SHAM-REG 2
DISCLAIMER OF ALL WARRANTY AND LIABILITY

The author of the program makes no warranties, either expressed of implied, with respect to this manual or with respect to the software described in this manual, its quality, performance, merchantability or fitness for any particular purpose. SHAM-REG 2 is sold "As Is". While every effort is made to make SHAM-REG 2 versatile, in no event will Shammas Software Services and/or the author be liable for direct, indirect, incidental or consequential damages resulting from any defect in the software.

This manual is a copyright of:

SHAMMAS SOFTWARE SERVICES

1533F Honey Grove Drive

Richmond, Virginia 23229
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>SHAM-REG 2</td>
<td>7</td>
</tr>
<tr>
<td>User’s instruction</td>
<td>10</td>
</tr>
<tr>
<td>Load LIB2</td>
<td>10</td>
</tr>
<tr>
<td>Data input</td>
<td>11</td>
</tr>
<tr>
<td>Regression</td>
<td></td>
</tr>
<tr>
<td>phase 1</td>
<td>12</td>
</tr>
<tr>
<td>phase 2</td>
<td>14</td>
</tr>
<tr>
<td>Additional stats</td>
<td>16</td>
</tr>
<tr>
<td>Transformation code</td>
<td>19</td>
</tr>
<tr>
<td>Mass storage data configuration</td>
<td>20</td>
</tr>
<tr>
<td>Example</td>
<td>21</td>
</tr>
</tbody>
</table>
SHAM-REG 2 is a multiple linear regression pac that will run on the Hewlett-Packard HP 41CV. The additional hardware needed are:

1. The HP-IL interface loop module (#82160A)
2. The digital cassette drive (#82161A)
3. The Extended functions module (#82180A)
4. One extended memory module (#82181A).

The use of DATA BASE 1 is recommended to edit and manipulate stored data.

All of the hardware products mentioned above are manufactured by the Hewlett-Packard Co.

DATA BASE 1 is a product of SHAMMAS Software Services.
It is important for the user to share some of the views regarding the types of regression with which this package was planned and written.

We can say that regression analysis is used to explain the variations between two or more variables by assuming that a proposed equation (model), derived analytically or empirically, is adequate (at least for the user's purposes) for such correlation. The proposed model should state a relationship between the dependent variable and one or more independent variable. Constants and possibly suitable transformations will also be involved in the equations, and it is these constants that regression seeks to evaluate and give a sense of measured effect as well as to provide the user with an equation that can be used to predict values for unavailable data.

It is because of the presence of mathematical functions (transformations) that regression analysis is not always able to work in a simple straight-forward fashion. Indeed, it is how we obtain the regression constants (i.e. coefficients) that determines the category of the model we are using. There are two global categories;

(1) General Linear Regression: This is characterized by the fact
that all the variables involved will NOT be transformed in any way; instead they are processed "as they are". This category is divided into two classes;

1.1 Linear Regression: This is "the" simplest form where the dependent variable, call it Y, is affected by one independent variable, call it X, in the following manner,
\[Y = a + b \times X \]
(1)

where \(a \) = intercept, \(b \) = slope.

"a" and "b" are the regression coefficients. The reader will most probably recognize this class, because of its popular implementation in pocket calculators.

1.2 Multiple Linear Regression: Similar to the above, we have here an extension in the number of independent variables. An example is,

\[Y = a + b \times X_1 + c \times X_2 \]
(2)

\[Y = a + b \times X_1 + c \times X_2 + d \times X_3 \]
(3)

where \(X_1, X_2 \) and \(X_3 \) are the independent variables and "a", "b", "c" and "d" are the regression coefficients.

In this category the regression coefficients are obtained by carrying out the proper summations and then solving the simultaneous linear equations yielding the desired results.

2 General Nonlinear Regression: Due to the use of functions in
describing the relationship between the variables, we can no longer proceed as we did in the first category. The steps taken to overcome this problem will cause two classes to be distinguished into:

(2.1) Intrinsically Linear: Suitable transformations on our variables may linearize the model used and make the situation look like a category 1 regression. Examples are:

Power curve: \(Y = a X^b \)
Transformations using the logarithms on both sides of the equation gives,
\[
\log(Y) = \log(a) + b \log(X)
\]
Empirical curve: \(Y = a X^b X^c \)
Again a logarithmic transformation will give,
\[
\log(Y) = \log(a) + b \log(X1) + c \log(X2)
\]

Transforming equations (4) and (6) gave us equations (5) and (7) that possess linearity and thus are similar to equations (1) and (2). The solution will consist of:

(1) Transformation of the variables.
(2) Summing up the proper terms.
(3) Solving the simultaneous equations.
(4) Possible "inverse transformations" of the regression coefficients obtained.

