AD-A140 573

NAVAL POSTGRADUATE SCHOOL Monterey, California

HP-41C PROGRAMS AND INSTRUCTIONS

FOR

PROBABILITY AND STATISTICS

Ъу

Peter W. Zehna

February 1984

Approved for public release; distribution unlimited.

Prepared for:

Naval Postgraduate School Monterey ,California 93943

NAVAL POSTGRADUATE SCHOOL Monterey, California

Commodore R. H. Shumaker Superintendent

David A. Schrady Provost

Reproduction of all or part of this report is authorized.

This report was prepared by:

ehna

Peter W. Zehna, Professor Department of Operations Research

Reviewed by:

Alan R. Washburn, Chairman Department of Operations Research

Released by:

Kneale T. Marshall Dean of Information and Policy Sciences

SECURITY CLASSIFICATION OF THIS PAGE (Then Det	. Entered)	
REPORT DOCUMENTATION	PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
I. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
NPS55-84-003	A: 1.140 5	73
4. TITLE (and Subtitie)		S. TYPE OF REPORT & PERIOD COVERED
AND STATISTICS	FOR PROBABILITY	Technical
AND STATISTICS		S. PERFORMING ORG. REPORT NUMBER
7. AUTHOR()		5. CONTRACT OR GRANT NUMBER(*)
Peter W. Zehna		
. PERFORMING ORGANIZATION NAME AND ADDRES	8	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Naval Postgraduate School Monterey, CA 93943		
noncercy; on 33343		
1. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE
Naval Postgraduate School		February 1984
Monterey, Ca 93943		108
14. MONITORING AGENCY NAME & ADDRESS(II dillor	nt from Controlling Office)	15. SECURITY CLASS. (of this report)
		UNCLASSIFIED
		15. DECLASSIFICATION/DOWNGRADING
		SCHEDULE
7. DISTRIBUTION STATEMENT (of the abetract entered	d in Olock 20, il different fre	n Report)
8. SUPPLEMENTARY NOTES		
9. KEY WORDS (Continue on reverse elde if necessary a HP Programs	nd identify by block number;	
Probability and Statistics		
Calculator Programs		
0. ABSTRACT (Continue on reverse elde il necessory a	nd identify by block number)	
A compendium of programs and inst tered in probability and statist directly on the HP-41C family of	tructions to solv ics. Programs are hand-held calcul	e problems typically encoun- e designed to operate ators.

HP-41C PROGRAMS AND INSTRUCTIONS FOR PROBABILITY AND STATISTICS

by

Peter W. Zehna

INTRODUCTION

The purpose of this report is to make available a set of programs and the corresponding user instructions so that the problem material found in the writer's textbooks, Probability by Calculator and Statistics by Calculator* (hereafter referred to, respectively, as ZP and ZS) may be resolved using the HP-41C calculator. In particular, this means that courses using those textbooks, written entirely around the TI-59, need no longer be restricted to that particular machine as a prerequisite. It is almost essential, however, that the HP user have in his or her possession either the HP-41CV, or the HP-41C with the quad memory module installed, along with a card reader for recording magnetic cards. Also, as with the TI-59, it will be necessary to insert the HP applications module STAT PAC for use with the programs in ZS. No additional module is required for ZP.

The original intention was to write the HP programs in such a way that the TI user instructions could be used with little or no modification. That program was about 90% successful so that, in general, storage in various registers are identical as are the main subroutines labeled with user defined keys (with HP a,b,c, etc., replacing TI A', B', C', etc. in a natural way). There are, however, some special problems created by the differences in the two machines (RPN not being one of them, by the way) that made it impossible to be 100% successful in that endeavor. For example, the TI random number generator could not be duplicated in the HP because of the difference in accuracy of the two machines. Since the TI carries more significant figures internally than the HP, and that internal carriage is used to generate successive seeds for repeated applications, the two machines soon differ in their output. For true applications of random number generation that would be insignificant, even a desirable difference perhaps, but for tutorial purposes, which is the main intent of the books, that makes it impossible to verify answers and that is a serious drawback for the learner. Otherwise, the difference in accuracy created no special problems. The FIX 4 format is used in all of the HP output to follow and it will be found that the corresponding answers then agree to within 4 decimal places (the maximum usually presented in ZP and ZS) of the published answers given in the two books, almost without exception.

Writing the HP programs to utilize essentially the same user instructions as the TI meant not being able to take full advantage of the superior alphanumerics and prompting facility of the HP41-C. The user may well want to adjust the programs presented here to take better advantage of that option but should of course adjust the user instructions accordingly. That particular feature in itself creates some special problems with regard to the use of HP applications modules like STAT PAC. Almost all of the programs in that module contain pauses for prompts from the user. Unfortunately, when such programs are called as subroutines within a calculator program, there is no automatic return from the module program to the parent one. Much of the success of the TI programs depended on precisely this feature utilizing the canned programs available in the master module for ZP and the statistics module for ZS. This made it necessary to replace several of the programs in the HP STAT PAC that would otherwise have been used, as well as to supply several key programs, such as the t and F distributions, that were missing. Fortunately, the massive memory capability furnished by the HP quad memory made it possible to furnish these and still have enough room for the main programs of interest. For ZS then, a special program called ZSTAT has been supplied for which there

^{*}Prentice-Hall, Inc., Englewood Cliffs, NJ, 1982

is no direct TI analogue. The reader may view this as simply an addition to the HP STAT PAC in order to bring it more in line with the TI statistics module utilized throughout ZS.

In order to follow the textbooks as closely as possible with the least amount of cross-referencing, the following format will be followed. Starting with ZP, each chapter or section for which a separate program exists will be discussed separately starting on a new page. After pointing out any general differences that may exist for that chapter or section including the illustrative examples contained therein, the HP version of the User Instructions for that program will be added, together with a set of examples for each subroutine such as presently found in the books for the TI programs. These model examples will show exactly what the user may expect to see in the display upon executing each step. In each case, the reader will find, in addition to the Register Contents as currently published in the textbooks, a set of assignments used by the program along with a listing of labels used (which may also be seen in the complete listing of the programs in the appendix).

The reader should remember to assign, record (and subsequently read) the magnetic cards in USER mode so as to preserve those assignments. In those assignments, we often use lower case versions of capital letters even when they do not, technically, exist. Thus, [i] is used for the alphanumeric [<] since the latter is located above [I] and is effected by pressing the gold shift key, then [I]. Similar remarks apply to [g] (really [%]), [h] (really [*]) and [j] (really [>]). Of course [a], [b], [c], etc. are actually listed in the alpha keyboard.

Since the [X<>Y] key is used in so many programs, and its execution is considerably slower in USER mode, it is advisable to assign the function X<>Y to this key at the start of a session. Such an assignment cannot be made permanent in the programs, but will remain in effect unless the master clear is used.

PROBABILITY BY CALCULATOR

Section 1.3: The Calculator

It is assumed here that the reader is reasonably familiar with the Owner's Handbook and Programming Guide for the HP-41C. The general remarks found in this section apply to the HP as well. It has already been remarked that a card reader will be needed to follow the program outlined here. It is possible to do without the magnetic cards for some of the programs since they may be keyed in once and the continuous memory feature of the HP will preserve them. But even that generous memory allowance will soon be used up and programs will have to be replaced to follow all of the subroutines presented in these textbooks. The magnetic cards removes the necessity of having to re-key so many separate programs. Guidelines for recording magnetic cards will be found in the Card Reader handbook and should be consulted.

Section 1.4: The Programs

Many of the remarks in this section will not apply directly to the HP calculator and, again, the Owner's Handbook should be consulted for specifics regarding the related keys. The programs will appear in print-out (see Appendix) as numbered steps with the corresponding mnemonic code (no key code as with the TI). Most are self-explanatory and the Function Index given in the back of the Handbook will be found very helpful should the reader encounter any that are not immediately recognized. Naturally, the programs should be identical with the listings given in the Appendix before any recording takes place.

Section 2.4: Counting Problems

The internal function FACT in the HP will replace the use of label C in Pgm 16 of the TI to display factorials as discussed on page 21. That function has exactly the same restriction, namely, that n must be any positive integer between 0 and 69 inclusive, displaying OUT OF RANGE for larger values. There are no internal programs to handle permutations and combinations directly so they have been programmed in the first card program labeled ZP2. You will find the instructions under Steps 7 and 8. Each scheme prompts you for an input of first N and then R to compute the corresponding values. (The HP alphanumerics do not permit lower case letters so the notation differs just slightly from the book.) With these routines, the answers to the problems in this section may be verified.

Section 2.5: Conditional Probability

The rest of program ZP2 has to do with Bayes probabilities and the instructions match those for the TI exactly (with a,b,c, etc. replacing A',B',C') as previously remarked.

ZP2 (As	2 (Assigned [e])USER INSTRUCTIONS (HP)SIZE > 090						
STEP	PROCEDURE	ENTER	PRESS	DISPLAY			
1.	Initialization	xxx	[e]	0.0000			
2.	Input probabilities (Repeat for j = 1,2,, k) NOTE: If Pr(C _j) = 1/k, use Step 2'	Pr(E C,) Pr(C _j) ^j	[A] [R/S]	j j			
2'.	a. Input partition size	k D-(T/C)	[E]	1/k			
	b. Input given priors	Pr(E C)	[K/S]	3			
3.	Compute Bayes posterior probability Pr(C _i E)	i	[B]	Pr(C _i E)			
4.	a. Initialize for sensitivity analysis	xxx	[e]	0.0000			
	b. Recall given priors		[D]	Pr(E C _j)			
	<pre>c. Input new cause probabilities (Repeat for j = 1,2,,k) NOTE: If new Pr(C_j) ≡ 1/k, use Step 4' j</pre>	New Pr(C _j)	[R/S]	ţ			
4'.	a. Initialize	xxx	[e]	0.0000			
	b. Input partition size	k	[4]	k			
5.	Compute Pr(E) (Law of Total Probability)	xxx	[a]	Pr(E)			
6.	Birthday Problem	k	[C]	Pr(E _k)			
	(E, is the event that two or more among k people in a room have the same birth date.)						
7.	Calculate $P(\frac{N}{R})$		[b]	N = ?			
		N	[R/S]	R = ?			
		R	[R/S]	P(^N _R)			
8.	Calculate $C(\frac{N}{R})$		[c]	N = ?			
		N	[R/S]	R = ?			
		R	[R/S]	C(^N _R)			

Regi	ster Conten	ts				
00	Used	10		20		Pr(E C1)
01		11	Used	21		Pr(C ₁)
02		12	Used	22		Pr(EC2)
03	k	13	1/k	23		$Pr(C_2)$
04	$\Sigma Pr(E C_j)$	14	Used	24		•
05		15		25		•
06		16		26		•
07		17		27		
08		18		28		
09		19		29		
Ass	Ignments		La	bels	Us	ed
<u>700</u>				0213		
422	1 4			02	•	a
			I	03	B	Ъ
			i	04	С	c
			i	05	D	đ
				^0	E	
				VO	-	
				09	-	
				0 9 10	-	
				09 10 11	-	
				09 10 11	-	

EXAMPLES ZF2 (1) Suppose in medical diagnostics a particular symptom (E) always occurs in conjunction with three diseases C_1 , C_2 , C_3 with respective probabilities 0.90, 0.09 and 0.009 or else occurs rarely (0.001) with no apparent reason (C_4) at all. National statistics show that most people are free of the three diseases, $Pr(C_4) = 0.99$, and disease C_1 is fairly rare, $Pr(C_1) = 0.0001$. Diseases C_2 and C_3 occur with respective probabilities 0.0045 and 0.0054.

Bayes Format:

Events	Conditional Priors	Cause Probabilities	Conditional Posteriors
C ₁ = Disease #1	0.90	0.0001	0.0587
$C_2 = Disease #2$	0.09	0.0045	0.2641
$C_3 = Disease #3$	0.009	0.0054	0.0317
$C_4 = No Disease$	0.001	0.9900	0.6455

E = Symptom

Calculator Solution:

Pr(E) = 0.0015

ZP STEP	ENTER	PRESS	DISPLAY	COMMENTS
Step 1		[e]	0.0000	Initialization
Step 2	.9	[A]	1.0000	First conditional prior
-	.0001	[R/S]	1.0000	Shows one pair entered
**	.09	[A]	2.0000	Second conditional prior
*	.0045	[R/S]	2.0000	Shows two pairs entered
**	.009	[A]	3.0000	Third conditional prior
*	.0054	[R/S]	3.0000	Shows three pairs entered
**	.001	[A]	4.0000	Fourth conditional prior
**	.99	[R/S]	4.0000	Shows four pairs entered
Step 3	1	[B]	0.0587	First conditional posterior
-	2	[B]	0.2641	Second conditional posterior
60	3	[B]	0.0317	Third conditional posterior
-	4	[B]	0.6455	Fourth conditional posterior
Step 4		[a]	0.0015	Probability of E

EXAMPLES ZP2 (2) A manufacturer of hand-held calculators has three different assembly plants F, M and T. These three plants historically produce defective items with respective probabilities 0.01, 0.02 and 0.04. Plant F produces 50% of the calculators while plants M and T produce, respectively, 30% and 20%.

Original Bayes Format:

Events	Priors	Causes	Posteriors
C ₁ = Plant A	0.01	0.50	0.2632
$C_2 = Plant B$	0.02	0.30	0.3158
$C_3 = Plant C$	0.04	0.20	0.4211
E = Defective		I	Pr(E) = 0.0190

Calculator Solution for Changing Priors to $p_i \equiv 1/3$ (after original entry):

ZP ST	EP	ENTER	PRESS	DISPLAY	COMMENTS
Step	4a.		[e]	0.0000	Initialization
Step	4Ъ.		[D]	0.0100	First prior displayed
Step	4c.	1/3	[R/S]	1.0000	First cause prob. changed
Step	4b.		[D]	0.0200	Second prior displayed
Step	4c.	1/3	[R/S]	2.0000	Second cause prob. changed
Step	46.		[D]	0.0400	Third prior displayed
Step	4c.	1/3	[R/S]	3.0000	Third cause prob. changed
Step	3	1	[B]	0.1429	New $Pr(E C_1)$
**		2	[B]	0.2857	New $Pr(E C_2)$
		3	[B]	0.5714	New $Pr(E C_3)$
		Alterna	te Solution:	:	
Step	4'a.		[e]	0.0000	Initialization
Step	4'b.	3	[d]	3.0000	Partition size entered
Step	3	1	[B]	0.1429	New Pr(E C ₁)
**		2	[B]	0.2857	New $Pr(E C_2)$
•		3	[B]	0.5714	New Pr(E C3)

	Solution:			
ZP STEP	ENTER	PRESS	DISPLAY	COMMENTS
Step 7.		[b]	N=?	Prompts for entry of N
	10	[R/S]	R=?	Asks for the value of R.
	2	[R/S]	90.0000	Display $P(\frac{10}{2}) = 90$.
		[Ъ]	N=?	Initializes permutation routine.
	4	[R/S]	R=?	Asks for the value of R.
	4	[R/S]	24.0000	Displays $4! = P(\frac{4}{4})$.
		[c]	N=?	Initializes combination routine.
	52	[R/S]	R=?	Prompts for entry of R=5.
	5	[R/S]	2,598,960	Displays $C(\frac{52}{5})$, the total number
				of poker hands.

EXAMPLES ZP2 (3) Calculate $P(\frac{10}{2})$, 4! and $C(\frac{52}{5})$.

NOTE: 4! may also be computed by executing the function FACT.

Section 3.2: Moments of a Random Variable

Just as with ZP2, the HP version of ZP3.2 (denoted ZP3-2 since a period may not be used in an ALPHA label) is almost exactly the same as the TI version. In the discussion of the program on page 57, you may ignore the warnings concerning capacity limitations and repartitioning the calculator. Sizing the HP to allow for more memory registers will accomplish the same thing. In any case, such problems will never arise in the applications presented here. You might observe the use of the alternate HP form, [X<>Y], for the X exchange Y key throughout this report. This is merely a concession to ease of printing. (HP Y-register is always used in place of TI T-register)

The one place where there is serious departure from the TI-59 is in repeated application of LABS. To erase a previous application with the TI, one need only over-write the old algorithm with the new one, paying no attention to what may or may not remain when the new algorithm is finished with a RETURN instruction. But, because algorithms must be created as individual subroutines with the HP, erasing is not so simple. At Step 4f. the beginning of the old algorithm is displayed at program step 88. The steps from this point on need to be erased and this may be accomplished with the internal function DEL. Then the new algorithm may be inserted where the old one resided and the program will function for the new case. As suggested in the footnote to the user instructions that follow, you might assign DEL to a label like [g] if a lot of erasing is to be done. Unfortunately, the DEL function cannot be recorded as an instruction in program memory so this will only be helpful for given session.

On page 59, an HP version of the algorithm for g(x)=3x+19 would be

RCL 09,3,*,19,+,RTN

and g(x)=(x*x-4)/(6x+7) could be keyed in as

4, RCL 09, ENTER, *, -, CHS, RCL 09, 6, *, 7, +, /, RTN

Here we have taken the liberty of using the printed symbol / for the division operator and the symbol * for multiplication.

Section 3.3: Hypergeometric and Binomial Distributions Section 3.4: Other Discrete Distributions

For both of there sections, the HP programs are practically identical with the TI programs. The basic difference is that the HP initialization step is to press [e] instead of RST. Having so used label e, label J is used for the number of trials, Y, to rth success at NB5 in program ZP3-4.

ZP3-2 (Assigned [e]) USER INSTRUCTIONS (HP))	SIZE 060		
STEP	PROCEDURE	ENTER	PRESS	DISPLAY	
1.	Distribution Entry a. Initialize b. Enter (in order) x_i , p_i (Repeat for $i = 1, 2,, N \le 20$; $x_1 < x_2 < < X_N$)	×i Pi	[e] [A] [R/S]	0.0000 ^x i 1.0000	
2.	Calculate P(x) (x-code = j where $x_j \leq x < x_{j+1}$)	x-code	[C]	P(x)	
3.	Calculate E(X), V(X) (after Step 1)		[E] [X<>Y]	E(X) V(X)	
4.	<pre>Calculate E[g(X)], V[g(X)] (after Step 1) a. Initialize NOTE: It is understood that [ALPHA] must be used for label B. b. Enter Program Mode</pre>		[GTO][B] [PRGM]	x.xxxx 87 LBL B	
	 c. Key in g(x) where x ε R₀₉ (Avoid labels already in use, end with RTN) d. Exit Program Mode e. Calculate Moments. 		- - [PRGM] [D] [X<>Y]	x.xxxx E[g(X)] V[g(X)]	
	f. To ERASE Algorithm in [B], complete Steps a,b; then let nnn be at least as large as the number of Steps in [B] [†]		[SST] [g] nnn [PRGM]	88 yy DEL 87 LBL B x.xxxx	

[†] For repeated uses of this step use ASN to assign DEL to g(%).

Register Contents								
00	Used	10	P(x)	20	×1			
01	x-address	11		21	P ₁			
02	p-address	12		22	x ₂			
03	N	13		23	P ₂			
04	^x i ^p i	14		24	×3			
05	x _i ² p _i	15		25	P ₃			
0 6	Mean	16		26	•			
07	2nd Moment	17		27	•			
0 8	Variance	18		28	•			
09	x-value	19		29				
Assig	mments		Lab	els	Jsed			
ZP3-2	2 e		10	A				
			02	В				
			03	С				
			04	D				
			05	E				
			0 6					
			07					

EXAMPLE ZP3-2. X = # daily sales of a morning newspaper at a local drugstore.

 x:
 0
 1
 2
 3
 4
 5

 p(x):
 0.01
 0.01
 0.04
 0.03
 0.67
 0.24

Solution:

ZP STEP	ENTER	PRESS	DISPLAY	COMMENTS
Step la.		[e]	0.0000	Initialization
Step 1b.	0	[A]	0.0000	Enter first x-value
•	.01	[R/S]	1.0000	Enter first p-value
**	1	[A]	1.0000	Enter second x-value
•	.01	[R/S]	2.0000	Enter second p-value
•	2	[A]	2.0000	Enter third x-value
•	.04	[R/S]	3.0000	Enter third p-value
•	3	[A]	3.0000	Enter fourth x-value
•	.03	[R/S]	4.0000	Enter fifth p-value
*	4	[A]	4.0000	Enter fifth x-value
*	•67	[R/S]	5.0000	Enter fifth p-value
	5	[A]	5.0000	Enter sixth x-value
*	.24	[R/S]	6.0000	Enter sixth p-value

Calculate P(4.5) (x-code = 5 since $x_5 \le 4.5 < x_6 = 5$)

Step 2	5	[C]	0.7600	Note that $x_1 = 0$ so that $x_5 = 4$.
Cal	culate µ =	$E(X)$ and $\sigma^2 =$	V(X).	· · · · · · · · · · · · · · · · · · ·
Step 3		[E]	4.0600	Display $\mu = 4.06$
		[X<>Y]	0.6764	Display $\sigma^2 = 0.6764$
Cal	culate E[g((X)] and V[g(X)] where g(x)	= 25x - 50 is net daily income.
Step 4a.		[GTO]	GTO	Initialize
		[ALPHA]	GTO	
		[B]	GTO B_	
		[ALPHA]	x.xxxx	
Step 4b.		[PGRM]	87 LBL B	
Step 4c.		[RCL]	88 RCL	
		09	88 RCL 09	Brings current x-value into
		25	89 25 <u>-</u>	R X

ZP STEP	ENTER	PRESS DISPLAY		COMMENTS
		[x]	90 *	Multiplies x by 25,
		50	91 50_	and subtracts
		[-]	92 -	50.
		[RTN]	93 RTN	Ends algorithm.
Step 4d.		[PRGM]	X . XXXX	Exit Program mode.
Step 4e.		[D]	51.5000	Calculates "average" daily net income as 51.5 cents.
		[X<>Y]	422.7500	Exhibits variance in cents ² .
		[USER]√x	20.5609	Shows σ as 20.56 cents.

Calculate E[g(X)] and V[g(X)] where g(x) is daily profit.

Step 4f.	[GTO]	GTO	Initialize
	[ALPHA]	GTO_	
	[B]	GTO B_	
	[ALPHA]	X • XXXX	
	[PGRM]	87 LBL B	Enters ZP-3.2 program at B.
	[SST]	88 y y	Locates first step of last algorithm
	[g]	DEL	Prepares to delete algorithm steps.
	010	87 LBL B	Deletes to END statement.
Step 4b.	2	88 2_	Enters 2 for comparison with x.
	[RCL]09	89 RCL 09	Retrieves x.
	[X>Y?]	90 x>y?	Asks if x>y?
	[GTO]20	91 GTO 20	Proceeds to subroutine to be constructed for evaluating g(x).
	0	92 0 _	Otherwise g(x)=0
	[RTN]	93 RTN	Ends that part of algorithm
	[LBL]20	94 LBL 20	Prepares to define subroutine.
	25	95 25	g(x) = 25x - 50,
	[x]	96 *	A return is not necessary
	50	97 50	since it is controlled by END.
	[-]	98 -	
	[PRGM]	X . XXXX	Exits program mode.
Step 4c.	[D]	52.2500	Calculates and exhibits "average" daily profit of 57.25 cents.
Step 4d.	[X<>Y]	313.6875	Shows profit variance.

ZP3-3 (Assigned [e]) USER INSTRUCTIONS (HP))	SIZE 030		
STEP	PROCEDURE	ENTER	PRESS	DISPLAY	
	Hypergeometric Distribution				
H1	Initialization		[e]	0.0000	
H2	Enter Parameters	N	[STO]14	N	
	$(n \leq N and 0 < M \leq N)$	м	[STO]15	м	
		n	[ST0]13	n	
H3	Calculate $P(k) = Pr(X \leq k)$	k	[A]	P(k)	
	p(k) = Pr(X = k)		[X<>Y]	p(k)	
H4	Calculate $Q(k) = Pr(X > k)$	k	[a]	Q(k)	
	p(k) = Pr(X = k)		[X<>Y]	p(k)	
	NOTE: Repeat H ₃ and/or H ₄ as often as desired.				
	Binomial Distribution				
B1	Initialization		[e]	0.0000	
B2	Enter Parameters (M \leq N)	N	[ST0]14	N	
		м	[STO]15	м	
		n	[STO]13	n	
B3	Calculate $P(k) = Pr(X \leq k)$	k	[B]	P(k)	
	p(k) = Pr(X = k)		[X<>Y]	p(k)	
B4	Calculate $Q(k) = Pr(X > k)$	k	[b]	Q(k)	
	p(k) = Pr(X = k)		[X<>Y]	p(k)	
	NOTE: Repeat B ₃ and/or B ₄ as often as desired.				
E	Display E(X) and V(X) (following any application of $H_3(H_4)$ or $B_3(B_4)$		[E] [X<>Y]	E(X) V(X)	

			_	and the second second second			
	_						
	Registe	r Contents					
	00		10	P(x)	20	Used	
	01 N	n for	11	μ	21	1 - M/N	
	02 r	k PMTON CMBON	12	σ2	22	m/n	
	03		13	n	23	Used	
1	04		14	N	24	N-M	
	05		15	M	25		
	06 Us	ed; p(k)	16	p(0)	26		
	07 Üs	ed; p(k)	17		27		
	0 8 Us	ed	18		28		
	0 9		19		2 9		
	Assignm ZP3-3 PMTON CMBON CMBON r storage R ₀₁ and for exe using X	ents e i h PMTON and equire of n in k in R ₀₂ , cution EQ ' '		Labe: 01 02 03 04 05 06 07 08 11 12 18 19	A B E	ed a b	

EXAMPLES ZP3-3. An urn contains five black balls and seven white balls.

- (1) A sample of size 3 is drawn without replacement. Calculate the probability of obtaining exactly two black balls, at most two black balls and at least two black balls. Answers are, respectively, p(2)=0.32, P(2)=0.95 and O(1)=0.36.
 (See display below.)
- (2) Repeat (a) for a sample drawn with replacement. Answers are, respectively, p(2)=0.30, P(2)=0.93, Q(1)=0.38.
- (3) For each of (a) and (b) determine the mean and variance of X, the number of black balls in the sample.

Ans. (a) $\mu = 1.25$, $\sigma^2 = 0.60$; (b) $\mu = 1.25$, $\sigma^2 = 0.73$.

<u>solution</u> (1), (3):							
ZP STEP	ENTER	PRESS	DISPLAY	COMMENTS			
HI		[e]	0.0000	Only necessary when starting a new problem.			
H2	12	[ST0]14	12.0000				
	5	[ST0]15	5.0000				
	3	[ST0]13	3.0000				
нз	2	[A]	0.9545	Displays CDF P(2) first			
		[X<>Y]	0.3182	Displays p(2).			
H4	1	[a]	0.3636	Displays Q(l). No re-initial- ization necessary.			
E		[E]	1.2500	Displays mean and variance			
		[X<>Y]	0.5966				
Solu	ution (2), ((3):					
Bl		[e]	0.0000	Signals the start of a new pro- gram even though the same parameters are involved (B2 unnecessary)			
B3	2	[B]	0.9277	Binomial CDF differs from H ₃			
		[X<>Y]	0.3038	Binomial p(2).			
B4	1	[b]	0.3762	Q(1) = Pr(X > 1) = Pr(X > 2)			
E		[E]	1.2500	Mean			
		[X<>Y]	0.7292	Variance			

Solution (1), (3):

ZP3-4 (Assigned [e]) USER INSTRUCTIONS (HP)		SIZE 030		
STEP	PROCEDURE	ENTER	PRESS	DISPLAY
	Binomial Distribution			
bin l	Initialization		[e]	0.0000
bin 2	Enter Parameters	n	[ST0]13	n
		р	[ST0]22	Р
bin 3	Calculate $P(k) = Pr(X \leq k)$	k	[B]	P(k)
			[X<>Y]	p(k)
bin 4	Calculate $Q(k) = Pr(X > k)$	k	[Ъ]	Q(k)
			[X<>Y]	p(k)
	NOTE: Repeat 3 and 4 as often as desired			
	Poisson Distribution			
P01	Initialization for Poisson		[e]	0.0000
P02	Enter Parameters	t	[STO]13	t
		λ	[ST0]22	λ
P03	Calculate $P(k) = Pr(X \leq k)$	k <u>></u> 0	[C]	P(k)
			[X<>Y]	p(k)
P04	Calculate $Q(k) = Pr(X > k)$	k <u>></u> 0	[c]	Q(k)
			[X<>Y]	p(k)
	NOTE: See Note in bin			
	Negative Binomial Distribution			
NB1	Initialization for Negative Binomial		[e]	0.0000
NB2	Enter Parameters	r	[ST0]13	r
		Р	[ST0]22	Р
NB3	Calculate $P(k) = Pr(X \leq k)$	k <u>></u> 0	[A]	P(k)
	p(k) = Pr(X = k)		[X<>Y]	p(k)
NB4	Calculate Q(k) = Pr(X > k)	k <u>></u> 0	[a]	Q(k)
	p(k) = Pr(X = k)		[X<>Y]	p(k)
NB5	Calculate $P(k) = Pr(Y \leq k)$	k≥r	[1]	P(k)
	p(k) = Pr(Y = k)		[X<>Y]	p(k)
	NOTE: See Note in bin;)		
	Y = X+r = # Trials			

ZP3-4	USER INSTRUCTIONS (HP)								
STEP	PI	ROCEDU	RE				ENTER	PRESS	DISPLAY
	Geometric Distribu	ution							
G1	Initialization for	r Geom	etric					[e]	0.0000
G2	Enter Parameter						P	[STO]22	р
G3	Calculate P(k) =	Pr(Y	<u><</u> k)				k <u>></u> 1	[D]	P(k)
	p(k) =	Pr(Y	= k)					[X<>Y]	p(k)
G4	Calculate Q(k) =	Pr(Y	> k)				k <u>></u> 1	[4]	Q(k)
1								[X<>Y]	p(k)
	NOTE: See note un	nder b	in.						
E	Display E(X) and the foregoing rout	V(X) (tines)	after	any	of			[E] [X<>Y]	E(X) V(X)
	Register Contents	•				<u> </u>	<u> </u>	*****	
	00 Used	10	Z		20	Used			
	01	11	μ		21	P			
	02	12	σζ		22	p(λ)			
	03	13	n(t,r	;)	23				
	04	14			24				
		15	(0)		25				
	06 Used $(p(k))$	10	p(0)		20				
	07 Usea (p(k))	19			27				
	09	19			28 29				
	Assignments Labels Used								
	ZP3-4 e		05	A	a				
			07	В	Ъ				
			0 8	С	с				
			11	D	d				
			13	E					
			14	J					
			15						
			18						
			19						
			20						
			29						

EXAMPLES ZP3-4

(1) (Binomial model) The probability of hitting a target in a single trial is 0.3. Suppose 10 independent firings are made. Calculate the probability of 3 hits, no more than 4 hits, at least 6 hits and the mean and variance of the number of hits.

