
HP-41

SYNTHETIC PROGRAMMING

MADE EASY

ith Jarettby Ke

T

S
L
N

Wmfi
ww.mfi

R
S
l

es1
8

.gi
(
R
s

0&0"‘ / W’\/},(y/

pudadTo

ok 17

A

HP-41

SYNTHETIC PROGRAMMING

MADE EASY

By Keith Jarett

© 1982, SYNTHETIX

15409 Mathews Ave.

Manhattan Beach

CA 90206 USA

This book may not be reproduced, either in whole or
in part, without the written consent of the

publisher, except that the programs contained
herein may be reproduced for personal use.

Permission is given to reproduce short portions of

this book for purposes of review.

Printed in the United States of America.

Acknowledgement: This book would not have been possible
without the existence of PPC, the users group that has

fostered the development of synthetic programming since the

1979 introduction of the HP-41C. Several members of PPC have

made direct contributions to the recently developed

techniques in this book.

Most of these contributions were made by Clifford Stern,

one of the handful of "grand masters" of synthetic

programming. Clifford was the technical consultant for this

book, developing several programs specifically for use here

and spotting errors during several rounds of editing.

Manyother members of PPC contributed indirectly through

their own discoveries and developments that advanced

synthetic programming over the last three years. Richard
Nelson, the founder of PPC, deserves a large measure of

recognition. He has single-handedly kept PPC alive for 8

years through untiring effort.

I dedicate this book to my wife, Catherine Van De
Rosytne, who has patiently endured my HP-41 addiction, and

who provided invaluable help throughout the preparation of
this book.

Request for Errata: Errata and specific suggestions for
improving this book are welcome. Mail them to: Keith Jarett,
SYNTHETIX, 1549 Mathews Ave., Manhattan Beach, CA 90206 USA.

1f your suggestion proves usable, I will mail you a plastic

Quick Reference Card for Synthetic Programming. If you send

me a complete set of corrections, I will mail you a new copy
of HP-41 Synthetic Programming Made Easy.

The plastic Quick Reference Card for Synthetic Programming on
the back cover 1s an 1ndispensable tool for synthetic
programming. Its use is described in Chapter 1. For further
description see Appendix D and Appendix C, item 10.

For price information on this book, write to: SYNTHETIX, 154¢

Mathews Ave., Manhattan Beach, CA 90266 USA. Enclose an

addressed return envelope for faster reply. Dealer and
distributor inquiries are welcomne.

The material in this book is supplied without representation
or warranty of any kind. Neither the publisher nor the author
shall have any liability, consequential or otherwise, arising
from the use of any material in this book.

ii

TABLE OF CONTENTS

bage

1 INTRODUCTION —- WHAT IS SYNTHETIC PROGRAMMING?

What will this book do for you?

5 CHAPTER ONE -- CREATING YOUR FIRST SYNTHETIC INSTRUCTION

How to create and use the Byte Grabber

How to interpret and use the Quick

Reference Card for Synthetic Programming

15 CHAPTER TWO —— FREQUENTLY USED SYNTHETIC INSTRUCTIONS

16 2A. Synthetic Tones

18 2B. Short Form Exponents

23 2C. Flag Register Control

27 2D. Program Pointer Control

29 2E. Synthetic Text Lines

38 2F. The TEXT ¥ instruction

39 2G. Using ALPilA for numeric storage

46 2H. Other scratch registers

49 CHAPTER THREE -- BYTE LOADING

liow to create and use a byte loader program

How to make any synthetic instruction

67 CHAPTER FOUR —-- SYNTHETIC KEY ASSIGNMENTS

67 4A. Create and use a key assignment program

77 4B. The "poor man's byte loader"

81 4C. Pseudo-XROM function previews

83 4D. The RCL b key assignment

87 4E. Save/Recall Time Module alarms

97 CHAPTER FIVE -- UNDERSTANDING PROGRAM EDITING ON THE HP-41

Create the synthetic F@ label instruction

Viewing bytes of program memory

-iii-

107

135

143

151

159

165

171

187

CHAPTER SIX

107

119

124

SOLUTIONS TO

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

APPENDIX E

INDEX

—— HP-41 MEMORY STRUCTURE AND STATUS REGISTER

APPLICATIONS

6A. Memory structure, functional setup,

the status registers

6B. Suspend and Reactivate key assignments

6C. Renumbering data registers under

program control

PROBLEMS

—— INSTRUCTION TIMING

Hints for speeding up your programs

Typical instruction execution times

tiow to do your own instruction timing

—— MORSE CODE AND STO b

Generate Morse code at 16 words per minute

—— SYNTHETIC PROGRAMMING REFERENCES

Periodicals, books, etc.

—— THE QUICK REFERENCE CARD FOR SYNTHETIC

PROGRAMMING

Description, Legend, enlarged copy

—— BARCODE FOR PROGRAMS

—iv-

INTRODUCTION

WHAT IS SYNTHETIC PROGRAMMING?

Have you ever wondered why the HP-41 doesn't allow more

than ten different TONEs? Or perhaps you have wondered why you

can't store and recall numbers from the ALPHA register, or why

parentheses are not available as display characters. HP-41

SYNTHETIC PROGRAMMING MADE EASY will teach you to overcome

these limitations and add a whole new set of functions to your

HP-41's vocabulary. Examples of added capability are:

-Techniques you can use to make your programs faster,

shorter, or to reduce their SIZE requirement

-Three to six extra "scratchpad" stack-like registers for

general use

-21 additional display characters including parentheses,

quotation marks, ampersand, and others

-Over 100 additional TONEs

-Enhanced alpha string editing ability

-Suspension and reactivation of USER mode key assignments

-Simultaneous setting of all 56 system and user flags to

any desired state

-Renumbering of data registers under program control to

eliminate register usage conflicts between subroutines.

The creation and use of synthetic instructions is called

synthetic programming. Synthetic instructions are those which

cannot be entered from the keyboard by normal means. Thousands

of synthetic instructions are possible. These range from

non-standard TONEs to powerful instructions that access system

scratch registers. Synthetic programming will not harm your

HP-41 in any way, although the annoyance of occasional

"crashes" (temporary keyboard lockup and/or MEMORY LOST) is to

be expected as you are learning. Synthetic programming will

work on all calculators in the HP-41 family, including the

-1-

HP-41C and CV, regardless of date of manufacture. It depends

only on fundamental aspects of the calculator's internal

operating system that are common to all HP-41l's.

As a simple example of the beauty of synthetic

programming, consider the two short programs listed below. The

one on the left is a standard, nonsynthetic program to print

out the message "Hewlett-Packard". It occupies 40 bytes of

program memory (more about bytes in Chapter 1). The program on

the right uses a synthetic instruction to do the same thing in

only 2@ bytes, exactly half the space. In this example, which

you will encounter in more detail in Section 2E, synthetic

programming overcomes the lack of direct access to lowercase

printer characters on the HP-41.

Prosraas to erint

HONSYHTHETIC: the messase

TL Hewlet -Packard

6z ACcH

83 SF i3

B4 “EWLETT-" SYNTHETIL:
45 ACH

86 CF 13 81 “Hewlett-Packard®

7o BZ AYIEW
83 ACH @3 ENT
8% SF 13

18 "ACKARD-

i1 ACH .

12 PRBUF CHT

13 CF 13 ERE 48 BYTES

14 EKL ERE 78 BYTES

You need not become an expert to reap the benefits of

synthetic programming. Armed with the knowledge and confidence

provided by this book, you can quickly and easily create and

run any synthetic program from the HP User's Library, the PPC

Calculator Journall, or any other source. Also covered are the

most frequent applications of synthetic programming, so that

-2

you may customize your own programs with synthetic

instructions.

This book 1is designed to provide an easy, practical

introduction to synthetic programming on the HP-41l. It uses

the latest simplified synthetic programming techniques in a

"hands on" approach that makes it easy and fun to try the

exanmples on your calculator as you read.

The scope of HP-41] SYNTHETIC PROGRAMMING MADE EASY is

intentionally limited, in order to provide the most readable

introduction to synthetic programming. Details are often

bypassed, but references are given for those readers who wish

to learn more about them. The casual synthetic programmer will

be able to learn all he needs from this book. For others this

book is a ticket of admission to the growing body of synthetic

programming literature. It has all the framework you need to

build your knowledge of synthetic programming.

If you own a PPC ROM?2, your progress through the book can

be speeded up by using its advanced features such as synthetic

key assignment and byte-loading programs. If you have just the

calculator you will sometimes need to follow slightly more

elaborate instructions to "bootstrap" your system to full

synthetic capability. Either way it's fairly simple.

Hewlett-Packard does not support synthetic programming.

Although many individuals in HP's Corvallis Division have some

familiarity with synthetic programming, HP does not have the

manpower to answer questions about synthetic programming from

users. So please don't ask HP about synthetic programming.

Just read this book and continue into the other sources of

information (Appendix C) for answers to your questions.

The most important benefit you'll get from HP-41

SYNTHETIC PROGRAMMING MADE EASY is access to all published

synthetic programs. Many synthetic programs, especially those

-3-

in the PPC ROM, perform functions that can't be duplicated by

any nonsynthetic program. After you have read this book,

synthetic programs will no longer seem mysterious and

forbidding. There are hundreds of powerful synthetic programs

in the PPC Calculator Journal and elsewhere that will give

your HP-41 capabilities you probably never dreamed of.

1 The PPC calculator Journal (PPC CJ) is a publication of

Personal Programming Center (PPC), a non-profit public benefit

California Corporation dedicated to personal computing. PPC

has several thousand members, most of whom are fellow iHP-41

enthusiasts. PPC members have been responsible for virtually

every discovery in the field of synthetic programming,

beginning with the first description of synthetic programming

by William C. Wickes in the PPC CJ in 1979. The PPC Calculator

Journal continues to be the primary source for the latest

information on synthetic programming. To find out how you can

get the PPC CJ, see Appendix C.

2 The PPC ROM is a custom ROM plug-in module for the HP-41,

designed by PPC members and manufactured by Hewlett-Packard.

It contains 122 programs, most of which are usable as

subroutines in your own programs, and most of which contain

synthetic instructions. The manual is an astounding 492 pages

long and has probably not been fully read by any one person.

See Appendix C to find out how you can get the PPC ROM.

CHAPTER ONE

CREATING YOUR FIRST SYNTHETIC INSTRUCTION

A decimal (base 1@) number xyz has the value

x‘l®2+y°lfl+z'l, where x, y, and z are any digits from 0 to 9.

Similarly a binary (base 2) number qrst, (the subscript 2

indicates base 2) has the value q'23+r'22+s'2+t, where q, r,

s, and t are digits from @ to 1. g is the "eights" digit, r is

the "fours" digit, and so on. For example 101ll, = 8+2+1 = 11,

and 11111111, = 1-27+1+26+41-25+1-2%4+1-23+1-22+1-2+1 =
128+64+32+16+8+4+2+1 = 255.

A hexadecimal (base 16) number uvjg has the value u‘lé6+v,

where u and v are hexadecimal digits from zero to fifteen.

Since there aren't any ordinary digits that correspond to the

numbers ten through fifteen, it is standard notation to borrow

them from the alphabet: Ao = 10, Bjg = 11, Cjg = 12, Djg =

13, Ei6 = 14, Fie = 15. For example C516 12°16+5 = 197, and

FFi1¢ = 15°16+15 = 255. Incidentally, the shorthand "hex" will

be used throughout this book. It means the same as hexadecimal

or base 16.

If you are not familiar with base 2 and base 16 number

systems, read the last two paragraphs again and give them a

little thought. Like the rest of this chapter, it should all

begin to fall together after a couple of readings. Hang in

there, because we're going to start having some fun by the end

of this chapter.

The basic unit of program memory in the HP-41 is called a

byte. A byte is a collection of eight bits (binary digits)

that can range in value from 00OPPYUVD base 2 to 11111111 base

2, or equivalently from @ to 255 base 1¢J. Although a byte can

take on only 256 distinct values, there are thousands of

distinct HP-41 instructions. The STO and RCL instructions

alone have more than 40@ variations. This variety is acheived

by allocating more than one byte for some types of

instructions. Simple instructions like +, LOG, and MOD occupy

-5-

only one byte of program memory. Instructions like VIEW 14,

RCL 99, and IREG IND X require two bytes =-- one for the

function name, or prefix, and the second one for the suffix. A

few types of instructions require three bytes, while text

lines require up to 16 bytes (for a 15 character text line).

Synthetic instructions can be created by removing prefix

bytes from two-byte instructions, using a simple procedure

described in this chapter and the next. As you shall see in

the examples in this chapter and the next, the removal of a

prefix frees the suffix byte, which can in turn become a

prefix and attach itself to the following byte or bytes. By

carefully selecting which instructions we start with, we can

force a wide variety of synthetic instructions to appear after

the original prefix byte is removed. To remove prefixes we use

a workhorse key assignment called the "byte grabber",

discovered by Erwin Gosteli after some pioneering work by Jack

Baldrige. Incidentally, both Erwin and Jack are members of

PPC, and their discoveries appeared in the PPC Calculator

Journal (see Appendix C item 1). In fact, all the people

mentioned in connection with discoveries or programs in this

book are members of PPC.

Since the byte grabber is not a standard key assignment,

a special procedure is required to create it. You are not

expected to understand the procedure at this point, so just

follow the required steps carefully. Turn your thinking cap

back on after you have assigned the byte grabber.

Go get your HP-41 now, if you don't already have it in

front of you. If you've got any ideas about reading this book

first, then trying the examples later, forget them! The

examples are an essential part of the learning process. Doing

the examples will also make the text much easier to follow.

When you read "go to line @5 and delete it", you won't have to

ask yourself what line @5 is. Trying the examples as you go

may seem to be slowing you down, but it will save you time in

the long run because you won't have to read and re-read.

-6-

If you have a PPC ROM, skip to step 12.

If you do not have a PPC RUM, you can assign the byte

grabber by carefully following an alternate procedure

conceived by Keith Kendall. Follow these steps precisely or

you'll have to start over from step 1. It may take a few tries

to get it right, but be patient.

l. MASTER CLEAR to MEMORY LOST status. This is done by

holding down the backarrow key while turning on the

calculator, then releasing the backarrow key. There

is a more complicated procedure for assigning the

byte grabber that doesn't require a MASTER CLEAR, but

you should consider this step a rite of initiation to

synthetic programming. This certainly won't be the

last time you get MEMORY LOST.

ASN "+" to the LN key (press: shift ASN ALPHA shift +

ALPHA LN). This assignment will be replaced by the

byte grabber assignment.

ASN "DEL" to the LOG key. (Press: shift ASN ALPHA D E

L ALPHA LOG.)

Switch to PRGM mode. You should see 00U REG 45.

Start CATalog 1 (still in PRGM mode) and press R/S

immediately before the display blinks. Repeat this

step if you didn't press R/S quickly enough.

Switch to ALPHA mode, then press the backarrow key

with the .END. in the display.

You should see the program line 4094 RCL W1l. The

origin of this mysterious line number will be

explained in Section 6A. A "bug" in the HP-41's

internal programming has just allowed you to escape

the normal confines of program memory. You are now in

the system scratch register area. More about this in

Chapter 6, too. Now switch back out of ALPHA mode by

pressing the ALPHA switch again.

GTO .@005. You can press LN for 005 to save

10.

11.

12.

keystrokes. You should see @5 LBL @3. You are now 1in

the key assignment area, which will also be covered

in Section 6A. The next step is to remove the dummy

"+" function assignment and replace it with the

synthetic byte grabber assignment. Since the

calculator thinks it is still in a program area, this

replacement is accomplished by keying in program

instructions that correspond to the data needed for a

byte grabber assignment. This correspondence is not

straightforward, so don't expect to understand it at

this stage.

DEL ©@@3. You can save several keystrokes by pressing

USER (to activate the DEL key assignment that you

made to the LOG key), LOG, SQRT (the square root

key). You should see @4 STO U1l. You have now deleted

the assignment of the + function. Next we replace it

by the byte grabber.

Key in the text line "?AAAAAA". If you don't have an

Extended Functions module plugged in you will see 05

"2ATTTTT ". The last five A's went past the end of

memory into what would be the first part of extended

memory and appear only as "ghost" characters.

Switch out of PRGM mode and GTO.. or do CAT 1 to get

out of the key assignment registers. Skip step 12 and

go on to the following text.

If you have a PPC ROM, or if you are returning after

reading Chapter 4 and you already have a copy of "MK"

(Make Key assignments), assign the byte grabber using

this abbreviated procedure instead of steps 1 through

11 above:

a.) Clear any Time Module alarms that are present.

b.) ASN ALPHA ALPHA LN (this clears the LN key of

any assignment

XEQ or "MK"

When the PRE+POSTtKEY message appears, supplyQ
0

-8—

the inputs 247 ENTER+* 63 ENTER+ 15 and R/S.

When the program stops again, you're done. You

can backarrow the PRE+POST*KEY message, but it

is not necessary.

If you have followed the above procedure carefully, the

byte grabber should be assigned to the LN key. But don't try

it yet; the byte grabber can be dangerous if you are not

careful. If you press LN in USER mode and hold it down, you

should see XROM 28,63, followed by the message NULL,

indicating that the time limit for releasing the key has Dbeen

exceeded. When the NULL message appears the byte grabber

operation is cancelled, and it is safe to release the key. In

a few pages you will using the byte grabber, so don't be

impatient. A little knowledge now can save a lot of MEMORY

LOST later.

If you have a card reader, write a status card (XEQ ALPHA

W S T S ALPHA) to record this synthetic key assignment. Then,

if you ever get MEMORY LOST, you can read in track 2 of the

card to reinstate the byte grabber assignment. It is then OK

to just backarrow the prompt for track 1.

NOTE: Whenever you see the notation BG, short for byte

grabber, in the following discussion, it refers to the Dbyte

grabber assigned key, in this case LN. Unless the text

specifies otherwise, the byte grabber key is to be pressed in

USER mode and in PRGM mode.

WARNING: Don't press BG indiscriminately in PRGM mode. If you

press it at or,just above an END, you may need to MASTER CLEAR

to restore use of Catalog 1. (The first thing to try is to BST

to the line that was displayed before you pressed BG the first

time and BG again.) If your keyboard ever "locks up", simply

remove the battery pack, and the printer if it is connected,

for a couple of seconds and replace it. If that doesn't work,

try turning the HP-41 off and on several times with the

-9-

batteries removed. Pulling out any plug-in modules (especially

QUAD MEMORY, XMEMORY, and XFUNCTION modules) may help. It is a

very rare crash that requires overnight removal of the

batteries.

