HP-41

Reservoir Engineering Manual
 D. Nathan Meehan and Eric L. Vogel

HP. 41

Reservoir Engineering Manual

D. Nathan Meehan and EricL.Vogel

The way a petroleum engineer approaches a typical reservoir problem has changed significantly in the last decade. The demand for engineering sophistication has never been greater. The development of portable calculators with computer-like capabilities such as the HP-41 has made it possible to solve many types of problems that previously would have required a large-scale computer.

The recently introduced HP-41 Petroleum Fluids Pac revolutionized the way engineers estimate oil, gas, and water properties. This Pac provides, for the first time, an accurate, easy-to-use method for estimating all of the PVT properties routinely required by a reservoir engineer. The addition of a sophisticated unit management system and a coherent, modular design lets the reservoir engineer use this software as a building block for new programs not previously possible.

The HP-4I Reservoir Engineering Manual provides 32 such programs designed to help reservoir engineers predict reserves, optimize production, and evaluate opportunities to increase both. These programs combine many smaller programs and are structured for ease of use. By using the Petroleum Fluids Pac subroutines, many forecasts such as material balance and deliverability have been improved. The decline curve analysis program combines the best of many previous decline programs to solve nearly all of the common decline curve problems for single or multiple wells. Other topics include waterflooding, pressure transient analysis, well \log analysis, fluid properties, and natural gas engineering.

The documentation for each program includes an overview, equations, nomenclature, extensive examples with step-by-step keystrokes and printed outputs, user instructions in the form of flow charts, general information such as program length, and the program listing. In addition, barcode for all programs is provided, allowing users with the HP-41 optical barcode reader to scan the programs into the calculator quickly and easily.

These programs are well written and provide a standard for other calculator software to achieve. They are based on sound engineering principles and practices and have the flexibility to adapt to the needs of different engineers. As a collection of practical, well-designed, and well-executed programs, this book will be a valuable tool to any reservoir engineer needing solutions to sophisticated problems at his fingertips.

$$
\begin{aligned}
& \text { Reservoir } \\
& \text { Mantineering } \\
& \text { manual }
\end{aligned}
$$

HP-41
Reservoir Engineering Manual

HP-41
 Reservoir Engineering Manual
 D. Nathan Meehan and Eric L. Vogel

PennWell Books
Tulsa, Oklahoma

Copyright © 1982 by
PennWell Publishing Company
1421 South Sheridan Road/P.O. Box 1260
Tulsa, Oklahoma 74101
Library of Congress cataloging in publication data Meehan, D. Nathan.
HP-41 reservoir engineering manual.

1. Oil reservoir engineering - Computer programs.
2. HP-41 (Calculating-machine) I. Vogel, Eric L.
II. Title.

TN871.M393 622'.3382 81-22704
ISBN 0-87814-186-3 AACR2
All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transcribed in any form or by any means, electronic or mechanical, including photocopying and recording, without the prior written permission of the publisher.

Printed in the United States of America
$\begin{array}{llllllllll}1 & 2 & 3 & 4 & 5 & 86 & 85 & 84 & 83 & 82\end{array}$

Table of Contents

Acknowledgments vi
Introduction vii
Notes on the Documentation ix
Section 1: Oil, Gas, and Water PVT Properties 1

1. OILPVT - Oil PVT Properties 2
2. GASPVT - Gas PVT Properties 7
3. DEW - Dew-Point Pressure from Gas Composition 14
4. GOR - Forecasting GOR Behavior for Gas-Condensate Reservoirs 18
5. H2OPVT - Water PVT Properties 23
6. GASPROD - Material-Balance Gas Production 27
Section 2: Decline Curve Analysis 30
7. DECLINE - Exponential, Harmonic, Hyperbolic, and Multiple-Well Decline Curve Analysis 31
Section 3: Volumetric Calculations and Reserves 55
8. OIP - Calculating Oil in Place and Reserves Volumetrically 56
9. GIP - Calculating Gas in Place and Reserves Volumetrically 61
Section 4: Material Balance 65
10. OILMBE - Calculating N or We from Material Balance 66
11. KG/KO - Gas-Oil Relative-Permeability Ratio 73
12. OILPRED - Predicting Solution-Gas-Drive Performance 81
13. QOVST - Rate-Time Forecast from Material Balance 91
14. INFCOEF - Calculating the Water Influx Coefficient 98
15. INFLUX - Predicting Water Influx 109
16. GASMBE - Gas Material Balance 113
Section 5: Natural Gas Engineering 121
17. BHPWHP - Bottom-Hole or Surface Pressures for Flowing or Static Gas Wells 122
18. GASDEL - Single-Well Gas Deliverability 129
19. STAB - Stabilized Flow Coefficient 135
Section 6: Pressure Transient Analysis 141
20. BLDUTIL - Utilities for Pressure Buildup Analysis 142
21. BUILDUP - Analyzing Pressure Buildups 151
22. DRAW - Multiple Rate Pressure Drawdown Analysis 160
Section 7: Waterflooding 170
23. FWVSW - Fractional Flow Calculations 171
24. 5SPOT - Five-Spot Waterflood Performance 179
25. SUMWF - Combined Performance for Stratified Waterfloods 195
26. INJ - Water Injectivity for Regular Patterns with Unit Mobility Ratio 200
27. CUTCUM - Forecasting Mature Waterfloods 205
Section 8: Well-Log Analysis 216
28. RW - Calculating RW from SP 217
29. XPLOT -- Cross Plot Porosities 221
30. H2OSAT - Water Saturation Calculations 227
31. SLANT - True Stratigraphic and Vertical Thicknesses 233
Section 9: Economics 236
32. DISC - Discounted Cash Flow Analysis 237
Section 10: Bar Code 347

Acknowledgments

The authors express their appreciation to Champlin Petroleum Company and Hewlett-Packard Company, without whose support and assistance this book would not have been possible, and to Carole Vogel, whose endless hours of typing produced a manuscript of exceptional quality.

I dedicate this book to my father, Don Meehan, a ditchjumping, dirt-road sport, and to the women in my life: Jan, Hannah, Sarah, and Rebekah.
D. Nathan Meehan

I dedicate this book to my loving wife Carole, whose patience, endurance, support, and encouragement were my guiding light throughout this project.

Eric L. Vogel

Introduction

The purpose of this book is to present practical programs to solve some common reservoir engineering problems. We have concentrated on problems whose computations fall between the two extremes of the very complex (such as a 3-D compositional numerical simulation model) and the very trivial (such as X $=a * b * c \mid$. Specifically, we selected problems that would benefit from the ability to calculate fluid properties (such as Z factors, viscosities, and formation volume factors), that lend themselves to interchangeable solutions, that are too complex for normal hand calculations, and that required flexibility in dealing with units.

We selected problems sensible for the range of capability provided by modern programmable calculators. These problems can be characterized as algorithm intensive rather than data intensive; that is, small amounts of data undergoing extensive numerical manipulation. Modern programmable calculators have extensive sets of functions for highaccuracy computations, relatively small amounts of memory for data storage, and small keyboards that limit the ease of data entry. On the other hand numerical simulation generally involves massive number crunching and large-scale computers designed to perform these tasks. Many programs for larger machines also involve large amounts of input and output with corresponding requirements for mass-storage and high-speed output capabilities.

Programmable calculators have made major strides toward solving problems that not too many years ago would have been the sacred domain of large time-sharing systems. The introduction of HP-IL, a compact, low-cost interface for battery-operable systems along with the first HP-IL peripherals, has opened a whole new world of input/output and data storage capabilities. Although we deliberately selected algorithm-intensive problems, there are now exciting possibilities for data-intensive calculator programs as well.

One group of algorithm-intensive problems that are readily tackled by programmable calculators are the correlations for petroleum fluid properties. Formerly, the petroleum engineer relied on charts and nomographs to provide estimates for oil, gas, and water PVT properties. With very few initial calculations, graphs are available to provide estimates of practically all of the desired properties. Many of these correlations are in the form of nomographs that nearly always can be expressed as a fairly simple set of equations. Many of the charts in common use today are curves or families of curves that were more or less hand-drawn through measured data points. It is sometimes surprising to see how few data points were used to generate these curves. Nonetheless,
many of these correlations have become industry standards.

For the accuracy required by most reservoir engineering problems, many of the correlations are entirely adequate. A Craft and Hawkins example illustrates the large error in calculating oil in place from material balance when neglecting rock and water compressibilities $\left(86.25\right.$ (10^{6}) BBL compared to $51.73\left(10^{6}\right) \mathrm{BBL}, 66.7 \%$ too high). Even a 50% error in estimating any one of the fluid properties results in a fairly small error in the estimate of oil in place. Some calculations require fairly accurate estimates of the fluid properties, or at least consistent estimates. Graphs of PVT properties are fairly difficult to read accurately and repeatably.

Calculator solutions of fluid properties are often faster, especially for repetitive calculations, and usually more accurate and consistent. The HP-41 Petroleum Fluids Pac goes a major step beyond previous programs by providing complete fluid property correlations for gas, oil, and water in one self-contained module. However, the real attractiveness of this software is the fact that all of the solutions contained in the Pac can be called as subroutines. Now programs can be written that calculate PVT properties on the fly, avoiding the hassle of either inputing the PVT properties at each point in the analysis or the need to write programs for the fluid properties themselves. Some of these programs are a great deal faster than other techniques. For example, the Pac subroutine CZ calculates the gas Z factor from a fairly complex correlation in 2-9 seconds because it is written in machine language. A solution of a lessaccurate Z factor routine using normal program steps may take at least 30 seconds for a solution.

Other advantages of using the Pac subroutines are the I/O routines available. The Unit Management System built into these routines allows tremendous flexibility with units. Default English or SI units can be selected by the user, and different units than the defaults can be input or selected for output. Many of these user-input units are retained through the remainder of the program. The I/O routines make prompting and using a printer very easy, relieving the programmer of these tasks and providing consistent operation from program to program.

The features of the Pac are powerful enough that we chose to use it as the foundation on which to construct all of the programs in the book. Most of the programs make extensive use of the fluid property correlations, although some of the programs use only I/O subroutines and the Unit Management System. The user could alter some of these programs to operate without the Pac, but it is not recommended. We have taken advantage of all of the features of the Pac
and its subroutines, and the user would have to be very familiar with these routines to make modifications and still expect the programs to work properly. If you understand the Pac that well, you probably will want to use it with these programs. However, you may want to modify the programs to use an alternative PVT correlation. In these cases the programs are structured so it would not be difficult to add different PVT correlation subroutines.

The quality of the programs in the book is quite high. Engineering programs for programmable calculators are often written by engineers whose main expertise is petroleum engineering. Many programs of this nature have been published in various trade journals and books. Frequently the result is software that does not represent the best programming practice, the most thorough knowledge of the machine, or sufficient generality to meet the needs of many different users. The authors comprise a team with the expertise of a practicing petroleum engineer who has published a number of programs and an expert in writing calculator programs who was responsible for writing the Petroleum Fluids Pac. This combination has led to programs that represent sound reservoir engineering practices, a standard of performance for flexible reservoir engineering solutions, and state-of-the-art calculator software for petroleum applications.
Much of the flexibility stems from the continuity among the different programs. For example, you can calculate PVT properties for an oil field using OILPVT and then calculate the volumetric oil in place and solution gas-drive recovery factor with the OIP program. Initial oil in place is estimated from performance using the material balance equation in OILMBE. The relative permeability ratio can be calculated from performance using KG/KO, or a correlation can be developed to represent $\mathrm{KG} / \mathrm{KO}$ field data. Then, using that correlation, the performance of the reservoir can be predicted by OILPRED using material balance above the bubble point and the Tarner method below the bubble point. Finally, a rate-time forecast for the reservoir can be predicted with QOVST.
Many of these programs are quite long and will take some time to key in. Bar code for use with the HP 82153A Wand is in Section 10. If you have a Wand, we suggest you scan the programs in and then record the programs onto magnetic cards with the HP 82104A Card Reader or onto a cassette with the HP 82161A Digital Cassette Drive. For information about purchasing either magnetic cards or cassettes with the programs already recorded, contact either one of the authors:

D. Nathan Meehan
Champlin Petroleum Company
500 N Water, Suite 500 N
Corpus Christi, TX 78471

Eric L.Vogel
Hewlett-Packard Company
1000 NE Circle Blvd.
Corvallis, OR 97330

We feel strongly that petroleum reservoir engineers should thoroughly understand the programs and the calculations that they are performing when they use any type of software. This applies both to the programs in this book and to commercial or inhouse software. For example, serious errors can result from blindly using an API water-drive recovery factor as a waterflood recovery. Slider makes a point in his book that the petroleum engineer should know programs well enough so that, given enough time, he could perform the calculations by hand. Many of these programs require iterative solutions, perform many PVT calculations at different pressures, and require keeping track of a fairly large number of variables. It is unlikely that most reservoir engineers would attempt to solve some of these programs by hand because of their complexity. However, this is not an excuse for not understanding the principles and theory prior to using these programs.

We have performed extensive functional testing and have cross-checked programs on a line-by-line basis to ensure the programs are error-free. This in itself was a massive task for 32 programs totaling over 24,000 bytes of program code (the equivalent of three Petroleum Fluids Pacs). Despite our best efforts, there may be some errors in these programs. Because of this possibility, and the possibility of misuse of the programs or misinterpretation of the results, we must make the following disclaimer:

> The program material contained herein is supplied without representation or warranty of any kind. The authors and Penn Well Books therefore assume no responsibility and shall have no liability, consequential or otherwise, of any kind arising from the use of this program material or any part thereof.

It is the authors' sincere hope and belief that this book will be a valuable addition to your professional library. Questions and comments about any aspect of this book are appreciated.

Notes on the Documentation

Read through the next section of notes on the documentation. This section will give you a much better understanding of how to get the most usefulness out of the programs in the book.
The programs in the book follow the same guidelines and use the same techniques that are established by the Petroleum Fluids Pac. Therefore, all of the programs assume the user is very familiar with the use of the Pac, particularly the section on the Petroleum Engineering Unit Management System. If you have not already done so, it is strongly recommended that you familiarize yourself with the Pac before you use these programs. Very little documentation of the Pac appears in this book; so to get the most benefit from these programs, you must build for yourself this fundamental understanding of the Pac.

The documentation for each program consists of several parts: overview, equations, nomenclature, yes/no questions, examples, user instructions, general information, registers, flags, and program listing. Variable names and units are represented in symbols corresponding to what the user sees in the display of his calculator.

Overview

The overview provides an introduction to the program - the theory involved, what the program does, what solution techniques are used, and references for further information. The overviews assume the reader is familiar with reservoir engineering principles and techniques. They are not intended to substitute for this understanding nor are they a tutorial on the subject of the program.

Equations

The equations section lists the equations used by the program to solve for the different variables. This section expands on the overview by providing additional details about the solution technique used. (Note that the programs may calculate a rearranged form of the same equation that is easier to compute with.)

The equations use the same symbols that appear in the display of the calculator when the program prompts for an input or calculates an output. These symbols are defined in the nomenclature section. (Any symbols used by the equations that are not displayed by the calculator are defined in the equations section.)

Some of the equations used by the programs are solved iteratively. All programs in the book that use
iterative procedures to solve an equation will iterate until the calculated value is within 0.01% of the previously calculated value.

To avoid duplication with the Pac, equations for Pac correlations have not been reproduced in this book. Refer to the Pac manual for these equations.

Nomenclature

The nomenclature section defines the variables used for input and output by the program. To avoid duplication with the Pac, the nomenclature section only defines variables other than those defined by the Pac or that have a different meaning than those defined by the Pac. The variables defined by the Pac appear in Appendix C of the Pac manual and in the Quick Reference Card for the Pac. All Pac variables are used by the programs in the book except CP and CV (specific heats at constant pressure and constant volume), NHV, GHVD, and GHVW (net heating value and dry and wet gross heating values), and PSAT (saturation pressure of water).

The different columns of the nomenclature table are almost identical to Appendix C of the Pac manual. One additional column has been added - a column that tells whether a variable is an input to a program, an output from a program, or both. As in the Pac, the units are shown in the symbols that are used by the program (all uppercase, digits used for exponents instead of superscripts).

The variables for which units are saved are denoted by a footnote. In the Pac, only the units for the primary output variable were saved, and no units for input variables were saved. In the book some input and output units are saved for you.

Yes/No Questions

This section explains the meaning of any prompts that appear with the $\mathrm{Y} / \mathrm{N}: \mathrm{Y}$ or $\mathrm{Y} / \mathrm{N}: \mathrm{N}$ suffix. As in the Pac, these are questions that require a Y or N (yes or no) response followed by $[R / S]$. The last character of the prompt is Y if the prompt is currently true or N if the prompt is currently false. If the current state is acceptable, press [R/S] in response.

Examples

The examples show the keystrokes required to solve sample problems using the program. The only keystroke you may not recognize is [//], the symbol for the gold shift key. The examples assume the program
has already been loaded into the calculator, and that the Petroleum Fluids Application Module is plugged into one of the ports of the HP-41. Because all of the programs use input and I/O subroutines from the Pac, they will work properly with or without a printer (the 41 's 82143 A or the HP-IL 82162A and 82905B Option 48X printers .

Unlike the examples in the Pac, all examples in the book assume a printer is present. Since many of the examples output tables of values, the assumption of a printer simplifies the keystrokes in the examples. For details on how to respond to outputs without the printer, see the Petroleum Engineering Unit Management System in the Pac manual.

Unless specified differently in the examples, all examples assume flags 09 and 10 are clear, the display format is FIX 4, and the display mode is flag 28 set and flag 29 set. Because of the rounding done by some programs, it is recommended that FIX (or SCI or ENG) 8 or 9 not be used when running these programs.

The HP 82143A and 82162A printers will print an input or output that is up to 24 characters wide. There are instances when the variable name, the equals sign, the value, and the units are longer than 24 characters, and leading characters will not appear on the line that is printed. To correct this situation, use a shorter display format (such as FIX 2), different units (such as MMCF/DAY instead of MCF/DAY), or clear flag 29 (removes the commas).

Certain programs use tones to help inform you of what is going on. Tones are used during iterative solutions and during some repetitive looping operations. All programs in the book using tones for these purposes will sound a TONE 5 at the start of each iteration or loop and a TONE 9 at the end of the process. Any programs that generate an error message will sound a TONE 3 when the program halts to display the message. Tones can be turned off by clearing flag 26 ([//] [CF] 26).

User Instructions

The user instructions presented in the book are a major departure from the user instruction forms used in the Pac. We felt that a flow chart, in conjunction with the examples, would better illustrate the various options available to the user while running the program.

Five symbols appear in flow charts in this book. The first is an oval that says START PROGRAM, END PROGRAM, START, or END. This is just a marker to indicate the beginning or end of the program, or the beginning or end of a section of the program.
The second symbol is a circle with a number in it.

This refers to a section of the flow chart that appears on another page. The circle with the number in it will appear in the upper-left corner of the appropriate page.

The third symbol is a box with pointed ends. The pointed box is used for yes/no questions. When the yes/no question is posed by the program, you must respond with $Y[R / S], N[R / S]$, or just $[R / S]$.
The fourth symbol is a box. The box is used in four circumstances, and the action you must take in each instance is determined by what is inside the box.
If the first word in the box is INPUT followed by one or more variable names, the program will prompt you for each variable in the order they appear in the box. As you know from using the Pac, a prompt for an input variable is NAME = ? and you respond by keying in the number, units if desired, and pressing $[\mathrm{R} / \mathrm{S}]$.

If the first word in the box is OUTPUT followed by one or more variable names, the program will output each variable in the order it appears in the box. If a printer is plugged into the 41 , the variable name, its value, and its units will be printed. If not, the program will halt with the variable name and its value in the display and its units in the ALPHA register.
If the first word in the box is ERROR: followed by a message, the program will beep and halt with that message in the display. Leading out of the box, marked by the key $[\mathrm{R} / \mathrm{S}]$, is the action that the program will take when you press $[R / S]$ to restart the program.
If INPUT, OUTPUT, or ERROR do not appear in the box, the box represents a menu of choices available to you. Under each option will be a key such as $[\mathrm{A}],[\mathrm{E}]$, or $[\mathrm{R} / \mathrm{S}]$, indicating which key you should press to invoke that particular option. None of these options will be available if you have made any key reassignments to those keys.
In most cases, the symbol describing the option is for the information you know. For example, in the GASPVT user instructions, the choice is GASG or COMP. The one you select depends on what you know, the gas gravity or the composition. Most of the menus used by the programs follow this convention. There are a few that do not, but the meaning of their menu symbols will be fairly obvious.
The last symbol that appears in a flow chart is a diamond. This is a condition that the program uses to decide a course of action it should take. A diamond requires no response from you - it gives you information that explains what the program is doing.

For example, in the GASPVT user instructions, the diamond contains the question IS P < END P? This shows you that while P is less than END P, the program will continue to output the table of P, Z, $C G, B G$, and UG. When P is greater than or equal to

END P, the program will stop outputing the table and will let you input BEG P, END P, and P INC for a new table.

General Information

The general information is just that - useful information about the program that you may need to. know. The memory requirements describe how much memory is needed to run the program. The program length assumes you load the program and press (//] [GTO] [.] [.] to add a local END to the program and pack it. The hidden options are those options that must be invoked by setting or clearing a flag, i.e., options that are not controlled by a response to a yes/no question. The Pac subroutines called give you an idea of how dependent the program is on the Pac in case you want to rewrite it to work without the Pac. The subroutines' names are listed in the order they appear in the program.

Registers

This is a list of registers used by the program, what variable(s) are stored in the registers, and the units that those variables are stored in. To avoid duplication with the Pac, the register list does not include registers that have been defined by the Pac unless they are used for different variables than in the Pac. This means that if a register is used for the same purpose as in the Pac, it will not be mentioned either in the list of registers or in the list of unused registers.

In writing these programs, we made a concerted effort to use the same registers for the same variables. The programs always preserve registers 10-25, which are the standard fluid property variables defined by the Pac, and usually use registers beyond 25 for their own purposes. But even for variables not defined by the Pac, in most cases you will not have to reenter a value that you already keyed in.

For the programs you use regularly, it will become apparent which variables are preserved from program to program and which are not. One way to tell which are preserved is to compare the register lists for the programs of interest. A more operational approach is to press $[\leftarrow]$ when a prompt appears for a variable whose value you entered previously in the same program or in a different program. You will be pleasantly surprised at the number of times that variables have been saved for you, particularly within a section, where the programs are all related or where the output of one program is needed for use by another.

Reproduced below is the list of registers defined by the Pac and their contents.

Registers

00	Input, output, scratch
01	English units, scratch
02	English units, scratch
03	Known output units
04	Known output units
05	Input, output, scratch
06	Scratch
07	Scratch
08	Unused
09	Unused
10	Tc, Tc * (R)
11	Pc, Pc* (PSI)
12	OIL G (API)
13	RS, RSI, RSb (SCF/BBL)
14	PBP (PSI)
15	GAS G
16	T (F)
17	P (PSI)
18	\%POR
19	\%NACL
20	\%SO
21	\%SW
22	STD T (F)
23	STD P (PSI)
24	SEP T (F)
25	SEP P (PSI)
26	\%N2
27	\%CO2
28	\%H2S
29	\%METH
30	\%ETH
31	\%PROP
32	\%IBUT
33	\%N-BUT
34	\%IPEN
35	\%NNEP
36	\%N-HEX
37	\%N-HEP
38	\%N-OCT
39	\%NNONN
40	\%N-DEC
41	\%O2
42	\%H2
43	\%He
44	\%H2O

Flags

The flags section describes which flags are used by the program and what the set and clear conditions indicate. There are certain flags used by all programs that are not mentioned in the flag list. These are:

Set: First pass through the program. Clear: Any other pass through the program.
09 Set: Use SI default units.
Clear: Use English default units.
10
Set: Halt and prompt for units on output. Clear: Do not halt on output.

The programs also use flags 12 (double-wide), 21 (printer enable), 22 (numeric input), 23 (ALPHA input), 25 (error ignore), 27 (USER mode), 29 (digit grouping), 36-39 (number of display digits), 40-41 (display format), and 55 (printer existence).

Program Listing

The program listing is what you will use if you key in the program yourself. The program listings are shown with XROMs, as if the programs were keyed in with the Petroleum Fluids Application Module plugged into a port of the HP-41C. For further information on XROMs, refer to Section 11 of the HP-41C/41CV Operating Manual: A Guide for the Experienced User.

Modifying Programs

If you modify programs to work independently of the Pac, be aware that every call to a Pac subroutine must be replaced by something of your own. Calls to calculation subroutines must be replaced or omitted.

If replaced, your own calculation subroutines must be placed in program memory; if omitted, you must input the fluid properties yourself. Any use of the unit management functions [CON] and [INCON] must be replaced by appropriate conversion factors, being careful about overflowing the stack.
If you remove calls to input or I/O subroutines, replace them with simplified versions of the subroutines. This will help preserve the modularity of the program and avoid duplication of code. A pattern you may wish to follow is using subroutines called TITLE, IN, and OUT that appeared in Meehan's article (OGJ, 26 May 1980).

The program steps you use to replace calls to input or I/O subroutines will always take more program space than the calls to routines in the Pac. But if you are stripping out the calls to those routines, the sections of the program that deal with units (for example, to save the units of a particular variable) can be removed as well. This will help offset some of the program space required by your own subroutines. Also, if you remove units that are saved by the program, those data registers can be used for other variables. This will reduce the minimum size needed by the program and thus the total memory requirements to run the program.

If you want to replace a Pac calculation subroutine with one of your own, either remove the Petroleum Fluids Application Module before you key in the subroutine call or load your subroutine into program memory before keying in the call. If you do not, the subroutine call will appear as an XROM and your subroutine in program memory will be ignored.

Section 1
 Oil, Gas, and Water PVT Properties

1. OILPVT — Oil PVT Properties

Calculates dissolved gas-oil ratio, coefficient of isothermal compressibility, formation volume factor, viscosity, and two-phase formation volume factor above and below the bubble point.

2. GASPVT - Gas PVT Properties

Calculates Z factor, coefficient of isothermal compressibility, formation volume factor, and viscosity from gas gravity or composition.

3. DEW - Dew-Point Pressure from Gas Composition

Calculates dew-point pressure for retrograde condensate reservoirs from reservoir temperature and gas composition.

4. GOR - Forecasting GOR Behavior for Gas-Condensate Reservoirs

Estimates gas-oil ratio performance as a function of pressure for retrograde condensate reservoirs.

5. H2OPVT — Water PVT Properties

Calculates coefficient of isothermal compressibility, formation volume factor, viscosity, and gas-water ratio, taking into account salinity and gas saturation.

6. GASPROD - Material-Balance Gas Production

Estimates gas equivalent of produced condensate and water content of natural gas.

1. OILPVT - Oil PVT Properties

OILPVT uses the correlations from the HP-41 Petroleum Fluids Pac (the Pac) to generate a table of crude oil fluid properties based on data routinely acquired in the field. The calculated properties are:

1. Dissolved gas-oil ratio (RSb)

Calculated only below the bubble point ${ }_{j}$ above the bubble point it equals RSI.
2. Coefficient of isothermal compressibility

COb below the bubble point; CO above the bubble point.
3. Oil formation volume factor

BOb below the bubble point; BO above the bubble point; BOBP at the bubble point.
4. Oil viscosity

UOb below the bubble point; UO above the bubble point; UOBP at the bubble point. UOd is the dead oil viscosity ($\mathrm{RS}=0$).
5. Two-phase formation volume factor (BT) Calculated only below the bubble point; at or above the bubble point it equals BO.

Equations

See the oil isothermal compressibility, oil formation volume factor, oil viscosity, and two-phase formation volume factor programs in the Pac.

Nomenclature

Symbol	Variable Name	Input or Output	English Units	SI Units
BEG P *	Beginning pressure of table	I	PSI	KPA
END P*	Ending pressure of table	I	PSI	KPA
P* $^{\text {P INC }}$	Pressure Pressure increment of table	O	PSI	KPA

*The units for these variables are saved by the program.

Yes/No Questions

SKIP? Yes: Skip input of PVT data.
No: Allow input of PVT data.

Example

The Northwest Franklin oil field in East Texas has the following fluid data:

```
Gas gravity = 0.762, no diluents
Gas gravity measured at a separator
    temperature of 95 F and pressure of 125 PSI
Crude gravity = 31.7 API
Reservoir temperature = 155 F
Initial dissolved gas-oil ratio = 510 SCF/BBL
Initial pressure =2,850 PSI
```

Generate a table of crude oil properties from 100 PSI up to the initial pressure with 250 PSI increments. Calculate the dissolved gas-oil ratio, oil compressibility, formation volume factor, oil viscosity, and two-phase formation volume factor.
To calculate the pseudocritical properties, execute the TcPc program in the Pac. Since the gas is in equilibrium with crude oil, answer Y to the COND? Y/N prompt. GAS G $=0.762 ; \% \mathrm{~N} 2, \% \mathrm{CO} 2$, and $\% \mathrm{H} 2 \mathrm{~S}$ are all zero. The calculated Tc and Pc values are 396.9440 F and 660.1595 PSI, respectively. The values for STD T and STD P for East Texas are 60 F and 14.65 PSI, respectively. (See Table 4, Standard Pressures by Location, in the Pac.) Figures 1-1 through $1-5$ present the calculated results graphically. Note the discontinuity in the calculated value of CO . This is due partly to the differences in correlations used above and below the bubble point. Recall that the compressibility of oil has a $\partial R S / \partial P$ term in it. Since RS versus pressure has a cusp at the bubble point, the $\partial R S / \partial P$ term undergoes a discontinuity there (at least in the correlations used). Also notice that the PVT property names change when the pressure exceeds the bubble point.

Keystrokes

(SIZE $>=029)$	Display	Comments
$[X E Q][$ ALPHA $]$ TcPc [ALPHA]	COND? Y/N:	Last character is Y or N

$Y[R / S]$
$.762[R / S]$
$0[R / S]$
$0[R / S]$
$0[R / S]$

GAS G=?
$\% N 2=$?
$\% \mathrm{CO}=$?
$\% \mathrm{H} 2 \mathrm{~S}=$?
$G A S G=$? \quad Tc and Pc printed
[XEQ] [ALPHA] OILPVT
SKIP? Y/N:
Last character is Y or N

$N[R / S]$	$T c=$?	Tc already calculated
[R/S]	$P_{C}=$?	Pc already
[R/S]	STD $T=$?	calculated
60 [R/S]	STD $P=$?	
14.65 [R/S]	SEP $T=$?	
95 [R/S]	SEP $P=$?	
125 [R/S]	$O / L G=$?	
31.7 [R/S]	$G A S G=$?	GAS G
		input
		previously

TC PC
COHD: Yes
GAS $6=0.760$

$8002=6.6406$

$T \mathrm{~T}=396.9446 \mathrm{~F}$
$\mathrm{PC}=666.1595 \mathrm{PSI}$
OIL PVT
SKIF: Ho
STD $T=60.6060 \mathrm{~F}$
STI $P=14.6560 \mathrm{PSI}$
SEP $T=95.6006 \mathrm{~F}$
SEP P=125. 0804 PgI
$0 \mathrm{LL} \mathrm{G}=31.706 \mathrm{BPI}$
GAS 68:E.7.767

RSI $=516$. 6 64 SCF BEL
PBF $=2.514,4215 \mathrm{PSI}$
BURF $=1,2846$
$00 \mathrm{~d}=3.907 \mathrm{CP}$
$\mathrm{UBEF}=6.912 \mathrm{CP}$

ENI $P=2.856 .0066 \mathrm{PGI}$
PIHC=25h. 606 FGI

RSb=11. 1981 SCF/EEL
$\mathrm{CO}=0.0 \mathrm{GOS}$ 1/FSI
$806=1.2484$
$10 \mathrm{~b}=3.650 \mathrm{cf}$
BTb $=16.2365$
$\mathrm{F}=35 \mathrm{5} .40 \mathrm{0} 4 \mathrm{PSI}$
RSb $=49,6975$ GCF/EEL
$\mathrm{COb}=0.0012$ 1/FSI
$806=1.6664$
$106=2.8614 \mathrm{CF}$
$\mathrm{BTb}=4,9393$
$\mathrm{P}=6 \mathrm{EE}$. 6 他 PSI
$\mathrm{FSb}=93.492 \mathrm{SCF} / \mathrm{BEL}$

E06=1. 6071
$1006-2,3074 \mathrm{CF}$
BTb $=3.0615$
$\mathrm{P}=850.000 \mathrm{PDI}$
RSb=140.7571 SCF FEL
COb=0. 60 065 1/FSI
B0b=1. 1097
$\omega \mathrm{bb}=1.2223 \mathrm{CP}$
$\mathrm{BTb}=2.3433$
$\mathrm{P}=1.106 .0064 \mathrm{PET}$
KSb=191.1546 50F/BEL

$806=1.1335$
U0 $=1.6445 \mathrm{cF}$
ETb=1. 9854
$\mathrm{P}=1,350$. 6 64 FSI
$\mathrm{RSb}=243.75665 \mathrm{FF} / \mathrm{BEL}$

E0b=1. 1583
$\mathrm{WH}=1.4367 \mathrm{CP}$
$\mathrm{BTb}=1.6691$

FSb=290.2226 SCF/BEL
C06=6. 0602 1/FSI
Bob=1. 1840
$\mathrm{J0b}=1.2761 \mathrm{op}$
BTb=1.5192
$\mathrm{P}=1,850.060 \mathrm{PFI}$
RSb=354. 3697 SCF/ELL

B0b $=1.2165$
Mob= $=1.1487 \mathrm{CP}$
ETb=1. 42 CL
$\mathrm{P}=2,100.000 \mathrm{FPI}$
PSb $=411.636250 / 5 \mathrm{EL}$
cob=6. $60611 / \mathrm{PGI}$
B0b=1.2377
$1006=1.6453 \mathrm{CF}$
$\mathrm{BTb}=1.3531$

RSb $=476.6645$ SCFEEL

B06=1. 2655
$110 \mathrm{~b}=\mathrm{6} .9598 \mathrm{cp}$
BTb=1. 3667

$\mathrm{Cu}=1.2666 \mathrm{E}-5 \mathrm{IFSI}$
80-1.2866
$\mathrm{W0}=6,9184 \mathrm{~F}$
$\mathrm{F}=2,556$. mbleg PSI
$00=1.1500 \mathrm{E}-5 \mathrm{I} / \mathrm{PS}$
801. 1.2791
$00=6.9467 \mathrm{CF}$

Figure 1-2

Figure 1-4

General Information

Memory Requirements
Program length:
Minimum size:
351 bytes (2 cards)
Minimum hardware: $41 \mathrm{C}+1$ memory module
Hidden Options
None

Pac Subroutines Called

TITLE, Y/N?, W7, CBOb, OUT, CUOd, CUOb, INK, OUTK, CRSb, X8, CON, CCOb, CBTb, CCO, CBO, CUO, OUTU

Figure 1-3

Figure 1-5

Registers

03 Pressure units
04 Pressure units
$06 \mathrm{UOd}(\mathrm{CP})$
07 UOBP (CP)
08 END P (PSI)
09 PINC (PSI)
17 BEG P, P (PSI)
26 BOBP
27 RSb (SCF/BBL)
Registers 18-21 unused

Flags

02 Set: Skip input of PVT data.
Clear: Allow input of PVT data.

User Instructions


```
Program Listing
    G14EL EILPUT"
#IL FIT" 20
#WOH "TILE" FRO 25
FPOMFT "KPA" HSTO ET
CLA AST0 04 "SLIF" 2
HEOH "ण/F%" FE? M2
HFOH "17" YROF =GOD"
ST0 26 HIN "BOEP:
```



```
ELL LS MCY
MEOH "ClOb" ST0 07
"U0PP" 若E G5 HTY
324EL 15
"PGI" HSTIM ELE
HSTO R2 FCL G4 RCL 65
16 ST0 DO "BEG F"
MROH "I拢" RDH STO [G
```



```
OF 08 7 5T0 06
"EHD P" 登OH "IHE" EDH
ST0 6% प(>H ST0 64
YY时 "P INC"
YROH "IN" FDH ST0 E%
RIH ST0 44 ADV
```

664L리 16
＂PTi ASTO AL CLA
ASTM 62 RCL 04 RCL 63
ECL $17{ }^{\circ} \mathrm{P}$＂YROH＂OUTE＂
FDiH 570 日3 KCH
ST0 64 ET RCL 14 WY？
GTO 09 RIM VROH＂CRS＂
STI 27 YROA＂ $\mathrm{He}{ }^{4}$
FCL 16 ＂F－F＂COH
$\mathrm{RCL} 10 \quad \mathrm{ECL} 17$
RCL $11 ;$ RL 17
XROH＂COb＂＂COb＂
YED 64 TCL 17
药OH＂CEOb＂＂EOb＂
WROH＂DUT＂FCL 27
FCL 66 YROH FDOL°
＂OUb＂誥E R5 RCL 17
XROH＂CETb＂＂BTb＂
碞等＂OUT＂GT0 91

114＊LBL 69

FCL 26 禁OH＂CEO＂＂EO＂
YROH＂OIIT＂RCL 07

126＊18 61

FCL $69+\mathrm{FHI}$ YT？
GTI 62 YMY RCL 17

FCL 08 RHI
$143+\operatorname{LDL}$ 6
LASTX STO 17 GTO 16

1474LEL 83
RCL 69 ST＋ 17 GT0 I5

151＊LEL 64
ASTO T＂LPCI＂ASTO B
CLA ASTO G2 HSTO Z
＂1／KPH＂GTI 66

166＊LEL
ASTO T＂CP＂ASTO 61
CLA ASTO DE ASTO Z
＂FA ${ }^{5} 5$＂
$168+L B L 66$
ASTO Y CLA ARCL T
KROM＂OUTU＂END

2. GASPVT - Gas PVT Properties

GASPVT uses the Pac correlations to generate a table of gas properties as a function of pressure. The pseudocritical properties can be input, calculated from gas gravity, or calculated from gas composition. GASPVT calculates the gas deviation factor (Z), coefficient of isothermal compressibility (CG), gas formation volume factor (BG), and gas viscosity (UG). The Pac program PROP can be used to calculate gas gravity, net and gross heating values, and specific heats and specific heat ratios.

Equations

See the Z Factor, Gas Isothermal Compressibility, Gas Formation Volume Factor, Gas Viscosity, Pseudocritical Temperature and Pressure from Gas Gravity, and Gas Properties from Composition programs in the Pac.

Nomenclature				
Symbol	Variable Name	Input or Output	English Units	SI Units
BEG P *	Beginning pressure of table	I	PSI	KPA
END P *	Ending pressure of table	I	PSI	KPA
P^{*}	Pressure Pressure increment of table	O	PSI	KPA
PINC *	PSI	KPA		

The units for these variables are saved by the program.

Yes/No Questions

CLEAR? Yes: Clear constituent registers. No: Leave constituent registers unchanged.
SKIP? Yes: Skip input of PVT data. No: Allow input of PVT data.

Example 1: Using Gas Composition

The Plum Nearly (Smackover) field is a single-well sour-gas reservoir in East Mississippi. Table 2-1 gives the composition taken from a gas analysis from the only test of this well. Initial reservoir conditions

$$
\begin{aligned}
& \text { Temperature }=255 \mathrm{~F} \\
& \text { Pressure }=13,600 \text { PSI }
\end{aligned}
$$

Generate a table of gas properties including Z factor, coefficient of isothermal compressibility, gas formation volume factor, and gas viscosity. Recall that the standard pressure in Mississippi is 15.025 PSI. Note that the pseudocritical properties, the Wichert-Aziz correction and the corrected pseudocritical properties are also calculated.

Figures $2-1$ through 2-4 depict the calculated values for Z factor, $C G, B G$, and $U G$. Note that the initial Z factor is over 1.7 for this hot, sour-gas well.

Table 2-1

Component	Mole\%
Nitrogen	0.51
Carbon dioxide	6.25
Hydrogen sulfide	3.40
Methane	74.73
Ethane	4.85
Propane	3.26
I-Butane	1.11
N-Butane	0.54
I-Pentane	0.71
N-Pentane	0.32
Hexane	0.68
Heptane +	3.64
Total	$\underline{100.00}$

Keystrokes $(\text { SIZE }>=045)$	Display	Comments
$\begin{aligned} & {[\mathrm{XEQ}][\mathrm{ALPHA}] \text { GASPVT }} \\ & {[\mathrm{ALPHA]}} \end{aligned}$	SKIP? Y/N:	Last character is Y or N
N [R/S]	GASG COMP	
[E]	CLEAR? Y/N:	Gas composition known. Last character is Y or N
Y [R/S]	$\% N 2=$?	
. 51 [R/S]	$\% \mathrm{CO2}=$?	
6.25 [R/S]	\%H2S = ?	
3.4 [R/S]	\%METH = ?	
74.73 [R/S]	$\% E T H=$?	
4.85 [R/S]	$\% P R O P=$?	
3.26 [R/S]	$\%$-BUT $=$?	
1.11 [R/S]	$\%$ N-BUT $=$?	
. 54 [R/S]	\% $1-P E N=$?	
. 71 [R/S]	$\% N-P E N=$?	
. 32 [R/S]	$\%$ N-HEX $=$?	
. 68 [R/S]	$\%$ N-HEP $=$?	
3.64 [R/S]	$\% N-O C T=$?	

Keystrokes $(S I Z E>=045)$	Display	Comments
[//] [E]	STD $T=$?	\%TOT, GAS G, Tc, Pc, CWA, Tc*, and Pc* printed
$\begin{aligned} & 60 \text { [R/S] } \\ & 15.025 \text { [R/S] } \end{aligned}$	$\begin{aligned} & \text { STD } P=? \\ & T=? \end{aligned}$	
$\begin{aligned} & 255[R / S] \\ & 500[R / S] \end{aligned}$	$\begin{aligned} & B E G P=? \\ & E N D P=? \end{aligned}$	
13600 [R/S]	$P / N C=$?	
500 [R/S]	$B E G P=$?	Table of properties printed

Figure 2-1

Figure 2-2

GAS FVT

SKIF: W0
CLEAR: YES
*/K2=0. 5180
$7 \mathrm{C02}=6.2580$
$7 \mathrm{H} 2 \mathrm{C}=3.40 \mathrm{C} 0$
Z $\mathrm{ZETH}=74.7380$
$7 \mathrm{ETH}=4.8506$
$7 \mathrm{PROP}=3.260 \mathrm{~B}$
71EUT $=1.1160$
7H-BUT $=0.5496$
\%IPEN=0.7180
$7 \mathrm{ZN}-\mathrm{PEN}=\mathrm{B} .3290$
$7 \mathrm{HH}-\mathrm{HEX}=0.6890$
7H-HEF $=3.6490$
$7 \mathrm{TOT}=100.6060$
GAS $\mathrm{G}=\mathrm{y} .8588$
$T \mathrm{C}=425.4512 \mathrm{R}$
$\mathrm{Fc}=698.629 \mathrm{PSI}$
CHA $=14.549 \mathrm{~g} \mathrm{~F}$
Tc $\%=410.9822 \mathrm{R}$
PE $=673.9813 \mathrm{FSI}$
STI $T=60.01000 \mathrm{~F}$
STD $P=15,8250 \mathrm{FSI}$
$\mathrm{T}=255.0060 \mathrm{~F}$
BEG F=580. 01900 PSI
ENI $F=13.600 .01009$ PSI
P INC=500. 8000 PSI
$\mathrm{P}=500.9006 \mathrm{FSI}$
$Z=0.9568$
$\mathrm{CG}=0.0921 \mathrm{PSI}$
$\mathrm{BC}=0.9395 \mathrm{FT} 3 / \mathrm{CCF}$
$U G=6.014 \overline{6} \mathrm{CP}$
$\mathrm{P}=1,600.6060 \mathrm{PSI}$
Z=6.9264
$\mathrm{CG}=\mathrm{B}, \mathrm{Bal} 11 / \mathrm{PSI}$
$\mathrm{BG}=0.0196 \mathrm{FT} 3 / \mathrm{CCF}$
$\mathrm{JG}=0.0149 \mathrm{CP}$
$P=1.590 .0606 \mathrm{PSI}$
$z=5.8936$
$\mathrm{CG}=0.0007 \mathrm{~L} / \mathrm{PSI}$
$\mathrm{BG}=6.0123 \mathrm{FT} 3 / \mathrm{SCF}$
$\mathrm{UG}=9.0162 \mathrm{CP}$
$\mathrm{P}=2,800.0606 \mathrm{PSI}$
$Z=0.8796$
CG= 0.09 S 1/PSI
$\mathrm{BC}=\mathrm{B} . \mathrm{G} 991 \mathrm{FT} 3 / \mathrm{SCF}$
$\mathrm{UCO}_{\mathrm{a}}=0.6178 \mathrm{CF}$
$\mathrm{F}=2.590 .608 \mathrm{PSI}$
$Z=0.8769$
$\mathrm{CG}=0.0064 \mathrm{LPSI}$
$\mathrm{BG}=0,9072 \mathrm{FT} 3 / \mathrm{SCF}$
UG=9.0196 CF
$\mathrm{P}=3,090.0868 \mathrm{PSI}$
$Z=4.8864$
$\mathrm{CG}=\mathrm{y} . \mathrm{B} 6 \mathrm{~B} 3 \mathrm{1} / \mathrm{PSI}$
$\mathrm{BG}=\mathrm{6} .0861 \mathrm{FT} / \mathrm{SCF}$
UC= $1,8217 \mathrm{CF}$
$\mathrm{P}=3.590 .6100 \mathrm{PSI}$
$Z=0.9850$
$\mathrm{CG}=6.08 \mathrm{CO} \quad \mathrm{LPSI}$
$\mathrm{BG}=9.6053 \mathrm{FT} 3 / \mathrm{SCF}$
$\mathrm{UG}=0.0238 \mathrm{CF}$
$\mathrm{P}=4,860,8068 \mathrm{FSI}$
$Z=9.9366$
$\mathrm{CG}=9.86821 / \mathrm{PSI}$
$\mathrm{BG}=0.8648 \mathrm{FTJ} / \mathrm{GCF}$
$\mathrm{UG}=0.9260 \mathrm{CP}$
$\mathrm{P}=4,500.0069 \mathrm{PSI}$
$2=6.9613$
$\mathrm{CG}=\mathrm{B} .8062 \mathrm{~L} / \mathrm{PSI}$
$\mathrm{BG}=9.9944 \mathrm{FT} 3 / \mathrm{SCF}$
UG=0.0282 CP
$P=5,090.6090 \mathrm{PSI}$
$Z=6.9957$
CG=0. 0001 1/PSI
$\mathrm{BG}=0.0841 \mathrm{FT} 3 / \mathrm{SCF}$ $\mathrm{UC}=9.8384 \mathrm{CF}$
$\mathrm{P}=5.586 .0006 \mathrm{PSI}$
$z=1.8329$
Crin. $60011 / \mathrm{FSI}$
$\mathrm{BG}=5.8639 \mathrm{FT} 3 / \mathrm{SCF}$ UG $=0.0326 \mathrm{CF}$
$\mathrm{P}=6,008,8098 \mathrm{PSI}$
Z $=1.0722$
$\mathrm{CG}=8.8601 \mathrm{1} / \mathrm{PSI}$
$\mathrm{BG}=\mathrm{M} .0637 \mathrm{FT} 3 / 5 \mathrm{CF}$
$\mathrm{UG}=6.6346 \mathrm{CP}$
$P=6,500.9006 \mathrm{PSI}$
$z=1.1129$
$\mathrm{CG}=0.6001 \mathrm{~L} / \mathrm{FSI}$
$\mathrm{BG}=0.0035 \mathrm{FT} 3 / 5 \mathrm{CF}$
UG＝1． 0367 CP
$\mathrm{P}=7.609 .0800 \mathrm{PSI}$
$z=1.1547$

BC＝ 0.6034 FT3／SCF
$\mathrm{UG}=\mathrm{F} .078 \mathrm{EP}$
$\mathrm{F}=7.50 \mathrm{D} .609 \mathrm{PSI}$
$2=1.1974$
$\mathrm{CG}=6.6 \mathrm{~A} 1 \mathrm{~L} 1 / \mathrm{PSI}$
BG＝0． $6433 \mathrm{FT3} / \mathrm{SCF}$
UC $=0.0495 \mathrm{CP}$
$\mathrm{P}=8,000.000 \mathrm{PSI}$
$Z=1.2496$
$\mathrm{CG}=0 . \mathrm{BCO} 1 \mathrm{PSI}$
$\mathrm{BC}=\mathrm{B}, 0032 \mathrm{FT} 3 \mathrm{CH} \mathrm{F}$
UTin． 0.6424 CP
$\mathrm{P}=8.500 .600 \mathrm{PSI}$
$z=1.2843$
CG＝4．9306E－5 1／PS
$\mathrm{BG}=6.8931 \mathrm{FT} 3 \mathrm{SCF}$
$\mathrm{UC}=0.6442 \mathrm{CP}$
$\mathrm{P}=9,046.0406 \mathrm{FSI}$
$z=1.3282$
$\mathrm{CG}=4.4739 \mathrm{E}-5 \mathrm{I} / \mathrm{PSI}$
$\mathrm{BG}=9.0036 \mathrm{FT} 3 \mathrm{SCF}$
$100=0.6459 \mathrm{CF}$
$\mathrm{P}=9.59 \mathrm{E}$ ， $\mathrm{B0日6} \mathrm{FSI}$
$Z=1.3724$
CG＝4． 079 2E－5 1／PSI
$\mathrm{EG}=0.6936 \mathrm{FT} 3 / \mathrm{SCF}$
$\mathrm{UG}=5.0476 \mathrm{CF}$
$\mathrm{F}=10,800.0069 \mathrm{PSI}$
$Z=1.4167$
$\mathrm{CG}=3.7412 \mathrm{E}-5 \mathrm{I} / \mathrm{PSI}$
$\mathrm{BG}=\overline{6}, 8929 \mathrm{FT} 3 / \mathrm{SCF}$
$\mathrm{US}_{2}=1.0493 \mathrm{CF}$
$P=10,568,9869 \mathrm{PSI}$
$Z=1.4 \in 16$
CG＝3．4492E－5 1／PSI
$\mathrm{BG}=\mathrm{B} .8 \mathrm{~B} 29 \mathrm{FT} 3 / \mathrm{SCF}$
UG $=0.0509 \mathrm{CP}$
$\mathrm{F}=11,600 \mathrm{~B}, 800 \mathrm{PSI}$
$Z=1.5054$
CG $=3.1951 \mathrm{E}-51 / \mathrm{PSI}$
$\mathrm{BG}=0.0629 \mathrm{FT} 3 / \mathrm{SCF}$
UG＝ 0.0525 CP
$\mathrm{F}=11.506 .80 \mathrm{Cb} \mathrm{PSI}$
Z＝1．5498
$\mathrm{CH}=2.9724 \mathrm{E}-51 / \mathrm{FSI}$
$\mathrm{BC}=9.9028 \mathrm{FT} 3 / \mathrm{SCF}$
$\mathrm{UC}=6.0541 \mathrm{CP}$
$\mathrm{P}=12,860 \mathrm{B6} 94 \mathrm{FSI}$
$Z=1.5941$
$\mathrm{CG}=2.7760 \mathrm{E}-51 / \mathrm{PSI}$
BG＝6． $6827 \mathrm{FT} 3 / \mathrm{GCF}$
リラ $=0.0556 \mathrm{CP}$
$\mathrm{F}=12.50 \mathrm{~B} .106 \mathrm{PSI}$
$Z=1.6383$
CG＝2．6018E－5 1／PGI
$\mathrm{BG}=9.9627 \mathrm{FT} / \mathrm{SCF}$
UG＝0．0570 CP
$P=13,860.8066 \mathrm{PSI}$
$Z=1.6825$
CG＝2．4464E－5 1／PSI
$\mathrm{BC}=0.0627 \mathrm{FT} 3 / 5 \mathrm{CF}$
UG＝6． 0.585 CP
$\mathrm{P}=13.589 .69 \mathrm{~Pa} \mathrm{PSI}$
$Z=1.7266$
$\mathrm{CG}=2.3671 \mathrm{E}-51 / \mathrm{PSI}$
$\mathrm{BC}=9.0 \mathrm{BA} 26 \mathrm{FT} 3 / \mathrm{CF}$
$U G=0.0599 \mathrm{CP}$
$\mathrm{F}=13,600.1600 \mathrm{PGI}$
$Z=1.7354$
$\mathrm{CG}=2.2810 \mathrm{E}-5 \mathrm{I} / \mathrm{PSI}$
$B G=9.9626 \mathrm{FT} / \mathrm{SCF}$
$\mathrm{UG}=6.9662 \mathrm{CF}$

Figure 2-3

Example 2: Using Gas Gravity

A Vicksburg gas reservoir has been discovered in South Texas. Only the gas gravity (0.872) is known from a jug test. Reservoir temperature is 180 F , initial pressure is 6200 PSI, and no diluents are expected. The results are presented graphically in Figures 2-5 through 2-8.

Figure 2-4

GAS FUT

GHS G=6. 8220
$7 \mathrm{~Hz}=9.6060$
$7602=5.6401$
742s=6. 660
$\mathrm{T}=441.8952 \mathrm{R}$
FC=661.5656 PSI
$5 \mathrm{TD} \mathrm{F}=14.6566 \mathrm{PSI}$
$T=100.1664 \mathrm{~F}$
BEG $P=50 \mathrm{TH} .066 \mathrm{PSI}$
EHII $F=6,206.6046 \mathrm{FSI}$
P IHE=506. 6066 FSI
$\mathrm{P}=509.0060 \mathrm{PGI}$
Z $=6.9158$
$06=0.0221 / \mathrm{PSI}$
$\mathrm{BC}=6.633 \mathrm{FT} 3 \mathrm{SCF}$
$110=0.0127 \mathrm{CF}$

$Z=9.8367$
CG=7.0012 1/PSI
$\mathrm{BC}=0.0151 \mathrm{FT} 3 / \mathrm{St}$
$\mathrm{UG}=0.0146 \mathrm{CP}$

$2=0.7746$
$\mathrm{Ch}=6.6668 \mathrm{BFS}$
$\mathrm{BC}=\mathrm{B} .0093 \mathrm{FT} 3 / \mathrm{SCF}$
UIG= 1.6161 CP
$\mathrm{F}=2,664.6 \mathrm{H} 6 \mathrm{FSI}$
$2=0.7432$
CG=0.0655 $1 / \mathrm{PSI}$

B6=6. $9667 \mathrm{FT} / \mathrm{SCF}$
$U_{0}=6.6169 \mathrm{DP}$
$\mathrm{P}=2,5 \mathrm{B6} .5 \mathrm{DE65} \mathrm{PSI}$
$Z=6.74 .37$
$6 \mathrm{G}=\mathrm{B}, 6064 \mathrm{1} / \mathrm{PSI}$
BG=6. $0.5 \mathrm{~F} 5 \mathrm{FT} / \mathrm{SF}$
$\mathrm{UC}=0.9221 \mathrm{CP}$
$\mathrm{P}=3,606.664 \mathrm{p}$ PI
Z= $=7.7667$

BG=6. $\mathbf{1 0 4 6} \mathrm{FTS} / \mathrm{SCF}$
UG $=9.6253 \mathrm{CF}$
$\mathrm{F}=3.566 .66 \mathrm{Bn} \mathrm{PGI}$
$z=6.8935$
$\mathrm{CG}=0.6002 \mathrm{LPGI}$
$\mathrm{BG}=\mathrm{y}_{2} \mathrm{GBCL} \mathrm{FT} / \mathrm{SCF}$
$\mathrm{HI}_{2}=6.684 \mathrm{CF}$
$\mathrm{P}=4$; 606, 606 PSI
$2=06.8485$
CG=9. $50011 / \mathrm{PGI}$
$\mathrm{ET}=6.958 \mathrm{FT} / \mathrm{GCF}$
$116=1.0312 \mathrm{CF}$
$\mathrm{P}=4,560.6006 \mathrm{FgI}$
Z $=0.8984$

$\mathrm{BC}=\mathrm{B} . \mathrm{Bn} 36 \mathrm{FTJ} / \mathrm{SCF}$
$\mathrm{UG}=6.633 \mathrm{CP}$

$Z=9.9513$

EG= $1.6434 \mathrm{FT} 3 / \mathrm{GE}$
W-6. 032 CP
$\mathrm{P}=5.560 .066 \mathrm{PSI}$
$z=1.566$
CG6: 6 的 $1 / \mathrm{FS}$
$\mathrm{BG}=1.06033 \mathrm{FT} / \mathrm{FCF}$

P6, 000. 0606 FS
Z=1.0617

$\mathrm{IC}=4.6485 \mathrm{CF}$

$2=1.58 \frac{4}{2}$

UG $=1.8413 \mathrm{CF}$

Figure 2-5

Figure 2-6

Figure 2-7
Figure 2-8

User Instructions

General Information
Memory Requirements

Program length：	388 bytes（ 2 cards）
Minimum size：	045
Minimum hardware：	$41 \mathrm{C}+1$ memory module

Hidden Options

None

Pac Subroutines Called
TITLE，Y／N？，ITcPc，COMP，OUT，CGASG， CTPC，GASG，SOUR，CTcPc，X0，STDTP，T， INK，OUTK，CZ，CCG，OUTU，CBG，CUG，CON

Program Listing

61＋LDL－GASPYT＂	
－GAS PUT ${ }^{\text {a }} 4.5$	
XROW＂TITLE＂FC？C 25	396LEL＂ K9 $^{\text {a }}$
PROMPT CF 65 SF 27	AIIY＂／TTOT＂UROH＂OIT＂
＂KPA＂ASTO 03 CLA	YROH＂CGASG＂ST0 15
AST0 日 4 ＂SKIP＂ 2	＂GAS G＂XRO月＂OITT＂
67015	67083
18＋LEL ${ }^{\text {a }}$	$56+18 L$
＂GHSC COff＂PROAPT	$51+L B L E$
23＊LBL D	
24＊LEL E	564LBL 03
＂CLEAR＂ 7 XROM＂Y／H？＊	YROH＂STDTP＊YROH＂T＂
26.844 FE ？ 67 GTO 42	
8	59＊LEL 15
	$\mathrm{RCL} 16 \mathrm{~F}^{\mathrm{F}-\mathrm{R}}$＂CON
32＊LEL 可1	RCL 15 ／ST0 66 $\mathrm{PSI}^{\text {a }}$
STO IHD Y ISC Y GTO 11	ASTU 01 Cla ASTO 02
	ECL 64 FCL 0316
364 LEL 82	

Registers

03	Pressure units
04	Pressure units
06	TR
07	PR
08	ENDP（PSI）
09	P INC（PSI）
17	BEG P，P（PSI）
Registers $12-14,18-21,24$ ，and 25 unused	

Flags

02 Set：Skip input of PVT data． Clear：Allow input of PVT data．
07 Set：Clear constituent registers． Clear：Leave constituent registers unchanged．

ST0 00 －BEG F＂	RCL 67 XROH ${ }^{\text {COBC］}}$
SROA＂IHK＂RDN STO 03	＂FT3／SCF＇ASTO 01 ASHF
	AST0 62 － $\mathrm{H} 3 / 5 \mathrm{SCH}$
CF 887750080	ASTO Y CLA ASTO Z
＂EHD P＂XROM＂INK＂RDN	＂EG＂XROM＂OUTU＂
STO 93 X $\mathrm{X} \backslash Y \mathrm{Y}$ STO 84	RCL 96 RCL 67
	YROH＂CUG＂＂CP＂
XROM＂IHK＂RDN STO 93	ASTO 61 CLA ASTO 02
RDN STO 04 ADY	ASTO 2 ＂PA＊S ASTG Y
	＊UG＂XROM＂DUTU＂ADY
$99+L D L 16$	RCL 68 RHD RCL 17
＂FSI＂H5T0 61 CLA	
AST0 92 RCL 94 RCL 03	GT0 64 K）${ }^{\text {KY }}$ RCL 17
RCL 17 ＂ $\mathrm{P}=$ X $\mathrm{XROH}=0 \cup T K$＂	RND $\mathrm{X}=\mathrm{Y}$ ？GT0 05
RDN STO 63 RDN ST0 64	RCL 88 RHI
RCL BG RCL 17 RCL 11	
／ST0 日 7 ［2＂2＂	174＊LBL 64
XROH＂OUT＂RCL 66	LASTX STO $17 \quad$ GTO 16
RCL 87 YROM＂CCG＂	
＂1／PSI＂ASTO O1 CLA	178＊LBL 95
ASTO E2 ASTO 2 ＂ $1 /$ KPA＂	KCL $995 \mathrm{ST}+17 \mathrm{GTO} 15$
ASTO Y＂EG＂	END
XROM＂OUTU＂RCL 66	

3. DEW - Dew-Point Pressure from Gas Composition

Certain reservoirs have initial pressure and temperature conditions described as retrograde-condensate or dew-point reservoirs. Their temperature is greater than the critical point but less than the cricondentherm. The initial pressure also exceeds the cricondenbar. Initially, the fluid is a single phase and is frequently referred to as a gas because the temperature exceeds the critical point. As the reservoir pressure declines, the properties of the produced fluid remain constant until the reservoir pressure reaches the dew point (see Figure 3-1). At this pressure, liquid begins to condense out of the reservoir fluid (thus the dew point). The first liquid condensation has a relatively greater concentration of heavier molecules; the produced fluid begins to have decreasing liquid content, increasing the producing gas-oil ratio.

Nemeth and Kennedy generated a correlation for the dew-point pressure as a function of composition and temperature. Their correlation was based on 579 dew-point pressures determined from 480 different condensate systems. DEW solves their correlation and can be used when the expensive laboratory measurements are unavailable.

Although the program will allow inputs of esoteric constituents $(\% \mathrm{O} 2, \% \mathrm{H} 2, \% \mathrm{He}$, and $\% \mathrm{H} 2 \mathrm{O})$, the correlation ignores these and only considers the sour gases and hydrocarbons. If the gas analysis includes octane, nonane, and decane, the program will calculate the molecular weight and density of the hep-tanes-plus fraction from these constituents.

Equations

$$
\begin{aligned}
\mathrm{Pd}= & \exp \{\mathrm{A}[0.2 \% \mathrm{~N} 2+\% \mathrm{CO} 2+\% \mathrm{H} 2 \mathrm{~S} \\
& +0.4 \% \mathrm{METH}+\% \mathrm{ETH}+2(\% \mathrm{PROP} \\
& +\% \mathrm{I}-\mathrm{BUT}+\% \mathrm{~N}-\mathrm{BUT})+\% \mathrm{INEN} \\
& +\% \mathrm{~N}-\mathrm{PEN}+\% \mathrm{~N}-\mathrm{HEX}]+\mathrm{B} \text { DENC7+ } \\
& +\mathrm{C}\left[\% \mathrm{METH}^{2} \% \mathrm{C} 7++0.2\right)+\mathrm{DT}^{\prime} \\
& +\mathrm{EL}^{\prime}+\mathrm{FL}^{2}+\mathrm{GL}^{3}+\mathrm{HM}+\mathrm{IM}^{2} \\
& \left.+\mathrm{JM} \mathrm{M}^{3}+\mathrm{K}\right\} \\
\mathrm{A}= & -2.0623054\left(10^{-2}\right) \\
\mathrm{B}= & 6.6259728 \\
\mathrm{C}= & -4.4670559\left(10^{-3}\right) \\
\mathrm{D}= & 1.0448346\left(10^{-4}\right) \\
\mathrm{E}= & 3.2673714\left(10^{-2}\right) \\
\mathrm{F}= & -3.6453277\left(10^{-3}\right) \\
\mathrm{G}= & 7.4299951\left(10^{-5}\right) \\
\mathrm{H}= & -0.11381195 \\
\mathrm{I}= & 6.2476497\left(10^{-4}\right) \\
\mathrm{J}= & -1.0716866\left(10^{-6}\right)
\end{aligned}
$$

Figure 3-1

```
\(\mathrm{K}=10.746622\)
\(\mathrm{L}=(\mathrm{C} 7+)(\mathrm{MWC7}+)\)
\(\mathrm{M}=\mathrm{MWC7}+/(\mathrm{DENC7}++0.0001)\)
DENC7+ \(=10.6882 \%\) N-HEP
    \(+0.7068 \% \mathrm{~N}-\mathrm{OCT}\)
    \(+0.7217 \% \mathrm{~N}-\mathrm{NON}\)
    \(+0.7342 \% \mathrm{~N}-\mathrm{DEC} / \% \mathrm{C} 7+\)
MWC7+ \(=(100.2 \% \mathrm{~N}-\mathrm{HEP}+114.2 \% \mathrm{~N}-\mathrm{OCT}\)
    +128.3 \%N-NON
    \(+142.3 \% \mathrm{~N}-\mathrm{DEC} / / \% \mathrm{C} 7+\)
\(\% \mathrm{C} 7+=\% \mathrm{~N}-\mathrm{HEP}+\% \mathrm{~N}-\mathrm{OCT}+\% \mathrm{~N}-\mathrm{NON}\)
    \(+\% N-D E C\)
\(\mathrm{C} 7+=\% \mathrm{C} 7+/ 100\)
\(\mathrm{T}^{\prime}=\mathrm{T}\) in R
```

Nomenclature

Symbol	Variable Name	Input or Output	English Units	SI Units
DENC7+ Density of	I,O	G/CM3 G/CM3		
heptanes plus	I,O	-	-	
MWC7+Molecular weight of heptanes plus	O	PSI	KPA	

Yes/No Questions

CLEAR? Yes: Clear constituent registers.
No: Leave constituent registers unchanged.

Example 1

The gas reservoir in Example 1 of GASPVT will be used to illustrate the DEW program. If you just ran that example, answer N to the CLEAR? Y/N prompt, $[\mathrm{R} / \mathrm{S}]$ past the temperature prompt, and press [//] [E] at any of the subsequent composition prompts to skip past them. The molecular weight and density of the C7+ fraction are calculated by the program based on the input mole percentages. Since the composition obtained only gave a heptanes-plus percentage for the heavy ends, the calculated values are those of normal heptane. The calculated dew-point pressure is $1,956.6$ PSI.

Keystrokes $(S I Z E>=045)$	Display	Comments
[XEQ] [ALPHA] DEW [ALPHA]	CLEAR? Y/N:	Last character is Y or N
Y [R/S]	$T=$?	
255 [R/S]	\% $22=$?	
. 51 [R/S]	$\% \mathrm{CO2}=$?	
6.25 [R/S]	\%H2S = ?	
3.4 [R/S]	$\%$ METH=?	
74.73 [R/S]	$\% E T H=$?	
4.85 [R/S]	$\% P R O P=$?	
3.26 [R/S]	$\% /-B U T=$?	
1.11 [R/S]	$\% N-B U T=$?	
. 54 [R/S]	$\%$-PEN $=$?	
. 71 [R/S]	$\% N-P E N=$?	
. 32 [R/S]	\%N-HEX $=$?	
. 68 [R/S]	$\% N-H E P=$?	
3.64 [R/S]	$\%$ N-OCT $=$?	
[//] [E]	MWC7+ = ?	\%TOT and MWC7+ printed
[R/S]	DENC7 $+=$?	$\begin{gathered} \text { DENC7+ } \\ \text { printed } \end{gathered}$
[R/S]	1,956.5797	Pd printed and program halts

DEW POIHT

CLEAE: VES
$T=255.06$ ท F
7 $72=0.5104$
7 $\mathrm{COD}=6.258 \mathrm{~g}$
7 $\mathrm{H} 2 \mathrm{~S}=3.4646$
7 $\mathrm{HETH}=74.7300$
4 $\mathrm{ETH}=4.8560$
8PROP $=3.2666$
\%IBUT=1.1100
$7 \mathrm{H}-\mathrm{BIT}=\mathrm{G} .546 \mathrm{~B}$
7 IFEN=0.7160
7H-PEH=6. 32 6是
7H-HEX=6.6896
$2 \mathrm{H}-\mathrm{HEP}=3.6464$
\%T0T=194. 8 640
H4C. $7+=109.2904$
IEHC7 $+=0.6882$ G/CH7
$\mathrm{Pd}=1,956.5797 \mathrm{PGI}$

Example 2

If the molecular weight and density of the heptanesplus fraction are known, they can be input. Repeat Example 1 with MWC7 $+=114.5$ and DENC7+ $=$ $0.6942 \mathrm{G} / \mathrm{CM} 3$. The calculated dew-point pressure for this case is $2,148.8$ PSI. Note that this value is nearly 10% greater than the value calculated without knowing the properties of the heptanes-plus fraction. However, the calculated dew points are so far below the initial reservoir pressure of 13,600 PSI that essentially constant reservoir composition can be assumed until the vast majority of the recoverable reserves have been obtained.

Keystrokes	Display	Comments
[XEQ] [ALPHA] DEW [ALPHA]	CLEAR? Y/N: Y	
N [R/S]	$T=$?	
[R/S]	$\% N 2=$?	
[//] [E]	$M W C 7+=$?	\%TOT and MWC7+ printed
114.5 [R/S]	DENC7+ $=$?	$\begin{array}{r} \text { DENC7+ } \\ \text { printed } \end{array}$
. 6942 [R/S]	2,148.7698	Pd printed and program halts

DEW POINT

CLEAR: NO
4TOT=189.8000
HNCT+ $=188.2888$
NWCT $+=114.5808$
DENC7+=0.6882 G/CM3
DENC7+ $=0.6942$ C/CM3

User Instructions

* If MWC7+ and DENC7+ are known from the compositional analysis, they should be input.
General Information

Memory Requirements
Program length:
Minimum size:
Minimum hardware: 046 bytes (3 cards)
MiC and 1 memory module
Hidden Options
None

Pac Subroutines Called
TITLE, Y/N?, COMP, OUT, W3, IN, OUTU, INU, CON

Registers

06	Scratch
07	MWC7+
08	\%C7+
09	DENC7+(G/CM3)
14	Pd (PST)
Registers 03, 04, 10-13, and $15-25$ unused	

Flags
07 Set: Clear constituent registers. Clear: Leave constituent registers unchanged.

Program Listing

01*LEL - DEH:	ST0 67 - $\mathrm{HHC7}+{ }^{\text {c }}$	$+\mathrm{RCLL} 86 \mathrm{y}+2$
45 "DEH POIHT"	xroh "OUT" 6 ST0 an	3.6453277 E-3 *
XROH "TITLE ${ }^{\text {c }}$ FCOC 25	"HHC7+" XROM "IN" 36	RCL 863 Yt\%
PROMPT SF 27 "CLEAR"	ST0 06 CLST . 6882	$7.4299951 \mathrm{E}-5$ * +
7 XROM "Y/N?" 26.944		RCL 87 RCL 89 1 E-4
FC ? 07 GTO 81 O	XROM - $\mathbf{H 3}^{*}$. 7217	, ST0 06.11381195
54180 ${ }^{\text {co }}$	XROM " $13{ }^{\text {a }}$. 7342	- RCL $66{ }_{6} \mathrm{H}_{2}$
STO IND Y ISG Y iTO 0 回		$6.2476497 \mathrm{E-4} *+$
STO INT ISG Y Liono		RCL 063 YYX
19+LBL 61	ASTO OL ASTO Y CLA	$1.6716866 \mathrm{E}-6 \quad *$
YROH "T" "G7"	ASTO 22 ASTO 2	$10.746622+\mathrm{RCL} 36$
XROH ${ }^{\text {chanf }}$ "	-DEHC7+" RROM "OUTU"	RCL $27+$ RCL 28
	RCL 82 RCL 818	RCL $36+\mathrm{RCL} 31$
23*LBL "67"	ST0 08 -IENC7+*	RCL $32+\mathrm{RCL} 33+$
AIV "\%TOT" XROH "OUT"	XROM "INU" 6.6259728	ST+ X + RCL $34+$
36 ST0 60 CLST 100.2	RCL 69 * RCL 29	RCL $35+$ RCL 29.4
	RCL $08.2+$ \%	+ RCL 265 / +
XROM "H3" 128.3	$4.4670559 \mathrm{E}-3 *$	$2.8623054 \mathrm{E}-2 \times$ - EfX
XROM "H3" 142.3	RCL 16 -F-R" COH	STO 14 ADY "PSI ${ }^{\text {- }}$
KROM "H3" RCL 40	$1.0448346 \mathrm{E}-4 *+$	ASTO 01 CLA ASTO 02
RCL $39+$ RCL $38+$	RCL 681 E 2 / RCL 87	ASTO 2 "KPA" ASTO Y
RCL $37+50088$ Y ${ }^{\text {¢ }}$?	* S50 $063.2673714 \mathrm{E}-2$	"Pd" XROM "OUTU" EHI

4. GOR - Forecasting GOR Behavior for Gas-Condensate Reservoirs

This program illustrates an empirical technique for estimating retrograde GOR behavior in volumetric gas-condensate reservoirs. When more sophisticated compositional studies are unavailable, this method should provide a reasonably accurate forecast. The necessary data normally are acquired during well testing.
Either separator gas gravity or wellhead stream gas gravity may be input by the user. After this program has been executed, a table of predicted gas-oil ratios as a function of pressure may be developed, as well as the gas-oil ratio at any pressure. This program may be used in conjunction with the gas deliverability program if condensate production is to be included in a deliverability forecast.

The program requires the dew point of the gas as an input. Joiner and Long suggested using the initial reservoir pressure if the dew-point pressure is unknown. However, if the gas composition is known, the DEW program can be used to estimate the gas dew point pressure. Similarly, if gas composition is available, the values for $\% \mathrm{C} 4+$ and $\% \mathrm{C} 5+$ may be input by the user.
It should be noted that below 30% of Pd, a constant GOR is used. Occasionally, the calculated value of R50\% will be greater than Rd. This can occur for high GOR wells ($>50 \mathrm{MCF} / \mathrm{BBL}$) and indicates that no retrograde behavior can be expected. In these cases, a constant GOR should be used for prediction.

Equations

$$
\begin{aligned}
& \mathrm{R} 50 \%= \exp \left[31.49-1.085\left(10^{-4}\right) \mathrm{Pd}\right. \\
&-92.03 \% \mathrm{Pd}+/ \mathrm{T}+110.8 \% \mathrm{C} 5+/ \mathrm{T} \\
&+0.0215 \mathrm{~T}+6.833 \mathrm{WELL} \mathrm{G} \\
&-26.98 / \mathrm{Rd}-6.632 \ln \mathrm{~T}] \\
& \% \mathrm{C} 4+= 6.547+25.52 \mathrm{WELLG}+30.38 / \mathrm{Rd} \\
&+0.02633 \mathrm{Rd}-30.3 \mathrm{OIL} \mathrm{G}^{\prime} \\
&-0.00417 \mathrm{~T} \\
& \% \mathrm{C} 5+=-8.53+7.83 \mathrm{WELL} \mathrm{G}+56.26 / \mathrm{Rd} \\
&+0.0109 \mathrm{Rd}+0.7286 \mathrm{OLLG}-0.00424 \mathrm{~T} \\
& \text { For } 0.3 \mathrm{Pd} \leq \mathrm{P}< \mathrm{Pd}, \log \mathrm{R}=2(1-\mathrm{P} / \mathrm{Pd}) \\
& \log (\mathrm{R} 50 \% / \mathrm{Rd})+\log \mathrm{Rd} \\
& \text { For } \mathrm{P}< 0.3 \mathrm{Pd}, \mathrm{R} \text { is evaluated at } \mathrm{P}=0.3 \mathrm{Pd} \\
& \text { For } \mathrm{P} \geq \mathrm{Pd}, \mathrm{R}=\mathrm{Rd} \\
& \text { OIL }^{\prime}= \text { OIL } \mathrm{G} \text { in } \mathrm{SPGR}
\end{aligned}
$$

Nomenclature

Symbol	Variable Name	Input or Output	English Units	$\begin{gathered} \text { SI } \\ \text { Units } \end{gathered}$
BEG P ${ }^{*}$	Beginning pressure of table	I	PSI	KPA
END P ${ }^{*}$	Ending pressure of table	I	PSI	KPA
P^{*}	Pressure	I, O	PSI	KPA
P INC*	Pressure increment of table	I	PSI	KPA
$\mathrm{Pd}^{*}{ }^{*}$	Dew-point pressure	I	PSI	KPA
R*	```Total surface GOR at P```	O	$\begin{gathered} \text { MCF/ } \\ \text { BBL } \end{gathered}$	$\begin{aligned} & \text { SCM } / ~ \\ & \text { M3 } \end{aligned}$
Rd^{*}	Total surface GOR at Pd	1,O	$\begin{gathered} \text { MCF/ } \\ \text { BBL } \end{gathered}$	$\begin{aligned} & \mathrm{SCM} / \\ & \mathrm{M} 3 \end{aligned}$
R50\%*	$\begin{aligned} & \text { Total surface GOR } \\ & \text { at } 50 \% \mathrm{Pd} \end{aligned}$	O	MCF/ BBL	$\begin{aligned} & \text { SCM/ } \\ & \text { M3 } \end{aligned}$
WELL G	Total well stream gas gravity at Pd	I, O	-	-
\%C4+	Mole percent butanes-plus components in dew-point fluid	I,O	-	-
\% $\mathrm{C} 5+$	Mole percent pentanes-plus components in dew-point fluid	1,O	-	-

*The units for these variables are saved by the program.

Yes/No Questions

None

Example 1

Forecast the gas-oil ratio performance for the Vicksburg gas reservoir (Example 2 of GASPVT). The input data required are:

$$
\begin{aligned}
& \text { Initial GOR }=16,250 \mathrm{SCF} / \mathrm{BBL} \\
& \text { Estimated dew-point pressure }=5,000 \mathrm{PSI} \\
& \text { Reservoir temperature }=180 \mathrm{~F} \\
& \text { Condensate gravity }=52.2 \mathrm{API} \\
& \text { Gas gravity (separator) }=0.872
\end{aligned}
$$

The estimated dew-point is from a similar field in the area. Joiner and Long suggest using the initial reservoir pressure if the dew point is unknown. The wellstream gas gravity calculated was 1.0423 with the $\% \mathrm{C} 4+$ fraction equal to 11.36% and the $\% \mathrm{C} 5+$ fraction equal to 6.31%. Note that the input units (SCF/BBL) were retained for output because we chose to use SCF/BBL instead of the default MCF/ BBL. Also note that the forecast halted once P exceeded Pd, since $R=R d$ at pressures greater than the dew point.

Keystrokes $(S I Z E>=029)$	Display	Comments
[XEQ] [ALPHA] GOR [ALPHA]	$R d=$?	
16250 [ALPHA] SCF/BBL [R/S]	$P d=?$	
5000 [R/S]	$T=$?	
180 [R/S]	$O / L G=$?	
52.2 [R/S]	GASG WELLG	
[A]	GAS $G=$?	Gas gravity known
. 872 [R/S]	$\% C 4+=$?	$\begin{aligned} & \text { WELL G, } \\ & \text { \%C4+ } \\ & \text { printed } \end{aligned}$
[R/S]	\%C5+=?	\%C5+ printed
[R/S]	P TABLE	R50\% printed
[E]	BEG $P=$?	Table option
500 [R/S]	END $P=$?	
6200 [R/S]	$P I N C=$?	
500 [R/S]	P table	Table printed

GOR FORECAST

Rd $=16.259 .6069$ 5CF/BEL
$\mathrm{Fd}=5,16010604 \mathrm{PSI}$
$T=199.60 \mathrm{BH} \mathrm{F}$
0IL G=5C. 2060 HPI
6月5 $\mathrm{G}=6.8720$
HELL C=1.8423
$764+=11.3552$
$4 \mathrm{C} 5+6.3110$
$\mathrm{RFB} \%=56.349,6823 \mathrm{SCF} / \mathrm{BEL}$
EEG $\mathrm{P}=509.6018 \mathrm{PSI}$
END P=6,206. 1006 PSI
P IHC=506. 6006 FSI
$\mathrm{F}=596.090 \mathrm{PSI}$
$\mathrm{R}=79.159 .5766 \mathrm{SCF} / \mathrm{BEL}$
$\mathrm{F}=1,004 \mathrm{~A} .400 \mathrm{PSI}$
$\mathrm{R}=79,150.5766 \mathrm{SCF} / \mathrm{EEL}$
$\mathrm{F}=1.509 .0664 \mathrm{PSI}$
$\mathrm{R}=79.159 .5766 \mathrm{SCF} / \mathrm{EBL}$
$\mathrm{P}=2,600.9006 \mathrm{PGI}$
$\mathrm{F}=63,128.4911$ 50F/BEL

$\mathrm{F}=5 \mathrm{~B}, 349,6823 \mathrm{SCF} / \mathrm{BEL}$
$\mathrm{F}=3,060,6060 \mathrm{Fe}$
$\mathrm{R}=40.157 .620 \mathrm{scF} / \mathrm{BEL}$
$\mathrm{F}=3.560 .60 \mathrm{6} \mathrm{PSI}$
$\mathrm{E}=3 \mathrm{~L}, \mathrm{ME} .7656 \mathrm{SCF} / \mathrm{EBL}$

$\mathrm{E}=25,545.2827 \mathrm{SCF} / \mathrm{BEL}$

$\mathrm{E}=20.374 .2692 \mathrm{SGF} / \mathrm{BEL}$
$\mathrm{P}=5,686.0006 \mathrm{PSI}$
Rd=16.250. 6046 5EF/EBL

Example 2

Repeat the previous example with the following known values from a compositional analysis. Also calculate the gas-oil ratio at the current pressure of 4,250 PSI. When you restart the program, default units for R (MCF/BBL) will be assumed again. Set flag 10 ([//] [SF] 10) to allow you to change the units of the first R-value that is output ($\mathrm{R} 50 \%$).

Wellstream gas gravity $=0.965$
$\% \mathrm{C} 4+=10.22$
$\% \mathrm{C} 5+=5.91$
Dew-point pressure $=4952$ PSI
Figure 4-1 compares the two predicted gas-oil ratio forecasts.

Keystrokes	Display	Comments
[//] [SF] 10 [XEQ] [ALPHA] Rd=? GOR [ALPHA]		
[R/S]	$P d=?$	
4952 [R/S]	$T=$?	
[R/S]	$O / L G=$?	
[R/S]	GASG WELLG	
[E]	WELL $G=$?	Well gravity known
. 965 [R/S]	$\% \mathrm{C4}+=$?	$\begin{aligned} & \text { \%C4+ } \\ & \text { printed } \end{aligned}$
10.22 [R/S]	$\% \mathrm{C} 5+=$?	$\% \mathrm{C} 5+$ printed
5.91 [R/S]	R50\%, MCF/BBL?	
SCF/BBL [R/S]	P TABLE	R50\% printed
[//] [CF] 10 [A]	$P=$?	Single pressure known
4250 [R/S]	P TABLE	R printed
	$B E G P=$?	Table option
500 [R/S]	END $P=$?	
[R/S]	$P / N C=$?	
[R/S]	P table	Table printed

GOR FORECAST

PD $=4,952,806 \mathrm{PSI}$
HELL $\wp=0.9650$
4C4+=9. 3812
204+=10.220
2C5 $+=5.7653$
\% $65+5.5$.9190
R56: $=41,647.0239 \mathrm{SCF} / 68 \mathrm{~L}$

$\mathrm{R}=21,219.6104 \mathrm{SCF} / \mathrm{BBL}$
BEG P=50日, 8000 PSI
$P=50 \mathrm{~B}, \mathrm{~g} 000 \mathrm{PSI}$
$\mathrm{R}=60,684.2815 \mathrm{SCF} / 8 \mathrm{LL}$
$P=1,000.8800 \mathrm{FSI}$
$R=60,684.2815 \mathrm{SCF} / \mathrm{BBL}$
$P=1,589,0000 \mathrm{PSI}$
$\mathrm{R}=6 \mathrm{6}, 353.6338 \mathrm{scF} / \mathrm{EBL}$
$\mathrm{P}=2,0$ 000. H 明 PSI
$R=49,966.9024 \mathrm{SCF} / \mathrm{BEL}$
$\mathrm{F}=2,586 . \mathrm{BPO6} \mathrm{PSI}$
$R=41,268.8269 \mathrm{SCF} / \mathrm{EBL}$
$\mathrm{F}=3$, 090.8060 PSI
$\mathrm{R}=34,125.862 \mathrm{SCF} / \mathrm{EPI}$
P=3.566. 0606 PSI
$\mathrm{k}=28,219,2209 \mathrm{ST} / \mathrm{EEL}$
$\mathrm{F}=4,090.090 \mathrm{PSI}$
$\mathrm{R}=23.334 .938 \mathrm{SCF} / \mathrm{BRL}$
P=4,506.0681 PSI
$R=19,296,8387 \mathrm{SCF} / \mathrm{BBL}$
$\mathrm{P}=4,952$, 080 PSI
$\mathrm{Rd}=16,256.0006 \mathrm{SCF} / \mathrm{EEL}$

Figure 4-1

User Instructions

General Information
Memory Requirements

Program length：	672 bytes（ 3 cards）
Minimum size：	029
Minimum hardware：	$41 \mathrm{C}+1$ memory module

Hidden Options

None

Pac Subroutines Called
TITLE，T，OILG，IN，GASG，CON，OUT，INK， OUTK

Registers

03	Pressure units
04	Pressure units
06	Gas－oil ratio units
07	Gas－oil ratio units
08	END P（PSI）
09	P INC（PSI）
13	Rd（MCF／BBL）
14	Pd（PSI）
17	BEG P，P（PSI）
26	\％C4＋，R50\％（MCF／BBL）
27	\％C5＋，R（MCF／BBL）
28	WELL G
Registers 10，11，and $18-25$ unused	

Flags
None

Program Listing

日1－LBL ${ }^{\text {COER }}$	＂API－SFGE＇CON 30．3	＂F INC＂YEQ 68 ADY	
－GOR FORECAST＂ 29	－RCL 16.81817 ＊－	RCL 17	RCL 13 STO 27 RCL 14 RTN
UROM－TITLE FC？C 25	$6.547+57026=7 \mathrm{C4+}$		
PROHPT SF 27 －KPA	XROH＂OUT＂ 25570 6日	184＋LBL 92	2614LEL 88
AST0 $03{ }^{-5 C 4 / H 3 *}$		XEQ 06 STO 17 －p＊	STO 60 XEP 16
ASTO 66 CLA ASTO 94	RCL 28 7．83＊ 56.26	XEO 09 YEQ 85 RCL 17	YROM－INK＝RDH STO 93
AST0 6712 ＂Rd＂	RCL 13 \％+RCL 13	RND RCL 14 RND $\mathrm{X}=\mathrm{Y}$ ？	YXY STO 64 Rt RTH
YEQ 1113 ＂Fd＂XEQ 68	$.8109 *+\mathrm{FCL} 12$	GTO 81 RCL 98 RHD	
CF 88 YROH＂T＂	． $87286 *+\mathrm{RCL} 16$	RCL 17 RCL $69+$ RHD	2714LBL 69
	． $00424 *-8.53-$	XYY？GTO 03 RCL 17	－P＝YEQ 10 XROH＂OUTK＂
	ST0 $27-765{ }^{\text {a }}$	RND $\mathrm{X}=\mathrm{Y}$ ？ 67084	RIN STO G3 K K \％
24＊LBL 14	XROH－OUT＂ 26570 日 96	RCL 68 RHD	STO 64 Rt RTH
＂GASG HELLG＂PROMPT	＂765t＂XROH－IN＂ 110.8		51084 Rt RTH
GTO 14	＊RCL 26 92．03＊－	2184LBL 63	281＊LEL 10
	RCL 16 $/$ LASTX ． 0215	LASTX STO 17 GT0 92	ASTO T＂PSI＂ASTO 01
28＊LBL D	＊+RCL 286.833 ＊		CLA ASTO 02 CLA
27 ST0 60－HELL fr_{3} ．	± 26.98 RCL 13 ／	$214+$ LBL 64	ARCL T PCL 94 RCL 03
$\begin{aligned} & 27 \text { ST0 } 60 \text { "HELL } \mathrm{F}^{\prime \prime} \\ & \text { XROH }{ }^{\prime \prime} \text { IH" GTO } 90 \end{aligned}$		RCL 99 ST＋ 17 GT0 日l	RCL 2 RTH
	$31.49+E \uparrow Y$ STO 26	218＊LEL 55	2934LBL 11
354LEL A	－R59\％＂XED 12 ADY	RCL 13 RCL 27 ＂${ }^{\text {a }}$	STO 60 Y Yee 13
364LBL E		$\mathrm{X}=\mathrm{Y}$ ？－Rd＂YEQ 12 ADY	XROH＝INT：RDH STO 66
KROH ${ }^{\text {CGASG }}{ }^{\text {a }}$ 4．6 RCL 13	1606＋LBL 01	RTH	X XY \＄TO 87 Rt RT RTH
，RCL 12 ＂API－SPGE＂	－P TRBLE PROMPT		KDI STO Gi Rt RTH
C0N $\ddagger+-.866$ RCL 12	$6 T 061$	2274LBL 06	363＊LBL 12
＊9．75＋RCL 12 ＊		RCL 14 ／ENTER 4 RHI	XEE 13 UROH＂DUTK＂RIH
$251+\mathrm{PCL} 13 / 1 \mathrm{E} 3$	164 LBL A		59066 K 3 Y 59067 RF
$/ 1+/ 57020$		$\mathrm{K}=\mathrm{Y}$ ？RCL 2 CHS $1+$	ETH K
＊HELL G＂XROM ${ }^{\text {a OIT］}}$	XEQ $95 \quad 67001$	2 ＊RCL 26 RCL 13 \％	
		LOG＊RCL 13 LOG＋	3124LEL 13
654LEL 60	1714LBL II	101 X STO 27 RCL 17	ASTO T 4 HCF／BEL＊
915 $25.52 * \mathrm{RCL} 13$	1724LBL E	ETH	ASTO O1 ASHF ASTO 62
． $62633 *+30.38$	16 －EEG P＝YE0 987		CLA ARCL T RCL 97
$\mathrm{RCL} 131+\mathrm{RCL} 12$	＂END P＂XEQ 088	256＊LBL 67	RCL 66 RCL 2 END

5. H2OPVT - Water PVT Properties

H2OPVT uses the Pac correlations to generate a table of water properties as a function of pressure. The program calculates the coefficient of isothermal compressibility (CW), water formation volume factor (BW), water viscosity (UW), and solution gas-water ratio (RSW). These properties can be calculated with or without gas in solution. It can generally be assumed that oil-field waters (such as connate water) that have been in contact with hydrocarbons for many years are gas saturated. Note that the viscosity correlation used does not reflect the effects of dissolved gas in the water. The effect of dissolved gas is (qualitatively) to decrease water viscosity. For this reason, the calculated water viscosity is denoted UW MAX when dissolved gas is present.

Equations

See the water isothermal compressibility, water formation volume factor, water viscosity, and gaswater ratio programs in the Pac.

Nomenclature				
Symbol	Variable Name	Input or Output	English Units	$\begin{gathered} \text { SI } \\ \text { Units } \end{gathered}$
BEG P^{*}	Beginning pressure of table	I	PSI	KPA
END P*	Ending pressure of table	I	PSI	KPA
P^{*}	Pressure	0	PSI	KPA
P INC*	Pressure increment of table	I	PSI	KPA
UW MAX	Maximum UW if water is gassaturated ($\mathrm{RSW}>0$)	0	CP	PA*S

*The units for these variables are saved by the program.

Yes/No Questions

RSW >0 ? Yes: Gas-saturated water or brine.
No: Gas-free water or brine.
SKIP?
Yes: Skip input of PVT data.
No: Allow input of PVT data.

Example

Calculate the aquifer properties for the South Diddley (Arbuckle) Field in Kansas. The water is gassaturated in the reservoir.

Water salinity $=58,000$ PPM
Reservoir temperature $=105 \mathrm{~F}$
Initial reservoir pressure $=950$ PSI
Abandonment pressure $=400$ PSI
Notice that if gas-saturated water or brine is specified, UW MAX is output. Also, if gas-free water or brine is selected, RSW is not output since it equals zero. Figures 5-1 through 5-4 present the calculated values for CW, BW, UW, and RSW. The dotted lines show the calculated values assuming the water is not gas-saturated to illustrate the sensitivity of the calculated values to dissolved gas.

Keystrokes (SIZE > = 020)	Display	Comments
[XEQ] [ALPHA] HZOPVT [ALPHA]	SKIP? Y/N:	Last character is Y or N
N [R/S]	$R S W>0$? $\mathrm{Y} / \mathrm{N}:$	Last character is Y or N
Y [R/S]	\%NACL=?	
[R/S]	$P P M=$?	
58000 [R/S]	$T=$?	
105 [R/S]	BEG $P=$?	
400 [R/S]	END $P=$?	
950 [R/S]	$P I N C=$?	
200 [R/S]	$B E G P=$?	Table of gassaturated property values printed
[XEQ] [ALPHA] H2OPVT [ALPHA]	SKIP? Y/N:N	
[R/S]	$R S W>0$? Y/N:Y	
N [R/S]	$\% N A C L=$?	
[R/S]	PPM $=$?	
[R/S]	$T=$?	
[R/S]	$B E G P=$?	
400 [R/S]	$E N D P=$?	
[R/S]	$P I N C=$?	
[R/S]	$B E G P=$?	Table of gas-free property values printed

Figure 5-1

Figure 5-3

Figure 5-2

Figure 5-4

H20 PVT
SKIP: N0
RSH 7 : YES

$T=165.0686 \mathrm{~F}$
BEG $\mathrm{F}=460.069 \mathrm{PSI}$
END $\mathrm{P}=950.0690 \mathrm{PSI}$
P INC $=200.8006 \mathrm{PSI}$
$P=480.68008 \mathrm{PET}$
$\mathrm{CH}=2.8858 \mathrm{E}-6 \mathrm{~L} / \mathrm{FSI}$
BH=1. 8977

RSH $=3.1542$ SCF/BBL $\mathrm{P}=604.01908 \mathrm{PSI}$
CH=2.8991E-6 1/PSI
$\mathrm{BH}=1.6675$
U11 MAX=6.7171 CP
RSH=3.9874 SCF/BBL
$\mathrm{P}=800.0000 \mathrm{PSI}$
$\mathrm{CH}=2.9110 \mathrm{E}-6 \mathrm{I} / \mathrm{PSI}$ BN $=1.6073$
UH MAX=9. 7172 CF $\mathrm{RSH}=4.7897 \mathrm{SCF} / \mathrm{BBL}$
$P=950.6000 \mathrm{PSI}$
$\mathrm{CN}=2.9189 \mathrm{E}-6 \mathrm{1} / \mathrm{PSI}$ $\mathrm{BH}=1 . \mathrm{B} 071$
UH M $\mathrm{H}_{\mathrm{X}}=0.7173 \mathrm{CF}$ $\mathrm{RSH}=5.3711$ SCF/BBL

H2ロ P4T
RSH) MO :
$B E G P=460.6080 \mathrm{PSI}$
$\mathrm{P}=480.8809 \mathrm{PSI}$
$\mathrm{CH}=2.7695 \mathrm{E}-61 / \mathrm{PSI}$
BH=1. 8865
$\mathrm{UH}=0.7176 \mathrm{CP}$
$\mathrm{P}=660.8060 \mathrm{PSI}$
$\mathrm{CH}=2.7530 \mathrm{E}-6 \mathrm{~L} / \mathrm{PSI}$
BH=1. 0859
UN $=0.7171 \mathrm{CF}$
$\mathrm{P}=800.0860 \mathrm{PSI}$
$\mathrm{CH}=2.7365 \mathrm{E}-61 / \mathrm{PSI}$
$\mathrm{BH}=1.61854$
$\mathrm{UH}=9.7172 \mathrm{CP}$
$\mathrm{P}=950.8006 \mathrm{PSI}$
$\mathrm{CH}=2.7242 \mathrm{E}-6 \mathrm{1} / \mathrm{PSI}$
$B H=1.0656$
$\mathrm{UH}=0.7173 \mathrm{CF}$

User Instructions

General Information
Memory Requirements

Program length:	285 bytes (2 cards)
Minimum size:	020
Minimum hardware: 41 C	

Hidden Options
None

Pac Subroutines Called
TITLE, Y/N?, \%NACL, T, INK, OUTK, CCW,
OUTU, CBW, OUT, CUW, CRSW

Registers

$$
\begin{array}{ll}
03 & \text { Pressure units } \\
04 & \text { Pressure units } \\
08 & \text { END P (PSI) } \\
09 & \text { P INC (PSI) } \\
17 & \text { BEG P, P (PSI) } \\
\text { Registers 06, 07, 10-15, and } 18 \text { unused }
\end{array}
$$

Flags

02 Set: Skip input of PVT data.
Clear: Allow input of PVT data.
06 Set: Gas-saturated water or brine. Clear: Gas-free water or brine.

