

DISCLAIMER

The program material contained harein is supplied without representation or warranty of any kind. Therafore, we assume no responsibility and shall have no liability, consequantial or otharwiso, of any kind arising from the use of this program material or any part thereof.

James W. Vick, Programmer
Surveyors Supply Co., Distributor

table of CONTENTS

GENERAL INSTRUCTIONS 4
ABBREVIATIONS 5
RECOVERING FROM INPUT ERRORS 53
FIELD TRAVERSE 7
Up to $\mathbf{1 4 0}$ coordinate pairs may be stored for future recall by Point Number.
Program computes and prints closure data and area (if applicable), and computesdata for balancing the traverse by the Compass Rule or the Crandall Rule. Dataentry is bearing - distance, bearing - distance, or deflection angles or CWBS anglesmay be input. Slope distance and V/ZA may be used; temperature and grid factorcorrections may be applied to the traverse.
COORDINATE GEOMETRY

The prime purpose of this program is the storing of up to 140 coordinate pairs for recall by Point Number and use in other programs. Data entry is the same as for FIELD TRAVERSE, but no closure data or area is computed. Previously stored bearings (converted to azimuths) may be recalled as stored or 90, 180, or 270 degrees right of the stored bearing. You may traverse around a curve by arc distances; branching is accomplished by point number. Single or multiple sideshots may be taken from one INST point. Temperature and grid factor corrections may be applied to the traverse. Point numbers may be sequential or each may be assigned.

TRAVERSE ADJUSTMENT

Closed loops or traverses between two sets of known coordinates may be adjusted by the Compass Rule or the Crandall Rule. The first point may be any number, but subsequent ones must be sequential.

AREA / INVERSE

This program computes area and prints your final traverse from stored coordinates. Point numbers may be input singly or they may be batch loaded. Curved boundaries may be used. Simple inverses may be computed from point numbers or coordinates may be input from the keyboard.

FIELD DATA COLLECTOR

This program is for use in the field to input survey data as it is secured. Angles may be single or doubled; if doubled, you set the maximum permissible error, and if exceeded, "BAD ANGLE" is displayed. Sideshot data is input as it is encountered not at the end of the other data. Angles and distances are stored by number and may be recalled for observation and corrected if in error. Angular closure and distance closure may be computed, entry errors corrected, then the closure is re-computed. Later the printer may be attached, the angles balanced, coordinates computed and balanced, sideshots added. And the final traverse is computed with AREA / INVERSE.

PREDETERMINED AREA
First Method: After the required area is input, bearings and distances are input until the calculator completes the figure to exactly enclose the input area. . . Second Method: Given one distance and four bearings along with the desired area, the calculator computes the other three sides. There are no restrictions.

STAKEOUT

This program computes and prints the angles and distances from stored coordinates for field staking purposes.

This field program is designed as an aid in searching for and setting corners. The deed or map calls are loaded in the calculator before going to the field. On finding any two intervisible corners, you may occupy one, BS on the other, set a satellite point near the next corner, and request its location. The calculator complies by computing the CWBS angle and the horizontal distance from the satellite point to the corner. If found, you may occupy it, re-set it, set another satellite point, or request the location of another point from the same satellite point. If the comer is not found, you have the data to set it.

QUIK - CHEK
This super-fast program fumishes no frills, not even coordinates. Entry is bearingdistance, bearing-distance; but the distance may be in feet, poles, chains, or meters. Closure and area are computed; and whatever the input, the output is feet, square feet and acres.

PERPENDICULAR OFFSET

This program computes the distance along a base line, and the offset distance to points on either side of the base line. All entries are by Point Number. You may compute and store the coordinates of points on the base line.

INTERSECTIONS

When the coordinates of two points and any two elements of the courses connecting the two points are input, this program computes and prints all of the other unknowns. Coordinates may be input by point number or from the keyboard. All solutions are available.

ROADSIDE
After having traversed the centerline of a curve, this program will compute and set points on each side of your PI points at prescribed distances; the angles are bisected and hypoteneuses computed.

UTILITY PROGRAM
This program stores coordinates by point number, lists coordinates by point number, computes angles from bearings, and will print JOB-DATE on your tape.

VERTICAL CURVE ELEVATIONS

This program computes the elevations of stations along tangents and curves, the VC data, the station of maximum or minimum elevation, and odd stations and pluses not covered by the increment. Raw data may be batch loaded.

SOLAR / POLARIS OBSERVATION
Complete instructions are included for data collection to be used in this program.
Output is true azimuth.

CROSS-SECTION AREAS AND VOLUMES

This program computes the area of each station, the volume between stations, and the cumulative volume.

SLOPE-STAKE
A field program to be used as an aid in setting slope-stakes.

When given the PC or PI station and the delta, and then either the degree of curve, radius, tangent, length, long chord, or the extemal, this program computes all of the other curve data along with the deflections, chord data, (for centerline and offset curves) and tangent offset distances. Another option: the radius and length of curve may be input instead of the delta and another element.

CURVE PROBLEMS

This program computes the radius of a curve passing through three known points, or the radius of a curve through a single point when the two tangents are known.

ROTATION / TRANSLATION

This program will translate coordinates from one grid system to another when a common point and the angle between the two systems are known. Coordinates may be translated on tape only, or they may replace the original coordinates. You may also translate without rotation.

LINEAR REGRESSION

This program will compute the line that best fits any number of coordinate pairs. The coordinates may be re-called from storage by point number or they may be input from the keyboard.

MASS STORAGE

This program gives you an assist in storing and retrieving coordinates or other data that
are stored on magnetic cards or on casette tapes.

RECOVERING FROM INPUT ERRORS

Shows how to recover from entry errors on the different programs. 53
SOLAR - POLARIS EXAMPLE 56
SOLAR - POLARIS OBSERVATION FORM 57
USING SUP-R-ROM WITHOUT PRINTER 58
Shows proper procedures displaying results when calculator is not attached to the printer.

ADDENDUM PROGRAMS

1. Recall Coordinates of a point. 2. Convert Azimuth to Bearing. 3. Linear Regression.
ADDENDUM PROGRAMS
2. Inverse between input Coordinates using Stack only. 2. Extend SUP-R-ROM from 140 to 180 point storage using Extanded Functions Module and one Memory Module.

SUP-R-ROM LABELS

Allows user to do individual programs using SUP-R-ROM Subroutines
"SWAP" PROGRAM
Double the capacity of SUP-R-ROM from 140 to 280 points with a HP-41CX plus one Memory Module or a HP-41CV plus an Extended Functions Module and one Memory Module.

GENERAL INSTRUCTIONS

1. BE SURE YOUR BODY IS FREE OF STATIC ELECTRICITY BEFORE HANDLING YOUR SUP-R-ROM.
2. FOLLOW INSTRUCTIONS CAREFULLY. Most mistakes result from carelessness and not bothering to check the instruction sheet for initialization, order of input, etc. Be sure of your data input particularly as you near the end of a long traverse. In most cases you can recover from an input error, so become familiar with the RECOVERING FROM INPUT ERRORS section on page 63.
3. All angles and bearings are input in the form DD.MMSSss, and output is in the same form.
4. Registers 00 through 19 are "working" registers while Registers 20 through 299 are used to store angles, distances, azimuths, or coordinates. The final result is always coordinates in the traverse programs.
5. ACCESSING A PROGRAM: Note that accessing a program never initializes it; so should you call for a wrong program, no damage is done. Simply call for the correct program. And of course, there are times when you will wish to access a program and not initialize.
6. INITIALIZATION: All registers are cleared in just two programs; FIELD DATA COLLECTOR and VERTICAL CURVE ELEVATIONS. This prevents the inadvertent clearing of stored data. In those programs that require three or four seconds to initialize, Registers 00 through 19 are cleared, Flags 01 through 10 are cleared, 4 is stored in Register 19, 1 is stored in Registers 10. 11, and 12 and a beep signals the completion of initialization.
7. FLAGS: When Flag 00 is set, coordinates are printed. When Flag 01 is set, the calculator warks in the azimuth mode; it is set automatically in FIELD TRAVERSE and COGO when an azimuth is input using [0] [a]. When Flag 02 is set, the calculator always stops and prompts for a point number with 77.0000 OK?. If the suggested number is OK, pressing [R/S] uses that number. Or you may input any other number before pressing [R/S].
8. When inputting a series of items, keep an eye on the PRGM annunciator to be sure it is off before beginning to key in the next data. Several programs sound Tone 9 when computation is complete and the calculator is ready to accept new data. If this tone is annoying, you may silence it by clearing Flag 26. However, tuming the calculator off and then back on, re-sets Flag 26 and Tone 9 will again be heard.
9. ALARM: To hear this feature, access FIELD TRAVERSE and press [XEQ] [A]. This warns that Point 140 (or 280, etc.) has been input and you must record the coordinates on magnetic cards or casette tape before inputting further courses. It sounds in TRAVERSE ADJUSTMENT also to inform you that Point 140 has been reached. Pressing [R/S] will silence it.
10. WARNING: If the printer is plugged into the calculator, be sure that it is turned on when any program is being executed. AVIEW is used frequently to print the ALPHA register. And if the printer is connected but turned off, the running program stops to display the ALPHA register before having completed the routine.
11. SIZE: Two programs require that 300 registers be allocated to storage. These are AREA / INVERSE (if batch loading is to be executed), and FIELD DATA COLLECTOR (if sideshots are to be input). Otherwise the necessarv size depends on the length of your traverse. Unless you have a compelling reason not to, it is best that you go ahead and execute SIZE 300 . However, should you be in the process of entering a long traverse and get a NONEXISTENT display because you have run out of storage registers, don't panicl Simply execute SIZE, being careful not to change the stack, and press [R/S]. Program execution will continue without harm to your traverse.
12. KEY REASSIGNMENTS: In addition to the key assignments that access the various programs, [ロ] [O] executes HR, and [e] [P] executes HMS. These key assignments use Registers 307 through 319. So after executing SIZE 300, you have just 7 registers to use in programs or other key assignments. Or you may execute SIZE 307 and use Registers 300 through 306 for storage. (This will not increase your point storage capability.) If you wish to change any of the key assignments to other keys, or to make assignments of your own, the ROM assignments will be written over and will remain until a MEMORY LOST is executed.
13. REGISTER CONTENTS: When a register is used for more than one purpose, a slash mark (/) separates them. Also in a program such as TRAVERSE ADJUSTMENT, items before the slash mark are used in CRANDALL RULE and those after the mark are used in COMPASS RULE. Note the CRAN/COM that heads the register listing.
14. AREA: Generally, you must ask for the closure data and then press [R/S] to get the area. You may skip the closure data by pressing [XEO] [M]. However, this leaves the calculator in FIELD TRAVERSE; so if you were in another program, you would have to access it again.
15. When using mainframe functions, be sure to take the calculator out of USER mode when necessary. You will note that no key assignments were made to [E] [SF], [m] [CF], and [$]$ [FIX] functions so that they will operate whether the calculator is in USER mode or not.

CLEARING PROCEDURES

To clear individual registers, store zero in the register. [0] [STO] [XX]
To clear ALL registers, press: [XEQ] ALPHA] [CLRG] ALPHA]. OR you may clear all registers and all programs by turning the calculator off, holding down the clear key [E] and turn the calculator back on. MEMORY LOST is displayed.
To clear a program, press: [XEQ] [ALPHA] [CLP] [ALPHA] [ALPHA] [NAME OF PROGRAM] [APLHA].

It is very important that you become familiar with the operation of your HP-41C/V before using your now SUP.R-ROM Module. Please look through your calculator manual and become "friendly" with your calculator before proceeding. It may seem like a waste of time, but it will be the best time you can spend.

ABBREVIATIONS

ADJ	Adjust(ment)	${ }^{\circ} \mathrm{F}$	Degrees Fahrenheit
Azim	Azimuth	FS	Foresight
BDI	Bearing-distance intersection	HD	Horizontal distance
BEG	Beginning	HI	Height of instrument
BRNG	Bearing	HZA	Horizontal angle
BBI	Bearing-bearing intersection	Inc	Increment
BP	Base point	INST	Instrument point
BS	Backsight	L	Length of curve
CCWBS	Counterclockwise from backsight	Lats	Latitudes
CL	Centerline	Lt	Left
Clos	Closure	LVC	Length of vertical curve
COGO	Coordinate Geometry	N	North coordinate
Com	Compass	N_{b}	Beginning north coordinate
Coord	Coordinates	$\mathrm{Ne}^{\text {e }}$	Ending north coordınates
CP	Common point	No.	Number
Corr	Correction	OFST	Offset point
Cum	Cumulative	PC	Point of curvature
CWBS	Clockwise from backsight	PI	Point of intersection
D	Degree of curve, arc definition	POC	Point on curve
D	Distance	PREC	Precision of survey
DBI	Distance-bearing intersection	Pt	Point
D.dddd	Decimal of degree	PT	Point of tangency, or point
DDI	Jistance-distance intersection	R	Radius
DD.MMSS	Degrees, minutes, seconds	Rt	Right
Def	Deflection	SD	Slope distance
Deps	Departures	SOL	Solution, or solar
Dist	Distance	STA	Station
E	East coordinate	SOPT	Stakeout point
E_{b}	Beginning east coordinate	T	Tangent distance
EC	Error correction	TCF	Temperature correction factor
E_{e}	Ending east coordinate	Temp	Temperature
El, Ele	Elevation	VD	Vertical distance
EOC	Error of closure	VPI	Vertical curve P/
Err	Error	V/ZA	Vertical or zenith angle
Ext	External distance		

IMPORTANT NOTICE: There are times in this wonderful world of high technology when we get some crazy results and there is no apparent reason for it. A possibility is someone may have been playing around with your calculator and assigned some labels which override those on the SUP-R-ROM. If this occurs it is a good practice to do a "MEMORY LOST" by: 1. Turning off calculator. 2. Hold the [+] key down and turn calculator back on. "MEMDRY LOST" will then he displayed. Don't forget all stored coordinates will be lost and flags and memory size must be reentered.
(6)

FIELD TRAVERSE EXAMPLE

GIVEN: The traverse in the above figure. It is desired to establish a line from B to C that will best fit Points 2, 3, 4, 5 and 6 and another line from C to D that will beat fit Points 6 7 and 8.

PROCEDURE:

1. Use FIELD TRAVERSE to input the traverse and check the closure.

Use TRAVERSE ADJUSTMENT, to balance the traverse by the Compass Rule.
Use LINEAR REGRESSION to find the best fit from B to C and from C to D.
Use INTERSECTIONS to establish coordinates on corners B, C, and D.
Use ROTATION / TRANSLATION to translate coordinates for the State Grid System.
Use AREA / INVERSE to compute the final traverse.
Use PERPENDICULAR OFFSET to find the offset distances from the lines.