ZP STEP	ENTER	PRESS	DISPLAY	COMMENTS
bin l		[e]	0.0000	Initialize program.
bin 2	10	[ST0]13	10.0000	Enter parameters.
19	3	[STO]22	0.3000	
bin 3	3	[B]	0.6496	Display the CDF at 3.
		[X<>Y]	0.2668	Required probability p(3).
bin 3	4	[B]	0.8497	Repeating to find P(4).
bin 4	5	[b]	0.0473	Required Q(5) = $Pr(X \ge 6)$
E		[E]	3.000	Mean value np = 3.
		[X<>Y]	2.1000	Variance of $X = npq$.

Solution (1), (3):

(2) Poisson model) Telephone calls arrive at a switchboard at the rate of 10 per hour. What is the probability of at most 3 calls in the next 20 minutes? Exactly 3? The mean number of calls?

	Solution:			
P01		[e]	0.0000	Initialize program.
P02	0.3333	[STO]13	0.3333	Enter total time period 20 min.
•	10	[STO]22	10.0000	Enter rate $\lambda = 10$ per hour.
P03	3	[0]	0.5730	$P(3) = Pr(X \le 3).$
		[X<>Y]	0.2202	p(3) = Pr(X = 3).
E		[E]	3.3333	Mean number of calls in 20 mins.

(3) (Negative Binomial model) A fly fisherman estimates that his probability of catching a fish on a given cast of his rod is 0.05. He decides to keep trying until he catches three fish. What is the probability that he will need to cast at least 10 times and what is the expected number of failures? What is the probability of 9 trials? The mean number of trials?

ZP STEP	ENTER	PRESS	DISPLAY	COMMENTS
NB1		[e]	0.0000	Initialize program.
NB2	3	[STO]13	3.0000	Enter r parameter of 3.
**	.05	[ST0]22	0.0500	Enter probability of obtaining 1.
NB4	6	[a]	0.9916	Probability that the number
				of failures is at least 7, Q(6).
		[X<>Y]	0.0026	Probability of exactly 6 failures.
E		[E]	57.0000	Mean number of failures.
NB5	9	[J]	0.0084	Probability of no more than 9 trials.
		[X<>Y]	0.0026	Probability of exactly 9 trials.

(4) Geometric model) An item has failure probability 0.005 and is cycled until it fails. What is the expected number and standard deviation of the number of cycles? What is the probability that number exceeds 10?

Solution:

Solution:

Gl		[e]	0.0000	Initialize program.
G2	.0005	[STO]22	0.0005	Enter single parameter.
G3	10	[d]	0.9950	Displays CCDF at 10, Pr(Y > 10).
e		[E]	2000.0000	Mean cycles to failure.
		[X<>Y]	3,998,000	Variance.
		[USER] Vx	1999.4999	Standard deviation.
		[e]	0.0000	Clears program.

Section 4.3: Normal Distribution

The user instructions for the HP version of ZP4 are practically identical to those for TI given in the book. Label [J] is used for initialization in place of RST; otherwise, pressing the same labels produces the same; results. Using the parameter choices 0 and 1 at step N1 in ZP4 replaces ML-14 in the TI master module everywhere the discussion refers to the latter starting on page 109.

Section 4.4: Uniform Family; Sampling

As previously indicated, the serious departure from the TI format occurs in the random number generator and consequently, both the instructions and the results will differ from those published in the book. The departure begins on page 121. The random number generator adopted for the HP programs is one developed by Don Malm for the HP-65 User's Library and is referred to on page 24 of the HP-41C Standard Applications manual. The algorithm used is the simple one.

$$r_{n+1} = FRC (9821 r_n + .211327)$$

It allegedly will generate one million random numbers when a seed between 0 (inclusive) and 1 is used. This random number generator is initialized by pressing [I] whereupon you are prompted for a seed which is then entered with [R/S] instead of TI [E']. For some degree of uniformity with the TI illustrations, you may use a decimal point in front of each of the seeds given in the book, such as .419 in Example 4.10 on page 121. Subroutine RNDMU, assigned to label [i], replaces [SBR] [D.MS] and outputs a random number from the unit interval. For this illustration, the output of the HP program is .2104 instead of 0.65816 as listed, and the corresponding value of x will accordingly be 15,589.

In example 4.11, ML-15 is used to generate normal deviates. Here, Step N6, programmed as label [G] of the Normal Distribution program in 2P4, may be used in its place. For the example, using a seed of .793, the output should be 56.2958. (Of course, the parameters must be suitably stored by Step N1 to begin with.)

Continuing on page 122, the subroutine [P+R] replaces the TI key $[\bar{x}]$, while [R+P] replaces [INV] $[\bar{x}]$. In Example 4.12, the sample values will be 47,30,56,48 with a mean of 47.3 and a standard deviation of 10.4. The next successive values are 49,45,57,50,61 with a mean of 49.8 and a standard deviation of 8.5. In Example 4.15, the ten successive values will be 727,708,417, 3401,326,213,1770,686,825,2783 with running counts checked in Register 06 rather than 03. The mean will be 1147.9 rather than the published 1311. In Example 4.16, using a seed of .66, the successive values will be 0,2,4,6,2.

If you have been able to check these examples, then, while your answers will differ from the published ones whenever random number generation is called in the problems that follow, you may rely on the results nevertheless.

ZP4 (As	user Instructions (HP))	SIZE 030 Z REG 01		
STEP	PROCEDURE	ENTER	PRESS	DISPLAY	
	Exponential Distribution				
El	Initialization		[J]	0.0000	
E2	Enter Parameter	λ	[STO]22	λ	
E3	Compute P(x) and Q(x)	x <u>></u> 0	[E]	P(x)	
	NOTE: λx must not exceed 228		[X<>Y]	Q(x)	
E4	Calculate 100(1-a)th Percentile	α	[e]	×α	
	NOTE: Repeat $E_3^{}$ and $E_4^{}$ at will				
E5	Generate sample of size n				
	a. Initialize Random Number Generator		[1]	SEED?	
	b. Enter Seed (0 \leq Seed < 1)	Seed	[R/S]	Seed	
	c. Execute Step E2			λ	
	d. Generate x (Repeat n times)		[B]	x	
	Normal Distribution				
N1	Enter Parameters	μ	[STO]11	μ	
		σ2	[STO]12	σ2	
N2	Compute P(x) and Q(x)	x	[C]	P(x)	
			[X<>Y]	0(x)	
N3	Compute $Pr(x_1 < X < x_2)$				
	a. Enter x ₁	×1	[D]	$P(x_1)$	
	b. Enter x_2 and compute.	×2	[R/S]	$\Pr(\mathbf{x}_1 < \mathbb{X} < \mathbf{x}_2)$	
			[X<>Y]	$\frac{\Pr(X < x_1)}{\Pr(X > x_2)}$	
N4	Calculate Standard 100(1-a)th Percentile	α	[c]	za	
NB5	Calculate General 100(1-a)th	α	[4]	xa	
	NOTE: Repeat N ₂ -N ₅ as often as desired			-	
N6	Generate sample of size n				
	a. Initialize R <i>a</i> ndom Number Generator		[1]	SEED?	
	b. Enter Seed (0 \leq Seed < 1)	Seed	[R/S]	Seed	
	c. Execute Step N1				
	d. Generate x (Repeat n times)		[G]	x	

ZP4	USER INSTRUCTIONS (HP)	1		
STEP	PROCEDURE	ENTER	PRESS	DISPLAY
	Uniform Distribution			
U1	Initialization		[L]	0.0000
U2	Enter Parameters	a	[STO]13	
		b	[STO]14	
U 3	Compute P(x) and Q(x)	x	[A]	P(x)
			[X<>Y]	Q(x)
U4	Compute 100(100(1-a)th Percentile	α	[SF]05	xxx
			[A]	x
U5	Generate sample of size n from			
	$R_{x} = \{e_{1}, e_{2}, \dots, e_{N}\}$ corresponding			
	to LABELS 00, 01,,K.		ļ	
	a. Initialize Random Number Generator		[1]	SEED?
	b. Enter Seed ($0 \leq \text{Seed} \leq 1$)	Seed	[R/S]	Seed
	<pre>c. Execute Step U2 with a = 0, b = K</pre>			
	d. Generate Random Label R		[a]	R
	<pre>e. Enter e-value corresponding to R. Repeat d and e for i = 1,2,,n.</pre>	×i	[R/S]	i
	NOTE 1. Summary stats stored in R ₀₁ - R ₀₆ .			
	NOTE 2. To generate from $\{A,A+1,\ldots,B\}$ execute steps a-d with a = A, b = B			
M	For each of the above distribu-		[b]	μ
	tions μ and σ^2 may be recovered		[X<>Y]	σ2
	after computing any P(x).			

ZP4					INS	TRUCI	TONS	S
	Register	Contents:	:					
	00 Use	ed	10	z = (x-µ	i)/a	20	
	01 Use	ed	11	μ			21	
1	02) by	,	12	σ ²			22	λ
	03 ERI	EG	13	$z_{\alpha}(z)$			23	
	04		14	b(K)			24	
	₀₅)		15	b-a			25	Used
	06 p()	c)	16			26	Used	
	07 P()	c)	17			27		
	$08 P(x_1) - P(x_2)$		18			28		
	0 9 Se e	ed 2	19				29	
	Assignme	ents		Labe	15	Used		
	ZP4	J						
	ZCDF	Н		03	A	а		
[GEN-INI	I		07	B	Ъ		
	RNDMU	i		0 9	C	с		
	XBAR	P+R		11	D	đ		
	SD	R+P		12	E	e		
				15	G			
				16				
				17				

EXAMPLES ZP4

- (1) Time to failure, X, is exponential with failure rate = 0.0001.
 - a. Determine the reliability at $x_0 = 100$ and at $x_0 = 500$.
 - b. What would the failure rate have to be to achieve a reliability of 0.99 at 500 hours?

c. Calculate mean and median time to failure and the variance of X.

ZP STEP	ENTER	PRESS	DISPLAY	COMMENTS
E1		[J]	0.0000	Initialize exponential subroutine.
E2	.0001	[ST0]22	0.0001	Single parameter stored in R_{22} .
E3	100	[E]	0.0100	Displays P(100)
**		[X<>Y]	0.9900	Displays O(100), the reliability at 100.
E3	500	[E]	0.0488	P(500) displayed.
**		[X<>Y]	0.9512	Q(500) = reliability at 500
E2	500	[STO]22	500.0000	Treating 500 as λ temporarily for computation in b.
E5	.99	[e]	2.0101-05	Value of $\lambda = \ln(0.99)/500$
E2	.0001	[STO]22	0.0001	Restores true λ in R ₂₂ for the model.
M		[b]	10,000.0000	Displays mean time to failure
		[X<>Y]	100,000,000	Displays $\sigma^2 = \mu^2$ for this model
E4	0.5	[e]	6931.0000	The median time to failure
E3		[E]	0.5000	Verifies that $P(6931) = 0.50$.

(2) A standardized test is administered to incoming freshmen at a university. Scores, X, are assumed to be normally distributed and, based on thousands of past scores, it is assumed that μ = 100 and σ² = 245. For an incoming freshman chosen at random what is the probability that the test score will be:
a) greater than 110? b) less than 90? c) between 75 and 125? If only the top 80% of incoming freshmen are to be admitted on the basis of this test, what would the minimum passing score be?

Solution (1), (3):

ZP STEP	ENTER	PRESS	DISPLAY	COMMENTS
-		[J]	0.0000	Clears exponential problem.
NI	100	[STO]11	100.0000	Enter the mean value.
10	245	[ST0]12	245.0000	Enter the second parameter σ^2 .
N2	110	[C]	0.7385	Displays $P(110) = Pr(X < 110)$.
		[X<>Y]	0.2615	Displays Q(110), the required probability
		[RCL]10	0.6389	Shows the standardized value for $x = 110$, namely, $z = (110-100)/\sqrt{245}$
N2	9 0	[C]	0.2615	Displays P(90)
N3a	75	[D]	0.9449	Displays Q(75), of minor interest
N3b	125	[R/S]	0.8898	Calculates and displays Pr(75 < X < 125)
		[X<>Y]	0.1102	Displays Pr(X<75) + Pr(X>125).
N5	.80	[d]	86.8291	Displays the 20th percentile for X so that $Pr(X>87) = 0.80$.

- (3) The time a passenger must wait for a commuter flight on arrival at an airport is a uniform random variable over an inteval from 0 to 30 minutes.
 - a. What is the probability that the passenger will have to wait at least 10 minutes for a flight?
 - b. What waiting time corresponds to a 90% chance of catching a flight?
 - c. What is the probability that the passenger will wait between 10 and 20 minutes?
 - d. What is the mean waiting time? σ^2 and σ ?

Solutions:

Solutions:

U1		[1]	0.0000	Initialize program (clears all previous work).
U 2	0	[ST 0]13	0.0000	Enters first parameter a = 0 in R ₁₃
**	30	[STO]14	30.0000	Enters second parameter $b = 30$ in R_{14}
U3	10	[A]	0.3333	Displays P(0).
		[X<>Y]	0.6667	Displays the required Q(10).
U4	.90	[SF]05	0.9000	Signals calculator that percentile is coming.
U 4		[A]	3.0000	Displays x 90
		[A]	0.1000	Verifies that $P(3) = .10$ so that $Q(3) = .9$

ZP STEP	ENTER	PRESS	DISPLAY	COMPENTS
U4	10	[ENTER]	10.0000	Enters difference between 10 and 20 min.
••	30	[+]	0.3333	Calculates and displays $Pr(10 < X < 20) = (20-10)/30.$
M		[b]	15.0000	Recalls and displays μ = 15 from R ₁₁
•		[X<>Y]	75.0000	Displays the variance $\sigma^2 = 30^2/12$
		[USER] [🗸 🗐	8.6603	Displays the value of σ .
		[J]	0.0000	Clears the program.

Chapter 5. BIVARIATE DISTRIBUTIONS

The user instructions are practically identical to those given for the TI-59 so little has to be modified in this chapter. At Step 2 in the HP version a display of moments routine has been added which is effected by pressing [d] followed by successive presses of [R/S]. Of course, these characteristics may also be recalled manually from the respective registers just as instructed in the book.

As with ZP3-2, some modification of the routine for LABS is called for here also. The HP instructions on the matter at Step 3 are reasonably clear. As a footnote, it is advised once more that if you will be involved in a lot of erasing of old algorithms, perhaps it would be advisable to assign the delete function DEL to an unused label, like [g] for a given session. When applying LABS to various algorithms such as those found on page 142, naturally they will have to be programmed in RPN here. It is assumed that the reader is already sufficiently familiar with the HP calculator that the translation for various examples can be made without additional instruction here. Consult the OWNERS HANDBOOK AND PROGRAMMING GUIDE for any required assistance. As one example, the function g(x,y)=(x-1)(y-2) may be programmed at Step 3c as

Other cases can be handled in a similar fashion.

ZP5 (As	user instructions (HP))	SIZE 090		
STEP	PROCEDURE	ENTER	PRESS	DISPLAY	
1.	Distribution Entry a. Initialize b. Enter in order x_i , y_i , $p(x_i, y_i)$ (Repeat for each i through $N \leq 19$) NOTE: $p(x_i, y_i)$ should be positive.	× _i y _i p(x _i ,y _i)	[e] [A] [B] [C]	0.0000 i i i	
2.	 a. Compile Distribution Characteristics b. Display Characteristics NOTE: To re-compile, enter N in Roa after [e] 		[E] [d] [R/S] [R/S] [R/S] [R/S]	ρ μ _x 2 σ _x μ _y σ ² σ _y σ _y σ _{xy}	
3.	Calculate E[g(X,Y)], V[g(X,Y)] (after Step 1) a. Initialize NOTE: It is understood that [ALPHA] must be used for label a		[K/S] [GTO][a]	ρ x.xxx	
	 b. Enter Program Mode c. Key in g(x,y) with x & R₀₉, y & R₁₀ (Avoid labels already in use; end with RTN) d. Exit Program Mode e. Calculate Moments f. To ERASE Algorithm in [a], complete Steps a, b; then (Let nnn be at least as large as the number of steps in [a].)[†] 		[PRGM] - - [PRGM] [D] [X<>Y] [SST] [g] nnn [PRGM]	147 LBL a x.xxxx E[g(X,Y) V[g(X,Y)] 148 yy DEL 147 LBL a x.xxxx	

[†] For repeated applications, use ASN to assign DEL to g (%).

Keg1	ster Contents					
00	Counter	1	.0	last y	20	x,
01	xp(x,y)	1	.1	μ _X	21	y ₁
02	yp(x,y)	1	2	$\sigma_{\mathbf{x}}^2$	22	p(x ₁ ,y ₁)
03	N	1	3	μ _y	23	x ₂
04	x ² p(x,y)	1	.4	σ 2	24	У ₂
05	y ² p(x,y)	1	.5	σ _{XY}	25	p(x ₂ ,y ₂)
0 6	xyp(x,y)	1	.6	ρ	26	•
07	$\Sigma\Sigma p_{ii} = 1(g(x,$	y)p(x,y)) 1	.7	E[g(X,Y)]	27	•
08	$1astp(g^2(x,y)p)$	(x,y)) l	8	V[g(X,Y)]	28	•
0 9	last x	1	.9	Used	29	
lssi	gnments	Labels	Use	<u>a</u>		
ZP5	e	01 A	a			
	1	02 B	d			
		••				
		03 C	,			
		03 C)			

EXAMPLES ZP5 (1) Calculate the moments μ_X , σ_X^2 , μ_Y , σ_Y^2 , σ_{XY} and ρ for the joint distribution of Figure 5-2 duplicated below.

3	0	.2	0	0
2	0	0	.2	0
1	.1	.2	0	.3
y/x	1	2	3	4

Solu	tions:			
ZP STEP	ENTER	PRESS	DISPLAY	COMMENTS
Step la		[e]	0.0000	Initialize ZP-5.
Step 1b	1	[A]	1.0000	First x-value for pair (1,1) entered.
	1	[B]	1.0000	Corresponding y-value is entered.
•	.1	[C]	1.0000	Enter p(1,1) = .1; count of 1 triplet displayed.
-	2	[A]	2.0000	Enter x-value of second pair selected, (2,1).
**	1	[B]	2.0000	Enter corresponding y-value.
••	.2	[C]	2.0000	Enter p(2,1); display shows 2 triplets entered.
10	4	[A]	3.0000	Pass up cell $(3,1)$ since $p(3,1) = 0$; enter next x = 4.
14	1	[B]	3.0000	Complete (4,1) entry.
**	.3	[C]	3.000	Enter p(4,1); record of 3 triplets shown.
10	3	[A]	4.0000	Only positive entry in second row, x=3.
**	2	[B]	4.0000	Enter y-value for pair (3,2).
14	.2	[C]	4.0000	Enter p(3,2).
	2	[A]	5.0000	Enter x = 2 for only positive entry in third row
••	3	[B]	5.0000	Enter y = 3
•	.2	[C]	5.0000	Complete entry with $p(2,3) = 0.2$
N		[RCL]07	1.0000	Check on data entry to see $\Sigma p(x,y) = 1$
Step 2a		[E]	-0.2736	Displays the value of ρ after complete compilation and storage of moments.
Step 2b		[d]	2.7000	Displays µ _X
19		[R/S]	1.0100	Displays σ_{χ}^2
••		[R/S]	1.6000	Displays µ Y

ZP STEP	ENTER	PRESS	DISPLAY	COMMENTS
		[R/S]	0.6400	Displays σ_v^2 .
		[R/S]	-0.2200	Displays o _{vv} .
		[R/S]	-0.2736	Verifies again that $\rho = -0.27$.
	(2) Ca	lculate the	mean and the	variance for $g(X,Y) = XY$.
	Ve	rify that o	••• = -0.22	
	0.1.4		A1	
Char 2 -	Solutio	<u>n</u> :	070	
эсер за		[GIU]		in order to program $g(x, y)$ with
		(ALPRA)	G10 _	in order to program g(x,y) with
		[a]	GTO a_	x ε κ ₀₉ , y ε κ ₁₀
- •		[ALPHA]	X • XXXX	
Step 3b		[PRGM]	147 LBL a	Enters program mode
**		[RCL]	148 RCL	
		0 9	148 RCL 09	
**		[RCL]	149 RCL	
**		10	149 RCL 10	
**		[x]	150 *	Completes formula z = xy
*		[RTN]	151 RTN	Required return statement for
Step 3d		[PRGM]	x.xxxx	subroutine. Return to keyboard operation (ignore display).
Step 3e		[D]	4.1000	Calculates and displays E(XY).
**		[x<>y]	3.2900	Retrieves σ^2 from R_{07} to R_y .
		[x<>y]	4.1000	Returns E(XY) to R_v .
•		[RCL]	RCL	Prepares to subtract $\mu_{\mathbf{v}}\mu_{\mathbf{v}}$ to
"		11	2.7000	evaluate Eq. (5-4)
		[RCL]		
		13	1.6000	Recovers μ_{-} and multiplies by μ_{-}
-		[x]	4,3200	Y X
-		-	-0.2200	Calculation complete and s _{vv} verified.
Step 3f		[GTO]	GTO	Prepare to erase algorithm in a.
		[ALPHA]	GTO	Sends pointer to subroutine a.
		[a]	GTO a	
		[ALPHA]	- x . xxxx	
		[PRGM]	147 LBL a	Enters program mode.
		[SST]	148 yyy	Forward one step to beginning of algorithm.
		[g]	DEL	Execute delete function.
	010		 147 LBL a	Use 10 lines (more than enough)
		[PRGM]	x . xxxx	Exit program mode. Return to calculator control.
		[e]	0.0000	Erases program.
Section 1.3: The Calculator

This section is quite like that of ZP so that only remarks concerning the statistics module need be added here. As mentioned in the introduction, the HP module STAT PAC will be needed for some of the ZS programs. In addition, the program ZSTAT, found in the appendix, will be needed for all of the ZS programs starting in Chapter 4 since they contain the probability distributions, among other things, that are missing in STAT PAC. Most of the applications of ZSTAT occur internally within ZS programs but, occasionally, some of the subroutines are called for individually. For that reason, suggestive alphanumeric labels have been included and the program has been assigned to label [SCI] to make it convenient to access from the keyboard.

Section 2.3: Simulation

The first departure from the TI format occurs on page 16 in the digression for computing moments of discrete distributions. A subroutine called MU-SIG and assigned to label [j] has been inserted into program ZS-2 to replace the TI use of ST-03. As the reader can see from the User Instructions that follow, the pairs are entered in opposite (but more natural) order with x first, followed by p. Instead of a running count of the number of pairs being displayed at the end of each entry, the cumulated probabilities are shown; thus, the number 1 should be seen at the conclusion of all entries. A press of [i] will then output the mean, and sigma will be found in the Y-register. (It should be noted throughout that, as with ZP, the HP Y-register replaces the TI T-register always).

Of course, the random number generator output will differ here, just as was the case in ZP. The same HP user instructions apply here, however. Thus, the generator is initialized by pressing [I] as before and you are prompted for a seed. The subroutine RNDMU, assigned to [H], will replace the TI [D.MS] routine to output a number between 0 and 1. If you will use a seed of .49 instead of 49 in the example treated on page 18, the HP output will be .5014, with a second application yielding .2349. A second program, called RNDMAB (assigned to [h]) replaces Steps 4-6 of ST-02 to output a (continuous) random number between A and B, provided A and B are stored in registers 13 and 14, respectively. For the example, again on page 18, using A=10 and B=67, the respective values will be 16.0050, 59.2222, 16.6282 and 24.0426. Finally, the subroutine RNDMI, assigned to [g], will generate random labels. On page 19 using a seed of .21, successive presses of [g] will produce labels 45, 53, 11 and 20. That will take care of the problems for this section. The answers will differ from those published of course. Be sure to press [J] when you wish to return to the main programs in ZS-2.

Section 2.4: Simulating Continuous Distributions

In Example 2.3, if a seed of .635 is used, the successive values of u are: .5464, .1799, .9504, .6085, .7613, yielding x values of 791, 198, 3004, 938 and 1435, respectively. The program instructions at Step E5 should be modified according to the ones provided here.

Program ST-19 may be replaced entirely by using the N routine in ZS-2 with $\mu = 0$ and $\sigma = 1$. (For that matter, P(z) may be found here by entering z and pressing [XEQ] 19, to mimic the TI program). Alternatively, program ENORMD in STAT PAC may be used to calculate Q(z). Try z = 2.695 as on page 24 to see that .9964 is the value of P(z). The value Q(z) = .0036 will then be found in the Y-register. Generating random samples from both the exponential and normal distributions has been automated in ZS-2 just as in the TI case and examples follow the user instructions. No further checks will be given here.

Section 2.5: Bernoulli Trials

As with ST-19, we have mimicked the TI binomial program ST-20 as subroutine 20 here. The instructions are given under the code BIN in ZS-2 and that program may be used to check all of the problems of this section. It might be noted that the standard deviation is found in the Y-register, pressing [X <> Y]after [a], rather than a separate label [B'], as with TI.

