
PROGRAM BARCODE PRINTTING ROUTTINES

e PBC1

e PBC2Z

SYSTEM CONFIGURATIONS AND SOFTWARE FOR PRINTING PROGRAM BARCODE

USING THE HP-41/CV AND THE EPSON MX-80 PRINTER (OR EQUIVALENT),
WITH THE SUPPORT OF OTHER SPECIFIED HARDWARE COMPONENTS AND ROM.

by LAURENCE J. LAVINS (7310)
" PHILADELPHIA CHAPTER OF PPC

130 RADNOR AVENUE
VILLANOVA, PA. 19085

Tel: (215) 687-1774
293-9208

PROGRAM

DOCUMENTATTION

BARCODE PRINTTING

TABLE OF CONTENTS

PACKAGE

INSTRUCTIONS TO USERS --—---—--——c—-eee

GENERALIZED FLOWCHART DIAGRAM -—-—-=—-———--

PROGRAM LISTINGS FOR PBCl -=----e-meme———

PROGRAM LISTINGS FOR PBC2 --------eeemm

5. ANYBLS BARCODE PRINTING ROUTINES ----—--

(a) Program Listings
(b) Synthetic Alpha String Code Sequences
(c) Technical Notes

TECHNICAL ANALYSIS & COMMENTARIES ------

BARCODES FOR PBC1l

BARCODES FOR PBC2

ROUTTINES

pages

page

page

pages

pages

I NSTRUCTTONS T O US ERS (Page 1 of 5)

PROGRAM BARCODE PRINTING ROUTINES PBC1 AND PBC2

CAUTTIO N: USERS SHOULD FIRST READ AND THOROUGHLY UNDERSTAND
THE ACCOMPANYING ANALYSIS AND COMMENTARIES BEFORE
ATTEMPTING TO RUN THESE PROGRAMS.

1. INTRODUCTION & PURPOSE

PBCl1 and PBC2 constitute a set of programs for the HP-41, which
were designed for the purpose of producing good quality program
type barcode in a reasonably efficient manner. The actual prin-
ting is performed by an EPSON MX-80 printer, or equivalent,
using its super-high-resolution (SHR) graphics capabilities.

A number of other peripheral devices and ROM's are also required
to support these programs. Either of two additional alternative
configurations are also delineated, however, in order to make
these programs as universal as possible.

2. SYSTEM HARDWARE & ROM REQUIREMENTS

(a) HP-41/CV, or equivalent (2X speedup capability preferable).
(b) PPC ROM Module.

(c) XFM Module, and at least 1 XM Module.
(d) HP Plotter ROM Module (or EPROM equivalent).
(e) HP-IL Module

(f) HPB82166A Converter & EPSON MX-80 Printer, or equivalent.
(e.g., the HP82905B Printer)

(g) Any one of the following EPROM Sets:

(1) Base Configuration

NFCROM, with XROM Number changed from 17 to 16 to avoid
conflict with the Plotter ROM. Also augmented with PPACK
and NRCL functions (copied from PPC EPROM-2).

(2) Alternative #1

NFCROM, with XROM Number changed from 17 to 16, but
without any augmented functions.

(3) Alternative #2

PPC EPROM-2, in place of the NFCROM.

(h) Sufficient EPROM box and port extender capacity, etc. to
support all the above devices and modules.

3. LOADING THE PROGRAMS

It will be easiest and most convenient to copy these programs
from some other person's HP-41 calculator or tape file.

Using the wand to read them into the HP-41 from barcode is the
next best choice.

If the programs must be keyed in by hand, then by all means,
don't hesitate to make use of the LB routine in the PPC ROM to
assist in loading the many synthetic alpha strings. Or, if it's
available, the ASSEMBLER-3 EPROM Set can also be used to load
all these lines even more easily than the PPC ROM.

The decimal byte codes (including the Fx text byte) for all syn-
thetic alpha lines, except for the ANYBLS print routines, are
included with the program listings. The ANYBLS code sequences

are completely described on a separate enclosure.

INSTRUCTTIONS T O US ERS (Page 2 of 5)

PROGRAM BARCODE PRINTING ROUTINES PBC1 AND PBC2

4. BASE CONFIGURATION

If the NFCROM is modified and augmented as indicated above, the
programs may be executed as provided herewith, without any changes.
If, however, the user desires to change the XROM Number to some-

thing other than 16, this is OKj; but all program lines in PBC2
which use XROM 16 functions will have to be deleted, and then re-
entered while the user's ROM is connected.

After changing the XROM Number, PPACK and NRCL functions may be
copied directly from the PPC EPROM-2 into the NFCROM, if the pro-
per equipment is on hand. Owners of ProtoCODER or MLDL devices
should have no difficulty in changing the XROM Number and adding
these functions into any unused portion of the NFCROM. Just don't
forget to make the appropriate directory entries and to change
the total number of functions at ROM address x001.

ALTERNATIVE #1

If the user is able to change the XROM Number of the NFCROM, but
can't provide the two augmented functions, then some simple changes
and additions can be made in both PBCl and PBC2 to enable them to
work under these circumstances.

(a) Changes to PBCl program:

Insert two new program steps after Line 65, as follows:

65 ACA

New Line 66 SF25

New Line 67 1

70 END

(b) Changes to PBC2 program:

Line 193 Delete 21 and insert 474 1in its place.,.
Line 194 Delete NRCL and insert RCLA in its place.
Line 199 Delete 22 and insert 475 in its place.
Line 200 Delete NRCL and insert RCILA in its place.

Line 134 Delete the existing synthetic alpha string.
Insert the following synthetic alpha string
in its place: (247) 0 168 1 6 230 143 227.

Line 132 Delete PPACK and insert BCP in its place.
New Line 133 1Insert FC?25 after BCP.

After these changes have been entered to accomodate a non-aug-
mented NFCROM, the programs will run with no noticeable differ-
ence from the original version. Don't forget, though, that the
XROM Number of the NFCROM must first be altered, or it won't work.
Since the size of PBC2 is increased by 4 bytes, the maximum size
of an object program that can be accomodated in memory will be
decreased by the same 4 bytes.

INSTRUCTTIONS T O US ERS (Page 3 of 5)

PROGRAM BARCODE PRINTING ROUTINES PBC1 AND PBC?Z2

8.

ALTERNATIVE #2

For those users whodon't have an NFCROM or the capability to
modify the XROM Number, these programs will work equally well
with the PPC EPROM-2, which has been rather widely distributed
throughout the world. As was the case with Alternative #1, there
are a few changes which must first be made, as follows:

(a) Changes to PBCl1 program:

No changes to the base program, as provided herewith, are
required for Alternative #2.

(b) Changes to PBC2 program:

Line 165 Delete) and insert NRCL in its place
New Line 166 1Insert STO IND Y after NRCL

Line 137 Delete STA and insert CHS in its place.
New Line 138 Insert NSTO after CHS.

Line 134 Delete the existing synthetic alpha string.
Insert the following synthetic alpha string
in its place: (247) 168 1 6 228 143 227 167.

After these changes have been entered to accomodate a PPC EPROM-2
in place of a modified/augmented NFCROM, the programs will run
without any noticeable difference from the original version. These
changes increase the size of PBC2 by 3 bytes, and therefore, the
maximum size of an object program that can be accomodated in mem-
ory will be decreased by the same 3 bytes.

MISCELANEQUS CHANGES (OPTIONAL)

(a) If a PPC ROM isn't available, or if it must be removed due to
lack of ports, etc., ADV functions can be substituted wherever
there is an XROM PO. Substitute as many ADV's as desired in
any of the lines in either PBCl or PBC2. Since all the XROM
PO's in PBC2 are further down in the program than Line 222,
there will be no effect upon the pre-compilation of Line 222,

(b) If a switched 2X speedup capability isn't available on the
HP-41, the STOP function at Line 133 of PBC2 can be deleted.
If it is deleted, it's absolutely necessary to add a CLX in
its place, in order to maintain a constant byte count above
Line 222. (More about this below.)

RUNNING THE PROGRAMS

(a) Preparatory Steps

Store PBC1l, PBC2 and all object programs (i.e., those programs
for which barcode representations will be printed) in XM. A
total of 178 XM registers are required for just PBCl1l and PBC2,
in their base configuration versions.

It is important for all programs being stored in XM to be
first packed with GTO.. prior to being stored in XM, to insure
that all non-essential nulls are deleted, that normal program
END's are present, and that valid byte counts will result.

It is also necessary to clear all programs from main memory.

Now execute GETP to bring PBCl into main memory from XM.
DO NOT PACK!!

INSTRUCTIONS TO USERS (Page 4 of 5)

PROGRAM BARCODE PRINTING ROUTINES PBC1 AND PBC?2

(a)

(b)

(c)

(d)

(e)

Preparatory Steps (Continued)

Make sure that all elements of the system are properly
connected and plugged in, turned on, switches properly
set, etc.

Now, execute PBCl.

Printer Anomaly?

For reasons which are not clearly understood, the EPSON Prin-
ter does not always (but it does sometimes) respond to an
initial set of printer commands, after being turned on. It
may, therefore, be necessary to repeat an initial sequence.

When PBC1l is executed, a series of instructions to the user
should be immediately printed, together with the prompting
message "SEE PRINTOUT" in the HP-41 display. The program then
stops until R/S is pressed. The program may frequently reach
this point, as evidenced by the display, without any sign of
life by the printer. If this happens, don't panic. Just do
the following 3 simple steps:

(1) Press the RTN key on the HP-41.
(2) Turn the HP-41] OFF. Then turn it ON again.
(3) Press R/S key to re-initiate PBCl.

This sequence of operations causes the printer to function
normally from here on. Very, very strange!

Initial Paper Adjustment

The prompt mentionned just above stops the program to allow
the user to adjust the fanfold paper to the very top of the
next page form (the TOF). Don‘'t forget to toggle the printer
power switch OFF and then ON again, after adjusting the paper.

Label Entry

The program will stop again to prompt the user to enter the
name of the object program. The HP-41 will already be in the
Alpha mode. Just key in the label, and then press the R/S
key to restart the program.

Switching to 2X Speed

If a ProtoSYSTEM is connected, and a triple XFM/XM/XM module
is also being used, the author experienced problems with the
execution of XM functions when the HP-41 was set to 2X speed,
during the hot and humid mid-summer season. That's the reason
for the STOP at Line 133 of PBC2. Troubles (like a crash)
were avoided by running at normal speed up to this point, and
then switching into 2X after all XM operations were completed.
If this STOP step isn't needed, it may be easily deleted, as
per the instructions in Para. 7(b) above.

