
PROTOCODER?2

QUNER™ © MBAMUAL

® Ew PROTOTECH. INC.

PR. 0. BGX 12194

=0ULDER, CO. 8B3IBE USA

(283) 439-3541

Chapter 1:

Chapter 2:

Chapter 3:

Chapter 4:

Chapter 5:

Chapter B:

Chapter 7:

Appendix 1:

Appendix 3: PPC Information

Appendix 5: HP 4IC Microcode

ProtoCODERZ2 OWNERS MANUAL

TABLE OF CONTENTS

Introduction oo vv 0 vu

ProtoCODERZ Programing « + « + vv sv ss vss 0 nv nx msn [RR

ProfoRM Instructions « « vv vv 4 4 vs vs vi nr ra ae

ProtoEPROM Instructions « «+ «+ vv ov i i i i in aaa

ProfoPARIO Instructions « « vv vv vv sv tsb ss a su sa mmm

PARID-IA EPROM Bat & + 4 vw vv 0 vw 0 a vs rere eee

PCODER-IA EPROM Sef + & wv vv vv i vd vis ve vt bi bias aan

Protobech, Inc. Products «ov vv vn tv ev bb ivi bers ea

Appendix 2: Warranty, Service, Assistamt@. » + vv vv vv ti vi srs ERE Eas

Appendix 4: Internal Bender Aaplifier « vo vs vu sv a sv sb sd a va ea

Class @ Instructions & «vv vv vs vs ss ms tn tv ava sn nn us
Class 1 Instructions +... 0. ere hare eee "es

Class 2 Instructions + «0 v0 vv a vs Par ara rea eae

Class 3 Instructions ov ov vw va sv mum a vu sa saunas ass
ROW Addressing « ov «v0 aw 0a a Sheba ee eee

ROM Word Format + sv os vo vw va vs bs tara ea
Tomes in MicroDodE ov vw vu v0 0 4 0 0 0 ba 6 th re aes

Keycodes Returned by "C-HEYS® Imstruckion . « vo vv v0 va 6 0 a 0 so 0
ROM Character Table . « vv vs sv vs nb su vu sa ma sn mm ma

Function Names, Prompting, Nor-programmability . . ov ov uw vv vv ous
ROM Checksum « 2 « «a vs Fe ras a sar ra rae ews

Display Programming « « o oo 0 0 0 v0 sd vd sas rasan EE EE
Examples of Programs . + ov oo 4 vo 4 #0 0 vs sa 1 a ba na mama
Additional Notes . . + vv vv vv vv vn ree Vera sana

Systew Stack
System Status
Relocation

Moving User Code Programs to the ProtoCODER2 « + & «vv 4 wa 5 0 5 5 0s
Useful ROM Entry Points « wv ov so ssa ts sa 0 0 0 1 0 a a 0 a nossa

ProtoCOOERS OWNERS MANUAL Page 1

CHAPTER 1: INTRODUCTION

ProtoSYSTEM OVERVIEW

The Prototech, Inc. ProboSYSTEM is a flexible and expandable interface between the HP 4iC
calculator and various peripheral and memory devices, The modular design of the ProtoSYSTEM allows
the user to expand his system as his needs increase.

The ProtcDODER2 is the initial device required to allow the user to add on any of the
peripheral boards. The ProtoCODERZ provides the user with 4896 words (4K) of user-alterable memory
which is addressed as an HP 4IC ROM, thus allowing the user to write programs in the calculators
assembly language ("Microcode'), as well as RPM prograes that are too large to fit in user memory.
It plugs directly into any of the ports of the calculator. The user can obtain additional blocks
of 4K of user-alterable wemory by commecting additional ProtcDODER boards, or:
—} Plug in HP Application modules and switch them on or off from the calculator under propras
control (ProtoR(N),
—} Plug in Hi~format EPROM sets containing custom programs - like having your own custom ADH
wade but much less expensive (ProtoEPROMI, or

—-} Interface to any J-volt level device such as a full-size keyboard, a light or power
controller, another calculator or a computer (ProtoPARIO).

The ProtoCODERZ provides control, address, and data signals for all peripheral boards. It
also contains a battery to maintain the contents of the internal wemery, ProtoSYSTEN hoards are
programmed from the keyboard or under program control by a sequence of two operations:
1) Create a Non-Normalized Number (NNN) in X which contains the appropriate programming code, then
2) Execute ABS.
The ProtolODER2 will examine the contents of the X register and use parts of it to determine which
ProtoSYSTEM board to program and the data to be programmed.

CONNECTIMG THE ProtoCCDERZ2

The ProtoCODERZ cable plugs directly into amy of the four ports of the HP 41C. Before
connecting the ProteCODERR fo the HP 41C, turn off the calculator. If you do net, you may damage
the calculator or the ProtoCODERZ. Bently insert the plug with the flat surface upwards, To
remove, pull the plug straight away from the calculator,

When the ProtoCODERZ is connected to the HP 41C, it uses the battery in the calculator. To
retain the contents of the internal ProtoCODER memory, sake sure that the battery is installed in
the ProtolODERZ when you remove it from the calculator.

CONNECTING PERIPHERAL BOARDS

The ProtoCOUERZ has a £5-pin bus connector that passes sipnals between the ProtoSYSTEM
peripheral boards. To plug a board onto the ProtolDERR, check that all pins are straight then
live up the pins into the socket, Press down on the left side of the 25-pin connector until some
of the pins wo into the lower socket. Then press the remaining pins into the socket.

POWER SUPPLY

The ProtoCODER2 contains a 3-volt battery (Duracell PX-30 or Eveready EPX-28) to maintain
internal memory. To install a new battery, remove the screw in the side of the ProtofODER2 box and
open the box. Elide the battery out from between the clips and replace with a new one (with the +
upwards). To insure that you do not lose data in the internal memory, it is a good idea to have
the ProtolODER2 plugged in to the calculator as you change the battery. The battery should be
replaced when it reaches 2 volts, The battery will last several wonths if the ProtoCODER? is
attached to the calculator most of the time.

ProtoDODERZ OWNERS MANUAL Page 2

CHAPTER 2: ProtoCODER2 PROGRAMMING

DEVICE SELECTING

The ProtoCODER? has its own addressing system so that several boards of the same type can be

cormected simultaneously and used independently, For example, two (or more} ProtoRO¥ boards can be

used at the same time by giving them different device select addresses which are set by switches on

each board, Up to 16 devices (but only 4 ProtoROMs) can be addressed directly using hexadecimal

addresses @-F, Fach address specifies a different board. The device select information is

specified in the X register by the user during board programming.

CREATING THE PROGRAMMING DATA

The user must set up data in the X register to program the ProtoSYSTEM peripheral boards.

This data depends on the board to be programmed. To program any ProtoSYSTEM device, bits 55,34,3,2

of the I register are always 1 and bits 5,4,1,® contain the device select code {bits 5,4 specify

the slot for the ProtoROM, The remaining bits contain the data required by the board fo be

programmed,
The X register and all calculator data registers consist of 35 "bits" of information. Each

bit can be either 1 or @ {on or off, set or clear). To save space when writing this data, these 56

bits are grod8@d into 14 blocks of 4 bits each, called nybbles or digits. Each nybble is

represented by a hexadecimal ("hex®) digit (0-9,A,B,C,D,E,F). The following table lists hex digits

and their binary equivalents.

BINARY HEX BINARY HEX BINARY HEX BINARY HEX

wae 9 fda 1 we 2 er 3

eee 4 ger 5 iy 6 ai 7
we a ie 9 we Af Bil B

He ¢C et 1D 1He E 1H Ff

By convention the bits are muwbered from 55 (leftzost or high order) to @ (rightmost or low

order). The digits or nybbles are numbered from 13 to 8.

EXAMPLE: X contains 82 9F EA 7B 14 BD 35 hex (spaces are for clarity) which in binary is:

2000 0010 1081 1111 1110 1018 0111 1011 0231 0109 0110 1101 @911 01d
Nybble 9 is E in hex which means that bits 39, 38 and 37 are | fon} and bit 36 is 9 (off).

WRITING DATA TO THE ProtoSYSTEM

To program any ProtoSYSTEM board, consult the appropriate section in this manual to determine

the 14 hex nybbles for that board and enter in ALPHA as a string of he digits (@-F). Then convert

this data to binary in the X register by executing CODE in the FCODER-1A EPROM set. Various other

versions of CODE are available and will also work correctly.

After CODEirg this data into the X register, execute ABS to write it to the correct

ProtoSYSTEM board. The ProtoCODER2 monitors the ISA line of the calculator and when it sees AES

eyecuted it picks apart the X register and uses what is needed to program the appropriate board.

This sequence can be executed from the keyboard or from a program and requires no external

EPROM to program the system; however, the PCODER-1A is very useful in aiding programuing of the

ProtoCODERZ,

The ProtoCODER? can also be programmed from microcode by setting up the data as above in the

internal C register (hits 55 and 5% ave igroved), then performing a GOSUB i@76. 1978 is the hex

address of the RTN in the ABS Function, therefore each ProtoLODERZ write operation requires only 3

instruction cycle tives (about .5 milliseconds).

ProtoCODER2 OWNERS MANUAL Page 3

INITIAL SETUP

fs shipped, the ProtolODER2 contains a dumey catalog containing the functions #PROTOCODER® and
#ENIH, You can plug in the ProtoCODERZ and run a CAT 2 to verify that it is there.

When you change the catalog livkage table in the ProtoCODERZ, you may need to set the page

select switches to 3 hex, since the contents of page 3 is ignored by the HP 41 operating system
(use page 2 for the HP 41CK). If you lose power, and the contents of the ProtoCODERZ becomes
garbage, set the page select switches to 3 (or 2) when loading a ROM image, and remember to clear
words FF4-FFA (see “XRDM Word Format). In setting up a ROM image, it is good practice to leave
58-108 words unused at the beginning of the ROM for catalog space to be used later as you add in
additional functions. Unused words other than in the catalog linkage table and the interrupt

locations need not be cleared.

SETTING THE SELECT SWITCHES

Each ProtolDDER has two sets of four switches. The set nearest the 25-pin cormector specifies
the deviceselect address (8-F hex) of the board. Determine an address that is not used by any
other ProtcSYSTEM board, convert to binary, amd set the switches left to right accordingly.
Usually these switches will all be set to @ (off) since support and programing Functions in the
PCOGER-1A EPROM set program the device with address 0.

The other set of switches specifies in which page (@-F hex) the ProtoDODER will be addressed
in the HP 41C memory {See “ROM Addressing®).

PROGRAMMING THE ProtoCODER

The first step in programming the ProtoCODER is to have a list of code to be entered, for
example the following fumction, CLY. Unless you are using the interrupt locations (addresses FF4-
FFA, they must all be set to zero. Instructions can be loaded wanvally or by using LODE in
PCODER-1A. Instructions are normally loaded one at a time; however, you can load and save blocks
of instructions by using BOOT and DUMP in PCODER-1A. This allows you to save microcode on a

cassette tape or any other medium you choose.
The data word format contained in X for the ProtoCODER is:

dd dx ux wx aa ax 55
d-contains the 10 bits of data plus hex C2@

"x*-igrored = hex F is easiest to enter
*a"-address where data is to be written (hex @88-FFF)
*s"-device select address of the ProtoCODER. Bits are coded as: xxss 1lss.

EXAMPLE: You have written a routine called OLY which clears the Y register to zero, and you wish
to copy it into the ProtoCODER. The listing is:

ADDRESS DATA WORD MNEMONIC
x100 ME C=2 ALL

wiel dna REBN=C 2 (¥)

wig 3E0 FN

Set the device select switches to @ then set wp the X register as C4 EF FF FF 18 OF 2C by entering
"CAEFFFFF108FBC" in ALPHA and executing CODE. "CAE" is the C=9 instruction {(B4E) plus hex COW;
¥102 is the address which should contain the £= instruction; the final OC is the device select
address and the enable bits, Mow execute ABS, This will write ome word to the ProtoCODER.
Repeat the above with “CROFFFFFIBIFEC" then "FEGFFFFFIB2FAC" to finish loading CLY. Set up the FAT
(Function Address Table) - see *XROM Word Format" ard then try executing CLY.

ProtoCODERZ OWNERS KANURL Page 4

USING THE ProtoCODER AFTER PROGRAMMING

After programming a valid ROM image into the ProtoCODER, it will function without user

intervention. It will appear to be an HP module to the calculator. IF the ROM image is not

correct them crashes or unpredictable results say occur {will occur! Murphy hides in all

ProtolODERs). To have a correct ROM isage, the FAT table at the beginning of the ROM (starting at

address 630) must be set up correctly and the interrupts (addresses FFA-FFA} must be zero lor used

very carefully).

ProtoCODERZ OWNERS MANUAL Page 5

CHAPTER 3: ProtoROM INSTRUCTIONS

ProtoROM PURPOSE

The ProtoRM expands the number of available ports for the user to plug in HP Application
Modules. Each ProtoROM attached allows the user to plug in four additiomal HP modules. Each
module can be switched on to or off from any port of the calculator under program or keyboard
control. The HP 41C can have at most four Application Modules on-line simultaneously, but the

ProtoRM will allow the user to have sore modules plugged in and switched on only when they are
needed.

PLUGGING IN HP MODULES

To insert a module, turn off the calculator then place the module into one of the slots in the
ProtoROM with the printing on the module upright and the ProtoROM printing upwards. Bently push
the module in until the extended module handle is flush with the ProtoROM box. Do mot force it.

To remove, grasp the module handle with your fingernail or a sall knife and pull straight out.

SETTING THE SELECT SWITCHES

Each ProtoROM has a set of four switches so that the ProtoSYSTEM can tell the boards apart

when mare than one is connected. The switches set the device select address (see Chapter 2). To
set these switches, determine an unused device select address (8-3 in he) them comvert to binary
and sat the switches left to right according to the binary address (off for & on for 1}. Older
ProtoPMs use all four switches. ProtoROMs for use with the ProtoCODER2 ignore the lefiacst two

switches.

PROGRAMMING THE PFProtoROM

Before programming the ProtoRDM, reread Chapter 2, The format of the data word to be created

in the } register is (in haw):
Cp xx xx nx XX 2% mS

“C" is hex C
"p" is the port ard on/off code:

p=8 to turn module off
p=1 to turn module on in port 1
p=3 to turn module on in port 2
p=3 to turn module on in port 3
pT to turn module on in port §

“x™ can be anything = hex F is easiest to enter

"wy" tells which slot of the ProtoROM to alter. Slots are numbered from 3 (nearest the 25-pin

connector) to @

s i5 the device select address which can be C (device = 8), 0 (for 1}, E (for 2), or F (for 3).
The ProtofM only acceots device selects of 8-3. Older ProtoROMs need a slight modification te

work with the ProtoCODERE - write to Prototech, Inc. for details.

The ProtoRDM will retain its programming until it is reprogrameed or until the ProtolOUERE battery

is removed.