Now switch into PGRM mode, GTO.., and key in these

instructions, which we will be using shortly:

@1 ENTER*

B2 X<> 88

¥3 STO IND 31

04 PI

Line @1 is a normal ENTER*.

Line U2 is obtained by XEQ, ALPHA, X, shift COS, shift

TAN, ALPHA, 8, 8. As you may know from reading the Owner's

Manual, the HP-41 implements many more functions than could

fit on the keyboard. Functions like X<> which are not on the

keyboard must be accessed by XEQ, ALPHA, function name, ALPHA.

The shifted ALPHA characters, like < and >, are unfortunately

not shown on the keyboard. Instead you should look at the

sticker on the bottom of your HP-41 to determine which shifted

key corresponds to the desired ALPHA character.

In case you haven't used indirect instructions before,

line @3 is STO, shift, 3, 1. The PI function can be accessed

by shift, @.

Before using the byte grabber you need to know a little

more about bytes. Put the calculator aside for a few minutes

while you digest the next two pages.

For synthetic programming, it is often convenient to

express the 256 possible values of a byte in hexadecimal (base

16). By splitting the eight bits of a byte into two four-bit

groups and converting each four-bit group to a hexadecimal

digit we get a two-digit shorthand for the value of a byte. In

base 16 the letters A through F designate the numbers ten

=-10-

through fifteen. The equivalence of 4-bit groups to

hexadecimal (base 16) digits is:

binary hex decimal

0OYY 9 9

QUo1 1 1

2010 2 2

0011 3 3

0100 4 4

01901 5 5

3110 6 6

¥111 7 7

1009 8 8

1991 9 9

1910 A 19

1911 B 11

1199 C 12

1101 D 13

1119 E 14

1111 F 15

1 9009 19 lo

For example 0100 1101 base 2 = 4D base 16, and 1111 Q@W1 base

2 = Fl base 16.

Take out your HP-41 QUICK REFERENCE CARD FOR SYNTHETIC

PROGRAMMING (the 2-7/8" by 6" plastic card that comes attached

to the back cover of this book) or refer to the full-size byte

table provided in Appendix D. The byte table contained in the

Quick Reference Card ("QRC") is the Rosetta Stone of Synthetic

Programming, illustrating the byte equivalences that are the

key to creating synthetic instructions.

The byte is based on the hexadecimal representation rcjg:

where r is the row number (© through F) and c¢ is the column

number. Rows U through 7 comprise the first half of the byte

table; rows 8 through F comprise the second half. At the top

of each box in the byte table part of the QRC is the primary

function, or prefix, interpretation of that particular byte.

-11-

Immediately below is the suffix interpretation. At the bottom

of the box is the decimal equivalent for that byte. On the

right are display and printer character interpretations of the

byte; these will be covered in Section 2E.

As an example consider the ENTER+t instruction that you

just keyed in as line @l. Since we find ENTER* in the prefix

(top) portion of the box at row 8 column 3 of the QRC, we can

conclude that ENTER+ is represented internally as 83

hexadecimal. The bottom row of the box at row 8 column 3 tells

you that 83 hexadecimal is equivalent to l3l‘decimal.bYou have

no immediate use for this decimal equivalent, but you'll find

it quite handy when you get to Chapter 3.

Next consider the X<> 88 on line ©@2. We find X<> at row C

column E, and 88 in the suffix portion of the box at row 5

column 8. This means that X<> 88, a two byte instruction,

represented internally as hexadecimal CE 58, occupying two

consecutive bytes. Line 03 is STO IND 31. STO appears at row 9

column 1 while IND 31 appears at row 9 column F. Thus STO IND

31 consists of the two consecutive bytes 91 9F. Line @4, PI,

is represented as hex 72 (row 7 column 2). Note that

instruction line numbers are not stored in program memory. The

HP-41] actually computes the line number by counting

instructions from the top of the program.

Suppose we could somehow get rid of the X<> byte (the hex

CE byte) in the X<> 88 instruction. The suffix 88 (hex 58)

would be left to "fend for itself", becoming the instruction

EtX-1 (see row 5 column 8 of the QRC).

The byte grabber key assignment allows us to easily get

rid of leading bytes in instructions. For this reason it is

sometimes referred to as a "prefix masker". The byte grabber

always operates on the program step following the one shown in

the display, grabbing its leading byte.

Now get out your HP-41 again, turn it on, and verify that

your program is still intact by switching to PRGM mode and

pressing SST to step through it.

To illustrate the prefix masking behavior of the byte

-12-

grabber on the X<> 88 instruction, first PACK (XEQ ALPHA P A C

K ALPHA). Do not GTO.. , since you want to stay where you are

in the program. GTO.. has the undesired effects of attaching

an END to your program and "kicking you out" of it. Make sure

you are in USER mode, then GTO .0¥1 (the step before the X<>

88 instuction). Switch to PRGM mode if you are not already in

PRGM mode, and BG (press the LN key). You'll see a strange

looking text instruction

g2 TTTTTTR .

The starburst (all 14 segments 1lit) at the end of the

text line is, or was, the X<> part of the X<> 88. This hex CE

byte has been grabbed, leaving the suffix byte to become an

instruction on its own. SST and you'll see

¥W3 E+X-1 ,

precisely as predicted.

Review this example until you feel comfortable with it.

Once you have conceptualized the byte structure of memory and

the action of the byte grabber (see Figure 1.1), you are over

the hump and on your way to some real synthetic programming.

What would happen if we grabbed the STO prefix from the

STO IND 31 instruction? According to row 9 column F of the

QRC, the IND 31 suffix byte would become a TONE instruction.

But wait a minute. The TONE instruction needs a suffix of its

own; after all, every TONE is a two-byte instruction. Where

will this newly exposed TONE instruction get its suffix? Let's

find out. BG at line ¢@3 (GTO .03 if you are not already

there and press LN in PRGM mode) to grab the STO bye. SST to

see

U5 TONE Y , a synthetic instruction!

A quick check of row 7 column 2 of the QRC reveals that the

new TONL prefix captured the PI instruction, transforming it

into the suffix Y (see Figure 1.1). It is certainly reasonable

that the TONE instruction got its suffix from the next

instruction in the program -- it had to get it from somewhere.

-13-

You can SST line @5 in RUN (non-PRGM) mode to hear your new

synthetic tone. BST and SST to hear it again if you like it.

There are more than 1090 other synthetic TONEs waiting to be

explored.

hexadecimal program program

byte value: instructions instructions after

row column byte grabbing

8 3 ENTER ¢ ENTER 4

C E X<> TTRTTTTR

5 8 88 E4X-1

9 1 STO TTRTTTTR

9 F IND 31 TONE

7 2 PI Y

Figure 1.1 Transformation of instructions by byte-grabbing.

—-14-

CHAPTER TWO

FREQUENTLY USED SYNTHETIC INSTRUCTIONS

This chapter introduces the eight types of synthetic

instructions that are most frequently used. Regardless of

whether you get involved in writing exotic synthetic

programs, you will want to use some of these easily

understood instructions in your ordinary day-to-day

programming. The types of instructions to be discussed in

this chapter are:

A. Synthetic Tones, which personalize your programs;

B. Synthetic Exponential Data Entry Lines ("Short Form

Exponents"), which save bytes;

C. Flag Register Control, used to preserve the display

setting while constructing PROMPTs;

D. Program Pointer Control, which can freeze the

"flying goose";

E. Synthetic Text Lines, used where synthetic

characters such as parentheses or lower case letters

are needed;

F. The TEXT @ instruction, equivalent to an {HP-25 NOP

(No Operation) instruction;

G. Control of data registers "carved out of" the ALPHA

register, which provides auxiliary storage for

intermediate program results without disturbing the

numbered data registers; and

H. Use of other operating system scratch registers for

temporary data storage.

As examples of synthetic instructions are presented in

this chapter, step-by-step procedures on how to create them

will also be given. These procedures will use the byte

grabber key assignment that was constructed in Chapter 1.

Owners of the PPC ROM have the option of bypassing this

procedure and creating the instructions directly using PPC

ROM routine (Load Bytes). The appropriate inputs

-15-

will be identified for each example. If the synthetic

instruction consists of two bytes and is not a digit entry,

PPC ROM routine @I can be used in lieu of if a key

assignment of the function is also desired. It 1is recommended

that PPC ROM owners try at least some of the examples in this

chapter using the byte grabber instead of I§ or KB .

For those of you without PPC ROMs, a short version of

"LB" will be introduced in Chapter 3, along with instructions

for using the byte grabber to key it up. You may do sO now,

but you will learn more about using the byte grabber by

waiting until you get to Chapter 3 to key up and use "LB".

2h. Synthetic Tones

As mentioned at the end of Chapter 1, there are over 100

possible synthetic tones of widely varying pitch and

duration. Gf the 16 distinct tone freguencies, the first ten

are- the frequencies of TONE U through TONE 9. The durations

of synthetic tones vary from several milliseconds (tones

audible only as a "click") to several seconds. For many

prompting applications a relatively short, high-pitched tone

is required. TONL 89 is one such tone. It can be created as

follows. Delete any leftovers from the Chapter 1 examples and

key in these program lines:

Ul ENTER* / @@ inputs:

g2 STO IND 31 TONE 89 = 159, 89

@3 SIN

Now, still in PRGM mode, GTO .©@01 and BG (press LN in USER

mode). As usual, you'll see a text line like this: U2

TT?2TTTTH . SST to see your new synthetic instruction @3 TONE

9 . It may not look synthetic but you'll soon hear the proof

that it is.

The IND 31 byte (hex 9F) became a TONE instruction after

the STO byte was grabbed. The SIN byte (row 5 column 9 =

-16-

decimal 89) became the tone number. Synthetic tone numbers

from 10 to 10Ul decimal are displayed in decimal with only the

rightmost (ones) digit shown. Thus in this case TONE 89

displays as TONE 9. Other tones, whose second bytes are

between row 6 column ¢ and row 7 column F, carry a letter

suffix as did TONE Y in the Chapter 1 example.

Switch to RUN mode and SST to hear TOLL 89. It may

become one of your favorites for prompting.

Table 2.1 summarizes the synthetic tones that are

available to you. The frequency of a tone is determined by

its column number in the table. The frequencies corresponding

to column A,B,C,D,E, and F form an upward progression, with

the highest synthetic frequency (column F) being just below

that of TONE &, the lowest normal frequency.

The duration of each tone, in seconds, 1is listed in the

table. This duration is the total time the 1iP-41 needs to

execute the tone; therefore the actual audio output duration

will be significantly shorter for the very brief tones.

Curations may vary from those listed depending on when your

lHiP-41 was produced. For example TONE Z is .64 seconds long

on newer HP-41's, versus only ©.061 seconds on the oldest

HP-41's.

As you scan the tone table, you'll notice that TOWEs 37

and 38 are the shortest, at .020 seconds each. The following

example illustrates a use for them. Clear the previous

example and key in the program lines

©@1 DEG / @@ inputs:

g2 CLX

g3 LBL 01

¥4 STO IND 31 TONE 37

©5 RCL ©5

W6 SIN

@7 SQRT

¥8 STO IND 31 TONE 38

@9 RCL 06

159, 37

159, 38

-17-

10 SIN

11 SQRT

12 GTO 01

GTO .¥¥7, BG, and delete the text line. SST to see TONE 8

(actually TONE 38). GTO .@0@93, BG, and delete the text line.

SST to see TONE 7 (actually TONE 37). Now switch out of PRGM

mode, RTN, and R/S. Although the HP-41's internal oscillator

is not crystal controlled, this program makes a nice

tick-tock imitation of a pendulum clock.

Synthetic tones have other applications as well. See

Appendix B for a high-speed Morse code practice program that

uses synthetic tones. You can use Figure 2.1 to help you

choose the right synthetic tones for your applications. You

can pick a tone frequency and duration, and look up which

synthetic tone is the closest to what you need. Table 2.1 and

Figure 2.1 are reprinted with permission from Robert E.

Swanson, who compiled the data they contain for the

HP-41/HP-IL SYSTEM DICTIONARY, which is unfortunately out of

print.

2B. Synthetic Exponential Data Entry Lines

Pressing EEX CHS 3 in RUN mode gives you 1x10~3 in the

X-register. But if you try to do the same thing in PRGM mode

you'll get an instruction that looks like 1lE-3 even though

you only pressed E-3. The calculator insists on adding a

superfluous 1, wasting a byte of program space. Now that we

have a byte grabber I'll bet you can guess how we can get rid

of that 1. Clear the previous example and key in

@1 ENTER* inputs:

02 1E-3 E-3 = 27, 28, 19

PACK (this is necessary this time). As in the Chapter 1

example, you must press XEQ ALPHA P A C K ALPHA, and not

GTO.. , which would be easier to key in. The problem is that

GTO.. leaves you "high and dry", requiring you to execute

-18-

-19~-

H
P
-
4
1
C
/
C
V
T
O
N
E
T
A
B
L
E
:

E
x
e
c
u
t
i
o
n
T
i
m
e
s
a
n
d
X
R
O
M
N
u
m
b
e
r
s
*

3
"

4
5

A
D

E
F

0.
28

60
,0

0

1 .
2
8

60
,0
1

.
2
8

60
,0

2

3 .
2
8

60
,0
3

4
5

0
.
2
8

.
2
8

60
,0

4
(6

0,
05

.
2
8

60
,0
6
0
,
0
7

8 0.
27

60
,0

8

D.
27

60
,0

9

10 P
.0
8

0
,
1
0

11 2.
42

60
,1
1

3.
37

60
,1
2

13 p.
67

0
.
8
0

60
,1
3

14 2.
30

60
,1
4

15 0
.
3
5

60
,1

5

1.
82

60
,1

6

17 0.
32

60
,1

7

18 1.
43

60
,
18

19 0.
29

60
,1
9

20 0
.
4
8

21 0.
94

60
,2

0
60
,2
1

P2 0.
45

60
,2
2

P3 D.
82

60
,2

3

24 0.
29

60
,2
4

25 0.
49

60
,2
5

26 4.
70

b0
,
26

27 3.
23

60
,2
7

1.
75

29 3.
85

60
,2

9

30 3.
46

60
,
30

31 2.
37

60
,3
1

.0
22

60
,
32

3
3 1
.
1
0

60
,3

3

34 2.
25

60
,
34

3
5 1
.
9
0

6
0
,
3
5

 3
6 1
.
1
7

37 .0
20

60
,3
6

60
,3

7

38 .0
20

60
,3
8

39 0.
35

60
,3

9

40 0.
65

60
,4
0

41 0.
49

60
,4
1

42 0.
83

60
,4
2

0.
43

60
,4

3

60
,2
8

44 3.
80

45 1.
71

60
,4

5

46 1.
29

60
,4
6

47 0.
12

60
,4
7

0.
50

60
,4
8

49 .
2
6

60
,
49

50 2.
04

60
,
50

51 1.
85

60
,5

1

52 0.
29

53 0.
14

60
,5

2
0
,
5
3

54 0.
75

60
,
54

55 0.
77

60
,5
5

56 0.
62

57 .0
46

60
,5
7

58 4.
07

60
,5
8

3.
99

0
.
4
1

60
,5

9

60
,4
4

60 3.
19

60
,6

0

b1 3.
77

0
.
3
9

60
,6
1

62 0.
93

60
,6
2

63 0.
27

60
,6
3

1.
79

61
,0

0

b5 P
.2

9

b
1
,
0
1

66 0.
16

D
.4

0
61

,0
2

67 0.
19

61
,0
3

68 1.
01

b9 D.
25

61
,0
4

b1
,0

5

70 .0
72

.0
32

61
,0

6

71 0
.
2
1

61
,0

7

 60
,5
6

72 0.
13

61
,0

8

73 0.
15

61
,0

9

74 3.
58

61
,1
0

75 0
.
2
8

61
,1
1

3.
60

61
,1

2

77 3.
30

6
1
,
1
3

7
8
.
8
5

61
,1
4

79 0.
87

61
,1
5

.0
75

61
,1
6

B1 .
2
2

p
1
,
1
7

82 1.
68

61
,1

8

83 0.
72

61
,1
9

84 0.
30

[1
.1

6

61
,2

0
1
,
2
1

86 0.
46

61
,2
2

R7 .0
93

1
,
2
3

88 0.
56

61
,2

4

89 .0
38

61
,2
5

90 P
.6

1

61
,2
6

0.
39

61
,2
7

3.
12

61
,2
8

D3 3.
78

b1
,2
9

04 0.
30 p1,3095 2.

45

61
,3

1

0.
62

61
,3

2

D7 P
.2

1

1
,
3
3

98 0.
41

61
,3

4

99 1.
21

1
,
3
5

10
0

0.
11

10
1

1.
27

61
,3
6

p1
,3

7

10
2

A
0.
96

61
,3
8

D.
80

1
,
3
9

10
3

B
10
4

C
0.
64

61
,4

0

0.
45

61
,4

1

10
5

D
10
6

H
2.
26

0
.
2
3

61
,4

2

10
7

F
0.
43

61
,4
3

10
8

G
13
.5
4

61
,4
4

10
9

D.
31

b1
,4

5

10 .0
0

1,
46

11
1

J
2.

33
0
.
3
3

61
,4

7

11
2

T
0.
25

1
.
6
6

61
,4
8

N~

.
0
6
1

D

.

6
4 1,4911
3

71
14

Y
0
.
5
5

7
.
4
0 1,501

.
1
9

0
.
4
8 61,5111

5
X

 116LjL17 0.40
.
0
7

1.
20

61
,5

2
 1,53!0.

22
\ 1,5411

8
N p1,5511

9
0}

12
0

P
D.

78
1{

0.
13

4

1,
56

 %1,5712
1

Q
0.

32
|12

2
4

.
2
9

7 1
2
3

a
4
.3

8
51
,5
8
1
,
5
9

 12
4

b
0.
73

B3
.7
7

61
,6
0

12
5

cf
12
6

d
.4
5

EI
,G

I
1,
62

12
7

e
.
8
4 1,63

K
e
y
:

A
c
t
u
a
l

t
o
n
e

d
u
r
a
t
i
o
n

1i
s
a
b
o
u
t

w
i
t
h
i
n

e
a
c
h

b
o
x

i
s

t
h
e

d
e
c
i
m
a
l

T
O
N
L
E

n
u
m
b
e
r
,

.
W
1
l
5

s
e
c
o
n
d
s

l
e
s
s
,

e
x
e
c
u
t
i
o
n

t
i
m
e
,

a
n
d

X
R
O
M

n
u
m
b
e
r
s
.

a
n
d

m
a
y

d
e
p
e
n
d

o
n

t
h
e

d
a
t
e

o
f

m
a
n
u
f
a
c
t
u
r
e

20—

—
~ O [w
v
~ L
l
= — - = o — — o
D
O L
l
> L
y

58
]
= o —

— o o

—

o

A
-
f
l
a
t

-5 11
3

2
7

1
1

A

-4 1
2
1

3
7
6

a
)
(
G

1
0

1
2

0

D -3 13
1

C
9
3 1

7

4
5 C

-2 14
3

9 D
-
f
l
a
t

E
-
f
l
a
t

F
C

E
-
f
l
a
t

G
C

E
-
f
l
a
t

8 78
8

9

10
51

Catalog 1 and interrupt it to get back into your program. You

may save a little time in the long run by assigning PACK to a

key:; Jjust ASN ALPLA P A C K ALPuA and press any key that

doesn't already carry an assignment that you need.

