM ?
9.	Display mutua ohms per foot	l reactance in m	icro-		XM =
10.	Enter ampacit	y of cable, ampe	res	amps	AMPS ?
11.	Select cable .	arrangement:			
	Label	Arrangement			
	A B C D E	One Phase Equilateral Rectangular Flat Spacing Two Circuit			

[XEQ "A" One Phase]

12. Display Induced Shield Voltage SV: A + B= for cable A and B in micro-volts to neutral/foot

STEF	P INSTRUCTIONS	INPUT	DISPLAY
13.	Enter shield resistance in micro- ohms/foot	RS	RS ?
14.	Display shield loss in watts/foot		SL =
15.	Total shield loss in watts/foot	-	TL =
C XE	EQ "B" Equilateral]		
12.	Shield voltage for cable A and C	-	SV: A + C =
13.	Shield voltage for cable B		SV: B =
14.	Enter shield resistance	RS	RS ?
15.	Shield loss watts/foot		SL =
16.	Total shield loss		TL =
[XE Flat	Q "C", "D", or "E" Rectangular, Spacing and Two Circuit]		
12.	Enter shield resistance	RS	RS ?
13.	Shield voltage for cables A + C		SV: A+C=
14.	Shield Voltage for Cable B		SV: B =
15.	Shield loss for cables A and C (with upper sign for lagging power factor)		SL: A + C =
16.	Shield loss for cables A and C (with lower sign for leading power factor)		SL: A + C =
17.	Shield loss for cable B		SL: B =
18.	Total shield loss		TL =

SAMPLE PROBLEM

XEQ "SV" HZ? 60.0000 RUN S? 7.5000 R UN RM? DSM? R 1.6200 UN XM= 51.1606 AMPS? 500.0000 RUN SELECT A-E XEQ A SV:A+B= 25580.2 841 RS? RUN 71.0000 SL= 6.0664 IL= 12.1328

	XEQ	•S¥*
HZ?		
	60.0000	RUN
S?		
	8.4220	RUN
RM? DSM?		
	1.6200	RUN
XM= 53	.8258	
AMPS?		
	500.0000	RUN
SELECT A-I	E .	
	X	EUC
RS?	71 0000	
CU. 0.0-	71.0000	RUN
5Y:H+L=	27107	. 1
007 00-07	6912 9	20
79	0712.0	
.5.2 SI ∙0+C=	6 714	z
SL:0+C=	2.564	1
SL:B= 6	. 0680	-
IL= 20	.5768	

XEQ "SV" HZ? 60.0000 RUN **S**? 1.9000 RUN RM? DSM? 1.6200 RUN XM= 19.5982 AMPS? RUN 500.0000 SELECT A-E XEQ B SV:A+C= 9799.09 82 SV:B= 9799.098 2 RS? RUN 71.0000 SL= 1.2567 IL= 3.7700

	XEQ	•s¥•
HZ?		
	60.0000	RUN
S?		
	9.4500	RUN
RM? DSM?		
	1.6200	RUN
XH= 56	.4731	
AMPS?		
	500.0000	KUN
SELECT A-	Ł	UFA 7
		YFA N
K2 /	71 0000	DUM
CU · UTC-	77040	KUN
37.HTL-	32747	• 1
20- CV-0= 2	8276	57
JT.0- 2 44	0200.	
SI : 8+C=	7.212	8
SL: A+C=	3.208	1
SL:8= 6	.0668	•
TL= 22	.6732	

	XEQ "S	ų-
HZ?		
60.00	99 R	UN
S?		
9.45	88 R	UN
RM? DSM?		
1.62	80 R	UN
XM= 56.47	31	
AMPS?		
500.00	90 R	UN
SELECT A-E		-
	XEØ	E
RS?		
RS? 71.00	80 R	UN
RS? 71.00 SV:A+C= 404	00 R 89.0	UN 3
RS? 71.00 SV:A+C= 404 110	00 R 89.0	UN 3
RS? 71.00 SV:A+C= 404 110 SV:B= 3221	89.07 9.07	UN 3
RS? 71.000 SV:A+C= 404 110 SV:B= 3221 44	00 R 89.0 9.07	UN 3
RS? 71.00 SV:A+C= 404 110 SV:B= 3221 44 SL:A+C= 8.1 SL:A+C= 7.7	89.0 9.07 567	UN 3
RS? 5V:A+C= 404 110 SV:B= 3221 44 SL:A+C= 8.1 SL:A+C= 3.3 SL:A+C= 3.3	89.8 89.0 9.07 567 699	UN 3
RS? 5V:A+C= 404 110 SV:B= 3221 44 SL:A+C= 8.1 SL:A+C= 3.3 SL:B= 6.75 100	89.8 9.07 567 699 01	UN 3

STEP / KEYCODE

54 *

55 "TL="

-50-

COMMENTS

Induced Shield Voltages and Shield Losses 01+LBL "SV" Enter Frequency in Hertz 02 "HZ?" 03 PROMPT 04 60 f/60 05 Z 06 STO 00 A = $2\pi f(0.1404 \log_{10} 2)$ Micro-Ohms per Foot 07 15.93 Ø8 * 09 STO 04 10 "S?" Enter Spacing Between Center of Cables, Inches 11 PROMPT Enter Mean Radius of Shield, Inches 12 2 13 * 14 "RM? DSM 2. $Xm = 2\pi f(0.1404 \log_{10} \frac{2s}{rm})$, Micro-Ohms per Foot 15 PROMPT 16 🗹 17 LOG 18 .1404 Display Xm 19 * 20 376.992 21 * 22 RCL 00 Enter Ampacity of Cable 23 × 24 STO 01 25 "XM=" Select Cable Arrangement 26 XEQ "YW" 27 "AMPS?" ← S → 28 PROMPT 29 STO 02 One Phase (B) 30 SF 27 "SELECT 31 A-E" IXm 32 PROMPT 33+LBL A Display Induced Shield Voltage-Shields Open Circuited 34 RCL 01 for Cables A and B in Micro Volts to Neutral Per Foot 35 RCL 02 36 * 37 "SV:A+B= Total Shield Loss-Shields Solidly Bonded 38 XEQ "VW" Watts per_Foot in 39 XEQ "TL" $2I^{2}Rs \frac{Xm^{2}}{Rs^{2} + Xm^{2}}$ (A)40 2 Equilateral 41 * "TL=" 42 43 XEQ "VW" Shield Voltage Cables A + C 44 STOP 45+LBL B 46 RCL 01 47 RCL 02 48 * 49 "SV:A+C= ••• $31^2 \text{Rs} = \frac{\text{Xm}^2}{\text{Rs}^2 + \text{Km}^2}$ Total Shield Loss 50 XEQ "VW" 51 XEQ "IX" Xm 52 XEQ "TL" 53 3

STEP / KEYCODE

-51-

COMMENTS

56 XEQ "VW" 57 STOP	Rectangular	st O
58+LBL C 59 RCL 04	Xm -	 k _ S√
60 2 61 / 62 STO 89	$v - v_m + \frac{A}{2}$	
62 STU 09 63 RCL 01 64 +	$r = x_{III} + \frac{1}{2}$	
65 STO 11 66 RCL 01		
67 RCL 04 68 6	$Z = Xm - \frac{A}{6}$	
69 / 70 -		
71 STO 10 72 XEQ "PQ"		
73 XEQ "CB" 74 XEQ "IX" 75 XEQ "BC"	Flat Spacing	たs the s the s
76 STOP 77+LBL D	Xm -	
78 RCL 04 79 STO 09	•	
80 RCL 01 81 RCL 04	Y = Xm + A	
82 + 83 STO 11 84 PCI 01	$7 = Xm - \lambda$	
85 RCL 04 86 3	$2 = \Lambda m = \frac{\Lambda}{3}$	
87 / 88 -		
89 STO 10 90 XEQ "PQ"	Two Circuit	
91 XEQ "CB" 92 XEQ "IX" 93 XEQ "BC"	B	$ \rightarrow (A) \otimes (C) $
94 STOP 95+LBL E	В/2	
96 36.99 97 RCL 00	Xm -	
98 * 99 2	$Y = Xm + A + \frac{B}{2}$	
100 / 101 STO 09 102 PCL 04	-	$\begin{array}{c} S \leftarrow S + S \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$
103 RCL 09 104 +		
105 RCL 01 106 +	7 - V- A - B	
107 STO 11 108 RCL 04	$2 = xm + \frac{1}{3} = \frac{1}{6}$	
109 3 110 / 111 PCL 09		
112 3 113 /		
114 -		

STEP / KEYCODE	-52- Comments
115 RCL 01	
117 STO 10 118 XEQ "PQ" 119 XEQ "CB" 120 RCL 01 121 RCL 04 122 2	$I(Xm + \frac{A}{2})$
123 / 124 + 125 RCL 02 126 * 127 "SV:B="	Shield Voltage Cable B
128 XEQ "VW" 129 XEQ "BC" 130 STOP 131+LBL "TL" 132 RCL 01 133 X+2 134 "RS?" 135 PROMPT 136 STO 03	$I^{2} Rs = \frac{Xm^{2}}{Rs^{2} + Xm^{2}}$ Enter Resistance of Shield in Micro-Ohms per F00t
137 X†2 138 RCL 01 139 X†2 140 + 141 / 142 RCL 03 143 * 144 RCL 02 145 X†2	Display Shield Loss of Cable, Micro Watts per Foot
146 * 147 1 E6 148 / 149 "SL=" 150 XEQ "VW" 151 RTN 152*LBL "PQ" 153 "RS?" 154 PROMPT 155 STO 03 156 RCL 11	$P = \frac{Rs}{Y}$ $Q = \frac{Rs}{Z}$
157 / 158 STO 05 159 RCL 03 160 RCL 10 161 / 162 STO 06	$\frac{I}{Z} = \sqrt{3Y^2 + (Xm - n)^2}$
163 RTN 164+LBL "CB" 165 RCL 01 166 RCL 09 167 -	$n = \frac{A}{2}$ Rectangular
168 X12 169 RCL 11	n = A Flat
170 X†2 171 3 172 * 173 +	$n = \frac{B}{2}$ Two Circuit

STEP / KEYCODE

COMMENTS

174 175 176 177 178	SQR1 RCL 2 /	r 02	Find Shield Loss-Shields Solidly Bonded
179 "	"SV:	A+C=	
180 181	XEQ RTN	AM	. 2 2 +
1824 183	►LBL RCL	"BC" 05	$I^{2} R_{s} = \frac{(P^{2} + 3Q^{2}) - 2\sqrt{3}(P - Q) + 4}{4(P^{2} + 1) - (Q^{2} + 1)}$
184 185	RCL -	06	
186 187 188 189	3.46 * 4 +	541	
190 191	STO RCL	12 05	
192	RCL	06	
195	3		
197 198	+ STO	07	
199 200	RCL X†2	06	
201 202	1+		
203	RCL X12	05	
205	1 + *		
208	то 4	08	
210	*	17	Display Negative Solution
212	RCL	07 12	
214	+		
215	RCL	07 12	$I^2 Rs \frac{1}{Q^2 + 1}$
218			
220	RCL X12	06	
222	1+		
224 225	1/X RCL	03	Display Shield Loss Cable B
227 228	 RCL X↑2	02	
229 2 30	* 1 Eé	5	

-53-

231	/		
232	" SL :	B="	
233	XEQ	" VW "	
234	RCL	05	
235	X+2		
272	DCI	94	$2 p^2 + p^2 + 2$
230		00	$3I^{2}R_{1} + 0 + 2$
231	XT2		$s = 2(P^2 + 1) (0^2 + 1)$
238	+		
239	2		
240	+		
241	RCL	0 8	
242	2		
243	*		
244	/		
245	RCL	03	Display Total Loss in Watta non Deat
246	*		bispidy focal boss in walls per foot
247	RCL	02	
248	X+2		
249	sk		
250	7		
250	ວ 		
231	т • г/	-	
232	IEC	>	
233	·		
254	"1L=	- ••	IXm
255	XEQ	" Y W "	
256	RTN		
2574	LBL	" I X "	
258	RCL	01	
259	RCL	0 2	
260	*		
261	"SV:	B="	Display Routine for SL : A + C
262	XEQ	" Y W "	
263	RTN		
2644	LBL	"LL"	
265	RCL	13	
266	2		
267	PCI	8 3	
201		00	
200	PCI	02	
207	X40	02	
270	~ " Z		END
271	*	-	
272	I EE		
273	· · · ·		
274	"SL :	H+C=	
••			
275	XEQ	A M	
276	RTN		
277	END		

			-	-5 <u>5-</u>				
STEP/KEY COI	DE	COM	IMENTS				EGIS	TERS
				00	f/6	0		
				01	XM			
				02	AMD	C		
				02	AMP	5		
				03	RS			
				04	А			
				05	Р			
				06	Q			
				07	Pro	gram		
				08	Pro	gram		
				09	Xm	-	-	
				10	Z			
				11	Y	······································		
				12	Pro	gram		
						FL	AGS	
				*	INIT S/C		S	
				27	С	User Mode	0n	User Off
	CTA	THE						
	51A	105						
SIZE 013 TOT	. REG	USER MO)E					
DEG RAD	SCI GR/	UN U	rr					
	ASSIGN	MENTS						
FUNCTION	KEY	FUNCTION	KEY					
One Phase	A							
Rectangula	и г. С		 		+	 		
Flat	D							
2 circuit	E	-	<u> </u>	 	+			
	+		<u>+</u>		1	1		

CABLE EMERGENCY OVERLOAD CAPABILITIES

Robert W. Parkin

FUNCTION: This program determines the current-temperature-time relationship of a cable when operated under overload-emergency conditions. Four separate program modules can be called:

PROGRAM	FUNCTION
TR	Temperature rise during time t (deg C)
TF	Total temperature rise
ТМ	Maximum permissible time overload
IO	Cable overload current rating

ACCESSORIES: HP-41 CX or HP-41CV, printer optional

OPERATING LIMITS AND WARNINGS: None

REFERENCES:

- [1] Essex Underground Cable Handbook, 1971
- [2] Electric Power Distribution System Engineering, Turan Gonen
- [3] Aluminum Electrical Conductor Handbook, The Aluminum Association

EMERGENCY RATINGS

Maximum conductor operating temperature limits are based on maintaining insulation stability indefinitely, it is recognized that certain short periods of overloading are not only reasonably safe but inevitable in service.

Emergency overload ratings always specify both a temperature and duration limit, and a limit on the total number of emergency events. They are subject to revision as better thermal performance is developed for insulating materials and more reliable field data are obtained.

Emergency current ratings of cable may be used as a design basis in special cases, (such a case could be where a load occurring only on start-up would overload a main cable and transformer, but not breaker, of a secondary-selective substation operating single ended).

The table below gives cable emergency ratings of single circuits in percent of normal rating at 100% load factor for the same ambient temperatures for periods of overload not exceeding a total of 100 hours per year.

	Voltage			Emer Ambi	gency ent T	Rati emper	ng % ature	o C
<u>Cable Type</u>	Rating	<u>Tc</u>	Te	<u>10</u>	<u>20</u>	<u>30</u>	<u>40</u>	<u>50</u>
XLPE	600V	90	125	114	116	120	124	130
XLPE	15 kV	90	125	114	116	120	124	130
EPR (EPM or EPDM)	0-35kV	90	125	116	118	122	127	133
PVC	600V	75	87	107	108	110	114	119

Where:

Tc = Normal conductor temperature

Te = Emergency conductor temperature
The increase of a load current in a cable does not produce an immediate rise in the cable temperature to the overload temperature equilibrium level. It is possible to take advantage of this fact when a cable must be overloaded, for a limited, during an emergency.

The equations describing the current-temperature-time relationship are as follows:

Where:

- T= temperature rise during time t (deg C)
- Tf= Total temperature rise if emergency current is maintained indefinitely (deg C)
- t= Overload duration (hours)
- k= Thermal time constant (hours)

The total temperature rise, Tf, can be approximated by the following equation:

Where:

- Tc= Rated normal conductor temperature (deg C)
- Ta= Ambient temperature (deg C)
- Io= Overload current in amperes
- Ic= Rated normal conductor current to produce a temperature
 of Tc at 100% load factor with an ambient temperature of
 Ta.

The thermal time constant, k, is defined as the time required for the conductor to complete 63% of the total temperature rise, Tf. The constant depends on the two following parameters:

- 1) The thermal resistance between the conductor and the surrounding environment.
- 2) The thermal capacity of the cable and its surroundings.

Approximate values of k, for estimation, are given below.

Conductor Size <u>Single and Multi</u>	<u>In Air</u>	Aerial Duct	Under- ground <u>Duct</u>	Direct Bury <u>or Submarine</u>
Up to #2 AWG	.33	.67	1.00	1.25
#2 to #4/0 AWG	1.00	1.50	2.50	3.00
250 MCM and up	1.50	2.50	4.00	6.00

It is common to require the maximum permissible time overload [t], with all other parameters known:

In order to determine the overload current rating directly, the following approximation has been developed:

Io = Ic
$$(To-Ta) + B (To-Tc1)$$

(Tc-Ta)

Where:

Ic = Cable overload current rating in amperes

To = Maximum overload conductor temperature (deg C)

Tc1 = Conductor temperature at time overload is applied (deg C)

USER INSTRUCTIONS

Size:003

STE	P INSTRUCTIONS	INPUT	DISPLAY
1.	Connect printer if a hardcopy is desired. R/S after each display if no printer is attached.		
2.	Set printer switch to manual or normal mode.		
з.	Load programs "TR","VW"		
4.	Check status		
5.	Initialize: XEQ either "TR","TF", "TM", or "IO"		
	C XEQ "TR" J		
6.	Enter overload duration (hours)	т	Τ?
7.	Enter thermal time constant (hours)	к	К?
8.	Enter total temperture rise if emergency current is maintained indefinitely (deg C)	Τf	Tf ?
9.	Display temperature rise during time T (deg C)	-	TR =
5.	[XEQ "TF"]		
6.	Enter overload current (amperes)	IO	IO ?
7.	Enter rated normal conductor current to produce a temperature of Tc at 100% load factor with an ambient temperature, Ta	Ic	Ic ?
8.	Enter rated normal conductor temperature (deg. C)	Тс	T⊂ ?
9.	Enter ambient temperature (deg. C)	Ta	Ta ?
10.	Display total temperature rise	_	TF =

STE	PINSTRUCTIONS	INPUT	DISPLAY
5.	[XEQ "TM"]		
6.	Enter total temperature rise (deg.C)	TF	TF ?
7.	Enter temperature rise during time T (deg. C)	TR	TR ?
8.	Enter thermal time constant (hours)	к	К?
9.	Display overload duration (hours)	-	T =
5.	[XEQ "IO"]		
6.	Enter overload duration in hours	т	Τ?
7.	Enter thermal constant (hours)	к	К?
8.	Display B	-	B =
9.	Enter maximum overload conductor temperature (deg. C)	То	TO ?
10.	Enter conductor temperature at time overload is applied (deg. C)	Tc 1	Tc 1?
11.	Enter ambient temperature (deg. C)	Ta	TA?
12.	Enter rated normal conductor temperature (deg. C)	Tc	TC ?
13.	Enter rated normal conductor current to produce a temperature of Tc at 100% load factor with ambient temperature of Ta	Ιc	IC ?
14.	Display cable overload current rating in amperes		IO =

-62-

SAMPLE PROBLEM

	F	IX 4
	XEQ	"TR"
T?		
	2.0000	RUN
K?		
	1.3000	RUN
TF?		
	15.0000	RUN
TR=	11.7793	

	XEQ	XEQ "TF"	
10?	50 0000	PIIN	
Ic?	30.0000	KUN	
T-2	40.0000	RUN	
167	100.0000	RUN	
TA?		500	
TF=	90.0000 15.6250	KUN	

TEO	XEQ	•TM•
	15.0000	RUN
1?	7.8000	RUN
K?	1.3000	RUN
T=	0.9542	

	XEQ	-10-
1?	7.8000	RUN
K?	1.3000	RUN
B= €	0.0025	
	90.0000	RUN
101?	80.0000	RUN
TA?	60.0000	RUN
Tc?	70 0000	DIIN
Ic?		NUM
I0=	100.0000 173.276	8 8

Cable Emergency Overload	
01*LBL "TR" 02 "T?" Enter T 03 PROMPT 04 "K?" 05 PROMPT 06 / 07 CHS 08 E1*X 09 1 10 X<>Y T = Tf 11 - 12 "TF?" 13 PROMPT 14 * 15 "TR=" 16 XEQ "VW" 17 STOP 18*LBL "TF" 19 "IO?" 20 PROMPT 21 "IC?" 22 PROMPT 23 / 24 X12 25 "TC?" 26 PROMPT 27 "TA?" 28 PROMPT 29 - 30 * 31 "TF=" 32 XEQ "VW" 33 STOP 34*LBL "TM" 35 "TF?" 36 PROMPT 37 ENTER1 38 "T?" 39 PROMPT 40 - 41 / 42 LN	49*LBL "IO" 50 "T?" 51 PROMPT 52 "K?" 53 PROMPT 54 / 55 CHS 56 E1X 57 STO 00 58 1 59 RCL 00 60 - 61 / 62 "B=" 63 XEQ "YW" 63 YEQ "YW" 63 PROMPT 69 - 70 * 71 RCL 01 72 "TA?" 73 PROMPT 74 STO 02 75 - 76 + 77 "Tc?" 78 PROMPT 79 RCL 02 80 - 81 / 82 SQRT 83 "Ic?" 84 PROMPT 85 * 86 "IO=" 87 XEQ "YW" 88 .END.
44 PROMPT 45 * 46 "T=" 47 XEQ "VW" 48 STOP	

-64-Comments

STEP/KEY CODE

COMMENTS

SHORT CIRCUIT RATINGS OF PHASE CONDUCTORS

Robert W. Parkin

FUNCTION: Program calculates either the maximum allowable short circuit current for, or the minimum cross-sectional area of, a cable passing fault current, given the cross-sectional area of a conductor in kcmil, or fault current in amperes to be withstood. Fault duration is entered in cycles per second and will double in value for each program loop, i.e., enter 8 cycles per second originally and the second calculation will be based on 16 cycles per second, etc. This determines the maximum time a cable may be subjected to a particular short circuit load without damage to the insulation.

ACCESSORIES: HP-41 CX or HP-41CV, printer optional

OPERATING LIMITS AND WARNINGS: Program can be used for copper and aluminum phase conductors that have cross-linked polyethylene (XLPE) or ethylene propylene rubber (EPR) insulations rated 90 C at maximum operating temperature, and 250 C maximum short circuit temperature. Fault currents are assumed to be symmetrical amperes and deals only with the thermal effects of short circuit current; not the electromagnetic, or bursting effects. It is assumed that all heat created is stored in the conductor, and that short currents will not persist for longer than ten seconds.

The maximum fault current is based on the following assumptions:

- 1) All generators are connected, i.e., in service
- The fault is a bolted one; i.e., the fault impedance is zero.
- 3) The load is maximum, i.e., on-peak load.

REFERENCES:

- [1] ICEA Pub. No. P-32-382 Short Circuit Characteristics of Insulated Cables.
- [2] Electric Power Distribution System Engineering, Turan Gonen
- [3] Short Circuit Ratings of Cables, Ross D. Guppy

USER INSTRUCTIONS

Mod	e: [Conductor cross-section known]		Size: 007
STE	P INSTRUCTIONS	INPUT	DISPLAY
1.	Connect printer if a hardcopy is desired. R/S after each display if no printer is attached.		
2.	Set printer switch to manual or normal mode.		
з.	Load programs "SCP","VW","AE","CY"		
4.	Check status		
5.	Initialize: XEQ "SCP"		
6.	Enter cross-sectional area of conductor in kcmil or Enter zero if fault current is known.	kcmil	KCMIL?
7.	Select type of metal conductor	1 or 0	AL:0/CU:1
	O = Aluminum		
	1 = Copper		
8.	Enter fault duration in cycles per second	cycle	CYCLES ?
9.	Display Fault duration in seconds		T:SEC =
10.	Total fault current displayed		AMPS =
11.	Display two times original fault duration (cycles) and re-calculate based on this value. Press R/S to continue loop if no printer attached.		CYCLES=

STEI	P INSTRUCTIONS	INPUT	DISPLAY
6.	Enter zero	0	KCMIL ?
7.	Enter fault current in amperes	Атр	AMPS?
8.	Select metal type:	0 or 1	AL:0/CU:1
	0 = Aluminum		
	1 = Copper		
9.	Enter duration in cycles per second	cycles	CYCLES?
10.	Display Fault duration in seconds		T SEC =
11.	Total Area in circular mils required for conductor		CMA =

SAMPLE PROBLEM

XEQ "SCP" KCMIL? RUN 350. CMA=350,000. AL:0 / CU:1 0. RUN ALUMINUM CYCLES? RUN 2. CYCLES= 2. T:SEC= 0.0333 AMPS= 90,182. CYCLES= 4. T:SEC= 0.0667 RMPS= 63,768. CYCLES= 8. T:SEC= 0.1333 AMPS= 45,091. CYCLES= 16. I:SEC= 0.2667 RMPS= 31,884. CYCLES= 32. T:SEC= 0.5333 AMPS= 22,545. CYCLES= 64. T:SEC= 1.0667 AMPS= 15,942. CYCLES= 128. T:SEC= 2.1333 AMPS= 11,273. CYCLES= 256. 1:SEC= 4.2667 AMPS= 7,971.

XEQ "SCP" KCMIL? 0. RUN AMPS? 15,000. RUN AMPS? 15,000. AL:0 / CU:1 1. RUN CYCLES? 2 RUN CYCLES? 2 T:SEC= 0.0333 CMA= 38,052.

STEP/KEY CODE	-69- Comments	STEP/KEY CODE	COMMENTS
Short Circuit - 01*LBL "SCP 02 FIX 0 03 SF 29 04 CF 12 05 "KCMIL?" 06 PROMPT 07 X=0? 08 XEQ "AE" 09 1 E3 10 * 11 CF 12 12 "CMA=" 13 ARCL X 14 AVIEW 15 STO 01 16 "AL:0 /	- Phase Conductor Enter Conductor Cross - Section kcmil Enter Zero if Fault Current is Known	51 X<>Y 52 / 53 SQRT 54 "AMPS=" 55 XEQ "VW" 56 RCL 02 57 2 58 * 59 STO 02 60 FS? 55 61 ADV 62 GTO 01 63 STOP 64 END	Fault Current
17 PROMPT 18 X=0? 19 GTO 00 20 "COPPER" 21 AVIEW 22 RCL 01 23 X†2 24 .00518 25 * 26 STO 00 27 XEQ "YC" 28+LBL 00 29 "ALUMINU	$I = \sqrt{\frac{0.00518 \times A^{2}}{t}}^{2}$ Aluminum $I = \sqrt{\frac{0.002213 \times A}{t}}^{2}$	01+LBL "AE" 02 "AMPS?" 03 PROMPT 04 XEQ "AV" 05 STO 00 06 "AL: 0 / CU: 1" 07 PROMPT 08 X=02	Finds Area Required
M" 30 AVIEW 31 RCL 01 32 X†2 33 .002213 34 * 35 STO 00 36+LBL "YC" 37 "CYCLES?	Enter Fault Duration in Cycles per Second (60HZ)	09 GTO 02 10 XEQ "CY" 11 .07197 12 GTO 03 13+LBL 02 14 XEQ "CY" 15 .047043 16+LBL 03 17 X<>Y	$\frac{1}{A} = \frac{n/t}{I}$
38 PROMPT 39 STO 02 40+LBL 01 41 RCL 02 42 "CYCLES= 43 XEQ "YW" 44 60 45 / 46 FIX 4 47 "T:SEC= 48 XEQ "YW" 49 FIX 0 50 RCL 00	Fault Duration in Seconds	18 / 19 RCL 00 20 / 21 1/X 22 SF 29 23 "CMA=" 24 XEQ "VW" 25 STOP 26 .END.	

SHORT CIRCUIT RATINGS OF METALLIC SHIELDS

Robert W. Parkin

FUNCTION: This program calculates either the maximum allowable short circuit current for, or the minimum effective crosssectional area required of a metallic shield carrying a short circuit current. The types of shields covered are:

- A Wires applied either helically, as a braid or serving, or longitudinally with corrugations
- B Helically applied tape, not overlapped
- C Helically applied flat tape, overlapped
- D Corrugated tape, longitudinally applied

The effective area of composite shields is the sum of the effective areas of the components, i.e., the effective area of a helically applied tape and concentric wires would be the sum of the areas. Program incorporates a loop function to re-enter different wire sizes so that the best arrangement and least amount of copper is used to carry the fault.

ACCESSORIES: HP-41 CX or HP-41CV, printer optional

OPERATING LIMITS AND WARNINGS: Calculation method applies for cables that are:

- 1) Shielded or sheathed
- 2) Voltage ratings up to 69kV
- 3) Insulated with thermoplastic, XLPE, EPR, impregnated paper or varnished cloth.

It is assumed that all heat generated by the fault current will be effective in raising the temperature of the shield, i.e.; no heat will be dissipated into adjacent cable components. This assumption is accurate only for short fault durations. For faults re-established with automatic reclosing of circuit protective devices, a significant amount of heat may be dissipated because of the relatively long cooling periods involved, and therefore will yield conservative results for faults of longer time durations.

REFERENCES:

- [1] ICEA Pub. No. P-45-482, Short Circuit Performance of Metallic Shields and Sheaths of Insulated Cable, second edition.
- [2] EPRI EL-3014, Optimization of the Design of Metallic Shield-Concentric Conductors of Extruded Dielectric Cables Under Fault Conditions.

PROGRAM PARAMETERS AND NOMENCLATURE

With the increasing use of solid dielectric power cable on electric utility distribution systems with higher fault currents and multiple circuit breaker reclosures emphasizes the importance in determining the optimum metallic shield structure, its performance under fault conditions and its influence on the design and operating characteristics of the cable.

The temperature of the shield is limited to the material in contact with it. Upon conclusion of any program module, XEQ "TP" to enter a different maximum allowable shield transient temperature in degrees Celsius, T2,. or operating temperature T1. The original calculation uses 200 C as T2.

The maximum withstand temperature under short-circuit conditions for cables with extruded thermoplastic jackets, is highly dependent on jacket thickness over the metallic shield. This dependence is less pronounced in the case of cross-linked polyethylene jackets. Values of T2 are given below in degrees Celsius.

<u>Cable Material in Contact with Shield</u>	<u>T2</u>
Crosslinked (thermoset)	350
Thermoplastic	200
Impregnated Paper	200
Varnished Cloth	200

Program Nomenclature:

I = Short circuit current, amperes	
A = Effective cross-sectional area of shield	
t = Time of short circuit,seconds (program in cycles)	
= Inferred temperature of zero resistance for shield temperature T , microhm-cm	at
T2 = Maximum allowable shield transient temperature, C	

T1 = Operating temperature of shield, C

There has been serious concern as to the capability of helically applied copper tape and conventional ICEA wire shields to handle the increasingly high fault currents that are normally experienced on a typical utility underground distribution system and on large industrial systems. This concern is based on considerations of circular mil area (5000 circular mils per inch of core diameter based on ICEA standards) in the case of wire shields and the fact that contact resistance at the tape overlap significantly increases the resistance and inductance of the helically applied copper tape shield. Where such shielded cables are installed with a separate neutral conductor, the influence of the neutral conductor and its spacing from the power cable in carrying high fault current has not been well established.

The effective area of helically applied overlapped tapes depends upon the degree of electrical contact resistance of the overlaps. Program "C" may be used to calculate the effective cross-sectional area of the shield for new cable. However, an increase in contact resistance may occur after cable installation; during service exposed to moisture and heat. Under these conditions the contact resistance may approach infinity, where program "B" could apply.

Longitudinal Corrugated Tape Shield

A Longitudinal Corrugated (LC) shield consists of corrugated copper tape longitudinally folded and overlapped over the extruded insulation shield. Material specifications should comply with ASTM standard B248. It was developed for use on solid dielectric power cable in the interest of eliminating the deficiencies and questionable performance characteristics of concentric neutral wires (shield losses) and the uneven restraint of helically applied copper tape shields (increase in contact resistance and possible tearing due to the high coefficient of expansion of XLPE under emergency operating conditions).

Type LC shield provides a permanently low resistance, low reactance, tubular metallic shield covering 100% of the cable core to insure distribution of fault current. It does not adhere to other cable components or itself at the overlap, and hence is capable of adjusting itself to the changing cable core diameter due to the expansion and contraction of the insulation structure under load cycling and particularly under emergency operating conditions. Under this action, unlike that of the helically applied copper tape shield, little if any resistance is exposed on expansion and contraction of the cable during load cycling. In caparison with wire and tape shields, type LC shield impedes the ingress of moisture into the insulation structure of the cable.

TAPE SHIELDS

The two formulas applicable for tape shields are used when:

1) Perfect interturn contact exits (a tubular current path)

or when

2) No interturn contact exists (a helical current path)

ICEA P-45-482 allows that new cable may have perfect contact resistance, but that contact resistance may increase after installation. This increase is caused by corrosion of the tape in wet and dirty environments. Wrinkling and separation of the shield tape during installation also causes an increase in contact resistance. At points of heavy resistance or total separation, the path of charging current changes from a tube to a helix. Resistance decreases the fault current capacity of the shield. The reality of these situations in tape shields is that contact resistance is unknown and may approach infinity.

The effective area of a shield increases as the overall diameter of the cable increases. It is impossible to determine the effective area of a tape shield where perfect contact no longer exists. Therefore during the lifetime of a cable's life, the actual effective shield area of a copper tape shield falls somewhere between perfect contact and that of no contact.

The selection of the type shield to carry fault currents must first be based on the magnitude of the fault current and the time interval between fault occurrence and breaker operation. Generally, the latter is a function of the former and can be provided by the breaker manufacture. Secondly, the type of shield selected should be adequate to carry nominal charging currents with a shielding system designed to carry fault currents if the circuit operation dictates. Most conventional shields are inadequate to carry faults without serious degradation to the cable, therefore a supplementary neutral is sometimes added, or the shielding system is within system capabilities. This program offers the user multi-shield design options to help select the most suitable shielding system incorporated within the cable.

USER INSTRUCTIONS

Size: 007

STE	P INSTRUCTIONS	INPUT	DISPLAY
1.	Connect printer if a hardcopy is desired. R/S after each display if no printer is attached.		
г.	Set printer switch to manual or normal mode.		
з.	Load programs "ST","VW",'AR"		
4.	Check status		
5.	Initialize: XEQ "ST"		
6.	Enter Fault Current in amperes or enter zero if fault is not known.	AMPS	AMPS ?
7.	Enter fault duration in cycles per second	cycles	CYCLES ?
8.	Display fault current in seconds		T: SEC =
9.	Enter system voltage in kilovolts	κv	KV ?
10.	Effective cross-sectional area required in circular mils (CMA)		CMA =
11.	Apparent power, MVA rating (for three phase circuit)		MVA =

STE	PINSTRUCTIONS	INPUT	DISPLAY
12.	Enter percent lap of copper tape shield, if applicable, or Enter zero if wires only are used without a tape shield.	% lар	% LAP ?
13.	Enter mean diameter of shield, mils	DM	DM ?
14.	Enter thickness of tape shield, mils	т	T:TAPE ?
15.	Display total effective cross- sectional area required in circular mils	-	A:TOT =
16.	Effective cross sectional area in circular mils of copper tape shield	-	A:TAPE =
17.	Display difference in CSA	-	A: DIFF =
NOTI	E: If positive, cable needs additional metallic cross – sectional area, and if negative, copper tape alone will carry fault.		
18.	Enter cross-sectional area of wire in circular mils	CSA	CMA: WIRE ?
19.	Display number of wires required to carry fault; without copper tape	-	ND. WIRES=
20.	Display number of wires required to carry fault; with copper tape	-	WITH TAPE =
21.	Program loop to step 18 to re-enter different wire size.		CMA: WIRE ?
22.	Option: can XEQ "TP" to determine fault current at higher shield or		

fault current at higher shield or sheath operating or maximum temperatures; see last page.

MODE: [FAULT NOT KNOWN]

STE	P	INSTRUCTIONS	INPUT	DISPLAY
6.	Enter ze is not k fault cu	ro; if fault current nown, to find maximum rrent.	o	AMPS ?
7.	Select t	ype shield:	ABCD	Select:ABCD
	Label	<u>Shield</u>		
	A	Wires		
	В	Copper Tape (worst case)		
	С	Copper Tape (best tape)		
	D	LC Shield		
<u> </u>	<u>A" - WIRE</u>	<u>S 1</u>	A	
8.	Enter num	ber of wires	Ν	No. Wires ?
9.	Enter dia	meter of wires in mils	Dia.	DIA.MILS ?
10.	Display required	cross-sectional area in circular mils	-	CMA =
11.	Enter sy	stem voltage in kV	k٧	K ∨ ?
12.	Enter fac cycles po	ult duration in er second	cycles	CYCLES?
13.	Display in second	duration of fault ds	-	T:SEC=
14.	Display current	maximum fault in amperes	_	AMPS=

STEP	INSTRUCTIONS	INPUT	DISPLAY
<u>["B" - COP</u>	PER TAPE , WORST CASE		
8. Enter nu	mber of tapes	Ν	NO. TAPES?
9. Enter wi	dth of tape, mils	ω	W? MIL
10. Enter t	hickness of tape, mils	т	T? MIL
11. Display required	cross-sectional area d in circular mils	-	CMA =
12. Enter k' in wire	V; continue to step 11 shield		
<u>c "c" – cop</u>	<u>PER TAPE SHIELD - BEST CASE 1</u>		
8. Enter per	rcent overlap of tape	%lap	% LAP?
9. Enter me	an diameter of shield, mils	Dm	DM?
10. Enter to	ape thickness, mils	т	T: TAPE?
11. Display	effecti∨e CSA	-	CMA =

12. Enter kV; continue to step 11 in wire shield

STEP	INSTRUCTIONS	INPUT	DISPLAY
<u>[</u> "D" <u>-</u> LC §	SHIELD 1		
8. Enter mir insulatio	nimum O.D. over on shield	0.D	MIN:O.D:EIS?
9. Enter tap	e overlap, mils	lap	OVERLAP:MIL?
10. Enter th	ickness of tape, mils	т	T?
11. Display	CSA required	-	CMA?
12. Enter kV in wire	; continue to stepp 11 shield		
MODE: [FAUL	T CURRENT AT MAXIMUM SHIELD OPERAT	ING TEMPI	ERATURE]
1. XEQ "TP"	after concluding any		

one program

2. Enter maximum allowable shield T2 T2? MAX or sheath temperature, T2, deg. C

3. Enter operating shield T1 T1? OP temperature, T1, deg C

4. Display maximum fault current - AMPS = in amperes.

-79-

SAMPLE PROBLEM

XEQ "ST"

AMPS? 15,000. CYCLES? 8 T:SEC= 0.1333 KV? 25 CMA:TOT= 86,940. MYA= 650. % LAP? 10 M? 1560 T: TAPE? 5 A:TOT = 86940 A:TAPE= 23255 A:DIFF= 63685 CMA:WIRE? 812 NO.WIRES= 107.1 WITH TAPE= 78.4 CMA:WIRE? 1020 NO.WIRES= 85.2 WITH TAPE= 62.4 CMA:WIRE? 2580 NO.WIRES= 33.7 WITH TAPE= 24.7 CMA:WIRE? 4110 NO.WIRES= 21.2 WITH TAPE= 15.5 XEQ "TP" T2?: MAX 350 RUN T2?: MAX 350 T12: 0P 90 RUN

T12: 0P 90

20860

AMPS=

XEQ "ST" AMPS? 0. RUN AMPS? Ø. SELECT: A, B, C, D XEQ A NO. WIRES? RUN 16. DIA? MILS 64.1 RUN CMA= 65,741. K¥? 15. RUN KY? 15. CYCLES? 8 RUN CYCLES? 8 T:SEC= 0.1333 AMPS= 11342

XEQ "ST" AMPS? RUN 0. AMPS? Ø. SELECT: A, B, C, D XEQ B NO. TAPES? RUN 1. W? MIL 1,500. RUN T? MIL 5. RUN CMA= 9,525. KV? RUN 15. KV? 15. CYCLES? 8 RUN CYCLES? 8 T:SEC= 0.1333 AMPS= 1643

XEQ "ST" AMPS? 0. RUN AMPS? Ø. SELECT: A, B, C, D XEQ C % LAP? RUN 10. % LAP? 10. DM? 1,560. RUN **M? 1,560.** T: TAPE? 5. RUN T:TAPE? 5. CMA= 23,255. KV2 15. RUN KY? 15. CYCLES? RUN 8 CYCLES? 8 T:SEC= 0.1333 AMPS= 4012

XEQ .ST. AMPS? RUN 0. AMPS? Ø. SELECT: A, B, C, D XEQ D MIN:0.D:EIS? 2,220. RUN MIN:0.D:EIS? 2,220 OVERLAP?: MIL? 375. RUN OVERLAP?: MIL? 375. T? 8. RUN I? 8. CMA= 76,265. K¥? 15. RUN KV? 15. CYCLES? 8 RUN CYCLES? 8 T:SEC= 0.1333 AMPS= 13158

STEP/KEY CODE

-81-

COMMENTS

STEP/KEY CODE

COMMENTS

	<u>Short Circuit</u> Shields		
01+LBL "ST" 02 CF 01 03 SF 29	Initialize	51 / 52 SQRT 53 DM2	Enter d_m $\left(\frac{\text{Dia.Over } \neq \text{Dia. Under}}{2} \right)$
04 FIX 0 05 "AMPS?" 06 PROMPT 07 XEQ "VW"	Enter Fault Current Enter Zero if Not Known	54 PROMPT 55 XEQ "VW" 56 * 57 "T:TAPE?	View Enter Copper Tape
08 X=07 09 XEQ "AR" 10 STO 05 11 STO 00 12 XEQ "CY"	XEQ Area Program to Find Fault Current	" 58 PROMPT 59 XEQ "VW" 60 *	Thickness in Mils
13 FIX 0 14 RCL 00 15 * 16 STO 00		61 4 62 * 63 RCL 06 64 "A:TOT =	$\frac{A = I\sqrt{t}}{M}$
17 XEQ "VK" 18 RCL 00 19 X<>Y 20 /	VK Module Determine M Value	65 XEQ "VW" 66 SF 01 67 RCL Y	Effective Cross- sectional Area
21 FIX 0 22 STO 06 23 SF 29 24 "CMA:TOT	$A = \frac{v c}{M}$ Display CMA	68 "H:IHPE= " 69 XEQ "VW" 70 RCL 06	CMA of Tape
=" 25 XEQ "VW" 26 RCL 05 27 RCL 01	Required View Module	71 X() 72 - 73 STO 02 74 "A:DIFF= "	Display Difference of CMA Required
28 1 E3 29 * 30 1.7321 31 *	Calculates MVA Rating	75 XEQ "VW" 76 FS? 55 77 ADV 7841 PL 88	to CMA of Tape
32 * 33 1 E6 34 / 35 "MVA= "	E/3 * I $MVA =$	78 CBL 00 79 FIX 0 80 "CMA:WIR E?"	Enter CMA of Round Wire
36 XEQ "VW" 37+LBL 02 38 CF 29 39 FIX 0	Calculate CMA For	81 TUNE 9 82 PROMPT 83 X=0? 84 GTO 02 85 XEQ "VW"	If Zero Entered Returns to Shield Tape (Tape Shield Only)
40 100 41 "% LAP?" 42 PROMPT 43 XEQ "VW" 44 X=0?	Tape Shield (if Present)	86 STO 03 87 FIX 1 88 RCL 06 89 X<>Y	
45 GTO 00 46 - 47 2 48 * 49 100	Tape	91 "NO.WIRE S=" 92 XEQ "VW" 93 FS? 01	Number of Wires Required Display- ed Without Tape and Then With
50 X(>Y	√ 2(100-L) Full Contact Resistance	94 GTO 01 95 GTO 00 96+LBL 01 97 RCL 03 98 RCL 02	Таре
		99 X<>Y 100 /	

STEP/KEY CODE	COMMENTS	DATA REGISTERS			TERS	
		0A	Ca	lculated		
			Re	sult St.		
			CM	A		
		01	۷o	Itage –		
			<u> </u>			
101 "ШТТЫ ТО		02	Di	fference		
101 WING IN			-CS	Α		
102 VEO "VU"		03	CM	A Wire		
102 100 10						
103 F3: 33		04	\sim	t - Seconds	5	
105 CTO 00	Return to Enter		-	with Owners		
106 STOP	Different Wire	05	Fa	ult Current		
107 END	Size	06	Ef	fective	1	
			CS	A		
	End			••		
						· · · · · · · · · · · · · · · · · · ·
		+				
			10.417	FL/	AGS	
		#	S/C		5	CLEAR INDICATES
		01	С	No Wire Wi	lth	Med-High ky
				Таре		
			<u></u>	<u> </u>		Deles: 251
		02	C	ADOVE J5KV		Below 35KV
STAT		-03	c	Copper	•	Aluminum
007		05	č	With Weigh	ts	Without
SIZE_UU/	USER MODE				<u> </u>	Weights
ENG FIX SCI _	ON OFF	12	С	Print Doub	le	Normal Print
				Wide		
		21	С	Printer On	/0f	<u>Disables</u>
				Turna On II	<u> </u>	Printer
r		21		Mode	ser	Turns Off
ASSIGNI	MENTS	29	C	Digit Grou	<u>n</u>	Digit Group
FUNCTION KEY	FUNCTION KEY	<u> </u>	<u> </u>	lon	Ľ	Off
Wires A			+			
CU Tape-		55	С	Printer		No Printer
Worst B				Exists		
CU Tape- C						 +
Best			 			
LC Shield D						

-82-

STEP/KEY CODE	-83- Comments	STEP/KEY CODE	COMMENTS
01◆LBL "VW" 02 CF 21 03 FC? 55 04 GTO 01 05 SF 21	VIEW Module	51 + 52 "T1?: OP " 53 PROMPT 54 XEQ "VW"	Operating Shield Temperture
05 HCH 07 SF 12 08 ACX 09 PRBUF 10 TONE 5 11 CF 12 12 RTN 13 CF 12 13 ATN 13 ATN 13 ATN 14 ARCL X 15 AVIEW 16 TONE 5	Accumulate and Printout if Printer Attached, Alpha- Display if No Printer	55 234 56 + $I = \frac{1}{\sqrt{E}} \sqrt{\frac{56}{2}}$ 57 $2 \sqrt{\frac{56}{2}}$ 58 LOG 59 .030 60 * 61 SQRT 62 RCL 06 63 RCL 04 64 2 65 *	.030 log $10\left(\frac{t_{2}+\lambda}{t_{1}^{2}+\lambda}\right)$
17 STOP 18 RTN 19+LBL "VK" 20 "KV?"	Find M Module By KV Rating	66 FIX 0 67 "AMPS= " 68 XEQ "VW" 69 STOP	Fault Current
21 PROMPT 22 XEQ "VW" 23 STO 01 24 25 25 X<>Y	Voltage M Value 5-25kV .063 35kV .065 46kV .065	70+LBL "CY" 71 CF 29 72 "CYCLES? " 73 PROMPT	Cycle Module Enter Time in Cycles
26 X<=Y? 27 GTO 01 28 46 29 RCL 01 30 X<=Y?	69kV .066	74 XEQ "VW" 75 60 76 / 77 FIX 4 78 "T:SEC=	(60HZ) Display Seconds
31 GTO 02 32 69 33 RCL 01 34 X<=Y? 35 GTO 03		" 79 XEQ "VW" 80 SQRT 81 STO 04 82 FIX 0	√t
36+LBL 01 37 .063 38 GTO 05 39+LBL 02 40 .065 41 GTO 05 42+LBL 03 43 .066 44+LBL 05 45 RTN		83 RTN 84+LBL "AR" 85 SF 27 86 "SELECT: A,B,C,D" 87 PROMPT 88+LBL A 89 CF 27 90 "NO. WIR	Area Module A = Wires B = CU Tape (Worst Case) C = CU Tape
46+LBL "TP" 47 "T2?: MA X" 48 PROMPT 49 XEQ "VW" 50 234	Module for Maximum Shield Temperture	91 PROMPT 92 "DIA? MI LS" 93 PROMPT 94 X12 95 * 96 GTO "CMA	(Best Case) D = LC Shield nds ²
·		" 97◆LBL B 98 CF 27 99 "NO. TAP ES?" 100 PROMPT	CU Tape (Worst Case) Number of Tapes

STEP/KEY CODE	COMMENTS	STEP/KEY CODE	COMMENTS
101 "W? MIL" 102 PROMPT	Width of Tape, Mils	151 *	
103 "T? MIL" 104 PROMPT 105 *	Thickness of Tape, Mils 1 27 pwb	152 1.27 153 * 154◆LBL "CMA "	CMA Module
105 * 107 1.27 108 * 109 GTO "CMA	1.27 1100	155 "CMA=" 156 XEQ "VW" 157 STO 06 158 XEQ "VK"	
" 110+LBL C 111 FIX 0 112 CF 27	CU Tape (Best Case)	159 RCL 06 160 * 161 STO 00	_ MA
113 100 114 "% LAP?" 115 PROMPT 116 XEQ "VW"	4bdm $\sqrt{\frac{100}{2(100-L)}}$	162 XEQ "CY" 163 RCL 00 164 X<>Y 165 / 165 /	$I = \sqrt{t}$
117 - 118 2 119 * 120 100 121 X<>Y		168 "HMPS=" 167 XEQ "VW" 168 STOP 169 END	
122 / 123 SQRT 124 "DM?"	ENTER D _m		
125 PROMPT 126 XEQ "VW" 127 * 128 "T:TAPE?	Thickness, Mils		
" 129 PROMPT 130 XEQ "VW" 131 * 132 4 133 * 134 GTO "CMA			
" 135+LBL D 136 CF 27 137 "MIN:0.D :FIS2"	LC Shield Min O.D. EIS, Mils		
138 PROMPT 139 XEQ "VW" 140 50 141 + 142 PI 143 * 144 "OVERLAP ?:MIL?" 145 PROMPT	$1.27 \left[\mathbf{r} (\mathbf{d} + 50) + \mathbf{B} \right] \mathbf{b}$		
146 XEQ "VW" 147 + 148 "T?" 149 PROMPT 150 XEQ "VW"	Thickness, Mils		

-84-

POSITIVE AND ZERO SEQUENCE IMPEDANCES OF CABLES

Robert W. Parkin

FUNCTION: Program determines the positive sequence reactance and the mutual reactance between the central conductor and metallic shield or sheath, and calculates the zero sequence impedance of a single or multi-conductor cable, based on three theoretical installation conditions:

- 1) Return current in sheath and grounded in parallel
- 2) All return current in sheath, none in ground
- 3) All return current in ground, none in sheath

ACCESSORIES: HP-41 CX or HP-41CV, Hewlett Packard Math Pac module is required for multiplication and division of complex impedance operations, printer is optional.