ProtoCODERZ OWNERS HAMIAL Page 6

CHAPTER 4: ProtoEPROM INSTRUCTIONS

ProtoEPROM PURPOSE

The ProtcEPROM allows the user to plug in HP-format EPROM sets to the HP 41C and use them just
Tike HP modules, EPROM sets may contain user language programs, assembly lanpuage (microcode)
routines, and/or data tables, EPROMS provide an inewpensive aeans for the user to have his
programs available without using HP 41C memory, and allow the user complete control over the
calculator with microcode. Each EPROM set costs approximately $13 (4K) compared to about twice as
much for an HP module or custos ROM. In addition, there is no setup charge for EPROMs (several

thousand dollars for HP custom ROMs) - you just set up a file on a EPROM burver,

PLUGGING IN EPROMS

The ProtoEPROM will accept ome standard HP-format EPROM set which consists of 2 or 3 ERROM

chips. To insert or remove EFROMs, push the lever on the side of each of the 3 EPROW sockets
towards tha 25-pin connector. This releases the chips, and you can remove or change the chips in
the sockets, Place the chips in the sockets from right to left: U, Li, L2. The notch in the end

of the chip must point towards the 25-pin connector. When placing a 24-pin EPRON in L1 or LZ,
leave the top two rows inthe socket empty. When the chips are flat in the sockets, pull the
socket levers away from the 23-pin connector until the chips are locked into the sockets.

SETTING THE SELECT SWITCHES

Determine which page to have the EPROM addressed (See “ROM Addressing”). Convert this hex
page number to binary them set switches 4~3-6-7 on the ProtoEPROM to correspond tothis address.
For eyasple to address the EPROM in page E, set switches 4-3-6 on and switch 7 off. 8K EPRONs

occupy two consecutive pages (4-5, &7, 8-9, AB, C-0, E-F) and 16K sets occupy four consecutive
pages (4-5-6-7, 8-9-#-B, C-D-E-F), For BK or 16K EPROM sets, set switches 4-7 to the address of

the lowest page of the block.
After setting the address select switches, you need fo tell the ProtoEPROM what type and size

EPRO®s you are using. Switches 1-3 do this. Set them as:
Wl SM2 SW3 size chips
OFF IN IN 4K 2
OFF OFF ON 8K 2
OFF IN BK 3
ON OFF OFF 16K 3

Evample: To use the 4K 2 chip FCODER-1R EPROM set in page E, set switches 1-7 to 8111110 (off-on-

on-oreon=or=off), To use the BX 3 chip WFCROM-1B/IDEAL EPROM set, set switches 1-7 to 1011110 (om

off-oromron-on-off).

ProtoCODERE OWNERS MANUAL Page 7

CHAPTER S: ProtoPARIO INSTRUCTIONS

ProtoPARIO PURPOSE

The ProtoPARID allows the HP 41C user to interface to and from almost any 5 volt device,
providing 10 input lines, 18 output lines, and 2 output handshake lines, It attaches to the
ProtoEPROM/Protol0DER2 combination, amd looks like an BH ROM to the calculator. The lower 4H is
occupied by the PARIC-1A or some other EPRDM set, and the upper #K is interpreted as Input/OQutout
signals by the ProtoPARID. Although the PARIO-1A ERROM set is not mandatory, it greatly simplifies
programming and automates use of the ProtoPRRIO.

PHYSICAL CONNECTIONS

The three IC sockets on the ProtoPARID attach directly to the ProtcEPROM hoard, Flip the
EPROM socket levers forward and line up the pins on the ProtoPARIO sockets into the ProtoEPROM
sockets, then reach between the boards with a pencil or small knife and pull the levers back to
lack the ProtoPARID in place. In addition to this, the free wire on the ProtoPARIO must be
connected to V+ in the ProtoSYSTEM. W¥+ is available as the leftmost hole in the 23 nin connector.
The 4K controlling EPROM is plugged into the rightwost 2 sockets in the ProtoPARID, oriented the
same as for the ProtoEPROM. Set the ProtoEPROM select switches 1-2-3 to OW-DFF-ON, and set
switches §-5-6=7 to an even page.

fs shown below, two complete sets of data lines are available at the bottom of the ProtoPARID.

Each set is organised as 2 rows of holes centered .1" apart for standard connectors. The leftmost
12 holes of the upper row are (left to right) 10, II, I3, IS, 17, 19, Output Accepted, 08, 06, D4,

02, and 08. The lower row (left to right) is V+, 12, 14, 16, I8, Output Ready, 09, 07, OS, 03, 01,
and G¥D. All inputs (19-18 and OA) are pulled to GND with 100K resistors if unused. With two
coaplete sets of 1/0 lines, it is possible for the user to hook up two devices or to customize the
connector by using the unused pads to the right.

47a areah
asada)

Probe nel
© Jan OE]
PROTOTECH, IHC.

ip

Both inputs and outputs are buffered to minimize possible damage to the ProtoSYSTEM or
calculator from external signals (overvoltage, ete.). Rll inputs should be in the range 3.5-5.5
volts for ON and @-1.5 volts for OFF, and will reguire at most 1 vamp drive current per data bit.
Propagation delay time (and set/reset tie for DA and OR) is at most 180 nsec. OR can source .5

manp and the outputs 09-09 can source 1.75 mamp each, both at 4.5-5.5 volts. Outputs are latched
in two CMOS flipflop arrays: TACITH, T4CIT5. The OR signal is latched in a 4@13, and can only be

reset by asserting OA. The OR signal is provided for handshaking with devices that are faster than
the HP 41C. 1% does not prevent subsequent outputs from the calculator from being accepted.
Inputs are buffered through twa 4583 (70097) CMOS chips. All buffer chips are socketed for easy
replacement. R11 specifications given above are For W=5 volts and ambient temperature 250.

The BND line should always be connected to the external device orourd. The V+ output should
only be used through passive ooeponents such as switches back to IS-I0 since it is the requlated
power from the calculator which does mot provide much current capability. Mo external signal
should be connected to V+,

ELECTRICAL CHARACTERISTICS

ProtoCODERZ OWNERS MANUAL Page @

PROGRAMMING WITHOUT THE PARIO-1A EPROM SET

The PARI0-1A EPROM set provides various 1/0 functions for simplified use of the ProtoPARIO,
but is not required. The ProtoPARIC is programmed by using the CXISA (FETCH - hex 332) microcode
instruction. For the following discussion it is assumed that the ProtoEPROM board is addressed at
page E which places the ProtoPARID in page F.

In this arrangement, a fetch to addresses FOO@-F3FF or FORB-FFFF will return 000. A fetch to
any address FORO-FEFC which has the final digit @, 4, 8, or C will return I9-I8 in the exponent
field of the C register. A fetch to any address FBRI-FBFF which has the final digit 1-3, 57, 9B,
or D-F will return I7-IQ in digits 1-@ of C and @ in digit 2,

Outputs are generated by a fetch to addresses F40Q-F7FF. Add F402 to the 18-bit binary number
to be output. For ewample, to output 88d, do a fetch at F4BD. A fetch at FES4 will output 254
hex. Whenever an output is received by the ProtoPARIO, a flipflop in the 4813 chip (available as
Dutput Ready} is set. If OR was already set, the new output data overwrites what was previously
output. OR can only be reset to @ by asserting Output Accepted, This provides handshaking

capabilities with external devices that are faster than the HP 41C - see the interface for the TRS-
83 Color Computer below.

ProtoPRARIO INTERFACE TO TRS-80 COLOR COMPUTER

The following circuit diagram illustrates a possible interface between the HP 41C and the
Radio Shack Color Computer, The bus commections to the 74.584, 74532 and Intel 8255 are all
available at the ROM port on the side of the computer, Use the PARIO-1A EPROM for programming on
the calculator side. To initialize the interface, POKE #HFF43,152. This will set up the A port

and C7-C% as outputs from the calculator, and the B port and C3-C@ as inputs to the calculator on
the 8253, Input O7-D@ from the calculator to the computer with PEEK (#HFF40). Output 17-10 to the
calculator with POME BHFF4L, I where I is @-PS5 decimal, 09, 08, and OR are available as C5, C4,
ard C6 with PEE (&HFF42), 19, IB, and OR (C1, CB, £2) can be programsed by POKEing to LHFF42.

If you build this interface, test it carefully before attaching to the HP 41C. This circuit
is presented 25 an example only: Prototech, Inc. assumes no responsibility for the accuracy or use
of this information.

Parts required: T4832, 74LS@4, Intel 8255, 3-.1 uf bypass capacitors: I per chip.

SIGNALS TO TRS-E® COLOR COMPUTER ROW PORT BUS

_______B% R3 AZ SCT B/W RESET +5V GND AL M3 OT—IR

Bo
6 5 3% ® 2% 7 g 927——3

INTEL 8255
i112 13 37—48 t—4 16 15 14 25—I8

OR 09 08 O7—D% 03—00 OA I9 IA I7T—IO

SIGNALS TO ProtoPARID BOARD ON HA 41C

ProtoCODERE OWNERS MANUAL Page 9

CHAPTER 6&6: PARID-1A EPROM SET

This EPROM set provides the user with a variety of input and output functions to control the
ProtoPARI0:
A-XB
A-XD
R-¥H
0

ESCAPE
F-X
FETCH
BOHEY
LIsTU2
PACKS
PRLKT
READ
RERD1
READS
RERD7
READR
ROM
RVIER
STROE
ue
UNPACKS
UNPACK?
HATTNZ
WAITX
WRIT
WRIT1
WRITS
WRIT?

RITA
1-AB

1-AD
1-H
1-0

X{}REG
XEN
ME

converts the last 12 or less binary characters (8-1) in ALPHA into the exponent of X
converts the last 4 or less decimal characters (8-9) in ALPHA into the exponent of I
converts the last 3 or less hex characters (3-F) in ALPHA into the exponent of X
converts the last 4 or less octal characters {8-7} in ALPHA into the exponent of X

converts the newt to last character in PLPHA to be }= hewcode 20
converts flags 11-8 into the exponent of X
executes a CXISA instruction at address in digits 3-0 of I
uses ProtoPARID inputs to specify keycode from external keyboard
lists upper 2 bits of any RON page in EPROM format
packs 5 18-bit blocks of data into X
packs 7 B-bit blocks of data into X
immediate read of 19-10 into exponent of X
loops with wait inputting data into comsecutive registers {1 inpub/reg)
loops with wait inputting data into consecutive registers (3 inputs/regh
loops with wait inputting data into consecutive registers (7 inpubs/reg)

asynchronous looped read waits for non zero changed input {1 inpuf/ren)
displays PARID message (try it}
views first 3 digits of X, ¥, 2, T
provides alternate stacks by exchanging with sum regs (no normalize}
microcode subroutine used by LISTUZ
unpacks X into 5 registers each containing a 18-bit block of data
unpacks ¥ into 7 registers each containing an 8-bit block of data
loop until 19-18 is not zero then return input in exponent of X
loop until 13-12 matches exponent of X
immediate write of 09-02 from exporent of X
loop with wait writing 09-08 from consecutive reps (1 sutputfreg)
loop with wait writing 09-08 from consecutive regs (5 outpubs/reg)
loop with wait writing 09-08 from consecutive regs (7 cutputs/reg)

asynchronous write upon input equal to @
converts exponent of X to up to 12 binary digits in ALPHA
converts exponent of X to up to & decimal digits in ALPHA
converts exporent of X to up to 3 hexadecimal digits in ALPHA
converts exponent of X to up to & octal digits in ALPHA
converts exponent of X to user flags i1-8
exchanges f with absolute user register specified by Y

converts hex exponent of X to decimal mantissa of X
converts decimal mantissa of X to hew exponent of X

ProtoCODERS OWNERS MANURL Page 10

CREATING DATA IN X FOR OUTPUT

The functions A-XB (binaryl, A-XD (decimal), A-XH (hexadecimal), A-X0 lcchall, F-X, and ¥M-E
can be used to create data in the exponent of f. To use A-XB, A-XD, A-XH, or A-ED0, set ALPHA to
contain the number in the appropriate hase to be put in the exponent of YX:
"1010010" A-XB will set exponent of X to 852 hex
"1823" AND will set exponent of X to 3FF hew
hing A-¥H will set exponent of X to OTC hex
"wn R-10 will set exponent of X to 027 hex
F-X converts flags 11-8 as a binary number inte the exponent of X: if flags 11, 18, 9, 8, & 4 3
2 are clear and flags 7, 5, 1, @ are set then F-X will set exponent of X to ORS hex. XM-E converts
decival number in mantissa of X to hex number in exponent of Xi if X contains 64.0008 then IME
will set exponent of X to B38 hex.

DECODING DATA IM X AFTER INPUT

The functions X-AB (binary), X-AD (decimal), X-PH thewadecimal), X-RO (cctall, X-F, and XE-Y can be
used to decode the hex data in the expoment of X. To use £-AB, S-f0, X-AH or X-RO, execute the
function for the appropriate base and the exponent of X will be returred in ALPHA in that base, If
the exponent of X contains hex @FD:
X-AB will return "11111181" in ALPHA
1-AD will return "253" in ALPHA
¥-AH will return "FD" in ALPHA
}-A0 will return "375" in ALPHA
¥-F will set flags 7-2 and @ and clear flags 11-8 and 1
XE-H will return 253.0009 in X

INPUTTING DATA

Five functions are provided for inputting data from the ProtoPARIO: READ, READI, READS, READY, amd
REALM.

READ performs a single read without any waiting amd returns the input in the exponent of X. Digits
12-3 are returned as @ and digit 13 is 1. This causes X to look like ALPHA DATA so that it will

not be normalized.

READ! performs a set of reads, storing inputs in consecutive registers in the same foreat as READ:
10 23 02 02 @d @I II. X contains the destination registers: eee. bbb where eee is the last register
to be weitten and bbb is the first. Y contains the wait loop constant {8-995 which is counted
down before each read occurs, Experimentation will provide the actual time celay between reads.
The instruction can be terminated before completion by pressing R/S. If in a program, execution
will continue with the next instruction.

READS is identical to READ] except that 5 consecutive reads of 18 bits are stored per register
instead of 1. The data word is initialized to © then at each read the register is shifted 10 bits
to the left and the data is transferred into the bottom 10 bits, After 5 reads or if the ¥-loop
terminates, digit 13.is set to 1 so that the data will not be normalized. See instructions for

READ! above for X and Y register usage and loop termination

ProtoClDSRR OWNERS MANUAL Page 11

RERDY is identical to READexcept that 7 consecutive reads of B bits are stored per register
instead of 1. The data word is initialized to @ then at each read the register is shifted 8 bits
to the left and the data is transferred into the bottom 8 bits. After 7 reads or if the X loop
terminates, the data is written fo a user register, Note that all 56 bits are used so that a ACL,
VIEW, or Xi} instruction will morpalize the renister, changing the data, To get around this, use
UNPACKT or X{}REG so that normalization is avoided. See instructions for READ! above for X and V

register usage and loop termination.

REAM is identical to READ except that the Y register is mot used as a timing loop. Data is read
continuously, but is only stored ab 19 hits per register when the input changes from the previously
stored input AND is mon zero.

OUTPUTTING DATA

Five functions are provided for outputting data to the ProtoPARIO: WRIT, WRITL, WAITS, WRITY, and
WRITA.

WRIT provides a single write from the exponent of X without any waiting loop them returns. The
exponent of X should contain @-@2-09-08 07-0&-05-04 03-D2-Di-09.

HRIT1 performs a set of writes from the exponent of consecutive registers at | data output per
register in the same format as for WRIT, See instructions for READ! above for X and V register
usage and loop termination

WRITS perforas a set of weites from consecutive registers at 5 data outputs per register in the
sane forsat as for READS, See instructions for READ! above for X and ¥ register usage amd loop
termination.

WRIT? performs a set of writes from consecutive registers at 7 data outputs per register in the
sane foraat asfor READ. See instructions for READ above for X and Y register usage and loop
termination.