Now GTG .0kl and BG. Lelete the text line -- the

starburst at the end of the text line is the captured

superfluous 1. SST to see Y2 E-3 , a synthetic exponential

data entry line, often called a "short-form exponent".

You can try this synthetic instruction by SSTing in RUN

mode. You'll find that L-3 works just as well as 1lE-3. It

obviously saves a byte of program memory, but you should also

be aware that it executes faster than 1E-3 to boot.

Lxecution time, but not memory, can also be saved by

using the decimal point instead of the digit ©® for a zero

entry, and L instead of the digit 1 for an entry of one. The

lone decimal point 1s not a synthetic instruction, but the

lone £ is. o create it, just grab the STO prefix from a STC

27 instruction. Row 1 column B of the (RC shows that the 27

suffix will become an ELEX instruction.

It was stated earlier that PACKing is necessary when you

want to grab the leading 1 from an exponential data entry

instruction. The reason is that all digit entry instructioéns

are preceded by an invisible NULL byte (row @ column @) that

serves solely tc separate the new digit entry instruction

from the previous instruction. Do not confuse NULL bytes

with the NULL message that appears when you hold a key down

for 2 seconds after the function preview appears. As its name

implies, a NULL byte is a place holder that does nothing when

executed (except when it is a suffix in an instruction like

X<> ¥¥ or IREG U@). NULL bytes, which are always invisible

except when they are within text instructions, are created

when instructions are deleted and are removed by PACKing.

This behavior will be explained and illustrated in Chapter 5.

In the first example of this section we used PACK to

remove the null that the I[iP-41 inserted between @1 ENTER+* and

02 1E-3 . If line 01 had been a digit entry instruction, the

-21-

null would not have been removed by PACKing. It would have

been needed to maintain the separation of lines ©J1 and 02.

Except for this special case, PACKing will always remove the

null.

But there is another way to remove the null. One can

simply key in a one-byte instruction to fill the space that

is being held open by the null. Let's try this on the E-3

example. Clear line 902 and key in

g1 ENTER*

92 1E-3

There is now an invisible null between lines @1 and ©2. Since

we want to grab the 1 from 1lE-3, not the null, we fill the

null first. GTO .001, or just BST, and press RDN (roll down).

This is a one-byte instruction that overwrites the NULL byte.

Now BG and capture the leading 1. Backarrow twice and you'll

have

¥1 ENTER*

92 E-3

Thus the addition of two keystrokes to the procedure

introduced at the beginning of this section eliminates the

need for PACKing. This can be especially advantageous when

you're adding a synthetic exponential data entry instruction

to a long program which takes several seconds to PACK.

Chapter 5 will fully explain and illustrate the elusive

behavior of nulls. It uses a synthetic technique to make them

visible. Ambitious synthetic programmers who want to try

fancy tricks like constructing a synthetic line -E should

note that whenever you want to include a negative sign in a

digit entry line the appropriate byte is row 1 column C, NEG,

not row 5 column 4, CHS. The CHS key governs two different

operations: negating a digit entry and negating an existing

number .

-22=

2C. Flag Register Control

Normally when a program constructs an alpha message

containing numbers, the display mode is altered. For example

the sequence

Pl 1.01 Register number index -- 1 to 10

@2 STO 90

@3 FIX ¢ These two steps are needed to make

Jd4 CF 29 the register number appear without

¥5 LBL 61 a decimal point in the prompt

go "INPUT " (Note there is a space following T)

@7 ARCL @Y Append the register number

g8 "2

¥9 TONE 9

19 PROMPT

11 STO IND W@ Store the input in the current

12 ISG 00 register; add 1 to register index

13 GTO ¥l

Line @6 is XEQ ALPHA T O W E ALPHA 9.

Line @7 1is obtained by ALPHA shift RCL

0 U, while line ©¥8 is ALPHA shift XEQ 3

ALPHA.

prompts for inputs numbered 1 to 10 and stores them in data

registers 1 through 1¢J. It has the undesirable feature that

lines 63 and Y4 change the display mode to FIX @. Synthetic

programming offers an easy way to avoid altering the display

mode in cases like this one.

It's time for a brief digression about flags. Since a

flag has only two possible states, set and clear, it makes

sense for the calculator to use one bit (binary digit) to

represent each flag. As it happens, the set state 1is

represented by 1 and the clear state is represented by @J. We

saw in Chapter 1 that a byte consists of eight bits. The

HP-41 Owner's handbook reveals that a register consists of

seven bytes. Thus there are 8x7 = 56 bits in a register. If

-23-

the number 56 sounds familiar, perhaps it's because the 1HP-41

has 56 user and system flags, numbered ¥ through 55. So it

shouldn't be too surprising that all 56 flags occupy exactly

one reygister 1in the LP-41.

The flag register is one of the sixteen hP-41 system

scratch registers. You already know the first five: the stack

registers 17, Z, Y, X, and L. The names of the rest are found

along row 7 of the CRC. The name of the flag register is d

(row 7 column L).

Low to the case at hand. We want to preserve the display

setting while constructing a numerical message. To do this we

can KCL d before forming the message, saving the original

flag register in X. After forming the message we 510 d ,

transferring the original flaqg register contents from X back

into the flag register. 'this restores all 56 original flag

settings, including the display setting.

For the example given at the beginning of this section,

this is accomplished as follows. Key in

vl 1.081 /@@ inputs:

K2 STO WO

¥3 LBL 61

g4 "inpuT "

U5 STG IND 16 RCL d = 144,126

g6 AVIEW

87 FIX ©

8 CF 29

09 ARCL 0U

1o STCG IND 17

11 AVIEW

12 "e2"

13 TONE ©9

14 PROMPT

15 STU IND @

16 ISG 0P

17 GTO ©1

STO d = 145,126

-24-

GTO .009, BG, and delete the text line. SST to see STO d

GTC .004, BG, backarrow, and SST to see RCL d . The IND 17

byte (row 9 column 1) became STO, the IND 16 byte (row 9

column @) became RCL, and both AVIEW instructions (row 7

column E) became d suffixes. This version of the program will

prompt for input for data registers 1 through 10. When it is

finished, the display mode will be unchanged, rather than the

distinctly unfriendly FIX g.

8l i.8i
82 570 o4

83+LBL 8l
84 “INPUT -
85 RCL d
86 FIX @
87 CF 29
88 ARCL @m
89 570 4
18 =F2"
11 TONE 9
12 PROMPT

13 5T0 IND @8
14 ISG o8
15 GT0 81

The RCL d / STC d combination can be used anywhere you

want to preserve the status of the display mode, trig mode,

or other flags. The original flag register can be stored

anywhere in the stack, but it should not be stored in a

numbered data register. Data retrieved from a numbered data

register is subject to normalization. If the 56 bits aren't

in a configuration that the 1P-41 recognizes as an alphabetic

or numeric form, it will change bits as necessary to make it

an alphabetic or numeric value.

The detailed specification of what bit patterns are

recognized as alphabetic or numeric data is beyond the scope

of this book but for our purposes here an abbreviated rule on

normalization will suffice. Any 56-bit data pattern whose

-25.

first four bits are @U@W1l can be safely stored into and

retrieved from a numnbered data register. If the first four

bits are other than @90l the data is subject to normalization

(hence possible alteration) when retrieved. This is of course

no problem if the data is actually numeric or alphabetic.

Normalization is only a problem when dealing with

non-standard bit patterns such as flag register contents.

I1f you wish to store a set of flag settings in a

nurmbered register, you need to set the first four bits to

WWwl beforehand. This is easily done as the following example

will illustrate. Clear the previous example except for its

RCL d and STC d instructions. Then GTO .06 and key in

CF 6o These first four lines set the

Cr 01 first four bits of the flago
©

r
S

< o CF 02 register to the pattern WOG1l.

L4 SF ©¥3

g5 RCL d

go STO Wl

U7 GRAD

w6 SEF Ol

09 CF €3

lu STCP

11 KCL W1

12 STO da

2witch out of PRGM mode, RTI, and R/S. iiote that flag 1 and

GRADU mode are set. R/S again to see the flags returned to

their original state, with flags ¢, 1, and 2 clear and flag 3

set. If you don't mind an example that requires a little

cleanup work with your flags you can change line Wl to SF W@

and verify that many flags are changed when the program is

executed. For a gquicker cleanup you may wish to use the copy

of the original flags that will be residing in stack register

Y at the completion of the program. Since this copy wasn't

stored in a numbered data register it's unchanged. Just RDN,

GTO .Wl2, and SST to restore the flags.

-26—-

2D. Program Pointer Control

The HP-41 maintains a program pointer in one of its

operating system scratch registers. This pointer designates

what part of memory will be displayed when PGRM mode 1is

selected. The system scratch register that contains the

program pointer (together with some of the return pointers --

these are discussed in Section 6A of this book and in the PPC

ROM User's Manual under "Line by Line Analysis of ") is

designated the "b" register by the HP-41 operating system.

To illustrate the ease of program pointer control on the

HP-41 try the following example. Clear the previous example

and key in

Ul ENTER#+ @/ @ inputs:

@2 STO IND 16 RCL b = 144, 124

63 MEAN

@4 STO IND 31 TONE 89 = 159, 89

@5 SIK

@6 STO IND 17 STO b = 145, 124

@7 MEAN

GTO .@W5 , BG, backarrow, GTO .993 , BG, backarrow, GTO .0@1,

BG , backarrow twice, and PACK (do not GTO..). Switch to .RUN

(non-PGRM) mode, RTN, and R/S. You'll hear the rapid staccato

of repeated TONE 89's. The "flying goose" is frozen in place.

How does this work? The RCL b instruction copies the

program pointer into the X register. The TONE 89 is executed,

then the STO b puts the previously recalled value back into

the program pointer. At the time the program pointer was

originally recalled the next instruction to be executed was

TONE 89. Therefore the STO b instruction causes execution to

jump back to the TONE &9 instruction. If you RTN and SST this

program you can verify that the sequence of execution is RCL

b, TONE 89, STO b, TOLL &9, etc.

The reason that the flying goose holds still when this

program is run is quite simple. The goose 1is programmed to

move one position each time a LBL is executed. But there are

=27

no labels in this program, despite the looping. Thus the

goose is unable to move.

The next example provides the answer to an HP-41 trivia

question: What is the shortest "infinite loop" on the HP-417

The answer is one program line, 2 bytes. Delete the TCNE 89

from the previous example and PACK. You now have

Wl RCL b

W2 STO b

If you RTN and SST this program, you'll find that the

execution sequence is RCL b, STO b, STO b, STO b, STO b, ---

ad infinitum, although the line number keeps increasing. For

SST execution the HP-41 always increments the line number

unless it executes a GTO, XEC, RTN or END instruction, in

which case the line number is recomputed. The calculator does

not recognize STC b as a "jump" instruction, so it doesn't

bother to recompute the line number. If your SST finger were

extremely durable, you would find out that the line number

counts all the way up to 4094 before starting over at ©2. As

you will learn in section 6A, the number 4695 has a special

meaning to the HP-41l's internal programming. This number

means that the line number needs to be recomputed.

For non-SST, free-running program execution, the

calculator does not update the line number at each step. That

would needlessly slow execution.

Advanced synthetic programming techniques are needed to

fully utilize the power of the STO b instruction. The

ultra-fast Morse code program in Appendix B illustrates

precompiled indirect branching, a relatively straightforward

application of program pointer control. Also, the sequence d,

STC b, GTO .0W2 is an easy way to move the program pointer

into the key assignment registers. Details of how information

is stored in the key assignment registers can be found in the

PPC ROM User's Manual, under "Background for 3 ".

2E. Synthetic Text Lines

The HP-41 differs from its predecessors most notably in

that it provides alphanumeric capability. This capability can

be used to label outputs or prompt for inputs. However the

set of display characters available seems to be rather

limited. For example there are no parentheses or quotation

marks.

Synthetic programming techniques permit 21 additional

distinct display characters to be used in text instructions,

including parentheses, quotation marks, apostrophe,

ampersand, and others. These synthetic display characters can

be edited into a text instruction in a way which we shall

describe here. PPC ROM programs provide two alternate

methods. The simplest 1is to use to create synthetic text

instructions directly. The "¢-transfer" method, which

reguires a supportive program such as PPC ROM program . |,

is also available. The first of these methods will be

presented in Chapter 3. The second shall be introduced in

Section 4B.

The byte-grabber method of creating synthetic text

instructions, which is introduced in this section, is fairly

simple and requires very little setup (just a byte grabber

key assignment). Therefore regardless of the availability of

other methods you should follow through the byte grabber

examples of this section. You may find it the most convenient

method for creating one or two synthetic text instructions.

Cwners of a printer or an Extended Functions module may

be acquainted (through the functions BLDSPEC and XTOA,

respectively) with other, more cumbersome ways of creating

synthetic display characters. In this section we will show

that synthetic text lines can be used to save many bytes over

the normal methods which use BLDSPEC or XTOA.

The structure of a n-character text instruction is quite

simple. A hex Fn byte (row F column n) precedes n bytes, each

of which represents a character. Thus n+l bytes of program

-29-

memory are needed to hold an n-character text instruction.

The character-byte correspondence is illustrated in the byte

table, which is part of the guick Reference Card for

Synthetic Programming. For example a row 5 column F byte

displays and prints as _ . Certain synthetic characters

appear substantially different on the printer compared with

their displayed form. For example row & column 4 displays as

X but prints as ©« . A byte is only interpreted as a character

when it is preceded by a row F byte that brings the byte in

gquestion into the scope of the text instruction. In the

absénce of a row F byte, program bytes are interpreted in the

normal manner, as instructions or suffixes for previous

instructions. kow F bytes can thus be regarded as TEXT

instructions that require suffix bytes. The difference

between TEXT instructions and most other instructions 1is that

the number of suffix bytes 1is variable and that a TEXT

instruction triggyers a very different interpretation of

suffix bytes, namely the character interpretation.

Synthetic text lines can be created using the byte

grabber in a four-step procedure. First a text line of the

desired length is created, with X's in the positions where

synthetic characters are required. Then the TEXT instruction

prefix is grabbed. This frees the suffix bytes to be

instructions, rather than characters. In this form the X's

can be replaced by instructions corresponding to synthetic

characters. The final step is to release the grabbed TEXT

prefix, which then captures the edited bytes and converts

them to characters.

An example should make this procedure clear. Suppose we

want to create the text line "HP'S #1" . Clear the previous

example and key 1in

¥l ENTER*? inputs:

@2 "HPXS X1" 247, 72, 80, 39,

83, 32, 35, 49

GTO .00l and BG but do not backarrow the text line. It

contains the captured TEXT 7 prefix that you'll need later.

-30-

SST several times and you'll see that you now have:

ul ENTER*

g2 "T2TTTTR"

w3 I-

W4 LN

L5 E+X-1

V6 Y4+X

07 KCL WL

W6 E+X-1

K9 STO ©¥1 .

Lines ©¥3 through W9 each correspond to a character from the

original text line. For instance, RCL @U¢ corresponds to the

space. Row 2 column ¥ of the ¢(¢RC verifies this

correspondence. What we'd like to do now is to.replace the

E+X-1 instructions that correspond to the X's. GTO .008 and

backarrow the itX-1 . We wanted a # symbol in this position.

Checking row 2 column 3 of the GRC we find that the

corresponding instruction is RCL ©3 . Key in RCL @3 as the

replacement for line w8. Now GTO .45 and backarrow the

E+X-1. Row 2 column 7 of the GRC tells us to key in RCL @7 as

the new line U5 to get the apostrophe character.

If you have followed the instructions carefully you

don't really need to PACK, but it can't hurt. You should have

0l ENTER*

w2 "TTTTTR"

w3 I-

K¥4 LN

@5 RCL 07

U6 YtX

©7 RCL o

¥8 RCL ©3

09 STO Wl

Now GTO .0W1l, and BG. You have grabbed the TEXT prefix from

line ¥2. This released the gquestion mark and the starburst to

become instructions. SST and you'll see that the question

mark became STO 15 (check row 3 column F). SST again and

-31-

you'll see that the starburst has regained its former

identity as a TEXT 7 instruction, in turn capturing the

following 7 bytes as text characters. Thus we now have

U1 ENTER*

2 "T22TTTT@"

3 STO 15

g3 "HP'S H1" .

If you have a printer you may wish to compare the way

these synthetic characters print with the way they display.

(If you don't have a printer just look at the lower right

corner of each box in the QRC to see the way that byte prints

as a character.) You'll find that the apostrophe and the #

symbol print as expected, but the starburst vanishes without

a trace. This vanishing behavior is to be expected in program

listings from any character in rows 8 through F. This point

will be discussed further toward the end of this section.

The append instruction is unique among HP-41

instructions in its implementation. An append instruction is

a text instruction whose first character is the append

character + (row 7 column F). Since the append character

takes up the first character byte of the text line and the

text line cannot exceed fifteen characters, the maximum

number of characters that can be appended is fourteen. If the

append character is synthetically inserted into a text

instruction in a position other than the first character

byte, it loses its privileged "control character" status and

becomes an ordinary character.

Let's edit some synthetic characters into an append

instruction. Key in

J1 ENTER*

g2 "+ABCDEFGHIJKL"

GTO .01 and EG but do not backarrow. The byte grabber's text

line will hold the TEXT 13 byte from the former line @2 until

we are finished editing. SST through the program and you

should see

-32-

01 ENTER*

g2 "T22TT——@"

93 CLD

04 -

g5 *

ge /

B7 X<Y?

g8 X>Y?

P9 X<=Y?

16 I+

11 -

12 HMS+

13 HMS-

14 MOD

15 %

Line ©3 is the append control character (row 7 column F).

Lines 04 through 15 correspond to the characters A through L.

