PROTOCODER?2

OWNERT™ S MAMNUAL

B I PROTOTECH. IWNC.
H. U. BOX 12194

20U DER, CO. B@zZ0= USA

(283 429-5541

Chapter 1:
Chapter 2:
Chapter 3:
Chapter &:
Chapter 5:
Chapter E:

Chapter T:

Appendix 1:

ProtoCODERZ2 DOWNERS MANUAL

TABLE OF CONTENTS

Introduction o & v v v v v it i i i s e e e e
ProtoCODERS Programming « + « v w v ¢ ¢ v a v 0 s 0 s 0 2 s 5 s » .
ProfofiM IRSbruckions « + o v v v o @ v 0 0 i v i m b e
ProtoEPROM Instructions o + & v v ¢ v v v 0 v i v i e i e e e e
ProtoPARID Imstrucfions + « o o v o o v 4 v 4 0 b 0 bt s s s m e
PARIO-IAEPRDM Bet . . . v o v v v v e v s b s i i i e s e e

mnEﬂ_lﬁEpmmﬁtlll!ll-lll!ililiflilililil‘lI

Prototechy Inca Producks & o v o v s v s v s 1 s v e n e s s m o a s

Appendix 2@ Warranty, Service, Assistante . + v v v v e v vt r P T E T R T R e

Appendix 3: PPC Information . « . & v o 0 v o 4 s R AR L E R E A et e

Hpﬁmi“ q‘: I“twn'al MET mplifier F & ¥ @ B B F &I ®E B B B 7 & 0 K 4 0 0 & F B VN ORB

Apperdix 3¢ HP 4IC Micrccode o 0 o 0 . . e e e ke b e bk e s
Clags @ Imstruchions & v o o v o o 0 0 0 0 0 0 0 0 v 1 v a v a v s 80 85
Class 1 Imstrectiors .+ 0 4 & P e ek st a e a ke P
Class 2 Instructions &« & v v o & v 2 v s ol ot s b e r e e e e w s
Class 3 Instruchions o v o v 0 v o0 o 0 m 0 0 0 0 v 0 8 0 6 4 & 8 & 8 & & 4
POM Addressing - o v o ¢ 2 0 2 0 4 & s B T
lm.unrdFWt'-ll‘l!I!ll!‘ll‘li‘l!lil‘!!’llllllll
Tomes in MicrooDdE & & v 5 v o 0 4 o v 0 0 5 5 8 0 1 8 8 5 2 8 5 8 8 u 0
Keyoodes Returmed by "CeHEYS® Imstruckion o o o v v 4 v 0 v 0 o 0 o 8 + »
ROM Character TablE + o v o v o o & & % o 0 4 5 8 ¥ & & & s 4 2 s s # s 1 &
Function Names, Prompting, Non-programmability . . . v vv v o v v v v v &
M CheckSi® « v o o o & o o = + @ s 5 « ¢ # s 2 8 + ¢ 2 = A mmmomowaw
Dicplay PrOgra®ming + « o » 5 » o » s 5 s & 4 5 s 4 s 1 8 v u v uwwwn
Evamples of Proqra®s . o o v o v v v o 5 ¢ ¢ v 0 s 2 s u s u w2 mama
Additional Motes .+ & v ¢ v 4 ¢ 4 0 v v v o3 P d nd o Vs noa s a e

System Stack
System Status
Relocation

®oving User Code Programs to the ProtoCODERZ . . & « v v v 5 0 & 5 2 30 & o
uS'E'ful HDH Eﬂtw Pﬂiﬂ;t5| L] L] 1 u ¥ a ¥ a P L | [I | B 4 & I & B & K 3 [}

ProtoCODER? OWNERS MAMUAL Page 1

CHAPTER 1: INTRODUCTION
ProtoSYSTEM OVERVIEW

The Prototech, Inc., ProtoSYSTEM is a flexible and expandable interface between the HP 4IC
calculator and various peripheral and memory devices. The modular design of the ProtoSYSTEM allows
the user to expard his systew as his needs increase.

The ProtcDODERR is the initial device required to allow the user to add on any of the
peripheral boards. The ProtoCODER2 provides the user with 4896 words (4H) of user-alterable memory
which is addressed as an HP 41C ROM, thus allowing the user to write programs in the calculator’s
asseably language ("Microcode®), as well as RPN programs that are too large to fit in user memory.
It plugs directly into any of the ports of the calculator. The user can obtain additional blocks
of 4K of user-alterable wemory by conmecting additional ProtcCODER boards, or:

—1 Plug in HP fipplication modules and switch them on or off from the calculator under prooras
control {ProtoROM)

—} Plug in HP-format EPROM sets containing custom programs - like having your own custom ROM
wade but much less expensive (ProtoEPROM), or

—} Interface to any F-volt level device such as a full-size keyboard, a light or power
controller, another calculator or a computer (ProtoPRRIO).

The ProtofODERZ provides control, address, and data sigrals for all peripheral boards, It
also contains a battery to maintain the contents of the internal wemory, ProtoSYSTEN boards are
programmed from the keyboard or under program control by a sequence of two operatiors:

1} Create a Non-Normalized Nuwber (NNN) in X which contains the appropriate programming code, then
2) Execute ABS.

The ProtolODER2 will examine the contents of the X register and wse parts of it to determine which
ProtoSYSTEM board to program and the data to be programmed.

CONNECTING THE ProtoCCDERZ2

The ProtoCODER? cable plugs directly into any of the four ports of the HR 41C. Before
conrecting the ProtolODERE o the HR 41C, turn off the calculator. If you do not, you may damage
the calculator or the ProtoCODERZ. Gently insert the plug with the flat surface upwards, To
resovey pull the plug straight away from the calculator.

¥hen the ProtoCODERZ is commected o the HP 41C, it uses the battery in the calculator. To
retain the contents of the internal ProtoCODER memory, make sure that the battery is installed in
the ProtollDER2 when you remove it frem the calculator.

CONNECTING PERIPHERAL BOARDS

The ProtoCODERZ has a £5-pin bus connector that passes signals between the ProtoSYSTEM
peripheral boards. To plug a board onto the ProtolODER2, check that all pins are straight then
lire up the pins into the socket. Press down on the left side of the 25-pin connector until some
of the pirs go into the lower socket. Then press the remaining pins into the socket.

POWER SUPPLY

The ProtolODERZ contains a 3-volt battery (Duracell PX-3@ or Eversady EPX-28) to maintain
internal memory. To install a rew batiery, remove the screw in the side of the ProtoCODER2 box and
open the box. Elide the battery out from botween the clips ard replace with a new ome [with the +
upwards), To insure that you do not lose data in the internal memory, it is a good idea to have
the ProtoCODERZ plugged in to the calculator as you change the battery. The battery should be
replaced when it reaches 2 volts, The battery will last several wonths if the ProtoCODERZ is
attached to the calculator most of the time.

Protol0DERE DWNERS MANLAL Page &

CHAPTER 2: ProtoCODERZ2 PROGRAMMING
DEVICE SELECTING

The ProtoCODER2 has its own addressing system so that several boards of the same type can be
cormected sisultaneously and used independently., For example, two (or morel ProtoR0M boards can be
used at the same time by giving them differsnt device select addresses which are set by switches on
each board, Up to 16 devices (but only 4 ProtoRMs) ran be addressed directly using hexadecimal
addresses @~F, Each address specifies a different board, The device select information is
specified in the X register by the user during board programming.

CREATING THE PROGRAMMING DATA

The user must set up data in the X register to program the ProtoSYSTEM peripheral boards.
This data depends on the board to be programmed. To progras ary ProtoSYSTEM device, bits 35,34, 3,2
of the X register are always 1 and bits 5,4 1,0 cortain the device select code (hits 5,4 specify
the slot for the ProtoROM). The remaining bits contain the data required by the board to be
programeed.

The X register and all calculator data registers comsist of 56 "bits" of information. Each
bit can be either | or @ (on or off, set or clear), To save space when writing this data, these 36
bits are grod8Bd into 14 blocks of 4 bits each, called nybbles or digits. Each nybble is
represented by a hexadecimal ("hex") digit (0-9,A,B,C,D,E,F}. The following table lists hex digits
and their binary equivalents.

BINARY HEX DBINARY HEX DBINARY HEX BINARY HEX
Boae @ pea1 1 gatg 2 e 3
iR 4 gl 3 0118 6 an v
e 2 881 9 9@ A sl B
1@ C 1181 D e E 1t F

By corwention the bits are mnumbered from 55 (leftwost or high order) to @ (riphtmost or low
order). The digits or nybbles are mumbered from 13 to 0.
EXRMPLE: X contains @2 9F EA 7B 14 B0 35 hex (spaces are for clarity) which in binary is:
oo 0019 1021 1111 1110 1210 @111 1011 GRAL G100 0110 1101 @911 &1d1
Nybble 9 is E in hex which means that bits 39, 38 and 37 are 1 fon} and bit 36 is @ (offl.

WRITING DATA TO THE ProtoSYSTEM

To progras any ProtoSYSTEM board, comsult the appropriate section in this manual fo determine
the 14 hex nybbles for that board and enter in ALPHA as a string of hew digits (@-F). Then convert
this data to binary in the I register by executing CODE in the PCOGER-1A EPROM set. Various other
versions of CODE are available and will also work correctly.

After CODEirg this data into the X register, execute ABS to write it to the correct
ProtoSYSTEM board. The ProtoCODER® monitors the ISA line of the calculator and when it sees RES
executed it picks apart the X register and uses what is needed to program the appropriate board.

This sequence can be executed from the keyboard or frow a program and requires no external
EPROM to pronram the systems however, the PCODER-1R is very useful im aiding programming of the
Prot oCODERS,

The ProtoCODER? can also be programmed from microcode by setting up the data as above in the
internal C register thits 55 and 54 ave igrored), then performing a GOSUB i@76. 1078 is the hex
address of the RTN in the ABS function, therefore each ProtolODERZ write operation requires only 3
instruction cycle times (about .3 williseconds).

ProtoCODERD OWNERS MANURL Page 3

INITIAL SETUPR

As shipped, the Protol0DER? contains a dumsy catalog containing the functions #PROTOCODER* and
¥ENH. You can plug in the ProtolODERZ and run a CAT 2 to verify that it is there.

When you change the catalog linkage table in the ProtolODERZ, you may need to set the page
select switches to 3 hex, since the contents of page 3 is ignored by the HP 41 operating systen
{use page 2 for the HP #1CK). I you lose power, and the contents of the ProtofODERZ becomes
garbage, set the page select switches to 3 {or 2) when loading a ROM image, and remesber to clear
words FF4-FFRA (cea "MROM Word Forsat™). In setting up a ROM image, it is good prackice to leave
@-108 words unused at the beginning of the ROM for catalog space to be used later as you add in
additional fumctioms. Unused words other than in the catalog lirkage table and the interrupt
locations need not be clearsd.

SETTING THE SELECT SWITCHES

Each ProtoCODER has two sets of four switches. The set nearest the 25-pin cormector specifies
the device select address (@-F hex) of the board. Determine an address that is mot used by any
other ProtoSYSTEM board, comvert to binary, and set the switches left to right accordingly.

Usually these switches will all be set to @ (off) since support and programming furctions in the
PCODER-1A EPROM et program the device with address 8.

The other set of cwitches specifies in which page (8-F hex) the ProtoCODER will be addressed

in the HP 41C memory (See "ROM Addressing”).

PROGRAMMING THE ProtoCODER

The first step in programming the ProtolODER is to have a list of code to be entered, for
pxample the following fumction, CLY. LUnless you are using the interrupt locations (addresses FFé-
FFRY, they must all be set to zero. Instructions can be loaded warwally or by wsing LODE in
PCODER-1A. Instructioms are normally loaded one at a time; however, you can load and save blocks
of instructions by using BOOT and DUMP in PCODER-1A. This allows you to save microcode on a
cassetie tape or any other medium you choose.

The data word format contaired in X for the ProtolODER is:

dd dx ux x% aa ax s5
*d"-cortains the 18 bits of data plus hex C20
"x'-igrored - hex F is easiest to enter
*a'-address where data is to be weitien thex BOB-FFF)

"s"-tdevire select address of the ProfolODER. Bits are coded as: xxss 11ss.

ENAMPLE: You have written a routine called CLY which clears the ¥ register to zero, and you wish
to copy it into the ProtofOlER. The listing is:

ADDRESS DATA WORD PNEMONIC

x108 B4E C=3 ALL
%101 ana REEN=C 2 (Y]
xie 3EQ L

Set the device select switches to @ then set up the X register as C4 EF FF FF 18 OF &C by entering
"CAEFFFFF180FRC" in ALPHA and executing CODE. ™CAE" is the C=0 instruction (B4E) plus hex CPd;
w102 is the address which should contain the E=8 instruction; the final 8C is the device select
address and the enable bits., Now esecute RBS, This will write one word to the ProtoCODER.

Repeat the above with “CROFFFFFIPIFEC" then "FEBFFFFFIBSFOC" to finish loading CLY. Set up the FAT
{Function Address Table) - see "XROM Hord Format® ard then try executing CLY.

ProtoCODERE OWNERS KANLIAL Page 4

USING THE ProtoCODER AFTER PROGRAMMING

After programming a valid ROM image into the ProtoCODER, it will fumction without user
intervention. It will appear to be an HP module to the calculator. If the ROM image is not
porrect then crashes or unpredictable results say occur (will occur! Murphy hides in all
ProtolODERs). To have a correct ROM isage, the FAT table at the begirming of the ROM (starting at
address @33) must be set up correctly and the interrupts (addresses FFA-FFA) must be zero lor used

very carefullyl.

ProtoCODERZ OWNERS MAMUAL Page 5

CHAPTER 3: ProtoROM INSTRUCTIONS

ProtoROM PURPOSE

The ProtoROM expands the number of available ports for the user to plug in HP Application
Modules. Each ProboRDM attached allows the user to plug in four additional HP modules. Each
module can be switched on to or off from amy port of the calculator under program or keyboard
control. The HP 41C can have at most four Application Modules on-line simultaneously, but the
ProtoR0M will allow the user to have more modules plugged in and switched on only when they are
needed.

PLUGGING IN HP MODULES

To irsert a module, turn off the calculator then place the module into one of the slots in the
ProtoRDM with the printing on the module upright and the ProtoROM printing upwards. Bently push
the module in until the extemded module handle is flush with the ProtoROM box. Do not force it.

To remove, grasp the module hamdle with your fingernail or a seall knife ard pull straight out,

SETTING THE SELECT SWITCHES

Each ProtoROM has a set of four switches so that the ProtoSYSTEM can tell the boards apart
when more than one is conmected. The switches set the device select address (see Chapter &), To
set these switches, determine am unused device select address {83 in hex) them comvert to bimary
and set the switches left to right according to the binary address (off for 3, on for 1), QOlder
ProtoRDMs use all four switches. ProtoROMs for use with the ProtoCODERZ ignore the leftaost two
itches.

PROGRAMMING THE ProtoROM

Before programming the ProtoR0M, reread Chapter 2, The format of the data word to be created
in the X register is (in hex)!

Cp ¥¥ XX XX XX ¥¥ BS
"C" ishex C
"p" is the port and on/off codes:

p=4 to turn module off

p=l to turn modula on in port 1

p=3 to turn module on in port 2

p=3 to turn sodule on in port 3

p=7 to turn module om in port §
“y® can be anything - hex F is easiest to enter
“y® tells which slot of the ProtoROM to alter. S5lots are numbered from 3 (nearest the co-pin

connector) to @
s i5 the device select address which can be C (device = @), D (for 1}, E (for 2), or F (for 3.
The ProtoRM only acceots device selects of @=3. Older ProtoR0Ms need a slight modification te
work with the ProtoCODER2 - write to Prototech, Imc. for details.
The ProtofDM will retain its programming unti] it is reprooramsed or until the ProtollIERZ battery
is remaved.