WRITA is identical to WRITL except that the Y register is rot used as a timing loop. WRITA outputs
one data Word then continuously reads data until @00 appears at the input, This can be used to
synchronize the calculator with an external by jumpering Dubput Ready to an input and asserting
Output Accepted after each output from the calculator has been received by the ewternal device.

PAUSING

Two functions are provided to introduce wait loops inte 1/0 control for the ProtoPARIO: HAITHZ and
WATTH,

HAITNZ continuously reads data from the ProtoPARID until the input is non zero. The input is
returned in X in the format 10 00 20 82 02 0 II. WAITNI can be aborted by pressing R/S which will
return X as © and continue with the next program lire (if any).

HAITY continuously reads data from the ProtoPPRID until the input matches the contents of the
exponent of X in the same format as for WAITNZ. WAITY can be aborted by pressing R/S.

ProtoCODER2 DWKERS RANLARL Page 12

REFORMATTING DATA

Four functions are provided to convert data between the 3 storage formats of 1, 5 or 7 data
words per register: PACHS, PACKY, UNPACKS, and UNPACH?. The repister formats are:
10 03 20 00 02 6D DD (1-1@ bit datum per register, in dipits)
dd D0 dd DD dd DD dd (¥-8 bit data per register, in digits, dd and DD are consecutive data)

9221 9200 DODD DOOD dddd dodd od0D DODD DOOD dddd dddd daDD DODD DIDD (5-19 bit data per register,
in bits, dd and ID are consecutive datal.

Conversion is dome between the X register and the first 5 (for PACKS or UNPRCKS) or first 7

(for PACKY or UNPACKY) statistics registers. Amy block of consecutive registers can be selected by
using the summation register function - see the HP HC Owners Manual.

MCKS compresses the data in the first J statisties registers which are in 1-10 bit data word per
register format into the X register in 5-108 bit data words per register format.

INPACKS reverses PACKS by separating the X register into the 5 statistics registers.

PACKT compresses the data in the first 7 statistics registers shich are in 1-19 bit data word per
renister format into the X register in 7-8 bit data words per register format, The upper two bits
in each data word are ignored.

UNPACKT reverses PACKT be separating the X register into the 7 statistics registers. The upper two

bits are set to 0.

USING AN EXTERNAL KEYBOARD

The GOKEY function is designed to accept any -bit mon zero input and map it onto the calculator
keyboard as a key press. Note that the input is accepted as a keycode, therefore to entar ALPHA

characters, you must first input the code that maps onto the ALFER key. The table below shows the
key press mapping for all 6-bit input combinations.

LEAST SIGNIFICANT DIGIT
sD ®& 1 2 3 4 § 6 7 8 39 A BCD EF

2 sum 1/% SOR LOE LM X-Y RDN SIN COS TAN XED STO RCL ENT CHS
I EEX - 7 B&B 9 + 4 5 6B # 1 USR PGW ALP ENT BSP
2 0 ONR/SEHFSST f f f COSTAN # + . =- .
3 a1 2 3 4 3 6 7 8 9 J 00852 TAN 3

¥-¥ is X{}Y, SOR is SORT, ALP is ALPHA, ENT is ENTER, BSP is back-arrow, SHF is SHIFT. Note that
in ALPHA mode, hex inputs of @1-1A will generate alpha characters A-I. Row 2 and 3 characters are
mapped as closely as possible to ALPHA mode inputs versus ASCII; some may need to be SHIFTed. Upon

execution, GOKEY will loop until any non zero input in the bottom 6 bits is received, then jump fo

the system routine to handle that keypress. GOHEY can be aborted by pressing R/S which will
continue with the next program line (if any).

ProtoCOOER? OWNERS MRMUAL Page 13

MISCELLANEOUS UTILITIES AND ROUTINES

ESCAPE will examine the character that is second from the right in ALPHA. If this character has a
hex code { 28, it will be replaced with a space (hex code 28). This may be used in conjunction
with DISASM on the NFCROM EFRON set to remove hex codes that would be interpreted as control codes
or escape sequences by an external printer.

FETCH executes a CXISA (FETCH) microcode instruction at the address given in digits 3-0 of X, The

result from the fetch is returned in X, and the fetched address is incremented and stored in L.

LISTIZ prints the encoded contents for the "U™ EPROM in an EPROM set, This is useful when
programming the contents of the Prototech, Inc, ProtoCODER (a user-prograsmable ROM emulator) onto
EPRD%s. To use, get the hex starting address (a multiple of 4) into digits 3-8 of ¥ then execute
LISTU2. A printer is required. U2 is a microcode subroutine used by LISTLR.

ROM displays a PARID message.

RVIEW displays the first 3 digits of X, ¥y 1, and 7, separated by dots. The registers are not
changed.

STHi}sum provides the user with multiple stack capability, By using sunREG (see the HP &IC
Owners Manual) any block of consecutive registers can be selected. Wen executed, registers T, I,
¥, ¥, and L are exchanged with the first § summation registers. No normalization occurs.

U2 is a subroutine used by LISTUZ (see LISTLR),

Y{)REG exchanges the X register with the absolute RAM register specified by the exponent of ¥. No
normalization occurs.

ProtoCODER OWNERS MANUAL Page 14

CHAPTER 7: PCODER-1A EPROM SET

This EPROM set contains many functions of general use, and several functions specifically for
use with the ProtoCODERZ, including microcode ard user language manipulation functions:

PCODER-1A
+

{
ADELX
AH
AND
BOOT
CHHSLM
CLRRAN
COBE
COPYRC
COPYXYZ
DH
DECOIE
DEC
DISASH
DUMP
BET
HD
INC
INIT
LOAD
LODE
LOOK
HANT
MNEN
NOT
Or
PROMT
RCLA
ROMLIST
ROMS
RELL
RiL%
R¥R1
RER&

SAVE
ST0A
SiL4
SRS

TOGF
YY

YOR
*H
HIDE

demonstrates a possible display use
demonstrates microcode speed
eachanges IND X with IND Y
deletes ¥ characters from left of ALPHA
programeable hex code key assignments
logical and of Y into X
loads a block of user registers into the ProtolODER2
computes and stores checksum in the ProtolODERZ
clears a block of words in the ProtolODER2
converts hex code in ALPHA to mon-normalized number in X

copies a user-language program into the ProtoCODER2
copies a block of ROM into the ProtoCODERZ
converts X from floating point to henadecimal
converts nonrnorsalized rusher in X to hex code in ALPHA
decrements X
disassebles a ROM word

copies a block of RDM words into user registers
loads a 4K ROM image from cassette to the ProtolODERZ
converts X from hexadecimal to floating point
increments X
initializes ProtoCODER2
user register byte examiner/loader
loads data into the ProtcOODERZ
ROM examiner
returns mantissa of X

provides microcode smemonic for disassembled ROM word
returns complement of X
logical or of ¥ into X
prompts for a hexadecimal input
recalls user register at absolute address
lists mnemonics of ROM to printer

computes checksum of any ROY page
rotates ¥ left 1 bit
rotates ¥ left 1 digit

rotates § right 1 bit
rotates § right 1 digit
copies any ROM page to cassette
stores data in user register at absolute address

logically shifts X left 1 digit
logically shifts X right 1 digit
togoles user flag

binary addition of ¥ into ¥
logical exclusive or of Y into X
subroutine for Mf
subroutine for LODE

ProtolODERZ OWNERS MANUAL Page 15

PCODER=1A FUNCTION INSTRUCTIONS

PCODER-1A {XROM 16,80): This function demonstrates the flexahility of the display. To execute it,
use AK to assinn "P48D" to a key then press that key.

+1 (XR0M 16,01): This function demonstrates the speed of microcode on the HP 41C. When executed,
it sets a counter to zero then continuously adds 1 to the counter until any key is pressed, +1
runs about 125 tiwes faster than the equivalent RPN program:

1
ENTER
ENTER
ENTER
LBL 1
+

B70 a1

{} {XROM 16,82): exchanges the contents of the two registers pointed to by X and Y. To exchange
user register RBZ with user register ROT:

2

ENTER
7
0

ADELX (XROM 16,03): deletes X characters from the left of ALPHA. If X is greater than the number
of characters remaining in ALPHA, then ALPHA will be cleared. Since ADELY uses the 24 character
ALPHA register, if X024, an error will result, To shorten “ABCDEFGHIJHL" to “EFGHIJKL":

"ABCOEFEHI TIL"
§
RADELY

AA (ROM 16,04): allows the user to assign any instruction hex code to any hey. If executed from
the keyboard, AK will prompt for 4 hex inputs which specify the instruction to be assigned, and

then proupt for a key to which the assignment will be wade, Ary hey assignable with ASN is also
assignable from the keyboard with AK. AK will display the vow and column of the key to be assigned
(negative for shifted keys, just as with ASN). When AK is executed in a program, the instruction
hex code is specified in the rightwost 4 digits of X — use CODE or PROMT. The Y register cortains
the hex code for the assigned key in the rightmost 2 digits. To determine this hex code, use OK to
display the row R and colwm C, but hold the key down until MAL is displayed. The digits of the

hex code to be stored will be C-1 and Ry or C-1 and R48 for a shifted Hey.

To assign "PCODER-1R" to the LN key (key #15), execute AK from the keyboard and enter A430 to
the prompts, then press the LN key. Mow press LN in USER sode to execute POODER-1A.

To assign "RCL M" to the shifted LN key {key #15) from a program, enter the following in PRG
modes

LBL "ASSIGN"

"49" 43-1, 9-140 (shifted) as above

CODE

ENTER

"ST" hex code for ACL M
CODE
JS

then leave PREM mode, press RTN them R/S. In USER mode, press shift-LM to execute RCL M.

ProtoCODERZ CWNERS FANURL Page 18

RMD (XROM 16,83): logically ands Y into X, bit by bit. Y is unchanged, and the result is placed in
¥. The resulting bit in X will be @ unless the corresponding bits in both X and ¥ were 12 then

the resulting bit will be 1.
"Te" (= binary 01110118)
CODE
ENTER
65" {= binary 01100101}
CODE

AND
LECODE

will display "eoe00000808964" = binary @...0 21108109,

BOOT (XROM 16,86): copies encoded data from user registers into the ProtoCODER2., Each ProtoCUDER
word consists of 1@ bits of data, therefore 5 ProtoCDDER words can be stored in 1-36 bit user

register. The 5 words (a, b,c,d,e) are stored as:
0201 8laa aaaa aaaa bbbb bbbb hbee cco cooe didd dddd ddee eeee eee

The leftmost digit is set to | so that the data is treated as an ALPHA string and not normalized,
If less than 5 words are contained in one register, only the leftecst portions of the register are
used - a first, then bye, d,e as needed.

Execute BOOT with:
I = READRY format of number of registers to use (e.g., for size = 275, set I = G.274)
Y = CODEd (rightmost & digits) sssmnn where sss is the first address in the ProtoCODER

to be loaded and rmn is the number of words to load
§ = floating point number specifying the first user register from which to load le.g.,

0.0000 or 1.0008)
When BOOT returns to the user, any ProtoCODER which had its device select switches set to 9000

will have been loaded, and:
= number of registers for use with next READRX

X = @ if all words specified by ¥ were loaded, otherwise it contains the new sssrnn to

be used as ¥
For an example of the use of BOOT, list GET in the PCODER-1A EPROM set.

CHHSUM (XROM 16,08): computes and stores the checksus of a RON page into amy ProtoCODER with device
select switches set to 0008, In keyboard mode, the user is prompted for the page for which the
checksus is to be calculated. To put a valid checksum in your ProtoCODER, first LODE address FFF

with @89, then XER"CHKSUM® and enter the page number of the ProtoDODER to the prompt, shen CHASM

is executed from a program, the page is specified by digit 12 (second from the left) of the }
register. The checksum stored in word FFF of the ProtoCODER will be returned in digits 2-9 of X.

CLRRAM (XROM 16,09): clears a block of words in any ProtoCODER with device select switches set to
3200. The address (@@-FFF) of the first word to be cleared is specified by digits 2-8 of X. The
hexaderimal number of words to be cleared is specified by digits 2-0 of Yo If Y(2:@) = QW or X +

Y } FFF, then the ProtoCODER will be cleared starting at word X, ending at word FFF. To ciear the

whole ProtoCODER, execute:
8

ENTER
CLARANM

which specifies starting address of @9@, and clear to end-of-page (FFF).

CODE {XRON 16,181: converts the hexadecimal number in ALPHA into a non-normalized number in X. To

create 4 full-man characters in X:
"10020001010101" {alpha data, character code = 81)

CODE

ProtolODER2 OWNERS MANUAL Page 17

COPYPC (XROM 16, 11): copies an APN (user language) program from user program memory into the
ProtoCODER with device select switches set fo 0009. No more than one ProtolODER can be loaded at
one tise. COPYPE will prompt the user to enter an alpha string giving the name of the program to
be copied, Press ALPHA twice With no input’ to copy the current program. Copying will begin with
line 01 of the specified (or current) program and continue up to the END. IF the specified program
is PRIVATE, then the version stored in the ProtoCODER will also be PRIVATE. All short and long
670s and XEBs will be compiled if possible. If a GTO is found to a nonexistent label or if a short
(2 byte) 670 is found with the label out of range (more than 127 words away), then the jump
distance will be specified as O. This means that this 610, when executed, will search for the
specified label, giving a NONEXISTENT error message for a 2 byte 670 with a missing label, or
continuing with the rest program line for a 3 byte 670, Therefore, the user should make sure that
all LBLs specified in 670s and XEOs actually exist,

In addition, the copy data will be set up so that the user can COPY his RPM program from the
ProtoCODER back inko user registers (unless PRIVATE).

COPYPC will attempt to enter every global LEL into the function address table at the beginning
of the ProtoDODER, There must be space for at least ome additional function when COPYPC is
executed, otherwise the error message "FUN TEL FULL" will be displayed and no loading will occur.

If there is space for at least one function in the FAT (Function Address Table) then each global
label will be lsaded into the FAT until it is full, or until there are no more global labels. No
error will occur, but any remaining global labels will not appear in the CATalon.

Before attempting to load a program, COPYAC will determine if there is enough room in the
ProtoCODER. If you used INIT to initialize your ProtoCODER, you may have noticed that two
functions wera loaded into the ProtoCODER: #PROTOCODER® and #END*. If the #END# exists as the last
function in your ProtoCODER, CORYPC will attewpt to load starting where #END® begins, and nove
#END# to follow the loaded program. If #END# is not there, COPYPC will prompt the user for
STARTADR - the address of the first word to be loaded in the ProtoCODER. Be sure to enter the
first digit as specifying the page (BF) where the ProtoCODER is located. If COPYRC determines
that there is not enough room from the #END® or from the STARTRDR up to address FF4 to load your
program, no leading will occur, and the error message "PCODER FULL" will be displayed.

If any additional space in the FAT exists after loading, and there is room in the ProtoCODER,
a new #END+ will be stored, This is also useful for the microtode programmer since it points to
the first unused location in the ProtoCODER.