See row 4 of the QRC for the correspondence. Now GTO .0Q04 and

DEL ©12 (XE¢C ALPHA D E L ALPHA ¥ 1 2). This deletes lines 04

through 15. We're going to replace all 12 characters by

synthetic characters. We can simply key in the instructions

corresponding to the characters we want. Try keying in these

instructions:

instruction: character:

04 - A

J5 LBL 00 *

g6 LBL 11 M

g7 RCL 02 "

g8 RCL 08 (

©9 RCL 09)

19 STO 11 » (semicolon)

11 ASIN \

12 DEC _

13 CLD r

14 1/X T

15 + @

-33-

Now PACK just to be sure there aren't any nulls present.

Delete line W4 to create a WULL, then GTO .60l, BG, and

backarrow. You should see

Ul ENTER*

P2 STO 15

63 "ETRAM() NTR

The inputs for this example are 253, 127, ¢, 1, 12, 34,

49, 41, 59, 92, 95, 127, 96, and o©4.

Put "ABC" in the ALPHA register and execute line ©@3. The

ALPIIA register will then contain "ABCTZ#" (), _+7@". If you

CLA and execute line U3 you'll get a surprise. The ALPHA

register will contain "%X"(),_r7¢". The NULL (overline

character) disappeared! The general rule is that NULL

characters are visible only when they are interior or

trailing characters in the ALPHA register.

I1f you execute ASTO X, even the interior and trailing

nulls will be invisible in the X register, but they will

still be present. This can be verified by trying the X=Y?

test. The result will be NU if, for example, the X register

contains an invisible null while Y does not, even if the two

registers display the same way. This behavior is not useful

enough to merit an example, but you should be aware that

viewing an ASTOred string that contains nulls will not reveal

the full structure. You should use ARCL and AVIEW when in

doubt.

Printer owners may be aware that the printer function

BLDSPEC can be used to generate any synthetic display

character. For example the instruction sequence

gl . (decimal point)

B2 X<>Y

W3 BLDSPEC

¥4 PRX

will create a single display character corresponding to the

decimal value (@ to 127) in the X register. It will then

print the character as well.

Try 38, GTO .@¢1l, R/S and you'll get the ampersand, a

-34~

synthetic character. Row 2 column 6 of the QRC shows how the

displayed version of the ampersand compares to the printed

version. Try 5, R/S and you'll get the one-armed man % in the

display and the Greek letter E on the printer. Row @ column 5

of the CRC verifies this result. A large number of the 128

standard printer characters display as starbursts. Something

like this must be expected since the 14 segment display does

not have the flexibility of the printer's dot matrix output.

Owners of the Extended Functions module have available a

powerful function, XTOA, that can be used to create synthetic

display characters. XTOA is a much faster version of PPC ROM

routine . Assigyn XTOA (or) to a convenient key and

try CLA, 38, XTGA. Switch to ALPiHA mode and you should see

the synthetic display character &. If you now do ALPHA(off),

5, XTOA, ALPhA(on), you'll see &%X. The one-armed man

character (decimal equivalent 5) has been appended to the

alpha register. To compare the printed versions you can

execute PRA.

Printer owners will appreciate the byte savings that are

possible by using synthetic text instructions to generate

lower-case and mixed-case text. Consider the normal method of

creating the printed output "lhewlett-Packard"

vl "H"

02 ACA (load i into the print buffer from ALPIiA)

©3 SF 13 (switch to lower case)

¥4 “"EWLETT-"

65 ACA (add lower case characters to the buffer)

W6 CF 13 (switch back to upper case)

@7 "p"

©¥8 ACA

9 SF 13

19 "ACKARD"

11 ACA

12 PRBUF (print the buffer contents)

13 CF 13 (back to upper case mode)

-35-

The byte count for this monstrosity is 37 bytes, compared

with 18 bytes for the synthetic text line "Hewlett-Packard"

followed by a PRA command. Moreover every mode change,

between upper and lower case in this example, uses a valuable

print buffer "register" (actually a byte). This is discussed

in more detail on page 19 of the July 1980 PPC Calculator

Journal. The synthetic text line approach conserves print

buffer space as well as program memory. Of course most of the

lower case characters (all but a,b,c,d,e) in the synthetic

text line appear only as starbursts in the display, although

the text line prints properly in a program listing. If you

can tolerate the somewhat messy SST display, you can achieve

dramatic everyday byte savings by using synthetic text lines

wherever you require lower-case or mixed-case printing.

Synthetic text instructions have much wider application

than just generation of nonstandard display characters. They

provide a simple, fast method to enter needed bytes under

program control. Byte loader programs (Chapter 3), key

assignment programs (Chapter 4), and other very powerful

synthetic programs use synthetic text lines extensively.

Using the first example from this section, we can illustrate

the simplicity of synthetic text lines compared to the next

best alternative, the XTOA function of the Extended Functions

module.

Goal: Create the synthetic text "HP'S #1"

Best Method: synthetic instruction @1 "HP'S #1"

Total bytes used: 8 Execution speed: fast

Next Best: use XTOA gl "Hp"

or g2 39

@3 XTOA (or XrROM (3)

@4 "+s "

@5 35

@6 XTOA (or XROM)

@7 "H1"

Total bytes used: 18 Execution speed: slower.

-3060-

Printer owners who like to use BLDSPEC to manufacture

"custom" printer characters can save bytes and speed up their

programs by using synthetic text instructions. The sequence:

7-character synthetic text instruction, RCL M, ACSPEC,

substitutes for the normal sequence: number, BLDSPEC, number,

BLDSPEC, ..., number, BLDSPEC, ACSPEC. The RCL M instruction

will be explained in section 2G. Details of the

correspondence between the normal BLDSPEC numbers and the

required 7-character synthetic text instruction can be found

in the PPC ROM User's Manual under EM, or in the June 1980

PPC Calculator Journal.

For more exotic synthetic programming, synthetic text

instructions often need to contain bytes from rows 9 through

F of the QRC, which correspond to multi-byte instructions.

The byte-grabber technique presented earlier in this section

does not usually allow creation of such text instructions.

The easiest way to create these instructions is to use a byte

loader program, as you will see in Chapter 3. But beware!

Synthetic text instructions containing bytes from rows 8

through F appear as expected in the display but print

strangely. These row 8 to F bytes all display as starbursts.

If they are printed via PRA, they will appear as shown on the

QRC. For example & row C column D character displays as a

starburst but prints as M. However if you list the program,

all the row 8 to F characters in the text instructions will

disappear, without even leaving spaces to hint at their

presence. Certain of these characters, the ones that are

shaded on the QRC, will cause additional strange behavior

when listed (skipping spaces, switching to lower case, etc.)

If this messes up your listing, manually GTO the following

line and LIST the rest of the program. Incidentally, NORMAL

mode listings give a slight hint of the presence of synthetic

characters in that the statement number will usually be

indented if an invisible character is present. If you're

interested in learning more, consult the July 1980 PPC

-37-

Calculator Journal for an extensive, clearly written

description of these printer control characters.

2F. The TEXT O instruction

The HP-41 allows text instructions up to 15 characters

long, or 14 characters plus the append symbol. The first byte

of a text instruction is taken from row F of the QRC, with

the column number denoting the number of characters in the

instruction.

But what about column zero? By logical extension, a row

F column ¢ byte would appear to denote a text line of length

zero. One might therefore expect such a TEXT ¢ instructions

to be the equivalent of CLA. Let's find out. Key in

o1 "ABC" input: @@ input:

P2 STO IND T 249 240, 240

To key in line @2, press STO shift

. (decimal point) 9 (T).

GTC .@00l, BG, and backarrow. The STO has been removed, and

the IND T (row F column J) now assumes the identity of a TEXT

¥ instruction. This instruction displays as a text symbol

with nothing following. It prints as (nothing between

quotation marks). Now run the program and switch to ALPHA

mode. Surprise! The "ABC" that was loaded into the ALPHA

register by line @1 is still there. The TEXT © instruction is

not equivalent to CLA. Further experimentation will reveal

that TEXT & has no effect on the ALPHA register or any other

register (including the flag register). TEXT ©® will, like

virtually all other program instructions, enable the stack

lift. (See the Owner's Manual for a discussion of stack

lift.)

What is an instruction like TEXT @ good for if it

doesn't do anything? Suppose we want to increment an unknown

integer in the Y register without disturbing the stack. ISG Y

does this but it will also skip a line if Y was non-negative.

-38-

Therefore we need to follow ISG Y by an instruction that will

not affect the calculator's state whether it is executed or

not. TEXT € is precisely the kind of instruction we want.

Moreover it is the only such one-byte instruction on the

HP-41. "Do nothing" instructions like TEXT ¢ are called NOPs,

short for no operation. NOP keys can be found on the HP-25,

HP-33, HP-55, and some other calculators. Synthetic

techniques have now given your iiP-41 a similar capability.

You'll see sequences like

Wl ISC X

g2 TEXT O

in many synthetic programs. You can use such a sequence

anywhere you need an "increment but do not skip" capability.

Of course TEXT 0 can also be used following a DSE instruction

to decrement without skipping.

2G. Usinyg the ALPHA register for data storage

We have seen that one byte of program memory is required

to represent each character in a text instruction. We might

therefore expect that the 24-character ALPHA register would

require 24 bytes of non-program memory. This is equivalent to

24/7 = 3 registers plus 3 leftover bytes. These registers,

together with the stack registers, the flag register, and

others, are located in a separate section of memory called

either system scratch or the status registers. The name

status registers comes from the fact that the card reader's

WSTS (write status) function records these registers on track

1 of a status card.

Since the flag register and the program pointer can be

accessed directly by synthetic instructions, perhaps we can

similarly access the 3+ registers that comprise the ALPIA

register. The suffix bytes for the flag register and the

program pointer register are from row 7, columns E and C

respectively, of the QRC. You have probably begun to suspect

-39-

that the other row 7 suffixes correspond to the other system

scratch registers. But before you start experimenting,

beware. You can safely RCL any of the status registers (the

"normalization" of stored data mentioned in section 2C does

not apply to status register operations), but don't alter

their contents until you know what you're doing, unless you

are prepared for the worst. For example if you clear status

register c you'll get MEMORY LOST.

The ALPHA register occupies status registers M, N, O,

and part of P. As long as you don't mind altering whatever

was in the ALPHA register, you may use M, N, and O freely,

just as you would use numbered data registers. From what you

have learned about using the byte grabber you should be able

to create the following program:

¥l LBL"RSHF"

b2 CLX

B3 X<> O

P4 X<> N

g5 X<> M .

If you need help, see the instructions at the end of this

section.

For the moment let's concentrate on the X<> M

instruction. Try the sequence CLA, 1.274065002 E-40, X<> M.

For the X<> M you can GTO .©065 and SST in RUN (non-PRGM)

mode. Now switch into ALPHA mode and you'll see #%'@e”™)7 .

What's going on? Let's refer to the QRC to identify the 7

bytes that comprise this character string. Designated by row

number r and column number c the 7 bytes are shown below.

BYTE IN HEXADECIMAL o1 27 40| 65 00 29 60

BYTE IN CHARACTER FORM % | @ e -) T

REGISTER IN NUMERIC FORM +1.| 27 40 65 00 2E-| 40

L J)L |
MANTISSA EXPONENT
(10 DIGITS)

SIGN SIGN

-40-

The fourteen hexadecimal digits that comprise the seven bytes

are W1274065002960. The ten digits of the original X-register

contents are immediately recognizable as the second through

the eleventh of these 14 digits. The first of the 14 digits

is a sign digit. It is zero for positive numbers, 9 for

negative numbers, and 1 for alpgha data. The last three of the

14 digits represent the exponent and its sign. If the twelfth

digit is zero the exponent is positive; if the twelfth digit

is 9 the exponent is negative. The last two digits are the

exponent digits if the exponent is positive. If the exponent

is negative, the last two digits are 100 plus the negative

exponent. In this case the exponent is -4, so the last two

digits are 100+(-40) = 6b. A simple rule that works for

either positive or negative exponents is: add 10@YW to the

signed exponent (that is, add the exponent to 1luWuw@ if it's

positive, subtract the exponent from 100y if it's negative).

Keep only the last three digits of the result. This gives the

correct exponent digits for the HP-41 internal

representation. In this case 1000-40 = 96u.

If we execute CTC .¥E5 and SST again to execute X<> I,

the number 1.2740¢5082 E-40U returns to the X-register and

ALPhHA 1s again clear. Now try another example. With the same

number still in X, execute X<> DN, switch to ALPHA mode, press

append, backarrow, and A. You now have the string %'@e”)A .

Switch out of ALPUIIA mode and execute X<> M again to get

1.274065002 E-59 . Since the character A is hexadecimal 41,

the exponent became 41-10d = -59.

Feel free to explore further the equivalence of numbers

and seven-character alpha strings using the X<> M

instruction. Most numbers will consist primarily of starburst

characters. You should be aware that if you bring an alpha

string into the X register using X<> M, the result may behave

strangely if the two sign digits are not zero or 9 or if

there are digits other than U-9 (that is, nondecimal digits)

present.

When you're using M as a scratch register to store a

-41-

number you probably won't care what the number looks like as

a character string, but the character/number equivalence can

be exploited in some advanced synthetic programming

techniques. For example, if we wanted to enter the number

1.274065002 x 12~49Y in a program we could save 5 bytes of

program memory by using "%'@eT)7"" followed by RCL M.

The X<> N and X<> O instructions behave similarly to X<>

M. The difference is that X<> M places the number in the

rightmost 7 positions of the ALPHA register. The instructions

X<> N and X<> O access the next two groups of 7 characters,

moving from right to left. Figure 2.2 should make this more

clear. You may also wish to try this short example. Load

"ABCDEFGHIJKLMWNOPQRSTUV" into the ALPHA register. Lxecute CLX

and X<> O (use GTO .@¥Y2, SST, SS71). The ALPHA register now

contains "ATTTTTTT 1JKLMNOPURSTUV". The seven characters that

were occupying the O register (see Figure 2.2) have been

replaced by the overline characters that result from null

bytes (row Jd column @). The O register now contains the

number zero. Execute X<> N and ALPHA will contain

"ATTTTTTTBCDEFGHPQRSTUV" . Execute X<> O now and you'll get

"AIJKLMNOBCULDLFGHPURSTUV". Thus, in addition to their utility

as data storage instructions, the STO, RCL, and X<>

instructions for status registers M, N, and O can be used to

slice up and reassemble character strings in the ALPHA

register. These character manipulation capabilities are used

extensively in advanced synthetic programming to isolate

bytes for decoding or to replace certain bytes of a string.

One easily understood string manipulation application is

a 7-character right-handed alpha shift. The program "RSHF"

performs such a shift for strings of up to 21 characters,

removing the rightmost 7 characters.

g1l LBL"RSHF"

P2 CLX

g3 X<> O

¥4 X<> N

g5 X<> M .

42—

L IAiBICIDIEIFlGIHi'lJlKlllHIlloi'lfll"l*lfl"lfl

Figure 2.2 The ALPHA register. Character strings of

length 1 to 24 are always right-justified. Leading positions

are null (hexadecimal @¢) and are invisible.

For example "ABCDEFGHIJKLMNOP", XEQ "RSHF", yields

"ABCDEFGHI". You can SST in ALPHA mode to see how "RSHF"

works.

Now let's see how access to status registers M, N, and O

can help us in numeric programming. tiaving three extra

registers "on the side" can greatly alleviate register usage

conflicts. You can now write many of your subroutines so they

don't use any numbered data registers. That makes them

compatible with any program that only uses numbered

registers. For example many of the routines in the PPC ROM

use no numbered registers, so that programs that call these

routines are free to use any and all numbered data registers.

As a further aid to compatibility it is good programming

practice not to rely on the contents of M, N, and O to remain

the same when a subroutine is called.

Very short subroutines can often use part of the ALPHA

register to avoid using either stack registers or numbered

data registers. The ideal goal is operation equivalent to

internal functions =-- saving X in LASTX, saving the T

register contents (in T), and providing the result in X.

43—~

As an example let's write a subroutine named "CNK" that

will compute the statistical combination function,

C(n,k) = n! = (n-k+1)(n-k+2)...n

k! (n-k)! k(k-1)...1

the number of possible combinations of n items taken k at a

time. This routine is to take the values of n and k from

stack registers Y and X respectively and is to provide the

result C(n,k) in X. The previous contents of Z and T are to

end up in Y and Z as they would for a built-in function. The

value k is to be saved in LASTX, while n is to be saved in T.

bue to the complexity of the calculation, "CNK" cannot

preserve the contents of Z and T without using a scratch

register. We will use status register M. This makes "CNK"

compatible with any calling program that uses only numbered

data registers. A sample "CLK" routine is listed below so you

can key it up and try it out.

g1 LBL"CHK" / E@ inputs:

02 -

O3 E 27 or 27, ©

g4 STO M 145, 117

05 RDN

06 LASTX

¥7 X>Y?

08 X<>Y

@9 LBL 01

19 X<>Y

11 ISG X

12 TEXT © 240 or 240, 240

13 ST* M 148, 117

14 X<>Y

15 sT/ M 149, 117

16 DSE X

17 GTO @1

18 X<>Y

19 RDN

44—~

20 X<> M 206, 117

21 END

To create the synthetic lines use 3TC 27, STO IND 17, RDN,

STO IND T, STO IND 20, RDN, STO IND 21, RDN, STO IND 78, RDN.

For each of the five STO instructions grab the prefix byte by

going to the preceding step in PRGM mode then pressing BG and

backarrow.

Test "CNK" using 88 ENTER* 3 R/S, then 88 ENTER+* 85 R/S.

Both should give a result of 109,736. This is the number of

possible three-note chords on an 88-key piano.

liere's how "CNK" works. At the beginning X contains k

and Y contains n. "CNK" initializes status register M to 1 on

line U4 so that the ST* M and ST/ M instructions in the LBL

Wl loop will work as required the first time through the

loop. After the execution of line ©¥6, M contains 1, X

contains k, and Y contains n-k. Then lines ©7 and @8

interchange the roles of k and n-k if n-k is smaller. This

makes use of the identity C(n,k) = C(n,n-k) to speed

execution where possible. The LBL ¥l loop increments n-k and

multiplies the result into M. Then at line 14 k is brought

back into X, after which it is divided into M and

decremented. At this point (back at LBL @1l ready for the

second pass through the loop), X contains k-1, Y contains

n-k+1, and M contains (n-k+1)/k, the first factor in the

expanded expression for C(n,k) that was given above. The loop

is executed k times, after which X is zero and Y is n. 7The

last three lines put Y in T, and bring the result from M to

X, clearing M.