ProtoCODER? DWNERS MAMUIAL Page &

CHAPTER 4: ProtoEPROM INSTRUCTIDNS
ProtoEPROM PURPOSE

The ProtcEPROM allows the user to plug in HP-format EPROM sets o the HP 4IC and use them just
Iike HP modules. EPROM sets may contain user language programs, assembly lanpuage (microcode)
routines, and/or data tables. EPROMS provide an inempensive means for the user to have his
programs available without using HP 41C memory, and allow the user complete control over the
calculator with microcode. Each EPROM set costs approximately $13 (4] compared to about twice as
much for an HP module or custos ROM. In additiom, there is no setup charpe for EPROMs (several
thousand dollars for HP custom ROMs) - you just set wp a file on a EPROM burrer.

PLUGGING IMN EPROMS

The ProtoEPROM will accept ome standard HP-format EPROM set which consists of 2 or 3 EPROM
thips. To insert or resove EDROMs, push the lever on the side of each of the 3 EDROM sochets
towards the 25-pin.connector. This releases the chips, and you can remove or change the chips in
the sockets. Place the chips in the sockets from right to left: U, L1, L2, The notch in the end
of the chip must point towards the 23-pin cormector. When placing a 24-pin EPRON in L1 or LE,
leave the top two rows in the socket empty. When the chips are flat in the sockets, pull the
socket levers away from the 25-pin commector until the chips are locked into the sockets.

SETTING THE SELECT SWITCHES

Determine which page to have the EPROM addressed (See "ROM Addressing”). Convert this hex
page number to binary then set switches 4=5-6-7 om the ProtoEPROM to correspond to this address.
For eyasple to address the EPRON in page E, set switches &5-6 on and switch 7 off. BH EPRDNs
occupy two consecutive pages (45, &7, 8-9, #-B, C-D, E-F) and 1BK sets occupy four consecutive
pages (4-36-7, 8-9-A-B, C-0-E-F), For 8K or 1BK EPROM sets, set switches 47 to the address of
tha lowest page of the blook.

After setting the address select switches, you need to tell the ProtoEPROM what type and size
EPRDMs you are using, Switches 1-3 do this. Set them as:

SWl SM2 SW2 size #chips

O0FF N ON 4K 2

OFF OFF ON 8K 2

W OF N 8K 3

N OFF OFF 168 3

Evample: To use the 4K 2 chip PCODER-1A EPRON set in page E, set switches 1-7 to 8111110 (off-or-
ororeomor-0ffl., To use the BX 3 chip NFCROM=1B/IDEAL ERROM sat, set switches 1-7 to 1811118 (om
of f-oromoron-offl,

ProtoCODERE OWNERS MAMLAL Page 7

CHAPTER 5: ProtoPARIO INSTRUCTIONS
ProtoPARID PURPOSE

The ProtoPARID allows the HP 41C user to interface to and from almost ary 5 volt device,
providing 18 input lines, 1@ output lines, and 2 output handshake lines, 1t attaches to the
ProtoEPROM/ProtoCODER? combination, and looks like an BK ROM to the calculator. The lower 4K is
occupied by the PARIC-1A or some other EPRDM set, and the upper 4K is intevpreted as Input/Outgut
signals by the ProtoPARIO. Although the PARIO-1A EPROM cet is not mandatory, it greatly simplifies
programming and automates use of the ProtoPRRIO.

PHYSICAL CONNECTIONS

The three IC sockets on the ProtoPARIO attach directly to the ProtoEPROM board, Flip the
EPROM socket levers forward and line up the pins on the ProtoPARID sockets into the ArotoEPRON
sockets, then reach between the boards with a pencil or small knife and pull the levers hack tno
lock the ProtoPARID in place. In addition to this, the free wire on the ProtoPARID must be
connected to W+ in the ProtoSYSTEM. W+ is available as the leftmost hole in the 23 nin connector.
The 4K controlling EPROM is plugged into the rightwost 2 sockets in the ProtoPARID, oriented the
same as for the ProtcEPROM. Set the ProtoEPROM select switches 1-2-3 to ON-OFF-ON, and set
cwitches 4-5-f=7 to an aven page.

fs shown below, two cosplete sets of data lires are available at the hottom of the ProtoPARID.
Each set is orpanised as 2 rows of holes centered .1° apart for standard conrectors. The laftmost
12 holes of the vpper vow are (left to vight) 19, II, 13, 15, 17, 19, Output Accepted, 08, 06, 04,
02, and 08, The lower row {left to right) is ¥+, I2, 1%, I6, I8, Output Ready, 09, 07, 05, 03, 01,
and 0. Al inputs (19-I8 and OA) are pulled o GND with 10@K resistors if unused. Mith two
coaplete sets of I/0 lines, it is possible for the user to hook up two devices or to customize the
cormector by using the unused pads to the right.

;';u;tu-llfl-tﬂ-
FTTTTTTrTeTe

Prospfai) ove
D o Y
PROTOTECH, G, -

i

Hoth inputs and outputs are buffered to minimize possible damage to the ProtoSYSTEM or
calcutator from external signals (overvoltape, etc.). ALl inputs should be in the range 3.5-5.5
volts for ON and 8-1.5 volts for OFF, and will reguire at most | vamp drive current per data bit.
Propagation delay time (and set/recet tiwe for OA and OR) is at most 180 msec. OR can source .5
mamp and the outputs 0S-08 can source 1.75 mamp each, both at 4.5-5.5 wolts. Outputs are latched
in two CHOS flipflop arrays: TACIT4, T4CITS. The OR sional is latched in 2 4@13, and can only be
reset by asserting OA. The OR signal is provided for handshaking with devices that are faster than
the HP 41C. It does not prevent subsequent outputs from the calculator from being accepted.
Inputs are buffered through two 4583 (70C97) CROS chips. ALl buffer chips are socketed for easy
replacement. A1l specifications given above are for W=3 volts and acbient temperature 25C.

The BND line should always be comnected to the external device orourd. The V+ output should
only be used through passive cowponents such as switches back to I9-I8 since it is the requlated
power from the calculator which does mot provide much current capability. Mo external signal
should be conrected to W4,

ELECTRICAL CHRRACTERISTICS

ProtoCODERS OWNERS MANUAL Page @

PROGRAMMING WITHOUT THE PARIO—-1A EPROM SET

The PARIO-1A EPROM set provides warious 1/0 functions for simplified use of the ProtoPARIO,
but is mot reguired. The ProtoPRRIC is programmed by using the CXISA (FETCH - hex 33@) microcode
instruction. For the following discussion it is assumed that the ProtoEPROM board is addressed at
page E which places the ProtoPARI0 in page F.

In this arrangement, a fetch to addresses FE®-F3FF or FOBO-FFFF will return 080, A fetch to
any address FARR-FBFC which has the final digit @, 4, B, or C will veturn I9-18 in the exponent
field of the C register. A fetch to any address FBR1-FBFF which has the finral digit 1-3, 57, 9-B,
or I-F will return I7-I@ in digits 1-@ of C and @ in digit &,

Outputs are generated by a fetch to addresses FAB-FIFF. Add F48@ to the 1@-bit binary number
to be output. For example, to oufput 88, do a fetch at F4BD, A fetch at FBE3% will output 2534
hex. Whenever an output is received by the ProtoPARIO, a flipflop in the 4213 chip (available as
Output Ready) is set. IFf OR was already set, the new output data overwrites what was previously
output. OR can only be reset to ® by asserting Output Accepted. This provides handshaking
capabilities with external devices that are faster than the HP 41C - see the interface for the TRG-
82 Color Computer below.

ProtoPARIO INTERFARCE TO TRS—-80 COLOR COMPUTER

The following circuit diagram illustrates a possible interface between the HR 41C and the
Radio Shack Color Cowputer. The bus comnections to the 740584, ViL532 and Intel A2SS are all
available at the ROM port on the side of the cosputer, Use the PARIO-1A EPROM for prograsming on
the calculator side. To initialize the interface, POKE #HFF43, 152, This will sef up the A port
and C7-C4 as outputs from the calculator, and the B port and C3-CR as inputs to the calculator on
the 8255, Input O7-D8 froa the calculator to the computer with PEEH (#HFF48}. CQutput I7-10 to the
calculator with PORE BHFF4L, I where [is B-E50 decimal, 08, 08, and OR are available as G5, C4,
and C6 with PEEH (BHFF&2), 19, I8, and OA (C1, CB, C2) can be programsed by PONEing to LHFF42.

If you build this interface, test it carefully before attaching to the HP 41C. This circuit
is presented as an example only: Prototech, Inc. assumes no respomsibility for the accuracy or use
of this information.

Parts required: TALG32, THLS34, Intel 8255, 3-.1 of bypass capacitors: 1 per chip.

SIGNALS TO TRS-E@ COLOR COMPUTER ROM PORT BUS

4 A3 AR Sli'.‘& R/W RESET +3¥ GND AL R D7—--IR

6 5 3% 356V 8 9734

INTEL 8255

L 11 1213 37— 1—4 16 15 14 25—18

OR 09 08 O7—04% 03—00 OR I9 I8 I7—I0

SIGNALS TO ProtoPARID BOARD ON HA HIC

ProtoCODERZ OWNERS MAMUAL Page 9

CHAPTER 6: PARID—-1A EPROM SET

This EPROM set provides the user with a variety of input and ovtput functions to control the

ProtoPRRIO0:

A-XB converts the last 12 or less birary characters (8-1) in ALPHA into the exponent of ¥
A-XD converts the last & or less decimal characters (8-9) in ALPHR into the exponent of 1
A4 converts the last 3 or less hex characters (3-F) in ALRHA into the expoment of X
R-X0 converts the last 4 or less oetal characters (8-7) in ALPHA into the ewponent of X
ESCAPE converts the next to last character in PLPHA fo be)= hewcode 20

F-X caonverts flags 11-8 into the exponent of X

FETCH executes a CXISA instruction at address in digits 3-8 of X

BOKEY uses ProtoPARID inputs to specify keycode from external keyboard

LISTUZ 1lists upper 2 hits of any ROM page in EPROM format

PACKS packs 5 1@-bit blocks of data into X

PRCK? packs 7 B-bit blochks of data into X

RERD immediate read of I9-10 into exponent of X

READ! loops with wait imputting data into comsecutive repisters {1 inpul/freg)

READG loops with wait inputting data into comsecutive registers (S imputs/regh

READ? loops with wait inputting data into comsecutive registers {7 inpubs/reg)

READR asyncheonous looped read waits for non 2ero changed input {1 input/repd

ROM displays PARID message (try it)

RVIEW views first 3 digits of X, ¥, 2, T

STHOE provides alternate stacks by exchanging with sum regs (no norpalize)

e microcode subroutine used by LISTUZ

UNPACKS unpacks X into 5 registers each conbtaining a 1@-bit block of data

UNPACK? unpacks ¥ into 7 registers each containing an 8-bit block of daka

WAITMZ loop until 19-I8 is rot zerc then retuen imput in exponent of X

WAITX loop until I9-I@ matches exponent of

WRIT immediate write of 0908 from exporent of X

WRIT! loop with wait writing 09-02 from comsecutive regs (1 sutput/ren)

WRITS loop with wait writing 0903 from consecutive regs (3 outpuis/req)

WRIT? loop with wait writing 09-08 from consecutive regs (7 cutpuls/ren)

WRITA asynchronous write upon insud equal to @

1-fiB converts exporent of X to up to 12 binary digits in ALPWA

1-AD corverts expornent of ¥ to up to & decimal digits in ALPHA

¥-H converts ewporent of ¥ to up to 3 hexadecimal digits inm ALTHA

A0 converis expoment of X to up to 4 octal digits in ALPEA

- converts expoment of X to user flags i1-@

Y{}REG exchanges f with absolute user register specified by Y

¥E-M converts hex exporent of X to decimal mantissa of X

in-E converts decimal mantissa of ¥ to hex expoment of X

ProtolODERS OWNERS MAMURL Page 1B

CREATING DATA IN X FOR OUTPUT

The functions A-XB (binaryl, A-ID (decimal}, A=YH Chexadecimall, A-X0 loctall, F-X, and ¥M-F
can be used to create data in the exporent of L. To use A-XB, A-ID, A-XH, or A-¥D, set PLPHA to
contain the number in the appropriate hase to be put in the swporent of X:

*1010010" A-XB will set exponent of X to 852 hex

163" A0 will set exponent of X to 3FF hew

"TCr A-¥H will set euporent of X to @TC hex

o Tl A-10 will set exponent of ¥ to @27 he

F-X converts flags 11-@ as a binary number into the exponent of X: iF flags 11, 18, 9, & & 4 &
2 are clear and flags 7, 5, 1, @ are set then F-X Will sef exponent of X to ©A3 hex. XM-E comverts
decival number in mantissa of X to hex number in exponent of X: if X contains 64,0008 then XM-E
will set exponent of X to BB hex,

DECODING DATA IM X AFTER INPUT

The functions ¥-RB (bimaryl, ¥-AD {decimall, X-fH (hewadecimall, ¥-AQ (cctall, ¥-F, and XE-M can be
used to decode the hex data in the expoment of X. To use §-fB, XD, X}-AH or ¥-RO, esecule the
function for the appropriate base and the exponent of X will be returred inm ALPHA in that base. If
the exponent of ¥ contains hex @FI:

Y-AB will return "11111181"% in ALPHA

1-AD will return "253" in ALPHA

¥-AH will return "FD* in ALPHA

¥-A0 will return "373" in ALPHA

¥-F will set flags V-2 and @ and clear flags 11-8 and 1

AE-M will return 233.0909 in X

INPUTTING DATA

Five functions are provided for inputting data from the ProtoPARIO: RERD, READ1, RERDS, READ7, and
READH.

READ perforas a single read without ary waiting amd eeturns the input in the expoment of ¥, Dipits
12-3 are returned as @ and digit 13 is 1. This causes X to look like ALPHA DRTR so that it will
not be normalized.

READL performs a set of reads, storing inputs in consecutive registers in the same foreat as READ:
10 &3 0@ &2 ©d @I II. X contains the destination registers: eee, bbb where ese is the last register
to be weitten and bbb is the first. Y contains the wait loop constant {8-999) which is counted
down before each read oocurs. Experieentation will provide the actual time celay between reads.
The instruction can be terminated before completion by pressing RS, I in a program, execution
will cortinue with the next instructiom,

REABS is identical to READD except that 5 corsecubive reads of 18 bits are stored per register
instead of 1. The data word is initialized to @ then at each read the register is shifted 10 bits
to the left and the data is transferred into the bottom IR bits, After 5 reads or if the X-loop
terminates, digit 13.is set to 1 so that the data will not be rormalized. GSee instrections for
READ! above for X and ¥ register usage amd loop termination.

ProtoCODER2 GWNERS MRWUAL Page 11

RERDT is identical to READ! ewcept that 7 consecutive reads of B bits are stored per register
instead of 1. The data word is initialized to @ then at each read the register is shifted 8 bits
to the left and the data is transferred into the hottom 8 bits. After 7 reads or if the X lcop
terminates, the data is written to a user register. Note that all 56 bits are used so that a ALL,
VIEM, or X{} instruction will norpalize the register, changing the data. To get around this, use
UNPACKT or X{}RES so that mormalization is aveided. See instructions for READ] above for X and Y
register usage and loop termination.

READA is identical to READI except that the Y register is not used as a timing loop. Data is read
continuously, but is only stored at 10 bits per register when the input changes from the previousiy
stored input AND is nom Zero.

OUTPUTTING DRTA

Five functions are provided for outputting data to the ProtoPARIO: WRIT, WRITI, WRITS, WRITY, and
WRITA.

WRIT provides a single write from the exponent of X without any waiting loop them returns. The
exporent of X chould contain @-2-09-08 07-0&-05-04 03-02-0!-08.

