Peter F. Orlowski

Praktische Regeltechnik

Oldenbourg

Meiner lieben Frau und meinen Kindern gewidmet

Praktische Regeltechnik

von Prof. Dipl.-Ing. Peter F. Orlowski

Mit 299 Bildern, 24 Tabellen, 24 Beispielen, 40 Aufgaben samt Lösungen

Mit Programmen in BASIC sowie für den HP-41

R. Oldenbourg Verlag München Wien 1985

CIP-Kurztitelaufnahme der Deutschen Bibliothek

Orlowski, Peter F.: Praktische Regeltechnik : mit Programmen in BASIC, sowie für d. HP 41 / von Peter F. Orlowski. – München ; Wien : Oldenbourg, 1985. ISBN 3-486-29131-9

© 1985 R. Oldenbourg Verlag GmbH, München

Das Werk ist urheberrechtlich geschützt. Die dadurch begründeten Rechte, insbesondere die der Übersetzung, des Nachdrucks, der Funksendung, der Wiedergabe auf photomechanischem oder ähnlichem Wege sowie der Speicherung und Auswertung in Datenverarbeitungsanlagen, bleiben auch bei auszugsweiser Verwertung vorbehalten. Werden mit schriftlicher Einwilligung des Verlages einzelne Vervielfältigungsstücke für gewerbliche Zwecke hergestellt, ist an den Verlag die nach § 54 Abs. 2 Urh.G. zu zahlende Vergütung zu entrichten, über deren Höhe der Verlag Auskunft gibt.

Gesamtherstellung: R. Oldenbourg Graphische Betriebe GmbH, München

ISBN 3-486-29131-9

Inhaltsverzeichnis

Vorwo	rt
1.	Grundbegriffe der Regeltechnik
1.1	Steuerung
1.2	Regelung
1.3	Begriffe und Definitionen
1.4	Signalflußplan, Blockschaltbild
2.	Berechnung von Regelkreisen 19
2.1	Stationäres Verhalten
2.1.1	Verstärkungen
2.1.2	Regelabweichung, Regeldifferenz
2.1.3	Störgrößen 22
2.1.4	Statische Kennlinien 31
2.2	Dynamisches Verhalten
2.2.1	Differentialgleichungen
2.2.2	Übertragungsfunktion, Sprungfunktion, Sinusfunktion 43
2.2.3	Komplexe Rechnung
2.2.4	Gleichdimensionelle Laplace-Transformation
2.2.5	Frequenzgang
3.	Regelkreisglieder und ihre Realisierungen
3.1	P-Glied
3.2	I-Glied
3.3	D-Glied
3.4	PI-Glied
3.5	PD-Glied
3.6	PID-Glied
3.7	PT ₁ -Glied
3.8	PT ₂ -Glied
3.9	PT_n -Glied
3.10	PT_t -Glied
3.11	Nichtlineare Regelkreisglieder
3.11.1	Linealisierung
3.11.2	Beschreibungsfunktion

)

4.	Regelkreise
4.1	Regler
4.2	Praktische Reglereinstellung
4.3 4.3.1	Regelstrecken 142 P-Strecken 142
4.3.2	I-Strecken
4.3.3	PT ₁ -Strecken
4.3.4	PT_2^- und PT_n^- Strecken
4.3.5	PT_t -Strecken
4.4	Stellglieder
4.4.1	Stromrichter
4.4.2	Ventile
4.4.3	Schütze, Relais 157
4.5	Sollwertgeber
4.6	Meßwertgeber
4.7	Umformen von Blockschaltbildern
4.7.1	Umformregeln für lineare Regelkreisglieder
4.7.2	Umformregeln für nichtlineare Regelkreisglieder 167
5.	Stabilitätskriterien
5.1	Stabilitätsbegriff
5.2	Bode-Diagramm
5.2.1	
	Graphische Auswertung
5.2.2	Graphische Auswertung
5.2.2 5.3	Graphische Auswertung
5.2.2 5.3 5.3.1	Graphische Auswertung183Rechner-Auswertung183Nyquist-Kriterium191Ortskurven-Darstellung191
5.2.2 5.3 5.3.1 5.3.2	Graphische Auswertung
5.2.2 5.3 5.3.1 5.3.2 5.3.3	Graphische Auswertung183Rechner-Auswertung189Nyquist-Kriterium191Ortskurven-Darstellung191Graphische Auswertung199Rechner-Auswertung204
5.2.2 5.3 5.3.1 5.3.2 5.3.3 5.4	Graphische Auswertung183Rechner-Auswertung189Nyquist-Kriterium191Ortskurven-Darstellung191Graphische Auswertung199Rechner-Auswertung204Zwei-Ortskurven-Verfahren (Z.O.V)206
5.2.2 5.3 5.3.1 5.3.2 5.3.3 5.4 5.4.1	Graphische Auswertung183Rechner-Auswertung189Nyquist-Kriterium191Ortskurven-Darstellung191Graphische Auswertung199Rechner-Auswertung204Zwei-Ortskurven-Verfahren (Z.O.V)206Graphische Auswertung209
5.2.2 5.3 5.3.1 5.3.2 5.3.3 5.4 5.4.1 5.4.2	Graphische Auswertung183Rechner-Auswertung189Nyquist-Kriterium191Ortskurven-Darstellung191Graphische Auswertung199Rechner-Auswertung204Zwei-Ortskurven-Verfahren (Z.O.V)206Graphische Auswertung209Rechner-Auswertung213
5.2.2 5.3 5.3.1 5.3.2 5.3.3 5.4 5.4.1 5.4.2 5.5	Graphische Auswertung183Rechner-Auswertung189Nyquist-Kriterium191Ortskurven-Darstellung191Graphische Auswertung199Rechner-Auswertung204Zwei-Ortskurven-Verfahren (Z.O.V)206Graphische Auswertung209Rechner-Auswertung213
5.2.2 5.3 5.3.1 5.3.2 5.3.3 5.4 5.4.1 5.4.2 5.5 5.5.1	Graphische Auswertung183Rechner-Auswertung189Nyquist-Kriterium191Ortskurven-Darstellung191Graphische Auswertung199Rechner-Auswertung204Zwei-Ortskurven-Verfahren (Z.O.V)206Graphische Auswertung209Rechner-Auswertung213Optimierung von Regelkreisen219

 5.5.3
 Kaskadenregelungen
 234

 5.5.4
 Abtastregelkreise
 242

6

6.	Ausgewählte Beispiele der praktischen Regeltechnik 252
6.1	Kontinuierliche Regelungen 252
6.1.1	Temperaturregelungen
6.1.2	Stoffgemischregelungen
6.1.3	Zweipunktregelungen
6.1.4	Regelung von Gleichstromantrieben für Feder-Masse-Systeme 274
6.1.5	Drehzahlregelung von Asynchronmaschinen
6.1.6	Regelung von Wickelantrieben für Stoffbahnen 291
6.1.7	Banddickenregelung
6.1.8	Regelung einer Streckrichteinheit
6.2	Zeitdiskrete Regelungen
6.2.1	Regelung von Roboterantrieben mit Rechner
6.2.2	Regelung von Asynchronmotoren mit Mikrorechner
6.2.3	Längungsregelung mit Prozeßrechner
6.2.4	Direkte digitale Regelung von Fräsmaschinen mit CNC 331
6.3	Spezielle Automatiken
6.3.1	Fahrkurvenrechner
6.3.2	Durchmesserrechner
6.3.3	Abbremsautomatik

7.	Rechneranwendungen							
7.1	BASIC-Programme für Personal-Computer (PC)							
7.1.1	Nyquist-Kriterium							
7.1.2	Bode-Diagramm							
7.2	Taschenrechnerprogramme für den HP 41CV							
7.2.1	Nyquist-Kriterium							
	(PD-Regler und P-I-T ₁ -Strecke S.379, PI-Regler und PT ₂ -Strek- ke S.381, PD-Regler und PT ₂ -Strecke S.384, Programm zur Re- gelkreis-Optimierung nach Nyquist S.386)							
7.2.2	Bode-Diagramm							
7.2.3	Zwei-Ortskurven-Verfahren							
	÷							

8.	Lösungen der Aufgaben
9.	Anhang
9.1	Schaltzeichen für Übersichtsschaltpläne
9.2	Formelzeichen und Abkürzungen
10.	Literaturverzeichnis
11.	Stichwortverzeichnis

Wichtige Tabellen	
Tabelle 2.1 Korrespondenztabelle komplexer Funktionen	
Tabelle 2.2 Rechenregeln der gleichdimensionellen Laplace-Transformation 61	
Tabelle 2.3 Korrespondenzen der gleichdimensionellen Laplace-Transformation 64 Tabelle 2.1	\langle
Tabelle 3.1 Ubertragungsverhalten und Frequenzgang-Darstellung der wichtigsten Regelkreisglieder 74	
und 477	

Vorwort

Die Regeltechnik ist zu einem eigenständigen Zweig der Ingenieurwissenschaften geworden. Ihre Anwendung erstreckt sich praktisch auf alle Gebiete der modernen Technik.

Ingenieure aller Fachrichtungen haben in zunehmendem Maße Aufgaben zu lösen, bei denen sie sich der Methoden der Regeltechnik bedienen. Die Grundlagen der Regeltechnik gehören daher zum Basiswissen eines jeden Ingenieurs.

Dies wird deutlich, wenn man sich klar macht, daß die Beeinflussung technischer Prozesse im Sinne einer höheren Effektivität bzw. Automatisierung nur mit Steuerungen und Regelungen möglich ist.

Das vorliegende Buch ist ein Grundlagenwerk für Studenten der Ingenieurwissenschaften und Ingenieure der industriellen Praxis unter Berücksichtigung eines übungsintensiven und praxisnahen Stoffangebots.

Mit Hilfe der gleichdimensionellen Laplace-Transformation, die durch ausführliche Tabellen von unnötigem Ballast befreit ist, gelingt es dem Leser Sprungantwort, Frequenzgang und Stabilitäts-Kriterien leichter zu verstehen.

Die sehr ausführliche Darstellung einzelner Sachverhalte, die zahlreichen Beispiele und viele begleitende Übungsaufgaben sind für ein selbständiges Studium der Regeltechnik gut geeignet.

Das Buch gibt keine "Leitlinie des Lernens" vor, sondern läßt immer genügend Freiraum für den abstrakt und praktisch Denkenden. Besondere Beachtung verdient Abschnitt 7, der sich mit dem rechnerunterstützten Lernen befaßt. Bei Verwendung eines Personal-Computers kann der Anwender im Rechner-Dialog Nyquist- und Bode-Diagramme erstellen und so einschleifige Regelkreise optimieren. Auf diese Weise findet eine anschauliche Bestätigung des Erlernten statt, die über die Grundlagen der Regeltechnik hinausgeht.

Zur weiteren Unterstützung des Lesers sind, ebenfalls in Abschnitt 7, zahlreiche Taschenrechnerprogramme (HP 41) zur Regelkreisoptimierung ungekürzt angegeben.

Mein besonderer Dank gilt Herrn Dipl.-Ing. Diehl für die Erstellung der BASIC-Programme in Abschnitt 7 des Buches.

Gießen, März 1985

Peter F. Orlowski

1. Grundbegriffe der Regeltechnik

Die Lösungsmittel zur Führung industrieller Prozesse bzw. Anlagen sind Steuerungs- und Regeleinrichtungen. Beide unterscheiden sich prinzipiell in ihrer Wirkungsweise.

1.1 Steuerung

Kennzeichen der Steuerung ist, daß die Signalübertragung nur in einer Richtung erfolgt. Man spricht auch von einem offenen Wirkungsablauf. Die einzelnen Steuerglieder sind hintereinander geschaltet zu einer Steuerkette. Es erfolgt keine Rückmeldung über den augenblicklichen Zustand des zu steuernden Prozesses. Bei jedem Steuerglied steht die Eingangsgröße mit der Ausgangsgröße in einem festen physikalischen Zusammenhang (z.B. führt die Spannung an einer Relaisspule zum Betätigen der Kontakte).

Zwei Beispiele sollen die Funktion einer Steuerung verdeutlichen. Bild 1.1 zeigt die Steuerung des Durchflusses einer Flüssigkeit mit Hilfe eines Ventils.

An einem Potentiometer wird eine Spannung <u>+</u> U eingestellt, die der Durchflußmenge Q proportional ist (Skala). Der Stellbereich von U liegt gewöhnlich in der Größenordnung von <u>+</u> 10 V- und muß daher mit einem Verstärker auf die Steuerspannung <u>+</u> U_{st} des Stellmotors angehoben werden.

Je nach Polarität von U_{st} wird dann mit dem Motor das Ventil geöffnet oder geschlossen. Es erfolgt zwar eine Messung der Durchflußmenge, aber die selbsttätige Korrektur einer Durchflußabweichung infolge von Störgrößen unterbleibt.

Genauso verhält es sich mit der in Bild 1.2 dargestellten Temperatursteuerung eines Induktionsofens. Auch hier können Temperaturschwankungen im Ofen, bedingt durch die Störgrößen z_1 und z_2 nicht selbsttätig beseitigt werden.

Bild 1.2 Schema einer Temperatur-Steuerung

Ein Vorteil der Steuerung ist jedoch, daß sie nicht auf Stabilität untersucht werden braucht, wenn die Steuerglieder in sich stabil sind.

1.2 Regelung

Das besondere Merkmal eines Regelkreises ist sein geschlossener Wirkungsweg.

Übernimmt der Mensch die Regelung einer technischen Einrichtung, erfaßt sein entsprechendes Sinnesorgan den augenblicklichen Zustand (Durchflußmenge, Temperatur usw.) visuell. Über sein Nervensystem gelangt diese Information in's Gehirn. Hier wird eine Entscheidung darüber getroffen, ob beispielsweise die vorhandene Durchflußmenge mit dem erwünschten Wert übereinstimmt oder von diesem abweicht.

Bei einer Abweichung gelangt ein Befehl an die Muskulatur zur sinnvollen Korrektur.

Regeln ist also ein Vorgang, bei dem eine physikalische Größe (Istwert) fortlaufend erfaßt und durch Vergleich mit einer anderen Größe (Sollwert) im Sinne einer Angleichung an diese beeinflußt wird.

So verstanden, stellt jede Mensch-Maschine-Kommunikation einen Regelkreis dar. Die in diesem Buch behandelten technischen Regelkreise (Maschine-Maschine-Kommunikation) müssen daher Einrichtungen enthalten, die die überlegten Handlungen des Menschen nachempfinden oder ersetzen.

Betrachtet man die Bilder 1.1 und 1.2, so erhält man durch die Rückführung der entsprechenden Istwerte (Meßwerte) einen Durchfluß- und einen Temperatur-Regelkreis (Bild 1.3 und 1.4).

Im Falle der Durchfluß-Regelung verstellt der Motor das Ventil soweit, bis $Q_{soll} - Q_{ist} = 0$ ist. Damit entspricht der Sollwert dem Istwert der Durchflußmenge Q; der Motor bleibt stehen.

Bei der Temperatur-Regelung wird der Spulenstrom solange aufrecht erhalten, bis die Ofentemperatur dem gewünschten Wert entspricht.

Es läßt sich schon jetzt erkennen, daß das zeitliche Verhalten bei der Regelungen bei einer Störgrößenänderung recht unterschiedlich sein wird.

Die Ventilstellung kann schnell verändert werden, eine rasche Korrektur der Ofentemperatur ist nur mit sehr hohem Energieaufwand möglich.

Während bei einer Steuerung nur die Wirkung einer Störgröße registriert werden kann, läßt sie sich mit einer Regelung korrigieren, weil die Störgröße in den Regelkreis mit einbezogen wird.

Der geschlossene Wirkungsablauf einer Regelung bedarf jedoch der Abstimmung des Verhaltens der einzelnen Regelkreisglieder. Es ist also eine Stabilitätsbetrachtung unerläßlich.

Ein geschlossener Regelkreis ist aber sicherlich die sinnvollste Methode zur Automatisierung eines Prozesses.

Letztlich ist eine Steuerung nur der Sonderfall einer Regelung, nämlich ein Regelkreis mit offener Rückführung.

1.3 Begriffe und Definitionen

Jeder Regelkreis kann in eine Regeleinrichtung und eine Regelstrekke aufgeteilt werden. Beide sind über verschiedene Größen miteinander verknüpft. Bild 1.5 zeigt einen Regelkreis zur Regelung der Ventilstellung mit einem Stromrichter-Motor. Die wichtigsten Begriffe der Regeltechnik sind in DIN 19226 festgelegt.

Bild 1.5 Beispiel für den Aufbau eines Regelkreises

Regeleinrichtung

Die Regeleinrichtung ist meist in mehrere Komponenten gegliedert. Sie enthält die Elemente zum Erfassen der Soll-Istwert-Abweichung, den Regler und die Anpassung an die jeweilige physikalische Stellgröße (Strom, Spannung usw.)

Regelstrecke

Die Regelstrecke besteht oft aus mehreren Komponenten. In ihr findet die eigentliche Beeinflussung der Regelgröße statt. Kennzeichnend ist für die Regelstrecke, daß sie vom Hauptenergiefluß durchsetzt ist.

Zu ihr gehört das Stellglied als Regelstrecken-Glied. Motor und Mechanik einer Maschine sind daher ebenfalls Regelstrecken-Glieder (vergleiche mit DIN 19226).

Regelgröße x

Die Regelgröße x ist die Größe, die zum Zwecke des Regelns erfaßt und der Regeleinrichtung zugeführt wird. Sie ist damit Ausgangsgröße der Regelstrecke und gleichzeitig Eingangsgröße der Regeleinrichtung.

Stellgröße y

Die Stellgröße y überträgt die steuernde Wirkung auf die Regelstrekke. Sie ist Ausgangsgröße der Regeleinrichtung sowie Eingangsgröße der Regelstrecke.

Führungsgröße w

Die Führungsgröße w einer Regelung ist der Sollwert, der dem Regelkreis von außen zugeführt wird. Sie ist von der Regelung nicht beeinflußbar.

Regelabweichung x_w , Regeldifferenz x_d

Die Soll-Istwert-Abweichung, die ausgeregelt (beseitigt) werden soll, läßt sich als Regelabweichung

$$\mathbf{x}_{\mathbf{w}} = \mathbf{x} - \mathbf{w} \tag{1.1}$$

oder als Regeldifferenz definieren.

$$x_{d} = w - x \tag{1.2}$$

1.4 Signalflußplan, Blockschaltbild

Die gerätetechnische Darstellung einer Regelung nennt man Signalfluß- oder Wirkschaltplan. Sie ist meist recht kompliziert und erfordert spezielle Kenntnisse der einzelnen Bauelemente. Um die gerätetechnischen Zusammenhänge regelungstechnisch aufbereiten zu können und überschaubar zu machen, bedient man sich des Blockschaltbildes. Gelöst von gerätespezifischen Einzelheiten wird die Regelung in einzelne Regelkreisglieder unterteilt, die als Blocks dargestellt werden. Die einzelnen Blöcke enthalten die Übertragungseigenschaften zwischen Ein- und Ausgangsgröße in Form einer Gleichung, als Sprungantwort oder Symbol. Auf diese Weise kann das zeitliche bzw. Frequenzverhalten aller Regelkreisglieder veranschaulicht werden. Die Darstellungsform ist genormt und aus Normblättern bzw. -Entwürfen ersichtlich.

In Bild 1.6 ist eine Füllstandsregelung dargestellt, die den Unterschied zwischen Signalflußplan und Blockschaltbild aufzeigt.

Blockschaltbild

Bild 1.6 Signalflußplan und Blockschaltbild einer Niveau-Regelung

Mit einem Potentiometer gibt man den Füllstandssollwert h_{soll} vor. Er gelangt über Regler und Verstärker auf ein Magnetventil. Der Füllstand wird mit einem Wandler in einen Spannungswert umgeformt und entspricht dem Istwert h_{ist} .

Entspricht der Füllstandsistwert dem Füllstandssollwert, ist die Regeldifferenz $x_d = h_{soll} - h_{ist} = 0$ und das Stellventil verharrt

in der Null-Stellung. Weicht der Istwert h_{ist} vom vorgewählten Sollwert h_{soll} ab, öffnet oder schließt das Ventil, je nach Polarität von x_d . Das Blockschaltbild der Füllstandsregelung gibt die regelungstechnisch interessanten Eigenschaften der einzelnen Bauelemente wieder (hier durch Darstellung der jeweiligen Sprungantwort). Es ist klarer in der Aussage, weil auch wichtige Teilvorgänge, die im Inneren der Bauelemente ablaufen, erfaßt werden. So z.B. das Totzeitverhalten des Weg-Spannungs-Wandlers.

Das Blockschaltbild, welches im allgemeinen aus einem Signalflußplan entsteht, ist ein wichtiges Glied zur Analyse einer Regelung. Es führt hin zur Optimierung von Regelkreisen und kann direkt in Simulationsmodelle für Analog- und Digitalrechner umgesetzt werden.

18

2. Berechnung von Regelkreisen

Um eine Aussage über die Güte einer Regelung machen zu können, muß ihr stationäres und dynamisches Verhalten untersucht werden.

Eine gute Regelung sollte drei Bedingungen erfüllen:

- Die Regelung muß stabil sein.
- Die Abweichung der geregelten Größe vom gewünschten Sollwert sollte bei allen Störgrößenänderungen möglichst klein sein.
- Bei einer Störung muß der stationäre Zustand möglichst schnell (ohne hohes Überschwingen) erreicht werden.

2.1 Stationäres Verhalten

Zur Bestimmung des Einflusses von Störgrößen und Verstärkung auf die Regelung wird der Regelkreis im stationären Zustand betrachtet.

2.1.1 Verstärkungen

Proportionalitätsverstärkung

Sind x_1 die Eingangs- und x_2 die Ausgangsgröße eines Regelkreisgliedes, bezeichnet man den Faktor, um den sich x_1 von x_2 unterscheidet, als Proportionalitätsverstärkung V_p (Bild 2.1). Es verhält sich also $x_1 \circ x_2$; also

$$V_{\rm p} = \frac{x_2}{x_1}$$
 (2.1)

Die Proportionalitätsverstärkung ist demnach eine dimensionslose Zahl.

Die Gesamtverstärkung mehrerer in Reihe liegender Regelkreisglieder erhält man durch Multiplikation der Einzel-Verstärkungen. Es sei

$$V_{p1} = \frac{x_2}{x_1}; V_{p2} = \frac{x_3}{x_2},$$
 (2.2)

dann ist die Gesamtverstärkung

Bild 2.1 Definition der Proportionalverstärkung V_p

Statische Regelkreisverstärkung

Schneidet man einen Regelkreis in der Rückführung auf, erhält man eine Wirkungskette (Bild 2.2). Die Gesamtverstärkung des offenen Regelkreises läßt sich dann auch durch Multiplikation der Einzel-Verstärkungen ermitteln. Es ergibt sich die sog. statische Regelkreisverstärkung $V_{\rm o}$.

$$v_{o} = \prod_{i} v_{Ri} \cdot v_{Si}.$$
(2.4)
$$\overrightarrow{v}_{-x} \neq \overrightarrow{v}_{R} \neq \overrightarrow{v}_{R} \neq \overrightarrow{v}_{S} \neq \overrightarrow{v}_{S}$$

Bild 2.2 Prinzip eines Regelkreises

Mit den bereits bekannten Definitionen kann man entsprechend Bild 2.2 folgende Beziehung zwischen der Regel- und der Führungsgröße ableiten.

Die Regeldifferenz ergibt sich zu

$$x_d = w - x$$
,

die Stellgröße wird

 $y = V_R \cdot x_d$

und die Regelgröße

also

$$x = \frac{V_{o}}{1 + V_{o}} \cdot w .$$
 (2.5)

Die gefundene Gleichung zeigt, das Führungsgröße (Sollwert) und Regelgröße (Istwert) um so besser übereinstimmen, je größer die statische Regelkreisverstärkung V, ist (Bild 2.3).

Für
$$V_{o} = 1$$
 wird

Bild 2.3 Die Regelgröße x als Funktion der statischen Regelkreisverstärkung V $_{\rm O}$

2.1.2 Regelabweichung, Regeldifferenz

Die Genauigkeit einer Regelung wird angegeben durch die maximal bleibende Regelabweichung oder -Differenz bei ungünstiger Kombination der Störgrößen.

Führungsverhalten

Meist reagiert die Regelgröße auf eine stoßartige Änderung der Führungsgröße mit einem Ausgleichsvorgang (Bild 2.4). Je nach der erforderlichen Genauigkeit ist ein Toleranzband vereinbart, innerhalb dessen sich die Regelgröße nach bestimmten Zeiten befinden muß. Diese Zeiten sind die Anregel- und Einschwingzeit.

Die bleibende Regelabweichung oder -Differenz ist dann der prozentuale Unterschied zwischen dem erreichten Wert der Regelgröße und dem stationären Wert der Regelgröße am Ende des Ausgleichsvorgangs.

Bild 2.4 Definition der bleibenden Regelabweichung

Für eine zufriedenstellende Regelung muß die Sprungantwort folgende Forderungen erfüllen:

- Kurzer Ausgleichsvorgang (kleine Werte von Anregelzeit und Einschwingzeit)
- 2. Ausreichende Dämpfung (kleine Überschwingweite \mathbf{x}_{m})
- 3. Regeldifferenz möglichst klein $(x_d = 0)$.

2.1.3 Störgrößen

Größen, die unbeabsichtigt auf die Regelung einwirken, nennt man Störgrößen. Sie können sowohl das Verhalten der Regelkreisglieder selbst, als auch die Signalübertragung beeinflussen.

Additive Störgrößen (linear)

Störgrößen, die durch Summation mit Regelkreis-Signalen auf die Regelung einwirken, bezeichnet man als additive Störgrößen (Bild 2.5).

Wirkt beispielsweise auf das Signal y_2 eine Störgröße z, so ergibt sich aus dem Blockschaltbild eine Gleichung für die Regelgrösse, die z enthält.

Bild 2.5 Regelkreis mit einer Störgröße z am Ende der Regelstrecke

Es ist

$$x = y_2 + z$$

und

$$y_2 = V_{P1} \cdot V_{P2} \cdot x_d = V_o(w - x)$$

also

$$x = V_{o}(w - x) + z ,$$

bzw.

$$x = \frac{V_0}{1 + V_0} \cdot w + \frac{1}{1 + V_0} \cdot z . \qquad (2.6)$$

Das gefundene Ergebnis zeigt deutlich den Vorteil der Regelung gegenüber einer Steuerung. Die Störgröße, die bei einer Steuerkette (entsprechend $x = y_2 + z$) voll zum Signal y_2 addiert wird, kann mit dem geschlossenen Regelkreis (entsprechend Gleichung (2.6)) um den Faktor $1/(1 + V_0)$ vermindert werden.

Das heißt für V $_{\rm O}$ \rightarrow ∞ wird der Einfluß von z eliminiert und es ergibt sich wieder x = w.

Allerdings ist eine unendlich große Verstärkung V_0 unrealistisch. Die Werte von V_0 liegen bei industriellen Regelungen zwischen 1....1000. Daher erklärt sich auch, daß eine bleibende Regeldifferenz in realen Regelkreisen unvermeidlich ist.

Additive Störgrößen, welche nicht am letzten Regelkreisglied wirken, sondern zwischen zwei Regelkreisgliedern, behandelt man wie folgt (Bild 2.6).

Es ist

Bild 2.6 Regelung mit einer Störgröße z zwischen zwei Regelkreisgliedern

Auf die Regelgröße x wirkt in diesem Falle die Störgröße z mit dem Faktor V_{p2} / 1+ V_0 .

Definiert man

$$z' = V_{P2} \cdot z$$

als einen Block mit der Störgrößen-Verstärkung V_{P2}, so kann man die Summationsstelle der Störgröße hinter das letzte Regelkreis-Glied verlagern. Dann sind die Gleichungen (2.6) und (2.7) äquivalent, es wird

$$x = \frac{V_0}{1 + V_0} \cdot w + \frac{1}{1 + V_0} \cdot z'$$
.

Diese Methode bringt den Vorteil, daß man alle additiv auftretenden linearen Störgrößen auf eine Summationsstelle einwirken lassen kann. Der in Bild 2.7 dargestellte Regelkreis führt dann zu den bezogenen Störgrößen

$$z_1' = V_{P2} \cdot V_{P3} \cdot z_1' = V_{P3} \cdot z_2'$$

 $z_2' = V_{P3} \cdot z_2'$
 $z_3' = z_3'$, wie sie in Bild 2.8 dargestellt sind.

Bild 2.7 Regelkreis mit mehreren verteilten Störgrößen

Bild 2.8 Verlegen von Störgrößen hinter das letzte Regelkreisglied

Multiplikative Störgrößen (linear)

Wirkt auf ein Regelkreisglied selbst eine Störgröße ein, so bezeichnet man diese als multiplikative Störgröße. Sie verändert die Proportionalitätsverstärkung des betreffenden Regelkreisgliedes (Bild 2.9).

Es wird hier

$$V_{P2}' = V_{P2} \cdot z$$
 (2.8)

Damit wird

also

$$\mathbf{x} = \frac{\mathbf{V}_{0} \cdot \mathbf{z}}{1 + \mathbf{V}_{0} \cdot \mathbf{z}} \cdot \mathbf{w} .$$
 (2.9)

Bild 2.9 Regelkreis mit einer multiplikativen Störgröße z

Auch hier wird die Störgröße bei unendlich großer Verstärkung V_O beseitigt, so daß x = w wird. Die bleibende Regeldifferenz ist hier gleich der Differenz aus ungestörter und störbehafteter Regelung.

Fehlerkorrektur

Die bisher behandelten Störgrößen ließen sich bis auf eine bleibende Regelabweichung ausregeln.

Es gibt jedoch auch solche, die sich, wenn sie auftreten, nicht mit der Regelung korrigieren lassen. Ein Beispiel soll dies verdeutlichen (Bild 2.10). Regler Strecke

Blockschaltbild

Bild 2.10 Signalflußplan und Blockschaltbild eines vereinfachten Drehzahlregelkreises im stationären Betrieb

Beispiel

In einer Drehzahlregelung für einen Gleichstrommotor mit Stromrichter sollen die vier Störgrößen $z_1'...z_4'$ auftreten. Dabei sind z_1' und z_2' Störungen der Soll- bzw. Istwert-Umwandlung. z_3' entspricht einer Verfälschung der Soll-Istwert-Differenz x_d infolge Verstärkerdrift. z_4' sei die Auswirkung eines Laststoßes auf die Regelung.

Bezieht man alle Größen auf ihren Nennwert (Normierung z.B. auf 10 V-), ergibt sich ein vereinfachtes Blockschaltbild (Bild 2.11).

Bild 2.11 Blockschaltbild des Regelkreises aus Bild 2.10 zur Berechnung des statischen Regelkreis-Verhaltens

Im ungestörten Zustand ist bekanntlich $z_1 = z_2 = z_3 = z_4 = 0$. Beim voll gestörten Regelkreis gilt dann

 $x = V_0 \cdot x_d + z_4$ $x_d = w + z_1 + z_3 - (x + z_2)$,

damit wird die Regelgröße indiziert

$$\mathbf{x} = \mathbf{V}_{0} \cdot (\mathbf{w} + \mathbf{z}_{1} + \mathbf{z}_{3} - \mathbf{z}_{2}) - \mathbf{V}_{0} \cdot \mathbf{x} + \mathbf{z}_{4}$$

$$\mathbf{x} = \frac{\mathbf{V}_{0}}{1 + \mathbf{v}_{0}} \cdot (\mathbf{w} + \mathbf{z}_{1} + \mathbf{z}_{3} - \mathbf{z}_{2}) + \frac{1}{1 + \mathbf{V}_{0}} \cdot \mathbf{z}_{4} .$$

$$(2.10)$$

Man sieht, daß die Störgrößen $z_1...z_3$ voll als Fehler in die Regelung eingehen, weil sie, unabhängig von V_o, die Führungsgröße w beeinflussen. Die Störgröße z_4 dagegen verschwindet bei V_o + ∞, d.h. sie kann 'ausgeregelt werden.

Für alle Regelkreise läßt sich daraus der Grundsatz ableiten, nichtkorrigierbare Störgrößen sind:

-	Fehler	im	Sollwert			(hier	z1)
-	Fehler	im	Istwert			(hier	z2)
-	Drift-	bzw	. Einstellfehler	des	Reglers	(hier	z3)

Beispiel

An einem drehzahlgeregelten GS-Motors (Gleichstrom-Motors) soll ein konkreter Störfall betrachtet werden (Bild 2.12).

Für den Ankerkreis eines GS-Motors gilt im treibenden stationären Betrieb bei Rechtslauf

$$E = U_A - I_A \cdot R_A . \qquad (2.11)$$

Auf die Nennwerte bezogen folgt daraus mit

$$\begin{split} \mathbf{e} &= \mathbf{E}/\mathbf{E}_{N}, \quad \mathbf{u}_{A} = \mathbf{U}_{A}/\mathbf{U}_{AN}, \quad \mathbf{i}_{A} = \mathbf{I}_{A}/\mathbf{I}_{AN} \\ \mathbf{e} &= \mathbf{u}_{A} - \mathbf{i}_{A} \frac{\mathbf{I}_{AN} \cdot \mathbf{R}_{A}}{\mathbf{U}_{AN}} , \end{split}$$

mit der Ankerkreisverstärkung

$$V_{A} = \frac{U_{AN}}{I_{AN} \cdot R_{A}}$$

folgt

$$e = U_{A} - i_{A} \cdot \frac{1}{V_{A}} . \qquad (2.12)$$

Das Lastmoment ${\rm M}_{\rm L}$ ist im stationären Betrieb proportional dem Motormoment ${\rm M}_{\rm M}.$

Für M_M gilt

$$M_{M} = C_{2} \cdot I_{A} \cdot \emptyset . \qquad (2.13)$$

Die Quellenspannung E ist

$$\mathbf{E} = \mathbf{C}_1 \cdot \mathbf{\emptyset} \cdot \mathbf{n} \tag{2.14}$$

mit C_1 = konst. und C_2 = konst. folgt für \emptyset = konst.

$$M_L \sim M_M \sim I_a$$
 und $E \sim n_M$

und normiert mit $m_{L} = M_{L}/M_{N}$

$$m_{L} \sim i_{A}$$
 und $e \sim n_{M}$.

Daraus folgt für die Gleichung (2.12)

$$n_{M} \stackrel{\text{de}}{=} u_{A} - m_{L} \cdot \frac{1}{v_{A}}$$
 (2.15)

Die einzige Größe zur Beeinflussung der Drehzahl ist nun die bezogene Ankerspannung $\mathbf{u}_{\mathbf{\lambda}}$, sie ist also die Führungsgröße.

Damit geht Gleichung (2.15) in eine Beziehung zwischen Regelgröße x = n_M und Führungsgröße w = U_A einschließlich der Störgröße z = m_L über. Es wird

$$n_{M} \approx u_{Asoll} - \frac{1}{V_{A}} \cdot m_{L}$$
 (2.16)

Das zugehörige Blockschaltbild dieser Drehzahlregelung ist in Bild 2.13 dargestellt.

Bild 2.13 Blockschaltbild (vereinfacht) des fremderregten Gleichstrommotors zur Beurteilung des Lastverhaltens

Mit der statischen Regelkreisverstärkung V folgt für Gleichung (2.16)

$$n_{M} \approx \frac{V_{o}}{1+V_{o}} \cdot u_{Asoll} - \frac{1}{1+V_{o}} \cdot \frac{m_{L}}{V_{A}}, \qquad (2.17)$$

Ein Laststoß m_L wirkt sich also als additive Störgröße aus und kann mit V₀ + ∞ beseitigt werden. Auch eine große Ankerkreisverstärkung V_A führt zur Verminderung des Störeinflusses.

Für eine reale Drehzahlregelung (V_O = 100 und V_A = 10) ergibt sich bei einem Laststoß von 100% des Nennwertes (M_L = 2 M_N) ein Drehzahlabfall von 2 O /oo, da

$$M_{M} \approx u_{Asoll} - \frac{2}{10^3}$$
.

Aufgabe 2.1

Ein Glühofen soll auf 1.300^OC geregelt werden. Dabei treten drei additive Störgrößen auf, die durch induktive Einkopplung von Starkstromleitungen entstehen und zu folgendem Blockschaltbild führen (Bild 2.14)

Bild 2.14 Blockschaltbild eines Regelkreises mit verteilten additiven Störgrößen

 $V_{P1} = 10$; $V_{P2} = 2,5$; $V_{P3} = 2$ gegeben: $w = 10V - \stackrel{\wedge}{=} 1300^{\circ}C$ $z_1 = 200 \text{ mV}; \quad z_2 = 0, 1 \text{ V}; \quad z_3 = 10 \text{ mV}$ Das vereinfachte Blockschaltbild mit nur einer Summationsstelgesucht:

le der Störgrößen, die Regelgröße x in Volt sowie die Regeldifferenz x_d in ^OC.

Aufgabe 2.2

In einer analogen Regelung wirken zwei multiplikative Störgrößen, die sich durch Verstärkungsfehler $z_1 = 0.9$ und auf die Strecke $z_2 = 1.2$ ergeben. $V_{R} = 20$; $V_{S} = 1$; w = 5V gegeben:

gesucht: Das Blockschaltbild der Regelung und die Regeldifferenz.

Aufgabe 2.3

Der Regler einer analogen Wegregelung (Bild 2.15) hat infolge von Widerstandstoleranzen einen Verstärkungsfehler von $z_1 = 0,95$. Der nachfolgende Leistungsverstärker besitzt eine Ausgangsfehlspannung (Offsetspannung) von z₂ = 20 mV. Der Frequenz-Spannungs-Wandler in der Rückführung für den Wegistwert hat einen additiven Umsetzfehler von $z_3 = 30 \text{ mV}$.

gegeben: $V_{R} = 10$; $V_{p} = 20$ (Leistungsverstärker); $V_{S} = 1$ $w = 10 V - \stackrel{\wedge}{=} 4 m$

Das Blockschaltbild der Wegregelung und die Regeldifferenz in gesucht: Meter.

Bild 2.15 Signalflußplan einer Positionsregelung mit Seiltrommel

2.1.4 Statische Kennlinien

Das statische Verhalten eines Regelkreisgliedes beschreibt den realen Zusammenhang zwischen Eingangs- und Ausgangsgröße. In der Praxis gibt es nur Kennlinien, bei denen in einem bestimmten Bereich Linearität zwischen Ein- und Ausgangsgröße angenommen werden kann /1/.

Tachogenerator

Benutzt man zur Drehzahlerfassung in einer Regelung beispielsweise einen Tachogenerator, so ist seine Ausgangsspannung nur in einem festen, vom Hersteller angegebenen Bereich der Drehzahl proportional (Bild 2.16).

Bild 2.16 Statische Kennlinie eines Tacho-Dynamos

Pneumatischer Verstärker

Kennlinien, die nur einen kleinen Linearitätsbereich besitzen, können durch Verwendung eines Verstärkers verbessert werden. Bild 2.17a und b zeigen das Schaltbild und die Kennlinie eines pneumatischen Proportionalitätsglieds mit einem kleinen linearen Stellbereich. Durch Vergrößern der Verstärkung läßt sich die Lage des jeweiligen Arbeitspunktes A in einem erweiterten Linearitätsbereich verschieben (Bild 2.17b).

b)

Bild 2.17 Statische Kennlinien eines Pneumatischen Verstärkers

Operationsverstärker

Aber auch bei Verstärkern ist der lineare Stellbereich durch den physikalisch-technischen Aufbau eingeschränkt, wie das Beispiel eines Operationsverstärkers zeigt (Bild 2.18). Beschaltet man einen Operationsverstärker nur mit Widerständen, erhält man Proportionaität zwischen Ein- und Ausgangsspannung /2/. Dies gilt aber nur, wenn der innere Aufbau des Verstärkers bestimmte Voraussetzungen erfüllt.

Die Kennwerte der inneren Schaltung sind dann: Differenz-Eingangswiderstand r_D, er liegt im MΩ-Bereich Gleichtakt-Widerstand r_G, er liegt im GΩ-Bereich Ausgangs-Widerstand r_A, er liegt im Ω-Bereich Differenz-Spannungsverstärkung V_D, sie liegt um den Wert 10⁵ Offsetspannung U $_{off}$, sie liegt im μ V...mV-Bereich Stellbereich der Ausgangsspannung ΔU_a , er liegt zwischen 10...20 V.

a)

b)

Bild 2.18 Ersatzschaltbilder eines Operationsverstärkers

Wegen der sehr großen Widerstände r_D und r_G im Vergleich zu den äusseren Beschaltungswiderständen R_1 , R_2 und R_K , ist der Eingangsstrom $I_e = 0$.

Aufgrund der hohen Verstärkung $\rm V^{}_D$ ist bei Gegenkopplung dann $\rm U^{}_D$ = O bzw. $\rm U^{}_D$ << U^{}_e.

= 0

Betrachtet man mit diesen Bedingungen die Schaltung des Bildes 2.18a, ergibt sich mit $\Sigma I = O$ (I. Kirchhoffscher Satz) der gewünschte proportionale Zusammenhang zwischen U_e und U_a.

Es ist

mit

$$I_{1} + I_{2} = I_{e} = I_{e}$$

$$I_{e} = 0 \text{ folgt}$$

$$I_{1} = -I_{2}$$

$$\frac{U_{e}}{R_{1}} = \frac{U_{a}}{R_{2}}$$

bzw.

also

U

$$a = -\frac{R_2}{R_1} \cdot U_e$$
 (2.18)

Darin ist die Proportionalitätsverstärkung

$$V_{\rm P} = \frac{R_2}{R_1} \,. \tag{2.19}$$

Für $R_2 \rightarrow \infty$ wird dann rein rechnerisch $V_p \rightarrow \infty$ und $U_A \rightarrow \infty$ gehen, doch die Ausgangsspannung eines Operationsverstärkers kann nicht über seine Speisespannung <u>+</u> U_s hinaus anwachsen. Diese liegt je nach Verstärkertyp zwischen <u>+</u> U_s = <u>+</u> 10... <u>+</u> 20 V. Außerdem kann U_a durch zwei Zenerdioden in der Gegenkopplung auf den Wert der Zenarspannung begrenzt werden (Bild 2.19). Ähnliches gilt auch für den Stellbereich des Ausgangsstromes, die Belastbarkeit. Auch diese ist begrenzt und liegt im mA-Bereich.

Bild 2.19 Statische Kennlinie eines Operationsverstärkers
Verallgemeinert man die Beschaltung des Operationsverstärkers entsprechend Bild 2.20, so gilt analog zu Gleichung (2.18)

$$\frac{\underline{U}_{a}}{\underline{U}_{e}} = -\frac{\underline{Z}_{2}}{\underline{Z}_{1}} \quad (2.20)$$

Je nach Art des Netzwerkes \underline{Z}_2 bzw. \underline{Z}_1 lassen sich alle Regelkreisglieder mit Operationsverstärkern aufbauen (siehe Abschnitt 3).

Bei den bisher betrachteten Regelkreisgliedern galt das Linearitätsprinzip. Es gibt aber auch solche, bei denen dieser Zusammenhang nicht vorherrscht.

Leerlaufkennlinie GS-Maschine

Die Abhängigkeit des magnetischen Flusses ϕ vom Erregerstrom I_E einer GS-Maschine gibt die sog. Leerlauf- oder Magnetisierungskennlinie wieder (Bild 2.20). Sie wird bei konstanter Drehzahl aufgenommen.

Bild 2.20 Statische Kennlinie des magnetischen Flusses ϕ als Funktion des Erregerstromes I eines Gleichstrommotors

Soll der magnetische Fluß, welcher als Rechengröße in vielen Regelungen erforderlich ist (siehe Abschnitt 6), über den linearen Bereich hinaus ausgenutzt werden, ist eine Linearisierung der Kennlinie sinnvoll. Dazu wird die Leerlaufkennlinie aufgenommen (gemessen) und durch Geradenzüge stückweise nachgebildet (Bild 2.21).

Man legt eine Tangente durch den betreffenden Arbeitspunkt und erhält die Beziehung

Bild 2.21 Linearisierung der Kennlinie des magnetischen Flusses ϕ

Je weiter man sich von den Arbeitspunkten entfernt, um so größer wird der Fehler. Für kleine Kennlinienkrümmungen kann man von den realen Werten auf die Abweichungen Δx_a und Δx_b übergehen.

Soll die Kennlinie ganz durchlaufen werden (Arbeitspunkt A 1...An), ist es angebracht, durch sog. Funktionsbilder /2/ entsprechend viele Knickpunkte (Tangenten) für die Näherung vorzusehen, damit der Fehler klein bleibt.

Eine weitere Linearisierungsmethode bildet die Taylor-Reihe/3/. Im Arbeitspunkt A ergibt sich die Ausgangsgröße zu

$$x_a = x_{a(A)} + \frac{x_e - x_e(A)}{1!} \cdot \dot{x}_a + \frac{x_e - x_e(A)}{2!} \cdot \dot{x}_a + \dots$$
 (2.21)

Bei kleinen Kennlinienkrümmungen läßt sich die Taylor-Reihe nach der ersten Differentiation abbrechen, so daß gilt

$$x_a \stackrel{\text{}}{_{_{_{_{_{_{}}}}}}} x_{a(A)} + x_{a(A)} \cdot (x_e - x_{e(A)})$$
 (2.22)

Steuerkennlinie eines netzgeführten Stromrichters

Der Stromrichter ist eines der wichtigsten Stellglieder der modernen Antriebstechnik. Durch sein fast trägheitsloses Verhalten erfüllt die Dynamik eines Stromrichterantriebs höchste Anforderungen. Bild 2.22 zeigt eine vollgesteuerte Drehstrombrückenschaltung für einen GS-Antrieb. Mit Hilfe des Steuerwinkels α , der die Zündzeitpunkte der einzelnen Thyristoren bestimmt, kann die Ankerspannung des GS-Antriebs kontinuierlich gesteuert werden /4/, d.h. die Spannungszeitflächen der zugehörigen Drehspannungen werden verändert.

Bild 2.22 Signalflußplan eines Stromrichterantriebs mit sechspulsiger vollgesteuerter Drehstrombrückenschaltung

Bild 2.23 stellt den Verlauf der Ankerspannung für verschiedene Steuerwinkel dar (ohne Berücksichtigung der Kommutierungsdauer).

Der Steuerwinkel wird durch den Vergleich der zugehörigen Drehspannung mit der Steuergleichspannung U_{st}, welche am Reglerausgang ansteht (siehe Abschnitt 6), erzeugt. Es besteht ein linearer Zusammenhang zwischen α und U_{st} (Bild 2.24). Die gesteuerte Ankerspannung U_{di α} entspricht beim vollgesteuerten 6-pulsigen Stromrichter der Gleichung

$$U_{A} \stackrel{\Delta}{=} U_{di\alpha} = 1,35 \cdot U_{L} \cdot \cos\alpha$$
 mit U_{L} : Leiterspannung.
(2.23)

Diese Kennlinie ist in Bild 2.25 dargestellt. Steuerwinkel $\alpha > 150^{\circ}$ sind ausgeschlossen, um die Kommutierungsdauer und die Freiwerde-

zeit zu berücksichtigen. Bei Steuerwinkeln $\alpha < 10^{\circ}$ kann das sog. Leerlaufpendeln auftreten, daher ist auch dieser Bereich zu meiden.

Bild 2.23 Verlauf der Spannung ${\rm U}_{\mbox{di}\alpha}$ bei verschiedenen Steuerwinkeln α

Bild 2.24 Zusammenhang zwischen Steuerwinkel α und Steuergleichspannung Ust

Bild 2.25 Zusammenhang zwischen $\textbf{U}_{\mbox{di}\,\alpha}$ und dem Steuerwinkel α

Kennlinie mit Ansprechschwelle

Kennlinien mit Ansprechschwelle (auch "tote Zone" oder "Fenster") genannt) treten häufig bei Meßwertaufnehmern auf (Bild 2.26). Manchmal ist ein solches Verhalten sogar regelungstechnisch erwünscht. Es kann beispielsweise durch die Reihenschaltung von Dioden für beide Polaritäten der Eingangsspannung U_e erreicht werden. Dann ist $2x_t \approx 3U_D$, also ergibt sich ein "Fenster von ca.2,1V bei Verwendung von Silizium-Dioden.

Bild 2.26 Statische Kennlinie eines Regelkreisgliedes mit toter Zone

Die Sprungantwort einer Kennlinie mit Ansprechschwelle ergibt

$$x_a = x_e$$
 für $x_e \stackrel{?}{=} x_t$
 $x_a = 0$ für $x_e < x_t$

Bei sinusförmigem Eingangssignal läßt sich das Ausgangssignal mit der Fourierzerlegung /3/ ermitteln (Bild 2.27).

Es ist

$$x_{a(t)} = \frac{a_{o}}{2} + \sum_{i=1}^{n} a_{i} \cdot \cos i\omega t + \sum_{i=1}^{n} b_{i} \cdot \sin i\omega t.$$

Man kann sich bei der Kennlinie mit Ansprechschwelle mit guter Näherung auf die Grundschwingung beschränken, d.h. die Koeffizienten a_1 und b_1 . Außerdem ist der Gleichspannungsanteil $a_0 = 0$.

Dann gilt

$$\mathbf{x}_{a(t)} \approx \mathbf{x}_{a1} = \mathbf{a}_{1} \cdot \cos \omega t + \mathbf{b}_{1} \cdot \sin \omega t , \qquad (2.24)$$

mit

$$a_{1} = \frac{1}{\pi} \int_{0}^{2\pi} x_{a(\omega t)} \cdot \cos \omega t \cdot d\omega t \qquad (2.25)$$

$$a_{1} = \frac{2\pi}{\pi}$$

$$b_1 = \frac{1}{\pi} \int_0^{\infty} x_{a(\omega t)} \cdot \sin \omega t \cdot d\omega t . \qquad (2.26)$$

Im Bereich von O $\leq \omega t \leq \pi$ gilt für die Ausgangsgröße

$$\begin{aligned} \mathbf{x}_{a} &= 0 & \text{für } \mathbf{0} \stackrel{\leq}{=} \omega \mathbf{t} \stackrel{\leq}{=} \omega \mathbf{T}_{1} \\ \mathbf{x}_{a} &= \stackrel{\wedge}{\mathbf{x}}_{e} \cdot \sin(\omega \mathbf{t} - \omega \mathbf{T}_{t}) & \text{für } \omega \mathbf{T}_{1} \stackrel{\leq}{=} \omega \mathbf{t} \stackrel{\leq}{=} \omega \mathbf{T}_{2} \\ \mathbf{x}_{a} &= 0 & \text{für } \omega \mathbf{T}_{2} \stackrel{\leq}{=} \omega \mathbf{t} = \pi . \end{aligned}$$

$$(2.27)$$

Ist bei einer ungeraden Funktion $x_{a(t)} = -x_{a(-t)}$, entfällt der Koeffizient $a_1(a_1 = 0)$. Man setzt nun noch Gleichung (2.27) in (2.26) ein und erhält den Koeffizienten b_1 .

$$b_{1} = \frac{\Lambda}{\pi} \int_{\omega T_{1}}^{\omega T_{2}} \sin(\omega t - \omega T_{t}) \cdot \sin\omega t \cdot d\omega t .$$

Bild 2.27 Ausgangsgröße eines Regelkreisgliedes mit toter Zone bei sinusförmiger Eingangsgröße

40

Es wird nach Integration

$$\mathbf{b}_{1} = \mathbf{\hat{x}}_{e} \frac{\left(1 - \frac{2\omega \mathbf{T}_{1}}{\pi} - \frac{2}{\pi} \cdot \sin\omega \mathbf{T}_{1} \cdot \cos\omega \mathbf{T}_{1}\right)}{\overset{\not}{=} \mathbf{K}_{m}} ,$$

also

$$\mathbf{b}_1 = \mathbf{K}_{\mathrm{T}} \cdot \mathbf{x}_{\mathrm{e}}^{\mathrm{A}} . \tag{2.28}$$

Das Ausgangssignal lautet dann letztlich mit Gleichung (2.24) und (2.28)

$$\mathbf{x}_{a} \approx \mathbf{x}_{a1} = \mathbf{K}_{T} \cdot \mathbf{\hat{x}}_{e} \cdot \operatorname{sin\omegat} .$$
 (2.29)

So lassen sich Kennlinien mit Ansprechschwelle auch als Regelstrekkenglieder behandeln.

2.2 Dynamisches Verhalten

Das statische Verhalten einer Regelung bzw. eines Regelkreisgliedes ist eine unvollkommene Beschreibung seiner Übertragungseigenschaften.

Jeder Regelkreis wird durch äußere Größen beeinflußt, die eine Zustandsänderung des Systems in zeitlicher und örtlicher Form hervorrufen.

Die systemeigenen Größen gehen dabei meist von einem stationären Zustand in einen anderen stationären Zustand über.

Die Übergangsphase bezeichnet man auch als Ausgleichsvorgang der im System befindlichen Energiespeicher oder speziell als das dynamische Verhalten des Regelkreises. Die Kennwerte elektrischer und mechanischer Energiespeicher sind zeitlich konstant, sie lauten beispielsweise

Induktivität L Kapazität C Trägheitsmoment J

Die zeitlich veränderlichen Größen sind Strom i Spannung u Moment m

2.2.1 Differentialgleichungen

Gleichungen, die das dynamische Verhalten eines Systems beschreiben, sind die Differentialgleichungen. Ihre Ordnung ist gleich der Zahl der voneinander unabhängigen Energiespeicher des physikalischen Systems.

Sie verknüpfen die Kennwerte des Systems mit den zeitlich veränderlichen Größen.

So z.B.

$$u_{(t)} = L \frac{dI(t)}{dt}$$
, (2.30)

$$i_{(t)} = C \frac{du_{(t)}}{dt}$$
, (2.31)

$$m_{(t)} = J \frac{d\omega_{(t)}}{dt} \sim J \frac{dn_{(t)}}{dt} . \qquad (2.32)$$

Diese Beziehungen sagen folgendes aus: Der Strom durch eine Induktivität kann sich nicht sprunghaft ändern; die Spannung an einem Kondensator kann nicht springen; die Drehzahl rotierender Massen kann sich nicht sprunghaft ändern.

Diese Aussagen beruhen auf der Endlichkeit realer Systeme, denn das Differential eines Sprungs ist nur durch eine unendliche Größe realisierbar.

Reihenschwingkreis

Die Bestimmung des zeitlichen Verlaufs der Kondensatorspannung $u_{c(t)}$ eines Reihenschwingkreises führt zu folgender Differentialgleichung (Bild 2.28).

Mit $\Sigma U = 0$ (II. Kirchhoffscher Satz) folgt bei Schließen des Schalters S

$$U_{e} = u_{c(t)} + R \cdot C \cdot \frac{du_{c(t)}}{dt} + L \cdot C \cdot \frac{d^{2}u_{c(t)}}{dt^{2}} . \qquad (2.33)$$

Bild 2.28 Elektrischer Reihenschwingkreis mit Gleichspannung

Dies ist eine lineare Differentialgleichung 2. Ordnung mit dem Spannungssprung U_e bei t = O.

Die Lösung erfolgt mit der homogenen Teillösung für den Ausgleichsvorgang und der inhomogenen Teillösung für den stationären Zustand.

Die homogene Teillösung gewinnt man durch den Ansatz

$$u_{c(t)} = A \cdot e^{\alpha t} . \qquad (2.34)$$

Setzt man den Exponential-Ansatz entsprechend Gleichung (2.34) in Gleichung (2.33) ein, erhält man die charakteristische Gleichung der gegebenen Differentialgleichung. Je nach Art der Wurzel der charakteristischen Gleichung (reell, komplex) erhält man verschiedene Ansätze für die inhomogene Teillösung /1/, /3/. Auf die Darstellung des Lösungsweges wird hier zu Gunsten der Gleichdimensionellen Laplace-Transformation (z.B. Aufgabe 2.10; Abschnitt 2.2.4) verzichtet.

Es wird schließlich für $u_{c(0)} = 0$ und $i_{L(0)} = 0$

$$u_{c(t)} = U_{e} \left[1 - e^{-\alpha t} \cdot (\cos \omega_{e} t + \frac{\alpha}{\omega_{e}} \cdot \sin \omega_{e} t) \right] .$$
 (2.35)

Besonders bei Differentialgleichungen höherer als 2. Ordnung ist die Lösung sehr umständlich.

Mit

$$\alpha = \frac{R}{2L}$$
, $\omega_e^2 = \omega_o^2 - \alpha^2$ (2.36)

und

$$\omega_{\rm O}^2 = \frac{1}{\mathbf{L} \cdot \mathbf{C}} \quad . \tag{2.37}$$

Die beiden markanten Ergebnisse, der periodische Fall ($\alpha \ll \omega_0$) und der aperiodische Fall ($\alpha \gg \omega_0$) sind in Bild 2.29 dargestellt.

Bei Anregung mit sinusförmigen Größen ist die Behandlung der Differentialgleichungen noch komplizierter. Diese Schwierigkeiten lassen sich mit der Laplace – Transformation umgehen, wie in Abschnitt 2.2.5 gezeigt wird.

2.2.2 Übertragungsfunktion, Sprungfunktion, Sinusfunktion

Mit der allgemeinen Lösung einer Differentialgleichung kann man noch keine regelungstechnischen Aussagen machen. Zur Beurteilung

Bild 2.29 Mögliche Sprungantworten des elektrischen Reihenschwingkreises

des dynamischen Verhaltens einer Regelung ist die Kenntnis des zeitlichen Verlaufs der Ausgangsgröße bei Änderung der Eingangsgröße eines jeden Regelkreisgliedes entscheidend.

In der Praxis lassen sich im wesentlichen zwei Eingangsfunktionen unterscheiden, mit denen das dynamische Verhalten eines Regelkreises getestet wird; die Sprungfunktion und die Sinusfunktion.

Bild 2.30 Mechanischer Reihenschwingkreis aus Feder, Masse und Dämpfung

Sprungfunktion

Wie schon beim Reihenschwingkreis (Gleichung (2.33)), wird in der Regelungstechnik die Eingangs- bzw. anregende Größe meist sprunghaft eingeschaltet.

Vereinheitlicht man diesen Sprung der Eingangsgröße, lassen sich die Übertragungseigenschaften aller Regelkreisglieder direkt und anschaulich miteinander vergleichen (siehe dazu DIN 19229). Bei der Behandlung dynamischer Vorgänge wird mit dieser sog. Einheitssprungfunktion der Bezug zur Realität gewahrt (z.B. Schließen eines Schalters oder Umschalten eines Gollwerts).

Der Verlauf der Einheitssprungfunktion $\boldsymbol{\delta}_{\text{O(t)}}$ ist in Bild 2.31a wiedergegeben.

Es gilt

 $\delta_{o(t)} = 0 \quad \text{für } t < o \qquad (2.38)$ $\delta_{o}(t) = 1 \quad \text{für } t \stackrel{>}{=} 0 .$

Bild 2.31 Zeitlicher Verlauf der Einheits-Sprungfunktion

Die mathematische Behandlung einer solchen Sprungfunktion ist nicht schwierig, da sie für t $\stackrel{\geq}{=}$ O konstant ist. Setzt man die Sprungfunktion als Erregungsfunktion am Eingang eines Regelkreises (Regelkreisgliedes) ein, erhält man am Ausgang die sog. Sprungantwort.

Es ergibt sich mit der Amplitude des Eingangssignals \hat{x}_{e} = x_{eo}

$$\mathbf{x}_{e(t)} = \mathbf{x}_{e0} \cdot \delta_{O(t)} , \qquad (2.39)$$

die allgemeine Differentialgleichung mit Störfunktion

$$\mathbf{x}_{eo} \cdot \boldsymbol{\delta}_{o(t)} = \mathbf{a}_{o} \cdot \mathbf{x}_{a} + \mathbf{a}_{1} \cdot \frac{\mathrm{d}\mathbf{x}_{a}}{\mathrm{d}t} + \dots + \mathbf{a}_{n} \cdot \frac{\mathrm{d}^{n}\mathbf{x}_{a}}{\mathrm{d}t^{n}}$$
(2.40)

_n

deren Lösung die Sprungantwort ist.

$$x_{a(t)} = x_{eo} \cdot f(t)$$

Dem gewonnenen Verlauf der Ausgangsgröße kann man bestimmte Eigenwerte entnehmen, mit denen man das Übertragungsverhalten eines realen Regelkreises sinnvoll beeinflussen kann.

Beispiel

An einem analogen Meßinstrument soll das Übertragungsverhalten betrachtet werden.

Die meisten elektrischen und mechanischen Meßinstrumente lassen sich wegen der geringen Masse des Meßwertes durch eine gedämpfte Feder darstellen (Bild 2.32).

Meßbrücke

Drehspulinstrument

Druckmeßdose

Bild 2.32 Mechanisches Ersatzschaltbild eines Drehspulinstruments und einer Druckmeßdose

Bei einem Drehspulmeßwerk ist die anregende Kraft dem Strom I und der magnetischen Flußdichte B proportional. Die Kraft F_e führt zur Wegänderung s_a entlang der Anzeigeskala.

F_e = B · I · l · N l = wirksame Spulenlänge N = Windungszahl

Ein Kraftmeßinstrument (Druckmeßdose) reagiert auf den Druck p über eine konstante Meßwerksfläche A ebenfalls mit der Wegänderung s_a.

$$F_e = p \cdot A$$
.

Es ergibt sich bezüglich s $_{\rm a}$ entsprechend Bild 2.32 eine inhomogene Differentialgleichung 1. Ordnung, nämlich

$$F_{e} = c_{f} \cdot s_{a} + r \cdot \frac{ds_{a}}{dt} . \qquad (2.41)$$

Die Sprungantwort ist die Lösung der Differentialgleichung (2.42). Es handelt sich um einen Ausgleichsvorgang mit sprunghafter Störfunktion F_e , der in einen stationären und freischwingenden Zustand aufgeteilt wird.

Es gilt

$$S_{a(t)} = S_{a_{st}} + S_{a_{f}}$$
.
t ≤ 0 ist

für

Für

 $t \rightarrow \infty$ ist $s_{a_{(\infty)}} = s_{a_{st}}$.

s_{a = 0};

Aus der nach s_a umgestellten Gleichung (2.41) folgt die Größe von s_a. Mit

$$s_{a_{(t)}} = \frac{Fe - r \cdot \frac{ds_{a}}{dt}}{c_{f}}$$

erhält man für

$$s_{a_{st}} = \frac{Fe}{c_{f}}$$
.

Für den freischwingenden Zustand setzt man den Exponentialansatz an.

$$s_{a_f} = A \cdot e^{-t/T}$$
.

Für t = 0 ist dann

$$s_{a_{(0)}} = \frac{Fe}{c_{f}} + A = 0$$
.

Damit ist der Koeffizient A bekannt.

$$A = - \frac{Fe}{c_f} .$$

und mit T = r/c_f folgt die Lösung, d.h. die Sprungantwort

$$S_{a_{(t)}} = \frac{Fe}{c_{f}} \cdot \left(1 - e^{-\frac{c_{f \cdot t}}{r}}\right) . \qquad (2.42)$$

Es handelt sich um eine e-Funktion, die bei t $\rightarrow \infty$ die Größe des Eingangssprungs Fe/c $_{\rm f}$ erreicht (Bild 2.33).

Aufgabe 2.4

An eine Reihenschaltung aus Widerstand und Induktivität wird bei t = O eine Gleichspannung angelegt (Bild 2.34) gegeben:

 $R = 10 \Omega$, L = 0,2 H, $U_{\rho} = 20 V$

gesucht: Die Sprungantwort des Stroms i.

Bild 2.34 Gleichstromkreis mit einer Reihenschaltung aus R und L

Aufgabe 2.5

Einem beschleunigten Körper der Masse m wirkt eine geschwindigkeitsproportionale Reibung entgegen (Bild 2.35). Die Reibungskraft ist

$$F_r = -r \cdot \frac{ds_a}{dt}$$

und die Beschleunigungskraft nach dem Newtonschen Aktionsprinzip

$$F_{b} = -m \cdot b = -m \cdot \frac{d^{2}s_{a}}{dt^{2}}$$

gegeben: Fe, r, m

gesucht: Die Sprungantwort s_a des Systems.

Sinusfunktion

Die sinusförmige Anregung eines Systems ist besonders in der Nachrichtentechnik verbreitet. Aber auch in der Regelungstechnik treten häufig sinusförmige Störgrößen auf, deren Auswirkung auf einen Regelkreis untersucht werden müssen. Um das dynamische Verhalten ausreichend zu erfassen, ist daher die sinusförmige Anregung notwendig (Bild 2.31b).

Ihr zeitlicher Verlauf ist

mit der Amplitude $\stackrel{\Lambda}{x}_{e}$ und der Kreisfrequenz ω = 2 π f, sowie der Periodendauer T.

Die Antwortfunktion eines so angeregten Regelkreises hat nach dem Abklingen des Einschwingvorgangs eine Phasenverschiebung φ zur Folge /16/.

Es wird

$$x_{a(t)} = \dot{x}_{a} \cdot \sin(\omega t + \varphi)$$
.

2.2.3 Komplexe Rechnung

Die Lösung der das Übertragungsverhalten beschreibenden Differentialgleichungen ist meist aufwendig. Bei Gleichungen höherer Ordnung läßt sich eine explizite Lösung gar nicht angeben. Erschwert wird die Berechnung noch, wenn statt der Einheitssprungfunktion eine sinusförmige Eingangsgröße vorliegt.

Um das Übertragungsverhalten eines Regelkreises vollständig zu erfassen, ist im allgemeinen nicht nur die Reaktion auf eine bestimmte Eingangsfunktion, sondern theoretisch der gesamte Frequenzbereich $\omega = 0 \dots \infty$ zu betrachten.

Diese Forderung führt über die Kenntnisse der komplexen Rechnung hin zur Lösung von Differentialgleichungen mit der Laplace-Transformation. Eine komplexe Zahl Z und eine konjugiert komplexe Zahl Z sind mit der imaginären Einheit j = $\sqrt{-1}$ definiert als

$$\underline{Z} = \mathbf{a} + \mathbf{j} \cdot \mathbf{b} ; \quad \underline{Z} = \mathbf{a} - \mathbf{j} \cdot \mathbf{b} , \qquad (2.44)$$

bzw. elektrotechnisch gedeutet

 $\underline{Z} = R + X$; $\underline{Z} = R - X$.

Es ist a der Realteil (Re) von \underline{Z} , der dem ohmschen Widerstand R entspricht und b der Imaginärteil (Im), der dem Blindwiderstand X entspricht. Der Blindwiderstand einer Induktivität ist dann

$$X_{T} = j\omega L , \qquad (2.45)$$

der einer Kapazität heißt

$$X_{C} = \frac{1}{j\omega C} \quad . \tag{2.46}$$

Die Zahl \underline{Z} läßt sich in der komplexen Ebene als Vektor darstellen (Bild 2.36), dessen Spiegelung an der reellen Achse \underline{Z} entspricht. Demnach ist infolge der Geometrie (Pythagoras)

$$|\underline{Z}| = \sqrt{a^2 + b^2} .$$
 (2.47)

Für den Winkel φ , der den geometrischen Abstand des Vektors <u>Z</u> von der Abszisse angibt, gilt

Bild 2.36 Definition der komplexen und konjugiert komplexen Zahl in der Gaußschen Zahlenebene

Läßt man den Vektor (Zeiger) \underline{Z} um den Ursprung der Gaußschen Zahlenebene rotieren, erhält man eine trigometrische Funktion für \underline{Z} , die bei Regelkreisen mit sinusförmiger Eingangsgröße von Bedeutung ist (Bild 2.37).

Bild 2.37 Definition der komplexen Zahl als Betrag und Phasenwinkel

Es wird dann

 $\underline{Z} = |\underline{Z}| \cdot (\cos \varphi + j \sin \varphi)$.

Mit der Eulerschen Gleichung ergibt sich dann die Expenentialform der komplexen Zahl,

 $e^{\pm j\varphi} = \cos\varphi \pm j\sin\varphi$

und damit

$$\underline{Z} = |\underline{Z}| \cdot e^{j\varphi} , \qquad (2.49)$$

bzw. als Sinusschwingung $\stackrel{\Lambda}{x}_{\sim}$ · sin ωt

$$\underline{\mathbf{x}}_{\mathbf{e}} = \widehat{\mathbf{x}}_{\mathbf{e}} \cdot \mathbf{e}^{\mathsf{j}\omega\mathsf{t}} . \tag{2.50}$$

Mit den Gleichungen (2.44) und (2.49) läßt sich der geometrische Ort eines komplexen Zeigers genau beschreiben. Die graphische Darstellung der komplexen Funktion von Regelkreisgliedern wird im Abschnitt 5.3 ausführlich behandelt.

Hier einige Regeln für den Zusammenhang zwischen reellen und komplexen Funktionen (Tabelle 2.1).

Nr.	f(t)	^F (jω)
1	$\sum_{i=1}^{n} f_{i(t)}$	$\sum_{i=1}^{n} F_{i(j\omega)}$
2	k.f _(t)	k•F(jω)
3	$\frac{d^{n}f(t)}{dt^{n}}$	(jw) ⁿ ·F _(jw)
4	$\int_{0}^{t} f(t) \cdot dt$	<mark>1</mark> jω ^F (jω)
5	±jωt e	coswt <u>+</u> j·sinwt
6	sinwt coswt	$\frac{e^{j\omega t}-e^{-j\omega t}}{2j} \frac{e^{j\omega t}+e^{-j\omega t}}{2}$
	Beziehungen für elektrisch	ne Netzwerke
7	R·i(t)	R·I _(jw)
8	L. $\frac{di(t)}{dt}$	jωL·I _(jω)
9	$\frac{1}{C} \cdot \int_{0}^{t} i_{(t)} \cdot dt$	$\frac{1}{j\omega C} I_{(i\omega)} = -j\frac{1}{\omega C} I_{(j\omega)}$

Tabelle 2.1 Korrespondenztabelle komplexer Funktionen

Aufgabe 2.6

Es liegt ein passives Netzwerk mit zwei unabhängigen aber gleich großen Energiespeichern C vor. (Bild 2.38)

gegeben: $U_{e(t)} = U_{e} \cdot \delta_{o(t)}$; R und C

gesucht: Die komplexe Form der Ausgangsspannung u_a (Sprungantwort).

Bild 2.38 Elektrisches Netzwerk aus R und C

Aufgabe 2.7

Ein GS-Motor ist mit einer rotierenden Masse gekoppelt, die beschleunigt werden soll (Bild 2.39). Die Ankerkreisgleichung ergibt sich aus Bild 2.12.

gegeben: U_{A} , E, R_{A} , L_{A} , I, Ø

gesucht: Die komplexe Gleichung der Drehzahl n als Funktion der Ankerspannung (Wirkungsgrad n = 1, keine Verluste).

Aufgabe 2.8

Es soll aus der komplexen Funktion <u>F</u> der zugehörige Phasenwinkel φ ermittelt werden.

gegeben: $\underline{F} = \frac{1 + j\omega T 1}{1 + j(\omega T_2 - \omega^3 T_3^3)}$ gesucht: φ und φ für $T_1 = T_2 = T_3 = T$

2.2.4 Gleichdimensionelle Laplace-Transformation

Oft ergeben sich bei der Berechnung des Zeitverhaltens (Sprungantwort) und Frequenzverhaltens (Frequenzgang) von Regelkreisen Schwierigkeiten bei der Lösung von Differentialgleichungen höherer Ordnung. Auch die Behandlung von Operationsverstärkerschaltungen zur Nachbildung bestimmter Regelkreisglieder ist ohne die Laplace-Transformation wenig sinnvoll.

Die Anwendung der Laplace-Transformation ist daher immer dann angebracht, wenn eine Regelung (oder jedes andere Netzwerk) Ausgleichsvorgänge enthält; wenn also die Regelung von einem eingeschwungenen Zustand in einen anderen eingeschwungenen Zustand übergeht.

Das Laplace-Integral ist in den meisten Literaturstellen /8/, /9/ und /10/ angegeben als

$$F_{(s)} = \int_{0}^{\infty} f_{(t)} \cdot e^{-st} \cdot dt$$
 (2.51)

Darin ist s eine komplexe Zahl der Größe

 $s = \sigma + j\omega$

mit dem Realteil σ . Eingesetzt in Gleichung (2.51) läßt sich dann erkennen, daß das Integral wegen des Realteils σ konvergiert.

Es ist nämlich

$$F_{(\sigma + j\omega)} = \int_{0}^{\infty} f_{(t)} \cdot e^{-j\omega t} \cdot e^{-\sigma t} \cdot dt ,$$

mit

$$\lim_{t \to \infty} (f_{(t)} \cdot e^{-\sigma t}) = 0.$$

Diese Konvergenzbedingung ist für alle technisch realisierbaren Funktionen f_(t) erfüllt, wenn entsprechend der Integrationsgrenzen gilt:

$$f_{(t)} = 0 \quad f$$
 $u < 0$.

Damit wird Gleichung (2.51) zu einer Formel für die Transformation vom Zeitbereich in den s-Bereich (in diesem Buch Bildbereich genannt).

Die Rücktransformation erfolgt mit der Inversion der Gleichung (2.51). Sie lautet

$$f_{(t)} = \frac{1}{2\pi j} \int_{\sigma-j\infty}^{\sigma+j\infty} F_{(s)} \cdot e^{st} \cdot ds . \qquad (2.52)$$

Es zeigt sich aber, daß ein um p erweitertes Laplace-Integral entscheidende Vorteile bringt, ohne seine Existenzberechtigung zu verlieren. Im Anschluß an die Arbeiten von O. Heaviside /11/ haben Carson /12/ und vor allem K.W. Wagner /13/ folgendes Laplace-Integral definiert.

$$F_{(p)} = F = p \cdot \int_{0}^{\infty} f(t) \cdot e^{-pt} \cdot dt$$
, (2.53)

mit $p = \sigma + j\omega$.

Auch diese Gleichung konvergiert für t $\rightarrow \infty$ nach Null, denn

$$\mathbf{F}_{(\sigma + j\omega)} = (\sigma + j\omega) \cdot \int_{0}^{\infty} f(t) \cdot e^{-j\omega t} \cdot e^{-\sigma t} \cdot dt ,$$

konvergiert mit

$$\lim_{t \to \infty} (\sigma \cdot f(t) \cdot e^{-\sigma t}) = 0$$

und

$$\lim_{t \to \infty} (j\omega \cdot f(t) \cdot e^{-\sigma t}) = 0.$$

Gleichung (2.53) ist damit eine Formel für die sog. "Gleichdimensionelle Laplace-Transformation". Ihre Umkehrung für die Rücktransformation lautet

$$f(t) = \frac{1}{2\pi j} \cdot \int_{\sigma-j\omega}^{\sigma+j\omega} \frac{F(p) \cdot e^{pt}}{p} dp . \qquad (2.54)$$

Vorteile der Gleichdimensionellen Laplace-Transformation sind: 1. Bildfunktion und Zeitfunktion haben die gleiche Dimension. 2. Die Laplace-Transformierte entspricht dem Frequenzgang. 3. Eine Laplace-Transformierte Konstante verändert sich nicht. 4. Die Laplace-Transformation der Funktion $\delta_{o(t)}$ ergibt 1.

Lineare Differentialgleichungen werden mit der Laplace-Transformation auf rein algebraische Gleichungen zurückgeführt und lassen sich dann elementar lösen.

Es sei eine lineare Differentialgleichung 1. Ordnung gegeben.

$$a_0 \cdot x + a_1 \frac{dx}{dt} = s_{(t)}$$

mit der Störfunktion $s_{(t)}$ und der Anfangsbedingung $x_{(o)} = 0$.

Multipliziert man die Differentialgleichung mit

$$p \cdot \int_{0}^{\infty} e^{-pt} \cdot dt$$
,

erhält man

$$a_{o} \cdot \int_{o}^{\infty} x_{(t)} \cdot e^{-pt} \cdot dt + a_{1} \int_{o}^{\infty} \frac{dx_{(t)}}{dt} \cdot e^{-pt} \cdot dt = p \int_{o}^{\infty} s_{(t)} \cdot e^{-pt} \cdot dt.$$

Darin ist

$$\overset{o}{x} = p \int_{0}^{\infty} x_{(t)} \cdot e^{-pt} \cdot dt$$

die Gleichdimensionelle Laplace-Transformierte $\stackrel{o}{x} = x_{(p)}$, (x: sprich x Bild), d.h. es wird

$$a_{0} \cdot \hat{x} + a_{1} \cdot \frac{d\hat{x}}{dt} = \hat{s} . \qquad (2.55)$$

In Gleichung (2.55) ist das Differential von x zu berechnen.

$$\frac{dx}{dt} = p \int_{0}^{\infty} e^{-pt} \cdot \frac{dx(t)}{dt} \cdot dt = p \int_{0}^{\infty} e^{-pt} \cdot dx_{(t)} .$$

Mit

$$u = p \cdot e^{-pt}$$
, $dv = dx_{(t)}$

folgt

$$du = -p^2 \cdot e^{-pt}$$
, $v = x_{(t)}$.

Entsprechend der Integrationsregel

$$\int_{O}^{\infty} u \cdot dv = u \cdot v - \int_{O}^{\infty} v \cdot du$$

ergibt sich

$$\frac{d\tilde{x}}{dt} = p \cdot e^{-pt} \cdot x_{(t)} \int_{0}^{\infty} + p^{2} \cdot \int_{0}^{\infty} x_{(t)} \cdot e^{-pt} \cdot dt ,$$
$$= 0 - p \cdot \frac{x_{(0)}}{\frac{t}{4} = 0} + p \cdot \tilde{x}$$
laut Anfangsbedingung

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}\mathbf{t}} = \mathbf{p} \cdot \mathbf{\ddot{x}} . \tag{2.56}$$

Eingesetzt in Gleichung (2.55) erhält man die rein algebraische Gleichung

$$a_0 \cdot x + a_1 \cdot p \cdot x = s$$

die sich elementar nach $\stackrel{\mathrm{O}}{\mathbf{x}}$ auflösen läßt, so daß

$$a_{x}^{o} = \frac{a_{o}^{o}}{a_{o}^{o} + a_{1}^{o} \cdot p}$$

Damit ist die gegebene Differentialgleichung in die Bildebene transformiert und auf diese Weise algebraisiert worden. Im Zuge der Transformation ergab sich die wichtige Gleichung (2.56). Sie ist Teil des Differentialsatzes der Gleichdimensionellen Laplace-Transformation und kennzeichnet den Übergang vom Zeit- in den Bildbereich. Man nennt nun folgerichtig p den Laplace-Operator, der dann heißt:

$$p = \frac{d}{dt} .$$
 (2.57)

Komplexe Funktionen sind für beliebige $p = \sigma + j\omega$ definiert. Es gibt jedoch kein technisch realisierbares physikalisches System mit komplexer Frequenz ω . Daher ist die Einschränkung zulässig, daß $p = j\omega$ gesetzt wird, d.h. für reelle Werte von ω gilt. Folglich heißt der Laplace-Operator für komplexe Funktionen:

$$p = j\omega \qquad (2.58)$$

Die Transformation einer komplexen oder in differentieller Form vorliegenden Gleichung besteht nun nur noch im Einsetzen des Laplace-Operators p. Danach ist die Gleichung elementar zu lösen und muß nun rücktransformiert werden (Bild 2.40). Dazu verwendet man die Inversion (Gleichung 2.54) oder aus den Regeln der Gleichdimensionellen Laplace-Transformation abgeleitete Korrespondenzen, die in Tabelle 2.2 bzw. 2.3 zusammengefaßt sind (vergleiche dazu /9/ mit /13/.

Bild 2.40 Übersicht zum Rechengang der Laplace-Transformation

Aufgabe 2.9

Die lineare Differentialgleichung 1. Ordnung

$$T \cdot \frac{dxa}{dt} + x_a = x_e(t)$$

enthält ein Störglied x $_{\rm e}$, das der Einheitssprungfunktion $\delta_{\rm O(t)}$ entspricht, also

$$x_{e_{(t)}} = x_e \cdot \delta_{o(t)}$$

gegeben: x_{e(t)}, T

gesucht: Die Übertragungsfunktion bzw. Sprungantwort $x_{a(t)}$.

Aufgabe 2.10

Ein Rüttler (Bild 2.41) besitzt zur Schwingungsanregung ein Motorpaar mit Unwucht. Die Differentialgleichung des Systems ist die eines gedämpften Feder-Masse-Schwingers mit sinusförmiger Anregung.

Bild 2.41 Schema eines Rüttlers mit Unwucht

Es gilt $m \cdot \frac{d^2 x_a}{dt^2} + r \frac{d x_a}{dt} + c_f \cdot x_a = c_f \cdot x_{e(t)} ,$ mit $x_{e(t)} = \stackrel{\Lambda}{x_e} \cdot \sin\omega t .$

gegeben: m, r, cf und x e(t)

gesucht: Der zeitliche Verlauf des Weges x_{a(t)}.

Aufgabe 2.11

Ein Operationsverstärker hat im Eingang und der Gegenkopplung je einen Energiespeicher (Bild 2.42).

Bild 2.42 Operationsverstärker-Schaltung mit zwei RC-Netzwerken

gegeben: R_1 , R_2 , C_1 , C_2 und $U_{e(t)} = U_e \cdot \delta_{O(t)} = 1 V \cdot \delta_{O(t)}$

gesucht: Die Zeitgleichung der Ausgangsspannung $u_{a(t)}$ für $T_1 = T_2 = 1s$ und $V_p = R_2/R_1 = 10$.

Aufgabe 2.12

Ein elektrisches Netzwerk (Bild 2.43) wird zur Zeit t = O an Gleichspannung gelegt. Zur Zeit t = t_1 wird die Spannung abgeschaltet und das Netzwerk über einen zweiten Schalter kurzgeschlossen.

- gegeben: R₁, R₂, L, U
- gesucht: Der Verlauf des Stromes i beim Ein- und Ausschalten der Spannung U.

Bild 2.43 Elektrischer Gleichstromkreis mit einer RL-Reihenschaltung

Weitere Hilfsmittel zur Rücktransformation von Bildfunktionen in Originalfunktionen sind der Residuensatz und der Entwicklungssatz von Heaviside (siehe /3/, /26/).

Residuensatz

Der Residuensatz ist anwendbar für gebrochene rationale Funktionen. Ist eine Funktion $F_{(p)} = \frac{R_{(p)}}{Q_{(p)}}$ der komplexen Veränderlichen $p = \sigma + j\omega$ in einem abgeschlossenen Gebiet der Gauß'schen Zahlenebene mit der Randkurve I_{o} in p analytisch mit Ausnahme endlich vieler eingeschlossener singulärer Punkte, so ist das Linienintegral entlang I_{o} gleich der Summe der Residuen p_{i} (Bild 2.44).

Es gilt

$$\oint_{I_{O}} F_{(p)} dp = 2\pi j \sum_{i=1}^{n} \operatorname{Res} [F_{(p)}]_{p = pi} .$$
(2.59)

Bild 2.44 Singuläre Punkte eines abgeschlossenen Gebiets in der komplexen Ebene

Die Rücktransformation ergibt sich zu (siehe Tabelle 2.2 Nr.9)

$$f_{(t)} = \sum_{i=1}^{n} \left[\frac{\frac{R_{(p)} \cdot e^{pt}}{dQ_{(p)} \cdot p}}{\frac{dQ_{(p)} \cdot p}{dp}} \right]_{p = pi}$$
(2.60)

Damit reduziert sich die Rücktransformation alf das Auffinden der Pole (Nullstellen) der Funktion $p \cdot Q_{(p)}$, d.h.auf die Bestimmung der Residuen von $\frac{F(p)}{p}$. Für die meisten Anwendungen sind die Pole 1.Ordnung. Dann ist /3/

$$\operatorname{Res}\left[\frac{F(\mathbf{p})}{\mathbf{p}}\right]_{\mathbf{p}} = \operatorname{pi} = \frac{\frac{R(\mathbf{pi})}{dQ(\mathbf{pi}) \cdot \mathbf{pi}}}{\frac{dQ(\mathbf{pi}) \cdot \mathbf{pi}}{dp}} = \operatorname{ci} \qquad (2.61)$$

Für relle Pole besteht $f_{(t)}$ also aus einer Konstanten und einer Summe von e-Funktionen (aperiodischer Fall). Sind die Pole komplex, enthält $f_{(t)}$ eine sinus-Funktion (periodischer Fall).

Entwicklungssatz von Heaviside

Eine Bildfunktion $F_{(p)} = G_{(p)}/H_{(p)}$ erfülle folgende Bedingung:

- a) G_(p) ist in allen Polen pi analytisch.
- b) Alle Nullstellen von $H_{(p)}$ sind verschieden und es sei $H_{(o)}$ keine Nullstelle von $H_{(p)}$.
- c) Der Grad der Potenz von $H_{(p)}$ ist immer größer als der von $G_{(p)}$ $(G_{(p)}/H_{(p)})$ ist also eine gebrochene rationale Funktion.

Nr.	Bildfunktion F _(p)	Originalfunktion $f_{(t)}$	
	Differentiationssatz		
	p. F (b) _ E (0)	$\frac{df_{(t)}}{dt}$	
1	$p^{n} \cdot F_{(p)} - \sum_{i=1}^{n-1} p^{n-i} \cdot \frac{d^{i}F_{(o)}}{dt^{i}}$	$rac{{ m d}^{n}{ m f}_{({ m t})}}{{ m d}{ m t}^{n}} { m Mit f}_{({ m o})} { m und seinen} \ { m Ableitungen ungleich} \ { m Null}$	
	p ⁿ ·F _(p)	$rac{{ m d}^{n}{ m f}_{(t)}}{{ m d}t}$ mit f $_{(o)}$ und seinen dt Ableitungen gleich Null	
	Integratio	onssatz	
2	$\frac{1}{p} \cdot \mathbf{F}(p)$	$\int_{0}^{t} f_{(\tau)} \cdot d\tau$	
2	$\frac{1}{p^n} \cdot F_{(p)}$	t t t $\int \int f_{(\tau)} \cdot d\tau^n$ n-mal	
	Ähnlichke	itssatz	
3	F (<u>p</u>)	f _(at)	
	Verschiebungssatz		
	e ^{-bp} ·F _(p)	f _(t-b)	
4	$e^{-\frac{b}{a}p}$. $F(p)$	f _(at-b)	
	Grenzwertsatz		
5	limF p → o(p)	$\lim_{t \to \infty} (t)$	
	$\lim_{p \to \infty} (p)$	$\lim_{t \to 0} (t)$	
	Dämpfungssatz		
6	$\frac{\mathbf{p}}{\mathbf{p}+\alpha}\mathbf{F}(\mathbf{p}+\alpha)$	$e^{-\alpha t} \cdot f_{(t)}$	

Tabelle 2.2 Rechenregeln der gleichdimensionellen Laplace-Transformation

Bildfunktion F_(p) Originalfunktion f(t) Nr. Faltungssatz $\frac{F_{1(p)} \cdot F_{2(p)}}{p}$ $\int_{-}^{t} f_{1(\tau)} \cdot f_{2(t-\tau)} \cdot d\tau$ 7 Satz von Heaviside $\frac{G_{(o)}}{H_{(o)}} + \sum_{i=1}^{n} \frac{G_{(p_i)} \cdot e^{p_i t}}{p_i \cdot H'(p_i)} \text{ für } t > 0$ $F_{(p)} = \frac{G_{(p)}}{H_{(p)}}$ 8 mit H'(p_i) = $\left[\frac{dH(p)}{dp}\right]_{p=p_i}$ Partialbruchzerlegung und Residuensatz $F_{(p)} = \frac{R_{(p)}}{Q_{(p)}} = \sum_{i=1}^{n} \frac{p \cdot c_i}{p \cdot p_i} = \frac{p \cdot c_1}{p \cdot p_1} + \frac{p \cdot c_2}{p \cdot p_2} + \dots + \frac{p \cdot c_n}{p \cdot p_n}$ für einfache Pole bzw. Nullstellen von p·Q(p) erhält man das jeweilige Residuum c, (Koeffizient des jeweiligen Partial-bruches) mit $\sum_{i=1}^{n} c_{i} \cdot e^{p_{i}t}$ $c_{i} = \frac{R(p_{i})}{\frac{d}{dp} [p \cdot Q(p)]} p_{i}$ für t>0 9 für mehrfache Pole bzw. Nullstellen von p·Q_(p) erhält man das jeweilige Residuum ci (Koeffizient des jeweiligen Partialbruches) mit $\sum_{i=1}^{n} c_i \cdot e^{p_i t} \cdot \frac{t^{k-1}}{(k-1)!}$ $c_{i} = \frac{1}{(n-k)!} \cdot \frac{d^{n-k}}{dp^{n-k}} \left[\frac{F_{(p)} \cdot (p-p_{i})^{n}}{p} \right]_{p}$ für t>0 darin ist Vielfachheit der Nullstelle n: Ordnungszahl des jeweiligen k: Partialbruches

Tabelle 2.2 (Forts.)

Dann gilt der Heaviside'sche Entwicklungssatz der Rücktransformation für t > 0.

$$f_{(t)} = \frac{G_{(0)}}{H_{(0)}} + \sum_{i=1}^{n} \frac{G_{(p_i)} \cdot e^{p_i \cdot t}}{p_i H'_{(p_i)}} . \qquad (2.62)$$

Beispiel

Es soll die Funktion

$$F_{(p)} = \frac{G_{(p)}}{H_{(p)}} = \frac{p^2 + \alpha p}{p^2 + \omega^2}$$

mit Gleichung (2.62) in den Zeitbereich rücktransformiert werden.

Es wird

$$G_{(o)} = 0$$

$$H_{(o)} = \omega^{2}$$

$$H_{(o)} = 2p$$
.

$$G_{(o)} = 0$$

$$\frac{G_{(o)}}{H_{(o)}} = 0$$

Die Nullstellen der Nennerfunktion H_(p) sind

$$p_{1,2} = \pm j\omega$$

Damit folgt

$$H_{(p1)} = +2j\omega$$

 $H_{(p2)} = -2j\omega$

und

 $G_{(p1)} = -\omega^2 + j\alpha\omega$ $G_{(p2)} = -\omega^2 - j\alpha\omega$

Mit Gleichung (2.62) lautet dann die Originalfunktion

$$f_{(t)} = \frac{-\omega^2 + j\alpha\omega}{j\omega \cdot 2j\omega} \cdot e^{j\omega t} + \frac{-\omega^2 - j\alpha\omega}{-j\omega(-2j\omega)} \cdot e^{-j\omega t}$$
$$= \frac{\omega - j\alpha}{2\omega} \cdot e^{j\omega t} + \frac{\omega + j\alpha}{2\omega} \cdot e^{-j\omega t} .$$

Da $e^{\pm j\omega t} = \cos \omega t \pm j \sin \omega t$ ist, ergibt sich schließlich

$$f_{(t)} = \cos\omega t + \frac{\alpha}{\omega} \cdot \sin\omega t$$
 (Vergleiche Korrespondenz Nr. 21
Tabelle 2.3)

Nr.	Bildfunktion F _(p)	Originalfunktion $f_{(t)}$
1	1 k	$\delta_{o(t)} \underbrace{\frac{1}{t=0}}_{t} k$
	1	$\delta_{o(t)} = \delta_{o(t-t_1)} \qquad \delta_{o(t-t_1)} = \delta_{o(t-t_2)}$
2	$1 - e^{-pt} = e^{-pt} - e^{-pt} e^{-pt} = e^{-pt} e^{-pt} e^{-pt} = e^{-pt} $	$\begin{bmatrix} 1 \\ t=0 \\ t=0 \\ t=1 \\ t=0 $
3	$\frac{1}{p^n}$	$\frac{t^n}{n!}$
4	F _(p) ·e ^{-bp}	$f_{(t-b)}$ mit $f_{(t-b)} = 0$ für $t-b < 0$
5	F _(p/a) $\alpha \cdot F_{(p)}$	f _(at) $\alpha \cdot f_{(t)}$
6	$\frac{p}{p+\alpha}$	e ⁺ at
7	$F_{(p+\alpha)} \cdot \frac{p}{p+\alpha}$	$f_{(t)} \cdot e^{-\alpha t}$
8	$\frac{\alpha}{p+\alpha}$	$1 - e^{-\alpha t}$
9	$\frac{\alpha\beta}{(p+\alpha)(p+\beta)}$	$1 - \frac{\beta e^{-\alpha t} - \alpha e^{-\beta t}}{\beta - \alpha}$
10	$\frac{\alpha\beta}{p(p+\beta)}$	$\alpha t - \frac{\alpha}{\beta}(1 - e^{-\beta t})$
11	$\frac{p + \alpha}{p + \beta}$	$\frac{\alpha}{\beta}$ + $(1 - \frac{\alpha}{\beta})e^{-\beta t}$
12	$\frac{p}{(p+\alpha)^n}$	$\frac{t^{n-1}}{(n-1)!} \cdot e^{-\alpha t}$
13	$\frac{p}{(p+\alpha)(p+\beta)}$	$\frac{e^{-\beta t} - e^{-\alpha t}}{\alpha - \beta}$
14	$\frac{p + \alpha}{(p + p_1)(p + p_2)}$	$\frac{\alpha}{p_1 p_2} + \frac{(1 - \alpha/p_1)e^{-p_1 t}}{p_2 - p_1} - \frac{(1 - \alpha/p_2)e^{-p_2 t}}{p_2 - p_1}$

Tabelle 2.3 Korrespondenzen der gleichdimensionellen Laplace-Transformation

Tabelle 2.3 (Forts.)

Nr.	Bildfunktion F _(p)	Originalfunktion $f_{(t)}$
15	$\frac{p(p+\alpha)}{(p+p_1)(p+p_2)}$	$\frac{(p_2 - \alpha)e^{-p_2t} - (p_1 - \alpha)e^{-p_1t}}{p_2 - p_1}$
16	$\frac{1}{(p+p_1)(p+p_2)}$	$\frac{P_2(1-e^{-P_1t}) - P_1(1-e^{-P_2t})}{P_1P_2(P_2-P_1)}$
17	$\frac{(p + \alpha_1) (p + \alpha_2)}{(p + p_1) (p + p_2)}$	$\frac{\alpha_{1}\alpha_{2}}{p_{1}p_{2}} + \frac{\alpha_{1} + \alpha_{2} - p_{1} - \alpha_{1}\alpha_{2}/p_{1}}{p_{2} - p_{1}} \cdot e^{-p_{1}t}$
		$-\frac{\alpha_{1}+\alpha_{2}-p_{2}-\alpha_{1}\alpha_{2}/p_{2}}{p_{2}-p_{1}}\cdot e^{-p_{2}t}$
18	$\frac{\omega p}{p^2 + \omega^2} \int \frac{\omega p}{p^2 - \omega^2}$	sin wt sh wt
19	$\frac{p^2}{p^2 + \omega^2} \left \begin{array}{c} \frac{p^2}{p^2 - \omega^2} \right $	cos wt ch wt
20	$\frac{\alpha^2}{p^2 + \alpha^2}$	1 - cosαt
21	$\frac{p^2 + \alpha p}{p^2 + \omega^2}$	$\cos \omega t + \frac{\alpha}{\omega} \sin \omega t$
22	$\frac{(p+\alpha)(p+\beta)p}{\alpha(p^2+\omega^2)}$	$(1 + \frac{\beta}{\alpha})\cos \omega t + (\frac{\beta}{\omega} - \frac{\omega}{\alpha})\sin \omega t$
23	$\frac{\omega_o^2}{p^2 + 2\alpha p + \omega_o^2}$	$1 - e^{-\alpha t} \cdot (\cos \omega_e t + \frac{\alpha}{\omega_e} \sin \omega_e t) \qquad $
24	$\frac{p}{p^2 + 2\alpha p + \omega_0^2}$	$\frac{e^{-\alpha t}}{\omega_{e}} \cdot \sin \omega_{e} t \qquad $

 $\omega_{e} = \omega_{o}^{2} - \alpha^{2}; \quad w = \alpha^{2} - \omega_{o}^{2}$ $P_{1,2} = -\alpha + w \qquad \text{bei Korrespondenz Nr. 23, 24 und 25}$

Tabelle 2.3 (Forts.)

Nr.	Bildfunktion F(p)	Original funktion $f(t)$
25	$\frac{p^2}{p^2 + 2\alpha p + \omega_0^2}$	$e^{-\alpha t} \cdot (\cos \omega_{e} t - \frac{\alpha}{\omega_{e}} \sin \omega_{e} t \qquad $
26		$\frac{e^{-\alpha t}}{\omega_{e}} (1 - \frac{2\alpha^{2}}{\omega_{o}^{2}}) \sin \omega_{e} t$ $+ \frac{2\alpha}{\omega_{e}} (1 - e^{-\alpha t} \cdot \cos \omega_{e} t)$ $f \ddot{u} r$ $\omega_{o} > \alpha$
27	$\frac{p(p+\alpha)\sin\varphi_{o}+\alpha p\cos\varphi_{o}}{(p+\alpha)^{2}+\omega^{2}}$	$e^{-\alpha t} \cdot \sin(\omega t + \varphi_0)$
28	$\frac{\alpha p^2}{(p+\alpha)(p^2+\omega^2)}$	$\frac{\alpha}{\alpha^2 + \omega^2} (\alpha \cosh t + \omega \sin \omega t - \alpha e^{-\alpha t})$
29	$\frac{\omega^3 p}{(p^2 + \omega^2)^2}$	$\frac{1}{2}(\sin \omega t - \omega t \cdot \cos \omega t)$
30	$\frac{p^2}{(p^2 + n^2)(p^2 + \omega^2)}$	$\frac{\cos \omega t - \cos nt}{n^2 - \omega^2}$
31	$\frac{p}{(p+p_1)(p+p_2)}$	$\frac{e^{-p_1t} - e^{-p_2t}}{p_2 - p_1}$
32	$\frac{\omega_{p}}{p^{2}+\omega^{2}}\cdot\frac{\omega_{o}^{2}}{p^{2}+2\alpha p+\omega_{o}^{2}}$	$-\frac{2\alpha\omega\omega_{o}^{2}}{(\omega_{o}^{2}-\omega^{2})^{2}+4\alpha^{2}\omega^{2}}\cos(\omega t+\varphi_{o})$
		$+ \frac{\omega_{o}^{2}(\omega_{o}^{2}-\omega^{2})}{(\omega_{o}^{2}-\omega^{2})^{2}+4\alpha^{2}\omega^{2}}\sin(\omega t + \varphi_{o})$ $+ \frac{e^{-dt}\omega_{o}^{2}}{2\omega_{e}} \cdot$ $\cdot \left[\frac{\alpha\cos(\omega_{e}t + \varphi_{o}) + (\omega - \omega_{e})\sin(\omega_{e}t + \varphi_{o})}{(\omega_{e}^{2}-2\omega_{e}) + (\omega^{2}-2\omega_{e})} + \frac{(\omega_{e}^{2}-\omega_{e})^{2}}{(\omega_{e}^{2}-\omega_{e})^{2}} \right]$
		$-\frac{\alpha\cos(\omega_{e}t-\varphi_{o})-(\omega+\omega_{e})\sin(\omega_{e}t-\varphi_{o})}{\omega_{o}^{2}+2\omega\omega_{e}+\omega^{2}}\right]$

Tabelle 2.3 (Forts.)

Nr.	Bildfunktion F _(p)	Originalfunktion f (t)
zu 32		mit $\alpha = \frac{R}{2L}$ Dämpfungsziffer $\omega_0^2 = \frac{1}{LC}$ Kennkreisfrequenz
33	$\frac{p(p^2 - \alpha^2)}{(p^2 + \alpha^2)^2}$	für $\omega_0 > \alpha$ t·cos(α t)
34	$\frac{2\alpha p^2}{(p^2 + \alpha^2)^2}$	t·sin(at)
35	$\frac{p^2+2}{p^2+4}$	cos ² t
36	$\frac{2}{p^2 + 4}$	sin ² t
37	$\frac{2\alpha\beta p^2}{N}$	$\sin(\alpha t) \cdot \sin(\beta t)$
38	$\frac{p^2(p^2+\alpha^2+\beta^2)}{N}$	cos (αt) · cos (βt)
39	$\frac{\alpha p (p^2 + \alpha^2 - \beta^2)}{N}$	$\sin(\alpha t) \cdot \cos(\beta t)$
40	$\frac{p}{\sqrt{p^2 + \alpha^2}} \cos{(\varphi + \arctan{\frac{\alpha}{p}})}$	$\cos (\alpha t + \varphi)$
41	$\frac{p}{\sqrt{p^2 + \alpha^2}} \sin{(\varphi + \arctan{g_p^2})}$	$\sin(\alpha t + \varphi)$

 $N = (p^{2} + \alpha^{2} + \beta^{2})^{2} - 4\alpha^{2}\beta^{2}$

Nr.	Bildfunktion F(t)	Originalfunktion f _(t)
42	$\frac{1}{p^2 + n^2}$	$\frac{1}{n^2}(1-\cos nt)$
43	$\frac{\omega^2 p^2}{(p^2 + \omega^2)^2}$	$-\frac{1}{2}\cdot t\cdot \sin \omega t$
44	$p \cdot \operatorname{arctg}_{p}^{\alpha}$	$\frac{\sin \alpha t}{t}$
45	$p \cdot \operatorname{arctg} \frac{\alpha}{p + \beta}$	$\frac{1}{t} \cdot e^{-\beta t} \cdot e^{-\beta t}$
46	$p \cdot \log \frac{\sqrt{p^2 + \alpha^2}}{p}$	$\frac{1-\cos \alpha t}{t}$
47	$\frac{p(p+\beta)\cos + \alpha p \sin \varphi}{(p+\beta)^2 + \alpha^2}$	$e^{-\beta t} \cdot \cos(\alpha t + \varphi)$
48	$\frac{\alpha \mathbf{p} \cdot \cos \ \pm \ \mathbf{p} (\mathbf{p} + \beta) \sin \varphi}{\left(\mathbf{p} + \beta\right)^2 + \alpha^2}$	$-\beta t$ e $\cdot \sin(\alpha t + \varphi)$
49	$\frac{2p^{2}(p^{2} - 3\alpha^{2})}{(p^{2} + \alpha^{2})^{3}}$	$t^2 \cdot \cos \alpha t$
50	$\frac{2\alpha p (3p^2 - \alpha^2)}{(p^2 + \alpha^2)^3}$	t ² ·cos αt
51	\sqrt{p}	$\frac{1}{\sqrt{\pi t}}$

Tabelle 2.3 (Forts.)

Tabelle 2.3 (Forts.)

Nr.	Bildfunktion F(t)	Originalfunktion $f_{(t)}$
52	$\frac{1}{\sqrt{p}}$	$2\sqrt{\frac{t}{\pi}}$
53	$\frac{p\sqrt{\pi}}{\sqrt{p + \alpha}}$	$\frac{e^{-\alpha t}}{\sqrt{t}}$
54	p p∓loga	a+t a-
55	$\frac{1}{p - \alpha}$	$\frac{1}{\alpha}(e^{\alpha t} - 1)$
56	p·log <u>p-a</u> p-b	e ^{bt} <u>e</u> at t
57	$\frac{p}{\sqrt{p^2 + \alpha^2}}$	J Besselfunktion ο(αt) 1. Art, 1. Ordnung
58	$\frac{p}{\sqrt{p^2 + \alpha^2}} \left[\frac{\sqrt{p^2 + \alpha^2} - \sqrt{\alpha}}{\alpha} \right]$	$ \begin{bmatrix} - \\ p \\ J_n(\alpha t) \end{bmatrix} $ Besselfunktion 1. Art, n. Ordnung mit Re(n) > -1
59	tgh (p $\frac{T}{4}$)	1 7 27 -1 t
60	$1 - \frac{1}{\operatorname{ch}(p\frac{T}{4})}$	-1 7 27 t t t
61	$\frac{1}{2 \cdot ch (p\frac{T}{4})}$	1 7 27 t
62	$\frac{\operatorname{sh}(p\frac{T}{8})}{\operatorname{ch}(p\frac{T}{4})}$	
63	cth (pT)	5 3 1 0 7 t

Tabelle 2.3 (Forts.)

Nr.	Bildfunktion F(t)	Originalfunktion $f_{(t)}$
64	1 sh(pT)	6 4 2 0 27 t
65	$\frac{1-e^{-pt_1}}{p} \frac{e^{-pt_1}-e^{-pt_2}}{p}$	$\begin{array}{c c} t_1 \\ \hline t_2 \\ t_2 \\ \hline t_1 \\ \hline t_2 \\ t_1 \\ t_2 \\ t_2 \\ t_1 \\ \hline t_2 \\ t_1 \\ \\ t_2 \\ t_1 \\ t_1 \\ t_2 \\ t_1 \\ t_1 \\ t_1 \\ t_1 \\ t_2 \\ t_1 \\$
66	$\frac{w}{2t_1t_2} \cdot \frac{1-e^{-pt_1}}{p^2} +$	w
	$\frac{-p\frac{3}{2}t_1}{t_2} - p(t_2 + \frac{t_1}{2})$ $\frac{w}{t_2} \cdot \frac{e}{p} + \frac{e}{p}$	W-m m $t_3=t_1+t_2$ t_1 t_2 t_3 t
	$w(e^{-pt_2} - e^{-pt_3}) -$	$\frac{w}{2t_1t_2} \cdot t^2 \cdot \left[\delta_0(t) - \delta_0(t - t_1)\right] +$
	$\frac{w}{2t_{1}t_{2}} \cdot \frac{e^{-p(z_{2}+t_{3})} - e^{-p2t_{3}}}{p^{2}} +$	$\frac{\mathbf{w}}{\mathbf{t}_2}(\mathbf{t}-\frac{\mathbf{t}_1}{2})\cdot \left[\delta_0(\mathbf{t}-\mathbf{t}_1)-\delta_0(\mathbf{t}-\mathbf{t}_2)\right]+$
	− ^{−pt} 3 w•e	$w \cdot \left[1 - \frac{(t-t_3)^2}{2t_1 t_2}\right] \cdot \left[\delta_o(t-t_2) - \delta_o(t-t_3)\right] +$
		w· ⁶ o(t-t ₃)

sh: Hyperbelsinus
ch: Hyperbelkosinus
tgh: Hyperbeltangens
ctg: Hyperbelkotangens

70
2.2.5 Frequenzgang

Zur Beurteilung des dynamischen Verhaltens von Regelkreisen mit periodischem Eingangssignal ist es notwendig, die Frequenzabhängigkeit zu kennen.

Dazu definiert man eine Funktion, die nur von der komplexen Größe p bzw. j ω abhängt, den sog. Frequenzgang. Er ist der Quotient aus Ausgangs- und Eingangsgröße.

$$F_{(j\omega)} = \frac{x_{a}_{(j\omega)}}{x_{e_{(j\omega)}}} bzw. F_{(p)} = \frac{x_{a}_{(p)}}{x_{e_{(p)}}}.$$
 (2.63)

Bei sinusförmiger Eingangsgröße ist $\mathbf{x}_{(j\omega)}$ auf den Scheitelwert $\overset{\Lambda}{\mathbf{x}}_{e}$ bezogen.

Damit ist $F_{(j\omega)}$ ein Zeiger, der in Abhängigkeit von ω die Gauß'sche Zahlenebene durchläuft. Diese Darstellungsform nennt man Ortskurve des Frequenzgangs (Bild 2.45). Der jeweilige Abstand des Zeigers von der reellen Achse ist durch den Phasenwinkel φ gekennzeichnet.

Bild 2.45 Darstellung einer Ortskurve

Ist der Frequenzgang, sein Betrag $|F_{(j\omega)}|$ und der Phasenwinkel φ der Regelkreisglieder einer Regelung bekannt, läßt sich leicht die Stabilität der Regelung beurteilen.

Dies geschieht u.a. mit dem Bode-Diagramm (siehe Abschnitt 5.2).

Beispiel

Der komplexe Frequenzgang und sein Betrag eines RC-Tiefpasses (Bild 2.46) errechnen sich so:

Es ist

$$F_{(p)} = \frac{\overset{u}{c}}{\overset{u}{u}}_{e} = \frac{1/pC}{R+1/pC} = \frac{\alpha}{p+\alpha}$$

0

 $\alpha = \frac{1}{RC} .$

Ľ

mit

Damit wird

$$F_{(j\omega)} = \frac{\alpha (\alpha - j\omega)}{\alpha^2 + \omega^2} = \frac{\alpha^2}{\alpha^2 + \omega^2} - j \frac{\alpha \omega}{\alpha^2 + \omega^2}.$$

~

Der Frequenzgangbetrag ist dann laut Gleichung (2.47)

$$F_{(j\omega)} \mid = \sqrt{\frac{\alpha^4 + \alpha^2 \omega^2}{(\alpha^2 + \omega^2)^2}} = \alpha \frac{1}{\sqrt{\alpha^2 + \omega^2}}.$$

Es ergeben sich folgende markante Werte.

Für

$$\begin{split} \omega &= 0 \rightarrow |F_{(j\omega)}| = 1 , \\ \omega &= \alpha = \frac{1}{T} \rightarrow |F_{(j\omega)}| = \frac{1}{\sqrt{2}} , \\ \omega &= \infty \rightarrow |F_{(j\omega)}| = 0 . \end{split}$$

Bild 2.46 RC-Netzwerk als Tiefpaß

Aufgabe 2.13

Es ist der Frequenzgangbetrag einer Operationsverstärkerschaltung zu bestimmen (Bild 2.47).

gegeben: R₁, R₂, R₃, C₁, C₂

gesucht: $|F_{(j\omega)}|$ und seine Darstellung in Abhängigkeit von ω .

Bild 2.47 Operationsverstärker-Schaltung mit zwei RC-Netzwerken

3. Regelkreisglieder und ihre Realisierungen

Es wurde bereits in Abschnitt 1.4 gezeigt, daß sich ein Regelkreis in die beiden Hauptblöcke Regler und Strecke einteilen läßt. Gelingt es, Regler und Strecke in einzelne rückwirkungsfreie Teilblöcke zu zerlegen, vereinfacht sich die Berechnung des Regelkreises erheblich und es lassen sich gezielte Parameteränderungen zur Verbesserung des Übertragungsverhaltens durchführen.

Es gibt einige Grundtypen von Regelkreisgliedern, die aus technologischen Gegebenheiten abgeleitet wurden. Auf diese lassen sich dann auch komplizierte Regelkreisglieder zurückführen. Die dazu erforderlichen Umformungs- und Zerlegungs-Regeln werden in Abschnitt 4 besprochen.

Zu jedem Regelkreisglied sind zur Veranschaulichung des technischen Bezuges einige Beispiele angegeben. Eine Zusammenfassung aller Grund-Regelkreisglieder bringt Tabelle 3.1.

Diese Tabelle wird ab Seite 476 wiederholt. Sie kann dort herausgetrennt und zu einem Faltblatt zusammengestellt werden.

3.1 P-Glied

Das dynamische Verhalten bzw. die Sprungantwort eines P-Gliedes ist bereits bekannt (Bild 2.1).

Die Ausgangsgröße x_a ist um die Verstärkung V größer, als die Eingangsgröße x_e , so daß für die Sprungantwort und die Übertragungsfunktion gilt

$$\mathbf{x}_{a} = \mathbf{V}_{p} \cdot \mathbf{x}_{e} . \tag{3.1}$$

Der zeitliche Verlauf der Größen x $_{\rm a}$ und x $_{\rm e}$ unterscheidet sich nur um den Faktor V $_{\rm n}.$

Das P-Glied wird im Blockschaltbild mit seiner Sprungantwort oder der Gleichung des Frequenzgangs dargestellt (Bild 3.1).

Regel- kreis- glied	Übertragungsfunk Gleichung	./Sprungantwort zeitl.Verlauf	Blockschaltbild	Frequenzgang		
Ρ	x _a =V _p ·x _e	,×a ,×e Vp•×e o	$\begin{array}{c} \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$F_{(p)} = \frac{\sum_{a=1}^{o} \frac{x_{a(p)}}{x_{e}}}{\sum_{e} \frac{x_{a(p)}}{x_{e}}} = v_{p}$ $F(j\omega) = v_{p}$		
/	$\mathbf{x}_{a} = \frac{1}{T_{I}} \int_{0}^{t} \mathbf{x}_{e} \cdot dt$ $\mathbf{x}_{a} = \mathbf{x}_{e} \cdot \frac{1}{pT_{I}}$	x _a x _e t _z	$\begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$F_{(p)} = \frac{1}{pT_{I}} = \frac{\alpha}{p}$ $F_{(j\omega)} = \frac{1}{j\omega T_{I}} = \frac{-j}{\omega T_{I}}$		
D	$x_{a} = T_{D} \frac{dx_{e}}{dt}$ $x_{a} = x_{e} \cdot pT_{D}$	xareal 0 Xaideal t	$\begin{array}{c} \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$F_{(p)} = pT_{D} = \frac{p}{\alpha}$ $F_{(j\omega)} = j\omega T_{D}$		
PI	$\mathbf{x}_{a} = \mathbf{V}_{p} \left(\mathbf{x}_{e} + \frac{1}{T_{N}} \int_{O}^{T} \mathbf{x}_{e} \cdot dt \right)$ $\mathbf{x}_{a} = \mathbf{V}_{p} \cdot \mathbf{x}_{e} \left(1 + \frac{1}{pT_{N}} \right)$	Vexe Xa Xe Xe Xe	$\begin{array}{c} \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$F_{(p)} = V_p (1 + \frac{1}{pT_N})$ $F_{(j\omega)} = V_p (1 + j \cdot \frac{-1}{\omega T_N})$		
PD	$x_{a} = V_{p}(x_{e} + T_{v} \cdot \frac{dx_{e}}{dt})$ $x_{a} = V_{p}(x_{e} + x_{e} \cdot pT_{v})$ t_{-}	Vpxe xe	$\begin{array}{c} & & \\ \hline \\ \times e \\ \hline \\ \\ \times e \\ \hline \\ \\ \\ \times e \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$F_{(p)} = V_{p}(1 + pT_{v})$ $F_{(j\omega)} = V_{p}(1 + j\omega T_{v})$		
PID	$\mathbf{x}_{a} = \mathbf{V}_{p} \mathbf{x}_{e} \left(1 + \frac{1}{T_{N}} \int_{O}^{O} dt + T_{V} \frac{d}{dt} \right)$ $\overset{O}{\mathbf{x}}_{a} = \mathbf{V}_{p} \mathbf{x}_{e} \left(1 + \frac{1}{pT_{N}} + pT_{V}\right)$	Vaxe 'xe	$\begin{array}{c} & & \\$	$\begin{split} \mathbf{F}_{(\mathbf{p})} &= \mathbf{V}_{\mathbf{p}} \left(1 + \frac{1}{\mathbf{p} \mathbf{T}_{\mathbf{N}}} + \mathbf{p} \mathbf{T}_{\mathbf{v}} \right) \\ \mathbf{F}_{(j\omega)} &= \mathbf{V}_{\mathbf{p}} \left[1 + j \left(\omega \mathbf{T}_{\mathbf{v}} - \frac{1}{\omega \mathbf{T}_{\mathbf{N}}}\right)\right] \end{split}$		
Р Т ₁	$x_{a}^{+} T_{1} \cdot \frac{dx_{a}}{dt} = x_{e}^{0}$ $x_{a}^{0}(1 + pT_{1}) = x_{e}^{0}$	x _a	$\begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$F_{(p)} = V_p \frac{1}{1 + pT_1}$ $F_{(j\omega)} = V_p \frac{1 - j\omega T_1}{1 + \omega^2 T_1^2}$		
ΡΤ ₂	$x_{a}^{+2dT} \frac{dx_{a}}{2dt} + T_{2}^{2} \frac{dx_{a}^{2}}{dt^{2}} = V_{p} x_{e}^{2}$ $\int_{x_{a}}^{x} (1+2dpT_{2}^{+}+p^{2}T_{2}^{2}) = V_{p} x_{e}^{2}$	viel viel Xe	$\begin{array}{c} & & \\ & & \\ & & \\ & \\ & \\ & \\ & \\ & \\ $	$\mathbf{F}_{(j\omega)} = \mathbf{V}_{p} \frac{1 - \frac{2}{\omega T_{2}^{2} - j2d\omega T_{2}}}{(1 - \omega T_{2})^{2} + 4d\omega T_{2}}$		
PT _n	$x_{a} \cdot a_{o} + a_{1} \dot{x}_{a} + \dots + a_{n} \overset{n}{x}_{a} = b_{o} x_{e}$ $v_{p} = \frac{b_{o}}{a_{o}}$	4-7 Ka=7	$\overline{X_e} \begin{array}{c} PT_{f} \end{array}$ $\begin{array}{c} PT_{f} \end{array}$ $\overline{X_a}$	$F_{(p)} = \prod_{i=1}^{n} \frac{v_{p_i}}{1 + pT_i}$		
PT _t	$x_{a} = \frac{V_{p} \cdot x_{e}}{p(t-T_{t})}$ o $x_{a} = V_{p} \cdot x_{e} \cdot e^{-pT_{t}}$	Var v v v v v v v v v v v v v v v v v v v	$\begin{array}{c} & & \\$	$F_{(p)} = v_{p} \cdot e^{-pT_{t}}$ $F_{(j\omega)} = v_{p} \cdot e^{-j\omega T_{t}}$		
$= V_{p} (\cos \omega T_{t} - j \sin \omega T_{t})$						

Tabelle 3.1 Übertragungsverhalten und Frequenzgang-Darstellung der wichtigsten Regelkreisglieder

Tabelle 3.1 (Forts.)

Frequenzga Gleichung	ngbetrag Darstellung	Beispiele für Reg Analogtechnik	elkreisglieder Mechanik/Elektrot.
allg. $\frac{ \mathbf{F}_{(j\omega)} }{dB} = 201g \mathbf{F}_{(j\omega)} $ $ \mathbf{F}_{(j\omega)} = \mathbf{V}_{p}$	0 H[r_jw]/ dB 0 	$ \begin{array}{c} R_{7} \\ U_{e} \\ V_{\rho} = R_{2}/R_{7} \end{array} $	$ \begin{array}{c} $
$\left \mathbf{F}_{(j\omega)} \right = \frac{1}{\omega \mathbf{T}_{I}}$	$\begin{array}{c c} F \\ \hline dB \\ 20 \\ \hline \\ 0 \\ \hline \\ \hline \\ \hline \\ 0 \\ \hline \\ \hline \\ \hline \\ $	$\begin{array}{c} R_{\tau} \\ U_{c} \\ T_{z} = R_{\tau} \cdot C \end{array}$	$\begin{array}{c c} Hotor & & Tisch \\ \hline M & & \\ \hline M & & \\ \hline T_{T} & & \\ \hline \end{array}$
$ \mathbf{F}_{(j\omega)} = \omega \mathbf{T}_{\mathbf{D}}$	$ \begin{array}{c} F ^{4} \\ \hline dB \\ 20 \\ \hline \\ 0 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$\begin{array}{c} C \\ \hline U_e \\ \hline T_D = R_2 \cdot C \end{array}$	$F = \frac{N}{S} + F$
$\left F_{(j\omega)}\right = v_{p} \sqrt{1 + \frac{1}{\omega^{2} r_{N}^{2}}}$	$\begin{array}{c c} 1F/4 & 3dB \\ \hline dB \\ \hline dB \\ \hline vV \\ \hline vV \\ 0 \\ \hline w_N \\ \hline w_1 = V_P w_1 \\ \hline $	$\begin{array}{c c} R_{1} & R_{2} & C \\ \hline U_{e} & \downarrow \downarrow & U_{a} \\ \hline T_{N} = R_{2}C \\ T_{7} - R_{7}C & V_{P} = R_{2}/R_{1} \end{array}$	$\frac{Pa}{L_1 + L_2} \xrightarrow{P_2} P_2$
$\left F_{(j\omega)}\right = v_{p}\sqrt{1+\omega^{2}T_{v}^{2}}$	$\begin{array}{c} F \\ \hline ds \\ \hline ds \\ \hline \psi \\ asympt. \\ \hline v \\ v \\$	$ \begin{array}{c} c\\ R_1\\ U_e\\ T_V=R_1C\\ T_2=R_2C\\ V_P=R_2/R_1 \end{array} $	
$\left \mathbf{F}_{(j\omega)} \right = \mathbf{v}_{p} \sqrt{1 + \left(\omega \mathbf{T}_{v} - \frac{1}{\omega \mathbf{T}_{N}} \right)^{2}}$	$ \begin{array}{c} F_{1} & \bullet \omega^{*} \cdot \frac{1}{VT_{N}T_{V}} e \times a \ k \ \ell \\ \psi_{N} & \bullet & \bullet \\ \psi_{N} & \bullet & \bullet \\ \psi_{N} & \psi_{N} & \psi_{N} \psi_{N} \psi_{N} \\ \psi_{N} & \psi_{N} & \psi_{N} \psi_{N} \psi_{N} \\ \psi_{N} & \psi_{N} & \psi_{N} \\ \psi_{N} & $	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}$ \left(\begin{array}{c} \end{array}\\ \end{array}\\ \end{array} \left(\begin{array}{c} \end{array}\\ \end{array} \left(\begin{array}{c} \end{array}\\ \end{array}\\ \end{array} \left(\begin{array}{c} \end{array} \left(\begin{array}{c} \end{array}\\ \end{array} \left(\begin{array}{c} \end{array} \left(\begin{array}{c} \end{array}\\ \end{array} \left(\begin{array}{c} \end{array} \left(\end{array}) \left(\begin{array}{c} \end{array} \left(\end{array}) \left(\end{array}) \left(\begin{array}{c} \end{array} \left(\end{array}) \left(\\) \left(\end{array}) \left(\end{array}) \left(\\) \left(\end{array}) \left(\\) \left(\end{array}) \left(\\) \left(\\) \left(\end{array}) \left(\\) (T)	
$\left \mathbf{F}_{(j\omega)}\right = \mathbf{V} \frac{1}{\mathbf{P} \sqrt{1 + \omega^2 \mathbf{T}_1^2}}$	IFIA asymptotisch as exaké -2008/Dek 02008/Dek NET	$\begin{array}{c} R_{1} \\ \hline \\ U_{e} \\ T_{q} = R_{2}C \end{array} \\ \downarrow V_{p} = R_{2}/R_{7} \end{array}$	Γ ₄ − V, P Reibg. Rs J= V·Rs Druckbehält.
$ F_{(j\omega)} = V_{P_{1}} \frac{1}{\sqrt{\frac{2}{1-\omega T_{2}}^{2} + 4d\omega T_{2}}}$	IF det mit d alle real asympt. det det det det det det ub det He det H	R_{r} R_{2} C_{2} C_{2} C_{2} C_{2} C_{3} C_{4}	Fedr-Masse-System ^{Sa} mit Dämpfung identisch elektrischer Reihenschwing- kreis
$ \begin{array}{c} \left {}^{\mathrm{F}}_{(j\omega)} \right & {}^{\mathrm{PT}_{3}} & {}^{\mathrm{n=3}} \\ \frac{4}{\sqrt{\frac{v_{\mathrm{p}}}{\sqrt{1-\omega_{\mathrm{T}_{2}}^{2}}^{2} + (\omega_{\mathrm{T}_{1}}^{-\omega_{\mathrm{T}_{3}}^{3}})^{2}}} \end{array} \end{array} $	Eld werweg d=7 PT3 0 werweg 11 Errakt asymptotisch		
$ \mathbf{F}_{(j\omega)} = \mathbf{v}_{p}$	171 000 000 712 712 712 712	<u>jede Signalwandlung</u> <u>hat Totzeit</u> z.B. <u>Ze</u> III Digital- Analogwamller Ua	$T_{e} = \frac{\zeta}{v}$

Tabelle 3.1 (Forts.)

