KIDo@sc CV/CN Surveying Field Solutions

NOTRTC

No express or implied warranty is made by D'Zign Land Survey \& Development or the author with regard to the procedures and program material offered or their merchantability or their fitness for any particular purpose. The keystroke procedures and program material are made available solely on an "as-is" basis, and the entire risk as to their quality and performance is with the user. Should the procedures or program material prove defective, the user (and not D'Zign Land Survey \& Development nor any other party) shall bear any and all cost of all necessary correction and all incidental or consequential damages. D'Zign Land Survey \& Development and/or the author shall not be liable for any incidental or consequential damages in connection with or arising out of the furnishing, use, or performance of the keystroke procedures or program material.

MPoMTCU/CM
 Surveying Field Solutions s.inm

TED J. KERBER, L.S.

Software by Do Tigm
P. O. BOX 1370 - PACIFICA, CA 94044

This book is dedicated to my wife, Phyllis, with my heartfelt thanks for her continued support.

Library of Congress Catalog Card No. 87-070549 ISBN 0-9616846-3-1
Manufactured in the United States of America
First Edition May 1986
2nd Printing Sept. 1986
Second Edition May 1987
Copyright © 1987, 1986 by Ted J. Kerber
All rights reserved. No part of this work covered by the copyright hereon may be reproduced or used in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems - without written permission of the author.
published by $\mathbb{D O}^{2} \mathbb{Z} i \underline{g} M$ Land Survey a Development

ISBN 0-9616846-3-1

今bomit the book

This book was originally written as an attempt to make additional programming available to surveyors and engineers for solving the every-day problems encountered in the field. The programs do NOT include Traverse, Inverse, Intersections, etc. Everyone else has written and rewritten versions of those, some independent and some using the routines already contained in Hewlett-Packard's Surveying Pac.

Almost all software for the 41 series calculator which has been written to do anything else (EDM slope staking, topographic pickup, etc.) was put into modules for marketing. The price for the modules ranges from $\$ 150$ for a 4 K ROM to over $\$ 500$ for one containing 8 K of programming. Most of what these modules do is Traverse, Inverse, and intersections.

Here then, is an effort to make 41 software available at a price that everyone can afford. As programs which reside in the calculator in program step form, they have the added advantage that the user may customize them to his/her needs, add to them, or modify the type of output.

A printer is not a requirement, but a convenient option. If you have access to a card reader, having the programs on cards is the best way to assure error-free input of the program steps, and a mag card programming service is available through the publisher.

While, in some cases, the programs could have been made shorter (or faster), and 'fancier' output could have been obtained through use of Synthetic Programming, not all of the users would be able to program the routines into the calculator. Those of you with experience in synthetic programming may wish to modify the programs somewhat; please feel free to do so, since your use of these programs is what the book is all about.

CONTR

Radixa foverse

This program calculates the distance and angle from a known backsight to points with known coor dinates for radial stakeout from a central instrument setup．
今ปベg muoat \％Ofiscts 5

FIELD LAYOUT

SPIRAL CURVES

This routine calculates the coordinates of any station along a centerline，or any offset to the station．The coordinates of the offsets may be calclulated with or without the centerline coordinates being output．

A combination of the other two routines．If the station to be used for layout is known，the inversing may be done automatically as the centerline stations and offsets are calculated．

Calculates the layout information for the entrance and exit spirals of a spiral curve for layout by deflection angle and chord．
Åignu Directly calculates coordinates for any station or offset to the station within the spiral curve system，including the circular portion．
合向他（0）
If the layout is to be from a known point，this program automatically calculates the horizontal angle and distance to the centerline or offset points as they are calculated，for any station within a spiral curve system．
T\＆ロ
Solutions for direct layout of the entrance and exit spirals of a spiral curve system by the tangent－offset method．

Radix I

Calculates the distance and angle from a known backsignt to points with known coordinates for radial stakeout from a central instrument setup．

Top®
This program reduces the field note information for shots taken to determine the location and elevation of existing topograpical features．
AS－DM起纪

FIELD LOCATION

Calculates the as－built station，offset and elevation of existing structures，and automatically compares the output to the design data．

With an EDM，this program allows slope staking along any alignment composed of tangents and circular curves central instrument location．
TMancl TPigiats 56
This program provides a quick check for＇tights＇，or protrusions within the excavation lines of a tunnel during construction．Output is the station，offset and elevation of any point shot，and the radius，if the point is above the tunnel springline．

Provides for the solution of triangles where any of the following are the known parts：Three sides．Two angles and the included side．One side and the two following angles．Two sides and the included angle．Two sides and the following angle．Area，one side and the adjacent angle．Area，and two sides．

TRIANGLES

TProguam 凸ixstixg s

Radial inversing has become a standard procedure in the past few years, and is used for setting points on all types of surveys, from boundary corners to footing stakes. The advent of EDM has given us the capability to set accurate points at known distances without the necessity of chaining. Lower prices of instruments which have the EDM built-in, and can turn an accurate angle, has put them within "budget" reach for almost everyone.

This program calculates the horizontal distance and the angle right from any known backsight for radial stakeout from a central instrument setup.

If the instrument were set, as shown to the right, on a point with the coordinates of $100 / 100$ and the backsight has the known coordinates of $600 / 80$, it is easy to lay out the building corners by inversing to their coordinates.

This routine gives outputs as shown below when used with a printer attached, but may be used with or without the printer.

$N=425.8989$
$E=350.8080$
$H D=410.830$
$\triangle R T=$
$39^{\circ} 51^{\prime} 33.1^{\circ}$
$N=498.8000$
$E=350.0800$
$H D=398.512$
$\triangle R T=$
$42^{\circ} 5 \cdot 46.3^{\prime \prime}$
$N=425.80005$
$E=428.8800$
$H D=456.898$
$\triangle R T=$
$46^{\circ} 5$ 月 $^{\prime} 47.3^{\prime}$
$N=499.8080$
$E=428.8000$
$H I=438.634$
$\triangle R T=$
$49^{\circ} 8^{\prime} 17.6^{\circ}$

The keys used for this routine are shown in the sketch of the keyboard assignments, and step-by-step instructions beain on the next page.

KEYBOARD
ASSIGNMENTS

There are two options for input with this program; one using known coordinates at the instrument and backsight stations, and the other for use when the coordinates of the setup station and the bearing to the backsight are known. With the exception of the initial input keystrokes (step \#3), the operation is the same for either condition.

Before beginning, the calculator should be sized to at least 030, and the utility programs "STA" and "AZ", as well as the program "LO" should be in program memory. The utility program "AZ" may be omitted if the calculator contains either the HP Surveying Pac or the D'Zign COGO 41 module. If the program is to be used with a printer attached, program memory must also contain the utility program "DMS".
1 Initialize the program by keystroking [XEQ ALPHA $\square \square$ ALPHA
For the condition where there are known coordinates for the instrument and backsight points:
2
Input the N -coordinate of the instrument point
ENTERA
3 Input the E-coordinate of the instrument point
4 BACKSIGHT?

5 Input the E-coordinate of the backsight point
or: For the condition with a known backsight bearing:
$2 \quad$ Input the N -coordinate of the instrument point

3 Input the E-coordinate of the instrument point
4 BRG=?
Input the bearing to the backsight

5 QD=? Input the quadrant code for the bearing
then:
At this point we are only inversing to known coordinates, so answer "yes", by stroking
$7 N+E$
Input the N -coordinate of the new point

8
Input the E-coordinate of the new point

Redixa Tmo erse

output will be the coordinates of the point being set, followed by the horizontal distance from the instrument and the angle right from the backsight to the point being set.* Repeat steps 7 and 8 for the next inverse.

As an example of the keystrokes used with this routine, and using the information from the illustration on page 1, we have the following:
keystrokes

XEQ ALPHA
display:

keystrokes:

1	0	0	ENTERT
1	0	0	0
prompt:	BACKSITE?		

keystrokes:
(6) 0 ENTERT

8 0 R/S
prompt: INV. ONLY?
keystrokes:

keystrokes:

[4] 25	ENTERT
(3) 50	A
output:	$\mathrm{N}=425.880 \mathrm{E}$
	$E=350.8898$
	$H D=410.030$
	$\triangle \mathrm{RT}=$
	$39^{\circ} 51^{\prime} 33.1^{\circ}$
prompt:	$\mathrm{N}+\mathrm{E}$

*If a printer is attached, the output is automatic. If there is no printer attached, continue stroking R / S until the prompt for input of the next point reappears.

இot®®
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\xrightarrow{C}
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

This routine quickly calculates the coordinates of any station along a centerline, or any offset to the station. Input is simple and straightforward, and the output allows the option of calculating the offset coordinates with or without the output of the centerline coordinates.

The calculator should be sized at a minimum size of 030 , and program memory should contain the programs "LO", "STA" and "AZ" ("AZ" is contained in both the HP Surveying Pac and D'Zign's COGO 41 module, and need not be re-input as a utility program if either of these ROMs is plugged into the calculator). In addition, if a printer is attached to the calculator, the program "DMS" must also be in program memory.
The keyboard assignments used with this routine are shown below, followed by this routine's program instructions.

KEYBOARD ASSIGNMENTS

1 Initialize the routine by keystroking XEQ ALPHA \square A 0 ALPHA

2
Begin the station-coordinate routine

3 BEG. STA?
Input the beginning station as $X X X X X . \times \times \times$; this can be any station with a known or assumed coordinate value

4 COORD. NTE Input the N-coordinate of the beginning station

5 Input the E-coordinate of the beginning station

$$
R / S
$$

6 BRG=?
Input the tangent bearing ahead as DD.mmss
7 QD=?
Input the quadrant code for the bearing

8 STA COORDS? At this point you may choose which option you want. If you want coordinates for the offsets, but do not need the centerline coordinates, keystroke $\mathbb{~}$; If both centerline and offset coordinates are required, keystroke Y

Note: If you select offset coordinates only, and later decide that you would like a particular centerline coordinate, such as an intersection point, B.C. or E.C., this coordinate may still be obtained by requesting an offset of " 0 ".

9 STA?
Input the station at which the coordinates are wanted
The station will be displayed in the form $\mathbf{X X X} \mathbf{X} \mathbf{X X} \mathbf{X} \mathbf{x X}$
if a printer is not attached, keystroke R/S
10 If the answer to step number 8 was NO, proceed at step number 12, if yes, the display will show $N=X X X X . \times x \times X$ for the value of the N -coordinate
if a printer is not attached, keystroke R/S
11
If the answer to step number 8 was yes, the display will show $E=X X X X . \times \times \times \times$ for the value of the E-coordinate if a printer is not attached, keystroke R/S
12 O/S?

13
The offset is displayed as $0 / S=X X . \times \times \times \times$
if a printer is not attached, keystroke R/S
14 The N-coor dinate is displayed as $N=X X X X . \times \times \times \times$
if a printer is not attached, keystroke R/S
15
The E-coordinate is displayed as $E=. X X X X . \times \times \times \times$ if a printer is not attached, keystroke R/S

0/S?
Repeat step 12 until all of the offsets for this station have been calculated. Then return to step number 9 for the next station.

Option: If a constant offset is required, you can set this constant at step \#12 by input of the offset distance and keystroking F. From then on, the program will prompt SIA? after each of the outputs instead of $0 / S$? and will automatically use that offset distance at each station as the calculations continue. For a constant offset distance this is a faster form to use.

CURVE ROUTINE: To go around the curves, input the station at the beginning of the curve (B.C. station) at step number 9 , and calculate any needed offsets as shown for steps 12 through 15.

16
When all of the required offsets at the B.C. station have been calculated

17 DELTA?
Input the central angle of the curve as DDD.mmss (if the curve is to the left, stroke CHS)

18 R ?
Input the radius of the curve
R / S

19
Output will show $R=X X X . \times \times \times X$
if a printer is not attached, keystroke R / S
Output: $N=X X X X . \times \times \times \times$ (radius point)
if a printer is not attached, keystroke R / S
21
Output: $E=X X X X . \times \times \times \times$ (radius point)
if a printer is not attached, keystroke R/S
22 Output: DELTA = DD.mmss
if a printer is not attached, keystroke R/S
23
Output: EC=
if a printer is not attached, keystroke R/S
24 Output: $X X X+X X . X X X$
if a printer is not attached, keystroke R/S
STA?
Return to step number 9 and continue as before. When the stationing exceeds the E.C. station the program automatically returns to the tangent ahead for additional stationing, until the next curve has been input.

This program routine has been designed in such a way that the station which is input after beginning a curve is compared to the station at the E.C. station, and when it has exceedec that point reverts to calculations based on the stored bearing of the next tangent.

As an example of the keystroke procedures, we can use the alignment shown in the illustration below. Assume that we need to know the coordinates of the even stations (every 100') along centerline, and the coordinates of the right-of-way points opposite the B.C. and E.C. stations.
keystrokes:

$X E Q$	ALPHA	$\boxed{0}$
ALPHA		0
display:	0.0000	
keystroke:		D
prompt:	BEG. STA?	
keystrokes:		
1 0 0 0	R / S	

BRG=? keystrokes:
3 5 • 0.215 R/S
prompt: $\quad \mathrm{QD}=$?
keystrokes:
(1) R/S
prompt: STA COORDS?
keystrokes:
Y R/S
prompt:
STA?

keystrokes:
[1] 1 [0] 0
output: $11+86.968$
$N=1.801 .8776$
$E=1.057 .4112$
prompt:
0/S?
keystrokes:
[1] 2] 0 0

$\mathrm{H}=1,163.7553$
$E=1.114 .8225$
prompt:
0/S?
keystrokes:

keystrokes:
(2) 5 R/S
output:
$0 / 5=25$. яваиа $N=1,149.4825$ $E=1,135.2919$

At this point, since $12+00$ is the B.C. of the first curve, initiate the curve routine with
prompt:
DELTA? keystrokes:
2 $2 \cdot 25$
prompt:
R/S
R?
keystrokes:

3 (5) 0	R / S	
output:	$R=359.0090$	
		$A=962.8159$
	$E=1.491 .3943$	

DELTA $=$ $22^{\circ} 25^{\prime} 8$. Q" $^{\prime \prime}$ EC $=$ $13+36.936$
prompt:
keystrokes:
(1) 3 0 0
output:
$13+8 e .908$
$\mathrm{N}=1,236,3775$
$E=1,183.0733$
prompt:
0/S?
Note: It is not a requirement of the program that the E.C. station be input. For the present example, it is input in order to calculate the 25^{\prime} offsets.
keystrokes:
(1) 3 3 6 9 (9) 6 E
output:
prompt:
0/S? keystrokes:
2] 5 CHS R / S
output: $0 / 5=-25.06909$
$N=1,278.9267$
$E=1,199.6543$
prompt:
O/S?
keystrokes:
(2) $5 / \mathrm{R}$
output:
$0 / 5=25.8089$
$\mathrm{N}=1,236.7786$
$E=1,226.5530$
prompt: O/S?
keystrokes:
(1) 4] 0 0 [E
output:
14+86. 880
$\mathrm{N}=1.291 .7794$
$\mathrm{E}=1,266.2641$
prompt:
0/S?
keystrokes:
(1) 4 2 2 [4] 3 E
output: $14+22.436$
$N=1,303.8494$
$\mathrm{E}=1,235.1768$
prompt: O/S?
keystrokes:
(2) 5 CHS R/S
output:
$0 / s=-25.8086$
$N=1,324.9234$
$\mathrm{E}=1,271.7275$
prompt:
0/S?

In this example the coordinates of the centerline points were output, and specific offsets were selected as the calculations were being done. Another option available with this routine is CONSTANT OFFSET.

As a second example, using the same alignment, assume that the requirement is the offset stakes, on the left side, for the curb and gutter layout. For this example, assume the offset is to be 18.50^{\prime} left of centerline, which would be an offset of 3.00 to the back of the curb.

The coordinates of the offsets are wanted at 25^{\prime} intervals from station $11+00$ through the first curve, but the centerline coordinates are not needed this time.

Input of the information for the beginning station, coordinates, bearing and quadrant code are the same as in the previous example, until the prompt "STA COORDS?". This time the answer to this prompt will be "NO". Stroke N R/S

output：
$11+75.808$
$0 / S=-18.58 日 G$
$N=1,153.987 日$
$E=1,885.3223$
STA？
\square
0
prompt：
STA？
keystroke：
［J］（sets curve）
prompt：
DELTA？ keystrokes：
（2） 2,2 R／S
prompt：$\quad \mathbf{R}$ ？
keystrokes：
［3 5 R 0 R／S
output ：
$R=350.890$ 日
$N=962.8159$
$\mathrm{E}=1,481.3943$
DELTA $=$
$22^{\circ} 25^{\prime} 8.8^{-}$
EC＝
13＋36．936
prompt： STA？
keystrokes：

（1）2］	［5］
output ：	$12+25.880$
	$0 / \mathrm{S}=-18.598 \mathrm{~B}$
	$N=1,195.3788$
	$\mathrm{E}=1.115 .5431$

prompt：
STA？ keystrokes：

［1］ 2	［0］E
output：	12＋56． 808
	$0 / \mathrm{S}=-18.580 \mathrm{~g}$
	$N=1,215.1775$
	$\mathrm{E}=1.132 .8689$

prompt：
STA？
keystrokes：

［1］［7］	5 ［日
output：	12＋75．888
	$\begin{aligned} & 0 / \mathrm{s}=-18.5898 \\ & N=1,233.6981 \end{aligned}$
	$E=1.151 .5641$

prompt：
STA？
keystrokes：
$\begin{array}{lllll}1] & 3 & 0 & 0 & E\end{array}$
output：
$13+80.800$
$0 / \mathrm{S}=-18.5 \mathrm{BR日}$
$N=1,250.8372$
$\mathrm{E}=1.171 .5334$
prompt：
STA？
keystrokes：
（1）3［2］5
output：13＋25．888
$0 / s=-18.5$ аa日
$N=1,266.5475$
$\mathrm{E}=1,192.675 \mathrm{~B}$
prompt：
STA？
－．ST
keystrokes：

keystrokes：

prompt：O／S？
keystrokes：

output：
$0 / 5=-18.5809$
$N=1.092 .4987$ $E=1,042.2639$
prompt： STA？
keystrokes：

［1］ 11	（5）E
output：	11＋25．880
	$0 / \mathrm{s}=-18.58 \mathrm{BE}$
	$N=1,112.9681$
	$\mathrm{E}=1,856.616$ ？

prompt：
STA？
keystrokes：

［1］5	（0）E
output：	$11+58$ ，a 18
	$0 / \mathrm{S}=-18.58$ an
	$N=1,133.4376$
	$E=1.878 .9695$

prompt：STA？
keystrokes：

When this program is run with a printer attached，and centerline coordinates are not wanted，the offsets to stations along a curve are printed with a space between the station and the offset＇s distance and coordinates to differentiate the radial offsets from those at 90° to the centerline．

The AUTO-INVERSE routine is a combination of the previous two routines. When you are going to do a layout, such as the alignment in the example, from a known instrument setup and backsight location, the radial inverses for ties to set the points can be automatically generated as the alignment is calculated.

It is far less time-consuming than running the alignment and offset point coordinates and then calculating the ties by any method. It is much better than having to key in bearings and distances with curve data through a traverse and sideshot program, and then still having to calculate the ties.

The keyboard assignments below show all of the keys used for the combination routine. The initial entry for Auto-Inversing uses the Radial Inverse portion first, and automatically takes you on to the alignment input portion. The only difference in the use of this routine will be a "NO" answer to the INV. ONLY? prompt, instead of "yes" as in the radial inversing example.
use Cor input of setup with known coordinates of the backsight point
(B) for setup with known bearing to backsight point

K E YBOARD
ASSIGNMENTS

For an example, let's assume that a basic traverse has been run and adjusted, and will be used for laying out our new roadway. We'll use traverse point B as the first instrument position and point C for the backsight.

Begin the routine as you did for the RADIAL INVERSE routine, following steps 1 through 5 (page 2). We'll use coordinate input for the example. Initialize, and input the coordinates of the instrument, as shown below:
keystrokes:
(1) 2) 1 ENTERA

prompt: BACKSITE?
keystrokes:

prompt: INV ONLY?
not just inversing this time keystrokes:
N R/S
prompt:

A

When this prompt is displayed, begin input of the alignment in the same way as for the ALIGNMENT \& OFFSET routine. Follow the steps shown on pages 5 through 7 .