Program Listing

```
81*LBL "H2OPUT=
"H20 PYT" 29
XROH "TITLE" FCTC 25
PROHPT "KPA" ASTO G3
CLA GST0 64 "SKIF" 2
YROM =Y/W?* FS? 昭
GTO 15 "RSH/D: 6
XROH "Y/H?"
XROH "ZNACL" YROM 'T"
    21+LBL 15
"FSI" ASTO 01 CLA
ASTO O2 RCL 04 RCL 03
16 ST0 60 "BEG P=
XROH "INK" ROM STO 63
K)Y STO 64 Y\\Y
CF 68 7 STO 00
"ENI F" YROH "INK" RDH
STO 03 XK\Y ST0 04
XSYY Rt "P INC"
\K\Y Rt "P INC"
EDH STO 04 ADY
```


6. GASPROD - Material-Balance Gas Production

Higher pressure dry gas in the reservoir will generally drop out some of the heavier components upon production as condensate. Gas material-balance equation values for GP should include the gas equivalent of produced condensate. GASPROD calculates an approximate gas equivalent based on condensate API gravity.

Since the gas in the reservoir is saturated with water at reservoir conditions, and since essentially all of this water is removed prior to gas sales, the material-balance gas production should include the water vapor that was a part of the original gas in place. However, the water produced as a result of condensation from the gas should not be included as WP, the water production from the reservoir. GASPROD also calculates the water content of the gas.

Also, any vent gas from condensate storage should be included in material balance production. So, in general,

$$
\begin{aligned}
G P= & \text { dry gas sold } \\
& + \text { gas equivalent of produced condensate } \\
& + \text { original water vapor in produced gas } \\
& + \text { vent gas from condensate storage }
\end{aligned}
$$

Note that the GASMBE program automatically adjusts GP and WP to reflect the gas equivalent of the condensate and the water content of the gas, respectively. It is not necessary to use GASPROD to adjust GP and WP prior to running GASMBE.

Equations

```
GE (gas equivalent of condensate in MCF/BBL)
    \(=2.99965\left(1.03-\right.\) COND G \(\left.^{\prime}\right)\)
GVCOND \(=\) GE CONDP
COND G \({ }^{\prime}=\) COND G in SPGR
WGR (water-gas ratio in LBM/MMCF)
    \(=\mathrm{A}(\mathrm{T} / 100)^{\mathrm{B}}\) S.C. \({ }^{*}\)
        \(\mathrm{A}=3: 4+60630 / \mathrm{P}\)
        \(\mathrm{B}=3.2147+2.657\left\{10^{-4}\right) \mathrm{P}-2.27\left(10^{-8}\right) \mathrm{P}^{2}\)
        S.C. (salinity correction) \(=\)
                \(1-4.893\left(10^{-3}\right) \% \mathrm{NACL}\)
            \(-1.757\left(10^{-4}\right) \%\) NACL \(^{2}\)
        H2OGAS' = WGR' GP
        H2OGAS \(=\) H2OGAS in LBM
        \(W G R^{\prime}=W G R\) in \(L B M / M C F\)
    *Unpublished correlation D.N. Meehan, Champlin Petro-
    leum Company
```


Nomenclature

Symbol	Variable Name	Input or Output	English Units	$\underset{\text { SInits }}{\text { SI }}$
COND G	Condensate gravity	I	API	KG/M3
CONDP*	Condensate production	I	BBL	M3
GP*	Gas production	I	MCF	SCM
$\begin{aligned} & \text { GV } \\ & \text { COND* } \end{aligned}$	Gas volume of condensate	0	MCF	SCM
$\begin{aligned} & \mathrm{H} 2 \mathrm{O} \\ & \text { GAS* } \end{aligned}$	Water content of gas	0	BBL	M3

*The units for these variables are saved by the program.

Yes/No Questions

None

Example

A well produces $2100 \mathrm{MCF} / \mathrm{DAY}, 35 \mathrm{BBL} / \mathrm{DAY}$ of 56.2 API condensate, and $10 \mathrm{BBL} / \mathrm{DAY}$ of water. What is the gas equivalent of the stock-tank condensate? How much of the water is from dissolved gas in the reservoir? Additional data required are as follows:

Reservoir pressure $=1,820$ PSI
Reservoir temperature $=165 \mathrm{~F}$
Water salinity (est.) $=2.4 \% \mathrm{NACL}$

Keystrokes

$\text { (SIZE }>=027 \text {) }$	Display	Comments
[XEQ] [ALPHA] GASPROD [ALPHA]	COND GP	
[A]	COND G = ?	Condensate production known
56.2 [R/S]	$C O N D P=$?	
35 [R/S]	COND G=?	GVCOND printed
[XEQ] [ALPHA] GASPROD [ALPHA]	COND GP	
[E]	$\% N A C L=$?	Gas production known
2.4 [R/S]	$T=$?	
165 [R/S]	$G P=$?	
2100 [R/S]	$P=$?	
1820 [R/S]	$G P=$?	H2OGAS printed

GAS FROD

COHD $\mathrm{G}=56.2964 \mathrm{API}$
CONDF=35,
GYCOND $=28.9910$ hlef
$3 \mathrm{HRCL}=2.4806$
$\mathrm{T}=165,0060 \mathrm{~F}$ $G F=2,190.0606 \mathrm{HCF}$
$\mathrm{P}=1,826$. 0 月的 PSI
H2OCRS=1. 3340 BBL

General Information

Memory Requirements

Program length:
Minimum size:
384 bytes (2 cards)
027
Minimum hardware: $41 \mathrm{C}+1$ memory module

Hidden Options

None

Pac Subroutines Called
TITLE, \%NACL, T, P, INU, INK, OUTK, CON

Registers

03 Condensate and water production units
04 Condensate and water production units
06 Gas production units
07 Gas production units
08 COND G (API)
09 GP (MCF)
26 CONDP (BBL)
Registers $10-15,18$, and $20-25$ unused

Flags
None

User Instructions

Program Listing

日1＊LEL＂GASPROII＂
＂GRS PROD＂ 27
YROH＂TITLE＊FL？C 25
PROMFT SF 27 ＂MI＂ ASTO 03 ＂SCM＂ASTO $6:$ CLA ASTO G4 ASTO ET

15＋LBL 00
－COHD GF＂PROMPT
GT0 6 日
19＊LBL E
XROM＂AHACL＂YROM＂T＂
$22+\operatorname{BL} \mathrm{B}$
8 ＂GP＂號
呺OH＂P＂XED 08 FS？ 68
ADY＂H2OGSS＂XES B6
CF 88 ADY GTO 01
354LEL A
$75 T 060{ }^{\circ} \mathrm{API}=$
ASTO 11 CLA $15 T 0$ E2
HSTO 2 ＂KG／M3＂ASTO Y
＂COND G＂YROA＂INU＂ 25
＂COHIP＂XEL 65 HEO 16
FS？ 08 ADI＂GYCOHD＂

XEE 63 CF 08 GIP
GTO A
584LBL 62
5 T 060 NE 04
XROH＂IMK＂RDN ST0 86 KMU STO 97 R4 RTH
$68+$ LEL 63
YEE G4 XROM＂OUTK＂RIH
STO 66 KMY STO 97 Rt
RTH
774LBL 64
ASTO T＂MCF＂ASTO 01
CLA ASTO O2 ARCL T
RCL 67 RCL 66 RCL 2
RTH
$88+$ LBL 85
STO 0 O XEQ 07
XROM＂INK＂ROH STO 93
XSYY STO O4 Rt RTH
$98+\operatorname{LBL} 66$
YEO 日 7 XROH＂OUTK＂RDH
$5 \mathrm{STO} \quad \mathrm{BJ} \mathrm{KMY} 5 \mathrm{STO} 04 \mathrm{RH}$

RTH

167＊LEL 07
ASTO T＂BEL＂ASTO GL
CLA ASTO E2 ARCL T
RCL 64 RCL 63 RCL 2 RTH

118＊LBL 68
RCL 16 1 $\%$ \％ $2657 \mathrm{E}-7$
RCL 17 227 E－16＊－
RCL 17 ＊ 3.2147 ＋
Y才 60636 RCL 17 ；
$3.4+$ R RCL 69 ＊
1 EJ ； $\mathrm{LBH} / \mathrm{BEL}-5 \mathrm{PGR} \mathrm{F}^{2}$
COH RCL 19 Y $\mathrm{A} \neq \mathrm{B}$ ？
GTO 09 MSY RTH
1494LBL 99
$1757 \mathrm{E}-7$＊ $4893 \mathrm{E}-6$＋
RCL 19 ＊ 1 XMY－
RTH
$161+\operatorname{LBL} 16$
1.63 RCL 08 ＂API－SPGR＂

COH－ 2.99965 ＊
RCL 26 ＊END

Section 2
 Decline Curve Analysis

7. DECLINE - Exponential, Harmonic, Hyperbolic, and Multiple Well Decline Curve Analysis
Calculates exponential, harmonic, and hyperbolic decline curves for a wide variety of conditions and provides for single and multiple well forecasting.

7. DECLINE - Exponential, Harmonic, Hyperbolic, and Multiple Well Decline Curve Analysis

The extrapolation of plots of producing rate versus time or cumulative production on various scales is used widely to forecast future production and reserves. The extrapolation of producing rate plotted as a function of time on semilogarithmic paper is perhaps the most common method for predicting oil reserves after production has commenced. Other methods (e.g., material balance, volumetric calculations, water influx calculations) must be manipulated further to produce a rate versus time forecast. These methods may be more sound theoretically but by no means necessarily give better results. In fact, if the production predictions from these methods do not fit reasonably well with the decline curve, the error probably lies in the other methods.

The use of decline curves does have a better theoretical foundation than this may imply (see Fetkovich, Gentry). However, a few notes are in order. Oil material balances and rate-time forecasts almost always result in hyperbolic decline forecasts. Gas deliverability predictions are more frequently exponential than those for oil. When hyperbolic declines indicate a value of N (the hyperbolic exponent) greater than 1 , consider the following as possible explanations.
a) Fractured reservoir - It is particularly common for tight, naturally fissured reservoirs to indicate values of N greater than 1.0. This is due to the transition in producing mechanism from the expansion of the oil in the fractures to the contribution of the matrix. These reservoirs are characterized by particularly steep declines that (on semilog paper) eventually exhibit extreme curvature and much shallower declines. Suggestions for analyzing these reservoirs include extrapolating the latter portion of the curves and the use of fissured-matrix, constant-pressure-type curves. These curves can also be developed from normalized dimensionless field data when a number of wells have produced for a relatively long time. These remarks also apply to certain other reservoirs when multiple producing mechanisms and/or layers are involved.
b) Bad selection of data points - Particularly when points are selected close together, the range of valid hyperbolic data may be surprisingly small when fitting three rate-time points or two rate-time points and the cumulative production. It is a particularly good idea to use smoothed data and perform sensitivities to the points selected, especially when data points are erratic and have not established a clear trend.
c) Waterfloods - The production past the peak producing rate of a waterflood will often appear hyperbolic with N greater than 1.0. It is better to forecast waterflood performance using another method.
The restriction of $0<N<1$ for hyperbolic decline curves may seem arbitrary to someone familiar with Arps' original work. Indeed, it is not difficult to calculate results for $\mathrm{N}>1$. Nevertheless, this usually is not a good idea for reserve forecasting. The use of $\mathrm{N}>1$ may fit the historical data well but will generally result in too optimistic a treatment for forecasts. This program handles hyperbolic, harmonic ($\mathrm{N}=1$), and exponential ($\mathrm{N}=0$) decline curves.

Another point to consider is the definition of decline rate. The decline equations use the nominal decline rate (D) for calculations. Two different relations exist for relating the nominal decline rate to an annual decline rate. The optional method is that used by Frick and in supch commercial evaluation software as POGO*. In this method, the annual decline rate $(\% \mathrm{AI})$ is the decline slope that intersects the decline curve one year later. So for any curve $0<N<1$ with a value of $\% A I=20$ at $T=0$ and initial rate $Q=100$, the rate at time $T=1$ year will be 80 .

The default method is to interpret the annual decline rate to be equal to the instantaneous slope of the decline curve. This method is used by commercial evaluation programs such as OGRE**. In the case of exponential declines, these two methods are identical. However, a hyperbolic or harmonic decline curve will yield different results. When calculating decline slope from a curve or production, the calculated value of D will be the same regardless of the method selected.

This program always defaults to the second method, but either approach is valid. If you intend to use values calculated by DECLINE in commercial software packages, be sure to use the definition of decline rate appropriate for that package.

DECLINE presents a variety of methods to solve for the decline rate and/or hyperbolic exponent, forecast to a future rate, time, or cumulative production and generates forecasts with user-specified time steps. Multiple well forecasts are also provided for the sum of series of wells that start production at different times. Although a simple exponential decline program can be written for almost any programmable calculator and fairly elaborate programs are possible on the HP-67/97 and the TI-59, this

[^0]HP-41 program using the Pac I/O routines is the most versatile and complete such program available. The addition of units for gas or oil result in a very versatile program. The modularized nature of the program makes it easy to understand and modify.

Equations

Default \%AI definition (all decline types):
$\% \mathrm{AI}=100\left(1-\mathrm{e}^{-\mathrm{D}}\right)$
Exponential:
Optional \%AI definition:
$\% A I=100\left(1-e^{-1}\right)$
$\mathrm{QO}=\frac{\mathrm{QOI}}{\mathrm{e}^{\mathrm{DT}}}$
$\mathrm{QG}=\frac{\mathrm{QGI}}{\mathrm{e}^{\mathrm{DT}}}$
$\mathrm{NP}=\frac{365(\mathrm{QOI}-\mathrm{QO})}{\mathrm{D}}$
$\mathrm{GP}=\frac{365(\mathrm{QGI}-\mathrm{QG})}{\mathrm{D}}$
where D is the nominal decline rate

Harmonic:

Optional \%AI definition:
$\% \mathrm{AI}=\frac{100 \mathrm{D}}{1+\mathrm{D}}$
$\mathrm{QO}=\frac{\mathrm{QOI}}{1+\mathrm{DT}}$
$\mathrm{QG}=\frac{\mathrm{QGI}}{1+\mathrm{DT}}$
$\mathrm{NP}=\frac{365 \mathrm{QOI}}{\mathrm{D}} \ln \left|\frac{\mathrm{QOI}}{\mathrm{QO}}\right|$
$\mathrm{GP}=\frac{365 \mathrm{QGI}}{\mathrm{D}} \ln \left|\frac{\mathrm{QGI}}{\mathrm{QG}}\right|$

Hyperbolic:

Optional \%AI definition:
$\% \mathrm{AI}=100\left[1-\frac{1}{(1+\mathrm{ND})^{1 / N}}\right]$

$$
\begin{aligned}
& \mathrm{QO}=\frac{\mathrm{QOI}}{(1+\mathrm{NDT})^{1 / \mathrm{N}}} \quad \mathrm{QG}=\frac{\mathrm{QGI}}{(1+\mathrm{NDT})^{1 / \mathrm{N}}} \\
& \mathrm{NP}=\frac{365 \mathrm{QOI}^{\mathrm{N}}\left(\mathrm{QOI}^{1-N}-\mathrm{QO}^{1-\mathrm{N}}\right)}{\mathrm{D}(1-\mathrm{N})} \\
& \mathrm{GP}=\frac{365 \mathrm{QGI}^{N}\left(\mathrm{QGI}^{1-\mathrm{N}}-\mathrm{QG}^{1-\mathrm{N}}\right)}{\mathrm{D}(1-\mathrm{N})} . \\
& \mathrm{D}_{\text {new }}=\mathrm{D} \frac{\mathrm{NEW} \mathrm{QO}}{\mathrm{QOI}} \quad \mathrm{D}_{\text {new }}=\mathrm{D} \frac{\mathrm{NEW} \mathrm{QG}}{\mathrm{QGI}}
\end{aligned}
$$

DECLINE uses different equations to solve for each unknown value, depending on which values are known. There are a total of eight equations to solve for \%AI, QO or QG, NP or GP, T, and D, all of which can be derived from the \%AI, QO or QG, and NP or GP equations given for each decline type. To solve for the hyperbolic exponent N , there are two cases (shown for oil only):

Hyperbolic case 1^{*} :

$$
\mathrm{f}(\mathrm{~N})=\frac{(\mathrm{QOI} / \mathrm{QO} 1)^{\mathrm{N}}-1}{\mathrm{NT} 1}-\frac{(\mathrm{QOI} / \mathrm{QO} 2)^{\mathrm{N}}-1}{\mathrm{NT} 2}
$$

Hyperbolic case 2^{*} :

$$
\mathrm{f}(\mathrm{~N})=\frac{1-(\mathrm{QOI} / \mathrm{QO})^{\mathrm{N}-1}}{(\mathrm{QOI} / \mathrm{QO})^{\mathrm{N}}-1} \frac{\mathrm{~N}}{1-\mathrm{N}}-\frac{\mathrm{NP}}{\mathrm{QOIT} T}
$$

DECLINE attempts to minimize $f(N)$. For the first three iterations, the half-interval method is used and the new N is predicted as:

$$
N_{\text {new }}=\left(N_{\text {left }}+N_{\text {right }}\right) / 2
$$

where $N_{\text {let }}$ and $N_{\text {right }}$ are the left and right boundaries of $f(N)$. Initially, $N_{\text {left }}=0$ (exponential decline) and $\mathrm{N}_{\text {right }}=1$ (harmonic decline).
Subsequent iterations use the regula falsi method, and the new N is predicted as:

$$
N_{\text {new }}=\frac{N_{\text {leit }} f\left(N_{\text {righ }}\right)-N_{\text {right }} f\left(N_{\text {lete }}\right)}{f\left(N_{\text {rish }}\right)-f\left(N_{\text {left }}\right)}
$$

Multiple Well:
At time $\mathrm{T}, \mathrm{PROD}_{\mathrm{T}}=\mathrm{X}$ NP NWELL, $\mathrm{PROD}_{\mathrm{T}}=\mathrm{X} \mathrm{GP}$ NWELL

[^1]

Examples

Because of the wide variety of example problems, these examples will illustrate only a portion of the possible applications. It is recommended that you work through these examples carefully to get a feel for the different options available in DECLINE. You should also consult the user instructions to see all the options and how they relate to each other. Except where noted, the default method for calculating \%AI from D is used.

Example 1

Figure 7-1 is a graph of the oil production for Lease A, which has cumulative production of $18,900 \mathrm{BBL}$. Forecast the production to an economic limit of 2 BBL/DAY, calculating annual gross and net production. The working interest is 100% with a net revenue interest of 80%. The initial rate of the harmonic decline portion is $115 \mathrm{BBL} / \mathrm{DAY}$. The producing rate one year later is $25 \mathrm{BBL} / \mathrm{DAY}$. Since the well has produced for six months in 1978, use an

Figure 7-1

Figure 7-2 Harmonic decline forecast
initial time step size of 6 months with annual time steps thereafter．Figure 7－2 presents the historical and predicted production results．

Keystrokes $(S I Z E>=049)$	Display	Comments
［XEQ］［ALPHA］DECLINE ［ALPHA］	OIL？Y／N	Last character is Y or N
Y ［R／S］	EXP HAR HYP	Select decline type
［C］	$Q O I=$ ？	Harmonic decline option
115 ［R／S］	$A I Q$	
［C］	$Q O=$ ？	Q known
25 ［R／S］	TNP	
［D］	$T=$ ？	T known
1 ［R／S］	Q AIQTNP	\％Al and NP printed
［C］	$Q O=$ ？	Forecast to future rate
2 ［R／S］	QIAIQ TNP	$\begin{aligned} & \mathrm{T} \text { and NP } \\ & \text { printed } \end{aligned}$
［／／］［A］	NEW QO＝？	Determine annual decline rate at $\mathrm{QO}=25$ BBLIDAY
25 ［R／S］	QIAIQTNP	\％AI printed
［A］	$Q O I=$ ？	
25 ［R／S］	A / Q	
［B］	$\% A /=$ ？	
54.2788 ［R／S］	QTNP	
［C］	$\dot{Q} \dot{O}=$ ？	
［R／S］	QIAIQ TNP	Remaining T and NP printed
［H］	$D T /=$ ？	
6 ［ALPHA］MO［R／S］	$D T S=$ ？	
1 ［ALPHA］YR［R／S］	$T F=$ ？	Final time defaults to T
［R／S］	$N P I=$ ？	
18900 ［R／S］	$X=$ ？	Multiplica－ tive factor is net interest
． 8 ［R／S］		Forecast printed

DECLIHE

IIL：YES

HARHOHIC
EOI－115． 600 BEL DAH

$\mathrm{T}=1.06 \mathrm{EXD} \mathrm{TE}$
$2 \mathrm{HI}=77.2676$
$\mathrm{NP}=17.793 .3926 \mathrm{EEL}$
$00=2.0046 \mathrm{BEL} / \mathrm{MAY}$
$T=15.6944$ TT
$\mathrm{HF}=47,242,6876 \mathrm{BEL}$
HEN 日0＝25． 9060 BEL／TMY
7月I $=54.2768$
$001=25.6060 \mathrm{BEL} / \mathrm{OHY}$
$7 / \mathrm{II}=54,2786$
$\mathrm{T}=14.6945 \mathrm{YR}$
HF $=29.449 .3168 \mathrm{BEL}$
gIHGLE HELL
ITI $=6.6066$
ITS $=1.0006$ TR
MPI＝18，904． 696 EEL $\mathrm{X}=0.8069$
$001=25.0006 \mathrm{BEL} / \mathrm{MH} \%$
$\mathrm{HPI}=18,906.6604 \mathrm{BEL}$
$T=5.5109 \mathrm{FK}$
$00=17.9688 \mathrm{ERL} / \mathrm{IMY}$
Y00 $=14.3756 \mathrm{EBL} / \mathrm{TMY}$
$\mathrm{NF}=22,75 \mathrm{C} .5268 \mathrm{BBL}$
$\mathrm{IWP}=22.756 .5268 \mathrm{BEL}$
KINP $=18,2$ 日月． 4214 BEL
$T=1.5609$ YE
W0＝11． 5809 BEL DAT
YBO $=9.2000 \mathrm{BEL} / \mathrm{IAY}$
$\mathrm{HP}=27.954 .1121 \mathrm{BEL}$
$\mathrm{BHP}=5.243 .5853 \mathrm{BBL}$
$\mathrm{XDAP}=4,162.8682 \mathrm{BEL}$
$T=2.508 \mathrm{BIT}$
00＝8． 4559 EELIAAY
$X 00=6.7647 \mathrm{BEL} / \mathrm{IAY}$ $\mathrm{NP}=31.539 .2999 \mathrm{BEL}$ $\mathrm{DHP}=3,585.1876 \mathrm{EBL}$ $\mathrm{ADMF}=2,868.1563 \mathrm{EEL}$
$T=3.5860$ YE 00＝6．6861 BEL／TMT Y $00=5.348 \mathrm{BEL} / \mathrm{TAH}$㫙 $=34.277 .4658$ ERL INP $=2,739.1659 \mathrm{BEL}$ XDMP＝2．190．5327 BEL
$T=4.560617$ 00 $=5.5286$ BEL／TAM प $\mathrm{X} 00=4.4231 \mathrm{BEL} / \mathrm{THH}$ $H P=36,493,3227 \mathrm{BEL}$ $\mathrm{DNP}=2,215.8569 \mathrm{BEL}$ $\mathrm{BDMP}=1.772 .6855 \mathrm{BEL}$
$T=5.5609 \% R$
狍＝4．7131 BBL／MH1
Yロ0 $=3.7795 \mathrm{BEL} / \mathrm{MPY}$
$\mathrm{HF}=35.354 .5669 \mathrm{EBL}$
$\mathrm{DHF}=1.861 .2443 \mathrm{BEL}$
$\mathrm{XIMP}=1,460.9954 \mathrm{BEL}$
$T=6.5006 \mathrm{YF}$
$00=4.1671 \mathrm{BEL} / \mathrm{IH} Y$
$\mathrm{KOO}=3.2857 \mathrm{BEL} / \mathrm{IAY}$
$\mathrm{HF}=39.959 .1950 \mathrm{BRL}$
$\mathrm{BHP}=1.664 .6280 \mathrm{BEL}$
$X D M P=1,283.7024 \mathrm{BDL}$
$\mathrm{T}=7.5000 \mathrm{~T}$
$00=3.6392 \mathrm{BEL} / \mathrm{IAH}$
Y $00=2.9114 \mathrm{EBL} / \mathrm{DHH}$
$N F=41.369 .4697 \mathrm{BEL}$
$\mathrm{DNP}=1,410.2748 \mathrm{EBL}$
$\mathrm{XDPF}=1.129 .2198 \mathrm{BEL}$
$T=8.5666$ YR
$00=3.2570$ BEL 1 MH

$\mathrm{NP}=42,627.4259 \mathrm{BEL}$
IAP $=1,257.9562 \mathrm{EBL}$
XIAP $=1,006.3649 \mathrm{BEL}$
$T=9.5066$ 亩
$\mathrm{BO}=2.9639$ BEL TMFY
Y $\mathrm{K} 0=2.3711 \mathrm{BBL} / \mathrm{IMH}$
$\mathrm{HP}=43.762 .7924 \mathrm{BEL}$
IMTF＝1．135．3565 EBL
$\mathrm{YDHP}=988.265 \mathrm{BRL}$

$00=2.7123$ BEL $/$ IHF
$\mathrm{W0O}=2.1698 \mathrm{BEL} / \mathrm{DH}$
$\mathrm{HP}=44,797.3292 \mathrm{EBL}$ $\mathrm{DHF}=1,034.5459 \mathrm{BEL}$ $\mathrm{YDHP}=827.6367 \mathrm{BEL}$
$T=11.5006$ YR $00=\hat{2} .506 \mathrm{EEL} / \mathrm{THY}$
 $H P=45.747 .5150$ EBL DAF $=950.1668$ EBL YDNP $=764.1494$ BEL
$T=12.5909$ YE
$00=2.3185 \mathrm{BEL} / \mathrm{DAY}$
$\mathrm{XOD}=1.8548 \mathrm{BEL} / \mathrm{DRY}$
$\mathrm{HP}=46,626.9691 \mathrm{BEL}$
$\mathrm{BHF}=878.5541 \mathrm{BEL}$
$\mathrm{XINF}=762,8433 \mathrm{EDL}$
$T=13.5669$ YR $00=2.1617 \mathrm{BEL} / \mathrm{THY}$
$\mathrm{XDO}=1.7293 \mathrm{BEL} / \mathrm{DAH}$
$\mathrm{HP}=47,443.6386 \mathrm{EEL}$
$\mathrm{DAP}=516.9689 \mathrm{BEL}$ $3 \mathrm{DHP}=653.5751 \mathrm{BEL}$
$T=14.5806$ TR $\mathrm{QO}=2.8246 \mathrm{BEL} / \mathrm{TH} H$ H00 $=1.6197 \mathrm{BBL} / \mathrm{DHH}$ $\mathrm{NP}=48,26 \mathrm{E} .493 \mathrm{EBEL}$ $\mathrm{IHF}=763.455 \mathrm{BEL}$ $\mathrm{XDMP}=616.7646 \mathrm{BEL}$
$T=14.6945 \mathrm{YE}$ $\mathrm{QO}=2.6000 \mathrm{BEL} / \mathrm{BAY}$ Y $\mathrm{X} 0=1.6600 \mathrm{BEL}$ ARH $\mathrm{HF}=4 \hat{B}, 349.3168 \mathrm{BBL}$ $\mathrm{BNP}=142.8239 \mathrm{BEL}$ $X D W P=114.2594 \mathrm{BEL}$

Example 2

This exponential decline forecast illustrates the variety of methods available in DECLINE. The initial oil production rate is $90 \mathrm{BBL} / \mathrm{DAY}$ with a 20% annual decline rate. What will the production rate and cumulative production be in 10 years? How long will it take to reach the economic limit of $2 \mathrm{BBL} /$ DAY, and what will be the cumulative production at that time? When will the well have produced $100,000 \mathrm{BBL}$?

Keystrokes	Display	Comments
[//] [E]	EXP HAR HYP	Change decline type
[A]	$Q O /=$?	Exponential decline option
90 [R/S]	AlQ	
[B] 20 [R/S]	$\begin{gathered} \% A I=? \\ \quad Q T N P \end{gathered}$	Al known
[D]	$T=$?	
10 [R/S]	QIAI Q TNP	QO and NP printed
[C]	$Q O=$?	Forecast to future rate
2 [R/S]	QIAI Q TNP	T and NP printed
[E]	$N P=$?	Forecast to future cumulative production
100000 [R/S]	QIAI Q TNP	QO and T printed

Exponential
$60 I=96.6806 \mathrm{BEL} / \mathrm{DOY}$
$3 \mathrm{HI}=26.4898$
$T=16.6609$ 每
$00=9.6637 \mathrm{BEL} / \mathrm{DMY}$
AF $=131.487 .5981 \mathrm{BEL}$
$00=2.6090 \mathrm{BEL} / \mathrm{DHY}$
$\mathrm{T}=17.6593$ YR
$\mathrm{HP}=143,943.2142 \mathrm{BEL}$

Example 3

A certain oil well has calculated volumetric reserves of 60,000 M3 (cubic meters). The initial producing rate is $800 \mathrm{M} 3 / \mathrm{MO}$. The economic limit should be approximately $30 \mathrm{M} 3 / \mathrm{MO}$. Assuming an exponential decline, forecast the gross production for this well with annual time steps. (Run this example without using the SI mode allowed by the Unit Management System of the Pac.)

Keystrokes	Display	Comments
[XEQ] [ALPHA] DECLINE [ALPHA]	OIL? Y/N:Y	
[R/S]	EXP HAR HYP	
[A]	$Q O I=$?	
800 [ALPHA] M3/MO [R/S]	A / Q	
[C]	$Q O=$?	
30 [R/S]	TNP	
[E]	$N P=$?	
60000 [ALPHA] M3 [R/S]	QIAIQ TNP	\%Al and T printed
[H]	$D T I=$?	Defaults to $1 \text { YR }$
[R/S]	$D T S=$?	Defaults to 1 YR
[R/S]	$T F=$?	Defaults to T
[R/S]	$N P /=$?	Defaults to zero
[R/S]	$X=$?	Defaults to one
[R/S]	QIAIQTNP	Forecast printed

TERLIHE

EMPDENTIAL

$00=36.866617 / 40$

$2 \mathrm{HI}=14.2728$
$T=21.3209$ UF

SIHGLE MELL
$\mathrm{HP}=100.606 .966 \mathrm{BEL}$
$00=28.864 \overline{8} \mathrm{BE} / \mathrm{IIH}$
$T=5.0962 \mathrm{TR}$


```
T=3.0006 HR
00=504,0179 173/M0
NP=23,053.5425 M3
DAP=6.538.7831 M3
```

$T=4.6069$ YR
$00=432,6864 \mathrm{MB} / \mathrm{H0}$
$\mathrm{HF}=28,669.6582 \mathrm{H}$
$D N P=5,605.5157 \mathrm{~Hz}$
$T=5,8660$ YR
$40=370.4105 \mathrm{~m} / \mathrm{H0}$
$\mathrm{NF}=33.474 .5150 \mathrm{NB}$
$\mathrm{DAP}=4,595.4518 \mathrm{H} 3$
$T=6.0006$ UR
$00=317,5425 \mathrm{H3} / \mathrm{H0}$
$N \mathrm{NF}=37,594.0894 \mathrm{H} 3$
$\mathrm{DNP}=4,119.579443$
$T=7.6800 \mathrm{TE}$
$00=272.2203 \mathrm{~N} 3 / 160$
$H P=41,125.6896 \mathrm{MJ}$
$\mathrm{MHP}=3,531.6802 \mathrm{HI}$
$\mathrm{T}=8.460 \mathrm{~B}$ YR
$00=233.3669 \mathrm{HB} / \mathrm{HO}$
$N P=44.153 .2316 \mathrm{MF}$
MNP $=3.927 .5426 \mathrm{HK}$
$T=9,9064 \mathrm{TR}$
$00=260.6589 \mathrm{M} 3 / \mathrm{H0}$
$\mathrm{NF}=46.748 .6586 \mathrm{MJ}$ DAP $=2.595 .4276 \mathrm{H} 3$
$T=10.96064 \mathrm{~T}$
$00=171.5049 \quad 13 / 40$
$\mathrm{HP}=48.973 .6457 \mathrm{H}$
$\mathrm{JHP}=2,224.9870 \mathrm{Mz}$
$\mathrm{T}=11.6009 \mathrm{TR}$
$00=147.0263 \mathrm{H} 3 / 70$
NF=50.881. $6647 \mathrm{H3}$
MRF $=1,987.4191 \mathrm{H3}$
$T=12 . \operatorname{seng~YR~}$
$00=126.0416 \mathrm{H} 3 / 70$
$\mathrm{HP}=52,516.2418 \mathrm{MS}$
$\mathrm{DMP}=1,635.1779 \mathrm{H}$
$\mathrm{T}=13.0064 \mathrm{TE}$
$00=168.0519 \mathrm{H3} / \mathrm{H0}$
$\mathrm{HF}=53.918 .6333 \mathrm{H3}$
$\mathrm{THP}=1.401 .7915 \mathrm{H3}$
$T=14.10668 \mathrm{TE}$
$80=92.6299$ H3/40
$\mathrm{BP}=55,119.7499 \mathrm{M} 3$
IHP $=1.201 .7166 \mathrm{~Hz}$
$T=15.4606 \mathrm{TR}$
$00=79.4690 \mathrm{M} 3 / \mathrm{NO}$
$N F=56.149 .9480 \mathrm{M} 3$
DHP $=1.030 .1981 \mathrm{H3}$
$\mathrm{T}=16.6069 \mathrm{YR}$
$00=68.6751 \mathrm{H} 3 / 40$
$\mathrm{NP}=57.033 .1079 \mathrm{H3}$
DAP=803. $1690 \quad 13$
$T=17.81464 \mathrm{VE}$
$00=58.3589 \mathrm{H} 3 / 10$
$N P=57.790 .2163 \mathrm{H} 3$
MMP $=757.1083 \mathrm{~m} 3$
$T=19.0066$ YR $00=58.8294 \mathrm{H} 3 / \mathrm{HO}$
$\mathrm{NF}=58.439 .2641 \mathrm{HE}$
$\mathrm{DNP}=649.6478 \mathrm{HJ}$
$\mathrm{T}=19.6006 \mathrm{YR}$ $40=42.8688 \quad 13 / 40$
$\mathrm{HP}=58.945 .6746 \mathrm{HB}$ $\mathrm{DHP}=556.4105 \mathrm{H} 3$
$\mathrm{T}=20.1006 \mathrm{TE}$ $00=36.7674 \mathrm{M} 3 / \mathrm{MO}$ $\mathrm{NF}=59,472.6698 \mathrm{HJ}$ $\mathrm{DHP}=476.9952 \mathrm{~m}$
$T=21.6006 \mathrm{TE}$ $00=31.5197 \mathrm{H} / 40$ HF=59, 881.5843 M $\mathrm{INF}=499.9146 \mathrm{HI}$
$T=21.3269$ UR 40=36. $0960 \mathrm{H} 3 / 70$ $\mathrm{HP}=6 \mathrm{~B}, 060.090 \mathrm{H} 13$
$M P=118.4157 \mathrm{HB}$

Example 4

Lease B's historical production is plotted in Figure 7-3. Cumulative production from June 1979 to July 1979 is $171,400 \mathrm{BBL}$, although the hyperbolic decline portion begins around January 1978. The initial rate is $330 \mathrm{BBL} / \mathrm{DAY}$ for the hyperbolic decline portion, declining to $240 \mathrm{BBL} / \mathrm{DAY}$. What is the hyperbolic exponent N ? What are the reserves to an economic limit of $2 \mathrm{BBL} / \mathrm{DAY}$? What is the decline slope $\% \mathrm{AI}$ at the initial point (QOI $=330 \mathrm{BBL} / \mathrm{DAY}$) and currently $(\mathrm{QO}=135 \mathrm{BBL} / \mathrm{DAY})$? What is the calculated value of QO at $\mathrm{T}=1 \mathrm{YR}$? The remaining reserves are forecast in Figure 7-4.

Keystrokes	Display	Comments
$[\mathrm{XEQ}][\mathrm{ALPHA}$ DECLINE	OIL? Y/N:Y	
$[\mathrm{R} / \mathrm{SLP}]$	EXP HAR HYP	

Keystrokes	Display	Comments
[E]	QOI= ?	Hyperbolic decline option
330 [R/S]	$N Q$	
[C]	QO1 = ?	
240 [R/S]	$T 1=$?	
6 [ALPHA] MO [R/S]	$N Q \quad N P$	
[C]	QO2 = ?	
135 [R/S]	$T 2=$?	
1.5 [ALPHA] YR [R/S]	QIN QTNP	N and \%Al printed
[C]	$Q O=$?	
2 [R/S]	QIN QTNP	Tand NP printed
[//] [A]	NEW QO=?	
135 [R/S]	QIN QTNP	\%AI printed
[D]	$T=$?	
1 [R/S]	QINQTNP	QO and NP printed

Figure 7-3 Single well production

DECLIHE

HYPEEEOLIC
00I $=339.806 \mathrm{BEL} \mathrm{IMH}$
Q01 $=240.0065 \mathrm{BEL} / \mathrm{JAY}$

$002=135.0060 \mathrm{ESL} / \mathrm{IH} \%$
T2=1.5000 YR
$\mathrm{H}=\mathrm{6} .2263$
$4 \mathrm{HI}=49.3364$
$00=2.6066$ BRL $/ \mathrm{TH} \%$
$T=14.5559 \mathrm{TP}$
$\mathrm{HF}=231.188 .7966 \mathrm{ERL}$
NE $00=135,6090$ EELITAY
3AI $=41.6952$

Example 5

Solve Example 4 using the optional definition of \%AI.
$T=1.0609$ UR $00=179.3234 \mathrm{BDL} / \mathrm{IH}$. $N \mathrm{~F}=89.369 .7955 \mathrm{BEL}$

Keystrokes	Display	Comments
[XEQ] [ALPHA] DECLINE [ALPHA]	OIL? Y/N:Y	
[R/S]	EXP HAR HYP	
[//] [SF] 00 [E]	$Q O^{\prime}=$?	Select optional \%AI definition
[R/S]	$N Q$	
[C]	Q01 = ?	
240 [R/S]	T1=?	
6 [ALPHA] MO [R/S]	$N Q \quad N P$	
[C]	QO2=?	
135 [R/S]	$T 2=$?	

Keystrokes	Display	Comments
1.5 [ALPHA] YR [R/S]	QIN QTNP	N and $\% \mathrm{Al}$ printed
[C]	$Q O=$?	
2 [R/S]	QIN QTNP	$\begin{aligned} & \mathrm{T} \text { and NP } \\ & \text { printed } \end{aligned}$
[//] [A]	$N E W Q O=?$	
135 [R/S]	QIN Q TNP	\%Al printed
[D]	$T=$?	
1 [R/S]	QIN Q TNP	QO and NP printed

DECLIHE

HMPEREOLIS
$001=249.6666$ ECLTHH
$\mathrm{T}=6.640 \mathrm{~F} 1 \mathrm{~F}$
$002=135.696 \mathrm{EEL} / \mathrm{MH}$

$\mathrm{H}=0.2663$
$\gamma \mathrm{HI}=45.9626$
$00=2.6606 \mathrm{BEL} / \mathrm{TH}$
$\mathrm{T}=14.5559 \mathrm{TP}$
$\mathrm{HF}=241,188.7966 \mathrm{BEL}$

HE $00=135.6006$ ERL MA
Z $\mathrm{HI}=39.8912$
$T=1.00004 \mathrm{~F}$
$00178.3234 \mathrm{EEL} / \mathrm{IM}$
$\mathrm{HP}=89.369 .7955 \mathrm{BEL}$

Example 6

Using the default method for calculating \%AI, evaluate remaining reserves as of July 1,1979 ($\mathrm{T}=1.5 \mathrm{YR}$) for the data in Example 4. Input the values for \%AI and N calculated in Example 4, predicting reserves to the economic limit of $2 \mathrm{BBL} / \mathrm{DAY}$.
Keystrokes Display Comments
[XEQ] [ALPHA] DECLINE OIL? Y/N:Y [ALPHA]
[R/S]
[E]
135 [R/S]
[B]
[R/S]
41.6952 [R/S]

EXP HAR HYP
$Q O I=$?
$N Q$
$N=$?
$\% A l=$?
QIN QTNP

Keystrokes	Display	Comments
$[\mathrm{C}]$	$Q O=?$	
$2[\mathrm{R} / \mathrm{S}]$	$Q / N Q T N P$	T and NP printed

DECL The
huperbolic

$\mathrm{HHI}=41.695$
$\mathrm{DO}=2.6609 \mathrm{EEL} / \mathrm{MH}$
$T=13.0559$ TE
WF=113.513.9767 B6L

Example 7

Gas well C has an initial producing rate of 2.1 MMCF/DAY. Based on similar well performance, it should have a hyperbolic decline with $\mathrm{N}=0.35$. Calculate the ultimate reserves to an economic limit of 100 MCF/DAY in 20 years. Determine the initial decline slope, reserves, and annual production for the first three years. Notice how the prompt names and units change to gas rates and productions.

Keystrokes	Display	Comments
[XEQ] [ALPHA] DECLINE [ALPHA]	OIL ? Y/N:Y	
N [R/S]	EXP HAR HYP	
[E]	$Q G /=$?	
2.1 [ALPHA] MMCF/DAY [R/S]	$N Q$	
[C]	QG1 $=$?	
100 [ALPHA] MCF/DAY [R/S]	$T 1=$?	
20 [R/S]	$N Q \quad G P$	
[B]	$N=$?	
. 35 [R/S]	QINQTGP	\%Al printed
[H]	$D T /=$?	
[R/S]	$D T S=$?	
[R/S]	$T F=$?	
3 [R/S]	$G P I=$?	
[R/S]	$X=$?	
[R/S]	QIN QTGP	Forecast printed

DECLIHE
07L: H0
HYPEPEOLIC
QGI-2. 1600 M HCF IAH QGI=106. $6006 \mathrm{HCF} / \mathrm{DHY}$ $T 1=20.6040 \mathrm{TR}$ $\mathrm{H}=\mathbf{0} .3560$ $3 \mathrm{HI}=2.7986$
SIMGE MELL
TF $=3.9806$ YR
$0 \mathrm{GI}=2,100.6066 \mathrm{HCF} / \mathrm{THH}$
$T=1.6006{ }^{\prime}$
WG=1,619.8164 HCFTHF CF=673,752 5395 HEF
DGP $=673.752 .5395$ 瑗
$T=2.6096{ }^{78}$
GG=1,276.7534 MCF/MA\%
CP=1,199, 026.482 HCF
IGP $=525.273 .9425 \mathrm{HCF}$
$\begin{aligned} & T=3.0040 \mathrm{TL} \\ & \mathrm{QC}=1,924,9462 \mathrm{HCF} \mathrm{IMH} \\ & \mathrm{GP}=1,616,817.251 \mathrm{HCF} \\ & \mathrm{IGP}=417,790.7690 \mathrm{HCF} \end{aligned}$

Example 8

A certain well has an initial producing rate of $30 \mathrm{M} 3 /$ DAY. If this well were to have an economic life of 20 years to reach $1 \mathrm{M} 3 / \mathrm{DAY}$, what hyperbolic decline exponent and initial decline rate would be required? Use the SI option of the Unit Management system by setting flag 09 ([//] [SF] 09).

Keystrokes	Display	Comments
$[\mathrm{XEQ}][\mathrm{ALPHA}]$	DECLINE	OIL? Y/N:N

Keystrokes	Display	Comments
$[C]$	$Q O 1=?$	
$1[R / S]$	$T 1=?$	$N Q$
$20[R / S]$	$N P=?$	
$[G]]$	$Q 1 N Q T N P$	N and \%AI $6000[R / S]$
$[/ /][C F] 09$	16.7716	printed Back to English units

DEGLINE

OIL: YES
hyperbolic
Q0I=30.6060 $13 / \mathrm{DRY}$
001=1.0006 H3/DHY
$\mathrm{T}=20.9009 \mathrm{TR}$

$\mathrm{H}=\mathrm{6} .0444$
3 $\mathrm{AI}=16.7716$

Example 9: Multiple Well Forecast

Predict the total production for a certain field with two oil producing zones. Anticipated typical well performance is shown in Table $7-1$, and the development schedule and a set of risk factors is shown in Table $7-2$. Net interest is 82%. Predict the total gross and net production for zone A and the combined zones A and B .

Table 7-1

	Table 7-1	
Zone	A	B
QOI (BBL/DAY)	100	90
Decline type	Exponential	Hyperbolic
\%AI	30	65
Ending condition Hyperbolic exponent	$\mathrm{QO}=4 \mathrm{BBL} / \mathrm{DAY}$	$\mathrm{T}=11 \mathrm{YR}$

Table 7-2

	Table 7-2				
	Zone A		Zone B		
Date	Time (YR)	Wells	Factor	Wells	Factor
$1-1-81$	0.0	6	1.0	2	1.0
$4-1-81$	0.25	1	1.0	-	-
$7-1-81$	0.5	1	0.8	-	-
$10-1-81$	0.75	1	0.6	-	-
$1-1-82$	1.0	1	0.4	2	0.75
$7-1-82$	1.5	-	-	1	0.5
$1-1-83$	2.0	-	-	1	0.5

Keystrokes	Display	Comments	Keystrokes	Display	Comments
[XEQ] [ALPHA] DECLINE [ALPHA]	OIL? Y/N:Y		$[\mathrm{Il} / \mathrm{S}]$	$\begin{aligned} & \text { CLEAR? Y/N:N } \\ & B E G T=\text { ? } \end{aligned}$	
[R/S]	EXP HAR HYP		1 [R/S]	NWELL $=$?	
[A]	QOI=?		[R/S]	$x=$?	
100 [R/S]	$A 1 Q$. 75 [R/S]	QIN QTNP	
	\%Al=?		[I]	CLEAR? Y/N:N	
30 [R/S]	QTNP		[R/S]	BEG $T=$?	
[C]	$Q O=$?		1.5 [R/S]	NWELL=?	
4 [R/S]	QIAIQTNP	T and NP	1 [R/S]	$x=$?	
		printed	. 5 [R/S]	QIN QTNP	
[I]	CLEAR? Y/N:	Multiple well	[1]	CLEAR? Y/N:N	
		input.	[R/S]	BEG $T=$?	
			2 [R/S]	NWELL=?	
		character	[R/S]	$x=$?	
		is Y or N	. 5 [R/S]	QIN QTNP	
Y [R/S]	BEG $T=$?			$\chi=$?	
$0[\mathrm{R} / \mathrm{S}]$	$N W E L L=$?		. 82 [R/S]	QIN QTNP	Annual
$6[\mathrm{R} / \mathrm{S}]$	$\chi=$?				gross and
$1[\mathrm{R} / \mathrm{S}]$	QIAIQTNP				net pro-
	CLEAR? Y/N:Y				duction
$\mathrm{N}[\mathrm{R} / \mathrm{S}]$	$B E G T=$?				for zones
. 25 [R/S]	NWELL $=$?				A and B
$1[\mathrm{R} / \mathrm{S}]$	$x=$?				printed
[R/S]	QIAIQ TNP				
${ }_{[1]}$	CLEAR? Y/N:N				
[R/S]	BEG $T=$?				
. 5 [R/S]	NWELL=?				
[R/S]	$X=$?			DEELINE	
${ }_{\text {[II }} 8$ [$\left./ \mathrm{S}\right]$	QIAIQTNP			DEELINE	
${ }_{[8 / S]}$	CLEAR? Y/N:N BEG $T=$?				
. 75 [R/S]	NWELL=?			Exponehtial	
[R/S]	$x=$?				
[6 [$\mathrm{R} / \mathrm{S}]$	QIAIQ TNP			Q0I=109.9000 EEL $/ \mathrm{THY}$	
$[1] / S]$	CLEAR? Y/N:N BEG $T=$?				
1 [R/S]	NWELL $=$?			00=4, 9096 BBL/DAY	
[R/S]	$X=$?			$T=9.9247$ YR	
. 4 [R/S]	QIAIQTNP			$\mathrm{HP}=98.240 .7166 \mathrm{BEL}$	
[J]	$X=$?	Multiple well output			
. 82 [R/S]	QIAIQTNP	Annual		CLEAR: YES	
		gross and		BEG T=0.0000 YT	
		net pro-		HHELL $=6.8004$	
		duction for zone A		$8=1,8000$	
		printed		CLEAF: HO	
[//] [E]	EXP HAR HYP	Select new		BEG $T=6.25607 \mathrm{TR}$	
		decline type		HWELL=1.8680	
${ }^{[E]}$ [R/S]	QOI=?				
${ }^{90}$ [R/S]	$N Q$			BEG $\mathrm{T}=0.508 \mathrm{Cl}$ YR	
${ }_{\text {[}}^{\text {[}}$ [4501 [R/S]	$\begin{aligned} & N=? \\ & \% A=? \end{aligned}$			$\mathrm{X}=8.80809$	
$.4501[R / S]$ $65[\mathrm{R} / \mathrm{S}]$	$\% A I=?$				
[1] ${ }^{\text {a }}$	CLEAR? Y/N:N			BEG T=0.7590 YF	
[R/S]	BEG $T=$?			$\gamma=0.6006$	
0 [R/S]	NWELL=?				
2 [R/S]	$\chi=$?			BEG T=1. 0606 CT	
1 [R/S]	QIN QTNP			$\mathrm{y}=0.49 \mathrm{Ca}$	

MULTHELL X $=0.8200$	$T=11.0046$ TR PROD $=14.4744 \mathrm{BEL}$ XPROD $=11.8690$ BEL	
	2HELL $=16.8080$	$\mathrm{T}=4.0000 \mathrm{~T}^{\mathrm{T}}$
$T=1.0008 \mathrm{YR}$	SPROI=864,518.2533 EBL	PROD $=112,417.5573 \mathrm{BBL}$
PR01=226,836,8682 BEL	EXPR0IT $788,964.9677$ EEL	¢FROD=92,182.3976 BEL
		$\mathrm{T}=5.6086 \mathrm{TR}$
$T=\bar{L}, 0000 \mathrm{Y}^{\text {P }}$	hyperbolic	FR0D 76.882 .9988 EEL
PR01=202.112.7118 8EL		YPR0I=62,387.3144 EEL
$\mathrm{I}=165.732 .4237 \mathrm{ECL}$		
	QOI=96.0680 BELIDAY	T=6.8506 ${ }^{\text {\% }}$
	$H=9.4501$ $8 \mathrm{Z} I=65.00106$	PR0D $=52,497.4929 \mathrm{BEL}$
$\begin{aligned} & \mathrm{T}=\sqrt[3]{.0601 ~ Y R} \\ & \mathrm{PROD}=141,478.8983 \mathrm{BEL} \end{aligned}$		XPR0D=42,974.1442 BEL
YPR0I $=116,012.6966$ ERL		
	BEG T=6.0606 ${ }^{\text {TR }}$	$\mathrm{T}=7.8888 \mathrm{~T}^{\text {TR }}$
$T=4.989897$	HWELL $=2.6006$	PROD=36,397. 1248 BEL
PROD=99,835.2287 BBL	$n=1.800$	YPR0D $=29,645.6423 \mathrm{BEL}$
$\mathrm{XPR01}=81,288.8876 \mathrm{BEL}$		
	BEG $T=1.8080 \mathrm{~T}^{\text {T }}$	$T=6.0000 \mathrm{TR}^{\text {P }}$
$T=5.0006{ }^{\text {\% }}$	$X=0.7569$	PR00 $=25$ 394.9667 BBL
PROI $=69,324.6601 \mathrm{BEL}$		XPR0I=29,823.8235 BEL
\%PR0D $=56,846.2212 \mathrm{EBL}$	BEG $\mathrm{T}=1.5090 \mathrm{TE}$	
	HWELL=1.0109	$\mathrm{T}=9.0060{ }^{\text {Y }}$
$T=6.0006{ }^{\text {r }}$	$X=6,5806$	PROD=17,773.61991 BEL
PROD $=48,527.2626 \mathrm{BEL}$		KPR0I $=14,573.8674$ EBL
YPROD $=39,792.3549 \mathrm{BEL}$		
	EEG T=2.0608 YR	
	$\chi=6.5096$	$T=10.8896$
$\begin{aligned} & T=7,0000 \text { YR } \\ & \text { PROD=33,969. } 8835 \text { B6L } \end{aligned}$		PROD 3 3, 341.4692 BEL
YPROIT=27,854.6484 BEL		YPROD $=2,740.6848$ BEL
	MULTIMELL	
$\mathrm{T}=8.8006 \mathrm{YR}$		$\mathrm{T}=11.8006 \mathrm{YR}$
PROD=23,770.3584 B8L	$Y=0.8290$	PROD=161.2668 EEL $\mathrm{YPROD}=132,2368 \mathrm{BE}$
YPROI= $19,498.2539$ BEL	$8=6.8200$	XPROM=132.2388 BEL
	$T=1.8606$	$\mathrm{T}=12.0098 \mathrm{TR}$
PROD=16,644.8599 B8L	PROI $=269,765.5353$ E6L	PROD $=1.9312$ ECL
XPR0D=13,648.7777 BEL	XPROD $=221.158 .5399 \mathrm{EEL}$	XPR0I $=1.5836$ BEL
$\mathrm{T}=10.6006 \mathrm{CR}$	$T=2.8080{ }^{\text {\% }}$	THELL $=16.8010$
PROI=2,801.9170 bRL	PR0D=254,648.6881 BEL	EPROD $1,822,799.904 \mathrm{BPL}$
XPROII $=2,297.5719$ BEL	YPR0II $2068,811.3666$ EBL	EXPR0I $=838,695.1833 \mathrm{BEL}$

User Instructions

User Instructions (cont.)

User Instructions (cont.)

Oil reservoir single well forecast

User Instructions (cont.)

User Instructions (cont.)

User Instructions (cont.)

(7) Multiple well input

[^2]
User Instructions (cont.)

(8) Multiple well output

Notes on the User Instructions

*If the input value of NP (or GP) is so large that it cannot be produced at the current QOI (or QGI) and \%AI, the program will halt with an error message (either NP BAD or GP BAD). To recover from the error, run the program again and change the input to represent a physically and mathematically realizable situation.
\dagger Tones will sound while N is calculated iteratively. If the input data do not correspond to a true hyperbolic decline, the program will halt with an error message (either $\mathrm{N}<0$ or $\mathrm{N}>1$). To recover from the error, run the program again and change the input to represent a hyperbolic decline.

General Information

```
Memory Requirements
    Program length: }1871\mathrm{ bytes (9 cards)
    Minimum size: }04
    Minimum hardware: 41C + quad memory
                                    module or 41CV
```

DECLINE requires a total of 2,214 bytes of the 2,237 available, leaving you with no more than 6 key assignments other than the DECLINE assignment. If you do not plan to use the multiple well input and output routines, you can remove them to save space. Simply delete all of the program steps beginning at line 823 . This will yield a version of DECLINE that is 1,596 bytes long and requires size 023. This shortened version can be run in a $41 \mathrm{C}+3$ memory modules but will not leave a port available for a printer.

Hidden Options

When DECLINE is run, the default definition for \%AI will be selected automatically. To change to the optional definition, set flag $00([/ /][S F] 00)$ before the QOI prompt appears. To change back to the default definition, clear flag 00 ($/ / /$] [CF] 00) or run the program again. The flag 00 annunciator in the display will be off if the default definition is being used and on if the optional definition is being used.

Registers

03 Oil or gas producing rate units
04 Oil or gas producing rate units
06 Time units
07 Time units
08 Oil or gas production units
09 Oil or gas production units
10 QGI (MCF/DAY), QOI (BBL/DAY)
11 \%AI
12 QG, QG1(MCF/DAY), QO, QO1 (BBL/DAY)
13 T, T1 (YR), scratch
14 GP (MCF), NP (BBL)
15 D
$16 \mathrm{QG} 2(\mathrm{MCF} / \mathrm{DAY}), \mathrm{QO} 2$ (BBL/DAY), DTI (YR)
17 DTS, T2, max T (YR)
18 TF (YR), scratch
19 GPI (MCF), NPI (BBL), NWELL, IPROD
(BBL or MCF), scratch
X, scratch
21. Last GP (MCF), last NP (BBL), last QG
(MCF/DAY), last QO (BBL/DAY)
22 N
23 इWELL
24-48 PROD (BBL or MCF)

Flags

00 Set: Use optional \%AI definition.
Clear: Use default \%AI definition.
01 Set: Oil or gas producing rate units not yet input.
Clear: Oil or gas producing rate units have been input.
Set: Time units not yet input.
Clear: Time units have been input.
03 Set: Oil or gas production units not yet input.
Clear: Oil or gas production units have been input.
04 Set: . Clear production registers.
Clear: Leave production registers unchanged.
05 Set: Hyperbolic decline.
Clear: Exponential or harmonic decline.
06
Set: Hyperbolic case 1 (flag 05 set); exponential (flag 05 clear).
Clear: Hyperbolic case 2 (flag 05 set); harmonic (flag 05 clear).

07 Set: Oil reservoir.
Clear: Gas reservoir.
Flag 02 is also used in multiple well input to lump together all remaining production past year 25 into year 25 .

Program Listing

```
    01*LEL "BECLIHE"
    "DECLIHE 49
    XROH "TILLE" FC?C 25
    PROHFT CF 6 GF G1
```



```
    -0IL" 7 XROH "Y/N?
    "M3" FC? 07 "SCH"
    AST0 80 " \(\mathrm{FDRY}{ }^{\circ}\)
    HSTO 03 ASHF HST0 04
    CLA ASTO 19 ASTO 97
    "YF" AST0 66
    \(28+\operatorname{LBL} 15\)
    "EXP HAR HYP" PROHFT
    GTO 17
```

 324 LD E
 334LBL II
 GT0 15
 35*LBL A
CF 85 SF 66
"EYFOHEHTIAL" GTO 88
46+LDL C
CF 65 CF 66 "HARMOHIC"
GT0 68

45*LBL E
SF 65 "HYPERBOLIC"
48 LEL 68
ADY FS? 55 PRA ADY
GTO A

54 LEE 69
RCL 11 gT0 29 RCL 15
STO 2118 "HEH ${ }^{-1}$
Fs? 67 "F0" FC 07

F5? 05 RCL 22 F5? 5
Y4 5 ST 15 KEE 32
RCL 215015 RCL 26
51011

Program Listing（cont．）
$78+$ LDL 16
月D
36＋LEL 17

FE？ 07 ＂FGP＂PROTPT
GT0 17

91＊LBL E
67015

93 LDL
67060
$95 \mathrm{LDL} H$ 07022

97 ＋LBL ：
61023

994 LBL J
$6 T 024$

1614LD 18
＝日T F FS？日
＂HNF＂FC？ 67 ＂HF＂
PROMPT $6 T 018$
189＊LBL E
YER 41 YEO 26 YEE 36
YEO 27 XEO 46 GTO 16

1164LEL I
MEE 36 YEU 25 YEE 36
HED 29 HEO 43 GTO 16
$123+1$ BL C
XEE 34 XEE 27 YEQ 4
XED 29 XEQ 43 GTO 16

1304LEL A
9 ＂001：FC？ 07 －GGI＂
YER 35

1364LEL 61
FS？ 65 O $^{\prime \prime}$
FL？ 05 ：Al E＂
PROAPT $6 T 091$

1434LE B
FG？E5 YEE 46 16

號 31 FC？ 65 GTO 19
01016
1544DL C
FS？ 05 GTO 21 MEG 34
1584LBL 02
＂T＂FST日 07
＂HF＂FC？ 07 ＂ HGP ＂
FROAPT GTO 62
166＋LEL II
YEE 38 YED 28 YE日 32
YEE 29 YEO $43 \quad$ GTO 16

1734LBLE
YEO 41 YEQ 36 HED 32
YEE 27 YEE 46 GTI 16

1884LBL 21
11 ＂001＂FC7 67 ＂ 0.1 ＂

1854LEL 93
－ H 0 －FS？ 67
＂ HP ＂ FC ？ 87 ＂ FGF ＂
PROAFT GT0 03

196＊LBL B
YEE $46 \quad 67010$

1994LBL C
SF 6615 ＂002＂FC？ 67

XED 39 GTO 69
$2494 \mathrm{LBL} E$
CF 66 KE 41

2124LBL 69
YEE 12 CLI TONE 9
RCL 22 ＂H＂YROH＂OIIT＂
$219+\operatorname{LEL} 10$
XEE 28 㖃 $32 \quad$ GTO 16
$223+1$ BL 12
CLy ST0 64 1 STI 61
ECL 10 FCL 12 ；
$9 T 019$ FS？ $66 \quad 6 T 013$
1／\％－RCL 19 LH
$5 T 02$／RCL 14 FCL 16
$/ \mathrm{RCL} 13$／ 365 ；
STO 2月－STO 6

KYY RCL $191-\%$
ELL 20 GT0 14

2664 LEL 13
LH RCL 13 ／RLL 16
RCL 16 ；STO 20 LH
FCL 17 － 9 TO G
＂ H ＜ $\mathrm{g}^{-1} \mathrm{X}=67 \mathrm{GTO} 26$
RCL 191 －RCL 13 ．
RCL 201 －RCL 17 ；

206＊LEL 14
－ST0 15＂内＞1＂别的？
$6 T 029 \quad 4 \quad 5018$

294＊LEL 19
LSE 18 GTO 68 RCL 06
RCL 15＊RCL 01
FCL 62 $*$－ RCL 15
RCL 12 －GT0 69

3984LEL 68
FCL 日㫙 $\mathrm{HI}+2$

3134LBL 89
； 5 TO 22 TOHE 5
FS？ 66 GT0 19 1
FCL 19 RCL 22 Yf－
LASTM RCL 19 ； 1 －
YKY／RCL 22＊ 1
$\mathrm{RCL} 22-$ RCL $20-$
GTO 11

3404 LBL 10
ELL 19 RCL 22 Y敃 1
－ RCL 13 ／RCL 20
RCL 22 Yif 1 －
PCL 17 ； RCL 22 ；

Program Listing（cont．）

358＊LBL 11
ENTER \dagger ABS 1 E－4 YYU？
NTH RCL 92 R \dagger＊XD日
GTO 12 LASTX STO 15
RCL 22 STO 日1 GTO 19

374＊LBL 12
LASTY 51002 RCL 22
ST0 60 GTO 19

3864LBL 22
15701657017
＂SINGLE HELL＂AIV
FS？ 55 PRA ADY CLY
STO 19 STO 21 RCL 13
STO $18 \quad 15 \quad 570 \quad 60$
＂DTI＂XEE 39 ＂DTS＂
枵 39 ＂TF＂XED 39
＂NPI＂FC？ 07 ＂GPI＂
XEQ 42 XED 45 ADY
RCL 10 ＂ 001 ＂FC？ 07
＂EGI＂XED 37 RCL 19
＂HPI＂FC？ 07 ＂GPI＂
$\mathrm{H}>0$ ？YEO 44 CLY

4264LBL 64
ADU ST＋ 16 RCL 16
RCL 18 X $\mathrm{K}=\mathrm{Y}$ ？ $\mathrm{K} Y \mathrm{Y}$
K）STO 13 XEO 40
XEO 25 HEE 36 RCL 26
1 Y＝ץ？CLX＊＊＊Y：

XEO 29 RCL $195 T+14$
PCL 14 XEO 43 X） 21
RCL 21 X XH －＂ D ＂
ARCL 05 XEO 44 RCL 20

ARCL 05 BクO？XEQ 44
RCL 13 RCL 18 Xi＝Y？
GTO 16 RCL 17 GTO 94

764LBL 25
RCL 10 RCL 13 RCL 15
＊EtY FC？ 05 FC？ 86
XEQ 08 ／STO 12 RTH

482＋LBL 86
MYY LASTK $1+$
FC？ 65 ETN 1 －
$\operatorname{RCL} 22 * 1+\operatorname{RCL} 22$
1／Y YH RTH

4994LBL 26
RCL 14 RLL 15 ＊ 365
\Rightarrow CHS RCL 16 FC？ 65
FS？ 66 GT0 09 ；EX
FCL 16＊GT0 16

5154LBL 69
FC？ $95+\mathrm{FC} 95$
GT0 10 • 1 RCL 22 －
$570 T * 1+\mathrm{E}^{*} 1 \%$
Y菑 RCL 10＊

533 LBL 16

${ }^{*} \mathrm{H}$＂FC？ $077^{-\mathrm{G}}$
＂H BAI＂

542 ＋LBL 20
TOHE 3 PROHPT GTO 26
$546+L B L 27$
YEQ 11 RCL 15 ，
51013 RTH

552＋LBL 28
KED 11 RCL 17 ．
STO 15 RTH

558＊LBL 11
FCL． 16 RCL 12 ； LH
FC？ 05 FC？ 06 GT0 12
ETH

5674LBL 12
LASTH 1 －FC？ 05 RTH $1+\operatorname{RCL} 22 \mathrm{Y} \dagger \mathrm{Y} \mathrm{I}-$ RCL 22 （ ETH

5824LBL 29
RCL 15 YEA 13 ＊
STO 14 RTH
$568+$ LEL 36
FCL 14 YEO 13 ＊
STO 15 RTN
$594+\operatorname{LBL} 17$
365 Y） FY FS？ 85
GTO 14 RCL 16 RCL 12
FS？86－FS？ 66 RTH
＜LH＊RCL 16 RTH

611 LEL 14
$1 \operatorname{RCL} 22-\operatorname{RCL} 12$
LASTY Y极 RCL 10
RCL $22 \mathrm{Y}+\mathrm{Y}$＊ RCL 16
KYO－RTH

6274LEL 31
1 RCL 11100 ；
FC？ 06 GT0 08 FC？ 95
FS？ 86 GTO 98 LASTX
XCY／STO 15 RTH

643＊LEL 98
1／7 LH ST0 15 FS？日星
FC？ 05 RTH LASTX
RCL 22 Y 4 1－
RCL 22 ；STO 15 RTH
$659+L B L 32$
10 ENTER 1 RCL 15
FE？ 60 GTO 10 FS？ 65
GT0 09 FS？ 06 GT0 10

+ ／RCL 15 GTO 14

674＊LBL 69
RCL $22 * 1+\mathrm{RCL} 22$
CHS 1／K Y Y

6854논 10
CHS ETY－
$689+\operatorname{LBL} 14$
－STO $11{ }^{3} \mathrm{mIF}$
YROM＂OUT＂RTH

6954LEL 34
$11{ }^{*} 00^{\circ} \mathrm{FC}$ ？ $67{ }^{-0 G^{4}}$

Program Listing（cont．）

7664 LBL 35
5700604011
HROM＂INK：GTO 10
7654LBL 36
＂00＂FE？ 07 ＂ 00^{4}

769＋LBL 37
HEE 11 YROH＂OUTK＂
$712 \operatorname{LBL} 10$
RIH 57003 K KM

7204LEL 11
FSTC 61 SF 88 ASTO T
＂BEL＂FE？ 07 ＂HCF＂
－$/$ DAY ${ }^{\circ}$ HSTO 01 ASHF
ASTO G2 CLA ARCL T
RCL 04 RCL 03 RCL 2
RTH

737＊LEL 38
125040 ＂T＂
741＊LBL 39
XEE 12 XROM＂INK＂
GTO 10

7454LEL 49
＂T＂YEQ 12 XROH＂OUTK＂

749＊LEL 1甼
RDM STO 66 Y（YY
$5 T 067$ Et CF 06 RTH
7574LBL 12
FSTC 02 SF 98 A5T0 T
＂ 7 R＂ASTO GL CLA
4ST0 92 ARCL T RCL 67
RCL 66 RCL 2 RTH

7764LBL 41
13 ST0 $60{ }^{-14 P *}$ FC？ 07 ＂GP＂

7764LDL 42
YED 13 SROH＂IHE＂
GT0 10

7864 LBL 43
＂ HP ＂FC？ 07 ＂GF＂
784＊LBL 44
YEE 13 YROH＂OUTK＂

7874LEL 16
RDN STO 68 W\％Y
$5 T 069$ Rt CF 68 RTH
795＊LBL 13
FSTC B3 SF 08 ASTOT
＂BEL＂FC？ 07 －HCF＂
ASTO 01 CLA ASTO 02
ARCL T RCL 69 RCL 88
RCL 2 RTH

8164 LEL 45
1570201957090

818＊LBL 46
21 ST0 $60{ }^{-1} \mathrm{H}^{\circ}$
HROH＂IH＂RTH

824＊LEL 23
＂CLEAR＂ 4 XROH＂Y／H？＂
23.048 FC 94 GT0 13

8

832 L LL 195
STO IND Y ISG Y GTO 95

836＋LBL 13
CLX ST0 18 RCL 13
ST0 16 RCL 16 STO 21
17 STO 0日＂EEG T＂
YEO 39 －NHELL＂
XROH＂IN＂ST＋ 23
YEE 45 RCL 18 INT 23
$+5 T 0$ OR RCL 16
RCL $18+23+5 T 017$

8624LBL 66
TONE 5 ISA 日G CLI

KKY？ 5 TO 0 OB KYY
REL 17 XH？XYY
FS？ 02 KYY RCL 18 －
23 － 51013 XED 25
RCL $10 \quad \mathrm{Y}\rangle 21 \quad 57016$
YEO 29 RCL 19 ＊
RCL 20 ＊ST + IHI 60
RCL 12 Y $17215 T 016$
FS？C 02 GT0 14 RCL 17
RCL 60 X XY？GTO 46

9024LBL 14
RCL 16 STO 13 TONE 9
GTO 16
9874LBL 24
＂HILTLMELL＂AIV FS？ 55
PRA ADH YEE 45 CLY
$\begin{array}{llllll} & \$ 70 & 19 & 24,048 & 510 & 18\end{array}$

918＋LBL 67
RCL IND 18 Y＝0？GTO 14
ADY RCL 18 INT 23 －
XEA 40 RCL IND 18
ST＋ 19 ＂PROI＂YEQ 44
RCL 201 $\mathrm{X}=\mathrm{Y}$ ？CLY $*$

XEE 44
942 LEL 14
I5G 18 GTO 07 ADU
RCL 23 ＂ EHELL ＂
男OH＂OUT＂RCL 19
＂EPROR＂XED 44 RCL 20
1 X＝Y？CLX＊＊
－EXPROII X 7 日 GTO 16 END

Section 3

Volumetric Calculations and Reserves

8. OIP - Calculating Oil in Place and Reserves Volumetrically

Calculates volumetric oil in place and estimates reserves from API correlations for water-drive and solution-gas-drive reservoirs.

9. GIP - Calculating Gas in Place and Reserves Volumetrically

Calculates volumetric gas in place and estimates reserves for water-drive and volumetric expansion.

8. OIP - Calculating Oil in Place and Reserves Volumetrically

Calculating oil in place volumetrically is a relatively simple chore since most reservoir engineers know the volumetric equation by heart. When using the equation, the ability to compute the oil formation volume factor (BOI) might be helpful. OIP allows the user to input or calculate PVT properties, as well as estimate recoveries using the API correlations (API Bull. D14). Frankly, the API correlations will rarely be better than an "experience factor" or "analogy" guess. This is particularly true of water-drive reservoirs. The API correlations for water drive should not be misused as estimates for waterflood recoveries. Also, the gas-drive correlations assume the reservoir is at the bubble point. Although the correlations have enormous estimation errors, they are made much simpler to use because of the Pac correlations for the PVT properties.

Volumetric estimates are generally used only at early times in the life of a field for reserve purposes. Reservoir heterogeneities are a commonly overlooked reason that volumetric estimates often exceed the results obtained by performance.

Equations

$$
\begin{aligned}
& \mathrm{N}=\frac{7758 \text { POR }(1-\text { SW }) \text { AREA } H}{\mathrm{BOI}} \\
& \text { \%OILRF (gas drive) }=41.815 \\
& \times\left[\frac{\operatorname{POR}(1-\mathrm{SW})}{\mathrm{BOBP}}\right]^{0.1611} \\
& \times\left\lceil\frac{\mathrm{K}^{\prime}}{\mathrm{UOBP}}\right]^{0.0979} \\
& \times \mathrm{SW}^{0.3722}\left[\left.\frac{\mathrm{PBP}}{\mathrm{PABAN}}\right|^{0.1741}\right. \\
& \mathrm{NPGD}=\text { OILRF (gas drive) } \mathrm{N} \\
& \% \text { OILRF (water drive) }=54.898 \\
& \times\left[\frac{\operatorname{POR}(1-\mathrm{SW})}{\mathrm{BOI}}\right]^{0.0422} \\
& \times\left[\frac{\mathrm{K}^{\prime}}{\mathrm{UOI}} \mathrm{UWI}\right]^{0.077}
\end{aligned}
$$

$$
\times \mathrm{SW}^{-0.1903}\left[\frac{\mathrm{PI}}{\mathrm{P} \mathrm{ABAN}}\right]^{-0.2159}
$$

$$
\begin{aligned}
& \mathrm{NPWD}=\text { OILRF (water drive) } \mathrm{N} \\
& \mathrm{~K}^{\prime}=\mathrm{K} \text { in } \mathrm{D} \\
& \mathrm{POR}=\frac{\% \mathrm{POR}}{100} \\
& \mathrm{SW}=\frac{\% \mathrm{SW}}{100} \\
& \mathrm{OILRF}=\frac{\% \text { OILRF }}{100}
\end{aligned}
$$

Nomenclature

Symbol	Variable Name	Input or Output	English Units	SI Units
AREA	Reservoir area	I	.ACRE	M2
BOI	Initial oil-formation volume factor	I	-	-
H	Formation thickness \dagger	1	FT	M
K	Permeability	I	MD	MD
N^{*}	Initial oil in place	O	BBL	M3
NPGD*	Cumulative oil production (gas drive)	O	BBL	M3
NPWD*	Cumulative oil production (water drive)	O	BBL	M3
P ABAN	Abandonment pressure	I	PSI	KPA
PI	Initial pressure	I	PSI	KPA
UOI	Initial oil viscosity	I	CP	PA*S
UWI	Initial water viscosity	I	CP	PA*S
\%OILRF	Volume percent gas-drive or water-drive oil recovery factor	0	-	-

[^3]
Yes/No Questions

CORR?	Yes: Use Pac correlations to estimate PVT properties.
	No: Input PVT properties.
SKIP?	Yes: Skip input of PVT data.
	No: Allow input of PVT data.

Example

The Little Creek oil field has three producing wells offset by two dry holes, reasonably delineating the field. An isopachous map of the Woodbine pay indicates a total area of 200 acres with an average thickness of 24 FT. An average effective porosity of 14.3% and water saturation of 32.5% were calculated from well-log analysis. The reservoir was discovered at an initial pressure of 2,650 PSI; additional PVT data are as follows:

```
SEP T = 110 F
SEP P = 125 PSI
OIL G = 37.4 API
GAS G =0.678
T=155 F
RSI = 480 SCF/BBL
```

A very early pressure buildup was conducted for one of the wells, indicating an effective oil permeability of 2.2 MD. Estimate the original oil in place and ultimate recovery. Since this is a solution-gasdrive reservoir, the water-drive recovery should be ignored.

Keystrokes $(S I Z E>=041)$	Display	Comments
[XEQ] [ALPHA] OIP [ALPHA]	CORR? Y/N:	Last character is Y or N
Y [R/S]	SKIP? Y/N:	Last character is Y or N
N [R/S]	SEP $T=$?	
110 [R/S]	SEP $P=$?	
125 [R/S]	OIL $G=$?	
37.4 [R/S]	GAS G=?	
. 678 [R/S]	$T=$?	GAS GS printed
155 [R/S]	RSI $=$?	
480 [R/S]	$\% P O R=$?	PBP printed
14.3 [R/S]	$\% S W=$?	
32.5 [R/S]	$P /=$?	
2650 [R/S]	$A R E A=$?	
200 [R/S]	$H=$?	
24 [R/S]	$K=$?	N printed
2.2 [R/S]	$P A B A N=$?	

Keystrokes (SIZE $>=\mathbf{0 4 1})$	Display	Comments
$200[\mathrm{R} / \mathrm{S}]$	$\% N A C L=?$	NPGD and
		\%OILRF (gas- drive) printed

Since this is a solution-gas-drive reservoir, it is not necessary to calculate the water-drive recovery.

OIL IH PLACE

CORR: YES
SLIF: H0
SEP $T=116.1609 \mathrm{~F}$
SEP F=125. 0 gex FSI
OIL $\mathrm{S}=37.4666 \mathrm{AFI}$
6A5 $6=0.6766$
CAS CS $=6.6842$
$T=155.0000 \mathrm{~F}$
RSI $=400.6046$ SCF/EBL
$\mathrm{PBF}=2,182.2913 \mathrm{FSI}$
$2.70 \mathrm{P}=14.3604$
754 $=32.5066$
$\mathrm{FI}=2,656.004 \mathrm{FSI}$
GREA=206. 6046 ACRE
$H=24.6060 \mathrm{FT}$
$\mathrm{F}=2.814 .521 .845 \mathrm{BBL}$
$\mathrm{K}=2.2904 \mathrm{mI}$
P ABAN二205. 8060 PSI
HPGD=440.292.8451 B6L
$301 L R F=15.6436$

General Information

Memory Requirements
Program length: 608 bytes (3 cards)
Minimum size: 041
Minimum hardware: $41 C+2$ memory modules

Hidden Options

None
Pac Subroutines Called
TITLE, Y/N?, W8, \%POR, IN, INU, CBOb, CBO, CON, CUOd, OUT, \%NACL, CRSb, CUOb, CUO, CUW, OUTK

User Instructions

Registers	
03	Oil production units
04	Oil production units
06	\％OILRF
07	Scratch
08	UOI（CP）
09	UWI（CP）
17	PI（PSI）
26	BOI
27	AREA（ACRE）
28	H（FT）
29	K（MD）
30	BOBP
32	UOd（CP）
33	UOBP（CP）

34 Scratch
35 PI（PSI）
37 NPGD（BBL）
$38 \quad$ P ABAN（PSI）
$40 \quad \mathrm{~N}(\mathrm{BBL})$
Registers 10，11，20，23，31，36，and 39 unused

Flags

01 Set：Use Pac correlations to estimate PVT properties．
Clear：Input PVT properties．
02 Set：Skip input of PVT data．
Clear：Allow input of PVT data．

Program Listing

614LSL ${ }^{501 P}$＂
＂III IN PLACE＂ 41
XROM＂TITLE＂FETC 25
PROAFT＂月Z $45 T 06$
CLA ASTO 64＂CORR＂ 1
WROH＂Y／N？＂FC？ 01
$6 T 060$ SKIP $^{2} 2$
FROH＂Y／N？FE？ 02

YROH ${ }^{2} \geqslant \mathrm{PORF}$ GTO G

24＋LBL 96
$253 T 000$＂B01＂
YROH＂IN＂

29＋LBL 01
FC？ 11 YROH＂\％POR＂ 20

F5？ 61 YE0 6926
57000 ＂ACRE＂AST0 11
CLA ASTO OZ ASTO Z
＂H2＂ASTO $1=$ AREA＂
YROM＂INI＂＂FT＂
ASTO 11 CLA ASTO G2
ASTO 7 ＂ A ＂ASTO Y＂H＂
YFOM＂INU＂FC？日
GT0 02 RCL 17 RCL 14
CF 63 X $\mathrm{X}=\mathrm{Y}$ ？ SF 日
FS？ 63 以 KM
YROF＂CBOb＂STO 36
FS？ 63 XROM＂CRO＂
51026

72＊LEL 92
RCL 181 FCL 21 160
ST／T $;$－ 35067
RCL 26 ／RCL 27 ＊
RCL 20 ＊$A C R E * F T-$ BEL $=$
COH STO 40 ＂H＂ HEO 12
CF 08 ADY FS？ 01
GT0 9313 ＂PEP＂
YED $1029 \quad$ ST0 00
＂BOEF＂YROH＂IH＂ 32
＂IDORP＂XED 11
167＊LEL 93
25 510 96 ＂MI＂
ASTO B1 BSTO Y CLF
A5T0 02 H5TO 2 ＂K＂
KROM＂IHO＂ 37 ＂P AEHN＂
YED 16 FI？ 01 GTO 04
HROH＂CUOd＂STO 32
ECL 13 WMY
YROH＂CUOb＂ST0 33
F9？ $63 \quad 6 T 064$ RCL 14

134＊LEL 94
RCL 33 RCL 29 1 E3 $/$
57034 x）$/ .0979$
Y聂 RCL 21 10日
$.3722 \mathrm{Y}+\mathrm{X}$ \＃RCL 14
RCL 38 ／ 1741 明 ${ }^{\circ}$
RCL 07 RCL 30 ／ 1611
Y4才＊41．815＊
$510661 \% \operatorname{RCL} 49 *$

STO 37 ＂RFGI＂XED 12
RCL 06 ＂ $70 I L R F "$
YROH＂OUT＂ADY FC？ 01
GTO G6 YROH $=8 \mathrm{AHCL}$＂
RCL 13 FC？ 93 RCL 17
FC？ 63 YROH＂CRSt＂
RCL 32 YROM＂ClOD＂
FS？ 63 YROH＂CU0＂
STO 68 YEOH＂CUF＂
$6 T 067$

191＊LEL 66

8 ＂UHI＂品最 11

1994LBL 67
RCL 68 ；RCL 34 ＊
.677 Y荅 RCL 21 140
；－． 1903 甲 \ddagger \％
RCL 17 RCL 38 ；
-.2159 榙＊RCL 67
RCL 26 ； 6422 Y4X＊
54.899 ＊ 870 16 1%

RCL 49 ＊NPHD＂

YROH＂OUT＂ADY
$237+$ LBL 98
$5 T 0 \mathrm{~F} 67008$

2464LBL 09
16 ＂PI＂

Program Listing (cont.)
$243+\operatorname{LBL} 16$
 ASTO 01 "EFA" ASTO Y CLA ASTO GE ASTO Z ARCL T YROH "INI" RTH

2564 LBL I1
ST0 64 ASTOT "CP"
ASTO 01 "Fम*E" ASTO Y
CLA ASTO 的 BSTO 2
ARCL T BEOM "INU" RTH

2694 LBL 12
ADU ASTO T "BEL"
ASTO 01 CLA ASTO OE
ARCL T RCL 94 RCL O_{3}
RCL 2 YROH =OUTE RDN
ST0 63 K YY 570 64 Rt
EHII

9. GIP - Calculating Gas in Place and Reserves Volumetrically

Gas reserves can generally be calculated volumetrically with somewhat less error than oil reserves. However, low permeability and heterogeneous reservoirs require the same precautions as the oil volumetric reserve calculations. GIP calculates the original gas in place from input volumetric parameters, and recovery factors for volumetric and waterdrive reservoirs. The residual gas saturation can be input or will be estimated by the program.

Equations

$$
\begin{aligned}
& G=\frac{43.56 \text { POR }(1-\text { SW) AREA H }}{\text { BGI }} \\
& \text { GASRF (gas drive) }=\frac{\frac{\mathrm{PI}}{\mathrm{ZI}}-\frac{\mathrm{PABAN}}{\mathrm{Z} \mathrm{ABAN}}}{\frac{\mathrm{PI}}{\mathrm{ZI}}} \\
& \mathrm{GPGD}=\text { GASRF (gas drive) } \mathrm{G}
\end{aligned}
$$

$$
\underset{(\text { water drive })}{\mathrm{GASRF}}=\frac{(1-\mathrm{SW}) \frac{\mathrm{PI}}{\mathrm{ZI}}-\mathrm{SGR} \frac{\mathrm{PABAN}}{\mathrm{ZABAN}}}{(1-\mathrm{SW}) \frac{\mathrm{PI}}{\mathrm{ZI}}}
$$

$$
\text { GPWD }=\text { GASRF (water drive) } G
$$

$$
\mathrm{BGI}=\frac{\mathrm{ZI} \mathrm{~T} \mathrm{~T}^{\prime} \operatorname{STD} \mathrm{P}}{\text { PI STD } \mathrm{T}^{\prime}}
$$

$$
\% S G R=62.5-1.3125 \% \mathrm{POR}
$$

$\mathrm{T}^{\prime}=\mathrm{T}$ in R
STD $\mathrm{T}^{\prime}=\operatorname{STD} \mathrm{T}$ in R
$\mathrm{POR}=\frac{\% \mathrm{POR}}{100}$
$\mathrm{SW}=\frac{\% \mathrm{SW}}{100}$
GASRF $=\frac{\text { \%GASRF }}{100}$
$\operatorname{SGR}=\frac{\text { \%SGR }}{100}$

Nomenclature

Symbol	Variable Name	Input or Output	English Units	$\begin{gathered} \text { SI } \\ \text { Units } \end{gathered}$
AREA	Reservoir area	I	ACRE	M2
G*	Initial gas in place	O	MCF	SCM
GPGD*	Cumulative gas production (gas drive)	0	MCF	SCM
GPWD*	Cumulative gas production (water drive)	0	MCF	SCM
H	Formation thickness \dagger	I	FT	M
P ABAN	Abandonment pressure	I	PSI	KPA
PI	Initial pressure	I	PSI	KPA
Z ABAN	Abandonment Z factor	I	-	-
ZI	Initial Z factor	I	-	-
\%GASRF	Volume percent expansion-drive or water-drive gas recovery factor	O	-	-
\%SGR	Volume percent residual gas saturation	I, O	-	-

*The units for these variables are saved by the program.
\dagger In the case of deviated wells or slanted beds, use the true stratigraphic thickness instead of the measured thickness of the formation.

Yes/No Questions

CORR? Yes: Use Pac correlations to estimate PVT properties.
No: Input PVT properties.
SKIP? Yes: Skip input of PVT data. No: Allow input of PVT data.

Example 1: Expansion Drive

Calculate the gas in place and estimated ultimate recovery for the South Texas Vicksburg reservoir (Example 2 of GASPVT). The estimated area is 460 ACRE with an average net thickness of 58 FT. Estimated abandonment pressure is 600 PSI . The porosity is 22.5% with a 37.8% water saturation. The remaining fluid data can be found in the GASPVT example. By running that example, one can answer Y to the SKIP? Y/N prompt.

Keystrokes $(S I Z E>=040)$	Display	Comments
[XEQ] [ALPHA] GIP [ALPHA]	CORR? Y/N:	Last character is Y or N
Y [R/S]	SKIP? Y/N:	Last character is Y or N
N [R/S]	$T c=$?	
441.8952 [R/S]	$P_{C}=$?	
661.5656 [R/S]	STD T=?	
60 [R/S]	STD P = ?	
14.65 [R/S]	$T=$?	
180 [R/S]	$\% P O R=$?	
22.5 [R/S]	$\% S W=$?	
37.8 [R/S]	$A R E A=$?	
460 [R/S]	$H=$?	
58 [R/S]	$P /=$?	
6200 [R/S]	$P A B A N=$?	G printed
600 [R/S]	$\% S G R=$?	GPGD
		\%GASRF (gas
		drive),
		and
		\%SGR printed

Since this is an expansion-drive reservoir, it is not necessary to calculate the water-drive recovery.

GAS IM PLACE

CORR: YES
SIIP: W0
$\mathrm{T}=441.8952 \mathrm{E}$
$\mathrm{Pc}=661.5656 \mathrm{PSI}$
STD $T=66.6004 \mathrm{~F}$
SII $P=14.6509 \mathrm{PSI}$
$\mathrm{T}=186.4906 \mathrm{~F}$
جPOR=22.5660
\%애 $=37.8065$
AREA $=460 . \mathrm{COCOPA}$ ACRE
$\mathrm{H}=58.8109 \mathrm{FT}$
$\mathrm{PI}=6,206.060 \mathrm{PEI}$
$\mathrm{G}=51,579,018.04 \mathrm{HCF}$
F RBAN=6й5. 0000 PSI

4GASRF=86. 3335

Example 2: Water Drive

Use Example 1 but assume that the reservoir has a water drive, leaving a residual gas saturation of 22%. Estimated abandonment pressure is 3500 PSI based on analogy with nearby reservoirs. How is the recovery affected by using the calculated \%SGR?

Keystrokes	Display	Comments
[XEQ] [ALPHA] GIP [ALPHA]	CORR? Y/N:Y	
[R/S]	SKIP? Y/N:N	
Y [R/S]	$\%$ SW=?	
[R/S]	AREA $=$?	
[R/S]	$H=$?	
[R/S]	$P /=$?	
[R/S]	$P A B A N=$?	G printed
3500 [R/S]	$\% S G R=$?	GPGD \%GASRF (gas drive), and \%SGR printed
22 [R/S]	$P A B A N=$?	GPWD and \%GASRF (water drive) printed
[R/S]	$\% S G R=$?	GPGD, \%GASRF (gas drive), and \%SGR printed
[R/S]	P ABAN $=$?	GPWD and \%GASRF (water drive) printed

GRS IH FLACE

SKIP: YES
GPHI $=37.682 .781 .32$ HCF 7GASRF=73. 6584
$\mathrm{G}=51: 579,518.64 \mathrm{MCF}$

P ABAN $2,500.6069 \mathrm{POI}$

CPGD=12,290,566.96 MEF
YGASRF=23.8286

76GR=32.9680
$4 \mathrm{GR}=22.6600$
$\mathrm{CPGI}=12,296,566.96 \mathrm{HCF}$ $3 \mathrm{CASRF}=23.8266$
$76 \mathrm{CR}=32.9680$

GPNTI $=36.754,461.93 \mathrm{MCF}$ 7GHSPF=59.6256

User Instructions

* This option is provided in case you know the value for \%SGR.
General Information
Memory Requirements
Program length: $\quad 439$ bytes (2 cards)
Minimum size: $\quad 040$
Minimum hardware: $41 \mathrm{C}+1$ memory module
Hidden Options
None
Pac Subroutines Called
TITLE, Y/N?, ITcPc, STDTP, T, \%POR, IN, INU,
CZ, CON, OUT, OUTK
Registers
$03 \quad$ \%GASRF
$04 \quad$ Scratch
$06 \quad$ Gas production units
$07 \quad$ Gas production units

08	ZI
09	Z ABAN
17	PI (PSI)
26	\%SGR
27	AREA (ACRE)
28	H (FT)
35	PI (PSI)
36	GPGD (MCF)
38	PABAN (PSI)
39	G (MCF)
Registers $12-15,19,20,24,25,29-34$, and 37 unused	

Flags

01 Set: Use Pac correlations to estimate PVT properties.
Clear: Input PVT properties.
02 Set: Skip input of PVT data.
Clear: Allow input of PVT data.

Program Listing

61*LEL "GIF"	7 ST0 06 " 21 "	XROH "OITT" ADY 62.5
"GAS IN FLACE" 46		RCL 18 1.3125 \% -
YROM "TITLE" FE? 25		57026 "456"
PROMPT "SCH 457066	66*LEL 03	
CLA BSTO 07 "CORE" 1	KCL 17 (RCL 23 \%	"GSER" XROH "IN" 100
	RCL 22 "F-R" COA	\% 1 RCL $03-*$
$67000{ }^{6519} 2$	RCL 16 COM $*$ RCL 19	
	$\mathrm{KYY}, 1 \mathrm{RCL} 21106$	51063 RCL 39%
GTO 61 YROM "TCPE"	ST/ T - 510 日4*	"GFPII" YEE 98 RCL 03
	RCL 27 * RCL $28 *$	
22*LEL 86		YROM "OUT" GTO 15
SROH "STDTP" XROH "T"	MEQ 48 [F 68	
¢ROH ${ }^{\text {P/FOR }}$	99*LDL 15	STO OH ASTO T ${ }^{\text {PPSI }}$
26*LEL 61	HIIY 37 "F GBAN"	ASTO 01 "KPA" ASTO G2
26 ST0 60 - $\%$ ¢h"	MEE 67 FC? 0160604	
	RCL 38 YEC 69 C2	HRLL T XROM "INO" RTH
"ACEE ASTO 01 CLA	$6 T 065$	
AST0 62 AST0 2 "H2"		1854LBL 68
ASTO ${ }^{\text {P }}$ "RREA"	1180LBL 94	AID AST0 T = WCF
SROH "INI" "FT"	8 ST0 69 " 2 ABAh	ASTO 01 CLA ASTO 92
ASTO 01 CLA AETO 02	צROH ${ }^{-1} \mathrm{H}^{-}$	ARCL T RCL 07 RCL 66
ASTO 2 "H" ASTO Y "H"		RCL 2 YROH "OUTK" RDN
XROM "INI" $16{ }^{\text {cFI }}$	1154LBL 65	
XEe 97 STO 35 FC? 61		RTN
GTO 62 Yee 69 CL		2030LBL 89
$5 T 068$ GT0 03	ST0 03 RCL 39 *	FCL $16{ }^{\text {a }} \mathrm{F-F}{ }^{\text {c }}$ COH
	ST0 36 "GPGI" XED 06	
61+LBL 82	RCL 03160 * "दGASRF"	$\%$ END

Section 4
 Material Balance

10. OILMBE - Calculating N or We from Material Balance
 Calculates initial oil in place or cumulative water influx above or below the bubble point. PVT properties can be input by the user or calculated from the Pac subroutines.