Displayed messages:

NONEXISTENT - program specified does not exist or contains mo global labels

FUN TEL FILL - ne more space is available in the CATalon of the ProtoCODER

CODER FULL - insufficient space exists in the ProtolODER to load the entire program

STARTADR—=— ~ no #END¥ was found: enter a starting address where your program should
be loaded

NO PCODER - the page specified in STARTADR does mot contain a ProtoCODER or the device
select switches on the ProtoCODER are not set to 2000

PACKING - the specified program was not packed: COPYPC will pack it then continue

LOADING - no fatal error occured, and the program will be loaded

If the global label specified in COPYPC is not found, the program counter will remain where if
was, (Otherwise, if the load is not successful, the program counter will point to the END of the
current {or specified) program If the load is successful, the program counter will point to the
END of the copied program in ROM,

ProtolODER2 OWNERS MANUAL Page 18

COPYXYZ (XROM 16,12): copies a block of ¥ ROM words starting from address X and copying starting at
address I. To use it, determine where in RDM you wish to start the copy (BBRR-FFFF). Use CODE to
put this address in digits 3-@ of I. Next, determine the number of RON words to be copied. Use
CODE to put this hex mumber in digits 2-@ of ¥. If you specify ¥ as @, or I + ¥ would pass a page
boundary (FFF), then the copy will stop at location FFF of the page specified in 7. CODE the
first address to be loaded in the ProtoCODER into digits 2-@ of X. When COPYXYI is executed, any
ProtoCODERs with device select switches cet to 002 will be loaded with the ROM words specified.
To copy the system ABS function (which resides at addresses 1073-1078 hex) into the ProtoCODER
beginning at address BOO:

ern” start of ABS
DOE
ENTER
"5" length of ABS (1878-1073+1)
CODE
ENTER
“pe” ProtoCODER start address
Cone
copYNyYz

To copy a complete SH ROM plugged into port 4 (addresses EBB@-EFFF) into the ProtoCODER:
"EQBO" start of RON
CODE
8 specify copy to end of page
ENTER also specify copy to start at address 980 into the ProtoCODER
CoPYXYZ

A block of RM can be moved around within the ProtoCDDER with COPYXYZ, but resember that the copy
is performed one word at a time sequentially from the start to the end, therefore you can move a
block of memory down (to a lower address) by ore word, but to wove a block up (to a higher address)
by one word, you must copy it to an unused portion of ProtoCODER and then copy it to your desired

location,

D¥H (NRO 16,13): converts a floating point (e.q., 1.8000) number in X into a hexadecimal number in
X. The hex musber is right justified in X, and zero filled to the left, Before the conversion,
DIH converts the nusber in X so that it is mom-negative and an integer. If the exponent of the
number in X is 12 or greater, X is set to O. Example:

1848573

DH

DECODE
will display @...0FFFFF = 2 ## 20 - 1 = 1048575. D}H is the inverse function of HMD.

DECODE (XROM 16, 14): converts a non-normalized number in X into a hexadecimal number in ALAHA. To
examine the hexadecimal representation, i.e., the way the calculator stores, the floating point
number =, 8123:

0123
CHS

DECODE
to see 1230000000998, Digit 13 (=9) specifies that the number is negative; digits 12-3
(=1230000000) are the mantissa; digits 2-9 are the exponent - cosplemented since it is negative.
DECODE is the inverse function of CODE.

ProtoCODERZ DWNERS MANUAL Page 19

DECX (XROM 16,13): decrements the hexadecimal contents of the X register:
ie"
CODE

DECK
DECX
DECODE

will display @.,.010FF = 1181 - 2, DECY is the inverse function of INCX.

DISASA (XROM 16,16}: disassembles ROM words. The address to be examined is specified as a
hexadecimal number (B88Y-FFFF) in digits 3-@ of X (use CODE or PROMT)., DISASH returns with X
incremented by 1, digits 6-3 of Y contain the ROM address, digits €-@ of Y contain the contents of
that ROM address (@0@-3FF), and ALPHA contains "aaaa ddd c * where aaaa is the ROM address, ddd is
the ROM data at that address, and c is the character interpretation of the data, Use DISASM with
MEM to provide fully disassembled ROM listings with smemonics. ROMLIST will do this for you -
list it to see how to use DISASM with MNEM. Example:

9 starting AOM address 8080
DIGASM displays “0009 201 RB “ - contents at address 088Q of system AON

DISASM displays "0091 @8b F * - contents at address 0891
DISASM displays "022 2B5 5 * - contents at address 002

IMP (XROM 16,17}: encodes ROW data into user data registers. ROM words each consist of 18 bits of
data, therefore 5 ROM words can be stored im 1-56 bit user data register. The 5 words are stored

as;
2001 Baa aaa aaaa hbbb hbbb bboe coer coer dddd ddd ddee esee esee

The leftmost digit is set to 1 so that the data is treated as an ALPHA string and not normalized.
If less than 3 words are copied into one register, only the leftmost portions of the register are
used = a first, then b,c, dE.

Execute DUMP with:

¥ = CODEd (rightwost 8 digits) sssseeee whera ssss is the first ROM address to be dumped
and eeep is the last ROM address to be dumped,

X = floating point number specifying the first user register to be loaded (e.g., 0.02300
or 1.0000) - only the integer portion of X is used.

When DUMP returns to the user, user registers starting at the register specified by X and
continuing up to the last user register (if that many registers were needed) will have been loaded,
and:

¥ = 0 if all data words have been dumped, otherwise it contains the new sssseeee to be
used for another execution of DUMP, after the dumped registers are saved to cassette or magoards
(or whatever),

¥ = floating point of bbb.eee where bbb is the starting register and eee is the ending
register containing data - to be used with WRITRX.

For an example of the use of DUMP, list SAVE in the PCODER-1R EPROM set.

BET (ROW 16,18): prompts the user for a file name to be loaded from cassette into any ProtoCODER
with device select switches set to 0803. GET will load data files created by SAVE. The first
record is a header with the format:

10 82 11 1s 55 sn nn
where 111 is the number of records in the file, ssss is the ROM address (B@R-FFFF) from which the

original ROM data came, and rmn is the number of ROM words minus 1 contained in the file. This
header record and all data records are compatable with cassette files created by functions in
ASSEMBLER 3 (an Australian microcoding EPROM sat for the MLI), The file loaded by GET reed mot be

821 records las created by SAVE): GET uses the data in the first record to load the ROM data into
the ProtoCODER. nnn + 1 words will be loaded beginning at address sss in the ProtoCODER, The use
of BET and SAVE greatly simplifies the transfer of EPROM, ROM, and ProtoCODER images between two
users - no EPROM burning is necessary, and GET and SAVE are automated enough that very little user

ProtoCODERZ OWNERS MANUAL Page 280

intervention is required. If you wish to create cassette files other than of a full 4K ROM page,

use BOOT and DUMP. GET should be executed with as large a SIIE as possible to minimize the number
of copy loops required, and speed up the copy time.

HID (XROM 16,19): converts a hexadecimal mumber in X into a floating point number fe.g., 1.0088) in
X. If the hex number is greater than 2S4@BE3FF, roundoff errormay occur, and the exponent may be
negative, and in hex. If the hex number is greater than FFFFFFFFF then X will be returned as 8.

Example:
"FFFFF" = 2 #% 20 - | = 1948575
CODE

wo
to see 1048575, HID is the inverse function of DH.

INCX (XROM 1E,28): increments the hesxadecimal contents of the } register:
"{BFF"

CODE

INCX
INC
DECODE

will display 0...01101 = 10FF + 2. INC} is the inverse function of DEC.

INIT (XROM 16,21): initializes any ProtoCODER with device select switches set to 00d, INIT first
clears all 4 of the ProtolODER then prompts the user for a hexadecimal XROWS. Input the RDM
number you wish to use: B1-IF, INIT then prompts for the mawisum number of entries you plan to
have in the catalog of your ProtoCODER (82-3F). It is better to waste a few AON words by
overestimating this number, than to later try to move the ProtoCODER contents around to make more
catalog space available, INIT will then load a function called *PROTOCODER® as the first function
in your ProtoDODER, ard a function called #END¥ as the second, #END# is used by CORYPC (and
possible future software) to point to the last words in use in the ProtoCODER. You can change the
RM name (#PROTOCODER#) if you wish be examining locations x@@2-x@83 in the ProtofODER with LOOH.
These locations point to the first executable word of the first function. Use LODE to enter a mew
function name preceding this address - see "XROM Word Format" and "Function names, Prompting, and

Non-programability”.

LOADB (XROM 16,22): examines and sodifies user register contents. If is non-programmable, and can

be executed in PRGM wode. When LOADD is executed, it determines where the program counter is
pointing. If it is in a ROM program, the error message ROM will be displayed. Otherwise, LOADB
will begin at the current program counter location. The display will shows

Ferre Bb cr
where rer is the current register number (BB8-FFF} and b is the current byte within the register
(6-8). cc is the hexadecimal contents of that byte. For example, do a master clear then enter the
following program:

LBL"TEST"

510 38
DECODE .

then BST,BST to see @1 LBL"TEST". XEG"LOADB" to see R=PEE B= CO. "C8" is the first byte of the

LBL"TEST* instruction, which begins at the leftmost byte (B=E) of register BEE. Press S5T,S5T to
see R=0EE B=4 F3. "F5§" is the byte specifying the length of the global label fplus 1). Apain
8ST, 557 to see R=OEE B=2 54%, "54" is the ASCII character code for "T", the first character of the
global label, To change the *T" to a "B", press backarrow to tell LOADB that you want to change
the current contents of the byte displayed. LOADB will replace the "54" with two prompts to which
you can enter any hexadecimal value. To change LBL"TEST" to LBL"BEST", enter "42", the hex code
for "B". Mow press shift,SST,55T,55T,55T to get back to the first byte of the global label. Press
shift again to leave the backstep mode, then press R/S to leave LOADB. The display shows:

ProtoCODER2 OWNERS MANUAL Page 21

01 LBL"BEST". Mow XEO"LOADB® again. Examining the above program, you guess that the STO 30

instruction is about ! register beyond the global label {i.e., 1 register lower in user memory}, so
press BT0 and enter QED {= BEE - 1) to the prompts. The display will show R=0ED B=t $4. This "54"

is the last byte of the global label instruction. Press SST to see R=0ED B=3 91 - the hex code for
STO. Press 5ST again to see R=GED B=4 1E - the hex code for register 38, Press backarrow and
enter 75 to the prompts. Then press shift, 5ST, shift, R/S to see 82 STO M. Now press 5ST to see 83
DECODE, XEG'LOADD" to see R=QED B=3 M4 - the first byte of the XRDM code for DECODE. Press
55T, backarrom, @, A, shift, S5T, shift, R/S to see 83 CODE.
If you wish to insert a byte into user memory ard no null already exists at that point, just
position the program counter in LOADE using SST and BST then press ENTER. LORDB will insert a
register of 7 null bytes that can then be modified to whatever you wish. Lise PACK to remove these
nulls when you have finished.

LOADB moves the program counter as you 670, SST, or BST. Therefore, before you leave LOADB,
you should position the program counter to point to the first byte of an instruction. Also note

that the shift key is a direction mode - if shift is on (check the display), then pressing SST
will execute a BST and leave shift cet. If shift is off then pressing 55T will execute an SST and
leave shift cleared.

Allowable heypresses for LOADE:
backarrow - prompts the user for a hewadecimal byte to replace the current byte at the

displayed location,

ENTER - to insert a block of 7 nulls if ro null exists at the current location,
B10 - prompts the user for a hex register which will become the current location -

enter 8@-FFF. The program counter will be changed to point to the left-
most byte of the specified register,

OFF - turns calculator off. Also can be used to leave LOADB if you pressed back-
arrow and do not wish to alter the current contents of the specified byte,

R/S - exits LOADB. Use SST or BST to move the program counter to point to the
first byte of an instruction before pressing R/S,

shift = changes the direction mode for SST. If shift is on, pressing 55T will
execute a BST. If shift is off, pressing SST will execute a SST,

58T - moves the program counter one byte forward (shift clear) or one byte
backward (shift set) in the current program.

LODE (XROM 16,23): loads bytes into any ProtoCODER with device select switches set to 8889, When
LODE is executed, it will promot for “ADDRESS —". Enter the address of the first word of the

ProtoCODER (BBB-FFF) to be loaded. Then LODE will prompt for successive data words to load into
the displayed address, Input @0-3FF. To leave LODE, press backarrow. Example: After you used
INIT $0 initialize your ProtoCODER, and you have entered a few programs, you wish to change the
XROM number of your ProtoCODER. The XROM number is stored at word 99 in the ProteCODER.

YEB"LODE" then press O80 lor just R/S) to the ADDRESS — prompt. This calculator will now display
B00 ——=, Enter the new XROM number {e.q., 085). The display will now show @91 =—. Press
backarrow to leave LODE.

LOOK (XROM 16,24): displays hexcodes and ememonics of ROM locations. When executed, LOOK jumps to
the GTO routine and prompts you for an address to examine. Enter OROO-FFFF. LOOK will then
display either the result of DISASM (flag @ clear) or the result of MNEM (flag @ set). For
example, start with flag O clear. XEQLODK" and enter 8302 {or just press A/S) to the GOTO —

prongk, The display will show 0308 281 A - the contents of ADM word 0000, Press 5ST to see M001
B06 F. To see the mnemonic, press shift,SST,shift to return to location 0009, the press PAGN to
toggle flag @, and display the mmemonics. The display will be blank - the first line of an
absolute BOTO, Press SST to see GOLONG e189.

Allowable keypresses:
GTD - prompts the user for a new hex address to examine - B@OR-FFFF,

OFF ~ turns calculator off,

Pro%oCODER2 OWNERS FANUAL Page 22

PREM - toggles flag @, which specifies if the display will show the result from

DIGASM (flag © clear) or MNEM (flag © set),
R/S = exits LOOK,
shift - changes the direction mode of 8ST. If shift is clear, then 5ST sill execute

an 587. If shift is set, then 5ST will execute a BST,
S8T - moves the current location displayed forward one word (shift clear) or

backward one word {shift set).

Note that some 6OTD and BOSLE instructions are followed by ome or more words of data which can
appear as ramdow instructions to MNEM. Sometimes a data word will appear as a two-word imstruction
and make MNEM think that the following word, which is actually a valid one-word instruction, is the

second word of a two-word instruction. To display the true mwemonic for the second word, Just
press PRBW twice.

NANT (XROW 16,25): clears the exponent of ¥ to 883 - returns the mantissa of X to X. Example:

1234.56

KANT

returns 1.23456 - the exponent was set to zero. fs pointed out by Heinz Schaefer and others, MANT
can be used with XOR to isolate the exponent of X:

1234.56

ENTER

MANT

YOR

DECODE

to see 0,..03 - the exponent of 1234, 26.

MEM (XROM 16,26): provides mnemonics for disassewbler listings of ROMs. It uses data from the X
and Y registers as provided by DISASM. The first half of the mnemonic is returned in I; the second
half in T. L is also used for two-word instructions (BOTO, GOSUB, LBI). List ROMLIST for an
example of how NEM can be used.

NOT (XROM 16,28): complements the X register, replacing each @ bit with a 1 and each 1 bit with a

8. In hevaderiwal, each digit (@-F} is replaced by F minus the digit. Example:
"B123455783RBCD™
COLE
Nar
DEDODE

will display "FEDCBASA765432".