With the instrument and backsight information already input，as shown on the previous page，we can re－do the example with the offset constant of 18.5^{\prime} left．
keystrokes：

prompt：COORD N＾E keystrokes：

keystrokes：

R／S prompt：$\quad \mathrm{QD}=$ ？
keystrokes：
1 R／S
prompt：STA COORDS？ keystrokes：

prompt： 0／S？
keystrokes：
1） $8 . \square 5$ CHS F
output：
$01 / 5=-18.5$ 月मй
$N=1.892 .4987$
$E=1.842 .2639$
$\mathrm{HD}=162.511$
$\triangle R T=$
94＊54 51．4－
prompt：
STA？
keystrokes：

output：
$11+25.808$
$0 / 5=-18.58$ 日里
$\mathrm{N}=1.112 .9681$
$E=1,856.6167$
$H D=159.521$
$\triangle R T=$
$86^{\circ} 4^{\prime} 22.7^{\circ}$
prompt：
STA？
keystrokes：
$\begin{array}{llll}1 & 1 & 5 & 0\end{array}$
$0 / \varsigma=-18.58$ 日㬰
$N=1.133 .4376$
$E=1.878 .9695$
$\mathrm{HI}=160.419$
$\triangle R T=$
$77^{\circ} 6^{\circ} 55.6^{\prime}$
STA？
keystrokes：
（1） 1 1 7 ［
output：
$11+75.969$
$0 / S=-18.58 Q 日$
$N=1.153 .9870$
$E=1,085.3223$
$H D=16.5 .141$
$\triangle R T=$
$68^{\circ} 27^{\prime} 54.5$ ．
prompt：
STA？
keystrokes：
$\begin{array}{llll}1 & 2 & 0 & 0\end{array}$
output：
$12+88.988$
$0 / 5=-18.58$ ด
$N=1.174 .3764$
$E=1.899 .6751$
$H D=173.374$
$\triangle R T=$
$66^{\circ} 27^{\prime} 56.2^{\circ}$
prompt：
STA？
keystroke：
J
prompt：DELTA？
keystrokes：
2）2 $-\cdot$ 2 5 R／S
prompt：$\quad R$ ？ keystrokes：

prompt：STA？
keystrokes：

1	2	2	5

output：
$12+25.489$
$0 / \sigma=-18.58$ 日 0
$N=1,195.3789$
$E=1.115 .5431$
$H I=186.119$
$\triangle R T=$
$53^{\circ} 7.9 .9 *$
prompt:
keystrokes:
$\begin{array}{llll}\text { (1) 2] 5 5 } \\ \text { output: } & 12+56.006\end{array}$
$0 / \mathrm{S}=-18.58 \mathrm{Ba}$
$N=1,215.1775$ $E=1,132.8689$
$H D=202.935$
$\angle \mathrm{RT}=$ $47^{\circ} 8^{-47.4}$
prompt:
STA?
keystrokes:
(1) 2] 7 5 [E
output:
$12+75.080$
$0 / \mathrm{S}=-18.5000$
$N=1,233.6981$
$E=1,151.5641$
HD $=222.828$
4RT=
$42^{\circ} 30^{\circ} 12.3^{\circ}$
prompt:
STA?
keystrokes:
$\begin{array}{lll}1] & 0 & 0 \\ \text { output: } & 13+86,808\end{array}$
$0 / 5=-18.5896$
$N=1,250.8372$
$\mathrm{E}=1.171 .5334$
$H D=244.961$
$\triangle \mathrm{RT}=$
39° a. 43.a"
prompt:
STA?

Multiple offsets at a station, with inverses to the offsets, and the centerline coordinates calculated, would result in output such as that below. For multiple offsets, input them individually, instead of as a
constant. $11+25.088$ $N=1,102.3471$ $E=1,871.7641$
$H D=178.086$
$\triangle R T=$
$85^{\circ} 43^{\circ} 14.9^{\circ}$
$0 / 5=-25.8988$
$N=1,116.6999$ $E=1,851.2946$
$H D=153.827$
$\triangle R T=$
$86^{\circ} 10^{\circ} 33.7^{\circ}$
$0 / 5=25.8800$
$N=1,087.9942$
$E=1,892.2335$
$H D=262.99 \theta$
$\triangle R T=$
$85^{\circ} 33^{\circ} 19.9^{\circ}$
$0 / S=-18.50 \mathrm{an}$
$N=1.112 .9681$
$E=1.856 .6167$
$H D=159.521$
$\triangle R T=$
$86^{\circ} 4^{\prime} 22.7^{*}$
Inverses only to centerline, without coordinate output would look like this:
$11+5$. 0000
$H D=178.811$
$\triangle R T=$
$77^{\circ} 47^{\prime} 22.8^{\circ}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Spuifal Caxros

This group of SPIRAL CURVE programs is designed to calculate the data needed for field layout of a spiral curve. The type of spiral used is the BARNETT SPIRAL, (also known as the Talbot spiral). It uses arc definition, and is the type most frequently encountered.

This is the form of spiral used on interstate highways, and adopted by most states which use spiral curves in their alignment design. It is also the form of spiral used for railroad alignment by agencies such as Washington D.C.'s METRO and the Bay Area Rapid Transit District (BART) in California. The nomenclature used for the spiral system, and the alignment data from a typical set of plans are shown below.

In the first routine using this program the CHORD and DEFLECTION ANGLE to any station on the spiral is calculated. The radial angle at the station is also calculated.

To illustrate this routine, the spiral data on the previous page will be used. The entrance spiral is shown below, and the curve data for the spiral portions is the same for both the entrance and exit spirals. Stationing at the CS and ST will be output by the program after calculations for the entrance spiral have been completed.

$L_{s}=265.000^{\prime} \quad X_{s}=264.782^{\prime}$
$\theta_{s}=5^{\circ} 11^{\prime} 59.2^{\prime \prime} \quad Y_{s}=8.012^{\prime}$
$\Delta c=11^{\circ} 42^{\prime} 56.5^{\prime \prime} \mathrm{Lc}=298.537^{\prime}$
P.I. STA $140+36.445$

The keys used for this routine are shown in the sketch to the right.

The required input is prompted by the program as you proceed, and followed by stroking the R/S button, except after input of a new station for solution.

The program may be used without a printer, but for ease of illustration, the printer output will be shown.

Step-by-step instructions are shown on the next page.

Program memory should contain the program "SP" and the utility programs "STA" and "AZ" before beginning. "AZ" may be omitted if the calculator contains either the HP Surveying Pac or the D'Zign COGO 41 ROM module. The utility program "DMS" must also be in memory if the calculator is being used with a printer attached. Size the calculator to a minimum size of 050 .

1 Initialize the program by keystroking
XEO ALPHA S A ALPHA
The program will begin the prompts for type of solution wanted.
2 COORD-O/S?
Answer this prompt no
3 TAN O/S?
Answer this prompt no
4 PI STATION?
Input the main P.I. station. If it is not shown on the curve data provided it can be calculated by inputting the TS station and adding the T_{S} distance to it.
5 DELTA? Input the system delta. If curve left CHS
6 R?
7 L?
5 DELTA? Input the system delta. If curve left CHS
Input the radius for the circular curve
Input the spiral length
Output will be a display of the length of spiral curve, the spiral angle (output is in the form D.MMSS), and the radius. If a printer is not attached, continue stroking R/S. Output continues with the P.I. station, the central angle, and the TS and SC stations, followed by the next prompt

8 STA?
Input the station for which the deflection and chord solution is required

Output will be the chord, deflection angle and radial angle. Continue stroking R/S each time if not using a printer until the prompt STA? appears
9 STA?
Repeat step 8 until all of the required stations have been calculated for the entrance spiral. It is normal to also calculate the SC station last. When ready to calculate the exit spiral, keystroke

Output will be the stations of the CS and ST, followed by the prompt 10 STA?

Input the exit spiral stations for solution in the same manner as before, repeating step 8 until all of the required stations have been calculated. The exit spiral can be calculated in either direction, but the deflection angles and chords are from the ST, sighting toward the P.I.

As an example of the keystrokes used with this routine, and using the information in the example spiral (page 17) we will calculate the entrance and exit spirals at the 100^{\prime} stations.
keystrokes:

KED MLPHA 5 D MLPHA

prompt: COORD-O/S?
keystrokes:
(M) R/S
prompt: TAN O/S?

keystrokes:

(- R/S

prompt: PI STATION?
keystrokes:

(4) 4) 5 R/S
prompt:
DELTA?
keystrokes:

prompt:
keystrokes:

11	4	6	0
prompt:		L ?	

keystrokes:

(2) 6	R/S
output:	$L=265.8898$ $S_{6}=$
	$\begin{aligned} & 5^{\circ} 11 \cdot 59.2^{\circ} \\ & R=1.468 .0 \theta B E \end{aligned}$
	$\mathrm{PI}=$
	$148+36.445$
	CENTRAL $6=$
	220 ¢ 55.0 ${ }^{\circ}$
	TS $=$
	$136+18.278$
	SC $=$
	138+83.27e

```
At this point we begin to
calculate the even stations
along the entrance spiral prompt:
STA?
```

keystrokes:

 output:$137+88.808$
$C D=81.738$
DEFLECTION $4=$ $8^{\circ} 9.53 .5^{\circ}$
RADIAL $6=$ $98^{\circ} 19.47 .8^{\circ}$
keystrokes:
$\begin{array}{llllll}1] & 3 & 8 & 0 & 0 & \text { E }\end{array}$ output:
$138+88.898$
$C D=181.715$
DEFLECTION © $8^{\circ} 48^{\prime} 54.4^{\circ}$
RADIAL $6=$ $91^{\circ} 37^{\prime} 49.0^{\circ}$
keystrokes:

output:
$138+83.279$
CD $=264.983$ DEFLECTION $4=$ $1^{\circ} 43^{\prime} 59.3^{\circ}$
RADIA. $6=$ $93^{\circ} 27^{\prime} 59.9^{\circ}$
with the calculations for the entrance spiral completed, we can move to the exit spiral
keystroke:
D
output:
ST $=$
144+46.887
CS $=$
$141+81.887$
prompt:
STA?
keystrokes:

1] 4]	[8] 1
8] 0	(E)
output :	
	$C D=264.983$
	BEFLECTION $6=$
	$1^{\circ} 43^{\prime} 59.3{ }^{\circ}$
	RADIAL $4=$
	$93^{\circ} 27^{\circ} 68.0^{\circ}$

keystrokes:

keystrokes:

output:
$143+88.888$
$C D=146.882$ DEFLECTION $6=$ 80 $31^{\prime} 55.8^{\circ}$ RADIAL \& $=$ $91^{\circ} 3.58 .8^{-}$ keystrokes:
$\begin{array}{llllll}1 & 4 & 4 & 0 & 0 & 0\end{array}$ output:
$144+88.888$
$C D=46.887$
DEFLECTION $6=$
$003.14 .7^{\circ}$
RADIAL $6=$ $-90^{\circ} 6^{\prime}$

This routine outputs the coordinates along a spiral curve alignment at any station, including the circular portion. It not only provides direct output of the centerline coordinates, but the coordinates of any offsets to the curves may be calculated at the same time.

In addition to the information about the spiral system which was input in the last routine, you will need to know the coordinates of the TS and the ST stations, and the bearings of the entrance and exit tangents. If these are not given on the set of plans that you are working from, they can be easily calculated prior to beginning this routine.

The keys used in this routine are shown in the keyboard assignment sketch below.

EXAMPLE SPIRAL
$\Delta=22^{\circ} 06^{\circ} 55^{\prime \prime}$
$T_{s}=418.175^{\prime} \quad R=1460.000^{\prime}$
$L_{s}=265.000^{\prime} \quad X_{s}=264.782^{\prime}$
$\theta_{s}=5^{\circ} 11^{\prime} 59.2^{\prime \prime} \quad Y_{s}=8.012^{\prime}$
$\Delta c=11^{\circ} 42^{\prime} 56.5^{\prime \prime} L c=298.537^{\prime}$
P.I. STA 140+36.445

Begin with the calculator sized at 050 , and program memory containing the programs "SP", "STA" and "AZ" (the latter may be omitted if the calculator contains a ROM module for the HP Surveying Pac or the D'Zign COGO 41). If a printer is attached, program memory must also contain the utility program "DMS". After being initialized the program will begin with the prompts for type of solution wanted.

1 Initialize the program by keystroking

2 COORD-O/S? Answer this prompt yes
3 BRG=? Input the entrance tangent bearing
4 QD=? Input the quadrant code for the bearing toward the P.I. of the system

5 TS N+E
Input the north coordinate of the TS
Input the east coordinate of the TS
6 PI STATION? Input the main P.I. station.
7 DELTA?
Input the system delta. If curve left, CHS
8 R? Input the radius for the circular curve
9 L? Input the spiral length
Output will be a display of the length of spiral curve, the spiral angle (output is in the form D.MMSS), and the radius. If a printer is not attached, continue stroking R/S. Output continues with the P.I. station, the central angle, and the TS and SC stations, followed by the next prompt

10 STA?
Input the station for which coordinates are required
Output will be the station and its coordinates. Continue stroking R/S each time, if not using a printer, until the prompt O/S DIST? appears.

11 O/S DIST?
Any desired offsets to this station may be calculated at this time. Input the offset distance (CHS if the offset is to the left)

Output will be the offset and its coordinates. An offset to the left will be shown as a negative offset.

12 O/S DIST?
Repeat step 11 until all of the required offsets for the station have been calculated, or return to step 10 with input of a new station. When all of the required stations and offsets have been calculated for the entrance spiral, we can go to the circular portion, as follows:

13 O/S DIST? Calculate the SC station last. When ready to calculate the circular portion, keystroke

14 O/S DIST? Input the circular radius distance. If the curve is to the left, [CHS

Output will be the coordinates of the radius point of the circular curve. The circular portion has a slightly different input format than the spiral portion. The station will be input each time, for each offset. For the centerline station coor dinates, the offset is input as 0 .
15 STA?
Input the next station NOTE: different stroke than for spiral R/S
16 O/S DIST?
Input 0 for the centerline coordinates, or the offset distance. If the offset is to the left of centerline, CHS

Output will be the station and its coordinates (or the offset and its coordinates).
17 STA?
Repeat steps 15 and 16 until all of the stations and offsets have been calculated through the circular portion. Go to the exit spiral by keystroking

18 BRG=?
Input the bearing of the exit tangent
19 QD=?
Input the quadrant code for the exit tangent in the direction
toward the P.I.
20 ST N+E
Input the north coordinate of the ST

Output will be the ST and CS stations.
21 STA?
Calculate the stations through the exit spiral, beginning with the CS station, by repeating steps 10 and 11 until all of the required stations and offsets have been calculated.

As an example of the keystrokes used with this routine, and using the information on page 17, in the example spiral, we will calculate the coordinates at even stations. In addition, to use the offset option, we will calculate the coordinates for an offset at 20 feet left and right at one of the stations in the entrance, circular and exit portions of the system.
keystrokes:

XEQ ALPHA S ALPHA

prompt: COORD-0/S?
keystrokes:
(R / S
prompt: $\quad B R G=$?
keystrokes:

```
2. 1, [-5 1, 3, R/S
```

 prompt: \(\quad \mathrm{QD}=\) ?
 keystrokes:
4 R/S
prompt:
TS N4E
keystrokes:

prompt: INVERSE? keystrokes:

(R / S

prompt: PI STATION?
keystrokes:

1$]$	4	0	3	6	\square

(4) 4 R $5 / S$
prompt:
DELTA?
keystrokes:

2	2	-	0	6
R / S	5	5		

prompt:
R ?
keystrokes:
1 4 6 0 R/S
prompt:
L?
keystrokes:
2 6 R $5 / S$
output:
$L=265.8889$
S6 $=$
$5^{\circ} 11$. 59.2^{-}
$R=1,469.81888$
$\mathrm{FI}=$
$148+36.445$
CENTRAL $6=$ $22^{\circ} 6^{\circ} 55.9^{\circ}$
$T S=$
$136+18.270$
SC =
$138+83.278$
prompt: STA?
keystrokes:
$\begin{array}{llllll}1 & 3 & 7 & 0 & 0 & E\end{array}$
output:
$137+88.088$
$N=38.714 .3292$
$E=38.519 .5814$
prompt: O/S DIST?
We will use this station as
an example for the offsets.
keystrokes:
$2 \mathrm{CHS} \mathrm{R} / \mathrm{S}$
output:
$0 / 5=-28.8808$
$N=38,787.0434$
$E=38.508 .9556$
prompt: O/S DIST?
keystrokes:
2. 0 R/S
output:
$0 / S=28.080$ B
$N=38,721.6149$
$E=38,538.2871$
prompt: O/S DIST?
keystrokes:

| 1$]$ | 3 | 0 | 0 | E |
| :--- | :--- | :--- | :--- | :--- | :--- |

output: $\quad 138+98.800$
$N=38,887.9846$
$E=30.484 .5431$
prompt: O/S DIST?
keystrokes:

| 1 | 3 | 8 | 8 | 3 | - | 2 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | E

output: $138+83.278$
$N=38.887 .1168$
$E=30,458,6462$
prompt: O/S DIST?
After calculating any needed offsets at the $\mathbf{S C}$, move to the circular portion of the system keystroke:

J

output:
prompt: O/S DIST?
keystrokes:
16 (6) 0 R/S
output:
RADIUS POINT
$N=39.385 .6513$
$E=31.857 .3792$
prompt:
STA?
keystrokes:

keystrokes:
0 R/S output :
$139+86.089$
$N=38,983.1717$
$E=38,453.9422$
prompt:
STA?
keystrokes:

(1) 300 R/S

prompt: $\quad \mathbf{O} / \mathbf{S}=$
keystrokes:

2 CHS	R/S
output :	139+88. 880
	$0 / 5=-20.8080$
	$N=38.897 .6583$
	$E=38.434 .7171$
prompt:	STA?
keystrokes:	
130	0 R/S
prompt:	$0 / 5=$

keystrokes:
2) 0 R/S
output :
139+89. 880
$0 / \mathrm{S}=20.0908$
$N=38,988.6852$
$E=30,473.1672$
prompt: STA?
keystrokes:
1] 4 [0 R 0 R/S
prompt:
$0 / S=$
keystrokes:
0 R/S
output:
$148+88.880$
$N=39,800.1655$
$E=38,429.6873$
prompt:
STA?
keystrokes:
1 (4) 1 R 0 R/S

keystrokes:
0 R/S
output: $141+89.889$
$N=39,898.5919$
$E=38.412 .1275$
prompt:
STA?
With the circular portion completed, go to the exit spiral
keystroke:
D
prompt:
BRG=?
keystrokes:

prompt:
keystrokes:
[3 R/S
prompt:
ST N+E
keystrokes:
(3) 9 4 4 $4, \square$

6] 7 ENTERT
(3) 0 , 3 [5 \square

975 R/S
output: $\mathrm{ST}=$
$144+46.887$
CS $=$
$141+81.807$
prompt:
STA?
keystrokes:
1] 4] 1 [1.
[8] 0 [
output:
$141+81.887$
$N=39.179 .8546$
$E=38,482.7994$
prompt: O/S DIST?

Since all of the offsets through the exit spiral work the same at any station, we can use the CS as the example station for the offset calculations keystrokes:
2] 0 CHS R / S
output:
$0 / S=-28.8898$
$N=39.178 .1314$
$E=38,382.8737$
prompt: O/S DIST? keystrokes:
(2) 0 R/S
output: $0 / 5=28.88 \mathrm{Bg}$
$N=39.181 .5779$
$E=30.422 .7258$
prompt: O/S DIST? keystrokes:
(1) 4000 E
output:
$142+80.808$
$\mathrm{N}=39.197 .9891$
$E=38,481.3422$
prompt: O/S DIST?
keystrokes:
14 4 0 0 0
output:
$143+88.888$

$$
N=39,297.8695
$$

$$
E=30.396 .6796
$$

prompt: O/S DIST?
keystrokes:
[1] 4 4 0 0 E
output:
$144+86.088$
$N=39,397.8639$
$E=38,395.8093$
prompt: O/S DIST?
keystrokes:
(1) 4 4 4 6 \cdot

8 0 [7 output:
$144+46.887$
$N=39,444.6697$
$E=38.395 .9750$

This routine is similar to the previous one, in that it calculates the coordinates to the solution station and offsets. In addition, it also calculates the angles and distances for radial stakeout in the field.

Working from one point on a control line and sighting another, all of the points which you calculate can be 'sprayed' directly using an EDM for the distances.

Program memory should contain the program "SP" and the same utility programs that are used for the ALIGNMENT \& OFFSET routine (pages $21-26$) and the DEFLECTION \& CHORD routine (pages $18-20$). As in the previous examples, the required input is fully prompted, with the response to the prompt followed by keystroking R/S except after the input of each new station. The calculator should be sized at 050 or more.