Phasen	winkel\$	Ortskurve		
Gleichung	Darstellung	Gleichung	Darstellung	
$\varphi = 0^{\circ}$		$F_{(j\omega)} = V_p$	Jm Vp	
φ = arctan - ∞ = -90°	9 • • • • • • • • • • • • • • • • • • •	$F_{(j\omega)} = -j\frac{1}{\omega T_{I}}$	Jm , 0 w=00 Re	
$\varphi = + 90^{\circ}$	Ф 30⁰ 0 ⁰ <u>71</u> <u>71</u>	$F_{(j\omega)} = j\omega T_D$	Jm 0 w=0 0 Re	
$\varphi = - \arctan \frac{1}{\omega T_N}$	4 μ 4 μ 4 μ 4 μ 4 μ 4 μ 4 μ 4 μ	$F_{(j\omega)} = v_p (1 - j \frac{1}{\omega T_N})$	$ \begin{array}{c} Jm \bullet \\ 0 & & \\ \hline & & \\$	
$arphi$ = arctan ωT_v	91 asympt. 95 1 exakt 1 1 exakt 0	$F_{(j\omega)} = V_{p}^{(1+j\omega T_{v})}$	$ \int_{0}^{1} \frac{1}{\sqrt{2}} \frac{1}{$	
$\varphi = \arctan(\omega T_v - \frac{1}{\omega T_N})$	$\begin{array}{c} \mathbf{y} \\ $	$F_{(j\omega)} = V_{p} [1+j(\omega T_{v} - \frac{1}{\omega T_{N}})]$	$ \begin{array}{c} J_{m} \bullet \\ \bullet \\$	
$\varphi = - \arctan \omega T_1$	exaki asympt.	$F_{(j\omega)} = V_{P_{1+\omega^{2}T_{1}}^{2}}^{1 - j\omega T_{1}}$	Jm & Vp - o wro Re	
$\varphi = -\arctan\frac{2d\omega T_2}{1-\omega^2 T_2^2}$	1 14/10 110 1010 1 14/10 110 1 15 1 15	$F_{(j\omega)} = V_{P} \frac{1 - \omega^{2} T_{2}^{2} - j2 d\omega T_{2}}{(1 - \omega^{2} T_{2}^{2})^{2} + 4 d^{2} \omega^{2} T_{2}^{2}}$	Jan Vo	
$\varphi_{\min} = 0^{\circ}$ $\varphi_{\max} = n \cdot (-90^{\circ})$		$ \mathbf{P}_{(j\omega)} = \mathbf{V}_{p} \frac{(1 - \omega^{2} \mathbf{T}_{2}^{2}) - j(\omega \mathbf{T}_{1} - \omega^{2} \mathbf{T}_{3}^{3})}{(1 - \omega^{2} \mathbf{T}_{2}^{2})^{2} + (\omega \mathbf{T}_{1} - \omega^{3} \mathbf{T}_{3}^{3})^{2}} $	In Vp	
$\widehat{\varphi} = - \omega T_t$	Parabel		Jm +340 -40 +10 -10 -10 Re -3%	

Dieser ist

$$F_{(p)} = V_{p}$$
, (3.2)

damit wird

 $F_{(j\omega)} = V_p$

und mit Gleichung (2.47)

$$\left|\mathbf{F}_{(j\omega)}\right| = \mathbf{V}_{\mathbf{p}} \quad (3.3)$$

Da die Darstellung des Frequenzgangbetrages meist in dB erfolgt, ist dann zu schreiben:

$$\frac{\left|F_{(j\omega)}\right|}{dB} = 20 \cdot \lg V_{p}$$

Der Phasenwinkel des P-Gliedes ist Null, da entsprechend Gleichung (2.48) gilt

$$\varphi = \arctan \frac{\operatorname{Im} F(j\omega)}{\operatorname{Re} F(j\omega)} = 0$$
 (3.4)

Beispiele für P-Glieder

Pneumatisch-elektrischer Wandler:

Viele mechanische Meßfühler, Meßgeräte oder Verstärker beruhen auf dem Hebelarm-Prinzip. (Waagen, Elektromech. Umformer, Fluidiks usw.). Arbeiten diese Systeme mit Druck, ist eine Realisierung mit dem Düse-Prallplatte-System möglich. Bild 3.2 zeigt das Prinzip eines so aufgebauten Druck-Spannungs-Wandlers. Am linken Ende des Waagebalkens ist eine Prallplatte angebracht, auf die der Eingangsdruck p_e wirkt. Das rechte Ende ist mit dem Abgriff (Schleifer) eines Potentiometers verbunden. Eine Rückstellfeder hält das System bei p_e = 0 in der Ruhelage, die der Ausgangsspannung U_a = 0 entspricht, denn es gilt

Bild 3.2 Düse-Prallplatte-System als P-Glied

Tritt nun eine Druckänderung auf, so wird über den Waagebalken proportional dazu die Spannung U_a am Potentiometerabgriff geändert, so daß man schreiben kann

 $F_{(p)} = \frac{U_a}{P_e} = \frac{1_2}{1_1}$.

Der Wandler muß so ausgelegt werden, daß für $p_{e_{max}} \cdot \frac{1}{1}$ gerade $U_{a_{max}} = U_{s}$ erreicht wird ($\alpha = 1$).

Außerdem ist eine leichte Verfälschung des P-Verhaltens durch die Rückstellfeder gegeben.

Pneumatischer Verstärker:

Ein pneumatischer Verstärker mit P-Verhalten ergibt sich, wenn man den Vordruck $P_{\rm v}$ über ein Düse-Prallplatte-System mit Hilfe einer Membran beeinflußt (Bild 3.3).

Je größer das Produkt aus Eingangsdruck p_e und wirksamer Membranfläche A_M ist, desto kleiner wird die Luftsäule zwischen Düsenaustritt und Prallplatte (A_R = D · π · h). Für konstanten Vordruck p_v ergibt sich P-Verhalten und es wird

$$\mathbf{F}_{(\mathbf{p})} = \frac{\mathbf{p}_{\mathbf{a}}}{\mathbf{p}_{\mathbf{e}}} = \frac{\mathbf{A}_{\mathbf{M}}}{\mathbf{A}_{\mathbf{R}}} \cdot \frac{\mathbf{p}}{\mathbf{p}_{\mathbf{v}}} = \mathbf{V}_{\mathbf{p}}$$

Ohne Prallplatte hat der Querschnitt der Austrittsdüse sein Maximum

$$A_{max} = \frac{d^2\pi}{4}$$

erreicht, so daß $A_{R} = A_{max}$ ist für h = d/4. Damit ist ein Stellbereich von $h = h_{min} \dots d/4$ möglich.

Operationsverstärker:

Beschaltet man einen Operationsverstärker im Eingang und in der Gegenkopplung mit Widerständen, ergibt sich ein proportionaler Zusammenhang zwischen Ein- und Ausgangsspannung, wie er bereits in Abschnitt 2.1.4 erklärt wurde (Bild 3.4). Mit einem zusätzlichen Potentiometer in der Gegenkopplung ist die Verstärkung V_p kontinuierlich einstellbar entsprechend der Gleichung

Bild 3.4 Operationsverstärker mit variabler Verstärkung V_p als P-Glied geschaltet

Für $\alpha = 0$ fließt der gesamte Strom der Gegenkopplung über R nach Masse und $V_p = 0$. Für $\alpha = 1$ ist $V_p = R_2/R_1$. Bei $R_2 \rightarrow \infty$ müßte auch die Ausgangsspannung $U_a \rightarrow \infty$ gehen. Es stellt sich jedoch ein Grenzwert (Stellgrenze) ein, der etwa 1V...3V unter der Speisespannung U_a liegt.

Multiplizierer:

Multipliziert man einen Wert Z_e mit der Konstanten V_p , erhält man einen proportionalen Wert Z_a am Multiplizierausgang (Bild 3.5). Es wird

$$F_{(p)} = \frac{Z_a}{Z_e} = V_p$$
.

Die Multiplikation wird in der Analog- und Digitaltechnik gleichermaßen angewandt und dient oft zur Umrechnung von Größen (z.B. Drehzahl n in Geschwindigkeit v = D π n). Sie stellt damit oft ein P-Verhalten dar.

3.2 I-Glied

Beim Integral- oder I-Glied ist die Ausgangsgröße das Integral der Eingangsgröße über der Zeit (Bild 3.6). Es gilt also für die Übertragungsfunktion bzw. Differentialgleichung

$$x_{a} = \frac{1}{T_{I}} \cdot \int_{0}^{t} x_{e} \cdot dt \quad bzw. \quad T_{I} \cdot \frac{dx_{a}}{dt} = x_{e}$$
(3.5)

Die Sprungantwort des I-Gliedes ist demnach eine Gerade, deren Steigung durch die Zeitkonstante T_I bestimmt ist. Es ist zu sehen, daß für t = T_I die Ausgangsgröße der Eingangsgröße entspricht.

Mit dem Integralsatz der Gleichdimensionellen Laplace-Transformation (Tabelle 2.2 Nr. 2) erhält man aus der Sprungantwort sofort den Frequenzgang.

$$F_{(p)} = \frac{x_a}{x_e} = \frac{1}{pT_I} , \qquad (3.6)$$

damit wird

$$F_{(j\omega)} = -j \frac{1}{\omega T_{I}}$$

und mit der Gleichung (2.4)

$$\left| \mathbf{F}_{(j\omega)} \right| = \frac{1}{\omega \mathbf{T}_{I}} \tag{3.7}$$

Der Frequenzbetrag fällt in logarithmischer Darstellung somit um -20 dB/Dekade ω ab. Bei ω = $1/T_I$ erfolgt der Nulldurchgang durch die Abszisse, da 20 lg 1 = 0 dB ist. Der Phasenwinkel ist hier ein konstanter Wert und lautet

$$\varphi = \arctan - \frac{1/\omega T_{I}}{0} = -90^{\circ} . \qquad (3.8)$$

Beispiele für I-Glieder

Spindel-Antrieb:

Mit der Spindel des Tisches einer Werkzeugmaschine kann man bei vorgegebener Drehzahl (n=konst.) nicht sprunghaft einen Weg verfahren. Dies ist nur linear mit der Zeit möglich. Es handelt sich also um ein I-Glied (Bild 3.7).

Denn mit

 $\alpha \cdot \mathbf{v} = \alpha \cdot \mathbf{D} \cdot \pi \cdot \mathbf{n} = \frac{\mathrm{ds}}{\mathrm{dt}} \qquad \text{bzw. } \mathbf{s} = \alpha \cdot \mathbf{D} \cdot \pi \int_{\mathbf{0}}^{\mathbf{t}} \mathbf{n} \cdot \mathrm{dt}$ $gt \qquad \mathbf{F}_{(\mathbf{p})} = \frac{\mathbf{S}}{\mathbf{n}} = \frac{\alpha \cdot \mathbf{D} \cdot \pi}{\mathbf{p}} \ .$

folgt

Bild 3.7 I-Verhalten eines Spindelantriebs bei einer Werkzeugmaschine

Tauchsieder:

Die einem Tauchsieder zugeführte el. Energie W_e erhöht die Flüssigkeitstemperatur zeitlich linear (Bild 3.8).

Die zur Erwärmung der Flüssigkeit genutzte Energie ist dann

$$\begin{split} & W_{\text{Nutz}} = W_{\text{e}} - W_{\text{Verl}} & \text{mit m: Flüssigkeitsmasse} \\ & W_{\text{Nutz}} = \int_{0}^{t} P_{\text{Nutz}} \cdot dt = m \cdot c \cdot \vartheta & \vartheta: \text{Temperatur} \end{split}$$

Damit ist die Regelgröße Temperatur

 $\vartheta = \frac{1}{m c} \int_{0}^{t} p_{\text{Nutz}} \cdot dt$

Der Frequenzgang dieser Anordnung lautet also

Bild 3.8 I-Verhalten der Temperatur bei einem Tauchsieder

Elektrischer Antrieb:

Für den Drehzahlanstieg einer Maschine ist ein Beschleunigungsmoment $M_{\rm b}$ erforderlich (Bild 3.9).

Es ist

$$M_{b} = J_{ges} \cdot \frac{d\omega}{dt} = J_{ges} \cdot 2\pi \cdot \frac{dn}{dt}$$

darin ist $\rm J_{ges}$ das gesamte auf die Motorwelle bezogene Trägheitsmoment der Maschine. Normiert man das Beschleunigungsmoment auf seinen Nennwert und die Drehzahl auf die Leerlaufdrehzahl n_o, wird

$$m_{\rm b} = \frac{M_{\rm b}}{M_{\rm N}} = \frac{2\pi \cdot J_{\rm ges} \cdot \frac{dn}{dt}}{2\pi \cdot J_{\rm ges} \cdot \frac{n_{\rm o}}{T_{\rm H}}} \qquad \text{mit } T_{\rm H}: \text{ Hochlaufzeit.}$$

Daraus ergibt sich der Frequenzgang für sprunghafte Laständerungen, der dem I-Verhalten entspricht.

$$F_{(p)} = \frac{O}{m_b} = \frac{n_o}{pT_H} .$$

Bild 3.9 I-Verhalten der Drehzahl als Funktion des Beschleunigungsmoments eines Antriebs

Hydraulik-Zylinder:

Die hydraulische Verstellung eines Weges ist in vielen Antriebssystemen enthalten (hydraulische Lenkung oder Positionierung). Im einfachsten Fall wird dabei ein Kolben in einem Zylinder mit einer Ölsäule bewegt (Bild 3.10). Der notwendige Öldruck p_e kommt von einer Pumpe. Die Wegänderung erfolgt, wenn gleichzeitig das Öl oberhalb des Kolbens abgeführt wird. Bei konstanten Pumpendruck p_e ändert sich reziprok proportional zur Kolbenfläche A_K der Kolbenhub s_a über die Zeit, so daß für den Frequenzgang gilt: o

$$F_{(p)} = \frac{s_a}{p_e} = \frac{1}{p \cdot Kp \cdot A_K}$$
 mit Kp: Systemkonstante.

Auch diese Anordnung hat daher I-Verhalten.

Tank

Bild 3.10 Näherungsweises I-Verhalten des Weges als Funktion des Druckes bei einem Hydraulik-Zylinder

Operationsverstärker:

Ein Operationsverstärker läßt sich leicht als I-Glied beschalten; dazu dient ein Kondensator in der Gegenkopplung (Bild 3.11). Entsprechend Gleichung (2.20) gilt für Eingangsgleichspannung $F_{(p)} = \frac{\overset{0}{u}_{a}}{\overset{0}{U}_{e}} = -\frac{1/pC}{R} = -\frac{1}{pT_{I}} \qquad \text{mit der Zeitkonstanten } T_{I} = R C.$

Bild 3.11 Operationsverstärker mit I-Verhalten

Digitalzähler:

Ein Zähler, der mit einer konstanten Eingangsfrequenz f_e getaktet wird, stellt ein I-Glied dar (Bild 3.12). Allerdings ist nur eine stückweise (bitweise) Nachbildung des I-Verhaltens möglich, da der Ausgangszustand eines Zählers nur mit jeder Flanke der Eingangsfrequenz um Δz geändert wird. In den Zeiten dazwischen bleibt der Zählerstand erhalten. Es wird

$$Z_{a} = \int_{0}^{t} f_{e} \cdot dt ,$$

also
$$F_{(P)} = \frac{Z_{a}}{f_{e}} = \frac{1}{p} \quad \text{für} \quad f_{e} = \text{konst.}$$

Die Steigung von Z_a nimmt mit wachsender Frequenz f_e zu.

Bild 3.12 I-Verhalten eines Zählers mit konstanter Eingangsfrequenz

3.3 D-Glied

Ein rein differentielles Verhalten liegt technischen Prozessen selten zugrunde. Als Regler ist das D-Glied aber in Verbindung mit dem P- oder PI-Glied sehr sinnvoll; und als Strecke kommt es meist in Verbindung mit Verzögerungsgliedern wie PT₁- und PT₂-Glied vor. Der Frequenzgang ergibt sich aus der definierten Differentialgleichung (Bild 3.13).

$$x_{a} = T_{D} \cdot \frac{dx_{e}}{dt} . \qquad (3.9)$$

Bild 3.13 Sprungantwort und Frequenzgangbetrag eines D-Gliedes

Demnach ist die Sprungantwort des D-Gliedes ein Sprung nach ∞ an der Stelle t = 0. Danach ist x_a = 0, da die Differentiation einer konstanten Null ist. Eine solche Sprungantwort ist natürlich nicht realisierbar. Der reale Sprung bei t = 0 geht nur bis zu einem gerätetechnisch bedingten Grenzwert (Stellgrenze) und wird dann entlang einer e-Funktion abklingen, deren Zeitkonstante sich nach dem Frequenzgang des verwendeten Gerätes richtet.

Für den Frequenzgang des idealen D-Gliedes erhält man mit der Definition des Laplace-Operators p die Gleichung

$$F_{(p)} = \frac{x_{a}}{x_{e}} = pT_{D}$$
, (3.10)

damit wird

$$F_{(j\omega)} = j\omega T_D$$

0

und mit Gleichung (2.47) erhält man den Frequenzgangsbetrag

$$\left| \mathbf{F}_{(j\omega)} \right| = \omega \mathbf{T}_{\mathbf{D}} \tag{3.11}$$

Er nimmt in logarithmischer Darstellung im Gegensatz zum I-Glied um + 20 dB/Dekade ω zu und hat seinen Nulldurchgang bei $\omega = 1/T_{p}$.

Der Phasenwinkel ist konstant und beträgt

$$\varphi = \arctan \frac{\omega T_D}{O} = + 90^O . \qquad (3.12)$$

Beispiele für D-Glieder

Stromdurchflossene Spule:

Vernachlässigt man den Ohmschen Widerstand einer Spule, so ergibt sich zwischen dem Strom und dem Spannungsabfall ein differentieller Zusammenhang (Bild 3.14).

Aus

$$u_a = L \cdot \frac{di_e}{dt}$$

wird

$$F_{(p)} = \frac{\overset{O}{u}_{a}}{\overset{O}{o}_{e}} = pL$$

Eine duale mechanische Differentialgleichung (siehe Abschnitt 2.2.2) ergibt sich dann unter Vernachlässigung der Reibung für die Beschleunigung einer Masse m, nämlich

Bild 3.14 D-Verhalten einer Induktivität und der dualen mechanischen Größe Masse

Operationsverstärker:

Ein Operationsverstärker läßt sich in Analogie zum Integrierer auch als Differenzierer beschalten (Bild 3.15). Mit der Zeitkonstanten $T_D = R \cdot C$ ergibt sich bzw.

 $u_a = - T_D \frac{du_e}{dt}$

Bild 3.15 Operationsverstärker als D-Glied beschaltet

3.4 PI-Glied

Durch die Summation des P- mit dem I-Glied ergibt sich ein Regelkreisglied mit PI-Verhalten (Bild 3.16). Die Übertragungsfunktion lautet dann

$$x_{a} = V_{p} \cdot (x_{e} + \frac{1}{T_{N}} \cdot \int_{0}^{t} x_{e} \cdot dt)$$
 (3.13)

Bild 3.16 Sprungantwort und Frequenzgangbetrag eines PI-Gliedes

Die Sprungantwort besteht somit aus einem Sprung der Größe V_p·x_e, auf den der I-Anteil summiert wird. Ein PI-Glied als Regler hat den Vorteil, daß jede Regeldifferenz x_d = w - x durch den Integral-Anteil beseitigt werden kann.

Mit den Korrespondenzen Nr. 1 und 3 aus Tabelle 2.3 folgt sofort die Bildfunktion des Frequenzgangs.

wird

 $\overset{O}{x}_{a} = V_{p} \cdot x_{e} \cdot (1 + \frac{1}{pT_{N}})$ $F_{(p)} = \frac{\overset{O}{x}_{a}}{x_{e}} = V_{p} \cdot (1 + \frac{1}{pT_{N}}) .$ (3.14)

In komplexer Schreibweise folgt

$$F_{(j\omega)} = V_p \cdot (1 - j \cdot \frac{1}{\omega T_N})$$

und damit ist der Frequenzgangbetrag

$$|F_{(j\omega)}| = v_p \sqrt{1 + \frac{1}{\omega^2 T_N^2}}.$$
 (3.15)

Aus dieser Gleichung läßt sich ablesen, daß

D.h., der Frequenzgangsbetrag in logarithmischer Darstellung geht vom I-Anteil ($\omega = 0 \dots 1/T_N$) in den P-Anteil ($\omega = 1/T_N \dots \infty$) über. Der Übergang ist durch die Eckfrequenz $\omega = \omega_N$ gekennzeichnet, bei der sich der exakte Frequenzgang von der asymptotischen Näherung um $\sqrt{2} \approx 3$ dB unterscheidet, wie aus Bild 3.16 zu ersehen ist. Man nennt T_N die Nachstellzeit des PI-Gliedes.

In den meisten Fällen läßt sich der Frequenzgangbetrag mit ausreichender Genauigkeit durch Angabe der Asymptoten des P- und I-Anteils konstruieren. Dazu sind nur drei Werte notwendig. V_p , ω_N und die Frequenz ω_1 , welche sich aus der Verlängerung der I-Asymptote auf die Abszisse hin ergibt. Für $V_p \stackrel{\geq}{=} 1$ gilt $\omega_1 = V_p \cdot \omega_N$. Der Phasenwinkel des PI-Gliedes lautet:

$$\varphi = \arctan \frac{-\frac{1}{\omega T_{N}}}{1} = \arctan - \frac{1}{\omega T_{N}}$$

$$\varphi = -\arctan \frac{1}{\omega T_{N}}$$
(3.16)

bzw.

Beispiele für PI-Glieder

Pneumatik:

Das pneumatische PI-Verhalten läßt sich durch das Düse-Prallplatte-System in Verbindung mit einem pneumatisch verstellbaren Ventil realisieren (Bild 3.17). Ein Waagebalken sorgt dabei für die Druckverstärkung.

Bild 3.17 Schema eines pneumatischen PI-Gliedes mit dem Düse-Prallplatte-System und einem Faltenbalg

Bei einer sprunghaften Druckänderung P_e , die sich über das Hebelverhältnis $1_2/l_1$ direkt auf den Faltenbalg auswirkt, wird auch das Ventil mit dem pneumatischen Stellglied geöffnet und der Vordruck P_v freigegeben. Dieser Teil der Anordnung hat I-Verhalten, da ein Ventil nicht sprunghaft verstellbar ist. Er wirkt summativ auf den vom Druck P_e verursachten P-Anteil. Es ergibt sich damit der Ausgangsdruck aus P- und I-Anteil zu

$$\mathbf{p}_{\mathbf{a}_{1}} = \frac{\mathbf{1}_{2}}{\mathbf{1}_{1}} \cdot \mathbf{p}_{\mathbf{e}}$$

und

$$p_{a_2} = \frac{1_2}{1_1} \cdot \frac{p_v}{k} \cdot \int_0^t pe \cdot dt$$

damit

oder

$$p_{a} = \frac{1}{2} \cdot (p_{e} + \frac{p_{v}}{k} \cdot \int_{0}^{t} \cdot pe \cdot dt)$$

$$F_{(p)} = \frac{P_a}{P_e} = \frac{1}{1_1} \cdot (1 + \frac{P_v}{kp})$$

Wie in Abschnitt 4.1 gezeigt wird, ist die Umwandlung eines Regelkreis-Gliedes in einen Regler bei Operationsverstärkern problemlos. Die Realisierung pneumatischer Regler ist unanschaulicher. Da der PI-Regler für die meisten Regelstrecken geeignet ist, soll hier ein pneumatischer PI-Regler gezeigt werden (Bild 3.18).

Bild 3.18 Schema eines pneumatischen PI-Reglers mit getrennt einstellbarer Nachstellzeit ${\tt T}_N$ und Verstärkung ${\tt V}_p$

Die Regeldifferenz x_d ergibt sich beim pneumatischen PI-Regler aus der Druckdifferenz $p_w - p_x$, die man durch entgegengesetzt angeordnete Faltenbälge erzeugt. Bei einer sprunghaften Regelgrößenänderung Δp_x ($p_w =$ konst.) wird über den Waagebalken die Düse zugesteuert. Dies hat eine Druckerhöhung am Verstärker zur Folge, die sich sofort als proportionale Stellgrößenänderung Δp_y auswirkt. Ihre Amplitude kann mit einer Stelldrossel 1 verstellt werden.

Durch die Drossel 2 trägt ein Teil des Verstärker-Ausgangsdrucks zum weiteren Verschließen der Düse bei. Wegen des angeschlossenen Druckbehälters 3 wirkt sich dieses Verschließen nur verzögert aus (siehe Abschnitt 3.7), so daß der Gesamtverlauf von p $_y$ dem des PI-Verhaltens ähnelt (Bild 3.19). Genau genommen handelt es sich um das PIT $_1$ -Verhalten.

Bild 3.19 Reale und idealisierte Sprungantwort eines pneumatischen PI-Reglers

Exakt betrachtet enthält der PI-Regler also noch ein Verzögerungsglied I. Ordnung, den Druckbehälter 3. Der Frequenzgang ist also der eines PIT₁-Reglers. Er ergibt sich aus der Differentialgleichung

$$\begin{split} p_{y} + T_{1}\dot{p}_{y} &= V_{p} \cdot (x_{d} + \frac{1}{T_{N}} \int_{0}^{T} x_{d} \cdot dt) , \\ p_{y}^{0} (1 + pT_{1}) &= V_{p} \cdot x_{d} \cdot (1 + \frac{1}{pT_{N}}) , \\ F_{(P)} &= \frac{P_{y}}{x_{d}} = V_{p} \cdot \frac{1 + pT_{N}}{pT_{N} \cdot (1 + pT_{1})} . \end{split}$$

Analogtechnik:

Ein Operationsverstärker hat PI-Verhalten, wenn in seiner Gegenkopplung ein Widerstand mit einem Kondensator in Reihe liegt (Bild 3.20). Der Frequenzgang lautet

$$F_{(p)} = \frac{\vartheta_{a}}{U_{e}} = -\frac{R_{2} + \frac{1}{pC_{2}}}{R_{1}} = -\frac{R_{2}}{R_{1}} \cdot (1 + \frac{1}{pR_{2}C_{2}})$$

mit V_{n} und der Nachstellzeit T_{N} . sowie T_{1}

$$V_{p} = \frac{R_{2}}{R_{1}}$$
, $T_{N} = R_{2}C_{2}$, $T_{1} = R_{1}C_{2}$

folgt

Bild 3.20 Operationsverstärker mit PI-Beschaltung

Aufgabe 3.1

92

Ein Operationsverstärker mit PI-Verhalten hat folgende Beschaltungselemente:

 $R_1 = 10 \ k\Omega$ $C_2 = 10 \ \mu F$ $R_2 = 100 \ k\Omega$.

Es ist der Verlauf der Ausgangsspannung – u_a für die in Bild 3.21 gegebene Eingangsspannung zu zeichnen und die Gleichung für ω_1 zu ermitteln.

Digitaltechnik:

Ein Zähler, der beim Starten des Zählvorgangs auf den Ausgangswert Z_O gesetzt wird, entspricht der stückweisen Nachbildung des PI-Verhaltens (Bild 3.22). Es gilt für den Zählerstand am Ausgang

$$Z_a = Z_o + \int_o^t f_e \cdot dt$$

Für $f_e = konst.$ ergibt sich dann

3.5 PD-Glied

Das PD-Glied entspricht der Addition aus P-Glied und D-Glied. Seine Differentialgleichung lautet daher

$$\mathbf{x}_{a} = \mathbf{V}_{p} \cdot (\mathbf{x}_{e} + \mathbf{T}_{V} \cdot \frac{\mathrm{d}\mathbf{x}_{e}}{\mathrm{d}t}) \quad . \tag{3.17}$$

Demnach ist die Sprungantwort des idealen PD-Gliedes ein Sprung nach ∞ , der auf den Proportionalanteil V $_{\rm p}$ · x zurückgeht (Bild 3.23).

Bild 3.23 Sprungantwort und Frequenzgangbetrag eines PD-Gliedes

Eine solche Sprungstelle ist technisch nicht realisierbar. Es ergibt sich wie schon beim D-Glied, ein gerätetechnisch bedingter Grenzwert (Stellgrenze), der nicht überschritten werden kann. Danach fällt die Ausgangsgröße x_a entlang einer Funktion bis zum Wert $x_e \cdot V_p$ ab. Diese e-Funktion entspricht einer Verzögerung I. Ordnung, so daß das reale (verzögerte) PD-Glied eigentlich ein PDT₁-Glied ist.

Für den Frequenzgang des idealen (ungestörten) PD-Gliedes erhält man

$$F_{(p)} = \frac{\overset{o}{x}_{a}}{x_{e}} = V_{p} \cdot (1 + pT_{V}) , \qquad (3.18)$$

damit wird

$$F_{(j\omega)} = V_p \cdot (1 + j\omega T_V)$$

und mit Gleichung (2.47) ergibt sich der Betrag des Frequenzgangs zu

$$|F_{(j\omega)}| = V_{p} \sqrt{1 + \omega^{2} T_{V}^{2}} . \qquad (3.19)$$

Aus dieser Gleichung lassen sich drei markante Werte ablesen, bei denen

$$\begin{split} & \text{für } \omega = 0 \qquad \left| \textbf{F}_{(j\omega)} \right| = \textbf{V}_{p} \text{ wird} \\ & \text{für } \omega \neq \infty \qquad \left| \textbf{F}_{(j\omega)} \right| \neq \infty \quad \text{geht und} \\ & \text{für } \omega_{V} = \frac{1}{T_{V}} \quad \left| \textbf{F}_{(j\omega)} \right| = \sqrt{2} \cdot \textbf{V}_{p} \text{ wird.} \end{split}$$

Der Frequenzgangbetrag geht also vom P-Anteil bei $\omega_V = 1/T_V$ in den D-Anteil über, wobei sich die asymptotische Näherung vom exakten Verlauf bei ω_V um 3 dB $\approx \sqrt{2}$ unterscheidet.

Für die Konstruktion der asymptotischen Näherung, die in den meisten Fällen ausreicht, sind nur die Werte V_p , ω_V und die Frequenz ω_2 notwendig. Letzterer Wert ergibt sich aus der Verlängerung der D-Asymptote auf die Abszisse hin und ist für $V_p \stackrel{\geq}{=} 1$ $\omega_2 = \omega_v / V_p$.

Der Verlauf des PDT₁-Gliedes ist in Bild 3.23 ebenfalls dargestellt. Sein Frequenzgang setzt sich aus dem des ungestörten PD- und des PT₁-Gliedes (siehe Abschnitt 3.7) zusammen; also

$$F_{(p)} = V_{p}^{*} \cdot \frac{1 + pT_{V}}{1 + pT_{1}} \text{ mit } V_{p}^{*} = V_{p} \cdot V_{P(PD)}$$
(3.20)

bzw.

$$|F_{(j\omega)}| = v_{p}^{*} \cdot \sqrt{\frac{1 + \omega^{2} \cdot T_{V}^{2}}{1 + \omega^{2} \cdot T_{1}^{2}}}$$
 (3.21)

Die markanten Werte sind

für
$$\omega = 0 |F_{(j\omega)}| = V_P^*$$

für $\omega \neq \infty |F_{(j\omega)}| = V_P^* \cdot \frac{T_V}{T_1}$

$$\begin{aligned} & \text{für } \omega_{\text{V}} = \frac{1}{\text{T}_{\text{V}}} |F_{(j\omega)}| = \text{V}_{\text{P}}^{*} \cdot \frac{\sqrt{2}}{\sqrt{1 + \text{T}_{1}^{2}/\text{T}_{\text{V}}^{2}}} \\ & \text{für } \omega_{1} = \frac{1}{\text{T}_{1}} |F_{(j\omega)}| = \text{V}_{\text{P}} \frac{\sqrt{1 + \text{T}_{\text{V}}^{2}/\text{T}_{1}^{2}}}{\sqrt{2}} \end{aligned}$$

sowie

Für den Phasenwinkel des idealen PD-Gliedes erhält man

$$\varphi = \arctan \omega T_{V}$$
 (3.22)

Beispiele für PD-Glieder

Pneumatik:

Das pneumatische PD-Verhalten soll hier anhand des PD-Reglers erklärt werden (Bild 3.24). Wie schon beim PI-Verhalten ist das Düse-Prallplatte-System in Verbindung mit einem Waagebalken relativ anschaulich. Bei einer sprunghaften Drückänderung des Istwertes p_x schließt sich die Düse und die Stellgröße p_y nimmt schlagartig ihren Maximalwert an (D-Verhalten). Durch das Ventil 1 kann ein Teil von p_a an die Außenluft ausströmen. Dies entspricht einer Verstärkungseinstellung. Über ein zweites Ventil baut sich nun im Druckbehälter 3 entlang einer e-Funktion ein Druck auf, der das Schließen der Düse wieder rückgängig macht. Diese Verzögerung

Bild 3.24 Schema eines pneumatischen PD-Reglers mit getrennt einstellbarer Vorhaltzeit ${\rm T}_V$ und Verstärkung ${\rm V}_p$

I. Ordnung ist solange im Eingriff, bis am Waagebalken wieder Gleichgewicht herrscht. Dann ist \mathbf{p}_y auf einen konstanten Wert abgesunken. Es ist also folgende Differentialgleichung anzusetzen

$$\mathbf{p}_{\mathbf{y}} + \mathbf{T}_{1}\dot{\mathbf{p}}_{\mathbf{y}} = \mathbf{V}_{\mathbf{p}} \cdot (\mathbf{x}_{\mathbf{d}} + \mathbf{T}_{\mathbf{V}} \cdot \frac{\mathbf{d}\mathbf{x}_{\mathbf{d}}}{\mathbf{dt}}).$$

Damit wird

$$F_{(p)} = \frac{p_y}{x_d} = V_p \cdot \frac{1 + pT_v}{1 + pT_1}$$
.

Analogtechnik:

Ein Operationsverstärker hat PD-Verhalten, wenn sein Eingangssignal differenziert wird (Bild 3.25). Es ergibt sich der Frequenzgang zu

$$F_{(p)} = \frac{u_a}{U_e} = -\frac{R_2}{\frac{R_1 \cdot \frac{1}{pC_1}}{R_1 + \frac{1}{pC_1}}} = -\frac{R_2}{R_1} \cdot (1 + pR_1C_1)$$

mit der Proportionalverstärkung und der Vorhaltzeit, sowie $T_2 = \frac{1}{\omega_2}$

$$V_{p} = \frac{R_{2}}{R_{1}}$$
, $T_{V} = R_{1}C_{1}$, $T_{2} = R_{2}C_{1}$

folgt

$$F_{(p)} = -V_p(1 + pT_V)$$
.

0

Darin ist $\omega_2 = \frac{1}{T_2}$ die Rechengröße, welche man zur asymptotischen Konstruktion des Frequenzgangbetrages braucht.

Bild 3.25 Operationsverstärker mit PD-Beschaltung

3.6 PID-Glied

Faßt man die drei grundlegenden Regelkreisglieder (P-, I- und D-Glied) an einer Summationsstelle zusammen, ergibt sich das universell einsetzbare PID-Glied (Bild 3.26). Seine Übertragungsfunktion ist also die Addition aus P-, I- und D-Verhalten.

$$x_{a} = V_{p} \cdot (x_{e} + \frac{1}{T_{N}} \int_{0}^{t} x_{e} \cdot dt + T_{V} \cdot \frac{dx_{e}}{dt}) . \qquad (3.23)$$

Bild 3.26 Blockschaltbild eines PID-Gliedes als Summation aus P-, Iund D-Anteil

Ist die Eingangsgröße x_e eine Sprungfunktion, folgt am Ausgang des Regelkreisgliedes die Sprungantwort, wie sie in Bild 3.27 dargestellt ist.

Bild 3.27 Sprungantwort und Frequenzgangbetrag eines PID-Gliedes

Beim idealen oder ungestörten PID-Glied springt x_a bei t = 0 zunächst gegen ∞ , um dann auf den Proportionalanteil $V_p \cdot x_e$ zurückzuspringen. Danach kommt der I-Anteil zum tragen (Bild 3.27). Das reale PID-Glied enthält jedoch zusätzlich ein Verzögerungsglied I. Ordnung, so daß sich die Sprungantwort asymptotisch dem I-Anteil nähert. Außerdem ist die Stellgrenze des Regelkreisgliedes zu berücksichtigen.

Der Frequenzgang des ungestörten idealen PID-Gliedes ist

$$F_{(p)} = \frac{x_a^{0}}{x_e} = V_p \cdot (1 + \frac{1}{pT_N} + pT_V) , \qquad (3.24)$$

damit wird

$$\mathbf{F}_{(j\omega)} = \mathbf{V}_{\mathbf{p}} \cdot \left[1 + j \left(\omega \mathbf{T}_{\mathbf{V}} - \frac{1}{\omega \mathbf{T}_{\mathbf{N}}} \right) \right]$$

und schließlich der Betrag des Frequenzgangs

$$|F_{(j\omega)}| = V_{\rm P} \cdot \sqrt{1 + (\omega T_{\rm V} - \frac{1}{\omega T_{\rm N}})^2}$$
 (3.25)

Der Frequenzgang entspricht dem des PID-Gliedes für ${\rm T}_{\rm N}$ >> ${\rm T}_{\rm V}$ mit den markanten Werten

Die Asymptoten weichen also bei $\omega_{\rm N}^{}$ und $\omega_{\rm V}^{}$ um etwa 3 dB vom exakten Verlauf ab.

Ähnlich wie beim PI- und PD-Glied sind zur Konstruktion der Asymptoten des PID-Gliedes nur die Werte V_P, ω_N , ω_V , ω_1 und ω_2 zu ermitteln.

Das Verzögerungsglied I. Ordnung macht sich im Frequenzgang des ungestörten PID-Gliedes durch Multiplikation mit einem PT₁-Glied bemerkbar.

Es wird

$$\mathbf{F}_{(\mathbf{p})} = \mathbf{V}_{\mathbf{p}}^{*} \cdot (1 + \frac{1}{\mathbf{pT}_{\mathbf{N}}} + \mathbf{pT}_{\mathbf{V}}) \cdot \frac{1}{1 + \mathbf{pT}_{\mathbf{1}}}$$

$$F_{(p)} = V_{p}^{*} \cdot \frac{1 + pT_{N} + p^{2}T_{N}T_{V}}{pT_{N} \cdot (1 + pT_{1})}$$
(3.26)

mit

$$v_{p}^{*} = v_{p(PID)} \cdot v_{p(pT_{1})}$$

bzw.

$$|F_{(j\omega)}| = V_{p}^{*} \cdot \sqrt{\frac{1 + (\omega T_{V} - \frac{1}{\omega T_{N}})^{2}}{\frac{1 + \omega^{2} T_{1}^{2}}{1 + \omega^{2} T_{1}^{2}}} . \qquad (3.27)$$

Ein reales PID-Glied, bei dem die Ausgangsgröße begrenzt wird auf einen bestimmten P-Anteil, wurde bereits in Aufgabe 2.13 berechnet.

Der Phasenwinkel des idealen PID-Gliedes lautet

$$\varphi = \arctan \left(\omega T_{V} - \frac{1}{\omega T_{N}}\right)$$
(3.28)

Aufgabe 3.2

Aus der Gleichung (3.26) des Frequenzganges eines verzögerten PID-Gliedes ist die Sprungantwort zu berechnen.

Beispiele für PID-Glieder

Pneumatik:

Das pneumatische Übertragungs-Verhalten eines PID-Gliedes ergibt sich durch eine verzögert-nachgebende Druckrückführung (Bild 3.28).

Mit der Drossel 1 kann die Verstärkung V_p eingestellt werden. Ein sprunghafter Druckanstieg p_e führt zu einem Druckanstieg p_y, der über die Drossel 2 und den Druckbehälter 3 verzögert gegengekoppelt wird. Dies entspricht dem PDT₁-Verhalten. Die Gegenkopplung wird gleichzeitig über die Drossel 4 (I-Anteil) wieder aufgehoben, jedoch mit $T_N >> T_V$, so daß sich insgesamt das PIDT₁-Verhalten ergibt.

Idealere PID-Glieder erhält man mit elektrischen Netzwerken, weil dort die Parameter quasi unabhängig voneinander einstellbar sind.

Analogtechnik:

Beim PID-Glied als Operationsverstärker-Schaltung ist das Eingangsnetzwerk PD-beschaltet und das Gegenkopplungsnetzwerk PI-beschaltet (Bild 3.29). 99

Bild 3.28 Schema eines pneumatischen PID-Reglers mit getrennt einstellbarer Nachstellzeit, Vorhaltzeit und Verstärkung

Bild 3.29 Operationsverstärker als PID-Glied

Für die Bildgleichung erhält man

$$F_{(p)} = \frac{u_a}{u_e} = -\frac{\frac{R_2 + \frac{1}{pC_2}}{R_1}}{\frac{R_1}{pC_1 \cdot (R_1 + \frac{1}{pC_1})}},$$

mit $T_N = R_2 \cdot C_2$, $T_V = R_1 \cdot C_1$ und $V_p = \frac{R_2}{R_1}$ folgt $F_{(p)} = -V_p(1 + \frac{T_V}{T_N} + \frac{1}{pT_N} + pT_V)$.

Diese Gleichung geht für die zulässige Annahme $T_N >> T_V$ in die Gleichung (3.24) des idealen PID-Gliedes über. Außerdem gelten, wie schon beim PIund PD-Glied, die Rechenwerte $T_1 = R_1 \cdot C_2$ und $T_2 = R_2 \cdot C_1$.

3.7 PT_1 -Glied

Regelstrecken-Glieder, deren Ausgangsgröße einer sprunghaften Änderung der Eingangsgröße verzögert folgt und für t $\rightarrow \infty$ proportional der Eingangsgröße ist, nennt man Verzögerungsglieder. Kommt bei diesen nur die I. Ableitung von x_a nach der Zeit vor, handelt es sich um ein PT₁-Glied. PT₁-Glieder enthalten einen Energiespeicher.

Die Übertragungsfunktion ergibt sich aus der Differentialgleichung

$$x_a + T_1 \cdot \frac{dx_a}{dt} = V_p x_e$$
.

Daraus die Bildgleichung

0

$$\frac{\overset{\circ}{\mathbf{x}}_{\mathbf{a}}}{\mathbf{x}_{\mathbf{e}}} = \mathbf{V}_{\mathbf{p}} \cdot \frac{1}{1 + \mathbf{p}\mathbf{T}_{1}} = \mathbf{V}_{\mathbf{p}} \cdot \frac{\alpha_{1}}{\mathbf{p} + \alpha_{1}}$$

Mit Korrespondenz Nr. 8 Tabelle 2.3 erhält man sofort die Sprungantwort

$$x_a = V_p \cdot x_e \cdot (1 - e^{-C/1})$$
 (3.29)

Sie stellt eine e-Funktion mit der Zeitkonstanten T_1 dar (Bild 3.30).

Der Frequenzgang wird ebenfalls aus der Bildgleichung

$$F_{(p)} = \frac{\dot{x}_a}{x_e} = V_p \cdot \frac{1}{1 + pT_1}$$
 (3.30)

ermittelt, so daß

$$F_{(j\omega)} = V_{p} \cdot \frac{1 - j\omega T_{1}}{1 + \omega^{2} T_{1}^{2}}$$

0

und schließlich der Frequenzgangbetrag wird:

$$|F_{(j\omega)}| = \frac{V_{\rm p}}{\sqrt{1 + \omega^2 T_1^2}} \quad . \tag{3.31}$$

Für	$\omega = 0$	wird	$ F_{(j\omega)} = V_P$,	
für	$\omega \rightarrow \infty$	wird	$ F_{(j\omega)} = 0$	und
für	$\omega_{\rm El} = \frac{1}{T_1}$	wird	$ \mathbf{F}_{(j\omega)} = \frac{\mathbf{V}_{\mathbf{P}}}{\sqrt{2}}$.	

Die beiden Asymptoten des Frequenzgangbetrages schneiden sich demnach bei der Eckfrequenz ω_{E1} .Während eine Asymptote parallel zur Abszisse verläuft, fällt die andere linear mit -20 dB/Dekade ab.

Der exakte Verlauf des Frequenzgangbetrages liegt bei $\omega_{\rm E1}$ um 1/ $\sqrt{2}$ χ -3 dB unterhalb der Asymptoten.

Der Phasenwinkel des PT1-Gliedes lautet

 $\varphi = - \arctan \omega T_1$ (3.32)

Beispiele für PT1-Glieder

Mechanik:

In Bild 3.31 ist ein Druckbehälter mit dem Volumen V dargestellt. Über eine Rohrleitung wird der Druck p_1 den Behälterdruck p_2 aufrechterhalten. Bei einer plötzlichen Druckänderung von p_1 wird sich der Druck p_2 entlang einer e-Funktion dem geänderten Wert von p_1 annähern. Dabei ist vorausgesetzt, daß es zu keinen nennenswerten Turbulenzen in der

Rohrleitung kommt.

Mit dem Strömungswiderstand R_s ist dann bei idealem Gas

$$p_2 + C_s R_s \cdot \frac{dp_2}{dt} = p_1$$

103

$$F_{(p)} = \frac{1}{1 + pT_1} = \frac{o_2^{p_2}}{p_1}$$
,

mit $T_1 = C_s \cdot R_s$; C_s : Speicherkapazität in Nl/bar; $R_s = \frac{0.00744 \cdot 1}{d^4}$ in bar $\cdot s/Nl$

Bild 3.31 Druckspeicher als PT1-Glied

Meßtechnik:

Die meisten analogen elektrischen und mechanischen Meßinstrumente lassen sich wegen der geringen Masse des Meßwerkes als gedämpfte Feder darstellen (Bild 3.32).

Es gilt die Differentialgleichung

$$F_e = d \cdot \frac{ds_a}{dt} + c_f \cdot s_a ,$$

$$F_e = d \cdot \overset{O}{s}_a \cdot p + c_f \cdot \overset{O}{s}_a$$

Damit wird der Frequenzgang

$$F_{(p)} = \frac{\overset{s}{s}_{a}}{F_{e}} = \frac{1}{c_{f} + d \cdot p} = \frac{1}{c_{f}} \cdot \frac{1}{1 + p \cdot d/c_{f}}$$

mit $T = d/c_f$ folgt

Elektrische Antriebe:

Im dynamischen Zustand ist die Gleichung für den Ankerkreis einer GS-Maschine im treibenden Rechtslauf (siehe Bild 2.12)

$$E = U_A - I_A R_A - L_A \cdot \frac{dI_A}{dt}$$

Damit wird beim Einschalten von U_A = Konst.

$$\begin{aligned} \frac{\mathbf{U}_{\mathbf{A}} - \mathbf{E}}{\mathbf{I}_{\mathbf{A}}} &= \mathbf{R}_{\mathbf{A}} + \mathbf{L}_{\mathbf{A}}\mathbf{p} ,\\ &= \mathbf{R}_{\mathbf{A}} \cdot (1 + \frac{\mathbf{L}_{\mathbf{A}}}{\mathbf{R}_{\mathbf{A}}} \cdot \mathbf{p}) ,\\ &= \mathbf{R}_{\mathbf{A}} \cdot (1 + \mathbf{pT}_{\mathbf{A}}) , \end{aligned}$$

mit $T_A = L_A/R_A$ der Ankerkreiszeitkonstanten ergibt sich also

$$F_{(p)} = \frac{{{{\vec{I}}_{A} \cdot R}_{A}}}{{{\vec{U}}_{A} - E}} = \frac{1}{1 + pT_{A}}$$

Für den Feldkreis des GS-Motors gilt ähnliches. Auch hier ist der Zusammenhang zwischen der Erregerspannung U $_{\rm E}$ und dem Feldstrom I $_{\rm E}$ eine e-Funktion.

Allgemeine Elektrotechnik:

In Bild 3.33 sind zwei elektrische Netzwerke dargestellt, die PT₁-Verhalten haben. Dies ist aus ihrem Frequenzgang sofort ersichtlich.

Es gilt für das RC-Netzwerk

$$F_{(p)} = \frac{\overset{0}{u}_{a}}{\overset{0}{U}_{e}} = \frac{\frac{1}{pC}}{\frac{1}{R} + \frac{1}{pC}} = \frac{1}{1 + pT_{1}}$$

mit $T_1 = R \cdot C$

und für das LR-Netzwerk

$$F_{(p)} = \frac{U_a}{U_e} = \frac{R}{R + pL} = \frac{1}{1 + pT_1}$$

mit $T_1 = \frac{L}{R}$

Bild 3.33 RC- und LR-Netzwerk als PT1-Glied

Analogtechnik:

Für einen Operationsverstärker als PT_1 -Glied gibt es zwei grundsätzliche Varianten (Bild 3.34).

Beide sind gleichwertig und unterscheiden sich lediglich in der Zeitkonstanten und der Verstärkung ${\rm V}_{\rm p}.$

Für die Variante a) gilt:

$$F_{(p)} = \frac{\overset{0}{u}_{a}}{\overset{0}{U}_{e}} = -\frac{R_{2}}{pC_{2} \cdot (R_{2} + \frac{1}{pC_{2}}) \cdot R_{1}}$$

mit

$$\begin{split} \mathbf{V}_{\mathbf{p}} &= \frac{\mathbf{R}_2}{\mathbf{R}_1} \quad \text{und} \quad \mathbf{T}_1 = \mathbf{R}_2 \mathbf{C}_2 \quad \text{folgt} \\ \mathbf{F}_{(\mathbf{p})} &= - \mathbf{V}_{\mathbf{p}} \cdot \frac{1}{1 + \mathbf{p} \mathbf{T}_1} \quad \text{,} \end{split}$$

für die Variante b) erhält man

$$F_{(p)} = \frac{\overset{o}{u}_{a}}{U_{e}} = -\frac{\frac{R_{3}/pC_{1}}{R_{1}R_{2}} + \frac{R_{1} + R_{2}}{pC_{1}} ,$$

mit

Bild 3.34 Zwei Operationsverstärker als PT1-Glieder

3.8 PT₂-Glied

Verzögerungsglieder II. Ordnung enthalten zwei voneinander unabhängige Energiespeicher. Bei ihnen existiert die I. und II. Ableitung der Ausgangsgröße nach der Zeit. Es entsteht ein Ausgleichsvorgang, der je nach der Dämpfung d zu verschiedenen Sprungantworten führt. Die Differentialgleichung des PT2-Gliedes lautet

$$x_a + T_1 \cdot \frac{dx_a}{dt} + T_2^2 \cdot \frac{d^2x_a}{dt^2} = V_p \cdot x_e$$
 (3.33)

Da es sich um eine Schwingungsgleichung handelt, läßt sich die Kennkreisfrequenz ω_{O} einführen als

$$\omega_{0} = \frac{1}{T_{2}}$$

dann wird mit der Dämpfung d

$$d = \frac{T_1}{2T_2} ,$$

$$x_a + \frac{2d}{\omega_o} \cdot \frac{dx_a}{dt} + \frac{1}{\omega_o^2} \cdot \frac{d^2x_a}{dt^2} = V_p \cdot x_e. \qquad (3.34)$$

,

Man erhält nun die Bildgleichung

$$\frac{\overset{o}{x}_{a}}{\overset{e}{x}_{e}} = V_{p} \cdot \frac{\overset{o}{\omega_{o}}^{2}}{\overset{\omega}{\overset{o}{o}}^{2} + 2d\omega_{o}p + p^{2}}$$

für die sich mit Korrespondenz Nr. 23 Tabelle 2.3 folgende Sprungantwort ergibt (Bild 3.35).

$$x_{a} = V_{p} \cdot x_{e} \left[1 - e^{-d \cdot \omega_{0} \cdot t} \cdot (\cos \omega_{e} t + \frac{d \cdot \omega_{0}}{\omega_{e}} \cdot \sin \omega_{e} t) \right], \quad (3.35)$$

mit $\alpha = d \cdot \omega_{0}$ und $\omega_{e} = \omega_{0} \cdot \sqrt{1 - d^{2}}$ der Eingangsfrequenz.

Je nach der Dämpfung lassen sich vier Fälle unterscheiden.

1. periodischer Fall, d = 0Dann ist die Sprungantwort eine ungedämpfte sinusförmige Schwingung.

Es wird

mit

$$x_a = V_P \cdot x_e \cdot (1 - \cos \omega_0 t)$$

2. mehrfaches Überschwingen, d << 1 Dann gilt Gleichung (3.35).

3. aperiodischer Grenzfall, d = 1

Bild 3.35 Sprungantwort und Frequenzgangbetrag eines ${\rm PT}_2-{\rm Gliedes}$

Dann ist

$$\mathbf{x}_{a} = \mathbf{v}_{p} \cdot \mathbf{x}_{e} \begin{bmatrix} 1 - e^{-\omega_{o} \cdot t} & (1 + \omega_{o} t) \end{bmatrix}$$

4. aperiodischer Fall, d > 1

Dann ist die Sprungantwort eine Summe aus zwei e-Funktionen.

$$\mathbf{x}_{a} = 1 - \left(\frac{\alpha + d \cdot \omega_{o}}{2\alpha} e^{-(\alpha \omega_{o} - \alpha)t} + \frac{\alpha - d \cdot \omega_{o}}{2\alpha} e^{-(d \cdot \omega_{o} + \alpha)t}\right)$$

Der Frequenzgang des PT₂-Gliedes ergibt sich aus Gleichung (3.33) zu o

$$F_{(p)} = \frac{\dot{x}_{a}}{x_{e}} = v_{p} \cdot \frac{1}{1 + pT_{1} + p^{2}T_{2}^{2}} , \qquad (3.36)$$

bzw.

$$F_{(p)} = V_{p} \cdot \frac{\omega_{o}^{2}}{\omega_{o}^{2} + 2d\omega_{o}p + p^{2}}$$

In komplexer Schreibweise folgt

$$F_{(j\omega)} = V_{P} \cdot \frac{1}{1 - \omega^{2}T_{2}^{2} + j\omega T_{2}}$$

oder mit d

$$F_{(j\omega)} = V_{p} \cdot \frac{1}{1 - \omega^{2}T_{2}^{2} + j\omega^{2}dT_{2}}$$

= $V_{p} \cdot \frac{1 - \omega^{2}T_{2}^{2} - j\omega^{2}dT_{2}}{(1 - \omega^{2}T_{2}^{2} + j\omega^{2}dT_{2})(1 - \omega^{2}T_{2}^{2} - j\omega^{2}dT_{2})}$
$$F_{(j\omega)} = V_{p} \cdot \frac{1 - \omega^{2}T_{2}^{2} - j\omega^{2}dT_{2}}{(1 - \omega^{2}T_{2}^{2})^{2} + 4d^{2}\omega^{2}T_{2}^{2}},$$

und schließlich wird

$$|F_{(j\omega)}| = V_{\rm P} \cdot \frac{1}{\sqrt{(1 - \omega^2 T_2^2)^2 + 4d^2 \omega^2 T_2^2}} .$$
(3.37)

Der Frequenzgangbetrag ist für verschiedene Dämpfungsziffern d in Bild 3.35 dargestellt. Typisch ist die negative Steigung der Asymptote von -40 dB/Dekade bei der Resonanzfrequenz ω_{o} .

Für d = 1 ergibt sich aus Gleichung (3.37) ein interessanter Fall. Es wird dann

$$\left| \mathbf{F}_{(j\omega)} \right| = \mathbf{v}_{\mathbf{p}} \cdot \frac{1}{\sqrt{(1 + \omega^2 \mathbf{T}_2^2)^2}} = \mathbf{v}_{\mathbf{p}} \cdot \frac{1}{\sqrt{1 + \omega^2 \mathbf{T}_2^2}} \cdot \frac{1}{\sqrt{1 + \omega^2 \mathbf{T}_2^2}},$$

d.h. der Frequenzgangbetrag des PT_2 -Gliedes entspricht für d = 1 (und d > 1) dem aus zwei in Reihe liegenden PT_1 -Gliedern (vgl. mit Gleichung (3.31)), denn die Reihenschaltung von Frequenzgängen kommt einer Multiplikation gleich (siehe Tabelle 4.12, Nr. 9). Der Phasenwinkel des PT_2 -Gliedes lautet

$$\varphi = -\arctan\frac{2d\omega T_2}{1 - \omega^2 T_2^2} \quad . \tag{3.38}$$

Beispiele für PT2-Glieder

Mechanik:

Ein Feder-Masse-System mit Dämpfung (Reibung) entspricht einem PT_2 -Glied. Durch eine äußere Kraft F_e angeregt, erfolgt eine Wegänderung, die von den Energiespeichern Masse und Feder sowie der Reibung des Systems beeinflußt wird (Bild 3.36).

Bild 3.36 Mechanisches Feder-Masse-System mit Dämpfung als PT2-Glied

Die zugehörige Differentialgleichung ergibt sich aus Σ F = 0 (vergleichbar Σ U = 0 in der Elektrotechnik).

 $\frac{c \cdot s_a}{\frac{1}{2}} + \frac{r \cdot \frac{ds_a}{dt}}{Reibungs} + \frac{m \cdot \frac{d^2s_a}{\sqrt{dt^2}}}{\frac{1}{2}} - \frac{F_e}{\frac{1}{2}} = 0$ Rückstellkraft der kraft kraft kraft kraft

In der Bildebene erhält man dann den Frequenzgang o

$$F_{(p)} = \frac{s_a}{F_e} = \frac{1}{1 + p \cdot \frac{r}{c} + p^2 \cdot \frac{m}{c}}$$

der dem eines PT2-Gliedes entspricht.

Mechanische Feder-Masse-Systeme mit Dämpfung findet man z.B. an einem Walzwerk und bei Förderantrieben (Bild 3.37).

Allgemeine Elektrotechnik:

Setzt man bei einem RLC-Reihenschwingkreis die Kondensatorspannung u_C in Beziehung zur anregenden äußeren Spannung, ergibt sich für $u_C PT_2$ -Verhalten (Bild 3.38).

Es gilt mit
$$\Sigma U = 0$$
 sowie $u_{C_{(0)}} = i_{L_{(0)}} = 0$

$$F_{(p)} = \frac{\widetilde{U}_{C}}{U_{e}} = \frac{1/pC}{R + pL + \frac{1}{pC}},$$

$$\alpha = \frac{R}{2L} \text{ und } \omega_{0}^{2} = \frac{1}{LC} \text{ folgt}$$

mit

$$\alpha = \frac{1}{2L} \quad \text{und} \quad \omega_0^- = \frac{1}{LC} \quad \text{fo.}$$

$$F_{(p)} = \frac{\omega_0^2}{\omega_0^2 + 2\alpha p + p^2} \quad .$$

Darin ist die Eigenkreisfrequenz

Aufhaspel

- m : Masse des Coils
- c ; Federkonstante des Walzgutes
- r : Reibung der Windungen F_e : Bandzug zwischen Walzen und Haspel

Walzgerüst, vereinfacht

- m : Masse der Walzen und des Gerüstes
- c : Federkonstante des Walzgerüstes d : Dämpfung des Walzgerüstes

Förderkorb

- m : Masse des Korbs
- c 🗄 Federkonstante des Förderseil
- d : Dämpfung des Förderseils
- r : Reibung der Seilwindungen

Bild 3.37 Schema eines Walzgerüstes, einer Aufhaspel und eines För-derantriebes mit näherungsweise PT₂-Verhalten

Bild 3.38 Elektrischer Reihenschwingkreis mit PT2-Verhalten

Hydraulik:

In vielen Anlagen ist die elektrohydraulische Verstellung (Positionierung) eines Weges von großer Bedeutung. Soll beispielsweise ein Stahlband auf eine bestimmte Dicke gewalzt werden, kann die Verstellung der Banddicke über ein Servoventilpaar erreicht werden.

Diese Verstellung wird durch Verändern des Kolbenhubs eines Hydraulikzylinders erreicht, der an ein Servoventil angeschlossen ist. Je nach dem Stromfluß durch die Servoventilspulen ändert sich der Öldurchfluß durch den Hydraulikzylinder (Bild 3.39).

Der Durchfluß Q eines solchen Systems errechnet sich aus dem Kolbenhub s und der Differenz aus Pumpendruck p und Zylinderdruck p $_z$ zu /5/.

$$Q = C \cdot s \cdot \sqrt{p - p_7}$$
 mit $C = Konstante$

Für den Druckaufbau in einem Druckbehälter (hier Hydraulikzylinder) wurde bereits in Kapitel 2.2.2 gezeigt, daß es zu einem PT₁-Verhalten kommt. Dieses gilt dann auch für den Durchfluß, so daß

$$\frac{Q_a}{Q_e} \sim \frac{1}{1 + pT_1}$$

Da die Durchflußänderung durch eine Stromänderung in den Servoventilspulen hervorgerufen wird, ist das zeitliche Verhalten des Servoventilstroms zu berücksichtigen. Der Strom durch eine Spule hat ebenfalls PT₁-Verhalten und ist

$$\frac{I_a}{I_e} \sim \frac{1}{1 + pT_2}$$

Nimmt man beide Frequenzgänge zusammen (Reihenschaltung), ergibt sich PT_2 -Verhalten.

bzw.

F

Für ein Servoventil der Firma EMG /15/ erhält man eine Resonanzfrequenz von ω_{0} = 65 Hz bei einer Dämpfung von d = 0,82.

Analogtechnik:

Bringt man in den Eingang und die Gegenkopplung eines Operationsverstärkers einen Energiespeicher, erhält man das PT₂-Verhalten. Von den zahlreichen Varianten seien hier zwei gezeigt (Bild 3.40). Aus Bild 3.40a ergibt sich folgender Frequenzgang

$$F_{(p)} = -v_{p} \cdot \frac{1 + pT_{2}}{(1 + pT_{3}) \cdot (1 + pT_{1} + p^{2}T_{1}T_{2})}$$

mit

$$T_1 = C_3 \cdot (R_3 + R_4)$$
, $T_2 = C_2 \cdot \frac{R_3 R_4}{R_3 + R_4}$, $T_3 = C_1 \cdot \frac{R_1 R_2}{R_1 + R_2}$

und

 $V_{\rm p} = \frac{R_3 + R_4}{R_1 + R_2}$.

Der Frequenzgang geht für T₂ = T₃ in den eines PT₂-Gliedes über. Bei der Schaltung des Bildes 3.40b liegt eine doppelte Rückführung vor. Einmal über C₁ und zum anderen über R₂. Der Frequenzgang lautet dann

$$F_{(p)} = -V_{p} \cdot \frac{1}{1 + pT_{1} + p^{2}T_{2}^{2}}$$

$$T_{1} = C_{1} \cdot (R_{2} + R_{3} + \frac{R_{2}R_{3}}{R_{1}}), T_{2} = \sqrt{R_{2}R_{3}C_{1}C_{2}}$$

$$V_{p} = \frac{R_{2}}{R_{1}} \cdot$$

mit und

Der wesentliche Unterschied beider Schaltungen liegt in den Zeitkonstanten. Da das Nennerpolynom jedoch in beiden Fällen II. Grades ist (siehe Abschnitt 3.9), handelt es sich um PT_2 -Glieder.

Bild 3.40 Zwei Operationsverstärker als Verzögerungsglieder II. Ordnung

3.9 PT_n-Glieder

Verzögerungsglieder höherer Ordnung lassen sich bekanntlich durch die Reihenschaltung von PT₁-Gliedern realisieren. Dabei entspricht die Reihenschaltung der Multiplikation der einzelnen Frequenzgänge. Bild 3.41 zeigt beispielsweise ein so aufgebautes PT₃-Glied.

Bild 3.41 Blockschaltbild einer Reihenschaltung dreier PT₁-Glieder

Die Differentialgleichung hat allgemein die Form

$$x_a + T_1 \frac{dx_a}{dt} + T_2^2 \frac{d^2x_a}{dt^2} + \dots + T_n^n \frac{d^nx_a}{dt^n} = V_p \cdot x_e$$
 (3.39)

Entsprechend lautet der Gesamtfrequenzgang eines PT_n-Gliedes

$$F_{(p)} = \prod_{i=1}^{n} \frac{V_{pi}}{1 + pT_{i}}$$
(3.40)

oder

$$F_{(p)} = \frac{v_{a}}{x_{e}} = \frac{v_{p}}{1 + pT_{1} + p^{2}T_{2}^{2} + \dots + p^{n}T_{n}^{n}} \quad .$$
(3.41)

Aus Gleichung (3.41) läßt sich erkennen, daß der Grad des Nennerpolynoms den Grad des Verzögerungsgliedes angibt bzw. die Zahl der unabhängigen Energiespeicher.

Das Verzögerungs-Verhalten tritt bei allen anderen Regelkreisgliedern als zusätzlicher Effekt auf, da es keine zeitlose Signalübertragung gibt. Sind die Zeitkonstanten der beteiligten Verzögerungs-Glieder eines Regelkreises sehr viel kleiner als alle anderen Zeitkonstanten, vernachlässigt man sie in der Regel.

Verzögerungsglieder höherer Ordnung bestehen in der Praxis meist aus hintereinandergeschalteten PT₁-Gliedern. Für den Regelungstechniker ist es daher wichtig, die einzelnen Zeitkonstanten zu kennen. Diese sind nämlich nicht identisch mit den Zeitkonstanten des allgemeinen Frequenzganges (3.41). Am Beispiel des PT₃-Gliedes wird das deutlich.

Es ist dann

$$F_{(p)} = \frac{V_{P_1} \cdot V_{P_2} \cdot V_{P_3}}{(1 + pT_1^*) \cdot (1 + pT_2^*) \cdot (1 + pT_3^*)} , \qquad (3.42)$$

mit $V_p^* = V_{P_1} \cdot V_{P_2} \cdot V_{P_3}$ wird

$$\mathbf{F}_{(p)} = \frac{\mathbf{v_{p}^{*}}}{1 + \mathbf{p} \cdot (\mathbf{T_{1}^{*} + \mathbf{T_{2}^{*} + \mathbf{T_{3}^{*}}}) + \mathbf{p}^{2} \cdot (\mathbf{T_{1}^{*} \mathbf{T_{2}^{*} + \mathbf{T_{1}^{*} \mathbf{T_{3}^{*} + \mathbf{T_{2}^{*} \mathbf{T_{3}^{*}}}}) + \mathbf{p}^{3} \mathbf{T_{1}^{*} \mathbf{T_{2}^{*} \mathbf{T_{3}^{*}}}}}.$$

Zwischen den Zeitkonstanten $T_1^*...T_3^*$ der einzelnen $PT_1^-Glieder$ und den allgemeinen Zeitkonstanten $T_1^{...T_3}$ der Gleichung (3.41) besteht damit der Zusammenhang:

$$T_{1} = T_{1}^{*} + T_{2}^{*} + T_{3}^{*}$$

$$T_{2}^{2} = T_{1}^{*} T_{2}^{*} + T_{1}^{*} T_{3}^{*} + T_{2}^{*} T_{3}^{*}$$

$$T_{3}^{3} = T_{1}^{*} T_{2}^{*} T_{3}^{*} .$$

Für den komplexen Frequenzgang einer Strecke n-ter Ordnung gilt allgemein

$$F_{(j\omega)} = \frac{v_{p}}{1 + j\omega T_{1} + (j\omega)^{2} T_{2}^{2} + \dots (j\omega)^{n} T_{n}^{n}}$$

daraus für eine PT3-Strecke

$$F_{(j\omega)} = V_{P} \frac{(1 - \omega^{2}T_{2}^{2}) - j \cdot (\omega T_{1} - \omega^{3}T_{3}^{3})}{(1 - \omega^{2}T_{2}^{2})^{2} + (\omega T_{1} - \omega^{3}T_{3}^{3})^{2}} .$$
(3.43)

Der aus dieser Gleichung ermittelte Phasenwinkel

$$\varphi = \arctan \frac{\omega^3 T_3^3 - \omega T_1}{1 - \omega^2 T_2^2} ,$$

muß von $\varphi = 0^{\circ}$ bis $\varphi = -270^{\circ}$ verlaufen. Er läßt sich aber in dieser Form, wegen der beiden Grenzwerte $\varphi = 0^{\circ}$ und -90° der arctan-Funktion nicht darstellen. Es ist daher angebracht, auch den komplexen Frequenzgang und Phasenwinkel aus PT₁-Gliedern zusammenzusetzen.

Also wird für eine PT3-Strecke

$$F_{(j\omega)} = \frac{V_{p}^{*}}{(1 + j\omega T_{1}^{*}) \cdot (1 + j\omega T_{2}^{*}) \cdot (1 + j\omega T_{3}^{*})}, \qquad (3.44)$$

und

$$|\mathbf{F}_{(j\omega)}| = \frac{\mathbf{v}_{\mathbf{p}}^{*}}{\sqrt{(1 + \omega^{2}\mathbf{T}_{1}^{*2}) \cdot (1 + \omega^{2}\mathbf{T}_{2}^{*2}) \cdot (1 + \omega^{2}\mathbf{T}_{3}^{*2})}}, \quad (3.45)$$

sowie

$$\varphi = - \arctan_{1} \pi^{*} - \arctan_{2} \pi^{*} - \arctan_{3} \pi^{*}$$
 (3.46)

Die asymptotische Darstellung des Betragsfrequenzganges eines PT_1^- Gliedes fällt von der Eckfrequenz um -20 dB/Dekade ab. Der eines PT_2^- Gliedes fällt um -40 dB/Dekade, da er in logarithmischer Form der Addition aus zwei PT_1^- Gliedern entspricht. D.h. mit jeder weiteren Verzögerung fällt der Betragsfrequenzgang um -20 dB/Dekade mehr ab. Bild 3.42 zeigt diesen Zusammenhang an einem PT_3^- Glied.

Bild 3.42 Frequenzgangbetrag eines PT_3 -Gliedes als Summe aus drei PT_1 -Gliedern

3.10 PT, -Glied

Das Totzeitverhalten ist ein besonderes Verzögerungsverhalten. Es entsteht unabhängig von der Form des Eingangssignals eine konstante Verzögerungszeit T_t . Für Zeiten $t < T_t$ ist die Ausgangsgröße Null (Bild 3.43). Für $t \stackrel{\geq}{=} T_t$ erhält man eine Ausgangsgröße, deren Form gleich der der Eingangsgröße ist. D.h., beim Totzeitglied entspricht die Ausgangsgröße der um die Zeit T_t verzögerten (verschobenen) Eingangsgröße.

Damit heißt die Übertragungsfunktion

$$\begin{aligned} x_{a} &= V_{p} \cdot x_{e(t - T_{t})} & \text{für } t \stackrel{2}{=} T_{t} \\ x_{a} &= 0 & \text{für } t < T_{t} \end{aligned}$$
 (3.47)

Eine Verschiebung auf der Zeitachse entspricht beim Verschiebungssatz der Laplace-Transformation einer e-Funktion (Korrespondenz Nr. 4, Tabelle 2.2).

Bild 3.43 Sprungantwort und Frequenzgangbetrag eines PT_t-Gliedes

Man erhält den Frequenzgang

$$F_{(p)} = \frac{\overset{o}{x}_{a}}{\overset{a}{x}_{e}} = V_{p} \cdot e^{-pT_{t}},$$
 (3.48)

damit wird

$$F_{(j\omega)} = V_{p} \cdot e^{-j\omega T_{t}}$$

bzw. mit der Eulerschen Gleichung

$$F_{(j\omega)} = V_P(\cos\omega T_t - j\sin\omega T_t)$$
.

Da $\cos^2 x + \sin^2 x = 1$, lautet der Frequenzgangbetrag

$$\left| \mathbf{F}_{(j\omega)} \right| = \mathbf{V}_{\mathbf{P}} \quad . \tag{3.49}$$

Damit ist der Frequenzgangbetrag eines Totzeitgliedes konstant und unabhängig von der Frequenz.

Der Phasenwinkel ergibt sich zu

$$\hat{\varphi} = \arctan - \frac{\sin\omega_{t}}{\cos\omega T_{t}} = -\omega T_{t}$$
 (3.50)

Wegen der üblicherweise logarithmischen Darstellung von $\varphi = f_{(\omega)}$ wird aus dem linearen Zusammenhang ein parabelförmiger. Beispiele für PT_-Glieder

Mechanik:

Jeder Materialtransport, der in eine Regelung einbezogen ist, enthält das Totzeitverhalten. Dazu zwei typische Beispiele. Bild 3.44 zeigt ein Förderband, bei dem der Materialfluß beeinflußt werden soll. Die Menge x_e landet erst nach der Totzeit

 $T_t = \frac{1}{v}$

am Bestimmungsort.

Bild 3.44 Transportband als Totzeitglied

Daraus läßt sich schließen, das überall dort Totzeiten auftreten, wo die Erfassung der Eingangsgröße örtlich getrennt ist von der der Ausgangsgröße. Dies wird besonders deutlich bei der Regelung des Walzprozesses (Bild 3.45). Es ist nämlich bis heute nicht möglich, die Materialdicke im Walzspalt direkt zu messen. Dies wäre aber wünschenswert, wenn man Dickenabweichungen mit Hilfe der Walzkraft F_w direkt kompensieren möchte. Ersatzweise wird die Walzkraft über die Messung der Dickenabweichung

 $\Delta h = h_e - h_a$

indirekt beeinflußt (siehe Abschnitt 6.1.7). Diese Δh -Erfassung ist aber Totzeit-behaftet. Es gilt

Elektrische Antriebe:

Der Stromrichter wird vom Hauptenergiefluß durchsetzt und stellt einen Stromverstärker dar. Er ist das Bindeglied zwischen der analogen Regelung und dem Motor.

Wenn der Antrieb für zwei Dreh- und Momentrichtungen vorgesehen ist, muß die Ankerspannung des Motors zwei Polaritäten annehmen können. Dies ist beispielsweise mit zwei vollgesteuerten Drehstrombrückenschaltungen möglich. Bild 3.46 zeigt eine dieser Drehstrombrückenschaltungen zusammen mit der zugehörigen Ansteuerung /2/, /4/.

Der Zündzeitpunkt eines Thyristors wird nun durch Vergleich der Steuergleichspannung <u>+</u> U_{st} (vom Stromregler) mit der jeweiligen verketteten Netzspannung der Drehstromseite ermittelt.

Bild 3.46 Stromrichter-Antrieb mit sechspulsiger vollgesteuerter Drehstrombrückenschaltung als Totzeitglied

Je nach der Größe der Steuergleichspannung U_{st} ergibt sich ein anderer Zündzeitpunkt. Dieser ist durch den sog. Steuerwinkel α festgelegt. Bei einer vollgesteuerten Drehstrombrückenschaltung ergibt sich dann die Ankerspannung des Motors in Abhängigkeit von der Drehstromleiterspannung U_L und dem Steuerwinkel α zu /4/.

$$U_{di_{\alpha}} = 1,35 \cdot U_{L} \cdot \cos \alpha$$
.

Da die Netzspannung der Drehstromseite nur einmal pro Periode für den Vergleich mit der Steuergleichspannung zur Bildung der Zündimpulszeitpunkte zur Verfügung steht, stellt der Stromrichter ein Totzeitglied dar. Denn er "bemerkt" eine Sollwert- bzw. Störgrößenänderung erst mit Beginn der nächsten Periode. Die Totzeit ergibt sich daher aus der Periodendauer T und der Anzahl der Thyristorumschaltungen (Kommutierungen) pro Periode.

118

Diese Kommutierungs- oder Pluszahl ist in diesem Beispiel p = 6. Es gilt allgemein

$$T_t = \frac{T}{2 \cdot p}$$
.

Diese Totzeit ist in der Regelung zu berücksichtigen.

Meßtechnik:

Jede Signal-Wandlung und -übertragung, sei es D/A-,A/D-,U/f- oder f/U-Wandlung, bringt eine Totzeit mit sich. Es vergeht also vom Auftreten des Signals am Wandlereingang bis zur Übertragung an den Ausgang eine feste, nicht zu umgehende Zeit.

Bei guten Wandlern, zu denen auch die Operationsverstärker zählen, liegt die Totzeit im μ s-Bereich. Sie kann aber auch einige zehn ms betragen und ist dann in der Regelung zu berücksichtigen.

3.11 Nichtlineare Regelkreisglieder

Die bisher behandelten Regelkreisglieder zeigten ein lineares Verhalten zwischen Ausgangs- und Eingangsgröße. Lineare Regelkreisglieder müssen das Überlagerungs- oder Superpositionsprinzip erfüllen /26/. Im stationären Zustand ist nämlich (Bild 3.47)

$$\frac{\Delta x_a}{\Delta x_e} = V_p = \text{konstant},$$

d.h., die Steigung der Kennlinie ist für alle Werte von x_e gleich groß.

Bei den nichtlinearen Regelkreisgliedern ist die Steigung der Kennlinie von der Amplitude des Eingangssignals x_e anhängig; das

Bild 3.47 Beispiel einer linearen und nichtlinearen Kennlinie

Superpositionsprinzip ist nicht erfüllt. Für eine Regelung erhält man dann, je nach der Größe des Sollwertes, unterschiedliche Werte der Stellgröße y.

$$\frac{\Delta \mathbf{x}_{a}}{\Delta \mathbf{x}_{e}} = \mathbf{V}_{P} \left(\mathbf{x}_{eo} \right) \neq \text{konstant} .$$
(3.51)

Damit sind auch die sonst unveränderlichen Kennwerte einer Regelung, wie Eckfrequenz, Dämpfung, Phasenreserve und Stabilitätsgrenze, von der Amplitude des Sollwertes abhängig. Gewollte oder ungewollte Nichtlinearitäten innerhalb eines Regelkreises können entstehen durch:

> Reibung Momentenlose Schaltverhalten von Verstärkern Stellgrenze von Verstärkern Begrenzung von Reglern Sättigungserscheinungen (Magnetisierung) Nichtlineare Schaltelemente (Dioden, Thyristoren).

In Abschnitt 2.14 wurden bereits einige Kennlinien mit nichtlinearem Verhalten vorgestellt. So z.B. die Leerlaufkennlinie einer Gleichstrom-Maschine, bei der der magnetische Fluß \emptyset eine Funktion des Erregerstromes I_e ist. Oder die Begrenzung des Stellbereiches eines Verstärkers durch Zenerdioden bzw. das Herabsetzen der Ansprechempfindlichkeit um Null herum (tote Zone) mit Dioden.

Nichtlineare Regelkreisglieder werden durch den Buchstaben "N" innerhalb des Blockschaltbildes gekennzeichnet.

Für die rechnerische Betrachtung von Nichtlinearitäten ist es sinnvoll, diese in Kennlinientypen einzuteilen. Grundsätzlich lassen sich sechs verschiedene Nichtlinearitäten unterscheiden. Die Signalbegrenzung, Ansprechschwelle, Vorlast, Hysterese, Zweipunktund Dreipunktverhalten /17/.

In Tabelle 3.2 sind diese Kennlinientypen jeweils in Abhängigkeit von x_e, und t mit einem Anwendungsbeispiel dargestellt.

3.11.1 Linearisierung

Die Linearisierung einer nichtlinearen Kennlinie ist möglich, wenn das Eingangssignal (der Sollwert) nur kleine Abweichungen aufweist. Dann genügt es, wie bereits in Abschnitt 2.14 beschrieben, die gekrümmte Kennlinie durch die Tangente im jeweiligen Arbeitspunkt zu ersetzen. Bei großen Änderungen der Eingangsamplitude ist eine Linearisierung nicht möglich.

Kennlinien, die Sprungstellen oder Knickpunkte enthalten, sich also nicht differenzieren lassen, sind ebenfalls nicht zu linearisieren. Dies trifft auf die Kennlinien mit Vorlast, Zweipunkt- und Dreipunktverhalten zu.

Eine andere Art bezüglich der Frequenz ω zu linearisieren, die sog. Harmonische Linearisierung, beruht auf der Fourier-Analyse. Allerdings darf sich nur ein nichtlineares Glied in der Regelung befinden und die Regelung muß sich im eingeschwungenen Zustand befinden (Bild 3.48).

Bild 3.48 Harmonische Linearisierung eines nichtlinearen Regelkreigliedes innerhalb einer Regelung mit Hilfe der Fourier-Analyse

Bei sinusförmiger Anregung werden dann alle Regelkreisglieder Dauerschwingungen ausführen. Die Schwingungen am Ausgang des nichtlinearen Gliedes sind jedoch verzerrt. Sie enthalten harmonische Oberschwingungen mit 2ω , 3ω ... $n\omega$, die sich aus der Fourier-Analyse der Kennlinie ergeben. Werden die Oberschwingungen durch die nachgeschalteten Regelkreisglieder gedämpft, dürfen sie vernachlässigt werden. Es ist nun lediglich die Grundschwingung zu betrachten, so daß das nichtlineare Glied zu einem quasi-linearen Regelkreisglied wird.

	n h-i	u bei lingguam	
Nichtlineare	x _a bel	a bei inearem	
Kennlinien	sinusförmigem Eingangssignal	Eingangssignal	
Xa Xs Xs Signalbegrenzung/ Sättigung	×e ×a ×s × 22 wit	xxe xxs 0	
Ansprechschwelle (tote Zone)	o uT _t	Xe Xa	
Vorlast/Vorspannung		+XV Ta Xe	
Xa 2Xe 45° Xs Hysterese	vie Xe vie Xe vie Xe vie Vie vie Vie vie Vie Vie Vie Vie Vie Vie Vie Vie Vie V	xe Xe Xe	
x_{e}	ve xs va zr wt	xe Xa	
Dreipunktverhalten a) ohne / b) mit Hysterese	xs ^x a 0 w ⁷ t	Va Xe Xa Xs Ti	

Tabelle 3.2 Beschreibungsfunktion und Ortskurve nichtlinearer Regelkreisglieder

3.11.2 Beschreibungsfunktion

Die gleiche Rolle wie der Frequenzgang linearer Regelkreisglieder spielt die Beschreibungsfunktion bei nichtlinearen Regelkreisgliedern. Während der Frequenzgang unabhängig ist von der Amplitude der Eingangsgröße, ist dies bei der Beschreibungsfunktion gerade umgekehrt. Aber nur so lassen sich die Charakteristika der Nichtlinearität erfassen. Allerdings wird durch die Beschreibungsfunktion nur der Zustand des Schwingungsgleichgewichts (Harmonische Balance) erfaßt. Die Beschränkung auf die Grundschwingung der Ausgangsgröße eines nichtlinearen Regelkreisgliedes ist in den meisten Fällen zulässig. Denn die Dämpfung der Oberschwingungen geschieht durch die meist beteiligten Verzögerungsglieder (Tiefpässe).

Für die Beschreibungsfunktion N (\hat{x}) definiert man dann

$$N_{(\hat{x}_{e})} = \frac{x_{a1(\omega t)}}{x_{e(\omega t)}} .$$
(3.52)

In komplexer Schreibweise erhält man mit Gleichung (2.24) sowie Korrespondenz Nr. 6 und 7 aus Tabelle 2.1

$$x_{a1(\omega t)} = a_1 \cdot e^{j(\omega t + \pi/2)} + b_1 \cdot e^{j\omega t}$$

mit

$$x_{e(\omega t)} = \hat{x}_{e} \cdot e^{j\omega t}$$
,

folgt dann für die Beschreibungsfunktion

$$N_{(\hat{x}_{e})} = \frac{b_{1} + ja_{1}}{\hat{x}_{e}} .$$
 (3.53)

Signalbegrenzung (Sättigungsglied)

Die statische Kennlinie eines Regelkreisgliedes mit Signalbegrenzung ist in Bild 3.49 dargestellt. Praktisch besitzt jedes technische Regelkreisglied einen Maximalwert der Ausgangsgröße, der nicht überschritten werden kann. So z.B. die Stellgrenze eines Operationsverstärkers.

Die Signalbegrenzung ist eine ungerade Funktion $x_{a(\varphi)} = -x_{a}(-\varphi)$, so daß für die Fourier-Koeffizienten gilt:

$$a_{1} = 0$$

$$b_{1} = \frac{2}{\pi} \int_{0}^{\pi} x_{a(\varphi)} \cdot \sin \varphi \cdot d\varphi \qquad (3.54)$$

Aus Bild 3.49 läßt sich ablesen, daß

$$\mathbf{x}_{a} = - \begin{vmatrix} \hat{\mathbf{x}}_{e} \cdot \sin\varphi & \text{für} & \varphi = [0, \varphi_{1}] \\ \mathbf{x}_{s} = \hat{\mathbf{x}}_{e} \cdot \sin\varphi & \text{für} & \varphi = [\varphi_{1}, \varphi_{2}] \\ \hat{\mathbf{x}}_{e} \cdot \sin\varphi & \text{für} & \varphi = [\varphi_{2}, \pi] \end{vmatrix}$$

Bild 3.49 Kennlinien der Signalbegrenzung

Setzt man diesen Zusammenhang in Gleichung (3.54) ein, ergibt sich für

$$b_{1} = \frac{2}{\pi} \cdot (2 \cdot \hat{x}_{e} \cdot \int_{0}^{\psi_{1}} \sin^{2}\varphi \cdot d\varphi + x_{s} \cdot \int_{\varphi_{1}}^{\psi_{2}} \sin\varphi \cdot d\varphi)$$

Daraus folgt

$$\mathbf{b}_{1} = \hat{\mathbf{x}}_{e} \cdot \frac{2}{\pi} \cdot (\hat{\varphi}_{1} + \sin\varphi_{1} \cdot \cos\varphi_{1})$$
(3.55)

und mit Gleichung (2.24) für die Beschreibungsfunktion

$$N_{(\hat{x}_{e})} = \frac{x_{a_{1}(\varphi)}}{x_{e}(\varphi)} = \frac{b_{1} \cdot \sin \varphi}{\hat{x}_{e} \cdot \sin \varphi} ,$$

also

$$N_{(\hat{x}_{e})} = \frac{2}{\pi} \cdot (\hat{\varphi}_{1} + \sin\varphi_{1} \cdot \cos\varphi_{1}) , \qquad (3.56)$$

mit

$$\varphi_1 = \arcsin \frac{x_s}{\hat{x}_e}$$
 bzw. $\hat{\varphi}_1 = \frac{\pi}{180} \cdot \arcsin \frac{x_s}{\hat{x}_e}$,

folgt

$$N_{(\hat{x}_{e})} = \frac{2}{\pi} \cdot \left(\frac{\pi}{180} \cdot \arcsin \frac{x_{s}}{\hat{x}_{e}} + \frac{x_{s}}{\hat{x}_{e}} \cdot \sqrt{1 - \left(\frac{x_{s}}{\hat{x}_{e}}\right)^{2}} \right). \quad (3.57)$$

Die Ortskurve der Beschreibungsfunktion, wie sie in Bild 3.50 dargestellt ist, stellt die Abhängigkeit vom Quotienten x_s/\hat{x}_e dar und ist eine rein reelle Funktion.

Bild 3.50 Ortskurve der Beschreibungsfunktion und Stabilitätsgebiet der Ansprechschwelle

Da

$$x_s \stackrel{\leq}{=} \hat{x}_e$$
,

verläuft die Beschreibungsfunktion auf der reellen Achse von O ... 1. Für die Stabilitätsbetrachtung von Regelkreisen mit Nichtlinearitäten ist die Angabe des Stabilitätsgebietes wichtig, wonach der Zeiger der Ortskurve N $(\hat{\mathbf{x}}_n)$ zu- oder abnimmt.

Dies bedeutet bei der Signalbegrenzung, daß mit wachsendem Wert x_s der Zeiger N (\hat{x}_e) zunimmt, also eine aufklingende Schwingung entsteht. Zwischen auf- und abklingender Schwingung gibt es eine stabile Grenze. Das Stabilitätsgebiet ist in Bild 3.50 dargestellt.

Ansprechschwelle (Tote Zone)

Regelkreisglieder mit Ansprechschwelle (Bild 3.51) treten meist als Totzeitglieder auf. Es entsteht eine Signalpause zwischen Einund Ausgangsgröße, wie z.B. bei der U-I-Kennlinie einer Diode infolge der Durchlaßspannung U_D.

Die statische Kennlinie der Ansprechschwelle ist eine ungerade Funktion $x_{a(\varphi)} = -x_{a(-\varphi)}$ für die Gleichung (3.54) gilt.

Bild 3.51 Kennlinien der Ansprechschwelle (Tote Zone)

Aus Bild 3.50 kann man ablesen, daß

$$\mathbf{x}_{a} = - \begin{vmatrix} \mathbf{0} & \text{für } \boldsymbol{\varphi} = [\mathbf{0}, \boldsymbol{\varphi}_{1}] \\ \hat{\mathbf{x}}_{e} \cdot \sin \boldsymbol{\varphi} - \mathbf{x}_{t} & \text{für } \boldsymbol{\varphi} = [\boldsymbol{\varphi}_{1}, \boldsymbol{\varphi}_{2}] \\ \mathbf{0} & \text{für } \boldsymbol{\varphi} = [\boldsymbol{\varphi}_{2}, \boldsymbol{\pi}] .$$

Damit ergibt sich für den Fourier-Koeffizienten

$$\mathbf{b}_{1} = \frac{2}{\pi} \cdot \hat{\mathbf{x}}_{e} \int_{\varphi_{1}}^{\varphi_{2}} (\sin\varphi - \mathbf{x}_{t}) \cdot \sin\varphi \cdot d\varphi$$

Daraus folgt mit $x_t = \hat{x}_e \cdot \sin \varphi_1$

$$\mathbf{b}_{1} = \hat{\mathbf{x}}_{e} \cdot (1 - \frac{2\varphi_{1}}{\pi} - \frac{2}{\pi} \cdot \sin\varphi_{1} \cdot \cos\varphi_{1})$$
(3.58)

und für die Beschreibungsfunktion erhält man mit Gleichung (2.24) und (3.58)

$$N_{(\hat{x}_{e})} = 1 - \frac{2}{\pi} \cdot (\hat{\varphi}_{1} + \sin \varphi_{1} \cdot \cos \varphi_{1}) , \qquad (3.59)$$

mit

$$\hat{\varphi}_1 = \frac{\pi}{180} \cdot \arcsin \frac{\mathbf{x}_t}{\hat{\mathbf{x}}_e}$$

$$N_{(\hat{x}_{e})} = 1 - \frac{2}{\pi} \cdot \left(\frac{\pi}{180} \cdot \arcsin \frac{x_{t}}{\hat{x}_{e}} + \frac{x_{t}}{\hat{x}_{e}} \right) \sqrt{1 - \left(\frac{x_{t}}{\hat{x}_{e}}\right)^{2}}$$
(3.60)

Die in Bild 3.52 dargestellte Ortskurve der Beschreibungsfunktion verläuft auf der reellen Achse von O ... 1 für $x_t/\hat{x}_e = 1 \dots O$. Das Stabilitätsgebiet zeigt, daß sich für steigende Werte von x_t eine abklingende Schwingung ergibt.

Bild 3.52 Ortskurve der Beschreibungsfunktion und Stabilitätsgebiet der Ansprechschwelle

Vorlast (Vorspannung)

Die statische Kennlinie der Vorlast ist in Bild 3.53 dargestellt. Die Ausgangsgröße x_a unterscheidet sich nur durch die additive Konstante x_y von der Eingangsgröße x_e . Solche Effekte treten z.B. als sog. Offsetspannung bei Operationsverstärkern auf.

Bild 3.53 Kennlinien der Vorlast

Die Kennlinie enthält nur einen Realteil und es ergibt sich für die Fourier-Koeffizienten

$$a_{1} = 0$$

$$b_{1} = \frac{1}{\pi} \int_{0}^{\pi} x_{a}(\varphi) \cdot \sin\varphi \cdot d\varphi + \frac{1}{\pi} \int_{\pi}^{2\pi} x_{a}(\varphi) \cdot \sin\varphi \cdot d\varphi .$$
(3.61)

Aus Bild 3.53 läßt sich ersehen, daß

$$x_{a} = - \begin{vmatrix} x_{y} + \hat{x}_{e} \cdot \sin\varphi & \text{für} & x_{e} > 0 \\ -x_{y} + \hat{x}_{e} \cdot \sin\varphi & \text{für} & x_{e} < 0 \end{cases}$$

Damit lautet entsprechend Gleichung (3.61)

$$\mathbf{b}_{1} = \frac{1}{\pi} \int_{0}^{\pi} (\mathbf{x}_{y} + \hat{\mathbf{x}}_{e} \cdot \sin\varphi) \cdot \sin\varphi \cdot d\varphi + \frac{1}{\pi} \int_{\pi}^{2\pi} (-\mathbf{x}_{y} + \hat{\mathbf{x}}_{e} \cdot \sin\varphi) \cdot \sin\varphi \cdot d\varphi$$

Durch Substitution der Variablen des zweiten Integrals $\varphi = \pi + z$ folgt

$$b_{1} = \frac{2 \cdot x_{y}}{\pi} \int_{0}^{\pi} \sin \varphi \cdot d\varphi + \frac{2 \cdot \hat{x}_{e}}{\pi} \int_{0}^{\pi} \sin^{2} \varphi \cdot d\varphi$$

Daraus folgt $4 \cdot b_{\star} = ---$

$$b_1 = \frac{4 + x_Y}{\pi} + \hat{x}_e$$
 (3.62)

und für die Beschreibungsfunktion mit Gleichung (2.24) und (3.61)

$$N_{(\hat{x}_{e})} = \frac{\overset{x}{a}_{1}(\varphi)}{\overset{x}{x}_{e}(\varphi)} = \frac{4 \cdot x}{\pi \cdot \hat{x}_{e}} + 1 . \qquad (3.63)$$

Die zugehörige Ortskurve der Beschreibungsfunktion verläuft auf der reellen Achse von 1 ... ∞ für $x_y/\hat{x}_e = 0 \dots \infty$. Das Stabilitätsgebiet zeigt, daß für steigende Vorlast $x_y = N_{(\hat{x}_e)}$ zunimmt (Bild 3.54).

Bild 3.54 Ortskurve der Beschreibungsfunktion und Stabilitätsgebiet der Vorlast

Hysterese

Mehrdeutige Kennlinien werden als Hysteresekennlinien bezeichnet. Die hier besprochene Hysterese ist daher auch eine idealisierte Hystereseschleife der Magnetisierung von Eisen. In der Antriebstechnik findet man sie wieder bei der Nachbildung des magnetischen Flusses aus dem Erregerstrom.

Wegen der Mehrdeutigkeit der Hysterese sind entsprechend den Gleichungen (2.25) und (2.26) beide Fourier-Koeffizienten zu berechnen. Aus Bild 3.55 läßt sich entnehmen, daß

$$\mathbf{x}_{a} = - \begin{vmatrix} \hat{\mathbf{x}}_{e} \cdot \sin\varphi - \mathbf{x}_{t} & \text{für } \varphi = [-\varphi_{1}, \pi/2] \\ \hat{\mathbf{x}}_{e} - \mathbf{x}_{t} & \text{für } \varphi = [\pi/2, \pi - \varphi_{1}] \\ \hat{\mathbf{x}}_{e} \cdot \sin\varphi + \mathbf{x}_{t} & \text{für } \varphi = [\pi - \varphi_{1}, 3\pi/2] \\ -\hat{\mathbf{x}}_{e} + \mathbf{x}_{t} & \text{für } \varphi = [3\pi/2, 2\pi - \varphi_{1}] \end{vmatrix}$$

Bild 3.55 Kennlinien der Hysterese

Da die Hysterese in den Bereichen $\varphi = [-\varphi_1, \pi - \varphi_1]$ und $\varphi = [\pi - \varphi_1, 2\pi - \varphi_1]$ gleich ist, ändern sich die Fourier-Koeffizienten, so daß gilt:

$$a_{1} = \frac{2}{\pi} \int_{-\varphi_{1}}^{\pi-\varphi_{1}} x_{a(\varphi)} \cdot \cos\varphi \cdot d\varphi ,$$

$$b_{1} = \frac{2}{\pi} \int_{-\varphi_{1}}^{\pi-\varphi_{1}} x_{a(\varphi)} \cdot \sin\varphi \cdot d\varphi .$$
(3.64)

Daraus errechnen sich

^

$$a_1 = -\frac{x_e}{\pi} \cdot \cos^2 \varphi_1 \tag{3.65}$$

und

$$b_1 = \frac{x_e}{\pi} \cdot \left(\frac{\pi}{2} + \widehat{\varphi}_1 + \sin\varphi_1 \cdot \cos\varphi_1\right) . \qquad (3.66)$$

Damit lautet die Beschreibungsfunktion entsprechend Gleichung (3.53)

$$N_{(\hat{x}_{e})} = \frac{1}{\pi} \left(\frac{\pi}{2} + \widehat{\varphi}_{1} + \sin \varphi_{1} \cdot \cos \varphi_{1} \right) - j \cdot \frac{\cos^{2} \varphi_{1}}{\pi} , \qquad (3.67)$$

mit

$$\widehat{\varphi}_{1} = \frac{\pi}{180} \cdot \arcsin\left(1 - \frac{2 \cdot x_{t}}{\hat{x}_{e}}\right) = \frac{\pi}{180} \cdot \arcsin\alpha ,$$

$$N_{\left(\widehat{x}_{e}\right)} = \frac{1}{2} + \frac{1}{\pi} \cdot \left(\frac{\pi}{180} \arcsin\alpha + \alpha \sqrt{1 - \alpha^{2}}\right) - j \cdot \frac{1}{\pi}(1 - \alpha^{2}) . \quad (3.68)$$

Die Ortskurve der Beschreibungsfunktion ist komplex und verläuft für ReN von O... 1 bei $x_t/x_e = 1$... O, wie aus Bild 3.56 zu ersehen. Da mit wachsendem Wert von $x_t N_{(\hat{x}_e)}$ zunächst steigt und dann gegen Null läuft, ergibt sich sozusagen ein "Fenster" im Stabilitätsgebiet, für das sich eine aufklingende Schwingung einstellt.

Bild 3.56 Ortskurve der Beschreibungsfunktion und Stabilitätsgebiet der Hysterese

Zweipunktverhalten

Das Zweipunktverhalten ist von Relaisschaltungen her bekannt. (Bild 3.57). Aber auch die Schmitt-Trigger der Analog- und Digitaltechnik weisen dieses Verhalten auf. Da die statische Kennlinie des Zweipunktverhaltens eine ungerade Funktion $x_{a(\varphi)} = -x_{a(-\varphi)}$ ist, wird

$$a_{1} = 0$$

$$b_{1} = \frac{2}{\pi} \int_{0}^{\pi} x_{a(\varphi)} \cdot \sin \varphi \cdot d\varphi .$$

Aus Bild 3.57 läßt sich ablesen (für $x_{+} = 0$)

$$x_a = - \begin{vmatrix} x_s & \text{für} & x_e > 0 \\ -x_s & \text{für} & x_e < 0 \end{vmatrix}$$

 $b_1 = \frac{2 \cdot x_s}{\pi} \int_{\Omega}^{\pi} \sin \varphi \cdot d\varphi ,$

Also folgt für den Fourier-Koeffizienten

daraus folgt

Bild 3.57 Kennlinien des Zweipunkt-Verhaltens

Damit lautet die Beschreibungsfunktion ohne Hysterese

$$N_{(\hat{x}_e)} = \frac{4 \cdot x_s}{\pi \cdot \hat{x}_e} \quad . \tag{3.69}$$

Die Gleichung (3.69) ist reell und verläuft von O ... ∞ für $x_s/\hat{x}_e = 0 \dots \infty$, wie in Bild 3.58 dargestellt. Mit Hysterese erhält man die Komplexe Gleichung:

Bild 3.58 Ortskurve der Beschreibungsfunktion und Stabilitätsgebiet des Zweipunkt-Verhaltens

Dreipunktverhalten mit und ohne Hysterese

Beim Dreipunktverhalten erhält man erst bei Überschreiten von x_t ein Ausgangssignal. Damit wird die undefinierte Nullage des Zweipunktverhaltens vermieden. Auch die statische Kennlinie des Dreipunktverhaltens ist ungerade, so daß

$$a_{1} = 0$$

$$b_{1} = \frac{2}{\pi} \cdot \int_{0}^{\pi} x_{a(\varphi)} \cdot \sin\varphi \cdot d\varphi$$

Aus Bild 3.59 folgt für die Ausgangsgröße ohne Hysterese

Also ergibt sich für den Fourier-Koeffizienten mit $x_{a}(\varphi_{1}, \pi/2) \stackrel{\Xi}{=} x_{a}(\pi/2, \pi - \varphi_{1})$

$$b_1 = \frac{4 \cdot x_s}{\pi} \int_{\varphi_1}^{\pi/2} \sin \varphi \cdot d\varphi$$
 ,

damit wird

$$b_1 = \frac{4 \cdot x_s}{\pi} \cdot \cos \varphi_1 \quad , \tag{3.71}$$

mit

$$\varphi_1 = \arcsin \frac{x_t}{\hat{x}_e}$$
.

Daraus folgt für die Beschreibungsfunktion (ohne Hysterese)

$$N_{(\hat{x}_{e})} = \frac{4 \cdot x_{s}}{\pi \cdot \hat{x}_{e}} \cdot \cos \varphi_{1} = \frac{4 \cdot x_{s}}{\pi \cdot \hat{x}_{e}} \left| \sqrt{1 - \left(\frac{x_{t}}{\hat{x}_{e}}\right)^{2}} \right| .$$
(3.72)

Die Ortskurve der Beschreibungsfunktion verläuft auf der reellen Achse und ist eine Doppellinie. Sie geht für $x_t/\hat{x}_e = 0$ in das Zweipunktverhalten über. Setzt man $x_s = K \cdot x_t$ so folgt

$$N_{(\hat{x}_{e})} = \frac{4 \cdot Kx_{t}}{\pi \cdot \hat{x}_{e}} \sqrt{1 - \left(\frac{x_{t}}{\hat{x}_{e}}\right)^{2}} . \qquad (3.73)$$

Der Maximalwert N_{max} ergibt sich bei $x_t/\hat{x}_e = \sqrt{2}/2$, also

$$N_{max} = \frac{2K}{\pi}$$

Der Verlauf der Ortskurve ist für K = 2 in Bild 3.60a dargestellt. Da die Ortskurve eine Doppellinie ist, ergeben sich zwei Stabilitätsgrenzen, weil eine Zunahme von x_t sowohl zum Anstieg als auch zum Absinken von $N_{(\hat{x}_e)}$ führt.

Für die Stabilität sind der Einfluß von x_t und x_s zu beachten. (Bild 3.60c).

Bild 3.60 Ortskurve der Beschreibungsfunktion und Stabilitätsgebiete des Dreipunkt-Verhaltens

Für das Dreipunktverhalten mit Hysterese ergibt sich folgende Beschreibungsfunktion aus der Überlagerung zweier Dreipunktverhalten ohne Hysterese (F_1 und F_2).

$$N_{(\hat{x}_{e})} = \frac{2 \cdot K x_{t}}{\pi \cdot \hat{x}_{e}} \left(\sqrt{1 - \left(\frac{x_{t}}{\hat{x}_{e}}\right)^{2}} + \sqrt{1 - \left(\frac{x_{t}^{*}}{\hat{x}_{e}}\right)^{2}} \right) - j \cdot \frac{2 \cdot K x_{t}^{2} \cdot (1 - m)}{\pi \cdot \hat{x}_{e}^{2}}$$

$$(3.74)$$

mit $x_t^* = m \cdot x_t$.

Für m = 1 ergibt sich wieder das Dreipunktverhalten.

Die Beschreibungsfunktion des Dreipunktverhaltens mit Hysterese ist komplex und für K = 2 und m = 1/2 in Bild 3.60b dargestellt.

Alle besprochenen Kenngrößen der nichtlinearen Regelkreisglieder sind in Tabelle 3.2 zusammengefaßt.

Aufgabe 3.4

Ein nichtlineares Regelkreisglied soll den geschwindigkeitsabhängigen Luftwiderstand berücksichtigen. Dieser verläuft im wesentlichen entlang einer Parabel (Bild 3.61). Es ist die Beschreibungsfunktion dieser Kennlinie zu ermitteln.

Bild 3.61 Statische Kennlinie des geschwindigkeitsabhängigen Luftwiderstandes

4. Regelkreise

Setzt man in Signalflußrichtung Regelkreisglieder hintereinander, ergibt sich eine Regelung, die im einfachsten Falle nur eine Rückführung besitzt (Bild 4.1), also einschleifig ist.

Bild 4.1 Regelkreis mit additiver und multiplikativer Störgröße

Regeleinrichtung und Regelstrecke unterscheiden sich wesentlich dadurch, daß die Regelstrecke vom Hauptenergiefluß durchsetzt ist.

Das Zusammenwirken von Regler und Strecke bestimmt die Stabilität einer Regelung. Die Kennwerte der Regelstrecke (Motor, Getriebe, Ventile usw.) und der Stellglieder (Stromrichter, Verstärker, Relais usw.) ergeben sich aus der Aufgabenstellung des zu beeinflussenden technischen Prozesses. Sie sind also als gegebene Anlagenparameter anzusehen. Die Aufgabe der Regelungstechniker besteht nun darin, für diese die geeignete Regeleinrichtung zu finden.

4.1 Regler

Die Praxis zeigt, daß man in sehr vielen Fällen mit dem PI-Regler auskommt, wenn der Regelkreis eine große und mehrere kleine Zeitkonstanten enthält. Dies geht auch aus der Tabelle 4.1 hervor, die zeigt, welcher Regler für eine gegebene Strecke zu wählen ist. Nur der PID-Regler besitzt ein besseres Übertragungsverhalten.

Dazu folgendes Experiment:

Auf eine Regelstrecke, die aus drei PT₁-Gliedern besteht, wird sprunghaft die Führungsgröße w aufgeschaltet und das Übertragungsverhalten bei Verwendung eines P-, PI-, PD- oder PID-Reglers beobachtet (Bild 4.2).

Strecken-Typ	Regler-Typen						
	Р	I	ΡI	PD	PID		
P	ungeeignet	geeignet	geeignet	ungeeignet	ungeeignet		
PT 1	geeignet	geeignet	geeignet	geeignet	geeignet		
PT2PTn	ungeeignet	geeignet	geeignet	ungeeignet	geeignet		
PTt	ungeeignet	geeignet	ungeeignet	ungeeignet	ungeeignet		
I	geeignet	ungeeignet	geeignet	geeignet	geeignet		
I ²	ungeeignet	ungeeignet	ungeeignet	geeignet	geeignet		
I-T ₁	geeignet	ungeeignet	geeignet	geeignet	geeignet		
I-T _t	geeignet	ungeeignet	geeignet	ungeeignet	ungeeignet		
PT1-Tt	ungeeignet	geeignet	geeignet	ungeeignet	geeignet		

Tabelle 4.1 Auswahltabelle für Regler- und Strecken-Typen

Bild 4.2 Vergleich der Sprungantworten verschiedener Regler die eine PT₃-Strecke regeln

Es zeigt sich, daß beim P- und PD-Regler eine bleibende Regeldifferenz x_d zu verzeichnen ist. Diese wird beim PI- und PID-Regler infolge des Integralanteils nach kurzer Zeit beseitigt. Ähnliches ergibt sich bei sprunghaftem Zuschalten einer Störgröße (Bild 4.3). Hier erreicht nur der PI- und PID-Regler nach einer Einschwingzeit wieder x = w. Wegen des D-Anteils im PID-Regler ist dessen Dynamik besser als die des PI-Reglers. Der PI-Regler bringt jedoch bei geringem Schaltungsaufwand gute Ergebnisse.

Bild 4.3 Vergleich der Sprungantworten verschiedener Regler mit PT₃-Strecke, bei Aufschalten einer Störung

Die einfachste Realisierung des PI-Reglers als Verstärkerschaltung ist in Bild 4.4 dargestellt. Bei größeren Werten von x_d geht der Verstärker jedoch wegen $V_p >> 1$ an die Stellgrenze. Dann entspricht das Ausgangssignal y etwa der Versorgungsspannung U_s . Es kommt zu Sättigungserscheinungen im Verstärker, die eine zusätzliche Zeitkonstante zur Folge haben. D.h., bei einem Rückgang von x_d folgt nicht sofort ein Rückgang von y. Die Stellgrenze muß daher gemieden werden. Dies wird durch eine Begrenzerschaltung am Ausgang des Verstärkers erreicht, so daß $y \stackrel{\leq}{=} U_B < U_s$ wird (Bild 4.5). Zur Entkopplung der Begrenzerschaltung ist noch ein Spannungsfolger nachgeschaltet /2/.

Bei "schnellen" Regelungen ist außerdem der Frequenzgang des Verstärkers selbst zu beachten. Wie aus Bild 4.6 zu ersehen, bleibt die Verstärkung V_D nur bis zur 3-dB-Grenzfrequenz f_O hin frequenzunabhängig. Darüber hinaus ergibt sich infolge des inneren Aufbaus ein Tiefpaßverhalten, d.h. eine abnehmende Verstärkung.

Bild 4.4 Einfache Operationsverstärker-Schaltung als PI-Regler

139

Bild 4.5 Operationsverstärker als PI-Regler mit Signalbegrenzung und Reglersperre

Bild 4.6 Frequenzgang der Differenzverstärkung V_D eines Operationsverstärkers

Ist eine Regelung außer Betrieb, z.B. Anlagenstillstand, muß bei Reglern mit I-Anteil "Reglersperre" gegeben werden. D.h. die Gegenkopplung wird mit einem Relais kurzgeschlossen, so daß entsprechend Gleichung (2.20) y = 0 wird. Dies ist notwendig, damit der Regler nicht, wegen der unvermeidbaren Verstärkerdrift und Offsetspannung, an die Stellgrenze integriert.

Der Einfluß der Integrationszeitkonstante $T_N = R_2 \cdot C$ auf die Dynamik des PI-Reglers ist am Beispiel einer PT₃-Strecke bei einem Sollwertsprung dargestellt (Bild 4.7). Für $T_N \rightarrow \infty$ geht der PIin den P-Regler über, für $T_N = 0$ wird die Regelung instabil.

Bild 4.7 Einfluß der Nachstellzeit T. eines PI-Reglers auf die Sprungantwort bei einer^N PT₃-Strecke

4.2 Praktische Reglereinstellung

Den Einfluß von Störgrößen- und Führungsgrößenänderungen auf eine Regelung haben Chien, Hrones und Reswick /18/ für Regelstrecken höherer Ordnung untersucht. Dabei wird an eine experimentell ermittelte Übertragungsfunktion die Tangente durch den Wendepunkt gelegt (Bild 4.8), und die Verzugszeit T_u sowie die Ausgleichszeit T_g gemessen. Die sich daraus ableitenden Einstellwerte für den gewählten Regler sind in Tabelle 4.2 zusammengefaßt. Ein besonderer mathematischer Rechengang entfällt damit.

Bild 4.8 Beispiel für eine experimentell ermittelte Übertragungsfunktion einer Regelstrecke zur Bestimmung der Regler-Parameter

Regler	Parameter	Aperiodischer Fall bei		Regelgröße mit 20% Überschwingen bei		
		Störgrößen- sprung	Sollwert- sprung	Störgrößen- sprung	Sollwert- sprung	
Р	v _R	0,3T/Tu	0,3T /T u	0,7T_/T_u	0,7T_/T_u	
PI	v _R	0,6T _g /T _u	0,35T _g /T _u	0,7T/Tu	0,6Tg/Tu	
	т _N	4Tu	1,2Tg	2,3T _u	1T g	
PID	v _R	0,95Tg/Tu	0,6T _g /T _u	1,2Tg/Tu	0,95Tg/Tu	
	т _N	2,4T _u	1Tg	2T_u	1,35Tg	
	^т v	0,42T _u	0,5T _u	0,42T _u	0,47T _u	

Tabelle 4.2 Tabelle zur Bestimmung der Regler-Parameter nach Chien, Hrones und Reswick

Ziegler und Nichols /19/ geben Einstellregeln an, die darauf beruhen, daß sich viele Regelstrecken höherer Ordnung durch eine PT₁-T_t-Strecke ersetzen lassen, wenn die Sprungantwort den in Bild 4.8 gezeigten Verlauf hat.

Dann wird angenommen, daß

 $T_t = T_u$ und $T_1 = T_\sigma$.

Die angegebenen Einstellwerte basieren auf der kritischen Verstärkung V_{RKr} und der zugehörigen Zeitkonstanten T_{Kr}. Beide werden experimentell ermittelt, in dem man die Regelstrecke erst mit P-Reglern an die Stabilitätsgrenze bringt (Dauerschwingungen) und V_{RKr} sowie T_{Kr} mißt. Dann lauten die Kenngrößen des zu dimensionierenden Reglers näherungsweise:

 $\rm V_{RKr}$ und $\rm T_{Kr}$ können auch aus den Stabilitätskriterien gewonnen werden (Abschnitt 5.3 und 5.4). Mit der Annahme, daß $\rm T_t = \rm T_u$ und $\rm T_1 = \rm T_g$ ist, lassen sich bei gegebenen Anlageparametern V_R und T_N bzw. T_V eines Reglers auch aus Tabelle 4.2 ermitteln. Weitere Optimierungshinweise werden in /36/ und /37/ sowie Abschnitt 5.5 gegeben.

Aufgabe 4.1

Es ist eine PT_3 -Strecke bestehend aus drei PT_1 -Gliedern mit folgenden Datten gegeben.

Dazu ist eine Regelung als Operationsverstärkerschaltung mit PID-Regler zu zeichnen und das Führungs- sowie Störverhalten bei verschiedenen Reglern zu oszillographieren.

P -Regler: $V_R = 1$ PI -Regler: $V_R = 1$, $T_N = 1,5s$ PD -Regler: $V_R = 1$, $T_V = 1,5s$ PID-Regler: $V_R = 1$, $T_N = T_V = 1,5s$.

Als Führungssprung dient ein Schalter, der zwischen OV und 10V schaltet; als Störgrößensprung ein Impuls von 2s Länge und 10V Amplitude.

4.3 Regelstrecken

Als Regelstrecke bezeichnet man den Teil eines Regelkreises, in dem die eigentliche Beeinflussung der Regelgröße x stattfindet. Die Regelstrecke ist, im Gegensatz zur Regeleinrichtung, vom Hauptenergiefluß durchsetzt. Theoretisch sind Regelstrecken nichtlineare Netzwerke höherer Ordnung. In den meisten Fällen liefern die Verzögerungsglieder höherer Ordnung jedoch keinen merklichen Beitrag und können linearisiert werden.

Daher treten in der praktischen Regelungstechnik am häufigsten P-, I-, PT₁-, PT₂-, PT₊-Strecken sowie ihre Kombination auf.

Als wichtigster Parameter einer Regelstrecke ist die Zeitkonstante anzusehen, die den Hochlauf auf einen vorgegebenen Sollwert kennzeichnet. Für einige Anlagentypen sind in Tabelle 4.3 die zugehörigen Zeitkonstanten angegeben.

4.3.1 P-Strecken

P-Strecken sind solche, bei denen sich Ausgangs- und Eingangsgrösse nur um einen konstanten Faktor, die Proportionalverstärkung,

142
Regelung der/des	Regelstrecke	Zeitkonstanten T _I ^{bzw. T} 1
Temperatur	Glühöfen, klein Glühöfen, groß Milcherhitzer Raumheizung	515min 20120min 1060min 1060min
Druckes	Gasrohrleitung Druckbehälter (pneumatisch) Faltenbälge	100ms 160s 10ms
Drehzahl	Kleinmotoren Großmotoren Turbinen (n _{Nenn} =1000/min)	10100ms 0,160s 1020s
Wasserstand	Dampfkessel Behälter (V≈20dm ³)	1060s 520s
Netzspannung	Generatoren, klein Generatoren, groß	152 515s

Tabelle 4.3 Tabelle zur Abschätzung der Zeitkonstanten verschiedener Regelstrecken

voneinander unterscheiden. Einige Beispiele sind in Tabelle 4.4 aufgezeigt. Man nennt solche Regelstrecken auch P-Strecken ohne Ausgleich.

4.3.2 I-Strecken

Kennzeichen der I-Strecke ist die Zeitabhängigkeit der Ausgangsgröße. Sie ist das Integral der Eingangsgröße. D.h. bei $x_e > 0$ wächst x_a ständig an. Für x_e = konst. ist dann

$$x_a = \frac{t}{T_I} \cdot x_e$$
.

Beispiele für I-Strecken sind in Tabelle 4.5 angegeben.

Tabelle 4.4 Beispiele für typische P-Strecken

Tabelle 4.5 Beispiele für typische I-Strecken

4.3.3 PT1-Strecken

Verzögerungsglieder erster Ordnung enthalten einen Energiespeicher und damit stellt sich erst nach einer Verzögerungszeit wieder Proportionalität zwischen Ein- und Ausgangsgröße ein.PT₁-Glieder werden durch eine lineare Differentialgleichung erster Ordnung beschrieben, dessen Lösung dem Verlauf der e-Funktion entspricht. Theoretisch enthält jede Regelstrecke Verzögerungsglieder n-ter Ordnung, von denen die meisten jedoch nicht merklich in Erscheinung treten oder durch PT₁-Strecken vereinfacht dargestellt werden können (siehe Abschnitt 5.5.3). Tabelle 4.6 zeigt einige Beispiele für PT₁-Strecken.

4.3.4 PT_2 - und PT_n -Strecken

Verzögerungsglieder zweiter Ordnung werden durch lineare Differentialgleichungen zweiter Ordnung beschrieben; sie enthalten zwei voneinander unabhängige Energiespeicher (z.B. Feder und Masse oder Induktivität und Kapazität). Oft bestehen PT_2 - bzw. PT_n -Strekken aus in Reihe geschalteten PT_1 -Strecken (z.B. Motor und Mechanik). Typische Beispiele sind in Tabelle 4.7 angegeben.

4.3.5 PT₊-Strecken

Regelstrecken mit Totzeit wirken sich auf die Stabilität besonders negativ aus, da ihr Phasenwinkel bei merklichen Totzeiten recht schnell -180⁰ durchläuft (siehe Tabelle 3.1). In der Praxis sind die Totzeiten gleich den Signallaufzeiten innerhalb eines Gerätes oder entlang eines Weges bis zur Meßwerterfassung. Meist treten Totzeiten in Verbindung mit Verzögerungsgliedern auf. Auch dazu sind in Tabelle 4.8 entsprechende Beispiele dargestellt.

Tabelle 4.7 Beispiele für typische PT₂-Strecken

scher. Man erhält für die Vorlaufstrecke (${
m F_R}$) PT7-Verhalten und für die Fühler der Vorlauf- und Außentemperatur ($\overset{o}{F}_{v}$, $\overset{o}{F}_{A}$) jeweils PT_{2} -Verhalten.

$${\stackrel{o}{F}_{R}} \sim \frac{1}{(1 + pT_{M})^{7}}$$
 ${\stackrel{o}{F}_{V}} \sim \frac{1}{(1 + pT_{V})^{2}}$

Tabelle 4.8 Beispiele für typische Strecken mit Totzeit

4.4 Stellglieder

Die Stellglieder sind das Bindeglied zwischen Regler und Regelstrecke, obwohl sie oft auch der Regelstrecke zugeordnet werden. Sie übertragen die stellende Wirkung auf die Regelstrecke und bewirken so eine Änderung der Regelgröße. Man kann ein Stellglied auch als eine Art Wandler ansehen, der die vom Regler ausgegebene Stellgröße in die erforderliche physikalische Größe der Regelstrecke umwandelt. Der Stromrichter z.B. wandelt die vom Regler vorgegebene Stellgröße Steuerspannung in den Ankerstrom für einen Gleichstrommotor um. Da der Stromrichter mit einer kleinen Steuerspannung große Ströme erzeugt, wird er oftmals als "Stromverstärker" bezeichnet. Nicht zuletzt deshalb, weil die Stellglieder direkt in den Massen- oder Energiefluß der Regelstrecke eingreifen.

