OWNER'S MANUAL PROTOSYSTEM TM

© 1982 PROTOTECH, INC. P. O. BOX 12104 BOULDER, CO. 80303

ProtoSYSTEM, ProtoSYSTEM INTERFACE, ProtoROM, ProtoEPROM, and ProtoCODER are registered trademarks of Prototech, Inc. P. O. Box 12104 Boulder, Co. 80303

TABLE OF CONTENTS

List of Tab	les
List of Pro	grams
Chapter 1:	Introduction
Chapter 2:	Programming the ProtoSYSTEM Page 2 Device Selecting Setting Up the Programming Data PPC ROM Compatability Writing the Data to the ProtoSYSTEM Effects of Master Clear
Chapter 3:	Hewlett Packard ROM Addressing Page 3
Chapter 4:	ProtoSYSTEM Product Information Page 4
Chapter 5:	Warranty, Service, Assistance Page 5
Appendix 1:	ProtoROM Instructions Page 6 ProtoROM Purpose Plugging in HP Modules Setting the Device Select Switches Programming the ProtoROM
Appendix 2:	ProtoEPROM Instructions Page 7 ProtoEPROM Purpose Plugging In the EPROMs Setting the Address Select and Specification Switches
Appendix 3:	ProtoCODER Instructions Page 8 ProtoCODER Purpose Battery and Power Requirements Initial Setup Setting the Address Select and Device Select Switches
	Using the ProtoCODER After Programming Page 9 Microcode Instructions Class 0 Instructions
	Class 1 Instructions
	Class 3 Instructions
	Keycodes Returned By "C=KEYS" In Microcode Page 13 HP 41 Tones In Microcode
	Sample Microcode Routines Page 14 XROM Word Format Page 16
Appendix 4:	PPC Information

LIST OF PROGRAMS

"X=1?"	Conditional Test For X Register Equal To 1	•	• •	•	•	٠	•	•	Page 14
"+1"	Microcode Increment By 1 Starting At 0 .	•	• •	•	•	•	٠	•	Page 14
"GOOSE"	Put Left-facing GOOSE In Display	•	• •	•	•	•	•	•	Page 14
"CODE"	Convert Hexadecimal Number to Non-normalise	ed N	umber	In	Х	•	•	•	Page 14
"LOAD"	Load Sequential Words Into the ProtoCODER	•	• •	٠	•	•	•	•	Page 15
"DISASM"	Decodes ROM Contents	•	• •	•	•	•	•	•	Page 15

LIST OF TABLES

Table	1:	Converting Hexadecimal To Binary	•	•	• •	•	•	•	٠	Page 2
Table	2:	Data Bits Used To Program the ProtoSYSTEM	•	•	• •	•	•	•	•	Page 2
Table	3:	Hewlett Packard ROM Preassigned Pages .	•	•	• •	•	•	٠	•	Page 3
Table	4:	"p" Values For Programming the ProtoROM .	•	٠	• •	•	•	•	•	Page 6
Table	5 :	"m" Values For Programming the ProtoROM .	•	•	• •	•	•	•	•	Page 6
Table	6:	Class O Parameter Instruction Mnemonics .	•	•	• •	•	•	•	•	Page 9
Table	7:	Class O Parameter Instruction Hex Codes .	•	•	• •	•	•	•	•	Page 10
Table	8:	Class O Special Instruction Hex Codes .	•	•	• •	•	•	•	•	Page 10
Table	9:	Class 1 Instructions	•	•	• •	•	•	•	•	Page 11
Table	10:	Class 2 Instruction Hex Codes	•	•	• •	•	•	•	•	Page 11
Table	11:	Class 2 Fields of Operation	•	•	• •	•	•	•	•	Page 11
Table	12:	Class 3 Instructions	•	•	• •	•	•	•	•	Page 12
Table	13:	XROM Contents	•	•		•	•	•	•	Page 16

ProtoSYSTEM OVERVIEW

The Prototech, Inc. ProtoSYSTEM is a flexible and expandable interface between the HP 41 C/V calculator and various peripheral and memory devices. The modular design of the ProtoSYSTEM allows the user to start with the ProtoSYSTEM INTERFACE and one peripheral board, and expand the power of his system as his needs increase.

The ProtoSYSTEM INTERFACE is the initial device required to allow the user to add on any of the peripheral boards. It plugs directly into any of the ports of the calculator. By adding peripheral boards to the system the user can:

- * Plug in Hewlett Packard Memory and Application modules and switch them on or off from the calculator under program control (ProtoROM);
- * Plug in blocks of 4096 words of memory that can be used to emulate Hewlett Packard modules and EPROMs and can contain user language and/or microcode routines (ProtoCODER);
- * Plug in semi-permanent Hewlett Packard-format EPROMs (Erasable Programmable Read Only Memories) containing user language or microcode routines (ProtoEPROM);
- * Plug in various other memory and peripheral devices.

The ProtoSYSTEM INTERFACE provides control, address, and data signals for all peripheral boards. It also contains a battery to maintain the contents of HP Memory modules and the memory of the ProtoCODER when the ProtoSYSTEM is not plugged in to the calculator. All boards can be programmed from the keyboard or under program control by a sequence of three operations:

- 1) Enter the data to be programmed into ALPHA as a series of hexadecimal characters,
- 2) Convert these hex characters to binary in the X register using "HN" or "CODE", and
- 3) Execute SIGN.

The ProtoSYSTEM will program one of its boards depending on the contents of the X register.

CONNECTING AND DISCONNECTING THE ProtoSYSTEM

The ProtoSYSTEM INTERFACE cable plugs directly into any of the four ports of the HP 41. When connecting or disconnecting the ProtoSYSTEM from the calculator first turn off the calculator. If you do not, you may damage the ProtoSYSTEM or the HP 41. To insert the cable into the calculator, line up the plug with any port with the flat surface of the plug upwards, then gently push the plug into the port of the calculator until it snaps in place. If it does not go in easily, check for obstructions -- DO NOT FORCE IT. To remove the ProtoSYSTEM from the calculator, grasp the plug by the sides and pull straight away from the calculator.

When the ProtoSYSTEM is connected to the HP 41, it uses the calculator's battery. If you have HP Memory modules or ProtoCODER data that you wish to retain when you disconnect the ProtoSYSTEM, be sure that the battery is installed.

CONNECTING PERIPHERAL BOARDS TO THE ProtoSYSTEM

The ProtoSYSTEM has a 25-pin bus connector that passes signals between the boxes containing ProtoSYSTEM boards. To plug a box onto the ProtoSYSTEM, check that all pins protruding from the box are straight, then place the box directly over the INTERFACE box (or the top box). Line up the pins to go into the slot of the lower box. Gently press the top box down until it rests on the lower box. DO NOT FORCE IT. If you have trouble pressing the boxes together, look for obstructions or bent pins. The peripheral boards can be plugged in in any order, however, ProtoROM boards containing HP Memory modules should be as close to the ProtoSYSTEM INTERFACE as possible. The greater the distance from the calculator, the more likely that data will not be transmitted properly because of increased capacitance of the wires and traces.

POWER SUPPLY

The ProtoSYSTEM contains a Duracell PX-30 3 volt battery (or equivalent) to maintain HP Memory module and ProtoCODER memory. To install it, remove the top cover of the ProtoSYSTEM INTERFACE box by removing the two screws at the upper corners of the box. Lift off the cover and remove the old battery by raising the boards slightly and sliding the battery out between the boards. Insert the new battery with the + side upwards, and put the box back together.

DEVICE SELECTING

The ProtoSYSTEM has its own addressing system so that several boards of the same type can be connected simultaneously and used independently. For example, two (or more) ProtoHOM boards can be used at the same time by giving them different DEVICE SELECT addresses which are set by switches on each board. Up to 16 devices can be addressed directly using addresses 0 -F in hexadecimal (0000 - 1111 in binary). Each address specifies a different board. The device select information is specified by the user, and is contained in the X register that the user sets up each time he wants to program a board.

SETTING UP THE PROGRAMMING DATA

The user must set up data in the X register to program the ProtoSYSTEM peripheral boards. This data depends on the board to be programmed.

The X register (and all calculator data registers) consists of 56 "bits" of information. Each bit can be either 1 or 0 (on or off, set or clear). To save space when writing this data, these 56 bits are grouped in 14 blocks of 4 bits, each called a nybble or digit. Each nybble is represented by a decimal digit (0 - 9) or a letter (A - F) in the hexadecimal ("hex") numbering system. Table 1 lists the conversions from hex to binary. By convention the bits are numbered from left (high order) to right (low order) from 55 to 0. The digits or nybbles are numbered from left to right from 13 to 0. It is necessary to understand the bit structure of the X register for the user to be able to program the ProtoSYSTEM properly. Table 2 lists the bits of the X register that are used by all ProtoSYSTEM devices during programming.

EXAMPLE:

The X register contains the following bits of data: 0000 0010 1001 1111 1110 1010 0111 1011 0001 0100 0110 1101 0011 0101

Referring to Table 1, this can be written in hex as: 029FEA7B146D35. In this example, nybble 9 is E in hex, which means that bits 39, 38, and 37 are 1 (on) and bit 36 is 0 (off).

TABLE 1: CONVERTING HEXADECIMAL TO BINARY

BINARY	ΗEX	BINARY	HEX	BINARY	HEX	BINARY	HEX
0000	0	0001	1	0010	2	0011	3
0100	4	0101	5	0110	6	0111	7
1000	8	1001	9	1010	А	1011	В
1100	С	1101	D	1110	Ε	1111	F

PPC ROM COMPATABILITY

According to Keith Jarrett, the PPC ROM uses the SIGN function on non-normalised numbers in two of its routines. "CD" run with more than 20 characters in ALPHA could cause a write to the ProtoSYSTEM. This would happen only when the 21st character from the right end of the ALPHA string is hex CO or greater. A write to the ProtoSYSTEM may also occur when using "NH" with the left-most nybble of the X register being C, D, E, or F. In these two cases, care must be taken when using both the ProtoSYSTEM and the PPC ROM. TABLE 2: DATA BITS USED TO PROGRAM THE ProtoSYSTEM

BITS	CONTENTS
55-54	These bits must both be 1. This signals the
	ProtoSYSTEM to program one of the boards.
	Normally both of these bits will not be set,
	so that the SIGN function will operate as it
	usually would.

- 53-4 These bits contain the data, address, and other control information. To determine the data to be coded here, consult the Appendix for the device you are programming. For example, bits 53-44 contain the address for the ProtoCODER, but for the ProtoROM they contain the port number and on/off code.
- 3-0 These bits contain the DEVICE SELECT address. This is a hex digit from 0 to F. Each board has its own address, set by switches on the board, so that the user can tell the Proto-SYSTEM which board he wishes to program.

WRITING THE DATA TO THE ProtoSYSTEM

To program any ProtoSYSTEM board, the user needs a program to convert hexadecimal digits in ALPHA into a binary number in the X register. No external EPROM is needed. There are three steps to write an item of data to a ProtoSYSTEM board:

- Determine the appropriate data using the Appendix for the board to be programmed and convert to hex using Table 1. Enter this string of hex digits into ALPHA. For example, to enter "029FEA7B146D35" into ALPHA: (ALPHA) (SHIFT) 0 (SHIFT) 2 (SHIFT) 9 F E A (SHIFT) 7 B (SHIFT) 1 (SHIFT) 4 (SHIFT) 6 D (SHIFT) 3 (SHIFT) 5 (ALPHA).
- 2) Execute a program to convert the hex data in ALPHA into binary data in X. Several programs are available to do this: "CODE" in <u>Synthetic Programming on the HP 41C</u> by William Wickes, "HN" in the PPC ROM (see Appendix 4), "CODE" in the PPC EPROM 2 (see Appendix 4), "CODE" in the JIMROM written by Jim DeArras, "CODE" in the JIMROM written by Jim DeArras, "CODE" in the Prototech, Inc. NFCROM. The purpose of this program is to convert the data in ALPHA character by character into nybbles in the X register.
- 3) Execute the SIGN function. This signals the ProtoSYSTEM to program one of its boards. It will examine the X register and pick out the data needed and pass it along the 25-pin bus to the appropriate board, which will use this data to program itself.