1 Initialize the routine by keystroking $X E Q$ ALPHA S ALPHA

2 COORD-0/S?
Answer this prompt yes Y
$3 \quad \mathrm{BRG}=$?
Input the entrance tangent bearing
$4 \mathbf{Q D}=$? Input the quadrant code for the bearing toward the P.I. of the system

5 TS N Input the north coordinate of the TS Input the east coordinate of the TS

6 INVERSE?
Answer this prompt yes Y
7 INST NAE Input the north coordinate of the setup point
Input the east coordinate of the setup point

EMTER 4

8 BACKSITE?
Input the north coordinate of the backsight station
Input the east coordinate of the backsight station
EMTER4

9 PI STATION?

10 DELTA?
11 R ?

12 L? Input the spiral length
Input the radius for the circular curve

Output will be a display of the length of spiral curve, the spiral angle (output is in the form D.MMSS), and the radius. If a printer is not attached, continue stroking R/S. Output continues with the P.l. station, the central angle, and the TS and SC stations, followed by the next prompt

13 STA?
Input the station for which the coordinates are required
Output will be the station and its coordinates, followed by the horizontal distance from the instrument to the point and the angle from the backsight to the point. Continue stroking R / S each time if not using a printer until the prompt $0 / S$ DIST? appears.

14 O/S DIST?
Any desired offsets may be calculated at this time. If the offset is to the left, CHS

Output will be the offset and its coordinates, followed by the horizontal distance and angle to the point. Offsets to the left will be shown as negative

15 O/S DIST?
Repeat step 14 until all of the required offsets for the station have been calculated and inversed, or return to step 13 with input of a new station. When all of the required stations and offsets have been calculated for the entrance spiral, go to the circular portion, as follows:

16 O/S DIST?
Calculate the $S C$ station last. When ready to calculate the circular portion, keystroke

17 O/S DIST? Input the circular radius distance. If the curve is to the left, CHS

Output will be the coordinates of the radius point of the circular curve. Remember, the circular portion has a different input format than the spirals. The station will be input each time, for each offset.

18 STA?
Input the next station
R/S
19 O/S DIST? Input 0 for centerline, or the offset distance. If the offset is to the left, CHS

Output will be the station and its coordinates (or the offset and its coordinates) with the horizontal distance and angle.

20 STA?
Repeat steps 18 and 19 until all of the stations and offsets have been calculated through the circular portion. Go to the exit spiral by keystroking

21 BRG=?
Input the bearing of the exit tangent
$22 \mathrm{QD}=$? Input the quadrant code for the exit tangent in the direction toward the P.I.

23 ST N+E
Input the north coordinate of the ST
Input the east coordinate of the ST R/S
Output will be the ST and CS stations.
24 STA?
Calculate the stations through the exit spiral, beginning with the CS station, by repeating steps 13 and 14 until all of the required stations and offsets have been calculated and inversed.
\quad EXAMPLE SPIRAL
$\Delta=22^{\circ} 06^{\prime} 55^{\prime \prime}$
$T_{s}=418.175^{\prime} \quad R=1460.000^{\prime}$
$L_{s}=265.000^{\prime} \quad X_{s}=264.782^{\prime}$
$\theta_{s}=5^{\circ} 11^{\prime} 59.2^{\prime \prime} \quad Y_{s}=8.012^{\prime}$
$\Delta c=11^{\circ} 42^{\prime} 56.5^{\prime \prime} L_{c}=298.537^{\prime}$

P.I. STA $140+36.445$

As an example, and to demonstrate the added keystrokes for this routine, we will calculate the ties to points 20 feet left and 20 feet right at one of the stations in the entrance spiral and circular portions of the system.

Keystrokes for the exit spiral are the same as for the entrance spiral, and the radial inversing is automatic. The curve data is shown to the left.

keystrokes:
1 460 R/S
prompt:
L?
keystrokes:

2] 6 R/S

output: $L=265.800$ 日
58
$5^{\circ} 11^{\prime} 59.2^{*}$
$R=1,460.81808$
PI $=$
$148+36.445$
CENTRAL $\triangle=$ $22^{\circ} 6^{\circ} 55.9^{\circ}$
$T S=$
$136+18.278$
SC =
$138+83.278$
prompt:
STA?
keystrokes:

1	3	7	0	0	

output: $137+88.889$
$N=30,714.3292$
$E=34.519 .5814$
$H D=399.819$
$\triangle R T=$
$58^{\circ} 26^{\circ} 24.3^{\circ}$
prompt: O/S DIST?
keystrokes:

keystrokes:
2 0 R/S
output:
$0 / 5=28.08 R G$
$N=38.721 .6149$
$E=38,538.2871$
$H D=388.212$
$\triangle R T=$
$56^{\circ} 4^{\prime} 16.5^{\circ}$
prompt: O/S DIST?
keystrokes:
10 B 8 E 0
output:
$138+88.888$
$N=38,887.9846$
$E=30.484 .5431$
$H D=324.839$
$\triangle R T=$
$68^{\circ} 5$ 月 $^{\circ} 22.4^{*}$
prompt: O/S DIST?
keystrokes:

| 1 | 3 | 8 | 8 | 3 | \cdot | 2 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

E
output:
$138+83.276$
$N=38,887.1168$
$E=38,458.6462$
$H D=270.172$
$\triangle R T=$
$81^{\circ} 9 \cdot 27.4^{\circ}$
After calculating any needed
offsets at the SC, move to the
circular portion of the system
keystroke:
J
output: CIRCULAR
prompt: O/S DIST?
keystrokes:
1 4 6 6 R/S
output:
RADIUS POINT
$N=39,385.6513$
$E=31.857 .3702$
prompt:
STA?
keystrokes:
10,3 9 RS
prompt: $\quad 0 /$ D DIST?
keystrokes:
0 R/S
output:
139+89. 888
$N=33,983.1717$
$E=30.453 .9422$
$H D=268.772$
$\triangle R T=$
$84^{\circ} 8^{-43.3^{\circ}}$
prompt:
STA?
keystrokes:
$\begin{array}{lllll} & 1 & 3 & 9 & 0 \\ & 0 & R / S\end{array}$
prompt: O/S DIST?
keystrokes:
$2 \mathrm{CHS} \mathrm{R} / \mathrm{S}$
output:
$139+69.889$
$0 / 5=-28$. ARAB
$N=38.897 .6583$
$E=36,434.7171$
$H D=277.758$
$\triangle R T=$
$86^{\circ} 23 \cdot 35.5-$
prompt:
STA?
keystrokes:
(1) 3 , 9 R 0 R/S
prompt: O/S DIST?
keystrokes:
2) 0 R/S
output:
prompt: O/S DIST?
keystrokes:
0 R/S

$0 / 5=28.8880$

$139+80.800$
$N=38,988.6852$
$E=38,473.1672$
$H D=244.243$
$\triangle R T=$ $81^{\circ} 35^{\prime} 28.9^{-}$
prompt: STA?
keystrokes:
1] 4000 R/S

After all of the required offsets have been calculated in the circular portion, go to the exit spiral by keystroking and answering the prompts for input of the exit bearing, quadrant code and coordinates.

The keystrokes used for the AUTO-INVERSE routine are the same as for ALIGNMENT \& OFFSET, on pages 25 and 26 .

When the calculations are being done for radial stakeout with this routine, it is possible that the whole curve cannot be seen from one setup. In that event, the portion that is to be sprayed in from the first setup point should be completed, and then the program started over for the second setup.

If the first setup included the circular portion, and the second setup will be in the exit spiral only, it is not necessary to go through all of the steps for the entrance spiral and circular portions of the system.

T®ogeat © ffscit

In this routine, the solution is in the form of the tangent distance and the offset from the tangent to any point on the spiral. The tangent distance is the distance along the entrance tangent from the TS, or back along the exit tangent from the ST. The tangent offset is measured at right angles to the tangent.

To illustrate this routine, the spiral data below will be used. The entrance spiral is shown below, and the curve data for the spiral portions is the same for both the entrance and exit spirals. Stationing at the CS and ST will be output by the program after calculations for the entrance spiral have been completed.

The keys used for this routine are shown in the sketch to the right.

The required input is prompted by the program as you proceed, and followed by stroking the R/S button except after input of a new station for solution.

The step-by-step keystroke instructions are shown on the next page and are followed by an example of the input and output using this Tangent-Offset routine.

P.I. STA $140+36.445$

Begin with the calculator sized at 050 , and program memory containing the programs "SP" and "STA". If the calculator is being used with a printer attached, the utility program "DMS" must also be in program memory, and unless the calculator contains the HP Surveying Pac or the D'Zign COGO 41 module, memory must also include "AZ".

1 Initialize the program by keystroking

2 COORD-O/S?
Answer this prompt no
(N) R/S

3 TAN O/S? Answer this prompt yes
Y R/S
4 PI STATION? Input the main P.I. station. If it is not shown on the curve data provided it can be calculated by inputting the TS station and adding the T_{s} distance to it.
5 DELTA?
Input the system delta. If curve left, CHS
R/S

6 R? Input the radius for the circular curve
7 L?
Input the spiral length
Output will be a display of the length of spiral curve, the spiral angle (output is in the form D.MMSS), and the radius. If a printer is not attached, continue stroking R/S. Output continues with the P.l. station, the central angle, and the TS and SC stations, followed by the next prompt

8 STA?
Input the station for which the the tangent distance and tangent offset are required

Output will be the tangent distance and the tangent offset. Continue stroking R/S each time if not using a printer until the prompt STA? appears.

9 STA?
Repeat step 8 until all of the required stations have been calculated for the entrance spiral. It is normal to also calculate the SC station last. When ready to calculate the exit spiral, keystroke
Output will be the stations of the CS and ST, followed by the prompt
10 STA?
Input the exit spiral stations for solution in the same manner as before, repeating step 8 until all of the required stations have been calculated. The exit spiral can be calculated in either direction, but the tangent distances and offsets are from the ST, sighting toward the P.I.

T®ロg®anc

For the keystroke example, using the curve data shown on page 33, we will calculate the 100^{\prime} stations for the entrance and exit spirals using the TANGENT-OFFSET method of stakeout.
keystrokes:
XEO
ALPHA S ALPHA
prompt: COORD-O/S?
keystrokes:
(\quad R/S
prompt: TAN O/S?
keystrokes:
Y R/S
prompt: PI STATION?
keystrokes:
(1) 4 (0 3 6

4 4 R R/S
prompt:
DELTA?
keystrokes:
2 2 , 0 6 5 5

R/S

prompt:
keystrokes:
14 60 R/S
prompt:
keystrokes:
(2) 6 R/S
output: $L=265.0988$
S¢ $=$
$5011 \cdot 5020$
prompt:
STA?
keystrokes:

1) 3 ㄱ 0 [0
output:

$$
\begin{aligned}
& 137+88.808 \\
& T D=81.7294 \\
& T 0 / S=8.2352
\end{aligned}
$$

prompt:
STA?
keystrokes:
(1) 3] [8] 0]
output:
138+88. 808
TD $=181.6969$
T $0 / 5=2.5851$
prompt:
STA?
keystrokes:

E
output:
$138+83.278$
$T B=264.7818$
T $0 / S=8.0118$
This completes the calculation of the entrance spiral. This routine does not calculate the circular portion of the system, so we move to the exit spiral:
keystroke:
D
output:

ST $=$

$144+46.807$
CS $=$
$141+31.887$
prompt:
STA?
keystrokes:

| $1]$ | $4]$ | 8 | 1 | \cdot |
| :--- | :--- | :--- | :--- | :--- | :--- |

8	0	7

output:

141+81.887
TD $=264.7821$
T $0 / 5=-8.0119$
prompt:
STA?
keystrokes:
1] 4 20 0 [
output:
$142+89.888$
TD $=246.6544$
T $0 / S=-6.4734$
prompt:
STA?
keystrokes:

output:
143+80. 806
TD $=146.7959$
$\mathrm{T} 0 / \mathrm{S}=-1.3629$
prompt:
STA?
keystrokes:

$144+98.008$
$\mathrm{TD}=46.8872$
T $0 / \mathrm{S}=-0.0442$
prompt:
STA?
keystrokes:
(1) 4] 4 6.

8 0 7 [
output:
$144+46.807$
TD $=8.0003$
NOTE:
T $0 / \S=-9.4564 \mathrm{E}-1$
"zero" is sometimes output,
as above, as a very small num-
ber in scientific notation.

This routine may be used to calculate the angle right and horizontal distance to any point of known coor dinates, from an instrument setup station and backsight station which have known coordinates, and is similar to the RADIAL INVERSE routine included with the program "LO".

It has been included in this section because the capability is already in the programming, and it is therefore available for use with other field problems when the program "SP" is in the program memory, instead of "LO".

The calculator should be sized at 050 , and if used with a printer, memory should include the utility program "DMS". "AZ" should also be in the program memory, either as a subroutine program or by having the HP Surveying Pac or D'Zign's COGO 41 ROM in the calculator.

If the calculator has been off, and a printer is not attached, the numbers will 'flash' by. If this happens, reset flag 21 by keystroking SF 2 .

initialize

Radů

Unlike the other routines in this program group, the RADIAL INVERSE routine is accessed by using "GTO" (shift, RCL) instead of "XEQ" to bring the program to the top of program memory. It may also be accessed by "XEQ" if you then ignore the first prompt (note that the calculator is in ALPHA mode) and clear ALPHA by stroking ALPHA.

then:

keystrokes:

keystrokes:

1] 00	EMTERT
100 0	R/S
prompt:	BACKSITE?

keystrokes:
6 0 E 0 ENTERT
8 R 0 R/S
prompt:
N4E?
keystrokes:

prompt:
keystrokes:
4] 0 [0 ENTERT
3 $5[0$ A output:
488.0898
350.8800
$H D=398.512$
$\triangle \mathrm{RT}=$
$42^{\circ} 5^{\prime} 46.3^{\prime}$
prompt:
N4E?
keystrokes:
(4) 2 ENTER4

4 (2) 0 output:
425.0808
428.8888
$H D=456.898$
$\triangle \mathrm{RT}=$
$46^{\circ} 50^{-47.3 *}$
N4E?
prompt:
$\mathrm{N}+\mathrm{E}$? keystrokes:

4 000 ENTERA	
400	A
output:	480.8888
	428.8808
	$H D=438.634$
	$\triangle \mathrm{RT}=$
	$49^{\circ} 8^{17.17}$

prompt:
N 4 E ?
Continue with the input of any other coordinates which may be wanted. The northcoordinate is entered, the east-coordinate input, and followed by the keystroke ©. This routine is useful if the coordinates for offsets were calculated prior to knowing where they would be set from.

The easiest introduction to the use of this program group is the routine where it is used to do a topographic survey. After input of the information needed to establish the baseline, the input of the horizontal and vertical (zenith) angles, slope distance and rod for each shot gives output in terms of the station along the baseline, offset (left or right), at the shot, and the elevation of the shot.

If a printer is attached, the input can also be shown as part of the output by 'toggling' between the 1 and J keys. This establishes a flag status condition which prints out the stack after input, but before beginning the calculations for the solution.
$T=127.1625$
$Z=94.8235$
$Y=206.5486$
$X=-5.1808$
The stack-print option may only be used with a printer attached,
STA $8+75.23$
or a "nonexistent" will be displayed when the program reaches AT 163.95 PT the program step with the PRINT STACK command.

ELEM $=88.44$
The baseline for the top may be two points along a traverse line, or along the existing alignment of any road or highway. The instrument and backsite do not have to be on centerline with this program. They can be at any convenient offset to the baseline or centerline, and they can be at different offsets, if that is more convenient. One or the other can even be at a station or offset in a curve (both can be if it is the same curve).

In the case of a simple baseline, assign the instrument point a station, such as $0+00$, and the backside the station equivalent to its distance from the instrument. The use of the station-offset output allows rapid plotting of the top in the office.
stroke A after input to begin solution

keystroke \square to enable stack-print option

K E YB O ARD ASSIGNMENTS

Before beginning, the calculator should be sized to 045 (or larger). This program group uses the program "TT".

1 Initialize the program by keystroking
XEQ ALPHA T A ALPHA
2 INST. STA.?
Input the station which (or opposite which) the instrument occupys

3 OFFSET? If the instrument is on the centerline or baseline, enter 0. If on an offset, enter the offset distance. If the offset is to the left, CHS

4 ON CURVE? This prompt will be answered NO, \boldsymbol{N} unless the instrument is on (or opposite) a station which is in the curve. If the setup station is within a curve, answer \square, and answer the additional prompts for curve data (marked *)

5 *B.C. STA?
6 *RADIUS?
Enter the station at which the curve starts

Input the radius of the curve
7 *DELTA?
Input delta (DD.MMSS). If curve left, CHS
8 H.I.?
Input the elevation at the height of the instrument. This can be found by taking a shot at a benchmark, measuring up from the known elevation of the setup station, or may be an assumed height of instrument
R / S
9 BKSITE STA?
Input the station of the point that will be used as the backsight point
R / S
10 OFFSET?
Input 0 if on centerline, or the offset distance if not. If the offset is left, CHS

11 ON CURVE?

If the backsight station is on a curve, answer Y. If not, answer \mathbb{N}. If both the instrument and the backsight are on the curve, the curve data has been input already and need not be repeated; if this is the case, answer NO.

If the answer is yes, and the instrument was not on the curve, the prompts at steps 5 through 7 (*) will now appear. If neither the instrument nor the backsight were on a curve, but there is a curve in the alignment, it is included in the calculations by the response to the next prompt.

12 CURVE AREA?
This prompt will appear if the neither the instrument nor backsight are on a curve. If there is a curve in the centerline alignment which will fall within the scope of the topo, answering Y will bring up the prompts shown at steps 5 through 7 . Shots taken within the area of the curve will be shown as radial offsets to the curve stations when output. If there is no curve area involved, answer Φ

13 SHOW GRADE?
14 INPUT SHOT**
Answer this prompt NO,
(N) R/S

This is the prompt to begin input of the shots. Input the horizontal angle

Input the vertical (zenith) angle
Input the measured slope distance
Input the rod reading. With the EDM, it is the height of the rod at the prism, and it is a minus rod. Unless the rod is inverted, all rods are minus rods and the rod is input as a minus by CHS prior to keystroking

If a printer is attached, and the print-stack option is wanted, to record the input data

You can halt the print-stack option by keystroking

Output will be the station, offset and elevation at the shot. Return to step 14 for the next shot. If using the calculator without a printer attached, keystroke R/S for each part of the output each time until the INPUT SHOT prompt is shown.

NOTE: When there is a curve in the alignment the program executes a subroutine for solution, after first determining that the shot falls within the curve area. After the solution is calculated, it is then compared to the EC station, and if it it exceeds the curve area is recalculated as an offset to the exit tangent.

For this reason the program running time also becomes slightly longer when you have passed the curve area with the shots.

prompt: INST. STA.? keystrokes:

```
1) 2] 0 0 R/S
prompt: OFFSET?
```

keystrokes:

prompt: ON CURVE?
keystrokes:

H.I.?
keystrokes:
(2) 0 R/S

As an example of how the program works, and to practice the keystrokes and input used, we can do part of the little topograpic survey shown to the left.
The survey is going to be used by an architect, who is designing a residence for the lot that is shown (shaded), and he needs to know enough about the topography to start designing his footings.
One of the advantages of this program is that there is no need to run a traverse just to do a topo. Any baseline can be used, as long as it can be related to the site for plotting. For the example we will assume that the instrument is set over a right-of-way pin at 25^{\prime} left of $12+00$ B.C., and the backsight is at $10+00$ on centerline.

This has us already tied to the alignment for plotting of the topography, and we can use an assumed height of instrument of 200 . The program will number the shots as they are taken so that the only field notes which will be required for plotting is a list of the shots' descriptions.*

Begin by initializing the program with
XEO ALPHA T ALPHA
prompt: BKSITE STA? keystrokes:

10000 R/S prompt: OFFSET?

 keystrokes:(0) R/S
prompt: ON CURVE? keystrokes:

(N R/S
 prompt: CURVE AREA? keystrokes:

(R / S
prompt: B.C. STA? keystrokes:
(1) 0 R 0 R/S
prompt:
RADIUS?
keystrokes:

[3] 0 R/S

prompt:
DELTA? keystrokes:

2 2 , 2 R R/S

prompt:SHOW GRADE? keystrokes:

R/S

[^0]prompt: INPUT SHOT keystrokes:
8 5 , 1 0 2 5
ENTERA
(9) 1 , 1

ENTERA
$57 \square 3$
ENTERA
(5) $\mathrm{CHS} A$
output:
1
$\mathrm{T}=85.1825$
$Z=91.1510$
$Y=57.3800$
$X=-5.8888$
STA $11+88.14$
AT 81.04 LT
ELEV $=193.75$
prompt: INPUT SHOT keystrokes:
(1) 0 , 2 2 5 5

ENTERA
(9) 2) 0 [7 3

ENTER A
(6) $3 \cdot \square$

ENTER 4
(5) CHS A
output: 2
$T=102.2535$
$z=92.8730$
$Y=63.7900$
$x=-5.9000$
STA $12+84.76$
AT 38.42 LT
ELEY = 192.64

All of the required setup information has been input at this point, and we have the prompt for shot input, as shown to the left.