I NSTRUCTTONS T 0 USERS (Page 5 of 5)

PROGRAM BARCODE PRINTING ROUTINES PBC1 AND PBC 2

9. ALLOCATION OF MAIN MEMORY

(a) Data Storage Registers & SIZE

SIZE is set to 59.

REGISTER No.

R-00

R-01 to R-16

R-17

R-18

R-19

R-20

R-21

R-22

R-23 to R-25

R-26

R-27 to R-58

(b) Program Memory Usage

Total Memory = (319 + 4/7) registers x 7

Less: 59 data storage registers
26 I/0 buffer
PBC2 program size

REGISTER USAGE

Instruction codes for XEQ 71 and RTN.

XEQ's for up to 32 print routines.
Instruction codes for LBL 99 and XEQ 47.

Label of the object program.
Uncompiled code for XEQ 71 and RTN.
Sequential barcode row number.
Temporary storage for N-register contents.
Temporary storage for M-register contents.

Addressing & loop controls.

Rows per page counter.

Storage for 32 hex digit character codes.

2,237 Dbytes

= 413
registers = 182

= 969
1,564 -1,564 Dbytes

Net memory available for object program 673 Dbytes

This assumes that there are no registers tied up with key
assignments.

If the object program exceeds the maximum available program
memory, it is recommended that it be split up into two or
more smaller programs before attempting to print the barcode.

10. PRINTING PBC1l AND PBCZ

11.

(a) Barcode Printing for PBCl

No special handling is required for printing the barcode
representation of PBCl.

(b) Barcode Printing for PBC2

At Line 131, the program will stop and print an error message
"NO ROOM." When this happens, press SST to advance the program
to the next step. Then press R/S to continue on. Barcode for
PBC2 will then be printed.

SPEED OF EXECUTION

On the author's system, the following average times were observed
for execution of a complete (double-printed) 16-byte row of bar-
code, including all computation time as well as the printing time
for each row.

(a) HP-41 at std. speed -------- 104.9 sec. per row (av'ge.)
(b) HP-41 at 2X speed ---------- 61.5 sec. per row (av'ge.)

G ENERALTIZZED

PROGRAM BARCODE PRINTING ROUTINES

FLOWCHART

2. 'PBC1 AND PBC2 1[call obj.
r maln mem.

O [Store PBCI, & pack,
PBCZ2 & object 2.2[Synthetic
program in XM. compil'n.
Clear pgm.mem- of XEQ 99

ory. Get PBCl. (Line Z277]
Y{ XEQ 2.3[Start new

\PBC1 | barcode ~
e row.Print

1.1 [Initialize row nmbr.
& store |

constants. 2.4 [XEQ BCP.

(Resylts
are 1n
A-regstr)

Y

1.2 [Prompt user. 2.7 2.5 2.6
Adv. paper *’| Store *~ |Store

of form (TOF) for the for a 16-
laft row yte ;

| |

1.3 [Prompt user. l 2.8 [Conv. AlpHa |
Enter label | b———fchar. to L=| |
of obj.pgm. | hex digitg. |

Print label. | l

| 2.9[Conv, to '
3 [char.code |

1.4 . & store i I
Compu?e size | sequence., '

of object | ;;f%:r——-—
program, in : 2.10[Compute & :
bytes. Lo store s eo-_ I

Address & loop F|thetic&< Address & loop
controls for the 1nstins. controls for a

: last row. normal 16-byte row
1.5 [Print the 2.11 [KEQ PRINT Y

size, in routines,

bytes, under Repeat.
the label.

2.16 Print an end }
message.

1.6 |Replace PBC]| Clear I/0
with PBC2. gggfer- Sgt

XEQ PBC2. 919 mode

2.14 Re-set thé
page row

counter

by LAURENCE J. LAVINS (7310) ¥
130 RADNOR AVENUE 2.15 Pdv.paper
VILLANOVA, PA. 19085 ganiifi .

. - . inTel: (215) 687-1774 eader.

DIAGURAM

Rev: 8-29-83

293-9208

PROGRAM BARCODE PRINTTING ROUTINES

PBC1l - PART 1 OF 2 PARTS
by Larry Lavins (7310)

CAUTION: It is most important for users 130 Radnor Avenue
to read and understand all the Villanova, Pa. 19085
attached explanatory materials Tel: (215) 687-1774
before attempting to use these 293-9208
programs.

AUG. 39,1983 "]
CAT 1 ggPEng“”CE 47

"

~EERE1
LBL"PBC1 >3 aca Ael2~

ggg BYTES 24 ~T0 TOP ga AON |
UgsNgég " S1 PROMPT

—

gg BEEGE" S2 AOFF
@1eLBL "PBC 28 ADY 23 paal 1®
1 (22_"THEN TO S5 ADY
@2 AUTOIO 36 Aca S6 ADY

@3 SF 25 «PRINTER
@4 PINIT a1l_"FRo® 57 RCLPTA

ACA .S MANIO 22 PCBn aca o8ROCRAM
66 FIX O IN- =9 ARCL X
@7 CF 29 34 ACA

68 "+ BYTES@8 SF 17 35 7)

?3 ggIZE 26 ALEHE 61 PRA
11 21 3¢ AbY 62 ADV

12 STO 26 38 “PRESS R 63 ADY

13 1 /§9Kggn o En’65 ACA
14 STO 28 4@ ~TO CONT
15 “c INUE*™ 66 "PBC2"
.o 41 ACA 67 GETP
16 RCL [4z 743 ACCHR 68 END

‘éfi " 45 “SEE PRI
NTOUT "

19 RCL [e ST0 B8 46 PROMPT

21 STO 19

SYNTHETIC PROGRAM LINES

LINE DEC. CHARACTER CODES DESCRIPTION

15 (245) 207 99 224 0 47 Codes for LBL 99 and XEQ 47.
18 (244) 224 0 71 133 Codes for XEQ 71 and RTN.
47 (245) 14 27 69 27 49 Printer control codes.
64 (242) 27 70 Printer control codes.

S YSTEM REQOUTIREMENTS

HP-41CV XFM + XM HP-IL PPC ROM PLOTTER ROM

EPSON MX-80 PRINTER & HP82166A CONVERTER (or equivalent)

MODIFIED NFCROM EPROM SET (or specified alternatives)

PROGRAM

P RC 2 -

BARCOUDE

PART 2 OF 2 PARTS

CAUTION: Users are urged to read and
understand all the attached explana-
tory materials before attempting to
use these programs.

AUG. 29,1983

LBLT™
END
969

PBCZ

BYTES

=

vz

aleLBL "PBC

GTO 98

B3eLBL 458
b4
vS
v6

e’
Bs
B9

“ELa+"
ACA
“oPOOee

“eoeee"

ACH
RTHN

18«BL 49
11
12
13

14
15
16

e EL&* s

ACH
OSSOS

“eseee”

ACAH
RTHNH

17+LBL 50O
18
19
20
21

22
23

uELd*--

RCRA
Ceeeeee"”
“eosseee

RCAH
RTHN

24+LBL 51
25
26
27
28

29
30

e EL'O" s

ACA
Tovesee”
“Lesseee

ACAH
RTH

31eLBL 52
32 "fkLae"
33 ACAH
34 "eeeeees”
35 “"Feseeee

36 HCAH
37 RTN

38eLBL 53
39 "fELOe"
40 ACRH
41 “eeeseee”
42 “feeseoeee

43 ACA
44 RTHN

45eLBL 54
46 “"ELOe"
47 ACA
48 “"eeseee”
49 "eeeeese

58 RACAH
51 RTH

S52«LBL 35
53 "fLue"
54 ACRAH
55 “"eeeeees”
56 ACHAH
S7 “eeeeee”
58 RCA
59 RTHN

68<eLBL 56
61 "fkLae"
62 ACAH
63 "eeeeees”
64 "“Fecseeee

65 ACAH
66 RTN

PRINTTING ROUTTINE

by Larry Lavins (7310)
130 Radnor Avenue

Villanova, Pa. 19085
Tel:

67¢LBL 57
68 “ELOe"
69 ACA
70 "eeeeee”
71 “Leeeese

72 RACRA
73 RTN

74¢LBL 65

7S “"ELOe"
76 ACA
77 “"ecseee”
78 “lLeeoeee

79 RCA
88 RTN

81¢LBL 66
82 "EkLuUe"
83 RACAH
84 “eeeeee”

85 RACAH
86 “"eeeesee”

87 ACAH
88 RTHN

g9eLBL 67
90 “ELoe"
91 RACAH
92 “"esesee”
93 “fesseece
.

94 ACRA
95 RTHN

96+LBL 68
97 "ELUOe"
98 RACA
99 “eeeeee”

1868 ACAH
1801 “eeeeees”

182 ACA
163 RTH

(215) 687-1774
293-9208

184<¢LBL 69
185 "KLOe~
186 RACR
107 “eeseee’
188 ACRAH
109 “eesesee’
118 ACRAH
111 RTHN

112eLBL 70O
e ELQ’ s

ACAH
“estsee”
ACA

117 “eeceees:
118 RCAH
119 RTHN

120¢LBL 47
121 "KLe®ee
coose"
122 RACA
123 RTHN

124<eLBL 71
125 "kLoeee

126 ACA
127 RTHN

(Continued on
the next page

P B C 2

128«LBL 98

129
130
131
132
133

134
J

135
136
137

139
14084
141
142

143

144

145

146

147
148
149
159
151

153
154
23
155
156
157

158«LBL A2 205eLBL 94 238 GTO @6
159 RCL T

CLA 1680 ENTERT 206 2321 DSE 26
ARCL 18 161 CHS "

GETSUB 162 16 207 RCL IND 232 GTO 15
PPRACK 163 + 24

STOP 164 19 2808 XTOR 233 20
165 <> 209 ISG 24 234 STO 26
166 RDHN 218 CL=Xx

x 167 E-3 211 "k 235 "rrEE"
168 * * 236 RARCL 18

RCL L 169 16 212 RCL IND 237 "Fa "

327 1786 + 24 238 RACAH

172 RDH 214 ISG 24 ED>*"
173 ST+ X 215 CLX 248 RACA

138«LBL 15 174 CHS 216 RCL L 241 PRBUF

175 59 217 STO IND 242 “EF*"
“"ROW 176 + 25 243 RACA
RCL 20 177 STO 24 544 XROM “PO
ARCL x 218 DSE 25 “
PRA 245 GTO 15

178eLBL B3 219 GTO ©4
BCP 179 RCL [

188 STO 22 228 SF ©61 246eLBL 86
STO 206 181 RCL ~

182 STO 21 247 “END OF
x=87? 183 RCL 1 221eLBL 85 PROGRAM"

184 DECODE 248 PRA

ig? g$g§ 223 PRBUF .