In item (4) above we note that because of the transformations some or all the regression coefficients obtained, will also be
transformed and one may need to carry out the inverse transformation to obtain the values to be used in the "original" model. In equation (5) and (7) the coefficient "a" will be obtained as log(a).

(2.2) Intrinsically Nonlinear: Due to the nature of the model, the steps taken in the first class of this category may not work (i.e., no suitable transformation can be used to "linearize" the model). Iterative processes are involved and would work as follow:

(1) Obtain an initial guess for the coefficient(s) preventing linearization.

(2) With the coefficient(s) above assumed, we now linearize the model.

(3) Carry out the summations.

(4) Solve the simultaneous equations.

(5) Check for optimum sum of least square or use any other criteria to determine convergence. The latter is affected by the values of the assumed coefficient(s).

(6) If the results are satisfactory and calculations, else improve the guesses and go back to step (2).

An example is the crescent shaped curve,

\[Y = A \left[1 - \exp(-B X) \right] \]

(8)

We have two possibilities,

(1) Assume a value for "A" and transform to
\[\ln(A - Y) = \ln(A) - B X \]

The "A" on the left is the assumed value, while the one to the right is calculated. We minimize the sum of squares by changing "A".

(2) We can linearize using the Taylor series, assume a value for "B" and minimize the sum of squared errors by iteration. In a few cases the model may be transformed in such a way that iteration is avoided if the dependent variable is obtained in a regular pattern, such as equal intervals.

The two categories presented are extreme cases. A "hybrid" combination of category 1 (class 2) and category 2 (class 1) exists. It is the case when:

(1) Variable transformation may not be applied to all the variables involved as is:
\[Y = a + b X_1 + c \log(X_2) + d (1/X_3) \] \hspace{1cm} (9)
where Y and X1 remain untransformed.

(2) Variables may co-exist with their transformations side by side. This means having more terms in the model than the total number of variables. An example is the class of powerful polynomials,
\[Y = a + b X + c X^2 + d X^3 \] \hspace{1cm} (10)
the above is basically a model to relate Y and X, where the square and cube of X (its transformation) form additional terms.
in the model. Another example is,

\[Y = a + b \, X_1 + c \, X_1^2 + c \, \log(X_3) + d \, X_3 \]

(11)

where more than one independent variable show up. It is a four term model that relates the dependent variable with three independent variables.
This program package will perform multiple linear regression with the following features:

1. **Input/Output**: The data is read from the cassette tape. Keyboard entry is allowed but only to store the data on mass media. It is worthwhile to point out that as far as the stored data are concerned, the program has no preconceived notion on which variable is the dependent variable and which are the independent variables and consequently the stored data variables will be called "input" variables. To manipulate and edit the data, the user will need a data base program such as DATA BASE 1. Up to ten variables can be inputted per data point.

2. **Regression**: One of the main features of SHAM-REG 2 is that the user can select and screen the input variable while informing the program about the model for the regression. For example, the data consist of input variables X1 to X8. The user may tell the program that he wishes to carry out a multiple regression with three independent variable terms using the following model:

\[
\frac{1}{X5} = b_0 + b_1 \ln X2 + b_2 X2 + b_3 X3
\]

thus regression variable #1 = X2 (with a log transformation)

Regression variable #2 = X2

Regression variable #3 = X3
dependent variable = X5 (with a reciprocal transformation).
As one can see only X2, X3 and X5 were selected with X2 occurring in two terms and the rest of the variables were not considered.

THE RULES FOR VARIABLES SELECTION ARE:
(1) AT LEAST TWO INPUT VARIABLES SHOULD ENTER THE REGRESSION OF UP TO 10 TERMS.
(2) THE INPUT VARIABLE SELECTED AS THE DEPENDENT VARIABLE MAY OCCUR ON BOTH SIDES OF THE EQUAL SIGN IN THE MODEL.
(3) NO TWO TERMS MAY CONTAIN THE SAME VARIABLE WITH THE SAME TRANSFORMATION.
(4) THE VARIABLES DURING TRANSFORMATIONS ARE EXPECTED TO GIVE VALID RESULTS. THUS NO NEGATIVE VALUES ARE ALLOWED WITH LOGARITHMIC TRANSFORMATIONS...ETC.