OR (XROM 16,29): legically ors Y into X, bit by bit. Y is unchanged, and the result is placed in
¥. The resulting bit in X will be 1 if either of the

corresponding bits in X or Y were 1, otherwise the resulting bit will be 8.
"33 {= hinary 83110911)
CODE
ENTER
"a5" {= binary 10008101)
CODE

OR

DECODE
will display 8...0B7 = binary &...0 12118111,

PROMT (XROM 16,39): provides the user with simplified hexadecimal inputting capability. FRONT will
examine digit 12 of the X register to determine how many prompt digits to accept for input (@-9).
It will then add that many overlire proapt characters to the display (shifting out part of the
display if there is mot enough room for the prompt marks) and wait for the-user to enter

ProtoCODERZ OWNERS MANUAL Page 23

hexadecimal inputs. The resulting inputs will be returned in the X register, right justified and
zero filled on the left. For you software hackers: IF digit 12 is 8,0,E, or F, PROMT will return
with no inputting and X=@, If digit 12 is A,B, or C, PROMT will prompt for 108, ll, or 12 digits
respectively. PROMT with digit 12 = C shifts 4 digits in at a time - the display looks a little
strange, but the input is correct.

Allowable keypresses:
any digit @-9,
any letter A-F = hex digits corresponding to decimal 18-15,
backarrow - fo delete the last digit entry. If you backarrow when no digits have been

input, PROMT will return X=8, and ship the rext line if executing a program,
Ris = returns with the input as it is, and fills the input with zeroes on the left

= hold R/S down to see the input as it will be returned,
OFF = turns calculator off - can be used to exit PRONT if no exiting is provided

by the calling program.
Example: The following program accepts 3 digits of input and complesents thew, Press backarrow to
quit.

LBL"SAMPLE
INPUT"

LBL 81
RVIEW
3
PROT
FS? 30 ship next instruction

11

670 01

RCLA (XROM 16,31}: recalls the contents of the user register with absolute address as given as a
floating point number in X. The recalled register overwrites the current contents of X. No
normalization occurs. Ewample:

SIE 091
168
ETC 28
CLST

281 = absolute address of user register A® = hex IFF
RLLA

to see 108 in the X repister.

ROMLIST {XROM 16,32): lists mmemonics of ROM words to the printer. When executed, ROMLIST will
proapt for START ——, Enter the starting ROM address to be listed - @@@Q-FFFF. ROMLIST will then

list ROM words sequentially from the input address until R/S is pressed. The output format is:

3333 00d © wes fosmoy
where 333a is the address, ddd is the data at that address, c is the character representation of
the data, and mssssswsous is the mnemonic interpretation.

ROMSAR (XROM 16,33): computes the checksus of any ROM page. In keyboard mode, the user is prompted
for PAGE =, Input the hex page - 8-F. When executed from a program, ROMSUM computes the checksum
of the page as specified by digit 12 of X. The 3-digit checksum is returned in digits 2-8 of X.

ProtoCODERZ OWNERS MANUAL Page 24

RELL (XROW 16,34): rotates the contents of the X register left by 1 bit. For example:
*Al234567TATAFED" = binary 1010 0001 2910 0011 A107 0181 2110 A111 1200 1031 6000 1111

1119 11

CODE

RXL1
DECODE

shows "42468ACFI2IFDE" = binary 9109 0010 0109 0110 1002 1010 1100 1111 0801 0318 2081 1111 1101

1811. Notice that the leftmost bit shifted around into the rightmost position. RELL is the

inverse function of RRL.

AXL4 (XROM 16,35): rotates the contents of the X register 1 digit (4 bits) fo the left. Esanple:
"1234"
CODE
ReL4
DECODE

chows 2...012340, The leftmost digit is rotated around into the rightmost position. RIL4 is the
inverse function of RXR4.

RERL (ROM 16,36): rotates the contents of the X register right 1 bit, The rightmost bit is
rotated around into the leftmost position. RXR1 is the inverse function of Rill.

RAR4 (XROM 16,37): rotates the contents of the X register right 1 digit (4 bits). The rightmost
digit is rotated around into the leftmost position. RARA is the inverse function of RNL4.

SAVE (XROM 16,38): prompts the user for a ROM page {@-F) and then a file name. The specified ROM
page is copied to cassette with the specified file name. SAVE creates an 821 record file. The

first (header) record is of the format:
18 80 33 5p 00 OF FF

where p is the page nusber copied to cassette. The next 820 records contain the ROM data at 5 RON
words per record in the binary format:

8001 9Baz aaza azaa bbbh bbbb bber cece cece dddd dddd ddee eeee esse
where a, byc,d,e are 5 consecutive ROM words, The last record uses only the a portion - bye,d,e are
all zero. This file format is compatable with the cassette file format as created by functions in
ASSEMBLER 3 (an Australian microcoding EPROM set for the MLI). GAVE creates files to be read into

the ProtoCODER with BET. SAVE should be executed with as large a SIZE as possible to minimize the
number of copy loops required, and speed up the copy time.

STOR (XROM 16,29): stores the contents of the Y register into the absolute register as specified by
a floating point number in X. No normalization occurs, Ewamgle:

SIIE #31

20
ENTER
31 = absolute address of register Ed = hex IFF
STOR
RCL 29 fo see 378.

SXL& (XROM 16,40): logically shifts the contents of the X register left 1 digit (4 bits). A zero

is shifted into the rightmost digit. Example:
"E34"

CODE
BRLY
DECADE

to see 3...012340,

ProtoCODERZ OWNERS MANUAL Page 23

SXR4 (XROM 16,41): logically shifts the contents of the X register right 1 digit (4 bitsl. A zero
is shifted irto the leftmost digit. Example:

234m

COE
SXR%
DECODE

to see 0...8123,

TOGF (XROM 16,42}: toggles the user flag as specified by the floating point number in the X
register. If the specified flag was on (=1) then TOGF turns it off (<8). If the flag was off then
TOSF turns it on. Example:

49
TOgF

to see the BAT anmunciator, Execute TOSF again to turn BAT off.

Y+Y (XROM 16,43): adds the binary rusber in ¥ into the binary number in X.Y remains unchanged.

Example:
"lier

CODE
ENTER
fed

CODE
HY
DECONE

to see B,..01431 = hex 110F + 322,

10R {XROM 16,44): logically exclusive-ors Y into X, bit by bit. Y is unchanged, and the result is
placed in X, The resulting bit in X will be 1 if the corresponding bits in X and Y were not equal

(@ and 1, or 1 and 8). The resulting bit will be @ if the correspording bits were equal (8 and 9,
or 1 and 1), Example:

"3" (= binary @0110011)
CADE
ENTER
"85" (= binary 1089181)
COE
f0R
ECODE

will display 0...086 = binary 0...0 10110118,

(XROM 16,45): is a subroutine used by AK to return from the keypress prompt. The system ASN
routine prompts for a keypress which specifies the ley to which the assignment will be sade. After

accepbing this keypress, the system does not return to the calling programy therefore, # was
necessary. #K can be used from the microcode level by putting the hexcode of the instruction to be
assigned into digits 3-0 of X and the coded keycode in digits 1-8 of the internal A register, then
executing #.

#00E (XROM 16,46): is a subroutine used by LODE. To use ik, CODE the hex value of the instruction

to be loaded into digits 2-@ of X, CODE the address where the instruction is to be loaded into
digits 2-8 of I. Then execute IE in a program. The address which was in I is incremented and
returned in ¥. Also, the next line of the programs is skipped, #0DE executed from the keyboard
will function properly but display the message "NO® when it returns.

ProteCODERZ OWNERS MANUAL Page 26

APPENDIX 1: PROTOTECH, INC. PRODUCTS

The following products are available from Prototech, Inc.:

ProtofODERZ is the main control bow that plugs into the HP 41C, It provides the peripheral boards
with data, control, and address signals. It includes one 4K ProtoCODER,

ProtoCODER provides the user with 4895 (4K) words of memory which is programmable in microcode (the
nachine language of the microprocessor in the caleulator), No external EPROM is necessary to
program the ProtoCODER; however, the PCODER-1A EPROM set provides many useful functions fo assist
in microcode programming.

ProtoEPROM allows the user to plug in one HP-format EPROM set containing user language programs
and/or microcode,

ProtoR0X allows the user to plug in up to 4 HP Application wodules. Each module can be
individually switched on or off into any port. The switching can be done from the keyboard or
under program control.

ProtoPARIO is a general purpose 18-bit input/output interface for the HP 41C, Applications might

include interfacing two calculators, or interfacing to a computer, light controller, full size
ASCII keyboard, or a voltmeter. With appropriate software, data from external devices can be
sampled and stored at up to 709 times per second with an unmodified HP 4IC. The ProtoPARIO is mot
enclosed in a bow, since the user will be required to makehardware connections to the circuit
board, It requires a ProtoEPRON.

NECROM-1B is an EPROM set containing many routines useful for programming the original ProtoCODER
{which uses the SIBN function to perform a write, whereas the ProtolODERZ uses ABS). It contains

the following functions which are similar to those in the PCODER-1A EPROM set: DUMP, CODE, +1,
PROMT, MONT, (}, BOOT, DISASM, RCLA, DECODE, AK, LODE, MAEM, ROMSUM, DEC-HEX (DMM), HEX-DEC (HD),
GTA (GTOAY, TOGF, LOAD (ODE), INIT, X+Y, OR, AND, XOR, NOT. It also contains:

NFCROM-1B displays message
, appends left goose to display
CL clears system flag 12
. appends right goose to display
ROM? displays ROM 8,1,2 revisions
CAT lists online ROMS or CAT2 starting at any page

LODB unfinished byte loader
MARINT returns INT{X)MODIO to X

BIUNP byte jusper
LEFT rotates display to left
DIS appends any character to display
DISTST display test
X=1? comparison

POW2 unfinished extended precision powers of 2
COPEE copies any ROM into ProtoDODER

8ST fast continuous single step

BST fast continuous back step

NFCROM-IC is an EPROM set which is identical to NFCROM-1B ewcept that the bugs in AK and HEX-DEC

have been patched.

ProtoDOER2 OWNERS MARLCL Page £7

IDEAL is an 6K EPROM set including the NFCROM-1B and 4K of additional routines for use with the
original ProtoCODER (SIGN {ype - not ARS), Of wajor importance to the ProtoCODER user are the
START and RESTART programs. START initializes the ProtoCODER., RESTART copies a user language
(RPM) progran from user memory into the ProtolODER, computing all the BTO distances, ete. For
users with a modified 82143A printer, barcode printing programs are provided. To aid in debugging,
two programs list all LBL, 670, XEQ instructions and all registers, labels and flags used. Various
other utility routines are also provided. This EPROM set is shipped as written, and with a xerox
of the instructions as provided by the authors. Prototech, Inc, has this EPROM set available for
sale only, and will not provide any support for the IDEAL partion of this EPROM set.

This ProtoCODER? manual is included with any ProtoCODERZ ordered, but is also available separately.

For a limited time, Prototech, Inc. will provide upgrading services to change your SIGN function
ProkoSYSTEM into a ProtolODER2 by adding appropriate jumpers on your board. If you have a

ProtoRDM, it will need a slight modification alsa. For details and gricing of this modification,
contact Nelson Crowle at Prototech, Inc.

ProtoCODERZ OWNERS MANUAL Page 28

APPENDIX 2: WARRANTY, SERVICE, ASSISTANCE

LIMITED WARRANTY

The ProtolODER2 and all ProboSYSTEM peripherals manufactured by Prototech, Inc. are warranted
against defects in materials and workmanship for a period of ninety (98) days from the date shipped
from Prototech, Inc. Within this warranty period, Prototechy Inc. will repair or at its option
replace a defective part at wo charge to the owner, provided that Prototech, Inc. is contacted
within the warranty period for shipping instructions. There will be a charge for repairs after the
warranty pericd has expired. Protokech, Inc. assumes ne responsibility for damages, either direct
or consequential, from the use of its products. Protofech, Inc. will have no obligation to modify
or update products after sale. This warranty does not apply to products damaged by accident or
pisuse, or to products that have been modified by anyome other than Prototech, Ine., and does not
apply to the 4013, 4303, 74C174, and TAC175 interfacing chips in the ProtoPARIO. This warranty is
sade in lieu of all other warranties, either express or implied.

SERVICE

If your ProboCOOERZ or any Prototech, Inc. product requires service, contact Prototech, Inc,
for instructions.

ASSISTANCE

If you weed technical or applications assistance relating to the use of the ProtoCDDERZ,
please contact Prototech, Inc. at (303}-439-5541 (no collect calls), or write to:

PROTOTECH, INC.
P. 0. BOX 12104
BOULDER, CO 88383 USA

ProtoCODERZ OWNERS MANUAL Page 29

APPENDIX 3: PPC INFORMATION

PIC is the Personal Programming Center which is an organization of users dedicated to personal
computing. It is the oldest personal computing group in the world. PPC publishes the PPC
Calculator Journal which disesenates information and programs for HP calculators. For information
on membership, obtaining back issues of the PPCCI, and information about the FRC ROM or PPC EPROMs,
send a 9x12" envelope with 2oz of postage or equivalent international postal coupons to:

PPL
2545 H. CAMEEN PLACE
SANTR ARR, CA S27@4

PPC Technical Notes is a publication of the Melbourre Chapter of the PPC. For subscription
information, send a self addressed envelope and international postal coupons to:

PPCTN
J. E. McGECHIE
PO BOX 512
RINGWOOD, VICTORIA 3134
AUSTRALIA

PPC EPROM sets are currently available froa:

JOE BELL
SURVEY CALCULATIONS JOURNAL
PO BOX 6674
SAN BERNARDIND, CA 92412

ProtolODER2 OWNERS MANUAL Page 30

APPENDIX #4: INTERNAL BENDER AMPLIFIER

This simple circuit can be built within the calculator to provide a large volume increase from

the bender output into an external speaker. The only parts you need are a miniature speaker (about
1 1/2 inches), 3 @M3306 transistors, a small plug and Jack, and some wire and solder. Total cost
is about $3, Mote that this modification is not supported by HP and will void your warranty.
Prototech, Inc. assumes no responsibility for the use of this information. If is provided for the
users reference only.

Remove the battery pack and all modules then remove the four screws from under the rubber pads
on the back of the calculator and 1ift the back of the calculator off, Locate the bender {i-inch
flat metal disk stuck onto the CPU) and unstick it, Therm are two wires connected to the bender.
The inner one on the sealler section of the bender is the bender output signal. Solder a wire on
top of the wire that is already there. Locate the plastic-copper battery contacts (where the
battery pack plugs in) and scrape a swall hole in the plastic at come location om both the BAT+ and
END contacts that will not get in the way of the battery pack. Solder a wire to each contact.
Locate a place to put the output jack. Radio Shack sells a plug and Jack combination that fits
tightly into the battery charger hole. You should now have 3 wires added on to your calculator:

bender output, BAT+, ard GND. Solder the 3 transistors together as shown below and attach the 3
wires and the jack, Riso wire the two speaker contacts to the plug, The transistors will fit
easily in the calculator along the side of the 1/0 ports. After verifying that you have wired
everything correctly, reassemble and $ry it out. Note that this does draw significantly sore
power than the berder alone. Transistors in the diagram are shown with their flat face forwards,

BATH

BENDER OUTPUT

ProtoCODER2 OWNERS MANUAL Page 31

APPENDIX S:zHP 41C MICROCODE

The HP 41*s brain (microprocessor) defines what can and carmot be done with the calculator by

having a specific set of instructions, These instructions are referred to as microcode, They are
stored in ROMs {Read Only Memories) or anything that looks like a ROM to the calculator, such as a
ProtoCODER or EPROM. The sequence of these instructions determines what the calculator will
actually do. It gives the calculator its personality that makes it act like an HP #1. The
calculator will function just as well with some other operating system or language and could be
changed to a completely different personality just by changing these ROMs. By using a disassesbler
program (such as ROMLIST in the PCODER-1A} you can list the contents of the ROMs in the calculator
to get a general idea of how things are done in microcode.