27 188 ATOX 224 FS?C 961 ?59 *RON o

STO 24 189 ATOX 251 PCLBUF
16 1986 27.0863 225 GTO 85
STO 25 191 STO 23 252 AUTOIO
GTO 83 192 XE@ 87 226 ADY 253 END

193 21 227 ADVY
194 NRCL

152«LBL 87 195 DECODE 228 RCL 2©6
ATOXR 196 31.0844 229 X=@7
STO IWND 197 STO 23

198 XER@ @7

I?g g? égg fil§CL For details regarding coding
gTN S81 DECODE of Lines 3-127, refer to the

ANYBLS description & commen-
202 45.858 tarv.
2803 STO 23 o
204 XEG O7

S YNTHETTIC P ROGRAM LINZES

LINE DECIMAL CHARACTER CODES DESCRIPTION

134 (247) 236 142 227 167 74 170 1 Compilation data for Line 222,
206 (242) 224 0 Code for XEQ prefix.
211 (243) 127 224 0 Code for APPEND XEQ prefix.
235 (244) 12 14 27 69 Printer control codes.
237 (245) 127 20 32 32 40 Printer control codes.
242 (242) 27 70 Printer control codes.

(CONTINUED)

A NY BULS

LBEL "ANYBLS
END
631 BYTES

@1eLBL "ANYBLS"

g2¢LBL 48
@3 “kLae"
44 ACA
05 “eeeeeee”
B6 “Heeres"

87 HCA
88 RTN

@9eLBL 49
18 "ELae"
11 ACH
{2 "eeeeeee”
13 “Foeeee”

14 ACA
15 RTN

16¢LBL 59

17 “ELa¢"
18 ACA
19 "hebeee”

20 "Feeseee”

21 RCH
22 KTN

23¢+LBL 31
24 “fLoe"
25 HChH
26 "ee0eee”
27 "Hesseee”

28 ACH
29 RTN

3@eLBL 32
31 “kLae¢"
32 ACH
33 "eeeese
34 “Feeseee”

35 ACA
36 RTN

374LBL 53
38 “ELo¢"
39 ACA
40 “eeeeee”

41 “Feeseee

42 ACA
43 RTN

BARCODE PRINTING ROUTINES FOR EPSON MX-80 PRINTER

EACH NUMBERED ILABEL PRINTS A HEX DIGIT WHOSE
DECIMAL CHARACTER CODE IS EQUAL TO THE LABEL NUMBER.
ALSO, LABELS 47 & 71 PRINT LEFT AND RIGHT END BARS,
RESPECTIVELY.

444BL 54
45 “kLoe¢"
46 ACA
47 “eeeeee”
48 "Feeeeee”

49 ACA
58 RTN

91eLBL 30
92 “fLue"
93 ACA
54 “eeeeee"

99 ACR
56 “eeeeee”

97 RCA
98 RTN

99eLBL 36
68 “ELa¢"
61 ACA
62 “eeteee”

63 “Heeeeee”

64 ACA
65 RTN

66LBL 37
67 “fLoe"
68 ACA
69 “eeseee”
70 “Feseree”
71 ACA
72 RN

73¢LBL 65
74 “fLo¢"
75 ACA
76 "eoeeee”
77 “Foeoeeee”

78 ACA
79 RTN

gaeLBL 66
81 "ELue"
82 ACA
83 “eeeeee”

84 ACA
85 "eeeeee”

86 ACA
87 RTN

by LAURENCE J. LAVINS (7310)
130 RADNOR
VILLANOVA,

Tel: (215)

AVENUE
PA., 19085

687-1774
293-9208

gaeLBL 67
89 “fLo*"
98 ACA
Il "eeeee"
92 “Leseeeee”

93 ACR
94 RTN

95¢LBL 68
96 “ELu¢"

97 ACA
98 "eeeee”

99 ACA
188 “eoeeee”

181 ACR
182 RTN

183¢LBL 69
184 “ELue"
185 ACA
186 “eeeeee”
187 ACA
188 =eeeeee-
189 ACA
118 RTN

111¢LBL 78
112 “tLet"
113 ACA
114 “eettee’

115 ACA
116 “eeeete”

117 ACA
118 RN

119¢LBL 47
120 "ELN0sot0s0e”
121 ACA
122 RTN

123¢LBL 71
124 "ELoeeee”
125 ACA
126 END

1 N P U T SEQUENCES F O R

(Use XROM "LB" routine for loading the

NYBBLE

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

LABEL DECIMAL INPUT SEQUENCES

48

49

50

51

52

53

55

56

57

65

66

67

68

244
ACA,g3
ACA248

244
ACAe 3
o250

244
ACA253

Aep250

244
ACA53

aca’2?

244
253

07250

ACA

A

244
253

o252

ACA

A

244
ACA253

acn252

244
253
253

ACA

ACA

ACA

244
253

02250

ACA

A

244ACASS

ACA252

244
253

ACA252

244
253
253

ACA

ACA

ACA

ACA

244ACASS

ACA252

ACASaa
ACAACR251

27 76 20 O
255 255 0 O
127 0 0 255

27 76 22 0
255 255 0 O
127 0 O 255

27 76 22 0
255 255 0 O
127 255 0 O

27 76 24 0
255 255 0 O
127 255 0 O

27 76 22 0
255 255 0 0
127 255 0 O

27 76 24 0
255 255 0 O
127 255 0 O

27 76 24 0
255 255 0 O
127 255 255

27 76 26 O
255 255 0 0
255 255 255

27 76 22 0
255 255 255
127 255 0 O

27 76 24 0
255 255 255

127 255 0 O

27 76 24 0
255 255 255
127 255 255

27 76 26 0O
255 255 255
255 255 255

27 76 24 0
255 255 255
127 0 255 2

27 76 26 O
255 255 255

255 0

0 255
255 0

" ANY BLS"

FOR USE WITH XROM

255
00

OO0

0O 255 255 0 O
255 255 255 0

0 255
0 255

O 255
0O 255

0 255
0 255

0 255
0 255

0O 255
255 0

255 0
0 255

255 0
0 255

255 0
255 0

o
o

255 0
55 0 0

255
OO0

255
255

255
255

255
255

255
255

o
o

O
O

N
O

0
o

5

0O 0 255 255
0O 255 255 00O

o
o

o
o

255
255

255
255

255
255

255

255
255

255
255

255
255

L. J. LAVINS (7310)

130 Radnor Avenue

Villanova, Pa.
(215) 687-1774

specified numeric strings)

Tel:

" LB "

0O 255 255 0

0 255

0 255

0 255
255 00

255 0 O

255 0 0
255 0 0

255 0 0
255 0 O

255 0 0
255

255 0 0

255
255 o

o

o
N
e

255
255 O

O

o
o

255 0 0
255 2

O O 0O 255 255 255
255 255 255 255 0O

Continued - 2nd page

255

255 0

255

255

0 255

0 255

0 255

o
o

o o

0 255

0 255

0 255

ol
@)

255 0 0

255 0 0 0 255
OO0

19085

L. J. LAVINS (7310)

130 Radnor Avenue
Villanova, Pa. 19085
Tel: (215) 687-1774

" ANY BL S " I NP U T S EQUENCES (CONTINUED)

NYBBLE LABEL DECIMAL INPUT SEQUENCES FOR USE WITH XROM "LB"

1110 69 ACA244 27 76 26 O
ACAZSS 255 255 255 255 O
ACA251 255 255 255

1111 70 ACA244 27 76 28 O
254 255 255 255 255 0 0 O 255 255 255 255 0 0 O

703254 255 255 255 255 0 0 0 255 255 255 255 0 0 O

255 255 255 255 0 0 O 255OO0
O O 0 255 255 000

ROW LEADER

00 47 ACA255 27 76 11 0 O 255 255 0 O 0 255 255 0 O O

ROW TRAILER

10 71 ACA253 27 76 9 0 255 255 255 255 0 O 0O 255 255

—— —— —— ——— ——— — ——————— —— —— ————————— — — —— —————— ———————— — —— —— ——— — ——— — —— — —

T ECHNTCATL NOTES

1. These input sequences were designed specifically for use with
the Epson MX-80 printer to enable the generation of barcode
symbols for the HP-41 wand, The start of each sequence is a
control code which will turn on the Epson's super high reso-
lution graphics mode. As a matter of superficial interest,
it was found, quite by accident, that this method of program-
matically generating super high resolution graphics, using
synthetic alpha strings, willwork only if there is a break
point and separate entry immediately after the 27, 76, N, O
control code group; followed by a secondary entry (or entries)
of the columnar data. Or alternatively, put it all in 1 string.

2. The labeling scheme for the 16 nybbles is strongly recommended
in order to make it easier to address these subroutines. For
example, the labels correspond exactly to the numbers which are
returned to X by the function ATOX, for each nybble symbol from
O to F. Then all we need to do is XEQ IND X, as one example.

3. An extra "O0" was inserted at the start of the columnar data
for the row leader sequence in order to have 11 characters
rather than 10. The Epson printer will not respond to a 10.

4, The total length of the sequences for nybbles 0111, 1011, 1101,
1110 & 1111 will not permit an alpha append function. Therefore
each sequence must be separately entered into the buffer, with

an ACA function.

5. Labeling suggested for the leader and trailer is purely arbitrary.
Any labeling will do as well, except 00 or 02, which are more
obviously convenient, but will probably be used elsewhere in
most programs, and will be inefficient in speed if the jump
distance exceeds 16 registers.

-1-

PROGRAM BARCOUDE PRINTTING ROUTTINES

TECHNICAL ANALYSIS AND COMMENTARTIES

In mid-1982, the author purchased an EPSON MX-80 III F/T printer,
and connected it into the HP-IL loop via an HP-82166A converter
which had been previously purchased for the purpose.

A great deal of experimentation was performed to learn the nature

of the interface between this printer and the HP-41CV, and exactly
what the capabilities, limitations and restrictions might be.