KRIT1 performs a set of writes from the exponent of consecutive repisters at I data output per
register in the same format as for WRIT. See instructions for READ! above for X and Y register
usage ard loop termination.

WRITS performs a set of writes from consecutive registers at § data outpuis per register in the
sane forsat as for READS, See instructions for READ! above for X and Y register usage and loop
termination.

WRIT? perforss a set of writes from consecutive registers at 7 data outputs per register in the
sawe format as for RERDV. See instructions for READI above for X and Y register usage and loop
termination.

WRITA ic identical to WRITL except that the Y register is not used 25 a timing loop. WRITA ocutputs
ore data word then continuously reads data until @0D appears at the input, This can be used to
synchronize the calculator with an external by jumpering Output Ready to an input and asserting
Output Accepted after each output from the calculator has been received by the ewternal device.

PAUSING

Two functions are provided to introduce wait loops inte [/0 control for the ProtoPARIO: HAITHI and
WAITH,

WAITNZ continuously reads data from the ProtoPARIO until the input is mon zerow The inpui is
returned in X in the format 10 08 0@ @2 02 @I II. WAITNI can be aborted by pressing R/S which wiil
return X as @ and continue with the next program lire (if anyl.

WAITX continuously reads data from the ProtoPARID until the input matches the contents of the
exponent of X in the same forsat as for WAITNZ. WAITX can be aborted by pressing R/S.

ProtoCODERZ OWNERS WANURL Page 12

REFDRMATTING DATA

Four functions are provided to convert data between the 3 storage formats of 1, Jor 7 data
words per registers PACKS, PACKY, UNPACKS, and UNPACKY. The repister formats are:
10 26 20 @2 9@ 8D DD (1-1@ hit datum per renister, in dipits)
di D0 dd DD od DD dd (¥-8 bit data per register, in dipits, dd and DD are comsecutive datal
8201 9e0Dd DODD DOUD dddd dddd ddlD DODD DODD dddd dddd ddDD DODD DIDDR (5-1@ bit data per register,
in bits, dd and 0D are consecutive datal.

Conversion is done between the X register and the first 5 (for PACKS or UNPACHS) or first 7
(for PACKT or LNPACHT) statistics registers. Amy block of comsecutive registers can be selecied by
using the summation register function - see the HP &%1C Owners Manual.

MICKS compresses the data in the first T ctaticties registers which are in 1-10 bit data word per
register format into the X register in 5-18 bit data words per register format.

IRPACKS reverses PACHS by separating the X register into the 5 statistics registers.

PACKT compresses the data in the first 7 statistics registers shich ave in 1-19 bit data word per
renister format into the X vegister in 7-8 bit data words par vegister format. The apper two bils
in each data word are ignored.

BNPACKT reverses PACKT be separating the X register into the 7 statistics registers, The upper two
bits are set to Q.

USING AN EXTERNAL HKEYBOARD

The GOKEY function is designed to aceept any B<bit mon zero input ard map it onto the calewlator
keyboard as a key press. Note that the input is accepted as a keycode, therefore to enter ALPHA
characters, you must first input the code that maps onto the ALPER hey. The tabile below shows the
key press mapping for all B-bit input combimations,

LERST SIGNIFICANT DIGIT
M @& 1 2 3 4 5 & 7 B 9 A B C D E F

surt 1/¥ SOR LOE LN X-Y RDN SIN COS TAN XEQ STO RCL ENT CHS
BEX - 7 8 9 + 4 5 & # 1 USR PGM ALP ENT BSP
@ ONR/SEWFSST 7 f [COSTAN # + ., - .,
g 1 2 3 4 3 6 7T 8 9 J U052 TAN I

d PO o =

¥-Y is X{}Y, SOR is SGRT, ALP is ALPHA, ENT is ENTER, BSP is back-arvow, SHF is SHIFT. Note that
in ALPHA mode, hex inputs of BL-1A will generate alpha characters A-I. fow 2 and 3 characters are
mapped as closely as possible to ALPHA mode inputs versus RSCII: some may need to be SHIFTed. Upon
execution, GONEY will loop until any non zero input in the bottoa 6 bits is received, then jump fo
the system routine to hamdle that keypress. GOHEY can be aborted by pressing RS which will
continue with the rext program line (if anyl.

ProtoCO0ERD OWNERS MAMUAL Page 13

MISCELLANEOQUS UTILITIES AND ROUTINES

ESCAPE will examine the character that is second from the right in ALPHA. If this character has a
hex code { 28, it will be replaced with a space thex code 28). This may be wsed in conjunction
with DISASM on the NFCROM EPRDM et to remove hex codes that would be irkerpreted as control codes
or escape sequerces by an external printer.

FETCH executes a CXISA (FETCH) microcode instruction at the address given in digits 3-Q of X The
result from the fetch is returred in X, and the felched address is incremented and stored in L.

LISTR prints the encoded contents for the U™ EPROM in an EPROM set. This is useful when
programuing the contents of the Prototech, Inc. ProtoCODER (a user—propraswable ROW emulator) onto
EFRMMs. To use, get the hex starting address (a3 sultiple of &) into digits 3-8 of ¥ then execute
LISTUZ. A printer is required. U2 is a wicrocode subroutine used by LISTUZ.

ROM displays a PARIO message.

RYIEW displays the first 3 digits of X, ¥y I, ard 7, separated by dots. The registers are not
changed.

STHi}sum provides the user with multiple stack capability, By using sumREG fsee the HP 4iC
Owners Manual) any block of consecutive registers can be selected, When executed, registers T, 7,
Y, X, and L are exchanged with the first 3 summation registers. No mormalization occurs.

U2 is a subroutine used by LISTUZ (see LISTLR),

V{}REG ewchanges the X register with the absolute RAM repister specified by the exponent of ¥. No
normalization occurs.

ProtoCODER? DWNERS MANUAL Page 14

CHRPTER 7V: PCODER-—1A EPROM SET

This EPROM set contains many functions of gemeral use, and several functions specifically for
use with the ProtoCODERZ, including microcode ard user language manipulation functions:
PCODER-1A demorstrates a possible display use

+ demonstrates microcode speed

{} exchanges IND X with IND Y

AIELX deletes X characters from left of ALPHA

A programsable hex code key assignments

AND logical and of Y info

BT loads a block of user registers into the ProtoCUDER?

CHRSLM conputes and stores checksum in the ProtolDDER2

CLRRAM clears a block of words in the ProtoCODER?

COBE converks hex code in ALPHA to nor-normalized nusher inm X
COPYRC copies a user-language progrem into the ProtolODER2
COPYXYZ copies a block of ROM into the ProtoCODERZ

DY converts X from floating poimt to hewadecimal

DECODE converts non-normalized rumber in X to hex code in RLPHA
[ECX decrements X

DISR5 disassembles a ROM word

DUMP copies a block of R0M words into user registers

BET loads a 4H ROM image from cassette to the ProtoCOOER2
HD converts X from bexadecimal to fleating point

INCY increments X

INIT initializes ProtoCODERZ

LOADE user register byte examiner(loader

LODE loads data into the ProtoCODERZ

LoD, ROM examiner

HANT returns mantissa of X

HNEN provides microcode snemonic for disassenbled ROM word
NOT returns complement of X

ORr logical or of Y into X

PROAT prompts for a hexadecimal input

RCLA recalis user register al absolute address

AOMLIST lists wremonics of ROM to printer
ROKSRY computes chechsum of any ROM page

RxLL rotates ¥ left 1 bit

RiL% rotates X left 1 digit

RYRY rotates ¥ right 1 bit

RER4 rotates f right 1 digit

SAVE copies any ROM page to cassette
ST0A stores data in user register at absolube address
SKL& lopically shifts X left 1 dipit
SR logically shifts £ wight 1 digit
TORF toggles user flag

) binary addition of ¥ into X

XOR logical exclusive or of ¥ into X
L subroutine for MK

HIDE subroutine for LODE

ProtolDOERZ OWNERS MANLAL Page I5

PCODER=1A FUNCTION INSTRUCTIONS

PCODER-1R {XROM 16,80): This function demonstrates the flexability of the display. To execute it,
use A to assipn "R4GD" to a key them press that key.

+1 (XR0M 16,@1): This function demonstrates the speed of microcode on the HP 41C. When execubed,
it sets a counter to zero then continuously adds 1 to the counter until any key is pressed, +1
runs about 125 tiwes faster than the equivalent RPN progras:

1

ENTER

ENTER

ENTER

LBL 81

*

BTD @1

{} (XRM 16,@2): exchanges the contents of the two repisters pointed to by X and Y. To exchane
user rogister RB2 with user register RO7:

2

ENTER

7

0

ADELX (XROM 16,03): deletes X characters from the left of ALPHA. If X is greater than the number
of characters remaining in ALPHA, then ALPHA will be cleared, Since ADELY uses the 24 character
ALPHA register, if {}2%, an error will result. To shorten “RBCOEFGHIJHLY to “EEBHIJHL':

"ABCOEFGHIJKL"

&

ADELX

R4 (XROM 16,041 allows the user to assign any instruction hex code %o any key. If executed from
the keyboard, Ak will prompt for 4 hex inputs which specify the imstruction to be assigned, and
then prompt for a key to which the assignsent will be wade, Ary key assignable with ASN is also
assignable from the keyboard with AK. B will display the row and column of the key to be assigred
(negative for shifted keys, just as with RSM). When AK is executed in a program, the instruction
hex code is specified in the rightwost 4 digits of ¥ - use CODE or PROMT. The Y repister cortains
the hex code for the assigned key in the rightmost 2 digits. To determime this hex code, use AK to
display the row R and columm C, but hold the key down until NUAL is displayed. The dipits of the
hexr code to be stoved will be C-1 and R, or C-1 and R+8 For a shifted Rey.
To assign "PCODER-1R" to the LN key (key #15), axecute K from the keyboard and enter R408 to
the prompts, then press the LN hkey. WNow press LN in USSR sode to esecute PCODER-1A.
To assign "RCL M" to the shifted LN key {key #-13) from a program, enter the following in PRGN

[val-H

LBL "ASSIGN"

"49" §=F1, =148 (shifted} as above

CODE

ENTER

"HT" hex code for ACL M

CODE

Y
then Ieave PRGM mode, press RTN them R/S. In USER mode, press shift-LN to execute RCL M.

ProtoCODERZ CWNERS EANURL Fage 16

AND (XROM 16,83): logically ands Y into X, bit by bit. Y is unchanged, and the result is placed in
Y. The resulting hit in X will be @ unless the corresponding bits in hoth X and ¥ were 12 then
the resulting bit will be i.

"e" {= binary 1110018

CODE

ENTER

"EEe {= binary 01109101}

CODE

AMD

BECODE
will display "PODEMOBHENE4" = binary @...0 21108102,

BOOT (XROM 16,86): copies encoded data from user registers into the ProtoCODER2. Each ProtolUDER
word consists of 1@ bits of data, therefore 5 ProtoCODER words can be stored in 1-36 bit user
register. The 5 words (a,b,c,d,e) are stored as:
2291 ®aa aaaa azaa bbbb bbbb bbec coor cooc dddd dddd ddee eeee esee
The leftmost digit is set to 1 so that the data is treated as an FLPHA string and rot norsalized.
If less than 5 words are contained in ome register, only the leftecst portions of the register are
used - 3 first, then b,e,d, e as needed.
Execute BOOT with:
I = READRY format of number of registers to use (e.n., for size = 275, set 1 = 0,274
Y = CODEd (rightmost & digits) sssnnn where sss is the first addeess in the ProtoCODER
to be loaded and rnm is the number of words to load
X = floating point number specifying the first user register from which to load (e.g.,
0. 0008 or 1. @83
When BDOT returms to the user, any ProtolOCER which had its device selert switches set to 2820
will have been loaded, amd:
1 = nusber of registers for use with next RERDRX
¥ =0 if all words specified by ¥ were loaded, otherwise it contains the new sssnnn to
be used as Y
For an example of the use of BOOT, list GET in the PCODER-1A EPRDM set.

CHHSUM (XFOM 16,08} : computes and stores the chechsus of a RGN page into amy ProtolODER with device
salect switches set to 9088, In keyboard mode, the user is prompted for the page for which the
checksum is to be caleulated. To put a valid checksum in your ProtoCODER, first LODE address FFF
with @98, then XER"CHKSUM" and enter the page number of the ProtolODER to the prompt. When CHHSLM
is executed from a program, the page is specified by digit 12 (second from the left) of the X
register. The chechsum stored in word FFF of the ProtoCGDER will be veturmed in digits 2-@ of X

CLRRAM (XROM 16,@3): clears a hlock of words in any ProtcCODER with device select switches set to
@203, The address (B@@-FFF) of the first word to be cleared is specified by dipits 2-8 of ¥. The
hexaderimal number of words to be cleared is specified by digits 2-3 of Y. If Y{(2:0) = Q@@ or X +
Y } FFF, then the ProtoCODER will be cleared starting at word X, ending at word FFF. To ciear the
whole ProtolODER, execute:

2

ENTER

CLARAN
which specifies starting address of 889, and clear to end-of-page (FFF).

CODE (XROM 16,10): converts the hexadecimal number in ALPHA into a nom-normalized number in X. To
create 4 full-wan characters in X:

"{apoed16i@18i® lalpha data, character code = 81)

CODE

ProtoCODERZ DWNERS MANUAL Page 17

COPYPC (XROM 16,110: copies an RPN (user language} program from user program memory into the
ProtoCODER with device select switches set to 8208, No more than one ProteCODER can be loaded at
one time. COPYPE will prompt the user o enter an alpha string giving the name of the progras to
be copied, Press ALPHA twice with no input to copy the current program. Copying will begin with
line @1 of tha specified (or curvent) program amd continue up to the EMD. If the specified prooran
is PRIVATE, then the version stored in the ProtoCODER will also be PRIVATE. ALl short and long
6T0s and XEOs will be compiled if possible. If a GTO is found to a nonexistent label or if a short
(2 byte) 670 is found with the label out of range (more than 127 words amay), then the jump
distance will be specified as @, This means that this 6T0, when executed, will search for the
specified label, giving a NONEXISTENT error message for a 2 byte 670 with a missing label, or
continuing with the rext program line for a 3 byte 6T0. Therefore, the user should make sure that
all LBLs specified in 670s and XEDs actually exist,

In addition, the copy data will be set up so that the user can COPY his RPN prograa from the
ProtoCODER back into user registers (unless PRIVATE).

COPYPC will attempt to enter every global LEL into the function address table at the beginning
of the ProtoCODER. There must be space for at least ome additional function when COOYPC is
executed, otherwise the error message "FUN TEL FULL™ will be displayed and no loading will occur,
If there is space for at least one function in the FAT (Function Address Table) then each global
label will be loaded into the FAT until it is full, or until there are no more giobal labeis. XNo
error will cccur, but any remaining global labels will not appear in the CATaloy.

Before attempting to load a program, COPYPC will determine if there is enough room in the
ProtoCODER. IF you used INIT to initialize your ProtoCODER, you may have roticed that two
functions were loaded into the ProtoCODER: #PROTOCODER® and #END®. If the #END# exists as the last
function in your ProtoCODER, COPYPC will attempt to load starting where #END# begins, and nove
¥END® to follow the loaded program. If #END# is not there, COPYPC will prompt the user for
STARTADR - the address of the first word to be loaded in the ProtoclODER. Be sure to enter the
first digit as specifying the page (@=F) where the ProtoCODER is located. IF COPYPC determires
that there is not enough rocm from the #END® or from the STAATADR up to address FF4 to load your
programy, no loading will occur, and the error message "PCODER FULL® will be displayed.

If any additional space in the FAT exists after loading, and there is room in the ProtoCODER,
a rew ¥EKD+ will be stored, This is also useful for the microcode programmer since it points to
the first unused location in the ProtoCODER.