A word about transformations. Most of the available programs use routines that take the values of the dependent variable and independent variables, transform them IN THE SAME ROUTINE to the desired forms. This means that for 'n' linearized models there should be 'n' transformation routines. Not so with SHAM-REG 2! We have chosen to carry out these transformations such that each variable's transformation is done separately and the ensemble will form the requested model, as was explained in the tutorial part earlier. Thus over 8x10^11 models can be fitted using SHAM-REG 2!

(3) Regression results : The programs will calculate the
regression coefficients, coefficient of determination, R^2, the ANOVA (Analysis of variance) table, standard errors for the regression coefficients and their corresponding critical student-t statistic values. Projections are available and so are the confidence intervals for the regression coefficients via a routine to evaluate the student-t statistic and spare the user the use of tables.

The programs use the correlation matrix to minimize the roundoff errors and also provide the inverse matrix. The latter is needed to calculate the standard errors. These calculations will be slow because the program is doing a lot of calculations!
USER'S INSTRUCTIONS

During the following instructions a "R/S*" will indicate to skip the "R/S" if a printer is used.

(1) Clear the contents of the extended memory including the additional memory in the extended function module. This step is not needed if only "TS" and "MTS" data files, created by SHAM-REG 2, exist from previous runs.
 (1.1) FUNCTION : XEQ EMDIR
 DISPLAY : XMEMORY files.
 (1.2) INPUT : [ALPHA] filename [ALPHA]
 FUNCTION : XEQ PURFL
 (1.3) Repeat step (1.2) to purge all files.

(2) Set memory partition "SIZE" and display format. This is only to insure that a reasonable space is available for programs to be read. The latter will adjust the "SIZE".
 FUNCTION : SIZE nnn
 FUNCTION : FIX n or ENG m or SCI l

(3) Load the transformation functions library, if not in the memory already.
 INPUT : [ALPHA] LIB2 [ALPHA]
FUNCTION : XEQ READP

(4) (Optional) To input data from the keyboard and store on tape.

(4.1) Load program "R2I".
INPUT : [ALPHA] R2I [ALPHA]
FUNCTION : XEQ READP

(4.2) Run the loaded program.
FUNCTION : XEQ R2I
DISPLAY : FILENAME?
INPUT : name of data file under which the new data will be saved.
FUNCTION : R/S

(4.3) DISPLAY : STATUS?
INPUT : (Optional) either enter the name of an already existing status file or make no input and allow the program to create a new status file under the name "Sfilename".
FUNCTION : R/S

(4.4) DISPLAY : MAX DATA?
INPUT : Maximum number of data points.
FUNCTION : R/S

(4.5) DISPLAY : NVAR?
INPUT : # of variables per data point
FUNCTION : R/S
(4.6) A loop will start to prompt the input of all the variables (X1...Xm) for one data point.
DISPLAY: Xi?
INPUT: Xi
FUNCTION: R/S
(4.7) Repeat step (4.6) for all your data.
FUNCTION: R/S
Goto step (4.6)
Note: If you fill your data file then the program will display a message concerning the matter.
DISPLAY: FILE FULL
(4.8) If the data file is not full by the end of the data entry, then a storage routine will be needed to end the operation.
FUNCTION: XEQ A

(5) To run the first part of the regression program.
(5.1) Load the routine "R21".
INPUT: [ALPHA] R21 [ALPHA]
FUNCTION: XEQ READP
(5.2) Run the program.
FUNCTION: XEQ R21
(5.3) DISPLAY: FILENAME?
INPUT: data filename.
FUNCTION: R/S
DISPLAY : NDATA= (# of data points)
FUNCTION : R/S
DISPLAY : NVAR= (# of variables)
FUNCTION : R/S
DISPLAY : an audible beep.
Note: In the last step data files "TS" and "MTS" were created in the extended memory.