As one outgrowth of this experimentation, the idea of generating
barcode patterns seemed to appear feasible, using the super-high-
resolution graphics capabilities of the MX-80. There followed an
on-again/off-again effort for almost a year, culminating in the
successful development of a set of routines to print program
barcode in a reasonably efficient manner.

These program barcode printing routines, PBCl and PBC2, were, in
fact, designed to take advantage of the super-high-resolution (SHR)
graphics capabilities of the EPSON MX-80 printer to produce bar-
code patterns of consistently acceptable quality.

Bar and space widths were selected such that a full 16-byte row
could be printed within the constraints of a standard 8% inch
paper width. Extensive tests were then performed with a wand to
insure that these barcode patterns could be reliably and accurately
scanned, via free-hand scanning.

It became immediately evident that the height of the bar symbols
generated by a single printing, approximately 8/72 inch, was not
sufficient to allow for reliable scanning over a 16-byte row
without the use of a guide ruler. And even with a ruler, some
difficulty was still experienced. Consequently, it was decided
to run further tests with double and triple printed rows, where-
in the printer line spacing was set to print the top "dots" of
each succeeding row 1/72 inch below the bottom "dots" of the
previous row.

Based upon further tests, the double rows seemed to be tall
enough to permit reliable free-hand scanning, provided that the
operator would exercise reasonable attention. Triple printed rows
were obviously better and easier to scan, but not worth the
additional time penalty in the author's opinion.

Therefore, from this point onward, all planning was done on the
basis of a double printed row for each line of barcode. This will
permit a maximum of 20 rows to be printed on each 11 inch page,
without any excessive overcrowding.

-2-

Although it was conclusively demonstrated that the EPSON MX-80 is
capable of generating good quality barcode, additional factors still
had to be considered in regard to the overall feasibility of using
the HP-41CV to drive the printer, and the design of programs to
accomplish the complex task of generating, processing and printing
program barcode. The principal considerations were as follows:

o MEMORY USAGE

How much memory will be required? Will there be enough storage
capacity left over to accomodate a reasonably sized object
program (the program to be printed) ?

o SPEED OF EXECUTION

What 1s the fastest rate at which a predetermined full 16-
byte double row of barcode can be printed? How close to this
speed can we come in an actual operational program?

o MEMORY vs TIME CONSIDERATIONS
What are the tradeoffs, if any, between memory usage and the
speed of execution? What constitutes an optimum balance?

o SYSTEM CONFIGURATIONS

How many ROM modules, special EPROM sets, etc. should be
included?

0o USER CONSIDERATIONS

What user considerations should be included to allow for ease

of operation, minimum cost, most universal acceptance, etc.

The very first ma jor task was to develop the specific methodology
and software for driving the printer - i.e. the print routines.
Here, memory and speed were the two principal concerns.

Intuitively, it seemed that the highest printing speed would result
if the printing were to be done a byte at a time. Since there are
256 different permutations of an 8-bit byte, then the storage capa-
city would have to be sufficient for each of 256 individual print
routines, averaging about 115 bytes each, for a total of almost
30,000 bytes, just for driving the printer in the SHR graphics mode.
This, obviously, 1is completely out of the question, and will not
be given any further consideration.

Some analysis and experimentation were then done to print the bar-
codes by the Hex digit (nybble), a half-nybble of two bits, and a
single bit. Single bit printing was eliminated for reasons of ineff-
iciency and slow speed. Now the choice was narrowed down to only
two alternatives,

Printing on a 4-bit Hex digit basis would require 16 routines for
all of the Hex digits, plus a left end and a right end 2-bar pattern.
Straightforward programming methods would result in a total of a
little over 1,100 bytes for these 18 print routines. This memory
requirement is high, but it is somewhat offset by relatively fast
printing speed, as well as the ease with which the HP-41 can pro-
cess hex digits, using clever programming methods,

-3-

On the other hand, it could be seen that printing by a half-nybble
(2 bits), would only require four different print routines. Not
even any extras for the left and right end patterns. Memory require-
ments would come to only about 150 bytes. But this advantage had to
be weighed against an approximately 50% slower printing speed and
other inefficiencies brought about by the necessity to process 2-bit
entities.

A decision was finally made (and I'm still not completely sure that
it was the best one) to go with the 4-bit Hex digit approach in
order to maximize speed and programming efficiency - but with a
visceral feeling that some means could be found to achieve a sub-
stantial reduction in the 1,100+ bytes of memory required for the
storage of these print routines.

Some discussion is now in order regarding the specific details of

how the EPSON MX-80 printer generates barcode patterns. As men-
tionned elsewhere, the SHR graphics mode must be used since it pro-
vides a horizontal density of 120 dots per inch. Therefore, we can
generate a vertical column of dots every 1/120 inch along the hori-
zontal dimension. For barcode purposes, this column may be either a
blank space or a full 8 (vertical) dots. It was found, by trial and
error, that 2 contiguous columns of 8 dots for a '"zero" bar, 4 con-
tiguous columns of 8 dots for a "one" bar, and 3 contiguous blank
columns for the spacing between bars, produced barcode patterns
which could be reliably scanned, and which would fit well within
the width of a standard 8%" paper form, even for an all F's row of
16 bytes plus end bars. Since each vertical column of 8 dots has a
height of about 8/72 inch, a second duplicate pattern had to be
printed 1/72 inch immediately below the first. The resulting height
of 16/72 inch was quite satisfactory for free-hand scanning with a
standard optical wand.

It might here be worthwhile to note that the EPSON MX-80 also pro-
vides a normal high-resolution (HR) graphics mode which has a hor-
izontal density of only 60 dots per inch, compared to 120 dots per
inch for the SHR graphics mode. Testing showed that the 60 dots
per inch could not generate readable barcode. Unfortunately, the
earlier EPSON MX-70 model has only the HR capability, and thus can
not be used for barcode printing.

The basic programming methodology for SHR graphics is to enter the
control sequence of 27, 76, N,, N, into the printer buffer, followed
by the binary codes for each vertical dot column, where:

27 & 76 are the escape code & control code for SHR mode,
N, 1s a number of dot columns from 0O to 255,
N 1is a number of multiples of 256 dot columns, from O to 7.

Each dot column is encoded from 0 to 255, the binary pattern
of which determines which of the 8 vertically stacked printer
head pins are fired up. (e.g., 0 is a blank; 255 fires all 8.)

Oonce the complete control sequence of 4 numbers has been entered into
the printer buffer, all subsequent inputs, up to the total number of
columns specified by N, and N,, are interpreted only asdot column
codes. Therefore, until this total number of entries has been made,
the HP-41 (or any other driving computer) can not execute any
instructions whatsoever. Such instruction inputs would be inter-
preted as coded dot columns, and printed accordingly. The only

—4-

exceptions to this rule are for those instructions which transfer
data from the X-register or Alpha-register into the printer buffer.

A sample set of program steps for the Hex digit "A", whose binary
code is 1010, takes the following form:

MANIO 01 LBL 65 10 OUTA 22 OUTA
FIX O 02 27 11 OUTA 23 OUTA
CF 29 03 ACCHR 12 OUTA 24 OUTA
SF 17 04 76 13 OUTA 25 OUTA
CLA 05 ACCHR 14 ACCHR 26 ACCHR
255 06 24 15 ACCHR 27 ACCHR
XTOA 07 ACCHR 16 ACCHR 28 ACCHR

—————————————— 08 O 17 ouTA 29 OUTA
09 ACCHR 18 oUTA 30 OUTA

19 ACCHR 31 ACCHR
20 ACCHR 32 ACCHR
21 ACCHR 33 ACCHR

34 RTN

Note that a total of 24 columns were specified by N, and N, in the
control sequence, and by initializing the Alpha register ag a prior
time, we are able to use the ACCHR function to load a blank column,
for the between-bars spaces, from a zeroed X-register; and OUTA is
used to load a full 8-dot column from the Alpha-register. Execution
of this LBL 65 routine will produce the printout of the appropriate
1010 barcode pattern. For reasons which will become apparent later on,
please note that the label numbers for the Hex digit print routines
were made identical to the HP-41 character codes for those digits.
(The reader is referred to the HP-41 byte table)

The total size of just this one label routine is 66 bytes. In the
aggregate, similar routines for all 16 Hex digits, plus a left and
a right end pattern, come to just over 1,100 bytes.

Speed tests were performed to see how fast a full row of 32 hex
digits (16 bytes), plus left and right end patterns, could be
printed using these routines. The results were disappointingly
slow, even with an HP-41CV running at 2X speed. Moral of the story:
Races will never be won using SHR graphics!

At this point in the development, progress came to a complete stop,
while the author contemplated his navel, licked his spiritual wounds,
and tried to think of a more efficient approach.

After several weeks of incubation, the answer came one day - all
of a sudden. So simple — so elementary — why don't we ever think
of these things right away?? The solution: Convert the program
sequences to synthetic alpha strings. By so doing, we might be able
to realize large reductions in storage requirements as well as a
very substantial increase in speed. There were some serious doubts,

however, as to whether this technique would really be compatible
with the touchy SHR graphics mode, or whether all kinds of unpre-
dictable printer responses might ensue.

-5—

Now, with new enthusiasm, work was resumed, and again, after much
trial and error, a set of routines was perfected, using synthetic
alpha strings. The total size was reduced from 1,110 bytes down to
669 bytes, a reduction of 40%. And even more exciting, a full 16-
byte, single row of barcode could be printed in just under 15 sec-
onds, using direct execution of these routines, again with an HP-41
modified to run at 2X speed.

A covering Global Label of "ANYBLS" was given to these routines, and
the complete program set was stored on tape. A printout of the "ANYBLS"
program, the detailed coding of the synthetic alpha strings, and full
explanatory notes are attached to this commentary discussion as a
separate enclosure. Readers are encouraged to read this attachment,

and to become familiar with the methodology before continuing with
this dissertation, since "ANYBLS" is incorporated in-toto, less the
global label, into PBC2.

Alas, the 2nd corollary to Reagan's "No Free Lunch Principle" states
very clearly that there's always a hidden price to be paid for such
miracles! And this one is no exception to the rule.

