

SDS-II

HP-41C Software Development System
For MS®-DOS Computers

Owner’s Manual

© Hewlett-Packard Company

June, 1986

NOTICE

Hewlett-Packard Company makes no expressed or implied warranty with regard to the documentation
and program material offered or to the fitness of such material for any particular purpose. The
documentation and program material is made available solely on an "as is” basis, and the entire risk as to
its quality and performance is with the user. Should the documentation and program material prove
defective, the user (and not Hewlett-Packard Company or any other party) shall bear the entire cost of
all necessary corrections and all incidental damages in connection with or arising out of the furnishing,
use, or performance of the documentation and program material.

Printing History

EItION 1.iuuiiiiiiiiiniiiiiiiiiiiiieerieeet rea erat era sra ascribe aera a tera eh shearMay, 1986
EdItION 2 .oviiinieninierninnen etree rtitr outta rae taser taens rs rensnsenrensarroseatasssentearessassnsnentenessJune, 1986

MS®-DOSis a registered trademark of Microsoft, Inc.

Contents

1. Introduction .

. Contents of SDS-11
2.1 What SDS-II Includes vo.
2.2 What SDS-II Does Not Include

. Comparison With Old SDS .

. Configuring Your SDS-II System .
4.1 Configuring the HP-150 . . .

4.1.1 Receiving from HP-41
4.1.2 Controlling the EPROM Programmer

4.2 Configuring the HP-Portable Series
4.2.1 Receiving from HP-41 .o.
4.2.2 Controlling the EPROM Programmer

4.3 Configuring IBM, Vectra, and IBM-Compatible Personal ’
Computers . . .
4.3.1 Receiving from HP-a Coe.
4.3.2 Controlling the EPROM Programmer

5. Step 1 — Writing HP-41 Software

6. Step 2 — Reading HP-41 Software into SDS-II .

7. Step 3 — BUILDing the ROM Image
7.1 Two Types of .41T Files .
7.2 The ROM Image Files
7.3 The Configuration File
7.4 The DEFINEFile . . .

7.4.1 ROM# Command
7.4.2 ORDER Command
7.4.3 XEQ Command .
7.4.4 KEYS Command
7.4.5 Comments . . .
Example of DEFINE File
BUILD Errors . + .
7.6.1 Errors in DEFINE File

Errors in READA41P Files
Key Definition Errors .
Qut-of-room Errors.
ROM ID = 0
Specify Errors
XEQ Errors.
Label ERRORS . . .

7.6.9 Errors in HP-41 Program .

7.6.10 Microcode Errors Co

7.7 Fatal BUILDErrors

N
a

O
N

W
A

N
N
N

A
D
D

I
A
N
A
W
N

8. Microcode Library

8.1 Type-2 Microcode Files Cee

8.1.1 AIP (Alpha Integer Part) .

ALENG (Alpha Length) .

ANUM(Alpha Number) .

AROT (Alpha Rotate)90
.9
0

00
¢

o
d

f
d

p
d

D
r

i
S
s
B
S
W
N
N
N

o
e

A
N
N
O
Y

11
11
11
11
12
13
14
14
15
15
17
17
18
18
18
18
19
19
19
19
20
20

22
22
22
23
23
23

10.

11.

12.

13.

ATOX (AlphatoX)
BININ (Binary Input)
BINVIEW (Binary View)
CLKEYS (Clear Keys) . ee eee
CLRGX (Clear Registers by x) Ce eee
ENROM1 (Enable ROM1)
ENROM?2 (Enable ROM 2) . . cee
GETKEY (Get Key) . . Cee.
HEXIN (Hexadecimal Input) .
HEXVIEW (Hex View) .
OCTIN (Octal Input)
OCTVIEW (Octal View)
PASN (Programmable Assign) .
PCLPS (Programmable Clear Programs) .
POSA (Position in Alpha) . .
PSIZE (Programmable Size) . .
RCLSTFLG (Recall/Store Flags)
REGMVSWP (Register Move/Swap) .
SIZE (Determine Current SIZE)
XTOA (X to Alpha) . Cee ee
XF (X Exchange Flags)

-1 Microcode Files «
ype-0 Microcode Files
.3.1 AUTOST (Autostart)

8.3.2 PRIVACY Ce ee
8.3.3 KEYASN .
8.3.4 MCODE .

8.4 Microcode Library File Requirements

Emulating ROMs . .
9.1 EPROM Box ROMEmulation
9.2 RAM Box Emulation .

Using EPROM Boxes . .
10.1 Connecting EPROM Burners to the Host Computer
10.2 The EPROM Utility . . . Ce ee ee
10.3 Using Generic BURN Programs FE
10.4 Using the ERAMCO 16K EPROM Box

Bank-Switching . . .
11.1 A Word About Terminology
11.2 Basic Bank-Switching .
11.3 Advanced Bank-Switching

11.3.1 Using Bank-Switching .

P
b

p
d

b
e
d
h
d

p
d

p
d

f
e
d
p
d

p
e
d

p
e
d
p
d

p
d

p
e
d
p
d

p
d
e
d

e
d

p
d

p
d
p
d

p
d

B
O
R
D

N
D

D
N

B
D

b
d
m
b

b
d

he
d
f
d

p
d

b
d

pe
d
h
i
p
d
\
D
O
O

S
J
Q
A

L
N

N
E
W
N
H
O
W
V
W
E
N
O
A
N
E
W
N
R
O

N
D

w
n ~

o
00

00
1

+]
99

99
£0

00
00

G0
00

£0
00

90
00

00
00

09
00
9

00
00

00
GO

BO

11.3.2 Placement of Global Labels in) Bank-Switching Cores

SDS-II Basic Utilities
12.1 CHECKSUM
12.2 LIFPACK
12.3 LISTFAT
12.4 SDSCAT .

Advanced Applications
13.1 Reading UCC Files . .
13.2 Using the RAM-Based ROM Emulator |

13.2.1 WRITMLDL . .

23
23
24
24
24
24
24
24
25
25
25
25
25
26
26
26
26
27
27
27
28
28
29
29
29
29
29
30

32
32
32

33
33
33
34
34

38
38
38
39
39
40

41
41
41
41
41

42
42
42
42

APPENDIX A.

APPENDIX B.

APPENDIX C.

APPENDIX D.

APPENDIX E.

APPENDIX F.

APPENDIX G.

APPENDIX H.

APPENDIX I.

13.2.2 READMLDL
13.3 Other Advanced Utilities

13.3.1 ASSEMB41 . .
13.3.1.1 Command Line Syntax
13.3.1.2 Assembler Syntax Conventions

13.3.1.2.1 Comments
13.3.1.2.2 Fields . .
13.3.1.2.3 Expressions
13.3.1.2.4 Global Labels

13.3.1.3 Mnemonics
13.3.1.3.1 Type-onInstructions —— Alphabetical

Order
13.3.1.3.2 Type-0 Instructions ~— Numeric

Order
3 Arithmetic Instructions13.3.1.3.

13.3.1.3.4 Pseudo-Ops
13.3.1. 3.5 FAT Entries :
13.3.1.3.6 Branches
13.3.1.3.7 Peripheral Commands

13.3.1.4 EXAMPLES
13.3.1.4.1 An Assembly-Language Keyword
13.3.1.4.2 A Function Address Table

13.3.2 LINK41
13.3.3 ASMBINFO
13.3.4 DISASM41
13.3.5 EXTRACT
13.3.6 MUCODE .

13.4 1LG9 Configuration

Contentsof Discs
Al Discl
A2 Disc2 oo

HP-41 Keycodes

Special Characters . Cee

Handling STACK OVERFLOW Errors

Command Syntax Summary

Default Chip Configuration

The CONFIGURATION File . .

Submitting ROM Images to Hewlett-Packard

ROM ID Allocation

- iii -

43
43
43
43
44
44
44

45
45

45

48
50
50
52
52
53
53
53
54
54
56
56
56
57
58

60
60

61

62

63

65

66

67

68

LIST OF TABLES

TABLE 1. Connections between HP-150 and Data VO 21A Programmer .

TABLE 2. Connections between HP-Portable and Data TO 21A Programmer .

TABLE 3. Connections between computer and Data VO 21A Programmer .

TABLE 4. Effect of flags 28 and 29 on function .
TABLE 5. Computing numeric equivalents of flags

TABLE 6. Labels Defined in Type-1 Microcode Files . . .

TABLE 7. ROM usage and dependencies of microcode files
TABLE 8. Typical configurations with the ERAMCO 16K EPROM box
TABLE 9. EPROM Lay-out in the ERAMCO 16K EPROM Box
TABLE 10. Default configurations for 4K through 12K ROMs .
TABLE 11. Type-0 assembly-language instructions — alphabetical order .
TABLE 12. Type-0 assembly-language instructions — numeric order . . .
TABLE 13. Arithmetic assembly-language instructions
TABLE 14. Assembly-language pseudo-ops

TABLE 15. Assembly-language FAT entry pseudo-ops
TABLE 16. Assembly-language branching instructions . . .

TABLE 17. Assembly-language instructions for smart peripherals . .
TABLE 18. 1LGY ROM core configuration options . . .
TABLE 19. SDS-II Substitutes for special HP-41 characters .

TABLE 20. Default 1LG9 configurations for one to six ROM images
TABLE 21. Fields in the configurationfile . . . ,
TABLE 22. ROM IDs used in ROMs from HP. . .

iv.

Chapter 1: Introduction 1

1. Introduction

The new Software Development System (SDS-II) provides the necessary tools to collect and prepare your

HP-41 programs for translation into an HP-41 ROM (Read-Only Memory) plug-in. Each plug-in can

contain 4K, 8K or 12K-words of HP-41 usercode and/or microcode.

The process of creating a plug-in ROM consists of three major steps:

1. Writing HP-41 programs on either:

¢ The HP-41 calculator, saving the results on a disc or cassette, or

o Your host MS-DOS machine, utilizing the User Code Compiler.

2. Preparing your HP-41 programs for the SDS-II developmentsystem (the READ41P process).

3. Building a ROM image containing your HP-41 programs and any necessary microcode support

functions (the BUILD process).

Once the ROM image is built, it can be burned into EPROM boxes for testing, and, when fully tested,
can be submitted to the HP custom ROM program for processing into plug-in ROMs. Full details on
the procedures and expenses associated with producing custom ROMs are explained in separate
literature.

2 Chapter 2: Contents of SDS-II

2. Contents of SDS-II

2.1 What SDS-II Includes

SDS-11 is a software package distributed on one of two possible media:

+ Two 3%"single-sided microfloppy MS-DOS discs, or

« Two 5%" double-sided floppy MS-DOS-discs in low-density (360K) format.

SDS-I is compatible with all MS-DOS and PC-DOS computers running DOS version 2.0 or higher.

2.2 What SDS-II Does Not Include

SDS-II requires additional hardware and/or software, some of which is dependent on the choice of host

system. Specifically:

1. Tools for developing HP-41 code. Either:

« An HP-41C/CV/CX calculator and HP-IL interface module (HP-82160A).

o Mass storage for the HP-41 (HP-82161A cassette drive or HP-9114 disc drive). The HP-9114 is
strongly recommended over the HP-82161A.

« Depending on your configuration, you may require an accessory for communicating with the
HP-41 mass-storage device (see chapter 4 for more details).

or:

e A User Code Compiler! running on your host MS-DOSsystem.

2. ROM emulation hardware:

o If you are using EPROMs for ROM emulation, you need an EPROM programmer, EPROM,
an EPROM eraser, and an EPROM emulator box. If you do not already have an EPROM
programmer, we recommend the Data JO 21A, a recently introduced, powerful, inexpensive
product; this manual includes someinstructions specific to using the 21A. For emulation, SDS-
1I supports and recommends the ERAMCO 16K bank-switching EPROM box because ofits
capability to emulate HP bank-switching ROMs.

« If you are using RAM for ROM emulation, you need a RAM box and the facilities to load it.
Recommended is the ERAMCO 16K RAM Storage Unit, which provides the same emulation
capabilities as the 16K EPROM box. Use of this product requires the ERAMCO MLDL
software, usually distributed in the ERAMCO ESMLDL 1. (Note: Because of the lower cost
and higher reliability of EPROM boxes, their non-volatility, and the ability to distribute
software updates without requiring an MLDL box, we recommend EPROM boxes over RAM
boxes for emulation. However, support is provided for RAM-based emulation, as explained in
section 13.2.)

3. An interface for communicating with the EPROM programmer (typically an asynchronous
communications port).

1. From HandHeld Products, Inc., 6201 Fair Valley Drive, Charlotte, NC 28211.

Chapter 2: Contents of SDS-I1 3

3. Comparison With Old SDS

SDS-II is intended as a replacementfor and upgrade from the HP-85-based SDS. The system differs

substantially from the original SDS in the following ways:

1. The software runs under the MS-DOS or PC-DOSoperating system instead of on the HP-85. This

results in an approximately 20x speed improvement.

The system no longer relies on specialized custom hardware for communications with the HP-41.

Programs are read directly from HP-41 mass-storage media, and ROM emulation is provided

through commercially available EPROM and RAM boxes.

SDS-II does not provide special editors. The DEFINE file is a text file that you create using any

text editor (EDLIN, WORDSTAR, MEMOMAKER, EMACS, etc.). This replaces the special

editors used in the old SDS for creating the list of TODISKfiles, the XEQ list, the specified order

list, and the key assignmentlist.

SDS-II supports the bank-switching 12K ROM for the HP-41. This is explained in more detail in

chapter 11.

SDS-II includes a comprehensive set of tools for ROM development, including an assembler,

linker, and various related tools and utilities. These are explained in chapter 13.

4 Chapter 4: Configuring Your SDS-II System

4. Configuring Your SDS-II System

SDS-I requires an MS-DOS or PC-DOS computer with 128K bytes of available memory (after DOS,
device drivers, and other resident applications are loaded). This chaptertells you how to configure your
computer for two important communicationstasks:

1. Receiving programs from your HP-41, in which SDS-II reads the HP-41 disc or cassette tape. This
step is not required if you are developing usercode with the User Code Compiler.

2. Controlling the EPROM programmer, in order to program EPROMs for testing your software in
an EPROM box. The details of this task are dependent on your configuration and your particular
brand of EPROM programmer. Some instructions are provided in this chapter specifically for the
Data 1/0 21A.

4.1 Configuring the HP-150

SDS-II is not installed as an application in PAM (Personal Applications Manager). Thatis, it is only
accessible through the MS-DOS commands. In order to use SDS-II, you must enter the MS-DOS
command environment.

4.1.1 Receiving from HP-41

If you are using a HP-9114 disc drive with your HP-41, and your HP-150 has a double-sided micro-
floppy (3%") disc drive, you can directly read the HP-41 disc without any extra communications
hardware.

Otherwise, your HP-150 can communicate directly with the HP-9114 or the HP-82161A through the
Extended I/O Accessory (HP-45643A). Installing the accessory consists of two steps:

1. Physically installing the accessory card.

2. Installing the HP-IL driver software. To install the software, you must modify the CONFIG.SYS
file (in the root directory of the boot disc) to include the command:

DEVICE = HPIL150.SYS

If there is no CONFIG.SYS in your root directory, create one containing the command. The
driver software (HPIL150.SYS) is included on the disc that accompanies the Extended I/O
Accessory, and must be copied to the root directory of the boot disc (alternatively, the DEVICE
command can be modified to specify another disc and/or directory).

Some important details to keep in mind:

rr If the CONFIG.SYS file contains a SHELL command, the DEVICE command must occur
before the SHELL command.

or Some editors (notably EMACS) do not automatically append a trailing <CR><LF> to the
last line of a file. The DEVICE command will not work if it is the last line of a file without
the trailing <CR><LF>.

> The HP-IL driver redefines the PRN: device to be the first printer on the HP-IL loop. Any
output directed to PRN: will be sent to that printer. If there is no printer on the loop, the
PRN: device is not accessible. This is true both in the MS-DOS environment and in the

PAM environment.

Chapter 4: Configuring Your SDS-H System 5

© The HP-IL loop can support up to eight mass-storage devices. Because the HP-150 reservesdisc drive IDs "A:" through "L:", mass-storage devices on the loop are named "M:" through“T:". For example, if the loop contains a single HP-9114 disc drive, it is addressed as drive"NM.

Once CONFIG.SYS has been modified, the HP-IL driver will be installed whenever the HP-150boots up (either from power-up or SHIFT-CTL-RESET). You will now have access to HP-ILdevices connected to the accessory card.

4.1.2 Controlling the EPROM Programmer
Most EPROM programmers communicate with a host computer through an asynchronous (RS-232)interface. The Data I/O 21A is capable of such communications, without hardware handshaking, at datarates up to 4800 baud. Following are instructions specific to the 21A — they might be useful inconfiguring other models or brands.

Both the HP-150 and the Data I/O 21A have female RS-232 connectors configured for DTE.Communications between them requires a male-male RS-232 connector reversing the signals from pins 2and 3. In addition, the 21A requires that pins 4 and 5 be tied together. The specific connections are:
TABLE 1. Connections between HP-150 and Data JO 21A Programmer

Male Male
to to Function

HP-150 |21A

3 2 Programmer~Computer
2 3 Computer-Programmer

4-5 Tie RTS to CTS
7 7 Signal Ground

4.2 Configuring the HP-Portable Series
SDS-II is not installed as an application in PAM (Personal Applications Manager). That is,it is onlyaccessible through the MS-DOS commands. In order to use SDS-II, you must enter the MS-DOScommand environment.

4.2.1 Receiving from HP-41

Thebuilt-in HP-IL on the HP-Portable seriesis capable of direct communications with the HP-9114 andthe HP-82161A. No additional hardware is needed. You must enter the System Config template(invoked as a softkey from PAM) and set the "External disc drives” entry to reflect the presence of one
or more mass-storage devices on HP-IL.