(5.4) To start the regression. If the user is carrying out another regression (with the same data) and has already given the information needed in steps (5.2) and (5.3) during the first pass, he may skip steps (5.2) and (5.3).
FUNCTION : XEQ A
DISPLAY : K?
INPUT : # of regression variables (excluding the dependent variable)
FUNCTION : R/S

(5.5) A loop will start to enable the user to select the "input" variables that will define the regression variables.
DISPLAY : VARi?
INPUT : j (such that regression variable i = input variable j)
FUNCTION : R/S

(5.6) The above loop will end by a request to define the dependent variable.
DISPLAY : Y?
INPUT : I (Y = input variable 1)

(5.7) A loop will begin to request the transformations that would be carried out on each regression variable (see table 1).
DISPLAY : TRNF Vi?
INPUT : (Optional) transformation code (If none make no input)
FUNCTION : R/S

(5.8) The above loop will end with a request to input the optional transformation for Y.
DISPLAY : TRNF Y?
INPUT : (Optional) transformation code for Y
FUNCTION : R/S

(5.9) The program will request the range of data to be entered in the regression. No input means to process all the data.
DISPLAY : NDATA?
INPUT : (Optional) bbb.eee control word to indicate that data point # bbb through eee will be processed.

(5.10) The model considered by the regression will be printed to remind the user of the selected variables and their transformations.
DISPLAY : depends on the model

(6) Program "R22" will be loaded and executed automatically at this stage to continue solving the regression. The output will be as follow :
(6.1) The coefficient of determination, R^2, is first shown.

DISPLAY : $R^2 = (R^2)$
FUNCTION : R/S*

(6.2) The regression coefficients are displayed in a loop.

DISPLAY : $b_1 = (b_1)$
FUNCTION : R/S*

...........
FUNCTION : R/S*
DISPLAY : $b_k = (b_k)$
FUNCTION : R/S*
DISPLAY : $b_0 = (b_0)$
FUNCTION : R/S*

(6.3) The ANOVA table is shown next.

DISPLAY : ANOVA
FUNCTION : R/S*
DISPLAY : TOTAL CORR
FUNCTION : R/S*
DISPLAY : D.F. = (degree of freedom)
FUNCTION : R/S*
DISPLAY : SS = (sum of squares)
FUNCTION : R/S*
DISPLAY : REGRESS.
FUNCTION : R/S*
DISPLAY : D.F. = (degree of freedom)
FUNCTION : R/S*
DISPLAY : SS= (sum of squares)
FUNCTION : R/S*
DISPLAY : RESIDUAL
FUNCTION : R/S*
DISPLAY : D.F. = (degree of freedom)
FUNCTION : R/S*
DISPLAY : SS= (sum of squares)
FUNCTION : R/S*
DISPLAY : F = (Snedocor- F statistic)
FUNCTION : R/S*
DISPLAY : S^2 = (regression variance)

(6.4) A loop will show the standard errors for the regression coefficients and their corresponding values of the critical student-t statistics.
DISPLAY : Sbi= (Sbi)
FUNCTION : R/S*
DISPLAY : Ti= (critical student-t)
FUNCTION : R/S*

(7) To obtain projection and confidence intervals use program "R23".
(7.1) Load program "R23".
INPUT: [ALPHA] R23 [ALPHA]

FUNCTION: XEQ READP

(7.2) To initialize the program.

FUNCTION: XEQ R23.

(7.3) to carry out projections.

FUNCTION: XEQ A

(7.3.1) The program will scan to the selected variables and prompt once for each variable even if it is involved in more than one term.

DISPLAY: Xi?

INPUT: Xi

FUNCTION: R/S

(7.3.2) The value of the projected Y is shown.

DISPLAY: Y. = (Y hat)

(7.3.3) For another projection go to step (7.3).

(7.4) To carry out confidence interval calculations.

FUNCTION: XEQ B

DISPLAY: PROB?

INPUT: Confidence probability (fraction)

FUNCTION: R/S

DISPLAY: T = (student-t)

FUNCTION: R/S#

(7.5) A loop will start to show the upper and lower limit for the confidence intervals.
DISPLAY : bi
FUNCTION : R/S*
DISPLAY : UL= (upper limit)
FUNCTION : R/S*
DISPLAY : LL= (lower limit)

(8) For a new case or new model go to step (5).