OPERATING LIMITS AND WARNINGS: None

REFERENCES:

- [1] Electrical Transmission and Distribution Reference Book, Westinghouse Electric Corporation, Pittsburgh, 1964.
- [2] Wagner, C.F., and R.D. Evans, Symmetrical Components, McGraw-Hill Book Co. N.Y. 1933
- [3] Rome Cable UD Technical Manual, Third edition, Rome N.Y 13440
- [4] Clarke, Edith, Circuit Analysis of A-C Power Systems, Vol. I John Wiley and Sons N.Y. 1950

SEQUENCE IMPEDANCE OF UNDERGROUND CABLES

Many primary distribution circuits involve a mixture of both overhead conductor and underground cable. Fault calculations for such circuits require a knowledge of the sequence impedances of the underground, as well as the overhead, portion of the circuits. This program deals with the sequence impedances and currents of underground cables.

The type of Cable insulation (continuous full-load temperature rating), cable spacing, earth resistivity, size of neutral (full or reduced), or type metallic shield or sheath affect the impedance of cables in single phase and three phase circuits.

The Insulation thickness has only minor effect on cable impedances when changed from 100% to 133% insulation levels. However, going from a reduced neutral to a full size has a significant effect for both positive and zero sequence impedance components.

On an overhead circuit, the neutral conductor has negligible effect on the positive and negative sequence components. This is not true for URD concentric neutral cable. When positive sequence flow in the phase conductors of this type circuit, currents circulating currents are induced in the nearby concentric which modify the positive and negative neutrals sequence components of the circuit. As the neutral size is increased, the effect becomes greater. In general, this means both be positive, negative and zero sequence components should recalculated for situations calling for three phase cable with full size neutrals.

When zero-sequence current flows along the phase conductors of a three-phase cable circuit, it must return in either the ground, or the sheaths, or in the parallel combination of both ground and sheaths. As zero-sequence flows through each conductor it encounters the a-c resistance of that conductor, and as it returns in the ground or sheaths it encounter the resistance of those paths. The zero-sequence current flowing in any one phase encounters also the reactance arising from conductor self-inductance, from mutual inductance of the return Each of these inductive effects cannot always paths. be identified individually from the equations to be used for reactance calculations because the theory of the earth return circuits, and use of one GMR to represent a parallel conductor group, present in combined form some of the fundamental effects contributing to total zero-sequence reactance. the resistance and reactance effects are dealt with so closely they are best dealt with simultaneously.

Cable sheaths are frequently bonded and grounded at several points, which allows much of zero-sequence return current to flow in the sheath. On the other hand when any of the other various devices used to limit sheath current are employed, much or all of the return current flow in the earth. The method of bonding and grounding, therefore has an effect on the zero-sequence impedance of the cable.

EARTH RESISTIVITY

A common value for earth resistivity used in calculating the impedances is 100 ohm meters. Since there can be a wide variation of earth resistivity from one geographical area to another it is of interest to estimate its effect on impedance. A change in resistivity does not affect the positive earth sequence impedance, but does affect the zero sequence impedance. An increase or decrease in value of earth resistivity from 100 ohm meters by a factor of ten produces approximate change of two percent in the magnitude of zero sequence impedance Zo. For a given cable, a large change in earth resistivity has a relatively small effect on Zo and its components.

Thus, using a value of 100 ohm meters for earth resistivity should give impedances sufficiently accurate for most situations.

Below is a table with earth resistivity values and other program parameters.

Earth Resistivity <u>(meter-ohm)</u>	Equivalent D of Earth Ret <u>Inches</u>	epth urn,De <u>feet</u>	Equivalent Earth Resistance, re <u>(ohms per mile)</u>	Equivalent Earth Reactance, Xe <u>(ohms per mile)</u>
1	3.36 × 10^3	280	0.286	2.05
5	7.44 × 10 [~] 4	620	0.286	2.34
10	1.06 × 10^4	880	0.286	2.47
50	2.40 × 10^4	2000	0.286	2.76
100	3.36 × 10^4	2800	0.286	2.89
500	7.44 × 10^4	6200	0.286	2.89
1000	1.06 × 10^5	8800	0.286	3.31
5000	2.40 × 10^5	20000	0.286	3.60
10000	3.36 x 10^5	28000	0.286	3.73

USER INSTRUCTIONS

Size: 016

STE	PINSTRUCTIONS	INPUT	DISPLAY
1.	Connect printer if a hardcopy is desired. R/S after each display if no printer is attached.		
2.	Set printer switch to manual or normal mode.		
з.	Load programs "ZO",Z3","VW"		
4.	Check status		
5.	Initialize: XEQ "ZO"		
6.	Enter frequency of circuit in hertz	HZ	HZ ?
7.	Enter a-c resistance of one conductor in ohms per 1000 feet	Rac	Rac ?
8.	Enter a-c resistance of Earth return in ohms per 1000 feet	Re	Re ?
9.	Enter distance to equivalent Earth return path in inches (see table)	De	De ?
10.	Enter Geometric Mean Distance amoung conductors centers, inches	GMD	GMD ?
11.	Enter Geometric Mean Radius of conductor, inches	GMR	GMR ?
12.	Enter outside radius of sheath, inches	Ro	RO ?
13.	Enter inside radius of sheath, inches	Ri	RI?
14.	Enter resistance of metallic shield or sheath in ohms per 1000 feet	Rs	RS?
15.	Display mutual reactance between conductor and shield/sheath	_	XM =

STER	P INSTRUCTIONS	INPUT	DISPLAY	
16.	Display positive sequence reactance in ohms per 1000 feet	_	X1 =	
17.	Select cable assembly:	1 or 3	1/C:1 / 3/C:3	
	1 = Single conductors			
	3 = Three conductor assembly (with common sheath)			
18.	Display Impedance of conductors in terms of impedance to zero sequence currents, ohms per 1000 ft	-	ZC =	
19.	Display the impedance of the sheath, considering the presence of the earth return path but ignoring the presence of the conductor group. Given in terms of impedance to zero sequence currents in ohms per 1000 feet.	_	ZS =	
20.	Display the mutual impedance between conductors and sheath, considering the presence of the earth return path which is common to both sheath and conductors, in zero-sequence terms, ohms per 1000 feet.	_	ZM =	
<u>CD</u> i	isplay Calculation parameters in Rectand	ular form]		
21.	Mutual impedance above; squared	-	ZW~5	
Note	e: U = Real Component		U =	
	V = Imaginary Component		V =	
22.	ZM^2/ZS		ZM^2/ZS:	
			U =	

V =

STE	P INSTRUCTIONS	INPUT	DISPLAY
23.	Display total zero sequence impedance when both ground and sheath path exist in ohms per phase per 1000 feet	_	ZO: T: U = V =
24.	Display total zero sequence impedance when current returns in sheath only, with none in ground, ohms per 1000 feet	-	ZO: S: U = V =
	[Total Zero Sequence Impedance] 20:G = (ZC - Zm) + Zm		

25. Zc - Zm U = V =

27.	Display total zero sequence	υ	=
	impedance when current returns		
	in the ground only, ohms per 1000	V	=
	feet		

Note: [Three Conductor]

Instructions are in the same format. Flag 03 will be set and display will show 3/C, where applicable.

XEQ "ZO" HZ? 60.0000 RUN Rac? .1678119 RUN Re? .0541 RU М De? 33600.0000 RUN GMD? 1.1250 R UN GMR? RU .1538 Ν R0? .4980 RU Ν RI? RU .5630 Н RS? .4860 RU Ν XM= 0.0173 X1= 0.0458 17:0:1 / 370:3? 1.0000 RUN Zc=0.2219 J0.7562 RUN ZS=0.5401 J0.7277 RUN ZM=0.0541 J0.7277 RUN ZH12: U=-0.5266 V=0.0787 ZH+2/ZS: U=-0.2766 V=0.5184 Z0:T: U=0.4985 ¥=0.2377 Z0:S: U= 0.6538 ¥= 0.0285 Z0:G: U=0.1678 V=0.0285 U=0.2219 V=0.7562

STEP/KEY CODE

Positive and Zero Sequence Impedance of Single (1/c) and Three Conductor (3/c) Cable 01+LBL "ZO" Intialize Then Enter Data: 02 CF 03 Frequency in Hertz 03 FIX 4 04 "HZ?" 05 PROMPT 06 60 07 / f /60 08 STO 14 09 "Rac?" AC Resistance of One Conductor in Ohms per 1000 Feet (MFT) 10 PROMPT 11 STO 13 "Re?" 12 AC Resistance of Earth Return in Ohms per MFT 13 PROMPT 14 STO 04 15 + 16 STO 05 "De?" 17 Distance to Equivalent Earth Return Path, in Inches 18 PROMPT 19 STO 01 20 "GMD?" Geometric Mean Spacing of Conductors 21 PROMPT 22 STO 02 23 X12 24 "GMR?" Geometric Mean Radius 25 PROMPT $GMR_{3c} = \sqrt[3]{(GMR_{1c}) (GMD_{3c})^2}$ 26 STO 03 27 * 28 3 29 1/X 30 Y1X 31 STO 11 32 XEQ 00 33 STO 06 34 RCL 04 35 "RO?" Outside Radius of Sheath $\frac{\text{rotri}}{2} = \text{pd}$ 36 PROMPT 37 "RI?" Inside Radius of Sheath 38 PROMPT pd= Pitch Diameter 39 + 40 STO 15 Calculate GMR3s (Conducting Path Made Up of the 3 Sheaths 41 2 42 🗸 in Parallel) 43 RCL 02 44 X12 $\sqrt[3]{(\frac{\text{rotri}}{2}) (\text{GMD}_{3c})^2}$ 45 * 46 3 47 1/X 48 Y1X 49 STO 10 50 XEQ 00

-92-

51 STO 07 52 "RS?" Resistance of Metallic Shield or Sheath in Ohms per MFT 53 PROMPT 54 STO 12 55 RCL 04 Calculate Mutual Reactance 56 + 57 STO 08 GMD $Xm = 0.05292 \log_{10}$ 58 RCL 02 pd 61 RCL 15 62 / 63 LOG 64 .05292 65 * Display Xm in Ohms per MFT 66 ENTER↑ 67 " XM= " 68 XEQ "VW" 69 3 70 Y1X 71 STO 09 72 RCL Y Calculate Positive Sequence Reactance 73 X12 74 RCL 12 $0.05292 \log_{10} \frac{\text{GMD}_{3c}}{\text{GMR}_{1c}}$ $\frac{\text{Xm}^3}{\text{Xm}^2}$ 75 X12 76 - $-r_{s}^{2}$ 77 RCL 09 78 X<>Y 79 / 80 ENTER↑ 81 RCL 02 82 RCL 03 83 / 84 LOG 85 .05292 86 * 87 RCL Y 88 Display Positive Sequence Reactance Ohms per MFT 89 "X1=" 90 XEQ "YW" 91 "1/:C:1 Enter Cable Assembly 1/c: 1 = Single Conductors / 3/C:3?" 92 PROMPT 3/c: 3 = Three Conductor Assembly (With Common Sheath) 93 3 94 X=Y? 95 XEQ "Z3" 96 "Zc=" 97 ARCL 05 De 98 "⊢ J" $Zc and = r_{ac} + re + j 0.15875 f/60 \log_{10} \frac{Zc}{GMR_{3c}}$ 99 ARCL 06 100 AVIEW 101 STOP

-93-

STEP/KEY CODE

102 103 104	"ZS=" ARCL 08 "⊢ J"	$Z_{s} = r_{s} + re + j 0.15875 f/60 \log_{10} \frac{De}{GMR}_{3s}$
$105 \\ 106 \\ 107 \\ 108 \\ 109 \\ 110 \\ 111 \\ 112 \\ 113 \\ 114 \\ 115 \\ 116 \\ 117 \\ 118 \\ 119 $	ARCL 07 AVIEW STOP "ZM=" ARCL 04	$Z_s 3/c = 3rs + re + j 0.15875 f/60 log_{10} r_o^{2De} r_i$
	"⊢ J" ARCL 07 AVIEW	$Z_m = re + j \ 0.15875 \ f/60 \ \log_{10} \frac{De}{GMD}$
	STOP "ZM†2:" AVIEW	Zm 3/c = re +j 0.15875 f/60 $\log_{10} \frac{2De}{r_0 + r_1}$
	RCL 07 RCL 04 2 XROM "Z↑	Calculate: $\frac{2}{Zs}$ Zo = Zc - $\frac{Z^2m}{Zs}$
N" 120 121 122	RCL X RCL Z RCL Y RCL 97	Display Z ² m Rectangular form U = Real V = Imaginary
123 124 125	RCL 07 RCL 08 "ZM†2/ZS	$\frac{Z^2 m}{Z s}$
126 127 "	AVIEW XROM "C/	
128 129 130 131 132 133 134	RCL X STO 02 RCL Z STO 09 RCL 06 RCL 05 RCL 09	$Zc - \frac{Z^2m}{Zs}$
135 136 137 138	RCL 02 "ZO:T:" AVIEW XROM "C-	Total Zero Sequence Impedance When Both Ground and Sheath Paths Exist in Ohms per Phase / MFT
139 140 141	FS? 03 GTO 01 "ZO:S:"	Flag 03 Set? Then Z3 (3/c) Module Was Called GOTO 01 Analyze Different Theoretical Installation Conditions
142 143 144 145	RCL 12 RCL 13 +	ZO:S = If Current Returns in Sheath Only With None In Ground, Ohms per MFT
146 147 148 149	"U=" XEQ "VW" RCL 10 RCL 11	$rc + rs + j 0.15875 f/60 log_{10} \frac{GMR_{3s}}{GMR_{3c}}$
151 152 153 154	LOG .15875 * RCL 14	
155 156 157	* "V=" XEQ "VW"	
If Current Return in the Ground Only: (1/c) (3/c) 158+LBL 02 159 "ZO:G:" 160 AVIEW 161 RCL 06 ZO:G = (ZC - Zm) + Zm162 RCL 05 163 RCL 07 164 RCL 04 165 XROM "C-166 RCL X 167 STO 02 168 RCL Z 169 RCL 02 170 RCL 07 171 RCL 04 172 XROM "C+ 173+LBL 00 Routine Used in Most Calculations 174 RCL 01 175 X<>Y .15875 f/60 log₁₀ GMR_{3c} De 176 / 177 LOG 178 .15875 179 * 180 RCL 14 181 * 182 RTN 183+LBL 01 184 "3/C ZO: 3/c ZO:S = If Current Returns in Sheath Only With None in Ground (3/c): S:" 185 AVIEW 186 RCL 12 187 з 188 * 189 RCL 13 $rc + 3_{rs} + j = 0.15875 f/60 \log_{10} \frac{10}{2 (gmr_{3c})}$ 190 +191 "U=" 192 XEQ "VW" 193 RCL 15 194 RCL 11 195 2 196 * 197 / 198 LOG 199 RCL 14 200 * 201 .15875 202 * 203 "Y=" 204 XEQ "VW" 205 GTO 02 206 END End

	-96-					
STEP/KEY CODE	COMMENTS			DATA RE	GIS	TERS
01+LBL "Z3" 02 SF 03 03 RCL 12 04 3 05 * 06 RCL 04 07 + 08 STO 08 09 RCL 01 10 2 11 * 12 RCL 15 13 / 14 LOG 15 RCL 14 16 * 17 .15875 18 * 19 STO 07 20 "3/C:" 21 AVIEW 22 RTN 23 .END.	3/c Module Used to Calculate Zs 3/c and Zm 3/c End	00 01 02 03 04 05 6 7 8 9 9 10 11 12 13 14 15	Mat De GMI GMI Te Zc Zc Zc Zs Zs Zs Zs Zs Zs C S S S S S S S S S S S S S S S S S S	ch (Zm Real) real j real 2 3 3 3 3 c 2 c 2 c 2 c 2 c 2 c 2 c 2 c		
		#	INIT S/C	FL/ SET INDICATE:	AGS S	
		103		3/C		1/C
CTAT	us					
SIAI						
$\frac{1}{2} \frac{1}{2} \frac{1}$						
UEG						
	AENTE		1			
ASSIGN	MEN 15		1	1		
FUNCTION KEY	FUNCTION KEY		1			
None I I			+	1		
			+	+		
			+	+		
				+		
				1		
			+	+		+

DIRECT CURRENT SHIELD RESISTANCE

Robert W. Parkin

FUNCTION: This Program calculates the d-c resistance of various metallic shields and sheaths at 25 degrees Celsius or at any operating temperature desired.

ACCESSORIES: HP-41 CX or HP-41CV, printer optional

OPERATING LIMITS AND WARNINGS: None

REFERENCES:

- [1] IPCEA PUB. NO. P-53-426 (second edition), NEMA PUB. NO. WC 50-1976.
- [2] The Calculation of the Temperature Rise and Load Capability of Cable Systems, J.H. Neher, M.H. McGrath, ibid., vol. 76, Oct. 1957.

BASIC DEFINITION

METALLIC SHIELD: any non-magnetic metallic structure applied over the semiconducting insulation shield for the purpose of controlling and confining the electrostatic field. It may also serve as the neutral conductor.

SHIELD RESISTANCE

When the metallic shields of single conductor cables are bonded and grounded at multiple points, cable ampacities may be significantly reduced by the resultant circulating current losses. This is particularly true of spaced single conductor cables in the larger conductor sizes with lower resistance shields.

Metallic shield resistance is calculated to help determine an accurate ampacity rating of cable. The circulating current losses affect ampacity, and is influenced by the resistance of the metallic shield. This program provides a multi-source means of determining the d-c resistance of metallic shields and sheaths.

Three important observations of shield resistance on ampacity are given below:

- 1) For the smaller conductor sizes the variation of ampacity with shield resistance is relatively small.
- 2) For the larger conductor sizes, the variation of ampacity with shield resistance is relatively large.
- 3) The variation in ampacity with shield resistance for a given conductor size is a function of the slope of the loss ratio curve. In particular, the variation in ampacity increases as the shield resistance decreases except near the peak of the loss ratio curve. In general, the variation is greater for spaced than for trefoil configurations.

Calculation of d-c shield resistance at 25 degrees Celsius is determined from the formulas given with program documentation; corresponding program labels are:

LABEL

TYPE SHIELD

- [A] Concentric and Longitudinal applied crimped wire shield
- [B] Helical Applied Tape Shield (Open gap or intercalated)
- [C] Helical Applied and Overlapped Tape Shield
- [D] Longitudinally Folded Corrugated Tape Shield
- [E] Lead Sheath
- [F] Aluminum Sheath (61% IACS)

Nomenclature:

- Rs = D-c resistance in micro-ohms per foot at 25 C.
- Af = Increase in tape shield length due to corrugations. A typical value for various tape shield thicknesses is 1.20.
- B = Tape overlap. A typical value is 0.375" or 0.250"
- d = Diameter of wire shield in inches.

Dis= Diameter over insulation shield in inches.

Dsm= Mean diameter of metallic sheath or shield in inches.

K = Factor for the increase in resistance of a helically applied overlapped copper tape shield due to contact resistance at the tape overlaps. K is normally 1 on cable as manufactured. With handling during installation, K will increase. After the cable has been in service and exposed to moisture and heat, a further increase in contact resistance may occur, particularly on uncoated copper tapes, and the contact resistance may approach infinity. For purposes of ampacity calculation and to insure that the cable will not be overheated soon after installation, a K value of 2 is suggested for use in helically applied overlapped tape shields.

- l = Length of lay of shielding tape in inches.
- Lf = Lay factor is the increase in length of wires due to helical application.
- n = Number of wires
- t = Thickness, inches
- w = Width, inches
- ps = Electrical resistivity, ohms circular mil/foot. The electrical resistivity of copper, aluminum, and lead are as follows:

Material	o <u>Resistivity at 25 C</u>
Uncoated annealed copper (100% IACS)	10.575
Coated annealed copper ribbons and tape (98% IACS)	10.787
Coated annealed copper wire: (under 0.103 to 0.020 incl.,97.16% IACS) (Under 0.290 to 0.103 incl.,	10.878 10.989
96.16% IACS) Aluminum (61% IACS)	17.345
Lead (7.84% IACS)	134.884

-101-

USER INSTRUCTIONS

Size 003

STE	P INS	TRUCTIONS	INPUT	DISPLAY					
1.	Connect print desired. R/S if no printer	er if a hardcopy is after each display is attached.							
2.	Set printer switch to manual or normal mode.								
з.	Load programs "DCR","VW"								
4.	. Check status								
5.	. Initialize: XEQ "DCR"								
6.	Enter electri of shield com circular mil/	cal resistivity of conent in ohms- foot	Ps	PS ?					
7.	Select type o	f shield/sheath	A-F	Select A-F					
لية	abel	<u>Type</u> Shield							
	A	Wire Shield							
	В	Copper Tape							
	С	Copper Tape(new)							
	D	LC Shield							
	E	Lead							
	F	Aluminum							
8.	Concentric and applied crim	d longitudinally Ded wire shield	A						

9. Enter lay as multiple of diameter Lay LAY ?

STE	P INSTRUCTIONS	INPUT	DISPLAY
10.	Enter wire diameter, inches	Dia.	DIA ?
11.	Enter number of wires	Ν	Ν ?
12.	Display D-C shield resistance in micro-ohms per foot at 25 deg C	-	RS=
13.	D-C Resistance per kilometer		/KM
14.	Enter operating temperture degrees Celcius	T2	T2?
15.	D-C Shield resistance per foot 0 T2	-	RS=
16.	D-C Resistance per kilometer (loop repeats for different T2 operating temperatures)		/KM
8. H C	Helically applied tape shield – Open gap, butted or intercalated (essentially infinite contact resistance)	В	Select A-F
9.	Enter mean diameter of metallic sheath or shield in inches	DSM	DSM ?
10.	Enter length of lay of shielding tape in inches	L	L ?
11.	Enter tape thickness in inches	т	Т?

STE	P INSTRUCTIONS	INPUT	DISPLAY
12.	Enter tape width inches	ω	ω?
13.	Shield resistance displayed		RS =
14.	Same T2 loop		
8.	Helically applied and overlapped tape shield	С	Select A-F
9.	Enter factor for increase in resistance due to contact resistance at tape overlaps	к	К?
	1 = New Cable		
	2 = Installed, aged		
10.	Enter mean diameter of shield, inches	DSM	DSM
11.	Enter tape thickness, inches	т	Τ?
12.	Shield resistance displayed		RS=
13.	Same T2 loop		
8.	Longitudinally folded corrugated tape shield	D	Select A-F
9.	Enter increase in tape shield length due to corrugations. (typical value 1.20)	AF	AF ?

STER	P INSTRUCTIONS	INPUT	DISPLAY
10.	Enter diameter over insulation shield, inches	DIS	DIS ?
11.	Enter tape overlap, inches (typical value .250375)	В	В?
12.	Enter Tape thickness, inches	т	Τ?
13.	Shield resistance displayed		RS =
14.	Same T2 loop		
8.	Lead Sheath or Aluminum Sheath (61% IACS)	E or F	Select A-F
9.E	Inter mean diameter of sheath, inches	DSM	DSM ?
10.	Enter thickness, inches	т	Τ?
11.	Shield resistance displayed		RS =

12. Same T2 loop

SAMPLE PROBLEM

-105-

XEQ "DCR" PS? 10.7500 RUN SELECT: A-F XEQ A LAY? 9.0000 R UN DIA? RU .0641 N N? 16.0000 RUN RS= 173.1965 /KM= 0.5683 T2? 75.0000 RUN RS= 206.5678 /KM= 0.6777 T2? 80.0000 RUN RS= 250.3490 /KM= 0.8214 T2?

		XEQ C
K?		
DONO	2.0000	RUN
D245	1 4200	DIN
T?	1.4200	KUN
••	.0050	RUN
RS= 7	757.042	3
∕K H =	2.4839	
T2?		
		XEQ D
AF?		
	1.2000	RUN
DIS?	4 5/00	DIVI
D D	1.3600	KUN
D?	. 3750	RIIN
T?	10.00	1.011
	.0100	RUN
RS=	186.519	6
∕KM=	0.6120	

		XEQ B
115117	1.4200	RIIN
L?	11,200	
T 0	6.0000	RUN
17	.0050	RUN
₩?		
	5.6000	RUN
RS=	375.750	1
∕KM=	1.2328	
T2?		
	50.0000	RUN
RS=	411.949	6
∕KM=	1.3516	
T2?		

		XEQ E
05#?	1.6300	RUN
T?	1.0000	Non.
	.0800	RUN
RS=	258.435	6
∕KM=	0.8479	
T2?		

T2?

DC Shield Resistance

01+LBL "DCR 02 FIX 4 03 234.5 Inferred Zero Resistance Temperture for Copper(λ) 04 STO 02 "PS?" 05 Enter Electrical Resistivity in Ohms-Circular mil/foot 06 PROMPT 07 STO 01 08 SF 27 User Mode On 09 "SELECT: Select Type Shield A, B, C, D, E, F A-F" **10 PROMPT** 11+LBL A A = Concentric and Longitudinally Applied Wire Shield 12 PI 13 "LAY?" Enter Lay as Multiple of the Diameter Over Wires 14 PROMPT 15 / SF = $cos tan^{-1} \pi/lav$ **16 ATAN** 17 COS 18 1/X 19 RCL 01 20 * 21 "DIA?" Enter: Wire Diameter $Rs = \frac{Ps \ Lf}{n \ d^2}$ 22 PROMPT 23 X12 Number of Wires 24 "N?" 25 PROMPT 26 * 27 / 28 GTO 00 B = Helically Applied Tape Shield (∞ Contact Resistance) 29+LBL B Enter Mean Diameter of Metallic Sheath or Shield in Inches 30 "DSM?" 31 PROMPT 32 PI 33 * "L?" Length of Lay of Shielding Tape in Inches 34 35 PROMPT 36 / $Rs = \frac{\widehat{TT Ps}}{4wt} / 1 + \left(\frac{\widehat{TT Dsm}}{L}\right)^2$ 37 X12 38 1 39 + 40 SQRT 41 STO 00 42 RCL 01 43 PI 44 * 45 "T?" Thickness, Inches 46 PROMPT "W?" Width, Inches 47 **48 PROMPT** 49 * 50 4

51 * 52 🕗 53 RCL 00 54 * 55 GTO 00 56+LBL C C = Helically Applied and Overlapped Tape Shield 57 "K?" Enter: Factor for Increase in Resistance 58 PROMPT 1 = New Cable 59 RCL 01 2 = Installed, Used 60 * 61 "DSM?" Mean Diameter of Metallic Sheath or Shield in Inches 62 PROMPT 63 "T?" Thickness Inches 64 PROMPT $Rs = \frac{PsK}{4 \ Dsm}t$ 65 * 66 4 67 * 68 🗸 69 GTO 00 D = Longitudinally Folded Corrugated Tape Shield 70+LBL D Enter: Increase in Tape Shield Length Due to 71 "AF?" Corrugations (Typical Value 1.20) 72 PROMPT 73 RCL 01 74 * 75 STO 00 Diameter Over Insulation Shield in Inches 76 "DIS?" 77 PROMPT 78 .05 79 + 80 PI 81 * 82 "B?" Tape Overlap. Typical Value is 0.375 or 0.250 Inches 83 PROMPT 84 + 85 1.273 Thickness, Inches 86 * 87 "T?" Ps Af 88 PROMPT Rs = $1.273 [T (D_{is} + .05) + B] t$ 89 * 90 RCL 00 91 X<>Y 92 / 93 GTO 00 E = Lead Sheath 94+LBL E 95 236 96 STO 02 97 33.7 98 "DSM?" Mean Diameter of Lead Sheath in Inches 99 PROMPT Thickness, Inches 100 "T?"

	-108-					
STEP/KEY CODE	COMMENTS	DATA REGISTERS			RS	
		00	Pro	ogram		
	33 7	01	DC			
101 PRUMPI 102 *	$Rs = \frac{33.7}{Dsm t}$	01	<u> </u>			
103 /		02	λ			
104 GTO 00						
105+LBL F	F = Aluminum Sheat	:h -				
105 228.1 107 STO 02	(01% IACS)					
108 4.34						
109 "DSM?"	Mean Diameter of					
110 PROMPT	Sheath in Inches					
112 PROMPT	inickness, inches					
113 *	$Rs = \frac{4.34}{Damb}$					
114 /	DSINC					
115+LBL 00	Display Pc					
117 XEQ "VW"	DISPINY KS					
118 STO 00	Dc Resistance in Micrchms/Foot@25 C Same/Kilometer					
119 .003281				· · · · · ·		
120 * 121 "ZKM="						
122 XEQ "VW"						
123 "T2?"	Enter Operating					
124 PROMPT	Temperture T2					·····
125 RUL 02						
127 RCL 02	Return Loop					
128 25	-					
129 +						
131 RCL 00						
132 *						
133 GTO 00	End					
134 END						
			INIT	FLA	GS	
		#	S/C		b	
			+			
· · · · · · · · · · · · · · · · · · ·			+			
STATU	US					
SIZE_003 TOT. REG	USER MODE					
ENG FIX SCI	ON OFF					
DEG HAU GHAU						
		-				
ASSIGN	AENTS		+			
FUNCTION KEY	FUNCTION KEY					
Wire Shield A			+			
Cu Tape New C						
LC Shield D						
			+			

A-C RESISTANCE OF CONDUCTORS

Robert W. Parkin

FUNCTION: This program determines the a-c resistance of conductors including skin and proximity effects.

ACCESSORIES: HP-41 CX or HP-41CV, printer optional

OPERATING LIMITS AND WARNINGS: Largest conductor size up to 1500 kcmil.

REFERENCES:

- [1] Underground Systems Reference Book, Edison Electric Institute.
- [2] Anaconda Wire and Cable Handbook, Cablec Corporation
- [3] ICEA S-66-524 NEMA Pub. No. WC-7
- [4] National Bureau of Standards, Bulletin 169

A-C RESISTANCE

A conductor offers a greater resistance to the flow of alternating current than it does to direct current. The magnitude of the increase usually is expressed as an "ac/dc ratio". This ratio of a-c resistance to d-c resistance is almost unity for small conductors but increases proportionally with conductor size and conductivity.

The reasons for the a-c resistance increase is primarily due to skin effect which results in a decrease of current density toward the center of a cylindrical conductor (the current tends to crowd the surface to the surface).

A longitudinal element of the conductor near center is surrounded by more magnetic lines of force than is an element near the rim, hence the induced counter emf is greater in the center element. The net driving emf at the center is thus reduced with consequent reduction of current density.

For close spacings such as multi-conductor cables or several cables in the same conduit, there will be an additional apparent resistance due to proximity effect, the distortion of current distribution due to the magnetic effects of other nearby currents; hysteresis and eddy current losses in nearby ferromagnetic materials and induced losses in short circuited nearby non-ferromagnetic materials.

SKIN EFFECT

For isolated tubular conductors ranging from solid round wire to an infinitely thin tube the curves of Ewan [1] customarily are used. The skin effect ratio is shown in terms of the frequency in hertz, the conductor dimensions, inches, and the d-c resistance, ohms per 1000 feet.

For copper (and other non-magnetic materials), a parameter is given by:

Where:

f = Frequency in hertz

Ro = Conductor d-c resistance at operating temperature, ohms per 1000 feet

The table on the following page is reproduced from the National Bulletin 169, and gives factors for skin effect ratio R/Ro as a function of x, where Ro is the d-c (zero frequency) resistance and R is the a-c resistance.

The nonuniform cross-sectional distribution of current also affects the inductance. The inductance is less than if the current density were uniform. The table of skin effect ratios therefore lists the inductance ratio L/Lo, where Lo is the inductance assuming uniform current density and L is the inductance due to a nonuniform current density.

The above formulae are independent of the number of strands for conductors up to about 1,500,000 circular mils. For larger conductors, other methods must be used for great accuracy.

PROXIMITY EFFECT

The flux linking a conductor (current) due to nearby current distorts the cross-sectional current distribution in the conductor in the same way as the flux from the current in the conductor itself. The latter effect is skin effect and has been discussed, the former is called proximity effect. The two effects are seldom separable in cable work and the combined effects are not directly cumulative.

The result of proximity effect in 3 - conductor cables ordinarily is to reduce slightly the effect of skin effect alone.

The further effect of proximity effect may be approximately calculated by:

Where:

Then the resistance of a conductor considering only skin effect and proximity effect is:

$$r = Ro \left(\frac{R}{Ro} + fp \right)$$

INTER-STRAND RESISTANCE

The effect of inter-strand resistance is of additional significance with regard to a-c resistance. If the current is (or can be) confined to the individual strands, skin effect will materially be reduced below that for an effectively solid conductor. The difference may be two percent or more.

x	R/R.	L/L.	x	R/R.	L/L_{\bullet}	x	R/R.	L/L_{ullet}	x	R/R.	L/L.
0.0	1.00000	1.00000	2.9	1.28644	0.86012	6.6	2.60313	0.42389	17.0	6.26817	0.16614
0.1	1.00000	1.00000	3.0	1.31809	0.84517	6.8	2.67312	0.41171	18.0	6.62129	0.15694
0.2	1.00001	1.00000	3.1	1.35102	0.82975	7.0	2.74319	0.40021	19.0	6.97446	0.14870
0.3	1.00004	0.99998	3.2	1.38504	0.81397	7.2	2.81334	0.38933	20.0	7.32767	0.14128
0.4	1.00013	0.99993	3.3	1.41999	0.79794	7.4	2.88355	0.37902	21.0	7.68091	0.13456
0.5	1.00032	0.99984	3.4	1.45570	0.78175	7.6	2.95380	0.36923	22.0	8.03418	0.12846
0.6	1.00067	0.99966	3.5	1.49202	0.76550	7.8	3.02411	0.35992	23.0	8.38748	0.12288
0.7	1.00124	0.99937	3.6	1.52879	0.74929	8.0	3.09445	0.35107	24.0	8.74079	0.11777
0.8	1.00212	0.99894	3.7	1.56587	0.73320	8.2	3.16480	0.34263	25.0	9.09412	0.11307
0.9	1.00340	0.99830	3.8	1.60314	0.71729	8.4	3.23518	0.33460	26.0	9.44748	0.10872
1.0	1.00519	0.99741	3.9	1.64051	0.70165	8.6	3.30557	0.32692	28.0	10.15422	0.10096
1.1	1.00758	0.99621	4.0	1.67787	0.68632	8.8	3.37597	0.31958	30.0	10.86101	0.09424
1.2	1.01071	0.99465	4.1	1.71516	0.67135	9.0	3.44638	0.31257	32.0	11.56785	0.08835
1.3	1.01470	0.99266	4.2	1.75233	0.65677	9.2	3.51680	0.30585	34.0	12.27471	0.08316
1.4	1.01969	0.99017	4.3	1.78933	0.64262	9.4	3.58723	0.29941	36.0	12.98160	0.07854
1.5	1.02582	0.98711	4.4	1.82614	0.62890	9.6	3.65766	0.29324	38.0	13.68852	0.07441
1.6	1.03323	0.98342	4.5	1.86275	0.61563	9.8	3.72812	0.28731	40.0	14.39545	0.07069
1.7	1.04205	0.97904	4.6	1.89914	0.60281	10.0	3.79857	0.28162	42.0	15.10240	0.06733
1.8	1.05240	0.97390	4.7	1.93533	0.59044	10.5	3.97477	0.26832	44.0	15.80936	0.06427
1.9	1.06440	0.96795	4.8	1.97131	0.57852	11.0	4.15100	0.25622	46.0	16.51634	0.06148
2.0	1.07816	0.96113	4.9	2.00710	0.56703	11.5	4.32727	0.24516	48.0	17.22333	0.05892
2.1	1.09375	0.95343	5.0	2.04272	0.55597	12.0	4.50358	0.23501	50.0	17.93032	0.05656
2.2	1.11126	0.94482	5.2	2.11353	0.53506	12.5	4.67993	0.22567	60.0	21.46541	0.04713
2.3	1.13069	0.93527	5.4	2.18389	0.51566	13.0	4.85631	0.21703	70.0	25.00063	0.04040
2.4	1.15207	0.92482	5.6	2.25393	0.49764	13.5	5.03272	0.20903	80.0	28.53593	0.03535
2.5	1.17538	0.91347	5.8	2.32380	0.48086	14.0	5.20915	0.20160	90.0	32.07127	0.03142
2.6	1.20056	0.90126	6.0	2.39359	0.46521	14.5	5.38560	0.19468	100.0	35.60666	0.02828
2.7	1.22753	0.88825	6.2	2.46338	0.45056	15.0	5.56208	0.18822	80	**	0
2.8	1.25620	0.87451	6.4	2.53321	0.43682	16.0	5.91509	0.17649			
D/D	- Daria	+				7	- Inder	+			donaiter
п/П [/]	$t/\pi_0 = \text{resistance ratio due to skin effect}$. $L_0 = \text{inductance for uniform current density}$.										
~, R	= A-C	resistanc	e.	20 10 JAI		f	= Freque	ency. cy		r second.	
Ĩ	L = Inductance for nonuniform current Reproduced from National Bureau of Stand-										
	density. ards, Bulletin 169.										