You may wish to change lines W4, 13, 15, and 20 of "CNK"

to use status register O instead of M. This will allow alpha

strings of up to 14 characters to remain undisturbed in N and

M when "CNK" is used.

-45-

Here is the promised step-by-step procedure for creating

ALPHA register access instructions. Key in

0l LBL"KSIHFEF" /@@ inputs:

@2 CLX

@3 STC IND 78 X<> 0 = 206, 119

¥4 CLX

g5 STO IWD 78 X<> N = 206, 118

06 LASTX

@7 STO IND 78 X<> M = 206, 117

@8 RDN

GTG .0w6, BG, backarrow, GTO .W04, BG, backarrow, GTO .wd2z,

BG, and backarrow. You now have the required synthetic

intructions for "RSHF".

2H. Using other status registers for data storage

Status registers P, (, and a can be used under limited

conditions as temporary data storage. More details of how the

iP-41 operating system uses these registers can be found in

Section 6A of this book and on page 19 of the September 1979

PPC Calculator Journal, but we'll give a brief summary here.

Status register P can be used for storage in a program,

but its contents will be altered if a digit entry line is

executed, or if any operation is performed that causes a

number to be displayed.

Status register ¢ can be used for storage as well, but

its contents are also susceptible to alteration. If you

execute a global ALPHA GTO or XEQ instruction (that is, a GTO

or XEC that refers to a Catalog 1 or 2 label), you'll lose

whatever was 1in Q. This does not apply to ALPHA LBL

instructions. Nor does it apply to XROM instructions, which

are different in structure from ALPHA XEQ instructions, as we

shall see in the next chapter. Q will also be altered if you

spell out an alpha name from the keyboard for a GTO, XEC, or

LBL. Other iastructions that alter ¢ are: any digit entry,

-46—-

SIN, COS, R-P, P-R, Yt*X, SDEV, and any instruction that

causes the alpha register to be displayed (AVIEW, PROMPT, or

PSE with AON). Status register ¢ is used extensively by the

82143A peripheral printer in its exchange of information with

the 41 mainframe. If you plan to have the 82143A printer

attached when you run your programs you should avoid using

the Q register for data storage.

Status register a can be used by any program that will

not cause the subroutine depth to exceed 2. This means that

if the program contains no XEQ instructions it must not be

called as more than a first level subroutine. If a routine

that uses status register a is called as a second level

subroutine, the END or RTN in the main calling program may

not halt execution as it should. If register a wasn't empty

(zero) a RTN will be attempted to an address given partially

by the former contents of register a. You should also realize

that any XEQ or RTN will disrupt the contents of the a

register, shifting it by two bytes. Don't execute PSIZE (from

the Extended Functions module) with anything in status

register a either. The calculator will think that your data

is a set of return addresses and it will adjust them as if

they were return addresses to be revised according to the new

SIZE. All this should be more clear after you read Chapter 6.

Problemns (Solutions follow Chapter Six)

2.1 Using synthetic TONE P and normal TONE 8, construct a

sequence of instructions to produce a Morse code "CQ"

(dah-di-dah-dit, dah-dah-di-dah).

2.2 Using the byte grabber, make the synthetic instruction

-E1l. Hint: Make El first.

-47-

2.3 Using RCL d / STO d , write a short routine to view all

ten digits of the number in the X reygister without

altering the display mode. tliint: Modify the routine

below so that the display mode is restored.

g1

U2

03

04

05

Wo

2.4 Using a

1+1/x,

LBL"VX"

oo (2 spaces)

SCI 9

ARCL X

AVIEW

END

RCL b / STO b loop, compute the Golden Ratio x =

displaying successive approximations.

2.5 a) Construct a sequence using synthetic text instructions

that will generate a prompt "X(n)=?", where n is an

integer from data register Go.

b) Modify this sequence to preserve the display mode.

2.6 Construct an output labeling sequence that will display

"OUT=x*V" without altering the display setting, where x

is to ARCLed in FIX 2 from the X register.

2.7 Construct a complete MOD function that operates like a

built-in function. Registers Z and T are to be

preserved, L replaced by x, Y by y mod x, and X by (y-y

mod x)/x. You will need to use a scratch register such

as M.

2.8 Using the byte grabber, make the two-byte instruction hex

F1 FU (a single-character text instruction, where the

character is hexadecimal F©@).

-48-

CHAPTER THREE

BYTE LOADING

p

If you constructed the examples of Chapter 2 by using

the byte grabber, you will probably agree that the byte

grabber is a powerful tool for rapidly creating many types of

synthetic instructions. However, 1if you need to create

several synthetic instructions at a time, another approach

may be even faster. A special program, called a byte loader,

can be used to create the desired instructions, loading them

directly into program memory. You need only specify the

decimal value (W to 255) for each byte in the desired

sequence.

The theory behind byte loaders is described in the PPC

ROM User's Manual under @@ and also in the Lecember 198&Y

PPC Calculator Journal. byte loading programs were pioneered

by several PPC members, including William Cheeseman, KRoger

liill, John McGechie, William Wickes, and the author. This

book will confine itself to a discussion of how byte loaders

are used.

There are three different byte loading programs that are

available for your use in this chapter. The first of these is

called "LB" (load bytes) and requires only a "bare" HP-41 to

operate. This byte loader program, written by Clifford Stern,

occupies 214 bytes and fits on a single magnetic card.

The second is the PPC ROl program , a superb Dbyte

loader written by Roger Hill. If you have a PPC ROM,

familiarize yourself with the instructions for . They are

similar, but not quite identical, to those for "LB".

The third byte loader, called "LBX", requires an

Extended Functions Module. This program, also written by

Clifford Stern, is a shorter, faster version of "LB" that

makes extensive use of Extended Functions module functions

like XTOA. If you decide to use "LBX", refer to problem 3.5

for the program listing.

-49-

Despite its compactness, "LB" does most of what the PPC

ROM version W does, lacking only such dispensable

conveniences as interruptibility and cleanup messages. All

the conveniences of the RCM version could not be incorporated

without unduly enlarging the program. RCM programs are not

constrained by length because they don't take up any of the

user memory. In any case, what "LB" gives up in amenities, it

gains in speed. If you have an Extended Functions Module, you

should probably use "LBX" (see problem 3.5), since it is both

shorter and faster than "LB".

If you have access to an HP-41 optical wand, you have

the option of entering "LB" or "LBX" directly from barcode.

Appendix E contains barcode for all the utility routines in

this book, providing a fast, error-free method to enter these

synthetic programs into your HP-41. Be sure to use a

protective plastic sheet to avoid damaging the barcode. Gf

course if you would like more practice with the byte grabber,

you can ignore the barcode for now.

if you do not have a PPC RUM or an kxtended Functions

Module, start with the following instructions to create the

synthetic lines needed for Clifford Stern's "LB" :

@1 ENTER*

P2 STO IND 16 (Press STO shift 1 6)

63 MEAN (Press XEQ ALPHA M E A N ALPHA)

¥4 STO IND 17

@5 RDN

Ko STO IND L (Press STO shift decimal L)

G7 CLD (Press XEQ ALPHA C L D ALPHA)

08 ENTER*

@9 ENTER+*

14 LBL 01

11 STO IND 78

12 RDN

13 STO IND 78

14 AVIEW (Press ALPHA shift R/S ALPHA)

-50—

15 €TO IND 78

16 AVIEW

17 STO IND 17

18 RDN

19 STO INL 78

20 AVIEW

21 STO IND 78

22 AVIEW

23 STO IND 78

24 RDN

25 STO IND 17

26 LASTX

27 STO 1IND 78

28 LASTX

29 STO 1IND 78

36 SDuV

31 STU IND 17

32 SDEV

STO IND Y (Press STO shift decimal Y)

34 CLD

35 ENTER*

36 STO IND 78

37 SDEV

38 STO IND 16

39 RDN

4 STC IND 17

41 SDEV

Now grab and delete the STO bytes from lines 40, 38, and 30

(for example for line 40 G700 .039, press the byte grabber

key, and backarrow). Backarrow line 35 (do not PACK) then

grab and delete the STO bytes from lines 33, 31, 29, 27, 25,

23, 21, 19, 17, 15, 13, and 11. Delete lines ©¥8 and ©9

(again, do not PACK), then grab and delete the STO bytes from

lines ©6, 04, and ©@2. Lelete line 91 and key in the

nonsynthetic lines that are required to complete the

-51-

following listing of "LB". Line 61 is a text line containing

the byte

In fact, 1if

a single space. Use 1lE4 for line 72. If you like,

grabber can be used to remove the leading 1.

you're getting into the spirit of synthetic programming,

you'll probably want to replace the "1" digit entries by "LE"

synthetic digit entry instructions.

If you're using the Extended Functions version of "LB",

the above procedure gives you all the synthetic lines you

need (plus a few extras to be deleted), except for line 34,

STO W. To form this line, start with STO IND 17, LASTX, and

grab and delete the STO byte.

Clifford stern's byte loader "LB":

BielBL81 23 ARCL X 47 5F 1 69 GTO 85 93 X0 ¢
@2 CLST 24 °F REGS." 48 %{} d 78 0CT 94 LASTX
@3 BEEP 25 TONE 3 45 INT 71 E4 5 g P TBEEF 3 . 95 ST0 IND T
A4 STOF 26 H?IEH 58 DEC 72 + 95 N3
3610 "4+ 27 PSE 511 738d 97 570 ¢

28 RCL b 52 + 74 FS?C 15 9g Rt
B6+LBL “LE* 29 5T0 I 53 .1 - : *BL 218 1 75 SF 28 99 DSE ¥
87 F57 58 38 "heex 54 76 FS?C 18 {@@ CTO 63B8 GT0 82 3L RO 55 + 77 SF 13 181 GT0 @1
89 i 32 ¥d 56 + 78 F57C 17
18 ENTER$ 33 LF 84 79 SF 18 182¢LBL 85
11 gHTEE’.t 34 !:F fit_'* S7+LBL 83 88 F5? {5 183 “Fe~
{12 CLA 35 CF 86 58 1.88¢ 81 SF 17 184 I5G £

CF 2 36 FS70 @7 g o13 CF 21 3L W(39 ENTER? 82 F57 14 185 GTO &5
14 AVIEW 37 SF &3 83 SF 16 186 X{. ¢ 88 > ¢ 7

ROL

[15 -18 38 FS2L pA+LBL A4 84 %(3 d 187 ROL [
16 GTD =++= 39 SF 86 6 = - 85 ¥¢r [188 ST0 IND Z

2T 89 . :48 F57 62 ARCL Y 86 “ax- 189 XOY
17¢LBL 62 41 SF 87 63 “F7° 87 570 ~L o . . 118 570 ¢
1 7 2 F§3 64 AVIEM 88 ARCL Y 111 GTO @i
19 - 43 bfin99 65 STO [83 {3 » 112 END
28 INT 44 FS?C 11 g6 DN 98 ISC ¥ ;
21 FIX 8 45 SF 18 67 STOP 91 gTo w4 COL'LE
22 CF 29 46 FS2C 12 68 FCoC 22 g spgn BN

Notes: suffix [means M 1line 3w is hexadecimal F4 7F 00 090 02

line 62 is a single space

193 is hexadecimal F2 7F 00

suffix \ means N

line

-52-

Check your program very carefully against the listing.

As with any program that uses status register c, any errors

in it might be sufficient to cause MEMORY LOST when you run

it. Therefore it is a good idea to record the program on a

magnetic card so you will not have to start all over again

because of a minor mistake. Note that some of the synthetic

lines are displayed differently than they appear in the

printed listing. For example line 3¢ displays as "~~~ 8 and

line 1©3 displays as "+~ . The instructions that involve

status registers M and N also appear differently in the

listing than in the display. M is printed as [and N as \.

This correspondence, which is important for several of the

status registers, is illustrated in row 7 of the QRC. ror

example the suffix O prints as J].

INSTRUCTIONS:

here's the procedure for using Clifford Stern's "LB".

The procedure for the PPC RCM's ERB is substantially

similar; details can be found in the PPC ROM user's manual.

At whatever location in program memory where you want to

create a group of synthetic instructions, key in the sequence

LBL ll++ [1]

XEQ"LB" .

(If you're using the PPC RCM, this last instruction will

change itself to XROM"LB".) The number of + instructions

should exceed the number of bytes you want to create by 16.

-53-

If you didn't key up the above set of instructions in

sequence, that is to say if you went back and inserted more

+'s, you should PACK. If a multiple of 7 +'s was inserted

then you don't need to PACK. The reason for this will be

apparent after you read Chapter 5.

Since you'll be using "LB" frequently, it is a good idea

to record the LBL"++" seguence on a card. If you key in 99

+'s (so that line 19l is XEg"LB"), GTO.., and GTO"++", the

sequence will fit on one side of a card. If you have an

extended memory module you could key in "++", SAVLP, to

create an extended memory file for the LBL"++" sequence. It

could then be called up as necessary by GLTP. The magnetic

card approach has the advantage of being immune to MEMORY

LOST.

At this point you can switch out of PRGM mode and XE¢

"LB" from the keyboard or just press R/S if you're at the

last line of the sequence. "LB" will first tell you how many

registers are available for loading bytes, then it will

prompt for each of the seven bytes that comprise each

register. The number of registers available is INT((p-1©)/7),

where p is the number of +'s that you keyed in. Table 3.1 1is

a handy quick reference to determine the number of +'s

needed.

Number of +'s Number of registers Number of bytes

used available available

0-16 0 ©

17-23 1 7

24-30 2 14

31-37 3 21

1U+7n n 7n

Table 3.1. Number of +'s needed for "LB" setup.

-54~

In response to each prompt for a byte, you need merely

key in the decimal equivalent (¥ through 255) of the desired

byte and press R/S. WARNING: If you wish to correct a numeric

entry before pressing R/S, you must press RDN (roll down)

before keying in the correct entry. This is necessary because

very important data is being held in the stack for use by

"LB". This warning does not apply to the ROM version of .

When you have entered all the bytes that you need, just

press R/S without a numeric entry. This terminates the byte

loading process. If you run out of registers, "LB" will

terminate automatically. Let's try an example.

Suppose you want to create a copy of the "CMOD" program

from problem 2.6. Recall that the program listing (in the

Solutions section that follows Chapter 6) included LB inputs:

@l LBL"CMOD" M3/ 3 inputs:

g2 X<>Y

U3 STO M 145, 117

g4 X<>Y

J5 MOD

W6 ST- M 147, 117

@7 LASTX

@8 ST/ M 149, 117

@9 CLX

10 X<> M 206, 117

These decimal equivalents can be used to create the required

4 synthetic two-byte instructions.

Set up as described above with LBL"++", 24 +'s, and

XEQ"LB". Switch out of PRGM mode and R/S. You'll see the

message "2 REGS." followed by a prompt "1?2". The "2 REGS."

message means that you can create up to 14 bytes (2 registers

times 7 bytes per register).

In response to the prompt "1?", key in the first decimal

input, 145, and R/S. Key in responses to each of the prompts

~55-

as shown below:

Prompt Response

1? 145, R/S

2? 117, R/sS

3?2 147, R/S

4? 117, R/S

5?2 149, R/S

6? 117, R/S

7? 206, R/S

1? 117, R/S

2? R/S

The first seven inputs completed the construction of one

register, which was then inserted into the LBL"++" area. This

restarted the byte index at 1 (the first byte of the second

register). Then pressing R/S without a digit entry in

response to the prompt "2?" terminated the byte loading

processing, completing the second register with NULL bytes

and storing it in the LBL"++" area before halting. When "LB"

halts you can press SST once to get to LBL"++". Then you can

switch to PRGM mode and examine your new synthetic

instructions. It is a simple matter to clean up the remaining

+'s and key in the nonsynthetic part of the "CMOD" program.

As you can see, very little knowledge of synthetic

programming is needed to operate the "LB" program. The only

part of the process that requires such knowledge is the

determination of what decimal inputs are needed to create the

desired synthetic instructions. In Chapter 2 you gained much

of this knowledge through using the QRC. For example you

should be able to look at row 1 of the QRC to determine that

-El can be created using LB inputs 28, 27, and 17.

There are still large areas of the QRC, particularly

rows A through E, that have not been explained here. These

areas are explained in some detail in Corvallis Division

columns in the PPC Calculator Journal July, August, and

September 1979 issues. This chapter will give an outline of

-560-

these areas, together with specific references for more

detailed information where appropriate.

What follows is a summary of how to determine which

decimal inputs are needed to create a given instruction. In

most cases you will also need to consult the QRC. Decimal

values are found at the lower left corner of each box in the

QRC. For example the decimal number 126 (row 7 column E)

corresponds to either the AVIEW instruction, the suffix 4, or
-

the character -.

I. One-byte instructions

All these are nonsynthetic except for TEXT ¢ (row F,

column ¢, decimal 240). Any decimal value from row U

or rows 2 through 8 will create a nonsynthetic

one-byte instruction unless it is preceded by another

byte that requires a suffix.

Digit entry instructions will merge themselves into a

single multi-digit numeric entry line unless they are

separated by a null or some other type of instruction.

Use decimal values from row 1, columns © through C, to

make synthetic digit entry lines. For example -E-3 is

decimal 28, 27, 28, 19.

II. Two byte instructions

Two-byte instructions have a prefix, or first, byte

from the yellow shaded area of the QRC.

The first category of two-byte instructions is those

in row 9, plus columns 8 through D of row A, and

columns E and F of row C of the QRC. These take the

first byte from the box containing the function name,

plus a second byte from the box containing the desired

suffix. Thus STO M is 145, 117; TONE C is 159, 104;

RCL IND N is 144, 246; LBL X (local label) is 207,

115.

-57-

The second category of two-byte instructions contains

the short form GTO instructions. These take the first

byte from row B plus a second byte of zero. The zero

is filled in by the lHP-41 the first time the GTO 1is

executed. The filled-in byte tells the processor the

jump distance and direction.

The third category of two-byte instructions contains

the GTC IND and XE¢ IND instructions. These take a

first byte of 174 (row A, column E). The second byte

is © through 127 for GTO IND, or 128 through 255 for

XEQ IND. Thus 174, 117 is G7C IND M, while 174, 245 is

XEGQ IND M.

The final category of two-byte instructions contains

all XROM's. These are peripheral functions that reside

in an external ROM (Read-0Only Memory). When the

peripheral is not plugged in, the function appears as

XROM 1i,j , where i and j are two-digit decimal numbers

from O to 63 (actually @ to 31 for i). The number i

designates the identity of the peripheral -- 1 1is

therefore called the ROM ID number. Certain

peripherals contain two 4-kilobyte ROMs, each of which

has its own ROM ID. The number Jj is a seqguential

number of the function (in Catalog 2 order) within the

4K ROM.