4.2.2 Controlling the EPROM Programmer

Most EPROM programmers communicate with a host computer through an asynchronous (RS-232)
interface. The Data I/O 21A is capable of such communications, without hardware handshaking, at datarates up to 4800 baud. Following are instructions specific to the 21A — they might be useful in
configuring other models or brands.

The optional RS-232 cable for the HP-Portable series is terminated with a male DTE connector.
Communications with the Data I/O 21A requires a female-male RS-232 connector reversing the signals
from pins 2 and 3. In addition, the 21A requires that pins 4 and 5 be tied together on its side. The
specific connections are:

6 Chapter 4: Configuring Your SDS-II System

TABLE 2. Connections between HP-Portable and Data VO 21A Programmer

Female Male

Portable to Function

cable |214
3 2 Programmer-Computer
2 3 Computer-Programmer

4-5 |Tie RTS to CTS
7 7 Signal Ground

4.3 Configuring IBM, Vectra, and IBM-Compatible Personal Computers

4.3.1 Receiving from HP-41

If you are using a HP-9114 disc drive with your HP-41, and your SDS-IT host system includes a double-
sided micro-floppy (3%") disc drive, you can directly read the HP-41 disc without any extra
communications hardware.

Otherwise, your computer can communicate directly with the HP-9114 disc drive or the HP-82161A
cassette drive through the HP-IL Interface card (HP-82973A). Installing the accessory consists of two
steps:

1. Physically installing the accessory card.

2. Installing the HP-IL driver software. To install the software, you must modify the CONFIG.SYS
file (in the root directory of the boot disc) to include the command:

DEVICE = HPIL.SYS

If there is no CONFIG.SYS in your root directory, create one containing the command. The
driver software (HPIL.SYS) is included on the disc that accompanies the interface card, and must
be copied to the root directory of the boot disc (alternatively, the DEVICE command can be
modified to specify another disc and/or directory).

Some important details to keep in mind:

7 If the CONFIG.SYSfile contains a SHELL command, the DEVICE command must occur
before the SHELL command.

© Some editors (notably EMACS) do not automatically append a trailing <CR><LF> to the
last line of a file. The DEVICE command will not work if it is the last line of a file without
the trailing <CR><LF>.

«> The HP-IL loop can support up to eight mass-storage devices. The exact drive designator will
depend on system configuration. For example,a typical IBM PC with two floppy drives will
address its HP-IL discs as "C:" (first drive on the loop) through "J: (eighth drive on the
loop). A typical IBM PC/AT with a hard disc drive at "C:" will address discs on the loop
starting with "D:".

Once CONFIG.SYS has been modified, the HP-IL driver will be installed wheneverthe computer
boots up. You will now have access to HP-IL devices connected to the HP-IL interface card.

4.3.2 Controlling the EPROM Programmer

Most EPROM programmers communicate with a host computer through an asynchronous (RS-232)

Chapter 4: Configuring Your SDS-1I System 7

interface. The Data VO 21A is capable of such communications, without hardware handshaking,at data

rates up to 4800 baud. Following are instructions specific to the 21A — they might be useful in

configuring other models or brands.

The IBM, Vectra, and IBM-compatibles offer different types of RS-232 interfaces:

A built-in 25-pin interface, and

« A 9-pin "D-shell” interface, which requires an adapter cable.

Both the cable and the built-in interface terminate with an RS-232 connector (male or female)

configured for DTE. Communications with the Data I/O 21A requires an RS-232 connector reversing

the signals from pins 2 and 3. In addition, the 21A requires that pins 4 and § be tied together on its

side.

While a generic BURN program might not require the handshaking connections to the EPROM

programmer, the COMXx drivers do require these connections. The connections shown below to pins 5
and 6 on the computer side (shown in boldface) are needed to allow the EPROM utility (explained in
section 10.2) to send its output directly to COM1 or COM2.

Thespecific connections are:

TABLE 3. Connections between computer and Data I/O 21A Programmer

Female
or

Male Male
to to Function

cable 21A
or

computer

3 2 Programmer~Computer
2 3 Computer~Programmer
5 4-5 Tie RTS to CTS

Programmer RTS to Computer CTS
6 20 Programmer DTR to Computer DSR
7 7 Signal Ground

8 Chapter 5: Step 1 — Writing HP-41 Software

5. Step 1 — Writing HP-41 Software

The software to be contained in the ROM will consist of various HP-41 programs written by you and

microcode support programs obtained from the microcode library (explained in chapter 8). The first step

is, of course, to write and save your software:

« If you are developing the software on an HP-41, save it on your mass-storage medium (disc or

cassette) using the HP-41 command. SDS-II will read this medium using the procedures

outlined in chapter 6.

« If you are developing the software with the User Code Compiler on your DOS machine, SDS-TT will

process the .BIN files created by the compiler (this procedureis described in section 13.1).

At this stage, the program is not in ROM form. Before you have a ROM image, SDS-II will pack the

program, compile GTOs and XEQs for fast execution, and convert all global labels into ROM entries.

Thatis, each global label will be associated with an XROM number, and XEQs referencing those global

labels will be compiled into XROMs. These steps are handled by the READ41P and BUILD

procedures, described in chapters 6 and 7.

Chapter6: Step 2 — Reading HP-41 Software into SDS-II 9

6. Step 2 — Reading HP-41 Software into SDS-1I

Each program created on your HP-41 must be read into SDS-II using the READ4IP program.

READ4IP has two modes of operation: it can read HP-41 programs from an HP-41 disc (described

presently) or it can read .BIN files created by the HP-41 User Code Compiler (described in section

13.1). Whichever mode is used, this chapter contains important information about the operation and

output of READ41P.

READ41P is included on the SDS-II distribution disc #1, and is invoked from the MS-DOS environment

as:

READ41P <device>:<programname> <filename>

READ41P will read the program from the mass-storage device containing the HP-41 programs, analyze

it, report any errors, print an informational listing, and create a file on the MS-DOS machine. If the
<programname> contains blanks, you must replace those with a period (*.’) in the command line. If

the <programname> contains HP-41 special characters (#, /, or Z), use the substitute characters

explained in appendix C.

Since READ41P will usually generate more output than will fit on one screen (and too fast to read), it

may be desirable to redirect its output to a file or a printer. The second example below demonstrates
this.

EXAMPLE 1: The command

READ41P M:XYZ XYZ

will read the program "XYZ" from the mass-storage medium "M:", process it, and
produce a READ4IP file named "XYZ.41T" in the current directory on the current
disc.

EXAMPLE 2: The command

READ41P B:A.B C:AB >PRN

will read program "A B'? from the disc in drive "B:", process it, and produce a
READA41P file named "AB.41T"in the currentdirectory on disc "C:". Output from the
READA41P program is directed to the computer’s PRN device.

The READ4IP processing detects several error or potential error conditions, and reports on them:

NOTICES A "NOTICE" is not an error, merely a warning that the program contains an XROM
reference. This may be intentional (for example, use of an HP-IL function in an
Advanced I/O ROM) or unintentional. The presence of this XROM reference in the final
ROM will require that the referenced ROM be plugged in for your program to function
properly.

ERRORS An error will be generated under the following conditions:

» The program being read contains multiple occurrences of a global label.

2. Substitution of the *.’ characterfor blank is explained in appendix C.

10 Chapter6: Step 2 — Reading HP-41 Software into SDS-IT

o The program contains an unresolved reference to a local label.

e A global label or an XEQ or GTO referencing a global label contains an illegal
character.

« The program contains more than 64 global labels.

READA41P will not generate an output file if any errors are found.

In addition to errors and notices, READ41P prints out an informationallisting giving all global and local
labels. The local labellist includes information on how many times a local labelis used and how many
references appear to that label.

When all of your HP-41 programs have been collected in READ41P files, you can proceed to step 3
(BUILD) to assemble them into a ROM image.

NOTE

17 MS-DOS does not support the same filename characters as does the HP-41. It is often impossible to
use the HP-41 filename as the MS-DOS filename, either because of upper/lower case differences,
name conflicts, or special characters (such as ‘=", ‘?, or * ’). You should therefore choose a name
for the READ41P output file that reasonably resembles the original HP-41 program name, but
conforms to MS-DOSfile-naming conventions. The MS-DOSfilename chosen has no effect on the
contents (including labels) of the program.

Failure to specify a legal MS-DOS filename as the second command-line parameter will cause
READAI1Ptofail to open its outputfile.

The HP-41 program name in the READ41P command line is case-sensitive. These two commands
are not equivalent:

READ41P M:ABC ABC
READ41P M:abe ABC

The name of the output file, however, is case-insensitive, since MS-DOS only supports uppercase

filenames.

Some error and warning conditions cannot be detected by READ41P, but are noted in BUILD:

« Local GTO’s that are too distant to be compiled cannot be discovered until BUILD has packed

the XEQs into XROM references.

« Multiple use of global labelsin different programs cannot be detected until the BUILD phase.

« XROM references (as pointed out in a NOTICE) to the ROM being built are illegal (for

example, an occurrence of XROM 21,xx when you are BUILDing a ROM with an ID of 21).

This cannot be detected until BUILD, when the ROM ID is assigned.

The mass-storage medium used by the HP-41 is in LIF format, not MS-DOS. Any attempt to

access it as an MS-DOS medium (such as performing a DIR) will fail. Likewise,it is not possible

to put a READ4IP file on the LIF medium (e.g., READ4IP D:PRG D:ABC).

Chapter 7: Step 3 — BUILDing the ROM Image 11

7. Step 3 — BUILDing the ROM Image

Once all of the READA1Pfiles have been gathered, the ROM image can be generated. SDS-II will

allow you to build up to six 4K ROM images, for programming into one or two bank-switching ROMs.

The following command causes a ROM imageto be built:

BUILD <define-file-name> <ROM-file-name>

Using commands in the DEFINE file, BUILD collects the READA4IP files {and microcode files,

explained below) together into ROM imagefiles. BUILD also creates a configuration file describing the

programming configuration for the 1LG9 ROMs being programmed.

BUILD does its work in two passes. In the first pass,it reads all of the specified READ41P and

microcode files, copies them to a temporary working file, and collects all of the global labels. In the

second pass, it compiles label references, converts XEQs to XROMs, and so on.

7.1 Two Types of .41T Files

So far this document has dealt with READAI1Pfiles, which are created by the READAIP utility. There

is another type of .417T file that can be specified in the DEFINE file: microcode. A microcode file

allows you to add assembly-language programs to your ROM. Use of microcode files will be fully

explained in chapter 8;this chapter will restrict its discussion and examples to usercode.

7.2 The ROM Image Files

BUILD will create from one to six ROM image files. The files will be named with the first seven

characters of <ROM-file-name> appended by the ROM sequence number (that is, 0, 1, 2, 3, 4, or 5),

with an extension of "41R". These files are ready to be programmed into EPROM; for testing and,

eventually, programmedinto custom ROMs.

7.3 The Configuration File

BUILD will create a configuration file containing text describing the configuration of the ROMs being

defined. This file is used by HP, when the ROM is submitted, for purposes of programming the 1L.G9

ROM(s). BUILD createsthis file automatically; you must create it yourself if you are building a ROM

using the advanced tools. The exact contents of the configuration file are described in appendix G.

The configuration file is named <ROM-file-name> (from the command line) with filename extension

"41F".

7.4 The DEFINE File

The DEFINE file contains all of the instructions needed to assemble the ROM image. The DEFINE

file is created using any text editor (such as EDLIN, WORDSTAR, MEMOMAKER, EMAGCS,etc.).

For each 4K ROM image, the DEFINEfile contains several parts, which must occur in the order shown:

3. For more information about bank-switching and the 1LG9 ROM,see chapter 11.

4. EPROM ROM cmulationis explained in chapters 9 and 10.

12

S.

Chapter 7: Step 3 — BUILDing the ROM Image

- A ROM# command with optional ROM header, optional privacy specifier, and optional
configuration specifier. This is followed by a list of READ41P and microcodefiles.

An optional ORDER command, specifying how the global labels are to be ordered within the
ROM catalog. This is sometimes followed by a list of labels and headers.

- An optional XEQ command, used to specify any labels for which XEQs will not be converted into
XROMs. This is followed by a list of labels.

An optional KEYS command, used to specify key assignments to be set up by the ROM. This is
followed by a list of key assignments.

Optional comments anywhere within the DEFINE file.

All commands and comments are preceded by the ‘&’ character. The following sections describe cach
command and its section of the DEFINEfile.

7.4.1 ROM# Command

The ROM# command begins defining the characteristics of a 4K ROM image. It occurs once in the
command file for every 4K ROM image being defined. This command is followed by a list of
READ41P and microcodefiles to be included in the ROM.

For each ROM# command, four attributes can be specified; three of them are optional, with default
settings if not specified. As with all commands, this command begins with ‘&’ without a trailing space.
The clauses of this command must occur in the order shown:

1. The ROM# command must begin with a clause specifying the ROM number — a value between 0
and 31. A ROM number of zcro is permissible only if the ROM image contains no functions or
headers. The form ofthis clause is:

ROM# = <romnumber>

It is followed by a comma if any of the optional clauses (below) is to be specified.

The optional HEADER clause specifies a header that is to occupy function #0 of this ROM
image. It is generally very desirable to define a header for at least the first ROM image of a plug-
in; because this headeris >7 characters long (blank-padded by BUILD,if necessary),it is found by
the function on the HP-41CX. If the HEADER clause is not specified, the ROM image
does not have a catalog header. Maximum length of the headeris 11 characters. The format of
the HEADERclause is:

HEADER= <header>

Wherever a blank is desired in the <header> field, it is represented by a “.’ (period). A true
blank terminates the <header> field. The HEADER clause is followed by a comma if any of the
other optional clausesis to be specified.

The optional PRIVATE clause specifies that the usercode programs in this ROM image are
private, and cannot be copied or viewed. Specifying PRIVATE causes BUILD to set some bits in
the programs, and to include a microcode file (explained in the chapter 8). If the PRIVATE
clause is not specified, the usercode files in the ROM image are not private — they can be copied,
viewed, and single-stepped. The format of the PRIVATE clause is:

PRIVATE

This clause must be specified for every ROM image in which it is desired (i.e., in every ROM#
command). This clause is followed by a comma if the optional CONFIG clause is to be specified.

Chapter 7: Step 3 — BUILDing the ROM Image 13

4, The optional CONFIG clause must be specified in none of the ROM# commands or in all of
them. If this clause is not specified, the ROM images will assume a default (and usually

reasonable) configuration, as shown in appendix F. If the clauseis specified,it takes the following

format:

CONFIG= <configuration>

where <configuration> is a one- to three-character string of the following form (alternate choices

for each character are stacked vertically):

2|{U 2

The first character specifies the chip number the ROM image is to occupy. If one, two or three

ROM imagesare being specified, they will generally all occupy chip #1 (requiring bank-switching
for the three-ROM case). Since a 1LG9 chip cannot hold more than 12K, defining more than

three ROM images requires two chips (i.e., two plug-in modules). This character is optional; if

notspecified,it defaults to 1.

The second character specifies whether the ROM image is to occupy the Lower or Upperhalf of

the port address space. It is not optional.

The third character specifies the bank number to be occupied by the ROM image (see chapter 11

for more information). It is optional; if not specified,it defaults to 0.

EXAMPLES

The following examplesillustrate use of the ROM# command:

&ROM# = 21

ROM numberis 21, no header specified, not private, default configuration as explained in appendix F.

&ROM# = 21, HEADER = --MY.ROM, PRIVATE, CONFIG = L

ROM numberis 21; header is "--MY ROM"; usercode files are private; this ROM image occupies the

first (and probably only) 1LG9chip, the lower half of the address space, bank 0.

&ROM# = 31, HEADER = SERENDIPITY, CONFIG = 2U2

This is probably the last 4K of a 24K custom ROM. The ROM number is 31; header is

"SERENDIPITY", usercode files are not private, it occupies bank 2 of the upper half of the second

1LG9 chip.

7.4.2 ORDER Command

This command allows you to specify the order in which your global labels will appear in the ROM

catalog. If you do not include this command, the labels will appear in the order in which they are

encountered while reading the READAIP files. If this command is included, it takes the following

forms:

&ORDER = E

to specify that the labels are to appear in the order encountered (the default).

&ORDER = A

to specify that the labels are to appear in alphabetical order. Special characters (Z, /, and #) are sorted

14 Chapter 7: Step 3 — BUILDing the ROM Image

according to their internal HP-41 representation: 3 as ASCII 126, / as ASCII 13, # as ASCII 29.

&ORDER = §

to specify that the labels are to appear in a specified order. If (and only if) this last form is specified,
the command is followed by the list of labels, one perline, in the order in which they are to appear. In
addition, this ORDER option allows something not allowed with the other options: specifying additional
CATalog headers. Thatis, you can specify a header of up to 11 characters by prefixing it with a tilde
("~"). See the example below for an illustration.

7.4.3 XEQ Command

Normally, all XEQ's that refer to global labels within your ROM are compiled into XROMSs. This saves
space in the ROM and execution speed when the program is run. However, an XROM behaves
differently from an XEQ. An XEQ command will first search main memory and then search all ROMs
to find the named program; an XROM will always execute the program out of the ROM.

Sometimesit is desirable to prevent an XEQ from compiling into an XROM. For example, you may
want to allow the user to place a program in memory that overrides a function in the ROM. The XEQ
command allows you to specify that certain XEQs not be compiled into XROM references.

The form of the XEQ command is:

&XEQ

followed bya list of labels. Any XEQ that refers to any of the specified labels will not be compiled into
an XROM.