At this point you can keystroke \square to have the angles and slope distances output, along with the solution of the shots, if your printer is attached. This output can be returned to the 'solution only' form at any time by keystroking \square. Neither key disturbs the stack, but it is generally more convenient to switch just before or just after input, since it does erase the prompt.

When the print-stack option is selected, the stack is printed as follows:
The T register contains the horizontal angle, the Z register contains the zenith angle, the Y register has the slope distance and the X register the rod.

The keystrokes to the left are typical input, and additional shot solutions are shown with the print-stack input.

3	5
$\mathrm{T}=135.18008$	$T=132.5445$
$z=92.3580$	$\mathrm{Z}=94.3638$
$Y=25.8880$	$Y=92.4888$
$x=-5.8800$	$x=-5.8080$
STA $12+13.64$	STA $12+41.72$
AT 44.97 LT	AT 182.93 LT
ELEY $=193.87$	ELEY $=187.58$
4	6
$\mathrm{T}=134.263 \mathrm{~B}$	$T=136.0250$
$z=93.2890$	$z=95.8240$
$Y=43.6800$	$Y=186.5800$
$x=-5.8808$	$x=-5.8008$
STA 12+22.52	STA 12+50.63
AT 60.47 LT	AT 112.37 LT
ELEY $=192.46$	ELEY $=185.64$

今s-busidts

The program is used in essentially the same way for taking as-built shots, except that the shots are usually taken with more accuracy. It can be used, for instance, for determining the location of building slabs as they are poured on the lots in a subdivision, or as-built shots on curb and gutter.

This routine will also be useful for checking the forms prior to pouring concrete, and is generally quicker than elevation-offset shots on complex structures. In the case of a structure as-built, the shots should be taken with a butt chain, and slope chained directly to the instrument head from the point or corner being checked.

In the case of a curb and gutter as-built, the routine will carry the profile grade information and output finish grade at each shot in addition to the elevation of the shot for quick comparison. This means that the shots can be taken at convenient locations without having to be at an exact station where the grade is known.

The routine can carry one grade break or vertical curve at a time, together with the entrance and exit grades. As shown in the sketch to the left, the instrument may occupy a station that is within the area of the vertical curve, but the elevation which you input when prompted PROFILE EL? will be the elevation of the vertical tangent at the instrument station, rather than the elevation on the vertical curve.

The keyboard assignments are the same for this routine as in the last (TOPO), as shown to the right.

The input information may be output as part of the solution as before, by switching the flag status with keystrokes of \square (input not printed) and \circlearrowleft (input printed), when using a printer.

This program routine is used in the same manner as TOPO, and areas including horizontal curves can be incorporated in the same way. The main difference is that we are also carrying the existing alignment information in the program memory.

For this example, well use a straight section of alignment, since the new keystrokes are those which deal with the vertical alignment.

A typical section for a street is shown to the left, and we will 'as-built' the top of curb at the face of curb on the left side of the street for our example. The centerline profile for the street is shown below, and we will assume that the instrument is set up at station $13+42$, backsighting station $11+00$, both on centerline.

There are two things to do before beginning.
First, we will want to input the elevation of the profile grade for the curb, rather than the centerline, so, using the typical section,

$$
\begin{aligned}
\text { top of curb } & =\text { centerline grade }-\left(17.5^{\prime} \times .02\right)+0.5^{\prime} \\
& =\text { centerline profile }+0.15^{\prime}
\end{aligned}
$$

Second, the grade on the vertical tangent at $13+42$ needs to be calculated; were going 42^{\prime} at -1.5%, and $-.015 \times 42=-0.63$. Take centerline grade at the BVC $-0.63+0.15$, and we have an elevation of 83.99 for the vertical tangent at top of curb for station $13+42$. We input this after the prompt PROFILE EL?.

CENTERLINE PROFILE

To begin, the calculator should be sized at 045 and program "TT" must be in the program memory.

1 Initialize the program, keystroking
XEQ ALPHA T ALPHA
2 INST. STA.?
Input the instrument station
3 OFFSET?
If the instrument is on the centerline or baseline, enter 0. If on an offset, enter the offset distance. If the offset is to the left, CHS

4 ON CURVE? This prompt will be answered NO, \mathbb{N} unless the instrument is on (or opposite) a curve station. If in a curve, answer \square, and answer the additional prompts (marked*) for curve data.

5 *B.C. STA?
Enter the station at which the curve starts
6 *RADIUS?
Input the radius of the curve
7 *DELTA? Input delta (DD.MMSS). If curve left, CHS
8 H.I.? Input the elevation at the height of the instrument.
9 BKSITE STA?
Input the backsight station.
10 OFFSET? Input 0 if on centerline, or the offset distance if not. If the offset is left, CHS
11 ON CURVE?
If the backsight station is on a curve, answer Y. If not, answer \mathbb{M}. If both the instrument and the backsight are on the curve, the curve data has been input already and need not be repeated, and this prompt can now be answered NO.

12 CURVE AREA?
This prompt will appear when neither the instrument nor backsight are on a curve. If there is a curve in the centerline alignment which will fall within the scope of the work, answering Y will bring up the prompts at steps 5 through 7. If there is no curve area involved, answer \boldsymbol{M}

13 SHOW GRADE?
Answer this prompt YES. Additional prompts for input of profile grade information (marked \dagger) will follow
14 PROFILE EL? +
Input the finished grade elevation at the instrument station. If the instrument is at a station which is located within a vertical curve, input the elevation of the tangent profile grade.

15 GRADE? + Input the of of grade. If negative, CHS
5 GRADE? + Input the of of grade. If negative, CHS
16 SPRINGLINE? \dagger
Answer this prompt NO
N R/S
17 VERT CURVE? +
If the grade is a straight slope, answer N. If there is a vertical curve within the work area answer Y

THE NEXT THREE PROMPTS APPEAR IF THE ANSWER (above) WAS YES

18 BVC STA? Input the beginning station of the vertical curve

19 LENGTH? Input the length of the vertical curve

20 GRADE OUT?
Input the $\%$ of grade leaving the vertical curve. If the grade is negative, CHS

21 INPUT SHOT
This is the prompt to begin input of the shots. Input the horizontal angle

Input the vertical (zenith) angle
Input the measured slope distance
Input the rod reading. If you are sighting directly to a point, and slope chaining to it, input 0 . An inverted rod is a 'plus' rod, and a normal rod is a 'minus' rod (CHS for minus rod)

Output will be the station, offset, elevation and finished grade at the shot. Return to step 21 for the next shot. If using the calculator without a printer attached, keystroke R/S for each part of the output each time until the INPUT SHOT prompt is shown.

If the printer is attached, the input can be shown, when wanted, by using I] (not shown) and (J) (shown) keystrokes.

For this example, we will try two shots. Assume an H.l. elevation of 89.59, and that the shots were:
horizontal

angle \quad\begin{tabular}{c}
vertical

angle

\quad

slope

distance

\quad

rod

reading
\end{tabular}

keystrokes: $\quad \mathrm{XEQ}$

prompt: INST. STA.?
keystrokes:

prompt:
OFFSET?
keystrokes:
0 R/S
prompt: ON CURVE? keystrokes:

```
N R/S
prompt:
H.I.?
```

keystrokes:
8 9 , 5 R/S
prompt: BKSITE STA?
keystrokes:
$1000 \mathrm{R} / \mathrm{S}$
prompt:
OFFSET?
keystrokes:
0 R/S
prompt: ON CURVE?
keystrokes:
(N) R/S
prompt: CURVE AREA?
keystrokes:
(N) R/S
prompt: SHOW GRADE? keystrokes:
Y R/S
prompt: PROFILE EL?
keystrokes:
8 3 . 9 R 9 R/S
prompt:
GRADE?
keystrokes:
$1.5 \mathrm{CHS} \mathrm{R} / \mathrm{S}$
prompt: SPRINGLINE?
keystrokes:
(R / S
prompt: VERT CURVE?
keystrokes:
(Y) R/S
prompt: BVC STA?
keystrokes:
$10000 \mathrm{R} / \mathrm{S}$
prompt:
LENGTH?
keystrokes:
3 0 R 0 R/S
prompt: GRADE OUT?
keystrokes:
4. R/S

Now, with all of the required "setup" information input, we get the prompt for input of the shot data
prompt: INPUT SHOT keystrokes:
156 8 2 4 5 5
ENTERA
$90 \square 15$
ENTERA
8 7 $\cdot 3$ 4
ENTERT
(5) CHS A
output:
STA $14+27.56$ AT 17.54 LT ELEY $=84.21$ $G R=84.28$
prompt: INPUT SHOT keystrokes:
 ENTERA
$90 \square 50$
ENTERA

1) 0 8 $\cdot 7$ 3

ENTERA
(5) $\mathrm{CHS} A$ output:

2
STA $14+49.31$
AT 17.52 LT
ELEY $=84.42$ $G R=34.42$

Setting slope stakes along an alignment prior to construction is one of the most time-consuming processes in construction surveying. This routine allows the staking of a large area to be accomplished from each instrument setup. It is still a 'trial and error' procedure, but it has some distinct advantages.

One advantage is that the catch points may be located at the high and low points of the existing terrain, as well as in-between. This is not usually done, even though it provides better control of the slopes, because it requires the additional calculations for the extra station grades in the field.

Both the instrument and backsight points may be at any offset to (or on) a known station on the alignment being staked. The input includes the profile of the finished grade, and calculates the station, offset and the cut or fill at any point shot.

Once input, the 'half-width' and slope ratio are carried as constants, but may be changed when desired. This feature is useful in cases such as a change from cut to fill at the station shot, or to 'flatten' the slope before and after reaching a daylight area.

After each trial shot, the program displays the distance needed (at that same elevation) to reach the actual catch point for the station being shot. When the distance is within acceptable ($\pm 0.2^{\prime}$) accuracy, stroking R / S outputs the cut or fill information.

The illustration to the left shows the keyboard assignments used with the slope staking procedure.

Each time B is stroked, the $\frac{1}{2}$-width is displayed. The display will show $\mathbf{W} / \mathbf{2}=\mathbf{0 . 0 0}$ the first time, and the correct distance is input, followed by R/S. In the same manner, the original slope ratio will be displayed as $S R=0: 1$ and the correct ratio is input. These may be changed at any time, by inputting a new value when they are displayed.

Begin with the program "TT" in the program memory, and the calculator sized to at least size 045.

1 Initialize the program, keystroking
XEQ ALPHA T ALPHA
2 INST. STA.?
Input the instrument station
3 OFFSET? If the instrument is on the centerline or baseline, enter 0. If on an offset, enter the offset distance. If the offset is to the left, CHS

4 ON CURVE? This prompt will be answered NO, \mathbb{N} unless the instrument is on (or opposite) a curve station. If in a curve, answer \square, and answer the additional prompts (marked*) for curve data.

5 *B.C. STA?
Enter the station at which the curve starts
6 *RADIUS? Input the radius of the curve
7 *DELTA? Input delta (DD.MMSS). If curve left, CHS
8 H.I.? Input the elevation at the height of the instrument.
9 BKSITE STA?
Input the backsight station.
10 OFFSET? Input 0 if on centerline, or the offset distance if not. If the offset is left, CHS
11 ON CURVE? If the backsight station is on a curve, answer \square. If not, answer \mathbb{N}. If both the instrument and the backsight are on the curve, the curve data has been input already and need not be repeated, and this prompt can now be answered NO.

12 CURVE AREA?
This prompt will appear when neither the instrument nor backsight are on a curve. If there is a curve in the centerline alignment which will fall within the scope of the work, answering \square will bring up the prompts at steps 5 through 7. If there is no curve area involved, answer \mathbb{N}

R/S

13 SHOW GRADE?
Answer this prompt YES. Additional prompts for input of profile grade information (marked t) will follow
14^{\dagger} PROFILE EL?
Input the finished grade elevation at the instrument station. If the instrument is at a station which is located within a vertical curve, input the elevation of the tangent profile grade.

THE NEXT THREE PROMPTS APPEAR IF THE ANSWER (above) WAS YES
18 BVC STA? Input the beginning station of the vertical curve
19 LENGTH? Input the length of the vertical curve
20 GRADE OUT?
Input the of of grade leaving the vertical curve. If the grade is negative, CHS

21 INPUT SHOT
This is the prompt to begin input of the shots. Input the horizontal angle ENTERT

Input the vertical (zenith) angle ENTERT

Input the measured slope distance
ENTERT
Input the rod reading. A normal rod is a 'minus' rod, so

Input the correct half-width value, if different from the value which is displayeddisplayed

NOTE:
If the printer is attached, the input can be shown, when wanted, by using [] (not shown) and Ω (shown) keystrokes.

The DISPLAY will now show the distance from the shot to the actual catch point. If the distance is considered to be within acceptable tolerance, R/S, or if it is not, return to step 21 and input the data for the next trial shot.

When the decision has been reached to hold the current shot, and you stroke R/S, the output will be the CUT (or FILL) and the horizontal width ("run") of the slope, followed by the STATION, OFFSET, ELEVATION of the shot, and FINISHED GRADE for the top or toe.

24
To change the POVT value, as when changing from a cut section to a fill section, or a different shoulder condition, input the new POVT elevation

For the keystroke procedure example, we can assume the same setup and vertical alignment conditions as we had on page 46, where we did the as-built on the curb, but use the additional information in the section shown below for slope staking.

For a fill condition we have a centerline grade (on the vertical tangent) at the instrument of 83.84 (BVC - 42' @-1.5\%). To adjust this to the shoulder profile for slope staking, we have to go 17.5' @ -28, +0.5' for the curb, and 8.5' at +48 . This gives us a total of +0.49 . The grade for input then, will be centerline POVT at the instrument $+0.49=84.33$.

In the 'cut' condition we have the same adjustment figures, but a ditch has been added at the toe of the slope, and we must go an additional 4^{\prime} at $2: 1$ (-), or -2 . This gives a total correction in cut of -1.51 ' to be applied to our instrument POVT, so our grade input in a cut will be 82.33.

When you are staking a fill area and come to a daylight section where the slope of the existing terrain causes the fill to become a cut, or the reverse, you can change from the fill POVT to the cut POVT by inputting the other number and keystroking C. The half-width and the slope ratio also change, and these can be changed be inputting the new number when they are displayed.
keystrokes:
XEO

ALPHA T ALPHA

prompt: INST. STA.?
keystrokes:

(1) 3 R 2 R/S
 prompt:
 OFFSET?

keystrokes:
0 R/S
prompt: ON CURVE?
keystrokes:

(N) R/S

prompt:
H.I.?
keystrokes:

prompt: BKSITE STA?
keystrokes:

10100 R/S

prompt:
OFFSET?
keystrokes:

0 R/S

prompt: ON CURVE? keystrokes:

(1) R/S

prompt: CURVE AREA? keystrokes:

(π R/S

prompt: SHOW GRADE? keystrokes:
(R / S
prompt: PROFILE EL?

Assume that we will be in a fill section for the first shots, and input the POVT for the top of the fill:
keystrokes:

keystrokes:

$1] \cdot 5 \mathrm{CHS} \mathrm{R} / \mathrm{S}$

prompt: SPRINGLINE?
keystrokes:

N R/S

prompt: VERT CURVE?
keystrokes:

Y R/S

prompt:
BVC STA?
keystrokes:

1000 R/S

prompt:
LENGTH?
keystrokes:

300 R/S

prompt: GRADE OUT?
keystrokes:
(4) R/S

The required input information has been completed, and we take a shot. We will use the following data for the keystroke example:
horizontal angle $=158^{\circ} 22^{\prime} 55^{\prime \prime}$
vertical angle $=92^{\circ} 49^{\circ} 05^{\prime \prime}$
slope distance $=115.74^{\circ}$ the prism is at 5.00^{\prime}
prompt: INPUT SHOT keystrokes:
(1) 5 8 , 2 5 5 ENTERT
$92 \square 4.905$
ENTERA 1) $15 \square 74$

ENTER4 [5] CHS display: $\mathrm{W} / \mathbf{2 = 0 . 0 0}$ keystrokes:
(2) $6 / S$
display: $\quad S R=0: 1$
keystrokes:
[3 R/S
display: -1.01
The minus sign indicates that you are short of a catch point at the elevation of the ground (amount of fill) this shot.

Just as in any other method of slope staking, the 'lay of the land' determines where you try your next shot. If the slope is 'up' toward centerline, move in and up. Assume the following data:
horizontal angle $=160^{\circ} 11^{\prime} 30^{\prime \prime}$
vertical angle $=92^{\circ} 02^{\prime} 15^{\prime \prime}$
slope distance $=113.87^{\prime}$
the rod, again is at 5.00^{\prime}
This information will be used for the second try, and input as shown on the next page.

keystrokes:

ENTER 4

ENTERA

ENTERA

5 CHS B

display: $W / 2=26.00$
keystroke:
R / S
display: $\quad S R=3: 1$ keystroke:

display:

-0.10
This is close enough for slope staking, so we accept this as the catch point. Instead of input for a new shot, keystroke R/S

$$
\begin{array}{ll}
\text { output: } & \text { FILL } 4.2 \\
& \text { AT } 12.7 \\
& \text { STA } 14+49.86 \\
& \text { AT } 38.56 \mathrm{LT} \\
& \text { ELEY }=88.54 \\
& \text { } 2 R=84.76
\end{array}
$$

The next example will be in a 'cut' portion of the alignment, and we'll use this data:
horizontal angle $=192^{\circ} 20^{\prime} 40^{\prime \prime}$ vertical angle $=87^{\circ} 23^{\prime} 40^{\prime \prime}$
slope distance $=188.24^{\prime}$
rod reading $=5.00^{\prime}$
Before input of the shot data we have to change the POVC to the 'cut' toe elevation.
keystrokes:

 prompt: INPUT SHOT

keystrokes:

| 1$]$ | 9 | $-2]$ | 0 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

ENTERT
(8) 7 [4 [3

ENTERT

| 1$]$ | 8 | $-8]$ | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- |

ENTERT

5 CHS B

display: W/2=26.00 keystrokes:

display:
$S R=3: 1$
keystrokes:

```
1. 5 R/S
    display: -3.15
```

Again the indication that the shot is short of being the right distance from centerline for a catch point at the elevation of the shot. You have to go a greater distance out, go to a lower (less cut) elevation, or a combination of both.

This aspect of slope staking is always confusing, but is a little easier to understand if we assume that the existing ground is level, and take the next shot about 3.15 feet further from centerline. This would give your second shot the following data:
horizontal angle $=193^{\circ} 19^{\prime} 30^{\prime \prime}$ zenith angle $=87^{\circ} 24^{\prime} 00^{\prime \prime}$ slope distance $=188.24^{\prime}$ the rod is still at 5.00^{\prime}
keystrokes:

ENTERA
8 7 $7 \cdot 2$
ENTERA

ENTERT

5 CHS B

display: $W / 2=30.00$
keystrokes:

R/S

display: $S R=1.50: 1$ keystrokes:

display: \quad| $-R / S$ |
| ---: |
| -0.02 |

This is the catch point. If we had printed out the first shot, it would have shown the same cut information (CUT 8.9 AT 13.4), but it was only at 40.20 feet from centerline.
$13.4+30.00$ is 43.4 , and that is the distance needed to have a catch point at this shot's elevation. The new shot should be at that distance if the cut is the same.

Instead of input for a new shot, keystroke
R / S
output: CUT 8.9
AT 13.4
STA $15+24.98$
AT 43.34 RT
ELEV $=93.13$
$G R=34.23$

TYPICAL TUNNEL SECTION

This is the program routine that is responsible for the "TT" designation as a label. The program originated as a program for tight-checking in tunnels, and to make it the most effective routine possible for that work, is capable of carrying both a horizontal curve and a vertical curve (or grade break) alignment at the same time.

A "tight" is any portion of the excavated tunnel which still projects into the excavated area payline, and the basic technique for checking tights is to measure the distances with a rag-tape, from the head of the instrument.

In order to reach the crown (the arch portion above springline) and upper rib area, the zero end of the tape is fastened to a rod, or a powder pole, which is held in place by the rodman while the instrument is sighted onto the end where it touches the side of the tunnel.