ZS-2 (4	Assigned [J]) USER INSTRUCTIONS (HP))	SIZE \geq 030		
STEP	PROCEDURE	ENTER	PRESS	DISPLAY	
E	Exponential Distribution				
1.	Initialization	}	[1]	0.0000	
2.	Enter Parameter	λ	[ST0]16	λ	
3.	Compute P(x) and Q(x)	x	[E]	P(x)	
	Note: $\lambda \mathbf{x}$ must not exceed 228		[X<>Y]	Q(x)	
4.	Calculate 100(1- α)th Percentile	α	[e]	×α	
	Note: Repeat E_3 and E_4 at will.		}		
5.	Generate sample of size n			i	
	a. Initialize Random Number Generator		[1]	SEED?	
	b. Enter Seed (0 \leq Seed \leq 1)	Seed	[R/S]	Seed	
	c. Execute Step E2				
	d. Generate x (Repeat n times)		[B]	x	
N	Normal Distribution			1	
1.	Initialization		[J]	0.0000	
2.	Enter Parameters	μ	[STO]17	μ	
		σ	[STO]18	σ	
3.	Compute $P(x)$ and $Q(x)$	x	[C]	P(x)	
			[X<>Y]	Q(x)	
4.	Compute $Pr(x_1 < X < x_2)$ or $1-P(x_1 < X < x_2)$	1 ₂)			
	a. Enter x,	, ×,	[D]	0(x1)	
	b. Enter x ₂ and compute	x ₂	[R/S]	$\Pr(x_1 < X < x_2)$	
	-	-	[X<>Y]	$\Pr(X < x_1)$	
		1		$Pr(X>x_2)$	
5.	Calculate Standard $100(1-\alpha)$ th Percentile	a	[c]	z	
6.	Calculate General 100(1-a)th Percentile	α	[d]	x	
	Note: Repeat N ₃ -N ₆ as often as desired			, °	
7.	Generate sample of size n	1			
	a. Initialize Random Number Generator		[1]	SEED?	
	b. Enter Seed $(0 < \text{Seed} < 1)$	Seed	[R/S]	Seed	
	c. Execute Step N1	ł			
	d. Generate x (Repeat n times)	}	[b]	x	
8.	Standard Normal (TI ST-19)	z	[XE0]19	P(z)	
			[YC>X]	O(z)	

ZS-2	USER INSTRUCTIONS							
STEP	PROCE	DURE			ENTER	PRESS	DISPLAY	
BIN	Binomial Distribution	(TI ST	5-20)			1		
1.	Initialize					[XE0]20	PMTERS?	
2.	Enter Parameters				n	[R/S]	n	
					р	[R/S]	0.0000	
3.	Calculate probabiliti	es			k	[A]	p(k)	
						[R+]	P(k)	
						[R+]	Q(k)	
MU-SIG	Discrete Moments		<u> </u>		<u> </u>			
1.	Initialize					[j]	ΣBSTG	
2.	Enter discrete pairs				x,	[ENTER]	x,	
	(Repeat i=1,,N)				P _i	[A]	Σp	
3.	Calculate μ and σ .				-	[±]	μ	
						[X<>Y]	σ	
мом	Recall Moments					[a]	μ	
						[X<>Y]	σ	
	Register Contents						·	
	00 Used	10	K(label)	20	z = (x-µ)	/σ		
	01	11		21	n			
	02 Used	12		22	р			
	03 by	13	A	23	1 - p			
	04 Σ ⁺	14	В	24	Used			
	05	15		25	Used			
	06	16	λ	26				
	07 P(x)	17	μ	27				
	08 $P(x_1) - P(x_2)$	18	۵	28				
	0 9 Seed	19	za	29				

Assign	Label	s U	sed	
zs-2	J	03	A	а
GEN-INI	I	06	В	Ъ
RNDMU	н	07	С	с
RNDMAB	h	08	D	đ
RNDMI	g	0 9	Е	e
BSTG	j	11		
MU-SIG	i	12		
XBAR	P+R	19		
SD	R+P	20		
RD	R+			

EXAMPLES ZS-2.

SOLUTIONS .

- 1. Let X have an exponential distribution with parameter $\lambda = 0.001$ and suppose X measures time to failure in hours.
 - (a) Calculate the probability that time to failure will exceed 1200 hours.
 - (b) Compare the mean time to failure with the median time to failure.
 - (c) How many hours may we reasonably depend upon for survival of 90% of such items?

(d) Generate a random sample of five times to failure.

0000	110110			
ZP STEP	ENTER	PRESS	DISPLAY	COMMENTS
El		[J]	0.0000	Initialize the exponential subroutine
E2	0.001	[STO]16	0.0010	Single parameter λ stored in R ₁₆
E3	1200	[E]	0.6988	Displays $P(1200) = Pr(X \le 1200)$.
		[X<>Y]	0.3012	Displays $Q(1200) = Pr(X \ge 1200)$ which is the answer to (a).
E4	•20	[e]	693.1472	Calculates and displays the median x _{.50} (in hours).
		[RCL]17	1000.0000	Recall μ , the mean time to failure. This answers (b).
E4	.10	[e]	105.3605	Displays x.90
E5a		[1]	SEED?	Initialize the random no. generator
Е5Ъ	.635	[R/S]	0.6350	Enter Seed = 635 for illustrative purposes.
E5c	(0.001)	([STO]16)	(0.001)	Enter the parameter λ if not already entered.
E5d		[B]	7 9 0	Displays the first generated sample value, x ₁ (rounded).
		[B]	198	The second simulated time to failure.
		[B]	3003	Successive times to failure
		[B]	938	(rounded to whole hours)
		[B]	1432	for a random sample of size 5.

38

ZS STEP		ENTER	PRESS	DISPLAY	COMMENTS
(2)	A standard	lized test i	s administere	ed to incoming freshmen at a
		university	v. Scores,	X, are assume	ed to be normally distributed
		and, based	i on thousan	ds of past so	cores, it is assumed that $1 = 100$
		and $\sigma = 16$	5. For an i	ncoming fresh	man chosen at random what is the
		probabilit	y that the	test score wi	lll be:
		a) greate	er than 110?	b) less th	nam 90? c) between 75 and 125?
		If only the	ne top 80% o	f incoming fr	eshmen are to be admitted on the
		basis of (this test, w	hat would the	e minimum passing score be?
So	lut	ions:			
N1			[J]	0.0000	Initialize.
N2		100	[ST0]17	100.0000	Enter the mean value.
**		16	[ST0]18	16.0000	Enter the second parameter σ_{\bullet}
N3		110	[C]	0.7340	Displays $P(110) = Pr(X \le 110)$.
			[X<>Y]	0.2660	Displays Q(110), the required probability.
			[RCL]20	0.6250	Shows the standardized value for $x = 110$, namely, $z = (110-100)/16$.
N3		90	[C]	0.2660	Displays P(90).
N4a		75	[D]	0.9409	Displays Q(75), of minor interest.
N4b		125	[R/S]	0.8818	Calculates and displays Pr(75 <x<125).< td=""></x<125).<>
			[X<>Y]	0.1182	Displays $Pr(X<75) + Pr(X>125)$.
N6		.80	[d]	86.5367	Displays the 20th percentile for X, so that Pr(X>87) = 0.80.
(3)	Generate a	a random sam	ple of size 5	o from a normal distribution
N7a			[I]	SEED?	Initialize random number generator.
N7b		.198	[R/S]	0.1980	Enter Seed = 198 for illustrative purposes
N7c		50	[ST0]17	50.0000	Enter the normal parameters
		10	[ST0]18	10.0000	and store in appropriate registers.
N7d			[b]	42.63	Displays first generated sample
					value x _l (rounded).
			[b]	56.34	Successive sample values
			[b]	63.21	are generated and
			[b]	72.72	displayed (rounded).
			[b]	46.84	

_

ZS STEP	ENTER	PRESS	DISPLAY	COMMENTS				
(4)	Find the	mean and star	ndard deviati	ion of the discrete probability				
distribution.								
	x:	4.0 3.0	2.0 1.0	0.0				
	p(x):	0.13 0.21	0.43 0.1	4 0.09				
SOLU	TION:							
MU-SIG 1.		[j]	ΣBSTG	Initialize module to start program.				
MU-SIG 2.	4	[ENTER]	4.00	Enter distribution as data				
	.13	[A]	0.13	$pairs(x_{1},p_{1}) i = 1,2,,n.$				
	3	[ENTER]	3.00	See Σ_{P_1} accumulated in R_X with				
	.21	[A]	0.34	l indicating final data entry.				
	2	[ENTER]	2.00					
	.43	[A]	0.77					
	1	[ENTER]	1.00					
	.14	[A]	0.91					
	0	[ENTER]	0.00					
	.09	[A]	1.00					
MU-SIG 3.		[i]	2.1500	Displays µ.				
		[X<>Y]	1.0989	Displays σ from R _y .				
(5)	Example 2	2-7.		······································				
SOLU	TION:							
BIN 1.		[XEQ] 20	PMTERS?	Initialize binomial program. Prompt is for n and p.				
BIN 2.	4	[R/S]	4.0000					
	.51	[R/S]	0.0000	Parameter entry complete.				
BIN 3.	0	[A]	0.0576	Display $P = p(0) = Pr(Y=0)$.				
**	2	[A]	0.3747	Display is p(2) so P(2) is found				
		[R+]	0.6724	in R _v .				
		[R+]	0.3267	Q(2) is found in R _z .				
••	1	[A]	0.2400	p(l) is displayed.				
MOM		[a]	2.0400	Displays µ = np				
		[X<>Y]	0 .9998	Displays $\sigma = npq$				
		$[USER][x^2]$	0.9996	Calculates σ^2 .				

Chapter 3 Data Processing

This chapter is rather independent of the others and, as the name suggests, deals with the processing of numerical data to produce traditional statistical summaries as well as grouping data into different patterns. Three programs have been created for this purpose, ZS-3 and two separate ones that are revisions of corresponding TI programs ST-03, ST-07 and ST-09. The latter were created and so named in order to follow the textbook material with the least amount of revision of instructions. The three programs should be loaded simultaneously for solving the problems here. Since some partitioning (using the SIZE function) may be called for, it is advisable that all other programs be cleared from calculator memory. The labels to which the programs have been assigned make it very convenient to move from one to the other when necessary.

Section 3.1: Sample Characteristics

Picking up the discussion on page 41, the HP, like the TI, is hard wired to compute means and standard deviations when data are entered on the keyboard with the Σ + key. Consult the Owner's Handbook for details. The basic differences are that (be sure you are not in USER mode) the registers are cleared with the CLZ key rather than using Pgm 01 and you execute the functions MEAN and SDEV instead of $[\bar{x}]$ and $[INV][\bar{x}]$, respectively. Even so, the TI program ST-03, here assigned to [I], will allow for data storage as it does in the TI module. You see from the User Instructions that follow, you must initialize by pressing [e] and then enter the data one-by-one using label [A]. At the conclusion you will find the data stored beginning in register 31. In addition, you may press [P+R] in place of TI $[\bar{x}]$ and use [R+P] instead of TI [INV] $[\bar{x}]$. To find the range, press [J] to enter program ZS-03 and then press [C] as per the instructions for that program. (Do not forget to press [I] again if you wish to return to ST-03 for any reason.) The remarks regarding repartioning may be easily transferred to appropriate remarks using the SIZE function for the HP. When data have been entered using program ST-03, you may find MSD by pressing [ENG] (the key that the subroutine MSD has been assigned to). MAD is computed by pressing [J] to enter ZS-03 and then press [B]. In this way, these instructions practically follow those of the TI to the letter. Verify the solution on page 47 for Example 3.1 following these instructions.

Section 3.2: Grouping Data

Data are grouped and recovered in cells suitable for histogram construction by means of program ST-07/9 (assigned to label [i]), a program resembling the corresponding TI programs ST-07 and ST-09 discussed in the book. The same remarks regarding conventions and parameter limitations discussed on pages 52 and 53 apply here as well.

After pressing [1] to enter the program, you initialize with [e] just as with the TI program, only here you will be prompted for the number of cells. When you enter that number with a press of [R/S] you will then be prompted for lowest class limit XMIN and, after entering that, for the width, w, of each cell. These instructions conform to the TI instructions. At this point you have two options. If data have been entered previously, either with program ST-03 or with ST-07 itself, you have merely to press [d] whereupon you are prompted for the sample size n. Entering this number and pressing [R/S]causes the program to automatically group the data into cells as per the entry in steps Pl,2,3. Otherwise, you enter the data one-by-one using [A] just as with ST-03. Once the data have been entered, the histogram is constructed by the steps under code H. After initializing with [E], the successive cell frequencies and boundaries are displayed with a STOP at the end to signal completion of the display. This replaces the discussion on pages 53 and 54 of the text.

As for computing grouped moments, the version of ST-03 presented here is initialized the same way ([e]), and pairs are entered as discussed under code G (same as the TI entry). Moments are then displayed in the X-register when XBAR ([P+R]), SD(R+P]) and MSD ([ENG]) are used. You may then proceed to ZS-3 to find MAD and the range as discussed on page 55. The last two paragraphs on that page may be safely ignored.

Section 3.3: Transformations

Step 5 of ZS-3 presented here allows for data transformations just as with the TI version. As with ZP programs, it may be advisable now and then to erase some of the algorithms used in [a] to create transformations if many applications happen to be used. Again, the DEL function will have to be used and this should be assigned to [g] if many such erasures will be taking place. You may also have to repartition your calculator with the SIZE function if there is no room for the data. For the small data sets illustrated here, that situation is not likely to arise. The answers to the problems given at the end of the section may all be verified with the program instructions on the following page.

Section 3.4: The Central Limit Theorem

The program ENORMD in STAT PAC will have to be used in this section in place of ST-19, or, as remarked on page 63, you may use ZS-2 with the caution mentioned there. Since there is no binomial program in STAT PAC, the latter might be the advisable thing to do for resolving some of the problems in this section.

ZS-3 (Assigned [J])

USER INSTRUCTIONS (HP)

SIZE 090 1.

Σ REG 01

			2 NEG	01
STEP	PROCEDURE	ENTER	PRESS	DISPLAY
1.	Calculate the range of a sample when raw data have been entered using ST-03		[C]	R
2.	Calculate the range of a sample when data are grouped and have been entered using ST-03 (w = cell width).	W	[c]	R
3.	Compute MAD when ungrouped data have been entered using ST-03.		[B]	MAD
4.	Compute MAD when grouped data have been entered using ST-03		[b]	MAD
5.	<pre>Transform data by the transformation x' = f(x): a. Initialization. b. Enter program mode c. Enter f(x) using parentheses where necessary and always end with [INV][SBR]. Exit program mode. d. (1) Keyboard Entry (repeat for each i). (2) Original Data Stored by ST-03 (n = sample size). NOTE 1: Steps 1 and 3 apply following Step 5d. f NOTE 2: To ERASE Algorithm in [a], complete Step b; then (Let nnn be at least as large as the number of steps in [a])</pre>	×1 n [XEQ][DEL] [†]	<pre>[e] [GTO][a] [PRGM] . [PRGM] [A] [E] [SST] [g] nnn [PRGM]</pre>	0.0000 x.xxxx 160 LBL a x.xxxx i.0000 n.0000 161 yy DEL_ 161 LBL a x.xxx
6.	Recall transformed data. NOTE: May be repeated at any time.		[d] [D] [D] [D] :	0.0000 x'1 x'2 x'3 :
7.	Clear Step 6		[CF]01	x.xxxx

For repeated applications of Step 5, use ASN to assign the function DEL to label g(%) before executing this step. (DEL is not programmable and cannot be preserved in user mode by the card reader.)

ST-03	(Assigned [I])	USER	INSTR	UCTIO	NS (HP)		SIZE 00 Σ REG	50 -089 01
STEP		E	ROCEDURE				ENTER	PRESS	DISPLAY
I	Initializat	ion						[e]	0.0000
U	Ungrouped D Repeat i =	ata En 1,2,	,n.	<u> </u>			×i	[A]	i.0000
G	Grouped Dat Repeat i =	Grouped Data Entry Repeat i = 1,2,,n.						[B] [A]	f _i 1.0000
MOM	l. Calcula and sam	 Calculate sample mean and sample Standard Deviation 						[P+R] [R+P]	x
	2. Calcula	te MSI)					[ENG]	MSD
REGIST	ER CONTENTS (Groupe	ed data in	n p are	nthese	es)			
00	Used	10	1(f ₁)	20	30	Pointer			
01	$\Sigma_{\mathbf{X}}(\Sigma_{\mathbf{f}\mathbf{X}})$	11	W	21	31	$x_1(x_1)$			
02	$\Sigma x^2 (\Sigma f x^2)$	12	x min	22	32	$x_2(f_1)$			
03		13	x max	23	33	x ₃ (x ₂)			
04		14	Used	24	34	$x_4(f_2)$			
05		15		25	35	•			
0 6	n(^{£f} i)	16		26	36	•			
07	Σ x ₁ -x	17		27	37				
08	Used	18	Used	28	38				
0 9	Lastx	19	xcount	29	39				

Assignments

ZS-3 | J ST-03 | I ST-07/9 | 1

XBAR P+R

MSD ENG

R+₽

SD

Labels Used

ZS	-3	<u>ST-03</u>	ST-07/9
01	Aa	01 A e	01 A c
02	ВЪ	02 B	02 E di
03	Сс	03	03 e
04	Dd		04
05	Еe		
12			
13			

ST-07/9	9 (Assigned [i]) USER INSTRUCTIONS		SIZE 06 Σ REG	50-08 9 01			
STEP	PROCEDURE	ENTER	PRESS	DISPLAY			
I	Initialization		[i]	0.0000			
P	Enter Parameters		[e]	CELLS?			
1.	Enter number of cells (\leq 15)	Cells	[R/S]	XMIN?			
2.	Enter Lowest Class Limit	x	[R/S]	W = ?			
3.	Enter Interval Width	Ŵ	[R/S]	0.0000			
DE l.	Data Entry and Compilation Original Data (Repeat i = 1,2,,n)	х,	[A]	i.0000			
•	OR:	1	1 1 1	N - 2			
۷.	IT Data Are Previously Stored			N = ?			
		n		n.0000			
H	Histogram Construction (after DE)		i				
1.	Initialization		[E]	0.0000			
2.	Display Cell Frequency		[c]	f,			
3.	Display Upper Limit, B _i , of Interval		[R/S]	B			
	(Repeat i = 1,2,,Cells)		•	STOP			
	Note: Ungrouped moments after DE may be concerned to the concerned moments are the concerned mom	omputed by XBA nen found in H	AR, SD and Ry if Histo	MSD in ZS-3. Ogram has			
	been constructed. In either case, you must press [i] again to return to ST-07/9.						

REGISTER CONTENTS

00	Used	10	Used	20	f ₇	30	Pointer
01	Σx ₁	11	w	21	f ₈	31	× ₁
02	Σx_i^{-2}	12	x min	22	fg	32	×2
03	Σf _i x _i	13	x max	23	f ₁₀	33	×3
04	Σf _i x _i ²	14	f	24	f ₁₁	34	•
05	Used	15	f ₂	25	f ₁₂	35	•
06	n	16	f3	26	f ₁₃	36	
07	Used	17	f4	27	f ₁₄	37	
08	Used	18	fs	28	f ₁₅	38	
0 9	CELLS	19	f ₆	29	xcount	39	

EXAMPLES ZS-3

1. For the ungrouped data below, calculate \bar{x} , s, MSD, MAD and R. Then transform the data by x' = 1/x and calculate the same statistics for the transformed data.

5, 10, 6, 4, 3, 8, 12

Recall the actual values of the first three data points.

ZS STEP	ENTER	PRESS	DISPLAY	COMMENTS
ST-03		[1]	0.0000	Select ST-03
I		[e]	0.0000	Initialize for data entry.
U	5	[A]	1.0000	Enter data.
	10	[A]	2.0000	
	6	[A]	3.0000	
	4	[A]	4.0000	
	3	[A]	5.0000	
	8	[A]	6.0000	
	12	[A]	7.0000	Data Entry complete.
		[P+R]	6.8571	The value of the sample mean.
		[R+P]	3.2878	The value of the sample standard deviation.
		[ENG]	9.2653	Value of MSD.
zs-3		[J]	9.2653	Enter program ZS-03.
3.		[B]	2.6939	MAD calculated and displayed.
1.		[C]	9.0000	The range R = 9
5a.		[e]	0.0000	Initialize ZS-3 for data trans- formation.
5b.		[GTO][a][PRGM]	160 LBLa	Preparation for transformation.
5c.		$[1/\mathbf{x}]$	161 1/x	Simple algorithm.
м		[RTN]	162 RTN	Necessary return instruction.
		[PRGM]	x . xxxx	Exit program mode for ZS-3 operation.
5d.(2)	7	[E]	7.0000	Data automatically transformed and stored in R_{31} , R_{32} ,
		[P+R]	0.1798	Value of x' rounded.
		[R+P]	0.0892	Rounded value of s'.
		[ENG]	0.0068	Rounded value of MSD'.
3.		[B]	0.0697	Rounded value of MAD'.
1.		[C]	0.2500	Value of R', the new range.
6.		[d]	0.0000	Initialize to recall transformed data.

ZS STEP	ENTER	PRESS	DISPLAY	COMMENTS
		[D]	0.2000	Recall value of $x'_1 = 1/x_1$.
		[D]	0.10000	Recall value of $x'_2 = 1/x_2$.
		[D]	0.1667	Recall value of $x'_3 = 1/x_3$.
		[CF]01	0.1667	Clear display program
2.	For the grouped	data bel	.ow, calculate i	x, s, MSD, MAD and the range.
	Frequency:	_3	4 9	4 5
	Class Interval:	0-10	10-20 20-30	30-40 40-50
	SOLUTION:			
ST-03		[1]	0.0000	Select program ST-03.
I		[e]	0.0000	Initialize ST-03 for data entry.
G	3	[B]	3.0000	Enter first frequency.
	5	[A]	1.0000	Enter first midpoint; running coun
	4	[B]	4.0000	displayed.
	15	[A]	2,0000	Repeat for each pair.
	9	[B]	9.0000	
	25	[A]	3.0000	
	4	[B]	4.0000	
	35	[A]	4.0000	
	5	[B]	5.0000	
	45	[A]	5.0000	Data entry concluded.
		[P+R]	26.6000	Grouped mean value x.
		[R≁P]	12.8062	Rounded value of s.
		[ENG]	157.4400	Value of MSD.
2S-3		[J]	157.4400	Enter Program ZS-3
4.		[b]	10.0480	Value of MAD.
2.	10	[c]	50.0000	Value of grouped range R-based on a class width of 10.
3.	Group the follo w = 10 starting	wing data	a into a histog = 70.	ram consisting of 6 cells of width
	120	86 87	75 100	120 100 80
	110 1	05 95	90 100	85 95 85
	Calculate: X, SOLUTION:	s, MSD fo	or both grouped	and ungrouped data.
ST-07/9		[1]	0.0000	Select program ST-07-9
I		[e]	CELLS?	Initialize for parameter entry.
P1	6	[R/S]	XMIN?	Enter total number of cells.
P2	70	[R/S]	W = ?	Enter x , lowest data limit.

ZS_STEP	ENTER	PRESS	DISPLAY	COMMENTS
Р3	10	[R/S]	0.0000	Enter cell width.
DE	120	[A]	1.0000	Enter first data value
	86	[A]	2.0000	Enter second data value
		•	• •	•
	85	[A]	16.0000	Enter last data value
H1		[E]	0.0000	Initialize histogram display.
H2		[c]	1	First cell frequency
H3		[R/S]	80.0000	B ₁ so Cell 1 runs from 70 to 80.
H2		[c]	5	Second cell frequency
нз		[R/S]	90.0000	B ₂ establishing interval 80 to 90.
H2		[c]	3	Third cell frequency
Н3		[R/S]	100.0000	Third cell upper limit.
H2		[c]	4	Fourth cell frequency
Н3		[R/S]	110.0000	Fourth cell boundary.
H2		[c]	1	Fifth frequency for cell
Н3		[R/S]	120.0000	running from 110 to 120
H2		[c]	2	Sixth frequency for last cell.
H3		[R/S]	130.0000	Upper bound on all data (not included as a possible value)
		[c]	STOP	Indicates conclusion of program.
		[P+R]	95.8125	$\bar{\mathbf{x}}$ for ungrouped data
		[X<>Y]	98.1250	$ar{\mathbf{x}}$ for grouped data
		[R+P]	13.2525	s for ungrouped data
		[X<>Y]	14.9304	s for grouped data
		[ENG]	164.6523	MSD for ungrouped data
		[X<>Y]	208.9844	MSD for grouped data
		[1]	0.0000	Ensures return to ST-07/9

Chapter 4 Estimation

Chapter 5 Hypothesis Testing

The problems in both of these chapters are covered by a single program, called ZS-4/5. This was one of the more successful translations from TI to HP so that very little needs to be added in the way of remarks. As the reader will see from the User Instructions that follow, the directions are practically identical to those published in the text. One small difference is that raw data will not be entered by ST-03, but rather by a self-contained data entry scheme (DE) which is much simpler and covers all of the cases treated. Naturally, any TI reference to the T-register should be translated to the HP Y-register, and the display register, $R_{\rm D}$ referred to so often, becomes the HP

X-register. Another important point that is universally true of the difference between the two calculators is that R_{06} is used by the HP routines for storing sample sizes while TI used R_{03} . That change should be noted throughout the instructions that follow.

As previously remarked, the program ZSTAT should be loaded into program memory for all of the ZS programs from this point on in the text. It will be convenient to assign ZSTAT to a label, say [SCI], for easy access to the programs that are referred to occasionally in these chapters.

On page 85 reference is made to the formula for the t-density in ASM. It is really not particularly instructive for the applications presented here to actually see the formula but it may be found in most standard textbooks, and a picture of the typical density is shown on page 103. In any case the value of the CDF P(t) may be found by storing degrees of freedom, v, in R₁₅, enter-

ing t and then [XEQ][TF] in ZSTAT. On page 86 it should be noted that the subroutine ZA in ZSTAT replaces the subroutine [sin] in TI. (See also the Note in the User Instructions that follow.)

One of the few distributions provided by STAT PAC is the Chi-square, referred to on page 92. This distribution is labeled Σ CHISOD and is discussed on page 70 of the STAT PAC handbook. It may also be found as the subroutine [CHISD] in ZSTAT (requiring, again, only that degrees of freedom be store in R_{15}). Either replaces references to [C] in TI ST-21. A typical Chi-square density is depicted in the legend to Table C on page 104, where percentiles are located. It should be observed that the footnote regarding large degrees of freedom applies verbatim to the HP program ZS-4/5.

That takes care of all of the differences in these two chapters. Following the User Instructions on the next three pages will be found the typical model problems for verifying program output.

ZS-4/5	Assigned [J]) USER INSTRUCTIONS (HP)	SIZE 050 Σ REG 01						
STEP	PROCEDURE	ENTER	PRESS	DISPLAY				
DE	ORIGINAL DATA ENTRY							
1.	Enter Data							
	a. Initialize		[J]	DATA?				
	b. x, Repeat i = 1,2,,n		[R/S]	i.0000				
2.	Process Data for Storage		[4]	0.0000				
N(µ)	NORMAL MEAN - J UNKNOWN							
1.	Enter Data using DE OR:							
	a. Enter Sample Size	n	[STO]06	n				
	b. Enter Sample Mean	x	[STO]37	x				
	c. Enter Sample Standard Deviation	S	[STO]38	S				
2.	Test $H_0 : \mu = \mu_0$							
	a. Enter H,-code*	H,-code	[a]	H,-code				
	b. Enter μ_0 and Compute P-value	μ ₀	[R/S]	P				
3.	CI for µ							
	a. Calculate Degrees of Freedom		[A]	ν				
	b. Enter t_{ν} with d.f. = v	t. /2	[R/S]	l				
	and calculate limits	a/2	[X<>Y]	u				
	NOTE: For One-sided intervals, enter t at as the case may be.	t Step 3b and	ignore l or	c u				
N(μ σ)	NORMAL MEAN - J KNOWN							
1.	Enter Data Using DE OR:							
	a. Enter Sample Size	n	[ST0]06	n				
	b. Enter Sample Mean	x	[STO]37	x				
3.	Test H_{0} : $\mu = \mu_{0}$							
		H =oodo	[6]	H moodo				
	h Enter u and Compute P-uslue	"1 ^{-code}	[U] [P/S]					
	b. Enter Po and compute r-value	۳0	[[[7 3]	F				
4.	Calculate $100(1-\alpha)$ % <u>CI for μ</u>	α/2	[B]	٤				
			[X<>Y]	u				
	Note: Enter a for one-sided intervals and	ignore 2 or u	1 as the cas	se may be.				
 # E	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							

ZS-4/5	USER INSTRUCTIONS			
STEP	PROCEDURE	ENTER	PRESS	DISPLAY
$N(\sigma^2)$	NORMAL VARIANCE Enter Data Using DE OR:			
	a. Enter Sample Size	n	[ST0]06	n
	b. Enter Sample Standard Deviation	S	[STO]38	S
2.	Test H ₀ : $s^2 = \sigma_0^2$			
	a. Enter H_1 -code b. Enter σ_0^2 and Compute P-value	H_1 -code σ_0^2	[c] [R/S]	H _l -code P
3.	<u>CI for σ^2</u>			
	a. Calculate Degrees of Freedomb. Enter Chi-square Percentiles	$\frac{2}{1}$ x (2)	[C] [ST0]41	$\frac{2}{\chi_1}$
	(v=n-1) and Calculate Limits	$\frac{2}{\chi_{\alpha/2}^2}$	[STO]31	$\frac{2}{\chi_{\alpha/2}}$
			[R/S] [X<>Y]	L
		2		
	NOTE: For Upper One-sided Interval, enter displayed. For Lower One-sided inte see & displayed.	X _{l-α} ^{in R} 41 erval, enter ;	χ^2_{α} in R_{31} at χ^2_{α} in R_{31} at	and see u nd R ₄₁ see
Exp(µ)	Exponential Mean			
1.	Enter data using DE or:		fame loc	
	a. Enter Sample Size b. Enter Sample Mean	n x	[STO]06 [STO]37	n x
2.	Test H_0 : $\mu = \mu_0$			
	a. Enter H _l -code	H ₁ -code	[e]	H ₁ -code
	b. Enter µ ₀ and Compute P-value	μ ₀	[R/S]	P
3.	<u>CI for</u>		(F)	v
	b. Enter Chi-square Percentile v=2n	$\frac{2}{x_{1-\alpha/2}^{2}}$	[ST0]41	$\frac{2}{x_{1-\alpha/2}^{2}}$
	and Calculate Limits	$x_{\alpha/2}^{2}$	[ST0]31	$x_{\alpha/2}^{2}$
			[R/S]	L
	NOTE: See Previous Note for One-Sided Inte	ervals.		<u> </u>

REG	STER CON	TENTS								
00		1	10	1	20	1	30	ts	40	0
01	Σ		i 1	1	21		31	$t_{\alpha/2}, \chi^{2}_{\alpha/2}$	41	$x_{1-\alpha/2}^{2}$
02	$\Sigma \mathbf{x}_{4}^{1} 2$		12		22		32	SE G/2	42	1 04/2
33	1		13		23		33	Used	43	
)4		l	14	Used	24		34	θ	44	
05		Used	15	v	25		35	Ū	45	
)6	n	{	16		26	Used	36		46	
07			17		27		37	x	47	
80			18]	28	H ₁ -code	38	S	48	
0 9		1	19	1	29	P(ts)	39	e(θ±e)	49	Used

ZS-4/5 | J

01	A	а
02	В	Ъ
03	С	с
04	D	đ
05	E	е
0 6		
07		

EXAMPLES ZS-4/5

- (1) To study the effects of a drug, nine athletes were timed in a series of physical tests and yielded an average of $\bar{x} = 10.13$ minutes. It was assumed in the study that $\sigma = 1$ and that reaction times are normally distributed.
 - a. Find a 90% CI for the mean reaction time μ_\star
 - b. Determine a 99% lower one-sided interval for μ .
 - c. Find a one-sided upper bound on μ having risk 15%.
- (2) Four specimens of an expensive cloth were subjected to strength tests and the breaking strengths in lbs./sq. in. were recorded as 181, 173, 176, 175. The standard deviation based on past experience is 5 lbs./sq in. Assume normality.
 a. Find a 95% CI for µ, the mean breaking strength.
 - b. What is a lower one-sided bound for μ with confidence 90%?