XROM instructions consist of a hexadecimal A (binary

1010) followed by two groups of six bits. The first

group of six bits denotes, in standard binary, the

identification number (@ through 31) of the external

ROM. For example, the printer is XROM 29, and the card

reader is XROM 30. The second group of six bits

denotes, again in standard binary, the number (4

through 63) of the function within the external ROM.

For example, WSTS is the tenth function in the card

reader. This can be checked by executing CAT 2 with

.58-

IIT.

the card reader in place and noting that WSTS is the

tenth function name to appear after the CARD READER

header. Thus WSTS is XROM 30, 10. In decimal byte

numbers this is 167, 138 (See Figure 3.1) In general,

the decimal byte number for XROM i, Jj are:

byte 1 160 + INT(i/4)

byte 2 = 64 * (i mod 4) + j

WSTS XROM 30, 10

1016 0111 1909Y0 1610

167 138

FIGURE 3.1

A typical XROM instruction

and its decimal byte numbers.

Three-byte instructions

Three-byte instructions take a prefix, or first, byte

from the green shaded area of the QRC.

The first category of three-byte instructions consists

of the long-form GTO's. All GTO's that refer to labels

other than 0¥ through 14 are three-byte GTO's. However

with LB you can also create three-byte GTO's for

labels U@ through 14. This valuable synthetic

programming technique eliminates the 112-byte jump

distance limitation normally associated with LBLs (@

-59-

through 14. It's not that you can't get to a LBL £0-14

with a normal two-byte GTO instruction; it's just that

the GTO will be much slower. Jump distances of more

than 111 bytes cannot be "remembered" by the GTO

instruction as shorter ones can, because the binary

form of the jump distance doesn't fit into the space

allocated for it in the GTO instruction. The

three-byte GTO instructions have a larger space for

storing the jump distance, so there is no artificial

constraint on jump distance.

Jumps to a short-form label (U to 14) that are

shorter than 112 bytes can use the normal two-byte

GTO, while for longer jumps you should in most cases

use a synthetic three-byte GTO. The difference between

a three-byte GTO 14 and a three-byte GTO 99, other

than the fact that the first is synthetic and the

second is not, 1is that the first requires a one-byte

label (LEL 14), while the second requires a two-byte

label (LBL 99). Thus there is an overall savings of

one byte by using the synthetic three-byte GTO

instruction.

Three-byte GTOs require the following decimal inputs:

byte 1 = 208

byte 2 ¢

byte 3 = 0 to 127

Byte 3 designates the label number. For example 208,

@, 1 is a three-byte GTO €1, while 208, &, 115 is GTO

X (this requires a local LBL X -- decimal 2¢7,115).

The second category of three-byte instructions

consists of the non-alpha XEQ's. These are guite

similar to the long form G7T0's. The only difference is

that the required byte 1 input is 224. Thus 224, ©, 98

is XEQ 98; 224, ©, 1llo is XBE¢ L (which requires a LBL

L -- decimal 207, 1lleo).

-00-

To construct "compiled" GTOs and XEQs (that is, those

for which the jump distance has already been filled

in), refer to page 21 of the August 1979 PPC

Calculator Journal for the detailed byte structure

required.

The third type of three-byte instruction is the END

instruction. The appropriate "LB" inputs to create an

END are 192 and ¥ followed by a third input that

determine the type of END (see Table 3-2).

type of END byte 3 LB input

packed END 9

unpacked END 13

packed .END. 41

unpacked .END. 45

TABLE 3-2

"LB" inputs for byte 3 of an ELD

Always pack immediately after creating an END or an

alpha LBL in order to incorporate it into CAT 1.

The LBLs and ENDs in Catalog 1 form a linked list

upward from the .END. , with the distance to the next

higher LBL or END stored in the first and second bytes

of the LBL or END. The encoding of the distance is the

same as for a three-byte GTO or XEQ, except that the

direction bit is not used. (The direction is always

upward in program memory.) The instructions given here

for creating ENDs simplify matters by allowing the

calculator's PACK operation to fill in the correct

distance for Catalog 1 linkage.

-61l-

IV. Instructions involving ALPHA strings

Text strings require a leading byte from row F of the

QRC (decimal 240 plus the number of characters in the

string) as explained in section 2E. Each character

then requires a single decimal input, usually between

¥ and 127. For example "X (5)=?" is decimal 246

followed by the six character bytes 88, 40, 53, 41,

6l, and 63.

Append instructions are text instructions which have

an append symbol (row 7 column F = decimal 127) as the

first character. The leading byte should be chosen to

allow for the append symbol in the length of the

string. For example "F@" is decimal 242, 127, 64.

Alpha GTO instructions are simply text lines preceded

by a row 1 column D byte (decimal 29). Thus decimal

29, 243, 65, 66, ©67 is GTO "ABC". Alpha XEQ

instructions consist of a row 1 column E byte (decimal

30) followed by a text string. For example XEQ "FX" is

decimal 30, 242, 790, 88.The mysterious W7 instruction

found at row 1 column F is constructed much the same

as an alpha GTO or XEQ, but it is only good for

producing a crash condition that can be cleared by

removing and replacing the battery pack.

Alpha labels are composed of 4 + n bytes, where n is

the number of characters in the label. The appropriate

LB inputs are 192, 6, 241 + n, @, followed by the n

character bytes. Thus LBL"A", a synthetic global (that

is, CAT 1) label, is decimal 192, @, 242, ¢, 65. If

you want the synthetic label to be assigned to a key,

you'll need to use a nonzero value for the fourth

decimal input. You'll also need to set a bit in status

register + or e (see Section 6A). The correspondence

-62-

of decimal byte codes and bit numbers to key locations

is covered in the PPC ROM User's Manual under

background for 3.

A much easier way to assign a synthetic global label

to a key is to use the built-in function ASN. For any

synthetic label that can't be assigned by ASN, you can

use the Extended Functions module's PASN function.

Only very strange labels like LBL ":" fall in the

class that requires PASN.

NOTE: You should always PACK immediately after

creating an alpha LBL or END in order to incorporate

it into CATalog 1.

Practice with. LB until you're familiar with creating

the types of synthetic instructions that were

introduced in Chapter 2.

Problems

3.1 Use LB to create the sequence of instructions

E

STO O

ST+ O

X<> O

STO M

ISG M

TEXT O

IREG IND M

VIEW O

FS? IND M

TONE E

Wy TTTrn
SNy

-63-

neTn

ASTO N

VIEW N

This set of instructions is not particularly useful, but it

does 1illustrate a broad spectrum of synthetic instructions

that can be individually quite useful.

3.2 Write a short nonsynthetic program to convert XROM

numbers to the corresponding LB inputs. For an input of i

ENTER* j the two outputs should be 160+INT(i/4) and 64*(i

mod 4)+j as explained in the section on two-byte

instructions. These two outputs are the decimal inputs

required by LB to create XROM i, j.

Write a synthetic version of this program that replaces i and

j by the two outputs without disturbing the contents of stack

registers Z and T.

3.3 Illustrate the use of synthetic local labels by creating

the sequence

LBL P (not LBL"P")

TONLE 37 (displays as TONE 7)

GTO P (not GTG "p")

3.4 Create a synthetic CAT 1 alpha label longer than 7

characters, for example LBL"RPN CALCULATOR" .

3.5 If you do not have a PPC ROM, but you do have an Extended

Functions module, here is a shorter, faster version of "LB",

also written by Clifford Stern. The instructions for "LBX"

are identical to "LB", and you can use "LB" to help key it

up. The required LB inputs to create "LBX" can be found in

the Solutions section following Chapter 6 if you're having

trouble. If you plan to use "LBX" regularly, you should

probably rename it "LB" and put away the original "LB".

-604 -~

Al+LBL 81
8z CiST

83 BEEP
B4 STOP
85 GT0 ~++-

doeLBL “LBX"
87 F57 54
88 GT0 &2
89 1
18 ENTER?
11 ENTERf
12 CLA
13 CF 21
14 AVIEM
13 -14
16 GTD “++°

17¢LBL 82
18 7

19 7
28 INT
21 FIX &
22 OF 2%
23 ARCL X

24 "F REGS.”
25 TORE 8
26 RYIEN
27 PSE
28 RIL b
29 "
38 KO [
31 -2
32 AROT
33 RIN
34 §T0
35 RSHF
36 SIGH
37 ALENG
3 8

39 Yi¥
4@ ATOY
41 *
42 512
43 HOD
44 ATOY
45 +
46 +
47 .1
48

L
N

=
W

o
’

aieLBL &3
32 1.887
33 ENTERt

244LBL 84
55 = -
56 ARCL 1

-65-—

ST
36 AYIE#
3% 570 1
EDN
1 5TOF

62 FLIC 22
63 GT0 45
64 XTOR
by B1
66 ISL Y
67 GTD 84
68 SIGH
89 X0 ¢
78 LASTY

71 5T0 IND T

LBLTLEZ72 KOV
73 570 ¢
74 Rt
73 D3E X
76 GT0 &3

88 156 X
81 GT0 43
82> ¢
BIROLI

84 STO IND 2
83 XOY
86 570 ¢
87 GTO a1
83 END

168 BYTES

-66—-

CHAPTER FOUR

SYNTHETIC KEY ASSIGNMENTS

4A. Key assignment programs

Byte loader programs are a big step forward in

convenience from the byte grabber. Synthetic key assignment

programs add even more convenience. A synthetic key

assignment program can assign any one- or two-byte synthetic

or nonsynthetic intruction to any key. For maximum

convenience you can make a set of commonly used synthetic

function key assignments and use LB to create any other

synthetic functions that are needed in your programs.

Key assignment programs are similar to byte loaders in

that decimal equivalents are used to construct bytes which

are stored in the appropriate section of main memory. Rather

than entering the decimal equivalents one at a time as with

LB, you load the stack with two decimal byte numbers plus a

row/column keycode.

The first key assignment programs were written by John

McGechie in early 198w. They were a truly awesome achievement

given the state of the synthetic programming art at that

time.

Just as for LB, there are three different key assignment

programs that are available for your use in this chapter. The

first is called "MK" (liake Key assignments) and requires only

the basic HP-41. This program occupies three tracks on two

magnetic cards. It was written by Clifford Stern.

The second key assignment program is W8 in the PPC

ROM, written by Roger hLill. @@ is a true masterpiece of

synthetic programming and is virtually immune to user errors.

If you have a PPC ROM, review the instructions for Wl in

the User's Manual.

-67-

The third program, called "MKX", requires an Extended

Functions Module. Written by Tapani Tarvainen, it requires

only one magnetic card. It is shorter ana faster than "MK" or

¥ , and is more forgiving of user errors than either. The

listing for "MKX" can be found at the end of this chapter

under problém 4.4.

Although 1t 1s quite a short program, Clifford Stern's

"MK" incorporates many of the desirable features of the PPC

kor's [. As was the case for [, all the conveniences

and error traps of [could not be incorporated in "MK"

without unduly enlarging the program. LHowever the most

important error trap, KEY TAKEN, is implemented. A little

error checking by the user instead of the program saves many

bytes.

I1f you have an optical wana, you may enter "MK" or "MKX"

directly into your irP-41 from the barcode in Appendix E. The

first time, though, it might be better for you to practice

using LB by keying up one of these programs.

"MK", which requires nothing but a "bare" hP-41, is

listed below followed by the decimal inputs needed to create

the synthetic instructions using LB. After you have used LB

to create the synthetic instructions, fill in the

nonsynthetic instructions in the normal way to complete the

program. Once again the suffixes M, N, O, P, ¢, and } appear

T

as [, \, 1, *, _+ and respectively in a printed listing,

although P and Q@ are not used in this program.

Note that lines 11, 20, and 38 are not as they appear in

the listing. Especiall} misleading is line 2@. Consult the

list of "LB" inputs following the program listing to

determine the composition of these and the other synthetic

program lines.

-08-

82 CLST 33 PSE
83 CF 82 o
A4 CF 85 34¢LEBL 15

a5 oF @ 39 "PRETPOSTHKEY
8 OF 21 36 TONE 3
a7 197 37 AYIEW

88 SIGH 3 -
89 X(¢ 39 Fs7 2
1§ w3 7 48 STO I
{{ = 41 CLST

12 RCL b 42 ST0P
13 RIN 43 LASTY

14 ¥4 IND L 44 XEQ 83
15 ¥=y? 45 AE@ 83

i6 510 &2 46 Kt
17 %1 47 287
18 =pee 48 SF 85
19 570 49 AES
28 “FhakEx 38 570
21 K ARt

72 ¥(3 IND L 32 R{r S
23 Rt 33 El
24 155 L 34 Hop
25 - Sd X{3$

26 ST0 b 56 LHJTF

d(i

274LEL 81 38 IR
28 CpkE" 9% ¥

29 %3] 68 DISE2
I8 “KEY TRKEH- 61 X#17

31 TONE @ b =47

LB 1nputs:

Line 99 2@¢o6, 125 Line

Line 17 206, 117 Line

Line 20 247, 127, 42, 42,

Line 21 206, 118 Line

Line 38 241, 240* Line

Line 52 206, 118 Line

Line 77 144, 11& Line

63 156 7 95 “fx-

bd " 96 {3

63 5T+ & 97 X 8

Bb ENTERYT 98 FS? IND £

b/ Bt 99 DSE Y
b8 ¥ 188 SF IND 7

69 ENTERt 181 #{> d
78 Bt {82 ST0 »
71 + 183 “ed%"

fE ST+ ¥ 184 FC?C 8o

73 RIH i85 “p=%-

74 FS? @3 186 %{3 1

g+ 187 FS? 85

it Rt 188 570 ¢

77 RCL 189 FC?C 85

78 P+t 118 ST0 °

79 XEQ 82 111 B3

g8 {7 1 112 X=87

81 X{Y? 113 GT0 81

82 SF 85 114 8{> ¢

83 36 115 RCL »

84 - 116 FC? 82
85 FS5? @6 117 =Faxx-

86 + 118 RCL

87 Bt 119 ST0 IND L

88 SIGH 128 FS?C 82

89 F57 &5 121 IS6 L

98 RCL ¢ 122 SF 82

91 FC? 85

92 RCL T 123¢LBL 82

93 570 » 124 %{> 7

94 FS? 86 125 570 ¢

11 241, 2407 Line

19 145, 118

42, 42, 42, 2407

20 145, 124 Line

40 145, 117 Line

53 27, 17 Line

90 144, 127 Line

126 XY
127 GT0 1&

{28¢LBL &3

129 Rt

13a8 0CT

131 5TG »

132 CLX

133 E4
134 5T+ »

133 23 ©

136 (> d

137 FS7C 19

138 SF 28

139 F572C 18

148 SF 19
141 F52C 17

142 SF 18

143 FS? 15

144 5F 17

145 F57 14

146 SF 16

147 X{> d

148 B 0

149 “Fax"

158 570 »

151 “k#"

152 {7

153 570 [

154 END

LBLTHK
EHD 313 BYTES

12 144, 124

29 206, 119

50 145, 118§

64 240

92 144, 122

Line 93 145, 118 Line 96 206, 118 Line 97 206, 126

Line 1wl 206, 120 Line 102 145, 118

Line 1w3 247, 127, v, b, ©, 42, 42, 42

Line 166 206, 119 Line 18 145, 127 Line 110 145, 122

Line 114 206, 125 Line 115 144, 118 Line 118 144, 118

Line 125 145, 125 Line 131 145, 118 Line 133 27, 20U

Line 134 140, 118 Line 135 206, 118 Line 136 206, 126

Line 147 206, 126 Line 148 206, 117 Line 15¢4 145, 118

Line 152 2006, 118 Line 153 145, 117

*Indicates an invisible character from rows 8 through F in a

text instruction.

Make very sure that you have keyed up "MK" correctly

before you try to use it. As with "LB", MEMOKY LOST 1is

possible if this program is keyed up or used incorrectly. The

theory behind "MK" is far too complex to discuss here. In

fact, writing a SIZL WbV key assignment program (one that

uses no numbered data registers) is the premier challenge in

synthetic programming. In this book we shall confine

ourselves to a discussion of how to use MK.

Instructions for using Clifford stern's "pHKR"

1.) 1f you are using the time module, clear all alarms. Any

alarms that are present when "MK" (or @@) is executed will

be turned into garbage, rendered useless by normalization.

You may replace the alarms after you've finished creating

your synthetic key assignments. Section 4E presents a handy

pair of routines that can automatically save all alarms in

extended memory and bring them back from extended menory.

Executing the "SA" (save alarms) routine before "MK" clears

the alarms but saves them "off-line" for later restoration by

"KA" (recall alarms). PPC ROM users should take note that

alarms must be cleared before using @@ or any routine that

-70-

calls (3, BB, I8, or 3).

This restriction on alarms does not apply to "MRKX" (see

problem 4.4).

2.) Make sure that a sufficient number of key assignment

registers is available before executing "MK". The number of

free registers may be checked by executing GTO .wW@WJ in PRGM

mode. The number of key assignments that can be made using

"MR" is twice the number of free registers, since each

register can hold two key assignments. The PPC RCM's Wl is

more elaborate and can detect the absence of free registers,

producing a "NO ROOM" error message.

3.) Execute "MK" to initialize the key assignment process.

The program will find the first unused key assignment

register so that previous key assignments are not disturbed.

Never interrupt "MK" (or "MRKRX"). If you interrupt "MK", there

is a small chance of getting MEMOKRY LGST. Restart "MK"

immediately if you interrupt it. If you interrupt "MKX" you

will not get MEMORY LOST, but you may lose access to Catalog

1. Therefore you should restart "MKX" immediately without

attempting to enter PRGM mode. Your attempt to enter program

mode may kick you out of the "MKX" program. This will force

you to MASTER CLEAR to regain control unless you can find the

former contents of status register ¢ in the stack and execute

a STO c. This will make more sense after Chapter 6.

4.) When the prompt "PRE+‘POST+KEY" appears, key in the three

components of the key assignment -- decimal byte 1, ENTERH?,

decimal byte 2, ENTER?*, user keycode (row/column), R/S. For

example to assign RCL b to the 1/x key you would key in 144

ENTER+Y 124 wNTER+Y 12 R/S. The decimal equivalent of the RCL

prefix is 144, the decimal equivalent of the suffix byte b is

124, and the row/column user keycode for the 1/x key is 12

(row 1 column 2 unshifted). The first two decimal numbers

must be integers from W to 255, while the third input must be

a valid user keycode. A user keycode is a decimal number of

-71-

the form +rc, where r is the row number of the key, ¢ is the

column number of the key, and the sign is negative 1if the key

is shifted. This is precisely the same form of keycode that

is displayed momentarily when you execute ASN, or that is

required as input for PASIK (Extended Functions programmable

assignment). Both @I and "IK" allow you to assign the

shifted shift key (keycode -31), although "MKX" does not. If

you do assign a function to the shifted shift key, a function

that requires filling in a prompt is a good choice to prevent

accidental execution.