Alternatively, specifying:

&XEQ ALL

will prevent all XEQs from being compiled.

7.4.4 KEYS Command

It is possible to specify that the calculator automatically assign certain keys on power-up. The command:

&KEYS

can be followed by a list of keys to be automatically assigned by the ROM. Each item in the list is in
one of three possible forms:

e Assigning an HP-41 functionto a key:

<function-name> <keycode>

Assigning an XROM function to a key (for example, a card reader function):

XROM <ROM-ID> <function-number> <keycode>

* Assigning a function from the ROMs being built to a key:

<function-name> <keycode>

Some important things to keep in mind about key assignments:

or The automatic key assignment occurs whenever the machine is turned on or memory is lost.
> The <keycode> is the same keycode thatis displayed by the ASN function. A map of keycodes

in shown in appendix B.

Chapter 7: Step 3 — BUILDing the ROM Image 15

«wz Functions will automatically be assigned only to keys that do not have current assignments. If a
key is currently assigned, this will not override that assignment.

vr Specifying automatic key assignments requires the inclusion in the ROM of microcode files that
take up additional space. This is explained in section 8.3.3.

r> The XROM option can only be used to assign ROM numbers not in the ROMs being built. For
example, if you are building a ROM with an ID of 21, you cannot assign an XROM 21,xx to a
key. To assign functions in the XROM being built, use the function name.

r> If you are building more than one ROM,all key assignments should be performed in the first
ROM. It wastes space to include key assignments in more than one ROM, and assignments in the
second ROM might be overridden by assignments in the first ROM.

7.4.5 Comments

Comments may be included anywhere within the DEFINE file. Their format is:

&& <comment>

7.5 Example of DEFINE File

The following example illustrates the various sections of the DEFINEfile. Consider an 8K ROM to be
built of three programs. All three programs were written on the HP-41 and read into SDS-II using the
READA4IP utility. The first program contains the following labels (these labels are made up; any
resemblance to real HP-41 programsliving or dead is purely coincidental):

"MAIN"
ngp"
ng"
ng3e

"PRINT"
"RESET"

The second program contains the following labels:

"PROG2"
"FIXUP"

The third program contains the following labels:

"EDITOR"
"ADDLINE"
"EDTLINE"
"PACKFIL"
"PURGFIL"
"TIMEOUT"
"CLRFILE"
"RMVLINE"

The first program was read (by READ41P) into file MAIN.41T, the second program into PROG2.41T,
the third into EDITOR.41T. The first two programs are to go into the first ROM,the third program
into the second ROM. We wish to assign some keys and, for the second ROM, specify a CATalog
order for the functions. In addition, we want XEQ "TIMEOUT" commands nor to be compiled into
XROMs (allowing the user to override "TIMEOUT" with his own program). The DEFINE file (with

16 Chapter 7: Step 3 — BUILDing the ROM Image

some comments added for clarity):

&ROM#=21,HEADER=--UTILITIES,PRIVATE
&& READAI1P files in first ROM:
MAIN
PROG2
&KEYS
&& assign XROM "EDITOR"to + key
EDITOR 11
&& assign XROM "PRINT"to LN key
PRINT 15
&& assign mainframe FACT function to SIN key
FACT 23
&& assign mainframe E"X-1 function to f-SIN key
EX-1-23
&& assign XROM 29,20 (PRX from printer ROM) to ENTER" key
XROM 29 20 41
&ROM#=31,HEADER=--MY.EDITOR,PRIVATE
&& READA41Pfiles in second ROM
EDITOR
&ORDER=§
EDITOR
~--FILE.CMDS
PACKFIL
PURGFIL
CLRFILE
~--LINE.CMDS
ADDLINE
EDTLINE
RMVLINE
~--TIMEOUT
TIMEOUT
&XEQ
TIMEOUT

The resulting catalog will be:

--UTILITIES
"MAIN"
gy

nga

"PRINT"
"RESET"
"PROG2"
"FIXUP"
MY EDITOR
"EDITOR"
--FILE CMDS
"PACKFIL"
"PURGFIL"
"CLRFILE"
--LINE CMDS
"ADDLINE"

Chapter 7: Step 3 — BUILDing the ROM Image 17

"EDTLINE"
"RMVLINE"
--TIMEOUT
"TIMEOUT"

The catalog headers (all of which are prefixed with "--"in this exam ple) serve to conceptually separate

the sections of the ROM. While all catalog entries appear during a [CAT 2] operation on the HP-41C

and CV,only the catalog headers appear on the CX (as explained in the HP-41CX Owners Manual).

7.6 BUILD Errors

BUILDdetects three levels of exceptional conditions:

ERRORS Serious problems that must be corrected before the ROM can be built.

WARNINGS Conditions that do not prevent ROM building, but which may be errors. You should

investigate all warnings to insure that you have not introduced an inadvertent error.

NOTICES Less serious than a warning, but a condition to be noted. You should investigate all

noticesto insure that you have not introduced an inadvertent error.

Following is a summary of exceptions that can occur during BUILD. When appropriate, the error

message will indicate whichline of the DEFINEfile caused the offending error.

7.6.1 Errors in DEFINE File

ERROR: cannot open READAIP file <filename>

Indicates that the specified file could not be found.

WARNING: Header truncated to 11 chars
A header longer than 11 characters was specified.

NOTICE: Header has non-std chars
A header (specified either in the HEADER clause or in an ORDER=S list) contains characters that are

not legal in program names.

ERROR: Duplicate ROM ID

A ROM# command has specified the same ROM ID for more than one ROM. This error is only a

warning if the duplicate IDs occur in two complementary switched banks.

ERROR: Non-default configuration partly specified

The CONFIG clause was specified in some, but not all, of the ROM# commands.

ERROR:Illegal 1LG9 configuration: <message>

Anillegal configuration was specified. For example:

« More than three ROM images in one 1LG9 chip.

« Overlapping ROM images on a given page (upper or lower half).

« Bank 1 without bank 2 (or vice versa) on a given page.

ERROR: Expected <message>

Indicates that something unexpected was encountered in the DEFINEfile. The message will indicate on

what line the error occurred. One possible <message> is end-of-file, which appears if a ROM#

command is encountered after six ROM# commands have already been processed — BUILD can define

at most six ROMs.

18 Chapter 7: Step 3 — BUILDing the ROM Image

7.6.2 Errors in READ41P Files
ERROR: READJIP file is not recognizable
Indicates that the a READ4IP file is not recognizable either as READ41P or microcode.
ERROR: Unexpected EOF in READJ4IP file
ERROR: READA4IP file is corrupt
ERROR: Address not found for label "<label>"
ERROR: Unexpected global label on program line #<line#>All indicate that the READ41P file is corrupt or contains information that js internally inconsistent.

7.6.3 Key Definition Errors

ERROR: Illegal key definition for XROM <XX>,<yy>
A key definition was attempted for a ROM ID that is being built. For example, XROM 21,xx wasassigned to a key while ROM ID 21 is one of the ROMs being built,

ERROR: Cannot assign key to <function>; function not foundA function specified in the key assignment list was not found either in the ROMs being built or in theHP-41 mainframe functionlist.

NOTICE: ROM label "<label>" overrides HP-41 function for key assignmentA key assignment was made to a ROM function that has the same name as an HP-41 mainframefunction.

KEY ASSIGN ERROR: Bad ROM number
A ROM number was specified for an XROM key assignment that wasnotin the range from 1 to 31.
KEY ASSIGN ERROR: Bad function number
A function number was specified for an XROM key assignment that was notin the range from 0 to 63.
KEY ASSIGN ERROR: Bad keycode
Anillegal keycode was specified for a key assignment. See appendix B for a map of legal kevcodes.
KEY ASSIGN ERROR: llega! chars in label
A function label in a key assignmentline contains illegal characters.

KEY ASSIGN ERROR: Multiple assignment to same key
An attempt has been made to assign more than one function to the same key. This error will not occurif the multiple assignment occurs in two different ROMs (although, as explained above, all definitionsshould be performed in the first ROM).

7.6.4 Out-of-room Errors

The following errors can occurif there is not enough room in the ROM to hold all of the READA41P andmicrocode files and the ROM overhead:

ERROR: Not enough room for key assignment table
ERROR: ROM address space overflow
ERROR: Not enough space for MCODE

7.6.5 ROM ID = 0

ERROR: &ORDER=S not allowed with ROM ID = ¢

Chapter 7: Step 3 — BUILDing the ROM Image 19

An ORDER=S command is not valid if the ROM ID specified in the ROM# command is zcro.

ERROR: Labels not allowed when ROM ID = 0

READ41P and microcodefiles containing any function labels are not allowed if the ROM ID is zero.

ERROR: HEADERnotallowed if ROM ID = 0

A HEADER specification is not allowed in the ROM# command if the ROM ID is zero.

7.6.6 Specify Errors

Thefollowing errors can occurif you use the ORDER=S command:

SPECIFY ERROR: Following labels not specified:

Not all labels in the ROM were specified in the list.

SPECIFY ERROR: Label "<label>" does not exist in this ROM

The specified label does not exist in this ROM.

SPECIFY ERROR: Label "<label>"already specified

This label was specified more than once.

SPECIFY ERROR:Illegal chars in label

A label was specified that contained illegal characters.

SPECIFY ERROR: Too many labels in ROM

A header added in the specify list causes the numberoflabels + headers in the ROM to exceed 64.

7.6.7 XEQ Errors

The following error can occurif you use the XEQ command:

XEQ ERROR: Label "<label>"does not exist in this ROM

The specified label does not exist.

XEQ ERROR: Illegal chars in label

A label was specified that contained illegal characters.

7.6.8 Label ERRORS

The following errors relate to the function names used in the ROM:

ERROR: Too many labels in ROM

The numberof labels + headers in the ROM exceeds 64.

ERROR: Duplicate label in this ROM

A label occurs more than once in this ROM.

ERROR: Duplicate label in previous ROM

A label in ROM 2 or 3 also occurs in an earlier ROM.

7.6.9 Errors in HP-41 Program

WARNING: Unresolved XEQ "<label>"on program line #<line#>

An XEQ references an alpha label that does not occur in the ROMs being built. The reference will not

20 Chapter 7: Step 3 — BUILDing the ROM Image

be compiled into an XROM. (When the statement is executed, it will search main memory and all

ROMsto find the label.)

WARNING: Unresolved GTO "<label>" on program line #<line#>

A GTO references an alpha label that does not occur in the ROMs being built. (When the statement is

executed,it will search main memory andall ROMs to find the label.)

WARNING: Label "<label>"conflicts with HP-41 mainframe keyword

A labelis used in the ROM that conflicts with an HP-41 mainframe keyword.

NOTICE: GTO <label> on pgm line #<line#> > 127 bytes (by <# bytes>), not compiled

A two-byte GTO (GTO 00 through GTO 14) references a label that is more than 127 bytes away. The

GTO will not be compiled, resulting in slower execution speed.

NOTICE: XROM <xx>,<yy> on program line #<line#>

The program contains an XROM statement. Execution of this statement will require that the

corresponding ROM be plugged in.

ERROR: Unresolved GTO/XEQ <label> at program line #<line#>

A GTO or XEQ references a local label that does not exist. Since this situation is also trapped in

READA41P, this error should never occur.

ERROR: Illegal XROM <xx>,<yy> on program line #<line#>

The program contains an XROM statement that references a ROM being built.

7.6.10 Microcode Errors

The following errors can occurif any microcode files are included in the ROMs being built:

ERROR: Unresolved reference(s) to <microcode-label>

A microcode file contains an unresolved reference to a label. This can occurif a microcode file (such as

ALENG)is included but the files it depends on (such as ALEN and BIND) are not. Section 8.4

specifies the dependencies that must be satisfied.

ERROR: Reference to <microcode-label> out of range

ERROR: Internal reference out of range: address <hex-address>

These errors will not occur with the microcode library provided with SDS-II, but could occur with an

independently developed microcode file.

ERROR: MICROCODE label <microcode-label> defined more than once

A global label at the microcode level occurs more than once. The message will list the offending

modules. This error will only occurif a label defined more than once is actually referenced.

WARNING: ROM label <microcode-label> overrides HP-41 mainframe label

A globallabel at the microcode label conflicts with a label in the HP-41 mainframe.

7.7 Fatal BUILD Errors

Certain conditions may cause BUILD to fail with a fatal error, immediately halting execution before

completion of the current pass. These errors are generally related to the condition of the temporary

(intermediate) files used by BUILD, and can usually be attributed to one of the following conditions:

« Default disc is write-protected, preventing BUILD from creatingits temporary files. (BUILD creates

its temporary files, UCODE.TMP and MCODE.TMP,in the current directory of the default disc,

Chapter 7: Step 3 — BUILDing the ROM Image

regardless of where the actual ROM imagefiles are being created).

* Default disc is out of disc space or directory space to hold the temporary files.
* In some cases, corrupted .41T files can cause BUILD to fail with a “tempfile is corrupt” message.

21

22 Chapter 8: Microcode Library

8. Microcode Library

This chapter contains important information if you are:

e using files from the microcodelibrary,

es creating a PRIVATE ROM,

* utilizing the automatic key definition capability, or

« writing your own microcode utilities.

In addition to collecting usercode programs into a ROM, SDS-II can collect microcode. Microcode files
add two capabilities to the HP-41:

1. Definition of new keywords. A microcode file can add a new function to the HP-41.

2. Special interrupt processing. A microcode file can execute special processing at power-on,
power-off, coldstart, and several other times. The automatic assignment of keys is an example of a
microcode file that does special interrupt processing.

The purpose of this chapteris to describe the microcode library, which is included with SDS-II on disc
#1. Privacy and key processing are special cases of microcode files. Information on creating your own
microcode files is contained in sections 13.3.1 and 13.3.6.

Microcodefiles fall into three categories:

Type2 Routines which can be executed from the HP-41 keyboard.

Typel Routines called only by other microcode routines.

Type 0 System microcode routines.

8.1 Type-2 Microcode Files

Most of the type-2 microcode files implement popular functions that are already available in the
Extended Functions ROM and the HP-41CX. Byincluding these functions in your ROM, however, you
make them available for your application on any version of the HP-41.

WARNING

When using one of these functions,it is important that your program contain an XEQ, not an
XROM reference. For example, if using the function in your application, your
program must contain XEQ "ALENG", not XROM ALENG. To insure that this happens,
place the labels of the microcode functions you will use somewhere in the HP-41 program
memory (not in the programs under development!). This will ensure that the HP-41 compiles
them as XEQ's and not as referencesto the extended functions ROM.

Some ofthese type-2 microcode functions require type-1 or type-0 microcode functions. A table of these
dependencies occurs at the end of the chapter.

8.1.1 AIP (Alpha Integer Part)

Not from the Extended Functions ROM.

appends the integer part of the X-register to the Alpha register. It ignores the fractional part and
the sign, and is useful for constructing prompts.

Chapter 8: Microcode Library 23

8.1.2 ALENG (Alpha Length)

This function exists in the Extended Functions ROM and the HP-41CX.

ALENG/ returns the number of characters in the Alpha register to the X-register.

8.1.3 ANUM (Alpha Number)

This function exists in the Extended Functions ROM and the HP-41CX.

scans the Alpha register for an alpha-formatted number. If a number is found, its value is
recalled to the X-register and user flag 22 is set. If no numberis found, the X-register and flag 22 are
unchanged.

The digits in the Alpha register can represent values in any display format. Number separators and radix
marks are interpreted according to calculator flags 28 and 29. For example, if the Alpha register
contains the string "PRICE: $1234.50", executing returns the following results, depending on
the status of flags 28 and 29 (using *.’ radix for consistency):

TABLE 4. Effect of flags 28 and 29 on function

Flag 28 Flag 29 Number Returned

set set 1234.5
set clear 1234.5
clear set 123450
clear clear 1234

If the digits in the Alpha register are preceded by a minus sign, a negative number will be placed in the
X-register when is executed.

For more detailed information on the operation of , see volume 2 of the HP-41CX Owner's
Manual.

8.1.4 AROT (Alpha Rotate)

This function exists in the Extended Functions ROM and the HP-41CX.

AROT] rotates the contents of the Alpha register by the number of characters in the X-register to the
left (if the X-register is positive) or to the right (if the numberis negative).

8.1.5 ATOX (Alpha to X)

This function exists in the Extended Functions ROM and the HP-41CX.

ATOX] shifts the leftmost character out of the Alpha register and returnsits character code in the X-

register. If the Alpha register is empty, the function returns 0.

8.1.6 BININ (Binary Input)

Not from the Extended Functions ROM.

BININ] is the BINary INput function, in which the HP-41 keyboard is used to input up to a 10-bit

numberin binary format. Keys 2 through 9 are inactive, and digit entry terminates when a non-digit

key is pressed. Upon termination of digit entry, the entered numberis converted into the internal HP-

41 floating-point format.

24 Chapter 8: Microcode Library

8.1.7 BINVIEW (Binary View)

Not from the Extended Functions ROM.

, the BINary VIEW function, displays X in binary format, ignoring the sign and the

BINVIfractional part of X. EW] uses flag 29 and the current displa setting to determine placement of

the digit separators in the displayed value. If |X]>1023, will report an OUT OF RANGE

error.

8.1.8 CLKEYS (Clear Keys)

This function exists in the Extended Functions ROM and the HP-41CX.

CLKEYS] clears all USER key assignments.

8.1.9 CLRGX (Clear Registers by X)

Not from the Extended Functions ROM. This functionis in the HP-41CX.

clears a block of registers. The X-register contains a control number bbb.eeeii, where:

o Ry (begin)is the first (smallest-addressed) register to be cleared;

o R,.. (end) is the last (largest-addressed) register to be cleared;

o ii is the increment if you want only every ii th register cleared. If you don’t specify ii (i.e., it is zero),

the computer assumes ii = 01.