The astute reader may have observed that in the original program
sequence, the ACCHR function was used to transmit an all-zeros
column from the X-register to the printer buffer; and the OQUTA
function was used to transmit an all-ones column from Alpha-regi-
ster to buffer. 1In the synthetic alpha string version, however, the
ACA function must be used to load the buffer from Alpha, because we
have combined zero sequences énulls) and ones sequences in the same
strings, and OUTA will NOTEQR null characters whatsoever, even those

in the middle of a string. (Try it yourself, and you'll soon see,)
But, on the other hand, OUTA will pass a full 8-bit character to the
buffer, and ACA will pass only 7 bits. (Minor details which were
never revealed by "Mother HP") So the bottom line for us is that,
in return for the savings in storage and the increase in speed, we
have to live with a vertical column height of 7 dots instead of 8
dots - a reduction of 1/72 inch. With the double printing, however,
which was necessary even with the 8 dots, further tests demonstrated
that free-hand scanning can still be reliably performed on a double
row which has a net 1/36 inch less height than originally planned.

Now that the problem of the print routines had been solved by redu-
cing the memory requirements to a reasonable size and being able to
demonstrate a very respectable print speed, an operational program
had to be developed to generate and process program barcode, using
the "ANYBLS" routines to execute the printout functions.

All five principal concerns outlined earlier in this discussion now
had to be considered in the establishment of a program design plan.
Again, there's no certainty that the selections made were really
optimum, but the necessary selections were made, and it was decided
to proceed along the following lines:

1. An EPSON MX-80 (or other EPSON printer with SHR graphics capa-
bilities) connected to the HP-IL via an HP-82166A converter 1is
the basis of the entire plan. However, it is assumed that an
HP-82905B printer, which is equivalent to an EPSON MX-80 with
a built-in converter, will also work equally well,

-6-

2. The HP Plotter ROM module will be used, if possible, to gene-
rate the program barcode bit pattern in the Alpha register,
due to its speed and simplicity. Additionally, its capability
to generate bit patterns for all other types of barcode could
be used with future modifications of this program to print
such barcode. By using this ROM, we also eliminate the need
for any program storage to generate the bit patterns, except
that the Plotter ROM does require the establishment of a 26
register I/0 buffer in RAM when generating program type bar-
code.,

Other methods of generating the bit pattern, such as that used
in the "BAP" program by W. Maschke (7356), as published in the
PPCCJ VON4 pp. 44-45, were rejected due to much slower speed
of execution, requiring substantial amounts of memory, and
lacking the flexibility for producing other types of barcode.
One point here, however, that might appeal to some users is
the feature of Maschke's program which allows the object
program to be stored and operated upon in XM. Thus, there is
no main memory requirement at all for the object program. The
disadvantage is that the object program must be the very first
file in the XFM module - which means, of course, that all of
XM must be cleared out of everything else which the user might
have stored in XM, in order to position the object program at
the very beginning of the XM.

The use of the Plotter ROM does place a financial burden on
the user for the module (or EPROM copy) and enough port capa-
city (or EPROM box capacity) to incorporate it into the system.
As a possible alternative, Maschke's method can probably be
adapted to this program by replacing the "BCP" function of the
Plotter ROM used here with Maschke's front end method. It doesn't
seem to be an impossible task.

3. As an additional method of increasing speed of execution, it
was also decided to use several functions of a modified and
augmented NFCROM EPROM set; with an alternative method which
can be easily implemented for a modified but not augmented

NFCROM; or as another alternative, the use of a PPC EPROM-2**
EPROM set 1in lieu of the NFCROM*.

If the NFCROM EPROM set is to be used at all, then at the very
least, its XROM number 17 must be changed to avoid a conflict
with the lower 4K page of the Plotter ROM which is also XROM 17,
and which must remain fixed as is.

The NFCROM EPROM contains a useful set of assembly language functions
for use with the ProtoSYSTEM, as well as additional general functions
for the HP-41 which are not otherwise provided by HP. NFCROM can be
obtained from Nelson F. Crowle, PROTOTECH Inc., P.0.Box 12104,
Boulder, Colorado 80303.

The PPC EPROM-2 contains two sets of generally useful assembly
language functions for the HP-41, originally known as "JIMROM"
(for Jim DeArras) and "MELBROM" (for Melbourne Chapter of PPC).
It has been widely distributed. PPC members should have little or
no difficulty in locating a set from which duplicates can be burned.

-7-

The author changed the XROM Number of his NFCROM to 16, but
any other generally non-conflicting number would do just as
well, Additionally, several new assembly language functions
were added to the author's NFCROM. Two of these augmented

functions, NRCL and PPACK, are used in PBC2. These two par-
ticular functions originated in PPC EPROM-2, and were copied
from there into the modified NFCROM.

Since there were also bugs in two of the other functions of
the original NFCROM-1B, it was the author's personal prefer-
ence to burn a new chip set after making all the modifications
and additions, and correcting the two bugs.

Owners of an MLDL or a ProtoCODER should have no problem in
adapting the NFCROM for use with these programs. Other users,
however, who don't have these capabilities, will have to use
the PPC EPROM-2. Detailed instructions are provided elsewhere
for modifying these programs to work with each of the two
alternative EPROM set options described above.

4, The PPC ROM is used in a very minor way, as a convenience for
paper advances, with the PO function. If a PPC ROM is not
available, the user will have to replace the PO functions
with ADV's in accordance with the specific change instructions
provided elsewhere.

The LB function of the PPC ROM is extremely useful, however,
for loading the many synthetic Alpha strings into program
memory. If a PPC ROM module isn't readily available foiBthis
purpose, the user should plan to spend approximately 2~ -1
hours loading all the ANYBLS synthetic alpha strings. Alter-
natively, for those users who may have one, the ASSEMBLER-3
EPROM set, developed by our colleagues "down under" in the
Melbourne Chapter, provides even easier and faster means.

5. XFM/XM will be utilized for several extended functions, as

well as for storage of PBCl, PBC2 and the object program.
PBC1 and PBC2 require a combined total of 178 XM registers.
Each object program will be limited to approximately 95 reg-
isters in size. These programs may be stored anywhere within
the XM.

6. The total program will be split into two parts: PBCl and PBC2.
PBCl will be called into main memory and executed by the user,
whereby it will carry out all initializing functions, etc. Its
very last step will be to replace itself with PBC2. Use of
this technique allows more storage capacity for an object pro-
gram than would otherwise be available.

once these system parameters and configurations had been specified,
a generalized flowchart diagram of the entire plan was prepared to
serve as a roadmap for the preparation of more detailed sequences
and the subsequent programs. A detailed flowchart diagram is pro-
vided as a separate enclosure, and references will be made to the
various numbered boxes, as well as to specific program lines, in
the later discussion of the program sequences.

Before going into these flowchart sequences, the methodology used
for executing the synthetic printing routines must be explained in
detail. Unless the specific technique is very clearly understood,
the reader may not be able to understand other related elements of
these programs.

-8-

As the reader will recall, the labeling of the print routines was
established in such a way as to take advantage of equivalency between
the character code for each hex digit and the label number. Thus,
when processing a string of hex digits in the Alpha register, if the
hex digit "A" happened to be the next digit in sequence, the function
ATOX will remove the "A" from the left side of Alpha and enter its
character code of 65 into the X-register. This numeric character code
can then be sequentially stored in some register, say R-nn. A little
later on, when we do the actual printing, all we need to do is an
XEQ IND nn, which executes LBL 65, which will print the appropriate
barcode pattern. By storing the character codes for all 32 digits
of a row of barcode into 32 sequential registers, it's a very easy
matter to use this method of indirect addressing together with the
ISG function to increment the value of nn, and print the entire row.

The very first operational program that was written actually used
this indirect addressing technique to execute the print routines.
Although this first program did indeed prove that the HP-41CV &
EPSON MX-80 combination could do the job, the speed performance
was most disappointing. Whereas it had already been demonstrated
that direct execution of the print routines could print a full
double-printed 16-byte row of barcode in less than 30 seconds, the
actual operational program was taking almost 2 minutes per row

(again, with an HP-41CV modified for 2X speed).

This would never do. But what are the alternatives? Since it's not
Known a-priori what labels are to be executed until the barcode bit
patterns are generated and processed by the program itself, the
indirect addressing technique seems to be the only means which HP
has provided for handling such situations. It's easy to use, but the
execution time leaves much (like everything) to be desired. There's

no compilation, and each & every execution can take up to or over a
full second of time! The proprietor of my favorite Chinese restau-
rant can operate his abacus faster than that!

Very clearly (or maybe even not so clearly) it was now time, again,
to stop and contemplate my navel, and maybe even fantasize about the
possibilites of owning a real computer someday soon. (Shades of
deja-vu! Weren't we here once before?)

In the midst of one of these transcendental reveries, a faint voice
was heard from somewhere (maybe out in PPC Land?) on the other side
of that curtain of the mind that separates reality from dreams. Very,
very slowly, there began to emerge a coherent structure of an idea,

until at last a possible solution became apparent.

Since HP doesn't provide the capability to create instruction steps
within a running program, which can then be executed by that program,
let's fool the operating system by creating these instructions syn-
thetically, storing them as NNN data on the other side of the cur-
tain, then raising the curtain, and executing these instructions.
We did, in fact, manage to fool the system once already. Could we
push our luck and do it again?

-9-

To summarize, a lot of experimentation was done, and after many
iterations and failures, a rather simple technique was devised to
create instructions synthetically and store their NNN bit patterns
into data registers above the curtain. Furthermore, if the proper
magic words are uttered, these sequences can be executed without
the necessity of even bothering to raise the curtain at all! Execu-
tion of steps that don't exist? Now that's real magic! Unfortu-
nately, there's still no exception made, even in this instance, to
Reagan's "No Free Lunch Principle." As will be explained below, it
costs us 18 registers of memory for these "non-existent" program
steps.

Notwithstanding the price, we can now realize the full speed advan-
tages of direct execution. As it turned out, the first pass along
each double-printed row takes about twice as long as the repeat
printing because the XEQ's jump distances are not compiled the first
time. After the first printing of each row, however, all jump dis-
tances have been compiled, and the repeat printing is reduced from
about 30 seconds down to 15 seconds, right at the benchmark limit
which we had earlier established.

The "magic" that gets us up there to begin with is the synthetic com-
pilation of the XEQ 99 step in Line 222 of PBC2, which is done by
the operations in Lines 134-137.

By synthetically compiling this XEQ function, we can cause a jump
to be made into any part of memory, and the 0/S doesn't seem to care

which side of the curtain it's on. Once there, it will execute any
instructions in the same manner as if they were below the curtain.
It follows, of course, that any changes made to the program which
will change this jump distance will require us to also make a change
in the synthetic compilation steps of Lines 134 and 136.