TABLE III-RESISTANCE AND REACTANCE RATIO DUE TO SKIN EFFECT

STER	P INSTRUCTIONS	INPUT	DISPLAY
1.	Connect printer if a hardcopy is desired. R/S after each display if no printer is attached.		
г.	Set printer switch to manual or normal mode.		
з.	Load programs "AC" "VW"		
4.	Check status		
5.	Initialize: XEQ "AC"		
6.	Enter DC resistance of conductor at 25 degrees C	Rdc	R: dc?
7.	Select type metal:		AL:1/CU:0
	1 = Aluminum O = Copper		
8.	Enter operating temperature in degreess celsius	T2	T2?
9.	Display D-C resistance at operating temperture	-	R2: dc =
10.	Enter frequency in Hertz	f	HZ ?
11.	Skin effect ratio, X	-	X =

TEP	INSTRUCTIONS	INPUT	DISPLAY
12.	Enter higher R/Ro (function of X)	High	R/RO: High
13.	Enter lower R/Ro	Low	R/Ro: Low
14.	Display actual R/Ro	-	R/R0 =
15.	Enter GMR of conductor	GMR	GMR ?
16.	Enter GMD	GMD	GMD ?
17.	Select type circuit:	1 or 3	PH: 1/3 ?
	Single phase = 1 Three phase = 3		
18.	A-c resistance of conductor considering skin and proximity effects in ohms per 1000 feet		R: ac =

19. A-c resistance above in /KM = ohms per kilometer

NOTE: R/Ro = Resistance ratio due to skin effect

-114-

|--|

-115comments

01+LBL "AC" AC Resistance of a Conductor Considering Skin and 02 FIX 4 Proximity Effects 03 "R:dc?" Enter D-C Resistance of Conductor at 25°C 04 PROMPT 05 STO 00 06 "AL:1 / Select: 1 = Aluminum CU:0" 0 = Copper07 PROMPT 08 X=0? 09 GTO 00 Enter Operating Temperature in Degrees C 10 "T2?" 11 PROMPT Calculate Temperature Conversion: 12 228.1 For Aluminum: 13 + 14 253.1 $R_2 = R_1 \left(\frac{228.1 + T_2}{228.1 + T_1}\right)$ 15 GTO 04 16+LBL 00 17 "T2?" **18 PROMPT** For Copper: 19 234.5 $R_2 = R_1 \left(\frac{234.5 + T_2}{234.5 + T_1}\right)$ 20 + 21 259.5 22+LBL 04 23 / 24 RCL 00 25 * 26 "R2:dc=" Display Dc Resistance at Operating Temperature 27 XEQ "YW" 28 STO 00 29 "HZ?" Enter Frequency in Hertz 30 PROMPT Calculate Skin Effect Ratio 31 RCL 00 32 / $X = 0.027678 \int_{0}^{f/R_{o}}$ 33 SQRT 34 .027678 35 * 36 "X=" Display x Parameter 37 XEQ "VW" 38 FRC 39 10 Input Higher and Lower R/R, Value for Interpolation 40 * (see table) 41 FRC 42 10 43 * 44 STO 02 Enter Higher R/Ro (By X) 45 "R/RO: H IGH?" 46 PROMPT 47 "R/RO: L Enter Lower R/Ro (By X) OW?" 48 PROMPT 49 STO 01 Take Difference and Interpolate 50 -51 10 52 / 53 RCL 02 54 *

55 RCL 01 56 + 57 FIX 5 58 "R/RO=" Display Actual R/Ro 59 XEQ "VW" 60 RCL 00 61 * 62 STO 01 Calculate Proximity Effect 63 "GMR?" Enter Geometric Mean Radius 64 PROMPT 65 "GMD?" Enter Geometric Mean Spacing of the Conductors 66 PROMPT 67 1 68 X12 $\left(\frac{\text{GMR}}{\text{GMD}}\right)^2$ (R/Ro -1) 69 RCL 01 70 RCL 00 71 / 72 1 73 -74 * 75 STO 02 76 "PH: 1 🖊 Select Circuit: 1 = Single Phase 3?" 77 PROMPT 3 = Three Phase 78 3 <u>1 - Phase</u> $f_p = 4 \left(\frac{GMR}{GMD}\right)^2 (R/Ro - 1)$ 79 X=Y? 80 GTO 02 <u>3 - Phase</u> $f_p = 6 \left(\frac{GMR}{GMD}\right)^2 (R/Ro - 1)$ 81 RCL 02 82 6 83 * 84 STO 03 85 GTO 03 $rac = Ro (R/Ro + f_p)$ 86+LBL 02 87 RCL 02 88 4 89 * 90 STO 03 91+LBL 03 92 RCL 01 93 RCL 00 94 / 95 RCL 03 96 + Resistance of Conductor Considering Skin Effect 97 RCL 00 and Proximity Effect 98 * 99 "R:ac=" 100 XEQ "VW" rac in Ohms per MFT and in Ohms per Kilometer 101 3.281 102 * "/KM=" 103 104 XEQ "VW" fp = Factor to Account for Proximity Effect 105 END Ro = Conductor d-c Resistance at Operating Temperature R/Ro = Resistance Ratio Due to Skin Effect

SAMPLE PROBLEM		DATA RE	GISTERS
	00	DC Resistance	
	01	P/PO Lou	
		K/RO LOW	
	02	Interpolate	
YEO HOCH	02	Drovimity	
AEW "HU" R:dc2	03	Factor	
.1680 RU			
N			
AL:1 / CU:0			
1.0000 R			
UN			
20.0000			
RUN			
R2:dc= 0.164			
7			
HZ?			
60.0000 RUN X- 0 5207			
A- 0.3283 R/RO: HTCH2			
1.0067 RUN			
R/RO: LOW?			
1.00320 RUN			
R/R0= 1.00419			
GRK?			
.127286 RUN			
GMD?			
1.36000 RUN			
PH: 1 / 3?			
3.00000 KUN Piaca 0 16540			
/KM= 0.54266			
		FL/	AGS
	#	INIT S/C SET INDICATES	
STATUS			
314103			
SIZE_004_ TOT. REG USER MODE			
ENG FIX SCI ON OFF			
DEG HAU GRAU			
		<u>}</u>	
ASSIGNMENTS			
		<u>├</u>	
None		++	
├ ──── ├ ─── ├ ─── ├ ─── ┤ ─── ┤			
<u>├</u> ────		++	

VOLTAGE REGULATION AND VOLTAGE DROP

Robert W. Parkin

FUNCTION: This program determines the percent voltage drop of a line (e.g., a feeder) with respect to the receiving end voltage, and the difference between the sending end and the receiving end voltage of a section of cable.

ACCESSORIES: HP-41 CX, or HP-41 CV, printer optional.

OPERATING LIMITS AND WARNINGS: Values given apply directly for single phase lines when resistance and reactance are loop values and voltage is voltage between the lines. For three phase circuits, use the voltage to neutral and the resistance and reactance of each conductor to neutral. To obtain voltage drop line-to-line, multiply voltage drop by $\sqrt{3}$. The percent voltage drop is the same between conductors as from conductor to ground, and should not be multiplied by $\sqrt{3}$.

REFERENCES:

- [1] Electric Power Distribution Engineering, Turan Gonen.
- [2] Anaconda Wire and Cable Engineering Handbook, Cablec Corp
- [3] Standard Handbook for Electrical Engineers, Fink and Beaty.
- [4] Voltage Regulation of Cables Used for Low-Voltage A-C Distribution,
- H.R. Searing and E.R. Thomas AIEE Transactions, Vol. 52. [5] Voltage Ratings for Electric Power Systems and Equipment, ANSI C84.1 -1977.
- [6] Westinghouse Electric Corp: Electric Utility Engineering Reference Book - Distribution Systems, vol. 3, East Pittsburgh, Pa. 1965.

BASIC DEFINITIONS

<u>Voltage</u> <u>regulation</u>: the percent voltage drop of a line with respect to the receiving end voltage

<u>Voltage</u> <u>drop</u>: the difference between the sending end and the receiving end voltage of a line.

Nominal voltage: the nominal value assigned to a line or apparatus or a system of a given voltage class.

<u>**Rated</u>** voltage: the voltage at which performance and operating characteristics of apparatus are referred.</u>

<u>Service</u> voltage: the voltage measured at the ends of the service entrance apparatus.

<u>Utilization</u> voltage: the voltage measured at the ends of an apparatus.

Base voltage: the reference voltage, usually 120 V.

Maximum voltage: the largest 5- min average voltage

Minimum voltage: the smallest 5-min voltage

<u>Voltage</u> <u>spread</u>: the difference between the maximum and minimum voltages, without voltage dips due to motor starting.

In general, the primary objective of an electrical distribution system is to provide power users with a supply voltage compatible with their utilization equipment and freedom from interruptions. An ideal electric system provides constant voltage to all users under all loading conditions. However it is economically impractical to attempt such an ideal system approach. A common practice among utilities is to stay with preferred voltage levels and ranges of variation for satisfactory operation as set forth by the American National Standards Institute (ANSI).

Supplying either a too-high steady state voltage or a toolow steady state voltage is detrimental to the operation of electrical equipment. The nominal voltage standards for a majority of the electric utilities in the United States to serve residential and commercial customers are:

- 1. 120/240 -V three wire single phase
- 2. 240/120 -V four wire three phase delta
- 3. 208Y/120-V four wire three phase wye
- 4. 480Y/277-V four wire three phase wye

Voltage on a distribution circuit varies from a maximum value at the customer nearest to the source to a minimum value at the end of the circuit. The voltage limits given below are classified as "favorable zone" ranges for secondary voltage systems.

<u>Voltage</u> Limits

	At point of	delivery	at point of
<u>Nominal</u> <u>voltaqe</u> <u>class</u>	Maximum	Minimum	Minimum
120/240-V and 240-V / 120-V 3 phase delta	126/252	114/228	110/220
208Y/120-V 3 phase	218Y/126	197Y/114	1917/110
408Y/277-V 3 phase	504Y291	4567/263	4407/254

Voltages outside of these limitations move into a tolerable or extreme-emergency zone.

Voltage regulation is often the limiting factor in the choice of either conductor type or insulation. While heat loss in the cable determines the maximum current it can carry without deterioration, it is often necessary to limit current to an even lower value because of excessive voltage drop. This problem is usually confined to high current, secondary or distribution circuits. For this reason it is advantageous to carry the primary circuit as close to the load before transforming; so that the voltage drop in the secondary runs, where most of the voltage drop occurs will be small. The voltage drop of a cable is determined as follows:

VR (% Regulation) =
$$\frac{|Vs| - |VL|}{|VL|} \times 100$$

Where:

VR = Voltage regulation in percent VL = Voltage across load Vs = Voltage at source 2 2 Vs = (VL cos θ + R I) + (VL sin θ + X I)

Where:

0 = Angle by which the current lags the voltage across the load (cos 0 = power factor of load) R = Total a-c resistance of cable I = Load current

Approximate formula for voltage drop:

 $(Vs - VL) = R I \cos \theta + X I \sin \theta$

This formula is satisfactory where the power factor angle is nearly the same as the impedance angle. It is exact when they are equal, i.e.; $\tan 0 = X/R$.

The National Electric Code recommends maximum voltage drops of 3% for for power loads and 1% for lighting or combined lighting power loads.

There are numerous ways to improve voltage regulation and keeping distribution circuit voltages within permissible limits. The complete list is given by Lokay [6] as:

- 1. Use generator voltage regulators
- 2. Application of voltage-regulating equipment in the distribution substations.
- 3. Applications of capacitors in the distribution substation
- 4. Balancing of the loads on the primary feeders
- * 5. Increasing of feeder conductor size
 - 6. Changing of feeder sections from single phase to multi-phase
 - 7. Transferring of loads to new feeders
 - 8. Installing of new substations and primary feeders
 - 9. Increasing of primary voltage levels
 - 10. Application of voltage regulators out on the primary feeders
 - 11. Application of shunt capacitors on the primary feeders
 - 12. Application of series capacitors on the primary feeders

The selection of a technique or techniques depends upon the particular system requirement.

* Using a larger conductor reduces the resistance and is effective in the case of direct current or unity - power- factor a-c. In general, however, power distribution is accomplished with a-c at power factors less than unity. In this case, it is necessary also to consider reducing the reactance. This is accomplished by reducing the conductor spacing (for open wiring) or by dividing circuits (in conduit),e.g.; by using twin circuits, of # 4/0 AWG instead of a single circuit 500 kcmil and properly arranging conductor configuration, it is possible to reduce the voltage regulation about 30%.

Practically, where voltage regulation is important, it is desirable to avoid the use of spaced open wiring and to consider divided circuits for conductor sizes over 500 kcmil.

USER INSTRUCTIONS

Size: 004

STER	P INSTRUCTIONS	INPUT	DISPLAY
1.	Connect printer if a hardcopy is desired. R/S after each display if no printer is attached.		
2.	Set printer switch to manual or normal mode.		
з.	Load programs "VR" VW"		
4.	Check status		
5.	Initialize: XEQ "VR"		
6.	Enter Voltage at load	VL	VL?
7.	Enter total a-c resistance of cable	Rac	Rac?
8.	Enter load current	I	Ι?
9.	Enter angle by which current lags the voltage across the load, degrees	angle	∢ ?
10.	Enter total Reactance of conductor	X	Χ?
11.	Voltage at source		VS =
12.	Voltage drop in percent		VR =

STEP / KEYCODE

COMMENTS

Voltage Regulation

01+LBL "VR" Enter Voltage at Load 02 "VL?" 03 PROMPT 04 STO 00 Enter Total A-C Resistance of Cable 05 "Rac?" 06 PROMPT Enter Load Current 07 "I?" **08 PROMPT** 09 STO 01 10 * Enter Angle by Which the Current Lags the Voltage 11 "∡?" Across the Load 12 PROMPT 13 STO 02 14 COS $(VL \cos \theta + RI)^2$ 15 RCL 00 16 * 17 + 18 X12 19 STO 03 Enter Total Reactance of Cable 20 "X?" 21 PROMPT 22 RCL 01 23 * 24 RCL 02 25 SIN 26 RCL 00 $V_{s} = \sqrt{(VL \cos \theta + RI)^{2} + (VL \sin \theta + XI)^{2}}$ 27 * 28 + 29 X12 30 RCL 03 31 + 32 SQRT Display Source Voltage, Vs 33 "VS=" 34 XEQ "VW" <u>100 (VS - VL)</u> 35 RCL 00 VĽ. VR = 36 -37 "V:DROP= 38 XEQ "VW" Voltage Drop , Line to Neutral in volts $(V_S - V_L)$ 39 100 40 * 41 RCL 00 Voltage Regulation In Percent 42 🗸 43 "VR=" 44 XEQ "VW" 45 END

					-126	-				
STEP/KEY (CODE			(COMMENTS			DATA RE	GIS	TERS
						00	VT.			
	SA	MPLE	PROF	BLEM			1			
						02	-0			
						02	0			
						03	(VT.	COSA + RT)	2	
						00				
			YEO							
	VI 2		050	r rn						
		240	. 0000	RUN						
	Rac?	2.0								
			.0356	RUN						
	I?									
		200	.0000	RUN						
	62									
		36	.8000	RUN						
	X2									
			.0281	RUN						
	¥S=	249.	.067	8						
	Y:DRU UD-	P= 9.	067	8						
	¥K=	3.11	83							
								~~~~~		
								EI /	100	
							INIT			
								JETINDICATE	5	
		STA	TUS				┼┼			
004							1			
SIZE_004		REG		USER	NODE					
DEG R		GR/	ND		_ OFF					
				-		.	┼──┤			
							+			
	4	SSIGN	MENT	rs						
F11103-011						┥ ┝	+			
FUNCTION	T	REY	FL	INCTION	KEY	┥. ┣━━━				
	+					┥ ┝	+			
						1 -				
	T									
						┥┝──				

# INDUCTIVE REACTANCE AND INDUCTANCE IN CABLES

Robert W. Parkin

FUNCTION: This program determines the series inductive reactance to neutral of cables in conduit, direct bury, or in air for single and three phase circuits, and the inductance in cable for single and multi-conductor cables.

ACCESSORIES: HP-41 CX, or HP-41 CV, printer optional.

OPERATING LIMITS AND WARNINGS: None

#### **REFERENCES:**

- [1] Aluminum Electrical Conductor Handbook
- [2] Anaconda Wire and Cable Engineering Handbook,
- [3] Electric Power Transmission, Woodruff. Standard Handbook for Electrical Engineers, Fink and Beaty.

**INDUCTIVE REACTANCE:** The inductance and consequently, the inductive reactance of a cable is a function of its geometry and its physical relationship to other cables. General equations and configurations are given with program documentation.

#### Reactance depends on:

- 1 Size of conductor
- 2 Spacing between it and other current carrying conductors
- 3 Position of conductors in relation to other conductors
- 4 Frequency of current
- 5 Presence of magnetic materials close to the conductor

#### Reactance is reduced by:

- 1 Placing conductors close together
- 2 Non-magnetic raceways (instead of steel)

Geometric Mean Radius (or self GMD) of Solid and Stranded Conductors can be determined by the following table. The GMR is merely a mathematical convenience and is not an intrinsically useful physical concept.

<u>Conductor</u> Stranding	<u>GMR,mils</u>
solid	0.3894004 d
7- wires	0.3627837 d
12-wire	0.3803203 d
19-wire	0.3788277 d
27-wire	0.3866393 d
37-wire	0.3840227 d
61-wire	0.3860303 d
91-wire	0.3871463 d
127-wire	0.3877845 d
169-wire	0.3881861 d
217-wire	0.3884543 d
271-wire	0.3887594 d

Where: d = diameter of conductor, mils

Geometric Mean Distance (GMD) Equivalent conductor spacing.

1. Equilateral Triangular



2. Right Angle Triangle



3. Unequal Triangular



4. Symmetrical Flat



5. Unsymmetrical Flat



GMD = 1.123 A when A=C

GMD = A=B=C

$$GMD = \sqrt[3]{A \times B \times C}$$

$$GMD = \sqrt[3]{A \times B \times C}$$

Program is based on the following formulas, symbol notations are given with program documentation.

1. Inductive reactance in ohms per 1000 feet at loop for single phase two conductor concentric URD cable, 60 hertz.

XL = 0.5292 log (D2/D1) + 0.0115 (1/2 + D1 / 3 * D2) 10

 Inductive reactance ohms to neutral per 1000 feet for URD and UD cables direct bury or in non-magnetic duct, three phase, 60 hertz.

XL = 0.05292 log GMD / GMR 10

 Inductive reactance in ohms per 1000 feet of circuit for single phase (two wire) circuit direct bury in air or nonmagnetic duct.

XL = 0.10584 log S / GMR 10

Note 1: For frequencies other than 60 hertz , multiply by f/60.

Note 2: For magnetic conduit implement the following corrections:

- Single conductor Increase 50% for magnetic effect and random lay
- Multiple cables Use the following multiplying factors for round cables:

Conductor size kcmil —up to

Multiplying factor

250	1.149
300	1.146
350	1.140
400	1.134
500	1.122
600	1.111
700	1.100
750	1.095
**INDUCTANCE:** The inductance relationships used in predicting the performance of power transmission systems often involve the effects of stranded and bundled conductors operating in parallel as well as single phase systems coordinated with polyphase The current carrying conductors of a phase systems. are considered mathematically as a cylindrical shell of current of radius called self geometric mean radius of the phase or GMR. The mutual distance between the current in a particular phase and the other (return) currents in the other phase are replaced by the mutual geometric mean distance to the return or GMD. The inductance of all phases may be balanced by transposing the conductors over the length of the transmission line, so that each phase occupies all positions equally in the length of the line. Inductance in multi-conductor cables is essentially the same as for other arrangements of conductors; the equation is:

Where: L = Inductance in henries to neutral per 1,000 feet GMD = Distance between centers of conductors, inch GMR = GMR of conductor, inch

**<u>MUTUAL</u>** <u>INDUCTANCE</u>: When two independent circuits are in proximity to each other, a change in current in one is accompanied by a change in its magnetic field, which induces an electromotive force in the other. In single conductor, metallic-covered cables, current flowing in the conductor will produce, by mutual conductance, an emf in the sheath. If by any means the sheath forms part of a closed circuit, current will flow in the sheath. The inductance in the sheath is expressed by:

Where : Lm = Inductance in henries to neutral per 1,000 feet

rm = Mean sheath radius, inch

## USER INSTRUCTIONS

MOD	E: Single Phase, Concentric Neutral Wires		Size: 005
STE	P INSTRUCTIONS	INPUT	DISPLAY
1.	Connect printer if a hardcopy is desired. R/S after each display if no printer is attached.		
г.	Set printer switch to manual or normal mode.		
з.	Load programs "XL","VW","AV"		
4.	Check status		
5.	Initialize: XEQ "XL"		
6.	Enter Geometric mean radius of center conductor,inches.	GMR	GMR? Inch
7.	Select Type Circuit:	1	Phase:1/3?
	1 = Single phase		
	3 = Three phase		
8.	Are concentric neutrals used?	Y	CNW? Y?N
	Y = Yes		
	N = No		
9.	Enter diameter of conductor, inches	D 1	D1=?
10.	Enter diameter under neutral wires, inches	D2	D2=?
11.	Inductive reactance in ohms per 1000 feet	-	XL/MFT=
12.	Inductive reactance in ohms per kilometer	-	XL/KM=

MODE: [Single Phase, Without Concentric Neutral Wires]

STEF	P INSTRUCTIONS	INPUT	DISPLAY
8.	Are concentric neutrals used?	Ν	CNW? Y/N
	Y = YES		
	N = No		
9.	Enter spacing between conductor centers, inches	S	S = ? Inch
10.	Inductive reactance per 1000 feet		XL/MFT=
11.	Inductive reactance per kilometer		XL/KM=

MODE: [Three Phase]

9.	Enter geome Distance of	tric mean cables,inches	5	GMD	GMD?:Inch
10.	Inductive	reactance per	1000 feet	_	XL/MFT=
11.	Inductive	reactance per	kilometer	-	XL/KM=

## USER INSTRUCTIONS

# MODE: Single and Multiconductors

STE	P INSTRUCTIONS	INPUT	DISPLAY
1.	Connect printer if a hardcopy is desired. R/S after each display if no printer is attached.		
2.	Set printer switch to manual or normal mode.		
з.	Load programs "LL", "VW"		
4.	Check status		
5.	Initialize: XEQ "LL"		
6.	Enter Geometric Mean Distance of conductors, inches.	GMD	GMD?
7.	Select Type Conductor:	1 or 0	MC:1/1C:0
	1 = Multiconductor		
	0 = Single Conductor		
8.	Enter GMR, inches	GMR	GMR?
9.	Display Inductance in henries to neutral per 1000 feet.	_	L =
	[For Multiconductors]		
7.	Select 0	0	MC:1/1C:0
8.	Enter Mean Sheath radius in inches	Rm	RM?
9.	Display Inductance in henries to neutral per 1000 feet	_	L =

		Inductive Reactance		
01+L 02 F 03 1	LBL "XL" FIX 4 "GMR? IN	Entor Coomotria Moon	51 "S=? INC S H"	ingle Phase
03 CH" 04 05 06 07 97 08	TONE 5 PROMPT XEQ "AV" STO 00 "PHASE:	Enter Geometric Mean Radius of Solid or Stranded Conductor in Inches Enter:	52 PROMPT 53 XEQ "AV" E 54 RCL 00 B 55 / C 56 LOG 57 .10584 0.1	nter S = Spacing etween Conductor enters, Inches 10584 log ₁₀ S/GMR
1 / 3 09 1 10 1 11 3	3?" PROMPT 1 X=Y? 0-70 01	l = Single Phase 3 = Three Phase	59 XEQ 05 60+LBL 02 61 "GMD=?IN CH"	3 Phase Cables: Enter:Geometric
12 13 14+1 15 16	GTO 01 GTO 02 LBL 01 "Y" ASTO Y		62 PROMPT 63 XEQ "AV" 64 RCL 00 65 /	Mean Distance of Cables,Inches 0.05292 log ₁₀
17 /N" 18 1 19 1	"CNW?: Y AVIEW Aon_	Concentric Neutral Wires? Y = Yes	66 LUG 67 .05292 68 * 69◆LBL 05 70 "XL/MFT=	GMD/GMR Inductive
20 : 21 ( 22 ( 23 ) 24 (	STOP AOFF ASTO X X=Y? GTO Ø3	N = NO	" 71 XEQ "VW" 72 3.281 73 *	Reactance in Ohms per 1000 Feet Inductive
25 26+1 27 28	GTO 04 LBL 03 "D1=?" PROMPT	Single Phase URD,CNW D ₁ = Diameter of Center Conductor Inches	74 "XL/KM= " 75 XEQ "VW" er 76 STOP 77 END	Reactance in ohms per Kilometer End
29 30 31 32 33	STO 03 X†2 "D2=?" PROMPT STO 04	D = Diameter Under 2 Neutral, Inches		
34 35 36 37 38 39	X↑2 3 * .5 +	$0.05292 \log_{10}(D_2/D_1) + 0.0115(1/2 + \frac{D_1^2}{3D_2^2})$	01+LBL "AV" 02 CF 21 03 FC? 55 04 RTN 05 SF 21	View Module For Printer Display
40 41 42 43 44 45	* RCL 04 RCL 03 / LOG		06 ACA 07 ACX 08 ADV 09 RTN 10 .END.	
46 47 48 49	.05292 * + XEQ 05			

-135-

I

STEP/KEY CODE

COMMENTS

STEP/KEY CODE

50+LBL 04

COMMENTS

00 GMR

SAMPLE XEQ "XL"
GMR? INCH
.1940 RUN
GMR? INCH 0.1940
PHASE: 1 / 3?
1.0000 RUN
CNW2: YZN
Y RUN
D1=?
.5120 RUN
D2=?
1.1100 RUN
XL/MFT= 0.0243
XL/KM= 0.0799
XEQ "XL"
GMR? INCH
.1940 RUN
GMR? INCH 0.1940
PHASE: 1 / 3?
1.0000 RUN
CNW?: YZN
N RUN
S=? INCH
1.4300 RUN
S=? INCH 1.4300
XL/MFT= 0.0918
XL/KM= 0.3013
XEQ -XL-
GMR? INCH
.1940 RUN
GMR? INCH 0.1940
PHASE: 1 / 3?
3.0000 RUN
GMD=?INCH
1.4300 RUN
GMD=?INCH 1.4300
XL/MFT= 0.0459
XL/KM= 0.1506

-01	Not	. Use	2d	+			
02	Not	Use					
03	D1						
04	רת 2						
	<u> </u>						
				+			
				+			
				+			
				+			
				+			
			FL	AGS			
*	INIT S/C	SE		AGS	CLE	AR INDICA	TES
*	INIT S/C	SE	FL T INDICATI	AGS	CLE	AR INDICA	TES
*	INIT S/C	SE	FL T INDICATI	AGS	CLE	AR INDICA	TES
*	INIT S/C	SE		AGS	CLE	AR INDICA	TES
#	INIT S/C	SE		AGS	CLE	AR INDICA	TES
*	INIT S/C	SE		AGS	CLE	AR INDICA	TES
		SE		AGS	CLE		TES
*		SE		AGS	CLE	AR INDICA	TES
*		SE		AGS	CLE		TES
*		SE		AGS			TES
#				AGS			TES
				AGS			TES
				AGS			TES
				AGS			TES
				AGS			TES
							TES
				AGS			TES
				AGS			TES

DATA REGISTERS

STATUS							
SIZE0_0_5 ENG DEG	TOT. REG FIX _4 SCI RAD GRAD						

ASSIGNMENTS					
FUNCTION	FUNCTION	KEY			

	-137-					
STEP/KEY CODE	COMMENTS			DATA F	REGIS	TERS
Traduction	in Cohle	00	GMD			
Inductance	in Cable					
01+LBL "LL"	Coometrie Mean				+	
02 "GMD?"	Distance in Inches					
03 PROMPT	Distance in inches					
04 SIU 00 05 "MC·1 /1	1=Multiconductor			· · · ·	++	
С:0"	0=Single Conductor				++	
06 PROMPT	0 0111g10 0011400001					
07 X=0?						
08 GTO 00						SAMPLE
09 "GMR?"	Geometric Mean					XEQ "LL"
10 FRUMFI 1141 BL 01	trahas				GMD?	
12 RCL 00	Thenes	3				1.43 RUN
13 X<>Y	$L=0.1404 \log \frac{GMD}{x10}$				MC:1 Z	10:0
14 /	GMR			1 mar 1	DMO	R KUN
15 LOG	I TO 14041 OF GMD				KO :	1,288 RUN
16.1404	L = 0.140410910 r				L= 6	.377-06
18 1 E-3	m					
19 *	Displays Inductance	2				
20 ENG 3	In Henrys to -					
21 "L="	Feet					i de la compañía de la
22 XEW "YW"	1000					XEQ "LL"
23 STUP 2441 RI ЙЙ					GMD?	
25 "RM?"	Enter Mean Sheath					1.43 RUN
26 PROMPT	Radius, Inches				MC:1 /)	
27 GTO 01					CMR2	I KUN
28 .END.					<b>u</b> nie .	.194 RUN
					L= 1;	21.8-06
				<b></b>	++	
			INIT	FL	.Ags	
		#	S/C	SET INDICAT	ES	
			┣───┠──			
STA	TUS					
SIZE 001 TOT. REG.						
ENG FIX SCI	ON OFF		┝──┼─			
DEG RAD GR	AD					
			++			
			╂╂			
ASSIG	MENTS					
			+			
			++-			
			+			
	<u> </u>	-	+			
		1	1 1			1



## DIELECTRIC CHARACTERISTICS OF CABLES

Robert W. Parkin

PROGRAM: "DC"

FUNCTION: This program covers the general dielectric characteristics associated with insulated power cables. Capacitance, Charging Current, Dielectric Loss, Capacitive Reactance, and Insulation Resistance of the cable are calculated. The values derived can be applied in the other electrical programs.

ACCESSORIES: HP-41 CX or CV, printer optional

**OPERATING LIMITS AND WARNINGS:** None

**REFERENCES:** CABLEC Corp, Essex Underground Cable Engineering Handbook, Bartnikas/McMahon, Engineering Dielectrics.

Many factors affect the dielectric properties of an insulated cable; among them being the permittivity (dielectric constant), power factor, leakage current, dielectric strength, impulse strength and operating temperature. Both Cross-Linked Polyethylene (XLPE) and Ethylene Propylene Rubber (EPR) insulating compounds exhibit good electrical properties. However, EPR insulated cables have higher dielectric losses proportional to rated circuit voltage as compared to XLPE.

**DIELECTRIC CONSTANT:** The permittivity, dielectric constant, or specific inductive capacity of any material used as a dielectric is equal to the ratio of a materials capacitance to the capacitance using a vacuum as the dielectric medium. The permittivity of dry air is approximately equal to one. The dielectric constant is an indicator of chemical or physical changes of the dielectric material; values are given with program documentation.

**DIELECTRIC** STRENGTH: The ultimate dielectric strength of a material is determined by the voltage at which it breaks down. The stress in volts/mil at which this occurs depends on the thickness of the insulation, temperature, frequency, waveform of the testing voltage and the method of application. The time for which the voltage is applied is important; most dielectrics will withstand a much higher voltage for brief periods. Dielectric strength is reduced when it is operated at high temperatures or if moisture is present.

**POWER** FACTOR: (or Tangent Delta) is a measure of the loss angle in the dielectric. The cable dielectric is an imperfect capacitor of high resistance and capacitive reactance. Therefore, the current passing through the dielectric leads the voltage across the dielectric by almost 90 degrees. The cosine of this angle is the power factor. Typical power factor values for dielectrics are:

<u>Material</u>	Power Factor
HMWPE	0.01%
XLPE	0.1%
TR-XLP	0.5%
EPR	1.0%

Power factor varies with temperature, voltage, water absorption and age of insulation, and is used to determine the dielectric loss dissipated as heat in the insulation, expressed in watts/ft. of cable. **<u>CAPACITANCE</u>**: from the viewpoint of electrokinetics is the property of an electric system comprising insulated conductors and associated dielectrics which determines for a given time rate of change of potential difference between th conductors, the displacement currents in the system.

Capacitance in cable can be calculated by:

$$C = \frac{7.354 \times 10 \times K}{\underset{\text{Log} \\ 10}{}}$$

Where:

C = Capacitance in microfarads per 1000 ft. (MFT)

K = Dielectric Constant

D = Diameter over Insulation

d = Diameter over conductor

<u>CHARGING</u> <u>CURRENT</u>: Where extremely long primary circuits are involved (apprx. 10 miles or more), lower cable capacitance may be required to reduce the 60 cycle charging currents; Which could account for an appreciable voltage drop. This can be accomplished by increasing the cable insulation thickness, thereby reducing cable capacitance. The charging current can be calculated as follows:

$$I = \frac{2 PI f C E}{1000}$$

Where:

- I = Charging current in amperes
- E = Circuit voltage to ground, kV
- f = Frequency in cycles per second
- C = Electrostatic Capacitance in microfarads

**<u>DIELECTRIC</u> LOSS:** The power dissipated by a dielectric is computed from the general formula:

2 -6 W = 2 PI f K C n e Fp x 10

Where:

- K = Dielectric Constant
- f = Frequency, cycles per second
- C = Capacitance of insulation per foot, one conductor to neutral when K = 1, in micro-microfarads
- n = Number of conductors in cable
- e = Voltage, conductor to neutral, kV
- Fp = Power factor of insulation, expressed as decimal
- W = Dielectric Loss in watts/ft.

**INSULATION RESISTANCE:** Is the volume d-c resistance measured in terms of surface resistivity in megohms per 1000 feet at 15.6 degrees C. It is useful in estimating leakage current when d-c proof testing cables after installation.

Where:

R = Insulation Resistance in Megohms/MFT
k = k constant (see table with program)
D = Diameter over insulation
d = Diameter over conductor

## USER INSTRUCTIONS

Size: 006

STER	D INSTRUCTIONS	INPUT	DISPLAY
1.	Connect printer if a hardcopy is desired. R/S after each display if no printer is attached.		
2.	Set printer switch to manual or normal mode.		
з.	Load programs "DC","VW"		
4.	Check status		
5.	Initialize: XEQ "DC"		
6.	Enter dielectric constant	e	e?
7.	Enter diameter over insulation	D	D?
8.	Enter diameter over ESS	d	d?
9.	Capacitance in Microfarads/MFT		C:MFT =
10.	Capacitance in Microfarads/km		C:/KM =
11.	Enter voltage to ground, kV	∨g	∨g?
12.	Charging current in Amperes/MFT		AMPS =
13.	Enter power factor as decimal	PF	N?
14.	Number of conductors	Ν	
15.	Dielectric loss watts/foot		W/FT =
16.	Capacitive Reactance		Xc =
17.	Enter K constant	к	K?
18.	Insulation Resistance in Megohms/MFT @ 15.6 degrees C.		IR=

STEP/KEY CODE	-144- Comments	STEP/KEY CODE	COMMENTS
Dielectri	ic Characteristics		
01+LBL "DC" 02 FIX 4 03 "e?" 04 PROMPT 05 STO 01 06 .007354 07 * 08 "D?" 09 PROMPT 10 "d?" 11 PROMPT 12 / 13 LOG 14 STO 00 15 / 16 STO 03 17 "C:MFT=" 18 XEQ "VW" 19 3.281 20 * 21 "C:/KM=" 22 XEQ "VW" 23 "VG?" 24 PROMPT 25 STO 02 26 376.99 27 * 28 RCL 03 29 * 30 1 E3 31 / 32 "AMPS=" 33 XEQ "VW" 34 7.354	*Enter Dielectric Constant Enter Diameter Over Insulation Enter Diameter Over ESS $C = \frac{7.354 \times 10^{-3} \times e}{\log_{10} D/d}$ Capacitance in Micro- farads/1000 Feet Capacitance in Micro- farads/Kilometer Enter Circuit Voltage to Ground in KV $(2\pi f) @ 60HZ$ $\frac{2\pi f CVg}{1000}$ Charging Current in Amperes/MFT	35 RCL 00 36 / 37 "PF?" 38 PROMPT 39 * 40 376.99 41 * 42 "N?" 43 PROMPT 44 * 45 RCL 02 46 X†2 W = 47 * CL 01 49 * 50 1 E-6 51 * 52 "W/FT=" 53 XEQ "VW" 54 376.99 55 RCL 03 56 * 57 1/X 58 CHS 59 "Xc= " C: 60 XEQ "VW" 61 "K?" 62 PROMPT 63 RCL 00 64 * 65 FIX 0 66 "IR=" 67 XEQ "VW" 68 END	C, When $\mathcal{E} = 1$ Enter Power Factor of Di- electric as a Decimal Enter Number of Conductors in Cable $2 \mathbf{rfe} \operatorname{Cne}^2 \mathbf{P}_{\mathrm{F}} \times 10^{-6}$ Dielectric Loss in Cable Insulation in Watts/Foot $X_{\mathrm{C}} = -\frac{1}{2 \mathbf{rf} \cdot \mathbf{C}}$ apacitive Reactance Enter K Constant For the Insulation Insulation Resis- tance in Megohms 1000ft
* <u>Typical V</u> PVC EPR Polyeth XLPE	Values of <i>E</i> (SIC)         3.5-8.0         2.8-3.5         hylene       2.3         2.3-6.0	IR = K K = Spe Res <u>Typical Va</u> Synthetic Rubber, Moisture Resist EP Insulation Polyethylene Crossed Linked Poly	<pre>© 15.6°C (60 F) log₁₀ D/d ecfic Insulation sistance in Meg- ohms/1000 alues of K Heat and ing 75C2000500002000 yethylene20000</pre>

DEG RAD GRAD					
ENG FIX SCI ON OFF					
SIZE_006 USER MODE					
STATUS					
		<u> </u>			
	#	INIT S/C		<u>S</u>	
			FL	AGS	
IN- 07000.					
IR= 8,803.					
N." 20.000 0000 PIIN					
אנ= <b>-ט.טכ</b> סט גע					
жи:- 0,0490 Ус:- 0,0490			1		
1,0000 KUN 4/57- 0 0059					
N? 1 9999 DUN					
.0010 RUN					
PF?					
AMPS= 0.2926					
20.2000 RUN					
¥G?					
C:/KM= 0.1261			· · · · · · · · · · · · · · · · · · ·		
4					
C:MFT= 0.038					
RUN					
392.0000					
d?					
RUN					
1,080,0000					
ло П2					
2.3000 K					
e/ 0 7000 D					
ΧΕQ "ΠC" -2					
VEO «DO»					
			-		
	03	Ca	pacitance		
		Gro	und kv		
	02	Va	-Voltage to		
			nstant		
	01	Di	electric		
			ις μ/α		
	+00			<b></b>	r
SAMPLE PROBLEM			DATA RE	EGIS	TERS
			-145-		

ASSIGNMENTS			
FUNCTION	KEY	FUNCTION	KEY

L		



**Section Two** 

# Polymer Insulated Cable Design

## SOLID DIELECTRIC CABLE DESIGN

Robert W. Parkin

PROGRAM: "CD"

FUNCTION: This program designs control, secondary, and Mediumhigh voltage power distribution cables rated from 600V to 138kV. Outer diameters, component thicknesses, and weights are displayed in accordance with industry standards and codes, i.e.; AEIC, ICEA, NEMA, UL, NEC, EPRI, AND IEEE. Original dimensions can be employed for custom cable designs. Drawings, tables, and example cables specifications are included in this section.

ACCESSORIES: HP-41 CX, or HP-41 CV model with extended memory functions module, printer optional, recommend card reader or wand to load in data.

**OPERATING LIMITS AND WARNINGS:** Enter AWG sizes 1/0, 2/0, 3/0, and 4/0 as 10,20,30, or 40. Maximum number of wires in control cables is 20 wires per cable. System voltage adders are incorporated up to 69kV, if above 69kV adders can be entered manually.

**REFERENCES:** are given in back

## PROGRAM DESCRIPTION AND PARAMETERS

This program covers the construction and design of cables for use on the following Utility and Industrial Systems:

- 1) Medium Voltage Primary Distribution (5-138 kV)
- 2) Low Voltage Secondary Distribution (600 V)
- 3) Control and Instrumentation (0-2000 V)

The user should recognize that many options exist and should consider all circuit parameters in the selection and design of the cable. As a minimum, the following system characteristics should be specified in cable specifications assuming a 60 hertz a-c circuit:

- 1) Normal operating voltage between phases or, if direct current, between conductors.
- Number of phases and conductors. If series street lighting, give the open circuit voltage and state whether system is operated with or without protection.
- 3) Cable insulation level (100% or 133%) or grounded or ungrounded circuit.
- 4) Minimum temperature at which cable will be installed.
- 5) Maximum conductor temperatures for normal (continuous), emergency, and short circuit operation.
- 6) Description and conditions of installation.

The following component thicknesses and diameters are displayed in accordance with AEIC and ICEA: center conductor; strands and diameter, extruded strand and insulation shield, and outer jackets over single or multi-conductor assemblies. The user has the option of overriding any industry standard value and entering original input values.

This allows the designer to construct an accurate and complete cable in accordance with industry standards or internal specifications.

 Association of Edison Illuminating Companies (AEIC) 51 East St., New York, N.Y. 10017

> CS5-87 (XLPE) 5-35 kV CS6-87 (EPR) 5-69 kV CS7-87 (XLPE) 46-138 kV

- Covers: Shielded Power Cables for outside plant utility service. Outlines qualification tests for cable core and insulation, with the addition of a thermomechanical type test for jacketed cables to determine electrical performance characteristics.
- Insulated Cable Engineers Association (ICEA) National Electrical Manufacturers Association (NEMA) 2101 L Street, N.W., Washington D.C. 20037

S-66-524 (XLPE) NEMA WC-7

S-68-516 (EPR) NEMA WC-8

S-61-402 (PE) NEMA WC-5

Covers: Processes, materials, properties and testing of power cables rated from 0 through 35kV. NEMA standards are adopted in the public interest and are designed to eliminate misunderstandings between the manufacturer and the purchaser and to assist the purchaser in selecting and obtaining the proper product for its particular need.

3. Underwriters Laboratories (UL) 1285 Walt Whitman Road, Melville, L.I., N.Y. 11747

## UL 1072 (XLPE & EPR)

- Note: UL is a nationally recognized product testing and certifying organization.
- 1072 Covers: Processes, materials, properties and testing of shielded and non-shielded cable rated 5 - 35kV, with emphasis on adequate safeguards for personnel and property. Type MV-90, MV-75, MC cable, "Sunlight Resistant", "For CT Use", and "Dil Resistant" cables included; these do not cover URD/UD power cables that have concentric neutral wires.
- 4. United States Department of Agriculture Rural Electrification Administration Washington D.C. 20250

REA 50-70 (U-1)

REA U-2 (600V Underground Cable)

REA maintains a system of bulletins that contains construction standards and specifications for materials and equipment which are applicable to electric system facilities constructed by REA electric borrowers in accordance with the REA loan contract.

Covers: REA Bulletin 50-70 (U-1) is the REA specification for Primary Underground Power Cable rated 15 kV and 25 kV. It contains REA's requirements relative to the purchase of underground power cables by REA electric borrowers. The requirements in bulletin 50-70 (U-1) are minimum requirements and are based primarily on specifications of national standard organizations, i.e., AEIC and ICEA.

-150-

## 5. The National Electric Code (NEC)

- Covers: 0-35 kV wire and cable, and is recognized as the legal criterion of safe electrical design and installation.
  - Note: Any wire or cable to be used in a NEC installation must carry a listing from a nationally recognized laboratory, of which UL is most predominant. When a cable type from a manufacturer is submitted to UL for testing, and passes the appropriate tests, it is assigned a specific listing which designates the type of installation in which the cable may be used. The most common UL standards and types for 600V - 2000V rated cables are given below:

<u>Cable Listing</u>	<u>UL</u> <u>Reference</u>	Pub. Voltage	Cable Type
USE	854	600V	Underground Service
UF	493	600V	Underground Feeder
NM	719	600V	Nonmetallic sheathed
тс	1277	600V	Tray cable
MC	1072	600V-35kV	Metal Clad
RHH (90 C)	44	600V-2 kV	Heat resistant rubber
RHW (75 C)	44	600V-2 kV	Moisture and heat resistant rubber
THW (75 C)	83	600V	Moisture and heat Resistant thermoplastic
THHN (90 C)	83	600V	Heat resistant TP
XHHW (90 C)	44	600A	Moisture and heat Resistant XL polymer
V₩-1	44	600V	Pass vertical flame test

The following summary of NEC letter-designations used for describing insulations and cable constructions may be helpful for understanding specifications that include NEC abbreviations. This summary relates only to power cables of the usual kinds. There are limitations and exceptions, so the abbreviations must be used with caution. Refer to NEC for full information.

#### INSULATION MATERIALS

#### HEAT-RESISTANT QUALITY

- R = Rubber (natural or synthetic) H = Suitable for 75C
- T = Thermoplastic
- X = XLPE.i.e., XHHW
- propylene

- HH= Suitable for 90C (except XHHW dry)
- FEP= Fluorinated ethylene Without "H" = Suitable for 60C.

## MOISTURE AND OIL RESISTANT QUALITY

- Without "W"= Usually suitable for dry locations.
- W = Usually suitable for wet and dry locations.
- M = Usually suitable for oily conditions (machine-tool circuits).

Do not confuse with "M" for metal as part of MC (metalclad).

Note: Listed separately by Underwriters Laboratories (UL) and governed by separate articles in the National Electric Code, AC and MC cables overlap a great deal both structurally and functionally. The numbers and sizes of conductors permitted in MC cable completely overlap and include the range permitted in AC cable. AC cable typically has 2,3 or 4 copper conductors in sizes ranging from 14 AWG through 1 AWG. MC cable may have multiple conductors, commonly from 18 AWG (copper) or 6 AWG (aluminum) up to 2000 kcmil.

## CABLE DESIGN AND MATERIALS

Power, control or instrumentation cables use similar designs and materials determined by operating voltage, insulation level, installation conditions, wet or dry locations etc.

600V, low voltage power cables are generally rated at 600V regardless of the use voltage, whether 120,240,277,480, or 600V. The selection of 600V power cable is oriented more to physical rather than to electrical service requirements. Resistance to forces such as crush, impact, and abrasion becomes a predominant factor, although good electrical properties for wet locations are also needed.

Material Data for components utilized by these programs are required only if weights are desired. Set flag O5 activities "weight mode" and will execute weight modules "WGT" and "SG" which require the specific gravity of extruded components.

A generalized specific gravity table for common compounds used in the industry today is given below.

Specific Gravity g/cm Material EPR 1.19 INSULATIONS: UC 4201 0.92 XL PE TRXLP UC 4202 0.92 UC 0581 1.14 SHIELDS: ESS UC 0691 1.14 EIS 11.37 METALS: LEAD * COPPER 8.87 2.703 ** ALUMINUM PVC 1.35 JACKETS: 0.93 LDPE HDPE 0.96 UC 7707 1.12 SCPE

* When worked and annealed

** Hard Drawn

З

#### CONDUCTORS

#### Program Selection of Conductors

Select type of phase conductor:

## Label Conductor Type

- A Solid Aluminum
- B Compact Class B strand
- C Compressed Class B strand

Input the conductor in kcmil or AWG size; the diameter and number of strands per conductor are then displayed.

NOTE: # 1/0 Input as 10 # 2/0 Input as 20 # 3/0 Input as 30 # 4/0 Input as 40

Any conductor diameter not stored in the program can be entered manually (in inches).