INPUT	PRESS	REMARKS
		Access program. Initialize. Let's print coordinates.
1000	[ENTER] (0) [b]	Input beginning coordinates.
47.24	(D)	Input traverse.
450	(E)	
33.41	(A)	
144.22	[E]	
41.14	[A]	
226	E]	
34.36	(A)	
280.3	[E]	
78.1	[E]	Oops! Looking back two courses, we note an input
		error: distance 280.3 should have been 230.8 .
78.1 34.36	(E) [e]	So, we back out two courses. Notice that it is not necessary to re-enter the besring on the first
34.36 280.3	(A] [e]	not necessary to re-enter the bearing on the first course to be backed out.
280.3 230.8	[E] [e]	Now, we input the correct data.
50.11	[A]	
78.1	[E]	
38.09	[B]	
178.05	(E)	
4501 28284	[B]	
282.84 .07	[E]	
100	[E]	
45.18	[C]	
561.15	[E]	
	[日] [c]	Check the closure. Closure OK. Go to page 12.

SUP-R-ROM ${ }^{\text {© }}$		FIELD TRAVERSE		
-a Azim	-bNbEb NeEe	- cClosure Data	Force Closure	Back out Last Course
A NE	B SE	C SW	D NW	E Distance
F CWBS	G Def	H Temp	I	J V/ZA

a. When 139 courses have been input, the alarm sounds: silence it by pressing [R/S]. Go to MASS STORAGE program and execute Step 1, then either Step 2a or 3a. Return to this program, execute Step 1 and continue with your traverse.
b. When all courses have been input, go to MASS STORAGE program, and execute Step 1. then either Step 2b or 3a. (This records the final data in your working registers as well as the last points.)

COGO EXAMPLE

GIVEN: The above subdivision.
FIND: All unknown bearings and distances, the area of lot, and stakeout information from Point 6.
(The tapes produced by this problem are found on page 10.)

INPUT	PRESS	REMARKS
	[$\mathrm{C}_{\text {[}}$ [G]	Access program.
	[R/S]	Initiallize.
1000	[ENTER]	Input beginning coordinates.
	[${ }_{\text {[1] [b] }}$	
4.3	[A] $[5 T O$ [01]	Input traverse. Store azimuth for recall by bearing code.
465.08	[E]	
86.512	[日]	
448.99	[E]	
3.023	[C]	
467.81	[E]	
86.3	(D)	
460.84	[E]	
32.3	[CHS] [F]	Set control point for later use.
327	[$\mathrm{E}^{\text {] }}$	
2	[[8] [c]	Use branching technique to store lot corners.
1.2	[${ }_{\text {P [}}$]	Bearing code calls for reverse of azimuth stored in Register 01.
100	[E]	
7	$\left[\begin{array}{l} {[\mathrm{E} / 5]} \\ {[C F]} \end{array}[02]\right.$	Assign 7 to point; clear Flag 02 to stop point number prompting.
81	[E]	
50	[E]	Note that when traversing along the same
50	[E]	bearing, if is not necessary to re-enter
81	[E]	the bearing.
1.1	[E] (e)	
200	[E] ${ }_{\text {[E] }}$ [a]	
101	[E] (a)	
60	[$E]$	
${ }_{9} 101$		Begin now brancn.
1.1	(E) [0]	
300	[E]	
16	$\operatorname{lQ}_{[R / S]} \text { ICFI I02] }$	
1.2	(E) (E)	
30 60	[E] [CHS] [E]	A negative distance is simpler than using a bearing code.

SUP. R-ROM ${ }^{\text {© }}$		COORDINATE GEOMETRY		
- a Azim	-b ${ }^{\text {NbEb }}$	- cINST BS	-d Spin	e BRNG Code
A NE	B SE	C SW	D NW	E Distance
F CWBS	G Def	H Temp	1 Arc	J V/ZA

TA.PE PRODUCED BY COORDINATE GEOMETRY EXAMPLE ON PAGE 8.

$\begin{array}{r} 1 . \\ 1,080.8909 \\ 1,808.8099 \end{array}$		$\begin{array}{r} \text { 1c. } \\ 1,087.8704 \\ 1,287.4718 \end{array}$	$\begin{gathered} \text { *** } \\ * * * * \\ * * * \end{gathered}$	$\begin{array}{r} 22 . \\ 1,261.6967 \\ 1,840.6578 \end{array}$	*** ** ***	$\begin{array}{r} 25 . \\ 1,227.6288 \\ 1,473.5711 \end{array}$	** ** **	$\begin{array}{r} 36 . \\ 998.1574 \\ 1,324.4242 \end{array}$	***
$\text { N } 4.3008 \text { E }$ $H D=465.89 ด 日$		$\text { N } 4.3009 \mathrm{E}$		14.	INST	$\text { S } 3.8238$		18	[MST
		$H D=181.8080$		$\begin{aligned} & 1,247.5741 \\ & 1,220.1029 \end{aligned}$	****	256.1228	188	$1,239.7282$	888
	***	13.	***			971.8667	***	1,319.7947	***
1,463.6463	*at	1,187.7591		N 4.3808 E		1,459.9808	***		BS
1,036.4898	***	1,215.3954	***	$\mathrm{HD}=38.0080$				1,445.8159	***
S 86.5128 E		$\mathrm{HD}=\mathbf{6 8 . 0 8 8 8}$		5.	*			1,361.0563	***
$\mathrm{HD}=448.998$				1,277.4816	**			$\mathrm{HD}=-68.9080$	
		14.	***	1,222.4567	***				
3.	***	1,247.5741	***						
1,439.8177	**	$1,228,1029$	**	INTERSECT		N 85: 3888 N		$\begin{array}{r} 31 . \\ 1,298.5686 \end{array}$	***
1,484.8038	**			intersec				$\begin{aligned} & 1,298.5686 \\ & 1,331.5738 \end{aligned}$	*04
		$H D=101.0800$			8889	DBI HEAR SOL			
$\begin{aligned} & \text { S } 3.8238 \mathrm{H} \\ & \mathrm{HD}=467.8188 \end{aligned}$		15.	***	S 86.5128 E	8080	18.		QRSINV	
		1,348.2628	**	S 4.3000 W			*		
4.	3**	1,228,0273	***			1,319.794	***	14.	***
971.8667	***							1,247.5741	*
1,459.9898	***	9.	INST	BEI		$\begin{aligned} & 66.814 \\ & 90.8089 \end{aligned}$		1,228.1829	***
		1,233.3584	**	2.	***	26.	*	N 4.3800 E	
M 86.3008 W		1,818.3657	**	1,463.6463	**	1,276.2932	$4 *$	$H D=285.7327$	
$\mathrm{HD}=468.848 \mathrm{e}$				1,836,4898	***	1,237.5572	**		
		S 85.3000 E							
5.	***	$H D=308.0898$		S 86.5120 E		N 85. 3808 W		1,452,6726	***
1,080.6004	**			280.8568		15.1472		1,236,2445	*
1,808, 0083	***	16.	**	23.	***	5.	4		
		1,289.8207	***	1,452.6726	**	1,277,4816	060		
$\text { CMBS }=-32.3008$		1,317.4489	**	1,236.2445	***	1,222.4567	***	$H D=125.8080$	
HD $=327.0008$									
		$\mathrm{HD}=30.0690$		104.7327		coco			
6.	***				***	coso		1,445.8159	***
1,158.5331	***	17.	***	$1,348.2628$	***	26	INST	1,361.0563	
1,286.0010	***	1,179.9132	**	1,228.8273	***	1,276.2932	**		
		1.315.8871	***			1,237.5572	**	$H D=150.1777$	
2.	INSI								
$1,463.646]$ $1,036.4898$	***	$H D=-68.0808$			0898				
1,036,4898	***					$\begin{aligned} & 566.81,44 t \\ & H D=38.0008 \end{aligned}$		$\begin{array}{r} 31 . \\ 1,298,5606 \end{array}$	***
			**	S 4.3880				1,331.5738	680
S 4.3600 n		1,239.7282	***	N 88.3008 W		27.	64		
HD $=169.0808$		1,319.7947	***			1,264.1049	***	S 62.3847 N	
						1,264,9697	***	$H D=74.9886$	
1,363.9546	***	17.	IMS	8 BI					
1,028,6438	***	1,179.9132	***	12.	***	26	IKST	RRC= 81.0012	
	**	1,315.6871	**	1,887.8784	***	1,276.2932	**	$R=-68.8808$	
$H D=81.8898$				1.207.4710	***	1,237.5572	**	27.	**
		H 49.2956 E						1,264.1849	**
8.	***	ARC 94.2508		99.5898		S 4.3088 и		1,264.9697	***
1,283.2943	***	$H D=64.8544$		24.	840				
1.822.2887	4**			987.7884	6**	28.	***	$N D=34.6411$	
		19.	***	1,199.6574	***	1,246.3857	$4 * 4$		
$H D=50.0068$		1.235.0229	208			1,235.2834	**8		
		1.379.6899	**	N 86.3088 N		1,235.2634	-0.		
9.	***			280.8385		23.	IMST		
1,233.3584	***	10.	IMST	1.	**	1.452.6726	***		***
1,018.3657	***	1,183.5125	***	1,000.0008	**	1,236.2445	**	1,235.2934	***
		1.814.4427	***	1,098.0098	***			1,235.2034	**
HD= 50.0060						S 86.5128 E			
		585.3000 E				$H D=125.8008$		$N D=15.1472$	
	***	$\mathrm{HD}=20.0600$			3808				
1,183.5125	***				8888				
1,014.4427	***	20.	***	S 85.3000 E			0	247574	
		1,181.9434	***	S 3.8238 W				1.247.5149	400
$\mathrm{KD}=81.0009$		1,034.3811	***					1,226.1029	*2*
						24.	IMSt		
	***	N 4.3008 E		881		987.7884	*8*	$\text { ACRS }=0.4624$	
$1,102.7622$ $1,098.8876$	**	$H \mathrm{~L}=20.0688$							
1,008.8876	6**			1,235.0229	***				
		21.	***	1,379.6899	***	586.3000 E			
S 85.3000 E		1,281.8817	***			$H B=125.0098$			
$H 7=260.6098$		1,935.9503	**						
				94.2518					
		$\mathrm{HD}=\mathbf{6 0 . 8 0 0 9}$							

SUP-R-ROM ${ }^{\text {© }}$					COORDINATE GEOMETRY				
- ${ }^{\text {a }}$	Azim	-b	$\mathrm{Nb} \mathrm{E}_{\mathrm{b}}$	0	$\begin{aligned} & \hline \text { INST } \\ & \text { BS } \\ & \hline \end{aligned}$	- d	Spin	\square	BRNG Code
A	NE	B	SE	C	SW	D	NW	E	Distance
F	CWBS	G	Def	H	Temp		Arc	J	v/ZA

STEP	PROCEDURE	INPUT	PRESS
8	TRAVERSING AROUND A CURVE (The previous bearing must be the incoming bearing at the PC and the last point is the PC.) a. Input radius: If curve is to the right If curve is to the left b. Input arc length (in feet) (Execute Step b from the PC to POC to POC and so on around the curve to the PT. The calculator is left with the asimuth tangent to the curve at each POC or PT. So when you reach the PT, you may proceed ahead on tangent by inputting a distance and pressing [E]. BRANCHING OR SIDESHOTS NOTE: If this routine is approached from any program other than FIELD TRAVERSE, you must execute Step 2 and, as necessary, Step 3. a. Input INST point number. b. Input BS point number. Step 9b may be omitted if your first course will be input with a bearing or azimuth. c. If you wish to spin off more than one sideshot from the same INST and BS, input any positive number. d. Execute Steps 6 and 7 as necessary to input the branch or sideshot(s). e. ASSIGNING POINT NUMBERS After the distance has been input and [E] has been pressed, the calculator prompts with ?.0000 OK? If the displayed number is satisfactory, press [R/S]. If it is not satisfactory, input the desired number and press [R/S]. If a branch is being executed, after the first number has been assigned, you may clear Flag 02 and the remainder of the point numbers will be sequential..... [■][CF][02]. g. If Step 9c was executed, when finished with the sideshots from a particular INST point, input any negative number h. For a single course sideshot at any time, press [XEO] [00] just prior to Step 6.9	Radius Radius Arc INST BS Positive No. Negative No.	[STO] [16] [CHS] [STO] [16] [1] $\begin{aligned} & {[\mathrm{B}][\mathrm{c}]} \\ & {[\mathrm{R} / \mathrm{S}]} \end{aligned}$ [0] [d] [日] [d]

REGISTER CONTENTS

[^0](12)

TRAVERSE ADJUSTMENT EXAMPLE
N 33.4858 E
144.2215

GIVEN: The above figure and the registers intact from the FIELD TRAVERSE example.

PROMPT	INPUT	PRESS	REMARKS
1ST PT NO? SELECT RULE	1	$\begin{aligned} & \text { [} \mathrm{B}][\mathrm{H}] \\ & \text { [R/S] } \\ & \text { [R/S] } \\ & {[F]} \\ & {[R / S]} \end{aligned}$	Access program. Initialize. COMPASS RULE, coordinates printed. Check area.

GO TO PAGE 50.

TRAV ADJ

COM RULE

1	***
1800.0988	***
1800.9098	***

N 47.2359 H
458.8217

2	***
1384.6899	***
668.7412	***

SUP-R-ROM ${ }^{\text {© }}$			TRAVERSE ADJUSTMENT			
-	-		\square		-d	-
$\begin{array}{\|ll\|} \hline \text { A } & \begin{array}{c} \text { Cran Rule } \\ \text { Print } \end{array} \\ \hline \end{array}$	B	Cran Rule No Print	C	Cran Rule Resume	D	E
$\begin{array}{\|l\|l\|} \hline \text { F } & \begin{array}{c} \text { Com Rrint } \\ \text { Rule } \end{array} \\ \hline \end{array}$	G	Com Rule No Print	H	Com Rule Resume	1	J

AREA／INVERSE EXAMPLE

GIVEN：The above figure and the registers intact from ROTATION／TRANSLATION example．

1
628925.9956

事事

戠事 222028.5199象事N 48.3032 H
$H D=454.6884$

13	＊＊＊
621227.1781	＊＊＊
221687.9976	＊＊＊

N 37.8601 E
$H D=671.3427$

14	＊＊＊
621762.6203	＊＊＊
222892.9594	＊＊＊

S 43.4658 E $H D=537.3313$

15	＊＊＊
621374.6841	＊＊
222464.7538	＊＊＊

S 44.1137 H $H I t=625.7968$

1	＊＊＊
628925.9956	＊＊＊
222828.5199	＊＊＊

SUP-R-ROM ${ }^{\text {© }}$			AREA / INVERSE	
-a	$\square{ }^{-1}$	- 5	- d First Point	e Next Point
A Radius	B	C Area	D First Point	E Next Point
F First Point	G Run	H	1 First Point	J Next Point

REQUIRED

FIELD DATA COLLECTOR EXAMPLE

GIVEN: The above field traverse data.