In addition, for all rows of barcode, the entry point is LBL 99,
followed by XEQ 47 for the left end bars. Similarly, the last two
steps of all rows are an XEQ 71 for the right end bars, followed
by a RTN. Consequently, we can create these steps synthetically in
the PBCl program, and store them in R-17 and R-00, at two program
steps per register, respectively, wherein they will reside as con-
stants throughout the duration of the programs. Since the final row
of barcode 1is usually less than a full 16 bytes long, we will also
save the uncompiled last two steps, and store them into the proper
register later on when the final row is processed. In between R-17
and R-00, the 16 intervening registers are used to store the syn-
thetic XEQ's for all 32 hex digits of each normal 16-byte row, at
two steps per register,

One other special technique was also used to help speed up the print
operations. This was to place the entire sequence of synthetic print
routines (669 bytes) at the very top of PBC2, immediately after the
global label and a GTO step. By locating these routines in this area,
from Lines 3 to 127, the hidden XEQ steps, which reside immediately
above the curtain, do not have to spend as much time searching for
their destination labels when they are executed in uncompiled form
for the first printing of each row.

-10-

T H E PROGRAM S EQUENCES

We have now covered most of the pertinent system considerations,
as well as the hardware configurations and details of the print
routines. Any reader who has managed to absorb everything thus far,
and still remain interested, is hereby made a Provisional Member of
"The Order of the Nybble" and is entitled to all the rights and
privileges thereto.

Hopefully, all of this detailed background information will enable
the new provisional members to keep up a fast pace as we proceed
through the entire sequence of program operations. The flowchart
diagram and the program listings will both be used as references.

The following paragraphs will deal primarily with the more inter-
esting or important elements of the programs. Little or nothing will
be said about those portions of the programs which have been dis-
cussed previously, or which should be readily understood by most
readers of this paper (a generally sophisticated group of users).

BLOCK O

I1f they have not already been previously stored there, enter PBC1,
PBC2 and the object program into XM. It is most important that main
memory 1s packed with GTO.. before storing these programs into XM,
to insure that the byte counts will be correct.

Clear out program memory of all other programs. Bring PBCl in from
XM storage. Do NOT pack with GTO.. now because this will add a
normal program END in addition to the permanent .END., and will
thus prevent PBCl from replacing itself with PBC2 later in the pro-
gram sequence (BLOCK 1.6).

BLOCK 1.1 (Lines 02-21)

Execution of PINIT establishes a 26-register I/0 buffer at the bot-
tom of program memory. This is required by the Plotter ROM for pro-
gram type barcode generation. Flag 25 (the error ignore flag) must
first be set if there is no plotter in the loop. Furthermore, the
HP-41 must be in the AUTOIO mode (Flag 32 clear) or PINIT will not
execute. We're really tricking the Plotter ROM into seeing an ima-
ginary HP82162A thermal printer. Otherwise, if the MANIO mode 1is
set at this time, which would be the normal procedure with the EPSON
printer in the loop, PINIT will not execute, and we will just get
a "NONEXISTENT" error message in the display. It took several weeks
to figure this one out by careful study of an HP ERS document (also,
by a lucky guess). This is the reason for the phrase "if possible"
in the first line of Paragraph 2, on Page 6 of this paper. At the
time of making the decision to use the Plotter ROM, the PINIT
execution problem had not yet been solved, and there was no real
confidence that it could be solved.

Once PINIT has been executed, we can then go right into MANIO mode
(Flag 32 set), which is necessary for any peripheral device con-
nected to the HP-IL converter. Flag 17 is also set 1in order to
inhibit CR/LF after each hex digit barcode pattern is printed. At
the end of an entire row, PRBUF will be executed to override this
inhibition. SIZE is set to 59; the display mode is set to avoid

-11-

decimal points and fractions; the page-row counter is set to 20 for
keeping count of the number of rows per page.(We're going to print
20 rows of barcode on each 8%"x 11" form); and the sequential row
counter is set to 1.

As explained earlier, synthetically coded program lines for the
instruction steps LBL 99 and XEQ 47 are generated as Alpha strings
and stored in NNN form in R-17. Similarly, the codes for XEQ 71 and
RTN are generated and stored in R-00, with an uncompiled copy being
saved in R-19 for later use when the final row of barcode will be
processed.

BLOCK 1.2 (Lines 22-46)

The program is halted, and instructions for the user are printed
out, requesting the user to take the following steps:

(1) Manually advance the paper to the top of the next page form
(i.e., right under the next horizontal perforated 1line).

(2) Toggle the printer power switch off and on.

(3) Press the R/S key to continue the program.

This sequence of operations 1is required to enable printing to start
at the top of a fresh 11 inch page, and to enable the barcode to be
correctly printed at 20 rows per page.

BLOCK 1.3 (Lines 47-56)

The user is prompted for the name (label) of the object program.
After keying the label into Alpha, pressing the R/S key will start
the program running again. The name of the object program is stored
for future use (for page headers if additional pages are needed),
and is also printed at the top of the page in double-width emphasized
format. And line spacing is also set to 7/72".

BLOCK 1.4 (Line 57)

The RCLPTA function is executed to return the size, in bytes, of the
object program (whose label is still in Alpha) to the X-register.

BLOCK 1.5 (Lines 58-65)

The size, in bytes, of the object program is printed under the name
at the top of the page, in normal size emphasized format. The printer
is then restored to normal printing mode.

BLOCK 1.6 (Lines 66-67)

PBC2 is called into main memory from XM. Since we took care (in
BLOCK 0) not to provide PBCl with a normal program END, GETP will
cause PBCl to be replacedbyby PBC2, and program executionofPBC2
will automatically commence.

We have now come to the "END" of PBCl, and perhaps a short tutorial
might be of interest at this point1In regard to some of the more

obscure characteristics of END's and .END.'s.

When any program is brought into main memory from XM, the normal
program END (ordinarily, the last numbered step of a program) is
lost. Since this program has now become the very last program in
main memory, the normal penultimate step of this program is there-

~12-

fore followed by the permanent .END.. And since this permanent .END.
always occupies only the three righthandmost bytes of a register,
then there may be anywhere from O to 6 null bytes in between the
normal penultimate step of this last program and the permanent .END..
The exact number of null bytes depends upon the position (in its
register) of the last byte of the penultimate program step.

If a GTO.. 1s now executed, the last program will be packed, and the
normal program END will also be restored as the last step of the
program. (Note that GTO.. 1is non-programmable.) Now there may be
nulls in between the END and the permanent .END., depending upon
the position, in its register, of the END.

Alternatively, if a PACK or PPACK function is executed instead of a
GTO.., any non-essential nulls within the program will be eliminated,
but a normal program END will NOT be restored to this last program,
and anywhere from 0 to 6 nulls may still exist between the penulti-
mate function and the permanent .END..

I1f, now, a GETSUB instruction is executed to bring in some other
program from XM to main memory, the previous last program will
become the next-to-last. Furthermore, the previous permanent .END.
will be automatically changed into a normal program END, but will
continue to occupy the same three bytes as it did before GETSUB was
executed. Since there is no packing under such circumstances, then
any nulls which may have existed in front of the previous permanent
.END. will still exist. Now, however, a PACK or PPACK can be used
to remove these particular nulls.

It can be seen, therefore, that while a program is running, the only

way in which a normal program END can be restored to the last program
in main memory, which doesn't have such an END, is for the running
program to execute a GETSUB instruction which will bring in another
program from XM.

In order to conserve as much memory as possible, it was decided not
to include any steps which would restore a normal program END to the
object program after it is called in from XM (BLOCK 2.1). A PPACK
step has been included, however, to remove any nulls from in front
of the END of PBCZ2, and more importantly, to meet the conditions for
BCP (BLOCK 2.4) which will not initiate an execution upon an un-
packed object program.

As a consequence of these null bytes which may exist just in front
of the permanent .END., the program size data,which was printed at
the top of the page will not necessarily be the same as the number
of bytes of barcode. After all the barcode is scanned into the HP-41
with the wand, however, a GTO.. will eliminate any such nulls, and
also restore the normal program END. Since the barcode .END. is a
variation of a permanent ,END,, it will locate itself 1n the
righthandmost three bytes of the appropriate register in any event,
and nulls would probably result until cleared by a GTO...

For the benefit of those very few truly exceptional readers whose
obsessive curiosity will not allow them any peace of mind until
they can see the coding structure of these END's and .END.'s, the
following tabulation is provided. Six different variations in the
coding of the third byte are delineated, as well as the circum-
stances under which each such variation may be found:

-13-

TABULATION: The ends of END's and .END. 's*
HEX CODE

(1) Ca bc @D Normal program END. The program is NOT packed.

(2) Ca bc g9 Normal program END. The program IS packed.

(3) Ca bc 2D Permanent .END.. The last program in memory does
NOT have a normal END, and has NOT been packed.

(4) Ca bc 29 Permanent .END.. The last program in memory does
NOT have a normal END, but it IS packed.

(5) Ca bc 2¢8 Permanent .END.. The last program in memory HAS
a normal END. Individual programs in memory may
be either packed or unpacked.

(6) Ca bc 2F Special permanent .END. generated by the BCP
function of the Plotter ROM. This may be observed
in the barcode pattern which is printed.

BLOCK 2.1 (Lines 128-133)

For reasons which were explained previously, the 125 steps of the

print routines (ANYBLS) were located at the very beginning of PBC2Z.

We will, therefore, jump around them to Label 98 (at Line 128) to

pegin the new sequence of operations in this program.

GETSUB first calls in the object program from XM; PPACK then clears

out any nulls which may exist in front of the END of PBCZ2, and also
prepares the object program for subsequent execution by BCP (in
BLOCK 2.4). If these steps are not completely understood, the reader

should go back and review the previous discussion of END's and
.END.'s, under BLOCK 1.6.

The sole purpose of the STOP function at Line 133 is to provide the
author with an opportunity to switch the HP-41 into 2X speed at this
point. Just press the R/S key to continue processing. The normal 1X
speed was used up to this point because it seemed that certain con-
ditions of mid-summer temperature and humidity might be the cause
of problems with the author's triple XFM/XM/XM module when the
ProtoCODER was also connected, and an attempt was made to execute
any XM function when switched to the 2X speed setting.