EFFECTS OF MASTER CLEAR

When a master clear is executed (see the <u>Hewlett</u> <u>Packard Owners Handbook</u>), any HP Memory and Extended Memory modules that are <u>switched to be on-line to the</u> <u>calculator</u> will be cleared. If the Memory module is plugged into the ProtoSYSTEM but is not switched online, then it will not be cleared. No other Proto-SYSTEM boards are affected by a master clear. The HP 41 calculator can address up to 65536 (64K) 10-bit words of information in ROMs (Read Only Memories). This includes the system ROMs, HP Extension and Application modules, and EPROMs (Erasable Programmable Read Only Memories). These 64K words are separated into 16"pages" of 4096 (4K) words each, numbered from 0 to F in hexadecimal (see Table 1). The 4096 words on each page are numbered in hex from 000 to FFF. The ROM addresses are specified as PWWW where P is the page number and WWW is the word number on the page. Some of these 16 pages are preassigned for system use and cannot normally be used to contain user programs. Table 3 shows which pages of the ROM space are preassigned.

Any page from 5 to F that is unused by normal HP peripherals can be used to contain a ROM, EPROM, or a page of ProtoCODER memory. Be careful to not have more than one device addressed at a given page. If you do, you will probably crash your calculator. If you crash, remove the modules from the calculator then remove the battery pack for a few seconds. This will usually fix a crash.

TABLE 3: HEWLETT PACKARD ROM PREASSIGNED PAGES

PAGE	CONTENTS
0,1,2	These ROMs contain the HP 41 operating system.
	They tell the calculator how to act like an
	HP 41.
3	Currently unused by any HP ROMs, and not
	normally addressed by the HP operating system.
	Future HP calculators may use it. It can
	contain user programs, routines and data if the
	user jumps into this page with a class i micro-
	Commently used by the HP Diagnostic ROM which
4	being the HP service people diagnose problems
	with calculators and modules. This could
	contain an alternate operating system. When ON
	is pressed the contents of this ROM (if it is
	plugged in to the system) are executed.
5	Used by the HP Time Module.
6	Used by either the 82143 or 82162 HP Printer.
7	Used by the HP- IL module.
8,A,C,E	These pages are normally used by HP modules.
	The page number is determined by the port where
	the module is plugged in. For example, if you
	nave the GAMES module plugged in to port), it
	at name 8 port 2 at name A port 3 at name C.
	and nort 1 at name E.
9.B.D.F	These pages are not normally used by HP modules
/ - / - / -	we have the module is OV(like DEAL EXMAND) If

y, J, B, F These pages are not normally used by in module is unless the module is 8K(like REAL ESTATE). If a module is 4K (most are) and plugged into port 1, then it is addressed at page 8, and page 9 is left unused. When an 8K module is plugged in, it is addressed at two consecutive pages (8-9, A-B, C-D, E-F) depending on the port. The following boards are now available from Prototech, Inc.

- * ProtoSYSTEM INTERFACE The main control board that plugs into the HP 41. It is necessary to provide data, control, and address signals for the other peripheral boards.
- * ProtoROM Allows the user to plug in up to 4 HP modules including Memory, Extension, and Application modules. Each module can be individually switched on or off, and told what port to be "strapped" to. The switching can be done from the keyboard or under program control.
- * ProtoEPROM Allows the user to plug in one Hewlett Packard-format EPROM set containing user language programs and/or microcode.
- * ProtoCODER Provides the user with 4096 (4K) words of memory which is programmable in microcode (the machine language of the microprocessor in the calculator). No external EPROM is needed to program the ProtoCODER.

Several other boards are under development. Inquire for more details.

LIMITED WARRANTY

The ProtoSYSTEM INTERFACE and all ProtoSYSTEM peripheral boards are warranted against defects in materials and workmanship for a period of 90 days from the date shipped from Prototech, Inc. Within this warranty period, Prototech, Inc. will rapair or at its option replace a defective part at no charge to the owner, provided that Prototech, Inc. is contacted within the warranty period for shipping instructions. There will be a charge for repairs after the warranty period has expired. Prototech, Inc. assumes no responsibility for damages, either direct or consequential, from the use of its products. Prototech, Inc. will have no obligation to modify or update products after sale. This warranty does not apply to products damaged by accident or misuse, or to products that have been modified by anyone other than Prototech, Inc. This warranty is made in lieu of all other warranties, either express or implied.

SERVICE

If your ProtoSYSTEM INTERFACE or any ProtoSYSTEM peripheral board requires service, contact Prototech, Inc. for instructions.

ASSISTANCE

If you need technical **or** applications assistance relating to the use of the ProtoSYSTEM, contact Prototech, Inc. at (303)-447-9883 (no collect calls), or write to:

> PROTOTECH, INC. P. O. BOX 12104 BOULDER, CO. 80303

ProtoROM PURPOSE

The ProtoROM expands the number of available ports for the user to plug in HP modules. Each ProtoROM board attached allows the user to plug in four additional HP modules. Each module can be switched on to or off from the calculator under program or keyboard control, in addition to being told into which port the calculator will think it is plugged. Although the calculator can only have up to four Applications modules on-line at one time (see Chapter 3), up to 64 modules can be plugged in with the ProtoROM boards, and then switched on only when they are needed. The ProtoROM can also be used to increase the register memory available to the calculator using a technique called "page switching". More information on this technique is available in the <u>PPC ROM Users Manual</u> (see Appendix 4).

PLUGGING IN HP MODULES

To insert a module, turn off the calculator, then place the module into one of the slots in the side of the ProtoROM box, with the printing on the module upright, and the label on the ProtoROM box upwards. Gently push the module all the way in. Do not force it. If it does not go in easily, remove and look for obstructions. To remove a module, turn off the calculator, then grasp the handle on the module and pull straight out.

SETTING THE DEVICE SELECT SWITCHES

Each ProtoROM board has a set of four switches inside so that the ProtoSYSTEM can tell the boards apart when more than one is connected. These switches set the device select address (see Chapter 2). To set the switches in your ProtoROM, you need to remove the ProtoROM from the ProtoSYSTEM and remove the top of the ProtoROM box. Remove the screws from the base of the box then turn the box upright and lift the cover off. Inside on the circuit board you will see a small set of four switches. Determine an unused device select address (one that none of the other ProtoSYSTEM boards is using) which will be a hexadecimal number from 0 to F. Convert this to binary using Table 1. Orient the ProtoROM box so that the 25-pin bus is away from you. then set the switches from left to right for each binary digit (0=off, 1=on). On the left side of the block of switches is an arrow that shows the direction to push the switch for on or off. After setting the switches properly, put the top of the ProtoROM box on. and attach the ProtoROM to the ProtoSYSTEM. Write the device select address of the board on a label and place it on the side of the box for future reference.

PROGRAMMING THE ProtoROM

Before programming the ProtoROM, reread Chapter 2 which explains how to write data to the ProtoROM board. The format of the data word in the X register to program the ProtoROM board is (in hexadecimal):

Cp 00 00 00 00 00 ms

- "p" tells the ProtoROM the port number and whether to switch the ROM on or off(see Table 4);
- "C" activates the ProtoSYSTEM;
- "m" tells the ProtoROM which slot of the four to
- activate (see Table 5); "s" tells the ProtoROM the device select address of the ProtoROM board to be programmed.

The ProtoROM board will retain its programming until it is reprogrammed or until the ProtoSYSTEM battery is removed. TABLE 4: "p" VALUES FOR PROGRAMMING THE ProtoROM

"p"	PCRT NUMBER TO PLACE ROM	ON/OFF
0	1	OFF
1	1	ON
2	2	OFF
3	2	ON
4	3	OFF
5	3	ON
6	4	OFF
7	4	ON

TABLE 5: "m" VALUES FOR PROGRAMMING THE ProtoROM

ProtoROM									
SLOT 1	SLOT 2	SLOT 3	SLOT 4						
"m"=0	"m"=1	"m"=2	"m"=3						

EXAMPLE:

You have the ProtoROM with the following Application modules plugged in:

SECURITIES MATH GAMES STATISTICS SLOT 1 SLOT 2 SLOT 3 SLOT 4 and you have the device select switches set to 0000 (all off).

You wish to use the program BONDS in the SECURITIES module. To place this module ("m" = 0) in port 1, set up the X register as:

C1 00 00 00 00 00 00

by putting the string "C100000000000" in ALPHA and executing "CODE" or "HN". Then execute SIGN to switch on the SECURITIES module. Run a CAT 2 to verify that the SECURITIES module is now on-line.

Now you want to play CRAPS on the GAMES module, and you want the GAMES module in port 1 instead of the SECURITIES module. To remove the SECURITIES module, set up the X register as:

CO OO OO OO OO OO OO

then execute SIGN. Now set up the X register as: C1 00 00 00 00 00 20

and execute SIGN to turn on the GAMES module ("m" = 2) in port 1 ("p" = 1). Run a CAT 2 to verify that GAMES is now on-line.

Now you want to use STATISTICS along with GAMES to find out why you are losing at CRAPS. Set up X as: C3 00 00 00 00 00 30

and execute SIGN to put the STATISTICS module ("m" = 3) into port 2 ("p" = 3). Run a CAT 2 to verify that both GAMES and STATISTICS are on-line.

Now you just acquired an 8K REAL ESTATE module, but all the ports of the ProtoROM are occupied. You plug in a second ProtoROM board and set the device select switches to 0001. Since GAMES is still in port 1 and STATISTICS is in port 2, you decide to put REAL ESTATE in port 3. Set up the X register as:

Q5 00 00 00 00 00 21

and execute SIGN. This assumes that you put KEAL ESTATE in slot 3 ("m" = 2) of the second ProtoROM board. "s" = 1 to tell the ProtoSYSTEM the device select address of the second ProtoROM board, and "p" = 5 to switch the selected module ON into port 3.

ProtoEPROM PURPOSE

The ProtoEPROM allows the user to plug in standard Hewlett Packard format EPROM sets to the HP 41 and use them just like HP Application modules. EPROM sets may contain user language programs, assembly language (microcode) routines, and/or data tables. EPROMs provide an inexpensive (about half the cost of HP ROMs) means for the user to have his programs available without using HP 41 memory. In addition, microcode routines provide the user with options not normally available. For example, you can recall registers without normalisation, or pack up to 11 alphabetic letters into one data register. Microcode generally executes substantially faster than user language programs. Up to 13 EPROM sets can be plugged in to the calculator at one time. (see Chapter 3)

PLUGGING IN EPROMS

The ProtoEPROM board will accept one standard HPformat EPROM set which can contain 2 or 3 EPROM chips. To insert or remove EPROMs, you must remove the Proto-EPROM from the ProtoSYSTEM and remove the top of the ProtoEPROM box. Remove the screws from the base of the box then turn the box so the label is facing up, and lift the cover off. Turn the cranks on the ends of the three large sockets on the circuit board until they point upward. This unlocks the pins of the EPROMs from the sockets. If you already have some EPROMs in the sockets, you may now remove them. At the end of the circuit board that is opposite the 25-pin connector and adjacent to the EPROM sockets are markings on the circuit board that identify which EPROM is to be placed in which socket. The markings are "L2", "L1", and "U", from left to right. These are the same markings that are provided on PPC EPROMs (see Appendix 4). If you have a 2-EPROM set, then socket L2 will remain empty. If you have 24-pin EPROMs, they go in the 28-pin socket with the four extra holes in the sockets nearest to the 25-pin connector. With the ProtoEPROM board oriented so that the 25-pin connector is away from you, the EPROMs are inserted so that pin 1 (identified by a notch in the end of the chip, or a dot at pin 1) is to the upper left. After determining the proper socket and orientation for the EPROMs, set them in the sockets and rotate the crank on each socket until it is horizontal. This locks the EPROMs into the sockets. Now you need to set the address select and specification switches.

SETTING THE ADDRESS SELECT AND SPECIFICATION SWITCHES

Review Chapter 3 to determine which page you want to use as the address for the EPROM. Examining the ProtoEPROM board you will see a small set of seven switches. Orient the ProtoEPROM so that the 25-pin connector is away from you. Then set the right-most four switches to specify the EPROM address (consult Table 1 to convert the hexadecimal address to binary). From left to right set each switch on for 1 or off for O. On the left side of the block of switches is an arrow which shows the direction to push the switch for on or off. For an 8K EPROM set, the right-most switch is ignored so that the EPROM will be on an 8K boundary occupying pages 4-5, 6-7, 8-9, A-B, C-D, or E-F. For a 16K EPROM set the right-most two switches are ignored so that the EPROM will be on a 16K boundary occupying pages 4-5-6-7, 8-9-A-B, or C-D-E-F. After setting the address select switches, you need to tell the ProtoEPROM what types and sizes of EPROMs you are using. The remaining three switches do this. The left-most switch tells the ProtoEPROM whether you have 2 or 3 EPROMs in your EPROM set. The next switch tells the ProtoEPROM if your EPROM set is 4K or larger than 4K. The third switch from the left specifies if your EPROM set is 16K or smaller than 16K. Set these switches according to the following diagram:

EXAMPLE:

You have the PPC EPROM 2 set which is a 4K EPROM containing various microcode routines written by Jim DeArras. To set up this EPROM set so that it is addressed at page 8, set the switches from left to right to 0011000 (off-off-on-on-off-off). If you want this EPROM set in page E, set the switches to 0011110. If you have the 2-chip PPC EPROM 1 which is 8K and you want to address it at pages 8-9 then set the switches to 011100x where x can be either 0 or 1. If you have the 3-chip PPC EPROM 1 set you would set the switches to 111100x.