Displayed messages:

NONEXISTENT - program specified does not exist or contains mo global labels
FUN TBL FILL - no more space is available in the CATalog of the ProtoCODER
PCODER FULL - insufficient space ewists in the ProtolODER o load the entire progran

STARTADR-—— - no ¥END¥ was found: enter a starting address where your program should
be loaded

NO PCODER - the page specified in STARTAOR does mot contain a ProtoCODER or the device
select owitches on the ProtoCODER are not set to Q0BY

PACKING - the specified program was not packed: COPYPC will pack it then continue
LOADING - no fatal error occured, and the program will be loaded
If the global label specified in COPYPC is not found, the program counter will remain where it
was, Otherwise, if the load is not sucoessful, the prograw counter will point to the END of the

current (or specified) program. If the load is successful, the program counter will point to the
EMD of the copied program in ROM,

ProtolODERZ OWNERS MANUAL Page 18

COPYAYZ (XROM 16,12): copies a block of ¥ ROM words startine from address X and copying starting at
address I. To use it, determine wheve in ROM you wish to start the copy (BR@-FFFF). lse CODE to
put this address in digits 3-@ of I. Next, determime the number of ROM words to be copied. Use
CODE to put this hex number in digits 2-@ of ¥, If you specify Y as @, or [+ ¥ would pass a page
boundary (xFFF}, then the copy will stop at locatiom FFF of the page specified in 7. COBE the
first address o be loaded in the ProtoCODER into digits 2-@ of X. When COPYXYI is ewecuted, any
ProtoCODERs with device select switches set to @M@ will be loaded with the ROM words specified.
To copy the systes RBS function (which resides at addresses 1073-1078 hex) into the Proto[ODER
bepinning at address FDO:

‘173" start of ABS

CODE

ENTER

5" length of ABS (1878-1873+1)

COOE

ENTER

*pee~ ProtoCODER start address

CORE

CoryNvZ
To copy a complete & ROM plugged into port & (addresses E@®@-EFFF) into the ProtoCODER:

"EGER" start of ROM

CODE

8 specify copy to end of page

ENTER also specify copy to start at address 8@ into the ProtoCODER
CopyYXY?

A block of RM can be moved around within the ProtcCODER with COPYRYZ, but remember that the copy
is performed one word at a time sequentially from the start to the emd, therefore you can wove a
block of memory down (to 2 lower address) by one word, but to wove 2 block up (to a higher address)
by one word, you must copy it to am unused portion of ProtoCODER and them copy it to your desired
location.

DFH {XROM 16,13): converts a floating point (e.q., 1.G000) number inm X into & hewadecimal number in
X. The hex mumber is right justified in X, and zero filled to the left. Before the conversion,
D}H converts the nusber in X so that it is non-negative and an integer. If the exporent of the
nunber in X is 12 or greater, X is set to 8. Example:

1848573

DH

DECODE
will display ©...0FFFFF = 2 #2 20 = | = 1048575, DiH is the inverse function of HHD.

DECODE (XROM 16, 14): comverts a non-normalized nunber in X into a hewadecimal number in ALFHA. To
examine the hexadecimal representation, i.e., the way the calculator stores, the floating point
number - 8123:

0123

CHs

BECODE
to see F1220000000998. Digit 13 (=9 specifies that the number is negative; digits 12-3
(=1230000000) are the mantissaj digits 2-8 are the exporent - cosplemented since it is negative.
DECODE is the inverse function of CODE.

ProtoCODERZ DWNERS MANUAL Page 1%

DECX (XROM 16,15): decrements the hexadecimal contents of the X register:
*1181"
CODE
DECX
DECX
DECOIE
will display 0...010FF = 1181 - 2. DECX is the inverse function of INCX.

DISASH (XROM 1&,16): disassembles ROM words. The address to be examined is specified as a
hexadecinal number (3@0S-FFFF) in digits 3-@ of X (use CODE or PROMT). DISASM returns with X
incresented by 1, digits £-3 of Y contain the ROM address, digits 2-@ of Y contain the contents of
that ROM address (@@@-3FF), and ALPHA contains "aaza ddd c " where aaaa is the ROM address, ddd is
the ROM data at that address, and c is the character interprotation of the data. Use DISASM with
MNEM to provide fully disassembled ROM listings with mmemonics. ROMLIST will do this for you -
list it to see how to use DISASM with MNEM, Example:

9 starting AOM address S0

DIEASM displays "B@08 201 A * - conterts at address G082 of systea RON

DISASM displays "00@1 @86 F " - contents at address 0901

DIEASM displays “8@82 285 5 " - contents at address @082

DIRP (XROM 16,17): encodes ROM data into user data registers. ROA words each consist of 10 bits of
data, therefore 5 ROM words can be stored im 1-56 bit user data register. The 5 words are stored
as;

@31 PPaa 3zaa Aaaa bbbb bbb bboe coee coce dddd dddd ddee esee eeee
The leftmost digit is set to 1 so that the data is treated as an ALPHA string and not normalized.
If less than O words are copied info one register, only the leftmost portions of the register ave
used - a first, then b,e,d, e

Execute DEMP with:z

Y = CODEd (rightwost B digits) sssseeee where sss5 is the first ROM addeess fo be dumped
and eees is the last ROM address to be dumped,

X = floating point number specifying the first user register to be loaded (e.p., 0.0200
or 1, 0008) - only the integer portion of ¥ is used.

When DUMP returns to the wser, user registers starting at the register specified by ¥ and
continuing up %o the last user register (if that many registers were reeded) will have been loaded,
and?

Y = 0 if all data words have been dumped, otherwise it contaims the new sssseeee to be
used for another execution of DUMP, after the dumped registers are saved to cassette or magrards
(or whatever),

¥ = floating point of bhb.eee where bbb is the starting register and eee is the ending
register containing data - to be used with WRITRX.

For an example of the use of DUMP, list SAVE in the PCODER-1A EPROM sef.

GET (XROM 15,18): prompts the user for a file name to be loaded from cassette inko any ProtoCODER
with device select switches set to 0803, GET will load data files created by SAVE, The first
record is a header with the format:

idedll lssssnmn
wiere 111 is the nusber of records in the file, ssss is the ROM address (8D@R-FFFF) from which the
original ROM data came, and rmn is the mumber of ROM words minus 1 contained in the file. This
header record and all data records are compatable with cassette files created by functions in
ASSEMBLER 3 {an Australian microcoding EPROM set for the MLI), The file loaded by GET need mot be
821 records (as created by SAVE): BET uses the data in the first record to load the ROM data imto
the ProtoCODER. rnm + 1 words will be loaded beginning at address wsss in the ProtoCODER. The use
of BET and SAVE greatly simplifies the transfer of EPROM, ROM, and ProtoCODER images between two
users - no EPROM burning is mecessary, and GET and SAVE are automated enough that very little user

ProtoCODER2 DWNERS MANUAL Page 29

irtervention is required. If you wish to create cassette files other than of a full 4K RO¥ page,
use BOOT and DUMP. GET should be executed with as large a SIIE as possible to minimize the muaber
of copy loops required, and speed up the copy time.

HD (XROM 16,19): corverts a hexadecimal number in X into a fleating poirt number (e.g., 10008} in
{. If the hex nusber is greater than 234@BE3FF, rourdoff error may occur, ard the exponent may be
negative, and in hex. If the hex number is greater than FFFFFEFFF then X will be returned as @,
Example:

"FFFFF* =2 %% 29 - | = 1048573

CODE

L H
to see 1848575, HMD is the inverse function of DiH.

INCX (XROM 16,28): increments the hexadecimal contents of the X register:
IIBFFI
CODE
INCX
INCY
DECODE
will display @...01181 = 18FF + 2. INCX is the inverse function of DECX.

INIT (XROM 16,21): initializes any ProtoCODER with device select switches set to 088, INIT First
clears all 4 of the ProtoCODER then prompts the user for a hexadeciwal XROME. Input the IR0
number you wish to use: @1-IF. INIT then prompts for the mawisum nunber of entries you plan to
have in the catalog of your ProtoCODER (G2-3F). It is better to waste a few A0M words by
overestimating this number, than to later try to mwove the ProtoCODER contents around to make more
catalog space available, INIT will then load 2 function called *PROTRCODERE as the first function
in your ProtoCODER, ard a function called ®END® as the second. #END+ is used by COPYPT f{and
possible futwre software) to point to the last words in use in the ProtoCODER. You can change the
ROM name (*PROTOCODER#) if you wish be examining locations x@@2-w@83 in the ProtoCODER with LOOX,
Thesa locztions point to the first executable word of the first function. Use LODE to enter a mew
function name preceding this address - see “XROM Word Format" and "Function mames, Prompting, amd
Nom-programmability®,

LOADE {XROM 16,22): examines and sodifies user register contents. I[f is non-programsable, and can
ba executed in PRGM mode. When LOADB is ewecuted, it determines where the program counter is
pointing. If it is in a ROM program, the error message ROM will be displayed. Otherwise, LOADB
will begin at the current program counter location, The display will show:

R=rrr B=b cc
where rrr 15 the current register number (BB8-FFF) and b is the current byte within the register
(E-9). cr is the hexadecimal contents of that byte. For example, do a master clear then enter the
following program:

LBL*TERT"

610 38

DECODE :
then BST,BST to see @1 LBL"TEST". XEB"LOADB" to ses R=QEE B=6 CO. "C8" is the first byle of the
LBL*TEST* instruction, which begins at the leftmost byte (B=6) of register BEE. Press S55T,55T to
see A=0EE B=4 F5. "F5" is the byte specifying the lemgth of the global label {plus l}. Hpain
g5T,557 to see R=BEE B=2 5%, "W4" is the AECII character code for "T", the first character of the
global label. To change the *T" to a "B", press backarrow to tell LOADB that you want to change
the current contents of the byte displayed. LORDB will replace the "54" with two prompts to which
you can enter any hexadecimal value. To change LEL"TEST" to LBL"BEST", enter "42", the hex code
for "B". MNow press shift,SST,55T,55T,55T to get back to the first byte of the global label. Press
shift again to leave the backstep mode, them press R/S to leave LOADB. The display shows:

ProtoCODER2 OWNERS MAMLAL Page 21

81 LBL"BEST". MNow (EQ"LOADB" anain. Examining the above program, you quess that the STO 39
instruction is about ! register beyond the global label {i.e., 1 register lower in user memory), so
press BT0 ard enter QED (= %E - 1) to the prompts. The display will show R=BED B=& $4. This "S4"
is the last byte of the global label instructiom. Press 55T to see R=0ED B=G 391 - the hex code for
ST0. Press 58T anain to see R=0ED B=4 IE - the hex code for register 30, Press backarrow and
enter 73 to the prompts. Then press shift,55T,shift,R/S to see @2 STO M. Now press ST to see 83
DECODE, XER“LOADE" to see R=BED B=3 A4 - the first byte of the XROM code for DECODE. Press

55T, backarrom, 8, A, shift, 58T, shift,R/S to see @3 CODE.

If you wish to insert a byte into user memory and no null already ewists at that point, just
pasition the program counter in LOADE using SST and BST then press ENTER. LOADE will insert a
register of 7 null bytes that can then be medified to whatever you wish. Use PACK to remove these
nulls when you have finished.

LORDE moves the program counter as you 670, SST, or BST. Therefore, before you leave LOADE,
you should position the program counter to point to the first byte of an instruction. Rlso note
that the shift key is a direction mode - if shift is on (check the display), then pressing 557
Will execute a BST and leave shift set. If shift is off than pressing 55T will execute an 58T and
leave shift cleared.

Allowable heypresses for LOADE:

backarrow - promots the user for 2 hewadecimal byte to replace the current byte at the
displayed location,

ENTER - to insert a block of 7 nulls if ro null exists at the current location,

610 - prompts the user for a hex register which will becowe the current location -
enter 002-FFF. The program counter will be changed to point to the lefi-
most byte of the specified register,

OFF - turns caleulator off. Also can be used to leave LOADB if you pressed back-
arrow and do not wish to alter the current contents of the specified byte,

R/ - gxits L0ADB. Use 55T or BST to move the program counter to point to the
first byte of an instruction before pressing R/S,

ghift - changes the direction mode for §57. IF shift is om, pressing 55T will
execute a BST. If shift is off, pressing SST will execute a 88T,

BET - moves the program counter one byte forward (shift clear) or ore byte

bachward {shift set) in the current progras.

LODE (XROM 16,23): loads bytes into any ProtolODER with device select switches set to 0808, When
LOCE is executed, it will promgt for “"RDDRESS —". Enter the address of the first word of the
ProtoCODER (BOO-FFF) to be loaded. Then LODE will prompt for successive datz words to load into
the displayed address. Input @00-3FF. To leave LODE, press backarrow. Example: After you used
INIT to initialize yowr ProtcCODER, and you have entered a few programs, you wish to change the
YROM nuwber of your ProtoCODER. The XROM mumber is stored at word 800 in the FroteCODER.

YEO"LODE" then press 880 {or just R/S) to the ADDRESS — prompt. This calculator will now display
BB —-, Enter the new XAOM number (e.g., 8@3). The display will now chow 881 -—, Press
backarrow to leave LODE,

LOOK (XROM 16,24): displays hexcodes and ememonics of ROM locations. When executed, LOOK jumps to
the BTO routire ard prompts you for an address to ewamine. Enter OOOB-FFFF. LODK will then
display either the result of DISASM (flag @ clear) or the result of MMEM (flag @ set). For
example, start with flag @ clear. XEQ®LODK® and enber @200 {or just press RfS) to the GOTO —
prompt, The display will show G088 281 A - the contents of AOM word 800D, Press 55T to see B091
886 F. To see the smemonic, press shift,55T,shift to veturn to location 0880, the press PAGM to
tongle flan @, and display the mmemonics. The display will be blank - the first line of an
absolute BOTO, Press SST to see GOLONG 2180,
Rllowable keypresses:
670 - prompts the user for a new hex address to examire - BROR-FFFF,
FF = turns calculator off,

ProtolUDERZ DWNERS KANUAL Fage &2

FRE - toggles flag @, which specifies if the display will show the result from
DISRSM (flag @ clear) or MNEM {flag © set),

RfS - exits L0,

shift - changes the direction mode of 5ST. If shift is clear, then 55T will execute
an 55T. If shift is set, then 55T will execute a BST,

887 - moves the current location displayed forward one word (shift clear) or

backward one word (shift set).
Note that some 60TD and GOSUB instruckions are followed by ome or more words of data which can
appear as ramdow instructions to MNEM. Sometimes a data word will appear as a two-word imstruction
and make MNEM think that the following word, which is actually a valid ore-word instruction, is the
second word of a two-word instruction. To display the frue mnemonic for the second word, Jus$
press PREGM twice.

MONT (XRDM 16,23): clears the exponent of X to BBA - returns the mantissa of X to X. Evample:
1234, 56
MANT
returns 1.23456 - the exporent was set to zero. fs pointed out by Heinz Schaefer and others, MANT
can be used with XOR to isolate the exponent of X:
1234, 56
ENTER
WANT
1OR
DECODE
to csee 8...03 - the exponent of 1234.56.

MNEM (XROM 16,26): provides mmemonics for disassewbler listings of ROMs. It uses data from the X
and Y registers as provided by DISASM. The first half of the mmemonic is returned in I; the second
half in T. L is also used for two-word instructions (BOTO, BOSUB, LDI). List ROMLIST for an
example of how MNEM can be used.

NOT (XROM 16,2B): complements the X register, replacing each @ bit with a 1 and each | bit with 2
8, In hevadecieal, each digit (B-F} is replaced by F winus the digit. FExample:

"B123455783RBCD"

CODE

NaT

DECODE
will display "FEDCEAS2765432".