11. KG/KO - Gas-Oil Relative-Permeability Ratio

A utility program to calculate gas-oil relative permeability ratio from well performance or from two different correlations. The input coefficients for either set of correlations can be varied to calculate KG/KO curves that match desired values.

12. OILPRED - Predicting Solution-Gas-Drive Performance

Predicts solution gas-drive performance above and below the bubble point using Pac PVT subroutines.
13. QOVST - Rate-Time Forecast from Material Balance

Predicts rate-time performance for solution-gas-drive reservoirs above and below the bubble point.

14. INFCOEF - Calculating the Water Influx Coefficient

Calculates the water influx coefficient from performance or theory. Valid for both oil and gas reservoirs.

15. INFLUX - Predicting Water Influx

Predicts water influx for future pressure decrements for any value of Re/RW. Valid for both oil and gas reservoirs.

16. GASMBE - Gas Material Balance

Calculates initial gas in place or cumulative water influx from performance. Other flexible material balance capabilities are provided.

10. OILMBE - Calculating N or We from Material Balance

Practically all reservoir engineering texts present stirring derivations of the general material-balance equation. All of the programs in this section will assume that the user is familiar with materialbalance equation concepts. OILMBE is particularly helpful in calculating the original oil in place (N) based on performance. It can also calculate water influx at any point knowing N. It is flexible enough to be used in calculating MBE terms for graphical estimates. For example, N can be estimated as a function of the original free gas in place $|G|$ from the cumulative production history of saturated reservoirs. Water influx can be calculated for several values of N to provide sensitivities for predictive purposes.

One point is worthy of note. Calculating N from pressures and cumulative production above the bubble point is generally much more successful than below the bubble point for similar quality data. Below the bubble point, the compressibility of the free gas begins to dominate the total reservoir compressibility. Consequently, small errors for saturated reservoirs may lead to large errors in estimating oil in place.

Also, if the initial reservoir pressure is below the bubble point, you will be prompted for both the initial free gas in place (G) and the initial gas saturation (\%SGI). Only G is required for the material-balance calculation. \%SGI is used to calculate the oil saturation ($\% \mathrm{SO}$) and will not affect the material balance. If you are not concerned about \%SO, you can enter 0 for \%SGI.

Equations

Above bubble point:

$$
\mathrm{N}=\frac{\mathrm{NP} \mathrm{BO}-(\mathrm{We}-\mathrm{BW} \mathrm{WP})}{\mathrm{BO}-\mathrm{BOI}+(\mathrm{CFR}+\mathrm{CWI} \mathrm{SWC})(\mathrm{PI}-\mathrm{P}) \mathrm{BOI} /(1-\mathrm{SWC})}
$$

Below bubble point:

$$
\mathrm{N}=\frac{\mathrm{NP} \mathrm{BOb}+\mathrm{BG}^{\prime}(\mathrm{GP}-\mathrm{RSb} \mathrm{NP})-\mathrm{G}\left(\mathrm{BG}^{\prime}-\mathrm{BGI}^{\prime}\right)-(\mathrm{We}-\mathrm{BW} W \mathrm{WP})}{\mathrm{BOb}-\mathrm{BOI}+\mathrm{BG}^{\prime}(\mathrm{RSI}-\mathrm{RSb})+(\mathrm{CFR}+\mathrm{CWISWC})(\mathrm{PI}-\mathrm{P} \mid \mathrm{BOI} /(1-\mathrm{SWC})}
$$

$$
\% \mathrm{SO}=\frac{\mathrm{BOb}}{\mathrm{BOI}} \frac{\mathrm{~N}-\mathrm{NP}}{\mathrm{~N}}(100-\% \mathrm{SWC}-\% \mathrm{SGI})
$$

$$
\begin{aligned}
& \mathrm{BG}^{\prime}=\mathrm{BG}, \mathrm{BBL} / \mathrm{SCF} \\
& \mathrm{BGI}^{\prime}=\mathrm{BGI}, \mathrm{BBL} / \mathrm{SCF} \\
& \mathrm{SWC}=\frac{\% \mathrm{SWC}}{100}
\end{aligned}
$$

Nomenclature

Symbol	Variable Name	Input or Output	English Units	SI Units
BGI	Initial gas formation volume factor	I	$\begin{aligned} & \text { FT3/ } \\ & \text { SCF } \end{aligned}$	$\begin{aligned} & \text { M3/ } \\ & \text { SCM } \end{aligned}$
BOI	Initial oil formation volume factor	I	-	-
CWI	Initial water isothermal compressibility	I	1/PSI	1/KPA
G*	Initial free gas in place	I	MCF	SCM
GP*	Cumulative gas production	I	MCF	SCM
N*	Initial oil in place	I, O	BBL	M3
NP*	Cumulative oil production	I	BBL	M3
P*	Pressure	I	PSI	KPA
PI ${ }^{*}$	Initial pressure	I	PSI	KPA
WP*	Cumulative water production	I	BBL	M3
We*	Cumulative water influx	I, O	BBL	M3
\%SGI	Volume percent initial gas saturation	I	-	-
\%SWC	Volume percent connate water saturation	I	-	-

*The units for these variables are saved by the program.

Yes/No Questions

CORR? Yes: Use Pac correlations to estimate PVT properties.
No: Input PVT properties.
SKIP? Yes: Skip input of PVT data.
No: Allow input of PVT data.

Example 1

The Little Creek oil reservoir used in Example 1 of OIP has had historical production as presented in Table 10-1. Calculate the initial oil in place (N) from this performance using the Pac correlations and assuming no water influx or water production. Required data are as follows:

```
\(\mathrm{Tc}=377.8726 \mathrm{R}\)
\(\mathrm{Pc}=665.8449\) PSI
STD T \(=60 \mathrm{~F}\)
STD P \(=14.65 \mathrm{PSI}\)
SEP \(T=110 \mathrm{~F}\)
SEP P \(=125 \mathrm{PSI}\)
OIL \(G=37.4 \mathrm{API}\)
GAS G \(=0.678\)
Reservoir temperature \(=155 \mathrm{~F}\)
RSI \(=480 \mathrm{SCF} / \mathrm{BBL}\)
Water salinity \(=1.9 \%\)
Porosity \(=14.3 \%\)
Water saturation \(=32.5 \%\)
Initial pressure \(=2,650\) PSI
```

The calculated values of N are graphed in Figure $10-1$. A good approximate value for N is $3.25\left(10^{6}\right)$ BBL. This is the average of all the values except the one at 2,108 PSI, which is excessively high to be considered valid. Note that even though the pressure points were entered in descending order, OILMBE allows any order.

Table 10-1

	Table 10-1		
Date	$P(P S I)$	$N P(B B L)$	$G P(M C F)$
$9-76$	2,650	-	-
$1-77$	2,532	7,070	3,394
$2-77$	2,428	13,621	6,552
$3-77$	2,301	22,088	10,580
$5-77$	2,198	29,606	14,300
$6-78$	2,108	73,571	34,848
$1-80$	1,996	129,670	59,865
$12-81$	1,905	189,574	88,984

Keystrokes $(S I Z E>=044)$	Display	Comments
[XEQ] [ALPHA] OILMBE [ALPHA]	CORR? Y/N:	Last character is Y or N
Y [R/S]	SKIP? Y/N:	Last character is Y or N
N [R/S]	$T C=$?	
377.8726 [R/S]	$P_{C}=$?	
665.8449 [R/S]	STD $T=$?	
60 [R/S]	STD P = ?	
14.65 [R/S]	SEP $T=$?	
110 [R/S]	SEP $P=$?	
125 [R/S]	$O / L G=$?	
37.4 [R/S]	GAS G=?	

Keystrokes $(S I Z E>=044)$	Display	Comments
. 678 [R/S]	$T=$?	GAS GS printed
155 [R/S]	$R S I=$?	
480 [R/S]	$\% N A C L=$?	PBP printed
1.9 [R/S]	\%POR=?	
14.3 [R/S]	$\% S W C=$?	
32.5 [R/S]	$P /=$?	
2650 [R/S]	$P=$?	
2532 [R/S]	$N P=$?	
7070 [R/S]	$G P=$?	
3394 [R/S]	$W P=$?	
0 [R/S]	$N \quad W e$	
[E]	$W e=$?	We known
0 [R/S]	$N \quad W e$	N printed
[R/S]	$P=$?	
2428 [R/S]	$N P=$?	
13621 [R/S]	$G P=$?	
6552 [R/S]	$W P=$?	
[R/S]	$N \quad W e$	
[E]	$W e=$?	
[R/S]	N We	N printed
[R/S]	$P=$?	
2301 [R/S]	$N P=$?	
22088 [R/S]	$G P=$?	
10580 [R/S]	$W P=$?	
[R/S]	$N \quad W e$	
[E]	$W e=$?	
[R/S]	$N \quad W e$	N printed
[R/S]	$P=$?	
2198 [R/S]	$N P=$?	
29606 [R/S]	$G P=$?	
14300 [R/S]	$W P=$?	
[R/S]	$N \quad W e$	
[E]	$W \mathrm{e}=$?	
[R/S]	$N \quad W e$	N printed
[R/S]	$P=$?	
2108 [R/S]	$N P=$?	
73571 [R/S]	$G P=$?	
34848 [R/S]	$W P=$?	
[R/S]	$N \quad W e$	
[E]	$W e=$?	
[R/S]	$N \quad W e$	\%SO and N printed ($\mathrm{P}<\mathrm{PBP}$)
[R/S]	$P=$?	
1996 [R/S]	$N P=$?	
129670 [R/S]	$G P=$?	
59865 [R/S]	$W P=$?	
[R/S]	$N \quad W e$	
[E]	$W \mathrm{e}=$?	
[R/S]	$N \quad W e$	\%SO and N printed
[R/S]	$P=$?	
1905 [R/S]	$N P=$?	
189574 [R/S]	$G P=$?	
88984 [R/S]	$W P=$?	
[R/S]	$N \quad W e$	
[E]	$W \mathrm{e}=$?	
[R/S]	$N \quad W e$	\%SO and N printed

Keystrokes	Display	Comments
$52802[\mathrm{R} / \mathrm{S}]$	$W P=?$	
$9420[\mathrm{R} / \mathrm{S}]$	N	We

OIL MATL BAL

$T \mathrm{C}=396.9446 \mathrm{R}$
$\mathrm{PG}=660.1595 \mathrm{PSI}$
SEP $T=95.0060 \mathrm{~F}$
UIL $\mathrm{G}=31.7906 \mathrm{API}$
GAS G=5. 7620
GAS G5=0.7671
RSI=516. 60106 SCF/BBL
$\mathrm{PBP}=2,514.4215 \mathrm{PSI}$
FPH=17,505, 0900
$\mathrm{PPOR}=12.5600$
$7 \mathrm{FHC}=49.2090$
$\mathrm{PI}=2,859.0960 \mathrm{PgI}$
$\mathrm{P}=2,723.01060 \mathrm{PSI}$
$\mathrm{NP}=30,764,0009 \mathrm{BEL}$
$\mathrm{GF}=15.674 .0060 \mathrm{HCF}$
MF=6. 8600 BEL
$\mathrm{H}=6,50 \mathrm{~B}, 818 \mathrm{~B}, 806 \mathrm{BEL}$
He=18:934.9875 BRL
$\mathrm{P}=2,665$. 0 日阴 PSI
$\mathrm{HP}=64,120.6096 \mathrm{BEL}$
GP $=32.637 .0989 \mathrm{HCF}$
UF $=159.0966 \mathrm{BEL}$
He=46.319.9839 BEL
$\mathrm{P}=2,475.6080 \mathrm{PSI}$
$H F=103.309 .00008 E L$
$6 \mathrm{GF}=52,862$, 1006 HCF
UF $=9,426,8060 \mathrm{BEL}$
$750=58.8713$
He $=48,656.1191$ EBL

Example 3

Repeat Example 2 at the first pressure using the following PVT properties as input:

P (PSI)	2,850	2,723
BO	1.280	1.281
BG (FT3/SCF)	0.005	-

BW	CWI (1/PSI $)$	$3.05\left(10^{-6}\right)$
Bubble-point pressure $=2,552 \mathrm{PSI}$		
Formation compressibility $=4.4\left(10^{-6}\right) 1 /$ PSI		

Notice that the calculated water influx is slightly higher using these PVT properties than that calculated using the Pac correlations.

Keystrokes	Display	Comments
[XEQ] [ALPHA] OILMBE [ALPHA]	CORR? Y/N:Y	
N [R/S]	$B O^{\prime}=$?	
1.28 [R/S]	$B G I=$?	
. 005 [R/S]	$R S /=$?	
[R/S]	$P B P=$?	
2552 [R/S]	CWI=?	
3.05 [EEX] [CHS] 6 [R/S]	$C F R=$?	
4.4 [EEX] [CHS] 6 [R/S]	$\% S W C=$?	
[R/S]	$P /=$?	
[R/S]	$P=$?	
2723 [R/S]	$N P=$?	
30704 [R/S]	$G P=$?	
15674 [R/S]	$W P=$?	
0 [R/S]	$B O=$?	
1.281 [R/S]	$B W=$?	
1.019 [R/S]	$N \quad W e$	
[A]	$N=$?	
[R/S]	$N \quad W e$	We printed

OIL MATL EAL

CORR: 10
B0I=1.2800
$\mathrm{BGI}=0.0650 \mathrm{FT} 3 / \mathrm{SCF}$
$\mathrm{PEP}=2,552.0408 \mathrm{FSI}$
CHI=3.8580E-6 $1 / \mathrm{PSI}$
CFR $=4.4096 \mathrm{E}-61 / \mathrm{PSI}$
$F=2,723.0686$ PSI
$\mathrm{NP}=36.794 .0016 \mathrm{EEL}$
$G P=15.674 .8106$ MCF
$\triangle P=0.6098 \mathrm{BBL}$
[0 $0=1.2810$
BH=1. 6190
$\mathrm{He}=22,89 \mathrm{~A} .7596 \mathrm{BBL}$

31	BW
32	CWI（1／PSI）
33	CFR（1／PSI）
34	Scratch
35	PI（PSI）
36	GP（MCF）
37	NP（BBL）
38	WP（BBL）
39	G（MCF）
40	N（BBL）
41	We（BBL）
42	BOBP
43	Scratch

Flags

00 Set：Oil production units not yet input．
Clear：Oil production units have been input．
01 Set：Use Pac correlations to estimate PVT properties．
Clear：Input PVT properties．
02 Set：Skip input of PVT data．
Clear：Allow input of PVT data．
Set：Current pressure \geq PBP．
Clear：Current pressure＜PBP．
04 Set：Gas production units not yet input．
Clear：Gas production units have been input．

Program Listing

01＋LBL＂ $01 L \operatorname{HEE}=$
＂OIL MBTL BAL＂ 44
XROM＂TITLE＂FCOC 25
PROFPT SF 日G SF 94
SF 66 SF $27{ }^{~ " H 2 " ~}$
ASTO 03 ＂ECH＂ASTO 66
＂ KPA ＂ 5510 08 CLA
AST0 64 AST0 67
ASTO 69 CORR： 1
YROH ${ }^{2}$ Y／H？ FC ？ 91
GTO 08 ＂SEIF 2
XEOH＂Y／H？＂FS？ 12
$6 T 0$ 日 1 HROM ${ }^{\circ} \mathrm{H}^{\circ}$
YROH＂ ZHACL ＂
XROH $\%$ FOR ${ }^{\circ}$ GTO 81
354LBL 66
25 ST0 06 ＂EOI
YROH＂IH＂ 2750 日 5
＂FT3／SCF＂ASTO 01 ASHF
ASTO W2＂月3／SE月

ASTO Y CLA ASTO Z
＂BGI＂MROH＂IHI＂
XROH＂RSI＂＂PSI＂
HSTO 01 CLH ASTO 02
ASTO 2 ＂ FPH ASTO Y
＂PEF＂YROH＂IKI＂ 31
$5 T 060$ 1／PSI $=$ ASTO 61
CLA ASTO 02 ASTO Z
＂1／APA＂ASTO Y＂CHI＂
YROH＂IHU＂$=1 / \mathrm{NPA}$＂
ASTO Y CLA ASTO 2
＂CFE＂YROH＂INI＂

794LEL

YEO 时 RND RCL 14 RHI

F5？ $03 \mathrm{GTO} 92 \quad 38{ }^{\text {a }} \mathrm{G}^{\mathrm{n}}$
HEO 0719 ST0 60
＂乡GGI＂KROH＝1H＂CF M4

164＊LBL 62
5702 A明 FC？ 61
GTO 15 RCL 35 XC 17
5 TO 35 RCL 14
YROH＂C6Ob＂STI 42
F5？ 93 XROM＂CBO＂
FC？ 83 RCL 17 FC？ 63
YROH＂CBOL＂ST0 26
Yee 69 YROH＂CBG＂
57028 XROH＝COM＂
51032 RCL 35 K） 17
STO 35 YROH＂GCFR
51033
1324LEL 15

RCL 75 Y） $\mathrm{XK}=\mathrm{Y}$ ？
GTO 92 TOHE 3 ＂P $>\mathrm{FI}^{*}$
PROMPT GTO 15

1450LBL 02

Program Listing（cont．）

RNI RCL 14 RHI CF 63
$X=Y$ S SF 63 FS7C： 90 SF08 36 ＂FF＂YEQ 08 XEQ 69 FC7C 64 CF 08 35 －6F＂XEE B7［F 68 37 －HF XE 08 XEQ 09
FS？ 01 GTO 0426
$570000^{\circ} 80^{\circ}$ FC？ 63
＂＋b＊XROH＝IN＂FS？ 03 $6 T 063 \quad 28 \quad 57060$ －FT3／SCF ASTO 61 ASHF ASTO 62 － H 3 ／SCH＂
ASTO Y CLA ASTO 2
＂BG＂XROH＂INU＂
＂SCF／BEL＂ASTO OI HSHF
ASTO 02 ＂SCH／H3＂
HSTO Y CLA ASTO 2
－RSb＂XROM＂INU＂

2964 LBL 63
30 ST0 80 ＂84＂
XROH＂${ }^{\circ}{ }^{\circ}$
2854LEL 64
＊H He＊PROHPT
GTO 15

2094LBL A
39 ＂N＂YeE 68 XE 69楽 11 K K M RCL 40 ＊ －ST0 41 XER O1 ：He 01085

223＊LBL E
49 THe XEO 08 KED 09
XER 11 RCL 41 －K
／STO 49 XEO $91 \mathrm{KH}^{\mathrm{H}}$

2364 LBL 05
XEQ 08 YROM＂OUTE＂

XEE 10 ADY GTO 64

2424뇨 01
FS？ 03 RTN STO 34160
$\mathrm{RCL} 20-\mathrm{RCL} 21-$
RCL 26 ＊RCL 27 ＊ 1
RCL 37 RCL 46 －＊
＂ 750 ＂YROM＂DIIT
RCL 34 RTH

2654LBL 66
STO 60 ASTO T＂PSI＂
ASTO G1 CLA ASTU 02
ARCL T RCL 09 RCL 08
RCL 2 XROH＂INK＂RDH
STO 68 XYYY STO 09 Et
RTH

2834 LBL 97
STO 06 ASTO T＂HCF＂
ASTO 01 CLA ASTO GZ
ARCL T RCL 07 RCL 06
RCL Z XROM＂INE R RON
STO 66 XIY STO日7 Rt RTH
$361+L B L 08$
STO 06 ASTO T＂BEL＂
ASTO 61 CLA ASTO G2
ARCL T RCL 84 RCL 63
RCL 7 RTH

313 LBL 69
XROH＂IMK＂

315＊LBL 16
RIH STO 63 XCM
STO 64 Rt RTH
$322+L B L 11$
$65 T 0345 T 043$
FS？ 63 GTO 13 FCL 29
FC？ 01 GTO 12 XED 90
XROM＂CEG＂STO 29

334 LBL 12
RCL 28 YYY－
－FT3－EBL $=$ CON KCL 39
＊ 1 E3＊ST0 34
RCL 17 FS？ 81
XROH ＂CRSb＂FC？ 01
RCL 30 STO 30 RCL 13
KOY－RCL 29
＊FT3－BEL＂COH＊
STO 43 RCL 36 I E3＊
RCL 37 RCL 30 ＊－
RCL 29 CON＊ST＋ 34
RCL 27 FC？ 01 GT0 14
RCL 17 XROM＂CEOD＂
GTO 14

376＋LBL 13
RCL 27 FC？ $01 \quad$ GT0 14
RCL 42 YROH＂CEO＂

3824LEL 14
51027 ST＋ 43 RCL 37
＊ST＋ 34 FS？ 01
XROH＂CEH：FC？ 61
RCL 31 STO 31 RCL 38
＊$\$ T+34 \mathrm{RCL} 32$
RCL 21 10日 $\quad 9 T 02$ \％
$\mathrm{RCL} 33+\mathrm{RCL} 35$
RCL 17 －＊ 1 Rt－
－1－RCL 26 ＊
$\mathrm{RCL} 43+\mathrm{RCL} 34$ RTH

4264LBL 09
RCL 16 ＂F－R＂COM
RCL 10 ；RCL 17
RCL 11 ；END

11. KG/KO - Gas-Oil RelativePermeability Ratio

A key factor in predicting the behavior of solution-gas-drive reservoirs is predicting the behavior of the gas-oil ratio. Above the bubble point, the producing gas-oil ratio (RP) is equal to the dissolved gasoil ratio ($\mathrm{RS}=\mathrm{RSI}$). As the pressure drops below the bubble point and after enough free gas has formed, an additional component will be added due to free gas flow in the reservoir. Based on the radial flow equation, it is not difficult to derive the dynamic equation:

$$
\mathrm{RP}=\mathrm{RSb}+\frac{\mathrm{KG}}{\mathrm{KO}} \frac{\mathrm{UOb}}{\mathrm{UG}} \frac{\mathrm{BOb}}{\mathrm{BG}^{\prime}}
$$

The gas and oil viscosities and formation-volume factors can be calculated easily. The ratio of the effective permeabilities (KG/KO) is equal to the ratio of the relative permeabilities (KRG/KRO). Since the water saturation of a solution-gas-drive reservoir is (neglecting expansion) constant, the only variable that determines $\mathrm{KG} / \mathrm{KO}$ at a given pressure is the oil saturation.
$\mathrm{KG} / \mathrm{KO}$ does two different types of calculations:

1. Given the initial oil in place, the cumulative oil and gas production, and the producing gasoil ratio, it calculates the $\mathrm{KG} / \mathrm{KO}$ term.
2. Using one of two correlations and two userinput coefficients, it calculates $\mathrm{KG} / \mathrm{KO}$ for an array of oil saturations. This is useful to select coefficients to use for predictive purposes in OILPRED.
The two correlations used by the program originally were developed to represent trends observed in laboratory data but do not, of course, duplicate all possible KG/KO curves. Although some $\mathrm{KG} / \mathrm{KO}$ curves may not be characterized by one of these correlations, most curves can be represented.
The default correlation can calculate values of KRG and KRO and, consequently, KRG/KRO (which equals $\mathrm{KG} / \mathrm{KO}$). Typical values for the coefficients a and b are given in Table 11-1. The values of $\mathrm{a}=\mathrm{b}=$ 2 represent good-quality consolidated sandstones with very favorable $\mathrm{KG} / \mathrm{KO}$ characteristics.

The optional correlation was developed to represent typical KG/KO curves primarily as a function of connate water saturation, with typical values of $\% \mathrm{SGc}=5$ and $\mathrm{c}=25$. These coefficients represent the critical gas saturation and minimum oil saturation, respectively. Unlike the default correlation, the optional correlation provides for the formation of a critical gas saturation, since $\mathrm{KG} / \mathrm{KO}$ will be zero
until the gas saturation exceeds \%SGc. However, the optional correlation cannot provide estimates of KRG or KRO. An estimate of KRO is required in the QOVST program.
While using the KG/KO program to select the different coefficients, the user frequently will alter the coefficients to fit field- or laboratory-measured $\mathrm{KG} / \mathrm{KO}$ values. Since field-generated points are usually fairly sparse, it is recommended that the user try to select coefficients that honor the field data points and reflect the shape of the laboratory (core) KG/KO points.

Equations

P and $R P$ known:

$$
\begin{aligned}
& K G K O=(R P-R S b) \frac{U G}{U O b} \frac{B G^{\prime}}{B O b} \\
& B G^{\prime}=B G \text { in } B B L / S C F
\end{aligned}
$$

\%SO known:
Default KG/KO correlation:

$$
\begin{aligned}
& \mathrm{KGKO}_{\mathrm{i}}=\frac{(1-\mathrm{S} *)^{\mathrm{a}}\left(1-\mathrm{S} *^{\mathrm{b}}\right)}{\mathrm{S} *^{\mathrm{a}+\mathrm{b}}} \\
& \mathrm{~S} *=\frac{\% \mathrm{SO}_{\mathrm{i}}}{100-\% \mathrm{SWC}}
\end{aligned}
$$

Optional KG/KO correlation:

$$
\begin{aligned}
& \mathrm{KGKO}_{\mathrm{i}}=\mathrm{A}(0.04335+0.4556 \mathrm{~A}) \\
& \mathrm{A}=\frac{100-\% \mathrm{SGc}-\% \mathrm{SWC}-\% \mathrm{SO}_{\mathrm{i}}}{\% \mathrm{SO}_{\mathrm{i}}-\mathrm{c}} \\
& \% \mathrm{SL}_{\mathrm{i}}=\% \mathrm{SO}_{\mathrm{i}}+\% \mathrm{SWC}
\end{aligned}
$$

Nomenclature

Symbol	Variable Name	Input or Output	English Units	SI Units
a	First coefficient of default	I	-	-
b	KG/KO correlation			
Second coefficient of default KG/KO correlation	I	-	-	

Symbol	Variable Name	Input or Output	English Units	$\begin{gathered} \text { SI } \\ \text { Units } \end{gathered}$
c	Second coefficient of optional KG/KO correlation, minimum oil saturation	I	-	-
KGKO*	Gas-oil relative permeability ratio	0	-	-
$\mathrm{KGKO}_{\mathrm{i}}{ }^{*}$	Gas-oil relative permeability ratio at \%SO	O	${ }^{-}$	${ }^{-}$
RP \dagger	Producing gas-oil ratio	I,O	$\begin{aligned} & \text { SCF/ } \\ & \text { BBL } \end{aligned}$	$\begin{aligned} & \text { SCM/ } / 2 \\ & \text { M3 } \end{aligned}$
\%SGc	First coefficient of optional KG/KO correlation, volume percent critical gas saturation	I 	-	-
\% SL_{i}	Volume percent liquid saturation at $\% \mathrm{SO}_{\mathrm{i}}$	O	-	-
$\% \mathrm{SO}_{i}$	Volume percent oil saturation	I, O	-	-
\%SWC	Volume percent connate water saturation	I	-	-

Note: For $\mathrm{KGKO}_{\mathrm{i}}, \%_{S L_{i}}$, and $\% \mathrm{SO}_{\mathrm{i}}, \mathrm{i}=1,2,3, \ldots, \mathrm{n}$, where n is the number of $\%$ SO values input by the user.
*The program uses the symbol KGKO. The documentation often uses the symbol KG/KO because it is more readily recognized.
\dagger The units for these variables are saved by the program.

Yes/No Questions

CORR?	Yes: Use Pac correlations to estimate PVT properties. No: Input PVT properties.			
EDIT?	Yes: Allow editing of \%SO values. No: No editing necessary.			
SKIP?	Yes: Skip input of PVT data. No: Allow input of PVT data.			
Table 11-1 (after Slider)				
Unconsolidated sandstones (well sorted)				
Unconsolidated sandstones (poorly sorted)				
Cemented sandstones, oolitic limestones, and vugular limestones			2	2

Example 1

In the first example for OILMBE, we calculated the estimated oil in place from performance of an oil reservoir. Three of the seven data points were below the bubble point. In this example, we will calculate the $\mathrm{KG} / \mathrm{KO}$ values for those data points. Besides the initial PVT data, the required information is as follows:

$P(P S I)$	$R P(S C F / B B L)$
2,108	458
1,996	434
1,905	539

Note that the calculated KG/KO value at 2,108 PSI is negative because the observed value of RP (458) is less than the solution value (460.7). This is, of course, either an error in the measured producing GOR or a difference between the correlations and the actual PVT performance.

Keystrokes $(\mathrm{SIZE}>=041)$	Display	Comments
[/I] [FIX] 6		
[XEQ] [ALPHA] KG/KO [ALPHA]	$P, R P \quad \% S O$	P and RP
[A]	CORR? Y / N :	
[A]	CORR? Y/N.	character is Y or N
Y [R/S]	SKIP? Y/N:	Last character is Y or N
N [R/S]	$T c=$?	
377.8726 [R/S]	$P C=$?	
665.8449 [R/S]	STD $T=$?	
60 [R/S]	STD $P=$?	
14.65 [R/S]	SEP $T=$?	
110 [R/S]	SEP $P=$?	
125 [R/S]	OIL $G=$?	
37.4 [R/S]	GAS G=?	
. 678 [R/S]	$T=$?	GAS GS printed
155 [R/S]	RSI $=$?	
480 [R/S]	$P=$?	PBP printed
2108 [R/S]	$R P=$?	
458 [R/S]	$P=$?	RSb and KGKO printed
1996 [R/S]	$R P=$?	
434 [R/S]	$P=$?	RSb and KGKO printed
1905 [R/S]	$R P=$?	
539 [R/S]	$P=$?	RSb and KGKO printed

$\mathrm{KG} / \mathrm{KO}$

```
CORR: MES
SkIP: NO
Tc=377.672506 ह
PC=665.844906 PSI
STR T=60.80и806 F
STI P=14,650800 PSI
SEP T=110.600000 F
SEP P=125.06064% PSI
OIL C=37.406404 API
64S [=0.678046
GAS GS=6.684159
T=155,000001 F
RSI=486.000006 SCF/BEL
PEP=2,182.291272 PSI
F=2,166.060461 FSI
RP=456.040006 SCF/EEL
RSb=460.666699 SCF/BEL
KGK0=-9.00018
P=1,996,006060 PSI
RF=434.000051 SCF/6EL
RSb=431.759996 SCF/BEL
KCK0=5.010416
\(\mathrm{P}=1,965,064868 \mathrm{PSI}\)
\(\mathrm{RP}=539.000060 \mathrm{SCF} / \mathrm{EBL}\)
RSb=490.495414 SCF/EBL \(\mathrm{KKK}=\mathrm{F} .0 \mathrm{0}, 1739\)
```


Example 2

Figure $11-1$ is a graph of core-analysis results for $\mathrm{KG} /$ KO with the field performance points plotted. The object of this example is to calculate coefficients for a correlation equation that will be similar in shape to the core data but match the field performance as well.
The first attempt was to use the default correlation with $\mathrm{a}=2$ and $\mathrm{b}=2$. This shape is so dissimilar from the core data that the optional correlation with $\% \mathrm{SGc}=5$ and $\mathrm{c}=25$ was tried. Based on the field performance, it is clear that the critical gas saturation is less than five percent but probably greater than 2 percent. After some experimentation with different values for the coefficients, $\%$ SGc $=3.825$ and $c=10$ appear to match both the lab shape and the field performance points. These different KG/KO curves are shown in Figure 11-2.

Note that as many \%SO points as desired can be input (see the "Memory Requirements" section for details). The value of $\%$ SL $(=\% \mathrm{SO}+\% \mathrm{SWC})$ is printed for convenience since it is used often to plot $\mathrm{KG} / \mathrm{KO}$ data. The program contains a feature enabling the user to edit the input \%SO data as well. This is shown in the user instructions.

Keystrokes	Display	Comments
[XEQ] [ALPHA] KG/KO [ALPHA]	$P, R P \quad$ \%SO	
[E]	$\% S W C=$?	
32.5 [R/S]	\%SO1 = ?	
65.5 [R/S]	\%SO2=?	
63.65 [R/S]	\%SO3=?	
61.89 [R/S]	\%SO4 =	
60 [R/S]	$\% S O 5=$?	
55 [R/S]	\%SO6=?	
50 [R/S]	\%SO7=?	
45 [R/S]	\%SO8=?	
[R/S]	$a=$?	
2 [R/S]	$b=$?	
2 [R/S]	EDIT? Y/N:N	$\begin{aligned} & \% \text { SO, \%SL, } \\ & \text { and } \\ & \text { KG/KO } \\ & \text { values } \\ & \text { printed } \end{aligned}$

If you made any errors while inputing the \%SO values, the edit option will allow you to go back and change the incorrect values.

[ALPHA] [//] [SF] 00 [R/S]	$\% S G c=?$	Select optional KG/KO correlation
5 [R/S]	$c=$?	
25 [R/S]	EDIT? Y/N:N	\%SO, \%SL, and KG/KO values printed
[R/S]	$\% S G C=?$	
3.825 [R/S]	$c=$?	
10 [R/S]	EDIT? Y/N:N	$\begin{aligned} & \text { \%SO, \%SL, } \\ & \text { and } \\ & \text { KG/KO } \\ & \text { values } \\ & \text { printed } \end{aligned}$
[ALPHA] [//] [FIX] 4		Back to FIX 4

Figure 11-1

Figure 11-2

KGMa	KCNOG $=6.106756$
\% $/ 51 \mathrm{C}=32.50060$	4c07 45.609890
$4501=65.500060$	
7602-63.650000	K6K07 $=6.312509$
7603=61.898009	
4005=55.06064	$7566=5.608606$
\% $506=56.8040046$	$c=25.90969$
$7507=45,600660$	
	7601-65.506060
$a=2.010060$	\%SLI=98. 860066
$b=2.69606$	K6\%01=0.00pun
\% $4011=65.560460$	4,902=63.656000
\%SLI $=98.400606$	\% $312=96.150606$
KCK01=6.600058	KGK02=0.000600
7,502=63.650000	7403=61.896600
\% $3 \mathrm{LL}=96.150890$	\% $5 \mathrm{~L} 3=94.390609$
KGK02 $=0.060456$	K6K03=6.008841
$7503=61.890500$	7 $704=60.800060$
75L3=94,396066	76L4=92.500800
K6K03=0. 001557	KGK04=0.805421
4904=68.090106	4505=55.890066
$75 L 4=92.500600$	8SL5=87.589086
KCL04=0.004156	KGK05=0.639313
\% $805=55.660060$	8606=56. 686006
\% $425=87.580666$	75L6=82.509980
KGK05=6.026147	KCK06-9.135575
$7506=50.680690$	
$75 L 6=82.500606$	78L7 77.508888

NGK07 $=6.386756$
$46 \mathrm{Gc}=3.825660$
$c=10.860646$
$7501=65.568906$
76Li $=98.600006$
KGKOL=6. 664604

4502=63.650086
YKL2 $=96.150090$
RGK02=6. 080020
$7503=61.890606$
75L3=94. 390000
$K 6 K 03=0.882930$
4804=69. 6800000
75L4=92.500000
KGK04=0.085647
$7505=55.600066$
$75 L 5=87.508006$
KGK05=6.625289
\% $7506=50.0180198$
$75 L 6=82.586400$
KGK06=9. 068079
4907=45. 9010019
$78 L 7=77.5060189$
KGK07=0.152839

09	Scratch
21	\%SWC
26	RP (SCF/BBL)
27	Pointer, BOb
28	a, \%SGc
29	b, c, BG (FT3/SCF)
30	\%SO1, RSb (SCF/BBL)
31	\%SO2
32	\%SO3
33	\%SO4
34	\%SO5
35	\%SO6
36	\%SO7
37	\%SO8
38	\%SO9
39	\%SO10
Registers $18-20$ unused	

Flags

00 Set: Use optional KG/KO correlation.
Clear: Use default KG/KO correlation.
01 Set: Use Pac correlations to estimate PVT properties.
Clear: Input PVT properties.
02 Set: Skip input of PVT data.
Clear: Allow input of PVT data.
03 Set: Allow editing of $\% \mathrm{SO}$ values.
Clear: No editing necessary.

Program Listing

61+LBL "KG/KO"
"KG/K0" 41
YROH "TITLE" FETC 25
PROMPT CF 08 CF 03
SF 27 "SCH/M3" ASTO 63
CLA ASTO 64
14*LBL 09
"F,RP $\%$ CO" PROHPT
67000

184LBL A
19+LBL B
"CORE" 1 MROH "Y/W?
FC? 01 GT0 15 "SKIF"
2 XROH "Y/N?" FC? 62
XROH "H7" XROH "CUON"
57066 ADY

334LBL 11
XROA "F" RND RCL 14
RND YDT? GTO 10
TONE 3 - $\mathrm{P}>=\mathrm{PBP}$ "
PROHPT GTO 61

444 LBL 10
Rt STO 97 Rt STO 88
YEE 92 RCL 17
KROH "CRSb" XROH ${ }^{2} 8_{8}$
RCL 26 KYY - STO 09
RCL 96 XROH "CUOb"
ST/ 99 RCL 07 RCL 88
XROH CUG: ST* 99
RCL 17 YROA "CBOb"
ST/ 69 RCL 67 RCL 68
XROH "CBG" RCL 69
XED 11 GTO 01
$73+$ LBL 15
26 ST0 06 " 800^{*}
XROH "IH" 28 STO 00
"FT3/SCF" ASTO 61 ASHF
AST0 02 - $\mathrm{H} 3 / \mathrm{SCH}$
ASTO Y CLA ASTO Z
"BG" XROM =INIJ 5
$5 T 000$ "CF= ASTO 01
CLA ASTO 02 ASTO Z
"PA*S" ASTO Y "JOb ${ }^{\circ}$
XROM -INU" -PA*S
ASTO Y CLA ASTO 2
"UG" XROM "INU" 29
\$T0 69 "SCF/BEL"
ASTO O1 ASHF ASTO 02
"SCH/M3" ASTO Y CLA
AST0 2 "RSb"
XROH "INJ" XEG 82

Program Listing（cont．）

RCL 30 －RCL 67 ＊
RCL 86 ；RCL 77 ；
RCL 29 YEA 116 GTO 15
131 LLBL 11
＊FT3－BEL $=$ COH＊
＂KCKO＂KROH＂OUT＂ADY
RTH
139＊LEL 12
＂SCF／BEL＂ASTO A1 ASHF
ASTO B2 RCL 64 RCL 63
25 STD 40 ＂ EP ＂
XROH＂ITK＂RDH STO 13

RTH
1574LBL I
$158+$ LBL E
20 ST0 60 ＂$\%$ SHC＂
XROH＂IN＝ 305027
$165+\operatorname{LBL} 16$
2957060
1684 LBL 4
＂ 750 ＂YEO 09 XROH＂IH＂
FC？ 03 GTO 05 ISG 27
$67094 \quad 67017$

1774 1 BL 45
ISG 27 CLD FS7 22
GT0 64 RCL 661 －
$1 E 3$ ； $30+57009$
$198+\angle B L 17$
ADH 27 ST0 60＂a＂
FS？ 0 ＂ 4566°
XROH＂IN＂＂b＂FST 90
＂c＂YROH＂IN＂RCL 99
ST0 27 ADH

2054LBL 18
RCL IND $277^{*} \% 0^{\circ}$
XEQ 09 YROH＂OUT＂
RCL 21 ＋＂ 8 CL ＂XEE 69
XROH＂OUT＂FG？ 8 Q
GT0 67 RCL $28+160$
－Yyロ？ 9 RCL 29
RCL INI 27 － $\mathrm{Y}=6$ ？
GT0 06 （ X 0 ？GT0 06
.4556 RCL Y $\#$ ． 84335

+ ＊GT0 88

2384LEL 96
TOHE $\left.3{ }^{\circ} \mathrm{C}\right\rangle=80^{\circ}$
PROMPT GTO 06

2434LBL 97
RCL IHI 27 106 RCL 21
$-\quad 1$ RCL $\%$ RCL 29
Y菉－ 1 RCL Z－
RCL 28 YtY $\%$ It
$\mathrm{RCL} 28 \mathrm{RCL} 29+\mathrm{HaH}$
$266+18 L 68$ ＂GGO＂पE0 49
XROH＂OUT＂ADY 15G 27
GTO 18 ＂EIIT＂ 3
YROH＂Y／W？FC？ 03
GTO 17 ADY RCL 99
57027 GTO 16

282＊LBL \quad 日
STO 05 CLST FS？ 41 1
$+\mathrm{FS} 462+5$（
FG739 $1+F 9382$

+ FS？ 374 ＋FS？ 36
8 ＋FS？ 29 CHS
RCL 2729 －FIX 0
CF 29 ARCL $\begin{gathered}\mathrm{X} \\ \mathrm{K}) \mathrm{Y}\end{gathered}$
स 4 ？ 9 SF 29 ENTER 4 FRC

SCI IHD Y $1 \quad \mathrm{X}=\mathrm{Y}$ ？
ENG IND Z RCL 95 END

12. OILPRED - Predicting Solution-Gas-Drive Performance

It often is useful to predict reservoir performance from the material-balance equation. There is some question whether material-balance forecasts are substantially better than conventional decline-curve analysis. This is due to the problems in determining gas-oil relative-permeability performance. Core measurements of relative permeability usually are inadequate to predict performance; it is generally necessary to calculate $\mathrm{KG} / \mathrm{KO}$ data from performance. By the time sufficient data has been acquired to do so, it may well be the case that decline-curve analysis may yield just as good forecasts. However, the material-balance method may be more useful, especially with the GOR and pressure-depletion forecasts it provides.
The method used in these programs for predicting the performance is basically similar to that described by Slider. The program $\mathrm{KG} / \mathrm{KO}$ is used to determine relative-permeability data from performance as well as to determine coefficients for one of two $\mathrm{KG} / \mathrm{KO}$ correlations available.
OILPRED uses the material-balance equation to calculate directly the oil and gas production for pressures above the bubble point. Below the bubble point, the Tarner method is used. This method involves an iterative procedure to calculate $R P$ at each pressure step. Since the Tarner method (unlike some others) tends to be self-correcting, pressure steps of less than 200 PSI generally add little significance to the forecast. Unlike the Slider example, the effect of rock and water compressibilities are included below the bubble point.

Equations

Above bubble point:

$$
\begin{aligned}
& \mathrm{NP}=\frac{\mathrm{N}[\mathrm{BO}-\mathrm{BOI}+(\mathrm{CFR}+\mathrm{CWI} \mathrm{SWC})(\mathrm{PI}-\mathrm{P} \mid \mathrm{BOI} /(1-\mathrm{SWC})]}{\mathrm{BO}} \\
& \mathrm{GP}=\mathrm{RSINP} \\
& \% \mathrm{SO}=\frac{\mathrm{BO}}{\mathrm{BOI}} \frac{\mathrm{~N}-\mathrm{NP}}{\mathrm{~N}}(100-\% \mathrm{SWC})
\end{aligned}
$$

Below bubble point: NP is solved iteratively at the $\mathrm{i}^{\text {th }}$ pressure step as follows:

$$
\begin{aligned}
\mathrm{NP}_{\mathrm{i}}= & \{\mathrm{N}[\mathrm{BOb}-\mathrm{BOI}+(\mathrm{CFR}+\mathrm{CWI} \mathrm{SWC}) \\
& \left.(\mathrm{PI}-\mathrm{P}) \mathrm{BOI} /(1-\mathrm{SWC})+(\mathrm{RSI}-\mathrm{RSb}) \mathrm{BG}^{\prime}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& +\mathrm{G}\left(\mathrm{BG}^{\prime}-\mathrm{BGI}^{\prime}\right)-\mathrm{BG}^{\prime}\left[\mathrm{GP}_{\mathrm{i}-1}\right. \\
& \left.\left.-\left(\mathrm{RP}_{\mathrm{i}}+\mathrm{RP}_{\mathrm{i}-1}\right) \mathrm{NP}_{\mathrm{i}-1} / 2\right]\right\} \div\left[\mathrm{BOb}-\mathrm{BG}^{\prime} \mathrm{RSb}\right. \\
& \left.+\left(\mathrm{RP}_{\mathrm{i}}+\mathrm{RP}_{\mathrm{i}-1}\right) \mathrm{BG}^{\prime} / 2\right] \\
\%_{\mathrm{SO}_{\mathrm{i}}} & =\frac{\mathrm{BOb}}{\mathrm{BOI}} \frac{\mathrm{~N}-\mathrm{NP}_{\mathrm{i}}}{\mathrm{~N}}(100-\% \mathrm{SWC}-\% \mathrm{SGI})
\end{aligned}
$$

$(\mathrm{KG} / \mathrm{KO})_{\mathrm{i}}$ is calculated from SO_{i} using the $\mathrm{KG} / \mathrm{KO}$ correlations described in the $\mathrm{KG} / \mathrm{KO}$ program.

$$
R P_{i}=R S b+\left|\frac{\mathrm{KG}}{\mathrm{KO}}\right|_{\mathrm{i}} \frac{\mathrm{UOb}}{\mathrm{UG}} \frac{\mathrm{BOb}}{\mathrm{BG}^{\prime}}
$$

This is repeated until the $R P_{i}$ is within 0.01% of the RP_{i} used in the NP_{i} equation.

$$
\begin{aligned}
& \mathrm{NP}_{\mathrm{i}-1} \text { at next pressure step }=\mathrm{NP}_{\mathrm{i}} \\
& G P_{i-1} \text { at next pressure step }= \\
& G P_{i-1}+\left(N P_{i}-N P_{i-1}\right)\left(R P_{i}+R P_{i-1}\right) / 2 \\
& R P_{i} \text { at next pressure step }=R P_{i}+\left(R P_{i}-R P_{i-1}\right) \\
& R P_{i-1} \text { at next pressure step }=R P_{i} \\
& \text { Initial guesses are } N P_{i-1}=G P_{i-1}=0 \text { and } R P=R P_{i-1} \\
& =\text { RSI (if BEG P } \geq \text { PBP) } \\
& \text { or RPI (if BEGP }<\mathrm{PBP} \text {). } \\
& \text { If } \mathrm{PI} \geq \mathrm{PBP} \text { and } \mathrm{BEG} \mathrm{P}<\mathrm{PBP} \text {, } \\
& \% \text { SGI }=100-\% S W C \\
& -\left(\frac{\mathrm{BOb}}{\mathrm{BOI}} \frac{\mathrm{~N}-\mathrm{NPI}}{\mathrm{~N}}\right) \times(100-\% \mathrm{SWC}) \\
& G=N R S I-G P I-(N-N P) R S b \\
& N R=N-N P \\
& \% \mathrm{OILRF}=\frac{\mathrm{NP}}{\mathrm{NR}}(100) \\
& G R=G+N R S-G P \\
& \% \text { GASRF }=\frac{G P}{G R}(100) \\
& B G^{\prime}=B G, B B L / S C F \\
& \mathrm{BGI}^{\prime}=\mathrm{BGI}, \mathrm{BBL} / \mathrm{SCF} \\
& S W C=\frac{\% S W C}{100}
\end{aligned}
$$

Nomenclature

Symbol	Variable Name	Input or Ouiput	English Units	$\begin{gathered} \text { SI } \\ \text { Units } \end{gathered}$
a	First coefficient of default KG/KO correlation	I	-	-
BEG P^{*}	Beginning pressure of forecast	I	PSI	KPA
b	Second coefficient of default KG/KO correlation	I	-	-
c	Second coefficient of optional KG/KO correlation, minimum oil saturation	I	-	-
DGP*	Delta GP, change in cumulative gas production	O	MCF	SCM
DNP ${ }^{*}$	Delta NP, change in cumulative oil production	O	BBL	M3
END P*	Ending pressure of forecast	I	PSI	KPA
G^{*}	Initial free gas in place	I	MCF	SCM
GP*	Cumulative gas production	O	MCF	SCM
GPBP*	Cumulative gas production up to PBP	O	MCF	SCM
GPI*	Initial cumulative gas production	I,O	MCF	SCM
GR *	Remaining total gas in place at end of forecast	O	MCF	SCM
N^{*}	Initial oil in place	I	BBL	M3
$N P^{*}$	Cumulative oil production	O	BBL	M3
NPBP*	Cumulative oil production up to PBP	0	BBL	M3
NPI*	Initial cumulative oil production	I, O	BBL	M3
NR ${ }^{*}$	Remaining oil in place at the end of forecast	O	BBL	M3
P^{*}	Pressure	O	PSI	KPA
$\mathrm{PI}^{*}{ }^{\text {* }}$	Initial pressure	I	PSI	KPA
P DEC*	Pressure decrement of forecast	I	PSI	KPA
RP ${ }^{*}$	Producing gas-oil ratio	0	$\begin{aligned} & \text { SCF/ } \\ & \text { BBL } \end{aligned}$	$\begin{gathered} \text { SCM/ } \\ \text { M3 } \end{gathered}$
RPI*	Initial producing gas-oil ratio	I	$\begin{aligned} & \text { SCF/ } \\ & \text { BBL } \end{aligned}$	$\begin{aligned} & \text { SCM/ } \\ & \text { M3 } \end{aligned}$
\%GASRF	Volume percent gas recovery factor	O	-	-

Symbol	Variable Name	Input or Output	English Units	$\underset{\text { Units }}{\text { SI }}$
\%OILRF	Volume percent oil recovery factor	O	-	-
\%SGc	First coefficient of optional KG/KO correlation, volume percent critical gas saturation	I	-	-
\%SGI	Volume percent initial gas saturation	I, O	-	-
\%SWC	Volume percent connate water saturation	I	-	-
*The units for these variables are saved by the program.				
Yes/No Questions				
SKIP?	Yes: Skip input of PVT data. No: Allow input of PVT data.			

Example 1

This example will predict the performance of the oil field used in Example 1 of OILMBE and Examples 1 and 2 of $\mathrm{KG} / \mathrm{KO}$. Our producing history for OILMBE ended at a pressure of 1,905 PSI with cumulative production of 189,574 BBL and 88,984 MCF. The original value of N was estimated to be $3,250,000 \mathrm{BBL}$ with an initial dissolved gas-oil ratio of 480 SCF/ BBL. Using the initial pressure and oil in place, a starting pressure of 1,905 PSI, and the cumulative production, forecast the reservoir production.

Figures 12-1 and 12-2 present the historical and calculated values. Notice that \%SO at 1,905 PSI is $100-\%$ SWC $-\%$ SGI $=62.2471$, which is almost identical to the \%SO value at 1,905 PSI that was calculated by OILMBE. The difference is that N in this example is the approximate value of $3.25\left(10^{6}\right)$ BBL, while N in the OILMBE example is $3.227\left(10^{6}\right)$ BBL, calculated at 1,905 PSI.

Keystrokes (SIZE $>=063)$	Display	Comments
[XEQ] [ALPHA] OILPRED $[A L P H A]$	SKIP? Y/N:	Last character is Y or N

Keystrokes $(S I Z E>=063)$	Display	Comments
N [R/S]	$T C=?$	
[//][SF] 00		Select optional KG/KO correlation
377.8726 [R/S]	$P \mathrm{C}=$?	
665.8449 [R/S]	STD $T=$?	
60 [R/S]	$S T D P=$?	
14.65 [R/S]	SEP $T=$?	
110 [R/S]	SEP P $=$?	
125 [R/S]	OIL $G=$?	
37.4 [R/S]	GAS $G=$?	
. 678 [R/S]	$T=$?	GAS GS printed
155 [R/S]	$R S I=$?	
480 [R/S]	$\% N A C L=$?	PBP printed
1.9 [R/S]	$\% P O R=$?	
12.5 [R/S]	$\% S W C=?$	
32.5 [R/S]	$\% S G c=$?	Notice prompts for optional KG/KO correlation
3.825 [R/S]	$c=$?	
10 [R/S]	$P /=$?	
2650 [R/S]	$N=$?	
3.25 [EEX] 6 [R/S]	$B E G P=$?	
1905 [R/S]	$E N D P=$?	
200 [R/S]	$P D E C=$?	
200 [R/S]	$N P 1=$?	
Since PI is above the bubble point and BEG P is below the bubble point, you must provide historical production data.		
189574 [R/S]	$G P 1=$?	
88984 [R/S]	$R P I=$?	
539 [R/S]	$B E G P=$?	\%SGI printed, followed by the production forecast

OIL MEE FRET $\quad \mathrm{PF}=1.683 .4544 \mathrm{SCF} / \mathrm{BH}$
SEIP: NO
$T \mathrm{c}=377.8726 \mathrm{R}$
$\mathrm{Pc}=665.6449 \mathrm{PGI}$
STI T=65. 10 的 F
STI $\mathrm{F}=14.656 \mathrm{PSI}$
GEF $T=116.01060 \mathrm{~F}$
SEP $\mathrm{F}=125 . \mathrm{GEDE} \mathrm{PSI}$
OIL G=37.4960 MPI
$6 \mathrm{CAS} \mathrm{G}=0.678 \mathrm{E}$
GRS $69=0.6842$
$\mathrm{T}=155,0460 \mathrm{~F}$
$\mathrm{RCI}=486.0$ 月06 $\mathrm{SCF} / \mathrm{BEL}$
$\mathrm{FPF}=2,182.2913 \mathrm{PSI}$
$3 \mathrm{HACL}=1.946$
7 PDE $=12.5660$
751C=32. 5004
$79 \mathrm{Gc}=3.8250$
$\mathrm{c}=1 \mathrm{1}, 000 \mathrm{0}$
$\mathrm{PI}=2,650,9000 \mathrm{PSI}$
$\mathrm{W}=3,256.904 .090$ B6L
BEG $\mathrm{F}=1.995 .9009 \mathrm{PSI}$
END $F=200.0000$ PSI
F IEC=260. 9060 PSI
HPI $=189,574.8606$ BEL
GPI $=80,984.0060 \mathrm{HCF}$
$\mathrm{RPI}=539.0900 \mathrm{CLF} / \mathrm{BEL}$
76GI=5.2529

$\mathrm{HP}=314,069,4626 \mathrm{BBL}$
$\mathrm{DHP}=124,435.4625 \mathrm{EEL}$
$\mathrm{GP}=169.732 .8381 \mathrm{HEF}$
IGP=89.748.8381 HCF
$750=58.5758$
$\mathrm{RP}=758.8429 \mathrm{SCF} / \mathrm{EEL}$
$\mathrm{P}=1,565,6 \mathrm{~A} 6 \mathrm{PSI}$
$\mathrm{NF}=424,326.9298 \mathrm{BEL}$
DAP $=110,317.4674 \mathrm{BEL}$ $\mathrm{GF}=281,627.9210 \mathrm{HCF}$ ITGP=111.295.8828 10F \%50=55.3013
$\mathrm{RP}=1,258.9808 \mathrm{SCF} / \mathrm{EBL}$
$\mathrm{P}=1,305,0696 \mathrm{PSI}$
$\mathrm{HF}=512,930.4462 \mathrm{EBL}$
IIAF=88.60.5.5163 BEL
$\mathrm{GF}=42 \mathrm{E}, 238.8673 \mathrm{HDF}$
IGFF $=139.218 .9665$ HCF
$450=52.5529$

$\mathrm{HP}=747.810 .1483 \mathrm{BEL}$ $\mathrm{DHF}=49,575.9373 \mathrm{BEL}$ $\mathrm{GP}=1,116,316.938 \mathrm{HCF}$ $\mathrm{DCP}=183.931 .8259 \mathrm{HCF}$ $7 \mathrm{Y} 0=44.6443$ $\mathrm{PP}=3.786 .9269 \mathrm{5CF} / \mathrm{EEL}$
$\mathrm{P}=365.0066 \mathrm{PSI}$
$\mathrm{HP}=799,127.2269 \mathrm{EEL}$ $\mathrm{DAP}=51,317.0726 \mathrm{BEL}$ $\mathrm{GF}=1.299 .391 .684 \mathrm{HEF}$ IGF $=183,074.1459$ HCF $750=43.6999$
$\mathrm{KF}=3.348 .4921 \mathrm{SCF} / \mathrm{EEL}$
$\mathrm{F}=20 \mathrm{~g} .060 \mathrm{FSI}$
$\mathrm{HP}=030.165 .7521 \mathrm{BEL}$ $\mathrm{DHP}=31,638.5312 \mathrm{BEL}$ $6 P=1.393 .397 .113 \mathrm{HCF}$ DGF $=94$: 666.0293 MCF
$750=42.1240$
$\mathrm{BP}=2,769.2846 \mathrm{SCF} / \mathrm{BEL}$
$\mathrm{HR}=\overline{2}, 419,834.248 \mathrm{BEL}$
$\% 01 L R F=25.5436$
$\mathrm{GR}=155,95 \mathrm{~S} .997 \mathrm{HCF}$ 7CASRF $=89.9862$

Figure 12-1

Figure 12-3

Figure 12-2

Figure 12-4

Example 2

Another method of forecasting the production would be to start at $\mathrm{P}=2,650 \mathrm{PSI}$ and $\mathrm{N}=3.25\left(10^{6}\right) \mathrm{BBL}$, ignoring the actual historical performance. Figures $12-3$ and 12-4 present this forecast. Note that the ultimate recoveries are, as expected, quite similar. This illustrates the procedure which would normally be used to forecast reservoir production for undersaturated reservoirs prior to any production.

Keystrokes	Display	Comments
$\begin{aligned} & 2650 \text { [R/S] } \\ & {[R / S]} \end{aligned}$	$\begin{aligned} & E N D P=? \\ & P D E C=? \end{aligned}$	
[R/S]	$B E G P=$?	NPI and GPI printed, followed by the production forecast

㫙 $\mathrm{P}=2,650.6406 \mathrm{PCI}$	11HP=126.236.6741 BEL
	6F=196.616.5210 HCF
GFI=6.6600 MEF	$\begin{aligned} & \text { IGF }=67,491.9264 \text { HCF } \\ & 4 \mathrm{Si}=57.6511 \end{aligned}$
$\mathrm{P}=2,450.81068 \mathrm{PSI}$	$\mathrm{RF}=969.1324 \mathrm{SCF} / \mathrm{BCL}$
$\mathrm{HF}=12,439.8785 \mathrm{BEL}$	
DAF $=12,439.8785$ EEL	
$6 \mathrm{~F}=5.971 .1378$ HCF	HF=459,537.2851 B8L
IICP $=5.971 .1378$ HCF	$\begin{aligned} & \mathrm{MPP}=105,041.0637 \mathrm{BDL} \\ & \mathrm{GP}=315,901.9765 \mathrm{WCF} \end{aligned}$
$\mathrm{F}=2,250.6808 \mathrm{FSI}$	IGP $=119.885 .4554$ HICF
HF=26.111.2543 B6L	\% $60=54.5313$
IMP $=13.671 .3839 \mathrm{BBL}$	$\mathrm{RP}=1,413.5674$ S0F/6EL
$\mathrm{GF}=12.533 .4621$ M6F	
JGF $=6.562 .2643$ HCF	$\mathrm{P}=1,256.6148 \mathrm{PSI}$
	HF=543,475.7937 BEL
HPEP=31, 677.4621 BEL	$\mathrm{DHP}=83,936.5085 \mathrm{EBL}$
$\mathrm{GPEP}=14,917.1810 \mathrm{HCF}$	$\mathrm{GF}=461.665 .6975$ H0F
	MGF=145,763.1216 HLF
$\mathrm{F}=2,456.9906 \mathrm{PSI}$	$750=51.8917$
HF=161,934.1852 EBL	$\mathrm{PP}=2.859 .5856$ S6F/EEL
DAP $=75.822 .8568$ EEL	
GF=47.711.7627 HCF	$\mathrm{F}=1,650.8000 \mathrm{PSI}$
IGFF=35,178.3666 HCF	HP=611,959.2148 BEL
400=65. 1778	$\mathrm{DHP}=68.483 .4212 \mathrm{BEL}$
$\mathrm{FP}=445.6680$ SCF/BEL	$\mathrm{GP}=625.432 .9095$ H6F
	DGP $=163.767 .8126 \mathrm{HCF}$
$\mathrm{F}=1.850 .9069 \mathrm{PSI}$	450=49,6335
$N P=224.265 .5473 \mathrm{BLL}$	PP=2,723.1139 SCF/BRL
IIAP $=126.331 .4422 \mathrm{BBL}$	
$\mathrm{GP}=168.524 .5946 \mathrm{HCF}$	$\mathrm{P}=850.6860 \mathrm{PSI}$
[GP $=60.812 .8320 \mathrm{HCF}$	HP=670, 855.30918 EL
750-61.3670	BHP=58, 996.6943 BEL
RP=517.0965 SCF/BEL	GF=900.827.7846 MCF
	DGP=175.394.8745 HCF
$\mathrm{P}=1,656.0080 \mathrm{PSI}$	$780=47.6485$
$\mathrm{HP}=354.496 .2214 \mathrm{BEL}$	RF $=3.314 .9813$ SCF/EBL

$\mathrm{P}=65 \mathrm{~F} . \mathrm{B066} \mathrm{PSI}$
㳻 $=721.812 .4584$ BEL
$\mathrm{BNP}=51.757 .1493 \mathrm{EEL}$
6F $=982.814 .2516 \mathrm{HCF}$
GGP $=181.986 .4676 \mathrm{HCF}$
$750=45.8566$
$\mathrm{RP}=3.717 .3446 \mathrm{SCF} / \mathrm{EEL}$
$\mathrm{P}=45 \mathrm{E}, 6400 \mathrm{PSI}$
$\mathrm{HF}=771.183 .3424 \mathrm{EEL}$
$\mathrm{DHP}=49.376 .8841 \mathrm{BEL}$
$\mathrm{GP}=1.167,027.686 \mathrm{HCF}$
$\mathrm{DGP}=154,213.7537 \mathrm{MCF}$
$750=44.1879$
$\mathrm{PF}=3,745.6882 \mathrm{SCF} / \mathrm{BEL}$
$\mathrm{P}=256.6000 \mathrm{PSI}$
$\mathrm{HP}=924,621.0171 \mathrm{BEL}$
$\mathrm{DMP}=53.437 .6746 \mathrm{EEL}$
$6 \mathrm{~F}=1.348 .979 .227 \mathrm{MCF}$
IGF $=181.951 .6212 \mathrm{MCF}$
\% $850=42.5469$
$\mathrm{RF}=3$, 964.7748 5CF/BEL
$\mathrm{F}=280.006 \mathrm{PSI}$
$\mathrm{NP}=849,011.4536 \mathrm{EPL}$
IAP $=15.390 .0365 \mathrm{EDL}$
GF=1, 393,447.156 MCF
IIGP=44.467.9287 H6F
$450=42.1119$
$\mathrm{RP}=2,714.0196 \mathrm{SCF} / \mathrm{BEL}$
$\mathrm{NR}=2,499.980 .946 \mathrm{BEL}$
70 ILRF $=25.8465$
$\mathrm{GR}=166,552.8441 \mathrm{WCF}$
ZGASEF=89. 3235

Example 3

For undersaturated reservoirs, the initial free gas in place (G) and the initial gas saturation must be input. If we had discovered this reservoir at 1,905 PSI, we could easily forecast future production. The total gas in place initially was $480 * 3.25\left(10^{6}\right)$ SCF, or 1.56 BCF. After the production to date, the remaining gas in place is $1.56-0.089=1.471$ BCF. Based on the current dissolved gas-oil ratio of 408.5 SCF/BBL and the remaining oil in place of $3.25\left(10^{6}\right)-189,574=$ $3,060,426 \mathrm{BBL}$, there is $408.5(3,060,426) \mathrm{SCF}$, or 1.25 BCF gas in solution. Therefore, the free gas in place is $1.471-1.25 \mathrm{BCF}$ or 221 MMCF .

See Figures 12-5 and 12-6 for the results of this forecast. Although these techniques theoretically are applicable, oil reservoirs with large gas caps often behave somewhat differently due to GOR control in actual operations.

Keystrokes	Display	Comments
[XEQ] [ALPHA] OILPRED	SKIP? Y/N:N	
[ALPHA]		
[R/S]	$\% S W C=?$	
[I/][SF] $00[\mathrm{R} / \mathrm{S}]$	$\% S G c=?$	
[R/S]	$C=?$	
[R/S]	$P /=?$	
$1905[\mathrm{R} / \mathrm{S}]$	$N=?$	

Keystrokes	Display	Comments
$3060426[\mathrm{R} / \mathrm{S}]$	$G=?$	
$221[\mathrm{ALPHA}] \mathrm{MMCF}[\mathrm{R} / \mathrm{S}]$	$\% \mathrm{SG} /=?$	
$[\leftarrow]$	0.0000	

At BEG $P=2,650 \mathrm{PSI}$ (above the bubble point) in Example 2 , there was no free gas in the reservoir, so \%SGl was set to zero.

$5.2529[\mathrm{R} / \mathrm{S}]$	$B E G P=?$
$1905[\mathrm{R} / \mathrm{S}]$	$E N D P=?$
$[\mathrm{R} / \mathrm{S}]$	$P D E C=?$
$[\mathrm{R} / \mathrm{S}]$	$N P I=?$

With N and G relative to discovery at $1,905 \mathrm{PSI}, \mathrm{NPI}=\mathrm{GPI}$ $=0$.

Figure 12-5

Figure 12-6

GIL MBE PRED
SEIP: YES
$\mathrm{PI}=1,905.0600 \mathrm{FSI}$
$\mathrm{N}=3,666,426,809 \mathrm{BEL}$ $G=221.6069 \mathrm{HWCF}$ $26 G I=5.2529$
 HFI=6. 86 B6 BEL GFI=0.8060 HCF
$\mathrm{P}=1,765,6060 \mathrm{PSI}$ $H P=124,254,6468 \mathrm{BBL}$ $\mathrm{MHP}=124,254.6468 \mathrm{BEL}$ $\mathrm{GP}=80$. 601.5595 HCF IIGP=80.601. 5595 HCF 4. $90=58.5795$ $\mathrm{RP}=758.3609 \mathrm{GCF} / \mathrm{BEL}$
$\mathrm{P}=1,505,9000 \mathrm{PSI}$ $\mathrm{NP}=234 ; 467.6746 \mathrm{BEL}$ IMP $=116,213,6278 \mathrm{BEL}$ $\mathrm{GF}=191,695.6891 \mathrm{HCF}$

IGP $=111.694 .1296 \mathrm{HCF}$ 450=55. 3069 $\mathrm{RP}=1,257.6292 \mathrm{SCF} / \mathrm{BEL}$
$\mathrm{P}=1,365,6000 \mathrm{PSI}$ $H P=323,019.4362 \mathrm{EBL}$ DMP $=88.551 .7636 \mathrm{BEL}$ $\mathrm{GP}=330.678 .1269 \mathrm{MCF}$ IICP $=138.982 .4318 \mathrm{HCF}$ 450=52. 5594
$\mathrm{RP}=1.891 .3817$ 56F/BE
$\mathrm{P}=1,195.060 \mathrm{PSI}$ $\mathrm{HP}=394,849,7526 \mathrm{EBL}$ $\mathrm{DIF}=71,836.3144$ EBL [PP=489,647.6893 MCF IGFP=159,969.5682 MCF $750=56.2284$ RF $=2,544,8712 \mathrm{SCF} / \mathrm{BFE}$
$\mathrm{HP}=455,206.7684 \mathrm{BEL}$ $\mathrm{BNF}=60.356 .9558 \mathrm{BEL}$ GP $=661,986.0148$ MCF IIGP $=172,258.3455 \mathrm{HCF}$ \% $90=48.1766$ $\mathrm{RF}=3.163 .1154 \mathrm{SCF} / \mathrm{ERE}$
$F=795.6040 \mathrm{PSI}$
$H P=589.271 .1142 \mathrm{BEL}$ IMF $=53.664 .4658 \mathrm{BEL}$ CP $=842,126.2679 \mathrm{HCF}$ IGP $=180,226.2331 \mathrm{HEF}$ $750=46.343 \overline{3}$
$\mathrm{RF}=3,629.3938$ 5CF/BBL
$\mathrm{P}=505.6046 \mathrm{FSI}$
$\mathrm{HF}=557,849.2255 \mathrm{BEL}$ $\mathrm{BAP}=49,569.1113 \mathrm{EBL}$ $6 \mathrm{GF}=1,025.838 .413 \mathrm{HCF}$ DEPF $=183,712.1446$ HCF $750=44.6514$
$\mathrm{PP}=3,782.9706 \mathrm{SCF} / \mathrm{BBL}$
$\mathrm{P}=365.0906 \mathrm{PgI}$
$H P=669.151 .3752 \mathrm{BEL}$
INP $=51,311.1497 \mathrm{BEL}$ GP=1,208,701.837 HCF IIGP=182, 863.4256 HCF 750=43.6170 RP $=3,344.6592$ SCF/BEL
$\mathrm{P}=206.4 \mathrm{hang} \mathrm{PSI}$
$\mathrm{NF}=6419.186 .2668$ ERL
DMP $=31,634.8917 \mathrm{BEL}$ $\mathrm{GP}=1,362,699.736 \mathrm{HCF}$ ICTF=93.898.8986 HCF $7 \mathrm{~F} 0=42.1311$
$\mathrm{RP}=2,766.5234 \mathrm{SCF} / \mathrm{BEL}$

HR=2.426.239.733 BEL 701LRF $=24.9182$ GR=166:463.7440 HCF 76A5RF=80.6723

User Instructions

 change c or use the default $\mathrm{KG} / \mathrm{KO}$ correlation.


```
GPI (MCF)
NPI (BBL)
END P (PSI)
G (MCF)
N (BBL)
P DEC (PSI)
BOBP
DGP (SCF), scratch
DNP (BBL), scratch
UOd (CP)
UO (CP), P (PSI)
UG(CP), scratch
a, \%SGc
b, c
\(\mathrm{RP}_{\mathrm{i}}\) (SCF/BBL)
\(\mathrm{RP}_{\mathrm{i}-1}\) (SCF/BBL)
RS (SCF/BBL)
RPI (SCF/BBL)
Producing gas-oil ratio units
Producing gas-oil ratio units
G (SCF)
\(\mathrm{GP}_{\mathrm{i}-1}(\mathrm{SCF})\)
\(\mathrm{NP}_{\mathrm{i}-1}\) (BBL)
0 , GPI, GPBP (MCF)
0 , NPI, NPBP (BBL)
\(\mathrm{N}, \mathrm{N}\) - NPI, N - NPBP (BBL)
PI, BEG P, PBP (PSI)
```


Flags

00 Set: Use optional KG/KO correlation.
Clear: Use default KG/KO correlation.
Set: Producing gas-oil ratio units not yet input.
Clear: Producing gas-oil ratio units have been input.
02 Set: Skip input of PVT data.
Clear: Allow input of PVT data.
03 Set: Current pressure \geqq PBP.
Clear: Current pressure < PBP.
04 Set: Gas production units not yet input.
Clear: Gas production units have been input.

Program Listing

＊IIL HEE PRETI 63
WOH＂TITLE FC？C 25
PROHPT CF 06 SF 01
SF 04 5F 66 9F 27
${ }^{2} \mathrm{HF}^{2}$ AST0 $63{ }^{-5 C H}$
AST0 66＂F／H3＂ASTO 54
＂ KPR ＂ ASTO BE CLA
ASTO 04 ASTO 07
ASTO 日 9 ASTO 55 ＂SKIP：

GTO 14 SROH＂U7＂
YROM＂ hHRCL ＂
KROM＂ 8 POR ＂
334LEL 14
RCL 14 YROH＂CBOD＂
$5 T 042$ HROH＂CCFR＂
ST0 $33 \quad 26 \quad 570$ 60
＂\％GUC＂ HROM ＂IN＂ 47

34 －FI＝XEO 24 RHD
RCL 14 RHD CF 03

YED 36 FS？ 63 RIU

YEO	28	CF	04

57000 ＂ 7 SGI ＂
YROM＂IH＂ADY
784LBL 15
CF 9816 ＂EES F＂
KEQ 24 RCL 35 XVY
$\mathrm{X}=\mathrm{Y}$ ？ GTO 06 TONE 3
＊F＞PI＂PROMPT GT0 15
91＊LBL 60
37 ＂ENI P＇YEQ 24
RCL 17 YSY $\mathrm{K}=\mathrm{Y}$ ？
$6 T 063$ TONE 3
＊P＞BEG P＂PROMPT
GTO 01

1034LBL 63
46 ＂P DEC＊XEQ 24
RCL 17 RHD RCL 14 RHD
YYY）GTO 84 RCL 35
K（） 17 STO 35 CLST
STO 29 RCL 17 XED 32
RCL 35 K 17 STO 35

YEE 33 ＂KFI＂MEQ 22
＂GPI＂YEE 23 GT0 16
$129+\operatorname{LBL} 44$
36 ＂ $\mathrm{HPI}=\mathrm{YED} 30$
FSTC 94 SF $68 \quad 35$
TGP＂YEE 20 CF 68
F57C 01 5F 0852
＂RFI＂XEE 26 OF 98
RCL 35 RHD RCL 14 RHD
EYY？GTO 05 RCL 35
Mi） $17 \quad 5 T 0 \quad 35$ RCL 42
XROM＂CEO＂ 97031
RCL 17 Ul） 35 STO 17
YEOM＂CBOb＂RCL 31 ／
1 RCL 37 RCL 49 ／－
＊ 1 －RCL 21 1日G／
$1-* 160$＊ 57020
＊／4CGI YROH＂OUT＂
182＋LBL 95
RCL 37 RCL 36 RCL 53
RCL 17 YEE 32 RCL 39
1 E 3 ＊ST0 56 FS？ 83
GTO 18 RCL 46 RCL 13
＊RCL 59 1E3＊－
RCL 61 RCL $52 *-$
$5 T 056 \quad$ GTO 18
2074LBL 16
SIE 33
2094LBL 17
RCL 17 ＂P＂XEQ 25
＂HF＂YED 22 CF 08
RCL 44 ＂ BHP ＂XEC 31
－GF ${ }^{\circ}$ XED 23 RCL 43
$1 \mathrm{E} 3 /$ DGF＂$^{\mathrm{XE}} 29$
FS？ 93 GTO 18 KCL 36
106 ＊ 850°
XROH＂OITT＂FSTC 01
SF 98 RCL 50 ＂RF＂
XEO 27 CF 68

2394 LBL 18
ADY RCL 38 RHD RCL 17
RCL 41 －RHI XY？
GTO 06 X KYY RCL 17
END $\mathrm{Y}=\mathrm{Y}$ ？ $6 T 019$
RCL 36 RHI
$256+$ LBL 96

LASTK YIM RCL 14 RND

RCL 17 RHI XY？
GTO 68 स $=1$ ？GT0 67
RCL $25 T 046$ RCL 14
STO 17 HEE 33 RCL 58
＂NPEP＂YEE 31 RCL 57
1 ES ／＂GPDF＂HEE 29
ADY RCL 4457047
XEE 69 YEE 33 RCL 85
STt 44 RCL 13 ＊
ST＋ $43 \quad 6 T 017$
295 LLBL 97
RCL 7 STO 46 YEE 99
GTO 16
3664LBL 88
RCL $2 \quad \mathrm{STO} 17 \begin{array}{llll}\mathrm{GTO} & 16\end{array}$
304＊LBL 69
RCL 58 RCL 57 1 E3
RCL 13 RCL 14 XEE 32
RCL 46 STO 17 RTH

315＊LBL 19
RCL 41 ST－ 17 RCL 40
RLL 31 －＊NR＂HEE 31
RCL 31 RCL 46 ； 106
＊${ }^{2}$ OILPF＂ XROH ＂OUT＂
RCL 56 RCL 40 RCL 52
$\neq+1 \mathrm{E} 3$／ 5 TO 3 i
RCL 34 －＂GR＂XEQ 29
RCL 34 RCL 31 ／ 100
＊＂ 7 GASRF＂KROH $=001{ }^{\circ}$
ADY GTO 15
3514 LEL 22
RCL 56 RCL 60 ＋
$5 T 031$ YEE 31 RTH
358 2LBL 23
RCL 571 E 3 ／RCL 59
$+5 T 034$ FS？C 04
SF 08 XEE 29 CF 98 RTH

3794LBL 24
STO 08 XEE 10
XROH＂INE RTH STO 68
XRンY STO 69 R R RTH

Program Listing (cont.)

	461+LEL 36	RCL $56 \div 5 T 044$	RCL 29 * - RCL 31
XEO 19 YROM "OUTK" RIH	ST0 60 YE0 13	RCL 17 SROM "CRGE	PCL 29 * RCL $43+$ \%
	XROH "IHE" RDH ST0 03	5 ST 30 RCL 29	97031 RCL 34 FCL 20
RTH	KYO STO 04 Et ETH	ST-43 RCL 52 RCL 36	$188 /-\mathrm{RCL} 27$
		- RCL 29 * ST0 31	RCL 26 (1 Et
389+LDL 10	471*LEL 31	RCL 17 YROH "CBOb"	RCL $61 ;-* 5 T 000$
HSTO T -PSI" AST0 01	XEQ 13 XROH -OUTE" RDM	GT0 6.3	FS? 06 GTO 64 PCL 34
CLA ASTO 02 ARCL T	57003 KTY 57064 Rt		$\rightarrow 1$ RCL Y RCL 49 Y 4 Z
RCL 69 RCL 68 RCL 2	ETH	575*LEL 14	- 1 RCL 2 - RCL 48
ETH		9 F 03 RCL 42	
	4804LEL 13	YROH "CE0"	RCL $49+\mathrm{Y} 4 \mathrm{~K}$,
4919+LBL 26	HST0 T -BEL AST0 61		GT0 95
97060 XES 11	CLA ASTO EV PFLL T	2794LEL 6.3	
XROH "INE" RDH STO 54	RCL 84 RCL 03 FCL 2	3 TO 27 ST+ 43 RCL 32	7164LEL 04
KOY STO 55 R (RTN	ETH	RCL 21160 / 5T0 $2 *$	RCL 49 RCL 34 RCL 40
		$\mathrm{XCL} 33+\mathrm{RCL} 62$	$168 \mathrm{ST} / \mathrm{T} /$ - RCL 10
410*LBL 27	4914LBL 32		
YEQ 11 XROH "OUTK" FOH	5 STO 62 EDN 57050	\% RCL 26 * LASTA	
STO 54 XVY STO 5.5 R	ST0 51 RCL 40 Rt	FCL $27+\mathrm{RCL} 31+$	GT0 92 . 4556 RCL Y *
RTH	ST0 60-ST0 61	RCL 61 * ST+ 44	. $04335+$ *
	\$70 56 570 5757058	FC? 03 GT0 03 RCL 44	
419+LBL 11	Rt 5 T0 59 RCL 17 RHD	RCL 43 - ENTER \dagger	742+LBL 65
ASTO T -SCF/EEL=	ECL 14 RHD CF 03	Xi) $59-57044$	RCL $46 * \mathrm{PCL} 47$ /
ASTO 01 HSHF HSTO 02	X $=$ Y? SF 63 RCL 42	RCL $13 * 51043$	RCL 27 * RCL 29 /
CLA ARCL T RLL 55	FS? 03 XROH "CBO"	RCL 58 LASTX $\ddagger 51057$	RCL 30 + EHTER ${ }^{+}$
RCL 54 RCL 2 RTH	FC? 93 RCL 17 FC? 03	TONE 9 RTH	K<> 58 RCL $58-\mathrm{K}\langle \rangle Y$
	XROM "CBOb" STO 26		/ ABS 1 E-4 KYY?
4314LEL 28	RCL 13 FC ? 83 RCL 17	627-LEL 13	GTO 34 RCL 31 ENTEE \uparrow
5 TO 日0 XEA 12	FC? 03 XROM "CRSb"	1 RCL 21100 ,	X $\chi^{\prime} 58-\mathrm{STO} 44$
YROH =IHK" RDH STO 66	57052 碞 01	57034 RCL 27 RCL 29	RCL $50 \mathrm{RCL} 51+2$,
		RCL 36 * ST0 43	* STO $43 \mathrm{ST}+57$
	COH STO 28 XROH "CuOd"	RCL 30 RCL 45	RCL 80 STO 30 TONE 9
441+LEL 29	STO 45 KROM "CCH"	XROM ${ }^{\text {CLIOb }}$ STO 46	RTN
XEE 12 SROH "OUTK" RIM	ST0 72 RTH	XED 61 XEOH "CUG"	
ST0 66 KG\% ST0 67 Rt		K) 47 ST0 85 RCL 50	
RTH	538 LLBL 33		RCL 96 TONE 3
	CLX ST0 31 ST0 43	CLX ST+ 56	
450+LEL 12	$5 T 044 \mathrm{RCL} 17$ RHD		GT0 62
ASTO T "MCF" ASTO A1	RCL 14 RHD CF 03	6554LBL 34	
CLA AST0 02 ARCL T		TONE 5 FCL 44 RCL 57	786+LBL 81
RCL 97 RCL 66 RCL 2	XROM -CEG ${ }^{\text {F }}$ FT3-86L*	RCL 50 RCL $51+2$	RCL 16 "F-R" COH
RTN	COH STO 29 RCL 28 -	$5 \mathrm{O} 31 \mathrm{RCL} 58 *$	RCL 10 ; RCL 17
			FCL $11 ;$ ENI

13. QOVST - Rate-Time Forecast from Material Balance

The solution-gas-drive predictions of reservoir performance calculated from OILMBE are only a part of the information required by the reservoir engineer. Usually, a rate-time forecast also will be required. Once again, putting aside the issue of whether this procedure is better than decline-curve analysis, QOVST predicts the times and rates corresponding to information provided from an oil material balance. The method requires calculating the well productivity index and predicting its decline.

The productivity index (JO) is simply the oil producing rate divided by the pressure drawdown in the reservoir. In the case of pseudosteady-state radial flow, JO can be shown to be:

$$
\mathrm{JO}=\frac{0.00708 \mathrm{KO} \mathrm{H}}{\mathrm{BO} \mathrm{UO}[\ln (\mathrm{Re} / \mathrm{RW})-1 / 2]}
$$

In the case of steady-state radial flow:

$$
\mathrm{JO}=\frac{0.00708 \mathrm{KO} \mathrm{H}}{\mathrm{BO} \mathrm{UO} \ln (\mathrm{Re} / \mathrm{RW})}
$$

where $\mathrm{KO}=\mathrm{K}$ KRO.
The only terms in either of these equations that vary as the reservoir is depleted are KO, BO, and UO. QOVST uses the Pac correlations for BO and UO and user-input coefficients for the KRO correlation. If the initial oil-producing rate is unknown, enough information to calculate an initial JO must be provided from an early test or estimate of productivity.

Gas producing rates also can be forecast based on the instantaneous values of RP. For example, if QO is calculated as $68.7 \mathrm{BBL} / \mathrm{DAY}$ at $1,305 \mathrm{PSI}$ where RP is 1881.4 SCF/BBL, QG $=(68.7)(1881.4)$ SCF/DAY $=129.2 \mathrm{MCF} / \mathrm{DAY}$.
For most reservoirs, the theoretical materialbalance performance and rate-time prediction will yield hyperbolic declines. QOVST calculates the incremental time values with a series of exponential declines. The result generally approximates a hyperbolic decline over the life of the reservoir.

Equations

Above bubble point:

$$
\mathrm{QO}=\mathrm{QOI} \frac{\mathrm{P}-\mathrm{PWF}}{\mathrm{PI}-\mathrm{PWF}} \quad \frac{\mathrm{KRO}}{\mathrm{KROI}} \quad \frac{\mathrm{BOI} \mathrm{UOI}}{\mathrm{BO} \mathrm{UO}}
$$

Below bubble point:

$$
\begin{aligned}
& \mathrm{QO}=\mathrm{QOI} \frac{\mathrm{P}-\mathrm{PWF}}{\mathrm{PI}-\mathrm{PWF}} \frac{\mathrm{KRO}}{\mathrm{KROI}} \frac{\mathrm{BOIUOI}}{\mathrm{BOb} U O b} \\
& \% \mathrm{SO}=\frac{\mathrm{BOb}}{\mathrm{BOI}} \frac{\mathrm{~N}-\mathrm{NP}}{\mathrm{~N}}(100-\% \mathrm{SWC}-\% \mathrm{SGI}) \\
& \mathrm{KRO}=\left|\frac{\% \mathrm{SO}}{100-\% \mathrm{SWC}}\right|^{\mathrm{a}+\mathrm{b}} \\
& \mathrm{KROI}=\mathrm{KRO} \text { at the initial } \% \mathrm{SO}(\% \mathrm{SO} \text { at PI })
\end{aligned}
$$

If QOI is unknown, it is calculated from the initial productivity, JOI:

$$
\begin{aligned}
\mathrm{QOI}= & \mathrm{JOI}(\mathrm{PI}-\mathrm{PWF})= \\
& \frac{0.00708 \mathrm{~K} \mathrm{KROI} \mathrm{H}}{\mathrm{BOI} \mathrm{UOI} \ln (\mathrm{Re} / \mathrm{RW})}(\mathrm{PI}-\mathrm{PWF}) \begin{array}{c}
\text { (steady-state } \\
\text { radial flow })
\end{array}
\end{aligned}
$$

TIME is calculated at the $i^{\text {ih }}$ pressure step as follows:

$$
\mathrm{TIME}_{\mathrm{i}}=\mathrm{TIME}_{\mathrm{i}-1}+\frac{\ln \left(\mathrm{QO}_{\mathrm{i}} / \mathrm{QO}_{\mathrm{i}-1}\right)\left(\mathrm{NP}_{\mathrm{i}}-\mathrm{NP}_{\mathrm{i}-1}\right)}{\left(\mathrm{QO}_{\mathrm{i}}-\mathrm{QO}_{\mathrm{i}-1}\right) 365}
$$

Nomenclature

Symbol	Variable Name	Input or Output	English Units	$\begin{gathered} \text { SI } \\ \text { Units } \end{gathered}$
a	First coefficient of KRO correlation	I	-	-
BOI	Initial oilformation volume factor	I	-	-
b	Second coefficient of KRO correlation	I	${ }^{-}$	-
DNP*	Delta NP, change in cumulative oil production	0	BBL	M3
H	Formation thickness \dagger	I	FT	M
K	Permeability	I	MD	MD
N*	Initial oil in place	I	BBL	M3
NP*	Cumulative oil production	I	BBL	M3
P*	Pressure	0	PSI	KPA
PI ${ }^{*}$	Initial pressure	I	PSI	KPA
PWF*	Flowing bottomhole pressure	I	PSI	KPA

Symbol	Variable Name	Input or Output	English Units	SI Units
QO*	Oil producing rate	O	BBL/	M3/
			DAY	DAY
QOI*	Initial oil producing rate	I,O	BBL/	M3/
			DAY	DAY
RW	Effective wellbore radius	I	FT	M
Re	Radius of drainage	I	FT	M
TIME*	Cumulative production time	0	YR	YR
UOI	Initial oil viscosity	I	CP	PA*S
\%SGI	Initial volume percent gas saturation	I	-	-
\%SWC	Volume percent connate water saturation	I	-	-

*The units for these variables are saved by the program. \dagger In the case of deviated wells or slanted beds, use the true vertical thickness instead of the measured thickness of the formation.

Yes/No Questions

CORR? Yes: Use Pac correlations to estimate PVT properties.
No: Input PVT properties.
SKIP? Yes: Skip input of PVT data.
No: Allow input of PVT data.

Example 1

To forecast the production at the Little Creek oil reservoir (see Example 3 of OILPRED), we need to know that the oil producing rate at the current (12-81) pressure of $1,905 \mathrm{PSI}$ is $300 \mathrm{BBL} / \mathrm{DAY}$. The estimated economic limit is $2 \mathrm{BBL} / \mathrm{DAY}$ per well or $6 \mathrm{BBL} /$ DAY total. The historical and forecast production are shown in Figure 13-1. Use the production forecast from Example 3 of OILPRED to get the calculated production. The bottom-hole pressure is forecast to remain essentially constant at 600 PSI. As a separate case, assume that when the field producing rate drops below 70 BBL/DAY, lift equipment will be installed to lower the effective bottom-hole pressure to 50 PSI.
In reality, one could allocate the reserves (volumetrically, with consideration for individual well deliverabilities) between wells and forecast them individually. It is, of course, likely that the wells would require pumping units at separate times.
The value of N used in the second part of the forecast is the original N minus the production to 1,305 PSI (the crossover point). The current value of \%SO is printed when the pressure is below the bubble point; $\%$ SGI is equal to $100-\%$ SO $-\% \mathrm{SWC}$, or
14.9406%. The current value of OO is $\mathrm{QO} /(\mathrm{P}-\mathrm{PWF})$ $=68.7078 /(1305-600)=0.097$. The new value of QO with PWF reduced to 50 PSI is 0.097 (1305-50) $=121.7 \mathrm{BBL} / \mathrm{DAY}$. The values for NP are incremental from the value at 1,705 PSI.

Note that the remaining life of the field in the second case is over 28 years to deplete the reservoir to 305 PSI. The oil producing rate is 6.4 BBL/DAY for all three wells at that point, with gas production of about $20 \mathrm{MCF} / \mathrm{DAY}$ (negligible). The minimum pressure used for the OILPRED forecast should not be so low as to produce below the economic limit. This abandonment rate indicates that the ultimate recovery will be to a reservoir of about 300 PSI, not the 200 PSI limit assumed in the OILPRED example. Once again, it should be pointed out that this forecast essentially is what would be done solely under primary depletion. Although the oil recovery factor is relatively high for primary depletion, waterflooding and other enhanced-recovery techniques should definitely be considered immediately.

Keystrokes $(S I Z E>=057)$	Display	Comments
[XEQ] [ALPHA] QOVST [ALPHA]	CORR? Y/N:	Last character is Y or N
Y [R/S]	SKIP? Y/N:	Last character is Y or N
N [R/S]	SEP $T=$?	
110 [R/S]	SEP $P=$?	
125 [R/S]	$O / L G=$?	
37.4 [R/S]	GAS $G=$?	
. 678 [R/S]	$T=$?	GAS GS printed
155 [R/S]	$R S /=$?	
480 [R/S]	$\% S W C=$?	PBP printed
32.5 [R/S]	$a=$?	
2 [R/S]	$b=$?	
2 [R/S]	$P I=$?	
1905 [R/S]	$N=$?	
3060426 [R/S]	$\% S G /=$?	
5.2529 [R/S]	$P W F=$?	
600 [R/S]	QOI H, R, K	
[A]	$Q O 1=$?	QOI known
300 [R/S]	$P=$?	
1705 [R/S]	$N P=$?	
124255 [R/S]	$P=$?	DNP, QO, \%SO, and TIME printed
1505 [R/S]	$N P=$?	
234468 [R/S]	$P=$?	DNP, QO, \%SO, and TIME printed

OU YS TIME	$\begin{aligned} & P=1,505,6406 \mathrm{PSI} \\ & \mathrm{WP}=234,460,606 \mathrm{EDL} \\ & \mathrm{MP}=110,213,060 \mathrm{EDL} \end{aligned}$
CORP：YES	$00=115.3973 \mathrm{BEL} / \mathrm{THY}$
SEIP：H0	750＝55．3669
SPP T＝110．0600 F	THE $=3.4881$ 置
SEP $P=125.000 \mathrm{PSI}$	
OIL $6=77.4689 \mathrm{MPI}$	
GHS E＝6．670	$\mathrm{F}=1.365 .6048 \mathrm{PS}$
6RS GS－6．6842	HF＝323． 19.6006 EDL
$T=155.040 \mathrm{~F}$	DHF＝80．551．6046 EEL
RSI $=486.6006$ STF／EL	［10－68，7673 EBLITH
$\mathrm{FBF}=2,192.2913 \mathrm{PSI}$	$8505=52.5594$
\％54c－32． 5090	THE＝6．1272 7
$a=2,8000$	
$b=2.0190$	
$\mathrm{PI}=1.995 .9640 \mathrm{PGI}$	$\mathrm{P}=1.105 .6009 \mathrm{PSI}$
	HF＝ 394.850 .6806 BEL
$4561=5.2529$	［10P＝71．831．9019 EEL
PMF＝660． 6069 PSI	［0．37．9143 EBL／DHY
00I $=306.0906$ 68L／IHY	$760=50.2204$
	TIME＝9．9268 4 （R
$\mathrm{F}=1,765.6006 \mathrm{FSI}$	$\mathrm{P}=985.040 \mathrm{P}$ PSI
NP＝124，255．0060 EDL	HP＝455，207．6006 B6L
DHP＝124，255，6006 EBL	ImP＝60．357． 6060 EEL
$00=188.9658$ B6L 7 TH	日0＝17．6981 ERLIDAY
\％ $40=58.5795$	\％ $450=48.1766$
THE＝1．4171 YR	TIME＝16．1586 \％

	$\mathrm{P}=795.60 \mathrm{peg} \mathrm{PS}$
$\mathrm{MF}=56 \mathrm{~S}, 271.60068 \mathrm{EL}$	$\mathrm{HP}=185,251.0060 \mathrm{BDL}$
$\mathrm{IHP}=53.964 .4606 \mathrm{EEL}$	DHF＝53， 664.6060 BEL
C00 $4.6873 \mathrm{BEL} / \mathrm{DPH}$	［0029．6943 BEL $/ \mathrm{IHY}$
700 96.36 .343	$490=46.3432$
T1HE＝31．642 ${ }^{\text {P1 }}$	TIPE $=5.4126$ YE
T0 vS TITE	$\mathrm{P}=565.4649 \mathrm{FSI}$
	HP＝234，820．6100 88L
SLIP：YES	DIP $=49.569 .0046 \mathrm{EEL}$
$\mathrm{FI}=1.365 .8600 \mathrm{PSI}$	00＝15．3490 BEL／IMY
H＝2，737，467． 408 EEL	\％ $400=44.6514$
\％SGI $=14.9466$	TIHE＝14．736\％Ye
$\mathrm{PHF}=5 \mathrm{G}$ ，640 PGI	
प0I $=121.746988 L / 894$	
	$\mathrm{P}=385.600 \mathrm{PSI}$
$\mathrm{P}=1,105.606 \mathrm{PaI}$	$\mu \mathrm{F}=286,136.7999 \mathrm{BEL}$
HP＝71，830．0000 BEL	DHP＝51．316．9999 8ES
$\mathrm{THP}=71,836.6600 \mathrm{EDL}$	$00=6.3616$ 日EL $/ \mathrm{MHY}$
$007 \mathrm{7a} .8123 \mathrm{BEL} / \mathrm{MHY}$	$850=43.6176$
75050.2204	TIHE＝28．4891 TR
TIHE＝1． 9337 YR	
$\mathrm{F}=985.6066 \mathrm{PST}$	$\mathrm{P}=208.0600 \mathrm{PGI}$
4F＝132，167， 000688 L	HP＝717．165．9499 ERL
睤 $=60.357 .0068$ BBL	
［0］－49．3654 BEL／THY	00＝7．1635 EBL／TMY
450－48．1765	$490=42.1311$
THE＝4．6208 YR	TIHE＝47．6363 M

Example 2

Calculate the average deliverability per well of the Little Creek reservoir based on steady－state flow the－ ory and the buildup permeability estimate of 2.2 MD．The calculated value of Re is 961 FT based on the average area／well of 66.67 ACRE．RW is 0.422 FT for each well．The total field deliverability is esti－ mated to be three times the individual well average．

This method should be used only when good val－ ues of deliverability are unavailable．Since the calcu－ lated deliverability（ 3 times $47.7=143.1 \mathrm{BBL} / \mathrm{DAY}$ ） is less than the actual deliverability of $300 \mathrm{BBL} /$ DAY，it is entirely likely that the permeability esti－ mate is too low．A value of 4.6 MD would have matched the measured value of productivity．

Keystrokes	Display	Comments
［XEQ］［ALPHA］QOVST ［ALPHA］	CORR？Y／N：Y	
［R／S］	SKIP？Y／N：Y	
［R／S］	$\%$ SWC＝？	
［R／S］	$a=$ ？	
［R／S］	$b=$ ？	
［R／S］	$P /=$ ？	
1905 ［R／S］	$N=$ ？	
3060426 ［R／S］	$\% S G /=$ ？	
5.2529 ［R／S］	$P W F=$ ？	
$600 \text { [R/S] }$	$\begin{aligned} & \text { QOI } H, R, K \\ & H=? \end{aligned}$	
［E］	$H=\text { ? }$	H，Re，RW， and K known
24 ［R／S］	$\mathrm{Re}=$ ？	
961 ［R／S］	$R W=$ ？	
． 422 ［R／S］	$K=$ ？	
2.2 ［R／S］	$P=$ ？	QOI printed

QO VS TIME	21	\%SWC
	27	$\mathrm{BO}, \mathrm{BOb}$
$\mathrm{PI}=1,965,8606 \mathrm{PSI}$ 	28	H (FT)
	29	K (MD)
P4F $=6686.06964$	30	$\mathrm{Re}(\mathrm{FT})$
$\mathrm{H}=24.600 \mathrm{Cl}$ FT	31	RW (FT)
$\mathrm{Re}=961.009 \mathrm{fT}$	33	$\mathrm{P}_{\mathrm{i}-1}$ (PSI)
RH=6. 4226 FT	34	Scratch
$\mathrm{K}=2.2046 \mathrm{HI}$	35	PI (PSI)
601-47.7259 BRL/TMY	37	$\mathrm{NP}_{\mathrm{i}}(\mathrm{BBL})$
	40	N (BBL)
	42	BOBP
	43	$\mathrm{QO}_{i}(\mathrm{BBL} / \mathrm{DAY})$
	44	$\mathrm{NP}_{\mathrm{i}-1}$ (BBL)
	45	UOI (CP)
	46	UOd, UO, UOb (CP)
	47	PWF (PSI)
mation	48	a
	49	b
irements 895 byte (4 cards)	50	QOI (BBL/DAY)
ngth: 895 bytes (4 cards)	51	$\mathrm{QO}_{\mathrm{i}-1}$ (BBL/DAY)
size: 057	52	TIME_{1} (YR)
hardware: $\begin{gathered}41 \mathrm{C} \text { and } 2 \text { memory } \\ \text { modules }\end{gathered}$	53	TIME $_{\text {i-1 }}$ (YR)
modules	54	Time units
	55	Time units
s	56	SO
		ers 10, 11, 18, 19, 22,

General Information
Memory Requirements
Program length:
Minimum size: 895 bytes (4 cards) 057

Minimum hardware: | 41 C and 2 memory |
| :--- |
| modules |

Hidden Options
None

Pac Subroutines Called

TITLE, Y/N?, W8, CBOb, IN, INU, OUTK, INK, CUOd, CBO, CRSb, CUOb, CUO

Registers

03 Oil production units
04 Oil production units
06 Oil producing rate units
07 Oil producing rate units
08 Pressure units
09 Pressure units
20 \%SGI

21 \%SWC
BOI
BO, BOb
K (MD)
$\operatorname{Re}(\mathrm{F} T)$
RW (FT)
$\mathrm{P}_{\mathrm{i}-1}$ (PSI)
Scratch
II (PSI)
N(BBL)
BOBP
$\mathrm{QO}_{\mathrm{i}}(\mathrm{BBL} / \mathrm{DAY})$
i-1 \mid BBL
UOd, UO, UOb (CP)
PWF (PSI)
b
QOI (BBL/DAY)
$\mathrm{QO}_{\mathrm{i}-1}$ (BBL/DAY)
$\mathrm{TIME}_{\mathrm{i}}$ (YR)
R
,

Registers 10, 11, 18, 19, 22, 23, 36, 38, 39, 41 unused

Flags

01 Set: Use Pac correlations to estimate PVT properties.
Clear: Input PVT properties.
02 Set: Skip input of PVT data.
Clear: Allow input of PVT data.
03 Set: Current pressure \geq PBP.
Clear: Current pressure < PBP.
04 Set: Time units not yet input.
Clear: Time units have been input.