(9) To input a new set of data go to step (4).
<table>
<thead>
<tr>
<th>Transformation</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>ln var</td>
<td>LN</td>
</tr>
<tr>
<td>1/var</td>
<td>1/</td>
</tr>
<tr>
<td>SQRT var</td>
<td>SQRT</td>
</tr>
<tr>
<td>var^2</td>
<td>SQR or P2</td>
</tr>
<tr>
<td>var^-2</td>
<td>1/SQR</td>
</tr>
<tr>
<td>var^-1/2</td>
<td>1/SQRT</td>
</tr>
<tr>
<td>var^3</td>
<td>P3</td>
</tr>
<tr>
<td>var^4</td>
<td>P4</td>
</tr>
<tr>
<td>var^5</td>
<td>P5</td>
</tr>
<tr>
<td>var^6</td>
<td>P6</td>
</tr>
<tr>
<td>var^7</td>
<td>P7</td>
</tr>
</tbody>
</table>
MASS STORAGE DATA CONFIGURATION

<table>
<thead>
<tr>
<th>rec#</th>
<th>content</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>status filename</td>
</tr>
<tr>
<td>01</td>
<td>max # of data points</td>
</tr>
<tr>
<td>02</td>
<td># of data points</td>
</tr>
<tr>
<td>03</td>
<td># of variables</td>
</tr>
<tr>
<td>04</td>
<td>X1,1</td>
</tr>
<tr>
<td>05</td>
<td>X2,1</td>
</tr>
<tr>
<td>05</td>
<td>etc.</td>
</tr>
</tbody>
</table>
EXAMPLE

The following data are to be fitted using the following model:

\[X_4 = b_0 + b_1 X_1 + b_2 X_2 + b_3 X_3 \]

The data points are:

\[
\begin{array}{cccccc}
1 & 1 & 2 & 3 & 4 & 5 \\
X_1 & 7 & 1 & 11 & 11 & 7 \\
X_2 & 25 & 29 & 56 & 31 & 52 \\
X_3 & 6 & 15 & 8 & 8 & 6 \\
X_4 & 60 & 52 & 20 & 47 & 33 \\
\end{array}
\]

(1) Set the size to 100 to make sure that programs can be read.
Use FIX 5.
A printer is recommended.

(2) Load "LIB2" and carry out a GTO.. to protect "LIB2" from being erased every time another program is read.

(3) Load "R2I" and run using the following information:
(3.1) Assign "DR2" as the data filename.
(3.2) Use default status filename (i.e. make no input for the status prompt).
(3.3) Let the maximum # of data points be 5, and the number of variables be 4.
(3.4) Key in the data with the aid of prompts.
(4) Load program "R21" and carry out the following:
(4.1) Run program and use the data file "DR2" we just created.
(4.2) Let k=3 and assign regression variables Var1, Var2 and Var3 to be X1, X2 and X3 respectively. Let Y be X4.
(4.3) Since the model tested is perfectly linear no transformations are needed for any term. Make no input when prompted for the transformations.
(4.4) When prompted for the data range make no input to signal that all the data should be involved.
(4.4) Wait for the results to come out.
(5) Load program "R23" and carry out the following.
(5.1) Initialize the program.
(5.2) Calculate the estimated Y (X4) when X1=1, X2=29 and X3=15. Use (LBL A).
(5.3) At 95 percent confidence calculate the student-t statistics and the confidence intervals for b1, b2 and b3.
SIZE 100
FIX 5

LIB2
READP

PACKING
GTO ..

R2I
READP

FILENAME?
DR2
STATUS?
MAX DATA?
VAR?
X?

FILE FULL

FILENAME?
DR2
MDATA= 5.0000
VAR= 4.0000

XEQ "R2I"
XEQ "R2I"
$X_4 = b_0 + b_1 X_1 + b_2 X_2 + b_3 X_3$

$R^2 = 0.99894$

$b_1 = -1.28410$
$b_2 = -1.83633$
$b_3 = -1.3394$
$b_0 = 103.44732$

ANOVA
TOTAL CORR
D.F. = 4.8000
SS = 1013.20000

REGRESS.
D.F. = 3.008608
SS = 1012.12319

RESIDUAL
D.F. = 1.806806
SS = 1.87681

$F = 313.36947$
$s^2 = 1.87681$

$s_b_1 = 0.18729$
$t_1 = -6.85636$

$s_b_2 = 0.83988$
$t_2 = -26.00001$

$s_b_3 = 0.19825$
$t_3 = -6.75658$

$T = 11.31131$

b_1
UL = 0.83435
LL = -3.40254

b_2
UL = -0.58561
LL = -1.48804

b_3
UL = 0.98297
LL = -3.58195

XEQ "READP"
XEQ "R23"
XEQ "R2I"
XEQ "R"