The processor of the HP 41 has a set of internal registers in which all of its operations are
performed. Registers A, B, C (different from the user stack a,b,c registers), M, and N are 56-bit
registers - the same size as user and stack registers. Arithmetic, logical, and input/output
operations are performed with R, B, and C. Mand N are used for temporary storage. The PC
register is 16 bits long and contains the address of the next ROM word to be executed. It is

normally incremented after each instruction is ewecuted, but can be modified by a GOLOWG, GOSUB,
BOC, BONC, or RTM instruction, Since PC is 16 bits in length, the calculator can address 63536 (2
16) locations.

There are also 4-8 bit registers (6, KEY, ST, and Tlor F}), 2-4 bit registers (P and 0}, 14
systea flags (13-8), a KB flag which is set when a key has been pressed, and a C (Carry or
Condition) flag, The 5 register is used for tewporary storage. The KEY register contains the
keycode of the last key pressed, the ST register contains system flags @7, and the T or F register
controls the bender to wake beeps, The P and @ registers point to a digit (13-2 from left to
right) in the 56-bit repisters, The active "pointer" (either P or @) is called R, Normally, only
one pointer is active at one time. System flags 7-8 can be accessed by using 57. System flags 13-
8 can only be accessed individually, Flaps 13-10 are dedicated for certain system uses: Flag 13
is set if a program is running; flag 12 is set to indicate a PRIVATE program; flag 1l is set to

enable a user stack lift at the end of an instruction; flag 19 is set to indicate that the program
pointer in the user stack register b is a ROM address. The C flag is set when a test is true, when

a carry occurs, and when the calculator is first turned on by pressing the ON key. It remains set
for one instruction, then is cleared.

All 56-bit registers are separated into several fields. The user can select which field

within the register is affected by an operation. The part of the register outside that field is
not affected. The 55 bits are separated into blocks of 4 bits, each called a digit or nybble.
They are numbered from left to right (high order to low order} as 13-8. Each digit or a contiguous
block of digits can be operated upon using the P and/or @ pointers. Other named fields are:
5 Martissa sign - digit 13
MH Mantissa - digits 12-3
X§ Exponent sign - digit 2

X Exponent - digits 2-0
ADR Address field - digits 6-3
iB Key buffer - digits 4-3

There are four classes of microcode instructions numbered as @, 1, 2, and 3. The class is
determined by the right-most two bits of the 18-bit instruction. The following tables list both

the HP wremonics for microcode instructions and the mnemonics first published by Steve Jacobs (PPC
#3338) in PPC ROM LISTINGS 2. The HP mmewonic is listed followed in parenthesis by Steve Jacobs'
memonic. If you examine HP microcode listings you will Find instructions that are not listed
below. These instructions are actually macyos in the HP assembler to simplify the programming,
Ai macro is an instruction which has no meaning to the microprocessor, but which is replaced by a

sequence of 1 or more instructions that the microprocessor does understand. For example, the
instruction "C=A" is not listed below because it is a macro. When the HP assesbler encounters
"CA" it replaces it with the sequence "AC EX®, "A=C".

ProtoCODERZ OWNERS MANUAL Page G2

CLASS @ INSTRUCTIONS

There are two types of Class @ instructions: parametric and special. The parametric
instruction hex codes specify a field or register upon which the operation will occur:

Sp=@ (CLEF p)
Sp=1 (GETF p}

\p=1 (FEET @
LEp (LDER- pl
W=p (= p}
Psp {R=p)
SELPp {SELP p}
REEN=Co (WRIT p)
Fpl (Fp)
C=REENp (RERD p)
RCRp (RCA p!

Clear system flag p
Set system flag p
Set C flag if system flag p is set
Lead p into C at PT, decrement PT
Set C flag if pointer equals p

Set selected pointer to p
Transfer control to peripheral p
Write C to peripheral or memory
Set C flag if peripheral flag set
Read C from peripheral or memory
Rotate € right by p digits

Hex codes for Class @ parametric instructions are:

04 EC PT (R=R-1)
IC ING PT (R=Re1)
058 6 (BC BR, +)
098 C=6 (C<6 OR, +)
008 CG EX (COG @R,+)
158 MC {MC ALL)
198 C=M (C=M ALL)
108 MC EX (COM ALL)
250 F=ST (T=5T!
298 STF (§T=T)
208 FST EX (STOT)
58 STC (STC X)
2398 CST (C=ST X)
308 CST EX (COST)
820 SPOPND 1X0) G0)
060 FONOFF (PONFF)

InSTR p= 1 2 3 4 3 6B 7 8 910 1 12 13 KIS
MNEMONIC {T) (2) (Y} (XD AL) 4) (ON) (DO) (P) (@) (+) (a) (Bb) de} {d} {e}

1] 304 304 204 004 B44 0B4 154 204 104 244 OCH 184 344 208 — —
Sp=1 388 398 200 G00 P4H 088 150 208 188 248 OCA 188 358 208 — —
Ep 38C 30C 26C 02C @4C OBC 14C 28C 18C 240 @CC 18C 34C 2C — —

LCp 010 050.990 200 110 150 192 100 210 250 290 209 310 338 3% 309
W=p 30% 314 214 014 054 094 154 294 {14 254 0D4 194 394 204 — —

fT=p 39C 31C 21C 81C OSC 09C 15C 23C 11C 250 end 19C 35€ 20 — —
SELPp JAG 324 224 004 054 OR4 164 PA% 124 264 OEG 1R4 364 2E4 LEG 364
REGN=Cp 28 068 AG BEB 128 16A.1A8 1EB 228 268 RE 2ER 32A 368 3A 3EB
Fe=l 3AC 32C 22C eC 9&C ORC 16C 2AC 12C 260 QEC 1AC 36C 2EC 1EC 3EC
C=REGNp @3B 78 PBA @FB 138 178 1BR 1FB 238 278 2BB 2FA 338 378 3BB IF8
RERp 3BC 33C 23C 03C O7C OBC 17C 2BC 13C 27C OFC 1BC 37C 2FC IFC 3FC

Hex codes for Class special instructions are:
HEX MNEMONIC DPERRATION

3C4 CLR ST (5T=2) Clears ST and flags 7-8
ICH RST KB {CLRKEY} Clears KB flag
3CC CHE KB (7KEY) Set C flag if key pressed

Decrement current pointer

Increment current painter
Copy digits R,R+1 from C into 6
Copy B into digits R,R+l of C
Exchange & with digits R,R+l of C
Copy C into M
Copy M into C
Exchange M with C
Copy ST into F
Copy F into ST
Exchange F with ST
Copy digits 1,@ from C to 57
Copy ST into digits 1,@ or C
Exchange ST with digits 1,8 of C
Drop return stack to convert BOSLE te BOTD
Bo to standby mode

ProtoCODERE OWNERS MANUAL Page 33

Class @ special instructions hex codes, continued:

HEX MNEMONIC OPERATION

0AR SEL P (SLCT PM Select P as the active pointer
@E@ SEL @ (SCT © Select @ as the active pointer
120 7P=0 (7P=0) Set C flag if pointers are equal
168 7LLD {2LOWEAT Set C flag if low battery
1A2 CLRABC (A=B=C=0) Clear registers A, By C to zero
1E9 GOTOC (GOTO ADR) Copy digits 6-3 of C into FC

C=HEYS (C=KEY KY} Copy KEY register into digits 43 of C
260 SETHEX (SETHEX) Use hexadecimal arithmetic
2A0 SETDEC (BETDEC) Use decimal aritheetic
269 DISOFF (DSPOFF) Turn off display
328 DISTOG (DSPTOB) Toggle display off to on or on to off
368 KTN C {7C RTN) If C set then return from subroutine
3A RTH NC (INC RTN) If C clear then return from subroutine

3ER ATN (RTM) Pop stack into PC for subroutine return
870 W=C (N=C ALL) Copy C into N

252 C=N (C=N ALL} Copy N into C
OF@ NC EX (NOC ALL) Exchange C with N

132 LDI {LDI S80 Load next ROM word into digits 2-0 of C

178 STH=C (PUSH ADR) Push digits 6-3 from C onto return stack
1BS C=5TK (POP ADR) Pop return stack into digits 6-3 of C
238 BOTOKEYS (BOTO KEY) Load digits 4-3 of C into lower B bits of PC

£70 DADD=C (RAM SLCT) Use dipits 2-@ of C as RAM address
2F0 DATA=C (WRITE DATA) Write C to peripheral or memory
338 CXISA (FETCH SEX) Load digits 2-8 of C from ROM address ADR of C

370 C=C OR A (C=C OR A} Logical OR of C with A
3B@ C=C AND R{C=C AND A) Logical AND of C with A
3F@ PFAD=C {PAPH SLCT) Use digits 2-8 of C as peripheral address

09 NOP (NOR) No operation

The following hex codes are not used by the basic HP 4I1C operating system:
34, ¥74, xB, ¥F&, x18, 838, 1FD, 280,102, 200, 300, x44, x80, x00. Some of these hexcodes are used as
instructions for HP-IL and for page switching within the HP &1CX,

CLASS 1 INSTRUCTIONS

Class 1 instructions are two-word instructions which perform an absolute address GOTD or

BOSUB. The first word contains the least significant 8 bits of the address, followed by 81. The
second word contains the most significant 8 bits of the address, followed by pp, which is:

pp=0@ GOSUE {or NC XQ or GOSNC) Ewecute subroutine if C is clear
pp=B1 BOSC lor 7C XO) Execute subroutine if C is set
pp=12 EBOLONG (or INC BO or GOLMC) Goto ROM address if C is clear
pp=1l GOLC {or TC GOD Goto ROM address if C is set

For example, the hex code for GOLONG 6232 (MEMORY LGST) is:

0911 0810 81 = 809 for first word
$200 2018 10 = BPA for second word

ProtolUDER2 OWNERS MAMUAL Page 3

CLASS 2 INSTRUCTIONS

Class 2 instructions are used for arithmetic and logical operations. Arithsetic operations
are performed in hexadecimal or decimal depending on the last mode operation (SETDEC or SETHEX}
evecuted. In DEC mode, all operations are performed on digits 8-9 (A-F work also, but not in the
expected manmer). In HEX mode, all operations are performed on digits 8-F. The C flap is set if
the operation performed causes the most significant digit in the selected field to exceed 9 {in
DECY or F {in HEX), or if the result causes a borrow (result is less than @).

MEMONIC OPERATION HEX CODE IN FIELD AND DIGITS OF C AFFECTED

PTX WAT AL PG XS NM 5
BPT 22 PT-2 132 PO 2 12-3 13

A= Clear A 032 205 000 RE 012 iE 81A RIE

B= Clear B @22 026 02h OE 932 036 @3n N3E

C= Clear C 852 C46 O40 OYE 052 O56 @SR OSE

AB EX(AB) Exchange A with B 862 OE ORR GEE 072 O76 ATA OVE
BR Copy A into B 082 086 OAR @BE 092 0% 0% SE
AC EX{ROC) Ewchange R with C 0A2 OF OAR GRE @D2 eG 9A OBE
c=B Copy B into C oC2 oC6 OCR OCE QD2 0D6 ODA ODE
BC EX(B{)C) Exchange B with C QEC ©UE6 OER OEE WFC OFF OFA OFF
AC Copy C into A 162 106 100 ‘108 112 116 1A LIE
f=B Add B into A {22 126 120 12€ 132 13h 13A 13E
AR Add C into @ 142 146 148 14E 152 136 15A I3E

FL Increment A 162 166 1B 1BE 172 176 178 I7E
=i-B Subtract B from A 182 186 18M 18E 192 1% 1%@ ISE

A=f-1 Decrement A 1A2 1A 1AR IRAE 1B2 IRE IBA 1IBE

A=h-C Subtract C from A iC2 1C6 1CA ICE 102 106 iDA IDE

C=CiL Double © {E2 1E6 IER 1EE IF2 IFE IFA IFE

C=Ril Add A into C 202 206 200 ME 212 216 2A 21E
C=C Increment C 222 206 22m ZF 232 236 23 £3
C=C AC into C 24 286 260 24 23° 256 25 SE
0=C-1 Decrement C 262 266 2G 2GE 272 2% 2M 2k
C=C Complement C 2B2 286 2BA 2BE 292 2% o29A ASE
L=-C-1 95 or F's complement C 2A2 2A6 2AR 2AE 2B2 2B6 2BR BE
li) Set C flag if Brot @ 202 206 20R 2CE 202 206 2A 2DE
CHA Set C flag if Crot @ 2E2 2E6 2EA BEE 2F2 Fb off FE
RC Set C flag if ALC 32 306 3B 20E 312 316 3A 3IE

MiB Set C flag if A(R 32 36 32 PE 33 33 BR OEE

R40 Set C flag if Anot @ 342 346 244 246 332 356 5A 3X
THC Set C flag if Arot =C 362 366 36A 36E 372 376 3A 37
A ER{RSHFA) Shift A right 1 digit 382 386 JOA JME 3% 3% 39M IE

B SR{ASKFB) Shift B right 1 digit 3AP 3R6 3PAA 3AE 382 386 3BR SBE

C SR{RSHFC) Shift C right | digit 3C2 306 3CA 3CE 302 306 3A 30E

A BLILSHFA) Shift A left 1 digit JEP 3ER JER 3EE 32 IE IFA IFE

ProtoCODERZ OWNERS MANUAL Page 3

CLASS 3 INSTRUCTIONS

Class 3 instructions allow the program to jump up to B3 words forward or backward from its
present location. The Mnemonics are GONC (or GOTO or JNC) amd GOC for JC). In assembler listings

the GONC is followed by a label. In disassembled listings the BIMC is followed by ™%+pp" or "4-pp”
which indicates a junp relative to the current instruction address (*2*}. GONG branches if the C

flag is clear. BOC branches if C is set.