OR (XROM 16,29): logically ors Y into X, bit by bit. Y is uncharged, and the result is placed in
Y. The resulting bit in X will be 1 if either of the
corresponding bits in X or Y were 1, otherwise the resulting bit will be 8.
"33 {= binary 03118811}
CoDE
ENTER
"a5" {= binary 10008101}
CODE
OR
DECODE
will display @...0B7 = binary @...0 18118111,

PROMT (XROM 16,30): provides the user with simplified hexadecimal inputting capability. PROMT will
exanine digit 12 of the X register to determine how many prompt digits to accept for input (8-9).
It will then add that many overlire prospt characters to the display {shiftimg out part of the
display if there is rot enough room for the prompt marks) and wait for the-user teo enter

ProtofODERZ OWNERS MANUAL Page 23

hexadecimal inputs. The resulting inputs will be returned in the X register, right justified amd
zero filled on the left. For you software hackers: IF digit 12 is O,0,E, or F, PROMT will return
with no inputting and X=@, If digit 12 is A,B, or C, PROMT will promot for 10, L1, or 12 digits
respectively. PROMT with digit 12 = C shifts & digits in at a time - the display looks a little
strange, but the input is correct.
Allowable keypresses:

any digit @-9,

any letter A-F = hex digits correspording to decimal 18185,

backarrow - to delete the last digit entry. If you backarrow when no digits have been

input, PROMT will return X=8, and skip the rext line if executing a program,

RS - returns with the input as it is, and fills the input with zeroes on the left
= hold R/S dowm to soe the input as it will be reburned,
OFF - turns caledlator off - can be used to exit PRONT if no exiting is provided

by the calling progras.

Example: The following program accepts 3 digits of input and complesents thes. Press backarrow to
quit.

LEL"SAMPLE

lI'{F.u’TI

LBL @1

AVIEN

3

PROsT

F57 3@ ckip mext instruction

i1
ADELX
670 01

RCLA (XROM 16,311: recalls the contemts of the user register with absolute address as given as a
floating point number in X The recalled register overwrites the current contents of X, No
normalization occurs. Example:

SIZE ol

1@

ST o8

CL5T

all = gbsolute address of user register RB® = hex IFF

RCLA
to see 100 in the X register.

ROMLIST {XROM 16,32): lists mmemonics of ROM words to the printer. When executed, ROMLIST will

prompt for START ——, Enter the starting ROM address to be listed - 0OQQ-FFFF. ROMLIST will then

lict ROM words sequentially from the input address until A/S is pressed. The output format is:
8334 000 © o Mosmm

where azaa is the address, ddd is the data at that address, c is the character representation of

the data, and msssssweoous is the mnemonic interpretation.

ROMSUM (XROM 16,33): computes the checksus of any ROM page. In keyboard mode, the user is prospted
for PAGE - Input the hex page - O-F. Khem executed from a program, ROMSUM computes the checksum
of the page as specified by digit 12 of ¥. The 3-digit checksum is returned in digits 2-9 of X.

ProtollDERZ CWNERS MANUAL Page 24

REL1 (XROM 1B,34): rotates the contents of the X register left by 1 bit, For example:
"Al234557ASBFED" = binary 1010 0901 Q810 0211 Q10D Q121 2118 0111 120 1051 0992 1111
1119 1181
CODE
RXL1
DECODE
shows "&24HBACF121FDB" = binary 9109 2010 9109 9110 1000 1810 1102 1111 0001 0318 0@l 1111 1181
1811, Notice that the leftmost bit shifted around irto the rightwost positiom. RILL is the
inverse function of RXRL.

R¥L4 {YROM 16,33): rotates the contents of the X register 1 digit (4 bits) to the left. Exasple:
"1234"
DODE
RXL4
DECODE
chows 9...012340, The leftwost digit is rofated around into the rightmost position. RIL4 is the
inverse function of RXR4.

RERL (YROM 1E,3R): rotates the contents of the X register right 1 bit. The rightmost bit is
rotated around into the leftmost position, RXR1 is the inverse function of Rill.

RERS (XROM 16,27): rotates the contents of the X register right 1 dipit (4 bits). The rightmost
digit is rotated arourd into the leftmost position. RERA% is the inverse functiom of REL4,

SAVE (XROMW 16,308): prowpts the user for a ROM page {@-F) and then a file name. The specified AOM
page is copied to cassette with the specified file mame. SAVE creates an B21 record file. The
first (header) record is of the format:

18 8 33 Sp 00 OF FF
where p is the page nusber copied to cassette. The next 820 records contain the ROM data at 5 ROM
words per record in the binary format:

8001 @Baz aaaa azaa bbbb bbbb bbec coce coce dddd dddd ddee eeee eeee
where &, b, 0,4, are 3 consecutive AW words, The last record uses only the a portion - byc,d,e are
all zero. This file format is compatable with the cassette file format as created by fumctions in
ASSEMBLER 3 (an fustralian microcoding EPRON set for the MLI). SAVE creates files to be read into
the ProtoCODER with BET. SAVE should be executed with as large a SIIE as possible to minimize the
rusber of copy loops required, and speed up the copy time.

STOR (XROM 16,29): stores the contents of the Y register into the absolute repister as specified by
a floating point number in & Mo normalization occurs, Example:

BIZE &t

k)

ENTER

alt = ghsolute address of register R@D = hex IFF

ST0A

RCL 8@ to see 320,

SXL4 (YROM 16,40): logically shifts the contents of the X register left 1 digit (4 bits). A zero
is shifted info the rightmost digit. Example:

Himl

COn=

BXLY

DECTDE
to see O...012340,

ProtoCODERZ DWNERS MANUAL Fage 23

SYRé (XROM 16,41): logically shifts the contents of the X register right 1 digit (4 bits). A zero
is shifted irto the leftmost digit. Example:

Wim_l

CODE

BXR%

DECODE
to see 0...0123,

TOGF (XROM 16,%2): toggles the user flag as specified by the floating point number in the X
register. If the specified flag was on (=1) then TOGF turns it off (=8). If the flag was off them
TOBF turns it on. Example:

49

TOGF
to see the BAT annunciator, Ewecute TOEF again to twren BAT off.

X+Y (XROM 16,43): adds the birary rumber in Y into the binary rumber in X. Y remains unchanged.
Evanple:

"11eF"

CODE

ENTER

COLE

L+

DNECODE
to sea B,..01431 = hex 110F + 322,

YOR {XROM 16,44): legically exclusive-ors ¥ into X, bit by bit. Y is unchanged, and the result is
placed in X, The resulting bit in X will be 1 if the corresponding bits in X and ¥ were not equal
{@ ard 1, or 1 and @), The resulting bit will be @ if the correspording bits were equal (@ ard @,
or 1 and 1), Exanmple:

" {= binary 00118811}

CODE

ENTER

"85" (= hinary 10080101}

CODE

i

DECODE
will display @...086 = binary &...0 19110110,

¥ (XROM 16,45): is a subroutine used by AK to veturn from the keypress prompt. The system RSN
routine prompts for a heypress which specifies the key to which the assigneent will be eade. After
accepting this heypress, the systew does not return fo the calling program; therefore, # was
necessary. #K can be used from the microcode level by pubting the hexcode of the instruction to be
assipned into digits 3-9 of X and the coded keycode in digits 1-@ of the intermal R register, then
execubing ¥,

#00E (XROM 16,46): is a subroutine used by LODE. To use it, CODE the hex value of the instruction
to be loaded irto digits 2-® of X CODE the address where the instruction is to be loaded into
digits 2-@ of 1. Then ewecute #I0E in a program. The address which was in I is incremented and
returned in X. Also, the next line of the program is skipped, #0DE executed from the keyboard
will function properly but display the message "MD® when it returns.

ProteCODER2 OWNERS MANUAL Page 26

APPENDIX 1: PROTOTECH, INC. PRODUCTS
The following products are available from Prototech, Inc.:

ProtelODERZ is the wain control bow that plugs into the HP 410, It provides the peripheral boards
with data, control, and address sigmals. It includes one 4K ProtoCODER.

ProtelODER provides the user with 4895 (4K) words of memory which is programesble in sicrocode (the
nachine language of the microprecessor in the caleulator). No external EPRON is mecessary to
program the ProtoCODER; however, the PCODER-1A EPROM set provides many useful functions to assist
in microcede programming.

ProtcEPROM allows the user to plug in ome HP-format EPROM set containing user language programs
and/or microcode,

ProtoRDM allows the user to plug in up to & HP Application wodules. Each module can be
individually switched on or off into any port. The switching can be done from the keyboard or
under prograu control.

ProtoPARID is a gemeral purpose 1@-bit imput/output interface for the HP 41C, Applications wight
include interfacing two calculators, or interfacing to a computer, light controller, full size
ASCII keyboard, or a voltweter. With appropriate software, data from external devices can be
sampled and stored at up to 799 times per second with am ummodified HP 41C. The ProtoPARID is mot
enclosed in a box, since the user will be required to make hardware conmections €o the circuit
board, It requires a ProtoEPROM.

NCCROM-1B is an EPROM sef containing many routines useful for programming the originzl ProtoCODER
{which uses the SIGN function to perform a write, whereas the ProtolODER2 uses ABS). It cortains
the following functions which are similar to those in the PCODER-1A EPROM set: DUMP, CODE, +1,
PRGAT, MANT, (b, BOOT, DISASM, RCLA, DECODE, AK, LODE, MNEM, ROWSUM, DEC-HEX (DiH), HEX-DEC (HiD),
STR (STOAY, TOGF, LOAD (sODE), INIT, X+Y, DR, AND, XOR, NOT. It also comtains:

NFCROM-18 displays message

; 2pperds left goose to display

CL clears cystem flag 12

. appends right goose to display

ROM? displays ROM @,1,2 revisions

CAT lists online ROMS or CATZ starting at any page

LODB unfinished byte loader

FARINT returns INTIX)NODID to X

BJWRR byte jusper

LEFT rotates display to left

M5 appends any character to display

DISTST display test

1=17 comparison

POWE enfinished exterded precision powers of ¢

COPEE copies any ROM into ProtolODER

88T fast continuous single step

BET fast cortinuous back step

NFCROM-1C is an EPROM set which is identical to NFCROM-1B except that the bugs in AK and HEX-DEC
have been patched.

ProtoCODER? OWNERS MARLIAL Page £7

IDEAL is an 8K EPROM set including the NFCROM=1B and 8K of additional routines for use with the
original ProtoCODER (SIBN {ype - not ARS). OF major importance to the ProtoCODER user are the
START and RESTART programs. START initializes the ProtoCODER. RESTART copies a user language
(RPN} program from user memory into the ProtoCODER, computing all the BTD distances, ete. For
users nith a modified 821438 printer, barcode printing programs are provided. To aid in debugging,
two programs 1ist all LBL, GTO0, XE@ instructions and all registers, labels amd flags used. Various
other ubility routines are also provided. This EPROM set is shipped as written, and with a xerox
of the instructions as provided by the authors. Prototech, Inc. has this EPROM set available for
sale only, and will not provide any support for the IDEAL partion of this EPRON set.

This ProtoC0DERZ manual is included with any ProtoCODER2 ordered, but is also available separately.

For a limited time, Prototech, Inc. will provide upgrading services to change your SIBN function
ProtoSYSTEM into a ProtolODERZ by adding appropriate jumpers on your board. If you have a
ProtoROW, it will veed a slight modification alse. For details and pricing of this modification,
contact Nelson Crowle at Prototech, Inc.

ProtoCODER2 OWNERS MANUAL Page 28

APPENDIX 2: WARRANTY, SERVICE, ASSISTAMNCE
LIMITED WARRANTY

The ProtolODERZ ard all ProtoSYSTEM peripharals manufactured by Prototech, Inc. are warranted
against defects in materials and workmamship for a period of ninety (98) days from the date shipped
from Prototech, Inc, Within this warranty period, Prototech, Inc. will repair or at its option
replace 3 defective part at no charge to the owner, provided that Prototech, Ine. is contacted
within the warranty pericd for shipping instructions. There will be a charge for repairs after the
warranty period has expired. Profokech, Inc, assawes no respomsibility for damages, either direct
or consequentizl, from the use of its products. Profotech, Inc. will have no obligation fo modify
or update products after sale. This warranty does not apply fo products damaged by accident or
pisuse, or to products that have been modified by anyone other than Prototech, Inc., amd does not
apply to the 4013, 4503, 74CI74, and THC175 interfacing chips in the ProtoPRRI0. This warranty is
gade in lieu of all other warranties, either ewpress or implied.

SERVICE

If your ProtoCOGERE or any Prototech, Inc. product requires service, contact Prototech, Inc.
for instructions.

ASSISTANCE

If you veed technical or applications assistance relating to the use of the ProtoCODERZ,
please contact Prototech, Inc. at (303)-459-5541 (no collect callsl, or write to:

PROTOTECH, INC.
p. 0. BOY 12104
BOULDER, 0 88383 USA

ProtoCODERZ OWNERS MANUAL Page 29

APPENDIX 3S: PPC INFORMATION

PR is the Personal Programming Center which is an organization of users dedicated to personal
cosputing. It is the oldest personal computing group in the world. PPC publishes the PPD
Calculator Journal which disesenates information and programs for HP calealators. For information
on membership, obtainimg back issues of the PPCC], and information about fhe FRC ROM or PPC EPROMs,
send 2 12" envelope with 2oz of postage or equivalent internationzl postal coupors to:

PRC
2545 H. CAMDEN PLACE
SANTR AN, CA 32704

PPC Technical Notes is a publication of the Melbourne Chapter of the PPC. For subscription
information, send a self addressed emvelope and international postal coupons to:

PPCTN

J. E. McGECHIE

P O BOX 512

RINGWOOD, VICTURIA 3134
RUSTRALIR

PPC EPROM sets are currently available fros:

JOE BELL

SURVEY CRLCULRTIONS JOURNAL
P O BOX E674

SAN BERMARDIND, CA 92812

ProtolODER2 OWNERS MAMUAL Page 30

APPENDIX 4: INTERMAL BENDER AMPLIFIER

This simple circuit can be built within the calculator to provide a large volume increase from
the bender output into an external speaker. The only parts you need are a miniature speaker (about
1 1/2 inches), 3 2M3906 transistors, a small plug and Jack, and some wire and solder. Total cost
is about 43, MNote that this modification is not supported by HP and Will void vour warranty.
Prototech, Inc., assumes no responsibility for the use of this information. It is provided for the
users reference only.

Remove the battery pack and all modules then remove the four screws from under the rubber pads
on the back of the caleulator and 1ift the back of the calculator off, Locate the bender {i-inch
flat metal disk stuck onto the CPU) and unstick it. There are two wires commected to the bender.
The inner one on the smaller section of the bemder is the bender ocutput signal. Solder a wire on
top of the wire that is already there. Locate the plastic-copper battery comtacts (where the
battery pack plugs in) and scrape a seall hole in the plastic at come location om both the BAT+ and
GND cortacts that will not get in the way of the battery pack. Solder a wire to each contact.
Locate a place to put the output jack. Radio Shack sells a plug amd jack combination that fits
tightly into the battery charger hole. You should now have 3 wires added on to your calculator:
bender output, BAT+, amd GND. Sclder the 3 tramsistors together as shown below and attach the 3
wires and the jack, RAlsp wire the two speaker contacts to the plun, The transistors will fit
easily in the caleulator alomg the side of the 1/0 ports. Rfter verifying that you have wired
everything correctly, veassemble and try it out. Note that this does draw significantly sore
power than the berder alone. Tramsistors in the diagram are shown with their flat face forwards.