(This was just one of many frustrating hardware problems that have
plagued the author over the last few months. An intermittently bad
HP-IL module was another example. It caused the HP-41 to crash at
frequent and unpredictable times. The module finally "died", and
only then could the cause of the previous crashes be diagnosed.
Connectors are yet another source of transient poltergeists. In
summary, it seems that the HP-41 may not have been designed well
enough to withstand all the mechanical and electrical stresses,
over prolonged periods of time, which we impose upon it. To the
extent that any of these super-system configurations running at
2X speed, etc. do seem to work most of the time, maybe we're just
plain lucky. Ultimately, Murphy's Laws always seem to catch up with
us!)

Users who don't have a switchable speed capability should delete
this STOP. Or anyone else who may not need it may do likewise. If

1t _isdeleted,hcwever,ai-byteNOPmustbeinserted in_its place.
*NOTE: For detailed information regarding the coding of hex digits

a, b and c, the reader is referred to pp. 15-17 of "Synthetic

Programming on the HP-41C" by W.C.Wickes, Larken Publications,
1980.

-14-

BLOCK 2.2 (Lines 134-137)

This is one of the most interesting parts of the program, where a
synthetic compilation is executed upon the XEQ 99 instruction of
Line 222, as generally described previously on Page 9.

In PBC2, as provided herewith, all three bytes of this instruction
reside in absolute address 327 .. Label 99, the destination point,
was synthetically created in PgCI (BLOCK 1.1) and stored in data
register R-17, which is absolute address 470,. The jump distance is
equal to the total number of registers and bytes, starting from the
first byte of the XEQ function to the byte immediately preceding
the designated label. Prior to any compilation, the hex codes for
these two registers dre as follows:

(1) Abs. Address 470d (Data Reg. 17)----- 00 00 CF 53 EO 00 2F

(2) Abs. Address 327d (Uncompiled)------- EO 00 63 A7 4A AA 01
(XEQ 99)

It can be seen that the jump distance amounts to 142 registers plus
6 bytes, and compilation of the XEQ 99 instruction will result in
the following coded sequence:¥*

Abs. Address 327, (Compiled) -----—-- EC 8E E3 A7 4A AA 01
d (XEQ 99)

The Alpha string in Line 134 contains the decimal byte equivalents
to these hex codes. The functions in the next 3 steps store this
sequence as an NNN into program memory, where it overwrites the
original uncompiled contents of absolute address 327d.

It can be very clearly seen that any program changes which wowuld
change this jump distance must be analyzed, and new compilation
data would have to be entered into Line 134, and Eossiblg Line 136,
in place of the present data. Moreover, 1n order to avoid the prob-
lem of entering compilation data into two registers, we should also
insure that all three bytes of the XEQ 99 instruction will reside
in one single register. In the instant case, the three XEQ 99 bytes
are located in the lefthandmost three byte positions of register
327 ,. If the program is changed in such a way that will delete any
bytés from areas above Line 222, then these three bytes will be
shifted to the left and upwards. Thus a decrease of only 1 or 2
bytes will result in a split between 327, and 328 .; but a decrease
of 3 to 7 bytes will cause all three bytés of this instruction to
move into 328 ;. Alternatively, an increase of 1 to 4 bytes will
shift the 3-byte instruction to the right, but totally within the
same register; but an increase of 5 or 6 bytes will cause a split
between 327, and 326 ,. Where splits will otherwise occur, it is
preferable go add NOB filler steps at some convenient location in
order to retain the entire 3-byte instruction within a single
register.

BLOCK 2.3 (Lines 138-142)

Label 15 marks the point where processing will begin for each new
row of barcode. A label number greater than 14 was used because
GTO's will be executed to return to this point from other locations
which are greater than 16 registers distant. The 3-byte GTO, which

——— ——— A—————— —— — — — —— ———— —— ———— — ——N— — — —— — - ———— — ——— — —.——————————— ——_.————————

*NOTE: The reader is referred, again, to pp. 15-17 of Wickes's book
for an excellent tutorial discussion of jump distance coding.

-15-

is automatically called up by the 0/S whenever the label number
is greater than 14 results in the fastest possible execution time
for these longer jump distances.

RCL 20 brings the new row number into X. ARCL X then appends it to
Alpha, wherefrom the sequential row number is printed in normal
print mode, directly above each barcode row. The reason for using
both a RCL and ARCL when just a simple ARCL 20 would suffice, is
because BCP, which follows in Line 143, requires the row number
to be in the X-register as a precondition.

BLOCK 2.4 (Lines 143-144)

BCP, a Plotter ROM function, generates the bit pattern for an entire
row of program barcode in the Alpha register. A full 16-byte row
includes 7 bytes in the M-register, 7 bytes in the N-register and
2 bytes in the O-register.

Based upon information which wasn't seen in the Plotter ROM manual,
but was found in the ERS document, a couple of shortcuts were taken
to save time and bytes.

(1) According to the manual, it's necessary to enter the name
of the object program into the Y-register. The ERS, however,

indicates that BCP will be executed upon the last program in
memory in the absence of any Alpha data in the Y-register.

(2) Again, according to the manual, we must enter a number, in
the form rrr.bb, into the X-register, where rrr is the bar-
code row number to be produced and bb is the number of bytes
per row. The ERS indicates that if bb is absent, a full 16-
byte row will be produced.

Since it was decided to print with full 16-byte rows, only an integer
(rrr) is loaded into X from R-20, which was originally initialized
with a 1 in PBCl. Each time that BCP is executed, the row number is
automatically incremented by 1. This incremented row number is then
saved in R-20 for subsequent recall when we return 1later to begin
processing of the next row.

After the pattern for the last row of barcode has been produced, a
zero is left in X, which makes it very simple to test for a last
row situation (BLOCK 2.5).

BCP also leaves a number in the Z-register, in the form fff.111,
which represents the first and last program line numbers in this row
of barcode. Some people do find it useful for such program line num-
bers to be printed alongside the sequential row number. However,

provisions have not been made to print program line numbers here
because it wasn't judged to be of sufficient universal importance
to be worth the time and memory which would be required. Any user
who feels the need to print this data should be able to add the
necessary program steps without any great difficulty. They must bear
in mind that any such changes will also change the jump distance for
XEQ 99, presently at Line 222. And this, in turn, will require
changes to be made in Lines 134 and 136 (BLOCK 2.2).

-16-

There is yet one more useful output of BCP which we will put to good
advantage here. This feature places the number of bytes actually pro-
duced into the T-register. Obviously, this number will be a 16 for
all (normal) rows except the last, which will usually be some number
less than 16. We will make use of this feature in the next BLOCK.

BLOCK 2.5 (Lines 145-146)

The contents of the X-register are tested for zero to determine
whether the barcode pattern for the last (final) row of the object
program has just been generated. If so, then it's necessary to go
to Label 02 to compute special addressing and loop controls for the
processing of this last row (BLOCK 2.7). Otherwise, addressing and
loop controls will be established for a normal 16-byte row (BLOCK 2.6)

Before proceding any further with the program sequence, and at the
risk of being considered somewhat redundant, this may be a good place
to first provide a detailed explanation of the methodology which will
be used to convert the bit pattern in Alpha, which was generated by
BCP in BLOCK 2.4, into a sequence of instruction codes. These codes,
in turn, will be stored as NNN's in data registers, and subsequently
executed as program steps to print the required barcodes. Once this
process becomes clear, readers should have no difficulty in under-
standing the program steps in BLOCKS 2.6 to 2.10.

The methodology can be summarized by 5 general steps:

(a) Store synthetically generated codes for LBL 99 and XEQ 47 into
data register R-17. (This was previously done in BLOCK 1.1.)

(b) Store synthetically generated codes for XEQ 71 and RTN into
data registers R-00 and R-19. (This was also previously done
in BLOCK 1.1.)

(c) Convert 16 bytes of the Alpha register (i.e., all of M, all
of N and 2 bytes of 0) to the equivalent 32 hex digits.

(d) Convert the 32 hex digits to numeric character codes, and
store into 32 consecutive data registers, R-27 to R-58.

(e) Use the stored character codes in R-27 to R-58 to syntheti-
cally generate codes for up to 32 instruction steps which will
then execute the appropriate print routines. Store these codes
as NNN data in R-16 to R-01, at two instructions per register.

For all normal 16-byte rows, execution of the print routines will
subsequently start at Label 99 (located in R-17) and continue on
through all the stored instruction steps, until the RTN (in R-00)
causes a return to Line 223 of the main program.

Figure 1 illustrates the storage register usage for the character
codes and the synthetically generated program steps which pertains
when processing a normal 16-byte row.

For reasons of convenience and program simplicity, the procedures
delineated in steps (c) and (d), above, were made the same for a
last (final) row as for all normal 16-byte rows. Since this last row
may vary from 4 bytes up to 16 bytes in size, then there may conse-
quently be anywhere from O to 24 "zero" hex digits at the beginning
of the 32-digit sequence before the first valid digit pops up.

-17-

F I GURE 1

STORAGE REGISTER CONTENTS WHEN PROCESSING A NORMAL 16-BYTE BARCODE ROW

REG ISTER REGISTER
NUMBER STORED INFORMATION NUMBER LNSTRUCTION CODES

R-58 Char.Code for Digit #32 R-17 |LBL 99 XEQ 47

R-57 Char.Code for Digit #31 R-16 |XEQ #1of 32 XEQ #2of 32

-1]TT

 R-28 Char.Code for Digit #2 R-01 |XEQ #31 of 32 KEQ#32 of 32

R-27 Char.Code for Digit #1 R-00 [XEQ 71 RTN

FIGURE 1(A) - CHARACTER CODES FIGURE 1(B) - INSTRUCTION CODES

F I GURE 2

STORAGE REGISTER CONTENTS WHEN PROCESSING A FINAL BARCODE ROW OF 10 BYTES

REGISTER REGISTER
NUMBER STORED INFORMATION NUMBER INSTRUCTION CODES

R-58 Char.Code for Digit #20 R-17 |LBL 99 XEQ 47

R-57 |Char.Code for DIGIT #19 R-16 KEQ #1 of 20 |XEQ #2 of 20

‘\

R-40 |Char.Code for Digit #2 R-07 [KEQ #19 of 20|XEQ #20 of 24
R-39 |Char.Code for Digit #1 R-06 KEQ 71 RTN

R-38 0 R-05 : |
fem——— = — @—— — — — ~

R-37 0 R-04 ‘T :
F-T ===T- =-

\J R—O3 L | |
- S S, _l o — - - —

. 0 R-02 | L |
- P===oTT 7R-28 0 . R-01 L N

r———--= T T T T~ |
R-27 |0 R-00 (_~4
FIGURE 2(A) - CHARACTER CODES FIGURE 2(B) - INSTRUCTION CODES

-18-

Therefore, when executing step (e) for the last row of barcode, we

must bypass all these "zero" digits, and start with the first valid

digit. Furthermore, we must now also store the uncomplled code for

XEQ 71 and RTN, a copy of which was previously stored in R-19

(Remember that?), into the appropriate location.