ProtoCODER PURPOSE

The ProtoCODER allows the user to use the assembly language of the HP 41. This is the internal code interpreted by the microprocessor. By convention this code is referred to as "microcode" although this term is technically incorrect. The ProtoCODER contains 4096 10-bit words of programmable memory. After programming, it appears to the calculator to be an HP Applications or Extension module. Although microcode programming is a relatively new frontier for HP 41 users, the advantages of using it are enormous. It will allow you to write routines to do specific things that cannot be done with regular keyboard programming. For example, it will allow you to pack up to eleven alphabetic characters (A - Z plus any 6 other special characters) into one register as compared to the standard six per register. It will also run substantially (up to 100 times) faster than user language programs, while doing the same thing. The user can write and debug microcode routines in the ProtoCODER then make them more permanent by burning them into an EPROM. The ProtoCODER is easy to program and will retain its programming until reprogrammed or until the battery is removed from the ProtoSYSTEM.

BATTERY AND POWER REQUIREMENTS

The RAM (Random Access Memory) chips in the Proto-CODER will retain their contents as long as they are provided with from 2 to 6 volts. The battery in the ProtoSYSTEM will keep this memory alive when the Proto-SYSTEM is not plugged in to the calculator. When the ProtoSYSTEM is plugged in to the calculator, it runs from the calculator's battery. If the BAT indicator is on, you will not be able to program the ProtoCODER until you recharge or replace the battery, however, the Proto-CODER will not lose its contents unless the voltage drops below 2 volts.

INITIAL SETUP

When you first plug in your ProtoCODER to the Proto-SYSTEM, you should have the address select switches set to 3 hexadecimal. This is necessary since the RAM chips can contain garbage (anything) upon power-up. Page 3 is not currently used by the HP 41 and is completely ignored by the operating system. If you set it in a higher page and run a CAT 2 or if the contents of words FF4 - FFA in the ProtoCODER contain anything other than zeroes, you will crash the calculator. To recover from this crash, unplug the ProtoSYSTEM from the HP 41, set the address select switches on the ProtoCODER to 3 hex. then remove the batteries from the calculator for a few seconds and replace them. An alternative recovery which will usually work is to leave the ProtoSYSTEM plugged in to the HP 41, set the address select switches to 3, wait for a few seconds, then toggle the "ON" switch off and on until you get a regular display. You should leave the address select switches set to 3 until you have a valid ROM image in the ProtoCODER. It is not necessary to clear any words that you do not use as long as the catalog table at the beginning of the ROM image is correct. When experimenting with microcode, it is a good idea to reserve the first 64 words to contain catalog information and start your programs at the 65th word. This will allow you to have up to 31 functions in the ProtoCODER without having to move blocks of memory around when you want to add another program.

SETTING THE ADDRESS SELECT AND DEVICE SELECT SWITCHES

Each ProtoCODER board has two sets of four switches accessable from the top of the ProtoCODER box so that the ProtoSYSTEM can tell the boards apart when more than one is connected, and so that the calculator knows where the ProtoCODER is located in the ROM address space (see Chapter 3). To set the device select and address select switches, orient the ProtoCODER so that the 25-pin bus connector is away from you, then identify the switches according to the ProtoCODER label. Determine an unused device select address (one that none of the other Proto-SYSTEM devices currently use) which will be a hexadecimal number from 0 to F. Convert this to binary using table 1. Set the switches from left to right for each binary digit (0 or 1). Set the switch on for 1 or off for 0. On the left side of the block of switches is an arrow that shows the direction to push the switch for on or off.. Then determine which page you want the calculator to address the ProtoCODER in using data from Chapter 3. Convert this to binary then set the corresponding address select switches.

PROGRAMMING THE ProtoCODER

The first step in programming the ProtoCODER is to have a list of code to be entered or a program such as in the examples later in this Appendix. Unless you are using the interrupt-jump locations, they must all be set to zero. These are the addresses from FF4 to FFA in the ProtoCODER. If you use a program such as BOOT (listed below) you can load the ProtoCODER in blocks of words, otherwise each word to be programmed into the ProtoCODER is loaded separately. Before continuing, read Chapter 2 which tells you how to write data to the ProtoCODER board. The format of the data word (contained in the X register) to write data to the ProtoCODER is: DD DO 00 OA AA OOS

To find DDD, add hex COO to the 10 bits of data to be written to the ProtoCODER. AAA contains the hex address (OOO - FFF) where the data will be written. S is the device select address. To write this data to the Proto-CODER put the string of 14 hex characters in ALPHA, then execute CODE or HN then execute SIGN. Full instructions on how to do this are in Chapter 2.

EXAMPLE:

You have written and entered into the ProtoCODER a routine called CLY which clears the Y register to zero. You execute it and it crashes the calculator. Looking back through the listing you find:

•••	unt o abu		Jourinus
	ADR	DATA	INSTRUCTION
	C100	04E	C=O ALL
	C101	270	RAM SLCT
	C102	048	WRIT Y

followed by some unknown code. Notice that the last three digits of the ADR specify the location in the ProtoCODER and the "C" specifies the page number that is set on the ProtoCODER switches. Examining the listing you notice that you forgot to end the routine with a RTN (3EO) to get back to the operating system after completing clearing Y. To make this routine work, you need to add 3EO into the ProtoCODER at address C103. Assuming that you have the device select switches set to 2 hex in the ProtoCODER, set up X as: FE 00 00 00 10 30 02

by entering "FE000000103002" into ALPHA, then execute CODE. The FE0 portion contains the instruction and the two bits to signal the ProtoSYSTEM to program a board. The 103 specifies the address within the ProtoCODER, and the 2 specifies the device select. After executing CODE then execute SIGN to write it to the ProtoCODER. Now try executing CLY again. It should work this time.

USING THE ProtoCODER AFTER PROGRAMMING

After programming a valid ROM image into the Proto-CODER, it will function transparent to the ProtoSYSTEM and without user intervention. It will appear to be an HP Applications or Extension module to the calculator. However, if the ROM image is not correct, crashes or unpredictable results may occur. To have a correct ROM image, the catalog linkage at the beginning of the ROM (starting at address 000) must be set up correctly, and the interrupt-jump words (FF4 - FFA) must either be zero or be used carefully. For proper ROM image setup, see page 16

MICROCODE INSTRUCTIONS

The HP 41's brain (microprocessor) defines what can and cannot be done with the calculator by having a specific set of instructions. These instructions are commonly referred to as "microcode". They are stored in ROMs (Read Only Memories) or anything that looks like a ROM to the calculator (such as a ProtoCODER or EPROM). The sequence of these instructions determines what the calculator will actually do. It gives the calculator its personality that makes it act like an HP 41. The calculator will function just as well with some other operating system or language and could be changed to a completely different personality just by changing these ROMs. By using a disassembler program (such as DISASM, listed on page 15 you can list the contents of preexisting ROMs to get a general idea of how things are done in microcode.

The processor of the HP 41 has several internal registers that it does operations on and with. Registers A, B, and C (a different register from the c register in the system stack) are 56 bits long -- the same size as one user data register. These registers are used for arithmetic and input/output (I/O) operations. Registers M and N are also 56 bits long but can only be used to store or recall data. The G register is 8 bits long and can be used to store and recall data. Registers P and Q are 4-bit long registers used as digit pointers. They specify the field in A, B, or C where a specific operation is to be performed. Normally only one of these pointers is active at one time. The selected pointer is call PT. The PC register contains the program counter which specifies the address of the next ROM word to be executed. PC is normally increased by one each time an instruction is executed, but can be modified by a GOTO. GOSUB or jump instruction. PC is 16 bits long which means that 2 (65536) addresses are available. Registers ST, F (or T) and KB are each 8 bits long. ST contains system flags 7 - 0. The other system flags (13 - 8) are only accessable individually. These 14 flags are different from the user flags (55 - 0). Flags 13 - 10 are generally reserved for system use. Flag 13 is set if a program is running. Flag 12 is set to indicate a PRIVATE program. Flag 11 is set to enable a stack lift at the end of an instruction. Flag 10 is set to indicate that the program pointer in user stack register b is a ROM address. The HP 41 also has a C flag (Carry or Condition) which is set when a test is true or when a carry occurs. The C flag is cleared one instruction after being set. It is also set when the calculator is first turned on.

The T register (or F register) is used by the HP 41 to control the bender which makes the beeps. The KB register is used to contain a keycode when a key is pressed.

All 56 bit registers are separated into several fields. Depending on the operation, the user can select the field that is affected. The part of the register outside that field is not affected. Named fields are:

13 12 11 10 9 8 7 6 5 4 3 2 1 0 NYBBLE(DIGIT) -S ----- XS -EXP ----ADR----- -----S&X----KB-

There are four classes of microcode instructions: 0, 1, 2, 3. The class is determined by the right-most two bits of the 10-bit instruction. The following tables list both the Hewlett Packard mnemonics for microcode instructions and the mnemonics first published by Steve Jacobs (PPC #5358) in PPC ROM LISTINCS 2. The HP mnemonic is listed first followed in parenthesis by Steve Jacobs' mnemonic.

CLASS O INSTRUCTIONS

Class 0 instructions can be separated into two types: Parameter and Special instructions. Table 6 lists the mnemonics for Parameter instructions. Table 7 lists the hex instruction code. Table 8 lists the mnemonics and hex instruction codes for Class O Special Instructions. Some of the instructions in these tables that are listed as NOP or UNUSED are used by the HP-IL. HP also has several mnemonics for the same instruction sometimes. For example, RABCR creates the same hex code as C=REGN 14 but is used to read from the display. HP also has some "macros" which are mnemonics that are replaced by one or more instructions. For example, "C=A" is not a normal instruction. It is a macro which is replaced by the sequence "AC EX and A=C".

TABLE 6: CLASS O PARAMETER INSTRUCTION MNEMONICS

MNEMONIC	OPERATION
NOP (NOP)	NO OPERATION
Sp=O (CLRF p)	CLEAR SYSTEM FLAG p
Sp=1 (SETF p)	SET SYSTEM FLAG p
?Sp=1 (?FSET p)	SET C FLAG IF SYSTEM FLAG p SET
LC p (LD@R- p)	LOAD p INTO C AT PT AND DECREMENT PT
?PT=p (?R=p)	SET C FLAG IF POINTER EQUALS p
PT=p (R=p)	SET POINTER TO p
(SELP p)	TRANSFER CONTROL TO A PERIPHERAL
REGN=C p (WRIT p)	WRITE C TO RAM OR DEVICE
?Fp=1 (?FI p)	SET C FLAG IF PERIPHERAL FLAG SET
C=REGN p (READ p)	READ C FROM. RAM OR DEVICE
RCR p (RCR p)	ROTATE C RIGHT BY p DIGITS