4.4.1 Stromrichter

Der gebräuchlichste Stromrichter zur Regelung von Gleichstromantrieben ist die vollgesteuerte dreipulsige Drehstrombrückenschaltung. In Bild 2.22 ist sie für eine Stromrichtung bereits dargestellt. Bei nur einer Stromrichtung kann ein entsprechender Stromrichterantrieb im Rechtslauf treiben und im Linkslauf bremsen (II-Quadranten-Betrieb). Bei diesem Stromrichter wird aus den verketteten Spannungen des Drehstromnetzes die pulsierende Gleichspannung U_{dia} gewonnen. Diese kann mit Hilfe der Thyristoren in ihrer Größe und Richtung geändert werden /4/. Zwischen dem Steuerwinkel α und der Gleichspannung U_{dia} und der ideellen Leerlaufgleichspannung U_{dia} besteht die Beziehung.

$$U_{di\alpha} = U_{dio} \cdot \cos \alpha \stackrel{\wedge}{=} U_{A}$$
, (4.1)

bzw. in Abhängigkeit von der Drehstromleiterspannung U, /4/

$$U_{di\alpha} = 1,35 \cdot U_{L} \cdot \cos\alpha \stackrel{\wedge}{=} U_{A}$$

Diese Gleichungen gelten für den nichtlückenden Betrieb (keine Strompausen). In Bild 4.9 ist der Verlauf von U_{dia} für verschiedene Steuerwinkel α dargestellt. Es ist zu beachten, daß wegen der Freiwerdezeit der Thyristoren $\alpha_{max} = 150^{\circ}$ und zur Vermeidung des sog. Leerlaufpendels eines Stromrichterantriebes $\alpha_{min} = 10^{\circ}$ beträgt.

Bild 4.9 Verlauf der Spannung U $_{d\,i\,\alpha}$ bei verschiedenen Steuerwinkeln im Gleich- und Wechselrichterbetrieb

Die Kennwerte auch anderer Stromrichter für Gleichstrommaschinen sind in Tabelle 4.9 angegeben.

Die hier weiter betrachtete vollgesteuerte dreipulsige Drehstrombrückenschaltung stellt regeltechnisch ein Totzeitglied dar. Es kann nämlich nur nach jeder Halbperiode der Drehspannungen (also nach T/2) der Steuerwinkel geändert werden. Außerdem ist die Totzeit von der Pulszahl p (Zahl der nicht gleichzeitig kommutierenden Thyristoren) abhängig.

Es gilt:

$$\Gamma_{t} = \frac{T}{2p} . \tag{4.2}$$

Entsprechend Gleichung (4.2) ergibt sich bei 50 Hz Netzfrequenz für einen 3-pulsigen Stromrichter eine Totzeit von 3,33 ms.

Zur Berechnung einer Regelung mit Stromrichter ist eine Aussage über seine Verstärkung notwendig. Wie Bild 4.10 zeigt, werden die Zündzeitpunkte (α) durch die Größe der Steuerspannung U_{st} festgelegt. Dieser Zusammenhang ist linear (Bild 4.11). Setzt man voraus, daß zwischen α und U_{di α} entsprechend Gleichung (4.1) im nichtlükkenden Betrieb ein quasi linearer Zusammenhang besteht, wenn man die starken Krümmungen der Kosinus-Funktion meidet, gilt mit Bild 4.12:

$$V_{\rm p} = \frac{\Delta \alpha}{\alpha_1 - \alpha_2} \qquad (4.3)$$

Schalting	K1172-	Gleich	, de	Ventils	ģ	Ventil	strom	Stromfluß-	Transformator-	Steuerkennlinie
SUILAT CHILD	zeichen	Udio	Udio	ů Å	, d n N	IA	IA _{eff}	winkel	Bauleistung	
	BBC-Typ	n s	L ^L	n _s	D ¹	Id	Id	α in ^O el	s _{Tr} /U _{dio} .Id	
ر پر ا	B2	1,8	6,0	2,828	$\sqrt{2}$	0,5	0,707	180	1,111	$U_{dia} = U_{dio} \frac{1 + \cos \alpha}{2}$
	GCB									
	B6	2,34	1,35	2,449	$\sqrt{2}$	0, 333	0,577	120	1,05	U _{di} α = U _{di} o.cosα nicht lückend
	ZSD									lückend, wie B2
	M2	6'0	0,45	2,828	<2 √2	0,5	0,707	180	1,34	U _{diα} = U _{dio} cosα nicht lückend lückend, wie B2
	МЗ	1,17	0,675	2,449	۲2 ۲	0, 333	0,577	120	1,345 Dy 1,460 Dz,Yz	Udia = Udio.cosa nicht lückend lückend, wie B2
Us tractor	MG	mit 1,17	0,675	2,449	1,225	0,167	0,289	120	1,26	U _{dia} = U _{dio} .cosa nicht lückend lückend, wie B2

Tabelle 4.9 Einige Schaltungen der Stromrichter-Technik

4. Regelkreise

Bild 4.10 Stromregelkreis eines Gleichstromantriebs mit symbolischer Darstellung der einzelnen Stromrichterkompenenten

Darin ist $\Delta \alpha$ der Steuerwinkelstellbereich, α_1 ist der Steuerwinkel, bei dem U_{dia} = O wird und α_2 entspricht dem Steuerwinkel, bei dem U_{dia} = U_{AN} < U_{dio} ist. Für die vollgesteuerte dreipulsige Drehstrombrückenschaltung wird dann $\Delta \alpha = 140^{\circ}$, $\varphi_1 = 90^{\circ}$ (für eine Drehrichtung des Motors) und $\varphi_2 \gtrsim 30^{\circ}$, also $V_p = 2,33$.

Die Regelung eines Drehstromasynchronmotors kleiner Leistung $(0,2 \ldots 50 \text{ kW})$ läßt sich mit dem Drehstromsteller erreichen (Bild 4.13). In jeder Phase des Drehstromnetzes befindet sich ein antiparalleles Thyristorpaar für beide Halbwellen der Drehspannungen. Der Steuerwinkel α kann von 0[°] bis 180[°] verstellt werden und es gilt für ohmsche Last (Bild 4.14).

Bild 4.13 Schema eines Asynchronantriebs mit Drehstromteller

Us¢/Us≬

In Bild 4.15 ist der Verlauf von U $_{s\alpha}$ für verschiedene Steuerwinkel bei ohmscher Last dargestellt. Die Totzeit eines vollgesteuerten Drehstromstellers beträgt

$$T_{t} = \frac{T}{p} , \qquad (4.4)$$

denn der Steuerwinkel kann nur einmal pro Periode T verstellt werden. Bei 50 Hz Netzfrequenz ergibt sich mit p = 3 eine Totzeit von $T_t = 6,67$ ms. Da jeder Motor eine ohmsch-induktive Last darstellt, beträgt der Steuerwinkelstellbereich nur $\Delta \alpha = 90^{\circ}$. Dann erhält man im quasi-linearen Bereich der Kosinus-Funktion $(U_{s\alpha} = f(\alpha))$ für $\alpha_1 = 90^{\circ}$ und $\alpha_2 \approx 30^{\circ}$ also ist die Verstärkung nach Gleichung (4.3) $V_{p} = 1,5$.

Verlauf der Spannung $U_{S\alpha}$ bei verschiedenen Steuer-Bild 4.15 winkeln

4.4.2 Ventile

In den Fällen, wo Massen- oder Gasströme geregelt werden sollen, wirkt die Stellgröße über ein Ventil auf die Regelstrecke ein. Ist die betreffende Regelung eine elektronische, benutzt man elektromechanische Stellglieder. Für kleine Hübe eignet sich besonders das Magnetventil (Bild 4.16). Die Kraftübertragung auf den Kolben erfolgt mit Hilfe der magnetischen Induktion (also berührungslos). Die Gleichung des elektrischen Kreises lautet

$$u_{e} = i \cdot R + L \cdot \frac{di}{dt} + B \cdot l \cdot N \cdot \frac{ds}{dt} . \qquad (4.5)$$

Darin ist BlN $\cdot \frac{ds}{dt}$ der Anteil der Wegänderung des Kolbens. Für die Kraftwirkung eines Elektromagneten gilt:

$$F = B \cdot l \cdot N \cdot i . \tag{4.6}$$

Diese ist aber auch gleich der Gegenkraft des mechanischen Kreises.

$$\mathbf{F} = \mathbf{r} \cdot \frac{\mathrm{ds}}{\mathrm{dt}} + \mathbf{m} \cdot \frac{\mathrm{d}^2 \mathbf{s}}{\mathrm{dt}^2} = \mathbf{r} \cdot \mathbf{v} + \mathbf{m} \cdot \frac{\mathrm{dv}}{\mathrm{dt}} \quad . \tag{4.7}$$

Bild 4.16 Schema eines Magnetventils für kleine Hübe

2

Setzt man Gleichung (4.6) mit (4.7) gleich, ergibt sich als Bildgleichung (mit p = d/dt):

$$\hat{\mathbf{u}} = \frac{\overset{\mathbf{O}}{\mathbf{v}} \cdot (\mathbf{r} + \mathbf{pm})}{\mathbf{B} \cdot \mathbf{l} \cdot \mathbf{N}}$$

In Gleichung (4.5) eingesetzt erhält man

$$\overset{O}{u}_{e} = \frac{(R+pL) \cdot (r+pm) \cdot \overset{O}{v}}{B \cdot 1 \cdot N} + B \cdot 1 \cdot N \cdot \overset{O}{v}.$$

Multipliziert man diese Gleichung mit dem freien Querschnitt A, folgt daraus der Frequenzgang des Magnetventils.

$$F_{(p)} = \frac{\stackrel{\circ}{\underline{v}} \cdot \underline{A}}{\stackrel{\circ}{\underline{v}}_{\underline{e}}} = \frac{\stackrel{\circ}{\underline{Q}}}{\stackrel{\circ}{\underline{v}}_{\underline{e}}} = \frac{\underline{A}}{\underline{B} \cdot 1 \cdot \underline{N}} \cdot \frac{\frac{(\underline{B} \cdot 1 \cdot \underline{N})^2}{\underline{L} \cdot \underline{m}}}{p^2 + p \cdot (\frac{\underline{R}}{\underline{L}} + \frac{\underline{r}}{\underline{m}}) + \frac{\underline{R} \cdot \underline{r} + (\underline{B} \cdot 1 \cdot \underline{N})^2}{\underline{L} \cdot \underline{m}}}$$
(4.8)

Also stellt der Durchfluß Q = x_a bezogen auf die angelegte Spannung u_e = x_e ein Verzögerungsglied II. Ordnung dar.

$$F_{(p)} = \frac{Q}{u_e} = \frac{1}{V_p} \cdot \frac{\omega_o^2}{p^2 + 2\alpha p + \omega_o^2} , \qquad (4.9)$$

mit

$$\omega_{o}^{2} = \frac{(B \cdot 1 \cdot N)^{2}}{L \cdot m} , \quad 2\alpha = \frac{R}{L} + \frac{r}{m} , \quad \omega_{e}^{2} = \omega_{o}^{2} - \alpha^{2} ,$$

$$V_p = B \cdot 1 \cdot N/A$$
, $Rr \ll (BlN)^2$,

2

sowie die elektrische und mechanische Zeitkonstante

$$T_1 = L/R$$
, $T_2 = \frac{m}{r}$.

Die Übertragungsfunktion der Gleichung (4.9) kann aus Tabelle 2.3 Korrespondenz Nr. 23 für U_e = konstant und Korrespondent 28 für u_e = $\stackrel{\Lambda}{u_e}$ · sinwt entnommen werden. Die Verwendung als elektrohydraulisches Servoventil unterliegt den gleichen physikalischen Bedingungen wie das Magnetventil, wird also auch durch Gleichung (4.9) beschrieben /22/; obwohl Servoventile meist eine Vorsteuerund Hauptstufe besitzen (Bild 4.17). Die Verstärkung V_p wird dann als Druckdifferenz bezogen auf den zugehörigen Stromanstieg angegeben. Es wird mit Gleichung (4.6)

$$V_{p} = \frac{B \cdot 1 \cdot N}{A} = \frac{\Delta F \cdot B \cdot 1 \cdot N}{\Delta F \cdot A} = \frac{\Delta p}{\Delta i}$$

Bild 4.17 Schema eines Servoventils mit Haupt- und Vorsteuerstufe

 V_p ist in Gleichung (4.9) als konstant angenommen worden (PT₂-Verhalten), daher muß $\Delta p/\Delta i$ auch unverändert bleiben. Diese Bedingung wird von realen Servoventilen in weiten Grenzen erfüllt, wie Bild 4.18 zeigt.

4.4.3 Schütze, Relais

Relais und Schütze sind ebenfalls elektromechanische Stellglieder (Bild 4.19). Schütze werden beispielsweise als Ankerschalter für Gleichstrommotoren eingesetzt, während Relais nur für kleine Leistungen vorgesehen sind. Regeltechnisch sind sie einem Totzeit-

Bild 4.18 Definition der Verstärkung eines Servoventils mit der Druck-Strom-Kennlinie und des Durchflusses

glied gleichzusetzen. Die Totzeit ist dabei abhängig von den mechanischen Kennwerten m, r und c_f, den elektrischen Kennwerten L und R sowie dem Weg s vom Anker zum Joch. Wegen des begrenzten Schaltspiels und möglichen Prellens der Arbeitskontakte infolge mechanischer Bauteilermüdung sind diese Stellglieder nicht für schnelle Vorgänge geeignet.

Bild 4.19 Schema eines Schützes oder Relais

4.5 Sollwertgeber

Die einfachste Sollwertvorgabe ist die mittels Schalter. Dabei wird die Führungsgröße sprunghaft zugeschaltet. Diese Art der Sollwertaufschaltung (sprunghaft) ist jedoch bei vielen Regelungen nicht angebracht. Bessere Ergebnisse bringt da die kontinuierliche Sollwertvorgabe mit einem Potentiometer das von Hand oder motorisch betätigt wird.

Beim Anfahren und Bremsen von Schienenfahrzeugen, Förderanlagen und Bandanlagen kommt es zusätzlich darauf an, die kontinuierliche Sollwertvorgabe entlang einer sog. Fahrkurve ohne Unstetigkeitsstellen zu realisieren. Nur so ist ein "weiches" Anfahren und Bremsen möglich (Bild 4.20).

Bild 4.20 Verlauf der Ein- und Ausgangsgrößen bei Vorgabe der Führungsgröße mit Sollertgebern

Fahrkurvenrechner lassen sich analog oder digital aufbauen. Bei der analogen Version wird der "Verschliff" der Knickpunkte durch zwei PT_1 -Glieder innerhalb der Schaltung realisiert (Bild 4.21). Die Übertragungsfunktion ist die eines $I-T_1$ -Gliedes mit einem PT_1 -Glied (siehe Tabelle 3.2) und für das Anfahren gilt:

$$u_{a} = U_{sch} \left[\frac{t}{2T_{3}} + \frac{T_{1}}{4T_{3}} (e^{-\frac{2t}{T_{1}}} - 1) \right]_{0}^{T_{1} + T_{3}} + \frac{t}{2T_{1} + T_{3}} + \frac{t}{2T_{1} + T_{3}} + \frac{t}{2T_{1} + T_{3}} = \frac{t + T_{1} + T_{3}}{2T_{1} + T_{3}} = \frac{t}{2} + \frac{t}{2} + \frac{T_{1} + T_{3}}{2} + \frac{T_{1} + T_$$

Mit den in Bild 4.21 angegebenen Werten wird $T_1 = \frac{R_5 \cdot R_6}{R_5 + R_6} \cdot C_1 + 0,43s$, $T_2 = R_2 \cdot C_2 = 0,47s$, $T_3 = (R_5 + R_6) \cdot C_3 = 11s$ (bei $\alpha = 1$).

Bild 4.21 Aufbau eines analogen Sollwertgebers mit Operationsverstärkern

Theoretisch ist u_a , wegen der ansteigenden e-Funktion am Ende des Anfahrens, erst für $t \rightarrow \infty$ gleich dem vorgegebenen Endwert U_e . Doch in der Praxis ist $T_3 >> T_1$, T_2 , so daß u_a nach kurzer Zeit nur noch unmerklich vom Sollwert U_e abweicht.

Bei digitalen Fahrkurvenrechnungen wird der "Verschliff" der Knickpunkte durch Parabelstücke nachgebildet (Bild 4.22).

Die Übertragungsfunktion entspricht zunächst einem I²-Glied (zwei I-Glieder in Reihe liegend) und lautet mit $x_e = f_e$ und $x_a = z_a/14/$.

$$Z_{a} = f_{e} \cdot \iint_{OO}^{tt} dt = \frac{1}{T_{e}} \cdot \iint_{OO}^{tt} dt . \qquad (4.11)$$

Bild 4.22 Aufbau eines digitalen Sollwertgebers (Fahrkurvenrechners) mit Hardware

 ${\rm f}_{\rm e}$ ist die konstante Eingangsfrequenz für den Beschleunigungszähler. Sie wird von einer Steuerlogik ausgegeben und hängt von der gewünschten Anfahr- bzw. Bremsbeschleunigung ab. Diese erzeugt man mit den Frequenzen ${\rm f}_{\rm a}$ und ${\rm f}_{\rm b}$. In Bild 4.23 sei ${\rm f}_{\rm b} > {\rm f}_{\rm a}$. Am Ausgang des Beschleunigungszählers erhält man den Zählerstand:

$$Z_{1} = \frac{1}{T_{e}} \cdot \int_{0}^{t} dt = \left| \frac{dZ_{a}}{dt} \right|.$$
(4.12)

Mit einem Digital-Frequenz-Wandler wird Z₁ in die proportionale Frequenz f₁ für den Sollwert- oder Fahrkurvenzähler umgewandelt. Dessen Zählerstand ist dann:

$$Z_{a} = \int_{0}^{t} Z_{1} dt = \frac{1}{T_{e}} \cdot \iint_{00}^{tt} dt$$
 (4.13)

Die gewünschte Fahrkurve (Z_a) für das Anfahren erhält man dann mit Hilfe der Steuerlogik. Es wird:

$$Z_{a} = - \begin{pmatrix} \frac{t^{2}}{2T_{e}} & \text{für } t = [0, T_{1}] & \text{mit } f_{e} = \text{konst.} \\ \frac{t}{T_{e}} & \text{für } t = [T_{1}, T_{1} + T_{3}] & \text{mit } f_{e} = 0 \\ - \frac{t^{2}}{2T_{e}} & \text{für } t = [T_{1} + T_{3}, T_{1} + T_{2} + T_{3}] & \text{mit } f_{e} = \text{konst.} \\ \text{konst. für } t \stackrel{\geq}{=} T_{1} + T_{2} + T_{3} & \text{mit } f_{e} = 0 & \text{und } f_{2} = 0 & . \end{cases}$$

Der Bremsvorgang ergibt sich in Analogie zum Anfahren.

Bild 4.23 Gewünschter Verlauf des Sollwertes und der Beschleunigung bei einem Fahrkurvenrechner

Ein Vorteil des digitalen Fahrkurvenrechners ist, daß der zur Bildung des Beschleunigungsmoments notwendige Wert dz_a/dt sich sozusagen als "Abfallprodukt" der Schaltung ergibt.

Wenn in einer Regelung Fahrkurvenrechner für die Sollwertvorgabe eingesetzt werden, entspricht die Führungsgröße w allerdings nicht mehr dem Einheitssprung $\delta o_{(t)}$. Daher wird die Stabilität solcher Regelungen meist durch Simulation auf einem Rechner untersucht /23/, /41/.

4.6 Meßwertgeber

Meßwertgeber oder -Umformer sind Geräte, die ein Eingangssignal möglichst verzögerungsfrei in ein dazu proportionales Ausgangssignal umformen sollen. Die Umformung des Meßwertes erfordert oft die Ausnutzung eines oder mehrerer physikalischer Effekte. Innerhalb eines festen Meßbereichs gelten dann folgende Forderungen an den Meßwertgeber. Es sollen möglichst klein sein /2/:

> Linearitätsfehler Maximalwertfehler Nullpunktfehler Temperaturdrift Umsetzzeit.

Die dynamischen Eigenschaften eines Meßwertgebers können die gesamte Regelung negativ beeinflussen. Liegt nämlich die Eigenzeitkonstante der Geber in der Größenordnung der Regelkreiskonstanten, ist ein Regeln praktisch unmöglich. Das gilt sowohl bei mechanischen als auch elektro-mechanischen Gebern. Da sie meist PT_2 -Verhalten zeigen (siehe Tabelle 3.1), muß die Resonanzfrequenz ω_0 sehr viel größer sein als die Eckfrequenzen ω_n der Regelung $(\omega_0 \stackrel{\geq}{=} 10 \ \omega_n)$; d.h. der Frequenzgang des Meßwertgebers zeigt im ausgenutzten Frequenzbereich nur P-Verhalten.

In vielen Anordnungen wird zur Messung das Ausschlag- oder das Kompensationsverfahren benutzt /16/, /24/. Während das Ausschlagverfahren einer Steuerstrecke vergleichbar ist, stellt das Kompensationsverfahren einen Regelkreis dar, bei dem die Ausgangsgröße des Regelkreises dem umgeformten Meßwert entspricht (Bild 4.24).

In Tabelle 4.10 sind einige elektrische Meßwertgeber nach dem Ausschlagverfahren dargestellt. Dazu gehören auch sämtliche A/D-, D/A-, f/U- und U/f-Wandler. Vorteile des Ausschlagverfahrens sind die gute Überschaubarkeit der Meßwerterfassung und das stabile Betriebsverhalten (keine Rückführung). Nachteilig wirken sich Übertragungsfehler der Umformung und des Verstärkers aus. In dieser Hinsicht bringt das Kompensationsverfahren, wegen seines geschlossenen Regelkreises bessere Ergebnisse. Mit ihm können Verstärker- und Umformungsfehler vermieden werden, da im stationären Zustand die physikalische Meßgröße x_e gleich der bezogenen Meß-größe x_a^* ist. Als Nachteil des Kompensationsverfahrens muß ge-

Kompensationsverfahren

Bild 4.24 Blockschaltbild für Meßwertgeber nach dem Ausschlagverfahren und Kompensationsverfahren

wertet werden, daß so aufgebaute Meßwertgeber hinsichtlich ihrer Stabilität zu untersuchen sind.

In Tabelle 4.11 sind einige elektrische Meßwertgeber nach dem Kompensationsverfahren dargestellt. Einen Sonderfall stellt der XY-Schreiber dar. Er gibt den umgeformten Meßwert nicht an eine Regelung weiter, sondern stellt ihn graphisch dar. Trotzdem arbeitet der XY-Schreiber nach dem Kompensationsverfahren, weil eine Verstellung (Wegänderung auf dem Papier) solange erfolgt, bis $\Delta U = U_e - U_a = 0$ ist. D.h., die zu schreibende Größe U_e entspricht der graphisch abgebildeten Größe U_a .

Tabelle 4.10 Beispiele für elektrische Meßwertgeber nach dem Ausschlagverfahren

Tabelle 4.11 Beispiele für elektrische Meßwertgeber nach dem Kompensationsverfahren

4.7 Umformen von Blockschaltbildern

Das Blockschaltbild zeigt, gelöst von gerätetechnischen Einzelheiten, den strukturellen Zusammenhang der Regelkreisglieder unter Berücksichtigung des Signalflusses. Da zu jedem Block eines Regelkreisgliedes die Frequenzganggleichung gehört, entsprechen allen Umformungen des Blockschaltbildes auch Umformungen des Frequenzganges.

4.7.1 Umformungsregeln für lineare Regelkreisglieder

Sinn der Umformungen soll es sein, einen Regelkreis überschaubar zu machen; überschaubarer als dies mit mathematischen Umformungen der Fall wäre. Trotzdem besteht zwischen den graphischen und mathematischen Umformungen eines Blockschaltbildes ein kausaler Zusammenhang. Tabelle 4.12 gibt die wichtigsten Regeln wieder.

Aufgabe 4.2

Es ist der Frequenzgang des PID-Gliedes als Summe aus P-, I- und D-Anteil im Blockschaltbild darzustellen.

Aufgabe 4.3

Der Frequenzgang des PT₁-Gliedes ist für V_p = 2 nach Umformungsregel 11, Tabelle 4.12, als Blockschaltbild zu zeichnen.

Aufgabe 4.4

Welches Regelkreisglied entsteht, wenn man ein I-Glied um die Gegenkopplung 1 erweitert?

Aufgabe 4.5

Der Ankerkreis eines fremderregten Gleichstrommotors im Leerlauf besteht für \emptyset = konstant aus der Reihenschaltung eines PT₁- mit einem I-Glied, einschließlich einer Gegenkopplung. Für ein solches Blockschaltbild ist mit Umformregel 12, Tabelle 4.12, ein Ersatzblockschaltbild zu zeichnen.

4.7.2 Umformungsregeln für nichtlineare Regelkreisglieder

Die in Tabelle 4.12 angegebenen Umformungsregeln lassen sich auf nichtlineare bzw. nichtrationale Regelkreisglieder nur bedingt anwenden. Die Inversion oder Umkehrfunktion eines Totzeitgliedes

Tabelle 4.12 Umformregeln für lineare Regelkreisglieder

168

Tabelle 4.12 (Forts.)

Tabelle 4.12 (Forts.)

beispielsweise, ist nicht realisierbar. Um die Wirkung der Totzeit aufzuheben, müßte das inverse Glied eine Totzeit vor t = O haben; das hieße, die Wirkung kommt vor der Ursache. Das Totzeitglied und einige andere nichtlineare Regelkreisglieder lassen sich unter bestimmten Voraussetzungen jedoch linearisieren (siehe Abschnitt (2.1.4) und (3.11.1).

Der wesentliche Unterschied der Inversion eines nichtlinearen Regelkreisgliedes zu einem linearen, läßt sich an drei Beispielen verdeutlichen.

Die Funktionen

$$x_a = e^{e}$$
 und $x_a = \sqrt{x_e}$ und $x_a = \sin x_e$

haben die Umkehrfunktionen oder Inversionen (Bild 4.25).

Bild 4.25 Beispiele für Umkehrfunktionen

Die inverse Funktion entspricht also dem Vertauschen der Variablen x_e mit x_a ; aus der Beschreibungsfunktion $N = \frac{xa}{xe}$ wird $N^{-1} = \frac{xe}{xa}$.

Daraus folgt, daß die Anordnung in Reihe liegender linearer und nichtlinearer Regelkreisglieder nicht vertauschbar ist. Es dürfen nichtlineare Glieder mit Gegenkopplung nicht zu einem Block zusammengefaßt werden. Das Verschieben eines nichtlinearen Regelkreisgliedes vor eine Summationsstrecke ist nicht möglich.

Lediglich das Verschieben einer Verzweigungsstelle vor oder hinter ein nichtlineares Regelkreisglied ist erlaubt (Tabelle 4.13).

Tabelle 4.13 Umformregeln für nichtlineare Regelkreisglieder

5. Stabilitätskriterien

Im Gegensatz zur Steuerung muß eine Regelung auf Stabilität untersucht werden, weil sie ein schwingungsfähiges System darstellt. So kann es bei falscher Wahl des Reglers oder seiner Kenngrößen, für eine vorgegebene Strecke, zur Instabilität kommen.

Es muß daher Ziel der Stabilitätsbetrachtung sein, eine vorhandene Regelstrecke mit der passenden Regeleinrichtung zu versehen und deren Parameter optimal einzustellen. Dazu wurden in Abschnitt 4.1 und 4.3 für bestimmte Regelstrecken brauchbare Regeln angegeben, die leicht zu handhaben sind. Dieses Thema behandeln auch ausführlich /16/, /24/, /26/, /36/, /40/ und /41/.

Ist man bestrebt, zuverlässige Aussagen über Stabilität oder Instabilität beliebiger Regelkreise zu erlangen, sind Kenntnisse der Stabilitätskriterien unumgänglich.

Der Praktiker entscheidet sich dann für ein Stabilitätskriterium, das bei gegebener Problemstellung mit geringem Aufwand zur Lösung führt.

5.1 Stabilitätsbegriff

Es ist sinnvoll sich zunächst klar zu machen, was die Stabilität eines Regelkreises ist. Dazu einige Definitionen.

Ein System ist stabil, wenn die angeregten Systemgrößen von einem eingeschwungenen Zustand nach endlicher Zeit in einen anderen eingeschwungenen Zustand übergehen. Das Systems befindet sich an der Stabilitätsgrenze, wenn die Systemgrößen Dauerschwingungen ausführen.

Diese Definition ist in Bild 5.1a veranschaulicht. Es zeigt sich, daß bei Instabilität die Systemgrößen (theoretisch) über alle Grenzen gehen.

180°'

Ein Beispiel soll den Stabilitätsbegriff verdeutlichen helfen. Ausgangspunkt ist das Blockschaltbild eines PT_1 -Gliedes als Operationsverstärkerschaltung mit $V_p = 1$ (Bild 5.2a). Erreicht nun die Phasenverschiebung zwischen Ein- und Ausgangssignal mit wachsender Frequenz ω den Wert $\varphi = -180^{\circ}$, verhalten sich die Amplituden der Signale x_a und x_e umgekehrt zueinander. D.h., das Vorzeichen des gegengekoppelten Netzwerkes PT_1 kehrt sich um. Errechnet man aus dem veränderten Blockschaltbild (Bild 5.2b) den Frequenzgang, so folgt:

$$pT_1 \overset{O}{x}_a - x_e$$
 für $- \begin{matrix} V_p = 1 \\ \varphi = - \end{matrix}$

also

x_ =

$$F_{(p)} = \frac{\overset{o}{x}_{a}}{\overset{a}{x}_{e}} = -\frac{1}{1 - pT_{1}} = \alpha_{1} \cdot \frac{1}{p - \alpha_{1}}$$
(5.1)

Bild 5.2 Blockschaltbilder zur Stabilitätsbetrachtung an einem PT₁-Glied als Operationsverstärker-Schaltung

Die Sprungantwort erhält man mit Korrespondenz Nr. 55, Tabelle 2.3, nämlich:

$$x_{a(t)} = x_{e}^{(e^{t/T}1 - 1)}$$
 (5.2)

Sie ist in Bild 5.3 dargestellt und zeigt, daß bei $\varphi = -180^{\circ}$ und $V_{\rm p} = 1$ das ${\rm PT}_1$ -Glied instabil wird. Der Phasenwinkel φ und die Proportionalverstärkung $V_{\rm p}$ spielen also sicherlich eine wichtige Rolle bei der Beurteilung der Stabilität. Dies wird beim Bode-Diagramm besonders deutlich (Abschnitt 5.2).

Eine andere Definition der Stabilität bezieht sich auf die Pole des Frequenzgangs.

Es sei

$$F_{(p)} = \frac{Z_{(p)}}{N_{(p)}} = \frac{Z_{(p)}}{a_0 + a_1 p + \dots + a_n p^n} , \qquad (5.3)$$

der Frequenzgang eines ungestörten Regelkreises mit den Polen $p_i = \sigma_i + j\omega_i$ (Wurzeln des Nennerpolynoms). Zerlegt in Wurzelfaktoren wird

$$N_{(p)} = a_n (p - p_1) \cdot (p - p_2) \dots (p - p_n)$$

Dieses Nennerpolynom N_(p) stellt das Nennerpolynom eines PT_n -Gliedes dar und bestimmt die Stabilität eines Systems. Dabei hängt die Stabilität von der Lage der Pole in der komplexen p-Ebene ab. Zur Bestimmung der Pole genügt es, die Wurzeln p_i der charackteristischen Gleichung

$$a_0 + a_1 p + a_2 p^2 + \dots + a_n p^n = 0$$
 (5.4)

zu bestimmen /26/. Sie stellt eine homogene Differentialgleichung in Bildschreibweise dar. In Bild 5.1b sind die Pole der zugehörigen Teilbewegungen eines Systems aufgetragen. Daraus läßt sich folgende Definition ableiten.

> Ein lineares zeitvariantes Übertragungssystems ist genau dann stabil, wenn alle Pole p_i seiner Übertragungsfunktion in der linken p-Halbebene

liegen, d.h. Re $p_i < 0$. Das System befindet sich an der Stabilitätsgrenze, wenn alle Pole p_i auf der imaginären Achse liegen, d.h. Re $p_i = 0$.

Untersucht man die Frequenzganggleichung (5.1) nun auf die Verteilung der Pole des Nennerpolynoms, ergibt sich

$$p_{i} = p_{1} = \alpha_{1} > 0$$
,

d.h., der Pol p₁ befindet sich in der rechten p-Halbebene. Damit ist das System, wie schon mit Gleichung (5.2) gezeigt, instabil.

Die zuvor genannte Stabilitätsdefinition läßt eine Vereinfachung zu. Es ist nicht notwendig, die Wurzeln im einzelnen zu berechnen, sondern es genügt ihre Verteilung in der p-Ebene festzulegen. Dazu gibt es einige Stabilitätskriterien, die teils algebraisch, teils graphisch angewendet werden.

5.2 Bode-Diagramm

Obwohl die Stabilitätsuntersuchung mit dem Bode-Diagramm aus dem Nyquist-Kriterium abgeleitet wird (Abschnitt 5.3), soll mit dem Bode-Diagramm begonnen werden. Es bietet besonders für den nicht ständig mit der Regeltechnik befaßten Praktiker sowie für den "Einstieg" in die Thematik der Stabilitätsuntersuchung einige Vorteile.

Die graphische Darstellung des Frequenzgangs einer Regelung ist einfach, da sie in logarithmischer Form geschieht. Es wird aus der Multiplikation des Frequenzgangs der einzelnen Regelkreisglieder

 $|\mathbf{F}_0| = |\mathbf{F}_1| \cdot |\mathbf{F}_2| \cdot \cdot \cdot |\mathbf{F}_n|$

in logarithmischem Maßstab die Addition der entsprechenden Frequenzgänge

$$|g|F_{0}| = |g(|F_{1}| \cdot |F_{2}| \cdots |F_{n}|) = |g||F_{1}| + |g||F_{2}| + \cdots + |g||F_{n}|.$$

Außerdem lassen sich durch die Aufteilung des Frequenzgangs in Betrag $|F_0|$ und Phasenwinkel φ_0 Parametereinflüsse auf die Stabilität besser erkennen.

o x

Bei den Stabilitätsbetrachtungen wird die Stabilität des offenen Regelkreises auf die des geschlossenen Regelkreises bezogen. Man schneidet daher den Regelkreis in der Rückführung auf und erhält eine Wirkungskette aus Regler und Strecke.

Es wird aus dem Frequenzgang des geschlossenen Kreises der des offenen Regelkreises (Bild 5.4b).

$$F_{O(p)} = \frac{a}{x_e} = -F_{R(p)} \cdot F_{S(p)} \cdot \frac{e}{F_{S(p)}}$$
Regler Strecke z

$$x = x_a$$
a)

Bild 5.4 Allgemeines Blockschaltbild eines geschlossenen und eines aufgeschnittenen Regelkreises

Da sich die Stabilitätsbetrachtung im Bode-Diagramm am Betrag des Frequenzgangs F_{o(p)} orientiert, gilt:

$$\left|\frac{\mathbf{F}}{\mathbf{O}}\right|_{(\omega)} = \left|\frac{\mathbf{F}}{\mathbf{R}}\right|_{(\omega)} \cdot \left|\frac{\mathbf{F}}{\mathbf{S}}\right|_{(\omega)}$$

bzw.

$$\frac{\left|\underline{F}_{O}\right|_{(\omega)}}{dB} = 20 \cdot \left[\lg \left|\underline{F}_{R}\right|_{(\omega)} + \lg \left|\underline{F}_{S}\right|_{(\omega)} \right] .$$

Die aus dem Nyquist-Kriterium abgeleitete Stabilitätsbedingung für das Bode-Diagramm läßt sich sehr vereinfachen, wenn man praxisnah annimmt, daß Frequenzgänge F_{o(p)} mit Polen in der rechten p-Halbebene äußerst selten sind. Zulässig sei *höchstens ein* Doppelpol im Ursprung und Pole in der linken p-Halbebene. Das so vereinfachte Nyquist-Kriterium angewandt auf das Bode-Diagramm lautet:

> Ein geschlossener Regelkreis ist genau dann stabil, wenn der Frequenzgang $F_{o(p)}$ des offenen
Kreises bei der Durchtrittsfrequenz $\omega_{\rm D}$ (dort ist $V_{\rm O} = 1$ bzw. $\left|\frac{\rm F}{\rm O}\right| = 0$ dB) den Phasenwinkel $\varphi_{\rm O}(\omega_{\rm D}) > -180^{\circ}$ hat.

$$\varphi_{O}(\omega_{D}) > -180^{O} \text{ bei } \left|\underline{F}_{O}\right| = 0 \text{ dB}.$$
(5.5)

Dieses Stabilitätskriterium läßt auch eine Abschätzung der Stabilitätsgüte zu (Bild 5.5), die sich als Phasenrand oder Phasenreserve α_{R}

$$\alpha_{\rm R} = 180^{\rm o} + \varphi_{\rm o(\omega_{\rm D})}$$
(5.6)

und Amplitudenrand oder Amplitudenreserve Ap

$$\frac{A_{R}}{dB} = -\frac{\left|\frac{F_{O}\right|(\omega_{z})}{dB}\right|$$
(5.7)

definieren läßt.

Die Durchtrittsfrequenz ω_{D} ist ein Maß für die Reaktionsfähigkeit einer Regelung auf Führungs- und Störgrößenänderungen. Sie sollte möglichst groß sein.

Der Phasenrand $\alpha_{\rm R}$ gibt den Winkelabstand zwischen der Phasenkennlinie $\varphi_{\rm O(\omega_{-})}$ und der Stabilitätsgrenze $\varphi = -180^{\rm O}$ an.

Der Amplitudenrand A_R ist ein Maß für die Verstärkungsreserve der Regelung bis zum Erreichen der Stabilitätsgrenze bei $\omega = \omega_{\sigma}$.

In vielen Fällen setzt sich eine Regelstrecke aus mehreren in Reihe geschalteten PT_1 -Gliedern zusammen, so daß das vereinfachte Nyquist-Kriterium ausreicht. Dies soll am Beispiel einer mit PID-Regler geregelten PT_3 -I-Strecke gezeigt werden (Bild 5.6).

Es ist der Frequenzgang $F_{O(p)}$ des offenen Regelkreises

$$\mathbf{F}_{o(p)} = -\mathbf{F}_{R(p)} \cdot \mathbf{F}_{S(p)}$$

gegeben. Also

mit

$$\begin{split} F_{o(p)} &= -V_{R}V_{S} \cdot (1 + pT_{v} + \frac{1}{pT_{N}}) \cdot \frac{1}{(1 + pT_{1})(1 + pT_{2})(1 + pT_{3}) \cdot pT_{I}} \\ V_{o} &= V_{R} \cdot V_{S} , \alpha_{1} = 1/T_{1} , \alpha_{2} = 1/T_{2} \text{ und } \alpha_{3} = 1/T_{3} \text{ folgt} \\ F_{o(p)} &= -V_{o} \cdot \frac{(1 + pT_{N} + p^{2}T_{N}T_{v}) \cdot \alpha_{1} \cdot \alpha_{2} \cdot \alpha_{3}}{p^{2}T_{I}T_{N} \cdot (p + \alpha_{1})(p + \alpha_{2})(p + \alpha_{3})} \end{split}$$

180

Bild 5.6 Blockschaltbild eines Regelkreises aus PI-Regler und einer I-PT₂-Strecke

Man erkennt, daß die Pole

mit

$$p_1 = -\alpha_1, p_2 = -\alpha_2$$
 und $p_3 = -\alpha_3$

reell sind und in der linken p-Halbebene liegen; und daß es einen Doppelpol

$$p_4 = p_5 = 0$$

im Ursprung der p-Ebene gibt. Damit ist der Regelkreis für einen bestimmten Verstärkungsbereich V $_{\rm O}$ stabil und läßt sich im Bode-Diagramm mit dem vereinfachten Nyquist-Kriterium untersuchen.

Besitzt der Frequenzgang eines offenen Regelkreises Pole in der rechten p-Halbebene und höchstens zwei Pole im Ursprung der p-Ebene, so gilt das vollständige Nyquist-Kriterium. Es läßt sich aus den Schnittpunken des Phasenwinkels mit der Linie $\varphi = -180^{\circ}$ definieren (Ableitung in Abschnitt 5.3).

> S_p sei die Anzahl der positiven und S_n die Anzahl der negativen Schnittpunkte des Phasenwinkels $\varphi_{O(\omega)}$ mit der Linie $\varphi = -180^{\circ}$ für den Fall, daß $|\underline{F}_{O}|_{(\omega)} > 0$ dB ist. Dann ist der geschlossene Regelkreis genau dann stabil, wenn die Beziehung erfüllt ist:

$$S_{p} - S_{n} \stackrel{!}{=} \frac{n_{r}}{2}$$
für O oder 1 Pol im Ursprung (5.8)
der p-Ebene (n_{i} = [0,1])
$$S_{p} - S_{n} \stackrel{!}{=} \frac{n_{r} + 1}{2}$$
für einen Doppelpol im Ursprung
der p-Ebene (n_{i} = 2)
$$n_{r} = 0$$
für Re p_{i} < 0
für Re p_{i} > 0. (5.9)

Zur Erläuterung der sog. Schnittpunktform des allgemeinen Nyquist-Kriteriums sind in Bild 5.7 einige Beispiele aufgezeigt. Daraus

Bild 5.7 Verschiedene Bode-Diagramme zur Bestimmung der Stabilität mit dem Schnittpunkt-Kriterium

geht hervor, daß nur Schnittpunkte gezählt werden, für die $\left|\frac{\mathbf{F}_{o}}{\mathbf{F}_{o}}\right| > 0$ dB ist. Ein halber positiver Schnittpunkt ergibt sich bei von - 180° ansteigendem $\varphi_{o(\omega)}$; ein halber negativer bei von - 180° abfallendem $\varphi_{o(\omega)}$.

Selbst wenn bei der Durchtrittsfrequenz $\omega_{\rm D}$ der Phasenwinkel $\varphi_{\rm O}(\omega_{\rm D}) > -180^{\rm O}$ ist, kann der Regelkreis Instabilität zeigen, weil für eine exakte Stabilitätsaussage nur die Verteilung der Pole p_i in der p-Ebene maßgebend ist.

Das vereinfachte Nyquist-Kriterium gilt, wie erwähnt, für $n_r = 0$ (nur Pole in der linken p-Halbebene) und $n_i = [0, 1, 2]$ (0,1 oder 2 Pole im Ursprung der p-Ebene).

Es lautet in Schnittpunktform für $\left|\frac{\mathbf{F}}{\mathbf{P}_{0}}\right|_{(\omega)} > 0 \ dB$

$$s_p - s_n \stackrel{!}{=} 0$$
 für $n_i = [0,1]$
 $s_p - s_n \stackrel{!}{=} \frac{1}{2}$ für $n_i = 2$

und läßt sich als Stabilitätsbedingung leicht im Bode-Diagramm anwenden.

5.2.1 Graphische Auswertung

In Abschnitt 3 wurde bereits gezeigt, wie der Frequenzgang einzelner Regelkreisglieder exakt und asymptotisch gezeichnet wird. Eine Zusammenfassung der Frequenzgang- und Phasenwinkelkurven ist in Tabelle 3.1 enthalten.

Zur Beurteilung der Stabilität eines Regelkreises hat man nur die Kurvenverläufe des Frequenzgangs und Phasenwinkels von Regler und Strecke ins Bode-Diagramm einzutragen. Die Summen $|g|\underline{F}_{O}| = |g|\underline{F}_{R}| + |g|\underline{F}_{S}|$ und $\varphi_{O} = \varphi_{R} + \varphi_{S}$ erbringen die Gesamtdarstellung des offenen Regelkreises. Mit dem vereinfachten Stabilitätskriterium nach Gleichung (5.5) oder (5.10) ist dann die Stabilität graphisch abzulesen.

In vielen Fällen genügt sogar die asymptotische Darstellung von Frequenzgang und Phasenwinkel. Ausnahmen sind das PT₂- und PT_t-Glied. Dies bringt eine erhebliche Vereinfachung der Stabilitätsbetrachtung mit sich, wie ein Beispiel zeigt.

Beispiel

Der Druck eines Gasbehälters soll über eine Pumpe mit einem PI-Regler auf einen konstanten Wert geregelt werden. Bild 5.8 zeigt das zugehörige Blockschaltbild.

Wie in Abschnitt 3 gezeigt, besteht die Regelstrecke aus zwei PT_1 -Gliedern.

Gegeben sind folgende Parameter:

 $V_{\rm R}$ = 10 , $\omega_{\rm N}$ = 15 Hz , $\omega_{\rm 1}$ = $V_{\rm P}\cdot\omega_{\rm N}$ = 150 Hz $V_{\rm S1}$ = 1 , $\omega_{\rm E1}$ = 50 Hz $V_{\rm S2}$ = 1 , $\omega_{\rm E2}$ = 100 Hz .

Zunächst muß man sich klar machen, in welchem Frequenzbereich die Regelung untersucht werden soll, denn mit ω = 0 kann in logarithmischem Maßstab nicht begonnen werden. Dazu ein Hinweis. Man wählt für die kleinste Frequenz auf der Abszisse etwa ein Zehntel der kleinsten, als Parameter gegebenen Frequenz.

Es wird hier

$$\omega_{\rm min} \gtrsim 0.1$$
 · $\omega_{\rm N}$ = 1.5 Hz .

Damit beginnt die Abszisse bei 1 Hz. In Bild 5.9 ist das entsprechende Bode-Diagramm dargestellt. Es ergibt sich eine Phasenreserve von $\alpha_R \not\approx 39^\circ$, d.h. die Regelung ist stabil, siehe Gleichung (5.5). Die Amplitudenreserve beträgt $A_R \not\approx 22$ dB oder als reiner Zahlenwert $A_R \not\approx 12,6$.

Die Stabilitätsbetrachtung mit dem Schnittpunktkriterium nach Gleichung (5.10) ergibt für diese Regelung folgendes:

$$F_{\rho(\dot{p})} = V_{o} \cdot \frac{1 + PT_{N}}{PT_{N} \cdot (1 + PT_{1})(1 + PT_{2})}$$

daraus folgt n_i = 1, n_r = 0 und aus Bild 5.9 S_p = 0, S_n = 0. (Keine Schnittpunkte mit -180[°]). Damit ist die Stabilitätsbedingung S_p = S_n $\stackrel{!}{=}$ 0

erfüllt, die Regelung ist stabil.

Bild 5.9 Bode-Diagramm für die Regelung aus Bild 5.8

Wie aus den Gleichungen für die einzelnen Phasenwinkel zu entnehmen ist, hat eine Verstärkungsänderung ΔV_{O} keinen Einfluß auf den Verlauf der Phasenwinkel.

Eine Änderung der Verstärkung kann jedoch eine Regelung vom instabilen in den stabilen Zustand überführen. Dies wird im Bode-Diagramm besonders deutlich. Bei einer Verstärkungsänderung bleibt der Verlauf von $\varphi_{_{\rm O}}$ erhalten, es ändert sich nur der Verlauf von

 $|\underline{F}_{O}|$. Da die Streckenverstärkungen meist festliegen, läßt sich mit der Reglerverstärkung V_R der Regelkreis stabilisieren. Dies wird anhand einer Regelung aus PI-Regler und PT₁-T_t-Strecke gezeigt (Bild 5.10).

Bild 5.10 Bode-Diagramm einer Regelung aus PI-Regler und einer PT₁-T₊-Strecke

Bei der Durchtrittsfrequenz $\omega_D \approx 140$ Hz ist die Regelung instabil ($\alpha_R < 0$). Erst wenn die Verstärkung um $\Delta V_O = \Delta V_R = 10$ dB verringert wird, ergibt sich bei der neuen Durchtrittsfrequenz $\omega_D^* \approx 45$ Hz eine stabile Regelung mit $\alpha_R = 45^{\circ}$ Phasenrand.

Dabei wird angenommen, daß ein Vermindern der Verstärkung um ΔV_R einem Parallelverschieben des Frequenzgangs |<u>F</u>o| von ω_D nach

 $\omega_{D}^{*} \approx 45 \text{ Hz}$ hin gleichkommt. Diese Vereinfachung erspart ein erneutes Zeichnen von $|\underline{F}o|_{(\omega)}$ mit der veränderten Verstärkung $V_{O}^{*} = V_{O} - \Delta V_{O}$.

Für Amplituden- und Phasenrand sind optimale Werte

 $\begin{array}{l} A_{\rm R} = 4(12 \ {\rm dB}) \ \dots \ 10(20 \ {\rm dB}) \\ \alpha_{\rm R} = 40^{\circ} \ \dots \ 60^{\circ} \end{array} \begin{array}{|c|c|c|c|c|} & \mbox{bei Führungsverhalten} \\ (nach \ Gleichung \ (5.11)) \\ A_{\rm R} = 1,5(3,5 \ {\rm dB}) \dots \ 3(9,5 \ {\rm dB}) \\ \alpha_{\rm R} = 20^{\circ} \ \dots \ 50^{\circ} \end{array} \begin{array}{|c|c|} & \mbox{bei Störverhalten} \\ (nach \ Gleichung \ (5.12)) \\ (nach \ Gleichung \ (5.12)) \end{array}$

Aufgabe 5.1

Die Temperatur einer Flüssigkeit soll mit einem Wärmetauscher über ein Stellventil mittels PI-Regler geregelt werden (Bild 5.11). Der Wärmetauscher zeigt PT₁-Verhalten; der Ventilstellantrieb I-Verhalten (siehe Abschnitt 3). Die Totzeit des Stromrichters sei vernachlässigt. Die Anlagenparameter sind:

$$\begin{split} \text{PI-Regler:} & V_{\text{R}} = 10 \text{,} \quad \text{T}_{\text{N}} = 20 \text{ ms} \text{,} \quad \text{T}_{1} = 2 \text{ ms} \\ \text{PT}_{1}\text{-Strecke:} & V_{\text{S}} = 1 \text{,} \quad \text{T}_{\text{E1}} = 6,67 \text{ ms} \\ \text{I-Strecke:} & \text{T}_{\text{I}} = 0,1 \text{ s}. \end{split}$$

Es ist das Blockschaltbild zu zeichnen und die Stabilität im Bode-Diagramm zu untersuchen (auch mit dem Schnittpunktkriterium).

Bild 5.11 Schema eines Wärmetauschers zur Temperaturregelung einer Flüssigkeit

Aufgabe 5.2

Ein Förderkorb soll mit einem Stromrichterantrieb auf bestimmte Höhen positioniert werden. Der Regler habe PID-Verhalten (Bild 5.12). Der mechanische Teil der Anlage zeigt, ebenso wie der Motor, PT₁-Verhalten. Ein Stromrichter entspricht einem Totzeitglied. Die Anlagenparameter sind:

Gesucht ist das Blockschaltbild sowie die Stabilitätsaussage im Bode-Diagramm (auch mit dem Schnittpunktkriterium).

Bild 5.12 Schema einer einfachen Positionsregelung für einen Förderkorb

Aufgabe 5.3

Für jeden Freiheitsgrad x, y, z, r und φ eines Industrieroboters ist eine Regelung erforderlich. Diese soll jeweils mit einem PI-Regler erfolgen (Bild 5.13). Der gesamte Roboterantrieb habe PT₂-Verhalten und ist Istwertfassung PT₁-Verhalten. Die Totzeit der einzelnen Stromrichter sei vernachlässigbar.

Bild 5.13 Schema eines vereinfachten Industrieroboter-Antriebes für fünf Freiheitsgrade

Die Parameter sind: PI-Regler: $V_{\rm R}$ = 56 , $\omega_{\rm N}$ = 20 Hz , PT_1 -Strecke: $V_{S1} = 1$, $\omega_{E1} = 10 Hz$, PT_2 -Strecke: $V_{S2} = 0,316$, $\omega_0 = 40$ Hz, d = 1Es sind $\omega_{ extsf{D}}^{}$ und $lpha_{ extsf{R}}^{}$ im Bode-Diagramm zu bestimmen, sowie die Verstärkungen für $\alpha_{\rm p} = 0^{\circ}$ und $\alpha_{\rm p} = 45^{\circ}$ anzugeben. Aufgabe 5.4 Ein Regelkreis bestehe aus dem PI-Regler, einer PT3-Strecke (zusammengesetzt aus drei PT1-Strecken) und einem Totzeitglied. Die Kenngrößen sind: PI-Regler: $V_{\rm R}$ = 100 , $\omega_{\rm N}$ = 15 Hz , $\omega_{\rm 1}$ = 1.500 Hz PT_1 -Strecke 1: V_{S1} = 1 , ω_{F1} = 10 Hz PT_1 -Strecke 2: V_{S2} = 1 , ω_{E2} = 20 Hz PT_1 -Strecke 3: $V_{S3} = 1$, $\omega_{E3} = 40 Hz$ PT_{+} -Strecke: $V_{S4} = 1$, $T_{+} = 10 \text{ ms.}$ Es ist die Stabilität im Bode-Diagramm zu untersuchen und anschließend der

Es ist die Stabilität im Bode-Diagramm zu untersuchen und anschließend der PI – durch einen PD-Regler mit den Kenngrößen V_R = 100, ω_V = 30 Hz und ω_2 = 0,3 Hz zu ersetzen.

5.2.2 Rechner-Auswertung

Eine exakte Stabilitätsuntersuchung ist nur mit den in Abschnitt 3 bzw. Tabelle 3.1 angegebenen Frequenzgang- und Phasenwinkel-Gleichungen möglich.

Dazu sind in Abschnitt 7.2.2 verschiedene Beispiele mit dem Taschenrechner HP 41 CV abgedruckt. Die Rechenprogramme erheben keinen Anspruch auf "Ausgefeiltheit" bis ins Kleinste. Wichtig ist, daß sie die gewünschten Ergebnisse liefern, wie das der Ausdruck für einen Regelkreis aus PD-Regler und PT₁-T_t-Strecke zeigt (Bild 5.14).

Für diesen Regelkreis läßt sich das Bode-Diagramm zeichnen. Es ergibt bei den gegebenen Parametern eine stabile Regelung (Bild 5.15). Zur Kopplung von Taschenrechnern an einen Plotter sind in /27/ einige Hinweise gegeben.

Das graphische Verfahren der Stabilitätsuntersuchung im Bode-Diagramm läßt sich ohne Schwierigkeiten auch mit einem Rechner behandeln. Dieser sollte über einen Bildschirm verfügen und an einen

PD-PT1-TT VR=?	XE0 -B0	DE 2°	W/HZ=1.0 /F0/IN dB=20.0 PHI-0/GRAD=-5.5	WD/HZ=114.9 /F0/IN dB=0.0 PHI-0/GRAD=-61.7
TU/9-2	10.0	RUN	W/HZ=5.0	
117.0-:	0.005	RUN	/F0/IN_dB=19.0 PHI-0/GRAD=-25.4	/F0/IN dB=-3.0
¥5-11=?	1.0	RUN	 W/H7=25.0	PHI-0/GRAD=-53.6
T1/S=?	0.1	RUH	/F0/IN dB=11.5 PHI-0/GRAD=-62.5	W1/HZ=10.0 /F0/IN dB=17.0
¥5-11=?	1.0	RUN	 W/HZ=125.0	PHI-0/GRAD=-42.7
U-NTN/H7=2	0.001	RUN	∕F0⁄IN dB=-0.5 PHI-0∕GRAD=-60.6	aR/GRHD=118,3
U-MOX/H7=2	1.0	RUN	 ₩/HZ=625.0	W21=: 3,000.0 RUN
10,	860.0	RUN	/F0/IN dB=-5.6 PHI-0/GRAD=-52.6	₩22-7 3,200.0 RUN ₩7/₩7=3,080.0
			 W/HZ=3,125.0 /F0/IN dB=-6.0 PHI-0/GRAD=-182.5	760/IN dB=-6.0 PHI-0/CRAD=-180.0 AR=2.0
			 W/HZ=15,625.0 /F0/IN dB=-6.0 PHI-0/GRAD=-895.9	REGELG. STABIL

Bild 5.14 Taschenrechner-Ausdruck der Werte einer Regelung aus PD-Regler und PT_1-T_+ -Strecke für das Bode-Diagramm

Plotter angeschlossen sein. Mit Rechnerunterstützung ist es möglich, nicht nur Aufgaben im Bode-Diagramm zu lösen, sondern allgemein die Parametereinflüsse auf eine Regelung sichtbar zu machen. Außerdem kann die Vermittlung von Lehrinhalten der Regeltechnik im Rechner-Dialog zur besseren Durchschaubarkeit des angebotenen Stoffes beitragen /28/. Auch wegen der zunehmenden Synthese kontinuierlicher Regelsysteme durch Software, ist der vermehrte Einsatz von Rechnern in der Lehre unumgänglich. Dementsprechend sind in Abschnitt 6.2 einige Beispiele industrieeller digitaler Regelungen mit Rechner aufgezeigt.

Programme für die meisten regeltechnischen Probleme werden von /29/ bereitgestellt und enthalten auch Subroutinen für die logarithmische Darstellung des Bode-Diagramms. Weitere Programme zur rechnergestützten Darstellung von Frequenzgängen und Sprungantworten sind in /30/, /31/, /32/, /33/ und /34/ enthalten. Das in diesem Buch benutzte BASIC-Programm für das Bode-Diagramm ist in Abschnitt 7.1.2 abgedruckt. Es enthält alle Graphikroutinen und zeichnet Frequenzgangbetrag sowie Phasenwinkel (auf Diskette erhältlich /88/).

Bild 5.15 Bode-Diagramm der Regelung PD-Regler, PT₁-T_t-Strecke mit den Rechnerwerten aus Bild 5.14

In einem kleinen Rechnerdialog kann der Benutzer Regelungen auswählen und Parameteränderungen mit Hilfe von Plot's des Bode-Diagramms deuten lernen.

5.3 Nyquist-Kriterium

Das Nyquist-Kriterium /35/ ermöglicht, ausgehend vom komplexen Frequenzgang $F_{o(j\omega)}$ des offenen Regelkreises, eine Stabilitätsaussage über den geschlossenen Regelkreis. Es läßt sich in Ortskurven-Darstellung und Frequenzgang-Darstellung behandeln. Die Frequenzgang-Darstellung entspricht dem bereits in Abschnitt 5.2 gezeigten Bo-

de-Diagramm. Die Darstellung in Ortskurvenform ist sowohl graphisch als auch rein algebraisch möglich. Dazu benutzt man die in Abschnitt 3 angegebenen komplexen Frequenzganggleichungen der Regelkreisglieder. Ihre Darstellung in der komplexen Ebene nennt man Ortskurven.

5.3.1 Ortskurven-Darstellung

Die wichtigsten Ortskurven und die zugehörigen Gleichungen linearer Regelkreisglieder sind in Tabelle 5.1 bzw. Tabelle 3.1 und 3.2 dargestellt. Bei der Herleitung des Nyquist-Kriteriums geht man davon aus, daß der Gesamtfrequenzgang aus der Multiplikation der Einzelfrequenzgänge besteht und eine gebrochene rationale Funktion ist. Dann wird entsprechend Gleichung (5.3)

$$F_{(p)} = \frac{Z_{(p)}}{N_{(p)}} = \frac{Z_{(p)}}{a_0 + a_1 \cdot p + a_2 \cdot p^2 + \dots + a_n \cdot p^n}$$

Aus Bild 5.4a geht für den geschlossenen Regelkreis hervor, daß bei Führungsverhalten (z = 0)

$$F_{w(p)} = \frac{O}{O}_{w} = \frac{-FO(p)}{1 - FO(p)}$$
(5.11)

und bei Störverhalten (w = 0)

$$F_{z(p)} = \frac{o}{o}_{z} = \frac{1}{1 - F_{o}(p)}$$
(5.12)

gilt; mit $F_{O(p)} = -F_{R(p)} \cdot F_{S(p)}$, dem Frequenzgang des offenen Regelkreises.

Zur Bestimmung des Übertragungsverhaltens von F_(p) ist die Gleichung N(p) = O zu lösen, die für p = d/dt einer homogenen Differentialgleichung entspricht. Voraussetzung ist, das $Z_{(p)}$ und $N_{(p)}$ teilerfremd und daß der Grad von $Z_{(p)}$ kleiner als der von $N_{(p)}$ ist.

Es genügt nun zur Lösung der Differentialgleichung die Wurzeln p_i des Nennerpolynoms N $_{(D)}$ bzw. deren Verteilung in der p-Ebene zu bestimmen.

Für den geschlossenen Regelkreis ist demnach bei Führungs- oder Störverhalten das gleiche Nennerpolynom Null zu setzen, also

$$1 - F_{O(p)} = N_{(p)} = 0$$
 (5.13)

Regelkreis- verhalten	Frequenzgang	Ortskurve		
P	$F_{(p)} = F_{(j\omega)} = V_p$	Jm - Vp		
Ι	$F_{(p)} = \frac{1}{pT_{I}}$ $F_{(j\omega)} = -j \frac{1}{\omega T_{I}}$	Jm w= co Re		
D	$F_{(p)} = pT_D$ $F_{(j\omega)} = j\omega T_D$	Jm w=0 Re		
PI	$F_{(p)} = V_{p} (1 + \frac{1}{pT_{N}})$ $F_{(j\omega)} = V_{p} (1 - j \frac{1}{\omega T_{N}})$	$\frac{J_m}{\longleftarrow} V_p \longrightarrow Re$		
PD	$F_{(p)} = V_{p}(1 + pT_{V})$ $F_{(j\omega)} = V_{p}(1 + j\omega T_{V})$	J_m V_p $w=0$ Re		
PID	$F_{(p)} = V_{p} (1 + pT_{V} + \frac{1}{pT_{N}})$ $F_{(j\omega)} = V_{p} [1 + j(\omega T_{V} - \frac{1}{\omega T_{N}})]$	$\frac{J_{m}}{\frac{\omega^{*}}{\sqrt{V_{k}}\tau^{*}}}$		
PT_{1}	$F_{(p)} = V_{p} \frac{1}{1 + pT_{1}}$ $F_{(j\omega)} = V_{p} \frac{1 - j\omega T_{1}}{1 + \omega^{2}T_{1}^{2}}$	$\omega = \infty$ $V_P \longrightarrow \omega = 0 Re$		

Tabelle 5.1 Frequenzgang und Ortskurve der wichtigsten Regelkreisglieder

Tabelle 5.1 (Forts.)

Regelkreis- verhalten	Frequenzgang	Ortskurve F(jω)		
PT2	$F_{(p)} = v_{p} \frac{1}{1 + 2dpT_{2} + p^{2}T_{2}^{2}}$ $F_{(jw)} = v_{p} \frac{1 - \omega^{2}T_{2}^{2} - j2dwT_{2}}{(1 - \omega^{2}T_{2}^{2})^{2} + 4d^{2} \cdot \omega^{2} \cdot T_{2}^{2}}$	$J_{n} \qquad V_{p} \qquad \qquad$		
PT,	$F_{(p)} = V_{p}^{*} \frac{1}{(1+pT_{1}^{*})(1+pT_{2}^{*})\cdots(1+pT_{n}^{*})}$ $F_{(j\omega)} = V_{p} \frac{1}{1+j\omega T_{1}^{+}(j\omega)^{2}T_{2}^{-2}+\cdots(j\omega)^{n}T_{n}^{-n}}$	Jm Vp PT ₄ PT ₄ PT ₇ PT ₂		
D-T,	$F_{(p)} = \frac{P_D^T}{1 + P_1^T}$ $F_{(j\omega)} = \frac{\omega_D^T (\omega_1 + j)}{1 + \omega_1^2 T_1^2}$	J_{m} $u=0$ $u=\infty$ R_{e}		
I-T,	$F_{(p)} = \frac{1}{pT_{1}(1 + pT_{1})}$ $F_{(j\omega)} = \frac{-\omega T_{1} - j}{\omega T_{1}(1 + \omega^{2}T_{1}^{2})}$	Jm $\omega = \infty Re$ $-\frac{T_{1}}{T_{2}}$		
PT_t	$F_{(p)} = V_{p} \cdot e^{-pT_{t}}$ $F_{(j\omega)} = V_{p}(\cos\omega T_{t} - j\sin\omega T_{t})$	$\frac{J_m}{+\frac{1}{2}V_p} \frac{\omega T_e = 0}{+V_p Re}$		
I-T _t	$F_{(p)} = \frac{e^{pT_t}}{pT_I}$ $F_{(j\omega)} = \frac{-\sin\omega T_t - j\cos\omega T_t}{\omega T_I}$	Jm $\omega = \infty$ Re $\frac{1}{T_{L}}$		
PT _t -T _t	$F_{(p)} = V_{p} \frac{e^{-pT_{t}}}{1 + pT_{1}}$ $F_{(j\omega)} = V_{p} \frac{\frac{(1 - j\omega T_{1})e^{-j\omega T_{t}}}{1 + \omega^{2}T_{1}^{2}}$	Jm w=0 Re Vp		

Andere Literaturstellen geben für die charakteristische Gleichung $1 + F_{O(p)} = 0$ an, mit $F_{O(p)} = F_{R(p)} \cdot F_{S(p)}$. Beide führen auf gleiche Ergebnisse.

Es sind die Pole des geschlossenen Regelkreises gleich denen des offenen Regelkreises. Nach Nyquist ist die Polstellenverteilung von der Winkeländerung $\Delta \varphi_{(\omega)}$ des Polynoms N_(p) = N_(jw) abhängig. Jede Wurzel des Polynoms liefert einen Beitrag $\Delta \varphi = \pi/2$, wenn sie in der linken p-Halbebene liegt und einen von $\Delta \varphi = -\pi/2$, wenn sie in der rechten p-Halbebene liegt. Die Winkeländerung wird durch einen Fahrstrahl im kritischen Punkt P_K = +1 für den Bereich $\omega = 0 \dots \infty$ beschrieben (Bild 5.16). Nimmt man für n_r die Anzahl der Pole in der rechten p-Halbebene an (Rep_i > 0), für n₁ die Anzahl der Pole in der linken p-Halbebene (Rep_i < 0 oder n_r = 0), sowie n_i die Anzahl der Pole auf der imaginären Achse, ergibt sich eine allgemeine Fassung des Nyquistkriteriums. Die Stabilitätsbedingung für geschlossene Regelkreise lautet dann:

-F0 (jω)

Bild 5.16 Darstellung des Fahrstrahls an den Ortskurven 1 – Found \underline{F}_{O} zur Deutung der Winkeländerung $\Delta \varphi$

Ein geschlossener Regelkreis ist genau dann stabil, wenn der im kritischen Punkt P_K an die Ortskurve $F_{o(j\omega)}$ des offenen Kreises gelegte Fahrstrahl im Bereich von $\omega = 0 \dots \infty$ die stetige Winkeländerung

$$\Delta \varphi \stackrel{!}{=} \pi n_r + \frac{\pi}{2} \cdot n_i \tag{5.14}$$

beschreibt.

Zur Veranschaulichung des Nyquist-Kriteriums, das auch für Systeme mit Totzeit gilt, sind in Bild 5.17 einige Beispiele gezeigt. Hat $F_{O(p)}$ keine Pole auf der imaginären Achse $(n_i = 0)$, beginnt die Ortskurve für $\omega = 0$ auf der reellen Achse und endet für $\omega = \infty$ im Ursprung der komplexen Ebene. Hat $F_{O(p)}$ Pole im Ursprung $(n_i > 0)$, dies deutet auf das I-Verhalten hin, beginnt die Ortskurve für $\omega = 0$ im Unendlichen und endet für $\omega = \infty$ im Ursprung.

Hat $F_{o(p)}$ unendlich viele Schnittpunkte mit der reellen Achse, dies deutet auf ein zusätzliches Totzeitverhalten hin, endet die Ortskurve für $\omega = \infty$ im Ursprung bzw. geht in einen Kreis um den Ursprung über.

Beim vereinfachten Nyquist-Kriterium, das für viele Fälle völlig ausreicht, betrachtet man nur Regelkreise, die keine Pole in der rechten p-Halbebene aufweisen und maximal zwei Pole im Ursprung besitzen ($n_r = 0$, $n_i = 0$, 1, 2). Dann lautet die Stabilitätsbedingung:

Gilt für die Polverteilung des aufgeschnittenen Regelkreises $n_r = 0$ und $n_i = [0, 1, 2]$, so ist der geschlossene Regelkreis genau dann stabil, wenn der Fahrstrahl in P_K an die Ortskurve $F_{O(j\omega)}$ gelegt, im Bereich $\omega = 0 \dots \infty$ die stetige Winkeländerung

 $\Delta \varphi \stackrel{!}{=} \frac{\pi}{2} \cdot n_{i} \tag{5.15}$

beschreibt.

Oder anders ausgedrückt:

Hat der offene Regelkreis die Polverteilung $n_r = 0$ und $n_i = [0, 1, 2]$, so ist der geschlossene Regelkreis genau dann stabil, wenn der kritische Punkt $P_K = [1, j0]$

Ortskurve	F0 (jω)	Polverteilung von F0(p)	Stabilitätsaussage
	PK Gz 1 Re	$P - PT_2$ $F_{o(p)} = \frac{-V_o}{(1+pT_1)(1+pT_2)}$ $n_r = 0; n_i = 0$	$\Delta \varphi \stackrel{!}{=} 0 = 0$ stabil
	-2ft Re	$P - PT_2$ $F_{o(p)} = \frac{-V_0}{(1+pT_1)(1+pT_2)}$ $n_r = 0; n_i = 0$	Δφ [!] = 0 = -2 <u>instabil</u>
	Re Re	$F_{o(p)} = \frac{-v_{o}(1+pT_{3})}{\prod_{i=1}^{pT_{1}(1+pT_{1})(1+pT_{2})}}$ $n_{i} = 1 ; n_{r} = 1$	$\frac{(pT_4^{-1})}{1} \qquad \Delta \varphi \stackrel{!}{=} \frac{3\pi}{2} = \frac{3\pi}{2}$ <u>stabil</u>
	2 T Re	$F_{o(p)} = \frac{-v_{o}}{(pT_{a}^{-1})(pT_{b}^{-1})}$ n _r = 2; n _i = 0	$\Delta \varphi \stackrel{!}{=} 2\pi = 2\pi$ stabil
$\begin{array}{c} \text{Im} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Re	$P - I - PT_{1}$ $F_{o(p)} = \frac{-V_{o}}{pT_{1}(1+pT_{1})}$ $n_{r} = 0; n_{1} = 1$	$\Delta \varphi \stackrel{!}{=} \frac{\pi}{2} = \frac{\pi}{2}$ stabil
	Re Re	$P - PT_{1} - T_{t} - pT_{t}$ $F_{o(p)} = \frac{-V_{o} \cdot e}{1 + pT_{1}}$ $n_{r} = 0; n_{1} = 0$	$\Delta \varphi \stackrel{!}{=} 0 = 0$ <u>stabil</u>
	Re	$P - PT_{1} - I^{2}$ $F_{o}(p) = \frac{-V_{o}}{p^{2}T_{1}^{2}(1+pT_{1})}$ $n_{r} = 0; n_{i} = 2$	$\Delta \varphi \stackrel{!}{=} \pi = -\pi$ <u>instabil</u>

Bild 5.17 Ortskurve, Polverteilung und Stabilitätsaussage verschiedener typischer Regelkreise

im Sinne wachsender $\omega\text{-Werte}$ rechts von der Ortskurve $F_{O(j\omega)}$ liegt und $\alpha_{R}^{}>0$ ist, also

$$\underline{\mathbf{F}}_{\mathbf{O}} = -\underline{\mathbf{F}}_{\mathbf{R}} \cdot \underline{\mathbf{F}}_{\mathbf{S}} \stackrel{!}{<} 1 \text{ für } \alpha_{\mathbf{R}} > 0$$
 (5.16)

bzw.

$$\operatorname{Re}[\underline{F}_{O(\omega_{z})}] \stackrel{!}{<} 1 \operatorname{bei} \operatorname{Im}[\underline{F}_{O(\omega_{z})}] \stackrel{!}{=} 0$$

Maßgebend ist also der Teil der Ortskurve, der dem kritischen Punkt am nächsten liegt.

Genau so wie beim Bode-Diagramm läßt sich auch aus der Ortskurve von $F_{O(j\omega)}$ der Phasenrand α_R und der Amplitudenrand A_R ablesen (Bild 5.18). Damit ergibt sich ω_z für den Fall, daß $ImF_O = 0$ ist. Es entspricht dann die Strecke vom Schnittpunkt ($\omega = \omega_z$) bis zur imaginären Achse dem reziproken Wert des Amplitudenrandes. Schlägt man einen Kreis mit dem Radius 1 um den Ursprung, so ergibt sein Schnittpunkt mit der Ortskurve die Durchtrittsfrequenz ω_D ($|F_O| \stackrel{!}{=} 1 = 0$ dB). Der Winkel, welcher von der Linie $0 - \omega_D$ und der Abszisse eingeschlossen wird, entspricht der Phasenreserve α_p .

Bild 5.18 Ortskurven-Darstellung zur Definition der Stabilität nach dem Nyquist-Kriterium

Da die Werte von $\omega_{\rm D}$ und $\omega_{\rm Z}$ aus der graphischen Darstellung nicht ablesbar sind, muß die exakte Stabilitätsaussage algebraisch gefunden werden.

Dazu lassen sich sofort die notwendigen Gleichungen angeben.

$$\operatorname{Im} \underline{F}_{O} \stackrel{!}{=} O \longrightarrow \omega_{z}$$

5.3.2 Graphische Auswertung

Beispiel

Am Beispiel einer Regelung aus P-Regler und I-PT₁-Strecke soll das Nyquist-Kriterium veranschaulicht werden. Zunächst ist der komplexe Frequenzgang $F_{o(j\omega)}$ des offenen Regelkreises zu ermitteln.

Mit den Gleichungen (3.2), (3.6) und (3.30) folgt

$$\underline{\underline{F}}_{R} = \underline{V}_{R}$$

$$\underline{\underline{F}}_{S} = \underline{V}_{S} \cdot \frac{-\omega \underline{T}_{1} - j}{\omega \underline{T}_{I} \cdot (1 + \omega^{2} \underline{T}_{1}^{2})} , \quad \underline{F}_{(p)} = \frac{\underline{V}_{S}}{\underline{p} \underline{T}_{I} \cdot (1 + \underline{p} \underline{T}_{1})}$$

damit wird

$$\underline{\mathbf{F}}_{O} = -\underline{\mathbf{F}}_{R} \cdot \underline{\mathbf{F}}_{S} = \mathbf{V}_{O} \cdot \frac{\omega \mathbf{T}_{1} + j}{\omega \mathbf{T}_{I} \cdot (1 + \omega^{2} \mathbf{T}_{1}^{2})} .$$
(5.18)

,

Aus dem Gleichungssatz (5.17) ergibt sich

Im
$$\underline{F}_{0} \stackrel{!}{=} 0 = V_{0} \cdot \frac{1}{\omega_{z} T_{I} \cdot (1 + \omega_{z}^{2} T_{1}^{2})}$$

daraus folgt

$$\omega_z = \infty$$

und weiter

$$\operatorname{Re}\left[\underline{F}_{O(\omega_{Z})}\right] = V_{O} \cdot \frac{\omega_{Z}^{T} 1}{\omega_{Z}^{T} 1 \cdot (1 + \omega_{Z}^{2} T_{1}^{2})} \bigg| = 0 ,$$

$$\operatorname{Re}\left[F_{O(\omega_{Z})}\right] < 1$$

also ist

$$\operatorname{Re}\left[\underline{F}_{O(\omega_{z})}\right] < 1$$
.

Außerdem wird mit derselben Gleichung

$$\frac{1}{A_{\rm R}} = 0 \mbox{,} \label{eq:AR}$$
 somit ist $A_{\rm R} = \infty^{\sim}$

199

Die Durchtrittsfrequenz $\omega_{\rm D}$ ergibt sich aus

$$\left| \underline{F}_{0} \right| \stackrel{!}{=} 1 = v_{0}^{2} \cdot \frac{1}{\omega_{D}^{2} T_{I}^{2} \cdot (1 + \omega_{D}^{2} T_{I}^{2})} \quad .$$

Es ist demnach die Gleichung zu lösen

$$\omega_{\rm D}^{4} + \frac{\omega_{\rm D}^{2}}{{\rm T}_{1}^{2}} - \frac{{\rm V}_{\rm o}^{2}}{{\rm T}_{1}^{2}{\rm T}_{\rm I}^{2}} = 0 \quad ,$$

mit der Substitution z = ω_D^2 erhält man eine gemischt quadratische Gleichung, deren Lösung für V_R = 100, V_S = 1, T₁ = 0,1s und T₁ = 1s ist:

$$\omega_{\rm D} = 30,842 \, {\rm Hz}$$
.

Damit ergibt sich der Phasenrand zu

$$\alpha_{\rm R} = \arctan \frac{1}{\omega_{\rm D} {\rm T}_1} = 17,14^{\rm O}.$$

Diese Werte lassen sich durch die graphische Darstellung veranschaulichen (Bild 5.19). Der Taschenrechner erbringt folgende Werttabelle:

ω/Hz	0	5	10	20	ωD	40	60	100	8
Re <u>F</u> o	$V_0 \frac{T_1}{T_I} = 10$	+ 8,0	+ 5,0	+ 2,1	+ 0,951	+ 0,59	+ 0,18	+0,1	0
ImFo	+ ∞	+ 16,0	+ 5,0	+ 1	+ 0,308	+ 0,15	+ 0,045	+0,01	ο

Bild 5.19 Graphische Auswertung der Ortskurven-Darstellung einer Regelung mit P-Regler und PT₁-I-Strecke nach dem vereinfachten Nyquist-Kriterium

Die Zeichnung zeigt, daß der Frequenzgang \underline{F}_{O} für $\omega = 0$ gegen die Asymptote $V_{O} \cdot T_{1}/T_{I}$ läuft und für $\omega = \infty$ im Ursprung endet. Es läßt sich die Phasen- und Amplitudenreserve ablesen.

Für die Stabilitätsaussage erhält man aus dem Frequenzgang $F_{(p)}$ mit $n_r = 0$ und $n_i = 1$ nach Gleichung (5.14) oder (5.15)

 $\Delta \varphi \quad \stackrel{!}{=} \quad \frac{\pi}{2} \quad = \quad \frac{\pi}{2} \quad , \qquad$

d.h. die Regelung ist stabil. Ebenso ist Stabilität nach dem vereinfachten Nyquist-Kriterium Gleichung (5.16) gegeben, denn es ist:

 $\underline{F}_{O} < 1$ bzw. Re $\left[\underline{F}_{O(\omega_{2})}\right] < 1$.

Mit der in Gleichung (5.14) bzw. (5.15) angegebenen Form ist das Nyquist-Kriterium nicht direkt ins Bode-Diagramm übertragbar, da dort der Frequenzgang in Betrag und Phase aufgeteilt erscheint.

Es soll nun gezeigt werden, daß aus der Anzahl und Art der Schnittpunkte von $F_{o(j\omega)}$ mit der reellen Achse auf die stetige Winkeländerung $\Delta \varphi$ geschlossen werden kann.

Dabei werden nur Schnittpunkte gezählt, die im Bereich Re = $[1, \infty]$ bzw. (für das Bode-Diagramm) die im Bereich $\left|\frac{F}{-0}\right| > 0$ dB liegen. Ein positiver Schnittpunkt sei der Übergang der Ortskurve von der unteren in die obere Halbebene, ein negativer Schnittpunkt entspricht dem umgekehrten Übergang der Ortskurve mit zunehmender Frequenz ω . Für Doppelpole im Ursprung wird der Beginn der Ortskurve bei $\omega = 0$ als halber positiver Schnittpunkt definiert, wenn Re $\underline{F}_0 > 0$ ist, als halber negativer Schnittpunkt, wenn Re $\underline{F}_0 < 0$ ist.

Nennt man S_p die Anzahl der positiven und S_n die Anzahl der negativen Schnittpunkte, ergibt sich anschaulich aus Bild 5.20, daß sich die stetige Winkeländerung in Schnittpunktform ermitteln läßt zu:

$$\Delta \varphi = 2\pi \cdot (S_p - S_n) + \frac{\pi}{2} \cdot n_i \quad \text{für} \quad n_i = [0, 1]$$

$$\Delta \varphi = 2\pi \cdot (S_p - S_n) \quad \text{für} \quad n_i = 2.$$
(5.19)

und

Durch Gleichsetzen der Gleichung (5.14) des vollständigen Nyquist-Kriteriums mit dem Gleichungspaar (5.19) erhält man die für das Bode-Diagramm bereits verwendete Stabilitätsbedingung (siehe Abschnitt 5.2 Gleichung (5.8) in Schnittpunktform.

Ortskurve	F0(jω)	Polverteilung	Stabilitätsaussage nach Gleichung (5,14) und (5,20)
ω=0	PK-1 Re	n _r = 0 n _i = 0	$\Delta \varphi \stackrel{!}{=} 0 = -2\pi$ $S_{p} - S_{n} \stackrel{!}{=} -1$ <u>instabil</u>
im 4 +1 ω= ∞ PKb	PKa -1 Re	$n_r = 0$ $n_i = 1$	$\Delta \varphi \stackrel{!}{=} \frac{\pi}{2} = - \begin{vmatrix} \frac{3\pi}{2} & \text{bei } PK_a \\ \frac{\pi}{2} & \text{bei } P_{Kb} \end{vmatrix}$ $S_p - S_n \stackrel{!}{=} O = - \begin{vmatrix} -1 & \text{bei } PK_a \\ O & \text{bei } P_{Kb} \end{vmatrix}$ $\frac{\text{stabil } f \hat{u}r P_K = P_{Kb}}{P_{Kb}}$
	1 Re -1/2	n _r = 0 n _i = 2	$\Delta \varphi \stackrel{!}{=} \pi - \pi$ $S_{p} - S_{n} \stackrel{!}{=} \frac{1}{2} = -\frac{1}{2}$ <u>instabil</u>
	 1 1 Re	n _r = 0 n _i = 1	$\Delta \varphi \stackrel{!}{=} \frac{\pi}{2} = \frac{\pi}{2}$ $S_{p} - S_{n} \stackrel{!}{=} 0 = 0$ <u>stabil</u>
		n _r = 1 n _i = 2	$\Delta \varphi \stackrel{!}{=} 2\pi = 2\pi$ $S_{p} - S_{n} \stackrel{!}{=} 1 = 1$ <u>stabil</u>
in k ω=∞	1/2 Re	$n_r = 0$ $n_i = 2$	$\Delta \varphi \stackrel{!}{=} \pi = \pi$ $S_{p} - S_{n} \stackrel{!}{=} \frac{1}{2} = \frac{1}{2}$ <u>stabil</u>
$\omega = 0 \qquad \qquad$	xa -1 Re	$n_r = 0$ $n_{\underline{i}} = 0$	$\Delta \varphi \stackrel{!}{=} O = - \begin{vmatrix} 0 & \text{bei } P_{Ka} \\ -2\pi & \text{bei } P_{Kb} \end{vmatrix}$ $S_{p} - S_{n} \stackrel{!}{=} O = - \begin{vmatrix} 0 & \text{bei } P_{Ka} \\ -1 & \text{bei } P_{Kb} \end{vmatrix}$ $\text{stabil bei } P_{K} \stackrel{P}{=} P_{Ka}$

Bild 5.20 Ortskurve, Polverteilung und Stabilitätsaussage verschiedener Regelkreise nach der Schnittpunktform des Nyquist-Kriteriums

Hat der aufgeschnittene Regelkreis n_r Pole in der rechten p-Halbebene bei $n_i = [0, 1, 2]$, so ist der geschlossene Regelkreis genau dann stabil, wenn die Beziehung gilt:

$$S_{p} - S_{n} \stackrel{!}{=} - \begin{vmatrix} \frac{n_{r}}{2} & f \ddot{u} r & n_{i} = [0, 1] \\ \frac{n_{r} + 1}{2} & f \ddot{u} r & n_{i} = 2 \end{vmatrix}$$
 (5.20)

Für $n_r = 0$ (keine Pole in der rechten p-Halbebene) ergibt sich das bereits mit Gleichung (5.10) dokumentierte vereinfachte Nyquist-Kriterium in Schnittpunktform.

Aufgabe 5.5

Es soll die in Abschnitt 5.2.2, Bild 15, mit dem Bode-Diagramm untersuchte Regelung aus PD-Regler und PT_1-T_t -Strecke nach dem Nyquist-Kriterium in Ortskurven-Darstellung betrachtet werden.

Die Parameter sind dieselben, wie in Abschnitt 5.2.2, sie lauten:

 $V_{R} = 10, T_{V} = 0,005s$ $V_{S1} = 1, T_{1} = 0,1s$ $V_{S2} = 1, T_{t} = 0,001s.$

1 ----

Aufgabe 5.6

Für einen Regelkreis aus PID-Regler und PT₁-Strecke ist die Stabilität nach Nyquist in Ortskurven-Darstellung zu untersuchen. Die Parameter sind:

$$V_R = 5$$
, $T_N = 0.1s$, $T_V = 0.008s$
 $V_S = 1$, $T_1 = 0.05s$.

Aufgabe 5.7

Eine Regelung bestehe aus dem PD-Regler und einer PT₁-I²-Strecke. Es ist die Ortskurve nach dem vereinfachten und vollständigen Nyquist-Kriterium zu untersuchen.

Gegeben sind die Werte:

$$V_{R} = 10, T_{V} = 0,008s$$

 $V_{S} = 1, T_{1} = 0,02s$
 $T_{T} = 0,1s.$

Aufgabe 5.8

Ein PI-Regler soll eine P-I-T_t-Strecke regeln. Es ist die Ortskurve des offenen Regelkreises zu zeichnen und nach dem Nyquist-Kriterium die Stabilität zu bestimmen.

Gegeben sind:

 $V_{\rm R}$ = 100, $T_{\rm N}$ = 0,25s $V_{\rm S}$ = 1,2, $T_{\rm I}$ = 1,2s, $T_{\rm t}$ = 0,01s.

5.3.3 Rechner-Auswertung

Mit den in Abschnitt 7.2.1 beispielhaft angegebenen Taschenrechnerprogrammen lassen sich nach dem vereinfachten Nyquist-Kriterium einschleifige Regelungen auf Stabilität untersuchen. Die Stabilität wird entsprechend Gleichung (5.16) bestimmt und beruht auf der Auswertung des Gleichungssatzes (5.17). Je nach Art der Gleichung für ω_z und ω_D wird Regula Falsi oder ein Nullstellenprogramm zur näherungsweisen Lösung benutzt (falls keine explizite Lösung möglich ist). Es sind dann Real- und Imaginärteil des Frequenzgangs <u>F</u>_o ausgedruckt, so daß man die Ortskurve darstellen kann. Bei Anschluß des Taschenrechners an einen Plotter oder Drucker erspart man sich den Zeichenaufwand.

Für die Wahl des optimalen Reglers kann man dann mit Hilfe der in Abschnitt 4.2 angegebenen Einstellwerte die Reglerparameter als Funktion von $V_{\rm pkr}$ und $T_{\rm kr}$ durch das Taschenrechnerprogramm bestimmen.

Beispiel

In Abschnitt 7.2.1 ist ein Programm für einen P-Regler mit einer PT_1-T_t -Strecke angegeben. Zur Berechnung der kritischen Verstärkung muß entsprechend dem Gleichungssatz (5.17) gelten, daß

$$\operatorname{Re}\left[\underline{F}_{O(\omega_{z})}\right] \stackrel{!}{=} 1 \longrightarrow V_{okr}$$

$$\alpha_{R} = 0$$

und

ist. Dies entspricht der Stabilitätsgrenze. Es ist hier

$$\operatorname{Re}\left[\underline{F}_{O(\omega_{z})}\right] = 1 = \frac{\operatorname{V}_{Okr}}{1 + \omega_{z}^{2} T_{1}^{2}} (\omega_{z} T_{1} \cdot \operatorname{sin} \omega_{z} T_{t} - \operatorname{cos} \omega_{z} T_{t})$$

Daraus ergibt sich mit den gegebenen Werten $T_1 = 0.05s$ und $T_t = 0.016s$ sowie $\omega_r = 109.469$ Hz:

 $V_{OKr} = 5,564$ bzw. $V_{RKr} = 5,564$ für $V_{S} = 1$.

Macht man einen Rechnerlauf mit $V_{O} = V_{OKr}$, so ergibt sich, wie aus dem Rechnerausdruck zu ersehen, daß:

$$\omega_{\rm D} = \omega_{\rm z} = \omega_{\rm kr}$$

0,000

RUN

20,000

40,000

60,000

80,000

100,000

STOP

F0 FOR W/HZ

RE=-5,564 IM=0,000

RE=-1,766

IM=3,516

RE=0,437

IM=2,450

RE=1.048

IM=1,413

RE=1,160

IN=0,689

RE=1,076

IM=0,183

XEQ "NYQU 3" P-REGLER PT1-TT-STRECKE ¥0=? 5,564 RUN T1/S=? 0,050 RUN TT/S=? 0,016 RUN WD/HZ=109,468 RE=1,000 IM=1,740E-5 aR=0,001° WZ1/HZ=? 109,400 RUN WZ2/HZ=? 109,500 RUN WZ/HZ=109,469 RE=1,000 IM=-3,000E-6 REG: STABIL AR=1,000

Denn bei der kritischen Verstärkung geht die Ortskurve durch den kritischen Punkt $P_k = [1, j0]$ (Bild 5.21). Daher ist

 $\alpha_{R} = 0^{O}$.

Die Zeit T_{Kr} erhält man dann aus ω_{z} , sie ist

 $T_{Kr} = \frac{1}{\omega_z} = \frac{1}{\omega_{Kr}} = 9,14 \text{ ms.}$

Bild 5.21 Graphische Auswertung der Ortskurve einer Regelung aus P-Regler und PT1-Tt-Strecke mit einem Taschenrechnerprogramm

Wählt man für die $PT_1^{-T}_t$ -Strecke einen PI-Regler, so ergeben sich seine Parameter zu entsprechend Abschnitt 4.2 zu:

$$V_{\rm R} = 0,45 \cdot V_{\rm RKr} = 2,503$$

 $T_{\rm N} = 0,83 \cdot T_{\rm Kr} = 7,58 \text{ ms}$

Ein BASIC-Programm mit Beispielen für das Nyquist-Kriterium ist in Abschnitt 7.1.1 gezeigt.

5.4 Zwei-Ortskurven-Verfahren (Z.O.V.)

Das Zwei-Ortskurven-Verfahren beruht auf der Stabilitätsbetrachtung nach Nyquist und ist daher auch auf Totzeitglieder anwendbar. Gerade bei Regelkreisen mit Nichtlinearitäten zeigt sich der Vorteil des Z.O.V.'s. Er liegt in der Hauptsache darin, daß nicht die Gesamtortskurve \underline{F}_{o} des offenen Regelkreises zu zeichnen ist, sondern eine Aufteilung in zwei Ortskurven erfolgt, und zwar die des Reglers \underline{F}_{R} und die in der Regelstrecke $-1/\underline{F}_{S}$. Die Konstruktion der negativen inversen Ortskurve $-1/\underline{F}_{S}$ ist nicht sonderlich schwierig, wenn man zur Ableitung der entsprechenden Frequenzganggleichungen jeweils von der Bildfunktion ausgeht.

Beispiel

Der Frequenzgang der PT2-Strecke lautet mit der Dämpfung d

$$F_{(p)} = V_{S} \frac{1}{1 + 2dpT_{2} + p^{2}T_{2}^{2}}$$

Daraus folgt sofort für die negative inverse Ortskurve

$$-\frac{1}{F_{(p)}} = -\frac{1 + 2dpT_2 + p^2T_2^2}{V_S}$$

und in der benötigten komplexen Schreibweise mit p = $j\omega$

$$-\frac{1}{F_{(j\omega)}} = \frac{1}{V_{S}} \cdot (\omega^{2}T_{2}^{2} - 1 - j2d\omega T_{2}) .$$

Praxisnah genügt für das Z.O.V. die Anwendung des vereinfachten Nyquist-Kriteriums nach den Gleichungen (5.5), (5.6) und (5.16). Danach gibt es zwei Möglichkeiten die Stabilität einer Regelung festzustellen.

A:

Man ermittelt zunächst die Durchtrittsfrequenz $\omega_{\rm D}$. Es gilt aus dem Gleichungssatz (5.17), daß der Frequenzgangbetrag $\left|\frac{\rm F}{\rm O}\right|$ für $\omega_{\rm D}$ gleich Eins wird, also mit

$$\begin{aligned} |\underline{F}_{O}| &= |-\underline{F}_{R} \cdot \underline{F}_{S}| &= |\underline{F}_{R}| |\underline{F}_{S}| \stackrel{!}{=} 1 \\ |\underline{F}_{R}| &= |\frac{-1}{\underline{F}_{S}}| \neq \omega_{D} \end{aligned}$$
(5.21)

Des weiteren war für den Phasenrand nach Gleichung (5.6)

$$\begin{split} & \alpha_{\rm R} = \varphi_{\rm O}(\omega_{\rm D}) + 180^{\rm O} \\ & \alpha_{\rm R} = \varphi_{\rm R}(\omega_{\rm D}) + \varphi_{\rm S}(\omega_{\rm D}) + 180^{\rm O} \ . \end{split}$$

Für den Phasenrand $\alpha_{\rm R}$ nach dem Z.O.V. benötigt man nicht den Phasenwinkel $\varphi_{{\rm S}(\omega_{\rm D})}$ des Frequenzgangs <u>F</u>_S, sondern den Phasenwinkel $\overline{\varphi}_{{\rm S}(\omega_{\rm D})}$ des negativen inversen Frequenzgangs - $1/\underline{F}_{\rm c}$.

$$\overline{\varphi}_{\mathrm{S}(\omega_{\mathrm{D}})} = - (180^{\mathrm{O}} + \varphi_{\mathrm{S}(\omega_{\mathrm{D}})}) ,$$

so daß für $\boldsymbol{\alpha}_{R}$ und die Stabilität beim Z.O.V. gilt:

Eine andere Möglichkeit eine Stabilitätsaussage zu machen ist die folgende.

в:

Setzt man voraus, daß der Frequenzgang $|\underline{F}_{O}|$ und sein Phasenwinkel φ_{O} mit wachsender Frequenz kleiner werden und bei $\omega = \omega_{D}$ der Phasenrand $\alpha_{R} > 0$ ist, dann wird bei $\omega = \omega_{z} > \omega_{D}$ $\alpha_{R} = 0$ und es gilt:

$$\varphi_{R(\omega_z)} - \overline{\varphi}_{S(\omega_z)} = 0$$
,

bzw.

sowie

$$\varphi_{R} = \overline{\varphi}_{S}$$

$$\tan \varphi_{R} = \tan \overline{\varphi}_{S} \qquad (5.23)$$

Mit dieser Bestimmungsgleichung für ω_z läßt sich die Stabilität nach Gleichung (5.17) feststellen, denn die Stabilitätsaussage für Im $\underline{F}_0 = 0$ lautete

d.h.

$$\operatorname{Re}\left[\frac{\mathrm{F}_{\mathrm{O}}(\mathrm{w}_{\mathrm{Z}})}{\mathrm{Re}\left[-\frac{\mathrm{F}_{\mathrm{R}}}{\mathrm{F}_{\mathrm{R}}}\cdot\frac{\mathrm{F}_{\mathrm{S}}}{\mathrm{w}_{\mathrm{Z}}}\right]^{\frac{1}{2}} = 1$$

also gilt beim Z.O.V., daß eine stabile Regelung vorliegt, wenn entweder

$$\operatorname{Re}\left[\underline{F}_{R(\omega_{Z})}\right] \stackrel{!}{\leq} \operatorname{Re}\left[\frac{-1}{\underline{F}_{S}}\right]_{\omega_{Z}}$$

$$\operatorname{Im}\left[\underline{F}_{R(\omega_{Z})}\right] \stackrel{!}{\leq} \operatorname{Im}\left[\frac{-1}{\underline{F}_{S}}\right]_{\omega_{Z}}$$
(5.24)

oder

ist. Dabei bezieht sich diese Stabilitätsaussage auf die Länge der Zeiger der Real- und Imaginärteile. Für die in der Praxis am häufigsten vorkommen Tabelle 5.2 Negative inverse Ortskurve und zugehöriger Frequenzgang der wichtigsten Regelstrecken

Regelstrecke	Frequenzgang ⁻¹ / $\underline{F}_{S} \stackrel{\circ}{=} \underline{F}_{S}$	negative inverse Ortskurve
Ι	$\frac{\overline{F}}{F_{S}} = -j\omega T_{I}$	Jm w=0 Re
PŢ	$\overline{\underline{F}_{S}} = \frac{-1 - j\omega T_{1}}{V_{S}}$	w=0 Re
PT_2	$\frac{\overline{F_S}}{V_S} = \frac{\omega^2 T_2^2 - 1 - j2d\omega T_2}{V_S}$	$w=0$ $\frac{-1}{4s}$ $y=0$ $\frac{-1}{4s}$ $\frac{1}{4s}$ $\frac{1}{4s}$ $\frac{1}{4s}$ $\frac{1}{4s}$ $\frac{1}{4s}$ $\frac{1}{4s}$
PT_t	$\frac{\overline{F}}{F_{S}} = \frac{-\cos\omega T_{t} - j\sin\omega T_{t}}{V_{S}}$	$\omega_{\overline{k}}=0$
I-T,	$\overline{\underline{F}_{S}} = \omega^{2} T_{1} T_{I} - j \omega T_{I}$	$w=0$ $T_{q}T_{Z}$ Re
<u>I</u> -T _t	$\overline{\underline{F}_{S}} = \omega T_{I} (sin \omega T_{t} - j cos \omega T_{t})$	Jm w=0 Re
$PT_{1}-T_{t}$	$\operatorname{Re} \frac{\overline{F_{S}}}{\overline{F_{S}}} = \frac{\omega T_{1} \sin \omega T_{t} - \cos \omega T_{t}}{V_{S}}$ $\operatorname{Im} \frac{\overline{F_{S}}}{\overline{F_{S}}} = \frac{-\omega T_{1} \cos \omega T_{t} - \sin \omega T_{t}}{V_{S}}$	$ \begin{array}{c} -\frac{7}{V_{S}} \text{Jm} \\ \hline \qquad \\ \hline \qquad \\ \\ \\ \\ $

208

den Regelstrecken sind die negativen inversen Ortskurven und ihre zugehörigen Frequenzgänge in Tabelle 5.2 zusammengestellt.

Aus dem Gleichungssatz (5.17) läßt sich entnehmen, wie man beim Z.O.V. die Amplitudenreserve ${\rm A}_{\rm R}$ berechnet; es wird

$$A_{R} = Re \left[\frac{-1/\underline{F}_{S}}{\underline{F}_{R}}\right]_{\omega_{Z}}$$
(5.25)

Bei Regelkreisen, die Nichtlinearitäten enthalten, ermittelt man zunächst die negative inverse Ortskurve der linearen Regelkreisglieder (Regler und Strecke).

$$\frac{-1}{\underline{F}_{G}} = \frac{1}{\underline{F}_{O}} = \frac{-1}{\underline{F}_{R} \cdot \underline{F}_{S}}$$

Anschließend wird die Ortskurve der Beschreibungsfunktion $N_{(\hat{x}_e)}$ des nichtlinearen Regelkreisgliedes gezeichnet. Die Stabilitätsaussage hängt dann von der Art der Nichtlinearität ab, die durch Angabe des Stabilitätsgebietes beschrieben wird.

Mit einer vorgewählten Kombination von Regler und Strecke, für die man den Frequenzgang – $1/\underline{F}_{G}$ bildet, läßt sich in einem Bild die Stabilität für verschiedene Nichtlinearitäten mit dem Z.O.V. bestimmen.

Es muß entsprechend Gleichung (5.24) gelten:

$$\operatorname{Re} \left[N_{(\hat{x}_{e})} \right] \stackrel{!}{\leq} \operatorname{Re} \left[\frac{-1}{\underline{F}_{R} \cdot \underline{F}_{S}} \right]_{\omega_{z}} = \operatorname{Re} \frac{1}{\underline{F}_{O}}_{\omega_{z}}$$

5.4.1 Graphische Auswertung

Beispiel

An einem Regelkreis aus PI-Regler und $\mathrm{PT}_2-\mathrm{Strecke}$ soll das 2.0.V. erläutert werden.

Die Bestimmungsgleichung für ω_{D} (5.21) ist:

$$\left|\frac{\mathbf{F}_{\mathbf{R}}}{\mathbf{E}_{\mathbf{R}}}\right| = \left|\frac{-1}{\underline{\mathbf{F}}_{\mathbf{S}}}\right| \longrightarrow \omega_{\mathbf{D}}$$

Aus Tabelle 3.1 lassen sich die Betragsfrequenzgänge von Regler und Strekke entnehmen, so daß bei $\omega_{\rm D}$ gilt:

$$v_{R}\sqrt{1+\frac{1}{\omega_{D}^{2}T_{N}^{2}}} = \frac{1}{v_{s}}\sqrt{(1-\omega_{D}^{2}T_{2}^{2})^{2}+4d^{2}\omega_{D}^{2}T_{2}^{2}} .$$

Mit

$$^{2} \cdot \frac{\frac{1 + \frac{1}{\omega_{D}^{2} T_{N}^{2}}}{(1 - \omega_{D}^{2} T_{2}^{2})^{2} + 4d^{2} \omega_{D}^{2} T_{2}^{2}}}$$

1

erhält man für $V_R = 1$, $V_S = 1$, $T_N = 0.08s$, $T_2 = 0.1s$ und d = 0.5 die Durchtrittsfrequenz

ω_D & 12,672 Hz.

v_o

Mit dieser Frequenz läßt sich die Phasenreserve $\alpha_{R}^{}$ nach Gleichung (5.22) ermitteln. Es gilt für die Stabilitätsaussage:

$$\alpha_{\rm R} = \varphi_{\rm R}(\omega_{\rm D}) - \overline{\varphi}_{\rm S}(\omega_{\rm D}) \stackrel{!}{>} 0 .$$

Den Phasenwinkel $\overline{arphi}_{\mathrm{S}}$ erhält man aus dem negativen inversen Frequenzgang der PT₂-Strecke (siehe Tabelle 5.2), also wird

$$\alpha_{\rm R} = \arctan \frac{-1}{\omega_{\rm D} T_{\rm N}} - \arctan \frac{-2 d\omega_{\rm D} T_2}{\omega_{\rm D}^2 T_2^2 - 1}$$
$$\alpha_{\rm R} = -44,61^{\circ} + 64,45^{\circ} = 19,84^{\circ} > 0 .$$

Damit ist die Regelung stabil.

Diese Aussage läßt sich mit Hilfe der Frequenz ω_z bestätigen. Dabei erhält man auch den Wert für die Amplitudenreserve A_R. Denn nach Gleichung (5.23) gilt bei ω_{τ} .

$$\tan \varphi_{R} = \frac{-1}{\omega_{z} T_{N}} = \tan \overline{\varphi}_{S} = \frac{-2d\omega_{z} T_{2}}{\omega_{z} T_{2}^{2} - 1}$$

damit läßt sich ω_{2} angeben.

$$\omega_z = \frac{1}{\sqrt{T_2^2 - 2dT_2T_N}} = 22,361 \text{ Hz}.$$

Entsprechend dem Gleichungssatz (5.24) erhält man nun die Stabilitätsaussage

$$\operatorname{Re}\left[\underline{F}_{R\left(\omega_{Z}\right)}\right] = 1 < \operatorname{Re}\left[\frac{-1}{\underline{F}_{S}}\right]_{\omega_{Z}} = 4 ,$$

oder

 $Im \left[\underline{F}_{R(\omega_{z})}\right] = -0,56 < Im \left[\frac{-1}{\underline{F}_{S}}\right]_{\omega_{z}} = -2,24$, d.h., ein stabiler Regelkreis liegt vor.

Mit der Gleichung (5.25) ergibt sich dann

$$A_{R} = Re \left[-\frac{1/\underline{F}_{S}}{\underline{F}_{R}} \right]_{\omega_{z}} = 4 .$$

Die Ergebnisse dieses Beispiels sind in Bild 5.22 dargestellt und direkt mit einem Nyquist-Programm aus Abschnitt 7.2.1 vergleichbar. Wenn bei der Frequenz ω_z gilt:

$$\left[\underline{F}_{R}\right]_{\omega_{z}} = \left[\frac{-1}{\underline{F}_{S}}\right]_{\omega_{z}} \longrightarrow v_{okr}, \quad v_{Rkr}, \quad (5.26)$$

erhält man eine Gleichung für die Kritische Verstärkung V_{okr} bzw. die kritische Reglerverstärkung V_{Rkr} bei der die Regelung die Stabilitätsgrenze V_{Pkr} ist im vorliegenden Beispiel bei den gegebenen Werten:

$$v_{Rkr} = \sqrt{\frac{(1 - \omega_z^2 \tau_2^2)^2 + 4d^2 \omega_z^2 \tau_2^2}{v_s^2 \cdot (1 + \frac{1}{\omega_z^2 \tau_N^2})}}$$

also $V_{Rkr} = 4$.

Dieser Wert ist auch aus Bild 5.22 zu ersehen.

Bild 5.22 Graphische Auswertung der Regelung einer PT₂-Strecke mit einem PI-Regler nach dem Zwei-Ortskurven-Verfahren

Aufgabe 5.9

Ein Regelkreis enthalte eine PT₁-Strecke, die mit einem PID-Regler geregelt werden soll. Es ist die Stabilität nach dem Z.O.V. zu untersuchen und die kritische Reglerverstärkung $V_{\rm Rkr}$ zu bestimmen. Die Taschenrechnerprogramme für diese Aufgabe sind in Abschnitt 7.2.3 abgedruckt. Die Parameter sind für

$$\begin{split} \text{PID-Regler:} \quad & \text{V}_{\text{R}} = 10 \ , \quad & \text{T}_{\text{N}} = 0,05\text{s}, \quad & \text{T}_{\text{V}} = 0,002\text{s} \\ \text{PT}_{1}\text{-}&\text{T}_{\text{t}}\text{-}&\text{Strecke:} \quad & \text{V}_{\text{S}} = 0,5, \quad & \text{T}_{1} = 0,08\text{s}, \quad & \text{T}_{\text{t}} = 0,01\text{s}. \end{split}$$

Aufgabe 5.10

Ein Regelkreis aus PD-Regler und I²-T_t-Strecke ist mit dem Z.O.V. auf Stabilität zu untersuchen. Das zugehörige Programm zur Lösung der Aufgabe mit dem Taschenrechner ist in Abschnitt 7.2.3 abgebildet. Das Nullstellenprogramm entspricht dem der Aufgabe 5.9. Die Parameter sind:

$$V_R = 30$$
, $T_V = 8ms$, $T_I = 96 ms$, $T_t = 5 ms$.

Aufgabe 5.11

Ein Regelkreis bestehe aus einer PT₂-Strecke und dem nichtlinearen Glied "Ansprechschwelle" (siehe Tabelle 3.3). Diese Anordnung ist auf Stabilität nach dem Z.O.V. zu untersuchen mit den Varianten PD-, PI- und I-Regler (Bild 5.23). Die Parameter sind:

$$V_{S} = 1$$
, $T_{s} = 0.2s$, $T_{I} = 0.1s$, $d = 0.5$
 $\hat{x}_{e} = 10 V$.

Bild 5.23 Blockschaltbild eines Regelkreises aus PD-/PI-/I-Regler und PT₂-Strecke mit der Nichtlinearität Ansprechschwelle

Aufgabe 5.12

Eine PT₂-I-Strecke soll von einem PD-Regler geregelt werden, der eine Signalbegrenzung auf x_s besitzt (Bild 5.24). Der Regelkreis ist nach dem Z.O.V. auf Stabilität zu untersuchen. Dabei ist die Regelkreisverstärkung zunächst V_o = 8, dann V_o^{*} = 4. Außerdem ist ω_z zu bestimmen.

Die restlichen Parameter sind:

 $T_2 = 0.2s$, $T_T = 1s$, $T_V = 0.002s$, d = 0.5, $\hat{x}_e = 10V$.

Die Taschenrechner-Programme für diese Aufgabe sind in Abschnitt 7.2.3 angegeben.

Bild 5.24 Blockschaltbild eines Regelkreises aus PD-Regler, PT₂-I-Strecke und Signalbegrenzung

5.4.2 Rechner-Auswertung

Programme zur Lösung des Zwei-Ortskurven-Verfahrens mit dem Taschenrechner sind in Abschnitt 7.2.3 enthalten. Dabei wurde in den ersten drei Beispielen kein zusammenhängender Programmablauf gewählt, denn die Ortskurven der nichtlinearen Glieder bestehen nur aus einem Realteil.

Beispiel

Das folgende Beispiel eines Regelkreises mit Hysterese ist mit einem um-fassenderen Taschenrechner-Programm gerechnet (Bild 5.25). Ein PI-Regler mit Hysterese führt eine PT_1-T_+ -Strecke.

Bild 5.25 Blockschaltbild einer Regelung mit PI-Regler, PT₁-T_t-Strecke und Hysterese

Die Zusammenfassung der linearen Regelkreisglieder ergibt die negative inverse Ortskurve.

$$\frac{1}{F_{O}} = \frac{\left(\frac{T_{1}}{T_{N}} - 1\right) \cdot \cos\omega T_{t} + \left(\omega T_{1} + \frac{1}{\omega T_{N}}\right) \cdot \sin\omega T_{t} + j \cdot \left[\left(\frac{T_{1}}{T_{N}} - 1\right) \cdot \sin\omega T_{t} - \left(\omega T_{1} + \frac{1}{\omega T_{N}}\right) \cdot \cos\omega T_{t}\right]}{V_{O} \cdot \left(1 + \frac{1}{\omega^{2} T_{N}^{2}}\right)}$$

Mit Gleichung (3.68) erhält man für die Ortskurve der Hysterese

$$\begin{split} N_{(\hat{x}_e)} &= \frac{1}{2} + \frac{1}{180} \cdot \arcsin\alpha + \frac{\alpha}{\pi} \cdot \sqrt{1 - \alpha^2} + j \frac{1}{\pi} (\alpha^2 - 1) \\ \alpha &= 1 - \frac{2x_t}{\hat{x}_e} \end{split}$$

mit

Entsteht ein Schnittpunkt der beiden Ortskurven, sind die beiden Zeiger N $(\hat{\mathbf{x}}_e)$ und $1/\underline{F}_o$ gleich groß, dies muß für die Real- und Imaginärteile gelten. Der Vergleich der Imaginärteile erbringt eine gemischt quadratische Gleichung für \mathbf{x}_+ .

Es ist

$$\mathbf{x}_{t} = \frac{\hat{\mathbf{x}}_{e}}{2} + \sqrt{\frac{\hat{\mathbf{x}}_{e}}{4}^{2} + \frac{\pi \cdot \hat{\mathbf{x}}_{e}^{2} \cdot \left[(\frac{T_{1}}{T_{N}} - 1) \cdot \sin\omega T_{t} - (\omega T_{1} + \frac{1}{\omega T_{N}}) \cdot \cos\omega T_{t} \right]}{4 V_{o} (1 + \frac{1}{\omega^{2} T_{N}^{2}})} .$$

Diese Gleichung setzt man in den Realteil von N_(\hat{x}_e) ein und erhält mit Re[N_(\hat{x}_e)] - Re[1/<u>F</u>₀] = 0 eine Nullstellenbestimmung, welche die Werte ω_z und x_t liefert, also

$$\frac{1}{2} + \frac{\alpha}{\pi} \sqrt{1 - \alpha^2} + \frac{\arcsin\alpha}{180} - \frac{\left(\frac{T_1}{T_N} - 1\right) \cdot \cos\omega T_t + \left(\omega T_1 + \frac{1}{\omega T_N}\right) \cdot \sin\omega T_t}{V_0 \left(1 + \frac{1}{\omega^2 T_N^2}\right)} = 0,$$

it $\alpha = 1 - \frac{2 \cdot x_t}{\hat{x}_0}$.

mit

Daraus folgt mit V_0 = 5, T_1 = 0,1s, T_N = 0,2s, T_t = 1ms und \hat{x}_e = 10V

ω_z & 12,15112 Hz x₊ & 6,75192 V.

und

Für diese Werte sind die Real- und Imaginärteile von N (\hat{x}_e) und $1/\underline{F}_o$ gleich groß. Die zugehörigen Ortskurven schneiden sich im Punkt P₁, so daß der Regelkreis bei einer Hysterese von x_t & 6,752 V und $\hat{x}_e = 10$ V Dauerschwingungen mit der Frequenz ω_q & 12,15 Hz ausführt (Bild 5.26).

Bild 5.26 Auswertung des Zwei-Ortskurven-Verfahrens für die Regelung aus Bild 5.25

Wie die Betrachtung des Stabilitätsgebietes der Hysterese (Bild 3.56) zeigt führt eine Vergrößerung der Amplitude \hat{x}_e ins instabile Gebiet, weil dann der Zeiger von N $(\hat{x}_e) > 1/\underline{F}_O(\omega_z)$ ist. Nur wenn sich die beiden Ortskurven nicht schneiden, ist die Regelung unbegrenzt stabil (falls sie ohne Hysterese auch stabil war).

Dies ist für T_t << T₁ << T_N der Fall /24/.
Beispiel

Ein weiteres Beispiel soll den Einfluß der Signalbegrenzung, Ansprechschwelle und Hysterese im Zusammenhang zeigen. Dies an einer Regelung aus PI-Regler mit drei nachgeschalteten PT₁-Strecken (Bild 5.27). Die entsprechende Analogschaltung zur Simulation der einzelnen Einflüsse ist in Bild 5.28 abgebildet.

Die Ortskurvendarstellung ergibt sich mit der Gleichung $1/\underline{F}_{o}$ der linearen Glieder (Programm in Abschnitt 7.2.3.6).

$$\operatorname{Re} \frac{1}{\underline{F}_{O}} = \frac{\frac{1}{T_{N}}(T_{1} + T_{2} + T_{3}) - 1 - \omega^{2}(\frac{T_{1}T_{2}T_{3}}{T_{N}} - T_{1}T_{2} - T_{1}T_{3} - T_{2}T_{3})}{V_{O}(1 + \frac{1}{\omega^{2}T_{N}^{2}})}$$
$$\operatorname{Im} \frac{1}{\underline{F}_{O}} = \frac{\omega^{3}T_{1}T_{2}T_{3} - \omega(T_{1} + T_{2} + T_{3} - \frac{T_{1}T_{2}}{T_{N}} - \frac{T_{1}T_{3}}{T_{N}} - \frac{T_{2}T_{3}}{T_{N}}) - \frac{1}{\omega T_{N}}}{V_{O}(1 + \frac{1}{\omega^{2}T_{N}^{2}})}$$

und den Gleichungen der entsprechenden Nichtlinearität. Mit den Parametern

$$V_R = 10, T_N = 1.5 s, \hat{x}_e = 10 V$$

 $V_{S1} = 1, T_1 = 1.5 s$
 $V_{S2} = 1, T_2 = 22 ms$
 $V_{S3} = 2, T_3 = 0.47 s$

erhält man die in Bild 5.29 gezeichneten Ortskurven. Zunächst wird der Einfluß der Signalbegrenzung auf die Regelung betrachtet. Dazu ist in Bild 5.28 die Brücke A - B durch die Begrenzerschaltung zu ersetzen.

Bild 5.29 Auswertung des Zwei-Ortskurven-Verfahrens für die Regelung aus Bild 5.27

Aus Bild 5.29 ist zu ersehen, daß es zwischen der Ortskurve $1/\underline{F}_{o}$ und der Signalbegrenzung keinen Schnittpunkt gibt. Die Regelung einschließlich dieser Nichtlinearität ist demzufolge stabil. Es kommt allerdings zu einer bleibenden Regeldifferenz x_{d} , wenn die Signalbegrenzung x_{s} ungünstig gewählt wird. Dies ist der Fall für

 $v_{s} \cdot x_{s} < w$.

Ein solches Verhalten läßt sich durch ein Oszillogramm bestätigen, wie Bild 5.30 zeigt. Für einen Sollwertsprung von 10 V wurde der Istwert x in Abhängigkeit von verschiedenen Signalbegrenzungen aufgezeichnet. Die Kurvenschar gibt von links nach rechts folgende Begrenzungen wieder:

 $x_s = 15 V$; 7,5 V; 6 V; 5 V; 4 V. Bei $x_s = 4 V$ ergibt sich eine bleibende Regeldifferenz von $x_d = 2 V$, das sind 20% des Sollwertes. In der Praxis werden jedoch Signalbegrenzungen meist auf den Maximalwert der zu regelnden Größe bezogen. Dieser beträgt häufig $x_s = 10 V$ und ist damit unkritisch.

Bild 5.30 Einfluß der Signalbegrenzung auf die Sprungantwort eines Regelkreises aus PI-Regler und drei PT₁-Strecken

Wie die Ortskurven zeigen, gibt es auch beim Vorhandensein einer Ansprechschwelle in der Regelung keine Instabilität, denn es liegt kein Schnittpunkt mit $1/\underline{F}_{o}$ vor. Es stellt sich aber eine Verzugszeit ein, die die Reaktionsfähigkeit der Regelung auf Störungen herabsetzt. Bild 5.31 stellt die Sprungantwort der Regelung ohne und mit Ansprechschwelle $x_{t} = 1,1$ V dar. Dazu ist die Brücke C – D in Bild 5.28 durch die Diodenschaltung zu ersetzen. Die Ansprechschwelle ist sogar erwünscht, wenn infolge von Schwingungen in der Istwerterfassung bestimmte Stör-Amplituden' (z < x_{t}) sozusagen "ausgeblendet" werden sollen.

Ohne Hysterese liegt die Stabilitätsgrenze der Regelung bei $\omega_z \ \ \ 10 \ \text{Hz}$. Aus Bild 5.29 geht hervor, daß der Regelkreis mit Hysterese $(\mathbf{x_t} = 8 \ \text{V}, \ \ \mathbf{\hat{x}_e} = 10 \ \text{V})$ bereits bei $\omega_z \ \ \ 1.4 \ \text{Hz}$ an der Stabilitätsgrenze liegt, da sich ein Schnittpunkt zwischen $1/F_0$ und $N_{(\hat{\mathbf{x}_e})}$ ergibt. Dieser Schnittpunkt ist labil. Eine kleine Erhöhung von $\hat{\mathbf{x}_e}$ (Abnahme von $\mathbf{x_t}$) führt zur Instabilität. Daher wurde eine Verringerung von $\hat{\mathbf{x}_e}$ (Zunahme von $\mathbf{x_t}$ auf 10 V) vorgenommen. Bild 5.32 gibt das zugehörige Oszillogramm der Sprungantwort mit und ohne Hysterese wieder. Dabei zeigt sich eine erhebliche Verschlechterung des Regelverhaltens, denn bei $\mathbf{w} = 0$ (untere Kurve) schwingt der Istwert mit einer Amplitude von $\mathbf{x} \ \ 0.5 \ \text{V}$. Nimmt man die Reaktion auf eine Störgrößenänderung $\frac{1}{2} z = \frac{1}{2} \ 0.4 \ \text{V}$ hinzu (Bild 5.33), zeigt sich folgendes. Während die Sprungantwort des Regelkreises ohne Hysterese jeden Wert von \pm z ausregelt (obere Kurve), ist das bei Vorhandensein der Hysterese (mittlere Kurve) nicht mehr der Fall; der Istwert schwingt um seinen stationären Wert mit einer Amplitude von x χ 0,5 V.

Die Schalthysterese analoger und digitaler stetiger Regler ist jedoch sehr gering, so daß diese Nichtlinearität meist vernachlässigt wird.

Bild 5.31 Einfluß der Ansprechschwelle auf die Sprungantwort einer Regelung aus PI-Regler und drei PT₁-Strecken

Bild 5.32 Einfluß der Hysterese auf die Sprungantwort einer Regelung aus PI-Regler und drei PT₁-Strecken

Bild 5.33 Einfluß der Hysterese auf eine Störgrößenänderung bei einer Regelung aus PI-Regler und drei PT₁-Strecken

5.5 Optimierung von Regelkreisen

Zu den wichtigsten Aufgaben des Regeltechnikers gehört der Entwurf und die Synthese einer Regelung. Meist liegt die Regelstrecke vor, so daß es darauf ankommt, den passenden Regler zu finden. Zahlreiche Hinweise zu diesem Thema gibt W. Oppelt in seinem "Kleinen Handbuch technischer Regelvorgänge" auf den Seiten 462 bis 476. Die Regelkreisoptimierung hat folgende Forderungen zu erfüllen:

- 1. Der Regelkreis muß selbstverständlich stabil sein.
- Störgrößenänderungen haben nur geringen Einfluß auf die Regelgröße.
- Die Regelgröße folgt nach einem möglichst kurzen Einschwingvorgang genau der Führungsgröße.
- 4. Die Regelung läßt in weiten Grenzen Parameteränderungen zu.
- 5. Der Maximalwert der Stellgröße $y_{max} = V_R \cdot x_d$ eines realen Reglers darf nicht die Stellgrenze erreichen (sonst nichtlineares Verhalten der Regelung).

Entsprechend diesen Forderungen gilt dann nach Gleichung (5.11) und (5.12) für das Führungs- und Störverhalten des geschlossenen Regelkreises im Idealfall:

$$\frac{\nabla}{\nabla}_{W} = \frac{1}{1 + F_{R}} \cdot \frac{O}{F_{S}} = 1$$
 Führungsverhalten (5.27)

sowie

$$\frac{O}{2} = \frac{1}{1 + F_{R} \cdot F_{S}} = 0 \qquad \text{Störverhalten} \qquad (5.28)$$

Die Gleichungen werden exakt nur für $\mathring{F}_R \cdot \mathring{F}_S \longrightarrow \infty$ erfüllt. Dies wiederum heißt, daß die Regelkreisverstärkung $V_o \longrightarrow \infty$ gehen muß. So große Werte von V_o führen jedoch meist zur Instabilität der Regelung und sind in technischen Regelkreisen nicht realisierbar. Es ist daher einzusehen, daß die genannten Forderungen in der praktischen Regeltechnik nur bedingt erfüllbar sind. Auf der Suche nach dem jeweils optimalen Kompromiß zwischen idealem und realem Regelkreis sind zahlreiche Entwurfsverfahren entstanden, die bei der Synthese von Regelkreisen gute Hilfe leisten können. Bei der Beurteilung einer Regelung geht man meist von der Sprungantwort bei Führungsverhalten aus, die allgemein den in Bild 5.34 dargestellten Verlauf nimmt. Diese Funktion läßt sich durch folgende Begriffe charakterisieren.