Tights in tunnel excavation must be removed as the tunnel progresses, or going back later to remove them becomes very costly. This program allows complete breakdown of the shots at the time they are taken, and lets the field crew paint the tights as they do the check.

The typical section shown on the opposite page gives some of the basic nomenclature used to describe the parts of a tunnel. Note some of the things which are in the way when you are trying to do the shots.

The dimensions shown for the height, width, and crown radius are those which will be used for the keystroke example.

The keystrokes used for this routine are shown in the illustration to the left, and input will be the same as in the previous routines using this program, with the exception that we now input the springline.

A response of YES to the SPRINGLINE? prompt brings up additional prompts that are needed for reduction of the field data. Another difference when using this routine is that the springline elevation is used as profile grade, but the finished grade which is output will be the grade at the tunnel invert.

To begin, the calculator should be sized at 045 and have program "TT" in the program memory.

1 Initialize the program, keystroking
XEQ ALPHA $I T$ ALPHA
2 INST. STA.? Input the instrument station
R / S
3 OFFSET?
If the instrument is on centerline, enter 0 . If on an offset, enter the offset distance. If the offset is left of centerline, CHS

4 ON CURVE? This prompt will be answered NO, N unless the instrument is on (or opposite) a curve station. If on a curve, answer yes \square, and answer the additional prompts (marked *) for curve data.

5 *B.C. STA?
Enter the station at which the curve starts
6 *RADIUS? Input the radius of the curve
7 *DELTA? Input delta (DD.MMSS). If curve left, CHS
8 H.I.? Input the elevation at the height of the instrument.
9 BKSITE STA? Input the backsight station.
10 OFFSET? Input 0 if on centerline, or the offset distance if not. If the offset is left. CHS
11 ON CURVE?
If the backsight station is on a curve, answer [Y. If not, answer \mathbb{M}. If both the instrument and the backsight are on the curve, the curve data has been input already and need not be repeated, and this prompt can be answered NO.

12 CURVE AREA? This prompt will appear when neither the instrument nor backsight are on a curve. If there is a curve in the centerline alignment which will fall within the scope of the work, answering Y will bring up the prompts at steps 5 through 7. If there is no curve area involved, answer N

TMunccl Ti gincs

13 SHOW GRADE?
Answer this prompt yes
14 PROFILE EL?
Input the SPRINGLINE elevation at the instrument station. If the instrument is at a station which is located within a vertical curve, input the elevation of the SPRINGLINE tangent profile grade.

15 GRADE?
Input the percent of grade. If negative, CHS
16 SPRINGLINE?
Answer this prompt YES
17 HEIGHT? Input the height of the springline of the tunnel above the invert. This is the same as the difference in elevation between the springline and the invert

18 VERT CURVE?
If the grade is a straight slope, answer \boldsymbol{N}. If there is a vertical curve OR grade break within the work area answer Y.

THE NEXT THREE PROMPTS APPEAR IF THE ANSWER (above) WAS YES:
19 BVC STA?
Input the beginning station of the vertical curve
20 LENGTH?
Input the length of the vertical curve. In the case of a gradebreak instead of a vertical curve, input 0

21 GRADE OUT?
Input the percent of grade leaving the vertical curve. If negative, CHS

22 INPUT SHOT
This is the prompt to begin input of the shot information. Input the horizontal angle

Input the vertical (zenith) angle
Input the measured slope distance
Input 0 , since you are sighting directly to the zero end of the tape and there is no rod correction
output will be the station, offset and elevation of the shot, followed by the invert grade at the station. If the shot is above springline, the radius at the shot will also be output, so that it may be compared to the design radius to determine whether the shot is 'tight' or not. Return to step 22 for the next shot.

For the keystroke example, we will use the dimensions of the tunnel shown in the section on page 56 , and the profile information shown below. For the horizontal alignment, we'll use a centerline that has a curve to the right beginning at station $10+02.17$, with the following curve data:

$$
\text { RADIUS }=1000.00^{\prime}, \quad \text { DELTA }=42^{\circ} 16^{\prime} 22^{\prime \prime}, \quad \text { LENGTH }=737.80^{\prime}
$$

Assume that the instrument is set up at station $9+50$, backsighting $8+00$, and that a rod shot at a nearby benchmark gives us an H.I. of 105.43. We want to do a tight-check in the vicinity between stations $9+50$ and $10+50$.

With the calculator sized at 045 , program 'TT' in program memory, and the setup and backsight points known, begin the prompt sequence by stroking XEQ ALPHA $I T$ ALPHA.
prompt: INST. STA.?
keystrokes:

prompt:
OFFSET? keystrokes:

0 R/S

prompt: ON CURVE? keystrokes:
(R / S
prompt: H.I. = ? keystrokes:

10 0 , 4 R $3 / S$ prompt: BKSITE STA?

 keystrokes:
80 R 0 R
 prompt:
 OFFSET?

keystrokes:
0 R/S
prompt: ON CURVE?

keystrokes:

M R/S

prompt: CURVE AREA?
keystrokes:

prompt: B.C. STA? keystrokes:
(1) 0 [2] 1$]$

TMロ@囚l Tijg ncs

prompt:
keystrokes:

prompt:

DELTA?
keystrokes:

4] 2) 1 , 6 2 2

prompt: SHOW GRADE? keystrokes:

Y R/S

prompt: PROFILE EL?
For tight-checking you will
always use the SPRINGLINE elevation for input at this point. The invert profile grade
at $9+50$ is 100.27 , and springline is 9 ' higher, so the grade to input is 109.27
keystrokes:
prompt : 0 GR 9 R/S
GRADE? keystrokes:
$2 \mathrm{CHS} \mathrm{R} / \mathrm{S}$
prompt: SPRINGLINE?
keystrokes:
Y R / S
prompt:
HEIGHT?
keystrokes:
9 R/S
prompt: VERT CURVE?
keystrokes:
\square R/S
prompt: BVC STA?
keystrokes:

10000 R/S
 prompt:
 LENGTH?

keystrokes:
2) 0 R 0 R/S
prompt: GRADE OUT? keystrokes:
[3 /S
prompt: INPUT SHOT

We have the instrument set, backsighted and ready, and we have the calculator primed with the necessary information about the tunnel. The next step in a tight-check is to take shots at anything that looks like it sticks out more than the material around it. If it isn't tight, the area isn't.

Checking one spot, we get the following data:

> Horizontal Angle $=168^{\circ} 34^{\prime} 15^{\prime \prime}, \quad$ Zenith Angle $=78^{\circ} 09^{\prime} 35^{\prime \prime}$,
> Slope Distance $=33.5^{\prime}, \quad$ Rod $=0$

After input of these, following the 0 with A we get the output shown to the right, indicating that the point is tight by half a foot, since the radius should be 8^{\prime}. The spot is marked with a dot of paint, and we begin taking shots around it, looking for the outline of "0" tight, so that we can paint it.

STA 9482. 14
AT 6.50 LT
ELEY $=112.36$ $\mathrm{GR}=99.63$

RHII. $=7.47$

A second shot yields a radius of 8.17 , so it is outside of the tight area, and the "0" point lies somewhere between the two shots. Since the difference is ± 0.71, and our second shot is $\pm 0.2^{\prime}$ too far, the next shot is taken at about 2/7ths of the way back to the first shot. We get:

$$
\begin{array}{cl}
\text { Horizontal Angle }=166^{\circ} 11^{\prime} 40^{\prime \prime}, & \text { Zenith Angle }=77^{\circ} 29^{\prime} 30^{\prime \prime} \\
\text { Slope Distance }=30.9^{\prime} & \text { and the Rod }=0
\end{array}
$$

keystrokes:

[1] 6] 6]	1 1 4
	ENTER 4
7 7 \cdot 2 9 3	
	ENTER
(3) 0,9	ENTERA
	(0) A
output:	STA 9+79.30
	AT 7.26 LT
	ELEY $=112.12$
	$G R=99.68$
	RAD. $=7.98$

The keystrokes to the left are typical for input of any of the shots which are taken for locating tights.

Additional shots, with their stack-print input, which are relative to this particular area are shown below. When the shots are taken on the rib, the distance left or right of the centerline (the offset distance) is used to determine whether or not the area is tight.

In common practice the whole perimeter of the tight area is painted, like a contour line of "0" tight, and at least one or two spots on the tight are painted to show the depth of material to be removed. It is generally better to paint a little "loose", that is, a little more than necessary, to insure that the whole tight is removed in one shot.

$T=174.2910$	$T=166.2115$	$T=167.3749$	$T=163.5218$	$T=162.2645$
$\mathrm{Z}=75.1820$	$Z=87.4815$	$Z=80.3155$	$\underline{z}=90.2710$	$z=79.2500$
$Y=35.5000$	$Y=34.2880$	$Y=35.9888$	$Y=28.9808$	$Y=26.8000$
$x=5.8000$	$X=0.8808$	$X=8.8808$	$X=0.0080$	$x=0.0888$
STA 9+83.87	STA 9+83.21	STR 9+84.59	STA 9+77.76	STA 9+75.12
AT 5.68 LT	AT 8.86 LT	AT 7.59 LT	AT 8.83 LT	AT 7.35 LT
ELEY $=114.44$	ELEY $=186.82$	ELEV $=111.34$	ELEY $=185.20$	ELEY $=118.35$
$G R=39.59$	$G R=99.61$	$G R=99.58$	$G R=99.71$	$G R=99.77$
RAD. $=8.15$		RFD. $=8.88$		RAD. $=8.11$

MPo $i \mathbb{C V} / \mathbb{C}$ Geometrics Solutions

COMBBOUND, FULLY ILLUSTRATED
$\$ 21.00$
(California residents please add $\$ 1.37$ Sales Tax)

STREET INTERSECTIONS - CUL-DE-SACS - BULBS - KNUCKLES

Now you can have all of the answers at your fingertips. Solve all of the everyday design and field problems on your HP-41 series calculator without tedious calculations! No more going back and forth between intersection, traverse and curve solution routines!

One of the programs in this new solutions book gives quick solutions for CURVED CUL-DE-SACS, including those with offset center points (like the one shown). If you know the the width of the street and the lengths of the radii, you can calculate the CURVE DATA, PCC and PRC stations and offsets in minutes. You won't believe the ease of the input and the speed of this routine until after you've tried it!

If you also know the coordinates of the street alignment radius point, and you've selected a coordinate location for the center of the cul-de-sac, the simple keystrokes shown in example one give you the curve data AND coordinates of all of the curve points in just minutes!

OR, with the keystrokes shown in example two, select a backsight on any known point, and you can calculate all of the radial inverses for FIELD LAYOUT in minutes. And you select the hub offset distance and the maximum spacing between hubs. The program automatically divides the curves and performs the inverses from the instrument!

今bout tbe boot

This is the second in a series of solutions books designed to aid the surveyor and engineer with calculations encountered on a day-to-day basis.

Surveyors favor the Hewlett-Packard 41 series over other available hand-helds, but no new software for the 41 has been generally available since the first survey applications book. and most of those programs are outdated.

These solution books are presented as an alternative to high-priced ROMs. most of which contain more traverse, inverse, intersection etc. programs. They have the added advantage that the user may customize them to his/her needs, add to them, or modify the type of output.

A printer is not a requirement, but a convenient option. If you have access to a card reader, having the programs on cards is the best way to assure error-free input of the program steps, and a mag card programming service is available through the publisher.
Most of the sub-routines included in the utilities programs may be used in other programs besides those contained in this book.

Software by

P. O. BOX 1370 - PACIFICA, CA 94044

๓®®®

\qquad

This program solves triangles when three parts are known, including two solution routines where one of the known parts is the area. When the printer is attached the output is designed to indicate which parts of the triangle were input as known, and which are calculated.

The program does not use a standard 'textbook' notation for the angles and sides (a opposite A, b opposite \mathbf{B} and \mathbf{c} opposite C), but instead starts with any side being called "side 1" and goes around the triangle.

The next part is angle 1 , then side 2, followed by angle 2, side 3 and angle 3.

Side 1 may be assigned to any side that is convenient
 to use, depending upon the available information about the triangle. It should be located at a side where the known information then falls into position for solution by one of the routines.

The example triangle (above) shows this style of labeling, compared to the standard notation for sides and angles. In the example, the assigned designations go clockwise. If it better fits the information available, it can go counter-clockwise instead, as shown to the left.

There are seven types of solution available within the program, and each is identified in terms of which parts are already known. For example, the solution for a triangle with three known sides is identified as $\mathbf{S}-\mathbf{1}, \mathrm{S}-\mathbf{2}, \mathrm{S}-\mathbf{3}$. This is also the order in which the parts are input.

The calculator should be sized at 030, and the program "TR" must be in the program memory. If used with a printer attached, the program memory must also contain the utility program "DMS". Initialize the program by keystroking

XEQ ALPHA \square ALPHA

Follow the keystrokes shown with each solution type. It is not necessary to restart the program each time, for solution of additional triangles; simply begin the keystrokes for the next problem.
$\mathrm{S}-1, \mathrm{~S}-2, \mathrm{~S}-3$

THREE SIDES KNOWN
1 Input side one

> ENTERA

2 Input side two
ENTERA
3 Input side three

EXAMPLE:

8	2

ENTERT

ENTERT

A output:

$$
\begin{aligned}
& S-1=82.654 \\
& a-1= \\
& 68^{\circ} 36^{\circ} 29.9 \cdot \\
& 5-2=115.459 \\
& a-2= \\
& 42^{\circ} 3: 7.8^{\circ} \\
& 5-3=114.693 \\
& a-3= \\
& 69^{\circ} 28^{\circ} \cdot 22.3^{\circ} \\
& \text { area }=4,442.68!
\end{aligned}
$$

A-3, S-1, A-1
TWO ANGLES AND THE INCLUDED SIDE
1 Input angle three ENTERA

2 Input side one
ENTERT
3 Input angle one
B]
EXAMPLE:
keystrokes:

6	9	2	0	2	2

ENTERA

8 2	-6

ENTERA
6 8 8 $\cdot 3$ 6 3
B
output:

$$
5-1=82.650
$$

$A-1=$
$68^{\circ} 36^{\circ} 30 . \theta^{\circ}$
$s-2=115.458$
$a-2=$
42° こ. $8 . \hat{H}^{\circ}$
$s-3=114.893$
$\mathrm{B}-3=$
$69^{\circ} 2 \mathbf{n}^{\circ} 22.0^{\circ}$
area $=4,442.595$

S-1, A-1, A-2
ONE SIDE AND THE TWO FOLLOWING ANGLES

1 Input side one
ENTERT
2 Input angle one
ENTERT
3 input angle two
(C)

EXAMPLE:

keystrokes:

8$]$	\cdot	6

ENTERT

6	8	\cdot	3	6	3

ENTERA

4	2	-	0	0	8

[output:

$$
\begin{aligned}
& \mathrm{S}-1=82.650 \\
& \mathrm{~A}-1= \\
& 68^{\circ} 36 \cdot 34.0^{\circ} \\
& 5-2=115.450 \\
& \mathrm{H}-2= \\
& 42^{\circ} 3 \cdot 8.0^{\circ} \\
& 5-3=114.890^{\circ} \\
& a^{\circ}-3= \\
& 69^{\circ} 20^{\circ} 22.6^{\circ} \\
& \text { area }=4.442 .595
\end{aligned}
$$

$$
S-1, A-1, S-2
$$

TWO SIDES AND
THE INCLUDED ANGLE
1 Input side one
ENTERT
2 input angle one
ENTERT
3 input side two
D

EXAMPLE:

(8) 2 $\cdot 6,5$

ENTER4

6	8	\cdot	3	6	3

ENTER ${ }^{4}$

1	1	5	\cdot	4	5	8

D output:
$5-1=82.654$
$A-1=$
$68^{\circ} 36 \cdot 35.8^{\circ}$
$5-2=115.488^{\circ}$
$a-2=$
$42^{\circ} 3 \cdot 7.8^{\circ}$
$5-3=114.893$
$a-3=$
$69^{\circ} 28 \cdot 22.2^{\circ}$
ares $=4,442.601$

$$
S-1, S-2, \quad A-2
$$

TWO SIDES AND
THE FOLLOWING ANGLE
1 Input side one

ENTERA
2 Input side two
ENTERA
3 Input angle two

EXAMPLE:

keystrokes:

8$]$	$-2]$	5

ENTERA

1	1	5
4	4	5

ENTERA

4	2	-	0	3	0	8

E output:
first solution:
$5-1=82.650$
$a-1=$
$68^{\circ} 36^{\circ} 29.2^{\circ}$
$5-2=115.458$
$\mathrm{A}-\hat{c}=$
42°
$42^{\circ} 3 \cdot 8.0^{\circ}$
$s-3=114.897$
a-3 $=$
$69^{\circ} 29^{\prime} 22.8^{\circ}$
area $=4.442 .595$

There are two possible solutions for a triangle with this configuration of known parts, and both solutions are output when this routine is used.

NOTE: The output for the first solution shows the correct input information (caps, lower case), but the second solution has been transposed, and the angle which was originally input will not be indicated.

With the above exception, all triangle solutions output indicate which parts were input (by printing in capitals) and which were calculated (printed in lower case letters)

AREA, S-1, A-1
THE AREA, ONE SIDE, AND THE ADJACENT ANGLE KNOWN
1 Input the area (Sq. Ft.)

2 Input side one
EENTERT]

3 Input angle one
(F)

EXAMPLE:

output:

$$
\begin{aligned}
& S-1=114.893 \\
& A-1= \\
& 69^{\circ} 29^{\circ} \cdot 22.8^{\circ} \\
& s-2=82.659 \\
& a-2= \\
& 68^{\circ} 36^{\circ} 30.8^{\circ} \\
& s-3=115.458 \\
& a-3= \\
& 42^{\circ} 3 \cdot 8.8^{\circ}
\end{aligned}
$$

AREA $=4,442.60 \mathrm{i}$
AREA, S-1, S-2
THE AREA AND TWO SIDES KNOWN

1 Input area (Sq. Ft.)
ENTERT
2 Input side one
ENTERA
3 Input side two
(6) (8) 2] (6) 0

6

$$
\begin{aligned}
& \text { output: } s-1 \\
&=114.893 \\
& a-1= \\
& 69^{\circ} 28^{\prime} 22.3^{\circ} \\
& s-2=82.650 \\
& a-2= \\
& 68^{\circ} 36^{\circ} 29.9^{\circ} \\
& s-3=115.458 \\
& 3-3= \\
& 42^{\circ} 3 \cdot 7.8^{\circ}
\end{aligned}
$$

$$
\text { AREA }=4,442.601
$$

Prograx ruistuia

The following pages contain the program steps which must be keyed into the calculator in order for the programs to function properly. Since this book has been written with the intention of providing help in the calculations needed for surveying, it is important that the programs provide correct answers when used.

For those users who have card readers, D'Zign provides a card-programming service. We will program your cards for you and return them in a labeled card holder which can be inserted directly into the book. The cost for the service is $\$ 8.50$, and you provide the blank cards.

To take advantage of this option, send 20 blank magnetic cards and your check for $\$ 8.50$ to D'Zign land survey \& development, P.O. Box 1370, Pacifica, CA 94044.

KEYING IN A PROGRAM

1. Before beginning to key the program steps into the calculator, keystroke shift GIO \cdot to prepare the calculator for the new program. Set the calculator to program mode by pressing the PRGM key.
2. Labels are marked with a diamond () in the program listings, as a visual aid. When keying in the program ignore the diamond, and key in LBL by keystroking shift LBL (the STO button), followed by either the label number or ALPHA the label name ALPHA.
3. Symbols or characters shown with quote marks indicate that they are alpha characters, and must be input as program steps in alpha mode.
4. Functions which do not appear on the keyboard may be keyed into the program by stroking ALPHA, spelling out the function, and again stroking ALPHA. Some of the functions, such as FC?01 must be input partly in alpha. Stroke ALPHA \mathbb{F} ? ; again stroke ALPHA, and the display will prompt FC?--, at which time you stroke the $\mathbf{0 1}$. The character * in the listing is the \boldsymbol{x} (multiply) button, and the character printed as $/$ is the divide button.