INSTRUCTION	p=0	1	2	3	4	5	6	7
MNEMONIC	(T)	(Z)	(Y)	(X)	(L)	(M)	(N)	(0)
NOP	000	040	080	OCO	100	140	180	100
Sp=0	384	304	204	004	044	084	144	284
Sp=1	388	308	208	008	048	088	148	288
?Sp=1	38C	300	20C	00C	04C	08C	14C	28C
LCp	010	050	090	0D0	110	150	190	1D0
?PT=p	394	314	214	014	054	094	154	294
PT=p	39C	31C	21C	01C	05C	09C	15C	29C
SELP p	3A4	324	224	024	064	OA4	164	2A4
REGN=C p	028	068	8A0	0 E8	128	168	1 A 8	1E8
?Fp=1	3A0	32C	22C	02C	06C	OAC	16C	2AC
C=REGN p	038	078	0B8	OF8	138	178	138	1F8
RCR p	3BC	33C	230	03C	070	OBC	17C	2BC
INSTRUCTION	p=8	.9	10	11	12	13	14	15
INSTRUCTION MNEMONIC	p=8 (P)	୨ (ଢ୍)	10 (⊢)	11 (a)	12 (Ъ)	13 (c)	14 (a)	15 <u>(e)</u>
INSTRUCTION MNEMONIC NOP	p=8 (P) 200	9 (<u>Q)</u> 240	10 (<u>(</u>) 280	11 <u>(a)</u> 200	12 <u>(Ъ)</u> 300	13 <u>(c)</u> 340	14 <u>(a)</u> 380	15 <u>(e)</u> 300
INSTRUCTION MNEMONIC NOP Sp=0	p=8 <u>(₽)</u> 200 104	9 <u>(Ç)</u> 240 244	10 (<u>L)</u> 280 0C4	11 <u>(a)</u> 2C0 184	12 (b) 300 344	13 <u>(c)</u> 340 204	14 (d) 380	15 <u>(e)</u> 300
INSTRUCTION MNEMONIC NOP Sp=0 Sp=1	p=8 (P) 200 104 108	9 <u>(G)</u> 240 244 248	10 (<u>(</u>) 280 0C4 0C8	11 <u>(a)</u> 2C0 184 188	12 (b) 300 344 348	13 (c) 340 2C4 2C8	14 (d) 380 -	15 (e) 300 -
INSTRUCTION MNEMONIC NOP Sp=0 Sp=1 ?Sp=1	p=8 (P) 200 104 108 10C	9 (<u>Q</u>) 240 244 248 248 24C	10 (<u>)</u> 280 0C4 0C8 0CC	11 (<u>a)</u> 2C0 184 188 18C	12 (b) 300 344 348 340	13 (c) 340 2C4 2C8 2CC	14 (d) 380 - -	15 (e) 300 -
INSTRUCTION MNEMONIC NOP Sp=0 Sp=1 ?Sp=1 LC p	p=8 (F) 200 104 108 10C 210	9 (<u>Ç</u>) 240 244 248 24C 250	10 (<u>L</u>) 280 0C4 0C8 0CC 290	11 (a) 2C0 184 188 18C 2D0	12 (b) 300 344 348 340 310	13 (c) 340 2C4 2C8 2CC 350	14 (<u>d</u>) 380 - - 390	15 (e) 3C0 - - 3D0
INSTRUCTION MNEMONIC Sp=0 Sp=1 ?Sp=1 LC p ?PT=p	p=8 (F) 200 104 108 10C 210 114	9 (<u>Q</u>) 240 244 248 240 250 254	10 (<u>L</u>) 280 0C4 0C8 0CC 290 0D4	11 (a) 2C0 184 188 18C 2D0 194	12 (b) 300 344 348 340 310 354	13 (c) 340 2C4 2C8 2CC 350 2D4	14 (<u>d</u>) 380 - - 390 -	15 (e) 300 - 3D0 -
INSTRUCTION MNEMONIC NOP Sp=0 Sp=1 LC p PT=p PT=p	p=8 (P) 200 104 108 10C 210 114 11C	9 (<u>Q</u>) 240 244 248 240 250 254 250	10 (<u>)</u> 280 0C4 0C8 0CC 290 0D4 0DC	11 (<u>a)</u> 2C0 184 188 18C 2D0 194 19C	12 (b) 300 344 348 340 354 354 350	13 (c) 340 2C4 2C8 2CC 350 2D4 2DC	14 (<u>d</u>) 380 - 390 -	15 (e) 300 - 300 - 300
INSTRUCTION MNEMONIC NOP Sp=0 Sp=1 :Sp=1 LC p ?PT=p PT=p SELP p	p=8 (₱) 200 104 108 10C 210 114 11C 124	9 (<u>Q</u>) 240 244 248 240 250 254 250 254	10 (<u>)</u> 280 0C4 0C8 0CC 290 0D4 0DC 0E4	11 (a) 2C0 184 188 18C 2D0 194 19C 1A4	12 (b) 300 344 348 340 354 350 354 350	13 (c) 340 2C4 2C8 2CC 350 2D4 2DC 2E4	14 (d) 380 - 390 - 1E4	15 (e) 3C0 - 3D0 - 3E4
INSTRUCTION MNEMONIC NOP Sp=0 Sp=1 ?Sp=1 LC p ?PT=p PT=p SELP p REGN=C p	p=8 (P) 200 104 108 10C 210 114 11C 124 228	9 (<u>Ç</u>) 240 244 248 24C 250 254 25C 264 268	10 (<u>)</u> 280 0C4 0C8 0CC 290 0D4 0DC 0E4 2A8	11 (<u>a</u>) 2C0 184 188 18C 2D0 194 19C 1A4 2E8	12 (b) 300 344 348 340 354 350 354 350 364 328	13 (c) 340 2C4 2C8 2CC 350 2D4 2DC 2E4 368	14 (<u>d</u>) 380 - 390 - 1E4 3A8	15 (e) 3C0 - 3D0 - 3E4 3E8
INSTRUCTION MNEMONIC NOP Sp=0 Sp=1 ?Sp=1 LC p ?PT=p PT=p SELP p REGN=C p ?Fp=1	p=8 (₱) 200 104 108 10C 210 114 11C 124 228 12C	9 (Q) 240 244 248 240 250 254 250 264 268 260	10 (<u>L</u>) 280 0C4 0C8 0CC 290 0D4 0DC 0E4 2A8 0EC	11 (a) 2C0 184 188 18C 2D0 194 19C 1A4 2E8 1AC	12 (b) 300 344 348 340 354 350 354 350 364 328 360	13 (c) 340 2C4 2C8 2CC 350 2D4 2DC 2E4 368 2EC	14 (<u>d</u>) 380 - 390 - 1E4 3A8 1EC	15 (e) 3C0 - - 3D0 - 3E4 3E8 3EC
INSTRUCTION MNEMONIC Sp=0 Sp=1 ?Sp=1 LC p ?PT=p PT=p PT=p SELP p REGN=C p ?Fp=1 C=REGN p	p=8 (₱) 200 104 108 10C 210 114 11C 124 228 12C 238	9 (Q) 240 244 248 240 250 254 250 254 268 268 268 260 278	10 (<u>)</u> 280 0C4 0C6 290 0D4 0DC 0E4 2A8 0EC 2B8	11 (a) 2C0 184 188 18C 2D0 194 19C 1A4 2E8 1AC 2F8	12 (b) 300 344 348 340 354 350 354 350 364 328 360 338	13 (c) 340 2C4 2C8 2CC 350 2D4 2DC 2E4 368 2EC 378	14 (d) 380 - 390 - 1E4 3A8 1EC 3B8	15 (e) 3C0 - 3D0 - 3E4 3E8 3EC 3F8

 TABLE 7: CLASS O PARAMETER INSTRUCTION HEX CODES
 TABLE 8: CLASS O SPECIAL INSTRUCTION HEX CODES

HEX MNEMONIC	OPERATION
x 34	UNUSED
x74	UNUSED
xB4	UNUSED
xFA	UNUSED
3CA CLR ST (ST=0)	CLEARS ST AND FLAGS 0 - 7
3C8 RST KB (CLBKEY)	CLEARS "KEY PRESSED" FLAG
3CC CHK KB (2KEY)	SET C FLAG IF KEY PRESSED
3DA DEC PT ($R=R-1$)	DECREMENT CURRENT POINTER
3DC INC PT (R=R+1)	INCREMENT CURRENT POINTER
018	UNUSED
$058 G=C (G=C @R_{*}+)$	COPY DIGITS R. R+1 FROM C TO G
$098 C=G (C=G @B_{+})$	COPY G INTO C DIGITS R. R+1
OD8 CG EX $(C \leq G \otimes R_{+})$	EXCHANGE G AND C
118	UNUSED
158 $M=C$ ($M=C$ ALL)	COPY C INTO M
198 C=M (C=M ALL)	COPY M INTO C
1D8 MC EX $(C <> M ALL)$	EXCHANGE M WITH C
218	UNUSED
258 $F=ST$ ($T=ST$)	COPY ST INTO F
298 ST=F (ST=T)	COPY F INTO ST
2D8 FST EX $(ST <> T)$	EXCHANGE F WITH ST
318	UNUSED
358 ST=C (ST=C X)	COPY DIGITS 1. O FROM C TO ST
398 C=ST (C=ST X)	COPY ST INTO DIGITS 1, O OF C
3D8 CST EX (C<>ST)	EXCHANGE ST WITH C DIGITS 1, 0
020 SPOPND $(XQ \rightarrow GO)$	DROP STACK TO CONVERT XQ TO GO
060 POWOFF (POWOFF)	GO TO STANDBY MODE
OAO SEL P (SLCT P)	SELECT P AS THE ACTIVE POINTER
oeo sel q (slct q)	SELECT Q AS THE ACTIVE POINTER
120 ?P=Q (?P=Q)	SET C FLAG IF POINTERS ARE EQUAL
160 ?LLD (?LOWBAT)	SET C FLAG IF LOW BATTERY
1AO CLRABC $(A=B=C=0)$	CLEAR REGISTERS A, B, C
1EO GOTOC (GOTO ADR)	COPY C DIGITS 6-3 INTO PC
220 C=KEYS (C=KEY 🌮)	COPY KEY REGISTER INTO C(4:3)
260 SETHEX (SETHEX)	USE HEXADECIMAL ARITHMETIC
2AO SETDEC (SETDEC)	USE DECIMAL ARITHMETIC
2EO DISOFF (DSPOFF)	TURN OFF DISPLAY
320 DISTOG (DSPTOG)	TOGGLE DISPLAY
360 RTN C (?C RTN)	IF C SET THEN SUBROUTINE RETURN
3AO RTN NC (?NC RTN)	IF C CLEAR, DO SUBROUTINE RETURN
3EO RTN (RTN)	POP STACK INTO PC FOR RETURN
030	UNUSED
070 N=C (N=C ALL)	COPY C INTO N
OBO $C \Rightarrow N$ (C=N ALL)	COPY N INTO C
OFO NC EX (C<>N ALL)	EXCHANGE C WITH N
130 LDI (LDI S&X)	LOAD NEXT ROM WORD INTO C(2:0)
170 STK=C (PUSH ADR)	PUSH ADR FROM C ONTO STACK
TBO C=STK (POP ADR)	FUF ADR FROM STACK INTO C
	UNUSED
250 (GOTO KEY)	LUAD KE INTO LOWER 5 BITS OF PC
270 DADD=C (RAM SLCT)	SET RAM ADDRESS TO C(2:0)
SPO DAME O (INCLUDE DICE)	
2FO DATA=C (WRITE DATA)	WRITE C TU RAM UK DEVICE
550 CXISA (FETCH S&X)	LUAD U(2:0) FROM RUM ADR U(0:)
570 C=C OR A	LUGICAL UN OF C WITH A, BIT BI BIT
5BO C=C AND A	LUGICAL AND OF C WITH A
5FO PFAD=C (PRPH SLCT)	SET PERIPHERAL ADDRESS TO C(2:0)

Class 1 instructions are absolute GOTOs and EXECUTEs. They consist of two consecutive ROM words of the format:

 $A_7 A_6 A_5 A_4 A_3 A_2 A_1 A_0 0 1$ $A_{15} A_{14} A_{13} A_{12} A_{11} A_{10} A_9 A_8 p p$

 $A_{15}-A_0$ is the 16-bit address to branch to. The pp field of the second word determines what type of instruction it is. Table 9 shows values for pp.

EXAMPLE: ?NC GO 0232 which jumps to the MEMORY LOST routine is coded as:

0011 0010 01 = 0C9 as first word 0000 0010 10 = 00A as second word

TABLE 9: CLASS 1 INSTRUCTIONS

pp	M	NEMO	NIC	OPERATION							
00	GOSUB	(?NC	XQ)	IF	С	CLEAR, EXECUTE SUBROUTINE					
01	GOSC	(?C	XQ)	IF	С	SET, EXECUTE SUBROUTINE					
10	GOLNC	(?NC	GO)	IF	С	CLEAR, GOTO ROM ADDRESS					
11	GOLC	(?C	GO)	IF	С	SET, GOTO ROM ADDRESS					

TABLE 11: CLASS 2 FIELDS OF OPERATION

FIELD	AREA OF OPERATION
PT (@R)	AT DIGIT SPECIFIED BY CURRENT POINTER
X (S&X)	AT EXPONENT - DIGITS 2, 1, 0
WPT (R←)	UP TO POINTER FROM THE RIGHT
(ALL)	ALL DIGITS. HP USUALLY LEAVES THIS FIELD BLANK
PQ (P-Q)	FROM POINTER P, LEFT UP TO Q OR DIGIT 13
XS (XS)	EXPONENT SIGN - DIGIT 2
M (M)	MANTISSA - DIGITS 12 - 3
s (ms)	MANTISSA SIGN - DIGIT 13

CLASS 2 INSTRUCTIONS

The set of Class 2 microcode instructions perform arithmetic and logical operations. Arithmetic operations are performed in hexadecimal or decimal depending on the last mode operation executed (SETHEX or SETDEC).