Bild 5.34 Übertragungsfunktion eines Regelkreises zur Definition der Anregelzeit und Ausregelzeit

- 1. Die Anregelzeit T_{an} ist die Zeit, bei der die Regelgröße erstmals den Toleranzbereich erreicht.
- 2. Die Ausregelzeit T_{aus} entspricht der Zeitspanne, nach der die Regelgröße den Toleranzbereich nicht mehr verläßt.

 Die maximale Überschwingweite gibt den größten Betrag der Regelabweichung an, nach dem die Regelgröße den Toleranzbereich zum ersten mal verläßt.

Die Sprungantwort bei Störverhalten läßt sich auf analoge Weise beschreiben. Mit Rechner lassen sich, wie in Abschnitt 7.1 gezeigt, Regelkreise bezüglich der Parameter gut optimieren. Hier nun soll die Optimierung mit Hilfe von Gütekriterien erreicht werden.

5.5.1 Gütekriterien

Ein Maß für die Güte einer Regelung sind die Integralkriterien. Dabei wird die zeitliche Regelabweichung oder ihr Quadrat integriert.

Stellt dieses Integral ein Minimum dar, kann man von einem optimierten Regelkreis sprechen und die Parameter bestimmen.

Lineare Regelfläche

Das lineare Integral über der Differenz aus bleibender und augenblicklicher Regeldifferenz x_d , auch lineare Regelfläche genannt, lautet: ∞

$$I_{L} = \int_{O} [x_{d(\infty)} - x_{d(t)}] dt \stackrel{!}{=} MIN . \qquad (5.29)$$

Demnach besteht die lineare Regelfläche aus positiven und negativen Halbwellen einer abklingenden Schwingung (Bild 5.35). Entsprechend dieser Definition wird $I_L = 0$, wenn der Regelkreis Dauerschwingungen ausführt. Das Kriterium eignet sich also nur bei zusätzlicher Festlegung der Dämpfung D.

Eine Berechnung von $\rm I_L$ im Zeitbereich ist schwierig. Man weicht daher mit Hilfe der gleichdimensionalen Laplace-Transformation in den Bildbereich aus.

Aus Gleichung (2.53) folgt für die lineare Regelfläche:

$$I_{L} = \lim_{p \to 0} \int_{0}^{\infty} [x_{d_{(\infty)}} - x_{d_{(t)}}] \cdot e^{-pt} \cdot dt$$
$$= \lim_{p \to 0} \left[x_{d_{(\infty)}} \int_{0}^{\infty} e^{-pt} \cdot dt - \int_{0}^{\infty} x_{d(t)} \cdot e^{-pt} \cdot dt \right]$$
$$= \frac{1}{p} = \frac{1}{p}$$

$$I_{L} = \lim_{p \to 0} \frac{1}{p} \Big[x_{d_{(\infty)}} - x_{d}^{\circ} \Big] \stackrel{!}{=} MIN.$$
 (5.30)

Mit dem Grenzwertsatz (Korrespondenz Nr. 5, Tabelle 2.2) folgt schließlich:

$$I_{L} = \lim_{p \to 0} \left(\frac{1}{p} \lim_{p \to 0} \stackrel{o}{x}_{d} - \frac{\stackrel{o}{x}_{d}}{p} \right) \stackrel{!}{=} MIN.$$
 (5.31)

Bild 5.35 Zeitlicher Verlauf der Regeldifferenz x_d bei der linearen Regelfläche

Beispiel

Ein einfaches Beispiel soll zeigen, wie die lineare Regelfläche ermittelt wird.

•

Gegeben sei ein PD-Regler und eine PT2-Strecke, dann gilt

$${}^{O}_{F_{R}} = V_{R} \cdot (1 + pT_{V}) \text{ und } {}^{O}_{F_{S}} = V_{S} \cdot \frac{1}{1 + pT_{1} + p^{2}T_{2}^{2}}$$

Es soll das Störverhalten beurteilt werden. Nach Gleichung (5.12) ist dieses:

$$\overset{O}{\mathbf{x}} = \overset{O}{\mathbf{z}} \cdot \frac{1}{1 + \overset{O}{\mathbf{F}}_{\mathrm{R}} \overset{O}{\mathbf{F}}_{\mathrm{S}}} .$$

Nimmt man für die Störgröße den Einheitssprung $\delta_{o(t)}$ an, also

$$z_{(t)} = C \cdot \delta_{o(t)}$$
 bzw. $z = C$,

so folgt für die Regeldifferenz $\overset{O}{x_d}$ = - $\overset{O}{x}$ (wegen w = 0)

$$\hat{x}_{d} = -C \cdot \frac{1 + pT_{1} + p^{2}T_{2}^{2}}{1 + pT_{1} + p^{2}T_{2}^{2} + V_{0}(1 + pT_{V})}$$

Eingesetzt in Gleichung (5.31) ergibt sich:

$$\begin{split} \mathbf{I}_{\mathrm{L}} &= -\mathrm{C} \cdot \lim_{p \neq 0} \frac{1}{\mathrm{p}} \left[\frac{1}{1 + \mathrm{v}_{\mathrm{o}}} - \frac{1 + \mathrm{pT}_{1} + \mathrm{p}^{2}\mathrm{T}_{2}^{-2}}{1 + \mathrm{pT}_{1} + \mathrm{p}^{2}\mathrm{T}_{2}^{-2} + \mathrm{v}_{\mathrm{o}}(1 + \mathrm{pT}_{\mathrm{v}})} \right] \\ \mathbf{I}_{\mathrm{L}} &= -\mathrm{C} \cdot \lim_{p \neq 0} \frac{1}{\mathrm{p}} \left[\frac{\mathrm{pV}_{\mathrm{o}}\mathrm{T}_{\mathrm{V}} - \mathrm{pV}_{\mathrm{o}}\mathrm{T}_{1} - \mathrm{p}^{2}\mathrm{v}_{\mathrm{o}}\mathrm{T}_{2}^{-2}}{(1 + \mathrm{v}_{\mathrm{o}})(1 + \mathrm{pT}_{1} + \mathrm{p}^{2}\mathrm{T}_{2}^{-2} + \mathrm{pV}_{\mathrm{o}}\mathrm{T}_{\mathrm{V}} + \mathrm{v}_{\mathrm{o}})} \right] \\ \mathbf{I}_{\mathrm{L}} &= \frac{\mathrm{C} \cdot \mathrm{v}_{\mathrm{o}} \cdot (\mathrm{T}_{1} - \mathrm{T}_{\mathrm{V}})}{(1 + \mathrm{v}_{\mathrm{o}})^{2}} \stackrel{!}{=} \mathrm{MIN}. \end{split}$$

Das absolute Minimum der linearen Regelfläche wird bei

$$I_{L} = O$$
 für $- \begin{vmatrix} T_{1} = T_{V} \\ V_{O} \neq \infty \end{vmatrix}$

erreicht. Dies gilt auch, wenn zur Ableitung des Extremwertes $\partial I_L^{}/\partial V_O^{}=0$ gebildet wird. Die Dämpfung des PT_2-Gliedes ist

$$D = \frac{T_1}{2T_2 \sqrt{1 + V_0}} .$$
 (5.32)

Setzt man in Gleichung (5.32) $V_0 \rightarrow \infty$ ein, wird D = O - die Regelung wird instabil. Ein anderes Minimum von I_L ergibt sich für D = $1\sqrt{2}$. Dann erhält man V_0 aus Gleichung (5.32).

$$V_{0} = \frac{T_{1}^{2}}{T_{2}^{2}} - 1 .$$
 (5.33)

Diesen Wert der Regelkreisverstärkung setzt man in die gefundene Gleichung von I_{r.} ein und es folgt

$$I_{L_{min}} = C \cdot \frac{(T_1^2 T_2^2 - T_2^4) \cdot (T_1 - T_V)}{T_1^4}$$

Aufgabe 5.13

Gesucht ist lineare Regelfläche $\rm I_L$, sowie die optimale Reglerverstärkung $\rm V_R$ einer Regelung aus PI-Regler und zwei $\rm PT_1$ -Strecken bei Führungsverhalten.

Betrag der linearen Regelfläche

Es hat sich gezeigt, daß die lineare Regelfläche sich nur für gedämpfte Regelkreise eignet. Ohne die Angabe der Dämpfung D ist die Berechnung sinnlos. Ein anderes Integralkriterium bildet den Betrag der linearen Regelfläche (Bild 5.36).

Bild 5.36 Zeitlicher Verlauf des Betrages der linearen Regelfläche Es ist definiert als

$$I_{B} = \int_{0}^{\infty} |x_{d}_{(\infty)} - x_{d}_{(t)}| \cdot dt \stackrel{!}{=} MIN.$$
 (5.34)

Aus Bild 5.36 ist zu ersehen, daß eine geschlossene Lösung des Integrals nicht möglich ist. Daher ist dieses Gütekriterium nur für die Behandlung mit Rechnern geeignet.

ITAE-Kriterium

Multipliziert man den Betrag der linearen Regelfläche mit der Zeit und bildet das Integral, ergibt sich das ITAE-Kriterium (Integrad of Time multiplied Absolute value of Error).

$$I_{I} = \int_{O}^{\infty} t \cdot |x_{d}_{(\infty)} - x_{d}_{(t)}| \cdot dt \stackrel{!}{=} MIN.$$
 (5.35)

Auf diese Weise erreicht man, daß die mit zunehmender Zeit abnehmenden Beträge der Regelabweichung stärker berücksichtigt werden. Eine geschlossene Lösung des Integrals ist jedoch auch bei diesem Gütekriterium nicht möglich.

Quadratische Regelfläche

Es ist sicher ausgeschlossen, für alle technischen Regelkreise ein einziges Gütekriterium anzugeben. In der Praxis benutzt man jedoch oft das Minimum der quadratischen Regelfläche (Bild 5.37)

$$I_{Q} = \int_{0}^{\infty} \left[x_{d_{(\infty)}} - x_{\dot{a}_{(t)}} \right]^{2} \cdot dt \stackrel{!}{=} MIN.$$

Bild 5.37 Zeitlicher Verlauf der quadratischen Regelfläche

Dieses Integral läßt sich für die meisten praktischen Anwendungsfälle lösen. Es hat aber den Nachteil, daß es starke Regelabweichungen, wie sie zu Beginn der Übertragungsfunktion von x auftreten, überbewertet.

Liegt die quadratische Regelfläche als

$$I = \int_{0}^{\infty} x_{(t)}^{2} \cdot dt$$

vor, läßt sich das Integral lösen. Mit der Umkehrformel der gleichdimensionellen Laplace-Transformation, Gleichung (2.54) folgt:

$$\int_{0}^{\infty} x_{(t)}^{2} \cdot dt = \int_{0}^{\infty} x_{(t)} \cdot \frac{p}{2\pi j} \int_{\sigma-j\infty}^{\sigma+j\infty} x_{(p)} \cdot e^{+pt} \cdot dp \cdot dt .$$

Mit σ = 0, d.h. p = j ω erhält man beim Vertauschen der Integrationsreihenfolge (möglich, falls beide Integrale konvergieren):

$$\int_{0}^{\infty} x_{(t)}^{2} \cdot dt = \frac{1}{2\pi j} \int_{-j\infty}^{+j\infty} x_{(p)} \cdot p \int_{0}^{\infty} x_{(t)} \cdot e^{+pt} \cdot dt \cdot dp$$

Die Lösung des Integrals entspricht der Parsevalschen Gleichung /13/ mit $x_{(t)}^2 = [x_d - x_d]^2$ ist

$$I_{Q} = \int_{0}^{\infty} x_{(t)}^{2} \cdot dt = \frac{1}{2\pi j} \int_{-j\infty}^{+j\infty} x_{(p)} \cdot x_{(-p)} \cdot dp \stackrel{!}{=} MIN.$$
 (5.36)

Stellt $x_{(p)}$ eine gebrochene rationale Funktion dar, deren Pole alle in der linken p-Halbebene liegen, läßt sich die quadratische Regelfläche durch den Redsiduensatz Gleichung (2.60) bestimmen.

Es muß also gelten

$$x_{(p)} = \frac{a_{(p)}}{b_{(p)}} = \frac{a_0 + a_1 p + a_2 p^2 + \dots + a_{n-1} \cdot p^{n-1}}{b_0 + b_1 p + b_2 p^2 + \dots + b_n \cdot p^n}$$
(5.37)

Für die Potenzen n = 1 ... 4 ist die Lösung der Gleichung (5.36) in Tabelle 5.3 angegeben /38/. Unter der Voraussetzung, daß alle partiellen Ableitungen der Funktion I_Q Null sind, erhält man Bestimmungsgleichungen für die Regelkreisparameter, also

$$\frac{\partial I_{Q}}{\partial V_{Q}} = 0 , \quad \frac{\partial I_{Q}}{\partial T_{I}} = 0 , \quad \frac{\partial I_{Q}}{\partial T_{N}} = 0 \quad usw.$$

	$I_{Q} = \frac{1}{2\pi j} \int_{-i\infty}^{j\infty} \frac{a(s)a(-s)}{b(s)b(-s)} ds \text{ mit}$	$I_{Q} = \frac{1}{2\pi j} \int_{-j\infty}^{j\infty} \frac{c_{n}(s)}{d_{n}(s)d_{n}(-s)} ds \text{mit}$
	$a(s) = a_0 + a_1 s + \dots + a_{n-1} s^{n-1}$	$c_n(s) = c_0 s^{2n-2} + c_1 s^{2n-4} + \dots + c_{n-1}$
	$b(s) = b_0 + b_1 s + \dots + b_n s^n$	$d_{n}(s) = d_{0}s^{n} + d_{1}s^{n-1} + \dots + d_{n}$
n		
1	$\frac{a_o^2}{2b_o b_1}$	$\frac{c_o}{2d_od_1}$
2	$\frac{a_1^2b_0+a_0^2b_2}{2b_0b_1b_2}$	$\frac{c_1d_o-c_od_2}{2d_od_1d_2}$
3	$\frac{a_2^2b_0b_1^{+}(a_1^2-2a_0a_2)b_0b_3^{+}a_0^2b_2b_3}{2b_0b_3(b_1b_2^{-}b_0b_3)}$	$\frac{\frac{d_2d_3c_3-d_0d_3c_1+d_0d_1c_2}{2d_0d_3(d_1d_2-d_0d_3)}}{2d_0d_3(d_1d_2-d_0d_3)}$
4	$+\frac{\frac{a_3^2(b_0b_1b_2-b_0^2b_3)+(a_2^2-2a_1a_3)b_0b_1b_4}{2b_0b_4(b_1b_2b_3-b_0b_3^2-b_1^2b_4)}}{\frac{(a_1^2-2a_0a_2)b_0b_3b_4+a_0^2(b_2b_3b_4-b_1b_4^2)}{2b_0b_4(b_1b_2b_3-b_0b_3^2-b_1^2b_4)}}$	$\frac{c_o^{d_4}(d_2^{d_3}-d_1^{d_4})-c_1^{d_0}d_3^{d_4}+c_2^{d_0}d_1^{d_4}+c_3^{d_0}(d_0^{d_3}-d_1^{d_2})}{2d_0^{(d_0}d_3^2+d_1^2d_4-d_1^{d_2}d_3)}$

Beispiel

Diese Zusammenhänge sollen an einer Regelung aus I-Regler und PT_2 -Strecke klar gemacht werden. Es soll die optimale Integrationszeitkonstante T_I des Reglers bei Störverhalten ermittelt werden.

$$\overset{O}{F}_{z} = \overset{O}{\underset{z}{x}} = \frac{1}{1 + \overset{O}{F}_{R}\overset{O}{F}_{S}} .$$
Mit $\overset{O}{z} = C$ und $\overset{O}{x}_{d} = \overset{O}{w} - \overset{O}{x} = - \overset{O}{x}$ folgt

$$\overset{o}{x} = c \cdot \frac{pT_{I} + p^{2}T_{1}T_{I} + p^{3}T_{2}^{2}T_{I}}{v_{s} + pT_{I} + p^{2}T_{1}T_{I} + p^{3}T_{2}^{2}T_{I}} .$$

Da $x_{d(\infty)} = \lim_{t \to \infty} x_{d(t)} = -\lim_{p \to \infty} \sum_{p \to \infty}^{O} 0$, erhält man mit Gleichung (5.36) aus Tabelle 5.3 für n = 3 die Koeffizienten

sowie

$$I_Q = C^2 \cdot \frac{T_I \cdot (T_1^2 + T_2^2)}{2 \cdot T_2^2 \cdot (T_1 T_I - V_S T_2^2)} \stackrel{!}{=} MIN.$$

Bildet man die partiellen Ableitungen nach T_T , T_1 und T_2 , ergeben sich drei Gleichungen für T_T.

$$\frac{\partial I_{Q}}{\partial T_{I}} = 0 = \frac{V_{S} \cdot (T_{1}^{2} + T_{2}^{2})}{T_{1}T_{I} - V_{S}T_{2}^{2}} .$$

Danach müßte $T_{I} \rightarrow \infty$ gehen. Dieser Wert ist unrealistisch, daher

$$\frac{\partial I_{Q}}{\partial T_{1}} = 0 = T_{I} \cdot (T_{1}^{2} - T_{2}^{2}) - 2 \cdot V_{S} T_{1} T_{2}^{2} .$$

Dann wird
$$T_{I} = \frac{2 \cdot V_{S} T_{1} T_{2}^{2}}{T_{1}^{2} - T_{2}^{2}} .$$

Diese Gleichung ist realisierbar, jedoch für den Fall $T_1 = T_2$ müßte $T_T \rightarrow \infty$ gehen. Wählt man

$$\frac{\partial I_{Q}}{\partial T_{2}} = 0 = T_{1}^{3} T_{1} - 4 \cdot V_{S} T_{2}^{2} \cdot (T_{1}^{2} + T_{2}^{2}) ,$$

wird die optimale Integrationszeitkonstante des I-Reglers:

$$T_{I} = \frac{4 \cdot V_{S} T_{2}^{2} \cdot (T_{1}^{2} + T_{2}^{2})}{T_{1}^{3}} .$$

Für $T_1 = T_2$ erhält man hier

$$T_T = 8 \cdot V_S T_1$$

Die Bestimmung von I_0 mit der gefundenen Gleichung erübrigt sich.

Aufgabe 5.14

Es ist die optimale Integrationszeitkonstante T_I für Störverhalten zu bestimmen, wenn:

$${}^{O}_{F_{R}} = \frac{1}{{}^{PT_{1}}}$$
 und ${}^{O}_{F_{S}} = \frac{V_{S}}{(1 + {}^{PT_{1}})^{2}}$

Aufgabe 5.15

Ein PI-Regler soll bei Störverhalten für eine PT2-Strecke mit

$${}^{O}_{F_{S}} = {}^{V_{S}} {}^{(1 + pT_{1})^{2}}$$

optimiert werden. Gesucht ist die entsprechende Nachstellzeit T_N .

Aufgabe 5.16

Für eine Regelung aus PI-Regler und PT₃-Strecke sollen die Reglerparameter $\rm V_R$ und T_N nach Gleichung (5.36) bei Störverhalten ermittelt werden. Es ist

$${}^{O}_{F_{R}} = \frac{V_{R} \cdot (1 + pT_{N})}{pT_{N}} ; \quad {}^{O}_{F_{S}} = \frac{V_{S}}{(1 + pT_{1})^{3}}$$

Die Störung greift zwischen Regler und Strecke an, so daß gilt:

$$\mathbf{\hat{F}}_{z} = \frac{\mathbf{\hat{F}}_{S}}{1 + \mathbf{\hat{F}}_{R}\mathbf{\hat{F}}_{S}} = \frac{\mathbf{\hat{N}}}{\mathbf{\hat{N}}}$$

5.5.2 Symmetrisches Optimum

Das Symmetrische Optimum ist eine Methode zur Bestimmung der Regelkreisparameter im Frequenzbereich. Es zielt darauf ab, bei der Durchtrittsfrequenz $\omega_{\rm D}$ ein Maximum der Phasenreserve $\alpha_{\rm R}$ zu erreichen.

C. Kessler hat von seinem "Betrags-Optimum" ausgehend dieses Verfahren entwickelt, unter der Voraussetzung, daß der Frequenzgangbetrag symmetrisch zur Durchtrittsfrequenz $\omega_{\rm p}$ verläuft /39/.

Die Durchtrittsfrequenz sollte im Hinblick auf eine hohe Regelgeschwindigkeit möglichst groß sein. Dies bedingt eine kleine Phasenverschiebung zwischen w und x. Treten in einem Regelkreis mehrere Verzögerungsglieder auf, nimmt die Phasenverschiebung zu. Sie kann jedoch teilweise durch geschickte Wahl der Reglerparameter kompensiert werden. Der Frequenzgang des offenen Regelkreises soll dann in folgende Form übergehen.

Zur Dimensionierung der freien Reglerparameter einige grundlegende Betrachtungen.

Die am häufigsten angewandten Regler haben PI- oder PID-Verhalten. Soll bei einer Regelstrecke höherer Ordnung ein Verzögerungsglied durch den Frequenzgang des PI-Reglers kompensiert werden, dann sollte die Nachstellzeit kleiner oder gleich der größten Zeitkonstante der Strecke sein.

$$T_N \ge T_1$$
.

Für ${\rm T}_{\rm N} < {\rm T}_{\rm 1}$ wird meist sogar eine bessere Ausregelung von Störgrößen erreicht.

Ein PID-Regler der Form

$$\overset{O}{F}_{R} = V_{R} \cdot \frac{(1 + pT_{N}) \cdot (1 + pT_{V})}{pT_{N}}$$

der für $\rm T_N > T_V$ gilt, läßt die totale Frequenzkompensation einer PT_1-Strecke mit Hilfe des PD-Anteils zu. Man wählt

,

$$T_V = T_2$$

und erhält aus

nun

$$\mathbf{\hat{F}}_{O} = \mathbf{V}_{O} \frac{\mathbf{1} + \mathbf{pT}_{N}}{\mathbf{pT}_{N}}$$

Es bleibt also nur der P-Anteil V_S der Strecke übrig. Im interessanten Bereich der Stabilitätsbetrachtung, also um ω_D , ist eine weitere Vereinfachung bei Strecken höherer Ordnung zulässig.

Für T₁ >> T₂, T₃, ... T_n geht der Frequenzgang

$${}_{F_{S}}^{O} = \frac{V_{S}}{(1 + pT_{1})(1 + pT_{2})(1 + pT_{3}) \dots (1 + pT_{n})}$$

in die Form

$$\int_{F}^{O} S \frac{V_{S}}{pT_{1} \cdot (1 + pT_{K})}$$

über. Das Verzögerungsglied mit der größten Zeitkonstanten T₁ wird hier näherungsweise durch ein I-Glied dargestellt und die restlichen Verzögerungsglieder zu einem PT₁-Glied zusammengefaßt. Dabei ist

$$T_{K} = \sum_{i=2}^{n} T_{i}$$
.

Führt man noch die Näherung ein, daß ein Totzeitglied in vielen Fällen als PT_1 -Glied dargestellt werden kann, also für $\omega T_t << 1$,

$$e^{-pT}t \approx \frac{1}{1+pT_{+}}$$

lassen sich die meisten Frequenzgänge $\stackrel{O}{F}_{O}$ einer Regelung auf die Gleichung (5.38) zurückführen. Die daraus resultierenden Vorteile sollen an einem Beispiel aufgezeigt werden.

Beispiel

Liegt eine PT3-Strecke der Form

$${}^{O}_{F_{S}} = \frac{V_{S}}{(1 + pT_{1})(1 + pT_{2})(1 + pT_{3})}$$

vor, kann ein Verzögerungsglied durch einen PTD-Regler kompensiert werden, wenn $T_V = T_2$ gewählt wird. Dies ist angebracht bei $T_1 > T_2 >> T_3$. Mit

$$\overset{O}{F}_{R} = \frac{V_{R}(1 + pT_{V})(1 + pT_{N})}{pT_{N}}$$

gilt dann

$$P_{O}^{P} = \frac{V_{O} \cdot (1 + pT_{N})}{pT_{N} \cdot (1 + pT_{1})(1 + pT_{3})}$$

Mit T $_1$ >> T $_3$ erhält man dann analog zu Gleichung (5.38) in der Nähe der Durchtrittsfrequenz $\omega_{\rm D}$ den Frequenzgang

•

$$\overset{O}{F}_{O} \approx V_{O} \cdot \frac{1 + pT_{N}}{p^{2}T_{1}T_{N}(1 + pT_{3})}$$

Für die allgemeine Anwendung wird nun für Gleichung (5.38) die maximale Phasenreserve ermittelt.

$$F_{o(j\omega)} = -\frac{V_{o}}{\omega^{2}T_{1}T_{N}} \cdot \frac{1 + \omega^{2}T_{3}T_{N} + j(\omega T_{N} - \omega T_{3})}{1 + \omega^{2}T_{3}^{2}}$$

$$|F_{o(j\omega)}| = \frac{V_{o}}{\omega^{2}T_{1}T_{N}} \cdot \sqrt{\frac{1 + \omega^{2}T_{N}^{2}}{1 + \omega^{2}T_{3}^{2}}}$$
(5.39)

Die Frequenz ω_M , bei der die Phasenreserve α_R ein Maximum oder bei der φ_o ein Maximum ist, erhält man durch Differenzieren.

$$\alpha_{\rm R} = \arctan \cdot \frac{\omega ({\rm T}_{\rm N} - {\rm T}_3)}{1 + \omega^2 {\rm T}_3 {\rm T}_{\rm N}} ,$$

$$\begin{split} &\frac{\partial \alpha_R}{\partial \omega} = 0 = \frac{\partial}{\partial z} \arctan z \cdot \frac{\partial z}{\partial \omega} , \\ &\text{mit } z = \frac{\omega \left(T_N - T_3 \right)}{1 + \omega^2 T_3 T_N} \quad \text{folgt} \\ &\omega_M^2 \cdot \left(T_3^2 T_N - T_3 T_N^2 \right) - T_N - T_3 = 0 , \\ &\omega_M = \frac{1}{\sqrt{T_3 T_N}} \quad . \end{split}$$

Falls die Gleichung des komplexen Frequenzganges höheren Grades ist, ermittelt man ω_{M} aus der Summe der einzelnen Phasenwinkel, also hier ($PT_{V} - PT_{1} - T_{1}^{2}$)

$$\begin{split} \varphi_{\rm O} &= \arctan \omega {\rm T}_{\rm N} - \arctan \omega {\rm T}_{\rm 3} - \pi \ , \\ \frac{\partial \varphi_{\rm O}}{\partial \omega} &= 0 \ , \end{split}$$

mit

folgt dann ebenfalls

$$\omega_{\rm M} = \frac{1}{\sqrt{\rm T_3 T_N}} \quad . \tag{5.40}$$

Setzt man $\omega_{\rm M}$ = $\omega_{\rm D}$ ergibt sich das gewünschte Maximum der Phasenreserve bei der Durchtrittsfrequenz.

Für $\omega_{\rm D}$ ist

$$F_{o(j\omega_D)} = |F_{o(j\omega_M)}| = 1$$
.

Aus dieser Gleichung folgt durch Einsetzen von $\boldsymbol{\omega}_{M}$ die Reglerverstärkung

$$V_{R} = \frac{T_{1}}{V_{S}\sqrt{T_{3}T_{N}}} = \frac{\omega_{D}T_{1}}{V_{S}} \quad .$$
 (5.41)

Führt man bezüglich Gleichung (5.40) die Normierung

$$\mathbf{T}_{N} = \mathbf{m}^{2}\mathbf{T}_{2} \tag{5.42}$$

ein, ergibt sich für die Phasenreserve der Gleichung (5.38)

$$\begin{aligned} &\alpha_{\rm R} = \varphi_{\rm O}(\omega_{\rm D}) + 180^{\rm O} = \arctan \omega_{\rm D} T_{\rm N} - \arctan \omega_{\rm D} T_{\rm 2} \\ &\alpha_{\rm R} = \arctan m - \arctan \frac{1}{m} . \end{aligned}$$

Daraus folgt

$$\tan \alpha_{\rm R} = \frac{{\rm m}^2 - 1}{2 {\rm m}} ,$$

und für m schließlich

$$m = \tan \alpha_{R} + \sqrt{1 + (\tan \alpha_{R})^{2}}$$
$$m = \frac{1 + \sin \alpha_{R}}{\cos \alpha_{R}}.$$
 (5.43)

Setzt man die Phasenreserve zwischen α_{Ropt} = [30⁰ ... 60⁰] an, wird

 $m = \left[\sqrt{3} \ldots 2 + \sqrt{3}\right].$

Somit läßt sich ${\rm T}_{\rm N}$ angeben mit

 $T_N = [3 \dots 14] \cdot T_2$.

Für eine stabile Regelung muß außerdem gelten, daß die große Zeitkonstante $T_1 \stackrel{\geq}{=} T_N$ ist und die kleinen Zeitkonstanten $T_3 \cdots T_n < T_N$ sind. Mit diesen Voraussetzungen ist eine gute Abschätzung von T_N möglich.

Bei Regelkreisen, die viele kleine Zeitkonstanten und höchstens zwei große Zeitkonstanten haben, läßt sich folgende Optimierung anwenden.

Es seien ${\rm T}_1$ und ${\rm T}_2$ die großen Zeitkonstanten der Regelstrecke $({\rm T}_1~>~{\rm T}_2~>>~{\rm T}_3~\ldots~{\rm T}_n)$

$${}^{O}_{F_{S}} = \frac{V_{S}}{(1 + pT_{1})(1 + pT_{2})(1 + pT_{3})\dots(1 + pT_{n})}$$

Die kleinen Zeitkonstanten $\rm T_3$... $\rm T_n$ lassen sich zu der Summe $\rm T_K$ zusammenfassen, wenn im Betriebsfrequenzbereich $\omega_{\rm B}$ der Regelung gilt:

$$\omega_{\rm B} << \frac{1}{{\rm T}_{\rm K}}$$
 ,

so daß für die Regelstrecke um den Wert ω_{D} folgt:

$${}_{F_{S}}^{O} = \frac{V_{S}}{(1 + pT_{1})(1 + pT_{2})(1 + pT_{K})}$$

Als Regeleinrichtung wählt man zweckmäßigerweise den PID-Regler, der in dieser Schreibweise für $\rm T_N$ > T_V dem reinen PID-Regler entspricht.

$$\overset{O}{F}_{R} = V_{R} \cdot \frac{(1 + pT_{V})(1 + pT_{N})}{pT_{N}}$$

Nun kompensiert man die großen Zeitkonstanten durch die Wahl von:

$$T_N = T_1$$
 und $T_V = T_2$.

Für den Frequenzgang des offenen Kreises erhält man nun

$$\hat{F}_{O} = \frac{V_{O}}{pT_{1} \cdot (1 + pT_{K})}$$
 (5.44)

Dann wird <u>F</u>.:

$$\underline{\mathbf{F}}_{O} = -\frac{\omega^{2} T_{1} T_{K} + j \omega T_{1}}{\omega^{2} T_{1}^{2} \cdot (1 + \omega^{2} T_{K}^{2})} \mathbf{V}_{O} \quad .$$
(5.45)

Für Phasenreserve ergibt sich

$$\alpha_{\rm R}$$
 = arctan $\frac{1}{\omega T_{\rm K}}$.

Daraus folgt, daß das Maximum der Phasenreserve ($\alpha_{R max} = 90^{\circ}$) bei $\omega_{M} = 0$ zu erwarten ist. Dieser Wert ist nicht sinnvoll, da dann auch $\omega_{D} = 0$ ist. Ein Optimum liegt sicher bei $\alpha_{R} = 60^{\circ}$, so daß

$$\alpha_{\rm R}^{}$$
 = 60[°] = arctan $\sqrt{3}$ = arctan $\frac{1}{\omega_{\rm opt} \cdot {}^{\rm T}{}_{\rm K}}$,

also

$$\omega_{\rm D} = \omega_{\rm opt} = \frac{1}{\sqrt{3} \cdot \mathbf{T}_{\rm K}} , \qquad (5.46)$$

und aus dem Betrag des Frequenzgangs erhält man bei der Durchtritts-frequenz ω_{n} :

$$\left|\underline{\mathbf{F}}_{\mathrm{o}}\right| = 1 = \frac{\mathbf{V}_{\mathrm{o}}}{\boldsymbol{\omega}_{\mathrm{opt}} \cdot \mathbf{T}_{1} \cdot \sqrt{1 + \boldsymbol{\omega}_{\mathrm{opt}}^{2} \cdot \mathbf{T}_{K}^{2}}}.$$

Damit liegt eine Bestimmungsgleichung für die Reglerverstärkung vor.

$$V_{\rm R} = \frac{\omega_{\rm opt} \cdot T_{\rm 1}}{V_{\rm S}} \qquad \sqrt{1 + \omega_{\rm opt}^2 \cdot T_{\rm K}^2} \,. \tag{5.47}$$

Aufgabe 5.17

Es sind die Reglerparameter eines PI-Reglers zu bestimmen, der auf eine $\mathrm{PT}_2\text{-}\mathsf{Strecke}$ wirkt.

 $T_1 = 1,9s$ $V_S = 3$ $T_2 = 0,01s$ $\alpha_R^{l} = 55^{\circ}$.

Aufgabe 5.18

Eine Regelung aus PID-Regler und vier PT₁-Strecken soll mit Hilfe des symmetrischen Optimums entworfen werden. Die Parameter sind:

Zu bestimmen sind T_N , T_V und V_R bei einem Betriebsfrequenzbereich der Regelung von $\omega_B = [0,100]$ Hz und $\alpha_R = 60^{\circ}$. Außerdem ist der Einfluß veränderter Verstärkung V_R und Nachstellzeit T_N zu untersuchen, sowie das Führungsverhalten anzugeben.

Aufgabe 5.19

Gegeben sei ein Regelkreis aus PI-Regler und zwei PT_1 -Strecken mit T₁ = 10 ms; T₂ = 50 ms; T_N = 0,1s und V_S = 0,1. Es soll die optimale Reglerverstärkung mit dem symmetrischen Optimum bestimmt werden.

5.5.3 Kaskadenregelungen

Die bisher behandelten Regelkreise enthielten nur eine Rückführung, sie waren also einschleifig. Durch geeignete Wahl der freien Parameter konnte ein befriedigendes dynamisches Verhalten solcher Regelungen erzielt werden. Man mußte aber folgende Nachteile in Kauf nehmen:

- Kompensation mehrerer großer Strecken-Zeitkonstanten erfordert einen PID-Regler.
- Es kann nur die Regelgröße beeinflußt werden. Andere, das dynamische Verhalten des Regelkreises bestimmende Betriebsgrößen (z.B. Motorstrom, Zugkraft, Geschwindigkeit, Weg usw.), sind nicht regelbar.
- Bei Regelstrecken höherer Ordnung ist nur eine mäßige Optimierung bezüglich des Führungs- und Störverhaltens möglich. Besonders schwierig wird die Dimensionierung der Reglerparameter, wenn die Strecken-Zeitkonstanten unbekannt sind.

Diese Nachteile sind bei Verwendung von vermaschten Regelkreisen vermeidbar. Dabei werden die verschiedenen Störungen oder Betriebsgrößen-Änderungen, an den Stellen, wo sie auftreten, durch unterlagerte Regelkreise oder Hilfsgrößen ausgeregelt. Es erfolgt also eine schrittweise Lösung des Regelablaufs durch die Aufteilung in einzelne einfache Regelkreise. Dabei steigt allerdings der Aufwand für die Meßwerterfassung und die Anzahl der Regler. Teilt man den gesamten Regelkreis in einzelne Teilregelkreise (unterlagerte Regelkreise) auf, spricht man von einer Kaskadenregelung (Bild 5.38).

Voraussetzung für die hier besprochenen Anwendungen ist eine Regelstrecke mit möglichst rückwirkungsfreien in Reihe geschalteten PT₁-Gliedern. Die Dimensionierung nicht in Reihe liegender Regelstrecken-Strukturen und Mehrgrößenregelungen sind in /16/, /26/

Bild 5.38 Kaskadenregelung eines Drehzahlregelkreises mit unterlagerter Stromregelung bei einem Gleichstromantrieb

und /40/ beschrieben. In der Praxis hat sich das Prinzip der Kaskadenregelung bestens bewährt, wie anhand zahlreicher Beispiele in Abschnitt 6 gezeigt wird. Der Grund dafür ist, daß sich Verstärkung, Begrenzung und Zeitverhalten jedes einzelnen unterlagerten Regelkreises unabhängig einstellen lassen. Damit erhöht sich die Dynamik der gesamten Regelung.

Eine Kaskadenregelung läßt sich mit Umformregel 12 Tabelle 4.12 auf einen einschleifigen Regelkreis zurückführen (Bild 5.39).

Bild 5.39 Umformung des Blockschaltbildes einer Kaskadenregelung in einen einfachen Regelkreis (hier für einen n-Regelkreis mit unterlagertem I_{λ} -Regelkreis)

Greifen auf die Hilfsregelgröße x_H und die Regelgröße x Störgrössen ein, erhält man in Analogie zu Gleichung (2.7)

$$\overset{\circ}{x} = \frac{\overset{\circ}{F}_{o1} \cdot \overset{\circ}{F}_{o2}}{1 + \overset{\circ}{F}_{o1} + \overset{\circ}{F}_{o1} \cdot \overset{\circ}{F}_{o2}} w + \frac{1 + \overset{\circ}{F}_{o2}}{1 + \overset{\circ}{F}_{o1} + \overset{\circ}{F}_{o1} \cdot \overset{\circ}{F}_{o2}} (\overset{\circ}{z}_{2} + \overset{\circ}{z}_{1} \cdot \overset{\circ}{F}_{S2}) , (5.48)$$

mit

$$\overset{O}{F}_{O1} = \overset{O}{F}_{R1} \cdot \overset{O}{F}_{S1} \quad und \quad \overset{O}{F}_{O2} = \overset{O}{F}_{R2} \cdot \overset{O}{F}_{H} \cdot \overset{O}{F}_{S2}$$
$$\overset{O}{F}_{H} = \frac{\overset{O}{F}_{O1}}{1 + \overset{O}{F}_{O1}} .$$

sowie

Nun kann der unterlagerte Regelkreis F_{H} als Übertragungsglied aufgefaßt werden und es erfolgt die Optimierung der Regelung auf folgende Weise:

- 1. Entwurf des Reglers ${\rm F_{R1}}$ auf die Strecke ${\rm F_{S1}}$ unter Anwendung eines der gezeigten Optimierungsverfahren.
- 2. Entwurf des Reglers ${\rm F}_{\rm R2}$ auf die "Strecke" ${\rm F}_{\rm H}\cdot{\rm F}_{\rm S2}$ nach dem selben Verfahren.

Beispiel

Ein praktisches Beispiel aus der Antriebstechnik. Die Drehzahl-Regelung eines fremderregten Gleichstrommotors nach Bild 5.38 soll mit dem symmetrischen Optimum dimensioniert werden. Das zugehörige Blockschaltbild (Bild 5.40) erhält man aus den Gleichungen des mechanischen und elektrischen Kreises. Es wurde auf eine Istwert- und Sollwertglättung durch ein PT₁-Glied (Tiefpaß) verzichtet. Aus der Ankerkreisgleichung für motorischen Rechtslaufbetrieb folgt PT₁-Verhalten für den Ankerstrom.

mit

Für das Motormoment gilt mit $\phi = \phi_{max}$

$$M_{M} = C_{2} \cdot \phi_{max} \cdot I_{A}$$
.

Das Beschleunigungsmoment ist dann

$$\overset{O}{M}_{b} = \overset{O}{M}_{M} - \overset{O}{M}_{L} = 2\pi \cdot J \cdot p \cdot \overset{O}{n} .$$

 $E = C_1 \cdot \phi_{max} \cdot n \text{ und } T_A = L_A / R_A \cdot$

Aus dieser Gleichung erhält man mit der Leerlaufdrehzahl $\rm n_{_O}$ bei Nennmoment $\rm M_N$ die Hochlaufzeit des Motors.

$$T_{\rm H} = \frac{2\pi J \cdot n_{\rm o}}{M_{\rm N}} .$$
 (5.50)

Dabei ist J das gesamte auf die Motorwelle bezogene Trägheitsmoment. Damit ergibt sich I-Verhalten für die Drehzahl und für Leerlauf ($M_L = 0$) gilt

$$\stackrel{O}{n} = \frac{\stackrel{M}{\underline{m}}}{2\pi J \cdot p} = \frac{\stackrel{M}{\underline{m}} \cdot \underline{n}_{O}}{\stackrel{M}{\underline{N}} \cdot \underline{pT}_{H}} .$$
(5.51)

Der Stromrichter, hier eine vollgesteuerte Drehstrom-Brückenschaltung, hat PT_+ -Verhalten (Abschnitt 4.4.1).

Mit den Streckenkonstanten

$$V_{S1} = \frac{\Delta \alpha}{\alpha_1 - \alpha_2} = 1 \qquad T_t = \frac{T}{2p} \quad \& \text{ O,002s}$$
$$V_{S2} = \frac{U_{AN}}{T_{AN} \cdot R_A} = 2 \qquad T_A = \frac{L_A}{R_A} = 0.2s$$
$$V_{S3} = C_1 \cdot \phi_{max} = \frac{1}{2\pi} \qquad T_H = \frac{2\pi J \cdot n_o}{M_N} = 5s$$
$$V_{S4} = C_2 \quad \phi_{max} = 1 ,$$

sowie den Unformregeln 7, 8 und 12, Tabelle 4.12, ergibt sich ein vereinfachter Stromregelkreis (Bild 5.41a und 5.41b), dessen Regelstrecke lautet:

$$\begin{array}{l} \overset{O}{\mathbf{F}}_{\mathrm{S1}} = \frac{\mathbf{V}_{\mathrm{S1}} \cdot \mathbf{V}_{\mathrm{S2}} \cdot \mathbf{p} \mathbf{T}_{\mathrm{H}}}{(1 + \mathbf{p} \mathbf{T}_{\mathrm{t}}) \cdot [\mathbf{p} \mathbf{T}_{\mathrm{H}} (1 + \mathbf{p} \mathbf{T}_{\mathrm{A}}) + \mathbf{V}_{\mathrm{S2}} \cdot \mathbf{V}_{\mathrm{S3}} \cdot \mathbf{V}_{\mathrm{S4}}]}, \\ \\ \text{mit } \mathbf{e}^{-\mathbf{T}_{\mathrm{t}}} & \approx (1 + \mathbf{p} \mathbf{T}_{\mathrm{t}})^{-1} \quad (\text{erlaubte Näherung für } \boldsymbol{\omega}_{\mathrm{D1}} \mathbf{T}_{\mathrm{t}} << 1). \end{array}$$

Setzt man für diese Strecke einen PI-Regler ein, errechnet sich der Frequenzgang des offenen Stromregelkreises zu

$$\stackrel{O}{F}_{O1} = \stackrel{O}{F}_{R1} \cdot \stackrel{O}{F}_{S1} \mathcal{H} \frac{v_{R1} \cdot v_{S1} \cdot v_{S2} \cdot (1 + pT_{N1}) \cdot T_{H}}{T_{N1} \cdot (1 + pT_{t}) \cdot [pT_{H}(1 + pT_{A}) + v_{S2} \cdot v_{S3} \cdot v_{S4}]$$
(5.52)

wählt man für die Stromregler-Zeitkonstante

$$T_{N1} = T_A$$
,

ergibt sich

$$\hat{F}_{01} \approx \frac{ v_{R1} v_{S1} (1 + pT_A) T_H T_A }{ v_{S3} \cdot v_{S4} (1 + pT_t) [1 + p \frac{T_H}{V_{S2} v_{S3} v_{S4}} (1 + pT_A)] } .$$

Da gewöhnlich T_H > T_A >> T_t ist, gilt im Bereich um ω_{D1} mit einem Fehler von ca. 10% die Näherung:

$$p^2 \cdot \frac{T_A T_H}{V_{S2} \cdot V_{S3} \cdot V_{S4}} \approx 1 + p \cdot \frac{T_H}{V_{S2} \cdot V_{S3} \cdot V_{S4}} \cdot (1 + pT_A)$$
.

Auf diese Weise wird der Frequenzgang des Stromregelkreises auf die Gleichung (5.38) des symmetrischen Optimums zurückgeführt.

$$\overset{O}{F}_{O1} \approx \frac{ v_{R1} \cdot v_{S1} \cdot v_{S2} \cdot (1 + pT_{A}) }{ p^2 T_{A} T_{A} \cdot (1 + pT_{t}) } .$$
 (5.53)

Mit den nun anwendbaren Gleichungen (5.40) und (5.41) läßt sich die Durchtrittsfrequenz ω_{D1} sowie die Stromreglerverstärkung V_{R1} angeben, bei der die Phasenreserve ein Maximum hat.

$$\omega_{\rm D1} \approx \frac{1}{\sqrt{{\rm T}_{\rm A}{\rm T}_{\rm t}}} \tag{5.54}$$

und

also

b)

v

$$R^{1} \approx \frac{T_{A}}{V_{S1}V_{S2}\sqrt{T_{A}T_{t}}} \quad .$$
(5.55)

Mit den gegebenen Werten erhält man eine Durchtrittsfrequenz von ω_{D1} \approx 50 Hz mit einer Reglerverstärkung von V $_{R1}$ \approx 5.

Ähnliche Dimensionierungshinweise werden in /42/ angegeben. Entsprechend Bild 5.39 errechnet sich die Drehzahlregelstrecke aus:

$$\hat{F}_{H} \cdot \hat{F}_{S2} = \frac{\bar{F}_{O1}}{1 + \bar{F}_{O1}} \cdot \hat{F}_{S2}$$

Mit Gleichung (5.53) und $\overset{O}{F}_{S2} = V_{S4}/pT_{H}$ folgt dann

$$\stackrel{o}{}_{\mathrm{H}} \cdot \stackrel{o}{}_{\mathrm{S2}} \approx \frac{v_{\mathrm{R1}} \cdot v_{\mathrm{S1}} \cdot v_{\mathrm{S2}} \cdot v_{\mathrm{S4}} \cdot (1 + \mathrm{pT}_{\mathrm{A}})}{\mathrm{p}^{3} \mathrm{T}_{\mathrm{A}}^{2} \mathrm{T}_{\mathrm{H}} \cdot (1 + \mathrm{pT}_{\mathrm{t}}) + v_{\mathrm{R1}} \cdot v_{\mathrm{S1}} \cdot v_{\mathrm{S2}} \cdot (1 + \mathrm{pT}_{\mathrm{A}}) \cdot \mathrm{pT}_{\mathrm{H}}}$$

In der Nähe der Durchtrittsfrequenz sei es zulässig, anzunehmen, daß 1 + $pT_A \approx pT_A$ entspricht. Dann gilt:

$$\overset{O}{F}_{H} \cdot \overset{O}{F}_{S2} \approx \frac{v_{R1} \cdot v_{S1} \cdot v_{S2} \cdot v_{S4}}{pT_{H} \cdot [v_{R1} \cdot v_{S1} \cdot v_{S2} + pT_{A} \cdot (1+pT_{t})]} .$$
 (5.56)

Auch für den Drehzahlregelkreis wird der PI-Regler eingesetzt und man erhält das in Bild 5.42a und 5.42b dargestellte Blockschaltbild. Der Frequenzgang des offenen Drehzahlregelkreises entspricht nun:

$$\hat{P}_{O2} = \hat{P}_{R2} \cdot \hat{P}_{H} \cdot \hat{P}_{S2} ,$$

$$\hat{P}_{O2} \approx \frac{v_{R1} \cdot v_{R2} \cdot v_{S1} \cdot v_{S2} \cdot v_{S4} \cdot (1 + pT_{N2})}{p^2 T_{H} T_{N2} [v_{R1} \cdot v_{S1} \cdot v_{S2} + pT_{A} \cdot (1 + pT_{L})]}$$

$$(5.57)$$

wählt man für die Drehzahlregler-Zeitkonstante

$$T_{N2} = m^2 T_K$$
 , (5.58)

mit m nach Gleichung (5.43) und T_K als Summe aller kleinen Zeitkonstanten also T_{N2} = 2,813 s. Für F_{O2} folgt dann:

)

mit

Der genäherte Frequenzgang ${}^{O}_{F_{O2}}$ entspricht der Gleichung (5.38) des symmetrischen Optimus. Damit erhält man bei analoger Anwendung der Gleichungen (5.40) und (5.41) die Dimensionierung für die Drehzahlreglerverstärkung v_{R2}.

$$\omega_{D2} \approx \frac{1}{m \sqrt{T_K T_K'}} , \qquad (5.60)$$

(5.59)

und

$$v_{R2} \approx \frac{T_{H}}{v_{S4} \cdot m \sqrt{T_{K}T_{K}'}} \quad .$$
(5.61)

Mit den hier gegebenen Werten $T_K = T_A + T_t = 0,202s$, $T_K' = T_A/(V_{R1}V_{S1}V_{S2}) + T_t = 0,022s$ und $m = 2 + \sqrt{3}$ wird

 $V_{R2} \approx 20,1$ und $\omega_{D2} \approx 4$ Hz.

Das Lastverhalten von Gleichstromantrieben mit Feldschwächung wird ausführlich von F. Kümmel /36/ beschrieben.

Bei jedem technisch realisierbaren Regler ist das maximale Ausgangssignal begrenzt. Dieser Grenzwert ist sogar oft erwünscht, wenn damit beispielsweise der Maximalwert des Ankerstroms festgelegt wird. Eine gewollte oder physikalisch unabdingbare Signalbegrenzung stellt aber ein nichtlineares Verhalten dar, welches bei der Stabilitätsbetrachtung der Regelung berücksichtigt werden muß (siehe auch Abschnitt 4.1). Die Reglerverstärkung sollte daher nie so hoch angesetzt werden, daß Führungs- und Strögrößenänderungen bereits zu $x_d \cdot V_R > y_{max}$ führen.

Für das gerechnete Beispiel sind in Bild 5.43 und 5.44 oben die Regelgröße x = n; und unten die Stellgröße $y_1 = I_{AS}$ des Drehzahlreglers aufgetragen. Es zeigt sich (Bild 5.43), daß der Reglerausgang bei kleinen Sollwerten (hier wurde w = 1V aufgeschaltet) kurzzeitig an die Stellgrenze geht. Setzt man eine Signalbegrenzung von U₇ = 10V ein, ergibt sich keine sichtbare Änderung des Vorlaufes von n_i.

Dies ändert sich jedoch, wenn der Sollwertsprung zu hoch ist. In Bild 5.44 wurden bei $U_z = 10V$ zunächst w = 0,25V und dann w = 2,5V aufgeschaltet. Wie man sieht, geht der Drehzahlregler bei Vorgabe des kleinen Sollwertes nicht an die Stellgrenze. Die Ausregelzeit beträgt hier $T_{Aus} \approx 1s$. Schaltet man jedoch den Sollwert w = 2,5V auf die Regelung, bleibt der Drehzahlregler längere Zeit an der Stellgrenze; seine berechnete Verstärkung von

Bild 5.43 Oszillogramme der Regelgröße x (oben) und der Stellgröße y₁ = I_{AS} (unten) bei Vorgabe von w = 1V mit und ohne Signalbegrenzung für die Kaskadenregelung aus Bild 5.40

Bild 5.44 Oszillogramme der Regelgröße x (oben) und der Stellgröße y₁ = I_{AS} (unten) bei Vorgabe von w = 0,25/ 2,5 V mit Signalbegrenzung auf U_z = 10V für die Kaskadenregelung aus Bild 5.40

 $\rm V_{R2}$ & 20,1 wird nicht erreicht. So erklärt sich, daß die Dynamik der Regelung nachläßt, denn nun beträgt die Ausregelzeit $\rm T_{Aus}$ & 2s.

Damit der Regler im Normalbetrieb nicht an die Stellgrenze geht, sollte grundsätzlich gelten, daß die Relativverstärkung V_{rel.} grösser als die errechnete Verstärkung ist, also

$$V_{\text{rel.}} = \frac{U_z}{W} \stackrel{!}{>} V_R . \qquad (5.62)$$

5.5.4 Abtastregelungen

Es besteht ein prinzipieller Unterschied zwischen kontinuierlicher und diskreter Signalverarbeitung einer Regelung (Bild 5.45). Bei kontinuierlicher Arbeitsweise sind die Systemgrößen zu jedem beliebigen Zeitpunkt gegeben. Werden die Systemgrößen nur zu bestimmten diskreten äquidistanten Zeiten erfaßt oder erzeugt, spricht man von einer diskret arbeitenden Abtastregelung. Solche Anordnungen findet man häufig bei digitalen Regelungen mit Software. Dabei läuft innerhalb der Abtastzeit T_z ein Regelalgorithmus ab, der dann z.B. die Stellgröße y errechnet. Aus diesem Grunde ist die Abtastzeit von der Schnelligkeit des Rechners und der Länge auch seines Programms abhängig. Die Abtastzeit wird allgemein durch das Shannonsche Abtasttheorem /43/ beschrieben. Darin wird angenommen, daß die Fouriertransformierte $F_{(j\omega)}$ einer Zeitfunktion f₍₊₎ nur ein begrenztes Frequenzspektrum besitzt, d.h. $F_{(j\omega)} = 0$ für $\omega > \omega_B$. Die höchste Frequenz ist dann $f_B = \omega_B/2\pi$. Tastet man diese höchste Schwingung mindestens zweimal pro Periode ab, so erhält man ein Maß für die Abtastzeit. Es muß demnach gelten: m

$$T_{z} \stackrel{\leq}{=} \frac{T_{B}}{2} = \frac{\pi}{\omega_{B}} \quad . \tag{5.63}$$

Das Prinzip einer Abtastregelung ist in Bild 5.46 dargestellt. Die Augenblickswerte von Soll- und Istwert werden nach jedem Zeitintervall T_z abgetastet und kurzzeitig in Analogspeichern festgehalten (SH), in sogenannten Sample-Hold-Schaltkreisen /2/. Danach erfolgt die Bildung der Regeldifferenz \overline{x}_d und die Abarbeitung des Regleralgorithmus. Ausgegeben an die Strecke wird die Stellgrösse \overline{y} , die ebenso wie \overline{x}_d , einer Treppenfunktion entspricht.

Bild 5.45 Beispiel für eine kontinuierliche und diskrete Signalverarbeitung

Bild 5.46 Prinzipielles Blockschaltbild einer Abtastregelung

Die Berechnung von Abtastregelkreisen verlangt nach einer mathematischen Definition des "Sample-Hold-Verhaltens". D.h., nach einer Funktion, die den Übergang der Zeitfunktion $f_{(t)}$ in die Treppenfunktion $\overline{f}_{(t)}$ beschreibt (Bild 5.47). Schaut man sich einen Sample-Hold-Schaltkreis an, so besteht er aus einem Schalter, der das Eingangssignal jeweils nach der Zeit T_z kurzzeitig (im Idealfall als Impuls) auf den Speicher (meist ein RC-Glied) schaltet (Bild 5.48).

Bild 5.47 Zeitlicher Verlauf einer Funktion $f_{(t)}$ und der zugehörigen abgetasteten Funktion $f_{SH(t)}$

Bild 5.48 Schaltung eines Abtast-Halte-Gliedes (Sample-Hold-Schaltkreis) mit Operationsverstärker

Die Treppenfunktion $f_{SH(t)} = \overline{f}_{(t)}$ kann daher als unendliche Reihe von Einheitsimpulsen (Korrespondenz Nr. 2, Tabelle 2.3) der Amplitude $x_{e(mT_Z)}$ mit m = 0, 1, 2 ... angesehen werden. Dabei hat der Einheitsimpuls genau die "Breite" der Abtastzeit $t_1 = T_z$. Die mathematische Formulierung lautet also:

$$f_{SH} = \sum_{m=0}^{\infty} x_{e(mT_{z})} \cdot \left[\delta_{O(t-mT_{z})} - \delta_{O(t-(m+1)T_{z})} \right]$$
(5.64)

Mit Korrespondenz Nr. 1 und 4, Tabelle 2.3 erhält man sofort die Bildfunktion

$$\stackrel{O}{F}_{SH} = \sum_{m=0}^{\infty} x_{e(mT_z)} \cdot \left(e^{-pmT_z} - e^{-p(m+1)T_z} \right)$$

und schließlich

$$\mathbf{\hat{F}}_{SH} = \left(1 - \mathbf{e}^{-\mathbf{pT}_{z}}\right) \cdot \sum_{m=0}^{\infty} \mathbf{x}_{\mathbf{e}_{(mT_{z})}} \cdot \mathbf{e}^{-\mathbf{pmT}_{z}}$$
(5.65)

Die Funktion $F_{\rm H}^{\rm PT}$ = 1 - e^{-pT}z aus der Gleichung (5.65) ist nun ein Impuls der "Breite" T_z, wie er sich aus der Korrespondenz Nr. 2, Tabelle 2.3 sofort ergibt; also im Zeitbereich:

$$f_{H} = \delta_{O} - \delta_{O}(t - T_{z})$$

Vergleicht man $f_{H(t)}$ mit der Gleichung (5.64), fällt auf, daß zur Nachbildung der Treppenfunktion $f_{SH(t)}$ nur noch die Gewichtung der einzelnen Impulse $f_{H(t)}$ fehlt.

Genau diese Gewichtung $x_{e_{(mT)}}$ bildet die Funktion

$${}^{O}_{F_{S}} = \sum_{m=0}^{\infty} x_{e(mT_{r})} \cdot e^{-pmT_{z}}$$

im Bildbereich nach. Die Realisierung von $\overset{O}{F}_{S}$ ist demnach ein Taster, der jeweils nach der Zeit T_{z} den Augenblickswert $x_{e_{(mT_{z})}}$ der ursprünglichen Originalfunktion $f_{(t)}$ abspeichert.

Nun läßt sich das Blockschaltbild einer Abtastregelung wie in Bild 5.49 darstellen. Hier entspricht die Eingangsgröße des Sample-Hold-Gliedes der Regeldifferenz x_d.

Bild 5.49 Allgemeine Darstellung des Blockschaltbildes einer Abtastregelung mit dem Frequenzgang des Sample-Hold-Gliedes

Setzt man für einen Abtastregler Mikrorechner /44/, /45/, /46/ oder Prozeßrechner /47/, /48/ ein, wird die Regeldifferenz und der Regelalgorithmus vom Rechner nachgebildet (Bild 5.50). Über einen Multiplexer (MUX), das Sample-Hold-Glied und den Analog-Digital-Wandler gelangen die Meßwerte (hier nur x) sequentiell in den Rechner. Dort erfolgt, von den Ein/Ausgabeeinheiten (E/A) gesteuert, die Nachbildung und Speicherung der Stellgröße \overline{y} . Die errechneten Werte der Stellgröße werden dann über den Digital-Analog-Wandler und Multiplexer an die Regelstrecke ausgegeben.

Für einen PI-Regler mit

$$y = V_R(x_d + \frac{1}{T_N} \int_0^t x_d \cdot dt)$$

ist ein möglicher Algorithmus

$$\overline{\mathbf{y}} = \mathbf{V}_{\mathbf{R}} \left[\mathbf{x}_{d(\mathbf{m}\mathbf{T}_{z})} + \frac{\mathbf{T}_{z}}{\mathbf{T}_{N}} \sum_{\mathbf{v}=\mathbf{o}}^{m} \mathbf{x}_{d(\mathbf{v}\mathbf{T}_{z})} \right].$$
(5.66)

Bild 5.50 Abtastregelkreis bei Verwendung eines Mikrorechners zur Nachbildung des Regler-Algorithmus und der Regeldifferenz

Der Einsatz von Mikrorechnern innerhalb einer Abtastregelung hat folgende Vorteile:

- Die Parameter des Reglers sind durch ein Programm und nicht durch gerätetechnische Anordnungen festgelegt. Ein Programm läßt sich kostengünstiger ändern und braucht erst bei Inbetriebnahme der Regelung eingegeben werden.
- Störgrößenaufschaltungen und mathematische Operationen (z.B. Nachbildung einer nichtlinearen Funktion) sind mittels Unterprogramm problemlos durchführbar.
- Parameteränderungen erfordern keinen kostenintensiven Eingriff in die Schaltung (Umverdrahten), sondern lediglich eine Programmänderung.
- Die Langzeitspeicherung von Daten ist infolge der digitalen Struktur der Regelung völlig problemlos.
- 5. Service und Fehlerdiagnose lassen sich mit geeigneten Datenschnittstellen und Programmiergeräten leicht durchführen.

Bezüglich der Stabilitätsbetrachtung einer Abtastregelung sind folgende Fakten von Bedeutung:

- 1. Die Zykluszeit T_M des Multiplexers, also der Zeitraum zwischen zwei Übernahmen der physikalischen Größen, muß sehr viel kleiner sein, als die kleinste Regelstreckenzeitkonstante.
- 2. Die Abtastzeit T_z muß ebenfalls sehr viel kleiner sein als die kleinste Streckenzeitkonstante. Als Faustregel gilt /55/, daß T_z $\stackrel{\leq}{=}$ 1/8 ω_e sein sollte (ω_e : Regelkreiseigenfrequenz).
- 3. Die Umsetzzeiten der Analog-Digital- und Digital-Analog-Wandler sollen vernachlässigbar klein sein. Andernfalls sind sie als Totzeiten zu berücksichtigen. Die digitale Abbildung der Analogwerte sollte um den Faktor 10 größer sein, als der kleinste Wert der Regelgröße (z.B. Positionsregelung von x = [1 mm ... 10 mm], dann entspricht 1 bit = 0,1 mm).
- 4. Der Regelalgorithmus muß eine ausreichend genaue Approximation des tatsächlichen Zeitverhaltens eines Reglers darstellen. Die erforderliche Rechenzeit darf nicht die Größenordnung der kleinsten Streckenkonstante annehmen.

Die meisten der genannten Forderungen sind bei Regelungen der Verfahrenstechnik kein Problem. In der Antriebstechnik, wo die Abtastperioden oft im ms-Bereich liegen, können jedoch bei der Realisierung digitaler Regelungen Schwierigkeiten auftreten.

Stabilität von Abtastregelkreisen

Die Frage nach der Stabilität einer Regelung ist bekanntlich von zentraler Bedeutung. Bei einem Abtastregelkreis sind die bisher behandelten Stabilitätskriterien nur anwendbar, wenn es gelingt, das Sample-Hold-Verhalten in die Stabilitätsaussage mit einzubeziehen. Dies geschieht meist unter Anwendung der z-Transformation /9/. Diese Thematik sprengt jedoch den Rahmen eines "Praxis-Buches". Es sollte genügen, auf entsprechende Bücher von J.Ackermann /53/ und O.Föllinger /44/ hinzuweisen, die ausführlich auf die mathematische Behandlung von Abtastsystemen eingehen.

Trotzdem läßt sich unter bestimmten Voraussetzungen eine vereinfachte Stabilitätsuntersuchung durchführen.

Die Bildfunktion des Haltegliedes

$$\overset{O}{F}_{H} = 1 - e^{-pT}z$$

kann für ein Verhältnis von $T_F^{T_z} > 6$ auf die Form

$$\overset{o}{F_{H}} \overset{-p}{\approx} \overset{T_{Z}}{\underset{e}{2}}$$
(5.67)

reduziert werden. Dabei stellt T_F die Periodendauer der Grundschwingung der abgetasteten Funktion dar. Auf diese Weise können Abtastregelungen als quasi kontinuierliche Regelungen behandelt werden.

Beispiel

Es soll für eine Abtastregelung mit PI-Regelalgorithmus und PT_1-T_t -Strekke (Bild 5.51) die Reglerverstärkung V_R nach dem vereinfachten Nyquist-Kriterium gesucht; also:

$$\begin{split} & \overset{O}{\mathbf{F}}_{\mathrm{R}} = \mathbf{V}_{\mathrm{R}} \cdot \frac{1 + \mathbf{p} \mathbf{T}_{\mathrm{N}}}{\mathbf{p} \mathbf{T}_{\mathrm{N}}} , \\ & \overset{O}{\mathbf{F}}_{\mathrm{S}} = \mathbf{V}_{\mathrm{S}} \frac{\mathbf{e}^{-\mathbf{p} \mathbf{T}_{\mathrm{t}}}}{1 + \mathbf{p} \mathbf{T}_{\mathrm{1}}} , \end{split}$$

und mit Gleichung (5.67) für $T_F^{T_7} > 6$

Daraus erhält man den komplexen Frequenzgang des offenen Regelkreises.

$$\underline{\mathbf{F}}_{\mathbf{O}} = -\underline{\mathbf{F}}_{\mathbf{R}} \cdot \underline{\mathbf{F}}_{\mathbf{S}} \cdot \underline{\mathbf{F}}_{\mathbf{H}} \; \mathcal{H} \; \frac{\mathbf{v}_{\mathbf{O}}(\mathbf{j} - \omega \mathbf{T}_{\mathbf{N}}) (1 - \mathbf{j}\omega \mathbf{T}_{1})}{\omega \mathbf{T}_{\mathbf{N}} \cdot (1 + \omega^{2} \mathbf{T}_{1}^{2})} \cdot \mathbf{e}^{-\mathbf{j}\omega \cdot (\mathbf{T}_{t} + \mathbf{T}_{z}/2)}$$

Wählt man

$$T_N = T_1$$
 und $T_z = \frac{T_t}{2}$, (5.68)

vereinfacht sich \underline{F}_{0} . Es gilt nun:

$$\frac{\mathbf{F}_{o}}{\mathbf{w}} \approx \frac{\mathbf{V}_{o}}{\mathbf{w}^{T}_{1}} \cdot (\sin \mathbf{w} \mathbf{T}^{*} + \mathbf{j} \cos \mathbf{w} \mathbf{T}^{*}),$$
mit $\mathbf{T}^{*} = \frac{5\mathbf{T}_{z}}{2}.$

Aus dem Gleichungssatz (5.17) läßt sich die Stabilität dieser Abtastregelung bestimmen.

 $\operatorname{Im} \underline{F}_{O} \stackrel{!}{=} O \longrightarrow \omega_{z}$,

also

$$D \mathcal{H} \cos \omega_z T^* = \cos (\omega_z \frac{5T_z}{2}) ,$$

daraus folgt

$$\omega_z \approx \frac{\pi}{5T_z}$$
.

Der Regelkreis ist stabil, wenn

$$\operatorname{Re}\left[\underline{F}_{O}(\omega_{z})\right] \stackrel{!}{<} 1 ,$$
$$\operatorname{Re}\left[\underline{F}_{O}(\omega_{z})\right] = \frac{V_{O} \cdot 5 \cdot T_{z}}{\pi \cdot T_{1}} \stackrel{!}{<} 1$$

Mit dieser Stabilitätsbedingung läßt sich eine Ungleichung für die Reglerverstärkung angeben; sie lautet:

$$V_{R} \stackrel{!}{\leq} \frac{\pi T_{1}}{5 \cdot V_{S} \cdot T_{z}}$$
 (5.69)

.

Desweiteren ergibt sich die Phasenreserve $\boldsymbol{\alpha}_{\mbox{R}}$ aus dem Frequenzgangbetrag. Es wird mit

$$|\underline{\mathbf{F}}_{\mathbf{O}}| \stackrel{\underline{\mathbf{I}}}{=} 1 \, \operatorname{fr}_{\mathbf{W}} \frac{\mathbf{V}_{\mathbf{O}}}{\omega_{\mathbf{D}}^{\mathrm{T}} \mathbf{1}} ,$$
$$\underset{\mathbf{D}}{}^{\omega_{\mathbf{D}}} \operatorname{fr}_{\mathbf{W}} \frac{\mathbf{V}_{\mathbf{O}}}{\mathbf{T}_{\mathbf{1}}} ,$$

und damit

$$\begin{split} & \alpha_{\rm R} \; \vartheta \; \arctan \; \frac{\cos \omega_{\rm D} T^*}{\sin \omega_{\rm D} T^*} \; \stackrel{!}{>} \; 0 \; , \\ & \widehat{\alpha}_{\rm R} \; \vartheta \; \frac{\pi}{2} \; - \; \frac{5 \cdot V_{\rm O} \cdot T_{\rm Z}}{2 \cdot T_{\rm I}} \; \stackrel{!}{>} \; 0 \; . \end{split}$$

Soll $\alpha_{\rm R}^{}$ = 60 $^{\rm O}$ = $\pi/3$ betragen, erhält man eine einschränkendere Gleichung für die Reglerverstärkung.

$$\frac{\pi}{3} \approx \frac{\pi}{2} - \frac{5 \cdot V_0 \cdot T_z}{2 \cdot T_1} ,$$

$$V_R \approx \frac{\pi T_1}{15 \cdot T_z} . \qquad (5.70)$$

also

Die Gleichungen (5.68) und (5.70) sind damit zur Bestimmung der Parameter des PI-Regelalgorithmus näherungsweise geeignet.

Die Simulation dieser Abtastregelung mit Operationsverstärkern ist in Bild 5.52 dargestellt. Das Totzeitglied wird hier durch einen Allpaß zweiter Ordnung nachgebildet /54/; dessen Frequenzgang lautet:

$$\overset{O}{F}_{S} = V_{p} \overset{PT}{e} \overset{T}{e} & \mathcal{H} \quad V_{p} \left[\frac{1 - p \cdot \frac{T_{t}}{4}}{1 + p \cdot \frac{T_{t}}{4}} \right]$$

mit $T_t = R_1C$; $V_p = R_5/R_4$ und $R_3 = R_4/4$.

Für folgende Parameter ist das Führungsverhalten ermittelt worden.

$$V_{R} = 4$$
 $T_{N} = T_{1} = 0.1s$
 $V_{S1} = V_{S2} = 1$ $T_{t} = 2T_{z} = 0.004s$

Es ist darauf zu achten, daß der Impuls, mit dem nach der Zeit ${\rm T_Z}$ jeweils die Regelgröße übernommen wird, auf den Speicherkondensator C_1 optimiert ist.

Da große Kapazitäten von C₁ nicht sinnvoll sind, weil sie ein zusätzliches PT_1 -Verhalten in die Regelung bringen, wurde hier der Wert auf 0,1 µF festgelegt.

Mit $T_z = 2$ ms erhält man eine Durchtrittsfrequenz von $\omega_D \approx V_o/T_1 \approx 40$ Hz. Steigt die Abtastzeit an, wird sich die Stellgröße erhöhen, da der Iswert x nicht mehr genügend genau nachgebildet wird. Die Folge ist schließlich, daß der Istwert an die Stellgrenze geht, da $x_d = w - x$ nicht mehr erreicht werden kann. Es muß daher die Abtastzeit immer wesentlich kleiner sein als die kleinste Regelkreiszeitkonstante (siehe Abschnitt 5.6.4).

6. Ausgewählte Beispiele der praktischen Regeltechnik

In den zuvor behandelten Abschnitten wurden die grundlegenden Voraussetzungen zur Behandlung regelungstechnischer Probleme geschaffen. Hier nun sollen die gewonnenen Erkenntnisse anhand ausgewählter Beispiele industrieller Regelungen angewendet werden.

6.1 Kontinuierliche Regelungen

6.1.1 Temperaturregelungen

Zunächst soll die Temperaturregelung eines gastbeheizten Glühofens betrachtet werden (Bild 6.1). Die Beeinflussung der Temperatur erfolgt im einfachsten Fall über einen Stellantrieb, der den Gasstrom Q steuert. Der zugehörige Motor hat bekanntlich PT₁-Verhalten, während das I-Verhalten der Ventilspindel vernachlässigt werden soll. Die Parameter dieser Regelstrecke sind dann:

$${}^{O}_{F_{S1}} = \frac{O}{O}_{V_{S1}} = \frac{V_{S1}}{1 + pT_{1}}$$
 z.B. $V_{S1} = 0,2 \frac{m^{3}}{V \cdot min}$
 $T_{1} = 0,1s.$

Zwischen Brenner und zu erhitzendem Gut erfolgt die Wärmeübertragung hauptsächlich durch Strahlung. Mit guter Näherung läßt sich für diese Art des Heizens PT₁-Verhalten ansetzen. Eine ausführliche Betrachtung dieses Sachverhalts bringt W. Oppelt /16/ in seinem Buch "Kleines Handbuch technischer Regelvorgänge" auf den Seiten 184 – 187. Infolge der Entfernung zwischen Brenner und Gut ergibt sich zusätzlich eine Totzeit. Die Regelstrecke "Glühofen" hat daher den Frequenzgang:

Bild 6.1 Schema einer Temperaturregelung für einen gasbeheizten Glühofen

Die Meßwerterfassung der Temperatur soll über Heißleiter und Meßbrücke erfolgen (siehe Tabelle 4.10). Der Meßfühler ist ein PT₁-Glied. Bezieht sich die Temperaturregelung auf die Ofentemperatur, kommt es zu keiner Totzeit der Messung. Der Frequenzgang des Meßumformers ist daher:

$$\overset{O}{F}_{S3} = \frac{\overset{O}{v}_{i}}{\overset{O}{v}_{i}} = \frac{\overset{V}{v}_{S3}}{1 + pT_{3}} \qquad z.B. \quad v_{S3} = \frac{10 \text{ v}}{10^{3} \text{ k}}$$

$$T_{3} = 2s.$$

Das zugehörige Blockschaltbild bei Verwendung eines PI-Reglers zeigt Bild 6.2. Ist man bestrebt, die Reglerparameter zu bestimmen, empfiehlt sich die näherungsweise Zusammenfassung der kleinen Zeitkonstante (hier ist $T_2 >> T_1$, T_3 , T_t).

Bild 6.2 Blockschaltbild zur Temperaturregelung eines gasbeheizten Glühofens

-nT

Aus

$$F_{o} = \frac{V_{o} \cdot (1 + pT_{N}) \cdot e^{pT_{t}}}{(1 + pT_{1})(1 + pT_{2})(1 + pT_{3}) \cdot pT_{N}} ,$$

wird bei kleinen Werten von pT_t bzw. ω_DT_t

$$e^{-pT}t \approx \frac{1}{1+pT_{+}}$$

und damit $T_K = T_1 + T_3 + T_t = 12,1s$ (siehe Abschnitt 5.6.2).

Der Ersatzfrequenzgang lautet nun

$$\overset{O}{F}_{O} \approx \frac{V_{O} \cdot (1 + pT_{N})}{pT_{N}(1 + pT_{2})(1 + pT_{K})}$$

Es bietet sich eine weitere sinnvolle Vereinfachung an, wenn man

$$T_N = T_2$$

wählt. Also bleibt

$${}^{O}_{F_{O}} \approx {}^{V_{O}}_{pT_{2}} \cdot (1 + pT_{K})$$
 .

Für einen Phasenrand von $\alpha_{p} = 60^{\circ}$ erhält man den Phasenwinkel

,

$$\varphi_{o(\omega_{D})} = -120^{\circ} \approx - \arctan \omega_{D} T_{K} - 90^{\circ}$$

oder

-
$$\arctan \omega_D T_K \approx -30^\circ = - \arctan \frac{1}{\sqrt{3}}$$

Es ergibt sich so eine optimale Durchtrittsfrequenz von

$$\omega_{\rm D} \approx \frac{1}{{\rm T}_{\rm K}\cdot\sqrt{3}} \approx 0.048 ~{\rm Hz}$$
.

Mit $\left|\frac{\mathbf{F}}{\mathbf{P}_{O}}\right| = 1$ bei ω_{D} läßt sich eine Gleichung für die Reglerverstärkung angeben.

$$\left|\underline{\mathbf{F}}_{\mathbf{O}}\right| \stackrel{!}{=} 1 \approx \frac{\mathbf{V}_{\mathbf{O}}}{\boldsymbol{\omega}_{\mathbf{D}}\mathbf{T}_{2} \sqrt{1 + \boldsymbol{\omega}_{\mathbf{D}}^{2}\mathbf{T}_{K}^{2}}},$$

setzt man in diese Gleichung ω_{D} ein, wird

$$\mathbf{V}_{\mathbf{R}} \; \stackrel{?}{\approx}\; \frac{2 \cdot \mathbf{T}_{2}}{\mathbf{3} \cdot \mathbf{V}_{\mathbf{S}1} \cdot \mathbf{V}_{\mathbf{S}2} \cdot \mathbf{V}_{\mathbf{S}3} \cdot \mathbf{T}_{\mathbf{K}}} \; \stackrel{?}{\approx}\; \mathbf{8,3} \; .$$

Ein zweites Beispiel zum Thema Temperaturregelung ist die witterungsabhängige Raumtemperatur-Regelung mittels Ölbrenner und Heizkessen (Bild 6.3). Grundsätzlich ist dem Raumtemperatur-Regelkreis der der Vorlauftemperatur zu unterlagern. Auf diese Weise wird die Einschaltdauer des Brenners verkürzt und eine eventuelle Kesselüberhitzung vermieden. Daher muß die Stellgröße y am Ausgang des Kesseltemperatur-Reglers mit einem Temperaturwächter (TW) begrenzt werden /49/. Es handelt sich somit um eine Kaskadenregelung, deren

innerer Vorlauftemperatur-Regelkreis von der Raumtemperaturabweichung und der Außentemperatur beeinflußt wird (Bild 6.4). Die hier gewählte Variante steuert über einen Zweipunktregler direkt den Brenner an, während für die Anpassung des Heizsystems an das subjektive Empfinden des Benutzers die Steilheit der Heizkurven und die Mischerstellung verändert werden können. Der Sollwert der Vor-

lauftemperatur ϑv_s ist von der Außemtemperatur abhängig. Beide sind über die Heizkurven (Bild 6.5) miteinander verknüpft. Desweiteren wird ϑv_s durch die übergeordnete Raumtemperatur-Regelung beeinflußt. Aus dem Blockschaltbild der gesamten Regelung ist zu entnehmen, daß die Regelstrecken höherer Ordnung sind. Es ist daher sinnvoll, die Strecken- und Meßfühlerparameter empirisch zu ermitteln. In einer vom Bundesministerium für Forschung und Technologie geförderten Arbeit, gibt H.O. Arend /21/ dazu einige Hinweise.

Bild 6.5 Verschiedene Heizkurven, die die Abhängigkeit der Vorlauftemperatur von der Außentemperatur widergeben

Der Frequenzgang der Meßfühler ist angeben mit:

$${}^{\circ}_{F_{1}} = {}^{\circ}_{F_{3}} = {}^{\circ}_{F_{5}} = \frac{V_{S1}}{(1 + pT_{1})^{2}}$$
 $V_{S1} = V_{S3} = V_{S5} = 1$
 $T_{1} = T_{3} = T_{5} = 3,61s.$

Die Bildfunktion der Strecke aus Mischer und Vorlaufkreis lautet:

$$P_{2}^{P} = \frac{V_{S2}}{(1 + pT_{2})^{7}}$$
 $V_{S2} = 3,6$
 $T_{2} = 6,12s$

Das Propotionalglied V_{HK} ist ein Abbild der Heizkurve und ergibt sich aus ihrer Steilheit $\Delta \vartheta_v / \Delta \vartheta_A$ und dem gewählten Arbeitspunkt A der Regelung.

$$\mathbf{v}_{\mathrm{HK}} = \frac{\Delta \vartheta_{\mathbf{v}}}{\Delta \vartheta_{\mathbf{A}}} \left(\frac{\mathbf{A}_{\mathbf{p}}}{512^{\circ} \mathrm{C}} - 0, 1 \right)$$

Der Arbeitspunkt bei dem $V_{\rm HK}$ = 0 ist, beträgt A_p = 51,2^o. Er wird auf $\vartheta_{\rm A}$ = + 20^oC bezogen.

Mit diesem Parameter ergibt sich der in Bild 6.6 gezeigte Verlauf der Temperaturen $\vartheta_{_{
m K}}$, $\vartheta_{_{
m V}}$ und $\vartheta_{_{
m R}}$ als Funktion der Zeit.

Weiterführende Literatur ist besonders in /96/ enthalten.

6.1.2 Stoffgemischregelungen

Die Mischung von Stoffströmen in einem bestimmten Verhältnis zueinander oder einer bestimmten Konzentration ist über die Beeinflussung der Durchflüsse möglich. Soll der Mischungsvorgang kontinuierlich verlaufen, ist eine Regelung unumgänglich. Im einfachsten Falle besteht eine Mischungsregelung aus einem Kessel mit Rührwerk und zwei Zuflüssen (Bild 6.7). Damit läßt sich eine einfache Konzentrationsregelung aufbauen.

Bild 6.7 Schema einer Stoffgemischregelung mit Kessel und Rührwerk zur Beeinflussung der Flüssigkeits-Konzentration c

Setzt man voraus, daß der Zufluß Q_2 konstant ist und daß

 $Q_1 + Q_2 = Q_3$

sei, erhält man für die Änderung der Konzentration c_{1(t)} und c_{3(t)} am Ausgang des Kessels die Bildgleichung:

 $Q_1 \cdot \overset{\circ}{c}_1 + Q_2 \cdot c_2 - Q_3 \cdot \overset{\circ}{c}_3 = pV\overset{\circ}{c}_3$.

Differenziert man diese Gleichung nach der Zeit, ergibt sich der Frequenzgang dieser Regelstrecke.

Es wird

$$pQ_1c_1 - pQ_3c_3 = p^2 vc_3$$
,

und schließlich

$${}_{F_{S1}}^{O} = \frac{{}_{C_{3}}^{O}}{{}_{C_{1}}^{O}} = \frac{{}_{V_{S1}}^{V}}{1 + {}_{P}T_{1}}$$

mit

$$V_{S1} = \frac{Q_1}{Q_3}$$
; $T_1 = \frac{V}{Q_3}$.

Die Meßwerterfassung der zu regelnden Konzentration c₃ ist meist in einiger Entfernung vom eigentlichen Mischvorgang angebracht. Daraus resultiert eine Totzeit, die von der Entfernung l und der Fließgeschwindigkeit v abhängt.

,

mit

Außerdem entsteht näherungsweise ein PT₁-Verhalten durch den Meßfühler,also

$${}^{O}_{F_{S3}} = \frac{V_{s3}}{1 + pT_3}$$
,
 $V_{S3} = \frac{U_{st}}{c}$.

mit

Die Stellgröße y am Ausgang des PI-Reglers wirkt auf einen Stellantrieb, der den Durchfluß Q₁ steuert. Näherungsweise erhält man für den Stellantrieb den Frequenzgang

mit

$$V_{S4} = \frac{1}{U_{ci}}$$
.

Das Blockschaltbild der Regelung (Bild 6.8) führt auf den Frequenzgang des offenen Regelkreises. Er lautet:

,

Bild 6.8 Blockschaltbild der Mischungsregelung aus Bild 6.7

Für die Verstärkungen und Zeitkonstanten seien folgende Werte angenommen:

Mit V = 1 m³, $Q_1 = 6 1/s$, $Q_2 = 2 1/s$, $Q_3 = 8 1/s$, v = 0,6 $\frac{m}{s}$ und 1 = 1 m wird:

$$V_{S1} = \frac{6}{8} \frac{1/s}{1/s} = 0,75 \qquad T_1 = \frac{1}{8} \frac{m^3}{1/s} = 125 \text{ s} ,$$

$$V_{S3} = \frac{0,1}{M01./1} \qquad T_3 = 2 \text{ s} ,$$

$$V_{S4} = \frac{10 \text{ M01}./1}{V} \qquad T_4 = 1 \text{ s} ,$$

$$T_t = \frac{1}{0,6} \frac{m}{1/s} = 1,67 \text{ s} .$$

Nun läßt sich der Frequenzgang vereinfachen. Mit $T_1 >> T_3$, T_4 , T_t folgt $\omega_D T_1 >> und \omega_D T_t << 1$

$$e^{pT_{1} \approx 1 + pT_{1}},$$

$$e^{-pT_{t}} \approx \frac{1}{1 + pT_{t}}$$

so daß

$$\stackrel{O}{F}_{O} \approx V_{O} \frac{1 + pT_{N}}{pT_{1}T_{N} \cdot (1 + pT_{K})}$$

mit $T_K = T_3 + T_4 + T_t = 4,67 s.$

Auf diese Weise ist der Frequenzgang mit der Gleichung (5.38) des symmetrischen Optimums identisch. Man erhält dann für

$$T_N = T_1$$

eine Durchtrittsfrequenz von

$$\omega_{\rm D} \approx \frac{1}{\sqrt{{\rm T}_1 {\rm T}_{\rm K}}} = 0,041 \ {\rm Hz}$$

und kann für die Reglerverstärkung angeben:

$$V_R \approx \frac{T_1}{V_{S1} \cdot V_{S3} \cdot V_{S4} \sqrt{T_1 T_K}} = 6,9$$
.

Damit ist die Konzentrationsregelung dimensioniert.

Oft ist es erforderlich, bei einem Stoffgemisch mehr als eine Regelgröße zu beeinflussen. Man bezeichnet solche Regelungen als Mehrgrößen- oder Mehrfachregelungen. Ist beispielsweise der Durchfluß Q und die Temperatur ϑ einer Mischung zu regeln, erhält man eine Zweigrößenregelung, bei denen die Übertragungsfunktionen miteinander gekoppelt sind (Bild 6.9).

Bild 6.9 Zweigrößen-Mischungsregelung zur Beeinflussung des Durchflusses Q und der Temperatur ∂einer Flüssigkeit

Wenn $\vartheta_1 < \vartheta_2$ ist, kann die Temperatur des Gemisches im Bereich $\vartheta_3 = [\vartheta_1, \vartheta_2]$ geregelt werden. Dabei ist gleichzeitig der zu regelnde Durchfluß $Q_3 = Q_1 + Q_2$. Ventilverstellungen wirken sich erst nach den Totzeiten T_{t1} und T_{t2} an den Meßstellen für ϑ_1 und Q_1 aus. Der Mischungsvorgang kann durch das PT_1 -Verhalten genähert werden (T_1 und T_3). Die Meßwerterfassung habe ebenfalls PT_1 -Verhalten (T_2 und T_4).

Insgesamt ergeben sich so die Beziehungen

$$\begin{split} & \vartheta = v_{S11} \frac{e^{-pT}t_1}{(1+pT_1)(1+pT_2)} \overset{o}{y}_{\vartheta} + v_{S12} \frac{e^{-pT}t_2}{(1+pT_3)(1+pT_4)} \overset{o}{y}_{\varrho} , \\ & \vartheta = -v_{S21} \frac{1}{1+pT_2} \overset{o}{y}_{\vartheta} + v_{S22} \frac{1}{1+pT_4} \overset{o}{y}_{\varrho} , \\ & \frac{\vartheta}{y}_{\vartheta} = \overset{o}{F}_{S11} ; \frac{\vartheta}{y}_{\varrho} = \overset{o}{F}_{S12} ; \frac{\vartheta}{y}_{\vartheta} = \overset{o}{F}_{S21} ; \frac{\vartheta}{y}_{\varrho} = \overset{o}{F}_{S22} . \end{split}$$

mit.

Aus Bild 6.10 läßt sich die Regelstrecken-Kopplung erkennen. Diese ist wegen ihrer physikalischen Verknüpfung nicht auflösbar. Um wieder auf zwei einzelne entkoppelte Regelkreise für die Regelgröße ϑ und Q zu kommen, ist der Strecke ein ebenso vermaschtes System aus Hauptregeln (hier F_{R11} , F_{R22}) und Korrekturreglern (hier F_{R12} , F_{R21}) vorzuschalten /50/, /51/, wie dies Bild 6.11a zeigt.

Mit Hilfe der Matrizenrechnung gelangt man zu einem Satz von Gleichungen, der die Entkopplung einer Zweifachregelung beschreibt /52/.

Es wird

.

mit

Für F_S^0 erhält man bei dieser Regelung mit der zulässigen Annahme, daß $T_{t1} = T_{t2}$ ist:

und dann für p = 0

Die Regelstrecken der Mischungsregelung lassen sich teilweise vereinfachen. Da in der Verfahrenstechnik die Durchtrittsfrequenzen meist $\omega_{\rm D}$ < 1 Hz sind, ist es zulässig zu schreiben:

$$\int_{F}^{O} S_{11} \approx \frac{V_{S11}}{pT_{1} \cdot (1 + pT_{K1})} ,$$
 (6.3)

mit $T_1 >> T_2$, T_{t1} und $T_{K1} = T_2 + T_{t1}$,

$$\sum_{F}^{O} S_{12} \approx \frac{V_{S12}}{pT_3 \cdot (1 + pT_{K2})}$$
 (6.4)

mit $T_3 >> T_4$, T_{t2} und $T_{K2} = T_4 + T_{t2}$.

Die restlichen zwei Frequenzgänge bleiben unverändert und lauten:

Wählt man nun für die Korrekturfrequenzgänge ${\rm F}_{\rm K1}$ und ${\rm F}_{\rm K2}$ PI-Verhalten, ergeben sich folgende Beziehungen für die Haupt- und Korrekturregler.

Also

$$\overset{O}{F}_{K1} = V_{K1} \cdot \frac{1 + pT_{N1}}{pT_{N1}} , \quad \overset{O}{F}_{K2} = V_{K2} \cdot \frac{1 + pT_{N2}}{pT_{N2}} .$$
 (6.5)

Setzt man die vereinfachten Strecken-Frequenzgänge Gleichung (6.3) und (6.4) in den Gleichungssatz (6.1) ein, folgt für die Korrekturregler

Es ist sofort zu erkennen, daß für die Nachstellzeit des Reglers gelten muß

$$T_{N2} = T_{K2}$$
 (6.6)

Somit ergibt sich endgültig der PI-Korrekturregler

$$\stackrel{O}{F}_{R12} \approx \frac{\underline{v}_{K2} \cdot \underline{v}_{p} \cdot \underline{v}_{S12} \cdot \underline{T}_{1}}{\underline{v}_{S11} \cdot \underline{T}_{K2}} \cdot \frac{1 + \underline{p}_{K1}}{\underline{p}_{3}} \cdot (6.7)$$

Genau so für

$$\overset{O}{F}_{R21} \approx \frac{ \overset{V}{V}_{K1} \cdot \overset{V}{V}_{S21} \cdot (1 + \text{pT}_4) \cdot (1 + \text{pT}_{N1}) \cdot \overset{V}{V}_{p} }{ \overset{V}{V}_{S22} \cdot (1 + \text{pT}_2) \cdot \text{pT}_{N1} }$$

Mit

$$T_{N1} = T_2$$
 (6.8)

folgt für den zweiten PI-Korrekturregler

$$\stackrel{O}{}_{\text{R21}} \approx \frac{\underline{V}_{\text{K1}} \cdot \underline{V}_{\text{p}} \cdot \underline{V}_{\text{S21}}}{\underline{V}_{\text{S22}}} \cdot \frac{1 + \underline{p}_{\text{T}_4}}{\underline{p}_2} \quad . \tag{6.9}$$

Die Hauptregler erhält man nun sofort aus dem Gleichungssatz (6.1) mit den in Gleichung (6.6) und (6.8) angesetzten Dimensionierungen.

$$\stackrel{O}{F}_{R11} \approx V_{K1} \cdot V_{p} \cdot \frac{1 + pT_{2}}{pT_{2}}$$
(6.10)

und

$$\overset{\mathsf{O}}{}_{\mathrm{R22}} \approx \mathsf{V}_{\mathrm{K2}} \cdot \mathsf{V}_{\mathrm{p}} \cdot \frac{1 + \mathsf{pT}_{\mathrm{K2}}}{\mathsf{pT}_{\mathrm{K2}}} .$$
 (6.11)

Die Verstärkungen $\rm V_{K1}$ und $\rm V_{K2}$ sind nach der gewünschten Phasenreserve $\alpha_{\rm R}$ zu wählen.

Damit ist die Entkopplung abgeschlossen (Bild 6.11b) und die beiden Einzelregelkreise können nach den bekannten Verfahren auf Stabilität untersucht werden.

6.1.3 Zweipunktregelungen

Bei einem stetigen Regler wird das stationäre Übertragungsverhalten durch die Verstärkung bestimmt ($y = V_R \cdot x_d$). Diese Beziehung ist linear. Ein Zweipunktregler hingegen besitzt in der einfachsten Form (ohne Hysterese) eine Sprungstelle bei $x_d = 0$, so daß

$$y = - \begin{vmatrix} 0 & \text{für } x_d < 0 \\ y_{\text{max}} & \text{für } x_d \stackrel{\geq}{=} 0 \end{vmatrix}$$

Dieses unstetige Verhalten ist typisch für Relais, Bimetallschalter, Endschalter, Schalttransistoren usw. Einfache Regelungen dieser Art findet man bei Kühlschränken, Automatikherdplatten, Durchlauferhitzern und Bügeleisen zur Beeinflussung der Temperatur. Aber auch bei komplexeren Systemen, wie z.B. der Kesseltemperatur-Regelung einer Heizung, wird der Zweipunktregler eingesetzt.

Die Unstetigkeit einer Zweipunktregelung zeigt sich immer in einer periodischen Schwankung des Istwertes um den Sollwert. Eine einfache Regelung ist in Bild 6.12 dargestellt. Sie dient zur Niveau-Regelung eines Elektrolyts. Der Zweipunktregler ist mit einem Operationsverstärker realisiert, in dessen Gegenkopplung eine Diode liegt. Die Stellgröße nimmt die Werte $y = [U_D & 0,7V; U_{max} & 30V]$ an. Der OP-Ausgang steuert ein Magnetventil, welches den Flüssigkeitszustrom regelt. Es öffnet bei $h_s > h_i$ und schließt bei $h_s < h_i$. Die Regelstrecke läßt sich annähernd als PT_1-T_t -Strecke angeben. Daraus resultiert das in Bild 6.13 gezeigte Blockschaltbild.

Bild 6.12 Niveau-Regelung eines Elektrolyts mit einem einfachen Zweipunktregler

Bild 6.13 Blockschaltbild der Zweipunktregelung zur Führung des Elektrolyt-Niveaus

Die Sprungantwort dieser Regelung (Bild 6.14) läßt sich sofort aus der Anschauung erklären. Bei sprunghafter Vorgabe eines Sollwertes wird w > x, so daß y = y_{max} zum öffnen des Magnetventils führt. Erst nach Ablauf der Totzeit T_t steigt dann das Niveau des Elektrolyten (x = hi) mit der Zeitkonstanten T_1 an. Der Endwert des Niveaus x_E wird jedoch nicht angestrebt, da beim Ereichen von x = w der Zweipunktregler infolge y & O das Magnetventil schließt. Diese Stellgrößenänderung wirkt sich aber erst nach der Totzeit T_t auf den Niveauistwert x aus, so daß zeitweise x > w vorliegt. Nun nimmt x zwangsläufig ab (Magnetventil geschlossen, Abfluß geöffnet). Bei erneutem Erreichen von x = w öffnet der Zweipunktregler das Magnetventil wieder. Eine Niveauzunahme macht sich auch hier erst nach T_t bemerkbar.

Es ist erkennbar, daß die Schwankungsbreite $2x_0$, innerhalb derer der Istwert um den Sollwert "pendelt", von der Totzeit und der Zeitkonstanten T₁ abhängt. Dieser Zusammenhang läßt sich leicht ableiten.

Bild 6.14 Sprungantwort und Stellgröße einer einfachen Zweipunktregelung nach Bild 6.13

Mit

 $x_E = y_{max} \cdot V_S$

erhält man für t = T_t die Werte

$$x_1 = w + (x_E - w) \cdot (1 - e^{-T_t/T_1})$$

 $x_2 = w \cdot e^{-T_t/T_1}$.

Substrahiert man x_2 von x_1 , ergibt sich die Schwankungsbreite

$$2 \cdot x_{o} = x_{E} \cdot (1 - e^{-T_{t}/T_{1}}) . \qquad (6.12)$$

Sie ist unabhängig vom Sollwert w und nimmt mit wachsender Totzeit bzw. abfallender Zeitkonstante T_1 zu. Die Schaltfrequenz $f_s = 1/T_s$ des Zweipunktreglers ist ebenfalls von der Totzeit und der Zeitkonstanten T_1 abhängig, sie ist

$$f_{S} = \frac{1}{2T_{t} + T_{a} + T_{b}} = \frac{1}{2T_{t} + T_{1} \cdot l_{n} \left[\frac{x_{E}^{2}}{w(x_{E} - w)} (1 - e^{-T_{t}/T_{1}}) + \frac{-2T_{t}/T_{1}}{(6.13)}\right]}$$

für $x_E > w$.

Zweipunktregler mit Hysterese haben praktisch die gleiche Auswirkung auf den Verlauf von x wie der vorher gezeigte Einfluß der Totzeit. Die in Bild 6.15 dargestellte Sprungantwort macht dies bei einer Zweipunktregelung mit PT₁-Strecke deutlich.

Bild 6.15 Sprungantwort einer Zweipunktregelung mit Hysterese und PT₁-Strecke

Mit

$$x_E = y_{max} \cdot V_S$$

erhält man für t = T_c die Hysteresebreite

$$2x_{t} = (x_{E} - w + x_{t}) \cdot (1 - e^{-T_{C}/T_{1}}) \quad .$$
 (6.14)

Damit ist die Hysteresebreite der Sprungantwort nicht nur von der Zeitkonstanten T₁ und dem Sollwert w abhängig, sondern auch von der Hysterese des Zweipunktreglers (siehe Tabelle 3.3). Die Schaltfrequenz des Reglers ist

$$f_{S} = \frac{1}{T_{c} + T_{d}} = \frac{1}{T_{1} \left(\ln \frac{x_{E} - w + x_{t}}{x_{E} - w - x_{t}} + \ln \frac{w + x_{t}}{w - x_{t}} \right)}$$
(6.15)

für $x_E > w$.

Der Zweipunktregler schaltet hier jedoch erst bei $x = w + x_t$ ab (infolge der Hysterese). Demzufolge schaltet er auf $y = y_{max}$, wenn der Istwert auf x = w - x_t abgefallen ist. Dieser Vorgang wiederholt sich mit der Periodendauer T_s .

Das Schema einer Preßluft-Druckregelung ist in Bild 6.16 dargestellt und soll auf Stabilität untersucht werden. Es zeigt einen Zweipunktregler mit Hysterese, der über einen Leistungstreiber die Speicherpumpe regelt. Mit einem Potentiometer kann die Hysteresebreite $2x_{\perp}$ verändert werden (siehe /2/,S.82 und S. 132), es gilt:

 $2x_t = 2\alpha |y_{max}|$

Bild 6.16 Schema einer Regelung für den Preßluftdruck p mit hysteresebehaftetem Zweipunktregler

Bei Vorgabe eines Sollwertes $p_s > p_i$ bzw. bei Preßluftentnahme der Verbraucher beträgt y* \approx + 60V; es folgt ein Druckanstieg im Speicher. Nach Überschreiten des Sollwertes $p_i > p_s$ ergibt sich y* \approx - 60V, so daß infolge des Drehrichtungswechsels der Pumpe der Speicherdruck abnimmt. Pumpe und Druckspeicher sind jeweils Verzögerungsglieder erster Ordnung. Die Meßwerterfassung mit Druckmeßdose habe ebenfalls PT₁-Verhalten. Die Totzeit und Hysterese des Leistungstreibers sei vernachlässigbar.

Man erhält das in Bild 6.17 gezeigte Blockschaltbild. Der Frequenzgang der Strecke lautet insgesamt

 ${}^{O}_{\rm F_{\rm S}} \; = \; \frac{{}^{\rm V}_{\rm S1} \cdot {}^{\rm V}_{\rm S2} \cdot {}^{\rm V}_{\rm S3}}{(1 + {}^{\rm pT}_{\rm 1}) \, (1 + {}^{\rm pT}_{\rm 2}) \, (1 + {}^{\rm pT}_{\rm 3})} \quad . \label{eq:FS}$

Bild 6.17 Blockschaltbild der Zweipunktregelung zur Führung des Preßluftdruckes nach Bild 6.16

Die einzelnen Parameter ergeben sich teilweise aus Tabelle 4.3 und 4.6. Es soll ein Druck von 10 bar erreicht werden, damit sind für die Pumpe

$$V_{S1} = \frac{P_1}{U_L} = \frac{10bar}{50V} = 0.2 \cdot \frac{bar}{V}$$
 $T_1 = 2s$ (Tabelle 4.3)

für den Druckspeicher

$$V_{S2} = \frac{P_2}{P_1} = \frac{10 \text{ bar}}{10 \text{ bar}} = 1 \qquad T_2 = R_S \cdot C_S = 9,185s$$

mit
$$R_S = \frac{k \cdot 1}{d^4} \text{ bei } \vartheta = 293K$$

$$k = 7,44 \cdot 10^{-3} \frac{\text{mm}^3 \cdot \text{bar} \cdot \text{s}}{N \cdot 1}$$

$$l = 10 \text{ m}$$

$$d = 30 \text{ mm}$$

$$V = 100.000 \text{ l}$$

$$C_S = \frac{100.000 \text{ N} \cdot 1}{\text{bar}}$$

und für die Meßwerterfassung mittels Druckmeßdose

$$V_{S3} = \frac{U_{pi}}{p_i} = \frac{10 \text{ V}}{10 \text{ bar}} = 1 \frac{V}{\text{bar}}$$
 $T_3 = 10 \text{ ms}$ (Tabelle 4.3).

Die Hysterese des Zweipunktreglers sei zunächst $x_t = 0,5$ V. Der Zweipunktregler mit Hysterese ist durch die Beschreibungsfunktion (siehe Tabelle 3.3) definiert.

Es ist für $x_s = 50$ V und $\hat{x}_{\rho} = 10$ V, so daß

$$N_{(\hat{x}_e)} = \frac{20}{\pi} \sqrt{1 - \frac{x_t^2}{x_e^2} - j \frac{20x_t}{\pi \hat{x}_e}}$$

Die Stabilität von nichtlinearen Regelkreisen läßt sich, wie in Abschnitt 5.4 gezeigt, anschaulich mit dem Zwei-Ortskurven-Verfahren untersuchen.

•

Dazu bildet man die negative inverse Ortskurve der Regelstrecke, also

$$-\frac{1}{\underline{F}_{S}} = -\frac{1}{\overline{V}_{S1}\overline{V}_{S2}\overline{V}_{S3}}(1+j\omega T_{1})(1+j\omega T_{2})(1+j\omega T_{3})$$
$$-\frac{1}{\underline{F}_{S}} = \frac{\omega^{2}(T_{1}T_{2}+T_{1}T_{3}+T_{2}T_{3})-1+j\omega^{3}T_{1}T_{2}T_{3}-\omega(T_{1}+T_{2}+T_{3})]}{V_{S1}\overline{V}_{S2}\overline{V}_{S3}}$$

Mit Gleichung (5.23) erhält man die Frequenz $\boldsymbol{\omega}_{\mathbf{Z}}$ an der Stabilitätsgrenze.

$$\tan \varphi_{N} = \tan \varphi_{S} \longrightarrow \omega_{z}$$

$$- \frac{x_{t}}{\hat{x}_{e} \sqrt{1 - \left(\frac{x_{t}}{\hat{x}_{e}}\right)^{2}}} = -0,05 = \frac{\omega_{z}^{3}T_{1}T_{2}T_{3} - \omega_{z}(T_{1} + T_{2} + T_{3})}{\omega_{z}^{2}(T_{1}T_{2} + T_{1}T_{3} + T_{2}T_{3}) - 1}.$$

Daraus folgt

Die Regelung ist stabil, wenn entsprechend Gleichung (5.24) gilt:

$$\operatorname{Re} [N_{(\hat{x}_{e})}] \stackrel{!}{\underset{x_{t}}{\overset{\leq}{\overset{\leq}{\overset{\leq}{\overset{\leq}{\overset{\leq}{\overset{\leq}{\overset{}}{\overset{\leq}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}}}} \operatorname{Re} \left[\frac{-1}{\underline{F}_{S}}\right]_{\omega_{z}}$$

Diese Bedingung ist erfüllt, denn es ist

Re
$$[N_{(\hat{x}_{e})}] = 6,358 < Re \left[\frac{-1}{F_{s}}\right]_{\omega_{z}} = 2983,931$$

Aus Bild 6.18 ist zu ersehen, daß die beiden Ortskurven $N_{(\hat{x}_e)}$ und $-1/\underline{F}_S$ sich nicht schneiden. Daher ist die Regelung unbegrenzt stabil, d.h. für jeden Wert von x_t und x_s .

Bild 6.18 Ortskurven-Auswertung der Zweipunktregelung nach Bild 6.16 mit dem Zwei-Ortskurven-Verfahren

Die Sprungantwort dieser Regelung wird Dauerschwingungen um den Sollwert ausführen. Diese enthalten keine Sprungstellen, da die Regelstrecke, ähnlich wie in Bild 6.6 höherer Ordnung ist. Die Schwingungen lassen sich durch Überlagerung von Ein- und Ausschaltvorgängen der Regelgröße y_{max} zusammensetzen (Bild 6.19). Zweipunktregler mit Rückführung, zur Vermeidung der Dauerschwingungen um den Sollwert, sind in /41/ näher erläutert.

Bild 6.19 Sprungantwort und Stellgröße der Zweipunktregelung aus Bild 6.16

6.1.4 Regelung von Gleichstromantrieben für Feder-Masse-Systeme

In den bisher behandelten Drehzahlregelungen war der mechanische Teil des Antriebs durch ein I-Glied mit der Hochlaufzeitkonstanten T_H dargestellt. Dies ist nur dann zulässig, wenn zwischen Wellen, Kupplungen, Getriebe und Last eine starre Verbindung besteht. Bei vielen Antrieben (Schachtförderanlagen, Aufzüge, Bandanlagen) besteht der Mechanikteil jedoch aus einem gedämpften Feder-Masse-System höherer Ordnung.

Der Regelkreis ist daher mit einem erweiterten Blockschaltbild, welches den schwingungsfähigen Mechanikteil berücksichtigt, zu dimensionieren. Am Beispiel eines rotierenden Mehr-Massen-Systems mit Federkonstante und Dämpfung soll der aufgezeigte Sachverhalt untersucht werden. In Bild 6.20 ist ein solches System in Form einer Bergbau-Schachtförderanlage dargestellt. Wegen der großen Förderhöhen sind die Seilschwingungen besonders ausgeprägt und werden nur schwach gedämpft durch den Luftwiderstand und die Seilreibung. Wenn die Masse der Seiltrommel $m_{\rm ST}$ erheblich kleiner ist als die der Körbe und des Seils, sind die beiden Massen m_1 und m_2 über $m_{\rm ST}$ miteinander gekoppelt. Die Folge ist ein

Feder-Masse-System mit fünf Energiespeichern (Bild 6.21a). Dieses System läßt sich jedoch vereinfachen, wenn man praxisnah annimmt, daß ein Rutschen des Seils ausgeschlossen ist. Damit sind beide Feder-Masse-Systeme (m₁ - c_{f1}, m₂ - c_{f2}) entkoppelt (Bild 6.21b) und lassen sich getrennt voneinander betrachten. Diese Entkopplung gelingt ebenfalls, wenn m_{ST} >> m₁ + m₂ ist.

Bild 6.21 Feder-Masse-System einer Schachtförderanlage mit fünf Energiespeichern a) und als Vereinfachung für m_{ST}≥m_K mit zwei Energiespeichern b)

Es soll nun eine Geschwindigkeitsregelung mit unterlagerter Stromregelung für einen am langen Seil hängenden Förderkorb dimensioniert werden.

Die Differentialgleichung der Geschwindigkeit des Förderkorbes lautet (siehe dazu auch Abschnitt 2.2.2)

$$m_{K} \frac{d^{2}v_{K}}{dt^{2}} + r \frac{dv_{K}}{dt} + c_{f}v_{K} = c_{f} \cdot v_{St}$$

und die Bildfunktion ist

$${\stackrel{\rm O}{v}}_{\rm K} \cdot ({\rm p}^2 + {\rm p}\frac{{\rm r}}{{\rm m}_{\rm K}} + \frac{{\rm c}_{\rm f}}{{\rm m}_{\rm K}}) = {\stackrel{\rm O}{\rm v}}_{\rm ST} \cdot \frac{{\rm c}_{\rm f}}{{\rm m}_{\rm K}}$$

Mit $\omega_0^2 = 1/T_2^2 = c_f/m_K$ und $d = \frac{r}{2\sqrt{c_f m_K}}$ erhält man den Frequenzgang eines PT_2 -Gliedes.

$$\mathbf{\hat{F}} = \frac{\mathbf{\hat{v}}_{K}}{\mathbf{\hat{v}}_{ST}} = \frac{1}{1 + p \cdot \frac{r}{m_{K} \cdot \omega_{O}^{2}} + p^{2} \cdot \frac{1}{\omega_{O}^{2}}} = \frac{1}{1 + 2dpT_{2} + p^{2}T_{2}^{2}}$$

Das gesamte Blockschaltbild der Geschwindigkeitsregelung mit unterlagerter Stromregelung für einen fremderregten Gleichstrommotor und sechspulsiger Drehstrombrückenschaltung ist in Bild 6.22 dargestellt (vgl. mit Bild 5.40).

Die einzelnen Strecken-Parameter (Verstärkungen auf 10V Signalspannung bezogen) sind:

$$V_{S1} = \frac{\Delta d}{\alpha_1 - \alpha_2} = 1 \qquad T_t = \frac{T}{2p} \approx 2 \text{ ms}$$

$$V_{S2} = \frac{U_{AN}}{T_{AN} \cdot R_A} = 2 \qquad T_A = 0,1 \text{ s}$$

$$V_{S3} = C_1 \cdot \phi_{max} = \frac{1}{2\pi} \qquad T_H = \frac{2\pi J n_0}{M_N} = 5 \text{ s}$$

$$V_{S4} = C_2 \cdot \phi_{max} = 1 \qquad T_2 = \frac{1}{\omega_0} = \sqrt{\frac{m_K}{c_f}} = 0,124 \text{ s}$$

$$V_{S5} = D\pi = 1,257 \qquad d = \frac{r}{2\sqrt{c_f \cdot m_K}} = 0,061$$

$$V_{S6} = 1$$

Die Anlagenparameter lauten: D = 4 m, $l_1 = 400$ m, $l_2 = 500$ m, Korbgewicht $G_K = 10^4$ N $c_f = 6,667 \cdot 10^4 \frac{N}{m}$ $m_K = \frac{G_K}{g} = \frac{10^4 Kg}{9,81} = 1,02 \cdot 10^3 \frac{N \cdot s^2}{m}$ $r = 10^3 \frac{N \cdot s}{m}$ $v_N = 20$ m/s.

Zunächst soll der Stromregelkreis dimensioniert werden. Er läßt sich mit Umformregel 7, 8 und 12, Tabelle 4.12, auf die in Bild 6.23 dargestellte Form bringen. Durch Verlegen von $M_L + M_R$ an den Anfang der Regelschleife läßt sich die Belastung aus dem Stromregelkreis herausnehmen. Mit den gleichen Vereinfachungen, wie in Abschnitt 5.6.3 an einem ähnlichen Regelkreis gezeigt, erhält man den Frequenzgang $F_{0.1}$ des offenen Stromregelkreises.

Mit

 $T_{H} > T_{\Delta} >> T_{+}$

und

$$e^{-pT}t \approx (1+pT_t)^{-1}$$

sowie

$$T_{N1} = T_A$$

erhält man

$$\stackrel{o}{_{F_{o1}}} \approx \frac{v_{R1} \cdot v_{S1} \cdot v_{S2} \cdot (1 + pT_A)}{p^2 T_A^2 \cdot (1 + pT_t)}$$

Aus dem Symmetrischen Optimum ergibt sich dann die Stromregler-Verstärkung nach Gleichung (5.41)

$$\mathbf{V}_{\mathbf{R}1} \approx \frac{\mathbf{T}_{\mathbf{A}}}{\mathbf{V}_{\mathbf{S}1} \cdot \mathbf{V}_{\mathbf{S}2} \cdot \sqrt{\mathbf{T}_{\mathbf{A}} \cdot \mathbf{T}_{\mathbf{t}}}} \approx 3,5$$

Der Geschwindigkeitsregelkreis nimmt nun die in Bild 6.24 dargestellte Form an. Er enthält auch die Belastung M_L + M_R.

279

Es läßt sich der Frequenzgang der Strecke mit pT_{A} % 1 + pT_{A} angeben zu:

$$\hat{\mathbf{F}}_{SN} = \hat{\mathbf{F}}_{H} \cdot \hat{\mathbf{F}}_{S2} \cdot \hat{\mathbf{F}}_{S3} \quad \mathfrak{H} \quad \frac{\mathbf{V}_{R1} \cdot \mathbf{V}_{S1} \cdot \mathbf{V}_{S2} \cdot \mathbf{V}_{S4} \cdot \mathbf{V}_{S5} \cdot \mathbf{V}_{S6}}{\mathbf{p}_{H} \cdot [\mathbf{V}_{R1} \cdot \mathbf{V}_{S1} \cdot \mathbf{V}_{S2} + \mathbf{p}_{A}^{-} \cdot (1 + \mathbf{p}_{T_{1}})] \cdot (1 + 2d\mathbf{p}_{T_{2}} + \mathbf{p}_{T_{2}}^{2}) }$$

Durch $V_B = V_{R1} \cdot V_{S1} \cdot V_{S2}$ geteilt und mit $V_{SN} = V_{S4} \cdot V_{S5} \cdot V_{S6}$ erhält man für $pT_A/V_B \approx 1 + pT_A/V_B$

$$\stackrel{O}{F}_{SN} \approx \frac{\stackrel{V}{}_{SN}}{pT_{H} \cdot (1 + pT_{K}') \cdot (1 + 2dpT_{2} + p^{2}T_{2}^{2})}$$

mit $T_K' = T_A / V_B + T_t$.

Bei der Wahl des Geschwindigkeitsreglers ist darauf zu achten, daß der Phasenwinkel der Regelstrecke für große ω -Werte und kleine Dämpfung sehr schnell über -180° läuft, da es sich um eine PT_1-PT_2 -I-Strecke handelt. Es empfiehlt sich daher ein PD-Regler. Der Frequenzgang des offenen Geschwindigkeitsregelkreises lautet dann:

$$\stackrel{O}{\mathbf{F}}_{O2} = \stackrel{O}{\mathbf{F}}_{R2} \cdot \stackrel{O}{\mathbf{F}}_{SN} \approx \frac{\mathbf{V}_{R2} \cdot \mathbf{V}_{SN} \cdot (1 + \mathbf{pT}_{V})}{\mathbf{pT}_{H} \cdot (1 + \mathbf{pT}_{K}') \cdot (1 + 2d\mathbf{pT}_{2} + \mathbf{p}^{2}\mathbf{T}_{2}^{2})}$$

Wählt man

$$\mathbf{T}_{\mathbf{V}} = \mathbf{T}_2 = \frac{1}{\omega_0}$$

und

$$V_{R2} = 10$$

ergibt sich aus dem Bode-Diagramm (Bild 6.25) eine Durchtrittsfrequenz von $\omega_{D} \approx 9,8$ Hz bei einer Phasenreserve von $\alpha_{R} \approx 21^{\circ}$.

Das Lastverhalten (Störverhalten) wird durch die Bildfunktion

beschrieben und ist für w = O direkt aus Bild 6.24b zu errechnen.

$$\overset{O}{F_{z}} \approx \frac{ \overset{V_{S5}V_{S6} \cdot pT_{A} \cdot e^{+pT_{t}} }{ \overset{V_{S1}V_{S2}V_{R1} \cdot [V_{R2}V_{SN}(1+pT_{2}) + pT_{H} \cdot (1+pT_{K}')(1+2dpT_{2}+p^{2}T_{2}^{2})] }$$

Bild 6.25 Bode-Diagramm der Förderkorb-Geschwindigkeitsregelung

Die Übertragungsfunktion dieses Frequenzgangs ist nur mit groben Vereinfachungen anzugeben, die das tatsächliche Störverhalten verfälschen. Hier kann nur eine Simulation auf dem Rechner konkrete Ergebnisse bringen. Man kann jedoch davon ausgehen, daß Lastveränderungen durch eine Kaskadenregelung besser ausgeregelt werden als durch einen einfachen Regelkreis. Denn gerade für das Störverhalten ist in erster Linie der Stromregler eingesetzt worden.

Da die meisten Momentenänderungen ohnehin auf Reibungsabweichungen (M_R) beim Anfahren und Bremsen zurückzuführen sind, ist es sinnvoll, den Geschwindigkeitssollwert ve mit einem Sollwertgeber vorzugeben. Entsprechende Schaltungen sind in Abschnitt 4.5 und 6.3.1 beschrieben. Auf diese Weise ist ein sanftes Anfahren/Bremsen möglich und die Eigenkreisfrequenzen der Mechanik werden unkritisch /56/. Gleichzeitig wird das Führungsverhalten verbessert, welches hauptsächlich durch die Haltegenauigkeit des Fahrkorbs und (bei Personentransport) den Fahrkomfort bestimmt wird.

Zum Thema Schachtförderanlagen ist in den BBC-Nachrichten /57/ ein Beitrag erschienen, der u.a. auch die Sicherheitseinrichtungen solcher Systeme in die Antriebsregelung einbezieht. Weiterführende Betrachtungen geregelter Feder-Masse-Systeme sind in /92/ enthalten.

6.1.5 Drehzahlregelung von Asynchronmaschinen

Die Asynchronmaschine mit Kurzschlußläufer zeichnet sich durch ihre einfache und robuste Bauweise aus. Ihre kurze Baulänge (kein Kollektor) hat ein geringes Trägheitsmoment zur Folge. Als direkt vom Netz gespeiste Maschine ist sie am weitesten verbreitet (z.B. mit y-A-Anlauf für Scheren, Stanzen, Kreissägen usw.). Die Regelung von Asynchronmaschinen mit der den Gleichstromantrieben vergleichbarer Positioniergenauigkeit und Drehzahlstabilität bedingt jedoch einen höheren Aufwand an Elektronik.

Die Läuferdrehzahl n ist von der Netzfrequenz f1, der Polpaarzahl p und dem Schlupf s der Maschine abhängig, sie ist beschrieben durch die Gleichung

 $n_1 - n_1 = 0$ 60. f

$$n = \frac{60 \cdot f_1(1-s)}{p} \min^{-1}$$
(6.16)

mit

mit
$$s = \frac{n_1}{n_1}$$
 und $n_1 = \frac{n_1 - 1}{p} \min^{-1}$. (6.17)
Aus Gleichung (6.16) ist zu ersehen, welche Möglichkeiten zur

Steuerung bzw. Regelung der Drehzahl bestehen. Man kann die Polpaarzahl mit einer Dahlander-Schützschaltung verändern. Eine Variante, die nur noch bei einfachen Drehzahlsteuerungen eingesetzt wird.

Die Beeinflussung des Schlupfes, der Ständerspannung und der Ständerfrequenz haben zur Entwicklung zahlreicher Stromrichterschaltungen geführt, die eine optimale Drehzahlsteuerung und -regelung ermöglichen. Einen Überblick geben die Literaturstellen /58/, /59/, /60/, /61/ und /62/ sowie Tabelle 6.1.

Tabelle 6.1 Einsatz von Stromrichtern für Drehstromantriebe

Stellgröße	Stromrichter	Leistungsbereich	Anwendungen
Ständer- spannung	Drehstromsteller mit Käfigläufer	0,250kW	Lüfter, Pumpen, Hebezeuge, Förder- bänder, Seilwinden
Ständer- sp a nnung, Ständer- frequenz	Direktumrichter mit Käfigläufer	40010 ⁴ kW	Zementmühlen, gros- se Gebläse, Roll- gänge
Ständer- strom	Schwingkreis- wechselrichter mit Käfigläufer	15150kW	Zentrifugen, Schleifmaschinen, Spinnturbinen
Ständer- strom, Ständer- frequenz	Zwischenkreisum- richter mit ein- geprägtem Strom	602500kW	Prüfstände, Geblä- se, Rührwerke, Lüf- ter, Mühlen, För- derantriebe
Läufer- strom	Untersynchrone Stromrichter- kaskade mit Schleifring- läufer	1025000kW	Pumpen, Gebläse, Verdichter, Schau- felräder, Prüfstän- de, Drehöfen

Der Asynchronmotor stellt seine Drehzahl so ein, daß sein Drehmoment genau dem Lastmoment entspricht (Bild 6.26). Dies ist im Arbeitspunkt A der Fall. Soll der Arbeitspunkt B eingestellt werden, muß die Momentenkennlinie z.B. durch Verändern der Ständerspannungen beeinflußt werden. Es ist, ähnlich wie bei einem Gleichstrommotor, das Moment bestimmt durch die Gleichung:

$$M = C_3 \cdot \phi \cdot I \cdot \sin\beta = \frac{P}{2\pi n} .$$

Darin ist C₃ eine Maschinen-Konstante und β der Phasenwinkel zwischen Ø und I. Für M \circ Ø \cdot I und P \circ U₂I erhält man einen Zusammenhang zwischen Ständerspannung und Drehzahl.

$$n \sim \frac{U_2}{\emptyset}$$
 mit \emptyset = konstant.