UTILITY PROGRAMS

These are programs which are used as sub－routines by the other programs． For the main programs to function properly these sub－routines must also be in program memory while the other programs are running，as noted below．

```
01*LBL "STR"
82 CF 29
83 FIX 0
04 CLA
05 STO 27
06 1 E2
87 /
88 ENTER4
89 INT
18 ARCL X
11 -
12 "ト+"
13 FIX 3
14 1 E2
15*
1610
17 X>Y?
18 'ト日"
19 ARCL Y
28 RCL 27
21 AVIEN
22 SF 29
23 FIX }
24 RTN
25 END
```

＂STA＂is a short program that changes the number in the x－register to stationing（in the form $X X+X X . \times x \times$ ）when called up by the other programs．The listing for this program，shown to the left，contains 24 steps．

The two programs shown on the opposite page are also called up by the different main programs as they are working，and should be in program memory，except under the following conditions：
＂AZ＂need not be input if the calculator contains either the Hewlett－Packard Surveying Pac or the D＇Zign＂COGO 41＂ module．A similar routine by the same name is already contained in both of these ROMS．
＂DMS＂must be in the calculator memory if the calculator is used with a printer attached．It is not necessary when no printer is used．It changes the number in the x－register to the printed form DDD $^{\circ}$ MM＇SS＂when called during output of solutions．Other than input by the use of a card reader，this routine CANNOT BE PUT INTO MEMORY UNLESS A PRINTER IS ATTACHED WHILE PROGRAMMING．

Some variations of＂DMS＂are shown in the appendix，one of which can be used without a printer，and groups the output into the form DDD MM SS in the display．The other version does both，but again，cannot be input into the calculator unless a printer is attached while programming．

All of these utility routines may be called up by programs which you write yourself by including steps which execute them as part of your program．Use of some of the other subroutines contained in the appendix may also enhance some of your own programming．

A card containing the utility programs is included in the set of cards available through the card－programming service from D＇Zign，using the versions of the routines which are shown here．

01*LBL -AZ*

- 22 - $B R G=$?

03 PROMPT
04 - $\mathrm{QD}=$? ${ }^{-1}$
05 PROMPT
06 K K>Y
87 HR
08 KㄱY
09 ENTERT
10 ENTER 4
112
12 /
13 IHT
14 FI
15 R-II
16 *
17 X
18 LASTX
19 *
28 COS
21 R \uparrow
22 *
23 -
24 FS? 18
25 RTH
26 HMS
27 RTH

81+LBL ${ }^{-D M S *}$
276
82 STO 23
03 RDN
04 STO 24
05 RDH
86 STO 25
97 RDH
88 ST0 26
89 RDN
18 ENTER \uparrow
11 INT
12 CF 29
13 FIX 8
14 ACX
15 -
16108
17 *
18 ABS
19 STO 22
203
21 SKPCOL
226
23 ACC.OL
249
25 ACCOL
26 ACCOL

28 ACCOL
292
30 SKPCOL
31 RCL 22
32 INT
33 ACX
3439
35 ACCHR
36 RCL 22
37 FRC
38100
39 *
49 FIX 1
41 ACX
4234
43 ACCHR
44 PRBUF
45 RCL 26
46 RCL 25
47 RCL 24
48 RCL 23
49 FIX 4
58 SF 29
51 RTH
52 ENII

LO occupies 114 registers of program memory and should be used with the calculator sized to at least 030. The program contains 801 bytes of programming, and may be stored on 8 tracks of magnetic cards.

Subroutines used with this program are "STA" and "AZ", both of which are contained in the UTILITY program group. If the calculator is used with a printer attached, the subroutine "DMS" must also be in the program memory. "AZ" is contained in the HP Surveying Pac and a version of this subroutine is also contained in the D'Zign module "COGO 41". If either of these modules are in the calculator, it is not necessary to enter "AZ" again as a subroutine.

$81 * L B L$ - 0°	INITIALIZE PROGRAM, SET	26 ADFF	
82 CLRG	FLAG STATUS	$27 \mathrm{X}=\mathrm{Y}$?	
83 CF 80		28 SF 86	CONTROLS PROMPTS FOR
84 CF 81		29 FS? 86	INVERSE ONLY ROUTINE
85 CF 86		30 CTO 17	
86 CF 87		31^{-Y}	
87 CF 89		32 ASTO X	
88 CF 11		33 AON	
89 CF 82		34 'STA INY?*	
10 CF 88		35 PROMPT	
11 CF 05		36 ASTO Y	
12 CF 18		37 AOFF	
13 SF 83		$38 \mathrm{X}=\mathrm{Y}$?	InClude centerline in
14 SF 21		39 CF 94	INVERSE CALCS?
15 SF 84		48 RTN	
16 FIX 4		410LBL 86	
17 CLX		42 FS? 89	
18 RTN		43 RTN	
19*LBL 81	SEt Registers for alpha	44 RCL 82	
$28-Y \cdot$	RESPONSE STATUS	45 RTN	
21 ASTO X		460LBL C	Inverse routine for use
22 RON		47 STO 06	WHEN THE COORDINATES OF
23 -INY. ONLY?*	- Inverse only to	48 RDN	the backsite are known
24 PROMPT	COORDINATES INPUT, OR	49 STO 85	
25 ASTO Y	WILL ALIGNMENT COORDS	58 -BACKSITE?*	
	BE CALCULATED FOR INV?		

51 PROMPT		91 Prohpt	ARe the coordinates of
52 RCL 86		92 ASTO Y	the Centerline points
53-		93 ROFF	WANTED?
$54 \mathrm{X}<\gg \mathrm{Y}$		$94 X=Y$?	
55 RCL 85		95 CF 83	
56 -		96 -STA?-	
57 R-P		97 PROMPT	
58 CLX		98*LBL E	Calculate coordinates
59 XK ¢Y	calculate back azimuth	99 STO 28	FOR STATION SHOWN BY
$68 \mathrm{X}<8$?	for inverse routine	188 FS? 88	InPUT
61360		181 GTO 82	
$62+$		182+LBL 18	
63 HMS		103 FS? 87	
64 STO 01		184 SF 11	
65 SF 97		185 FS? 84	
66 XEQ 01		186 CF 11	
67 GTO D		187 CF 85	
680LBL B		188 ADY	
69 STO 86		189 XEQ -STA*	OUTPUT IN FORM $\mathrm{x} \times \mathrm{x}+\mathrm{x} \times \mathrm{x}$. x
78 RDN		118 FIX 4	
71 STO 85	inverse routine with	111 RCL 83	
72 XEQ - A2*	backsight bearing known	112 -	
73 STO 81		113 RCL 88	
74 SF 97		114 HR	
75 XEQ 81		115 X $\gg Y$	
76-LBL D	alignment routine input	116 P-R	
77 -BEG. STA?*		117 RCL 87	
78 PROMPT		118 +	
79 STO 83		119 X ¢ $>$ Y	
80 -COORD. NTE		128 RCL 88	
81 PROMPT		$121+$	
82 STO 88	beginning coordinates	122 FS? 83	
83 RDN	Stored	123 GTO 84	
84 ST0 87		124 XEQ 98	Output coordinates
85 XEQ - 22°	convert tangent bearing	125*LBL 04	
86 STO 80	to Azimuth and store	126 FC? 83	
87 - Y -		127 ADY	
88 ASTO X		128 STO 10	
89 AON		$129 \times$ X $>$ Y	
98 -STA COORDS		138 ST0 09	

131 X<>Y
132 FS? 84
133 GTO 83
134 FS? 87
135 XEQ A
1360LBL 03
137 RCL 88
138 HR
13998
148 FS? 85
141 CHS
142 +
143 FS? 89
144 STO 17
145 "0/S?
146 FS? 89
147 -R?•
148 FC? 01
149 GTO 17
150 FS? 89
151 GTO 17
152•LBL 18
153 FS? 89
154 STO 04
155 FS? 81
156 XEQ 86
157 -0/5= •
158 FS? 89
$159-R=\cdot$
168 ARCL X
161 RYIEH
162 P-R
163 RCL 89
164 +
165 FS? 09
166 STO 89
167 Ki>Y
168 RCL 18
$169+$
178 FS? 89

171 STO 18
172 XEQ 98 OUTPUT OF COORDINATES
173 ADY
174 FS? 89
Calculates inverse to 175 RTN
COORDINATES IN $x \& 176$ FS? 87
Registers 177 XEQ A
178 FS? 01
179 GTO 16
180 GTO 03
181 RTN
1824LBL 17
183 FS? 86

185 PROMPT FOR SOLUTION
186 GTO 18
187 RTN
188* LBL F
189 SF 01
198 STO 82
191 GTO 83
192 RTN
193*LBL A
194 FS? 86
195 ADY
196 FS? 86
197 XEP 98
198 FS? 86
199 ADY
288 RCL 86
201 -
282 Ki>Y
283 RCL 85
284 -
285 R-P
206 FIX 3
$287 \cdot$ HD = - OUTPut of the inversed
288 ARCL X DISTANCE
289 AVIEH
218 CLX

$211 \mathrm{X}<\times \mathrm{Y}$		251 ADY	
212 X < 8 ?	CALCULATE HORIZONTAL	252 FS?C 11	
213368	angle to station or	253 GTO 83	
214 +	POINT	254 FS? 88	
215 STO 11		255 GTO 12	
216 ENTER4		256 FS? 81	
217 ENTER4		257 GTO 16	
21898		258 GTO 83	
2191		259 RTN	
2281		2600LBL J	Signals beginning of
$221+$		261 SF 99	curve in the alignment
222 INT		262 ADY	
223 STO 12		263 RCL 28	
2242		264 STO 15	
225 /		$265{ }^{\text {- DELTA? }}$	Central angle of curve
226 INT		266 PRDMPT	
227188		267 STO 14	
228 *		268 X<0?	
229		269 SF 85	Set if curve is to left
238 ABS		278 XEQ 83	
231 HMS		271 RCL 14	
232 FIX 4		272 RCL 88	
233 RCL 12		273 HMS+	
234 RCL 11		2740	
235 RCL 01		275 X<>Y	
236 HR.		276 X<0?	
237 -		277368	
238 ENTERT		278 HMS+	
239 CLX		279 STO 88	
248 X ${ }^{\text {P }}$ Y		288 RCL 14	
241 X < O ?		281 - DELTA $=-$	output central angle
242368		282 FC? 55	
$243+$		283 ARCL X	
244 HMS		284 AYIEH	
245 - $6 \mathrm{RT}=\cdot$	Output horizontal angle	285 FS? 55	
246 FC 755		286 XEQ -DMS*	
247 ARCL X		287 HR	
248 RVIEH		288 ABS	
249 FS? 55		289 RCL 84	
258 XEQ -DMS*	ANGLE TO DDomm'ss" Form	298 *	calculate curve data

291 PI
292 *
293180
294 /
295 STO 18
296 RCL 15
297 +
298 STO 16
299 RCL 14
308 HR
301 RCL 18
302 /
303 STO 19
304 RCL 16
385 -EC =-
386 AVIEW
307 XEQ -STA"
388 FIX 4
309 RCL 17
318180
311 -
312 RCL 14
313 HR
$314+$
3158
316 K $<>Y$
$317 \mathrm{~K}<8$?
318368
$319+$
328 RCL 84
321 P-R
322 RCL 89
323 +
324 STO 87
325 X<>Y
326 RCL 10
$327+$
328 STO 88
329 CF 89
338 SF 88

331 RCL 16
332 STO 83
333 GTO 16
334 RTN
$335+$ LBL 15 OUTPUT OF COORDINATES
336 CF 80
$337^{-N}=\cdot$
338 ARCL Y
339 FC? 83
348 AVIEH
341 - $E=\cdot$
342 ARCL X
343 FC? 83
344 RVIEX
345 ADY
346 FC? 87
347 GTO 12
348 FC? 84
349 XEQ A
358 GTO 12
351 - LBL 82
352 RCL 28
353 RCL 83
$354 \mathrm{XL}=\mathrm{Y}$?
355 CF 88
356 RDN
357 FC? 88
358 GTO 18
359 SF 88
368 ADY
361 XEQ -STA-
362 FIX 4
363 RCL 15
364 -
365 RCL 19
366 *
367 RCL 17
368180
369 -
$378+$

ENDING LOOP FOR FIXED OFF SET INPUT ON CURVES

Calculate radial from CALCULATION in CURVE

```
3710
372 X<>Y
373 X\Y?
374368
375 +
376 STO 21
3 7 7 \text { RCL } 0 4
378 FC? }8
379 GTO 12
380*LBL 13
381 P-R
382 RCL }0
383 +
384 K<>Y
385 RCL 18
386 +
387 FS? }8
388 GTO 15
389 XEQ 98
398 ADY
391 FS? }0
392 XEQ A
393*LBL 12
394 FS? }8
395 GTO 16
396 FS? }0
397 SF 82
398 RCL }2
```

399 -0/S?
408 FC? 81
401 PROMPT
482 FS? 81
483 RCL 02
484 •0/S=•
485 ARCL X
486 RYIEH
487 FC? 85
SUBROUTINE TO 02 and 12488 CHS ROUTINES

489 RCL 84
$410+$
411 XEQ 13
412 GTO 12
413 RTN
414*LBL 16
415 CF 82
416 -STR? ${ }^{-}$
417 PROMPT
418 RTN
419*LBL 98 OUTPUT COORDINATES
$428 \cdot \mathrm{~K}=\cdot$
421 ARCL Y
422 AYIEM
423 - E = -
curved alignment area 424 ArCL X SUBROUT INE

425 AYIEH
426 RTN
\qquad

SP occupies 189 registers of program memory and should be used with the calculator sized to at least 050. The program contains 1327 bytes of programming, and may be stored on 12 tracks of magnetic cards.

Subroutines used with this program are "STA" and "AZ", both of which are contained in the UTILITY program group. If the calculator is used with a printer attached, the subroutine "DMS" must also be in the program memory. "AZ" is contained in the HP Surveying Pac and a version of this subroutine is also contained in the D'Zign module "COGO 41". If either of these modules are in the calculator, it is not necessary to enter "AZ" again as a subroutine.

$81+\mathrm{CLL} \cdot \mathrm{SP} \cdot$	INITIALIZE AND CLEAR	26 CF 22	reset status of	FLAGS
82 CF 82	initialize ano clear	27 CF 83		
83 SF 21		28 CF 14		
84 SF 27		29 CF 15		
85 CLRG		30 CF 05		
86 FIX 4		31 CF 86		
07 CF 01		32 CF 87		
883	Store spiral constants	33 CF 88		
89 STO 11		34 CF 09		
10-18		35 XEQ 21		
11 STO 12		36 FS ? 85		
$12-42$		37 XEQ 22		
13 ST0 13		38 FS ? 83		
14216		39 XEQ 17		
15 STO 14		480LBL 81	InPut of Spiral	data
161328		41 -PI STAT		
17 STO 15		42 PROMPT	P.I. Station	
$18-9368$		43 STO 86		
19 ST0 16		44 - DELTR? \cdot		
28-75608		45 PROMPT	central angle	
2151017		46×18 ?		
22685448		47 XEQ 38	is curve to the	LEFT?
23 STO 18		48 HR		
246394728		492		
25 ST0 19		50 /		

51 STO 85	$T \Delta / 2$	91 CLD	
52 CF 81		92 ADY	
53 -R?*		93 FS? 81	
54 PROMPT		94 GTO 15	
55 CF 84		958	
56 STO 28		96 STO 81	T.S., S.T.
57 -L=?*		97 RCL 48	
58 PROMPT		98 STO 82	Ls
59 STO 48		99 XEQ 89	TO SOLUTION LOOP
68 ENTER 4		180 RCL 41	
61 ST+ 82		101 RCL 20	
62 RCL 28		182 P-R	
63 /		183 RDN	
642		184 -	
65 \%		185 RDN	
66 STO 88	θ (RADIANS)	186 +	
67 R-D		187 RCL 85	
68 STO 41	θ (DEGREES)	188 TAN	
69 HMS		109 *	
701 E2		118 RT	
71 RCL 28	RADIUS	$111+$	
72 /		112 STO 42	T.S., TOTAL TAN. LENGTH
73 R-D		113 RCL 86	
74 HMS		114 Xi)Y	
75 CLA	OUTPUT OF SPIRAL DATA	115 -	
76 RCL 28		116 STO 81	T.S., S.T.
77 RDN		117 ST+ 82	
78 RDN		118 RCL 85	T $\Delta / 2$
79 - ${ }^{\text {- }}$		119 RCL 41	θ
88 ARCL Y		128 -	
81 AYIEN	LENGTH	1212	
$82-56=$ -		122 *	
83 FC? 55		123 STO 21	Δ
84 ARCL X		124 D- F	
85 AYIEH		125 RCL 28	
86 FS? 55		126 *	
87 XEQ - DMS'	SPIRAL ANGLE	127 RCL 40	
$88 \cdot \mathrm{R}=\cdot$		1282	
89 ARCL 2		129 *	
98 RYIEN	RADIUS	$130+$	

$131+$		171 STO 83	
132 STO 87	S.t. STATION	172 RCL 81	
133 RCL 86		173 RCL 42	
134 RCL 81		174 +	
1358		175 RCL 81	
136 RDN		176 ADY	
137 CLA		177 -TS =	OUTPUT ENTRANCE SPIRAL
$138 \cdot \mathrm{PI}=$ -		178 FS? 82	BEGIN AND END STATIONS
139 AYIEN	OUTPUT P.I. StAtion	179 -ST =*	or
148 RDN		188 AYIEH	OUTPUT THE EXIT SPIRAL
141 XEQ -STA*	OUTPUT IN FORM x x $+x x$. x x	181 RCL 81	BEGIN AND END STATIONS
142 CLA		182 XEQ -STA*	
143 FIX 4		183 CLA	
144 -CENTRAL 6	=*	184 -SC =	
145 AYIEN	OUTPUT CENTRAL DELTA	185 FS? 82	
146 RCL 85		$186{ }^{\circ} \mathrm{CS}=\cdot$	
1472		187 AYIEN	
148 *		188 RCL 83	
149 HMS		189 XEQ -STA*	
158 CLA		198 ADY	
151 ARCL X		191 'STR?*	PROMPT FOR INPUT OF THE
152 FS? 55		192 PROMPT	NEW STATION FOR WHICH
153 XEQ 'DMS*	OUTPUT AS DD'MM'SS" IF	193*LBL D	A SOLUTION IS WANTED
154 FC? 55	PRINTER ATtACHED	194 SF 88	SWITCH TO EXIT SPIRAL
155 AVIEN		195 CLA	
156 CLD		196 FS? 85	
157-LBL 15	COMPUTES T.S., S.P.I.	197 XEQ 22	
158 XEQ 89	\& S.C. STATIONS	198 L LBL 18	
159 X $2>Y$		199 RCL 87	
168 RCL 41		288 RCL 01	
161 TAN		281 STO 07	
162 /		282 X<>Y	
163-		283 STO 81	
164 FS? 82	IS THIS AN EXIT SPIRAL?	204 RCL 48	
165 CHS		285 CHE	
166 STO 42		286 STO 48	
1678		$287+$	
168 RCL 01		288 STO 82	
169 RCL 48		289 SF 02	
$170+$	S.C. $=$ S.T. + $L_{\text {S }}$	210 GTO 15	

211 -LBL E	SET SOLUTION STATION	251 FS? 81	
212 STO 82		252 GTO 84	SOLUTION FOR DEFLECTION
213 CF 81		253 R-P	ANGLE AND CHORD
214 RDV		254 X (3) ${ }^{\text {P }}$	
2154LBL 19	COMPUTE FIELD data for	255 HMS	
216 SF 84	SOLUTION STATION	256*LBL 84	
217 RCL 82		257 FIX 3	
218 -		258 RCL 82	
219 FS?C 22		2598	
228 GTO 88	END OF SPIRAL	268 RDN	
221 RCL 84		261 STO 27	
222 CF 82		262 RDN	
223 X<8?		263 STO 30	
224 SF 82	negative interval to	264 RDN	
225 ABS	THE STATION REQUESTED	265 STO 31	
226 RCL 83		266 RDN	
227 RCL 82		267 STO 32	
228 -		268 RDN	
229 ABS		269 FS? 55	
$230 \mathrm{X}<=Y$?		278 XEQ -STA"	OUTPUT SOLUTION STATION
231 GTO 88	END OF SPIRAL	271 RCL 32	
232 X< ${ }^{\text {S }}$ Y		272 RCL 31	
233 GT0 87		273 RCL 30	
$234 *$ LBL 88	STOP	274 RCL 27	
235 SF 88		275 FIX 3	
2360 LBL 87		$276{ }^{\circ} \mathrm{CD}=$ -	OUTPUT LONG CHORD
237 FS?C 82	EXIT SPIRAL?	277 ARCL 2	
238 CHS		278 FS? 14	
$239 \mathrm{ST}+82$		279 AVIEM	OUTPut deflection angle
240 RCL 82		288 RDN	
241 RCL 81		281 FIX 4	
242 -		282 - DEFLECTIO	¢ $6=$
243 RCL 48		283 FS? 14	
244 '		284 AVIEN	
245×42		285 FS? 14	
246 RCL 41		286 XEO 83	
247 D-R		287 CHS	
248 *		288 RCL 88	θ (RADIANS)
249 ST0 88		289 R-D	
258 XEQ 89	SPIRAL SOLUTION LOOP	298 HMS	

```
291 HMS+
29298
293 HMSt
294 "RADIAL & ='
295 FS? }14\mathrm{ OUTPUT RADIAL ANGLE TO 335 RCL 89
296 RYIEN TURN AT SOLVED STATION 336 STO }8
297 FS? }1
298 XEQ 83
299 HR
308 STO 38
381 FC? }8
302 ADY
303 CLD
304 FS? }8
305 GTO 23
386 FS? }8
307 GTO 23
308 -STA?-
389 FS? 14
318 PROMPT
311 FS?C 80
312 GTO 19
313*LBL }8
314 CF 22
3159
316 STO 43
3178
318 STO }8
319 STO }8
320-LBL }8
321 RCL }88\mathrm{ LOOPING POINT
3 2 2 ~ R C L ~ 4 3 ~
323 Y4X
324 18
325 ST+43
326 CLY
327 RDN
328 RCL IND 43 tOOPING CONTROL REG.
329 /
330 10
    331 ST-43
337 RDN
338 +
339 $T0 名
348 DSE 43
341 GTO 82
332 CLX
333 RDN
295 FS? 14 OUTPUT RADIAL ANGLE TO
3
    342 RCL }9
    343 RCL 02
    344 RCL 01
    345-
    346 ABS
    347 *
    348 LASTX x
    349 RCL }0
    358
    351
    351+
    352 * y
    compute y and x values 353 RTN
    354*LBL 83 SET UP FOR THE TYPE OF
    355 CLA SOLUTION REQUESTED
    356 FS? 55
    357 XEQ 'DAS*
    358 APCL X
    359 FC? 55
    360 RYIEM
    361 RTN
    362*LBL 21
    363 - %-
    364 ASTO X
    365 RON
    366 "COORD-0/S?" coordinate solution
    367 PROMPT WITH OFFSET OPTIONS
    368 &&T0 Y
    369 ADFF
    378 X=Y?
```