TABLE 10: CLASS 2 INSTRUCTION HEX CODES

MNEMONIC	OPERATION	CODI	E FOI	R EAG	CH_FI	ELD	OF ()PER A	ATION_
		\mathbf{PT}	Х	WPT	ALL	PQ	XS	М	S
A=O (A=O)	CLEAR A	002	006	DOA	OOE	012	016	01A	01E
B=0 (B=0)	CLEAR B	022	026	02A	02E	032	036	03A	03E
C=0 (C=0)	CLEAR C	042	046	04A	04E	052	056	05A	05E
AB EX (A<>B)	EXCHANGE A WITH B	062	066	06A	06E	072	076	07A	07E
B=A ($B=A$)	COPY A INTO B	082	086	08A	08E	092	096	09A	09E
AC EX $(A <> C)$	EXCHANGE A WITH C	0A2	0A6	OAA	OAE	0B2	0B6	OBA	OBE
C=B ($C=B$)	COPY B INTO C	0C2	006	OCA	OCE	OD2	od6	ODA	ODE
BC EX $(B < >C)$	EXCHANGE B WITH C	0E2	0E6	OEA	OEE	0F2	of6	OFA	OFE
A=C (A=C)	COPY C INTO A	102	106	10A	10E	112	116	11A	11E
A=A+B(A=A+B)	ADD B INTO A	122	126	12A	12E	132	136	13A	13E
A=A+C(A=A+C)	ADD C INTO A	142	146	14A	14E	152	156	15A	15E
A=A+1(A=A+1)	INCREMENT A	162	166	16A	16E	172	176	17A	17E
A=A-B(A=A-B)	SUBTRACT B FROM A	182	186	18A	18E	192	196	19A	19E
A=A-1(A=A-1)	DECREMENT A	1A2	1A6	1AA	1AE	1B2	1B6	1BA	1BE
A=A-C(A=A-C)	SUBTRACT C FROM A	102	106	1CA	1CE	1D2	1D6	1DA	1DE
C=C+C(C=C+C)	DOUBLE C	1E2	1E6	1EA	1EE	1F2	1F6	1FA	1FE
C=A+C(C=A+C)	ADD A INTO C	202	206	20A	20E	212	216	21A	21E
C = C + 1(C = C + 1)	INCREMENT C	222	226	22A	22E	232	236	23A	23E
C=A-C(C=A-C)	A-C INTO C	242	246	24A	24E	252	256	25A	25E
C=C-1(C=C-1)	DECREMENT C	262	266	26A	26E	272	276	27A	27E
C = -C (C = 0 - C)	COMPLEMENT C	282	286	28A	28E	292	296	29A	29E
C = -C - 1	NINES COMPLEMENT C	2A2	2A6	2AA	2AE	2B2	2В6	2BA	2BE
?B#O (?B#O)	SET C FLAG IF B≠O	202	206	2CA	2CE	2D2	2D6	2DA	2DE
?C#O (?C#O)	SET C FLAG IF C≠O	2E2	2E6	2EA	2EE	2F2	2F6	2FA	2FE
?A <c (?a<c)<="" td=""><td>SET C FLAG IF A<c< td=""><td>302</td><td>306</td><td>30A</td><td>30E</td><td>312</td><td>316</td><td>31A</td><td>31E</td></c<></td></c>	SET C FLAG IF A <c< td=""><td>302</td><td>306</td><td>30A</td><td>30E</td><td>312</td><td>316</td><td>31A</td><td>31E</td></c<>	302	306	30A	30E	312	316	31A	31E
?A <b (?a<b)<="" td=""><td>SET C FLAG IF A<b< td=""><td>322</td><td>326</td><td>32A</td><td>32E</td><td>332</td><td>336</td><td>33A</td><td>33E</td></b<></td>	SET C FLAG IF A <b< td=""><td>322</td><td>326</td><td>32A</td><td>32E</td><td>332</td><td>336</td><td>33A</td><td>33E</td></b<>	322	326	32A	32E	332	336	33A	33E
?A#O (?A#O)	SET C FLAG IF A≠O	342	346	34A	34E	352	356	35A	35E
?A#C (?A#C)	SET C FLAG IF A≠C	362	366	36A	36E	372	376	37A	37E
A SR (RSHFA)	SHIFT A RIGHT 1 DIG	382	386	38A	38E	392	396	39A	39E
B SR (RSHFB)	SHIFT B RIGHT 1 DIG	3A2	3a6	3AA	3ae	3B2	3B6	3BA	3BE
C SR (RSHFC)	SHIFT C RIGHT 1 DIG	302	306	3CA	3CE	3D2	3D6	3DA	3DE
A SL (LSHFA)	SHIFT A LEFT 1 DIG	3E2	3E6	3EA	3EE	3F2	3F6	3FA	3FE

PAGE 11

CLASS 3 INSTRUCTIONS

Class 3 instructions allow the program to jump up to 63 words forward or backward from its present location. The mnemonics are GONC or GOTO (JNC) and GOC (JC). In Hewlett Packard listings, the GOTO is followed by a label. In disassembled listings, the GOTO is followed by "*+pp" or "*-pp" which indicates a jump relative to the current instruction address (*).

TABLE 12: CLASS 3 INSTRUCTIONS

DIST	JNC	JC	JNC	JC	DIST	JNC	JC	JNC	JC	
ANCE	*	*	<u>*+</u>	*+	ANCE	*	<u>*-</u>	*+	*+	
* <u>+</u> 01	3FB	3FF	00B	OOF	* <u>+</u> 02	3F3	3F7	015	017	
* <u>+</u> 03	3EB	3EF	01B	01F	* <u>+</u> 04	3E3	3E7	023	02 7	
* <u>+</u> 05	3DB	3DF	02B	02F	* <u>+</u> 06	3D3	3D7	033	037	
* <u>+</u> 07	3CB	3CF	03B	03F	* <u>+</u> 08	3C3	307	043	047	
* <u>+</u> 09	3BB	3BF	04B	04F	* <u>+</u> 0A	3B3	3B7	053	057	
* <u>+</u> 0B	3AB	3AF	05B	05F	* <u>+</u> 0C	3A 3	3A7	063	067	
* <u>+</u> 0D	39B	39F	06B	06F	* <u>+</u> 0E	393	397	073	077	
* <u>+</u> 0F	38B	38F	07B	07F	* <u>+</u> 10	383	387	083	087	
* <u>+</u> 11	37B	37F	08B	08F	* <u>+</u> 12	373	377	093	097	
* <u>+</u> 13	36B	36F	09B	09F	* <u>+</u> 14	363	367	0A 3	0A7	
* <u>+</u> 15	35B	35F	OAB	OAF	* <u>+</u> 16	353	357	0B3	0B 7	
* <u>+</u> 17	34B	34F	OBB	OBF	* <u>+</u> 18	343	347	003	007	
* <u>+</u> 19	33B	33F	OCB	OCF	* <u>+</u> 1A	333	337	0D3	0D7	
* <u>+</u> 1B	32B	32F	ODB	ODF	* <u>+</u> 1C	323	327	OE3	0E7	
* <u>+</u> 1D	31B	31F	OEB	OEF	* <u>+</u> 1E	313	317	OF3	OF7	
* <u>+</u> 1F	30B	30F	OFB	OFF	* <u>+</u> 20	303	307	103	107	
* <u>+</u> 21	2FB	2FF	10B	10F	*+22	2F3	2F7	113	117	
*+23	2EB	2EF	11B	11F	*+24	2E3	2E7	123	127	
*+25	2 DB	2DF	12B	12F	*+26	2D3	2D7	133	137	
* <u>+</u> 27	2CB	2CF	13B	13F	* <u>+</u> 28	203	207	143	147	
* <u>+</u> 29	2BB	2BF	14B	14F	* <u>+</u> 2A	2B3	2B7	153	157	
* <u>+</u> 2B	2AB	2AF	15B	15F	* <u>+</u> 2C	2A3	2A7	163	167	
* <u>+</u> 2D	29B	29F	16B	16F	* <u>+</u> 2E	293	297	173	177	
* <u>+</u> 2F	28B	28F	17B	1 7F	* <u>+</u> 30	283	287	183	187	
* <u>+</u> 31	27B	27F	18B	18F	* <u>+</u> 32	273	277	193	197	
* <u>+</u> 33	26B	26F	19B	19F	* <u>+</u> 34	263	267	1A3	1A7	
* <u>+</u> 35	25B	25F	1AB	1AF	* <u>+</u> 36	253	257	1B3	1B7	
* <u>+</u> 37	24B	24F	1BB	1BF	* <u>+</u> 38	243	247	103	107	
* <u>+</u> 39	23B	23F	1CB	1CF	* <u>+</u> 3A	233	237	1D3	1D7	
* <u>+</u> 3B	22B	22F	1DB	1DF	* <u>+</u> 3C	223	227	1E3	1E7	
* <u>+</u> 3D	21B	21F	1EB	1EF	* <u>+</u> 3E	213	217	1F3	1F7	
*+3F	20B	20F	1FB	1FF	*+40	203	207			

MICROCODE ADDITIONAL NOTES

SYSTEM STACK

The microprocessor in the HP 41 uses an address stack to keep track of subroutine calls. This stack will hold 4 address entries. Each time an EXECUTE occurs, the address of the second word of the EXECUTE instruction is "pushed" onto the stack -- it becomes the lowest entry and the other entries are moved up by one. If there were already four addresses in the stack, the top one is lost. Whenever a RTN occurs, the bottom entry of the stack is copied into the PC register and all other entries are moved down by one. A zero is moved into the top stack position. When a SPOPND occurs, the stack is dropped by one. When a C=STK occurs, the stack is dropped by one and the address that was in the bottom stack entry is copied into the address field of C (6:3). When a STK=C occurs, the stack is lifted by one, and the address field of c is copied into the bottom stack location.

SYSTEM STATUS

There are three major modes that the HP 41 can be in: sleep, standby, and active. In sleep mode, the calculator is turned off. In standby mode, the calculator is turned on but is not executing any microcode. In active mode, the calculator is running microcode. The system ROMs (pages 0 - 2) contain code to differentiate between sleep and standby by setting the C flag when the ON key is pressed.

USING THE DISPLAY

The display functions independently from the HP 41 processor. It has its own processors. For an in depth coverage of how the display works, consult Paul Lind's article published in the PPC Calculator Journal V9N2P15 and in PPC Technical Notes #10 P21.

SETHEX VS. SETDEC

Upon execution of either of these operations, it remains in effect until another of these operations is performed. In DEC mode, all arithmetic operations are performed on digits from 0 to 9. In HEX mode, all arithmetic operations are performed on digits from 0 to F. The C flag is set if the operation performed causes the result to exceed 9 (DEC) or F(HEX) or if the result is less than 0. This is how HP does their normalisation: In DEC mode, add 1 (which sets the C flag and converts the result to decimal) then subtract 1 to return the original result. If the original word was already normalised, it is not affected by adding and subtracting 1.

RELOCATION

When you write a microcode routine to be contained in an external ROM (or EPROM or ProtoCODER), you cannot use Class 1 GCTOs or EXECUTEs if you want the contents to be able to work when plugged in any port or addressed to any page. However, there are several routines in the operating system pages 0 - 2 to allow you to write absolute GOTOs and EXECUTES. KEYCODES RETURNED BY "C=KEYS" IN MICROCODE

The above hexadecimal keycodes are returned in C(4:3) when C=KEYS is executed. If no key was pressed, 00 is returned. All other digits of C are unaffected.

HP 41 TONES IN MICROCODE

The HP 41 uses a short microcode routine located at address 16DD to control the bender for all TONE operations. Both the frequency and the duration of the tone are software controlled and are predictable given the cycle time of the calculator. The system routine accepts 2 digits of data to specify the tone. The system chops off the left-most bit and interprets it to mean INDIRECT if it is 1. TONE instructions appear in memory as 9F ab where a is normally 0 and b is 0 - 9unless created syntheticly. The duration of the tone is determined by the contents of ROM word 16F2 + ab. This value is decremented in a loop as the tone is being heard until it reaches zero, which terminates the tone. The frequency is determined by b. Hewlett Packard intended only ten tones to be used, but the TONE routine will look up ROM data for all 128 tones. This explains why some of the synthetic tones changed in duration when HP came out with a ROM update.

To use the bender, store 00 in the F (or T) register and store FF in the ST register. Tones are created by turning F on and off, that is, by swapping F and ST. The number of swaps defines the length of duration of the tone. The number of instructions between swaps defines the frequency of the tone. The duration and frequency will also vary depending on the cycle time of your calculator. Non-speeded-up calculators generally have a cycle time of 155 - 158 microseconds per microcode instruction.