Die einfachste Stromrichterschaltung zur Steuerung der Ständerspannung ist der Drehstromsteller (Bild 4.13 bis 4.15). Mit dieser Schaltung können die Spannungszeitflächen durch Verändern der Zündwinkel (Phasenschnitt) vermindert werden. Ein Problem sind die hohen Läuferverluste P_{V2} . Sie sind durch die Gleichung

$$P_{V2} = s \cdot P_{L} = 2 \cdot \pi \cdot (n_{1} - n) \cdot M$$
 (6.18)

gegeben und stellen die Verlustleistung durch Stromwärme dar. Wie man sieht, ist P_{V2} am größten bei Stillstand (n = 0). Dem Einsatz des Drehstromstellers sind daher Grenzen gesetzt. Für Drehzahlregelungen sollte die Nennleistung der Maschine 20 kW nicht überschreiten.

Bild 6.26 Momenten-Kennlinien eines Drehstrom-Asynchronmotors und eine Last-Kennlinie für die Arbeitspunkte A und B

Für sehr große Leistungen und große Anfahrmomente eignet sich besonders der Direktumrichter (Tabelle 6.1). Er besteht aus drei sechspulsigen Stromrichtern in antiparalleler Drehstrombrückenschaltung (Bild 6.27). Jede Phase der Ständerwicklung wird demnach über eine Drehstrombrückenschaltung angesteuert. Die Ständerspannung wird so abschnittsweise aus der Netzspannung nachgebildet und hat eine veränderliche Frequenz f_2 . Der Zusammenhang zwischen Drehzahl und Frequenz ist aus Gleichung (6.16) ersichtlich, so daß

$$n \sim f_2$$

wird (Bild 6.28). Es gilt jedoch für den Stellbereich der Ständerfrequenz $f_2 = [0, f_1 \cdot p/12]$. D.h. bei $f_1 = 50$ Hz und Pulszahl p = 6 ist $f_{2max} = 25$ Hz. Für jede Phase sind 12 Thyristoren und je ein Stromregler erforderlich. Dieser hohe Steuer- und Regelungsaufwand lohnt sich nur bei Maschinen sehr großer Leistung. Vorteilhaft ist jedoch, daß mit Kippmoment angefahren werden kann.

Bild 6.27 Direktumrichter zur Drehzahlregelung eines Asynchronmotors

Bild 6.28 Verlauf des Drehmoments bei einem Drehstrom-Asynchronmotor bei veränderlicher Ständerfrequenz
Bei niedrigeren Drehzahlen (n > 50 min⁻¹) wird der Drehstromantrieb mit Direktumrichter bevorzugt ohne Getriebe mit der Last verbunden. Dies soll am Beispiel einer Rohrmühlenregelung gezeigt werden (Bild 6.29). Sie besteht aus dem Direktumrichter und drei Steuer- und Regeleinrichtungen. Ein Hochlaufgeber liefert den Drehzahlsollwert für den gemeinsamen n-Regler. Dieser wirkt auf den Si-

Schema zur Regelung einer Rohrmühle mit Direktumrichter und Asynchronmotor Bild 6.29

nusgeber, dessen frequenzabhängige Steuerspannungen u_{st} den Stromsollwert bilden. Eine Drehzahldifferenz wird so mit einer Änderung der Umrichterfrequenz f₂ korrigiert. Der Betrag des Luftspaltflusses wird mit Hallsonden gemessen und dem Flußregler zugeführt. Sein Ausgangssignal wirkt ebenfalls auf den Sinusgeber und beeinflußt die Amplituden der Steuerspannungen, so daß insgesamt gilt:

$$u_{st} = f(f, \phi)$$

Die drei Steuerspannungen u_{StR} , und u_{StS} und u_{StT} sind um 120^o phasenverschoben und erzeugen dann über die Stromregler und Steuersätze das synthetische Drehstromnetz U_{2R} , U_{2S} und U_{2T} mit veränderlicher Frequenz f_2 .

Die Stromregler begrenzen den Umrichterstrom und regeln die Laststromkurve der Maschine.

Der Frequenzgangbetrag des Direktumrichters ist durch die Gleichung

$$\frac{\left|\mathbf{F}_{U}\right|}{\mathrm{dB}} = 20 \cdot \lg \left| \frac{\hat{u}_{2}}{\hat{u}_{st}} \cdot \frac{\sin\left(180 \cdot \frac{\mathbf{f}_{2}}{\mathrm{pf}_{1}}\right)}{\frac{\pi \mathbf{f}_{2}}{\mathrm{pf}_{1}}} \right|$$
(6.19)

gegeben /65/. Der zugehörige Phasenwinkel ist

$$\varphi_2 = -180 \cdot \frac{f_2}{pf_1} . \tag{6.20}$$

Für den Stellbereich der Frequenz $f_2 = [0; 25]$ Hz und $f_1 = 50$ Hz bei p = 6 wird in Gleichung (6.19)

$$\sin (180 \frac{f_2}{pf_1}) \approx \pi \frac{f_2}{pf_1}$$

so daß der Frequenzgangbetrag nur noch p-Verhalten zeigt, also

$$\frac{\left|\mathbf{F}_{U}\right|}{\mathrm{dB}} \ \text{$\%$ 20$-lg} \ \frac{u_{2}}{\hat{u}_{\text{st}}} = 20\text{-lg} \ V_{\text{S1}} \ .$$

Der genäherte Frequenzgangbetrag und sein Phasenwinkel nach Gleichung (6.20) entsprechen nun einem Totzeitglied mit der Ersatzzeitkonstanten $T_{+} = 1/2pf_{1} \approx 2 ms$ ($\varphi = -\omega T_{+} = -2\pi f_{2}/2pf_{1}$). Das Blockschaltbild der Regelung ist in Bild 6.30 dargestellt. Es gilt für die Grundwellen von u_{st} und I (ohne Oberschwingungen infolge Phasenanschnitt). Werden die Amplituden der Spannungen U_{2R}, U_{2S} und U_{2T} üblicherweise proportional der Frequenz f₂ verstellt, ist wegen

$$n \sim \frac{U}{a} \sim f$$

der magnetische Fluß quasi konstant. Damit wird $\emptyset_s - \emptyset$; = 0 und U_{Am} = 0. Der Flußregelkreis kann näherungsweise unberücksichtigt bleiben.

Für den Frequenzgang des Stromregelkreises erhält man in diesem Falle

$$\overset{\text{P}}{\text{Fo1}} \stackrel{\text{V}}{\text{+}} \frac{\overset{\text{V}}{\text{N1}} \cdot \overset{\text{V}}{\text{V}}_{\text{S1}} \cdot \overset{\text{V}}{\text{V}}_{\text{S2}} \cdot (1 + \text{pT}_{\text{N1}})}{\underset{\text{T}}{\text{T}}_{\text{N1}} \cdot (1 + \text{pT}_{1}) \cdot (1 + \text{pT}_{t})}$$

Mit $T_{N1} = T_1$ wird

$$\stackrel{o}{F_{o1}} \approx \frac{V_{R1} \cdot V_{S1} \cdot V_{S2}}{pT_1 \cdot (1 + pT_+)}$$

Geht man von einer Phasenreserve von $\alpha_R^{}$ = 60⁰ aus, folgt für den Gesamtphasenwinkel des Stromregelkreises

$$\varphi_{O(\omega_{\rm D})} = -120^{\rm O} \ \text{t} - \arctan \omega_{\rm D} T_{\rm 1} - 90^{\rm O} \ .$$

Daraus folgt die Durchtrittsfrequenz

$$\omega_{\rm D} \approx \frac{\sqrt{3}}{3 \mathrm{T}_1}$$

Mit $|F_{01}| = 1$ bei ω_{D} erhält man die Reglerverstärkung

$$v_{R1} = \frac{\sqrt{3 + \frac{T_{t}^{2}}{T_{1}^{2}}}}{3 \cdot v_{S1} \cdot v_{S2}}$$

Die Verstärkung des Drehzahlreglers läßt sich für $M_L = 0$ und $n_s = konstant angeben. Der Frequenzgang des offenen Drehzahlregel$ kreises ist

$$\overset{O}{F}_{O2} \approx \frac{\overset{V}{\operatorname{R2}} \cdot \overset{V}{\operatorname{Fr}} \cdot \overset{V}{\operatorname{S3}} \cdot (1 + pT_{N2})}{\overset{P}{\operatorname{p}}^{2}T_{N2}T_{H}} \cdot \frac{\overset{O}{\operatorname{Fol}}}{1 + \overset{O}{\operatorname{Fol}}}$$

Aus dieser Gleichung läßt sich entsprechend dem Symmetrischen Optimum nach Gleichung (5.38) für $T_{N2} = T_H$ die Drehzahlregler-Verstärkung ermitteln.

$$\mathbf{v}_{R2} \approx \frac{\mathbf{T}_{H}}{\mathbf{v}_{Fr} \cdot \mathbf{v}_{S3} \sqrt{\frac{\mathbf{T}_{H} \mathbf{T}_{I}}{\mathbf{v}_{R1} \cdot \mathbf{v}_{S1} \cdot \mathbf{v}_{S2}}}$$

Die endgültige Einstellung der Regler unter Berücksichtigung des Lastmomentes, des Hochlaufgebers, der Flußregelung und der Oberschwingungen kann nur mit Rechnersimulation oder empirisch, bei Inbetriebnahme der Anlage, erfolgen. Dazu werden in /92/ wertvolle Hinweise gegeben.

6.1.6 Regelung von Wickelantrieben für Stoffbahnen

In Walzwerken wird mit Mehrmotorenantrieben bandförmiges Gut (Aluminium, Kupfer, Stahl, usw.) warm oder kalt verarbeitet. Das Material liegt zu Rollen (Bunde/Coils) aufgewickelt vor und wird gewalzt (Banddickenreduzierung), dressiert (Beeinflussung der Materialeigenschaften) oder optimiert (entfettet, gebeizt, beschichtet, blankgeglüht, usw.). Es ist in jedem Falle ein Ab- und Aufwickelvorgang erforderlich, der in möglichst kurzer Zeit vor sich gehen soll. Die Betriebsgeschwindigkeit solcher Anlagen ist daher relativ hoch, entsprechend der geforderten Produktivität und wirtschaftlichen Nutzung.

Am Beispiel einer Dressierstraße soll die Funktion eines Wickelantriebs (hier einer Aufhaspel) gezeigt werden (Bild 6.31). Voraussetzungen sind die Gültigkeit der Massenkonstanz

 $dm = \rho dv = konst.$

und die Gültigkeit des linearen Bereichs des Hookeschen Gesetzes während des Walzvorgangs.

 $\sigma = E \cdot \epsilon$.

Die wichtigste Regelgröße eines Walzprozesses ist der bei allen Betriebszuständen konstant zu haltende Bandzug F. Er wird durch die von der Ab- bis zur Aufhaspel antriebsweise zunehmende Geschwindigkeit erzeugt.

Zur indirekten als auch direkten Regelung des Bandzuges sind folqende Anlagengrößen erforderlich:

Bandzugsollwert	Fs
Bandgeschwindigkeit	v _B
Dichte des Bandes	ρ
Bandbreite	b
Bunddurchmesser (veränderlich)	D
Haspeldorndurchmesser	D _{min}
Trägheitsmomente (bezogen auf die Motorwelle)	^J ges
Getriebeübersetzung	i
Getriebewirkungsgrad	η _G
Hochlaufzeit	т _н

In Bild 6.32 ist der Ankerkreis einer indirekten Zugregelung für die Aufhaspel dargestellt /63/. Sie besteht aus dem Geschwindigkeitsregler mit Zug-Einstellung, dem Momentenrechner und dem unterlagerten Stromregelkreis.

Die Höhe des Ankerstromes ist ein Maß für den Bandzug F. Um ihn konstant zu halten, müssen der magnetische Fluß Ø der Maschine und der veränderliche Bunddurchmesser D in die Ankerstromberechnung eingehen. Außerdem ist eine Verluststrom-Kompensation, deren Funktion $I_V = f_{(n)}$ empirisch aufgenommen wird, sowie die Ankerstrombegrenzung vorzusehen.

Der Ankerstromsollwert wird nun wie folgt ermittelt: Mit ΣM = O erhält man das aufzubringende Motormoment M_M als Summe aus Lastmoment M_L und Beschleunigungsmoment M_b. Da alle Momente auf die Motorwelle zu beziehen sind, folgt

•

 $M_{M} = M_{LM} + M_{bM}$,

mit i = n_M/n_T ergibt sich

$$M_{M} = \frac{M_{L}}{i \cdot \eta_{G}} + M_{bM}$$

Für die weiteren Betrachtungen ist die Definition der einzelnen Trägheitsmomente und Kräfte notwendig (Bild 6.33).

Es ist

$$M_{L} = F \cdot D/2$$

und

$$M_{bM} = 2\pi J_{ges.} \cdot \frac{dn_{M}}{dt} = \frac{2 \cdot i \cdot v_{max} \cdot J_{ges}}{D \cdot T_{H}}$$

mit $v_{max} = D\pi n_L$.

Bild 6.33 Mechanikbild zur Definition der Trägheitsmomente und Kräfte an einem Wickelantrieb

Die Momentengleichung lautet nun

$$M_{M} = \frac{1}{\frac{2 \cdot i \cdot \eta_{G}}{\ell_{e} C_{a}}} \quad D \cdot F + \frac{2 \cdot i \cdot v_{max} \cdot J_{ges}}{D \cdot T_{H}} \quad .$$
(6.21)

Das gesamte auf die Motorwelle bezogene Trägheitsmoment errechnet sich zu:

$$J_{ges} = J_M + J_K + J_W + J_G + \frac{J_{Rot1} + J_{Rot2}}{i^2 \cdot \eta_G}$$

Das Trägheitsmoment eines rotationssymmetrischen Zylinders J_{Rot1} ist $10^3 \cdot D_{min}^{4} \cdot b \cdot \pi \cdot \rho$

$$J_{Rot1} = \frac{10^3 \cdot D_{min}^4 \cdot b \cdot \pi \cdot \rho}{32} \text{ kgm}^2 ,$$

das eines rotationssymmetrischen Hohlzylinders ist $J_{Rot2} = \frac{10^3 \cdot b \cdot \pi \cdot \rho \cdot (D^4 - D_{min}^{4})}{32} \text{ kgm}^2 .$

Es wird nun mit $\rho = [g/cm^3]$

$$J_{ges.} = \frac{J_{M} + J_{K} + J_{W} + J_{G}}{\ell} + \frac{10^{3} \cdot b \cdot \pi \cdot \rho}{32 \cdot i^{2} \cdot \eta_{G}} D^{4} .$$
(6.22)

Das Motormoment ergibt sich dann zu:

$$M_{M} = C_{a} \cdot F + \frac{2 \cdot i \cdot v_{max}}{D \cdot T_{H}} \cdot (C_{b} + C_{d} \cdot D^{4}) \quad .$$
 (6.23)

Aus der elektrischen Gleichung für das Motormoment

$$M_{M} = C_{2} \cdot \emptyset \cdot I_{A}$$

erhält man mit Gleichung (6.23) den Ankerstromsollwert

$$\mathbf{I}_{A} = \frac{\mathbf{D}}{\mathbf{\emptyset}} \cdot \left[\frac{\mathbf{C}_{a}}{\mathbf{C}_{2}} \cdot \mathbf{F} + \frac{2 \cdot \mathbf{i} \cdot \mathbf{v}_{max}}{\mathbf{C}_{2} \cdot \mathbf{T}_{H} \cdot \mathbf{D}^{2}} \cdot (\mathbf{C}_{b} + \mathbf{C}_{d} - \mathbf{D}^{4}) \right].$$

Mit $C_{K} = C_{a}/C_{2}$ und $C_{L} = 2 \cdot i \cdot v_{max}/(C_{2}T_{H})$ folgt

$$\mathbf{I}_{\mathbf{A}} = \frac{\mathbf{D}}{\mathbf{\emptyset}} \cdot \left[\mathbf{C}_{\mathbf{K}} \cdot \mathbf{F} + \frac{\mathbf{C}_{\mathbf{L}} \cdot (\mathbf{C}_{\mathbf{b}} + \mathbf{C}_{\mathbf{d}} \cdot \mathbf{D}^{4})}{\mathbf{D}^{2}} \right].$$

In der eckigen Klammer müssen Kräfte stehen, daher läßt sich der Ankerstrom schließlich schreiben als:

$$I_{A} = \frac{D}{\emptyset} \cdot (C_{K} \cdot F + C_{m} \cdot F_{b}) \quad .$$
 (6.24)

Darin ist F_b die zur Beschleunigung der Massen erforderliche Kraft, welche nur vom variablen Bunddurchmesser und dv/dt abhängt. Die Realisierung der Gleichung (6.24) ist als sogenannter Momentenrechner in Bild 6.32 enthalten.

Die Funktionsweise der Haspelregelung mit indirekter Zugregelung ist im Folgenden beschrieben.

Beim Einfädeln des Bandes (ohne Betriebszug) wird ein kleiner "Tipp-Sollwert" v_{sTip} auf alle Geschwindigkeitsregler gegeben; die Antriebe drehen mit Einfädelgeschwindigkeit. Erreicht der Bandanfang die Aufhaspel und hat den Haspeldorn kraftschlüssig umschlungen, wird der Betriebszug F eingeschaltet. D.h. der v-Regler wird an die Stellgrenze gesteuert und mit dem vorgegebenen Bandzug auf den entsprechenden Sollwert begrenzt. Der Ausgang des Geschwindigkeitsreglers entspricht dann dem Betriebszug.

Summiert mit dem Beschleunigungszug F_b ergibt sich nach dem Momentenrechner der Ankerstromsollwert nach Gleichung (6.24).

Geht man von einem Bunddurchmesserverhältnis von $D_{max}/D_{min} = 5/1$ und einem Geschwindigkeitsverhältnis von

 $v_{max}/v_{min} = 35 \frac{m}{s} / 0.4 \frac{m}{s}$ aus, erhält man einen Drehzahlstellbereich der Maschine von $n_{max}/n_{min} \approx 440/1$. Dieser ist nur unter Einsatz der Feldschwächung zu beherrschen. Daher wird, wie aus Gleichung (6.24) zu ersehen, eine Bunddurchmesserzunahme mit einer Flußzunahme kompensiert. Es ist also D/\emptyset = konstant (für den Bereich der Betriebsgeschwindigkeit). Zur Veranschaulichung des Wikkelvorgangs sind die wichtigsten Anlagegrößen und ihr zeitlicher Verlauf, ohne Einschwingvorgänge, in Bild 6.34 dargestellt. Im Bereich A wird das Band mit niedriger Geschwindigkeit eingefädelt und im Bereich B auf Betriebsgeschwindigkeit hochgefahren. Wie man sieht, erfolgt die Vorgabe der Bandgeschwindigkeit entlang einer Fahrkurve ohne Sprungstellen. Das vom Motor aufzubringende Moment ist dann die Summe aus dem konstanten Lastmoment ($M_{LM} = C_a \cdot F$) und dem Beschleunigungsmoment M_{bM} .

Geht man davon aus, daß die Hochlaufzeit ca. 15s und die Bremszeit ca. 10s beträgt, ist in dieser Zeit (bei dünnem Material) kaum eine Bunddurchmesseränderung zu verzeichnen. Daher ist das Beschleunigungsmoment in den Bereichen A, B und D $M_{bM} \sim dv/dt$.

Während des eigentlichen Nachwalz- bzw. Dressiervorgangs (Bereich C), der in der Regel einige Minuten dauert, nimmt der Bunddurchmesser proportional zum magnetischen Fluß \emptyset zu. Da die Beschleunigung in diesem Bereich Null ist, besteht das Motormoment nur aus dem Lastmoment M_{LM}. Es ist bei konstantem Bandzug F proportional dem Bunddurchmesser (M_M = M_{LM} \sim D).

Der Ankerstromverlauf des Haspelantriebs ist dann gleich dem Momentenverlauf unter Berücksichtigung des Quotienten D/Ø nach Gleichung (6.24).

296

Bild 6.34 Zeitlicher Verlauf der wichtigsten Symstemgrößen der Haspel beim Walzen (ohne Einschwingvorgänge)

Für eine erste Dimensionierung der Reglerparameter sollte man vom Anfahr- bzw. Bremsvorgang ausgehen, bei denen die größten Anforderungen an die Dynamik des Antriebs gestellt werden. Als Näherung können folgende Voraussetzungen getroffen werden:

- D = konstant \emptyset = konstant
- F = konstant, $F_W = konstant$, $F_b = konstant$.

Damit ergibt sich das in Bild 6.35 dargestellte Blockschaltbild der Haspelregelung mit indirekter Zugregelung. Es unterscheidet sich von der in Abschnitt 5.6.3 bereits nach dem Symmetrischen Optimum dimensionierten Regelung nur durch die Verstärkungen $V_{\rm K}$ und $V_{\rm S5}$.

Der Stromregelkreis ist mit dem in Bild 5.41 dargestellten identisch, so daß für die Reglerparameter nach Gleichung (5.55) folgt:

$$T_{N1} = T_A \quad und \quad V_{R1} \approx \frac{T_A}{V_{S1} \cdot V_{S2} \sqrt{T_A \cdot T_t}} \quad . \tag{6.25}$$

Der vereinfachte Drehzahlregelkreis nach Gleichung (5.59) ist nur mit den Verstärkungen V_K und V_{S5} zu multiplizieren und man erhält:

$$T_{N2} = m^2 T_K \text{ und } V_{R2} \approx \frac{T_H}{V_K \cdot V_{S4} \cdot V_{S5} \cdot m \sqrt{T_K \cdot T_K'}}$$
(6.26)

mit m = $\frac{1 + \sin \alpha_R}{\cos \alpha_R}$ = 2 + $\sqrt{3}$ bei α_R = 60°,

 $T_{K}' = \frac{T_{A}}{V_{D1} \cdot V_{C1} \cdot V_{C2}} + T_{t}$.

$$T_{K} = T_{A} + T_{t}$$

und

Die endgültige Festlegung der Reglerparameter kann nur durch Simulation auf dem Rechner oder empirisch, bei Inbetriebnahme der Haspelregelung, erfolgen. Ähnlich wie in Abschnitt 6.1.4 gezeigt, liegt nämlich durch die Bandkopplung von Haspel und S-Rolle ein Feder-Masse-System höherer Ordnung mit zahlreichen Störgrößen vor. Außerdem ist das nichtlineare Verhalten der Verlustkompensation und die Strombegrenzung zu berücksichtigen. Zum Thema Simulation ist in /23/ ein Überblick gegeben.

Mit den gegebenen Anlagedaten ist dann auch die Auslegung des Motors möglich. Geht man von der kleinsten Bremszeit T_B und dem größten Bunddurchmesser D_{max} bei der höchsten Bandgeschwindigkeit

299

v_{max} aus, erhält man das vom Motor aufzubringende Maximalmoment, seine Leistung und Drehzahl. Es sei

т _в	=	5s	Jm	=	200 kgm ²
F	=	4.000 N	J _K	=	8 kgm ²
D _{min}	=	O,5 m	JW	=	16 kgm ²
D _{max}	=	2,5 m	J _G	=	21 kgm ²
b	=	1,4 m			
ρ	=	7,68·10 ³ kg/m ³			
i	=	1,85	Ø	=	0,5 Vs
^η G	=	0,83	с ₂	=	100
v _{max}	=	30 m/s = 108 km/h			

Mit Gleichung (6.21) und (6.22) erhält man das maximale Motormoment

$$M_{\rm M} = \frac{4.000 \cdot 2.5}{2 \cdot 1.85 \cdot 0.83} \quad \text{Nm} + \frac{2 \cdot 1.85 \cdot 30 \cdot 14.76 \cdot 10^3}{2.5 \cdot 5} \quad \text{Nm}$$
$$M_{\rm M} = 3.256 \quad \text{Nm} + 131.072 \quad \text{Nm} = 134.328 \quad \text{Nm} .$$

Der Hauptanteil des Moments ist demnach zum Bremsen/Beschleunigen der Massen erforderlich und im wesentlichen vom Bunddurchmesser abhängig. Ähnliche Ergebnisse sind in /68/ aufgezeigt. Für die Motorleistung ergibt sich mit

$$n_{M} = \frac{v_{max} \cdot i}{\pi \cdot D_{max}}$$

$$P_{M} = 2\pi \cdot n_{M} \cdot M_{M} = \frac{2 \cdot i \cdot v_{max} \cdot M_{M}}{D_{max}} = 5,964 \text{ MW}.$$

Während des Nachwalzens im Bereich C gilt für konstante Bandgeschwindigkeit, daß die Bunddurchmesserzunahme der Drehzahlabnahme proportional ist (Bild 6.34). Die größte Drehzahl ohne Feldschwächung (Leerlaufdrehzahl) wird daher bei D_{min} zu fahren sein.

Bei dieser Drehzahl ist in unserem Fall v $_{\rm B}$ \gtrsim 21 m/s. Somit beträgt die Leerlaufdrehzahl des Motors

$$n_{o} = \frac{v_{B} \cdot i}{\pi \cdot D_{min}} = \frac{21 \cdot 1,85}{\pi \cdot 0,5} s^{-1} = 1.484 min^{-1}$$

Eine bessere statische Genauigkeit des konstant zu haltenden Bandzuges wird mit der direkten Zugregelung der Haspel erreicht /64/.

•

Dabei erfaßt man den Bandzug mit einer Druckmeßdose, die an einer Umlenkrolle angebracht ist. Damit kann ein größerer Bandzugstellbereich realisiert werden ($F_{max}/F_{min} > 10$). Es ist jedoch darauf zu achten, daß der Umschlingungswinkel der Meßrolle groß und ihre Masse klein ist. Nur dann ist eine verzögerungsfreie Zugmessung ohne Bandrutschen möglich. Das Ausgangssignal des Bandzugreglers wirkt nun entweder als Korrekturgröße auf den Stromregler (Bild 6.36) oder man überlagert den Zugregelkreis dem Geschwindigkeitsregelkreis (Bild 6.37).

Die Kaskadenregelung mit überlagertem Zugregelkreis ergibt das in Bild 6.38 dargestellte Blockschaltbild. Der Übergang von der Bandgeschwindigkeit zur Zugkraft ist durch folgenden Zusammenhang beschrieben.

Der Bandzugistwert errechnet sich aus der Banddehnung ϵ und dem Bandquerschnitt A mit dem Elastizitätsmodul E.

$$F_{i} = A \cdot E \cdot \epsilon$$

$$\epsilon = \Delta 1/1 .$$
(6.27)

Die Längung Δl des Bandes entspricht der Differenz aus von der S-Rolle gelieferter Bandlänge l_R und aufgewickelter Bandlänge l_H , also

$$\Delta l = l_H - l_R .$$

mit

Die aufgewickelte Bandlänge \mathbf{l}_{H} steht nun mit der Bandgeschwindigkeit $\mathbf{v}_{\mathbf{R}}$ in Beziehung, so daß

$$v_B = \frac{dl_H}{dt}$$
 oder $v_B = pl_H^0$.

Es ergibt sich demnach ein I-Glied mit der Zeitkonstanten T $_{\rm W}$ = 1 m/v $_{\rm p}$ und ein Proportionalglied mit der Verstärkung

$$V_{S6} = \frac{A \cdot E}{1}$$
.

Der Strom- und Geschwindigkeitsregler läßt sich mit den Gleichungen (6.25) und (6.26) näherungsweise dimensionieren. Für den Zugregler ist wegen der zwei I-Strecken PD-Verhalten zu wählen. Der vereinfachte Zugregelkreis ist in Bild 6.39 dargestellt und führt auf den Frequenzgang

$$\stackrel{o}{_{F_{o3}}} \stackrel{v}{_{R3}} \cdot \frac{v_{R3} \cdot v_{S6} \cdot (1 + pT_V)}{pT_w} \cdot \stackrel{o}{_{F_V}} .$$

 F_v erhält man aus Gleichung (5.59) für $pm^2T_K \approx 1 + pm^2T_K$.

Bild 6.39 Vereinfachtes Blockschaltbild der Haspelregelung aus Bild 6.38

Damit wird nach kurzer Rechnung

$$\overset{O}{F}_{O3} \approx \frac{V_{R3} \cdot V_{S6} \cdot (1 + pT_{v})}{pT_{w} \cdot (1 + p \frac{T_{H}}{V_{R2} \cdot V_{S4}})(1 + pT_{K}')}$$
(6.28)

wählt man

$$T_V = T_K'$$
,

bleibt der Frequenzgang einer PT1-I-Strecke übrig, also

$$\stackrel{o}{F_{o3}} \approx \frac{V_{R3} \cdot V_{S6}}{pT_{w} \cdot (1 + p \ \frac{T_{H}}{V_{R2} \cdot V_{S4}})}$$

Für $\alpha_{\rm R}$ = 60[°] läßt sich nun der Phasenwinkel angeben zu:

$$\varphi_{o(\omega_D)} = -120^{\circ} \approx - \arctan(\omega_D \frac{T_H}{V_{R2} \cdot V_{S4}}) -90^{\circ}$$

So erhält man für die Durchtrittsfrequenz

$$\omega_{\rm D} \approx \frac{\sqrt{3} \, v_{\rm R2}^{} v_{\rm S4}^{}}{3 \cdot T_{\rm H}^{}} \ .$$

Aus dem Frequenzgangbetrag bei der Durchtrittsfrequenz errechnet sich schließlich die Reglerverstärkung V_{R3} .

Mit

$$|\mathbf{F}_{03}| \stackrel{!}{=} 1 \approx \frac{\mathbf{v}_{R3} \cdot \mathbf{v}_{S6}}{\omega_{D} \mathbf{T}_{W}} \sqrt{1 + \frac{\omega_{D}^{2} \mathbf{T}_{H}^{2}}{\mathbf{v}_{R2}^{2} \cdot \mathbf{v}_{S4}^{2}}}$$

folgt durch Einsetzen von $\boldsymbol{\omega}_D$

$$V_{R3} \approx \frac{2 \cdot V_{R2} \cdot V_{S4} \cdot T_{W}}{3 \cdot V_{S6} \cdot T_{H}} .$$
(6.29)

6.1.7 Banddickenregelung

Banddickenregelungen werden immer da eingesetzt, wo es auf eine hohe Maßgenauigkeit der Walzprodukte ankommt (Folien, Feinbleche usw.). Unter den Qualitätsforderungen nimmt die Banddicke einen großen Stellenwert ein. Sie soll entlang des gesamten Bandquerschnittes möglichst konstant sein. Einen Überblick über die verschiedenen Regelverfahren wird in /66/ gegeben. Bisher ist es allerdings nicht möglich, die Banddicke direkt im Walzspalt zu erfassen.

Für die Messung gibt es mehrere Möglichkeiten (Bild 6.40).

- Messung des Arbeitswalzenabstandes an den Walzenzapfen mit Hilfe der Hydraulikzylinderposition
- Berührungslose Messung der Banddicke hinter und/oder vor dem Walzspalt (Tabelle 4.10)
- 3. Errechnen der Banddicke aus der Anstellposition der Arbeitswalzen und der Walzkraft.

Störgrößen der Dickenregelung sind das Feder-Masse-System des Walzgerüstes, die Walzenbiegung, die Exzentrizität der Walzen, die Geschwindigkeit des Bandes vor, im und hinter dem Walzspalt sowie die veränderlichen Winkel α_{o} und α_{s} der Haft- und Gleitzone (zwischen Walzgut und Walze).

Bild 6.40 Mechanische Darstellung des Reduzierwalzvorgangs und seiner wichtigsten Systemgrößen

Als Stellgrößen, wie schon aus dem Bild 6.40 zu ersehen, können zur Beeinflussung der Dickenregelung die Walzkraft F_w und der Abstand der Walzen S herangezogen werden. Den Abstandswert S erfaßt man an den Walzenzapfen.

Er ist jedoch nicht identisch mit dem realen Walzenabstand, da sich infolge der Walzkraft eine Abplattung und Längsbiegung der Walzen ergibt. Bei weichem Walzgut sind der Walzenabstand S und die Walzkraft F_w Stellgrößen der Regelung. Hartes und dünnes Walzgut läßt sich mit S und F_w kaum beeinflussen. Man greift dann zum Bandzug als zusätzliche Stellgröße, der eine plastische Dehnung und damit eine Dickenabnahme des Bandes hervorruft. Oder man benutzt eine dickenabhängige Härtebewertung.

Zur Ausregelung schneller Dickenänderungen, bedingt durch Schweißnähte o.ä., benutzt man die Dickenabweichung $\Delta h = h_s - h_i$. Sie wirkt auf den Walzspalt erhöhend oder vermindernd. Da der Banddikkenistwert erst in einigem Abstand vom Walzspalt gemessen wird, ist der Einfluß von Δh mit der Laufzeit T_t des Bandes, vom Walzspalt bis zur Meßstelle zu bewerten. Der gesamte Regelkreis ist daher mit einer Totzeit behaftet, die die Regeldynamik begrenzt.

Eine weitere Hilfsgröße ist die Schräglage S_D. Mit ihr kann ein Verlaufen des Bandes quer zur Walzrichtung korrigiert werden. Man verfährt dabei so, daß an der Regelung für die linke Walzenseite der Wert S_D von S subtrahiert und an der rechten Walzenseite addiert wird.

Der umgekehrte Fall ist ebenfalls möglich, je nach Bandverlauf. So ergibt sich ein Schwenken um die Walzenmitte (Bild 6.41).

Das Prinzip einer Positions- bzw. Walzgutdickenregelung ist in Bild 6.42 dargestellt. Als Stellglied sind hier zwei hydraulische Zylinder, für jede Walzenseite eingesetzt. Sie werden angesteuert von zwei Servoventilen (SVL, SVR), die über Impedanzwandler mit den zugehörigen Reglern verbunden sind.

Durch die Trennung in zwei unabhängige Regelkreise (Walzspaltregler, Walzkraftregler) läßt sich das gesamte System veränderlichen Betriebsbedingungen anpassen.

Bild 6.41 Wirkung der Servoventile und Hydraulik-Zylinder auf die Anstellung der Arbeitswalzen

Im allgemeinen reicht das Konstanthalten des Walzenabstandes S mit den schnell reagierenden Walzspaltreglern bereits aus, um materialbedingte Auffederungen auszugleichen.

Trotzdem ist es angebracht, die walzkraftbedingten Gerüstschwankungen mit der Störgrößen-Aufschaltung F_w/c_G zu kompensieren. Zur hochgenauen Regelung der Enddicke h_2 ist dem Walzspaltregelkreis ein Banddickenregelkreis überlagert. Es werden unter Berücksichtigung der Laufzeit T_t Korrekturbefehle an den Walzspaltzähler gegeben. Ebenso gibt die Härtebewegung, abhängig von der Dickenabweichung Δh_2 und der Geschwindigkeit v_2 , Korrekturbefehle an den Walzspaltzähler.

In der Betriebsart Walzkraftregelung wird auf die Summenwalzkraft $F_W = F_{WiL} + F_{WiR}$ geregelt. Die Walzkraftistwerte werden über eine Druckmessung erfaßt. Oft führt man bei Walzkraftregelung gleichzeitig die Walzspaltistwerte nach ($S_s = S_i$), so daß ein stoßfreies Umschalten in Walzspaltregelung möglich ist.

Für die Betriebsart Walzspaltregelung sollen nun die Reglerparameter bestimmt werden. Es genügt, die Berechnung auf ein Servoventil zu beziehen, da die gesamte Regelung symmetrisch aufgebaut ist. Das Blockschaltbild entspricht einer Kaskadenregelung mit geschwindigkeitsabhängiger Adaption der Härtebewertung, des Walzspaltsollwertzählers und der Laufzeit $T_t = 1/v_2$ (Bild 6.43). Alle Geschwindigkeitseinflüsse sind demnach multiplikative Störgrößen, während die Walzgerüst-Auffederung eine Störgrößenaufschaltung darstellt. Die Exzentrizität der Walzen, welche infolge der Rotation ein sinusförmiges Schwingen der Auslaufbanddicke h₂ zur Folge hat, blieb der Einfachheit halber unberücksichtigt. Der Walzspaltsollwertzähler hat I-Verhalten.

Das Servoventil hat etwa ${\rm PT}_2\mbox{-Verhalten}$ (Tabelle 4.7 bzw. Abschnitt 3.8), also

$${}_{F_{S2}}^{O} = \frac{V_{S1}}{1 + 2dpT_2 + p^2T_2^2}$$

mit $V_{S1} = 1$, $T_2 = 10$ ms, d = 0.6, $\omega_0 = 1/T_2$.

Der Einfluß einer Walzspaltänderung macht sich erst nach der Laufzeit $T_t = 1/v_2$ am Banddickenmeßgerät bemerkbar. Die Folge ist ein Totzeitglied.

$${}^{\mathrm{O}}_{\mathrm{F}_{\mathrm{S3}}} = \mathrm{V}_{\mathrm{S2}} \cdot \mathrm{e}^{-\mathrm{pT}_{\mathrm{t}}}$$

 $V_{S2} = 1.$

mit

Bei relativ geringer Stichabnahme $(h_1 - h_2)/h_1$ sei $v_1 \not\approx v_w \not\approx v_2 \not\approx 20 \text{ m/s} = \text{konstant.}$ Der Abstand zwischen Walzspalt und Dickenmeßgerät betrage l = 1 m. Damit wird $T_t \not\approx 50 \text{ ms}$. Das Totzeitglied kann hier also nicht durch PT_1 -Verhalten ersetzt werden. Der Meßumformer für den Walzspalt arbeitet verzögerungsfrei und der für die Banddicke hat etwa PT_1 -Verhalten, so daß

$${}^{O}_{F_{S4}} = V_{S3}$$
 und ${}^{O}_{F_{S5}} = \frac{V_{S4}}{1 + pT_{3}}$

mit

Der Frequenzgang des offenen Walzspaltregelkreises errechnet sich bei Verwendung eines P-Reglers zu:

 $V_{S3} = V_{S4} = 1$, $T_3 = 15$ ms.

Für eine Verstärkung von $V_{R1} = 50$ ergibt sich eine Durchtrittsfrequenz von $\omega_{D1} \approx 5$ kHz bei relativ kleiner Phasenreserve. Setzt man die Verstärkung auf $V_{R1} = 10$ herab, sinkt die Durchtrittsfrequenz auf $\omega_{D1} \approx 1$ kHz und die Phasenreserve steigt an. Ist man bestrebt, die große Reglerverstärkung beizubehalten, empfiehlt sich der Einsatz eines PD-Reglers mit $T_{V1} = T_2$. Dann liegt ω_{D1} weit außerhalb der Betriebsfrequenz des Walzspaltregelkreises. Bei großen Werten der Verstärkung ist nun aber eine Begrenzung der Stellgröße am Reglerausgang auf 10 V notwendig (siehe Gleichung (5.62) Abschnitt 5.6.3).

Bei konstanten Geschwindigkeiten v₁ z v₂ z 20 m/s und ohne Störgrößenaufschaltung (- F_w/c_G) lautet der Frequenzgang des offenen Banddickenregelkreises:

$$\mathbf{F}_{o2}^{o} = \frac{\mathbf{V}_{S2} \cdot \mathbf{V}_{S4} \cdot \mathbf{F}_{R2} \cdot \mathbf{F}_{H} \cdot \mathbf{e}^{-\mathbf{pT}_{t}} }{\mathbf{pT}_{I} \cdot (1 + \mathbf{pT}_{3})}$$

Mit

$$\hat{F}_{H} = \frac{\hat{V}_{O1}}{1 + \hat{F}_{O1}} = \frac{V_{R1} \cdot V_{S1}}{1 + V_{R1} \cdot V_{S1} \cdot V_{S3} + 2dpT_{2} + p^{2}T_{2}^{2}}$$

folgt für $V_{R1} \cdot V_{S1} \cdot V_{S3} >> 1$ und $T_R = T_2 / (V_{R1} \cdot V_{S1} \cdot V_{S3})$

$$\overset{O}{F}_{O2} \approx \frac{ \overset{V}{V}_{S2} \cdot \overset{V}{V}_{S4} \cdot \overset{F}{F}_{R2} \cdot \overset{O}{e} }{ \overset{V}{V}_{S3} \cdot pT_{I} \cdot (1 + pT_{3}) \cdot (1 + 2dpT_{R} + p^{2}T_{R}^{2}) }$$

Durch die Verwendung eines PD-Reglers mit $T_{V2} = T_3$ erhält man schließlich

$$\stackrel{o}{}_{F_{o2}} \stackrel{\mathcal{H}}{\to} \frac{ \underbrace{V_{R2} \cdot V_{S2} \cdot V_{S4} \cdot e}_{V_{S3} \cdot pT_{I}} \cdot (1 + 2dpT_{R} + p^{2}T_{R}^{2}) }{ \underbrace{V_{S3} \cdot pT_{I} \cdot (1 + 2dpT_{R} + p^{2}T_{R}^{2})} }$$

Für diesen Frequenzgang läßt sich bei $\alpha_{\rm R}^{}$ = 30[°] folgende Durch-trittsfrequenz ermitteln.

Es gilt

$$\varphi_{O(\omega_{D2})} = -150^{\circ} \approx -90^{\circ} - \frac{\omega_{D2} \cdot T_{t} \cdot 180}{\pi} - \arctan \frac{2d\omega_{D2} \cdot T_{R}}{1 - \omega_{D2}^{2} T_{R}^{2}}$$

Man errechnet $\omega_{D2} \approx 21$ Hz. Bei der Durchtrittsfrequenz ist der Frequenzgangbetrag $|F_{O2}| = 1$, so daß die Gleichung für die Banddickenregler-Verstärkung lautet:

$$v_{R2} \approx \frac{v_{S3} \cdot \omega_{D2} \cdot r_{I} \cdot \sqrt{(1 - \omega_{D2}^{2} r_{R}^{2})^{2} + 4d^{2} \omega_{D2}^{2} r_{R}^{2}}}{v_{S2} \cdot v_{S4}}$$

Für die gegebenen Werte wird $V_{R2} \approx 2,1$.

Mit Banddickenregelungen und unterlagertem Walzspaltregelkreis lassen sich Dickenabweichungen von ca. 10 μ m ausregeln; speziell bei dem auf diesem Prinzip basierenden SGC-Verfahren, welches von den Firmen Achenbach und BBC entwickelt wurde.

6.1.8 Regelung einer Streckrichteinheit

Bänder und Bleche werden oftmals in Mehrrollen-Richtmaschinen plangerichtet. Dabei wird das Material mehrfach gewalkt und durch eine unterschiedliche Anstellung der Richtrollen die Biegung beseitigt. Der für die Richtrolle gemeinsame Antrieb ist drehzahlgeregelt. Nachteilig ist, daß das Bedienungspersonal den Richtvorgang ständig den Materialeigenschaften und der Beschaffenheit des Bandes anpassen muß. Bessere Ergebnisse werden erzielt, wenn das durchlaufende Band zusätzlich mit Hilfe des Bandzuges gestreckt wird.

Derartige Streckrichteinheiten bestehen aus mehreren S-Rollen, mit denen über den Umschlingungswinkel α und die Reibung der Bandzug auf- und abgebaut werden kann.

Der Zusammenhang zwischen dem Bandzug vor und hinter einer S-Rolle ist (Bild 6.44).

Dabei ist der Reibungsbeiwert μ von der Oberflächenbeschaffenheit der S-Rolle und des Bandes abhängig. Mit zunehmender Geschwindigkeit nimmt er infolge des auftretenden Aeroplanings rapide ab. Bei trockenen geschliffenen Stahlrollen dürfte der Reibungsbeiwert zwischen 0,15 und 0,2 liegen.

Durch die Zugdifferenz als Folge der Drehzahldifferenz zwischen den S-Rollen ergibt sich eine Längung des Bandes, die geregelt wird. Da die Längung in den meisten Fällen 3% nicht überschreitet, ist die Meßwerterfassung entsprechend genau auszulegen.

Das Regelprinzip basiert auf der digitalen Erfassung der ein- und auslaufenden Bandlängen je Meßzyklus. Daraus wird die Längung (auch Dressiergrad genannt) gebildet, welche auf die Drehzahlregelung der auslaufseitigen S-Rolle bandzugkorrigierend eingreift. Die einlaufseitige S-Rolle wird gleichzeitig starr drehzahlgeregelt (Bild 6.45).

Bild 6.45 Regelschema einer Streckgradregelung

Die gemessene Längung ist demnach definiert als

$$l_{i} = \frac{l_{a} - l_{e}}{l_{e}} , \qquad (6.31)$$

oder auch, wegen der Gültigkeit der Massenkonstanz, als Geschwindigkeitsdifferenz.

$$l_{i} = \frac{v_{a} - v_{e}}{v_{e}} \quad (6.32)$$

Der digitale Teil der Regelung besteht aus zwei Impulsgebern (Winkelschrittgebern) mit möglichst hoher Impulszahl/Umdrehung (meist sind es 2.500 Imp./Umdr.), die zwei Zähler ansteuern (Bild 6.46). Zählt der auslaufseitige Zähler die ankommenden Impulse vorwärts und der einlaufseitige Zähler rückwärts von einem Festwert aus, erhält man die Längung, wenn bei $Z_e = 0$ der auslaufseitige Zähler gestoppt wird. Dann ist $Z_a = 1_i$ und wird in einem nachgestalteten Speicher festgehalten. Ein Subtrahierer bildet die Regeldifferenz $x_d = 1_s - 1_i$ und führt sie einem digitalen I-Regler zu. Die entstehende Stellgröße y wird D/A-gewandelt und greift als Hilfsregelgröße auf den Drehzahlregler der Auslauf-S-Rolle bandzugbeeinflussend (und damit längungsbeeinflussend) ein.

Es handelt sich demnach um eine digital-analog arbeitende Abtastregelung mit variabler Abtastzeit $T_{\tau_{\tau}}$.

Diese ist von der Bandgeschwindigkeit v, dem S-Rollendurchmesser und der Anzahl der Impulse/Umdrehung sowie der Rechenzeit T $_{\rm R}$ der Digitalschaltung abhängig. Es ist dann

$$\mathbf{T}_{\mathbf{z}} = \frac{\mathbf{D} \cdot \mathbf{\pi}}{\mathbf{v} \cdot \mathbf{J}} + \mathbf{T}_{\mathbf{R}} \quad . \tag{6.33}$$

Mit D = 300 mm, v = 300 m/min = 4 m/s, J = 2.500 Imp./Umdr. und $T_{\rm R}$ = 10 µs erhält man eine Abtastzeit von $T_{\rm R}$ 85 µs.

Das Blockschaltbild der gesamten Regelung ist in Bild 6.47 dargestellt. Es zeigt die Drehzahlregelung mit unterlagertem Stromregelkreis für die auslaufseitige S-Rolle. Auf diese Kaskadenregelung greift die Längungs- oder Streckgradregelung als Hilfsregelgröße am n-Regler ein. Es besteht auch die Möglichkeit, daß die Längungsregelung der Drehzahlregelung den Sollwert vorgibt. Dann handelt es sich um eine Kaskadenregelung aus Längungs-, Drehzahl- und Stromregelkreis. Nachteilig wirkt sich jedoch aus, daß die Stellgröße des Längungsreglers nicht nur den zugerzeugenden Drehzahlzusatz Δn enthält, sondern auch den Drehzahlwert zum Erreichen der Betriebsbandgeschwindigkeit; demnach wäre $\overline{y} = n_c + \Delta n = [0...+10V]$.

Es empfiehlt sich daher die Regelung mit Hilfsregelgröße ($\overline{y} = \Delta n$), da so der volle Signalpegel von 0... <u>+</u> 10 V zur Beeinflussung der Längung allein zur Verfügung steht.

Geht man zunächst von der Längung Null und n_s = n_i aus, macht sich die Vorgabe eines Längungssollwertes wie folgt bemerkbar.

Infolge $l_s > l_i$ beginnt der Längungsregler zu integrieren und erzeugt die Stellgröße $\overline{y} = \Delta n$. Damit steigen der Drehzahlistwert n_i und $v_i = v_a$. Bei unveränderter Einlaufgeschwindigkeit v_e nimmt daraufhin die Längung l_i zu, bis $l_i = l_s$ erreicht wird. Dann ist $x_d = l_s - l_i = 0$ und der Längungsregler integriert nicht weiter, so daß die Stellgröße \overline{y} genau den zum Erreichen der vorgegebenen Längung l_e erforderlichen Drehzahlzusatz Δn beibehält.

Die Dimensionierung des Drehzahl- und Stromregelkreises erfolgt so, wie in Abschnitt 5.6.3 bereits gezeigt. Da die Hilfsregelgröße Δn durch Abtastung entsteht und ihr Wert von der Geschwindigkeits- bzw. Längungsdifferenz v_a - v_e abhängt, läßt sich ihr Einfluß auf die Drehzahlregelung nur mit grober Näherung angeben. Es empfiehlt sich daher eine Rechnersimulation oder die empirische Untersuchung bei Inbetriebnahme der Streckgradregelung.

6.2 Zeitdiskrete Regelungen

6.2.1 Regelung von Roboterantrieben mit Rechner

Industrieroboter sind freiprogrammierbare Manipulatoren mit mehreren Freiheitsgraden. Ihre Entwicklung wurde ausgelöst durch das Aufkommen der Mikrorechner in Verbindung mit hochdynamischen Antrieben (z.B. Scheibenläufermotoren).

Die von der Industrie geforderte Automatisierung von teilweise stupiden Handhabungsvorgängen in Verbindung mit Markt- und Arbeitsplatzanalysen führte zu der heute üblichen Bauweise von Industrierobotern.

Mögliche Einsatzgebiete sind:

Montieren	Schleifen
Schrauben	Drehen
Löten	Fräsen
Schweißen	Bohren
Pressen	Stanzen

Objekterkennung Sortieren Justieren Testen

Die Steuerung wird meist mit einem problemorientierten Programm erreicht, das auf den üblichen Speichermedien (Magnetband, Plattenspeicher, Halbleiterspeicher) untergebracht ist.

Während bei einer Werkzeugmaschine mit NC- oder CNC-Steuerung nur digitale Schalt- und Weginformationen für die Haupt- und Nebenantriebe programmiert werden, benötigt ein Industrieroboter zusätzlich Kommunikationsinformationen bezüglich Lage und Form des zu handhabenden Objektes.

Je nach der Art der Programmierung steigt die Anzahl der Programmschritte und damit der Speicherbedarf stark an. Bei der Hand-Programmierung sind mehr als 100 Schritte nicht wirtschaftlich.

Die sogenannte Teach-in-Programmierung (Vorführprogrammierung), bei der mit verminderter Geschwindigkeit der Greifarm entlang der gewünschten Bahn bewegt wird und die Sensor- bzw. Wegistwerte in Sollwerte umgesetzt werden, kommt mit 10⁴ Schritten aus.

318

Programmierungen mit Programmsprachen, speziell für die Montage von Einzelteilen, erfordern mehr als 10⁶ Schritte, da sich hier das Auflösungsvermögen und die Sensorgenauigkeit direkt auf die Speicherkapazität auswirken.

Die Regelung von Industrierobotern erfolgt in zunehmendem Maße mit elektrischen Antrieben (Schrittmotoren, Scheibenläufermotoren) in Verbindung mit digitalen Sensorsystemen und/oder Winkelcodierern zur Lage-, Form- und Wegerfassung sowie Getrieben.

Der Scheibenläufermotor ist wegen seines eisenlosen Läufers mit Flachkollektor besonders gut geeignet für schnellen Anlauf und ein ruckfreies Arbeiten in allen Drehzahlbereichen. Bei Netzspannungen von 10V ... 50V erhält man Motorleistungen von 5W ... 500W bei Drehzahlen bis 1.500/min..

Für die geforderten hohen Momente und Übersetzungsverhältnisse kommen als Getriebe hier nur die sogenannten Harmonic-Drive-Getriebe zum Einsatz. Sie sind mit Übersetzungsverhältnissen von 60 ... 400 realisierbar und besitzen infolge des formschlüssigen Aufbaus in Verbindung mit einem Zahnriemen praktisch keine Getriebelose (Ansprechschwelle).

Der prinzipielle Aufbau einer solchen Regelung für eine Drehachse ist in Bild 6.48 dargestellt. Es ist üblich, die Stellantriebe in Polarkoordinaten fahren zu lassen, also r, φ , z und die Eingaben in kartesischen Koordinaten vorzunehmen, also x, y, z.

Normalerweise verfügen heutige Industrieroboter über sechs oder mehr Freiheitsgrade, realisiert durch die Translationsfreiheitsgrade $r_1 \ldots r_n$ und die Rotationsfreiheitsgrade $\varphi_1 \ldots \varphi_n$. Aufgabe der Regelung ist dabei das simultane Verfahren aller für die jeweilige Bewegung notwendigen Achsen zum Erreichen eines vorgegebenen Punktes (oder einer Bahn). Ein Punkt muß mit großer Geschwindigkeit und Wiederholgenauigkeit angefahren werden können.

Die Sollwerte sind als Punktfolge gespeichert und werden nacheinander abgerufen, mit dem Istwert verglichen und als Stellgröße der Drehzahl- und Stromregelung zugeführt. Schwierigkeiten machen die zahlreichen Nichtlinearitäten sowie die Kopplung der Freiheitsgrade-Regelungen untereinander. Nichtlinearitäten sind hier

Bild 6.48 Schema der Regelung eines Industrieroboters für einen Freiheitsgrad

die ersatzweise als Totzeit anzunehmenden Abtast- und Zykluszeit des Rechners, die Totzeit der Stromrichter, die Ansprechschwelle der Getriebe (Lose) und die der Robotermechanik.

In Bild 6.49 ist das Prinzip der Bahnregelung eines Industrieroboters für zwei Freiheitsgrade dargestellt /71/. Es zeigt sich, daß r und φ über die Zentrifugal-Beschleunigung b_z und die Coriolis-Beschleunigung b_{cor} miteinander gekoppelt sind. Diese Kopplungen machen sich besonders bei hohen Bewegungsgeschwindigkeiten bemerkbar. In /5/ sind b_z und b_{cor} auf den Seiten 18, 56 und 57 angegeben als:

 $b_z = r \cdot \omega^2$ und $b_{cor} = 2\dot{r}\omega$

mit der Winkelgeschwindigkeit $\omega = d\varphi/dt$.

Die Regelstrategie muß daher ein alle Achsen umfassendes Gesamtkonzept darstellen, bei dem eine nichtlineare Systementkopplung gute Ergebnisse bringt /69/ /70/.

Von zentraler Bedeutung ist der Rechner. Mit ihm wird der Informationsfluß gesteuert, die Koordinatentransformation errechnet, der Regelalgorithmus für alle Freiheitsgrade-Regelungen gebildet und die Zustandsgrößen (Weg, Winkel usw.) überwacht.

In Bild 6.50 ist die Bahnregelung eines Roboters unter Berücksichtigung der genannten Aspekte für zwei Freiheitsgrade, aufgeteilt in Soft- und Hardwarekomponente dargestellt. Die beiden Stellantriebe für r und φ erhalten ihre Sollwerte vom Stromregelkreis, dem ein Geschwindigkeits- und ein Wegregler überlagert sind /72/.

Es ist klar, daß die Dimensionierung der einzelnen Regelkreise sicher nicht mit den in diesem Buch behandelten Methoden zufriedenstellend gelöst werden kann. Nur wenn der Einfluß der Zentrifugal- und Coriolis-Beschleunigung als reine Störgröße aufgefaßt wird, läßt sich eine Dimensionierung ähnlich wie in Abschnitt 5.6.3 und 5.6.4 angeben. Dies ist jedoch nicht sinnvoll, da sich infolge der stark geschwindigkeitsabhängigen Systemkopplungen ein zu großes Überschwingen beim Anfahren eines Punktes ergibt (evtl. Beschädigung des Werkstücks). Für eine exakte mathematische Behandlung der Roboter-Regelung sei daher auf die Literaturstellen /73/, /74/, /75/ und /76/ hingewiesen.

Einen guten Überblick über die Bauweise, Programmierung und Anwendung von Industrierobotern gibt Raab /77/ in seinem "Handbuch Industrieroboter".

6.2.2 Regelung von Asynchronmotoren mit Mikrorechner

Asynchronmotoren sind wegen ihrer kollektorlosen Bauweise robuster als vergleichbare Gleichstrommotoren. Man ist daher bestrebt, beim Asynchronantrieb die gleichen guten Regeleigenschaften zu erreichen, wie sie der Gleichstromantrieb hat. Dem stehen jedoch die verschiedenen nichtlinearen Kopplungen der Systemgrößen entgegen. Hinzu kommt die Tatsache, daß eine Regelung, anstelle zweier Gleichspannungen für Anker und Feld, beim Asynchronantrieb drei phasenverschobene Wechselspannungen zu berücksichtigen hat. Bei Verwendung eines Kurzschlußläufermotors entziehen sich die Läuferströme einer direkten Messung. Das elektrische Ersatzschaltbild einer Asynchronmaschine ist unter Vernachlässigung der Eisenverluste für eine Phase in Bild 6.51 dargestellt. Daraus lassen sich mit $\Sigma U = 0$ zwei Maschengleichungen ablesen.

Bild 6.51 Elektrisches Ersatzschaltbild einer Asynchronmaschine für eine Phase (ohne Eisenverluste)

Mit p = d/dt folgt:

$${}^{o}_{u_{s}} = {}^{R}_{s}{}^{i}_{s} + {}^{p}{}_{L}{}^{o}_{s}{}^{i}_{s} + {}^{p}{}_{L}{}^{o}_{h}{}^{i}_{\mu}$$
, (6.34)

$$0 = \frac{R_{L}}{s} \dot{i}_{L} + pL_{R}\dot{i}_{L} + pL_{h}\dot{i}_{\mu}$$
(6.35)

mit $i_{\mu}^{o} = i_{S}^{o} + i_{L}^{o}$.

Für das Motormoment gilt

$$\overset{\circ}{\mathbf{m}} = \overset{\circ}{\mathbf{m}}_{\mathbf{L}} + \overset{\circ}{\mathbf{m}}_{\mathbf{b}} = \overset{\circ}{\mathbf{m}}_{\mathbf{L}} + \mathbf{J}_{\text{ges.}} \cdot \mathbf{p} \cdot \overset{\circ}{\boldsymbol{\omega}}$$
(6.36)

mit
$$\omega = \omega_1 \cdot (1 - s)$$
 und m $\Re \frac{6,126 \cdot U_S \cdot s}{\omega_1 R_L}$ (für s << 1).

 ω ist die Winkelgeschwindigkeit der Motorwelle, ω_1 die des Ständerfeldes und s ist der Schlupf.

Ohne große Einschränkungen kann ein symmetrisches Drehstromsystem vorausgesetzt werden, d.h.:

$$i_{U} = \hat{i}_{S} \cdot \cos(\omega_{1}t + \varphi_{i})$$
,

$$\begin{split} \mathbf{i}_{\mathbf{V}} &= \hat{\mathbf{i}}_{\mathbf{S}} \cdot \cos\left(\omega_{1} \mathbf{t} + \varphi_{\mathbf{i}} - 2\pi/3\right) ,\\ \mathbf{i}_{\mathbf{W}} &= \hat{\mathbf{i}}_{\mathbf{S}} \cdot \cos\left(\omega_{1} \mathbf{t} + \varphi_{\mathbf{i}} + 2\pi/3\right) . \end{split}$$

Das an die Ständerwicklung angeschlossene Drehstromsystem erzeugt eine zeitlich und räumlich veränderliche Flußwelle, die durch den Hauptfluß \emptyset_h beschrieben wird. Es ist

$$\overset{O}{\varnothing}_{h} = L_{h} \cdot (\overset{O}{i}_{S} + \overset{O}{i}_{L}) \quad .$$
(6.37)

Aus dem Induktionsgesetz iR = $-d\phi/dt$ ergibt sich, daß nur die quer zum Strom verlaufende Flußkomponente einen Drehmomentbeitrag liefert, während die Längskomponente zur Flußsteuerung herangezogen werden kann. Es liegt nahe, auch den Ständerstrom i_S in die zwei Flußrichtungen zu zerlegen /80/. Auf diese Weise ergeben sich Koordinaten mit Fluß-Orientierung, ähnlich wie bei der Gleichstrommaschine.

Man erhält nun für den Ständerstrom und die Ständerspannung in komplexer Schreibweise

$$\underline{I}_{S} = I_{S1} + jI_{Sq} , \qquad (6.38)$$

$$\underline{U}_{S} = U_{S1} + jU_{Sq} . (6.39)$$

Führt man den Zusammenhang zwischen L_h und den Induktivitäten L_S und L_t mit Hilfe der Streuziffern (σ_S , σ_L) ein, ist:

$$L_{S} = (1 + \sigma_{S})L_{H} \qquad L_{L} = (1 + \sigma_{L})L_{H} \qquad (6.40)$$

$$\sigma = 1 - \frac{1}{(1 + \sigma_{S})(1 + \sigma_{L})} \quad .$$

mit

Setzt man die Gleichungen (6.38) ... (6.40) in die Maschengleichungen (6.34) und (6.35) der Asynchronmaschine ein, ergeben sich zwei neue Bildgleichungen mit den transformierten Spannungen u_{S1} , u_{Sq} und Strömen i_{S1} , i_{Sq} .

$$\frac{\tilde{u}_{S1}}{R_{S}} = \tilde{i}_{S1}(1 + \sigma_{S} pT_{S}) + (1 - \sigma)\tilde{i}_{mL} pT_{S} - \sigma \omega_{1} T_{S} \tilde{i}_{Sq} , \qquad (6.41)$$

$$\overset{\circ}{\overset{u}{\overset{u}{\overset{s}{s}}}}_{R_{s}} = \overset{\circ}{\overset{i}{\underset{s}{s}}}_{sq} (1 + \sigma_{s} pT_{s}) + (1 - \sigma) \omega_{1} T_{s}^{s} \overset{o}{\overset{i}{\underset{mL}{s}}} + \sigma \omega_{1} T_{s}^{s} \overset{o}{\overset{i}{\underset{s}{s}}}_{1sl}$$
(6.42)

$$i_{mL}^{O} = i_{S1}^{O} / (1 + pT_{L})$$
 (6.43)

$$\omega = \omega_1 - \frac{\overset{O}{i}_{sq}(1 + pT_L)}{\overset{O}{i}_{s1}T_L}$$
(6.44)

und

$$T_{S} = L_{S}/R_{S}$$
 , $T_{L} = L_{L}/R_{L}$. (6.45)

Diese Art der Transformation verringert bzw. vereinfacht die nichtlinearen Systemkopplungen und führt zu einem der Gleichstrommaschine ähnlichen Regelkonzept (Bild 6.52).

Das Regelkonzept beinhaltet zwei Kaskadenregelkreise für u_{Sq} und u_{S1}, die Koordinaten-Transformation, den Stromrichter sowie die Flußermittlung. Wegen des recht komplexen Aufbaus der gesamten Regelung ist es sinnvoll einen Mikrorechner einzusetzen /81/. Seine Eingangsgrößen sind:

Das für den Momentenregler erforderliche elektrische Moment der Drehfeldmaschine ist gegeben durch

$$m = C \cdot \phi_h \cdot i_{Sq}$$

Die zugehörige Flußmessung kann mit Meßspulen erfolgen, deren Strom ig ein Maß für den magnetischen Fluß \emptyset_h ist. Dazu ist jedoch ein Eingriff in die Maschine notwendig. Es bietet sich daher für die allgemeine Anwendung die Berechnung von \emptyset_h mit Hilfe des läuferbezogenen Magnetisierungsstromes i_{mL} an. Mit den Gleichungen (6.37) und (6.43) ergibt sich der Fluß zu:

$$\overset{O}{\phi}_{h} = L_{h}^{O} \overset{O}{}_{mL} = L_{h}^{O} \overset{O}{}_{S1} / (1 + pT_{L}) .$$
 (6.46)

Nach dem Momentenregler und dem Stromregler erfolgt die Bildung der Spannungen u_{S1} , u_{Sq} mit Hilfe der Gleichungen (6.41) und (6.42). Für die anschließende Koordinaten-Transformation ist in /82/ ein Verfahren angegeben. Die Nachbildung der Zündwinkel α für den Stromrichter erfolgt in einer analogen Schaltung außerhalb des Mikrorechners.

Je nach dem, wie genau die einzelnen Regel- und Stellgrößen errechnet und mit welcher Auflösung sie D/A- oder A/D-gewandelt werden, ist die Programmrechenzeit entsprechend lang. Die davon abhängige Abtastzeit T_z sollte bezüglich der Regeldynamik 5 ms nicht überschreiten.

Mit dem rasanten Fortschreiten der Rechnertechnologie eröffnen sich sicher in naher Zukunft noch komfortablere Lösungen. Der Mikrorechner wird daher bald zum Alltag eines jeden Regeltechnikers gehören.

6.2.3 Längungsregelung mit ProzeBrechner

Zur Beeinflussung der Materialeigenschaften von Stoffbahnen ohne nennenswerte Dickenabnahme dient die Längungsregelung. Sie wird in Dressier- oder Nachwalzwerken zur Endbehandlung von Blechen eingesetzt oder ist einer Bundoptimierungslinie /83/ vorgeschaltet.

Als Maß für den Dressiergrad wird die, sich unter dem Einfluß der Walzkraft und des Bandzuges ergebende Längung des Materials herangezogen (Gleichung (6.31). Es ist besonders wichtig, die Längung l_i über einen großen Geschwindigkeitsbereich mit ausreichender Genauigkeit zu messen. Da sie in der Regel 3% nicht überschreitet, ist der Einsatz eines digitalen Meßwerterfassungssystems unumgänglich /79/.

Die Längungsregelung greift als Stellgröße auf die analoge Regelung der Walzkraft korrigierend ein. Das Regelschema, bei Einsatz eines Prozeßrechners, ist in Bild 6.53 dargestellt. Mit zwei Impulsgebern möglichst hoher Impulszahl/Umdrehung werden die einund auslaufseitigen Bandlängenstücke l_e und l_a erfaßt und im Prozeßrechner zu einer Digitalzahl verarbeitet.

Da die S-Rollen-Durchmesser verschieden sein können, geht das Durchmesserverhältnis D_a/D_e in die Längungsmessung mit ein. Damit ergibt sich für den Längungsistwert aus Gleichung (6.31)

$$l_{i} = \frac{D_{a}J_{a} - D_{e}J_{e}}{D_{e}J_{e}} = k \cdot \frac{J_{a}}{J_{e}} - 1 .$$
 (6.47)

 ${\bf l}_{\rm i}$ kann allerdings auch als Mittelwert über einen Meßzyklus errechnet werden, wenn Anfangs- und Endwert der Längung bekannt sind und linear verlaufen.

Damit sich ein eventuelles Bandrutschen an den S-Rollen nicht unmittelbar auf die Längungsmessung auswirkt, ist dem Rechenwert von l, ein Hystereseglied nachgeschaltet. Nach der Berechnung von Δ l erfolgt die Bildung des Walzkraftkorrekturwertes $\Delta F_1 = p\Delta l$. Die zur Korrektur einer Längungsänderung nötige Walzkraftänderung gibt der Faktor p an, also

$$p = dF_1/dl$$

p kann aus der Beziehung der Walzkraft als Funktion der Banddik-kenabnahme Δh ermittelt werden.

$$F_{W} = Q \sqrt{\Delta h} \quad . \tag{6.48}$$

Infolge der Volumenkonstanz beim Walzen ist

$$l_{e}h_{e} = l_{a}h_{a} = konstant,$$

also gilt auch mit Gleichung (6.36)

$$l_i = \frac{\Delta h}{h_a}$$
,

damit folgt

$$h_{a} = \frac{h_{e}}{l_{i} + 1}$$

$$\Delta h = \frac{l_{i}h_{e}}{l_{i} + 1} . \qquad (6.49)$$

und

Setzt man die Gleichung (6.49) in (6.48) ein, wird

$$F_W = Q \left| \frac{l_i h_e}{l_i + 1} \right|$$

Ist \mathbf{h}_{e} und Q nicht von \mathbf{l}_{i} abhängig, erhält man schließlich den Faktor p durch

$$p = \frac{dF_{1}}{dl_{i}} = \frac{d}{dl_{i}} \left(Q \sqrt{h_{e}} \sqrt{\frac{l_{i}}{1 + l_{i}}} \right) = \frac{Q \sqrt{h_{e}}}{2(1 + l_{i}) \sqrt{l_{i}(1 + l_{i})}}$$

mit der praxisnahen Annahme $l_i << 1$ und Z = $Q\sqrt{h_e}/2$ erhält man für p:

$$p = \frac{Z}{\sqrt{l_i}}$$
 bzw. mit $F_W \quad p = \frac{F_W}{2l_i}$. (6.50)

Damit der Eingriff in die Walzkraftregelung nicht sprunghaft erfolgt, wird der Korrekturwert ΔF_1 integriert. Das dargestellte Prinzip der Längungsregelung hat sich in der Praxis gut bewährt und wird bei Einsatz eines Prozeßrechners (oder Mikrorechners) höchsten Genauigkeitsansprüchen gerecht.

6.2.4 Direkte digitale Regelung von Fräsmaschinen mit CNC

Bei der Entwicklung neuer Produktionsmethoden in der spanenden Fertigung werden zunehmend digitale Regelstrategien eingesetzt. Die Realisierung mit Prozeß- oder Mikrorechnern führt zu leistungsfähigen numerischen Fertigungssystemen, die die CNC-Technik (Computerized Numerical Control) erweitern oder ergänzen helfen.

Die digitale Regelung übernimmt dabei folgende Aufgaben: Abtasten der Regelgröße Schnittmoment Errechnen des Regelalgorithmus Speichern und Ausgeben der Stellgröße Verwaltung der Datenschnittstellen mit der CNC.

Zur Wahl eines optimalen Regelalgorithmus gehört die genaue Betrachtung des Frequenzgangs der Regelstrecke. Sie besteht aus Bahnsteuerung, Fräs- bzw. Zerspanprozeß und Meßwerterfassung. Der Frequenzgang der Bahnsteuerung als Lagerregelkreis läßt sich aus Bild 6.54 ermitteln. Er besteht aus dem Lagerregler (P-Verhalten), dem Antrieb (PT₂-Verhalten), der Totzeit des Stromrichters (vernachlässigt) und dem I-Glied infolge der Hochlaufzeit T_H. Es wird

Der Lagerregelkreis der Bahnsteuerung entspricht demnach einer PT_3 -Strecke. Praxisnahe Parameter dieser Strecke sind /84/:

$$V_o = 20$$

 $T_H = 2 s$
 $w_{OB} = 100 \text{ Hz}$ bei einer Dämpfung von $d_B = 0.5$.

Der Fräsprozeß wird durch die Schnittkraftgleichung von Kienzle /85/ mit dem normierten Schnittmoment m beschrieben.

$$m_{(t)} = 10^{-3c} \cdot a \cdot r \cdot k_1 \cdot \sin^{-c} \kappa \cdot s_2^{(1-c)} \cdot s_{(t)}^{(6.52)}$$

Darin sind:

- c: Werkstoffkonstante
- a: Schnittiefe
- r: Radius des Werkzeugs
- k1: Hauptwert der spezifischen Schnittkraft (Konstante)
- κ : Einstellwinkel
- s₇: Zahnvorschub (Schneidenvorschub)
- S₍₊₎: Eingriff der einzelnen Frässchneiden als Störfunktion F_z.

Der Zusammenhang zwischen Zahnvorschub $\mathbf{s}_{\rm Z}$ und Vorschubgeschwindigkeit v $_{\rm i}$ wird durch die Beziehung

$$s_{z} = K_{o} \int_{0}^{t} [v_{i}(\tau) - v_{i}(\tau - T_{s}/z)]^{d\tau}$$
(6.53)

mit z: Zähnezahl des Fräsers

T_c = 1/n_c: Reziproker Wert der Hauptspindeldrehzahl

angegeben /86/. Aus den Gleichungen (6.52) und (6.53) ist zu entnehmen, daß zwischen der Ein- und Ausgangsgröße des Fräsprozesses ein hochgradig nichtlinearer Zusammenhang besteht. Eine mathematisch exakte Behandlung ist daher äußerst schwierig. Nach /87/ kann die Gleichung (6.53) jedoch näherungsweise durch ein PT₂-Glied dargestellt werden mit:

$$d_{F} = 0,7$$
 und $\omega_{OF} = \pi z/T_{S} = \pi z n_{S}$.

Für einen Messerkopffräser aus Titan läßt sich beispielsweise mit z = 10 und n_S = 60/min eine Kennkreisfrequenz von ω_{OF} = 31,4 Hz angeben.

Zwischen der Ausgangsgröße des Lagerregelkreises s_i und der Vorschubgeschwindigkeit v_i besteht eine, durch die Werkzeug-, Werkstück- und Bahngeometrie gegebene Beziehung. Setzt man eine geradlinige Bewegung voraus, kann s_i \sim v_i gesetzt werden.

Damit entspricht die vereinfachte Realisierung des Fräsprozesses nach Gleichung (6.52) der Darstellung in Bild 6.55. Der Schwingungseinfluß einzelner Zahnstöße auf das Schnittmoment kann mit Hilfe einer multiplikativen Störfunktion $F_z = \sin(2\pi n_S t)$ simuliert werden.

Bild 6.55 Blockschaltbild des Fräsprozesses (vereinfacht) einer Zerspanmaschine

Die Schnittmoment-Erfassung mit einem Momentensensor hat etwa PT₁-Verhalten. Die kleinste Zeitkonstante T₁ \approx 2 ms haben Dehnungsmeßstreifen. Sie werden ringförmig in Nuten an der Spindel angebracht. Die Signalübertragung erfolgt mit Schleifringen. Die Nähe der Meßstelle am Zerspanprozeß gewährleistet eine gute dynamische Nachbildung des Schnittmoments m_i.

Das gesamte Blockschaltbild der Schnittmomentregelung mit unterlagerter Bahnsteuerung (Lagerregelung) ist in Bild 6.56 dargestellt. Es handelt sich also in dieser Form um einen Abtastregelkreis mit einer PT₅-Strecke (siehe Abschnitt 6.5.4).

Wegen der erforderlichen Dynamik des Zerspanprozesses ist eine Abtastzeit von $T_Z \stackrel{\leq}{=} 10$ ms angebracht. Damit sind der Länge des Rechnerprogramms und der Komplexität des Regelalgorithmus feste Grenzen gesetzt.

Ein Maß für die Güte des Regelalgorithmus ist sicher das Übertragungsverhalten der Regelung bei sprunghafter Änderung der Schnitttiefe a.

Kappen /87/ hat sich mit der Entwicklung von Algorithmen für rechnergeregelte CNC-Werkzeugmaschinen befaßt und kommt zu dem Schluß, daß der meist angewandte PI-Regelalgorithmus den Einfluß der verschiedenen Störgrößen (Schnittiefe, spezifische Schnittkraft, Eingriff der Frässchneiden) nicht genügend gut ausregeln kann. Es

é

kommt sogar bei steigender Streckenverstärkung zu Dauerschwingungen der Regelung.

Dieser negative Einfluß auf die Regelung kann behoben werden, wenn die Regelgrößenänderung, die infolge Störgrößenänderung entsteht, dem PI-Algorithmus multiplikativ aufgeschaltet wird. Dabei entspricht die aufgeschaltete Stellgröße dem einer Abtastperiode vorher abgespeicherten Wert $\overline{y}_{(t-1)} = V_K$. Zu Beginn des Regelvorgangs ist dann jedoch zusätzlich der Wert \overline{y}_{min} zu definieren. Als Ergebnis dieses V_K -PI-Regelalgorithmus erhält man ein wesentlich verbessertes Störübertragungsverhalten der Regelung. Weitere Regelalgorithmen werden in /32/, /48/ und /55/ besprochen.

Zusammenfassend läßt sich sagen, daß die Abtastperioden heutiger Prozeßrechner sicher ausreichen, um den Zerspanprozeß vom Anschnitt bis zum Abheben des Werkzeugs am Ende des Prozesses zu regeln. Mit weiteren Entwicklungsschüben der Mikroelektronik wird dann auch der Komfort der Regelalgorithmen und die digitalisierte Prozeßführung ansteigen. Wertvolle Hinweise zur Regelung von Werkzeugmaschinen werden in /95/ gegeben.

6.3 Spezielle Automatiken

In der Anlagentechnik werden häufig automatische Steuerungs- und Regelungs-Subsysteme eingesetzt, die den Materialtransport oder -verlauf beeinflussen:

Beispiele dafür sind:

Sollwertvorgabe als Fahrkurve Bandanfangsverfolgung Restbandpositionierung Einfädelautomatik Walzenzapfenpositionierung Durchmesserrechner Abbremsautomatik

Sinn dieser Automatiken ist die möglichst kostengünstige Bearbeitung des Materials in kurzer Zeit.

6.3.1 Fahrkurvenrechner

Die Geschwindigkeits- oder Drehzahl-Sollwertvorgabe erfolgt in der Fördertechnik, bei Traktionsantrieben und der Walzwerkstechnik nicht sprunghaft, sondern in Form einer Fahrkurve, wie sie in Bild 6.57 dargestellt ist. Auf diese Weise wird ein sanftes schwingungsfreies Anfahren ermöglicht. Je nach dem Automatisierungsgrad solcher Anlagen sind die Anforderungen an den Fahrkurvenrechner entsprechend hoch. Meist wird auch das Differential (also die Beschleunigung) des Sollwertes an die Antriebsregelung ausgegeben.

Bild 6.57 Verlauf einer Fahrkurve und der zugehörigen Beschleunigung

Prinzipiell läßt sich ein Fahrkurvenrechner analog aufbauen, ähnlich wie in Bild 4.21 gezeigt. Wird die Fahrkurve durch zweifache Integration gebildet, erhält man die in Bild 6.58 dargestellte Schaltung. Dabei werden die Hochlauf- und Haltezeiten nach der Gleichung

$$T_{H} = \frac{U_{soll}}{U_{schalt.}} \cdot R_{2}C_{2}$$

realisiert. Mit externen Befehlen kann dann die Schaltspannung auf den gewünschten Wert begrenzt werden.

Wird dem Verstärker A1 ein Sollwert U_{soll} vorgegeben, geht er an den durch $U_{Schalt.}$ eingestellten Grenzwert. Über den Verstärker A2 ergibt sich die Eingangsspannung für den ersten Integrierer A3, der die Beschleunigung dU_F/dt bildet. Nach der Verschliffzeit T_V bleibt die Ausgangsspannung von A3 stehen, weil über die Rückführung mit dem Widerstand R₃ Gleichheit zwischen den Spannungen $U_{Schalt.}$ und dU_F/dt erreicht wird. Integrierte der zweite Verstär-

ker A4 zunächst mit linear steigender Eingangsspannung, so ist nun seine Eingangsspannung konstant. D.h., die Spannung U_F geht von einer Parabel in eine lineare Steigung über.

Mit der quadratischen Rückführung wird gewährleistet, daß der Verschliff zur richtigen Zeit, vor Erreichen des vorgegebenen Sollwertes wieder einsetzt. Dann nämlich wird die Ausgangsspannung des Verstärkers A3 bis auf Null linear abnehmen, so daß U_F einer Parabel mit negativer Steigung folgt und nach der Hochlaufzeit T_H infolge der Rückführung mit R₄ dem Sollwert U_{soll} entspricht. Außerdem hat die quadratische Rückführung die Aufgabe, ein Überschwingen des Wertes dU_F/dt zu vermeiden.

Nachteile des analogen Fahrkurvenrechners sind seine Ausgangsspannungsdrift und seine Auflösung von ca. $U_{\rm Fmax}/U_{\rm Fmin} = 500/1$. Ein weiterer Nachteil dürfte sein, daß die festliegende Integrationszeitkonstante des Verstärkers A3 zwangsläufig verschiedene Verschliffzeiten zur Folge hat. Ist man an einer konstanten Verschliffzeit T_V interessiert, muß mit dem entsprechenden Fahr- oder Bremsbefehl das Netzwerk R₁, C₁ auf andere Werte umgeschaltet werden.

Ein driftfreier Betrieb bei einer Auflösung von $U_{\rm Fmax}/U_{\rm Fmin} > 2.000$ ist nur mit dem digitalen Fahrkurvenrechner möglich, wie er als Prinzipschaltbild in Bild 4.22 gezeigt wurde.

Ist die Eingabe der Verschliffzeit T_V , Hochlaufzeit T_H , Haltzeit T_{HA} und Not-Haltzeit T_{NH} einmal erfolgt, können die verschiedensten Fahrkurvenvarianten erzeugt werden (Bild 6.59). Die Vorgabe der Sollwerte Z_s kann dabei extern oder aus dem Sollwertspeicher heraus erfolgen. Wegen der hohen Packungsdichte und des geringen Leistungsverbrauchs bietet sich zur Realisierung eines Fahrkurvenrechners die CMOS-Technik an /14/.

Aus den eingegebenen Zeiten lassen sich die Frequenzen f_e errechnen, mit denen der Beschleunigungszähler zu zählen hat, damit nach der Zeit T_H dann Z_s = Z_a ist.

Die Fahrkurve besteht aus zwei Parabelstücken und einer Geraden, für die sich drei Gleichungen angeben lassen (Bild 6.57).

Mit $f_{(T_V)} = g_{(T_V)}$ und $g_{(T_L)} = h_{(T_L)}$ erhält man schließlich eine Gleichung zur Bestimmung von f_{e} .

$$f_{e} = \frac{Z_{s}}{T_{V} \cdot T_{L}} \quad . \tag{6.54}$$

Bei einem Sollwert von Z_s = 5.000, T_V = 0,8 s und T_H = 25 s ergibt sich für die Hochlauffrequenz f_p = 258,26 Hz.

Die Hardware-Schaltung eines digitalen Fahrkurvenrechners ist in Bild 6.60 dargestellt. Am Beispiel des Hochlaufs von Null auf Z_ = 5.000 soll ihre Funktion tabellarisch erläutert werden.

1. Eingabe $Z_s = 5.000$ 2. Beschleunigungs- und Sollwertzähler auf Null setzen Freigabe Verschliffzähler 3. Hochlauf: Freigabe f für Beschleunigungszähler Freigabe v für Beschleunigungszähler Freigabe f, für Sollwertzähler Freigabe v für Sollwertzähler Z_s speichern 4. $t = T_v$: Stop und rücksetzen Verschliffzähler $(Z_V = O)$ Stop f_{e} ; d.h. Z_{1} = konstant und f_{1} = konstant M₁ speichern 5. $t = T_L$: Freigabe f für Beschleunigungszähler $(Z_{a} = M2)$ Freigabe r für Beschleunigungszähler 6. $t = T_{H}$: Stop Beschleunigungszähler ($Z_1 = 0$) $(Z_a = Z_s)$ Stop Sollwertzähler.

Der Vorteil der Hardware-Schaltung gegenüber einer mit Mikrorechner oder Prozeßrechner verwirklichten besteht darin, daß die Befehle gleichzeitig verarbeitet werden. Damit ergibt sich eine geringe Rechenzeit und bei 4-dekadigem Aufbau eine hohe Auflösung der Werte Z_a und dZ_a/dt . Nachteilig wirkt sich jedoch aus, daß die Hardware-Schaltung für den Laien recht unübersichtlich ist und eine Stördiagnose daher erschwert wird. Kommt es nicht so sehr auf kurze Rechenzeiten und eine hohe Auflösung an, ist die Realisierung mit Software praktikabler.

Bild 6.60 Blockschaltbild eines digitalen Fahrkurvenrechners in CMOS-Technik (Hardware)

6.3.2 Durchmesserrechner

Bei der Regelung von Stoffbahnen ist der Augenblickswert des Wikkel- oder Bunddurchmessers eine wichtige Prozeßgröße zur Führung der Anlage.

Mit ihm werden beispielsweise die Beschleunigungsmomente für die Geschwindigkeitsregelung eines Antriebs ermittelt (siehe Gleichung (6.24)). Die Messung des Bunddurchmessers bei dünnem Material ist nur sinnvoll, wenn man sie teilweise oder vollständig digitalisiert. Auf diese Weise wird die notwendige Auflösung des Meßwertes erreicht.

In Bild 6.61 ist eine Schaltung dargestellt, bei der die Messung über den Vergleich aus Geschwindigkeitssoll und -istwert erfolgt. Setzt man voraus, daß die Haspelregelung $v_s = v_i$ erzeugt, erfolgt die Bunddurchmessererfassung nach folgendem Schema.

Die Haspeldrehzahl wird mit einem Tachogenerator gemessen und mit der Konstanten π bewertet. Das Ergebnis multipliziert man mit dem Augenblickswert des Durchmessers D_i und erhält v_i = D_i π n_i. Der Geschwindigkeitsistwert wird mit dem Sollwert v_s verglichen und die Differenz mit V_p = 10 verstärkt. Die Ausgangsgröße Δv entspricht, nach dem U/f-Wandler, der Zählfrequenz für den Durchmesserzähler. Seine Zählrichtung wird mittels Signalbereichsmelder ebenfalls aus Δv gebildet. Am Ausgang steht D_i in digitaler und nach dem D/A-Wandler in analoger Form zur Verfügung. Da der analoge Durchmesserwert in den Multiplizierer rückgekoppelt wird, ist zur Schwingungsunterdrückung meist ein PT₁-Glied vorzusehen.

Ein Durchmesserfehler (D_i zu klein) führt sogleich zur Korrektur, da in diesem Falle Δv positiv wird. Die Folge ist ein Vorwärtszählen des Zählers bis zum Wert v_i = D_i $\pi n_i = v_s$.

Im Normalbetrieb ist die Geschwindigkeit v_i der Stoffbahn auf einen konstanten Wert geregelt, so daß mit der Durchmesserzunahme in gleichem Maße die Drehzahl der Haspel abnimmt (siehe Abschnitt 6.1.6 Bild 6.34).

Ein ähnliches Meßprinzip ergibt sich, wenn man statt des Geschwindigkeitssollwertes die an einer Umlenk- oder S-Rolle gemessene Stoffbahngeschwindigkeit v_B mit v_i vergleicht. In diesem Falle muß jedoch besonders auf ein eventuelles Bandrutschen beim Anfahren und bei hohen Geschwindigkeiten infolge Aeroplanings geachtet werden (siehe Tabelle 4.11).

Eine rein digitale Schaltung zur Bunddurchmessererfassung ist in Bild 6.62 dargestellt. Der Wert D_i wird hier mit einer arithmetischen Reihe aus Banddicken-Inkrementen nachgebildet.

Setzt man voraus, daß $D_i >> h_2$ ist, kann die Archimedische Spirale des Bundes ersatzweise als Summe von Kreisringen aufgefaßt werden. Dann gilt:

Bild 6.62 Schema eines digitalen Durchmesserrechners basierend auf der Addition von Kreisringen der Dicke $\rm h_2$

 $D_i = D_{min} + 2nh_2K$ Aufwickeln $D_i = D_{max} - 2nh_2K$ Abwickeln.

Beim Aufwickeln läuft die Durchmesserermittlung wie folgt ab. Jeweils einmal pro Umdrehung des Bundes (n: Anzahl der Windungen) wird die doppelte Banddicke h₂ zum vorhergehenden Wert dazuaddiert und abgespeichert. Dazu dient ein Impulsgeber, der 1 Imp./Umdr. als Setzsignal für den Durchmesserspeicher erzeugt. Ein Multiplexer sorgt bei Beginn der Durchmessererfassung für das Abspeichern des Anfangsdurchmessers D_{min}.

Meßfehler machen sich besonders bei dünnen Stoffbahnen (wegen der großen Windungszahl n) durch ungenaue Banddickenwerte bemerkbar. Außerdem kann das Meßergebnis durch Emulsion bzw. Beschichtung des Bandes und Aeroplaning verfälscht werden. Dem wird durch einen Füllfaktor K teilweise Rechnung getragen. Vorteil der Schaltung ist ihr einfacher und übersichtlicher Aufbau.

6.3.3 Abbremsautomatik

Zur wirtschaftlichen Nutzung einer Bandanlage gehört die Forderung nach möglichst kurzen Stillstandzeiten bei hohem Durchsatz (Materialbearbeitung). Einen Beitrag dazu leistet die Abbremsautomatik, mit der das Band zeitoptimal auf eine Restwindungszahl oder Restbandlänge abgebremst werden kann. So wird die hohe Bandgeschwindigkeit v_B länger beibehalten und das Bedienpersonal braucht den Abbremsvorgang nicht zu überwachen, weil er automatisch eingeleitet wird.

Eine einfache Analogschaltung dazu ist in Bild 6.63 dargestellt. Der Bremsbefehl für die Anlage wird aus dem Vergleich der augenblicklichen Bandlänge s_n mit dem augenblicklichen Bremsweg s_B abgeleitet, so daß:

$$\Delta s = s_n - s_B - s_R . \tag{6.55}$$

Der Bremsweg ist gegeben durch die Gleichung

$$s_{\rm B} = \frac{v_{\rm B}^2}{2b}$$
 (6.56)

Die Bandlänge wird für D $_{\rm i}$ >> h als Summe von Kreisringen betrachtet und ist

$$s_n = \pi (nD_{min} + n^2h)$$
 . (6.57)

Nimmt nun die Windungszahl n ab, ergibt sich bei $s_n = s_B$ der Bremsbefehl. Damit noch eine Restbandlänge auf der Haspel ist, wird Δs durch den konstanten Zusatzwert s_R verfälscht. Auf diese Weise steht die Anlage genau bei s_R still.

Ungenauigkeiten der Schaltung ergeben sich durch die Fehler der Multiplizierer /2/, die Windungszahlerfassung und die Banddickenmessung.

Für höhere Ansprüche an die Genauigkeit und Service-Freundlichkeit einer Abbremsautomatik empfiehlt sich der Einsatz des Mikro- oder Prozeßrechners /78/, /79/.

Eine Variante, bei der auf eine Restlagenzahl ${\rm n}_{\rm R}$ abgebremst wird, ist in Bild 6.64 dargestellt.

Rechner-Eingaben sind:

Impulse des Winkelschrittgebers	Banddicke h
der Haspel	Restwindungszahl n _p
Anfangswindungszahl n _A	Bandqeschwindigkeit V _D
Bundinnendurchmesser D _{min}	Startbefehl.

Aus diesen Werten ermittelt der Rechner zunächst mit Hilfe eines Maßstabfaktors den Augenblickswert der Windungszahl n und anschließend die laufende Bandlänge s_n . Subtrahiert man von der Windungszahl n bereits die Restlagenzahl n_R , wird eine kürzere Bandlänge s_n vorgetäuscht und der Bremsbefehl erfolgt entsprechend früher, so daß die Anlage beim Erreichen von n_R stillgesetzt wird. Die Gleichung der Bandlänge lautet dann:

$$s_n = \pi (n - n_R) \cdot [D_{\min} + h \cdot (n - n_R)]$$
 (6.58)

Für den Bremsweg gilt wie bei der analogen Schaltung s $_{\rm B}$ = v $_{\rm B}^2/2b$. Damit wird der Bremsbefehl für

 $\Delta \mathbf{s} = \mathbf{s}_{n} - \mathbf{s}_{B} \stackrel{\leq}{=} \mathbf{0} \tag{6.59}$

ausgegeben.

Als einzige Ungenauigkeit macht sich hier nur noch die Messung der Banddicke bemerkbar.

7. Rechneranwendungen

7.1 BASIC-Programme für Personal-Computer (PC)

Speziell für Studenten der Ingenieurwissenschaften, die mit Aufgaben der Regeltechnik befaßt sind und für den in der Industrie tätigen Praktiker sind die BASIC-Programme geschrieben worden. Sie sollen helfen, ein gegebenes Problem mit Hilfe des Rechners optimal zu lösen, d.h., einen einschleifigen linearen Regelkreis auf die vorhandene Regelstrecke richtig einzustellen.

Wahlweise kann dies mit dem Bode-Diagramm oder der Ortskurven-Darstellung des Nyquist-Kriteriums geschehen. In beiden Fällen ist eine eindeutige Stabilitätsaussage möglich.

Mit der Bildschirm-Graphik lassen sich alle Parametereinflüsse auf die Regelung aufzeigen. Die Ergebnisse können dann auf den üblichen Speichermedien (Festplatte, Floppy-Disk, Drucker, Plotter) abgelegt bzw. dargestellt werden.

Die Handhabung der Programme erfolgt im Rechner-Dialog und erfordert keine besonderen Programmier-Kenntnisse. Der Benutzer hat lediglich die vom Rechner eingeblendeten Fragen in regeltechnisch sinnvoller Weise zu beantworten. In diesem Sinne sind die Programme für den Computer-Unterstützten-Unterricht (CUU) gut geeignet.

Die benutzte Programmier-Sprache ist das MS-BASIC (BASIC 86). Bei dem hier eingesetzten SIRIUS-Rechner ist die Bildschirm-Auflösung der Kurvenverläufe besonders hoch. (400x800 Bildpunkte). Seine Graphikbefehle für die Bildschirmformatierung sind rechnerspezifisch. Bei Anwendung eines anderen Gerätes sind lediglich diese Befehle entsprechend anzupassen /88/. Die Allgemeingültigkeit des restlichen Programms bleibt davon unberührt.

7.1.1 Nyquist-Kriterium

Mit dem in Tabelle 7.1 angegebenen BASIC-Programm ist der Anwender in der Lage, eine ausgewählte Regelung zu optimieren bzw. synthetisieren. Tabelle 7.1 BASIC-Programm für das Nyquist-Kriterium mit dem SIRIUS-Rechner (Ausschnitt)

```
****************
5
10 '* *
               BODEDIAGRAMM
                                       * *
20 '* *
               VERSION BODE3
                                       * *
25 '* * RUDOLF DIEHL; PETER F. ORLOWSKI * *
30 '* *
                16.11.1984
                                       * *
40 E$=CHR$(27):6$=E$+"5":REM CHR$(27)=ESC-Taste
50 SWS$=G$+"A"
60 SDS$=6$+"B"
70 SFP$=G$+"L"
80 SFB$=6$+"N"
90 DSW$=G$+"I"
100 SCHR$=G$+"i"
110 CUT$=6$+"x"
120 CUD$=6$+"m"
130 CUON$=G$+"q" :CUPON$=E$+"y5"
140 CUDFF$=6$+"r":CUPDFF$=E$+"x5"
150 SRUL$=G$+"X"
160 POSR$=G$+"R"
170 POSA$=G$+"Q"
180 LINEW$=6$+"Y"
190 LINET$=G$+"Z'
200 LMARG$=G$+"0"
210 DOT$=G$+"c"
220 EXPM$=6$+"C"
230 EXPR$=G$+"D"
240 IND$=G$+"E"
250 INDR$=G$+"F"
260 INV$=6$+"J"
270 INVR$=G$+"K"
280 CHRX2$=6$+"6"
290 CHRX2R$=G$+"H"
300 SHAD$=G$+"s"
310 SHADR$=G$+"t"
320 REVON$=6$+"v"
                   :REVPON$=E$+"p"
330 REVOFF$=G$+"w" :REVPOFF$=E$+"q"
340 UNDLON$=6$+"y" :UDLPON$=E$+"0"
350 UNDLOFF$=6$+"z" :UDLPOFF$=E$+"1"
360 CUSAVE$=G$+"0" :CUPSAVE$=E$+"j"
370 WSG$=G$+"j"
380 DSG$=G$+"k"
390 WPG$=G$+"e"
400 DOTG$=G$+"b"
410 CHRWG$=G$+"a"
420 CHRHG$=G$+"1"
430 CHRTG$=G$+"o"
440 CUG$=G$+"u"
450 FILLR$=G$+"M"
460 FILLB$=G$+"N"
470 DRAWC$=G$+"P"
480 DRAWAR$=6$+"h"
490 DRAWAB$=6$+"U"
500 DRAWRE$=6$+"f"
510 MOVEW$=G$+"V"
520 MOVES$=6$+"W"
530 RES$=G$+"d"
540 HIRE$=G$+"p"
550 CLR$=G$+"2" :CLRPP$=E$+"E"
```

350

```
560 CURE$=6$+"1" :CUPRE$=E$+"k"
570 LICOPY$=6$+"?"
580 SAVEW$=6$+"S"
590 LOADW$=G$+"T"
600 LOCATE$=E$+"Y"
1000 WIDTH 255
1010 CR=7:PRINT RES$:60SUB 3290:DU=1
1015 ANZAHL=18
1020 DIM PARRS$(18), PAR$(18), PAR(18,3), PARRS(18), RST$(20)
1025 DIM AA$(7),PL$(18),WD(3),ALFAR(3),X(18),PA$(18,3),YQ(3),YO(3),FLAGWD(3),PHID(3)
FLAGWZ(3),UN$(18),YTITEL$(3),YUNIT$(3)
1030 FOR I=1 TO 7:READ AA$(I):NEXT:FOR I=1 TO 10:READ RST$(I):NEXT:FOR I=1 TO ANZAHL
 :READ PARRS$(I):NEXT:FOR I=1 TO 10:READ PL$(I)
:NEXT
1040 DIM FD(300,3), PHI(300,3), WW(300,3)
1050 PRINT E$;"m2#8":GOTO 1270
1060 GOSUB 2700: GOSUB 2730: GOSUB 2990: GOSUB 2770: GOSUB 2810: START=1
1070 '* * Start des Plot's * *
1080 PRINT CUPOFF$"
1090 Y=0:X=50-4*LEN(DATE$)
1100 PRINT CUON$: PRINT CLR$
1110 GOSUB 3340:PRINT SCHR$; "MED":PRINT HIRE$; DATUM$
1120 A$=T$:GOSUB 2290
1130 PRINT SCHR$; "NORMAL
1140 X=250-5*LEN(UT$):Y=16:GOSUB 3340
1150 PRINT HIRE$:UT$
1160 PRINT REVOFF$:PRINT E$;"m278"
1170 GOSUB 4010: IF PFLAG=1 THEN PFLAG=0: PRINT LICOPY$: GOTO 1240
1180 A$="Möchtest du Daten ändern ? ":GOSUB 1210: GOSUB 4660:IF ANS=1 THEN KORR=0:GO
TO 2850
1190 PRINT CLRPP$:A$="Möchtest du den Bildschirminhalt auf den Drucker übertragen ?"
:GOSUB 1210:GOSUB 4660:IF ANS=1 THEN PRINT CLRPP
:PRINT LICOPY$
1200 A$="Drücke 'E' wenn Berechnung beendet werden soll,ansonsten belibige Taste":60
SUB 1210:GOTO 1220
1210 ROW=55:COL=32:PRINT LOCATE$;CHR$(ROW);CHR$(COL);A$:RETURN
1220 GOSUB 3450
1230 IF K$="E" THEN 3420
1240 PRINT E$;"m2 8": GOTO 1250
1250 '* *
           PROGRAMMWAHL
                                    * *
1260 PRINT CLRPP$, CUPOFF$
1270 C=7:ROW=37:COL=42:FOR I=1 TO C:UN$(I)=AA$(I):NEXT I
1280 A$=" * BODEDIAGRAMM *":GOSUB 2240
1290 A$="A U S W A H L":FLAGR=0
1300 GOSUB 2010
1310 DN ASC(B$)-96 GOTO 1320,1400,1430,1580,1470,1380,7000
1320 '* *
           REGLER - STRECKEN DEFINITON * *
1330 C=10:ROW=37:COL=55:FOR I=1 TO C:UN$(I)=RST$(I):NEXT I
1340 A$="REGLER + STRECKEN - DEFINITION":PRINT CLRPP$
1350 GOSUB 2010
1360 RST=X:SL$=RST$(X)
1370 GOTO 4730
1380 '* * Bildschirm Copy auf den Drucker * *
1390 PFLAG=1:GOTO 1400
1400 IF START=1 THEN 1070
1410 PRINT LOCATE$; CHR$(53); CHR$(47)
1420 PRINT"Kein Plot gespeichert !":VERZ=2:60SUB 2002:60SUB 3290:60T0 1270
1430 IF START=1 THEN GOTO 1830
1440 GOTO 1410
1450 PRINT "kein File vorhanden !":VERZ=2:GOSUB 2002
1460 GOSUB 3290:GOTO 1270
1470 '* * Datenfile löschen * *
```

```
1480 ON ERROR GOTO 1450
1485 INPUT "Bezeichnung des Laufwerks ? ",LA$
1490 WIDTH BO:FILES LA$+":*.PLT":PRINT:WIDTH 255
1510 PRINT:INPUT "Name des zu löschenden Files ";N$
1520 IF N$="" THEN 1270
1530 N$=N$+".PLT":PRINT:PRINT"Möchtest du diesn File wirklich löschen? ";N$;"?" ;:60
SUB 4670: IF ANS=0 THEN 1270
1540 ON ERROR GOTO 4650
1550 NN$=LA$+":"+N$:KILL NN$
1560 PRINT:PRINT N$;" GELÖSCHT ! !":VERZ=1.5:GOSUB 2002
1570 GOTO 1270
1580 '* * Daten von einem File lesen * *
1590 PRINT CLRPP$:PRINT CUPOFF$:PRINT
1595 INPUT "Von welchem Laufwerk ? ",LA$
1600 PRINT"Die vorhandenen Files lauten:":PRINT
1610 WIDTH 80
1620 ON ERROR GOTO 1450
1630 PRINT: FILES LA$+":*.PLT": PRINT
1640 WIDTH 255
1650 PRINT
1660 INPUT "Welcher Plott? - Name eingeben!";F$
1670 IF F$="" THEN 1250
1680 IF LEN(F$)>8 OR LEN(F$)<1 THEN PRINT"Falsche Eingabe !":GOTO 1660
1690 F$=F$+".PLT"
1700 FI$=LA$+":"+F$
1710 ON ERROR GOTO 4640
1720 OPEN "I",1,FI$
1730 PRINT:PRINT"Ich lese die Daten von Laufwerk ";LA$;" aus ";F$
1740 INPUT #1,DATUM$:INPUT #1,DU:INPUT #1,WI:INPUT #1,WMIN
1750 FOR I=1 TO DU:FOR J=1 TO WI:INPUT#1,FO(J,I):INPUT #1,PHI(J,I):INPUT #1,WW(J,I):
NEXT J,I
1760 INPUT #1,UT$:INPUT #1,AZ:INPUT #1,FLAGWD
1770 IF FLAGWD=0 THEN 1790
1780 FOR I=1 TO DU:INPUT #1.WD(I).ALFAR(I):NEXT
1790 FOR J=1 TO DU:FOR I=1 TO AZ:INPUT #1,PAR$(I):INPUT#1,PAR(I,J):NEXT I,J
1800 CLOSE 1
1810 START=1
1820 GOTO 1060
1830 '* * Speichern der Daten auf Disk * *
1840 PRINT CLRPP$:PRINT CUPOFF$:PRINT
1845 INPUT "Von welchem Laufwerk ? ",LA$
1850 PRINT "Die Daten für diesen Plot werden auf Diskette in Laufwerk ";LA$;" gespe
ichert"
1860 INPUT "Der gewünschte Filename lautet (max. 8 Zeichen)";F$
1870 IF LEN(F$)>8 THEN PRINT"Falsche Eingabe !":GOTO 1860
1880 F$=F$+".PLT"
1890 FI$=LA$+":"+F$
1900 DPEN "D",1,FI$
1910 PRINT #1, DATUM$: PRINT #1, DU: PRINT #1, WI: PRINT #1, WMIN
1920 FOR I=1 TO DU:FOR J=1 TO WI:PRINT#1,FO(J,I):PRINT #1,PHI(J,I):PRINT #1,WW(J,I):
NEXT J,I
1930 PRINT #1,UT$:PRINT #1,AZ:PRINT #1,FLAGWD
1940 IF FLAGGWD=0 THEN 1960
1950 FOR I=1 TO DU:PRINT #1,WD(I),ALFAR(I):NEXT
1960 FOR J=1 TO DU:FOR I=1 TO AZ:PRINT #1,PAR$(I):PRINT#1,PAR(I,J):NEXT I,J
1970 CLOSE 1
1980 PRINT:PRINT"File ";F$;" auf Disk gespeichert ! "
1990 FOR I=1 TO 1000:NEXT
2000 PRINT CLRPP$:60T0 1270
2002 '* * Verzögerung * *
2006 FOR ZEIT =1 TO 5000*VERZ:NEXT
2008 RETURN
```

352

```
2010 ' * * Menü - Rutine * *
2020 PRINT CUOFF$ :PRINT CUPON$
2030 PRINT LOCATE$; CHR$(ROW); CHR$(COL)
2040 R0=2:IF C>7 THEN R0=1
2050 ROW=ROW+2
2060 FOR I=1 TO C
2070 PRINT LOCATE$; CHR$(ROW); CHR$(COL);
2080 ROW=ROW+R0
2090 PRINT CHR$(96+I);". ";UN$(I)
2100 NEXT I
2110 PRINT LOCATE$; CHR$(ROW); CHR$(COL);
2120 PRINT "TREFFE DEINE WAHL ( ";CHR$(97);" - ";CHR$(96+C);") ? ";
2130 B$ = INKEY$ : IF LEN(B$) = 0 THEN 2130
2140 PRINT B$:NN=RND(0)
2145 X=ASC(B$)-96
2160 IF X<1 OR X>C THEN PRINT CHR$(7):60T0 2110
2170 PRINT CUOFF$;CUPON$;
2180 ROWW=ROW:ROW =ROWW-(C-X+1)*RO
2190 PRINT UDLPON$
2200 PRINT LOCATE$; CHR$(ROW); CHR$(COL);
2210 PRINT CHR$(96+X);". ";UN$(X);
2230 RETURN
2240 ' * * GROBSCHRIFT * *
2250 L=10*LEN(A$)
2260 X=350-L:Y=0:GOSUB 3340:PRINT CHRX2$:PRINT REVON$:PRINT SCHR$;"OCR"
2270 PRINT HIRE$;A$:PRINT CHRX2R$:PRINT REVOFF$:PRINT CUOFF$:PRINT SCHR$;"NORMAL"
2280 RETURN
2290 ' * * Normalschrift * *
2300 L=5*LEN(A$)
2310 X=250-L:Y=0:GOSUB 3340:PRINT REVON$:PRINT SCHR$;"NORMAL"
2320 PRINT HIRE$; A$: PRINT REVOFF$: PRINT CUOFF$
2330 RETURN
2340 DATA ERSTELLEN EINES BODEDIAGRAMM'S
2350 DATA PLOTTEN EINES VORHANDENEN BODEDIAGRAMM'S
2360 DATA PLOTT ABSPEICHERN
                                              :
                                                     REM AA$
2370 DATA VORHANDENE PLOT'S LADEN
2380 DATA VORHANDENE PLOT'S LÖSCHEN
2390 DATA PLOTTEN DER BILDSCHIRMDARSTELLUNG AUF DRUCKER
2395 DATA INFORMATION
2400 DATA P - PT2 - PTt :REM RTS$
2410 DATA PD - PT1
2420 DATA PD - PTt - I
2430 DATA PD - PT1 - 1^2
2440 DATA PD - PT2 - PTt
2450 DATA PI - PT1 - I
2460 DATA PI - PT1 - PT1 -PT1
2470 DATA PI - PT1 - PT2
2480 DATA PI - PT1 - PTt
2490 DATA PID - PT1 - PTt
                                 Vr =: REM PARR$
2500 DATA Reglerverstaerkung
                                 Vs =
2510 DATA Streckenverstaerkung
2520 DATA Streckenverstaerkung
                                 Vst1=
2530 DATA Streckenverstaerkung
                                  Vst2=
2540 DATA Streckenverstaerkung
                                 Vst3=
2550 DATA Streckenverstaerkung
                                 Vstt=
2560 DATA Verzoegerungszeit
                                 T1/s=
                                 T2/s=
2570 DATA Verzoegerungszeit
2580 DATA Verzoegerungszeit
                                 T3/s=
2590 DATA Integrationszeit
                                 Ti/s=
2600 DATA Vorhaltezeit
                                 Tv/s=
                                 Tn/s=
2610 DATA Nachstellzeit
2620 DATA Daempfung
                                 đ
```

```
2630 DATA Totzeit
                                  Tt/s=
2640 DATA Kreisfrequenz
                           W min/Hz =
2642 DATA Durchtrittsfrequenz
                                wd/Hz=
2644 DATA Amplitudenreserve
                                 Ar
                                    =
2646 DATA Phasenreserve /Grad
                                      =
2650 DATA 01020608141315,0102071115
2660 DATA 010211101415,010311071015
2670 DATA 0104061108131415,010212071015
2680 DATA 010304051207080915.0103041207081315
2690 DATA 01020612071415,01030612110715
2700 ' * Titel *
2710 T$= "BODE - DIAGRAMM"
2720 RETURN
2730 '* * Untertitel * *
2740 IF DU>1 THEN 2760
2750 UT$= "Regler + Strecke: "+SL$
2760 RETURN
2770 ' * * Y Titel und Einheiten * *
2780 YTITEL$(1)="#Fo'":YTITEL$(2)=" p"
2790 YUNIT$(1)=" dB":YUNIT$(2)="Grad"
2800 RETURN
2810 '* * X Titel und Einheiten * *
2820 XTITEL$="Kreisfrequenz
2830 XUNIT$="w/s-1"
2840 RETURN
2850 '* * Ändern der Parameter * *
2860 D=DU:DU=DU+1:IF DU > 3 THEN 1190
2870 PRINT CLR$
2872 FOR I= 1 TO AZ
2876 PAR(I,DU)=PAR(I,DU-1)
2878 NEXT I
2879 IF KORR =1 THEN D=DU
2880 PRINT E$: "m2#8": PRINT CLRPP$: ROW=37: COL=47: C=AZ-1
2890 GOSUB 2980:GOSUB 2010:INPUT PAR(X,DU):X(X)=X:PRINT LOCATE$;CHR$(ROWW);CHR$(COL)
2930 D=DH
2940 A$="wünschst du weitere Änderungen ?"
2950 PRINT LOCATE$;CHR$(ROWW+2);CHR$(69-INT(LEN(A$)/2));A$:GOSUB 4660
2960 IF ANS=1 THEN 2880
2970 PRINT CLRPP$:GOTO 4870
2980 '* * Parameterauflistung * *
2990 A$="Die zuletzt eingegebenen Parameter waren"
3000 FDR I = 1 TD AZ-1
3010 UN$(I)=PAR$(I) +" "+STR$(PAR(I,D))
3020 NEXT I
3030 PRINT
3040 RETURN
3050 '* * Formatierung * *
3060 V=4:N=3
3070 FOR D=1 TO DU:FOR I=1 TO AZ+3:ZA=PAR(I,D)
3080 Z1=INT(ABS(ZA)):Z2=INT(10^N*(ABS(ZA)-Z1)+.5)
3090 IF ZA >= 0 THEN Z1$="
                             "+MID$(STR$(Z1),2,V)
3100 IF ZA < 0 THEN Z1$="-"+MID$(STR$(Z1),2,V)
3110 Z1$=RIGHT$(" "+Z1$,V)
3120 Z2$=LEFT$(RIGHT$("0000"+MID$(STR$(Z2),2),N)+" ",N):Z$=Z1$+"."+Z2$
3130 PA$(I,D)=Z$:NEXT I,D:RETURN
3140 ' * * Linientypen Darstellung * *
3150 FOR P=1 TO DU
     X=LM+175+50*(P-1):Y=8:GOSUB 3340
3160
     PRINT LINET$;P
3170
3180
     X=35:Y=0:GDSUB 3360
3190 NEXT:PRINT LINET$;1:PRINT LINEW$;1:RETURN
3200 '* * Parameterausgabe * *
```

```
354
```

```
3210 GOSUB 3050
3220 LM=450:HM=0
3240 PRINT SCHR$;"small":PRINT UNDLON$
3250 X=1.M:Y=HM:GOSUB 3340:PRINT HIRE$; "PARAMETER: ":PRINT CHRX2R$:PRINT UNDLOFF$
3260 X=LM:Y=13+HM:GOSUB 3340
3265 FOR Z= 1 TO 3: PAR$(AZ+Z)=PARRS$(15+Z):NEXT Z
3270 FOR N=1 TO AZ:PRINT HIRE$; PAR$(N):FOR I=1 TO DU:PRINT HIRE$; PA$(N,I):NEXT I:X=L
M:Y=Y+10:GOSUB 3340
3280 NEXT N
3281 '* * ERGEBNISSE * *
3282 X=LM:Y=YQ(3)+2
3283 GOSUB 3340:PRINT UNDLON$:PRINT HIRE$;"ERGEBNISSE:":PRINT UNDLOFF$
3284 X=LM:Y=Y+10:60SUB 3340
3285 FOR N=AZ+1 TO AZ+3:PRINT HIRE$;PAR$(N):FOR I =1 TO DU:PRINT HIRE$;PA$(N,I):NEXT
 I:X=LM:Y=Y+10:GOSUB 3340:NEXT N
3289 GOSUB 3140:PRINT CUOFF$:RETURN
3290 '* * CLEAR SCREEN 0 * *
3300 PRINT CUPDFF$:PRINT CUDFF$:PRINT SWS$;0:PRINT SDS$;0:PRINT CLR$
3310 PRINT SRUL$; CR:REM SET COMB. RULE TO CR
3320 PRINT CUPONS
3330 RETURN
3340 '* * CURSOR POSITIONIERUNG IN X UND Y * *
3350 X%=X:Y%=Y:PRINT POSA$;X%,Y%:RETURN
3360 '* * ZEICHNET RELATIV IN X UND Y * *
3370 X%=X:Y%=Y:PRINT DRAWRE$;X%,Y%:RETURN
3380 '* * ZEICHNET ABSOLUT IN X UND Y * *
3390 X%=X:Y%=Y:PRINT DRAWAB$;X%,Y%:RETURN
3400 '* * SET COMB RULE TO CR * *
3410 PRINT SRUL$; CR:RETURN
3420 '* * EXIT AND RESTORE * *
3430 PRINT E$;"m2 8":PRINT E$;"E":PRINT RES$
3440 PRINT CU$:PRINT SDS$; 0:PRINT CLR$:PRINT SWS$;0:END
3450 K$=INKEY$: IF K$="" THEN 3450 ELSE RETURN
3460 '* * Kurvenzuordnung * *
3470 X=600:Y=300:GOSUB 3340:PRINT HIRE$;"Kurvenzuordnung:"
3480 FOR I=1 TO DU
3490
       X=600:Y=Y+16:GOSUB 3340
3500
       PRINT LINET$; I: PRINT LINEW$;2
3510
       X=X+10*LEN("Kurvenzug 1"):60SUB 3360:REM zeichnet Linie zum Kurvenzug i
3520
       X=600:Y=Y+4:GOSUB 3340
       PRINT HIRE$; "Kurvenzug "; I
3530
3540 NEXT
3550 PRINT LINEW$;1:PRINT LINET$;1:RETURN
3560 '* * Beschriftung der X-Skalierung * *
3570 XS1=XLI
3580 FOR K=1 TO 4
3590 FOR J=1 TO 2:X=LOG(10)*KL*DE+XS1-3:Y=YQ(J)+5
3600 GOSUB 3340:X$=STR$(WMIN*10^K):PRINT HIRE$;X$
3610 NEXT J:XS1=X:NEXT K
3620 RETURN
3630 '* * Beschriftung Y-Achsen * *
3640 GOSUB 2770
3650 FOR I=1 TO 2
3660 PRINT SCHR$; "BESCHR"
3670 Y$=YTITEL$(I)
3680 Y=YO(I):X=0
3690 GOSUB 3340
3700 PRINT HIRE$; Y$
3710 Y$=YUNIT$(I)
3720 Y=YO(I)+15
3730 GOSUB 3340
3740 PRINT HIRE$;Y$
```

```
3750 X=0:Y=YD(I)+13:GOSUB 3340:X=30:Y=0:GOSUB 3360
3760 NEXT I
3770 '* * Beschriftung X-Achsen * *
3780 PRINT SCHR$;"smprop"
3790 GOSUB 3560: GOSUB 2810
3800 PRINT SCHR$; "BESCHR'
3810 FOR I=1 TO 2
3820 X$=XUNIT$
3830 Y=YQ(I)+15:X=700
3840 GOSUB 3340
3850 PRINT HIRE$;X$
3860 NEXT I
3870 '* * Beschriftung der Y-Skalierung * *
3880 PRINT SCHR$;"smprop"
3890 S=YL/8:Y=YD(1)-4:X=XLI-37
3900 FDR I=50 TO -30 STEP -10
3910 Y$=STR$(I)
3920 GOSUB 3340
3930 PRINT HIRE$; Y$: Y=Y+S: X=XLI-37
3940 NEXT I
3950 S=YL/12:Y=YO(2)-4:X=XLI-37
3960 FOR I=90 TO -270 STEP -30
3970 Y$=STR$(I)
3980 GOSUB 3340
3990 PRINT HIRE$; Y$: Y=Y+S: X=XLI-37
4000 NEXT I:RETURN
4010 '* * UNTERPROGRAMM KOORDINATENSYSTEM * *
4020 PRINT LINET$;1:PRINT LINEW$;1
4030 XLI=72
4040 XL=660:YL=150:YD(1)=30:YD(2)=YD(1)+180
4050 YQ(1)=YO(1)+YL*5/8:YQ(2)=YO(2)+(3/12*YL):YQ(3)=YO(2)+(9/12*YL)
4060 FOR I=1 TO 2
4070 X=XLI:Y=YO(I):GOSUB 3340:X=0:Y=YL:GOSUB 3360
4080 X=XLI:Y=YQ(I):GOSUB 3340:X=XL:Y=0:GOSUB 3360
4090 NEXT I
4100 '* * Y-Skalierung * *
4110 SW=10:S=YL/8:H=0:MYA=S/SW :REM SW=Skalierungsweite- hier 10dB
4120 FOR I=0 TO 8
4130 X=XLI-3:Y=YO(1)+H:GOSUB 3340:X=6:Y=0:GOSUB 3360:H=H+S
4140 NEXT I
4150 SW=30:S=YL/12:H=0:MYP=S/SW
4160 FOR I=0 TO 12
4170 X=XLI-3:Y=YO(2)+H:GOSUB 3340:X=6:Y=0:GOSUB 3360:H=H+S
4180 NEXT I
4190 X=XLI:Y=YQ(3):GOSUB 3340:X=XL:Y=0:GOSUB 3360
4200 '* * X-Skalierung *
4210 XS1=XLI:KL=.434294
4220 DE=XL/4:REM Dekadenlänge
4230 FOR K=1 TO 4
4240 FOR J=1 TO 2: FOR I=2 TO 10: XS=LOG(I)*KL*DE+XS1
4250 X=XS:Y=YQ(J)-3:GOSUB 3340:X=0:Y=6:GOSUB 3360
4260 NEXT I, J:XS1=XS:NEXT K
4270 GOSUB 3630: GOSUB 3200
4280 '* * Lineplott * *
4290 FOR D=1 TO DU:PRINT LINET$; D:PRINT LINEW$;1
4300 VER=0
4310 LO=LOG(WW(1,1))*KL:IF LO <>0 THEN VER= LO *DE
4320 X=LO *DE+XLI-VER
4330 Y=YQ(1)-FD(1,D)*MYA
4340 GOSUB 3340
4350 FOR I=1 TO (WI*4/5)-1
4360 LO=LOG(WW(I,D))*KL
```

356

```
4370 L01=L06(WW(I+1,D))*KL
43B0 X=L0*DE+XLI-VER:Y=YQ(1)-(F0(I,D)*MYA):G0SUB 3340
4390 X=L01*DE+XLI-VER:Y=YQ(1)-(FO(I+1.D)*MYA):GOSUB 3380
4400 NEXT I
4410 LO=LOG(WW(1,D))*KL:IF LO <>0 THEN VER= LO *DE
4420 X=LO *DE+XLI-VER
4430 Y=YQ(2)-PHI(1,D)*MYP
4440 GOSUB 3340
4450 FOR I=1 TO (WI*4/5)-1
4460 LO=LOG(WW(I,D))*KL
4470 L01=L06(WW(I+1,D))*KL
4480 X=L0*DE+XLI-VER:Y=YQ(2)-(PHI(I,D)*MYP):IF X>799 DR Y>399 THEN 4510
4490 GOSUB 3340
4500 X=L01*DE+XLI-VER:Y=YQ(2)-(PHI(I+1,D)*MYP):60SUB 3380
4510 NEXT I
4520 '* * Durchtrittsmarkierung * *
4530 IF FLAGWD(D) = 0 THEN 4610
4540 PRINT LINEW$;1
4550 XD=LOG(PAR(AZ+1,D))*KL*DE+XLI-VER
4560 YD=YQ(2)-PHID(D)*MYP
4570 Y=YQ(1):X=XD:605UB 3340:Y=YD:X=XD:605UB 3380:PRINT LINEW$;2:Y=YQ(3):605UB 3380
4580 PRINT LINEW$;1:Y=YD:X=XLI:GOSUB 3340:Y=YD:X=XD:GOSUB 3380
4610 NEXT D
4620 RETURN
4630 '* * Fehlerrutine * *
4640 PRINT "File nicht gefunden ";: RESUME 1660
4650 PRINT"File nicht gefunden!";:RESUME 1510
4660 '* * JA oder NEIN Antwort * *
4670 K$=INKEY$:IF K$="" THEN 4670
4680 IF K$="J" OR K$= "j" THEN ANS=1:GOTO 4710
4690 IF K$="N" OR K$="n" THEN ANS=0:60T0 4710
4700 PRINT CHR$(7)::GOTO 4670
4710 PRINT K$:RETURN
4720 PRINT K$:RETURN
4730 '* * Parametereingabe * *
4740 ROW=37:COL=47
4750 LPL=LEN(PL$(RST))/2
4760 A$="PARAMETEREINGABE FÜR "+SL$:PRINT CLRPP$
4770 PRINT LOCATE$; CHR$(ROW); CHR$(69-INT(LEN(A$)/2)); A$
4780 \text{ ROW} = \text{ROW} + 2
4790 FOR I=1 TO LPL
4800 PRINT LOCATE$; CHR$(ROW); CHR$(COL);
4810 Z=I*2-1:X$=MID$(PL$(RST),Z,2):X=VAL(X$)
4820 PRINT I;". ";PARRS$(X);:INPUT PARRS(X)
4830 ROW = ROW + 1
4840 PAR$(I)=PARRS$(X):PAR(I,1)=PARRS(X)
4850 NEXT I:ROW=ROW+3
4860 AZ=LPL:WMIN=PAR(AZ,1):DU=1
4870 A$= " ******* I C H R E C H N E ...... ********
4880 PRINT LOCATE$; CHR$ (ROW+3); CHR$ (69-INT (LEN (A$)/2)); A$
4890 PRINT CUPOFF$
4900 *************
4910 '* Berechnung *
4920 **************
4930 DATUM$=DATE$
4940 WI=D:ST=WMIN/2:KL=.43429:PI=3.141534:KDEG=180/PI:FLAGWD(DU)=0:FLAGWZ(DU)=0:GREN
ZE=.005:PAR(AZ+2,DU)=0
4950 FOR J=0 TO 4
4960 FOR W=10^J*WMIN TO 9.8999999^(J+1)*WMIN STEP ST*10^J :WI=WI+1:WW(WI,DU)=W:GOSUB
5070
4962 IF FLAGFO=0 THEN GOSUB 6200
4967 IF FLAGWD(DU)=1 THEN 5040
```

```
4970 IF FO(WI,DU) < GRENZE AND FO(WI,DU) > -GRENZE THEN FLAGWD(DU)=1:PAR(AZ+1,DU)=W
:PHID(DU)=PHI(WI,DU):PAR(AZ+3,DU)=PHI(WI,DU)+180
:60T0 5040
4980 IF FO(WI,DU) > GRENZE THEN 5040
4990 GOSUB 5000:GOTO 5040
5000 STP=ST*10^J:WT=W:WT1=W
5010 WI=WI-1:STP=STP/10:FOR WG=WT1-10*STP TO WT1 STEP STP:WI=WI+1:WW(WI,DU)=WG:W=WG:
 GDSUB 5070: IF FD(WI, DU) > GRENZE THEN NEXT WG
5020 IF FD(WI,DU) > -GRENZE THEN PAR(AZ+1,DU)=W:PAR(AZ+3,DU)=PHI(WI,DU)+180:PHID(DU)
=PHI(WI,DU):FLAGWD(DU)=1:RETURN
5030 WT1=WG:GOTD 5010
5040 IF FLAGWD(DU)=0 THEN 5048
5042 IF FLAGWZ(DU)=1 THEN 5048
5043 IF PHI(WI,DU) < -179.9 AND PAR(AZ+3,DU) > 0 THEN PAR(AZ+2,DU)=1/(10^(FD(WI,DU)/
20)):FLAGWZ(DU)=1
5048 NEXT W,J
5050 '* *RECHNUNG BEENDET * *
5060 GOTO 1060 :REM START DES PLOT√S
5070 REM Verteiler zu Regler-Strecke
5075
       ON ERROR GOTO 5092
5080 ON RST GOSUB 5410,5100,5200,5470,5300,5150,5250,5520,5580,5360
5090 RETURN
5092 PRINT "Die eingegebenen Parameter bewirken eine unerlaubte math. Operation"
5093 PRINT "************ überprüfe die eingegebenen Werte !! *******************
5094 VERZ=6:GOSUB 2002:KORR=1:RESUME 2879
5097 GOTO 5092
5100 '* * PD - PT1 * *
5110 VR=PAR(1,DU):VS=PAR(2,DU):T1=PAR(3,DU):TV=PAR(4,DU)
5120 V0=VR*VS
5125 GOSUB 6100
5130 FD(WI,DU)=20*LOG(VO*SQR((1+W^2*TV^2)/(1+W^2*T1^2)))*KL
5140 PHI(WI,DU) = (ATN(W*TV) - ATN(W*T1))*KDEG:RETURN
5150 '* * PI - PT1 - I * *
5160 VR=PAR(1,DU):VS=PAR(2,DU):TN=PAR(3,DU):T1=PAR(4,DU):TI=PAR(5,DU)
5170 VD=VR*VS
5175 GOSUB 6100
5180 FO(WI,DU)=20*LOG(VO/(W*TI)*SQR((1+1/(W^2*TN^2))/(1+W^2*T1^2)))*KL
5190 PHI(WI,DU)=(-ATN(1/(W*TN))-ATN(W*T1))*KDEG-90:RETURN
5200 '* * PD - PTt - I * *
5210 VR=PAR(1,DU):VS=PAR(2,DU):TV=PAR(3,DU):TI=PAR(4,DU):TT=PAR(5,DU)
5220 V0=VR*VS
5225 GOSUB 6100
5230 FO(WI,DU)=20*LOG(VD/(W*TI)*SQR(1+W^2*TV^2))*KL
5240 PHI(WI,DU)=(+ATN(W*TV)-W*TT)*KDEG-90:RETURN
5250 '* * PI - PT1 - PT1 - PT1 * *
5260 VR=PAR(1,DU):VST1=PAR(2,DU):VST2=PAR(3,DU):VST3=PAR(4,DU):TN=PAR(5,DU):T1=PAR(6
,DU):T2=PAR(7,DU):T3=PAR(8,DU)
5270 VD=VR*VST1*VST2*VST3
5275 GOSUB 6100
5280 F0(WI.DU)=20*L06(V0*SQR((1+1/(W^2*TN^2))/((1+W^2*T1^2)*(1+W^2*T2^2)*(1+W^2*T3^2)
))))*KL
5290 PHI(WI,DU)=(-ATN(1/(W*TN))-ATN(W*T1)-ATN(W*T2)-ATN(W*T3))*KDE6:RETURN
5300 '* * PD - PT2 - PTt * *
5310 VR=PAR(1.DU):VST2=PAR(2.DU):VSTT=PAR(3.DU):TV=PAR(4.DU):T2=PAR(5.DU):D9=PAR(6.D
U):TT=PAR(7,DU)
5320 VD=VR*VST2*VSTT
5325 GOSUB 6100
5330 F0(WI,DU)=20*L06(V0*5QR((1+(W^2*TV^2))/((1-W^2*T2^2)^2+(4*D9^2*W^2*T2^2)))*KL
5340 GOSUB 6000:PHI=-ATN((2*D9*W*T2)/PHIDIV)
5345 IF PHI > 0 THEN PHI=PHI-PI
5350 PHI(WI,DU)=(ATN(W*TV)+PHI-W*TT)*KDEG:RETURN
5360 '* * PID - PT1 - PTt * *
```
```
5370 VR=PAR(1,DU):VST1=PAR(2,DU):VSTT=PAR(3,DU):TN=PAR(4,DU):TV=PAR(5,DU):T1=PAR(6,D
11)
5380 VO=VR*VST1*VSTT
5385 GOSUB 6100
5390 F0(WI.DU)=20*L06(V0*SQR((1+(W*TV-1/(W*TN)^2))/(1+W^2*T1^2)))*KL
5400 PHI(WI,DU)=(ATN(W*TV-1/(W*TN))-ATN(W*T1)-W*TT)*KDEG:RETURN
5410 '* * P - PT2 - PTt * *
5420 VR=PAR(1,DU):VST1=PAR(2,DU):VSTT=PAR(3,DU):T2=PAR(4,DU):TT=PAR(5,DU):D9=PAR(6,D
0)
5430 VO=VR*VST1*VSTT
5435 GOSUB 6100
5440 FO(WI,DU)=20*LOG(VO/SQR((1-W^2*T2^2)^2+4*D9^2*W^2*T2^2))*KL
5450 GOSUB 6000:PHI=-ATN((2*D9*W*T2)/PHIDIV):IF PHI>0 THEN PHI=PHI-PI
5460 PHI(WI,DU)=(PHI-(W*TT))*KDEG:RETURN
5470 '* * PD - PT1 - I^2 * *
5480 VR=PAR(1,DU):VST1=PAR(2,DU):TV=PAR(3,DU):T1=PAR(4,DU):TI=PAR(5,DU)
5490 VD=VR*VST1
5495 GOSUB 6100
5500 FO(WI,DU)=20*LOG(VO/(W^2*TI^2)*SQR(((1+W^2*TV^2)/(1+W^2*T1^2)))*KL
5510 PHI(WI,DU)=(ATN(W*TV)-ATN(W*T1))*KDEG-180:RETURN
5520 '* * PI - PT1 - PT2 * *
5530 VR=PAR(1,DU):VST1=PAR(2,DU):VST2=PAR(3,DU):TN=PAR(4,DU):T1=PAR(5,DU):T2=PAR(6,D
U):D9=PAR(7,DU)
5540 VO=VR*VST1*VST2
5545 GOSUB 6100
5550 F0(WI,DU)=20*L06(V0*SQR((1+1/(W^2*TN^2))/((1+W^2*T1^2)*((1-W^2*T2^2)^2+4*D9^2*W
^2*T2^2))))*KL
5560 GOSUB 6000:PHI=-ATN((2*D9*W*T2)/PHIDIV):IF PHI>0 THEN PHI=PHI-PI
5570 PHI(WI,DU)=(-ATN(1/(W*TN))-ATN(W*T1)+PHI)*KDEG:RETURN
5580 '* * PI - PT1 - PTt * *
5590 VR=PAR(1,DU):VST1=PAR(2,DU):VSTT=PAR(3,DU):TN=PAR(4,DU):T1=PAR(5,DU):TT=PAR(6,D
11)
5600 GOSUB 6100
5610 FO(WI,DU)=20*LOG(VO*SQR((1+1/(W^2*TN^2))/(1+W^2*T1^2)))*KL
5620 PHI(WI,DU) = (-ATN(1/(W*TN)) - ATN(W*T1) - W*TT) * KDEG: RETURN
5990 '* * UBERWACHUNG DIV/NULL * *
6000 PHIDIV=1-W^2*T2^2:IF PHIDIV=0 THEN PHIDIV=9.999999E-21
6010 RETURN
6090 '* * ÜBERWACHUNG VO < 1 * *
6100 IF VD => 1 THEN RETURN
2879
6200 '* * ÜBERWACHUNG FD(1,DU) * *
6205 FLAGF0=1
6210 PRINT: IF FO(1, DU) > 0 THEN RETURN
6220 PRINT " ********** Eine Weiterrechnung ist nicht möglich - Fo(1) < 0 *********
¥ 8
6230 VERZ=2.5:60SUB 2002:KORR=1:60T0 2879
7000 PRINT CLRPP$:PRINT"Dieses Programm bietet die Möglichkeit, drei verschiedene Ku
rven darzustellen."
7010 PRINT"Nach jedem Durchgang können Sie ein oder mehrer Parameter verändern."
7020 PRINT"Zur Dokumentation kann über den angeschlossenen Drucker eine Bildschirmco
py er- stellt werden."
7030 PRINT"Das Programm kann nicht unterbrochen oder ausgelistet werden."
7040 PRINT"Sollte das Programm 'AUSSTEIGEN' so ist durch Eingabe von Bode3 ein neuer
Start möglich."
7100 PRINT:PRINT "Zum weitermachen drücke eine beliebige Taste."
7110 TASTE$=INKEY$
7120 IF TASTE$="" THEN 7110
7130 GOTO 1250
8000 STOP
```

20000 'Normalschrift 12 cpi 20010 LPRINT CHR\$(27);CHR\$(91);CHR\$(49);CHR\$(119) 20015 'Formularlänge' 20018 FORML\$=CHR\$(27)+CHR\$(91)+"072t" 20020 LPRINT FORML\$ 20023 'Sprung über die Perforation' 20025 PREF\$\$=CHR\$(27)+CHR\$(91)+"010r" 20028 LPRINT PREF\$\$ 20030 'linker Rand' 20040 WIDTH LPRINT 80

Der Dialog mit dem Rechner verläuft nach dem in Bild 7.1 dargestellten Fluß-Diagramm. Nach Aufrufen des Programms "NYQUIST" (Eingabe des Datums und der Uhrzeit können mit RETURN übergangen werden) erscheint auf dem Bildschirm das erste Menue (Bild 7.2).