371 SF 85
372 FS? 85
373 XEQ 22
374 FS? 85
375 CTO 16
376 - φ -
377 ASTO X
378 AON
379 •TAN 0/S?• tANGENT/OFFSET SOLUTION
388 PROMPT
381 ASTO Y
382 AOFF
$383 X=Y$?
384 SF 03
385 FS? 83
386 GTO 17
387 SF 14
388 RTN
3890 LBL 16
398 - Y -
391 ASTO X
392 AON
393 -INYERSE? ${ }^{-}$
394 PROMPT
395 ASTO Y
396 ROFF
$397 X=Y$?
398 SF 86
399 FS? 86
408 XEQ 28
481 CTO 01
402 RTN
$483+$ LBL 17
4848
485 STO 44
486 STO 33
487 STO 39
488 GTO 01
489 RTN
4100 LBL a
RADIAL INVERSE TO INPUT

411 SF 15
412 LBL 28
413 'inst het input instrument n,e
414 PROMPT
415 STO 49
416 RDN
417 STO 48
418 -BRCKSITE?* INPUT BACKSIGHT N,E
419 PROMPT
428 RCL 49
421 -
422 X $<\gg$
423 RCL 48
424 -
425 R-P
426 CLX
427 X $\langle>Y$
428×8 ?
429368
$438+$
431 HMS
432 STO 45 bACKSight AZIMUTH
$4333^{\circ}{ }^{\text {N4 }} \mathrm{E}^{-}$
434 FS? 15
435 PROMPT NEXT COORDINATE PAIR?
436 GTO 81
437 RTN
$438 \cdot$ LBL A
439 RDY
448 CLA
441 ARCL Y
442 FS? 55
443 AYIEH
444 CLA
445 ARCL X
446 FS? 55
447 AYIEH
448 XEQ 83
$449{ }^{-N+} \mathrm{E}$?-
458 PROMPT

COORDINATES ONLY

451 RTN
452•LBL 83
453 ADV
454 RCL 49
455 -
456 X<>Y
457 RCL 48
458 -
459 R-P
468 FIX 3
461° HD $=\cdot$
462 ARCL X
463 AYIEM
464 CLX
$465 X\rangle Y$
$466 X<8$?
467360
$468+$
469 STO 46
478 ENTERT
471 ENTERA
47298
473 /
4741
$475+$
476 INT
477 STO 47
4782
479 /
488 INT
481180
482 *
483-
484 ABS
485 HMS
486 FIX 4
487 RCL 47
488 RCL 46
489 RCL 45
498 HR

491-
492 ENTER \uparrow
493 CLX
$494 X<\rangle Y$
$495 X<0$?
496368
497 +
498 HMS
499 - $\angle R T=$ - ANGLE RIGHT FROM INST.
588 FC? 55 TO INVERSED POINT.
501 ARCL X
582 RYIEM
583 FS? 55
584 XEQ ${ }^{\text {DHS }}$
585 RTN
$506+$ LBL 30
587 SF 07
508 CHS
589 RTN
510 LBL 22
511 SF 18
512 XEQ 'AZ" INPUT OF BEARING AND
513 CF 10 QUADRANT CODE
514 STO 39
515 "TS NAE" COORDINATE INPUT
516 FS? 88
517 -ST NTE*
518 PROMPT EXIT SPIRAL PROMPT FOR
519 STO 33 COORDINATE INPUT
528 RDN
521 STO 44
522 RTN
523 LBL 23
524 RCL 39
525 RCL 30
526 HR
527 FS? 87
528 CHS
529 FS? 88
530 CHS

611 LBL 32
612 -STA? ${ }^{-1}$
613 PROMPT
614 ADY
615 FS? 55
616 XEQ -STA-
617 FIX 4
618 RCL 83
619 -
628 RCL 32
621 FC? 07
622180
623 FC? 87
624 -
$625 X<>Y$
626188
627 *
628 PI
629 /
638 RCL 28
631 /
632 FS? 87
633 CHS
634 +
635 RCL 28
636 -0/S = -
637 PROMPT

```
6 3 8 \text { ARCL X}
639 X & 8?
6 4 8 \text { AVIEM}
641 FC? }8
6 4 2 \text { CHS}
643 +
644 P-R
645 RCL 35
646 +
647 X(>Y
6 4 8 \text { RCL 36}
649 +
658 -N = -
651 ARCL Y
6 5 2 ~ A V I E M ~
653 - E = -
6 5 4 ~ A R C L ~ X ~
6 5 5 ~ A Y I E H
656 FS? }0
657 XEQ 83
6 5 8 \text { CF } 0 9
659 GTO }3
6 6 8 \text { RTN}
661*LBL 28
662 FC? }0
663 XEQ 03
6 6 4 ~ R T N
```

\qquad

TT occupies 125 registers of program memory and should be used with the calculator sized to at least 045. The program contains 1227 bytes of programming, and may be stored on 11 tracks of magnetic cards.

$01+L B L$-TT*	Initialize AND		26 PROMPT	input setup information		
82 FIX 4		CLEAR	27 ST0 85			
03 SF 21			28 STO 38			
04 SF 01			29 -OFFSET? ${ }^{\text {- }}$			
85 CF 82			38 PROMPT			
86 CF 83			31 STO 06			
87 CF 84			32 XEQ 16			
88 CF 85			33 ON CURYE			
89 CF 80			34 PROMPT			
18 CF 18			35 ASTO Y			
11 CF 11			36 AOFF			
12 SF 06			$37 \mathrm{X}=\mathrm{Y}$?			
13 CLRG			38 XEQ 88			
141.99901	counter register		39 FC ? 81			
15 CHS			48 XEQ 01			
16 STO 41			41 'H.I. = ?			
$17^{\text {- }} \mathrm{LT}{ }^{\text {- }}$			42 PROMPT	HEIGHT	Of INST	rument
18 ASTO 31			43 STO 11			
$19 \cdot \mathrm{RT} \cdot$			44 -BKSITE S			
28 ASTO 32			45 PROMPT	input	BACkSIGHt	DATA
21 -+"			46 STO 03			
22 ASTO 33			47 -OFFSET? ${ }^{\text {- }}$			
$23^{\circ}+8 \cdot$			48 PROMPT			
24 ASTO 34			49 ST0 04			
25 -INST. STA			58 XEQ 16			

131 CHS
132188
133 HMS+
134 STO 21
135 FS? 01
136 XEQ 28
137 GTO 19
1384 LBL 18
139 RDN
148 RDN
141 CHS
142368
143 HMS+
144 STO 21
145 FS? 01
146 XEQ 28
147 GTO 19
1484 LBL 82
149 FS? 01
150 XEQ 00
151 FC? 81
152 XEQ 85
153 RTN
1544 LBL 88
155 CF 01
156 -B.C. STA?*
157 PROMPT
158 STO 15
159 -RRDIUS?
168 PROMPT
161 STO 14
162 -DELTA? \cdot
163 PROMPT
164 HR
$165 \times$ (?
166 SF 85
167 STO 13
168 ABS
169 PI
178 *

171 RCL 14
172 *
173188
174 /
175 RCL 15
176 +
177 STO 42
178 RCL 13
179 ABS
1882
$181 /$
182 TRN
183 RCL 14
184 *
185 STO 44
186 -
187 STO 43
188 RCL 15
$189 \mathrm{ST}+44$
198 RTN
191*LBL 45
192 RCL 19
193 RCL 18
input of curve data if 194 RCL 44 alignment is on curve 195 -

196 R-P
197 X<>Y
198 RCL 13
199 -
288 X<>Y
281 P-R
202 RCL 43
$203+$
204 ENTERT
285 GTO 11
296 RTN
287*LBL 81
288 RDN
209 CLX
218 RCL 14

211 PI
212
213 RCL 15
214 RCL 85
215 XEQ 83
216 RCL 86
217 XEQ 84
218 STO 06
219 X K>Y
228 RCL 15
$221+$
222 STO 05
223 RTN
2240LBL 85
225 RCL 14
226 PI
227 *
228 RCL 15
229 RCL 83
238 XEQ 83
231 RCL 84
232 XED 04
233 STO 84
234 XK $>$ Y
235 RCL 15
$236+$
237 STO 83
238 RTN
2390LBL B
248 C.F 06
241 SF 18
242 XEQ A
243 LBL 35
244 RCL 38
$245 \cdot H / 2=\cdot$
246 ARCL X
247 PROMPT
248 STO 38
249 SF 88
258 RCL 36

251 ENTERA
252 INT
$253 x=Y$?
254 CF 88
255 RDN
256 CF 29
257 FIX 0
258 FS? 88
259 FIX 2
268 -SR=•
261 ARCL X
262 ㅏㅏ: 1^{*}
263 PROMPT PROMPT FOR SLOPE RATIO
264 SF 29
265 FIX 2
266 STO 36
267 RCL 48
268 RCL 80
$269+$
278 RCL 12
271 -
272 ST0 37
273 ABS
274 RCL 36
275 *
276 RCL 38
277 +
278 STO 39
279 RCL 21
$288 \times(8$?
281 CHS
282 -
283 CHS
284 STOF
285 FIX 1
286 CLA
287 ADY
288 -FILL - OUTPUT OF CUT OR FILL
289 RCL 37
298×8 ?
in slope stake routine

ERRATA
On page 95, Please add the steps FS? 05
\& CHS between steps $321(+)$ and 322(RTN).
Add FC? 05 after step 314(LBL 04).

```
291 *CUT *
    331 /
292 RBS
293 ARCL X
294 AYIEH
295 RCL 36
296*
297 * AT *
298 RRCL X
299 RVIEN
300 CF 10
301 RCL 21
302 RCL 35
383 ENTERT
304 GTO 11
385 RTN
3060LBL }8
307 -
388 CHS
309 180
318 #
311X<>Y
312/
313 RTN
314*LBL }8
315 CHS
316 RCL }1
317+
318 P-R
319 CHS
328 RCL }1
321 +
322 RTN
323-LBL 07
324 SF 82
325 -PROFILE EL?*
326 PROMPT INPUT OF VERTICAL GRADE
327 STO 28 DATA IF GRADE IS TO BE
328 'GRADE?* CARRIED AS PART OF THE
329 PROMPT CALCULATION
330188
332 STO 10
333 XEQ 16
334 'SPRINGLINE?-
335 PROMPT IS THIS A TUNNEL?
336 ASTO Y
337 AOFF
338 X=Y?
339 XEQ }8
348 XEQ 16
341 -VERT CURYE?-
342 PROMPT
343 ASTO Y
344 AOFF
345 X=Y?
346 XEQ 89 INPUT VERTICAL DATA
347 RTN
348*LBL 16
349 - Y-
350 ASTO X
351 RON
352 RTN
353+LBL }8
354 CF 06
355 SF }0
356 -HEIGHT?*
357 PROMPT
358 CHS
359 STO 08
368 RTN
3610LBL 89
362 SF }0
363 -BYC STR?*
364 PROMFT inPut beginning station
365 ST0 16 of vertical curve
366 'LENGTH?-
367 PROMPT
368 STO 17 LENGTH OF VERT. CURVE
369 -GRADE OUT?`
378 PROMPT DUTGOING GRADE (%)
```

371180
372 ／
373 STO 89
3744 LBL 18
375 RDY
376 ADY
377 －INPUT SHOT•
378 PROMPT
379 RTN
380 LBL C
381 STO 28
382 －INPUT SHOT•
383 PROMPT
384 RTN
385 LBL A
386 ISG 41 COUNTER REGISTER
387 FIX 8
388 CF 29
389 FS？ 86
398 XEQ 44 CALCULATE SOLUTIONS
391 SF 29
392 FIX 4
393 FS？ 11
394 XEQ 99
395 FIX 2
396 STO 81
397 RDN
398 X（＞Y
399 HR
$488 \mathrm{~K}\langle>Y$
401 P－R
482 RCL 11
$483+$
484 RCL 01
$485+$
406 STO 12
487 RDN
488 Kく＞Y
489 HR
418 RCL 87
$411+$
$412 X<\rangle Y$
413 P－R
414 RCL 85
415 ＋
416 STO 18
417 Ki＞Y
418 RCL 86
$419+$
428 STO 19
421 X（）Y
422 RCL 15
423 FS？ 81
424 GTO 11
425 X $>$ Y？
426 GTO 11
427 －
428 Kく》
429 FS？ 85
438 CHS
431 RCL 14
432 －
433 CHS
434 R－P
435 CHS
436 RCL 14
437 ＋
438 Kく＞Y
439 RCL 14
448 ＊
441 PI
442＊
443188
444 LENGTH
445 RCL 15
$446+$
447 RCL 42
$448 \mathrm{X}=\mathrm{Y}$ ？
449 GTO 45
458 RDN

451 X $\langle>Y$
452 FS? 85
453 CHS
454 X X $>Y$
455 ENTERT
456 GTO 11
457 RTN
458*LBL 99
459 FS? 55
468 PRSTK
461 RTN
462 LBL 44
463 CLA
464 ARCL 41
465 FS? 55
466 AVIEM
467 RTN
468 \& LBL 11
469 RDN
478 XEQ 12
471 CLX
472 Ki>Y
473 RND
474 STO 21
$475 X>Y$?
476 GTO 13
477 CHS
478 -AT •
479 ARCL X
488 ARCL 31
481 +LBL 15
482 FC? 18
483 RYIEH
484 EELEY = - elevation at shot
485 ARCL 12
486 FC? 18
487 AYIEH
488 FS? 82
489 XEQ 14
498 FS? 18

491 GTO 35
492 GTO 18
493 RTN
4940 LBL 13
495 -RT - OFFSET DISTANCE
496 ARCL X
497 ARCL 32 Offset right Output
PRINTS COPY OF STACK 498 GTO 15
When printer is present 4990LBL 12
508 CF 29
501180
582 /
583 ENTERT
504 INT
$585 \mathrm{X} \backslash>\mathrm{Y}$
586 FRC
507180
588 *
589 FIX 0
518 -STA -
511 ARCL Y
512 FIX 2
51318
$514 X>Y$?
515 SF 08
516 RDN
517 RND
518 FS? 88
519 ARCL 34
528 FC? 88
521 ARCL 33
522 CF 08
523 ARCL X
524 FC? 10
525 AYIEM
526 K $<\gg$
527180
528 *
$529+$
538 SF 29

531 STO 35	571 XEQ 22
532 RTN	572 X<>Y
533*LBL 14	573 RCL 16
534 RCL 35	574 RCL 17
535 FS? 84	5752
536 GTO 21	5761
537+LBL 26	577 +
538 RCL 35	578 ENTER
539 RCL 30	579 RCL 30
548 -	588
541 RCL 18	581 RCL 18
542 *	582
543 RCL 28	583 RCL 28
544*LBL 24	584
545 +	585 X \}) 4
546 STO 48	586 RCL 16
547 RCL 88	587
548 +	588 RCL 17
549 -6R = -	589
558 ARCL X	598
551 FC? 18	591
552 AVIEH	592 RCL 09
553 FS? 83	593 *
554 XEQ 25	594 GTO 24
555 FS? 18	595 RTN
556 GTO 35	596+LBL 23
557 CTO 10	597 -
558 RTN	598 ENTER4
559*LBL 22	599 ENTER 4
568 RCL 17	600 RCL 89
$561-$	601 RCL 18
562 X)Y?	682
563 GTO 26	603180
564 GTO 23	684
565 RTH	685 RCL 17
5660 LBL 21	606
567 RCL 16	687
568 RCL 17	6882
569 +	689 /
$578 \times\rangle Y$?	618 RCL 18

611100

612 *
$613+$
614 *
615180
616 /
617 RCL 16
618 RCL 38
619 -
620 RCL 10
621 *
622 RCL 28
$623+$
624 GTO 24
625 RTN
626*LBL 25
627 RCL 12
628 RCL 48
$629 \mathrm{X}\rangle \mathrm{Y}$?
638 RTN

631 -
632 ENTERT
633 *
634 RCL 21
635 ENTERT
636 *
$637+$
638 SQRT
639 FIX 2
648 - RAD. $=\cdot$
641 ARCL X
642 AYIEN
643 RTN
6440LBL J ENABLE STACKPRINT
645 SF 11
Calculate radius when 646 RTN
SHOT ABOVE SPRINGLINE 647*LBL I
648 CF 11
649 RTN
658 .END.

凸゚爪（8）

TR occupies 80 registers, contains 559 bytes of programming, and may be stored onto 5 tracks of magnetic cards. This program uses "DMS" as a subroutine, and should be used with the calculator sized to at least 030.