»

BAT+

EENDER OUTEUT

ProtolODER? OWNERS MANLAL Page 31

APPENDIX S:=HP 41C MICROCODE

The HP 41%5 brain (microprocessor) defines what can and rarmot be done with the calculator by
having 2 specific set of instructions. These instructions are referved to as microcode, They are
stored in ROMs {Read Only Memories) or amything that looks like a ROM to the calculator, such as a
ProtoCODER or EPROM. The sequence of these imstrections determines what the calculator will
actually do. It gives the calculator its personality that makes it act like an HP 41C, The
calculator will function just as well with some other operating system or language and could be
changed to a completely different personality just by changing these ROMs., By usinp a disassesbler
program (guch as ROMLIST in the PCODER-1A) you cam list the contents of the RlMs in the calculator
to get a gereral idea of how things are done in microcode.

The processor of the HP &1 has a set of internal registere in which all of its operations are
perforned. Registers A, B, C (different from the user stack a,b,e registers), M, and N are 56-bit
registers - the same size as user and stack registers. Mrithmetic, logical, and input/owtput
operations are performed with A, By and C. M and N are used for temporary storage. The FC
register is 16 bits long and contains the address of the next ROM word to be executed. It is
norwally incremented after each instruction is esecuted, but can be modified by a GOLONG, GOSUB,
BOC, GONC, or ATN instruction, Since PC is 16 bits in length, the calculator can address 65536 (2
16} locations.

There are also 4-8 bit registers (6, KEY, ST, and T{or Fi), 2-4 bit registers (P and 0V, 14
systea flags (13-9), a KB flag which is set whenm a key has been pressed, amd a C (Carry or
Condition) flag, The G register is used for tewporary storage. The HEY register contains the
keyeoda of the last key pressed, the ST register contains system flaps @7, and the T or F repister
controls the bender to make beeps, The P amd @ vegisters point to 2 digit (13-@ from left to
right} in the S6~hit registers. The active "pointer” {either P or @) is called R, Mormally, only
one pointer is active at one time. GSystem flags 7-@ can be accessed by using ST, System flags 13-
B can only be accessed individually. Flaps 13-10 are dedicated for cevtain system uses: Flag 13
is set if a program is running; flag 12 is set to indicate a PRIVATE program; flag 1l is set to
enable a user stack lift at the end of an imstruction; flag 18 is set to indicate that the program
pointer in the user stack register b is a ROM address. The C flag is set when a test is true, when
a carry occurs, and when the calculator is first turmed on by pressing the OM key. If remains set
for one instructiom, then is cleared.

All 9&-bit registers are separated into several fields. The user can select which field
within the register is affected by an operation. The part of the repister cutside that field is
not affected. The 36 bits are separated into blocks of 4 bits, each ralled a digit or nybble.

They are numbered from left to right (high order to low order) as 13-8. Each digit or a contiguous
block of digits can be operated upon using the P and/or @ pointers. Ofher named fields are:

& Mantissa sign - digit 13

M Mantissa - digits 12-3

15 Expoment sign - digit 2

I Exponent - dipits 2@

ADR Rddress field - digits 6-3

KB HKey buffer - digiis 4-3

There are four classes of microcode instructions nuwbered as @, 1, 2, and 3. The class is
determined by the right-most two bits of the 18-bit instruction. The following tables list beth
the HP wremonics for microcode instrections amd the mremenics first published by Steve Jacobs (PPC
#5358 in PPC ROM LISTINGS 2, The HP mmewonic is listed followed in parenthesis by Steve Jacobs'
memonic. If you exawine HP microcode listings you will Fimd instructions that are not listed
below. These instructions are actually macyas in the HF assembler to simplify the prograsming,
A macro is an irstruction which has no weaning to the wicroprocessor, but which is replaced by a
sequence of | or more instructions that the microprocessor does understamd. For example, the
instruction "C=A" is not listed below because it is a macro. When the HP assembler encounters
"C-A" it replaces it with the sequence “AC EX", "R=C".

ProtoCODERZ OWNERS MANUAL

CLASS @ INSTRUCTIONS

There are two types of Class @ instructions: parasetric and special.

Page 32

The parametric

instruction hex codes specify a field or register upon which the operation will occur:

Sp=@ (CLRF p} Clear system flag p

Sp=1 (SETF p} Set system flag p

Mp=1 (FSET p) Set C flap if system flag p is set
LCp {LDER- p! Load p into C at PT, decrement PT
PT=p (M=p} Set C flag if pointer equals p
PTl=p (R=p! Set selected pointer to p

SELPp (SELP p} Tramsfer control to peripheral p
REEN=Cp (WRIT p} Mrite C to peripheral or memory
Fp=l (IFI p)! Set C flag if peripheral flag set
C=REGNp (RERD p} Read C from peripheral or memory
RCAp (RCR p) Rotate C right Dy p digits

Hex codes for Class @ parametric instructions are:

ISTR p=0 1 2 3 4 5 6 7 & 9 10 11 12

1% 13

D4 DEC PT (R=R-1)
30 INC PT (R=R+1)
958 6=C (B BR, +)
%8 C=8 {C<E 8R,+)

808 CG EX (COE 8/, +

158 W=C (8=C ALL)
198 C=M (C=M ALL)
108 MC EX (COHM ALL)
238 F=BT (T=5T}
298 §T=F {ST=T)
214 FST EX (5TOT)
I3 §T=C (5T=C X}
598 C=8T (C=5T ¥
308 CST EX (CLIST)
220 SPOPND (XQ-}ED)
@60 POWDFF (PONOFF)

MNEMONIC T} (Z)} (¥} (XD L) (M) M) (O (P} (@) (+) (a) (b} fe} {d} (e}

Epd 304 304 204 004 44 0O4 144 204 104 244 OC4 184 344 204 — —

Sp=1 388 308 200 800 4B 08O 158 288 108 248 OCA 188 348 208 — —

Ep=1 38C 30C P8l DAC O4C OBC 14C 2BC 18C 240 @CC 1BC 34C 2C — —

LCp 818 050 696 000 110 150 132 10O 210 250 299 2De 319 358 3% 309

WT=p 494 314 214 014 054 004 154 294 114 254 0D4 194 354 204 — —

FT=p 39C 31C 2iC 81C @3C 93C 15C 23C 11C <50 80L 19C 35€ 2IC — —

SELPp 3R4 304 £2% 004 004 OR4 164 2A% 124 264 UE4 1R4 304 2E4 1ES 364

REGN-Cp @2B 268 BRG @EB 128 168 1R8 1ER 228 268 2AB 2ER 328 368 3AB 3t8

Fp=l 3AC Z2C 22C @2C @eC ARC 1eC 2AC 12C 260 QEC 1AC 36C 2EC 1EC 3EC

C=REGNp @38 878 @B @FB 138 178 1BA 1FB 238 278 2RA ZFA 338 378 B8 3F8

RERp 3BC 33C 23C Q3C O7C @BC 17C 2BC 13C 27C OFC 1BC 37C 2FC IFT 3FC
Hex codes for Class @ sperial imstruckions ares

HEX MNEMONIC OPERAT 0N

3C4 CLR ST (5T=) Clears 5T and flags 7-

2C8 RST KE (CLRKEY) Clears KE flag

3CC CHE KB [7HEY) Bet [flap if key pressad

Decrement current pointer
Increment current pointer

Copy digits R,R+1 from C into B
Copy B into digits R,R+l of C
Exchange & with dipits R,R+l of C
Copy C into M

Copy M into C

Exchange M with C

Copy 57 into F

Copy F inte ST

Exchange F with ST

Copy digits 1,@ from C to BT
Copy ST irto digits 1,8 or C
Excharge 5T with digits 1,8 of C
Brop rekurn stack to convert BOSUB to GOTO
Bo to standby mode

ProtoCURERZ DWMNERS MANLAL Page 33

Class @ spacial instructions hex codes, continued:

HEX MNEMONIC DPERATION

8RB SEL P {SLCT M Select P as the active pointer
eER SEL 0 (LT @ Select @ as the active pointer
120 =0 (7Pl 8at C flag if pointers are mgual
168 7LLD (ILOMEAT) Set C flag if low battery

1R8 CLRAEC (A=B=C=4) Clear registers A, B, C to zero

1ER GOTOC (BOTO ADRY Copy digits 6=3 of C into FC

C=HEYS [C=HEY KY) Copy WEY register into digits 43 of C
269 SETHEX (SETHEX) Use hexadecimal arithmetic

2r@ SETDEC (SETDEC) Use decimal aritheetic

cEQ DISOFF (DSPOFF) Turn off display

328 DISTOG (DSPTOG) Toggle display off to on or on to off

368 RN C {7C RTW) If C set then return from subroutine
3R RTH NC (7NC RTND If C clear then return from subroutine
3EB RTN (RTN) Pop stack into PC for subroutire refurn
878 N=C (=L ALL) Copy C into N

QB2 C=N (C=N ALL} Copy M inkto C

OF8 NC EX (NOC ALL) Exchange C with N

138 LDI (LDI S&X) Load rext ROM word into digits 2-9 of C

17@ §TH=C (PUSH ADR) Push digits &-3 from C onto return stack

1B® C=5TK (RO@ ADR) Pop return stack into digits 63 of C

230 GOTOKEYS (GOTD KEY) Load digits §=3 of C into lower A bits of PO
270 DADD=C (RAM SLCTY Use dipits 2-@ of C as AAM address

2F@ DRTR=C (WRITE DATA) Write C to peripheral or memory

338 CXISA (FETCH S&X) Load digits 2-8 of C from RO address ADR of C
370 C=C OR A (C=C OR A} Logical OR of C with A

380 C=C AND ALC=C AND A} Logical AND of C with A

3F@ PFAD=C {PRPH SLCT) Use digits 2-@ of C as peripheral address

220 NOP (NOR) No operation

The following hex codes are not used by the basic HP 41C operating systes:
%34, X74, xB4, ¥F4, k18, 832, 170, 250, 108, 200, 300, x40, x80, xC0. Somwe of these hexcodes are used as
instructions for HP-IL and for page switching within the HP &1CX.

CLASS 1 INSTRUCTIONS

Class | instruckions are two-word instructions which perform an absolute address GOTD or
BOSUB. The first word contains the least significant B bits of the address, followed by @1, The
second word cortains the most significant B bits of the address, followed by pp, which is:

pp=0@ GOSUB {or NC XD or GOSNC) Ewecute subroutine if C is clear

pp=Bl GOSC lor 7C XOI Execute subrouwtine if C is set
pp=1@ EOLONG (or 7NC GO or GOENC) Goto ROM address if C is clear
pp=il GOLC for TC GO) Goto ROM address if C is set

For example, the hex code For GOLONG B232 (MEMORY LGST) is:
#2311 0210 1 = BCY for first word
200 221¢ 1@ = BMA for second word

ProfolUDER2 OWNERS MAMUAL Page 34

CLASS 2 INSTRUCTIONS

Class 2 instructions are used for arithmetic and logical operations. Arithsetic operations
are performed in hexadecimal or decimal depending on the last mode operation (SETDEC or SETHEX)
ewecuted. In DEC mode, all operations are performed on dinits @-9 (A-F work also, but not in the
expected manneri, In HEX mode, all operations are performed on digits &F. The C flap is set if
the operation performed causes the most significant digit in the selected field to exceed 9 (in
DECY or F {in HEX), or if the result rcauses a borrow (result is less than @),

MNENONIC OPERATION HEX CODE IN FIELD AND DIGITS OF C AFFECTED
PT X WPT AL PB X5 M §

6PT 2R PT-@ 138 P8 2 123 13
=8 Clear £ fd2 205 0O QE 812 I @ip RIE
B=0 Clear B g2 Q06 @2 O&EE @32 036 Q3R Q3
C=0 Clear C §a2 O4E 840 O4E @52 QSE @Sn @SE
AB EXIANB) Exchange A with B @h> 066 OGR GGE 072 @76 @1 Q7
B=A Copy A into B B2 @86 08F O0E @32 0% @9 OSE
AC EX(A{IC) Ewcharge A with C GAZ @5 QAR GRE @B2 @06 9BA QBE
C=b Copy B into C of2 eCb E&Ch OCE QD2 oD eDR ODE
BC EX(B{IC) Exchange B with C BEC QE6 OER BEE OF2 OFF @FR OFE
A=C Copy C into A 162 186 1% '10e 112 116 11 1LIE
F=i+B Bdd B into A 182 126 12 12E 132 136 138 [3E
=R Add C into A 142 14 148 14 152 156 154 13E
| Increment A 162 166 16A 1GE 172 176 17h IVE
=B Subtract B from A 182 186 18R 18E 192 19% 198 |(SE
A=f-1 Decrement A IRz IR6 AR LRE 1B2 IBE 1B 1IBE
f=f-C Subtract C from A if2 106 ICA ICE 102 1D& 1DA iDE
=0+ Double C IE2 1EE IEA 1EE 1F2 1IFE 1FR IFE
C=fHL Add A into C 202 206 20 ME 212 2R 2IA 2IE
C=C+1 Increment C BP? 22h PR 22E 232 236 23R 23t
C=f-L B-C into C 2dg 240 PR 24E 252 296 23R 25E
C=L-1 Decrament C 262 266 2GR 26E 272 276 21 2
C=-C Complement C 2E2 286 20A 28E 292 2% 297 Ot
C=-C-1 95 or F's complement C 2R2 2A6 AR CRE 2B2 206 CBR G2BE
i Set C flag if Brot @ 202 206 2CA 20E 202 206 &M 20E
CH Set C flagp if Crot @ 2E2 2EE 2EA 2fE oF2 o&Ff oFR 2FE
AL Set C flag if RIC 02 306 I8 IBE 312 31 3R 3IE
Mip Set C flag if A{B 382 386 IBM IPE 332 336 33m 3=E
R40 Get C flag if Anot @ 340 346 2380 34E 332 356 38R =
TA4C Get C flapif Arot =C 362 366 J6A 36E 372 376 3R 37
A SRIRSHFAY Shift A right 1 digit 82 38c 384 3BE 3% 396 %A BE
B SR{RSHFB! Shift B right 1 digit 3R2 3R6 3AA 3AE 382 3B6 3BA GBE
C SRIRSHFC) Shift C right 1 digit 3L2 306 0A 3CE 302 3D DA 3DE
A BELILSHFA} Shift A left 1 digit JEP 3ER 3ER 3EE 3F2 JFE 3FR 3FE

ProtoCODERE OWNERS MANUAL Page

CLASS = INSTRUCTIONS

Class 3 instructions allow the program to jump up to B3 words forward or backward from its
present location. The Mnemonics are GONC (or GOT0 or JNC) and GOC (or JC). In azsembler listings
the GONC is followed by a label. In disassembled listings the GONC is followed by “s+pp" or "#pp”
which irdicates a jJump relative to the current instruction address ("#*). GONC branches if the C
flag is clear. BOC branches if C is set.