Rue is cleared even if bbb>eee or bbb+ii>eee. The sign of the control number and any excess

fractional digits are ignored.

If Ress OF Re... is non-existent, no registers are cleared and a NONEXISTENT error occurs.

8.1.10 ENROM1 (Enable ROM 1)

Notfrom the Extended Functions ROM.

ENROMI] is used to enable ROM 1 when a 12K (bank-switching) ROM is being used. It should be

placed only in a non-bank-switching ROM core. For more information,see chapter 11.

8.1.11 ENROM2 (Enable ROM 2)

Not from the Extended Functions ROM.

ENROM2] is used to enable ROM 2 when a 12K (bank-switching) ROM is being used. It should be

placed only in a non-bank-switching ROM core. For more information, see chapter 11.

8.1.12 GETKEY (Get Key)

This function exists in the Extended Functions ROM and the HP-41CX.

When a program executes GETKEY] , execution halts until a key is pressed or an interval of

approximately ten seconds elapses. If a key is pressed,its keycode is placed in the X-register. If no key

is pressed, a zero is placed in the X-register at the end of the timed interval.

GETKEY

|

responds to the first key pressed, so there can be no shifted responses to . Ifyou

Chapter 8: Microcode Library 25

press the gold key during a [GETKEY| pause, its keycode (31) is placed in the X-register.

enables you to branch to a subroutine on the basis of an entry from the keyboard, even when

the key pressed is nota digit key.

8.1.13 HEXIN (Hexadecimal Input)

Not from the Extended Functions ROM.

HEXIN] is the HEXadecimal INput function, in which the HP-41 keyboardis used to input up to a 32-

bit number in hexadecimal format. During hex input, the A through F keys are active as digit entry

keys, and digit entry terminates when a non-digit-entry keyis pressed. Upon termination of digit entry,

the entered numberis converted into the internal HP-41 floating-point format.

8.1.14 HEXVIEW (Hex View)

Nor from the Extended Functions ROM.

AEXVIEW] , the HEXadecimal VIEW function, displays X in hex format, ignoring the sign and the

fractional part of X. [HEXVIEW] uses flag 29 and the current displaysetting to determine placement of

the digit separators in the displayed value. If |X|>4,294,967,295 (232-1), [HEXVIEW] will report an

OUT OF RANGE error.

8.1.15 OCTIN (Octal Input)

Nort from the Extended Functions ROM.

is the OCTal INput function, in which the HP-41 keyboard is used to input up to a 30-bit

number in octal format. Keys 8 and 9 are inactive, and digit entry terminates when a non-digit key is

pressed. Upon termination of digit entry, the entered number is converted into the internal HP-41

floating-point format.

8.1.16 OCTVIEW Octal View)

Not from the Extended Functions ROM.

OCIVIEW] , the OCTal VIEW function, displays X in octal format, ignoring the sign and the

fractional part of X. [OCTVIEW] uses flag 29 and the current display setting to determine placement of

the digit separators in the displayed value. If |X|>1,073,741,823 (2%0-1), [OCTVIEW] will report an

OUT OF RANGE error.

8.1.17 PASN (Programmable Assign)

This function exists in the Extended Functions ROM and the HP-41CX.

PASN] allows you to make key assignments under program control. To make an assignment:

1. Enter the function name or global label into the Alpha register.

2. Enter the keycode of the key to be redefined (using the keycodes shown in appendix B) in the X-

register.

3. Execute {PASN].

26 Chapter 8: Microcode Library

8.1.18 PCLPS (Programmable Clear Programs)

This function exists in the Extended Functions ROM and the HP-41CX.

PCLPS] clears one or more of the programs in main memory. To clear a program and all subsequent
programs in program memory:

1. Place any global label from the program in the Alpha register.

2. Execute (PCLPS].

Executing {PCLPS| when the Alpha register is empty clears the current program and all subsequent
programs.

If the current program is removed by [PCLPS], execution stops immediately.

8.1.19 POSA (Position in Alpha)

This function exists in the Extended Functions ROM and the HP-41CX.

scans the Alpha register for the Alpha character or string specified in the X-register. There are
two waysto specify the character or string:

« You can enter the character code for a single character, or

* You can enter an actual character orstring of characters (up to 6 characters) using .

If the specified character or string is found in the Alpha register, the character position of the character
(or the position of the leftmost characterin the string) is returned in the X-register.

Character positions are counted from left to right, starting with position zero. If the specified string
occurs more than once in the Alpha register, only the position of the first occurrence is returned. If the
target string is not found in the Alpha register, the function returns -1.

8.1.20 PSIZE (Programmable Size)

This function exists in the Extended Functions ROM and the HP-41CX.

PSIZE| works like the [SIZE] function provided with the calculator except that it can be executed from
within a program. This makes it possible for a running program to reallocate the registers in main
memory as required. To use: place the number of data storage registers desired into the X-register and
execute [PSIZE].

8.1.21: RCLSTFLG (Recall/Store Flags)

These functions exist in the Extended Functions ROM.

This file provides two functions: [RCLFLAG] and [STOFLAG] .

RCLFLAG]/ recalls the status of flags 00 through 43 to the X-register as Alpha data. The contents of
the X-register can then be stored for later use. After executing [RCLELAG] , the display is not
intelligible.

If the flag status from a previously executed [RCLFLAG] is placed in the X-register, executing
STOFLAG restores calculator flags 00 through 43.

Chapter 8: Microcode Library 27

If you wantto restore only some ofthe flags, place the flag status in the Y-register and a numberin the
form bb.ee in the X-register. Executing [STOFLAG] will then restore flag numbers bb through ee from

the data in the Y-register.

8.1.22 REGMVSWP (Register Move/Swap)

These functions exist in the Extended Functions ROM.

This file provides two functions: [REGMOVE| and [REGSWAP].

Both functions take an argument of the form sss.dddnnn in the X-register.

REGMOVE] copies a block of nnn registers beginning at register R,,, to a block of the same length
beginning at register Ras. Any data that was already in the destination block is lost. For example,to
move ten registers of data from registers 2 through 11 to registers 20 through 29, place 2.020010 in the
X-register and execute [REGMOVE|.

REGSWAP] exchanges the contents of a block of nnn registers beginning at register R,,,, with the
contents of a block of the same length beginning at register Rus. Executing [REGSWAP| with 2.020010
in the X-register will exchange registers 2 through 11 with registers 20 through 29.

8.1.23 SIZE (Determine Current SIZE)

This function exists in the Extended Functions ROM and the HP-41CX.

The microcode file SIZE provides the [SIZE?] function. [SIZE?| places the number of registers currently
allocated to data storage into the X-register.

SIZE? can be used within a program to inhibit execution of PSIZE when a memory reallocation is not
required:

01 LBL ABC

02 SIZE? The number of data storage registers presently allocated is placed in the X-register.

03 nn The number ofregisters this program needs. The results of the previous step are now in
the Y-register.

04 X>Y? Is the number of storage registers required by the program (X-register) greater than the
number presently allocated (Y-register)?

05 PSIZE If so,this step is executed. If not, this step is skipped.

8.1.24 XTOA (X to Alpha)

This function exists in the Extended Functions ROM and the HP-41CX.

, when executed with a character code in the X-register, appends the character represented by
the character code to the right-hand end of the string in the Alpha register. can take any
number from 0 to 255 in the X-register. The null byte, which corresponds to the decimal value 0, has a
special meaning in the Alpha register. Because of this, under some circumstances you cannot retrieve a
null byte from the Alpha register. This is discussed in moredetail in volume 2 of the HP-4I1CX Owners
Manual.

28 Chapter 8: Microcode Library

8.1.25 XF (X Exchange Flags)

This function exists in the Extended Functions ROM and the HP-41CX.

The microcodefile XF provides the function . uses the number in the X-register to set

flags 00 through 07. At the same time,it transfers the previousstatus of those flags to the X-register.

In the X-register, the flag status takes the form of an 8-bit number from 0 through 255. Each flag

corresponds to one bit in that number. The number in the X-registeris:

i=? x; =0, if flag i is clear

ZX where \y, =i. if flag i is clear

The flags and their power-of-two equivalents are:

Flag Number 7 6 5 4131211340

Equivalent 128164 [321168141211

For example, suppose flags 0, 3, 5, and 7 are set, while flags 1, 2, 4, and 6 are clear. To determine

what number is placed into the X-register when is executed, add up the numeric equivalents of

the flags that are set:

TABLE 5. Computing numeric equivalents of flags

Flag __Numeric Equivalent

0 1
3 8
5 32
7 128

169

The numberin the X-register would be 169.

If you enter zero in the X-register and execute , flags 00 through 07 arc cleared, and their

previousstatusis placed in the X-register.

You can use to create extended general purpose flags by storing numbers representing the status

of flags 00 through 07 in a register. For example, to check the status of an extended flag, recall the flag

status code into the X-register using , execute [X<>F|, then execute as usual.

enables you to use large numbers of flags in programs. Flags are grouped by eights and

transferred into and out of the first eight flag positions by means of . The number representing

the status of a particular group of eight flags is placed in a storage register untilit is needed. When it is

needed,it is recalled to the X-register, exchanged with the flags presently in those eight positions, and

the status of specific flags in that group can be examined or altered.

8.2 Type-1 Microcode Files

The type-1 microcodefiles are those which contain utilities used by two or more of the type-2 microcode

files. For example, the file BIND contains a utility used by [ALENG}, |AROT], , [POSA] ,

SIZE?], and _ If one or more of the files containing those functions is used, BIND must be

included in the file list in the DEFINEfile.

For each type-1 microcode file, this section will list the microcode [abels that are defined within. This

information can be used to determine which file is missing if BUILD fails with an unresolved microcode

Chapter 8: Microcode Library 29

reference.

TABLE 6. Labels Defined in Type-1 Microcode Files

Microcode
File Labels Defined

ALEN ALEN,CNTBYT,FAHED
ALNAM2 ALNAM2

BIND BIN_D

CSKBD BININO,BININ1

PNCTUA PNCTUA
XB X.256,X.999

XVIEW HEXVUO,REGHEX

8.3 Type-0 Microcode Files

Type-0 microcode routines perform miscellaneous functions not covered by types 1 and 2.

8.3.1 AUTOST (Autostart)

AUTOST is an example of a file that does special interrupt processing. Unlike the type-2 files,
AUTOST does not define any functions. Nor is it called by other routines (as are the type-1 files).

AUTOST, when included in your ROM, causes the HP-41, whenever it powers on, to search memory
(user memory and ROMs) for a program named "RECOVER". When the program is found, it is
executed. If it is not found, the calculator exhibits strange behavior.

or AUTOST should not be used in a ROM that does not contain a "RECOVER" program.

AUTOST is useful for taking control of the machine as soon as it is turned on.

8.3.2 PRIVACY

PRIVACY is a short microcode file that must exist in every private ROM. This file is not included with
the microcode library because it is built into BUILD — automatically installed if the ROM is private. Its
length is 13 bytes, plus one entry in the MCODE table (the MCODE table is explained below).

8.3.3 KEYASN

KEYASN is a microcode file that must exist in every ROM which performs automatic key assignments.
Like PRIVACY, KEYAGSNis built into BUILD. KEYASN’s lengthis variable, requiring 150 bytes plus
2 bytes per key assignment. In addition, it requires 2 entries in the MCODEtable (the MCODE table is
explained below).

8.3.4 MCODE

MCODE is a microcode file that must exist in every ROM in which a microcode file is doing special
interrupt processing. All of the type-0 files mentioned above perform special interrupt processing.
MCODE's length is variable and dependent on the ROMs configuration:

o If the ROM core is bank-switching, MCODE begins at ROM address 4014 (OFAEH) and ends at
4083 (OFF3H).

30 Chapter8: Microcode Library

« Otherwise. MCODE begins at ROM address 4020 (OFB4H) and endsat 4083 (OFF3H).

In addition, MCODE creates a table (immediately below the starting address) used for handling the

special interrupt processing. The length of the table is 2n+1 bytes, where n is the number of table

entries required by all of the microcode files performing special processing.

Additional information about creating microcode files to perform special processing is contained in

section 13.3.6.

8.4 Microcode Library File Requirements

For each file in the microcode library, the following table gives the type, number of bytes required, and

list of dependencies. Files listed in the dependency column are type-1 and type-0 microcodefiles that

must be included for the corresponding type-2 file to work. If they are not included, BUILD will fail

with unresolved references. Fileslisted in parentheses are automatically included by BUILD, and should

not be specified in the DEFINEfile.

TABLE 7. ROM usage and dependencies of microcode files

Microcode File

|

Type Rod Dependencies

AIP 2 29

ALEN 1 81

ALENG 2 13 ALEN
BIND

ALNAM2 1 98

ANUM 2 114 ALEN

AROT 2 49 ALEN
BIND

ATOX 2 23 ALEN
BIND

AUTOST 0 98 {(MCODE)

BIND 1 28

BININ 2 11 CSKBD
PNCTUA

BINVIEW 2 47 XVIEW
PNCTUA

CLKEYS 2 55

CLRGX 2 107

CSKBD 1 405 PNCTUA

ENROMI1 2 9

ENROM2 2 9

GETKEY 2 60

HEXIN 2 12 CSKBD
PNCTUA

HEXVIEW 2 18 XVIEW
PNCTUA

KEYASN 0 see (MCODE)

Chapter 8: Microcode Library

Microcode File

|

Type Robesd Dependencies

text

MCODE 0 see
text

OCTIN 2 11 CSKBD
PNCTUA

OCTVIEW 2 49 XVIEW
PNCTUA

PASN 2 83 ALNAM2

PCLPS 2 127 ALNAM2

PNCTUA 1 58

POSA 2 84 ALEN
BIND
XB

PRIVACY 0 13 {MCODE)

PSIZE 2 95 XB

RCLSTFLG 2 108

REGMVSWP 2 121

SIZE 2 19 BIND

XB 1 29

XF 2 42 BIND
XB

XTOA 2 18 XB

XVIEW 1 99 PNCTUA

31

32 Chapter 9: Emulating ROMs

9. Emulating ROMs

SDS-1I supports two techniques for emulating ROMs: EPROM boxes and RAM boxes.

9.1 EPROM Box ROM Emulation

A number of EPROM boxes are commercially available for emulating HP-41 ROMs. Because they are
using commercial EPROMs with 8-bit words to emulate the HP-41 10-bit words, these products usually
rely on one of two common schemes:

o One EPROM contains the lower 8 bits of each word, another EPROM contains the upper 2 bits of
each word (packed 4 words/byte). Products employing this scheme include the EPROM boxes from
ERAMCO and HandHeld Products.

e Each word of HP-41 ROM is contained in two words of EPROM:the first byte contains the lower 8
bits, the second byte contains the upper two bits. This scheme is used in the EPROM boxes from
CMT.

Chapter 10 explains how the SDS-II tools can generate EPROM patterns for both of these schemes.

Of the various EPROM products available, we recommend the ERAMCO 16K EPROM box because of
its ability to emulate the bank-switching properties of the HP 1LG9 12K ROM. Specifics on using the
ERAMCO 16K box are provided in chapter 10.

9.2 RAM Box Emulation

A number of RAM boxes are commercially available for emulating HP-41 ROMs. Typically, these
boxes must be programmed by the HP-41 using specialized software. For example, the ERAMCO 16K
RAM box can be programmed from a ROM image file (on a LIF medium) through use of the
GETROM keyword in the ERAMCO MLDLoperating system. For more information on using RAM
boxes, see section 13.2.

5. Corvallis MicroTechnology, Inc., 33815 Eastgate Circle, Corvallis, OR 97333.

Chapter 10: Using EPROM Boxes 33

10. Using EPROM Boxes

This chapter addresses two topics:

1. How to burn EPROMs.

2. How to use EPROM boxes.

While this chapter will concentrate on the EPROM products recommended earlier in this document, the

material is applicable (in some degree) to any EPROM emulation setup.

10.1 Connecting EPROM Burners to the Host Computer

Chapter 4 discussed how to connect the Data JO 21A EPROM programmer to your MS-DOS system.

Assuming you have now completed that task with your 21A (or whatever EPROM programmer you are

using), you must configure your system to communicate properly.

Thespecifics of this will depend on your EPROM burner. For the Data I/O unit, communications can

be performed at up to 4800 baud without any hardware handshaking. A good choice of protocol would

be 8-bit, no parity. To select these options on the 21A, press the following keys:

SELECT A 480 A 34 SET

The RS-232 interface on the host computer must be set to a matching protocol and baud rate, and

communications can proceed — once a data format has been selected.

The Data I/O unit allows many data formats;to select the Intel format, use the following sequence:

SELECT 90 A 30 SET

10.2 The EPROM Utility

The EPROM utility generates data from ROM image files for EPROM programmers. The utility

generates the data in one of two popular formats: Intel and Motorola. By redirecting the output to an

RS-232 port, you can directly communicate with an EPROM programmer. The syntax is:

EPROM [-thci] <filename> [<filename>...]

Options:
}

<i Output data in Intel format. If not specified, datais output in Motorola format.

1 Output low 8 bits of each word (default).

sh Output high 2-bits of each word, packed four per byte.

.c Output CMT (Corvallis MicroTechnology) format: low 8 followed by high 2 (unpacked).

Following the options isa list of ROM imagefiles — the extension "41R" is automatically appended by

EPROM. Thislist supports MS-DOS wild-carding.