01*LBL - TR ${ }^{\text {- }}$	initialize		AND			ST0 89	
82 SF 21			CLEAR		RDN		
83 SF 27							RDN
84 CLRG						+	
85 FIX 4						+	
86 CL. ${ }^{\text {P }}$					31	2	
87 CF 08					32	/	
884 LBL 86		Et flag star	status			ST0 07	
89 CF 01						x+2	
18 CF 82						LASTX	
11 CF 03						RCL 82	
12 CF 84						*	
13 CF 85					38	-	
14 CF 86					39	RCL 89	
15 CF 07						RCL 04	
16 RTN						*	
17+LBL A		, s-2, s-			42		
18 SF 01	51	CAPItals	WHEN	SET	43	SORT	
19 SF 82		CAPItals	WHEN	SET	44	ACOS	
28 SF 83		CAPItals	WHEN	SEt			
$21+$ LBL 11					46	*	
22 STO 84					47	STO 05	
23 RDN					48		
24 STO 82						RCL 89	
25 RDN					58	*	

51 STO 88
52 RCL 87
$53 \mathrm{X}+2$
54 LASTX
55 RCL 89
56 *
57 -
58 RCL 82
59 /
68 RCL 84
$61 /$
62 SQRT
63 ACOS
642
65 *
66 STO 83
67 RCL 85
68 XEQ 08
69 STO 01
78 GTO 01
71 RTN
72•LBL B
73 SF 81
74 SF 84
75 SF 86
760 LBL 10
77 SF 13
78 FS? 08
79 XEQ 87
88 -SECOND SOLUTION•
81 FS?C 88
82 AYIEH
83 CF 13
84 HP
85 STO 01 Al
86 RDN
87 STO 99 S1
88 RDN
89 HR
98 STO 05
Al

910 LBL 03
92 RCL 01
93 XEQ 88
94 STO 83
95 RCL 85
96 RCL 89
97 P-R
98 K K>Y
99 STO 88
108 RCL 03
1011
102 P-R
103 RDN
104 /
105 STO 82
186 R \uparrow
187 *
calculate missing angle 188 +
109 STO 84
118 GTO 81
111 RTN
$112 \cdot$ LBL C
113 SF 81
114 SF 04
115 SF 85
116 HR
117 STO 83
118 RDN
119 HR
128 STO 01
121 RDN
122 STO 89
123 RCL 83
124 RCL 81
125 XED 88
126 RCL 89
127 RCL 81
128 XED 84
129 GTO 83 SOLVE AS ASA
138 RTN

S2

A1
CALCULATE A2
A3
S1

53
OUTPUT SOLUTION
S-1, A-1, A-2
S1 CAPItALS WHEN SET
al capitals when set
az capitals when set
A2

S1

CALCULATE A3

131*LBL 85		171 RDN	
132 RCL 89		172 STO 89	S1
133 RCL 81		173 RCL 83	
134 HMS		174 SIN	
135 RCL 82	S2	175 RCL 82	
136 GTO 88		176 *	
137 RTN		177 RCL 89	
$138+$ LBL D	S-1, A-1, S-2	178 /	
139 SF 01	S1 CAPItALS When set	179 ASIN	
148 SF 82	S2 CAPItALS WHEN SEt	188 STO 85	A3
141 SF 04	al capitals when set	181 RCL 83	
1420L8L 88		182 XEQ 88	
143 STO 82	52	183 STO 01	
144 RDN		184 RCL 85	
145 HR		185 RCL 89	
146 STO 01	Al	186 RCL 81	
147 RDH		187 XEQ 84	
148 STO 89	S1	188 XEQ 83	
149 RCL 81	A1	189180	
150 RCL 82	S2	198 RCL 85	
151 P-R	calculate s3	191 -	
152 RCL 89		192 RCL 83	
153-		$193+$	
154 R-P		194 CHS	
155 STO 84		195188	
156 RCL 89		$196+$	
157 RCL 82		197 HMS	
158 RCL 84		198 RCL 82	
159 GTO 11	SOLVE AS SSS	199 RCL 83	
168 RTN		288 HMS	
161*LBL E	S-1, S-2, A-2	201 XEQ 06	calculate third angle
162 SF 13		282 SF 88	
163 -FIRST	SOLUTIOH:-	283 SF 83	
164 AYIEW		284 GT0 18	
165 CF 13		285*LBL 87	
166 XEQ 87	reset flags	286 SF 01	
167. HR		287 FC? 80	
168 ST0 03	A2	288 SF 82	
169 RDN		289 FC? 80	
178 STO 82	S2	218 SF 85	

171 RDN
172 STO 09
173 RCL 83
174 SIN
175 RCL 82
176 *
177 RCL 89
178 /
179 ASIN
180 STO 85
181 RCL 83
182 XEQ 80
183 STO 01
184 RCL 85
185 RCL 89
186 RCL 01
187 XEQ 84
188 XEQ 83
189180
198 RCL 05
191 -
192 RCL 83
$193+$
194 CHS
195180
196 +
197 HMS
198 RCL 82
199 RCL 83
288 HMS
201 XEQ 06 CALCulate third angle
282 SF 88
283 SF 03
284 GTO 18
$285 \cdot$ LBL 87
286 SF 01
287 FC? 80
288 SF 82
289 FC? 80
218 SF 85

211 RTN
$212+$ LBL 88
$213+$
214 COS
215 CHS
216 ACOS
217 RTH
2184LBL 81 OUTPUT SOLUTIONS
219 FIX 3
228 SF 13
221 FS? 81
222 CF 13
$223 \cdot 5-1=\cdot$
224 ARCL 89
225 AVIEH
226 RCL 01
227 HMS
228 FIX 4
229 SF 13
238 FS? 84
231 CF 13
$232 \cdot A-1=\cdot$
233 FC? 55
234 ARCL X
235 RYIEH
236 FS? 55
237 KEQ -DMS' PRINT AS DDOMM'SS"
238 ADY
239 FIX 3
248 SF 13
241 FS? 82
242 CF 13
$243 \cdot \mathrm{~S}-2=\cdot$
244 ARCL 82
245 GVIEN
246 RCL 83
247 HMS
248 FIX 4
249 SF 13
258 FS? 85

251 CF 13
$252 \cdot \mathrm{~A}-2=\cdot$
253 FC? 55
254 ARCL X
255 RYIEH
256 FS? 55
257 XEQ -DMS' PRINT AS 00° MM'SS"
258 ADY
259 FIX 3
268 SF 13
261 FS? 83
262 CF 13
263 -S-3 = •
264 ARCL 84
265 AYIEK
266 RCL 85
267 HMS
268 FIX 4
269 SF 13
278 FS? 86
271 CF 13
$272 \cdot \mathrm{~A}-3=\cdot$
273 FC? 55
274 ARCL X
275 AYIEH
276 FS? 55
277 XEQ -DMS' PRINT AS DDMM'SS"
278 ADY
279 RCL 88
288 RCL 84
281 *
2822
283 /
284 FIX 3
285 SF 13
286 FS? 87 WAS AREA INPUT?
287 CF 13
288 - AREA $=\cdot$
289 ARCL X
298 AYIEH

291 RDY		314 XEQ 82	
292 FIX 4		315 STO 82	S2
293 ADY		316 XEP 85	
294 XEQ 86		317 RTN	
295 RTN		3184LBL G	AREA, $\mathrm{S}-1, \mathrm{~s}-2$
296*LBL 89		319 SF 87	area capitals when set
297 RDN		328 SF 01	Sl capitals when set
298 RDN		321 SF 82	S2 CAPItals When set
299 RTN		322 STO 82	
380+LBL 04	FILING AND Storage	323 XEQ 82	
301 STO 01		324 ASIN	
302 RDN		325 STO 01	
383 STO 09		326 XEQ 85	
384 RDN		327 RTN	
385 STO 05		$328+$ LBL 82	
386 RTN		329 X<>Y	
387-LBL F	AREA, $\mathrm{S}-1, \mathrm{~A}-1$	338 ST0 89	
308 SF 87	AREA CAPItals When set	331 *	
309 SF 01	S1 Capitals when set	332 /	
318 SF 84	al capitals when set	3332	
311 HR		334 *	
312 STO 01		335 RTN	
313 SIN		336 END	

\qquad

We often are asked, "How do you store coordinates by point number without X-function in a 41?" There are a number of ways this can be done, but this little routine is one of the easiest.

PIN (point in) assigns the next consecutive number in the counter register to any coordinate pair when the N-coord is in the Y register and the E -coord is in X. POUT (point out) replaces the coordinate pair into the Y and X registers for whatever point number is in the X register when executed.

These two routines (© 1983, Ted J. Kerber), combined with short programs that tap the subroutines of the HP SURVEYING PAC, give you a complete traverse and inverse package. It may also be extended into storage of three-dimensional coor dinates by using similar steps to store the Z register, and have the elevation of the point reside there.

The number of points you can store by this method is only limited by the total number of available registers (it requires two registers per point number), and this is dictated by how many registers you have to use up with the other routines.

In the example listings, with the calculator sized at 120 , we're storing N -coordinates in registers 20 thru 69, and E-coordinates in registers 70 thru 119 (a total of 49 points), with register 17 used as the counter. Begin with 0 in register 17.

You can custom fit the routine to your own needs by varying step 19 (first E register), steps 26 and 38 (first N register) and step 43 (difference between registers). Data cards can be used to input or dump the coordinates for later use. You can recall and use the coordinates without having to look at them by adding a PRINT/DON'T PRINT flag in front of the "AVIEW" steps.

01-LBL -PIN*	15 CLA	29 KDH	4350
02 RCL 17	16 ARCL Y	38 STO IND 19	$44+$
831	17 AYIEH	31 RTM	45 ST0 19
$04+$	18 EIV	32-LBL -POUT*	46 R DH
05 FIX 8	1976	33 FIX 8	47 RCL IND 19
86 CF 29	$28+$	34 CLA	48 CLA
07 CLH	21 STO 19	35 ARCL X	$49 \mathrm{RRCL} Y$
88 ARCL X	22 RDH	36 GYIEK	50 AIIEH
99 AVIEH	23 STD IND 19	37 FIY 4	51 CLH
10 STO 17	24 CLY	38 2日	52 HRCL X
11 FIX 4	25 RCL 17	$39+$	53 AVIEK
12 CLH	2628	48 डा丁 19	54 ADY
13 ARCL 2	$27+$	41 RCL IND 19	55 RTH
14 HYIEH	2851019	42 XXY	56 ENII

The program steps listed below are a different version of the utility program "DMS" that divides the register display into groupings of DD MM SS when the subroutine is called up, but no printer is attached, as well as printing out as DD*MM'SS" when the printer is attached.

This routine contains functions which are in the printer itself, rather than in the calculator, and a printer must be attached in order to input the program.

$01+L B L$ - DMS ${ }^{-}$	29 Fİ 4	57 ABS
82 XEQ 80	38 SF 29	58 ST0 22
03 FS ? 55	31 CLA	593
04 XEQ 01	32 RTN	60 SKPCOL
85 FC ? 55	$33+$ BL 82	616
06 YEQ 82	34 ARCL X	62 ACCOL
87 XEQ 83	35 -	639
88 RTN	36198	64 ACCOL
09+LBL 88	37 *	65 ACCOL
18 STO 23	38 ABS	666
11 RDN	39 ST0 22	67 ACCOL
12 STO 24	48 INT	682
13 RIN	$41^{\circ}+$	69 SKPCOL
14 STO 25	42 ARCL X	78 RCL 22
15 RDN	43 RCL 22	71 INT
16 STO 26	44 FRC	72 ACX
17 RDN	4518 B	7339
18 CLA	46 *	74 ACCHR
19 ENTERT	47 FIX 1	75 RCL 22
28 INT	48 - -	76 FRC
21 CF 29	49 ARCL X	77189
22 FIX 0	58 AYIEH	78 *
23 RTN	51 RTN	79 FIX 1
24*LBL 83	52+LBL 01	80 ACX
25 RCL 26	53 ACX	8134
26 RCL 25	54 -	82 ACCHR
27 RCL 24	55180	83 PRBUF
28 RCL 23	56 *	84 RTH

DMS - SOME VARIATIONS

Another version (shown to the right) which may be used as a replacement for "DMS" will divide the register display and printout . . . but the printout will NOT contain the ${ }^{\circ}$,' or " symbols.

This is handy if you know that you will not be using a printer, and still works if you happen to hook up to a printer while using the programs in the future. The output just isn't quite as 'fancy'.

All three versions of "DMS" pre-store and recall the stack when operating, which is part of the reason for the length of the subroutine. If that is not required for a particular operation you want to program, those steps could be deleted.

If you wish to substitute either of these routines for the one given in the utility programs you will also have to do some minor editing of the main programs.
Go through and remove all of the conditionals "FS? 55" which occur just prior to XEQ DMS calls. In the version on the opposite page that conditional isn't required, and in this last version the subroutine isn't affected by whether or not the printer is attached.

Finally, if you're into synthetics, the degree symbol may be constructed as $\mathrm{B} * * \mathrm{BC} *$ (hex 7F 100000 00 C2 4300) or, in another form commonly used, as日 + \& $-($ hex 7 F 10000070 A 1 C 000$)$, which actually produces a little square, instead of using the printer accumulation functions. The ' symbol is hex F2 7F 27, and the " is hex F2 7F 22, where the F2 is the append.

A program for printing out bearings (uses "DMS" as a subroutine) is shown on the next page.

$81 \times L B L$ - DMS"	29*LBL 82
82 XEQ 88	38 ARCL X
83 XEQ 82	31
84 XEQ 83	32188
85 RTN	33
860LBL 80	34 ABS
87 STO 23	35 STO 22
88 RDH	36 INT
09 STO 24	37 -
18 RDN	38 XEQ 81
11 STO 25	39 ARCL X
12 RDN	48 RCL 22
13 STO 26	41 FRC
14 RDN	42108
15 CLA	43 *
16 ENTER \uparrow	44 FIX 1
17 INT	$45 \cdot$
18 CF 29	46 XEQ 81
19 FIX 8	47 ARCL X
28 RTN	48 AYIEN
$21 *$ LBL 83	49 RTN
22 RCL 26	$50+$ LBL 81
23 RCL 25	5118
24 RCL 24	$52 \mathrm{X} \backslash>Y$
25 RCL 23	$53 \mathrm{X} \backslash Y$?
26 FIX 4	54 - 8 -
27 SF 29	55 RTN
28 RTN	56 END

Those who would rather have a character of some kind between the digits can substitute a colon or a comma (or the character of your choice) in place of the space, at steps 41 and 48 in the routine on the opposite page, or steps 37 and 45 in this version.

This program requires 22 registers of memory, and contains 159 bytes of programming.

It is designed to be used with the version of "DMS" on page 108 and requires that a printer be attached while programming. You will also need to modify DMS slightly; in the version on page 108, insert FC? 14 between steps 82 and 83 (ACCHR and PRBUF) and in front of the CLA at steps 18 and 31. This program may also be used with the UTILITY version of "DMS" by adding the FC? 14 step between steps 43 and 44 .

In use, the bearing is in the y-register and the quadrant code is in the x-register. It may be executed with XEQ B- as a program step in another program, or by keystroking XEO ALPHA B Shift \square ALPHA.

91*LBL -B--	26 RTH	51 XEQ -DHS ${ }^{\text {- }}$
82 SF 14	27-LBL 82	52 FS ? 55
83 CLA	28 - ${ }^{\text {- }}$	53 YEQ 88
	29 FS ? 55	54 - 4 -
85 XEQ IND Y	38 XEQ 89	55 YEQ 85
86 RTN	31 KEQ - DMs ${ }^{\text {- }}$	56 RTN
07*LBL 01	32 FS ? 55	57*LBL 84
88 - N -	33 XEQ 97	58 - ${ }^{-}$
09 FS ? 55	34 're"	59 FS ? 55
18 XEQ 86	35 XEQ 85	68 XEQ 86
11 XEQ -DMS ${ }^{\text {- }}$	36 RTN	61 XEQ -DMS ${ }^{\text {c }}$
12 FS ? 55	37*LBL 86	62 FS ? 55
13 XEQ 87	3878	63 XEQ 88
14 're*	39 ACCHR	$64{ }^{\circ} \mathrm{FH}{ }^{-1}$
15 XEQ 85	48 RDN	65 XEQ 85
16 RTN	41 RTN	66 RTN
17*LBL 89	$42+$ LBL 87	67*LBL 85
1883	4369	68 FS? 55
19 ACCHR	44 ACC.HR	69 PRBUF
28 RDN	45 RDN	78 FC? 55
21 RTN	46 RTN	71 AYIEH
22-LBL 88	47+LBL 83	72 CF 14
2387	48 -S'	73 K ¢ $>$ Y
24 RCCHR	49 FS ? 55	74 RTN
25 RDN	58 XEQ 09	75 END

BEARING OUTPUT

A version of the bearing printout program which will work with the＂short \＆ simple＂version of＂DMS＂（page 109）is shown below．

Modify the DMS program by adding the conditional FC？ 14 in front of the CLA at step 15 and between steps 47 and 48 （ARCL X and AVIEW）．

This is the no－frills version of both the bearing and angle output，but it does the job ．．．．it keeps us from thinking that it is a decimal instead of $D^{\circ} M^{\prime}$ MS＇$^{\prime \prime}$ ．

81＊LBL ${ }^{\text {B }}$－－	$13+L B L 82$	25＊LBL 84
02 SF 14	14 －S＂	26 ＂N＂
63 CLA	15 XEQ－DMS＊	27 XEQ－DMS＂
84 K 3 Y	16 ＇HE＂	28 ＇Н以＂
85 XEQ IND Y	17 XEE 85	29 XED 85
06 RTN	18 RTN	38 RTN
07－LEL 01	194LEL 83	310 LBL 85
88 － N	28 －S＂	32 AYIEM
89 XEQ－DMS ${ }^{\text {－}}$	21 XEQ－DMS＊	33 CF 14
18 ＂FE＂	22 －トリ＂	34 K $3 Y$
11 XEQ 85	23 XEQ 85	35 CLA
12 RTH	24 RTN	36 RTN

One for the road．The little program to the right is for use with a 41CX that has a printer attached．

It may be executed manually or by inserting an execute command at the beginning of each program．What does it do？

It labels your calculations with the time and date，to help keep all of the little strips of paper straight！

05 －23 1987

01＊LBL－${ }^{\text {F＊＊}}$	89 FIX 4
82 CLA	18 ATIME
83 FIX 6	11 RYIEN
04 DRTE	12 ADY
85 ADATE	13 CLX
86 AYIEH	14 CLA
87 CLA	15 RTN
88 TIME	$16 . E N D$.

12：46：15 PM

Someone once told me that a program is never finished . . . It's true, there is always something else that you wish it would do, so you keep revising it. That was the case with "LO", for instance.
Cynthia (my Party Chief) was working on a footing layout, and cussing 'cause using "LO" would have been a quick way to calculate it, but it doesn't do corners.
She had figured out that she could trick it into doing an angle point by using the curve routine and giving it an 'almost zero' radius, but these footing corners were mitered. She could get the offsets, but still had to use the Surveying Pac to bearing-bearing the corners later.
Along those same lines, she pointed out that I gripe about the fact that the intersection routines in the Surveying Pac don't print out the input (no way to check wrong input strokes), but didn't print the input on mine either. We'll look at that first, and then l'll get back to the corner-turning problem.

We inserted steps, as shown above, to get the output of the input. LBL To print out the bearing it was necessary to have a version of the "B-" in memory, and we also had to add an azimuth to bearing routine to program memory. That was called "AtB", and is shown to the right.

It, in turn uses "B-" as a subroutine, which then uses "DMS", etc. It isn't fast, but it prevents errors by catching them before they happen.

INST. AT
$N=2.564 .3586$
$E=1,659.7840$
BACKSITE
$H=3,819.256$ n
$E=1,480.5896$
BEG. STA.
12+80. 808
$N=2,815.47 \mathrm{~B}$
$E=1,545.601$
BEARING
$S 13^{\circ} 25 \cdot 45.0^{\circ} \mathrm{E}$

Now we had the printout as shown to the left (the example is with coordinate and backsight coordinates input for layout, keystroke [). Another example of the output is shown on the next page, where we solved the cornerturning problem.

So, back to that. We added two new labels to the program, \mathbf{H} and I. LBL "H" works in the same way as "J", except that it treats the point as an angle point instead of as the B.C. of a curve.

LBL "I" does the mitered corners that Cynthia wanted. To make it work, it was necessary to again do a little editing to the main program, adding the FS? 19 and RCL

The south end of the wall was considered $0+00$ for the calculations, and the stations were arrived at by adding the distances along the face of the wall. For the example, an assumed coordinate of $500 / 500$ was used. The example keystrokes (page 113) indicate the procedure. Label "H" works the same way but does not miter the corner. Note that the mitered corners have an \mathbf{M} at the offset to show that they are mitered rather than right-angle offsets.

WI $=508.4385$
$E 1=497.8318$
N 8.1588 E $H D=83.2427$

H2 $=582.8117$ $E 2=588.9758$

N 53.1500 E $H D=48.2426$

N3 $=611.6764$ E3 $=547.6384$

N 36.4500 H

 $\mathrm{HB}=45.0601$$\mathrm{N} 4=647.7329$ $E 4=528.7057$

N 53.1503 E $H D=9.5888$

M5 $=653.4169$
$E 5=528.3177$
S 36.4468 E $H B=54.4999$
$\omega_{6}=689.7486$
$E 6=568.9263$
S 53.1468 W $H D=53.8076$
$N 7=577.5542$
$E 7=517.8128$
S 8.1580 \# $H D=79.3076$

H8 $=499.0673$
E8=586.4327
INVERSED
TRAVERSE

OTHER SOFTWARE FOR THE HP-41CV/CX

CARD PROGRAMMING SERVICE
Save yourself the time involved in typing in the program steps (and insure that the programs will work properly). Send 20 blank cards with your check or money order ($\$ 8.50$ per set)

We will program your cards for you and return them in a labeled card holder which may be inserted directly into your book.
Programming on cards, Surveying Field Solutions
\$8.50

COCOM

This is the ROM you've been needing. Complete traverse, inverse . . . everything the others have and more! Coordinate storage and retrieval option by point number. No need to pre-divide to mean angles before input.

The closure routine includes automatic angle check and adjustment. The compass and transit corrections are automatic, at the touch of a button. X-memory is not required!

All of the normal intersection routines are included, plus LINE TO SPIRAL and CURVE TO SPIRAL. Bearings and azimuth may be input, or defined by input of the point numbers at either end of an existing line.

DESIGNED TO SELL FOR UNDER \$200!
available mid 1987

California residents please add 6.5\% tax

Software by
P. O. BOX 1370 • PACIFICA, CA 94044
\$21. 50
4141%

ISBN 0-9616846-3-1

[^0]: * With the printer attached.