Program Listing

D1tLEL＂MUYST＂
＂的 VE Tlate＂ 57
WFOH＂TITLE＂FET 25
FROMFT 5 G4 527
＂HE＂AST0 ES＂RTMT＂
日ST0 66 ＂YR＂ 057054
＂EPA＂HSTO 10 CLA
4ST0 84 HST0 $\quad 7$
HETO 09 AST0 55 CLY
$570445053=00 \mathrm{RR}^{-1}$

GT0 00 ＂SIIP＂ 2
MOH＂Y／H？FC？日2
HEOH＂HE ECL 14
YEOH＂CEID＂ST0 42
6001
$39+$ LSL 80
2557060 ＂ 801 ＂

＂CP＂AST0 61 CLH
ASTO 62 ASTIZ Z＂PA宝＂
AST0 \ddagger＂UII＂
SROH＂IHI＂ 13 ST0 0
＂FSI＂ASTO GI CLA
HETO 02 ASTO 2 ＂ KPA^{*}
AST0 Y＂PBP＂
＊ROH＂THU＂

664ㄹㄴ 41

＂a＂埴等＂IH＂＂b＂
XROH ${ }^{=1} H^{\prime \prime} 34$＂FI＂
是思 16 ST0 33 RHD
FCL 14 PND CF 日S
K＝Y？SF 0339 ＂H＂
YED 19 CF 68 CL X
FS？ 63 ST0 2019
50060 ＂ 3 SGI FE FC 63
XROM＂IN＂ 46 ＂PHF＂
YED 16 SF 681 YER 22
FC？ 01 GTO 14 RCL 17
（1） 35 ST0 17 yed 23
RCL 17 Ki $35 \quad 5 T 017$

1142LBL 14

G70 14

118＊LEL H
49 MOI＝YEO 17
$5 T 051 \mathrm{EL} 26$＊
FCL 45 PCL 72 ；
RCL $35 \mathrm{RCL} 47-$ ；
5034 ADH $6 T 015$
136＋LBL E
$275 \mathrm{ST} \quad \mathrm{FT}=$

צROH＂IHU＂ 295060
＂月 ASTO Y CLA ASTO Z
＂Re＂YeOH＂THU＂＂E＂
ASTO \％CLA ASTO 2
＂ $\mathrm{FH}=$ YROH＂IHIL 20

ASTO Y CLA ASTO G2
ASTO 2 ＂K＂YROH＂IHU＂
PCL 28 ． 00708 ＊
RCL 3 HCL 31 ； LH ；
9T0 34 FCL 32 ＊＊
RCL 26 ；RCL 45 ；
RCL 35 RCL 47 －\ddagger
$5 T 050$＂001＂MED 18
ADH
196＊1BL 15
CF 0816 ＂F＂YEE 16
RCL 35 MY X XY？
GT0 52 ＂P＞PI＂GT0 07
297＊LBL 92

GTO 63 － 9 ／LAST P＊
213＊LBL 67
TOHE 3 PROHPT GTO 15

2174LEL
36 ＂NP＂YEQ 19 FS？ 11
$67064 \quad 26 \quad 57090$＂ 60 ＂
FCT $63{ }^{\circ} \mathrm{Fb}^{\text {＂}} \mathrm{XROH}$＂ IH^{\prime}
45 ST0 06 ＂ CF ＂
ASTI GL CLH ASTO G2
ASTOZ $2 \mathrm{PH} F \mathrm{~S}^{2}$ RSTO Y
＂ 100° FC？ 03 ＂ 4 ＂
SROH＂INU＂

2424를 64
GED 20 RCL 37 ENTERt
（Y） 44 －＂THP＂XE0 24
FCL 43 ＂ 00 ＂YED 18
RCL 56 106＊${ }^{2850}$

FC？ 63 YEOH＂OIT＂

GSTO 61 CLA ASTO 62
RCL 55 RCL 54 RCL 52
＂TIHE＂YROH＂GITE＂RDN
57054 K）Y ST0 55 Rt
ATH GTO 15

277＋LBL 16
5 TO ［4STOT PSI ＂
ASTO 11 CLH HSTO 62
ARCL T RCL 69 RCL 68
RCL 7 XROH＂INE＂RDH
STO 88 KYY STO 69 RT
RTH
295＋LEL 17
$5 T 0$ 04 VED 05
YROA＂IHE＂RDH STO 66
KOY ST0 67 RE RTN
3654LDL 18
YEO Q5 YROH＂OUTK＂EDH
ST0 66 KンY $5 T 0$ 日 7 R
ETH

314 Lㅏㄴ 6
ASTO T＂BBL／DAY＂
ASTO BI ASHF ASTO GC
CLA ARCL T RCL B7
RCL BG RCL 2 RTH
3264 LEL 19
50066 HEE 66

KYY ST0 64 RT RTE
336＊LEL 24
YE日 A6 HROM－OUTE R RIH
$5 T 0$ g．XYY 570 64 R RTH

3454 LBL 66
A5T0 T＂BEL＂ASTO 61
CLA ASTO B2 ARCL T
RCL 04 RCL 13 RCL 2
RTH
$356+$ LBL 24
FS？ 61 YEA 23 FC？ 63
YEQ 21 RCL 34 RCL 32
＊RCL 46 ；RCL 27 ；

RCL 17 STO 33 RCL 47
－＊STO 43 RCL 51 ；
LH RCL 37 RCL 44 －
RCL 43 ENTER 4 Y Y 51
－$/ 365$／ $\mathrm{ST}+53$
FCL 53 STO 5 ETH
$392+\operatorname{LBL} 21$
RCL 27 RCL 26 ／ 1
RCL $37 \operatorname{RCL} 46$－
$492+L E L 22$
1 RCL 21 106 $\quad-$
57068 RCL 20160 ；
－＊STO 56 RCL 80 ；
RCL 48 RCL $49+\mathrm{Y} 4 \mathrm{H}$
STO 32 RTH

4234LEL 23
YROH＂CUINd＂ST0 46
RCL 42 F5？ 63
SROH＂CBO＂FC？ 03
RCL 17 FC？ 63
YROH＂CEDb＂ $5 T 027$
FS？ 09 STO 26 RCL 13
FC？ 03 RCL 17 FE？ 03
YROA＂CRSb＂ KCL 46
YROH＂ClOb＂FE？ BS
XROH＂CLII＂STO 46
FS？ 88 ST0 45 EHD

14. INFCOEF - Calculating the Water Influx Coefficient

The van Everdingen and Hurst unsteady-state method of predicting water influx is discussed briefly in the abstract for the program INFLUX. The INFCOEF and INFLUX programs have been combined due to the substantial overlap of calculations performed. However, to the user they function as separate programs.
The unsteady-state water influx coefficient B is required as an input to predict water influx. An error in B results directly in an error in the calculated water influx. So, it is particularly important to estimate B as carefully as possible. INFCOEF allows the user to compute B either directly from a theoretical equation or from performance.
The theoretical equation is simple, and requires inputs of aquifer properties for porosity and compressibility, as well as reservoir thickness, radius, and angle subtended by the aquifer. Unfortunately, as in all simple equations, this one should only be used when performance estimates are unavailable or too erratic for valid interpretation.

The second method requires reservoir performance data. The water influx is calculated at each historical point using OILMBE for oil reservoirs or GASMBE for gas reservoirs. The time, pressure, and water influx must then be input. The dimensionless time (Td) is calculated by the program, allowing the user to read or interpolate Tables 14-1 or 14-2 and find the corresponding dimensionless influx (QTd). The program calculates the implied value of B for each time-pressure-water influx point. This process can be repeated for different values of Re/RW to give a better estimate of the area of the aquifer.

Equations

B from theory:

$$
\mathrm{B}=1.119 \mathrm{POR}(\mathrm{CWI}+\mathrm{CFR}) \mathrm{RW}^{2} \mathrm{H}(\angle / 360)
$$

B from performance:

$$
\begin{aligned}
& \mathrm{B}_{\mathrm{i}}=\frac{\mathrm{We}_{\mathrm{i}}}{\Sigma\left(\triangle \mathrm{P}_{\mathrm{i}} \mathrm{QTd}_{\mathrm{i}}\right)} \\
& \mathrm{Td}_{\mathrm{i}}=\frac{1.734\left(10^{-5}\right) \mathrm{K} \mathrm{TIME}_{\mathrm{i}}}{\text { POR UWI } / \mathrm{CWI}+\mathrm{CFR}) \mathrm{RW}^{2}}
\end{aligned}
$$

QTd $_{i}$ is read or interpolated from Table 14-1:
$(\operatorname{Re} / \mathrm{RW}=\infty)$ or Table $14-2(\operatorname{Re} / \mathrm{RW}=1.5$ to 10$)$ at Td_{i}.

$$
\begin{aligned}
& \Delta P_{i}=1 / 2\left(P_{i-1}-P_{i}\right), P_{-1}=P_{0}=P I \\
& \operatorname{POR}=\frac{\% P O R}{100}
\end{aligned}
$$

Nomenclature

Symbol	Variable Name	Input or Output	English Units	$\underset{\text { Snits }}{\text { SI }}$
B*	Water influx coefficient	O	$\begin{gathered} \mathrm{BBL} / \\ \text { PSI } \end{gathered}$	$\begin{aligned} & \text { M3/ } \\ & \text { KPA } \end{aligned}$
Bi^{*}	Water influx coefficient at $\operatorname{TIME}_{\mathrm{i}}, \mathrm{P}_{\mathrm{i}}$, and We_{i}	O	$\begin{gathered} \text { BBL/ } \\ \text { PSI } \end{gathered}$	$\begin{aligned} & \text { M3/ } \\ & \text { KPA } \end{aligned}$
CWI	Initial water isothermal compressibility	I	1/PSI	1/KPA
H	Formation thickness \dagger	I	FT	M
K	Permeability	I	MD	MD
$\mathrm{P}_{\mathrm{i}}{ }^{*}$	Pressure	I	PSI	KPA
PI*	Initial pressure	I	PSI	KPA
QTdi	Dimensionless water influx at Td_{i}	I	-	-
RW	Internal radius of aquifer	I	FT	M
Re/RW	Radio of external to internal aquifer radii	I	-	-
TIME $_{i}{ }^{*}$	Time	I	YR	YR
Tdi	Dimensionless time	O	-	-
UWI	Initial water viscosity	I	CP	PA*S
$W \mathrm{e}_{\mathrm{i}}{ }^{*}$	Water influx at TIME $_{i}$ and P_{i}	I	BBL	M3
\measuredangle	Angle subtended by the reservoir	I	-	-

[^4]
Yes/No Questions

CORR?

Yes: Use Pac correlations to estimate PVT properties.
No: Input PVT properties.

EDIT?

SKIP?

Yes: Allow editing of TIME, P, and We values.
No: No editing necessary.
Yes: Skip input of PVT data.
No: Allow input of PVT data.

Table 14-1 QTd versus Td at Re/RW=									
Td	QTd								
0.00	0.000	38	20.080	89	39.272	300	105.968	590	187.166
0.01	0.112	39	20.488	90	39.626	305	107.437	600	189.852
0.05	0.278	40	20.894	91	39.979	310	108.904	610	192.533
0.10	0.404	41	21.298	92	40.331	315	110.367	620	195.208
0.15	0.520	42	21.701	93	40.681	320	111.827	625	196.544
0.20	0.606	43	22.101	94	41.034	325	113.284	630	197.878
0.25	0.689	44	22.500	95	41.385	330	114.738	640	200.542
0.30	0.758	45	22.897	96	41.735	335	116.189	650	203.201
0.40	0.898	46	23.291	97	42.084	340	117.638	660	205.854
0.50	1.020	47	23.684	98	42.433	345	119.083	670	208.502
0.60	1.140	48	24.076	99	42.781	350	120.526	675	209.825
0.70	1.251	49	24.466	100	43.129	355	121.966	680	211.145
0.80	1.359	50	24.855	105	44.858	360	123.403	690	213.784
0.90	1.460	51	25.244	110	46.574	365	124.838	700	216.417
1	1.569	52	25.633	115	48.277	370	126.270	710	219.016
2	2.447	53	26.020	120	49.968	375	127.699	720	221.670
3	3.202	54	26.406	125	51.648	380	129.126	725	222.980
4	3.893	55	26.791	130	53.317	385	130.550	730	224.289
5	4.539	56	27.174	135	54.976	390	131.972	740	226.904
6	5.153	57	27.555	140	56.625	395	133.391	750	229.514
7	5.743	58	27.935	145	58.265	400	134.808	760	232.120
8	6.314	59	28.314	150	59.895	405	136.223	770	234.721
9	6.869	60	28.691	155	61.517	410	137.635	775	236.020
10	7.411	61	29.068	160	63.131	415	139.045	780	237.318
11	7.940	62	29.443	165	64.737	420	140.453	790	239.912
12	8.457	63	29.818	170	66.336	425	141.859	800	242.501
13	8.964	64	30.192	175	67.928	430	143.262	810	245.086
14	9.461	65	30.565	180	69.512	435	144.664	820	247.668
15	9.949	66	30.937	185	71.090	440	146.064	825	248.957
16	10.434	67	31.308	190	72.661	445	147.461	830	250.245
17	10.913	68	31.679	195	74.226	450	148.856	840	252.819
18	11.386	69	32.018	200	75.785	455	150.249	850	255.388
19	11.855	'70	32.417	205	77.338	460	151.640	860	257.953
20	12.319	71	32.785	210	78.886	465	153.029	870	260.515
21	12.778	72	33.151	215	80.428	470	154.416	875	261.795
22	13.233	73	33.517	220	81.965	475	155.801	880	263.073
23	13.684	74	33.883	225	83.497	480	157.184	890	265.629
24	14.131	75	34.247	230	85.023	485	158.565	900	268.181
25	14.573	76	34.611	235	86.545	490	159.945	910	270.729
26	15.013	77	34.974	240	88.062	495	161.322	920	273.274
27	15.450	78	35.336	245	89.575	500	162.698	925	274.545
28	15.883	79	35.697	250	91.084	510	165.444	930	275.815
29	16.313	80	36.058	255	92.589	520	168.183	940	278.353
30	16.742	81	36.418	260	94.090	525	169.549	950	280.888
31	17.167	82	36.777	265	95.588	530	170.914	960	283.420
32	17.590	83	37.136	270	97.081	540	173.639	970	285.948
33	18.011	84	37.494	275	98.571	550	176.357	975	287.211
34	18.429	85	37.851	280	100.057	560	179.069	980	288.473
35	18.845	86	38.207	285	101.540	570	181.774	990	290.995
36	19.259	87	38.563	290	103.019	575	183.124	1000	293.514
37	19.671	88	38.919	295	104.495	580	184.473	1010	296.030

Table 14-1 cont.											
Td	QTd										
1020	298.543	1440	401.786	2700	693.877	5500	1296.893	30,000	5899.508	$7.0(10)^{\text {8 }}$	6.928(10) ${ }^{7}$
1025	299.799	1450	404.197	2750	705.090	5600	1317.709	35,000	6780.247	$8.0(10)^{8}$	$7.865(10)^{7}$
1030	301.053	1460	406.606	2800	716.280	5700	1338.486	40,000	7650.096	$9.0(10)^{8}$	$8.797(10)^{7}$
1040	303.560	1470	409.013	2850	727.449	5800	1359.225	50,000	9363.099	$1.0(10)^{\prime \prime}$	$9.725(10)^{7}$
1050	306.065	1475	410.214	2900	738.598	5900	1379.927	60,000	11,047.299	1.5(10) ${ }^{4}$	$1.429(10)^{8}$
1060	308.567	1480	411.418	2950	749.725	6000	1400.593	70,000	12,708.358	$2.0410)^{9}$	1.880(10) ${ }^{8}$
1070	311.066	1490	413.820	3000	760.833	6100	1421.224	75,000	13,531.457	$2.5(10)^{9}$	$2.328(10)^{8}$
1075	312.314	1500	416.220	3050	771.922	6200	1441.820	80,000	14,350.121	$3.0110)^{\circ}$	$2.771(10)^{8}$
1080	313.562	1525	422.214	3100	782.992	6300	1462.383	90,000	15,975.389	$4.0(10)^{9}$	$3.645(10)^{8}$
1090	316.055	1550	428.196	3150	794.042	6400	1482.912	100,000	17,586.284	$5.0(10)^{9}$	4.510(10) ${ }^{8}$
1100	318.545	1575	434.168	3200	805.075	6500	1503.408	125,000	21,560.732	$6.0(10)^{9}$	$5.368(10)^{8}$
1110	321.032	1600	440.128	3250	816.090	6600	1523.872	1.5\{10 ${ }^{5}$	$2.538(10)^{4}$	$7.0(10)^{9}$	6.220 10$)^{8}$
1120	323.517	1625	446.077	3300	827.088	6700	1544.305	2.0(10) ${ }^{5}$	$3.308(10)^{4}$	$8.0(10)^{9}$	$7.066(10)^{8}$
1125	324.760	1650	452.016	3350	838.067	6800	1564.706	$2.5(10)^{5}$	$4.066(10)^{4}$	$9.0(10)^{9}$	$7.909(10)^{8}$
1130	326.000	1675	457.945	3400	849.028	6900	1585.077	$3.0(10)^{5}$	$4.817(10)^{4}$	$1.0(10)^{10}$	8.747(10) ${ }^{8}$
1140	328.480	1700	463.863	3450	859.974	7000	1605.418	4.0(10) ${ }^{5}$	$6.267(10)^{4}$	$1.5(10)^{10}$	1.288(10) ${ }^{9}$
1150	330.958	1725	469.771	3500	870.903	7100	1625.729	$5.0(10)^{5}$	$7.699(10)^{4}$	2.0) 10$)^{10}$	1.697(10) ${ }^{9}$
1160	333.433	1750	475.669	3550	881.816	7200	1646.011	$6.0\{10)^{5}$	$9.113(10)^{4}$	$2.5(10)^{10}$	$2.103(10)^{9}$
1170	335.906	1775	481.558	3600	892.712	7300	1666.265	$7.0(10)^{5}$	$1.051(10)^{5}$	3.0 $\left\{_{10}\right\}^{10}$	2.505 (10) ${ }^{9}$
1175	337.142	1800	487.437	3650	903.594	7400	1686.490	$8.0(10)^{5}$	1.189(10) ${ }^{5}$	4.0(10) ${ }^{10}$	$3.299(10)^{4}$
1180	338.376	1825	493.307	3700	914.459	7500	1706.688	$9.0(10)^{5}$	$1.326(10)^{5}$	$5.0 \mid 10)^{10}$	4.087(10) ${ }^{\text {y }}$
1190	340.843	1850	499.167	3750	925.309	7600	1726.859	1.0(10) ${ }^{6}$	$1.462 / 10)^{5}$	6.0(10) ${ }^{10}$	4.808(10) ${ }^{9}$
1200	343.308	1875	505.019	3800	936.144	7700	1747.002	1.5(10) ${ }^{6}$	$2.126(10)^{5}$	7.0(10) ${ }^{10}$	$5.643(10)^{9}$
1210	345.770	1.900	510.861	3850	946.966	7800	1767.120	$2.0(10)^{6}$	$2.781 / 10)^{5}$	$8.0(10)^{10}$	$6.414(10)^{9}$
1220	348.230	1925	516.695	3900	957.773	7900	1787.212	2.5(10) ${ }^{6}$	$3.427(10)^{5}$	$9.0(10)^{10}$	7.183(10) ${ }^{\prime \prime}$
1225	349.460	1950	522.520	3950	968.566	8000	1807.278	$3.0(10)^{6}$	$4.064(10)^{5}$	1.0(10) ${ }^{11}$	7.948(10) ${ }^{9}$
1230	350.688	1975	528.337	4000	979.344	8100	1827.319	4.0(10) ${ }^{6}$	$5.313(10)^{5}$	1.5(10) ${ }^{11}$	$1.17(10)^{10}$
1240	353.144	2000	534.145	4050	990.108	8200	1847.336	$5.0(10)^{6}$	$6.544(10)^{5}$	$2.0 \mid 10)^{11}$	$1.55(10)^{10}$
1250	355.597	2025	539.945	4100	1000.858	8300	1867.329	$6.0(10)^{6}$	$7.761(10)^{5}$	$2.5(10)^{11}$	1.92(10) ${ }^{10}$
1260	358.048	2050	545.737	4150	1011.595	8400	1887.298	$7.0(10)^{6}$	$8.965(10)^{5}$	3.0(10) ${ }^{11}$	$2.29(10)^{10}$
1270	360.496	2075	551.522	4200	1022.318	8500	1907.243	$8.0(10)^{6}$	1.016(10) ${ }^{6}$	4.0) 10$)^{11}$	$3.02(10)^{10}$
1275	361.720	2100	557.299	4250	1033.028	8600	1927.166	$9.0(10)^{6}$	1.134(10) ${ }^{6}$	$5.0(10)^{11}$	$3.75(10)^{10}$
1280	362.942	2125	563.068	4300	1043.724	8700	1947.065	1.0(10) ${ }^{7}$	$1.252(10)^{6}$	$6.0(10)^{11}$	$4.47(10)^{10}$
1290	365.386	2150	568.830	4350	1054.409	8800	1966.942	$1.5(10)^{7}$	$1.828(10)^{6}$	7.0(10) $)^{11}$	$5.19(10)^{10}$
1300	367.828	2175	574.585	4400	1065.082	8900	1986.796	$2.0(10)^{7}$	$2.398(10)^{6}$	$8.0(10)^{11}$	$5.89(10)^{10}$
1310	370.267	2200	580.332	4450	1075.743	9000	2006.628	$2.5(10)^{7}$	$2.961(10)^{6}$	$9.0(10)^{11}$	$6.58(10)^{10}$
1320	372.704	2225	586.072	4500	1086.390	9100	2026.438	$3.0(10)^{7}$	$3.517(10)^{6}$	1.0(10) ${ }^{12}$	$7.28(10)^{10}$
1325	373.922	2250	591.806	4550	1097.024	9200	2046.227	$4.0(10)^{7}$	$4.610(10)^{6}$	$1.5(10)^{12}$	$1.08(10)^{11}$
1330	375.139	2275	597.532	4600	1107.646	9300	2065.996	$5.0(10)^{7}$	$5.689(10)^{6}$	$2.0(10)^{12}$	$1.42(10)^{11}$
1340	377.572	2300	603.252	4650	1118.257	9400	2085.744	6.0\{10 $\}^{7}$	$6.758(10)^{6}$		
1350	380.003	2325	608.965	4700	1128.854	9500	2105.473	$7.0(10)^{7}$	$7.816[10)^{6}$		
1360	382.432	2350	614.672	4750	1139.439	9600	2125.181	$8.0(10)^{7}$	$8.866(10)^{6}$		
1370	384.859	2375	620.372	4800	1150.012	9700	2144.878	$9.0(10)^{7}$	$9.911(10)^{6}$		
1375	386.070	2400	626.066	4850	1160.574	9800	2164.555	1.0(10) ${ }^{8}$	1.095(10) ${ }^{7}$		
1380	387.283	2425	631.755	4900	1171.125	9900	2184.216	1.5(10) ${ }^{8}$	$1.604(10)^{7}$		
1390	389.705	2450	637.437	4950	1181.666	10,000	2203.861	$2.0(10)^{8}$	$2.108(10)^{7}$		
1400	392.125	2475	643.133	5000	1192.198	12,500	2688.967	$2.5(10)^{8}$	$2.607(10)^{7}$		
1410	394.543	2500	648.781	5100	1213.222	15,000	3164.780	$3.0(10)^{8}$	$3.100(10)^{7}$		
1420	396.959	2550	660.093	5200	1234.203	17,500	3633.368	$4.0(10)^{8}$	$4.071(10)^{7}$		
1425	398.167	2600	671.379	5300	1255.141	20,000	4095.800	$5.0(10)^{8}$	$5.032(10)^{7}$		
1430	399.373	2650	682.610	5400	1276.037	25,000	5005.726	6.0(10) ${ }^{8}$	$5.984(10)^{7}$		

Table 14-2 QTd versus Td for Various Values of Re/RW

$\mathrm{Re} / \mathrm{RW}=1.5$		$\mathrm{Re} / \mathrm{RW}=2.0$		Re/RW $=2.5$		$\mathrm{Re} / \mathrm{RW}=3.0$		$\mathrm{Re} / \mathrm{RW}=3.5$		$\mathrm{Re} / \mathrm{RW}=4.0$		$\mathrm{Re} / \mathrm{RW}=4.5$	
Td	QTd												
$5.0(10)^{-2}$	0.276	$5.0(10)^{-3.3}$	0.278	1.0(10) ${ }^{-1}$	0.408	3.0 (10) ${ }^{-1}$	0.755	1.00	1.571	2.00	2.442	2.5	2.835
$6.0(10)^{-2}$	0.304	$7.5(10)^{-3}$	0.345	$1.5(10)^{-1}$	0.509	4.0 (10) ${ }^{-1}$	0.895	1.20	1.761	2.20	2.598	3.0	3.196
7.0(10) $)^{-2}$	0.330	$1.0\{10\}^{-1}$	0.404	$2.0(10)^{-1}$	0.599	$5.0(10)^{-1}$	1.023	1.40	1.910	2.40	2.748	3.5	3.537
$8.0(10)^{-2}$	0.354	1.25(10) ${ }^{-1}$	0.458	$2.5(10)^{-1}$	0.681	$6.0(10)^{-1}$	1.143	1.60	2.111	2.60	2.893	4.0	3.859
9.0(10) ${ }^{-2}$	0.375	$1.50\{10)^{-1}$	0.507	$3.0(10)^{-1}$	0.758	$7.0(10)^{-1}$	1.256	1.80	2.273	2.80	3.031	4.5	4.165
$1.0 \mid 10)^{-1}$	0.395	1.75(10) ${ }^{-1}$	0.553	$3.5(10)^{-1}$	0.829	8.0 (10) ${ }^{-1}$	1.363	2.00	2.427	3.00	3.170	5.0	4.454
$1.1(10)^{-1}$	0.414	2.00(10) ${ }^{-1}$	0.597	$4.0(10)^{-1}$	0.987	$9.0(10)^{-1}$	1.465	2.20	2.574	3.25	3.334	5.5	4.727
$1.2(10)^{-1}$	0.431	$2.25(10)^{-1}$	0.638	$4.5(10)^{-1}$	0.962	$1.00(10)^{-1}$	1.563	2.40	2.715	3.50	3.493	6.0	4.986
$1.3(10)^{-1}$	0.446	2.50(10) ${ }^{-1}$	0.678	$5.0(10)^{-1}$	1.024	$1.25(10)^{-1}$	1.791	2.60	2.849	3.75	3.645	6.5	5.231
$1.4(10)^{-1}$	0.461	2.75(10) ${ }^{-1}$	0.715	$5.5(10)^{-1}$	1.083	$1.50(10)^{-1}$	1.997	2.80	2.976	4.00	3.792	7.0	5.464
$1.5(10)^{-1}$	0.474	$3.00(10)^{-1}$	0.751	$6.0(10)^{-1}$	1.140	1.75	2.184	3.00	3.098	4.25	3.932	7.5	5.684
$1.6(10)^{-1}$	0.486	$3.25(10)^{-1}$	0.785	$6.5(10)^{-1}$	1.195	2.00	2.353	3.25	3.242	4.50	4.068	8.0	5.892
1.7(10) ${ }^{-1}$	0.497	3.50(10) ${ }^{-1}$	0.817	$7.0(10)^{-1}$	1.248	2.25	2.507	3.50	3.379	4.75	4.198	8.5	6.089
$1.8(10)^{-1}$	0.507	$3.75(10)^{-1}$	0.848	$7.5(10)^{-1}$	1.299	2.50	2.646	3.75	3.507	5.00	4.323	9.0	6.276
$1.9(10)^{-1}$	0.517	$4.00(10)^{-1}$	0.877	$8.0(10)^{-1}$	1.348	2.75	2.772	4.00	3.628	5.50	4.560	9.5	6.453
$2.0(10)^{-1}$	0.525	4.25(10) ${ }^{-1}$	0.905	$8.5(10)^{-1}$	1.395	3.00	2.886	4.25	3.742	6.00	4.779	10	6.621
$2.1(10)^{-1}$	0.533	$4.50(10)^{-1}$	0.932	9.0(10) $)^{-1}$	1.440	3.25	2.990	4.50	3.850	6.50	4.982	11	6.930
$2.2(10)^{-1}$	0.541	4.75(10) ${ }^{-1}$	0.958	$9.5(10)^{-1}$	1.481	3.50	3.081	4.75	3.951	7.00	5.169	12	7.208
$2.3(10)^{-1}$	0.548	$5.00 \mid 10)^{-1}$	0.983	1.0	1.526	3.75	3.170	5.00	4.017	7.50	5.313	13	7.457
$2.4(10)^{-1}$	0.551	$5.50(10)^{-1}$	1.028	1.1	1.605	4.00	3.217	5.50	4.222	8.00	5.504	14	7.680
$2.5(10)^{-1}$	0.559	$6.00(10)^{-1}$	1.070	1.2	1.679	4.25	3.317	6.00	4.378	8.50	5.653	15	7.880
$2.6(10)^{-1}$	0.565	$6.50(10)^{-1}$	1.108	1.3	1.747	4.50	3.381	6.50	4.516	9.00	5.790	16	8.060
$2.8(10)^{-1}$	0.574	$7.00(10)^{-1}$	1.143	1.4	1.811	4.75	3.439	7.00	4.639	9.50	5.917	18	8.365
$3.0(10)^{-1}$	0.582	$7.50(10)^{-1}$	1.174	1.5	1.870	5.00	3.491	7.50	4.749	10	6.035	20	8.611
$3.2(10)^{-1}$	0.588	$8.00(10)^{-1}$	1.203	1.6	1.921	5.50	3.581	8.00	4.846	11	6.246	22	8.809
$3.4(10)^{-1}$	0.594	$9.00(10)^{-1}$	1.253	1.7	1.975	6.00	3.656	8.50	4.932	12	6.425	24	8.968
$3.6(10)^{-1}$	0.599	1.00	1.295	1.8	2.022	6.50	3.717	9.00	5.009	13	6.580	26	9.097
$3.8(10)^{-1}$	0.603	1.1	1.330	2.0	2.106	7.00	3.767	9.50	5.078	14	6.712	28	9.200
$4.0110)^{-1}$	0.606	1.2	1.358	2.2	2.178	7.50	3.809	10.00	5.138	15	6.825	30	9.283
$4.5(10)^{-1}$	0.613	1.3	1.382	2.4	2.241	8.00	3.843	11	5.241	16	6.922	34	9.404
$5.0(10)^{-1}$	0.617	1.4	1.402	2.6	2.294	9.00	3.894	12	5.321	17	7.004	38	9.481
$6.0(10)^{-1}$	0.621	1.6	1.432	2.8	2.310	10.00	3.928	13	5.385	18	7.076	42	9.532
$7.0(10)^{-1}$	0.623	1.7	1.444	3.0	2.380	11.00	3.954	14	5.435	20	7.189	46	9.565
$8.0(10)^{-1}$	0.624	1.8	1.453	3.4	2.444	12.00	3.967	15	5.476	22	7.272	50	9.586
		2.0	1.468	3.8	2.491	14.00	3.985	16	5.506	24	7.332	60	9.612
		2.5	1.487	4.2	2.525	16.00	3.993	17	5.531	26	7.377	70	9.621
		3.0	1.495	4.6	2.551	18.00	3.997	18	5.551	30	7.434	80	9.623
		4.0	1.499	5.0	2.570	20.00	3.999	20	5.579	34	7.461	90	9.624
		5.0	1.500	6.0	2.599	22.00	3.999	25	5.611	38	7.481	100	9.625
				7.0	2.613	24.00	4.000	30	5.621	42	7.490		
				8.0	2.619			35	5.624	46	7.494		
				9.0	2.622			40	5.625	50	7.497		
				10.0	2.624								

$\mathrm{Re} / \mathrm{RW}=5.0$		$\mathrm{Re} / \mathrm{RW}=6.0$		$\mathrm{Re} / \mathrm{RW}=7.0$		$\mathrm{Re} / \mathrm{RW}=8.0$		$\mathrm{Re} / \mathrm{RW}=9.5$		$\mathrm{Re} / \mathrm{RW}=10.0$	
Td	QTd										
3.0	3.195	6.0	5.148	9.00	6.861	9	6.861	10	7.417	15	9.965
3.5	3.542	6.5	5.440	9.50	7.127	10	7.398	15	9.945	20	12.32
4.0	3.875	7.0	5.724	10	7.389	11	7.920	20	12.26	22	13.22
4.5	4.193	7.5	6.002	11	7.902	12	8.431	22	13.13	24	14.09
5.0	4.499	8.0	6.273	12	8.397	13	8.930	24	13.98	26	14.95
5.5	4.792	8.5	6.537	13	8.876	14.	9.418	26	14.79	28	15.78
6.0	5.074	9.0	6.795	14	9.341	15	9.895	28	15.59	30	16.59
6.5	5.345	9.5	7.047	15	9.791	16	10.361	30	16.35	32	17.38
7.0	5.605	10.0	7.293	16	10.23	17	10.82	32	17.10	34	18.16
7.5	5.854	10.5	7.533	17	10.65	18	11.26	34	17.82	36	18.91
8.0	6.094	11	7.767	18	11.06	19	11.70	36	18.52	38	19.65
8.5	6.325	12	8.220	19	11.46	20	12.13	38	19.19	40	20.37
9.0	6.547	13	8.651	20	11.85	22	12.95	40	19.85	42	21.07
9.5	6.760	14	9.063	22	12.58	24	13.74	42	20.48	44	21.76

$\mathrm{Re} / \mathrm{RW}=5.0$		$\mathrm{Re} / \mathrm{RW}=6.0$		$\mathrm{Re} / \mathrm{RW}=7.0$		$\mathrm{Re} / \mathrm{RW}=8.0$		$\mathrm{Re} / \mathrm{RW}=9.5$		$\mathrm{Re} / \mathrm{RW}=10.0$	
Td	QTd										
10	6.965	15	9.456	24	13.27	26	14.50	44	21.09	46	22.42
11	7.350	16	9.829	26	13.92	28	15.23	46	21.60	48	23.07
12	7.706	17	10.19	28	14.53	30	15.92	48	22.26	50	23.71
13	8.035	18	10.53	30	15.11	34	17.22	50	22.82	52	24.33
14	8.339	19	10.85	35	16.39	38	18.41	52	23.36	54	24.94
15	8.620	20	11.16	40	17.49	40	18.97	54	23.89	56	25.53
16	8.870	22	11.74	45	18.43	45	20.26	56	24.39	58	26.11
18	9.338	24	12.26	50	19.24	50	21.42	58	24.88	60	26.67
20	9.731	25	12.50	60	20.54	55	22.46	60	25.36	65	28.02
22	10.07	31	13.74	70	21.45	60	23.40	65	26.48	70	29.29
24	10.35	35	14.40	80	22.13	70	24.98	70	27.52	75	30.49
26	10.59	39	14.93	90	22.63	80	26.26	75	28.48	80	31.61
28	10.80	51	16.05	100	23.00	90	27.28	80	29.36	85	32.67
30	10.98	60	16.56	120	23.47	100	28.11	85	30.18	90	33.66
34	11.26	70	16.92	140	23.71	120	29.31	90	30.93	95	34.60
38	11.46	80	17.14	160	23.85	140	30.08	95	31.63	100	35.48
42	11.61	90	17.27	180	23.92	160	30.58	100	32.27	120	38.51
46	11.71	100	17.36	200	23.96	180	30.91	120	34.39	140	40.89
50	11.79	110	17.41	500	24.00	200	31.12	140	35.92	160	42.75
60	11.91	120	17.45			240	31.34	160	37.04	180	41.21
70	11.96	130	17.46			280	31.43	180	37.85	200	45.36
80	11.98	140	17.48			320	31.47	200	38.44	240	46.95
90	11.99	150	17.49			360	31.49	240	39.17	280	47.94
100	12.00	160	17.49			400	31.50	280	39.56	320	48.54
120	12.00	180	17.50			500	31.50	320	39.77	360	48.91
		200	17.50					360	39.88	400	49.14
		220	17.50					400	39.94	440	49.28
								440	39.97	480	49.36
								480	39.98		

Example 1

The SW Franklin field has produced for 3.24 YR with production as indicated in Table 14-3. It is suspected that the reservoir has a fairly strong water drive with an aquifer of unknown extent. The reservoir data is almost the same as the NW Franklin field (see the example for OILPVT and Example 2 of OILMBE) but an original oil in place of $54,500,000 \mathrm{BBL}$ and no water production. Other differences are as follows:

> Porosity $=15.5 \%$
> Water saturation $=38.1 \%$
> Water salinity $=2.2 \%$

Outer radius of aquifer $=4,000 \mathrm{FT}$
Determine the water influx coefficient and aquifer size for this reservoir.
The initial step in solving this problem is to load and run OILMBE to calculate water influx at each point. These calculated water influx values have been included in Table 14-3. The next step is to load and run INFCOEF, entering the times, pressures, and calculated values of water influx. The value of Re/ RW is for annotation only. As a first trial, we will use infinite aquifer values.

Table 14-1 is interpolated at each output Td value to determine the corresponding QTd. This is just a simple linear interpolation. For example, Td1 is 5.929. The interpolation calculation is done with $(5,4.539)$ and $(6,5.153)$, the two (Td, Qtd) points surrounding the desired QTd:

$$
\frac{6-5.929}{6-5}=\frac{5.153-\mathrm{QTd}}{5.153-4.539}
$$

$$
\mathrm{QTd}=5.109
$$

A similar interpolation was performed for each Td value. Only the interpolated QTd values are shown in the keystrokes.
Since the calculated values of B are declining somewhat throughout the history, a smaller aquifer is indicated. Obviously, no aquifers are truly infinite; nonetheless, at early times (and, occasionally, for the life of the field) they may behave as if they were essentially infinite.
The next trial is for $\mathrm{Re} / \mathrm{RW}=5$. Now the QTd values must come from Table 14-2. Whenever a calculated Td value is beyond the range of Table 14-2 at that Re/RW, QTd must be read from Table 14-1 at
that Td (again, at early times the aquifer is infinite acting). Note that the calculated values of B are increasing throughout the history. Subsequent trials for Re/RW $=6,7$, and 8 were also performed. Figure 14-1 plots the calculated values of B as a function of time and $\mathrm{Re} / \mathrm{RW}$. It appears that $\mathrm{Re} / \mathrm{RW}=7$ is a best fit, with $\mathrm{B}=625 \mathrm{BBL} / \mathrm{PSI}$. This is an average of all values except the second, which is excessively low to be considered valid.

	Table 14-3			
TTME (YR)	$P(P S I)$	$N P(B B L)$	$G P(M C F)$	We (BBL)
0.0	2,850	-	-	-
0.32	2,818	72,757	37,105	51,244
1.25	2,792	220,332	112,325	205,749
2.1	2,767	465,009	237,294	485,646
3.01	2,725	785,448	401,380	839,418
3.24	2,699	$1,103,036$	562,548	$1,210,851$

Keystrokes $(S I Z E>=044)$	Display	Comments
[XEQ] [ALPHA] OILMBE [ALPHA]	CORR? Y/N:	Last character is Y or N
Y [R/S]	SKIP? Y/N:	Last character is Y or N
N [R/S]	$T \mathrm{C}=$?	
396.944 [R/S]	$\mathrm{PC}_{C}=$?	
660.1595 [R/S]	STD $T=$?	
60 [R/S]	STD $P=$?	
14.65 [R/S]	SEP $T=$?	
95 [R/S]	SEP P = ?	
125 [R/S]	$O / L G=$?	
31.7 [R/S]	GAS G=?	
. 762 [R/S]	$T=$?	GAS GS printed
155 [R/S]	$R S /=$?	
510 [R/S]	$\% N A C L=$?	PBP printed
$2.2[\mathrm{R} / \mathrm{S}]$	$\% P O R=$?	
15.5 [R/S]	$\% S W C=$?	
38.2 [R/S]	$P \mathrm{l}=$?	
2850 [R/S]	$P=$?	
2818 [R/S]	$N P=$?	
72757 [R/S]	$G P=$?	
37105 [R/S]	$W P=$?	
0 [R/S]	$N \quad W e$	
[A]	$N=$?	N known
54.5 [EEX] 6 [R/S]	$N \quad W e$	We printed
[R/S]	$P=$?	
2792 [R/S]	$N P=$?	
220332 [R/S]	$G P=$?	
112325 [R/S]	$W P=$?	
[R/S]	N We	
[A]	$N=$?	
[R/S]	$N \quad W e$	We printed
[R/S]	$P=$?	
2767 [R/S]	$N P=$?	
465009 [R/S]	$G P=$?	
237294 [R/S]	$W P=$?	

Keystrokes $(S I Z E>=044)$	Display	Comments
[R/S]	$N \quad W e$	
[A]	$N=$?	
[R/S]	$N \quad W e$	We printed
[R/S]	$P=$?	
2725 [R/S]	$N P=$?	
785448 [R/S]	$G P=$?	
401380 [R/S]	$W P=$?	
[R/S]	$N \quad W e$	
[A]	$N=$?	
[R/S]	$N \quad W e$	We printed
[R/S]	$P=$?	
2699 [R/S]	$N P=$?	
1103036 [R]	$G P=$?	
562548 [R/S]	$W P=$?	
[R/S]	$N \quad W e$	
[A]	$N=$?	
[R/S]	$N \quad W e$	We printed
Load INFCOEF		
[//] [FIX] 3	1,210,851.286	FIX 3 to match accuracy of Tables 14-1 and 14-2
[XEQ] [ALPHA] INFCOEF [ALPHA]	$S I Z E>=130.0000$	
[XEQ] [ALPHA] SIZE [ALPHA] 130 [R/S]	CORR? Y/N:Y	
[R/S]	SKIP? Y/N:N	
Y [R/S]	$R W=$?	
4000 [R/S]	$K=$?	
62 [R/S]	$P I=$?	
[R/S]	$H, \triangle T, P, W e$	
[E]	TME1 $=$?	TIME,P, and We known
. 32 [R/S]	$P 1=$?	
2818 [R/S]	We $1=$?	
51244 [R/S]	TME2 $=$?	
1.25 [R/S]	P2=?	
2792 [R/S]	$\mathrm{We} 2=$?	
205749 [R/S]	TIME3 $=$?	
2.1 [R/S]	P3 $=$?	
2767 [R/S]	We3=?	
485646 [R/S]	TIME4 $=$?	
3.01 [R/S]	P4 $=$?	
2725 [R/S]	We4 = ?	
839418 [R/S]	TIME5 = ?	
3.24 [R/S]	$P 5=$?	
2699 [R/S]	We5=?	
1210851 [R/S]	TIME6=?	
[R/S]	EDIT? Y/N:N	
[R/S]	Re/RW=?	
[EEX] 99 [R/S]	QTd1 $=$?	Td1 printed
5.109 [R/S]	QTd2 $=$?	B1 and Td2 printed
13.755 [R/S]	QTd3 $=$?	B2 and Td3 printed
20.45 [R/S]	QTd $4=$?	B3 and Td4 printed

Keystrokes （SIZE＞＝044）	Display	Comments
27.084 ［R／S］	QTd5 $=$ ？	B4 and Td5 printed
28.701 ［R／S］	$\mathrm{Re} / \mathrm{RW}=$ ？	B5 printed
5 ［R／S］	QTd1 $=$ ？	Td1 printed （printout of B_{i} and $T d_{i}$ values proceeds as above）
5.034 ［R／S］	QTd2 $=$ ？	
10.232 ［R／S］	QTd3＝？	
11.494 ［R／S］	QTd $4=$ ？	
11.859 ［R／S］	QTd5 $=$ ？	
11.91 ［R／S］	Re／RW＝？	
6 ［R／S］	QTd1 $=$ ？	
5.109 ［R／S］	QTd2 $=$ ？	
12.041 ［R／S］	QTd3 $=$ ？	
14.918 ［R／S］	QTd4 $=$ ？	
16.32 ［R／S］	QTd5＝？	
16.561 ［R／S］	$R \mathrm{R} / \mathrm{RW}=$ ？	
7 ［R／S］	QTd1 $=$ ？	
5.109 ［R／S］	QTd2＝？	
12.98 ［R／S］	QTd3 $=$ ？	
17.249 ［R／S］	QTd4 $=$ ？	
19.989 ［R／S］	QTd5＝？	
20.542 ［R／S］	Re／RW＝？	
8 ［R／S］	QTd1＝？	
5.109 ［R／S］	QTd2 $=$ ？	
13.407 ［R／S］	QTd $3=$ ？	
18.664 ［R／S］	QTd4 $=$ ？	
22.604 ［R／S］	QTd5＝？	
23.404 ［R／S］	Re／RW＝？	

OIL MATL EAL

CORR：YES	WP $=72,757.10060 \mathrm{BEL}$
SKIP：H0	$\mathrm{GF}=37$ ：105．8000 HCF
Tc－396．9446 R	UP＝6．8BEO BEL
$\mathrm{Pc}=660.1595 \mathrm{PSI}$	
STI $\mathrm{T}=66.6660 \mathrm{~F}$	He＝51，243．8607 BEL
STIL $F=14.6586 \mathrm{PSJ}$	
SEP T＝95．0180 F	$\mathrm{P}=2.792 .6800 \mathrm{PSI}$
SEP P $=125.1006 \mathrm{PSI}$	$\mathrm{HF}=226,332.68686 \mathrm{EBL}$
$01 \mathrm{LC} \mathrm{G}=31.7006 \mathrm{MFI}$	$6 \mathrm{~F}=112.325 .6808 \mathrm{HCF}$
GAS $6=6.7624$	He $=205,749.2482 \mathrm{ECL}$
6月9 69 $=6.7671$	
$\mathrm{T}=155.0680 \mathrm{~F}$	$\mathrm{F}=2,767.408 \mathrm{PCS}$
RSI $=510.8 \mathrm{BBO} \mathrm{SCF} \mathrm{FEEL}$	$\mathrm{HF}=465.869 .6666 \mathrm{BEL}$
$\mathrm{PBP}=2,514.4215 \mathrm{FGI}$	$\mathrm{GP}=237,294$ ， 8680 BCF
7nfCL 2.2000	He＝485，645．8223 㫙
7P0F＝15．506	
754C＝ 38.2006	$\mathrm{P}=2,725.0060 \mathrm{PGI}$
FI $=2,850.6060 \mathrm{PSI}$	$\mathrm{NP}=785,448.0068 \mathrm{BEL}$
	He＝639，417．9074 BBL

 $\mathrm{GP}=562,548,060 \mathrm{HCF}$ $\mathrm{He}=1,210,651,286 \mathrm{BEL}$

HZO INF COEF

SKIP：YES
Me／RH＝5． 866

$\mathrm{K}=62.0 \mathrm{Bn} \mathrm{MI} \quad$ Tdi $=5.929$
QTd $=5.034$
B1－636．224 BEL／PSI

Tdez 23.158
日1d2＝16．232
E2＝664． 354 BEL／PSI

Td $3=38.966$
91d $3=11.494$
B3＝797．456 BEL／PSI

T14 $=55.765$
$0744=11.859$
B4＝381．163 BEL／PSI

Td5＝60． 826
［TdTE 11.916
B5 $=942.612$ B8L／PSI
$\mathrm{Re} / \mathrm{RH}=6.000$

TdI＝5．929
GTd $=5.109$
81－626．884 BBL／PSI
$T \mathrm{~d} 2=23.158$
QTd2＝12． 841
$\mathrm{B} 2=6$ 日． $3.693 \mathrm{BBL} / \mathrm{PSI}$
Td2 23.158
0Td $2=13.755$
$\mathrm{B} 2=55 \mathrm{~B} .735 \mathrm{BEL} \mathrm{FSI}$

Td $3=38.966$
प103＝29． 45 g
B3 $=567.695$ BEL／PSI
Td4＝55．765
$01 \mathrm{~d} 4=27.684$
B4＝542．155 BEL／PSI

Td5＝60． 826
07d5＝25．761
E5＝544． $390 \mathrm{EEL} / \mathrm{PSI}$

Tdi $=5.929$	Td $4=55.765$
0Tdi=5.169	QTd4=19.989
B1-626.894 BRL/PSI	B4=634.871 BEL/PSI
Td2 23.158	Td5 $=68.926$
QTde $=12.986$	QTd $5=28.542$
EE $=578.285 \mathrm{EELFSI}$	B5 $=618.811 \mathrm{BBL} / \mathrm{PSI}$
Td3=38.966	$\mathrm{Re} / \mathrm{RH}=8.000$
0Td $=17.249$	
E3 $=529.488 \mathrm{EEL} / \mathrm{PSI}$	

Tdi $=5.929$	$\mathrm{E} 3=593.912 \mathrm{BEL} / \mathrm{FSI}$
QTdi=5.169	
B1-626. $984 \mathrm{BEL} / \mathrm{PSI}$	Td4=55.765
	OTd $4=22.684$
Td2=23.158	E4=592.830 EEL/PSI
07e $=13.487$	
$\mathrm{B}=567.313 \mathrm{BEL} / \mathrm{PSI}$	Td5 506.626
	QTd ${ }^{2}=23.404$
Td3-36.906	85 $=568.808$ EELPSI

Figure 14-1

Example 2

To calculate B directly (no performance), the thickness (80 FT) and angle subtended by the reservoir $\left(360^{\circ}\right.$ in this case) must by input. Recall that the \varangle symbol means angle on the HP-41. With these input, the value of B is calculated to be $1,596 \mathrm{BBL} / \mathrm{PSI}$. This value is over 2.5 times greater than that indicated from performance. Using the first value for prediction (see INFLUX) would result in tremendously overestimated water influx. So, B should always be evaluated from performance.

Keystrokes	Display	Comments
[R/S]	$H, ¢ \quad T, P, W e$	
[A]	$H=$?	H and $<$ known
80 [R/S]	$\triangle=$?	Angle
360 [R/S]	H, \sim T,P,We	B printed
[/I] [FIX] 4	1,595.9691	Back to FIX 4

$H=86.690 \mathrm{FT}$
$\triangle=360$. 806
$\mathrm{B}=1,595,969 \mathrm{BEL} / \mathrm{PSI}$

User Instructions

55 We2（BBL）
56 QTd2
57 TIME3（YR）
etc．
Registers 10－15，20－25，and 36－40 unused

Flags

00 Set：INFLUX being run．
Clear：INFCOEF being run．
01 Set：Use Pac correlations to estimate PVT properties．
Clear：Input PVT properties．
02 Set：Skip input of PVT data．
Clear：Allow input of PVT data．
03 Set：Allow editing of TIME，P ，and We values．
Clear：No editing necessary．
04 Set：Water influx coefficient units not yet input．
Clear：Water influx coefficient units have been input．

07 Set：Time and water influx units not yet input．
Clear：Time and water influx units have been input．

Program Listing
日1＊LEL＂INFCOEF＂STO 42 FS？ 98 ADV＂E＂
＂H20 INF COEF＂ 129 XEQ 28 CF 88 GTO BO
XROM＂TITLE＂FL？C 25
PROAPT CF 00 SF 04 59＊LBL＂INFLUX＝
SF 07 SF 27 XEQ 15 ＂H20 INFLIU 129
XROM＂TITLE＂FC？C 25
PROMPT SF 68 CF 84
CF 87 HE日 15 XEA 16
ADY SF 98

72＋LBL 01
41 STO 99 －B＂XEQ 26 XEO 17 GTO 11

794LEL 15
SF 66 ＂ 4.3 ．ASTO 93
＂F／KPA＂ASTO 43 ＂YR＂
ASTO 06 ＂KPA＂ASTO 08
CLA ASTO 84 ASTO 97
ASTO 99 ASTO $44{ }^{*}$ CORR＂
1 XROM＂Y／N？＂FS？ 01
GT0 $89 \quad 31 \quad 570$ 日月
＂1／PSI＂ASTO B1 CLA

Program Listing（cont．）

ASTO 82 ASTOZ＂1／EPA ASTO Y＂CH＂XROLH＂IHU＂ ＂1／KPA＂ASTO Y CLA ASTO 2 ＂CFR＂
XROM＂INU＂ 25 STO 06 ＂CF＂ASTO O1 CLH ASTO 92 ASTOZ 2 ＂PA＊S＂ ASTO Y＂UHIL＂ KROM＂INU＂XROH＂ ZPOR ＂ GTO 10
$129+$ LBL 89

FS？ 02 GT0 10 XROH＂T＂
XROH＂ ZNACL －
XROA ${ }^{2} \mathrm{ZPOR} \mathrm{R}^{\prime}$
1384LEL 19
36 STO $06{ }^{-10}$
ASTO GI CLA ASTO 日
ASTO 2 －月＂ASTO γ
－RH＂KROH＂INU＂ 28

ASTO Y CLA ASTO 02
ASTO Z＂E＂XROH＂IHU＂

STO 17 FC？ 61 RTH
XROH＂CCH＂ 51032
XROH＂CCFR 51033
KROH＂CUH＂ $5 T 026$ RTH
1744LEL 16
CF $83 \quad 1.1 \quad 50045$
1784LBL 62
4851086
1814LEL
FC？ 63 HIT FS？ 67
SF 68 YEE 18 FC？ 63
F5？ 22 GT0 84 FC 23
GTO 12
1924LBL 84
CF 88 YED 19 PCL 35

TONE 3 －P＞PI＂PROMPT $1 \mathrm{ST}-0 \mathrm{GTO} 54$

2054LBL 11
FSTC 07 5F 08 FC？ 00 YEQ 21 OF 时 2 FL 明 1 ST＋日6 IS6 45 67063

2174LBL 12
RCL 45 INT 1 － $1 E 3$

+ LASTK－STO 48
$\$ 1045$＂EIIT＂ 3 YR0青＂Y／W？F5？ 63 GT0 02 RCL 29 RCL 18 （ RCL 26 ／RCL 32 RCL $33+$ RCL 31號
＂PSI＊NIMCP＊FT2－1
＂FTRE＂COH 100 ＊
STO 34 RCL 35 STO 46 XC） 42 STO 45 RCL 48 FRC 4 E3 $* 46.04694$ $+51047$

2624LBL 05
TOHE 5 RCL 478 － RCL IHI X RCL IND 47 － 2 ／STO IND 47 DSE 47 67085 RCL $455 T 042$ TONE 9 RTH

2794 LEL 17
AIV 29 STO GB＂Re／RH＂
YROH ＂IN $^{-1}$ FC？ 22 RTN
49 STO 47 RCL 48 51045

291 LEL 66
ADY RCL 34 RCL IHI 47
＊YEQ 232 ST 47
RCL 47 ST0 日G XED 24
XEE 3 FS？ 06 GTO 13
， 57042 YER 27
GT0 14
3994 LEL 13

	401＋LEL 25
$314 *$ LPL 14	＊8＂yel 29
CF $682 \mathrm{ST}+47 \mathrm{ISS} 45$	
670866017	$464+L$ EL 26
	YEE 10 XROH＂Int＂RIM
321 LLBL 18	STO 43 KCH ST0 44 Rt
＂TIME＂YEQ 29 ASTO T	RTN
＂WR＂ASto 01 CLA	
ASTO 62 ARCL T RCL 67	413 LPL 27
RCL 6 RCL 2	
Y Y\％Y STO 07 Rt RTH	416＊LEL 28
	FSTC 84 SF 08 yee in
3404 LEL 19	\％ROA＂OUTK＂RIDH STO 43
＂F＂YEQ 29	YCY STO 44 Rt RTH
3434 LBL 20	427＋LBL 16
ASTO T＂PSI＂ASTO 81	ASTO T＂EEL／PEI＂
CLA ASTO 02 ARCL T	AST0 91 ASHF ASTO 42
RCL 89 RCL 88 RCL 2	CLA ARCL T RCL 44
XROM＂IHK＂RDN ST0 88	RCL 43 RCL Z RTH
K $\>Y$ ST0 99 RT RTH	
	4394LEL 29
$364+L$ BL 21	ST0 05 CLST FS？ 411
SEE 09 YROM＂IMK＂RDH	＋FS？ $462+5$
STO 03 KSY ST0 64 Ct	FS？ $391+\mathrm{F}$ ？ 382
RTH	＋F5？ $374+\mathrm{F5} 336$
	$8+\mathrm{FS} 229 \mathrm{CHS}$
369＋LBL 22	RCL 45 FIK O OF 29
KEQ 69 KROH＂OUTK＂RDH	ARCL X XKY XO O ？
570 G3 KCY STO 84 Rt	3529 Entert frc 5
RTN	FIX IND Y $\mathrm{X}=0$ ？
	SCI INT Y 1 X＝Y？
3788 LEL 69	ENG INI 2 RCL 65 RTH
＂He＂Yed 29 ASTO T	
＂BBL＂AST0 日l CLA	4834LEL 30
ASTO Q2 ARCL T RCL 64	RCL 471.84864
RCL 83 RCL 2 RTH	5104650 STO 明 CL
$391+$ LEL 23	$491+$ LBL 67
＂Td＂KEE 29 YROH＂OUT＂	TONE 5 RCL IMD 46
RTH	RCL IND 咟 $*+4$
	STP 68 KMY IISE 46
3966LBL 24	GT0 67 RCL INI 47 KP
＂OTd＂	TOHE 9 Emi

15. INFLUX — Predicting Water Influx

It is more difficult to predict the performance of reservoir behavior from water-drive reservoirs than solution and gas-cap drive reservoirs. Water-drive reservoirs also generally produce with some solu-tion-gas drive and expansion as well. To predict water-drive performance, it is necessary to predict water influx independently of material balance. The material balance is then used to predict oil production. This can become particularly complex.
The best method of predicting water influx is unsteady-state compressible fluid flow theory; this process is often referred to as the van Everdingen and Hurst method. Tables 14-1 and 14-2 present the constant-pressure solution of the radial diffusivity equation for various values of Re/RW where RW is the internal radius of the aquifer that furnished the water encroachment.
The calculation procedure to predict water influx is the same as discussed for INFCOEF. Known times and pressure drops were utilized in the previous program and were quite straightforward. However, there we knew the oil production at each time and were not trying to predict it. Predicting the production involves the following complications.
A future pressure first must be estimated for the average reservoir pressure in the uninvaded zone. This pressure is used for the oil PVT properties. The corresponding pressure at the water-oil contact is used to predict water influx. The value of water influx can then be calculated in a fashion similar to the method presented in the previous program using the water influx constant calculated from performance. The oil production during that period can then be estimated along with the saturations in the uninvaded zone. From these saturations, the average productivity index can be calculated for this pressure drop. At this point, the cumulative production is recalculated using the productivity index. This will require iterating on cumulative production until a value of NP can be obtained, which results in an oil saturation that yields the same value of cumulative production.
At this point, the value of water influx can be calculated from material balance. If it agrees sufficiently with the value estimated by unsteady state calculations, the correct pressure drop has been estimated. If not, another pressure is estimated and the process is repeated until it converges.

The value of oil saturation in the uninvaded zone requires knowing the oil saturation in the bypassed zone, i.e., knowing the displacement efficiency of the reservoir. Slider presents an equation for a certain set of assumptions to calculate saturation in the uninvaded zone. Gas saturation in the water bank,
nonpistonlike displacement, and water production will all require modifications to that equation. Furthermore, the prediction procedure is quite sensitive to key values. It is recommended that sensitivities be performed to assure the accuracy of the calculations and to indicate the range of errors associated with estimation errors.
INFLUX calculates water influx as a function of user input times and pressures. It can be performed readily for a variety of $\mathrm{Re} / \mathrm{RW}$ values. The value of QTd must be input from the Td values calculated by the program. Although this program is combined with INFCOEF, it behaves as a separate program.

Equations

$$
\mathrm{We}_{\mathrm{i}}=\mathrm{B}_{\mathrm{i}} \Sigma\left(\Delta \mathrm{P}_{\mathrm{i}} \mathrm{QTd}_{\mathrm{i}}\right)
$$

See the equations for INFCOEF.

Nomenclature

Symbol	Variable Name	Input or Output	English Units	$\begin{gathered} \text { SI } \\ \text { Units } \end{gathered}$
$\mathrm{B}_{\mathrm{i}}{ }^{\text { }}$	Water influx	I	BBL/	M3/
	coefficient at		PSI	KPA
	TIME $_{i}, \mathrm{P}_{\mathrm{i}}$, and We_{i}			
K	Permeability	I	MD	MD
$\mathrm{P}_{\mathrm{i}}{ }^{*}$	Pressure	I	PSI	KPA
PI*	Initial pressure	I	PSI	KPA
QTd ${ }_{\text {i }}$	Dimensionless water influx at Td_{i}	I	-	-
RW	Internal radius of aquifer	I	FT	M
Re/RW	Ratio of external to internal aquifer radii	I	-	-
TIME $_{i}{ }^{*}$	Time	I	YR	YR
Td_{i}	Dimensionless time	O	-	-
$\mathrm{We}_{\mathrm{i}}{ }^{*}$	Water influx at TIME ${ }_{i}$ and P_{i}	O	BBL	M3

Note: For B_{i}, P_{i}, QTd $_{i}, \operatorname{TIME}_{\mathrm{i}}, \operatorname{Td}_{\mathrm{i}}$, and $\mathrm{We}_{\mathrm{i}}, \mathrm{i}=1,2,3, \ldots, \mathrm{n}$, where n is the number of TIME values input by the user. *The units for these variables are saved by the program.

Yes/No Questions

See the yes/no questions for INFCOEF.

Keystrokes	Display	Comments
2699 [R/S]	TIME6 $=$?	
4 [R/S]	P6=?	
2663 [R/S]	TIME7 $=$?	
5 [R/S]	$P 7=$?	
2618 [R/S]	TIME8=?	
7.5 [R/S]	$P 8=$?	
2506 [R/S]	TIME9 $=$?	
10 [R/S]	$P 9=$?	
2400 [R/S]	TIME10=?	
[R/S]	EDIT? Y/N:N	
[R/S]	$B=$?	
625 [R/S]	$\mathrm{Re} / \mathrm{RW}=$?	
7 [R/S]	QTdt $=$?	Td1 printed
5.109 [R/S]	QTd2 $=$?	We1 and Td2 printed
12.98 [R/S]	QTd3 $=$?	$\begin{aligned} & \text { We2 and } \\ & \text { Td3 } \\ & \text { printed } \end{aligned}$
17.249 [R/S]	QTd4 $=$?	We3 and Td4 printed
19.989 [R/S]	$Q T d 5=$?	We4 and Td5 printed
20.542 [R/S]	QTd6=?	We5 and Td6 printed
21.729 [R/S]	QTd7 $=$?	We6 and Td7 printed
22.727 [R/S]	QTd $8=?$	We7 and Td8 printed
23.697 [R/S]	QTd9 $=$?	We8 and Td9 printed
23.931 [R/S]	Re/RW=?	We9 printed
[/I] [FIX] 4	7.0000	Back to FIX 4

H20 IHFLUX

TIHE1=9.320 YR
$\mathrm{PI}=2,818$, 814 PSI
TIHE2=1.250 YR
$\mathrm{FR}=2.792,669 \mathrm{PSI}$

THE3=2.106 4R
$\mathrm{F} 3=2,767.066 \mathrm{FSI}$
THE4=3. 116 YR
$\mathrm{P} 4=2,725,966 \mathrm{PGI}$
TIHE5=3.246 YF
$\mathrm{P} 5=2,699.60 \mathrm{PSI}$

TIME6=4, 600 YE	QTdi=5.169	Td $6=74.107$
$\mathrm{PG}=2.663 .606 \mathrm{FSI}$		QTd6-21.729
		He6=1.644:151.269 EEL
THET=5.604	Tde23.158	
P7 $=2.618 .606 \mathrm{PSI}$	QTde 12.989	
	Hez $=222,400.631 \mathrm{BEL}$	Td7 $=92.636$
TIHES 7.506 YR		01d7 22.727
$\mathrm{PG}=2,566.066 \mathrm{FSI}$	TdS 38.986	$\mathrm{HE}=2 \cdot 114.366 .268 \mathrm{BEL}$
	UTd $3=17.249$	
	He $3=489.177 .197$ EEL	
$\mathrm{Pg}=2,466.60 \mathrm{FSI}$		Td8=138.950
	Td4=55.765	@Td8=23.697
	0104=19.989	$\mathrm{Heg}=2,763,493.149 \mathrm{EEL}$
$\mathrm{E}=625.0 \mathrm{BE}$ ERL/FSI	He4-826, 366.575 BEL	
Re/RH=7.060	Td5=60.026	Td9 18.18 .266
Renl 7.00	0145 26.542	日Td9 $=23.931$
Tdi $=5.929$	He5=1,222,961.577 EEL	He9=3,731,202.199 8EL

Figure 15-1

General Information

See the general information for INFCOEF.

Registers

See the registers for INFCOEF.

Flags

See the flags for INFCOEF.

Program Listing

See the program listing for INFCOEF.

User Instructions

16. GASMBE - Gas Material Balance

For volumetric natural-gas reservoirs with reasonable permeability, the material-balance equation is clearly the preferred analytical method. GASMBE provides a flexible tool to calculate the original gas in place or cumulative water influx. The original gas in place (G) can be calculated at a single point, or the user can perform a regression analysis for a series of pressures and cumulative productions. The user can forecast to a future pressure and calculate cumulative production or to a future production to calculate reservoir pressure. The gas equivalent of condensate production and water content of natural gas in the reservoir are also taken into account (see GASPROD).

Equations

$$
\begin{aligned}
& G=\frac{G P * B G^{\prime}-(\mathrm{We}-\mathrm{BW} W P *)}{\mathrm{BG}^{\prime}-\mathrm{BGI}^{\prime}} \\
& G P *=G P+G V C O N D+\mathrm{H}_{2} \mathrm{OGAS}
\end{aligned}
$$

See the equations for GASPROD.
Linear regression:

$$
\begin{aligned}
& \frac{P}{Z}=A G P *+\frac{P I}{Z I} \\
& \frac{\mathrm{PI}}{\mathrm{ZI}}=\frac{\Sigma G P *^{2} \Sigma(\mathrm{P} / \mathrm{Z})-\Sigma \mathrm{GP} * \Sigma \mathrm{GP} *(\mathrm{P} / \mathrm{Z})}{\mathrm{n} \Sigma \mathrm{GP} *^{2}-(\Sigma \mathrm{GP} *)^{2}} \\
& \mathrm{~A}=\frac{\Sigma(\mathrm{P} / \mathrm{Z})-\mathrm{n}(\mathrm{PI} / \mathrm{ZI})}{\Sigma \mathrm{GP} *} \\
& \mathrm{G}=\frac{-\mathrm{PI}}{\mathrm{ZI}} \frac{1}{\mathrm{~A}} \\
& \mathrm{R} \uparrow 2=\frac{\mathrm{PI} / \mathrm{ZI} \Sigma(\mathrm{P} / \mathrm{Z})+\mathrm{A}) \mathrm{GP} *(\mathrm{P} / \mathrm{Z})-[\Sigma(\mathrm{P} / \mathrm{Z})]^{2} / \mathrm{n}}{\Sigma(\mathrm{P} / \mathrm{Z})^{2}-[\Sigma(\mathrm{P} / \mathrm{Z})]^{2} / \mathrm{n}}
\end{aligned}
$$

where n is the number of P, GP * points input by the user.
$G P *$ from average gas-oil ratio:

$$
\mathrm{GP} *=\mathrm{GP}\left|1+\frac{\mathrm{GE}}{\mathrm{R} \mathrm{AVG}}\right|
$$

See the equations for GASPROD.

Pfrom P / Z :
P is calculated iteratively using Newton's method as follows: \dagger

$$
P_{i+1}=P_{i}-\frac{P_{i}-\frac{P}{Z} z i}{\frac{P_{i}}{P_{c}} C R_{i}}
$$

where Z_{i} is Z at P_{i} and CR_{i} is the pseưdoreduced compressibility at $\mathrm{P}_{\mathrm{i}} . \mathrm{P} / \mathrm{Z}$ is also used as the initial guess.

Nomenclature

Symbol	Variable Name	Input or Output	English Units	SI Units
BGI	Initial gas	I	FT3/	M3/
	formation volume factor		SCF	SCM
COND G	Condensate gravity	I	API	KG/M3
CONDP*	Cumulative condensate production	I	BBL	M3
G*	Initial gas in place	I, O	MCF	SCM
GP**	Cumulative gas production	I,O	MCF	SCM
GP**	Cumulative gas production corrected for gas equivalent of the condensate and for the water content of the gas	O	MCF	SCM
P^{*}	Pressure	I, O	PSI	KPA
PI*	Initial pressure	I, O	PSI	KPA
R AVG*	Average gas-oil ratio	I	$\begin{aligned} & \text { MCF/ } \\ & \text { BBL } \end{aligned}$	$\begin{gathered} \mathrm{SCM} / \\ \mathrm{M} 3 \end{gathered}$
$\mathrm{R} \uparrow 2$	Coefficient of determination	O	-	-
WP*	Cumulative water production	I	BBL	M3
WP**	Cumulative water production corrected for water content of natural gas	O	BBL	M3
We *	Cumulative water influx	I, O	BBL	M3

\dagger Unpublished derivation, E. L. Vogel, Hewlett-Packard Com*pany.
*The units for these variables are saved by the program.

Yes/No Questions

CORR? Yes: Use Pac correlations to estimate PVT properties.
No: Input PVT properties.

SKIP? Yes: Skip input of PVT data.

No: Allow input of PVT data.

Example 1

The historical production for the South Texas Vicksburg reservoir is given in Table 16-1. Using GASMBE, fit the best straight line through this data and calculate the initial gas in place (G). The regression is shown in Figure 16-1. Neglect condensate production for this example. The calculated initial pressure (PI) is the least-squares regression result, not usually the value input corresponding to GP $=0$. In fact, the initial production ($\mathrm{GP}=0$) need not necessarily be input.
Calculate the gas recovery to abandonment pressures of 600 and 1,500 PSI. Also, what will the reservoir pressure be when the well has produced 10,000 MMCF?

Table 16-1			
TIME (YR)	$P(P S I)$	$G P(M M C F)$	QG (MCF/DAY)
0	6,200	0	6,240
0.33	5,911	681.8	5,529
0.80	5,563	$1,569.2$	4,722
1.21	5,318	$2,208.9$	4,101
2.20	4,931	$3,438.2$	3,143
2.94	4,692	$4,215.0$	2,603

Keystrokes

(SIZE $>=\mathbf{0 5 2})$	Display	Comments		
$[X E Q[A L P H A]$ $[A L P H A]$	GASMBE	SKIP? Y/N:		Last
:---:				
character				
is Y or N				

$N[R / S]$
$441.8952[R / /$
$661.5656[R /$
$180[R / S]$
$T c=$?
$P_{C}=$?
$T=$?
COND $G=? \quad$ Input a zero value for condensate gravity to neglect condensate production

Figure 16-1

Keystrokes $(S I Z E>=052)$	Display	Comments
[R/S]	$P \quad G P$	PI, G, and R个2 printed
[A]	$P=$?	P known
600 [R/S]	$P \quad G P$	GP printed
[A]	$P=$?	
1500 [R/S]	$P \quad G P$	GP printed
[E]	$G P=$?	GP known
10000 [R/S]	$P \quad G P$	P printed.

Note the program calculates P/Z directly but must use an iterative solution to find P from P / Z

GAS MATL EAL

	$\mathrm{P}=4.931 .0909 \mathrm{PSI}$
SKIP: W0	GP=3,438.2046 HaCF
Tc=441.8952 R	
$\mathrm{Pc}=661.56 .56 \mathrm{PSI}$	$\mathrm{F}=4.692 .6004 \mathrm{PSI}$
$T=186.0660 \mathrm{~F}$	$\mathrm{GP}=4,215.600 \mathrm{HMCF}^{\text {a }}$
COHD G=6. 8606 AFI	
	$\mathrm{PI}=6.198 .049 \mathrm{FSI}$
$\mathrm{P}=6.260 .6086 \mathrm{PsI}$	$\mathrm{G}=39.563 .9294 \mathrm{mmCF}$
$\mathrm{CP}=0.0660$ HCF	R42 0.9999
$\mathrm{P}=5.911 .6000 \mathrm{PSI}$	$\mathrm{P}=6000.0900 \mathrm{PCI}$
$\mathrm{GP}=681.8068 \mathrm{HHCF}$	6P=34,947.6976 M WCF
$\mathrm{P}=5,563,6066 \mathrm{PSI}$	$P=1.500 .9065 \mathrm{Ps}$
$\mathrm{GP}=1.569 .2609 \mathrm{mCF}$	$\mathrm{GP}=26.164 .1968$ \#ncF
$\mathrm{P}=5,318.9086 \mathrm{PSI}$	
GF=2,248.9006 MHCF	$\mathrm{P}=3.397 .4662 \mathrm{PSI}$

Example 2

A certain dry gas reservoir has historical production as indicated in Table 16-2. The volumetric estimate of initial gas in place is 337.9 BCF. A plot of P/Z versus GP curves upward, confirming suspicions of water influx. Calculate the cumulative water influx. No water has been produced. The reservoir temperature is $155.4 \mathrm{~F}, \mathrm{Tc}=349.81 \mathrm{R}, \mathrm{Pc}=673.31 \mathrm{PSI}$, and $\% \mathrm{NACL}=1.2$.

This example is based on an example presented by Ikoku, who describes a method of calculating the water influx coefficient by unsteady-state prediction as well. It is important to note that both INFCOEF and INFLUX can be used for gas reservoirs to calculate the water influx coefficient and predict future water influx, respectively, independent of the mate-rial-balance calculations.

	Table 16-2	
Time (YR)	$P($ PSI $)$	GP (MMCF)
0	2,333	-
2	2,321	2,305
4	2,203	20,257
6	2,028	49,719
8	1,854	80,134
10	1,711	105,930
12	1,531	135,350
14	1,418	157,110
16	1,306	178,300
18	1,227	192,089
20	1,153	205,744

Keystrokes	Display	Comments
[XEQ] [ALPHA] GASMBE [ALPHA]	SKIP? Y/N:N	
[R/S]	$T c=$?	
349.81 [R/S]	$P_{C}=$?	
673.13 [R/S]	$T=$?	
155.4 [R/S]	COND G = ?	Input a zero value for condensate gravity to neglect condensate production
$\begin{aligned} & 0[\mathrm{R} / \mathrm{S}] \\ & {[\mathrm{Fl}} \end{aligned}$	$\text { FIT } \quad G, W e$	
	CORR? Y/N	G or We known. Last character is Y or N
Y [RS]	STD $T=$?	
60 [R/S]	STD P = ?	
14.65 [R/S]	$\% N A C L=$?	
1.2 [R/S]	$P \mathrm{l}=$?	
2333 [R/S]	$P=$?	
2321 [R/S]	$G P=$?	
2305 [ALPHA] MMCF [R/S]	$W P=$?	
0 [R/S]	$G \quad W e$	
[A]	$G=$?	G known
337.9 [ALPHA] BCF [R/S]	$G \quad W e$	We printed
[R/S]	$P=$?	
2203 [R/S]	$G P=$?	
20257 [ALPHA] MMCF [R/S]	$W P=$?	

Keystrokes	Display		Comments
[R/S]	G	We	
[A]	$G=$?		
[R/S]	G	We	We printed
[R/S]	$P=$?		
2028 [R/S]	$G P=$?		
49719 [R/S]	$W P=$?		
[R / S]	G	We	
[A]	$G=$?		
[R/S]	G	We	We printed
[R/S]	$P=$?		
1854 [R/S]	$G P=$?		
80134 [R/S]	$W P=$?		
[R/S]	G	We	
[A]	$G=$?		
[R/S]	G	We	We printed
[R/S]	$P=$?		
1711 [R/S]	$G P=$?		
105930 [R/S]	$W P=$?		
[R/S]	G	We	
[A]	$G=$?		
[R/S]	G	We	We printed
[R/S]	$P=$?		
1531 [R/S]	$G P=$?		
135350 [R/S]	$W P=$?		
[R/S]	G	We	
[A]	$G=$?		
[R/S]	G	We	We printed
[R/S]	$P=$?		
1418 [R/S]	$G P=$?		
157110 [R/S]	$W P=$?		
[R/S]	G	We	
[A]	$G=$?		
[R/S]	G	We	We printed
[R/S]	$P=$?		
1306 [R/S]	$G P=$?		
178300 [R/S]	$W P=$?		
[R/S]	G	We	
[A]	$G=$?		
[R/S]	G	We	We printed
[R/S]	$P=$?		
1227 [R/S]	$G P=$?		
192089 [R/S]	$W P=$?		
[R/S]	G	We	
[A]	$G=$?		
[R/S]	G	We	We printed
[R/S]	$P=$?		
1153 [R/S]	$G P=$?		
205744 [R/S]	$W P=$?		
[R/S]	G	We	
[A]	$G=$?		
[R/S]	G	We	We printed

GAS MATL BAL

$T \mathrm{~T}=349.8160 \mathrm{R}$	He=21,545,535.76 BEL
Pc,673.1304 PEI	
$\mathrm{T}=155.4605 \mathrm{~F}$	$\mathrm{F}=1.531 .406 \mathrm{PST}$
SORR: TES	He=28, $8 \mathrm{Bu}, 079.59 \mathrm{EEL}$
STI $T=66.6040 \mathrm{~F}$	
SII P $=14.6560 \mathrm{PGI}$	$\mathrm{P}=1.418 .00 \mathrm{mb} \mathrm{PGI}$
74ACL $=1.2906$	GF=157,116.6066 mbF
$\mathrm{PI}=2,333.6065 \mathrm{PSI}$	He=35,574,577.49 BEL
$\mathrm{P}=2.321 .6 \mathrm{GEPSI}$	$\mathrm{P}=1.306 .6004 \mathrm{PSI}$
	GF=178,368. 8606 WHCF
HP= 4.0600 ERL	He=52,376.181.80 BEL
G $=337.961068 \mathrm{BCF}$	
He=668,625.7429 EEL	$F=1,227.0060 \mathrm{PSI}$
$\mathrm{F}=2,203.9680 \mathrm{PSI}$	He=66, 354, 931.69 EBL
GP=20.257.0186 mime	
He $=1,639.173 .649 \mathrm{EBL}$	$F=1,153.01009 \mathrm{PSI}$
	GF=205,744.0060 micF
$\mathrm{P}=2,620.6060 \mathrm{PSI}$	He=76,815.718. 86 EBL

The Plum Nearly (Smackover) field (see Example 1 of GASPVT) has had historical production as indicated in Table 16-3. Since the dew-point pressure is less than 2,000 PSI (see the example for DEW), GOR behavior has remained constant. Additional required information not presented in either of those examples is as follows:

$$
\begin{aligned}
& \text { COND } G=56.2 \text { API } \\
& \text { Water influx is considered negligible } \\
& \text { Water salinity }=15,600 \mathrm{PPM}
\end{aligned}
$$

Calculate the indicated value of G for each of the pressure points. The program corrects the GP values (to GP*) for the gas equivalent of the condensate and for the water content of the gas. The value of WP is corrected (to WP*) for the water content of the gas.

The volumetric estimate for G was 50 BCF . Calculate the indicated value of water influx at the second point using this value. The calculated value of We indicates a very minor water influx to date. The value of GP is 2,098 MMCF, and BG at 12,000 PSI is 0.0027 FT3/SCF. A simple calculation shows that approximately one million reservoir barrels of gas have been produced, with less than $30,000 \mathrm{BBL}$ of water influx. It appears that the assumption of negligible water influx is a good one.

		Table 16-3		
TIME (YR)	$P(P S I)$	GP (MMCF)	WP (BBL)	CONDP (BBL)
0	13,600	-	-	-
0.65	12,720	1,054	2,300	16,129
1.28	11,918	2,098	4,800	32,099

Keystrokes	Display	Comments
[XEQ] [ALPHA] GASMBE [ALPHA]	SKIP? Y/N:N	
[R/S]	$T C=$?	
410.9022 [R/S]	$P \mathrm{C}=$?	
673.9813 [R/S]	$T=$?	
255 [R/S]	COND G = ?	
56.2 [R/S]	FIT G,We	
[E]	CORR? Y/N:Y	G or We known
[R/S]	STD $T=$?	
[R/S]	STD P=?	
15.025 [R/S]	$\% N A C L=$?	
[R/S]	$P P M=$?	
15600 [R/S]	$P /=$?	
13600 [R/S]	$P=$?	
12720 [R/S]	$G P=$?	
1054 [ALPHA] MMCF [R/S]	$W P=$?	
2300 [R/S]	CONDP $=$?	
16129 [R/S]	$G \quad W e$	
[E]	$W e=$?	We known
0 [R/S]	G We	$\begin{aligned} & \text { GP*, WP* } \\ & \text { and G } \\ & \text { printed } \end{aligned}$
[R/S]	$P=$?	
11918 [R/S]	$G P=$?	
2098 [R/S]	$W P=$?	
4800 [R/S]	$C O N D P=$?	
32099 [R/S]	G We	
[E]	$W e=$?	
[R/S]	G We	$\begin{aligned} & \text { GP*, WP* } \\ & \text { and G } \\ & \text { printed } \end{aligned}$

Keystrokes	Display	Comments
[A]	$G=$?	G known
50 [ALPHA] BCF [R/S]	G We	GP*, WP* and We printed
To calculate gas production in reservoir barrels:		
2098 [EEX] 6 [ENTER \uparrow]. 0027 [*]		
[ALPHA] FT3-BBL [ALPHA]	5,664,600.000	
[XEQ] [ALPHA] CON [ALPHA]	1,008,908.349	Barrels

GAS MATL EAL

$T=410.9022 \mathrm{R}$
$\mathrm{PE}=673.9813 \mathrm{PSI}$
$T=255.4646 \mathrm{~F}$
COND $G=56.2006 \mathrm{API}$
STD $\mathrm{F}=15.6250 \mathrm{PSI}$
PPH $=15,606,6006$
$\mathrm{PI}=13.600 .8099 \mathrm{PSI}$
$\mathrm{P}=12,720.9060 \mathrm{PSI}$
$G P=1,054,6060 \mathrm{HMCF}$
HF $=2,30$. 4 日 4 EBL
COMDP $=16.129 .8609 \mathrm{BEL}$
He=9. 0000 BEL
GP*=1,070.1679 M MCF
HP $=1.919 .5548$ BEL
$\mathrm{G}=51.356 .7451$ MICF
$\mathrm{P}=11,918,6060 \mathrm{PSI}$
$\mathrm{GF}=2,698.6000 \mathrm{MmCF}$

CONIP $=32,699.8060 \mathrm{BEL}$
GP* $=2.131 .8293$ H HCF
$\boldsymbol{\mu} \cdot=3.818 .9116 \mathrm{EDL}$
$\mathrm{G}=51,413.3431$ Hinc
$G=56.9000 \mathrm{BCF}$
$6 \mathrm{~F} *=2.1319 \mathrm{BCF}$
UF $=3.818 .9116 \mathrm{BEL}$
$\mathrm{He}=28.825 .6906 \mathrm{BEL}$

User Instructions

General Information
Memory Requirements

Program length:	1235 bytes (6 cards)
Minimum size:	052
Minimum hardware:	$41 \mathrm{C}+$ quad memory

*This program can be run in a $41 \mathrm{C}+3$ memory modules but will not leave a port available for a printer.

Hidden Options

None
Pac Subroutines Called
TITLE, Y/N?, ITcPc, T, INU, CON, STDTP, \%NACL, CBG, IN, CBW, CZ, CCR, INK, OUTK

Flags

00 Set: \quad COND $G \neq 0$
Clear: $\mathrm{CONDG}=0$
01 Set: Use Pac correlations to estimate PVT properties.
Clear: Input PVT properties.
02 Set: Skip input of PVT data.
Clear: Allow input of PVT data.
Set: Gas-oil ratio units not yet input.
Clear: Gas-oil ratio units have been input.
04 Set: Water production units not yet input.
Clear: Water production units have been input.

Program Listing

B1*LEL "CASHEE"	XROM "STITP" FC? 92
"GAS ARTL BFL" 52	KROM "\%MACL" GTO OL
XROM "TITLE" FC?C 25	
PROAPT SF 03 SF 84	78*LEL 90
SF 06 SF 27 SREG 42	27 STO 90 "FT3/SCF"
CLX STO 32 "M3"	ASTO O1 ASHF ASTO 02
ASTO 83 -SCM ASTO 66	"M3/SLA ${ }^{\text {a }}$ ASTO Y CLA
"F/M3" ASTO 59 "KPA"	HSTO 2 "BGI"
ASTO 88 CLA ASTO 04	XROM "INU"
ASTU 07 ASTO 99	
ASTO 51 "SEIP" 2	91*LBL 61
	34 "FI" XEQ 22 ATU
SROM "TTGFc" FC? 82	FC? 016 CTO 02 XEQ 14
XROM "T" 29 STO 0 O	CL\% RCL 35 RCL 11 /
"API" ASTO 01 CLA	XROM "CBG" STO 23
ASTO 92 ASTO 2 "KG/M3"	
RSTO Y "COHD G*	1654LBL 16
XROM -IHU" ABS RHD	
CF $00 \mathrm{y}=0$? ST0 30	X $\triangle \bigcirc Y$ X $<=Y$? GTO 02
$\mathrm{X}=0$? GT0 15 SF 08	TONE 3 "P > PI" PROMPT
1.93 RCL 30 "API-SPGR"	67016
COH - 2.99965 *	
STu 32	116*LBL 92 FSTC B4 SF 08 XE日 24
61*LBL 15$-F I T$G, He" Frompt	37 "MP- XEO 3 CF 88
	FS? 60 XEO 29 FS? 01
GTO 15	GT0 1228 ST0 90
	"FT3/SCF" ASTO 01 ASHF
65*LBL H	AST0 92 "M3/SCM"
GTO 13	ASTO Y CLA ASTO 2
	"BG" YRUM -INU" 30
67+LBL E	STO 98 "By" XROM "IN"
*CORR" 1 XROM - $9 / 4$? ${ }^{\text {a }}$	
FC? 01 GTO 08 FC ? $0 \hat{\mathrm{C}}$	144+LBL 12

Program Listing（cont．）	
$=\mathrm{G}$ He ProhPT	2814LEL 18
GTO 16	CLE Hy
1484LEL A	2844 LEL 11
38 ＂G＂XEC 25 HED 03	XEQ 21 Fs？ 22 GT0 87
罢㣙 ECL 39 ＊1 E3＊	FC？ 23 GT0 48
－ST0 41 FS？ 6 6	
YEQ 26 FS？ 80 XEE 31	2964LBL 67
	KEQ 24 FG ？ 69 YEQ 29
Aly GT0 12	aDi CF 04 CF 80 YEO $14 \quad C 2 \mathrm{RCL} 17 \mathrm{YOY}$
1694LBL E	，RCL 32 RCL $26 *$
40 ＂He＝YED 30 XED 03	RCL $36+5 T 0348+$
RCL $41-\mathrm{KYY}$／ $1 E 3$	FS？ 00 枵 26 GT0 11
，STO 39 FS ？ 00	
	3124LBL 88
XEO 27 AIV GTO 12	RCL $43 \mathrm{RCL} 44 *$
	RCL $42 \mathrm{RCL} 46 *$
1884LBL 63	RCL 47 RCL 43
FC？ $11-\mathrm{CTO} 64$ 碞 14	PCL 42 yt2－ 1
XROH ${ }^{\text {CCEG }}$ ST0 29	STO 49 RCL 44 RCL 47
	RCL $Z *-\mathrm{RCL} 42$／
194＊LEL 94	57048 \％CHS 57039
F5？ 61 XROM＊CBH＊	RCL 49 HEE 28 STO 35
FC？ 61 RCL 31 ST0 31	＂PI＂XEQ 23 RCL 39
RCL 36 RCL 38 FC 700	XEO 27 RCL 49 RCL 44
GT0 06 号E9 05	＊RCL 48 RCL 46＊＋
2．18777 E－5 RCL $\% * 1$	RCL 44 Xt2 RCL 47 ${ }^{\text {\％}}$
＋RCL 32 RCL 26 \％	－RCL 45 LASTY－$/$
$\mathrm{RCL} 36+* 5 \mathrm{~T} 34$	＂Rt2 ${ }^{\text {Proh }}$－GUT＂
RCL 38 Rt LASTX＊	
＂LBM／BEL－SPGR＂CON	364＊LEL 19
1 E \％$/$－ 5033	
227＊LBL 66	
RCL 31 \＃XOY 1 E3＊	369＋LBL A
KCL 29 ＂FT3－EEL＂CON	
＊＋RCL $29 \mathrm{RCL} 28-$	YEQ 14 ［2 RCL 17 仿
COH Y／SY RTN	／RCL 49 －RCL 48 \％
	ST0 34 FC？ 05 GTII 68
244＊LBL 95	XE0 26 RCL 32 RCL 27
FCL $161 \% 2657 \mathrm{E}-7$	
RCL $17227 \mathrm{E}-19$＊－	
RCL $17 * 3.2147+$	3924LBL 68
Y4\％ 60639 PCL 17 \％	51036 ＂GP＂XED 28
$3.4+* \mathrm{PCL} 19 \mathrm{X} \pm \mathrm{E}^{7}$ ？	61019
GTO 06 Y ${ }^{\text {SY }}$ RTH	
	397－LEL E
269＊LBL 16	XEQ 24 FC？ 98 GT0 89
$1757 \mathrm{E}-7 \times 4893 \mathrm{E}-6+$	XEQ 33 RCL 32 XK
RCL $19 * 1$ KくY－＊	
RTN	

＝G He＂PROAPT

1484 1 EL A
38 ＂G＂XEE 25 HED U3
 YEQ 26 FS？ 89 YEE 31
 ADY GTO 12

169＋LBL E

RCL 41 －XYY ； $1 E 3$
f ETO 39 FS ？ 96
xEL 26 FS ？ HB YEL 31

1884 4 BL 3
FC？ 81 CTO 64 SEO 14
XROH＂CEG＂STO 29

194＊LEL 04
FS？ 61 XROH＂CBM＂
FG？ 61 RCL 31 ST0 31
RCL 36 RCL 36 FL． 0

2． $10777 \mathrm{E}-5 \mathrm{RCL} \Psi * 1$
+RCL 32 RCL 26 ＊
$\mathrm{RCL} 36+* 5 \mathrm{TO} 34$
RCL 38 Rt LASTX＊
＂LBM／BEL－SPGR＂CON
1 E 3 ／－ 5 TO 33

2274LBL 86
RCL 31 \＃XYY 1 E3＊
FCL 29 ＂FI3－EEL＂CON
＊＋RCL 29 RCL 28 －
CON XXDY RTN

244＊LBL 95
RCL 16 1 $\%$ \％ $2657 \mathrm{E}-7$
RCL 17227 E－19＊－
$\mathrm{RCL} 17 * 3.2147+$
Y4X 66630 RCL 17 ；
$3.4+* \mathrm{RCL} 19 \mathrm{Y} \pm \mathrm{\theta}$ ？
GTO 06 K KY RTH
$269+$ LBL 06 RCL $19 * 1$ K 3 Y $-*$ RTK
$1+\operatorname{RCL} 36 * S T 034$
XEQ 26
4114LBL 69
RCL 48 ＊ RCL 49 ＋
YEE 20 ＂P＂YED 23
GTO 19

4264LBL 20
570 6T $\$ 7017$ YED 14
枵Y STO 01
426＋LBL 16
TOHE 5 RCL 日I RCL 17
RCL $11 ; C Z 5066$
CLY LASTX CCR LASTX

RCL 17 －XYY
EATER \quad K） 17 ST＋ 17
\Rightarrow ABS $1 \mathrm{E}-4 \quad \mathrm{X}=\mathrm{T} ?$
GTO 10 RCL 17 TOHE 9
RTH

457＋LBL 14
RCL $16{ }^{\circ} \mathrm{F}-\mathrm{R}$＂CON
RCL 10 ／RCL 17
RCL 11 ；RTH

467＋LBL 21
$16{ }^{\text {eP }}$

470＊LBL 22

XROH＂INE RDH STO 68
KDY STO 09 R R RTH

4804LEL 23
XEQ BO XROH＂DUTE＂EDH STO 88 X CY STO 69 R RTH

489＊LBL 86
ASTO T PSSI＂ASTO 01 CLA ASTO GE ARCL T
RCL 69 RCL 08 RCL 2 RTH

50日6LBL 24
35 ＂ CP^{2}
$563+$ LBL 25

5106 Y 5 E 6
KROH＂IKE＂RDN ST0 66 K）Y ST0 07 Rt RTH

5134LBL 26
RCL 34 ＂GFF＝GT0 28

5174LPL 27
FCL 39 ＂ G^{4}
520 LEL 28
HEO O1 YROH＂OUTK＂RDH
 RTH
$529+$ LBL 61
ASTO T＂HCF＂HSTO 61
CLA HSTO B2 ARCL T
RCL 97 RCL 06 RCL 2
RTH

546＊LEL 29
25 ＂COHDP＂

5434LEL 36
STO 09 YED 02
XROH＂INE＂RDN STO O3
KYY STO G4 Rt RTH

5534 LBL 31
RCL 33 ＂ HP ＂

556 LLBL 32
XEO 82 YROH＂OUTK＂RDH ST0 0.3 XIVY 5T0 64 Rt RTH

565＊LBL 92
ASTO T \quad BEL ASTO 01
CLA ASTO GZ ARCL T RCL 64 FCL 13 RCL 2 RTH

576＊LBL 33
FSTC 03 SF 6826
STO 0 O $\mathrm{MCF} / \mathrm{EEL}$＂
ASTO 01 BSHF ASTO 02
RCL 51 RCL $5 \overline{6}$ RCL Z
＂R RHG＂ SROH ＂INE＂RTH
$5 T 056$ B SY ST0 51 RA CF 08 END

Section 5

Natural Gas Engineering
17. BHPWHP - Bottom-Hole or Surface Pressures for Flowing or Static Gas Wells
Calculates bottom-hole pressure (flowing or static) from surface pressure (flowing or static) and vice versa.
18. GASDEL - Single Well Gas Deliverability

Forecasts gas well deliverability and flowing pressures for volumetric reservoirs. Includes BHPWHP calculation and rate-time conversion.
19. STAB - Stabilized Flow Coefficient

Calculates the stabilized flow coefficient based on the slope of the back pressure deliverability curve and the observed variation in the flow coefficient.