Figure 2 illustrates the storage reglster usage for the character

codes and instruction steps when processing a last row which, for

sake of a typical example only, is 10 bytes long.

BLOCK 2.6 (Lines 147-151)

If the result of the zero test in Line 145 was negative, then two

initial parameters will be established here, for later use 1in BLOCK

2.10, for processing a normal 16-byte row.

(1) The number 27 is stored in R-24. It represents the address

of the first of 32 consecutive data registers used to store

the hex digit character codes of a normal 16-byte row. This

stored number will be used in BLOCK 2.10 for indirect addres-
sing purposes.

(2) In addition, a number 16 is also stored in R-25. The integer
portion represents the first location for storage of the syn-
thetlcally created instruction steps. The decimal portion

(.000, in this case) will be used to control the number of
loop iterations for a normal 16-byte row.

A jump is then made down to BLOCK 2.8, to continue the normal pro-
cessing sequence.

BLOCK 2.7 (Lines 158-177)

A positive zero test in Line 145 indicates that the last row of the
object program has now been reached, and this row may be anywhere
from 4 to 16 bytes in length. Since the exact length, in bytes, was
entered into the T-register by BCP, this number is now recalled to
X, where it will be used to compute three necessary parameters for
processing the last row of barcode.

(1) The length of the last row 1is subtracted from 16 to determine
the correct address into which the codes for XEQ 71 and RTN
must be stored. In the typical example, illustrated in Figure
2, where the length of this last row is equal to 10 bytes,
this computation results in a 6. The € function of the NFCROM
is then executed in Line 165 to interchange the contents of
this address (R-06, in our example) with those of R-19, which
contains an uncompiled set of codes for these two instructions.
The € » function does not normalize any NNN's, but readers are
warned that the REGSWAP function of XFM will not work with
any NNN's.

(2) The next few lines divide this previous result by 1,000, add

it to 16 and store the results into R-25. Again, referring to
the example of Figure 2, this computation produces the number
16.006. Note that the integer portion of this number is the
same as that used for normal 16-byte rows to specify the first
address for storage of the synthetically created instruction
steps. The decimal portion, however, is different from the

-19-

normal rows. When the integer portion is later decremented
by a DSE function, the fractional number, .006, will termi-
nate looping after instruction codes have been stored in R-07,
thus loading these registers for the printing of exactly 20
hex digits (10 bytes).

(3) The third parameter is the quantity (59 - twice the length).
This computation generates the address of the character code
of the first valid hex digit. For normal 16-byte rows, this
was R-27 (see Figure 1A). In our typical example where the
last row's length is 10 bytes, this comes out to be R-39. It
is left as an exercise for the reader to confirm the valid-
ity of this result, with the assistance of all 10 fingers,
the Figure 2A, pencil & paper, and an HP-41. The result is
then stored in R-24, and we're ready to move into BLOCK 2.8.

BLOCKS 2.8 and 2.9 (Lines 178-204 & 152-157)

Lots of program lines here, but nothing exotic. The NNN contents of
M and N registers are temporarily stored for safekeeping while the
Alpha register is being used for decoding, etc. Then we decode the
7 bytes of the O-register and dump the leftmost 10 hex digits,
saving only the last 4. These are converted in the Label 07 sub-
routine by the ATOX function and stored in memory. Then all 7 bytes
of N and M registers, respectively, are similarly decoded, converted
and stored. Figure 1A illustrates the ultimate result of these steps

- the storage of 32 character codes into R-27 to R-58.

BLOCK 2.10 (Lines 205-219)

This 1s another of the more interesting sections of the program:
the place where we will synthetically create program code which will
later be executed. Line 206 1is a synthetic alpha string for the 2-byte
prefix portion of a 3-byte XEQ instruction, which is EO 00 in hex code
symbols. Now we recall the first of the stored hex digit character
codes, convert it to an Alpha character and append it to the 2-byte
prefix already in Alpha.

They said "It couldn't be done." But our program has now syntheti-
cally created code for new instructions which will later be exe-
cuted by the program!

Returning now to this first instruction, if the first hex digit post-
fix was an "A", then the hex code for the complete 3-byte instruction
is EO 00 41 (in uncompiled form). Translated to program line format,
this can be read as XEQ 65. The reader is now reminded of the way in
which the numbering was originally established for the print routine
labels (See p.4, p.8 and the ANYBLS paper) so that the label numbers
would be identical to the character codes. In this example, XEQ 65
will cause the barcode pattern for hex digit "A" to be printed, with-
out any further conversion or translation. And similarly, for all
other hex digits.

The remaining program steps in this BLOCK are reasonably straight-
forward. The contents of R-24 are incremented after XTOA. CLX is
merely a l-byte NOP step. Then we append the code for a second
instruction, increment R-24 again, and store the combined code for
the two instruction steps as per the address contained in R-25,
which is also used for loop control.

-20-

Instruction codes are thus entered into data registers, from R-16
down to R-01 for normal 16-byte rows, or down to some other address

for shorter last rows.

Some of the more astute readers may have observed that there are 2
null bytes in R-17, 1 null in each of R-16 to R-01, and 3 nulls in
R-00. These nulls have not caused any noticeably adverse effects.
The time and memory required to eliminate them would be most dis-
proportionate to the marginal increase in speed, if any, which
might result from their removal.

BLOCK 2.11 (Lines 220-227)

At long last, this is IT! The XEQ 99 (Line 222), which we had pre-
compiled by synthetic means in BLOCK 2.2, now moves the pointer back
behind the curtain to Label 99, and the EPSON printer will be off
and running! Note that Flag 1 was set to provide a simple means for
printing the row a second time, 7/72" below the first printing, as
described previously. And a PRBUF at Line 223 takes care of the
CR/LF requirement at the end of each of these printings.

Observe carefully. You will be able to discern the printing of each
individual hex digit and end pattern as the print head moves across
the paper, making its characteristic sounds.

Again, notice that after the first CR/LF, the repeat printing of
the row will be done at approximately twice the speed of the first
printing because all the XEQ steps became compiled after their
first execution.

BLOCK 2.12 (Lines 228-230)

Upon completion of the printout of each row of barcode, another zero
test is done (on the contents of X) to test for the last row. Go to
Label 06 for a positive test result. Otherwise, continue on.

BLOCK 2.13 (Lines 231-232)

If the zero test for a last row was negative, the lines per row
counter in R-26 is decremented by 1. When it reaches zero, we've
printed 20 rows of barcode on the current page. If not, then the
program sequence will return to Label 15 to start processing of the
next row (BLOCK 2.3).

BLOCK 2.14 (Lines 233-234)

After R-26 1is decremented to zero, the counter is re-set to 20, for
starting a fresh row count on the next page.

BLOCK 2.15 (Lines 235-245)

Th paper is advanced to the top of the next page form (TOF), and
header information is printed at the top of this new page: The
label (name) in double-width/emphasized format, followed by a
" (CONTINUED)" in standard-width/emphasized format. Now we can
return to Label 15 to start processing of the next row in the usual
manner (BLOCK 2.3).

-21-

BLOCK 2.16 (Lines 246-253)

If the zero test of BLOCK 2.12 was positive, this means that the
last row of barcode has now been printed, and we're all through.

An "END OF PROGRAM" message 1s now printed just below the last row
of barcode, the special I/0 buffer is cleared from memory, and the
AUTOIO mode is restored.

THE .END.

You, dear readers, have also now reached the .END.. CONGRATULATIONS!'!

CITATTION

IN RECOGNITION OF THEIR NOTABLE ACHIEVEMENT IN REACHING

THE .END. OF THIS LENGTHY DISSERTATION, FULL AND IRREVO-

CABLE LIFETIME MEMBERSHIP STATUS IN THE ORDER OF THE

NYBBLE IS HEREBY AND HEREWITH BESTOWED UPON ALL FORMER

PROVISIONAL MEMBERS WHOSE FORTITUDE HAS ENABLED THEM TO

REACH THIS POINT. GO FORTH NOW AMONGST THE MULTITUDES,

AND MAY YOUR BARCODES PAPER THE EARTH FOREVER!

Rev: Aug. 30, 1983
FEC1

FROGRAM SIZE = 266 BYTES

Feigbd 4

(TRIR
FOW T

(OOesO
FOL

ARA
FY 4
ILEETRARARTT

ePOl 5

i
W &

A

A

RO

A

A

A

OAR

AR

A
OW 15

O

OAR

AR

A

AR
FOW 20

IOT’

FBC1 (CONTINUED)

F () W 21

R
END OF FROGRAM

FEC22 Rev: Aug. 29, 1983

PROGRAM SIZE = 969 BYTES

FOW 1

i
ROW 2

TAAR

ARA

(AR

OOAR

ROROAR

OAR

AR

OO

O

et

ROAR

OO

OARAR

AR

AR

ARAR

OAR

AARRRE
FOW 20

TLL

-

FBC2Z2 (CONTINUED)

ee

ARRRO

AAR

OOAR
.....

OAR

A

Te

AAR
= Y() 29

IRTRTRRO

OOOO
FOW 2

IRSU
FOW 552

=T

OO

ARLAOO

AR

ARARRRAR
FOW 2a7

Ri
FOW %G

ROW 29

OW 40

IRRi

W e

FBCXZ2 (CONTINUED)

AROO

OOO

AR

e

ARSAAARO

TAAR

ARAR

AR

AAR

AR

AR

RO

AR

AR

OA

AR

AR

A
O 59F O

ITRRTR
FOW &0

FBCZ2 (CONTINUED)

ROW &1

AR

AR

0OA

0
FOW &5)

AR
Rl

AR

AR

AR

Teee

AR

AR

AR

OO
FOW 774
IRsns
ROW 75
AR
END OF FROGRAM

	Cover
	Table of Contents
	1. Instructions to Users
	2. Generalized Flowchart Diagram
	3. Program Listings For PBC1
	4. Program Listings For PBC2
	5. ANYBLS Barcode Printing Routines
	(a) Program Listings
	(b) Synthetic Alpha String Code Sequences
	(c) Technical Notes

	6. Technical Analysis & Commentaries
	7. Barcodes For PBC1
	8. Barcodes For PBC2