	Solut	ion (1):			
ZP STEE	2	ENTER	PRESS	DISPLAY	COMMENTS
N(μ σ)	la.	9	[STO]06	9.0000	Places the sample size in R_{06} .
	16.	10.13	[STO]37	10.1300	Stores the sample average in R_{37} .
	2.	1	[ST0]48	1.000	Stores known σ -value in R ₄₈ .
	4.	.05	[B]	9.5816	Enter $\alpha/2 = .10/2$; display ℓ .
			[X<>Y]	10.6784	Exchange and display u. 90% CI for μ is (9.58, 10.68).
	4.	.01	[B]	9.3544	Enter α = .01 and find ℓ = 9.35 so confidence is 99% that μ > 9.35 solving (b) (R _y is not examined)
	4.	.15	[B]	9.78	Using $\alpha = .15$, ℓ is calculated but ignored.
			[X<>Y]	10.4755	The Y-register yields required upper limit on μ , solving (c).
	Solut	ion (2):		• • • •	
DE	1.		[J]	DATA?	
			[R/S]	0.0000	Initialize ZS-4 for data entry.
		181	[R/S]	1.0000	First breaking strength entered.
		173	[R/S]	2.0000	Second breaking strength entered.
		176	[R/S]	3.0000	Third breaking strength entered.
		175	[R/S]	4.0000	Fourth breaking strength entered.
DE	2.		[d]	0.0000	Data processed.
Ν(μ σ)	2.	5	[ST0]48	5.0000	Stores known σ -value in R_{48} .

ZS STE	<u>P</u>	ENTER	PRESS	DISPLAY	COMMENTS
	4.	.025	[B]	171.3490	Entering $\alpha/2$ for $\alpha = .05$, l is displayed.
			[X<>Y]	181.1510	Y-register yields u. CI:(171.3,181.2) is reported and (a) is resolved.
	4.	.10	[B]	173.0457	The 90% lower limit for (b) of 173.0 is found using $\alpha = .10$.
<u></u>	(3)	Five speci	mens of coke	tested for	porosity showed weight gains of
		2.16, 2.19	, 2.31, 2.30	and 2.21, a	all in pounds. The variance of the
		process is	unknown. F	ind a 90% C.	I. for the mean weight gain.
		Find estim	nates of µ an	d σ and SE.	
	<u>Solu</u>	tion:			
DE	1.		[J]	DATA?	
			[R/S]	0.0000	Initialize ZS-4 Ungrouped for data entry.
		2.16	[R/S]	1.0000	First weight entered.
		2.19	[R/S]	2.0000	Successive weights entered.
		2.31	[R/S]	3.0000	
		2.30	[R/S]	4.0000	
		2.21	[R/S]	5.0000	
DE	2.		[d]	0.0000	Process data.
N(μ)	3a.		[A]	4.0000	Display $v = 4$.
	ЗЪ.	2.132	[R/S]	2.1698	Lower confidence limit displayed
			[X<>Y]	2.2982	Upper Limit retrieved from R _y .
			[RCL]40	2.2340	Retrieve $\hat{\mu} = \bar{x}$, the estimate of μ .
			[RCL]38	0.0673	Retrieve $\hat{\sigma}$, the estimate of σ .
			[RCL]32	0.0301	Retrieve s/\sqrt{n} , the estimate of SE.
		Report 2	$2.17 < \mu < 2.$	30 or 90%	C.I. for µ is (2.17, 2.30).
	(4)	Summary da	ata for a pro	blem are 🕱 =	• 2.268 and $s = 0.225$. Determine a
		90% lower	one-sided C.	I. for µ and	l an upper 99% C.I. for µ.
	Solu	tion:			
N(μ)	la.	5	[STO]06	5.0000	Enter the sample size in $R_{03}^{}$.
	16.	2.268	[STO]37	2.2680	Enter the sample average in R_{40} .
	lc.	.225	[STO]38	0.2250	Enter the sample s.d. in R ₃₈ .
	3a.		[A]	4.0000	Display $v = 4$.
	ЗЪ.	1.533	[R/S]	2.1137	Lower limit is displayed; R_y ignored.
	3a.		[A]	4.	
	36.	3.747	[R/S]	(1.890)	t entered and lower limit ignored; .01
			[X<>Y]	2.6450	R yields the upper one-sided limit. Y

-

ZS STE	P	ENTER	PRESS	DISPLAY	COMMENTS				
	(7)	Times to	failure for s	ix expensive	pieces of electronic equipment were				
		recorded	in hours as 2	33.6, 1402.7	, 3119.0, 612.9, 258.3 and 2211.2.				
	(a) Find a 95% C.I. for mean time to failure.								
	(b) Determine a point estimate and a lower one-sided 95% confidence limi								
		on t	he reliabilit	y at 500 hrs	•				
	Solu	tion:							
DE	1.		[]]	DATA?					
			[R/S]	0.0000	Initialize ZS-4 for raw data entry.				
		233.6	[R/S]	1.0000	First time to failure entered.				
		1402.7	[R/S]	2.0000	Succeeding times to failure				
		3119	[R/S]	3.0000	entered and processed.				
		612.9	[R/S]	4.0000					
		258.3	[R/S]	5.0000					
		2211.2	[R/S]	6.0000					
DE	2.		[4]	0.0000	Data processed.				
Exp(µ)	3a.		[E]	12.0000	Display v = 2n				
	ЗЪ.	4.4	[STO]41	4.4	Storing lower percentile in R ₄₁				
		23.4	[ST0]31	23.3	Storing upper percentile in R ₃₁				
			[R/S]	669.8889	Display 1				
			[X<>Y]	3562,5909	Find u so CI is (673,3563)				
			[RCL]40	1306.2833	$\hat{\mu} = \bar{\mathbf{x}} = 1306$				
			[U][1/x][U]	0.0008	$\hat{\lambda} = 1/\bar{\mathbf{x}} = 0.0008$				
		50 0	[x]	0.3828	Multiplying by 500 to find 500 $\hat{\lambda}$				
			[CHS]	-0.3828	Change sign for exponentiation				
			[U][e ^x][U]	0.6820	to yield estimate of R(500).				
			[E]	12.0000	Display v to start new problem.				
		21.0	[ST0]31	21.0000	Store required $\chi^2_{.05}$ in R_{31}				
			[ST 0]41	1.0000	and l in R_{41} for one-sided limit.				
			[R/S]	746.4476	Display required lower limit on μ				
			[U][1/x][U]	0.0013	Upper limit on λ				
		500	[x]	0.6698	Multiplying by 500 to find upper limit on -500λ				
			[CHS]	-0.6698	Lower limit on -500λ				
			[U][e ^x][U]	0.5118	Lower bound on R(500).				

NOTE: [U] stands for the [USER] key.

Examples ZS-4 (Testing, Chapter 5)

(1) Seven observations of measured radiation intensity at a nuclear plant were 3.6, 4.2, 4.0, 4.1, 3.8, 3.9, 4.0. Conduct a significance test of $H_0: \mu \leq 3.8$ against $H_1: \mu > 3.8$.

Solution:

ZS ST	EP	ENTER	PRESS	DISPLAY	COMMENTS
DE	1		[J]	DATA?	Select and initialize ZS-4
		3.6	[R/S]	1.0000	
		4.2	[R/S]	2.0000	
		•		ł	Enter Data
		4.0	[R/S]	7.0000	
DE	2		[d]	0.0000	Process data.
N(µ)	2a.	1	[a]	1.0000	Enter H _l -code (+1).
	2Ъ.	3.8	[R/S]	0.0530	Enter boundary value and compute P = .053 from t-density.

- (2) A water meter has variance 14 (cu. ft)². Twenty monthly readings indicate a sample mean of 1284 cu. ft. per month.
 - (a) Test the hypothesis H_0 : $\mu = 1286$ against H_1 : $\mu \neq 1286$, using $\alpha = .05$.
 - (b) Calculate the significance level for the one sided alternative $H_{1}^{}$: $\mu < 1286.$

Solution:

$N(\mu \sigma) la$	20	[STO]06	20.0000	Enter sample size.
N(μ σ)1b	1284	[STO]37	1284.0000	Enter sample average.
N(µ σ)lc	14	[√x][ST0]48	3.7417	Enter known σ.
Ν(μ σ)4	.025	[B]	1284.3598	٤
		[X<>Y]	1285.6402	u (Since (1,u) does not contain µ ₀ , H ₀ is rejected.)
$N(\mu \sigma) 3a$	-1	[b]	-1.0000	H ₁ -code for part (b).
Ν(μ σ)3Ъ	1286	[R/S]	0.0084	$P-value$ (data are inconsistent with H_0).

ZS STEP	ENTER	PRESS	DISPLAY	COMMENTS

(3) The standard deviation in GRE scores nationwide has been 40 points. The GRE scores for 86 Smith High School students this year has (sample) standard deviation 35.2. What is the significance of this result?

	Solut	<u>10n</u> :				
•	la.	86	[STO]06	86.0000	Enter sample size.	
)	16.	35.2	[STO]38	35.2000	Enter sample standard deviation.	
	2a.	0	[c]	0.0000	Enter H_1 -code for H_1 : $\sigma \neq 40$.	
	26.	1600	[R/S]	0.1220	P-value. (Data are somewhat consistent with H_0 : $\sigma = 40$.)	

(4) Times to failure of a sample of 12 unused D-cells were (in weeks): 27, 41, 29, 33, 30, 33, 26, 37, 29, 11, 20, 29. The shelf life is claimed to be at least 35 weeks. Conduct a significance test of $H_0: \mu \leq 35 \text{ vs. } H_1: \mu > 35.$

	Solut	ion:			
DE	1		[J]	DATA?	Select and initialize ZS-4.
			[R/S]	0.0000	
		27	[R/S]	1.0000	
		41	[R/S]	2.0000	
		29	[R/S]	12,0000	Enter data
DE	2	27	[d]	0.0000	Process data.
Exp(µ)	2a.	1	[e]	1.0000	Enter H ₁ -code
Exp(µ)		35	[R/S]	0.7129	P-value (data are consistent with H ₀ .)

Chapter 6 Bivariate Populations

Program ZS-6 is another very successful transfer from the TI version and is assigned to [J] which also serves to initialize data entry and will ultimately replace references to ST-04. For matters discussed in Section 6.2, however, it is more convenient to use the program Σ BSTAT in STAT PAC. The procedure for inputting paired data is discussed on page 11 of the STAT PAC handbook. Output is then displayed by successive [R/S]'s, some of which are of no interest here. It should be noted that the output labeled GXY is simply the correlation coefficient referred to on page 130 of ZS. Also, in the notation of ZS, the HP output labeled SX. is RMSD for X, while SY. is RMSD for Y.

The STAT PAC program Σ BSTAT does not appear to be suitable for entering independent data of the type discussed on page 131 of ZS. Nor is any provision made for entering univariate data in any of the programs published in STAT PAC. The simplest solution is to start with the x-data and enter the data twice at Step 2 (that is, let $y_i = x_i$) in BSTAT, in which case all of the

moments are X-moments and the correlation is 1; alternatively, the [ENTER] portion of Step 2 may be ignored, each x entered with [A] in which case you should ignore all X-outputs in the list and copy only those for Y and ignore GXY altogether. Then the whole process needs to be repeated for the y-data.

Section 6.3; Paired Data

For implementation of the programs in ZS-6, raw data will be entered via a self-contained subroutine, called DE in the User Instructions that follow, and replaces references to ST-04 in the rest of the chapter. That subroutine is divided into two parts depending on whether the data are paired or independent. For this section, the data are paired so that option P will be used and the user instructions make it clear how the data are to be entered. Be sure to process the data after entry by pressing [d]. Otherwise, the instructions are identical to those provided in the book for TI.

Section 6.4: Independent Data

In this section the I option of data entry DE is to be used and, at the conclusion of data entry once more [d] must be used to process the data. Please keep in mind also that R_{06} is to be used in place of TI R_{03} throughout. The rest of the instructions are identical.

Section 6.5: Equality of Variances

No F-distribution is provided by STAT PAC so that distribution has been programmed into ZSTAT. Again, no formula is provided in ZS, nor is one really needed in this context. But the subroutine FCDF in ZSTAT will output P(F), while FCCDF will output Q(F) provided v_1 is in R_{15} and v_2 is in R_{16} . For example, if $v_1 = 2$ and $v_2 = 24$, you may verify by executing FCCDF in ZSTAT that Q(2.63) = .0927; if $v_1 = 20$ and $v_2 = 7$, then P(.4) = .0510. Again, the rest of the remarks in the book apply to the HP programs verbatim.

ZS-6	(Assigned	[J])
------	-----------	------

			Σ REG	01
STEP	PROCEDURE	ENTER	PRESS	DISPLAY
DE	ORIGINAL DATA ENTRY			
0.	Initialize		[J]	DATA?
1.	Enter Data			
	a. Paired Data		[P]	0.0000
	(Repeat 1 = 1,2,,n)	×i	[ENTER]	×.
		y _i	[R/S]	i.0000
	b. Independent Data		[1]	0.0000
	(1) Repeat $i = 1, 2,, n_x$	×i	[R/S]	1.0000
			[ɟ]	0.000
	(2) Repeat $j = 1, 2,, n_y$	^у ј	[R/S]	
2.	Process Data		[d]	0.0000
PN	Paired Data: $\mu_x - \mu_y$			
1.	Enter Data Using DE OR:			
	a. Enter Sample Size	n	[ST0006	n
	b. Enter Sample Means			
	(1) Original Means	x	[STO]47	x
	OR:	ÿ	[STO]37	ӯ
	(2) Mean Difference	đ	[STO]47	ā
		0	[STO]37	0
	c. Enter Sample Standard Deviation	s _d	[STO]27	s _d
2.	$Test H_0: \mu_x - \mu_y = \theta_0$			
	a. Enter H ₁ -code	H ₁ -code	[b]	H ₁ -code
	b. Enter θ_0 and Computer P-value	θο	[R/S]	P
3.	CI for $\mu_{-} - \mu_{-}$			
 	$\frac{x}{y}$		[R]	11
	a. Calculate degrees of freedom		נשן	V
	b. Enter $t_{\alpha/2}$ with d.f. = v and	$t_{\alpha/2}$	[R/S]	e
	Calculate Limits		[X<>Y]	u
	Note: For one-sided intervals, enter t case , may be.	at 3b and i;	gnore lor u	1 as the
*Hcode	$\mathbf{e} = \begin{cases} 1 \text{ if } \mathbf{H} : \mathbf{\theta} > \mathbf{\theta} \\ 0 \text{ if } \mathbf{H}^{1} : \mathbf{\theta} \neq \mathbf{\theta}^{0} \\ -1 \text{ if } \mathbf{H}^{1} : \mathbf{\theta} < \mathbf{\theta} \\ 1 & 0 \end{cases}$			

ZS-6	USER INSTRUCTIONS			2.
STEP	PROCEDURE	ENTER	PRESS	DISPLAY
INA (σ _x =σ _y) 1.	Independent Data: $\mu_{x} - \mu_{y}$ Enter data Using DE OR: Clear Memory and a. Enter Sample Sizes b. Enter Sample Averages c. Enter Standard Deviation	n _x ny x y	[J] [STO]13 [STO]06 [STO]47 [STO]37	DATA? ⁿ x ⁿ y x y
	(1) Pooled Estimate Available OR:	s p	[STO]33	s p
	(2) Original S.D.'s Available	s _x s _y	[STO]48 [STO]38	s _x s _y
2.	$\frac{\text{Test } H_0 : \mu_x - \mu_y = \theta_0}{\text{a. Enter } H_1 - \text{Code}}$ b. Enter θ_0 and Compute P-value $\frac{\text{CI for } \mu_x - \mu_y}{\text{a. Calculate degrees of freedom}}$ b. Enter $t_{\alpha/2}$ with d.f. = v and Calculate Limits See Previous Note for One-sided Limit	$H_1 - code \\ \theta_0 \\ t_{\alpha/2}$	[c] [R/S] [C] [R/S] [X<>Y]	H ₁ -code P v ł u
INB (σ _x ≠σ _y) 1.	Independent Data: $\mu_x - \mu_y$ (Welch Approximate t) Enter Data using DE OR: a. Enter Sample Sizes b. Enter Sample Means c. Enter Sample Standard Deviations	n _x ny x ⊽ s _x s _y	[ST0]13 [ST0]06 [ST0]47 [ST0]37 [ST0]48 [ST0]38	nx ny x y sx sy

2S-6	USER INSTRUCTIONS			3.
STEP	PROCEDURE	ENTER	PRESS	DISPLAY
2.	Test H ₀ : $\mu_x - \mu_y = \theta_0$			
	a. Enter H,-code	H ₁ -code	[a]	H,-code
	b. Enter θ_0 and Compute P-value	USER INSTRUCTIONSPROCEDUREENTERPRESSD: $: \frac{\mu_x - \mu_y = \theta_0}{c \cdot \mu_1 - code}$ $H_1 - code$ $[a]$ H_1 $: \theta_0$ and Compute P-value θ_0 $[R/S]$ $[R/S]$ $: \frac{c - \mu_y}{c - \mu_y}$ $[a]$ $[a]$ $[a]$ ilate Degrees of Freedom $[A]$ $[R/S]$ $: r t_{a/2}$ with d.f. = v and $t_{a/2}$ $[R/S]$ ilate Limits $[X <> Y]$ $[X <> Y]$?revious Note for One-Sided Limits $[X <> Y]$ $: T Sample Sizes$ n_x $[STO]13$ n_y $[STO]06$ \overline{x} $: Sample Means$ \overline{x} $[STO]47$ $: f Sample Means$ \overline{x} $[STO]48$ $: \frac{r}{y} - \mu_y = \theta_0$ $[K_1]$ -code $[A_1]$ $: \frac{r}{y} - \frac{r}{y} = \theta_0$ $[K_2]$ $[SF]05$ $: \frac{r}{y}$ $[SF]05$ $[R/S]$ $: \frac{r}{2}a/2$ $[R/S]$ $: \frac{r}{2}a/2$ $[R/S]$ Calculate Limits $[A]$ $: \frac{r}{a/2}$ $[R/S]$ $: \frac{r}{a/2}$ $[R/S]$	P	
3.	CI for $\mu_x - \mu_y$	USER INSTRUCTIONSPROCEDUREENTERPRESS $0 : \frac{u_x - u_y = \theta_0}{ter H_1 - code}$ $H_1 - code$ $[a]$ $ter \theta_0$ and Compute P-value θ_0 $[R/S]$ $\frac{u_x - u_y}{u_x - u_y}$ [A] $[A]$ lculate Degrees of Freedom $[A]$ ter $t_{\alpha/2}$ with d.f. = v and $t_{\alpha/2}$ lculate Limits $[X<>Y]$ e Previous Note for One-Sided LimitsSAMPLE NORMAL $u_x - u_y$ [STO]13n_y[STO]06ter Sample Sizes n_x $[STO]47$ \overline{y} ter Sample Means \overline{x} σ_y or s_y [STO]48 σ_y or s_y [STO]48 σ_y or s_y [STO]38 $0 : u_x - u_y = \theta_0$ $H_1 - code$ ter H_1 - code $[a]$ ter Focal and Calculate θ_0 $u_x - u_y$ $[A]$ itialize (Ignore output) $[A]$ ter $z_{\alpha/2}$ $[R/S]$ d Calculate Limits $z_{\alpha/2}$ e Previous Note for One-Sided Limits		
	a. Calculate Degrees of Freedom		[A]	ν
	b. Enter $t_{\alpha/2}$ with d.f. = v and	$t_{\alpha/2}$	[R/S]	٤
	Calculate Limits	~/ -	[X<>Y]	u
	See Previous Note for One-Sided Limits	5		
LSN	LARGE SAMPLE NORMAL $\mu_x - \mu_y$			
	OR: σ_x , σ_y known			
1.	Enter Summary Data Only:			
	a. Enter Sample Sizes	n x	[STO]13	n x
		ny	[STO]06	n y
	b. Enter Sample Means	x	[STO]47	x
		y	[STO]37	ÿ
	c. Enter Standard Deviations	or s x	[STO]48	σ or s _x
		σ _y or s _y	[STO]38	σ _y or s _y
2.	Test H ₀ : $\mu_x - \mu_y = \theta_0$			
	a. Enter H ₁ -code	H ₁ -code	[a]	H ₁ -code
	b. Set Flag 5		[SF]05	H ₁ -code
	c. Enter Focal and Calculate P-value	θ _O	[R/S]	P
3.	CI for $\mu_x - \mu_y$			
	a. Initialize (Ignore output)		[A]	xx
	b. Enter $z_{\alpha/2}$	$z_{\alpha/2}$	[R/S]	L
	and Calculate Limits	w/ 2	[X<>Y]	u
	See Previous Note for One-Sided Limits	3	<u></u>	<u></u>

ZS-6	USER INSTRUCTIONS			4.
STEP	PROCEDURE	ENTER	PRESS	DISPLAY
NV	Independent Data σ_x^2/σ_y^2			
1.	Enter Data using DE <u>OR</u> :			
	a. Enter Sample Sizes	n x	[ST0]13	n x
		ny	[ST0]06	n y
	b. Enter Sample Standard Deviations	s x	[ST0]48	s x
		s y	[ST0]38	s y
2.	Test $H_0 : \sigma_x^2 = \sigma_y^2$			
	a. Enter H _l -code; Set Flag 4.	H ₁ -code	[SF]04	H ₁ -code
	b. Calculate P-value		[D]	Р
3.	CI for σ_x^2/σ_y^2			
	a. Compute Degrees of Freedom		[D]	v ₁
	From Accompanying Table:		[R/S]	^v 2
	b. Enter F-value with d.f. = (v_1, v_2)	^F α/2	[STO]31	F _{a/2}
	c. Enter F-value with d.f. = (v_2, v_1)	Fa/2	[STO]41	Fa/2
	d. Calculate Limits		[K/S] [X<>Y]	L U
	Notes a For Lover OperSided Internal		2h	[
	l at Step 3c and ignore u.	at of	.ер 50,	
	b. For Upper One-Sided Interval.	enter 1 at Ste	ep 3b.	
	F_{α} at Step 3c and ignore l .			
Ехр	Independent Exponential μ_x/μ_y			
1.	Enter Data Using DE <u>OR</u> :			
	a. Enter Sample Sizes	nx	[STO]13	n x
		ny	[ST0]06	ny
	b. Enter Sample Means	x	[STO]47	x
	Tost U. t. H. T. H.	<u>ÿ</u>	[STO]37	ÿ
4.	$\frac{1}{2} \frac{1}{2} \frac{1}$		· • - ·	
	a. Enter H ₁ -code; Set Flag 4.	H ₁ -code	[SF]04	H ₁ -code
	(See Note under NV2)		[6]	

ZS-6				USER IN	STRUCT	IONS				5.
STEP		PI	ROCEDI	URE		E	NTER	PRESS	DI	SPLAY
3.	CI for µ	x ^{/µ} y							1	
	a. Comp	ute Degre	es of	f Freedom				[E]	· ·	v,
	From	Accompar	nying	Table:				[R/S]	· ·	2
	b. Enter	r F-value	e wit	h d.f. = (ν ₁ ,ν ₂)	F	a/2	[STO]31	F	x/2
	c. Enter	r F-value	e witi	h d.f. = (ν ₂ ,ν ₁)	F	α/2	[STO]41	F	x/2
:	d. Calc	ulate Lin	nits					[R/S]		٤
						ł		[X<>Y]		1
	See 1	Previous	Note	(NV) for (One-Si	ded Limits				
<u>I</u>	Register Cor	ntents	**-							
(00 xxx		10		20		30		40	ê
(01 Σy		11	1	21	}	31	$t_{\alpha/2}, F_{\alpha/2}$	41	F _{a/2}
	$\Sigma_2 \Sigma_y^2$		12		22		32	SE	42	u/ 2
()3 Σx	Used	13	n ,	23	Used	33	S	43	
()4 Σx^2	1	14	CCDF	24	1	34	θ	44	
()5 Σχγ	1	15	ν(ν ₁)	25	ł	35	·	45	
(06 n _y		16	ν ₂	26		36		46	
)7 Used		17	Used	27	s d	37	ÿ	47	x , d
	08 Used		18		28	H ₁ -code	38	s _y	48	s x
)9 Used		19		2 9	P(ts)	3 9	$e(\hat{\theta} \pm e)$	49	-
L	Assignme	ents		Labels	s Used	<u></u>				