17. BHPWHP - Bottom-Hole or Surface Pressures for Flowing or Static Gas Wells

This program calculates surface pressures from bot-tom-hole pressures or vice versa for flowing or static gas wells. Naturally, it is preferred to measure bot-tom-hole pressures with a downhole gauge and surface pressures by gauge or deadweight. For many purposes, a sufficiently accurate value for one value or the other can be obtained by calculating the difference in pressure due to the weight of the gas as well as (in the case of flowing wells) frictional pressure drops.

The mathematical solution to this problem has been evaluated by many authors; most techniques require an iterative procedure to calculate the pressure drop. BHPWHP uses a modified version of the Cullender-Smith technique, which requires iterations for the average Z-factor but converges rapidly. It is incorporated with the program GASDEL but functions independently as far as the user is concerned.

Friction factors are calculated using the equations presented by Cullender and Smith. These equations presume an absolute pipe roughness of 0.00060 inches. Better results may be obtained when measured flowing or static bottom-hole pressures can be compared to flowing or static surface pressures. The user can then vary the values for length, diameter, and effective gas gravity until values calculated by BHPWHP agree with the measurements. Doing so will assure better subsequent calculations for that well.

BHPWHP allows the user to calculate values for deviated wells (see Figure 17-1); no explicit provisions are provided for liquid production. This is best done by altering the effective gas gravity. Practically all of the methods presented are suitable for depths less than about $12,000 \mathrm{FT}$. For deeper wells, the Cullender-Smith method with shorter integration intervals should be used (see Young).

Major problems affecting these calculations include slugs of unknown amounts of liquid hydrocarbons or water in the well-bore tubing, unusual temperature distributions, variations in gas Z-factor from the correlation, and changes in fluid composition with depth for condensate systems. It is also difficult to select the proper friction factor and specific gravity of the well effluent and the flow rate. A method for evaluating annular flow is described by Ikoku.

Equations

The bottom-hole pressure is solved iteratively from
the surface pressure (or vice versa) as follows:

$$
\mathrm{BHP}^{2}=\mathrm{WHP}^{2} \mathrm{e}^{\mathrm{A}}+\frac{\text { GAS GTAVGFI }\left(\mathrm{e}^{\mathrm{A}}-1\right) \mathrm{QG}^{2}}{40000 \mathrm{Ad}^{5}}
$$

where:

	BHP	WHP
$=0$	PWS	SITP
$\mathrm{QG}>0$	PWF	FTP

$$
\begin{aligned}
& \mathrm{A}=\frac{\text { GAS G TVD }}{26.67 \mathrm{~T} \mathrm{AVG} \mathrm{ZAVG}^{\prime}} \\
& \text { T AVG }=\frac{\mathrm{T}+\text { SURF T }}{2}
\end{aligned}
$$

$$
\mathrm{TAVG}=\mathrm{TAVG} \text { in } \mathrm{R}
$$

$$
\mathrm{ZAVG}=\frac{Z_{\mathrm{BHP}}+Z_{\mathrm{WHP}}}{2}
$$

The initial guesses are WHP $+\frac{\text { WHP L }}{40000}$ if WHP known
and BHP $-\frac{\text { BHP L }}{40000}$ if BHP known.

Figure 17-1 Deviated gas well (after Ikoku)

Friction factor:

$\mathrm{d}<4.277 \mathrm{IN}:$	$\mathrm{d} \geq 4.277 \mathrm{IN}:$
$\mathrm{F}=\frac{0.10797}{\mathrm{~d}^{2.612}}$	$\mathrm{~F}=\frac{0.10337}{\mathrm{~d}^{2.582}}$

Nomenclature

Symbol	Variable Name	Input or Output	English Units	SI Units
d	Tubing diameter	I	IN	CM
FTP*	Flowing tubing	I,O	PSI	KPA
L	pressure	Iubing length	I	FT
L	M			

(for GASDEL,

$$
\dot{\mathrm{L}}=0 \mathrm{FT}
$$

implies do not
calculate FTP at
each pressure
step)
PWF* Flowing bottom- I,O PSI KPA
hole pressure
PWS* Shutin bottom-hole I,O PSI KPA pressure
QG* $\begin{gathered}\text { Gas producing } \\ \text { rate (for }\end{gathered} \quad \mathrm{I} \quad \begin{gathered}\text { MCF/ } \\ \text { DAY }\end{gathered} \begin{gathered}\text { SCM/ } \\ \text { DAY }\end{gathered}$ BHPWHP, $\mathrm{QG}=0 \mathrm{MCF} /$
DAY implies static conditions)

SITP* | Shutin tubing |
| :---: |
| pressure |\quad I,O \quad PSI \quad KPA

SURF T	Surface temperature	I	F	C
TVD	True vertical depth	I	FT	M

*The units for these variables are saved by the program.

Yes/No Questions

SKIP? Yes: Skip input of PVT data.
No: Allow input of PVT data.

Example 1

Calculate the static BHP of a gas well with $\mathrm{L}=$ TVD $=5,790 \mathrm{FT}$, gas gravity $=0.60$ (no diluents), SITP $=$ 2,300 PSI, surface temperature $=72 \mathrm{~F}$, bottom-hole temperature $=162 \mathrm{~F}$, and tubing diameter (ID) is 1.996 IN (from Ikoku). Use the TcPc program in the Pac to calculate the pseudocritical properties from the gas gravity.

Keystrokes (SIZE $>=044)$	Display	Comments
$[\mathrm{XEQ}][\mathrm{ALPHA}]$ TcPc $[A L P H A]$	COND? Y/N:	Last character is Y or N

Keystrokes $(S I Z E>=044)$	Display	Comments
N[R/S]	GAS G=?	
. 6 [R/S]	$\% N 2=$?	
0 [R/S]	\%CO2=?	
0 [R/S]	\%H2S=?	
0 [R/S]	GAS $\mathrm{G}=$?	Tc and Pc printed
[XEQ] [ALPHA] BHPWHP [ALPHA]	SKIP? Y/N:	Last character is Y or N
$N[R / S]$	$T c=$?	
[R/S]	$\mathrm{Pc}=$?	
[R/S]	$T=$?	
162 [R/S]	$L=$?	
5790 [R/S]	TVD $=$?	
5790 [R/S]	$d=$?	
1.996 [R/S]	GAS G=?	
[R/S]	$M W=$?	
[R/S]	SURF T=?	
72 [R/S]	$Q G=$?	$\begin{aligned} & Q G=0 \text { for } \\ & \text { static } \end{aligned}$
0 [R / S]	PWS SITP	
	SITP=?	SITP known
2300 [R/S]	PWS SITP	PWS printed
What value of SITP would be calculated if $P W S=2,640$ PSI?		
[A] 2640 [R/S]	$\begin{aligned} & P W S=? \\ & \text { PWS }=\text { SITP } \end{aligned}$	PWS known SITP printed
Te Pre	EHP-WHF	
COND: WO	SLIF: NO	
GAS $6=6.6804$	$T=162.0609 \mathrm{~F}$	
7 $\mathrm{H} 2=8.80808$	$L=5,796.010 \mathrm{FT}$	
\% $802=0.8000$	THD=5, 99.0686 FI	
	SURF $\mathrm{T}=72.88 \mathrm{ge日} \mathrm{~F}$	
T $\mathrm{c}=358.5006 \mathrm{E}$		
$\mathrm{PC}=672.5808 \mathrm{PSI}$	SITP=2, 30.	
	PHS $2,639.8505 \mathrm{PSI}$	
	$\begin{aligned} & \mathrm{PHS}=2,644.060 \mathrm{BSI} \\ & \mathrm{SITP}=2,364.1366 \mathrm{PSI} \end{aligned}$	

Example 2

Calculate the sandface pressure (PWF) of a flowing gas well indicated by the following surface measurements (from Ikoku):

$$
\begin{aligned}
& \mathrm{QG}=5.153 \mathrm{MMCF} / \mathrm{DAY} \\
& \mathrm{~d}=1.996 \mathrm{IN}
\end{aligned}
$$

GAS G $=0.60$
$\mathrm{L}=5,700 \mathrm{FT}$
$\mathrm{TVD}=5,680 \mathrm{FT}$
$\mathrm{T}=162 \mathrm{~F}$
SURF T $=83 \mathrm{~F}$
$\mathrm{FTP}=2,122 \mathrm{PSI}$
Note: The names for bottom-hole and surface pressures change since $\mathrm{QG} \neq 0$.

Keystrokes	Display	Comments
[XEQ] [ALPHA] BHPWHP [ALPHA]	SKIP? Y/N:N	
Y [R/S]	$L=$?	
5700 [R/S]	$T V D=$?	
5680 [R/S]	$d=$?	
[R/S]	SURF $T=$?	
83 [R/S]	$Q G=$?	
5.153 [ALPHA] MMCF/DAY [R/S]	PWF FTP	
[E$]$	$F T P=$?	FTP known
2122 [R/S]	PWF FTP	PWF printed

BHF-WHF

SKIP: YES
$L=5,708.6060 \mathrm{FT}$
TYI $=5,680.0800 \mathrm{FT}$
GURF T=83.0000 F

IGG5.1536 MHCF DAY
$\mathrm{FTP}=2,122.0 \mathrm{AR日f} \mathrm{PSI}$
PUF $=2.591 .4867$ PSI

Example 3

This is an example presented by Messer, Raghavan, and Ramey for a deep, hot, sour gas well. Data is as follows:

$$
\begin{aligned}
& \mathrm{d}=2 \mathrm{IN} \\
& \mathrm{GAS}=0.75 \\
& \% \mathrm{METH}=38 \\
& \% \mathrm{CO} 2=24 \\
& \% \mathrm{H} 2 \mathrm{~S}=38 \\
& \mathrm{QG}=8.82 \mathrm{MMCF} / \mathrm{DAY} \\
& \mathrm{~T}=900 \mathrm{R} \\
& \mathrm{SURF}=540 \mathrm{R} \\
& \mathrm{FTP}=14,575 \mathrm{PSI} \\
& \mathrm{~L}=\mathrm{TVD}=20,500 \mathrm{FT}
\end{aligned}
$$

Use the PROP program to calculate the pseudocritical properties from the gas composition.

Keystrokes	Display	Comments
[XEQ] [ALPHA] PROP [ALPHA]	CLEAR? Y/N:	Last character is Y or N
Y [R/S]	$\% N 2=$?	\%TOT, GHVW are G is much
[R/S]	\% $\mathrm{CO} 2=$?	
24 [R/S]	\% H2S $=$?	
38 [R/S]	\%METH=?	
$38[/ /]$ [E]	SP.HTS? Y/N:	
GAS G, Tc, Pc, CWA, Tc printed. Note that the cal	Pc*, NHV, GH ulated value of	
higher than the indicated	value in the exa	
[ALPHA] [XEQ] [ALPHA] BHPWHP [ALPHA]	SKIP? Y/N:Y	
$N[R / S]$	$T C=?$	
[R/S]	$P_{C}=$?	
[R/S]	$T=$?	
900 [ALPHA] R [R/S]	$L=$?	
20500 [R/S]	$T V D=$?	
20500 [R/S]	$d=$?	
2 [R/S]	GAS G=?	
. 75 [R/S]	SURF T=?	
540 [ALPHA] R [R/S]	$Q G=$?	
8.82 [ALPHA] MMCFIDAY $[\mathrm{R} / \mathrm{S}]$	PWF FTP	
[E]	$F T P=$?	FTP known
14575 [R/S]	PWF FTP	PWF printed

The value calculated by BHPWHP for PWF $(18,785$ PSI) compares to a value of 19,082 PSI in Ikoku's solution of the problem using the extended SukkarCornell integral. Ikoku later recommends the Cullender-Smith method with trapezoidal integration for pressures greater than 10,000 PSI.

Errors in PVT properties, gas gravity, and friction factors generally result in larger errors than do the variations in the solution procedure. As an example, using the value of GAS G calculated by PROP rather than the stated value results in a PWF of 20,380 PSI.

GAS PROF

CLEAR: YES
スC02 $=24.0000$
742S=30. 6090
THETH=38.0896
7T0T $=169.0609$
GAS G=1.0222
$T \mathrm{C}=517.2912 \mathrm{R}$

```
PC=1, 087.8846 P51
CHA=31.1289 F
Tc*=486.1624 R
FC*=933.2500 %SI
NHY=560.8986 BTU/SDF
GHUL=625.7460 BTU/GCF
GHYL=614.8580 BTU/GCF
```


EHF-WHF

SLIF: 10
$T=960.0000 \mathrm{R}$
$\mathrm{L}=26.506 .966 \mathrm{FT}$
THI=29. 546.060 FT
$\mathrm{d}=2.490 \mathrm{IH}$
GAS $\mathrm{G}=9.7504$
SURF $T=546.9604 \mathrm{R}$
QG=8.8206 $\mathrm{HHCF} / \mathrm{DAY}$
$\mathrm{FTF}=14.575 .8060 \mathrm{FSI}$
$\mathrm{PHF}=18,784.8350 \mathrm{PSI}$

General Information

Memory Requirements	
Program length:	1340 bytes (6 cards) (BHPWHP and GASDEL combined)
Minimum size:	044
Minimum hardware:	41C + quad memory module or $41 \mathrm{CV}^{*}$

*The program can be run in a $41 \mathrm{C}+3$ memory modules but will not leave a port available for a printer. If you do not plan to use GASDEL, you can remove it to save space. Simply delete all of the program steps beginning at line 331 . This will yield a version of BHPWHP that is 658 bytes long. This shortened version can be run in a 41C +2 memory modules.

Hidden Options

None

Pac Subroutines Called

TITLE, Y/N?, ITcPc, T, INU, IN, GASG, CON, INK, OUTK, CZ

Registers

03 Gas producing rate units
04 Gas producing rate units
08 Pressure units
09 Pressure units
26 PWS, SITP (PSI)
27 PWF, FTP (PSI)
28 TVD (FT)
$29 \mathrm{~L}(\mathrm{FT})$
$30 \quad \mathrm{ZI}_{\mathrm{BHP}}, \mathrm{ZI}_{\text {WHP }}$
31 SURFT(F)
32 TAVG (F)
33 Scratch
34 Scratch
42 d (IN)
43 QG (MCF/DAY)
Registers 12-14, 18-25, and 35-41 unused.

Flags

00 Set: BHP known.
Clear: WHP known.
02 Set: Skip input of PVT data.
Clear: Allow input of PVT data.
06 Set: Error occurred while calculating FTP. Clear: No error occurred.
07 Set: Gas producing rate units not yet input.
Clear: Gas producing rate units have been input.

User Instructions

Program Listing

Program Listing (cont.)

441*LEL 11	-TIME - XEQ 25 CF 08
49 "OG HIN" XED 18	RCL 48 -FTP= FS? 96
	XEQ 17 ADY
TONE 3 "QG HIN > EGI*	
PROMPT GT0 11	567*LEL 95
	FCL 38 RND RCL 17
452+LBL 94	RCL 41 - RNI X ${ }^{\text {PY? }}$
RCL 50 RCL 45 ;	$6 T 096$ YYY RCL 17
RCL 46 1/X Y4X RCL 47	RNI $X=Y$ G GTO 21
$\mathrm{Xf2}_{2}+\mathrm{SQRT}$ STO 38	RCL 38 RHD
"ENI P" XEQ 1748	
-P DEC= XEE 16 RDY	523*LBL 66
RCL $17 \quad 5705767005$	LASTY 51017 GTO 22
473*LBL 22	5274LEL 23
XEQ 88 FS ? 66 GT0 21	STO 66 YEE 07
RCL 17 "P" XEQ 17	XROM = INI ${ }^{\text {c }}$ RDN STO 66
RCL 36 "GP" XEQ 24	X SY STO 87 Rt RTH
ENTER 4 K') 44 - "IGF"	
XEQ 24 RCL 43 STO 5	5374LBL 24
	YE0 97 YROH "OUTK" RDN
XEQ 19 RCL $52 \mathrm{ST}+53$	STO 06 X LYY STO 07 Rt
RCL 53 FS?C 03 SF 88	RTN

5464LBL 67	687*LBL 69
ASTO T "KCF- ASTO 日i	
CLA ASTO 62 ARCL 1	
RCL 67 RCL 66 RCL 2	
RTH	
	6154BL 16
$557+1$ BL 25	RCL 36 RCL 44 - Et
ASTO T -YR AETO 01	365 / ST0 52 RCL 47
CLA ASTO G2 ARCL T	FC? 00 ST0 48 FC? 90
RCL 55 RCL 54 RCL 2	FTH XED 24 FT? 66
XROM "Ollt ${ }^{\text {K }}$ RDH ST0 54	$5 T 048$ FC? 66 RTH
K)YY STO 55 Rt RTH	RCL 57 ST0 17 RTH
574*LEL 68	6374LBL 26
YEQ 27 RCL 56 / 1	
YSY - RCL 39 *	RCL 46 Y4X RCL 45
ST0 36 RCL 47 RCL 17	RTH
XED 26 STO 43 RCL 51	
+ 2 ; RCL $49 \mathrm{X}=\mathrm{g}$?	647*LEL 27
GTO 19 FS? 04 GT0 89	RCL 16 -F-R' COM
XYY 0 RCL 17 HEQ 26	RCL 10 ; ECL 17
1 \% RCL 49* Rt	$\mathrm{RCL} 11 / \mathrm{CL}$ RCL 17
K》1	K\Y / END

18. GASDEL - Single Well Gas Deliverability

As the user can tell, the gas material-balance equation is substantially simpler than that for oil material balance (compare GASMBE to OILMBE and OILPRED/. Similarly, the prediction of the rate versus time performance is substantially simpler as well. This is due to both the simpler gas material balance and the usual assumption of constant saturations, and therefore constant effective permeability. GASDEL is a fairly flexible program for predicting reservoir performance easily when no water drive is present (Ikoku). Gas composition is assumed to be constant, and the gas equivalent of condensate production is not included in the material balance.

The only two pieces of information required are the P / Z versus cumulative production graph and back-pressure test data. If the P / Z versus cumulative data are unavailable, a value for G (gas in place) must be estimated volumetrically. Figure 18-1 illustrates a typical gas well back-pressure test. Theoretically, these data points form a straight line with a slope N ranging from 0.5 to 1.0 . The value of C is best obtained from this test and should represent a stabilized value. This stabilized flow coefficient can be calculated by the method presented by the program STAB. The value of C can be calculated if KH is known; however, if sufficient well tests have been run to evaluate KH with some accuracy, C can be determined from those flow tests.
An allowable value can be input as a constant value or as a percent of the absolute open flow calculated at each pressure. When the well deliverability reaches a minimum rate, the program automatically will allow the user to input a lower value of flowing well pressure (equivalent to adding compression). The BHPWHP calculations to determine flowing tubing pressure from the input flowing bottom-hole pressures are also performed. If these calculations are not desired, the user should specify $\mathrm{L}=0$.

Equations

$$
\begin{aligned}
& \mathrm{GP}_{\mathrm{i}}=\left|1-\frac{\mathrm{P}_{\mathrm{i}} / \mathrm{Z}_{\mathrm{i}}}{\mathrm{PI} / \mathrm{ZI}}\right| \mathrm{G} \\
& \mathrm{QGI}=\mathrm{C}\left(\mathrm{PWS}^{2}-\left.\mathrm{PWF}^{2}\right|^{\mathrm{N}}\right. \\
& \mathrm{QG}_{\mathrm{i}}=\mathrm{C}\left(\mathrm{P}_{\mathrm{i}}^{2}-\left.\mathrm{PWF}^{2}\right|^{\mathrm{N}}\right. \\
& \mathrm{QGAVG}_{\mathrm{i}}=\left(\mathrm{QG}_{\mathrm{i}}+\mathrm{QG}_{\mathrm{i}-1}\right) / 2 \\
& \mathrm{DGP}_{\mathrm{i}}=\mathrm{GP}_{\mathrm{i}}-\mathrm{GP}_{\mathrm{i}-1} \\
& \mathrm{DTME}_{\mathrm{i}}=\mathrm{DGP}_{\mathrm{i}} / \mathrm{QGAVG}_{\mathrm{i}}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{TIME}_{\mathrm{i}}=\mathrm{TIME}_{\mathrm{i}-1}+\mathrm{DTIME}_{\mathrm{i}} \\
& \mathrm{AOF}_{\mathrm{i}}=\mathrm{C}\left(\mathrm{P}_{\mathrm{i}}^{2}\right)^{\mathrm{N}} \\
& \mathrm{~A}_{\mathrm{i}}=\frac{\% \mathrm{AOF}}{100} \mathrm{AOF}_{\mathrm{i}} \\
& \mathrm{AOF}=\mathrm{C}\left(\mathrm{PWS}^{2}\right)^{\mathrm{N}} \\
& \mathrm{END} \mathrm{P}=\left[\frac{\mathrm{QG} \mathrm{MIN}^{1 / N}}{\mathrm{C}}+\mathrm{PWF}^{2}\right]^{1 / 2}
\end{aligned}
$$

Nomenclature

Symbol	Variable Name	Input or Output	English Units	SI Units
A*	Allowable gas producing rate ($\mathrm{A}=0 \mathrm{MCF} / \mathrm{DAY}$ implies allowable restrictions will be ignored)	\%	$\begin{aligned} & \text { MCF/ } \\ & \text { DAY } \end{aligned}$	$\begin{aligned} & \text { SCM/ } \\ & \text { DAY } \end{aligned}$
AOF*	Absolute open flow	0	$\begin{aligned} & \text { MCF/ } \\ & \text { DAY } \end{aligned}$	$\begin{aligned} & \text { SCM/ } \\ & \text { DAY } \end{aligned}$
C	Stabilized flow coefficient	I	-†	-†
END P*	Ending pressure of forecast	O	PSI	KPA
G^{*}	Initial gas in place	I	MCF	SCM

Figure 18-1 Typical gas well back-pressure test (after lkoku)

Symbol	Variable Name	Input or Output	English Units	$\underset{\text { Units }}{\text { SI }}$
GP*	Cumulative gas production	O	MCF	SCM
DGP*	Delta GP - change in cumulative gas production	0	MCF	SCM
N	Exponent in gas deliverability equation	I	-	-
P*	Pressure	0	PSI	KPA
P DEC*	Pressure décrement of forecast	I	PSI	KPA
QGI*	Initial gas producing rate	O	MCF/ DAY	$\begin{aligned} & \text { SCM/ } \\ & \text { DAY } \end{aligned}$
QG MIN	Minimum gas producing rate of forecast	I	$\begin{aligned} & \text { MCF/ } \\ & \text { DAY } \end{aligned}$	$\begin{aligned} & \text { SCM/ } \\ & \text { DAY } \end{aligned}$
$\mathrm{QG}=\mathrm{A}^{*}$	Gas producing rate limited to the allowable rate	O	$\begin{gathered} \text { MCF/ } \\ \text { DAY } \end{gathered}$	$\begin{aligned} & \text { SCM/ } \\ & \text { DAY } \end{aligned}$
TIME*	Cumulative production time	0	YR	YR
\%AOF	Allowable percent of absolute open flow at each pressure (\%AOF $=0$ implies allowable restrictions will be ignored)	I	-	-

See also the nomenclature for BHPWHP.
*The units for these variables are saved by the program.
\dagger Physically, C has units of MCF/DAY*PSI2 or SCM/DAY*KPA2.

Yes/No Questions

SKIP? Yes: Skip input of PVT data.
No: Allow input of PVT data.

Example 1

Forecast the future production for the South Texas Vicksburg reservoir (see Example 2 of GASPVT and Example 1 of GASMBE) at a time of 2.94 YR. Use the remaining gas in place for G . Other required data are:
$\mathrm{PWF}=1,200 \mathrm{PSI}$
$\mathrm{N}=0.622$
$\mathrm{QG}=2,603 \mathrm{MCF} / \mathrm{DAY}$
$\mathrm{L}=7,100 \mathrm{FT}$
$\mathrm{TVD}=7,028 \mathrm{FT}$
$\mathrm{d}=1.732 \mathrm{IN}$
SURF T = 92 F
Use a pressure decrement of 200 PSI for the forecast.
Allowable flow rate $(\mathrm{A})=2.4 \mathrm{MMCF} / \mathrm{DAY}$ (recently curtailed)

Add compression to PWF $=500 \mathrm{PSI}$ when the flow rate drops to $1 \mathrm{MMCF} / \mathrm{DAY}$.
The well's economic limit is $100 \mathrm{MCF} / \mathrm{DAY}$.

GAS IELIWER

SIIP：W0
$\mathrm{T}_{\mathrm{c}}=441.895 \mathrm{R} \mathrm{R}$
$\mathrm{FC}=661.5656 \mathrm{PCI}$
$T=180.8904 \mathrm{~F}$
$G=35,349.6006$ HMCF
$\mathrm{C}=6.6735$
$N=6.6226$
$L=7,104.0106 \mathrm{FT}$
$T 4 D=7,028.0860 \mathrm{FT}$
$\mathrm{d}=1.7326 \mathrm{IN}$
CRS $\mathrm{G}=6.8728$
SURF T＝92， 8066 F
PHS $=4,692,0606 \mathrm{PSI}$
$\hat{H}=2.4906 \mathrm{H} \mathrm{HCF} / \mathrm{IHY}$

FHF $=1,209$. 日R06．PSI
AOF $=2.7149 \mathrm{MMCF} / \mathrm{IAH}$
$0 \mathrm{OCI}=2,6636 \mathrm{M} C \mathrm{CF} / \mathrm{DAH}$
QG $\mathrm{HIH}=1.0000 \mathrm{HACF} / D \mathrm{~A}^{2}$
END $\mathrm{P}=2,420.6382 \mathrm{PSI}$
P DEC＝200．0080 PSI
$\mathrm{P}=4,492.6068 \mathrm{PSI}$
$\mathrm{GP}=720.2722 \mathrm{HMCF}$
IGPF＝720．2722 MHCF
OG $=\mathrm{A}=2.4090 \mathrm{H} \mathrm{HCF} / \mathrm{DRY}$
TIME＝9． 8222 YR
$\mathrm{FTP}=455.1795 \mathrm{PSI}$
$\mathrm{P}=4,292.6006 \mathrm{PSI}$
$\mathrm{GP}=1,492.9896$ 形 CF
$\mathrm{JCP}=772.6375 \mathrm{MHCF}$
$0 \mathrm{Q}=2.3166 \mathrm{HMCF} / \mathrm{DHY}$
TIME＝1．7211 YR
$\mathrm{FTP}=596.2772 \mathrm{PSI}$
$\mathrm{P}=4.092 .1666 \mathrm{FSI}$
$\mathrm{GP}=2.324 .4346$ H HCF
DCP $=831.5244$ AHCF
$0 \mathrm{O}=2.1654 \mathrm{MHCF} / \mathrm{MHY}$

TIME $=2.7391$ TR
$\mathrm{FTP}=575.6356 \mathrm{PSI}$
p＝3．892． 0880 PSI
$G P=3,222.2695 \mathrm{MHCF}$
IGP＝897．8355 H HCF
$0 \mathrm{CG}=2.0219 \mathrm{MHCF} / \mathrm{DHF}$
TIHE＝3．9140 YR
$\mathrm{FTF}=633.1558 \mathrm{PSI}$
$\mathrm{P}=3.692 . \mathrm{B0} 0 \mathrm{PSI}$
$\mathrm{GP}=4,194.7959$ HMCF
$16 \mathrm{~F}=972.5264 \mathrm{M} \mathrm{MCF}$
$0 \mathrm{G}=1.8797 \mathrm{MCF} / \mathrm{DHY}$
TIME $=5.2798$ YR
FTP $=681.9296$ PSI
$\mathrm{P}=3,492.9690 \mathrm{PSI}$
$\mathrm{GP}=5,251.3436 \mathrm{HHCF}$
MCP $=1,656,5477$ MHCF
QC＝1．7387 MCF／IAY
TIME $=6.8798$ UR
$\mathrm{FTP}=723.8229 \mathrm{PSI}$
$\mathrm{P}=3.292,1000 \mathrm{PSI}$
$6 \mathrm{G}=6.482 .6873 \mathrm{MHCF}$
DGP $=1.150 .7437$ MEF
$\square \mathrm{CL}=1.5988 \mathrm{MMCF} / \mathrm{THY}$
TIHE $=8.7691 \mathrm{YR}$
$\mathrm{FTP}=769.0745 \mathrm{PSI}$
$\mathrm{P}=3.092 .100 \mathrm{PSI}$
$\mathrm{GF}=7,657.7708 \mathrm{mlF}$
IGP $=1,255.6834$ MHCF
QG＝1．4599 HHCF／DRY
TIME $=11.0186 \mathrm{YR}$
$\mathrm{FTP}=791.5567 \mathrm{PSI}$
$\mathrm{P}=2,892,6000 \mathrm{PSI}$
$\mathrm{GP}=9.029 .1666 \mathrm{H} \mathrm{HCF}$

Example 2

To produce the reservoir in Example 1 to its eco－ nomic limit with one well took an unacceptably long time（ 131 YR ）．The reservoir engineer would seek to both increase the deliverability from the well and drill additional wells．
In this example，repeat the calculations from Example 1 assuming three additional wells are brought on line at the initial time，each twice as pro－

ITGP＝1，371．3958 MmCF	$\mathrm{P}=1.829 .6382 \mathrm{PsI}$
QC＝1．3221 MHCF／IMY	$\mathrm{GP}=18.562 .5458 \mathrm{NHCF}$
TIME $=13.7196 \mathrm{YR}$	IGPP $=3.824 .4033 \mathrm{HmCF}$
$\mathrm{FTP}=818.9146 \mathrm{PSI}$	$\begin{aligned} & \text { QG }=796.3683 \text { HCF/DAY } \\ & \text { TIME }=39.0873 \mathrm{YR} \end{aligned}$
$\mathrm{P}=2.692 .6906 \mathrm{PSI}$	$\mathrm{FTF}=292.2661 \mathrm{PSI}$
GF＝10，526．1333 MmCF	
DCP $=1,496.9667$ HicF	$\mathrm{P}=1.528 .6382 \mathrm{PSI}$
	$6 \mathrm{~F}=21.729 .4591$ HfCF
TIHE＝16．9912 YR	IGP $=3,166.9132$ M ${ }^{\text {a }}$
FTP $=842.6426 \mathrm{PSI}$	QG＝622．4589 \＃CF／DAY
	TIME $=51.3178$ TR
$\mathrm{P}=2,492.8060 \mathrm{PSI}$	$\mathrm{FTP}=340.6192 \mathrm{PSI}$
$\mathrm{GP}=12.156 .0745$ \＃MCF	
IIGP＝1， 629.9412 M ${ }^{\text {MCF }}$	$\mathrm{P}=1.229 .6382 \mathrm{PSI}$
QG＝1．8486 HMCF／DAY	GF $=24,872.3699 \mathrm{HHCF}$
TIME $=20.9896 \mathrm{YR}$	DGF $=3,142.9188 \mathrm{MmCF}$
$\mathrm{FTP}=863.1279$ FSI	Q $=453.6048 \mathrm{MCF} / \mathrm{IRY}$
$\mathrm{P}=2.420 .6382 \mathrm{PSI}$	$\mathrm{FTP}=371.2449 \mathrm{PSI}$
$\mathrm{GF}=12.776 .5411 \mathrm{HHCF}$	
DCP $=614.4667$ HHCF	$\mathrm{P}=926.6382 \mathrm{P5I}$
WC＝1．0008 HMCF／DAY	$\mathrm{GP}=27.840 .9668$ MHCF
TIHE＝22．6331 7 TR	ICP $=2,968.5969 \mathrm{MHCF}$
$\mathrm{FTP}=869.7141 \mathrm{PSI}$	$\begin{aligned} & \text { QC= }=288.0677 \text { HCF/DAY } \\ & \text { TIME }=89.2538 \mathrm{PR} \end{aligned}$
PHF $=500.6000 \mathrm{FSI}$	$\mathrm{FTP}=390.9190 \mathrm{PSI}$
AOF＝1．1918 M MCF／DEY	
QGI $=1.1599$ MMCF／DRY	$\mathrm{P}=626.6382 \mathrm{PSI}$
日G HIN＝169．0606 MCF／DMY	$\mathrm{GP}=30.555 .6694 \mathrm{MHCF}$
END P $=599.2140 \mathrm{PSI}$	IICP $=2,714.7026$ H HCF
P MEC＝306．6004 PSI	UG＝114．2956 HCF／［HY
	TIME＝126．2231 TR
$\mathrm{P}=2.129 .6382 \mathrm{FSI}$	FTP $=461.6873 \mathrm{PSI}$
6P＝15．538．1429 HmbF	
IGF $=2,767.6918$ M HCF	$\mathrm{P}=599.2141 \mathrm{PSI}$
QG $=975.5567 \mathrm{HCF} / \mathrm{MAH}$	$\mathrm{CP}=36.739 .1882 \mathrm{MHCF}$
TIME＝29．7347 YR	IGF $=183.5189$ 閏CF
$\mathrm{FTP}=215.7042 \mathrm{PSI}$	UG＝100． $8908 \mathrm{HCF} / \mathrm{DFY}$
	TIME $=137.9156 \mathrm{YR}$
	$\mathrm{FTP}=462.1524 \mathrm{PSI}$

ductive as the existing well．In other words，the value for C is 7 times as great as the previous exam－ ple．Further，input $L=0$ to neglect the FTP calcula－ tions．Add compression to PWF $=500$ PSI when the total flow rate drops to $4000 \mathrm{MCF} / \mathrm{DAY}$ ．

Assume that the wells will not be allowable restricted．If the user selects A or $\% \mathrm{AOF}=0$ ， GASDEL will ignore the allowables．Similarly，one could select $\% \mathrm{AOF}=100$ ；however，this may result in allowable restrictions．The average rate during a
pressure decrement cannot exceed the allowable. If the average rate is greater than 100% of the AOF, the average rate will be reduced to the AOF. When the program outputs QGI or QG, it refers to the instantaneous rate. The variable $\mathrm{QG}=\mathrm{A}$ refers to the average rate.
In practice, the reservoir engineer optimizes field development in much this fashion. Although one well might drain the bulk of the reserves (albeit in centuries), additional wells will accelerate (and usually increase) ultimate recovery. An economic evaluation will indicate which ultimate well spacing is optimal. (Fractured wells present an additional variable when fracture length must be optimized as well.) Reservoir heterogeneities will often require additional wells to drain the reserves in place regardless of the economic considerations.

Keystrokes	Display	Comments
[XEQ] [ALPHA] GASDEL [ALPHA]	SKIP? Y/N:N	
$\mathrm{Y}[\mathrm{R} / \mathrm{S}]$	$G=$?	
[R/S]	$C=$?	
7 [*]	0.5148	
[R/S]	$N=$?	
[R/S]	$L=$?	
0 [R/S]	PWS SITP	
[A]	$P W S=$?	
[R/S]	A \%AOF	
[A]	$A=$?	A known
0 [R/S]	$P W F=$?	
1200 [R/S]	QG MIN=?	AOF and QGI printed
4 [ALPHA] MMCF/DAY [R/S]	$P D E C=$?	END P printed
[R/S]	$P W F=$?	Forecast printed

The flow rates are increased greatly over those in Example 1. The field reaches a flow rate of 4 MMCF/DAY in 6.3 YR, at which time a new value of PWF and QG MIN will be input. The economic limit for the four wells will be 400 MCF/DAY.

500 [R/S]	$Q G M I N=?$	$\begin{aligned} & \text { AOF and } \\ & \text { QGi } \\ & \text { printed } \end{aligned}$
400 [ALPHA] MCF/DAY [R/S]	$P D E C=$?	END P printed
[R/S]	PWF=?	Forecast printed

Note that the ultimate recovery from four wells (with three of higher productivity) was 31.2 BCF in 21.6 YR compared with the single well's 30.7 BCF in 131 YR. The engineer will develop estimates of well costs and recoveries for different numbers of wells, couple them with operating expenses, taxes, prices, etc., to determine the optimal number of wells to recover the-reserves economically.

GAS DELIVER	$\begin{aligned} & P=2,292.0006 \mathrm{PSI} \\ & G P=13,921,565.67 \text { HCF } \end{aligned}$
SKIP: YES	DGF=2,597,391.630 HCF
$\mathrm{C}=0.5148$	Q $0=6.3862$ M $\mathrm{MCF} / \mathrm{THF}$
$L=4.0090 \mathrm{FT}$	TIME $=3.6882$ \%
$\mathrm{H}=\mathrm{g}, \mathrm{gOEO} \mathrm{HCF} / \mathrm{DCY}$	
	$\mathrm{P}=1.992 .8800 \mathrm{PSI}$
PWF $=1,206.8806$ PSI	GF $=16, \mathrm{~g} 88.544 .98 \mathrm{MCF}$
H0F=19,804, 8414 HCF/DAY	DGF=2,886,939.849 MCF
$0 \mathrm{CI}=18,221.81806 \mathrm{MCF} / \mathrm{THY}$	QC=4.9455 MICF/IAY
Q6 MIN=4.0680 MHCF/DAY	TIME $=5.8842$ YR
END P=1,799.2672 P51	
	$\mathrm{P}=1.799 .2672 \mathrm{PSI}$
$\mathrm{P}=4,392.80808 \mathrm{PSI}$	$\mathrm{GP}=18.785 .226 .13 \mathrm{HCF}$
GP=1, 099,657,985 HCF	JGFF=1,976,715.220 HCF
ICP $=1,099,657.985 \mathrm{HCF}$	QG: $=4.8006 \mathrm{MHCF} / \mathrm{THY}$
QG=16.6796 MHCF/ $/ \mathrm{APY}$	TIME $=6.2959$ YR
TIME $=6.1726$ YR	
	PHF $=509.660618 \mathrm{PSI}$
F=4,092,8600 PSI	AOF=5.7679 MCF/DHY
$\mathrm{GP}=2,324,434,065 \mathrm{HCF}$	QGI=5.4866 MMCF/DFY
DGP $=1,224,776.100$ HCF	QG MIH=400. $6000 \mathrm{HCF} / \mathrm{HAY}$
$\underline{\mathrm{OG}}=15.1577 \mathrm{HPCF} / \mathrm{TAY}$	ENI P=542.5427 PSI
TIME=9. 3834 TR	
	$\mathrm{P}=1,499.2672 \mathrm{PSI}$
P=3,792.6006 PSI	GF=21,956,209,94 HCF
$\mathrm{GP}=3,698.634 .850 \mathrm{HCF}$	$\mathrm{JCP}=3,176,989.810 \mathrm{HCF}$
DGP $=1,374,206.845$ HCF	$0 \mathrm{C}=4,271.8918 \mathrm{MCF} / \mathrm{dAY}$
QG $=13.6548 \mathrm{MHCF} / \mathrm{DAY}$	TIME $=8.8755$ YR
TIME=0.6448 YR	
	$\mathrm{F}=1,199.2672$ PSI
$\mathrm{P}=3,492,0010 \mathrm{PSI}$	$6 \mathrm{P}=25,091,066.89 \mathrm{HCF}$
GP $=5,251,343.592 \mathrm{HCF}$	IGP $=3,134,805.951 \mathrm{HCF}$
16PF=1,552,768.742 HCF	$\mathrm{QC}=3,892.1988 \mathrm{HCF} / \mathrm{LAY}$
	TIME $=10.4898$ YR
TIME $=0.9742 \mathrm{YE}$	
	P=899. 2672 PSI
$\mathrm{GP}=7,016,136.303 \mathrm{NCF}$	GP=28, 043,217.86 MCF
$\operatorname{IGGP}=1,764,786.711 \mathrm{MCF}$	$\mathrm{IGPP}=2,952,210.116 \mathrm{MCF}$
QG=10.7046 $\mathrm{HHCF} / \mathrm{THY}$	QG=1,933.8055 MCF/DH7
TIME $=1.3978$ Y\% THE TK	
$\mathrm{P}=2,892.0000 \mathrm{PSI}$	$\mathrm{P}=599.2672 \mathrm{PSI}$
$\mathrm{GP}=9,2929,166.569$ micF	$\mathrm{CP}=36.736 .733 .95 \mathrm{HCF}$
DCP $=2,013,036.264$ MCF	IGP $=2,695.516 .956$ \# CF
$0 \mathrm{OC}=9.2548 \mathrm{MHCF} / \mathrm{MAY}$	06, $=760.2547 \mathrm{MCF} / \mathrm{TAY}$
TIME $=1.9496$ YR	TIHE $=19.2339$ Y\%
$\mathrm{P}=2.592 .8006 \mathrm{FSI}$	$\mathrm{P}=542.5427 \mathrm{PSI}$
$\mathrm{GP}=11,324,173.44 \mathrm{HCF}$	6P $=31.218,836.99$ H6F
DGP=2, 295, 006. 872 HCF	DGP $=479,363.6506 \mathrm{HCF}$
	$\underline{06}=409.0908 \mathrm{HCF} / \mathrm{DRY}$
TIME=2.6862 7 F	TIHE 21.6209 YR

User Instructions

* Tones will sound while the unknown pressure is calculated iteratively.
\dagger PWF TOO LOW means that PWF is less than the weight of the gas and the frictional pressure drop for the given flow rate.

19. STAB — Stabilized Flow Coefficient

Back-pressure testing of gas wells is required by certain regulatory agencies and is useful in some regards for evaluating flow performance. It has been noticed frequently that the back-pressure curve (see Figure 19-1) often keeps a constant slope but shifts to the left with time. This changes the value for C, the flow coefficient. There are more sophisticated methods to predict low permeability and fractured gas well performance. However, the technique presented by Poettman and Schilson can be used to provide a reasonable estimate of the stabilized flow coefficient. The calculations involve functions of time and radius of drainage. For an input value of drainage radius, the time required to reach stabilization is also calculated.

$$
\begin{aligned}
& \mathrm{A}=\mathrm{T} 2^{\mathrm{X}} / \mathrm{T} 1^{\mathrm{Y}} \\
& \mathrm{X}=\mathrm{C} 2^{1 / \mathrm{N}} / 2\left(\mathrm{C} 1^{1 / \mathrm{N}}-\mathrm{C}^{1 / \mathrm{N}}\right) \\
& \mathrm{Y}=\mathrm{C} 1^{1 / \mathrm{N} / 2}\left(\mathrm{C} 1^{1 / \mathrm{N}}-\mathrm{C}^{1 / \mathrm{N}}\right) \\
& \mathrm{RAD}_{\mathrm{i}}=\mathrm{B} \sqrt{\mathrm{~T}_{\mathrm{i}}} \\
& \mathrm{END} \mathrm{~T}=\left(\mathrm{Re} /\left.\mathrm{B}\right|^{2}\right.
\end{aligned}
$$

$$
\mathrm{B}=0.69688\left|\frac{\mathrm{KG}}{\% \mathrm{POR} \mathrm{UG} \mathrm{CG}(1-\mathrm{SW})}\right|^{1 / 2}
$$

If $U G$ and $C G$ are unknown, they are evaluated at

$$
P=\sqrt{\frac{\mathrm{SITP}^{2}+\mathrm{PSTAB}^{2}}{2}}
$$

Equations

$$
\begin{aligned}
& \mathrm{QG}=\mathrm{C}\left(\mathrm{SITP}^{2}-\mathrm{PSTAB}^{2} \mid \mathrm{N}\right. \\
& \mathrm{C}=\mathrm{C} \left\lvert\,\left\lfloor\frac{\ln (\mathrm{A} \sqrt{\mathrm{~T} 1})}{\ln (\mathrm{A} \sqrt{\mathrm{~T}})} \mathrm{N}^{\mathrm{N}}\right.\right.
\end{aligned}
$$

Nomenclature

Symbol	Variable Name	Input or	English	SI
Output	Units	Units		
C	Stabilized flow coefficient	O	$-\dagger$	$-\dagger$

Figure 19-1 Back-pressure test stabilization

Symbol	Variable Name	Input or Output	English Units	$\begin{gathered} \text { SI } \\ \text { Units } \end{gathered}$
Cl	Stabilized flow coefficient at TIME 1	\bigcirc	-†	- \dagger
C 2	Stabilized flow coefficient at TIME2	O	-†	-†
END T*	Ending time of forecast	I,O	HR	HR
KG	Effective permeability to gas	I	MD	MD
N	Slope of back pressure deliverability curve	,	-	-
P STAB*	Stabilized line pressure	I	PSI	KPA
PWF1*	Flowing bottom hole pressure at TIME 1	I	PSI	KPA
PWF2*	Flowing bottom hole pressure at TIME2	I	PSI	KPA
QG*	Gas producing rate	0	MCF/ DAY	$\begin{aligned} & \text { SCM/ } \\ & \text { DAY } \end{aligned}$
QG1*	Gas producing rate at TIME1	I	$\begin{aligned} & \text { MCF/ } \\ & \text { DAY } \end{aligned}$	$\begin{aligned} & \text { SCM/ } \\ & \text { DAY } \end{aligned}$
QG2*	Gas producing rate at TIME2	I	$\begin{aligned} & \text { MCF/ } \\ & \text { DAY } \end{aligned}$	$\begin{aligned} & \text { SCM/ } \\ & \text { DAY } \end{aligned}$
RAD	Radius of investigation	O	FT	M
Re	Radius of drainage	I	FT	M
SITP*	Shutin tubing pressure	I	PSI	KPA
TIME*	Time	O	HR	HR
TIME1*	Time at first time-pressure-rate point	I	HR	HR
TIME2*	Time at second time-pressure-rate point	I	HR	HR
T INC*	Time increment of forecast	I	HR	HR

*The units for these variables are saved by the program.
\dagger Physically, $\mathrm{C}, \mathrm{C} 1$, and C 2 have units of MCF/DAY*PSI2 or SCM/DAY*KPA2.

Yes/No Questions

CORR? Yes: Use Pac correlations to estimate PVT properties.
No: Input PVT properties.
SKIP? Yes: Skip input of PVT data.
No: Allow input of PVT data.

Example

Gas well A is completed in the Midcox formation and is spaced on 320 acres. The initial well test information is as follows:

$$
\begin{aligned}
& \text { SITP }=2,900 \mathrm{PSI} \\
& \text { TIME1 }=3 \mathrm{HR} \\
& \text { PWF1 }=2,400 \mathrm{PSI} \\
& \text { QG1 }=1,750 \mathrm{MCF} / \mathrm{DAY} \\
& \text { TIME2 }=14 \mathrm{HR} \\
& \text { PWF2 }=2,025 \mathrm{PSI} \\
& \text { QG2 }=1,220 \mathrm{MCF} / \mathrm{DAY}
\end{aligned}
$$

Other pertinent data are:

```
Stabilized line pressure \(=600\) PSI
Permeability \(=0.09 \mathrm{MD}\)
Gas gravity \(=0.642\) (no diluents)
Porosity \(=16.2 \%\)
Temperature \(=140 \mathrm{~F}\)
Water saturation \(=36.1 \%\)
Slope of back pressure curve \(=0.82\)
```

Calculate the test flow coefficients and the flow coefficients monthly until stabilization occurs. The radius of drainage corresponding to 320 acres is 2,106 FT.

Keystrokes $(S I Z E>=049)$	Display	Comments
[XEQ] [ALPHA] TcPc [ALPHA]	COND? Y/N:	Last character is Y or N
N [R/S]	GAS G=?	
. 642 [R/S]	\%N2=?	
0 [R/S]	\% $\mathrm{CO} 2=$?	
0 [R/S]	\% H2S = ?	
0 [R/S]	GAS $G=$?	Tc and Pc printed
[XEQ] [ALPHA] STAB [ALPHA]	CORR? Y/N:	Last character is Y or N
Y [R/S]	SKIP? Y/N:	Last character is Y or N
N [R/S]	$T c=$?	
[R/S]	$P C=$?	
[R/S]	GAS G = ?	
[R/S]	$M W=$?	
[R/S]	$T=$?	
140 [R/S]	$\% P O R=$?	
16.2 [R/S]	\%SW=?	
36.1 [R/S]	$K G=$?	
. 09 [R/S]	$N=$?	
. $82[\mathrm{R} / \mathrm{S}]$	TIME1 $=$?	
3 [R/S]	PWF1 = ?	
2400 [R/S]	QG1 $=$?	
1750 [R/S]	TIME2 $=$?	
14 [R/S]	PWF2=?	

User Instructions

General information

Memory Requirements

Program length： 784 bytes（ 4 cards）
Minimum size： 049
Minimum hardware： $41 \mathrm{C}+2$ memory modules

Hidden Options

None

Pac Subroutines Called
TITLE，Y／N？，ITcPc，GASG，T，\％POR，INU，IN， CON，CCG，CUG，OUT，INK，OUTK，OUTU

Registers

03 Time units
04 Time units
06 Gas producing rate units
07 Gas producing rate units
08 Pressure units
09 Pressure units
17 P STAB（PSI）
26 SITP（PSI）
27 Scratch
28 Scratch
29 KG （MD）
$30 \quad \operatorname{Re}(F T)$
31 Scratch
32 C1
33 TIME（HR）
34 T INC（HR）
35 END T（HR）
36 TIME1（HR）
37 PWF1（PSI）
38 QG1（MCF／DAY）
39 TIME2（HR）
40 PWF2（PSI）
41 QG2（MCF／DAY）
42 CG（1／PSI）
43 QG（MCF／DAY）
44 P STAB（PSI）
45 C
46 N
47 PWF2（PSI）
48 UG（CP）
Registers 12－14，19，20，and 22－25 unused

Flags

Set：Use Pac correlations to estimate PVT properties．
Clear：Input PVT properties．
02

Set：Skip input of PVT data．
Clear：Allow input of PVT data．

Program Listing

```
    GINLEL "STRE"
    "STAE FLOM [" 49
    XROM "TITLE" FC2C 25
PROHPT SF 27 "HF"
0ST0 03 "SCH/DAY"
HSTO 66 ASHF ASTO 07
*KPA= ASTO 68 CLA
ASTO 04 ASTO 99 *CORR=
```



```
GT0 00 "SKIP" 2
XROH "Y/H?= FS? 暗
GT0 01 XROH "ITcPG"
XROM "FASG" YROF "T"
XROH "&POR" GT0 01
    34+LBL OB
41 ST0 00 "1/PSI"
ASTO E1 CLA GSTO QE
ASTO Z "1/KPA" ASTO Y
"CG" XROH "IHU" 47
STO 06 "CP" RSTO 01
CLA ASTO 02 ASTO Z
*PA*S" ASTO Y "UG"
XROH "INI" XROH "%POR"
    58*LBL 01
29 5T0 00 "%5H"
XROH = IN= 20 ST0 90
*HD" ASTO E1 RSTD Y
CLA ASTO 02 ASTO Z
"KG" XROH =IHU" 45
ST0 60 "N" XROH "IH"
35 "TIMEI" XEQ 18 36
"PHF1" XEE 20 37
"QGI= XEE 16 CF 98 38
-TIME2= 品 18 39
"PMF2" NEQ 20 STO 47
48 "0G2" XE日 16 25
*SITF= XEE 20 43
"F STAE" XEQ 20 FC? 01
GTO B2 RCL 16 "F-R=
CON RCL 10 % STO 01
K\YY Yt2 RCL 26 Yt2
+ 2 / SQRT STO 17
RCL 11 % STO 00
HROH =CCG" STO 42
RCL B1 RCL 60
XROH "CUG" STO 48
129*LBL 02
RCL 29 RCL 42;
```


Program Listing (cont.)

RCL 48 / 1 RCL 21
106 (RCL 18 * /
SQRT . 69688 * STO 27
RCL 38 RCL 37 XED 66
, STO 32 ADY "C1"
XROH =OUT $=$ RCL 41
RCL 49 YEO 06 (CL°
XROH "OUT" ADY RCL 32
/ RCL 46 1/X Y4X
EnTERT $1 / \mathrm{K}$ 1 ST- 2 -
2 ST* Z * RCL 39
"HR" CON XNY $1 / \mathrm{K}$
Y4X RCL 36 CON RCL 2
1/2 Y4\% * 97031
RCL 36 CON SQRT * LH
STO 28
1944LBL 15
-Re ENDT: PROMPT
GTO 15
198+LBL A
29 "Re" XEQ 22 RCL 27
, Yt2 STO 35 -EMD T"
XEQ 19 GTO 63
2094LBL 1
$210+$ LBL E
34 "END T" KEQ 18
214+LBL 03
33 'T INC" XEQ 18 CLX
5703367094
$221+$ LBL 14
RCL 33 "TIHE" XEQ 19
"HR" CON SQRT RCL 31

* LN RCL 28 XXYY /

RCL 46 YfX RCL $32 *$
$5 T 045$ " $\mathrm{C}=\mathrm{KROH}$ "OUT"
RCL 44 XEE 96 *
STO 43 -QG" XED 17
RCL 33 SQRT RCL 27 *
"RAI" XER 23
$253+$ LEL 94
ADV RCL 35 RND RCL 33
RCL $34+$ RHD XCY ?
GTO 05 KOY RCL 33
RND $\mathrm{X}=\mathrm{Y}$? GTO 15
RCL 35 RMI
2764 LBL 85
LASTX STO 33 GTO 14
2744LBL 06
$\mathrm{X}_{\mathrm{H}} 2 \mathrm{RCL} 26 \mathrm{X}+2$ - CH
RCL 46 YTX RTH
2834LBL 16
STO 日 0 XEE 87
KROH "IHK= RDH STO 66
KSY $\$ 7007$ RT RTH
2934LBL 17
XEO 07 YROH "OUTK" RDH
STO 96 KOY STO 07 Rt RTN

3024LBL 87
ASTO T "MCF/DAY"
ASTO 61 ASHF ASTO 02
CLA ARCL T RCL 87
RCL 86 RCL 2 RTH
3144 LEL 18
STO 66 XEQ 68
XROH "INK" RIN STO 93
KOY STO 04 R \uparrow RTH

3244LBL 19
XEQ 88 YROM "OUTK" RDH STO 03 XOY STO 04 Rt RTH

3334 LEL 88
ASTO T "HR ${ }^{-}$ASTO GI
CLA ASTO 12 ARCL T
RCL 04 RCL 03 RCL 7
RTH
3444LBL 20
ST0 06 碞 99
KROH "IHK" RIH STO 88
XSYY STO 69 Rt RTH
3544LBL 21
XEE 69 KROH "OUTK" RDH
STO 88 XOY STO G9 R RTH
$363+L B L$
ASTO T "PSI" ASTO 01
CLA ASTO Q2 ARCL T
RCL 09 RCL 88 RCL 2
RTH
3744LBL 22
STO 09 YEQ 10
XROM "INU" RTH
$379+$ LBL 23
XEQ 10 XROM "OUTU" RTH
383 LBL 1 I
ASTO T FTT ASTO QI

- H^{\prime} ASTO Y CLA

ASTO 02 ASTO 2 ARCL T
EHD

Section 6
 Pressure Transient Analysis

20. BLDUTIL - Utilities for Pressure Buildup Analysis

Utility program that calculates Horner time, coefficients for multiple producing rates prior to shutin, and $\mathrm{P} / \mathrm{UG} * \mathrm{Z}$ as a function of pressure.

21. BUILDUP - Analyzing Pressure Buildups

Calculates permeability and skin for oil or gas well buildups. Pressure, pressure squared, and real gas potential equations are allowed for gas buildups.

22. DRAW - Multiple Rate Pressure Drawdown Analysis

Calculates permeability and skin for multiple-rate oil or gas drawdowns. Includes utilities to calculate X and Y axes of drawdown plot.

20. BLDUTIL - Utilities for Pressure Buildup Analysis

Pressure transient testing is a very broad field that involves myriad analytical techniques. It is completely beyond the scope of this book to even reference these methods. However, a few methods for assisting the analysis of Horner plots for buildups and for drawdowns are presented in this chapter. BLDUTIL provides three utilities for assisting in the analysis of buildup tests with multiple or constant rate histories.

The first utility is nearly trivial (by itself) and calculates Horner time from the shutin time. This type of Horner plot is used for buildups preceded by a constant producing rate. For the case of multiple rates prior to shutin, a different plot is in order. The second utility performs the superposition calculations required for this technique (Earlougher). The slope of either of these graphs is utilized in the pressure buildup analysis program, BUILDUP.
The third utility provides a table of P/UG*Z as a function of pressure for gas wells. This is helpful in selecting the type of analysis that should be performed. At low pressures (usually less than 2,000 PSII, this function is nearly linear. In these cases, the pressure squared equations should be used for analysis. At high pressures (usually greater than 4,500 PSI) the pressure equations can be used. At intermediate values, the P/UG*Z term exhibits some curvature. For this range, the real gas potential term MP should be used. It is valid to use MP for the analysis of any pressure range.

Equations

Horner time utility:
TIME $=24 \mathrm{NP} / \mathrm{QO}, \quad \mathrm{TIME}=24 \mathrm{GP} / \mathrm{QG}$
HORN T $=\frac{\text { TIME }+ \text { DTIME }}{\text { DTIME }}$

Summation utility (shown for oil only):
where n is the number of TIME, values input by the user.
$\mathrm{TIME}_{0}=0 \mathrm{HR}$

Nomenclature

Symbol	Variable Name	Input or Output	English Units	SI Units
BEG ${ }^{*}$	Beginning pressure of table	I	PSI	KPA
DTIME*	Shutin time	I	HR	HR
END P^{*}	Ending pressure of table	I	PSI	KPA
GP	Cumulative gas production	I	MCF	SCM
HORN T	Horner time	O	-	-
NP	Cumulative oil production	I	BBL	M3
P*	Pressure	O	PSI	KPA
P INC*	Pressure increment	I	PSI	KPA
P/UG*Z	Pressure-viscosity-Z factor quotient	O	- \dagger	- \dagger
QG*	Gas producing rate	I	MCF/ DAY	$\begin{aligned} & \text { SCM/ } \\ & \text { DAY } \end{aligned}$
$\mathrm{QG}_{\mathrm{i}}{ }^{*}$	Gas, producing rate at TIME	I	$\begin{aligned} & \text { MCF/ } \\ & \text { DAY } \end{aligned}$	$\begin{gathered} \text { SCM/ } \\ \text { DAY } \end{gathered}$
QO*	Oil producing rate	1	$\begin{aligned} & \text { BBL/ } \\ & \text { DAY } \end{aligned}$	$\begin{aligned} & \text { M3/ } \\ & \text { DAY } \end{aligned}$
$\mathrm{QO}_{i}{ }^{*}$	Oil producing rate at TIME	I	$\begin{aligned} & \text { BBL/ } \\ & \text { DAY } \end{aligned}$	$\begin{aligned} & \text { M3/ } \\ & \text { DAY } \end{aligned}$
TIME*	Producing time at QG or QO	I	HR	HR
TIME ${ }^{*}$	Producing time at QG_{i} or QO_{i}	I	HR	HR
Σ	Superposition term	O	-	-

${ }^{*}$ The units for these variables are saved by the program. \dagger Physically, P/UG*Z has units of PSI/CP or KPA/PA*S.

Yes/No Questions

EDIT? Yes: Allow editing of TIME and QO or TIME and QG values.
No: No editing necessary.
OIL? Yes: Oil reservoir.
No: Gas reservoir.
SKIP? Yes: Skip input of PVT data.
No: Allow input of PVT data.

Example 1: Variable Rate Buildup

This example follows Earlougher's Example 5.5. Table 20-1 gives the rate and pressure data for this example. Figure 20-1 illustrates the rate variation

Figure 20-1 (after Earlougher)

Figure 20-2
preceding a pressure buildup test. Figure $20-2$ is a graph of the buildup test shutin pressure (PWS) versus the Σ term calculated in the example, with an indicated slope of 153 PSI/CYCLE. This buildup data is shown in Table 20-2. The permeability for this well will be calculated as an example in BUILDUP. Note that a value for P1HR (2,761.1 PSI) and $P *(2,992.6 \mathrm{PSI})$ can be obtained from this graph by reading the PWS values at a Σ corresponding to DTIME $=1 \mathrm{HR}$ and $\Sigma=0$, respectively.

Table 20-1

TIME (HR)	QO (BBL/DAY)
0	0
3	478.5
6	319.0
9	159.5

DTIMB (HR)	Table 20-2					
PWS (PSI)			\quad		Σ (calculated)	
:---:	:---:	:---:				
2	2,813	1.2211				
3	2,838	1.0280				
5	2,872	0.7949				
7	2,895	0.6533				
9	2,910	0.5563				
11	2,919	0.4851				
13	2,930	0.4305				
15	2,935	0.3871				
17	2,942	0.3517				
1	$-*$	1.5528				

* Σ at DTIME $=1 \mathrm{HR}$ used to calculate P1HR.

Keystrokes $(\text { SIZE }>=063)$	Display	Comments
[XEQ] [ALPHA] BLDUTIL [ALPHA]	OLL? Y/N:	Last character is Y or N
$\begin{aligned} & Y[R / S] \\ & {[C]} \end{aligned}$	$\begin{aligned} & \text { HORN } \Sigma \\ & \text { TIME1 =? } \end{aligned}$	Summation option
$\begin{aligned} & 3[R / S] \\ & 478.5[R / S] \end{aligned}$	$\begin{aligned} & \text { QO1 = ? } \\ & \text { TIME2 =? } \end{aligned}$	
$6[\mathrm{R} / \mathrm{S}]$	QO2=?	
319 [R/S]	TIME3 = ?	
9 [R/S]	QO3 $=$?	
159.5 [R/S]	TIME4 = ?	
[R/S]	EDIT? Y/N:N	
[R/S]	DTIME =?	Σ printed
2 [R/S]	DTIME $=$?	Σ printed
3 [R/S]	DTIME = ?	Σ printed
5 [R/S]	DTIME $=$?	Σ printed
7 [R/S]	DTIME $=$?	Σ printed
9 [R/S]	DTIME $=$?	Σ printed
11 [R/S]	DTIME $=$?	Σ printed
13 [R/S]	DTIME=?	Σ printed
15 [R/S]	DTIME $=$?	Σ printed
17 [R/S]	DTIME $=$?	Σ printed
1 [R/S]	DTIME $=$?	$\begin{aligned} & \Sigma \text { at DTIME } \\ & =1 \mathrm{HR} \\ & \text { used to } \\ & \text { calculate } \\ & P 1 H R \end{aligned}$

EUILDUF UTIL

OIL: YES

TIMEI $=3.61899$ HR $001=478.5806$ BRL $/$ IAH

TIME2=6. 0060 HR
$002=319.0060$ BEL $/ \mathrm{DHY}$

TIME $3=9.909 \mathrm{HR}$
$003=159.5006 \mathrm{BRL} /[\mathrm{AH}$

DTIME $=2.6060 \mathrm{HE}$ $\bar{Z}=1.2211$

ITIHE=3. 8000 HR $8=1.6289$

ITLME=5. 9080 HR $\Sigma=0.7949$

DTIHE $=7,6868$ HE $\mathrm{E}=0.6533$

DTIME=9. 6080 HR $\Sigma=0.5563$

ITIME $=11.0000 \mathrm{HK}$ $\varepsilon=0.4851$

ITIME $=13.8984 \mathrm{HR}$ $\Sigma=6.4365$

DTIHE=15.660日 HR $8=6.3871$

ITIME=17.0006 HR $8=0.3517$

ITIME $=1.01906 \mathrm{HR}$ $\Sigma=1.5528$

Example 2

A well in the Plum Nearly (Smackover) reservoir had produced 66.17 MMCF with a current rate of 2.210 MMCF/DAY, which has been more or less constant for the well's 1 -month producing history. At the time of this buildup, a second well was being drilled. Table 20-3 shows the shutin times for this buildup. Calculate the pseudo-producing time (TIME) and Horner times (HORN T) for this buildup.

Keystrokes	Display	Comments
$74.64[\mathrm{R} / \mathrm{S}]$	$D T I M E=?$	HORN T printed
$96[\mathrm{R} / \mathrm{S}]$	$D T I M E=?$	HORN T printed HORN T $156[\mathrm{R} / \mathrm{S}]$
$216[\mathrm{R} / \mathrm{S}]$	$D T I M E=?$	printed HORN T printed

EUILDUF UTIL	$\begin{aligned} & \text { ITIME }=18.8080 \mathrm{HR} \\ & \text { HORH } \mathrm{T}=40.9216 \end{aligned}$
OIL: N0	$\begin{aligned} & \text { DTIHE }=24.0008 \text { HR } \\ & \text { HORN } T=36.9412 \end{aligned}$
GF=66.1760 MHCF	
	DTIHE=36.8000 HR
TIME=718.5882 HE HORH T=26.9608	
ITIME $=9.5000 \mathrm{HR}$	DIIME $=48.8060$ HR
HORH $\mathrm{T}=\mathrm{i}, 438.1765$ HORH $\mathrm{T}=1$	
DTIME=1.6006 HR	ITIME=6日. 60008 HE
HORN $T=719.5682$ HORN $T=$	
$\begin{array}{ll}\text { DTIHE }=2.6060 \text { HR } & \text { ITIME }=74.6469 \\ \text { HOPN T }=360.2941 & \text { HORN } T=10.6274\end{array}$	
DTIME $=3.6886 \mathrm{HE}$ ITINE $=96.8860$	
HORN $T=249.5294$ HORN $T=8.4853$	
ITIME $=6.9008 \mathrm{HR} \quad$ ITIME $=156.8608 \mathrm{H}$	
HORH T=129.7647 HORH T=5.6663	
ITIME $=12.0008 \mathrm{HR}$	ITIME $=216.8096 \mathrm{HR}$
HOPN T=60.8824	HORH T=4.3268

Example 3

Calculate P/UG*Z for the well in Example 2 and determine where each of the buildup analysis types should be applicable. Use a 500 PSI range up to the initial reservoir pressure of $13,600 \mathrm{PSI}$, starting at 100 PSI. Figure $20-3$ is a graph of P / UZ as a function of pressure. For the buildup data in this test (pressure varies from 10,000 to 13,000 PSI), either the pressure or real-gas potential equations should yield valid results. From Example 1 of GASPVT, Tc $=410.9022$ $\mathrm{R}, \mathrm{Pc}=673.9813 \mathrm{PSI}, \mathrm{T}=255 \mathrm{~F}$, and $\mathrm{GAS} \mathrm{G}=$ 0.8588 .

Keystrokes	Display	Comments
[R/S]	HORN इPIUZ	
[E]	SKIP? Y/N:	P/UZ option. Last character is Y or N
N [R/S]	$T C=$?	
410.9022 [R/S]	$P_{C}=$?	
673.9813 [R/S]	$T=$?	
255 [R/S]	GAS $G=$?	
. 8588 [R/S]	$B E G P=$?	
100 [R/S]	END $P=$?	
13600 [R/S]	$P I N C=$?	
500 [R/S]	HORN ΣP P/UZ	Table printed

Figure 20-3

SKIP: W0
$T C=418.9222 \mathrm{R}$
$\mathrm{Pc}=673.9813 \mathrm{PSI}$
$\mathrm{T}=255.6000 \mathrm{~F}$
GAS G=6.8580
BEG F=100.0060 FSI
END $P=13,600.0660$ PSI
P IMC=506, 104 CSI
$\mathrm{F}=100.680 \mathrm{PGI}$
PIIG $\ddagger 2=7,423.3797$
$P=606.0640 \mathrm{PSI}$
PノUT $+2=44,558.7752$
$\mathrm{P}=1.16 \mathrm{~B} .4006 \mathrm{PSI}$
P/UE $\$ 2=79,769.6592$
$\mathrm{P}=1,600.6004 \mathrm{PSI}$
P/UG $\ddagger 2=199.069 .2052$
$\mathrm{P}=2,109$. 066 PSI
P/IUG*2=131.921.9267
$\mathrm{P}=2,606.0066 \mathrm{PSI}$
FFOG\#7=147,881.8827
$\mathrm{P}=3.160 .604 \mathrm{PSI}$
F/UG $* 2=157: 679.7450$
$\mathrm{P}=3,680,9000 \mathrm{PSI}$
P/UG $\% 2=163,055.4373$
$\mathrm{P}=4,100.90 \mathrm{PE} \mathrm{PSI}$
PAIG $=2=165,374.8654$
$\mathrm{P}=4.606 .0900 \mathrm{PSI}$
PAIG $=7=165,716.6992$
$\mathrm{P}=5,100.9606 \mathrm{PSI}$
P/UG*Z=164,849.5979
$\mathrm{P}=5,60 \mathrm{~g}, 6909 \mathrm{PSI}$
P7IG\#7=163.166.6978
$\mathrm{P}=6.106 .4606 \mathrm{PSI}$
PFUG\%2=161,698.1447
$\mathrm{P}=6,609.0060 \mathrm{PSI}$
PAUG*2=158.884.9346
$\mathrm{P}=7.100 .5806 \mathrm{FSI}$
P 1 IG $* 2=156,412.6948$
$\mathrm{P}=7.690 .06 \mathrm{~B} \mathrm{PSI}$
PIUG $\ddagger 2=153.999 .2665$
$\mathrm{P}=8,106.866 \mathrm{PSI}$
PAGG*2=151,612. 6631
$\mathrm{P}=8.600 .909 \mathrm{PSI}$
P/IG $\# 2=149,279.1858$
$P=9.160 .0000 \mathrm{PSI}$
P/IIG* $Z=147,016.4917$
$\mathrm{P}=9,606.61048 \mathrm{PSI}$
P/UG*2=144,832.0919
$\mathrm{P}=10.104 .6000 \mathrm{PSI}$
P/UG: $2=142,729,2197$
$\mathrm{P}=10.696 .9060 \mathrm{PSI}$
P/UG $\$ 2=149.768 .6772$
$\mathrm{P}=11,109.6009 \mathrm{PSI}$
P/U6*2=138.767.6979
$P=11,666.8069 \mathrm{PSI}$
P/UC $\$ 2=136,963.2676$
$\mathrm{F}=12.109 .6060 \mathrm{PSI}$
P7UC*2=135:113.5118
$\mathrm{F}=12.600 .906 \mathrm{PSI}$
P/U4*Z=133,394.1991
$P=13,180.0009 \mathrm{PSI}$
PRUG $\geq 2=131,741,3452$
$\mathrm{P}=13.60 \mathrm{~A} .9 \mathrm{BED} \mathrm{PSI}$
P/UG\#2=136.151.5422

User Instructions

Note: for TIME_{i} and $\mathrm{QO}_{i}, i=1,2,3, \ldots, n$, where n is the number of TIME values input by the user.
*Tones will sound while Σ is calculated.

User Instructions

Note: for TIME_{i} and $Q G_{i}, i=1,2,3, \ldots, n$, where n is the number of TIME values input by the user.

* Tones will sound while Σ is calculated.

General Information

Memory Requirements

Program length: 780 bytes (4 cards) Minimum size: 063*
Minimum hardware: $41 \mathrm{C}+2$ memory modules
*This size will allow up to 10 TIME, QO or TIME, QG values. To accommodate v TIME, QO or TIME, QG values, use size $43+2 \mathrm{v}$.

Hidden Options

None

Pac Subroutines Called

TITLE, Y/N?, INU, OUT, INK, OUTK, ITcPc, T, GASG, CZ, CUG, CON

Registers

3. Time units

04 Time units
06 Oil or gas producing rate units
07 Oil or gas producing rate units
08 Pressure units
09 Pressure units
17 BEG P, P (PSI)
26 TIME (HR)
27. DTIME (HR)

28 QG (MCF/DAY), QO (BBL/DAY)
31 Pointer
$32 \operatorname{TIME}_{\mathrm{n}}$ (HR)
$33 \quad \mathrm{QG}_{\mathrm{n}}(\mathrm{MCF} / \mathrm{DAY}), \mathrm{QO}_{\mathrm{n}}(\mathrm{BBL} / \mathrm{DAY})$
34 Pointer
36 GP (MCF), NP (BBL)
38 END P (PSI)
41 P INC (PSI)
42 TIME1 (HR)
43 QG1 (MCF/DAY), QO1 (BBL/DAY)
44 TIME2 (HR)
45 QG2 (MCF/DAY), QO2 (BBL/DAY)
46 TIME3 (HR)
etc.
Registers 12-14, 18-25, 29, 30, 35, 37, 39, and 40 unused

Flags

01 Set: Oil or gas producing rate and time units not yet input.
Clear: Oil or gas producing rate and time units have been input.
Set: Skip input of PVT data.
Clear: Allow input of PVT data.

03 Set: Allow editing of TIME and QO or TIME and QG values.
Clear: No editing necessary.
04 Set: Pressure units not yet input.
Clear: Pressure units have been input.
07 Set: Oil reservoir.
Clear: Gas reservoir.

Program Listing

```
    61+LEL "ELDUTIL"
    *BUILDUF UTIL= 63
    8ROM "TITLE" FCTC 25
    PROHPT SF 01 GF 64
    GF 27 =0IL" 7
    MROH =Y/N?" = MJ"
    FC? 07 "SCH" "F/DAY=
    ASTO EG ASHF GSTO B7
    "HE" AST0 03 "KPA"
    ASTO AB CLA ASTO G4
    ASTO }0
    27+LBL 15
    "HORH E" FC? 07
    "F PTUZ" PRONPT GTO 15
    334LBL D
    34*LBL E
FS? 67 GT0 15 6T0 21
    38*LBL H
    39+LBL E
35 ST0 60 "BEL"
FC? 07 "HCF= AST0 G1
CLA HSTO Q2 ASTO Z
"H3" FC? 07 "SCM"
AST0 Y "HF= FC? b7
"GP" KROH "IHU"
FSTC 01 SF 06 27
5T0 00 "00" FC: 67
"OG" XED 17 RCL 36
XMY / 24 * 5T0 26
"TIME" YEE 20 CF 08
74*LBL 14
ADY YES 18 FS? 22
GT0 Ff FC? 23 GT0 15
81+LEL 90
RCL 26 KMY 1 + "HORN T" XROH "OITT" GT0 14
```

Program Listing（cont．）
$98+L B L C$
CF 031.159031
$94+\operatorname{LEL} 13$
$41 \$ 7060$
974 LBL 12
FC？ 03 ADY FS？C 01
SF 08 Yed 19 FC？ g_{3}
FS？ 22 GTO 01 FCl 23
G70 22
$168+$ LEL 91
＂00＂FC？ 07 ＂00＂
YEE 16 CF 08 ISC 31
GT0 12
116＋LBL 82
RCL 31 IHT 1 －STOY
$1 \mathrm{EJ}+\mathrm{LASTX}$／
STO 71 YYH 2 ＊ 46

+ RCL INIX 90032
CLX $1+\mathrm{RCL}$ INI X
57033 KMY 1 E 3 ／
$42+5 T 034$＂EDIT＂ 3
XROM＂Y／N？＂F5？ 83
GTO 13 ADY
$151+L$ BL 11
XEO 18 FS？ 22 GTO 63
FC？ 23 GTO 15
157＋LBL 83
RCL 40 ST0 35 RCL 27
$5 \mathrm{~T}+32 \mathrm{CLX} 5 \mathrm{TO} 01$
STO 48 RCL 34 STO 69
167＋LBL 10
TOHE 5 RCL $062-$
RCL IND X RCL 32 －
RCL IND 的 LASTX－／
LOG ISG 00 RCL IHE 6
＊RCL 33 ；5T 日 1
ISG 80 GTO 1 CO RCL 35
STO 40 RCL 27 ST－ 32
RCL OI TONE 9 ＝e：
XROM＂OUT＂GDY GTO 11
1984LBL 16
XEG 66
$206 *$ LEL 17
ASTO T＂BEL＂FE？ 97
＂HCF＊＂FIDGY＂ASTO 日
ASHF ASTO O2 CLA
GRCL T RCL 87 RCL 16
RCL 2 YROA＂INK＂RIH
STO 06 KMY STO 07 R RTH
$221+$ LBL 18
26 STO 8 －DTIHE＂
$6 T 064$
$226+$ LBL 19
＂TIHE＂XED 86
$229+$ LBL 04
XEE 05 XROM＂IHE＂RDH
57003 KOY 5 SO 04 Rt
RTH
2384 LBL 20
YEQ 05 YROH＂DUTK＂RDH
STO 83 X XYY STO 04 Rt
RTH
2474LEL 65
ASTO T ${ }^{\text {FHR }}$ RSTO 91
CLA ASTO 日2 ARCL T
RCL 64 RCL 83 RCL 7
RTH
258＊LBL 86
ST0 05 CLST FS？ 41 i
+ F5？ $402+5$ ；
F5？ $391+$ FS？ 382
+ FS？ $374+$ FS？ 36
$8+$ FS？ 29 CHS
RCL 31 FIX 0 CF 29
ARCL X XOY XG日？
SF 29 ENTER FRC 5 ＊
FIY IND $Y \quad y=0$ ？
SCI IND Y $1 \quad \mathrm{X}=\mathrm{Y}$ ？
EMG IND 2 RCL 85 RTH
$302+L$ BL 21

FS？ 82 GT0 07
XROH＂ITcPE＂XROM＂T＂
YROH＂GASG＂

3114LBL 67
FSTC 64 SF 6816

37 ＂END F＇YED 22 4月
＂P INC＂ KEO 22 HIT
325＋LBL 69
RCL 17 ＂F＂ KEO 23
KEE 52 ［2 $5 T 0$ 日1 CL
LASTX YROH＂CUG＂
RCL 17 XYY $/ \mathrm{RCL}$ 日

ADY RCL 36 RHD RCL 17
RCL $41+$ RNE XH ？
GTO 89 KYY RCL 17
EKD $\mathrm{X}=\mathrm{Y}$ ？GTO 61
RCL 35 RHD
358 LBL 88
LASTX STO $17 \quad 6 T 069$
$362+$ LBL 01
RCL 41 ST＋ 17 GTO 15
366＋LBL 62
RCL $16{ }^{\circ} \mathrm{F}-\mathrm{R}$＂ COH
RCL 10 ／RCL 17
RCL 11 ／RTH
376＊LBL 22
STO 04 XEE 03
XROH＂INK＂RDH STO 08
KSY STO 69 R R RTH

386＊LBL 23
XED 03 XROM＂DUTE＂RDH
STO 68 K KYY STO 09 R
RTN
395＊LEL 03
ASTO T P PSI＂ASTO GI
CLA ASTO 02 ARCL T
RCL 69 RCL 68 RCL 2
EHD

21. BUILDUP - Analyzing Pressure Buildups

Is there a petroleum engineer that has never seen a Horner plot for a pressure buildup? Theis and Horner suggested this plot, which is constructed for essentially every pressure buildup, regardless of whether the test even approached meeting the assumptions implicit in the analysis. Nonetheless, the Horner plot is a very valuable tool for analyzing pressure buildups. Matthews \& Russell and Earlougher are mandatory references for anyone performing these calculations. Quite often, the constant rate prior to shutin assumption is not met; an analysis method presented by Odeh and Selig should yield nearly equivalent results for multiple rate histories.
Even a brief discussion of each of the factors influencing pressure buildup analysis would require a lengthy discourse. A mind-boggling number of factors affect the shape of pressure buildup curves. These various factors may complicate but often prohibit legitimate analysis. Wellbore storage effects, phase separation, skin damage or improvement, hydraulic fractures, interference, faults, reservorr boundaries, stratified layers, fissured reservoirs, and gas or water contacts are some of the physical culprits that must be considered. Nonstabilized rates pcior to shutin and physical problems (bad gauges, leaking lubricators, poor calibration, etc.) are items chat can also wreak havoc on analysis.
We plot the Horner style plot for practically every buildup test as well. It is, in our opinion, absolutely preferable to the Miller-Dyes-Hutchison technique because:

1. It is valid for shorter production times
2. The straight line lasts longer
3. It is more useful in bounded reservoirs.

However, the method presented by Earlougher (multiple rates prior to shutin) is preferred when production rates prior to shutin are varied widely within a relatively short time. The program BLDUTIL performs the tedious calculation of the summation term required for this method.
We heartily recommend additional analysis for all pressure buildups. Another essential plot is the shutin minus the flowing pressure (PWS-PWF) versus shutin time on a $\log -\log$ graph. Identification of the correct straight line is much easier and more certain when confirmed by this method. There is an engineering adage that comes to mind: "Combine an engineer, a straight edge, and some data, and a straight line will inevitably result."
Perhaps it is just a string of bad luck, but it seems that a disproportionate number of buildups that
come our way do not have the correct straight line. Low permeability and hydraulically fractured wells almost never have it. One thing to check is the implication of $\mathrm{P} *$ from the Horner plot. Recall that it should never be larger than the initial pressure and usually is greater than the average pressure. What appears to be an absolutely straight line (for a week's worth of data or more) may point to a value of P * many hundreds of PSI below the initial pressure after very little production. The implied gas in place may be absurdly low, which brings up questions about the validity of the straight line. Again, the log-log plot and type curves should always be used to confirm this buildup analysis.

BUILDUP allows analyses with pressure, pressure squared, and real gas potential equations, calculating permeability, skin factor, skin pressure drop, and flow efficiency. Gas well buildups should be analyzed with the appropriate equations (see BLDUTIL for P/UG*Z utility). The use of the real-gas potential equations is always valid. Analysis with the wrong equations for the pressure range of the buildup can result in significant errors for nearly perfect data.

Equations

For oil reservoirs:

Above bubble point:

$$
\begin{aligned}
& \mathrm{KH}=162.6 \frac{\mathrm{QO} \mathrm{UO} \mathrm{BO}}{\mathrm{~b}} \\
& \mathrm{~A}=\log \left\lvert\, \frac{\mathrm{K}}{\text { POR UO CT RW}}{ }^{2}\right.
\end{aligned}
$$

Below bubble point:

$$
\begin{aligned}
& \mathrm{KH}=162.6 \frac{\mathrm{QO} \mathrm{UOb} \mathrm{BOb}}{\mathrm{~b}} \\
& A=\log \left|\frac{K}{\text { POR UOb CTb RW }}{ }^{2}\right| \\
& \begin{aligned}
\mathrm{K} / \mathrm{U}= & \frac{162.6}{\mathrm{bH}}[\mathrm{BOb} \mathrm{QO}+\mathrm{BG}(\mathrm{QG}-\mathrm{QORSb}) \\
& +\mathrm{BW} \mathrm{QW}]
\end{aligned} \\
& \text { PVT properties evaluated at } \mathrm{PAVG}=\frac{\mathrm{P} *+\mathrm{PWF}}{2}
\end{aligned}
$$

SKIN $=1.1513\left|\frac{\mathrm{P} 1 \mathrm{HR}-\mathrm{PWF}}{\mathrm{b}}-\mathrm{A}+3.2275\right|$
DPSKIN $=0.87 \mathrm{~b}$ SKIN

For gas reservoirs:
P equations:

$$
\begin{aligned}
& \mathrm{KH}=28960 \frac{\mathrm{QG} \text { UG Z T'STD P }}{\mathrm{bPPSTD} \mathrm{~T}^{\prime}} \\
& \text { SKIN }^{*}=1.1513\left(\frac{\mathrm{P} 1 \mathrm{HR}-\mathrm{PWF}}{\mathrm{bP}}-\mathrm{A}+3.2275\right)
\end{aligned}
$$

$$
\text { DPSKIN }=0.87 \mathrm{bP} \text { SKIN }
$$

PVT propertics cvaluated at $P A V G=\frac{p_{*}+P W F}{2}$
$\mathrm{P} \uparrow 2$ equations:

$$
\begin{aligned}
& \mathrm{KH}=57920 \frac{\mathrm{QG} \text { UG Z T' STD } P}{\mathrm{bP} \uparrow 2 \mathrm{STD} \mathrm{~T}} \\
& \text { SKIN } \dagger=1.1513\left|\frac{\mathrm{P} 1 \mathrm{HR} \uparrow 2-\mathrm{PWF} \uparrow 2}{\mathrm{bP} \mathrm{\uparrow} 2}-\mathrm{A}+3.2275\right|
\end{aligned}
$$

PVT properties evaluated at P AVG $=$

$$
\sqrt{\frac{P *^{2}+P W F^{2}}{2}}
$$

MP (real gas potential) equations:

$$
\begin{aligned}
& \mathrm{KH}=1638 \frac{\mathrm{QG} \mathrm{~T}^{\prime}}{\mathrm{bMP}} \\
& \mathrm{SKIN} \dagger=1.1513\left|\frac{\mathrm{MP} 1 \mathrm{HR}-\mathrm{MPWF}}{\mathrm{bMP}}-\mathrm{A}+3.2275\right|
\end{aligned}
$$

*At high flow rates, the skin factor could include additional effects due to turbulent flow.
\dagger At high flow rates, the skin factor could include additional effects due to turbulent flow.
**The calculations for DPSKIN require a slope in PSI/CYCLE. Consequently, DPSKIN and \%EFF cannot be calculated from pressure squared or real gas potential equations for gas reservoirs, since their slopes are PSI2/CYCLE and PSI2/ CP*CYCLE, respectively.

PVT properties evaluated at $\mathrm{PAVG}=$

$$
\begin{aligned}
& \sqrt{\frac{\mathrm{P}^{2}+\mathrm{PWF}^{2}}{2}} \\
& \mathrm{~A}=\log \left|\frac{\mathrm{K}}{\mathrm{PORUGCTRW}}\right| \\
& \% \mathrm{EFF}^{* *}=100 \frac{\mathrm{P}^{2}-\mathrm{PWF}-\mathrm{DPSKIN}}{\mathrm{P}^{*}-\mathrm{PWF}} \\
& \mathrm{~T}^{\prime}=\mathrm{T} \text { in } \mathrm{R} \\
& \mathrm{STD} \mathrm{~T}^{\prime}=\mathrm{STD} \mathrm{~T} \text { in } \mathrm{R} \\
& \mathrm{POR}=\frac{\% \mathrm{POR}}{100}
\end{aligned}
$$

Nomenclature

Symbol	Variable Name	Input or Output	English Units	$\underset{\text { Units }}{\text { SI }}$
b^{*}	Slope of Horner straight line for oil reservoir	I	PSI \dagger	KPA \dagger
bMP*	Slope of Horner straight line for gas reservoirs using real gas potential equations	I	$\begin{aligned} & \text { PSI2/ } \\ & \text { CP } \dagger \end{aligned}$	$\begin{gathered} \text { KPA2/ } \\ \mathrm{PA} * \mathrm{~S} \dagger \end{gathered}$
$b P^{*}$	Slope of Horner straight line for gas reservoirs using pressure equations	g	PSI \dagger	KPA \dagger
bP¢2*	Slope of Horner straight line for gas reservoirs using pressure squared equations		PSI2 \dagger	KPA2 \dagger
DPSKIN*	Pressure drop across skin	O	PSI	KPA
H	$\begin{aligned} & \text { Formation } \\ & \text { thickness** } \end{aligned}$	I	FT	M
K	Permeability	I	MD	MD
KH	Permeability thickness	O	MD*FT	$\mathrm{MD} * \mathrm{M}$
K/U	Total mobility	0	$\begin{gathered} \mathrm{MD} / \\ \mathrm{CP} \end{gathered}$	$\begin{aligned} & \mathrm{MD} / \\ & \mathrm{PA} * \mathrm{~S} \end{aligned}$
MP1HR*	Real gas potential at PlHR	I	$\begin{gathered} \text { PSI2/ } \\ \text { CP } \end{gathered}$	KPA2/ PA*S
MPWF*	Real gas potential at PWF	I	$\begin{gathered} \text { PSI2/ } \\ \text { CP } \end{gathered}$	$\begin{gathered} \mathrm{KPA} 2 / \\ \mathrm{PA} * \mathrm{~S} \end{gathered}$
PWF*	Flowing bottom hole pressure	I	PSI	KPA

Symbol	Variable Name	Input or Output	English Units	$\begin{gathered} \text { SI } \\ \text { Units } \end{gathered}$
PWFヶ2*	PWF squared	I	PSI2	KPA2
P1HR ${ }^{*}$	Pressure at one hour from Horner plot	I	PSI	KPA
P1HR 2 *	P1HR squared	I	PSI2	KPA2
P**	False pressure from Horncr plot	I	PSI	KPA
$\mathrm{P} * \uparrow 2^{*}$	P* squared	I	PSI2	KPA2
QG	Stabilized gas flow rate prior to shutin	I	$\begin{aligned} & \text { MCF/ } \\ & \text { DAAY } \end{aligned}$	$\begin{aligned} & \text { SCM/ } \\ & \text { DAY } \end{aligned}$
QO*	Stabilized oil flow rate prior to shutin	I	$\begin{aligned} & \text { BBL/ } \\ & \text { DAY } \end{aligned}$	$\begin{aligned} & \text { M3/ } \\ & \text { DAY } \end{aligned}$
QW*	Stabilized water flow rate prior to shutin	I	$\begin{aligned} & \text { BBL/ } \\ & \text { DAY } \end{aligned}$	$\begin{aligned} & \text { M3/ } \\ & \text { DAY } \end{aligned}$
RW	Effective wellbore radius	I	FT	M
SKIN	Skin factor	O	-	-
\% EFF	Flow efficiency	O	-	-

${ }^{*}$ The units for these variables are saved by the program
${ }^{\dagger}$ The units for the slopes are per cycle.
**In the case of deviated wells or slanted beds, use the true vertical thickness instead of the measured thickness of the formation.

Yes/No Questions

CORR? Yes: Use Pac correlations to estimate PVT properties
No: Input PVT properties.
OIL? Yes: Oil reservoir.
No: Gas reservoir.
SKIP? Yes: Skip input of PVT data.
No: Allow input of PVT data

Example 1

Calculate the permeability for the oil-well buildup with a multiple rate flow history (see Example 1 of BLDUTIL). Use the following values:
$\mathrm{BO}=1.0$
$\mathrm{UO}=0.6 \mathrm{CP}$
CT $=4.0 * 10{ }^{+} 1 /$ PSI
$\mathrm{PWF}=2,510 \mathrm{PSI}$
P* $=2,992.9$ PSI
$\mathrm{P} 1 \mathrm{HR}=2,761.1 \mathrm{PSI}$
$\mathrm{b}=149.3$ PSI/CYCLE
$\mathrm{H}=20 \mathrm{FT}$
$\mathrm{RW}=0.3 \mathrm{FT}$
$\% \mathrm{POR}=10$
$\mathrm{QO}=159.5 \mathrm{BBL} / \mathrm{DAY}$
$\mathrm{PBP}=2,100 \mathrm{PSI}$

The calculated value for KH is $104 \mathrm{MD}-\mathrm{FT}$, compared to a theoretical value of $106 \mathrm{MD} * \mathrm{FT}$ for this simulated data (Odeh and Selig). A conventional Horner plot (neglecting rate variation prior to shutin) yielded a permeability estimate of $77 \mathrm{MD} * \mathrm{FT}$.