INPUT	PRESS	REMARKS
	$\begin{aligned} & {[\mathrm{D}][\mathrm{J}]} \\ & {[\mathrm{R} / \mathrm{S}]} \end{aligned}$	Access program. Initialize.
32.1708	[D]	Bearing of first leg.
269.11	[J]	V/ZA
507.21	[E]	Slope distance.
66.1907	[ENTER]	Convert def. angle to
180	[+] [F]	CWBS.
301.77	[E]	HD
135.2652	[F]	CWBS
880.15	[E]	HD
75.13	[CHS] [F]	CCWBS
697.36	[E]	HD
178.3716	[F]	CWBS
88.3	[J]	V/ZA
1009.56	[E]	Slope distance.
6	[ENTER]	INST (Sideshot)
5	[ENTER]	BS (Sideshot)
10	[■] [d]	Assign point number.
112.29	[F]	CWBS (Sideshot)
216.78	[E]	HD (Sideshot)
99.0636	[CHS] [F]	CCWBS
876.29	[E]	HD
188.4237	[F]	CWBS
500	[E]	HD
264.3252	[F]	CWBS
1.47	[J]	V/ZA
1521.84	[E]	Slope distance.
119.2	[CHS] [F]	CCWBS
	[B$]$ [C]	Check angular EOC.
	[R/S]	Distance EOC is bad. Since angles are OK, let's check the distances.

REV. $\mathbf{3 / 3 1 / 8 3}$.

SUP-R-ROM ${ }^{\text {© }}$				FIELD DATA COLLECTOR					
\square	CWBS Reading	-		- ${ }^{\text {c }}$	EOC	-d	Sideshot		e V/ZA
A	NE	8	SE	C	SW	D	NW	E	Distance
F	CWBS	G		H	Angle Corr.	I	Distance Corr.	J	V/ZA

AR/INY

N 8.6224 H $H D=693.147$ h

3.	***
$1,686.3338$	***
903,0528	***

N 33.1919 E $H D=973.5768$

ARC $=1,135.6742$
$R=600.0000$

5.	***
$2,499.8516$	***
$1,437.8789$	***

N 82. 3000 E
$H D=1: 110.3969$

10.	***
$2,644.7853$	***
$2,538.7756$	***

S 0.0628 E
$H D=1,866,9277$

7.	***
$1,577.8594$	***
$2,548.7427$	***

S 2.2947 K $\mathrm{HID}=499.9583$

ARC $=556.8510$
$R=-350.0000$

1.	***
$1,898,8989$	***
$1,888,8089$	***

SQFT $=2,351,557.118$
ACRS $=53.9843$

SUP-R-ROM ${ }^{\text {© }}$		FIELD data collector		
-a CWBS Readina A Ne	\square	- C EOC	- d Sideshot	V/ZA Reading
A NE	B SE	C sw	D NW	E Distance
F CWBS	G	$\begin{array}{\|ll} \hline \text { H } \quad \begin{array}{l} \text { Err Corr } \\ \text { Angle } \end{array} \\ \hline \end{array}$	$\begin{array}{\|ll} \hline \text { I } & \begin{array}{l} \text { Err Corr } \\ \text { Distance } \end{array} \\ \hline \end{array}$	J V/ZA

GIVEN: The above figure.
FIND: It is required to stake out a lot on the west side with 110 frontage and contain exactly one acre.

INPUT	PRESS	REMARKS
	$[\square][K]$	Access program.
	[R/S]	Initialize.
43560	$[G]$ [a]	Input required area.
88.16	$[C]$	Input traverse.
110	$[E]$	
4.32	$[D]$	
391.38	$[E]$	
72.37	$[A]$	
62.13	$[E]$	
86.44	$[B]$	
750	[E]	Figure is completed.

PREDETERMINED AREA II EXAMPLE

GIVEN: The above figure.
FIND: The unknown distances to enclose exactly one acre.

INPUT	PRESS	REMARKS
	$[\square][$ [K]	Access program.
	$[R / S]$	Initialize.
43560	$[F]$	Input required area.
36.21	$[D]$	Input bearings around the figure.
48.15	$[\mathrm{~A}]$	
46.22	$[B]$	
57.31	$[\mathrm{C}]$	
200	$[J]$	Input distance AB.
		Figure is completed.

PRED AREA
43,560.0909
S 88.1680 N $H D=118.8900$

N 4.3208 N $H D=391.3800$

N 72.3708 E
$H \mathrm{H}=62.1390$
S 85.4489 E $H D=46.6315$

S 4.5922 E
$H D=4 \varepsilon 3.459 \hat{1}$

SQFT $=43,560.9$ hir
ACRS: 1.0000

PRED AREA
43.560 .8890

N 36.2100 H
H 48.1580 E
S 45.2200 E
S 57.3100 K
$H D=200,9000$

N 36.296 CH
$H D=290.809{ }^{\circ}$
H 48.150 DE
$H J=183.8799$
§ 45.2280 E
$H D=235,0726$
S 57.3100
$H D=228.4865$

SQFT $=43,560.9060$
ACR $:=1.8800$

SUP-R-ROM ${ }^{\text {c }}$ PREDETERMINED				
- a PA (1)	- ${ }^{\text {RCL (1) }}$	\square	- d	\square
A NE	B SE	C SW	D NW	E Distance
F PA (II)	G RCL (II)	H	I	J Distance

（22）
STAKEOUT EXAMPLE

GIVEN：The above figure and the registers intact from COGO example．

INPUT	PRESS	REMARKS
	［回］［L］	Access program．
	［R／S］	Initialize．
	［日］［CF］［00］	Let＇s not print coordinates．
6	［日］［C］	Input INST．
1	［R／S］	Input BS．
13	［E］	Input SOPT numbers．
14	［E］	
28	［E］	
27	［E］	
31	［E］	
18	［E］	
16	［E］	
17	［E］	
12	［E］	

StakEOUT

6．INST
1．BS
13．SOPT
N 67.3049 H
$H D=76.4153$
CUBS $=51.2911$
14．SOPT
N 36.3817 N
$H D=110.7 .7 .9$
［ABS $=82.2943$
28．SOPT
$N 39.8213$
$H D=181.48^{\circ} 3$
CWBS $=88.5747$
27．SOPT
H 11.156 N
$H J=187.6463$
CWBS $=187.4481$
31．SUPT
N 18.01410 E
$H D=147.2569$
CWBS $=137.0140$
18．50FT
N 22． 355 E
$H D=87.946^{9}$
CNES $=141.3556$

16．SOFT
N $31.30: 2$ t $H D=60.1572$ CUBS $=15$ й． 30.32
：7．SOF
N 53.485 ： $H D=3 . .0926$ CWBS $=17 \dot{i} .4855$
\therefore DFT
S 47.4151 H
$H D=186.1785$
CWBS $=346.4152$

SUP-R-ROM ${ }^{\text {© }}$			STAKEOUT			
-	- b	\square	$\begin{aligned} & \hline \text { INST } \\ & \text { BS } \\ & \hline \end{aligned}$	- d	\square	
A	B	C		D	E	SOPT
F	G	H		I	J	

In the above figure，Points 1 through 7 were stored in the calculator using FIELD TRAVERSE．On arriving at the site，Points 1 and 2 were found but they were not intervisible．So a temporary point was set 100 from Point 2 ，and angle was turned to Point 1 ，and the distance measured．Then to store the coordinates of Point 10 ：

INPUT	PRESS	REMARKS	
	$\begin{aligned} & {[⿴ 囗 十 \\|} \\ & {[R / S]} \end{aligned}$	Access FIELD TRAVERSE． Initialize	
0	［ENTER］ [XEQ] [B]	Assume beginning coordinates of zero．	
10	［R／S］	When prompted：1．0000 OK？，assign 10.	
0	［A］	Assume bearing of North for first leg．	
100	［E］		
1.5145	［D］		
70.02	［E］		
	［D］｜d｜	Compute closure of triangle．If the printer is not attached，as soon as the next display appears，touch（R／S） quickly．You should see the bearing from Point 1 to Point 2 （ S 0.4601 E ），which is equal to the angle θ ． If you were not quick enough pressing［R／S］，try pressing［ALPHA］：If it isn＇t in the alpha register，recall the azimuth from Register 15 and convert it to its bearing in DD．MMSS．Also you may check the distance from Point 1 to Point 2 by recalling Register 07.	
	［0］［SST］	Access SEARCH／SET．	
	［R／S］	Initialize．	
2	［（1）［c］	Input INST．If printer is not attached，clear Flag 07 before proceeding．Press：［ $]_{\text {］}}$［CF：［07］．	
1	［R／S］	Input BS．	
.4601 100	［F］	θ is your CWBS．	
100	El	input distance．Assign 10 to the temporary point． NOTE：You may prefer solving the triangle by some other method；but the idea is to get the temporary point stored in the calculator on the same datum as the other points．	
2	［日］［c］	Input INST．＿If the printer is not attached，clear Flag 07 before proceeding．Press：［ ］［CF］［07］．	
10	［R／S］	Input BS－	
258.47	Fl	Set satellite point．Turn CWBS and get distance．	
251.22	［E］	11 is OK．	
	［R／S］		
3	$\left[\begin{array}{ll} {[\pm]} \\ {[\pm]} \end{array}\right.$	Where is Point 3 from here？Display shows：CWBS＝ 326.2215 ． Display shows：65．4991．So we BS on Point 2，turn 3260 22＇15＂，and measure 65．50＇：And we find Point	
		Display shows：65．4991．So we BS on Point 2，turn $326^{\circ} 22^{\circ} 15^{\prime \prime}$ ，and measure 65．50＇：And we find Point 3 or we set it．	
4	$\begin{aligned} & {[-]\|e\|} \\ & {[\infty ;} \end{aligned}$	Where is Point 4 from here？Display shows：CWBS $=316.0656$ ． Display shows：B0．7014．So we BS on Point 2，turn $316^{\circ} 06^{\prime} 56^{\prime \prime}$ and measure 80.70^{\prime} ．And we either find Point 4 or we set it．	
5	$\begin{aligned} & {[\mathrm{B}]} \\ & {[\mathrm{E}]} \end{aligned}$	Where is Point 5 from here？Display shows：CWBS＝ 257.2150. Display shows：71．2721．So we BS on Point 2，tum $257^{\circ} 21^{\prime} 50^{\prime \prime}$ ，and measure 71．27＇．And we either find Point 5 or we set it．	
277.01	［F］	Set satellite point．Turn CWBS and measure distance．	
183.57	［E］	Assign 12 to point．	
12	（R／S）		
6	$\begin{aligned} & \text { [日] [e] } \\ & \text { lel } \end{aligned}$	Where is Point 6 from this new satellite point？Display shows：．157．5119． Display shows：36．6292．So we BS on Point 11，fum $157^{\circ} 51^{\prime} 19^{\prime \prime}$ ，and measure 36．63＇．And we either find Point 6 or we set it．	
		Now，you may make a tie back to Point 1，and complete the closure for a check．	

QUIK-CHEK EXAMPLE

Once upon a time, a kindly judge assigned four surveyors to make a survey of a piece of property. When they met on the site, each had brought his own favorite measuring device, and true to their breed, each insisted that only his system of measurement made sense.

John Johnson believed only in feet and tenths; Wojokowitz insisted on poles, naturally; Sam Gunter said, "If it was good enough for great, great, great, great grandpa Edmund, it's good enough for me." And Pierre LeBlanc commented, "Voila," which being translated says, "Think Metric."

Since no one was willing to yield, they agreed ta-disagree. And decided that since there were four sides to the property, that each would measure one side and so record it.

And, believe it or not, the following deed resulted:

Beginning at a point in the center of a Giant Redwood tree with dogwood and blackgum pointers; thence $\mathrm{N} 69^{\circ} 09^{\prime} \mathrm{E} 801.36$ feet to an iron stake; thence $\mathrm{S} 21^{\circ} 18^{\prime} \mathrm{E} 9$ chains and 85 links to another iron stake; thence $\mathrm{S} 72^{\circ} 08^{\prime} \mathrm{W} 51$ poles to a lightwood knot; thence $\mathrm{N} 17^{\circ} 39^{\prime} \mathrm{W} 185.08$ meters to the point of beginning, cuntaining exactly 11.8449 acres, more or less.
"But how are we going to know if we have a good closure?" someone asked. "Aha," said the kindly judge, "Fear not, for I brought my trusty 41CV and my SUP-R-ROM module." "And you're going to use the QUIK-CHEK programl" they all cried in unison.

AND SO,

		QUIK-CHEK
INPUT	PRESS	N 69.8964 E
	$\begin{aligned} & {[\mathrm{E}][0]} \\ & {[R / S]} \end{aligned}$	$\mathrm{FT}=881.3600$
69.09	[A]	S 21.1860 E
801.36	[E]	$\mathrm{CH}=9.850 \mathrm{e}$
21.18	[B]	$F T=650,1690$
9.85	[J]	FT= 65..10
72.08	[C]	
51	[F]	
17.39	[D]	$\mathrm{POL}=51.8689$ $\mathrm{FT}=841.5489$
185.08	[H]	$\mathrm{FT}=841.548 \mathrm{~g}$
	[R/S]	
		$\begin{aligned} & N 17.3990 \\ & M=185.8860 \end{aligned}$
		$\mathrm{FT}=687.2105$

"One in 144,000?" said the judge. "Why that's fantastic!"
"Voila'" said Pierre.
"And they think they're so hot," thought the little back rodman. "Why if I hadn't been moving those tacks over in the center of the stakes, they wouldn't have been in the same county!"