As	si	gn	men	ts
_	_			

~~~	10670		96
-	_	_	

ZS-6 J DEP P DEI I OP11 ENG X TO Y J	00 01 02 04 05 06 08 09 11 12 13	A B C D E	a b c d
--------------------------------------------------	----------------------------------------------------------------	-----------------------	------------------

## Examples ZS-6

(1) Before (X) and After (Y) weights were recorded in lbs. after two weeks of dieting. Find a 95% CI for the mean difference  $\mu_x - \mu_y$  and conduct a significance test of equality test of equality of means. Test for a weight loss of at least 2 lbs.

X:	119	122	136	130	129	136	134	133	119	115
y:	114	119	134	126	119	137	124	127	119	107

Solution:

ZS	STEP	ENTER	PRESS	DISPLAY	COMMENTS
DE	0.		[J]	DATA?	
	la.		[P]	0.0000	Initialize ZS-6 for paired data entry.
		119	[ENTER]	119.0000	Enter first x-value.
		114	[R/S]	1.0000	Follow with first y-value.
		122	[ENTER]	122.0000	Enter second x-value.
		119	[R/S]	2.0000	Follow with second y-value.
		136	[ENTER]	136.0000	Enter succeeding pairs.
		134	[R/S]	3.0000	
		130	[ENTER]	130.0000	
		126	[R/S]	4.0000	
		129	[ENTER]	129.0000	
		119	[R/S]	5.0000	
		136	[ENTER]	136.0000	
		137	[R/S]	6.0000	
		134	[ENTER]	134.0000	
		124	[R/S]	7.0000	
		133	[ENTER]	133.0000	
		127	[R/S]	8.0000	
		119	[ENTER]	119.0000	
		119	[R/S]	9.0000	
		115	[ENTER]	115.0000	Enter last x-value
		107	[R/S]	10.	Follow with last y-value (n = 10)
DE	2.		[d]	0.0000	ZS program processes data.
PN	3 <b>a.</b>		[B]	9.0000	Calculates and displays $v = 9 = d.f.$
	36.	2.262	[R/S]	1.9389	Enter t from t-table and display 2 1.94
			[ X<>Y ]	7.4611	Display u so CI is (1.94, 7.46).
PN	2a.	0	[b]	0.0000	Enter H -code = 0 for two-sided test.

ZS STEP	ENTER	PRESS	DISPLAY	COMMENTS
	0	[R/S]	0.0039	Use $\theta = 0$ for this case and find P = 0.0039; reject at usual levels.
		[RCL] 30	3.8504	Display value of ts.
PN 2a.	1	[Ъ]	1.0000	Use H ₁ -code of l making
				$H_0: \mu_x - \mu_y \leq 2$ the disclaimer.
	2	[R/S]	0.0271	With $\theta_0 = 2$ , P-value is enough to
				reject at $\alpha = 5\%$ .
(2)	A test of	color percept	tion was ad	lministered to a control group (X)
	and an exp	erimental gro	oup (Y) wit	th results:
	x: 16.3	14.7 12.3	13.5 1	6.0 17.1 17.3
	y: 14.0	16.5 17.7	15.9 1	16.3
	Analyze th	e two groups	for differ	ences. Also test for equality of
	variances.			
Sol	ution assumi	ng σ = σ :		
		<u>x y</u>		
DE O.		[J]	DATA?	Initialize ZS-6 for independent data entry.
16.	16.3	[R/S]	1.000	Enter first x-value.
	14.7	[R/S]	2.0000	Continue x-values assuming data
	12.3	[R/S]	3.0000	are independent.
	13.5	[R/S]	4.0000	
	16.0	[R/S]	5.0000	
	17.1	[R/S]	6.0000	
	17.3	[R/S]	7.0000	Last x-value entered; $n_{1} = 7$ .
		[j]	0.0000	x Prepare for y-values.
	14	[R/S]	1.0000	Begin entering y-value
	16.5	[R/S]	2.0000	(as with label B in ST-04)
	17.7	[R/S]	3.0000	
	15.9	[R/S]	4.0000	
	18	[R/S]	5.0000	
	16.3	[R/S]	6.0000	Conclude y-entries; n_ = 6
DE 2.		[4]	0.0000	y Process data.
INA 2.	0	[c]	0.0000	Enter H ₁ -code for two-sided test.
	0	[R/S]	0.2740	Display P-value (for $\theta_0 = 0$ ) of 0.27;
		[RCL] 30	-1.1512	Accept $H_0$ (ts = -1.15).
INA 3.		[C]	11.0000	Reveal d.f. = $n + n - 2 = 11$ for this case.
	2.201	[R/S]	-3.1615	Entering t $_{0.25}$ = 2.201, CI runs from
		[ X<>Y ]	0.9900	.025 l = -3.16 to $u = 0.99$ which does include 0.

<u>zs</u> s	STEP	ENTER	PRESS	DISPLAY	COMMENTS
	Solu	tion assur	ning σ ≠ o x	· : <u>y</u>	
INB	1.	Same as	INA so dat	a are already	entered and processed.
INB	2.		[A]	10.0000	Calculates degrees of freedom for
		2.228	[R/S]	-3.1404	approximate CI based on Welch t.
			[X<>Y]	.9690	Comes close to preceding solution.
INB	3.	0	[a]	0.0000	Begins Welch t-test with H ₁ -code
		0	[R/S]	0.2663	followed by $\theta_0 = 0$ to yield about
					the same P-value.
		To test	for $\sigma_x^2 = \sigma_x^2$	2 v:	
NV	1.	Same as	INA	5	
NV	2.	0	[SF]04	0.0000	H _l -code for two-sided test. Flag
					4 signals NV a test is being called for.
			[D]	.5645	Large P-value; accept $\sigma_x^2 = \sigma_y^2$ with
			[RCL] 30	1.7290	ts = 1.73.
NV	3a.				To take a CI point of view
			[D]	6.0000	Displays $v_1 = n_x - 1$ .
			[R/S]	5.0000	Displays $v_2 = n_y - 1$
NV	ЗЪ.	6.98	[STO]31	6.9800	Enter $F_{.025}$ with d.f. = (6,5).
NV	3c.	5.99	[ST0]41	5.9900	Enter $F_{.025}$ with reversed d.f. = (5,6)
			[R/S]	0.2477	Shows a 95% CI that includes the
			[X<>Y]	10.3565	value 1. Accept $\sigma_x^2 = \sigma_y^2$ .
··········	(3	) A sample	e of 60 exp	onential times	s to failure averaged $\bar{x} = 1306$ hrs.
		Six inde	ependent ti	mes averaged	$\overline{y}$ = 1247 hours. Test H ₀ : $\mu_x \leq \mu_y$ .
	Solu	tion:			
Exp	Ι.	60	[STO]13	60.0000	Enter Summary Data
		6	[ST0]06	6.0000	
		1306	[STO]47	1,306.0000	
		1247	[STO]37	1,247.0000	Data entry concluded.
Exp	2.	1	[SF]04	1.0000	Enter $H_1$ -code for $H_1$ : $\mu_x > \mu_y$ and set flag 4 to signal H-test.
			[E]	0.5043	P-value of 0.50 obtained; do not reject.
Ехр	3a.		{E}	120.0000	$v_1 = 2n_x$ displayed.
			[R/S]	12.0000	$v_2 = 2n_y$ displayed.

ZS STEP	ENTER	PRESS	DISPLAY	COMMENTS
ЗЪ.	2.35	[ST0]31	2.3500	$F_{.05}$ for $v_1 = 100$ , $v_2 = 10$ entered
	1	[STO]41	1.0000	1 store in R ₄₁ to compute lower CI
		[R/S]	0.4457	Lower bound on $\mu/\mu$ displayed.

### Chapter 7 Proportions

This chapter represents the most successful transfer of programs of all. Indeed, the only remarks that need to be added to the existing programs is to remind you once more that all references to register  $R_{03}$  in TI are to be replaced with  $R_{06}$  in HP, that [X<>Y] is the HP version of [x t] (so that any reference tp TI  $R_T$  should be replaced by  $R_Y$ ). Finally, since ZS-7 has been assigned to [J], you should press the latter key whenever you need to access the programs here and is the only initialization necessary.
ZS-7 (Assigned [J])

## USER INSTRUCTIONS (HP)

SIZE 050

Σ REG 01

STEP	PROCEDURE	ENTER	PRESS	DISPLAY
B(p) 0.	Bernoulli Parameter Initialization (if not already in ZS-7)		[1]	0.0000
1.	Data Entry		[070]06	
	a. Enter Sample Size	n Â	[ST0]06	n ^
	b. Enter Proportion Estimate	Р	[510]40	р
2.	Test $H_0$ : $p = p_0$			Ì
	a. Enter H ₁ -code*	H ₁ -code	[b]	H ₁ -code
	b. Enter p ₀ and Compute P-value OR:	P0	[R/S]	P
	b'. For n Large (Normal Test)	P ₀	[c]	Р
3.	CI for p for n large			
	Enter Risk and Calculate Limits	a/2	[C]	e
	Note: For One-sided Limits, Enter a		[X<>Y]	u
	and Ignore 1 or u.			
4.	CI for p for n small			
	a. Find first d.f. for F.		[B]	ν,
			[R/S]	
	b. Enter $F_{\alpha/2}$ with d.f. = $(v_1, v_2)$	Fall	[ST0]31	F _{al2}
	c. Find second d.f. for F	u/ 2	[R/S]	
			[R/S]	
	d. Enter $F_{\alpha/2}$ with new d.f.	F _{a/2}	[ST0]41	$F_{\alpha/2}$
	e. Calculate limits	G, 2	[R/S]	2
			[X<>Y]	u
	Note: For Lower One-sided Limit, enter F and Ignore u.	at Step 3b,	l at Step (	34
	For Upper One-sided Limit, enter l and Ignore <i>l</i> .	at Step 3b, 1	$F_{\alpha}$ at Step	3d
B(pp_)	Two Bernoulli Parameters			
î.,	Data Entry			
	a. Enter Sample Sizes	n,	[STO]13	n _x
		n	[STO]06	n
	b. Enter Proportion Estimates	, p _x	[STO]47	, p _x
		, py	[STO]37	<b>P</b> y
	$ \begin{array}{c} * \\ H_{1} - code \end{array} = \left\{ \begin{array}{c} 1 & if \ H_{1} : \theta > \theta \\ 0 & if \ H^{1} : \theta \neq \theta \\ -1 & if \ H^{1}_{1} : \theta < \theta \\ 0 \end{array} \right. $	<u>ka kana</u> n		

ZS-7		2.									
STEP		PROCEDU	RE	ENTER	PRESS	DISPLAY					
2.	Test $H_0 : p_x$	• p _y									
	Enter H ₁ -code	and Calc	ulate P	-value		H _l -code	[a]	Р			
3.	CI for p - p										
	Enter Risk and	d Calcula	te Limi		α/2	[A]	l L				
	Note: For One-sided Limits Enter a and Ignore 2 or u.										
	Register Conto	ents									
	00	10	20	1	30		40 <del>ê</del>				
	01	ll Use	d 21		31	$z_{\alpha/2}, F_{\alpha/2}$	41 $F_{\alpha/2}$				
	02	12 Use	d 22		32	SE	42				
	03	13 n x	23	Used	33	Used	43				
	04 u	14	24		34	θO	44				
	05 L	15	25		35		45				
	06 n(n _y )	16	26	,	36		46				
	07	17 Use	d 27_		37	p _v	47 p _x				
	08 BIN p(0)	18 Use	d 28 H	1 ₁ -code	38	2	48				
	09'	19 Use	d 29 p	(ts)	39	e(θ̂ <b>+e</b> )	49				

Assignments ZS-7 J

Labels Used 01 A 02 B

a

ь

03 С

04

05

### ZS-7 EXAMPLES

(1) In nine independent Bernoulli trials, there were exactly four successes. Find a 95% CI for p and test  $H_0$ : p = 0.5.

	Solu	tion:		-	
ZP ST	EP	ENTER	PRESS	DISPLAY	COMMENTS
B(p)	1.	9.	[ST0]06	9.0000	Enter sample size.
		.44	[ <b>ST</b> 0]40	0.44	Enter $\hat{p} = 4/9$ , the estimate of p.
	4a.		[B]	12.0000	Since n is small find first pair
			[R/S]	8.0000	of $d.f. = (10, 10).$
	46.	4.20	[ST0]31	4.2000	Enter first F _{.025} percentile.
	4c.		[R/S]	10.0000	Discover revised d.f. = (12,8).
			[R/S]	10.0000	
	4d.	3.72	[ST0]41	3.72	Store second F .025 percentile.
			[R/S]	0.1370	Lower confidence limit displayed
			[X<>Y]	0.7881	and u found in $R_{v}$ .
	3.	0.	[b]	0.0000	Enter $H_1$ -code for $H_1$ : p = 0.5.
		0.5	[R/S]	1.0000	Significance level 1; accept H ₀ .
					•

(2) A device was tested 25 times and passed 23 times. Find a lower one-sided CI on p, the probability of passing. Test  $H_0$ :  $p \ge 0.95$ .

So	lution:			
B(p) 1.	25	[STO]06	25.0000	Enter data as above.
	23 <b>÷</b> 25	[ STO ] 40	0.9200	$\hat{\mathbf{p}}$ = 23/25 = 0.92
2a.	-1	[b]	-1.0000	Enter $H_1$ -code for $H_1$ : $p < 0.95$ .
2Ъ.	0.95	[c]	0.2456	Comparing with large sample test.
4a.		[B]	6.0000	Initial d.f. for small n CI (to
		[R/S]	46.0000	be ignored along with $v_2$ .
4Ъ.	2.29	[STO]31	2.2900	Following instructions store 1 in
4c.		[R/S]	48.0000	$R_{31}$ . Calculate new d.f. $v_1 = 6$
		[R/S]	4.0000	and $v_2 = 46$ .
4d.	1	[STO]41	1.0000	Enter $F_{.05}$ for d.f. = (6,50) and
		[R/S]	0.7700	calculate lower confidence bound.

(4) A sample of size 100 was taken from a lot with replacement and 2 defective items were found. Test the manufactures claim that p < 0.05 at  $\alpha = .01$ .

ZS STEP		ENTER	PRESS	DISPLAY	COMMENTS					
	Solu	tion:								
B(p)	1.	100.	[ST0]06	100.0000	Enter data as usual.					
		.02	[STO]40	0.0200						
	2a.	-1.	[b]	-1.0000	$H_1$ -code for $H_1$ : $p < .05$ , the null hypothesis being $H_0$ : $p \ge .05$ , the disclaimer.					
	2Ъ.	.05	[R/S]	0.1183	Enter $P_0$ and find $P = 0.12$					
					supporting H ₀ not H ₁ .					
	2ъ'.	.05	[c]	0.0843	Compare normal test.					
	so inclined. Is there any real difference between sexes on this issue? <u>Solution</u> : To test H ₀ : p _x = p _y									
B(p -p	)la.	500	[STO]13	500.0000	Enter first sample size.					
тхту		300	[ST0]06	300.0000	Enter second sample size.					
	16.	0.7	[STO]47	0.7000	Enter first proportion estimate $\hat{p}_{\perp}$ .					
		2/3	{ST0]37	0.6667	Enter second proportion estimate $p_{i}^{X}$ .					
	2.	0.	[a]	0.3248	Enter $H_1$ -code for $H_1$ : $p_2 \neq p_2$					
			[RCL] 30	.9847	and find $P = 0.32$ with ts = .98.					
					Data supports H _O .					
	3.	.025	<b>[A]</b>	-0.0335	A 95% CI for the difference $u - \mu$					
			[X<>Y]	0.1001	extends from03 to + .10; includes 0.					

#### Chapter 8 Analysis of Variance

The big change here is the data entry which is via STAT PAC through the Analysis of Variance routines provided there. Unfortunately, those routines are not complete enough to accomplish all of the goals set out in the text so that they too had to be supplemented with program ZS-8, whose user instructions follow.

#### Section 8.2: One-Way Classifications

On page 95, you may replace the reference to ST-22 with execution of FCCDF in ZSTAT. If you will consult the user instructions, you will see that the program utilizes subroutine  $\Sigma AOVONE$ , assigned to [H] for convenience, in place of the TI program ST-06, referred to on page 197. After pressing [H] and seeing the display  $\Sigma AOVONE$ , you follow Steps 3-5 for inputting data (a model example is provided following the user instructions). A press of [E] while still in  $\Sigma AOVONE$  will then output most of the AOV table. The only, but important, missing item is the prob-value and that is calculated at Step 3 in ZS-8 by exiting  $\Sigma AOVONE$  with a press of [J] followed by [A]. The Scheffe⁻ confidence intervals discussed in the very next section follow precisely the same user instructions as the TI and are duplicated in the HP User Instructions that follow.

#### Section 8.4: Two-Way Classifications

In this section, the program  $\Sigma AOVTWO$  in STAT PAC is used for data entry in place of ST-06. This subroutine is assigned to [I] in ZS-8 and, once pressed, the instructions for data entry and output discussed on page 23 of the STAT PAC handbook should be followed. (Again, a model problem is provided at the end of the user instructions for ZS-8). This will provide for only part of the Two-Way table as displayed in this section of the text (and most other textbooks on the subject). To complete the table, you need to exit  $\Sigma AOVTWO$  by pressing [J] and then [C] will output the remaining items needed for the table including the all-important prob-values. Once again, the instructions for implementing the Sheffe' confidence interval formulas discussed in the next section are identical to those for the TI and are duplicated in the user instructions that follow.

ZS-8 (Assigned [J]) USER INSTRUCTIONS (HP) SIZE 060											060
STEP			PROCI	EDURE				E	NTER	PRESS	DISPLAY
AOV-1 0. 1.	<u>One-Wa</u> INITIA Enter NOTE:	y Analy LIZATIC Data Us Record	sis of N (if π ing ΣΑ( Each 1	Variance not alrea DVONE Row Mean	dy in	ZS-	•8)			[J] [H]	xxxx Σaovone
2.	Calculate AOV Table Entries NOTE: These Steps may NOT be repeated once Step 3 is executed.									[E] [R/S] [R/S] [R/S] [R/S] [R/S] [R/S] [R/S] [R/S]	SS RSS ESS K-1 N-K N-1 MRSS MESS F
3.	Exit Σ	OVONE a	nd com	oute P-va	lue				F	[J] [A]	F P
4.	Confidence Intervals for Contrasts (After Step 2) a. Initialize b. Enter Contrast Data (Repeat for each i; ignore any c _i = 0) c. Enter F-percentile d.f. = (K-1,N-K), and calculate CI								ci xi ni Fa	[e] [R/S] [R/S] [R/S] [a] [X<>Y]	0.0000 ^C i ^X i i l u
	NOTE 2	: Thes	e Step	are also	o val	id i	.f	R ₀₃ a	1d R ₄	8 are manual	ly stored.
REGIST 00 SS 01 RSS 02 ESS 03 K- 04 Us 05 Us 06 M 07 Us 08 Us	ER CONTEN 10 5 11 5 12 1 3 ed 14 ed 15 16 ed 17 - ed 18	TS Used N-K Used R-1 N-K	20 21 22 23 24 25 26 27 28	FCDF	30 31 32 33 34 35 36 37 38	F P	40 41 42 43 44 45 46 47 48	MESS	50 51 52 53 54 55 56 57 58	^{Sc} i ^x i Last c _i Last x ^{Sci²/n} i Used	
09 K	19	for	29		39		49	е	59		

ZS-8	USER INSTRUCTIONS								
STEP	PROCEDURE	ENTER	PRESS	DISPLAY					
AOV-2	Two-Way Analysis of Variance								
0.	Initialize (if not in ZS-8)	Í	[J]	x.xxxx					
1.	Enter Data Using EAOVTWO		[I]	ΣΑΟΥΤWO					
2.	Calculate Row and Column Means								
	Calculate Row Means After each Row		[R/S]	SUM					
	<pre>entry (Record). Repeat i = 1,,R.</pre>	С	[÷]	^x i.					
	Calculate Column Means After each		[R/S]						
	Column entry (Record). Repeat	R	[÷]	₹.j					
	j = 1,2,,C.								
3.	Calculate AOV Table Entries		{E]	RSS					
	NOTE: These Steps may NOT be repeated		[R/S]	CSS					
1	once Step 4 is executed		[R/S]	SS					
			[R/S]	ESS					
			[R/S]	R-1					
			[R/S]	C-1					
			[R/S]	(R-1)(C-1)					
			[R/S]	FR					
			[R/S]	FC					
4.	Exit ZAOVTWO		[1]	F _C					
5.	Complete the AOV output	F _C	[C]	MRSS					
		-	[R/S]	MCSS					
			[R/S]	MESS					
			[R/S]	P _R					
			[R/S]	^Р с					
1		ł							

zs-	8				USER I	NSTR	UCTIO	ONS				3.
STE	P		PR	OCEDURE	2				ENTE	R	PRESS	DISPLAY
6	•	Confi Contr	dence Interv asts	als for	Poste	rior	<u></u>					
		a. I	nitialize								[E]	0.0000
		<b>ь.</b> Е	nter Contras	t Data					c,		[R/S]	$c_i^2$
		(	Repeat for e	ach i (	(or j))			x,	(or	₹,)	[R/S]	i (or j)
		c. 0	I for Row Co	ntrast	Σc _i μ _i .			-	F		[D]	٤
		d.f. = $(R-1,(R-1)(C-1))$							-		[X<>Y]	u
		d. CI for Column Contrast $\Sigma c_{i}\mu_{j}$							F		[d]	٤
		d.f. = $(C-1, (R-1)(\Psi-1))$									[X<>Y]	u
		NOTE 1: Steps 4abc or 4 abd may be repeated.										
		NOTE 2: These steps are also valid if the contents of registers R ₄₈ , R ₅₈ , R ₅₉ below are stored manually.										
REGISTER CONTENTS:												
00	Used	10		20	30	ts	40		50	Σcīx		
01	R	11	(R-1)(C-1)	21	31		41		51	last	c	
02	С	12	RSS	22	32		42		52	last	x	
03	RC	13	CSS	23	33		43		53	Σc		
04	x	14	R-1	24	34		44		54	Used	ł	
05	x	15	C-1	25	35		45		55			
06	<b>x</b>	16	(R-1)(C-1)	26	36		46		56	FR		
07	MESS	17	Used	27	37		47		57	FC		
08		18		28	38		48	MESS	58	R-1		
0 <b>9</b>		19		29	39		49	e	5 <b>9</b>	C-1		
		Assig	nments				Label	.s Use	<u>d</u>			
		ZS-8 ΣΑΟΥΟ ΣΑΟΥΤ	J DNE H TWO I				01 02 03	Aa Cd De E				

#### EXAMPLES ZS-8

(1) Three types of solvents are tested on grease-soaked material and the amount of grease removed in milligrams is noted for several specimens with the following results:

11

Solvent	A	11	12	12
Solvent	В	13	15	
Solvent	С	12	10	11

Test the hypothesis of no differences in solvents.

# Solution:

ZP ST	<u>EP</u>	ENTER	PRESS	DISPLAY	COMMENTS
			[J]	x.xxxx	
AOV-1	, 1.		[H]	ΣΑΟΥΟΝΕ	Call for $\Sigma AOVONE$ in the module.
ΣΑΟΥ	2.	11	[A]	1.00	Enter data for the first row.
		12	[A]	2.00	Enter data for the first row.
		12	[A]	3.00	Row 1 data entry concluded.
ΣΑΟν	5.		[R/S]	11.67	First row mean $\overline{\mathbf{x}}_{l}$ calculated. Record!
			[R/S]	0.58	s for row 1 and row sum; ignore and
			[R/S]	35.00	go on to enter data for second row.
ΣΑΟΥ	2.	13	<b>[A]</b>	1.00	Running count begins anew.
		15	[A]	2.00	Row 2 data entry concluded.
δυοχ	5.		[R/S]	14.00	Row mean $\bar{\mathbf{x}}_2$ calculated. Record!
			[R/S]	1.41	Row 2 s and sum; ignore and proceed
			[R/S]	28.00	to enter data for third row.
ΣΑΟΥ	2.	12	[A]	1.00	
		10	<b>[A]</b>	2.00	
		11	[A]	3.00	
		11	[A]	4.00	Row 3 data entry concluded.
ΣΑΟν	5.		[R/S]	11.00	Value of x ₃ . (Record)
			[R/S]	0.82	Value of s and sum; ignore. Data
			[R/S]	44.00	entry concluded.
ΣΑΟν	6.		{E}	16.89	Value of SS displayed for total.
			[R/S]	12.22	Value of RSS
			[R/S]	4.67	ESS displayed
			[R/S]	2.00	d.f. for RSS
			[R/S]	6.00	d.f. for ESS displayed
			[R/S]	8.00	d.f. for SS displayed
			[R/S]	6.11	Value of MRSS
			[R/S]	0.78	Value of MESS

ZS STEP	ENTER	PRESS	DISPLAY	COMMENTS
		[R/S]	7.86	F-ratio = MRSS/MESS.
		{J}	7.8571	Exit SAOVONE.
		[A]	0.0211	P-value of the F-ratio.
(2)	Find Schei	ffe 95% conf	idence interv	vals for the contrast $\mu_1 = 0.5\mu_2 = 0.5\mu_3$
	where MESS	s = 105.97 at	nd $K = 3, N-1$	$k = 18; \ \overline{x}_1 = 103.71, \ \overline{x}_2 = 92,$
	$\bar{x}_3 = 89, r$	n _i ≡ 7.		
Solu	ition:			
AOV-1. 2.	2	[ST0]14	2.0000	$v_1 = K-1 = 2$ stored in $R_{14}$
	105.97	[STO]48	105.9700	MESS stored in $R_{48}$ as required.
AOV-1. 3.		[e]	0.0000	Initialize CI routine.
	1	[R/S]	1.0000	First of triple triple $c_1, \bar{x}, n$ , entered.
	103.71	[R/S]	103.7100	Second member of triple
	7	[R/S]	1.0000	Sample size n _l ; count of l (triple) displayed.