DISTANCE JNC- JC- JINC# JC+ DISTANCE JNC- JC- JHC+ JC+

+or#dl 3FB 3FF O0B OOF - o2 3F3 3T 013 817
03 3EF 3EF 01D QIF 84 JE3 3ET7 @23 a7
85 3DF 3F @B @S 86 303 307 833 Bi7
@7 3Ch 3CF @3B O%F 88 303 307 o43 B4y
@9 300 3BF e4B Q4F 84 383 387 ST
@B 3AB 3F 0GB OF & A3 3AT 03 @eT
80 398 3% 8B @EF 8 393 397 o3 N
BF J38B 38F @78 @7 19 383 387 o3 eey
11 378 37F QBB @&&F 12 313 7 o3 o
12 368 3GF @3B B 14 33 367 o3 o047
15 358 35F OfiB OAF 16 3533 357 ©B3 @87
17 348 34F OB oFF 18 343 37 o3 ol
19 338 33F @CB RCF IR 333 337 @p3 o007
1B 3B 32F el ooF IC 323 327 o3 &7
1 318 3IF BER WeF IE 313 317 oF3 o7
IF 308 20F OFF OFF cé 3e3 o7 k3 197
21 2FB 2FF 108 10F ¢ efd &7 113 117
23 B & 1B ifF &4 23 2E7 123 127
23 208 20F 126 IeF 26 203 a7 13 13
g1 #B 20F 138 13F o 23 207 143 147
29 ZBB 2BF 14B 14F 2n 283 287 153 1%
¢B 2AB 2F 1B IF eC 2R3 Ei7 183 167
d) 298 2% 16B 16F 2E 293 297 173 177
ofF o8B 28F 17B IWF 30 283 287 183 187
31 2 2T 166 16F & 213 &7 19 1%
33 2B 2BF 198 IFF 34 263 267 1A 1AT
¥ 5B E5F IAB IAF 3 253 257 113 1w
37 1248 24F 1BB IEF 38 243 247 103 107
¥ 23 23F 1B ICF A 233 237 13 1DV
3B 228 22F 0B IIf i 23 227 1E3 1E7
i 21B 21F 1EB IEF ¥ 213 217 13 1R
3F 0B 2F IFB IFF i 203 207 — —

ROM ADDRESSING

The HP 41 calculator can address up to 65536 (B4K) 18-bit words of information in ROMs (Read
Only Mesories). This includes the operating systes ROMs, HP Extension amd Application modules,
EPROMS (Erasable Programeable ROMs), and the ProtoCODER. These 64K words are separated into 16
"pages”® of ¥9E (4H) words each, numbered in hesadecimal from @ to F. The 4% words on each page
are numbered in hex from @28 to FFF. ROM addresses are specified as PWWN where P is the page and
WW¥ is the word number on the page.

Some of these 16 pages are preassigred for system use and canmot norwally be used. Ffny page
firom 5 to F can be used to contain a ROM, EPRONM or ProtofODER. Be careful fo have at most one
memory assigned to a page. PFssigred pages are:

Pages 91,2
Page 3

Fage &4

Page 5

Page 6
Page 7

ProtoCODERZ OWNERS MANUAL Page 36

contain the HP 41 operating system. GSebroutines contained in these

RiMs can be called by the user.

is not used by the HP 41C or CV, but contains the XFUNCTIONS ROM in the HP
$1CK.

is used by the HP Service Module which helps HP diagrose calculator
problems. If a ROM vesides here, it is automatically executed when the
calculator is turned om

is used by the HP Time Module. The HP 41CX also wses page 3 for another system
ROM.

is used by the HP 82143 and B2162 printers.

is used by the HP-IL.

Pages 8,R,C4E are normally used by HP wodules, The page number identifies which port

the module is in. Page 8 isport 1, Ais 8, C is 3, E is 4.

Pages 9,B,0,F are noreally used only when the HP module is an 8K (such as the REAL

ESTATE wodule). The second half of the ROM occupies page 9 if the module
is in port 1, page B for port 2, 0 for 3, and F for 4. MHeser HP modules
may be addressed to an odd page. The Auto Execute ROM is addressed in this
way which means that both it and a low-page 4K AOM can be in the same port.

XROM WORD FORMAT

Each 44 ROM contains several words used by the system in addition to the routires. The lowest
block of addresses in the RO cortain the XROW rusber and the catalog (FAT or Function Address
Table) information. MWords FF4-FFR may contain BOTO instructions for roubires for certain interropt
conditions. Normally these words should be zeroes.

e contains hex XROM nusber, e.g. word 6888 in the Printer (XROM 23) contains 01D,

¥l contains the number of routines contained in the catalog table, im hex.

wld2-x2@3 and each pair of words following contains the address of the next function.
These words arp interpreted as tab and 8ed. t is @ for microcode routines and 2 for
uger languape programs. abed is the offset from word 082 of the R0 containing the
catalog fable which points to the address of the first executable instructionm if the
routing is microcode, ard the address of the fivst byte of the LBL if the
program is user language. if a is mot zero, then the catalon entry points to a
location within ancther RIM. This catalog (Furction Address Table) information is
followed by two words comtaining 008,

¥aa+=¥FF3 contain programs and routines.

xFF4 contairs interrupt instruction executed during a PSE loop.

¥FFa contains interrept instruction ewecuted after each line.
4FFG contains interrupt instruction executed on wakeup with no hey pressed.
WFF7 contains interrupt instruction executed when the calenlator is turmed off.

«FF8 contains interrupt instruction ewecuted when a peripheral flag is set.

xFF9 contains interrupt instruction executed on wakewp by pressing the ON key.

#FFA contairs interrupt instruction executed on MEMORY LOST.

WFFB-sFFE cortains the AOM identification and revision number.

sFFF contains the AOM checksum. This is used to verify that the ROM contents are
correct. To calculate this checksua, see "ROM Checksum",

ProtoCODERZ DWNERS MANUAL Page 37

TONES IN MICROCODE

The HP 41 uses a short microcode routire located at address 160D to control the bender for all
TONE operations. Both the frequency and the duration of the tome are software controlled and are
predictable given the cycle time of the calculator. The system routine accepts 2 dipits of data to
specify the tore, The left-most bit is chopped off and interpreted as IMDIRECT if it is 1, TOME
instruckiors appear in memory as % ab where a is mormally @ and b is 8-9 unless created
syntheticly. The duration of the tone is determined by the cortents of ROM word 16F2 + ab. This
value is decremented in a leop as the tone is being heard until it becomes less than zero, which
terminates the tone. The frequency is determined by b, HP intended only ten tores to be used but
the TONE routine will Iocok up ROM data for all 128 tomes, This explains why some of the synthetic
tones changed in duration when HP updated RON 1.

To use the bender, store @ in the F lor T) register and store hex FF in ST, Tones are
created by turning F on and offy i.e., by swapping F and 5T, The number of swaps defines the
duration of the tone. The number of instructions between swaps defines the frequemcy. The
duration and frequency will also vary depending on the cycle time of your calculator. HNon speeded-
up calculators have a cycle time of about 158 microseconds per microcode instructiom,

Example: TONE 9 (SF @9) has a period of 3 processor cycles per loop # 2 loops per tone cycie #
158 microsecomds per cycle = 388348 seconds. Then the freguency is 1/.000348 = 1835 hertz. To
determine the duration, convert the ROM data word at I6F2 + @9 = 16FB which is 215 hex, to decimal,
then add one since the leoper decrements the number until it is LESS than zers. This number (334
decimal} is the nusber of times that the bemder is flopped wsing the F ard ST registers. The
duration of TONE 9 is 334 loops # 3 cycles per loop # .G85 seconds per cycle = .233 seconds,

Tones with a frequency between existing tomes can be created by varying the ratio of on-to-off
time of the bemder. In the above exaaple for TOME 9, the bemder is on for 3 cycles then off for 3
cycles, Try the same loop but leaving the bemder on for 2 cycles and of f for 4.

Rfter using the berder, you should store a 2@ in the F register. If you do not, then you will
get a high pitched tone whenever the processor is rumming or when a key is pressed.

KEYCODES RETURNED BY "C=KEYS"

The following hex keycodes are returned in digits 4-3 of C when C=KEYS is executed. If no key
was pressed then 03 is returned. A1l other digits of C are unaffected.

Em e [
@ [@ @ E
1@ 8 B
(R EX [T O
B X [E [
B [@ E
W @ @ [

ProtoCODER2 OWNERS MWANUAL Page 38

ROM CHARACTER TARBLE

The HP &1 recognizes two distinct character sets: modified ASCIT (listed in the HP 41 hex
tables) and the ROM character set. The ROM character set is used for most infermal operations
including coding ROM function names. The colom (3A) is displayed as a bowed star. The comma (£0)
and period {2} display as left- and right-facing geese respectively when used in a function name
ar in the display.

0123456789 RBCDETF
@ e ABCDEFGBEHIJKLEND
1 PORSTUVEXYIOCN]?
2 LI T I A SN S N R
3 1234656789 ¢: 3 {=})7
b abeode~TTXIRMFTL

FUNCTION NAMES, PROMPTING, AND NON—-PROGRAMMABILITY

dhen a function is executed, the cperating system checks the ROW words containing the first
two characters of the Function vame and the two words immediately following, The cataloeg tabie
entry for a microcode funckion {both mainframe and XROM functions) points to the first word of
executable code, The function name is listed in reverse order imsediately preceding the first word
of executable code, For example, CLA (hex B7) has a catalog entry at 1587 of @Dl which means that
the first executable word of CLA is at 18D1. The listing for CLA is:

190t 981 A

18CF ®aC L

1009 203 £

1801 S4E C-0

1802 168 REBN=C J{M}

1803 1A8 REBN=C &N}

1804 1EB REGN=C (D)

1805 228 REGN=C AP}

1806 3E@ RN
This shows how the function mame is listed in reverse order. The last character of the funetion
name is identified by adding hex 88 to the RIM character code. For CLA, add 8@ to the code for A
{881) to get 081 at address 18CE. The top two bits in the first two characters of the function
rame can be used to provide a prompk; these bits are 2eroes for CLA simce CLA requires no prowmpt.

EXAMPMLE ADD HEX TO PROMPT TYPE
ICHR 2CHR RCCERTED

CLA B0 lany} No prompt

CLp i ®e Pecept alpha (null input valid)

§IIE e 169 Accept 3 digits {4 with EEX pressed)
led 209 Focept mon-null alpha

CAT e 30 Accept 1 digit or IND or IND 5T

ST0 2E0 Focept 2 digits, IND, IMD 5T, or &T

RCL e 109 Accept 2 digits, IND, IND 5T, or ST

Fs? 200 200 Accept 2 digits, IND, or IND 5T
o8 lee Recept 2 digits, IND, or IND ST

LBL it Accept nomenull alpha or 2 digits

AED g 100 Accept non-null alpha, 2 digits, IND, or IND ST
! L) fAccept nom-null alpha or 2 digits

BT e 300 Recept norenull alpha, 2 digits, IND, IND BT, .awx

ProtoCODERS DWNERS MANLAL Page a9

Although STO {290, 8@@) and RCL (2@, 189} appear to be the same, they are not. 1f you use the
STD combinaticn, the calcelator will also accept + - # or / to change the instruction to ST+, ete.
Your intended instruction will change to §T+ if you use this combination, and will not execute as
you expect. This will also happen for the LBL, XEG, and 6T0 combinations.

Followirg are three examples. VIEW prompts will accept 2 digits, IND, IND 5T, or 57. CORY
will acrept an alpha string, including a null string. TOME will accept | digit, IND, or IND 5T.

1202 897 W 1185 @93 Y 120C Q85 E
1203 685 E 1106 010 P 120D BEE W
1204 109 1 1197 99F 0 12CE 20F 0
1205 218 ¥ 1188 103 C 1eCF 114 T

The operating system examines these ROM bits and executes a prompt (if the appropriate bits
are set) before the function is ewecuted, If the prompt accepts an alpha string, the inpeb data is
loaded into the O register, right justified, in reverse order, in ASCII, For example, ASN “COPY™
loads B0 02 82 59 52 4F 4C into O before the ASN routine is ewecuted. If the prempt is numeric,
the input data is loaded into the A register in binary. A muweric input of 55 returns 02 0 00 02
@0 @0 37 in A. Add 82 hex for IND: IND 533 returns 80 9@ €3 8@ 9@ 60 BT in A.

In PREM mode two other AOM words of a microcode functiion are examined by the operating system
{they are ignored in RUN mode). I the first executable word is @89 then the function is non-
programmable. This means that it esecutes rather than being entered as a program line. SIIE, RSN,
and CLP are norrprogrammable functions. If the first two executable words of a microcode function
are bokh 829 then the Function is nor-programmable-iemediately-ewecutable (KPIE). This means that
no function name is displayed amd that the funmction will nof NULL. The fumction is execubed whem
the key is pressed rather than when the key is released. FRGM, SHIFT, and back-arrow are NPIE
functions, If you hold the key to which an NPIE function is assigned, it will be ewecuted
repeatedly unless the function checks for key release,

ROM CHECHKSUM

If you wish o copy your ProtoCODER into an EFROM for permanence, you should calculate the
chechsum to store in word FFF of your EPROM. To do this, execute CH{SLM in the PCODER-1A EPRON
set.

The ROM chechsum iz caleulated by adding all 1@-bit words togethew, Each time 3 carey o
overflow into the ilth bit occurs, add 1 into your running sum. This is called a wraparound carry.
Subtract 1 from your final sum to get the chechsum value.

DISPLAY PROGRAMMING

To operate the display on the HP 41, you must select the display and deselect the RAM, To do
this, execute the system routine (GOSUB @7FG) or peripheral select (PFAD=C) with C digits c-@
contaiming 2FD then RAM select (DADD=C) with C digits 2-@ containing @18{hex). After selecting the
display, you can write data from the C register into the display or anmunciators and read data from
the display into the C register.

Each of the 12 character positions of the display is coded with 9 bits. The lefimost bit (bit
Bl, if set, specifies that bits 3-8 contain a special character in for & of the ROW CHARACTER
TABLE. If bit 8 is set and bits 5-4 contain anything but zero, a space will be displayed. Bits 7-
& defire the punctuation field of the character: 88 is no punctuation, 81 is a perioed, 18 is a
colom, ard 11 is a comma, Bits 5-4 specify which row (B-3) the displayed character is from in the
ROM CHARACTER TABLE, and bits 3-8 specify the character within the row.

ProtoCODERE DWNERS MANUAL Page 4R

Data can be read or written to the left or right emd of the display. Data is pushed onfe the
display when written. The rest of the characters are shifted fo wake room for the incoming data,
bhen data is read, it is pulled off the emd of the display amd rotated back irto the other emd,

Data can be read or written fo several fields of the display (bits B8-@, 7-8, 7-4, 3-9, or bil
B alore) in blocks of 1, 4, & or 12 characters. Only the specified field is modified: the
resaining bits are unchanged. When 4 or & characters are read, the character on the end of the
display becomes the least significant in C. During a weite, the rightmest character in G is
written first,

The annunciators are read and written from digits 2-@ of L. The bits are numbered as fhigh
order to low order}:

11=BAT 18=USER %8 B=RAD
T=EHIFT E=d =1 =2
33 2=4 1=PREM B-ALMHA

The following table shows all display imstructions and their actioms.
MNEMOMIC HEX ACTION &CHARS BITS DF C DIBITS OF C PER CHAR ROTATION

OATR=C 2F0 WRITE 1 BIT IN C PER ANNRNCIRTOR NINE

C=REEN T @38 READ 12 3-2 1 LEFT

REGN=C T @28 WRITE i2 3-0 1 RIGHT
G=REGN I 978 READ 1e -4 1 LEFT

REGN=C I 068 HRITE 12 7-4 1 RIGHT
C=REEN Y @B& READ i 8 1 LEFT

REGN=C ¥ 0P8 WRITE ig) 1 RIGHT
C=REEN X @F8 READ & -9 2 LEFT

REBN=C X O€8 WRITE B -8 2 RIGHT
C=REGN L 138 RERD 4 8-8 3 LEFT

REGN=C L 128 MRITE 4 &9 a RIGHT
C=REGN M 176 READ 1 BIT IN C PER RMNUNCIRTOR NONE

REBN-C M 1BE WRITE & -8 2 LEFT

C=REEN N 1B ?1?7?