#### CONDUCTOR PROPERTIES

Copper and aluminum are the metals employed for the transmission and distribution of electrical energy.

<u>COPPER</u>: Copper is the best practical conductor of heat and electricity. When used as conductors for underground cable it is soft-drawn - annealed, and can be either uncoated (bare) or tin or lead alloy coated per ASTM B 33 or B 189. When metal coatings are applied to copper the electrical resistance of the wire or strand is increased.

The electrical properties of concern are electrical resistivity and conductivity. The volume resistivity of annealed bare copper is 10.371 ohms cir-mil/ft. at  $20^{\circ}$ C. The resistivity of metal coated copper varies according to wire diameter and the temperature coefficients of resistance. ALUMINUM: Aluminum is widely used and consists of 1350 EC Alloy available as full hard per ASTM B230 and intermediate tempers per ASTM B609:

## TEMPER DESIGNATION

[1]	H24	annealed 1/2 hard
	H26	annealed 3/4 hard
	H14	drawn 1/2 hard
	H16	drawn 3/4 hard
	H19	drawn full hard

Its conductivity is about two-thirds that of copper. Compared with a copper wire of the same physical size, aluminum wire has 61% conductivity of copper IACS., 45% of the tensile strength, and 33% of the weight. An aluminum conductor must be 100/61 = 1.64 times as large as copper wire in cross section to have the same conductivity. Equivalent Aluminum AWG size are two sizes larger than copper i.e. #4/0 AWG aluminum is equivalent to a # 2/0 AWG copper. This does not apply to kcmil sizes.

The volume resistivity of hard drawn aluminum is 17.002 ohms cmil/ft.

#### <u>Conductor</u> <u>Classes</u>

Conductors are classified as solid or stranded. A solid conductor is a single conductor of solid circular section. (Commonly sized 1/0 and below for aluminum). A stranded conductor is composed of a group of wires helically applied around each successive layer in opposite lay starting from one central wire to six, to 12, to 18 ... etc. This progression of six additional wires in each layer will produce a conductor of any diameter. The same size wire is used in each layer. This method makes the cable as flexible as possible thus facilitating bending. The weight and resistance increase of a stranded conductor versus a solid is approximately 2%.

The nominal direct current resistance in ohms per 1000 feet at  $25^{\circ}$ C of solid and concentric lay stranded conductors are taken from ICEA S-66-524 Table 2-4. Nominal conductor diameters are from table 2-7, and weights of conductors are from Table 0-2.

#### CONDUCTOR TYPES

<u>Solid</u> <u>Conductors</u>: Provides an excellent water block and smooth circumference for Aluminum power cable conductors. Drawn at intermiediate tempers either 1/2 or 3/4 hard per ASTM B 609. Conductors larger than a 4/0 must be stranded.

<u>Compressed</u> <u>Stranding</u>: This is the most common conductor configuration. The outer conductor diameter is compressed to 97% of the regular concentric round diameter per ASTM B231 for aluminum and ASTM B8 for copper. This compression of the conductor strands blocks the penetration of the extruded strand shield from flowing in the outer interstice of the strand and thereby making it easily removable in the field.

<u>Compact</u> <u>Stranding</u>: The outer conductor diameter is compacted (each stranded layer) to approximately 90% of concentric conductor diameters per ASTM B496 for aluminum and ASTM B400 for copper. This reduced conductor size results in an overall cable diameter proportionally lower and smooth outer surface for following applied components. Compacting does produce however a harder conductor especially in the case of copper.

Strandfill: The interstand area within the conductor can be filled with a semiconducting, polymeric material during the stranding process. The strandfill compound is designed to prevent water from penetrating the stranded cable conductor during storage, installation, splicing, and termination the cable. This eliminates the possibilities of water being trapped in the conductor given rise to electrochemical trees which could cause premature failure.

The strandfill material should be compatible with all cable components and exhibit testing characteristics in accordance with ICEA procedures.

Consideration should be given to 7 wire strands (#2 AWG) as solid aluminum; which would serve as the best type of water block.

## SEMI-CONDUCTING SHIELDING

Conventional semi-conducting shielding consists of an extruded thermosetting polymer material with conductive carbon black dispersed in the polymer material to achieve the require semiconducting properties. Voids and protrusions at the Insulation interface should comply with AEIC requirements.

The significant electrical property of semiconducting materials is volume resistivity. ICEA defines volume resistivity as a maximum of 500 ohm-meters at room temperature.

<u>Conductor or Strand Shield</u>: A strand shield eliminates excessive voltage stress in voids between the conductor and insulation, thus eliminating the stress concentration at the individual strand, and presents a smooth electrode to the inner surface of the insulation.

It may be a conducting non-metallic tape, conducting compound or a combination of both. An extruded conducting compound is preferable to eliminate irregularities introduced by lapped tapes.

#### CONDUCTOR SHIELD

The extruded strand shield (ESS) thickness per AEIC are as follows:

[2]

	Conductor Shield Thio	:kness (mils)
Conductor Size	Minimum	Minimum
<u>AWG or kcmil</u>	Point	Average
8-4/0	12	15
250- 500	16	20
600-1000	20	25
1001 and larger	24	30

For compact round conductors having a diameter eccentricity tolerance verified by measurement of 0-2 mils before covering, the conductor shielding thickness may be 50 percent of Table C1 values if stated by manufacturer at time of quotation. Also, criteria for conductor shield protrusions per C.1.3 are 5 and 5 mils respectively.

## INSULATION SHIELD

The insulation shield system consists of two parts. The first is a non-metallic covering directly over the insulation. The second Part is a non-magnetic metal component directly over or embedded in the non metallic covering.

NEC Section 310-6 contains rules on insulation shielding that must be observed. Solid dielectric insulated conductors operated above 2000V in permanent installations must have an ozoneresistant insulation and be shielded. However, non-shielded insulated conductors listed by a nationally recognized test laboratory are permitted for use up to 8000V under the condition given in Section 310-6 of NEC.

In general, shielding should be applied for non-metallic covered cables operating at a circuit voltage above 2000V for single conductor cable and 5000V for multi-conductor with common overall jacket.

There are three principal functions of an insulated shield.

- To obtain symmetrical radial stress distribution within the insulation and to eliminate, for practical purposes, tangential and longitudinal stresses on the surface of the insulation or jacket.
- 2. To provide a definite capacitance to ground for the insulated conductor, thereby presenting a uniform surge impedance and minimizing the reflection of voltage waves within the cable run.
- 3. To reduce the hazard of shock and danger to life and property.

Insulation shield thickness per AEIC is given below:

Calculated Minimum <b>Diameter Over</b>	Insi	For Cable and <b>Liation Sh</b> i	es With or Overall Ja i <b>eld Thick</b> i	Without acket <b>ness (mil</b> s)
Insulation	Nominal	Minimum	Maximum	Maximum
(inches)	Value	Point	Point	Indent
0 -1.000	40	30	70	15
1.001-1.500	50	40	85	15
4.501-2.000	70	55	100	20
2.001-and larger	70	55	115	20

Note 1: The minimum point does not apply to locations under the metallic shield indent.

**Note 2:** Nominal thickness represents the value used to calculate diameters measured over the insulation shield.

[1]

#### METAL COMPONENT

The metallic portion or the insulation shield serves as a current carrying medium to carry charging and leakage currents. In some cases, the shield may be required to carry more than the cable charging current. Fault or short circuit current can be carried with larger types of shielded depending on the duration of the fault and the time cycles per second. Program "ST" designs shields for short circuit current durations.

The types of shields available are given below:

- 1. Copper wire shield helically applied
  - a) #16 AWG and smaller referred to as wire shield
  - b) #14, #12, #10, #9, and #8 AWG referred to as concentric neutrals
- 2. Copper tape helically applied with overlap
- 3. Longitudinally applied and corrugated tape (LC)
- 4. Sheaths (lead sheath)
- 5. Flat strap neutrals
- 6. combination of wire and tape
- 7. Corrugated drain wires longitudally embedded in an extruded outer jacket (CPE)

#### Concentric Neutral Conductors

Concentric neutral conductors should consist of a number of copper wires meeting the chemical requirements of ASTM B5 and the resistivity, tensile, and elongation requirements of ASTM B3 for uncoated wires, ASTM B 33 for tin coated wires or ASTM B189 for lead alloy coated wires. The diameter and tolerance of these wires shall comply with ICEA S-66-524 section 7.1.5.

Program "CN" covers sizing of concentric neutral wires. URD cables are single phase and normally have the same current carrying capacity as the central phase conductor, and UD cables carry 1/3 the current as they are employed in three phase circuits.

It is recommended to encapsulate an overall jacket over Bare uncoated copper neutral wires. To prevent concentric neutral corrosion; which can cause reduction or even complete loss of cross-section, affecting the cable neutral ampacity, fault current capability, voltage drop, and metallic shield capability that lead to reduced service life and accelerated replacement of the cable.

#### INSULATION

The extruded dielectric is the most important component of a cable, as it serves the primary function of containing the voltage within the cable system. The most common solid dielectric insulation materials in use today for medium voltage cables are Cross-Linked Polyethylene (XLPE) and varieties of Ethylene Propylene Rubber (EPR). Some general characteristic properties are given below:

<u>Cross-Linked</u> <u>Polyethylene</u> (XLPE, XHHW): This insulation is listed in NEC as Type XHHW and also suitable for underground service entrance (USE), and is classified as thermosetting, 90 C operating temperature, rated from 600V to 138kV. It has seen over 20 years utility service, demonstrates strong resistance to thermal deformation, has excellent electrical and physical aging properties, and is light-weight. It is also environmental safe, and Least costly compared to TRXLP and EPR.

If operated increasingly under overload conditions, thermal expansion becomes a problem and can lead to cable degradation and failure when the insulation is susceptible to corona.

<u>Tree Retardant Cross-Linked Polyethylene (TRXLPE)</u>: Has the same general properties as XLPE, except is mineral filled (noncarbon) to retard tree growth within the cable. TRXLP is superior to cables with standard XLPE in accelerated water tests and breakdown strength ( AEIC water tree test). Slightly higher cost, with approximately six years field service. Its Dielectric strength is slightly reduced as compared to XLPE.

Ethylene Propylene Rubber (EPR): This insulation consists substantially of ethylene-propylene copolymer (EPM) or ethylenepropylene terpolymer (EPDM). It is UL approved and is recognized under the RHH-RHW type. EPR is a very highly filled material, in that most contain no more than 50% of the base ethylene propylene copolymer. The balance of the EP material consists of carefully selected and treated clays, cross-linking agents, antioxidants and possibly, filling materials to enhance flame-retardance or some property which is of interest to the compounder. Since the EP is highly filled its electrical properties are not as good as XLPE, however, these properties are quite acceptable for the purpose to which the cable is applied and the methods in which the cable is manufactured. It has higher dielectric losses than XLPE, affecting higher voltage distribution systems, and has approximately 20 years field service, more flexibility and superior physical characteristics at high temperature, and is normally more costly. Recent studies have shown that EPR insulations are 30% more efficient than XLPE in dissipating heat, particularly at the emergency overload temperature. EPR is also more flexible than XLPE over a wide range of temperatures, having a modulus at 100% extension only 60% as large as XLPE's. Greater flexibility in a wide range of climates means it can be installed easily and cost-effectively with smooth, reliable splices and terminations. These advantages are very important in areas where cable must be installed in extremely cold weather.

Insulation thicknesses in accordance with ICEA S-66-524 (XLPE) and S-68-516 (EPR) for cables rated <u>2000 volts and less:</u>

Rated Circuit Voltage Phase- <u>to-Phase</u>	Conductor Size AWG or <u>kcmil</u>	Single <u>Cable</u>	Multiple and Single with <u>Outer</u> <u>Jacket</u>
0-600V	#14 - #9	45	30
	#8 - #2	60	45
	#1 - 4/0	во	55
	225- 500	95	65
	525-1000	110	80
601- 2000V	#14 - #9	60	45
	#8 –  #5	70	55
	#1 - 4/0	90	65
	225- 500	105	75
	525-1000	120	90

Insulation thickness in accordance with ICEA S-66-524 (XLPE) for Type A,B,C,D <u>Control</u> <u>Cables:</u>

Conductor <u>Size</u> <u>AWG</u>	<u>300 Volts</u>	600 Volts	<u>1000 Volts</u>
#20 - #18	20	25	
#16	20	25	45
#14	25	30	45
#12 - #9		30	45

ICEA S-68-516 covers composite insulation thicknesses, and UL 854 and UL 44 cover 600V and 2000V single and multi-conductor cables.

**NOTE:** The minimum thickness at any point should not be less than 90 percent of the minimum average values given above.

Rated Voltage Phase to Phase Conductor Size <u>kV AWG or kcmil</u>		Minid Avera Insula Thick <u>Mi</u>	num age tion ness <u>ls</u>
		A	в
5	8 to 1000 Above 1000	90 140	115 140
8	6 to 1000 Above 1000	115 175	140 175
15	2 to 1000 Above 1000	175 220	220 220
25	1 to 2000	260	320
28	1 to 2000	280	345
35	1/0 to 2000	345	420
46	4/0 to 2000	445	580
69	500 to 2000	650	-
115	750 to 3000	800	-
138	750 to 3000	850	-

Insulation thicknesses per AEIC CS5,CS6, and CS7 are given below:

Note 1: For 25kV 133%, ICEA specifies a greater thickness of 345 mils versus 320.

- Note 2: For cables intended for three-phase systems, the Rated Voltage is expressed in terms of phase-to-phase voltage. For cables intended for other systems, it should be expressed in suitable terms that will make clear the voltages involved.
- Note 3: Ratings for above; CS5-87 5-35kV, CS6-87 5- 69kV, CS7-87 46-138kV.

**Note 4:** The selection of the cable insulation level to be used in a particular installation shall be made on the basis of the applicable phase-to-phase voltage and the general system category as outlined below.

a. <u>100</u> <u>Percent</u> <u>Level</u> - Cables in this category may be applied where the system is provided with relay protection such that ground faults will be cleared as rapidly as possible, but in any case within one minute. While these cables are applicable to the great majority of cable installations which are on grounded systems, they may also be used on other systems for which the application of cables is acceptable, provided the above clearing requirements are met in completely deenergizing the faulted section.

b. <u>133 Percent Level</u> - This insulation level corresponds to that formerly designated for ungrounded systems. Cables in this category may be applied in situations where the clearing time requirements of the 100 percent level category cannot be met, and yet there is adequate assurance that the faulted section will be deenergized in a time not exceeding one hour. Also, they may be used when additional insulation strength over the 100 percent level category is desirable.

**Note 5:** It is recommended that the minimum size conductor be in accordance with Table B1. For cables or conditions of service where mechanical stresses govern, such as in submarine cables or long vertical risers, these minimum conductor sizes may not provide sufficient strength.

#### JACKETS AND SHEATHS

Outer jackets can be applied to protect the cable core from physical damage and impede corrosion of metallic shields or neutral wires.

Some of the general properties associated with jacket materials are given below:

PVC	-	Polyvinyl Chloride
LDPE	-	Low Density Polyethylene
LLDPE	-	Linear Low Density Polyethylene
HDPE	-	High Density Polyethylene
MDPE	-	Medium Density Polyethylene
SCPE	-	Semiconducting Polyethylene
CSP	-	Chlorosulfonated Polyethylene
CPE	-	Chlorinated Polyethylene

TYPE

## PROPERTIES

- 1. PVC Thermoplastic, excellent resistance to oils, gasoline acids, alkalis and moisture. Good flame and sunlight resistance, low cost. Physical requirements comply with section 4.4.1 in ICEA S-66-524.
- 2. Polyethylene, Black
  - a) LDPE Same as PVC except has reduced resistance to petroleum products fire, and lower melting point. Physical Requirements comply with section 4.4.2 of ICEA, and ASTM Standard D 1248 for classifications, types, and grades. i.e, Type I, Category 4, Grades E4, E5, J1.
  - Same as LDPE with Greater tensile b) LLDPE and tear strength and higher impact and abrasion resistance. Also has improved low and high temperature performance.
d) SCPE

Superior mechanical and physical properties, has excellent abrasion resistance, and can be used as an outer jacket or coilable duct. ASTM D 1248 Type III Category 5 Class C, Grades are associated with the appropriate type, class and category designations. Medium density PE material is Type II.

Properties are given in ICEA S-68-516 Table 7.6-7 and ICEA S-66-524 as Type I and II requirements. Material used should have excellent stress crack resistance, volume resistivity, and compatibility with other cable materials. Compared to insulating LDHMWPE materials, an increase in cost from 20 to 30% usually applies and the carbon black content will cause the jacket to absorb water at a faster rate. Electrical contact with the ground along the cables entire length places the cable at local ground potential at all points; and should be treated as such.

Thermoset, highly resistant to abrasion, impact, oil and ozone, and provides excellent flexibility, and high Cost. Properties comply to section 4.4.10 of S-68-516.

Thermoset provides excellent resistance to high temperatures, tears. Mechanical abrasion and moisture. Very flexible with high cost.

Thermoplastic (or thermoset), same properties as Hypalon with better flame resistance, low temperature performance, low coefficient of friction. Physical properties comply to section 4.4.7 of S-68-516.

3) CSP (Hypalon)

4) Neoprene

5) CPE

# -166-JACKET COMPARISONS

	<u>PVC</u>	LDPE	HDPE	<u>Hypalon</u>	<u>Neoprene</u>	CPE
Abrasion Resistance	G	F-G	Ε	G	G	G
Flame Resistance	G	Р	Ρ	G	G	G
Moisture Resistance	G	Е	E	G-E	G	G
Oil Resistance	G	F-G	F-G	G	G	G-E
Low Temperature Flexibility	P-G	G-E	Ε	F	F-G	F-G
Sunlight Resistance	G-E	Е	Ε	E	G	G-E
Acid Resistance	G-E	G-E	G-E	E	G	Е
Alkali Resistance Sodium Hydroxide (Lye) Potassium Hydroxide (Potash Calcium Hydroxide (Lime)	G-E )	G-E	G-E	E	G	G-E
Paraffinic Hydrocarbons Gasoline Kerosene	G	P-F	P-F	Р	Ρ	P
Aromatic Hydrocarbons Benzol Tolul	P-F	Ρ	P	F	P-F	F
Halogenated Hydrocarbons Chloroform Carbon Tetrachloride Methylene Chloride	Ρ	Ρ	Ρ	Р	P	Ρ
Alcohol Resistance Isopropyl Wood Grain	F	E	E	G	F	G
Relative Cost	2	1	3	6	4	5
E - Excellent G - Good						

F - Fair 1 - Lower

P - Poor 6 - Higher

CPE resins can be compounded with other materials to produce either thermoplastic or thermoset jacketing materials. Low halogen containing thermoplastic CPE compounds have attained prominence in cable jacketing applications. These materials compare quite favorably with thermoset jacketing materials, such as CSP in virtually all of the critical performance characteristics including its fire resistant properties.

An excellent IEEE guide for the selection of power cable jackets [14] is available.

The thicknesses of outer jackets are given in the following tables in accordance with ICEA S-66-524 and S-68-516.

Outer jackets that are extruded to fill the area between concentric neutral wires are referred to as encapsulating jackets. The program displays the sleeved on outer jacket thickness with a double beep; if no jacket is required enter zero, if an encapsulated jacket is required, use the thickness given in the table below in accordance with ICEA S-66-524 section 7.1.6.1:

Diameter Over Concentric Wires	Minimum Average Jacket <u>Thickness</u>
0 - 1.500"	50 mils
Over 1.500"	80 mils

The minimum spot thickness will be 80% of the minimum average value.

The encapsulated jacket material (either semiconducting or insulating) should be free stripping from the concentric neutral wires and insulation shield.

For phase or circuit identification outer polyethylene jackets can have colored stripes (primary cable normally red) extruded into the jackets. The width of these stripes will depend on the circumference of the cable and should be equally spaced 120 degrees apart for three stripes, and 90 degrees apart for four.

#### METALLIC SHEATHS

Sheaths are generally defined as the protective covering of a cable core which includes at least one metallic component. ICEA defines "jacket" as a continuous nonmetallic covering and "sheath" as a continuous metallic covering. Lead sheathing is still used to protect paper insulated cables and on some solid dielectric cables for maximum protection in underground manhole and tunnel, or underground duct distribution systems subject to flooding. While not as resistant to crushing loads as interlocked armor, its very high degree of corrosion and moisture resistance makes lead attractive in the above applications. The refined lead used should be produced from lead-bearing materials meeting the requirements of ASTM specification B29.

#### INTERLOCKED ARMOR

Where added mechanical protection is required, armored cable may be utilized. Interlocked armors made from galvanized steel, or aluminum are widely used. Where corrosion and moisture resistance are required in addition to mechanical protection, an overall jacket of extruded material may be used. The use of interlocked galvanized steel armor must be avoided on singleconductor a-c power circuits due to high hysteresis and eddy current losses. This effect, however is minimized in three conductor cables with armor overall and with aluminum armor on single-conductor cables.

#### NONSHIELDED CABLES

Nonshielded cables rated 2001 to 5000 Volt are mainly used under conditions where shields cannot be adequately grounded, or where space is inadequate for proper termination of the shielding system. ICEA S-66-524 table 3-1, and sections 7.5 and 7.6 cover the requirements for non-shielded cables. Nonshielded cables without protective coverings should have a carbon black pigmented insulation which is resistant to sunlight.

If the cable is Type MV listed per UL 1072 having interlocked aluminum or steel armor, a grounding conductor should be placed within the cable assembly sized in accordance with table 20.1. Tables 12.1 and 12.2 give the insulation thicknesses for nonshielded cables rated 5000 or 8000 Volt at the desired percent level catagory.

JACKET	MINIMUM AVERAGE	WALL -OVER LEAD SHEATH	OR ARMOR TABLE
MIN DIA OF	MIN DIA OF	(MIN AVG WALL)	(MIN AVG WALL)
LAST OPER.	LAST OPER.	FOR JACKET	FOR JACKET
(MINIMUM)	(MAXIMUM)	OVER LEAD SHEATH	OVER ARMOR
0.000	0.750	.050	.050
0.751	1.500	.065	.050
1.501	2.250	.080	.060
2.251	3.000	.095	.075
3.001	9.999	.110	.085

	JACKET MIN	NIMUM AVERAGE WALL	-STANDARD TABLE	
MIN DIA OF	MIN DIA OF	JACKET OVERALL	(MIN AVG WALL)	(MIN AVG WALL)
LAST OPER.	LAST OPER.	FOR SINGLE OR	FOR JACKET	OVER SINGLE IN
(MINIMUM)	(MAXIMUM)	MULTICONDUCTOR	UNDER ARMOR	MULTICONDUCTOR
0.000	0.249	.045	.045	.015
0.250	0.425	.045	.045	.025
0.426	0.700	.060	.045	.030
0.701	1.500	.080	.060	.050
1.501	2.500	.110	.080	.080
2.501	°.999	.140	.110	.000

		LUAL DIMENSIONS TARE	
	N DIA OF	(MIN AVG WALL)	(MIN AVG WALL)
LAST OPER. LA	ST OPER.	NO JACKET	JACKET
(MINIMUM) (M	AX IMUM)	ON 1/C CABLE	ON 1/C CABLE
0.000	0.425	.045	.045
0.426	0.700	.065	.055
0.701	1.050	.080	.070
1.051	1.500	.095	.085
1.501	2.000	.110	.095
2.001	3.000	.125	.110
3.001	9.999	.140	.125

	INTERLOCKED AR	MOR THICKNESS TABLE	
AST OPER	LAST OPER	ARMOR	ARMOR
MIN DIA	MIN DIA	THICKNESS	THICKNESS
(MINIMUM)	(MAXIMUM)	STEEL	ALUMINUM
	1.500	0.020	0.025
1.501	9.999	0.025	0.030

# -170-FACTORY TEST VOLTAGES

### Medium Voltage AEIC

RATED	INSUL	MIN	AC	DURATION	DC	DURATION
VOLTAGE	LEVEL	AVG	VOLTAGE	IN	VOLTAGE	IN
(KV)	PERCENT	WALL	(KV)	MINUTES	(KV)	MINUTES
005	100	.090	018	5	035	15
005	133	.115	023	5	045	15
008	100	.115	023	5	045	15
008	133	.140	028	5	055	15
015	100	.175	035	5	070	15
015	133	.220	044	5	080	15
023	100	.295	044	5	110	15
025	100	.260	052	5	100	15
025	133	.345	069	5	125	15
027	100	.275	055	5	126	15
028	100	.280	0 <b>56</b>	5	105	15
028	133	.345	069	5	125	15
035	100	.345	069	5	125	15
035	133	.420	084	5	155	15
046	100	.445	089	5	165	15
045	133	.580	116	5	215	15

	MEDIUM	VOLTAGE 1	rest for	R ICEA S	-68-524 AND	UL1072	
RATED	INSUL	MIN EXT	MIN	AC	DURATION	DC	DURATION
VOLTAGE	LEVEL	LEVEL	AVG	VOLTAGE	IN	VOLTAGE	IN
(KV)	PERCENT	(KV)	WALL	(KV)	MINUTES	(KV)	MINUTES
005	100	04	.090	13	5	000	00
005	133	05	.090	13	5	000	15
008	100	06	.115	18	5	045	15
008	133	08	.140	22	5	045	15
015	100	11	.175	27	5	070	15
015	133	15	.215	33	5	080	15
025	100	19	.260	38	5	100	15
025	133	26	.345	49	5	125	15
058	100	21	.280	42	5	105	15
035	100	26	.345	49	5	125	15

#### Table 2-7

#### Nominal Diameters* Conductor Concentric Lay Stranded Size Solid Compact Class B Compressed Class C Class D AWG kcmil Inch Inch Inch Inch Inch Inch 22 0.812 0.0253 . . . . . . . . . . . . . . . 20 1.02 1.29 0.0320 . . . . . . . . . . . . . . . 19 0.0359 . . . . . . . . . . . . . . . 18 1.62 0.0403 . . . . . . . . . . . . . . . 2.05 2.58 17 0.0453 . . . . . . . . . . . . . . . 16 0.0508 . . . . . . . . . . . . . . . 15 3.26 0.0571 0.0629 0.0648 . . . 0.0641 0.0704 0.0735 0.0735 14 4.11 0.0727 . . . 13 5.18 0.0720 0.0792 0.0816 0.0825 0.0826 . . . 12 0.0808 0.0888 0.0915 0.0925 0.0931 6.53 . . . 8.23 0.0998 0.103 0.104 0.104 11 0.0907 . . . 10.38 0.1019 0.112 0.116 0.117 0.117 10 • • • 9 13.09 0.1144 0.126 0.130 0.131 0.132 8 7 16.51 0.1285 0.134 0.141 0.146 0.148 0.148 20.82 0.164 0.166 0.1443 0.158 0.166 • • • 0.169 0.186 6 0.1620 0.178 0.184 0.186 26.24 0.200 33.09 0.206 0.208 0.209 0.1819 5 4 41.74 0.2043 0.213 0.232 0.234 0.235 0.2294 0.238 0.252 0.260 0.263 0.264 3 52.62 66.36 83.69 0.283 0.322 2 0.2576 0.268 0.292 0.296 0.297 0.2893 0.299 0.332 0.333 0.333 1 0.374 0.374 1/0 0.3249 0.336 0.361 0.372 105.6 0.406 0.3648 0.376 0.418 0.420 0.420 2/0 133.1 0.4096 0.456 0.470 0.471 0.423 0.472 3/0 167.8 0.529 0.576 0.530 0.576 0.512 0.558 4/0 0.4600 0.475 0.528 211.6 250 0.5000 0.520 0.575 0.630 0.631 0.631 300 0.5477 0.570 0.611 350 0.5916 0.616 0.661 0.681 0.681 0.682 400 0.6325 0.659 0.706 0.728 0.729 0.729 450 0.6708 0.700 0.749 0.772 0.773 0.773 500 0.7071 0.736 0.789 0.813 0.814 0.815 550 0.829 0.855 0.855 0.855 0.775 . . . 0.813 0.866 0.893 0.893 0.893 600 . . . 0.901 0.929 0.930 0.930 650 0.845 . . . 0.877 0.935 700 0.964 0.965 0.965 • • • 750 0.998 0.999 0.998 . . . 0.938 1.000 1.030 1.032 1.032 800 . . . 1.094 1.095 1.093 0.999 1.061 900 . . . 1.152 1.153 1000 1.060 1.117 1.153 . . . 1.210 1.173 1.209 1.211 1100 . . . . . . 1.264 1.290 1.225 1.251 1200 1.263 1.264 . . . . . . 1.289 1250 1.290 . . . . . . 1.316 1.316 1300 1.275 1.314 . . . . . . 1400 1.323 1.365 1.365 1.365 . . . . . . 1500 1.370 1.412 1.413 1.413 . . . . . . 1.415 1.459 1.460 1.460 1600 . . . . . . 1.504 1.504 1.504 1.459 1700 • • • . . . 1.527 1.527 1.480 1.526 1750 . . . . . . 1.549 1.502 1.548 1.548 1800 . . . . . . 1.590 1.591 1.590 1900 1.542 . . . . . . 1.632 1.632 1.583 1.632 2000 . . . . . .

#### Nominal Diameters for Copper and Aluminum Conductors

* Diameters in millimeters shall be obtained by multiplying the above values in inches by 25.4.

Conductor		Solid			Conc	entric Lay Strand	led*	
Size	Aluminum	Cop	per	Aluminum		Copr	ber	
AWG or kcmil		Uncoated	Coated	Class, B, C, D	Uncoated		Coated	
					Class B, C, D	Class B	Class C	Class D
22 20 19	27.1 16.9 13.5	16.5 10.3 8.20	17.2 10.7 8.52	27.4 17.3 13.7	16.7 10.5 8.33	17.9 11.1 8.83	••••	· · · · · · ·
18 17 16	10.7 8.45 6.72	6.51 5.15 4.10	6.76 5.35 4.26	10.9 8.54 6.85	6.67 5.21 4.18	7.07 5.52 4.43	· · · · · · ·	···· ···
15 14 13	5.32 4.22 3.34	3.24 2.57 2.04	3.37 2.67 2.12	5.41 4.31 3.41	3.30 2.63 2.08	3.43 2.73 2.16	2.79 2.21	2.83 2.22
12 11 10	2.66 2.11 1.67	1.62 1.29 1.02	1.68 1.34 1.06	2.72 2.15 1.70	1.66 1.31 1.04	1.72 1.36 1.08	1.75 1.36 1.08	1.75 1.39 1.11
9 8 7	1.32 1.05 0.833	0.808 0.640 0.508	0.831 0.659 0.522	1.35 1.07 0.851	0.825 0.652 0.519	0.856 0.678 0.538	0.856 0.678 0.538	0.874 0.680 0.538
6 5 4	0.661 0.524 0.415	0.403 0.319 0.253	0.414 0.329 0.261	0.675 0.534 0.424	0.411 0.325 0.258	0.427 0.338 0.269	0.427 0.339 0.269	0.427 0.339 0.269
3 2 1	0.329 0.261 0.207	0.201 0.159 0.126	0.207 0.164 0.130	0.336 0.266 0.211	0.205 0.162 0.129	0.213 0.169 0.134	0.213 0.169 0.134	0.213 0.169 0.134
1/0 2/0 3/0	0.164 0.130 0.103	0.100 0.0794 0.0630	0.102 0.0813 0.0645	0.168 0.133 0.105	0.102 0.0810 0.0642	0.106 0.0842 0.0667	0.106 0.0842 0.0669	0.106 0.0842 0.0669
4/0 250 300	0.0819 0.0694 0.0578	0.0500	0.0511	0.0836 0.0707 0.0590	0.0510 0.0431 0.0360	0.0524 0.0448 0.0374	0.0530 0.0448 0.0374	0.0530 0.0448 0.0374
350 400 450	0.0495 0.0433 0.0385	· · · · · · ·	 	0.0505 0.0442 0.0393	0.0308 0.0269 0.0240	0.0320 0.0277 0.0246	0.0320 0.0280 0.0249	0.0320 0.0280 0.0249
500 550 600	0.0347	••••	· · · · · · ·	0.0354 0.0321 0.0295	0.0216 0.0196 0.0180	0.0222 0.0204 0.0187	0.0224 0.0204 0.0187	0.0224 0.0204 0.0187
650 700 750		· · · · · · ·	 	0.0272 0.0253 0.0236	0.0166 0.0154 0.0144	0.0171 0.0159 0.0148	0.0172 0.0160 0.0149	0.0173 0.0160 0.0150
800 900 1000	· · · · · · ·	•••	· · · · · · ·	0.0221 0.0196 0.0177	0.0135 0.0120 0.0108	0.0139 0.0123 0.0111	0.0140 0.0126 0.0111	0.0140 0.0126 0.0112
1100 1200 1250	•••	· · · · · · ·	· · · · · ·	0.0161 0.0147 0.0141	0.00981 0.00899 0.00863	0.0101 0.00925 0.00888	0.0102 0.00934 0.00897	0.0102 0.00934 0.00897
1300 1400 1500	· · · · · · ·	· · · · · · ·	· · · · · · · ·	0.0136 0.0126 0.0118	0.00830 0.00771 0.00719	0.00854 0.00793 0.00740	0.00861 0.00793 0.00740	0.00862 0.00801 0.00747
1600 1700 1750	••••	· · · · · · ·	· · · · · · ·	0.0111 0.0104 0.0101	0.00674 0.00634 0.00616	0.00694 0.00653 0.00634	0.00700 0.00659 0.00640	0.00700 0.00659 0.00640
1800 1900 2000	•••	· · · · · · ·	• • • •	0.00982 0.00931 0.00885	0.00599 0.00568 0.00539	0.00616 0.00584 0.00555	0.00616 0.00584 0.00555	0.00622 0.00589 0.00560
2500 3000 3500		••••		0.00715 0.00596 0.00515	0.00436 0.00363 0.00314	0.00448 0.00374 0.00323	•••	
4000 4500 5000	· · · · · · ·	· · · · · · ·	···· ···	0.00451 0.00405 0.00364	0.00275 0.00247 0.00222	0.00283 0.00254 0.00229		•••

### Nominal Direct Current Resistance in Ohms Per 1000 Feet** at 25 °C (77 °F) of Solid and Concentric Lay Stranded Conductor

* Concentric lay stranded includes compressed and compact conductors.

** Resistance values in milliohms per meter shall be obtained by multiplying the above values by 3.28.

Ta	ble	0	-2
I a	DIe	U	-

<u> </u>							Approxi	mate Weight	
Conductor Size,	Number	Approximate	Diameter of	Appro	ximate	Alum	inum	Сор	per
AWG or	of Strands	Each :	Strand	Outside	Diameter	Pounds per	a/m	Pounds per	a/m
	Stranus			menes		1000 Peet	g/ 111	10001000	g/ 111
22	7	9.6	0.244	0.029	0.737			1.975	2.941
20	7	12.1	0.307	0.036	0.914	•••	• • •	3.154	4.705
19	1	13.0	0.345	0.041	1.04	• • •	• • •	3.9/4	5.922
18	7	15.2	0.380	0.040	1.17	• • •		5.015	9.402
16	7	19.2	0.437	0.052	1.32	•••	•••	7 974	11.86
10	•	17.2	0.100	0.050					
15	7	21.6	0.549					9.959	14.98
14	7	24.2	0.615					12.68	18.88
13	7	27.2	0.691	• • •				16.01	23.82
12	7	30.5	0.775	• • •	• • •	6.13	9.12	20.16	30.00
11	7	34.3	0.871	• • •	• • •	7.72	11.5	25.49	37.80
10	7	38.5	0.978	•••		9.75	14.5	32.06	47.71
0	7	43.2	1.10			12.3	18 3	40 42	60.14
Ŕ	7	48.6	1 23	•••		15.5	23 1	51.0	75.9
7	7	54.5	1.39			19.5	29.1	64.2	95.7
6	7	61.2	1.56			24.6	36.7	80.9	121
5	7	68.8	1.75	• • •		31.1	46.2	102	152
4	7	77.2	1.96	•••	•••	39.2	58.3	129	192
3	7	86.7	2.20	•••	• • •	49.4	73.5	162	242
2	/	97.4	2.47	•••		62.3	92.7	203	303
1	19	66.4	1.69			78.6	117	259	385
1/0	19	74.5	1.89			99.1	147	326	485
2/0	19	83.7	2.13			125	186	411	611
3/0	19	94.0	2.39			157	234	518	771
4/0	19	105.5	2.68			199	296	653	972
260		<b>83 3</b>	2.00			226	240	772	1150
250	37	82.2 90.0	2.09	• • •	•••	233	<i>349</i> <i>4</i> 10	925	1380
300	37	90.0	2.29	•••	•••	1202	489	1080	1610
400	37	104.0	2.47	•••		376	559	1236	1840
450	37	110.3	2.80	•••		422	629	1390	2070
500	37	116.2	2.95			469	699	1542	2300
550	61	95.0	2.41			517	768	1700	2530
600	61	99.2	2.52	• • •		563	838	1850	2/60
650	61	103.2	2.62	• • •	• • •	610	908	2000	2990
700	01	107.1	2.72			03/ 704	9/8	2316	3450
750	61	110.9	2.82	•••		704	1120	2469	3680
900	61	121.5	3.09	•••		845	1260	2780	4140
,	•••								
1000	61	128.0	3.25			939	1400	3086	4590
1100	91	109.9	2.79			1032	1540	3394	5050
1200	91	114.8	2.92			1126	1680	3703	5510
1250	91	117.2	2.98			1173	1750	3839	5/40
1300	91	119.5	3.04		•••	1220	1820	4012	6430
1400	91	124.0	3.13			1212	1900	4320	0-50
1500	91	128.4	3.26			1408	2100	4632	6890
1600	127	112.2	2.85			1501	2240	4936	7350
1700	127	115.7	2.94			1596	2370	5249	7810
1750	127	117.4	2.98			1643	2440	5403	8040
1800	127	119.1	3.02			1691	2510	5562	8270
1900	127	122.3	3.11			1783	2650	5865	8730
2000	127	125.5	3.19			1877	2790	61/6	9190

# Concentric Stranded Class B Aluminum and Copper Conductors

1	01 5405	33		E4 E40E
64 1	015025	64	17	515025
32	03125		32	53125
<u> </u>	046875	<del>35</del> 64	-	546875
<u>1</u> 16	0625		<u>9</u> <u>16</u>	—.5625
5	0 <b>78125</b>	$\frac{37}{64}$ -		—. <b>578125</b>
3	09375		<u>19</u> <u>32</u>	—. <b>59375</b>
<u>1</u>	109375	$\frac{39}{64}$ -		—.609375
1	125		5	—.625
9	140625	41 -		640625
<u>5</u>	15625		21	65625
<u>11</u>	171875	43	34	—.671875
3	1875	- <b>*</b>	11	—.6875
<u>13</u>	203125	45	10	703125
04 <u>7</u>	21875	04	23	71875
<u>15</u>	234375	47	32	734375
64 <u>1</u>	.250	64	3	750
<u>17</u> 4	265625	49	4	
64 _9	28125	64	25	- 78125
<u>19</u> <u>32</u>	296875	51	32	- 796875
64 <u>5</u>	- 3125	64	<u>13</u>	8125
<u>16</u>	- 328125	53	16	
64 <u>11</u>	_ 34375	64	27	9/375
32 23	250275	55	32	950275
64 3	275	64	7	037373
25 8	373	57	8	875
64 13	390023	64	29	890025
32	40023	50	32	90025
64 7	4218/5	64 -	4 E	921875
	4375		16	9375
64	453125	<u>61</u> -	•4	953125
32	46875		<u> </u>	— . <b>96875</b>
<u></u> 64	484375	$\frac{63}{64}$ -		—. <b>984375</b>
<u> </u>	.500		1	-1.000
INC 16 37 1 3 1 5 3 16 37 8 16 4 16 8 .0052 .0078 .0104 .0158 .0208 .0209 .0313 .	HES IN DECIM. $\frac{1}{2}$ $\frac{5}{8}$ $\frac{3}{4}$ $\frac{7}{8}$ 4417 .0512 .0625 .0729 .	AL OF 1 2 3	A FOOT 3 4 5 6 7 300 .3333 .4117 .5000 .5833 .	8 9 10 11 1867 .7580 .8333 .9167

DECIMAL EQUIVALENTS OF FRACTIONS

in. Stranded Compressed Stranded Compressed Concentric Coated Copper Approx. 0.D. 0.789" Extruded Compressed Concentric Coated Copper print a stranded Compressed Conductor Shield Colducting Thermosetting Insulation Shield 1.30" 1.30" Min Max Insulation Shield 1.30" 1.30" Insulation Shield 1.30" 1.30"	DUCTOR PER, CROSS-LINKED DN, SHIELDED, WITH	VANIZED STEEL JACKET 15 KV 133% R ICEA S-66-524 072 TYPE MV-90
0.003" Tinned Copper Shielding Tape 10% Min. Lap Polypropylene Fillers Polypropylene Fillers 3/#1 AWG (19W) Class B Stranded Compressed Concentric Bare Copper Gondwires Approx. 0.D. 0.322" Binder Tape binder Tape 0.025" Calvanized Steel Interlocked Armor 0.025" Calvanized Steel Interlocked Armor 0.025" Calvanized Steel Interlocked Armor 0.025" Calvanized Steel Interlocked Armor 0.025" Calvanized Steel Interlocked Armor	THREE CONDUCTOR 500 KCMIL COATED COPPER, CROSS-LINKED POLYETHYLENE INSULATION, SHIELDED, WITH	CROUNDWIRES, CALVANIZED STEEL INTERLOCKED ARMOR, PVC JACKET 15 KV 133% INSULATION LEVEL PER ICEA S-66-524 AEIC CS5-82, UL 1072 TYPE MV-90





#### CABLE SPECIFICATIONS

This example specification section is intended to be used as a basis for the development of individual specifications, or in the preparation of specifications for a particular project. In either case, these guide specifications must be edited to fit the conditions of use and adapted to a particular cable size, or group.

For a specification that covers a group of cables, it is advisable to incorporate a table or chart in the back of the specification to outline or reiterate specific construction details and parameters. Assigning an item code number also helps identify individual cables, especially items with similar constructions; i.e., same item with reduced neutral, or same item triplexed or parallel.

Ideally a specification should relate the performance desired and expected from the product. To avoid writing a specification that precludes the implementation of good, sound manufacturing techniques, or the use of compatible, good materials (maybe better), is the responsibility of the specification writer.

The specification writer should analyze available data to prove the need for a particular requirement. Should a limiting or restricting requirement be offered for inclusion in a specification; supporting data should be solicited and carefully examined before that requirement is in fact, included. This simple step will reduce the proliferation of specification requirements which do little more than reduce technically sound, and competitive offerings from cable manufacturers.

#### 600V UL TYPE TC POWER AND CONTROL TRAY CABLE

Multiconductor power cable rated 600 volts, 90 C normal continues for critical circuits in tray application UL listed as Type TC.

- Conductor: Bare copper Class B strand per ICEA S-68-516, Part 2.
- Insulation: Shall be Type II Ethylene Propylene in accordance with ICEA S-68-516, Part 3.7. Thickness shall be per Table 3-1.
- Fillers: (optional) Shall be suitable nonhygroscopic fillers.
- Grounding Conductors: Shall be bare copper Class B per ICEA S-68-516, Part 2. Size shall be in accordance with UL 1277, Part 6.
- Cabling Insulated conductors shall be assembled per ICEA S-68-516, Part 5.

Overall Cable Jacket: Shall be Chlorosulphonated polyethylene per ICEA S-68-516, Part 4 or Chlorinated Polyethylene (CPE) meeting the following physical requirements: 1400 psi Tensile Strength, min. 150% Elongation, min. Air Oven Test Percent of Original 168 hours at 121 C Tensile 85 Elongation 50

Identification: Individual conductors shall be UL listed as VW-1 and colored or printed by the sequence detailed in Table L-2 of ICEA S-66-524. Surface printing on the overall jacket shall be a contrasting color consisting of manufacturer's name, locatin, cable type, cable size, and voltage rating.

Tests: Finished cable shall be tested in accordance with ICEA S-68-516 and shall meet UL 1277 flame test.

Documentation: Manufacturere shall furnish certified test reports showing compliance with electrical requirements of ICEA S-68-516 and UL 1277 flame test.

Standards: Cable and materials shll meet the following standards, most recent editins, as cited herein:

ICEA S-68-516 UL 1277 ICEA S-66-524 (Color Code only).

#### 600V SINGLE CONDUCTOR POWER CABLE

Single conductor, copper power cable, rated 600 volts, 90 C normal operating, 130 C emergency, 250 C short circuit. UL listed Type RHHH, RHW, USE and VW-1. For critical circuits.

- **Conductor:** Bare copper class B strand per ICEA S-68-516, Part 2.
- Separator Tape: If required, shall be of an opaque Mylar tape, applied between conductor and insulation material.
- Insulation: Ethylene propylene rubber per ICEA S-68-516, Part 3. Thickness shall be in accordance with ICEA S-68-516, Table 3-1.
- Jacket: If required, shall be chlorosulfonated polyethylene in accordance with ICEA S-68-516, Part 4.4.9.
- Identification: Cable shall be surface printed with a contrasting color consisting of the manufacturer's name, location, cable size, cable type and voltage rating.
- Finished Cable Tests: Manufacturer shall furnish certified test reports showing compliance with ICEA S-68-516, Part 3 and UL 44.
- Listings: Finished cable shll be UL listed as Type RHH, RHW, USE, and VW-1 rated. Size 250 MCM and larger shll be listed "For CT Use".
- Standards: Cable and materials shall meet the following standards, most recent editions as cited herein:

UL 44, Eleventh Ed., Rev. May 83.