	-0.5	[K/S]	-0.5000	Beginning entry of $c_2, \bar{x}_2, n_2$ .
	92	[R/S]	92.0000	
	7	[R/S]	2.0000	Running count of 2 displayed.
2	-0.5	[R/S]	-0.5000	Entering final triple
	89	[R/S]	89.0000	
	7	[R/S]	3.0000	Entry completed.
	3.49	[a]	0.6203	$F_{.05}$ for d.f. = (2,20) entered
		[X<>Y]	25.7997	and confidence limits displayed.
				Conclude contrast significantly
				different from 0.

(3) Five teachers were matched with three schools to produce the following average scores on a standardized examination after a unit of instructions

Teachers Schools	A	В	с	D	E	₹i.
I	53	47	46	50	49	49
II	61	55	52	58	54	56
III	51	51	49	54	50	51
- . j	55	51	49	54	51	

ZS STE	<u>P</u>	ENTER	PRESS	DISPLAY	COMMENTS
	Cons	truct a two	-way AOV	table and find	CI's for $\mu_{1}, -\mu_{2}$ , and $\mu_{1}, -\mu_{3}$ .
	Solu	tion:			
			[J]	x.xxxx	
AOV-2	1.		[I]	ΣΑΟΥΤWO	Call for SAOVTWO from the modu
ΣΑΟΥ	3.	53	[A]	1.00	Enter first data value from ro
		47	[A]	2.00	Continue entering data from ro
		46	[A]	3.00	
		50	[A]	4.00	•
		49	[A]	5.00	<pre>'until all the data from row l entered</pre>
			[R/S]	245.00	
δυοχ	5.	5	[*]	49.00	Calculate and record row mean
Σαον	3.	61	[A]	1.00	Go on with first value from ro
		55	[A]	2.00	and continue
		52	[A]	3.00	until all of
		58	[A]	4.00	the data from row 2
		54	[A]	5.00	have been entered.
ΣΑΟν	5.		[R/S]	280.00	Calculate and
		5	[*]	56.00	record x ₂ .
ΣΑΟΥ	3.	51	[A]	1.00	Continue non-stop with data
		51	[A]	2.00	entry from the third and
		49	[A]	3.00	last row
		54	[A]	4.00	
		50	[A]	5.00	
ΣΑΟΥ	5.		[R/S]	255.00	Calculate and
		5	[÷]	51.00	record X ₃ .
Σαον	6.		[R/S]	COLUMN-WISE	Prepare for column computation
ΣΑΟΥ	8.	53	[A]	1.00	Enter first value from column
		61	[A]	2.00	Enter second value from colum
		51	[A]	3.00	Enter last value from column
CAOV	10.		[R/S]	165.00	Calculate $\bar{\mathbf{x}}_{\cdot 1}$ .
			{ <del>;</del> }	55.00	and record.
CAOV	8.	47	[A]	1.00	Repeat for column 2
		55	[A]	2.00	
		51	[A]	3.00	
$\lambda \in V$	10.		[R/S]	153.00	Calculate and
		3	[÷]	51.00	record X.2

ZS ST	EP	ENTER	PRESS	DISPLAY	COMMENTS
δαολ	8.	46	<b>[A]</b>	46.00	Repeat for column 3
		52	[A]	52.00	
		49	[A]	49.00	
ΣΑΟν	10.		[R/S]	147.00	Calculate and
		3	[÷]	49.00	record X.3
δαολ	8.	50	[A]	50.00	Repeat for column 4
		58	[A]	58.00	
		54	[A]	54.00	
ΣΑΟν	10.		[R/S]	162.00	Calculate and
		3	[ + ]	54.00	record X.4
ΣΑΟν	8.	49	[A]	49.00	Repeat for column 5.
		54	[A]	54.00	
		50	[A]	50.00	
ΣΑΟν	10.		[R/S]	153.00	Calculate and
		3	[÷]	51.00	record X.5
δαολ	11.		[E]	130.00	Data compiled and RSS displayed
			[R/S]	72.00	CSS displayed.
			[R/S]	224.00	SS total sum of squares.
			[R/S]	22.00	ESS displayed
			[R/S]	2.00	Row d.f. = $R-1 = 2$ displayed.
			[R/S]	4.00	Column d.f. = C-l = 4 displayed
			[R/S]	8.00	Error d.f. = (R-1)(C-1) displayed
			[R/S]	23.64	F _R displayed
			[R/S]	6.55	F _C displayed
			[J]	6.5455	Exit $\Sigma AOVTWO$ and enter ZS-8
zs-7	5.		[C]	65.0000	MRSS displayed
			[R/S]	18,0000	MCSS displayed
			[R/S]	2.7500	MESS displayed
			[R/S]	0.0004	P-value for F _R computed and displayed
			[R/S]	0.0122	P-value for F _C
	4.		[E]	0.0000	Initialize for Scheffe CI's
		1	[R/S]	1.0000	Enter $c_1 = 1$ to find CI for $\mu_1 = \mu_2^2$ .
		49	[R/S]	1.0000	Enter row mean R ₁ .
		-1	[R/S]	1.0000	Enter $c_2 = -1$ for contrast $\mu_1 = \mu_2$ .

ZS STEP	ENTER	PRESS	DISPLAY	COMMENTS
	56	[R/S]	2.0000	All non-zero c's now entered.
	4.46	[D]	-10.1324	$F_{.05} = 4.46$ for d.f. = (2,8)
		[ X<>Y ]	-3.8676	l is displayed followed by u.
		[RCL]49	3.1324	The value of e retrieved from R ₄₉ for further comparisons.
		[E]	0.0000	Re-initialize C.I. program.
	1	[R/S]	1.0000	Enter c ₁ for contrast $\mu_{1}$ $-\mu_{3}$ .
	55	[R/S]	1.0000	$\bar{x}_{1}$ , the first column mean is
				entered.
	-1	[R/S]	1.0000	Enter c ₂ = -1
	49	[R/S]	2.0000	Enter third column mean $\bar{x}_{.3}$ .
	3.84	[d]	0.6934	Enter $F_{.05}$ for d.f. = (4,8) and calculate Lower limit.
		[X<>Y]	11.3066	Upper limit retrieved from $R_{v}^{\bullet}$ .
		[RCL]49	5.3066	Value of e found in R ₄₉ for further comparisons.

Chapter 9 Simple Linear Regression

It is rather surprising that the HP is not hard-wired for at least simple linear regression as is the TI and many lesser hand-held calculators. There is a routine in STAT PAC, but, just as with the TI statistics module, no provision is made for confidence intervals, tests of hypotheses, etc.. In order to make the HP output match the discussions given in the text, we have created a simple data entry scheme in a program called ZS-9 (assigned the label [I] for convenient access). Once that program is accessed, you have only to press [D] (for data) and enter the successive pairs of numbers as per Step 2 of the instructions. At the conclusion of entry, press [e] to compile the data whereupon the degrees of freedom will be displayed for you. At this point, you may enter a t-percentile if you like. In any event, the effect of entering data this way will force the register contents to almost agree with those of the TI entry, with a couple of notable exceptions. Referring to page 237, HP R₀₆ as usual must replace TI  $R_{03}$  and then the TI  $R_{04}$ ,  $R_{05}$ ,  $R_{06}$  become HP  $R_{03}$ ,  $R_{04}$ ,

 $R_{05}$ , respectively. As usual, the HP functions MEAN and SDEV replace TI  $[\bar{x}]$ 

and  $[INV][\bar{x}]$  and will output the same quantities. There is a subroutine within ZS-9 called [Op]11 whose execution will exactly match that of TI [Op]11 as referred to in this chapter. Try this on the data in Example 9.1 to verify the results published on page 238. Similarly, there are subroutines in ZS-9 called [Op]14 and [Op]15 that will function in exactly the same way as their TI counterparts referred to in the text. In Note 2 on page 238, HP will display the message DATA ERROR if the data all have the same carrier value. Similarly, in Note 1 on page 250, HP will display the message ALL REALS to signify that the CI does not exist. Otherwise, all of the instructions for the various regression routines through Section 9.4 are identical to those given in the book for the TI. For that reason only Step 1 needs to be modified and that has been taken care of in the User Instructions that follow on the next page.

## Section 9.5: Curve Fitting

The procedures in this section utilize the TI statistics module and, fortunately, most of them are duplicated in the HP STAT PAC under the same title, Curve Fitting, beginning on page 32 of the STAT PAC handbook. The only problem is that the HP notation differs slightly from that of TI. Thus, TI b is HP a and TI m is HP b . You will have to make that adjustment in order to use your HP for solving problems in this section. The output of label [E] in that program, however, will produce the right estimated equations and can be used to verify the numbers given in Example 9.9 as well as most of the exercises. The one big departure is that HP makes no allowance for creating your own user defined transformation so that examples like 9.10 on page 265 cannot be checked. Those are not too common, however, so that for the main type of transformations you are likely to run into in practice, what is provided by STAT PAC will suffice. All of the answers to the problems, with the exception of 40e, can be verified with those routines.

ZS-9 (/	Assigned [I]) USER INSTRUCTIONS (HP)		SIZE ( Σ REG	01
STEP	PROCEDURE	ENTER	PRESS	DISPLAY
ΙΟ.	Initialization (if not already in ZS-9)		[1]	0.0000
1.	Clear registers		[D]	0.0000
2.	Enter data (repeat $i = 1, 2,, n$ )	× _i	[ENTER]	x,
		y _i	[R/S]	i
3.	Compile data		[e]	n-2
4.	Enter percentile for CI's (d.f. = n-2) (may also store manually in R ₃₁ at any time)	^t α/2	[R/S]	t _{a/2}
SLOPE				
1	CI for m		[A]	e
			[X<>Y]	u
2	Test H ₀ :m = m ₀ .			ļ
	a. Enter H _l -code.*	H _l -code	[a]	H ₁ -code
	b. Enter hypothesized value.	^m o	[R/S]	Р
INT				
1	CI for b		[B]	L
			[X<>Y]	u
2	Test $H_0$ : b = $b_0$ .	U -codo	(5)	U - ee de
	a. Enter H ₁ -code.	ⁿ 1 ^{-code}	[D] [D]	
u at v	CI for my + b	<u> </u>		r 0
p at x		<b>^</b> 0	[X<>X]	
Yatx	PI for Y = mx + b + e	×.		2 2
0		0	[X<>Y]	u
DISC	CI for x [*] , when y [*] is			
	observed	y*	[d]	e
			[X<>Y]	u
CORR	Test $H_0:\rho = 0$ .			
	Enter H ₁ -code.	H ₁ -code	{E]	Р
	Note: Valid whenever $n-2 \in \mathbb{R}_{15}$	-		
	and reR ₄₄			
<u></u>	$\int -1 \text{ for } H_1 : \theta < \theta_0$	<u></u>	<u></u>	<u></u>
	*Note: H,-code $\int 0$ for H,: $\theta \neq \theta$			

$$\begin{bmatrix} 0 & 101 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 101 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 101 & 1 \\ 1 & 0 \end{bmatrix}$$

**REGISTER CONTENTS:** 

00	Used	10	20		30	ts	40	ê
01	Σy _i	11	21		31	$t_{\alpha/2}$	41	Used
02	Σy _i ²	12	22	Used	32		42	d
03	Σx _i	13	23	by	33	s	43	y*−ÿ
04	Σx ^Z i	14 n-1	24	TCDF	34	θ _O	44	r
05	Σx _i y _i	15 $v = n-2$	25		35	s^ m	45	ñ
06	n	16	26		36	s _B	46	ĥ
07	$\Sigma(y_i - \overline{y})^2$	17	27		37	s _Ŷ	47	x
08	$\Sigma(\mathbf{x_i} - \mathbf{x})^2$	18	28	H ₁ -code	38	^s M̂x ₀ +B̂	48	ÿ
09		19	29	P(ts)	39	$e(\hat{\theta} \pm e)$	49	

For curve fitting, consult STAT PAC p. 32.

_____

Assignments		Labe	ls l	Jsed
zs-9	II	01	A	а
OP12	Н	02	В	Ъ
OP13	P	03	С	с
OP14	h	04	Ð	đ
OP15	<b>i</b>	05	Е	е

EXAMPLE ZS-9

The resistance of a length of wire is thought to be a linear function of the temperature of the wire. For a given temperature, errors in readings of resistance are normally distributed with mean 0 and variance  $\sigma^2$ . The following readigs were made at the temperatures indicated.

	Temperature	0.	10	20	30	40	50
	Resistance	22.6	25.1	29.0	29.9	33.4	34.8
(a)	Estimate the r	egression	n of res	istance	on tempe	rature.	
<b>(</b> b)	Estimate the r	esistanc	e if ter	perature	is 25.		
(c)	Estimate the t	emperatu	re if re	sistance	is 30.		
(d)	Find a 95% con	fidence	interval	for the	slope,	<b>m</b> .	
(e)	Find a 95% con	fidence	interval	for the	interce	pt b.	
(f)	Find a 95% con temperature is	fidence : 25.	interval	for the	expecte	d resist	ance when
(g)	Find a 95% pre temperature is	diction : 25.	interval	for the	measure	d respon	se when
(h)	Find a 95% dis resistance of	criminat: 30 is ob:	ion inte served.	erval for	the tem	perature	at which
(i)	Test the hypot	heses H _O	: m = 0	vs. H _l	: m = 0.		
(j)	Test the hypot	heses H	: Ъ <u>&lt;</u> 20	vs. H	1: P > 2	0.	
(k)	Calculate the	coeffici	ent of d	etermina	tion.		
(1)	Test $H_a: \rho = 0$	) vs. H	$\cdot \circ \pm 0$	1			

ZS	STEP	ENTER	PRESS	DISPLAY	COMMENTS
I	0.		[1]	x.xxxx	
	1.		[D]	0.0000	Clear data registers
I	2.	0	[ENTER]	0.0000	Enter x,.
		22.6	[R/S]	1.0000	Enter y, update data base; (x,y) count displayed.
		10	[ENTER]	10.0000	Enter x ₂ .
		25.1	[R/S]	2.0000	Enter $y_2^2$ , update data base
		20	[ENTER]	20.0000	Enter x3.
		29	[R/S]	3.0000	(x,y) - count displayed.
		30	[ENTER]	30.0000	
		29.9	[R/S]	4.0000	(x,y) - count displayed.
		40	[ENTER]	40.0000	
		33.4	[R/S]	5.0000	(x,y) - count displayed.
		50	[ENTER]	50.0000	
		34.8	[R/S]	6.0000	Value of $n = 6$ concludes data entry.

ZS STEP	ENTER	PRESS	DISPLAY	COMMENTS
I 3.		[e]	4.0000	Compile data; display d.f. = 4.
I 4.	2.776	[R/S]	2.7760	Enter t $_{0.25}$ for d.f. = 4.
		[H]	22.9333	b
		[X<>Y]	0.2480	m; y = .248x + 22.93 answers (a).
	25	[h]	29.1333	y for $x = 25$ answers (b).
	30	[i]	28.4946	$\hat{x}$ for y = 30 answers (c).
SLOPE 1.		[A]	0.1983	L
		[ X<>Y]	.2977	u, so CI is .198 < m < .298, answering (d).
INT 1.		[B]	21.4294	L
		[X<>Y]	24.4373	u, so CI is 21.4 < b < 24.4, answering (e).
µ at x _O	25	[0]	28.2850	L
Ŭ		[X<>Y]	29.9817	u, so CI is 28.28 < 25m + b < 29.98, answering (f).
Y at x _o	25	[c]	26.8889	٤
Ŭ		[X<>Y]	31.3778	u, so PI is 26.89 < Y ₀ < 31.38, answering (g)
DISC	30	[4]	19.3744	L
		[X<>Y]	37.9069	u, so CI is 19.37 < x* < 37.91, answering (h).
SLOPE 2a.	. 0	[a]	0.0000	Enter $H_1$ -code for $H_1$ : m = 0
26.	0	[R/S]	0.0002	Significance of test; reject H _O ; answers (1).
INT 2a.	1	[b]	1.000	Enter $H_1$ -code for $H_1$ : b > 20
26.	20	[R/S]	0.0028	Significance of test; reject H _O ; answers (j).
		[P]	0.9897	Calculates and displays r
		[x ² ]	0.9796	$r^2$ = 0.98 is the answer to (k).
CORR	0	[U][E][U]	0.0002	Significance of test of H $_{0}$ : $\rho = 0$ (must agree with (i)).

 $\{U\} = \{USER\}$ 

#### Chapter 10 Multiple Regression

Only the data entry scheme differs from the TI version of this program. The regression program EMLRXY in STAT PAC is utilized for entering the data in the HP version and partial processing takes place in that program. Further processing takes place in program ZS-10 (assigned to label [J] for easy entry from STAT PAC) so that even the register contents (with the slight modification given below) and the remaining instructions will match those given in the book.

Once ZS-10 is entered, a press of [d] will force the pointer to STAT PAC program  $\Sigma$ MLRXY. Data are then entered as follows: first, x and y are successively entered with the [ENTER] key and then the value of z with [A]. At the conclusion of data entry, pressing [E] will cause partial processing, ending with a display of the coefficient of determination. It is at this point that STAT PAC must be exited and ZS-10 entered with a press of [J]. Then, pressing [e] will cause the rest of the processing to take place. Thereafter, the user instructions for ZS-10 may be followed to the letter. For that reason, only the DE instructions need to be modified and are summarized below. The usual sample problem is presented starting on the following page.

							SIZE 050
STEP	PROCEDURE				ENTER	PRESS	DISPLAY
DE	Data Entry						
0	Initializatio	n				[J] [d]	0.0000 Emlrxy
1	ENTER DATA (repeat i=1,,n)			xi yi zi	[ENTER] [ENTER] [A]	xi yi i	
2	Compile Data (partial) Complete compile			,		[E] [J] [e]	R ² 0.0000 n-3
3	Enter t-perce (d.f. = n-3)	ntile	5		t _{a/2}	[R/S]	t _{a/2}
Assig	mments	Labe	els U	Jsed	<u> </u>	Register	Contents
2S-10 ΣMLRXY	)   J [   e	01 02	A B C D E	a b c d e		$ \begin{array}{c} 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ a_{1}\\ 48\\ 49\\ \end{array} $	

## ZS-10 EXAMPLE.

The data below represent characteristics of a sample of automobiles.

Weight	3810	4220	<b>29</b> 00	<b>329</b> 0	3400	<b>392</b> 0	4350
Horsepower	255	180	16	120	100	140	150
Cost	7999	9221	8222	9010	100 <b>99</b>	11019	11219

(a) Regress cost on weight and horsepower.

- (b) Predict the cost of an automobile weighting 5,000 lbs. and having 160 horsepower.
- (c) Determine the significance of horsepower for predicting cost.
- (d) Find a 95% confidence interval for the coefficient of weight.
- (e) Estimate  $\sigma$ .

(f) Find the coeffficient of determination.

Solution:

ZS STEP	ENTER	PRESS	DISPLAY	COMMENTS
DE 0.		[J]	0.0000	Enter program ZS-10
1.		[b]	EMLRXY	Initialize EMLRXY for data entry.
	3810	[ENTER]	3810.00	Enter x,.
	255	[ENTER]	255.00	Enter y.
	7999	[A]	1.00	Enter z completing one triple.
	4220	[ENTER]	4220.00	Enter x ₂ .
	180	[ENTER]	180.00	Enter y ₂ .
	9221	[A]	2.00	Enter $z_2$ completing two triples.
	<b>29</b> 00	[ENTER]	2900.00	Enter x ₃ .
	96	[ENTER]	96.00	Enter y ₃ .
	8222	[A]	3.00	Enter $z_3$ completing three triples.
	3290	[ENTER]	3290.00	Enter x4.
	120	[ENTER]	120.00	Enter y ₄ .
	9010	[A]	4.00	Enter $z_4$ , completing four triples.
	3400	[ENTER]	3400.00	Enter x ₅ .
	100	[ENTER]	100.00	Enter y ₅ .
	10099	[A]	5.00	Enter $z_5$ , completing five triplets.
	3920	[ENTER]	3920.00	Enter x ₆ .
	140	[ENTER]	140.00	Enter y ₆ .
	11019	[A]	6.00	Enter $z_6$ , completing six triplets.
	4350	[ENTER]	4350.00	Enter x7.
	150	[ENTER]	150.00	Enter y ₇ .
	11219	[A]	7.00	Enter z ₇ , completing last triplet.
				*

ZS	STEP	ENTER	PRESS	DISPLAY	COMMENTS
			[E]	0.80	Process data and display R ² .
			[J]	0.8050	Exit EMLRXY and enter ZS-10
I	2.		{e]	4.0000	Process trivariate data further and display $v = 4$ .
I	3.	2.776	[R/S]	2.7760	Enter t .025 for CI's.
D			[D]	3361.7167	Display a ₀ .
			[R/S]	2.4657	Display â.
			[R/S]	-19.7686	Recall and display $\hat{a}_2$ .
		Regression	equation:	z = 3361.72	+ 2.466x - 19.769y.
E		5000	[E]	0.0000	Prepare to predict Z.
		160	[R/S]	12,527.0724	Predicted cost.
C		0	[c]	0.0000	Testing H : $a_2 = 0$ vs. H ₁ : $a_2 \neq 0$ .
		0	[R/S]	0.0318	Significance level for $a_2$ (ts = -3.2).
В			[B]	0.6786	Lower 95% limit for a.
			[X<>Y]	4.2527	Upper 95% limit for a.
			[RCL]33	691.7057	σ̂ = s.
			[RCL]27	0.8050	Recall and display $R^2 = .80$ .

#### APPENDIX

In the appendix that follows, you will find a complete listing of the programs discussed in the previous sets of User Instructions. These programs are named according to their ZP or ZS application by chapter and, occasionally, by section. To implement the programs, the first step is to key in each step into your calculator exactly as it appears in the listing. (Consult the Owner's Handbook for any instructions that may be unfamiliar.) Next, you should assign various subroutines using the function ASN according to the assignments listed just after the register contents in the User Instructions for each program. Then place your HP41-C in USER mode and record the program on a magnetic card for future reference.

ALAL DI +707+		99 1
	51+L6L d	188 STO 14
W2 2KEG BI	52 STO 88	101 RCL 12
BJ CLE	53 1/X	182 8
04 28	54 STO 13	183 X=Y?
85 STO 87		184 GTO 18
86 21	55+LBL 03	185 RTN
87 STO 88	56 RCL IND 07	
88 <b>8</b>	57 RCL 13	186+1 EL b
89 RTH	58 XEQ 82	187 XF0 88
	59 DSE 88	
10+LBL A	68 GTO 83	18941 81 89
11 STO IND 07	61 8TH	189 501 11
12 RCL 86		11 +12 RCL 11
13 1	62+1 PI F	110 510 14
14 +		112 57- 11
15 STOP	64 STN 17	112 31 11 117 DCE 12
16 STO IND 89	01 510 15	
17.RDH	65 AT D1 0.4	114 GIU 07
18 X<>Y		445-101-10
19 Rt	56 510F 67 670 100 67	
	67 310 IN 07	115 KUL 14
28+L6L 82	60 KCL 13 20 VE0 23	117 5108
21 STO IND 03	C7 AC8 C2 72 AT0 84	
22 Σ+	10 610 84	118+LEL C
23 2	<b>3.4.01</b>	II9 XEU CB
24 ST+ 87		128 X)1?
25 ST+ 83		121 GIU 12
26 RC1 86	73 510 83	122 RUN
27 RTN	(4 -	123 RCL 11
21	75 SIU 88	124 X()Y
28+LEL B	76 365	125 X)Y?
29.2	77 510 81	126 GTO 12
79 #	78 SIU 82	
31 18		127+LBL 11
32 +	79•LBL 85	128 RCL 11
33 510 89	88 1	129 ST+ 14
74 1	81 ST- 81	130 1
75 4	82 RCL 81	131 ST- 11
76 STO 19	83 RCL 82	132 RCL 12
77 DC1 TUR 89	84 /	133 ST/ 14
30 PC1 TWD 19	85 ST+ 83	134 DSE 12
70 ±	86 DSE 88	135 GTO 11
40 PC1 95	87 CTO 85	136 GTO 19
40 KUL 0J	83 1	
42 RTN	89 RCL 03	137+LBL 12
92 KIR	98 -	138 8
4741 01	91 RTH	139 STOP
131LOL 4 11 pm 05		140 ENB
AT ALL DJ	92+LEL 03	
NJ KIN	93 "H=?"	
46.41.01	94 PROKPT	
407LUL U 17 oct 100 07	95 STO 11	
AD STOP	96 •R=?•	
40 51UF 00	97 PROMPT	
AA ZIO IND GA	98 510 12	
28 610 85		

61+L8L *2P3-2*	58+LBL E
B2 CLRG	51 XEQ 81
03 20	
94 STO 81	52+LBL 03
85 21	53 RCL IND 81
86 STO 82	54 XEQ 85
87 0	55 DSE 88
68 RTH	56 CTO 83
89+LEL A	57+LBL 86
	58 RCL 07
	<b>59 RCL 06</b>
12 STU IND 02	68 X12