REBN=C N 1R8 WRITE 4 §-0 3 LEFT

C-REEM 0 1IFE RERAD 1 -9 1 RIGHT
REBN=C 0 1EB WRITE 1 34 1 RIGHT
C=REGM P 238 READ 1 T-4 l RIGHT
REEN=C P 228 WRITE 1 1-4 1 RIGHT
C=REGM O 278 READ l g 1 RIGHT
REEN=C @ 268 WRITE 1] 1 RIBHY
C-AEGN + 2BA READ ! 3-8 i LEFT

REEN=C + 2RB WRITE l 3 1 LEFT

C=REGN a 2FB READ l 7-4 I LEFT

REEN=C a 2EB WRITE 1 T-4 i LEFT

C=REBN b 338 RERD l 7-0 4 RIGHT
REEN=C b 328 HWRITE | 7-2 2 RIGHT
C=REGN c 376 RERD | 7-0 2 LEFT

REGN=C © 368 WRITE 1 7-2 2 LEFT

C=REBN d 3B RERD 1 a-2 3 RIGHT
REEN=C d 3R8 WRITE 1 8-0 3 RIGHT
C=REGN e 3FA READ 1 B-2 3 LEFT

REBN=C = 3EA WRITE 1 8-2 3 LEFT

ProtoCODERZ OWNERS HANUAL Page 41

EXAMPLES OF PROGRAMS

"Y=17" sets up a 1 in the C register then branches to the system ROM routine that makes the
comparison.
9BF 7
B3l 1
83D =
218 ¥
@4E C=@ ALL initialize C
J5C PT=12 point to most significant digit of C
852 1C1 load a 1 so C row contains Floating point !
BOLONG jump to "X=Y?" native comparison routine
@50 1615

"+1" is a good example of the speed of microcode compared fo user code. When you execute “+1* the
caleulator starts counting from @, incresenting by I each loop until any key if pressed. The
resulting total is displayed and stored in X. By cowparison, enter the user promram: LBL 81, +
BT0 81, then fill the stack with all 15 (1, ENTER, ENTER, ENTER) and run it. “+1° will run about
125 times faster than the user language propram. (try it)

epl 1

D +

@4E C=B AL initialize counter

g SETDEC select decimal mode

230 C=C+i M increment counter

JC CH KB hkey pressed?

3F3 GONC #-2 if mot, loop back to ircrement

132 LDI load exporent of 9

@23 CN 9

18E AeC AL put the (nomenormalized) total in A for left chifting

35C Pr=12 cet pointer to most significant digit of mantissa

IRG A=-1 X decresent exponent

JFAASLH shift mantissa left until WSD not zero

352 88 PT if =till 2ero, them

3EB GONC #3 go back amd shift and decresent EXP again

@AE AC EX ALL get the normalized version in C

BEA REGN=C 3{X) store in user register X

308 RST KB wait unkil

3CC CHY KB key is

IF7 BIC #2 released then

ZE8 RTN return

ProtolUDERZ OWWERS MANUAL Page 42

"BUOSE" apperds a left-facing goose to the display, Use as a program lime in the program: CLA,
AVIEW, GOOSE, LBL @1, @, ENTER, @, 610 ®1. And they said it was impossible!

835 E

@13 5

eF 0

0eF 0

887 b6

it s0st execute systes routine to select display

@e¢ 2CFB

138 LD load left-goose hex code

&C CON 2C

308 RERN=C d write to left end of display

143 BOSUB execute system routine to deselect display

L

3ER AN ard go back

ADDITIONAL NOTES

SYSTEM STRARCHK: The nicroprocessor in the HP 41 uses an addeess stack to keep track of subroutine
calls, This stack will hold 4 address entries. Each time a GOSUB occurs, the address of the

second word of the 6OSUB instruction is "pushed™ onto the stack - it becomes the lowest enbry and

the other entries are moved up by one position. If there were already four addresses in the stack,

the top one is lost. Whenever a RTW oocurs, the bottow entry of the stack is copied into the PC

register and all other entries are moved down by one pesition and a zero is moved into the fop

stack position. When a SPOPND occurs the stack is dropped by one position amd the bottom address

is lost. When a C=BTK occurs the bottow address is copied into digits €-3 of C and the stack is

dropped by one positiom. Khem a STK=C occurs the stack is 1ifted by ome and digits 8=3 of C are

copied into the bottow position as an address.

SYSTEM STATUS: There are three major modes of the HP $1C: sleep, standby, and active or
rurming. In sleep mode the calculator is turped off. In standby mode the calculator is turned on

but is not ewecuting amy microcode. In active mode the caculator is running microcode. The systen

ROM (page @) eontain code to diffecentiate between sleep and standby sodes by the condition of the

C flag when address @929 is executed. Whenever the calculator is rumning a RPN {user language)

progranm, each RPN staterent is interpreted by nicrocode then executed as a pre—sel sequence of
instructions. The HP &1 processor does rot urderstand RAN without translation by the operating

systes

RELOCATION: Wen you write a microcode routire to be contained in an external ACM (or EPROY or
ProtoCODER) you should wake it relocatable, This means that a wser can plug your ROM into any port

and it will still work. IF you use absolute BOLONGS or GJSUBs to access routines within the A0N

then it will not function properly if you change its page addressing. There are several routines

in the operating system (pages @,1,2) to allow you to do absolute jumps or exscutes within your

ROM. The uost gereral purpose of these system rowtines is located at @0D7-Q009. 7o use it, pub 2

BOSUB @007 in your routine. after returnirg from this routine digits £-3 of [will contain {he

absolute address of the second byte of your GOSUE imstruction. You can then modify digits 32 Lo

contain any addrese within your AGM then ewecute a GITOC. Digit & contains the page rusbep where

the ROM is plugged in.

ProtoCODER2 OWNERS MANLAL Page 43

MOVING USER CODE PROGRAMS TO THE ProtoCODERZ2

The PCODER-1A EPAOM sat provides a program (COPYPC) to copy a user-code program into your
ProtcCODER. IFf you wish to do it mamually, or you want to modify what has already been entered,
the following lists all steps necessary.

Each ProtoCODER word is 18 bits, therefore it will hold | B-bit byte comtaining a user-code
instruction. The Ieftmost two bits are used bo signify the first byte of any instruction, and to
sark the beginning and end of the program.

The first two words, which precede the actusl program, are of the form rre and 208 rrr
specifies the mmber of registers meeded to copy the program into user mewory, including the last
register which may be only partially full. b specifies the number of bytes (1-7) to be lcaded info
the first register. When COPY is executed, it copies b bytes into the first register then copies
an even number of registers of bytes, thus insuring that the END within the copied program will he
on a register boundary: in the last three bytes of the last register. The program in ROM can be
pade PRIVATE by modifying the 2b@ word.

The user-code program starts immediately following these iwo COPY parameter words. Normally
it would start with a nlobal LBL (but this is not required), Blobal labels can be copied exactly
as stored in RAM. The catalog (Function Rddress Table) information at the beginning of the
ProtoCODER image must be changed to reflect ome or more new entries. The two-word FAT entry (see
"XAOM Word Format®) is 2ab and @cd where abod is the offset frow word @90 of the page containing
the ProtolDER to the first byte of the corresponding global label. Note that abed can specify an
address in any other R0M also. Each plobal label within a progras should be entered into the FAT
if the user wishes to access that label directly.

Instruction hewrodes (other than the exceptions lisied below) are copied ewxactly as they are
listed in M, The first two bits of the ROM word are set to @1 to signify the First byte of an
instruction, and set to 8@ for continuing bytes of a multibyte instruction.

The last three bytes of the progran are the END. The thivd byte of the END is coded as 2pp
where pp is the set of parameters normally associated with an END in user RAM, Ps suggesied by
Larry Laving, the easiest code to use here is 2290 (=unpacked, uncompiled, ronprivate, .EXD.).

All direct local BTO ard XEQ Functions should be stored with accompanying juwp distances, If
you do not compute the jump distance for two-byte G70s {or if the distance is greater than 127
bytes), store the jusmp distance as @ so that the system will search for the specified label. Jusp
distances must be specified for three-byte 6T0s and XEDs.

The jusp distance for two-byte 670s is stored in the second byte of the insbruckion. Count
the rusber of bytes from the secord byte of the GT0 to the byte immediately preceding the LBL,
Convert this number to binary, and add 128 if the jusp is forwards (to a higher program line
nusberl, to get the data byte to be stored as the second byte of the GT0. MNote that in ROM, all
numeric labels are non-functional (unless a label search is necessary), so that the jump distance
in the 670 need not necessarily point to the corresponding LB, Therefore, the LBL can be
completely removed. This is not recomsended since the progras will not furction properly when
COPYed.

The three-byte G705 and JEOs are coded as:

Dd dd 11 for GTO, and

Ed dd 11 for XEG.
ddd is the number of bytes (jusp distance) from the first byte of the instruction to the byte
immediately preceding the corvesponding LBL. 11 is the hex label number, plus 128 if the Jump is
forwards {to a higher program iine nusber). The jump distance must be computed: If you store @ as
the jump distance, the program will continue with the next program line,

ProtolODER2 OWNERS MANUAL Page 44

USEFUL ROM ENTRY POINTS

The following are a partial list of some useful entry points into the system ROMs. These
entry points are in the HP 4iC and CV, but probably remain the same in the CS. Each entry point is
followed the paoe number within the VASM listing ("s" is for page number in the supplesent), the
ahsolute address of the function, the hexcodes to call the subroutine {for GOSUR MC), and a brief
note about what the routine does. Comsult the WASM listings for emtry and exif parameters.

NAME PAG ADDR HENCODE

PURPDSE

ABTSED 100 ADI2 949,034
AD2-19 162 1887 01D, 060
ADRFCH @02 0004 011,000
ANOUT 956 O7SC 171,010
ARGOLT 310 2C18 41,080
ASCLED 311 2C5D 175,889
RSCTEL 309 2008 —,—
ASRCH 263 2605 315,698
BCDBIN 629 02£3 38D, 008
CLLCIE 214 20F@ 301,080
CPEAHD 050 0576 16D, 018
DECAD 288 29C7 310, R4
DV-10 165 1638 261, 360
ENCPEB 074 6952 149,604
ENLCD @59 7FG 309,01C
FLING 284 2328 @A, BR%
BENLNK 236 239R 269080
GENNUM @47 @SEB 301,014
BETLIN s@2 1419 965,050
GETPC 285 2950 141,004
BOLO 238 230D 341, AC
BOL! 238 2309 365,000
BOL2 238 23E2 389, 08C
BOLI 239 23EB 3AD, 06T
BOLONG 118 @FDA 369, 830
GOSUB 118 FDE 379,03C
BOSUBR 238 2302 349, 84C
BUSUB! 239 23DB 36D, 84C
EOSUB2 230 23E4 391,860
BUSUB3 239 23€D 385, 84C
BTBYT 287 2980 2C1,004
BTLINK 228 224€ 129,068
BTRAAD 67 0809 01,620
INBYT 289 29EE 399, BR4
INCAD 288 2OCF 33D, 8R4
INCAD? 288 2903 34D, BA%
INSLIN 299 294 301,804
INSSUB 237 2382 209, 06C
LEFTJ 201 2877 30D,@RC

Aborg partial key sequence

Floating point addition

Get user register

Dutput flags to armunciators

Output ALPHA register to display

Qutput RSCII character to display

Table of sperial display characters

Search for alpha label

Floating poirt to hewadecimal comversion

Enable and clear display

tet current program head

Decresment program address

Floating point division

Enable chip @ - user siatus registers

Enable display

Fird global program links

Generate program link

Hexadecimal to floating peint conversion

Bet current line mumber

Get current program counter

Goto within first IK block (followed by offset)
Goto within second 1K block (Followed by offset)
Boto within third 1K bloch (followed by offset)
Goto within fourth 1K block (Followed by offsst)
Boto within curvemt 1K block (Followed by offset)
Gosub within current 1K block (follewed by offsat)
Bosub within first 1K block {(Followed by offset)
Bosub within secomd 1K block (followed by offset)
Bosub within third 1K block (Followed by offsat)
Bosub within fourth 1K block (followed by offset)
Bet byte from RRM or RO

Get plobal program lirk

Get XRON furction entry address

Ingert byte into RPEM

Incresent pointer address

Incremert pointer addeess twice

Insert orogram lire

drapare for insertion into program

Left justify display

NAME PAG ADDR HEXCODE

ProtoCODERE OWNERS MANUAL Page 43

FURPOSE

MESSL 059 67EF 38D, 01C
MP2-10 163 18AD 135,060
MEXT 109 OSSO 141,038
NOSKP =13 1619 965,058
MULTH3 110 8ETC 1FL,038
NXTEYT 315 2087 91D, 8B4
PACKE 217 2092 009,080
PRCKN 217 2000 001,880
PCTOC 987 BeD7 35D, 040
PTBYTA 23% 2323 04D, 04C
PTLINK 234 231R 869, 04C
PUTPC 23% 2337 20D, 0AC
RIHED 052 B6GA 1A3, 018
RSTKD @05 0996 261,000
RGTSED 624 Q384 211,04C
SERRCH 249 2433 8CD, 299
SKP 513 162E €89,858
SKRLIN 295 2AF9 3E5,6A0
STMSEF 024 D37E 1F9, 800
TOSSIF 208 1FES 395,07C
UPLINK 228 2235 605,068

Append message to display (message data follows GOSUB)
Floating point multiply

Enter starmby mode

Evecute next line or say "YEE"

Test for null then execute instruction
Bet next byte in RAM or ROM

Pack then say “TRY ABRIN" ard return to systen
Pack then return to caller

Bet address of BOSUD

Put byte into RAM

Bave global program link

Save program counter

bet grogram head in ROM

Reset ard debounce keyboard

Reset some status bits

Search for nuperic label

Skip mext line or say "ND"

Get address of rext program line

Set wessapge fiag

Togoie SHIFT flag

Wove up ore global program 1ink

The above hexcodes can be changed from a GOSNE foo
BOSC by adding 1 to the second word;
GOLNC by adding 2 to the second words

BOLC

by adding 3 to the second word.

Subroutine calls to GOL®,GOL1, GOLZ,B0L3, GILONG, GOSUB, GOSUED, BOSUB1, GOSUBEZ, GOSIE3 are follwed
by one word comtaining an offset from the beginning of the specified guad (1K within the current
ROM). For example, GOSUB2 followed by 342 hew, called from address oxux will perform a GOSUB to
pldd + 808 ("gosub to guad 2%} + 342 = pB42.

A subroutire call to MESSL is followed by ome or more data words giving the characters to be

output.

fidd 283 hex to the last character.

A subroutine call to NEXT causes the calculator to go into standby sode, with the display

drivers waiting for a heypress.

If OFF is pressed, the calculater is turned off. Othersise the

system returns o the word following your GOSUB (if backarrow was pressed) or to the second word

following your GOSUB (if any other key was pressed).
and is the key assignment Keycode minus 1.

The heycode is returned in dipits 2:1 of N
Shift, if set, is included in the keycode. In

afdition, 5T wiil reflect the following:

FEET 3 if a rnumeric key was pressed,

FEET 4 if 2 row | or row 2 key was pressed,

FSET 5 if ALPHA was pressed, and

FSET & if SHIFT Was pressed.
Call MEXT with G=3 and the display mon-blank.

The hexcode for GOSUB 1878, which is the HIN within the ABS function - used to write data to

the ProtoCODERZ, is 1EL,R40.

	Cover
	Table of Contents
	Chapter 1: Introduction
	Chapter 2: ProtoCODER2 Programing
	Chapter 3: ProtoROM Instructions
	Chapter 4: ProtoEPROM Instructions
	Chapter 5: ProtoPARIO Instructions
	Chapter 6: PARID-IA EPROM Set
	Chapter 7: PCODER-IA EPROM Set
	Appendix 1: Prototech, Inc. Products
	Appendix 2: Warranty, Service, Assistance
	Appendix 3: PPC Information
	Appendix 4: Internal Bender Amplifier
	Appendix 5: HP 41C Microcode
	Class 0 Instructions
	Class 1 Instructions
	Class 2 Instructions
	Class 3 Instructions
	ROW Addressing
	ROM Word Format
	Tomes in Microcode
	Keycodes Returned by "C=KEYS" Instruction
	ROM Character Table
	Function Names, Prompting, Non-programmability
	ROM Checksum
	Display Programming
	Examples of Programs
	Additional Notes
	Moving User Code Programs to the ProtoCODER2
	Useful ROM Entry Points