SUP-R-ROM ${ }^{\text {© }}$			QuIk-CHEK					
-	\square		- 5		-d		-	
A NE	B	SE	C	SW	0	NW	E	Feet
F Poles/Rods	G		H	Meters	I		J	Chains

INPUT	PRESS	REMARKi
	［［ ］［M］	Access program．
	［R／S］	Initialize．
13	［R／S］	Input base point number．
14	［R／S］	Input another point in the base line
		Compute perpendicular offsets for Points 2，3，4，5，and 6.
2	［R／S］	
3	［R／S］	
4	［R／S］	
5	［R／S］	
6	［R／S］	
	［E］	New problem．
14	［R／S］	Input base point number．
43.4658	［B］	
	［ 0 ］［SF］［03］	Let＇s print coordinates of the points on the base line and store them．
6	［R／S］	Input point number．
16	［R／S］	Assign 16 to the point．
7	［R／S］	Input point number．
17	［R／S］	Assign 17 to the point．
－	［R／S］	Input point number．
18	［R／S］	Assign 18 to the point．

PER OFST

BASE $N O=13,8080$ LINE NO $=14.0000$

OFST ND $=2.8000$
8ASE $=-6.3514$
OFST $=4.5651 \mathrm{RT}$
OFST NO $=3.0080$
BASE $=143.4198$
OFST $=6.8226 \mathrm{LT}$
OFST $\mathrm{NO}=4.0086$
BASE $=369.1966$
$0 F S T=5.8886 \mathrm{RT}$

OFST ND $=5.0060$
BASE $=599.4461$
OFST $=9.5195 \mathrm{LT}$
OFST N0 $=6.8600$
BRSE $=675.8473$
OFST $=6.6799 \mathrm{RT}$

BRSE NO $=14.600 \mathrm{~h}$
543.4658 E

OFST NO $=6.8000$
BRSE $=5.8818$
OFST $=5.5061 \mathrm{LT}$
16
621758.3739
222897.8291

OFST NO $=7.0000$
BASE $=183.3685$
OFST $=8.5368 \mathrm{RT}$
17
621638.2348
227219.8369

OFST NO $=8.0000$
BASE $=465.9583$
OFST＝ 3.8262 LT
18
621426.2132
＊＊
辛事
丰事

SUP－R－ROM ${ }^{\text {C }}$		PERPENDICULAR OFFSET		
－${ }^{\text {a }}$	－b	－ 6	－d	－
A NE	B SE	C SW	D NW	E New Prob．
F	G	H	I	J

（29）

STEP	PROCEDURE	INPUT	PRESS
$\begin{array}{rr} 11 \\ & 1 \\ & 3 \\ & 4 \end{array}$ 5 6	Access program． Initialize． If you wish to store the coordinates of Point A， Input data as prompted by the calculator： PROMPT BASE NO＝ LINE NO＝ OFST NO＝ ？．0000 OK？ EXPLANATION Input base point number． Input number of any other point in the line． OR，input bearing of the base line． Input number of the offset point． If Flag 03 was set in Step 3，the display prompts with the offset point number． If OK for Point A to replace the offset point，press，［R／S］．If not，assign point number and press［R／S］． After each computation，the calculator will prompt for another offset point number． NOTE：A negative base distance indicates the offset point is back of the base point． For new problem． FIELD USE：（If used without a printer，be sure Flag 03 is clear．） For offset distance， For base distance， If Flag 03 is set，the offset distance is lost，but the base distance is stored in Register 04．If you wish to store the coordinates of Point A，you may input the OFST NO once with Flag 03 clear，retrieve your distances，and then repeat with Flag 03 set．	Number Number Bearing Number	```[⿴囗 [R/S] [⿴囗 [SF] [03] \\ ［R／S］ \\ ［R／S］ \\ ［A］［B］［C］or［D］ ［R／S］``` ［E］ $\begin{aligned} & {[R \nmid]} \\ & {[R \nmid]} \end{aligned}$
	PER OFST REGISTER CONTENTS IND STO／RCL 85 DIST BP TO 0 10 06 POINT NO． 11 Nbp 87 AZIM BP TO O 12 Ebp 68 Na 13 DIST BP TO A 69 Ea 14		

(30)

GIVEN: The above figure and the registers intact from the LINEAR REGRESSION example.

PROMPT	INPUT	PRESS	REMARKS
		$\left[\begin{array}{l} {[\mathrm{B} / \mathrm{S}]} \end{array}[\mathrm{N}]\right.$	Access program. Initialize.
BEG PT NO?	11	[R/S]	
END PT NO?	1	[R/S]	
D1?		[R/S]	
D2?		[R/S]	
BRNG?	38.1234	[A]	
BRNG?	47.2359	[B]	Use adjusted bearing from 2 to 1.
140.0000 OK?	13	[R/S]	Assign 13 to Point B.
		[J]	New problem.
BEG PT NO?	13	[R/S]	
END PT NO?	12	[R/S]	
D1?	38.1234	[A]	Note that for a BBI, it is not necessary to step through prompts for D1 and D2.
BRNG?	42.4025	[D]	
140.0000 OK?	14	[R / S]	Assign 14 to Point C.
		[J]	New problem.
BEG PT NO?	14	[R/S]	
END PT NO	1	[R/S]	
D1?	42.4025	[B]	
BRNG?	45.181	[C]	
140.0000 OK?	15	[R/S]	Assign 15 to Point D. GO TO PAGE 48.

INTERSECT
11.6000
1.0009

N 38.1234 E
S 47.2359 E

881

11.	***
462.4691	$* * *$
0.8909	$* * *$

N 36.1234 E
1.075.7165

17.	**
1.387 .7897	**
$665.37!5$	***

$547.2359 E$
454.6094

15.8608
12.8800

N 38.1234 E
N 42.4025 H

861

17.	**
1.387 .7697	***
665.3715	***

N 36.1234 E
671.3427

14,	***
1.835 .2295	***
1.089 .6224	***

N 42.4025 W
1.594.2589
3.887. 3625 ***
0.6890 ***

$\begin{aligned} & i 4.0900 \\ & 1.0909 \end{aligned}$	
S 42.4925 E	
S 45.1810 k	
BE)	
14.	***
1,835.2285	***
1.888.6224	***

S 42.4025 E
537.3313

15.	$* * *$
$1,448.1691$	$* * *$
$1,444.8369$	$* * *$

S 45.1816 W
625.7961

$\begin{array}{r} 1 \\ 1,000.8990 \\ 1,809.9090 \end{array}$

SUP-R-ROM ${ }^{\text {© }}$		INTERSECTIONS		
		$\square 6$	-d	-
A NE	B SE	C Sw	D NW	$E_{\text {(Same }}^{\text {New Sol }}$ Coord)
F	G	H	1	J New Prob

GIVEN: The above figure with right-of-way offset 25^{\prime} right and 30^{\prime} left.

FIND: Coordinates of points in the right-of-way and diagonal distances from the centerline points.

PROMPT	INPUT	PRESS	REMARKS
	1000 80 400 88 200 79 200 68.3 175 50.1 500	[日] [F] [R/S] [ENTER] [A] [b] [A] [E] (B] [E] [B] [E] [B] [E] [B] [E]	We will use FIELD TRAVERSE to store centerline coordinates. Access program. Initialize.
OFST: RT^ LT?	$\begin{aligned} & 25 \\ & 30 \end{aligned}$	$\begin{aligned} & {[1][T]} \\ & \text { [R/S] } \\ & \text { [ENTER] } \\ & {[R / S]} \end{aligned}$	Access ROADSIDE program. Initialize.
BS /INST $/ \mathrm{FS}$?	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	[ENTER] [ENTER] [R/S]	
1.0000 OK?	7	$\begin{aligned} & {[0][C F] \quad[02]} \\ & {[R / S]} \end{aligned}$	Succeeding point numbers will be sequential.
NEXT FS?	4	[R / S]	
$\begin{aligned} & \text { NEXT FS? } \\ & \text { NEXT FS? } \end{aligned}$	5 6	[R/S] (R/S]	

RDSIDE

INST= 2.8800
HS RT $=25.1377$

7.	***
$1,844,3828$	***
$1,395.6766$	***

HD LT $=30.1652$

| 8. | *** |
| ---: | ---: | ---: |
| $1,899.5519$ | *** |
| $1,391.8189$ | *** |

[NST = 3.080日
HD $R T=25.877^{7}$

| 9, | *** |
| ---: | ---: | ---: |
| $1,037.5633$ | *** |
| $1,590.9624$ | *** |

HIL LT= 300.8928
19. ***

1,892.3787 ***
1.597.2879 ***
$\operatorname{INST}=4 . \hat{\mathrm{A}} \mathrm{ABB}$
HD $R T=25.1853$

11.	***
1.099 .2152	***
$1,783.1015$	***

$H D L T=30.1264$

12.	***
$1,853.2484$	***
$1,798.5569$	***

IN $\mathrm{T}=5.8808$
HII $\mathrm{KT}=25.3234$

13.	***
938.3989	***
$1,948.6338$	***

HD LT= 30.3881
14. ***
986.3181 ***
1.968 .4490

SUP-R-ROM ${ }^{\text {c }}$			ROADSIDE	
- ${ }^{\text {a }}$	- b	- 0	-d	- ${ }^{-1}$
A	B	C	D	E
F	G	H	I	J

UTILITY PROGRAM EXAMPLES
A. STORING COORDINATES BY POINT NUMBER

PROMPT	INPUT	PRESS	REMARKS
$\begin{aligned} & \text { PT NO? } \\ & \text { N } \approx E ? \end{aligned}$	$\begin{aligned} & 1 \\ & 11111 \\ & 22222 \end{aligned}$	[■] [U]	Access UTILITY program. Select program. Initialize. Input point number. input coordinates.
		[R / S]	
		[R/S]	
		[ENTER]	
		[R/S]	
PT NO?	2	[R/S]	Input next point number.
$N \geqslant E$?	33333	[ENTER]	Input coordinates.
	44444	[R / S]	
PT NO?	Etc.	Etc.	

STO COORD
1.0900
$11,111.8908$
$22,222.9096$
2.0089
$33,333.0980$
$44,444.0900$

LISI COORD
B. LISTING COORDINATES BY POINT NUMBER

PROMPT	INPUT	PRESS	REMARKS
		$[$ [E] [U]	Access UTILITY program.
		[H]	Select program
		[R/S]	Initialize.
1ST \approx LAST?	1	[ENTER]	Input number of first point.
	2	[R/S]	Input number of last point.

C. ANGLES FROM BEARINGS

INPUT	PRESS	REMARKS
	[${ }_{\text {c }}$ [U]	Access UTILITY program.
12.25	[D]	Input first bearing.
10.25	[A]	Input next bearing.
	[E]	Compute CWBS.
15.25	[A]	Input next bearing.
	[E]	Compute CWBS.
10.25	[A]	Input next bearing. Compute CWBS.

D. PRINTING JOB-DATE

PRESS	REMARKS
[■] [U] $[J]$	Access UTILITY program. Print JOB-DATE.

SUP-R-ROM ${ }^{\text {© }}$		UTILITY PROGRAM		
-	-b	- 6	-d	-
A NE	B SE	C SW	D NW	E
F Sto Coord	G	H List Coord	1	J JOB-DATE

VERTICAL CURVE ELEVATIONS EXAMPLE

GIVEN: | Beginning station | $=115+50$ |
| :--- | :--- |
| Beginning elevation | $=92.95$ |
| First VPI station | $=120+50$ |
| Elevation | $=105.45^{\prime}$ |
| \quad Length of VC | $=400^{\prime}$ |
| Second VPI station | $=127+00$ |
| Elevation | $=74.58^{\prime}$ |
| Length of VC | $=500^{\prime}$ |
| Last station | $=133+17.62$ |
| Last elevation | $=81.92$ |
| Increment | $=100^{\prime}$ |

FIND: VC data, elevations for each station, station and elevation of max/min elevation for each curve. and the elevation at station $121+17.62$.

PROMPT	INPUT	PRESS	REMARKS
ODD? SF 04		$\begin{aligned} & {[\mathrm{E}][\mathrm{V}]} \\ & \text { [R/S] } \\ & \text { [} \mathrm{E}] \\ & \text { [SF] [04] } \end{aligned}$	Access program. Initialize. We wish to compute one odd station.
BEG STA?	115.5	[R/S]	Note station value.
ELEV?	92.95	[R/S]	
VPI STA?	120.5	[R/S]	Note station value.
PI ELEV?	105.45	[R/S]	
LVC?	4	[R/S]	Note station value
VPI STA?	127	[R/S]	Note station value.
PI ELEV?	74.58	[R/S]	
LVC?	5	[R/S]	Note station value.
VPI STA?		[R/S]	No keyboard entry.
LAST STA?	133.1762	[R/S]	Note station value.
ELEV?	81.92	[R/S]	
INC?	1	[R/S]	Note station value. (First VC is computed.)
ODD STA?	121.1762	$\begin{aligned} & [R / S]] \\ & {[\mathrm{Cl}][\mathrm{CF}][04]} \\ & {[R / S]} \end{aligned}$	Note station value. Odd stations are not requested at the PT of the next curve. No keyboard entry.

VERT CURVE		$S T A=119.8795$	
	UPI $=128.5988$	MAXN $=182.1743$	$S T A=138.8980$
	ELEV $=185.4509$		$E L E Y=78.1453$
$S T A=115.5890$	$L V C=4.0898$		
$E L E Y=92.9568$	$\square 1=2.5086$	ELEV $=182.1612$	STA $=131.8088$
	$G 2=-4.7492$		ELEV $=79.3337$
$S T A=116.0088$	INC= 1.0600	$S T A=121.00088$	
$E L E V=94.2988$		$E L E Y=101.8365$	$S T A=132.0980$
			$E L E V=80.5222$
STA $=117.8098$	$\triangle P C=118.58080$	STA $=122.0009$	
$E L E Y=96.7800$	$E L E Y=100.4500$	$E L E Y=98.8996$	STA $=133.0988$
			$E L E V=81.71086$
$S T$ = 118.9008	$S T R=119.88080$	WPT $=122.5088$	
ELEV $=99.2008$	$E L E V=101.4735$	$E L E Y=95.9515$	$S T A=133.1762$
			$E L E V=81.9280$

SUP-R-ROM ${ }^{\text {© }}$		VERTICAL CURVE ELEVATIONS		
- ${ }^{\text {a }}$	-b	- ${ }^{\circ}$	- d	-
A	B	C	D	E
F	G	H	1	J

SOLAR \& POLARIS OBSERVATIONS INTRODUCTION

EQUIPMENT you will need:
For solar observations -

1. Radio to receive WWV (time station) or a Time Kube (from Radio Shack) and an electronic watch preferably with lap time stopwatch feature.
2. Solar ephemeris.
3. Map to scale the longitude and latitude of the point of observation. A US Geological Survey quad sheet is ideal
4. Sun filter for theolodite. If you have a "total station", be sure to buy a filter for the front (objective) lens of the instrument so you will not damage the electronic portion of the instrument.