13 1 14 CTA 97	61 -
14 217 03	62 STO 83
15 C 16 CTA Q1	63 RCL 06
10 SIT 01	64 RTN
17 514 62	
18 KUL DJ	65+LEL D
13 KIU	66 XEQ 81
28+LSL 01	67+LBL 64
21 RCL 83	68 XEQ 82
22 STO CO	69 DSE 89
23 0	78 GTO 84
24 STO 86	71 GTO 86
25 STO 07	
26 28	72+L6L C
27 STO 81	73 STO 88
28 21	74 8
29 STO 82	75 STO 18
38 RTH	76 21
	77 STO 82
31+LEL 82	
32 RCL IND 81	78+LBL 67
33 STO 09	79 RCL IND 02
34 XEQ B	80 ST+ 10
	81 2
35+LEL 05	82 ST+ 82
36 510 84	83 DSE 00
37 X12	84 GTO 87
38 510 85	85 RCL 19
39 RCL 1ND 82	86 RTN
48 51* 84	
41 214 03 41 214 03	87+LBL B
42 KUL 04 47 674 86	88 END
93 317 00 44 001 05	
44 KLL 03	
45 51+ 87	
40 Z	
10 TIC 10	
10 DTH	
47 KIN	

01+LBL *ZF3-3*	52 STO 16	185 RCL 28	15741 Rt 18	283 RCL 13	
82 CF 82	53 RCL 14	186 •	158 1	204 STO 11	Z54+LBL D
83 8	54 STO 81	107 1 <i>/</i> X	159 STO AL	285 STO 12	255 XEQ B
84 STOP	55 RCL 13	188 ENTERT	168 FCL 82	286 RCL 15	256 1
	56 STO 82	189 RCL 13	161 8	287 RCL 14	237 -
85+LBL A	57 XEQ -PHTON-	110 ENTERT	167 X=Y7	288 /	238 LHS
66 STO 09	58 ST/ 16	111 RCL 29	163 CTO 18	289 STO 22	259 KIN
87 FS? 82	<b>39</b> SF 82	112 -	164 RTN	218 ST+ 11	
<b>88</b> GTO 22		113 1		211 ST+ 12	260+LBL E
89 RCL 14	68+LBL 82	114 +	165+LBL "PHTON"	212 1	261 RCL 12
18 STO 24	61 0	115 •	166 XEQ 18	213 -	267 RCL 11
11 1/X	62 STO 20	116 ENTERT		214 CHS	263 RIN 264 END
12 STO 22	63 RCL 16	117 RCL 15	167+LBL 19	215 STO 21	204 ENB
13 RCL 15	64 510 66	118 ENTERT	168 RCL 81	216 ST* 12	
14 ST- 24	65 510 07	119 RCL 28	169 ST+ 84	217 RCL 13	
15 ST+ 22	66 9	120 -	178 1	213 YtX	
16 RCL 22	67 ENTERT	121 I	171 ST- 81	219 STO 16	
17 STO 11	68 REL 80	122 +	172 DSE 82	228 STO 06	
18 STO 12	69 X=Y?	123 +	173 GTO 19	221 STO 87	
19 1	78 GIU VS		••••	222 SF 02	
28 -		124+LEL 84	174+L6L 10		
21 CHS	71+LBL 83	125 ST* 86	175 RCL 04	223+LEL 87	
22 STO 21	72 1	126 RCL 96	176 RTN	224 0	
23 ST+ 12	73 51+ 20	127 SI+ 07		225 STO 28	
24 RCL 13	74 KUL 28	IZ3 DSE UN	177+LBL "CHBON"	226 RCL 16	
25 STO 83	TO ENIERT	129 610 83	178 XEQ 18	227 STO 66	
26 ST+ 11	76 KLL 13		[79 X)Y?	228 STO 07	
27 ST+ 12	// -	138+LEL 85	168 GTO 12	229 RCL 80	
28 ENTERT	78 I	[3] KCL 86	181 RDH	238 8	
29 ECL 14	(y -	152 KLL 87	182 RCL 81	231 X=Y?	
30 -	61 ENTER+	133 KIN	183 X()Y	232 GTO 85	
31 CHS	OI CHICKI	174.1 M 82	184 X>Y?		
32 RCL 14	62 V 67 V/\Y	1340LEL 80	185 GTO 12	233+LBL 83	
33 1	63 A\// 84 V/-V9	133 I 137 BTD 86		254 1	
34 -	57 AL-1: 65 PTD 94	136 310 00 177 DM 15	186+LEL 11	235 51+ 29	
35 /	61 GIU G4	137 KUL 13 178 STA A1	187 RCL 01	236 KUL 28	
36 SI# 12	Q7 2	130 510 01	188 ST+ 84	237 KUL 13	
77.101.04	99 A	137 KVL 20 148 CTA 82	189 1	238 -	
3/1LBL 81	99 901 14	141 VED -CHERNE	198 ST- 81	237 685	
38 KLL 24	42 4	142 STG 23	191 RCL 82	246 1	
37 KLL 13 19 Y/-Y3	91 RCL 13	143 ECL 14	192 ST/ 84	211 T 212 DM 20	
95 A\=1 <i>!</i> A1 CTN 89	92 -	144 STO 81	193 DSE 82	212 KJL 20 947 /	
42 8	93 ENTERT	145 RCL 13	194 GTO 11	243 /	
42 670 16	94 8	146 STO 82	195 GTO 18	299 KUL 22 345 m	
44 55 82	95 X()Y	147 YED "CHEGH"		245 DM 21	
45 CTG 82	96 X(=Y?	148 ST/ 23	196+LBL 12	240 KUL 21	
75 WIU 82	97 GTO 84	149 RCL 23	197 0	248 STA 04	
4641 R1 99	98 1	150 GTO 84	198 STOP	249 PM AL	
47 RCI 24	99 -			277 NUL 07 258 814 87	
48 STO A1	108 ENTERT	151+LBL a	199+LEL 8	250 317 07 251 BCE 22	
49 201 17	191 0	152 XED A	SAA 210 60	257 CTO AR	
58 STA 82	102 X=Y?	153 1	201 157 02	253 GTO 85	
SI XER *PHIAN*	183 GTO 86	154 -	282 610 87	277 <b>414</b> 44	
W/ //6W / ///////	184 X<>Y	155 CHS			
		156 RTH			

	S2 CHS	183 -	153+LBL c	285 RCL 20
	53 RCL 13	104 CHS	154 XEQ C	286 /
82 LF 81 A7 FE 83	54 +	185 RTH	155 ENTERT	287 RCL 21
03 LF 02 04 FE 87	55 i		156 1	288 •
04 CF 03 05 FE 94	56 +	196+LBL E	157 -	264 214 80
	57 RCL 20	107 RCL 12	158 CHS	210 KLL 00
07 CTNP	58 /	103 RCL 11	159 RTN	211 314 01
QC JIVC	59 RCL 22	189 RTH		212 JJC 00
AR+LPI B	69 *		IGGOTEL H	213 010 17
89 STO 88	61 RCL 21	II8+LBL C	161 SIO 80	214 610 03
18 FS? 82	62 /	111 STO 99	162 FS7 04	21541 RL 15
11 GTO 97	63 ST* 86	112 F5? 03	163 GIU 15	215 PC1 21
12 FS? 84	64 RCL 06	113 GIO 13	164 F57 01	217 ST+ 11
13 GTO 11	65 ST+ 87	114 F57 04	160 GIU 10	218 CF 84
14 RCL 22	66 DSE 00	113 610 11	100 KLL 22 167 178	219 ECL A8
15 STO 11	67 GTO 88	116 KUL 22	10/ 1/4	228 GTO 8
16 STO 12		117 KLL 13	100 310 11	
17.1	68+LEL 85	118 *	107 AIC 170 STO 12	221+LEL a
18 -	69 RCL 85	119 510 11 139 CTO 13	170 310 12	222 XEQ A
19 CHS	70 RCL 07	120 510 12	172 SOPT	223 ENTERT
28 STO 21	71 RIN	121 220 122 V/sV2	177 1	224 1
21 ST= 12	70.101 11	122 AVTI: 127 CTA 11	174 -	225 -
22 LN	/2•LEL 11	123 010 11	240 ארו	226 CH3
23 RCL 13	73 KLL 00	125 640	176 STO 21	227 RTN
24 ST+ 11	/4 .3	125 549	177 ST+ 11	
25 ST+ 12	() T 70 PM 11	127 510 16	178 ST* 12	228+L6L J
26 *	70 KUL 11 77 -	128 570 86	179 RCL 22	229 RCL 13
27 CHS	70 PM 12	129 510 87	188 RCL 13	239 -
23 228	70 KUL 12 70 CNDT	138 SE 83	181 ST+ 11	231 XEQ A
29 X(=Y?	(7 JUKI 09. /		182 ST+ 12	232 RCL 21
39 GTO 11	00 / 01 CTA 10	131+LBL 13	183 Y*X	233 ST/ 11
31 RCL 21	\$2 YEQ -7CDF-	132 0	184 STO 16	234 SF 84
32 RCL 13	83 STO 23	133 STO 20	185 STO 86	235 RCL 96
33 TTX	84 RCL 88	134 RCL 16	186 STÛ 07	236 RCL 07
34 510 16	85.5	135 STO 86	187 SF 01	237 RTN
35 510 96	86 -	136 STO 87		
36 510 07	87 RCL 11	137 RCL 00	188+LBL 18	Z38+LBL J
36 36 92	88 -	138 X=8?	189 8	239 STO 00
7941 PL 07	89 RCL 12	139 GTO 85	198 STO 28	248 FS? 02
78 8	98 SART		191 RCL 16	241 GIU 20
40 STO 20	91 /	149+LBL 14	192 STO 86	242 KUL 22
45 JIU 25	92 XEQ "ZCDF"	141 1	193 STO 07	293 1
42 STO 46	93 RCL 23	142 ST+ 29	194 RCL 88	244 - 245 ruc
43 STO 87	94 -	143 RCL 28	195 X=0?	24J LAJ 246 CTG 21
44 ECL 88	95 CHS	144 1/X	196 GIU 85	240 310 41
45 8	96 LASTX	145 RCL 11		247 510 12 249 DF1 22
46 X=Y?	97 SF 84	146 *	197+LBL 19	240 RUL 26 249 1/¥
47 GTO 85	98 RTN	147 ST# 06	178 I 100 CT+ 29	258 STO 11
		148 RUL 86	177 317 60 300 0m 30	251 112
48+LBL 08	99+LBL D	147 514 07	200 NUL 20 991 001 17	252 ST# 12
49 1	198 XER B	124 NJC 00	201 KUL 19 909 A	253 SF 82
50 ST 20	101 ENTERT	131 GIU 14 153 CTO 05	275 T 1 700	700 di <b>A</b> K
51 RCL 20	162 1	125 610 82	20J i 204 -	
			207 -	

254+LBL 20	301 .2316419
255 RCL 21	302 *
256 ENTERT	303 +
257 RCL 00	304 1/X
258 1	385 ENTERT
259 -	306 ENTERT
260 YTX	307 ENTERT
261 RCL 22	308 1.336274429
262 *	309 *
263 ENTERT	310 -1.821255978
264 ENTERT	311 +
265 RCL 21	312 *
266 RCL 88	313 1.781477937
267 YTX	314 +
268 ENTERT	315 *
269 1	316 356563782
270 -	317 +
271 CHS	318 •
272 RTN	319 .31939153
	320 +
273•LBL d	321 *
274 XEQ D	322 RCL 64
275 ENTERt	323 •
276 1	324 FS7 00
277 -	325 GTO 29
278 CHS	326 RTN
279 RTN	
	327+LBL 27
288+LBL "ZCDF"	328 RCL 83
281 STO 93	329 CHS
282 ENTERT	332 STO <b>8</b> 3
263 *	331 XEQ 23
284 2	332 1
285 /	333 X<>Y
286 CHS	334 -
267 EtX	
288 PI	335+LBL 29
289 2	336 CF 80
290 *	337 ENTERT
291 SORT	338 ENTERT
292 /	339 1
293 STO 04	340 -
294 RCL 83	341 CHS
295 X(8?	342 ENJ
296 CTO 27	
297 SF 68	
290+LBL 23	
299 1	
300 RCL 03	

81+LBL "ZP4"	53+LBL 87	188+LBL 11	158 1	210 /	95841 St B
02 CF 01	54 RCL 25	189 SF 81	159 -	211 STO 87	230*LDL 0 958 VCA +Durmi++
03 FIX 4	55 CHS	110 1	168 CHS	212 1	CJJ ALY KNUDU
64 0	56 STO 25	111 -	161 RCL 87	213 -	260 LA
85 STOP	57 XEQ 83	112 CKS	162 RTN	214 CHS	261 KLL 22
	58 1	113 PTN		215 RCL 87	
06+LBL "ZCDF"	59 X()Y		163+LBL D	216 RTH	203 LAS 264 CTO 00
07 STC 25	68 -	tidal Bf 12	164 XEQ C		264 210 MM
<b>08 ENTERT</b>		115 CF 81	165 STO 88	217+L BL 15	263 24
89 *	61+LBL 89	116 570 19	166 X()Y	218 RCL 15	265 RCL 99
19 2	62 CF 89	117 RTN	167 STOP	219 +	267 RIN
11 /	63 ENTERT		168 XEQ C	228 RCL 14	
12 CHS	64 ENTERT	1 trai ri - Purki:	169 ST- 88	221 -	
13 Etx	65 1	119 PCI R9	178 RCL 88	222 CHS	ZBY XEV "KNUTU"
14 FI	<del>66</del> -	128 9321	171 1	223 CF 85	278 XEQ 0
15 2	67 CHS	121 #	172 +	224 RTN	271 510 88
15 #	68 RTH	122 211377	173 RCL 88		272 24
17 SUKI		123 +	174 CHS	225+LBL b	273 RCL 88
18 /	69+LBL c	124 FR	175 RTN	226 RCL 12	274 RIN
17 510 20 06 001 05	70.5	125 STO A9		227 RCL 11	
28 KUL 23 21 W/83	71 X()Y	\$26 RTN	176+LBL d	228 RTN	ZIJATET ARK
21 ANV: 22 <b>CTB 87</b>	72 X)Y?		177 XEQ c		276 ALWN
22 670 07	73 XEQ 11	127+1 Et	178 RCL 12	229+LRL E	277 RIN
	74 ENTERt	128 XED -2000	179 SERT	238 STO 68	
Sant RL 43	75 +	129 1	188 *	231 FS? 81	278+L56 *SD*
25.1	76 1/X	138 PC1 14	181 RCL 11	232 GTO 17	279 SDEV
25 RCL 25	77 LH	131 +	182 +	233 RCL 22	280 END
27 .2316419	78 SORT	132 *	183 RTN	234 1/%	
28 =	79 STO 88	133 RCL 13		235 STO 11	
29 +	80 .818328	134 +	184+LBL A	236 Xt2	
30 1/X	81 +	135 INT	185 STO 00	237 STO 12	
31 ENTERT	82 .882853	136 FIX 8	166 FS? <b>8</b> 5	238 SF 81	
32 ENTERT	83 +	137 STOP	137 GTO 15		
33 ENTERT	54 RCL 89	138 FIX 4	188 FS? 01	239+LEL 17	
34 1.339274429	85 •	139 E+	189 GTO 16	248 RCL 98	
35 +	86 2.515517	140 RTN	190 RCL 13	241 RCL 22	
36 -1.8212009/	8/ +		191 RCL 14	242 *	
5/ +	88 KUL 88	141+LBL "GEN-INI"	192 +	243 CHS	
35 *	87 .001.000	142 FIX 4	193 Z	244 E1X	
37 1.1014(173)	58 4	143 TREC 81	194 /	245 EXTERT	
	71 .187287	144 CLE	195 STO 11	246 ENTERt	
42 - 756567792	72 7	145 •SEE3?•	196 RCL 14	247 1	
42 4	73 KLL 88	146 PROMPT	197 RCL 13	248 -	
44 8	74 4 95 1 /70700	147 STD 89		249 CHS	
45 .31938153	73 1.932/86	148 RTN	199 510 15	258 STO 87	
46 +	78 V 67 8/1 44		288 XTZ	251 RTN	
47 •	77 XUL 00	149+LBL C	ZUI 12		
48 RCL 26	77 - 98 1	150 RCL 11	202 /		
49 +	188 +	151 -	203 510 IZ	203 LN	
58 FS? N		152 RCL 12	207 JC VI 205 DC 40	Z34 KUL ZZ	
51 GTO 89	182 801 44	153 SPRT	COJ KLL DO	Z22 /	
52 RTN	183 X/1V	154 /	20441 M 14	226 CHS	
	194 -	132 SIU 18	200°L66 10 207 601 17	297 KIN	
	105 FS7 A1	156 XEG "ZCDF"	207 KLL 13 200 -		
	106 CHS	157 STO 87	200.7		
	107 GT0 12		CU7 ALL 13		
	· · · · · ·				

61 AL RL -725-	49 RCL IND 17	<b>103+LBL 03</b>
A3 7307 61	58 STO 82	184 RCL IND 19
	51 ST+ 86	185 STO 89
ØJ 666 A4 7850 87	52 X12	196 1
	53 STO 85	187 ST+ 19
	54 1	188 RCL IND 19
6 EREG 13	55 ST+ 19	109 STO 18
87 CLE	56 PCL 1ND 19	118 1
83 29	57 ST# A1	111 57+ 19
89 STO 19	SP STa 87	112 YEQ >
18 0	SQ STA RA	116 ACE 4
	13 31° 87 68 61• 88	113 310 01
11+LBL 81	00 31+ 0J	114 XTZ
12 STOP	61 21* 86	112 210 68
	62 KUL 81	116 RCL 188 19
13+LBL A	63 ST+ 11	117 51* 47
14 STO IND 19	64 RCL 82	118 ST+ 83
15 STO 89	65 ST+ 13	119 RCL 07
16 1	66 RCL 84	128 ST+ 17
10 -	67 ST+ 12	121 RCL 83
31 31 17 10 6TA 87	63 RCL 85	122 ST+ 18
	69 ST+ 14	123 1
19 KLL 03	78 RCL 86	124 ST+ 19
28 STUP	71 ST+ 15	125 DSF 88
	72 1	126 CTO P3
21+LEL B	77 51+ 19	120 010 05
22 STO IND 19		172 842
23 STO 18	79 835 88 75 610 87	10 012
24 1	73 010 02	127 31- 10 170 DM 10
25 ST+ 19	70 ALL 11 77 V43	130 KLL 10
26 RCL 83	(( AIC 20 CT 12	131 KUL 17
27 STOP	78 51- 12	132 RTN
	79 RCL 13	
28+1.BL C	88 X12	133•LBL d
29 STO THE 19	81 ST- 14	134 RCL 11
39 ST+ 97	82 RCL 11	135 STOP
71 STO 88	83 RCL 13	136 RCL 12
72 1	84 +	137 STOP
JE 8 77 614 10	85 ST- 15	138 RCL 13
33 317 17	86 RCL 15	139 STOP
34 KLL 83	87 RCL 12	148 RCL 14
15 CIU 81	88 SQRT	141 STOP
	89 /	142 RCL 15
JOALDE E	98 RCL 14	143 STOP
37 RUL 83	1902 19	144 PC1 16
38 STO 69	92 /	145 DTN
39 20	72 F 87 670 16	146 CTD 4
48 STO 19	94 RTN	140 010 0
414L R2		147+LBL a
47 PC1 1HR 19	95+LBL ]	148 END
17 CTA 41	96 8	
43 310 01 41 870 AL	97 STO 17	
77 21 <b>0 00</b> 15 76	<b>98</b> STO 18	
4J AIG 12 CTA 81	99 RCL 83	
40 310 07 17 1	100 STO 00	
97 I 40 CT+ 40	181 20	
48 214 12	182 STO 19	

ALL 01 970-30	53 +	107 +	161 XEQ C	213 CHS	266 +
10FRF -52-5-	54 1/X	188 RCL 88	162 ST- 88	214 STO 87	267 RCL 18
OZ EREG UI	55 ENTERT	189 +	163 RCL 88	215 RTH	268 /
03 CLE	SA ENTERA	118 2.515517			269 201 22
04 FIX 4	ST ENTER		168 4	21641 BL	207 NUL 26 978 A
85 8	50 1 778274499		147 901 99	217 1	270 V 971 DCL 21
<b>86</b> STOP	JU 1.334614467 E4 p	117 891798	100 KLL 00	210 -	271 KUL 23
	ري مري 1 021255978	113	167 LR3	210 -	272 674 25
B7+LBL "RHDNU"	00 -1.0C1LJJ210	117 -	168 KIA	219 LNS	
88 ECL 89	01 T	113 .187287		228 LN	274 RUL 25
89 9821	06 4 13 1 301/37077	116 +	169+LBL d	ZZ1 RCL 16	Z75 SI+ Z6
18 +	65 1.(814//73/	117 RCL 88	178 XEQ c	ZZZ /	276 DSE 00
11 .211777	64 + (F -	118 +	171 RCL 18	223 CHS	277 GTO 86
12 4	63 *	119 1.432783	172 +	224 RTN	
46 V 17 500	66 336363/82	129 +	173 RCL 17		278+L6L 88
15 FRL 14 670 00	67 +	121 RCL 89	174 +	225+LBL 29	279 RCL 26
14 510 07	68 *	122 +	175 RTN	226 *PHTERS?*	288 1
13 KIN	69.31938153	123 1	••••	227 PROMPT	281 -
	70 +	124 +	17601 Rt +CEN-INI -	229 STO 21	282 CHS
16+LEL "KHUMHB"	71 •	125 /	177 FIX 4	229 STO 17	283 ECL 26
17 XEQ "RNDMU"	72 RCL 26	126 ECL AB	178 SPEC 81	278 STOP	284 ECL 25
13 RCL 14	73 +	127 X()Y		235 510	205 511
19 RCL 13	74 F§? 00	129 -		231 310 22 979 STA 17	LOJ KIN
20 -	75 GTO 89	120 552 01	ISU SEED?	232 314 11	
21 *	76 RTN	127 F2: 01 170 PVC	181 PRUMPT	233 1	SRPATET LA-210
22 RCL 13		130 (83	182 STO 09	234 -	257 FIX 4
23 +	77•L5L <b>87</b>	131 610 12	163 RTN	Z35 CH5	283 RCL 87
24 RTN	78 RCL 25			236 STO 23	289 RCL 05
	79 CHS	132+LBL 11	184+LBL b	237 RCL ZZ	298 X12
-14640 -01047-	20 STO 25	133 SF 81	185 XEQ -RNDMU-	238 *	291 -
CITCL KALAL	81 XEQ 03	134 1	166 XEQ d	239 RCL 21	292 SQRT
20 ALW KRUNNO 97 INT	82 1	135 -	187 STO 00	248 *	293 STO 18
21 INF	83 X()Y	136 CHS	188 E+	241 SQRT	294 RCL 86
28 FIX W	84 -	137 RTN	189 RC1 88	242 STO 18	295 STO 17
29 RTN	•••		198 PTN	243 8	296 RTN
	85et.B: 09	138+LBL 12	• • • • • • • •	244 STOP	
38+LPL 19	86 CF 88	139 CF 81			297+1 St
31 STO 25	87 ENTERT	148 STO 19	103 VED + DURMI+	245+1 RL 0	293 601 18
32 ENTERT	88 ENTERT	141 RTN	197 YED A	246 570 89	299 611 17
33 * •	89 1	••••	173 ALE E	240 JIC CO 947 BM 97	700 011
34 2	96 -	14941 91 0		240 DM 21	
35 /	GI CHR	1427 CTO 68	173 24	240 KUL 61	
36 CHS	92 PTN	193 310 00	196 RUL 00	297 ITA 878 873 94	301+LBL *BSTG*
37 EtX	76	199 KUL 16	<b>197</b> RTH		382 XPON "EBSTG"
38 PI	9741 BI	143 -		201 510 20	383 RTN
39 2		146 KUL 18	198+LBL E	Z5Z 510 16	
48 +	74 .J 05 V/1V	147 /	199 STO 68	253 0	384+LBL "XBAR"
AL SORT	73 A\71 66 V\V3	148 STD 28	200 RCL 16	254 STO 10	305 NEGN
42 /	70 A/I: 07 VE6 11	149 XEB 19	201 1/X	255 RCL 80	366 RTN
47 570 26	77 ALV 11 00 CHTEDA	150 STO 07	282 STO 17	256 X=Y?	
44 PM 25	78 ENIERI 00 A	151 1	203 STO 18	257 GTO 08	387+LBL -SD*
TT RUL 60 48 9/49	77 -	152 -	204 RCL 00		388 SDEV
74 A\UI 42 A7A A7	150 1/2	153 CHS	285 RCL 16	258+LEL 86	309 RTN
40 GIV V/	101 LM	154 RCL 07	296 *	259 1	
47 SF <b>FF</b>	INC SAKI	155 RTN	207 CHC	268 ST+ 18	318+1 Ri - PD-
	103 STO 00		CUT UNJ 300 EAV	261 RCL 18	311 PDN
48+LEL 83	104 .010328	156+LBL B	CUD LIA 200 Futfor	262 CHS	312 BTN
49 1	185 *	157 XFD C	COT CHICKT	202 0M 31	717 EMB
58 RCL 25	106 ,802853	150 610 00	CIU ENIERT	603 RWL 61 974 A	UL CRU
51 .2316419		120 JIN 00 190 JIN 00	211 1	209 7	
52 +		137 X\71	212 -	263 1	
		102 210L			

01+LBL *25-3*	51 ST+ 14	97+LBL 04	145+LBL 12
82 STOP	52 ST+ 15	<b>98 RCL IND 15</b>	146 Xt2
	53 95E 89	99 XEQ a	147 RCL 86
03+LBL C	54 GTO 82	188 XEQ 85	148 1
<b>e4 RCL 13</b>	55 RCL 07	101 1	149 -
<b>6</b> 5 RCL 12	<b>56</b> RCL <b>86</b>	182 ST+ 15	150 •
86 -	57 /	103 DSE 14	151 RCL 06
87 RTH	58 RTN	194 GTO 84	152 /
		185 RCL 19	155 KIN
08+LBL B	594LBL C	186 RTN	
89 MEAN	68 RCL 13		1044 LBC -YBHK-
18 STO 88	61 +	107+LBL A	133 NEMN 157 DTH
11 RCL 86	62 RCL 12	106 XEQ a	130 KIN
12 STO 00	63 -		15741 Rt - 50+
13 31	64 RTN	189+LBL 85	158 CREV
14 STO <b>30</b>		118 STO 89	156 27N
15 0	65+LBL d	111 STO IND 39	107 810
16 STO 87	66 CF 81	112 FS? 87	168+LBL a
	67 8	113 XEQ 13	161 ENB
17+LBL 01	68 RTN	114 ST+ 01	
18 RCL 1KD 30		115 RCL 89	
19 RCL 88	69+LEL <b>P</b>	116 *	
20 -	70 FS? 01	117 ST+ 82	
21 RES	71 GTO <b>e</b> 3	118 1	
22 ST+ 67	72 38	119 ST+ 86	
23 1	73 STO 83	128 ST+ 19	
24 ST+ 30		121 ST+ 30	
25 DSE 88	74+LEL 03	122 RCL 12	
26 GTO 81	75 1	123 RCL 89	
27 RCL 87	76 ST+ 80	124 X(=Y?	
28 RCL 86	77 RCL IND 80	125 STO 12	
29 /	78 SF 01	126 RCL 13	
39 RTH	79 RTN	127 X()Y	
		128 X>Y?	
31+LEL b	88+LBL e	129 STO 13	
32 HERN	81 CF 01	138 RCL 19	
33 STO 88	82 SREG 07	131 RTN	
34 RCL 19	\$3 CLE		
35 STO 99	84 EREG 13	132+LBL 13	
36 31	85 CLI	133 STO 12	
<b>37</b> STO 14	86 EREC 81	134 STO 13	
38 32		135 CF 97	
39 STO 15	88 SF 87	136 RTN	
40 8	89 31		
41 STO 07	<b>70</b> STO 15	137+LBL "HSB"	
	91 SIU 30	138 SDEV	
474LEL 97	72 0	139 510 00	
43 KUL INB 14	73 510 17	148 XBN	
44 XIL 88	74 RT#	141 XEV 12	
45 -		142 RCL 68	
46 RES	77°L6L E	143 XEQ 12	
47 RCL IND 15	76 510 14	144 RTN	
45 •			
47 ST+ 87			
50 Z			

101 FIX 4

		61 AL DI	53 ST+ IND 00	102 RCL 11
01+LBL "ST-03"	47+LBL B	414LBL - 31-0177	54 ST+ 86	183 RCL 80
82 8	48 STO 19	AT STOP	55 RCL 88	184 +
83 STOP	49 1	•• •••	56 ST+ 01	185 RCL 12
	50 ST+ 38	Beel BL e	57 RCL 88	186 +
04+LBL e	51 RCL 10	AS EREG 12	58 +	187 STO 85
es ereg ei	52 STO IND 30	96 CI S	59 ST+ 82	108 RCL 11
86 CF 86	53 1	97 SEFC 18	68 RCL 29	109 2
87 CLRG	54 ST- 30	88 CLT	61 RTH	119 /
<b>8</b> 8 31	55 SF 86	89 EREG 24		111 -
89 STO 38	56 RCL 10	18 CLΣ	62+LBL 91	112 ST+ 87
10 1	57 RIN	11 SREG 81	63 8	113 ST* 08
11 STO 18		12 CLE	64 /	114 ST* 08
12 SF 07	58+LBL BI	13 31	65 RTN	115 RCL 87
13 8	59 2	14 STO 38		116 ST+ 83
14 STOP	68 SIT 38	15 0	66+L5L d	117 RCL 08
- · · · •	ei gin ac	16 STO 00	67 "N=?"	118 ST+ 04
15+LBL A	AA. I. DI. 67	17 •CELLS?•	63 PROMPT	119 RCL 05
16 STO 18	62+LBL 83	18 PROEPT	69 31	128 RTN
17 STO IND 38	63 STO 12	19 STO 89	70 STO 30	
18 F5? 86	64 SIU 13	28 -XHIK?-	71 +	121+L6L E
19 GTO 81	65 CF 87	21 PROHPT	72 STO 05	122 13
20 1	66 END	22 STO 12	_	123 STO 10
21 ST+ 30		23 =1=?*	73•LBL 82	124 0
		24 PROMPT	74 RCL IND 30	125 STO 00
22+LBL 92		25 STO 11	75 XEQ A	126 STO 83
23 RCL 18		26 RCL 89	76 RCL 85	127 510 44
24 STO 09		27 •	77 RCL 30	128 END
25 F5? 07		28 RCL 12	78 X=Y?	
26 XEQ 83		29 +	79 GTO 83	
27 RUL 10		38 STO 13	<b>80</b> GTO 82	
28 •		31 0		
29 ST+ 81		32 RTN	81+LEL 83	
38 RCL 89			82 RUL 29	
31 •		33+LBL A	83 KIN	
32 SI+ 82		34 STO 88		
JJ KUL IV		35 STO IND 38	84+LBL C	
34 314 00		36 RCL 13	85 1	
35 1		37 X(=Y?	86 217 60	
36 51+ 17		38 GTO 81	81 214 10	
37 KUL 12 70 DCL 99		39 RBN	88 KUL 87	
33 KUL 07 70 V/- <b>V</b> 7		48 RCL 12	89 KLL 88	
37 A\-1: 10 ctg 19		41 XXY?	<b>78</b> X(=1/	
48 310 12		42 GTO 81	71 610 04 02 •STOP•	
41 KUL 13		43 -	72 JIUF 67 890WRT	
46 A\/I 47 V\V9		44 RCL 11	75 FRUNFI 64 STOP	
43 AJT? AA STA 17		45 /	79 31UF	
17 310 13 25 DM 14		46 INT		
45 NUL 17 AC DTM		47 14	73 <b>71.51 87</b> 02 881 183 18	
70 AIR		48 +	70 KUL INU 17 07 STA 07	
		49 STO 88	97 310 01 98 0179 98	
		50 1	90 510 80 90 514 8	
		51 ST+ 29	77 FAR U 184 STAD	
		52 ST+ 30	100 310F	

	52 510 15	
01+LEL "ZS-4/5"	53 ES7 84	100+LBL E
WZ "DATA?"	54 GTO 82	101 RCL 37
<b>U</b> J PRORPT	55 STOP	102 510 40
U4 2826 UI	56 STO 31	103 KLL 00
	57 XEQ -C1-	109 2
	58 STOP	10J + 106 CTA 15
8741 <u>21</u> 81		105 510 15 107 CTO 86
as stop	59+LBL 82	
R9 2+	60 RCL 39	188+LBL 5
18 CTO 01		189 XER "HYP"
	SZ XEQ "FYHL"	
11+LBL B	63 SIUP	110+LBL B
12 XEQ -ZR-	CAN DI	111 STO 99
13 RCL 15	64*LCL 6 28 VED +1579*	112 SF 85
14 9	63 YEE 1111	113 RCL 48
15 +	6601 BL C	114 STO 38
16 2	67 RCL 33	115 GTO A
17 /	68 X12	
18 1/X	69 STO 48	116+LEL 84
19 SIU 49	78 RCL 86	117 (1 85