Wählt man beispielsweise "1", zeigt der Rechner eine Liste von möglichen Paarungen aus Regler und Strecke, aus denen man eine anwählen kann (Bild 7.3). Hieraus wurde "1" getippt; eine Regelung aus PD-Regler und P-I- T_t -Strecke. Danach erscheint die Liste mit den einzugebenden Parametern (Bild 7.4).

In einem ersten Rechnerlauf ermittelt das Programm von $\omega \$ 0 beginnend die Ortskurve mit einem festen Maßstab für Real- und Imaginärteil. Dabei nimmt die Auflösung der Rechenwerte mit steigender Frequenz ω zu, so daß spiralförmig verlaufende Ortskurven gut nachgebildet werden.

Das Programm endet zunächst mit der Bildschirmdarstellung der Ortskurve, Angabe der Gleichung des offenen Regelkreises \underline{F}_{O} , Auflistung der Parameter und der Stabilitätsaussage nach Nyquist (Bild 7.5). Diese Regelung ist stabil.

Die dann noch möglichen Änderungen und/oder Ergänzungen der Ortskurve können durch beantworten der nacheinander eingeblendeten Textpassagen vorgenommen werden.

In der untersten Zeile des Bildschirms erscheint dann die Frage nach der Änderung des Maßstabs der Ortskurve. Ist eine Maßstabsänderung gewünscht, drückt man "J". Dann kommt die Frage nach dem Maßstabsfaktor. Man kann eine Zahl n = 0,..;1;2; eingeben, die zur Vergrößerung oder Verkleinerung des Maßstabes führt. Anschließend fragt der Rechner, ob der Koordinatenmittelpunkt verschoben werden soll. Drückt man "J", erscheint im Mittelpunkt ein Pfeil, den man mit der Tastatur verschieben kann. Nach beendeter Verschiebung

Bild 7.1 Fluß-Diagramm des Nyquist-Programms

Bild 7.2 Menue-Wahl beim Nyquist-Kriterium mit dem Sirius-Rechner

Bild 7.3 Liste der möglichen Paarungen von Regler und Strecke beim Nyquist-Kriterium mit dem Sirius-Rechner

PARAMETEREINGABE FUR I	
1 Reglerverstaerkung	
3 Integrationszeit	
4 Vorhaitezeit	Tv/x+? 81
5 lotzeit	(t/s:/ d2
TTH RECHN	r

Bild 7.4 Parameter-Eingaben für PD-Regler und P-I-T_t-Strecke beim Nyquist-Kriterium

Bild 7.5 Bildschirmdarstellung einer Ortskurve auf dem Sirius-Rechner und Ausgabe der Stabilitätsaussage (ω_z , A_R , ω_D , α_R)

ist "S" zu drücken und der Rechner stellt nun die Ortskurve mit verändertem Maßstab und Mittelpunktverschiebung dar.

Ist die Regelung instabil, können auch die Parameter geändert werden. Der Rechner fragt nach der Parameteränderung und man hat "J" zu drücken. Dann erscheint wieder die Parameterliste, in die man neue Werte eingeben kann.

Für eine Regelung aus P-Regler und PT_1-T_t -Strecke ist dies beispielhaft durchgeführt in Bild 7.6. Zunächst war die Regelung instabil (durchgezogene Linie). Mit Änderung der Reglerverstärkung auf $V_r = 3$ konnte sie stabilisiert werden (gestrichelte Linie). Dies ist anschaulich aus dem Ortskurvenverlauf und den aufgezeichneten Ergebnissen zu erkennen.

NYQUIST - KRITERIUM Regler + Strecke: P - PT1-Tt RE(F0)=Y0/(1+U^2*T1^2)*(U*T1*SIN(U*TT)-COS(U*TT)) IN(F0)=Y0/(1+U^2*T1^2)*(U*T1*COS(U*TT)+SIN(U*TT))

PHICHTE IEK:			
Reglerverstärkung	۷r =	10.000	3.000
Streckenverstärkung	¥s =	1.000	1.999
Verzögerungszeit	T1/5=	0.050	0.050
Totzeit	Tt∕s=	0.016	0.016
ERGEBNISSE			
w fuer Im(F8)=8	wz/Hz =	109.358	109.000
Amplitudenreserve	Ar =	0.556	1.847
Durchtrittsfrequenz	wd/Hz =	199.350	56.599
Phasenreserve /Grad	=	-87.623	57.699
Regelung	=	instab.	stab.

Bild 7.6 Ausdruck der Bildschirmdarstellung für eine optimierte Regelung aus P-Regler und PT₁-T₁-Strecke

7.1.2 Bode-Diagramm

Mit dem BASIC-Programm (Tabelle 7.2) kann der Benutzer das Bode-Diagramm einer vorher ausgewählten Regelung auf dem Rechnerbildschirm darstellen und optimieren. Der Dialog mit dem RechBASIC-Programm für das Bode-Diagramm mit dem

Tabelle 7.2

SIRIUS-Rechner (Ausschnitt) **************************** 5 10 '* * NYQUISTKRITERIUM × × 20 '* * VERSION NYQUIST4 * * 25 '* * RUDOLF DIEHL; NORBERT MOOS; PETER F. ORLOWSKI * * 30 '* * 16.11.1984 * * 50 E\$=CHR\$(27):6\$=E\$+"5":REM CHR\$(27)=ESC-Taste 60 SWS\$=G\$+"A" 70 SDS\$=6\$+"B" 80 SFP\$=G\$+"L" 90 SFB\$=6\$+"N" 100 DSW\$=G\$+"I" 110 SCHR\$=G\$+"i" 120 CUT\$=G\$+"x" 130 CUD\$=6\$+"m" 140 CUON\$=G\$+"a" :CUPON\$=E\$+"v5" 150 CUOFF\$=G\$+"r":CUPOFF\$=E\$+"x5" 160 SRUL\$=G\$+"X" 170 POSR\$=6\$+"R" 180 POSA\$=G\$+"Q" 190 LINEW\$=G\$+"Y" 200 LINET\$=G\$+"Z" 210 LMAR6\$=6\$+"0" 220 DDT\$=G\$+"c" 230 EXPM\$=6\$+"C" 240 EXPR\$=G\$+"D" 250 IND\$=G\$+"E" 260 INDR\$=G\$+"F" 270 INV\$=G\$+"J" 280 INVR\$=G\$+"K" 290 CHRX2\$=6\$+"6" 300 CHRX2R\$=G\$+"H" 310 SHAD\$=G\$+"s" 320 SHADR\$=G\$+"t" 330 REVON\$=6\$+"v" :REVPON\$=E\$+"p" 340 REVOFF\$=6\$+"w" :REVPOFF\$=E\$+"q" 350 UNDLON\$=6\$+"y" :UDLPON\$=E\$+"0" 360 UNDLOFF\$=6\$+"z" :UDLPOFF\$=E\$+"1" 370 CUSAVE\$=6\$+"0" :CUPSAVE\$=E\$+"j" 380 WSG\$=G\$+"j" 390 DSG\$=6\$+"k" 400 WPG\$=G\$+"e" 410 DOTG\$=6\$+"b" 420 CHRWG\$=G\$+"a" 430 CHRHG\$=6\$+"1" 440 CHRTG\$=G\$+"o" 450 CUG\$=G\$+"u" 460 FILLR\$=G\$+"M" 470 FILLB\$=G\$+"N" 480 DRAWC\$=G\$+"P" 490 DRAWAR\$=6\$+"h" 500 DRAWAB\$=G\$+"U" 510 DRAWRE\$=6\$+"f" 520 MOVEW\$=G\$+"V" 530 MOVES\$=G\$+"W" 540 RES\$=G\$+"d" 550 HIRE\$=G\$+"p" 560 CLR\$=G\$+"2" :CLRPP\$=E\$+"E"

```
:CUPRE$=E$+"k"
570 CURE$=G$+"1"
580 LICOPY$=G$+"?"
590 SAVEW$=6$+"S"
600 LOADW$=G$+"T"
610 LOCATE$=E$+"Y"
1010 WIDTH 255
1020 PRINT RES$:DU=1: PRINT CLR$;CLRPP$
1030 MAXIMAL=19
1040 DIM PARRS$(19), PAR$(19), PAR(19,3), PARRS(19), RST$(20), PA$(13,3)
1045 DIM AA$(6), UN$(6), PL$(6), X(6), X$(2), FLAGWZ(3), FLAGWD(3), WI(3)
1050 FOR I=1 TO 6:READ AA$(I):NEXT:FOR I=1 TO 6:READ RST$(I):NEXT:FOR I=1 TO MAXIMAL
  :READ PARRS$(I):NEXT:FOR I=1 TO 6:READ PL$(I):
NEXT
1060 DIM RE(1000,3), IM(1000,3), W(1000,3), TR$(3), TI$(3)
1070 PRINT E$:"m2#8":GOTO 1340
1080 GDSUB 2610:GDSUB 2640:GDSUB 2820:START=1
1090 '* * Start des Plot's * *
1095 FLAGZ=0
1100 PRINT CUPOFF$
1110 Y=0:X=50-4*LEN(DATE$)
1120 ANSZ=0:ANSV=0
1130 PRINT CUON$: PRINT CLR$
1140 GOSUB 3250:PRINT SCHR$; "MED":PRINT HIRE$:DATUM$
1150 A$=T$:60SUB 2180
1160 PRINT SCHR$; "NORMAL
1170 X=250-5*LEN(UT$):Y=16:GOSUB 3250
1180 PRINT HIRE$;UT$
1190 PRINT REVOFF$:PRINT E$:"m278"
1195 GOSUB 3450:IF KCOPY$="ja" THEN RETURN
1200 IF PFLAG=1 THEN PFLAG=0:PRINT LICOPY$:GOTD 1310
1210 A$="Möchtest Du die Darstellung vergrößern oder verkleinern ?":GOSUB 1280:GOSUB
 4260:IF ANS=1 THEN ANSZ=1:INPUT "Gebe den Maßst
absfaktor ein !",ZOOM:FLAGZ=1
1220 A$="Möchtest du den Mittelpunkt des Koordinatensvstems verschieben ?":60SUB 128
0:GOSUB 4260: IF ANS=1 THEN ANSV=1:GOSUB 4090
1230 IF ANSZ+ANSV >= 1 THEN 1110
1240 A$="Möchtest du Daten ändern ? ":60SUB 1280: 60SUB 4260:IF ANS=1 THEN 2680
1250 PRINT CLRPP$:A$="Möchtest du den Bildschirminhalt auf den Drucker übertragen ?"
:GOSUB 1280:GOSUB 4260:IF ANS=1 THEN PRINT CLRPP
$:GOSUB 1312:PRINT LICOPY$:KCOPY$=""
1260 A$="Möchtest du die Grafik abspeichern ?":60SUB 1280:60SUB 4260:IF ANS=1 THEN 6
OSUB 1810
1265 A$="Möchtest du Wertepaare ausdrucken lassen ?":60SUB 1280:60SUB 4260:IF ANS=1
THEN GOSUB 6100
1270 A$="Drücke 'E' wenn Berechnung beendet werden soll,ansonsten belibige Taste":60
SUB 1280:GOTO 1290
1280 RDW=55:COL=32:PRINT LOCATE$;CHR$(RDW);CHR$(COL);A$:RETURN
1290 GOSUB 3340
1300 IF K$="E" THEN 3310
1310 PRINT E$;"m2 8": GOTO 1320
1312 '* Korektur für Epson *
1314 KCOPY$="ja":GOTO 1100
1320 '* *
          PROGRAMMWAHL **
1330 PRINT CLRPP$, CUPOFF$
1340 C=6:ROW=37:COL=42:FOR I=1 TO C:UN$(I)=AA$(I):NEXT I
1350 A$=" * NYQUIST - KRITERIUM *":GOSUB 2130
1360 A$="A U S W A H L":FLAGR=0
1370 GOSUB 1900
1380 ON ASC(B$)-48 GOTO 1390,1470,1650,1540,1450,1892
1390 '* *
            REGLER - STRECKEN DEFINITON * *
1400 C=6:ROW=37:COL=55:PRINT CLRPP$:FOR I=1 TO C:UN$(I)=RST$(I):NEXT I
1410 A$="REGLER + STRECKEN - DEFINITION"
```

```
366
```

```
1420 GOSUB 1900
1430 RST=X:SL$=RST$(X)
1440 GOTO 4330
1450 '* * Bildschirm Copy auf den Drucker * *
1460 PFLAG=1:60T0 1470
1470 IF START=1 THEN 1090
1480 PRINT LOCATE$; CHR$(53); CHR$(47)
1490 PRINT"Kein Plot gespeichert !":FOR I=2 TO 2000:NEXT:GOTO 1320
1520 PRINT "kein File vorhanden !":FOR I =1 TO 2000:NEXT I
1530 GOTO 1340
1540 '* * Datenfile löschen * *
1550 ON ERROR GOTO 1520
1560 WIDTH BO:FILES "d:*.scr":PRINT:WIDTH 255
1570 PRINT "Betrifft Laufwerk d"
1580 PRINT:INPUT "Name des zu löschenden Files ";N$
1590 IF N$="" THEN 1340
1600 N$=N$+".scr":PRINT:PRINT"Möchtest du diesen File wirklich löschen? ";N$;"?" ;:G
OSUB 4270: IF ANS=0 THEN 1340
1610 ON ERROR GOTO 4250
1620 NN$="d:"+N$:KILL NN$
1630 PRINT:PRINT N$;" GELÖSCHT ! !": FOR I= 1 TO 500:NEXT
1640 GOTO 1340
          Bildschirmgrafik von der Disk laden * *
1650 '* *
1660 PRINT CLRPP$:PRINT CUPOFF$:PRINT
1670 PRINT"Die vorhandenen Files lauten:":PRINT
1680 WIDTH 80
1690 ON ERROR GOTO 1520
1700 PRINT:FILES "d:*.scr":PRINT
1710 WIDTH 255
1720 PRINT
1730 INPUT "Welcher Plott? - Name eingeben!";F$
1740 IF F$="" THEN 1320
1750 IF LEN(F$)>8 OR LEN(F$)<1 THEN PRINT"Falsche Eingabe !":60T0 1730
1760 F$=F$+".scr
1770 F$="d;"+F$
1780 ON ERROR GOTO 4240
1790 PRINT SDS$;0:PRINT CUON$:X=1:Y=1:GOSUB 3250:PRINT LOADW$;F$
1800 STOP
1810 '* * Bildschirmgrafik auf der Disk ablegen * *
1815 IF START=0 THEN 1480
1820 PRINT "Die Grafik wird in Laufwerk D gespeichert"
1830 INPUT "Der gewünschte Filename lautet (max. 8 Zeichen)";F$
1840 IF LEN(F$)>8 THEN PRINT"Falsche Eingabe !":GOTO 1830
1850 F$="d:"+F$
1860 PRINT CUON$:X=1:Y=1:GOSUB 3250:PRINT SAVEW$;F$
1870 PRINT"Bild ";F$;" auf Disk gespeichert ! '
1880 FOR I=1 TO 1000:NEXT
1890 PRINT CLRPP$:RETURN
1892 ' * * ZURÜCK INS BETRIEBSSYSTEM * *
1894 SYSTEM
1900 ' * * Menü - Rutine * *
1910 PRINT CUDFF$ :PRINT CUPON$
1920 PRINT LOCATE$; CHR$(ROW); CHR$(69-INT(LEN(A$)/2)); A$
1930 R0=2:IF C>6 THEN R0=1
1940 ROW=ROW+3
1950 FOR I=1 TO C
1960 PRINT LOCATE$; CHR$(ROW); CHR$(COL);
1970 ROW=ROW+R0
1980 PRINT I;". ";UN$(I)
1990 NEXT I
2000 PRINT LOCATE$;CHR$(ROW);CHR$(COL);
2010 PRINT "TREFFE DEINE WAHL ( 1 -";C;") ? ";
```

```
2020 B$ = INKEY$ : IF LEN(B$) = 0 THEN 2020
2030 PRINT B$:NN=RND(0)
2040 X = ASC(B$) - 48
2050 IF X<1 OR X>C THEN PRINT CHR$(7):GOTO 2000
2070 ROWW=ROW:ROW=ROWW-(C-X+1)*RO
2090 PRINT LOCATE$; CHR$(ROW); CHR$(COL);
2100 PRINT X;". ";UN$(X);
2120 RETURN
2130 ' * * GROBSCHRIFT * *
2140 L=10*LEN(A$)
2150 X=350-L:Y=0:GOSUB 3250;PRINT CHRX2$:PRINT REVON$:PRINT SCHR$;"OCR"
2160 PRINT HIRE$:A$:PRINT CHRX2R$:PRINT REVOFF$:PRINT CUOFF$:PRINT SCHR$; "NORMAL"
2170 RETURN
2180 ' * * Normalschrift * *
2190 L=5*LEN(A$)
2200 X=250-L:Y=0:GOSUB 3250:PRINT REVON$:PRINT SCHR$; "NORMAL"
2210 PRINT HIRE$; A$: PRINT REVOFF$: PRINT CUOFF$
2220 RETURN
2230 DATA NYQUIST - KRITERIUM
2240 DATA PLOTTEN EINER VORHANDENEN ORTSKURVE
2260 DATA VORHANDENE PLOT'S LADEN
2270 DATA VORHANDENE PLOT'S LÖSCHEN
2275 DATA PLOTTEN DER BILDSCHIRMDARSTELLUNG AUF DEN DRUCKER
2280 DATA ZURÜCK INS BETRIEBSSYSTEM
2290 REM RTS$
2300 DATA PD - P-I-Tt
2310 DATA P - PT1-Tt
2320 DATA PD - P-I-T1
2330 DATA PI - PT2
2340 DATA PD - PT2
2350 DATA PID - PT1-PT1-Tt
2360 DATA Reglerverstärkung
                                Vr =
2370 DATA Streckenverstärkung
                               Vs =
2380 DATA Streckenverstärkung
                                Vst1=
2390 DATA Streckenverstärkung
                                Vst2=
                                 Vet3=
2400 DATA Streckenverstärkung
                                 Vstt=
2410 DATA Streckenverstärkung
2420 DATA Verzögerungszeit
                                 T1/s=
2430 DATA Verzögerungszeit
                                 12/5=
                                 T3/s=
2440 DATA Verzögerungszeit
2450 DATA Integrationszeit
                                 Ti/s=
2460 DATA Vorhaltezeit
                                Tv/s=
2470 DATA Nachstellzeit
                                Tn/s=
2480 DATA Dämpfung
                                d
2490 DATA Totzeit
                                Tt/s=
2500 DATA w fuer Im(FO)=0
                               wz/Hz =
2510 DATA Amplitudenreserve
                                Ar =
2520 DATA Durchtrittsfrequenz wd/Hz =
2530 DATA Phasenreserve /Grad
2540 DATA Regelung
                                     -
2550 DATA 0102101114
2560 DATA 01020714
2570 DATA 0102071011
2580 DATA 0102081213
2590 DATA 0102081113
2600 DATA 01020708111214
2610 ' * Titel *
2620 T$= "NYQUIST - KRITERIUM"
2630 RETURN
2640 '* * Untertitel * *
2650 IF DU>1 THEN 2670
2660 UT$= "Regler + Strecke: "+SL$
```

```
368
```

```
2670 RETURN
2680 '* * Ändern der Parameter * *
2690 PRINT CLR$
2700 D=DU:DU=DU+1
2703 FOR I= 1 TO AZ
2705 PAR(I,DU)=PAR(I,DU-1)
2706 NEXT I
2710 PRINT E$: "m2#8": PRINT CLRPP$: ROW=37: COL=47: C=AZ
2720 GOSUB 2810:GOSUB 1900:INPUT PAR(X,DU):X(X)=X:PRINT LOCATE$;CHR$(ROWW);CHR$(COL)
2760 D=DU
2770 A$="wünschst du weitere Änderungen ?"
2780 PRINT LOCATE$;CHR$(RDWW+2);CHR$(69-INT(LEN(A$)/2));A$:GOSUB 4260
2790 IF ANS=1 THEN 2710
2800 PRINT CLRPP$:GOTO 4480
2810 '* * Parameterauflistung * *
2820 A$="Die zuletzt eingegebenen Parameter waren"
2830 \text{ FOR I} = 1 \text{ TO AZ}
2840 UN$(I)=PAR$(I) +" "+STR$(PAR(I,D))
2850 NEXT I
2860 PRINT
2870 RETURN
2880 '* * Formatierung * *
2890 V=4:N=3
2900 FOR D=1 TO DU:FOR I=1 TO AZ+4:ZA=PAR(I,D)
2910 Z1=INT(ABS(ZA)):Z2=INT(10^N*(ABS(ZA)-Z1)+.5)
2920 IF ZA >= 0 THEN Z1$=" "+MID$(STR$(Z1),2,V)
2930 IF ZA < 0 THEN Z1$="-"+MID$(STR$(Z1),2,V)
2940 Z1$=RIGHT$(" "+Z1$,V)
2950 Z2$=LEFT$(RIGHT$("0000"+MID$(STR$(Z2),2),N)+" ",N):Z$=Z1$+"."+Z2$
2960 PA$(I,D)=Z$:NEXT I,D:RETURN
2970 ' * * Linientypen Darstellung * *
2980 FOR P=1 TO DU
      X=LM+175+50*(P-1):Y=HM+8:GOSUB 3250
2990
3000
     PRINT LINET$;P
3010
     X=35:Y=0:GCSUB 3270
3020 NEXT: PRINT LINET$;1: PRINT LINEW$;1: RETURN
3030 '* * Parameterausgabe * *
3040 GOSUB 2880
3050 HM=80
3060 LM=480
3070 PRINT SCHR$;"small":PRINT UNDLON$
3080 X=LM:Y=HM:GOSUB 3250:PRINT HIRE$; "PARAMETER: ":PRINT CHRX2R$:PRINT UNDLOFF$
3090 X=LM:Y=HM+13:GOSUB 3250
3100 FOR Z=1 TO 5:PAR$(AZ+Z)=PARRS$(14+Z):NEXT Z
3110 FOR N=1 TO AZ:PRINT HIRE$;PAR$(N):FOR I=1 TO DU:PRINT HIRE$;PA$(N,I):NEXT I:X=L
M:Y=Y+10:GOSUB 3250
3120 NEXT N
3130 X=LM:Y=Y+15:GOSUB 3250:PRINT UNDLON$:PRINT HIRE$;"ERGEBNISSE":PRINT UNDLOFF$
3140 X=LM:Y=Y+10:GOSUB 3250
3150 FOR N=AZ+1 TO AZ+5:PRINT HIRE$;PAR$(N):FOR I=1 TO DU:IF (N=AZ+3 OR N=AZ+4) AND
                                 -
                                      " ELSE PRI
FLAGWD(I)=0 THEN PRINT HIRE$;"
NT HIRE$; PA$(N,I)
3152 NEXT I:X=LM:Y=Y+10:GOSUB 3250:NEXT N
3153 GOSUB 5600
3154 PRINT HIRE$; "Re FO(w=0)
                                             = ":FOR I=1 TO DU:PRINT HIRE$;TR$(I):NE
XT I:X=LM:Y=Y+10:GOSUB 3250
                                             = ":FOR I=1 TO DU:PRINT HIRE$;TI$(I):NE
3155 PRINT HIRE$;"Im FO(w=0)
XT I
3160 GOSUB 2970
3170 '* * Darstellung der Formel * *
3180 LM=0
3185 IF RST =6 THEN PRINT SCHR$;"small":GOTO 3200
```

```
3190 PRINT SCHR$;"med"
3200 FDR I= 1 TD 2:X=LM:Y=40+((I-1)*20):GOSUB 3250:PRINT HIRE$;X$(I):NEXT
3210 PRINT CUOFF$:RETURN
3220 '* * FENSTERKONTROLLE * *
3230 IF X < XLMIN OR X > XLMAX THEN AUS=1:RETURN
3240 IF Y < YLMIN OR Y > YLMIN+YL THEN AUS=1:RETURN
3250 '* * CURSOR POSITIONIRUNG IN X UND Y * *
3260 X%=X:Y%=Y:PRINT POSA$;X%,Y%:RETURN
3270 '* * RELATIVES ZEICHNEN IN X UND Y * *
3280 X%=X:Y%=Y:PRINT DRAWRE$;X%,Y%:RETURN
3290 '* * ZEICHNET ABSOLUT IN X UND Y * *
3300 X%=X:Y%=Y:PRINT DRAWAB$;X%,Y%:RETURN
3310 '* * EXIT AND RESTORE * *
3320 PRINT E$;"m2 8":PRINT E$;"E":PRINT RES$
3330 PRINT CU$:PRINT SDS$; 0:PRINT CLR$:PRINT SWS$;0:END
3340 K$=INKEY$: IF K$="" THEN 3340 ELSE RETURN
3350 '* * Kurvenzuordnung * *
3360 X=600:Y=300:GOSUB 3250:PRINT HIRE$; "Kurvenzuordnung:"
3370 FOR I=1 TO DU
3380
      X=600:Y=Y+16:GDSUB 3250
      PRINT LINET$; I: PRINT LINEW$;2
3390
     X=X+10*LEN("Kurvenzug 1"):60SUB 3270:REM zeichnet Linie zum Kurvenzug i
3400
3410
     X=600:Y=Y+4:GOSUB 3250
3420
      PRINT HIRE$: "Kurvenzug ": I
3430 NEXT
3440 PRINT LINEW$;1:PRINT LINET$;1:RETURN
3460 '* * Unterprogramm Koordinatensystem * *
3475 KCOPY=1:IF KCOPY$="ja" THEN KCOPY=.9:XLI=(XLI-YLMIN)*KCOPY+YLMIN
3480 PRINT LINET$;1:PRINT LINEW$;1
3490 YLMIN=100:YLMAX=370:YL=(YLMAX-YLMIN)*KCOFY
3500 XL=YL/KCOPY*1.5:XLMIN=60:XLMAX=XLMIN+XL
3510 IF FLAGZ=1 THEN 3540
3520 ZODM=1
3530 XLI=YLMIN+YL/2:YLI=XLMIN+XL/2
3540 '* * Grunddarstellung * *
3550 X=YLI:Y=YLMIN:GOSUB 3250:X=0:Y=YL:GOSUB 3270
3560 X=XLMIN:Y=XLI:GOSUB 3250:X=XL:Y=0:GOSUB 3270
3570 '* * X- Skalierung * *
3580 SW1=5/Z00M:SKX=SW1/5:S=XL/10:MXA=XL/(SW1*2):REM sw=Skal Weite
3590 FOR K=-1 TO 1 STEP 2
3600 FDR I=0 TO 11*K STEP K
3610 AUS=0:X=YLI+S*I:Y=XLI-2:GOSUB 3220:IF AUS=1 THEN 3630
3620 X=0:Y=4:60SUB 3270
3630 NEXT I,K
3640 '* * Y - Skalierung * *
3650 SKY=SW1/5:S=(XL*KCDPY)/(10*1.5):MYA=YL/(SW1*2):REM sw=Skal Weite
3660 FOR K=-1 TO 1 STEP 2
3670 FOR I=0 TO 11*K STEP K
3680 AUS=0:X=YLI-3:Y=XLI+S*I:GOSUB 3220:IF AUS=1 THEN 3700
3690 X=6:Y=0:60SUB 3270
3700 NEXT I,K
3710 '* * Beschriftung der X-Skalierung * *
3720 PRINT SCHR$;"smprop"
3730 S=XL/10:Y=XLI+10
3740 FOR K=-1 TO 1 STEP 2:X=YLI:J=1
3750 FOR I=0 TO 10*K STEP K
3760 AUS=0:GOSUB 3220:IF AUS =1 THEN 3780
3770 X$=LEFT$(STR$(SKX*I),4):PRINT HIRE$;X$
3780 X=YLI-2*K+S*J*K:J=J+1
3790 NEXT I,K
```

```
370
```

```
3800 '* * Beschriftung X - Achse * *
3810 PRINT SCHR$; "normal"
3820 Y=XLI+20:X=XLMIN+XL-20
3830 GOSUB 3250
3840 PRINT HIRE$;"Re"
3850 '* * Beschriftung der Y - Skalierung * *
3860 PRINT SCHR$;"smprop"
3870 S=YL/10:X=YLI-35
3880 FOR K=-1 TO 1 STEP 2:Y=XLI-3:J=1
3890 FOR I=0 TO 10*K STEP K
3900 AUS=0:GOSUB 3220:IF AUS=1 THEN 3930
3910 Y*=LEFT*(STR*(SKY*I*K),4)
3920 PRINT HIRE$:Y$
3930 Y=XLI-3+S*J*K:J=J+1
3940 NEXT I.K
3950 '* * Beschriftung der Y - Achse * *
3960 PRINT SCHR$; "normal"
3970 Y=YLMIN+5:X=YLI-55
3980 GOSUB 3250
3990 PRINT HIRE$;"Im"
4000 GOSUB 3030
4010 '* * Lineplott * *
4020 FOR D=1 TO DU:PRINT LINET$; D:PRINT LINEW$;1
4030 FOR I=1 TO WI(DU)-3:AUS=0
4040 X=RE(I,D)*MXA+YLI:Y=XLI-IM(I,D)*MYA:GOSUB 3220:IF AUS=1 THEN 4060
4050 X=RE(I+1,D)*MXA+YLI:Y=XLI-IM(I+1,D)*MYA:GOSUB 3290
4060 NEXT I
4070 NEXT D
4080 RETURN
4090 ' * * Kursorsteuerung * *
4100 PRINT "Bewege mit Hilfe der 'Pfeiltasten' den Kursor zum neuen Koordinaten-Null
punkt !"
4110 FOR ZEIT=1 TO 5000:NEXT ZEIT
4120 PRINT"Die Positionierung des Kursors wird mit S oder s abgeschlossen !"
4130 PRINT CUON$:X=YLI:Y=XLI:GOSUB 3250
4140 Z$=INKEY$:IF Z$="" THEN 4140
4150 Z=ASC(Z$):IF Z>64 AND Z<69 THEN 4170
4160 IF Z$ = "s" OR Z$="S" THEN 4220 ELSE 4140
4170 ON Z-64 GOTO 4200,4210,4180,4190
4180 X=X+3:GOSUB 3250:GOTO 4140
4190 X=X-3:GOSUB 3250:GOTO 4140
4200 Y=Y-2:60SUB 3250:60T0 4140
4210 Y=Y+2:GOSUB 3250:GOTO 4140
4220 FLAGZ=1:XLI=Y:YLI=X:PRINT CUOFF$:PRINT CLR$:RETURN
4230 '* * Fehlerroutine * *
4240 PRINT "File nicht gefunden ";: RESUME 1730
4250 PRINT"File nicht gefunden!";:RESUME 1580
4260 '* * JA oder NEIN Antwort
4270 K$=INKEY$:IF K$="" THEN 4270
4280 IF K$="J" OR K$= "j" THEN ANS=1:60TD 4310
4290 IF K$="N" OR K$="n" THEN ANS=0:GOTO 4310
4300 PRINT CHR$(7);:GOTO 4270
4310 PRINT K$:RETURN
4320 PRINT K$:RETURN
4330 '* * Parametereingabe * *
4340 ROW=37:COL=47
4350 AZ=LEN(PL$(RST))/2
4355 PRINT CLRPP$
4360 A$="PARAMETEREINGABE FÜR "+SL$
4370 PRINT LOCATE$; CHR$(ROW); CHR$(69-INT(LEN(A$)/2)); A$
4380 RDW=RDW+3
4390 FOR I=1 TO AZ
```

```
4400 PRINT LOCATE$; CHR$(ROW); CHR$(COL);
4410 Z=I*2-1:X$=MID$(PL$(RST),Z,2):X=VAL(X$)
4420 PRINT I;". ";PARRS$(X);:INPUT PARRS(X)
4430 ROW = ROW + 1
4440 PAR$(I)=PARRS$(X):PAR(I,1)=PARRS(X)
4450 NEXT I
4460 DU=1
4470 ROW=ROW+3
4490 PRINT LOCATE$; CHR$ (ROW+3); CHR$ (69-INT (LEN (A$)/2)); A$
4500 PRINT CUPDFF$
4510 ************
4520 '* Berechnung *
4530 '************
4540 DATUM$=DATE$
4550 WMIN=.1:W=WMIN:WI=1:PI=3.14159:KDEG=180/PI:INC=.1
4555 FLAGWD(DU)=0:FLAGWZ(DU)=0:WMAX=10000:PA$(AZ+5,DU)="instab.":KCOPY$=""
4560 GOSUB 5050:FT=F0:IT=IM
4570 W=W+INC:WI=WI+1:GOSUB 5050:M1=IM(WI-1,DU)-IM(WI,DU):M2=RE(WI-1,DU)-RE(WI,DU):M3
=SQR(M1^2+M2^2)
4580 IF FO<.001 DR W>WMAX THEN 4660
4590 IF SGN(FT-1)<>SGN(FO-1) AND FLAGWD(DU)=0 THEN GOSUB 4700 ELSE FT=F0
4600 IF SGN(IT) <> SGN(IM) AND FLAGWZ(DU)=0 THEN GOSUB 4800 ELSE IT=IM
4610 IF K2=1 THEN K2=0:GOTO 4640
4620 IF M3<.1 THEN W=W-INC:K1=1:INC=2*INC:WI=WI-1:GOTO 4570
4630 IF K1=1 THEN K1=0:GOTO 4570
4640 IF M3>.3 THEN W=W-INC:K2=1:INC=INC/2:WI=WI-1
4650 GDTO 4570
4660 WI(DU)=WI
4670 GOTO 5020
4700 WT=W
4710 IF ABS(F0-1)<.005 THEN 4730
4720 FT=F0:W=W+.0001:60SUB 5050:M4=(F0-FT)/.0001:WS=W-(F0-1)/M4:W=WS:60T0 4710
4730 FLAGWD(DU)=1:PAR(AZ+4,DU)=ATN(IM/RE)*KDEG:PAR(AZ+3,DU)=W:W=WT:RETURN
4800 WT=W
4810 IF ABS(IM)<.005 THEN 4830
4820 IT=IM:W=W+.0001:GOSUB 5050:M4=(IM-IT)/.0001:WS=W-IM/M4:W=WS:GOTO 4810
4830 FLAGWZ(DU)=1:PAR(AZ+1,DU)=W:PAR(AZ+2,DU)=1/RE:W=WT:IF RE<1 THEN PA$(AZ+5,DU)="
       ":RETURN
stab.
4960 F0=SQR(RE^2+IM^2):RETURN
5020 '* *RECHNUNG BEENDET * *
5025 PRINT"wi",WI:FOR I= 1 TO 1000:NEXT
5030 GOTO 1080 :REM START DES PLOT'S
5040 REM Verteiler zu Regler-Strecke
5050 DN RST 605UB 5070,5140,5210,5280,5360,5440:IM=IM(WI,DU):RE=RE(WI,DU):605UB 4960
5060 RETURN
5070 '* * PD - P-I-Tt * *
5080 VR=PAR(1,DU):VS=PAR(2,DU):TI=PAR(3,DU):TV=PAR(4,DU):TT=PAR(5,DU)
5090 V0=VR*VS
5095 W(WI,DU)=W
5100 RE(WI,DU)=VO/(W*TI)*(SIN(W*TT)-W*TV*COS(W*TT))
5110 IM(WI,DU)=VO/(W*TI)*(COS(W*TT)+W*TV*SIN(W*TT))
5120 X$(1)="RE(F0)=V0/(W*TI)*(SIN(W*TT)-W*TV*COS(W*TT))"
5130 X$(2)="IM(FO)=VO/(W*TI)*(COS(W*TT)+W*TV*SIN(W*TT))":RETURN
5140 '* * P - PT1-Tt * *
5150 VR=PAR(1,DU):VS=PAR(2,DU):T1=PAR(3,DU):TT=PAR(4,DU)
5160 VD=VR*VS
5165 W(WI,DU)=W
5170 RE(WI,DU)=VO/(1+W^2*T1^2)*(W*T1*SIN(W*TT)-COS(W*TT))
5180 IM(WI,DU)=VO/(1+W^2*T1^2)*(W*T1*COS(W*TT)+SIN(W*TT))
5190 X$(1)="RE(F0)=VD/(1+W^2*T1^2)*(W*T1*SIN(W*TT)-CDS(W*TT))"
5200 X$(2)="IM(F0)=V0/(1+W^2*T1^2)*(W*T1*COS(W*TT)+SIN(W*TT))":RETURN
```

```
372
```

```
5210 '* * PD - P-I-T1 * *
5220 VR=PAR(1,DU):VS=PAR(2,DU):T1=PAR(3,DU):T1=PAR(4,DU):TV=PAR(5,DU)
5230 V0=VR*VS
5235 W(WI.DU)=W
5240 RE(WI,DU)=VO*W^2*(T1*TI-TI*TV)/(W^2*TI^2+W^4*T1^2*TI^2)
5250 IM(WI,DU)=VO*(W*TI+W^3*T1*TI*TV)/(W^2*TI^2+W^4*T1^2*TI^2)
5260 X$(1)="RE(F0)=V0*W^2*(T1*TI-TI*TV)/(W^2*TI^2+W^4*T1^2*TI^2)"
5270 X$(2)="IM(F0)=V0*(W*TI+W^3*T1*TI*TV)/(W^2*TI^2+W^4*T1^2*TI^2)":RETURN
5280 '* * PI - PT2 * *
5290 VR=PAR(1,DU):VS=PAR(2,DU):T2=PAR(3,DU):TN=PAR(4,DU):D9=PAR(5,DU)
5300 VO=VR*VS
5305 W(WI,DU)=W
5310 RE(WI,DU)=VO*(W^2*T2^2+(2*D9*T2/TN)-1)/((1-W^2*T2^2)^2+4*D9^2*W^2*T2^2)
5320 IM(WI,DU)=VO*(2*D9*W*T2+1/(W*TN)-W*T2^2 /TN)/((1-W^2*T2^2)^2+4*D9^2*W^2*T2^2)
5330 X$(1)="RE(F0)=VD*(W^2*T2^2+(2*D9*T2/TN)-1)/((1-W^2*T2^2)^2+4*D9^2*W^2*T2^2))"
5340 X$(2)="IM(F0)=V0*(2*D9*W*T2+1/(W*TN)-W*T2^2/TN)/((1-W^2*T2^2)^2+4*D9^2*W^2*T2^2
) "
5350 RETURN
5360 '* * PD - PT2 * *
5370 VR=PAR(1,DU):VS=PAR(2,DU):T2=PAR(3,DU):TV=PAR(4,DU):D9=PAR(5,DU)
5380 VO=VR*VS
5385 W(WI,DU)=W
5390 RE(WI.DU)=V0*(W^2*T2^2-2*D9*W^2*T2*TV-1)/((1-W^2*T2^2)^2+4*D9^2*W^2*T2^2)
5400 IM(WI,DU)=V0*(2*D9*W*T2-W*TV+W^3*T2^2*TV)/((1-W^2*T2^2)^2+4*D9^2*W^2*T2^2)
5410 X$(1)="RE(F0)=VD*(W^2*T2^2-2*D9*W^2*T2*TV-1)/((1-W^2*T2*2)^2+4*D9^2*W^2*T2^2)"
5420 X$(2)="IM(F0)=V0*(2*D9*W*T2-W*TV+W^3*T2^2*TV)/((1-W^2*T2^2)^2+4*D9^2*W^2*T2^2)"
5430 RETURN
5440 '* * PID - PT1-PT1-Tt * *
5450 VR=PAR(1.DU):VS=PAR(2.DU):T1=PAR(3.DU):T2=PAR(4.DU):TV=PAR(5.DU):TN=PAR(6.DU):T
T=PAR(7,DU)
5460 VN=VR*VS
5465 W(WI,DU)=W
5470 RE(WI,DU)=VD*(((W*T1+W*T2)*(1/(W*TN)-W*TV)+W^2*T1*T2-1)*CDS(W*TT)+(W^2*T1*T2*(W
*TV-1/(W*TN))+W*(T2+T1-TV)+1/(W*TN))*SIN(W*TT))/
((1+W^2*T1^2)*(1+W^2*T2^2))
5480 IM(WI,DU)=VD*((W^2*T1*T2*(W*TV-1/(W*TN))+W*(T2+T1-TV)+1/(W*TN))*CDS(W*TT)-((W*T
1+W*T2)*(1/(W*TN)-W*TV)+W^2*T1*T2-1)*SIN(W*TT))/
((1+W^2*T1^2)*(1+W^2*T2^2))
5485 X$(1)="RE(F0)=V0(((wT1+wT2)(1/(wTn)-wTv)+w^2T1T2-1)cos(wTt)+(w^2T1T2(wTv-1/(wTn
))+w(T1+T2-Tv)+1/(wTn))sin(wTt))/((1+w^2T1^2)(1+
w^2T2^2))'
5500 X$(2)="IM(F0)=V0((w^2T1T2(wTv-1/(wTn))+w(T1+T2-Tv)+1/(wTn))cos(wTt)-((wT1+wT2)(
1/(wTn)-wTv)+w^2T1T2-1)sin(wTt))/((1+w^2T1^2)(1+
w^2T2^2))"
5505 RETURN
5510 WIDTH LPRINT 75
5520 STOP
5600 ON RST GOSUB 5610,5660,5700,5740,5660,5780
5605 RETURN
5610 TI$(DU)="unendl. '
5620 RE=PAR(1,DU)*PAR(2,DU)/PAR(3,DU)*(PAR(5,DU)-PAR(4,DU))
5630 TK$=STR$(RE)
5640 GDSUB 6000
5650 RETURN
5660 TI$(DU)="0
5670 RE=-PAR(1,DU) *PAR(2,DU):TK$=STR$(RE)
5680 GOSUB 6000
5690 RETURN
5700 TI$(DU)="unendl. "
5710 RE=PAR(1,DU)*PAR(2,DU)*PAR(3,DU)-PAR(5,DU)/PAR(4,DU)
5720 TK$=STR$(RE):GOSUB 6000
5730 RETURN
```

```
5740 TI$(DU)="unendl. "
5750 RE=PAR(1,DU)*PAR(2,DU)*(2*PAR(5,DU)*PAR(3,DU)/PAR(4,DU)-1)
5760 TK$=STR$(RE):GOSUB 6000
5770 RETURN
5780 TI$(DU)="unendl. "
5790 RE=PAR(1,DU)*PAR(2,DU)*(PAR(3,DU)/PAR(6,DU)+PAR(4,DU)/PAR(6,DU)+PAR(7,DU)/PAR(6
.DU)-1)
5800 TK$=STR$(RE):60SUB 6000
5810 RETURN
6000 IF LEN(TK$)>=8 THEN TR$(DU)=LEFT$(TK$,8) ELSE TR$(DU)=TK$+STRING$(8-LEN(TK$),"
")
6010 RETURN
6100 PRINT CLR$
6103 U1$="######":U2$="#######.######
6105 PRINT E$;"m2 8"
6106 PRINT "Welchen Plot ? (1-3)"
6107 U3$=INKEY$:I1=VAL(U3$):IF I1<1 OR I1>DU THEN 6107
6110 PRINT "
                            Plot Nr.";I1
6120 11$="
              I
                    w in Hz
                                 Re FO(w)
                                             In FO(w)
6125 PRINT U$:PRINT
6130 FOR I=2 TO WI(I1)
6135 IF I/20=INT(I/20) THEN PRINT "<RET>: weitere Werte, <E> od <e>: Ende, <P> od <p
>: Werte auf Drucker"
6136 IF I/20=INT(I/20) THEN U3$=INKEY$:IF U3$="" THEN 6136
6137 IF U3$="E" DR U3$="e" THEN 6165
6138 IF U3$="P" OR U3$="p" THEN 6500
6140 IF I/20=INT(I/20) THEN PRINT CLR$:PRINT "
                                                                Plot Nr."; I1: PRINT U$:
PRINT
6150 PRINT USING U1$; I; PRINT USING U2$; W(I, I1); PRINT USING U2$; RE(I, I1); PRINT USI
NG U2$; IM(I,I1)
6160 NEXT I
6161 PRINT
6165 PRINT "Noch einen Plot ?":GOSUB 4260:IF ANS=1 THEN 6106
6170 RETURN
6500 LPRINT E$; CHR$(64);: LPRINT E$; "M";: LPRINT E$; "C"; CHR$(72);: LPRINT E$; "N"; CHR$(1
2);
6510 LPRINT "
                              Plot Nr."; I1:LPRINT:LPRINT U$:LPRINT
6520 FOR I=2 TO WI(I1)
6530 LPRINT USING U1$; I;:LPRINT USING U2$; W(I,I1);:LPRINT USING U2$; RE(I,I1);:LPRINT
USING U2$; IM(I,I1)
6540 NEXT I
6545 LPRINT E$;CHR$(64);
6550 GOTO 6165
20000 'Normalschrift 12 cpi
20010 LPRINT CHR$(27); CHR$(91); CHR$(49); CHR$(119)
20015 'Formularlänge'
20018 FORML$=CHR$(27)+CHR$(91)+"072t"
20020 LPRINT FORML$
20023 'Sprung über die Perforation'
20025 PREFS$=CHR$(27)+CHR$(91)+"010r"
20028 LPRINT PREFS$
20030 'linker Rand'
20040 WIDTH LPRINT BO
```

374

ner erfolgt auf ähnliche Weise wie beim Nyquist-Programm. Nach Aufrufen des Bode-Programms mit dem Befehl "bode" ergibt sich der automatische Systemstart (keine Eingabe von Datum und Uhrzeit notwendig) und auf dem Bildschirm erscheint das erste "Menue" (Bild 7.7). Wählt man "Erstellen eines Bode-Diagramms" folgt die Darstellung der Liste mit den möglichen Paarungen aus Regler und Strecke (Bild 7.8). Hier wurde beispielsweise "c" getippt, eine Regelung aus PD-Regler und PT_t-I-Strecke. Es folgt daraufhin die Parameterliste dieser Regelung (Bild 7.9).

	+ BODEDIAGRAMM +
a .	ERSTELLEN EINES BODEDIAGRAMM S
ь.	PLOTTEN EINES VORHANDENEN BODEDIAGRANN S
¢.	PLOTT ABSPEICHERN
d.	VORHANDENE PLOT'S LADEN
•	VORHANDENE PLOT S LOSCHEN
· · ·	PLOTTEN DER BILDSCHIRMDARSTELLUNG AUF DRUCKER
• •	INFORMATION
TR	EFFE DEINE WANL (a g) 7

Bild 7.7 Menue-Wahl beim Bode-Diagramm mit dem Sirius-Rechner

·	BODED (AGAACIII •
	 P = PT2 = PT4 PD = PT4 = 1 PT = PT1 = PT4 PT0 = PT1 = PT4 PT1 = PT4 PT4 = P

Bild 7.8 Liste der möglichen Paarungen von Regler und Strecke beim Bode-Diagramm

Bild 7.9 Parameter-Eingaben für PD-Regler und PT_t-I-Strecke beim Bode-Diagramm

Beim Bode-Diagramm muß auch die Frequenz ω eingegeben werden, mit der die Zeichnung beginnen soll, da im logarithmischen Maßstab $\omega = 0$ (lg 0 = - ∞) nicht realisierbar ist.

Nun zeichnet der Rechner den Frequenzgang und Phasenwinkel des offenen Regelkreises im logarithmischen Maßstab und blendet die gewählten Parameter mit ein (Bild 7.10). Als Stabilitätsaussage wird die Durchtrittsfrequenz $\omega_{\rm D}$, die Phasenreserve $\alpha_{\rm R}$ und $A_{\rm R}$ eingeblendet. Anschließend fragt der Rechner nach Datenänderungen. Drückt man "N" erscheint in der untersten Bildschirmzeile die Frage nach dem Erstellen eines neuen Bode-Diagramms. Drückt man "J", zeigt der Rechner wieder die Liste mit möglichen Paarungen aus Regler und Strecke. Hier wurde beispielsweise "h" gedrückt, eine Regelung aus PI-Regler und PT1-PT2-Strecke. Mit der dann folgenden Eingabe der Parameter erfolgt ein erster Rechnerlauf und die Darstellung von Frequenzgang und Phasenwinkel mit der zugehörigen Stabilitätsaussage (durchgezogene Linie) (Bild 7.11). Mit diesen Daten ist, wie man sieht, die Regelung instabil. Es wurde nun die Parameterliste wieder aufgerufen und darin die Reglerverstärkung von $V_r = 10$ auf $V_r = 1$ reduziert. Damit ergibt sich ein zweiter Rechnerlauf (gestrichelte Linie). Man erhält eine stabile Regelung mit $\omega_{\rm p}$ = 11,3 Hz und $\alpha_{\rm p}$ = 50,3°. Es lassen sich so maximal drei Bode-Diagramme gleichzeitig auf dem Bildschirm darstellen. Damit ist eine anschauliche und einfache Übersicht der Parametereinflüsse auf eine Regelung möglich. Wie schon beim Nyquist-Programm lassen sich auch hier die Ergeb-

nisse speichern, plotten oder ausdrucken.

Bei der Anwendung eines anderen Rechner-Typs sind lediglich die Bildschirmformatierungsbefehle und die speziellen Graphikbefehle zu ändern.

Eine Floppy-Disk mit beiden Programmen (Nyquist und Bode) ist von /88/ zu beziehen.

Bild 7.10 Bildschirmdarstellung des Bode-Diagramms mit der Stabilitätsaussage $\alpha_{\rm R}$ und $\omega_{\rm D}$

Bild 7.11 Ausdruck der Bildschirmdarstellung einer optimierten Regelung aus PI-Regler und PT₁-PT₂-Strecke

7.2 Taschenrechnerprogramme für den HP 41CV

Der besonders handliche Taschenrechner HP 41 ist für die Optimierung bzw. Synthese technischer Regelkreise gut geeignet, wenn er in Verbindung mit einem Drucker eingesetzt wird. Die hier beschriebenen und vollständig abgedruckten Programme ermöglichen es, sich von einer gewählten einschleifigen Regelung Parameter-Einflüsse und deren Auswirkung auf die Stabilität darstellen zu lassen.

Die Programme drucken immer die zur Darstellung des Nyquist- oder Bode-Diagramms notwendigen Werte aus und geben eine Stabilitäts-Aussage an, mit der man eine Entscheidung über weitere Optimierungsmaßnahmen treffen kann. Für die Anwendung des Bode-Diagramms sind in /89/ vergleichbare Programme angegeben. Spezielle Programme, wie "OPT 1", "OPT 2" und "BODE-SY", ermöglichen die Optimierung fast aller einschleifigen Regelkreise durch die geschickte Wahl der einzelnen Parameter.

7.2.1 Nyquist-Kriterium

7.2.1.1 PD-Regler und P-I-T1-Strecke

Programm-Beschreibung:

Der Rechner-Status ist 050.

Nach Aufrufen des Namens "NYQU 5" bzw. "PD-PIT1" erfolgt die Parameter-Eingabe. Anschließend wird die Durchtrittsfrequenz $\omega_{\rm D}$ bestimmt, sowie $\alpha_{\rm R}$ ausgedruckt. Danach beginnt der Rechner automatisch mit der Berechnung von Real- und Imaginärteil des Frequenzgangs $\underline{\rm F}_{\rm O}$ für die Werte $\omega = (10^{-10}, 10, 20, \dots 100)$ Hz. Da die Ortskurve im Koordinaten-Nullpunkt endet, ist $\omega_{\rm Z} = \infty$ und ${\rm A}_{\rm R} = \infty$.

Formel-Satz:

$$\underline{F}_{o} = V_{o} \frac{\omega^{2} (T_{1}T_{I} - T_{I}T_{V}) + j (\omega T_{I} + \omega^{3}T_{1}T_{I}T_{V})}{\omega^{2}T_{I}^{2} + \omega^{4}T_{1}^{2}T_{I}^{2}}$$

$$\omega_{D} = \sqrt{-\frac{T_{I}^{2} - V_{o}^{2}T_{V}^{2}}{2T_{1}^{2}T_{I}^{2}}} + \sqrt{\left(\frac{T_{I}^{2} - V_{o}^{2}T_{V}^{2}}{2T_{1}^{2}T_{I}^{2}}\right)^{2} + \frac{V_{o}^{2}}{T_{1}^{2}T_{I}^{2}}}$$

$$\omega_{z} =$$

$$\underline{\mathbf{F}}_{\mathbf{O}}(\boldsymbol{\omega}=\mathbf{O}) = \mathbf{V}_{\mathbf{O}} \frac{\mathbf{T}_{\mathbf{I}} - \mathbf{T}_{\mathbf{V}}}{\mathbf{T}_{\mathbf{I}}} + \mathbf{j} \propto$$

$$\underline{F}_{O}(\omega = \infty) = O + jO$$

13 "TV/S=?"	25 RCL 02	37 X†2
14 PRONPT	26 X†2	38 RCL 02
15 STO 04	27 /	39 Xt2
16 RCL 01	28 RCL 03	40 /
17 Xt2	29 X†2	41 RCL 03
18 RCL 04	30 /	42 X†2
19 X†2	31 2	43 /
20 *	32 /	44 +
21 CHS	33 STO 10	45 SQRT
22 RCL 03	34 RCL 10	46 STO 11
23 X†2	35 X12	47 RCL 10
24 +	36 RCL 81	48 CHS
	13 -TV/S=?- 14 PRONPT 15 STO 04 16 RCL 01 17 Xt2 18 RCL 04 19 Xt2 20 * 21 CHS 22 RCL 03 23 Xt2 24 +	13 •TV/S=?* 25 RCL 02 14 PROMPT 26 Xt2 15 STO 04 27 / 16 RCL 01 28 RCL 03 17 Xt2 29 Xt2 18 RCL 04 30 / 19 Xt2 31 2 20 * 32 / 21 CHS 33 STO 10 22 RCL 03 34 RCL 10 23 Xt2 35 Xt2 24 + 36 RCL 04

___

49 STO 12	82 AVIEW	115 X12	147 *
50 RCL 12	83 "REG. STABIL"	116 RCL 06	148 +
51 RCL 11	84 AVIEW	117 X†2	149 RCL 01
52 +	85 -AR=UNENDLICH-	118 +	150 *
53 SQRT	86 AVIEW	119 010 07	151 RCL 07
54 STO 13	87 STOP	112 510 6	152 /
55 STO 05	88+LBL 03	120 RUL 00 101 V40	153 STO 09
56-1	89 "F0 FOR W/HZ"	121 ATE 122 DCL 07	154 "IM="
57 STO 30	90 AVIEW	122 KGE 03	155 ARCL 09
58 "WB/HZ="	91 1 E-10	123 F 124 DCL 04	156 AVIEW
59 ARCI 13	92 STO 05	125 *	157 TONE 5
60 AVIEW	93 VIEW 05	125 +	158 PSE
61 TONE 2	94 GTO 01	120 003	159 PSE
62 PSE	95+LBL 05	120 4	160 100
63 PSE	96 0	120 F	161 RCL 05
64 GTO 01	97 STO 05	170 *	162 X=Y?
65+LBL 02	98 3	171 PCL 97	163 GTO 04
66 RCL 09	99 STO 30	172 /	164 1
67 RCL 08	100+LBL 06	132 / 177 STO 00	165 RCL 30
68 /	101 10	133 310 80 174 •PE=•	166 X=Y?
69 ATAN	102 ST+ 05	134 KE-	167 GTO 02
70 STO 15	103 VIEW 05	136 OVIEN	168 2
71 "aR="	104+LBL 01	137 TONE 5	169 RCL 30
72 ARCL 15	105 RCL 05	170 PCE	170 X=Y?
73 AVIEW	106 X12	130 F 32	171 GTO 05
74 TONE 2	107 RCL 02	149 PCI 86	172 3
75 PSE	188 *	141 PCL 05	173 RCL 30
76 PSE	109 RCL 03	142 *	174 X=Y?
77 2	110 *	143 PCI 04	175 GTO
78 STO 30	111 STO 86	144 *	176 .E
79 GTO 03	112 RCL 05	145 RCL 85	
80+LBL 04	113 RCL 03	146 RCL 03	
81 WZ=UNENDLICH	114 *	110 102 00	

40.000	XEQ PD-P4T1
RE=0.029	V0=?
IM=0.132	50.000 RUN
50.000	T1/S=?
RE=0.019	0.080 RUN
TM=0, 104	TI/S=?
60 000	18.000 RUN
PF=0 014	TV/S=?
IN=0.014	0.010 RUN
70 000	WD/H7=4.687
05-0 010	PE=0 707
KE-0.010	IM-0 050
10-0.073	-0-70 170 0
80.000	dR=(2.130
RE=0.008	FU FUK W/R4
IM=8.063	1.000-10
90.000	KE=0.350
RE=0.006	IM=5.000E10
IM=0.056	10.000
169.009	RE=0.213
RE=0,005	IM=0.329
IM=0.050	20.000
WZ=UNENDLICH	RE=0.098
REG. STABIL	IM=0.093
AR=UNENDI LCH	30.000
	RE=0.052
	IM=0.042
	40.000 RE=0.029 IM=0.132 50.000 RE=0.019 IM=0.104 60.000 RE=0.010 IM=0.073 80.000 RE=0.008 IM=0.053 90.000 RE=0.005 IM=0.055 IM=0.0

	40.000	VED "DD_DIT!"	40,000
RE=0.031		V0=2	PF=0 146
IM=0.025		500 000 DIN	TW-0 001
	58.898	T1/C-2	50 000
RE=0.021		0 200 DUV	DE-0 00/
IN=0 018		8.200 KUN	KE-0.074 IM-0.050
10-01010	69 999	11/3=?	10-0.007
05-0-015	00.000	10.000 KUN	50.000
KC-0.013		14/5=7	KE=0.066
18=6.013		0.010 RUN	IM=0.047
	70.000	WD/HZ=15.518	70.000
RE=0.011		RE=0.894	RE=0.048
IM=0.011		IM=0.449	IM=0.039
	80.000	aR=26.680°	80.000
RE=0.008		FO FOR W/HZ	RE=0.037
IM=0.009		1 999-19	TM=0 074
	99.000	DE=9 500	90 000
RE=0.007		IM-5 000C11	DE-A 829
TM=0 002		10.000011	TW-0.027
10-0.000	100 000	10.000	10-0.027
05-0 005	100.000	KE=1.900	100.000
KE=0.000		IM=1.200	RE=0.024
IM=0.007		20.090	IM=0.026
WZ=UNENDLICH		RE=0.559	WZ=UNENDLICH
REG. STABIL		IM=0.265	REG. STABIL
AR=UNENDLICH		30,000	AR=UNENDLICH
		RE=0.257	
		IN=0.126	

7.2.1.2 PI-Regler und PT2-Strecke

Programm-Beschreibung:

Der Rechner-Status ist 050.

Nach Aufrufen des Namens "NYQU 4" erfolgt die Eingabe der Parameter. Anschließend wird die Durchtrittsfrequenz $\omega_{\rm D}$ und die Phasenreserve $\alpha_{\rm R}$ errechnet. Danach beginnt der Rechner automatisch mit der Berechnung von Real- und Imaginärteil der Formel <u>F</u>_o für die Werte $\omega = (10^{-10}, 10, 20, \dots 100)$ Hz um dann $\omega_{\rm Z}$ zu bestimmen. Ist der Realteil von <u>F</u>_o kleiner als 1, liegt eine stabile Regelung vor; ist er größer als 1, eine instabile Regelung. Zuletzt wird die Amplitudenreserve A_R ausgedruckt.

Formel-Satz:

$$\underline{F}_{O} = V_{O} \frac{\omega^{2} T_{2}^{2} + 2dT_{2}/T_{N} - 1 + j(2d\omega T_{2} + 1/\omega T_{N} - \omega T_{2}^{2}/T_{N})}{(1 - \omega^{2} T_{2}^{2})^{2} + 4d^{2}\omega^{2} T_{2}^{2}}$$
$$V_{O}^{2} \frac{1 + 1(\omega_{D}^{2} T_{N}^{2})}{(1 - \omega_{D}^{2} T_{2}^{2})^{2} + 4d^{2}\omega_{D}^{2} T_{2}^{2}} - 1 = 0$$

$\omega_{z} = 1/$	$\sqrt{T_2(T_2 - 2dT_N)}$	reell für	$T_2 > 2 dT_N$
2			
	2dT ₂		
$\mathbf{F}_{\mathbf{a}}(\mathbf{u} = 0)$	$= V_{0} \left(\frac{2}{m} - 1 \right) + j$	00	
-o(ω=0)	O T _N		
F			
<u>−</u> o(ω=∞)	= O + jO		
	67	195 DCL 00	157 +
01*LOL 0180 4	33 - 54 CTO 74	103 KUL 04 104 V40	158 RCL 16
02 FITKCGLEK 07 AUTEU	55 YEA TWD 77	100 412	159 RCL 04
00 ATTL# 04 -DTD_CTDECVE*	56 STO 77	100 F	160 X†2
OF THE STREEKE	57 ¥=92	199 X+2	161 *
06 ANV	58 CTO 34	110 *	162 RCL 03
87 0	59 BBS	111 RCL 16	163 /
08 STO 30	60 1 E-4	112 X†2	164 -
09 •V0=?"	61 X>Y?	113 RCL 04	165 RCL 18
10 PROMPT	62 GTO 34	114 X†2	166 *
11 STO 24	63 RCL 37	115 *	167 STO 20
12 "TN/S=?"	64 RCL 36	116 CHS	168 1 0 =-
13 PROMPT	65 *	117 1	159 HKUL 20
14 STO 03	66 X>0?	118 +	175 HVIEW 171 100
15 •T2/S=?*	67 GTO 31	119 X†2	171 100
16 PROMPT	68 RCL 32	120 +	177 X=Y2
17 STO 04	69 STO 31	121 1/X	174 GTO 04
18 "D=?"	70 RCL 36	122 RCL 24	175 1
17 FKUNF(20 STO 02	71 STO 35	123 * 124 cTO 10	176 RCL 30
20 310 62 21 -UD-	72+LBL 32	124 510 18	177 X=Y?
22 WD 22 OSTO 77	73 RUL 34	125 RCL 16	178 GTO 05
23 ei Ri G	79 510 32 75 DOL 77	126 XTZ	179 2
24 "WD1/HZ=?"	73 KUL 37 76 670 76	127 KUL 04 130 V#3	180 RCL 30
25 PROMPT	70 510 50	129 *	181 X=Y?
26 STO 31	78+1 BL 31	130 2	182 GIU 08
27 •WD2/HZ=?"	79 2	131 RCL 02	163 3 104 DCL 70
28 PROMPT	80 ST/35	132 *	104 KUL 30 105 V-V9
29 STO 32	81 GTO 32	133 RCL 04	105 A-1: 186 CTO 97
30 RCL 31 71 CTO 74	82+LBL 34	134 *	107 4
31 310 34 73 VEN IND 77	83 •WD/HZ="	135 RCL 03	107 4 100 Dri 78
32 AE& 180 33 77 GTA 75	84 ARCL 34	136 /	100 KUL 280 199 Y=V7
34 RCL 32	83 HVIEW OC DC1 74	137 +	190 CTO 89
35 STO 34	97 STO 16	130 1	191+LBL 05
36 XEQ IND 33	88 PCI 24	149 RCL 18	192 RCL 20
37°STO 36	89 STO 05	141 *	193 RCL 19
38 RCL 35	90 1	142 STO 19	194 /
39 *	91 STO 30	143 "RE="	195 ATAN
40 X>0?	92 GTO 02	144 ARCL 19	196 STO 21
41 GTO 35	93+LBL 35	145 AVIEW	197 "aR="
42+LBL 30	94 •KEINE NULLST."	146 2	198 HKUL 21 199 OUTEN
40 RUL 02 44 RCI 32	95 AVIEW	147 RCL 16	177 HVIEN 200 2
45 RCL 31	96 GIU H 97 - E9 C99 UD/UZ-	148 *	201 570 79
46 -	90 AVIEN 90 AVIEN	149 KUL 04 150 +	202 ANV
47 RCL 36	99 CTO 82	150 4 151 DCI 02	203 GTO 06
48 RCL 35	100+1 BL 02	152 *	204+LBL 06
49 -	101 4	153 RCL 16	205 - F0 FOR W/HZ-
50 /	102 RCL 16	154 RCL 03	206 AVIEW
51 RCL 36	103 X12	155 *	207 1 E-10
52 *	104 *	156 1/X	208 STO 16

209 VIEW 16	233 SØRT	258 REG. INSTABLL	283 RCL 04
210 GTO 02	234 1/X	259 AVIEW	284 X†2
211+LBL 08	235 STO 22	260+LBL 12	285 *
212 0	236 •WZ/HZ="	261 RCL 19	286 CHS
213 STO 16	237 ARCL 22	262 1/X	287 1
214 3	238 AVIEW	263 STO 25	288 +
215 STO 30	239 "F0 FOR WZ/HZ"	264 ADV	289 X†2
216+LBL 07	240 AVIEW	265 "AR="	290 RCL 34
217 10	241 4	266 ARCL 25	291 X†2
218 ST+ 16	242 STO 30	267 AVIEW	292 RCL 04
219 VIEW 16	243 RCL 22	268+LBL "WD"	293 X†2
220 GTO 02	244 STO 16	269 RCL 34	294 *
221+LBL 04	245 GTO 02	270 X†2	295 4
222 ADV	246+LBL 09	271 RCL 03	296 *
223 RCL 02	247 RCL 19	272 X†2	297 RCL 02
224 2	248 1	273 *	298 X†2
225 *	249 X>Y?	274 1/X	299 *
226 RCL 03	250 CTO 10	275 1	300 +
227 *	250 870 10 251 CTO 11	276 +	301 1/X
228 CHS	257 410 11 2524i RI 19	277 RCL 24	302 RCL 40
229 RCL 04	252 CD2 10	278 X†2	303 *
230 +	254 *9FC STORTI *	279 *	304 1
231 RCL 04	255 OVIEW	280 STO 40	305 -
232 *	256 CTO 12	281 RCL 34	306 RTN
	257+1 BL 11	282 X†2	307 END

	XFO "NY	Q11 4"	RE=0.127			VC0 - 444	01 4.
PT-PECLER			IM=-0.005		21-RECLER	ALC III	80 7
ATAL CTRECKE				40.000	DISLOTOFON	·c	
FIZTOIREUNE			RE=0.067		FIZTOIRCUM	. <u>г.</u>	
			IN=-0.003				
AR= \		5000		50.000	A0=5		
	1.000	RUN	PF=0 042	001000		10.000	KON
TN/S=?			TH0 000		TN/S=?		
	0.080	RUN	100.002	CO 000		0.050	RUN
T2/S=?			05-0.000	00.000	T2/S=?		
	0.100	RUN	KE=0.027			0.150	RUN
D=?			IW=-0.001		D =?		
	0.500	RUN		70.900		1.000	RUN
WT1/H7=2			RE=0.021		W01/H7=2		
HDI GC	10 000	OTIN	IM=-0.001		101-11 <u>2</u>	10 000	DIIN
100 117-0	10.000	KON		80.000	UB2787-0	10,000	KUH
NUZ/HZ=/	00.000	DUN	RE=0.016		ND2/M2-/	E0 000	DUU
	20.000	KUN	IM=-4.572E-4			30.000	KUN
WU/HZ=12.6/	2			90 000	WU/HZ=23.2	72	
RE=0.941			DE=0 017	201000	RE=0.988		
IM=0.339			TM7 257E_4		16=-0.151		
aR=19.838°			IN3.23/C-4	100 000	aR=-8.705°	_	
			DE-0.010	100.000			
FO FOR W/HZ	2		KE=0.010		F0 FOR W/H	Z	
	1.6	100-10	(M=-2.399E-4			1.0	00-10
RE=0.250					RE=50.000		
IM=1.250F11			WZ/HZ=22.361		IN=2.000F1	2	
	1	0 000	F0 FOR WZ/HZ			- 1	0.000
00-1 250			RE=0.250		PF=6 864	•	•••••
KE-1.200			IM=0.000		TH-0 477		
14=1.000		0 000			10-0.4/3	•	0 000
DC 0 707	2	0.000	REG. STRBU		DE-1 100	2	0.000
RE=0.327			NEXT CLIMENTS		KE=1.400		
IM=0.010			00-4 000		18=-0.200	_	
	7	7 0.0 00	HK-4.000				U.UO O

384	7. Rechneranwendungen		
		RF=0.071	
IM=-0.035		IM=-0.006	
111- 01000	40.000		90.000
RF=0.299		RE=0.056	
IN=-0.040		IM=-0.004	
••••	50.000		100.000
RE=0.187		RE=0.045	
IM=-0.022		IM=-0.003	
••••	60.000		
RE=0.128		WZ/HZ=11.547	
IM=-0.013		F0 FOR WZ/HZ	
	70.000	RE=5.000	
RE=0.093		IN=0.000	
IM=-0.008		REG. INSTABIL	
	80.000		
		AR=0.200	

7.2.1.3 PD-Regler und PT2-Strecke

Programm-Beschreibung:

Der Rechner-Status ist 050.

Nach Aufrufen des Namens "NYQU 6" werden die Parameter eingegeben und es erfolgt die Berechnung von $\omega_{\rm D}$ sowie $\alpha_{\rm R}$. Anschließend ermittelt der Rechner automatisch Real- und Imaginärteil von <u>F</u>_o für die Variablen $\omega = (10^{-10}, 10, 20, \dots 150)$ Hz. Die Ortskurve endet im Koordinaten-Nullpunkt. Daher ist $\omega_{\rm Z} = \infty$, $A_{\rm R} = \infty$ und die Regelung unbegrenzt stabil.

Formel-Satz:

$$\underline{\mathbf{F}_{o}} = \mathbf{V_{o}} \frac{\omega^{2} \mathbf{T_{2}}^{2} - 2d\omega^{2} \mathbf{T_{2}} \mathbf{T_{V}} - 1 + j(2d\omega \mathbf{T_{2}} - \omega \mathbf{T_{V}} + \omega^{3} \mathbf{T_{2}}^{2} \mathbf{T_{V}})}{(1 - \omega^{2} \mathbf{T_{2}}^{2})^{2} + 4d^{2} \omega^{2} \mathbf{T_{2}}^{2}}$$
$$\omega_{D} = \sqrt{\frac{\mathbf{V_{o}}^{2} \mathbf{T_{V}}^{2}}{2\mathbf{T_{2}}^{4}} - \frac{2d^{2} - 1}{\mathbf{T_{2}}^{2}} + \sqrt{\left(\frac{2d^{2} - 1}{\mathbf{T_{2}}^{2}} - \frac{\mathbf{V_{o}}^{2} \mathbf{T_{V}}}{2\mathbf{T_{2}}^{4}}\right)^{2} + \frac{\mathbf{V_{o}}^{2} - 1}{\mathbf{T_{2}}^{4}}}$$

 $\omega_{z} = \infty$ $\frac{F}{O}(\omega=0) = -V_{O} - j\infty$ $\frac{F}{O}(\omega=\infty) = 0 + j0$

01♦LBL "NYQU 6"	63 RCL 05	122 ST0 25	181 AVIEW
02 "PD-REGLER"	64 -	123 VIEW 25	182 RCL 25
03 AVIEW	65 RCL 08	124 GTO 05	183 X†2
94 PT2-STRECKE"	66 +	121 010 00	184 RCL 25
05 AVIEW	67 SØRT	125+LBL 06	185 *
96 9DV	68 STO 09	126 0	186 RCL 94
A2 A	69 STO 25	127 STO 25	187 *
08 STO 30	70 1	128 7	188 RCL 03
09 •V9=2•	71 STO 30	109 CTO 70	189 X†2
10 PROMPT	72 "WD1/HZ="	127 310 30	190 *
11 STO 01	73 ARCL 09	170+181 07	191 RCL 02
12 "TV/S=?"	74 AVIEW	171 10	192 2
13 PROMPT	75 RCL 06	172 ST+ 25	193 *
14 STO 94	76 RCL 05	133 VIEN 25	194 RCL 25
15 •T2/S=*	77 -	TOO THEM LO	195 *
16 PROMPT	78 RCL 08	174+LBL 05	196 RCL 03
17 STO 03	79 -	135 PCL 25	197 *
18 "d=?"	80 STO 31	136 X12	198 +
19 PROMPT	81 RCL 31	137 RCL 03	199 RCL 25
20 STO 02	82 0	138 X12	200 RCL 04
21 **	83 X>Y?	179 *	201 *
22 AVIEW	84 GTC 01	140 CHS	202 -
23 RCL 02	85 GTO 02	141 1	203 RCL 01
24 X12		142 +	204 *
25.2	86+LBL 01	143 212	205 RCL 21
26 *	87 WD2 NEG."	144 RCL 02	206 /
27 1	88 AVIEW	145 842	207 STO 23
28 -	89 ADY	146 d	208 "IM="
29 RCL 03	90 "F0 YON WD/HZ"	147 *	209 ARCL 23
30 Xt2	91 AVIEW	148 PCL 25	210 AVIEW
31 /	92 GTO 05	149 Xt2	211 150
32 STO 05		158 *	212 RCL 25
33 RCL 01	93+LBL 02	151 RCL 83	213 X=Y?
34 X12	94 RCL 06	152 842	214 GTO 02
35 RCL 04	95 RCL 05	153 *	215 1
36 X†2	96 -	154 +	216 RCL 30
37 *	97 RCL 08	155 STO 21	217 X=Y?
38 2	98 -	156 RCL 25	218 GTO 04
39 /	99 SØRT	157 8*2	219 2
40 RCL 03	100 STO 10	158 RCL 93	220 RCL 30
41 X†2	101 STO 25	159 X+2	221 X=Y?
42 X†2	102 "WD2/HZ="	160 *	222 GTO 06
43 /	103 ARCL 10	161 1	223 3
44 STO 06	104 AVIEW	162 -	224 RCL 30
45 RCL 85	105 GTO 05	163 RCL 02	225 X=Y?
46 RCL 06		164 2	226 GTO 07
47 -	106+LBL 04	165 *	227 4
48 X†2	107 RCL 23	166 RCL 25	228 RCL 30
49 STO 07	108 RCL 22	167 X†2	229 X=Y?
50 RCL 01	109 /	168 *	230 GTO 03
51 X†2	110 ATAN	169 RCL 03	
52 1	111 STO 20	170 *	231+LBL 02
53 -	112 ADV	171 RCL 04	232 ADV
54 RCL 03	113 "aR/GRD.="	172 *	233 "WZ=UNENDLICH"
55 X†2	114 ARCL 20	173 -	234 RVIEW
56 X†2	115 AVIEW	174 RCL 01	235 ADV
57 /	116 ADV	175 *	236 "REG. STABIL"
58 RCL 07	117 2	176 RCL 21	237 HVIEW
59 +	118 STO 30	177 /	238 HUV
60 SQRT	119 "F0 VON W/HZ"	178 STO 22	239 "HR=UHENDLICH"
61 STO 08	120 AVIEW	179 "RE="	240 HVIEW
62 RCL 06	121 1 E-10	180 ARCL 22	241 .ENU.

						100.00
	XEQ NY	WU 6"	RE=0,56			100,00
PD-REGLER			IM=2,08		KE=0,06	
PT2-STRECKE				30,00	IM=0,21	
			RE=0,44			110,00
V8=?			IM=1,08		RE=0,05	
	10.00	RUN		40,00	IM=0,19	
TV/S=2	•••••		RE=0.30			120,00
	0.02	PHN	IN=0.69		RE=0,04	
T2/C-	0/02		10-0707	50 00	IN=0.17	
1273-	0.10	DUN	DC-0 01	30100		130.00
	0,10	KUM	KE-0,21		DC-0 07	100/00
d= /	4 00	DUU	14=0,00	<i>(</i> 0 00	RE-0703 IM-0 14	
	1,00	KUN		60,00	10-0710	140.00
					DE 0.07	140,00
WD1/HZ=33,1	<u>7</u>		RE=0,15		KE=0,03	
WD2 NEG.			IM=0,39		18=0.15	
				70,00		150,00
F0 VON WD/H	Z		RE=0,11		RE=0,03	
RE=0,39			IM=0.32		IM=0,14	
IM=0,92				80,00		
			₽F=0.09)	WZ=UNENDLICH	
50/COD =47.	11		IM-0.00			
ak/ GKD011			10-0720	99 99	REG. STABL	
FA 1101 11/117			of 0 07	70700	REGI OTHORE	
F0 YUN #/82		00.10	RE=0,07		OR-UNENDLICH	
	1,	00-10	1件=0,24		HK-UNLIDETCH	
XE=-10,00						
IM=1,80E-10						
		10,00				
RE=-1,00						
IM=5,00						
		20,00				

7.2.1.4 Programm zur Regelkreis-Optimierung nach Nyquist

Programm-Beschreibung:

Der Rechner-Status ist 072.

Die Programm-Namen sind "OPT 1" und "OPT 2".

Das Programm "OPT 1" beinhaltet einen PID-Regler und drei PT_1 -Strecken, sowie ein Totzeit-Glied. Durch geschickte Wahl der Parameter ergeben sich mehr als 10 verschiedene Kombinationen aus Regler und Strecke. Setzt man beispielsweise $T_N \rightarrow \infty$, $T_3 = 0$ und $T_t = 0$ ergibt sich eine Regelung aus PD-Regler und PT_1 - PT_1 -Strekke.

Mit Eingabe des Namens "OPT 1" werden die Regelkreis-Parameter abgefragt. Danach können beliebige Frequenzwerte ω gewählt werden, für die der Rechner Real- und Imaginärteil der Funktion \underline{F}_{o} ausdruckt. Erst bei $\omega \stackrel{\geq}{=} 10^{6}$ Hz springt der Rechner in das Unterprogramm zur Bestimmung von ω_{z} . Wenn $\omega_{z} \neq \infty$ ist, tippt man auf diese Frage "O" ein; dann erfolgt der Sprung in ein Nullstellen-Unterprogramm. Nach der Berechnung von ω_{z} werden die Amplitudenreserve A_{p} und die kritische Verstärkung V_{ok} ausgedruckt. Daraufhin kommt der Rücksprung in das Nullstellen-Unterprogramm (jetzt zur Bestimmung von $\omega_{\rm D}$). Mit dem Wert der Durchtrittsfrequenz $\omega_{\rm D}$ wird nun die Phasenreserve $\alpha_{\rm R}$ der Regelung ausgerechnet. Es ist nicht notwendig die Ortskurve des Frequenzgangs $\underline{\rm F}_{\rm O}$ zu zeichnen, da das Programm alle zur Beurteilung der Stabilität notwendigen Aussagen ausdruckt. Ist die Regelung im ersten Rechnerlauf instabil, kann sie mit Hilfe der kritischen Verstärkung V_{ok}, der Phasenreserve $\alpha_{\rm R}$ und der Amplitudenreserve A_R optimiert bzw. stabilisiert werden.

Formel-Satz:

$$\underline{\mathbf{F}}_{O} = \mathbf{V}_{R}\mathbf{V}_{S} \frac{\mathbf{a} \cdot \cos\omega\mathbf{T}_{t} + \mathbf{b} \cdot \sin\omega\mathbf{T}_{t} + \mathbf{j}(\mathbf{b} \cdot \cos\omega\mathbf{T}_{t} - \mathbf{a} \cdot \sin\omega\mathbf{T}_{t})}{(1 + \omega^{2}\mathbf{T}_{1}^{2})(1 + \omega^{2}\mathbf{T}_{2}^{2})(1 + \omega^{2}\mathbf{T}_{3}^{2})}$$

mit

$$a = \omega^{2} (T_{1}T_{2} + T_{1}T_{3} + T_{2}T_{3}) + \omega (1/\omega T_{N} - \omega T_{V}) (T_{1} + T_{2} + T_{3} - \omega^{2}T_{1}T_{2}T_{3}) - 1$$

$$b = (1/\omega T_{N} - \omega T_{V}) [1 - \omega^{2} (T_{1}T_{2} + T_{1}T_{3} + T_{2}T_{3})] + \omega (T_{1} + T_{2} + T_{3} - \omega^{2}T_{1}T_{2}T_{3})$$

$$\frac{\varphi_{0}}{\text{Grad}} = \arctan(\omega T_{V} - \frac{1}{\omega T_{N}}) - \arctan\omega T_{1} - \arctan\omega T_{2} - \arctan\omega T_{3} - \frac{180}{\pi} \omega T_{t}$$

 $1/A_{R} = Re[\underline{F}_{O}(\omega_{z})]$

$$\alpha_{\rm R} = \varphi_{\rm O(\omega_{\rm D})} + 180^{\rm O} .$$

Das Programm "OPT 2" beinhaltet einen PID-Regler und eine PT₂-PT_t-I-Strecke. Auch hier ergeben sich bei geschickter Wahl der Parameter mehr als 10 Regelkreis-Varianten, die man Optimieren kann.

Mit Eingabe des Namens "OPT 2" erfolgt die Abfrage der Parameter. Anschließend können wieder beliebige Frequenzwerte eingegeben werden, für die das Programm den Real- und Imaginärteil des Frequenzgangs \underline{F}_{O} bestimmt. Bei $\omega \stackrel{\geq}{=} 10^{6}$ Hz erfolgt der Sprung in das Unterprogramm zur Berechnung von ω_{z} . Ist $\omega = \infty$, tippt man "1" ein, ansonsten "O". Dann wird mit dem Nullstellen-Unterprogramm der Wert von ω_{z} ermittelt und damit A_{R} und V_{OK} bestimmt. Nun setzt der Rechner das gleiche Nullstellen-Programm zur Berechnung von ω_{D} ein und druckt dann die Phasenreserve α_{p} aus. Auf diese Weise können mit den Programmen "OPT 1" und "OPT 2" zahlreiche technische Regelkreise ohne großen Aufwand optimiert werden.

Formel-Satz:

$$\underline{\mathbf{F}}_{\mathrm{O}} = \mathbf{V}_{\mathrm{R}}\mathbf{V}_{\mathrm{S}} \frac{\mathbf{c} \cdot \mathbf{cos}\omega\mathbf{T}_{\mathrm{t}} + \mathbf{d} \cdot \mathbf{sin}\omega\mathbf{T}_{\mathrm{t}} + \mathbf{j}\left(\mathbf{d} \cdot \mathbf{cos}\omega\mathbf{T}_{\mathrm{t}} - \mathbf{c} \cdot \mathbf{sin}\omega\mathbf{T}_{\mathrm{t}}\right)}{\omega\mathbf{T}_{\mathrm{I}}\left[\left(1 - \omega^{2}\mathbf{T}_{2}^{2}\right)^{2} + 4d^{2}\omega^{2}\mathbf{T}_{2}^{2}\right]}$$

mit
$$c = (1/\omega T_N - \omega T_V) (1 - \omega^2 T_2^2) + 2d\omega T_2$$

$$d = 1 - \omega^{2} T_{2}^{2} - 2 d\omega T_{2} (1/\omega T_{N} - \omega T_{V})$$

01+LBL "OPT 1"			
02 "PID-REGLER"	41 PCI 94		
A3 AVIEW	42 PCL 04	81 STO 09	121 -
04 -PT1.2.3-PTT-STR-	42 KGL 00	82 RCL 08	122 RCL 08
05 AVIEW	43 4	83 RCL 02	123 *
06 "VR=?"	44 1	84 *	124 +
AZ PROMPT	40 RUL 80	85 1/X	125 STO 10
08 STO 00	40 KUL 86	86 RCL 08	126 RCL 04
00 010 00 09 "VS=2"	40 /	87 RCL 03	127 8+2
10 PROMPT	40 7	88 *	128 RCL 08
11 STO 01	47 KLL 08	89 -	129 X+2
12 "TN/S=?"	00 ATZ	90 RCL 04	130 *
13 PROMPT	01 * 50 1	91 RCL 05	131 1
14 STO 82	JZ 1 57	92 *	132 +
15 •TV/S=?*	J3 - E4 CTO 1E	93 RCL 04	133 RCL 05
16 PROMPT	34 510 13 55 501 60	94 RCL 06	134 142
17 STO 97	33 KUL 02	95 *	135 RCL 08
18 "T1/S=?"	36 1/X 57 DCl 00	96 +	136 Xt2
19 PROMPT	37 KUL 08	97 RCL 05	137 *
20 STO 04	08 AT2 50 DCL 07	98 RCL 06	138 1
21 *T2/S=2*	37 KUL 03	99 *	179 +
22 PROMPT	60 ×	100 +	140 *
27 STO 05	61 -	101 RCL 08	141 RCL 06
24 "13/5=?"	62 STO 16	102 X†2	142 X12
25 PROMPT	63 RCL 04	103 *	143 RCL 08
26 ST0 96	64 RCL 05	104 CHS	144 X+2
27 • TT/S=?"	65 +	105 1	145 *
28 PROMPT	66 RCL 06	106 +	146 1
29 STO 07	÷.7 +	107 *	147 +
30 ""	67 RCL 08	108 RCL 04	148 *
31 AVIEW	69 X†2	109 RCL 05	149 STO 11
	70 RCL 04	110 +	150 180
32+L8L 01	71 *	111 RCL 06	151 PI
33 ADV	72 RCL 05	112 +	152 /
34 "W/HZ=?"	73 *	113 RCL 08	153 STO 12
35 PROMPT	74 RCL 06	114 X†2	154 RCL 12
36 STO 08	75 *	115 RCL 04	155 RCL 07
	76 -	116 *	156 *
37+LBL 09	77 RCL 16	117 RCL 05	157 RCL 08
38 RCL 04	78 *	118 *	158 *
39 RCL 05	79 RCL 15	119 RCL 06	159 COS
48 *	80 +	120 *	160 RCL 09

161 *
162 RCL 12
163 RCL 07
164 *
165 RCL 08
166 *
167 SIN
168 RCL 10
169 *
170 +
171 RCL 00
172 *
173 RCL 01
174 *
175 RCL 11
176 /
177 STO 13
178 "RE/F0/="
179 ARCL 13
180 AVIEW
181 RCL 12
182 RCL 07
183 *
184 RCL 08
185 *
186 COS
187 RCL 10
188 *
189 RCL 12
190 RCL 07
191 *
192 RCL 08
193 *
194 SIN
195 RCL 09
196 *
197 -
198 RCL 00
199 *
200 RCL 01
201 *
202 RCL 11
203 /
204 ST0 14
205 TM/F0/=
206 ARCI 14
207 AVIEN
208 FS2 01
200 FUT TAR"
210 FS2 02
211 GTO "aR"
212 RCL 08
213 1 E6
214 XXY?
215 GTO 01
216 "WZ"
217 ASTO 33
218 ADV
219 WZ=UNENDLICH?"
220 AVIEW
221 PSE
222 "TIPPE 1 SONST 0"

223 PROMPT
224 STO 29
225 1
226 X=Y?
227 G10 15
228 G10 A
22041.01 15
229#LBL 13 270 ANV
230 HUT 271 -DECELLING STORTI -
233 "FUER aR>A"
234 AVIEW
235 "AR=UNENDLICH"
236 AVIEW
237 GTO B
238+LBL A
239 ADV
240 WZ1/HZ=?
241 PROMPT
242 510 31
243 "WZZ/HZ=/"
244 PKUMPI
245 STO 32
246 SF 01
247 GTO 02
0404LDL D
248*LBL B
247 HUT 250 -UT-
230 MU 251 OCTO 77
251 Horo 55 252 •WD1/H7=2•
253 PROMPT
254 STO 31
255 *WD2/HZ=?*
256 PROMPT
257 STO 32
258 CF 01
259 SF 02
260+LBL 02
261 RCL 31
262 STO 34
263 XEW IND 33
264 510 35
203 KUL 32 262 CTN 78
200 310 34 327 VED 100 77
207 AEW 180 33 220 CTN 72
269 RCL 35
278 *
271 X>0?
272 GTO 03
/
273+LBL 04
274 RCL 32
275 RCL 32
276 RCL 31
277 -
278 RCL 36
279 RCL 35

280 -	
281 /	
202 001 76	
202 KUL 30	
283 *	
284 -	
285 STO 34	
286 XEQ IND 33	
207 CTN 77	
201 310 31	
288 X=0/	
289 GTO 05	
290 ABS	
291 1 E-5	
292 8382	
207 CTO 05	
273 GIU 63	
294 RUL 37	
295 RCL 36	
296 *	
297 XX02	
298 CTO 96	
220 010 00	
277 RUL 32	
300 510 31	
301 RCL 36	
302 STO 35	
303+LBL 07	
304 RCL 34	
305 STO 32	
306 PCL 37	
300 KCL 31	
307 510 36	
308 GTO 04	
309+LBL 06	
310.2	
711 61/ 75	
311 317 33	
312 610 07	
313+LBL 05	
314 FS? 02	
315 GTO 08	
316 "#7/#7="	
317 0DCL 74	
317 HKLL 34	
318 HVIEW	
319 RCL 34	
320 STO 08	
321 GTO 09	
722AL 81 88	
322VLDL 00	
323 "WU/HZ="	
324 ARCL 34	
325 AVIEW	
326 RCL 34	
327 STO 08	
328 610 89	
320 010 07	
700ALDI 07	
3277LDL 03	
330 "KEINE NULLSI."	
331 AVIEW	
332 FS? 01	
333 GTO A	
334 GTO B	
001 010 0	
775el Bl = 117=	
3334EDE MA 774 Dri 74	
330 KUL 34	
337 KLL 02	

339 1/X 340 RCL 34 341 RCL 03 342 * 343 -344 RCL 04 345 RCL 05 346 * 347 RCL 04 348 RCL 06 349 * 350 + 351 RCL 05 352 RCL 06 353 * 354 + 355 RCL 34 356 X†2 357 * 358 CHS 359 1 360 + 361 * 362 RCL 04 363 RCL 05 364 + 365 RCL 06 366 + 367 RCL 34 368 X†2 369 RCL 04 370 * 371 RCL 05 372 * 373 RCL 06 374 * 375 -376 RCL 34 377 * 378 + 379 RCL 12 380 RCL 07 381 * 382 RCL 34 383 * 384 COS 385 * 386 STO 20 387 RCL 04 388 RCL 05 389 + 390 RCL 06 391 + 392 RCL 34 393 X†2 394 RCL 04 395 * 396 RCL 05 397 * 398 RCL 06 399 *

338 *

400		476 179	510 PCL 00
400 -	438♦LBL "WD"	470 176	511 *
401 KUL 02	439 RCL 34	470 VAD	512 PCL A1
402 178	440 X†2	470 1	517 *
403 KLL 34	441 RCL 04	477 1	514 QTO 25
404 XT2	442 X†2	400 T	515 -VAV
405 RCL 03	443 *	481 KUL 21	516 OPCL 25
406 *	444 1	482 *	517 AVIEU
407 -	445 +	483 1	510 CTO D
408 *	446 RCL 34	484 -	310 010 0
409 1	447 X†2	485 RTN	
410 -	448 RCL 05		500 DCL 14
411 RCL 04	449 X†2	486+LBL "AR"	520 KUL 14
412 RCL 05	450 *	487 ADY	JZI KUL 13
413 *	451 1	488 RCL 13	J22 /
414 RCL 04	452 +	489 1	323 HIHN 504 0TO 07
415 RCL 06	453 *	490 X>Y?	324 510 23 525 DCL 14
416 *	454 RCL 34	491 GTO 10	523 KUL 14
417 +	455 X†2	492 GTO 11	325 X\0/ 537 CTO 17
418 RCL 05	456 RCL 06		527 610 17
419 RCL 06	457 X†2	493+LBL 10	328 F5/ 03
420 *	458 *	494 "REGELUNG STABIL"	529 GIU 17
421 +	459 1	495 AVIEW	530 GIU 16
422 RCL 34	460 +	496 GTO 13	574 J BL 47
423 X12	461 *		531+LBL 16
424 *	462 1/X	497+LBL 11	532 RCL 23
425 +	463 RCL 00	498 "REGELUNG INSTAB"	533 X20?
426 RCL 12	464 Xt2	499 AVIEW	534 GTO 17
427 RCL 07	465 *	500 SF 03	535 RCL 23
428 *	466 RCL 01		536 180
429 RCL 34	467 X†2	501+LBL 13	537 +
430 *	468 *	502 RCL 13	538 STO 23
431 SIN	469 STO 21	503 1/X	5704LDI 17
432 *	470 RCL 34	504 STO 22	337*LBL 1/
433 ST0 19	471 RCL 03	505 "AR="	340 HUY
434 RCL 20	472 *	506 ARCL 22	341 "AK/GKHUF" 543 ODCL 37
435 RCL 19	473 RCL 34	507 AVIEW	342 HKUL 23 547 OUTEU
436 -	474 RCL 02	508 RCL 13	043 H¥IEW 544 CE 00
437 RTN	475 *	509 1/X	344 UF 02 545 CF 07
			343 LF 03
			546 .ENU.

PID-REGLER PT1,2,3-PT	XEQ "O T-STR	PT 1"	W/HZ=? 0,0001 RE/F0/=-1,267	RUN	W/HZ=? 50,000 RE/F0/=0,142	RUN
TK-:	4,000	RUN	IM/F0/=66.666,667		18/10/-0,30/	
¥S=? TN/S=? T¥/S=?	0,500 0,300	RUN Run	W/HZ=? 1,000 RE/F0/=-1,252 IN/F0/=6,812	RUN	W/HZ=? 100,000 RE/F0/=0,160 IM/F0/=0,118	RUN
T1/S=? T2/S=?	0,000 0,100 0,000	RUN RUN RUN	W/HZ=? 10,000 RE/F0/=-0,530 IM/F0/=1,393	RUN	W/HZ=? 150,000 RE/F0/=0,132 IM/F0/=0,015	RUN
T3/S=? TT/S=?	0,000 0,010	RUN Run	W/HZ=? 20,000 RE/F0/=-0,089 IM/F0/=0,902	RUN	W/HZ=? 180,000 RE/F0/=0,109 IM/F0/=-0,021	RUN

390

W/HZ=?	DIIN	REGELUNG STABIL	
DE (EQ /= / 110E /	NON	HK=8,074	
KE/F0/=-6/112E-6		VØK=16,148	
IM/F0/=-1,904E-5			
		WD1/HZ=?	
WZ=UNENDLICH?		10,000	RUN
TIPPE 1 SONST 0		WD2/H7=2	
6,000	RUN	20,000	RUN
		WD/HZ=17,724	
WZ1/HZ=?		RE/F0/=-0,150	
150,000	RUN	IN/F0/=0.989	
WZ2/HZ=?			
180,000	RUN	aP/CR00=98.625	
WZ/HZ=161,207		an anne jojozo	
RE/F0/=0,124			

IM/F0/=4,217E-11

01+LBL "OPT 2"			
02 "PID-REGLER"	A1 V40		
03 AVIEW	42 *	81 2	121 *
04 PT2-I-PTT-STR."	47 CUC	82 *	122 RCL 09
05 AVIEW	43 013	83 RCL 08	123 *
06 "VR=?"	44 1	84 *	124 COS
07 PROMPT	40 T 47 VAD	85 RCL 04	125 RCL 11
08 STO 00	40 A12 47 DCL 07	86 *	126 *
09 "VS=?"	47 KUL 07	87 +	127 RCL 08
10 PROMPT	48 812	88 STO 11	128 RCL 06
11 STO 01	49 4	89 RCL 08	129 *
12 "TN/S=?"	54 501 00	90 RCL 02	130 RCL 09
13 PROMPT	51 KLL 08	91 *	131 *
14 STO 02	52 AT2	92 1/X	132 SIN
15 "TV/S=?"	03 ×	93 RCL 08	133 RCL 12
16 PROMPT	54 KLL 04	94 RCL 03	134 *
17 STO 03	55 XT2	95 *	135 +
18 "T2/S=?"	56 *	96 -	136 RCL 00
19 PROMPT	57 + 50 por 00	97 RCL 07	137 *
20 STO 04	38 KUL 08	98 *	138 RCL 01
21 "TI/S=?"	37 * (0 BOL 05	99.2	139 *
22 PROMPT	60 KUL 00	100 *	140 RCL 10
23 STO 05	61 ¥	101 RCL 08	141 /
24 "TT/S=?"	62 STO 10	102 *	142 STO 13
25 PROMPT	63 RCL 08	103 RCL 04	143 "RE/F0/="
26 STO 06	64 RCL 02	104 *	144 ARCL 13
27 "d=?"	65 *	105 CHS	145 AVIEW
28 PROMPT	66 1/X	106 1	146 RCL 08
29 STO 07	67 RCL 08	107 +	147 RCL 06
30 •*	68 RCL 03	108 RCL 08	148 *
31 AVIEW	69 *	109 Xt2	149 RCL 09
	70 -	110 RCL 04	150 *
32+LBL 01	71 1	111 X†2	151 COS
33 ADV	72 ENTER†	112 *	152 RCL 12
34 "W/HZ=?"	73 RCL 08	113 -	153 *
35 PROMPT	74 X†2	114 STO 12	154 RCL 08
36 STO 08	75 RCL 04	115 180	155 RCL 06
	76 X†2	116 PI	156 *
37+LBL 09	77 *	117 /	157 RCL 09
38 RCL 08	78 -	118 STO 09	158 *
39 X†2	79 *	119 RCL 08	159 SIN
40 RCL 04	80 RCL 07	120 RCL 06	160 RCL 11

161 *
162 -
163 KLL 00 164 *
165 RCL 01
166 * 167 RCL 10
168 / 169 STO 14
170 "IM/F0/="
171 HRCL 14 172 AVIEW
173 FS? 01
174 GTO "AR" 175 FS2 02
176 GTO "aR"
177 RCL 08
179 X>Y?
180 GTO 01
181 W2 182 ASTO 33
183 ADV
184 "WZ=UNENULICH?" 185 AVIEW
186 PSE
187 "TIPPE 1 SONST 0" 188 PROMPT
189 STO 29
190 1
191 X=Y? 192 GTO 15
193 GTO A
194+LBL 15
195 ADV
196 REGELONG STRUIC
198 "FUER aR>0"
199 HVIEN 200 "AR=UNENDLICH"
201 AVIEW
202 GTO B
203+LBL A
204 ADV 205 •W71/H7=?"
206 PROMPT
207 STO 31 208 -W72/H7=2-
209 PROMPT
210 STO 32
212 GTO 02
213♦LBL B
214 ADV
215 "WD" 216 OSTO 77
217 WD1/HZ=?"
218 PROMPT
220 WD2/HZ=?"

221 PROMPT 222 STO 32 223 CF 01 224 SF 02
225+LBL 02 226 RCL 31 227 STO 34 228 XEQ IND 33 229 STO 35 230 RCL 32 231 STO 34 232 XEQ IND 33 233 STO 36 234 RCL 35 235 * 236 XX0? 237 GTO 03
238+LBL 04 239 RCL 32 240 RCL 32 241 RCL 31 242 -
243 RCL 36 244 RCL 35 245 - 246 /
247 RCL 36 248 * 249 - 250 STO 34
251 XEQ IND 33 252 STO 37 253 X=0? 254 GTO 05
255 ABS 256 1 E-5 257 X>Y? 258 GTO 05 259 RCL 37 260 RCL 36 261 *
262 X>0? 263 GTO 06 264 RCL 32 265 STO 31 266 RCL 36 267 STO 35
268+LBL 07 269 RCL 34 270 STO 32 271 RCL 37 272 STO 36 273 GTO 04
274+LBL 06 275 2 276 ST/ 35 277 GTO 07
278+LBL 05

	279 FS? 02
	280 GTO 08
	281 WZ/NZ- 282 DPC1 34
	283 AVIEW
	284 RCL 34
	285 STO 08
	286 GIU 09
	287+LBL 08
	288 "WD/HZ=" 200 OPCL 74
	290 AVIEW
	291 RCL 34
	292 STO 08
	293 GIU 0 9
	294+LBL 03
295	296 OVIEN
	297 FS? 01
	298 GTO A
	299 GTO B
	300+LBL "WZ"
	301 1 202 ENTERA
	302 ENTERT 303 RCL 34
	304 X12
	305 RCL 04
	306 X†2
	307 * 308 -
	309 RCL 34
	310 RCL 02
	311 *
	312 I/A 313 RCL 34
	314 RCL 03
	315 *
	316 - 317 RCI 34
	318 *
	319 RCL 04
	321 RCL 07
	322 *
	323 Z 324 *
	325 -
	326 STO 19
	327 RCL 34 328 RCL 02
	329 *
	330 1/X
	331 RCL 34
	332 KUL 03 333 *
	334 -
	335 RCL 34
	336 X12 777 RCI 04
	338 Xt2

339	* eue	
340	1	
342	+	
343	*	
344	RCL	07 74
340	KUL *	34
347	RCL	84
348	*	
349	2	
300	¥ +	
352	STO	20
353	RCL	0 9
354	RCL	34
300	* PCI	86
357	*	00
358	COS	
359	RCL	19
360	* PCI	86
362	RCL	34
363	*	
364	RCL	0 9
360	* SIN	
367	RCL	20
368	*	
369	-	
370	RTH	
371-	•LBL	-WD-
371- 372	•LBL RCL	-WD- 34
371- 372 373	+LBL RCL X†2	-WD- 34
371- 372 373 374 375	+LBL RCL X†2 RCL X+2	-WD- 34 04
371- 372 373 374 375 376	•LBL RCL X†2 RCL X†2 X†2 *	-WD- 34 04
371- 372 373 374 375 376 376	+LBL RCL X†2 RCL X†2 * CHS	•WD• 34 04
371- 372 373 374 375 376 376 377 378	+LBL RCL X†2 RCL X†2 X†2 * CHS 1	-WD- 34 04
371- 372 373 374 375 376 377 378 379 379	•LBL RCL X†2 RCL X†2 * CHS 1 +	-WD- 34 04
371- 372 373 374 375 376 376 377 378 379 380 381	+LBL RCL X†2 RCL X†2 * CHS 1 + X†2 RCL	•WD* 34 04
371- 372 373 374 375 376 377 378 379 380 381 382	+LBL RCL X†2 RCL X†2 * CHS 1 + X†2 RCL X†2	-WD- 34 04
371- 372 373 374 375 376 377 378 379 380 381 382 383 382	•LBL RCL X†2 RCL X†2 * CHS 1 + X†2 RCL X†2 RCL X†2 4	"WD" 34 04 07
371- 372 373 374 375 376 377 378 379 380 381 382 383 384 385	•LBL RCL X†2 RCL X†2 * CHS 1 + X†2 RCL X†2 RCL X†2 4 * RCL X†2	-WD- 34 04 07
371: 372 373 374 375 376 377 378 380 381 382 383 384 385 384	•LBL RCL X†2 RCL X†2 * CHS 1 + X†2 RCL X†2 4 * RCL X†2	-HD- 34 04 07 34
371: 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 386 387	•LBL RCL X†2 RCL X†2 * CHS 1 + X†2 RCL X†2 * RCL X†2 * RCL X†2 *	-HD- 34 04 07 34
3711 372 373 374 375 376 377 378 380 381 382 383 384 385 386 387 388	+LBL RCL X†2 RCL X†2 * CHS 1 + X†2 RCL X†2 * RCL X†2 * RCL X†2 * RCL X†2	-WD- 34 04 07 34 04
3711 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 389 390	+LBL RCL X†2 RCL X†2 * CHS 1 + X†2 RCL X†2 * RCL X†2 * RCL X†2 * RCL X†2 * RCL X†2 * * RCL X†2 * * * * * * * * * * * * * * * * * * *	-WD- 34 04 07 34 04
371: 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391	•LBL RCL X†2 RCL X†2 * CHS 1 + X†2 RCL X†2 * RCL X†2 * RCL X†2 * RCL X†2 * RCL X†2 * RCL X†2 * RCL X†2 * RCL * * RCL * * RCL * * * RCL * * * * * * * * * * * * *	-WD- 34 04 07 34 04
371- 372 373 374 375 376 377 380 381 382 383 384 385 384 385 386 387 388 389 390 391 392	•LBL RCL X†2 RCL X†2 RCL X†2 RCL X†2 RCL X†2 RCL X†2 RCL X†2 RCL X†2 RCL X†2 RCL X†2 RCL X†2	-WD- 34 04 07 34 04 34
371- 372 373 374 375 376 377 380 381 382 383 384 385 386 387 388 389 390 391 392 393	•LBL RCL X†2 RCL X†2 RCL X†2 RCL X†2 RCL X†2 * RCL X†2 * RCL X†2 * RCL X†2 * RCL X†2 * * RCL X†2 * * RCL X†2 * * * * * * * * * * * * * * * * * * *	-WD- 34 04 07 34 04 34
371: 372 373 374 375 376 377 378 380 381 382 383 384 385 386 386 387 388 389 390 391 392 393 394 392 393 394 395	•LBL RCL X†2 RCL X†2 RCL X†2 RCL X†2 RCL X†2 * RCL X * RCL X * RCL X * * RCL X * * RCL X * * RCL X * * RCL X * * RCL X * * RCL X * * RCL X * * RCL X * * RCL X * * RCL X * * RCL X * * RCL X * * RCL	-WD- 34 04 07 34 04 34 05
371: 372 373 374 375 376 377 378 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 392 393 394 395 396	•LBL RCL2 RCL2 RCL2 RCL2 RCL2 RCL2 RCL2 RCL	-WD- 34 07 34 04 34 05
371: 372 373 374 375 375 376 377 380 381 382 383 384 385 386 387 398 399 391 392 393 391 392 393 394 395 396 397 207 207 207 207 207 207 207 207 207 20	•LBL RCL2 * RCL2 * CHS 1 + Xt2 * RCL2 * RCL2 * RCL2 * RCL2 * RCL2 * RCL2 * RCL2 * RCL2 * RCL2 *	-HD- 34 04 07 34 04 34 05
371: 372 373 374 375 376 377 378 381 382 383 384 385 386 387 390 391 392 393 391 392 393 394 395 394 395 396 397 398	•LBL RCL2 RCL2 RCL2 RCL2 RCL2 RCL2 RCL2 RCL	-HD- 34 07 34 04 34 85

401 *	422+1 BL - AR-	441 "AR="	463 GTO 17
402 RCL 01	423 ADV	442 ARCL 22	464 FS? 03
403 X12	424 RCL 13	443 AVIEW	465 GTO 17
404 *	425 1	444 RCL 13	466 GTO 16
405 STO 21	426 X>Y2	445 1/X	
406 RCL 34	427 GTO 10	446 RCL 00	467+LBL 16
407 RCL 03	428 GTO 11	447 *	468 RCL 23
408 *	120 010 11	448 RCL 01	469 X>0?
409 RCL 34	429+LBL 10	449 *	470 GTO 17
410 RCL 02	430 "REGELUNG STABIL"	450 ST0 25	471 RCL 23
411 *	431 AVIEW	451 "VØK="	472 189
412 1/X	432 GTO 13	452 ARCL 25	473 +
413 -		453 AVIEW	474 STO 23
414 X†2	433+LBL 11	454 GTO B	
415 1	434 "REGELUNG INSTAB"		475+LBL 17
416 +	435 AVIEN	455+LBL "aR"	476 ADV
417 RCL 21	436 SF 03	456 RCL 14	477 "aR/GRAD="
418 *		457 RCL 13	478 ARCL 23
419 1	437+LBL 13	458 /	479 RVIEW
420 -	438 RCL 13	459 ATAN	480 CF 02
421 RTN	439 1/X	460 STO 23	481 CF 03
	440 STO 22	461 RCL 14	482 .END.
		462 X(0?	

PTD_PECIE	o		4,000	RUN		10,000	RUN
DTO I DTT	r ern		RE/ER/=9,232		WD2/HZ=?		
P12-1-P11	-51K.		TH/F0/=1.015			15,000	RIIN
AK=5			10/10/-1/015		WD/H7=10.	501	
	50,000	RUN	1/ 117-0		RE/FO/=0.	572	
VS=?			W/HZ=/	DUU	TH/F0/0	047	
	1,000	RUN	10,000	KUN	10/10/- 0	/043	
TN/S=?			RE/FU/=0,663		D. 00000		
	1+50	RUN	IM/F0/=-0,934		ак/GKHD=-:	57,481	
TV/S=2							
117.5-1	0 010	DIIN	W/HZ=?			XEQ °C)PT 2"
T0/0-0	6/610	NUN	15,000	RUN	PID-REGLE	R	
12/5=?	0.000	D UU	RE/E0/=0.086		PT2-I-PTT	-STR.	
	0,200	RUN	TM/ER/0 751		VR=?		
TI/S=?			10000-00000			5.000	PHN
	1,000	RUN			VS=2	0,000	
TT/S=?			W/HZ=?		10-:	1 000	DUM
	0,030	RUN	1+06	RUN	TH -0 0	1,000	RON
d=2			RE/F0/=-7,455E-12		IN/S=?		
.	8.800	PIIN	IM/F0/=1,003E-11			1+50	RUN
		1007			TV/S=?		
			WZ=LINENDL JCH2			0,010	RUN
			TIPPE 1 CONST 0		T2/S=?		
W/HZ=?			0 000	DIIN		0,200	RUN
	1,000	RUN	0,000	KON	TL/S=2		
RE/F0/=16	560		1171-117-0			1.000	PUN
IM/F0/=46	, 555		W21/H2=/		TT/0-0	17000	KON
			4,000	RUN	11/0-1	0 070	000
W/HZ=?			WZ2/HZ=?			0,030	RUN
	5,000	RIIN	5,000	RUN	a= (
05/50/-6	227		117/117-A CA!			0,800	RUN
TH/E0/-0/	205		M2/M2-4/041				
10/00/0	()02J		RE/F0/=/,230				
			IM/F0/=1,/91E-/		W/HZ=?		
W/HZ=?						0,001	RUN
	3,000	RUN	REGELUNG INSTAB		RE/F0/=1/	790	
RE/F0/=12	, 484		AR=0,138		IN/ER/=5.0	AAA. AAA	
IM/F0/=7,	281		V0K=6 ,916		1		
W/HZ=?			WD1/HZ=?				