DISTANCE JNC- JC- INC+# JC DISTANCE JNC- JC- ONC# JC+
+ or40l 3FB FF O08 00F F- orH2 33 IFT 013 AF

03 ER 3EF 01D OIF e JE3 37 023 a7
6 3Dp IF 02D eF 6 303 307 833 a
oF 3B CF 3p OF 83 303 307 3 ear
9 Bb IBF eB OF oA 383 37 ST
BB IAB IF 0B BF 8 3A3 3AT 083 ET
20 398 3%F OER BEF 8 393 397 em en
OF 3BB 3BF OTB OF 10 383 387 a3 ew
11 378 37F 8B O5F 12 373 37 0 ow
12 368 I6F 098 OF 14 363 367 eA3 oa7
15 33 IF of off 16 333 357 ©B3 ©B7
17 3B 34F OH BF 18 343 347 ec3 a7
19 338 IF OLB WF IR 333 337 ep3 en?
1B 3B 3&F op OOF IC 33 327 eel od
10 3B 3F OED WEF iE 313 37 oF oF7
IF 3B 30F WP OF 28 303 37 13
21 2FB 2FF 108 1OF 22 23 F713 17
23 2B oF 1B IF 2% EI 2&7 123 127
25 20B 20F 12h IeF 2% 203 a7 13 13
27 2B 2AF 1B IF 28 23 a7 183 MW
29 26B 2BF 14B 14F 2A 283 a7 153 1%
28 2nB 2F LB IF eC 23 2A7T 183 167
dd 298 2% (6B 16F gE 293 297 173 117
oF 20D AF ITB ITF 30 283 287 183 1&7
31 gm 2F 8B 16F 2 213 an 1% 1m
33 XB BF 19 IF 3% 263 267 13 IAT
35 25h &5F IAB IAF 36 253 27 1m 18?
37 24B 24F 1BD IBF 3B 243 247 103 107
39 23 23F 10p iCF A 233 a7 1m 1
38 22B 2F 1DB IDF i 223 27 183 1&7
30 21B 21F 1ER IEF ¥E 213 27 If IF7
IF 268 20F IFB IFF ip 203 207 — —

ROM ADDRESSING
The HP 41 calculator can address up to 65536 (B4K) 18-bit words of information in ROMs (Read

Only Memories). This includes the operating systems ROMs, HP Extension and Application modules,
EPROMS (Erasable Programeable ROMs), and the ProtoCODER., These 64K words are separated into 16
"pages" of “96 (4H) words each, numbered in hexadecimal from @ to F. The 489% words on each page
are numbered in hex from 03@ to FFF. ROM addresses are specified as PW where P is the page and
WW is the word number on the page.

Sone of these 16 pages are preassigned for system use and cannot normally be used. Any page

from 5 to F can be used to contain a ROM, EPROM or ProtoCODER. Be careful to have at most one
memory assigned to a page. Pssigned pages are:

frobolODER2 OWNERS MANUAL Page 36

Pages 9,1,2 contain the HP 41 operating system. Subroutines contained in these

Page 3

Page 4

Page 5

Page 6
Page 7

ROMs can be called by the user.
is not used by the HP 41C or CV, but contains the XFUNCTIONS ROM in the HP

41CX.
is used by the HP Service Module which helps HP diagnose calculator
probless. If a ROM resides here, it is automatically ewecuted when the
calculator is turned om
is used by the HP Time Module. The HP 41CX also uses pane 5 for another system
ROM.
is used by the HP B2143 and B2L62 printers.
is used by the HP-IL.

Pages §,A,C,E are normally used by HP wodules, The page number identifies which port
the module is in. Page 8 is port 1, Ais 2, Cis 3, E is 4.

Pages 9,B,0,F are noreally used only when the HP module is an BH {such as the REAL
ESTATE module). The second half of the ROM occupies page 9 if the module

is in port 1, page B for port 2, D for 3, and F for 4. Newer HP modules
way be addressed to an odd page. The Auto Execute ROM is addressed in this
way which means that both it and a low-page 4K ROM can be in the same port.

XROM WORD FORMAT

Each 4 ROM contains several words used by the system in addition to the routines. The lowest
block of addresses in the ROM cortain the XROM nusber and the catalog {FAT or Function Address

Table) information. Words FF4-FFA may contain GOTO instructions for roukires for certain interrupt
conditions.

¥ioa
¥31

Normally these words should be zerces.

contains hex XROM nuwber, e.g. word 6888 in the Printer (XROM 23) contains 01D.
contains the number of routines contained in the catalog table, in hex.

¥082-4083 and each pair of words following contains the address of the next function.
These words are interpreted as tab and fed. t is @ for microcode routines and 2 for
user language programs. abed is the offset from word 882 of the ROA containing the
catalog table which points to the address of the first executable instruction if the
routine is microcode, ard the address of the fivst byte of the LBL if the
program is user language. if a is mot zero, then the catalog entry points to a

location within another ROM. This catalog (Function Address Table) information is
followed by two words containing 000.

Xees=#FF3 contain programs and routines.

xFF4

¥FFa

xFFG

KFF7
«FF8

xFF9
¥FFA

contains interrupt instruction executed during a PSE loop.
contains interrupt instruction executed after each line.
contains interrupt instruction executed on wakeup with no key pressed.
contains interrupt instruction executed when the calculator is turned off.
contains interrupt instruction executed when a peripheral flag is set.

contains interrupt instruction executed on wakeup by pressing the ON key.
contains interrupt instruction executed on MEMORY LOST.

¥FFB-xFFE contains the ROM identification and revision number.
FFF contains the AOM checksum. This is used to verify that the ROM contents are

correct. To calculate this checksum, see "ROM Checksum".

ProtoCODERZ OWNERS MANUAL Page 37

TONES IN MICROCODE

The HP 41 uses a short microcode routine located ab address 16DD to control the bender for all
TNE operations, Both the frequency and the duration of the tone are software controlled and are
predictable given the cycle time of the calculator. The system routine accepts 2 digits of data to
specify the tone, The left-most bit is chopped off and interpreted as INDIRECT if it is 1, TOME
instructions appear in memory as 9 ab where a is normally @ and b is 8-9 unless created
syrtheticly. The duration of the tone is determined by the contents of ROM word 16F2 + ab. This
value is decremented in a loop as the tone is being heard until it becomes less than zero, which
terminates the tone, The frequency is determined by b, HP intended only ten tores to be used but
the TONE routine will look up ROM data for all 128 tones, This explains why some of the synthetic
tones changed in duration when HP updated ROM 1.

To use the bender, store ® in the F lor T) register and store hex FF in ST. Tones are

created by turning F on and off, i.e, by swapping F and 5T. The number of swaps defines the
duration of the tore. The number of instructions between swaps defines the frequency. The
duration and frequency will also vary depending on the cycle time of your calculator. Mon speeded-
up calculators have a cycle time of about 158 microseconds per microcode instruction

Example: TONE 9 (SF 89) has a period of 3 processor cycles per loop # 2 loops per tone cycle #
158 microseconds per cycle = 608948 secords. Them the frequency is 1/.08348 = 1855 hertz. To
determine the duration, convert the ROM data word at I6F2 + @9 = I6FB which is 215 hex, to decimal,
then add ore since the looper decrements the number until it is LESS than 2ere. This number (53%
decimal} is the number of times that the bender is flopped using the F and ST registers. The
duration of TONE 9 is 534 loops # 3 cycles per loop # .G8A15B seconds per cycle = .233 seconds.

Tones with a frequency between existing tomes can be created by varying the ratio of on-to-off
time of the bender. In the above example for TONE 9, the bender is on for 3 cycles them off for 3
cycles, Try the save loop but leaving the bender on for 2 cycles and off for 4.

After using the bender, you should store a 2@ in the F register. If you do not, then you will
get a high pitched tone whenever the processor is running or when a key is pressed.

KEYCODES RETURNED BY "C=HKEYS"

The following hey keycodes are returned in digits 4-3 of C when C=KEYS is executed. If mo key
was pressed then 83 is returned. All other digits of C are unaffected.

Em mE

@ BJ MM GB] Ed

EB ®B EB =

a i 3

Wm HMM
BH FE BE BE

EB FE EF 8B

@W BB @ ME

ProtoCODERE OWNERS MANUAL Page 38

ROM CHARACTER TABLE

The HP 41 recognizes two distinct character sets: modified ASCII (listed in the HP 41 hex

tables) and the ROM character set. The RON character set is used for most internal operations
including coding ROM function names. The colon (3A) is displayed as a hosed star. The comma (EC)
ard period (2£} display as left- and right-facing geese respectively when used in a function name

or in the display.

2123456789 ARABCBEF
© Ee ABCDEFEHIJKLHENDID
1 PORSTUVHXYION]?
2 Pps EEL) EH, =]
3 812343567893: ;1{=17
4 Fabeode~TTIIAI MFT AL

FUNCTION NAMES, PROMPTING, AND NON-PROGRAMMABILITY

When a function is emecuted, the operating system checks the ROW words containing the first
two characters of the function name and the two words immediately following. The catalog table
entry for a microcode function (both mainframe and XROM functions) points to the first word of

executable code, The function mame is listed in reverse order immediately preceding the first word
of executable code. For example, CLA (hex B7) has a catalog entry at 1487 of @D1 which means that
the first executable word of CLA is at 100i. The listing for CLA is:

10CE 081 A
16CF MC L
1009 003 C
1001 Q4E C2
1@n2 168 REBN=C SiN}

1803 1RB REGN=C &N}
1804 1EB RERN=C 7(0)
1805 228 REGN=C ALP)

1006 300 RTM
This shows how the function name is listed in reverse order. The last character of the function
name is identified by adding hes BO to the ROM character code. For CLA, add 88 to the code for RB
(801) to get P81 at address 18CE. The top two hits in the first two characters of the fumetion
name can be used to provide a prompt; these bits are zeroes for CLA since CLA requires no prompt.

EXAMPLE ADD HEX TO PROMPT TYPE

1CHR 2CHR ACCEPTED

CLA B00 (any) No prompt
oe me we Accept alpha Inell input valid)
SIIE oe 160 Accept 3 digits (4 with EEX pressed)

8 20 Aocept non-null alpha
CAT 1 Accept 1 digit or IND or IND ST
STD 268 Accept 2 digits, IND, IND ST, or ST

RCL 200 108 Accept 2 digits, IND, IND ST, or ST

FE? 200 200 Focept 2 digits, IND, or IND BT
ed Ia Accept 2 digits, IND, or IND ST

LBL we we Pocept non-null alpha or 2 digits
XEQ 0 100 Accept non-null alpha, 2 digits, IND, or IND ST

8 Zee Accept non-null alpha or 2 digits
ETD 3x0 300 Precept ror-null alpha, 2 digits, IND, IND BT, Jaxx

ProtoCODER? OWNERS MANUAL Page 39

Although STO {200,088 and RCL (22@, 108) appear to be the same, they are not. IF you use the
STD combination, the calculator will also accept + - # or / to change the instruction to S74, ete.
Your intended instruction will change to ST+ if you use this combination, and will not execute as
you expect. This will also happen for the LBL, XEB, and 670 combinations.

Following are three examples. VIEW prompts will accept 2 digits, IND, IND ST, or ST. COPY
will accept an alpha string, including a mull string. TOME will acceot 1 digit, IND, or IND ST.

1202 897 W 1105 899 Y 12CC 085 E
1203 885 E 1106 018 P 1200 OBE N
1204 109 1 1197 @@F 0 12CE 30F 0
1205 216 ¥ 1108 i@3 C 120F 114 T

The operating system examines these ROM bits and executes a prompt (if the appropriate bits
are set) before the function is executed, If the prompt accepts an alpha string, the input data is
loaded into the @ register, right justified, in reverse order, in ASCII. For example, ASN “COPY*
loads B90 02 23 59 58 4F 4C into O before the ASN routine is executed. If the prempt is numeric,
the input data is loaded into the A register in binary. A numeric input of 55 returns 02 60 20 02
® 92 37 in A. Add 82 hex for IND: IND 53 returns 20 09 @3 @@ 02 od BT in A.

In PREM mode two other ROM words of a microcode function are examined by the operating system
(they are ignored in RUN mode). If the first executable word is 8@0 then the funcbion is nom
programmable. This means that it executes rather than being entered as a program line. SIZE, AGN,
and CLP are non-programeable functions. If the first two executable words of a microcode function
are both 689 then the function is non-programmable-immediately-executable (NPIE). This means that
ro function name is displayed and that the function will not NULL, The function is executed whem
the key is pressed rather than when the key is released. PRGM, SHIFT, and back-arrow are NPIE
functions. If you hold the key to which an NPIE function is assigned, it will be executed
repeatedly unless the function checks for key release.

ROM CHECKSUM

If you wish to copy your ProtoCODER into an EPROM for permanence, you should calculate the
checksum to store in word FFF of your EPROM, To do this, execute CH{SUM in the PCODER-1A EFRON

set.
The ROM checksum is calculated by adding all 18-bit words together. Each time a carey or

overflow into the filth bit occurs, add 1 into your running sum. This is called a wraparound carry.
Subtract 1 from your final sum to get the checksum value.

DISPLAY PROGRAMMING

To operate the display on the HP 41, you must select the display and deselect the RAM, To do
this, execute the system routine (GOSUB FFE) or peripheral select (PFAD=C) with C digits 2-2
containing FD then RAM select (DADD=C) with C digits 2-@ containing 81B{hex). After selecting the
display, you can write data from the C register inte the display or annunciators and read data from
the display into the C register.

Each of the 12 character positions of the display is coded with 9 bits. The leftmost bit (bit
81, if set, specifies that bits 3-9 contain a special character in for & of the RM CHARACTER
TABLE. If bit 8 is set and bits 5-4 contain anything but zero, a space will be displayed. Bits 7-

6 define the punctuation field of the character: 89 is no punctuation, 01 is a period, 18 is a

colon, ard 11 is a comma. Bits 5-4 specify which row (8-3) the displayed character is frou in the
ROM CHARACTER TABLE, and bits 3-8 specify the character within the row.

ProtoCODERZ GWNERS MANUAL Page 4@

Data can be read or written to the left or right end of the display. Data is pushed onte the
display when written. The rest of the characters are shifted to wake room for the incoming data.
When data is read, it is pulled off the end of the display and rotated back into the other end.

Data can be read or written to several fields of the display tbits 8-8, 7-9, 7-4, 3-9, or bit
f alone) in blocks of 1, 4, 6 or 12 characters. Only the specified field is modified: the
remaining bits are unchanged. When 4 or 6 characters are read, the character on the end of the
display becomes the least significant in C. During a write, the righteost character in GC is

written first,
The annunciators are read and written from digits 2-8 of CL. The bits are numbered as thigh

order to low order:
11=BAT 18=USER 8 8=RAD
T=EHIFT E=0 ¥=1 2
3=3 2=4 1=PREM BALA

The following table shows all display instructions and their actions.