For Polaris observations -

1. Items 1 through 3 above.
2. Night lighting attachment for theolodite with c'oss hair illumination.

SOLAR OBSERVATION

First, a word of caution. Under NO circumstances should you attompt to observe the sun without a filter. Even a fraction of a second of exposure to the magnified rays of the sun WILL (not may) destroy the retina. Also be sure to buy a filter furnished by your instrument manufacturer that fits properly, and be equally sure that you have attached it properly so that it does not fall off during the observation

Occupy the point from which you wish to make the observation with your theolodite. Backsight on the mark with the telescope in the direct position. The mark may be a target set on a traverse point, an arbitrary point set to be turned from later, or a well-defined long distance point (church spire, sign, etc.). Record vour backsight reading in the "BS on mark" blank (Line 1). This may be $0^{\circ} 00^{\circ} 00^{\prime \prime}$ or any other reading. Attach the solar filter and pornt the telescope toward the sun. Because of the low angle of the sun in winter, you can observe it at all times without steep angle prisms or attachments. In the summertime between the hours of $9: 30 \pm$ and $4.30 \pm$ Daylight Time, these attachments will probably be required. Because the sun's fastest movement is at noon (one second of time equals abour 15" of arc), it is far better and more accurate to make your observations in early morning or late afternoon when the sun's motion is more nearly vertical. Also, for the sake of accuracy. the observation time per angle set should be ten minutes or less.

PM

In the morning the sun's movement is up and to the righti in the afternoon, it is down and to the "ight
Now, back to our field work. Point your telescope to the sun and lead the sun with the vertical cross hair a little as shown at left below. (Since we are not getting our latitude and longitude via the vertical angle, don't worry about the horizontal cross hair. However, you may avoid errors caused by instrument maladjustment by keeping the horizontal hair near the center of the sun.)

First and third
foresights on sun

Second and fourth
foresights on sun

You will notice the sun is moving to the night and closing the gap between it and the vertical cross hair. At the exact moment the edge of the sun touches the harr, say "mark" to vour notekeepet, or press the lap time button on vour watch and read the time and record in the "Record watch time" blank (Line 2). Read and record the horizontal angle on Line 3. Now, perform the remainder of the angle sets in like manner. (But note that on the second and fourth foresights on the sun, you must sight on the left side of the sun, and you will need to allow the sun to be bisected by the vertical cross hair. Then, when the left side of the sun becomes tangent to the verrical cross hair, call "mark' to your notekeeper.) See diagram on right above. 1

As you complete Lines 4 through 12, you may prefer to leave the filter on since removing and attaching it is somewhat cumbersome, 'and duplicate the "BS on mark" value in all but Line 12.

This completes the field portion of the observation. You may elect to retire to more comfortable quarters to enter the remainder of the values for Lines 13 through 21 .

POLARIS OBSERVATION

Dccupy the point from which you wish to make the observation with vour theolodite. Backsight on the mark with the telescope in the direct position. The mark may be a target set on a traverse point, an arbitrary point set to be turned from later, or a well-defined long distance object (church spire, sign. etc.). Record your BS reading in the BS "BS on mark" blank (Line 1). This can be $0^{\circ} 00^{\prime} 00^{\prime \prime}$ or any other reading.

Turn to Polaris and record the exact time of the observation on Line 2. Read the horizontal angle and record it on Line 3. . . . Continue to enter the proper values for Linas 4 through 12.

This completes the field portion of the observation. You may elect to retire to more comfortable quarters to continue to enter the remainder of the values for Lines 13 through 19.

SUP-R-ROM ${ }^{\text {© }}$ SOLAR/POLARIS DBSERVATION				
- ${ }^{\text {a }}$	- b	\bigcirc	-d	-
A Solar	B Polaris	C	D	E RUN
F	G	H	I	J

GIVEN: Station $100+00$ has zero area.
Station $101+00$ cross-section above.
Station $102+00$ cross-section above.
Station $103+00$ has zero area.

PROMPT	INPUT	PRESS	REMARKS
		$[\mathrm{Q}][\mathrm{S}]$	Access program. Initialize. Yes.
PRT INPUT?	6	[R/S]	
1ST STA=	10000	[R/S]	
NEXT STA?	10100	[R/S]	
$E L$ * ${ }^{\text {? }}$	325.4	[ENTER]	
	0	[R/S]	
$E L * D ?$	324	[ENTER]	
	50	[CHS] [R/S]	
$E L * D ?$	336.6	[ENTER]	
	56.3	[CHS] [R/S]	
$E L \neq D ?$	340	[ENTER]	
	58	[R/S]	
$E L ; D$?	324	[ENTER]	
	50	[R/S]	
EL \# D		[E]	Compute the section.
NEXT STA?	10200	[R/S]	
$E L \geqslant D ?$	323.4	[ENTER]	
	0	[R / S]	
$E L \neq D$	322	[ENTER]	
	50	[CHS] [R/S]	
$E L \neq D ?$	332.72	[ENTER]	
	55.36	[CHS] [R/S]	
$E L * D ?$	332	[ENTER]	
	30	[CHS] [R/S]	
$E L$ \# ${ }^{\text {P }}$	336.9	[ENTER]	
	25	[R/S]	
$E L / D$?	334.8	[ENTER]	
	56.4	[R / S]	
$E L * D ?$	322	[ENTER]	
	50	[R/S]	
EL \% D ?		[E]	Compute the section.
$\begin{aligned} & \text { NEXT STA? } \\ & \text { EL D? } \end{aligned}$	10300	[R/S]	
		\|E1	Combute the section.

x-SECT
1ST STA $=10,800.90$
$10,100.80$
325.49
B. 90
324.08
-50.80
336.60
-56.30
340.90
58.90
324.00
50.06

STA $=10,180.80$ SQFT $=1,469.80$
VOL $=2,785.19$
$\Sigma Y O L=2,705.19$
10.290.89
323.4
0.88
322.00
-58.8日
332.72
-55.36
332.00

- 30.90
336.98
25.90
334.81
56.40
322.80

STA $=10.200 .98$
SQFT $=1,242.68$
$Y O L=5,896.44$
$\Sigma Y O L=7.711 .63$
10.380 .08
$S T A=18.380 .0 日$
SQFT $=0.08$
$V O L=2,301.26$
$\varepsilon \mathrm{VOL}=18, \ell 12.89$

Comoute the section.

SUP-R-ROM ${ }^{\text {© }}$		CROSS-SECTION AREAS AND VOLUMES			
-	- b	-	- d	-	
A	B	C	D	E	Computa
F	G	H	I		Err Corr

NOTE: After execution of any or all of Steps 3d and 4, an input error is noted, you may correct it by pressing [J] and beginning the section all over again at Step 3d. But, DO NOT RE-ENTER THE STATION. If the error is in the station value itself and is noted before execution of Step 4, store the correct value in Register 11 and continue with Step 3d and/or Step 4. If the error is noted after execution of Step 4, press [J], store the correct station value in Register 11, and re-input the section (Step 3d).

	REGISTER CONTENTS								
88	cross-sections	95	USED		18	AREA LAST		15	USED
81		06	USED		11	THIS STA		16	
82	USED	87	USED		12	LAST STA		17	
83	USED		USED		13	iHIS YOL		18	
84	USED	89	RREA	THIS STA	14	cunulative	YOL	19	

GIVEN: $\quad a=-1.9$
$b=-1.3$
$c=40$
$d=24$
e $=3$
$f=5$
$g=112.17$
$h=117.00$

PROMPT	INPUT	PRESS	REMARKS
		$\begin{aligned} & {[\mathrm{E}][\mathrm{S}]} \\ & {[\mathrm{S}]} \end{aligned}$	Access program. Initialize.
CUT DIFF?	1.9	[CHS] [R/S]	
FILL DIFF?	1.3	[CHS] [R/S]	
C BASE DIST?	40	[R/S]	
F BASE DIST?	24	[R/S]	
CUT SLOPE?	3	[R / S]	
FILL SLOPE?	5	[R/S]	
C OR F?		[C]	Let's do the cut side first.
CL GRADE ELEV?	112.17	[R/S]	
HI?	117	[R/S]	Estimate distance from CL for first test rod reading,
TEST ROD?	1.8	[R/S]	say 50°. Levelman calls 1.8, which vields a distance
	1.5	[R/S]	of 54.8 ... Try 56^{\prime}... Levelman calls 1.5 which yields a distance of 55.7... Try 55.7... Levelman calls 1.5, and we have a slope stake point at 55.7'
			Now, lets try the fill side. Since we have the same CL grade elevation and the same HI , we can avoid re-entering them. Press [F] to set up the calculator fc: the fill section, and enter the first test rod reading with [$X E Q$] [00].
		[F]	
CL GRADE ELEV?	15 13.5	$\begin{aligned} & {[X E Q][00]} \\ & {[R / S]} \end{aligned}$	Try 80°... Levelman calls 15.0 which yields a distance of 68.4... Try 70^{\prime}... Levelman calls 13.5 , which yields a distance of 60.9... Too far, try 57^{\prime}... Levelman calls
	12.7	[R/S]	12.7, which yields a distance of 56.9... Close enough! (Of course, the above figures are necessarily contrived.)

SUP R R ROM ${ }^{\text {© }}$			SLOPE-STAKE			
-	-b	-		- d		
ANew Section	B	C	CUT	D		$\begin{aligned} & \hline \mathrm{SI} \mathrm{St} \\ & \text { Info } \\ & \hline \end{aligned}$
F FILL	G	H		I	J	

$P C=12516.7208$
DEF= 8.8060
STA $=12525.0090$
EEF $=0.4348$

STA $=12550.8600$
$D E F=2.5681$
$S T A=12575.0000$
DEF $=5.0814$
$S T A=12680.9009$
DEF $=7.2828$
$P T=12604.6488$
DEF $=7.4580$

CHORD DATA

PC TO STA
CL RRC= 8.2880
CL CHD $=8.2798$
OUT CHD $=9.8441$
IN CHD $=7.5155$

FULL INCR
CL RRC $=25.0008$
CL CHD $=24.9938$
OUT CHD $=27.3010$
IN $\mathrm{CH} D=22.6867$
STA TO PT
CL RRC= 4.6480
CL CHD $=4.6480$
OUT $\mathrm{CHD}=5.8683$
IN CHD $=4.2117$

TAN OFSTS
FROM PC/PT
$T \mathrm{D}=28.8008$
$\mathrm{T} 0=0.6168$
$T D=40.6008$
$\mathrm{T}=2.4710$

FROH PI
$\mathrm{TD}=20.8080$
$\mathrm{T} 0=8: 9845$
$T D=40.8000$
$T 0=8.8275$

SUP-R-ROM ${ }^{\text {© }}$			SIMPLE CURVE DATA	
-a	-b	- 6	-d	-
A	B	C	D	E Odd Sta
F	G	H	I	J

CURVE PROBLEMS EXAMPLE
Store coordinates as follows:

PROMPT	INPUT	PRESS	REMARKS
		$[\mathrm{F}][\mathrm{U}]$	Access UTILITY program. Initialize.
		[R / S]	
PT NO?	1	[R/S]	
N / E?	0	[ENTER]	
		[R / S]	
PT NO?	2	[R/S]	
N, E?	514.0512	[ENTER]	
	368.7734	[R/S]	

PROMPT	INPUT	PRESS
PT NO?	3	[R/S]
N R	654.2099	[ENTER]
1163.	1163.6525	[R/S]
PT NO?	4	[R/S]
N $/ E ?$	680.2383	[ENTER]
	199.0481	[R/S]
PT NO?	5	[R/S]
N E?	686.7085	[ENTER]
	907.7811	[R/S]

(See first figure on opposite page.)

GIVEN: Coordinates of Points A, B, and C.
GIVEN: Delta $=44^{\circ} 20^{\prime} 41^{\prime \prime}$
$A B=632.65$
$\mathrm{BC}=807.14$

PROMPT	INPUT	PRESS	REMARKS
PT NOS?	$\begin{array}{\|l\|l\|} \hline \end{array}$	```[日] [?] [R/S] [A] [ENTER] [ENTER]```	Access program. Print ID. Initialize.
	3	[R/S]	RESULTS:
			CURVE PROES
			$R=954.9299$

See second figure on opposite page.
GIVEN: Coordinates of Points A, B, C, and D
GIVEN: Delta $=73^{\circ} 10^{\circ}$
$\mathrm{PHI}=61^{\circ} 54^{\prime} 30^{\prime \prime}$
$A B=237.54^{\circ}$

PROMPT	INPUT	PRESS	REMARKS
PT NOS?	$\begin{aligned} & 2 \\ & 4 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { [■] [?] } \\ & \text { [R/S] } \\ & \text { [B] } \\ & \text { [ENTER] } \\ & \text { [ENTER] } \\ & \text { [ENTER] } \end{aligned}$	Access program. Print ID. Initialize.
		[R/S]	RESULTS:
			CURUE PRRES
			$0=954.9293$

SUP-R-ROM ${ }^{\text {© }}$			CURVE PROBLEMS		
- ${ }^{\text {a }}$	-		- ${ }^{\text {c }}$	- d	-
$\begin{array}{ll} \hline \text { A } & \begin{array}{c} \text { 3-Point } \\ \text { Problem } \end{array} \\ \hline \end{array}$	B	1-Point Problem	C	D	E
F	G		H	I	J

ROTATION AND TRANSLATION EXAMPLE

ROT／TR

GIVEN：The above figure and the registers intact from INTERSECTIONS example．

Assume that a tie is made to the State Coordinate Grid System at Point 3， and the new coordinates are：N621345．6745 and E221769．0685．Also the computed bearing from Point 3 to Point 4 is $\mathrm{N} 40^{\circ} 07^{\prime} 17^{\prime \prime} \mathrm{E}$ ．

SOLUTION：Draw a sketch to determine the relative position of the north arrows in the two systems．It is determined that the north of system A is $358^{\circ} 53^{\prime} 27^{\prime \prime}$ clockwise from system B．

PROMPT	INPUT	PRESS	REMARKS
$\begin{aligned} & \text { ROT } \triangle \text { ? } \\ & \text { NA } \& A ? \end{aligned}$	358.5327	$\begin{aligned} & {[⿴ 囗 十 \text { [SPACE] }} \\ & {[R / S]} \\ & {[R / S]} \end{aligned}$	Access program Initialize． Input angle of rotation． Input present coordinates of Point 3 from tape，OR you may find the register number （point No．times $2+18$ ）and recall the coordinates from storage． $3 \times 2+18=24 .$
NB $\geqslant E B ?$ $S C$ FAC？	$\begin{aligned} & 621345.6745 \\ & 221769.0685 \end{aligned}$ 1 15	［RCL］［24］ ［RCL］［25］ ［R／S］ ［ENTER］ ［R／S］ ［R／S］ ［ENTER］ ［J］	Input state grid coordinates of the same point． Scale factor is 1. Rotate and translate the coordinates of Points 1 through 15，and replace the original coord－ inates． GO TO PAGE 14.