EXAMPLE 1: Load the lower-8§ data for file TEST0.41R and TEST1.41R, in Intel format, to an

EPROM programmer connected to device COM2:

EPROM -il TESTO TEST1 >COM2

EXAMPLE 2: Load the data for all .4IR files in this directory, in Intel format, to an EPROM

programmer connected to device COM1. Use the CMT data lay-out:

34
Chapter 10: Using EPROM Boxes

EPROM -ic * >COM1

10.3 Using Generic BURN Programs

If you have a generic BURN program that you would prefer to use over the EPROM utility, the

HIGHLOW utility can be used to re-group the ROM image data into usefulfiles.

For each ROM image file specified, HIGHLOW
creates two new files:

« A 4K low-bits file, containing the lower 8 bits of each word, and

+ A 1K high-bitsfile, containing the upper 2 bits of each word, packed 4 words/byte.

These two files conform to the data format required in most EPROM boxes. To invoke:

HIGHLOW <filename> [<filename>...]

For each AIR file named on the command line, HIGHLOW will create a _41L file containing the fow

bits, and a .41U file containing the high bits. You can then program your EPROM burner using a

generic BURN utility.

HIGHLOW is found on disc #2.

10.4 Using the ERAMCO 16K EPROM Box

The ERAMCO 16K EPROM box provides two independently addressable 4K pseudo-ROMs, each

consisting of two banks. The rotary and slide switches in the upper left-hand comerof the circuit board

are used to address and enable/disable the pseudo-ROMs according to the following scheme:

+ The left-hand rotary switch sets the page address of the "lower" pseudo-ROM.

» The left-hand slide switch enables (slide to the left) and disables (slide to the right) the “lower”

pseudo-ROM.

« The right-hand rotary switch sets the page address of the “upper” pseudo-ROM.

« The right-hand slide switch enables and disables the "upper” pseudo-ROM.

Each pseudo-ROM consists of two 4K banks. When the box first receives power, bank 1 is enabled.

When an ENROM2 instruction is executed from within either pseudo-ROM, bank 2 is enabled.

Similarly, executing an ENROMT1 will reenable bank 1. For more information on bank-switching, see

chapter 11.

By restricting the box to certain configurations, it can be used to emulate many of the configurations

achievable with the 1LG9 ROM. The following table shows some configurations that can be used to

emulate different 1LG9 options (default BUILD configurations assumed):

ei

6. Wild-carding is supported.

Chapter 10: Using EPROM Boxes 35

TABLE 8. Typical configurations with the ERAMCO 16K EPROM box

ROM

|

Port #

|

LH Rotary

|

RH Rotary

|

Notes

Size Switch Switch

4K 1 8 (disabled)

|

Same data in both banks

4K 2 A (disabled)

|

Same data in both banks

4K 3 C (disabled)

|

Same data in both banks

4K 4 E (disabled)

|

Same data in both banks

8K 1 8 9 Same data in both banks, both pseudo-ROMs

8K 2 A B Same data in both banks, both pseudo-ROMs

8K 3 C D Same data in both banks, both pseudo-ROMs

8K 4 E F Same data in both banks, both pseudo-ROMs

12K 1 8 9 Same data in both banks, lower pseudo-ROM

12K 2 A B Same data in both banks, lower pseudo-ROM

12K 3 C D Same data in both banks, lower pseudo-ROM

12K 4 E F Same data in both banks, lower pseudo-ROM
The data itself is contained in four 27C64 EPROM;at the bottom of the PC board. These parts must be

CMOS for the box to work properly. The two lower EPROMs contain the lower pseudo-ROM

(controlled by the left-hand address and enable switches), while the two upper EPROMs contain the

upper pseudo-ROM (controlled by the right-hand address and enable switches). The following table

illustrates the lay-out: ’

TABLE 9. EPROM Lay-out in the ERAMCO 16K EPROM Box

Left Side Right Side

0000-0FFF

|

1000-1FFF

|

0000-17FF

|

1800-1BFF_| 1C00-1FFF

U Upper Page

|

Upper Page Upper Page

|

Upper Page

opr Low Bits Low Bits don’t care

|

High Bits High Bits

ow Bank 1 Bank 2 Bank 1 Bank 2

Lo Lower Page

|

Lower Page Lower Page

|

Lower Page

Ron Low Bits Low Bits don’t care High Bits High Bits

ow Bank 1 Bank 2 Bank 1 Bank 2
Notice that there is no bank 0. To achieve a bank 0, the same data should be written in both banks 1

and 2 in a given page.

EXAMPLE

Using the command sequences for the Data VO 21A,here is how to program Fujitsu 27C64 EPROMs

to emulate a default 12K configuration? on the ERAMCO 16K EPROM box. Assume that the ROM

image files are named TEST0.41T, TEST1.41T and TEST2.41T.

1. Select the ROM type, the data communications protocol, and the data format (Intel):

ROMTYPE F64 SET (specify Fujitsu part)?

7. Default configurations are shown in appendix F.

8. This operation sets all 21A defaults, including the begin and end addresses for the programming operation: 0-1FFF.

36

10.

11.

Chapter 10: Using EPROM Boxes

SELECT A 480 A 34 SET (4800 baud, no parity)
SELECT 9 0 A 30 SET (Intel format, no offset)

. Assuming the RS-232 interface at COM2 has been set up for 4800 baud, 1 stop bit, no parity, and

the appropriate cable has been hooked up, communications may proceed. First, we will program
the left-hand EPROMs. The lower left EPROM contains the lower 8 bits of the bank-0 image in
the lower page. To program it,first set up the 21A to receive the data:

SELECT 6 SET (ready to receive)

Typing quickly (the 21A has a data timeout), send the data from the host computer?

EPROM -il TESTO TESTO >COM2

After the data transfer is complete, load a blank EPROM into the socket and begin the

programming:

DEVICE F SET (specify B.P.R.1 operation)
DEVICE SET (begin operation)

Remove the EPROM, place it in the lower left socket, and place another blank EPROM in the
programmer.

To load the lower-8 data for the upper pseudo-ROM,again set the 21A to receive:

SELECT 6 SET (readyto receive)

send the data:

EPROM -il TEST1 TEST2 >COM2

and program the EPROM:

DEVICE SET (begin operation)

Remove the EPROM,place it in the upper left socket, and place another blank EPROM in the
programmer.

To load the upper-2 data for the upper pseudo-ROM,set the 21A to receive:

SELECT 6 SET (ready to receive)

and send the data:

EPROM -ih TEST0 TESTO >COM2

Once the data has been received, it must be moved to the proper address (given in the EPROM
lay-out table, above):

EDIT 4 0 A 1800 A 800 SET (move data to 1800H)

Set the program start address to 1800H to avoid programming addresses 0-17FF:

SELECT 2 1800 SET

Perform the programming:

DEVICE SET (begin operation)

9. Because the lower-half of the port is in bank 0, the same data (TEST0.41R)is loaded into the bank-1 and bank-2 arcas.

10. B.P.R. means: perform a blank-check, program the EPROM,then read (verify) its contents. Now that it has been specified,

it nced not be specified again this session.

Chapter 10: Using EPROM Boxes 37

12. Remove the EPROM, place it in the lower right socket, and place a blank EPROM in the 21A,

To load the uppes-2 datafor the upper pseudo-ROM, again setthe 21A to receive:'!

SELECT 6 SET (ready to receive)

and send the data:

EPROM -ih TEST1 TEST2 >COM2

13. Again, move the data to the proper location:

EDIT 4 0 A 1800 A 800 SET (move data to 1800H)

14. Program the EPROM (thestart address isstill 1800H from the earlier operation):

DEVICE SET (begin operation)

15. Place this EPROM in the upper right socket, set the address switches for the desired port, and the

box will be ready to use.

11. This operation is not affected by the setting of the program start address, above.

38 Chapter 11: Bank-Switching

11. Bank-Switching

The HP-41 address space lay-out allows a plug-in ROM to use up to 8K of memory. Each plug-in port

has an address space of 8K, divided into two 4K segments known as the “lower half” and the "upper

half". In the past, a 4K or 8K plug-in was produced by using one or two (respectively) 4K ROM chips

(HP part number 1LE9). Typically (although not always), a 4K application would use the lower half of

the port's address space, and 8K applications would use the entire address space.

The HP-41 custom ROM program is now using a 12K ROM known as the 1LG9. The 1LG9 can be

programmed to act either as a 4K, 8K, or 12K ROM. This not only reduces the chip count from two to

one for an 8K plug-in, but also allows even larger plug-ins: 12K.

Using a 12K plug-in in an 8K address space requires, understandably, special techniques to address the

entire 12K. This is achieved through bank-switching. The following sections explain the requirements

and limitations imposed by bank-switching.

11.1 A Word About Terminology

On the old 1LE9 ROM,the term "ROM" described a chip containing a single 4K piece of address space.

Because a 1LG9 can contain up to three 4K pieces of address space, this document uses the term "ROM

image" to denote code occupying a 4K piece of address space, and "ROM core” to denote the physical

portion of a 1LG9 containing a ROM image.

When using BUILD, for example, the first ROM# command is used to define ROM image #1, the

second ROM# command to define ROM image #2, and so on.

11.2 Basic Bank-Switching

Using SDS-II, you can create a single plug-in module containing up to 12K of ROM, or two plug-in

modules containing up to 24K. Focusing on somesimpler cases, consider single 4K, 8K and 12K plug-in

modules. The following table illustrates where these ROM images are, by default, configured:

TABLE 10. Default configurations for 4K through 12K ROMs

Size of ROM

|

ROM Image #

|

Where Addressed

4K 1 lower half

8K 1 lower half
2 upper half

12K 1 lower half
2 upper half, bank 1
3 upper half, bank 2

The 4K and 8K cases are straightforward. For a12K plug-in, bank 1 is enabled whenthe plug-in is first

inserted. When the ENROM2 command (from the microcode library) is executed, bank 1 is disabled

and bank 2 appears inits place. Similarly, the ENROM]1 command enables bank 1 and disables bank 2.

12. Other configurations can be chosen through the CONFIG clause on the ROM# command. A list of default configurations for

all sizes from 4K to 24K is given in appendix F.

Chapter 11: Bank-Switching 39

In effect, there are two different ROM images occupying the upper half of the port, but only one is

available at a time. Once a bank is enabled, it remains enabled until the opposite bank is enabled or

until the ROM is removed from the machine. Bank 1 is automatically enabled whenever a moduleis

plugged into a machine.

Certain critical limitations apply to the ENROM1 and ENROM2 commands:

«> These commands should be placed in non-bank-switching cores. Placing these commands in the

bank-switching cores can cause unpredictable (and generally disastrous) results when they are

executed.

17 Programs using the ENROM1 and ENROM2 commands must reside in a non-bank-switching core.

Placing such a program in a bank-switching core can cause unpredictable (and generally disastrous)

results when the ENROM1 or ENROM?2instruction is executed.

> These commands will affect only the 1LG9 ROM in which they are resident. If, for example, the

HP-41 contains two bank-switching plug-in ROMs in two different ports (say, ports 1 and 2),

executing the ENROM2 keyword in port 1 will only affect the plug-in ROM in port 1.

r= Because of the possibility that more than one plug-in ROM in the user's HP-41 will be bank-

switching, and that ENROM1 and ENROM2 will subsequently be defined more than once,it is

recommended that your application not rely on having the user execute the ENROM1 and

ENROM?2 commands. You should place all major labels (those to be XEQ'd by the user) in a

non-bank-switching ROM image, and only use ENROM1 and ENROM2 within your application to

enable the banks containing your utilities.

11.3 Advanced Bank-Switching

This section contains important information if you are defining a bank-switching ROM using the

advanced tools described in chapter 13. The material in this section assumes a familiarity with HP-41

assembly-language programming, and with the architecture and operating system of the HP-41.

11.3.1 Using Bank-Switching

The 1LG9 has a number of configuration options, more fully explained in section 13.4. Fach 4K core of

the 1LG9 can be programmed as either bank 0 (always enabled), bank 1 (enabled on power-up), or

bank 2 (alternately enabled/disabled with bank 1). While it is possible to create other configurations

than that shown in section 11.2 (core 1=low/bank0, core 2=high/bankl, core 3=high/bank2), that

configuration should be usable for all applications.

Using bank-switching places certain requirements on the code within the ROM:

o The bank-switching itself is accomplished through the use of the assembly-language instructions

ENROM1 (instruction code 100H) and ENROM2 (instruction code 180H). These instructions must

occur somewhere within the address space of the 1LG9 being bank-switched. Thatis, an ENROMx

instruction will only affect the 1LG9 out of which it is read. (Note that the ENROMx instruction

only takes effect whenit is read as a CPU instruction, and not when it is read as data by the CXISA

instruction.)

e The 1LG9 requires that the ENROMXx instruction be preceded by an instruction whose high bit is

zero. This is customarily handled by placing a "GOTO $+1"instruction before the ENROMLx.

e In general, an ENROMx instruction should not occur within a bank-switching ROM. It can,

however, be done with careful planning. Keeping in mind that executing an ENROMDx instruction

will immediately enable the selected ROM, instructions can be placed within both ROMs to insure

that execution continues properly. For example, using the typical 3-ROM configuration described

above,if the CPU executes an ENROMI instruction from address FOOH in bank 2, it will read its

40 Chapter 11: Bank-Switching

next instruction from address FO1H in bank 1.

« The HP-41CX self-check ROM requires that the data at address FFDH within any core contain a ‘1’
in at least one of the upper two bits if and only if that core is a bank-selecting core. This practice,
recommended but not required, is performed automatically by BUILD, but not by LINK41.

« Production-testing requires that all bank-switching cores contain the following data at the following
addresses:

FC7 ENROM1
FC8 RIN
FC9 ENROM2
FCA RTN

Any bank-switching ROMs submitted to the custom ROM program will be rejected if these test words do
not appearin all bank-switching cores.

11.3.2 Placement of Global Labels in Bank-Switching Cores

The restrictions mentioned in section 11.2 about placement of major labels are not absolute; they can
also be circumvented through careful planning. This was done, for example, in the HP-41 Advantage
ROM.

The Advantage places major labels in the first two ROM images. The third ROM image has a ROM ID
of zero and, subsequently, an empty FAT table. It contains only microcode, which is always called from
bank 0 after performing an ENROM2. The microcode in the ROM never relinquishes control with bank
2 enabled. Rather, whenever code in bank 2 relinquishes control or calls a mainframe function that
might not return, it does so through code in bank 0 that re-enables bank 1 before relinquishing control
(or executing the call). Obviously, such techniques require writing code to jump between pages in HP-
41 ROM space.

These steps have the effect of completely hiding bank 2 from the user, and making two ROM images
(and therefore two FATS) available for functions.

Chapter 12: SDS-II Basic Utilities 41

12. SDS-II Basic Utilities

SDS-II disc #1 contains the following utilities in addition to READ41P, BUILD, and EPROM.

12.1 CHECKSUM

The checksumutility can be used to verify the checksum of a ROM image file. The syntax is:

CHECKSUM <filename> [<filename>...}

Thisutility accepts filename wild-carding in the command line. For example,

CHECKSUM =»

will verify the checksums of all .41R files in the current directory.

12.2 LIFPACK

The LIFPACK utility allows you to pack an HP-41 mass-storage medium, reclaiming space lost when
files are purged by the HP-41. Its use is not recommended for the HP-82161A cassette drive. To
invoke:

LIFPACK <device>

For example, to pack the LIF disc in drive C:

LIFPACK C:

12.3 LISTFAT

The LISTFAT utility lists the catalog of a ROM image file. Syntax:

LISTFAT <ROMfilename> [<ROMfilename>]

If a second ROMfilenameis specified, LISTFAT will correctly find functions in the second ROM whose
FAT (function address table) entry is in the first ROM, and vice versa. Such ROMs will never be
created by BUILD, but can be created using the advanced programming tools.

12.4 SDSCAT

The SDSCAT utility provides a catalog of HP-41 program files and MLDL-format files (created by
WRITMLDL, explained in section 13.2.1) on an HP-41 mass-storage medium. Both catalogs are listed
in alphabetical order, not the order the files are encountered on the disc. HP-41 program files are listed
with the special characters substituted as described in appendix C.

Syntax:

SDSCAT <device>

For example:

SDSCAT C:

42 Chapter 13: Advanced Applications

13. Advanced Applications

This chapter describes the advanced tools supplied with SDS-II for ROM development, as well as the
tools needed to support the RAM-based ROM emulator.

NOTICE

The advanced programming tools are provided on an "as-is" basis. HP makes no
warranty, expressed or implied, as to their performance. HP provides no support for
assembly-language code development, and shall not be responsible for any loss or
damage to the user, its customers or any third parties caused by inaccuracies in the
materials or documentation, or by changesintroduced to existing products.

13.1 Reading UCC Files

The READ41P utility can, in addition to reading HP-41 mass media, read the output of the HHP User
Code Compiler (UCC). The expected file extension for the UCC file is "BIN". Syntax is:

READ41P -u <ucc_filename> [<filename>]

If <filename> is not specified, <ucc_filename> will be used with the extension ".41T". For example:

READA41P -u XYZZY

will read UCC outputfile XYZZY.BIN,creating a READ41P file named XYZZY.41T.

13.2 Using the RAM-Based ROM Emulator

Several RAM-based devices, known as Q-ROM, have been marketed to allow ROM emulation.
Recommended for use with SDS-II is the ERAMCO 16K RAM Storage Unit, which contains the same
bank-switching functionality as the 16K EPROM box.

Data is loaded in Q-ROM devices by writing to them from the HP-41. Software is also available for
programming Q-ROM devices. For example, the GETROM keyword in the MLDL operating system
(which is distributed on EPROM for use in the ERAMCO ESMLDL 1) allowstransfer of a ROM image
from an HP-41 mass-storage medium into an Q-ROM device.