#### SPECIFICATION FOR 5kV THROUGH 35kV SHIELDED POWER CABLE

#### 1.Ø SCOPE

- 1.1 This specification covers single conductor Solid Dielectric TRXLPE insulated power cable for use on a single phase or three phase 15 kV 60 Hertz grounded neutral system.
- 1.2 The cable shall be suitable for use in wet and dry locations in underground conduits or ducts and direct earth burial.
- 1.3 Finished cable shall be UL listed as Type MV-90 and Sunlight Resistant.
- 1.4 The insulation level shall be 133%.

#### 2.Ø GENERAL

The cable specified herein shall meet the requirements of the latest edition of AEIC Specification CS-5, UL 1072, and ICEA Standard S-66-524. Where a difference between this specification and others referenced herein exist, this specification shall govern. The cable and all its components shall be designed to operate satisfactorily at a normal temperature of 90 degrees C conductor, an emergency temperature of 130 degrees C conductor and short circuit temperature of 250 degrees C.

#### 3.Ø CONDUCTOR

- A. Copper conductor (when specified), shall be uncoated soft drawn-annealed, Class B compressed concentric lay strand in accordance with ASTM Standard B3.
- B. Aluminum conductor shall be Class B compressed concentric lay stranded EC 1350 Alloy, H19 temper in accordance with ASTM Standard B230. If a solid aluminum conductor is specified the intermediate temper shall be 1/2 or 3/4 hard per ASTM B609.

3.2 The inner interstices of the stranded conductor shall be continuously filled with a semi-conducting compound so as to render the conductor incapable of transmitting moisture. The compound shall be flexible and stable under the conditions imposed by cable operation according to the test requirements per ICEA No. P-XX-610, "Guide for performance of a Longitudinal Water Penetration Resistance Test for Sealed Conductors" and be fully compatible with the conductor, conductor shield and insulation.

#### 4.Ø CONDUCTOR SHIELD

- 4.1 The conductor shield shall be extruded and the material used shall be a conducting, thermosetting polymer that is compatible with the underlying conductor metal and the overlying insulation.
- 4.2 The conductor shield shall be thoroughly bonded to the overlying insulation and shall be tight fitting, yet strippable from the underlying conductor.
- 4.3 The thickness of the extruded conductor shield shall be in accordance with AEIC CS5 or AEIC C56.

#### 5.Ø INSULATION

- 5.1 The insulation shall be unfilled, clean tree retardant crosslinked polyethylene (TRXLPE). It shall be applied at the same time as the conductor and insulation shields and cured or crosslinked simultaneously with those components.
- 5.2 The minimum average insulation thickness shall be 220 mils.
- 5.3 The insulation shall comply with the requirements of the latest editions of AEIC CS5 and ICEA S-66-524.

#### 6.Ø INSULATION SHIELD

- 6.1 The cable shall have extruded directly over the insulation a semi-conducting, thermoset polymer in accordance with AEIC CS5.
- 6.2 The extruded insulation shield shall adhere tightly yet be readily strippable from the underlying insulation and shall be compatible with all materials with which it comes in contact. The tension required to strip the insulation shield shall be in accordance with AEIC CS5.

6.3 The average thickness of the extruded shielding material shall be in accordance with AEIC CS5.

#### 7.Ø METALLIC SHIELD

- 7.1 Metallic shielding component shall be in accordance with ICEA S-66-524 as a minimum requirement.
- 7.2 Fault current sizing (if applicable) will be specified with request for quotation.

#### 8.Ø JACKET

- 8.1 An outer black PVC jacket meeting the requirements of ICEA section 4 shall be provided, extruded over the mylar separator tape if drain wires are supplied or extruded directly over the copper tape shield.
- 8.2 The jacket shall be of smooth and uniform composition and free of porosity, holes, cracks, blisters, or other imperfections.

#### 9.Ø IDENTIFICATION OF CABLE

Cable shall have identification according to UL 1072 Type MV-90 with a sequential footage marker. The sequential number shall be printed every 2 feet.

#### 10.0 CABLE REELS

- 10.1 The cable shall be shipped on non-returnable wood reels in lengths specified in the Quotation Request.
- 10.2 The reel drum diameter shall be in accordance with NEMA Publication No. WC 26-1984.
- 10.3 The inner drum end of the cable, when allowed to project through the flange of the reel, shall be protected to avoid injury to the cable or cable seal.

#### 11.Ø IDENTIFICATION OF REEL

Reel shall have identification according to AEIC CS-5 (latest edition).

### 12.0 PACKING, SEALING AND SHIPPING

- 12.1 Each end of each lengths of cable shall be durably sealed before shipment to prevent entrance of moisture.
- 12.2 The cable shall be placed on the reels in such a manner that it will be protected from injury during shipment. Care shall be taken to prevent the reeled cable from becoming loose. Each end of the cable shall be firmly and properly secured to the reel.
- 12.3 The reels shall be covered with suitable material to provide physical protection for the cables during transit and during ordinary handling operations and storage.
- 12.4 Reels shall be securely blocked in position so that they will not shift during transit.

#### 13.Ø TESTS AND TEST REPORTS

- 13.1 All tests indicated in this specification shall be performed in accordance with the test procedures as described in ICEA Standard S-66-524 and AEIC CS-5 (latest edition) as applicable.
- 13.2 An X-Y recording of the apparent discharge (ADC) level of each reel, tested in accordance with procedure described in AEIC CS-5 (latest edition), shall become a part of the certified test reports specified in 13.3 of this Specification.
- 13.3 The Manufacturer shall furnish a copy of a certified test report of tests covered in this specification and of all non-listed standard tests.

### 14.Ø QUALIFICATION TYPE TESTS

14.1 The manufacturer shall have on file a copy of the latest AEIC qualification test report that represents the cable being supplied. A change in compound material would require re-qualification and new reports should be submitted.

#### SPECIFICATION FOR 15kV RATED URD CABLE

#### 1.Ø SCOPE

- 1.1 This specification covers single conductor Solid Dielectric TRXLPE insulated underground residential distribution (URD) cable for use on a single phase 15 kV 60 Hertz grounded neutral system.
- 1.2 The cable shall be suitable for use in wet and dry locations in underground conduits or ducts and direct earth burial.
- 1.3 The insulation level shall be 133%.

#### 2.Ø GENERAL

The cable specified herein shall meet the requirements of latest edition of AEIC Specification CS-5 and the ICEA Standard S-66-524. Where a difference this between specification and others referenced herein exist, this shall govern. The cable and specification all its components shall be designed to operate satisfactorily at a normal temperature of 90 degrees C conductor, an emergency temperature of 130 degrees C conductor and short circuit temperature of 250 degrees C.

#### 3.Ø CONDUCTOR

- A. Copper conductor (when specified), shall be uncoated soft drawn-annealed, Class B compressed concentric lay strand in accordance with ASTM Standard B3.
- B. Aluminum conductor shall be Class B compressed concentric lay stranded EC 1350 Alloy, H19 temper in accordance with ASTM Standard B230. If a solid aluminum conductor is specified the intermediate temper shall be 1/2 or 3/4 hard per ASTM B609.
- 3.2 The inner interstices of the stranded conductor shall be continuously filled with a semi-conducting compound so as to render the conductor incapable of transmitting moisture. The compound shall be flexible and stable under the conditions imposed by cable operation according to the test requirements per ICEA No. P-XX-610, "Guide for performance of a Longitudinal Water Penetration Resistance Test for Sealed Conductors" and be fully compatible with the conductor, conductor shield and insulation.

#### 4.Ø CONDUCTOR SHIELD

- 4.1 The conductor shield shall be extruded and the material used shall be a conducting, thermosetting polymer that is compatible with the underlying conductor metal and the overlying insulation.
- 4.2 The conductor shield shall be thoroughly bonded to the overlying insulation and shall be tight fitting, yet strippable from the underlying conductor.
- 4.3 The thickness of the extruded conductor shield shall be in accordance with AEIC CS5 or AEIC C56.

#### 5.Ø INSULATION

- 5.1 The insulation shall be unfilled, clean tree retardant crosslinked polyethylene (TRXLPE). It shall be applied at the same time as the conductor and insulation shields and cured or crosslinked simultaneously with those components.
- 5.2 The minimum average insulation thickness shall be 220 mils.
- 5.3 The insulation shall comply with the requirements of the latest editions of AEIC CS5 and ICEA S-66-524.

#### 6.Ø INSULATION SHIELD

- 6.1 The cable shall have extruded directly over the insulation a semi-conducting, thermoset polymer in accordance with AEIC CS5.
- 6.2 The extruded insulation shield shall adhere tightly yet be readily strippable from the underlying insulation and shall be compatible with all materials with which it comes in contact. The tension required to strip the insulation shield shall be in accordance with AEIC CS5.
- 6.3 The average thickness of the extruded shielding material shall be in accordance with AEIC CS5.

#### 7.Ø CONCENTRIC NEUTRAL

- 7.1 A concentric neutral conductor shall be tightly applied over the extruded semi-conducting insulation shield. It shall meet the requirements in accordance to ICEA S-66-524 Section 7.1.5.
- 7.2 The cable shall be supplied with a full neutral concentric conductor.
- 7.3 The concentric neutral conductor shall consist of bare soft drawn copper wires.

### 8.Ø JACKET

- 8.1 The cable shall have an encapsulating outer jacket to cover the concentric neutral conductor and fill the spaces between the wires, and be free stripping from the extruded insulation shield and concentric neutral wires.
- 8.2 The jacket shall be of smooth and uniform composition and free of porosity, holes, cracks, blisters, or other imperfections.
- 8.3 The jacket material shall be Linear Low Density Polyethylene and it shall meet the applicable requirements specified in ICEA Publication S-66-524 Section 4.4.2. The jacket thickness shall be per ICEA S-66-524 Section 7.1.6.1.

#### 9.Ø IDENTIFICATION OF CABLE

Cable shall have identification according to AEIC CS-5 (latest edition) and a sequential footage marker. The sequential number shall be printed every 2 feet.

#### 10.0 CABLE REELS

- 10.1 The cable shall be shipped on non-returnable wood reels in lengths specified in the Quotation Request.
- 10.2 The reel drum diameter shall be in accordance with NEMA Publication No. WC 26-1984.
- 10.3 The inner drum end of the cable, when allowed to project through the flange of the reel, shall be protected to avoid injury to the cable or cable seal.

#### 11.Ø IDENTIFICATION OF REEL

Reel shall have identification according to AEIC CS-5 (latest edition).

#### 12.Ø PACKING, SEALING AND SHIPPING

- 12.1 Each end of each lengths of cable shall be durably sealed before shipment to prevent entrance of moisture.
- 12.2 The cable shall be placed on the reels in such a manner that it will be protected from injury during shipment. Care shall be taken to prevent the reeled cable from becoming loose. Each end of the cable shall be firmly and properly secured to the reel.
- 12.3 The reels shall be covered with suitable material to provide physical protection for the cables during transit and during ordinary handling operations and storage.
- 12.4 Reels shall be securely blocked in position so that they will not shift during transit.

#### 13.Ø TESTS AND TEST REPORTS

- 13.1 All tests indicated in this specification shall be performed in accordance with the test procedures as described in ICEA Standard S-66-524 and AEIC CS-5 (latest edition) as applicable.
- 13.2 An X-Y recording of the apparent discharge (ADC) level of each reel, tested in accordance with procedure described in AEIC CS-5 (latest edition), shall become a part of the certified test reports specified in 13.3 of this Specification.
- 13.3 The Manufacturer shall furnish a copy of a certified test report of tests covered in this specification and of all non-listed standard tests.

#### 14.Ø QUALIFICATION TYPE TESTS

14.1 The manufacturer shall have on file a copy of the latest AEIC qualification test report that represents the cable being supplied. A change in compound material would require re-qualification and new reports should be submitted.

#### REFERENCES

- [1] ICEA S-66-524 NEMA PUB. NO. WC-7, ICEA S-68-516, NEMA PUB. NO. WC-8 for XLPE and EPR wire and cables.
- [2] AEIC CS5, CS6, CS7 for XLPE and EPR shielded power cables.
- [3] Electric Cables Materials and Constructions, J.L. Steiner
- [4] National Electrical Code 1987, NFPA Publ.
- [5] Standard Handbook for Electrical Engineers, Fink and Beaty
- [6] Material Data Sheet, Union Carbide
- [7] Aluminum Electrical Conductor Handbook, The Aluminum Assc.
- [8] Underground Systems Reference Book, Edison Electric Institute.
- [9] UL 1072 Medium Voltage Power Cables
- [10] Specification REA U-1
- [11] ASTM Standard D 1248, Standard Specifications for Polyethylene Plastics Molding and Extrusion Materials
- [12] ASTM Standards: B230, B231, B406, B3, B8
- [13] ASTM Standards: B33, B189, B29.
- [14] Guide for Selecting and Testing Jackets for Cables, IEEE-ANSI Standard 532-1982,1983.
- [15] Guide for Selection and Design of Aluminum Sheaths for Cables, IEEE/ANSI Standard 635,1980.
- [16] EPR-Based URD Insulation: "A Question of Confidence" Morton Browm.
- [17] IEEE Recommended Practice for Electrical Power Distribution for Industrial Plants, STD 141-1976

#### DATA REGISTER LOADING INSTRUCTIONS

An example is given below on how to load data in main memory to a data file in extended memory. Note, that a data file contains two data header registers along with the data registers.

The following procedure can be applied to load desired data registers:

	DATA REGISTER	FUNCTION
×	"STC", "STA", "SAL"	Weights
	"A", "B", "C"	Conductor diameters
	"AWG"	AWG diameters
¥	"СТД"	Control Cable Factors

* Optional

<u>STEP</u>	INSTRUCTION	EXAMPLE
1.	Execute size	XEQ 025
2.	Load data by card or enter manually into main memory	18 Registers ( 05-022 )
з.	Put file name in alpha	"C"
4.	Enter 20 (18+2)	20
5.	Create data file	XEQ CRFLD
6.	Put file name in alpha	"C"
7.	Enter index value (05.022 +1)	05.023
8.	Move data to data file	XEQ "SAVERX"

#### USER INSTRUCTIONS

#### MODE: Medium Voltage Without Component Weights

#### SIZE: 026 STEP INSTRUCTIONS INPUT DISPLAY Connect printer if a hardcopy is 1. desired. R/S after each display if no printer is attached. 2. Set printer switch to manual or normal mode. Load programs "CD", "TT", "MN", "kV", "IS", "ESS", "JK". з. **Optional Programs:** Control: "CT" Secondary: "VV" Weights: "WGT", "SG" Weight Components: "CNW", "FS", "LC", "CU", "JKT", "CW" 4. Clear Flag 05 Select A, B, C 5. Initialize: XEQ "CD" Select conductor type: A,B,C 6. A = SolidB = Compact C = Compressed AWG or Enter conductor size in AWG or AWG?:KCMIL? 7. kcmil.Note: 1/0 = 10, 2/0 = 20 kcmil 3/0 = 30, 4/0 = 40.XXW O.D= Number of strands and Diameter 8. of Conductor, mils. kV? 9. Enter system voltage rating, kV. k٧ kV= (displayed only if conductor size is greater than 4/0 AWG).

10.	Display/Enter adder	(enter	if	0,10,15,or	20
	voltage rating over	69kV),	mils.		

-193-

STEP	INSTRUCTIONS	INPUT	DISPLAY
11.	Extruded Strand Shield thickness per AEIC; R/S or enter desired ESS thickness, mils.	* ESS	ESS/AEIC= ESS=
12.	Enter Insulation Thickness, mils	INSL	INSL?
13.	Diameters over insulation Minimum Maximum, mils	-	x x x x x x x x
14.	Extruded Insulation Shield Thickness (nominal) per AEIC; R/S or enter desired EIS, mils.	* EIS	AEIC= EIS=
15.	Diameters over EIS Minimum Maximum, mils	-	x x x x x x x x
16.	Enter AWG wire size #8 AWG - #24 AWG	AWG or zero	AWG?
	Note: Enter zero if no concentric wires apply		
17.	Minimum Diameter over Wires in inches.	-	MIN=
18.	Enter Adder for Tape Shields, Separator tapes, LC shield, Metallic Sheaths, in mils	Adder	Adder?
19.	Display outer Jacket Thickness for sleeved on (non-encapsulating) type jackets per ICEA. R/S, or enter desired thickness, mils. (See comment on last page)	* JKT	JKT:ICEA=
	NOTE: Enter zero if non - Jacketed construction.		

STEP	INSTRUCTIONS	INPUT	DISPLAY
20.	Diameters over outer jacket (or Metallic shield/sheath) if non- jacketed, mils. Minimum Maximum	-	x x x x x x x x
21.	Display Circumscribed Nominal Triplexed O.D. of 3 Single cables, inches.	-	3/C O.D=
22.	Enter Adder for Binder tapes, or Sheaths mils.	Adder	ADDER?
23.	Display Minimum O.D over Adder Component. inches	-	MIN =
24.	Overall Outer Jacket thickness per ICEA for multiconductor cables without Metallic armor, mils. R/S, or enter desired thickness.	* JKT	JKT:ICEA=
25.	Overall Nominal Diameter of complete multiconductor assembly, inches.	-	3/C 0.D =
26.	Display Maximum Diameter of Ground Wire that can fit in the outer Interstice of the cable, inches.	-	MX.GW.DIA=

* Input only where applacable

NOTE: Encapsulating Jacket thickness per ICEA is 50 mils when the minimum 0.D given in step 17 is less than or equal to 1.5", and 80 mils if greater than 1.5" (over concentric neutral wires).

# USER INSTRUCTIONS

# MODE: Medium Voltage With Component Weights

SIZE: 026

<u>STE</u>	P INSTRUCTIONS	INPUT	DISPLAY
1.	Connect printer if a hardcopy is desired. R/S after each display if no printer is attached.		
2.	Set printer switch to manual or normal mode.		
з.	Load programs "CD", "TT", "MN", "kV", "IS", "ESS", "JK"."WGT" "SG"		
	Optional Programs:		
	Control: "CT" Secondary: "VV" Weights: "WGT", "SG" Weight Components: "CNW", "FS", "LC", "CU", "JKT", "CW"		
4.	SET Flag 05	SF 05	
5.	Initialize: XEQ "CD"		Select A,B,C
6.	Select conductor type:	A,B,C	
	A = Solid B = Compact C = Compressed		
7.	Enter conductor size in AWG or kcmil. <b>Note: 1/0 = 10, 2/0 = 20</b> <b>3/0 = 30, 4/0 = 40</b>	AWG or kcmil	AWG?:KCMIL?
8.	Number of strands and Diameter of Conductor, mils.		XXW D.D=
9.	Enter system voltage rating, kV. (displayed only if conductor size is greater than 4/0 AWG).	κV	kV? kV=
10.	Display/Enter adder (enter if voltage rating over 69kV), mils.	*	0,10,15,or 20

STEP	INSTRUCTIONS	INPUT	DISPLAY
11.	Select Type Metal:	1 or 0	AL:1 / CU:0
	1 = Aluminum 2 = Copper		
12.	Weight per 1000 Feet of ESS and Metal Conductor, lbs.	-	WT/MFT=
13.	Extruded Strand Shield thickness per AEIC; R/S or enter desired ESS thickness, mils.	* ESS	ESS/AEIC= ESS=
14.	Enter Insulation Thickness, mils	INSL	INSL?
15.	Diameters over insulation Minimum Maximum, mils	-	x x x x x x x x
16.	Enter Specific Gravity of Insulation.	SG	SG?
17.	Weight of Insulation Compound per 1000 ft, lbs.	-	XXX.XX LB
18.	Extruded Insulation Shield Thickness (nominal) per AEIC; R/S or enter desired EIS, mils.	* EIS	AEIC= EIS=
19.	Diameters over EIS Minimum Maximum, mils	-	<b>X X X X</b> X X X X
20.	Enter Specific Gravity of EIS	SG	SG?
21.	Weight of EIS compound/MFT	-	XXX.XX LB
22.	Recall Register 25 to display total core weight at this point	RCL 25	XXX.XX LB
23.	Enter AWG wire size #8 AWG - #24 AWG	AWG or zero	AWG?
	<b>Note:</b> Enter zero if no concentric wires apply		
24.	Minimum Diameter over Wires in inches.	-	MIN=
25.	Enter Adder for Tape Shields, Separator tapes, LC shield, Metallic Sheaths, in mils	Adder	Adder?

26.	Display outer Jacket Thickness for sleeved on (non-encapsulating) type jackets per ICEA. R/S, or enter desired thickness, mils.	* JKT	JKT:ICEA=
	<b>NOTE:</b> Enter zero if non - Jacketed construction.		
27.	Diameters over outer jacket (or Metallic shield/sheath) if non- jacketed, mils. Minimum Maximum	-	X X X XX X X X
28.	Display Circumscribed Nominal Triplexed O.D. of 3 Single cables, inches.	-	3/C O.D=
29.	Enter Adder for Binder tapes, or Sheaths mils.	Adder	ADDER?
зо.	Display Minimum O.D over Adder Component. inches	-	MIN =
31.	Overall Outer Jacket thickness per ICEA for multiconductor cables without Metallic armor, mils. R/S, or enter desired thickness.	* JKT	JKT:ICEA=
32.	Overall Nominal Diameter of complete multiconductor assembly, inches.	-	3/C O.D =
33.	Display Maximum Diameter of Ground Wire that can fit in the outer Interstice of the cable, inches.	-	MX.GW.DIA=

* Input only if applicable

NOTE: Encapsulating Jacket thickness per ICEA is 50 mils when the minimum 0.D given in step 24 is less than or equal to 1.5"and 80 mils if greater than 1.5" (over concentric neutral wires).

# USER INSTRUCTIONS

# MODE: TRPX & QUAD 600V Secondary Cables

STER	INSTRUCTIONS	INPUT	DISPLAY
1.	Connect printer if a hardcopy is desired. R/S after each display if no printer is attached.		
2.	Set printer switch to manual or normal mode.		
з.	Load programs "CD", "TT", "MN", "kV", "IS", "ESS", "JK", "VV".		
	Optional Programs:		
	Control: "CT" Secondary: "VV" Weights: "WGT", "SG" Weight Components: "CNW", "FS", "LC", "CU", "JKT", "CW"		
4.	Clear Flag 05		
5.	Initialize: XEQ "CD"		Select A,B,C
6.	Select conductor type:	A,B,C	
	A = Solid B = Compact (Class B) C = Compressed (Class B)		
7.	Enter Phase Conductor size in AWG or kcmil.Note: $1/0 = 10, 2/0 = 20$ 3/0 = 30, 4/0 = 40.	AWG or kcmil	AWG?:KCMIL?
8.	Number of strands and Diameter of Conductor, mils.		XXW O.D=
9.	Enter system voltage rating, kV. (displayed only if conductor size is greater than 4/0 AWG).	κV	kV? kV=

STEP	INSTRUCTIONS	INPUT	DISPLAY
10.	Extruded Strand Shield thickness per AEIC; Enter Zero	0	ESS/AEIC= ESS=0
11.	Select type of Cable:	1	CT:0 / SC:1?
	0 = Control 1 = Secondary		
12.	Enter Insulation Thickness, mils	INSL	INSL?
13.	Nominal Diameter over insulation in mils.	-	NOM =
14.	Enter Neutral Conductor size AWG or kcmil.	AWG or kcmil	AWG/:KCMIL?
15.	Number of strands and diameter of conductor.	-	XX₩: C.D=
16.	Enter Insulation Thickness of Neutral Conductor ( zero if bare).	INSL	INSL?
17.	Nominal O.D of Neutral Cable.	-	NOM=
18.	Choose Assembly:	1 or 0	TX:1 / QD:0
	1 = Triplexed		
	0 = Quadruplexed		
20.	Nominal O.D. over complete Triplexed or Quadruplexed Assembly.	-	NOM: 0.D=

### USER INSTRUCTIONS

# MODE: Control & Instrumentation Cables

#### SIZE: 026

STE	P INSTRUCTIONS	INPUT	DISPLAY
1.	Connect printer if a hardcopy is desired. R/S after each display if no printer is attached.		
2.	Set printer switch to manual or normal mode.		
з.	Load programs "CD", "TT", "MN", "kV", "IS", "ESS", "JK", "CT".		
	Optional Programs:		
	Control: "CT" Secondary: "VV" Weights: "WGT", "SG" Weight Components: "CNW", "FS", "LC", "CU", "JKT", "CW"		
4.	Clear Flag 05		
5.	Initialize: XEQ "CD"		Select A.B.C
6.	Select conductor type:	A,B,C	
	A = Solid B = Compact (Class B) C = Compressed (Class B)		
7.	Enter Conductor size in AWG or kcmil.Note: 1/0 = 10, 2/0 = 20 3/0 = 30, 4/0 = 40.	AWG or kcmil	AWG?:KCMIL?
8.	Number of strands and Diameter of Conductor, mils.		XXW O.D=
9.	Enter system voltage rating, kV. (displayed only if conductor size is greater than 4/0 AWG).	kV	k∨? k∨=
STEP	INSTRUCTIONS	INPUT	DISPLAY
------	-----------------------------------------------------------	-------	--------------------
10.	Extruded Strand Shield thickness per AEIC; Enter Zero	O	ESS/AEIC= ESS=0
11.	Select type of Cable:	0	CT:0 / SC:1?
	0 = Control		
	1 = Secondary		
12.	Enter Insulation Thickness, mils	INSL	INSL?
13.	Nominal Diameter over insulation in mils.	-	NOM =
14.	Enter number of conductors in assembly.	N	ND:CDTR?
15.	Enter adder for Binder or separator tapes, mils.	ADDER	ADDER?
16.	Minumum O.D. over binder tape	-	M I N=
17.	Outer jacket thickness per ICEA. R/S. or enter desired	*	JKT:ICEA=
	thickness, mils.		M/C 0.D=
18.	Minimum Diameter over complete assembly.	-	MIN =

* Input only if applicable

#### USER INSTRUCTIONS

## MODE: Manual Input of Conductor Diameters

SIZE: 026

STEP	INSTRUCTIONS	INPUT	DISPLAY
Rom	STEP 7		
8.	After BEEP, enter diameter of conductor in inches.	dia.	DIA: INCH?
9.	Display Diameter of Conductor		OW O.D=
10.	Select Metal:	1 or 0	AL:1/CU:0
11.	Enter weight of metal conductor and ESS.	WΤ	WT/MFT?
12.	Enter estimated O.D over ESS	0.D	EST.O.D:ESS?

Continue to next step in appropriate program

01+LBL "VW" 02 CF 21 03 FC? 55 04 GTO 01 05 SF 21 06 ACA 07 SF 12 08 ACX 09 PRBUF 10 TONE 5 11 CF 12 12 RTN 13+LBL 01 14 ARCL X 15 AVIEW 16 TONE 5 17 STOP 18 RTN 19 END

01+LBL "AV" 02 CF 21 03 FC? 55 04 RTN 05 SF 21 06 ACA 07 ACX 08 ADV 09 RTN 10 END SAMPLE PROBLEM

XEQ "CD" SELECT: A,B, С: XEQ C AWG?: KCMIL? 1000 RUN AWG?: KCMIL? 1000 61W O.D=1117 KV? 25 RUN KV? 25KV 10 ESS/AEIC=25 RUN ESS=25INSL? 260 RUN INSL? 260 MILS 1695---1755 AEIC = 70RUN EIS= 70 1835---1935 AWG? 12 RUN AWG? 12 MIN = 1.995 ADDER? 16 RUN ADDER? 16 MILS JKT: ICEA=110 RUN JKT= 110 MILS 2235---2385 3/C 0.D=4.98 ADDER? RUN 30 ADDER? 30 MILS MIN = 5.010RUN JKT: ICEA=140 RUN JKT= 140 MILS 3/C 0.D=5.32 MX.GW.DIA=1.152

XEQ "CD" SELECT: A, B, C:XEQ C AWG?: KCMIL? 1000 RUN AWG?: KCMIL? 1000 61W O.D=1117 KV? 35 RUN KV? 35KV 15 AL: 1 / CU: ø 0 RUN WT/MFT=3154 RUN ESS/AEIC=25 RUN ESS=25 INSL? 345 RUN INSL? 345 MILS 1870---1930 SG? .920 RUN 699.57 LB RUN AEIC = 70RUN EIS= 70 2010---2110 SG? 1.140 RU N 225.48 LB RUN AWG? 12.00 RU м AWG? 12.00 MIN = 2.170ADDER? 16 RUN ADDER? 16 MILS JKT: ICEA=110 RUN JKT= 110 MILS 2410---2560

3/C O.D=5.36 ADDER? 30 RUH ADDER? 30 MILS MIN = 5.385 RUN JKT: ICEA=140 RUN JKT= 140 MILS 3/C O.D=5.69 MX.GW.DIA=1.236 SAMPLE PROBLEM

XEQ "CD" SELECT: A, B,  $\mathbf{C}$ : XEQ C AWG?: KCMIL? RUN 14 AWG?: KCMIL? 14 7W O.D=70 ESS/AEIC=15 0 RUN ESS=0 CT: 0 / SC: 1? RUN 0 INSL? RUN 30 INSL? 30 MILS NOM:0D=0.130 NO. CDTR? 12 RUN NO. CDTR? 12 ADDER? RUN 20 ADDER? 20 MIN = 0.560JKT: ICEA=60 RUN JKT= 60 MILS M/C: OD: MIN = 0.680

XEQ "CD" SELECT: A,B, C : XEQ C AWG?: KCMIL? 40 RUN AWG?: KCMIL? 40 19W O.D=512 ESS/AEIC=15 0 RUN ESS=0 CT: 0 / SC: 1? 1 RUN INSL? 60 RUN INSL? 60 MILS NOM:0D=0.638 AWG?: KCMIL? 10 RUN RWG?: KCMIL? 10 19W O.D=362 INSL? 60 RUN INSL? 60 MILS NOM:0D=0.488 TX:1 / QD: 0 1 RUN M/C 0.D: NOM:0D=1.276

	JMINUM Solid	SAL		LTGUNALLUN	· Y Y Y . Z Z Z Z . T	Estimated O.D. of Conductor and ESS.	Net Weight of Metal Conductor and ESS.	
scmil	ALJ				X X X Conductor Size AWG/ kcmil			
<u>R WEIGHTS</u> #2 AWG - 1000 H	ALUMINUM STRAND	STA	R05= 2.3200077 R06= 1.3590092 R07= 10.4000115 R08= 20.4440143 R09= 30.4950178 R10= 40.5570226 R11= 250.6040261 R12= 300.6570311 R12= 300.6570311 R12= 300.6570311 R13= 350.7070450 R14= 400.7530411 R15= 450.7970450 R16= 500.8370509 R16= 500.9250613 R16= 700.9250613 R16= 700.9250613 R17= 700.9250613 R16= 700.9250613 R16= 700.9250613 R16= 700.9250613 R17= 700.9250613 R16= 700.92506 R16= 700.92506R16= 700.92506 R1	ксе= 0.0000000 * R21= 1.0280761 * R22= 1.1791007				
DATA REGISTERS FOI					upper not Applicable s Registers se in Program	1		
	COPPER STRAND	STC	R05= 2.3200220 R06= 1.3590273 R07= 10.4000342 R08= 20.4440429 R09= 30.4956539 R10= 40.5570680 R11= 250.6040798 R12= 300.6570954 R13= 350.6570954 R13= 350.6570958 R13= 350.6570958 R13= 350.6570958 R13= 750.9571900 R16= 500.9551900 R16= 500.9551900 R16= 700.9952215 R16= 700.9952215 R18= 700.3952373 * R20= 1.1793154		NOTE: Solid Cu * Direct Access Conductor Siz			

DATA REGISTERS: Diameter Values, Configuration: Conductor Size, Diameter, Strand

	1		1		5
1.1176	R22=	1.0606	R22=	0.0000	9 <b>ス</b> へへへ 川
	861		861		) )
750-96	R21=	750.90	R21=	0.0000	R21=
	227 225		637		701
	000 1	500.73	R20=	500.70	R20=
400.70	R19=	400.60	027 		301
	137		547-	400-63	0 1 0 1 0 1
350.66	R18=	350.61	R18=	4 <b>0.9</b> 05	
	728		037		
250.55	R17=	250.52	R17=	250.50	R17=
	19		19		01
40 512		40.475	R16=	40.460	R16=
00.400			19		01
70 AFC	D17-	30.423	R 1 5 =	30.410	R15=
20.406	<b>T</b> 14	NG.010			01
	51	722 00	P14=	20.365	R14=
10.362	R13=	10.336	10		0,7 
			2 D 1 7 -	10.325	
1.3221	R12=	1.2991	R12=	1.2890	1 1
			<b>۲</b>		   
2.2830	R11=	2.2680	R11=	2.2580	R11=
4.2250	2 J	<b>.</b>	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		1
		4 0170		4.2040	R10=
6.1780	R09=	6.1690		6.1620	1 1 1
0.1410	7 200-		7		<b></b>
0 1 2 1 2		8-1340	R08=	8.1280	R08=
9.1260	RØ7= 7	0.0000	א בי א בי בי	7.1140	11 7 0 
	70		1 0 0	0 11/0	0 1 1 1
12.089	R06=	0.0000	RØ6=	12.081	R96=
			0		01
14_070		0.0000	RØ5=	14.064	R05=
mpressed Strand ass B	B C = Co C1	pact Class	B = Con	lid	<b>H</b> = Sc

-207-

( Two		Conce
Times	Drain	ntric
Wire	Wire	Neuti
Diameter)	Diameters	al and

AMC

## R08= R05= 8.257 9.229 10.229 11.181 12.162 13.144 14.128 14.128 15.114 15.114 17.091 17.091 17.091 17.091 19.072 24.064

#### 0 R19= 0 R17= R11= R12= R13= R05 | | 0 R23= R15= 0 R 1 4 = R10= R09= R22= R20= R18= **R16** CTD 0 0 0 0 4 S R21= Ī 2.2000 4.22155 5.2700 7.3000 8.33000 9.3610 10.400 13. 20.531 19.500 18.500 16.470 15.455 14.441 12.415 -17.500 ,____ . 424 400

# Control Cable Multiple Factors (Up To 20 Conductors Per Cable)

STEP/KEY CODE	-209- Comments	STEP/KEY CODE	COMMENTS
01+LBL "CD" 02 CF 03 03 CF 04 04 SF 27 05 "SELECT: A,B,C:" 06 TONE 0	"Cable Design" Initialize Choose Conductor Type	57 GTO 05 58◆LBL 03 59 BEEP 60 "DIA: IN CH?" 61 PROMPT 62 GTO 05	Diameter not in Register Enter Manually
07 PROMPT 08◆LBL A 09 SF 03 10 "A" 11 CTO "00"	Solid (Aluminum)	63◆LBL 06 64 RCL 22 65◆LBL 05 66 1 E3 67 *	
12+LBL B 13 "B" 14 GTO "QQ" 15+LBL C 16 "C" 17+LBL "QQ"	Compact Strand Compressed Strand (Class B)	68 ENTER↑ 69 INT 70 STO 00 71 RCL Y 72 FRC 73 100 74 ★	
18 CF 01 19 0 20 SEEKPTA 21 05.023 22 GETRX 23+LBL "FA"	Index Value for Data Registers	74 # 75 SF 12 76 CLA 77 ARCL X 78 "⊢₩ 0.D= "	Display Diameter and Number of Wires
24 5 25 STO 04 26 FIX 0 27 CF 27 28 CF 02 29 CF 29 30 CF 12	Initialize Counter	79 ARCL 00 80 AVIEW 81 TONE 5 82 FC? 21 83 STOP 84 RCL 00 85 FS? 55	
31 "AWG?: K CMIL? " 32 TONE 8 33 PROMPT	Enter Conductor Size in AWG or kcmil Note: 1/0 Enter 10 2/0 Enter 20	86 ADV 87 514 88 X>Y? 89 GTO 07 80 YEO "KY"	Greater Than 4/0? Enter Voltage Adders for Voltage
34 STU 03 35 XEQ "VA" 36 STO 00 37 1 E3 38 X=Y?	Direct Address for 1000 kcmil	90 XEQ XY 91 VIEW X 92 ST+ 00 93+LBL 07 94 FS? 01	Rating Add to Core Diameter If Set GOTO 600V/
39 GTO 06 40◆LBL 00 41 RCL 04 42 22 47 ¥=¥2	Indirect Recall to find Diameter and Number of Strands in	95 GTO "VV" 96 SF 12 97 FS? 05 98 XEQ "WGT "	Low Voltage Cable XEQ Component Weight
44 GTO 03 45 RDN 46 RCL IND X	Conductor	99 TONE 9 100 TONE 9 101 XEQ "ESS "	Strand Shield Thickness in Mils. No Strand Shield(0) Automatically Goes
47 INT 48 RCL T 49 X=Y? 50 GTO 02 51 1 52 ST+ 04		102 X=0? 103 GTO "VV" 104 FS? 55 105 ADV 106 2 107 *	Enter Insulation
53 GTO 00 54+LBL 02 55 RCL L 56 FRC	Take Fraction of Data Value	108 RCL 00 109 + 110 "INSL?" 111 PROMPT 112 STO 23	Thickness Mils Store Thickness in REG 23 (t) for Weight

ł

STEP/KEY CODE	-210- Comments	STEP/KEY CODE	COMMENTS
113 XEQ "AV" 114 2 115 * 116 + 117 XEQ "TT" 118 CLA 119 ARCL X 120 STO 00 121 552 02	Display Round-Off per ASTM Above 35ky?	173 X=Y? 174 GTO 10 175 RDN 176 RCL IND X 177 INT 178 RCL T 179 X=Y?	Indirect Recall Find Diameter of Wire
122 XEQ "HV" 123 60 124+LBL "DD" 125 + 126 XEQ "MT" 127 FS? 05 128 XEQ "SG" 129 SF 12 130 FIX 0	HV Deltas for Insula- tion Display Diameter Min/ Max Weight of Extrusion Component	180 GTO 11 181 1 182 ST+ 01 183 GTO 01 184+LBL 11 185 RCL L 186 FRC 187 1 E3 188 * 189+LBL 08	Take Fraction of Data Value
131 XEQ "IS" 132 "AEIC= " 133 ARCL X 134 AVIEW 135 TONE 8 136 STOP 137 "EIS= " 138 APCL X	Insulation Sh <b>ie</b> ld Thickness per AEIC Can Override AEIC Enter EIS	190 ST+ 00 191 RCL 00 192 XEQ "MN" 193 FC? 21 194 STOP 195+LBL 14 196 "ADDER?"	Display Min. O.D. Over Wire Enter Adder to Core for Tapes
139 STO 23 140 AVIEW 141 2 142 * 143 ST+ 00 144 RCL 00 145 CLA 146 ARCL X 147 FS? 02 148 XE0 "VH"	For Weight Calc Above 35kv? HV Deltas EIS	198 ST+ 04 199 XEQ "AV" 200 ST+ 00 201 XEQ "JK" 202 X=0? 203 GTO 12 204 2 205 * 206 ST+ 00 207 PCL 00	l/c Jacket Thickness Displayed per ICEA (Can Over- ride)
149 100 150+LBL "CC" 151 + 152 XEQ "MT" 153 STO 04 154 FS? 05 155 XEQ "SG" 156 "AWG" 157 0	Store Max O.D.	208 XEQ "TT" 209 STO 00 210 CLA 211 ARCL X 212 150 213 + 214 XEQ "MT" 215 STO 04 216 75	+/-75 Mil Spread
158 SEEKPTA 159 05.020 160 GETRX 161 5 162 STO 01 163 + LBL 10 164 "AWG?" 165 PROMPT 166 ENTER1 167 X=0? 168 GTO 14 169 XEQ "VA" 170 + LBL 01	Indirect Access Loop for AWG Diameter Enter Concentric Neutral or Drain Wire Size(#8-#24 AWG.) Enter 0 if No Wire	217 - 218 STO 02 219 GTO 13 220+LBL 12 221 RCL 00 222 XEQ "TT" 223 CLA 224 STO 00 225 ARCL X 226 100 227 + 228 XEQ "MT" 229 50	Store Max O.D. Nominal 1/c Dia- meter Non-Jacketed +/- 50 Mil
171 RCL 01 172 20		230 - 231 STO 02	

ł

	-211-		
STEP/KEY CODE	Comments	DATA REGIS	TERS
		00 Program Use 01 Program Use 02 1/c Diameter	
	Nominal 1/c	03 Program Use	
232+LBL 13	Diameter	04 Max 0.D. 1/C	
233 RUL 02	Diameter	06 Register	
234 2.155	Triplexed O D	07 See Separate	
235 *	IIIpiezed 0.D.	08 Listings	
236 XEQ "MC"	Display for 3/c	09	
237 "HDDER?"	Entor Addor for	10	
238 PRUMPI	Tapas of Armor	11	
239 XEQ "HV"	Tapes of Almor	12	
240 +	Overall Jacket		
241 CF 12	Thickness Dis-	15	
242 XEQ "MN"	nlaved Per ICFA	16	
243 510 00	prayed fer felk	17	
244 SIUP		18	
245 XEQ "JK"		19	
240 2		20	
247 4		<u>-</u> <u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	
248 23		23 + - + h ; g/spogg	
250 RCI 00		in weight	
251 +	Extrusion Adder	24 d (weight)	
252 XEQ "MC"	ENDIABION MAACE	ESS EST O.D.	
253 RCL 04		25 Core Weight	
254 1 E3	Display $3/c$ 0.D.	(Total)	
255 /	Max $0.D. 1/c$		
256 .483			
257 *			
258 FIX 3	Interstice Check		
259 "MX.GW.D			
I A = "			
260 ARCL X	Display Maximum		
261 AVIEW	Ground Wire Dia-		
262 END	meter in Outer		
	Interstice		
		INIT	
	End	# S/C SET INDICATES	
		01 C 600V/ Control	<u>Med-High kV</u>
		Cable 021C Above 35kV	Below 35 kV
		03 C Solid Cdtr	Strand Cdtr.
	74710	04 C Copper	Aluminum
S	TATUS	05 With Weights	Without
SIZE 024 TOT DEC	USER MODE		Weights
FNG FIY		12 C Print Double	Normal Print
DEG RAD	GRAD AUTO	Wide	f Dicables
			Printer

ASSIGNMENTS					
FUNCTION	KEY	FUNCTION	KEY		
SOLID	A				
COMPACT	В				
STRAND	C				
EA	E				

	INIT	FLAGS			
#	S/C	SET INDICATES	CLEAR INDICATES		
01	С	600V/ Control	Med-High kV		
		Cable			
02	IC	Above 35kV	Below 35 kV		
03	C	Solid_Cdtr.	Strand Cdtr.		
04	C	Copper	Aluminum		
05		With Weights	Without		
			Weights		
12	С	Print Double	Normal Print		
		Wide			
21	C	Printer on/of	f Dişables		
	Ι		Printer		
27	С	Turns on User	Turns Off		
		Mode	User Mode		
29	IC.	Digit Group	Digit Group		
		On I	Off .		
55	C	Printer Exist	No Printer		

STEP KEY CODE	-212-	STEP KEY CODE	COMMENTS
01+LBL "VV" 02 FS? 01 03 GTO 00 04 "CT: 0 / SC: 1?" 05 PROMPT 06 X=0? 07 XEQ "CT" 08+LBL 00	600V Secondary Module Control Cable = 0 Secondary Cable = 1		
09 SF 12 10 "INSL?" 11 PROMPT 12 XEQ "AV" 13 2.1 14 * 15 RCL 00	Enter Insulation Thickness Second Time Around) in mils	of Phase Condu 3	actor (or Neutral
16 + 17 XEQ "NM" 18 X↑2 19 FS? 01 20 GTO 01 21 STO 02	2.1 x (Nominal Multiple)		
22 SF 01 23 GTO "EA" 24◆LBL 01 25 STO 04 26 "TX:1 ∕ QD: 0"	Back to CD at Label EA to S	Select Neutral	Size
27 PROMPT 28 X=0? 29 GTO 19 30 RCL 02 31 2 32 * 77 PCL 04	Triplex = 1 Quadruplex = 0		
34 + 35 3 36 / 37 SQRT 38 2.155 39 *	Average Circumscribed Outer	r Diameter	
40 GTO 20 41+LBL 19 42 RCL 02 43 3 44 * 45 RCL 04	Triplex $(a + (2 x b))^2 * 2 + c$ 3	- * 2.155	
46 + 47 4 48 / 49 SQRT 50 2.414	<u>Quadruplex</u> ( <u>a + (2 x b)</u> ) ² * 3 + c	² * 2.414	
52 +LBL 20 53 CF 01 54 "M/C 0.I :" 55 AVIEW 56 XEQ "NM" 57 .END.	4 a = Phase Conductor (dia) b = Insulation Thickness c = Neutral Diameter(Bare o	(mils) or with insulat	cion)