STEP	PROCEDURE	INPUT	PRESS
1 2 3 4 	Access program. Initialize. Fix decimal. Input data as prompted by the calculator: PROMPT EXPLANATION a. ROT Δ ? Input the clockwise angle from Grid System B to Grid System A. Note that if System B is east (or clockwise) from A, the angle will be near 360 degrees. NOTE: If translation without rotation is to occur, input zero for the angle. b. NA EA? Input coordinates of a common point in System A. c. NB \& EB? Input coordinates of the same point in System B. d. SC FAC? Input scale factor, if desired. (Pressing [R/S] without keyboard entry defaults to scale factor of 1.) To translate coordinates input from the keyboard: a. From Grid System A to Grid System B. b. From Grid System B to Grid System A, To translate stored coordinates from Grid System A to Grid System B: a. Input number of the first point to be translated. b. Input number of the last point to be translated. Then, if points are to be translated on tape only. If points are to be translated on tape and replace the original stored coordinates, To translate stored coordinates from Grid System B to Grid System A: a. Input number of the first point to be translated. b. Input number of the last point to be translated. Then, if points are to be translated on tape only. If points are to be translated on tape and replace the original stored coordinates, NOTE: IT IS OF UTMOST IMPORTANCE THAT A SKETCH BE MADE IN ORDER TO DEFINE GRID SYSTEM "A" AND GRID SYSTEM "B". (See example.) REMEMBER, Grid System A is the old system whose coordinates are now stored in the calculator. And Gris System B is the new system TO which the coordinates will be translated.	Angle N E N E Factor Na_{a} E_{a} N_{b} E_{b} Number Number Number Number	$\begin{aligned} & \text { [B][SPACE] } \\ & \text { [R/S] } \end{aligned}$ [R/S] [ENTER] [R/S] [ENTER] [R/Si [R/S] [ENTER] (A) [ENTER] (B] [ENTER] [E] [J] [ENTER] [D] [1]

LINEAR REGRESSION EXAMPLE

GIVEN: The above figure and the registers intact from
TRAVERSE ADJUSTMENT example.

PROMPT	INPUT	PRESS	REMARKS
		$[\mathrm{m}][\mathrm{S}]$	Access program. Initialize.
PTS?	6	[R/S]	Yes, we will use point numbers.
PT NO?	2	[R/S]	
PT NO?	3	[R/S]	
PT NO?	4	[R/S]	
PT NO?	5	[R/S]	
PT NO?	6	[R/S]	
PT NO?		[E]	Run program.
ASN PT NO?	11	[R/S]	Assign 11 to point.
		[A]	Initialize for new problem.
PTS?	3	[R/S]	Use point numbers.
PT NO?	6	[R/S]	
PT NO?	7	[R/S]	
PT NO?	8	[R/S]	
PT NO?		[E]	Run program.
ASN PT NO?	12	[R/S]	Assign 12 to point.
			GO TO PAGE 30.

H 38.1234 E
11. 9080
$N=462.4601$
$E=0.8006$
LIN REGR

2.0 ¢й 9	***
1364.6899	***
668.7412	***
$3.8890 ̆$	***
1424.6226	***
748.7211	***
4.896 ¢	***
1594.5896	***
897.6763	***
5.8880	***
1784.6156	***
1828.6716	***
6.61800	***
1834.6284	***
1888.6574	***

6.8989	***
1834.6284	***
1888.6574	***
$7.889 日$	***
1694.6167	***
1198.6369	***
8.8809	***
1494.6867	***
1398.6837	$* * *$

N 42.4025 H
12.0880
$N=3807.3625$
$\mathrm{E}=0.0086$

SUP-R-ROM ${ }^{\text {© }}$			LINEAR REGRESSION		
- ${ }^{\text {a }}$	- b	- ${ }^{\text {c }}$	-d	-	
A	B	C	D	E	RUN
F	G	H	1	J	

SUP-R-ROM ${ }^{\text {© }}$					MASS StDRAGE			
-		\square		- 6	- d		\square	
A	Write	B	Write	C	0	Read	E	Read Cards
F	Write Tape	G		H	1	$\begin{aligned} & \text { Read } \\ & \text { Tape } \end{aligned}$	J	$\begin{aligned} & \text { Read } \\ & \text { Tape } \\ & \hline \end{aligned}$

TO INITIALIZE THE TAPE - remember all existing data on the tape are erased

1. Press [XEO] [ALPHA] [NEWM] [ALPHA] calculator prompts 'NEWM...'
2. Press [050] [R/S]. (This permits 50300 -register files to be stored on the tape. TAKES ABOUT $41 / 2$ minutes!)

TO CREATE A FILE
Press [300] [ENTER] [ALPHA] [FILE NAME] [ALPHA] [XEQ] [ALPHA] [CREATE] [ALPHA]

RECOVERING FROM INPUT ERRORS

FIELD TRAYERSE

1. If either beginning coordinate is input incorrectly, initialize again and input correctly.
2. If an angular error is discovered before [E] has been pressed, input the angle exactly as before but with the sign reversed. Then, re-input the angle correctly.
3. If a $V / Z A$ input error is discovered before [E] has been pressed, input correctly and press [J].
4. If a bearing input error is discovered before [E] has been pressed, simply re-input and proceed.
5. On discovering any error after [E] has been pressed, follow instructions in Step 11 on page 7.

COORDINATE GEOMETRY

1. Items 1, 2, 3, and 4 above also apply to this program.
2. Any other input error may best be handled by using the branching technique as described in Step 9 on page 11.

TRAVERSE ADJUSTMENT

1. If the first point is input incorrectly, re-access the program, initialize again, and input the number correctly.
2. After having selected the Rule, there is no recovery. If you wish to insure against such a mistake, copy all registers on magnetic cards or on casette tape before using this program.

- AREA / INVERSE

1. If point numbers are not being batch loaded, you may correct an input error by re-entering the previous point number(s) and backing out the course(s). Then, proceed ahead by inputting the correct number(s). But be careful if a curve is involved, when backing up the curve reverses direction and the sign of the radius must be reversed.
2. Stored coordinate values are not altered in this program, so you may stop at any time and start all over. If you should realize in the midst of inputting point numbers that you had failed to do a sideshot, you could go to COORDINATE GEOMETRY, input the sideshot, return to this program and start over again.
3. Batch loaded points may be corrected just like the ones input one at a time by backing out a course. But should you discover in the printout of a long traverse that you had input a point number incorrectly, you may correct that point by finding the register in which it is stored, correcting the input, and pressing [G] again. The program will begin at the first point again.
..... So you need to know just how the point numbers are stored. The first three point numbers are stored in reverse order in Register 299, the next three in 298, etc. If the first three numbers you input were 1, 3, and 7. Register 299 would look like this: 7,003,001.000. The tabla below shows just where the point numbers are stored. For example, the forty third, forty fourth, and forty fifth pointsnumbers are stored in Register 285.

As an example, suppose the sixteenth, seventeenth, and eighteenth point numbers should have been 32, 37, and 39. But you note Point 37 comes out as 27; so you press [R / S] to stop program execution. Note from the table that Point 17 is stored in Register 294. So store 294 in Register 00 and press [RCL] [0] [00] and see $39,027,032.00$. To correct, key in 39037032 and press [STO] [\mathbb{C}] [00]. Then press [G] and execution will begin at the first point again.

RECOVERING FROM INPUT ERRORS, CONTINUED.

FIELD DATA COLLECTOR

SIDESHOTS: a. If an input error is discovered before the distance is input by pressing [E], you may start over repeating Steps 8a, b, c, and d. All the erroneous data will be written over.
b. If an input error is discovered after the distance has been input and [E] has been pressed, press [2] [STO] [+] [20] and input the sideshot correctly.
to use the technique described below. you must wait until all angles and distances have been INPUT BEFORE MAKING ANY CORRECTIONS.

ANGLES: Input the number of the angle and press [H]. The angle as stored will be displayed as a deflection angle in DD.MMSS even though it may have been input as a CWBS. No correction has been made at this time; so if you should input the wrong number, simply re-enter the correct number and press $[\mathrm{H}]$ again.
.... To correct a bad entry, input the correct angle as a deflection angle in DD.MMSS and press [R/S]. If the angle is a CWBS, just add 180 and don't worry if it gives you a deflection angle above 360 degrees.
DISTANCES: Input the number of the distance and press [1]. The horizontal distance as stored will be displayed. Again, no correction has been made at this time; so if you input the wrong number, input the correct number and press (1) again.
. . . . To correct, input the correct horizontal distance and press [R/S].
NOTE: The order of entry is bearing, distance; angle, distance; angle, distance; angle, distance...etc. So should you inadvertently input two distances in a row, the second distance would be stored in the register for the next angle. To recover, omit the next angle, input the next distance, and when all input has been made, correct as above. The same holds true for inputting two angles in a row.

PREDETERMINED AREA I

1. If you note an error in either the bearing or distance of a course just input, you may input the same distance with a negative sign and press [E]. Correct the course and input again. If the error was in the distance, you do not need to input the bearing again.
2. You may change the required area at any time prior to reaching the course on which the area will be achieved.

PREDETERMINED AREA II

On noting any input error in this program, your best bet is to re-initialize and start over.

STAKEOUT

1. If either the INST point or BS point is input incorrectly, re-initialize and start over.
2. If a wrong SOPT is input, edit it off the tape.

SEARCH / SET

Since you are working primarily with coordinates in this program, about the only serious error you could make would be to assign a number to a satellite point that would destroy a needed point. You may recover from most input errors by inputting INST and BS points and proceeding from there.

QUIK-CHEK

You may back out a course by either reversing the bearing or making the distance negative and inputting the course again. In either case the bearing must be input each time. For example, given the course $\mathrm{S} 18^{\circ} 29^{\prime} \mathrm{W}$ 200 .

INPUT	PRESS	REMARKS
18.29	[C]	
200	[J]	You pressed the wrong key!
18.29	[C]	Input the bearing again.
200	[CHS] [J]	Back out the distance.
18.29	[C]	Input the bearing again.
200	$[E]$	Mistake is corrected.

RECOVERING FROM INPUT ERRORS, CONTINUED.

PERPENDICULAR OFFSET

1. If an error is made in inputting the base point, line point, or bearing, re-initialize and start over.
2. If a wrong offset point number is input, edit it off the tape.

INTERSECTIONS

1. If a wrong beginning or ending point number is input, initialize again by pressing [J] and start over.
2. If any other input error is made, press [E]. It will not be necessary to input the beginning and ending point numbers again.

ROADSIDE

No recovery possible; initialize again and start over.

UTILITY PROGRAM

No recovery possible; initialize again and start over.

VERTICAL CURVE ELEVATIONS

No recovery possible. Be very careful with your input, expecially the use of station values rather than feet. When you have batch loaded several curves, should you detect an input error during program execution, stop execution by pressing [R / S]. Then, initialize again and re-load the input data from the place of error ahead.

SOLAR / POLARIS

See NOTE on page 39.

CROSS-SECTIONS

See NOTE on page 41.

SLOPE-STAKE

No recovery possible; initialize again and start over.

CURVE DATA

No recovery possible; initialize again and start over.

CURVE PROBLEMS

No recovery possible; initialize again and start over.

ROTATION AND TRANSLATION

No recovery possible. And the note on page 49 cannot be overemphasized.

LINEAR REGRESSION

No recovery possible; initialize again and start over.

MASS STORAGE

No recovery possible.

JOB NO.
DATE
 observer Barbocer

POLARIS

(18) Input GHA from Table 1^{*}. (See Note 2.1
(19) Input polar distance from Table 3°. (Use same date as for GHA.)

SOLAR

(South declinations are negative: press [CHS].)
(18) Input declination from Table 1°. (See Nate 2.1
(19) Input declination for the next day.
(20) Input the EQT for the same date used in Item 18.
(21) Input the EQT for the next day

NOTE 1: EST = 5. EDT = 4. \quad CST $=6 . \quad$ CDT $=5 . \quad$ MST $=7, \quad$ MDT $=6 . \quad$ PST $=8, \quad$ PDT $=7$.
NOTE 2: After lem 17 has been input, press \square. The display will show the Greenwich Civil Time of the day of observation. This is your guide as to which tabular value to use. If the display is less than 24, use the date of observation, and if it is 24 or greater, use the date following the day of observation.

NOTE 3: All angular entries are in the form DD.MMSSs; so be sure to change those values from the epherneris that are given in tenths of minutes.

[^1]

INSTRUMENT ID. $73=4 / 333$

(18)

INPUT

$00^{\circ} 00 \cdot \mathbf{3 3}{ }^{\circ}$ (1) 00233

00 "25.126"
$243^{\circ} 06.58{ }^{\prime \prime}$

$63^{\circ} 0641^{\prime \prime}$ $180^{\circ} 00^{\prime} 151^{\prime}$ $191^{\circ} 00.52$ " $00^{\circ} 28 \cdot 272$ " $74^{\circ} 077^{2} 28^{\prime}$ $00^{\prime 2}$ 29.382" 25409.344
/L 00 '599" (12) 11.00599 $35^{\circ}-36.02$ $76{ }^{\circ} 31.06$ $\frac{5}{0} 0.00 .00$
82.5306
[R/S]
[R/S]
[E]
PRESS
(—) [W_{1}
(B)
[A / S]
[RS]
[R/S]
[R / S]
[R/S]
[R/S]
[RS]
[R/S]
|R/S|
[R/S]
[R/S]
[R/S]
(RS]
[RS]
[RS]
(RS)
[RS]
(回)
[R/S]

SOLAR OR POLARIS OBSERVATIONS

JOB NO. \qquad
DATE
DBSERVER \qquad

(1) (Telescope direct)	BS on mark.
(2) (Telescope direct)	FS on sun or Polaris.
(3)	
(4) (Telescope inverted)	FS on sun or Polaris.
(5)	
(6) (Telescope inverted)	BS on mark.
(7) (Telescope direct)	BS on mark.
(8) (Telescope direct)	FS on sun or Polaris.
(9)	
(10) (Telescope inverted)	FS on sun or Polaris.