Warning: Do not PACK, reSIZL, turn off, or use ASN when "LK"

is halted for input, unless you are finished using it. Also

do not disturb the alpha register or LASTX.

5.) When the prompt "PRE+POST4KEY" reappears (with the flag

2 annunciator set if you are using "MK"), you may enter the

three inputs for a second key assignment. This will complete

one key assignment register.

6.) The prompt "PRE+POST+KEY" will appear once again (without

the flag 2 annunciator if you are using "MK"). requesting an

input for the first key assignment of the next free register.

Repeat steps 4 and 5 until you have made all the key

assignments you want to make. Remember that you must not use

more registers than the number if free registers that you

observed before executing "MK".

7.) When you have made all the assignments you need, you may

simply ignore the prompt for the next input. This is true

even 1f your last assignment did not complete the register.

However if you quit while flag 2 is set ("MK" only) you waste

half a register unless you plan to fill it with a normal

assignment using the built-in ASN function or its cousin, the

Extended Functions module PASN function. Unlike "MK", ASN (or

PASN) will always look for gaps in the key assignment

regyisters before taking a new register.

-72-

8.) If you try to make an assignment to a key that is already

assigned, the message "KEY TAKEN" will appear. At this point

you have two choices. (but remember not to disturb ALPHA or

LASTX.) Your first option is to clear the key of its

assignment (ASN, ALPUA, ALPHA, key), re-enter the desired

assignment information, and R/S. The second choice is to

enter a new set of inputs specifying two decimal equivalents

and a different user keycode.

As an example of the power of "MK", let's make the

following synthetic function assignments:

STO b -11 STO d -12 STO M -13 STO N -14 STO O -15

RCL b 11 RCL a 12 RCL M 13 RCL N 14 RCL 0 15

BG =21 X<> 4 -22 X<> M =23 X<> N -24 X<> O =25

The steps are as follows:

1) Manually clear any assignments tfrom the top row, shifted

and unshifted, and the second row, shifted only.

2) Check that at least 8 registers (15 assignments at two

per register) are available by executing GTO .WWw in

PRGI1 mode.

3) Switch out of PRGM mode and XEQ "MK". Supply inputs as

shown.

Flag 2 Input

("MK" only) ("MK", 03 , or "MKX")

clear 145, 124, -11, R/S

set 144, 124, 11, R/s

clear 145, 126, -12, R/S

set 144, 126, 12, R/S

clear 145, 117, -13, R/S

set 144, 117, 13, K/S

clear 145, 118, -14, R/S

set 144, 118, 14, R/S

-73-

clear 145, 119, -15, R/sS

set 144, 119, 15, R/S

clear 247, 63, =21, R/S

set 206, 126, -22, R/S

clear 206, 117, -23, R/S

set 206, 118, -24, R/S

clear 2@¢6, 119, -25, R/S

set backarrow or ignore.

These synthetic functions are sufficient for about two

thirds of all synthetic program lines on average. For example

only one third of the synthetic lines in "LB" and "MK" are

outside this set of functions.

A few nonsynthetic functions are also handy to have

assigned. Recommended are

ASIN "X<>Y" 21 (press X<>Y key for 21)

ASN "RDN" 22 (R+ key for 22)

ASN "SIZE" 23 (SIN key for 23)

ASN "PACK" 24 (Cos key for 24)

ASN "DEL" 25 (TAN key for 25).

The first two of these assignments will eliminate the

search for LBL F or LBL G when you press X<>Y or RDN in USER

mode. This speeds response noticeably in many cases. The

other functions are just handy to have immediately available,

although the choice of key location is a matter of individual

preference. PACK and DEL are useful with the Byte Grabber.

The byte grabber or "LB" can be used to create any synthetic

function that you don't have assigned to a key.

Although you would normally use ASN to assign

nonsynthetic functions, as we did in this example, "MK" does

allow assignment of nonsynthetic as well as synthetic

functions. In response to the prompt "PRE+POST+KEY", simply

key in a single decimal number from @ to 255, followed by a

-74-

keycode. For X<>Y the decimal equivalent is 113; for RDN it's

117. Check the QRC to verify the correspondence. For

multibyte instructions, it's the same idea: DSE is 151, FC?2C

is 171, END is 192, GTO is 208, XLQ 1is 224, LBL 1is 207.

Non-programmable functions use decimal byte numbers from row

¥ of the QRC. For example to assign SIZE, PACK, and DEL using

"MK", you would use the single decimal inputs 6, 1¢, and 2,

respectively.

If you ever assign STO c or X<> c to a key you should

either clear it as soon as you have finished keying up

whatever program you're making or else plan to be very

careful. Accidentally pressing STO c or X<> c gives a

virtually certain MEMORY LOST.

For my own personal use, I find it convenient to have

X<> ¢ on the keyboard. To help prevent disaster I assign it

to the relatively obscure location =21 (normally CLZI). My

complete synthetic keyboard looks like this:

column: 1 2 3 4 5

row 1 shifted STO M STO N STO b

row 1 unshifted RCL M RCL N RCL b

row 2 shifted X<> ¢ X<> d X<> M X<> I X<> O

row 2 unshifted X<>Y RDN "EFT" eGOBEEP BG

row 3 no assignments

row 4 shifted DEL

row 5 shifted PACK

row 6 shifted SIZE XROM Rl INT XTOA

row 7 shifted STO ¢ X<>

row 8 shifted Q-LOAD

-75=

I find that this arrangement of key assignments is easy to

remember and requires very little switching in and out of

USER mode when keying in synthetic programs, oOr even most

other programs.

n row 1, 4 unused keys leave space for temporary

program or function key assignments.

Cn row 2, "EFT" is a program described in problem 4.5.

"EFT" allows you to execute Extended Functions or Time Module

functions from the keyboara, calling them by number.

The eGOBELEP function is a synthetic one-byte key

assignmnent that was discovered by Robert Edelen. Use the

decimal inputs & ENTER+* 167 ENTEK* keycode K/S. When you

press the key, the display shows eGOBEEP __ . If you ftill in

a decimal number k from ¢ to 63, you'll get XROM 28,k , which

includes the mass storage functions. 1f you fill in a Kk

between 64 and 99, you'll get XROM 29,k-64 , which covers the

full range of printer fuctions. For example PRKEYS is XKOM

29,12, so eGOBELP 76 will generate the PRKEYS command. The

printer function PRP (print program) requires an ALPHA input.

1f you press eGOBEEP 77, you will not be prompted for the

ALPHA input. Instead the byte-reversed contents of status

register ¢ will be used, exactly as for the g-loader, which

is covered on the next few pages.

The "EFT" and eGOBLEP key assignments can be time savers

after you've learned the numeric equivalents for the

functions you use most often. A complete list of numeric

equivalents for "EFT" and eGOBEEP is presented at the end of

this chapter, accompanying the "EFT" program in problem 4.5.

Also on row 2 is the byte grabber, which requires

decimal inputs 247 and 63 plus a keycode. On row 6, XROM

is a PPC ROM function that consists of a sequence of short

synthetic tones. It provides a pleasant alternative to BEEP,

at the cost of an additional byte in a program. XTOCA 1is

another assignment from the extended funtions module. Its

usefulness will become apparent in the next section.

-76-

4B. The "poor man's byte loader"

The last two key assiygnments on the preceding synthetic

function keyboard, STO Q and ¢-LOAD, require additional

explanation. Together with one of several byte-building

programs, these assignments constitute-a "poor man's byte

loader". Assign these functions to convenient keys using

"MK". The decimal byte values are 145, 121 for STO ¢ and 27,

© for Q-LOAD. You'll also need the byte grabber and a RCL M

key assignment which you should still have on the keyboard.

If you are fortunate enough to have an extended

functions module, 1its XTOA function will serve very well as a

byte builder. If you have a PPC ROM, its EId function will

work. These functions take a decimal input between W and 255

from the X register and create the corresponding byte, which

is then appended to the ALPLA register (meaning that it

becomes the last byte in status register BM). If you don't

have an extended functions nodule or a PPC ROM, create this

short synthetic routine to do the same job.

8i+LBL “IC" 18 FS?C 17 19 570 »

82 0OCT 11 5F 18 28 i
83 E4 12 F57 15 21 CLX
84 + 13 5F 17 22 23N
83 %> d 14 F57 14 23 570 1
@6 FS72C 19 15 5F 16 24 EDH
87 Sk 24 16 8({> d 23 END
88 F57C I8 17 23 LBLTIC
#3 SF 19 18 “hex" END 34 BYTES

LB inputs:

Line 03 27, 20 Line @5 206, 126 Line 16 206, 126

Line 17 206, 117 Line 19 145, 118 Line 22 206, 118

Line 23 145, 117

-77-

Note that this 1is the basic byte-building routine that

Clifford Stern wrote for his "MK" and "LB" programs.

Use ASN to assign XTcA, [, or "DC", whichever you are

using, to a convenient key. lNow we're ready to start. The

G-LOAD function creates a text instruction of up to 7

characters from the reversed contents of status register Q.

For instance to create the string "HP'S #1", we would first

create the string "1# S'PHL" in the ALPHA register, perform a

RCL M to extract it from the ALPHA register to X, then

transfer it to status register ¢ and press the Q-LOAD key.

Let's try it:

CLA

49 XTOA (Use B or "DC" if you don't have

35 XTOA XTOA. Some of these characters are

32 XTOA nonsynthetic and can be appended

83 XTOA directly, but it's probably not

39 XTOA worth the bother.)

80 XTOA

72 XTOA

At this point you have the string "1% S'PH" in the ALPuLA

register. Now find a suitable place in program memory where

you'd like to insert the text instruction "uP'S #1". If you

don't already have such a place, just GTC .. and use the

bottom of program memory. When you're at the right spot in

PRGM mode, switch back to RUN mode and use key assignments to

do RCL M, STO (. Now switch back to PRGM mode and press the

U-LOAD key. You'll see the synthetic digit entry instruction

E, which comes from the decimal value 27 of the Q-LOAD key

assignment (see row 1 colurn B of the byte table). SST once

to see the text instruction "HP'S #1". Press Q-LOAD again and

you'll get the two synthetic instructions E and TEXT ©. The

first use of the (-loader cleared status register Q. The

second use therefore produced a text instruction with no

characters. So in addition to its ability to create synthetic

-78-

text instructions, the Q-LOAD key assignment provides a quick

and easy way to get both the synthetic digit entry E and the

TEXT & NOP instruction.

But the real power of the ¢-loader is unleashed by using

it in combination with the byte grabber. First you use the

Uu—loader to create a text instruction of up to seven

characters, then you grab and delete the text prefix,

releasing the character bytes to become instructions. The

following rather lengthy example will illustrate the power of

this "poor man's byte loader" technique. Follow through it

very carefully a couple of times until you understand the

technigques that are being used.

In this example we will create the synthetic

instructions needed for the "CMOD" routine of problem 2.60.

The four instructions are STC M, ST- M, ST/ M, and X<> M. The.

decimal equivalents are 145, 117, 147, 117, 149, 117, 200,

and 117. We proceed from the last byte to the first one:

CLA

206 XTOA

117 XTOA

149 XTOA

117 XTOA

147 XTOA

117 XTOA

The first group of 7 bytes is now ready to be loaded into

program memory. GTO .. and key in LBL "CMOD" as a place

holder. Switch out of PRGM mode, RCL M, and STO Q. Now switch

back into PRGM mode and press the Q-LOAD key. You'll see the

familiar E instruction. Do not SST yet; instead press the BG

key. This removes the text prefix from the (Q-loaded text

instruction. Backarrow twice to remove the grabbed byte and

the E instruction. You now have

¥1 LBL "“CMOD"

@2 RDN

-79-

@3 ST- M

g4 ST/ M

@d5 X<> M

.END.

It remains to load the STO byte. Switch out of PRGM niode and

CLA

145 XTOA .

Now GTO "CMOD", RCL M, STO @, switch to PRGM mode, and

Q-LOAD. PACK to remove the invisible nulls between this new

C-loaded text instruction and the seven bytes we loaded

before. 5till at the E instruction in PRGM mode, press BG and

backarrow twice. SST through the program and you should see

©1 LBL "cCMcoD"

W2 STO M

g3 ST- M

P4 ST/ M

g5 X<> M

«END.

he STC byte was loaded in the text line. As soon as it was

released from the text line, it absorbed the RDN byte, which

oecame the suffix M.

With a little practice, this "poor man's byte loader"

can be used to quickly create synthetic instructions with a

riinimal amount of setup. All that is required are key

assignments for RCL M, STO ¢, Q-LOAD, and BG, plus an

extended functions module or a PPC ROM or the "DC" program,

and of course, the QRC.

It is good practice not to create pieces of instructions

with the Q-loader as we did in the first group of seven bytes

in the above example. It would have been better to stop at

the sixth byte, creating three instructions, then pick up the

remaining two bytes on the second loading. This eliminates

the need for time-consuming PACKing. The PACKing procedure

was shown here because 1t is necessary when creating

-80-

synthetic instructions that are more than 7 bytes long.

The only limitation of Q-loading is that trailing nulls

are suppressed. Thus for example if you want to create the

instruction hex F2 7F 0W (append one null), you'll need to

add a dummy "filler" instruction such as ENTER*. For this

example the full procedure is CLA, 131 (the ENTER?

instruction), XTOA, & (null), XTOA, 127 (append), XTOA, 242

(TEXT 2 prefix), XTOA, move to desired location, RUN mode,

RCL M, STO @, PRGM mode, Q-LOAD, BG, and backarrow twice.

You'll also have to get rid of the ENTERt following your new

synthetic instruction. If the dummy 131 byte were not

included, the steps ¥, XTOA, would not do anything and you'd

end up loading only the two decimal bytes 242, 127.

Further discussion of (-loading appears on page 27 of

the October 198¢ PPC Calculator Journal. |

4C. Pseudo-XROM previews

The only two-byte functions that are nonsynthetically

assignable to keys are peripheral functions. When the

corresponding peripheral is not plugged in, the function

appears as XROM 1i,]j when the key is held down, where i and j

are two-digit decimal numbers from U©® to 63. The notation

XROM means that the assigned function resides in an external

ROM (Read-Only Memory). The number i designates the identity

of the peripheral -- i is therefore called the ROM ID number.

Certain peripherals contain two 4-kilobyte ROMs, each of

which has its own ROM ID. The number Jj is a sequential number

of the function (in Catalog 2 order) within the 4K ROM.

When a key that carries a synthetic two-byte function

assignment is depressed, the hP-41 assumes for purposes of

displaying the fuction preview that the key assignment is a

normal XROM function. If the two decimal bytes of the key

assignment are x and y, the XROM numbers i and j that are

-81-

displayed in the XROM 1,] preview are

4(x mod 16) + int(y/64) , andi

J
where mod signifies the modulo function (see MOD in your

HP-41 Owner's liandbook). For example ST+ IND M = 146, 245

appears as XROM 11,53 while TONE Y = 159,114 appears as XROM

y mod 64 ,

61,50. This correspondence can be visualized on the QRC. The

column number of the first byte x is, in fact, x mod 16. This

pins down i to four possible values, which are shown in row A

of the CKC, at least for columns ¥ through 7. For example,

ST+ is in column 2. Checking column 2 of row A we see the

notation XKk8-11, indicating that the first of the two XROM

numbers displayed will be 8, 9, 1w, or 11.

The exact value of i is determined by which block of 4

rows the second byte y is in. The heavier horizontal lines on

the (¢RC help you to visualize the block boundaries. kows WU to

3 correspond to the first value of i, rows 4 through 7 to the

second, rows 8 through B to the third, and rows C through F

to the fourth. If you then visually move the second byte up

to a corresponding box in rows U to 3 (this is equivalent to

taking y mod 64), you can read off the value of j from the

second line of the box.

Let's continue with the ST+ IND M example. Since the IND

M suffix is in the fourth group of 4 rows, the value of i is

11. Next we visually translate the IND M suffix from row F

column 5 up to row 3 column 5, which 1is the corresponding

position in the first block of 4 rows. Checking the decimal

value at the bottom of the row 3 column 5 box, we see that

the value of j is 53. So ST+ IND M previews as XROM 11, 53.

The XROM preview numbers reveal much about the assigned

synthetic fuction, but they do not quite uniquely determine

it. For example an assignment of DSE IND 1l¥ previews as XROM

30,19, or as WSTS if the card reader is attached. This

assignment is indistinguishable from the WSTS function until

the key is released. If you're ever in doubt about the

identity of a particular assignment, try it in PRGM mode

-82-

first. But just in case it's a byte grabber, don't press it

when you're in the vicinity of the .EKD. or any nonpermanent

ELND. rRemember the byte grabbing constraints from Chapter 1!

For more details on XkOM preview correspondence see page

47 of the March 1981 PPC Calculator Journal. Page 45 of the

August 1981 PPC CJ contains a fascinating article by Koger

Hill on how the XROM correspondence can affect the behavior

of synthetic key assignments in PRGM mode.

4D. The RCL b key assignment

Unigue among assignable synthetic functions is RCL b.

Unlike other key assignments, which aren't essential if one

uses "LB", the RCL b key assignment is much more powerful

than a RCL b instruction located in program memory. Executed

from the keyboard, RCL b brings the current program pointer

to the X register. Lxecuted in a program the result woula

always be the same, namely the location orf the KCL b

instruction in prograii memory.

The result of a RCL b instruction is a proygram pointer

encoded in the last two bytes of X, expressible in four

hexadecimal digits. 1n the encoded form the pointer is not

especlially useful. Two routines are presented here that

convert the KCuL b program pointer to a decimal numpber of

bytes. Two more routines provide a convenient way to

determine the nurkber of bytes between twc locations in

progran memory.

The RAMBYT routine performs exactly the same function as

PPC RCM routine @ . ‘io use the RAMBYT routine, just go to

any point in Catalog 1 program memory and press the KCL b

assigned key in RUN mode. The result is a program pointer for

that location. Execute KAMBYT (or)) tc convert this

pointer to a decimal value.

The ROMBYT routine is similar to KANLBYT, except that it

-83-

expects as input a program pointer from a ROM location. If

you have a PPC ROM or any application ROM, you can try out

ROMBYT. Just go to a label or any other location in the ROM,

execute RCL b from the keyboard in RUW mode, and XL "ROMBYT"

to see the decimal byte number corresponding to the program

pointer.