To emulate the bank-switching 1LG9 with the ERAMCO Ram Storage Unit, load the images from
ROM 1 and ROM 2 (respectively) into bank 1, and the images from ROM 1 and ROM 3 (respectively)
into bank 2. By virtue of its presence in both banks, ROM 1 is always present, providing emulation of
1LG9 bank 0.

Details on using the various Q-ROM devices are included in the documentation with each product, and
will not be discussed here.

SDS-1I includes two programs on disc #2 to support use of Q-ROM devices: READMLDL and
WRITMLDL.

13.2.1 WRITMLDL

The WRITMLDL utility will copy a ROM image file created by BUILD or LINK41 onto a LIF medium
in the "standard format”. Thatis, it will create a file on the HP-41 medium that is directly readable by
the GETROM keyword (mentioned above) and other such utilities.

Chapter 13: Advanced Applications 43

The syntax is:

WRITMLDL <ROMfile> <device>:<filename>

For example,

WRITMLDL MYROM1 C:ROMIMAGE

will take ROM image file MYROML.41R and create file ROMIMAGE on the HP-41 media in drive C:

containing the ROM image in a format readable by GETROM.

A word of caution: Under certain circumstances, the GETROM keyword can be fooled into reading the
wrongfile. The problem, which is not easily repeatable, can best be characterized with an example:

If the HP-41 medium has two files, named ABCDEF and ABCDEFG, and ABCDEFG occurs earlier in
the disc directory than ABCDEF, attempting to retrieve ABCDEF with GETROM will sometimes
retrieve ABCDEFG. This problem can be avoided by appending a space to the filename specified in the
Alpha register.

13.2.2 READMLDL

READMLDL is the inverse of WRITMLDL. It will read a ROM image file from an HP-41 mass-
storage medium into a .41T ROM image file. The ROM image file can then be manipulated using such
tools as LISTFAT, EXTRACT,etc.

Syntax:

READMLDL <device>:<filename> <ROMfile>

13.3 Other Advanced Utilities

This section assumes prior knowledge of HP-41 assembly language, and the HP-41 architecture and
operating system!?,

13.3.1 ASSEMB41

ASSEMBA1 is an HP-41 assembler. It assembles source files (suffixed with .41A) into relocatable object
files (.410) that can either be:

¢ Collected into ROM imagefiles (.41R) using LINK41, or

e Turned into microcodelibrary files (.41T) using MUCODE.

The assembler uses HP mnemonics, which differ in many ways from the mnemonics used in many non-
HP products. The following subsections list the mnemonics and their opcodes, which should facilitate
translation from other assembly languages.

13.3.1.1 Command Line Syntax

To invoke the assembler:

ASSEMBA4]1[-els8] [-0 <outputfile>] <inputfile>

13. An excellent source of information about these topics is the ZENROM manual, from ZENGRANGE Ltd., Greenfield Road,
Leeds, LS9 8DB, England.

44 Chapter 13: Advanced Applications

Command line options:

-e Send error messages to screen in addition to standard output.

-1 Produce a source codelisting on standard output.

-s Print a symboltable to standard output.

8 Print addresses and opcodes in octal. If not specified, the assembler will print addresses and

opcodes in hex.

-0 Use the following argumentas the name of the outputfile. If this option is not specified, the input

filename will be used. In either case, the output file will have extension ".410".

The <inputfile> must have the extension ".41A" to be found by ASSEMB41.

ASSEMBA41 sends its output to standard output. If the -1 or -s option is specified, the output is

formatted for a printer, and should be redirected to one using the ‘>’ command line feature of MS-

DOS.

13.3.1.2 Assembler Syntax Conventions

Following are the general syntax rules for ASSEMB41.

13.3.1.2.1 Comments

Any line beginning with a "+"is interpreted as a comment.

A semicolon (;) can be used to begin an in-line comment.

13.3.1.2.2 Fields

A line consists of three fields: label, instruction, and operand.

e A label must begin in column 1, must begin with an alphabetic character, and can contain any

number of alphanumeric characters. Only the first 20 characters of a label are used by ASSEMBAL.

» An instruction can begin anywhere but in column 1. If a label is used, there must be at least one

space (or tab) between the label and theinstruction.

The operand,if required for the instruction, must be separated from the instruction by one or more

spaces (or tabs).

If a field begins with a semicolon, the remainder of the line is treated as a comment and ignored by the

assembler.

13.3.1.2.3 Expressions

Most instructions that can take numeric operands (with the exception of pseudo-ops SPACE, FILLTO,

BSS, and ORG) can take arbitrary expressions combining labels, constants, and special symbols.

CONSTANTS Constants can be in hex (terminated with ‘H’), octal (terminated with ‘O’ or ‘Q’) or

decimal. A hex constant beginning with a non-decimal digit must be prefixed with a zero

to avoid confusion with labels (for example, OFH).

LABELS Local labels (those that can be resolved within this module) can be included in

expressions.

Chapter 13: Advanced Applications 45

SPECIAL The special symbol ‘$’ designates the current address. For example, GOTO $+1 means

GOTO the next statement.

The following operators can be used in expressions: +, -, *, /, and % (modulus). An expression

consisting of one label or ‘§* plus or minus a constantis considered a “relative” expression. All other

expressions are considered “absolute”. The purpose of this distinction becomes clear in section

13.3.1.2.4. If the *-s’ option is specified, labels with “absolute” values are indicated in the symbol table

with a "*".

The pseudo-ops mentioned above that cannot take arbitrary expressions can take constants in decimal,

hex, or octal.

13.3.1.2.4 Global Labels

ASSEMBA1supports global referencesfor the following instructions:

o All branches (short and long).

+ CON.

« DEFP4K, DEFR4K, DEFR8K, U4KDEF, USKDEF.

« GSB41C, GSBSAM, GOLA1C, GOLSAM.

« LC3.

A global reference is one that is resolved by the linker (LINK41) rather than by the assembler. A global

expression takes the form of a label preceded by ‘=". For example, to call the mainframe routine

CLLCDE,use "GOSUB =CLLCDE". A global expression must only contain a single label; it cannot

contain any arithmetic.

To declare a label as global, the GLB instruction (explained below) is used. When the linker resolves

global references, it updates relative expressions to reflect the load address of the assembly module;
absolute expressions are not updated.

In addition to supporting global references, the instructions mentioned above support "relocaticn fixups”.
This means that a local reference to a relative expression (such as CON <label>) is updated by the
linker to reflect the load address of the assembly module. An error message in LINK41 or BUILD
about an internal reference out of range is caused by a relocation fixup being out of range.

13.3.1.3 Mnemonics

The mnemonics used here reflect the history of mnemonics used in past internal HP-41 software; they do

not reflect a conscious choice made for this product (exception: the addition of the WMLDL

instruction). The type-0 instructions are presented both in alphabetical and numeric order, to facilitate

understanding this set of mnemonics.

For the instructions that take an operand, only the base value of the compiled word is shown. The

actual choice of bytes is dependent on the value of the operand. Where appropriate,this table gives the

legal range of operands.

13.3.1.3.1 Type-0 Instructions — Alphabetical Order

See the commentary afterthis list for an explanation of instructions designated with **’.

46 Chapter 13: Advanced Applications

TABLE 11. Type-0 assembly-language instructions— alphabetical order

MNEMONIC

|

OPERAND | CODE [MNEMONIC | OPERAND | CODE

F0=1 3ACH CNEX OFOH

F10=1 OECH *CON <expr> 000H

F11=1 1ACH CRDFLG 3ESH

F12=1 36CH CRDINF 268H

F13=1 2ECH CRDOHF 1ESH

Fi1=1 32CH CRDWPF 168H

F2=1 22CH CSTEX 3D8H

F3=1 02CH CXISA 330H

F4=1 06CH DADD=C 270H

IF5=1 0ACH DATA=C 2F0H

F6=1 16CH DECPT 3D4H

FI=1 2ACH DISOFF 2E0H

9F8=1 12CH DISTOG 320H

F9=1 26CH DSALM 2A8H
ILLD 160H DSWKUP 228H

P=Q 120H ENALM 2ESH
9PT= 0-13 014H ENREAD 0A8H

250=1 38CH ENROM1 100H

7510=1 0CCH ENROM2 180H
2S11=1 18CH ENWKUP 268H
2812=1 34CH ENWRIT 028H

2813=1 2CCH F=SB 258H

?S1=1 30CH FEXSB 2D8H

952=1 20CH FLG=17 0-13 02CH

753=1 00CH FLLABC 138H

754=1 04CH FLLDA 038H
785=1 08CH FLLDAB OF8H

986=1 14CH FLLDB 078H
987=1 28CH FLLDC 0BSH
958=1 10CH FLSDA 2B8H
259=1 24CH FLSDAB 378H
ALARM? 36CH FLSDB 2F8H
C=CA 370H FLSDC 1BSH
C=C&A 3BOH FRAV? 12CH
C=C.A 3BOH FRNS? 26CH
C=CORA 370H FRSABC 3BSH
C=DATA 038H FRSDA 1F8H
C=G 098H FRSDAB 338H
C=KEYS 220H FRSDB 2384
c=M 198H FRSDC 278H

C=N 0BOH G=C 058H

C=REGN 115 038H GOKEYS 230H

C=ST 398H GOTOC 1EOH

C=STK 1BOH HPIL=C 07 200H

CGEX ODSH HPL=CH 07 024H

CHKKB 3CCH IFCR? 16CH

CLRABC 1A0H INCPT 3DCH

CLRST 3C4H LC 0-15 010H

CMEX 1D8H *LC3 <expr> 010H,010H,010H

Chapter 13: Advanced Applications 47

MNEMONIC | OPERAND |CODE MNEMONIC I OPERAND [CODE

LDI 130H SLLDAB 168H
LLD? 160H SLSABC 3ES8H
M=C 158H SLSDA 2A8H
MCEX 1D8H SLSDAB 368H
N=C 070H SLSDB 2ES8H
NCEX OFOH SPOPND 020H
NOP 000H SRLABC 128H
ORAV? OECH SRLDA 028H
P=Q? 120H SRLDAB OESH
PFAD=C 3FOH SRLDB 068H
POWOFF 060H,000H SRLDC 0A8H
PT= 0-13 01CH SRQR? 2ACH
PT=? 0-13 014H SRSABC 3A8H
PT=A 3ESH SRSDA 1ES8H
PT=B 3A8H SRSDAB 328H
RABCL 3F8H SRSDB 228H
RABCR 3B8H SRSDC 268H
RCR 0-13 03CH ST=0 0-13 004H
RCTIME 078H ST=1 0-13 008H
RDALM O0B8H ST=1? 0-13 00CH
RDINT 178H ST=C 358H
RDSCR 138H STARTC 368H
RDSTS OF8H STK=C 170H
RDTIME 038H STOPC 328H
READEN 178H STPINT 1E8H
REGN=C 0-15 028H STREAD OESH
RSTKB 3C8H STWRIT 068H
RTN 3EOH TCLCRD 368H
RTNC 360H TRPCRD 328H
RTNNC 3A0H TSTBUF 2ESH
= 0-1 384H WDTIME G68H

S10= 0-1 0C4H WMLDL 040H
Sil= 0-1 184H WRALM 0ASH
S12= 0-1 344H WRSCR 128H
S13= 0-1 2C4H WRSTS OESH
Sl= 0-1 304H WRTEN 2FOH
= 0-1 204H WRTIME 028H
= 0-1 004H WSINT 168H
= 0-1 044H

S5= 0-1 084H
= 0-1 144H
= 0-1 284H
= 0-1 104H
= 0-1 244H

SB=F 298H
SELP 0AOH
SELPF 0-15 024H
SELQ OEOH
SETDEC 2A0H
SETHEX 260H
SLLABC 1A8H

The CON instruction compiles into the low 10 bits of the expression in the operand field. Unlike most

48 Chapter 13: Advanced Applications

of these instructions, it does not perform a range check on the operand to require that it be in the range
0 through 3FFH.

The LC3 compiles into three successive LC’s, loading nibbles 2, 1, and 0 of the expression. For
example, LC3 123H compiles into LC 1/LC 2/LC 3. Like CON,it does not perform a range check on
the operand to require thatit be in the range 0 through OFFFH.

13.3.1.3.2 Type-0 Instructions — Numeric Order

TABLE 12. Type-0 assembly-language instructions — numeric order

MNEMONIC | OPERAND | CODE MNEMONIC | OPERAND | CODE
CON <expr> 000H C=G 098H
NOP 000H SELP 0AOH
S3= 0-1 004H ENREAD 0ASH
ST=0 0-13 004H SRLDC 0ASH
=1 0-13 008H WRALM 0ASH

2%3=1 00CH IF5=1 0ACH
ST=1? 0-13 00CH C=N OBOH
LC 0-15 010H FLLDC 0BSH
LC3 <expr> 010H,010H,010H |RDALM OBSH
7PT= 0-13 014H S10= 0-1 0C4H

=9 0-13 014H 2510=1 0CCH
= 0-13 01CH CGEX ODSH

SPOPND 020H SELQ OEOH
HPL=CH 0-7 024H SRLDAB OESH
SELPF 0-15 024H STREAD OE8H
ENWRIT 028H WRSTS 0ESH
REGN=C 0-15 028H 7F10=1 OECH
SRLDA 028H ORAV? OECH
WRTIME 028H CNEX OFOH
MF3=1 02CH NCEX OFOH
FLG=1? 0-13 02CH FLLDAB OF8H
C=DATA 038H RDSTS OF8H
C=REGN 1-15 038H ENROM1 100H
FLLDA 038H S8= 0-1 104H
RDTIME 038H 258=1 10CH
RCR 0-13 03CH P=Q 120H
WMLDL 040H P=Q? 120H
= 0-1 044H SRLABC 128H

29%4=1 04CH WRSCR 128H
G=C 058H F8=1 12CH
POWOFF 060H,000H FRAV? 12CH
SRLDB 068H LDI 130H
STWRIT 068H FLLABC 138H
WDTIME 068H RDSCR 138H
F4=1 06CH S6= 0-1 1441
=C 070H 256=1 14CH

FLLDB 078H M=C 158H
RCTIME 078H ILLD 160H
= 0-1 084H LLD? 160H

255=1 08CH CRDWPF 168H

Chapter 13: Advanced Applications 49

 MNEMONIC

[

OPERAND CODE MNEMONIC | OPERAND [CODE

SLLDAB 168H FLSDA 2B8H

WSINT 168H S13== 0-1 2C4H

F6=1 16CH 7513=1 2CCH

IFCR? 16CH FEXSB 2D8H

STK=C 170H DISOFF 2E0H

RDINT 178H ENALM 2E8H

READEN 178H SLSDB 2E8H

ENROM2 180H TSTBUF 2E8H

Sl1= 0-1 184H 7F13=1 2ECH

7811=1 18CH DATA=C 2F0H

Cc=M 198H WRTEN 2F0H

CLRABC 1A0H FLSDB 2F8H

SLLABC 1A8H Si= 0-1 304H

F11=1 1ACH 281=1 30CH

C=STK 1BOH DISTOG 320H

FLSDC 1B8H SRSDAB 328H

CMEX 1D8H STOPC 328H

MCEX 1D8H TRPCRD 328H

GOTOC 1E0H 7F1=1 32CH

CRDOHF 1ESH CXISA 330H

SRSDA 1E8H FRSDAB 338H

STPINT 1E8H S12= 0-1 344H

FRSDA 1F8H 712=1 34CH

HPIL=C 0-7 200H ST=C 358H

= 0-1 204H RTNC 360H

2=1 20CH SLSDAB 368H

C=KEYS 220H STARTC 368H

DSWKUP 228H TCLCRD 368H

SRSDB 228H PF12=1 36CH

TF2=1 22CH ALARM? 36CH

GOKEYS 230H C=C!A 370H

FRSDB 238H C=CORA 370H

59= 0-1 244H FLSDAB 378H

759=1 24CH SO= 0-1 384H

F=SB 258H 250=1 38CH

SETHEX 260H C=ST 398H

CRDINF 268H RTNNC 3A0H

ENWKUP 268H PT=B 3A8H

SRSDC 268H SRSABC 3A8H

F9=1 26CH 27F0=1 3ACH

FRNS? 26CH C=C&A 3BOH

DADD=C 270H C=C.A 3BOH

FRSDC 278H FRSABC 3BSH

= 0-1 284H RABCR 3BS8H

S1=1 28CH CLRST 3C4H

SB=F 298H RSTKB 3C8H

SETDEC 2A0H CHKKB 3CCH

DSALM 2A8H DECPT 3D4H

SLSDA 2A8H CSTEX 3D8H

PF7=1 2ACH INCPT 3DCH

SRQR? 2ACH RTN 3E0H

50 Chapter 13: Advanced Applications

MNEMONIC { OPERAND | CODE

CRDFLG 3E8H

PT=A 3ESH

SLSABC 3ES8H

PFAD=C 3FOH

RABCL 3F8H
13.3.1.3.3 Arithmetic Instructions

All of these instructions require a time-enable field, consisting of one of the following: PT, X, WPT, W,

PQ, XS, M, S.