-213-Comments

STEP/KEY CODE

01+LBL "CT" 02 "CTD" 03 0 04 SEEKPTA 05 05.024 06 GETRX 07 SF 12 08 "INSL? " 09 PROMPT 10 XEQ "AV" 11 2 12 *	Control Cable Module Index Value Load Register with Multiple Factors up to 24 Cables per Conductor	41 10 42 * 43 RCL 00 44 * 45 "ADDER? " 46 PROMPT 47 XEQ "VA" 48 + 49 STO 00 50 XEQ "MN"	Enter Adder for Tapes or Armor
13 RCL 00 14 + 15 STO 00 16 XEQ "NM" 17+LBL 00 18 5		51 XEQ "JK" 52 2 53 * 54 RCL 00 55 + 56 "M/C: 0D	Jacket Thickness per ICEA Display Minimum
19 STO 04 20 "NO. CDT R?" 21 PROMPT 22 XEQ "VA" 23 STO 02 24+LBL 01 25 PCL 04	Enter Number of Conductors in Cable	:" 57 AVIEW 58 XEQ "MN" 59 END	Nominal O.D. of Cable
26 24 27 X=Y? 28 GTO 00 29 RDN 30 RCL IND X 31 INT	Recall Indirect Loop		
32 RCL 02 33 X=Y? 34 GTO 03 35 1 36 ST+ 04 37 GTO 01 38+LBL 03 39 RCL L 40 FRC			

01+LBL "TT" 02 ENTER↑ 03 INT 04 100 05 / 06 FRC 07 10	Rounds Off Numbers When Called in Accordance With ASTM Standards:	51 5 52 RCL 01 53 X=Y? 54 GTO 03 55 RCL 01 56 1 57 +
07 10 08 * 09 FRC 10 10 11 * 12 STO 01 13 X < > Y 14 RCL Y 15 - 16 STO 03 17 RCL 01 18 7 19 X < > Y 20 X > Y? 21 GTO 01 22 GTO 02 23 + LBL 01 24 10 25 RCL 01 26 X = Y? 27 GTO 03 28 RCL 01 29 1 30 + 31 STO 01 32 GTO 01 33 + LBL 02 34 STO 01 35 7 36 X < > Y 37 X < = Y? 38 RCL 01 39 2 40 X < > Y 41 X > Y? 42 GTO 04 43 GTO 05 44 + LBL 04 45 5	Last Digit: $0,1,2 \rightarrow 0$ $3,4,5,6,7 \rightarrow 5$ $8,9,10 \rightarrow 10$	56 I 57 + 58 STO 01 59 GTO 06 60+LBL 07 61 5 62 RCL 01 63 X=Y? 64 GTO 03 65 RCL 01 66 1 67 - 68 STO 01 69 GTO 07 70+LBL 05 71 STO 01 72 X=0? 73 GTO 03 74 1 75 - 76 GTO 05 77+LBL 03 78 RCL 03 79 + 80 RTN 81 END
47 X<=Y? 48 GTO 06 49 GTO 07 50◆LBL 06		

-214-

STEP

KEY CODE

COMMENTS

STEP

KEY CODE

COMMENTS

STEP	KEY CODE	COMMENTS

01+LBL "MN"

Display and View

**53+LBL "MC"** 3/c Display 02 XEQ "TT" Modules 54 FIX 2 03 SF 12 55 1 E3 04 FIX 3 56 / 05 1 E3 57 SF 12 06 1 58 "3/C O.D 07 "MIN = " Display "Min=" = " 08 ARCL X 59 ARCL X 09 AVIEW 60 AVIEW 10 TONE 5 TONE 5 61 11 1 E3 62 1 E3 12 * 63 * 13 FIX 0 64 CF 12 14 RTN 65 FIX 0 15+LBL "NM" Display "Nom:OD=" 66 FC? 21 16 1 E3 67 STOP 17 _ 68 RTN 18 SF 12 69+LBL "MT" Display Space 19 FIX 3 70 "+---" Bar 20 "NOM:0D= 71 ARCL X 72 AVIEW 21 ARCL X 73 TONE 6 22 AVIEW 74 FS? 55 23 CF 12 75 ADV 24 1 E3 76 FS? 55 25 * 77 RTN 26 FIX Ø **78 STOP** 27 TONE 5 79 RTN 28 FS? 55 80 END 29 RTN 30 RTN 31+LBL "AV" View With "Mils" 32 CF 21 33 FC? 55 34 RTN 35 SF 21 36 ACA 37 ACX 38 CF 12 39 " MILS" 40 ACA 41 SF 12 42 PRBUF 43 RTN 44+LBL "VA" Display for Printer 45 CF 21 if Attached 46 FC? 55 47 RTN 48 SF 21 49 ACA 50 ACX 51 PRBUF 52 RTN

STEP	KEY	CODE	(
------	-----	------	---

COMMENTS

-216-

01+LBL "KV" 02 "KV? " 03 PROMPT 04 ARCL X 05 "FKV"	Kilovolt Adder Module	01+LBL "IS" 02 RCL 00 03 1 E3 04 X<>Y 05 X<=Y?	Insulation Shield Thick- ness per AEIC See Table
06 AVIEW 07 STO 01 08 15 09 X<>Y 10 X<=Y? 11 GTO 01	15kv = 10mils	06 GTO 01 07 1500 08 RCL 00 09 X<=Y? 10 GTO 02 11 GTO 03	
12 28 13 RCL 01 14 X<=Y? 15 GTO 02 16 35	25kv = 10mils	12+LBL 01 13 40 14 GTO 04 15+LBL 02 16 50	
17 RCL 01	28kv = 10mils	17 GTO 04 18+LBL 03	
19 GTO 03 20 69	35kv = 15mils	19 70 20+LBL 04	
21 RCL 01 22 X<=Y? 23 GTO 04	69kv = 20mils	21 RTN 22+LBL "HV" 23 80	
24 "ADD? 69	Greater Than 69kv	24 GTO "DD" 25+1 BL "VH"	
25 PROMPT 26 SF 02 27 GTO 05 28◆LBL 01	Manually	26 120 27 GTO "CC" 28 END	
29 0 30 GTO 05 31◆LBL 02 32 10			
33 GTO 05 34◆LBL 03 35 15			
36 GTO 05 37◆LBL 04 38 SF 02			
39 20 40+LBL 05 41 RTN			
42 END			

STEP/KEY CODE	COMMENTS	STEP/KEY CODE	COMMENTS
<u>Jacket</u> 01+LBL "JK" 02 RCL 00 03 425	Module Automatically Se Thickness For Shielded For Mutiple Cable ICEA S - 66 - 524,	≥lects Outer Extr Single Cable and Assemblies in Ac , S - 68 - 516	uded Jacket Outer Jacket cordance With
04 X<>Y 05 X<=Y? 06 GTO 01 07 700	Calculated Diamete Cable Under Jacket	≥r of	Jacket Thickness
08 RCL 00 09 X<=Y? 10 GTO 02	Inches		Mils
11 1500 12 RCL 00	0.425 or Less		45
13 X<=Y? 14 GTO 03	<b>0.</b> 426 - 0.700		60
15 2500 16 RCL 00	0.701 - 1.500		80
17 X<=Y? 18 GTO 04	1.501 - 2.500		110
19 140 20 GTO 06 21 + LBL 01 22 45 23 GTO 06 24 + LBL 02 25 60 26 GTO 06 27 + LBL 03 28 80 29 GTO 06 30 + LBL 04	2.501 and Large	≥r	140
31 110 32*LBL 06 33 "JKT:ICE A=" 34 ARCL X 35 AVIEW 36 STOP 37 "JKT= " 38 XEQ "AV"	Display Jacket The Override Stop to Encapsulated, Zere	ickness per ICEA Enter Different o, (non Jacketed)	Thickness i,e, Larger or Smaller
39 RIN 40 .END.			

		•
01+LBL "ESS " 02 RCL 00	Conductor Siz∍ AWG or kcmil	Strand Shield Thickness (Mils)
03 512 04 X<>Y 05 X<=Y2	8 - 4/0	15
06 GTO 01 07 789	250 - 500	20
08 RCL 00 09 X<=Y?	600 - 1000	25
10 GTO 02 11 1117	1001 and Larger	30
12 RCL 00 13 X<=Y? 14 GTO 03 15 30 16 GTO 04 17◆LBL 01 18 15 19 GTO 04 20◆LBL 02 21 20 22 GTO 04		
23+LBL 03 24 25 25+LBL 04 26 "ESS/AEI C=" 27 ARCL X 28 AVIEW 29 TONE 9 30 STOP 31 "ESS=" 32 ARCL X 33 AVIEW 34 RTN 35 .END.		

## Extruded Strand Shield Thickness in Accordance with AEIC

_ _

STEP	KEY CODE	COMMENTS
3161		

-2	1	9-	

01 ◀ 02 03 04 05 06	LBL RCL 1 E3 2.1	"SG" 23 3	Specific Gravity for Extrusion Weights
07 08	RCL STO	24 Z	Determines Weight of Extrusion Component
09 10 11	+ FIX PND	3	(Insulation, EIS, Leadsheath, Outer Sleeved on Jacket)
12 13	STO X12	24	
14 15 16	RCL X†2 -	Y	$W = (D^2 - d^2) (340.2 \times S.G.)$
17 18 19 20	"SG3 PROM 340. *	9" 1PT 2	
2012234567890	* FIX CLA ARCL "F L AVIE ST+ STOF RTN FND	2 _ X _B" _ 25	In Pounds

STEP KEY CODE	COMMENTS	-220-	STEP KEY CODE	COMMENTS
01+LBL "WGT 02 "AL: 1 / CU: 0" 03 TONE 9 04 PROMPT 05 X=0? 06 GTO 15 07 FS? 03 08 GTO 23 09 "STA" 10 GTO "GWT	<u>Weight Module</u> Set Flag 05 Actuates This Module for Ca Core ( Metal ESS, Insulati	Weight ble CDTR, on, EIS)	51 1 E3 52 * 53 ENTER↑ 54 INT 55 1 E3 56 / 57 STO 24 58 RCL Y 59 FRC 60 1 E4 61 * 62 STO 25 63 "WT/MFT=	Displays Weight of Conductor and ESS
11+LBL 23 12 "SAL" 13 GTO "GWT 14+LBL 15 15 FS? 03 16 GTO "WGT	Metal Conduct Aluminum or C Solid or Stra	or opper nd	" 64 ARCL X 65 AVIEW 66 TONE 4 67 STOP 68 RTN 69◆LBL 24 70 BEEP 71 "WT/MFT?	Enter Data if Not in Register
17 SF 04 18 "STC" 19+LBL "GWT 20 0 21 SEEKPTA 22 05.023 23 GETRX 24 5 25 STO 04 26 1 E3 27 RCL 03 28 X=Y? 29 GTO 18 30 750 31 X=Y? 32 GTO 21 33+LBL 16 34 RCL 04 35 22 36 X=Y? 37 GTO 24 38 RDN 39 RCL IND X 40 INT 41 RCL 03 42 X=Y? 43 GTO 20 44 1 45 ST+ 04 46 GTO 16 47+LBL 20 48 RCL L 49 FRC 50+LBL 17	Index Value t Data Register 1000 kcmil a 750 kcmil Dir Access Loop to Find Weight	o Load nd ect Conductor	" 72 PROMPT 73 STO 25 74 "EST. O. D. ESS?" 75 PROMPT 76 STO 24 77 RTN 78*LBL 21 79 FS? 04 80 GTO 22 81 RCL 21 82 GTO 17 83*LBL 22 84 RCL 19 85 GTO 17 86*LBL 18 87 FS? 04 88 GTO 19 89 RCL 22 90 GTO 17 91*LBL 19 92 RCL 20 93 GTO 17 94 STOP 95 END	

```
Cylindrically Sleeved on Component Weights
```

```
01+LBL "CW"
 02 CF 27
                 Enter Diameter of Last Operation
 03 "DIAM L.
0.=?"
 04 PROMPT
 05 STO 00
 06
    2.1
                 Input Thickness of Extruded Component in Inches
 07 "T?"
 08 PROMPT
 09 *
 10 +
 11 X†2
 12 RCL 00
 13 X12
 14 -
 15 340.2
 16 *
 17 "S.G.=?"
                 Input Specfic Gravity of Material to be Used
 18 PROMPT
 19 *
 20 FIX 2
                 Displays Weight of Component Per MFT
 21 "WGT="
 22 ARCL X
 23 AVIEW
 24 STOP
 25 .END.
                 W = [(D + 2.1 (T))^{2} - D^{2}] \times (340.2 \times S.G)
                 Where:
                       D = Diameter of Last Operation
                       T = Thickness in Inches
                    S.G. = Specfic Gravity
                  340.2 = Conversion Factor
```

STEP/KEY CODE	-222- Comments	STEP/KEY CODE	COMMENTS
<u>Weight of Conce</u>	<u>ntric Neutral Wires</u>	Weight of Concentr:	<u>ic Neutral</u> <u>Flat Straps</u>
01+LBL "CNW 02 CF 27 03 PI 04 "LAY?" 05 PROMPT 06 / 07 ATAN 08 COS 09 1/X 10 "WIRE WT ?" 11 PROMPT 12 * 13 "NO WIRE S?"	Deactivate User Mode Input Lay as a Mutiple of the Estimated O.D. Over the Concentric Neutral Input the Weight Per MFT of One Neutral Wire	01+LBL "FS" 02 CF 27 03 PI 04 "LAY?" 05 PROMPT 06 / 07 ATAN 08 COS 09 1/X 10 "T?" 11 PROMPT 12 "WIDTH=? " " 13 PROMPT 14 * 15 3850.06	Deactivate User Mode Input Lay as a Multiple of the Estimated O.D. Over the Flat Straps Input the Thick- ness of One Strap Strap
14 PROMPT 15 * 16 FIX 2 17 "WGT=" 18 ARCL X 19 AVIEW 20 "STOP" 21 END W = N	Input the Number of Wires to be Used Displays the Weight of the Neutral Wire Per MFT x W x S.F.	16 * 17 * 18 "NO STRA PS=?" 19 PROMPT 20 * 21 FIX 2 22 "WGT=" 23 ARCL X 24 AVIEW 25 STOP 26 .END.	Input the Number of Straps Displays the Weight of the Flat Straps Per MFT
wnere: S.	N = Number of Wires W = Weight of One Wire F.= Secant Factor = 1 $\cos(\tan^{-1}(\frac{\pi}{Lay}))$	W = N x W x Where: N = N S.F. = W = W = W = T	x S.F. Number of Straps eight Factor of CU $\frac{1}{\cos(\tan^{-1}(\frac{1}{1ay}))}$ eight of One Straj x W x WF x 1.273
		Where: W.F 1.27	T = Thickness W = Width • = Weight Factor of_CU = 3024.4 3 = 4/ Conversion Factor to Square Mils

STEP/KEY CODE	COMMENTS	STEP/KEY CODE	COMMENTS
<u>Weight of Longitu</u> <u>Copper</u>	<u>dinally Applied</u> Tape	<u>Weight of Helically</u> <u>Copper</u>	y Applied Tape
01+LBL "LC" 02 CF 27 03 "DIA: L. 0. MAX?" 04 TONE 8 05 PROMPT 06 PI 07 * 08 .6	Input the Max Average Diameter of the Last Operation	01+LBL "CU" 02 CF 27 03 "THICK:I NCH?" 04 PROMPT 05 STO 00 06 8.89 07 * 08 PI 09 *	Enter the Tape Thickness-Inches
10 FIX 3 11 "WIDTH=" 12 ARCL X 13 AVIEW 14 STOP 15 4625 16 * 17 "T?"	Displays the Width of the Tape - Inches	10 433.5 11 * 12 "EST.DIA LO?" 13 PROMPT 14 ENTER↑ 15 RCL 00 16 + 17 *	Enter Estimated Diameter of the Last Operation Under Tape
19 * 20 FIX 1 21 "WGT=" 22 ARCL X 23 AVIEW 24 STOP 25 END	Tape Thickness - Inches Displays the Weight of Corrugated Tape Per MFT	18 STO 01 19 1 20 ENTER↑ 21 "OVERLAP ?" 22 PROMPT 23 ENTER↑ 24 5	Enter Nominal Per- cent of Overlap
Weight = W $x$ Where: W = W 4625 = Co t = Co T D = Ma	x 4625 x t idth = D + .6 prversion Factor prrugated Tape hickness ax. O.D. of Last	25 + 26 100 27 / 28 - 29 1/X 30 RCL 01 31 * 32 FIX 2 33 "T:WT=" 34 ARCL X 35 AVIEW 36 STOP 37 END	Weight of Copper Tape in MFT
Or Enter All I	peration Dimensions in Inches	W = 433.5 x S. $X \left(\frac{1}{1 - \frac{L}{100}}\right)$ Where: L = C 433.5 = Conv S.G.= Spec T = Thic D = Esti	G. x T x x(D + T) Overlap ersion Factor ific Gravity kness of Tape mated Diameter Under Tape

-223-

#### Weight of Encapulating Jackets

```
01+LBL "JKT
 02 CF 27
    "S.G.="
 03
                   Enter Specfic Gravity of Compound
 04 PROMPT
 05 340.2
 06 ×
 07
    STO 00
 08 "D=?"
                   Enter Estimated O.D. Over Jacket in Inches
 09 PROMPT
 10 X12
    "d=?"
 11
 12 PROMPT
 13 X12
 14
 15 *
 16 RCL 00
 17 3024.4
 18 /
                   Input Weight of Neutral Wires
 19 "NEUT WG
T?"
 20 PROMPT
 21 *
 22
 23 FIX 2
                   Weight of Encapsulating Jacket Per MFT
 24 "WGT="
 25 ARCL X
 26 AVIEW
 27 STOP
 28 END
                   W = [(D^2 - d^2) WF_1] - (\frac{WF_1}{WF_2} W_1)
                   Where:
                          W = Jacket Weight Per MFT
                          D = Estimated O.D. Over Jacket in Inches
                          d = Estimated O.D. Under Neutral in Inches
                         WF1= Weight Factor for Jacket Compound(S.G. x 340.2)
                         WF<sub>2</sub> = Weight Factor for Neutral Wires(S.G. x 340.2)
                          W_1 = Weight of Neutral Wires Per MFT
```

## USER INSTRUCTIONS

Size:000

STEF	P INSTRUCTIONS	INPUT	DISPLAY
1.	Connect printer if a hardcopy is desired. R/S after each display if no printer is attached.		
2.	Set printer switch to manual or normal mode.		
з.	Load programs "COV"		
4.	Check status		
5.	Initialize: XEQ "COV"		
6.	Enter Lay of Wires as multiple of O.D.	Lay	Lay?
7.	Enter number of wires or straps	Ν	No.Wires?
8.	Enter width of wires or straps in inches	ω	W:Inch
9.	Enter maximum O.D. over Insulation shield	Max O.D.	MAX:OD:EIS?
10.	Percent coverage of wires or Straps displayed		% =

01+LBL "COV

```
..
 02 PI
 03 "LAY?"
 04 PROMPT
 05 /
 06 ATAN
 07 COS
 08 1/X
 09 "NO. WIR
ES?"
 10 PROMPT
 11 *
 12 "W: INCH
?"
 13 PROMPT
 14 *
 15 "MAX:OD:
EIS?"
 16 PROMPT
 17 PI
 18 *
 19 /
 20 100
21 *
 22 FIX Ø
 23 "%= "
 24 ARCL X
25 AVIEW
26 STOP
27 END
```

Enter Lay Multiple (6-10 times) Secant Factor  $\frac{1}{\cos \tan^{-1} \gamma}$ /Lay Enter number of Wires or Straps Width in Inches Max. O.D. over EIS  $K = F_{s} NW_{total}$ 

% Coverage of Wire or Straps over Insulation Shield

K = % coverage
F_S= Secant Factor
N = Number of Wires
W = Width of Wires
D = O.D. (Max) over EIS

XEQ "COV" LAY? 7 NO. WIRES? 32 W: INCH? .0808 MAX:OD:EIS? .98 %= 92

#### METALLIC SHIELDING CONSTRUCTIONS

#### Robert W. Parkin

PROGRAM: "MS"

FUNCTION: This program covers the metal shield component of URD/UD and power cables; specifically wire shields. If a copper tape shield is used it must be at least 2.5 mils thick in accoradance with ICEA S-66-524. Wires , straps, or sheaths should be copper and have a total area at any cross section of at least 5000 circular mils per inch (0.1 mm² /mm) of insulated conductor diameter. Metal tapes, wires, straps, and sheaths may be used in combination providing they are compatible.

The program first displays the minimum cross-sectional area required per ICEA S-64-524 and the number of wires needed. Then a comparison of the first group of wires "1W" can be made, to determine how many wires are needed to equal the cross-sectional area of the original group.

ACCESSORIES: HP-41 CX, CV printer optional

**OPERATING LIMITS AND WARNINGS:** None

REFERENCES: ICEA S-66-524

#### -228-

#### USER INSTRUCTIONS

Size:001

STEF	P INSTRUCTIONS	INPUT	DISPLAY
1.	Connect printer if a hardcopy is desired. R/S after each display if no printer is attached.		
2.	Set printer switch to manual or normal mode.		
з.	Load programs "MS", "VW"		
4.	Check status		
5.	Initialize: XEQ "MS"		
6.	Enter O.D. over the insulation, inches.	O.D.	O.D.:INSL?
7.	Display minimum cross-sectional area required, per ICEA in circular mils.		CMA=
8.	Enter CSA of copper wire in circular mils	CMIL	CMIL?
9.	Display minimum number of copper wires for cable.		XX.X WIRES
10.	Enter first wire size in circular mils.	1:CSA	1W:CMIL?
11.	Enter number of wires	Ν	N?
12.	CSA Displayed		CMA=
13.	Second size: Enter CSA	2:CSA	2W:CMIL?
14.	Display number of wires		XX.X Wires
15.	Back to step 13 for comparison of different wire sizes		2W:CMIL?

# SAMPLE PROBLEM

XEQ "MS" O.D: INSL? 1.5 RUN CMA= 7500.0 CMIL? 812.0 RUN 9.2 WIRES

RUN 1W: CMIL? 1290.0 RUN N? 36.0 RUN CMA= 46440.0 2W: CMIL?

1620.0 RUN 28.7 WIRES

RUN 2W: CMIL? 2580.0 RUN 18.0 WIRES

XEQ "MS" 0.D: INSL? 1.5 RUN CMA= 7500.0 CMIL? 2580.0 RUN

2.9 WIRES

STEP/KEY CODE	-230- Comments			DATA	REGIS	TERS
GIALRI "MS"		00	CS.	A Number	of	
01 - EIV 1	<u>Metallic Shielding</u>		Wi	res IW		
02 FIA 1						
03 "U.D: IN	Enter O.D. Over					
SL?"	Insulation in					
04 PROMPT	Inches					
05 5000						
06 *						
07 "CMA="	Minimum Cross-Sec-				_	
08 XEQ "VW"	tional Area Required					
09 "CMTL2"	Entor Desired Shield	<b></b>				
10 PROMPT	Wire Green Sontier					
11 /	wile closs section					
12 010	In CIrcular MIIS					
17 OPCI V						
14 HL UIDEC	Dicplays Number of					
14 F WIRES	Displays Number Of					
	wires Needed					
ID HYIEW						
16 STUP						
17 "1W: CMI	Enter New or					
L?"	Original Wire in					
18 PROMPT	Cmil For Comparison					
19 "N?"	to Second Wire Size					
20 PROMPT						
21 *						
22 STO 00						
23 "CMA="	Area Displayed					· · · · · · · · · · · · · · · · · · ·
24 XEQ "VW"						
25ALDI 00						
234666 00						
26 TONE 9						
26 TONE 9 27 RCL 00						
26 TONE 9 27 RCL 00 28 "2W: CMI	Enter Next Wire					
26 TONE 9 27 RCL 00 28 "2W: CMI L?"	Enter Next Wire Size in Cmil					
26 TONE 9 27 RCL 00 28 "2W: CMI L?" 29 PROMPT	Enter Next Wire Size in Cmil					
26 TONE 9 27 RCL 00 28 "2W: CMI L?" 29 PROMPT 30 /	Enter Next Wire Size in Cmil					
26 TONE 9 27 RCL 00 28 "2W: CMI L?" 29 PROMPT 30 / 31 CLA	Enter Next Wire Size in Cmil					
26 TONE 9 27 RCL 00 28 "2W: CMI 29 PROMPT 30 / 31 CLA 32 ARCL X	Enter Next Wire Size in Cmil					
26 TONE 9 27 RCL 00 28 "2W: CMI 29 PROMPT 30 / 31 CLA 32 ARCL X 33 "F WIRES	Enter Next Wire Size in Cmil Number of Wire					
26 TONE 9 27 RCL 00 28 "2W: CMI 29 PROMPT 30 / 31 CLA 32 ARCL X 33 "H WIRES "	Enter Next Wire Size in Cmil Number of Wire Needed For Second		INIT			
26 TONE 9 27 RCL 00 28 "2W: CMI 29 PROMPT 30 ∕ 31 CLA 32 ARCL X 33 "⊢ WIRES " 34 AVIEW	Enter Next Wire Size in Cmil Number of Wire Needed For Second Wire Size	*	INIT S/C	I SET INDICA	FLAGS	CLEAR INDICATES
26 TONE 9 27 RCL 00 28 "2W: CMI L?" 29 PROMPT 30 / 31 CLA 32 ARCL X 33 "⊢ WIRES " 34 AVIEW 35 STOP	Enter Next Wire Size in Cmil Number of Wire Needed For Second Wire Size Return to 2W: For	*	INIT S/C	SET INDICA	FLAGS	CLEAR INDICATES
26 TONE 9 27 RCL 00 28 "2W: CMI L?" 29 PROMPT 30 / 31 CLA 32 ARCL X 33 "⊢ WIRES " 34 AVIEW 35 STOP 36 GTO 00	Enter Next Wire Size in Cmil Number of Wire Needed For Second Wire Size Return to 2W: For Next Size Wire	*	INIT S/C	SET INDICA	FLAGS	
26 TONE 9 27 RCL 00 28 "2W: CMI 29 PROMPT 30 / 31 CLA 32 ARCL X 33 "⊢ WIRES " 34 AVIEW 35 STOP 36 GTO 00	Enter Next Wire Size in Cmil Number of Wire Needed For Second Wire Size Return to 2W: For Next Size Wire	*	INIT S/C	SET INDICA	FLAGS	
26 TONE 9 27 RCL 00 28 "2W: CMI 29 PROMPT 30 / 31 CLA 32 ARCL X 33 "⊢ WIRES " 34 AVIEW 35 STOP 36 GTO 00	Enter Next Wire Size in Cmil Number of Wire Needed For Second Wire Size Return to 2W: For Next Size Wire	*	INIT S/C	SET INDICA	FLAGS	CLEAR INDICATES
26 TONE 9 27 RCL 00 28 "2W: CMI 29 PROMPT 30 / 31 CLA 32 ARCL X 33 "F WIRES " 34 AVIEW 35 STOP 36 GTO 00 STA	Enter Next Wire Size in Cmil Number of Wire Needed For Second Wire Size Return to 2W: For Next Size Wire	*	INIT S/C	SET INDICA	FLAGS	CLEAR INDICATES
26 TONE 9 27 RCL 00 28 "2W: CMI 29 PROMPT 30 / 31 CLA 32 ARCL X 33 "H WIRES " 34 AVIEW 35 STOP 36 GTO 00 STA	Enter Next Wire Size in Cmil Number of Wire Needed For Second Wire Size Return to 2W: For Next Size Wire	*			FLAGS	CLEAR INDICATES
26 TONE 9 27 RCL 00 28 "2W: CMI L?" 29 PROMPT 30 / 31 CLA 32 ARCL X 33 "⊢ WIRES " 34 AVIEW 35 STOP 36 GTO 00 STA SIZE 001 TOT.REG	Enter Next Wire Size in Cmil Number of Wire Needed For Second Wire Size Return to 2W: For Next Size Wire	#			FLAGS	
26 TONE 9 27 RCL 00 28 "2W: CMI L?" 29 PROMPT 30 / 31 CLA 32 ARCL X 33 "⊢ WIRES " 34 AVIEW 35 STOP 36 GTO 00 STA SIZE_001TOT.REG ENGFIX_1SCI DEGGR/	Enter Next Wire Size in Cmil Number of Wire Needed For Second Wire Size Return to 2W: For Next Size Wire TUS	#			FLAGS	
26 TONE 9 27 RCL 00 28 "2W: CMI L?" 29 PROMPT 30 / 31 CLA 32 ARCL X 33 "⊢ WIRES " 34 AVIEW 35 STOP 36 GTO 00 STA SIZE 001 TOT. REG ENG FIX 1 SCI DEG RAD GR/	Enter Next Wire Size in Cmil Number of Wire Needed For Second Wire Size Return to 2W: For Next Size Wire TUS USER MODE ONOFF	*			FLAGS	
26 TONE 9 27 RCL 00 28 "2W: CMI L?" 29 PROMPT 30 / 31 CLA 32 ARCL X 33 "⊢ WIRES " 34 AVIEW 35 STOP 36 GTO 00 STA SIZE 001 TOT.REG ENG FIX 1 SCI DEG RAD GR/	Enter Next Wire Size in Cmil Number of Wire Needed For Second Wire Size Return to 2W: For Next Size Wire	*			FLAGS	
26 TONE 9 27 RCL 00 28 "2W: CMI L?" 29 PROMPT 30 / 31 CLA 32 ARCL X 33 "⊢ WIRES " 34 AVIEW 35 STOP 36 GTO 00 STA SIZE 001 TOT.REG ENG FIX 1 SCI DEG RAD GR/	Enter Next Wire Size in Cmil Number of Wire Needed For Second Wire Size Return to 2W: For Next Size Wire TUS USER MODE ONOFF	*			FLAGS	
26 TONE 9 27 RCL 00 28 "2W: CMI 29 PROMPT 30 / 31 CLA 32 ARCL X 33 "H WIRES " 34 AVIEW 35 STOP 36 GTO 00 STA SIZE 001 TOT.REG. ENG FIX 1 SCI DEG RAD GR/	Enter Next Wire Size in Cmil Number of Wire Needed For Second Wire Size Return to 2W: For Next Size Wire TUS USER MODE OFF				FLAGS	CLEAR INDICATES
26 TONE 9 27 RCL 00 28 "2W: CMI 29 PROMPT 30 / 31 CLA 32 ARCL X 33 "F WIRES " 34 AVIEW 35 STOP 36 GTO 00 STA SIZE 001 TOT. REG ENG FIX SCI DEG RAD GR/ ASSIGN	Enter Next Wire Size in Cmil Number of Wire Needed For Second Wire Size Return to 2W: For Next Size Wire TUS USER MODE ONOFF ND	*			FLAGS	
26 TONE 9 27 RCL 00 28 "2W: CMI L?" 29 PROMPT 30 / 31 CLA 32 ARCL X 33 "⊢ WIRES " 34 AVIEW 35 STOP 36 GTO 00 STA SIZE 001 TOT.REG ENG FIX SCI DEG RAD GR/ FUNCTION KEY	Enter Next Wire Size in Cmil Number of Wire Needed For Second Wire Size Return to 2W: For Next Size Wire TUS USER MODE ONOFF MENTS FUNCTION KEY	#			FLAGS	
26 TONE 9 27 RCL 00 28 "2W: CMI L?" 29 PROMPT 30 / 31 CLA 32 ARCL X 33 "⊢ WIRES " 34 AVIEW 35 STOP 36 GTO 00 STA SIZE 001 TOT.REG ENG FIX 1 SCI DEG RAD GR/ MONE	Enter Next Wire Size in Cmil Number of Wire Needed For Second Wire Size Return to 2W: For Next Size Wire TUS USER MODE ONOFF MENTS FUNCTION KEY				FLAGS	
26 TONE 9 27 RCL 00 28 "2W: CMI L?" 29 PROMPT 30 / 31 CLA 32 ARCL X 33 "⊢ WIRES " 34 AVIEW 35 STOP 36 GTO 00 STA SIZE 001 TOT.REG ENG FIX SCI DEG RAD GR/ FUNCTION KEY None	Enter Next Wire Size in Cmil Number of Wire Needed For Second Wire Size Return to 2W: For Next Size Wire TUS USER MODE ONOFF MENTS FUNCTION KEY	#			FLAGS	
26 TONE 9 27 RCL 00 28 "2W: CMI L?" 29 PROMPT 30 / 31 CLA 32 ARCL X 33 "⊢ WIRES " 34 AVIEW 35 STOP 36 GTO 00 STA SIZE 001 TOT.REG ENG FIX 1 SCI DEG RAD GR/ FUNCTION KEY None	Enter Next Wire Size in Cmil Number of Wire Needed For Second Wire Size Return to 2W: For Next Size Wire TUS USER MODE ONOFF MENTS FUNCTION KEY				FLAGS	
26 TONE 9 27 RCL 00 28 "2W: CMI L?" 29 PROMPT 30 / 31 CLA 32 ARCL X 33 "⊢ WIRES " 34 AVIEW 35 STOP 36 GTO 00 STA SIZE 001 TOT.REG ENG FIX 1 SCI DEG RAD GR/ MONE	Enter Next Wire Size in Cmil Number of Wire Needed For Second Wire Size Return to 2W: For Next Size Wire TUS USER MODE ONOFF MENTS FUNCTION KEY				FLAGS	
26 TONE 9 27 RCL 00 28 "2W: CMI L?" 29 PROMPT 30 / 31 CLA 32 ARCL X 33 "F WIRES " 34 AVIEW 35 STOP 36 GTO 00 STA SIZE 001 TOT.REG ENG FIX 1 SCI DEG RAD GR/ FUNCTION KEY None	Enter Next Wire Size in Cmil Number of Wire Needed For Second Wire Size Return to 2W: For Next Size Wire TUS USER MODE ONOFF MD				FLAGS TES	

#### CONCENTRIC NEUTRAL WIRE SIZES AND SELECTION

#### Robert W. Parkin

PROGRAM: "NL"

FUNCTION: This program covers two-conductor concentric neutral underground distribution cables (URD/UD), consisting of an insulated central conductor and one copper concentric conductor applied helically over the insulation shield. URD/UD cables are intended for use on single phase and three phase primary underground distribution systems operating at 2001 through 35000 volts phase to phase.

Given the area in kcmil and type metal (copper or aluminum) for the phase conductor, the number of concentric neutral wires to equal the conductivity of the phase conductor (full neutral) is displayed, and continues in reduced neutral sizes, i.e., 1/3, 1/6,1/9 etc., for that conductor.

ACCESSORIES: HP-41 CX or CV, printer optional

**OPERATING LIMITS AND WARNINGS:** Use the coverage program "COV" to insure that the number of wires applied for a full neutral can fit around the circumference of the cable under the wires.

REFERENCES: ICEA S-66-524

#### USER INSTRUCTIONS

Size: 004

STEF	P INSTRUCTIONS	INPUT	DISPLAY
1.	Connect printer if a hardcopy is desired. R/S after each display if no printer is attached.		
2.	Set printer switch to manual or normal mode.		
з.	Load programs "NL","VW"		
4.	Check status		
5.	Initialize: XEQ "NL"		
6.	Enter Phase Conductor size in kcmil	Phase CDTR	kcmil?
7.	Enter Concentric Neutral wire size in kcmil	kcmil	AWG?
8.	Select Type Metal of Phase Conductor:	1 or 2	AL:1/CU:0
	1 = Aluminum 2 = Copper		
9.	Display Number of Wires for full neutral capacity		FULL=
10.	Number of wires required for 1/3 neutral		/3=
11.	Number of wires for 1/6 1/9, 1/12, etc Press R/S to stop if printer is connected.		/5=

# SAMPLE PROBLEM

```
XEQ "NL"
KCMIL?
 1000.0
             R
             UN
AWG?
            RUN
 4.11
AL:1 / CU:0
  1.0
            RUN
FULL= 148.4
/3=49.5 WIRES
              RUN
/6=16.5 WIRES
              RUN
/9=5.5 WIRES
              RUN
/12=1.8 WIRES
```

XE	Q "N	L "
KCMIL?		
750.0		RII
		ี้ พี่
0.000		17
HWG?	_	
6.53	R	UN
AL:1 /	· CU:	0
0.0	R	UN
FIII   =	114	9
/7-70 7 UTO	те <b>с</b>	-
/3-30.3 MIKE		DUU
		KUN
/6=12.8 WIRE	S	
		RUN
/9=4.3 WIRES	5	
	XEQ	"NL"
KOMTI 2		
NONIC:	750 0	DHM
	(30.0	KUN
HHGY		
	10.38	RUN
AL:1 / CU:0		
	9.9	RUN
FIIII = 72	- 3	
/7=24 1 UTPP	 .c	
VU-CANI MINU		DHM
		KUN
76=8.0 WIRES	<b>i</b>	

XE( CMA?	רפי ג	Ъ.
40,47	79.0 F	ии
Τ?	•	
U2	20.0	RUN
<b>#</b> :	160.0	RUN
CMA:FS= 4 9.9 STRAPS	,074	.2
717 OTKM 0		RUN
T?	25.0	DUN
W?	23.0	KUN
	160.0	RUN
CMA:FS= 5	,092.	. 8
TT OTKHO		RUN
Τ?	70.0	
<b>₩</b> 2	30.0	KUN
•••	150.0	RUN
CMA:FS= 5	,729.	. 4
7.1 STRHPS		RIIN
Τ?		Non
<b>U</b> 2	22.0	RUN
HI.	160.0	RUN
CMA:FS= 4	481.	7
9.0 STRAPS		

STEP/KEY CODE	-234- Comments	DATA REGISTERS					
		00	Pha	ase kc	mil		***
		01	CNW	l's kc	mil		
Concentric Neut	ral Wire Selection						
		02	Neu	ıtral	Capac	ity	
G1∔LRI "NI"		03	Dis	splay	CNW'S		
01VEDE NE 02 0	Close Posistor 02						
03 STO 02	Clear Register 02						
04 FIX 1							
05 CF 29							
06 "KUMIL?" 07 PROMPT	Enter Phase Conductor Size in						
07 FROMFT 08 STO 00	kcmil						
09 "AWG?"	Entor Concentric						
10 PROMPT	Neutral Size Wire						
11 STO 01	in kcmil						
12 "HL:1 /	Select Metal.						
13 PROMPT	1 = Aluminum						
14 X=0?	2 = Copper						
15 GTO 00							
16 RCL 00	If Aluminum Multiply						
17.61	0.61 Times CMA						
19 STO 00	tivity)						
20+LBL 00	010101						
21 RCL 00							
22 RCL 01							
23 / 24 "FIILL="	Display Number of						
25 XEQ "VW"	Conductivity						
26+LBL 01	0011440017107						
27 RCL 00							
28 3 29 ST+ 02	Register 02-Store						
30 /	Neutral Capacity						
31 STO 00					FL	AGS	
32 RCL 01			init S/C	SET		S	CLEAR INDICATES
33 / 74 сто 07		29		Digit	Grou	pin	1
35 CLA							
36 FIX Ø							
37 "/"							
38 HRUL 02 79 "F="							
40 FIX 1	Display Number of						
41 ARCL 03	Wires for $1/3.1/6$ .					، ۱	
42 "⊢ WIRES	1/9 etc.	<u> </u>	+				
44 STOP		<u> </u>					`
45 GTO 01	Return to 01						
46 END							
		<b> </b>	+				
		-	+	+			
			+	+			
			+	+			+

#### FLAT STRAP NEUTRALS

Robert W. Parkin

PROGRAM: "STP"

FUNCTION: This program determines helical flat strap neutral arrangements, given the equivalent cross-sectional area required.

The best type of metallic shield or sheath to provide the most copper, (and conductance) with the smallest overall cable diameter is helically applied flat straps. These straps can be sized for service as a full or reduced neutral and carry fault currents while providing mechanical protection to the cable itself.

Tinning the wires in accordance with ASTM B33 is common, and will increase the electrical resistance of the straps. For added protection against physical damage or corrosion an overall sleeved on or encapsulated jacket can be applied.

ACCESSORIES: HP-41 CX or CV, printer optional

**OPERATING LIMITS AND WARNINGS:** Use the coverage program "COV" to insure that the number of straps applied can fit around the circumference of the cable.

#### REFERENCES

- [1] ASTM B272 Copper Flat Products with Finished (rolled or Drawn) Edges (Flat Wire and Strip)
- [2] ASTM B33, ASTM B189
- [3] ICEA S-66-524, NEMA WC-7

## USER INSTRUCTIONS

-236-

Size: 001

STE	P INSTRUCTIONS	INPUT	DISPLAY
1.	Connect printer if a hardcopy is desired. R/S after each display if no printer is attached.		
2.	Set printer switch to manual or normal mode.		
з.	Load programs "STP","VW"		
4.	Check status		
5.	Initialize: XEQ "STP"		
6.	Enter effective cross-sectional area required in circular mils	CMA	CMA ?
	NOTE: Aluminum conductors; multiply by .61 if copper straps are used		
7.	Enter thickness of strap in mils	т	Τ?
8.	Enter width of strap in mils	ω	W ?
9.	Equivalent cross-sectional area of one strap	-	CMA:FS =
10.	Display number of straps needed	-	X.X Strap
11.	Loop to re-enter thickness and width for different size strap	Т	Τ?

1
#### COMMENTS

#### Flat Strap Neutrals

Enter Effective Copper Equalvalent, Cross-01+LBL "STP Sectional Area Required 02 FIX 1 03 "CMA?" **04 PROMPT** Enter Thickness of Strap in Mils 05 STO 00 06+LBL 01 07 "T?" 08 PROMPT Enter Width of Strap in Mils 09 "W?" 10 PROMPT 11 * 12 1.2732 Display CSA of One Flat Strap 13 * 14 "CMA:FS= 15 XEQ "VW" 16 RCL 00 Display Number of Straps Required 17 X<>Y 18 / 19 CLA 20 ARCL X 21 "⊢ STRAP Loop to Re-enter t and W S " 22 TONE 9 23 AVIEW 24 STOP 25 GTO 01 End 26 .END.



#### METRIC STRAND CONDUCTOR DESIGN

Robert W. Parkin

**PROGRAM:** This program determines areas and diameters for compressed and compact concentric strand conductors in metric units. Standard and non-standard conductor sizes can be entered. Dimensions are given in metric units (mm²) and American Wire Gauge (circular mils).

For concentric class B strand, the individual strands are all equal in size, and consist of successive helical layers that correspond to the aggregate of wires; which is 7,19,37,61,91,127, or 169 wires.

Formulas applied are given with program documentation.

ACCESSORIES: HP-41 CX or CV, printer optional.

**OPERATING LIMITS AND WARNINGS:** Maximum number of wires can be 169.

**REFERENCES:** Underground Systems Reference Book, Edison Electric Institute.

# USER INSTRUCTIONS

MODE	E: COMPRESSED CONDUCTOR		Size: 004
STEF	P INSTRUCTIONS	INPUT	DISPLAY
1.	Connect printer if a hardcopy is desired. R/S after each display if no printer is attached.		
2.	Set printer switch to manual or normal mode.		
з.	Load programs "MET" "VW"		
4.	Check status		
5.	Initialize: XEQ "MET"		
6.	Enter cross section in mm^2	MM~ 2	MM~5
7.	Circular mil area displayed		CM =
8.	Select type conductor	1	CMT:0/CPS:1
	O = Compact		
	1 = Compressed		
9.	Enter number of wires in conductor (7,19,37,61, 91,127,169)	Ν	No. Wires?