W/HZ=?		W/HZ=?		WZ/HZ=4,641
1,000	RUN	10,000	RUN	RE/FU/=0,723
RE/F0/=1,656		RE/F0/=0,066		IM/F0/=1,476E-7
IN/F0/=4,656		IM/F0/=-0,093		REGELUNG STABIL
4/47=2		W/H7=2		AR=1,383
3,000	RUN	1+06	RUN	VØK=6,916
RE/F0/=1,248		RE/F0/=-7,455E-13		0.04 0.07 0
IM/F0/=0,728		IM/F0/=1,003E-12		WU1/HZ=? 3,000 RUN
W/H7=?		WZ=UNENDLICH2		WD2/HZ=?
5.000	RIIN	TIPPE 1 SONST 0		5,000 RUN
DE /EG /-0 627	Non	A 899	DUM	WD/HZ=3,854
KE/F0/-0/020		0,000	KUN	RE/F0/=0,971
IM/FW/=-0,062		WZ1/HZ=?		IM/F0/=0.239
		3,000	RUN	aR/GRAD=13,800
		wzz/nz-? 5,000	RUN	

7.2.2 Bode-Diagramm

7.2.2.1 PD-Regler und PT1-I²-Strecke

Programm-Beschreibung:

Der Rechner-Status ist 050.

Nach Aufrufen des Namens "BODE 6", Eingabe der Parameter und der Variablen ω_{\min} und ω_{Max} verläuft das Programm wie folgt. Der Rechner ermittelt in Schritten von 5 ω_{\min} den Frequenzgangbetrag F_o in dB und den Phasenwinkel φ_o in Grad. Bei $\omega \ge \omega_{max}$ kommt der Sprung in die Unterprogramme zur Bestimmung der Eckfrequenzen ω_V , ω_1 und ω_I . Anschließend wird mit einem Nullstellen-Unterprogramm ω_D berechnet; dann α_R . Ist die Regelung jedoch instabil, fragt der Rechner nach neuen Parametern. Dies ist mit "JA = 1" oder "NEIN = 0" zu quittieren. Sind neue Parameter gewünscht, wird die entsprechende Eingabe-Liste aufgerufen und der gesamte Programmablauf wiederholt.

Da der Phasenwinkel für $\omega = \infty$ gegen -180° läuft, ist die Regelung unbegrenzt stabil. Diese Aussage wird erreicht, wenn man für die zweite geforderte Nullstelle $\omega_{z2}/\text{Hz} \stackrel{\geq}{=} 10^{\circ}$ eintippt.

Formel-Satz:

$$\left|\frac{\mathbf{F}_{O}}{\mathbf{dB}}\right| = 20 \lg \frac{\mathbf{V}_{O}}{\omega^{2} \mathbf{T}_{I}^{2}} \sqrt{\frac{1 + \omega^{2} \mathbf{T}_{V}^{2}}{1 + \omega^{2} \mathbf{T}_{I}^{2}}}$$
$\frac{\varphi_{O}}{\text{Grad}} = \arctan \omega T_{V}$, - arctanωT ₁ -	180 ⁰	
$\frac{{v_o}^2}{{\omega_D}^4 {T_I}^4}$	$\cdot \frac{1 + \omega_{\rm D}^{2} {\rm T}_{\rm V}^{2}}{1 + \omega_{\rm D}^{2} {\rm T}_{\rm 1}^{2}} -$	1 = 0 .	
01♦LBL "BODE 6" 02 "PD-REGLER" 03 AVIEW	54 X†2 55 * 56 1	107 GTO 02 108+LBL 04 109 RCL 03	160 XEQ IND 33 161 STO 35 162 RCL 32 163 STO 34
04 "PT1-I2-SIRECKE" 05 AVIEW 06+LBL 19 07 ANY	57 + 58 * 59 SØRT 60 RCI 02	110 175 111 STO 10 112 SF 01 113 •WV/HZ="	164 XEQ IND 33 165 STO 36 166 RCL 35
08 CF 28 09 "YR=?" 10 PROMPT	61 * 62 RCL 01 63 *	114 ARCL 10 115 Aview 116 GTO 03	167 * 168 X>0? 169 GTO 21
11 STO 01 12 -VS=0- 13 PROMPT 14 STO 82	64 RCL 10 65 X12 66 / 67 PCL 40	117+LBL 05 113 RCL 04 119 1/X 120 STO 18	178 GTO 39 171+LBL 21 172 1 E5 173 RCL 32
14 STO N2 15 "TV/S=?" 16 PROMPT 17 STO 03	68 X12 69 / 78 LOG	121 SF 02 122 "W1/HZ=" 123 ARCL 10	174 X>Y? 175 GTO 20 176 GTO 35
18 "T1/S=?" 19 PROMPT 20 STO 04 21 "T1/S=?"	71 20 72 * 73 STO 11 74 */F0/IN dB=*	124 AVIEW 125 GTO 03 126+LBL 06 127 RCL 40	178 RCL 32 179 RCL 32 180 RCL 31
22 PROMPT 23 STO 40 24 "W-NIN/HZ=?"	75 ARCL 11 76 AVIEW 77 RCL 10 77 RCL 10	128 1/X 129 STO 10 136 SF 03	181 - 182 RCL 36 183 RCL 35
25 PROMPT 26 STO 06 27 "W-MAX/HZ=?" 28 PROMPT	78 RCL 03 79 * 80 Atan 81 RCL 10	131 "WI/H/=" 132 ARCL 10 133 AVIEW 134 GTO 03	184 - 185 / 196 RCL 36 187 *
29 STO 07 30 31 AVIEW	82 RCL 04 83 * 84 ATAN	135+LBL A 136 -WD- 137 ASTO 33 130 CC P7	188 - 189 STO 34 190 XEQ IND 33 191 STO 77
32 RCL 06 33 STO 10 34 GTO 01 35+LBL 02	85 - 86 180 87 - 88 STO 12	130 SF 87 139 "WD1/H7=?" 140 PROMPT 141 STO 31	192 X=0? 193 GTO 34 194 ABS
36 5 37 ST* 10 38+LBL 01	89 "PHI-0/GRAD=" 90 ARCL 12 91 AVIEW 92 ADV	142 •WD2/HZ=?* 143 PROMPT 144 STO 32 145 592 97	195 1 E-4 196 X>Y? 197 GTO 34 198 PCL 37
40 ARCL 10 41 AVIEW 42+LBL 03	93 FS?C 01 94 GTO 05 95 FS?C 02	146 GTO 11 147+LBL 8 148 "WZ"	199 RCL 36 200 * 201 X20?
43 RCL 10 44 X†2 45 RCL 04 46 X†2	96 GTO 06 97 FS?C 03 98 GTO A 99 FS?C 05	149 ASTO 33 150 "W21/HZ=?" 151 PROMPT 152 STO 31	202 GTO 31 203 RCL 32 204 STO 31 205 RCL 36
47 * 48 1 49 +	100 GTO 07 101 FS?C 06 102 GTO 10 103 DCL 10	153 •WZ2/HZ=?* 154 PROMPT 155 STO 32	206 STO 35 207+LBL 32 208 RCL 34 209 STO 72
50 1/X 51 RCL 10 52 X†2 53 RCL 03	103 KCL 10 104 RCL 07 105 X<=Y? 106 GTO 04	156 CF 87 157+LBL 11 158 RCL 31 159 STO 34	210 RCL 37 211 STO 36 212 GTO 30

213+LBL 31	245	X†2	
214 2	246	RCL	84
215 ST/ 05	247	X†2	
216 GTO 32	248	*	
217+LBL 34	249	1	
218 FS? 07	250	+	
219 GTO 12	251	17X	
220 GTO 13	252	RCL	34
221+LBL 12	253	X†2	
222 *WD/HZ=*	254	RCL	83
223 ARCL 34	255	X†2	
224 AVIE⊎	256	*	
225 SF 05	257	1	
226 FS? 07	258	+	
227 GTO 14	259	*	
228+LBL 13	269	RCL	34
229 "WZ/HZ="	261	X†2	
230 ARCL 34	262	X†2	
231 AVIE#	263	1	
232 SF 06	264	RCL	40
233+LBL 14	265	X†2	
234 RCL 34	266	X†2	
235 STO 10	267	/	
236 GTO 03	268	RCL	01
237+LBL 35	269	X†2	
238 •KEINE NULLST.•	270	*	
239 AVIEW	271	RCL	82
240 FS? 06	272	X†2	
241 CTO 0	273	*	
242 CTO D	274	1	
242 GIU D 24741 DI #UD#	275	-	
2437LDL 7897 244 DCL 74	276	RTN	
244 RUL 34			

396

278 RCL 34 279 RCL 03 280 * 281 ATAN 282 RCL 34 283 RCL 04 284 * 285 ATAN 286 -287 RTN 288+LBL 10 289 RCL 11 290 CHS 291 20 292 / 293 10 294 X<>Y 295 Y†X 296 STO 15 297 "AR=" 298 ARCL 15 299 AVIEW 300 ADV 301 GTO 17 302+LBL 20 303 WZ=UNENDLICH* 304 AVIEN 305 ADV 306 *AR=UNENDLICH* 307 AVIEW 308 ADV

277+LBL "WZ"

309 GTO 17 310+LBL 07 311 RCL 12 312 180 313 + 314 STO 16 315 *aR/GRAD=* 316 ARCL 16 317 AVIEW 318 ADV 319 RCL 16 320 X>0? 321 GTO 8 322 GTO 18 323+LBL 17 324 "REGELUNG STABIL" 325 AVIEW 326 STOP 327+LBL 18 328 "REGELUNG INSTAB" 329 AVIEW 330 "---" 331 AVIEW 332 •NEUE PARAMETER?* 333 AVIEW 334 • JA? TIPPE 1* 335 PROMPT 336 STO 19 337 RCL 19 338-1 339 X=Y? 340 GTO 19 341 END

	XE0 -80	DE 6″	W/HZ=5,00 /F0/IN_d8=32,04	WI/HZ=10,00 /F0/IN_dB=20,00	
PD-REGLEX PT1-I2-STR8	ECKE		PHI-0/GRAD=-180,43	PHI-0∕GRAD=-180,86	
VR=?			W/HZ=25,00	WD1/HZ=?	5.00
VS=2	5,00	RUN	/F0/IN_dB=4,07 PHI-0/GRAD=-182,15	20,00 WD2/HZ=?	RUN
70-0	2,00	RUN	W/HZ=125,00	125,00 <u>WD/HZ=31,59</u>	RUN
1¥/5=/	0,0005	RUN	/F0/IN dB=-24,12 PHI-0/GRAD=-190,46	/F0/IN dB=-2,43E-4 PHI-0/GRAD=-182,71	
TI/0=1	0,002	RUN	W/HZ=625,00	aR/GRAD=-2,71	
U-NIN/H7=2	0,10	RUN	/F0/IN dB=-55,52 PHI-0/GRAD=-213,99	REGELUNG INSTAR	
U_MOV/U7-2	1,00	RUN	WV/HZ=2.000,00	NEUE PARAMETER?	
M-DHA/DZ-/	500,00	RUN	/F0/IN_dB=-81,34 PHI-0/GRAD=-210,96	JA? TIPPE 1 1,00	RUN
W/HZ=1,00 /F0/IN_HP-4	:0 00		W1/HZ=500.00	VR=?	
PHI-0/GRAD=	-180,09		/F0/IN dB=-50,71 PHI-0/GRAD=-2 10 ,96	10,00 VS=?	RUN

	1,00	RUN	W/H7=125.00	WD1/HZ=?	
TV/S=?			/F0/IN dB=-21,13	25,00	RUN
	0,008	RUN	PHI-0/GRAD=-149,04	WD2/HZ=?	
11/S=?				35,90	RUN
	0,002	RUN	W/HZ=625,00	WD/HZ=32,10	
TI/S=?		5100	/F0/IN dB=-41,77	7F071N 06=-2,482-4	
0.910.007.5	0,10	RUN	PHI-0/GRAD=-152.65	FRI-8/6KHD107/2/	
W-MIN/HZ=/	1 00	DIIM	100-03 (or oo	5P/C20D=10.73	
N-MOX/H7=2	1)00	KON	WY/HZ=120,00 /F0/IN HD= 01 12	div doub-10110	
M 100/02-	500.00	RIIN	760/IN 08=721/15 DUI_0/000B140_04	WZ1/HZ=?	
			FN1-0/GKHD149/04	0,10	RUN
W/HZ=1,00			W1/HZ=500,00	WZ2/HZ=?	
/F0/IN dB=	60,00		/F0/IN d8=-38,66	10.000,00	RUN
PHI-0/GRAD	=-179,66		PHI-0/GRAD=-149.04	KEINE NULLST.	
				WZ1/HZ=?	6.00
W/HZ=5,00			WI/HZ=10,00	0,001 1170/07=0	KUN
/F0/IN dB=	32,05 - 170,00		/F0/IN_dB=20,03	M22/N2-? 1 900 060.00	PHN
PRI-07GKH0	=-1/8/28		PHI-0/GRAD=-176,57	W7=HNENDI ICK	11211
W/H7=25.00					
/FA/IN dB=	4.24			AR=UNENDLICH	
PHI-0/GRAD	=-171,55				
				REGELUNG STABIL	

7.2.2.2 Programm zur Regelkreis-Synthese im Bode-Diagramm

Programm-Beschreibung:

Der Rechner-Status ist 072

Das Programm enthält einen PID-Regler, der mit verschiedenen Regelstrecken kombiniert werden kann (siehe Programm-Ausdruck). Auf diese Weise lassen sich bei geschickter Wahl der Parameter mehr als 20 Varianten realisieren, die mit diesem Programm optimiert werden können.

Nach Aufrufen des Namens "BODE-SY" schreibt der Drucker einen Vorspann, der die Kurzbezeichnungen (K.-R.) der Regelstrecken definiert. Anschließend erfolgt die Eingabe der Regler-Parameter. Dann fragt der Rechner nach dem ersten Strecken-Namen. Daraufhin sind die entsprechenden Parameter einzugeben. Ist eine weitere Regelstrecke gewünscht, tippt man nun "1" $\hat{=}$ Ja und danach den Strecken-Namen ein. Für diese zweite Regelstrecke sind ebenfalls die Parameter einzugeben. Jetzt können beliebige Frequenzwerte ω eingetastet werden, für die das Programm den Frequenzgangbetrag $\left|\frac{F_{\rm o}}{Hz}\right|$ und den Phasenwinkel $\varphi_{\rm o}$ errechnet. Mit Eingabe der Frequenz $\omega \geq 10^{6}$ Hz erfolgt der Sprung in das Nullstellen-Unterprogramm. Damit wird die Durchtrittsfrequenz $\omega_{\rm D}$ ermittelt und anschließend die Phasenreserve $\alpha_{\rm p}$. Nun wird das Nullstellen-Programm nochmals

zur Bestimmung von $\omega_{\rm Z}$ benutzt. Der Wert von $\omega_{\rm Z}$ führt dann zur Berechnung der Amplitudenreserve ${\rm A_R}.$

Für einen weiteren Rechnerlauf ist einfach der Befehl "GTO O1" zu geben.

Auf diese Weise können die verschiedensten einschleifigen technischen Regelkreise synthetisiert und der Einfluß der Parameter auf die Regelung betrachtet werden.

$$\begin{split} \left| \underline{F}_{R} \right| &= V_{R} \quad \sqrt{1 + \left(\omega T_{V} - \frac{1}{\omega T_{N}} \right)^{2}} \\ \left| \underline{F}_{S} \right| & \text{für die Strecken K. - R. aus Tabelle 3.1} \\ \left| \underline{F}_{O} \right| &\stackrel{!}{=} 1 \quad \longrightarrow \quad \omega_{D} \\ \alpha_{R} &= \varphi_{O}(\omega_{D}) + 180^{O} . \end{split}$$

01+LBL "BODE-SY" 02 CF 00 03 CF 01 04 CF 02 05 CF 03 06 CF 04 07 CF 05 08 CF 06 09 CF 07 10 CF 08 11 CF 09 12 CF 10 13 CF 11 14 "EIN PID-REGLER" 15 AVIEW 16 "KANN MIT ZWEI" 17 AVIEW 18 "STRECKEN MULTI-" 19 AVIEW 20 "PLIZ. WERDEN." 21 AVIEW	35 AVIEW 36 "R. PTT" 37 AVIEW 38 ADV 39 "	69 "WENN JA, TASTE1" 70 AVIEW 71 "WENN HEIN, 0" 72 PROMPT 73 STO 04 74 RCL 04 75 X=0? 76 GTO 02 77 "STRECKEN-NAME ?" 78 AON 79 PROMPT 80 ASTO 05 81 AOFF 82 XEQ IND 05 83+LBL 02 84 "	102 0 103 STO 20 104 0 105 STO 21 106 0 107 STO 22 108 0 109 STO 23 110 0 111 STO 23 110 0 111 STO 24 112 0 113 STO 25 114 0 115 STO 26 116 0 117 STO 27 118+LBL 01 119 ADY 120 •W/HZ=?* 121 PROMPT 122 STO 06
13 CF 11 14 "EIN PID-REGLER" 15 AVIEW	47 PRUMP1 48 STO 00 49 "TN/S=?" 50 PROMPT	81 AOFF 82 XEQ IND 05 9741 D1 82	114 0 115 STO 26 116 0 117 STO 27
17 AVIEW 17 AVIEW 18 "STRECKEN MULTI-" 19 AVIEW	51 STO 01 52 "TV/S=?" 53 PROMPT 54 CTO 02	84 "" 85 AVIEW 86 1	118+LBL 01 119 ADV 120 -4/47=2-
20 "PLIZ. WERDEN." 21 AYIEW 22 "K. I" 23 AYIEW	54 810 02 55 ADV 56 "STRECKPARAM." 57 AVIEW	87 STO 10 88 1 89 STO 11 90 1	121 PROMPT 122 STO 06 123 RCL 06
24 "L. 12" 25 AVIEW 26 "N. PTI" 27 AVIEW	58 ADV 59 "Strecken-Name ?" 60 Ron 61 prompt	91 STO 12 92 1 93 STO 13	124 1 E6 125 X<=Y? 126 GTO "NULLST"
27 HYTEW 28 "N. PT1-PT1" 29 AVIEW 30 "O. PT1-PT1-PT1"	62 ASTO 03 63 AOFF 64 XEQ IND 03	95 STO 14 96 1 97 STO 15	127+LBL 07 128 RCL 06 129 RCL 02
31 AVIEW 32 "P. PT2" 33 AVIEW 34 "Q. PT1-PT1-PT2"	65 "WEITERE STRECKE" 66 AVIEN 67 "Gewuenscht ?" 68 Aview	98 1 99 STO 16 100 1 101 STO 17	130 * 131 RCL 06 132 RCL 01 133 *

174 4 41			
134 1/X	187+LBL -LL-	247 STO 23	307 *
135 -	188 RCL 41	248 GTO 14	308 X†2
136 X†2	189 RCL 42		309 +
137 1	198 *	249+1 BI •00*	310 SQRT
138 +	191 PCI 06	250 801 86	311 1/X
139 SQRT	100 VA0	250 KGL 00	712 PCI 52
140 RCI 00	172 012	201 KUL 47	717 +
141 *	193 *	252 *	313 + 714 CTO 1E
141 + 142 CTO 87	194 1/X	253 XT2	314 510 13
142 310 67	195 STO 11	254 1	313 RUL 06
	196 -180	255 +	316 RCL 53
143+LBL 18	197 STO 21	256 RCL 06	317 *
144 RCL 06	198 GTO 12	257 RCL 50	318 X†2
145 RCL 02		258 *	319 CHS
146 *	199+LBL -MM-	259 X†2	320 1
147 RCL 06	200 RCL 44	260 1	321 +
148 RCL 01	201 001 06	261 4	322 1/X
149 *	201 KCL 00	201 -	323 2
150 1/X	202 *	202 *	724 *
151 -	203 AT2	203 RUL 00	705 DCL 54
151	204 1	264 KUL 31	323 KUL 34
152 010 00	205 +	265 *	325 *
153 510 08	206 SQRT	266 X12	327 RUL 06
154 FS? 01	207 1/X	267 1	328 *
155 XEQ IND 55	208 RCL 43	268 +	329 RCL 53
	209 *	269 *	330 *
156+LBL 11	210 STO 12	270 SQRT	331 ATAN
157 FS? 02	211 RCL 44	271 1/X	332 CHS
158 XEQ IND 56	212 RCL 06	272 RCL 48	333 STO 25
	213 *	273 *	334 RCL 25
159+LBL 12	214 DTON	274 ST0 14	335 X(0?
160 FS? 03	215 CHS	275 RCL 06	336 GTO 16
161 XEQ IND 57	216 STO 22	276 RCL 49	337 RCL 25
	217 CTO 13	277 *	338 189
162+LBL 13	217 010 10	279 OTON	339 -
163 ES2 04	DIOALDI HANIH	270 6160	340 STO 25
164 XER IND 58	210 001 00	200 001 02	341 GTO 16
10, 12% 112 11	217 KUL 00	200 RUL 00 201 DCI 50	011 010 10
165+1 BI 14	220 KUL 40	201 KUL 30	742AL PL =00+
144 502 95	221 *	202 *	747 DCI 84
100 FJ: 00 4/7 VEA TUB 50	222 872	283 HIHN	343 KCL 00
167 AER IND 35	223 1	284 -	344 KUL 64 745 ±
1/04/ DI 1E	224 +	285 RCL 06	343 4 747 940
158*LBL 1J	225 RCL 06	286 RCL 51	346 ATZ
169 157 05	226 RCL 47	287 *	347 1
170 XEQ IND 60	227 *	288 ATAN	348 +
	228 X†2	289 -	349 RCL 06
171+LBL 16	229 1	290 STO 24	350 RCL 65
172 FS? 07	230 +	291 GTO 15	351 *
173 XEQ IND 61	231 *		352 X†2
	232 SPRT	292+LBL "PP"	353 1
174+LBL 17	233 1/X	293 RCL 06	354 +
175 FS? 08	234 RCI 45	294 RCL 53	355 *
176 XEQ IND 62	275 *	295 *	356 SQRT
177 GTO 10	276 970 17	296 8+2	357 1/X
	230 310 13	297 CHS	358 RCL 63
178+LBL -KK-	231 KCL 00	271 0110	750 *
179 RCL 40	238 RCL 46	298 1	3J7 * 7/0 CTO 1/
180 RCL 06	239 *	299 +	300 310 10 7/1 DCL 0/
181 *	240 ATAN	300 X†2	301 KUL 00 7/3 DCL //
182 1/X	241 CUC	301 RCL 06	362 KUL 66
183 STO 10	641 605		7/7 4
100 010 10	242 RCL 06	302 RCL 53	363 *
184 -90	242 RCL 06 243 RCL 47	302 RCL 53 303 *	363 * 364 X†2
184 -90 185 STO 20	242 RCL 06 243 RCL 47 244 *	302 RCL 53 303 * 304 2	363 * 364 X†2 365 CHS
184 -90 185 STO 20 186 GTO 11	242 RCL 06 243 RCL 47 244 * 245 ATAN	302 RCL 53 303 * 304 2 305 *	363 * 364 X†2 365 CHS 366 1

720 940			E44 0T0 00
300 A12	429 180	486 PROMPT	544 GIU 89
369 RCL 06	470 *	487 STO 49	545 RCL 07
370 RCL 66	471 01	498 *T12/S=2*	546 RCL 10
371 *	431 F1	400 712/0-1	547 +
270 001 /7	432 /	489 PRUMPI	J47 *
372 KUL 07	433 CHS	490 STO 50	548 RCL 11
373 *	434 STO 27	491 •T13/S=2•	549 *
374 Xt2	475 CT0 10	AGO DOMOT	550 RCL 12
775 4	433 610 10	432 FRUNF1	EE1
774 -		493 510 51	JJI *
3/6 *	436+LBL "K"	494 •00•	552 RCL 13
377 +	477 SE 01	495 0910 59	553 *
378 SORT	430 57 61	40C DTN	554 DCL 14
770 1/V	438 11/5=?"	476 KIN	554 KGL 14
3(7 1/A	439 PROMPT		000 ¥
380 RUL 16	440 STO 40	497+LBL "P"	556 RCL 15
381 *	441 -VV-	498 SE 06	557 *
382 STO 16	110 00TO FF	400 810-08	558 PCI 16
707 DCI 04	442 HSTU 55	477 ¥3=?	550 KCE 10
303 KUL 00	443 RTN	500 PROMPT	557 *
384 RCL 66		501 STO 52	560 RCL 17
385 *		502 *T2/0-2*	561 *
386 X12		502 12/3-:	542 1.00
707 CUC	445 SF 02	SUS PRUMPI	562 200
307 013	446 "TI1/S=?"	504 STO 53	563 20
388 1	447 PROMPT	505 d=?"	564 *
389 +	440 CT0 41	504 PDOMPT	565 ES2 09
798 1/9	440 510 41	500 1 KOIII 1	E((CT0 0)
370 1.1	449 *112/5=?*	507 SIU 54	J00 G10 00
391 2	450 PROMPT	508 "PP"	567 STU 70
392 *	451 STO 42	509 ASTO 60	568 "/F0/ IN dB="
393 RCL 67	462	510 DTN	569 ARCL 70
394 *	4JZ LL	510 KIN	570 00150
705 001 04	453 ASTO 56		JIO HVIEW
373 RUL 00	454 RTN	511+LBL "Q"	571 FS? 00
396 *		512 SE 07	572 GTO "AR"
397 RCL 66	455ALD: -W-	517 -00-2-	
798 *	4JJVLDL N	J13 43-:	577ALDI 00
700 OTON	456 SF 03	514 PRUMPI	J/3*LDL 07
377 HIHM	457 "¥S=?"	515 STO 63	574 RCL 08
400 CHS	458 PROMPT	516 "T11/S=?"	575 RCL 20
401 STO 26	459 CTO 47	517 PROMPT	576 +
402 RCL 26	407 010 40	510 070 64	577 BCI 21
407 V/00	460 "11/5=?"	218 210 64	J77 RUL 21
403 AND:	461 PROMPT	519 "T12/S=?"	578 +
404 GIU 08	462 STO 44	520 PROMPT	579 RCL 22
405 RCL 26	467 * MM*	521 ST0 65	580 +
406 180	403 NR	521 510 05 E22 #T2/0-2#	501 DCI 27
497 -	464 HSTU 57	322 -12/5=?*	J01 KUL 23
40(-	465 RTN	523 PROMPT	582 +
408 510 26		524 STO 66	583 RCL 24
	ACCALDI -N-	525 "d=2"	584 +
409+1 BI 08	400+EBC H	525 G-:	505 DCI 25
A10 DCL 26	467 51 04	526 PRUMPT	505 KGE 25
410 RCL 20	468 "YS=?"	527 STO 67	
411 KUL 00	469 PROMPT	528 "QQ"	587 RCL 26
412 RCL 64	470 STO 45	529 ASTO 61	588 +
413 *	471 *111/0-2*	570 DTN	589 PCL 27
414 OTON	4/1 111/3-2	330 KIN	500 KCE 21
117 0100	472 PROMPT		390 +
413 -	473 STO 46	531+LBL "R"	591 STO 71
416 RCL 06	474 "T12/S=2"	532 SE 08	592 FS? 10
417 RCL 65	47E DOONDT	577 ×UC-2*	593 CTO 19
418 *	475 PRUMPT	333 ¥3-:	500 G/C 17
410 0700	476 STO 47	534 PRUMPT	394 -PHI 0/GKHD=-
417 HIHM	477 "NN"	575 STO 68	595 ARCL 71
420 -	478 DST0 58	535 575 60 F36 -TT/C-2*	596 OVIEN
421 STO 26	470 DTU	536 11/5=/	570 MTILM 507 500 44
422 CTO 17	479 KIN	537 PROMPT	397 F57 11
722 010 11		538 STO 69	598 GTO *aR*
	480+LBL "0"	539 -PP-	599 FS? 10
423+LBL "RR"	481 SE 85	540 DETO 40	600 CTO -0P-
424 RCL 68	101 JI UC-0*	340 H310 62	
425 ST0 17	402 Y3=?"	541 RTN	PAI PIO AI
420 010 11	483 PROMPT		
420 KUL 07	484 STO 48	542+LBL 10	602+LBL "WD"
427 RUL 06	485 "T11/S=?"	547 602 10	603 RCI 34
428 *	100 111.0 .	J#3 13: 10	

604 STO 06	640 10	677 XEQ IND 33	717 STO 36
605 GTO 07	641 X<>Y	678 STO 36	718 GTO 30
	642 Y 1 X	679 RCL 35	
606+LBL 06	643 STO 38	680 *	719+I BL 31
607 RTN	644 "AR="	681 X>8?	720 2
	645 ARCL 38	682 GTO 35	721 SI/ 35
608+LBL "aR"	646 AVIEW		722 GTO 32
609 RCL 71	647 STOP	683+LBL 30	
610 180		684 RCL 32	723+I BI 34
611 +	648+LBL "NULLST"	685 RCL 32	724 FS2 89
612 STO 39	649 FIX 3	686 RCL 31	725 GT0 39
613 "aR/GRAD="	(50UD.	687 -	726 GTO 40
614 ARCL 39	630 "WJ" (E1 0010 77	688 RCL 36	120 010 10
615 AVIEW	601 H510 33	689 RCL 35	727+LBL 39
616 CF 09	602 SF 8 9	698 -	728 - 40/47=-
617 CF 11		691 /	729 0001 74
618 ADV	653+LBL H	692 PCL 36	779 OVIEN
619 RCL 39	654 WD1/HZ=?"	697 *	771 DCI 74
620 X(0?	655 PROMPT	694 -	772 CTA 84
621 STOP	656 STO 31	695 STO 74	777 CE 09
622 GTO B	657 "WD2/HZ=?"	696 YEA TWD 77	774 05 11
	658 PROMPT	697 CTO 77	775 000
623 + LBL *W7*	659 STO 32	671 310 31 600 V-02	(33 HUM 77(CTO 07
624 RCL 34	660 GTO 38	670 A-02 699 CTO 74	(36 610 87
625 STO 06		700 000	77741.01 40
626 SF 10	661+LBL B	700 HD3 701 1 E_4	770 #U7/U7-
620 SF 10	662 "W Z"	701 1 2-4	730 0001 74
629 CTO 18	663 ASTO 33	702 671 74	739 HKLL 34
020 810 10	664 "WZ1/HZ=?"	703 610 34	740 HYIEW
600ALDI 10	665 PROMPT	704 KLL 37	741 RUL 34
6274L0L 17	666 STO 31	700 KLL 36	742 510 86
71 170 00	667 WZ2/HZ=?*	705 ¥	743 LF 10
631 1(7)77	668 PROMPT	707 X70?	(44 SF 00
032 T 777 CTO 71	669 STO 32	708 GTO 31	745 HUY
633 310 (1 (74 DTN	(70.1.0) 70	709 RCL 32	746 GTO 07
634 KIN	670+LBL 38	710 STO 31	
(30.1.0) #00#	671 RUL 31	711 RCL 36	747+LBL 35
633+LBL "HK"	672 510 34	712 STO 35	748 "KEINE NULLSI."
636 RUL 70	673 XEW IND 33		749 AVIEN
637 CHS	674 STU 35	713+LBL 32	750 FS? 09
638 20	675 RCL 32	714 RCL 34	751 GTO A
639 /	676 STO 34	715 STO 32	752 GTO B
		716 RCL 37	753 .END.

XEQ "BODE-SY"	REGLER-PARAM.	1,000 RUN
EIN PID-REGLER		T11/S=?
KANN MIT ZWEI	VR=?	0,100 RUN
STRECKEN MULTI-	3,000 RUN	T12/S=?
PLIZ. WERDEN.	TN/S=?	0,050 PUN
к. I	1+50 RUN	WEITERE STRECKE
L. I2	TV/S=?	GEWUENSCHT ?
M. PT1	0,010 RUN	WENN JA, TASTE1
N. PT1-PT1		WENN NEIN, 0
0. PT1-PT1-PT1	STRECKPARAN.	1,000 RUN
P. PT2		STRECKEN-NAME ?
Q. PT1-PT1-PT2	STRECKEN-NAME ?	R RUN
R. PTT	N RUN	VS=?
	VS=?	1,000 RUN
		TT/S=?
		0,020 RUN

W/HZ=?	
1,000	RUN
/F0/ IN dB=9,489	
PHI 0/GRAD=-9,146	
W/HZ=?	
3,000	RUN
/F0/ IN dB=9,075	
PHI 0/GRAD=-26,949	
W/HZ=?	
10,000	RUN
/F0/ IN d8=5,606	
PHI 0/CPON=-77.714	

W/HZ=?	
20,000	RUN
/F0/ IN dB=-0,287	
PHI 0/GRAD=-120,043	
W/HZ=?	
40,000	RUN
/F0/ IN dB=-9,107	
PHI 0/GRAD=-163,434	
W/HZ=?	
68,090	RUN
/F0/ IN dB=-14,804	
PHI 0/GRAD=-189,894	
W/H7=2	
1+06	DHN
1100	NOU
WU1/HZ=?	

STRECKEN-NAME ?

	10,000	RUN
WD2/HZ=? WD/HZ=19,47	20,000 8	RUN
/FØ/ IN dB= PHI Ø/GRAD= aR/GRAD=61,	-5,560E-6 -118,366 634	
WZ1/HZ=?	40,000	RUN
WZ/HZ=51,84	6 0,000 2	RUN
∕F0∕ IN dB= AR=4,341	-12,752	

DATA ERROR

	GTO	.001
		RUN
EIN PID-REGU KANN MIT ZWU STRECKEN MUU PLIZ. WERDEN K. I L. I2 M. PT1 N. PT1-PT1	LER EI LTI- 4.	
0. PT1-PT1-F	PTI	
P. PT2		
Q. PT1-PT1-F	212	
R. PTT		
REGLER-PARA	i.	
VR=?		
1 TN/S=2	0,000	RUN
	0,200	RUN
T¥∕S=?		
	0,000	RUN
STRECKPAR	AM.	
STRECKEN-NO	1F 2	
K		RUN
TI/S=?		
	1,000	RUN
WEITERE STRE	ECKE	
GENUENSCHT	?	
WENN JA, TA	STE1	
WENN NEIN, (3	5.00
	1,000	RUN

P		RUN
A2= \	1,000	RUN
T2/S=?	0,050	RUN
d=?	0,500	RUN
W/HZ=?	0 100	DUN
∕F0∕ IN dB=? Phi 0∕grad=-	3,981 179,141	KUN
W/HZ=?		5000
∕F0∕ IN dB=3 PHI 0∕GRAD=-	1,000 4,161 171,560	KUN
W/HZ=?	5 000	DUN
/FØ/ IN dB=9 Phi Ø/grad=-	,293 149,931	KUN
W/HZ=?	0.000	DUILI
T FØZ IN dR=1 Phi øzgrad=-	0,000 ,871 150,255	KUN
W/HZ=? 1	5.000	RIIN
/F0/ IN dB=- Phi 0/grad=-	1,837 168,179	
W/HZ=? 2	0,000	RUN

	GTI	0 01
		RUN
W/HZ=?		
2	1,000	RUN
∕F0⁄ IN dB=-	6,670	
PHI 0/GRAD=-	198,968	
W/HZ=?		
5	0,000	RUN
/F0/ IN dB=-	29,227	
PHI 0/GRAD=-	250,247	
11/07-0		
W/HZ=/	0 000	DUN
20 	0,000	KUN
7F07 IN 08=-	63,373 075 774	
PHI 0/GKHD=-	203,004	
W/H7=2		
MY ILC" :	1+96	RUN
WD1/H7=2	1.00	non
1	0.000	RUN
WD2/HZ=?		
1	5,000	RUN
WD/HZ=12,342		
/F0/ IN d8=-	1.927E-6	
PHI 0/GRAD=-	156,958	
aR/GRAD=23,0	42	
WZ1/HZ=?		
1	5,000	RUN
WZ2/HZ=?		
	1,000	RUN
WZ/HZ=17,319		
/EQ / TH -	7 500	
00-1 500	37320	
MK-17300		

7.2.3 Zwei-Ortskurven-Verfahren (Z.O.V.)

7.2.3.1 PID-Regler und PT1-Tt-Strecke

Programm-Beschreibung:

Der Rechner-Status ist 040.

Die Programm-Namen sind "-1/FS" und "NULLST".

Da die Ortskurve des PID-Reglers eine Gerade im Abstand V_R von der Ordinate ist, entfällt das Programm zur Bestimmung von $\underline{F}_{\rm R}$. Nach dem Programmstart mit "-1/FS" wird für beliebige Werte von ω und feste Parameter die negative inverse Ortskurve -1/ $\underline{F}_{\rm S}$ bestimmt. Mit dem Nullstellen-Programm können dann die Werte von $\omega_{\rm D}$ und $\omega_{_{\rm Z}}$ errechnet werden.

$$\begin{split} \underline{\mathbf{F}}_{\mathrm{R}} &= \mathbf{V}_{\mathrm{R}} \begin{bmatrix} 1 + j \left(\boldsymbol{\omega} \mathbf{T}_{\mathrm{V}} - \frac{1}{\boldsymbol{\omega} \mathbf{T}_{\mathrm{N}}} \right) \end{bmatrix} \\ \frac{-1}{\underline{\mathbf{F}}_{\mathrm{S}}} &= \frac{1}{\mathbf{V}_{\mathrm{S}}} \begin{bmatrix} \boldsymbol{\omega} \mathbf{T}_{1} \sin \boldsymbol{\omega} \mathbf{T}_{\mathrm{t}} - \cos \boldsymbol{\omega} \mathbf{T}_{\mathrm{t}} - j \left(\boldsymbol{\omega} \mathbf{T}_{1} \cos \boldsymbol{\omega} \mathbf{T}_{\mathrm{t}} + \sin \boldsymbol{\omega} \mathbf{T}_{\mathrm{t}} \right) \\ \mathbf{V}_{\mathrm{O}}^{2} \frac{1 + \left(\boldsymbol{\omega}_{\mathrm{D}} \mathbf{T}_{\mathrm{V}} - \frac{1}{\boldsymbol{\omega}_{\mathrm{D}} \mathbf{T}_{\mathrm{N}}} \right)^{2}}{1 + \boldsymbol{\omega}_{\mathrm{D}}^{2} \mathbf{T}_{1}^{2}} - 1 = 0 \\ \alpha_{\mathrm{R}} &= \varphi_{\mathrm{R}}(\boldsymbol{\omega}_{\mathrm{D}}) - \bar{\varphi}_{\mathrm{S}}(\boldsymbol{\omega}_{\mathrm{D}}) \\ \mathbf{A}_{\mathrm{R}} &= \mathrm{Re} \left[\frac{-1/\underline{F}_{\mathrm{S}}}{\underline{F}_{\mathrm{R}}} \right]_{\boldsymbol{\omega}_{\mathrm{Z}}} \end{split}$$

01+LBL "-1/FS"	15 RCL 01	29 STO 03	43 *
82+LBL 01	16 *	30 "RE="	44 SIN
03 •	17 SIN	31 ARCL 03	45 +
84 AVIEW	18 RCL 01	32 AVIEW	46 8,5
05 •W/HZ="	19 *	33 RCL 02	47 /
06 PROMPT	20 0,08	34 RCL 01	48 CHS
07 STO 01	21 *	35 *	49 STO 04
08 180	22 RCL 02	36 COS	50 "IM="
09 PI	23 RCL 01	37 0,08	51 ARCL 84
10 /	24 *	38 *	52 AVIEW
11 0,01	25 COS	39 RCL 01	53 GTO 01
12 *	26 -	40 *	54 END
13 STO 02	27 8,5	41 RCL 02	
14 RCL 02	28 /	42 RCL 01	

	XE0	1/FS"	78,000 RUN		150,000 RUN
 W/HZ=			RE=5,686 IM=−9,855	RE=23,798 IM=-3,693	
	A.000	RUN			
RE=-2,000			W/HZ=	W/HZ=	
IM=0,000			100,000 RUN		170,000 RUN
			RE=12,383	RE=27,231	
W/HZ=			IM=-10,328	IM=1,521	
	30,152	RUN			
RE=-0,477			W/HZ=	W/HZ=	
IM=-5,201			120,000 RUN		190,570 RUN
			RE=17,170	RE=29,455	
W/HZ=			IM=-8,821	IM=8,133	
	20,000	RUN			
RE=2,080			W/HZ=	W/HZ=	
IM=-7,980			135,000 KUN		250,000 RUN
			KE=20,638	RE=25,541	
W/HZ=			18=-6,682	IM=30,849	
			 ₩/HZ=		
		41 RCL 36	81 •WD/H7="	18 *	AI+LBI "UD
BIATER -NU	LEST"	42 RCI 35	82 ARCL 34	19 SIN	02 RCL 34
02 F1X 3		43 -	83 AVIEW	20 +	83 X†2
83 "WU" 94 00TO 77		44 /	84 ADV	21 RCL 34	04 0,08
04 H510 33		45 RCL 36	85 CF 01	22 0,08	05 X†2
03 3F 01 0441 D1 0		46 *	86 GTO B	23 🔹	86 ×
00*LDL H 07 UD1/U7-	-2"	47 -	87+LBL 40	24 RCL 34	07 1
OC MULTAL	-:	48 STO 34	88 •WZ/HZ=*	25 RCL 01	08 +
89 STO 31		49 XEQ IND 33	89 ARCL 34	26 *	09 17X
10 •WD2/H7:	=?"	50 STO 37	90 AVIEW	27 SIN	10 5
11 PROMPT		51 X=0?	91 ADV	28 🔹	i1 *
12 ST0 32		52 GTO 34	92 STOP	29 RCL 34	12 RCL 34
17 CTO 78		53 ABS	93+LBL 35	30 RCL 01	13 0,802
14+1 RI R		54 1 E-4	94 •KEINE NULLST.	31 *	14 *
15 WZ*		55 XXY2	95 AVIEW	32 COS	15 RCL 34
16 ASTO 33		56 CTO 34	96 FS? 01	33 -	16 0,05
17 WZ1/HZ	=?"	57 RCL 37	97 GTO A	34 /	17 *
18 PROMPT		58 RCL 36	98 GTO B	35 RCL 34	18 17X
19 STO 31		59 *	99 END	36 0,002	19 -
20 WZ2/HZ	=?"	60 X>0?		3/ *	20 X†2
21 PROMPT		61 GTO 31		38 RCL 34	21 1
22 STO 32		62 RCL 32		39 8,00	22 +
23+LBL 38		63 STO 31		410 # 41 170	23 *
24 RCL 31		64 RCL 36	81♦L8L "WZ"	41 175	24 1
25 STO 34		65 STO 35	62 180	47 1	20 - 02 DTM
26 XEQ IND	33	66+LBL 32	03 PI	40 PTN	25 KIN 37 CMD
27 STO 35		67 RCL 34	04 /	45 END	27 EMD
28 RCL 32		68 STO 32	05 0,01	TO .LHD.	
29 STO 34		69 RCL 37	66 *	XEQ	"NULLST"
30 XEQ IND	33	70 STO 36	07 STO 01	WD1/HZ=?	
31 STO 36		71 GTO 30	08 RCL 34	20,0	00 RUN
32 RCL 35		72+LBL 31	09 0,08	WD2/HZ=?	
33 *		73 2	18 *	40,0	UM RUN
34 X20?		74 ST/ 05	11 RCL 01	WD/HZ=30,152	
35 610 35		75 GTO 32	12 RCL 34	071-012-0	
36+LBL 38		76+LBL 34	13 *	WZ17HZ=?	
37 KCL 32		77 FS? 01	14 COS	150,91	an Kun
38 RCL 32		78 GTO 39	15 *	WZ27HZ=?	56 0 00
39 RCL 31		79 GTU 48	16 RCL 34	250,00	00 KUN
40 -		80+LBL 39	17 RCL 01	MZ/MZ=190/0/1	

7.2.3.2 PD-Regler und I^2-T_+ -Strecke

Programm-Beschreibung:

Der Rechner-Status ist 040.

Die Programm-Namen sind "-1/FS" und "WD" und "WZ" und "NULLST". Das Programm verläuft so wie in Abschnitt 7.2.3.1 bereits beschrieben. Auch hier bedarf es keines eigenen Programms für die Ortskurve des PD-Reglers.

$$\begin{split} & \underline{\mathbf{F}}_{\mathrm{R}} = \mathbf{V}_{\mathrm{R}} (1 + \mathrm{j} \omega \mathbf{T}_{\mathrm{V}}) \\ & \frac{-1}{\underline{\mathbf{F}}_{\mathrm{S}}} = \omega^{2} \mathbf{T}_{\mathrm{I}}^{2} (-\cos \omega \mathbf{T}_{\mathrm{t}} - \mathrm{j} \sin \omega \mathbf{T}_{\mathrm{t}}) \\ & \omega_{\mathrm{D}} = \sqrt{\frac{\mathbf{V}_{\mathrm{R}}^{2} \mathbf{T}_{\mathrm{V}}^{2}}{2 \mathbf{T}_{\mathrm{I}}^{4}}} \pm \sqrt{\frac{\mathbf{V}_{\mathrm{R}}^{4} \mathbf{T}_{\mathrm{V}}^{4}}{4 \mathbf{T}_{\mathrm{I}}^{8}}} + \frac{\mathbf{V}_{\mathrm{R}}^{2}}{\mathbf{T}_{\mathrm{I}}^{4}}} \,. \end{split}$$

32 PCL 01 02 RCL 34 02 PCL 34 03 *W/HZ=" 33 X12 03 X12 03 X12 03 RCL 34 04 PROMPT 34 * 04 0.000 04 * 05 RCL 34 05 STO 01 35 0.096 05 X12 05 RCL 34 06 180 36 X12 06 * 06 0.005 07 P1 37 * 07 1 07 * 08 / 38 STO 04 08 + 03 180 09 0.005 39 *1M=* 09 SQRT 09 * 10 * 40 ARCL 04 10 30 10 P1 11 STO 02 41 AVIEW 11 * 11 / 12 RCL 01 42 ADV 12 RCL 34 12 TAN 13 RCL 02 43 GTO 01 13 X12 13 - 14 * 44 .END. 14 0.096 14 RTN 15 COS 15 X12 15 END 16 CHS 16 * 17 - 18 X12 18 RTN 19 .END. 19 * 19 .END. 24 *RE=* 23 STO 03 24 *RE=* 25 ARCL 03 24 *RE=* 25 ARCL 03 27 RCL 03 28 RCL 02 29 *	A1+LBL "-1/FS"	31 CHS	AT+LEL "WE"	01+LBL "WZ"
03 H/H2=" 33 X12 03 X12 03 X12 03 04 06 04 06 04 4 05 01 35 0.006 05 X12 05 RCL 34 05 RCL 34 06 10 07 x 06 10 07 x 06 08 0	92+1 BL 01	32 RCL 01	82 PC! 74	02 RCL 34
34 34 03 04 <td< td=""><td>03 "W/H7="</td><td>33 X12</td><td>97 ¥+2</td><td>03 0,008</td></td<>	03 "W/H7="	33 X12	97 ¥+2	03 0,008
87 ST0 01 35 0.096 05 X+2 05 RCL 34 96 180 36 X+2 06 * 06 0.005 97 PI 37 * 07 * 07 * 98 / 38 ST0 04 98 + 08 180 09 * 99 0.005 39 *1M=* 09 SQRT 09 * 09 * 10 * 40 RRCL 04 10 30 10 PI 11 ST0 02 41 AVIEW 11 * 11 / 12 RCL 01 42 RDV 12 RCL 34 12 TRN 13 RCL 02 43 GTO 01 13 X+2 13 - 14 * 44 .END. 14 0.096 14 RTN 15 COS 15 X+2 15 END 16 CHS 16 * 17 - 18 X+2 18 RTN 19 .END. 20 0.096 22 * 19 .END. 21 X+2 22 * 23 STO 03 24 * RE=* 25 ARCL 03 24 *RE=* 25 ARCL 03 24 *RE=* 25 ARCL 03 26 AVIEW 28 RCL 02 29 *	04 PROMPT	34 *	00 A12 04 0.000	84 *
000000000000000000000000000000000000	05 STO 01	35 0,096	07 07000 05 ¥40	05 RCL 34
00 7 P1 37 * 07 1 07 * 08 / 38 STO 64 08 + 08 180 09 0.005 39 *1M=* 09 SQRT 09 * 10 * 40 ARCL 64 10 36 10 P1 11 STO 02 41 AYIEW 11 * 11 / 12 RCL 01 42 ADV 12 RCL 34 12 TAN 13 RCL 02 43 GTO 01 13 Xt2 13 - 14 * 44 .END. 14 0.096 14 RTN 15 COS 15 Xt2 15 EMD 16 CHS 16 * 17 - 18 Xt2 18 RTN 19 .END. 19 * 19 .END. 28 0.096 21 Xt2 23 STO 03 24 *RE=* 23 STO 03 24 *RE=* 25 ARCL 03 26 APIEM 27 RCL 01 28 RCL 02 29 * 4 20	A6 190	36 X12	96 ALL 86 AL	06 0,005
08 / 38 STO 04 08 + 08 180 09 0.005 39 "IM=" 09 SQRT 09 * 10 * 40 RRCL 04 10 30 10 PI 11 STO 02 41 AVIEW 11 * 11 / 12 RCL 01 42 RDV 12 RCL 34 12 TRN 13 RCL 02 43 GTO 01 13 Xt2 13 - 14 * 44 .END. 14 0.096 14 RTN 15 COS 15 Xt2 15 END 16 CHS 16 * 17 - 18 Xt2 18 RTN 19 .END. 19 * 19 .END. 24 rRE=" 23 STO 03 24 rRE=" 25 ARCL 03 24 rRE=" 28 RCL 02 28 RCL 02 29 * * 14 EXE	97 PI	37 *	87 1	87 *
39 0.005 39 "IM="" 09 SQRT 09 * 10 * 40 ARCL 04 10 30 10 PI 11 STO 02 41 AVIEW 11 * 11 / ////////////////////////////////////	AS /	38 STO 04	98 +	08 180
10 * 40 ARCL 044 10 30 10 PI 11 STO 02 41 AVIEW 11 * 11 / 12 RCL 01 42 ADV 12 RCL 34 12 TAN 13 RCL 02 43 GTO 01 13 Xt2 13 - 14 * 44 .END. 14 0.096 14 RTN 15 COS 15 Xt2 15 END 16 CHS 16 * 17 - 18 Xt2 18 RTN 19 .END. 19 * 19 .END. 20 0.096 21 Xt2 22 * 23 STO 03 24 *RE=* 25 ARCL 03 24 *RE=* 25 ARCL 03 26 AVIEW 27 RCL 01 27 RCL 01 28 RCL 02 29 *	AS A.005	39 "IM="	90 CADT	89 ×
11 STO 02 41 AVIEW 11 * 11 / 12 RCL 01 42 ADV 12 RCL 34 12 TAN 13 RCL 02 43 GTO 01 13 Xt2 13 - 14 * 44 .END. 14 0.096 14 RTN 15 COS 15 Xt2 15 END 16 CHS 16 * 17 - 18 Xt2 18 RTN 19 .END. 20 0.096 22 * 23 STO 03 24 * RE=* 25 ARCL 03 24 *RE=* 25 ARCL 03 28 RCL 02 29 *	10 *	40 ARCL 04	10 70	10 PI
11 50 00 12 FCL 34 12 TAN 13 RCL 02 43 GTO 01 13 Xt2 13 - 14 * 44 .END. 14 0.096 14 RTN 15 COS 15 Xt2 15 END 16 CHS 16 * 17 - 18 Xt2 18 RTN 19 .END. 20 0.096 22 * 23 STO 03 24 *RE=* 25 ARCL 03 24 *RE=* 25 RCL 04 27 RCL 01 27 RCL 01 27 RCL 01 28 RCL 02 29 *	11 STO 02	41 AVIEW	10 30	11 /
12 RCL 02 43 GTO 01 13 Xt2 13 14 4 .END. 14 0.096 14 RTN 15 COS 15 Xt2 15 END 16 CHS 16 * 17 17 RCL 01 17 - 18 18 Xt2 18 RTN 19 19 * 19 .END. 20 20 0.096 21 Xt2 2 21 Xt2 23 STO 03 24 24 *RE=* 25 ARCL 03 26 MYEM 27 RCL 01 28 27 RCL 02 29 29 *	12 PCI 01	42 ADV	12 PCI 34	12 TAN
13 NC 13 NC 14 RTN 15 COS 15 X12 15 END 16 CHS 16 * 17 17 RCL 01 17 - 18 18 X12 18 RTN 19 * 19 . 20 0.096 21 X12 21 X12 22 * 23 STO 03 24 *RE=* 25 RCL 03 26 AVIEW 27 RCL 01 28 RCL 02 29 *	17 PCI 82	43 GTO 91	17 242	13 -
11 11 11 15 15 END 15 COS 15 X12 15 END 16 CHS 16 * 17 - 18 X12 18 RTN 19 * 19 * 19 * 19 * 19 * 19 * 19 * 19 * 19 * 19 * 19 * 19 * 19 * 19 * 10 <td>14 *</td> <td>44 .END.</td> <td>14 0.096</td> <td>14 RTN</td>	14 *	44 .END.	14 0.096	14 RTN
13 AT2 13 AT2 16 CHS 16 * 17 RCL 01 17 - 18 X*2 18 RTN 19 * 19 .END. 20 0.096 .996 21 X*2 .2 23 STO 03 .24 *RE=* 25 ARCL 03 .2 26 AVIEW .2 27 RCL 01 .2 28 RCL 02 .2 29 *	15 009		15 940	15 END
10 10 17 RCL 01 18 Xt2 19 19 20 0.096 21 Xt2 22 22 23 STO 03 24 *RE=* 25 ARCL 03 26 AVIEW 27 RCL 01 28 RCL 02 29 *	16 CHS		10 112	
11 11 13 X+2 13 X+2 19 * 19 * 19 * 19 * 19 * 19 * 19 * 19 * 19 * 19 * 19 * 19 * 19 * 19 * 19 * 19 * 19 * 10 * 11 * 12 * 13 * 14 * 15 * 16 * 17 * 18 * 19 *	17 RCL 01		17 -	
10 K/H 19 * 19 .END. 20 0.096 21 Xt2 22 * 23 STO 03 24 *RE=* 25 ARCL 03 26 AVIEW 27 RCL 01 28 RCL 02 29 *	10 YA2		19 PTN	
20 0.096 21 Xt2 22 * 23 STO 03 24 *RE=* 25 ARCL 03 26 AVIEW 27 RCL 01 28 RCL 02 29 *	19 *		19 END	
21 X+2 22 * 23 STO 83 24 *RE=* 25 ARCL 03 26 AVIEW 27 RCL 01 28 RCL 02 29 *	20 0.096		17 .Enb.	
22 * 23 STO 03 24 *RE=* 25 ARCL 03 26 AVIEW 27 RCL 01 28 RCL 02 29 *	21 8+2			
23 STO 03 24 -RE=- 25 ARCL 03 26 AYIEN 27 RCL 01 28 RCL 02 29 *	22 ±			
24 *RE=* 25 ARCL 03 26 AYIEW 27 RCL 01 28 RCL 02 29 *	27 510 87			
25 ARCL 03 26 AVIEW 27 RCL 01 28 RCL 02 29 *	24 •PF=•			
26 AVIEW 27 RCL 01 28 RCL 02 29 *	25 0001 03			
27 RCL 01 28 RCL 02 29 *	26 OVIEN			
28 RCL 02 29 *	27 RCL 81			
29 *	28 RCL 02			
	29 *			
TA SIN	TA SIN			

	XEQ	·1/FS*	108,000	RUN		500,000	RUN
W/HZ=			RE=-80,878		RE=1.845.8	35	
	0,000	RUN	IM=-44,184		IN=-1 778.	00 998	
RE=0,000					10- 110101	000	
IM=0,000			W/HZ=			XEQ "NU	LLST"
			150,000	RUN	WD1∕HZ=?		
W/HZ=			RE=-151,723			30,000	RUN
	10,000	RUN	IM=-141,345		WD2/HZ=2		
RE=-0,920						100,000	RUN
IM=-0,046			W/H7=		WD/HZ=60,81	99	
			294.766	DIIN			
W/HZ=			PF=-200.849	KON	WZ1/HZ=?		
	30.000	RIIN	IM=-728.757		1	100,000	RUN
PF=-8.201			10- 320/333		WZ2/HZ=?		
IM=-1.239			11/117-			700.000	PHN
10 17207			W/ N2-		W7/H7=294.7	765 765	NOT:
W/H7=			200,000	KUN			
HP 112 -	50.000	DIIN	KE=-181,626				
0522 724	307000	1.00	18=-046,610				
TH-15 700							
INJ/(00			W/HZ=				
			300,000	RUN			
W/HZ=			RE=-58,672				
	60,099	KUN	IM=-827,362				
RE=-31,796							
IM=-9,853			W/HZ=				

W/HZ=

406

7.2.3.3 I-Regler und PT2-Strecke mit Ansprechschwelle

Programm-Beschreibung:

Der Rechner-Status ist 030.

Die Programm-Namen sind "-1/FG" und "N(XE)".

Nach Eingabe des Namens "-1/FG" werden die Parameter abgefragt und es können beliebige Variable ω eingegeben werden. In gleicher Weise wird das Programm "N(XE)" durchlaufen.

$$\frac{-1}{\underline{F}_{G}} = \frac{1}{\underline{F}_{O}} = \frac{1}{V_{S}} \left[2d\omega^{2}T_{2}T_{I} + j(\omega^{3}T_{2}^{2}T_{I} - \omega T_{I}) \right]$$

$$N_{(\hat{x}_{e})} = 1 - \frac{2}{\pi} \left[\frac{\pi}{180} \arcsin \frac{x_{t}}{10V} + \frac{x_{t}}{10V} \sqrt{1 - (x_{t}/10V)^{2}} \right]$$

01+LBL "-1/FG"		XEQ	1/FG"	01ALDI -1	/ VE \ •	
02 •¥S=?*	VS=?			01*LDL N 02 *VE/U-	1667 9*	
03 PROMPT		1,00	RUN	02 AL74-		
04 STO 01	12/8=2			03 FRUNFI 04 CTO 01		
05 •T2/S=2"		0.20	PUN	04 510 01		
00 12/0-1	T1/9=2	0/20		82		"
00 FROM 1	11/0-:	0 10	DIIN	NO MAIFM		
07 310 02 00 •TI /C-0#	d-0	0,10	KUN	0/+LBL 01		
00 11/3-:	u-:	0 50	D 000	68 ADV		
		0,00	KUN	09 "XT/V="	? •	
10 510 03				10 PROMPT		
11 "d=?"				11 STO 02		
12 PROMPT	W/HZ=?			12 RCL 02		
13 STO 04		0,00	RUN	13 RCL 01		
14 ""	RE=0,00			14 /		
15 AVIEW	IM=0,00			15 STO 03		
16 ADV				16 RCL 03		
17+LBL 01	W/HZ=?			17 17 17		
18 •W/HZ=?"		3,00	RUN	18 085		
19 PROMPT	RE=0,18			10 000		
20 STO 05	IM=-0,19			17 A 20 A		
21 RCL 02				20 7		
22 PCI 07	W/H7=2			21 3WK (
22 NGC 00	MY 112 - 1	4 99	OUN	22 RCL 03		
23 + 24 DOL 04	DC-0 70	4700	NON	23 *		
24 KUL 84	RE-0,32 IN-0 14			24 RCL 03		
23 ¥	100,14			25 ASIN		
26 KUL 00				26 PI		
27 XT2	W/HZ=/			27 *		
28 *		5,00	KUN	28 180		
29 2	RE=0,50			29 /		
30 *	IM=0,00			30 +		
31 RCL 01				31 2		
32 /	W/HZ=?			32 *		
33 STO 06		6,00	RUN	33 PI		
34 "RE="	RE=0,72			34 /		
35 ARCL 06	IM=0,26			75 CHS		
36 AVIEW				36 1		
37 RCL 02	W/HZ=?			77 +		
38 X†2		7,00	RUN	79 970 84		
39 RCL 03	RE=0,98			70 -N/VE		
40 *	IM=0.67			40 000L 0		
41 PCL 05				40 HKUL 0	4	
42 V42	WZH7=2			41 HYIEW		
47 *	H- 112	9.00	DIN	42 610 01		
44 DCI 65	RF=1.28	0,00	10011	43 .END.		
44 ROL 000 45 #	IN=1.25					
40 + 47 001 05	10-1725				XE0 **	KγE≯"
46 KUL 83	0.407-0			XF/V=2	116-2	11027
47 KUL #3	W/HZ=/	0.00	DUU.	0C- 1-1	10.00	DUM
48 *	05-4 /0	9,00	KUN		10/00	KON
49 -	RE=1,62					
50 RCL 01	18=2,02			UT 01-0		
51 /				X17V=?	0.00	500
52 STO 07				N/VE1-1 00	0,00	RUN
53 •IM="				N(XE)=1,00		
54 ARCL 07				117.41.5		
55 AVIEW				X17V=?	-	
56 ADV					5700	KUN
57 GTO 01				N(XE)=0,39		
58 END						
				XT∕V=?		
					10,00	RUN
				N(XE)=0,00		

7.2.3.4 PD-Regler mit Begrenzung und PT2-I-Strecke

Programm-Beschreibung:

Der Rechner-Status ist 030.

Mit Aufrufen des Namens "-1/FG" erfolgt die Eingabe der Parameter für PD-Regler und PT₂-I-Strecke. Danach ermittelt der Rechner für beliebige Variablen ω den Real- und Imaginärteil der negativen inversen Ortskurve -1/<u>F_c</u>.

Bei Eingabe des Namens "N(XE)" wird die Ortskurve der nichtlinearen Signalbegrenzung ermittelt.

$$\frac{-1}{F_{G}} = \frac{1}{F_{O}} = \frac{\omega T_{I} (\omega^{3} T_{2} T_{I} - \omega T_{V} + 2d\omega T_{2}) + j\omega T_{I} (\omega^{2} T_{2}^{2} - 2d\omega^{2} T_{2} T_{V} - 1)}{V_{O} (1 + \omega^{2} T_{V}^{2})}$$

$$N_{(\hat{x}_{e})} = \frac{1}{90} \arcsin \frac{x_{s}}{10V} + \frac{2x_{s}}{10V} \sqrt{1 - (x_{s}/10V)^{2}}.$$

81+1 BL =-1/EG*	33 •d=•	65 *	97 RCL 03
02 -1/FG FUER"	34 PRONPT	66 RCL 06	98 🔹
03 AVIEN	35 STO 05	67 X+2	99 RCL 06
04 "7USAMMENFASSG. "	36 ARCL 05	68 RCL 03	100 RCL 03
R5 AVIEW	37 AVIEW	69 *	101 +
96 YON PD-REGLER	38+LBL 01	70 RCL 04	101 +
07 AVIEW	39 ADV	71 *	197 PC1 04
08 -UND PT2-I-STR."	40 •W/HZ="	72 -	194 ¥*2
89 AVIEW	41 PROMPT	73 RCL 06	105 PCL 06
10 ADY	42 STO 06	74 X†2	106 *
11 PARANETER	43 ARCL 06	75 RCL 02	197 PCL 92
12 AVIEW	44 AVIEW	76 *	103 *
13 "V0="	45 RCL 04	77 RCL 03	109 RCL 03
14 PROMPT	46 X†2	78 *	110 *
15 STO 01	47 RCL 06	79 RCL 05	111 RCL 04
16 ARCL 01	48 X12	30 *	112 *
17 AVIEW	49 *	81 2	113 RCL 05
18 "T2/S="	50 1	82 *	114 *
19 PROMPT	51 +	83 +	115 2
20 STO 02	52 RCL 01	84 RCL 07	116 *
21 ARCL 02	53 *	85 *	117 -
22 AVIEW	54 17%	86 STO 08	118 RCL 07
23 "TI/S="	55 STO 07	87 •RE=•	119 *
24 PROMPT	56 RCL 06	88 ARCL 08	120 STO 09
25 STO 03	57 X12	89 AVIEW	121 •IM=•
26 ARCL 03	58 X†2	90 RCL 06	122 ARCL 09
27 AVIEW	59 RCL 02	91 X†2	123 AVIEW
28 "TV/S="	60 X†2	92 RCL 06	124 GTO 01
29 PROMPT	6i *	93 *	125 .END.
30 STO 04	62 RCL 03	94 RCL 02	
31 ARCL 04	63 *	95 X12	
32 AVIEW	64 RCL 04	96 *	

RI+LRL "N(XE)"	-1/EG EUER	-1/FG FUER	N(XE) FUER
02 "N(XF) FUER"	ZUSAMMENFASSG.	ZUSAMMENFASSG.	SIGNALBEGRENZG.
A3 AVIEN	VON PD-REGLER	VON PD-REGUER	
04 "SIGNAL REGRENZG."	UND PT2-I-STR.	UND PT2-I-STR.	PARAMETER
AS OVIEW			XE/V=10,000
A6 DRV	PARAMETER	PARAMETER	
07 POPOMETER	V6=8.000	V6=4.000	XS/V=0,000
AS OVIEW	T2/S=0,200	12/5=0.200	N(XE)=0,000
99 •YEZU="	TI/S=1.000	TL/S=1.000	
	TV/S=0.002	TU/C-0 002	XS/V=2.000
	A-0 500	A-0 500	N(XE)=0.253
11 310 01	0-0,000	0-0)300	17(HE) 0/200
12 HRUL 01	0707-0.000	U/UZ-0 000	VC/U-5.000
13 HYIEW	W/AZ-0,000	M7 N2 - 2,000 DE-0,100	NJY 4-37000 N/YEN-0 200
14+LBL 01	KE-0,000	KE=0,170	M(AE /-0)007
15 HDV	18-0,000	18=-0,421	V0.41-10.000
16 XS/V="			V2/A=10/000
17 PROMPT	W/HZ=2,808	₩/НΖ=4,000	N(AE)=1,000
18 STO 02	RE=0,099	RE=0,797	
19 ARCL 02	IM=-0,210	IN=-0,366	XS/V=5.201
20 AVIEW			N(YE)=0.671
21 RCL 02	W/HZ=3,000	W/HZ=5,000	11067-01001
22 RCL 01	RE=0,224	RE=1,250	
23 /	IM=-0,241	IM=-0,012	
24 STO 03			
25 RCL 03	W/HZ=5,000	W/HZ=6,000	
26 Xt2	RE=0,625	RE=1,808	
27 CHS	IM=-0,006	IM=0,638	
29 1			
20 1	W/HZ=7,000	W/HZ=5,82519	
70 0007	9F=1.237	RE=1,26263	
71 DOL 07	IM=0.823	IM=4.61553E-7	
31 KGL 03	10 07020	10 00000000	
32 ~ 77 DOL 07	W/H7=8,000		
33 RUL 03	DC=1.425		
34 HSIN	IN-1 574		
35 PI	10-1/034		
36 *			
37 180	W/HZ=5,025		
38 /	RE=0.631		
39 +	IM=2,308E-7		
40 2			
41 *			
42 PI			
43 /			
44 STO 04			
45 •N <xe>="</xe>			
46 ARCL 04			
47 AVIEW			
48 GTO 01			
49 .END.			

7.2.3.5 PI-Regler mit Hysterese und PT1-Tt-Strecke

Programm-Beschreibung:

Der Rechner-Status ist 040. Die Programm-Namen sind "NULLST", "XT", "WZ" und "ZOV". Das Programm "ZOV" ermittelt nach Eingabe der Parameter gleichzeitig Real- und Imaginärteil der Ortskurve $-1/\underline{F}_{G}$ und der Nichtlinearität der Hysterese. Anschließend kann mit dem Programm "NULLST" der Wert von $\boldsymbol{\omega}_{z}$ und \boldsymbol{x}_{t} ermittelt werden, für den die Regelung sich an der Stabilitäts-Grenze befindet.

$$\begin{split} & \operatorname{Re} \; \frac{1}{\underline{F}_{O}} = \frac{(\mathrm{T}_{N}/\mathrm{T}_{1} - 1)\cos\omega\mathrm{T}_{t} + (\omega\mathrm{T}_{1} + 1/\omega\mathrm{T}_{N})\sin\omega\mathrm{T}_{t}}{\mathrm{V}_{O}(1 + 1/(\omega^{2}\mathrm{T}_{N}^{-2}))} \\ & \operatorname{Im} \; \frac{1}{\underline{F}_{O}} = \frac{(\mathrm{T}_{1}/\mathrm{T}_{N} - 1)\sin\omega\mathrm{T}_{t} - (\omega\mathrm{T}_{1} + 1/\omega\mathrm{T}_{N})\cos\omega\mathrm{T}_{t}}{\mathrm{V}_{O}(1 + 1/\omega^{2}\mathrm{T}_{N}^{-2}))} \\ & \operatorname{N}_{(\hat{x}_{e})} = 1/2 + \frac{1}{180} \operatorname{arcsin\alpha} + \frac{\alpha}{\pi} \cdot \sqrt{1 - \alpha^{2}} + j\frac{1}{\pi}(\alpha^{2} - 1)) \\ & \alpha = 1 - 2\mathrm{x}_{t}/\hat{x}_{e} \\ & \operatorname{Re} \; \left[\mathrm{N}_{(\hat{x}_{e})}\right] - \operatorname{Re} \; \left[1/\underline{F}_{O}\right] = 0 \quad \longrightarrow \quad \sum_{x_{t}}^{\omega_{z}} \; . \end{split}$$

01+LBL "NULLST" 02 FIX 5 03 "XT" 04 ASTO 33 05+LBL A 06 "WZ1/HZ=2" 07 PROMPT 08 STO 31 09 "WZ2/HZ=2"	34 * 35 - 36 STO 34 37 XEQ IND 33 38 STO 37 39 X=0? 49 GTO 34 41 A8S 42 1 E=5 43 XY2	67 AVIEW 63 *XT=" 69 ARCL 3A 70 AVIEW 71 ADV 72 GTO "ZOV" 73 EBL 35 74 •KEINE NULLST." 75 AVIEW 76 GTO A	19 RCL 02 20 * 21 RCL 05 22 RCL 03 23 * 24 1/X 25 + 26 RCL 04 27 RCL 05 28 *
10 PROMP? 11 STO 32 12 RCL 31 13 STO 34 14 XEQ IND 33 15 STO 35 16 RCL 32	44 GTO 34 45 RCL 37 46 RCL 36 47 * 48 X282 49 GTO 31 59 RCT 22	77 END 01+LBL "XT"	29 180 30 * 31 PI 32 / 33 COS 34 * 35 -
17 STO 34 18 XEQ IND 33 19 STO 36 20 RCL 35 21 * 22 X>0? 23 GTO 35	56 KCL 52 51 STO 31 52 RCL 36 53 STO 35 54+LBL 32 55 RCL 34 56 STO 32	02 RCL 34 03 STO 05 04 RCL 02 05 RCL 03 06 / 07 1 08 -	36 4 37 / 38 RCL 01 39 / 40 RCL 05 41 X†2
24+LBL 30 25 RCL 32 26 RCL 32 27 RCL 31 28 - 29 RCL 36 30 RCL 35 31 -	57 RCL 37 58 STO 36 59 GTO 30 60+LBL 31 61 2 62 STZ 85 63 GTO 32 64+LBL 34	09 RCL 05 10 RCL 04 11 * 12 180 13 * 14 PI 15 / 16 SIN	42 RCL 03 43 X†2 44 * 45 1/X 46 1 47 + 48 / 49 PI
32 / 33 RCL 36	55 "WZ/HZ=" 66 4RCL 34	17 * 18 RCL 05	50 * 51 100

E0 +	F6 601 67	70 #TT/0-#	04.4	152 OTO 12
J2 +	50 KUL 03	32 11/3- 37 DOOMDT	94 *	106 010 10
53 25	51 *	33 PRUMP!	95 STO 10	157 "IM="
54 +	52 1/X	34 510 04	96 RE=	158 ARCL 16
55 SQRT	53 +	35 ARCL 04	97 ARCL 10	159 AVIEW
56 5	54 STO 29	36 AVIEW	98 AVIEN	160 GTO 01
57 +	55 RCI 28	37 •XE∕V="	99 RCL 08	161 END
58 STO 30	56 910	38 PROMPT	IAA SIN	
59 CTO #07*	50 51N 57 DOI 00	79 STO 12	101 DCL 07	
37 GTO ME 70 FUD	JY ROL 27	AG 0001 10	101 KCL 00	
60 .END.	58 *	AL OUTCU	102 *	
	59 +	41 H71CM	103 RCL 08	
	60 RCL 01	42+LBL 81	104 COS	
	61 /	43 ADV	105 RCL 09	
	62 RCL 34	44 •W/HZ=*	106 *	
01+LBL "WZ"	63 X12	45 PROMPT	107 -	
82 RCL 38	64 PCI 03	46 STO 05	108 RCL 06	
07 9	25 V40	47 ARCL 85	100 +	
03 Z	03 A12	48 OVIEU	102 + 110 CTO 11	
84 ¥	05 *	40 DCL 05	110 310 11	
05 10	67 178	97 KUL 0J EO VAO		
05 /	68 1	50 ATZ	112 HKCL 11	
07 CHS	69 +	51 KUL 03	113 AVIEW	
6 8 1	70 /	52 X12	114 ADV	
09 +	71 STO 23	53 *	115 "XT/V="	
10 STO 21	72 RCL 22	54 17X	116 PROMPT	
11 1	77 P(1 27	55 1	117 STO 13	
10 BCL 01	74 -	56 +	119 OPC1 17	
12 RUL 21	74 -	57 PC1 01	110 MKCL 10	
13 ATZ	75 KIN	DI NOL DI	117 HVIEW	
14 -	76 END	JO 4	128 KCL 18	
15 SQRT		59 178	121 RCL 12	
16 RCL 21		60 STO 06	122 /	
17 *		61 RCL 02	123 2	
18 PI		62 RCL 03	124 *	
19.7	9141 91 - 70V-	63 /	125 CHS	
20.05	01 • 1/E0 E0E0+	64 1	126_1	
20 070	62 TIFE FUER	65 -	197 4	
21 +	03 HVIEW	44 CTO 07	127 7	
22 RCL 21	04 "PI-REGLER UND"	00 310 81 77 001 65	128 510 14	
23 ASIN	05 AVIEW	67 KUL 00	129 RUL 14	
24 180	<pre>06 "PT1-TT-STRECKE."</pre>	68 KUL 04	130 XT2	
25 /	07 AVIEW	69 *	131 CHS	
26 +	08 "N(XE) DER"	70 180	132 1	
27 SIO 22	A9 AVIEW	71 *	133 +	
28 PCI 02	10 HYSTERESE.	72 PI	134 SØRT	
20 ROL 02	11 OUTEN	73 /	135 RCI 14	
27 KGL 00	10 000	74 STO 08	176 *	
30 /	12 HUY	75 PCI 88	177 DI	
31 1	13 "PHRHMETER"	76 COC 00	101 11	
32 -	14 AVIEW	70 000	100 /	
33 STO 27	15 FIX 3	// KUL 0/	139 872	
34 RCL 34	16 STOP	78 *	148 +	
35 RCL 04	17 "V0="	79 RCL 05	141 RCL 14	
36 *	18 PROMPT	80 RCL 02	142 ASIN	
37 180	19 STO 01	81 *	143 180	
78 *	20 ADRI 01	82 RCL 05	144 /	
	20 HKCC 01	87 PCI 07	145 +	
39 PI	21 AVIEW	00 KOL 00	146 CTO 15	
40 /	22 •T1/S="	07 7	140 010 10	
41 STO 28	23 PROMPT	0J 1/X	147 "RE="	
42 RCL 28	24 STO 02	86 +	148 ARCL 15	
43 COS	25 ARCL 82	87 STO 09	149 AVIEW	
44 RCL 27	26 OVIEW	88 RCL 08	150 RCL 14	
45 ±	27 *TN/C="	89 SIN	151 Xt2	
40 F AC DC1 7A	21 1073" 20 DDANDT	90 RCL 09	152 1	
40 RUL 34 47 DCL 92	20 FRUNF! 20 CTO 07	91 *	102 1	
97 KUL 02	27 310 03	92 +	100 454 DT	
48 *	30 HRUL 0.3	97 RCL 06	104 Fi 155 /	
40.001.73	71 OVICU	JU KUL UU	100 /	

1/F0 FUER	XT/V=6,752	1/F0 FUER	XT/V=6,000
PI-RECLER UND	RE=0,282	PI-REGLER UND	RF=0.374
PT1-TT-STRECKE	IM=-0,279	PT1-TT-STRECKE.	IM=-0.306
NYVEN DEP		N(XE) DER	10 00000
HYGTERESE	W/HZ=15,000	HYSTERESE.	W/H7=20.000
INTOTENEDC.	8E=0.335		RF=0.727
DODOMETED	IM=-0.331	PARAMETER	TH==0.767
UG-5 000	11 07001	Y0=5.000	11- 01303
70-37000 T1/S=8.100	XT/V=6.000	T1/S=0,100	YT /V=4 . 999
TW/9-0/100	RF=0.374	TN/S=0,200	PE=0.400
TT/C-0.001	TH=-0.706	TT/S=0.040	NE-0)020 IM-10 704
11/3-0/001	11- 01000	XE/V=10.000	100/305
XE/¥=10,000	U/UZ=20 000		11/1/7-59,000
	M/N2-20/000 DE-0 470	11/07-0 001	W/HZ=30,000
W/H/=0,001	KE=0,432 IM- 0,405	N/ N2-0,001 DC-4 000C_5	KE=1,928
KE=4,000E=0	[n=-0,42]	KE-470002-0 IM4 0005-5	18=0,330
18=-4,0008-5		104,0006-3	
	Х1/У=5,090	NT 41-10-000	X17V=0,000
XT/V=10,000	RE=0,500	X1/Y=10,000	RE=1,000
RE=0,000	IM=-0,318	RE=0,000	IM=0,000
IM=0,000		IM=0,000	
	₩/HZ=30,000		
W/HZ=3,000	RE=0,635	W/HZ=10,000	
RE=0,104	I#=-8,619	RE=0,333	
IM=-0,104		IM=-0,252	
	XT/V=4,000		
XT/V=8,000	RE=0.626		
RE=0,142	IM=-0,386		
IM=-0,204			XEQ "NULLST"
	W/HZ=40.090		WZ1/HZ=?
W/HZ=10,000	RF=0.845		10.00000 RUN
RE=0,242	IM=-0.816		WZ2/HZ=2
IM=-0,241	1 07010		13.00000 800
	XT/V=2.000		10700000 (107
XT/V=7,000	RF=0.858		W77H7=12 (5112
RE=0.252	IN=-0.204		XI=6.75192
IN=-0.267	11- 57264		
11. 0/20/	U/U7-69 600		
W/H7=12.151	DE-1 001		
PF=0.282	TH-1 212		
IN=-0.279	101)214		
100,277	XT/V=0.000		
	DE-1 000		
	KE-17000 IM-0 000		
	18-0,000		

7.2.3.6 PI-Regler und drei PT1-Strecken

Programm-Beschreibung:

Der Rechner-Status ist 020

Das Programm "1/FO" wird zur Beurteilung des Einflusses verschiedener Nichtlinearitäten auf die Regelung benutzt. Nach Eingabe der Parameter können beliebige Werte der Variablen ω eingelesen werden für die der Real- und Imaginärteil von $1/\underline{F}_{O}$ berechnet wird.

$$\operatorname{Re} \frac{1}{\underline{F}_{O}} = \frac{\frac{1}{T_{N}}(T_{1} + T_{2} + T_{3}) - 1 - \omega^{2}(\frac{T_{1}T_{2}T_{3}}{T_{N}} - T_{1}T_{2} - T_{1}T_{3} - T_{2}T_{3})}{V_{O}(1 + \frac{1}{\omega^{2}T_{N}^{2}})}$$

$$\operatorname{Im} \frac{1}{\underline{F}_{O}} = \frac{\omega^{3} T_{1} T_{2} T_{3} - \omega (T_{1} + T_{2} + T_{3} - \frac{T_{1} T_{2}}{T_{N}} - \frac{T_{1} T_{3}}{T_{N}} - \frac{T_{2} T_{3}}{T_{N}}) - \frac{1}{\omega T_{N}}}{V_{O} (1 + \frac{1}{\omega^{2} T_{N}^{2}})} .$$

01.101	45 001 00	99 *	177 000
01+LBL 1/FM-	40 KUL 84	90 1/X	174 CTO 01
02 "PI-REGLER UND"	46 *	91 -	135 END
US HYIEW 94 -7:DIA OTOFONS -	47 - 40 DOL OF	92 RCL 01	100
04 T3#PTI-SIKEUNE."	40 KUL 80 40 VAD	93 RCL 02	
NO HAIFN	47 ATZ 50 +	94 +	
RP HDA	.00 + 51 000	95 RCI 03	
07 TPHKHREIEKT	JI UND ED 4	96 t	
08 HYIEW	J2 1	97 RCL 01	
07 - Y0=/-	J3 - E4 DCL 01	98 RCL 02	
10 PRUMP:	J4 КСЦ И) 55 DCI 00	99 *	
11 510 00	SO RUL MA SA I	100 RCI 04	
12 -11/5=/*	57 DC: 07	101 /	
13 FKURF1	DI RUL NA	182 -	
14 510 01 15 =T0 (C-0)	58 t	103 RCL 01	
10 1275=7" 14 DDONDT	59 KUL 84	104 RCL 03	
15 PKUMP;	60 /	105 *	
17 510 02 10 - 17 (0-0)	51 T	106 RCL 04	
18 13/3=/" to prompt	52 KUL 00 77 7	107 /	
17 FRUNF: 20 6TO 67	63 / /4 001 07	108 -	
20 310 93 31 *TH/C-30	54 RUL 84	109 RCL 02	
21 1973-7 22 DD0NDT	53 ATZ 27 DCL 05	110 RCL 03	
22 FRUNF (00 KUL 00 27 V40	111 ¥	
23 510 64	07 A12 20 +	112 RCL 94	
24 HUY 3541 DL 01	00 + 20 1/V	113 /	
23*LOL 01 34 =0707-3*	70 1	114 -	
20 M/02-1 97 DD0MDT	70 1	114 - 115 PC1 05	
27 FRUNF:	73 /	113 866 03	
20 000 01	77 CTO 10	110 -	
29 KUL 81	73 310 10 74 •PE	110 DC1 80	
30 KUL 02 71 +	75 OPC! 10	110 KGE 60	
72 Dri 07		120 PCL 05	
32 KCL 03	77 DCI 05	121 142	
74 DCI 94	78 ¥†2	122 RCL 04	
34 KGL 04 75 /	79 RCL 05	123 X12	
33 / 76 DOI 02	30 ×	124 *	
77 DEL 02	81 RCI 01	125 1/X	
79 *	92 *	126 1	
79 -	97 PC1 02	127 +	
40 DCI 01	84 *	128 /	
10 NOL 01	85 RCL 93	129 STO 11	
71 NOL 02 49 *	36 *	130 •IM="	
72 T 47 -	87 RCL 05	131 ARCL 11	
44 DCI 91	88 PCI 04	132 AVIEW	
TT NUL UI	00 NOC 07	IVE WITER	

	NE0	"1/F0"			
PI-REGLER U	40				
3*P11-518EU	(E.		W/	'HZ=?	
				3,000	RUH
DODOMETES			RE	=0,664	
FRANCICS UG-0			IM	1=-8,408	
4 9 -1	19.000	PHN			
T1/S=2	10,000	10011	W/	′HZ=?	
11/0-1	1.500	RIIN		4,000	RUN
T2/S=2			RE	=1,181	
	9,022	RUN	IM	1=-0,501	
13/8=2					
	0,470	RUN	W/	'HZ=?	
TN/S=?				5,000	RUN
	1,500	RUN	RE	=1,845	
			IM	1=-0,556	
₩/HZ=?					
	8,001	RUN	W/	HZ=?	
RE=7,380E-8				10,000	RUN
IM=-1,500F-	4		RE	5=7,380	
			15	1=0.021	
W/HZ=?				41 7 0	
			W7	'HZ=/ 400,000	DUN
	1,000	RUN		100,000	KUN
RE=0,974			KE	17738/005 4-1 57/ 000	
IM=-0,148			15	1=1.000,000	
11.017.0					
W/HZ=/		DUN	W/	HZ=?	
05-0 005	21000	RUN		1,498	RUN
KE=0,290			KE	.=0,145	
184-0,288			In	J=-0,206	

8. Lösungen der Aufgaben

Aufgabe 2.1

Das vereinfachte Blockschaltbild (Bild 8.1) führt sofort auf die Lösungsgleichung für die Regelgröße x. Es wird infolge Gleichung (2.6)

$$x = \frac{V_{0}}{1 + V_{0}} \cdot w + \frac{1}{1 + V_{0}} \cdot (z_{3} + V_{P3} \cdot z_{2} - V_{P2} \cdot V_{P3} \cdot z_{1}) .$$
Mit $V_{0} = V_{P1} \cdot V_{P2} \cdot V_{P3} = 50$ folgt

$$x = \frac{50}{51} \cdot 10V + \frac{1}{51} \cdot (0,01 + 0,2 - 4)V$$

$$x = 9,7297V$$

$$x_{d} = w - x = 0,2703V .$$
Mit $w = 10V = 1300^{\circ}C$ ist dann die Regeldifferenz

$$x_{d} = 35,14^{\circ}C . - \frac{-z_{1}}{23} - \frac{V_{P2} \cdot V_{P3}}{23} - \frac{z_{2}}{23} - \frac{V_{P3}}{23} - \frac{V_{P3}}{23}$$

Bild 8.1 Vereinfachtes Blockschaltbild einer Regelung bei statischer Betrachtung

```
Aufgabe 2.2
```

Das Blockschaltbild zeigt Bild 8.2. Daraus ergibt sich mit Gleichung (2.9)

$$\mathbf{x} = \frac{\mathbf{v}_{0} \cdot \mathbf{z}_{1} \cdot \mathbf{z}_{2}}{1 + \mathbf{v}_{0} \cdot \mathbf{z}_{1} \cdot \mathbf{z}_{2}} \cdot \mathbf{w}$$

Mit $V_0 = V_R \cdot V_S = 20$ folgt

$$x = \frac{20 \cdot 0.9 \cdot 1.2}{1+20 \cdot 0.9 \cdot 1.2} \cdot 5V = 4,779V$$
$$x_{d} = w - x = 221mV .$$

Bild 8.2 Blockschaltbild einer Regelung mit zwei multiplikativen Störgrößen

Die Wegregelung ergibt zunächst das Blockschaltbild, wie es in Bild 8.3a dargestellt ist. Durch Verlegen der Summatationsstellen folgt Bild 8.3b, aus dem sich die Gleichung für die Regelgröße x finden läßt. Es wird $V_{a} \cdot z_{1}$

Bild 8.3 Blockschaltbilder einer einfachen Wegregelung im stationären Betrieb mit additiven Störgrößen

Aufgabe 2.4

Mit $\Sigma U = O$ folgt die Differentialgleichung

oder

$$U_{e} = i_{(t)} \cdot R + L \cdot \frac{di_{(t)}}{dt}$$
$$i_{(t)} = \frac{U_{e} - L \cdot di_{(t)}/dt}{R}$$

Es ist

 $i_{(t)} = i_{St} + i_{f}$

sowie

 $i_{St} = \frac{U_e}{R}$

also folgt mit dem Exponentialansatz die gleiche Sprungantwort wie in Gleichung (2.43), nämlich

$$i_{(t)} = \frac{U_e}{R}(1 - e^{-\frac{R \cdot t}{L}})$$
.

,

Aufgabe 2.3

Diese Lösung konnte auch aus dem Dualismus zwischen Mechanik und Elektrotechnik gefolgert werden (Abschnitt 2.2.2). Der zeitliche Verlauf ist in Bild 8.4 gezeichnet.

Bild 8.4 Sprungantwort des Stromes eines Gleichstromkreises aus R und L

Aufgabe 2.5

Mit ΣF = 0 (dual zu ΣU = 0 in der Elektronik) folgt die lineare inhomogene Differentialgleichung 2. Ordnung

$$F_{e} = r \cdot \frac{ds_{a}}{dt} + m \cdot \frac{d^{2}s_{a}}{dt^{2}}$$

bzw.

$$\ddot{s}_a + \frac{r}{m}\dot{s}_a = \frac{Fe}{m}$$
.

Für die homogene Teillösung gilt der Ansatz

$$s_{a_{hom}} = C_1 e^{p_1 t} + C_2 e^{p_2 t}$$

Die charakteristische Gleichung ist

$$p^2 + \frac{r}{m}p = 0$$

also

$$p(p + \frac{r}{m}) = 0$$

Es ergeben sich die Nullstellen

$$p_1 = 0$$
 und $p_2 = -\frac{1}{m}$

also

$$s_{a_{hom.}} = C_1 + C_2 e^{-rt/m}$$

mit S_a = 0 folgt

$$0 = C_1 + C_2$$
 oder $C_2 = -C_1$,

damit lautet die homogene Teillösung

$$s_{a_{hom}} = -C_2 + C_2 e^{-rt/m}$$
.

Für die inhomogene oder partikuläre Teillösung wählt man hier den Ansatz 7

$$s_a = A + B \cdot t$$
.

Dann ist

Einsetzen in die gegebene Differentialgleichung ergibt

 $O + \frac{r}{m} \cdot B = \frac{Fe}{m}$.

Damit wird

$$B = \frac{Fe}{r}$$
 und $A = 0$,

also lautet die partikulare Lösung

$$\tilde{s}_{a \text{ part.}} = \frac{Fe}{r} \cdot t$$
.

Die allgemeine Lösung der Differentialgleichung entspricht der Summe aus partikulärer und homogener Lösung. Sie ergibt sich zu

$$s_{a(t)} = -C_2 + C_2 e^{-rt/m} + \frac{Fe}{r}t$$

und ist in Bild 8.5 abgebildet.

Bild 8.5 Sprungantwort des Weges s_{a(t)}eines Reibungs-Masse-Systems mit der erregenden Kraft F_e

Aufgabe 2.6

Nach der Spannungsteilerregel verhalten sich die Spannungen wie die zugehörigen Impedanzen, d.h. hier

$$\frac{u_{a(j\omega)}}{U_{e}} = \frac{\frac{R/j\omega C}{R+1/j\omega C}}{u_{e}}$$

$$\frac{u_{a(j\omega)}}{U_{e}} = \frac{R/j\omega C}{R+1/j\omega C}$$

$$\frac{u_{a(j\omega)}}{U_{e}} = \frac{R}{R+(1+j\omega RC) \cdot (R+1/j\omega C)}$$

$$= \frac{R}{R+R+R} + \frac{R}{j\omega R^{2}C+1/j\omega C}$$

$$= \frac{1}{3-j(\frac{1}{\omega T}-\omega T)}$$

mit $T = R \cdot C$.

Da der Nenner eine komplexe Zahl ist, muß der gesamte Bruch konjugiert komplex erweitert werden (siehe Gleichung (2.44).

$$\frac{\mathbf{u}_{a(j\omega)}}{\mathbf{U}_{e}} = \frac{3 + j(1/\omega T - \omega T)}{[3 - j(1/\omega T - \omega T)][3 + j(1/\omega T - \omega T)]}$$

Multipliziert man eine komplexe mit einer konjugiert komplexen Zahl, ist das Ergebnis gleich $(Re)^2 + (Im)^2$. Damit wird

$$u_{a(j\omega)} = U_{e} \frac{3 + j(1/\omega T - \omega T)}{9 + (1/\omega T - \omega T)^{2}}$$

Diese Sprungantwort entspricht der eines Bandpasses der Nachrichtentechnik, welcher Signale mit Frequenzen kleiner oder größer als $\omega = \frac{1}{T}$ dämpft.

Aufgabe 2.7

Mit ΣM = O ergibt sich bei verlustloser Momentenübertragung, daß das Motormoment M_M gleich dem Beschleunigungsmoment M_b ist.

Es gilt

$$M_{M} = C_{2} \cdot \phi \cdot i_{A}$$

und

$$M_{b} = 2\pi \cdot J \cdot \frac{dn}{dt} ,$$

sowie die Ankerkreisgleichung laut Bild 2.12

$$U_A - E = i_A \cdot R_A + L_A \cdot \frac{di_A}{dt}$$

Daraus folgt

$$C_2 \cdot \phi \cdot i_A = 2\pi \cdot J \cdot \frac{dn}{dt}$$

also

$$i_{A} = \frac{2 \cdot \pi \cdot J}{C_{2}} \cdot \emptyset \cdot \frac{dn}{dt} = C_{3} \cdot \frac{dn}{dt}$$

Diese Gleichung für i $_{\rm A}$ ist in die Ankerkreisgleichung einzusetzen. Man erhält eine Differentialgleichung für die Drehzahl n.

$$R_A \cdot C_3 \cdot \frac{dn}{dt} + L_A \cdot C_3 \cdot \frac{d^2n}{dt^2} = U_A - E$$
.

Mit Regel Nr. 4, Tabelle 2.1 lautet die entsprechende komplexe Gleichung für n:

$$\mathbf{L}_{\mathbf{A}} \cdot \mathbf{C}_{\mathbf{3}} \boldsymbol{\omega}^{2} \cdot \underline{\mathbf{n}} - \mathbf{j} \cdot \boldsymbol{\omega} \mathbf{R}_{\mathbf{A}} \cdot \mathbf{C}_{\mathbf{3}} \cdot \underline{\mathbf{n}} = \mathbf{E} - \mathbf{U}_{\mathbf{A}} \ .$$

Damit wird nach konjugiert komplexer Erweiterung

$$\underline{\mathbf{n}} = \mathbf{n}_{(j\omega)} = \frac{\mathbf{E} - \mathbf{U}_{\mathbf{A}}}{\omega \mathbf{C}_{3}} \cdot \frac{\omega \mathbf{L}_{\mathbf{A}} + j \cdot \mathbf{R}_{\mathbf{A}}}{\omega^{2} \cdot \mathbf{L}_{\mathbf{A}}^{2} + \mathbf{R}_{\mathbf{A}}^{2}} .$$

Aufgabe 2.8

Aus

$$\underline{F} = \frac{1 + j\omega T_1}{1 + j(\omega T_2 - \omega^3 T_3^3)}$$

wird durch konjugiert komplexes Erweitern

$$\underline{F} = \frac{(1 + j\omega T_1) \cdot [1 - j \cdot (\omega T_2 - \omega^3 T_3^3)]}{1 + (\omega T_2 - \omega^3 T_3^3)^2}$$
$$\underline{F} = \frac{1 + \omega T_1 \cdot (\omega T_2 - \omega^3 T_3^3) + j(\omega T_1 - \omega T_2 + \omega^3 T_3^3)}{1 + (\omega T_2 - \omega^3 T_3^3)^2}$$

Für den Phasenwinkel einer komplexen Größe gilt entsprechend Gleichung (2.48) Jm(F) $\omega T_1 - \omega T_2 + \omega^3 T_2^3$

$$\varphi = \arctan \frac{1}{\operatorname{Re}(\underline{F})} = \arctan \frac{1}{1 + \omega T_1 \cdot (\omega T_2 - \omega^3 T_3^3)}$$

Bei $T_1 = T_2 = T_3 = T$ ist dann

$$\varphi = \arctan \frac{\omega^3 r^3}{1 + \omega^2 r^2 - \omega^4 r^4}$$

Aufgabe 2.9

Aus

$$T \cdot \dot{x}_a + x_a = x_e \cdot \delta_{o(t)} = x_{e(t)}$$

wird die Bildfunktion

$$p \cdot T \cdot x_a + x_a = x_e$$
.

Da bei der Gleichdimensionellen Laplace-Transformation die Bildfunktion von $\delta_{o(t)}$ eins wird, erhält man sofort eine elementar lösbare algebraische Gleichung für $\overset{o}{\mathbf{x}}_{a}$ mit der Konstanten \mathbf{x}_{e} .

mit

$$\begin{aligned} & \overset{O}{\mathbf{x}}_{\mathbf{a}} = \mathbf{x}_{\mathbf{e}} \quad \frac{1}{1 + \mathbf{p} \cdot \mathbf{T}} \\ & \alpha = \frac{1}{\mathbf{T}} \quad \text{folgt} \\ & \overset{O}{\mathbf{x}}_{\mathbf{a}} = \mathbf{x}_{\mathbf{e}} \quad \cdot \quad \frac{\alpha}{\mathbf{p} + \alpha} \quad . \end{aligned}$$

Entsprechend Korrespondenz Nr. 1 und Nr. 8 Tabelle 2.3 lautet die Übertragungsfunktion -t/T

$$x_{a(t)} = x_{e} \cdot (1 - e)$$
.

Den zeitlichen Verlauf der gefundenen Lösung zeigt Bild 8.6.

Bild 8.6 Zeitlicher Verlauf einer linearen Differentialgleichung I.Ordnung bei sprunghafter Erregung

Aufgabe 2.10

Aus der gegebenen linearen Differentialgleichung 2. Ordnung

$$\mathbf{m} \cdot \ddot{\mathbf{x}}_{a} + \mathbf{r} \cdot \dot{\mathbf{x}}_{a} + \mathbf{c}_{f} \cdot \mathbf{x}_{a} = \hat{\mathbf{x}}_{e} \cdot \operatorname{sin\omegat} = \mathbf{x}_{e(t)}$$

wird mit p = d/dt in der Bildebene die algebraische Gleichung

$$\overset{\circ}{x}_{a} \cdot (mp^{2} + r \cdot p + c_{f}) = \overset{\circ}{x}_{e}$$
.

Mit Korrespondenz Nr. 18 Tabelle 2.3 folgt für Transformation einer sinusförmigen Anregung

$$\hat{\mathbf{x}}_{a} \cdot (\mathbf{mp}^{2} + \mathbf{r} \cdot \mathbf{p} + \mathbf{c}_{f}) = \hat{\mathbf{x}}_{e} \cdot \frac{\omega \mathbf{p}}{\mathbf{p}^{2} + \omega^{2}}$$

Damit erhält man

$$\hat{\mathbf{x}}_{a} = \hat{\mathbf{x}}_{e} \cdot \frac{\omega p}{p^{2} + \omega^{2}} \cdot \frac{\frac{c_{f}}{m}}{p^{2} + \frac{r}{m}p + \frac{c_{f}}{m}}$$

mit der Kennkreisfrequenz

$$\omega_0^2 = \frac{c_f}{m}$$

und der Dämpfungsziffer

$$\alpha = \frac{r}{2m}$$

findet man in Korrespondenz Nr. 32 Tabelle 2.3 die Lösung bzw. Rücktransformation. Sie lautet

$$\begin{aligned} \mathbf{x}_{a(t)} &= \frac{\omega_{o}^{2}(\omega_{o}^{2}-\omega^{2})}{(\omega_{o}^{2}-\omega^{2})^{2}+4\alpha^{2}\omega^{2}} \cdot \sin(\omega t+\varphi_{o}) - \frac{2\alpha\omega\omega_{o}^{2}}{(\omega_{o}^{2}-\omega^{2})^{2}+4\alpha^{2}\omega^{2}} \cdot \cos(\omega t+\varphi_{o}) \\ &+ \frac{e^{-\alpha t}}{2\omega_{e}} \cdot \frac{\omega_{o}^{2}}{\omega_{e}} \left[\frac{\alpha \cdot \cos(\omega_{e}t+\varphi_{o})+(\omega-\omega_{e}) \cdot \sin(\omega_{e}t+\varphi_{o})}{\omega_{o}^{2}-2\omega\omega_{e}+\omega^{2}} - \frac{\alpha \cdot \cos(\omega_{e}t-\varphi_{o})-(\omega+\omega_{e}) \cdot \sin(\omega_{e}t-\varphi_{o})}{\omega_{o}^{2}+2\omega\omega_{e}+\omega^{2}} \right] \end{aligned}$$

mit der Eigenkreisfrequenz

$$\omega_{\rm e} = \sqrt{\omega_{\rm o}^2 - \alpha^2}$$

und der Anregungsfrequenz $\boldsymbol{\omega}_{\star}$

Mit der Vereinfachung

$$\varphi_{o} = 0$$
 sowie $\alpha << \omega_{o}$ und $\omega_{o} >> \omega$

wird $\omega_{\rho} \gtrsim \omega_{O}$, so daß gilt

$$x_{a(t)} \approx \sin \omega t - \frac{2\alpha \omega}{\omega_0^2} \cdot \cos \omega t$$

 $x_{a(t)} \approx \sin \omega t - \frac{r \cdot \omega}{c_f} \cdot \cos \omega t$.

also

Diese Schwingung ist in Bild 8.7 für rw/c_f = 1 dargestellt. Es ergibt sich sprunghaft eine ungedämpfte Schwingung, da in der Lösungsgleichung der Term mit der e-Funktion infolge ρ_0 = 0 entfällt.

Mit den Vereinfachungen

$$\varphi_{o} = -\omega_{e}t = -\pi/6$$
 sowie $\alpha = \frac{\omega_{o}}{2}$ und $\omega_{o} = 3\omega$

wird

$$\begin{split} \omega_{e} &= \frac{\omega_{o}}{\sqrt{2}}, \quad \text{so daß gilt} \\ x_{a(t)} &\approx 0.986 \cdot \sin(\omega t - \pi/6) - 0.37 \cdot \cos(\omega t - \pi/6) + \\ &+ \frac{\omega_{o}}{\sqrt{2}} \cdot e^{\frac{-\omega_{o} \cdot t}{2}} \cdot (1.04 \cdot \sin\sqrt{2}\omega_{o}t - 0.5 \cdot \cos\sqrt{2}\omega_{o}t). \end{split}$$

Dieser Ausgleichsvorgang enthält eine e-Funktion, die mit der Phasenverschiebung $\varphi_0 = \pi/6$ dafür sorgt, daß x_{a(t)} bei Null beginnt (Bild 8.8).

Bild 8.8 Zeitlicher Verlauf der Schwingung eines Rüttlers bei sinusförmiger Anregung mit der Frequenz für den Fall, daß $\omega_{\rm O}$ = 3 ω , α = $\omega_{\rm O}/2$, $\varphi_{\rm O}$ = $\pi/6$

Nach Abklingen der e-Funktion ist der Ausgleichsvorgang beendet, so daß der stationäre Zustand sich ergibt zu:

x &
$$\Im$$
 0,986 · sin(ω t - $\pi/6$) - 0,37 · cos(ω t - $\pi/6$) .
stat.

Aufgabe 2.11

Die Ausgangsspannung verhält sich zur Eingangsspannung wie die zugehörigen Impedanzen (siehe Gleichung 2.20).

Dann wird mit dem Reaktanzoperator (Gleichung 2.58)

р

$$\frac{\tilde{u}_{a}}{\tilde{u}_{e}} = \frac{\frac{\kappa_{2}}{pC_{2}(R_{2} + 1/pC_{2})}}{\frac{R_{1} + 1/pC_{1}}{R_{1} + 1/pC_{1}}} = -\frac{R_{2}}{R_{1}} \cdot \frac{1}{(1 + pT_{2})(1 + 1/pT_{1})}$$

mit $T_1 = R_1 \cdot C_1$ und $T_2 = R_2 \cdot C_2$.

Es wird weiter mit $\alpha_1 = \alpha_2 = \frac{1}{T_1} = \frac{1}{T_2} = \frac{1}{T}$

$$\overset{O}{u_a} = - V_p \cdot \frac{\alpha p}{(p+\alpha)^2} \cdot U_e = - 10\alpha U_e \cdot \frac{p}{(p+\alpha)^2}$$

Da 10 $\cdot \, \alpha \cdot \, U_{e}$ = konstant ist, bleibt dieser Wert bei der Rücktransformation unverändert.

Entsprechend Korrespondenz Nr. 12 Tabelle 2.3 lautet die Lösungsgleichung

$$u_{a(t)} = -10\alpha U_e \cdot t \cdot e$$

Diese Sprungantwort ist in Bild 8.9 gezeigt.

Bild 8.9 Sprungantwort eines Operationsverstärkers mit RC-Eingangsnetzwerk und RC-Gegenkopplungsnetzwerk

Aufgabe 2.12

Dieser Ausgleichsvorgang läßt sich durch Überlagerung zweier Ausgleichsvorgänge errechnen (Bild 8.10). Einem Einschaltvorgang mit

$$U_{1(t)} = U \cdot \delta_{o(t)}$$

 $U_{2(t)} = U \cdot \delta_{o(t-t_1)}$. Es wird mit $\Sigma U = O$ $U_1 = i_1(R + pL)$ $\overset{O}{i}_{1} = \frac{\overset{O}{U}_{1}}{R} \cdot \frac{\alpha}{p+\alpha} = \frac{U}{R} \cdot \frac{\alpha}{p+\alpha}$ Also $\alpha = \frac{1}{T} = \frac{R}{T}$ mit

Bild 8.10 Bildung eines Impulses durch Überlagerung aus zwei Sprungfunktionen

Entsprechend Korrespondenz Nr. 8 Tabelle 2.3 folgt ...

$$i_{1(t)} = \frac{0_1}{R} (1 - e)$$
.

Für den Ausschaltvorgang gilt

$$U_{2(p)} = i_{2}^{O}(R + pL) = -\frac{U}{R} \cdot \delta_{O(t-t_{1})} \cdot (R + pL)$$

also

$$\hat{i}_{2} = -\frac{U}{R} \cdot \frac{\alpha}{p+\alpha} \cdot \delta_{o(t-t_{1})}$$

Mit dem Verschiebungssatz (Tabelle 2.2 Nr. 4) ergibt sich

$$\overset{O}{i}_{2} = - \frac{U}{R} \cdot \frac{\alpha \cdot e}{p + \alpha}$$

und mit Korrespondenz Nr. 4 und 8 Tabelle 2.3 folgt im Zeitbereich

$$i_{2(t)} = -\frac{U}{R} \cdot (1 - e^{-\alpha(t - t_1)}) \cdot \delta_{o(t - t_1)}$$

Damit erhält man den Gesamtstrom i (t), dessen Verlauf in Bild 8.11 gezeigt ist.

$$i_{(t)} = i_{1(t)} + i_{2(t)}$$

$$i_{(t)} = \frac{U}{R} \cdot \left[1 - e^{-\alpha t} - (1 - e^{-\alpha (t - t_{1})}) \delta_{o(t - t_{1})} \right]$$

•

und einem Ausschaltvorgang mit

Bild 8.11 Verlauf des Stromes an einem RL-Netzwerk (Bild 2.43)

Der gesamte Ausgleichsvorgang läßt sich auch in einem Ersatzschaltbild zusammenfassen (Bild 8.12), wenn die Spannung U einer Sprungfunktion entspricht, die lautet:

$$U(t) = U(\delta_{o(t)} - \delta_{o(t-t_1)})$$

Bild 8.12 Ersatzschaltbild des Netzwerkes aus Bild 2.43 durch Vorgabe eines Spannungsimpulses

Aufgabe 2.13

Entsprechend Gleichung (2.20) folgt für den Frequenzgang

$$F_{(p)} = \frac{O}{U_{a}}_{U_{e}} = -\frac{\frac{(R_{r} + 1/pC_{r})R_{n}}{R_{n} + R_{r} + 1/pC_{r}}}{\frac{(R_{g} + 1/pC_{e})R_{e}}{R_{e} + R_{g} + 1/pC_{e}}}$$

$$F_{(j\omega)} = -V_{p} \cdot \frac{(1 + j\omega Tr)[1 + j\omega \cdot (Te + Tg)]}{(1 + j\omega Te)[1 + j\omega \cdot (Tr + Tn)]}$$

mit

$$V_{p} = R_{n}/R_{e} \qquad T_{n} = R_{n}C_{r} = 1/\omega_{n}$$

$$T_{e} = R_{e}C_{e} = 1/\omega_{v} \qquad T_{r} = R_{r}C_{r} = 1/\omega_{N}$$

$$T_{g} = R_{g}C_{e} = 1/\omega_{g}$$

$$|F_{(j\omega)}| = V_{p} \cdot \frac{1 + \omega(Tg + Te + Tr) + \omega^{2} \cdot (TgTr + TeTr)}{1 + \omega(Tg + Tn + Tr) + \omega^{2} \cdot (TgTr + TgTn)}$$

$$|F_{(j\omega)}| = \frac{R_n}{R_e} = V_p$$

Dieser Frequenzgang ist in Bild 8.13 in asymptotischer Näherung dargestellt und entspricht dem eines realen PID-Gliedes. Es ist zweckmäßig, die Abszisse logarithmisch aufzutragen.

Bild 8.13 Asymptotische Darstellung des Frequenzgangs eines realen PID-Gliedes

Aufgabe 3.1

Der zeitliche Verlauf von ugergibt sich aus dem Frequenzgang.

Mit

wird $u_{a} = -V_{p} \cdot (u_{e} + \frac{1}{T_{N}} \int_{0}^{t} U_{e} \cdot dt)$.

 $\frac{1}{p} = \int_{0}^{t} dt$

Mit $R_1 = 10k\Omega$, $R_2 = 100k\Omega$ und $C = 10\mu F$ folgt $V_p = 10$, $T_N = 1s$, $T_1 = 0$, 1s. Der P-Anteil ist dann entsprechend Bild 3.21 im Intervall t = 0 bis t₁ $u_{ap} = -V_p \cdot U_e = -5V$ und von t₁ bis t₂ $u_{ap} = +5V$ und von t₂ bis t = ∞ $u_{ap} = 0V$ (Bild 8.14).

Der I-Anteil wird dazu summiert. Das bedeutet bis zur Zeit t₁ einen Anstieg der Ausgangsspannung von -u_a = 11V. Dann erfolgt ein Sprung des P-Anteils von $\Delta V_p \cdot U_e$ = 10V (also von +5V nach -5V). Damit springt auch -u_a von 11V auf 1V herunter. Nun beginnt mit der gleichen Integrationszeitkonstante T_N = 1s der Anstieg des I-Anteils in negativer Richtung (weil V_p · U_e jetzt negativ ist), bis hin zu t = t₂. Hier wird V_p · U_e = 0, springt also um $\Delta V_p \cdot U_e$ = 5V. Dies bedeutet auch einen Sprung von -u_a um 5V.

Da nun die Eingangsspannung des Operationsverstärkers Null ist, muß die Ladung des Kondensators in der Gegenkopplung erhalten bleiben. Damit ist $^{-u}a(t > t_2) = Konstant.$

Es gilt nämlich bei einem Operationsverstärker (Gleichung 2.20)

$$I_1 = -I_2$$

Bild 8.14 Zeitlicher Verlauf der Ausgangsspannung eines PI-Gliedes mit Operationsverstärker mit einer variablen Eingangssprungfunktion

Da
$$I_1 = \frac{U_e}{R_1} \bigg|_{t > t_2} = 0$$

ist auch $I_2 = 0$.

Der Kondensator wird also weder geladen noch entladen. Diese Tatsache ist bei Reglern von entscheidender Bedeutung. Denn bei einem PI-Regler entspricht die Spannung U_e der Regeldifferenz x_d. Ist x_d = O(U_e = O), heißt das, der Sollwert ist gleich dem Istwert der Regelung. Wie man aus Bild 8.14 sieht, bleibt dann die Ausgangsspannung des Reglers, also die Stellgröße y = u_a = konstant.

Für $\boldsymbol{\omega}_1$ erhält man folgende Gleichung: Es ist

$$V_{p} = \frac{R_{2}}{R_{1}}, T_{N} = R_{2}C \text{ und } T_{1} = R_{1}C$$

Teilt man T_N durch T_1 ergibt sich

 $\frac{T_{N}}{T_{1}} = \frac{R_{2}}{R_{1}} = v_{p}$.

 $T_1 = \frac{T_N}{V_p}$

Also wird

oder

 $\omega_1 = v_p \cdot \omega_N$.

Aufgabe 3.2

Die Gleichung (3.26)

$$F_{(p)} = V_{p}^{*} \frac{1 + pT_{N} + p^{2}T_{N}T_{V}}{pT_{N} \cdot (1 + pT_{1})}$$

läßt sich in drei Brüche zerlegen, so daß

$$\mathbf{F}_{(p)} = \mathbf{V}_{p}^{*} \left(\frac{1}{p^{2} \mathbf{T}_{N} \mathbf{T}_{1} + p \mathbf{T}_{N}} + \frac{1}{1 + p \mathbf{T}_{1}} + \frac{p \mathbf{T}_{V}}{1 + p \mathbf{T}_{1}} \right)$$

mit

$$\alpha_{1} = \frac{1}{T_{1}}, \quad \omega_{N} = \frac{1}{T_{N}} \quad \text{und} \quad \omega_{V} = \frac{1}{T_{V}} \quad \text{folgt}$$

$$F_{(p)} = V_{p}^{*} \frac{\alpha_{N} \cdot \alpha_{1}}{p (p + \alpha_{1})} + \frac{\alpha_{1}}{p + \alpha_{1}} + \frac{\alpha_{1}}{\alpha_{V}} \cdot \frac{p}{p + \alpha_{1}}$$

$$-\frac{1}{\frac{1}{2}} a \qquad -\frac{1}{\frac{1}{2}} b \qquad -\frac{1}{\frac{1}{2}} c$$

Bruch a ist mit dem Faltungssatz (Korresp. Nr. 7 Tabelle 2.2) zu lösen. Es wird

.

$$F_{1(p)} = \alpha_{N}$$

$$F_{2(p)} = \frac{\alpha_{1}}{p + \alpha_{1}} ,$$

$$f_{a(t)} = \alpha_{N} \int_{0}^{t} \left[1 - e^{-\alpha_{1}(t - \tau)} \right] d\tau$$

so daß

also $f_{a_{(t)}} = \alpha_N \cdot t - \frac{\alpha_N}{\alpha_1} \cdot (1 - e^{-\alpha_1 t})$.

Bruch b ergibt sofort mit Korrespondenz Nr. 8 Tabelle 2.3

$$f_{b(t)} = 1 - e^{-\alpha} 1^{t}$$

Für Bruch c folgt mit Korrespondenz Nr. 6 Tabelle 2.3

$$f_{c(t)} = \frac{\alpha_1}{\alpha_V} \cdot e^{-\alpha_1 t}$$
.

Damit erhält man die Sprungantwort

$$f_{(t)} = \frac{\overset{o}{x}_{a}}{x_{e}} = v_{p}^{*} \cdot \left[1 - \frac{T_{1}}{T_{N}} + \frac{t}{T_{N}} - (1 - \frac{T_{1}}{T_{N}} - \frac{T_{V}}{T_{1}}) \cdot e^{-\frac{t}{t_{1}}} \right]$$

so, wie sie in Bild 3.27 als x_a verzögert dargestellt ist.

Aufgabe 3.3

Der Frequenzgang des PI-T1-Gliedes ist

$$F_{(p)} = \frac{\overset{O}{x_a}}{\underset{e}{x_e}} = v_p \cdot \frac{1 + \frac{1}{pT_N}}{1 + pT_1} = v_p \cdot \frac{\alpha_1}{p} \cdot \frac{p + \alpha_N}{p + \alpha_1}$$

mit $\alpha_1 = \frac{1}{T_1}$ und $\alpha_N = \frac{1}{T_N}$.

Mit dem Faltungssatz (Korrespondenz Nr. 7 Tabelle 2.2) läßt sich die Sprungantwort errechnen.

Es wird

$$F_{1(p)} = V_{p} \cdot \alpha_{1}$$

$$F_{2(p)} = \frac{p + \alpha_{N}}{p + \alpha_{1}} \quad .$$

Die zugehörigen Originalfunktionen sind laut Tabelle 2.3 Nr. 5 und 11

$$f_{1(t)} = V_{p} \cdot \alpha_{1} = V_{p} \cdot \frac{1}{T_{1}}$$

$$f_{2(t)} = \frac{T_{1}}{T_{N}} + (1 - \frac{T_{1}}{T_{N}}) \cdot e^{-\frac{t}{T_{1}}}$$

Die Originalfunktion von $F_{(p)}$ ist dann entsprechend dem Faltungssatz

$$f_{(t)} = v_{p} \frac{1}{T_{1}} \int_{0}^{t} \left[\frac{T_{1}}{T_{N}} + (1 - \frac{T_{1}}{T_{N}}) \cdot e^{-\frac{t - \tau}{T_{1}}} \right] d\tau$$
$$= v_{p} \left(\frac{t}{T_{N}} + 1 - e^{-\frac{t}{T_{1}}} - \frac{T_{1}}{T_{N}} + \frac{T_{1}}{T_{N}} \cdot e^{-\frac{t}{T_{1}}} \right)$$

also

$$f_{(t)} = v_p \left[1 - \frac{T_1}{T_N} + \frac{t}{T_N} - (1 - \frac{T_1}{T_N}) \cdot e^{-\frac{T_1}{T_1}} \right]$$

und für $T_1 = T_N/2$ sowie $V_p = 1/2$

$$f_{(t)} = \frac{x_a}{x_e} = 0.5 + \frac{t}{T_N} - 0.5 \cdot e$$

Diese Sprungantwort ist in Bild 8.15 dargestellt.

Bild 8.15 Sprungantwort eines PI-T1-Gliedes

Aufgabe 3.4

Die statische Kennlinie der Parabel für positive und negative Eingangssignale ist ungerade, so daß für die Fourier-Koeffizienten gilt

 $a_1 = 0$

$$b_{1} = \frac{1}{\pi} \int_{0}^{\pi} x_{a(\varphi)} \cdot \sin\varphi \cdot d\varphi + \frac{1}{\pi} \int_{\pi}^{2\pi} x_{a(\varphi)} \cdot \sin\varphi \cdot d\varphi$$

Aus Bild 3.61 ergibt sich für die Ausgangsgröße

$$\mathbf{x}_{a} = \begin{vmatrix} \mathbf{x}_{e}^{2} & \text{für} & \mathbf{x}_{e} \ge 0 \\ -\mathbf{x}_{e}^{2} & \text{für} & \mathbf{x}_{e} \le 0 \end{vmatrix}$$

Mit $x_e = \hat{x}_e \cdot \sin \varphi$ folgt

$$\begin{split} N_{(\hat{x}_{e})} &= \frac{x_{a}(\varphi)}{x_{e}(\varphi)} = \frac{b_{1} \cdot \sin\varphi}{\hat{x}_{e} \cdot \sin\varphi} \\ &= \frac{1}{\pi \cdot \hat{x}_{e}} \left[\int_{0}^{\pi} \hat{x}_{e}^{2} \cdot \sin^{2}\varphi \cdot \sin\varphi \cdot d\varphi + \int_{\pi}^{2\pi} (-\hat{x}_{e}^{2} \cdot \sin^{2}\varphi) \cdot \sin\varphi \cdot d\varphi \right] \\ &= \frac{2 \cdot \hat{x}_{e}}{\pi} \int_{0}^{\pi} \sin^{3}\varphi \cdot d\varphi \\ N_{(\hat{x}_{e})} &= \frac{8 \cdot \hat{x}_{e}}{3\pi} \quad . \end{split}$$

also

Aufgabe 4.1

Die Operationsverstärkerschaltung des PID-Reglers mit PT₃-Strecke ist in Bild 8.16 dargestellt. Damit am Reglereingang die Regeldifferenz $x_d = w - x$ ansteht, ist nach der PT₃-Strecke noch eine Vorzeichenumkehr von x mittels Inverter notwendig.

Die entsprechenden Führungs- und Störgrößensprungantworten sind in Bild 8.17a und 8.17b oszillographiert und bestätigen die in Abschnitt 4.1 gemachten Aussagen.

Aufgabe 4.2

Der Frequenzgang des PID-Gliedes lautet:

$$F_{(p)} = V_{p} \cdot (1 + pT_{V} + \frac{1}{pT_{N}})$$

Verzweigt man den P-, I- und D-Anteil hinter einem Block V_p , erhält man das in Bild 8.18 dargestellte Blockschaltbild. Es läßt sich mit Umformregel 9 und 10, Tabelle 4.12 zeichnen.

Aufgabe 4.3

Der Frequenzgang des PT_1 -Gliedes lautet für $V_p = 2$:

$$F_{(p)} = 2 \frac{1}{1 + pT_N}$$

Geht man nach Umformregel 11 (Tabelle 4.12) vor, entspricht der Frequenzgang der Gegenkopplung der Größe pT₁. Es ergibt sich das folgende Blockschaltbild (Bild 8.19).

431

Bild 8.19 Blockschaltbild des umgeformten PT1-Gliedes

Aufgabe 4.4

Wählt man entsprechend Umformregel 12, Tabelle 4.12, für den gegengekoppelten Frequenzgang ein I-Glied $(1/pT_I)$, entsteht Bild 8.20. Der gesamte Frequenzgang entspricht mit Gegenkopplung dann einem PT_1 -Glied mit $V_p = 1$ und $T_1 = T_T$.

$$F_{(p)} = \frac{x_a}{x_e} = \frac{1/pT_I}{1 + 1/pT_I} = \frac{1}{1 + pT_I}$$

Bild 8.20 Blockschaltbild des Frequenzgangs eines gegengekoppelten I-Gliedes

Aufgabe 4.5

Das in Bild 8.21a dargestellte Blockschaltbild entspricht dem Ankerkreis eines fremderregten Gleichstrommotors für \emptyset = konstant und Leerlauf. Es sei

$$\mathbf{\hat{F}}_{O} = \mathbf{V}_{p} \cdot \frac{1}{1 + \mathbf{pT}_{1}} \cdot \frac{1}{\mathbf{pT}_{I}}$$

der Frequenzgang der Reihenschaltung aus PT₁- und I-Glied. Dann ist der Frequenzgang des Ersatzblockschaltbildes mit Umformregel 12, Tabelle 4.12:

$$\hat{F}_{o}^{*} = \frac{\hat{F}_{o}}{1 + \hat{F}_{o}} = \frac{1}{1 + p \cdot \frac{T_{I}}{V_{p}} + p^{2} \cdot \frac{T_{I}T_{I}}{V_{p}}}$$

D.h., der umgeformte Frequenzgang $\overset{O}{F_{O}}$ * (Bild 8.21b) entspricht dem eines PT₂-Gliedes (siehe Abschnitt 3.8).