MNEMONIC HEX ACTION SCHARS BITS DF C DIGITS OF C PER CHAR ROTATION

DATA 2F0 WRITE 1 BIT IN C PER ANKMCIATOR NONE
C=REEN T 038 READ 12 3-2 1 LEFT
REEN=C T 028 WRITE 12 3-9 1 RIGHT

C=REGN 7 978 READ ie 4 1 LEFT
REEN=C 1 068 WRITE 12 7-4 1 RIGHT
C=REEN Y @B8 READ i2 8 1 LEFT
REGN=C Y ORB WRITE i2 8 1 RIGHT
C=REBN X FB READ Bb 0 2 LEFT
REGN=C X OER WRITE Bb 7-0 2 RIGHT
C=REEN L 138 RERD 4 2-a 3 LEFT
REGN=C L 128 WRITE 4 8-0 3 RIGHT

C=REEN M 176 READ 1 BIT IN C PER RINUNCIATOR NONE
REBN-C A 168 WRITE b 0 2 LEFT
C=REGN N 1BB 77777
REBN-C N 1RB WRITE 4 6-0 3 LEFT
C-REGN 0 1FE READ 1 I-80 1 RIGHT
REBN=C 0 1EB WRITE 1 3-9 1 RIGHT
C=REGN P 238 READ 1 1-4 1 RIGHT
REEN=C P 228 WRITE 1 1-4 1 RIGHT
C=HEGN 0 2786 READ 1 2 1 RIGHT
REBN=C 0 268 WRITE 1 8 1 RIGHT
C-REGN + 2B8 HERD { 1-8 i LEFT
REGN-C + 2AB WRITE 1 iH 1 LEFT
C=REGN a 2F8 READ 1 7-4 1 LEFT
REGN=C a 2EB WRITE 1 1-4 1 LEFT
C=REBN b 338 READ 1 7-0 2 RIGHT
REGN=C b 328 WRITE 1 7-8 2 RIGHT
C=REGN c¢ 376 READ 1 7-0 2 LEFT
REEN=C © 368 WRITE 1 7-2 2 LEFT
C=REGN d 3B READ 1 3-2 3 RIGHT
REGN=C d 3R8 WRITE 1 8-9 3 RIBHT
C=REGN e 3A READ 1 8-2 3 LEFT
REGN=C e JER WRITE 1 8-8 3 LEFT

ProtoCODERR UWWERS MANUAL Page 41

EXAMPLES OF PROGRAMS

“¥=17" sets up a 1 in the C register then branches to the system ROM routine that makes the

comparison.
BF 7

831

830 =

818 ¥

Q4E C= ALL initialize C
35C AT=12 point to most significant digit of C
850 C1 load a 1 so C row contains floating point 1

BOLONG jump to "X=Y?" native comparison routine
858 IBIS

"+1" is a good example of the speed of microcode compared to user code. When you execute “+1* the
calculator starts counting from 8, incrementing by 1 each loop until any key if pressed, The
resulting total is displayed and stored in X. By cowparison, enter the user program: LBL 81, +

BTD @1, then fill the stack with all 1s (1, ENTER, ENTER, ENTER) and run it. “+l* will run about
125 times faster than the user language prooram. {try it)

eB! 1
oh +

Q4E C= AL initialize counter
oP SETDEC select decimal mode
230 C=C+1 M increment counter
JAC CHK KB key pressed?
3F3 GONC #-2 if not, loop back fo increment
138 LDI load exponent of 9

823 CON 9

10E A=C ALL put the (nonnormalized) total in A for left shifting

35C PT=12 cet pointer to most significant digit of mantissa
1R6 A=-1 X decresent exponent

JFAASLE shift mantissa left until MSD mot zero
342 7080 PT if still zero, then

3JEB BONG #3 go back and shift and decresent EXP again
AE AC EX ALL get the normalized version in C
QE REGN=C 31%) store in user register X
308 RST KB wait until

IC CRY KB key is
IFT BIC #2 released then
ZE8 ATH return

ProtoCODERE OWNERS MANUAL Page 42

"GUOSE" appemds a left-facing goose to the display. Use as a program line in the program: CLA,
AVIEW, BODSE, LBL @1, B, ENTER, 0, B70 Ol. And they said it was impossible!

85 E
#13 8
®F 0
0eF 0

007 6
C1 BOSUD execute systew poutine to select display
ee 2CFR

130 LDI load Ieft-goose hex code
%C CON 2C
308 REGN=C d write to left end of display
149 GOSUB execute system routine to deselect display
es ees
3E0 AN ard go back

ADDITIONAL NOTES

SYSTEM STARCK: The nicroprocessor in the HP 41 uses an address stack to keep track of subroutine
calls, This stack will hold 4 address entries, Each time a GOSUP occurs, the address of the
second word of the 60SUB instruction is “pushed” onto the stack - it becomes the lowest entry and
the other entries are moved up by one position. If there were already four addresses in the stack,
the top one is lost, Whenever a RTN occurs, the bottom entry of the stack is copied into the AC
register and all other entries are moved down by one position and a zero is moved into the top
stack position. When a SPOPND occurs the stack is dropped by one position and the bottom address
is lost, When a C=BTH occurs the bottom address is copied into digits £-3 of C and the stack is
dropped by ome position. When a STH=C occurs the stack is lifted by ore and digits 6-3 of C are
copied into the bottom position as an address.

SYSTEM STATUS: There are three major modes of the HP 4iC: sleep, standby, and active or
rurning. In sleep mode the calculator is turned off. In standby mode the calculator is turned on
but is not ewecuting any microcode. In active mode the caculator is running microcode. The system
ROM (page @) contain code to differentiate between sleep and standby wodes by the condition of the
C flag when address 920 is executed, Whenever the calculator is running a RPN fuser language)
program, each RPN statesent is interpreted by microcode then executed as a pre-set sequence of
instructions. The HP 51 processor does rot understand REN without translation by the operating
systea,

RELOCATION: Wen you write a microcode routine to ba contained in an external AO (or EPROY or

ProtoCODER) you should make it relocatable, This means that a user can plug your ROM info any port
and it will still work. If you use absolute GOLONGs or GISUBs to access routines within the AON
then it will not function properly if you change its page addressing. There are several routines

in the operating system {pages 8,1,2) to allow you to do absolute jumps or executes within your
ROM. The most pereral purpose of these system routines is located at @BD7-0009. To use it, put 2
BOSUB @@DT in your routine. after returning from this routine digits £-3 of C will contain ihe

absolute address of the second byte of your GOSUB imstruction. You cam then modify digits 5-2 to
contain any address within your AGM then esecute a GOTOC. Digit & contains the page number where

the ROM is plugged in,

ProtoCODERZ OWNERS MANUAL Page 43

MOVING USER CODE PROGRAMS TO THE ProtoCODERZ2

The PCODER-1R EPROM set provides a program (COPYRPD) fo copy a user-cede program into your
ProtoCODER. If you wish to do it manually, or you want to modify what has already been entered,
the following lists all steps necessary.

Each ProtoCODER word is 10 bits, therefore it will hold | 8-bit byte containing 2 user-code
instruction, The leftmost two bits are used to signify the first byte of any instruction, and to
sark the beginning and end of the program.

The first two words, which precede the actual program, are of the form rrr and 248 rrr
specifies the number of registers needed to copy the prooras into user mewory, including the last
register which may be only partially full. b specifies the number of bytes (1-7) to be loaded into
the first register. When COPY is executed, it copies b bytes into the first register then copies
an even number of registers of bytes, thus insuring that the END within the copied program will he
on a register boundary: in the last three bytes of the last register. The program in ROM can be
sade PRIVATE by modifying the 2b@ word.

The user-code program starts imwediately following these two COPY parameter words. Normally
it would start with a global LBL (but this is not required), Global labels can be copied exactly
as stored in RAM. The catalog (Function Address Table) information at the beginning of the
ProtoCODER image must be changed to reflect ome or more new entries. The two-word FAT entry (see

"CROW Word Format®) is cab and Gcd where abcd is the offset from word @90 of the page containing
the ProtolODER to the first byte of the corresponding global label. Note that abed can specify an
address in any other ADM also. Each global label within a program should be entered into the FAT

if the user wishes to access that label directly.
Instruction hexcodes (other than the exceptions listed below) ave copied exactly as they are

listed in RAM. The first two bits of the ROM word are set to 91 to signify the First byte of an
instruction, and set to 9 for continuing bytes of a multibyte instruction.

The last three bytes of the program are the END. The third hyte of the END is coded as 2pp
where pp is the set of parameters normally associated with an END in user RAM, Ps suggested by

Larry Laving, the easiest code to use here is 220 (=unpacked, uncompiled, monprivate, END. I.
All direct local BTO and XEQ Functions should he stored with accompanying jump distances. If

you do not compute the jump distance for two-byte G70s {or if the distance is greater than 127
bytes), store the jump distance as @ so that the system will search for the specified label. Jump
distances must be specified for three-byte 670s and XEDs.

The juap distance for two-byte 670s is stored in the second byte of the inskruction. Count
the number of bytes from the second byte of the 6TD to the byte iemediately preceding the LBL,
Convert this number to binary, and add 128 if the Jusp is forwards (to a higher program line
number), to get the data byte to be stored as the second byte of the GTO. Note that in ROM, all
numeric labels are non-functional (unless a label search is necessary), so that the jump distance
in the 670 need not mecessarily point to the corresponding LBL. Therefore, the LBL can be
completely removed. This is not recomended since the progras will mot function properly when
COPYed,

The three-byte 670s and YEOs are coded as:

Dd dd 11 for GTO, and
Ed dd 11 for XEQ.

ddd is the number of bytes (jusp distance!) from the first byte of the instruction to the byte
immediately preceding the corresponding LBL. 11 is the hex label number, plus 128 if the jump is
forwards (to a higher program iine number). The jump distance must be computed: If you store 8 as

the jump distance, the program will continue with the next program line,

ProtolODER2 OWNERS MANUAL Page 44

USEFUL ROM ENTRY POINTS

The following are a partial list of some useful entry points into the system ROMs.
entry points are in the HP 4iC and CV, but probably remain the same in the CX.

These
Each entry point is

followed the page number within the VASM listing ("s® is for page mumber in the supplesent), the
absolute address of the function, the hexcodes to call the subroutine (for GOSUB NC}, and a brief
note about what the routine does. Consult the WASH listings for embry and exit parameters.

NAME PAG ADDR HEXCODE PURPOSE

ABTSED 100 OD12 949, 034
AD2-10 162 1607 010,060
ADFFCH 022 0804 011,000
ANOUT 856 O75C 171,010
ARSOUT 318 2C18 041,000
ABCLED 311 2030 175,880
ASCTEL 309 2000 —,—
ASRCH 263 2605 315,098
BCOBIN 629 0253 330,008
CLLCDE 314 20FG 301,000
CPGAHD BS 0670 LED, @18
DECAD 288 29C7 310,eR%
DVe-19 165 1690 261, 860
ENCPD 074 0352 149, 80%
ENLCD 59 076 309,01C
FLINK 264 2928 BAL, EA%
BENLNK 236 239A 269, BAC
GENNUN 947 OSEB 381, 814
BETLIN sé2 1419 855,850
GETPC 285 2950 141,004
BOLO 238 23DD 341, 8C
BOLL 238 2309 355,08C
BOL2 238 23E2 369, 0C
BOLI 239 23EB 3AD, GAC
GOLONG 118 EFDA 363,030
GOSUB 118 FEE 379,03C
BOSUBE 238 2302 349, 84C
BOSUB! 234 2308 36D, BAC
6OSUB2 238 234 391,04C
BUSUB3 239 23D 385,AC
BTBYT 267 2980 201,804
GTLINK 220 2P4E 139,088
GTRAAD 67 0500 €01,620
INBYT 289 29E6 399,004
INCAD 288 29CF 33D, 0R4
INCADR 288 2903 34D, BA%
INSLIN 299 2974 301,004
INSSUB 237 2382 2C9,86C
LEFTJ 301 2B°7 300,0AC

Abort partial key sequence
Floating point addition
Bet user register
Output flags to armunciators
Output ALPHA register to display
Output ASCII character to display
Table of special display characters
Search for alpha label
Floating poirt to hexadecimal conversion
Enable and clear display
Get current program head
Decrement program address
Floating point division
Enable chip @ - user status registers
Enable display
Find global program links

Generate program link
Hewadecimal to floating point conversion

Bet cwrrent line number
Get current program counter
Goto within first 1K block (followed by offset)
Goto within second 1K block (followed by offset)
Boto within third IK bloch (followed by offset)
Goto within fourth 1K block (followed by offset)
Goto within current 1K block (followed by offset)
Gosub within current 1K block (followed by offset)
Gosub within first IK block (followed by offset)

Bosub within second 1K block (followed by offset)
Bosub within third 1K block (followed by offset)
Bosub within fourth 1K block (followed by offset)
Get byte from ARN or ROM
Get global program link

Get ARON function entry address
Insert byte into RRM
Increment pointer address

Increment pointer address twice

Insert orogram line

Prepare for insertion into program

Left justify display

NAME PRG ADDR HEXCODE

ProtoCODERE OWNERS MAMUAL Page 43

PURPOSE

WESSL 859 O7EF 360,010
NRE-18 163 1840 135,060
NEXT 109 OESB 141,078
NISKP s13 1619 965,058
NILTH3 110 GETC 1FL, 028
NXTBYT 315 2087 1D, 08k
PACKE 217 2002 003,080
PACKN 217 2000 901,080
PCTOC @07 0eD7. 350,008
PTBYTA 234 2323 980,0AC
PILINK 23% 2310 963,BAC
PUTPC 234 2337 90D,04C
RBSIED 459 066A LAS, B18
RSTKD QBS 6998 261,009
RSTSED 024 0304 211,040
SEARCH 249 2433 ACD, E99
BRP 513 162E @B9,030
SKPLIN 295 2AF9 3E5, 048
STMSEF @2% BITE 1F9, BIC
TOS5HF 208 IFES 395, 87C
UPLINK 228 2235 @D5, 268

Append message to display (message data follows GOSUB)
Floating point multiply
Enter starby mode
Execute next line or say "YEG"
Test for null then execute instruction
Bet next byte in RAM or RIM
Pack then say “TRY AGAIN" and return to systen
Pack them return to caller
Bet address of SOSUB
Put byte into RAM
Save global program link
Save program counter
Get program head in ROM

Reset and debource keyboard
Reset some status bits
Search for nureric label
Skip next line or say "ND"
Get address of newt program line
Set message flag

Toggle SHIFT flag
Hove up one global program link

The above hexcodes can be changed from a GOSNC tos
BSC by adding 1 to the second word;
BOLNC by adding 2 to the second word;
BOLC by adding 3 to the second word.

Subroutine calls to GOL®, BOLI, BOLE, BOL3, GOLONG, GOSUB, GISUES, GOSUBL, B0SUBS, GOSUBI are followed
by one word containing an offset from the beginning of the specified quad (1K within the current
ROM). For example, GOSUB2 followed by 342 hex, called from address pkmw will perform a SOSUB to
pddd + B08 ("gosub to guad 2°) + 342 = pB42.

A subroutine call to MESSL is followed by one or more data words giving the characters to be
output. Add 209 hex to the last character.

A subroutine call to NEXT causes the calculator to go into standby mode, with the display
drivers waiting for a keypress. If OFF is pressed, the calculator is turned off, Otheraise the
system returns to the word following your GOSUB (if backarvow wes pressed) or to the second word
following your GOSUB (if any other key was pressed).
and is the key assignment Keycode minus 1.

The keycode is returned in dipits 2:1 of N
Shift, if set, is included in the keycode. In

addition, 5T will reflect the Following:
FEET 3 if a numeric key was pressed,
FSET 4 if a row | or row £ key was pressed,
FSET 5 if ALPHA was pressed, and
FSET 6 if SHIFT was pressed.

Call NEXT with 5=9 and the display ron-blank.
The hexcode for GOSUB 1078, which is the RTN within the ABS function - used to write data to

the ProtolODERZ, is 1EL,B40,

	Cover
	Table of Contents
	Chapter 1: Introduction
	Chapter 2: ProtoCODER2 Programing
	Chapter 3: ProtoROM Instructions
	Chapter 4: ProtoEPROM Instructions
	Chapter 5: ProtoPARIO Instructions
	Chapter 6: PARID-IA EPROM Set
	Chapter 7: PCODER-IA EPROM Set
	Appendix 1: Prototech, Inc. Products
	Appendix 2: Warranty, Service, Assistance
	Appendix 3: PPC Information
	Appendix 4: Internal Bender Amplifier
	Appendix 5: HP 41C Microcode
	Class 0 Instructions
	Class 1 Instructions
	Class 2 Instructions
	Class 3 Instructions
	ROW Addressing
	ROM Word Format
	Tomes in Microcode
	Keycodes Returned by "C=KEYS" Instruction
	ROM Character Table
	Function Names, Prompting, Non-programmability
	ROM Checksum
	Display Programming
	Examples of Programs
	Additional Notes
	Moving User Code Programs to the ProtoCODER2
	Useful ROM Entry Points