DIA:1W=

10. Diameter of one wire

STEI	PINSTRUCTIONS	INPUT	DISPLAY
11.	Diameter of conductor, mils		D:MIL =
12.	Diameter of conductor, mm		D:MM =
MODE	E: [COMPACT CONDUCTOR]		
8.	Select type conductor	0	CMT:0/CPS:1
	0 = Compact		
	1 = Compressed		
9.	Enter area Al, of known compact conductor in circular mil	A 1	A? CM
10.	Enter diameter of known compact conductor in inches	Dia. D1	D1? Inch
11.	Diameter of conductor in inches		DIA =
12.	Diameter of conductor in mm		DIA: MM =

STEP/KEY CODE	-242- Comments	STEP/KEY CODE	COMMENTS
01+LBL "MET 02 FIX 1 03 "MM↑2?" 04 PROMPT 05 1973.55 06 * 07 STO 03 08 "CM=" 09 XEQ "VW" 10 "CMT:0 / CPS:1" 11 PROMPT	Metric Conductor Strand Design Enter Cross Section in mm ² Cir-mil Equivalent Select Type: 0 = Compact Strand 1 = Compressed Strand	54 XEQ "VW" 55 STOP 56◆LBL "LY" 57 RCL 00 58 7 59 X<>Y 60 X=Y? 61 GTO 01 62 19 63 RCL 00 64 X=Y? 65 GTO 02 66 37	Module to Determine Total Number of Layers Across Conductor
12 X=0? 13 GTO 00 14 "NO. WIR ES?" 15 PROMPT 16 STO 00 17 1/X 18 RCL 03 19 * 20 SQRT 21 STO 01 22 "DIA:1W=	Enter Number of Wires in Conductor, (7,19,37,61,91,127,169) Dia 1W $\sqrt{\text{cmil} \frac{1}{\text{No.of Wire}}}$	67 RCL 00 68 X=Y? 69 GTO 03 70 61 71 RCL 00 72 X=Y? 73 GTO 04 74 91 75 RCL 00 76 X=Y? 77 GTO 05	
" 23 XEQ "VW" 24 XEQ "LY" 25 RCL 01 26 RCL 02 27 * 28 .97 29 * 30 "D:MIL=" 71 YEO "VW"	Conductor Diameter in	78 127 79 RCL 00 80 X=Y? 81 GTO 06 82 169 83 RCL 00 84 X=Y? 85 GTO 07 86◆LBL 01 87 3	
32 .0254 33 * 34 "D:MM=" 35 XEQ "VW" 36 STOP 37+LBL 00 38 RCL 03 39 "A1?: CM	Mils Conductor Diameter in mm Enter Area (A ¹ ) of Compact Conductor Known	88 GTO 08 89◆LBL 02 90 5 91 GTO 08 92◆LBL 03 93 7 94 GTO 08 95◆LBL 04 96 9	
40 PROMPT 41 / 42 SQRT 43 "D1?: IN CH" 44 PROMPT 45 * 46 FIX 3 47 "DIA=" 48 XEQ "VW" 49 1 E3 50 * 50 *	Enter Diameter of Known Compact Conductor Diameter in Inches $D_2 = \sqrt{\frac{A_2}{A_1}} D_1$	98+LBL 05 99 11 100 GTO 08 101+LBL 06 102 13 103 GTO 08 104+LBL 07 105 15 106+LBL 08 107 STO 02 108 RTN 109 STOP	
51 .0254 52 * 53 "DIA:MM= "		167 STOP	

SAMPLE PROBLEM	-243-			DATA RI	EGIS	TERS
		00	No.	Wires	<b></b>	
		01	Diam	eter 1W	+	
						7
		02	Lay	ers		
XEQ "MET"		03	CM			
MM12?						
150.0 RU N						
CM= 296,032.						
5						
UNI:0 / UPS:1 1.0 RUN						
NO. WIRES?						
37.0 RUN						
DININE 607.3						
D:MM= 15.4						
				· · · · · · · · · · · · · · · · · · ·		
	-			· · · · · · · · · · · · · · · · · · ·		
	-					
XEQ "MET"						
150.0 RUN				······		
CM= 296,032.5						· · · · · · · · · · · · · · · · · · ·
CMT:0 / CPS:1						
0.0 KUN A12:CM						· · · · · · · · · · · · · · · · · · ·
300,000.0 RUN						
D1?: INCH						
DIA= 0.566						
DIA:MM= 14.382	•					
				FL	AGS	
		#	INIT S/C		s	
STATUS						
SIZE TOT REG USER MODE						
ENG FIX SCI ON OFF _						
DEG RAD GRAD						
			+			
			1			
ASSIGNMENTS		<u> </u>	+	<b> </b>		
FUNCTION KEY FUNCTION K	EY					
	1	1	1	1		1
<b> </b>						

STEP/KEY CODE

Conversion Factors 01+LBL "MM" 02 CF 27 03.0254 mm to mil Ø4 * 05 STOP 06+LBL "MIL •• 07 CF 27 mil to mm 08 .0254 09 ⁄ 10 STOP 11+LBL "CM" mm² to kcmil 12 1973.5 13 * 14 1000 15 / 16 STOP 17◆LBL "MT" 18 CF 27 meter to feet 19 3.281 20 * 21 STOP 22+LBL "KG" Kilogram to pounds 23 2.205 24 * 25 CF 27 26 STOP 27+LBL "CML 28 CF 27 CM to mil 29 .00254 30 * 31 STOP 32 END

# **Metric Conversion Chart**

AWG/MCM	*mm	circ mille
*2000		2 000 000
	+1000	1 970 000
*1750		1 750 000
*1500	+ 800	1 580 000
*1250		1 250 000
	+ 630	1 240 000
1000		1 000 000
	+ 500	987 000
• 750	+ 400	750 000
• 600		600 000
. 500	+ 300	592 000
500	+ 240	500 000 474 000
* 400	. 240	400 000
	+ 185	365 000
* 350		350 000
300	+ 150	296.000
• 250		250 000
	+ 120	237 000
4/0	+ 05	211 600
3/0	¥ 95	167 000
	+ 70	138 000
• 2/0		133 100
• 1/0	+ 50	105 600
1	¥ 50	83 690
	+ 35	69 100
• 2		66 360
3	+ 25	52 620
• 4	+ 25	49 300
	+ 16	31 600
• 6		26 240
• 8	+ 10	19 700
	+ 6.0	11 800
• 10		10 <b>380</b>
• 10	+ 4.0	7 890
12	+ 2.5	6 530 4 930
• 14		4 110
	+ 1.5	2 960
- 16	+ 10	2 580
	0.90	1 773
* 18		1 620
	0.80	1 576
	+ 0.75	1 480
• 20		1 020
	+ 0.50	987
• 22		640
24	+ 0.20	404 253
* 28		159
• 30		100
32	.05	64.0
36	.02	39.7 25.0
38		16.0
* 40	.005	9.61

Metric Conversion Chart AWG/Metric Preferred sizes of conductors

+ Metric (IEC 228) preferred size

American Wire Gauge preferred sizes



**Section Three** 

# Installation Programs and Guidelines

#### PULLING TENSIONS AND INSTALLATION GUIDELINES FOR CABLE

Robert W. Parkin

PROGRAM: "PUL" "TEN"

FUNCTION: This program determines the maximum allowable pulling tensions and lengths of extruded solid dielectric power cables. Sidewall bearing pressures on the cable are displayed for curved pulls along with the Clearance, Jam Ratio, and Percent Fill. Four cable configurations can be selected and nine forms of pulling directions are provided.

ACCESSORIES: HP-41CX or CV, printer optional

**OPERATING LIMITS AND WARNINGS:** A Maximum of four cables per pull can be applied. The shift key should be used to select the lower case labels a,b,c,d when selecting the configuration of cable in duct, and the upper case A-I for individual installing sections.

#### PROGRAM DESCRIPTION AND PARAMETERS

The manner in which cable is installed greatly influences not only the immediate cost but also the operational reliability and service continuity of the cable system. Although different cable constructions may demonstrate varying degrees of resistance to physical damage, current technology does not provide damage proof insulated conductors. Installation subjects cables to the highest mechanical stresses they will ever be exposed to, therefore, extreme care should be exercised while handling and installing cable.

The program covers four cable configurations in duct:

- a) Single
- b) Triangular
- c) Cradled
- d) Diamond

And Nine forms of pulling directions:

- A) Straight
- B) Horizontal Bend
- C) Slope Up
- D) Slope Down
- E) Vertical Dip
- F) Convex Up
- G) Convex Down
- H) Concave UP
- I) Concave Down

Each program module corresponds to the lower and upper case local label outlined above. Prompts are called sequentially and only if applicable to that section of the installation, keeping input data for each pull section to a minimum. After T2 and sidewall load (if applicable) are displayed the program will loop to reselect the next installing section, using the previous T2 as T1 until the installation layout is completed.

A diagram of the installation should be used in conjunction with the program to determine the best procedure, or re-design of the layout. Both directions of pulling should be evaluated, since the tensions and corresponding sidewall pressures will not be equal for both directions of installation in most cases. The calculations to determine the forces on a cable as it is pulled into a duct depends on several parameters:

Conduit Fill	Weight Correction Factor			
Clearance	Cable Diameter and Weight			
Jam Ratio	Configuration			
Friction	Bending , Training			
Sidewall Load	Maximum Tension			
SIDEWAII LUAD	Maximum lension			

**CONDUIT FILL:** Conduit fill mainly affects heat dissipation, ampacity, and installation forces. The NEC regulates the maximum number of conductors that may be pulled into rigid metal conduit, rigid non-metallic conduit, intermediate metal conduit, electrical metallic tubing, flexible metal conduit, and liquid-tight flexible metal conduit.

For round conductors and equal diameter cables, percent fill is calculated:

2 % Fill = [ d/D ] n * 100%

where: D = inside diameter of duct

d = overall diameter of a single conductor cable

The number of conductors permitted in a particular size of conduit is covered in the NEC chapter nine, given below. The table displays the maximum cable cross-sectional area as a percentage of internal conduit or duct area.

[6]

203			Number	of C	ables	
		<u>1</u>	<u>5</u>	<u>3</u>	<u>4</u>	<u>over 4</u>
Cables (r	not lead covered)	53	31	40	40	40
Cables Le	ead Covered	55	30	40	38	35

Bigger than minimum conduit should generally be used to provide some measure of spare capacity for load growth, and in many cases the conduit should be upsized considerably to allow for future installation of anticipated large size conductors.

Fill also affects the ampacity rating of the enclosed cables. Consult the NEC Article 310 to determine the influence that the selected fill has on circuit ampacity.

The dimensions of standard high density polyethylene conduit is given below.

<u>Nominal</u>	Size <u>Nominal</u>	O.D. <u>Nominal</u>	<u>I.D. * Min.</u>	Drum
3/4	1.050	0.920	-	
1	1.315	1.155	-	
1 1/4	1.660	1.448	-	
1 1/2	1.900	1.656	36	
2	2.375	2.045	42	
2 1/2	2.875	2.469	48	

#### High Density Polyethylene Conduit Dimensions (Inches)

* Recommended Minumum drum diameter on shipping reel.

<u>CABLE</u> <u>CLEARANCE</u>: In applications where the NEC limits do not apply, it is necessary to calculate the clearance between the cables and the inside top of the conduit to ensure that the cable can be pulled through.

[1] It is recommended that the calculated clearance be not less than 0.5 inches. A lesser clearance, as low as 0.25 inches may be acceptable for essentially straight pulls. The clearance should be adequate to accommodate the pulling eye or grip which will be used in the cable pull.

The clearance for each configuration is displayed first for each operation as "CL=". Formulas for clearance are shown in the program documentation. **JAM RATID:** Jamming is the wedging of cables in a conduit only when three (3) cables lay side by side in the same plane. Compute this using the nominal (or maximum) overall outer diameter of the cable (d) and 1.05 times the inside diameter of the conduit (D). A proper ratio of D/d must be maintained to avoid a 3/1 ratio.

The program will display this ratio, and then a "JAM" or "NO JAM" message. The "JAM" message will sound a warning BEEP if the ratio is between 2.8 - 3.2. Within this range jamming might occur because of slight ovality in bends that increase I.D. to give a jam ratio of 3.0. Serious jamming can probably be avoided if the ratio is less than 2.8. If D/d is less than 2.5, jamming is impossible because cables will be confined to a triangular configuration which also reduces electrical losses, but check the clearance to make sure the cable will fit.

FRICTION: The dynamic coefficient of friction between a cable and conduit can vary from 0.25 to 1.050 depending on the number of cables, type outer covering of cable, type conduit material installation temperature and of course type of pull and lubricant. This factor is generally divided with sidewall bearing pressures less than, or greater than 150 lbs/ft.

The value of 0.5 is used as a general value for lubricated cables being pulled into conduit or ducts without other cables. 0.15 for cables being pulled over ball or roller bearing rollers in cable trays, 0.4 for cables being pulled over rollers/sheaves without roller or ball bearing. Higher installation temperatures cause the coeffient of friction to be higher for cables having a nonmetallic jacket.

NOTE: Once a cable installation has begun, if possible, pulling should continue until completed. Once stopped, restarting will require pulling tension to be increased to overcome frictional and inertial resistance.

#### [3] <u>Recommended Basic Dynamic Coefficients of Friction</u>

Duct Material	Cable Jacket Material	¥	One Cat 75 F	le/Duct 20 F	Three Cables/Duct 75 F
PVC	XLPE		0.40	0.40	0.60
	PE		0.40	0.35	0.45
	PVC		0.50	0.25	0.60
	N		0.90	0.55	1.50
	CN		0.40	0.40	
	РЬ		0.25	0.25	

Straight pulls and bends with bearing pressure less than 150 lb/ft with soap and water base luricants.

[7] <u>SIDEWALL</u> <u>LOAD</u>: The cable Sidewall load (or bearing pressure) is the radial force exerted on the cables as is being pulled through a curved section.

For a single cable in conduit pulls:

SWL = T/R

Cradled formation three conductors:

SWL = (3 Wc - 2) T/ (3R)

In triangular formation:

SWL = Wc T / (2R)

For four cables in diamond configuration:

$$SWL = (Wc - 1) T/R$$

Where:

SWL = Sidewall bearing pressure on cable with greatest radial bend in lbs / ft

T = Maximum combined tension of cables for multiple cable pulls or tension on one cable for single cable pulls when exiting the bend in pounds

R = Inner radius of conduit bend

Wc = Weight correction factor for multiple cable pulls

It should be noted that the T/R ratio is independent of the angular change of direction produced by the conduit bend. It depends on the tension out of the bend and the bend radius, with the effective radius taken as the inside of the bend. If a limit is exceeded the bend radius can be satisfied by increasing the radius of the bend. The following maximum sidewall loads are generally considered good installation practice:

<u>Cable Type</u>	<u>SWL (16 / ft)</u>
600V nonshielded control	300
600V and 1kV EP power	500
Medium Voltage EPR and XLPE	500
Interlocked Armor	300

Sidewall bearing pressure on the cable can be kept to a minimum by obsevering these guidelines:

- (1) Keep conduit runs as straight as possible
- (2) Make the bend radius as large as possible
- (3) Keep offsets to a minimum
- (4) Where elbows or bends are unavoidable, locate the cable feed-in point as close to the bend as possible so that pulling tension at the bend is low.

<u>WEIGHT</u>: Use the total weight per unit length of cables being pulled. Triplexed cables will weigh more than parallel cables. For triplexed cables multiply the weight of a single cable by 3.009 for the total weight of assembly.

**WEIGHT CORRECTION FACTOR:** This takes into account the uneven forces placed on the cables while being pulled through the conduit, due to the geometric configuration of the cables. This imbalance results in additional frictional drag on the cables during the pull, effectivly increasing the weight of the cable. Formulas applied are shown with program documentation.

The weight correction factor for a single cable is unity.

**CONFIGURATION:** The configuration of the cable as it lays in the duct directly affects drag. Four configurations are given in the program and shown below. The cradled configuration is assumed to result from pulling cables from individual reels in parallel with D/d greater than 2.5. This is also called the parallel configuration. The triangular configuration results from the cables being triplexed, or parallel cables in a conduit less than 2.5. Use cradled for paralleled cables with D/d greater than 2.5.

#### Cable Configuration in Conduit

Single Triangular Cradled Diamond

MINIMUM BENDING RADIUS OF CABLES: There are two different forms of bends that place stresses on cables:

- Cables under tension (Bending)
- Cables not under tension (Training)

For both training and bending, computations are to be based on the inside radius. These limits do not apply to conduit bends, sheaves or other curved surfaces around which the cable may be pulled under tension while being installed.

The minimum bending radius as a multiple of Cable Diameter for both single and multiple conductor cables rated up to and including 35kV are as follows, based on these conditions:

- Single or multiple conductors
- Non-shielded cabled
- Without lead sheath
- Wire shielded cables

#### MINIMUM BENDING RADIUS

Г	4	٦
-	•	-

Thickness of Cable Insulation (mils)	<b>Overall Diam</b> 1.000 and less	eter of Cable, 1.001 to 2.000	Inches 2.001 and over
155 or less	4	5	6
170 - 310	5	6	7
325 & over		7	8

Single conductor tape shielded cables have a minimum bending radius of 12 times the overall diameter. For multiple assemblies and multiplexed cables having individual tape shields, the minimum bending radius is the same as for a single conductor or seven times the overall diameter. whichever is greater. For assemblies having an overall tape shield over the multi-conductor assembly, the minimum bending radius is 12 times the overall diameter of the cable.

For multi-conductor interlocked armor cables, except tape shielded cables: Per above table but not less than seven times the O.D.

**MAXIMUM TENSIONS:** The metallic phase conductors are the tensile members of a cable. Thus all pulling forces must ultimately be transferred to them, unless the cable is of custom design having special tension members.

The maximum allowable pulling tension applied to a cable varies with:

- The number of cables
- Size and type of conductor
- Number of conductors
- Method of attachment between pulling line and cable
- 1) Cables with pulling eyes or bolts should not exceed:

Where Tm is the maximum allowable tension, in pounds,

 $Tm = B \times n \times A$ 

- A = Conductor area in circular mils n = Number of conductors
- B = Conductor Tension Constant

[5]

Material	Cable Type	Temper	В
Copper	A11	Soft drawn	0.008
Aluminum	Power	Hard	0.008
Aluminum	Power	3/4 Hard	0.006
Aluminum	Power	"AWM"	0.005
Aluminum	URD (solid)	Soft(1/2 hard)	C.003
A11	Thermocouple		0.008

Three-quarter hard aluminum is allowed for power cable. AWM is required for UL labeled 600V aluminum solid wired #8 AWG and smaller; it may be used in larger sizes. Soft is sometimes used for large solid aluminum. AWM is a UL designated aluminum.

**NOTE:** Do not consider area of neutral or ground conductors in the cable when calculating maximum pulling tensions.

In pulling three single conductors, a value of n equal to two is recommended since two of the conductors may sustain the total pulling tension in a triangular configuration, and one of the conductors may sustain more than 50 percent of the total tension in a cradled arrangement. The maximum tension for a single conductor cable should not exceed 5000 lb., and the maximum tension for two or more conductors should not exceed 60001b even though calculations may yield higher values.

Basket Grip: The maximum tension on copper or aluminum 2) conductors should not exceed 1000 lb. per grip or the value calculated with  $Tm = B \times n \times A$ , whichever is smaller. The limit applies to a single conductor cable, a multi-conductor cable with a common jacket, two or more twisted cables or parallel cables using a basket grip. Use n = 2 for three grips, one per conductor to determine the maximum allowable tensions. Do not pull on metal sheaths or armors - pull on their phase conductors. If the basket grip is applied to the metal conductor then the limits of tension on the conductor apply. If the basket grip is applied over the insulated cable then a tension up to 1000 lb. is allowed per grip.

All of the limits are applicable to all pulls and the installation of cables shall not cause the limits to be exceeded. In particular, cable pulling tension must not exceed the smaller of these values:

- Allowable Tension on Conductor
- Allowable Tension on Pulling Device
- Allowable Sidewall Loads

NOTE (1): Extreme care must be observed in the storage, movement, and set-up of non-returnable wood and steel reels. Cable reels must be rolled on smooth and firm surface that is clean and free of debris that could damage the cable. Fork-lifts should approach the reels from the side and never come in contact with the cable. Arrows on the flange should indicate the direction of roll which should always be in the direction opposite to the cable wind on the reel. This prevents loosening of the cable turns on the reel, which may cause problems during installation.

(2) Reel back tensions and braking during a pull should be monitored, and kept within allowable limits. Braking of the reel should be done only to prevent an overrun when the pull is slowed or stopped, or on steep down-hill runs or vertical drops where cable weight is enough to overcome cable - duct friction. This program offers nine forms of pulling directions, which can be selected via the programable assigned alpha keys, A through I; providing subdivision of specific pulling sections. The sketches provided show the pulling directions. The formulas associated with each direction gives the cumulative tension T2 on the loading end of the cable as it exits from a specific section when T1 is the tension in the cable entering that section. Each section can be used as many times as needed.

#### DEFINITION OF SYMBOLS

Symbol	Definition	Units
Τ1	Incoming cable tension	Pounds
T2	Outgoing cable tension	Pounds
R	Inside radius of conduit bend	Feet
ω	Total weight of cables in duct	lbs/foot
θ	Angle subtended by bend for curved sections, or angle of slope measured from horizontal for inclined planes	Radians
к	Effective coefficient of friction	
L	Length of cable in section	Feet
י ם	Depth of dip from horizontal axis	Feet
25	Horizontal length of dip section	Feet

#### REFERENCES

- [1] [3] EPRI EL-333-CM-CCM,V2 Cable Pulling Guidelines for Solid Dielectric Cables Feb 1984
- [2] [5] Anaconda (CABLEC CORP) Cable Installation Manual
- [4] Insulated Cable Engineers Association Pub no. S-66-514, National Electrical Manufactuers Association Pub no. WC-8-1984, and WC-26 Wire and Cable Packaging 1984
- [6] National Electric Code 1984
- [7] R.C. Rifenburg "Pipe-line design for pipe-type Feeders" AIEE, pp 1275-1288, Dec 1953
- [8] Underground Systems Reference Book, Edison Electric Institute, 1957

# CABLE INSTALLATION DATA

Ву:							D	ATE:	
USER:	Name								
	Cable Instal	lation Addre	ss						
INSTALL	ER: Comp	any							
	Site Sup	ervisor							
DESIGNE	ER: Comp	any							
	Individ	dual							
PURCHA	ASER: Comp	any		Order =		Mfgr		Order	#
Phase C	able Type	•		Voltage	Size	≠∕¢	#/Duct	Ree	#
Grounde	d (Neutral) (	Cable Type		Voltage	Size	±/φ	_ = #/Duct	Reel	#
Groundir	ng Cable Typ	De			Size	<i>*</i> ∕φ_	#/Duct	Ree	#
WHEN:	Manufactur	ed	Delivered		Installed	•	Energized		
ENVIRO	NMENT: (	⊐ wet	🗆 air	raceway	1	🗆 indoor	_ □ haz	zardous	
	[	□ dry		no racev	way		□ am	bient tem	p
RACEW	AY: Type _		Ma	aterial			Inside Dim	ensions_	
CABLE	END: 1: Ter	mination 🗆	indoor 🗆 outdoor	gn lea	id size				
		mi	gr & type						
	Lig	phtning or S	urge Arrestor - feet	of wire from arr	restor to ca	ble end			
		m	igr & type						
	2: Ter	mination 🗆	indoor 🗆 outdoor	gn lea	d size				
		mi	gr & type						
	Liç	htning or S	urge Arrestor - feet	of wire from arr	restor to ca	ble end			
		mf	gr & type						
SPLICE	: 1. 🗆 stra	ight 🗆 Y 🗆	T 🗆 transition, mfgr	& type			gn lead s	size	
	2. 🗆 stra	ight 🗆 Y 🗆	T 🗆 transition, mfgr	& type			gn lead s	size	
INSTALL	ATION:	pulling rope	- material			size	C	leyes	
		puller - type	9					i basket o I serving	grip
		lubricant - I	nfgr & type					how mar	ny grips
		dynamomet	er - mfgr			range	۲	) cabled	🗆 parallel
TESTING	a: (attach dai	ta sheet): wi	nen & who			ins res	istance: volt	ti	me
	cleaning so	olvent (brand	1 & type)			dc hi v	oltage: volt	ti	me
	corona sur	pression (lu	as. etc)			ac hi v	oltage: volt	ti	me
SKETCH		ack or sena	rate sheat] . Include	a all banda auch			etione ee ehe	un in Du	lling Colevlativ
		ack of sepa			as unsets,		for the second	wn in Pu	lling Calculatio
	πιραι, ραί		e where reels were	set-up, size of bo	ixes or mani	noies, location o	of splices of taj	DS.	
CIRCUIT	Identity					len	ath (source to	n load)	
	Source	Volt	LI-			20.1		, 1000,	1 phase
	Source.	Fault		NVA		🗆 ung	· □Y		□ 3 phase
			AMPS		rocker ture				
		Overcurr	ent Protection:		time (sec)				
		log - 4 +	~		<del></del>	Ψ			yıı
	LUads	ioad fact		power factor					
		iype: mo	tor: type, size, now	started					
		trai	nstormers, capacito	ors, turnaces, lig	nting fixtur	es: size, type,	connection		
		all: gn/	ungn, ∆/y, 1Φ/3⊄	) amps: runnin	g, full load				



B. Horizontal Bend Pull



C. Slope - Upward Pull





E. <u>Vertical Dip Pull - (Small Angle)</u>

Where D' is Small Compared to S (i.e.  $\tan \theta/2 = \sin \theta/2 = D'/S$ )



For Angle  $\Theta$  Measured From Vertical Axis



### G. Convex Bend - Downward Pull

For Angle  $\Theta$  Measured From Vertical Axis



H. <u>Concave Bend - Upward Pull</u> For Angle 0 Measured From Vertical Axis



I. Concave Bend - Downward Pull For Angle  $\theta$  Measured From Vertical Axis



#### USER INSTRUCTIONS

			Size: 017
STEP	INSTRUCTIONS	INPUT	DISPLAY
1.	Connect Printer if a hardcopy is desired. R/S after each display if no printer attached.		
2.	Set Printer switch to manual or normal mode.		
з.	Load programs "PUL" AND "VW"		
4.	Check Status		
5.	Initialize: XEQ "PUL"		D?
6.	Enter I.D. of Duct	D	d?
7.	Enter nominal O. D. of Cable	đ	Select:abcd
8.	Choose cable confguration	shift a,b,c,d	
	a = Single b = Triangular c = Cradled d = Diamond		
9.	Display Clearance		CL =
10.	Display Jam Ratio		JR = "No Jam" or "Jam"
11.	Enter number of cables	Ν	N?
12.	Display Percent Fill		% Fill =
13.	Enter coefficient of friction	F	F?
14.	Enter section of incoming cable tensions. T1, Pounds.	Τ1	Τ1?
15.	Enter weight of cable per foot	ω	W/Ft?

STEP	INSTRUCTIONS	INPUT	DISPLAY
16.	Select Pull layouts	"A-I"	Select:A-I
	A = Straight Pull B = Horizontal Bend C = Slope Upward D = Slope Downward E = Vertical Dip F = Convex Bend Up G = Convex Bend Down H = Concave Bend Up I = Concave Bend Down		
	Input data depends on the layout selected, (straight,curved, or dip pulls).Each module will loop back to step 16 after displaying T2 and SWL (if applicable).		
17.	Straight Pulls: Enter length of section, feet	"A,C,D" L	L?
18.	Section outgoing cable tension		T2 =
19.	Select next Pull (step 16)		Select: A-I
20.	Curved Pulls:	"B,F,G, H.I	
21.	Enter inside radius of conduit bend.	R	R?
22.	Enter angle in degrees	D	? DEG
23.	T2 Displayed		T2 =
24.	Sidewall Load displayed		SWL =
25.	Select next Pull (Step 16)		Select:A-I
26.	Vertical Dip:	"E"	
27.	Enter depth of dip from horizontal axis, feet	י ם	D?FT
28.	Enter horizontal length of dip section, feet.	S	S?
29.	T2 Displayed		T2 =
30.	SWL Displayed		SWL =

31. Select next Pull (Step 16)

Select:A - I

# SAMPLE PROBLEM

-267-

XEQ "PUL" D?5.65 RUN d? 1.26 RUN SELECT: abcd XEQ c CL= 4.4 JR= 4.5 NO JAM RUN Ν? RUN 3.0 %FILL= 15 F? .45 RUN T1? 100 RUN W/FT? 4.25 RUN SELECT: A-I XEQ A L? 200 RUN 12= 524.51 SELECT: A-I XEQ B **R**? 6.00 RUN ∡? DEG. 98.00 RUN 12= 1149.90 SWL= 84.93 SELECT: A-I XEQ C L? RUN 80.00 T2= 1489.90 SELECT: A-I XEQ D L? 100.00 RUN T2= 1064.90

SELECT: A-I XEQ E D? FT 3.00 RUN <u>\$?</u> 40.00 RUN 12= 1437.52 SWL= 4.78 SELECT: A-I XEQ F **R**? 6.00 RUN ∡? DEG. 45.00 RUN 12= 2152.78 SWL= 159.01 SELECT: A-I XEQ G **R**? 6.00 RUN ∡? DEG. 90.00 RUN 12= 4704.21 SWL= 347.46 SELECT: A-I XEQ H **R**? 6.00 RUN ∡? DEG. 30.00 RUN T2= 6106.62 SWL= 451.04 SELECT: A-I XEQ I **R**? 6.00 RUN ∡? DEG. 15.00 RUN T2= 6955.14 SWL= 513.72 SELECT: A-I

## -268-

#### COMMENTS

#### Cable Pulling/Installation Program

01+LBL "PUL .. 02 RAD 03 FIX 1 Intialize 04 CF 01 05 CF 02 06 CF 03 07 CF 04 08 CF 05 Enter: Inside Diameter of Conduit, Inches 09 "D?" 10 PROMPT 11 STO 00 12 "d?" Nominal Outside Diameter of Single Conductor, Inches **13 PROMPT** 14 STO 01 15 -16 STO 02 Select Cable Configuation in Conduit: 17 SF 27 18 "SELECT: (Use Shift For Uppercase(a,b,c,d) abcd" **19 PROMPT** a = Single Cable 20+LBL a 21 XEQ "CR" b = 3 Cables Triangular <u>Single</u> 22 1 Clearance = D - d23 STO 04 c = 3 Cables Cradled Weight Correction 24 SF 01 Factor = 125 XEQ "JAM d = 4 Cables Diamond Find Jam Ratio XEQ Tension Module 26 XEQ "TEN •• 27+LBL 01 28 FS? 05 Find Sidewall Loading Pressure 29 GTO 00 30 RCL 06 31 RCL 08 32 / 33 "SWL=" SWL = T/R34 XEQ "VW" Return to Next Pull 35 GTO 00 36+LBL b Triangular 37 SF 02 38 1 39 RCL 01 40 RCL 02 41 🗸 42 X12 43 _ 44 SQRT 45 STO 03  $CR = \frac{D}{2} - 1.366d + \frac{1}{2} (D - d) \sqrt{1 - (\frac{d}{D - d})}$ 46 RCL 02 47 * 48 .5 49 * 50 RCL 00

51 2 52 / 53 RCL 54 1.36 55 * 56 - 57 + 58 XEQ 59 RCL 60 1/X 61 STO 62 XEQ	01 6 02 03 04 "JAM	Display Clearance Wc = $1/\sqrt{1 - [d/(D-d)]^2}$
.63 XEQ	"TEN	
64◆LBL 65 FS? 66 GTO 67 RCL 68 RCL	02 05 00 04 06	Straight Pull?
70 RCL 71 2 72 *	08	$SWL = W_C T / (2R)$
73 / 74 "SWL 75 XEQ 76 GTO 77◆LBL 78 SF Ø	=" "VW" 60 3	Display and Return Cradled
79 1 80 RCL 81 RCL 82 2 83 * 84 ∕ 85 X↑2 86 -	01 02	
87 SQRT 88 RCL 89 2 90 / 91 *	02	$CR = \frac{D}{2} - \frac{d}{2} + \frac{D - d}{2} \sqrt{1 - \left[\frac{d}{2} (D - d)\right]^2}$
92 RCL 93 2 94 / 95 RCL	00	
96 2 97 / 98 - 99 + 100 XEQ	 "CR"	

STEP / KEYCODE

COMMENTS

-270-

101 102	RCL RCL	01 02			
103 104 105	/ X†2 1.33	333	$Wc = 1 + 4/3 [d/(D - d)]^2$		
105 107 108 109 110	* 1 + STO XEQ	04 "Jam			
	XEQ	"TEN			
" 112 113 114 115 116 117	LBL FS? GTO RCL 3 * 2	03 05 00 04	SWL = (3Wc - 2) [ T/ (3R) ]		
119 120 121 122 123 124	- RCL RCL 3 *	06 08			
125	* "SWL	_="	Display and Return		
127	GTO	00 <u> </u>			
130	SF 6		Diamond		
131 132	RCL RCL	02 01			
133	X12		, 2d ² D ≠ 3		
134	*		$CR = (D - d) - \frac{2a}{(D-d)}$ with $\overline{d} < 3$		
136	RCL	02			
138	-				
139 140	RCL	"CR" 01			
141	RCL	02			
142 143 144	∕ X↑2		$Wc = 1 + 2 [d/(D - d)]^2$		
145	*				
147	1 +				
148 149	STO XEQ	04 "JAM			
 150 	XEQ	"TEN			
151+LBL 04 152 FS? 05 153 GTO 00 154 RCL 04 155 1 156 - 157 RCL 06 158 RCL 08 159 / 160 * 161 "SWL=" 162 XEQ "VW" 163 GTO 00 164+LBL "TEN	SWL = (Wc - 1) T/R Pulling Tension Module				
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	------------------------------------------------------	-----------------------------------------------------------------------------	--	--	--
" 165 "F?" 166 PROMPT	Enter Coefficient of Fri	iction			
167 RCL 04 168 * 169 STO 03 170 "T1?" 171 PROMPT 172 STO 06 173 "W/FT?" 174 PROMPT	Enter Incoming Cable Ter Enter Total Weight of Ca	nsion, Pounds ables in Conduit, Pounds/ft			
175 STO 07 176+LBL 00 177 CF 05 178 SF 27 179 "SELECT:	Return Label Select Pull and Bend Configuations				
180 TONE 9 181 PROMPT 182+LBL A 183 SF 05 184 RCL 07 185 PCL 03	Straight Pull T1	<pre>A = Straight Pull B = Horizontal Bend Pull C = Slope Upward Pull</pre>			
186 * 187 "L?" 188 PROMPT 189 *	Enter Length of Cable In Section	<pre>D = Slope Downward Pull E = Vertical Dip Pull</pre>			
190 RCL 06 191 +	$T_2 = T_1 + WKL$	F = Convex Bend Up			
192 XEQ "T2" 193+LBL B	<u>Horizontal Bend Pull</u>	G = Convex Bend Down			
194 XEQ "BD" 195 RCL 10		H = Concave Bend Up			
196 RCL 03 197 *		I = Concave Bend Down			
198 XEQ "SIN H"					
199 RCL 08 200 RCL 07	$T_2$ = Section Outgoing Ca	able Tension, Pounds			

STEP / KEYCODE

-272-

COMMENTS

201 * 202 X12 203 RCL 06 204 X12  $T_2 = T_1 \cosh K\theta + \sqrt{T_1^2 + (WR)^2} \sinh K\theta$ 205 + 206 SQRT 207 * 208 RCL 10 209 RCL 03 210 * 211 XEQ "COS Η" 212 RCL 06 213 * 214 + Display T2 215 XEQ "T2" 216+LBL C Slope Upward Pull 217 SF 05 218 RCL 10 219 COS 220 RCL 03 221 *  $T_2 = T_1 + LW(\sin \theta + K \cos \theta)$ 222 RCL 10 223 SIN 224 + 225 RCL 07 226 * 227 "L?" Enter Length of Section 228 PROMPT 229 * 230 RCL 06 231 + 232 XEQ "T2" 233+LBL D Slope Upward Pull 234 SF 05 235 RCL 10 236 COS 237 RCL 03 238 * 239 STO 16 240 RCL 10 241 SIN 242 RCL 16  $T_2 = T_1 - LW (\sin\theta - K \cos \theta)$ 243 _ 244 RCL 07 245 * 246 "L?" 247 PROMPT 248 * 249 RCL 06 250 X<>Y 251 -252 XEQ "T2" Display T₂

293 4 294 * 295 E1X 296 RCL 14

292 RCL 14

303 RCL 14 304 E1X 305 2 306 *

Feet

			Vertical Dip Pull
253• 254 255 256 257	LBL "D? PROM STO 2	E FT" PT 11	Enter Depth of Dip From Horizontal Axis,Fee
258 259 260	* "S?" PROM	PT	Enter Horizontal Length of Dip Section, Feet
261 262 263	STO / STO	12	$\Theta = \frac{2D}{S}$
264 265 266 267	RCL X12 RCL 4	11	$R = \frac{s^2}{4D}$
269 270 271 272	Ž STO RCL	08 07	RW
273 274 275	STO RCL RCL	13 03 10	кө
277 278 279	т STO E↑X 1	14	$T = T_1 e^{k\theta} + RW(e^{k\theta} - 1)$
280 281 282 283	- RCL * RCI	13 14	
284 285 286	E↑X RCL *	06	
287 288 289	+ RCL X<>Y	13	For T>RW
290	KK = Y	05	$T_{2} = T_{1} e^{4k\theta} + RW[e^{4k\theta} - 2e^{3k\theta} + 2e^{k\theta} - 1]$

307 308 309	1 - +		
310 311	RCL *	07	For T KW
312 313	RCL *	08	
314 315	RCL 4	14	
316 317 318 319	* E↑X RCL *	06	
320	+		
321	XEQ	"T2"	$T_2 = T_1 + WK2S$
3224		05	2 1
323	2 *	12	
325	RCL	03	
328	RCL	07	
330		06	
332	XEQ	"T2"	
3334	LBL	F	Convex Bend Unward Pull
334	XEQ	"BD"	onver bena opwara rurr
335	RCL	14	
337 338	- RCL	10	
339 340	cos +		
341	1		
342	RCL	03	
343			
345	*		$m = m e^{k\theta}$ , WR [2Ke ^{kθ} sin 0 + (1 k ² )(1 e ^{kθ} cos 0)
346	STO	09	$T_2 = 1$ $t_1 + \kappa^2$ [2Ke SIN $\theta + (1-\kappa)(1-\theta) \cos \theta$ ]
347	RCL	03	
349	*		
350	2		
352	RCL	10	
353	SIN		
354 355	* RCL	09	
356	+		
357	STU	16 "WR"	
359	RCL	16	
360	*		
361 362	RCI	14 06	
363	*		

364 +

365 XEQ "T2"

STEP / KEYCODE

-275-

COMMENTS

418♦LBL "JAM Jam Module 419 RCL 00 420 RCL 01 D/d < 2.8 421 🗸 422 "JR=" 423 XEQ "VW" Jam Ratio 2.8 - 3.2 Leaves Serious Possibility 424 2.8 of Cables Jamming 425 X>Y? 426 GTO 06 427 RCL Y 428 3.2 D/d>3.2 429 X<=Y? 430 GTO 06 Display "Jam" if Within 2.8-3.2 With Warning Beep 431 "JAM" 432 AVIEW 433 BEEP 434 STOP 435 GTO 07 436+LBL 06 437 "NO JAM" Display"No Jam" 438 AVIEW 439 TONE 9 440 STOP 441+LBL 07 442 RCL 01 443 RCL 00 444 / 445 X12 446 "N?" Enter Number of Cables 447 PROMPT 448 * 449 100 450 * 451 FIX 0 % Fill =  $[d/D]^2$  n • 100% 452 "%FILL= (For Round Conduits, and Equal Diameter Cables) 453 XEQ "VW" 454 RTN 455+LBL "CR" 456 CF 27 457 "CL=" Clearance Display 458 XEQ "VW" 459 RTN 460+LBL "SIN Sinh Module н... 461 STO 00 462 E↑X-1 463 RCL 00 464 E1X 465 🗡 Sinh =  $1/2 [e^{x} - 1 + \frac{e^{x} - 1}{e^{x}}]$ 466 RCL 00 467 E↑X-1 468 + 469 2 470 / 471 RTN

## COMMENTS

472 <b>•</b> 473	•LBL "R?"	"BD"	Bend Module
474 475	PROP	1PT 08	Enter Inside Rad _i us of Conduit Bend, Feet
476 "	"∡?	DEG.	Enter Angle Subtended by Bend for Curved Sections or Angle of Slope Measured From Horizontal for
477 478	PROM D-R	1PT	Inclined Planes, Degrees
479	STO RCL	10 03	
481 482 483 484	* E↑X STO RTN	14	eke
485+ 486 487	FIX RND	"Т2" 2	T2 Module Round to 2 Digits
488 489 490	STO "T2= XEQ	06  	
491 492 493 494 495	FS? GTO FS? GTO FS?	01 01 02 02 03	Return to Configuation for SWL
496 497 498 499● H	GTO FS? GTO LBL	03 04 04 "COS	$COSH X = \frac{e^{X} + e^{-X}}{2}$
500 501 502 503 504	E↑X ENTE 1/X + 2	R↑	
505 506	RTN		
507+ 508 509 510	RCL RCL	" WR " 08 07	WR Module
511 512 513	RCL X12	03	$\frac{WR}{1+K}$ 2
514 515 516	+ / RTN		

		-278-	<b></b>		
STEP/KEY COL	DE	COMMENTS		DATA RE	GISTERS
517+LBL 518 RCL 519 SIN 520 RCL 521 2 522 * 523 * 524 1 525 RCL 526 X↑2 527 - 528 RCL 529 RCL 530 COS 531 - 532 * 533 - 534 XEQ 535 * 536 STO 537 RTN 538 END	"СВ" 10 03 03 14 10 "WR" 15	End	00 01 02 03 04 05 06 07 08 09 10 11 12 12 13 14 15 16 	DATA HE D d D - d K (eff) WC Not Used T1 Weight R Calculations $\Theta$ Radius D1 S WR $K\Theta$ + $e$ CB - Calc. Calculations	
SIZE 017 TOT ENG FIX DEG FIX DEG RAD Straight Horizontal Slope Up Slope Down Vertical Di Convex Up Convex Down	STATUS  T. REG	Auto USER MODE ON OFF  S JNCTION KEY ave Up H ave Down I I I (le a Ingular b I e C Iond d	# 01 02 03 04 05	FLA SC SET INDICATES C Single C Triangular C Cradled C Diamond C Straight R 	AGS CLEAR INDICATES CLEAR IND

#### PACKAGING OF WIRE AND CABLE

#### Robert W. Parkin

FUNCTION: This program determines the total capacity of round wire or cable that a given reel size can accommodate; based on total length and/or weight capacity of the reel. Cable diameter, flange diameter, traverse width, and drum diameter are the required inputs for length capacity, and cable and reel weights are optional inputs if the total packaging weight is required.

A safety factor incorporated into the program provides a clearance of two-inches, or one cable diameter, whichever is larger. A series of four tones will sound to alert the user that the drum diameter is to small, and needs to be checked from Table 3-1.; excessive or extreme bending can be detrimental to cable.

The program is in two sections; the first part calculates the total footage and weight capacity (optional). The second isolates the calculation parameters and uses less stringent nesting factors and gives the total footage capacity by adding each successive layer. The clearance and footage in the last outer layer are the most important factors to observe when utilizing the successive layer method. The footage of each layer on the reel, summation of layers, number of turns across the traverse, number of layers, footage per turn in the outer layer, and the clearance left between the outer layer of cable and outer edge of reel flange are displayed. If weights are of no concern enter zero at appropriate prompts.

ACCESSORIES: HP-41CX or CV, printer optional

**OPERATING LIMITS AND WARNINGS:** Accuracy of this program is dependent on an evenly wound reel, constant cable diameter, and circular drums and flanges on reels. A multiple of 14 (on line 36) is initially set in the program for drum diameter checks. Selected reel sizes should be in accordance with NEMA WC-26 requirements to insure that the minimum bend radius for the cable is not exceeded and to allow adequate flange support in the reel design.

#### **REFERENCES:**

[1] NEMA Publication No. WC-26 for Wire and Cable [2] Pulling Tensions and Installation Guidelines for Cable. R.W. Parkin The formula for calculating footage capacities of reels for round cable is shown as follows. A 5 percent nesting factor and 95 percent traverse utilization have been built into the formula. Therefore, cables <u>must be wound evenly</u> to obtain uniformity, compactness, and the nesting of successive turns and layers.

$$\frac{\gamma r}{12} \left[ \left( \frac{A - 2X - B}{1.9 \times D} \right)^* \times 0.95 \times D + B \right] \times \left( \frac{A - 2X - B}{1.9 \times D} \right)^* \times \left( \frac{C}{D} - 1 \right)^*$$

*Take integer of whole number

- A = Flange Diameter (inches)
- B = Drum Diameter (inches)
- C = Traverse Width (inches)
- D = Cable estimated diameter (inches)

X = Clearance between outer layer of cable and outer edge of reel flange.

Note: For Triplexed cable D=2.155 x 0.D of single (circumscribed diameter)

For paralleling no special allowance need be made.



Maximum nesting factor as determined by geometric center spacing of cables.