EXAMPLE:

TONE 9 (9F 09) has a period of 6 processor cycles. Given the cycle time of 158 microseconds, the period would be .000158 * 6 = .000948 seconds. Then the frequency is 1 / .000948 = 1055 hertz. To determine the duration, convert the ROM data word at 16F2 + 09= 16FB which is 215 her, to decimal, then add one since the looper decrements this number until it is LESS than zero. This number (= 534 decimal) is the number of times that the bender is flopped using the F register. The duration of TONE 9 is 534 loops * 3 cycles per loop * .000158 seconds per cycle = .253 seconds.

SAMPLE MICROCODE ROUTINES

The following routines provide examples of using microcode on the HP 41. Each routine includes the name which is coded backwards from the first word to be executed. The catalog table at the beginning of each ROM has a list of addresses of the routines. The address in the catalog table points to the first word of executable code for microcode routines.

"X=1?"

This routine sets up a 1 in the C register then branches to the system ROM routine that makes the comparison.

"+1"

This routine is a good example of the speed of microcode compared to user code. When you execute "+1", the calculator starts counting from zero, incrementing by 1 each loop until any key is pressed. It returns the resulting total in X.

> E170 081 1 E171 028 + ?C GO 0A2C E172 04E & C=0 ALL E173 2A0 SETDEC E174 270 ⊢ RAM SLCT E175 23A : C=C+1 M E176 300 # ?KEY E177 3F3 c JNC *-92 E178 130 0 LDI S&X E179 009 I =D9 E17A 10E N A=C ALL E178 35C v R= C<12> E17C 1A6 & A=A-1 S&X E17D 3FA & LSHFA M E17E 342 b ?A≠0 @R E17F 3EB × JNC *-H3 E180 0AE . A<>C ALL E181 0E8 F WRIT 3(X) E182 308 F CLRKEY E183 3CC # PKEY E184 3F7 ' JC *-02 E185 3E0 + RTN

"GOOSE"

This routine appends a left-facing goose to the display. For a demonstration of something that you can not do with user code, enter GOOSE as a program line in a program that is displaying a goose when running.

E001	085	Ε			
E002	813	S	20	GO	0421
E0C3	90F	0	JC		*+01
E0C4	80F	0	JC		*+01
E005	887	G	JC		*+60
E006	301	a			
E007	080	Ø	?NC	ΧQ	2CF0
E008	130	0	LDI		S&X
E809	92C	,	=])44	ļ.	
EØCA	388	(WRIT		14(d)
EØCB	14D	ŧ			
E0CC	924	\$?NC	XQ	0 953
EOCD	3E0	۲	RTN		

"CODE"

This routine encodes up to 14 characters from ALPHA into X. The 14 characters in ALPHA are character representations of the hex code to be entered into X. Each character can be 0 - F. If less than 14 characters are to be encoded into X, leading zeroes are assumed.

E148	085	Ε		
E140	004	D	?NC XQ	0121
E14D	00F	0	JC .	*+01
E14E	003	С	JNC	*+00
E14F	04E	Σ	C=0	ALL
E150	270	۲	RAM	SLCT
E151	260	۲	SETHEX	
E152	248	٢	SETF	9
E153	10E	Ν	A=C	ALL
E154	188	8	READ	6 <n></n>
E155	0EE	Σ	C<>B	ALL
E156	130	0	LDI	S&X
E157	886	F	=16	
E158	ØEE	Σ	C<>B	ALL
E159	37C	y	RCR	C<123
E15A	3EE	Σ	LSHFA	ALL
E158	358	Г	ST=C	X
E150	39C	١	R=	9
E15D	102	8	A=C	er
E15E	250	F	LDØR-	9
E15F	39C	١	R=	0
E160	14C	y	?FSET	6
E161	013	S	JNC	*+02
E162	142	b	A=A+C	er
E163	9EE	Σ	C<>B	ALL
E164	266	٠	C=C-1	S&X
E165	01F	-	JC	*+03
E166	ØEE	Σ	C<>B	ALL
E167	393	S	JNC	*-0E
E168	24C	y	?FSET	9
E169	023	ŧ	JNC	*+84
E16A	244	đ	CLRF	9
E16B	178	٢	READ	5(M)
E160	348	x	JNC	*-17
E16D	ØAE	•	AK >C	ALL
E16E	0E8	٢	WRIT	3(X)
E16F	3E0	۲	RTN	

"LOAD"

This is a user language program to assist the user in loading ROM data into the ProtoCODER. To use, execute LOAD and enter the starting ProtoCODER address to be loaded into ALPHA at the prompt, then press R/S. Then at each successive prompt, enter the hex characters to be entered in the next word. After each entry, LOAD will recall what it just loaded and display it to verify that it is correct. LOAD uses the Extended Functions module and PPC EPROM 2.

> 01+LBL "LOAD" 02 -1000-03 CODE 04 STO 01 05 "START" 06 AON 07 PROMPT 08 ·+000· 09 CODE 10 STO 80 11 DATA-12+LBL 01 13 AON 14 PROMPT 15 AOFF 16 ATOX 17 19 18 + 19 XTOA 20 -1 21 AROT 22 -100000000000 23 CODE 24 8 25 NRCL 26 X+Y 27 SIGN 28 0 29 NRCL 30 RXR 31 RXR 32 RXR 33 X()ROM 34 DECODE 35 ASHF 36 0 37 NRCL 38 1 39 NRCL 40 X+Y 41 STO 00 42 GTO 01 43 END

This routine is used to list the contents of a ROM. To use it, put the ROM address in X using CODE or "HN" in the PPC ROM. Then execute DISASM. The ROM code is returned in ALPHA in the format "AAAA CCC R " where AAAA is the ROM address, CCC is the word of ROM code, and R is the character representation of the ROM code. X is also increased by 1, and the result of the CXISA is returned in Y.

6<N>

B(11)

€<12>

D(13)

*+98

2(Y)

B<13>

EØCE	08D	M			E0FA 09C \ R= 5	
EØCF	013	S	?C G0	8423	E0FB 04A & C=0 R(-
EØDØ	001	A			EØFC 17C 🖉 RCR 🛛 6	
EØD1	013	S	?C GO	0400	E0FD 1A8 (WRIT 64	N)
E0D2	009	I			E0FE 0AE . A<>C AL	L
E0D3	004	D	?NC X0	0102	E0FF 13C < RCR 8	
E0D4	260	F	SETHEX		E100 090 P LD0R- 2	
EØDS	345	e			E101 010 P LDCR- 0	
E016	840	۲	?NC XQ	10D1	E102 090 P LD0R- 2	
E0D7	130	0	LDI	S&X	E103 010 P LD@R- 0	
EØDS	00 6	F	=06		E104 090 P LD@R- 2	
E0D9	18C	<	RCR	B<11>	E105 010 P LD@R- 0	
EØDA	130	0	LDI	S&X	E106 2DC v R= D<	13
EØDB	009	I	=D9		E107 090 P LD@R- 2	
EØDC	10E	Ν	A=C	ALL	E108 010 P LDER- 0	
EØDD	0F8	Г	READ	3(X)	E109 168 F WRIT 54	H)
EØDE	22E		C=C+1	ALL	E10A 088 8 READ 2<	Y)
EØDF	0E8	Г	WRIT	3(X)	E108 358 Γ ST=C X	
EØEØ	26E	Σ	C=C-1	ALL	E10C 284 D CLRF 7	
E0E1	1BC	<	RCR	B<11>	E10D 398 X C=ST X	
EØE2	330	0	FETCH	S&X	E10E 14C # ?FSET 6	
E0E3	0A8	(WRIT	2 <y></y>	E10F 043 c JNC *+6	98
EØE4	2BC	<	RCR	7	E110 01C \ R= 3	
EØE5	130	0	LDI	S&X	E111 090 P LD0R- 2	
E0E6	00 3	С	=D3		E112 310 P LDER- C	
E0E7	2FC	ø	RCR	D<13>	E113 010 P LD@R- 0	
E068	390	١	R=	0	E114 1BC < RCR B<1	11
E0E9	302	8	?AKC	er	E115 330 0 FETCH S&X	X
EØEA	02B	ŧ	JNC	*+85	E116 02B + JNC *+0	95
EØE8	242	b	C=A-C	er	E117 08C L ?FSET 5	
EØEC	282	8	C=0-C	er	E118 01F _ JC ++6	93
EØED	31C	١	R=	1	E119 148 F SETF 6	
EØEE	222	•	C=C+1	er	E11A 398 X C=ST X	
EØEF	0EE	Σ	C<>B	ALL	E11B 10E N A=C ALL	_
EØFØ	178	Г	READ	5(M)	E11C 178 F READ 54	D
EØF1	370	μ	RCR	0<12>	E11D 23C < RCR 2	
E0F2	0E6	٠	C<>B	S&X	EilE 0A6 & A<>C S&X	٢.
E0F3	0F6	٠	C<>B	XS	E11F 0B6 6 A<>C XS	
EØF4	168	ſ	WRIT	5 <m></m>	E120 37C # RCR C<1	12
E0F5	0EE	Σ	C<>B	ALL	E121 168 Г WRIT 5<М	Ð
E0F6	18A	:	A=A-1	Ħ	E122 200 # ?FSET D(1	3
E0F7	373	С	JNC	* -12	E123 360 F ?C RTN	ł
E0F8	178	Г	READ	5 <m></m>	Ε124 2C9 α	
EØF9	19E	N	A=C	ALL	E125 042 b ?NC GO 108	32

XROM WORD FORMAT

Each 4K ROM contains mostly routines and programs, however, several words are used by the system to keep track of where these routines are located, and when to execute them. The first block of words in the ROM contains the XROM number, the number of routines, and a catalog linkage table. Near the end of the ROM there is a table containing interrupt-jump points, the ROM name, and a checksum. XROM contents are listed in Table 13.

TABLE 13: XROM CONTENTS

• • •	AIION	CONTENID	

ADDRESS	CONTENTS
x000	Hex XROM number, i. e., the Printer (29) is O1D.
x001	Hex number of routines. For 82143 printer with
	25 routines, this is 019. This includes the
	XROM label (-PRINTER-). XROMs do not need a
	name but if you provide one, it should be
	followed by a RTN in case it is executed.
nnn-nnn+1	Starting with words 002-003, these pairs contain
	the address of the routine. For microcode
	routines this address points to the first
	executable word. The first word is OOa. The
	second is Obc. This points to address xabc.
	For user language programs, the first word is
	20a. xabc points to the first word of the LBL.
kkk-kkk+1	Following n+1 pairs of words for an XROM with n
	functions, are two words containing 000. This
	signals the system that the end of the catalog
	table has been reached.
FF4–FFA	These words contain a single instruction to be
	executed at designated interrupt times. In
	most cases these will be zero. At the specific
	times that these interrupts are generated, the
	system looks through all XROMs to find any non-
	zero values. If a non-zero value is found,
	then the instruction (usually a GOTO) found
	there is executed.
FF4	Interrupts during PSE loop.
FF5	Interrupts after each program line.
FF6	Wakeup with no key down.
FF7	Interrupts when turned off.
FF8	Interrupts when peripheral flag is set.
FF9	Wakeup with ON key.
FFA	Interrupts after MEMORY LOST.
FFB -FF E	Contains the ROM name used by the HP Service

module. This can contain anything. FFF ROM checksum. This is used to verify that the contents of the ROM are correct. The HP Service module adds all ROM words together and compares the result to the checksum. If they match, then the ROM is declared to be "OK".

APPENDIX 4: PPC INFORMATION

PPC is the Personal Programming Center which is an organization of users dedicated to personal computing. It is the oldest personal computing group in the world. PPC publishes the PPC Calculator Journal which disemenates information and programs for HP calculators. For information on membership, obtaining back issues of the PPCCJ, and information about the PPC ROM or PPC EPROMs, send a 9x12" envelope with 20z of postage or equivalent international postal coupons to:

PPC 2545 W. Camden Place Santa Ana, Ca. 92704

PPC Technical Notes is a publication of the Melbourne Chapter of the PPC. For subscription information, send a self addressed envelope and international postal coupons to:

PPCTN R.M. Eades P. O. Box 15 Hampton, Victoria 3188 Australia

For information on ordering PPC EPROMs, send a SASE to:

Logical Systems Associates P. O. Box 1023 Garden Grove, Ca. 92642

or consult PPCCJ V9N1P27.

PROTOSYSTEM OWNERS MANUAL ADDENDUM

COPYRIGHT 1982 BY PROTOTECH, INC.

ProtoSYSTEM and ProtoCODER are registered trademarks of Prototech, Inc.