28 SUKI	71 1	110 FJ: 04 110 FTO 05
21 4 22 RM 49	72 -	117 GIU UJ 139 DM 83
22 NOL 77	73 STO 15	120 KUL OU 121 VED +70+
24 1		122 510 31
25 +	74+L6L 06	123 XED "CI"
26 3	75 FS? 84	124 RTN
27 11%	76 GIU 87	
28 RCL 15	77.1 01 . 67	125+LBL 95
29 *	77466 83	126 XEQ "ZCDF"
38 CTO 83	78 STUP	127 XEQ PVAL-
	57 KUL 1J 98 CM 48	128 STOP
31+LEL a	81 ±	
32 XEQ "HYP"	82 STO 88	129+LBL Ø
	83 RCL 41	130 MEAN
33°LBL 8	84 /	131 STO 37
JA KUL JI JE CTO JA	85 RCL 00	132 3 <b>827</b> 177 670 79
33 310 40 76 pm 79	86 RCL 31	174 8
30 KLL 30 77 801 86	\$7 /	135 RTN
38 5681	<b>88</b> STOP	136 END
39 /		
48 STO 32	89+L5L 67	
41 1/X	98 RCL 49	
42 RCL 48	71 *	
43 RCL 34	72 KUL 34	
44 -	73 - Al 670 72	
45 +	<b>62 420 -</b> Lnic <b>j.</b>	
46 STO 30	96 YED +PV01 *	
47 F5? 85	97 STOP	
48 CTO 84	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
47 KUL 86	98+LBL e	
70 I 51 -	99 XEQ -HYP-	
JI -	-	

# zs-4/5

			1.10 ATA AT	100.101 01
01+LBL *Z5-6*	44+LBL 12	98+LBL 81	142 LIU 43	197+LBL 06
62 "DATA?"	45 MERH	<del>99</del> sto 15	146 KLL 13	198 KLL 86
<b>es</b> prompt	46 STO 37	188 FS? 84	147 1	199 1
84 STOP	47 SDEV	101 GTO 83	148 -	200 -
• • •	48 STO 38	102 STOP	147 510 IJ	AD 1 41 01 07
SALBL BEP	49 8	183 STO 31	[]8 KLL 90	2014666 0/
06 SF 01	56 STO 33	184 XED .CI.	131 ATZ	282 510 16
<b>87</b> 11	51 RTN	185 STOP	172 •	283 157 84
<b>88</b> CTO <b>98</b>			127 210 44	204 610 88
• -	S2+LBL a	106+LBL 02	134 KUL 06	203 5107
994LBL "DEI"	23 XEQ .HAb.	107 CF 85	100 1	200 KUL 91 207 DCL 70
18 CF 81		108 RCL 30	139 -	207 KUL 30
11 12	54+LBL A	109 XEQ ZUBY	137 317 13 150 00 79	288 4 000 EUTEDA
	55 XEQ DHS.	118 XEQ "PYRL"	138 KLL 38	ZUY ENIERT
12+LBL 09	56 RCL 48	111 STOP	137 XTZ	ZIU ENIERT
13 TREG BI	57 X12		100 -	211 KUL 30 212 DCL 71
14 STO 18	58 RCL 13	112+LBL 03	161 KLL 00	212 RUL 31
15 CLE	59 /	113 RCL 38	102 T	213 / 214 CT DI
16 -8	68 STO 87	114 XEQ "IF"	103 KGL 1J	219 LF 01 215 CF 02
	61 RCL 38	115 XEQ "PVRL"	109 / 1/5 CODT	213 LF 02
17+LBL 13	62 X12	116 STOP	163 SEKI 167 CTO 77	216 KIN
18 STOP	63 RCL 06		100 210 22	24741 DL 02
19 FS? 81	64 /	117+LBL 04	16741 BL 85	21/VLUL CO 210 DCL 70
28 -	65 STO 08	118 STO 32	ICO DOI AS	CID KUL JU Ald VED +ECHE+
21 E+	66 RCL 97	119 RCL 48	100 KUL 00	217 XEV "FUF
22 GTO 13	67 +	128 RCL 34	107 1/1	ZZU ALU PYHL
	68 Sert	121 -	170 KUL 13 171 179	221 STUP
23+LBL "X TO Y"	69 XEQ 84	122 RCL 32	172 4	22241 DI
24 NERN	78 FS? 85	123 /	172 CODT	222 VLCL - 227 CTO 20
25 STO 47	71 GTO 82	124 STO 30	173 JUNI 174 DM TT	223 310 20
26 SDEV	72 RCL 07	125 RIN	174 KUL JJ 176 A	229 RUL 91
27 STO 48	73 RCL 68		113 + 176 VED 84	ZZJ KUL JI
28 RCL 66	74 +	126+LEL D	170 AER 07	220 / 227 \$10 78
29 STO 13	75 RCL 97	127 XEQ "HYP"	170 2	227 310 30
38 CLE	76 /		179 -	220 KLL 13
31 0	77 1/%		100 001 06	227 2
32 GTO 13	78 STO 89	129 XEU *175*	101 A	20 × 463 21 070 15
	79 CHS	130 RCL 2/	101 V (03 CTD 81	231 310 13
334LBL d	80 1	131 RCL 06	TOC AIA AT	232 F3: 07 377 CTA 49
34 GTO IND 10	81 +	132 SEKI	19741 01 1	233 410 07 274. \$10P
	82 X12	133 /	104 CTA 76	237.314
35+LUL 11	83 RCL 86	134 XEV U4	185 PC1 48	078 AL DL 00
36 NEAH	84 1	133 KUL 00	100 KUL 40	2537686 87
37 STO 47	85 -	135 1	107 /	230 KUL 00 277 2
38 SDEV	86 /	137 -	197 / 198 V43	236 6
<b>39</b> STO 27	87 STD 80	138 CIO MI	100 AIL 100 CTA 70	230 - 270 sto 87
48 8	88 RCL 89		107 510 50	237 410 01 348 ENB
41 STO 37	89 X12	1374LBL 6	190 NVL 13	240 CMB
42 CF 81	90 RCL 13	140 XEV "HTP"	192 -	
43 RTN	91 I		176 - 187 ETA 18	
	<b>72 -</b>		173 310 1J 194 663 84	
	93 /	14Z XEU BRS	174 (3; 04 1 <b>95</b> cto al	
	94 RCL 88	143 RCL 33	195 UIU UU 195 UIU UU	
	95 +	144 X\$U?	179 JIVE	
	96 1/X			
	97 INT			

ZS-6

	58 -	99eLBL b	144+LBL A
01+LBL "Z5-7"	SL CHS	188 STO 28	145 XEQ "ZA"
82 8	57 510 22	INI STOP	146 STO 31
bj stop	JZ 310 LL 87 1	192 570 74	147 XEQ .DHS.
		102 310 34	148 RE1 13
84+LBL C	J4 V 65 0	103 KLL 00	149 STA AR
es xee "ZR"	22 5	184 KLL 40	150 001 47
66 STO 31	56 *	185 +	150 KUL 41 151 yea a7
67 901 46	57 STOP	106 RND	121 YEA 02
00 CTA 00	<b>58 RCL 18</b>	107 STO 30	152 212
66 310 00	59 2	188 RCL 28	153 STO 27
07 KUL 40 10 VEA 07	68 *	189 X>Y?	154 RCL 06
10 YER 03	61 STOP	118 GTO 85	155 STO 00
II KLL JI	62 RCL 18	111 1	156 RCL 37
12 XEQ -C1-	63 1	112 X+Y?	157 XEQ 93
13 STO 85		113 GTD 84	158 Xt2
14 X()Y	es sta 19	114 FHS	159 RCL 27
15 STO 84	46.9	115 201 79	169 +
16 X()Y	67 C	112 AUL 30	161 SORT
17 XX8?	0/ • (0.0700	110 T	162 ST0 32
18 CTO 81	68 SIUP	117 510 38	167 001 31
19 8	69 RLL 86		164 VEG +CI+
28 STD 85	78 RCL 18	1130LBL 84	107 ALE UI
	71 -	119 RCL 30	103 210r
2141 RI - 81	72 STO 22	128 XEQ SINF.	
22 PM 44	73 2	121 XEQ -PVRL-	166+LBL a
22 NUL 07	74 *	122 STOP	167 STO 28
23 1	75 STOP		168 RCL 13
24 X)Y?	76 RCL 19	123+LBL 85	169 1 <i>/</i> X
25 GTO 82	77 RCL 41	124 1	179 RCL 96
26 ENTERT	78 ±	125 STOP	171 173
	79 FHTFRt		172 +
27+LBL 82	66 EWTED4	12641 81	173 STO 33
28 RDN	00 ENIERI	120 LOL 6 197 CTO 74	174 RCL 13
29 RCL 85	81 KUL 22	127 310 37	175 STO 89
38 RTN	82 +	128 KLL 40	176 801 47
		127 -	177 4
31+LEL 83	84 510 84	138 CHS	170 517504
32 ENTERT	55 RUL 22	131 STO 23	170 CHICKI
33 ENTERT	<b>86</b> 1	132 RCL 86	100 CT+ 00
24 1	87 +	133 STO 80	101 00 77
75.	<b>89</b> RCL 31	134 RCL 34	181 KUL 37
37 - 36 CUR	89 *	135 XEQ 83	182 *
30 LAS 77 A	90 RCL 18	136 RCL 23	183 +
J( * To DAL 05	91 +	137 X()Y	184 RCL 89
38 KUL 88	92 1/%	138 /	185 /
39 /	93 801 18		186 STO <del>88</del>
48 SQRT		139+LBL 86	187 1
41 STO 32	95 CTN 85	148 STO 38	188 -
42 RTN	66 DM 84	141 YED +7075*	189 CHS
	70 KUL VT 67 V/\V	141 AER LUM	198 ST+ 88
43+LBL B	JE A\/) 84 ATH	146 AEN TTHE	191 RC1 AB
44 RCL 48	78 KIN	143 SIUP	192 STa 77
45 RCL 96			193 YEO - DHC-
46 *			104 DM 77
47 RHB			174 KUL JJ
48 STO 18			173 SUKI
49 801 44			176 510 32
11 M <b>42 AA</b>			17( /
			148 CIO 66
			199 END

# 2S-7

25-8	
<b>FA</b> .	
52 +	
53 LRSTX	
54 RCL 49	
55 -	
56 RTN	
57+L6L C	
58 STO 57	
59 RCL 12	
68 RCL 14	
61 STO 58	
62 STO 16	
63 /	
64 RCL 87	
65 /	
66 STO 56	
67 RCL 14	
63 RCL 12	
69 /	
78 1/X	
71 STOP	
72 RCL 15	
73 STO 59	
74 ST+ 16	
75 RCL 13	
76 /	
77 1/%	

54 RCL 49	185 STO 52
55 -	106 RCL 51
56 RTN	187 •
	103 ST+ 50
57+LEL C	189 1
58 STO 57	118 ST+ 54
59 RCL 12	111 RCL 54
68 RCL 14	112 CTO 82
61 STO 58	
62 STO 16	113+LPL D
63 /	114 ENTERT
64 RCL 87	113 KLL 38
65 /	
66 SIU 56	117 KUL 98
67 KUL 14	110 * 110 pm 57
63 KUL 12	117 KUL JJ 128 ±
67 / 78 1/Y	121 RCL 59
70 17A 71 STAP	122 1
72 801 15	123 +
73 510 59	124 /
74 ST# 16	
75 RCL 13	125+LEL 83
76 /	126 SORT
77 1/%	127 STD 49
78 STOP	128 RCL 59
79 R.CL 87	129 +
88 STO 48	138 LASTX
SI STOP	131 RCL 49
82 RCL 58	132 -
83 STO 15	133 RTN
84 RCL 56	47441 04 4
85 XEQ FCCDF	134•LEL d (35 CC) 50
66 STO 38	133 KLL 37 176 +
87 KCL 59	130 + 177 PM 49
88 310 13 88 310 13	131 KLL 40
87 KUL 30 88 CTAD	179 801 57
78 3107 AL DM 57	14R ±
97 YED •5005+	141 RCL 58
93 PIN	142 1
7 <b>0</b> min	143 +
94+LEL E	144 /
95 8	145 GTO 83
96 STO 53	
97 STO 50	146+LBL H
98 STO 54	147 XRON "ERDVONE"
99+LBL 82	148+LBL I
108 STOP	149 XRON "SAOVTWO"
101 STO 51	150 .END.
182 Xt2	

103 ST+ 53

184 STOP

@1+LBL -25-8-

82 FIX 4

**B3** STOP

84+LBL A

65 STO 30 86 RCL 83

87 STO 15

83 RCL 82

89 RCL 11 18 STO 16 11 /

12 STO 48

13 RCL 30 14 XEQ "FCCDF"

> 15 STO 31 16 RTH

22+LEL 01 23 STOP 24 ST0 51 25 STOP 26 STO 52 27 STOP 28 1/X 29 RCL 51 38 X12 31 * 32 ST+ 53

48 CTO 81

41+LBL a 42 ENTERT 43 RCL 93 44 *

45 RCL 48 46 * 47 RCL 53

48 +

49 SORT 58 STO 49

51 RCL 50
#1+LEL *25-9*	53 RCL 84	186 ENTERT	155+L5L 03	207+LEL E	263 RUL 43
82 8	54 +	107 KERN	156 RCL 31	200 510 28	264 +
83 FIX 4	55 RCL 86	183 STO 48	157 +	205 8	265 RUL 42
A4 510P	56 /	109 RDN	158 STO 39	218 STO 34	200 /
•••••	57 RCL 08	118 STO 47	159 RCL 00	211 PCL 44	267 RCL 47
SALRI B	58 /	111 •	168 XEQ *0P14*	212 510 40	268 +
18 3337 30	59 SQRT	112 CHS	161 STO 40	213 Xt2	269 STU 40
03 CIEC 05 TYEC AT	68 STO 36	113 Rt	162 GTU 82	214 1	270 GTÚ 82
OF LLKW	61 RCL 33	114 +		215 -	
63 6	62 ECL 08	115 STO 46	163+L8L C	216 CHS	271+LBL 86
0041 01 01	63 SORT	116 RCL 45	164 XEQ 84	217 SQRT	272 ALL REALS
U77LDL 01	64 /	117 X()Y	165 X12	218 1/%	273 AVIEN
IN SIDE	65 STA 35	11S RTH	166 RCL 33	219 RCL 15	274 RTH
11 2+	65 510 55 66 601 15		167 Xt2	220 SQRT	275 END
12 610 81	67 STAP	119+1 Rt -0P14-	168 +	221 *	
	60 CTA 71	129 PCI 45	169 SORT	222 REL 40	
13+LEL e	00 310 31 20 0TU	120 406 40	178 STC 37	223 *	
14 RCL 85	57 KIN	121 -	171 GTO 83	224 GTO 85	
15 1		122 KUL 90			
16 -	70+LEL OF13	123 T 104 DTV	172+LBL 04	225+LEL d	
17 STO 14	71 RCL 85	129 810	173 STO 80	226 RCL 48	
18 1	72 KCL 86		174 RCL 47	227 -	
19 -	73 +	125+LBL "UP15"	175 -	228 510 43	
28 STO 15	74 EKTERT	126 RCL 46	176 X12	229 Xt2	
21 SLEY	75 ENTERT	127 -	177 RCL 88	230 RCL 88	
22 X12	76 RCL 01	123 RCL 45	178 /	231 /	
23 ECL 14	77 RCL 83	129 /	179 RCL 06	232 STO 00	
24 \$	78 *	138 RTH	180 17X	233 RCL 33	
25 STO 87	79 -		181 +	234 RCL 31	
26 PNN	88 RCL 66	131+LEL R	182 SERT	235 *	
27 Y42	81 /	132 RCL 31	183 RCL 33	236 Xt2	
20 DC1 14	82 LASTX	133 RCL 35	184 *	237 RCL 88	
20 KUL 14	83 1	134 *	185 ST0 38	238 /	
27 + 76 CTO 92	84 -	135 STO 39	186 RTN	239 RCL 45	
38 370 00 71 Dri 87	25 /	136 RCL 45		248 X12	
73 4	86 ENTERT	137 STO 48	187+LBL a	241 -	
JC - 77 CODT	87 ENTERT		165 XEQ "HYP"	242 CHS	
JJ DUKI TA CUTCDA	88 SULFA	138+LPL 82	189 RCL 45	243 STO 42	
JA ENIERT	29 F1N	139 RCL 39	190 -	244 RCL 06	
30 XEV -UPIZ-	40 /	143 +	191 CHS	245 /	
35 2671	Q1 D4	141 PCI 48	192 RCL 35	246 RCL 42	
37 KUL 99	47 /	142 LOSTX	193 /	247 +	
38 *	67 CTN 14	147 -		248 RCL 98	
39 RCL 88	73 310 TT 04 DTN	144 5700	194+LBL 85	249 +	
48 SQRT	79 KIN	144 314F	195 STD 38	258 8	
4] *	05.41 DI +0012+	145ALDI B	196 XEQ "TF"	251 XXY?	
42 RCL 87	7JTLBL "UF12"	145 DCL 9	197 XEQ "PVAL"	252 GTO 86	
43 sert	76 XEV "UP13"	140 KLL 31	198 STOP	253 X()Y	
44 *	97 ENIERT	147 KLL 30	•••	254 SART	
45 CHS	78 ENTERT	148 <b>u</b> 140 cto 30	199+LBL b	255 PCL 31	
46 RCL 87	99 SDEY	147 510 37	200 XEQ HYP.	256 *	
47 +	168 RDN	130 KUL 40	201 RCL 46	257 PCL 33	
48 RCL 15	181 /	151 510 40	202 -	258 *	
49 /	182 Rt	152 CTO 82	203 CHS	259 BCL 42	
S8 SQRT	183 •		264 RCL 36	268 2	
51 STO 33	184 STO 45	153+LEL C	205 /	261 570 79	
52 112	185 ENTERT	154 XEQ 04	204 CTD R5	201 370 37	
VL TIL			724 GIA 64	206 866 90	

01+LBL *ZS-10*	54 +	183 STO 37	156+L6L C	JOEAL DE S
02 FIX 4	55 ST- 49	189 RCL 83	157 RCL 48	2034LDL 0
03 CF 01	56 RCL 04	110 RCL 05	159 STO 40	200 RUL 40 207 STAD
84 CF 84	57 Xt2	111 •	159 RCL 31	207 310P 202 201 47
85 8	58 RCL 02	112 RCL 84	168 RCL 39	200 KUL 47 200 STAD
06 STOP	59 +	113 Xt2	161 *	216 PCI AD
	68 ST- 49	114 -	162 STO 39	
87+LBL e	61 RCL 81	115 RCL 49	163 CTO 01	CIL JIVE
88 RCL 41	62 X12	116 /		212+LEL_d
89 STO 87	63 RCL 85	117 SQRT	164+LBL a	213 XPOM -SNI PXY-
18 RCL 81	64 *	118 RCL 33	165 XEQ -HYP-	214 FND
11 STO 46	65 ST- 49	119 *	166 RCL 46	
12 RCL 42	66 RCL 13	128 STO 38	167 -	
13 STO 11	67 STO 33	121 RCL 87	168 CHS	
14 RCL 02	68 RCL 46	122 RCL 83	169 RCL 36	
15 STO 47	69 RCL 87	123 /	178 /	
16 RCL 43	78 *	124 STO 88		
17 STG 12	71 ST- 33	125 RCL 27	171+LBL 92	
18 RCL 83	72 RCL 47	126 STO 44	172 STO 39	
19 STO 43	73 ECL 11	127 RCL 15	173 XEC "TF"	
28 RCL 33	74 *	123 STOP	174 XEQ -PVAL-	
21 STO 81	75 ST- 33	129 STO 31	175 STOP	
22 ECL 33	76 ECL 48	130 RTN		
23 STO 82	77 RCL 12		176+LEL b	
24 RCL 31	78 *	131+lel a	177 XEQ *HYP*	
25 STO 83	79 ST- 33	132 RCL 46	178 RCL 47	
26 3	88 RCL 33	133 STO 48	179 -	
27 -	81 RCL 15	134 RCL 31	180 CHS	
28 STO 15	82 /	135 RCL 36	181 RCL 37	
29 RCL 32	83 SQRT	136 *	182 /	
38 STO 84	84 STD 33	137 STO 39	183 GTO 82	
31 RCL 35	85 RCL 85			
32 STO 85	86 RCL 82	138+LEL 01	184+LEL c	
33 RCL 36	87 *	139 RCL 40	185 XEQ -HYP-	
34 STO 86	88 RCL 66	140 +	186 RCL 48	
35 RCL 39	89 X12	141 ENTERT	187 -	
36 STO 13	98 -	142 ENTERT	188 CHS	
37 RCL 83	91 RCL 49	143 RCL 39	189 RCL 38	
38 RCL 85	92 /	144 2	198 /	
39 *	93 SQRT	145 *	191 GTO 82	
48 RCL 82	94 RCL 33	146 -		
41 +	95 *	147 RTN	192+LBL E	
42 STO 49	96 STO 36		193 RCL 47	
43 2	97 RCL 03	148+LSL B	194 +	
44 RCL 84	98 RCL 02	149 RCL 47	195 STO 00	
45 +	99 *	158 STO 48	196 8	
46 RCL 81	100 RCL 81	151 RCL 31	197 STOP	
47 +	101 X12	152 RCL 37	198 RCL 48	
48 RCL 86	182 -	153 +	199 +	
49 *	103 RCL 49	154 STD 39	208 ST+ 08	
58 ST+ 49	184 /	155 GTO 81	201 RCL 46	
51 RCL 83	105 SORT		202 ST+ 00	
52 RCL 06	186 RCL 33		203 RCL 88	
53 X12	107 •		284 RTN	

106

	FA.1 51 A3	164 CHS	153 -	242 Ve.
91 AL &: +75 TAT+	52+L6L W2	105 GTU 05	154 Ytx	205 116
#2 •76TOT•	33 KUL 23		155 RCL 30	201 1
AT PROMPT	54 CHS	105+LBL 84	156 2	200 - 244 Dr. 25
24 DTN	55 510 25	107 SF 01	157 /	277 KUL 27 216 A
	56 XEO 01	108 1	158 CHS	610 ·
45.41 BL +7006+	57 1	109 -	159 Eth	233 RUL 27 Die Dief
20 CTA 25	58 X()Y	LIG CHS	164 #	CIC OVEL
40 310 LJ 47 <b>Exter</b>	59 -	111 PTN	161 2	213 /
00 4		•••	162 RCL 21	214 KEW "ZUDF"
	68+LBL 83	112+18 85	163 Ytx	213 #IN
τ7 <b>Δ</b>	61 CF 00	113 CF A1	164 /	
10 /	62 ENTER+	114 ETM	165 RCI 23	ZIG+LBL *FCCDF*
11 LAD 17 Cak	63 1			217 STO 17
12 ETA 17 DI	64 -	11501 RI -CHIST-	167 ST0 25	218 PCL 15
	65 CHS		165 010 20	219 2
19 2	66 RTN	117 46	160 RCL 00	226 /
13 <b>*</b>		110 001 15	174 /	231 FRC
16 3981	67+LBL "ZA"	110 KUL 12 110 KUL 12	170 / 171 ST# 75	222 0
17 /	5. 30	117 A/TE	172 3	223 \$#\$?
13 STO 26	65 X()Y		172 2	224 SF 01
19 RCL 25	78 XXY?		113 RGL 21	225 RCL 16
20 X(02	71 XED 04	122 \$10 23	1/4 #	226 2
21 GTO 02	72 ENTERS	123 XC)Y	175 510 26	227 /
22 SF <del>00</del>	73 #	124 2	1/6 1	228 FRC
	74 1/X	125 /	177 510 24	229 8
23+181 01	75 LN	126 570 21		238 2#17
24-1	76 SORT	127 INT	178+LBL 89	231 SF 62
25 RCL <b>25</b>	77 STO 25	128 LASTX	179 RCL 30	232 F32 81
26 .2316419	70 010700	129 X#Y?	188 RCL 26	233 610 16
27 *	70 . 210320	130 GTO 86	181 2	274 552 42
28 +	00 002057	131 1	182 +	235 670 11
29-178	00 .00£0JJ 01 .	132 -	183 STO 26	274 PCI 15
30 ENTERT	01 T 02 DF1 25	133 Fact	184 /	277 BC. 14
EL ENTERT	02 RUL 20	134 STO 23	185 RCL 24	200 FUL 10 076 V/-V9
32 ENTERT	03 4 04 0 515513	135 GTO 06	186 🔹	200 AN-11 176 FTA 17
37 1.339274429	84 2.010017	-	187 STD 24	237 610 17
34 *	60 T	136+LBL 06	188 +	344-1 Br 41
35 -1-821255978	80 KUL 20	137 .5	189 X#Y?	2404LBL 11
36 +	87.001308	136 X=Y?	198 GTG 89	241 UF 02
37 •	88 *	139 GTO 87	191 RCL 25	242 KUL 13
38 1.781477937	89,189269	148 X()Y	192 *	243 SIU 18
39 +	9 <b>8</b> +	141 1	193 RTN	244 KUL 16
46 *	91 RCL 23	142 -		245 510 17
A1 - 754547792	92 *	143 ST# 23	194+LBL 18	246 STO 25
41 -1330303706	93 1.432788	144 CTO 86	195.9	247 XEQ 15
47 +	94 +		196 8	248 STO 28
₹J ₹ 44 71078157	95 RCL 2 <b>5</b>	LASAL DI 37	167 2	249 CHS
99 .31730130 AF .	96 <b>*</b>	17JVLDL 97 146 81	199 /	250 STO 21
47 <b>4</b>	97 1	170 F1 147 CADT	199.129	
46 7	98 +	140 CT- 33	177 1/Å 300 ctn 30	251+LBL 12
47 KUL 26	99 /	140 214 23	200 310 27	252 RCL 18
48 <b>7</b>	100 RCL 25	4 4 A . 1 AL AA	201 KLL 30 202 DO: 15	253 2
49 F57 88	101 X()Y	147+LBL UB	202 NCL 13	254 /
50 GTO 03	192 -	150 RCL 30	203 /	255 510 80
S1 RTH	163 FS? 81	151 RCL 21	204 3	256 1
		152 1	205 17X	257 ST+ 21

## ZSTAT

		761.3	112 -	462 RCL 86	513 *
258 STO 22	303 SIU 19	301 C	716 - 217 870 25	463 SUI 88	514 STO 39
259 STO 23	389 510 23 310 VED 15	JOC - 767 DC1 25	413 210 52	460 862 00	515 RCL 40
268 STO 24	310 XEV 15	303 KUL 23		445 61/ 75	516 +
		JOT / 7/5 014 27	4144606 24	465 517 60	517 ENTERT
261+LBL 13	312 CHS	363 314 23	413 Z	460 2	518 ENTERT
262 RCL 22	313 510 28	366 KLL 23	418 317 23 417 CT. 26	AC9 CTD 16	519 RCL 39
263 RCL 80	314 1	367 317 22	417 DPL 20	460 510 10 469 511 75	528 2
264 X<=Y?	315 51+ 20	1 000	418 KLL 26	407 KLL 30	521 +
265 GTO 14	316 51- 21	J07 317 27	417 KLL 13	471 01 74	522 -
266 X<>Y	317 XEU 12	370 GIU 17	920 ALET?	472 \$	523 RTN
267 1/X	318 LHS	77141.01 28	421 GIU 23	473 1	
269 RCL 21	319 1	371VLDL 20 773 PCM 20	427 L/Y	474 RC1 34	524+LBL -HYP-
269 *	520 +	372 RGL 50	424 PM 25	475 -	525 STO 28
278 RCL 19	321 KIW	313 314 LL 774 RM 22	424 NGL LJ	476 /	526 STOP
271 •	700AL DI 10	775 CTA 17	425 PF1 29	ATT YED "FCCDF"	527 STO 34
272 2	J224LBL 10 337 CE A3	919 914 H	420 KUL 20 437 443	478 ETH	523 SF 84
273 51+ 19	323 LF 62	776 AL DE 21	420 4		529 RTN
274 /	329 KUL 17	378°LDL 24 777 1	100 STE 17	479+LBL *TE*	
275 51+ 23	JEJ KUL IJ 736 ↔	778 570 22	438 RM 27	488 STO 38	530+LEL "PVAL"
276 1	J20 + 737 PM 16	779 1	471 574 27	481 48	531 STO 29
277 51+ 22	J27 KUL 10 729 /	708 STN 24	477 670 24	482 RCL 15	532 CF 84
273 KUL 23	JC0 - 776 CC9T	701 201 15	146 GIA F1	483 X2Y?	533 RCL 28
277 51+ 24	776 P03	787 X±Y7	43361 EL 25	484 GTC 28	534 X(8?
288 GIU 13	330 KH2 771 0100	787 670 26	434 RCL 22	465 STO 16	535 GTO 30
	272 STA 17	384 RBN	435 RCL 24	486 1	536 X#8?
231+LBL 14	777 578	385 RCL 16	436 +	487 STO 15	537 GTO 29
262 KUL 28 207 COST	774 STO 29	386 X=Y7	437 ST- 17	488 RCL 30	538 RDN
263 34KI 204 ENTEDA	735 RCI 17	387 GTD 23		489 X12	539 2
209 ENIERI 205 DM 25	776 005	388 ST0 23	438+LBL 26	498 XEQ "FCCBF"	548 *
263 KUL 23 202 VAN	737 ST0 21		439 RCL 17	491 2	541 1
280 ITA 207 DC1 24	338 510 22	389+LEL 22	448 2	492 /	542 X)Y?
201 KUL 24 202 a	339 STO 23	398 1	441 *	493 STO 88	543 GTO 30
200 - 299 dth	340 BEG	391 ST- 23	442 PI	494 RCL 16	544 P.DN
EU/ KIN	341 1	392 RCL 23	443 /	495 STO 15	545 2
20041 RI 15	342 STD 24	393 ST+ 24	444 1	496 RCL 30	546 -
201 201 15	343 ST0 25	394 1	445 -	497 🖢	547 CHS
297 BC1 16	344 RCL 16	395 ST- 23	446 CHS	498 X)Y?	548 RTN
272 KUL IV 287 /	345 X=Y?	396 RCL 23	447 RTN	499 GTO 27	
294 PCI 17	346 GTB 21	397 ST/ 24		500 RCL 00	547+LBL 27
295 *	347 2	398 X+Y?	448+LBL "FCDF"	501 1	336 KM
296 1	348 -	399 GTO 22	449 XEQ "FCCDF"	562 -	221 1
247 4	349 ST0 14		458 1	583 CHS	552 -
298 1/8		480+LBL 23	451 -	504 RTN	553 CHS
299 RTH	359+LBL 19	401 RCL 21	452 CHS		354 RTH
	351 RCL 14	402 ENTERT	5 <b>3 RTN</b>	585+LBL 27	FRE .1 M 78
300+1.81 16	352 RCL 25	493 RCL 16		586 RCL 88	2224FRF 20
301 CF 01	353 X=Y?	484 YTX	454+LBL BINF	507 RTN	336 KUN 663 Ath
382 FS7 82	354 GTO 20	405 RCL 28	455 STD 88		JJY KIN
383 CT6 12	355 2	405 +	456 1	588+LBL 28	
	356 ST+ 25	407 ST+ 24	457 +	589 RCL 38	3384FRF - 1419.
394+LBL 17	357 RCL 21	488 RCL 16	458 STO 35	518 GTO *2CDF*	337 KUL 47 848 DP1 77
305 RCL 16	358 X12	489 1	459 2		300 KLL J/ 6/1 -
306 STO 18	359 RCL 24	419 STO 26	468 *	SIIOLEL "CI"	301 " 6/3 ctn 44
387 RCL 15	360 +	411 STO 27	461 STO 15	512 RCL 32	202 310 40 827 640
					113 696

## DISTRIBUTION LIST

	NO. OF COPIES
Library, Code 0142	4
Naval Postgraduate School	
Monterey, CA 93943	
Office of Research Administration	1
Code 012A	
Naval Postgraduate School	
Monterey, CA 93943	
Library, Code 55	1
Naval Postgraduate School	
Monterey, CA 93943	
Professor P. W. Zehna	10
Code 55Ze	
Naval Postgraduate School	
Monterey, CA 93943	
Professor D. R. Barr	1
Code 55Bn	
Naval Postgraduate School	
Monterey, CA 93943	
Professor R. Shudde	1
Code 55Su	
Naval Postgraduate School	
Monterey, CA 93943	
Professor P. A. W. Lewis	1
Code 55Lw	
Naval Postgraduate School	
Monterey, CA 93943	