Bild 8.21 Vereinfachung des Blockschaltbildes eines einfachen Regelkreises aus PT₁- und I-Strecke zu einer PT₂-Strecke

Das Blockschaltbild der Temperaturregelung mittels Wärmetauscher ist in Bild 8.22 dargestellt. Das zugehörige Bode-Diagramm zeigt Bild 8.23. Es ergibt sich eine Durchtrittsfrequenz von $\omega_{\rm D} \gtrsim 90$ Hz bei der $\left|\frac{\rm F}{\rm o}\right|_{(\omega)} = 0$ dB ist. Der Verlauf des Phasenwinkels zeigt, daß $\varphi_{\rm O(\omega_D)} > -180^{\circ}$ ist, so daß die Regelung Stabilität aufweist, Die Phasenreserve beträgt $\alpha_{\rm R} \gtrsim 26^{\circ}$ und der Amplitudenrand $A_{\rm R} \gtrsim 43$ dB ≈ 141 .

Bild 8.22 Blockschaltbild einer Temperaturregelung mit Wärmetauscher

Nach dem Schnittpunktkriterium (Gleichung 5.10) ergibt sich aus der Frequenzganggleichung $F_{O(p)}$ folgendes:

$$F_{o(p)} = V_{o} \cdot \frac{1 + pT_{N}}{p^{2}T_{N}T_{I} \cdot (1 + pT_{1})}$$

Damit wird $n_r = 0$ (Re pi < 0) und $n_i = 2$ (Doppelpol im Ursprung der p-Ebene). Also lautet die Stabilitätsbedingung:

 $s_{p} - s_{n} \stackrel{!}{=} \frac{1}{2}$.

Diese ist, wie aus Bild 8.23 zu ersehen, erfüllt, denn es ergibt sich für den Bereich $|F_0|_{(\omega)} > 0 \, dB$ nur ein halber positiver Schnittpunkt bei $\varphi_{O(\omega)} = -180^{\circ}$.

Aufgabe 5.2

Bild 8.24 zeigt das Blockschaltbild der Höhenpositionierung. Aus dem zugehörigen Bode-Diagramm (Bild 8.25) geht hervor, daß sich der Regelkreis an der Stabilitätsgrenze befindet ($\alpha_{\rm R} = o^{\rm O}$). Geht man von einem Phasenrand $\alpha_{\rm R} = 45^{\rm O}$ aus, muß die Verstärkung des Reglers um den Betrag $\Delta V_{\rm O} = \Delta V_{\rm R} \approx 15$ dB verkleinert werden, damit sich bei der neuen Durchtrittsfrequenz $\omega_{\rm D}^* \approx 23$ Hz Stabilität ergibt. Die neue Reglerverstärkung ist dann

$$V_{p}^{*} \approx V_{p} - \Delta V_{p} \approx 20$$
dB - 15dB ≈ 5 dB ≈ 1.8

Diese läßt sich bei Reglern der Analogtechnik einfach durch Austauschen des Gegenkopplungswiderstandes (bei gleichem T_N) erreichen (siehe Bild 3.29). Für die Stabilitätsaussage nach dem vereinfachten Schnittpunktkriterium gilt:

$$F_{o(p)} = V_{o} \cdot \frac{(1 + pT_{N} + p^{2}T_{N}T_{V}) \cdot e}{pT_{N} \cdot (1 + pT_{1}) \cdot (1 + pT_{2})}$$

Damit ist $n_r = 0$, $n_i = 1$ und die Stabilitätsbedingung lautet

$$s_p - s_n \stackrel{!}{=} 0$$

Bild 8.23 Bode-Diagramm der Temperaturregelung mit Wärmetauscher nach Bild 8.22

Bild 8.24 Blockschaltbild einer einfachen Höhenpositionierung mit PID-Regler

Diese Bedingung ist nicht erfüllt, da sich im Bereich $|\underline{F}_{o}|_{(\omega)} > 0$ dB ein negativer Schnittpunkt mit der Linie -180[°] ergibt, so daß S_p - S_n = -1 wird. Erst bei veränderter Reglerverstärkung (V_R* \mathfrak{F} 1,8) ist die Stabilitätsbedingung erfüllt.

Bild 8.25 Bode-Diagramm der Höhenpositionierung nach Bild 8.24

Aufgabe 5.3

Im Bode-Diagramm (Bild 8.26) darf die PT₂-Strecke nicht asymtotisch gezeichnet werden, da sonst der Phasenwinkelfehler zu groß wird (bei α_R = 45⁰), wenn man die Reglerverstärkung um $\Delta V_o = \Delta V_R$ = 25dB vermindert, d.h.

 $V_R^* \approx V_R - \Delta V_R \approx 40$ dB - 25dB ≈ 15 dB $\approx 5,6$.

Die Stabilitätsgrenze liegt bei einer Verstärkungsabsenkung von $\Delta V_{okr} = \Delta V_{Rkr} = 10$ dB und ergibt die kritische Verstärkung:

Bild 8.26 Auswertung des Bode-Diagramms einer Regelung aus PI-Regler und PT₁-PT₂-Strecke

Aufgabe 5.4

Das Bode-Diagramm des Regelkreises mit PI-Regler (Bild 8.27) ergibt bei den gegebenen Parametern keine Stabilität ($\alpha_{R}^{} < 0$). Ein Herabsetzen der Verstärkung um $\Delta V_R = 46$ dB hätte eine neue Verstärkung V_R^* zur Folge, die kleiner als eins ist.

$$V_R^* = V_R - \Delta V_R = - 6 dB = 0,5.$$

Verstärkungen $V_{\rm R}$ < 1 sind nicht wünschenswert (siehe Abschnitt 2.1), deshalb ersetzt man den PI- durch einen PD-Regler.

Frequenzgangbetrag und Phasenwinkel sind dann neu zu zeichnen. Es ergibt sich eine stabile Regelung mit einer geringen Phasenreserve von $\alpha_R = 10^O$, jedoch bei einer größeren Durchtrittsfrequenz ω_D^* . Man kann sagen, je größer ω_D ist, desto schneller reagiert eine Regelung auf Sollwertänderungen und Störgrößenänderungen.

Bild 8.27 Stabilisierung eines Regelkreises mit PT₃-Strecke durch geschickte Wahl des Reglers (hier statt PI- der PD-Regler)

Aufgabe 5.5

Mit den Gleichungen (3.18) und (3.48) und (3.30) erhält man für den Frequenzgang von PD-Regler und PT_1-T_t -Strecke (siehe auch Tabelle 3.1 und 3.2):

.

$$\frac{\mathbf{F}_{\mathrm{R}} = \mathbf{V}_{\mathrm{R}} \cdot (1 + j\omega \mathbf{T}_{\mathrm{V}})}{\mathbf{F}_{\mathrm{S}} = \mathbf{V}_{\mathrm{S}} \cdot \frac{\cos\omega \mathbf{T}_{\mathrm{t}} - \omega \mathbf{T}_{1} \sin\omega \mathbf{T}_{\mathrm{t}} - j(\sin\omega \mathbf{T}_{\mathrm{t}} + \omega \mathbf{T}_{1} \cos\omega \mathbf{T}_{\mathrm{t}})}{1 + \omega^{2} \mathbf{T}_{1}^{2}}$$

Damit wird der Frequenzgang \underline{F}_{O} des offenen Regelkreises

$$\begin{split} \underline{\mathbf{F}}_{\mathbf{O}} &= - \underline{\mathbf{F}}_{\mathbf{R}} \cdot \underline{\mathbf{F}}_{\mathbf{S}} \\ \underline{\mathbf{F}}_{\mathbf{O}} &= \mathbf{V}_{\mathbf{O}} \cdot \frac{(\omega \mathbf{T}_{1} - \omega \mathbf{T}_{\mathbf{V}}) \cdot \sin \omega \mathbf{T}_{\mathbf{t}} - (\omega^{2} \mathbf{T}_{1} \mathbf{T}_{\mathbf{V}} + 1) \cdot \cos \omega \mathbf{T}_{\mathbf{t}}}{1 + \omega^{2} \mathbf{T}_{1}^{2}} + \\ &+ \mathbf{j} \frac{(\omega \mathbf{T}_{1} - \omega \mathbf{T}_{\mathbf{V}}) \cdot \cos \omega \mathbf{T}_{\mathbf{t}} + (\omega^{2} \mathbf{T}_{1} \mathbf{T}_{\mathbf{V}} + 1) \sin \omega \mathbf{T}_{\mathbf{t}}}{1 + \omega^{2} \mathbf{T}_{1}^{2}} \quad . \end{split}$$

Aus dem Gleichungssatz (5.17) ergibt sich dann:

$$Im E_{0} = 0 \longrightarrow \omega_{z}$$

$$0 = (\omega_{z}T_{1} - \omega_{z}T_{V}) \cdot \cos\omega_{z}T_{t} + (\omega_{z}^{2}T_{1}T_{V} + 1) \cdot \sin\omega_{z}T_{t}$$

also

$$\frac{\omega_{z} \cdot (T_{1} - T_{v})}{\omega_{z}^{2} T_{1} T_{v} + 1} + \tan \frac{180 \cdot \omega_{z} T_{t}}{\pi} = 0$$

Die Lösung dieser transzendenten Gleichung erbringt $\omega_{\mathbf{Z}}$.

.ω_z & 3.079,995 Hz.

Weiter gilt für die Stabilität des Regelkreises

$$\begin{bmatrix} \text{Re} & \underline{F}_{O(\omega_{Z})} \end{bmatrix} \stackrel{!}{\leq} 1$$

$$\begin{bmatrix} \operatorname{Re} & \underline{F}_{O(\omega_{Z})} \end{bmatrix} = V_{O} \cdot \frac{(\omega_{Z}T_{1} - \omega_{Z}T_{V}) \cdot \sin\omega_{Z}T_{t} - (\omega_{Z}^{2}T_{1}T_{V} + 1) \cdot \cos\omega_{Z}T_{t}}{1 + \omega_{Z}^{2}T_{1}^{2}} = 0,5$$

$$\begin{bmatrix} \operatorname{Re} & \underline{F}_{O(\omega_{Z})} \end{bmatrix} = \frac{1}{A_{R}} \cdot$$

und

Demnach ist der geschlossene Regelkreis stabil und die Amplitudenreserve beträgt

$$A_R = 2$$
.

Weiter gilt für die Durchtrittsfrequenz ω_{D}

$$|\underline{F}_{O}| = 1 \longrightarrow \omega_{D}$$

 $\omega_{D} = \sqrt{\frac{v_{O}^{2} - 1}{T_{1}^{2} - v_{O}^{2} \cdot T_{V}^{2}}} = 114,89 \text{ Hz}.$

Dann wird der Phasenrand

$$\alpha_{\rm R} = \arctan \frac{\rm{Im} \left[\left[\underline{F}_{O}(\omega_{\rm D}) \right] \right]}{\rm{Re} \left[\underline{F}_{O}(\omega_{\rm D}) \right]} = -61,73^{\circ} .$$

Aus der Ortskurven-Darstellung (Bild 8.28) folgt aber Stabilität mit

$$\alpha_{\rm R}^{}$$
 = - 61,73[°] + 180[°] = 118,28[°].

Bild 8.28 Graphische Auswertung der Ortskurven einer Regelung aus PD-Regler und PT₁-T_t-Strecke mit dem Nyquist-Kriterium bei verschiedenen Parametern

Der Punkt, an dem die Ortskurve beginnt, läßt sich aus der komplexen Gleichung \underline{F}_0 für ω = 0 leicht ermitteln.

Es wird

$$\frac{F}{O(\omega=0)} = - V_{O} + jO$$

Mit den gegebenen Werten erhält man für die Darstellung der Ortskurve folgende Wertetabelle. Bild 5.28a zeigt den qualitativen Verlauf und Bild 8.28b den exakten Verlauf von \underline{F}_{o} . Es ergibt sich demnach aus der Berechnung und dem Ortskurvenverlauf Übereinstimmung mit den Ergebnissen im Bode-Diagramm.

Da die Regelung ein Totzeitglied enthält, muß der Frequenzgang des offenen Kreises für große Werte von ω in eine Spirale oder einen Kreis um Null übergehen.

W/HZ=?	8.0	RUN	W/HZ=?	W/HZ=?
RE/F0/=-10.0 IM/F0/=0.0 			20.0 Ki RE/F0/=-2.3 IM/F0/=3.8	™ 1,000.0 RUN RE/F0/=-8.2 IN/F0/=0.5
W/HZ=? RE/F0/=-9.6 IN/F0/=1.8	2.0	RUN	 W/HZ=? 50.0 Ri RE/F0/=-0.8 IM/F0/=1.9	 W/HZ=? JN 2,000.0 RUH RE/F0/=0.3 IM/F0/=0.4
W/HZ=? RE/F0/=-8.1 IN/F0/=3.8 	5.9	PUN	 W/HZ=? 114.89 RU RE/F0/=-0.5 IM/F0/=0.9 	 W/HZ=? 3,079,995 RUH RE/F0/=0.5 TM/F0/=1.3E-7
N/HZ=? RE/F0/=-5.2 IM/F0/=4.0 	10.0	RUN	W/HZ=? 500.0 RL RE/F0/=-0.4 IM/F0/=0.4 	 W/HZ=? JN 1.000.000. RUH RE/F0/=-0.5 IN/F0/=-0.2

Mit den Gleichungen (3.24) und (3.30) folgt für den Frequenzgang des PID-Reglers und der PT₁-Strecke:

$$\underline{\mathbf{F}}_{\mathbf{R}} = \mathbf{V}_{\mathbf{R}} \cdot \left[1 + j \left(\boldsymbol{\omega}_{\mathbf{V}} - \frac{1}{\boldsymbol{\omega}_{\mathbf{N}}} \right) \right]$$

$$\underline{\mathbf{F}}_{\mathbf{S}} = \mathbf{V}_{\mathbf{S}} \cdot \frac{1 - j \boldsymbol{\omega}_{\mathbf{T}_{\mathbf{1}}}}{1 + \boldsymbol{\omega}_{\mathbf{T}_{\mathbf{1}}}^2} .$$

Damit erhält man für den Frequenzgang \underline{F}_{o} :

$$\begin{split} \underline{\mathbf{F}}_{\mathbf{O}} &= - \underline{\mathbf{F}}_{\mathbf{R}} \cdot \underline{\mathbf{F}}_{\mathbf{S}} \\ \underline{\mathbf{F}}_{\mathbf{O}} &= \frac{\mathbf{V}_{\mathbf{O}}}{1 + \omega^2 \mathbf{T}_{1}^{2}} \cdot \left[\frac{\mathbf{T}_{1}}{\mathbf{T}_{\mathbf{N}}} - \omega^2 \mathbf{T}_{1} \mathbf{T}_{\mathbf{V}} - 1 + \mathbf{j} \left(\omega \mathbf{T}_{1} - \omega \mathbf{T}_{\mathbf{V}} + \frac{1}{\omega \mathbf{T}_{\mathbf{N}}} \right) \right], \end{split}$$

Der Gleichungssatz (5.17) liefert für die Stabilitätsbetrachtung:

$$\begin{split} & \text{Im } \underline{F}_{O} = O \longrightarrow \omega_{Z} \\ & O = \omega_{Z} \cdot (T_{1} - T_{V}) - \frac{1}{\omega_{Z} T_{N}} \end{split} .$$

Da nur Frequenzgänge sinnvoll sind, bei denen ${\bf T}_V^{} < {\bf T}_1^{}$ ist (man zeichne dazu das entsprechende Bode-Diagramm), wird

 $\omega_z = \infty$.

Dann gilt für den Realteil von \underline{F}_{O}

$$\operatorname{Re}\left[\underline{F}_{O(\omega_{Z})}\right] = -V_{O} \cdot \frac{T_{V}}{T_{1}} = -0.8 \stackrel{!}{<} 1$$

Die Regelung ist also stabil, da auch $\alpha_R > 0$ wird. Für $\omega_Z = \infty$ wird aber der Phasenwinkel $\varphi_0 = 0^{\circ}$, d.h. es kann keine Amplitudenreserve A_R angegeben werden. Weiter gilt für die Berechnung der Durchtrittsfrequenz:

$$|\underline{\mathbf{F}}_{\mathbf{O}}| \stackrel{:}{=} 1 \longrightarrow \omega_{\mathbf{D}}$$

$$1 = v_0^2 \cdot \frac{1 + (\omega_D T_V - \frac{1}{\omega_D T_N})^2}{1 + \omega_D^2 T_1^2}.$$

Diese Gleichung 4. Grades kann mit einem Nullstellenprogramm schnell gelöst werden. Sie erbringt:

$$\omega_{\rm D}$$
 = 149,49 Hz .

Damit erhält man für den Phasenrand

$$\alpha_{\rm R} = \arctan \frac{\rm{Im} \left[\underline{F}_{O}(\omega_{\rm D}) \right]}{\rm{Re} \left[\underline{F}_{O}(\omega_{\rm D}) \right]} = -33.9^{\circ} \hat{=} 146.1^{\circ} .$$

Für die beiden Grenzwerte der Ortskurve \underline{F}_{O} erhält man aus der komplexen Gleichung:

$$\underline{F}_{O}(\omega = 0) = V_{O} \cdot (\frac{T_{I}}{T_{N}} - 1) + j \infty$$

$$\underline{\mathbf{F}}_{\mathbf{O}}(\boldsymbol{\omega}=\boldsymbol{\infty}) = -\mathbf{V}_{\mathbf{O}} \cdot \frac{\mathbf{T}_{\mathbf{V}}}{\mathbf{T}_{1}} + \mathbf{j} \mathbf{O} \quad .$$

Mit der folgenden Wertetabelle läßt sich dann der Ortskurvenverlauf zeichnen (Bild 8.29b).

W/HZ=?		W/HZ=?	
1-10	RUN	150.000	RUN
RE/F0/=-2.500		RE/F0/=-0.830	
IM/F0/=5.000E11		IM/E0/=0.556	
W/H7=?		¥/H7=2	
1,000	RUN	599 899	DHN
RE/ER/=-2.496		RF/FA/=-A 807	Kon
IN/FA/=50.085		TM/F0/=0.000	
		100 -0.100	
W/H7=2		U/U7-0	
5 890	DIIN	N/ N2- : 0,000,000	
DE/E0/2 400	NOU	2,000.000 DE (EQ (= 0.000	KON
TH/CO/-10 400		KE/F0/=-0.000	
10/10/-10.400		10/10/-0.042	
u/u7=0			
M/NZ=:	DUN	W/HZ=/	.
20.000	KUA	1+10	RON
KE/FU/=-1.600		RE/F0/=-0.800	
18/10/=3.300		IM/F0/=8.400E-9	
W/HZ=?	-		
80.000	RUN		
RE/F0/=-0.900			
IM/F0/=1.025			

Aus Bild 8.29 ist auch zu ersehen, wie eine Ortskurve für $T_V > T_1$ verläuft. Es gibt in diesem Fall kein ω_D . Da $1 + pT_1 + p^2T_1T_2$

$$F_{(p)} = - V_{o} \cdot \frac{1 + pT_{N} + p^{2}T_{N}T_{V}}{pT_{N} \cdot (1 + pT_{1})}$$

ist, wird ${\rm n_r}$ = 0 und ${\rm n_i}$ = 1. Mit Gleichung (5.17) und (5.19) ergibt sich dann ebenfalls Stabilität für diese Regelung, denn es wird

Aufgabe 5.7

Mit den Gleichungen (3.6), (3.18) und (3.30) ergibt sich für den PD-Regler und die PT_1-I^2 -Strecke der Frequenzgang des offenen Regelkreises.

$$\begin{split} \underline{\mathbf{F}}_{\mathrm{R}} &= \mathbf{V}_{\mathrm{R}} \cdot (1 + j\omega \mathbf{T}_{\mathrm{V}}) \\ \\ \underline{\mathbf{F}}_{\mathrm{S}} &= \mathbf{V}_{\mathrm{S}} \cdot \frac{1 - j\omega \mathbf{T}_{\mathrm{1}}}{-\omega^{2} \mathbf{T}_{\mathrm{1}}^{2} \cdot (1 + \omega^{2} \mathbf{T}_{\mathrm{1}}^{2})} \quad . \end{split}$$

Damit wird

$$\underline{\mathbf{F}}_{O} = -\underline{\mathbf{F}}_{R} \cdot \underline{\mathbf{F}}_{S} = \mathbf{V}_{O} \cdot \frac{1 + \omega^{2} \mathbf{T}_{1} \mathbf{T}_{V} + j(\omega \mathbf{T}_{V} - \omega \mathbf{T}_{1})}{\omega^{2} \mathbf{T}_{1}^{2} \cdot (1 + \omega^{2} \mathbf{T}_{1}^{2})} .$$

Aus dem Gleichungssatz (5.17) folgt dann:

$$\operatorname{Im} \frac{\mathbf{F}_{O}}{\mathbf{F}_{O}} = \mathbf{O} \xrightarrow{\omega_{Z}} \omega_{Z}$$
$$\mathbf{O} = \frac{\omega_{Z} \cdot (\mathbf{T}_{V} - \mathbf{T}_{1})}{\omega_{Z}^{2} \mathbf{T}_{I}^{2} + \omega_{Z}^{4} \mathbf{T}_{1}^{2} \mathbf{T}_{I}^{2}} \xrightarrow{\omega_{Z}} \omega_{Z} = \infty$$

Für einen Doppelpol im Ursprung, wie er hier vorliegt, sollte man das vollständige Nyquist-Kriterium heranziehen, denn da

$$\operatorname{Re}\left[\underline{F}_{O(\omega_{Z})}\right] = 0 < 1$$

ist, könnte man zunächst fälschlicherweise auf einen stabilen Regelkreis schließen. Wie jedoch der Phasenrand $\alpha_{\rm R}^{}$ zeigt, ist die Regelung instabil, denn mit

$$|\underline{F}_{O}| = 1 = V_{O}^{2} \cdot \frac{1 + \omega_{D}^{2} T_{V}^{2}}{\omega_{D}^{4} T_{I}^{4} \cdot (1 + \omega_{D}^{2} T_{I}^{2})} + \omega_{D} = 29,725 \text{ Hz}$$

und es wird

$$\alpha_{\rm R} = \arctan \frac{\rm{Im} \left[\underline{F}_{O}(\omega_{\rm D}) \right]}{\rm{Re} \left[\underline{F}_{O}(\omega_{\rm D}) \right]} = -19,5^{\rm O} < 0,$$

d.h., der geschlossene Regelkreis ist instabil (siehe Gleichung 5.5). Für die Ortskurven-Darstellung erhält man mit der folgenden Wertetabelle den exakten Verlauf (Bild 8.30b).

₩=			¥=		
RE=999.76 IM=-12.00	1.00	RUN	RE=0.95 IM=-0.30 W=	29.725	RUN
H= RE=39.76 IM=-2.38	5.00	RUN	RE=0.48 IM=-0.18	40.00	RUN
W= RE=9.77 IM=-1.15	10.00	RUN	W= RE=0.05 IM=-0.02	100.09	RUN
W= RE=4.22 IM=-0.73	15.00	RUN	 W= RE=4.00E-1 IM=-3.00E-	1+10 8 26	RUN
W= RE=2.29 IN=-8.52 	20.00	RUN			

Mit dem vollständigen Nyquist-Kriterium, entsprechend Gleichung (5.17) bzw. (5.20), erhält man aus dem qualitativen Verlauf der Ortskurve (Bild 8.30a) mit:

$$n_r = 0$$
 , $n_i = 2$
 $\Delta \varphi \stackrel{i}{=} \pi$ bzw. $S_p - S_n \stackrel{i}{=} \frac{1}{2}$.

Für

$$\Delta \varphi = -\pi$$
 bzw. $S_p - S_n = -\frac{1}{2}$.

Daher ist die Regelung instabil. Sie wird stabil für $T_V > T_1$.

b)

Bild 8.30 Anwendung des Nyquist-Kriteriums auf eine Regelung aus PD-Regler und PT₁-I²-Strecke für verschiedene Zeitkonstanten

Aufgabe 5.8

Mit den Gleichungen (3.14) und (3.6) ergibt sich der Frequenzgang des aufgeschnittenen Regelkreises für einen PI-Regler und eine P-I- T_t -Strecke zu:

$$\underline{\underline{F}}_{R} = \underline{V}_{R} (1 - j\frac{1}{\omega T_{N}})$$
$$\underline{\underline{F}}_{S} = \underline{V}_{S} \frac{-\sin\omega \underline{T}_{t} - \cos\omega \underline{T}_{t}}{\omega \underline{T}_{I}}$$

$$\underline{\mathbf{F}}_{O} = - \underline{\mathbf{F}}_{R} \cdot \underline{\mathbf{F}}_{S} = \frac{\mathbf{V}_{O}}{\omega T_{I}} \left[\operatorname{sin} \omega T_{t} + \frac{\operatorname{cos} \omega T_{t}}{\omega T_{N}} + j \left(\operatorname{cos} \omega T_{t} - \frac{\operatorname{sin} \omega T_{t}}{\omega T_{N}} \right) \right] .$$

Der Gleichungssatz (5.17) liefert:

$$\begin{split} & \text{Im } \underline{F}_{O} = 0 \longrightarrow \omega_{Z} \\ & O = \omega_{Z} T_{N} - \tan \omega_{Z} T_{L} \longrightarrow \omega_{Z} = 154,49 \text{ Hz} \\ & \text{Re } \left[\underline{F}_{O}(\omega_{Z}) \right] = 0,65 = \frac{1}{A_{R}} \stackrel{!}{<} 1 \qquad A_{R} = 1,54 \\ & |\underline{F}_{O}| \stackrel{!}{=} 1 = V_{O}^{2} \cdot \frac{1 + \frac{1}{\omega_{D}^{2} T_{N}^{2}}}{\frac{\omega_{D}^{2} T_{I}^{2}}{\omega_{D}^{2} T_{I}^{2}} \longrightarrow \omega_{D} = 100 \text{ Hz} \quad . \end{split}$$

•

Damit wird der Phasenrand

$$\alpha_{\rm R} = \arctan \frac{\rm{Im} \left[\underline{F}_{O}(\omega_{\rm D}) \right]}{\rm{Re} \left[\underline{F}_{O}(\omega_{\rm D}) \right]} = 30,41^{\rm O}$$

Die Regelung ist also, sowohl nach dem vereinfachten als auch nach dem voll ständigen Nyquist-Kriterium stabil, denn es gilt mit $n_r = 0$ und $n_i = 1$ entsprechend Gleichung (5.17) bzw. (5.20)

bzw.

$$\Delta \varphi \stackrel{!}{=} \frac{\pi}{2} = \frac{\pi}{2}$$
$$S_{p} - S_{n} \stackrel{!}{=} O = O \quad .$$

Für die Ortskurven-Darstellung erhält man aus der komplexen Gleichung \underline{F}_{0} die Anfangs- und Endpunkte der Ortskurve. Es wird

Mit der folgenden Wertetabelle erhält man dann den in Bild 8.31 dargestellten Ortskurvenverlauf, der die errechneten Werte bestätigt.

F0 FOR W/H7			
	1.00-10		108.00
PF=4 00F22		RE=0.86	
TM-0 (0011		IM=0.51	
10-7.00011			128 88
	20.00	85-8 38	120.00
RE=1.97		RE=0.79	
IN=4.70		IM=0.28	
	40.00		140.00
05-1 00	40.00	RE=0.71	
KE=1.20		TM-0 10	
IM=2.21		10-0.10	140.00
	68.00		160.00
RE=1.03		RE=0.62	
TH-1 71		IH=-0.03	
10-1.01			189.09
	80.09	05-0 54	100100
RE=0.94		KE-0.34	
IM=0.83		IM=-0.14	
			200.00
		RF=0.45	
		TH=_0 22	
		100.22	

Bild 8.31 Anwendung des Nyquist-Kriteriums bei einer Regelung mit PI-Regler und P-I-T_t-Strecke

Aus Gleichung (5.21) ergibt sich die Durchtrittsfrequenz ω_{D} , denn es ist aus Tabelle 3.1 zu entnehmen:

also

$$\begin{split} v_{\rm R} & \sqrt{1 + (\omega_{\rm D} T_{\rm V} - \frac{1}{\omega_{\rm D} T_{\rm N}})^2} = \frac{1}{V_{\rm S}} \sqrt{1 + \omega_{\rm D}^2 T_{\rm 1}^2} \\ v_{\rm o}^2 \cdot \frac{1 + (\omega_{\rm D} T_{\rm V} - \frac{1}{\omega_{\rm D} T_{\rm N}})^2}{1 + \omega_{\rm D}^2 T_{\rm 1}^2} - 1 = 0 \end{split}$$

2

Mit Hilfe eines Nullstellenprogramms erhält man für die gegebenen Parameter

Entsprechend Gleichung (5.22) benötigt man zur Berechnung des Phasenrandes $\alpha^{}_R$ zunächst die komplexen Frequenzgänge $\underline{F}^{}_R$ und – $1/\underline{F}^{}_S$ (siehe Tabelle 3.1 und 5.2).

$$\underline{F}_{R} = V_{R} \cdot \left[1 + j \left(\omega T_{V} - \frac{1}{\omega T_{N}} \right) \right]$$

$$- \frac{1}{\underline{F}_{S}} = \frac{\omega T_{1} \sin \omega T_{t} - \cos \omega T_{t}}{V_{S}} - j \frac{\omega T_{1} \cos \omega T_{t} + \sin \omega T_{t}}{V_{S}}$$

•

Daraus erhält man

$$\alpha_{\rm R} = \arctan(\omega_{\rm D} T_{\rm V} - \frac{1}{\omega_{\rm D} T_{\rm N}}) - \arctan\frac{-\frac{\omega_{\rm D} T_{\rm 1} \cos\omega_{\rm D} T_{\rm t}}{\omega_{\rm D} T_{\rm 1} \sin\omega_{\rm D} T_{\rm t}} - \frac{\sin\omega_{\rm D} T_{\rm t}}{\cos\omega_{\rm D} T_{\rm t}}$$

$$\alpha_{\rm R} = -31,09^{\circ} - (84,76^{\circ} - 180^{\circ}) = 64,15^{\circ} .$$

Die Regelung ist demnach stabil. Mit Gleichung (5.23) erhält man ω_{τ} .

$$\omega_{z}T_{V} - \frac{1}{\omega_{z}T_{N}} + \frac{\omega_{z}T_{1}\cos\omega_{t} + \sin\omega_{z}T_{t}}{\omega_{z}T_{1}\sin\omega_{z}T_{t} - \cos\omega_{z}T_{t}} = 0$$

Unter Verwendung einer Nullstellenbestimmung ergibt sich

und mit Gleichung (5.24) läßt sich die getroffene Stabilitätsaussage bestätigen, denn es wird

$$\operatorname{Re}\left[\frac{\mathrm{F}_{\mathrm{R}}(\omega_{\mathrm{Z}})}{\mathrm{Im}\left[\frac{\mathrm{F}_{\mathrm{R}}(\omega_{\mathrm{Z}})}{\mathrm{Im}\left[\frac{\mathrm{F}_{\mathrm{R}}(\omega_{\mathrm{Z}})}{\mathrm{Im}\left[\frac{\mathrm{F}_{\mathrm{R}}(\omega_{\mathrm{Z}})}{\mathrm{Im}\left[\frac{\mathrm{F}_{\mathrm{R}}(\omega_{\mathrm{Z}})\right]}\right]}\right] = 2,76 < \operatorname{Im}\left[\frac{-1}{\mathrm{F}_{\mathrm{S}}}\right]_{\omega_{\mathrm{Z}}} = 8,133$$

,

oder

Aus diesen Real- und Imaginärteilen ergeben sich auch die Phasenwinkel

$$\varphi_{R(\omega_{Z})} = \overline{\varphi}_{S(\omega_{Z})} = 15,44^{\circ}$$

sowie die Amplitudenreserve nach Gleichung (5.25)

$$A_{R} = Re \left[\frac{-1/\underline{F}_{S}}{\underline{F}_{R}}\right]_{\omega_{Z}} = 2,946 .$$

Setzt man entsprechend (5.26) die Frequenzgangbeträge für $\omega = \omega_Z$ gleich, errechnet sich die kritische Reglerverstärkung zu:

$$v_{Rkr} = \sqrt{\frac{1 + \omega_{Z}^{2} T_{1}^{2}}{v_{S}^{2} \cdot \left[1 + (\omega_{Z} T_{V} - \frac{1}{\omega_{Z} T_{N}})^{2}\right]}}$$

 $V_{Rkr} = 29,46$.

Die ermittelten Ergebnisse sind in der graphischen Darstellung Bild 8.32 zusammengefaßt.

Aufgabe 5.10

Der Frequenzgangbetrag des PD-Reglers und der negativen inversen I^2-T_t -Strecke sind gleichzusetzen, so daß sich entsprechend Gleichung (5.21) die Durchtrittsfrequenz $\omega_{\rm D}$ errechnen läßt.

Bild 8.32 Graphische Auswertung der Ortskurven eines Regelkreises aus PID-Regler und PT₁-T_t-Strecke nach dem Zwei-Ortskurven-Verfahren

$$V_{\rm R} = \sqrt{1 + \omega_{\rm D}^2 T_{\rm V}^2} = \omega_{\rm D}^2 T_{\rm I}^2$$

also wird

$$\omega_{D1,2} = \sqrt{\frac{v_R^2 \cdot T_V^2}{2 \cdot T_I^4} + \sqrt{\frac{v_R^4 \cdot T_V^4}{4 \cdot T_I^8} + \frac{v_R^2}{T_I^4}} = 60,099 \text{ Hz}$$

Damit erhält man für den Phasenrand nach Gleichung (5.22)

$$\alpha_{\rm R} = \arctan \omega_{\rm D} T_{\rm V} - \frac{180 \cdot \omega_{\rm D} T_{\rm t}}{\pi} \stackrel{!}{>} 0 ,$$

$$\alpha_{\rm R} = 25,68^{\circ} - 17,22^{\circ} = 8,46^{\circ} > 0 .$$

Die Regelung ist demnach gerade noch stabil. Die Phasenwinkel ergeben sich aus den Frequenzgängen.

Es sind

Man erhält nun mit Gleichung (5.23) die Frequenz ω_{χ} .

$$\tan \varphi_{R}^{} = \omega_{Z}^{T} \tau_{V}^{} = \tan \overline{\varphi_{S}^{}} = \frac{\sin \omega_{Z}^{T} \tau_{t}}{\cos \omega_{Z}^{T} \tau_{t}}^{} = \tan \omega_{Z}^{T} \tau_{t}^{} .$$

Also ist

$$\omega_{z}T_{v} - \tan \omega_{z}T_{t} = 0$$

somit

ω_z & 204,366 Hz .

Es ergibt sich dann mit Gleichung (5.24)

$$\operatorname{Re}\left[\underline{F}_{R(\omega_{Z})}\right] = 30 < \operatorname{Re}\left[\frac{-1}{\underline{F}_{S}}\right]_{\omega_{Z}} = -200,85$$

und mit Gleichung (5.25) folgt die Amplitudenreserve, sie ist

$$A_{R} = Re \left[\frac{-1/\underline{F}_{S}}{\underline{F}_{R}}\right]_{\omega_{Z}} = 6,7$$

Bild 8.33 gibt die errechneten Werte im Zusammenhang wieder. Wegen der großen Werte von – $1/\underline{F}_S$ jedoch nur qualitativ. Bei dieser Aufgabe zeigt sich ein Nachteil des Zwei-Ortskurven-Verfahrens, der darin besteht, daß die Phasenwinkel φ_R und φ_S oft um 180[°] gedreht erscheinen. Daher kann sich die Gleichung (5.24) auch nur auf die Längen (Beträge) der Zeiger von Real- oder Imaginärteil beziehen.

Bild 8.33 Das Zwei-Ortskurven-Verfahren bei einem Regelkreis aus PD-Regler und $\rm I^2-T_t-Strecke$

Aufgabe 5.11

Die Ortskurve der Nichtlinearität Ansprechschwelle verläuft auf der rellen Achse. Es zeigt sich, daß es sowohl bei der Kombination PD-Regler und PT $_2$ -

Strecke, als auch PI-Regler und $\text{PT}_2\text{-}Strecke$, keinen Schnittpunkt der Ortskurven von N $_{(\hat{x}_{e})}$ und 1/F $_{O}$ gibt. Damit sind solche Regelungen unbegrenzt stabil, denn es ist bei PD-Regler und PT $_2\text{-}Strecke$

$$\frac{-1}{\underline{F}_{0}} = \frac{\omega^{2} T_{2}^{2} - 2d\omega T_{2} T_{V} - 1 - j(\omega^{3} T_{2}^{2} T_{V} - \omega T_{V} + 2d\omega T_{2})}{V_{0} \cdot (1 + \omega^{2} T_{V}^{2})}$$

mit

$$\begin{bmatrix} \frac{1}{F_{O}} \end{bmatrix}_{\omega} = 0 \qquad = \frac{-1}{V_{O}} + j 0$$

$$\begin{bmatrix} \frac{1}{F_{O}} \end{bmatrix}_{\omega} = \infty \qquad = \infty - j \infty$$

und bei PI-Regler und PT₂-Strecke

$$\frac{1}{\overline{F}_{0}} = \frac{\omega^{2}T_{2}^{2} + \frac{2dT_{2}}{T_{N}} - 1 + j(\frac{\omega T_{2}^{2}}{T_{N}} - \frac{1}{\omega T_{N}} - 2d\omega T_{2})}{V_{0} \cdot (1 + \frac{1}{\omega^{2}T_{N}^{2}})} \\ \left[\frac{1}{\overline{F}_{0}}\right]_{\omega = 0} = 0 + j0 , \\ \left[\frac{1}{\overline{F}_{0}}\right]_{\omega = \infty} = \infty - j\infty .$$

mit

Setzt man jedoch einen I-Regler für die $\text{PT}_2\text{-Strecke}$ ein, kann sich ein Schnittpunkt mit N $_{(\hat{x}_e)}$ ergeben. Es wird dann

$$\frac{1}{\underline{F}_{O}} = \frac{1}{\underline{V}_{S}} \cdot \left[2d\omega^{2}\underline{T}_{2}\underline{T}_{I} + j(\omega^{3}\underline{T}_{2}\underline{T}_{I} - \omega\underline{T}_{I}) \right] ,$$

Für die gegebenen Werte erhält man die in Bild 8.34 dargestellte Ortskurve. Mit Gleichung (3.60) läßt sich auch die Ortskurve der Ansprechschwelle zeichnen, es ist mit \hat{x}_{α} = 10V

$$N_{(\hat{x}_e)} = 1 - \frac{2}{\pi} \cdot \left(\frac{\pi}{180} \cdot \arcsin \frac{x_t}{10V} + \frac{x_t}{10V} \sqrt{1 - \left(\frac{x_t}{10V}\right)^2}\right) .$$

Es zeigt sich, daß bei der Frequenz $\omega_{\rm Z}$ der Zeiger von - $1/\underline{F}_{\rm G}$ die Ortskurve N $(\hat{\mathbf{x}}_{\rm e})$ schneidet. Es stellt sich dann im geschlossenen Regelkreis eine Dauerschwingung von $\omega_{\rm Z}$ = 5Hz ein. Das Stabilitätsgebiet der Ansprechschwel le (Bild 3.52) zeigt jedoch, daß eine Störgröße, die zum Ansteigen von $\hat{\mathbf{x}}_{\rm e}$ führt, eine aufklingende Schwingung hervorruft. Die Regelung wird dann instabil. Dies ergibt sich auch aus dem Nyquist-Kriterium mit Gleichung (5.24), denn es muß Re N $_{\rm (x_e)}$ < Re $\left[\frac{1}{\underline{F}_{\rm O}}\right]_{\omega_{\rm T}}$ sein.

Erst bei Verstärkung $V_S^* = 0,45$ kommt kein Schnittpunkt der beiden Ortskurven zustande, so daß die Regelung unbegrenzt stabil wird, da Gleichung (5.24) erfüllt ist. Die Taschenrechnerprogramme zu dieser Aufgabe sind in Abschnitt 7.2.3 angegeben.

Bild 8.34 Das Zwei-Ortskurven-Verfahren zur optimalen Beurteilung der Stabilität eines Regelkreises aus I-Regler, PT2-Strecke und Ansprechschwelle

Die Ortskurve der nichtlinearen Signalbegrenzung ist mit Gleichung (5.57) darstellbar, nämlich mit \hat{x}_{μ} = 10V:

$$N_{(\hat{x}_{o})} = \frac{1}{90} \cdot \arcsin \frac{x_{s}}{10V} + \frac{2 \cdot x_{s}}{\pi \cdot 10V} \sqrt{1 - \left(\frac{x_{s}}{10V}\right)^{2}}$$

Für die Zusammenfassung von PD-Regler und PT_2 -I-Strecke erhält man den Gesamtfrequenzgang der negativen inversen Ortskurve

$$\frac{1}{\underline{F}_{o}} = \frac{-1}{\underline{F}_{R} \cdot \underline{F}_{S}} = \frac{\omega T_{I} (\omega^{2} T_{2} T_{V} - \omega T_{V} + 2d\omega T_{2}) + j\omega T_{I} (\omega^{2} T_{2}^{2} - 2d\omega^{2} T_{2} T_{V} - 1)}{V_{o} \cdot (1 + \omega^{2} T_{V}^{2})},$$

Mit den gegebenen Werten ergeben sich die in Bild 8.35 gezeichneten Ortskurven.

Die Frequenz ω_z , für die sich bei $V_o = 8$ ein Schnittpunkt mit der Ortskurve des nichtlinearen Gliedes ergibt, folgt aus:

$$Im \frac{1}{\underline{F}_{O}} = O = \omega_{Z}^{2} \cdot (\underline{T}_{2}^{2} - 2d\underline{T}_{2}\underline{T}_{V}) - 1$$
.

Bild 8.35 Beurteilung der Stabilität einer Regelung aus PD-Regler, PT₂-I-Strecke und Signalbegrenzung mit dem Zwei-Ortskurven-Verfahren

Demnach erhält man für

$$\omega_{\mathbf{Z}} = \sqrt{\frac{1}{\mathbf{T}_{2}^{2} - 2d\mathbf{T}_{2}\mathbf{T}_{V}}} \mathcal{R} \text{ 5,025Hz}$$

Mit dieser Frequenz führt der Regelkreis Dauerschwingungen aus, für die sich bei $\hat{x}_e = 10V$ der zugehörige Parameter x_s am Schnittpunkt von $1/\underline{F}_o$ mit $N_{(\hat{x}_e)}$ wie folgt errechnet.

Es muß der Zeiger von $N_{(\hat{x}_e)}$ die gleiche Länge haben wie der von $1/\underline{F}_o$ (bei $\omega_Z).$

Re N<sub>(
$$\hat{x}_e$$
)</sub> = Re $\left[\frac{1}{\underline{F}_o}\right]_{\omega_z}$ % 0,631

Daraus folgt eine Gleichung für x

$$\frac{1}{90} \cdot \operatorname{ansin} \frac{\mathbf{x}_{s}}{10V} + \frac{2 \cdot \mathbf{x}_{s}}{\pi \cdot 10V} \sqrt{1 - \left(\frac{\mathbf{x}_{s}}{10V}\right)^{2}} \approx 0,631$$

Es wird mit einem Nullstellenprogramm

Nach dem Nyquist-Kriterium befindet sich der Regelkreis wegen

$$\operatorname{Re} N_{(\hat{x}_{e})} = \operatorname{Re} \left[\frac{1}{\underline{F}_{o}} \right]_{\omega_{z}}$$

an der Stabilitätsgrenze mit der Dauerschwingung $\omega_{\rm Z}$ % 5,025Hz bei $\hat{x}_{\rm e}$ = 10V und $x_{\rm g}$ % 5,2V.

Für kleinere Amplituden von \hat{x}_e nimmt $N_{(\hat{x}_e)}$ zu, so daß

$$\operatorname{Re} N_{(x_e)} > \operatorname{Re} \left[\frac{1}{\underline{F}_o}\right]_{\omega_z}$$

wird; der Regelkreis zeigt dann Instabilität (siehe Gleichung 5.24). Der gleiche Zusammenhang geht auch von der Betrachtung des Stabilitätsgebietes der Signalbegrenzung hervor (Bild 3.50).

Mit $V_{\rm O}^{~*}$ = 4 ergibt sich kein Schnittpunkt mehr und die Regelung ist unbegrenzt stabil.

Aufgabe 5.13

Es ist bei Führungsverhalten

$$\hat{\mathbf{F}}_{\mathbf{w}} = \frac{\hat{\mathbf{x}}}{\hat{\mathbf{w}}} = \frac{\hat{\mathbf{F}}_{\mathbf{R}} \cdot \hat{\mathbf{F}}_{\mathbf{S}}}{1 + \hat{\mathbf{F}}_{\mathbf{R}} \cdot \hat{\mathbf{F}}_{\mathbf{S}}} \cdot$$

mit $w_{(t)} = C \cdot \delta_{O(t)}$ bzw. $\overset{O}{w} = C$ und $\overset{O}{x_d} = \overset{O}{w} - \overset{O}{x} = C - \overset{O}{x}$ folgt:

$$\hat{\mathbf{x}}_{d} = \mathbf{C} \cdot (1 - \frac{\hat{\mathbf{F}}_{R} \cdot \hat{\mathbf{F}}_{S}}{1 + \hat{\mathbf{F}}_{R} \cdot \hat{\mathbf{F}}_{S}})$$

$$\mathbf{v} \cdot (1 + \mathbf{p}\mathbf{T})$$

$$\mathbf{x}_{d}^{o} = C \left[1 - \frac{\frac{\mathbf{v}_{o} \cdot (1 + \mathbf{p}_{N})}{\mathbf{p}_{N}^{T} \cdot (1 + \mathbf{p}_{1}) \cdot (1 + \mathbf{p}_{2})}}{\frac{\mathbf{v}_{o} \cdot (1 + \mathbf{p}_{1}) \cdot (1 + \mathbf{p}_{2})}{\mathbf{p}_{N}^{T} \cdot (1 + \mathbf{p}_{1}) \cdot (1 + \mathbf{p}_{2})}} \right]$$

$$\mathbf{x}_{d}^{o} = C \cdot \frac{pT_{N} \cdot (1 + pT_{1})(1 + pT_{2})}{pT_{N} \cdot (1 + pT_{1})(1 + pT_{2}) + V_{O}(1 + pT_{N})}$$

Daraus erhält man mit Gleichung (5.31) die lineare Regelfläche.

$$\begin{split} \mathbf{I}_{L} &= C \cdot \lim_{p \to 0} \left[O - \frac{\mathbf{T}_{N} \cdot (1 + p\mathbf{T}_{1})(1 + p\mathbf{T}_{2})}{p\mathbf{T}_{N} \cdot (1 + p\mathbf{T}_{1})(1 + p\mathbf{T}_{2}) + \mathbf{V}_{O}(1 + p\mathbf{T}_{N})} \right] \\ \mathbf{I}_{L} &= - \frac{C \cdot \mathbf{T}_{N}}{\mathbf{V}_{O}} = - \frac{C \cdot \mathbf{T}_{N}}{\mathbf{V}_{R} \cdot \mathbf{V}_{S}} \stackrel{!}{=} MIN. \end{split}$$

Damit wird das absolute Minimum von I_L für V_R $\longrightarrow \infty$ erreicht. Mit Gleichung (5.32) bei D = 1 erhält man jedoch für V_R

$$V_{\rm R} = \frac{1}{V_{\rm S}} (\frac{{\rm T}_1^2}{4 \cdot {\rm T}_2^2} - 1)$$

und damit für ein optimiertes I_{T} :

$$I_{L_{\min}} = \frac{4 \cdot C \cdot T_2^2 T_N}{4 T_2^2 - T_1^2} \cdot$$

Aufgabe 5.14 Es ist bei Störverhalten mit $\stackrel{O}{z}$ = C $\overset{\circ}{F}_{z} = \overset{\circ}{\frac{x}{C}} = \frac{1}{1 + \frac{V_{S}}{pT_{I} \cdot (1 + pT_{I})^{2}}}$ $\overset{\text{O}}{x} = \text{C} \cdot \frac{\text{pT}_{\text{I}} + 2\text{p}^{2}\text{T}_{1}\text{T}_{\text{I}} + \text{p}^{3}\text{T}_{1}^{2}\text{T}_{\text{I}}}{\text{V}_{\text{S}} + \text{pT}_{\text{I}} + 2\text{p}^{2}\text{T}_{1}\text{T}_{\text{I}} + \text{p}^{3}\text{T}_{1}^{2}\text{T}_{\text{I}}} \ .$ Da mit dem Grenzwertsatz Tabelle 2.2 Nr. 5 und $x_d = -x_d$

 $\mathbf{x}_{d} = \lim_{p \neq 0} \overset{o}{\mathbf{x}}_{d} = -\lim_{p \neq 0} \overset{o}{\mathbf{x}}_{p \neq 0} = 0$

wird die quadratische Regelfläche für n = 3 aus Tabelle 5.3

$$I_{Q} = \frac{C^{2} ST_{I}}{2T_{1} \cdot (2T_{I} - V_{S}T_{1})} \stackrel{!}{=} MIN.$$

mit

$$a_1 = b_1 = T_I$$

 $a_2 = b_2 = 2T_1T_I$
 $a_3 = b_3 = T_1^2T_I$.

Die optimale Integrationszeitkonstante des I-Reglers erhält man durch das partielle Differential

V_{S^T1^TI}

$$\frac{\partial I_Q}{\partial T_1} = 0 = T_1^2 - T_1 = V_S T_1$$
$$I_{-1} = \frac{2.5}{2}$$

also und

$$I_{\text{Qmin}} = \frac{2}{T_{1}}$$

0

~ ~

Aufgabe 5.15

Es gilt bei Störverhalten mit $z_{(t)} = C_{(t)}$ bzw. $\overset{O}{z} = C$

$$\begin{split} & \overset{O}{F}_{z} = \frac{x}{C} = \frac{1}{1 + \frac{V_{o} \cdot (1 + pT_{N})}{pT_{N} \cdot (1 + pT_{1})^{2}}} \\ & \overset{O}{x} = C \cdot \frac{pT_{N} + 2p^{2}T_{1}T_{N} + p^{3}T_{1}^{2}T_{N}}{V_{o} + p(T_{N} + V_{o}T_{N}) + 2p^{2}T_{1}T_{N} + p^{3}T_{1}^{2}T_{N}} \end{split} .$$

Mit $\overset{O}{x_d} = -\overset{O}{x}$ und $x_{d(\infty)} = -\underset{p \neq O}{\lim} \overset{O}{x} = 0$ folgt aus Tabelle 5.3 für n = 3

$$I_{Q} = C^{2} \cdot \frac{4V_{O}T_{1}^{2}T_{N}^{3} \cdot (1+V_{O}) + V_{O}T_{1}^{2}T_{N}^{3}}{2 \cdot V_{O} \cdot T_{1}^{2}T_{N}^{2} [2T_{1}T_{N}^{2}(1+V_{O}) - V_{O}T_{1}^{2}T_{N}^{2}]} \stackrel{!}{=} MIN.$$

mit

$$a_{o} = 0$$
 , $b_{o} = V_{o}$
 $a_{1} = T_{N}$; $b_{1} = T_{N}(1 + V_{o})$

$$a_2 = b_2 = 2T_1T_N$$

 $a_3 = b_3 = T_1^2T_N$

und vereinfacht

$$I_{Q} = \frac{C^{2}T_{N}(5 + 4V_{O})}{2 \cdot T_{1} \cdot (2T_{N} + 2V_{O} \cdot T_{N} - V_{O} \cdot T_{1})} \stackrel{!}{=} MIN.$$

dann wird

$$\frac{\partial I_Q}{\partial V_O} = 0 = 4T_1 T_N^2 - 10T_1^2 T_N$$

2

so daß die optimale Nachstellzeit des Reglers lautet:

$$T_{N} = \frac{5T_{1}}{2}$$
.

Diese in die Gleichung der quadratischen Regelfläche eingesetzt ergibt

$$I_{Qmin} = \frac{12,5 + 10V_o}{T_1 \cdot (10 + 8 \cdot V_o)} = \frac{1,25}{T_1}$$

Aufgabe 5.16

Es wird

$${}^{O}_{P_{O}} = \frac{V_{O} \cdot (1 + pT_{N})}{pT_{N} \cdot (1 + pT_{1})^{3}}$$

Mit dem Angreifen der Störung zwischen Regler und Strecke folgt

$$\overset{O}{F}_{z} = \overset{O}{\frac{x}{2}} = \frac{pV_{S}T_{N}}{V_{O} + pT_{N} \cdot (1 + V_{O}) + 3p^{2}T_{1}T_{N} + 3p^{3}T_{1}^{2}T_{N} + p^{4}T_{1}^{3}T_{N}}$$

$$\overset{O}{T}_{d} = \overset{O}{w} - \overset{O}{x} = - \overset{O}{x} \text{ und } \overset{X}{T_{d}(\infty)} = - \underset{p \neq O}{\lim} \overset{O}{x} = 0 \text{ folgt für } z = 0$$

$$\overset{O}{T}_{d} = - \overset{O}{x} = C \frac{pV_{S}T_{N}}{V_{O} + pT_{N} \cdot (1 + V_{O}) + 3p^{2}T_{1}T_{N} + 3p^{3}T_{1}^{2}T_{N} + p^{4}T_{1}^{3}T_{N}}$$

Damit ergibt sich aus Tabelle 5.3 für n = 4 die quadratische Regelfläche zu:

$$I_{Q} = \frac{3C^{2}V_{S}^{2}T_{N}^{3}}{2} = \frac{1}{9T_{1}T_{N}^{3} \cdot (1 + V_{O}) - 9V_{O}T_{1}^{2}T_{N}^{2} - T_{1}T_{N}^{3} \cdot (1 + V_{O})^{2}}$$

und mit

$$\frac{\partial I_Q}{\partial T_1} = 0$$

erhält man eine gemischt quadratische Gleichung für V_R.

$$V_{R} = \frac{1}{V_{S}} \left[\frac{7T_{N} - 18T_{1}}{2T_{N}} \pm \sqrt{\left(\frac{7T_{N} - 18T_{1}}{2T_{N}}\right)^{2} + 8} \right].$$

Stellt man diese Beziehung als Funktion von T_N/T_1 dar, läßt sich ein Maximum von V_R für $T_N = 2,5714 \cdot T_1$ ablesen (Bild 8.36). Dieses Maximum ergibt dann das gesuchte Minimum von I_Q , denn der Wert $V_R \longrightarrow \infty$ scheidet bekanntlich aus.

Auf diese Weise kann für die meist festliegenden Parameter ${\tt V}_{\rm S}$ und ${\tt T}_{\rm 1}$ der Regler optimiert werden.

Bild 8.36 Verlauf der Regelverstärkung V_{R} als Funktion der Nachstellzeit nach Aufgabe 5.16

Der Frequenzgang des offenen Regelkreises lautet:

$$\hat{F}_{O} = \frac{V_{O} \cdot (1 + pT_{N})}{pT_{N} \cdot (1 + pT_{1}) (1 + pT_{2})}$$

Mit $T_1 >> T_2$ folgt analog zu Gleichung (5.38)

$$\overset{O}{F}_{O} \; = \; \frac{ \overset{V}{v} \cdot \; (1 + \mathrm{pT}_{N}) }{ \mathrm{pT}_{1} \overset{T}{\mathrm{T}_{N}} (1 + \mathrm{pT}_{2}) } \quad . \label{eq:FO}$$

Daraus folgt bei $\alpha_{R} = 55^{\circ}$ eine Nachstellzeit von

$$T_N = m^2 \cdot T_2 = 10,059 \cdot T_2 = 100,59ms$$

Damit erhält man aus Gleichung (5.40) eine Durchtrittsfrequenz von

$$\omega_{\rm D} = \frac{1}{\sqrt{T_2 T_N}} = 31,53 \text{Hz}$$
.

Für die Reglerverstärkung folgt dann mit Gleichung (5.41)

$$V_{R} = \frac{1}{V_{S}\sqrt{T_{2}T_{N}}} = 19,97$$

Das zugehörige Bode-Diagramm (Bild 8.37) zeigt die gute Übereinstimmung zwischen exaktem und genäherten Verlauf von Frequenzgang und Phasenwinkel um den Wert $\omega_{\rm D}$.

Bild 8.37 Bode-Diagramm einer Regelung aus PI-Regler und zwei PT₁-Strecken zur Bestimmung der Regler-Parameter nach dem Symmetrischen Optimum

Der Frequenzgang des PID-Reglers läßt sich für $T_N > T_V$ in der Form schreiben $V_- \cdot (1 + pT_-) (1 + pT_-)$

$$\hat{\mathbf{F}}_{\mathrm{R}} = \frac{\mathbf{V}_{\mathrm{R}} \cdot (1 + \mathrm{pT}_{\mathrm{N}}) (1 + \mathrm{pT}_{\mathrm{V}})}{\mathrm{pT}_{\mathrm{N}}}$$

Die Strecke hat den Frequenzgang

$$\overset{O}{F}_{S} = \frac{\overset{V}{s}}{(1 + pT_{1})(1 + pT_{2})(1 + pT_{3})(1 + pT_{4})}$$

Wählt man

$$T_{V} = T_{2} = 0,1s$$

wird ein PT_1 -Glied durch den Regler kompensiert und es folgt für den Frequenzgang des offenen Regelkreises

$$\hat{F}_{O} = \frac{V_{O} \cdot (1 + pT_{N})}{pT_{N} \cdot (1 + pT_{1}) (1 + pT_{3}) (1 + pT_{4})}$$

Sind T₃, T₄ << T₂ < T., ergibt sich T_K = T₃ + T₄ = 0,02s und schließlich analog zu Gleichung (5.38)

$$\overset{O}{F}_{O} \approx \frac{V_{O} \cdot (1 + pT_{N})}{p^{2}T_{T}T_{N} \cdot (1 + pT_{K})}$$

Für $\alpha_R = 60^{\circ}$ erhält man aus Gleichung (5.43)m² = 14, so daß $T_N = m^2 T_K$ = 0,279s wird. Damit ist die Bedingung $T_1 > T_N > T_2 = T_V$ erfüllt und es ergibt sich mit Gleichung (5.40)

$$\omega_{\rm D} \approx \frac{1}{\sqrt{{\rm T}_{\rm K}{\rm T}_{\rm N}}} \approx 13,397 {\rm Hz}$$
 .

Daraus ermittelt man mit Gleichung (5.41) die Reglerverstärkung Vp:

$$v_R \approx \frac{T_1}{v_S \sqrt{T_K T_N}} \approx 3,148$$

Der Betriebsfrequenzbereich liegt bei dieser Regelung um

$$\omega_{\rm B} << \frac{1}{{
m T}_{\rm K}} = 50{
m Hz}$$

Für das Übertragungsverhalten bei sprunghafter Führungsgröße zeigt sich, daß mit zunehmender Verstärkung V_R die Durchtrittsfrequenz ω_D ansteigt, dies jedoch bei reduzierter Phasenreserve α_R .

Eine verkleinerte Nachstellzeit im Bereich $T_1 > T_N > T_2 = T_V$ bringt kaum eine Änderung von ω_D und nur eine unkritische Änderung von α_R mit sich. Im interesse einer schnellen Reaktion auf Störgrößen ist eine reduzierte Nachstellzeit aber sicherlich vorteilhaft.

Aus der Gleichung des vereinfachten Frequenzgangs $\overset{\mathrm{O}}{\mathrm{F}}_{\mathrm{O}}$ erhält man bei Führungsverhalten:

$$\underline{\mathbf{F}}_{\mathbf{w}} = \frac{\underline{\mathbf{x}}}{\underline{\mathbf{w}}} = \frac{\underline{\mathbf{F}}_{\mathbf{O}}}{1 + \underline{\mathbf{F}}_{\mathbf{O}}} = \frac{\underline{\mathbf{V}}_{\mathbf{O}} \cdot (1 + j\omega \mathbf{T}_{\mathbf{N}})}{\underline{\mathbf{V}}_{\mathbf{O}} - \omega^{2} \mathbf{T}_{\mathbf{T}} \mathbf{T}_{\mathbf{N}} + j\omega \mathbf{T}_{\mathbf{N}} \cdot (\underline{\mathbf{V}}_{\mathbf{O}} - \omega^{2} \mathbf{T}_{\mathbf{T}} \mathbf{T}_{\mathbf{N}})}$$

Stellt man den Betrag dieser Gleichung als Funktion von ω dar, läßt sich zeigen, daß für $\omega < \omega_D$ die Regelgröße überschwingt (Bild 8.38). Bei Frequenzen größer als ω_D wird der vorgegebene Sollwert nicht mehr erreicht. Außerdem entspricht die Durchtrittsfrequenz des geschlossenen der des offenen Regelkreises (ω_D = 13,397Hz).

Es ist

$$\left|\underline{\mathbf{F}}_{w}\right| = \mathbf{v}_{o} \cdot \sqrt{\frac{1 + \omega^{2} \mathbf{T}_{N}^{2}}{(\mathbf{v}_{o} - \omega^{2} \mathbf{T}_{1} \mathbf{T}_{N})^{2} + \omega^{2} \mathbf{T}_{N}^{2} \cdot (\mathbf{v}_{o} - \omega^{2} \mathbf{T}_{1} \mathbf{T}_{K})^{2}}}$$

Bild 8.38 Frequenzgangbetrag des Führungsverhaltens einer Regelung aus PID-Regler und PT₄-Strecke für bestimmte Parameter

Der Frequenzgang des offenen Regelkreises ist:

$$\hat{F}_{O} = V_{O} \cdot \frac{1 + pT_{N}}{pT_{N} \cdot (1 + pT_{1}) \cdot (1 + pT_{2})}$$

Dieser ist nicht mit dem von Gleichung (5.38) identisch, trotzdem läßt sich $\alpha_{\rm Rmax}$ berechnen. Der Phasenwinkel dieser Regelung ist

$$\varphi_{0} = - \arctan \frac{1}{\omega T_{N}} - \arctan \omega T_{1} - \arctan \omega T_{2}$$

setzt man deren Ableitung Null, ergibt sich die Frequenz $\boldsymbol{\omega}_{M},$ bei der die Phasenreserve ein Maximum hat.

$$\frac{\partial \varphi_{o}}{\partial \omega} = 0 = \frac{\omega_{M}^{4} T_{N}^{3}}{1 + \omega_{M}^{2} T_{N}^{2}} - \frac{T_{1}}{1 + \omega_{M}^{2} T_{1}^{2}} - \frac{T_{2}}{1 + \omega_{M}^{2} T_{2}^{2}} .$$

Mit dem Taschenrechner läßt sich unter Verwendung eines Nullstellenprogramms $\boldsymbol{\omega}_{M}$ angeben, hier:

$$\omega_{\rm M}$$
 = 2,824 Hz .

Dann wird mit $\omega_{M} = \omega_{D}$

$$|\underline{F}_{O}| \stackrel{!}{=} 1 = \frac{\underline{V}_{O}}{\omega_{D} T_{N}} \frac{\sqrt{\frac{1 + \omega_{D}^{2} T_{N}^{2}}{(1 + \omega_{D}^{2} T_{1}^{2})(1 + \omega_{D}^{2} T_{2}^{2})}}}{\overset{\checkmark}{=} 1,028$$

und schließlich

$$V_{\rm R} = \frac{\omega_{\rm M} \cdot T_{\rm N}}{V_{\rm S} \cdot 1,028} = 2,746$$
 .

Setzt man ω_{M} in die Gleichung für φ_{O} ein, wird

$$\alpha_{\rm Rmax} = \varphi_{O(\omega_{\rm M})} + 180^{\rm O} = 96,12^{\rm O}$$

Für $T_1 = 1s$ lassen sich sofort mit Gleichung (5.40) und (5.41) die Durchtrittfrequenz und die Reglerverstärkung angeben. Dies, weil nun $T_1 = 1s >> T_2 = 50ms$ ist und folglich Gleichung (5.38) mit \underline{F}_0 der Aufgabenstellung identisch ist.

Es wird dann

$$\omega_{\rm M} = \omega_{\rm D} = \frac{1}{\sqrt{{\rm T}_2 {\rm T}_{\rm N}}} = 14,142 {\rm Hz}$$

und

$$v_{\rm R} = \frac{T_1}{v_{\rm S}\sqrt{T_2T_{\rm N}}} = 141,42$$
.

Die Phasenreserve hat dann ihr Maximum bei $\boldsymbol{\omega}_{\underline{M}}$ und ist:

$$\alpha_{\rm Rmax} = \varphi_{O(\omega_{\rm M})} + 180^{\circ} = \arctan \omega_{\rm M} T_{\rm N} - \arctan \omega_{\rm M} T_{\rm 2}^{-2}$$
$$\alpha_{\rm Rmax} = 19,47^{\circ} .$$

9. Anhang

9.1 Schaltzeichen für Übersichtsschaltpläne

Nach DIN 40 700 Teil 14 sind die Schaltzeichen digitaler Funktion genormt. Die in diesem Buch erwähnten Digitalfunktionen bzw. -Schaltkreise sind im Folgenden erklärt.

Angelehnt an diese Norm werden in diesem Buch folgende analogen und digitalen Schaltzeichen verwendet.

9.2 Formelzeichen und Abkürzungen

a	allgemeine reelle Zahl	F	Kraft
	bzw. Koeffizient	Fb	Beschleunigungskraft
А	Fläche	$\tilde{F}_{(n)}, \tilde{F}$	Frequenzgang als Bild-
AR	Amplitudenrand	(þ)	funktion
A/D	Analog-Digital	^F R' ^F S	Frequenzgang von Regler
b	Beschleunigung	_	bzw. Strecke
В	Magnetische Flußdichte	Fo	Frequenzgang des Regel- kreises
С	Kapazität	f/U	Frequenz-Spannung
^c 1, ^c 2	Konstante elektrischer Maschinen	h	Banddicke
C.	Federkonstante	i,I	Strom
dB	Dezibell	i	Scheitelwert des Stromes
dt	Differenzial	Ia	Ausgangsstrom
D.d	Durchmesser bzw.	IA	Ankerstrom
274	Dämpfungsziffer	Ie	Eingangsstrom
D/A	Digital-Analog	IE	Feldstrom
е	Naturkonstante	ID	Diodenstrom
E	Quellenspannung bei	I	Imaginärteil
	elektrischen Maschinen	I,	Gegenkopplungsstrom
f,f _e	Frequenz bzw. Eingangs- frequenz	j	imaginäre Einheit

J	Trägheitsmoment
k,K	Konstante
1	Leiterlänge
L,L _N	Induktivität
Lg,Ln	dekadischer und natürli- cher Logarithmus
Lim	Grenzwert
Mb	Beschleunigungsmoment
M _M ,M _L	Rotormoment bzw. Lastmo- ment
n,n _o	Drehzahl bzw. Leerlauf- drehzahl
N	Windungszahl
N _(xe)	Beschreibungsfunktion
OP	Operationsverstärker
р	Laplace-Operator bzw. Druck
P _i	Pole eines Polynoms
Pv	Verlustleistung
Q	Durchfluß bzw. Ladung
r	Reibungswiderstand
R,R _A	Ohmscher Widerstand
R	Ausgangswiderstand
R	Eingangswiderstand
Re	Realteil
Rr	Gegenkopplungswiderstand
S	Weg
Sp,Sn	Zahl der positiven
Sn	Bandlänge
s _B	Bremslänge
t	Zeit
Т	Zeitkonstante
т _N	Nachstellzeit
т _v	Vorhaltzeit
u,U	Spannung
û	Scheitelwert der Spannung u
u	Bildfunktion der Spannung u
^U e' ^U a	Ein- bzw. Ausgangsspannung
UC.	Kondensatorspannung
U _D	Durchlaßspannung bzw. Dif- ferenz-Eingangsspannung
U_{Dia}	Steuergleichspannung

U/f	Spannung-Frequenz
^U off	Offsetspannung
USch	Schaltspannung
U _{Ref}	Referenzspannung
^U s' ^U B	Speisespannung
^U st	Steuerspannung
v	Geschwindigkeit
v _D	Differenzverstärkung
V _P	Proportional
v _R ,v _S	Regler- bzw. Strecken- verstärkung
vo	Regelkreisverstärkung
VoKr	Kritische Regelkreis- verstärkung
w	Sollwert oder Führungs- größe
W	Arbeit
x	Istwert oder Regelgröße bzw. allg. Rechengröße
x _e ,x _a	Ein- bzw. Ausgangsgröße
x _c	Kapazitiver Blindwider- stand
$\mathbf{x}_{\mathbf{L}}$	induktiver Blindwider- stand
Y	allg. Rechengröße bzw. Stellgröße
\underline{z} , \underline{z}	komplexe bzw. konjugiert komplexe Zahl
^z a	Zählerstand

α	Laplace-Konstante bzw. Steuerwinkel
αR	Phasenreserve oder Phasen- rand
β	Laplace-Konstante
γ	Löschwinkel
^δ 0(t)	Einheitssprungfunktion
η	Wirkungsgrad
θ	Temperatur
μ	Permeabilität
π	Naturkonstante
П	Multiplikationszeichen
σ	reelle Zahl
Σ	Summenzeichen
φ, φ_0	Winkel bzw. Phasenwinkel
Ø	Magnetischer Fluß
ω	Kreisfrequenz
ωD	Durchtrittsfrequenz
^ω e	Eigenkreisfrequenz
^ω N ^{, ω} v	Eckfrequenzen
ωo	Resonanzfrequenz
^ω z	Resonanzfrequenz bei $\varphi_0 = -180^{\circ}$
sin	Sinus
sh	Sinus-Hyperbolikus
cos	Cosinus Winkel-
ch	Cosinus-Hyper- bolikus funk- tionen
tan	Tangens
arctan	Arkustangens J

10. Literaturverzeichnis

- (1) Kolb, F.; Künzel, O.: Regelungstechnik Teil 1 Grundlagen H. Schroedel, 1977, S.34...40 und S.42...43
- (2) Orlowski, P.: Analogschaltungen der Meß- und Regeltechnik Vogel, 1982
- Bronstein, I.; Semendjajew, K.: Taschenbuch der MathematikH. Deutsch, 1971, S.277 und S.473, S.385...392
- Heumann, K.; Stumpe, A.C.: Thyristoren-Eigenschaften und Anwendung
 B.G. Teubner, 1970, S.84...100
- (5) Gerthesen, Ch.; Kneser, H.O.; Vogel, H.: Physik-Lehrbuch zum Gebrauch neben Vorlesungen 12. Auflage Springer, Berlin 1974, S.20, 21, 125, 145, 148, 164
- (6) Siemens AG: Handbuch der Elektrotechnik Siemens, Erlangen 1971, S.222, 223
- (7) Bartsch, H.J.: Mathematische Formeln Buch- Zeit-Verlagsgesellschaft, Köln 1969, S.395
- Ince, E.L.: Die Integration gewöhnlicher Differentialgleichungen
 Hochschultaschenbücher. BI 67, 1956, S.120
- Doetsch, G.: Anleitung zum praktischen Gebrauch der Laplace-Transformation und Z-Transformation.
 R. Oldenbourg, 1967, S.11
- (10) Mangoldt, H.V.; Knopp, K.: Einführung in die Höhere Mathematik S. Hirzel, 13.Aufl., 1967, S.503
- (11) Heaviside, O.: Electromagnetic Theory. Bd.3. London 1912
- (12) Carson, J.R.: Elektrische Ausgleichsvorgänge und Operatorenrechnung. New York 1953
- Wagner, K.W.: Operatorenrechnung und Laplacesche Transformation.
 J.A. Barth, 3.Aufl. Leipzig 1962
- (14) Orlowski, P.: Digitale Schaltungen mit CMOS-Schaltkreisen. VDI, 1979
- (15) EMG, Wendener Hütte: Datenblatt Elektrohydraulische Servoventile. SV 1 -10, SV2 -25, 1981
- (16) Oppelt, W.: Kleines Handbuch technischer Regelvorgänge. Verlag Chemie, 1972
- (17) Föllinger, O.: Nichtlineare Regelungen I. R. Oldenbourg, 1978
- (18) Chien, K.L.; Hrones, J.A.; Reswick, J.B.: On the Automatic Control of Generalized Passive Systems. Trans. ASME 74. 1952. S.185...185
- (19) Ziegler, J.G.; Nichols, N.B.: Optimum Settings for Automatic Controllers. Trans. ASME 64, 1952, S.759
- (20) Siemens: Technische Regelstreckenglieder bei Gleichstromantrieben. Siemens-Verlag, 1971, S.27...29
- (21) Arend, H.O.: Mikroprozessorgesteuerte Regelung für multivalente Heizungsanlagen. BMFT-Forschungsbericht T 81-076, 1981
- (22) Elektrohydraulische Servoventile Reihe HV und HVM: J. Schneider & Co., Bad Kreuznach, A 67. Feinwerktechnik
- (23) Oberhaus, E.R.: Simulation Kontinuierlicher Systeme in Walzwerken. BBC-Nachrichten, 1975, H.11, S.573...583
- (24) Preßler, G.: Regeltungstechnik. BI-Wissenschaftsverlag, 1967
- (25) Jahn, H.: Elektrische Meßgeräte und Meßverfahren. Springer, 1965, S.292...293
- (26) Unbehauen, H.: Regelungstechnik I, Klassische Verfahren zur Analyse und Synthese linearer kontinuierlicher Regelsysteme. F. Vieweg, 1982
- (27) CHIP Spezial: Taschenrechner. Vogel, 1982
- (28) Wiegele, B.: Rechnerunterstützte Ausbildung ein Konzept zum Lehren und Lernen des Problemlösens in der Regelungstechnik. Dissertation, Technische Universität München, 1980
- (29) PIC (Programm Information Center): Programmliste Fachgruppe für Automatik der ETH Zürich
- (30) Höfler, A.B.: RASP-G ein FORTRAN-Programmpaket zur graphischen Systemdarstellung. Lehrstuhl für Meß- und Regelungstechnik der Ruhr-Universität Bochum, 1977
- (31) Oesterhelt, G.; Kubbat, W.: Entwurf von Regelungssystemen mit Hilfe von Computer Aided Design und ihre Anwendung. MBB-Bericht Nr. GD-8-74 (Ö), 1974
- (32) Isermann, R.; Kneppo, P.: Rechnergestützter Entwurf von Regelungstechnik, Nr. 6, 1976, S.189...196
- (33) Von den Boom, A.J.W.; Lemmens, W.J.M.: SATER An Interactive Program Package für Education and Research in Parameter Estimation-, Control- and Signal Analyses Technique. IFAC Symp. Trends in Automatic Control Education, Barcelona, 1977

(34)	Volz, R.A.: COINGRAD-Control Oriented Interactive Graphical Analyses and Design. IEEE Transactions on Edusation, Vol. E-17, No.3, 1974, S.143152
(35)	Nyquist, H.: Regeneration Theory. Bell Syst.Techn.J. 11, 1932, S.126147
(36)	Kümmel, F.: Elektrische Antriebstechnik. Springer, 1971, S.307450
(37)	Hoffmann, G.: Drehzahlregelung. Vogel 1979, S.5861
(38)	Newton, G.C.; Gould, L.A.; Kaiser, J.F.: Analytical Design of linear Feedback Control. John Wiley & Sons, New York, 1957
(39)	Kessler, C.: Über die Vorausberechnung optimal abgestimm- ter Regelkreise. RT 2, 1954, S.274281; RT 3, 1955, S.1622 sowie Das symmetrische Optimum: RT 6, 1958, S.395400 und S.432436
(40)	Leonhard, W.: Einführung in die Regelungstechnik. Vieweg, 1981, S.193220
(41)	Reuter, M.: Regelungstechnik für Ingenieure. Vieweg, 1981, 3.Auflage
(42)	Hoffmann, G.: Drehzahlregelung. Kamprath-Reihe Vogel, 1979, S.5759 und S.84103
(43)	Ragazzini, J.; Franklin, G.: Sampled-data Control Systems. McGraw-Hill, New York, 1958
(44)	Föllinger, O.: Lineare Abtastsysteme. R. Oldenbourg, 1982, 2.Auflage, S.330353
(45)	Kobitzsch, W.: Mikroprozessoren, Teil 1, 2.Auflage 1981 und Teil 2, 2.Auflage 1983, R. Oldenbourg
(46)	Richard, B.: Datenverarbeitung mit Mikroprozessoren, Teil 1 und 2. Carl Hauser, 1981
(47)	Bender, K.; Heinzel, W.; Jacob, H.; Motsch, W.; Weber, W.: Mikrorechner, Struktur und Programmierung. VDI, 1977
(48)	Schütze, H.: Entwurf diskreter Regler auf Mikroprozessoren mit kurzer Wortlänge. Forschungsauftrag Ha624/12 der Deutschen Forschungsgemein- schaft, 1977
(49)	BUDERUS: Handbuch für Heizungs- und Klimatechnik. VDI, 1975, 32. Auflage, S.572585
(50)	Boksenbom, A.S.; Hood, R.: General Algebraic Method to control Analysis of Complex Engine Types. NACA Report 980, 1950, Washington.

- (51) Schwarz, H.: Mehrfachregelungen, Band 1. Springer, 1967
- (52) Schwarz, H.: Vorschläge zur Elimination von Kopplungen in Mehrfachregelkreisen. Regelungstechnik, 1961, S.454...459 und S.505...510
- (53) Ackermann, J.: Abtastregelungen, Band I und II, 2.Auflage. Springer, 1983
- (54) Harms, G.: Linearverstärker, Funktion und Anwendung. Sonderdrucke, Vogel 1978, S.81 - 82
- (55) Reiner, A.; Wiegand, R.: Überblick über Algorithmen zur digitalen Regelung. rt 6, 1976, S.181...188
- (56) Schörner, J.: Regelung von Drehstromaufzuganlagen mit Drehstromsteller. rt 4, 1980, S.110...116
- (57) Lehmann, H.; Miteenzwei, K.: Moderne Ausrüstung für Gleichstrom-Schachtförderantriebe. BBC-Nachrichten, H.11, 1977, S.477...484
- (58) Rogall, R.: Asynchronmaschinen in der Antriebstechnik. BBC-Nachrichten, H.7, 1981, S.227...236
- (59) De Haas, M.: Drehzahlvariable Antriebe mit Asynchronmotoren. Sonderdruck "Elektro-Jahr 1977", Vogel-Verlag, S.29...32
- (60) BBC-Mannheim: Geregelte Drehstromantriebe Bauart VERIVERT. Druckschrift-Nr. D IA 60484 D.
- (61) Fischer, R.: Elektrische Maschinen. Hanser, 1979, S.223...226
- (62) Kuhn, W.; Moll, K.: Umrichter nach dem Unterschwingungsverfahren für industrielle Antriebe. BBC-Nachrichten, H.11, 1983, S.375...384
- (63) Hügle, K.; Orlowski, P.: Antriebsregelungen und Automatisierung einer zweigerüstigen Dressierstraße. BBC-Nachrichten, H.5, 1980, S.159...167
- (64) Schoele, B.: Kaltwalzwerke. Elitera, 1975, S.19...32
- (65) Lappe, R.: Thyristor-Stromrichter für Antriebsregelungen. VEB, 1970, S.276...297
- (66) Troebs, G.: Banddicken-Regeleinrichtungen für Kaltwalzwerke und ihre Fortentwicklung. BBC-Nachrichten, H.1, 1976, S.38...44
- Schönert, D.; Thome, H.J.: Hydraulische Walzenanstellung und Banddickenregelung in Kaltwalzwerken. Sonderdruck aus Stahl und Eisen, H.5, 1974.
 BBC-Druckschrift-Bestell-Nr. D GJA 40217 D

(68)	SEH, Sundwiger Eisenhütte: Die Berechnung von Walzkraft und
	Walzleistung beim Kaltwalzen von Bändern und Blechen.
	Hemer Sundwig, 1962, 2.Aufg.

- (69) Porter, W.A.: Diagonalization and inverses for nonlinear systems. Int.J.Control 11, 1970, pp.67...76
- (70) Freund, E.: Decoupling and pole assignment in nonlinear systems. Electronics, Letters 9, 1973, pp.373...374
- (71) Freund, E.; Früchtenicht, H.W.; Hoyer, H.; Syrbe, M.: Realisierungskonzeption für einen fortgeschrittenen Industrieroboter mit direkter, digitaler Regelung und Steuerung. Poc. of the 8th International Symposium on Industrial Robots, Böblingen 1978, S.640...659
- Leonhard, W.: Elektrische Regelantriebe für den Maschinenbau.
 VDI-Z 123, 1981, Nr.10, S.423...424
- (73) Pieper, D.L.: The kinematics of manipulators under computer control. PhD dissertation, Stanford University 1968
- (74) Paul, R.: Medelling trajectory calculation and servoing of a computer controlled arm. PhD dissertation, Stanford University 1972
- (75) Freund, E.: Eine schnelle nichtlineare Regelung für Handhabungssysteme. IITB-Mitteilungen, 1977, S.41...47
- (76) Schütze, H.: Entwurf eines grenzzykelfrei arbeitenden Mikroprozessorreglers mit kurzer Wortlänge. rt 28, 1980, H.5, S.157...163
- (77) Raab, H.H.: Handbuch Industrieroboter, Bauweise, Programmierung, Anwendung, Wirtschaftlichkeit. Vieweg, 1981
- (78) Berbner, W.: Das System BBC-Procontic M für den Einsatz in Lagerregelkreisen. BBC-Nachrichten, 1981, H.9, S.313...323
- (79) BBC-Mannheim: procontic m-programmierbares Meßwertverarbeitungssystem, Systembeschreibung. Druckschrift-Bestell-Nr. GMI 4 90 0824
- (80) Blaschke, F.: Das Verfahren der Feldorientierung zur Regelung der Drehfeldmaschine. Dissertation, TU Braunschweig, 1974
- (81) Gabriel, R.; Leonhard, W.; Nordby, C.: Regelung der stromrichtergespeisten Asynchronmaschine mit einem Mikrorechner. rt 27, 1979, H.12, S.379...386
- (82) Waldmann, H.: Koordinatentransformation bei der Mehrgrößenregelung von Wechsel- und Drehstromsystemen. Dissertation, TU Braunschweig, 1978

470

- (83) Orlowski, P.: Elektrische Ausrüstung und Regelung von Bundoptimierungslinien. BBC-Nachrichten, 1979, H.8, S.267...273
- (84) Stof, P.: Lageregelung Lageregelkreis Grundlagen. In "Die Lageregelung an Werkzeugmaschinen". Hrsg. von Prof. Dr.-Ing. G. Stute, Stuttgart, ISW Selbstverlag, 1975
- (85) Kienzle, O.: Die Bestimmung von Kräften und Leistungen an spanenden Werkzeugen und Werkzeugmaschinen. VDI-Z. 94, 1952, Nr.11/12, S.299...305
- (86) Pritschow, G.: Ein Beitrag zur technologischen Grenzregelung bei der Drehbearbeitung. Dissertation, Technische Universität Berlin, 1972
- (87) Kappen, N.: Entwicklung und Einsatz einer direkten digitalen Grenzregelung für eine Fräsmaschine mit CNC. Dissertation, Universität Stuttgart, 1979
- (88) Orlowski, P.: BASIC-Programme für Ortskurven-Darstellung und Bode-Diagramm nach dem Nyquist-Kriterium (Dokumentation und Disketten für verschiedene Rechner-Typen erhältlich). Fachbereich MF, Fachhochschule Gießen, Wiesenstr. 14, Gießen, 1984
- (89) Martin, P.: Mathematische Verfahren der Regelungstechnik, Numerische Verfahren gezeigt mit dem HP 41. Oldenbourg, München, 1984

Weiterführende und ergänzende Literatur

- (90) Leonhard, W.; Schneider, E.: Aufgabensammlung der Regelungstechnik. Vieweg, 1983
- (91) Ebel, T.: Beispiele und Aufgaben zur Regelungstechnik. Teubner Studienskripten, 1974
- (92) Kümmel, F.: Elektrische Antriebstechnik Aufgaben, Lösungen. Springer, 1979
- (93) Fischer, R.: Elektrische Antriebe. Hanser, 1979.
- (94) Barth, H.R.: Arbeitsbuch der Regelungstechnik. Hanser, 1974
- (95) Stute, G.: Regelung an Werkzeugmaschinen. Hanser, 1981
- (96) Arbeitskreis der Dozenten für Regelungstechnik: Regelungstechnik in der Versorgungstechnikl C.F. Müller, 1983

11. Stichwortverzeichnis

```
Abbremsautomatik 345
Abhaspel 291
Abtastregelungen 242, 245
Abtastzeit 242, 244, 247, 316,
   327
Aeroplaning 313, 343
Allpaß 249
Amplitudenrand (-reserve) 179,
   184, 187, 209, 439
Ankerkreisgleichung 236, 419
Ankerkreisverstärkung 28
Ankerstromsollwert 295
Anregelzeit 220
Ansprechschwelle 39, 126, 212,
   218, 406, 451
Asymptoten 88, 94, 98, 102,
   108, 115
Asynchronmotor 154, 284, 323
Aufhaspel 291
Ausgangsgröße 19, 119
Ausregelzeit 220, 241
Anschlagverfahren 163
Automatiken 335
Automatisierung 318
```

```
Bahnregelung 321
Bahnsteuerung 331
Bandbreite 292
Banddehnung 301
Banddickenmessung 117
Banddickenregelung 306
Bandgeschwindigkeit 292, 301
Bandlänge 345
Bandzugsollwert 292, 313
BASIC-Programm 349, 364
Belastung 278
```

Bergbau-Schachtförderanlage 274 Beschleunigungsmoment 294, 419 Beschreibungsfunktion 124, 126, 127, 129, 130, 132, 133, 134 Biegung 313 Bildschirm 360 -Darstellung 363, 364, 377 Blockschaltbild 16, 29, 253, 256, 260, 264, 267, 277, 290, 299, 304, 310, 317, 322, 334, 341, 415, 434 Bode-Diagramm 177, 183, 281, 282, 364, 394, 435, 436, 437, 438, 458 BODE-Programm 365 BODE-SY 403 Brenner 252 Bremsbefehl 347 Bremsweg 345 Bunddurchmesser 292, 342

```
CNC-Technik 331
CMOS-Technik 341
```

```
D-Glied 84
Dämpfung 44, 48, 106, 109, 223
Differentialgleichungen 42
Differenzverstärkung 32, 139
Digitalzähler 84
Direktumrichter 285, 288
Drehspulmeßwerk 46
Drehstrombrückenschaltung 37,
118, 151
Drehstromsteller 154
Drehstromsystem 325
```

Dressierstraße 291 Drehzahlregelung (-regelkreis) 27, 239, 283, 289, 298 Dreipunktverhalten 132 Druckmeßdose 46 Druckspeicher 102, 271 Durchfluß 11, 13 Durchmesserrechner 342 Durchtrittsfrequenz 179, 183, 186, 206, 237, 254, 263, 281, 289, 305, 311, 363, 376, 439, 459 Dynamisches Verhalten 41 Eingangsgröße 19, 119 Einheitssprungfunktion 45 Einstellwerte 140, 141 Elastizitätsmodul 301 Energiespeicher 41, 101, 105, 113, 275 Entwicklungssatz von Heaviside 60 Eulersche Gleichung 51 Fahrkurvenrechner 159, 162, 335 Faltungssatz 62, 429 Feder, gedämpfte 44, 46, 103 Fehlerkorrektur 26 Fluß-Diagramm 360 Flußmessung 326 Förderkorb 110, 276 Fourier-Zerlegung 39 -Koeffizienten 124 Fräsmaschine 331 Fräsprozeß 333 Freiheitsgrade 319 Frequenzgang 71, 177, 289, 311, 426 -Betrag 77, 80, 288, 305, 460 Führungsgröße 16

Führungsverhalten 21, 192, 215, 220 Füllstandsregelung 16 Gaußsche Zahlenebene 50 Geschwindigkeitsregelung 276, 301 Gleichdimensionelle Laplace-Transformation 53, 420 Gleichstrommotor (-Maschine) 27, 37, 103, 118, 274 Glühofen 253 Gütekriterien 221 Halteglied 247 Haspelregelung 295 Heißleiter 253 Heizkurven 257 Hochlauffrequenz 340 Hochlaufzeit 236, 292, 336 Hookesches Gesetz 291 HP 41CV 378 Hydraulik-Zylinder 83, 111 Hysterese 129, 133, 213, 217, 409 I-Glied 80 I-Strecken 143 Impulsgeber 314 Industrieroboter 188, 319 Istwert 13 ITAE-Kriterium 224 Kaskadenregelung 234, 255, 301 Kennkreisfrequenz 106, 332 Kennwerte 41, 42 Kippmoment 285 Kirchhoffscher Satz 34, 42 Kompensationsverfahren 163 Komplexe Zahl 50 Konjugiert komplexe Zahl 50 Kontinuierliche Regelungen 252

Konzentrationsregelung 259 Koordinaten-Transformation 321 Korrekturfrequenzgänge 265 Korrespondenztabelle komplexer Funktionen 52 -der Gleichdimensionellen Laplace-Transformation 64 Kurzschlußläufermotor 324 Längung 301, 314 Längungsregler (-regelung) 316, 328 Läuferdrehzahl 283 Läuferverluste 285 Laplace-Integral 54 -Operator 57 Lastmoment 28, 294 Lastverhalten 281 Leerlaufdrehzahl 300

Leerlaufkennlinie 35 Leerlaufpendeln 38 Leistungstreiber 270 Linearisierung 35, 123 Lösungen 415

Magnetventil 16, 155, 266 Massenkonstanz 291 Matrizenrechnung 262 Mechanik 102, 109, 117 Meßfühler 253 Meßtechnik 103 Meßwertgeber 163 Mikrorechner 246, 323 Mischer 257 Mischvorgang 259, 262 Momenten-Kennlinie 285 Momentenlose 120 Momentenregler 326 Motorleistung 300 Motorwelle 294 MS-BASIC 349 Multiplexer 245

Nachstellzeit 88, 229, 457 Nennleistung 285 Niveauregelung 267 Nyquist-Kriterium 191, 195, 201, 349, 379 NYQUIST-Programm 350 Ölbrenner 254 Offsetspannung 30, 33 Operationsverstärker 32, 79, 83, 100, 112, 337 OPT 1; OPT 2 386 Optimierung 219, 386 Ortskurve (n) 72, 192, 197, 198, 202, 209, 214, 273, 360, 440, 443, 445, 446, 449, 450, 452, 453 Oszillogramm (e) 217, 241, 432 P-Glied 73 PD-Glied 93 PI-Glied 87 PID-Glied 96 P-Strecken 142 PT₁-Strecke (n) 142, 184, 189, 213 PT_2 -Strecke (n) 142, 212 PT_{+} -Strecke (n) 142, 213 Personal-Computer 349 Phasenrand (-reserve) 187, 207, 210, 230, 281, 442 Phasenwinkel 77, 80, 86, 89, 95, 99, 102, 108, 116, 175, 183 PT₁-Glied 101 PT₂-Glied 105 PT_n-Glied 113 PT₊-Glied 115, 236, 249, 288 Pneumatik 89, 95, 99 Pneumatischer Verstärker 31 Pole 177, 181, 183, 195, 203 Positionsregelung 307

Potentiometer 12, 17 Preßluft-Druckregelung 270 Programm-Beschreibung 379, 381, 384, 386, 394, 397, 403, 405, 406, 408, 409, 412 Programmierung 318, 322 Proportionalverstärkung 19, 34 Prozeßrechner 328 Pulszahl 151, 154, 285 Punpe 270 Raumtemperatur-Regelung 254 Rechner-Auswertung 189, 204, 213 Regelabweichung 16, 21 Regel-Algorithmus 246, 333 Regeldifferenz 16, 20, 21, 242 Regeleinrichtung 15 Regelfläche - lineare 221 - Betrag der linearen 223 - quadratische 224 Regelgröße 15, 19, 219, 241, 415 Regelkreis 41, 136 - Synthese 397 Regelkreisglieder 35, 73, 136 - nichtlinear 119, 124 Regelung 12, 19 Regelstrecke (n) 15, 142 Regler 16, 136 - Einstellung 140 - I 212 - P 199 - PD 189 - PI 139, 184, 186, 188, 253, 260 - Typen 137 Reibung 48, 109, 120 Reihenschwingkreis 42, 110 Relais 157, 266 Relativverstärkung 242 Residuensatz 59, 226 Richtrolle 313

Roboterantrieb 318 Rücktransformation 54 Rührkessel 260 S-Rolle 301, 313 Schaltzeichen 462 Scheibenläufermotor 319 Sättigungsglied 124 Sample-Hold-Schaltkreis 243 Schaltfrequenz 268 Schlupf 283 Schnittmoment 332 Schnittpunkte 183, 201 Schnittpunktform 183 Schütze 157 Schwankungsbreite 267 Seilschwingungen 274 Seiltrommel 30, 274 Servoventil 111, 157, 308 Signalbegrenzung 124, 212, 217, 453 Signalflußplan 16 Simulation 215, 249 Sinusfunktion 49 Sollwert 13 - Geber 159 Spindel-Antrieb 81 Sprungantwort 9, 45, 48, 77, 80, 85, 137, 217, 274, 417 Sprungfunktion 44 Stabilität 176, 207, 247 Stabilitätsbegriff 173, 175 Stabilitätsbetrachtung 173, 178 Stabilitätsgebiet 126, 128, 129, 131, 132, 134, 214, 451 Stabilitätsgrenze 177, 199 Stabilitätskriterium 183, 247 Ständerfrequenz 285 Ständerspannung 283, 325 Ständerstrom 325 Stationäres Verhalten 19 Statisches Verhalten 31

475

```
Stellbereich 12
Stellglieder 150
Stellgrenze 120, 241
Stellgröße (n) 16, 20, 22, 219,
   241
Steuerkennlinie 36
Steuerung 11, 12
Steuerwinkel 38, 118, 151, 153
Störgrößen 12
   - additive 22, 136
   - änderung 19
   - multiplikative 25, 136
Störverhalten 192, 215, 220
Stoffbahn 291
Stoffgemischregelung 258
Strecken-Typen 137
Streckgradregelung 317
Streckrichteinheit 313
Stromregelkreis 153, 278
Stromrichter 37, 150, 188, 284
Symmetrisches Optimum 228, 278,
   291, 298
Tachogenerator 31
Taschenrechner 378
Temperatur 13
   - Regelung 252
Toleranzbereich 220
Tote Zone 40, 126
Totzeit 115, 117, 119, 151, 154
Trägheitsmoment 294
Treppenfunktion 244
Übersichtsschaltplan 462
Übertragungsfunktion 80, 87, 96,
```

Verschliffszeit 338 Verstärker 16 Verstärkung 20, 34, 73, 79, 105, 141, 151, 204, 211 Verzögerungsglieder 101, 105, 113 Volumenkonstanz 330 Vorhaltzeit 95 Vorlast 128 Vorlauftemperatur 255 Vorschubgeschwindigkeit 332 Vorspannung 128

Wärmetauscher 183 Walzkraftregelung 308 Walzprozeß 291 Walzspaltregelung 308 Walzenzapfen 306 Walzwerk 291 Walzgerüst 110 Wandler 119, 163 Wegregelung 30 Werkzeugmaschine 318 Wickelantrieb 291 Windungszahl 347 Winkeländerung 195, 196

Zeitkonstante (n) 80, 83, 86, 101, 114, 232, 260, 301 Zenerdiode 34 Zugregelung 292 - direkte 300 - indirekte 295 Zweigrößenregelung 261 Zwei-Ortskurven-Verfahren 206, 214, 273, 403 Zweipunktregelung 266 Zweipunktverhalten 131, 133 Zykluszeit 247

Ventil (e) 11, 13, 155

Umformregeln 167, 235

101, 115

Umsetzzeit 247

```
Verlustkompensation 298
```

476

Regel- kreis- glied	Übertragungsfunk Gleichung	./Sprungantwort zeitl.Verlauf	Blockschaltbild	Frequenzgang
Ρ	$\mathbf{x}_{a} = \mathbf{v}_{p} \cdot \mathbf{x}_{e}$,×a ,×e Vp·Xe	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$F_{(p)} = \frac{x_a}{x_e} = \frac{x_a(p)}{x_e} = v_p$ $F(j\omega) = v_p$
1	$x_{a} = \frac{1}{T_{I}} \int_{0}^{t} x_{e} \cdot dt$ $x_{a} = x_{e} \cdot \frac{1}{pT_{I}}$	x _a x _e o T _z ć	$\begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$F_{(p)} = \frac{1}{pT_{I}} = \frac{\alpha}{p}$ $F_{(j\omega)} = \frac{1}{j\omega T_{I}} = \frac{-j}{\omega T_{I}}$
D	$x_{a} = T_{D} \frac{dx_{e}}{dt}$ $x_{a} = x_{e} \cdot pT_{D}$	×areal 0 ×aideal t	$\begin{array}{c} \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$F_{(p)} = pT_{D} = \frac{p}{\alpha}$ $F_{(j\omega)} = j\omega T_{D}$
PI	$\mathbf{x}_{a} = \mathbf{V}_{p} \left(\mathbf{x}_{e} + \frac{1}{T_{N}} \int_{O}^{T} \mathbf{x}_{e} \cdot dt \right)$ $\mathbf{x}_{a} = \mathbf{V}_{p} \cdot \mathbf{x}_{e} \left(1 + \frac{1}{pT_{N}} \right)$	Vexe Tring to t	$\begin{array}{c} \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$F_{(p)} = V_p (1 + \frac{1}{pT_N})$ $F_{(j\omega)} = V_p (1 + j \cdot \frac{-1}{\omega T_N})$
PD	$x_{a} = V_{p}(x_{e} + T_{v} \cdot \frac{dx_{e}}{dt})$ $x_{a} = V_{p}(x_{e} + x_{e} \cdot pT_{v})$	Vpxe xe	$\begin{array}{c} & & \\ \hline \\ \times_e \\ \hline \\ \times_e \\ \hline \\ \times_e \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$F_{(p)} = V_{p}(1 + pT_{v})$ $F_{(j\omega)} = V_{p}(1 + j\omega T_{v})$
PID	$\mathbf{x}_{a} = \mathbf{V}_{p}\mathbf{x}_{e} \left(1 + \frac{1}{T_{N}} \int_{O}^{O} dt + T_{V} \frac{d}{dt} \right)$ $\mathbf{x}_{a} = \mathbf{V}_{p}\mathbf{x}_{e} \left(1 + \frac{1}{pT_{N}} + pT_{V}\right)$	Vaxe xe	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\begin{split} \mathbf{F}_{(\mathbf{p})} &= \mathbf{V}_{\mathbf{p}} \left(1 + \frac{1}{\mathbf{pT}_{\mathbf{N}}} + \mathbf{pT}_{\mathbf{v}}\right) \\ \mathbf{F}_{(j\omega)} &= \mathbf{V}_{\mathbf{p}} \left[1 + j\left(\omega\mathbf{T}_{\mathbf{v}} - \frac{1}{\omega\mathbf{T}_{\mathbf{N}}}\right)\right] \end{split}$
Р Т ₁	$x_{a}^{a} + T_{1} \cdot \frac{dx_{a}}{dt} = x_{e}$ $x_{a}^{o}(1 + pT_{1}) = x_{e}$	xa o Tr	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$F_{(p)} = V_p \frac{1}{1 + pT_1}$ $F_{(j\omega)} = V_p \frac{1 - j\omega T_1}{1 + \omega^2 T_1^2}$
ΡT ₂	$x_{a}^{+2dT} \frac{dx_{a}}{2dt} + T_{2}^{2} \frac{dx_{a}^{2}}{dt^{2}} = V_{p} x_{e}^{2}$ $\int_{x_{a}}^{0} (1+2dpT_{2}^{+}p^{2}T_{2}^{2}) = V_{p} x_{e}^{2}$	viet viet	$\begin{array}{c} & & \\$	$F_{(j\omega)} = V_{p} \frac{1 - \omega T_{2}^{2} - j2d\omega T_{2}}{2 2 2 2 2 2}}{(1 - \omega T_{2}) + 4d\omega T_{2}}$
PT _n	$x_{a} \cdot a_{o} + a_{1} \dot{x}_{a} + \dots + a_{n} \dot{x}_{a} = b_{o} x_{e}$ $v_{p} = \frac{b_{o}}{a_{o}}$	A T T T T T T T T T T T T T T T T T T T	\overline{X}_{e} PT_{f} $ PT_{f}$ \overline{X}_{a}	$F_{(p)} = \prod_{i=1}^{n} \frac{v_{p_i}}{1 + pT_i}$
PT _t	$x_{a} = \frac{\nabla p \cdot x_{e}}{p(t-T_{t})}$ o $x_{a} = \frac{\nabla p \cdot x_{e} \cdot e}{p \cdot x_{e} \cdot e}$	v v v v v v v v v v v v v v v v v v v	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$F_{(p)} = V_{p} \cdot e^{-j\omega T_{t}}$ $F_{(j\omega)} = V_{p} \cdot e^{-j\omega T_{t}}$

Tabelle 3.1 Übertragungsverhalten und Frequenzgang-Darstellung der wichtigsten Regelkreisglieder

 $= v_p(\cos\omega T_t - j\sin\omega T_t)$

Tabelle 3.1 (Forts.)

 λ

Frequenzga Gleichung	ngbetrag Darstellung	Beispiele für Reg Analogtechnik	elkreisglieder Mechanik/Elektrot.
allg. $\frac{ \mathbf{F}_{(j\omega)} }{dB} = 201g \mathbf{F}_{(j\omega)} $ $ \mathbf{F}_{(j\omega)} = \mathbf{V}_{p}$	4/ <i>F</i> (<i>rjw</i>)/ <i>d B</i> <i>d B</i>	$ \begin{array}{c} R_{7} \\ U_{e} \\ V_{\rho} = R_{2}/R_{7} \end{array} $	$ \begin{array}{c} $
$ \mathbf{F}_{(j\omega)} = \frac{1}{\omega \mathbf{T}_{I}}$	$\begin{array}{c c} F \\ \hline dS \\ 20 \\ \hline \\ 0 \\ \hline \\ $	$\begin{array}{c} R_{\tau} \\ U_{c} \\ T_{z} = R_{\tau} \cdot C \end{array}$	Hotor M T_{T}
$ \mathbf{F}_{(j\omega)} = \omega \mathbf{T}_{\mathbf{D}}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} C \\ \hline U_{e} \\ \hline T_{D} = R_{2} \cdot C \end{array}$	$F = \frac{1}{S} + F$ $f = -N \frac{d\Phi}{dt}$
$\left \mathbf{F}_{(j\omega)} \right = \mathbf{v}_{p} \sqrt{1 + \frac{1}{\omega^{2} \mathbf{T}_{N}^{2}}}$	$\begin{array}{c c} F ^{1} & 3dB \\ \hline dB \\ \hline dB \\ \hline dV \\ dV \\$	$\begin{array}{c c} R_{1} & R_{2} & C \\ \hline U_{e} & \downarrow \downarrow & U_{a} \\ \hline T_{w} = R_{2}C \\ T_{7} = R_{7}C & V_{P} = R_{2}/R_{1} \end{array}$	Pa Late Late Late Vordruck
$\left F_{(j\omega)}\right = v_{p}\sqrt{1+\omega^{2}T_{v}^{2}}$	IFT de exakt 3dB NV asympt	$\begin{array}{c} c \\ R_1 \\ U_2 \\ T_V = R_1 C \\ T_2 = R_2 C \\ V_P = R_2 / R_1 \end{array}$	
$\left \mathbf{F}_{(j\omega)} \right = \mathbf{v}_{p} \sqrt{1 + \left(\omega \mathbf{T}_{v} - \frac{1}{\omega \mathbf{T}_{N}} \right)^{2}}$	$ \begin{array}{c} F_{1}^{F_{1}} & \omega^{*} \cdot \frac{1}{V_{T_{0}}V_{T_{0}}} \\ exact \\ exa$	$U_{e} \xrightarrow{R_{1}} U_{a}$ $V_{e} \xrightarrow{R_{2}C_{2}} U_{a}$ $T_{V} = R_{2}C_{2}$ $V_{p} = R_{2}/R_{1}$	
$\left \mathbf{F}_{(j\omega)} \right = \mathbf{V} \frac{1}{\mathbf{V}_{1+\omega^2 \mathbf{T}_1^2}}$	IFI asymptotisch exakt 0 wert HE HE	$\begin{array}{c} R_{1} \\ \hline \\ U_{e} \\ \hline \\ T_{q} = R_{2}C \end{array} \\ \begin{array}{c} V_{p} = R_{2}/R_{1} \\ V_{p} = R_{2}/R_{1} \end{array}$	Γ ₄ − V, P Reibg. Rs <i>T₄</i> = V.Rs <i>Druckbehält</i> .
$ F_{(j\omega)} = \sqrt{\frac{1}{p_{\sqrt{(1-\omega T_2)^2 + 4d\omega T_2^2}}}}$	IF dict mit d alle real alcon real alcon real alco	R_{r} R_{2} C_{2} C_{2} C_{2} C_{2} C_{2} C_{3} C_{4} C_{4}	Fedr-Hasse-System ^{Sa} mit Dämpfung identisch elektirischer Reihenschwing- kreis
$ \stackrel{ F_{(j\omega)} }{=} \frac{\frac{v_{p}}{\sqrt{1-\frac{2}{\omega_{T}}^{2}}^{2} + (\omega_{T_{1}}^{-\frac{3}{\omega_{T}}})^{3}}}}{\sqrt{1-\frac{2}{\omega_{T}}^{2}} + (\omega_{T_{1}}^{-\frac{3}{\omega_{T}}})^{3}}} $	Ela wewerd d=7 PT3 0 wer werd Erracki asymptotisch		
$ F_{(j\omega)} = V_p$	1/7/ 178 ~4/p 0 	<u>jede Signalwandlung</u> <u>hat Tot 20:t</u> Z.B. Z <u>e</u> W Digitel- Analogwamdler Ua	$T_{z} = \frac{\zeta}{v}$

X

Tabelle 3.1 (Forts.)

 \mathcal{X}

Phasenwinkel $arphi$ Gleichung Darstellung		Ortskurve Gleichung Darstellung	
$\varphi = 0^{\circ}$		$F_{(j\omega)} = V_p$	Jn Vp Re
\$ = arctan - ∞ = -90 ⁰	9 0 -50 -50	$F_{(j\omega)} = -j\frac{1}{\omega T_{I}}$	Jm 0
$\varphi = + 90^{\circ}$	9 30 ⁰ 0 ⁰ <u>Xi</u>	$F_{(j\omega)} = j\omega T_D$	$\int m = 0$ $\int w = 0$ Re
$\varphi = -\arctan \frac{1}{\omega T_N}$	$\begin{array}{c} \varphi & \underbrace{\omega_{H}}{70} \omega_{H} & 10 \cdot \omega_{H} \\ 0 & 1 & 1 \\ -15 & 1 & -1 \\ -15 & -1 & -1 \\ -15 & $	$F_{(j\omega)} = V_p (1 - j\frac{1}{\omega T_N})$	$ \begin{array}{c} \frac{Jm}{\omega} & \\ 0 & \\ \psi^{*} & \\ \psi^{*} & \\ \psi^{*} & \\ \end{array} $
$arphi$ = arctan ωT_v	90 asympt. 90 exakt 450 exakt 1 exakt 1	$F_{(j\omega)} = V_{p}^{(1+j\omega T_{v})}$	$J_{m} \leftarrow V_{\rho} \rightarrow \qquad $
$\varphi = \arctan(\omega T_v \frac{1}{\omega T_N})$	$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	$F_{(j\omega)} = V_{p} [1+j(\omega T_{v} - \frac{1}{\omega T_{N}})]$	$J_{m} = \frac{1}{\omega^{*}} \frac{1}{\sqrt{T_{W}T_{V}}}$
φ = - arctan ωT_1	14 WETHO WEN TOWEN	$F_{(j\omega)} = V_{P_{1+\omega^{2}T_{1}}^{2}}$	Jm Vp - Vp
$\varphi = -\arctan\frac{2d\omega T_2}{1-\omega^2 T_2^2}$	10	$F_{(j\omega)} = V_{P} \frac{1 - \omega^2 T_2^2 - j2d\omega T_2}{(1 - \omega^2 T_2^2)^2 + 4d^2 \omega^2 T_2^2}$	Jm Vo w= w w= o w= o Re d= ag d= ag
$\varphi_{\min} = 0^{\circ}$ $\varphi_{\max} = n \cdot (-90^{\circ})$		$ \mathbf{P}_{j\omega} = \mathbf{P}_{j\omega} \left[\mathbf{V}_{p} \frac{(1 - \omega^{2} \mathbf{T}_{2}^{2}) - j(\omega \mathbf{T}_{1} - \omega^{2} \mathbf{T}_{3}^{3})}{(1 - \omega^{2} \mathbf{T}_{2}^{2})^{2} + (\omega \mathbf{T}_{1} - \omega^{3} \mathbf{T}_{3}^{3})^{2}} \right] $	Jm Vp 0 1 1 1 1 1 1 1 1 1 1 1 1 1
$\widehat{\varphi} = -\omega T_t$	Parabel	$F_{(jw)} = V_p (\cos w T_t - j \sin w T_t)$ $= F_j w T_t = \cos w T_t + j \sin w T_t$	Jm + j Vp - Vp - Wp - d Vp - d Vp

X

Oldenbourg-Bücher

Henning Tolle

Mehrgrößen-Regelkreissynthese

Band I: Grundlagen und Frequenzbereichsverfahren 1983. 398 Seiten, 176 Abbildungen, 2 Tabellen,

Mit der Möglichkeit, auch komplexere Regelungen über Mikroprozessoren zu verwirklichen, gewinnt der systematische Entwurf von Mehrgrößenregelungen an Bedeutung. Theoretiker wie Praktiker in Forschung wie Industrie erhalten hier systematische Hilfe bei der Lösung von Problemen.

Band II: Entwurf im Zustandsraum 1985. 414 Seiten, 78 Abbildungen, 3 Tabellen,

Dieser Band bringt (als Ergänzung, aber weitgehend unabhängig von Band 1) den Komplex "Synthese im Zustandsraum". Damit zeigt dieses umfassende Werk vollständig und systematisch die neuesten Verfahren und Methoden zur Regelung von Prozessen mit mehreren Ein- und Ausgängen.

R. Oldenbourg Verlag Rosenheimer Straße 145, 8000 München 80

MANNESMANN Hartmann & Bravn

Wir übernehmen Verantwortung.

Hartmann & Braun bietet ein lückenloses Programm zur Lösung von Meß- und Automatisierungsaufgaben der Verfahrenstechnik in den Bereichen Chemie, Mineralöl, Metalle, Minerale und Energieerzeugung.

Wir haben uns spezialisiert auf die eine große Aufgabe, Instrumente und Systeme zu bauen, die der Beherrschung und Verbesserung industrieller Erzeugungs- und Verarbeitungsprozesse dienen. Eine Aufgabe, deren Bedeutung ständig zunimmt. Denn immer geringere Rohstoff-Reserven müssen noch sparsamer, noch sicherer und noch sauberer genutzt werden.

Alle, die daran mitwirken, haben eine große Verantwortung übernommen: Verantwortung für die Menschen, die dafür und damit arbeiten. Und Verantwortung für die Welt, in der wir alle leben und in der auch kommende Generationen leben wollen.

Hartmann & Braun AG

Gräfstraße 97, Postfach 900507, D-6000 Frankfurt 90, Telefon (069) 79.91.

Das komplette Programm vom analogen Regler zum digitalen Prozeßleitsystem

- Meßwerkregler und Schreiber für Druck, Temperatur und elektrische Meßgrößen.
- Pneumatische und elektronische Regelsysteme mit allen Komponenten f
 ür Regelung und Registrierung im pneumatischen und elektronischen Einheitssignalbereich.
- Dezentrale mikroprozessorgesteuerte Prozeßleitsysteme f
 ür die Prozeßf
 ührung umfangreicher Anlagen.

VDO MESS-UND REGELTECHNIK GMBH

Geschäftsbereich Prozesstechnik Hackethalstraße 7 · 3000 Hannover 1 · Telefon (0511) 6782-0 Telex 922149 drd-d

ECKARDT ... die ganze Regeltechnik

regeln

stellen

automatisieren

planen

inbetriebnehmen

umformen

vom Einzelgerät bis zum System von der Planung bis zur Inbetriebnahme

ECKARDT AG · Postfach 50 03 47 · D-7000 Stuttgart 50 · Telefon (07 11) 5 02-1 · Telex 7 254 662

Regeln, steuern, optimieren: z.B. mit universell einsetzbaren Stellventilen der Bauart 240 und dem kompletten Zubehör.

SAMSON Stellventile Bauart 240 sind in der Verfahrenstechnik und im Anlagenbau bei industriellen Anforderungen vielseitig anwendbar. Sie sind im Baukastenprinzip ausgeführt und mit allen erforderlichen Zusatzgeräten kombinierbar.

Besondere Eigenschaften der SAMSON Stellventile Bauart 240:

- Ventilgehäuse für Durchgangs- und Dreiwegeventile aus Grauguß, Stahlguß, korrosionsfestem oder kalt-zähem Stahlguß, sowie für PN 25 aus Sphäroguß GGG-40.3. Nennweite DN 15–150, Nenndruck PN 10-40, Temperaturen von -196 °C bis +450 °C.
- Geräuscharme Ventilkegel als Normalausführung, metallisch-dichtend, weich-dichtend für Leckdurchfluß \leq 0,0001 % vom k_{vs}-Wert, druckentlastet zur Beherrschung großer Differenzdrücke. Sonderausführung mit eingebautem Strömungsteiler zur weiteren Geräuschreduzierung.
- Zusätzliche Metallbalgabdichtung mit absolut dichtem, korrosionsfestem Stahlbalg möglich.

- Heizmantel für Durchgangsventile.
- Mikroventile DN 15 und DN 25 für k_{vs}-Werte von 0,0001 bis 0,063 m3/h.
- TÜV-bauteilgeprüfte Ventilausführungen für Wärmeerzeuger und typgeprüfte Ausführungen für Allgas.
- Austauschbare Stellantriebe (pneumatisch und elektrisch), auch mit Handverstellung.
- Leichter Anbau von pneumatischen und elektropneumatischen Stellungsreglern sowie Grenzsignalgebern entsprechend der NAMUR-Empfehlung.
- Elektropneumatische Meß- und Stellumformer in 19"-Einschubausführung oder im Feldgehäuse, mit besonders günstigen dynamischen Eigenschaften und extrem kleinem Schütteleinfluß.
- Besonders kompakte Bauweise der Stellgeräte.
- Für Nenndruck bis PN 400, Nennweiten bis DN 500 und Temperaturen bis 550 °C lie-

fern wir unsere Stellgeräte der Bauart 250 mit elektrischen oder pneumatischen Stellantrieben.

SAMSON AG · MESS- UND REGELTECHNIK · Weismüllerstraße 3 · D-6000 Frankfurt am Main 1

Strommeßzange für hohe Gleichströme

- 1. Vielfältige Anwendungsbereiche: Stromrichtertechnik, Galvanik, Großelektrolysen, Elektrische Maschinen
- 2. Robuste vollisolierte Ausführung
- 3. 0...± 19,99 kA
- 4. handlich: Gewicht 0,72 kg
- 5. Anzeigespeicher
- 6. Tastenbetätigung
- 7. Automatische Abschaltung nach ca. 40 s
- 8. Batterielebensdauer ca. 5000 Meßzyklen

Feller Elektronik GmbH Eisenbahnstraße 9 · 6074 Rödermark Telefon (06074)981 69

Otto Föllinger

Lineare Abtastsysteme

2. überarbeitete und erweiterte Auflage 1982. 413 Seiten, 113 Abbildungen, 2 Tabellen, ISBN 3-486-34432-3 Reihe: Methoden der Regelungstechnik

Eine gut lesbare und anwendungsnahe Darstellung der gegenwärttig wichtigsten Anwendung der Abtastsysteme, dem Einsatz von Prozeßrechnern zur Steuerung und Regelung (DDC-Technik). Das Buch bringt eine fundierte Darstellung der Begriffsbildungen und Methoden, aus der sich die praktische Handhabung ergibt. Sehr ausführlich sind das Stabilitätsproblem und der Entwurf auf endliche Einstellzeit dargestellt. Aber auch die klassischen Entwurfsverfahren mittels Wurzelortskurve und Frequenzkennlinien wurden berücksichtigt. Durch die Verwendung des Zustandsraumes wird der Anschluß an die neuere Theorie hergestellt.

R. Oldenbourg Verlag, Rosenheimer Straße 145, 8000 München 80

KELLER

PIEZORESISTIVE DRUCKAUFNEHMER

"Low cost" Serien

Chip nackt oder Parylene geschützt. Für Printaufbau oder Gehäuseeinbau.

Einbau Messelemente Alle Teile mit Medienkontakt, rostfreier Stahl Ø 19 und Ø 15.

Druckaufnehmer Komplett aus rostfreien Materialien. Dichte Kabelanschlüsse.

Industrieverstärker Laborverstärker Anzeigegeräte

Schillerstrasse 25/3 D-7129 Güglingen Tel. 07135/2205, Telex 728606

KELLER

St.Gallerstrasse 106 CH-8404 Winterthur Tel. 052/29 11 26, Telex 76823

Tragbarer Stromgeber 0...20 mA

für Netz- und Batteriebetrieb (220 V) • zum Test von Stellgliedern und Meßumformern • \pm 1%, max. 55°C • zul. Bürde bei 20 mA: 500 Ω • Leuchtdiodenanzeige, Betriebsspannung u. Bürde • Batterielebensdauer bei Aussetzbetrieb u. 20 mA: 1500 Prüfgänge je 10 s

Bei Netzbetrieb autom. Batterieabsch.

Feller Elektronik GmbH Eisenbahnstraße 9 · 6074 Rödermark Telefon (06074) 981 69

Nicht mal eine Zigarettenlänge

warten Sie, bis unser Modell 200 S

ein tragbares Kalibriergerät

eineReferenztemperaturvon+200°C (3 Minuten) erzeugt hat. Das Modell 600 S erreicht + 600°C in nur 6 Minuten. Die dabei erzielbare Genauigkeit von 0.5% ist für Sie sicherlich genauso wichtig wie die Tatsache, daß die Prüftemperatur mit weniger als 0,5% Abweichung wiederholbar ist. Ebenso schnell stehen Ihnen bei dem Modell D 50 RC +/- 50°C von der Umgebungstemperatur zur Verfügung. Dann wäre noch auf das neue Druckprüfgerät Typ PPCI hinzuweisen, das im Meßbereich von 0-100 bar mit einer Genauigkeit von +/- 0,1% arbeitet, wobei Sie den erreichten Prüfdruck bis zu einer Auflösung von 1/100 ermitteln können.

Alle Temperaturen und Drücke lesen Sie bequem und sicher digital ab. Auch die Analogausgabe über Femabfrage oder Drucker ist möglich.

Vereinbaren Sie einen Vorführtermin.

RÜEGER

RÜEGER GMBH · BILDSTÖCKLE 5 · 7000 STUTTGART 80 · TEL 07 11-71 40 89 · TX 7 255 663

Automatisierungstechnik

Unsere Fachzeitschriften:

"Technisches Messen · tm"

Zeitschrift für Fertigungs- und Prozeß- Meßtechnik – Messen für technische Anwendungen.

Organ der NAMUR (Normenarbeitsgemeinschaft für Meß- und Regeltechnik in der Chemischen Industrie). Mit Mitteilungen der VDI/VDE-Gesellschaft Meß- und Regelungstechnik.

"Automatisierungstechnik · at"

Zeitschrift für Methoden und Anwendung der Meß-, Steuerungs-, Regelungs- und Informationstechnik.

Organ der VDI/VDE-Gesellschaft Meß-und Regelungstechnik (GMR) und der NAMUR (Normenarbeitsgemeinschaft für Meßund Regeltechnik in der Chemischen Industrie).

"Automatisierungstechnische Praxis · atp"

Zeitschrift für die Praxis der Meß-, Steuerungs-, Regelungs- und Informationstechnik, mit dem ständigen Themenbereich Softwaretechnik.

Organ der VDI/VDE-Gesellschaft Meß- und Regelungstechnik (GMR) und der NAMUR (Normenarbeitsgemeinschaft für Meßund Regeltechnik in der Chemischen Industrie).

"Process Automation · pa"

Zeitschrift in englischer Sprache für ausgewählte, praxisbezogene Beiträge aus der Meß-, Steuerungs-, Regelungs- und Informationstechnik.

Fordern Sie kostenlose Probehefte an!

R. Oldenbourg Verlag GmbH

Zeitschriftenvertrieb 8000 München 80, Postfach 801360

Dipl.-Ing. Peter F. Orlowski ist Professor an der Fachhochschule Gießen-Friedberg im Fachbereich Maschinenbau und Feinwerktechnik und betreut die Fachgebiete Elektrische Antriebe, Regeltechnik und Angewandte Elektronik.

Das Buch gibt eine übersichtliche Einführung in die Regeltechnik. Es behandelt anhand zahlreicher Beispiele und Aufgaben (mit Lösungen) folgende Stabilitätskriterien für lineare kontinuierliche Systeme:

- Nyquistkriterium im Bode-Diagramm
- Nyquistkriterium in Ortskurven-Darstellung
- Zwei-Ortskurven-Verfahren

Als wertvolle Hilfsmittel werden stoffbegleitend der Taschenrechner HP 41 und BASIC-Programme für Personal-Computer eingesetzt (mit Programmlisting).

Ein Großteil des Buches ist der ausführlichen Darstellung der Regelkreis-Optimierung und den technischen Anwendungen gewidmet.

Aufgrund der zahlreichen Beispiele, Tabellen und Programme ist das Buch zum Selbststudium gut geeignet. Es ist besonders für alle praxisorientierten technischen Studiengänge und Ingenieure im Anlagenbau gedacht.

Oldenbourg

ISBN 3-486-29131-9