PROTOTECH, INC. P. O. BOX 12104 BOULDER, CO. 80303

TABLE OF CONTENTS

Correct	tions	to	Manu	al	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	Section	1
HP and	PPC N	íne n	nonic	:5	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	Section	2
About W	/riti r	ng I)ata	to	the	Pro	otos	SYSI	EM	•	•	•	•	•	•	•	•	•	•	Section	3
Applica	ations	3 Pr	rogra	ms	(ВОС	T,	DUI	P)	•	•	•	•	•	•	•	•	•	•	•	Section	4
EPROM A	Availa	ibi]	Lity	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	Section	5
NFCROM	• •		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	Section	6
ProtoRC	M Spe	≥cif	ficat	ior	n Cha	ange	;	•	•	•	•	•	•	•	•	•	•	•	•	Section	7
ROM Cha	aracte	er I	lable	e, F	unct	tior	n Na	ames	s, 1	ron	npti	ng,	, No	on-1	prof	grai	nmal	oili	ity	Section	8
Example	e of I	[nit	tial	Set	up c	of I	Prot	toCC	DEF	ł	•	•	•	•	•	•	•	•	•	Section	9
Calcula	ation	of	ROM	Che	ecksu	ım	•	•	•	•	•	•	•	•	•	•	•	•	•	Section	10
User La	nguae	ze v	rs. M	lici	rocod	le J	im	ing	•	•	•	•	•	•	•	•	•	•	•	Section	11
Brief (vervi	iew	of H	IP Z	1 Di	[sp]	lay	Pro	ogra	u mm i	ing	•	•	•	•	•	•	•	•	Section	12

SECTION 1: CORRECTIONS TO MANUAL

Page 8, line 6 in "Programming the ProtoCODER" - BOOT is not listed anywhere in the manual, however, it is listed in this addendum.
Page 11, lines 7 and 8 from the bottom - the ≤ signs were left out twice in each line.
Page 12, in Table 12 - the hex code for JC *-25 should be 2DF, not 2BF.

SECTION 2: HP AND PPC MNEMONICS

In the tables of microcode mnemonics, both the standard HP mnemonics and the PPC adopted mnemonics (of Steve Jacobs) are listed. The HP mnemonic is listed first followed by the PPC mnemonic in parenthesis.

SECTION 3: ABOUT WRITING DATA TO THE ProtoSYSTEM

There is no need to erase a particular location in the ProtoCODER. When you write new data to that location, it writes over (replaces) whatever was there.

As suggested by David Spear, it is easier and faster to use an F (or A - E) instead of 0 for digits CODEd in X that are ignored by the device being programmed. For example, to write a C=0 instruction (OAE) to location 236 in the ProtoCODER (with the device select switches set to 0), both of the following will perform exactly the same:

CA EO OO OO 23 60 00 or CA #F FF FF 23 6F FO but the second one is much faster to enter in ALPHA.

SECTION 4: APPLICATIONS PROGRAMS

This section contains two programs to assist in copying ROM contents to mass storage (eg tape) and to load ROM data from mass storage or data registers.

BOOT is used to sequentially load the ProtoCODER with 5 ROM words contained in sequential user registers. The user registers can be loaded from the cassette tape or any other source. It loads words until it has loaded the contents of absolute register at address 1FF, then stops. It requires a HP 41CV or C with Quad RAM. Boot must be run as a program line, e.g.:

LBL "AA" BOOT STOP

To use, set up the contents of the registers to contain the 50 bits each of 5 ROM words, right justified, with 000100 as the leftmost 6 bits. For example, to clear the interrupt jump locations (FF4-FFA), SIZE to 003 then store 0 in registers 1 and 2. You must load the highest numbered registers with data since BOOT starts at the register address you input and continues running until it reaches the highest register number. Before running the above program, you need to set up the stack as:

Z contains the CODEd absolute address (OOO-FFF) of the first ProtoCODER location to load

Y contains 0

T and X do not matter

L contains the CODEd absolute address of the register immediately preceding the one to start loading data from

For the above example,

"FF4" CODE ENTER O ENTER "1FD" CODE STO .L

then run the above program.

Here "FF4" is the first address to load (the first interrupt jump location)

and "1FD" is the absolute address of register 0 which immediately precedes register 1 containing the first data to be loaded. BOOT is listed on the next page.

DUMP can be used to save microcode routines on tape (etc) or to copy data from a ROM to subsequently load into the ProtoCODER. DUMP takes 5 ROM words starting with the absolute address CODEd into X, and packs them into one register as an ALPHA string and stores this at the absolute register address CODEd in Y. It also increments Y and adds 5 to X. For example, to copy the interrupt jump locations from the ROM in port 1 (addresses 8FF4 - 8FFD) into registers 1 and 2 (to be loaded with BOOT as above), SIZE to 003, then: "1FE" CODE ENTER "8FF4" CODE DUMP DUMP

DUMP is listed on the next page.

SECTION 5: EPROM AVAILABILITY

Logical Systems Associates will not be accepting any more orders for EPROM copies. However, Joe Bell will have EPROM copies available. For more information and pricing, write to:

JOE BELL SURVEY CALCULATIONS JOURNAL P O BOX 6674 SAN BERNARDINO, CA 92412

SECTION 6: NFCROM

If you have an EPROM box or ProtoEPROM, then NFCROM may be very useful to you. It contains routines to load the ProtoCODER quickly, and to disassemble (with mnemonics) any ROM. Copies of NFCROM with routine descriptions can be obtained from:

Prototech. Inc. P. 0. Box 12104 Boulder, Co. 80303

The price is \$35 per NFCROM set which includes the routine descriptions and shipping. Following is a list of the routines in NFCROM: NFCROM-1A displays message BOOT as above DUMP as above LEFT rotates display to left DISASM microcode disassembler , appends left goose to display RCLA non-normalised recall CL clears system flag 12 DECODE non-normalised number to hex CODE hex to non-normalised number AK hex code key assignments +1 microcode speed comparator DIS appends any char to display . appends right goose to display ROM? displays ROM 0.1.2 revisions DISTST display test LOAD loads a word into ProtoCODER X=1? comparison PROMT usiversal hexadecimal prompting LODE loads sequential ProtoCODER words CAT lists on-line ROMs and other things POW2 extended precision powers of 2 LODB hex byte loader (unfinished) MNEM mnemonics for disassembler ROMSUM computes ROM checksum MANT returns mantissa of X to X M10INT returns INT(X) MOD 10 to X STA non-normalised store BJUMP byte jumper TOGF toggles user flag DEC-HEX 12 digits decimal to hex HEX-DEC 8 digits hex to decimal

 $\langle \rangle$ exchanges IND X with IND Y

INIT initializes ProtoCODER with CAT

EC44 094 T EC45 00F 0 EC46 00F 0 EC47 002 B EC48 260 F SETHEX ALL EC49 04E Σ C=0 EC4A 270 + DADD=C EC4B 0B8 8 C=REGN 2(Y) EC4C 2E6 + ?C#0 X EC4D ØAF / GOC *+15 EC4E 138 8 C=REGN 4(L) EC4F 226 & C=C+1 X EC50 128 (REGN=C 4(L) EC51 33C < RCR 1 EC52 358 F ST=C EC53 88C L ?S=1 5 EC54 360 + RTN C EC55 000 @ NOP 3 EC56 130 0 LDI EC57 004 D CON 0004 EC58 0A8 (REGN=C 2(Y) EC59 138 8 C=REGN 4(L) EC5A 270 + DADD=C EC58 038 8 C=REGN 0(T) EC5C 10E N A=C ALL EC5D 04E Σ C=0 ALL EC5E 270 ⊢ DADD=C EC5F ØAE . AC EX ALL EC60 028 (REGN=C 0(T) EC61 033 3 GONC *+06 EC62 266 + C=C-1 X EC63 0A8 (REGN=C 2(Y) EC64 04E 2 C=0 ALL EC65 270 ⊢ DADD=C EC66 038 8 C=REGN 0(T) EC67 1EE E C=C+C ALL EC68 1EE Σ C=C+C ALL EC69 2DC y PT= 13 EC6A 0D0 F LC 3 EC6B 37C > RCR 12 EC6C 028 (REGN=C 0(T) EC6D 23C < RCR 2 EC6E 1EE 2 C=C+C ALL EC6F 1EE Σ C=C+C ALL EC70 1BC < RCR 11 EC71 05A & C=0 M EC72 05E Σ C=0 S EC73 17C # RCR 6 EC74 10E N A=C ALL EC75 078 Γ C=REGN 1(Z) EC76 106 F A=C X EC77 226 & C=C+1 X EC78 068 Γ REGN=C 1(Z) EC79 138 8 C=REGN 4(L) EC7A ØE8 F REGN=C 3(X) EC7B 06E S AB EX ALL EC7C 338 8 C=REGN 12(b) EC7D 10E N A=C ALL EC7E 35D ≠ EC7F 000 @ GOSUB 00D7 EC80 03C < RCR 3 EC81 130 0 LDI EC82 3CE Z CON 8974 EC83 1BC K RCR 11

EC84	01C	١	PT=	3
EC85	1E0	F	GOTOC	
EC86	000	e	NOP	3
E3CE	150	F	LC	5
E3CF	01C	١	PT=	3
E3D0	9CC	p	?S=1	10
E3D1	023	ŧ	GONC	*+84
E3D2	186	÷	A=A-1	X
E3D3	186	Ł	A=A-1	X
E3D4	043	C	GONC	*+98
E3D5	302	8	?AKC	PT
E3D6	827	٠	GOC	*+8 4
E3D7	102	b	A=A-C	PT
E3D8	166	ŧ	A=A+1	X
E3D9	01 B	E	GONC	*+03
E3DA	162	b	A=A+1	PT
E3DB	162	b	A=A+1	PT
E3DC	ØAE		AC EX	ALL
E3DD	328	(REGN=C	12(b)
E3DE	ØEE	Σ	BC EX	ALL
E3DF	1BC	<	RCR	11
E3E0	35C	p	PT=	12
E3E1	309	α		
E3E2	03E	>	GOLONG	0FF6

E088	090	Ρ		
EØ89	00D	M		
E08A	015	U		
E088	004	D		
E0 8C	04E	Σ	C=0	ALL
EØSD	260	F	SETHEX	
E08E	270	F	DADD=C	
E08F	070	F	N=C	
E090	ØF8	Г	C=REGN	3(X)
E091	1BC	<	RCR	11
E092	2DC	ÿ	PT=	13
E093	110	Ρ	LC	4
E094	330	0	CXISA	
E095	10E	N	A=C	ALL
E096	0B0	0	C=N	
E097	1BC	<	RCR	11
E098	086	Ł	AC EX	X
E099	1E6	٠	C=C+C	X
E09A	1E6	٠	C=C+C	X
E09B	1EE	Σ	C=C+C	ALL
E09C	1EE	Σ	C=C+C	ALL
E09D	330	<	RCR	1
E09E	070	F	N=C	
EØ9F	ØRE	•	AC EX	ALL
EOHO	23A	:	C=C+1	H .
ENHI	27E	Σ	C=C-1	S
EØH2	386	ĸ	GUNC	*-81
E0H3	05E	Σ	C=0	5
EUH4	046	*	C=0	Ň
ENHO	936	۲ ۲	KUK	3
EUHO	010	1	KEGN=U	3(2)
EUH/	088	8	C-CIT	2(1)
EOHO	22E	;		HLL
E0H7	8H8 27 E	(KEGN=C	2(1)
EOHH	205	<u>ረ</u>		HLL
LONG	210	r	DHDD=C	
CON	920		L=N DT-	17
EONE		y 1	ri=	13
EDAE	950 929	r L		1 .
COHF	250	Г L	UHIH=U DTN	
C000	JEU	r	R I N	

SECTION 7: ProtoROM SPECIFICATION CHANGES

The ProtoROM specification now reads "Each ProtoROM board lets the user plug in up to 4 HP Application Modules (ROMs). Each module can be individually switched on or off of the HP 41C/V bus under keyboard or program control."

This should be changed in your manual at the following locations:

Page 1 under ProtoSYSTEM Overview, lines 12-14

Page 2 replace the Effects of Master Clear paragraph with:

"No ProtoSYSTEM boards are affected by MASTER CLEAR."

Page 4 lines 7-9

SECTION 8: ROM CHARACTER TABLE, FUNCTION NAMES, PROMPTING, NON-PROGRAMMABILITY The HP41 recognises 2 distinct character sets: modified ASCII (listed in the HP41 hex tables) and the ROM character set. The ROM character set is used for most internal operations including coding the ROM function names.

	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
0	@	Α	В	С	D	Ε	F	G	H	I	J	K	L	М	N	0
1	Р	Q	R	S	т	U	V	W	Х	Y	\mathbf{Z}	٢	\mathbf{N}]	1	
2		!	**	#	\$	%	å	1	()	*	+	,	-	•	/
3	0	1	2	3	4	5	6	7	8	9	:	;	<	=	>	?
4	F	а	ъ	с	d	е	-	Ŧ	Ţ	X	¥	Ŧ	μ	¥	Σ	L

Note: the colon(3A) displays as a boxed star. The comma(2C) is also the left facing goose when used in a function name or display, and the period(2E) is also the right facing goose.