Keystrokes (SIZE > = 054)	Display	Comments
[XEQ] [ALPHA]BUILDUP [ALPHA]	OIL? Y/N:	Last character is Y or N
$Y[R / S]$	CORR? Y/N:	Last character is Y or N
N [R/S]	$P B P=$?	
2100 [R/S]	$\% P O R=$?	
10 [R/S]	$H=$?	
20 [R/S]	$R W=$?	
. 3 [R/S]	$Q O=$?	
159.5 [R/S]	$P_{*}=$?	
2992.9 [R/S]	$b=$?	
149.3 [R/S]	P1HR=?	
2761.1 [R/S]	$P W F=$?	
2510 [R/S]	$B O=$?	
1 [R/S]	$\cup O=$?	
. 6 [R/S]	$C T=$?	
4 [EEX] [CHS]4 [R/S]	$P *=$?	KH, K, SKIN, DPSKIN, and \%EFF printed

BUILTHF

0IL: YES
CORR: HO
$\mathrm{PBF}=2,160.60 \mathrm{~B} \overline{\mathrm{PSI}}$
$2 P O R=10,6000$
$\mathrm{H}=20.0680 \mathrm{FT}$
$\mathrm{RH}=1.3 \mathrm{BEBFT}$
$00=159.50018 B L / T M Y$
$\mathrm{F}=2,992.9006 \mathrm{PsI}$
$b=149.3010 \mathrm{PSI}$
P1HR=2.761.1009 PSI
PHF $=2.510 .6068 \mathrm{FSI}$
$80=1.8904$
$10=6.6506 \mathrm{CF}$
$\mathrm{CT}=6 . \mathrm{B} 694 \mathrm{PSI}$
$\mathrm{KH}=164.2252 \mathrm{MI}=\mathrm{FT}$
$\mathrm{K}=5.2113 \mathrm{mI}$
SEIH=-1.6960
DPSUIH=-226. 2986 FSI
7EFF $=145.6199$

Example 2

Analyze the gas-well buildups for the second example of BLDUTIL using the pressure, pressure squared, and real-gas potential equations. Let BUILDUP calculate the PVT properties. This well is the Plum Nearly (Smackover) field used in the

GASPVT, DEW, and GASMBE examples. Data required are:

```
\(\mathrm{T}=255 \mathrm{~F}\)
\(\mathrm{H}=62 \mathrm{FT}\)
\(\mathrm{Tc}=410.9022 \mathrm{R}\)
\(\mathrm{Pc}=673.9813\) PSI
\(\mathrm{PWF}=5,075 \mathrm{PSI}\)
\%POR = 9.1
Water salinity \(=15,600\) PPM
RW \(=3.5 \mathrm{IN}\)
\(\% \mathrm{SW}=34.0\)
GAS \(G=0.8588\)
STD \(T=60 \mathrm{~F}\)
STD P \(=15.025\) PSI
\(\mathrm{QG}=2,210 \mathrm{MCF} / \mathrm{DAY}\)
```

Table 21-1 shows the values for shutin bottomhole pressure (PWS), shutin bottom-hole pressure squared ($\mathrm{PWS} \uparrow 2$), and shutin real-gas potential (MPWS) along with the tabulated values of HORN T calculated in Example 2 of BLDUTIL. Figures 21-1 through 21-3 are the Horner plots. The values calculated or extrapolated from these plots are shown in Table 21-2.

Because of the magnitude of the numbers, especially for the pressure squared and real gas potential equations, the display format was changed to [ENG] 4.

Table 21-1

DTIME (HR)	HORN T	PWS $($ PSI $)$	PWS 12 $(P S I 2) \times 10^{6}$	MPWS $(P S I 2 / C P) \times 10^{6}$
0.5	$1,438.1765$	10,085	101.7	2,698
1.0	719.5882	10,427	108.7	2,793
2.0	360.2941	10,765	115.9	2,886
3.0	240.5294	11,043	121.9	2,961
6.0	120.7647	11,392	129.8	3,055
12.0	60.8824	11,701	136.9	3,138
18.0	40.9216	11,879	141.1	3,185
24.0	30.9412	12,004	144.1	3,218
36.0	20.9608	12,179	148.3	3,264
48.0	15.9706	12,347	152.4	3,308
60.0	12.9765	12,397	153.7	3,321
74.64	10.6274	12,487	155.9	3,344
96.0	8.4853	12,589	158.4	3,371
156.0	5.6063	12,779	163.3	3,420
216.0	4.4218	12,898	166.3	3,451

Figure	Data
21-1	$\mathrm{P} *=13,560 \mathrm{PSI}$
	$\mathrm{bP}=1,050 \mathrm{PSI} / \mathrm{CYCLE}$
	$\mathrm{PlHR}=10,560 \mathrm{PSI}$
21-2	$\mathrm{P} * \uparrow 2=183.3\left(10^{6}\right)$ PSI2
	$\mathrm{bP} \uparrow 2=26.1\left(10^{6}\right) \mathrm{PSI} 2 / \mathrm{CYCLE}$
	P1HR $2=109.2\left(10^{6}\right)$ PSI2
21-3	$\mathrm{P}_{*}=13,574 \mathrm{PSI}$
	$\mathrm{bMP}=270\left(10^{6}\right)$ PSI2/CP $*$ CYCLE
	MP1HR $=2,833\left(10^{6}\right) \mathrm{PSI} 2 / \mathrm{CP}$
	MPWF $=1,207\left(10^{6}\right)$ PSI2 $/ \mathrm{CP}$

Figure 21－3

Keystrokes	Display	Comments
5075 ［R／S］	P P个2 MP	KH, K ， SKIN， DPSKIN， and \％EFF printed
［C］	$P * \uparrow 2=$ ？	Pressure squared equations
183.3 ［EEX］ 6 ［R／S］	$b P \uparrow 2=$ ？	
26.1 ［EEX］ 6 ［R／S］	P1HRT2＝？	
109.2 ［EEX］ 6 ［R／S］	PWF \uparrow 2＝？	
5075 ［／／］［ x^{2} ］［R／S］	$P \quad P \uparrow 2 \mathrm{MP}$	KH, K ，and SKIN printed
［E］	$P *=$ ？	Real gas potential equations
13574 ［R／S］	$b M P=$ ？	
270 ［EEX］ 6 ［R／S］	$M P 1 H R=$ ？	
2833 ［EEX］ 6 ［R／S］	MPWF＝？	
1207 ［EEX］ 6 ［R／S］	PWF＝？	
5075 ［R／S］	$P \quad P \uparrow 2 \mathrm{MP}$	KH，K，and SKIN printed
［／／］［FIX］ 4	2.4458	Back to FIX 4

EUILDUF
OIL：NO
CORR：YES
SKIP：HO
Tc＝416．90E R R
PC＝673．98E PSI
STI $\mathrm{T}=60 . \mathrm{B}$ 伯E F
STD $\mathrm{P}=15.625 \mathrm{ED} \mathrm{FSI}$
GAS $\mathrm{G}=858.80 \mathrm{E}-3$

PPM $=15.60653$

\％ $\mathrm{SG} \mathrm{C}=66.00 \mathrm{BEE}$
ZPOR＝9． 1000 EB
$\mathrm{H}=62 . \mathrm{806E} \mathrm{FT}$
$\mathrm{RH}=3.5010 \mathrm{E}$ I IH
$\mathrm{CO}=2.210 \mathrm{EE} 3 \mathrm{HCF} \mathrm{TAH}$
P＊＝13．560E3 PSI
$\mathrm{bP}=1.4500 \mathrm{E}$ PSI PIHR＝10． 56 E． 3 PSI
PMF $=5.4756 E 3$ PSI
$\mathrm{KH}=8.6234 \mathrm{EE}$ 月II FT
$\mathrm{K}=139.19 \mathrm{E}-3$ 肘
SKIN＝1．6132EM
DPSKIH $=1.4736 \mathrm{E} 3 \mathrm{PSI}$
ZEFF＝82．633E
P＊ $42=183.30 \mathrm{E} 6 \mathrm{PS12}$ bf $+2=26.100 \mathrm{E} 6 \mathrm{PS} 12$ PiHRT2＝169．2066 FSI 2

$K=117.58 E-3$ 肘
SKIN＝－668．82E－3
$\mathrm{P}=13.574 \mathrm{E} 3 \mathrm{PgI}$
b 4 P $=276.00$ E6 $\mathrm{PSI2} / \mathrm{CF}$
MP1HR＝2．8330E9 PSI2CP
MFHF＝1．2076E9 PSI2／CP
PHF $=5.97510 .3$ PSI
$\mathrm{KH}=9.5842 \mathrm{EE}$ MITFT
$\mathrm{k}=154.58 \mathrm{E}-3 \mathrm{~m}$
SKI $=2.4458 \mathrm{E}$

User Instructions
(1) Oil reservoir

User Instructions

General Information	
Memory Requirements	
Program length：	1383 bytes（7 cards）
Minimum size：	054
Minimum hardware：	$41 C+$ quad memory module or $41 \mathrm{CV}^{*}$
＊The program can be modules but will not printer．	run in a $41 \mathrm{C}+3$ memory leave a port available for a

Hidden Options
 None

Pac Subroutines Called

TITLE，Y／N？，ITcPc，STDTP，W8，GASG，T， \％NACL，IN，OUT，T，INU，CUOd，CBG，CBOb， CRSb，CUOb，CBW，CON，OUTU，CBO，CUO， CUG，CCT，CCTb，INK，OUTK＇

Registers

03	Oil or water flow rate or gas potential units
04	Oil or water flow rate or gas potential units
06	Scratch
07	Scratch
08	Pressure units
09	Pressure units
17	P AVG（PSI）
26	Z
27	BG（FT3／SCF）
28	H （FT）
29	K（MD）
30	RSb（SCF／BBL）
31	RW（FT）
32	BO，BOb
33	UG，UOd，UO，UOb（CP）
34	CT，СTb（1／PSI）
42	QG（MCF／DAY），QO（BBL／DAY）
43	$\mathrm{P} *$（PSI），P＊ヶ2（PSI2）
44	QG（MCF／DAY）
45	QW（BBL／DAY）
46	b （PSI）${ }^{*}$ ，bP（PSI2）${ }^{*}$ ，bMP（PSI2／CP）${ }^{*}$
47	P1HR（PSI），P1HR $\uparrow 2$（PSI2），MP1HR （PSI2／CP）
48	PWF（PSI），PWF 2 （PSI2），MPWF（PSI2／CP）
49	PWF（PSI）
50	Pressure squared units
51	Pressure squared units
52	Scratch
53	BW
Registers 35－41 used	
	its for the slopes are per cycle

04 Oil or water flow rate or gas potential units
07 Scratch
08 Pressure units
Pressure units
AVG（PSI）
27．BG（FT3／SCF）
H（FT）
K（MD）
RSb（SCF／BBL
RW（FT）
BO，BOb
，
QG（MCF／DAY），QO（BBL／DAY）
P＊（PSI），P＊$\uparrow 2$（PSI2）
QW（BBL／DAY）
b（PSI）${ }^{*}$ ，bP（PSI2）${ }^{*}$ ，bMP（PSI2／CP）${ }^{*}$
P1HR（PSI），P1HR $\uparrow 2$（PSI2），MP1HR
（PSI
PWF（PSI）
Pressure squared units
Pressure squared units
Scratch
BW

The units for the slopes are per cycle．

Flags

00 Set：Gas potential units not yet input． Clear：Gas potential units have been input．
01 Set：Use Pac correlations to estimate PVT properties．
Clear：Input PVT properties．
02 Set：Skip input of PVT data．
Clear：Allow input of PVT data．
03 Set：PAVG \geq PBP．
Clear：P AVG＜PBP．
04 Set：Pressure squared units not yet input．
Clear：Pressure squared units have been input．

05 Set：Pressure units not yet input．
Clear：Pressure units have been input．
07 Set：Oil reservoir．
Clear：Gas reservoir．

Program Listing

```
"BIILIUP" 54
XROM "TITLE" FCTC 25
PROHPT SF 00 SF 64
5F 65 SF 66 SF 27
"0IL" }7\mathrm{ YROH "Y/N?"
"KPA" ASTO 08 "+2*
ASTO 56 "+/PA*5"
F5? 07 "W3/IHY=
ASTO OS ASHF ASTO O4
CLA ASTO 99 ASTO 51
"CORE" 1 YROH "Y/N?"
FC? 01 GT0 01 "SKIP"
2 YROM "Y/N?" F5? 02
GT0 咟 YROH "ITCP:"
KROH "STDTP" FS? 目
YROH "H0: FC? 07
XROH "GASG" FC? 07
XROH "T" XROM "%NACL"
```

474LBL 66
19 FC ？ $97 \quad 29 \mathrm{STO} 80$
"\%S0" FS? 07 YROH $=1 W^{*}$
CLX FC? 07 STO 26
${ }^{-2} \mathrm{ZSH}=\mathrm{YROH}$ "IN" RCL 29
+100 X XH - $\mathrm{"SCg}^{\circ}$
XROM $=$ OUT $=$ GTO 03

684LEL 01
FS? 87 GT0 02
XROM -STDTP" XROH "T"

3250060 CP
ASTO O1．CLA ASTO 82 ASTO 2 ＂PAFS＂ASTO γ ＂UG＂XROM＂IHJ＂ ＂1／PSI＂ASTO GI CLA AST0 02 ASTO 2 ＂ $1 / \mathrm{KPA}$＂ ASTO Y＂CT＂XROH＂INU＂ $6 T 063$
$94+$ LEL 02
13 STO 00 ＂PSI＂
ASTO 日1 CLA ASTO 22
ASTO 2 ＂KPA＂ASTO Y
－PBP＂YROM＂INU＂
1064LBL 83

＂FT＂ASTO G1 CLA
ASTO 02 ASTOL 2 ＂$^{\text {a }}$ ASTO Y＂H＂YROH＂INU＂ 30 STO 日月＂月＂ASTO Y CLA ASTO Z＂RH＂
xROM＂InU＂ 41 ST0 80
－ 00^{-1} FS？ 07 XEE 26
FC？ 97 YE0 27 FC？ 07 $G 1019$

136＋LBL 15
GDY XEQ 21 CF 80
KEO 20 RCL 17 RHO
RCL 14 RHD CF 03

Program Listing（cont．）

FC？ 83 XEO 27 ＂明
FC？ 83 YEQ 26 FS？ 01
GTO 1631 ST0 06＂EO＂
FC？ 63 ＂ $\mathrm{Fb}^{\mathrm{c}} \mathrm{XROM}$＂ IH^{*}
＂CP＂ASTO O1 CLH
ASTO 12 ASTOZ＂FAFS＂
ASTD Y＂
＂Fb＂XROH＂INU＂
＊1／PSI＂ASTO O1 CLA
ASTO D2 ASTO 2 ＂ $1 / \mathrm{KPA}^{\prime}$
ASTO Y＂CT＂FC？ 8
＂Fb＂YROH＂INU＂ 162.6
RCL 42 ＊RCL 46 ；
$51052 \quad \mathrm{~F} 5$ ？ $63 \mathrm{GT0} 18$
$2650000 \mathrm{FT} 3 / \mathrm{SCF}^{2}$＂
ASTO O1 ASHF ASTO 62
＂H3／SCM＂ASTO Y CLA
ASTO Z＂BG＂XROM＂INU＂
29 STO 日e＂SCF／BEL＂
ASTO G1 ASHF ASTO O2
－SCH／WZ＂ASTO Y CLH
ASTO Z＂RSb＂
KROH＂INU＂ 52 STO 90
＂EW＂YROH＂IH＂GTO 44
22 CL BL 16
xROM＂CuOd＂ $9 T 033$
162.6 YEQ 87 RCL 85
$\mathrm{ST} / 52 \mathrm{FS}$ ？ 83 GTO 17
RIM XROM＂CRG＂STO 27
RCL 17 YROA＂CBOb＂
ST0 32 RCL 17
XROM＂CRSb＂ $5 T 030$
RCL 33 XROH＂ClOb＂
50033 XROM＂CBU＂
57053
2454LBL 94
RCL 44 1 EJ \ddagger RCL 42
RCL 30 ＊－＂FT3－EEL＂
CON RCL 27 ＊RCL 32
RCL $42 *+\mathrm{RCL} 53$
RCL 45 ＊＋RCL 52＊
RCL 42 ／RCL 28 ；
STO 29 ＂HD／CP＂ASTO GI
CLA ASTO 02 ＂HD／PA＊S＂
ASTO Y ASHF ASTO Z
＂K／J＂XROH＂OUTU＂
GTO 18
2834LBL 17

RCL 14 YROH＂CBOb：
XROH＂CBO＂ 57032
RCL 13 RCL 33
xROH＂CluOb Kroh＂CuO＂
50033

293＊LBL 16
RCL 33 RCL 32 ＊
ST＊ 58 KEO 68 XEE 12
GTO 15

391＊LBL 19
＂ P Pt2 HP^{2} PROMPT
GT0 19
365＊LEL E
AIH FS7C 05 SF 68
距 21 CF 88 FSTC 0 日
SF 6845 ST0 00 ＂ $\mathrm{bHF}{ }^{2}$
XEQ 25 CF 88 －HPIHR＂
XEE 25 ＂HPHF＂XEQ 25
－PHF＝YEQ 22 RCL 43
R－P 2 SERT／STO 17
． 0565743645 XEE 66
XEO 08 GTO 19
$334+$ LBL A
ADY FS？C 05 SF 68
YEE 21 CF 68 XEC 26

XROH＂IN ${ }^{-1 / 2}$ RCL 17 1／h
XEQ 05 XEQ $12 \quad$ GTO 19
3514LBL C
ADY FS？C 04 SF 9842
STO 日 0 －P＊t2＂Xep 24
CF $88 \quad 45$ ST0 60
＂bPt2＂ YEL 24 －PiHRT2＂
XEQ 24 ＂PHFT2＂YEQ 24
SQRT STO 49 LASTX
RCL $43+2$ SQRT
STO 1725 STO 60 ＂ 2 ＂
FC？ 01 yROH $=1 \mathrm{~N}^{-2}$
XEE $056 T 019$
3054LEL 05
XEQ 06 RCL 06 RCL 07
Fs？ $01 \quad \mathrm{CZ} \mathrm{FC}$ ？ 81
RCL 26 RCL 33 ＊
RCL 23 ＊RCL 22 ＊F－R＂
CON／ST＊ 52 XER 08 RTH

494＋LBL 66
162606 ＂FT3－EBL＂COH
＊
$489+$ LBL 07
RCL 42 ＊RCL 46 ；
RCL 16 ＂F－R＂COH
STO 05 ：STO 52
FC？ 91 RTH RCL 85
RCL 10 ／STO 66
RCL 17 RCL 11
ST0 67 FS？ 07 RTH
XROH＂CUG＂STO 33 RTH
4354LBL 18
RCL 34 FC？ 01 GT0 69
RCL 06 RCL 07 RCL 17
FC？ 87 XROH＂CCT＂
FC？ 07 GTO 99 FS？ 03
XROH＂CCT＂FC？ 03
$\mathrm{XROH} \mathrm{CCTb}^{-}$
450＊LBL 99
RCL 18100 ／＊
RCL $31 \quad \mathrm{X} \uparrow 2 \mathrm{~F}$ RCL 52
RCL 28 • FS ？ 07
FS？ 93 GTO 10 K $\mathrm{K}>29$
$6 T 011$
4664 LBL 10
51029 RCL 33
4702LBL 11
WOY／LOG RCL 47
RCL 48 －RCL 46 ；
XPY－ 3.2275 ＋
1.1513 ＊W 52 ADY
－hidafT＝hsto oi CLA
ASTO OE ASTO Z－Hitah
ASTO Y＊KH
XROM＂OUTU＂RCL 29
＊KD＂ASTO O1 ASTO Y
CLA ASTO 92 ASTO Z
＂K＂YROH＝OUTU＂RCL 52
＂SKIN＂XROH＂OITT＂RTN
509＊LBL 12
87 \％RCL 46 ＊
－DPSKIH＊XED 23 RCL 49
RCL $43-1+109$
＊＂ $\mathrm{ZEFF} \mathrm{F}^{\mathrm{K}} \mathrm{XROH}$＂OUT＂
RTM
$527+$ LBL 26
45 STO 06＂b＂FC？ 87
＂6F＂XEE 22 ＂PIHR＂
YEQ 22 ＂PMF＂XEQ 22
STO $49 \mathrm{RCL} 43+2$（
ST0 17 RTH
5454LEL 21
42 ST0 60 ＂ $\mathbf{F F}^{*}$

549＋L8L 22
YEQ 13 YROH＂INK＂RDH
STO 08 K KY ST0 09 Rt
RTH
558＊LBL 23
XEO 13 YROH＝OUTK R RDH
ST0 68 Y YY STO 89 R 4
ETH
567＋LEL 13
ASTO T EPSI＂ASTO O1
CLA ASTO GO ARCL T
RCL 09 RCL 68 RCL 2
RTH
5784LBL 24
AST0 T＂PSI2＂ASTO 61 CLA ASTO G2 ARCL T
RCL 51 RCL 50 RCL 2
XROM＂INK＂RIN ST0 50
KKYY STO 51 Rt RTH
5954LEL 25
ASTO T ${ }^{-P S I 2 / C P=~}$
GT0 14
$599+L B L 26$
ASTO T \quad BEL／DAY＝
$682+\operatorname{LEL} 14$
ASTO 61 ASHF ASTO 62
CLA RRCL T RCL 64
RCL 03 RCL 2
XROH＝INK：RIN STO 63
K KY STO 94 Rt RTH
$618+\operatorname{LBL} 27$
＂MCF／DAY＂ASTO 01 ASHF
ASTO 02 ＂SCH DAY＂
ASTO Y ASHF ASTO Z
＂OG＂XROH＝INJ＂ENI

22. DRAW - Multiple Rate Pressure Drawdown Analysis

A properly conducted drawdown test theoretically can determine as much information as a buildup test. In fact, the variety of type curves valid for drawdowns makes them applicable in many situations where buildups are not applicable. And for some obvious reasons, managers prefer to see positive (rather than zero) flow rates. When a constant flow rate is obtained, the flowing pressure can be plotted against the log of the flowing time to calculate the applicable slope. The permeability and skin can then be calculated using the same equations as presented in BUILDUP.

However, drawdown tests are flowing tests and are often difficult to control. Jockeying the choke around to maintain a constant rate may result in complex transients invalidating the analysis. DRAW presents a method of analyzing multiple rate drawdowns for both oil and gas wells. A less complex method is available for the two-rate case; however, this method is equally valid. It is important to note that the magnitude of error possible in analyzing a multiple rate test as a constant rate test is very high. Example 4.1 of Earlougher indicates that a constant rate test evaluation for multiple rate data resulted in permeability estimate over 100 percent too high.

DRAW also provides two drawdown utilities. The first calculates the Y axis of the drawdown plot, and the second calculates the X axis (superposition term) of the plot.

Equations

$D P / Q$ utility:

$$
\mathrm{DP} / \mathrm{QO}=\frac{\mathrm{PI}-\mathrm{PWF}}{\mathrm{QO}}, \quad \mathrm{DP} / \mathrm{QG}=\frac{\mathrm{PI}-\mathrm{PWF}}{\mathrm{QG}}
$$

Summation utility (shown for oil only):

$$
\Sigma=\sum_{\mathrm{i}=1}^{\mathrm{n}}\left[\frac{\mathrm{QO}_{\mathrm{i}}-\mathrm{QO}_{\mathrm{i}-1}}{\mathrm{QO}_{\mathrm{n}}} \log \left(\mathrm{TIME}-\mathrm{TIME}_{\mathrm{i}-1}\right)\right]
$$

where n is the number of TIME values input by the user.

$$
\mathrm{TIME}_{0}=0 \mathrm{HR}, \quad \mathrm{QO}_{0}=0 \mathrm{BBL}
$$

Drawdown analysis:

For oil reservoirs:
Above bubble point:

$$
\left.\begin{array}{l}
\mathrm{KH}=162.6 \frac{\mathrm{UO} \mathrm{BO}}{\mathrm{~b}} \\
\mathrm{~A}=\log \left\lvert\, \frac{\mathrm{K}}{\text { POR UO CT RW }}{ }^{2}\right.
\end{array}\right)
$$

Below bubble point:

$$
\begin{aligned}
& \mathrm{KH}=162.6 \frac{\mathrm{UOb} \mathrm{BOb}}{\mathrm{~b}} \\
& \mathrm{~A}=\log \left\lvert\, \frac{\mathrm{K}}{\operatorname{POR~UOb~CTb~RW}}{ }^{2}\right.
\end{aligned}
$$

For gas reservoirs:

$$
\begin{aligned}
& \mathrm{KH}=28960 \frac{\mathrm{UG} Z \mathrm{~T}^{\prime} \text { STD } P}{\mathrm{bP} \mathrm{STD} \mathrm{~T}^{\prime}} \\
& \mathrm{A}=\log \left\lvert\, \frac{\mathrm{K}}{\text { POR UG CT RW }}{ }^{2}\right.
\end{aligned}
$$

SKIN $^{*}=1.1513\left|\frac{\mathrm{a}}{\mathrm{b}}-\mathrm{A}+3.2275\right|$
DPSKIN $=0.87 \mathrm{~b}$ QO SKIN
DPSKIN $=0.87 \mathrm{~b}$ QG SKIN
$\% \mathrm{EFF}=100 \frac{\mathrm{P} *-\mathrm{PWF}-\mathrm{DPSKIN}}{\mathrm{P} *-\mathrm{PWF}}$

PVT properties evaluated at PI
$\mathrm{T}^{\prime}=\mathrm{T}$ in R
STD $\mathrm{T}^{\prime}=\operatorname{STD} T$ in R
$\mathrm{POR}=\frac{\% \mathrm{POR}}{100}$

[^5]
Nomenclature

Symbol	Variable Name	Input or Output	English Units	$\underset{\text { SI }}{\stackrel{\text { Sits }}{ }}$
a	Intercept of multiple rate drawdown plot at $\Sigma=0$	I	-*	-*
b	Slope of multiple rate drawdown plot	I	-*	_*
DPSKIN \dagger	Pressure drop across skin	O	PSI	KPA
DP/QG	$\begin{aligned} & \text { Delta } P(P I-P W F) \\ & \text { divided by QG } \end{aligned}$	O	-*	-*
DP/QO	$\begin{gathered} \text { Delta P (PI - PWF) } \\ \text { divided by QO } \end{gathered}$	0	_*	-*
H	$\begin{aligned} & \text { Formation } \\ & \text { thickness } \end{aligned}$	1	FT	M
K	Permeability	O	MD	MD
KH	Permeability thickness	O	MD*FT	$\mathrm{MD} * \mathrm{M}$
PI \dagger	Initial pressure	I	PSI	KPA
PWF \dagger	Flowing bottomhole pressure	I	PSI	KPA
QG \dagger	Gas flow rate	I	$\begin{aligned} & \text { MCF/ } \\ & \text { DAY } \end{aligned}$	$\begin{aligned} & \text { SCM/ } \\ & \text { DAY } \end{aligned}$
QG ${ }_{\text {i }} \dagger$	Gas flow rate at TIME	I	MCF/ DAY	$\begin{aligned} & \text { SCM/ } \\ & \text { DAY } \end{aligned}$
QO \dagger	Oil flow rate	I	$\begin{aligned} & \mathrm{BBL} / \\ & \mathrm{DAY} \end{aligned}$	$\begin{aligned} & \text { M3/ } \\ & \text { DAY } \end{aligned}$
$\mathrm{QO}_{\mathrm{i}} \dagger$	Oil flow rate at TIME $_{i}$	I	$\begin{aligned} & \text { BBL/ } \\ & \text { DAY } \end{aligned}$	$\begin{aligned} & \text { M3/ } \\ & \text { DAY } \end{aligned}$
RW	Effective wellbore radius	I	FT	M
SKIN	Skin factor	O	-	-
TIME \dagger	Producing time at QG or QO	I	HR	HR
$\mathrm{TIME}_{\mathrm{i}} \dagger$	Producing time at QG_{i} or QO_{i}	I	HR	HR
\%EFF	Flow efficiency	O	-	-
Σ	Superposition term used as X axis of multiple rate drawdown plot	O	-	-

Physically, the intercept, a, and DP/QG have units of PSI $ D A Y / M C F$ or KPA*DAY/SCM for gas reservoirs, and the intercept and DP/QO have units of PSI*DAY/BBL or KPA*DAY/M3 for oil reservoirs. The units of the slope, b, are the same units per cycle.
\dagger The units for these variables are saved by the program.
** In the case of deviated wells or slanted beds, use the true vertical thickness instead of the measured thickness of the formation

EDIT?

OIL?

SKIP?

Example

This example is after Earlougher, pp. 32-33. The producing rate during a 48-hour drawdown test declined from 1,580 to 983 BBL/DAY with PWF measured as indicated in Table 22-1. Reservoir data are:

```
PI \(=2,906\) PSI
\(\mathrm{BO}=1.27\)
\(\mathrm{UO}=0.6 \mathrm{CP}\)
\(\mathrm{H}=40 \mathrm{FT}\)
\(\mathrm{CT}=2\left(10^{-5}\right) 1 /\) PSI
\(\% \mathrm{POR}=12\)
\(\mathrm{PBP}=2,100 \mathrm{PSI}\)
\(\mathrm{RW}=0.3 \mathrm{FT}\)
```

Table 22-1

$T I M E(H R)$	$Q O(B B L / D A Y)$	$P W F(P S I)$
1.00	1,580	2,023
1.50	1,580	1,968
1.89	1,580	1,941
2.40	1,580	-
3.00	1,490	1,892
3.45	1,490	1,882
3.98	1,490	1,873
4.50	1,490	1,867
4.80	1,490	-
5.50	1,440	1,853
6.05	1,440	1,843
6.55	1,440	1,834
7.00	1,440	1,830
7.20	1,440	-
7.50	1,370	1,827
8.95	1,370	1,821
9.60	1,370	-
10.0	1,300	1,815
12.0	1,300	1,797
14.4	1,260	-
15.0	1,190	1,775
18.0	1,190	1,771
19.2	1,190	-
20.0	1,160	1,772
21.6	1,160	-
24.0	1,137	1,756
28.8	1,106	-
30.0	1,080	1,751
33.6	1,000	-
36.0	1,000	-
36.2	983	1,756
48.0	983	

Using DRAW, calculate the DP/QO term (Y axis) and the summation term (X axis). Plot the drawdown test and determine the correct slope (b) and intercept (a). This plot is shown in Figure 22-1. Finally, calculate the permeability of the well.

Although the table and the plot show all the times, rates, and PWF values, the keystrokes will only show the first straight line on the plot (through TIME $=$ $8.95 \mathrm{HR})$.

Figure 22-1 (after Earlougher)

Keystrokes $(S I Z E>=089)$	Display	Comments
[XEQ] [ALPHA]DRAW [ALPHA]	OIL? Y/N:	Last character is Y or N
Y [R/S]	$D P / Q \Sigma K H$	
[A]	$P /=$?	Y axis option
2906 [R/S]	$P W F=$?	
2023 [R/S]	$Q O=$?	
1580 [R/S]	$P W F=$?	$\begin{aligned} & \text { DP/QO } \\ & \text { printed } \end{aligned}$
1968 [R/S]	$Q O=$?	
[R/S]	$P W F=$?	$\begin{aligned} & \text { DP/QO } \\ & \text { printed } \end{aligned}$
1941 [R/S]	$Q O=$?	
[R/S]	$P W F=$?	DP/QO
1892 [R/S]	$Q O=$?	
1490 [R/S]	$P W F=$?	
1882 [R/S]	$Q O=$?	
[R/S]	$P W F=$?	
1873 [R/S]	$Q O=$?	
[R/S]	$P W F=$?	
1867 [R/S]	$Q O=$?	
[R/S]	$P W F=$?	
1853 [R/S]	$Q O=$?	
1440 [R/S]	$P W F=$?	
1843 [R/S]	$Q O=$?	
[R/S]	$P W F=$?	
1834 [R/S]	$Q O=$?	
[R/S]	$P W F=$?	
1830 [R/S]	$Q O=$?	
[R/S]	$P W F=$?	
1827 [R/S]	$Q O=$?	
1370 [R/S]	$P W F=$?	
1821 [R/S]	$Q O=$?	
[R/S]	$P W F=$?	
[R/S]	DP/Q $\Sigma K H$	
[C]	TME1 = ?	X axis option
1 [R/S]	QO1 $=$?	
1580 [R/S]	TME2 = ?	Σ printed
1.5 [R/S]	QO2=?	
[R/S]	TIME3 = ?	Σ printed
1.89 [R/S]	QO3=?	
[R/S]	TIME4 = ?	Σ printed
2.4 [R/S]	QO4=?	
[R/S]	TIME5 = ?	
3 [R/S]	QO5=?	
1490 [R/S]	TIME6 = ?	
3.45 [R/S]	QO6=?	
[R/S]	TIME7 $=$?	
3.98 [R/S]	QO7=?	
[R/S]	TIME8 = ?	
- 4.5 [R/S]	QO8=?	
[R/S]	TMME9 = ?	
4.8 [R/S]	QO9 = ?	
[R/S]	TIME10 = ?	
5.5 [R/S]	Q010 = ?	
1440 [R/S]	TME11 = ?	
6.05 [R/S]	Q011 $=$?	

Keystrokes (SIZE > = 089)	Display	Comments
[R/S]	TIME12=?	
6.55 [R/S]	Q012 = ?	
[R/S]	TIME13 = ?	
7 [R/S]	Q013=?	
[R/S]	TIME14 = ?	
7.2 [R/S]	Q014 = ?	
[R/S]	TIME15 = ?	
7.5 [R/S]	Q015=?	
1370 [R/S]	TIME16=?	
8.95 [R/S]	Q016=?	
[R/S]	TIME17 $=$?	
[R/S]	DP/Q Σ KH	
[E]	CORR? Y/N:	KH option. Last character is Y or N
N [R/S]	$P B P=?$	
2100 [R/S]	$\% P O R=?$	
12 [R/S]	$H=$?	
40 [R/S]	$R W=$?	
. 3 [R/S]	$Q O=$?	
$[\leftarrow]$	1,370.0000	This is the last QO for the first straight line in Figure 22-1
[R/S]	$P l=$?	
2906 [R/S]	$b=$?	Slope of first straight line in Figure 22-1
. 227 [R/S]	$a=$?	intercept of first straight line in Figure 22-1
. 557 [R/S]	$P W F=?$	
$[\leftarrow]$	1,821.0000	This is the last PWF for the first straight line in Figure 22-1
[R/S]	$B \mathrm{~B}=$?	
$1.27[\mathrm{R} / \mathrm{S}]$	$U O=?$ $C T=?$	
$\begin{aligned} & .6 \text { [R/S] } \\ & 2[\mathrm{EEX}][\mathrm{CHS}] 5[\mathrm{R} / \mathrm{S}] \end{aligned}$	$C T=?$ $D P / Q ~ \Sigma ~ K H ~$	KH, K, SKIN, DPSKIN, and \%EFF printed

TRAMDOMN

$\begin{aligned} & \text { OIL: YES } \\ & \text { PI }=2,986,9009 \mathrm{PSI} \end{aligned}$	$\begin{aligned} & 00=1,370.0060 \mathrm{BEL} / \mathrm{IFY} \\ & \mathrm{DF} / 20=0.7876 \end{aligned}$	TIME $11=6.6506 \mathrm{HR}$ $811=6.8193$
$00=1,580.8968$ BBL DAH TF $200=6.5589$	$\begin{aligned} & \text { PHF }=1,821.0000 \mathrm{FSI} \\ & \text { DP } 200=0.7926 \end{aligned}$	TIHEI2＝6． 55 64 HR 212＝6． 8485
$\begin{aligned} & \text { PMF }=1,968.0000 \mathrm{PSI} \\ & \text { IPF/00 }=0.5977 \end{aligned}$	TIHE $=1,0686$ HR $001=1,580.0600 \mathrm{BBL} / \mathrm{TAY}$	$813=6.8739$
	$81=6.6809$	$\begin{aligned} & \text { TIME14=7.2646 HE } \\ & \text { E14=0.8849 } \end{aligned}$
DF／ $00=6$ ¢ 6168	$\begin{aligned} & \text { THEP }=1.5000 \mathrm{HE} \\ & 82=0.1761 \end{aligned}$	THE15 5.5006 HR
	$\begin{aligned} & \text { TIMES=1.8900 HR } \\ & 83=6.2765 \end{aligned}$	0015＝1．376．8006 BELTARY 215－6． 9737
$\begin{aligned} & \text { PMF }=1,882,0000 \mathrm{PSI} \\ & \text { IP } / 00=6.6872 \end{aligned}$	$\begin{aligned} & \text { TIME }=2.4000 \text { HR } \\ & \Sigma 4=6.3802 \end{aligned}$	TIME16 $=8.9500$ HR 216＝1． 6491
$\begin{aligned} & \text { PHF }=1,673.0600 \mathrm{PSI} \\ & \mathrm{DF} / 00=0.6933 \end{aligned}$	TIMES＝3． 6006 HR $005=1,490.0060 \mathrm{BEL} / \mathrm{ARY}$ 85＝0． 5193	
PHF $=1,867.8086 \mathrm{PSI}$ $\mathrm{DP} / \mathrm{Qaj}=9.6973$		$\mathrm{H}=40 . \mathrm{Ba日f} \mathrm{FT}$
$\mathrm{DF} / 00=0.6973$	$\begin{aligned} & \text { TIRE } \mathrm{T}=3.456 \mathrm{BE} \\ & 86=\theta .5696 \end{aligned}$	RHF6． 3806 FT
	TIME7 7 3， 9806 HR	$\begin{aligned} & \mathrm{PI}=2,986,8 \mathrm{Ba⿻丅⿵冂⿰⿱丶丶⿱丶丶⿴囗十} \mathrm{PSI} \\ & \mathrm{~b}=0.2279 \end{aligned}$
DF／00＝6．7313	87－0．6241	$\begin{gathered} 3=8.5570 \\ B 0=1.2760 \end{gathered}$
FUF $=1,843.6006$ PSI DP／00 $=0.7382$	$\begin{aligned} & \text { TIME8=4.58日G HR } \\ & E 8=6.6732 \end{aligned}$	$\begin{aligned} & \mathrm{UO}=6.686 \mathrm{CP} \\ & \mathrm{CT}=2.8690 \mathrm{E}-5 \mathrm{I} / \mathrm{PSI} \end{aligned}$
	$\begin{aligned} & \text { TIHE9=4, } 8600 \mathrm{HR} \\ & \Sigma 9=6.6994 \end{aligned}$	$\begin{aligned} & \mathrm{KH}=545.8203 \mathrm{HIT} F \mathrm{FT} \\ & \mathrm{k}=13.6455 \mathrm{MII} \end{aligned}$
$\begin{aligned} & \mathrm{PMF}=1,836.009 \mathrm{PSI} \\ & \mathrm{DP} / 00=9.747 \mathrm{D} \end{aligned}$	TIME10 $=5.5006$ HR K010 $=1.440 .6006$ BELITH $810=0.7870$	$\begin{aligned} & \text { DPSKIH }=-729.2587 \text { PSI } \\ & Z E F F=167.2120 \end{aligned}$

User Instructions

Note: for TIME $_{i}$, QO $_{i}$, and $\Sigma_{i}, i=1,2,3, \ldots, n$, where n is the number of TIME values input by the user.

* Tones will sound while Σ_{i} is calculated.

User Instructions

Note: for $\operatorname{TIME}_{i}, Q G_{i}$, and $\Sigma_{i}, i=1,2,3, \ldots, n$, where n is the number of TIME values input by the user.

* Tones will sound while Σ_{i} is calculated.

04 Set：Time units not yet input．
Clear：Time units have been input．
05 Set：Pressure units not yet input．
Clear：Pressure units have been input．
07 Set：Oil reservoir．
Clear：Gas reservoir．

Program Listing

914LBL ${ }^{\text {FIRRH：}}$
＂DROHDOLH： 89
XROM＂TIILE＂FC2C 25
PROTPT SF 00 SF 04
SF 05 SF $66 \quad 9727$
＂0IL＂ 7 YROH 咩／H？＂
＂KPA＂AST0 68 ＂H3＂
FC？ 07 ＂SCH＂＂FIMY＂
AST0 03 ASHF ASTO 64
－HR＂ASTO 43 CLA
ASTO 09 AST0 44
294LEL 15
＂DP／E Σ KH＂FROAPT
GT0 15
334LBL
34 ＋LBL B
MEO 27

364LDL 14
HIU HEM 26 Fs？ 22
GT0 60 FE？ 23 GT0 15
43＋LBL 64
YEQ 20 RCL 35 RCL 48

FC？ 07 ＂ $\mathrm{IP} / \mathrm{QG}{ }^{2}$
XROH＂OUT＂GTO 14

554 LEL C
GTO 17

574LBL E
ADV＂CORE＂ 1
KROH＂Y／K？FC？ 61 GTO 01 ＂SKIP： 2 YROH＂Y／H？FS？ 92
GTO 60 XROM＂ITCPE＂
YROH＂STDTF＂FS？ 37
XROH＝ 188° FC？ 67
XROK＂GASG＂FC？ 07
XROH＝T＝XROH＂ ZHACL ＂

784LEL 60
19 FC？ 072097066

CLX FC？ 67 STO 29
＂\％5h＂XROH＂IH＂RCL 29

XEOA＂OUT＂GT0 63
994LBL 01
FS？ 07 GT0 62
YROH＂STDTP＂XROH＂T＂

ASTO 01 CLA ASTO 92
ASTO Z＂FA＊S＂ASTO Y
＂UG＂XROH＂IMI＂
＂1／PSI＂ASTO 01 CLA
ASTO 22 ASTO Z＂ $1 /$ APA＂
ASTO Y＂CT＂צROH＂IHI＝
GTO 13

1254LDL 12
13 ST0 60＂FSI＂
ASTO 日1 CLA ASTO EL
ASTO Z＂KPA＂AST0 Y
＂PBP＂ XR OH＂I IHI ＂

137＊LDL 63
XROM $=2$ POR $^{*} 2757060$
＂FT＂ASTO 日1 CLH
AST0 02 ASTO Z＂月＂
ASTO Y＂ $\mathrm{H}^{=}$YROH ${ }^{-1[H]=}$
30 STO 60 ＂\＃＂AST0
CLA ASTO Z 2 RU＂

YEO 27 STO 17 XEA 25
FC？ 67 GTO 16 RCL 17
RND RCL 14 RNI CF 63

$6 T 064315 T 060$＂E0＂
FC？ 63 ＂ Fb^{*} XROH＂ $1 \mathrm{~N}^{*}$
－CP＂ASTO 01 CLA
ASTO Q2 ASTO 7 ＂PA＊5＊
ASTO Y－JO＂FC？ 03

Program Listing（cont．）
＂ 1 b＂ XROH ＂IH1＂
＂1／PSI＂ASTO A DLA
ASTO 02 ASTO 2 ＂ $1 / \mathrm{NPA}$
AST0 Y＂CT＂FC？ EB
＂ Fb ＂YROM＂INJ＂162．6
RCL $46 ; 5 T 045$
GT0 66
2974 LEL 84
XEOH＂CUOd＂ 97033
162.6 HED 69 RCL 65

ST／ 45 FS？ 03 GT0 65
RCL 17 YROH＂CEOb＂
$5 T 032$ RCL 17
XROH＂CRSb＂RCL 33
YROH＂CUDb＂ 51033
GT0 66
$225+\mathrm{LBL}$ G5
RCL 14 YROH＂CBIb＂
YROH＂CBO＂ $5 T 032$
RCL 13 RCL 33
XROH＂CUOb＂YROM＂CUO＂
5 T 03
2354LBL 66
RCL 32 GTO 16

238＊LEL 16
255000 ＂ $2=$＂FC？ 01
XROM－IN＝RCL 17 1／K
246＊LBL 07
XEC 08 RCL 66 RCL 97
F5？ 01 C2 FC？ 01
RCL 26 RCL 23 ＊
RCL 22 ＂F－R＂COH ；
67016
$261+\operatorname{LBL} 88$
$162690=\mathrm{FT} 3$－ $\mathrm{BE}=\mathrm{COH}$
＊

266＊LBL 89
RCL 46 ／ $\mathrm{RCL} 16{ }^{\circ} \mathrm{F}-\mathrm{F}$＂
CON STO 65 ＊ 57045
FC？ 61 RTH RCL 85
RCL 10 ；STO G6
RCL 17 RCL 11 ／
5 O 067 FS 967 RTH
XROH＂CUG＂STO 37 RTH
$298+L B L 16$
RCL 33 ＊ST\＃ 45
RCL 34 FC？ 61 GTO 00
RCL 66 RCL 07 RCL 17
FC？ 97 YROH＂DCT＂
FC？ 97 GTO 06 FS？ 03
XEOH＂CCT＂FC？ 83
界OH＂CCTb＂

308＊LBL 60
RCL 18166 ；
RCL 31 Y 12 ＊ RCL 45
RCL 28 ；STO 29
RCL 33 ／YOY／LOG
RCL 47 RCL 46 ／K）Y
$-7.2275+1.1513 *$
K） 45 ADU $=\mathrm{HDFFT}$ ．
ASTO 日1 CLA HSTO 92
ASTO 2 ＂HIDH＝ASTO Y
＂EH＂xROH＂0utu＂
RCL 29 ＂HI＂ASTU 日
ASTO Y CLA ASTO 92
ASTO 2 ＂K＂XROH＂OUTU＂
RCL 45 ＂SKIN＂
XROH＂OUT＂ 87 \％
RCL 46 ＊RCL 42 ＊
＂DPGKIH＂ XED 29 RCL 48
$\mathrm{FCL} 35->1+166$
＊＂\％EFF＂XROM＂OUT＂
AIV GTO 15

3774LBL 17
$\begin{array}{llllll}C L X & 5 T 0 & 58 & 570 & 59 & 1\end{array}$
51052506611.1
$57053 \quad 60 \quad 570 \quad 50 \quad 62$
STO 51 RCL $625 T 027$
FS？C 04 SF 88 HD
YED 23 CF 98 FS？ 22
GTO 61 FC？ 23 GTO 15
4914LBL 01
50662 RCL $60 \quad 57042$
FS？C 60 SF 98 YE 21
CF 685 STO 60 RCL 62
LOG＊STO 56 GTO 19

415＊LBL 18
ADY XED 23 FS？ 22
GT0 62 FC？ $23 \quad 6 T 015$

Program Listing (cont.)

422*LBL 02	5 TO 27 RCL 56
YEE 21 RND RCL IHD 50	RCL IND 58 \% ${ }^{\circ}$
RHD $\mathrm{X}=\mathrm{Y}$? GTO 03	YEQ 66 TONE 9
RCL 42 STO IND 51	XROA -GUT" ISG 53
RCL 51 STO 561	G70 18
ST $+52+$ STO IND Y	
2 ST+51	5001 LBL 28
	4151060 FSTC 08
4464LBL 63	SF 98 -60' FC? 87
RCL 27 STO IHD 51	"QG" XEQ 22 CF 06 RTH
RCL $501+$ ISGIND ${ }^{\text {\% }}$	
CLD 60 STO $54 \quad 58$	511 LBL 21
STO 55 CLX STO 56	41 ST0 68 * $00 \sim$ FC? 97
RCL $521 \mathrm{E} 3+\mathrm{LAST}$	"EG" XEQ 66
f STO 57	
	5180LEL 22
4604LBL 13	AST0 T "BEL" FC? 67
TONE 5 RCL INI 54	- MCF" - $/$ DAY" ASTO 01
RCL IHD $55-$ RCL 541	ASHF RSTO 92 CLA
- RCL IND X RCL IND 51	ARCL T RCL 04 RCL 83
X Y - LOG Rt *	RCL Z XROH $=1 N K=$ RDN
ST+ 56 RCL 54 STO 55	ST0 63 X XYY ST0 94 R
$1+\mathrm{RCL}$ IND X $2+$	RTH
ST+ 54 ISG 57 GT0 13	
	5394LBL 23
4864LBL 19	26 ST0 00 -TIME"
ISG 51 CLIJ RCL IHD 51	XEQ 06 XEE 95

Section 7
 Waterflooding

23. FWVSW - Fractional Flow Calculations

Calculates $\mathrm{dFW} / \mathrm{dSW}$, \%SWSZ, and \%SWBT from the KO/KW correlation, predicts frontal advance, and provides an estimate of overall reservoir recovery.

24. 5SPOT - Five-Spot Waterflood Performance

Predicts reservoir rate-time performance for a five-spot pattern during all four stages of a waterflood.

25. SUMWF - Combined Performance for Stratified Waterfloods

Predicts performance of different layers of a stratified waterflood, given the performance of the base layer.
26. INJ - Water Injectivity for Regular Patterns with Unit Mobility Ratio Estimates individual well injectivity or pressure drop for various patterns.

27. CUTCUM - Forecasting Mature Waterfloods

Predicts future performance of fully developed waterfloods and calculates the water-oil relative permeability ratio from production data.

23. FWVSW - Fractional Flow Calculations

FWVSW is a useful utility given the availability of KO/KW data, preferably from field performance. The program CUTCUM provides one method of performing the calculations of $\mathrm{KO} / \mathrm{KW}$ for mature waterfloods. The KO/KW curve can often be represented in the form:

$$
\mathrm{KO} / \mathrm{KW}=\mathrm{a} e^{\mathrm{b} \frac{\% \mathrm{OSW}}{100}}
$$

The values of a and b are calculated easily given two representative points on the KO/KW versus water saturation curve (see Figure 23-1). FWVSW calculates FW as a function of $\% \mathrm{SW}$ and the remaining calculations of Section E. 1 of Craig. Since the programs FWVSW, 5SPOT, and SUMWF all perform the calculations of Appendix E of Craig, refer to these examples. The values of $\%$ SWSZ |the water saturation at the upstream end of the stabilized zone) and \%SWBT (the average water saturation behind the flood front at and prior to breakthrough) are calculated iteratively and preserved by the program for use in 5SPOT (see Figure 23-2). The graphical method to determine these values is preferred when a portion of the KO/KW curve cannot be represented adequately by the exponential fit of a and b.

The program also provides a method of estimating ultimate waterflood recovery (Sections E. 2 and E.3). This method is not recommended except as a quick estimate when only limited core data are available.

Equations

KO/KW equations:

$$
\mathrm{KO} / \mathrm{KW}=\mathrm{ae}^{\mathrm{b} \frac{\% \mathrm{SW}}{100}}
$$

a and b are calculated from two $\% \mathrm{SW}, \mathrm{KO} / \mathrm{KW}$ points as follows:

$$
\begin{aligned}
a & =\frac{\mathrm{KO} / \mathrm{KW}}{\mathrm{e}^{\mathrm{b} \frac{2 \mathrm{ND} \% \mathrm{SW}}{100}}} \\
\mathrm{~b} & =100 \frac{\ln \frac{\mathrm{KO} / \mathrm{KW} 2}{\mathrm{KO} / \mathrm{KW} 1}}{2 \mathrm{ND} \% \mathrm{SW}-1 \mathrm{ST} \% \mathrm{SW}}
\end{aligned}
$$

Figure 23-1 (after Craig)

Figure 23-2 (after Craig)

Fractional flow equations:

$$
\begin{aligned}
& \mathrm{FW}=\frac{1}{1+\frac{\mathrm{UW}}{\mathrm{UO}} \frac{\mathrm{KO}}{\mathrm{KW}}} \\
& \left.\frac{\mathrm{dFW}}{\mathrm{dSW}} \text { (slope of fractional flow curve }\right)=\mathrm{b}\left(\mathrm{FW}^{2}-\mathrm{FW}\right)
\end{aligned}
$$

To solve for \%SWSZ:

$$
\begin{aligned}
& f(\% S W S Z)= \\
& \frac{b\left(F W^{2}-F W\right)}{(\% S W S Z-\% S W C)}-\frac{100 \mathrm{FW}}{(\% S W S Z-\% S W C)^{2}}
\end{aligned}
$$

FWVSW attempts to minimize $f(\%$ SWSZ $)$ using the regula falsi method. The new \%SWSZ is predicted as:

$$
\begin{aligned}
& \% S W S Z_{\text {new }}= \\
& \frac{\% S W S Z_{\text {left }} f\left(\% S W S Z_{\text {right }}\right)-\% S W S Z_{\text {right }} f\left(\% S W S Z_{\text {left }}\right)}{f\left(\% S W S Z_{\text {right }}\right)-f\left(\% S W S Z_{\text {left }}\right)} \\
& \% S W B T=\frac{\% S W S Z-\% S W C}{F W}+\% S W C \\
& F W 2=\frac{1}{1+\frac{U W}{U O} \text { ae }} \begin{array}{l}
\text { bI } \frac{1}{100} \\
Q=\frac{1}{d F W / d S W} \\
\% S W A V G=\% S W 2+100 \text { QI }(1-F W 2)
\end{array}
\end{aligned}
$$

Waterflood recovery equations:

$$
M=\frac{U O}{U W} \frac{1}{\mathrm{KO} / \mathrm{KW}}
$$

$$
\begin{aligned}
& \% \mathrm{EV}=100 \frac{1-\mathrm{V}^{2}}{\mathrm{M}} \\
& \% \mathrm{RF}= \\
& 100-\frac{\left(\frac{\% \mathrm{EV} \% \mathrm{SOAVG}}{\mathrm{BOWF}}+\frac{(100-\% \mathrm{EV}) \% \mathrm{SOI}}{\mathrm{BOWF}}\right]}{\frac{\% \mathrm{SOI}}{\mathrm{BOI}}}
\end{aligned}
$$

$$
\% \mathrm{SOI}=100-\% \mathrm{SWC}
$$

$$
\% S O A V G=100-\% \text { SWAVG }
$$

$$
\% \text { RFWF }=\% \text { RF }-\% \text { OILRF }
$$

Frontal advance equations:

$$
\begin{aligned}
& X=\frac{I W^{\prime} T}{\text { POR H WIDTH }} \frac{\mathrm{dFW}}{\mathrm{dSW}} \\
& \quad \frac{\mathrm{dFW}}{\mathrm{dSW}} \text { evaluated at } \% S W S Z \\
& I W^{\prime}= \\
& \text { IW in FT3/DAY } \\
& \text { POR }=
\end{aligned}
$$

Nomenclature

Symbol	Variable Name	Input or Output	English Units	$\begin{gathered} \text { SI } \\ \text { Units } \end{gathered}$
${ }^{\text {a }}$	Intercept of straight-line portion of KO/KW curve	I, O	-	-
BOI	Initial oil formation volume factor	I	-	-
BOWF	Oil formation volume factor at the beginning of waterflooding	I	-	-
b	Slope of straight-line portion of KO/KW curve	I, O	-	-
FW	Fraction of total flowing stream composed of water	0	-	-
FW MAX	Maximum fraction of total flowing stream composed of water	I	-	-
FW2	Exit-end fraction of total flowing stream composed of water	0	-	-
H	Formation thickness*	I	FT	M
IW	Water injection rate	I	$\begin{aligned} & \text { BBL/ } \\ & \text { DAY } \end{aligned}$	$\begin{aligned} & \text { M3/ } \\ & \text { DAY } \end{aligned}$
KO/KW	Water-oil relative permeability ratio	I	DAY	DAY
KO/KW1	Water-oil relative permeability ratio at 1ST\%SW	I	-	-

Symbol	Variable Name	Input or Output	English Units	SI Units	Symbol	Variable Name	Input or Output	English Units	SI Units
KO/KW2	Water-oil relative permeability ratio at 2ND\%SW	I	-	-	1ST- \%SW	First volume percent water saturation value	I	-	-
M	Water-oil mobility ratio	O	-	-		used for calculating a and b			
QI	Pore volume of cumulative injected water	O	${ }^{-}$	${ }^{-}$	$\begin{aligned} & \text { 2ND- } \\ & \% \mathrm{SW} \end{aligned}$	Second volume percent water saturation value	I	-	-
$T \dagger$	Time	I	DAY	DAY		used for			
V	Permeability variation	I	-	-		calculating a and b			
WIDTH	Front width	I	FT	M	*In the case of deviated wells or slanted beds, use the true vertical thickness instead of the measured thickness of the formation.				
X	Frontal advance	O	FT	M					
\%EV	Percent volumetric sweep efficiency	0	-	-	\dagger The units for these variables are saved by the program.				
\%OILRF	Volume percent primary oil recovery	1	-	-	Yes/No Questions				
\%RF	Volume percent ultimate oil recovery	0	-	-	FIT?	Yes: Calculate a and b from two \%SW			
\%RFWF	Volume percent ultimate oil recovery after waterflooding	O	-	-		$\mathrm{KO} / \mathrm{KW}$ points. No: Input a and b .			
\%SOc	Volume percent critical oil saturation	I	-	-	Example 1				
\%SOI	Volume percent initial oil saturation	I	-	-	This data is from Craig's example in Appendix E. Table 23-1 is KO/KW and \%SW data for this exam-				
\%SWAVG	Volume percent average water saturation	O	-	-	ple. Fit a KO/KW curve through the values at $\% \mathrm{SW}$ $=40$ and $\%$ SW $=65$ to estimate a and b. Calculate				
\%SWBT	Volume percent average water saturation behind the flood front at and prior to breakthrough	0	-	-	\%SWSZ and \%SWBT and generate a table equivalent to Craig's Table E.3. Also, estimate ultimate waterflood recovery based on a permeability variation (V) of 0.5 and economic limiting value of FW MAX = 0.98 . The initial oil saturation was 90%, the critical				
\%SWC	Volume percent connate water saturation	I	-	-	value of BO is 1.2 , and the primary recovery was 10.4%. Note that the calculated table differs from				
\%SWMAX	Upper limit of saturation range in which \%SWSZ will be calculated	I	-	-	Craig's table due to the use of an exponential equation for $\mathrm{KO} / \mathrm{KW}$.				
\%SWMIN	Lower limit of	I	-	-	Table 23-1				
	saturation range in which \%SWSZ				\%sw	KRO	KRW	$\begin{array}{r} K O \\ i= \\ \hline \end{array}$	$\begin{aligned} & K W \\ & / K R W) \end{aligned}$
\%SWSZ	will be calculated				10	1.000	0.000		
	Volume percent water saturation at the upstream end of the stabilized zone	O	-	-	30	0.373	0.070		
					40	0.210	0.169		
					45	0.148	0.226		
					50	0.100	0.300		
					55	0.061	0.376		
\%SW2	Volume percent exit-end water	0	-	-	60 65	0.033 0.012	0.476 0.600		
					70	0.000	0.740		

Keystrokes （SIZE＞＝051）	Display	Comments	$\begin{aligned} & \gamma \mathrm{YH} 2=59.4961 \\ & \mathrm{FW} 2=9.9758 \end{aligned}$
［XEQ］［ALPHA］FWVSW ［ALPHA］	FIT？Y／N：	Last character is Y or N	$\begin{aligned} & \text { 日I }=2.5627 \\ & \text { ZSHAYG }=65.7627 \end{aligned}$
Y ［R／S］	1ST\％SW＝？		
40 ［R／S］	$2 N D \% S W=$ ？		7642＝61．9981
1.2426 ［R／S］			FH2＝0．9838
65 ［R／S］	$K O / K W 2=$ ？		$\mathrm{II}=3.8096$
． 02 ［R／S］	$\% S O c=?$	a and b printed	
25 ［R／S］	$\% S W C=$ ？	$\begin{gathered} \% S W C= \\ 100- \\ \% S O I \end{gathered}$	
			$\begin{aligned} & 7 \mathrm{SH}=64.4911 \\ & \mathrm{FH} 2=9.9893 \end{aligned}$
10 ［R／S］	$U \mathrm{O}=$ ？		915 5.6945
1 ［R／S］	$\% S W M 1 N=?$		\％ $740 \% 6=76.6183$
． 5 ［R／S］			．2n）
35 ［R／S］	\％SWMAX $=$ ？		
70 ［R／S］ FW，and \％SWBT printed	RCVRY ADV	\％SWSZ，	FH2＝6．9929
FW，and \％SWBT printed，followed by table of \％SW2，			$\mathrm{FH} 2=8.9929$ 01508.5432
［A］	$F W M A X=$ ？	Waterflood recovery option	\％SHAYG $=73.8960$
． 98 ［R／S］	$K O / K W=$ ？	\％SW2 and \％SWAVG printed	75H2＝69．4981
			FH2＝6．9953
			QI＝12．8484
$2.5[R / S]$	$\begin{aligned} & V=? \\ & B O I=? \end{aligned}$		\％SHPYG＝75．5813
1.29 ［R／S］	BOWF＝？		
$\begin{aligned} & 1.2[\mathrm{R} / \mathrm{S}] \\ & 10.4[\mathrm{R} / \mathrm{S}] \end{aligned}$	$\%$ OILRF $=$ ？		
	RCVRY ADV	M，\％EV，	FH2＝9．9969
		\％RF，and	$81=19.3547$
		\％RFWF	\％ $84846=78.0715$
FW Vs \％SM			
			F42＝6．9979
			－1 $=29.1874$
FIT：YES	FH2 2 －1． 8854		
15T\％S4 $=46.8600$	QI $=0.5968$		
$\mathrm{k0/KHI}=1.2426$			\％ 7 H2 $=75.81800$
$2 \mathrm{WDYSH}=65.8009$			FH2＝0．9981
K0／ 6 ¢ $2=0.8208$	\％SU2－51．9981		QI＝31．6997
$a=919.6308$	FH2＝0．9211		\％ $84 \mathrm{HPYG}=81.6669$
$b=-16.5169$	$0 \mathrm{I}=0.8333$		
	\％$\%$ HATG $=58.5799$		FH H HX＝6． 9806
\％ $50 \mathrm{c}=25.006 \mathrm{c}$			\％ 5 H2 $=66.6811$
	7SH2＝54．4981		7514VY＝66．8591
U0＝1．6006 CF	FFEC＝$=1.9464$		K0／KH＝2．5606
	01＝1．1930		$4=6.5806$
7SHMIN＝35．8000	\％$\%$ HAYG $=60.8956$		BOI 1.2909
TSHMEX $=70.6000$			B0 $\mathrm{MF}=1.2006$
	75122－56．9981		\％ 2 ILRF $=16.4600$
\％SWS2＝46．9981	FH2＝9．9639		
FH＝1，8364	日I $=1.7386$		$\mathrm{H}=8.8606$
\％SHET $=54.2346$	7SHAVG $=6.2795$		很Y＝93．7500
			\％ $\mathrm{AF}=56.1783$
7542＝49．4981			\％ $\mathrm{RFF} \mathrm{F}=4.4 .7763$

Example 2

Repeat Example 1 but use $a=460$ and $b=-21.5$ to determine the $\%$ SW - FW table. Notice the effect that the KO/KW coefficients have on the values in the table.

Keystrokes	Display	Comments
[XEQ] [ALPHA] FWVSW [ALPHA]	FIT? Y/N:Y	
N [R/S]	$a=$?	
460 [R/S]	$b=$?	
21.5 [CHS] [R/S]	\%SOc=?	
[R/S]	$\% S W C=$?	
[R/S]	$U O=$?	
[R/S]	$U W=$?	
[R/S]	$\% S W M I N=?$	
$40[\mathrm{R} / \mathrm{S}]$	\%SWMAX $=$?	
70 [R/S]	NO ROOT	Root not in specified range
[R/S]	\%SWMIN = ?	
30 [R/S]	$\%$ SWMAX $=$?	
90 [R/S]	RCVRY ADV	\%SWSZ, FW, and \%SWBT printed, followed by table of $\%$ SW2, QI, and \%SWAVG
[A]	$F W$ MAX $=$?	\%SW2 and \%SWAVG printed
. 98 [R/S]	$K O / K W=$?	
[R/S]	$V=$?	
[R/S]	$\mathrm{BOI}=$?	
[R/S]	$B O W F=$?	
[R/S]	\%OILRF=?	
[R/S]	RCVRY ADV	M, \%EV, \%RF, and \%RFWF printed

FW $V 5 \geq \mathrm{SN}$
FIT: 40
$a=469.6680$
$b=-21.5696$

4CHMIN=45. 960

4SIMIN=36. 6060
$754 \mathrm{H} \mathrm{H}=96.61609$
\%SHSZ $=31.1973$
$\mathrm{FH}=9.7966$
YSHET=37.1541
$7542=33.6973$
FH2=0.8590

$8 \mathrm{I}=0.3849$	7642=58.6973
\%SURVG=39.1121	FH2 $=0.9992$
	QI=61.2716
$75 \mathrm{~L} 2=36.1973$	\% $54+\mathrm{HG}=63.3520$
FH2 $=0.9125$	
$0 \mathrm{O}=6.5824$	49N2=61.1973
$854 \mathrm{HFG}=41.2946$	FH2=0. 9996
	日I=104.8138
7942=38.6973	$7 \mathrm{SHPVG=65,8566}$
FW2=0.9469	
0I=7.9257	\% 4 SH2 $=63.6973$
\% $84046=43.6891$	FH2=0.9997
	II $=179.3459$
7SH2=41.1973	754PVG=68. 3497
FH2=0.9683	
EI $=1.5155$	7/5N2=66.1973
	$\mathrm{FH2}=0.9998$
	Q $[=306.9244$
\% $312=43.6973$	75HAYG $=78.8492$
F42=6.9812	
$\mathrm{I}=2.5261$	$7542=69.6973$
YSHPUG $=48.4375$	FH2 $=0.9959$
	[II $=525.3034$
\%642=46.1973	\%SUAYG=73.3489
FH2=6.989	
EI $=4.2568$	\% $312=71.1973$
$754 \mathrm{HL}=50.9865$	FH2=0.9999
	[1]=899.1125
7 $512=48.6973$	\%SHAVG $=75.8489$
FH2=0.9935	
日I $=7.2197$	$76 \mathrm{HL} 2=73.6973$
\% 74 HVG $=53.3789$	FH2-1.8009
	OII=1,538,9379
9012=51.1973	\%SUAUG $=78.3486$
FH2 $=0.9962$	
$\mathrm{I}=12.2915$	$78 \mathrm{SH2}=75.89006$
8514 $46=55.8662$	$\begin{aligned} & \mathrm{FH} 2=1,010081 \\ & \theta I=2,636.3219 \end{aligned}$
$7512=53.6973$	$\mathrm{Y}_{6} \mathrm{SHPGG}=79.6513$
FH2= ${ }^{\text {¢ }}$. 9978	
QI $=26.9732$	FH HAY $=6.9860$
\% $7 \mathrm{HPYG}=58.3589$	7612 $2=43.3949$
	\%SUAHG $=48.1410$
7 \%H2 $=56.1973$	
FH2=0.9987	$\mathrm{H}=9.8060$
QI $=35.8349$	< $2 \mathrm{~F}=93.7508$
\%SUAHG 68.8546	YRF $=35.2999$
	\%RFHF $=24.8899$

Example 3

From the end of Example 2, calculate displacement of the flood front at $T=1,10,20,30,60$, and 180 days. The other data required are:

$$
\begin{aligned}
& \% \mathrm{POR}=20 \\
& \mathrm{H}=5 \mathrm{FT} \\
& \mathrm{IW}=100 \mathrm{BBL} / \mathrm{DAY} \\
& \mathrm{WIDTH}=333 \mathrm{FT}
\end{aligned}
$$

Keystrokes	Display	Comments
$[E]$	$\% P O R=?$	Frontal advance option
$20[R / S]$	$H=?$	
$5[R / S]$	$W / D T H=?$	
$333[R / S]$	$T=?$	
$100[R / S]$	$T=?$	
$1[R / R]$	$T=?$	X printed
$10[R / S]$	$T=?$	X printed
$20[R / S]$	$T=?$	Xprinted
$30[R / S]$	$T=?$	\times printed
$60[R / S]$	$T=?$	Xprinted
$180[R / S]$		X printed

General Information

```
Memory Requirements
    Program length: }892\mathrm{ bytes (4 cards)
    Minimum size: 051
    Minimum hardware: 41C + 2 memory modules
```


Hidden Options

None

Pac Subroutines Called
 TITLE, Y/N?, IN, OUT, INU, \%POR, CON, INK, OUTU

Registers

03	Time units
04	Time units
06	UO/UW
07	WIDTH (FT)
08	IW (BBL/DAY)
09	T (DAY)
20	\%SOc
21	\%SWC
26	BOWF
27	BOI
28	H (FT)
29	\%OILRF
30	\%SW2
32	UO (CP)
33	UW (CP)
35	KO/KW
36	\%SWMIN
37	\%SWMAX
38	\%SWSZ
39	\%SWBT
40	\%SWAVG
41	1ST\%SW
42	KO/KW1
43	2ND\%SW
44	KO/KW2
45	FW2, FW MAX
46	FW at \%SWSZ
47	a
48	b
49	Scratch
50	V
Registers 10-17, 19, $22-25,31$, and 34 unused	

Flags

04 Set: Calculate a and b from two \%SW, KO/KW points.
Clear: Input a and b.

User Instructions

*Tones will sound while \%SWSZ is calculated iteratively.

Program Listing

61＊LBL＂FHySh＂		＂ 4 RF ＂XROM－OITT＂	$336+$ LBL 12
＂FH US \％ 4 H＂ 51	－RCL 48 ＊1／4＂01＂	RCL 29 －＂ 2 RFUF＂	35 ST0 69 ＂\％SHHIN＂
XROH＂TITLE FCOC 25	YROM＂OUT＂RCL 36	XROH COIT ${ }^{\text {a }}$ ADY GTO 15	XROM－IM CLA ARCL 85
PROHPT SF 27 －DRY＊	XEQ 99		＂$¢=354 C$ RCL 21 Y ${ }^{\text {\％}}$
ASTO 93 CLA ASTO 44		233＋LBL 69	K＝Y？6T0 05 ＂ ZSHMAX ＂
＂FIT＂ 4 XROH－ $7 / \mathrm{H}$ ？＂	1214LEL 62	1 RCL 45 －LASTX Xt2	XROH－ IN^{\prime}－STO 02
FS？ 64 GT0 8046	ADY RCL 49 RND RCL 30	LASTK－RCL 48 ${ }^{\text {\％}}$／	XEQ 67 STO 65 RCL 36
	$2.5+\mathrm{EHI}$ YGY？	$100 *+5 T 048$	ST0 36 YEE 67 ST0 01
＂b＂XROM＂IN＂GTO 01	GT0 63 以 KY Y RCL 30	＊／GHPYG＂YROM＂OUT＂	RCL 65 ＊X 6 ¢9？GT0 11
	RND $\mathrm{X}=17 \mathrm{~T}$ ？ GTO 15	ETH	＂HO ROOT＂
24＊LBL 18	RCL 49 RHI		
40 ST0 60 ＂15T4SH＂		2514 LEL II	362＊LBL 95
XROH＝IN＂${ }^{\text {－K0／KH1＂}}$	138＊LBL 33	2524LPL E	TONE 3 PROHPT GTO 12
	LASTY ST0 30 GT0 14		
XROM＂IN＂＊K0／KH2＂		＊FT＊ASTO O1 CLA	$366+\mathrm{LBL} 11$
KROH＂IN＂RCL 42 ＇LH	1424LBL 15	ASTO 02 ASTO 2 ＂H＂	TOHE 5 RCL 38 RCL 95
RCL 43 RCL $41-\%$	＂RCYRY ADY＂PROMPT	AST0 Y＂H＂YR0h＂IHJ＂	＊RCL 02 RCL 01 ＊
100 K》Y＊ 57049	67015	$657030{ }^{-10}$ ASTO Y	RCL 65 RCL $01-\%$
LASTX RCL 43 ＊EfY		CLA ASTO 2 ＂HIDTH＂	57038 XEQ $07 \quad 57039$
RCL 44 XSY／STO 47	1464LBL A	XROM＂INU＂＂BBL／mAY＂	ABS $1 \mathrm{E}-4 \quad \mathrm{X}=\mathrm{Y}$ ？
＂a＂XROH＂OUT＂RCL 48	1474．EL E	AST0 01 ASHF ASTO 62	GT0 65 RCL 38 RCL 21
＂b＂XROM＂OUT＂	44 ST0 60＂FH Mng	＂H3／DAY＂ASTO Y CLH	－RCL 46 ／RCL 21
		ASTO 2 ＂IW＂XROH＂INU＂	5 TO 39 TONE 9 RTH
59＊LEL 81	GTO 15 1／X 1	RCL 46 Xt2 LASTV	
ADV 19 ST0 60 ${ }^{7} / 800$	RCL 66 ＊RCL 47 \％LH	RCL 48 ＊$*$ RCL 18	3964EBL 85
YROH＂IH＂－ 2 SHC	RCL 48＊ 106 ＊	1明 $/$ ； RCL 28 ；	
XROM＂IN＂ 315 STO 69			GT0 66 RCL 3957001
＂CP＂ASTO 01 CLA	XEE 693457068	COH 51049	RCL 38 ST0 36 6T0 I1
ASTO E2 ASTO 2 －PH＊S＊			
AST0 Y＂U0＇XROH－INU＂		301＋LEL 13	4974LBL 66
ST0 66－PA＊§ ASTO Y	26 ST0 60＂E0I＂	AIV＂BAY＂ASTO E1 CLA	RCL 39 ST0 65 RCL 38
CLA ASTO 2 ＝ 1 Un	XROH $=1 W^{-25} 5 \mathrm{STO} 60$	ASTO 02 RCL 64 RCL 63	ST0 62 GT0 11
XROH＂IHII＂ST／ 96	＂BOHF＂XROH＂IH＂ 29	8 ST0 06＂T＂	
XEQ 12 AIU RCL 38	57000%	KROM＂INK＂RDN ST0 63	4134LBL 67
$5 T 030$＂7Sucl＊	YROH＂IN＂ADY RCL 96	K）Y ST0 64 Rt CF 68	ST0 38 YEQ 88 ST0 46
YROH＂OUT＂RCL 46 ＂FH＂	FCL 35 ／＂f＂	FS？ 22 GT0 64 FC？ 23	Xt2 LASTK－RCL 48
XROH＂OUT＂RCL 39	XROM－DUT＂ 1 RCL 50	GTO 15	RCL 46 RCL 38 RCL 21
＂\％SUBT＂XROH ${ }^{\text {－OUT＂}} 100$			－ST／ $2 \mathrm{Xt2}$／ 160
RCL $20-57049$		323＊LEL 64	－RTH
GT0 02	ST0 49 109 ST0 60 －		
	RCL 60 RCL 40	CLA ASTO O2 ASTO 2	433＋LBL 98
163＋LDL 14	RCL 68 RCL $21-\%$	＂H＂AST0 Y－${ }^{\text {a }}$	1 \％RCL 48 ＊E才才
RCL $30{ }^{2} 7542{ }^{\text {a }}$	RCL 49 ＊－RCL 27 ＊	XROM＂OUTU＂GT0 13	RCL 47 ＊ PCL 06 \％
XROM＂OUT＂XEE 08	RCL 26 \％RCL 06		＋1／\％END

24. 5SPOT - Five-Spot Waterflood Performance

5SPOT performs most of the calculations required for Section E. 5 of Craig. Basically, the Craig, Geffen, and Morse method is used to relate oil recovery and WOR to cumulative injected water, and the correlation of Caudle and Witte is used for calculating five-spot water injection rates. Five-spot flood performances approximate many other patterns.

Reservoir heterogeneities should be reflected by using stratified reservoir predictions. Craig's Table 7.1 indicates the minimum number of layers required. 5SPOT performs the calculations for one layer, and SUMWF adjusts the other performances appropriately.

These calculations are divided into the four stages Craig mentions for the waterflood:
Stage
1
2
3
4

Description
Prior to interference From interference to fillup From fillup to breakthrough After water breakthrough

Typically, stage four is most of the time of a flood; however, the timing of stages $1-3$ have a clear and

Figure 24-1 (after Craig)
certain effect on the economics of a flood. This technique usually is used to predict the performance of proposed floods. The program CUTCUM can be used for waterfloods later in stage four.

5SPOT uses correlations to replace Craig's Figure E. 5 (GAMMA vs M and \%EA), E. 6 (\%EABT vs M), and E. 7 (C vs M) and Slider's correlation for KRW vs $\%$ SW (typical values for the coefficients c and d are given in Table 24-1). The use of these correlations greatly simplifies calculations, since the only value the user must look up at each point in stage four is QI/QIB /Craig's Table E.9, reproduced here in Table

Figure 24-2 (after Craig)

Figure 24-3 (after Craig)

24-2). If desired, the user can optionally select to input the values that the correlations would calculate. This will duplicate Craig's calculations more closely.

Another correlation is used as well: Ershaghi and Omoregie's exponential KO/KW correlation (see FWVSW and CUTCUM). This is used to calculate \%SW2 from FW2, as in FWVSW. If KO/KW data over the range $\%$ SWBT to $\% \mathrm{SW}_{\text {el }}$ (economic limit) is well approximated by this KO/KW correlation, use it. FWVSW can be used to determine the a and b coefficients of the correlation and how well it models the data. If data is not well represented by this exponential, select the option to input SW2 and FW2. (You will have to plot graphs equivalent to Figure 23-1, FW vs $\%$ SW, and Figure $23-2$, dFW/dSW vs $\%$ SW|.

Table 24-1 (after Slider)

Formation	c	d
Unconsolidated sandstones (well sorted)	3	0
Unconsolidated sandstones (poorly sorted)	2	1.5
Cemented sandstones, oolitic	2	2
\quad limestones, and vugular limestones		

Table 24-2
QI/QIB For Various Values of \%EABT

\% EABT										
WI/										
WIB	50.	51.	52.	53.	54.	55.	56.	57.	58.	59.
1.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
1.2	1.190	1.191	1.191	1.191	1.191	1.191	1.191	1.191	1.192	1.192
1.4	1.365	1.366	1.366	1.367	1.368	1.368	1.369	1.369	1.370	1.370
1.6	1.529	1.530	1.531	1.532	1.533	1.535	1.536	1.536	1.537	1.538
1.8	1.684	1.686	1.688	1.689	1.691	1.693	1.694	1.696	1.697	1.699
2.0	1.832	1.834	1.837	1.839	1.842	1.844	1.846	1.849	1.851	1.853
2.2	1.974	1.977	1.981	1.984	1.987	1.990	1.993	1.996	1.999	2.001
2.4	2.111	2.115	2.119	2.124	2.127	2.131	2.135	2.139	2.142	2.146
2.6	2.244	2.249	2.254	2.259	2.264	2.268	2.273	2.277	2.282	2.286
2.8	2.373	2.379	2.385	2.391	2.397	2.402	2.407	2.413	2.418	2.422
3.0	2.500	2.507	2.513	2.520	2.526	2.533	2.539	2.545	2.551	2.556
3.2	2.623	2.631	2.639	2.646	2.653	2.660	2.667	2.674	2.681	2.687
3.4	2.744	2.752	2.761	2.770	2.778	2.786	2.793	2.801	2.808	2.816
3.6	2.862	2.872	2.881	2.891	2.900	2.909	2.917	2.926	2.934	2.942
3.8	2.978	2.989	3.000	3.010	3.020	3.030	3.039	3.048	3.057	3.066
4.0	3.093	3.105	3.116	3.127	3.138	3.149	3.159	3.169	3.179	3.189
4.2	3.205	3.218	3.231	3.243	3.254	3.266	3.277	3.288	3.299	3.309
4.4	3.316	3.330	3.343	3.357	3.369	3.382	3.394	3.406	3.417	3.428
4.6	3.426	3.441	3.455	3.469	3.483	3.496	3.509	3.521	3.534	3.546
4.8	3.534	3.550	3.565	3.580	3.594	3.609	3.622	3.636	3.649	
5.0	3.641	3.657	3.674	3.689	3.705	3.720	3.735			
5.2	3.746	3.764	3.781	3.798	3.814	3.830				
5.4	3.851	3.869	3.887	3.905	3.922					
5.6	3.954	3.973	3.993	4.011						
5.8	4.056	4.077	4.097							
6.0	4.157	4.179								
6.2	4.257									
Values of WI/WIB at which \%EA $=100$										
	6.164	9.946	5.732			5.139	$.95$	77	608	. 4

Table 24-2 (cont.)
$\% E A B T$

WI/										
WIB	60.	61.	62.	63.	64.	65.	66.	67.	68.	69.
1.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
1.2	1.192	1.192	1.192	1.192	1.192	1.192	1.193	1.193	1.193	1.193
1.4	1.371	1.371	1.371	1.372	1.372	1.373	1.373	1.373	1.374	1.374
1.6	1.539	1.540	1.541	1.542	1.543	1.543	1.544	1.545	1.546	1.546
1.8	1.700	1.702	1.703	1.704	1.706	1.707	1.708	1.709	1.710	1.711
2.0	1.855	1.857	1.859	1.861	1.862	1.864	1.866	1.868	1.869	1.871
2.2	2.004	2.007	2.009	2.012	2.014	2.016	2.019	2.021	2.023	2.025
2.4	2.149	2.152	2.155	2.158	2.161	2.164	2.167	2.170	2.173	2.175
2.6	2.290	2.294	2.298	2.301	2.305	2.308	2.312	2.315	2.319	2.322
2.8	2.427	2.432	2.436	2.441	2.445	2.449	2.453	2.457	2.461	2.465
3.0	2.562	2.567	2.572	2.577	2.582	2.587	2.592	2.597	2.601	2.606
3.2	2.693	2.700	2.705	2.711	2.717	2.723	2.728	2.733	2.738	2.744
3.4	2.823	2.830	2.836	2.843	2.849	2.855	2.862	2.867	2.873	
3.6	2.950	2.957	2.965	2.972	2.979	2.986	2.993			
3.8	3.075	3.083	3.091	3.099	3.107					
4.0	3.198	3.207	3.216	3.225						
4.2	3.319	3.329								
4.4	3.439									

$\begin{array}{lllllllllllll}4.285 & 4.132 & 3.984 & 3.842 & 3.704 & 3.572 & 3.444 & 3.321 & 3.203 & 3.088\end{array}$

$\% E A B T$										
	WIB	70.	71.	72.	73.	74.	75.	76.	77.	78.
1.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
1.2	1.193	1.193	1.193	1.193	1.193	1.193	1.193	1.194	1.194	1.194
1.4	1.374	1.375	1.375	1.375	1.376	1.376	1.376	1.377	1.377	1.377
1.6	1.547	1.548	1.548	1.549	1.550	1.550	1.551	1.551	1.552	1.552
1.8	1.713	1.714	1.715	1.716	1.717	1.718	1.719	1.720	1.720	1.721
2.0	1.872	1.874	1.875	1.877	1.878	1.880	1.881	1.882	1.884	1.885
2.2	2.027	2.029	2.031	2.033	2.035	2.037	2.039	2.040	2.042	2.044
2.4	2.178	2.180	2.183	2.185	2.188	2.190	2.192	2.195	2.197	
2.6	2.325	2.328	2.331	2.334	2.337	2.340				
2.8	2.469	2.473	2.476	2.480						
3.0	2.610	2.614								
Values of WI/WIB at which $\% \mathrm{EA}=100$										
	2.978	2.872	2.769	2.670	2.575	2.483	2.394	2.309	2.226	2.147

$\% E A B T$

$\% E A B T$

WII										
WIB	90.	91.	92.	93.	94.	95.	96	97.	98.	99.
1.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
1.2	1.194	1.195	1.195	1.195	1.195	1.195	1.195	1.195	1.195	1.195
1.4	1.380	1.380	1.380	1.380	1.381					
1.6	1.558									
Values of WI/WIB at which $\% \mathrm{EA}=100$										
1.439	1.387	1.338	1.290	1.244	1.199	1.157	1.115	1.075	1.037	

Equations

$K R W=c\left|\frac{\% S W A V G-\% S W C}{100-\% S W C}\right|^{d}$
$M=\frac{K R W}{U W} \frac{U O}{K R O}$
$\mathrm{C}=0.62+\frac{0.46836}{\mathrm{M}}^{*}$
$\% \mathrm{SGI} *=\mathrm{C}(\% \mathrm{SOI}-\% \mathrm{SOBT})$
$\% \mathrm{SOI}=100-\% \mathrm{SWC}-\% \mathrm{SGI}$
$\%$ SOBT $=100-\% S W B T$
VP (pore volume) $=7758$ POR AREA H
OIPWF $=\frac{\mathrm{VP} \% \mathrm{SOI}}{100 \mathrm{BOI}}$
IBASE $=\frac{0.001538 \mathrm{HK} \mathrm{KRO} \mathrm{DP}}{\text { UO }\left(\log \frac{\mathrm{D}}{\mathrm{RW}}-0.2688\right)}$
(D is distance from injector to producer, $\sqrt{2}$ REI)

Prior to interference:

$\mathrm{WII}^{\prime}=\pi \mathrm{H}$ POR SGI REI ${ }^{2}$
$\mathrm{R}=\left|\frac{\mathrm{WI}^{\prime}}{\pi \mathrm{HPOR}(\mathrm{SWBT}-\mathrm{SWC})}\right|^{1 / 2}$
$\mathrm{IW}=$
$\frac{7.07\left(10^{-3}\right) \mathrm{H} \mathrm{K} \mathrm{DP}}{\frac{\mathrm{UW}}{\mathrm{KRW}} \ln \frac{\mathrm{R}}{\mathrm{RW}}+\frac{\mathrm{UO}}{\mathrm{KRO}} \ln \left(\frac{\% \mathrm{SWBT}-\% \mathrm{SWC}}{\% \mathrm{SGI}}\right)^{1 / 2}}$

T is calculated at the $\mathrm{i}^{\text {th }} \mathrm{WI}$ as follows:

$$
\begin{gathered}
\mathrm{T}_{\mathrm{i}}=\mathrm{T}_{\mathrm{i}-1}+\frac{\mathrm{WI}_{\mathrm{i}}-\mathrm{WI}_{\mathrm{i}-1}}{\left(\mathrm{IW}_{\mathrm{i}}+\mathrm{IW}_{\mathrm{i}-1}\right) / 2}, \mathrm{~T}_{0}=0 \\
\mathrm{WI}_{0}=\mathrm{BEG} \mathrm{WI}, \mathrm{IW}_{0}=\mathrm{IW}_{1}
\end{gathered}
$$

$\mathrm{WII}^{\prime}=\mathrm{WII}$ in FT 3
$\mathrm{WI}^{\prime}=\mathrm{WI}$ in FT 3
*Unpublished correlation, D.N. Meehan, Champlin Petroleum Company.

Interference to fillup:
$\mathrm{WIF}=\mathrm{VP}$ SGI
$\% \mathrm{EAF}=\frac{100 \% \mathrm{SGI}}{\% \mathrm{SWBT}-\% \mathrm{SWC}}$
If $\mathrm{M} \geq 1$, GAMMA $=\mathrm{M}^{\% \text { EA/ } / 00^{*}}$
If $M<1, G A M M A=D+E M+F \log M$
$\mathrm{D}=1.412546-0.9881 \mathrm{EA}$
$\mathrm{E}=-0.40586+0.985715 \mathrm{EA}$
$\mathrm{F}=1.094353-0.812527 \mathrm{EA}$
If $\% \mathrm{EA}=0, \mathrm{GAMMA}=1$
If $\% \mathrm{EA}=1, \mathrm{GAMMA}=\mathrm{M}$
GAMMAF $=\mathrm{GAMMA}$ at $\% \mathrm{EA}=\% \mathrm{EAF}$
$\mathrm{IWF}=\mathrm{GAMMAF}$ IBASE

Fillup to breakthrough:
$\% \mathrm{EABT}=70.4 \mathrm{M}^{-0.1730^{\circ}}$
$W I B T=V P E A B T(S W B T-S W C)$
$\% \mathrm{EA}=\frac{100 \mathrm{WI}}{\mathrm{VP} \% \mathrm{SWBT}-\% \mathrm{SWC}}$
IW = GAMMA IBASE
$\mathrm{QO}=\mathrm{IW} / \mathrm{BOWF}$
$\mathrm{NP}=\frac{\mathrm{WI}-\mathrm{WIF}}{\mathrm{BOWF}}$
$\%$ OILRF $=100 \frac{\mathrm{NP}}{\mathrm{OIPWF}}$

After water breakthrough:

$\mathrm{WI}=\mathrm{WI} / \mathrm{WIB} \mathrm{WIBT}$
$\% \mathrm{EA}=27.49 \ln \frac{\mathrm{WI}}{\mathrm{WIBT}}+\% \mathrm{EABT}$
If $\% \mathrm{EA} \geq 100, \mathrm{QI} / \mathrm{QIB}_{\mathrm{i}}=$
$\mathrm{QI} / \mathrm{QIB}_{\mathrm{i}-1}+\frac{\text { WI INC }}{\text { WIBT }} \frac{\text { \%EABT }}{100}$
If \%EA <100, QI/QIB is read or interpolated from Table 24-2 at WI/WIB and \%EABT
QIBT $=(\%$ SWBT $-\% S W C) / 100$
$\mathrm{QI}=\mathrm{QI} / \mathrm{QIB} \mathrm{QIBT}$
$\mathrm{dF} / \mathrm{dS}=1 / \mathrm{QI}=\mathrm{b}\left(\mathrm{FW} 2^{2}-\mathrm{FW} 2\right)$

$$
\begin{aligned}
& \text { FW2 }=\frac{1+\sqrt{1+\frac{4}{b} \frac{\mathrm{dF}}{\mathrm{dS}}}}{2} \\
& F W 2=\frac{1}{1+\frac{\mathrm{UO}}{\mathrm{UW}} \frac{\mathrm{KO}}{\mathrm{KW}}}, \frac{\mathrm{KO}}{\mathrm{KW}}=a e^{\mathrm{b} \frac{\frac{\% \mathrm{SW} 2}{100}}{}} \\
& \% S W 2=\frac{100}{b} \ln \left\{\left|\frac{1}{F W 2}-1\right| \frac{U W}{U O} \frac{1}{a}\right] \\
& \% S W A V G=\% S W 2+100 \text { QI }(1-F W 2) \\
& W O R=\operatorname{BOWF}\left[\frac{1}{\mathrm{FO} 2+(1-\mathrm{FO} 2) \mathrm{A}}-1\right] \\
& \mathrm{FO} 2=1-\mathrm{FW} 2 \\
& \text { If } \% \mathrm{EA}<100, \mathrm{~A}= \\
& 27.49 \cdot \frac{1}{\text { WI/WIB }} \frac{\% S W S Z-\% S W C}{\% E A B T(\% S W B T-\% S W C)} \\
& \text { If } \% \mathrm{EA} \geq 100, \mathrm{~A}=0 \\
& \mathrm{NP}=\left[\frac{(\% \text { SWAVG }-\% \text { SWC }) \mathrm{EA}-\% \mathrm{SGI}}{100-\% \text { SWC }-\% \text { SGI }}\right] \text { OIPWF } \\
& \mathrm{QO}=\left[\frac{\mathrm{FO} 2+(1-\mathrm{FO} 2) \mathrm{A}}{\mathrm{BOWF}}\right\rfloor \mathrm{IW} \\
& \mathrm{POR}=\frac{\% \mathrm{POR}}{100} \\
& \text { SGI }=\frac{\% \text { SGI }}{100} \\
& S W C=\frac{\% S W C}{100} \\
& \mathrm{EA}=\frac{\% \mathrm{EA}}{100} \\
& \mathrm{SWBT}=\frac{\% \mathrm{SWBT}}{100}
\end{aligned}
$$

Nomenclature

Symbol	Variable Name	Input or Output	English Units	$\begin{gathered} \text { SI } \\ \text { Units } \end{gathered}$
AREA	Five-spot pattern area	I	ACRE	M2
a	Intercept of straight-line portion of $\mathrm{KO} / \mathrm{KW}$ curve	I	-	-
BEG WI*	Beginning cumulative injected water volume of table	I	BBL	M3
BEGW/W	Beginning WI/WIB of table	I	-	-
BOWF	Oil formation volume factor at the beginning of waterflooding	I	-	-

C Coefficient used I,O . - to determine whether prediction method is valid
c First coefficient I of KRW correlation
DP Pressure difference between injection and producing well
d Second I coefficient of KRW correlation
$\mathrm{dF} / \mathrm{dS}$ Slope of fractional flow curve
END WI* Ending injected water volume of table
END- Ending WI/WIB I W/W of table
FW2 Exit-end fraction I of total flowing stream composed of water

GAMMA	Conductance ratio	I,O	-	-
GAMMAF	Conductance ratio at fillup	I, O	-	-
H	Thickness of a single layer of the formation \dagger	I	FT	M
IBASE*	Base water injection rate	O	$\begin{aligned} & \text { BBL/ } \\ & \text { DAY } \end{aligned}$	$\begin{aligned} & \text { M3/ } \\ & \text { DAY } \end{aligned}$
IW*	Water injection	0	BBL/	M3/
	rate		DAY	DAY

Symbol	Variable Name	Input or Output	English Units	$\begin{gathered} \text { SI } \\ \text { Units } \end{gathered}$	Symbol	Variable Name	Input or Output	English Units	$\underset{\text { Sinits }}{\text { SI }}$
IWF*	Water injection rate at fillup	O	$\begin{aligned} & \text { BBL/ } \\ & \text { DAY } \end{aligned}$	$\begin{aligned} & \text { M3/ } \\ & \text { DAY } \end{aligned}$	W/WINC	WI/WIB increment	Out	-	-
K	Permeability	I	MD	MD		of table			
KRO	Relative	I	-	-	WOR	Water-oil ratio	O	-	-
	permeability to oil	1		-	\%EA	Percent areal sweep efficiency	I, O	-	-
KRW	Relative permeability to water	I,O	-	-	\%EABT	Percent areal sweep efficiency at breakthrough	I, O	-	-
M $N \mathrm{NP}^{*}$	Water-oil mobility ratio	O	BBL	M3	\%EAF	Percent areal sweep efficiency at fillup	0	-	-
NP ${ }^{*}$	Cumulative oil production	O	BBL	M3	\%OILRF	Percent oil	O	-	-
OIPWF*	Oil in place at the beginning of waterflooding	O	BBL	M3	\%SGI	recovery factor Volume percent initial gas	I	-	-
QI/QIB	QI divided by QIBT; cumulative injected water volume divided by injected water volume at breakthrough	I, O	-	-	\%SGI*	saturation Volume percent maximum initial gas saturation at which prediction method is valid	I	-	-
	(both volumes in water-contacted pore volumes				$\begin{gathered} \text { \%SW- } \\ \text { AVG } \end{gathered}$	Volume percent average water saturation	O	-	-
QO*	Oil producing rate	O	$\begin{gathered} \text { BBL/ } \\ \text { DAY } \end{gathered}$	$\begin{aligned} & \text { M3/ } \\ & \text { DAY } \end{aligned}$	\%SWBT	Volume percent average water	I	-	-
R REI	Outer radius of waterflood front prior to interference	0	FT	M		saturation behind the flood front at and prior to breakthrough			
REI	Half the distance between adjacent injectors	I	FT	M	\%SWC	Volume percent connate water	I	-	-
RW	Wellbore radius	I	FT	M					
T^{*}	Time	O	DAY	DAY	\%SWSZ	Volume percent water saturation	I	-	-
TF*	Time to fillup	O	DAY	DAY		at the upstream			
WI*	Cumulative injected water volume	O	BBL	M3	\%SW2	end of the stabilized zone Volume percent	I	-	-
WIBT*	Cumulative injected	O	BBL	M3		exit-end water saturation			
WIF*	water volume at breakthrough Cumulative injected water volume at fillup	O	BBL	M3	*The units \dagger In the case thickness	for these variables are s of deviated wells or sla instead of the measured	ved by the ted beds, u thickness o	program. se the true f the layer.	rtical
WII*	Cumulative injected water volume at interference	O	BBL	M3	Yes/No Que None	Questions			
WI/WIB	WI divided by WIBT	O	-	-					
WI INC*	Cumulative injected water volume increment of table	I	BBL	M3	Example A certain a model	oil reservoir's per for a field being co	rmance sidered	being or wate	ed as lood.