INST. STA.
BS (MARK) STA.
INSTRUMENT ID. \qquad
Record watch time.
Record horizontal reading.
Record horizontal reading.
Record horizontal reading.
Record watch time.

Record watch time.
Record horizontal reading. \qquad
\qquad
(17) Input watch correction. (Fast is negative; slow is positive.)

-	"
-	"

USING THE SUP-R-ROM WITHOUT THE PRINTER

GENERAL

1. If you wish to recall an azimuth from storage and convert it to a bearing, you may do so in the ADDENDUM program, Step 3. Or you may choose to convert it from the keyboard. Or you may convert an azimuth to its bearing at any time (that is, from any program) by pressing [XEQ] [ALPHA] [AZ] [ALPHA]. However, the calculator is left in the FIELD TRAVERSE program. So if you use the ADDENDUM program or the [AZ] routine, be sure to re-access the program you were using WITHOUT initialization.
2. To recall coordinates from storage by point number, you may use the ADDENDUM program, Step 2. But again. be sure to return to the program you were using by accessing without initialization. Also, you may find the register where the north coordinate of a point is stored by multiplying the point number by 2 and adding 18; the east coordinate will be in the next higher register. For example, the north coordinate of point number 17 is found in Register 52. $\{2 \times 17+18=52$) The east coordinate is in Register 53.
3. For items not covered in the following, refer to the REGISTER CONTENTS at the bottom of each program page.

FIELD TRAVERSE (Page 7)

There are no problems with data input. To retrieve the bearing ahead (when angles are being input). press [RCL] [15] [XEQ] [12]. Sum HDs, Sum Lats, and Sum Deps may be viewed by recalling (or viewing) Registers 16, 17, and 18. For other closure data, press [■] [c] and when the data you want is in the display, touch [R/S] quickly. You may have to press [ALPHA] to bring out the data you want; but be sure to take it out of alpha mode before proceeding with other entries or executions.... Pressing [■] [c] changes no registers except the stack, so if vou miss your data the first time, repeat the procedure.

COORDINATE GEOMETRY (Page 9)

There are no problems with data input except, after excecuting Step 9b on page 11, vou must clear Flag 06 \& 07 before proceeding. Press [1 [CF][06] [D][CF][07]. This must be done after each excecution of Step 9a.

TRAVERSE ADJUSTMENT (Page 13)

Access the program but do not execute Step 2. Instead, store the first traverse point number in Register 05. Then, execute Step 4. After all courses have been adjusted, press [R/S] for the area. The area in square feet wik be scrolled across the display and the acreage will be in the display when execution is complete. The area in square feet may be recalled from Register 05 and will be a negative quantity if the traverse was input in a clockwise direction.

AREA / INVERSE (Page 15)

Execution is identical to that in the instructions on page 15. But if you wish to record the bearings and distances, after inputting the second point number and pressing [E], watch the display and touch [R/S] quickly when you see the bearing (which, will be the first item to be displayed). Then, press [ALPHA] to display the bearing. After recording the bearing. press [R/S] to resume calculations. The $H D$ will be in the display when calculation is complete. Be sure to take calculator out of alpha mode before inputting the next point number...... If you batch load your point numbers, when you stop the calculation for the first bearing, leave the calculator in the alpha mode. Then you will only need to watch the display and press [R/S] at the proper times. Again, be sure to take the calculator out of alpha mode before proceeding with the input of other data or pressing [C] for the area, A WORD OF CAUTION: When stopping calculation for the retrieval of these data, do not do anything to change the stack. Should you press $[R / S$] too late to retrieve an ltem, simply leave it for now and come back later and inverse between the two points. (You will notice that you only need to be quick in pressing [R/S] for the bearing; you have plenty of time for the HD.)

FIELD DATA COLLECTOR (Pages 17 and 19)

The 10 steps in the first part of this program are designed for field use without the printer, and on page 19 under COMPUTING AND PRINTING FIELD DATA, ignore the note about the printer. All instructions will work without the printer by follnwing the suggestions given above in TRAVERSE ADJUSTMENT and AREA / INVERSE when applicable.

PREDETERMINED AREA (Page 21)

See Step 5 in PA 1, and Step 6 in PA 11.

STAKEOUT (Page 23)

See Step 6.

SEARCH / SET (Page 25)

This program is designed to be used in the field without the printer. Just be sure to clear Flag 07 after executing [■] [c].

QUIK-CHEK (Page 27)

This program works equally well with or without the printer. After executing Step 4, the display will show the distance in feat. Note that you may use this program solely for the purpose of converting poles/rods, chains, or meters to feet without inputting any bearings..... After executing Step 5 (The first [R/S]), the precision will be in the display and the EOC is stored in Register 07. After pressing the second [R/S], the acreage will be in the display. For the square feet, press [RCL] 05 . This will be negative if the traverse was input clockwise.

PERPENDICULAR OFFSET (Page 29)

See Step 6.

INTERSECTIONS (Page 31)

Data input is the same with or without the printer unless coordinates are to be input from the keyboard. They must be stored as point numbers before the program is accessed. Point numbers 1 and 2 are convenient - store N_{1} in Register 20, E_{1} in Register 21, N_{2} in Register 22, and E_{2} in Register 23. Should these registers have data that you do not wish to disturb, use higher point numbers that will be outside your stored date. Say, you have 25 points already stored; you could use Point Numbers 30 and 31 . 130×2 $+18=78$) Then store N_{1} in Register 7B, E_{1} in Register 79, etc.

To retrieve solutions:	For the first azimuth:	[RCL] [07]
	For the first distance:	[RCL] [08]
	For the second azimuth	[RCL] [09]
	For the second distance	[RCL] \|10]

If you require a second solution, copy the above down and wait until after you have executed the second solution before converting any azimuths to bearings. (See ADDENDUM program, Step 3.)

ROADSIDE (Page 33)

Execute Steps 1 through 3c. When the display shows NONEXISTENT, computation is complete. (The calculator tried to print the diamond separators shown in the example and is left in COGO. So before proceeding with the next point, re-access ROADSIUE, but do not initialize.)
To retrieve solutions:
$\begin{array}{lll}\text { For HD right: } & \text { [RCL] [16] } \\ \text { For HD left: } & \text { [RCL] [07] }\end{array}$
To occupy the next point, proceed as follows:

1. Access program. Press [m] [T]
2. Store BS No. in Register 01
3. Store INST No. in Register 02.
4. Store FS No. in Register 03.
5. Press [XEQ] [00].
6. Retrieve distances and begin again with Step 1 above for the next point.

UTILITY PROGRAM (Page 35)

Steps 2 and 4 may be executed without the printer.

VERTICAL CURVE (Page 37)

Although this program is designed primarily for use with the printer, you may derive some benefit without the printer by following these restrictions: you must set Flag 04 and only one curve may be input at the time. After inputting the data (ending with the increment), wait for the calculator to ask for ODD STA? (You may speed things up a bit by inputting a large increment, say 100.) Then, input stations on the curve one at a time and press [XEQ] [OB] (or [XEO] [H]). When calculation is complete, the display will show the station. To view the elevation, press [$\$$]).
NOTE that G_{1} and G_{2} are stored in Registers 04 and 05 , and the station of maximum or minimum elevation is stored in Register 14.

SOLAR / POLARIS (Page 39)

This program works equally well with or without the printer.

For the first azimuth to mark,	[RCL] [33]	
For the second azimuth to mark,	[RCL]	[34]
For the mean azimuth to mark,	[RCL]	

To convert azimuths to bearings, see ADDENDUM program, Step 3.
CROSS-SECTIONS (Page 41)
This program works equally well with or without the printer.
For area of current station,

For the volume between this station and the last station. | $[R C L]$ |
| :--- |
| For the cumulative volume, |
| [RCL] |
| [RCL] | [13].

SLOPE-STAKE (Page 43) This is a field program not designed for use with the printer.
SIMPLE CURVE DATA (Page 45) This program will NOT work without the printer.

CURVE PROBLEMS (Page 47)
This program works equally well with or without the printer. The radius is in the display when calculation is complete.
ROTATION AND TRANSLATION (Page 49) This program will NOT work without the printer.

```
LINEAR REGRESSION (Page 51) See ADDENDUM program, Step 4.
```

SUP-R-ROM ${ }^{\text {© }}$		ADDENDUM		
- ${ }^{\text {a }}$	\square	-	- d	\square
A	B	C	D	E
F	G	H	1	J

STEP	PROCEDURE	INPUT	PRESS
1	Read magnetic card or key' in ADDENDUM program into program memory.		
2	TO RECALL THE COORDINATES OF A POINT:		[0] [R/S]
	b. Input point number. c. North coordinate is in display. For east coordinate:	Point No.	$\begin{aligned} & {[\mathrm{XEQ}] \quad[F]} \\ & {[\mathrm{R} / \mathrm{S}]} \end{aligned}$
3	TO CONVERT AN AZIMUTH IN DECIMAL OF DEGREE TO ITS BEARING IN DD.MMSS:		
	a. Access program. b. Recall azimuth from storage or key in azimuth from keyboard.	Azimuth	$\begin{aligned} & {[\mathrm{D}][\mathrm{R} / \mathrm{S}]} \\ & \text { [XEQ] [12] } \end{aligned}$
4	LINEAR REGRESSION NOTE: If coordinates are to be input from keyboard, use SUP-R-ROM program as is on page 51. To retrieve data, see Step 4 e below.		
	a. Access program b. Minialize. c. Input point numbers as prompted by the display.		$\begin{aligned} & \text { [⿴] }[R / S] \\ & {[R / S]} \\ & {[R / S]} \end{aligned}$
	Continue executing Step $\mathbf{4 c}$ until all points have been input. d. Access LINEAR REGRESSION program and compute the regression line: Assign point number when prompted.	Point No.	$\begin{aligned} & {[\mathrm{m}][.][E]} \\ & {[R / S]} \end{aligned}$
	1. For regression line intercept on the north axis. (This is also stored in Register 10 and stored as the point number assigned in Step 4d above.)		$[R ;]$
	2. For the azimuth of the regression line. (This is also stored in Register 10.) 3. To convert azimuth to bearing, execute Step 3 above. FOR A NEW PROBLEM, BEGIN AGAIN AT STEP 4a.		[R ¢]

KEYING IN THE ADDENDUM PROGRAM

01＊LBL－FP－	［ \quad ］［LBL］［ALPHA］［FP］［ALPHA］
82 ＂ADD＂	［ALPHA］［ADD］［ALPHA］
03 PROMPT	［XEQ］［ALPHA］［PROMPT］［ALPHA］
04 CLE	［⿴囗［CLE］
85 －PT H0？＊	［ALPHA］［PT Space NOP］
06 ASTO 81	［■］［STO］［01］［ALPHA］
074LBL 85	
08 RCL 01	［■］［LBL］［05］
69 STOP	［RCL］［01］
10 XEQ－S＂	［R／S］
$118+$	［XEQ］［ALPHA］［S］［ALPPHA］
12 GTO 85	$[\Sigma+]$
13＊LBL 66	［ E ］［GTO］［05］
14 XEO－T＂	［－］［gTolos］
15 RCL IND X	［＾］［LBL］［06］
16 STOP	［ XEQ ］［ALPHA］［T］［ALPHA］
17 ISG Y	
18 STOP	
19 RCL INB Y	
28 STOP	［RCL］［穴］［．］［X］
210LBL 12	［R／S］
22 XEA－AZ＊	［［ ］［ISG］［．］［Y］
23 END	［R／S］
	［RCL］［■］［．］［Y］
	［R／S］

［⿴］［LBL］［12］
［XEQ］［ALPHA］［AZ］［ALPHA］
With the calculator still in PRGM mode，single step［SST］ through the program and check against the tape above left． Correct if necessary．

Take calculator out of PRGM mode；press［GTO］［．］［．］ （TRY AGAIN will be displayed．）Assign the ADDENDUM program to the VIEW key：［■］［ASN］［ALPHA］，［FP］ ［ALPHA］［ ${ }^{\text {E }}$ ］［VIEW］．Place calculator in USER mode．

Press［■］［R／S］．（It＇s a little easier to remember the location of［R／S］than［VIEW］．）You should see ADD．

If a card reader is available，place calculator in PRGM mode while still in USER mode and write a card．

A PROGRAM TO INVERSE BETWEEN INPUT COORDINATES USING ONLY THE STACK

（No registers will be disturbed．But if you interrupt a program，be sure to re－access the program but do not initialize．）
KEY IN THE PROGRAM．Be sure Calculator is NOT in USER mode！（If you have several inverses to do， you may wish to assign＂DB＂to a key．）

$01018 L-D 8-$$82 Y \% \%$		01	［LBL］［ALPHA］［DB］［ALPHA］
		02	［ XY ］
日2 Y $\mathrm{Y} \times \mathrm{Y}$03 Rt		03	［ XEO ］［ALPHA］［R］［口］［ENTER］［ALPHA］
Q4－		04	［－1
05 PDN		05	［ $\mathrm{R} \downarrow$ ］
日6－		06	［－］
$0 \cdot \mathrm{CHS}$		07	［CHS］
$88 \mathrm{R4}$		08	［ XEQ ］［ALPHA］［R］［ C ］［ENTER］［ALPHA］
99 R－P		09	$[\square][R \rightarrow P]$
18 STOP		10	［R／S］
11 XCOY		11	［ XY ］
$12 \operatorname{ZROM}{ }^{-A Z^{-}}$		13 END	
TO DPERATE PROGRAM	INPUT		PRESS
1．Input Coordinates：	N_{1}		［ENTER］
	E_{1}		［ENTER］
	N_{2}		［ENTER］
	E_{2}		（Do not press enter）
2．For the distance：			［XEQ］［ALPHA］［DB］［ALPHA］ or call for preassigned label key
3．For the bearing			［ R / S ］

	SUP-R-ROM LABELS
Column A: Global Label \quad Column B: Program Location Column C: Local Label	