When a function is executed, the operating system checks the ROM words containing the first two characters of the function name and the two words immediately following. The catalog table entry for a microcode function (both mainframe and XROM functions) points to the first word of executable code. The function name is listed in reverse order immediately preceding the first word of executable code. For example, CLA(hex 87) has a catalog entry at 1487 of OD1 which means that the first executable word of CLA is at 10D1. The ROM listing for CLA is:

 10CE
 081
 A

 10CF
 00C
 L

 10D0
 003
 C

 10D1
 04E
 C=0

 10D2
 168
 REGN=C
 5(M)

 10D3
 1A8
 REGN=C
 6(N)

 10D4
 1E8
 REGN=C
 7(O)

 10D5
 228
 REGN=C
 8(P)

 10D6
 3EO
 RTN

This shows how the function name is listed in reverse order. To tell the operating system that the end of the function name has been reached, add O80 hex to the final character. For CLA, add O80 to A(001) to get O81 at location 10CE. CLA requires no prompt. To provide a prompt, set the top two bits in the first two characters of the function name by adding the hex constants in the following table:

Page 6 delete lines 11-15 under ProtoROM Purpose starting with "The ProtoROM can also . . ."

ADD	HEX TO		PI	ROMPT	FYPE AC	CEPTED		EXAMPLE
1ST	2ND		NULL			IND &		
CHAF	<u>CHAR</u>	NONE	ALPHA	ALPHA	<u># DIG</u>	IND ST	ST	
000	(any)	Х						CLA
100	000		Х	Х				CLP
100	100				3,4			SIZE
100	200			х				
100	300				1	Х		CAT
200	000				2	Х	Х	STO
200	100				2	Х	Х	RCL
200	200				2	Х		FS?
200	300				2	Х		
300	000			Х	2			LBL
300	100			Х	2	Х		XEQ
300	200			х	2			
300	300			Х	2	Х	X(.ddd)	GTO

Although STO (2,0) and RCL (2,1) appear to be the same, they are not. If you use the STO combination, the calculator will also accept + - * or / to change the instruction to ST+, etc. Your intended instruction will change to ST+ if you use this combination, and will not execute as you expect. This will also happen for the LBL. XEQ. and GTO combinations. Examples:

12D2 097 W	1105 099 Y	12CC 085 E
12D3 005 E	1106 010 P	12CD OOE N
12D4 109 I	1107 OOF O	12CE 30F 0
12D5 216 V	1108 103 C	12CF 114 T

The operating system examines these ROM bits and executes a prompt (if the appropriate bits are set) before the function is executed. If the prompt accepts an ALPHA string, the input data is loaded into the Q register, right justified, in reverse order, in ASCII. For example, ASN "COPY" loads 00 00 00 59 50 4F 4C into Q before ASN is executed. If the prompt is numeric, the input data is loaded into the A register in binary. A numeric input of 55 returns 00 00 00 00 00 37 in A. A numeric input of IND 55 returns 00 00 00 B7 in A.

Two other ROM words of a microcode function are examined by the operating system. The first executable word, if a NOP (000), indicates that the function is non-programmable. This means that if you execute the function in program mode, it executes rather than being entered as a program line. SIZE, ASN, and CLP are non-programmable functions. If the first two executable words of an XROM function are both zero, then the function is both non-programmable and executes immediately. This means that no function name is displayed and that the function will not NULL. The function is executed when the key is pressed rather than when the key is released. PRGM, shift, and back-arrow are non-programmable, immediately executable functions. Note that unless your routine checks for key release, and the key to which your function is assigned is held down, the function will be executed repeatedly until the key is released. These two words affect the function operation only if the calculator is in PRGM mode. In RUN mode, they are ignored.

SECTION 9: EXAMPLE OF INITIAL SETUP OF ProtoCODER

More recent ProtoCODERs are shipped containing a single-entry catalog, with all other words cleared. By following the steps below, you can initialize words 000-005, 00D-010, and FF4-FFA to contain a single (dummy) function "ABC".

First, set the address select switches to 3 hex (0011 - off off on on) and set the device select switches to 0 (off off off off).

Second, enter each of the following strings in ALPHA and execute CODE and SIGN after each: "612FFFFF000FF0" CODE SIGN CODE "CO1FFFFF001FFO" SIGN "COOFFFFF002FF0" CODE SIGN "C10FFFFF003FF0" CODE SIGN "COOFFFFF004FF0" CODE SIGN CODE "COOFFFFF005FF0" SIGN "C83FFFFFOODFFO" CODE SIGN "CO2FFFFFOOEFFO" CODE SIGN "CO1FFFFFOOFFFO" CODE SIGN CODE "FEOFFFFF010FF0" SIGN "COOFFFFFFF4FFO" CODE SIGN "COOFFFFFFF5FFO" CODE SIGN CODE SIGN "COOFFFFFFF6FF0" "COOFFFFFFF7FF0" CODE SIGN "COOFFFFFFF8FFO" CODE SIGN

Finally, set the address switches to F (on on on on) and run a CAT 2. You should see ABC as the final entry in the catalog listing.

SIGN

SIGN

CODE

CODE

SECTION 10: CALCULATION OF ROM CHECKSUM

"COOFFFFFFF9FFO"

"COOFFFFFFFAFFO"

If you wish to copy your microcode into an EPROM for permanance, you should calculate the checksum to store in word FFF of your EPROM. To do this, you can use ROMSUM in the NFCROM (see Section 6) or you can write a routine to do it yourself.

The checksum is computed by adding all 10 bit words together. Each time a carry occurs from the leftmost bit, a wraparound carry is performed: add 1 back in to the sum. After adding all 4096 words together, subtract 1. If the result is 000, then the checksum is correct. Note that the checksum is only used by the HP Service Module to verify that an XROM is not damaged or has not had any data altered. The HP41 operating system ignores (and does not check) the checksum.

There are several ways to take care of the 10-bit carry. One way (used by ROMSUM, the HP Service Module, and the HP-IL Monitor Module) is:

Set up A=COO B=CO1 C=x000000 where x is ROM page number to be added then:

PT=5 CXISA A=A+C X GONC *+2 A=A+B X C=C+1 WPT GONC *-5 A=A-B X

This leaves the resulting sum in A(2:0).

```
SECTION 11: USER LANGUAGE VS. MICROCODE TIMING
     Microcode can be used to greatly increase the execution speed of some program
     segments. As an example, run "+1" in the Owners Manual or in NFCROM against
     an equivalent user language program:
          LBL 01
          +
          GTO 01
     Before execution. set up the stack to contain all 1s. Depending on your
     reflexes, +1 should count about 125 times as fast as the user language
     program. By replacing blocks of simple user code instructions with microcode
     routines, the program as a whole will run much faster. As an example, the
     sequence of user code:
          08 RCL 01
          09 STO 04
          10 CLX
          11 STO 09
          12 1
          13 CLA
     will execute in about 139 ms (23+20+10+20+57+9) according to PPCTN #6 p3-5.
     This sequence could be replaced by the microcode routine CLR:
          08 CLR
     which will execute in about 38 ms. CLR is the following routine:
          C=0
          DADD=C
          PFAD=C
          REGN=C 5(M)
          REGN=C 6(N)
          REGN=C 7(0)
          REGN=C 8(P)
          C=C+1 S
          RCR 1
          REGN=C 3(X)
          C = REGN 13(c)
          RCR 3
          C=C+1 X
          DADD=C
          AC EX
          C=DATA
          AC EX
          C=C+1 X
          C=C+1 X
          C=C+1 X
          DADD=C
          AC EX
          DATA=C
          LDI
          CON 005
          C=A+C X
          DADD=C
          C=0
          DATA=C
          RTN
```

SECTION 12: BRIEF OVERVIEW OF HP 41 DISPLAY PROGRAMMING Most of the information below was first published by Paul Lind in PPCTN #10. To operate the display on the HP 41, you must select the display and deselect the RAM. To do this, either: LDI CON OFD PFAD=C LDI CON 010 DADD=C or execute the system routine to do this (GOSUB 07F6). After selecting the display, you can write data from the C register into the display, read data from the display into the C register, and write data from the C register into the annunciators. Each of the 12 character positions of the display is coded with 9 bits. The leftmost bit, if set, specifies that bits 3-0 contain a special character in row 4 of the table in section 8. If the leftmost bit (bit 8) is set, bits 5-4 should be zero, otherwise a space will be displayed. Bits 7-6 define the punctuation field of the character: 00 = no punctuation01 = period10 = colon11 = commaBits 5-4 specify which row (0-3) the displayed character is in (see the table in Section 8), and bits 3-0 specify the character within the row. Data can be read or written to the left or right end of the display. Data is pushed onto the display when written: the rest of the characters are shifted to make room for the incoming data. When data is read, it is pulled off of the end of the display and rotated back in the other end. Various fields can be written or read from the display: All 9 bits Bits 7-0 Bits 7-4 Bits 3-0 Bit 9 A read or write on a specified field affects only that field, so that a write into bits 3-0 rotates only bits 3-0 of each character over, without affecting the other bits (8-4) at all. Data can be read or written in blocks of 1, 4, 6, or 12 characters at one time. When 4 or 6 characters are read or written, each character is moved in one at a time, then rotated, then the next, etc. For a read, the first character becomes the least significant in C, etc. For a write, the rightmost character in C is written first, etc. The table on the next page shows all display read/write instructions and what they do. The annunciators are read (with C=REGN 5(M)) and written (with DATA=C) to/from the C register, digits 2-0. Bits have the following significance: Bit 10 = USERBit 9 = GBit 11 = BATBit 8 = RADBit 5 = 1Bit 7 = SHIFT Bit 6 = 0Bit 4 = 2Bit 2 = 4Bit O = ALPHABit 3 = 3Bit 1 = PRGM

HP 41 DISPLAY INSTRUCTIONS										
		READ/	NUMBER OF	BITS	NUMBER DIGITS OF C TO	ROTATION				
MNEMONIC	HEX	WRITE	CHARACTERS	AFFECTED	DEFINE EACH CHARACTER	DIRECTION				
DATA=C	2FO	WRITE	ALL ANNUNCI	ATORS	1 bit per annunciator	NONE				
C=REGN T	038	READ	12	3-0	1	LEFT				
REGN=C T	028	WRITE	12	3-0	1	RIGHT				
C=REGN Z	078	READ	12	7-4	1	LEFT				
REGN=C Z	068	WRITE	12	7-4	1	RIGHT				
C=REGN Y	0 B8	READ	12	8	1	LEFT				
REGN=C Y	0A8	WRITE	12	8	1	RIGHT				
C=REGN X	OF8	READ	6	7-0	2	LEFT				
REGN=C X	0E8	WRITE	6	7-0	2	RIGHT				
C=REGN L	138	READ	4	8-0	3	LEFT				
REGN=C L	128	WRITE	4	8-0	3	RIGHT				
C=REGN M	178	READ	ALL ANNUNCI	ATORS	1 bit per annunciator	NONE				
REGN=C M	168	WRITE	6	7-0	2	LEFT				
C=REGN N	1B 8	?????								
REGN=C N	1A8	WRITE	4	8-0	3	LEFT				
C=REGN O	1F8	READ	1	3-0	1	RIGHT				
REGN=C O	1E8	WRITE	1	3-0	1	RIGHT				
C=REGN P	238	READ	1	7-4	1	RIGHT				
REGN=C P	228	WRITE	1	7-4	1	RIGHT				
C=REGN Q	278	READ	1	8	1	RIGHT				
REGN=C Q	268	WRITE	1	8	1	RIGHT				
C=REGN ►	2B8	READ	1	3-0	1	LEFT				
REGN=C ⊢	2A8	WRITE	1	3-0	1	LEFT				
C=REGN a	2F 8	READ	1	7-4	1	LEFT				
REGN=C a	2E8	WRITE	1	7-4	1	LEFT				
C=REGN b	338	READ	1	7-0	2	RIGHT				
REGN=C b	328	WRITE	1	7-0	2	RIGHT				
C=REGN c	378	READ	1	7-0	2	LEFT				
REGN=C c	368	WRITE	1	7-0	2	LEFT				
C=REGN d	3B8	READ	1	8-0	3	RIGHT				
REGN=C d	3A8	WRITE	1	8-0	3	RIGHT				
C=REGN e	3F8	READ	1	8-0	3	LEFT				
REGN=C e	3E8	WRITE	1	8-0	3	\mathbf{LEFT}				