The relevant data for the proposed flood is summarized here:

Well spacing \%SWC		80 ACRE
		10\%
Current gas saturation		9.5\%
Oil viscosity		1.0 CP
Water viscosity		0.5 CP
Reservoir pressure		2,200 PSI
Permeability variation, V		0.756
Water-oil relative permeability ratio characteristics		$\begin{aligned} & a=460.0 \\ & b=-21.5 \end{aligned}$
Current oil recovery, \%OIP		5.6\%
Oil formation volume factor at discovery $(=$ bubble		
point)		1.381
current		1.305
Pattern		20-acre five spot
Efféctive well bore radius		0.35 FT
Layer	Upper	Lower
Average porosity	14\%	18\%
Average connate water saturation	10\%	10\%
Net thickness	18 FT	27 FT
Absolute	19 MD	22 MD

permeability

Distance between injectors Pressure drop between	933.4 FT
	$1,500 \mathrm{PSI}$

between
producers and
injectors
The values of a and b were determined by analogy with another reservoir using the program CUTCUM. These values of a and b were used in Example 2 of FWVSW to calculate $\%$ SWSZ $=31.2$ and $\%$ SWBT $=37.2$. Not all values of a and b will result in realistic \%SWSZ and \%SWBT values. If the correlations are not representative of the data, the user must input KRO and KRW values.
To estimate KRW, use $\mathrm{c}=5.5$ and d $=2.93$. Also, KRO $=0.67$ ahead of the flood front, and correlations provided by the program should be used whenever possible for this example. Output just enough points to define the flood. Forecast to an ultimate ratio of injected water to water injected at breakthrough of 10 , scaling the values appropriately. Make the prediction for the upper layer.

Keystrokes $(S I Z E>=065)$	Display	Comments
14 [R/S]	$\% S W C=$?	
10 [R/S]	UO=?	
1 [R/S]	$U W=$?	
. 5 [R/S]	$B O W F=$?	
1.305 [R/S]	$A R E A=$?	
20 [R/S]	$H=$?	
18 [R/S]	REI $=$?	
933.4 [ENTER \uparrow] 2 [\div]	466.7000	REI is onehalf the distance between injectors
[R/S]	$R W=$?	
. 35 [R/S]	$D P=$?	
1500 [R/S]	$\% S W S Z=$?	
31.2 [R/S]	$\% S W B T=$?	
37.2 [R/S]	$c=$?	
5.5 [R/S]	$d=$?	
2.93 [R/S]	$K R O=$?	KRW printed
. 67 [R/S]	$K=$?	
19 [R/S]	$C=$?	M and C printed
[R/S]	\%SG/=?	
9.5 [R/S]	$B E G W I=$?	\%SGI*,
OIPWF, and IBASE pri starts and WII printed	. Prior to int	ce stage
5000 [R/S]	WI INC=?	END WI printed
5000 [R/S]	$\% E A B T=$?	Table
printed. Interference to GAMMAF, and TF prin starts and \%EABT prin	p stage starts Fillup to brea	WIF, \%EAF, ugh stage
[R/S]	WI $I N C=$?	WIBT and END WI printed
10000 [R/S] printed. After water bre W printed	$E N D W / W=$? rough stage	Table and BEGW/
4 [R/S] 1 [R/S] WI, \%EA, and QI/QIB correlation, used to cal input the first time the	$\begin{aligned} & \text { W/WINC=? } \\ & a=? \end{aligned}$ ed. Coefficien te $\%$ SWAVG elation is used	WI/WIB, KO/KW OR, must be
460 [R/S] 21.5 [CHS] [R/S] WOR, KRW, M, GAMM WIB, WI, and \%EA prin 24-2 at WI/WIB=1 and	$\begin{aligned} & b=? \\ & \text { Q//Q/B =? } \\ & \text { W, T, QO, NP, } \\ & \text { QI/QIB interp } \\ & \text { EABT }=79.6 \end{aligned}$	\%SWAVG, LRF, WI/ d from Table
1.886 [R/S]	$E N D W / W=?$	Once \%EA ≥ 100, QI/QIB is calculated and not input
$\begin{aligned} & 10[\mathrm{R} / \mathrm{S}] \\ & 2[\mathrm{R} / \mathrm{S}] \end{aligned}$	W/WINC=? $E N D W / W=$?	Table printed

FIVE SPOT

7POR＝14． 1809
$35 \mathrm{C}=16,6804$
$100=1.6060 \mathrm{CF}^{2}$
$1 \mathrm{~L}=6.50 .50 \mathrm{CF}$
$\mathrm{BOHF}=1.3050$
AREA＝26． 9640 ACRE

$\mathrm{REI}=466,7666 \mathrm{FI}$
हW＝$=35$ ． FT
IP $=1,505.0000 \mathrm{PSI}$
$25452=31.2000$
7514BT $=37.2006$
$=5.50 \mathrm{e} 4$
$d=2,9376$
KRH＝0．1651
$\mathrm{KRO}=0.670 \mathrm{G}$
$\mathrm{E}=19,906 \mathrm{HI}$

17 $=6.4928$
$\mathrm{C}=1.57 \mathrm{~g}_{4}^{4}$
76GI＝9． 5064
35G1\％＝27．7960
0IPHF $=241,294.9656 \mathrm{BEL}$
IBASE $=175.8169 \mathrm{BBL} / \mathrm{DHY}$

PRIOR TO INTERFEREHCE
$\mathrm{HI}=29.176 .4256 \mathrm{BRL}$
BEG HI $=5.501 .6080$ BEL
END WI $=29.176 .4258 \mathrm{BRL}$
HI IHC＝5， 686.0806 BEL
HI $=5.096 .0066 \mathrm{BBL}$
$\mathrm{F}=114.1784 \mathrm{FT}$
$\mathrm{IH}=198.6439 \mathrm{BEL} / \mathrm{DH}$
$\mathrm{T}=25.2469 \mathrm{mHY}$

$\mathrm{R}=161.4727 \mathrm{FT}$
$\mathrm{IH}=187.3663 \mathrm{BEL} / \mathrm{TH} \mathrm{H}$
$T=51.1972 \mathrm{DHY}$
HI＝15． 080.0060 EDL
$\mathrm{E}=197.7629 \mathrm{FT}$
IH $=181.5513 \mathrm{EBL} / \mathrm{THY}$
$\mathrm{T}=78.3978 \mathrm{BAY}$
HI＝20，000．0000 BEL $\mathrm{R}=228.3569 \mathrm{FT}$ IH＝177．6767 BEL $/ \mathrm{DMY}$
$T=106.1453 \mathrm{IHY}$
HI $=25.606 .6506 \mathrm{BDL}$
$\mathrm{E}=255.3108 \mathrm{FT}$ $1 \mathrm{H}=174.7834 \mathrm{BEL} / \mathrm{MH}$
$\mathrm{T}=134,5173 \mathrm{IHM}$
$\mathrm{HI}=29.176 .425 \mathrm{E}$ BEL
$\mathrm{E}=275,9133 \mathrm{FT}$
IW＝172． $8349 \mathrm{BEL} / \mathrm{MAY}$
$T=158.5461 \mathrm{JHF}$

IHTERFEREHEE TU FILLUF
HIF $=77,147,0629 \mathrm{BEL}$
7EAF $=34.9265$
GOHHOF＝ 6.7885
IHF $=138.5403 \mathrm{BEL} / \mathrm{IOH}$
$\mathrm{TF}=209,7424 \mathrm{DMY}$

FILLUF TO BRERKTHROUGH
7EABT $=79.6621$
HIBT $=84,667.1055 \mathrm{BBL}$
EHE HI＝94．663．1055 BEL
HI IHC＝10，000．0600 BEL
$\mathrm{HI}=47.147 .6629 \mathrm{EDL}$
$\mathrm{zER}=44.3287$
G月留A $=6.7642$
IH $=134.3642 \mathrm{BEL} / \mathrm{MAY}$
$T=283.6281 \mathrm{DAY}$
$00=102.9611 \mathrm{BEL} / \mathrm{MAY}$
$\mathrm{HF}=7,662.8352 \mathrm{BEL}$
301LEF＝3． 1769
$\mathrm{HI}=57: 147.6629 \mathrm{BEL}$
$\mathrm{ZEA}=53.7399$
GRHMA＝9．7485
$\mathrm{I} \mathrm{H}=130.1882 \mathrm{BEL} / \mathrm{TH} \mathrm{H}$
$T=350.6275 \mathrm{DHI}$
Q0 $=99.7610 \mathrm{BEL} / \mathrm{MAY}$
$\mathrm{HF}=15,325.6765 \mathrm{BEL}$
\％0ILEF $=6.3539$
HI＝67：147．0629 BBL
＊ $2 \mathrm{EA}=63.1331$
GAMHA＝9．7167
$I W=126.0121 \mathrm{BEL} / \mathrm{TH} \mathrm{H}^{2}$
$\mathrm{T}=436.6914 \mathrm{IHM}$
$00=96.5616 \mathrm{BEL} \mathrm{THY}$
$\mathrm{NP}=22,988.5058 \mathrm{BEL}$
70ILRF $=9.5307$
HI $=77,147.0629 \mathrm{EDL}$
TEA＝72．5353
GAHMA＝6． 6930
IH $=121.8366 \mathrm{BEL} / \mathrm{ITH}$
$T=517.3866 \mathrm{IM} 9$
क0 $=93.3669 \mathrm{BEL} / \mathrm{IH}$
$\mathrm{NF}=36,651.3416 \mathrm{EEL}$
70ILEF $=12.7976$
HI $=84,663.1855 \mathrm{BEL}$
Z $\mathrm{EA}=79.6021$
GAMAM＝0．6751
IH $\mathrm{H}=118.6973 \mathrm{BEL} / \mathrm{DHY}$
$T=579.8088 \mathrm{DAH}$
$00=99.9558$ BEL DOH
$\mathrm{HF}=36,416.7666 \mathrm{BEL}$
70ILRF＝15． 6954

AFTER WATER BREAKTHROUGH
BECH／W＝1． 6006
ㅌNTH／L $=4.8$ ． 8 日
H／HINC＝1． 6080
HI／HIE $=1.0060$
$\mathrm{HI}=84,663.1055 \mathrm{EBL}$
7 $\mathrm{E}=\mathrm{A}=79.6021$
0I／01E＝1．9000
$\mathrm{a}=460.8099$
$b=-21.5669$
75HAYG $=43.6126$
HOR $=1.7358$
KRH＝0． 3669
$\mathrm{H}=0.9163$
GAHHR＝6．9561
$I H=168.6927 \mathrm{BEL} / \mathrm{WDY}$
$T=579.8808 \mathrm{IMY}$
$00=55.2793$ BEL $/$ DAY
$\mathrm{NP}=51,704.4104 \mathrm{BEL}$
70ILRF $=21.4359$
HI／HIB $=2.6000$
$H I=169,326.2110 \mathrm{BEL}$
但 $=98.6567$
01／RIE＝1．8660
\％ $54 \mathrm{H} 1 \mathrm{H}=47.6967$
HOR $=4.5774$
KRH＝日．4896
$\mathrm{H}=1.2227$
GAHFA＝1．2194
IH $=214.3989$ BEL／TIH：
$\mathrm{T}=1.022 .5745 \mathrm{BAY}$
$00=36.4471 \mathrm{BEL} / \mathrm{IHY}$
$\mathrm{HP}=31,17 \mathrm{E} .9346 \mathrm{BEL}$
70ILRF $=33.6552$
NI／HIB＝3． 688 B
$\mathrm{HI}=253,989.3164 \mathrm{BEL}$
01／4IB＝2．6820
\％ $24 \mathrm{HMG}=48.8778$
H0R＝17．7623
KRH＝6．4762
$\mathrm{H}=1.4635$
CAFMH＝1．4635
$\mathrm{IH}=246.7590 \mathrm{BEL} / \mathrm{DAH}$
$\mathrm{T}=1,389.7514 \mathrm{MAY}$
$00=12.9414 \mathrm{EEL} / \mathrm{DHY}$
$\mathrm{HP}=85.925 .6475 \mathrm{BEL}$
30ILRF $=36.4941$
HI／HIB＝4．0468
HI $=338.652 .4219 \mathrm{BEL}$
QL／4IE $=3.4786$
754P16＝56．1634
$H 0 \mathrm{R}=23.8619$
KRH＝6．5172
$1 \mathrm{H}=1.5439$
GAPMA＝1． 5439
$\mathrm{IH}=271.4391 \mathrm{BEL} / \mathrm{DAY}$
$T=1,716.5116 \mathrm{IMY}$
$00=16.7856 \mathrm{BEL} / \mathrm{DAH}$
$\mathrm{NP}=91.877 .9301 \mathrm{BBL}$
70ILRF＝39． 1912
ENDH／L＝10． 8609
H／hINC $=2.6$ 096
HI／HIB $=6.6690$
$\mathrm{HI}=567,978.6329 \mathrm{BEL}$
Q1／4IB＝5． 07 日1
\％SHAUG＝51．9949
HOE $=36.0358$
KRH＝6．5894
H＝1． 7594
$\mathrm{GBHMH}=1.7594$
$\mathrm{IH}=369.3235 \mathrm{EEL} / \mathrm{THO}$
$\mathrm{T}=2,299.6278 \mathrm{JAY}$
$00=9.2838$ ERL／TMY

HF＝97：365．5183 BBL
70ILRF $=46.3663$
HI／HIB＝8． 9060
HI＝677， 304.8438 EBL
日1／RIB＝6．6621
75UAVG＝53． 3049
HOR＝43． 1976
KRH＝9．6449
$\mathrm{H}=1.9259$
GHHR＝1．9256
$I H=338.4557 \mathrm{BEL} / \mathrm{MHY}$
$\mathrm{T}=2.822 .4177 \mathrm{MAH}$
$00=6.8371 \mathrm{BEL} / \mathrm{BH}$
$\mathrm{HP}=101.290 .8387 \mathrm{BEL}$
$301 L R F=41.9937$
HI／HIB $=16,4860$
HI＝646．631．0548 8BL
$01 / 01 B=8.2542$
354AYG＝54．3257
HOR $=60.3546$
KRH $=6.6995$
$\mathrm{H}=2.6611$
GAHMA＝2． 6611
$14=362.3677 \mathrm{BBL} / \mathrm{TPH}$
$\mathrm{T}=3,305,6385 \mathrm{BAY}$
$00=5.8769 \mathrm{BRL} / \mathrm{THY}$
$\mathrm{HF}=104,349.5279 \mathrm{BEL}$
70ILRF $=43.2618$

Example 2

In this example，use the input data from Craig＇s example．Set flags 00，01，and 02 early in the program to override the use of the correlations．

Keystrokes	Display	Comments
［XEQ］［ALPHA］5SPOT ［ALPHA］	$\% P O R=$ ？	
20 ［R／S］	\％SWC＝？	
10 ［R／S］	$U \mathrm{O}=$ ？	
1 ［R／S］	$U W=$ ？	
． 5 ［R／S］	BOWF＝？	
1.2 ［R／S］	$A R E A=$ ？	
40 ［R／S］	$H=$ ？	
［／／］［SF］ $00[/ /][\mathrm{SF}] 01$ ［／／］［SF］ 02		No corre－ lations will be used
	$R E I=$ ？	
5 ［R／S］	$R W=$ ？	
1 ［R／S］	$D P=$ ？	
3000 ［R／S］	$\% S W S Z=$ ？	
46.9 ［R／S］	\％SWBT＝？	

The values for QI／QIB begin to diverge from the values in Craig．When the value for areal sweep effi－ ciency exceeds 100% ，the increase in QI／QIBT is proportional to the increase in WI／WIBT．In this example the jump from WI／WIBT $=2$ to WI／WIBT
$=4$ was sufficiently large to induce some error， which propagates through the remainder of the example．A smaller value of W／WINC as \％EA approaches 100% would be appropriate if it were desired to match Craig＇s example more accurately．

FIVE SPOT

\％P0R＝20．6006
\％ $\mathrm{CHC}=19.0096$
$\mathrm{U}=1.6860 \mathrm{CP}$
UH＝6．5806 CP
B0wF $=1.2000$
AREA $=40.0806 \mathrm{CHCRE}$
$\mathrm{H}=5.0606 \mathrm{FT}$
REI $=669.68 \mathrm{CBT}$
RH＝1．6906 FT
$\mathrm{IP}=3,800.0069 \mathrm{PSI}$
7SHSZ $=46.9601$
\％5HET＝56．3060
$\mathrm{KRH}=0.480 \mathrm{C}$
$\mathrm{kR} 0=1.8008$
$\mathrm{c}=1.2055$
$\mathrm{c}=1.1806$
856I $=15.0066$
\％SGI＊ 36.9346
OIPMF $=193,959.1837 \mathrm{BEL}$
IBASE $=269.0246$ EBL／DAY

PRIOR TO InTERFERENCE
HII $=36,560.4448$ EEL
BEG WI $=5,800.0064 \mathrm{EEL}$
END HI＝36，566．4446 BEL
HI INC $-5,800.8004$ BEL

$\mathrm{k}=138.9243 \mathrm{FT}$
I $14=496.3001 \mathrm{BEL} / \mathrm{THY}$
$T=10.6745 \mathrm{JAH}$
$\mathrm{HI}=19,100.8086 \mathrm{BDL}$
$\mathrm{P}=196.4687 \mathrm{FT}$
$\mathrm{IH}=466.2889 \mathrm{RBL} / \mathrm{JAY}$
$\mathrm{T}=20.4632 \mathrm{DHY}$
$\mathrm{HI}=15$ ： 000.8008 BEL
$\mathrm{k}=248.6249 \mathrm{FT}$
$\mathrm{I}=450.3585 \mathrm{BEL}$ DAY

$\mathrm{T}=31.3725 \mathrm{MmY}$	HI $=66.556 .244188 L$
	\％ $2 \mathrm{~A}=46.3167$
$\mathrm{R}=277.8487 \mathrm{FT}$	IH＝252．8831 EEL／THY
$14=439.7662 \mathrm{EDL} / \mathrm{DHY}$	$\mathrm{T}=189.8479 \mathrm{mAY}$
$\mathrm{T}=42.6077 \mathrm{BAY}$	$00=210.7359$ EEL／IHY
	WP $=16.666 .6667 \mathrm{BEL}$
HI $=25,600.6006$ ESL	70ILRF $=8.5929$
$\mathrm{F}=316.6443 \mathrm{FT}$	
IL $=431.7742 \mathrm{BEL} / \mathrm{IMY}$	HI＝86．550．2041 BEL
$\mathrm{T}=54.6825 \mathrm{MHY}$	7EA＝60．2361
	68\％MA＝0．9206
HI＝30，800．80098 EEL	IH $=247.5026 \mathrm{BEL} / \mathrm{IMY}$
$\mathrm{R}=340.2937 \mathrm{FT}$	$\mathrm{T}=268.9863 \mathrm{mAT}$
$\mathrm{IL}=425.5872 \mathrm{BEL} / \mathrm{DRY}$	00＝206．2522 EBL 7 TH
$\mathrm{T}=65.7473 \mathrm{JAY}$	NF＝33．333．3333 BCL
	70ILRF $=17.1857$
HI＝35．00日． 08008 EBL	
$\mathrm{R}=367.5592 \mathrm{FT}$	WI $=163.622 .118788 \mathrm{~L}$
$\mathrm{IW}=420.3487 \mathrm{BBL} / \mathrm{MHY}$	7EA＝71．7609
$T=77.5697 \mathrm{JHY}$	CAMHM＝9．9106
	IH＝244．8124 BEL／IAH
$\mathrm{HI}=36.560 .4448 \mathrm{EEL}$	$\mathrm{T}=335.9024 \mathrm{IMH}$
$\mathrm{R}=375.6636 \mathrm{FT}$	
$\mathrm{IH}=418.9117 \mathrm{BEL}$ DAY	NF $=47.859 .9288$ BEL
$\mathrm{T}=81.2883 \mathrm{ImH}$	70ILRF $=24.2628$

interference to filluf
HIF＝46．550．2041 EEL
दEAF＝32． 3974
GEMHAF＝$=9.96$ 日
I $14 F=258.2636$ BRL $/ 19 Y$
$\mathrm{TF}=110.7925 \mathrm{DAY}$

FILLUP TO ERERETHROUGH
ZEABT $=73.1846$
7EABT＝71．7606
HIBT＝103，022．1187 BEL

WI INC＝20，086． 6609 BEL

HI $=66.556 .2441 \mathrm{BEL}$
教 $\mathrm{A}=46.3167$
GAFMA＝6．9460
$\mathrm{IH}=252.8831 \mathrm{BEL} / \mathrm{DAY}$
$\mathrm{F}=189.8479 \mathrm{DAY}$
$0=216.7359$ BBLIDAY
16，666．6667 BEL

WI $=86.556 .2641$ BBL
$\mathrm{Z} E \mathrm{E}=66.2361$
GAMHA＝6．920日
$\mathrm{IH}=247.5626 \mathrm{BEL} / \mathrm{IHY}$
268.9863 BH
（2026．252 BLI
Th＝3．33．33．3

WI＝103．622．1187 8BL
ZEA＝71．7006

H＝244．8124 BBL／IRY
T－3．v．ger
$\mathrm{NF}=47,059.9286 \mathrm{BEL}$
zOILRF $=24.2620$
gFTER MHTER BREAKTHROUUH
BECH／K＝1． 60016
ENDH／L＝2． 0 006
WHIINC＝ 0.4000
HI／HIB $=1.0060$
$\mathrm{HI}=103.022 .1187 \mathrm{BEL}$

21／4IB＝1． 808
$\mathrm{dF} / \mathrm{d} 5=2.1598$
$7512=47.686$
$\mathrm{FH}=2=8060$
\％SHAYG＝56． 2608
HOR $=1.56$ 日6
$\mathrm{KRH}=6.406 \mathrm{Cl}$
$\mathrm{m}=6.886 \mathrm{~B}$

GAMMO＝6． 916 A
$\mathrm{IH}=244.8124 \mathrm{BEL} / \mathrm{IDH}$
$\mathrm{T}=335.9024 \mathrm{IH}$
Q01＝96． $6725 \mathrm{EBL} / \mathrm{IHM}$
$N P=46.985 .7588 \mathrm{BEL}$
$701 L E F=24.2246$

HI／HIE $=1.4064$
$\mathrm{HI}=144,239.9662 \mathrm{BEL}$
7EA＝ 80.9496
日1／4IE＝1． 3756
$\mathrm{dF} / \mathrm{d} 5=1.57 \mathrm{de}$
$7512=50.7600$
FH2＝6． 8764
72MPVG＝58．9761
HOR＝2． 5513
KRH＝6． 4569
$\mathrm{H}=0.9060$
CAMHB＝6． 9606
$\mathrm{IH}=258.2636 \mathrm{BEL} / \mathrm{IHY}$
$\mathrm{T}=499.7300 \mathrm{DAY}$
$00=68.8457 \mathrm{BEL} / \mathrm{THY}$
NP＝63．737．5427 EBL
70ILRF＝32．8613
HI／HIE $=1.890 \mathrm{E}$
$\mathrm{HI}=185,439,8138 \mathrm{EEL}$
7 $\mathrm{EA}=87.8583$
OL／EIE $=1.7150$
$\mathrm{dF} / \mathrm{d} 5=1.2594$
4542＝53．4004
FH2＝ 0.9196
7cHAUG＝66． 9434
H0R $=3.6264$
KRH $=$ 日 50 06
$H=1.6909$
CAMM $=1.6060$
IH $=269.0246 \mathrm{BBL} / \mathrm{DHY}$
$\mathrm{T}=656.6348 \mathrm{IAF}$
$00=55.7397$ BEL $/ \mathrm{DHY}$
$\mathrm{NP}=76,957.8499 \mathrm{BEL}$
$301 L R F=39.6773$

H1／HIB $=2.0609$

HI＝266． 544.2374 BEL
$7 E A=9 \mathrm{~A} .7546$
प1／RIB－1．8750
$\mathrm{dF} / \mathrm{d} 5=1.1519$
$7812=54.3008$
FWZ $=0.9260$

$\omega 0 \mathrm{R}=4.2467$
KRN＝6． 5106
$\mathrm{H}=1.526 \mathrm{~g}$
GAMMA＝1． 0206
$I H=274.4051$ EBL $/ \mathrm{DAY}$
$\mathrm{T}=731.8659 \mathrm{IHY}$
$00=50.4354 \mathrm{BEL} / \mathrm{IAY}$
$\mathrm{HP}=81,481.4849 \mathrm{EBL}$
z0ILRF $=42.0096$
ENDH／H＝10． 800 Cl
W／HINC＝2． 0600
HI／HIE＝4．0000
$\mathrm{HI}=412,888,474 \mathrm{y}$ ERL
QL／RE＝3． 3090
dF／dS $=0.6527$
3642＝59．7000
FH2＝6．9636
YSHOUC＝65． 3686
HOR $=31.2324$
KRH＝6．6606
$\mathrm{H}=1.2 \mathrm{C} 0 \mathrm{6}$
GAMHA＝1．2600
$1 H=322.8295 \mathrm{BEL} / \mathrm{THY}$
$\mathrm{T}=1,421.8663 \mathrm{DAY}$
Q0＝9．9539 EDL／TAFY
$\mathrm{HP}=164.398 .2666 \mathrm{EEL}$
70 ILRF $=53.8249$

HI／HIB＝6． 6 ம்
$\mathrm{HI}=618.132 .7121 \mathrm{EEL}$
Q1／RIE $=4.7430$
$\mathrm{dF} / \mathrm{dS}=9.4554$
4512＝62．2060
$\mathrm{FH} 2=9.9806$
$454 A Y G=66.5926$

HOR＝58． 8046
KRH＝6．6356
h＝1．2766
GAMHA＝1．2760
I $\mathrm{H}=341.6612 \mathrm{BEL} / \mathrm{MAY}$
$\mathrm{T}=2,642.6172 \mathrm{IAH}$
$00=5.6944 \mathrm{EDL} / \mathrm{TMH}$
$\mathrm{HP}=107.562 .0515 \mathrm{EEL}$
zOILRF $=55.4569$

HI／HIB＝8．
H1＝824，176．9496 BEL
비 $/ \mathrm{QIB}=6.1770$
dF／dS＝6．3497
$75 \mathrm{H2}=63.7090$
FHE＝0．9856
75 WPUG $=67.9899$
MOR $=78.8466$
KRL $=6.6706$
$\mathrm{M}=1.3496$
GAMHF＝1．3466
$\mathrm{IH}=360.4929 \mathrm{BEL} / \mathrm{TDYY}$
$T=2,629.9890 \mathrm{BHY}$
$00=4.5062 \mathrm{BEL} / \mathrm{DHY}$
NF＝111，177．2149 BRL
70ILRF $=57.3199$

HITIIB＝10． 8000
$H I=1,036,221.187 \mathrm{BBL}$
日1／2IB $=7.6110$
$\mathrm{dF} / \mathrm{dS}=6.2938$
$75 \mathrm{HZ}=65.9006$
FH2＝0． 9960
75 CH НG $=68.5239$
HOR＝118．8800
KRH＝ 1.6906
$\mathrm{H}=1.380 \mathrm{~B}$
GAMHA＝1． 3808
IH $=371.2539 \mathrm{BEL} / \mathrm{IHH}$
$T=3,192.0662 \mathrm{DAY}$
$00=3.4938 \mathrm{BEL} / \mathrm{MH}$
$N \mathrm{H}=112,558.1168 \mathrm{BBL}$
20ILRF＝58．0319

User Instructions

* This option is provided in case you know the value for C.

**When WI/WIB $=1$, QI/QIB $=1$ and is output regardless of the value of \%EA.

User Instructions

General Information

Memory Requirements
Program length:
Minimum size: 065^{*}
Minimum hardware: $41 \mathrm{C}+$ quad memory module or 41 CV
*5SPOT requires a total of 2,221 bytes of the 2,237 available, leaving no more than 4 key assignments other than the 5SPOT assignment.

Hidden Options

When 5SPOT is run, correlations will be used for GAMMA, KRW, \%SW2, and FW2. To allow inputing GAMMA, set flag 00 ($[/ /]$ [SF]00) any time after the program is run. To change back to using the correlation, clear flag 00 ([//] [CF]00) or run the program again. The flag 00 annunciator in the display will be off if the correlation is being used and on if GAMMA is to be input. Flag 01 is used in the same way to select calculating or inputting $\%$ SW2 and FW2, as is flag 02 for KRW.

Pac Subroutines Called

TITLE, \%POR, IN, INU, OUT, CON, OUTU, INK, OUTK

Registers

03 Injected water or oil production units
04 Injected water or oil production units
06 Water injection rate or oil producing rate units
07 Water injection rate or oil producing rate units
08 Time units
09 Time units
17 DP (PSI)
18 \%POR
20 \%SGI
21 \%SWC
26 BOWF
27 AREA (ACRE)
28 H (FT)
29 K (MD)
30 \%SW2
31 RW (FT)
32 UO (CP)
33 UW (CP)
34 KRO
35 KRW
36 c
37 d
38 \%SWSZ
39 \%SWBT
40 \%SWAVG
41 \%SWBT - \%SWC
42 C
43 VP, WI/WIB

44	\%EABT
45	FW2
46	OIPWF (BBL)
47	a
48	b
49	WIBT (BBL), scratch
50	WII (BBL)
51	WIF (BBL)
52	BEGWI (BBL), BEGW/W
53	END WI (BBL), ENDW/W
54	WI INC (BBL), W/WINC
55	FO2, QI, scratch
56	$\mathrm{T}_{\mathrm{i}-1}$ (DAY)
57	$\mathrm{WI}_{\mathrm{i}-1}(\mathrm{BBL})$
58	$\mathrm{IW}_{\mathrm{i}-1}(\mathrm{BBL} / \mathrm{DAY})$
59	IBASE (BBL/DAY)
60	QI/QIB
61	M
62	GAMMA
63	REI (FT)
64	\%EAF, \%EA, scratch
Reg	ters $10-16,19$, and 22-25

Flags

00 Set: Input GAMMA.
Clear: Use correlation for GAMMA.
01 Set: Input \%SW2 and FW2.
Clear: Use correlation for \%SW2 and FW2.
02 Set: Input KRW.
Clear: Use correlation for KRW.
03 Set: a and b not yet input.
Clear: a and b have been input.
04 Set: c and d not yet input.
Clear: c and d have been input.
05 Set: Time units not yet input.
Clear: Time units have been input.
Flag 05 is also used after water breakthrough to control whether the first output of the forecast is the last WI/WIB or the last WI/WIB + W/WINC and to set QI/QIB to 1 if WI/WIB is 1 .

Program Listing

```
01+LBL =5SP0T" "CP= AST0 01 *PA*S"
#FIYE SPOT: 65
XROH =TITLE= FCTC 2
PROMPT CF 00 CF 01.
CF 02 5F 03 5F 64
SF 95 =H3' ASTO 03
"FDAY" ASTO 06 "MAY"
ASTO 68 CLA BSTO घे4
AST0 }07\mathrm{ ASTO 09
XROH *%POR" 20 5T0 00
*%SHC" XROH =IN" 31
```


Program Listing (cont.)	
"RH" HROH "INU" 16	Y ± 0 ? G70 01
*PSI" AST0 01 "KPA"	"BEG HI = 9" TOHE 3
XED 85 " DF " XROH "IHI"	PROMFT GT0 13
37 ST0 6ib ${ }^{7} \mathrm{ZSHS7}$	
YROH "IN" - \% SHET"	217*LEL 81
XROH "IN" ST0 40	XEQ 20 ADY RCL 41
RCL $21-5 T 041$	RCL 20 / LH RCL $32 *$
XEQ $31 \begin{array}{llll}33 & 570\end{array}$	RCL 34 ; 2 / 5 T0 49
"KRO" XROH "IH" 28	RCL 28 RCL 29
STO 66 -HII ASTO 61	RCL 17 * $7.87 \mathrm{E}-3$
ASTO Y CLA ASTO 日Z	ST0 55 CLP ST0 56
HSTO 2 " $\mathrm{K}=$ XROH "INJ]	57057 RCL 52
RCL 35 RCL 33 \%	
RCL $32 * \mathrm{ECL} 34$;	243*LBL 15
$5 T 061$ All ${ }^{\text {a }}$ -	XEQ 23 PCL 64
	RCL $41 ;$ SQRT 10
, $62+57042$ " ${ }^{\text {" }}$	XE0 04 "R" XROH =0UTU"
	RCL $31 / \mathrm{LH}$ RCL $33 *$
"C" XROH "IH"	RCL 35 / RCL $49+$
	RCL 55 XTY / FS? 05
119+LBL 14	ST0 58 XE@ 25 CF 88
$19 \mathrm{STO} 60{ }^{\text {- } 8 \mathrm{SGI}}$	YEQ 12 XTH ? GT0 62
SROH "IH" RCL 41 K KY	
- RCL 42 * *\%SGI**	9 GTO 06 RCL 53 RHD
XROH "OUT" FCL 20	
X (=Y? 6T0 00	2814LBL 02
"YSGI > \%GGI\%" TONE 3	LASTX GT0 15
PROMPT GT0 14	
	284 +LBL 64
1384LBL 6 日	"FT" 95T0 01 "F*
RCL $27 \mathrm{PCL} 28 *$	
RCL 18 \% "ACRE*FT-BEL	2884LEL 95
COH ST0 43100 RCL 21	STO EO ASTO Y CLA
- RCL $20-3 \mathrm{BCL} 26$	ASTO 02 ASTO 2 RTH
¢ ST0 46 -01PHF"	
YEQ 24.061538 RCL 28	295*LBL 06
* RCL 29 * RCL $34 *$	ADY -INTERFERENCE T0*
RCL 17 * 2 SQRT	-F FILLUF F9? 55 PRA
RCL 63 * RCL 31 f	ADY RCL 43 RCL 20%
L0G . 2688 - RCL 32 *	5105151052 -HIF"
/ 57059 - IRASE"	YED 24 RCL 20 RCL 41
YEQ 28 CF 88 ADY Aly	/ 100 * 97064
-PRIOR TO INTERF*	
-HERENCE FS? 55 PRA	-GAMMAF" XED 30 RCL 59
ADY PI RCL 28 *	* "IHF= XED 28 -TF*
RCL 18 \% "FT3-EEL"	XEE 26 ADY ADY
Con 5T0 $64 \mathrm{PCL} 26 \%$	"FILLUP TO BREAK"
RCL 63 Xt2 35050	"FTHROUCH" FS? 55 PRH
STO 53 -HII* XEQ 24	ADY RCL $61-.1736$ Yt\%
	70.4 * ST0 44 -\%EABT*
2674LBL 13	XROH -OITT- $43 \quad 3 \mathrm{TO} 66$
51 -EEG WI- XED 22	"ZEABT" XROM "IN"

Program Listing（cont．）
RCL 43 KIYY \％RCL 41 \％STO 49 STO 53 ＂HIBT＂Yea 24 RCL 51 $5 T 052$ XEQ 20 XEO 17 $6 T 097$

3584LBL 16
XEQ 231 E4＊RCL 43 ／RCL 41 ／ST0 64
 XEQ 29 RCL 59 ＊
XEO 25 RCL 58 RCL 26 ／＂Q0＂XEQ 28 RCL 52 RCL 51 －RCL 26 ． XEE 11
$384+$ LEL 07
XYY GTO 88 KOP
RCL 52 RHD $X=Y$ ？
GTO 69 RCL 53 RND
$394+$ LBL 08
LASTE GTO 16
3974LEL 69
AID＂RFTER MATER BRE＂
＂FAKTHROUGH＂FS？ 55
PRA ADY 1 ST0 43
STO 68 ＂BEGH／H＂
XROH＂OUT＂SF 05
410＋LBL 17
525 TO 918－ENDM／H：
YROH＂IH＂＂W／HINC＂
XROH＂IH＂RCL 43
FS？ 05 ADI FS？ 65
GTO 18 XEQ 12 GTO 32
424＋LBL 18
STO 43 ＂HI／HIB：
XROH＂OUT＂RCL 49 ＊
XEE 23 RCL 43 LH 27.49 ＊RCL $44+190$ $X=Y$ ？ $6 T 0$ 16 $X X Y$ 57064 ＂ zE E月
XROH＂OUT $=$ FS？ 85 61086595006
 GTO 01
$451+$ LEL 16
ST0 64 RCL 52 RCL 57
$-\operatorname{RCL} 49 / \operatorname{RCL} 44 \%$ ST＋ 69

4614LBL 0 日
RCL 60 ＂ $\mathrm{GI} / \mathrm{QIE}$＂
YROM＂OUT＂
4654LBL 91
RCL 41 \％ $5 T 055$
FS？ 016 GTO 02 FC 日 6
$6 T 06146$ STO 00 ＂ 3 ＂
XROH＂IN＂＂b＂
XROH＂IN＂CF 03
4804 LBL 91
RCL 55 ENTER $1 / \mathrm{X} 4$
＊RCL 48 ／ $1+$ SERT
$1 \mathrm{KMY}-2$ ；STO 55
＊LASTX 1 LASTA－／
RCL 33 ＊RCL 32 ；
RCL 47 ／LH RCL 49 ；
100 ＊ 67063
$5154 \mathrm{LBL} \operatorname{Cl}$
1／Y＂dF／dS＂XPOH＂OUT＂

XROH＂IN＂ 44 5T0 80
＂FH2＂XROM＂IN＂ 1
$X\rangle Y$－EATER Y X >55
＊RCL 30
534 LBL 03
K $\langle\boldsymbol{Y}$ 100 $*+5 T 048$
＂ 7 SHANG＂YROH＂DUT＂
RCL 38 RCL 21 －
RCL 44 （RCL 41 ；
RCL 43 ；27．49 $=1$
RCL 55 －$*$ RCL 55 ＋
1 MSTY RCL $64166 \mathrm{H}=\mathrm{H}$ ？
Rt Rt $\$ 70551 / \mathrm{H}$ 1
－RCL 26 ＊HOR：
XROM＝OUT：YEE 31
RCL 33 ／RCL 32 ＊
RCL 34 ／ $57061^{*}{ }^{*}$
XROH＂OUT＂XEE 29
RCL 59 ＊XEE 25
RCL 59 RCL 26 ；
PCL 55 ＊＂00＂YER 20
RCL 43 STO 52 RCL 40
RCL 21 －RCL 64%
RCL 20 － 100 LASTE－
RCL 21 －$/ \mathrm{RCL} 46 *$

XEQ 11

5124LBL 32
सY？GT0 84 XYY
RCL $52 \quad \mathrm{X}=\mathrm{y}$ ？ $\mathrm{GTO} \quad 17$
RCL 53 RNI
6214LEL 64
LASTX GTO 18

624＊LBL 11
＂NF＂XED 24 RCL 46 ；
100 ＊＂ 70 ILRF＂
XROM＂OUT＂
6334LBL 12
ADY RCL 53 RHI RCL 52
RCL 54 ＋RNI RTH

6424LBL 26
RCL 53 EEND HI＂YEQ 24
646＊LBL 21
53 ＂HI INC＂
$649+$ LEL 22
STO 80 XEO 95
XROM＂IHK＂RDH STO 96
XC》Y STO 07 Rt RTH
$659+$ LBL 23
$57052{ }^{*} \mathrm{HI}^{\circ}$
662 LLBL 24
XEE 65 XROH＂OUTK＂EDH
©T0 日6 KKY $5 T 067 \mathrm{RT}$
ETH
671＋LBL 65
ASTO T＂BBL＂ASTO 01
CLA ASTO 02 ARCL T
RCL 07 RCL 66 RCL 2
RTH
6824LBL 25
＂IH＂XED 28 ＂T＂
$686+\operatorname{LBL} 26$
ENTEF \dagger X $>58+2$ ；
RCL 52 ENTER 4 K 57

RCL 56 FSTC 05 SF 08

7024LBL 27
GSTO T＂DAY＂ASTO 61
LLA ASTO 82 ARCL T
PCL 69 RCL 06 RCL 2
KROH＂OUTK＂RDH STO 88
KYY STO 69 RT RTH
7194LBL 28
ASTO T－BEL／DAY：
ASTO 01 ASHF ASTO OE
CLA RRCL T RCL 04
RCL 03 RCL 2
XROH＂OUTK：RDH STO 03
K Y Y STO 94 RT RTH
7374LBL 29
＂GAMH＂

7394LEL 30
6157006 FS？ 80
XROH＂IH＂FS？GO RTN

RCL 61 YTY？GTO 06
KCL 80 Y Y Y YROH＂OUT＂
RTH

758＊LBL 66
1.694353 RCL 09
.812527 ＊－PCL 61
LOG＊RCL 00 ． 985715
＊． 48586 －RCL 61 ＊
+1.412546 RCL 日明
$.9881 \div-+1$
RCL 66 Y 7 ？ ？RH K KY
RCL 61 RCL $681 \quad \mathrm{X}=\mathrm{Y}$ ？
ENTERA RA XROH＂OUT＂
ETH
794＊LBL 31
FC？ 62 FC？ 04 GT0 67
35501060 ＂
XROH＂IN＂$=d$
XROM＂IN＂CF 04

805＋LDL 67
$345 T 060$＂KRH＂

FS？ 92 RTH RCL 40
RCL 21 － 160 LASTX－
$;$ RCL 37 YtX PCL 36
＊STO 35 YROH ${ }^{*}$ OIIT＂
ENI

25. SUMWF - Combined Performance for Stratified Waterfloods

SUMWF calculates the performance of other layers of a stratified waterflood that may differ in thickness, porosity, or permeability from the base layer. The calculated value for the total performance is merely the sum of the individual layer performances. Other assumptions include that each layer have identical initial saturation and water-oil relative permeability characteristics and minimal producing rates prior to fillup. If these assumptions are not valid, the performance must be calculated for each layer individually using 5SPOT. The composite performance will still be the sum of the individual layer performances. However, since the calculated oil producing rates for the layers are different than those for the base layer, the summation is performed most easily graphically, as shown in Figure 25-1.

Equations

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{i}}=\mathrm{T} 1 \frac{\mathrm{~K} 1}{\mathrm{~K}_{\mathrm{i}}} \frac{\% \mathrm{POR}_{\mathrm{i}}}{\% \mathrm{PORl}^{2}} \\
& \mathrm{QO}_{\mathrm{i}}=\mathrm{QO} 1 \frac{\mathrm{~K}_{\mathrm{i}}}{\mathrm{~K} 1} \frac{\mathrm{H}_{\mathrm{i}}}{\mathrm{Hl}}
\end{aligned}
$$

Note: For $\mathrm{K}_{\mathrm{i}}, \mathrm{H}_{\mathrm{i}}, \% \mathrm{POR}_{\mathrm{i}}, \mathrm{T}_{\mathrm{i}}, \mathrm{QO}_{\mathrm{i}}$, and $\mathrm{IW}_{\mathrm{i},} \mathrm{i}=1,2,3, \ldots$, n where n is the number of K values input by the user.

Nomenclature

Symbol	Variable Name	Input or Output	English Units	$\begin{gathered} \text { SI } \\ \text { Units } \end{gathered}$
H_{i}	Thickness of layer i^{*}	I	FT	M
$\mathrm{IW}_{\mathrm{i}} \dagger$	Water injection rate of layer i	I, ${ }^{* *}$	$\begin{aligned} & \text { BBL/ } \\ & \text { DAY } \end{aligned}$	$\begin{aligned} & \text { M3/ } \\ & \text { DAY } \end{aligned}$
K_{i}	Permeability layer i	I	MD	MD
$\mathrm{QO}_{\mathrm{i}} \dagger$	Oil producing rate of layer i	I, O **	$\begin{aligned} & \text { BBL/ } \\ & \text { DAY } \end{aligned}$	$\begin{aligned} & \text { M3/ } \\ & \text { DAY } \end{aligned}$
$\mathrm{T}_{\mathrm{i}} \dagger$	Time to inject into layer i	I, ${ }^{*}$ *	DAY	DAY
\% $\mathrm{POR}_{\text {i }}$	Percent porosity of layer i	I	-	-

*In the case of deviated wells or slanted beds, use the true vertical thickness instead of the measured thickness.
${ }_{*}^{\dagger}$ The units for these variables are saved by the program.
${ }^{* *} \mathrm{~T} 1, \mathrm{QO} 1$, and IW1 are input; the remaining T, QO, IW values are output

Figure 25-1 Composite waterflood performance

Yes/No Questions

EDIT? Yes: Allow editing of K, H, and \%POR values.
No: No editing necessary.

Example

An oil reservoir similar to Example 1 of 5 SPOT has two layers with the following properties:

Layer	Upper	Lower
Porosity	14%	18%
\%SWI	36%	36%
H	18 FT	27 FT
K	19 MD	22 MD
\%SGI at	4.5%	4.5%
\quad start of		
\quad waterflood		

Based on the following summary of the calculated performance, calculate the performance of the second layer and combine the two layers' performances. This is illustrated in Figure 25-1.

TIME (DAY)	QO (BBL/DAY)	QW (BBL/DAY)
106	-	90.8
148	-	88.6
203	-	49.6
405	35.7	49.2
814	35.2	48.6
1,132	34.8	48.1
1,791	17.6	109.8
2,314	8.2	131.0
2,777	6.8	141.0
3,624	5.1	157.0
4,397	4.2	170.0
5,113	3.6	181.0

Keystrokes

(SIZE $>=061$ Display Comments
[XEQ] [ALPHA] SUMWF K1=?
$\begin{gathered}{[\mathrm{ALPHA}]} \\ 19[\mathrm{R} / \mathrm{S}]\end{gathered} \quad \mathrm{H} 1=$?
$18[\mathrm{R} / \mathrm{S}] \quad \% \mathrm{POR1} 1=$?
14 [R/S]
$22[R / S]$
27 [R/S]
18 [R/S]
[R/S]
[R/S]
106 [R/S]
0 [R/S]
90.8 [R/S]
[//] [FIX] 1
$K 2=$?
$H 2=$?
$\%$ POR2=?
$K 3=$?
EDIT? Y/N:N
$T 1=$?
QO1=?
$\mid W 1=$?
$T 1=$?
106.0

Keystrokes

405 [R/S]	Q01 $=$?	
35.7 [R/S]	W $W 1=$?	
49.2 [R/S]	$T 1=$?	
814 [R/S]	Q01 = ?	
35.2 [R/S]	$\mid W 1=$?	
48.6 [R/S]	$T 1=$?	
1132 [R/S]	QO1 $=$?	
34.8 [R/S]	\| $W 1=$?	
48.1 [R/S]	$T 1=$?	
1791 [R/S]	Q01=?	
17.6 [R/S]	$\|W\|=$?	
109.8 [R/S]	$T 1=$?	
2314 [R/S]	Q01=?	
8.2 [R/S]	\| $W 1=$?	
131 [R/S]	$T 1=$?	
2777 [R/S]	Q01 $=$?	
6.75 [R/S]	1 W1=?	
141 [R/S]	$T 1=$?	
3624 [R/S]	Q01 $=$?	
5.13 [R/S]	$1 W 1=$?	
157 [R/S]	$T 1=$?	
4397 [R/S]	Q01 =?	
4.22 [R/S]	$\underline{W} 1=$?	
170 [R/S]	$T 1=$?	
5113 [R/S]	Q01 $=$?	
3.6 [R/S]	$\mid W 1=$?	
181 [R/S]	$T 1=$?	
[//] [FIX] 4	5113.0000	Back to
		FIX 4

WF LAYERS
402=0.8000 EELJTAY
I $12=157.7653 \mathrm{BEL} / \mathrm{MAY}$
$\mathrm{K} 1=19.0000 \mathrm{MD}$
$\mathrm{HI}=18.0006 \mathrm{FT}$
$7 P 0 R 1=14.6090$
K2=22,0080
H2=27,0808 FT
$\geqslant P 0 R 2=18.8009$
$T i=106,0098 \mathrm{DAY}$
$001=0.8600 \mathrm{BEL} / \mathrm{ARY}$
$\mathrm{IH}=90.6090 \mathrm{EEL} / \mathrm{DRY}$
$\mathrm{T}=148.0 \mathrm{DAY}$
$\mathrm{IWI}=88.6 \mathrm{BBL} / \mathrm{DHY}$
T2 $2=164.3 \mathrm{DAY}$
Q02 $=0.6 \mathrm{BEL}$ DAY
IH2=153.9 BBLIMAY
$\mathrm{T}=203.0 \mathrm{nfH}$
IHI $=49.6 \mathrm{BEL} / \mathrm{DAY}$
12=225.4 DAF
$002=0.6 \mathrm{BBL} / \mathrm{DAY}$
$\mathrm{IL} 2=86.1 \mathrm{BBL} / \mathrm{DAH}$
$\mathrm{T}=485.6 \mathrm{DPY}$
$001=35.7 \mathrm{BEL} / \mathrm{JHH}$ $\mathrm{IHI}=49.2 \mathrm{BEL} / \mathrm{IMH}$
$\mathrm{T}=449.7 \mathrm{DAY}$
$002=62.6 \mathrm{BEL} / \mathrm{MHY}$
I $\mathrm{H} 2=85.5 \mathrm{BBL} / \mathrm{DH} \mathrm{Y}$
$T 1=814.0 \mathrm{BAO}$
W01 $=35.2 \mathrm{BBL} / \mathrm{DHY}$
$I H 1=48.6 \mathrm{BBL} / \mathrm{DHY}$
$\mathrm{T} 2=963.9 \mathrm{IMY}$
$002=61.1 \mathrm{BEL} / \mathrm{DRY}$
IH2 $=84.4 \mathrm{BEL} / \mathrm{DHY}$
$\mathrm{T}=1,132,6 \mathrm{DAY}$
$001=34.8 \mathrm{BEL} / \mathrm{DAY}$
$I H I=48.1 \mathrm{BEL} / \mathrm{DFY}$

T2=1.257.6 DAY
$002=60.4 \mathrm{BBL} / \mathrm{DHY}$
IL2 $2=83.5 \mathrm{BEL} / \mathrm{HAY}$
$\mathrm{T}=1,791,6 \mathrm{mAY}$
$001=17.6 \mathrm{ERL} / \mathrm{DHY}$
IWI $=169.8 \mathrm{BBL} / \mathrm{BAY}$
$\mathrm{T} 2=1,988.7 \mathrm{IAY}$
$002=30.6 \mathrm{BEL} / \mathrm{MAH}$
IH2 $=190.7 \mathrm{BEL} / \mathrm{DAY}$
$\mathrm{T} 1=2.314 .0 \mathrm{BMH}$
$001=8.2 \mathrm{BBL} / \mathrm{MAY}$
$\mathrm{IHI}=131.0 \mathrm{BEL} / \mathrm{DRY}$

T2=2,569.4 明
Q02=14.2 EEL/IMY
IH2=227.5 BBL/TMH
$\mathrm{T}=2,777.0 \mathrm{JHY}$
$001=6.8$ BEL $/ \mathrm{MH}$
$\mathrm{IHI}=141.0 \mathrm{BEL} / \mathrm{MA}^{Y}$

T2=3.083.6 DAH
$002=11.7$ BEL/TIHY
IH2=244.9 BBL/DAY
$\mathrm{TI}=3,624.0 \mathrm{DAH}$
QOI=5. $1 \mathrm{BBL} / \mathrm{DAY}$
IH1=157.6 BEL/IAY
$T 2=4,024.1 \mathrm{BAY}$
Q02=8.9 BEL/DAY
IH2=272.7 EBL $/$ DAY

T1=4,397.6 DAY
$001=4.2$ ERL $/ D \mathrm{H}^{4}$
IHI=170. $\mathrm{BBL} / \mathrm{DAY}$
T2 $=4,882,4 \mathrm{MPY}$
$002=7.3 \mathrm{BEL} / \mathrm{TRY}$
IH2=295.3 BEL/DAY

T1=5,113. 0 BAY
प01 $=3.6 \mathrm{BEL} / \mathrm{DAY}$
$I H 1=181.0 \mathrm{BEL} / \mathrm{TAY}$
$\mathrm{T} 2=5,677.4 \mathrm{JAY}$
$002=6.3 \mathrm{BBL} / \mathrm{DAY}$
IW2 $=314.4 \mathrm{BBL} / \mathrm{DAT}$

User Instructions

Note: for $K_{i}, H_{i}, \%_{P O R}^{i,}, T_{i}, Q_{i}$, and $I W_{i} i=1,2,3, \ldots, n$, where n is the number of K_{i} values input by the user.

Flags

Set: Allow editing of K, H, and \%POR values.
Clear: No editing necessary.

Program Listing
61+LBL "SH\|HF"
-LIF LAMERS 61
\%ROM "TITLE FCTC 25
PROMPT -TAU' AETO 03
"H3/DAT" ASTO 66 CLA
AST0 日4 AST0 97 CF 63
1.15906

174LBL 14
295010

204 LDL 13
FC? 63 HDU YEO G2
FC? 93 FS? 22 GT0 90
FC? 23 GT0 61

294LEL 日B
ME0 03 " $\%$ FIR" YED 10
KROH " H° ISC 88
GTO 13
364LEL 01
RCL 66 IHT 1-1E3

+ LASTX $; 57068$
ST0 89 "EIIT" 3
XROH "Y/N?". FS? 03
GT0 14
52 2LBL 12
RCL 99 ST0 6826
STO 60 ADY XEQ 85
XEE 98 CF 88 YEO 15
I56 08
$63+$ LBL 11
ADU RCL 08 IHT $3 *$
$27+\operatorname{RCL} 27$ RCL IHD Y
RCL 30 ; $3 T 026$ ISG 2
CLD RCL IWI 2 *
RCL $31 ; 15 G 2 \mathrm{CLD}$
K) 26 RCL IND 2 ,

RCL 28 RCL 26 *
YEO 69 RCL 29 RCL 26
* XEO 16 ISG 88

GT0 11 GT0 12
1824LEL 92
"K" HEO 16 ASTOT
"HI" ASTO 01 GTO 04
1094LBL 83

Program Listing (cont.)

H YEQ 18 ASTO T
"FT" AST0 01 "青"
$116+$ LBL 04
ASTO Y CLA ASTO 02
ASTO 2 ARCL 1
XROH "INU" RTH

124*LBL 55
"T1" SEC 07 YROM "IH
RIN STO E3 XKY
STO 64 Rt RTH
$134+$ LBL 66
-T" YEA 18 YEA 07
XROH OOUTK R RDH STO GS
KIY STO 64 Rt RTN
1454LEL 7
ASTO T =DAY" ASTO O1
CLA AST0 62 ARCL T

PCL 14 RCL 63 RCL 2
ETH
156 LBL 68
"O01" YEO 17
yROH "INK" GTI 10

161+LBL 99
" EO " XEQ 18 YE 17
xEOH - OUTE" GT0 16
1674LBL 15
"IHI" XEQ 17
XROH = IHK $=$ GTO 16
1724LBL 16

- IH X XEE 18 XEE 17

YROM "OITK"
177*LEL 16
RDN ST0 06 K KY

STO 07 RT RTH
184+LBL 17
ASTO T "BEL DAY"
ASTO 01 ASHF RSTO 02
CLA ARCL T RCL 87
RCL 06 RCL 2 RTN
1964 1 BL 18
$5 T 0$ 65 CLST FS? 41 1

+ Fs? $402+5$ (
FS? $391+F 59382$
$+F 5 ? 374+F 5936$
$8+\mathrm{FS} 29$ CHS
RCL 68 FI: 6 CF 29
ARCL Y XITY KKO?
SF 29 ENTER \dagger FRC 5 *
FIX IND Y $Y=6$?
SCI IND Y $1 X=Y$?
ENG IND Z RCL 05 EHD

26. INJ - Water Injectivity for Regular Patterns with Unit Mobility Ratio

When designing a waterflood, it is extremely important to be able to estimate the injectivity of water into the reservoir. This is best determined by actual tests; however, an estimate of injectivity frequently is required before a pilot can be approved. Water injectivity varies as a function of the pattern selected for the flood. The location of existing wells is a major consideration in selecting waterflood patterns. Other factors affecting the selection of waterflood patterns include the well spacing, response time, estimated flood life, water availability, and the productivity and injectivity of the reservoir. The life of the flood will be affected strongly by the injectivity into the reservoir. Muskat and Deppe developed empirical methods for estimating injectivity. Because of the heterogeneity in most reservoirs which are candidates for waterfloods, this method should be considered only to provide a reasonable first estimate of injectivity to design pilot tests or filtering prospects.
INJ lets the user calculate the differential pressure for a given injection rate or the injection rate resulting from an input differential pressure. A common assumption in waterflood design and frequently a good operating procedure is to pump the producing wells down, i.e., maintain a low pressure at the producing wells. It is often desirable to maintain injection pressures below the fracture pressure of the formation. With the fracture pressure estimated, INJ will provide a reasonable estimate of injectivity that can be used as a preliminary estimate for forecasting the flood life. The five different patterns whose injectivity can be calculated are shown in Figure 26-1.

Equations

$\mathrm{IW}=$
$\frac{\text { AK KRO H DP }}{\mathrm{UO}\left[\left(\log \frac{d}{R W}-B+C \frac{a}{d}\right) \cdot\left(\frac{E+\text { RATIO }}{2+\text { RATIO }}\right)-\frac{D}{2+\text { RATIO }}\right]}$

Pattern	A	B	C	D	E
Line drive	0.001538	0.9020	0.682	0	0
Five spot	0.001538	0.2688	0	0	0
Seven spot Inverted nine spot	0.002051	0.2472	0	0	0
(corner well)	0.001538	0.1183	0	0	1
Inverted nine spot \quad side well)	0.003076	0.1183	0	0.301	3

Nomenclature

Symbol	Variable Name	Input or Output	English Units	SI Units
a	Pattern dimension (default $=2 \mathrm{FT}$)	1	FT	M
DP*	Pressure difference between injection and producing well	I,O	PSI	KPA
d	Pattern dimension	I	FT	M
H	Formation thickness \dagger	I	FT	M
IW*	Water injection rate	I, O	$\begin{aligned} & \text { BBL/ } \\ & \text { DAY } \end{aligned}$	$\begin{aligned} & \text { M3/ } \\ & \text { DAY } \end{aligned}$
K	Permeability	I	MD	MD
KRO	Relative permeability to oil	I	-	-
RATIO	Ratio of corner to side well producing rate (default $=2$)	I	-	-
RW	Effective wellbore radius	I	FT	M

*The units for these variables axe saved by the program. \dagger In the case of deviated wells or slanted beds, use the true vertical thickness instead of the measured thickness of the formation.

Yes/No Questions

None

Example

Estimate the injection rate of the various patterns if the well spacing is 10 acres. Producing well pressures are estimated to be 300 PSI. The maximum desired bottom hole injection pressure is 1,600 PSI, so the maximum differential pressure between injection and producing wells is 1,300 PSI. Use the pattern dimensions shown in Table 26-1 for the 10-acre spacing. Other data are as follows:

$$
\begin{aligned}
& \mathrm{UO}=3.8 \mathrm{CP} \\
& \mathrm{~K}=92 \mathrm{MD} \\
& \mathrm{KRO}=0.62 \\
& \mathrm{H}=38 \mathrm{FT} \\
& \mathrm{RW}=4 \mathrm{IN}
\end{aligned}
$$

A. $\underset{\text { Direct }}{\text { LINE DRIVE }}\left(\frac{a}{d} \geq 1\right)$
$I W=\frac{0.001538 \text { K KRO H DP }}{U O\left(\log \frac{d}{R W}+0.682 \frac{a}{d}-0.902\right)}$

Staggered

$$
\mathrm{IW}=\frac{0.001538 \mathrm{~K} \mathrm{KRO} \mathrm{H} \mathrm{DP}}{U O\left(\log \frac{d}{R W}+0.682 \frac{a}{d}-0.902\right)}
$$

B. FIVE SPOT PATTERN
$I W=\frac{0.001538 K \text { KRO H DP }}{U O\left(\log \frac{d}{R W}-0.2688\right)}$

C. SEVEN SPOT PATTERN

$$
\mathrm{IW}=\frac{0.002051 \mathrm{~K} \mathrm{KRO} \mathrm{H} \mathrm{DP}}{\text { UO }\left(\log \frac{d}{\mathrm{RW}}-0.2472\right)}
$$

	Table 26-1 $a(F T)$	$d(F T)$	Ratio
Pattern	660	660	-
Line drive	-	933.4	-
Five spot	-	933.4	-
Seven spot Inverted nine spot \quad (corner well)	-	660	1.5
Inverted nine spot (side well)	-	660	1.5

Keystrokes (SIZE > = 040)	Display	Comments
[XEQ] [ALPHA] INJ [ALPHA]	$U \mathrm{O}=$?	
3.8 [R/S]	$K=$?	
92 [R/S]	$K R O=$?	
. 62 [R/S]	$H=$?	
38 [R/S]	$R W=$?	
$\begin{aligned} & 4[A L P H A] \\ & \text { IN [R/S] } \end{aligned}$	LD 579 C 9S	
[A]	$d=$?	Line drive pattern
660 [R/S]	$a=$?	
660 [R/S]	$I W \quad D P$	
[E]	$D P=$?	DP known
1300 [R/S]	IW DP	IW printed
[R/S]	LD 579 C 9 S	
[B]	$d=$?	Five-spot pattern
933.4 [R/S]	IW DP	
[E]	$D P=$?	
[R/S]	IW DP	IW printed
[R/S]	LD 579 C 9 S	
[C]	$d=$?	Seven-spot pattern
[R/S]	IW DP	
[E]	$D P=$?	
[R/S]	IW DP	IW printed
[R/S]	LD 579 9 9S	
[D]	$d=$?	Inverted nine-spot pattern for corner well
660 [R/S]	RATIO $=$?	
1.5 [R/S]	IW DP	
[E]	$D P=$?	
[R/S]	IW DP	IW printed
[R/S]	LD 579 C 9S	
[E]	$d=$?	Inverted nine-spot pattern for side well
[R/S]	RATIO $=$?	
1.5 [R/S]	IW DP	
[E]	$D P=$?	
[R/S]	IW DP	IW printed

WATEF IH.

$00=3.9664 \mathrm{CP}$
E=92. 0666 HT
$150=0.6266$
$\mathrm{H}=30 . \mathrm{B} 日 6 \mathrm{FT}$
RH=4. 948 IH

LIHE DRIHE
$\mathrm{d}=666.6006 \mathrm{FT}$
$3=666.0066 \mathrm{FT}$
IF=1:306. 6404 PSI
$\mathrm{IH}=376.6798$ BEL/TMY

FIUE SPOT
$d=933.4466 \mathrm{FT}$
IW $=356.8163 \mathrm{BEL} / \mathrm{IAY}$

SEYEH SFOT
$\left[\begin{array}{ll}\mathrm{I} & =475.2696 \mathrm{BEL} / \mathrm{IAH}\end{array}\right.$

IHUERTED 9 SPOT, CORHER
$d=666.9066 \mathrm{FT}$
$\mathrm{KATIO}=1.5606$
$I H=502,3466 \mathrm{BEL} / \mathrm{MAY}$

IWYERTED 9 SPOT, SIDE
RHTIO=1.500
I $1=576.1626 \mathrm{BEL} / \mathrm{IH}$

User Instructions

27. CUTCUM - Forecasting Mature Waterfloods

The techniques previously presented in this section and most techniques related to forecasting waterfloods deal with predicting the behavior early in the life of a waterflood. CUTCUM simplifies the forecast for developed waterfloods using an equation that represents the waterflood process in a fully developed waterflood with stabilized operations. The program also permits calculation of water-oil relative permeability ratio $\mathrm{KO} / \mathrm{KW}$ as a function of water saturation from production data.
CUTCUM allows calculation of a correlation variable, performs a linear regression of the cumulative recovery fraction versus this variable, extrapolates to any future value of water cut or cumulative production, and generates a simple rate-time forecast. It is based on a technique presented by Ershaghi and Omoregie.

Equations

Linear regression:

$$
\begin{aligned}
& \% \text { OILRF }=100(\mathrm{AX}+\mathrm{B}) \\
& \% \text { OILRF }=100 \frac{\mathrm{NP}}{\mathrm{~N}} \\
& \mathrm{X}=\frac{1}{\mathrm{FW}}-\ln \left|\frac{1}{\mathrm{FW}}-1\right| \\
& \mathrm{WOR}=\frac{\mathrm{FW}}{1-\mathrm{FW}} \\
& \mathrm{~B}=\frac{\Sigma \mathrm{X}^{2} \Sigma \text { OILRF }-\Sigma \mathrm{X} \Sigma \mathrm{X} \text { OILRF }}{\mathrm{n} \Sigma \mathrm{X}^{2}-(\Sigma \mathrm{X})^{2}} \\
& \mathrm{~A}=\frac{\Sigma \text { OILRF }-\mathrm{nB}}{\Sigma \mathrm{X}} \\
& \mathrm{R} \uparrow 2=\frac{\mathrm{B} \Sigma \text { OILRF }+\mathrm{A}^{2} \Sigma \mathrm{X} \text { OILRF }-(\Sigma \text { OILRF })^{2} / \mathrm{n}}{\Sigma \text { OILRF }^{2}-(\Sigma \text { OILRF })^{2} / \mathrm{n}}
\end{aligned}
$$

where n is the number of FW, \%OILRF points input by the user.

KO/KW:

$$
\mathrm{b}=\frac{1}{\mathrm{~A}(\mathrm{SWI}-1)}
$$

$$
\begin{aligned}
& a=\frac{U O}{U W} e^{-b[B / 1-s W I]+s W I]} \\
& K O / K W=a e^{b \frac{\% S W}{100}}
\end{aligned}
$$

$F W$ from $N P$:
FW is calculated iteratively using Newton's method as follows:

$$
\mathrm{FW}_{\mathrm{i}+1}=\mathrm{FW}_{\mathrm{i}}+\frac{\left(\mathrm{X}_{\mathrm{i}}-\mathrm{X}\right) \mathrm{FW}_{\mathrm{i}}^{2}\left(1-\mathrm{FW}_{\mathrm{i}}\right)}{1-2 \mathrm{FW}_{\mathrm{i}}}
$$

X evaluated at the input NP is used as the initial guess.

Forecast:

$$
\begin{aligned}
& \mathrm{QOAVG}_{\mathrm{i}}=\frac{\mathrm{QO}_{\mathrm{i}-1}+\mathrm{QO}_{\mathrm{i}}}{2} \\
& \mathrm{~T}_{\mathrm{i}}=\mathrm{T}_{\mathrm{i}-1}+\mathrm{DT}_{\mathrm{i}} \\
& \mathrm{DT}_{\mathrm{i}}=\frac{\mathrm{DNP}_{\mathrm{i}}}{365 \mathrm{QOAVG}_{\mathrm{i}}} \\
& \mathrm{QO}_{\mathrm{i}}=\left(1-\mathrm{FW}_{\mathrm{i}}\right) \mathrm{QO}+\mathrm{QW}
\end{aligned}
$$

Nomenclature

Symbol	Variable Name	Input or Output	English Units	$\underset{\text { Units }}{\text { SI }}$
A	Slope of \%OILRF vs X correlation	I, O	-	-
a	Intercept of straight line portion of KO/KW curve	O	-	-
B	Intercept of \%OILRF vs X correlation	I, O	-	-
BEG FW	Beginning FW of forecast	I,O	-	-
b	Slope of straight-line portion of KO/KW curve	O	-	-
DT*	Delta T - change in time	O	YR	YR

Symbol	Variable Name	Input or Output	English Units	$\begin{gathered} \text { SI } \\ \text { Units } \end{gathered}$
END FW	Ending FW of forecast	I, O	-	-
FW	Fraction of total flowing stream composed of water	I,O	-	-
FW INC	FW increment of forecast	I,O	-	-
KO/KW	Water-oil relative permeability ratio	O	${ }^{-}$	-
N*	Initial oil in place	I	BBL	M3
NP*	Cumulative oil production	I, O	BBL	M3
QO*	Oil producing rate	O	$\begin{aligned} & \text { BBL/ } \\ & \text { DAY } \end{aligned}$	$\begin{aligned} & \text { M3/ } \\ & \text { DAY } \end{aligned}$
QOAVG*	Average oil producing rate	O	BBL/ DAY	$\begin{aligned} & \text { M3/ } \\ & \text { DAY } \end{aligned}$
$\begin{gathered} \mathrm{QO}+ \\ \text { QW* } \end{gathered}$	Total fluid producing rate	I	BBL/ DAY	$\begin{aligned} & \text { M3/ } \\ & \text { DAY } \end{aligned}$
$\mathrm{R} \uparrow 2$	Coefficient of determination	O	-	-
T*	Time	0	YR	YR
WOR	Water-oil ratio	I, O	-	-
X	$\begin{aligned} & \text { Correlation } \\ & \text { variable } \\ & \text { (function of FW) } \end{aligned}$	I, O	-	-
\%OILRF	Volume percent oil recovery factor	I, O	-	-
\%SW	Volume percent water saturation	I	-	-
\%SWI	Volume percent initial water saturation	I	-	-

*The units for these variables are saved by the program.

Yes/No Questions

None

Example 1

Table 27-1 and Figure 27-1 present the cumulative production for the Plum Nearly (3,800 FT) Field. Initial oil in place was 10.5 MM barrels. In this example, forecast the production to an economic limit water-oil ratio of $50: 1$. What will be the water cut when 1 MM barrels of waterflood oil have been produced? Generate a rate-time forecast for the production assuming a constant total fluid producing rate of $5,000 \mathrm{BBL} / \mathrm{DAY}$. The graphs of forecast production are shown in Figures 27-2 and 27-3.

Table 27-1

FW	Table 27-1
0.500	
0.550	189,230
0.571	211,100
0.600	223,709
0.623	263,548
0.650	275,019
0.679	311,150

(Note that the A and B coefficients of this correlation can be input instead of calculated by the program.)

Keystrokes $(S I Z E>=055)$	Display	Comments
[XEQ] [ALPHA] CUTCUM [ALPHA]	$N=$? FIT	
10.5 [EEX] 6 [R/S]	FIT A,B	
[A]	$F W=$?	Regression option
. 5 [R/S]	$N P=$?	X printed
189230 [R/S]	$F W=$?	
. 55 [R/S]	$N P=$?	X printed
211100 [R/S]	$F W=$?	
. 571 [R/S]	$N P=$?	X printed
223709 [R/S]	$F W=$?	
. 6 [R/S]	$N P=$?	X printed
263548 [R/S]	$F W=$?	
. 623 [R/S]	$N P=$?	X printed
275019 [R/S]	$F W=$?	
. 65 [R/S]	$N P=$?	X printed
311150 [R/S]	$F W=$?	
. 679 [R/S]	$N P=$?	X printed
363263 [R/S]	$F W=$?	
[R/S]	$W O R=$?	
[R/S]	SW FW NP FOR	A, B, and $\mathrm{R} \uparrow 2$ printed
[B]	$F W=$?	Forecast to future WOR
[R/S]	$W O R=?$ SW FW	
50 [R/S]	SW FW NP FOR	FW, \%OILRF, and NP printed
[C]	$N P=$?	Forecast to future NP
[EEX] 6 [RS]	SW FW NP FOR	FW and X printed
[E]	$B E G F W=$?	Forecast option
. 679 [R/S]	$E N D F W=$?	
50 [ENTER \uparrow] $51[\div]$	0.9804	A WOR of 50 is 50/51 water or FW = 0.9804
[R/S]	$F W I N C=$?	
. 03 [R/S]	$Q O+Q W=$? SW FW NP FOR	
5000 [R/S]	SW FW NP FOR	Forecast printed

FH VS HF

FH=5. 586 Cl
$x=2.6661$
NF $=189.239 .6009$ BEL
FH=5. 55 HE
歇 2.8189
$A P=211,160,0066 \mathrm{BEL}$
$F=6.5716$
$y=2.6372$
$\mathrm{HP}=223.769 .6985 \mathrm{BEL}$
$F H=6.6090$
$\mathrm{F}=2.0721$
$N P=263.548 .9000 \mathrm{BEL}$
$F H=0.6236$
$y=2.1674$
HP=275.619. 0009 BEL
$\mathrm{FH}=0.6500$
$\mathrm{y}=2.1575$
$4 F=311$, 150.6060 BEL
FL= 0.6790
$\mathrm{X}=2.2219$
$\mathrm{NP}=363.263 .81098 \mathrm{BEL}$
$\theta=0.0719$
$B=-0.1252$
$R+2=0.9893$
H0R=56. 6186
$F W=0.9864$
701LRF $=22.9551$
$N P=2,416,297.134 \mathrm{BEL}$
$W P=1,706,006.606 \mathrm{BEL}$
FH=6.8719
$x=3.6645$
BEG FH=6, 6790
EHII FH=6.9004
FH INC= 6.6309
$00+8 \mathrm{OH}=5,880.500 \mathrm{BEL} / \mathrm{DAT}$
$30 I L P F=3.4636$
$\mathrm{HF}=363,672.9740 \mathrm{BEL}$
$\mathrm{FH}=0.7696$
7OILRF $=4$. 0320
$\mathrm{HP}=423,359.1206 \mathrm{BEL}$
DHF $=59,686.2546 \mathrm{BEL}$

$\mathrm{T}=\mathrm{B} .1069$ YR
$\mathrm{DI}=\mathrm{B}, 1669 \mathrm{YR}$
$00=1,455.6864 \mathrm{BEL} / \mathrm{TH} \%$
Fi $=0.7396$
7OILRF $=4.7606$
HF=493.582.1184 BEL
$\mathrm{BHP}=78.222 .9899 \mathrm{BEL}$
$00 \mathrm{PG}=1,390.6008 \mathrm{BRL} / \mathrm{DAY}$
$T=0.2463 \mathrm{TR}$
$\mathrm{IT}=0.1394 \mathrm{YE}$
$60=1,305.0006 \mathrm{BEL} / \mathrm{DAY}$
$\mathrm{FH}=0.7696$
Z0ILRF $=5.4855$
HP=575,977.0779 BEL
$\mathrm{DMP}=82.394 .9595 \mathrm{BEL}$
OOHFG $=1,236.0006$ EEL/DAY
$T=0.4298$ YR
$\mathrm{IT}=\mathrm{B}, 1835$ YR
$00=1,155.4696 \mathrm{BEL} / \mathrm{MAY}$
$F H=0.7990$
70ILRF=6.4181
$\mathrm{HP}=673,061.2822 \mathrm{BBL}$
DHP=97, 884.2044 6BL
$00 \mathrm{AHG}=1 ; 680.9668 \mathrm{BEL} / \mathrm{THY}$
$T=0.6761 \mathrm{YE}$
IT $=8.2463 \mathrm{YR}$
$00=1,695.6009$ BRL $7 A Y$
$\mathrm{FH}=9.8290$
ZOILRF $=7.5129$
$N F=788.761 .9799$ EBL
$\mathrm{DHP}=115,706.6886 \mathrm{EEL}$
80RYG $=930.8008 \mathrm{BEL} / \mathrm{IAY}$
$T=1.0169 \mathrm{YR}$
$\mathrm{IT}=0.3488 \mathrm{TF}$
$00=855.0000 \mathrm{BEL} / \mathrm{APY}$
$F H=6.8598$
AOILRF $=8.8521$
$\mathrm{NF}=929,476.8948 \mathrm{BEL}$ $\mathrm{BMP}=146.768 .9239 \mathrm{EBL}$ BOAVĞ $=780.0668 \mathrm{BEL} / \mathrm{IRY}$
$T=1.5112 \mathrm{YK}$
$\mathrm{DT}=0.4942 \mathrm{TR}$
$00=705.0060$ BEL $/$ IDY
$\mathrm{FH}=0.8990$
70 ILRF $=18.5376$
$N F=1,106.390 .013 \mathrm{EDL}$
DNP=176,919.1181 BEL

$T=2.2866 \mathrm{YR}$
$\mathrm{DT}=0.7694 \mathrm{YE}$
$00=555.8004 \mathrm{BEL} / \mathrm{DAY}$
$F H=0.9190$
70ILEF $=12.7778$
$H F=1,341,667.275 \mathrm{BEL}$
DHP=235,277.2620 BEL
gORYG $=480.8600 \mathrm{BEL} / \mathrm{DAY}$
$T=3.6235 \mathrm{YR}$
$\mathrm{IT}=1.3429 \mathrm{YR}$
$00=485.0800 \mathrm{EBL} / \mathrm{THY}$
$\mathrm{FH}=0.9496$
20ILRF=16.6887
$\mathrm{NP}=1,689,314.227 \mathrm{BBL}$
$\mathrm{BNP}=747,646.9516 \mathrm{BBL}$ ROAVG $=330.6818$ BBL $/ D A Y$
$T=6.5097$ YR
DT=2.8862 YR
$00=255.8000 \mathrm{BEL} / \mathrm{DAY}$
$\mathrm{FH}=0.9790$
\%01LRF $=22.4626$
$\mathrm{HP}=2,358,505.235 \mathrm{BEL}$
$\mathrm{DAF}=669,195.6189 \mathrm{BEL}$
ZORYG $=189.8066$ BEL $/ \mathrm{TAY}$
$T=16.6953 \mathrm{YR}$
$B T=10.1856 \mathrm{YF}$
$40=105.6600 \mathrm{BEL} / \mathrm{DAY}$
$\mathrm{FH}=9.9804$
20ILRF $=22.9551$
$\mathrm{HP}=2,410.287 .134 \mathrm{BRL}$
DHP=51,777.8990 BBL
QORYG $=161.5196 \mathrm{BBL} / \mathrm{DFY}$
$\mathrm{T}=18.0927 \mathrm{YR}$
$\mathrm{DF}=1.3973 \mathrm{YR}$
$00=98.8392$ B8L/TAY

Figure 27-1

Figure 27-2

Figure 27-3

Example 2

Based on the following properties, generate $\mathrm{KO} / \mathrm{KW}$ data from this performance data. A graph of calculated $\mathrm{KO} / \mathrm{KW}$ data is given in Figure 27-4.

Oil viscosity $=3.5 \mathrm{CP}$
Water viscosity $=0.70 \mathrm{CP}$
Initial water saturation $=36 \%$

Keystrokes	Display	Comments
[A]	$\% S W I=$?	Water saturation option
36 [R/S]	$U O=$?	
3.5 [R/S]	$U W=$?	
. 7 [R/S]	$\% S W=$?	a and b printed
40 [R/S]	$\% S W=$?	KO/KW printed
45 [R/S]	$\% S W=$?	KO/KW printed
50 [R/S]	$\% S W=$?	KO/KW printed
55 [R/S]	$\% S W=$?	KO/KW printed
60 [R/S]	$\% S W=$?	KO/KW printed
70 [R/S]	$\% S W=$?	KO/KW printed

Figure 27-4

User Instructions

User Instructions

User Instructions

General Information	
Memory Requirements	
Program length：	1054 bytes（ 5 cards）
Minimum size：	055
Minimum hardware：	$41 \mathrm{C}+$ quad memory module or $41 \mathrm{CV}^{*}$
＊This program can be modules but will not printer．	run in a $41 \mathrm{C}+3$ memory leave a port available for a

Hidden Options
 None
 Pac Subro TITLE， Registers

03	Oil production units
04	Oil production units
06	Oil producing rate units
07	Oil producing rate units
08	Time units
09	Time units
21	\％SWI
26	A
27	B
30	\％SW
32	UO（CP）
33	UW（CP）
35	X
36	\％OILRF
37	NP（BBL）
38	EX
39	$\Sigma \mathrm{X}^{2}$
40	Σ OILRF
41	SOILRF ${ }^{2}$
42	$\Sigma \mathrm{X}$ OILRF
43	n
44	WOR
45	FW，BEG FW
46	N （BBL）
47	a
48	b
49	END FW
50	FW INC
51	$\mathrm{QO}+\mathrm{QW}(\mathrm{BBL} / \mathrm{DAY})$
52	$\mathrm{NP}_{\mathrm{i}-1}(\mathrm{BBL})$
53	QO_{1-1}（BBL／DAY）
54	$\mathrm{T}_{\mathrm{i}-1}$（YR）
Reg	ters 10－20，28，29，31，and

Note：The summation registers have been moved to start at register 38.

Flags

00 Set：Do not allow input of WOR．
Clear：Allow input of WOR．
01 Set：Oil producing rate units not yet input．
Clear：Oil producing rate units have been input．

02 Set：Time units not yet input．
Clear：Time units have been input．

Program Listing

61＊LEL＂CITCUM＂	RCL 27 RCL 40
＂F相 YS HF＂ 5.5	RCL $26 \mathrm{RCL} 42 *+$
RROH＂TITLE＂FETC 25	RCL 46 ¢ 212 RCL 43
PROMPT CF 08 SF 01	－RCL 41 LASTX－
SF 02 CF 日3 5F 27	－Rt2＊YROH＂OUT＂ADH
EREG 38 ＂H3＂AST0 63	
＊FIDAY＂ASTO $66{ }^{\text {－YR }}$	111＋LBL 15
ASTO 98 CLA ASTO 64	＂SH FH NP FOR＂PROHPT
ASTO 97 AST0 69 CLX	GTO 15
CF 68 RND $11 \mathrm{X}=17$ ？	1154LBL D
SF 63 ADY	116＊LBL E
	67016
34＊LEL 14	
＂FIT A．E＂PROMPT	1184LEL ${ }^{\text {E }}$
GTO 14	YEQ 17 SEQ 21 ADY

384LBL E
25 5T0 $80{ }^{\text {＂}}$ 月＂
男OH＂IH＂＂B＂
XROH＂IH＂AIU GTO 15
474LBL A
CLE

49＊LBL 13
YEQ 17 FC？ 22 GT0 90
－ X ＂XROM＂OUT＂XEO 22
RCL 3618 RCL 35 2
ADH GT0 13
63＊LBL 00
RLL 39 RCL 40 \％
RCL 38 RCL $42 *-$
RCL 43 RCL 39 ＊
RCL 38 Yt2－
STO 27 RCL 46 RCL 43
RCL 2 ＊－RCL 38 ／
STO 26 ＂ A ＂XROH＂OUT＂
RCL 27 ＂B＂XROH＂OUT＂

RCL 27 RCL 40 ＊
RCL 26 RCL 42 ＊
RL 46 RCL 43 ；
－RCL 41 LASTX－$/$
－RT2＂YROH＂OUT＂ADY

111＋LBL 15
＂SH FN NF FOR＂FROHPT
GTO 15

1154LBL D
$116+\operatorname{LBL} E$
67016

1184LBL B
YED 17 YEQ 21 GDY
GTO 15
123＊LBL A
205000 ＂ 3 SHI＂
YROM＂IH＂ 1 又 1 －
1／4 RCL 26 ／$\$ 7048$
$319 T 060$＂ CP ＂
ASTO 日1 CLH ASTO 82
ASTO 2 ＂PA＊S＂ASTO Y
＂U0＂YROH＂INU＂＂PA＊5＂
ASTO Y CLA ASTO Z
＂UH＂XROA＂INU＂ 1 B6
RCL 21 －RCL 27 ＊
RCL $21+\operatorname{RCL} 487$
CH5 E $\%$ R RCL 32 ＊
RCL 33 ；STO 47 ＂a＂
YROA＂OUT＂RCL 48＂t＂
SROH＂OUT＂

174＊LBL 12
AIM 29570 09＂ 854 ＂
KROH＝IH ${ }^{\circ}$ FC？ 22
GTO $151 \quad 7 \operatorname{RCL} 48 *$
E4Y RCL 47 ＊ $\mathrm{KO}_{\mathrm{K}} / \mathrm{KH}{ }^{\circ}$

Program Listing (cont.)

YROH "OIT ${ }^{\text {GTO }} 12$	$5 \mathrm{TO} 53+2$ - ${ }^{200 \mathrm{OHG}}{ }^{\circ}$ XEQ $26365 * \mathrm{RCL} 37$		X \triangle Y STO 04 Rt RTH
1924LBL C	K) $52 \mathrm{KYY} \mathrm{/} \mathrm{ENTER} \dagger$	FC? 22 RTH	4724LBL 91
193*LDL 11	(X) $54+\mathrm{FS2C} 82$		AST0 T "BEL" AST0 01
YE0 22 PCL 3618	SF 08 -T= YE0 27	3974LBL 19	CLA ASTO 02 ARCL T
RCL $27-\mathrm{RCL} 26$ \%		FCL 45 =FM" XROM =OUT"	RCL 04 RCL 03 RCL 2
ST0 908.5 STO 45	XEQ 27 RCL 53 -00		RTH
YE0 20 RCL $00-.995$	XEE 26	401428L 29	
$5 T 061$ ST0 45 YCYY		$1 \mathrm{RCL} 45-1 / \mathrm{N} 1-$	4834LBL 62
XE0 20 RCL 60 - *	329+LBL 61	LN RCL $451 / \mathrm{K}+$	RCL 46 / 106
XC0? GTO 10 "H0 ROOT"	ADY RCL 49 RCL 45	51035 RTH	STO 36 LASTY X $\mathrm{X}=\mathrm{Y}$?
TONE 3 PROMPT GTO 11	KCL $50+\mathrm{PND}$ Yet?		GT0 03 RCL 37 RTH
	GT0 62 Y $¢ \bigcirc \% \mathrm{RCL} 45$	414*LEL 21	
222+LBL 10	$\mathrm{X}=\mathrm{Y}$? GT0 $63 \quad \mathrm{RCL} 49$	$\mathrm{RCL} 26 * \mathrm{RCL} 27+$	494*LEL 13
TOHE 5 RCL $011 / \mathrm{K}$	RND	106 * ST0 $36{ }^{7} 80$ ILPF"	$\left.{ }^{* N F}\right\rangle=\mathrm{N}^{\text { }}$ TONE 3
RCL $01.1 / \mathrm{K}$ - LH -			PROHFT GTO 22
RCL 69 - RCL 01812	344*LBL 92		
* 1 RCL 1 - * 1	LASTY ST0 45.5 GTO 69	4259LBL 22	499+LBL 25
RCL $612 *$ \%		F5? 03 GT0 68 36 " $\mathrm{NP}^{\text {c }}$	XEC 84 XROH "IHE" RIN
	3484LEL 93	YEP 24 FC? 22 FS? 23	STO 06 X X \% ¢ ST0 07 R \dagger
\% ABS $1 \mathrm{E}-4 \mathrm{~K}=\mathrm{Y}$?	XEO 20 GT0 15	$6 T 062$	RTN
GT0 16 RCL 015 STO 45			
TONE 9 YE0 19 "Y*	351 +LBL 17	434+LBL 08	508+LBL 26
XROM *OUT" ADY GT0 15	44 "FH:	35 ST0 600 " $201 L R F *$	Yee 64 XROM "OUTK" RIn
263*LBL 16	354*LBL 18		RTH
SF 6044 "EEG FH"	ST0 08 XROh "IN"	TONE 3 PROHPT GTO 68	
KEQ 18 48 -END Fin*	FC. 22 GTO 05 CLA		5174LBL 64
XEE 18 CF 06 "FH IHE*	ARCL 05 \% < .5" .5	446*LBL 90	
XROM "IN" FS?C	Y)Y? GTO 04 CLA	RCL 46 \% ST0 37	ASTO 01 ASHF ASTO 02
SF 68 "00+日4" XED 25			CLA ARCL T RCL 67
CF 68 1 RCL 45 - *	1 Y>7 GT0 20		RCL 66 RCL 7 RTH
57053 XEQ 20 XLO 21		453*LBL 23	
5705267001	372*LBL 84	YE0 61 XROH "DUTK" RDH	5294LBL 27
	TOHE 3 PROMPT RCL 90	ST0 63 Yidy STO 04 Et	ASTO T ME* AST0 01
288*LBL 09	1 - CLA ARCL 95	RTH	CLA ASTO 02 ARCL 1
YE0 19 XEE 21 KCL 52	GT0 18		RCL 69 FCL 08 RCL 2
- 51052 - DNP: FC? 日3		4624LEL 24	XROH -OUTK= RDH ST0 08
XE\& 23 RCL 531	3814LBL	ST0 06 YE0 61	K)Y STO 69 R4 END

Section 8
 Well Log Analysis

28. RW - Calculating RW from SP

Calculates water resistivity from the SP \log and PPM NaCl equivalency.
29. XPLOT - Cross Plot Porosities

Calculates cross plot porosities for density-neutron or sonic-neutron logs with options to input densities and transit times or porosities. Also calculates RWa, M , and N for lithology identification.

30. H2OSAT - Water Saturation Calculations

Calculates water saturation for clean or shaly sands and carbonates. Shale content can be calculated by five options.
31. SLANT - True Stratigraphic and Vertical Thicknesses

Calculates true vertical thickness and true stratigraphic thickness for deviated wells and slanted beds.

28. RW - Calculating RW From SP

The SP \log is a widely run tool that measures the spontaneous potential due to the combination of electrochemical and electrokinetic components. The electrokinetic component is generally quite small. The static SP (SSP) is proportional to the logarithm of the electrochemical activities of the formation water divided by the mud filtrate. The electrochemical activity of a solution is related to its salt content and resistivity. Therefore, a value of RW can be estimated from the SP log, and this process is simplified with the RW program.
However, the SP \log has certain weaknesses in determining RW (Bateman and Konen). These are summarized as follows:

- the full SSP is not developed in thin beds
- shaly formations have a reduced SP deflection
- shallow invasion can cause distortions
- salinity changes can cause SP base-line shifts
- the electrokinetic component can be fairly large in depleted reservoirs or tight formations drilled with fresh mud
- resistivity of mud samples may not be representative
- the relationship between RMF and RMFE or RWE and RW may not be valid
- the SP curve is often noisy or affected by magnetism
The SP is more reliable in low to moderate resistivities rather than high resistivities. The SP is frequently the only source of RW for exploratory wells or wells that produce no water. Drillstem tests generally do not give valid RW values due to filtrate invasion. Water samples from wells that have produced large amounts of water are the best source of RW. Another excellent source of RW is the RWa calculation in a 100% water-saturated formation.

Equations

$$
\text { RMF75 }(\mathrm{RMF} \text { at } 75 \mathrm{~F})=\mathrm{RMF} \frac{\mathrm{TMF}+7}{82}
$$

If RMF75>0.1,
RMFE (equivalent RMF) $=0.85$ RMF75
If RMF75 ≤ 0.1,

$$
\text { RMFE }=\frac{146 \text { RMF75 }-5}{337 \text { RMF75 }+77}
$$

$$
\mathrm{RWE}(\text { equivalent } \mathrm{RW})=\frac{\mathrm{RMFE}}{10^{\mathrm{SP} /(60+\mathrm{T} / 7.5)}}
$$

If $\mathrm{RWE} \geq 0.12$,

$$
\text { RW75 }(\mathrm{RW} \text { at. } 75 \mathrm{~F})=-0.58+10^{(0.69 \mathrm{RWE}-0.24)}
$$

If $\mathrm{RWE}<0.12$,

$$
\begin{aligned}
& \mathrm{RW} 75=\frac{77 \mathrm{RWE}+5}{146-337 \mathrm{RWE}} \\
& \mathrm{RW}=\mathrm{RW} 75 \frac{82}{\mathrm{~T}+7}
\end{aligned}
$$

$$
\mathrm{PPM}=10^{\mathrm{A}}
$$

$$
A=\frac{3.562-\log (\mathrm{RW} 75-0.0123)}{0.955}
$$

If T unknown:

$$
\mathrm{T}=\operatorname{SURF} \mathrm{T}+\mathrm{T} \text { GRAD } \frac{\text { DEPTH }}{100}
$$

Nomenclature

Symbol	Variable Name	Input or Output	English Units	$\begin{gathered} \text { SI } \\ \text { Units } \end{gathered}$
DEPTH	Depth	I	FT	M
RMF	Mud filtrate resistivity	I	$\underset{\mathrm{M}^{*}}{\mathrm{OH}}$	$\underset{\mathrm{M}^{*}}{\mathrm{OH}}$
RW	Water resistivity	O	$\underset{\mathrm{M}^{*}}{\mathrm{OH}}$	$\underset{M^{*}}{\text { OHM }}$
SP	Spontaneous potential	I	MV*	MV*
SURF T	Surface temperature	I	F	C
TMF	Mud filtrate temperature	I	F	C
T GRAD	Temperature gradient	I	$\begin{gathered} \mathrm{F} / 100 \\ \mathrm{FT}^{*} \end{gathered}$	$\begin{gathered} \mathrm{F} / 100 \\ \mathrm{FT}^{*} \end{gathered}$

*These units are not allowed by the unit management system in the Pac. Special input and output subroutines were included in this program to provide these units for annotation purposes only.

Yes/No Questions

None

Example

RW requires the user first to input the resistivity and temperature of the mud filtrate. The formation tem-
perature can be input as a temperature or as a surface temperature and temperature gradient in conjunction with depth. For this example, use RMF $=0.15$ $\mathrm{OHM} * \mathrm{M}$ at $\mathrm{TMF}=110 \mathrm{~F}$. Note that the SP sign convention is that normal SP deflection (positive) is to the left (RMF > RW).

First calculate RW with $T=150 \mathrm{~F}$ and $\mathrm{SP}=40$ MV. Then assume the surface temperature is 70 F and the temperature gradient is $1.5 \mathrm{~F} / 100 \mathrm{FT}$ and calculate RW at the following depths:

$D E P T H(F T)$	$S P(M V)$
3,950	18
4,725	36
4,728	39

Finally, calculate the PPM NaCl equivalency at the 4,728 FT depth.