A	B	C	FUNCTION
FT	$\begin{aligned} & \text { FT } \\ & \text { FT } \end{aligned}$		Accesses Field Traverse program. Initialization: Clears Reg 00-19, clears Flags 01 - 10, stores 1 in Reg $06,10,11,12$; sets Flag 27; stores 4 in Reg 19; Fix 4,; ends with beep.
W	FT	[b]	First time: Stores beginning coordinates in Reg 13, 14 \& 20, 21. Executes Sets Flag 05. Second time: Used for end coordinates. The difference between Ne and Nb is summed to Reg 17; and the difference between Ee and Eb is summed to Reg 18; Flag 05 is cleared.
AA	FT	[A]	Computes and stores azimuth in Reg 15 and displays NE bearing.
B 8	FT	[B$]$	Computes and stores azimuth in Reg 15 and displays SE
CC	FT	[C]	Computes and stores azimuth in Reg 15 and displays SW bearing.
DD	FT	[D]	Computes and stores azimuth in Reg 15 and displays NW bearing.
X	FT		Adds 360 to contents of X -register until a positive res
a	FT	[a]	Displays and stores azimuth in Reg 15; sets Flag 01.
T	FT		Applies MOD (140) function to point number; sets Flag 08 if MOD $=0$. (This in turn sounds alarm later.)
U	FT		Applies temperature and grid factor corrections to entered distance if Flag 06 is clear; executes "?" if Flag 03 is set; flows into " O ".
0	FT		Stores HD in Reg 07; recalls azimuth; executes P - R function; stores Lat in Reg 08, Dep in 09; sums Lat in Reg 17, Dep in 18; increments Reg 06.
$?$	FT		Computes HD and vertical difference; displays slope distance and vertical difference.
L	FT		Computes area by DMD.
P	FT		Executes "U'; flows into " \ddagger ".
\uparrow	FT		Prompts for point number if Flag 02 is set; executes " T "; computes coordinates and stores them indirectly. Flows into " K ".
K	FT		Prints point number and coordinates of point ahead.
JJ	FT	[J]	Displays V/ZA; stores the SIN or COS of angle in Reg 12; sets Flag 03 to indicate that V/ZA has been entered.
0	FT	[E]	Executes " P "; computes data for balancing by the Crandall Rule; sums HD in Reg 16; executes " L "; sounds alarm if point number is 140, 280, etc.
V	FT	[c]	Computes and prints closure data; (only stack is changed)
M	FT		Displays and prints area in square feet and acres.
A 2	FT		Converts azimuth to bearing and displays bearing. (If Flag 01 is set, azimuth is displayed.)
G G	FT	[G]	Enters deflection angle; adds to contents of Reg 15; displays bearing or azimuth
FF	FT	[F]	Same as GG except for CWBS angle.
HH	FT	[H]	Computes temperature correction factor and stores in Reg 10.
CG	CG		Accesses Coordinate Geometry program. Initialization: executes " R ".
Σ	CG		Prints diamond separators for sideshot.
S	CG		Executes " T "; stores point number in Reg 06; recalis the coordinates of the point: N in Y -register, E in X -register.
Y	CG	[c]	Stores coordinates of entered point number in Reg 17 \& 18.
Z	CG	R/S	Uses entered point number and finds the bearing of azimuth from the point number entered in " Y " to this point number. Stores computed azimuth in Reg 15; distance in Y -register.
so	CG		Accesses Stakeout program. Initialization: Executes "R"; sets Flag 05.
SS	CG		Accesses Search / Set program. Initialization; Executes " R "; sets Flag 04.

A	B	C	FUNCTION
VC	VC		Accesses Vertical Curve program. Initialization: Clears all registers; clears Flags 04, 05, 06, 08, 09; Stores 28 in Reg 00, 31 in Reg 20, 32 in Reg 21, 33 in Reg 22.
PA	PA		Accesses Predetermined Area program. Initialization: Executes " R ".
QC	QC		Accesses Quik-Chek program. Initialization: Executes "R".
UT	UT		Accesses Utility Program. Accessing stores 4 in Reg 19.
FD	FD		Accesses Field Data Collector program. Initialization: Clears all registers; executes "R"; stores 23 in Reg 00; .003333333 in Reg 03; 299 in Reg 20, zero in Reg 06.
SLS	SLS		Accesses Slope-Stake program. (No initialization)
CP	CP		Accesses Curve Problem program. (No initialization)
IN	IN		Accesses Intersection program. Initialization: "A" or "B" stores 4 in Reg 19; clears Reg 13, 14; prompts " BEG PT NO?".
SP	SP		Accesses Solar / Polaris Observation program. Initialization: " A " or " B " stores 1 in Reg 00 and 4 in 37. " A " also sets Flag 09.
LR	LR		Accesses Linear Regression program. Initialization: Clears summation registers; clears Flag 10; prompts "PTS?".
CD	CD		Accesses Curve Data program. Initialization: Executes "R"; stores 100 in Reg 14; stores radius of onedegree curve in Reg 11; clears Flags 04 \& 09 ; stores 4 in 19; and prompts "DEF INC?".
RT	RT		Accesses Rotation / Translation program. Initialization: Clears Flags 08,09; prompts "ROT $\mathbf{s}^{\prime \prime}$.
XS	XS		Accesses Cross-Section Areas and Volumes program. Initialization: Executes "R";Fix 2; prompts "PRT INPUT?".
MS	MS		Accesses Mass Storage program. No initialization.
TA	TA		Accesses Traverse Adjustment program. Initialization: Clears Flag 00; prompts "1ST PT NO?".
N	TA		Recalls the coordinates of the point number stored in Reg 06; exchanges these with the coordinates stored in Reg $13 \& 14$; finds the difference between these two sets of coordinates; computes and stores the distance in Reg 07. The difference between the northings and eastings are left in Y register and X-register.
PO	PO		Accesses Perpendicular Offset program. Initialization: Stores 4 in Reg 19; prompts "BASE NO=".
RS	RS		Accesses Roadside program. Initialization: Stores 4 in Reg 19; clears Flag 10; sets Flag 02; prompts "OFST: RTXLT>".

DOUBLING THE SUP-R-ROM CAPACITY BY USING THE "SWAP" PROGRAM

By adding the EXTENDED FUNCTIONS MODULE and one EXTENDED MEMORY MODULE to your 41-CV. or adding one EXTENDED MEMORY MODULE to the 41-CX, you may increase the capacity such that 280 points may be stored at one time: 140 in MAIN MEMORY and 140 in EXTENDED MEMORY.
The points stored in the EXTENDED MEMORY are not directly addressable and must be brought into MAIN MEMORY before using. The following program expedites the procedure.
SUP-R-ROM uses registers 0-299 as working registers and storage registers; registers 300-306 are free;
registers $307-319$ are used by SUP-R-ROM to assign the keys which access the various programs. The "SWAP" program requires more than the available seven registers; so we have to "STEAL" some of the assignment registers. This may be done in two ways:
a. if you have nothing in the calculator that you wish to preserve, Proceed as follows:

1. Turn Calculator off.
2. Remove SUP-R-ROM.
3. Do a "MEMORY LOST". (Hold down the "CLR" (\leftarrow) Key while tuming the calculator back on.)
4. Key in the "SWAP" Program or use the card reader to enter the program. If the card reader is used, be sure the calculator is in "USER" mode.
5. Check program thoroughly by single stepping through the program or print the program. To print, press (XEQ) (ALPHA) (PRP) (ALPHA) and check the tape against the listing below.
6. Size the calculator to 300 : (Press (XEQ)(ALPHA)(SIZE)(ALPHA)(300).
7. If the card reader is used, key assignment is automatic. Otherwise press ($\left.{ }^{(1)}\right)(A S N)(A L P H A)(S W A P)$ (ALPHA)(
8. Tum the calculator off and replace SUP-R-ROM.

Now, since we've used some of SUP-R-ROM's assignment registers, the following programs must be accessed as shown:

SLOPE-STAKE:	(XEQ)(ALPHA)(SLS)(ALPHA)
CURVE DATA:	(XEQ)(ALPHA)(CD)(ALPHA)
CURVE PROBLEMS:	(XEQ)(ALPHA)(C)(ALPHA)
MASS STORAGE:	(XEQ)(ALPHA)(MS))(ALPHA)
ROTATION AND TRANSLATION:	(XEQ) ALPHA)(RT)(ALPHA)
LINEAR REGRESSION:	(XEQ)(ALPHA)(LR)(ALPHA)

IF YOU have data in the calculator that you wish to preserve, Proceed as follows:

1. If you have another program in the calculator clear it out: Press (XEQ)(ALPHA)ICLP)(ALPHA)(ALPHA) (PROGRAM NAMEI(ALPHA)
2. Be sure calculator is out of user mode.
3. Take assignments off the two bottom rows of keys:

PRESS	$)($ ASN) (ALPHA)(A
PRESS)(ASN)(ALPHA)(ALPHA)() (SPACE)
PRESS	$)\left(\right.$ ASN) (ALPHA)(ALPHA) ($\left.{ }_{\text {B }}\right)($.
PRESS) (ASN)(ALPHA)(ALPHA)(\square)(Y)
PRESS) $(\mathrm{ASN})(\mathrm{ALPHA})(\mathrm{ALPHA})(\mathrm{B})(=)$
PRESS)(ASN)(ALPHA)(ALPHA)() ${ }^{\text {(}}$? $)$
PRESS)(GTO)(.)(.)
EXEC	E STEPS A4, A5, A6 and A7 ABOVE

HOW TO USE THE "SWAP" PROGRAM

1. Create a file in EXTENDED MEMORY named " $X X$ ", (actual name is " $X X^{\prime \prime}$) as follows:

PRESS (ALPHA) $(X X)(A L P H A)(300)(X E Q)(A L P H A)(C R F L D)(A L P H A)$
2. Use "TRAVERSE" or "COORDINATE GEOMETRY" to enter the first 140 points.
3. 'When the alarm sounds, PRESS (R/S) to silence it.
4. Access the "SWAP" program by pressing (ह) (VIEW).
5. "PT NO?" will be displayed. Now, press (R/S) and the contents of registers 20-299 will be swapped with those same registers in EXTENDED MEMORY.
6. When transfer is complete (allow 4 to 5 minutes the calculator beeps and "PT NO?" is again displayed.
7. Re-access your TRAVERSE or COORDINATE GEOMETRY program, but:

***************** DO NOT INITIALIZE ******************

8. Resume entering courses continuing to number points 141,142 , etc.

Now, you will probably want to swap the registers again in order to have the first 140 points in main memory. Simply press () (VIEW)(R/S). You may now go to "TRAVERSE ADJUSTMENT" and balance the first 140 points. Then back to "SWAP to bring the last points into main memory. Then, back to "TRAVERSE ADJUSTMENT" to complete the balancing. Whether you adjusted the traverse or not, you want to end up with the first 140 points in main memory and the remainder in extended memory.

Now, you may use most any of the programs and recall points from both main memory and extended memory:

1. Access "SWAP" program: PRESS (${ }^{(1)}$)(VIEW).
2. "PT NO?" is displayed. Input the point number and PRESS (R/S).
3. When transfer is completes (about 3 seconds) the calculator beeps and again displays "PT NOp".
4. You may enter another point number, or re-access the program you were working.
5. On returning to your main program DO NOT INITIALIZE!
6. Re-enter the point number and press the appropriate key.
7. Return to "SWAP" and transfer the coordinates back to their original locations. (STEP 2 ABOVE)
```
********************* NOTE ********************
A HORD OF CAUTION: SUPPOSE YOU INTEND TO TRANSFER A SINGLE POINT AND DO NOT ENTER THE POINT NUHRER. OF COURSE, THE SMAP-ALL OPERATION BEGINS. DON'T INTERRUPT THE PROGRAM. (YOU NOULD HAUE A NESS; SONE OF THE POINTS THAT SHOULD BE IN MAIN HEMORY WOULD BE IN EXTENDED WEMORY AND UICE UERSA.) SIMPLY LET THE TRANSFER BE COMPLETED AND THEN SHAP THEM BACK. HOWEUER IF YOU SHOULD INADUERTENTLY STOP THE PROGRAM, IF YOU HAKE NO KEYBOARD ENTRIES, YOU HAY RESUHE THE TRANSFER BY PRESSING 〈R/S>.
```


PROGRAM STEPS FOR THE ＂SWAP＂PROGRAM

		TAKE OUT OF USER MODE PRESS： （PRGM）
01	LBL＂SWAP	（ ${ }_{\text {I }}$（LBL）（ALPHA）（SWAP）（ALPHA）
02	CLX	（ （1）$_{\text {（CLX }}$
03	＂PT NO？	（ALPHA）（PT SPACE NOO？）（ALPHA）
04	PROMPT	（XEQ）（ALPHA）（PROMPT）（ALPHA）
05	$x+\emptyset$ ？	
06	SF®8	（ ）$^{(S F)(\underline{0}}$ ）
07	FS？$\square^{\text {d }}$	
08	XROM＂T＂	（XEQ）（ALPHA）（T）／（ALPHA）
09	FC7 0^{8}	（XEO）（ALPHA）（FC））（ALPHA）＊${ }^{(08)}$
10	20.299	（20．299）
11	＂XX＂	（ALPHA）（XX）（ALPHA）
12	LBL 00	（■）（LBL）（ 0 （ ${ }^{\text {a }}$
13	RCL IND X	$(\mathrm{RCL})(\mathrm{C})(\bullet)(\underline{\mathrm{X}})$
14	RCL Y	$(\mathrm{RCL})(\bullet)(\underline{Y})$
15	SEEKPTA	（XEO）（ALPHA）（SEEKPTA）／ALPHA）
16	GETX	（XEQ）（ALPHA）（GETX）（ALPHA）
17	STO IND Y	
18	RDN	（R凶）
19	SEEKPTA	（XEQ）（ALPHA）（SEEKPTA）（ALPHA）
20	RDN	（ $\mathrm{R} \downarrow$ ）
21	SAVEX	（XEQ）（ALPHA）（SAVEX）（ALPHA）
22	RDN	（R凶）
23	ISG X	
24	GTO 00	（■）（GTO）（00）
25	FSTC 08	（XEQ）（ALPHAA）（FSS？C）（ALPHA）＊（＠8）
26	GTO 00	（e）（GTO）（0才）
27	BEEP	（ ）（BEEP）
28	GTO＂SWAP＂	（ ${ }_{\text {（ ）（GTO）}}(\mathbf{A L P H A})($ SWAP）（ALPHA）

Underlined characters in the above program steps are individual keystrokes．

Ask Gbout Our Other Surveying Software

FOR THE IBM PC, XT and PORTABLE

Surveyors Supply Co.

P.O. Drawer 808 Hwy 64 at Old Hwy 1

Apex, N.C. (919) $362-7000$

[^0]: * If printer is NOT attached, after execution of steps $9 a$ and $9 b$ Flags $06 \& 0$ / must be cleared before proceeding [D][CF][06][D][CF] [07]

[^1]: - Tables referred to are from the K \& E Solar Ephemeris.