TABLE 13. Arithmetic assembly-language instructions

MNEMONIC | OPERAND | CODE MNEMONIC | OPERAND | CODE

7A#0 TE 342H B#0? TE 2C2H

2A#C TE 362H B=0 TE 022H

7A<B TE 322H B=A TE 082H

7A<C TE 302H B=C TE OE2H,0C2H

7B#0 TE 2C2H BAEX TE 062H

2C#0 TE 2E2H BCEX TE OE2H

A#0?. TE 342H BSR TE 3A2H

A#C? TE 362H C#0? TE 2E2H

A<B? TE 322H =-C TE 282H

A<C? TE 302H C=-C-1 TE 2A2H

A=0 TE 002H Cc=0 TE 042H

A=A+1 TE 162H C=A TE 0A2H,102H

A=A+B TE 122H C=A+C TE 202H
A=A+C TE 142H C=A-C TE 242H
A=A-1 TE 1A2H C=B TE 0C2H

A=A-B TE 182H C=C+1 TE 222H
A=A-C TE 1C2H C=C+A TE 202H
A=B TE 062H,082H

|

C=C+C TE 1E2H
A=C TE 102H C=C-1 TE 262H
ABEX TE 062H CAEX TE 0A2H
ACEX TE 0A2H CBEX TE OE2H
ASL TE 3E2H CSR TE 3C2H
ASR TE 382H

13.3.1.3.4 Pseudo-Ops

The following pseudo-ops are used in ASSEMB41:

Chapter 13: Advanced Applications 51

TABLE 14. Assembly-language pseudo-ops

MNEMONIC | OPERAND | CODE MNEMONIC | OPERAND | CODE
BSS <number> LEGAL
EJECT LIST
END ORG <number>
EQU <expr> SKIP <number>
FILLTO <number> SPACE <number>
GLB <label> TITLE "<text>"
LCDCHAR "<text>" UNLIST

An explanation of their functions:

BSS Fill specified number of words with zeroes and skip them. Operand field specifies number
of words.

EJECT Formfeed the listing.

END End of source; do not read the rest of the file.

EQU Equate a label with a value. For example, "ABC EQU 5" will equate the label ABC to
the absolute value 5.

FILLTO Fill the object file with zeroes up to the address specified in the operand field. This
pseudo-op fills to the specified address relative to the start of the file. For example, if
ORG 1000H was specified, then FILLTO OFO0H will actually fill from the current
address to address 1FOOH.

GLB Declares the label specified in the operand field to be global, which allows it to be found
by LINK41. Its use is illustrated in the examples.

LCDCHAR The expression in quotes is encoded in the LCD character format. This pseudo-op only
accepts characters that are legal in labels. A ‘I’ is used to designate that the character
following it should be encoded with bit 7 set. The special characters 2, #, and /, use the
alternate representation explained in appendix C. The use of the LCDCHAR pseudo-op
is illustrated in the examples.

LEGAL Normally, the assembler complains if certain potentially erroneous combinations of
instructions exist. For example, a LDI followed by anything other than a CON causes an
error. A test of any sort followed by anything other than a conditional branch/return
causes an error. A GOTO, GOLONG, or GOSUB preceded by a command that might
set carry causes an error. By placing the LEGAL pseudo-op before the offending code,
these errors are suppressed.

LIST If the -1 option was specified, this pseudo-op turns off the UNLIST mode. Default
behavior is to list until an UNLIST is encountered.

ORG Specifies that the relocatable file is to start at an absolute address. This forces the linker
to place the module at that address, and all labels within the module to be considered
absolute expressions. Operand field specifies the address. Files assembled with the ORG
command cannot be used as microcode library files.

SKIP Same as EJECT.

SPACE Skip the specified number of spaces in the output listing. “The number of spaces is
specified in the operand field.

TITLE Specify a title to appear on each page of the listing. Title is also stored in the objectfile,
and displayed by LINK41 and ASMBINFO when this file is referenced. The title string
must appear between quotes. .

52 Chapter 13: Advanced Applications

UNLIST Tum off listing (if -1 option is specified) until a LIST command is encountered.

13.3.1.3.5 FAT Entries

Thefollowing pseudo-ops create two-word entries for the Function Address Table (FAT):

TABLE 15. Assembly-language FAT entry pseudo-ops

MNEMONIC | OPERAND | CODE MNEMONIC | OPERAND | CODE

DEFP4K <expr> 000H,100H U4KDEF <expr> 200H,000H
DEFR4K <expr> 000H,000H USKDEF <expr> 200H,000H
DEFR8K <expr> 000H,000H

Their functions are as follows:

DEFR4K Creates a FAT entry for a microcode function somewhere within the current 4K block.
<expr> is the execution address of the function. Immediately preceding the target address is
the function name, in LCD character representation, backwards, terminating with bit 7 set on
the last character.

DEFRSK Like DEFR4K, but capable of pointing to a function in the adjacent 4K block as well. Can
be used to create a FAT entry in the lower half of the port address space pointing to a
function in the upper half, and vice versa.

U4KDEF Creates a FAT entry for a usercode function somewhere within the current 4K block.
<expr> is the address of the GLOBALtoken in a LBL statement.

USKDEF Like U4KDEF, but capable of pointing to a function in the adjacent 4K block as well. Can
be used to create a FAT entry in the lower half of the port address space pointing to a
function in the upper half, and vice versa.

DEFP4K This pseudo-op has always existed. Its purpose is lost to modern memory.

13.3.1.3.6 Branches

These instructions provide branching of various sorts:

TABLE 16. Assembly-language branching instructions

MNEMONIC | OPERAND | CODE MNEMONIC | OPERAND | CODE
GOC <expr> 007H GOSUB <expr> 001H,000H
GOLA41C <expr> 001H,000H,000H GOTO <expr> 003H
GOLC <expr> 001H,003H GSB41C <expr> 001H,000H,000H
GOLNC <expr> 001H,002H GSBSAM <expr> 001H,000H,000H
GOLONG <expr> 001H,002H GSUBC <expr> 001H,001H
GOLSAM <expr> 001H,000H,000H GSUBNC <expr> 001H,000H
GONC <expr> 003H

Explanation:

GOC Local goto target address if carry is set.

GONC Local goto target address if carry is clear.

GOTO Same as GONC, but the assembler complainsif it follows anything that mightset the carry.

GOLC Long goto target address if carry is set.

GOLNC Long goto target address if carry is clear.

GOLONG

GSUBC

GSUBNC

GOSUB

GSB41C

GSBSAM

GOL41C

GOLSAM

Chapter 13: Advanced Applications 53

Same as GOLNC, but the assembler complains if it follows anything that might set the
carry.

Long gosub target address if carry is set.

Long gosub target address if carry is clear.

Same as GSUBNC, but the assembler complains if it follows anything that might set the
carry.

Compiles into a "three-byte GOSUB" capable ofreaching a target address anywhere within
the current 4K block. (Uses mainframe routine GOSUBO, GOSUBI1, GOSUB2,
GOSUB3, or GOSUB,as appropriate.)

Compiles into a "three-byte GOSUB" capable ofreaching a target address anywhere within
the current 1K block. (Uses mainframe routine GOSUB.)

Compiles into a “three-byte GOLONG" capable of reaching a target address anywhere
within the current 4K block. (Uses mainframe routine GOLO, GOL1, GOL2, GOL3, or
GOL, as appropriate.)

Compiles into a “three-byte GOLONG" capable of reaching a target address anywhere
within the current 1K block. (Uses mainframe routine GOL.)

13.3.1.3.7 Peripheral Commands

TABLE 17. Assembly-language instructions for smart peripherals

MNEMONIC | OPERAND | CODE MNEMONIC | OPERAND | CODE
7PFSET 0-15 003H PRINTC 007H
C=HPIL 0-7 024H,03AH,003H

|

RDPTRN 03AH
CH= 0-255 001H RDPTRR 03BH
PESET? 0-15 003H RTNCPU 005H

13.3.1.4 EXAMPLES

13.3.1.4.1 An Assembly-Language Keyword

Thefollowing example, the code for the AIP keyword,illustrates some of the assembler’s features:

TITLE "AIP function”
GLB xqAIP
LCDCHAR "IPIA" ; AIP

XqAIP C=REGN 3 ; Read X
GOSUB =CHK_NO_S ; Check for alpha data
C#0? XS ; Exponent negative?
GONC AIP10 ; No.
C=0 w

AIP10 ST=1 5
GOSUB =INTFRC ; C=integerpart, A.X=exponent
PT= 13

AIP20 B=A X ; Save exponent in B
LC 3
G=C ; G=ASCITI'ized digit
PT=? 2 ; Down at exponent?
GONC AIP30 ; No.

54 Chapter 13: Advanced Applications

INCPT ; Yes. Stay here.
AIP30 M=C ; Hold mantissa

SELQ
GOSUB =APNDNW ; Append to Alpha register
SELP
C=M ; Retrieve mantissa
ABEX X
A=A-1 X ; Done?
GONC AIP20
RTN

13.3.1.4.2 A Function Address Table

The following code, which would occur at the beginning of the ROM image, illustrates a ROM with
ID=21,a header, and a single function (AIP, above).

CON 21 ; ROM ID=21
CON 2 ; 2 entries in FAT
DEFR4K HDR ; Point to my header
DEFR4K =xqAIP ; Point to my function
CON 0
CON 0 ; End of table

*

LCDCHAR "IMOR YM--" ; "--MY ROM"
HDR RTN

13.3.2 LINK41

The LINK41utility is used to collect one or more assembler output files into a ROM imagefile. Even

if an assembler output file has no external references, it must be run through LINK41 to put itinto the

proper form. LINK41 expectsall of its assembler inputfiles to have the filename extension ".410", and

it creates ROM imagefiles with the filename extension ".41R".

NOTE

If you use LINK41instead of BUILD to create your ROM imagefiles, you must create

your own configuration file. See appendices G and H for more details.

LINK41 is command-driven, either from a command file or from the keyboard. The output

formatted for printing (page headers, formfeeds, and such), and can be redirected to a printer using the

‘>’ command line feature of MS-DOS.

Syntax:

LINK41 [-e] [<command_file>]

The -e option specifies that error messages are sent to the display in addition to standard output.

If a <command_file> is specified, thatfile is opened and LINK41 commands are read from it. If no

commandsare accepted from the console (prompting is provided).

LINK41 creates from one to six ROM image files. All commands can be abbreviated to their first two

characters. The commands are:

Chapter 13: Advanced Applications 55

NEwrom [<pagenumber>]
OUtput <ROMfilename>
LOcate <address>
CHecksum [<address>])
SEarch <assemblyfilename>
REloc <assemblyfilename>
LIst XRef
SUppress XRef
COmment
ENd
?

The meanings of the LINK41 commands are:

NEWROM Analogous to the ROM# command in BUILD. Used to begin a new 4K ROM image. The
optional <pagenumber> can be from 0 to 15, and determines the starting address of the
ROM code. This information is not encoded in the output file in any way, but can be
important for LINK41’s resolving of references. With a few exceptions (noted below), most
of the other commands cannot occur before the first NEWROM command.

OUTPUT Designates the output file (extension ".41R" will automatically be appended) to contain the
current ROM image (that designated by the most recent NEWROM command). If not
specified, a ROM imagefile for this 4K block is not created.

LOCATE The address, specified in hex (without a trailing ‘H’), determines where the next RElocated
file will go. It is analogous to the FILLTO command in the assembler.

CHECKSUM This command instructs LINK41 to compute a checksum word for the current 4K ROM
image. If the optional address is specified, the checksum word will be placed at that address.
If not, the checksum word will be placed into its customary position in the last word of the

4K block.

SEARCH This command can occur before the first NEWROM command. Its action is independent of
where it occurs in the command file. The command causes the specified filename to be

searched for labels to be resolved. The file MFENTRY.410, included on disc #2, contains

the HP-41 mainframe entry points.

RELOC This command causes the named .410 file to be read into the current ROM image (that

designated by the most recent NEWROM command). Normally, files are RElocated

successively in address space, without any dead space between then. This can be overridden

either by the LOCATE command (above) or by use of the ORG command in the assembler

file.

LIST XREF If this command occurs before the first NEWROM command, it causes listing of a cross-

reference table to occur for all ROM image files. Otherwise it causes listing of a cross-

reference table to occur for the current ROM (that defined by the most recent NEWROM

command).

SUPPRESS XREF If this command occurs before the first NEWROM command,it suppresses listing of

a cross-reference table for all ROM image files (this is the default condition). Otherwise it

suppresses listing of a cross-reference table for the current ROM.

COMMENT Causes this line of the command file to be treated as a comment. That is,it is ignored.

END Indicates the end of the command file; anything left in thefile is not read.

? Displays the command list.

The format of the .41Rfile is straightforward: each word of HP-41 ROM is represented by two bytes.

Thefirst byte contains the upper two bits, the second contains the lower eight.

56 Chapter 13: Advanced Applications

13.3.3 ASMBINFO

The ASMBINFO utility is used to dump information about assembly files and SDS-II microcodefiles.
The syntax is:

ASMBINFO [-d] <filename>

Unlike most of the other SDS-II utilities, ASMBINFO requires that the full filename and extension be
specified. This is because ASMBINFO works on both .410 files and .41T files containing microcode.
It will not work on .41T files containing usercode.

The information dumped by ASMBINFO consists of global labels, external references, fixups, and other
items of interest to LINK41 and BUILD.

1f the -d option is selected, the output will include a hex dump of the code in the file.

13.3.4 DISASMA41

The DISASMA1 utility will disassemble an entire file, interpreting it as consisting of HP-41 assembly-

language. The syntax is:

DISASM41 <filename> [<filename> [<filename>]]}

Like ASMBINFO, DISASM41 requires the full filename; no extension is assumed. This utility is most

useful for disassembling ROM image files, which only contain HP-41 code. The overhead contained in

othertypes offiles (such as .410 and .41T) not only disassembles into meaningless garbage, but may put
the disassembler one byte out of sync when it reaches the actual code.

The output consists of an address, followed by the instruction’s representation in hex, octal, decimal,
ASCII, LCD characters, and finally, HP-41 instruction. Some other points:

e When the target address of a long branch is a recognized mainframe entry point, DISASM41
provides the name of that entry point.

« When a word disassembles into a two-word command, the second word is shown, disassembled, in

parentheses.

» DISASMA41 does not properly interpret the smart peripheral commands.

« DISASMA41 errors outif the file contains an odd numberof bytes.

13.3.5 EXTRACT

The EXTRACT utility extracts usercode from a ROM image file in a format compatible with

ASSEMB41. This allows you to use READ4IP and BUILD to create a ROM-format image of the

usercode program (with GOTOs and XROMSs compiled, links resolved, etc.), and then incorporate that

program into a ROM being developed with ASSEMB41 and LINK41.

The syntax is:

EXTRACT [-<blocknumber>>] <funcnumber> <ROMfilename> [<ROMfilename>)

The optional parameters will never be necessary for a ROM image produced by BUILD, but they add

flexibility to the program. First, the mandatory parameters:

FUNCNUMBER Is the function number to be extracted from the file. If the global label referenced by

the funétion number is not at the beginning of the program, EXTRACT will

nevertheless extract the entire program.

Chapter 13: Advanced Applications 57

ROMTfilename The name of the ROM image file from which the program is to be extracted.

Using the mandatory parameters, EXTRACT will extract a program from the 4K ROM image specified
by ROMfile. The optional parameters allow specifying two files, for a total 8K image. Thisis useful for
extracting a program which exists in one 4K block but whose FAT entry is in the other 4K block.

The optional <blocknumber> indicates in which 4K block the FAT entry lies. If zero (default), the
FAT of the first 4K block is used, if 1, the FAT of the second block is used.

EXTRACT sends its output to standard out, which can be redirected to a file with the ‘>’ command
line feature of MS-DOS. The output consists of CON statements defining the actual words, with
comments(to the right) identifying the usercode being compiled.

A global assembler label is placed at each GLOBAL in the program. EXTRACT is not completely
intelligent about this: the label is simply the text of the usercode label, and might not be a legal
assembler label.

13.3.6 MUCODE

The MUCODE utility allows you to create microcode files for inclusion into a ROM image file being
created by BUILD. The difference between an assembly file (.410) and a microcode file (.417T) is,
largely, the addition of information at the front of the microcode file identifying keywords and interrupt
handlers contained therein.

The syntax is:

MUCODE <assemblyfilename>> [<microcodefilename>]

The <assemblyfilename> will automatically have the extension “.410" appended. The microcode file
will have the same name as the assembly file (if <microcodefilename> is not specified) or
<microcodefilename> in either case, the extension will be ".41T".

In order to create a useful microcodefile, it is necessary to identify where the labels occur, and where
the entry points are for the interrupt handlers. This is done through the use of special global labels:

XQeenes Any globallabel beginning with "xq" (lowercase only) is recognized by MUCODE as the
beginning of a function. Section 13.3.1.4.1 shows a function, AIP, for which this is
done. (MUCODE will examine the code to verify that the microcode label is valid,
printing an error messageif it is not.)

epPSLOOP If the global label epPSLOOP occurs in the assemblyfile, it is recognized as the entry
point of the interrupt handler for the pause loop interrupt. Please see below for
important considerations about writing interrupt handlers.

epMRLOOP Like epPSLOOP, but for the main running loop interrupt.

epDSWNK Like epPSLOOP,but for deep-sleep wakeup no-key interrupt.

epPWROFF Like epPSLOOP,but for the power-off interrupt.

epIOSRV Like epPSLOOP,but for the I/O service interrupt.

epDSWKUP Like epPSLOOP,but for the deep-sleep wakeup interrupt.

epCOLDST Like epPSLOOP,but for the coldstart interrupt.

When processing a file, MUCODE creates a list of function labels and addresses in the format needed by

BUILD. It is not necessary (or even possible) to LINK41 the assembly file before using MUCODE;

58 Chapter 13: Advanced Applications

BUILD will resolve all global references between microcode modules. In addition, BUILD contains a

list of the mainframe entry points contained in MFENTRY.410, and will resolve all references to those

entry points.

The "encountered order” of labels within thefile (as far as BUILD is concerned)is alphabetical order of

the microcode labels. For example, if function "ABC" occurs at microcode label xqRST, and function

"XYZ" occurs at microcode label xgBCD,then "XYZ" appears before "ABC" in the “encountered” order

of functionsin the file.