E4 FROM SP	RH=9.0721 0HM*
	IEFTH=4,725.8060 FT
THF=116.6460 F	$T=149.8754 \mathrm{~F}$
	SF=36. 9609 W
$T=150.8060 \mathrm{~F}$	
KH=6.6389 0 H粗粗	IEPTH=4,728.8000 FT
	$\mathrm{T}=146.9290 \mathrm{~F}$
SIRF T=70.0466 F	SP=39.6096 mb
T GRAD $=1.5006 \mathrm{~F} / 16 \mathrm{E}$ FT	
IIEPTH=3.950. 906 FT	
$\mathrm{T}=129.2509 \mathrm{~F}$	$\mathrm{PPH}=97.569 .3979$

General Information

Memory Requirements

Program length: 462 bytes (3 cards)
Minimum size: 028
Minimum hardware: $41 \mathrm{C}+1$ memory module

Hidden Options

None

Pac Subroutines Called
TITLE, INU, T, OUT, OUTU

Registers

03	RMF75 $(\mathrm{OHM} * \mathrm{M})$
04	SP (MV)
06	SURF T (F)
07	T GRAD $(\mathrm{F} / 100 \mathrm{FT})$
08	DEPTH (FT)
09	RW75 $(\mathrm{OHM} * \mathrm{M})$
26	RMF $(\mathrm{OHM} * \mathrm{M})$
27	TMF (F)
Registers $10-15$ and $17-25$ unused	

Flags
None

Program Listing

G14LBL＂RH＂
＂RH FROH SP＂ 20
XROH＂TITLE＂FGTC 25
PROMPT SF 2725

CLA ASTO G2＂RHF＂

XROM＂INU＂ $7+82$ ；
PCL 26 ＊ $5 T 0$ 日 6 AIH
27＋LCL 15

GTO 15

314LBL A
XROM＂T＂GT0 16
34＊LBL E
3.562 RCL $167+$

RCL 09 ＊ 82 ；． 0123
－ $\mathrm{LOG}_{5}-.955$／ $16+\mathrm{X}$
－PFH $=$ YROH＂OUT＂ADH
67015
544LBL B
554늗
FC？ 98 GTO 94
STO 06 YEE 66＂SURF T＂
XROH＂INU＂＂F／L日B FT＂
ASTO 61 ASHF ASTO 62
＂T GRAI＂XEE 07
694LEL 96
7 STO G ${ }^{-F T}{ }^{\circ}$ ASTO 91
＂月＂ASTO Y CLA

ASTO G2 ASTO 2 ＂TEFTH＂
YROH＂IHU＂RCL 07 ＊ 1
$\%$ RCL $96+57016$

91＊LEL 16
3 ST0 0 － 4 H＂ASTO 日
CLH ASTO U2＂SP＂
羄 67 FCL 167.5 ／
$64+\gamma 107 \mathrm{Y} .1$
RCL 63 XYY GTO 62
146 ＊5－R \boldsymbol{H} • 37
$\mathrm{FCL} 03 \neq 77+6 T 003$

1234LBL 62
$85 \% \mathrm{R}$
1274LBL 83
；． $12 \mathrm{X}=\mathrm{Y}$ ？GT0 04
RCL $Y 77 * 5+146$
R† 337 干－\quad GT0 85
144＊LBL 64

1674．58－
153＊LBL 95
82 ＊ $\mathrm{KCL} 167+$ ；
ST0 09 ＂0HH＊月＂AST0 61
CLA ASTO 02＂Ril＂
XEE Q8 ADY GTO 15

1694LBL 66
＂F＂ASTO 日 0 ＂ C ＂
ASTO Y CLA ASTO 92

ASTO Z RTH
1784LBL 67
MOFF ASTO G5 CF 22
15G 80 CLI RCL IND 60
＂F＝？＂CF 21 RUIEH CLH
F57 55 SF 21 ST0P
HOFF RCL IND 80 FLQ 22
GTO 69 HYY STO IND 80
CF 21 FC？ 55 RTH CLA
ARCL $65{ }^{\circ} \mathrm{F}={ }^{\circ}$ ARCL X
GTO 10
$206 \cdot$ LEL 98
HOFF STO 60 ＂F＝＂
ARCL 笑 FS？ 55 GT0 10
CF 21 日HEU CLA
ARCL 11 ARCL 82 FS？ 55
SF 21 STOF HOFF
RCL 09
223＊LBL 69
CF 21 FS？ 55 5F 21
RTH
2284LBL 16
－f ARCL 01 ARCL 62
GF 21 PRA END

29. XPLOT - Cross Plot Porosities

The formation porosity is used in a variety of reservoir engineering calculations and is normally determined from well-log analysis and perhaps core analysis. The three most common porosity tools the sonic, density, and neutron logs - are all sensitive to formation lithology. Porosity determination by comparison of the responses of two porosity logging devices helps evaluate the effects of lithology and give a better estimate for the porosity. XPLOT allows the user to calculate cross plot porosities from a density-neutron or sonic-neutron pair of logs, as well as calculate RWa and the M and N values for use in a matrix identification plot.
Determining formation lithology is readily accomplished by comparing the apparent lithology values RHOMAa and DTMAa. This technique was originally described by Clavier and Rust. A matrix identification plot is shown in Figure 29-1. The value for M can be calculated by the program. RWa is also a very useful index. In 100% water-saturated formations, it is equal to RW. High values of RWa
relative to RW indicate the possible presence of hydrocarbons.
Table 29-1 presents common values for bulk density for different substances. Table 29-2 presents typical sonic velocities and transit times for use with acoustic logs.

Table 29-1

Compound	Bulk Density $(G / C M 3)$
Quartz	2.648
Calcite	2.71
Dolomite	2.876
Anhydrite	2.977
Anthracite coal	$1.355-1.796$
Bituminous coal	$1.173-1.514$
Fresh water	1.00
Salt water	1.135
Typical oil	0.85
Methane	1.335 RHO Cl-0.188
Typical gas	1.325 RHO GAS-0.188

where RHO Cl and RHO GAS are the densities of methane and the typical gas, respectively

Figure 29-1
(after Bateman and Konen)

Formation	Table 29-2 VMA (FT/S)	DTMA (US/FT)
Sandstones		
\quad Unconsolidated	$17,000-$	$58.8+$
Semiconsolidated	18,000	55.6
Consolidated	19,000	52.6
Limestone	21,000	47.6
Dolomite	23,000	43.5
Shale	$6,00016,000+$	167 to
Calcite	22,000	45.5
Anhydrite	20,000	50.0
Granite	20,000	50.0
Gypsum	19,000	52.6
Quartz	18,000	55.6
Salt	15,000	66.7
Fluids		
Water with $20 \% \mathrm{NaCl}$	5,300	189
Water with $10 \% \mathrm{NaCl}$	4,800	208
Fresh water	4,600	218
Typical oil	4,200	238
Methane	1,600	626
Air	1,100	910

Equations

Density-neutron equations:

$$
\text { POR-X }=\frac{\text { POR-Da POR-N }- \text { POR-D POR-Na }}{\text { POR-Da }- \text { POR-Na }}
$$

If POR-N \geq POR-D,
POR-Da (apparent density porosity of pseudomineral)

$$
=\frac{1.29}{\text { RHO MF }-2.71}
$$

POR- Na (apparent neutron porosity of pseudomineral)

$$
=0.7-10^{-(5 \mathrm{POR}-\mathrm{N}+0.16)}
$$

If POR-N $<$ POR-D

$$
\begin{aligned}
& \text { POR-Da }=1.0 \\
& \text { POR-Na }=-(2.06 \text { POR-N }+1.17)+10^{-(16 \text { POR.N }+0.4)}
\end{aligned}
$$

$$
\text { POR-D }=\frac{2.71-\mathrm{RHO} \mathrm{~b}}{2.71-\mathrm{RHO} \mathrm{MF}}
$$

$$
\text { RHOMAa }=\frac{\text { RHO } b-\mid \text { POR-X } \mid \text { RHO MF }}{1-\mid \text { POR-X } \mid}
$$

Sonic-neutron equations:

$$
\begin{aligned}
& \text { POR-X }=\frac{\text { POR-Sa POR-N }- \text { POR-S POR-Na }}{\text { POR-Sa }- \text { POR-Na }} \\
& \text { If POR-N } \geq \text { POR-S } \\
& \text { POR-Sa (apparent sonic porosity of pseudomineral) } \\
& =-0.146 \\
& \text { POR-Na }=0.5-10^{-(5 \text { POR } N+0.3\}} \\
& \text { If POR-N }<\text { POR-S, } \\
& \text { POR-Sa }=0.50 \\
& \text { POR-Na }=-(0.62 \text { POR- } N+0.36) \\
& +10^{-\{18 \text { POR-N }+0.92\}} \\
& \text { POR-S }=\frac{\text { DT }-47.6}{141.4} \\
& \text { DTMAa }=\frac{\text { DT }-189 \mid \text { POR-X| }}{1-\mid \text { POR-X } \mid} \\
& \mathrm{RWa}=\mathrm{POR}-\mathrm{X}^{2} \mathrm{RT} \\
& M=\frac{189-\text { DT }}{100(\text { RHO b }- \text { RHO MF })} \\
& \mathrm{N}=\frac{1-\text { POR }-\mathrm{N}}{\text { RHO b }- \text { RHO } \mathrm{MF}} \\
& \text { POR-D }=\frac{\text { \%POR-D }}{100} \\
& \text { POR-N }=\frac{\text { \%POR-N }}{100} \\
& \text { POR-S }=\frac{\% \text { POR-S }}{100} \\
& \text { POR-X }=\frac{\% \text { POR-X }}{100}
\end{aligned}
$$

Nomenclature

Symbol	Variable Name	Input or Output	English Units	SI Units
DT	Transit time	I,O	US/FT * US/FT*	
DTMAa	Apparent matrix transit time	O	US/FT * US/FT	

Symbol	Variable Name	Input or Output	English Units	SI Units
N	Lithology indicator	O	-	-
RHO- MAa ${ }^{\dagger}$	Apparent matrix density	O	G/CM3	G/CM3
RHO MF \dagger	Mud filtrate density	I	G/CM3	G/CM3
RHO b \dagger	Bulk density	I,O	G/CM3	G/CM3
RT	True formation resistivity	0	$\mathrm{OHM}_{\mathrm{M}}{ }^{\text {* }}$	$\underset{\mathrm{M}^{*}}{\mathrm{OH}}$
RWa	Apparent water resistivity	O	$\underset{\mathrm{M}^{*}}{\mathrm{OH}}$	$\underset{\mathrm{M}^{*}}{\mathrm{OHM}}$
\%POR-D	Percent density limestone porosity	I, O	-	-
\%POR-N	Percent neutron limestone porosity	I,O	-	-
\%POR-S	Percent sonic limestone porosity	I, O	-	-
\%POR-X	Percent cross plot porosity	I, O	-	-

*These units are not allowed by the Unit Management System in
the Pac. Special input and output subroutines were included in
this program to provide these units for annotation purposes only.
\dagger The units for these variables are saved by the program.

Yes/No Questions

None

Example

XPLOT allows a variety of solution methods that are demonstrated in this example. Table 29-3 presents the sonic, density, neutron, and resistivity readings at two different points. Note that one point has sonic and density (limestone) porosities, while the other has transit times and measured densities. Calculate the cross plot porosities and RWA using the sonicneutron cross plot porosity and M and N at the deeper point to use for entering a matrix identification plot.

Table 29-3

Depth (FT)	5,102	5,126
\%POR-N	12.5	16.3
\%POR-D	-	14.5
\%POR-S	-	13.8
DT (US/FT)	59.2	-
RHO b (G/CM3)	2.59	-
RHO MF (G/CM3)	1.1	1.1
RT (OHM*M)	4.5	6.2

Keystrokes (SIZE> = 022)	Display	Comments
[XEQ] [ALPHA] XPLOT [ALPHA]	D.NS.NRTM N	
[A]	RHO MF $=$?	Densityneutron option
1.1 [R/S]	RHO $b=$?	
2.59 [R/S]	$\% P O R-N=$?	\%POR-D printed
12.5 [R/S]	D.NS.NRTMN	\%POR-X and RHOMAа printed
[B]	\%POR-N=?	Sonicneutron option
[R/S]	$D T=$?	
59.2 [R/S]	D.NS.NRTMN	\%POR-S, \%POR-X, and DTMAa printed
[C]	$\% P O R-X=$?	True resistivity option
[R/S]	$R T=$?	
4.5 [R/S]	D.NS.N RTM N	RWa printed
[A]	RHO MF=?	
[R/S]	RHO $b=$?	
[R/S]	\%POR-D $=$?	
14.5 [R/S]	$\% P O R-N=$?	
16.3 [R/S]	D.NS.NRTM N	$\begin{aligned} & \text { \%POR-X } \\ & \text { and } \\ & \text { DTMAa } \\ & \text { printed } \end{aligned}$
[B] [R/S]	$\begin{aligned} & \% P O R-N=? \\ & D T=? \end{aligned}$	
[R/S]	\%POR-S $=$?	
13.8 [R/S]	D.NS.NRTMN	DT, \%PORX , and DTMAa printed
$\begin{aligned} & {[\mathrm{C}]} \\ & {[\mathrm{R} / \mathrm{S}]} \end{aligned}$	$\begin{aligned} & \% P O R-X=? \\ & R T=? \end{aligned}$	
6.2 [R/S]	D.NS.NRTMN	RWa printed
[D]	RHO MF=?	M option
[R/S]	$\mathrm{RHOb}=$?	
[R/S]	$\% P O R-D=$?	
[R/S]	$D T=$?	
[R/S]	\%POR-S $=$?	
[R/S]	D.NS.NRTMN	M printed
[E]	RHO MF=?	N option
[R/S]	$\mathrm{RHOb}=$?	
[R/S]	\%POR-D $=$?	
[R/S]	\%POR-N=?	
[R/S]	D.NS.NRTMN	N printed

CROSSPLOT

RHO $\mathrm{HF}=1.1 \mathrm{LCOC} \mathrm{B} / \mathrm{CH}$
RHO $\mathrm{b}=2.594 \mathrm{GICH}$
$\%$ POR-II $=7.4534$

2 POR- $\mathrm{Z}=16.4773$
RHOHF $=2.7644$ G/CN
$\mathrm{T}=59.20 \mathrm{O} 4 \mathrm{US} / \mathrm{FT}$
$7 \mathrm{POR}-\mathrm{S}=0.2637$
\%POR-Y $=9.3936$

IITHA $=45.7430 \mathrm{US} / \mathrm{FT}$

$\mathrm{FPOR}-\mathrm{E}=14.5000$
7 POR- $\mathrm{H}=16.3010 \mathrm{Cl}$
$\mathrm{ZPOR}-\mathrm{Y}=15.5336$
RHOHFa=2.72976/CH
$\Rightarrow \operatorname{FOR}-\mathrm{S}=13.860 \mathrm{Ba}$
$\mathrm{DT}=67.113 \mathrm{~B}$ US/FT 2POR-Y=14.4412
ITHAZ $=46.5463$ US/FT

H= $=0.8855$
$\mathrm{H}=6.6086$

User Instructions

User Instructions

Registers

03	Density units
04	Density units
09	RWa (OHM $* \mathrm{M})$
12	\%POR-N
13	RHO MF (G/CM3)
14	RHO b (G/CM3)
15	\%POR-D
18	\%PORX
19	RT (OHM $*$ M)
20	DT (US/FT)
21	\%POR-S
Registers 06-08, 10, 11, 16, 17 unused	

Flags

None

Program Listing

B1＋LBL＊TPLOT＂	$3 \% .3+$ CH5 164\％	$\operatorname{RCL} 14-7{ }^{\circ}$	GT0 11 ＂2FOR－S＂
＂CROSSPLUT＂ 22	A $5.5+-.146$	SROH＂OIT＂ADY GTO 15	YROH＝IN：FI？ 22 RTh
3ROH＝TITLE FCTS 25			$1.414 * 47.6+$
PROAPT SF 27 ＂G／CH3＂	101＋LBL 63	197＊LEL 05	ST0 20 ＂17＂YEO 17
ASTO 63 CLA ASTO 44	21 YEe 04 189＊	12 SEO 08 ＂RHO MF：	RTH
	FCL 20 －YKY／	XROH－IHE＇YES E7	
124LEL 15	＂US／FT＂AST0 01 CLA		2074LBL 11
－T．N S．H RT H H＂PROHPT		YE0 07 FS？ 22 GT0 66	47．6－1．414
67015	ADH $6 T 015$	＂ZFOR－1＂ XROH ＂ $\mathrm{IH}=$	ST0 21 ＂2FOR－5＂
		FC？ 22 RTH i $\% 2.71$	SROH＂OIT＂ETH
164LBL A	1184LBL 64	$\mathrm{FCL} 13-* 2.71$－	
MEC 05 YED 69 RCL 15	RIM RCL INI T KCL Z＊	CHS 97014 SE0 68	296＋LEL 12
		＂RH0 b＂SEE 67 RTH	AOFF ASTO 05 CF 22
$6100816 \% 3.4+$	LASTX ST－T RDH－		156 6n CLI PCL IWD 60
CH5 104\％． 8296 RCL 12		226 LBL 96	$\square \mathrm{F}=?^{\circ}$ CF 21 HYIEN CLA
＊ $1.17+$－ 1 GT0 01		2.71 －RCL 13 2．71	FS ？ 55 SF 21 STOF
	\％AES ST0 Y 1 －	\％ 109 ＊ 51015	MOFF RCL IND 96 FC？ 22
38＊LEL 06	YCY RTN	＂ 7 POR－IT＂SROIT＂OUT＂	GTO 14 K KY STO IHT 0 O
$57.16+$ CHS 1948		PTH	CF 21 FC？ 55 RTH CLA
． 7 KMY － 1.29	144＊LBL C		ARCL 05 ＂F＝ARCL
RCL 13 2．71－	17 ST0 06 \％$\%$ POR－X＂	239＊LBL 97	67060
	XROM＂IN＂＂OHm＊相＂	FDH 57063 晨》	
534 LEL 61	ASTO 01 CLA ASTO 82		324＊LBL 13
15 XED 84 RCL 13 ＊		RTH	H0FF ST0 06－
RCL 14 －MSY／	$100 \cdot \mathrm{x} 12 \times 5 \mathrm{~T} 069$		ARCL X FS？ 55 GT0 90
YEE 98 －RHOMHa＝		2484LEL 68	CF 21 AYIEH CLA
YROH＂DUTK＂XEE 97 ADH	$6 T 015$		ARCL 01 ARCL 92 Fs？ 55
GT0 15		CLA ASTO G2 RCL 04	SF 21 STOP GOFF
	1654LEL II	RCL 03 RCL 2 RTH	RCL 06
68＊LEL B	YEE 65 \％EE 16 189		
XEQ 09 YEC 10 RCL 21	RCL 20 －RCL 14	258＋LBL 99	$341+$ LBL 14
KCL 12 XIY？y Y \％		11 ST0 60＊ $2 \mathrm{POR}-\mathrm{N}=$	CF 21 FS？ 55 SF 21
$\begin{array}{llllllll}6 T 0 & 82 & 18 & \% & .92\end{array}$	XROH＂OIIT＂ADY GT0 15	YROH＝ $\mathrm{IN}^{\text {P }}$ RTN	RTH
CH5 16tY PCL 12			
$62 \mathrm{E}-4 * .36+-.5$	1814L8L E	2644L日L 16	346＊LBL 96
670.93	YEO 牱 XES 99 RCL 12		＊＊ARCL 81 ARCL 82
	$171-\mathrm{RCL} 13$	ASTO 01 CLA ASTO 02	SF 21 FRA EHI
$98+\mathrm{LBL}$ 62			

30. H2OSAT - Water Saturation Calculations

Calculation of oil or gas in place by volumetric methods requires an estimate of the water saturation and porosity. H2OSAT is quite useful in estimating water saturation to account for the influence of shale on the calculation of SW. For nonshaly formations, the Archie equation is used. The authors prefer the Indonesia equation to calculate water saturations for the effective shale (Poupon and Leveaux).

The program uses default values for a and M of 0.62 and 2.15 , respectively, and a default value for N of 2 . Other values may be input, but these variables will be initialized to these defaults each time the program is run. If a value for M equal to 0 is input, a variable cementation exponent is calculated. (See Equations)

Table 30-1 illustrates typical values of M for sandstones and limestones. For limestones and dolomites, the value for SW is generally calculated assuming $\mathrm{a}=1$ and $\mathrm{M}=2$. The measured resistivity factor versus porosity can be plotted (as wide a range as possible) to estimate a and M from the best straight line. The Humble equation sets $a=0.62$ and $\mathrm{M}=2.15$ to represent typical sandstones, the program defaults.

Table 30-1

Lithology	M
Sandstones	
Loose, unconsolidated	1.3
Slightly consolidated	$1.3-1.7$
Moderately cemented	$1.7-1.9$
Well cemented	$1.9-2.2$
Limestones	
Moderately porous	$2+$
Oolitic limestones	$2.5-2.8$

H2OSAT allows the user to input a value for $\%$ VSH or calculate that value a number of ways. These are as follows:

1. Density-Neutron

The density-neutron option is useful due to the response differences of these two logs to gas and shale. When $\% \mathrm{VSH}=0$, the ratio of \%POR-D to \%POR-N reaches its highest value. The maximum ratio of these two porosities (D/NMAX) can easily be read from logs or cross plots of density-neutron porosities. It is usually the case that \%VSH is too high from this calculation. The value of D/NMAX should be selected for a single lithology and fluid content, since both of these factors affect the log. Although the \%VSH from this option is usually an upper limit,
adverse hole conditions may result in lower than actual \%VSH. It is preferable not to use this option when hole conditions (e.g., washouts) affect the logs.

The sonic-density combination can be used the same way as the density-neutron but only when hole conditions are satisfactory. The neutron-sonic log responses to shale are so similar that this combination does not usually provide much help.

2. Spontaneous Potential

The SP curve can be used as an approximate measure of shaliness but tends to be too high when hydrocarbons are present. It is also too high for dispersed clay (as opposed to laminated clay). For shaly mixtures with no effective porosity, there is no SP deflection.

3. Resistivity

The resistivity of a clay (shale) mixture with a nonconductive material (such as quartz) depends on the resistivity of the clay and water. This method usually uses the induction or Laterolog devices, with the highest resistivity reading giving the more reliable shaliness indication.

4. Gamma Ray

5. Gamma Ray-Density

The gamma ray \log is probably the best source for evaluating \%VSH with nonradioactive formations or waters. The last option allows the user to further refine this technique by density-weighting the measured GR values. It is recommended that this option be used when possible. The GR MIN value is that found opposite shale beds (the shale baseline) with GR MAX equal to the GR reading in clean intervals, usually the highest value. If other radioactive minerals are present, this technique results in estimates that are too high. When shale without potassiumbearing clays is present, $\%$ VSH estimates will be too low.

When \%VSH is calculated as ≤ 0 or >100, \%VSH is set equal to 0 or 100, respectively. Similarly, if $\% \mathrm{SW}$ is calculated as >100, it is set equal to 100 .

Equations

Nonshaly formations:

$$
\mathrm{SW}=\left|\frac{\mathrm{a}}{\mathrm{POR}^{M}} \frac{\mathrm{RW}}{\mathrm{RT}}\right|^{1 / \mathrm{N}}
$$

Shaly formations:

$$
\mathrm{SW}=\left[\frac{\left.\mathrm{VSH}^{(1-}-\mathrm{vSH} / 2\right)}{(\mathrm{RSH} / \mathrm{RT})^{0.5}}+\left.\left|\frac{\mathrm{POR}^{M}}{\mathrm{a}} \frac{\mathrm{RT}}{\mathrm{RW}}\right|^{0.5}\right|^{-2 / \mathrm{N}}\right.
$$

If $M=0$ is input, M is calculated as $M=1.87+\frac{0.019}{\text { POR }}$

VSH equations:

Density-neutron:

$$
\text { VSH }=\frac{\text { POR-N D/NMAX }- \text { POR-D }}{\text { P-NSH D/NMAX }- \text { P-DSH }}
$$

Spontaneous potential:

$$
\mathrm{VSH}=1-\frac{\mathrm{PSP}}{\mathrm{SSP}}
$$

Resistivity:

$$
\begin{aligned}
& \mathrm{VSH}=(\mathrm{RSH} / \mathrm{RT})^{\mathrm{A}} \\
& \text { If } \mathrm{RSH} / \mathrm{RT} \geq 0.5, \mathrm{~A}=1 \\
& \text { If } \mathrm{RSH} / \mathrm{RT}<0.5, \mathrm{~A}=2-(2 \mathrm{RSH} / \mathrm{RT})^{1 / 4}
\end{aligned}
$$

Gamma ray:

$$
\text { VSH }=\frac{G R-G R M I N}{G R M A X-G R M I N}
$$

Gamma ray-density:

$$
\begin{aligned}
& \text { VSH }= \\
& \frac{\text { GR (RHO b) - GR MIN (RHOMIN) }}{\text { GR MAX(RHOMAX) - GR MIN(RHOMIN) }}
\end{aligned}
$$

$$
\mathrm{SW}=\frac{\% \mathrm{SW}}{100}
$$

$$
\mathrm{VSH}=\frac{\% \mathrm{VSH}}{100}
$$

$$
\text { POR-N }=\frac{\% \text { POR }-N}{100}
$$

$$
\text { POR-D }=\frac{\% \text { POR-D }}{100}
$$

$$
\mathrm{P}-\mathrm{NSH}=\frac{\% \mathrm{P}-\mathrm{NSH}}{100}
$$

$$
\text { P-DSH }=\frac{\% P-D S H}{100}
$$

Nomenclature

Symbol	Variable Name	Input or Output	English Units	SI Units
a	Constant in Archie equation for nonshaly formations (default $=0.62$)	I	-	-
$\begin{aligned} & \mathrm{D} / \mathrm{N} \\ & \mathrm{MAX} \end{aligned}$	Maximum ratio of \%POR-D and \%POR-N	I	-	-
GR	Gamma ray reading	I	-	-
GR MAX	Gamma ray reading corresponding to clean sands	I	-	-
GR MIN	Gamma ray reading corresponding to shale	I	-	-
M	Cementation exponent (default $=2.15$)	I	-	-
N	Saturation exponent (default $=2$)	I	${ }^{-}$	${ }^{-}$
PSP	Spontaneous potential at the shale baseline	I	MV*	MV*
$\underset{\text { MAX } \dagger}{\mathrm{RHO}}$	Maximum bulk density	I	G/CM3	G/CM3
RHO MIN \dagger	Minimum bulk density	I	G/CM3	G/CM3
RHO b \dagger	Bulk density	I	G/CM3	G/CM3
RSH	Shale resistivity	I	$\underset{\mathrm{M}^{*}}{\mathrm{OH}}$	$\begin{gathered} \mathrm{OHM} \\ \mathrm{M}^{*} \end{gathered}$
RT	True formation resistivity	I	$\underset{\mathrm{M}^{*}}{\mathrm{OH}}$	$\underset{\mathrm{M}^{*}}{\mathrm{OH}}$
RW	Water resistivity	I	$\underset{\mathrm{M}^{*}}{\mathrm{OHM}}$	$\underset{\mathrm{M}^{*}}{\mathrm{OHM} *}$
SSP	Static spontaneous potential	I	$\underset{\mathrm{M}^{*}}{\mathrm{OHM}}$	$\underset{\mathrm{M}^{*}}{\mathrm{OH}}$
\%POR-D	Percent density limestone porosity	I	-	-
\%POR-N	Percent neutron limestone porosity	I	-	-
\%P-DSH	Percent density shale porosity	I	-	-
\%P-NSH	Percent neutron shale porosity	I	-	-
\%VSH	Volume percent shale	I, O	-	-

[^6]
Yes／No Questions

SHALY？Yes：Shaly formation． No：Nonshaly formation．

Example 1

Calculate $\%$ SW assuming default values for a（0．62）， $\mathrm{M}(2.15)$ ，and $\mathrm{N}(2)$ and a clean formation with RW＝ $0.039 \mathrm{OHM} * \mathrm{M}$ ．Use the values of \％POR and RT shown below．

\％POR	$R T(O H M * M)$
18.2	5.5
12.2	8.5
9.2	7.6
9.1	4.2
4.5	7.0

Keystrokes （SIZE＞＝029）	Display	Comments
［XEQ］［ALPHA］H2OSAT ［ALPHA］	$a=$ ？	
［R／S］	$M=$ ？	
［R／S］	$N=$ ？	
［R／S］	$R W=$ ？	
． 039 ［R／S］	SHALY？Y／N：	Last character is Y or N
N［R／S］	$\% P O R=?$	
18.2 ［R／S］	$R T=$ ？	
5.5 ［R／S］	$\% P O R=$ ？	\％SW printed
12.2 ［R／S］	$R T=$ ？	
8.5 ［R／S］	$\% P O R=$ ？	\％SW printed
9.2 ［R／S］	$R T=$ ？	
7.6 ［R／S］	$\% P O R=$ ？	\％SW printed
9.1 ［R／S］	$R T=$ ？	
4.2 ［R／S］	$\% P O R=$ ？	\％SW printed
4.5 ［R／S］	$R T=$ ？	
7 ［R／S］	$\% P O R=$ ？	\％SW values >100 are set to 100

WATER SAT

SH月LY：HO

4FOR $=18$ ， 2060
RT＝5． 5680 0H月静
$354=41.3971$

3P0R＝12．2060

$7 \mathrm{CH}=51.1896$

2FOR＝9．204
RT $=7.6010$ 0Hm青
$7 \mathrm{CH}=73.3246$

2FOR＝9．190日
FT＝4．2060 0H月相
\％54 $=99.8006$
$7 \mathrm{POR}=4.500 \mathrm{e}$
 \％ $54=106.8646$

Example 2

Use $\mathrm{a}=0.75, \mathrm{~N}=2$ ，and calculate M from porosity （input $M=0$ ）．Assume a clean formation with $\mathrm{RW}=$ $0.029 \mathrm{OHM} * \mathrm{M}$ and the porosities and true resistivi－ ties shown below．

$\% P O R$	$R T(O H M * M)$
15.4	6.7
12.5	4.35

Example 3

Use the defaults for a, M, and N. Assume a shaly formation with the following values:

```
\(\mathrm{RW}=0.018 \mathrm{OHM} * \mathrm{M}\)
\(\mathrm{RSH}=1.1 \mathrm{OHM} * \mathrm{M}\)
Porosity \(=15.4 \%\)
\(\mathrm{RT}=7.5 \mathrm{OHM} * \mathrm{M}\)
```

Calculate \%SW by inputting \%VSH and by calculating $\%$ VSH, using the values shown below for each option. The gamma ray and gamma ray-density options are recommended.

1. Input $\% \mathrm{VSH}=15$
2. Density-neutron

$$
\begin{aligned}
& \text { D/NMAX }=2.5 \\
& \% \text { POR-N }=18.6 \\
& \text { \%POR-D }=12.25 \\
& \text { \%P-NSH }=27.5 \\
& \text { \%P-DSH }=20.1
\end{aligned}
$$

3. Spontaneous potential

$$
\begin{aligned}
& \mathrm{PSP}=20 \mathrm{MV} \\
& \mathrm{SSP}=48 \mathrm{MV}
\end{aligned}
$$

4. Gamma ray

$$
\begin{aligned}
& \text { GR MIN }=28 \\
& \text { GR MAX }=115 \\
& \text { GR }=78
\end{aligned}
$$

5. Gamma ray-density

$$
\begin{aligned}
& \text { GR MIN }=28 \\
& \text { GR MAX }=115
\end{aligned}
$$

$$
\mathrm{GR}=78
$$

$$
\mathrm{RHOMIN}=2.52 \mathrm{G} / \mathrm{CM} 3
$$

$$
\text { RHOMAX }=2.64 \mathrm{G} / \mathrm{CM} 3
$$

$$
\mathrm{RHO} \mathrm{~b}=2.68 \mathrm{G} / \mathrm{CM} 3
$$

Keystrokes	Display	Comments
$\begin{aligned} & {[\mathrm{XEQ}][\mathrm{ALPHA}] \mathrm{H} 2 \mathrm{OSAT}} \\ & \text { [ALPHA] } \end{aligned}$	$a=$?	
[R/S]	$M=$?	
[R/S]	$N=$?	
[R/S]	$R W=$?	
. 018 [R/S]	SHALY? Y/N:N	
Y [R/S]	$\mathrm{RSH}=$?	
1.1 [R/S]	\%POR = ?	
15.4 [R/S]	$R T=$?	
$\begin{aligned} & 7.5[R / S] \\ & {[R / S]} \end{aligned}$	$\begin{aligned} & \text { D.N SP R G G.D } \\ & \% V S H=? \end{aligned}$	[R/S] to
[R/S]		input \%VSH directly
15 [R/S]	$\% P O R=$?	\%SW printed

Keystrokes	Display	Comments
[R/S]	$R T=$?	
[R/S]	D.NSPR G G.D	
[A]	$D / N M A X=$?	Densityneutron option
2.5 [R/S]	\%POR-N=?	
18.6 [R/S]	$\% P O R-D=$?	
12.25 [R/S]	\%P-NSH=?	
27.5 [R/S]	$\% P-D S H=$?	
20.1 [R/S]	$\% P O R=$?	\%VSH and \%SW printed
[R/S]		
[R/S]	D. NSPRGG.D	
[B]	$P S P=$?	SP option
20 [R/S]	$S S P=$?	
48 [R/S]	$\% P O R=$?	\%VSH and \%SW printed
[R/S]		
[R/S]	D.N SP R G G.D $\% P O R=$?	
[C]		Resistiv- ity option; \%VSH and \%SW printed
[R/S]		
$[\mathrm{R} / \mathrm{S}]$	D.N SP R G G.D GR MIN=?	Gamma-
[D]		ray option
28 [R/S]	GR MAX $=$?	
115 [R/S]	$G R=$?	
78 [R/S]	$\% P O R=$?	\%VSH and \%SW printed
[R/S]		
[R/S]		
[E]		Gamma raydensity option
[R/S]	$G R M A X=$?	
[R/S]	$\mathrm{GR}=$?	
[R/S]	RHOMIN $=$?	
2.52 [R/S]	RHOMAX = ?	
2.64 [R/S]	RHO $b=$?	
2.68 [R/S]	$\% P O R=$?	\%VSH and \%SW printed
MATEF SAT	24SH=15.0100	
	$3514=25.5024$	
SHALY: YES		
	$2 \mathrm{POR}-\mathrm{H}=18.6606$	
	7 $70 \mathrm{OR}-\mathrm{I}=12.2566$	
7FOR=15.4040	\% $2 \mathrm{~F}-\mathrm{NSH}=27.5660$	
ET $=7.5809$ 0hmm		

7\%SH=76.4008	$7494=50.3333$	GE $1 \mathrm{H}=28.6006$	RHOHIH $=2.5200 \mathrm{G} / \mathrm{CH} 3$
\% $514=18.6192$	Y $84=19.0466$	GR HAM $=115.89008$	RHOHPX=2.6400 G/Ch3
		GR=78.6896	
FSP=26. 6060 開	$74 \mathrm{H}=21.9421$	$7 \% 54=57.4713$	7\%SH=59.4233
SSF $=48.6600$ \#	751-24.1254	484=19.1234	$4940=18.9366$

User Instructions

*Note: When \%VSH is calculated as ≤ 0 or $>100, \%$ VSH is set equal to 0 or 100 , respectively. Similarly, if $\% \mathrm{SW}$ is calculated as >100, it is set equal to 100 .

Program Listing

61＋LEL＂H20SAT＂	D．H SP E G G． $\mathrm{I}^{\text {a }}$ PROMPT
＂HATER SHT＂ 29	19 ST0 06＂\％45H＂
XROH＂TITLE＂FC？C 25	YROM＂LH＂GTO 17
PROMPT SF 27 ＂G／CH3＂	
HSTO E3 CLA HST0 64	854LBL ${ }^{\text {I }}$
$2457000.62 \quad 57025$	YEC 01 FCL 66
$2.15 \quad 57026 \quad 2 \quad 51027$	RCL 07 RCL 06 －
	61016
XROM＂IN＂ 6 ST0 80	94＋LBL E
	YE0日1 2150000
	＂G／CH3＂AST0 01 CLA
＂SHPLY＂ 4 XROH＂Y／H？＂	$85 T 082 \mathrm{RCL} 64$ RCL 63
FS？ 04 YE0 03	
	13 ST0 6月 EDN ${ }^{\text {a }}$ RH0 $\mathrm{b}^{\text {n }}$
42＊LEL 15	YEE 02 FCL 68 ＊
ADY $\mathrm{XROH}{ }^{2} \% \mathrm{FOR}{ }^{\text {a }}$	RCL 22 RCL 66 ＊
	LASTP RCL 07 RCL 23
AST0 82＊RT＂XEE 03	Y 3 －／GT0 16
1.9 RCL 18 ； 1.87 ＋	
$\mathrm{RCL} 26 \quad \mathrm{Y}=6$ ？ Y （\％Y	129＊LBL 61
ST0 26 FS ？ 0467000	＂GR MIN＂XROM＂IN＂
FCL 25 ECL 99	＂GR HAX＂XROH＂IH＂
RCL 18166 ／RCL 26	＂GR＂MROM＂IN＂RTH
Y才\％RCL $19 * / 1$	
61018	137＊LBL 02
75＊LBL 60	KYY ST0 64 KYY Rt
587000	RTN

1464LBL C
 ENTER \dagger SQRT SQRT 2 2；－Y才 RCL 20

KY？STOZ RDH $2, ~ R C L 26$ Y4Y RCL $25 ;$
XKY Y Y GTO 16 RCL $99 /$ SQRT +
1684LBL E
＂Hy＂AST0 01 CLA
ASTO 02＂PSP＂YEO 03
＂SSP＂YEO 日3 1 RCL 06
RCL $87 /$－GT0 I6
183＊LBL A

$5 T 060{ }^{2} \mathrm{FPOR}-\mathrm{Na}$
XROH＝IH＂ 14 STO 04
${ }^{2} \mathrm{ZPOR}-\mathrm{II}=$ YROH ${ }^{2}$ IN＂ 6
STO $09-2 \mathrm{P}-\mathrm{NSH}{ }^{-}$
XROH＂IN＂＂ P －ISH＂
XROH＂IH＂RCL 12
RCL 86 ＊RCL 15 －
RCL 87 RCL 06
RCL $88-\%$
$211+$ LDL 16

1 M Y ？		Y 0 ？ 0
ENTER \dagger	160	＊ 57020
－74SH＂	XROH	＂0UT＂

RCL 19 SQRT＊-2
223＊LBL 17

251＊LBL 18
RCL 27 ；YtX 106 ＊
LASTY XDY？XKY
5 SO 21 ＂\％ $\mathrm{SH}=$
4ROA＊OUT＂GTO 15
264 LLEL 03
HOFF ASTO 65 CF 22
ISG 00 CLI RCL IND 0 日 ＂$=$＝？CF 21 RUIEH CLA FS？55 SF 21 STOF
AOFF RCL INT 00 FC？ 22
GTO 64 K Y Y STO INI 00
CF 21 FC？ 55 RTH CLA
ARCL 85 ＂F＝＂ARCL
아 $=$ RRCL 01 ARCL 02
$3 F 21$ PRH RTH
2974LBL 84
CF 21 FS？55 SF 21 ENI

31. SLANT - True Stratigraphic and Vertical Thicknesses

Many offshore and an increasing number of onshore wells involve deliberately (or otherwise) deviated wells with angles as high as 70° or more from normal. The measured thickness of a formation from a well \log made in a deviated hole does not represent its true stratigraphic thickness or its true vertical thickness. Measured thickness can be greater or even less than true vertical thickness, complicating reserve estimations, pressure transient analysis, and geological studies. SLANT provides a simple method to solve these calculations to help both the geologist and engineer.
A good discussion of this problem is presented by Bateman and Konen. Figures 31-1 through 31-3 briefly illustrate the concepts of a deviated wellbore, dipping beds, and the combined effects of deviating wellbores and dipping beds.

Equations

```
MEAS H = BOTTOM - TOP
TVDDIF = MEAS H cos(WELDEV)
TST = cos(WELDEV) cos(BEDDIP) - MEAS H
    × cos(HOLEAZ - DIP AZ)
    sin(WELDEV)
    x sin(BEDDIP)
TVT = TST/cos(BEDDIP)
```

Nomenclature				
Symbol	Variable Name	Input or Output	English Units	$\begin{gathered} \text { SI } \\ \text { Units } \end{gathered}$
BEDDIP	Bed dip	I	-	-
$\begin{aligned} & \text { BOT- } \\ & \text { TOM } \end{aligned}$	Measured bottom of the formation	I	FT	M
DIP AZ	Dip azimuth	1	-	-
HOLEAZ	Hole azimuth	I	-	-
MEAS H	Measured thickness	O	FT	M
TOP	Measured top of the formation	I	FT	M
TST	True stratigraphic thickness	O	FT	M
TVDDIF	Difference betweeen measured depth and true vertical depth	0	FT	M
TVT	True vertical thickness	O	FT	M
WELDEV	Well deviation from vertical	I	-	-

Yes/No Questions

None

Example

Use SLANT to solve the example problem presented by Bateman and Konen. Data are as follows:

```
Well deviation \(=30^{\circ}\)
Hole azimuth \(=128^{\circ}\)
Bed dip \(=25^{\circ}\)
Dip azimuth \(=45^{\circ}\)
Measured top of formation \(=5,642 \mathrm{FT}\)
Measured bottom of formation \(=5,878 \mathrm{FT}\)
```

Keystrokes $(\mathrm{SIZE}>=010)$	Display	Comments
[XEQ] [ALPHA] SLANT [ALPHA]	$T O P=$?	
5642 [R/S]	ВОтTOM=?	
5878 [R/S]	WELDEV=?	
30 [R/S]	HOLEAZ=?	
128 [R/S]	$B E D D I P=$?	
25 [R/S]	DIP $A Z=$?	
45 [R/S]	$T O P=$?	MEAS H, TVDDIF, TST, and TVT printed

T0P $=5,642.6006 \mathrm{FT}$
EOTTOH=5, $978.6 อ 0$ FT
HELDEY=3
HOLEAZ $=128.6640$
BEDIIP $=25,8060$
IIP AZ=45. 066

HEAS H=236. 8606 FT
THIDIF=204. 3826 FT
$\mathrm{TST}=179.1555 \mathrm{FT}$
$\mathrm{THT}=197.6762 \mathrm{FT}$

Figure 31-3 (after Bateman and Konen)

User Instructions

General Information

Memory Requirements

Program length: 182 bytes (1 card)
Minimum size: 010
Minimum hardware: 41C
Hidden Options
None
Pac Subroutines Called
TITLE, INU, IN, OUTU

Registers

03 TOP (FT)
04 BOTTOM (FT)
06 WELDEV
07 HOLEAZ
08 BEDDIP
09 DIP AZ

Flags
None
Note: The program sets the trig mode to DEG.

Program Listing:

Section 9

Economics

32. DISC - Discounted Cash Flow Analysis

Calculates a variety of economic indices from annual net cash flows, including payout, net present value, and discounted cash flow rate of return.

32. DISC - Discounted Cash
 Flow Analysis

As a group, reservoir engineers usually do not perform all of the calculations we have discussed just for fun, although they are often quite enjoyable. We are all, presumably, quite interested in maximizing our total wealth. The decisions made by reservoir engineers (e.g., waterfloods, hydraulic fracture treatments, enhanced-recovery schemes, infill drilling) affect the amounts of reserves ultimately recovered and the rates of recovery and investments required.
These investments must earn more than their total associated costs to be worthwhile endeavors. The larger the difference between cash returned and cash expended, the more profitable the venture and the greater the justification for putting capital at risk. Several indices for measuring the financial merit of various projects are calculated by DISC. Each of the economic parameters described in this section is a quantitative measure of the desirability of undertaking a venture. A number of sophisticated commercial software packages are available for comprehensive economic analyses. DISC calculates three of the most common economic indices: PAYOUT, NPV, and DCFROR. An excellent discussion of economics and risk analysis for the practicing engineer is presented by Newendorp.

Characteristics of Economic Parameters

No single economic parameter used to measure the attractiveness of investment opportunities considers all of the factors or dimensions of investment projects that are pertinent to the decisionmaker. Therefore, it is important to select the economic parameters that most nearly represent the opportunity's financial characteristics. Listed below are some of the characteristiics that a realistic economic index should have:

1. It must be suitable for comparing and ranking the attractiveness of investment opportunities.
2. It should reflect the firm's time value of capital. That is, it should represent the firm's future investment opportunities.
3. It should provide a means of determining whether profitability exceeds some minimum level, such as cost of capital or the firm's average earning rates.
4. It should include quantitative statements of risk (probability numbers).
5. It would be desirable to have the parameter reflect other factors, such as corporate goals, decisionmakers' risk preferences, and the firm's asset position.
The following order of presentation is meant to describe the indices calculated by DISC, but does not rank one over the other. In fact, each index yields information of particular importance on a project's earning power. The terms used in the program are also defined.

Net Cash Flow

The term NET CASH FLOW (NCF) refers to the sum of:

> cash flow from operations
> (revenues - cash expenses - taxes
> - fixed \& working capital investments
> \pm terminal value

Typically, one would multiply oil and gas prices times net production volumes (after royalty) and subtract operating expenses; state, local, and windfall profit taxes; etc. The calculation of federal income taxes requires the calculation of depreciation, investment tax credits, etc. The taxes and investments (and perhaps salvage cost) are subtracted to yield annual NCFs. These are required to calculate any of the parameters in the program and are considered inputs.

Payout

Defined in general terms, PAYOUT is the length of time required to reach an undiscounted cumulative NET CASH FLOW of zero for an investment opportunity. Stated differently, PAYOUT is the length of time it takes to get back the capital investment (fixed and working capital).
PAYOUT is an easy number to calculate and is used by decisionmakers as a simple indicator of the riskiness of an investment opportunity. It serves this purpose because PAYOUT is an approximate measure of the rate at which cash flows are generated in the early years of the business or project.
PAYOUT has two major weaknesses as a measure of attractiveness. First, it ignores cash flows beyond the time of payout; therefore, decisionmakers have no information about the total economic wealth created by the investment or the rate of cash'flow generation after the payout time. Second, it is nearly impossible to rank investment opportunities of different classifications.
PROJECT PAYOUT occasionally is used to refer to payout of a group of investments. For example, a
development drilling program might be initiated in a certain field. Individual wells will pay out at various times, but PROJECT PAYOUT would be the time at which the cumulative NET CASH FLOW for all wells would equal zero. Some individual wells (and all dry holes) need not have a PAYOUT for a PROJECT PAYOUT to exist.

Time Value of Money Considerations

PAYOUT is an economic parameter that evaluates only the magnitude of cash flows. However, timing and reinvestment rate are also relevant aspects of cash flow streams because cash has a cost - the cost of capital. Other than PAYOUT, virtually all economic parameters include some recognition of timing and reinvestment rate of cash inflows and outflows.

Cost of Capital

The prices that investors are willing to pay for a firm's securities (stocks, bonds, etc.) and the return that they demand from those securities determine a market cost for capital raised through debt and equity. The cost of debt is easy to see because it is simply the interest that must be paid. There is a corresponding cost for shareholder's equity since investors in the firm want to earn a satisfactory rate of return on their investment. This cost applies both to new investments made in the firm through purchases of stock and to cash that is retained in the company rather than paid out through dividends. These costs, combined with the capital structure of the firm, result in a weighted average cost of capital. (Normally, the analyst need not calculate the cost of capital for each project. Additional information on the weighted average cost of capital is given in Brigham and Weston.) Since this is the average rate demanded by the capital markets for the investment funds, the firm should consider only those investments whose cash flows will yield at least that rate.
As a final comment regarding the cost of capital, generally it is inappropriate to mix the decisions of whether an investment should be made and how the investment will be financed. That is, with rare exceptions, the cost of capital should not be the marginal cost of debt or equity just because the next available dollar will come from a loan or stock issue, respectively. Capital structure decisions are longterm policy decisions. In essence, if not in fact, most corporations will continually be borrowing funds, reusing internally generated funds, and issuing stock to finance its businesses.

Present Value and Discounting

With PAYOUT, the focus of economic evaluation is the accumulated value of cash flows out to some
point in time. This is a very natural way to think about evaluating cash flows, since this so closely parallels everyday savings account computations. But it does have drawbacks in business applications. One of these is that, in the comparison of alternatives, we are dealing in "future" dollars. Considering the typical pattern of project lives for investment opportunities, that future could be very distant. To many decisionmakers, it would seem rather unnatural to think in terms of dollars 20 years from now, particularly when the decision is being made with "now" dollars. If the perspective is changed from future dollars to now dollars, this problem is eliminated.

The process of making now dollars out of future dollars is known as discounting. Generally, discounting is a technique whereby the value of any time period's cash flow is determined for any other time period. Normally, an analyst is concerned with the present value - now dollars - of some future period's cash flow. The present value of a future cash flow is the amount that makes us indifferent between receiving the present value now or waiting for the future payment. Or, in other words, if X dollars are to be received in the future, what amount of cash is of equivalent value today at a $\mathrm{Y} \%$ rate of return?
Please note that any one period's cash flow is a tangible item; the corporate treasurer can count it and deposit it in a bank. Today, the present value of that same cash flow is a conceptual quantity; only in that time period does it become tangible.
The computation of the present value of some period's cash flow is described mathematically by:

$$
\begin{aligned}
\mathrm{PV}_{\mathrm{T}}= & \text { period's net cash flow } \\
\text { factor } \mathrm{t}_{\mathrm{t}} & \text { discount } \\
\text { where } \mathrm{T}= & \text { base period } \\
\mathrm{t} & =\text { number of time periods from } \\
& \text { period } \mathrm{T}
\end{aligned}
$$

Discount Rate

When cash flows are discounted to their present values, there is a need to do so at some discount rate. The question in the previous section would use Y\% as the discount rate. The discount rate is used to calculate the discount factor that makes now dollars out of future dollars.
Cash that becomes available does not lie idle; rather, it is recommitted to other activities throughout the corporation and these give rise to future cash flows. Strictly speaking, the discount rate that is sought is the rate that must be earned on a dollar so that management is indifferent between receiving the dollar now or receiving the dollar plus its earnings in the future.
The calculation of certain economic indices, such as NET PRESENT VALUE, requires an explicit
assumption as to the corporate discount rate. Over the years, numerous authors have written thousands of pages on the subject of the proper discount rate to use in cash flow analysis. Analysts have been asked to use the cost of capital, a corporate cutoff rate (hurdle rate), or whatever the boss says. We suggest using the cost of capital as the appropriate corporate discount rate.

Various methods of discounting exist, and their effect on present value depends upon how the discount factor is calculated. The method used by DISC is annual end-of-period discounting, in which cash flows are modeled to occur at the end of each time period. This is the most conservative of the discounting methods used for discounting positive NET CASH FLOWS.

$$
\begin{aligned}
& \text { Discount factor }=1 /(1+r)^{t} \\
& \begin{aligned}
\text { where } r & =\text { corporate discount rate } \\
t & =\text { number of time periods from } \\
& \text { time zero }
\end{aligned}
\end{aligned}
$$

Discounted Cash Flow Rate of Return (DCFROR)

Conceptually, the discounted cash flow rate of return (DCFROR) is the discount rate that will make the present value of annual NET CASH FLOWS sum to zero. DCFROR is given different names including the internal yield, internal rate of return (IRR), profitability index, marginal efficiency of capital, and the investor's method.

The DCFROR calculation is made after the series of anticipated NET CASH FLOWS has been defined. The calculation is a trial-and-error process that begins by selecting a discount rate and discounting all the NET CASH FLOWS back to time zero, i.e., finding the present value of all cash flows associated with an investment. If the sum of the present values of the NET CASH FLOWS is greater than zero, the discount rate selected was too low. If the sum of present values is exactly equal to zero, the discounting rate selected is by definition the rate of return.

Specific characteristics of DCFROR include the following:

1. Computation of the rate of return requires a series of trial-and-error computations because the mathematical equation for the rate of return cannot be solved explicitly. This is one reason it is generally only calculated by computer or calculator solutions.
2. The DCFROR concept accounts for timing differences in cash inflows and outflows. To be able to compute rate of return, the analyst must predict a cash flow time rate schedule over the entire life of the investment opportunity.
3. DCFROR is an indicator that is independent of the absolute magnitude of the cash flows.
4. There are certain types of cash flow schedules in which there is more than one discount rate that satisfies the definition of DCFROR. Examples of cash flow schedules that sometimes lead to multiple rates of return include some rate acceleration projects and projects requiring a major expenditure at a later point in the life of the project. In all cases when there is not a unique solution to the rate of return algorithm, it is because the arithmetic sign of the cumulative cash flows has changed more than once. In other words, the cumulative NET CASH FLOWS are negative early in the project, turn positive at some future date, and then turn negative again or vice versa. More than one arithmetic sign change of the cumulative cash flows is a necessary, but not a sufficient condition for multiple solutions to the rate of return algorithm.
5. The DCFROR cannot be calculated for the following situations:
a. Cash flows are all negative; for example, a dry hole.
b. Cash flows are all positive; for example, an investment is paid out of future revenues.
c. Total undiscounted NET CASH FLOWS are less than the investment; for example, a marginal producing well or field depleted before reaching payout.
For these situations, the rate of return is mathematically undefined and cannot be computed. Negative rates of return have no meaning. A zero rate of return corresponds to a cash flow schedule for which the undiscounted net cash flows exactly equal the undiscounted investment.
6. Cash flows received early in the project are weighted more heavily than later cash flows. This becomes particularly pronounced as the discount rate increases. Cash flows received or disbursed late in the life of the project (after 20 years or so) have very little effect on the computed rate of return. The higher the rate of return, the less the effect of late-in-the-life cash flows.
The computed rate of return is relatively sensitive to errors in estimating initial cash outflows (investments) and early cash inflows (revenue-related streams). When uncertainty is present, say about drilling cost, it is recommended that DCFROR be computed for several possible variations in the initial investment. A small variation on a percentage basis in the initial investment can sometimes cause
a much larger percentage variation in the resultant rate of return.
DCFROR is a convenient measure of financial attractiveness to compare with minimum criteria such as the cost of capital or corporate objectives for annual growth. Management can easily relate a rate of return to interest on loans, etc. This is one of the reasons for its wide popularity as an economic index.
However, DCFROR has certain weaknesses when viewed as being similar to an interest rate on a loan. In this context, DCFROR includes the implicit assumption that all cash inflows will be reinvested at the computed rate of return when received. If they are not reinvested at that rate, the initial expenditure will not have the earning power of the rate of return as calculated. This is an extremely important characteristic of DCFROR, which is often misunderstood or ignored by those who assume the criterion to be a realistic measure of financial attractiveness in the same sense as interest rates.
For example, if future reinvestment opportunities are in the range of 12 to 15%, then higher rate of return projects, say 30 to 40%, will actually yield something less than that. Lower rate-of-return projects, say 8%, will actually yield a higher figure.

DCFROR is not a completely realistic parameter to rank the desirability of competing investments because risk or probability numbers cannot be incorporated mathematically into the rate of return calculation. However, there are methods that will allow risk weighting of NET CASH FLOW to calculate DCFROR.
In summary, DCFROR is certainly a more realistic measure of attractiveness than PAYOUT, primarily because it includes the time value of money concept. It is a useful measure of the relative attractiveness of investments having approximately the same total life and cash flow patterns. DCFROR's weaknesses as a measure of financial attractiveness are the frequent problems of satisfying the underlying assumption of reinvestment at the computed rate of return and the failure of the index to be capable of considering explicitly the dimensions of risk and uncertainty.

Net Present Value (NPV)

If one accepts the primary responsibility of corporate management is the creation of economic wealth, then the NET PRESENT VALUE concept is the most important economic criterion that senior management has for evaluating the attractiveness of an investment opportunity. NET PRESENT VALUE, sometimes called PRESENT WORTH, is the amount of wealth that an investment opportunity will create after all costs have been paid, including the cost of capital.

The NET PRESENT VALUE at a given discount rate (usually that discount rate will be the cost of capital) is determined by discounting all the NET CASH FLOWS related to an investment opportunity to their present value at time zero. The word "net" appears in the name of the concept because the present value of cash outflows are subtracted from the present value of cash inflows. These cash outflows are generally associated with investments or capitalized items. However, negative cash outflows can be associated with expense items, such as feedstocks or fixed operating expenses, and still lend themselves to being evaluated on a NET PRESENT VALUE basis.

The concept of NET PRESENT VALUE indicates to management how much additional cash (in presentdenominated dollars) will be in the corporate treasury by the end of the project life after all costs, including the cost of debt and equity capital, have been paid. It is the only economic index that will indicate the total amount of wealth being created. Other economic indices address the efficiency at which cash is generated. Such numbers tend to be ratios, but these economic indices are not sufficient to project the total wealth that will be created by an investment decision.
Beyond its ability to indicate wealth creation, NET PRESENT VALUE has other attractive features as an economic indicator. Unlike the DCFROR calculation, the NET PRESENT VALUE calculation is not a trial-and-error solution. For a given discount rate, multiple values are impossible. Furthermore, NET PRESENT VALUE is suitable for use with probability numbers to consider risk in a quantitative and explicit manner. It also can be used to evaluate purchase versus leasing alternatives - a case in which all cash flows are negative. NET PRESENT VALUE's greatest disadvantage as an economic index is that it does not indicate the rate of cash generation, an important consideration under conditions of capital limitation.
In determining the NET PRESENT VALUE, the appropriate parameter for discounting is cash and, even more precisely, NET CASH FLOW. It is inappropriate to calculate NET PRESENT VALUE on profit or on cash flow from operations because profit is not the equivalent of cash, and cash from operations ignores the relevant cash flow for investments in fixed or working capital.

Net Present Value and DCFROR

For all investment opportunities in which the rate of return is calculated to be higher than the assumed cost of capital, and assuming the company is not operating on a capital allocation basis, both DCFROR and NET PRESENT VALUE will yield the same accept or reject decisions. The priority assigned
to projects, however, could vary, depending upon the actual figures for NET PRESENT VALUE and DCFROR.
If one accepts the statement that management's responsibility is to increase the wealth of the shareholders (and this is one of the reasons that financial markets allocate capital to a corporation), then the criteria of accepting the NET PRESENT VALUE rather than the DCFROR index is the most suitable action for management to take. Under the assumption that management is interested in increasing economic wealth, fixation upon a rate of return can lead to poor decisions as can be seen from the following example (Figure 32-1).
If the cost of capital (corporate discount rate) lies to the left of the intersection of the NET PRESENT VALUE curves of the two mutually exclusive projects, then accepting Project B (the higher DCFROR project) will result in a lower NET PRESENT VALUE project being accepted. If the cost of capital lies to the right of the intersection - in other words, if the cost of capital is higher than the discount rate at which the two mutually exclusive projects have an equal NET PRESENT VALUE - then accepting the higher rate of return project (Project B) is consistent with the objective of wealth maximization because its NET PRESENT VALUE is higher than Project A. Under the assumption that management's task is to increase stockholder's wealth, giving priority to

DCFROR as an economic indicator has the potential for leaving money on the table (a minus b at the corporate discount rate), but using NET PRESENT VALUE does not. Other factors such as the relative riskiness of the projects or the timing of the cash flows or other characteristics pertinent to the decision may, of course, favor one project over the other, and these factors should be brought to the attention of senior management so that prudent decisions can be made. Nonetheless, the NET PRESENT VALUE index is preferred to DCFROR.

Present Value Ratio

To sidestep the weakness of NPV being dependent on the absolute size of the cash flows, the PRESENT VALUE RATIO index can be used. This is the ratio of discounted cash inflows to discounted cash outlays, both at the corporate discount rate. A similar criterion is the DISCOUNTED PROFIT TO INVESTMENT RATIO, also known as investment efficiency. The DISCOUNTED PROFIT TO INVESTMENT RATIO is simply the PRESENT VALUE RATIO minus one. A PRESENT VALUE RATIO equal to one is equivalent to a project with a NET PRESENT VALUE of zero and the rate of return equal to the discount rate.
PRESENT VALUE RATIO has many of the advantages of NET PRESENT VALUE (such as realistic

Figure 32-1
reinvestment rate, no multiple rates, not a trial and error solution, etc.) and also provides a measure of profitability per dollar investment. This is a particularly important consideration for selecting projects from a list that contains more opportunities than the available funds can cover. The PRESENT VALUE RATIO is one of the most important economic indices in cases where capital is limited and the efficiency of investments must be high so cash can be generated short term to supply funds for subsequent investments. If there are investments at other than time zero, DISC can calculate the NPV of investments in a separate run. This allows the user to calculate the PRESENT VALUE RATIO at any discount rate (see Example 2).

Equations

$$
\begin{aligned}
& \mathrm{CUMCF}=\mathrm{CF} 0+\sum_{i=1}^{\mathrm{n}} \mathrm{NCF}_{\mathrm{i}} \\
& \text { PAYOUT }=\mathrm{i}-\frac{\mathrm{CUM} \mathrm{CF}_{\mathrm{i}}}{\mathrm{NCF}_{\mathrm{i}+1}}
\end{aligned}
$$

where $\mathrm{i}=$ the last period number in which $\mathrm{CUM} \mathrm{CF}<0$
CUM CF $\mathrm{F}_{\mathrm{i}}=\mathrm{CUM} \mathrm{CF}$ at period i
$\mathrm{NCF}_{\mathrm{i}+1}=$ NCF at period $\mathrm{i}+1$

$$
\mathrm{NPV}=\mathrm{CF} 0+\sum_{i=1}^{\mathrm{n}} \frac{\mathrm{NCF}_{\mathrm{i}}}{\left(1+\left.\frac{\% \mathrm{R}}{100}\right|^{\mathrm{i}}\right.}
$$

DCFROR is calculated iteratively using Newton's method as follows:

$$
\operatorname{DCFROR}_{j+1}=\text { DCFROR }_{j}-\frac{100 \text { NPV }_{j}}{\sum_{i=1}^{n} \frac{\text { NCF }_{i}}{i\left|1+\frac{\text { DCFROR }_{j}}{100}\right|^{-i-1}}}
$$

$N P V_{j}=N P V$ at $\% R=$ DCFROR $_{i}$
$\mathrm{n}=$ number of NCF values input by the user

Nomenclature

Symbol	Variable Name	Input or Output	English Units	SI Units
CF 0	Cash flow at time zero (initial investment)	I	-	-
	inven			

Symbol	Variable Name	Input or Output	English Units	$\underset{\text { SInits }}{\text { SI }}$
CUM CF	Cumulative net cash flows	O	-	-
DCFROR	Discounted cash flow rate of return	O	-	-
EST \%R	Estimated DCFROR to begin iterative solution (set to 25% if no value input)	I	-	-
NCF_{i}	Net cash flow at time	I	-	-
NPV	Net present value	O	-	-
NPV10	Net present value at $\% \mathrm{R}=10$	O	-	-
PAYOUT	Time at which cumulative net cash flows equal zero	O	YR	YR
\%R	Rate at which NPV is to be evaluated	I	-	-

Yes/No Questions

DO ROR?	Yes: Calculate DCFROR.
	No: Don't calculate DCFROR.
EDIT?	Yes: Allow editing of NCF values.
	No: No editing necessary.

Example 1

These examples illustrate the procedures used to calculate economic indices from NET CASH FLOW. The forecasts of production, prices, expenses, taxes, etc., must all have been completed previously. Consider the following problem. An expenditure of $\$ 1,000$ is expected to result in the following net cash inflows. Calculate PAYOUT, DCFROR, and NET PRESENT VALUE at 10,15 , and 20%.

Time $($ YR $)$	Cash Outflow	Cash Inflow	Net Cash Flow
0	1,000	0	$-1,000$
1	-	450	450
2	-	300	300
3	-	250	250
4	-	200	200
5	-	175	175
6	1,000	150	150
		1,525	525

Keystrokes (SIZE > = 039)	Display	Comments
[XEQ] [ALPHA] DISC [ALPHA]	CF $0=$?	
1000 [CHS] [R/S]	NCF 1=?	
450 [R/S]	NCF 2=?	
300 [R/S]	NCF 3 $=$?	
250 [R/S]	NCF 4 $=$?	
200 [R/S]	NCF 5 $=$?	
175 [R/S]	NCF 6=?	
150 [R/S]	NCF 7 $=$?	
[R/S]	EDIT? Y/N:N	
[R/S]	DO ROR? Y/N:	CUM CF, PAYOUT, and NPV10 printed; last character is Y or N
Y [R/S]	$E S T \% R=$?	Guess higher than 10\% since NPV10 is positive
15 [R/S]	$\% R=$?	DCFROR printed
15 [R/S]	$\% R=$?	NPV at 15\% printed
20 [R/S]	$\% R=$?	NPV at 20\% printed

DISCASH

CF $6=-1,060.60$
HCF $1=456,60$
NCF $2=300.68$
NCF $3=250.69$
MCF $4=280.89$
HCF $5=175.86$
NCF 6=150.86
CUH CF $=525.0$.
FAYOUT $=3.60$ YR
HPVIG=174.79

IO ROR: YES
EST $4 \mathrm{R}=15.6$ 明
ICFFOR=17.23
4k=15.918
$\mathrm{NFY}=48.73$
7R=26. 66
$N P Y=-54.98$

Example 2

In Example 1, the PRESENT VALUE RATIO (PV RATIO) is equal to the NPV plus the investment divided by the investment, or $(1,000+174.79) /$ $1,000=1.17$. This works easily if the only cash outflows are at time zero. However, if year two's cash flow had been an investment of $\$ 100$, what would the PV10 and PV15 ratios have been? The NPV of the investments must be calculated.

Keystrokes	Display	Comments
[R/S]	CF O=?	
[R/S]	NCF $1=$?	
0 [R/S]	NCF 2 $=$?	
100 [CHS] [R/S]	NCF 3=?	
[R/S]	EDIT? Y/N:N	
[R/S]	$\% R=$?	CUM CF
		and
		NPV10
		printed;
		PAYOUT
		not output
		and DO
		ROR?
		Y / N
		prompt
		does not
		appear
		since
		CUM
		CF<0
15 [R/S]	$\% R=$?	NPV at 15\% printed

The PV ratios can be calculated as follows:

$$
\begin{aligned}
& \text { PV10 ratio }=\frac{1,082.64+174.79}{1,082.64}=1.16 \\
& \text { PV15 ratio }=\frac{1,075.61+48.73}{1,075.61}=1.05
\end{aligned}
$$

HCF $1=0.60$
HCF $z=-160.80$

CIM CF=-1.100. 01
NPU1G=-1, 882.64
$7 \mathrm{R}=15.69$
$\mathrm{NPY}=-1.975 .61$

User Instructions

Note: for $\mathrm{NCF}_{\mathrm{i}}, \mathrm{i}=1,2,3, \ldots, n$, where n is the number of NCF values input by the user.

* Tones will sound while DCFROR is calculated iteratively.

General Information	
Memory Requirements	
Program length：	378 bytes（2 cards）
Minimum size：	039＊
Minimum hardware：	41C＋ 1 memory module
＊This size will allow up modate v NCF values，	to 25 NCF values．To accom－ use size $15+\mathrm{v}$ ．

Hidden Options

None

Pac Subroutines Called
 TITLE，IN，Y／N？，OUT，OUTU

Registers

06	Scratch
07	Scratch
08	EST \％R，\％R
09	Pointer
10	Scratch

Program Listing

FIX 2 ＂DISCASH 39
XROH＂TITLE＂FCOC 25
PROMPT CF 67
094LEL 15
CF 031.3 ST0 69
13＊LEL 14
12 STO 00 ＂CF 8
YROH＂IN＂
18＋LBL 13
＊NCF＂FS？C 29 SF 67
RCL 09 FIX 6 ARCL X
FIX 2 FS2C 日 6729
XROH＂IN＂FC？ 03
F5？ 22 GT0 0616
334LEL 68
ISG $89 \quad 67013$
364LBL 01
RCL 09 InT $1-163$
＂EDIT＂ 3 YROM＂Y／W？＂
FS？ $83 \quad 6701412.013$
ST＋ 69 SF 日 RCL 9
57＋LBL 12
 $+\mathrm{X} \neq 8$ ？ $\mathrm{XD日}$ ？GT0 82 STO 11 K KY STO 10 WOY

69＊LBL 12
ISG $\begin{gathered}\text { GT0 } \\ 12 \\ 5 T 0 \\ 12\end{gathered}$ ＂CUH CF＂XROM＂OUT＂
范0？GTO 84 RCL 09

78＋LEL 11
RCL IND $X \quad X \pm 0$ ？GTO OS
RDH 15 C X G 70 II
854LBL 63
XD日？GTO 04 RCL 16
INT $1+$ RCL 11
PCL IND Y／－ 14 －

11 Scratch
12 CUM CF
13 CF 0
14 NCF
15 NCF 2
16 NCF 3
etc．
Registers 03 and 04 unused

Flags

00 Set：All cash flows are >0 ．
Clear：Not all cash flows are >0
03 Set：Allow editing of cash flows．
Clear：No editing necessary．
04 Set：Calculate DCFROR．
Clear：Do not calculate DCFROR．
07 Set：Flag 29 set．
Clear：Flag 29 clear．
Note：The program sets the display mode to FIX 2.

＂YR＂ASTO O1 ASTO Y	RCL 86 XCY ／ 100 O
CLA ASTO 盺 AST0 2	
＂Payout ${ }^{\text {a }}$ YROA＂gutu＂	，HES $1 \mathrm{E}-4 \mathrm{Y}=\mathrm{Y}$ ？
	GTO 10 RCL 88 TOHE 9
106＊LBL 04	＂DCFROR＂${ }^{\text {KROM }}$＂OUT＂
10 STO 08 YEQ 16	
	172＊LEL 88
	AIL 7 ST0 06 \％\％
	YROM＂IN＇FC？ 22
XROH－Y／N？${ }^{\text {F }}$ FC？ 04	GTO 15 YEE 16 ＂APY＊
67008757000	
＂EST $\mathrm{ZR}^{\text {c }}$ KROM＂IN＂	
FC7 $22 \quad 25970$	184＊LBL 16
	RCL 88160 ／ 1
1294LBL 10	ST0 87 RCL 99
TOHE 5 YEE 16 STO 66	$57011+5010$
RCL $6915011+$	RCL 13
STO 18 cLX	
	197＊LBL 97
139＊LBL 09	RCL INI 10 RCL 67
RCL 07 RCL $111+$	RCL 11 Ytix
CHS YY\％RCL 11 ＊	ISG 11 CLD ISG 10
RCL IND $16 *+15611$	$6 T 007$ END
CLI IS6 16 G70 69	

Section 10
 Bar Code

Note: Without protection, bar code will wear with use. To protect your bar code, place one of the transparent sheets you received with your Wand over the bar code, glossy side down, before you begin scanning. If you want to use other types of protective coverings for your bar code, choose those that will not present a glossy surface to the Wand tip. A glossy surface may cause reflections that can reduce the Wand's ability to read the bar code you are scanning.

```
PROGRAM 1: OILPVT
D. NATHAN MEEHAN
SIZE: 028
ERIC L. VOGEL
PAGE 1
OF 2
```

PROGRAM REGISTERS NEEDED: 51
ROW 1 (1:2)

ROW 2 (2:7)

ROW 3 ($7: 11$)

ROW 5 (19:23)

ROW 6 (24: 29)

ROW 7 (30:35)

ROW 14 (83 : 89)

ROW 16 (98: 102)

	2	PAGE 1
PIZE: 045	2	OF 2
PROGRAM REGISTERS NEEDED: 56	D. NATHAN MEEHAN	

PROGRAM 3: DEW	3	PAGE 1
SIZE: 045	D. NATHAN MEEHAN	OF 2


```
PROGRAM 4: GOR
4
SIZE: }02
PROGRAM REGISTERS NEEDED: }9
```


D. NATHAN MEEHAN
 ERIC L. VOGEL

PAGE 1 OF 3

ROW 1 (1:2)

ROW 2 (2:5)

ROW 11 (45:50)
||TH:|
ROW 12 (51: 59)

ROW 14 (65:70)

ROW 15 (70:77)

ROW 18 (86:90)

PAGE 3 OF 3

ROW 39 (201: 210)

ROW 42 (227: 237)

ROW 45 (259: 268)

PAGE 1
OF 2

PROGRAM 6: GASPROD	D. NATHAN MEEHAN	PAGE 1
SIZE: 027	ERIC L. VOGEL	OF 2

PROGRAM REGISTERS NEEDED: 55


```
PROGRAM 7: DECLINE
SIZE: 049
```

PROGRAM REGISTERS NEEDED: 268

PROGRAM 7: DECLINE
SIZE: 049
\section*{D. NATHAN MEEHAN}
ERIC L. VOGEL
PAGE 2 OF 8


```
PROGRAM 7: DECLINE
SIZE: 049
```

D. NATHAN MEEHAN
ERIC L. VOGEL

```
PAGE 3 OF 8
```


ROW 49 (223: 233)

ROW (233: 243)

ROW 53 (258:267)

PROGRAM 7: DECLINE	D. NATHAN MEEHAN	PAGE 4
SIZE: 049	ERIC L. VOGEL	OF 8

ROW 55 (275: 283)

ROW 59 ($310: 318$)

ROW 61 (329:338)

ROW 62 ($339: 348$)

ROW 63 (348: 357)

ROW 64 (358: 367)

ROW 66 (377: 383)

ROW 67 (384:385)

ROW 69 (394: 398)

ROW 72 (407 : 412)

PROGRAM 7: DECLINE	D. NATHAN MEEHAN	PAGE 6
SIZE: 049	ERIC L. VOGEL	OF 8

ROW 91 (560:569)

ROW 96 (607: 618)

ROW 97 (619: 629)

ROW 103 (674: 684)

ROW 105 (693: 699)

(
ROW 108 (711: 721)

 ROW 111 (731: 739)

PROGRAM 7: DECLINE
D. NATHAN MEEHAN
ERIC L. VOGEL
PAGE 8 OF 8

PROGRAM 8: OIP	D. NATHAN MEEHAN	PAGE 1
SIZE: 041	ERIC L. VOGEL	OF 3

PROGRAM REGISTERS NEEDED: 87

PROGRAM 8: OIP
D. NATHAN MEEHAN
SIZE: 041
ERIC L. VOGEL
PAGE 2 OF 3

PROGRAM 9: GIP	D. NATHAN MEEHAN	PAGE 1
SIZE: 040	ERIC L. VOGEL	OF 2

PROGRAM REGISTERS NEEDED: 63

PROGRAM 10: OILMBE	D. NATHAN MEEHAN	PAGE 1
SIZE: 044	ERIC L. VOGEL	OF 4

PROGRAM REGISTERS NEEDED: 128

PROGRAM 10: OILMBE	D. NATHAN MEEHAN	PAGE 3
SIZE: 044	ERIC L. VOGEL	

PROGRAM 11: KG/KO	D. NATHAN MEEHAN	PAGE 1
SIZE: 041	ERIC L. VOGEL	OF 3

PROGRAM REGISTERS NEEDED: 95


```
PROGRAM 11: KG/KO
D. NATHAN MEEHAN
ERIC L. VOGEL
PAGE 2 OF 3
```

ROW 19 (102: 108)

ROW 20 (109: 112)

ROW 21 (113: 117)

ROW 22 (117: 123)

ROW 23 (124:130)

ROW 24 (131: 135)

ROW 25 (135: 140)

ROW 26 (140:146)

ROW 27 (147: 155)

ROW 28 (156: 161)

ROW 30 (169: 174)

ROW 31 (174: 181)

ROW 33 (190: 196)

ROW 34 (196: 203)

PROGRAM 12: OILPRED	D. NATHAN MEEHAN
SIZE: 063	ERIC L. VOGEL

PROGRAM REGISTERS NEEDED: 216

PROGRAM 12: OILPRED	D. NATHAN MEEHAN	PAGE 2
SIZE: 063	ERIC L. VOGEL	OF 7

PROGRAM 12: OILPRED
SIZE: 063
D. NATHAN MEEHAN

ERIC L. VOGEL

PAGE 3
OF 7

PROGRAM 12: OILPRED
SIZE: 063
D. NATHAN MEEHAN

ERIC L. VOGEL

PAGE 4 OF 7


```
PROGRAM 12: OILPRED
D. NATHAN MEEHAN
SIZE: 063
```

D. NATHAN MEEHAN

ERIC L. VOGEL

PAGE 6
OF 7

PROGRAM 13: QOVST
D. NATHAN MEEHAN
PAGE 1
SIZE: 057
ERIC L. VOGEL
OF 4

PROGRAM REGISTERS NEEDED: 128

D. NATHAN MEEHAN

ERIC L. VOGEL

PAGE 2 OF 4

ROW 19 (101: 106)

ROW 20 (107 : 112)

ROW 22 (115: 120)

ROW 24 (126:134)

ROW 25 (135: 140)

ROW 27 (148: 154)

ROW 28 (155: 161)


```
PROGRAM 13: QOVST
D. NATHAN MEEHAN
PAGE 3
SIZE: 057
```

```
ERIC L. VOGEL
```

```
ERIC L. VOGEL
```

```
    OF 4
```



```
PRGMS 14&15: INFCOEF & INFLUX
D. NATHAN MEEHAN
ERIC L. VOGEL
```

PAGE 1 OF 5

D. NATHAN MEEHAN

ERIC L. VOGEL

ROW 19 (91 : 96)

ROW 23 (111: 116)

ROW 26 (128: 133)

ROW 27 (134: 141)

ROW 28 (141: 147)

ROW 30 (154: 160)


```
PRGMS 14&15: INFCOEF & INFLUX
D. NATHAN MEEHAN
ERIC L. VOGEL
```

ERIC L. VOGEL
OF 5

```
PAGE 4


\begin{tabular}{llc} 
PROGRAM 16: GASMBE & D. NATHAN MEEHAN & PAGE 1 \\
SIZE: 052 & ERIC L. VOGEL & OF 6
\end{tabular}

PROGRAM REGISTERS NEEDED: 177

\begin{tabular}{llc} 
PROGRAM 16: GASMBE & D. NATHAN MEEHAN & PAGE 2 \\
SIZE: 052 & ERIC L. VOGEL & OF 6
\end{tabular}

D. NATHAN MEEHAN

ERIC L. VOGEL

PAGE 3
OF 6


PAGE 4 OF 6



\begin{tabular}{llc} 
PRGMS 17\&18: BHPWHP \& GASDEL & D. NATHAN MEEHAN & PAGE 1 \\
SIZES: \(044 \& 058\) & ERIC L. VOGEL & OF 6
\end{tabular}

PROGRAM REGISTERS NEEDED: 192

\begin{tabular}{llc} 
PRGMS 17\& 18: BHPWHP \& GASDEL & D. NATHAN MEEHAN & PAGE 2 \\
SIZES: \(044 \& 058\) & ERIC L. VOGEL & OF 6
\end{tabular}


D. NATHAN MEEHAN

ERIC L. VOGEL

PAGE 4 OF 6



PROGRAM 19: STAB
SIZE: 049
D. NATHAN MEEHAN
ERIC L. VOGEL
PAGE 1
OF 4

PROGRAM REGISTERS NEEDED: 112




PROGRAM 19: STAB
D. NATHAN MEEHAN

SIZE: 049
ERIC L. VOGEL
PAGE 4 OF 4

\begin{tabular}{llr} 
PROGRAM 20: BLDUTIL & D. NATHAN MEEHAN & PAGE 1 \\
SIZE: 063 & ERIC L. VOGEL & OF 4
\end{tabular}

PROGRAM REGISTERS NEEDED: 112
ROW 1 (1: 2)


ROW 2 (2:3)


ROW 5 (15:20)

ROW 6 (20:25)

ROW 7 (26:29)

ROW 8 (29:33)


ROW 11 (44:50)


ROW 12 (50:55)


ROW 13 (55:61)

ROW 14 (61: 67)

ROW 15 (68:72)

```

PROGRAM 20: BLDUTIL
D. NATHAN MEEHAN
SIZE: 063

```
D. NATHAN MEEHAN

ERIC L. VOGEL

PAGE 2 OF 4
\[
\text { ROW } 20(100: 106)
\]
\[
\text { ROW } 21 \text { (106: 112) }
\]

\[
\text { ROW } 22 \text { (112: 119) }
\]

ROW 24 (129: 137)

\section*{ \\ ROW 25 (138: 145) \\ }

ROW 30 (175: 183)


ROW 33 (198: 203)


D. NATHAN MEEHAN

ERIC L. VOGEL

PAGE 4 OF 4

```

PROGRAM 21: BUILDUP
SIZE: 054

```
PROGRAM REGISTERS NEEDED: 198


PAGE 2 OF 6


PROGRAM 21: BUILDUP
SIZE: 054

\section*{D. NATHAN MEEHAN \\ ERIC L. VOGEL}

PAGE 3 OF 6

ROW 37 (200:206)


ROW 41 (221: 225)


ROW 44 (239: 245)


ROW 46 (253: 257)

ROW 47 (257: 265)

ROW 48 (266: 272)

ROW 49 (272: 276)


\begin{tabular}{llc} 
PROGRAM 21: BUILDUP & D. NATHAN MEEHAN & PAGE 4 \\
SIZE: 054 & ERIC L. VOGEL & OF 6
\end{tabular}


```

PROGRAM 21: BUILDUP
D. NATHAN MEEHAN
ERIC L. VOGEL
PAGE }
OF }

Page missing from scan

Page missing from scan

```
PROGRAM 22: DRAW
D. NATHAN MEEHAN
SIZE: 089
```

```
ERIC L. VOGEL
PAGE 4 OF 6
```


PROGRAM 22: DRAW
SIZE: 089
D. NATHAN MEEHAN

ERIC L. VOGEL

PAGE 5
OF 6

PROGRAM 23: FWVSW	D. NATHAN MEEHAN	PAGE 1
SIZE: 051	ERIC L. VOGEL	

PROGRAM REGISTERS NEEDED: 128


```
ROW 19 (98: 104)
|{
ROW 21 (109:117)
```



```
ROW 22 (117: 123)
```



```
ROW 25 (141: 143)
```



```
ROW 27 (148: 152)
|\
ROW 28 (153: 162)
|{
ROW 31 (172: 179)
```



```
ROW 32 (179:184)
```



```
ROW 33 (184: 188)
```



```
ROW 34 (189:197)
```



```
ROW 35 (198:204)
```



```
ROW 36 (205: 213)
```



```
PROGRAM 24: 5SPOT
D. NATHAN MEEHAN
ERIC L. VOGEL
PAGE 1
SIZE: 065
    OF }
```

PROGRAM REGISTERS NEEDED: 253

D. NATHAN MEEHAN

ERIC L. VOGEL

PAGE 3 OF 8
ROW 38 (195: 198)

ROW 40 (206 : 209)

ROW 41 (210:213)

ROW 42 (213:218)

PROGRAM 24: 5SPOT
D. NATHAN MEEHAN
SIZE: 065
ERIC L. VOGEL
PAGE 4 OF 8

PROGRAM 25: SUMWF	D. NATHAN MEEHAN	PAGE 1
SIZE: 061	ERIC L. VOGEL	OF 2

PROGRAM REGISTERS NEEDED: 63
ROW 1 (1:2)

ROW 2 (2:6)

ROW 3 (7:9)

ROW 4 (10: 16)

ROW 9 (47:52)


```
PROGRAM 26: INJ
D. NATHAN MEEHAN
ERIC L. VOGEL OF 3
PAGE 1
SIZE: 040
```

PROGRAM REGISTERS NEEDED: 82

PAGE 2
SIZE: 040 OF 3

ROW 19 (80: 84)

ROW 20 (84 : 86)

ROW 23 (93: 100)

ROW 25 (104: 108)
 ROW 27 (112: 112)

ROW 28 (113:119)

ROW 29 (120:126)

ROW 30 (126: 131)

ROW 31 (132: 141)

ROW 32 (141: 149)

ROW 33 (150: 159)

D. NATHAN MEEHAN

ERIC L. VOGEL

PROGRAM 27: CUTCUM	D. NATHAN MEEHAN	PAGE 2
SIZE: 055	ERIC L. VOGEL	OF 5

PROGRAM 27: CUTCUM	D. NATHAN MEEHAN	PAGE 3
SIZE: 055	ERIC L. VOGEL	OF 5


```
PROGRAM 28: RW
SIZE: }02
PROGRAM REGISTERS NEEDED: 66

PAGE 2 OF 2
```

ROW 19 (99:106)

```

```

ROW 20 (107: 115)

```

```

ROW 21 (116: 124)

```

```

ROW 22 (124: 132)

```

```

ROW 23 (133: 140)
Mon/|||

```

```

ROW 25 (150 : 158)

```

```

ROW 26 (159: 164)

```

```

ROW 27 (165: 170)

```

```

ROW 28 (171: 178)

```

```

ROW 29 (179: 185)

```

```

ROW 30 (185: 193)

```

```

ROW 31 (194 : 201)

```

```

ROW 32 (202 : 209)

```

```

ROW 33 (209:216)

```

```

ROW 34 (216: 224)

```

```

ROW 35 (225: 231)

```

```

ROW 36 (232 : 234)
||

```
\begin{tabular}{llc} 
PROGRAM 29: XPLOT & D. NATHAN MEEHAN & PAGE 1 \\
SIZE: 022 & ERIC L. VOGEL & OF 4
\end{tabular}

PROGRAM REGISTERS NEEDED: 103



ROW 4 (12: 13)



ROW 6 (18: 26)
\(\square\)
ROW 7 (26:33)

ROW 12 (63: 69)

ROW 13 (69:76)

ROW 14 (76:83)

ROW 15 (83: 9i)


ROW 17 (100: 106)

```

PROGRAM 29: XPLOT
D. NATHAN MEEHAN
ERIC L. VOGEL
PAGE 2
SIZE: 022
OF }

```


PAGE 3
OF 4

ROW 37 (227: 233)




ROW 40 (250: 256)



ROW 42 (262:268)



ROW 47 (290: 293)


ROW 48 (293:300)






KOW 54 (338: 347)


PROGRAM 29: XPLOT D. NATHAN MEEHAN
SIZE: 022 ERIC L. VOGEL

PAGE 4 OF 4

ROW 55 (347: 352)



PAGE 2 OF 3



PROGRAM REGISTERS NEEDED: 26

\begin{tabular}{llc} 
PROGRAM 32: DISC & D. NATHAN MEEHAN & PAGE 1 \\
SIZE: 039 & ERIC L. VOGEL & OF 2
\end{tabular}

PROGRAM REGISTERS NEEDED: 54



\section*{References}

API. "A Statistical Study of Recovery Efficiency." API Bulletin D14 (October 1967).
Archie. "The Electrical Resistivity Log as an Aid in Determining Some Reservoir Characteristics." JPT, vol. 5 (1942).
Arps, J.J. Trans. AIME, vol. 160 (1945), p. 228.
Aziz, K. "Ways to Calculate Gas Flow and Static Head." Petroleum Engineer series (November 1960-September 1963).
Bateman, R.M., and C.E. Konen. "The Log Analyst and the Programmable Pocket Calculator." Amoco International Oil Co. (1979).
Brigham, E.F., and J.F. Weston. Managerial Finance. (Hinsdale, IL: Dryden Press, 1975).
Clavier, C., and D.H. Rust. "MDH Plot: A New Lithology Technique." Log Analyst. (Novem-ber-December 1976).
Craig, F.F., Jr. Reservoir Engineering Aspects of Waterflooding. Spe Monograph Series, vol. 3 (1971).

Crawford, P.B., and G.H. Fancher. "Calculation of Flowing and Static Bottom-Hole Pressures of Natural Gas Wells from Surface Measurements. ' Bulletin 72. Texas Petroleum Research Committee. (1959).

Cullender, M.H., and R.V. Smith. "Practical Solution of Gas-Flow Equations for Wells and Pipelines with Large Temperature Gradients." Trans. AIME, vol. 207 (1956), pp. 281-287.
Deppe, J.C. "Injection Rate - The Effect of Mobility Ratio, Areal Sweep, and Pattern." SPE Journal (June 1951), pp. 81-91.
Earlougher, Robert C., Jr. Advances in Well Test Analysis. SPE Monograph Series, vol. 5 (1977).
Eilerts, C.K. "Phase Relations of Gas-Condensate Fluids.' ' USBM Monograph 10 (1957).
Ershagi, I., and O. Omoregie. "A Method for Extrapolation of Cut vs. Recovery Curves." \(I P T\) (February 1978), pp. 203-204.
Fetkovich, M.J. "Decline Curve Analysis Using Type Curves." IPT (June 1980), pp. 1065-1077.
Frick, T.C. Petroleum Production Handbook. (New York: McGraw-Hill, 1962).
Gentry, R.W. "Decline Curve Analysis." JPT (January 1972), p. 38.
Horner, D.R. "Pressure Build-Up in Wells." Proceedings of the Third World Petroleum Conference (1951), Sec. II. pp. 503-523.

Ikoku, Chi U. Natural Gas Engineering. (Tulsa: PennWell Books, 1980).
Joiner, D.S., and G.B. Long. "Retrograde GOR Behavior of Condensate Reservoirs from Well Test Data." SPE Paper 7492, Fall Technical Conference, Houston (October 1978).

Katz, D.L., et al. Handbook of Natural Gas Engineering. (New York: McGraw-Hill, 1959).
Legatski, M.W., et al. 'Displacement of Gas from Porous Media by Water." SPE, paper 899, 39th SPE meeting Houston (October 1964).
Matthews, C.S., and D.G. Russell. Pressure Buildup and Flow Tests in Wells. SPE Monograph Series, vol. 1 (1967).
Meehan, D. Nathan. "Calculator Program Simplifies Hyperbolic Decline Curve Analysis." OGT (4 May 1981), pp. 247-250.
"Exponential, Harmonic Declines Programmed for Calculators." OGT (26 May 1980), pp. 95-100.
Wi. Forecast Made Easier for Developed Waterfloods." OGI (7 July 1980), pp. 114-124.
"GOR Change Estimated for Condensate Reservoirs." OGI (21 July 1980), pp. 72-73.
"Hyperbolic Oil Production Decline Analysis Programmed.' OGI (29 June 1980), pp. 52-56.
'Multiwell Production Forecast by Calculator." OGJ (23 June 1980), pp. 151-156.
. "Program for HP-67/97 Calculator Used to find Hyperbolic Exponent. " OGI(11 May 1981), pp. 120-123. for Gas Wells " \(O G I(4\) August 1980 ) for Gas Wells. " OG (4 August 1980), pp. 53-54.
"Three New Programs Aid Decline Curve Analysis by Calculator." OGJ (20 April 1981), pp. 90-96.

Messer, P.H., R. Raghavan, and H.J. Ramey Jr. "Calculation of Bottom-Hole Pressures for Deep, Hot, Sour Gas Wells." JPT (January 1974), pp. 85-92.
Muskat, N. Physical Principles of Oil Production. (New York: McGraw-Hill, 1950), pp. 645-737.
Nemeth, L.K., and H.T. Kennedy. "A Correlation of Dew Point Pressure with Fluid Composition and Temperature." IPT (June 1967), p. 99.
Newendorp, Paul D. Decision Analysis for Petroleum Exploration. (Tulsa: PennWell Books, 1975).
Odeh, A.S., and F. Selig. "Pressure Build-up Analysis, Variable-Rate Case." JPT (July 1963), pp. 790-794.
Poettman, F.H., and D.L. Katz. "Calculation of Pressure Drop in the Flow of Natural Gas through Pipe." Trans. AIME, vol. 192 (1951), pp. 317-326.
Poettman, F.H., and R.E. Schilson. "Calculation of the Stabilized Performance Coefficient of Low Permeability Natural Gas Wells. \({ }^{\text {' }}\) Trans. AIME, vol. 216 (1959).
Poupon, A.; and J. Leveaux. "Evaluation of Water Saturation in Shaly Formations." SPWLA \(12^{\text {th }}\) Annual Logging Symposium (May 1971).

Rawlins, E.L., and M.A. Schellhardt. "Back Pressure Data on Natural Gas Wells and Their Application to Production Practices." USBM Monograph 7.
Rzasa, M.J., and D.L. Katz. "Calculation of Static Pressure Gradients in Gas Wells." Trans. AIME, vol. 160 (1945), pp. 100-113.
Schlumberger. The Essentials of Log Interpretation Practice (1979).
Slider, H.C. Practical Petroleum Reservoir Engineering Methods. (Tulsa: PennWell Books, 1976).
SPE. "Oil and Gas Property Evaluation and Reserve Estimates." SPE Reprint Series 3 (1970), pp. 34-40.
Sukkar, U.K., and D. Comell. "Direct Calculation of Bottom-Hole Pressures in Natural Gas Wells." Trans. AIME, vol. 204 (1955), pp. 43-48.

Theis, Charles V. "The Relation Between the Lowering of the Piezometric Surface and the Rate and Duration of Discharge of a Well Using Groundwater Storage." Trans. AGU (1935), pp. 519-523.
Theory and Practice of the Testing of Gas Wells. Energy Resources Conservation Board, 3 ed (1975). van Everdingen, A.F., and W. Hurst. "The Application of the Laplace Transformation to Flow Problems in Reservoirs." Trans. AIME (1949).
Vitter, A.L., Jr. "Back-Pressure Tests of Gas-Condensate Wells." API Drilling and Production (1942), p. 79.

Young, K.L. "Effect of Assumptions Used to Calculate Bottom-Hole Pressure in Gas Wells." IPT (April 1967), pp. 547-550.

D. NATHAN MEEHAN is the district engineer in Champlin Petroleum Company's South Texas District in Corpus Christi. He has held a variety of reservoir and production engineering positions in Denver, Oklahoma City, Houston, and Fort Worth, including his most recent assignment as a project supervisor in Champlin's corporate planning and economics and acquisitions groups. Meehan received his BS degree in physics from the Georgia Institute of Technology and his MS degree in petroleum engineering from the University of Oklahoma. While at O.U., he studied as a Mining and Mineral Fuel Resource Conservation Fellow and received the Henry DeWitt Scholarship for graduate study in mineral fuels. He has published dozens of articles dealing with enhanced oil recovery, reserve evaluation, and fluid properties and is a registered professional engineer.


ERIC L. VOGEL is a research and development project leader for business application software at Hewlett-Packard's Corvallis Division, which manufactures the HP-41 calculator. He worked partime for Hewlett-Packard as an undergraduate at Oregon State University, where he received his BS degree in mechanical engineering in 1978. He joined Hewlett-Packard on a permanent basis in 1980 after working as a technical writer for a Corvallis-based software house. His most recent project with Hewlett-Packard is the HP-41 Petroleum Fluids Pac.```


[^0]:    *A product of PSI Energy Software, Calgary
    ** A product of David P. Cook \& Assoc., Dallas

[^1]:    *Hyperbolic case 1 has three rate-time points known. Hyperbolic case 2 has two rate-time points and the cumulative production known.

[^2]:    **Tones will sound while the production at each time is calculated.

[^3]:    *The units for these variables are saved by the program.
    $\dagger$ In the case of deviated wells or slanted beds, use the true stratigraphic thickness instead of the measured thickness of the formation.

[^4]:    Note: For $\mathrm{B}_{\mathrm{i}}, \mathrm{P}_{\mathrm{i}}, \mathrm{QTd}_{\mathrm{i}}, \mathrm{TIME}_{\mathrm{i}}, \mathrm{Td}_{\mathrm{i}}$, and $\mathrm{We}_{\mathrm{i}}, \mathrm{i}=1,2,3, \ldots, \mathrm{n}$, where n is the number of TIME values input by the user.
    *The units for these variables are saved by the program.
    $\dagger$ In the case of deviated wells or slanted beds, use the true vertical thickness instead of the measured thickness of the formation.

[^5]:    *At high flow rates for gas reservoirs, the skin factor could include additional effects due to turbulent flow.

[^6]:    *These units are not allowed by the Unit Management System in the Pac. Special input and output subroutines were included in this program to provide these units for annotation purposes only. $\dagger$ The units for these variables are saved by the program.