 $H = D + X_1$ 



1. Number of Layers (n)

$$n = A - (B + 2 X) * 1.9 X D$$

***INTEGER** 

2. Clearance (X)

$$X = \underline{A - B} - (n \times D)$$

- 3. Footage/turn in outer layer (FOL) FOL = [B + (2D x n x 0.95)]  $\frac{\mathbf{1}\mathbf{r}}{\mathbf{12}}$
- 4. Number of Turns (NT)  $\frac{C}{D} - 1$
- 5. Footage per layer (FL)

$$\left\{B + [D(2 \text{ ni} - 1)]\right\} \quad \frac{T}{12} \quad x \text{ NT}$$

Where:

A =	Flange Dia	n	=	No. of Layers
в =	Drum Dia	FOL	=	Foctage/Turn in outer layer
C =	Traverse	NT	=	No. of turns
D =	Cable O.D.	FL	=	Footage per layer
x =	Clearance	₹FL	=	Summation of Layers (Total reel capacity)

NOTE: The above equations apply for single cables having an even layer wind. Triplexed and Parallel assemblies should use only the first Program with the circumscribal O.D. for Triplexed cables and a 0.89 reduction factor of total length for Parallel cables. NON RETURNABLE WOOD REELS

FLANGE	TRAV	DRUM	0.A.W.	REEL SPEC	WEIGHT (LBS.)	CAPACITY (LBS.)
24	12	10	14.0	NEMA	20.0	350
24	18	10	20.0	NEMA	22 <b>.0</b>	525
27	18	12	21.0	NEMA	31.0	700
30	18	12	21.0	NEMA	37.0	95Ø
32	24	14	28.0	NEMA	52.0	1500
36	24	17	28.0	NEMA	93.0	2000
40	24	17	28.0	NEMA	108.0	2500
42	26	18	30.0	NEMA	120.0	2000
45	28	21	32.0	NEMA	140.0	3500
50	32	24	37 0	NEMA	212.2	1000
54	32	28	36.5	NEMH	212.0	4800
54	30	24	34 5		270.0	3600 5/00
		- 1			200.0	2909
58	32	28	37.0	NEMA	274.0	6500
5 <b>0</b>	32	28	36.5		29 <b>0.0</b>	6600
66	36	36	41.5	NEMA	468.0	7000
72	36	28	42.5		590.0	8000
72	36	36	41.5	NEMA	508.0	8000
72	48	36	54.5	NEMA	653.0	8000
78	48	42	54.5	NEMA	733.0	9000
84	45	42	51.5	NEMA	897	10000
84	54	48	60.5	NEMA	ອ101 01	10000
					/10.0	10000
7Ø	45	42	51.5	NEMA	985	15000
9 <b>0</b>	54	48	60.5	NEMA	1140.0	15000
76	54	56	60.5	NEMA	1240.0	15000
96	54	48	60.5		1140.0	15000
104	50	48	56.5		1250.0	15000

-283-

REEL SELECTION -RM STEEL TABLE

								ARBOR	ARBOR
				REEL	REEL	WEIGHT	CLEARANCE	HOLE	HOLE
FLANGE	TRAVERSE	DRUM	0.A.W.	SPEC	WEIGHT	CAPACITY	INCHES	MIN	MAX
048	24	24	31.0		0225.0	004200	2.0	3.00	3.25
054	32	32	39.0		0295.0	006100	2.0	3.00	3.25
060	32	35	39.0		0345.0	008000	2.0	3.00	3.25
066	32	35	41.0	NEMA	0355.0	007680	2.0	3.00	3.25
066	36	40	42.0		0390.0	010200	2.0	3.00	3.25
072	36	40	45.0	NEMA	0500.0	010260	Ξ.0	3.00	3.25
078	36	48	43.0		0690.0	014200	2.0	3.00	3.25
084	36	42	45.0		0730.0	013600	2.0	5.37	5.37
084	48	56	55.0		0905.0	015000	2.0	3.00	3.25
096	56	48	64.5		1700.0	030000	2.0	5.75	5.75

## REEL SELECTION -RMT STEEL TABLE

		-						ARBOR	ARBOR
				REEL	REEL	WEIGHT	CLEARANCE	HOLE	HOLE
FLANGE	TRAVERSE	DRUM	0.A.W.	SPEC	WEIGHT	CAPACITY	INCHES	MIN	MAX
084	36	42	45.0	NEMA	0730.0	013600	2.0	5.00	5.25
084	45	42	55.0	NEMA	0865.0	017000	2.0	5.00	5.25
090	45	42	55.0	NEMA	1100.0	021000	2.0	5.00	5.25
090	54	56	64.0	NEMA	1200.0	020000	2.0	5.00	5.25
096	45	42	56.0		1600.0	020000	2.0	5.75	5.75
096	54	56	66.1		1700.0	020000	2.0	5.75	5.75
096	60	42	71.0	NEMA	1700.0	059000	2.0	5.00	5.25
096	50	56	71.0	NEMA	1800.0	024000	2.0	5.00	5.25

# Table 3-1 MINIMUM DRUM DIAMETERS OF REELS FOR CABLES

		Minimum Drum Diameter as a Multi Outside Diameter⁺ of Cable			Multiple of ble
			of Insulation	n	
		Pap	er		
	Type of Cable	Solid and Gas	Oil Filled	Varnished Cloth	Extruded
A.	Single and multiple conductor nonmetallic covered cable 1. Nonshielded and wire shielded, including cables with concentric wires: a. 0-2000 volts	14		14	10
	b. Over 2000 volts;				
	(1) Nonjacketed with concentric wires (2) All others	14	_	14	14 12
	2. Tape shielded	14		14	14
<b>B</b> .	Single- and multiple-conductor metallic-covered cable:				
	a. Lead	14	14*	14	14
	(1) Outside diameter — 1.750" and less	25	25	25	25
	(2) Outside diameter — 1.751" and larger	30	30	30	30
	2. Wire armored	16	18	16	16
	3. Flat tape armored	16	18	16	16
	4. Corrugated metallic sheathed	16	18	14	14
	5. Interlocked armor	14	18	14	14
C.	Multiple single conductors cabled together without common covering, including self-supporting cables				
	The circumscribing overall diameter shall be multiplied by the factor given in item A or B and then by the reduction factor at the right	0.85	_	0.85	0.75
D	. Combinations				
	For combinations of the types described in items A, B and C, the highest factor for any component type shall be used.				
E.	Single- and multiple conductor cable in coilable nonmetallic duct Outside diameter of duct, inches $-0.0 - 0.50$	_	_	_	26
	0.51-1.00	_		_	24
	1.01-1.25	_		_	22
	1.26–1.50		_		21
	Over 1.50		—	—	20

[†]Outside Diameter —

1. When metallic-sheathed cables are covered only by a thermosetting or thermoplastic jacket, the "outside diameter" is the diameter over the metallic sheath itself. In all other cases, the outside diameter is the diameter outside of all the material on the cable in the state in which it is to be wound upon the reel.

2. For "flat-twin" cables (where the cable is placed upon the reel with its flat side against the drum), the minor outside diameter shall be multiplied by the appropriate factor to determine the minimum drum diameter.

3. The multiplying factors given for item E refer to the outside diameter of the duct.

* For single-conductor cables with more than 500 mils of insulation, this factor is 18.

## USER INSTRUCTIONS

Size: 011

S <u>TEP</u>	INSTRUCTIONS	INPUT	DISPLAY
1.	Connect printer if a hardcopy is desired. R/S after each display if no printer is attached.		
5.	Set printer switch to manual or normal mode.		
з.	Load programs "REEL","AV","VW".		
4.	Check status		
5.	Initialize: XEQ "REEL"		
6.	Enter total weight of cable(s) Per 1000 Feet or zero.	WGT	W/MFT?
7.	Enter nominal diameter of cable, for triplexed cables use cir- cumscribed O.D. of assembly: (2.155 x single O.D), inches.	0.D	CABLE O.D?
8.	Enter Flange Diameter, inches.	F	FLANGE?
9.	Enter Traverse Width, inches.	T	TRAV?
10.	Enter Drum Diameter, inches.	D	DRUM?
11.	Total Footage Reel can hold.	-	FT =
12.	Enter Shipping Length, feet.	SL	SL?
13.	Total Weight of Shipping Length.	-	XXXX LBS
14.	Enter Weight of reel, pounds.	-	REEL: NTP
15.	Total Package Weight (reel and shipping length).	-	T:WT =

STE	D INSTRUCTIONS	INPUT	DISPLAY
	DISPLAY:		
16.	Flange/Drum ratio	-	F/D =
17.	Number of Layers	-	NL =
18.	Clearance	-	CL =
19.	Footage/Turn in outer layer.	-	FOL =
20.	Number of Turns.	_	NT =
21.	Footage per layer.	-	1 = 2 = 3 = 4 = etc.
22.	Summation of Layers.		∑FL =
23.	Total Weight for summation of layers.	_	XXX LBS
24.	Enter Shipping Length.	SL	SL?
25.	Total Weight for shipping length.	· · · ·	XXXX LBS
	OPTIONS:		
1.	To select different reel size using the same cable O.D. and weight: XEQ "RT" Enter Flange, etc	F	FLANGE
г.	To print out reel size and cable		

O.D. load and XEQ "RD"

-287-SAMPLE PROBLEM

XEQ "REEL" W/MFT? RUN 1580 CABLE: 0.D? RUN 1.86 FLANGE? RUN 72 TRAV? RUN 36 DRUM? RUN 36 FT= 2,201. SL? 2,000. RUN 3,160. LBS REEL: WT? 400. RUH T:WT= 3,560. F/D= 2.0 NL= 9.0 CL= 1.3 FOL= 17.8 NT= 18 1 = 182 2 = 200 3 = 2184 = 236 5 = 253 6 = 271 7 = 289 8 = 307 9 = 325 EFL= 2281 3604 LBS SL? 2000 RUN 3160 LBS

XEQ "RT" FLANGE? 78 RUN TRAV? 48 RUN DRUM? 42 RUN FT =3,274. SL? 3,000. RUN 4,740. LBS REEL: WT? RUN 500. T:WT= 5,240. F/D= 1.9 NL= 9.0 CL= 1.3 FOL= 19.3 NT= 25 1 = 285 2 = 3093 = 333 4 = 357 5 = 381 6 = 406 7 = 4308 = 454 9 = 478 ΣFL= 3433 5425 LBS SL? RUN 3000 4740 LBS

01+LBL "REE		51 * 52 /	
L" 02 FIX 0 03 CF 27 04 SF 12	Initialize	53 INT 54 STO 06 55 .95 56 *	$\frac{A - 2x - B}{1.9 \times D}$
05 CF 29 06 "W/MFT?" 07 TONE 9 08 PROMPT	Prompt for Weight of Cable/1000 ft.	57 RCL 03 58 * 59 RCL 01	0.95 x D + B
09 STO 08 10 "CABLE: 0.D?" 11 PROMPT	Enter Cable O.D. in Inches	61 .2618 62 * 63 RCL 02	π/ 12
12 STO 03 13 FIX 0 14 2 15 X<=Y?	$\mathbf{X} < 2$ ? Then $\mathbf{C} = 2$	65 / 66 1 67 -	$\frac{U}{D} = 1$
16 GTO 05 17 GTO 04 18◆LBL 04 19 STO 04	If $X > 2$ Then CL = 2 If $X > 2$ Then	68 INT 69 * 70 SF 12 71 RCL 06	
20 GTO "RT" 21+LBL 05 22 RCL 03	CL - Cable 0.D.	72 * 73 FIX 0 74 SF 29 75 "FT= "	Reel Capacty in Feet
24+LBL "RT" 25 CF 27 26 "FLANGE?	Return Label for New Reel Enter Flange Diameter	76 XEQ "VW" <u>77 XEQ "SL"</u> 78 "REEL:WT ?"	Shipping Length Enter Reel Weight
" 27 PROMPT 28 STO 00 29 "TRAV?" 70 PROMPT	Traverse Width	79 PROMPT 80 + 81 "T:WT=" 82 XEQ "VW"	Total Weight of Cable and Reel
30 PROMPT 31 STO 02 32 "DRUM?" 33 PROMPT	Drum Diameter	83 CF 29 84 RCL 00 85 RCL 01 86 /	
34 STU 01 35 RCL 03 36 14 37 * 38 RCL 01	Multiple Drum Check (14 Times)	87 2.5 88 X<=Y? 89 BEEP 90 RCL Y	Flange/Drum < 2.5
39 X<=Y? 40 BEEP 41◆LBL "FT" 42 RCL 00	4 Tone Series Warning Total Footage	91 FIX 1 92 "F/D= " 93 XEQ "VW" 94 RCL 06 95 "NL= "	Number of Layers
43 RUL 04 44 2 45 * 46 RCL 01 47 +	Calculation	96 XEQ "VW" 97◆LBL "CL" 98 RCL 00 99 RCL 01	Calculate Clearance
47 + 48 - 49 RCL 03 50 1.9		100 -	

STEP/K	Y COE	Έ	-289- Comments	STEP/KEY CODE	COMMENTS
101	2	96	A-B (	151 RCL <b>05</b> 152 *	
103 104 105 106	RCL * -	03	$x = \frac{1}{2} - (n \times D)$	153 ST+ 10 154 CLA 155 ARCL 07 156 "F = "	Append n
108 109 1104	"CL= XEQ ▶LBL	- ⁻ . "VW" "FOL	Footage Per Turn in Outer Layer	157 ARCL X 158 AVIEW 159 Tone 8 160 RCL 06	
111 112 113 114	RCL .95 * RCL	06 03	$\sim$	161 RCL 07 162 X=Y? 163 GTO 02 164 RCL 07	Loop
115 116 117 118	2 * RCL	[B Ø1	+(2D x n x 0.95)] $\frac{1}{12}$	165 1 166 + 167 GTO 01 168+LBL 02 169 RCL 10	Summation of
120 121 122 123	.261 * "FOL XEQ	18 -=" "VW"		170 "ΣFL= " 171 XEQ "VW" 172 XEQ "WT" 173+LBL "SL"	Layers Shipping Length
1244 125 126 127	RCL RCL RCL	"NT" 02 03	Number of Turns NT = C/D - 1	174 "SL?" 175 PROMPT 176 XEQ "WT" 177 RTN	
128 129 130 131	1 FIX STO	0 05		178+LBL "WI" 179 RCL 08 180 1 E3 181 /	Weight
132 133 134 "	"NI≞ XEQ ▶LBL	 	Footage Per Layer Calculation	182 KCL 1 183 * 184 CLA 185 ARCL X 186 "F LBS"	
135 136 137 138 1394	STO FIX 1	10 0 01	Initialize	187 AVIEW 188 FC? 21 189 STOP 190 RTN	
140 141 142 143	STO 2 * 1	07		191 END	
144 145 146 147	- RCL * RCL	03 01	$B = [D(2n_{i} - 1)]_{12}^{\text{T}} \times NT$		
148 149 150	+ .26 *	18			

RCL 00 RCL 04

RCL 01

RCL 03 1.9 * / INT STO 06 .95 *

RCL Ø3

RCL 01

.2618

RCL 02 RCL 03

SF 12 RCL 06

FIX 0 "FT= " ARCL X AVIEW TONE 0 CF 12 END

×

+

*

/ 1 -INT *

*

2 *

+

I

	Reel Calculation Short Form	
01+LBL "REE L" 02 FIX 0 03 CF 27 04 CF 29 05 "CABLE 0 D?" 06 PROMPT 07 STO 03 08 2 09 X<=Y? 10 GTO 05 11 GTO 04 12+LBL 04 13 STO 04 14 GTO 06 15+LBL 05 16 RCL 03 17 STO 04 18+LBL 06 19 FIX 3 20 "CL= " 21 ARCL X 22 AVIEW 23+LBL "RT" 24 CF 27 25 "FLANGE?		41 42 44 45 44 45 44 45 55 55 55 55 55 55 55
" 26 PROMPT 27 STO 00 28 "TRAV?" 29 PROMPT 30 STO 02 31 "DRUM?" 32 PROMPT 33 STO 01 34 RCL 03 35 14 36 * 37 RCL 01 38 X<=Y? 39 BEEP 40+LBL "FT"		68 69 70 71 72 73 74 75 76 77 78

-2	9	1-
----	---	----

	Print Out Reel and O.D.
01+LBL "RD"	
02 FIX 0	
03 SF 12	
04 RCL 00	
05 ACX	
06 RCL 02	
07 ACX	
08 RCL 01	
09 ACX	
10 PRBUF	
11 RCL 03	
12 FIX 2	
13 "O.D= "	
14 ARCL X	
15 AVIEW	

16 STOP 17 END

	STATUS	Auto
SIZE ENG DEG	TOT. REG FIX SCI RAD GRAD	USER MODE ON OFF

ASSIGNMENTS			
FUNCTION	KEY	FUNCTION	KEY
RT			
RD			

00	Fla	nge	—			
01	Dru	ım				
102	Tra	verse				
03	Cab	le O.D.				
0.1						
04	LCTE	arance				
05	No.	of Layers	5			
06	No	of Lavers	<u>}</u>			
		JE Dayers	-			
07	Lay	ers N =i				
08	Wei	ght/MFT				
00	NEL	Ucci				
09	NOT	usea				
10	Acc	umulated				
	Sui	mmation of				
		<u>Yers</u>				
		, 				
			-			
-						
	L					
	INIT		LAGS	<b>.</b>		
12	5/C	Double Wig	le	ULE/		AIES
	1	Print	<u>.</u>			
27	+	<u>User Mode</u>	On	User	Mode	Off
29		Digit Grou	upinc			
F						
<u> </u>	+					
<u> </u>	+				······································	
┣	+					
-	+	+		+		
				1		
		+				
	1	1		+		



## MECHANICAL DESIGN OF OVERHEAD SPANS

#### Robert W. Parkin

FUNCTION: This program determines the unit tensions for the conductor, mid-point and apparent sag, horizontal weight spans, pull-off angles and relative or absolute elevations for overhead transmission line or distribution circuits. In addition the distance measured vertically from any point in the conductor to a straight line between its two points of support can be found by inputting the distance from the first structure. English or metric units may be used.

ACCESSORIES: HP-41 CX or HP-41CV, printer optional

#### **OPERATING LIMITS AND WARNINGS:** None

## **REFERENCES:**

- [1] Sag Calculations for Suspended Wires, P.H. Thomas Trans. AIEE, 1911, vol 30, p 2229
- [2] Computer Aids Weight-on-Line Solutions, Transmission and Distribution, November, 1978
- [3] Standard Handbook for Electrical Engineers, Fink and Beaty, Eleventh Edition
- [4] National Electrical Safety Code, ANSI Pub. No. C2
- [5] NEMA WC-8, ICEA S-68-516

#### Conductor Loads

Overhead span design consists of determining the sag at which the conductor should be elevated so that heavy winds, accumulations of ice and snow, and low temperatures will not stress the conductor beyond the elastic limit, and possibly cause a serious permanent stretch, or result in fatigue failures from continued vibrations. The conditions of span design can be divided into three sections:

- 1) The sag in a span resulting from a conductor of a given weight at a given tension (or the reverse).
- The sags or tensions resulting from unequal spans or differences in elevation of supports
- 3) The sags resulting from changes in loading or temperature

## Determination of Ice and Wind Loading

The geographical location of aerial sites determines the ice and wind loading affects on overhead conductors and cables. In the U.S.A, three districts for standard loading conditions are specified in the National Electric Safety Code. The loading's for the various districts are as follows:

Loading <u>District</u>	<u>Heavy</u>	Medium	Light
Radial thickness of ice (inches)	1/2	1/4	0
Horizontal wind pressure (lbs./sq.ft.)	4	4	9
Temperature (F)	0	15	30
Constant k (lbs./ft)	0.31	0.22	0.05

The resultant weight of loaded cables is calculated as follows:

- i = Weight of ice loading (lbs./ft)
- t = Thickness of ice (inches)
- D = Diameter of cable (inches)
- i = 1.24 t (D + t)
- h = Force due to wind (lbs/ft.)
- P = Horizontal wind pressure (lbs./sq. ft.)

h = P (D+2t)12

w'= Weight of unloaded cable

w''= Vertical weight of loaded cable

w'' = w' + i

The loaded cable weight of the cable is the resultant of the vertical and horizontal weights plus the proper constant.

w''' = Resultant weight of loaded cables

 $w''' = \sqrt{(w' + i) + h} + k$ 

#### Messenger Sizes

Different types and sizes of messengers consist of either composite stranded copper and copper clad steel in accordance with ASTM B 229, Grade 30 EHS stranded copper clad steel in accordance with ASTM B 228, stranded aluminum clad steel in accordance with ASTM B 416, stranded aluminum alloy conductors (AAAC) in accordance with ASTM B 399, or composite stranded aluminum and aluminum clad steel (ACSR/AW) in accordance with ASTM B 549.

The messenger sizes for copper clad steel is given in ICEA S-68-516 Table 7.3-4 and for ACSR/AW in Table 7.3-5. For other types of messenger, consult the manufacturer. Messenger size should be based on normal stringing tensions of 60 F (15.6 C) not exceeding 30 percent of the ultimate strength and a maximum tension not exceeding 50 percent of the ultimate strength for heavy loading conditions (1/2 inch(12.7 mm) ice, 4 lb./sq. ft. (192 Pa) wind force, 0 degrees F (-17.8 C)). For further information, see the National Electrical Safety Code.

#### Program Parameters

The program will calculate the following information about the span catenary:

- Mid-point of the span or low point of sag in feet or meters.
- Apparent sag of span; the maximum departure of the wire in a given span from the straight line between the two points of support of the span, in feet or meters.
- Conductor tension at both supporting structures in pounds or kilograms.
- 4. Weight spans for both supporting structures in feet or meters. This is the length of the conductor from the lowest elevation of the catenary curve to the attachment point. The value will be positive if the low point lies to the right of the structure attachment point, and negative if to the left.
- 5. Conductor pull-off angle at both supporting structures in degrees or radians.

The drawing below is given for reference.



#### -296-

#### Program Algorithms

The principal formulas used for computation are based on catenary formulas used in the unit-span dimensions. The equation  $Y = P \cosh (X/P) - P$  is used, where X and Y are rectangular coordinates on the catenary with the orgin at the catenary low point and P is equal to the conductor horizontal tension/conductor weight per foot. Axis translation is performed to allow input of attachment 1 at (O,ELEV 1) and attachment 2 at  $(D_{1-2},ELEV 2)$ .

Conductor tension = PW cosh (  $- D_{1-2}/2P$ ) where P is determined by iteration

Span midpoint =  $x_m = P \sinh^{-1}$  ELEV 2 - ELEV 1 2P sinh ( $D_{1-2}/2P$ )

Attachment 1 catenary location =  $x_1 = x_m - D_{1-2} / 2$ 

Y translation = 
$$Y_+$$
 = ELEV 1 - [P cosh ( $x_1/P$ ) - P]

Minimum elevation = ELEV 1 -  $Y_{t}$ 

Apparent sag = P cosh 
$$(x_1/P) + (ELEV2-ELEV 1/2) + A [ P sinh (A) - x_m] - P cosh [(P sinh -1 (A) / P)]$$
  
where A = ELEV2 - ELEV 1/  $D_{1-2}$ 

Weight span structure  $1 = -P \sinh(x_1 / P)$ 

Conductor tension structure 1 = PW cosh  $(x_1 / P)$ Conductor pull-off angle str. 1 = Tan ⁻¹ (sinh  $(x_1/P)$ ) Weight span structure 2 = -P sinh  $(x_1 + D_{1-2} / P)$ Conductor tension structure 2 = PW cosh  $(x_1 + D_{1-2} / P)$ Conductor pull-off angle structure 2 = - Tan ⁻¹ (sinh  $(x_1 + D_{1-2}) / P)$ Elevation at any point x=D = P cosh  $(x_1 + D/P) - P + Y_C$  SAMPLE PROBLEM

XEQ "SAG" TEN: -SAG? 3,470.00 RUN WT/FT? 2.712 HGT: 1? 40.00 DIST. 1-2? 150.00 HGT: 2? 52.00 MIN HGT= 39. 71 MAX. SAG= 2.21 WT.S1=-27.02 II= 3,464.80 di= 1.21 WT.S2=-177.58 12= 3,497.35 42=-7.92

XEQ "SAG" TEN: -SAG? 7,556.00 RUN WT/FT? RUN 1.66 HGT: 1? 758.00 R UN DIST. 1-2? 741.00 R UN HGT: 2? 801.00 R UN MIN HGT= 756.72 MAX. SAG= 15.16 WT.S1= 107.69 II= 7,532.99 *₄*i=−1.36 WT.S2=-635.38 12= 7,604.37 42=-7.97

XEQ C

RUN

RUN

XEQ "SAG" TEN: -SAG? -20.00 RU Н WT/FT? RUN 1.66 HGT: 1? 758.00 R UN DIST. 1-2? 741.00 R UN HGT: 2? 801.00 R UN MIN HGT= 753 .73 MAX. SAG= 20.00 WT.S1= 171.40 II= 5,718.87 41=-2.85 WT.S2=-572.28 12= 5,790.25 42=-9.44

	XEQ C	DIST?
DIST? 50.00 HGT= 42.04	RUN	356.00 HGT= 763.52 TOP EL?
TOP EL? 30.00 CL= 12.04	RUN	653.00 CL= 110.52

# -299-USER INSTRUCTIONS

Size:010

STE	P INSTRUCTIONS	INPUT	DISPLAY
1.	Connect printer if a hardcopy is desired. R/S after each display if no printer is attached.		
2.	Set printer switch to manual or normal mode.		
з.	Load programs "SAG"		
4.	Check status (for metric input set to radian mode)		
5.	Initializ <b>e:</b> XEQ <b>"SAG"</b>	A	
6.	Enter conductor tension in pounds (or kilograms) for a level span at the desired loading condition; or enter maximum sag in feet (or meters) in the span. This should be entered as a negative number.	Ten or -sag	TEN: - SAG?
7.	Enter conductor weight per foot in pounds (or kg/m) at the desired loading condition.	wt./ft.	WT/FT?
8.	Enter height in feet (or meters) of one conductor attachment. This can be either the actual sea level elevation for use with the instal- lation layout or an elevation relative to the other attachment.	HGT: 1	HGT: 1?
9.	Enter horizontal distance in feet (or meters) between the two attach- ment points.	Dist 1-2	DIST 1-2?
10.	Enter height of other attachment location in feet (or meters).	Hgt 2	HGT: 2?
11.	Display minimum conductor height (low point on catenary) in feet or meters.	_	MIN HGT=
12.	Display apparent sag in span in feet (or meters)	-	MAX SAG=

-300-

STE	P INSTRUCTIONS	INPUT	DISPLAY
13.	Display weight span on structure 1 in feet or meters	· –	WT.S1=
14.	Display conductor tension at structure 1 in pounds or kg	-	T 1 =
15.	Display pull-off angle at structure 1 in degrees or radians.	-	/ 1=
16.	Display weight span on structure 2 in feet or meters.	-	WT.S2=
17.	Display conductor tension at structure 2 in pounds or kg.	-	T2=
18.	Display pull-off angle at structure 2 in degrees or radians.	-	/ 2=
19.	Press C to find conductor elevation at a distance from structure 1, (user mode should be on; if not "XEQ" C)	С	
20.	Enter Distance from structure in feet or meters.	Dist	DIST?
21.	Display height of conductor at above distance in feet or meters.	-	HGT=
22.	Enter top elevation of structure located under conductor in feet or meters.	-	TOP EL?
23.	Display clearance over structure in feet or meters.	-	CL=

01+LBL "SAG			
02+LBL A 03 SF 27 04 FIX 2 05 CF 04	Initialize	51 / 52 STO 06 53+LBL 02 54 RCL 04	Loop to get P
06 "TEN.⊹SA G?"	Enter Tension	55 2 56 /	
07 PROMPT 08 STO 01 09 "WT/FT?" 10 PROMPT	Weight of Cable/ft.	57 RCL 06 58 / 59 CHS 60 XEQ 31	$T = PWcosh(-\frac{D1-2}{2P})$
12 "HGT: 1?	Height of l	61 RCL 06 62 *	
13 PROMPT 14 STO 03 15 "DIST. 1 -2?"	Distance from 1-2	63 RCL 02 64 * 65 STO 00 66 RCL 01	Adjust P if Necessary
16 PROMPT 17 STO 04 18 "HGT: 2? "	Height of 2	68 ABS 69 1 E-3 70 X>Y? 71 GTO 03	
19 PROMPT 20 STO 05 21 RCL 01 22 X>0?	Tension or Sag?	72 RCL 01 73 RCL 00 74 / 75 ST# 06	
23 GTO 01 24 SF 04	Set flag 04 for Sag	75 ST# 06 76 GTO 02 77+LBL 03	Compute Xm, X1
25 CHS 26 1/X 27 RCL 04 28 X12	$P = \frac{D_{1-2}}{2}$	78 RCL 04 79 2 80 / 81 RCL 06	
29 * 30 8 31 / 72 STO 06	δ + Sag	82 / 83 XEQ 30 84 RCL 06	
33 GTO 03 34+LBL -04 35 CHS 36 STO 00	Reference Calculate Sag to Actual Sag	85 * 86 2 ^{2d} 87 * 88 1/X	
37 RCL 01 38 -		90 RCL 03 91 -	
39 HB3 40 .01 41 X>Y?	Yes?	92 * 93 XEQ 32 94 RCL 06	¥ m
42 CF 04 43 RCL 00 44 RCL 01	Improve Estimation	95 * 96 STO 07 97 RCL 04	Am
43 / 46 ST* 06 47 GTO 03	Tension Known	98 2 99 / 100 -	
48+LBL 01 49 RCL 01 50 RCL 02	$P = \frac{T}{W}$	100	

STEP/KEY CODE	COMMENTS -302-	STEP/KEY CODE	COMMENTS
101 STO 08 102 RCL 08 103 XEQ 20 104 RCL 06	X ₁ Calculation Begins	151 XEQ 20 152 RCL 02 153 * 154 "T1="	Tension at Structure 1
105 - 106 RCL 03 107 - 108 CHS 109 STO 09 110 "MIN HGT =" 111 XEQ "VW"	Minimum Elevation Yt	155 XEQ "VW" 156 RCL 08 157 RCL 06 158 / 159 XEQ 30 160 ATAN 161 "41="	Pull-off angle at Structure l Weight Span
112 RCL 05 113 RCL 03 114 - 115 RCL 04 116 / 117 ENTER↑ 118 XEQ 32 119 RCL 06 120 *	Maximum Sag	162 XEQ "YW" 163 RCL 08 164 RCL 04 165 + 166 RCL 06 167 / 168 STO 00 169 XEQ 30 170 RCL 06	of Structure 2
120 * 121 STO 00 122 RCL 07 123 - 124 * 125 RCL 00 125 XEQ 20 127 - 128 RCL 05		171 * 172 CHS 173 "WT.S2=" 174 XEQ "VW" 175 RCL 00 176 XEQ 31 177 RCL 06 178 *	Tension at Structure 2
129 RCL 03 130 - 131 2 132 / 133 + 134 RCL 08 135 XEQ 20 135 +		179 KCL 02 180 * 181 "T2=" 182 XEQ "VW" 183 RCL 00 184 XEQ 30 185 ATAN 186 CHS 187 "42="	Pull off angle at Structure 2
137 FS7-04 138 GTO 04 139 "MAX. SA G=" 140 XEQ "VW" 141 RCL 08 142 RCL 06 143 /	Iteration loop Weight Span Structure l	188 XEQ "VW" 189 RTN 190+LBL C 191 "DIST?" 192 PROMPT 193 RCL 08 194 + 195 XEQ 20	Calculate Elevation given Distance from Structure l
144 XEQ 30 145 RCL 06 146 * 147 CHS 148 "WT.S1=" 149 XEQ "VW" 150 RCL 08		196 RCL 06 197 - 198 RCL 09 199 + 200 "HGT="	Display Height of Cable

_

201 XEQ "YW" 202 "TOP EL? 203 PROMPT	Enter Maximum Elevation of Structure 1	228 / 229 XEQ 31 230 RCL 06	
204 - 205 "CL=" 206+LBL "VW" 207 FS? 04	Display Clearance	231 * 232 RTN 233+LBL 30 234 E1X	Sinh
208 RTN 209 CF 21 210 FC? 55 211 GTO 09 212 SF 21	View Module	235 ENTERT 236 1/X 237 - 238 2 239 /	
213 XEQ "ACA " 214 SF 12 215 XEQ "ACX		240 RTN 241+LBL 31 242 ETX 243 ENTERT 244 178	Cosh
" 216 XEQ "PRB UF" 217 TONE 5		245 + 246 2 247 / 248 RTN	
218 CF 12 219 RTN 220+LBL 09 221 ARCL X 222 AVIEW 223 TONE 5 224 STOP 225 RTN 226+LBL 20	P*cosh( <u>x reg</u> )	249+LBL 32 250 ENTER† 251 X†2 252 1 253 + 254 SQRT 255 + 256 LN	A sinh
227 RCL 06	Υ Υ Υ	237 END	

STEP/KEY CODE	-304-	COMMENTS	DATA REGISTERS				
			00	Pro	gram		
			01	Ten	sion or		
					-Sag		
			02	wt/	ft cable		
			03	Hei	ght at 1		
			04	Dis	t. 1-2		
			05	Hei	ght at 2		
			06	Р			
			07	Xm			
			08	X 1			
			09	Yt			
					FL/	AGS	
			* S/C SET INDICATES CLEAR INDICATE				
			$\frac{04}{12}$	C C	<u>Rol= -Sag</u> Print Wide	2	Rol=Tension Normal Print
			21	С	Printer or	1	Printer
S			27	S	User Mode	On	Disables User Mode Off
	73 USER N		55	С	Printer Ex	ist	No Printer
ENG - FIX - 2	SCI ON	. OFF					
DEG RAD	GRAD						
					· · · · · · · · · · · · · · · · · · ·		
ASS	IGNMENTS						
FUNCTION KE	FUNCTION	KEY					
Start A							
Clearance C				ļ			
		·					

## D-C HIGH POTENTIAL TESTING OF MEDIUM VOLTAGE CABLES

Robert W. Parkin

FUNCTION: This program determines the D-C test voltages for medium-high voltage power cables during installation or after installation, (before the cable is placed in regular service). Recommended maintenance test values for cables in service is determined, given the time in years. Results are based on AEIC CS5, CS6, and CS7 specifications for XLPE and EPR cables rated 5kV through 138 kV.

ACCESSORIES: HP-41 CX or HP-41CV, printer optional

**OPERATING LIMITS AND WARNINGS:** Medium voltage shielded power cables rated 5kV through 138 kV. The significance of D-C high voltage tests on nonshielded and non-metallic-sheathed cable is dependent upon the environment in which it is installed; as the characteristics of the return circuits are unknown. The environment must carefully be considered or test results may not be significant, and can possibly damage the cable insulation.

#### **REFERENCES:**

- [1] Association of Edison Illuminating Companies (AEIC) CS5-87. CS6-87, CS7-87
- [2] IEEE Guide for Making High-Direct- Voltage Tests on Power Cable Systems in the Field.
- [3] Cable Installation Manual, Anaconda (Cablec Corporation)
- [4] NEMA WC-7, ICEA S-66-524 AND NEMA WC-8, ICEA S-68-516
- [5] The National Electric Code, 1987 NFPA

#### INSTALLATION AND MAINTENANCE PROOF TESTING

The primary tests for cables are continuity checks and the testing of the insulation system. All cables, including power, lighting, instrumentation, communication, and fire protection circuits should be insulation resistance (IR) tested. All power cable circuits above 600V should also be d-c high potential tested. These tests must be made after the cable is installed and both ends terminated with the proper terminator, be it a lug for low voltage cable, or a stress cone, pothead, or cable terminator for medium-high voltage cable.

Installation proof or acceptance testing is important in that it provides assurance that no damage has occurred during installation or in the handling after leaving the factory.

Maintenance proof testing on a regular schedule assures trouble free operation by detecting incipient failures or gradual deterioration of cable characteristics. Faults or near faults which are located during maintenance testing may be repaired while the cable is out of service, thereby eliminating service interruptions. It is recommended that all medium-high voltage cables be given installation proof tests followed by regularly scheduled maintenance tests at intervals of from three to five years, depending on the type of circuit.

## HIGH VOLTAGE D-C TESTING

The most common method of proof testing utilizes a high voltage d-c power supply and equipment for measuring the leakage current of the cable. Because of the size and weight of test transformers and equipment, it is not practical to employ a-c testing at field locations. The use of direct current to detect incipient failures or deterioration also avoids the harmful heating, corona effects and severe burning usually associated with a-c testing. Because of the low currents involved in d-c testing, the equipment for energizing long lengths of cable is relatively small and portable enough for field testing.

During the test, interpretation of current time curves provides considerable information regarding overall cable performance. Leakage current is dependent on the circuit capacitance, which is dependent on the insulation material, cable construction and more importantly, the circuit length. The initial current is high, and gradually seeks a steady, lower value for a good cable. If the current does not decrease, or falls and then rises, failure or weakness in the system in indicated.
The user should understand how to operate the particular test set being used, and follow safe, stringent and well documented test procedures. More information on testing procedures can be obtained from the cited references.

Table 1 below lists the factory d-c test voltages per AEIC required for input into the program; it should be noted that these levels are higher than those recommended by NEMA WC7 and WC 8 for XLPE and EPR cables.

RATED VOLTAGE <u>Kv</u>	INSUL 100%	ATION <u>133%</u>	DC TEST VOLTAGES, kV 100% <u>133%</u>
5	90	115	35 45
8	140	140	45 55
15	175	220	70 80
25	260	320	100 120
28	280	345	105 125
35	345	420	125 155
46	445	580	165 215
69	650	_	240 -
115	800	-	300 -
138	850	_	315 -

#### <u>Table 1</u>

NOTE: Conductor sizes for rated voltages and notations in the cable design section for insulation thicknesses all apply.

# USER INSTRUCTIONS

Size:001

STEF	P INSTRUCTIONS	INPUT	DISPLAY
1.	Connect printer if a hardcopy is desired. R/S after each display if no printer is attached.		
2.	Set printer switch to manual or normal mode.		
з.	Load programs "DCT", "VW"		
4.	Check status		
5.	Initialize: XEQ "DCT"		
6.	Enter factory D-C test voltage from table 1 in kV.	DC	d.cTEST:V-KV
MODE	E: During Installation, input O		
7.	Is the test being performed during or after installation? Enter:	0	DRG.0/ AFT:1?
	0 = DC Test during installation		
	1 = DC Test performed after and before cable is placed in regular service		
8.	For input O ( during installation): Display DC test voltage in kV	-	d.c: KV =
9.	Display duration of test for five consecutive minutes.	-	5 Min.

STEF	P INSTRUCTIONS	INPUT	DISPLAY
MODE	E: After Installation - input 1		
7a.	Is the test being performed during or after installation? Enter:	1	DRG.0/ AFT:1?
	0 = DC Test during installation		
	1 = DC Test performed after and before cable is placed in regular service		
8a.	For input 1, after installation and before cable is placed in regular service. Display DC test voltage in kV.	_	d.c: KV =
9a.	Display duration of test for fifteen consecutive minutes	_	15 Min.
MODE	E: Cable completely installed and placed in service.		
10.	Cable has been placed in service for how many years?	years	SVC: YEARS?
11.	Display DC Proof test voltage in kV for cable placed in service.	-	d.c: KV =
	Based on 65% within the first five years , and after that time period 40 % of DC test Voltage.		
12.	Time duration for cable placed in service - 5 Min.	_	5 MIN.

-309-

-310- COMMENTS 01+LBL "DCT DC High Potential Testing ... 02 FIX 0 Intialize 03 TONE 9 04 "d.c.TES Enter Factory d-c Test Voltage in kV T:V-KV?" 05 PROMPT 06 STO 00 07 "DRG:0 / 0 = Test during Installation AFT:1?" 08 PROMPT 1 = Test After and Before Cable is Placed 09 X=0? in Regular Service 10 GTO 03 11 RCL 00 12 .80 After: 80% for 15 Consecutive Minutes 13 * 14 "d.c: KV = " 15 XEQ "VW" 16 "15 MIN. 17 AVIEW **18 STOP** 19 GTO 01 20+LBL 03 21 RCL 00 During: 75% for Five Consecutive Minutes 22 .75 23 * 24 "d.c: KV = " 25 XEQ "VW" 26 "5 MIN." 27 AVIEW 28 STOP 29+LBL 01 30 "SVC: YE Placed in Service for How Long in Years ARS?" **31 PROMPT** 32 5 33 X<>Y 34 X<=Y? 35 GTO 02 After Five Years 40% 36 RCL 00 37 .40 38 * 39 GTO 06 40+LBL 02 41 RCL 00 Within 5 Years 65% 42 .65 43 * 44+LBL 06 45 "d.c: KV = " 46 XEQ "VW" 47 "5 MIN." 48 AVIEW 49 STOP 50 END

STEP / KEYCODE

SIZE 001 ENG_ DEG_

1

311-			2015	
311- SAMPLE PROBLEM XEQ "DCT" d.c.TEST:V-K V? 80 RUN DRG:0 / AFT: 1? 0 RUN d.c: KV= 60 5 MIN. RUN SVC: YEARS? 6 RUN d.c: KV= 32 5 MIN. XEQ "DCT" d.c.TEST:V-KY? 80 RUN DRG:0 / AFT:1? 1 RUN d.c: KV= 64 15 MIN. RUN SVC: YEARS? 3 RUN d.c: KV= 52 5 MIN.		Test-		
STATUS				
Image: Description USER MODE   Image: Description USER MODE   Image: Description ON OFF   Image: Description ON OFF   Image: Description GRAD				
ASSIGNMENTS FUNCTION KEY FUNCTION KEY				

#### SOFTWARE AND HARDWARE

User support questions and software can be obtained by contacting:

MCM SOFTWARE COMPANY 123 Lewis Court Washingtonville, N.Y. 10992 U.S.A Attn. Robert Parkin

## SECTION ONE: ELECTRICAL PROGRAMS

- 1. CABLE SYSTEM AMPACITIES
- 2. INDUCED SHIELD VOLTAGES AND LOSSES
- 3. CABLE EMERGENCY OVERLOAD CAPABILITIES
- 4. SHORT CIRCUIT RATINGS FOR PHASE CONDUCTORS
- 5. SHORT CIRCUIT RATINGS OF METALLIC SHIELDS
- 6. POSITIVE AND ZERO SEQUENCE IMPEDANCES OF CABLES
- 7. DIRECT CURRENT SHIELD RESISTANCE
- 8. A-C RESISTANCE OF CONDUCTORS
- 9. VOLTAGE REGULATION AND VOLTAGE DROP OF CABLES
- 10. INDUCTIVE REACTANCE AND INDUCTANCE IN CABLES
- 11. DIELECTRIC CHARACTERISTICS OF CABLES

30 cards .....\$25.00

## SECTION TWO: POLYMER INSULATED CABLE DESIGN

- 12. PRIMARY CABLE DESIGN
- 13. TRIPLEXED AND QUADRUPLEXED SECONDARY CABLE DESIGN
- 14. CONTROL AND INSTRUMENTATION CABLE DESIGN
- 15. PERCENT COVERAGE OF CONCENTRIC WIRES OR STRAPS
- 16. METALLIC SHIELDING CONSTRUCTIONS
- 17. CONCENTRIC NEUTRAL WIRE SIZES AND SELECTION
- 18. FLAT STRAP NEUTRALS
- 19. METRIC STRAND CONDUCTOR DESIGN
- 20. METRIC CONVERSION FACTORS FOR CABLES

30 Cards .....\$25.00

#### SECTION THREE: INSTALLATION PROGRAMS AND GUIDELINES

- 21. PULLING TENSIONS AND INSTALLATION GUIDELINES FOR CABLE
- 22. PACKAGING OF WIRE AND CABLE
- 23. MECHANICAL DESIGN OF OVERHEAD SPANS
- 24. D-C HIGH POTENTIAL TESTING OF MEDIUM VOLTAGE CABLES
- 14 Cards .....\$ 15.00

HP-41 hardware can be obtained by contacting :

EduCALC Mail Store 27953 Cabot Road Laguna Niguel, CA 92677 U.S.A

# APPENDIX

Aerial sag reference drawing
Aluminum temper designations155
Aluminum and copper conductor weights
Ampacity constants - Table V 7
Ampacity nomenclature20
Ampacity values of ks and kp - Table II7
Ampacity calculation parameters
Ampacity program algorithms15
Cable configurations in conduit254
Cable installation data sheet
Cable emergency ratings
Coefficients of friction251
Comparison of jacket properties166
Control cable insulation thicknesses
Conductor shield thickness table157
Configurations of cables for shield losses
Direct current resistance per 1000 ft172
Decimal equivalent of fractions
Drawings
Data register loading instructions for "CD"
Data registers for cable weights206
Data registers for diameters and number of strands207
Data registers for drain wire diameters
Data registers for control cable multiple factors208
Dielectric constant values144
Drawings for duct installations
Duct dimensions

# APPENDIX

Earth resistivity, depth return, re values for impedance87
Encapsulated outer jacket thickness
Example cable specifications178
Factory test voltages
Formulas for calculating shield voltages and losses46
Geometric factor Gb 9
Geometric mean radius - GMR multiple values
Geometric mean distance - GMD - conductor spacing129
HDPE duct dimensions/ minimum drum diameters
Ice and wind loadings
Insulation shield thickness table158
Interlocked armor168
Jacket properties164
K constant values for insulation materials
Lead sheath, interlock armor, and jacket thicknesses169
Load factor and Loss factor values
Maximum withstand temperatures of materials
Magnetic conduit multiplying factors
Medium voltage cable insulation thickness
Metallic sheaths
Metric conversion chart245
Maximum sidewall loads253
Minimum bending radius255
Minimum drum diameters of reels for cable
NEC listing designations152
Nominal voltage standards for secondary cables

#### APPENDIX

Nominal diameters for copper and aluminum conductors171
Non returnable wood reels
Nonshielded cables
Percent fill of internal duct area
Printer routines "VW" and "AV"
Pulling tensions
Position factors of cables in duct banks
Power factor values for dielectric materials
Program listing for ampacity program
Proximity effect
Reel dimensions and drawings280
RM steel reels
Resistivity of metals for shielding tapes
Resistance and reactance ratio due to skin effect112
Sample ampacity problem23
Secondary (600V) cable insulation thicknesses
SIC values
Skin effect
Specifications - Industry standards149
Specific gravity of cable materials
Thermal resistivity of various materials
Thermal time constant k60
User instructions for ampacity program
User instructions for Induced Shield Voltages and Losses47
UL listing designations151
Voltage delivery and utilization limits