Writing interrupt handlers for BUILD is very different from writing conventional interrupt handlers.

BUILD is designed to accept an arbitrary numberof interrupt handlers;it works by building a table of all

interrupt handlers found in the various microcode files, and, through the MCODE driver,calling them

all at appropriate times.

This raises two very important considerations for writing interrupt handlers:

« The handler must terminate with GOTOC (returning control to MCODE) instead of the conventional

GOLONG =RMCKI10.

« The handler must preserve the C-register, and meet the following return conditions: HEX mode, P

selected, status set 0 up, chip 0 selected.

13.4 1LG9 Configuration

The 1LG9 12K ROM chip consists of three 4K cores, with a variety of configuration options. For most

ROMs being built, the standard configurations shown in appendix F are adequate. However,it is;

possible to request alternate configurations. For each 4K core, the following optionsare available:

TABLE 18. 1LGY ROM core configuration options

Enabled/Disabled

Hard-Configured Port-Configured

Address Lower Half

|

Upper Half

Bank 0/Bank 1/Bank 2
An explanation of the options:

« If a core is disabled, it does not exist for the HP-41. This is how the 1LG9 is used for 4K and 8K

ROMs.

o If the core is hard-configured, a configuration address must be selected (it must be on a 4K

boundary).

« If the core is port-configured, it must be configured for the lower or upper half of the port’s address

space.

o A core (whether hard- or soft-configured) can be placed in:

bank 0 Always present.

bank 1 Present at power-up; enabled with ENROM1;disabled with ENROM2.

bank 2 Not present at power-up; enabled with ENROM2; disabled with ENROML.

Note that, as mentioned earlier, the ENROMX instruction affects only the 1LG9 out of whichit is

Chapter 13: Advanced Applications

read. It can, however, be read out of any core of the target 1LG9to affectall of the cores.

59

60 Appendix A: Contents of Discs

APPENDIX A. Contents of Discs

‘I'he two discs shipped with SDS-IT contain the following files:

A.l1 Disc 1

AIP.A1IT
ALEN.41T
ALENG.41T
ALNAM2.41T
ANUM.41T
AROT.41T
ATOX.41T
AUTOST.41T
BIND.41T
BININ.41T
BINVIEW.41T
CLKEYS.41T
CLRGX.41T
CSKBD.41T

A.2 Disc 2

MFENTRY.410
ASMBINFO.EXE
ASSEMB41.EXE
DISASM41.EXE

ENROML.41T
ENROM2.41T
GETKEY41T
HEXIN.41T
HEXVIEW.41T
OCTIN.41T
OCTVIEWAIT
PASN.41T
PCLPS.41T
PNCTUA.4IT
POSA.41T
PSIZE.41T
RCLSTFLG.41T

EXTRACT.EXE
HIGHLOW.EXE
LINK41.EXE

REGMVSWP.41T
SIZE.41T
XB.41T
XF.41T
XTOA.41T
XVIEW.41T
BUILD.EXE
CHECKSUM.EXE
EPROM.EXE
LIFPACK.EXE
LISTFAT.EXE
READ41P.EXE
SDSCAT.EXE

MUCODE.EXE
READMLDL.EXE
WRITMLDL.EXE

Appendix B: HP-41 Keycodes 61

APPENDIX B. HP-41 Keycodes

This chart shows the keycodes for the primary (unshi
obtained by prefixing the unshifted keycode with a mi
ENTER key is -41.

wah HP-41C wah

ONI[USER PRGMJALPHA

11 12 13 14 15

21 22 23 24 25

32 33 34 35

41 42 43 44

51 52 53 54

61 62 63 64

71 72 73 74

81 82 83 84

fted) keys. The keycode for a shifted key is
nus. For example, the keycode for the shifted

62 Appendix C: Special Characters

APPENDIX C. Special Characters

Following arc most of the HP-41 display characters:

ABCDEFGHUKLMNOPQRSTUVWXYZ=7 abcde%<> “$-++/0123456789

‘There are a few special characters, however, that arc not defined as part of the ASCII character set, andcannot be displayed or entered on the MS-DOS computer hosting SDS-1I. For purposes of data cntryand display, the following substitutes are used for these characters:

TABLE 19. SDS-II Substitutes for special HP-41 characters

HP-41 Character

|

Substitute RosaiTIPi

F w ASCII 127
n ‘mw ASCII 12
w ASCII 29
s ¢ ASCII 126
‘ ‘g ASCII 13
- ‘0’ ASCII 0

Only three of these characters, #, =, and 4, are legal characters in a global label; the others can,however, be specified in a header.

In addition, whenever the space character is to be uscd, either in a program command linc or in aDEFINEfile,it is replaced with *.’ as a placcholder.
EXAMPLE 1: To readin a program namcd "A# B" from the HP-41 disc, use:

READ41P M:AnB ANEQB

The program will be read into READ4IP file ANEQB.4IT. Note that this docs notchange the program itself — the labels will be the same. It merely provides a handlefor referencing the programs from the host MS-DOS machine.
EXAMPLE 2: Toreadin a program named "A B"from the HP-41 disc, use:

READ4IP C:A.B AB

The program will be read into READ4IP filc AB.41T.

Appendix D: Handling STACK OVERFLOW Errors 63

APPENDIX D. Handling STACK OVERFLOW Errors

Although unlikely, a STACK OVERFLOW error can occur with the SDS-II utilities. In this case, the
problem can usually be corrected by adding "= <stacksize>"to the command line, where <stacksize>
is, in bytes,the size of stack the program should use. The default stack size is 2048 bytes.

Several of the SDS-II utilities use unbalanced binary trees as data structures. The recursion used in
traversing such a tree can be responsible for a stack overflow if the tree is filled in a worst-case or near
worst-case order. This might occur in ASSEMBAI if the file being assembled contains hundreds of
labels, and they occur in alphabetical or reverse alphabetical order. Other than ASSEMBAJI,the default
stack space in SDS-II utilities is believed to be sufficient for worst-case behavior.

64 Appendix E: Command Syntax Summary

APPENDIX E. Command Syntax Summary

Where a specific filename extensionis specified, that extension is assumed by the utility. Where “ext” is
indicated, extension must be specified in the command line.

ASMBINFO {-d] <file.ext>

ASSEMBA4I [-els8] [-0 <object.410>] <source.41A>

BUILD <DEFINE_file_name> <output_file.41R>
(<output_file> name appended by BUILD with 0, 1, or 2)

CHECKSUM <file.41R> [<file.41R>...]
(wild-carding supported in file name)

DISASMA41 <file.ext> [<file.ext> [<file.ext>]}
(wild-carding supported in file name; max 12K words)

EPROM [-lhci] <file.41R> [<file.41R>...]
(wild-carding supported in file name)

EXTRACT [-<blocknumber>] <funcnumber> <file.41R> [<file.41R>]

HIGHLOW <file.41R> {<file.41R>...]
(wild-carding supported in file name)

LIFPACK <device>
(<device> must include *")

LINK41 [-¢] [<command_file>]

LISTFAT <file.41R> [<file.41R>]
(wild-carding supported in file name; max 8K words)

MUCODE <file.410> [<file.41T>}

READ41P <device>:<41_progname> <file.41T>
READ41P -u <ucc_file_name.BIN> [<file.41T>]

READMLDL <device>:<filename> <file.41R>

SDSCAT <device>
(<device> mustinclude ‘:")

WRITMLDL <file.41R> <device>:<filename>

Appendix F: Default Chip Configuration 65

APPENDIX F. Default Chip Configuration

This table illustrates the default configurations used if the CONFIG option is not used in the DEFINE
file. Table entries use the same format as the CONFIG option in the ROM# command.

TABLE 20. Default 1L.G9 configurations for one to six ROM images

Default Configuration Options# ROMs 5 0 5 R

110

11.0 1U0

11.0 1U1 102
11.0 100 2L0 2U0
1LO 1U1 102 210
11.0 1U1 102 210

Notice that the 4-ROM configuration does not use bank-switching.

66 Appendix G: The CONFIGURATION File

APPENDIX G. The CONFIGURATION File

A configuration file is automatically created by BUILD — you must create it for ROMs developed using

the advanced tools. This file is used by Hewlett-Packard, upon receipt of your ROM image files, for

three purposes:

« To verify that you have chosen a legal configuration,

» To determine whether your ROM images contain the proper test words in the proper locations (for

bank-switching ROM cores), and

« To program the 1LG9 ROM's configuration.

“The filename extension for the configuration file is always "41F". Thefile contains information about

the exact one- or two-chip configuration you have chosen. For each ROM image, the file contains one

text line consisting offive fields, separated from each other by a single blank. The ficlds, in the order

they appear, are:

TABLE 21. Fields in the configuration file

Field Possible Values Meaning

Chip Number 1,2 Which 1L.G9 this ROM image occupics

(always 1 for a 1-chip ROM)

Filename <filename>.41R Nameoffile containing this ROM image

Address Mode PH P= Port-configured; H=Hard-configured

Page If Port-Configured:

_

L,U

|

L=Lower half; U=Upper half

If Hard-Configured:

_

0-F

|

Hex page number

Bank 0-2 Bank number:
0 Non-bank-switching

1 Bank-switching; alternates w/bank 2

2 Bank-switching; alternates w/bank 1
EXAMPLES

If BUILD is used to create a 12K ROM using the default configuration, where "XYZZY"is the output

file specified in the command line, the resulting configuration file will be named "XYZZY.41F", and

will contain the following three lines:

1 XYZZY0.41RPLO
1 XYZZY1.41RPU1
1 XYZZY241RP U2

If BUILD is used to create a default 16K configuration (8K non-bank-switched in each of two ROMs)

the file will contain the following fourlines:

1XYZZY0.41RPLO

1 XYZZY1.41RPUO

2 XYZZY2.41RPLO
2XYZZY3.41RPUO

Appendix H: Submitting ROM Images to Hewlett-Packard 67

APPENDIX H. Submitting ROM Images to Hewlett-Packard

Hewlett-Packard can accept ROM imagefiles produced by SDS-II in one of two disc formats:

* 3%" micro-floppy,single- or double-sided, or

* 5%" mini-floppy, 360K format only.14

The disc must contain the following files in the root directory:

1. A configuration file (extension "41F") specifying the configuration of the ROM(s) to be produced.
If BUILD was used to create the ROM image files, this file is automatically created. Otherwise,
you must create it yourself.

2. The ROM image files (extension "41R") created by BUILD or LINK41. The namesof these files
must be the same names referenced in the configuration file.

After receiving the disc, Hewlett-Packard will produce two listings:

1. A ROM catalog listing.

2. A configuration printout showing the 1LG9 programming configuration that will be used.

Unless you choose to waive this step, you must inspect and approve the listings before ROM mask
generation and production can proceed.

14. 360K-formatted discs that have been written by a high-capacity (1.2M) drive are nos acceptable. Such discs are readable by
other high-capacity drives, but generally not by regular-capacity drives.

68 Appendix I: ROM ID Allocation

APPENDIX I. ROM ID Allocation

All possible ROM IDs have been used by HP and/or by custom products. Your choice of ROM
should include consideration of possible conflicts that may occur with other modules likely to be used.

TABLE 22. ROM IDs used in ROMs from HP

ROM ID Assignment

Math1
2 Statistics
3 Surveying

4 Finance

5 Standard

6
7

8

9

Circuit Analysis

Structures

Stress Analysis
Home Management

10 Games

11 Real Estate

12 Machine Design

13 Thermal and Transport Sciences

14 Navigation

15 Petroleum

16 Petroleum
17 Plotter

18 Plotter

19 Securities
Structures
Clinical Lab
Aviation

20
21 Reserved for custom modules

22 HP-IL Development
Advantage

23 Extended VO
24 HP-IL Development

Advantage

25 Extended Functions

26 Time

27 Wand

28 Mass Storage

29 Printer

30 Card Reader

31 Reserved for custom modules

	Cover
	Contents
	1. Introduction
	2. Contents of SDS-11
	2.1 What SDS-II Includes
	2.2 What SDS-II Does Not Include

	3. Comparison With Old SDS
	4. Configuring Your SDS-II System
	4.1 Configuring the HP-150
	4.1.1 Receiving from HP-41
	4.1.2 Controlling the EPROM Programmer

	4.2 Configuring the HP-Portable Series
	4.2.1 Receiving from HP-41
	4.2.2 Controlling the EPROM Programmer

	4.3 Configuring IBM, Vectra, and IBM-Compatible Personal Computers
	4.3.1 Receiving from HP-41
	4.3.2 Controlling the EPROM Programmer

	5. Step 1 — Writing HP-41 Software
	6. Step 2 — Reading HP-41 Software into SDS-II
	7. Step 3 — BUILDing the ROM Image
	7.1 Two Types of .41T Files
	7.2 The ROM Image Files
	7.3 The Configuration File
	7.4 The DEFINE File
	7.4.1 ROM# Command
	7.4.2 ORDER Command
	7.4.3 XEQ Command
	7.4.4 KEYS Command
	7.4.5 Comments

	7.5 Example of DEFINE File
	7.6 BUILD Errors
	7.6.1 Errors in DEFINE File
	7.6.2 Errors in READA41P Files
	7.6.3 Key Definition Errors
	7.6.4 Out-of-room Errors
	7.6.5 ROMID = 0
	7.6.6 Specify Errors
	7.6.7 XEQ Errors
	7.6.8 Label ERRORS
	7.6.9 Errors in HP-41 Program
	7.6.10 Microcode Errors

	7.7 Fatal BUILD Errors

	8. Microcode Library
	8.1 Type-2 Microcode Files
	8.1.1 AIP (Alpha Integer Part)
	8.1.2 ALENG (Alpha Length)
	8.1.3 ANUM (Alpha Number)
	8.1.4 AROT (Alpha Rotate)
	8.1.5 ATOX (Alpha to X)
	8.1.6 BININ (Binary Input)
	8.1.7 BINVIEW (Binary View)
	8.1.8 CLKEYS (Clear Keys)
	8.1.9 CLRGX (Clear Registers by x)
	8.1.10 ENROM1 (Enable ROM1)
	8.1.11 ENROM?2 (Enable ROM2)
	8.1.12 GETKEY (Get Key)
	8.1.13 HEXIN (Hexadecimal Input)
	8.1.14 HEXVIEW (Hex View)
	8.1.15 OCTIN (Octal Input)
	8.1.16 OCTVIEW (Octal View)
	8.1.17 PASN (Programmable Assign)
	8.1.18 PCLPS (Programmable Clear Programs)
	8.1.19 POSA (Position in Alpha)
	8.1.20 PSIZE (Programmable Size)
	8.1.21 RCLSTFLG (Recall/Store Flags)
	8.1.22 REGMVSWP (Register Move/Swap)
	8.1.23 SIZE (Determine Current SIZE)
	8.1.24 XTOA (X to Alpha)
	8.1.25 XF (X Exchange Flags)

	8.2 Type-1 Microcode Files
	8.3 Type-0 Microcode Files
	8.3.1 AUTOST (Autostart)
	8.3.2 PRIVACY
	8.3.3 KEYASN
	8.3.4 MCODE

	8.4 Microcode Library File Requirements

	9. Emulating ROMs
	9.1 EPROM Box ROM Emulation
	9.2 RAM Box Emulation

	10. Using EPROM Boxes
	10.1 Connecting EPROM Burners to the Host Computer
	10.2 The EPROM Utility
	10.3 Using Generic BURN Programs
	10.4 Using the ERAMCO 16K EPROM Box

	11. Bank-Switching
	11.1 A Word About Terminology
	11.2 Basic Bank-Switching
	11.3 Advanced Bank-Switching
	11.3.1 Using Bank-Switching
	11.3.2 Placement of Global Labels in) Bank-Switching Cores

	12. SDS-II Basic Utilities
	12.1 CHECKSUM
	12.2 LIFPACK
	12.3 LISTFAT
	12.4 SDSCAT

	13. Advanced Applications
	13.1 Reading UCC Files
	13.2 Using the RAM-Based ROM Emulator
	13.2.1 WRITMLDL
	13.2.2 READMLDL

	13.3 Other Advanced Utilities
	13.3.1 ASSEMB41
	13.3.1.1 Command Line Syntax
	13.3.1.2 Assembler Syntax Conventions
	13.3.1.2.1 Comments
	13.3.1.2.2 Fields
	13.3.1.2.3 Expressions
	13.3.1.2.4 Global Labels

	13.3.1.3 Mnemonics
	13.3.1.3.1 Type-0 Instructions — Alphabetical Order
	13.3.1.3.2 Type-0 Instructions — Numeric Order
	13.3.1.3.3 Arithmetic Instructions
	13.3.1.3.4 Pseudo-Ops
	13.3.1.3.5 FAT Entries
	13.3.1.3.6 Branches
	13.3.1.3.7 Peripheral Commands

	13.3.1.4 EXAMPLES
	13.3.1.4.1 An Assembly-Language Keyword
	13.3.1.4.2 A Function Address Table

	13.3.2 LINK41
	13.3.3 ASMBINFO
	13.3.4 DISASM41
	13.3.5 EXTRACT
	13.3.6 MUCODE

	13.4 1LG9 Configuration

	Appendix A. Contents of Discs
	A.1 Disc 1
	A.2 Disc 2

	Appendix B. HP-41 Keycodes
	Appendix C. Special Characters
	Appendix D. Handling STACK OVERFLOW Errors
	Appendix E. Command Syntax Summary
	Appendix F. Default Chip Configuration
	Appendix G. The CONFIGURATION File
	Appendix H. Submitting ROM Images to Hewlett-Packard
	Appendix I. ROM ID Allocation