The most common application of program pointer decoding

is counting the number of bytes between two locations in a

prcgram. For instance you may wish to know the total byte

count of a program. The RAMBC program determines the distance

between two program pointers by using KAMBYT to decode each

pointer, and subtracting the resulting decimal numbers. RAMBC

is functionally eguivalent to the PPC ROM routine (count

bytes).

To illustrate RAMBC, let's find out now many bytes long

the RAMBC/RAMBYT/RCGMDBC/ROMBY1 group of routines is. PACK

program memory if it isn't already packed. Go to LbL "KAMBCY,

RCL b in RUN mode, BST (to the LNL), RCL b in RUN mode, and

XEQ "KAMBC". The result should be 156, indicating that the

program is 156 bytes long, from the beginning of LBL "RAMBC"

to the beginning of the EkND. If you want to include the LND

in your byte count, add 3 bytes to get 159. If the last line

of the RAMBC program group is .END., your byte count will be

up to 6 bytes more. In this case you can GTO.. and repeat the

above RCL b procedure to get the true byte count.

Divide by 112 to find out how many tracks the program

will require when recorded on magnetic cards. The EWND is

recorded on the cards, but if you have a program that is 112

bytes without the EKU, you don't have to read in track 2. In

a case like this the prompt for the last track can be

backarrowed for both recording and reading in. The only thing

on the last track will be the END, which carries no

information.

A more advanced use of RAMBC is to determine whether a

long-form (three-byte) GTO is required, or whether a

short-form (two-byte) GTO will suffice. Short-form GTO's (GTO

-84-

g® through GTO 14) should only be used where the jump

distance 1is less than 112 bytes. This allows the jump

distance to be compiled, or stored in the instruction itself,

the first time the CTO is executed. Subsequent executions

will be much faster because the search for the LBL 1is

avoided. Only long-form GTO's can store jump distances longer

than 112 bytes, so that if you use a short-form GTC where the

jump distance is too long, your program will be slowed down

noticeably by the continual label searching.

To determine whether a two-byte GTGCG, and 1its

corresponding one-byte label, can be used without losing the

advantage of the compiled branch, first key in the GTO and

LBL in their desired positions in the program. Use GTO nn and

LBL nn, where nn is between G and 14, inclusive. PACK to

remove any superfluous nulls. Go to the line following the

GTO instruction (if it happens to be the .EWNL. insert a dummy

instruction and PACK again) and RCL b in RUN mode. Then go to

the corresponding LBL instruction (you can use BST, SST) and

RCL b again. XEC "RAMBC" to see the jump distance in bytes.

If this jump distance 1is between -111 and +111 bytes,

inclusive, then the two-byte GTC is sufficient. Gtherwise

you'll need a three-byte GTO.

An alternative procedure is to RCL b at the GTO

instruction, SST to get to the LBL, KCL b, and XEQ "RAMBC".

The result should be between =109 and +113, inclusive.

If you need a three-byte GTOG, you can construct a

synthetic one using LB inputs 28, ©, nn, where nn is between

90 and 14. Or you can key in the sequence STO IWND 8¢, ISG nn,

BST twice, BG and backarrow to remove the STO byte. Either

way, this allows you to use the one-byte LEBL nn, saving one

byte over the standard instructions GTO xx, LBL xx, for xx

from 15 to 929. Once created, a synthetic three-byte GTO will

never change to a two-byte GTGC, and it will always compile

the branch distance properly. It can be distinguished from a

two-byte GTO by using RAMBC to determine its length in bytes.

here are the listings for RAMBC, RAMEYT, ROMBC, and

-85-

ROMBYT. ROMBC is of course analogous to RAMBC, except that it

operates on ROM program pointers.

@l¢LBL "RAMBC™ 15 FRL 294BL -ROMBYT: 43 (0 d 58 SF 13
82 XY 6 E4 38+BL A2 44 CF 88 58 FS7C {6
A3 ¥Eg ai 17 *) 31 XEQ #3 45 FS?C A9 68 SF 14
B84 XY 18 DEC 37 E37 4 SF 85 61 FSIC 17
85 XEQ a1 13 7 33 47 FS?C 18 &2 SF 15
a6 - 28 * 34 DEC 48 SF 86 63 F5?C 18
87 RTH 21 + 35 RTH 49 F52C i1 64 SF 17

22 RTH 58 SF @7 65 FS?C 19
@geLBL “RAMBYT" 36eLBL 63 51 FS2C 12 66 SF 18

@9¢LBL @1 Z3#LBL "ROMBL" 17 .4 52 5F 89 67 FS7C 78
18 XEQ 63 24 XER B2 35w g 53 FS2C 13 4§ SF 19
11 E4l 23 XOY 39 570 ~ 54 SF 18 69 X{» d
12 7 26 XEQ B2 43 nswr 55 FS2C 14 78 EHD
13 INT 27 - 41 "Fessl= 56 SF 11 LBL "RAKEC
14 LASTX 28 RTH 42 X0 1 S7 FS?C 15 LBLTRAMBYT

LBL"ROMBC
LBLTROMBYT
ERD 159 BYTES

LB inputs:

Line 11 27, 20, 17 Line lo 27, 20 Line 32 27, 19, 23

Line 38 2¥o6, 117 Line 39 145, 118

Line 41 245, 127, W, ©, b, 65

Line 42 206, 117 Line 43 200, 126 Line 09 2006, 126

The core of this group of routines is the LBL £3 subroutine,

which uses a couple of tricks of the advanced synthetic

programming trade. Its first four steps isolate the last two

bytes of X in the ALPhA register. These bytes are then

shifted left (line 41) and transferred to the flag register.

At this point the 15 program pointer bits (the leftmost bit

is not needed here) reside in flags 9 through 23. Flag

operations are used to shift the bits into octal (base 8)

format, with three bits per digit (see below). This leaves

five octal digits in flags 4 through 23, with flags 4, 8, 12,

-86-

16, and 20 clear. These five octal digits are extracted from

the flag register in the form a.bcde Xx 1041, Regular

arithmetic operations can then be used to separate the digits

if necessary, after which the DEC function converts the

digits to decimal. This trick of shifting bits into octal

format and converting to decimal was pioneered by Roger Hill,

the author of many routines for the PPC ROM.

8§ 9 10 1N 12 13 15 16 17 18 19 2 21 2 23

4 5 67 8 8 10 1 12 13 1 15 16 17 18 19 20 21

You'll have to read the discussion of program pointer

14

4 22 8

formats in Chapter 6 to understand the manipulation of the

octal digits in the "RAMBYT" and "ROMBYT" routines.

4L. Saving and Recalling Timer Alarms

Most key assignment programs (except "MKX" -- see

problem 4.4) have one feature in common: they will not work

properly if any alarms are present, and they will disrupt the

alarms as well. One solution is to manually clear the alarms

using the time module's ALMCAT function. This is tedious and

it requires writing down the alarm information and

re—entering it later.

If you have an extended functions module and a PPC ROM,

you can use Clifford Stern's "SA" (save alarms) and "RA"

(recall alarms) to automatically transfer the alarms to

extended memory, then back to main memory when you're done

using the key assignment programs. "GSA" uses the extended

function module's SAVERX function, which, unlike RCL, permits

extraction of data from main memory without normalization

(Section 2C discussed normalization). Actually the first and

-87-

last registers of the alarm block are normalized, but this

damage is repaired by "RA".

Here are the instructions for using "SA" and "RA" :

1) Make sure there is at least one LND somewhere above LBL

3)

"SA" in Catalog 1. This is necessary to permit the

backwards GTO (line 66) to work properly with the

curtain lowered. This will be explained in Section ©C.

After you have verified that there is at least one ELD

above LBL "SA", XEQ "SA" to save the alarms in extended

memory in a file named "ALM" and to clear the alarm data

out of main memory. DATA LRROR at line 56 means there

are no alarms to be stored. DUP FL at line 86 1indicates

that a file named "ALM" already exists 1in extended

memory. Execute PURFL, then press R/S to complete

program execution. wO ROOM at line 86 signifies that

there aren't enough unused registers remaining in

extended memory to store the alarms. At your option you

may continue execution after purging one or more files

and re-loading "ALM" into the ALPHA register.

Use any key assignment program you like. When you have

your synthetic key assignments set up the way you want

them, Xbhyg "KA" to restore the alarms and purge the "ALM"

file from extended memory. The "RA" routine uses the

Extended Functions module's programmable SIZE function

if needed to open enough free registers below the .END.

for the alarms. If the current total of free registers

and SI1ZL 1s 1insufficient to accomodate the alarms,

you'll get a UATA ERROR message at line 15. If this

happens, PACK and/or clear a program and XEQ "RA" again.

"RA" terminates with an OFF instruction, requiring you

to turn the 1iP-41 back on. This OFF instruction is

required to take care of the case in which you turn the

calculator off after executing "SA" but before executing

"RA". The Time Module saw no alarms the last time the

calculator was turned off, so its countdown timer is not

-88-

active. The OFF instruction starts the Time Module

counting down for the nearest alarm immediately, and

enables 1t to advise you of any past-due alarms. A CLOCK

instruction would serve the same purpose. For subroutine

use, you may replace the OFF instruction by RTN, as long

as you keep in mina the fact that if the calculator is

turned off while the alarms are saved the Time Module's

countdown timer will not be accurate until the next time

you turn the rP-41 off.

Here's the listing of Clifford Stern's "SA" and "RA"

BieLBL “RE" 22 FLSIZE 42 ¥ROM “E?" 82 B3 81 EWTERt

B2 XROM =F3" 23 - 43 i7 63 STO IND L 82 DSE %

a3 IWT 24 RCL 44 - 64 RIH 23 ATOE

84 XRO¥ "E?" 23 7 - 45 E{Y? 63 ISG L 84 “ALH"

B5 (Y 26 570 ~ 46 GTO 63 66 GT0 8l 85 CF 25

a6 - 27 HRCL 8@ 47 E3 67 CLA 86 CRFLI

a7 SIZE? 28 RCL I 48 7 68 GTO a2 a7 +

88 ERTERt 29 ST0 @a 49 + 88 E3

89 “ALE" 38 Z{r 58 SIGH 69¢LBL 62 83 s

18 LASTX 31 BSE 2 51 °8- 78 RRCL IHB 98 +

i1 + 32 STO IND 2 52 A 71 %=87 91 5OOY

12 FLSIZE 33kt 72 CLA 97 ¥{) ¢

i3 - 34 5T0 ¢ 53¢LBL &1 73 8[93 B

14 #{@? 35 “ALA- 4 - 74 5TO INE L 94 SAVERY

5 SORT 36 PURFL 55 RCL IKD L 95 YROK “BC-

16 &{Y? 37 BEEF S6 ¥{r I 7o¢LBL &3 9§ ¥{3Y

17 PSIZE 38 OFF 57 =F - 76 AT0X 97 570 ¢

18 Rt 38 X 77 RY 9§ BEEP

19 XROM =Ca° 39e¢LBL -5#" 39 E#Y7 78 B ¢ 99 EKD

28 GETR 48 XROM ~0H- 68 LT0 82 79 LASTY LBLRA

21 Rkt 41 174 61 ARCL ¢ 88 INT LBL'SH
175 BYTES

-89-

LB 1nputs:

Line 23 241, 240% Line 24 144, 117 Line 25 241, 170

Line 26 145, 118 Line 28 144, 117 Line 30 26, 118

Line 34 145, 125 Line 47 27, 19 Line 51 241, 1o

Line 52 206, 117 Line 54 241, 240" Line 56 206, 117

Line 57 242, 127, 176"

Line 5& 206, 117 Line 61 155, 125 Line 62 206, 118

Line 73 266, 117 Line 78 206, 125 Line 88 27, 19

Line 92 206, 125 Line 97 145, 125

*Indicates an invisible character from rows 8

the QRC (decimal values 128 through 255).

through F of

Note that lines 25 and 57 contain the character AA;g

(decimal 17@), which is a printer control character that

causes 1Y spaces to be skipped. Printer control characters,

discussed at the end of Section 2E, can cause even stranger

behavior in program listings. The shaded characters in rows A

through E of the QRC are printer control characters.

Problems

4.1 Review the solutions to the Chapter 2 problems and

consider how synthetic key assignments could speed up

keying in those programs.

4.2 Try kKeying up Clifford Stern's "LB" program by first

using the "poor man's byte loader" technique to create

the following instructions

hex F4 7F 6O V0 ©2

E4

X<> ¢

STO c

hex F2 7F w0

-9(0-

X<> ¢

STO c

Fill in the rest of the synthetic instructions using your

"working" keyboard of synthetic function assignments.

You can then fill in the nonsynthetic instructions to

complete the "LB" program.

4.3 Predict and verify the XROM number previews for the

following synthetic key assignments:

a) TONLE 89

b) X<> P

c) 1ISG IND N

4.4 Here is a new key assignment program that uses the

1)

2)

Extended Functions Module. Called "MKX", it was

conceived and written by Tapani Tarvainen, and revised

and optimized by Clifford Stern. It uses a totally

different approach, made possible by the capabilities of

the PASN (programmable key assignment) function.

kssentially, "MKX" uses PASN to make a dummy assignment

to the designated key, then it finds and replaces that

dummy assignment in the key assignment registers. "MKX"

is sufficiently different from "MK" and QI that a

separate set of instructions is called for:

Make sure you don't have a global label "ANUM" in any of

your Catalog 1 (user) programs. If you do have a LBL

"ANUM", executing "MKX" will place an FJ byte in the

leftmost position of every register of user memory,

including all programs and data. This is virtually

equivalent to causing MEMORY LOST, since you'll probably

decide to MASTER CLEAR rather than try to clean up the

mess.

Load the stack with three inputs and execute "MKX". The

three inputs required for "MKX" are the same as you

would use for "MK" or QI8 . The difference is that you

load the stack with the two decimal inputs and the

-91-

keycode (in Z, Y, and X, respectively, as for MK)

before executing "MKX".

3) Alarms need not be saved or cleared. They will not be

disrupted.

4) If you don't have enough free registers, you'll get

PACKING, TRY AGAIN at line @W4. This is much more

forgiving than "MK".

5) Like "MK", "MKX" is not interruptible.

©) If you try to assign a key that is already taken, the

new assignment will replace the old one, with no

indication that this has occurred. If this isn't what

you want to happen, check the key before executing

"MRKX".

7) To assign another key, simply load the stack with the

three required inputs and execute "MKX" again or simply

R/S since the last assignment left you at the top of the

"MKX" program anyway.

8) There are no wasted half-registers with "MKX". Each new

assignment is treated identically, and a new register is

opened only if there are no existing "holes" to be

filled in the assignment registers.

B1eLBL -MKX" 125101 23, 33 X272 g
82 ANUN- 13%> 0 24 SIGH 34 %O\ :; §§¢CL25
83 CF 23 14 =Feee B" 35 %=Y7 46 %=Y?
B4 _PHSK [3 81 250LBL 81 355 25 47 G0 A85 “xipe* 16 XO L 26 X0 INDL 37 %=12 4g pt
#86 RCL [17 ST ~ 37 % [8 Bt 49 ST0 ¢

a7 gt 18 "= 28 “Fx- 39 "Fhkxe= 58 CLST

88 XTOA 19 %> 1 29 870 © 48 5T0 1 51 END
89 Rt 28 Rt 38 “hexxe 41 “Fese .
18 XTOA A Xc RGN 4oy g LBUMKK{1 ROl 22 RELN 32 "bekk= 43570 (p L BV 123 BYTES

LB inputs:

Line @5 245, 1, 165, 12, ©, 240~

Line ©¢6 144, 117 Line 11 144, 122 Line 12 145, 119

Line 13 2Uo, 117

-92-

* *
Line 14 247, 127, ©, 9, ©, 2407, 166, 66

Line 15 206, 119 Line 16 206, 117 Line 17 145,

Line 18 242, 127, 246~

Line 19 26, 119 Line 21 206, 125 Line 22 144,

Line 27 206, 117 Line 29 145, 118 Line 31 246,

Line 34 2o, 118

Line 39 245, 127, 42, 42, 42, ©

Line 40 145, 119

Line 41 244, 127, ©, 0, 246"

Line 42 206, 119 Line 49 145, 125

*Indicates a character from the second half of the QRC,

normally invisible in printed listings, but visible as a

starburst in the display.

118

118

118

4.5 If you like the eGOBELP key assignment that provides fast

access to all the printer and mass storage functions,

you may wish to try this short routine by Clifford

Stern. It provides a capability similar to eGOBEEP for

the Lxtended Functions and Time Modules.

Just key in the required stack input if any,

ENTER+, then key in the number of the desired function

and XEQ "EFT". The "EFT" program will PAUSE for about a

second to allow you to key in an ALPHA argument such as

a file name. If the ALPHA argument you want was already

in the ALPHA register, you won't have to key anything

in. ALPHA inputs are limited to seven characters or

less. "EFT" builds a short sequence of bytes containing

the requested XROM instruction, then it executes the

sequence. The byte sequence is actually contained in

status registers b and a.

There are two notable constraints on "EFT". The

first is that unlike eGOBEEP, "EFT" works only in RUN

(non-PRGM) mode, so it cannot be used to enter program

lines for Extended Function Module or Time Module

-93-

Functions. The second is that you must not use "EFT" to

execute PSIZE (function number 3¢), or to execute XYZALM

(function number 93) where a nonzero Z input is needed.

PSIZE will alter the byte sequence in status registers b and

a that "EFT" is executing there. The XYZALM constraint is

due to the fact that the Z register contents are altered to a

value that is effectively zero by the time the XYZALM

instruction is executed from the status registers. You should

also avoid using "EFT" to execute PCLPS (function number 27)

if this would clear "EFT" itself, because you would then

begin executing the key assignment registers.

Incidentally, the reason for lines 15 and 23 is to defer

any error stop until after the return to program memory. If

you halt in the status registers, the processor takes a very

long time to compute a line number.

B1+LBL "EFT* 88 CLX 15 6F 25 22 RIN
82 RL I 89 64 16 “Frtl= 23 FS2C 25
83 CLA 18 + 17 RDN 24 5TOP
B4 STO [IHRILL 18X[25 SF 38
85 AN 12 "pTwu " 19%>a 26 END
86 PSE 13 XY 28 X\ LBL'EFT
87 AOFF 14 XTOR 21 %> b END. 58 BYTES

Barcode for "EFT" can be found in Appendix E.

LB inputs:

Line ©2 144, 117 Line @4 145, 117 Line 11 144, 117

Line 12 247, 145%, 112, 176%, 84, 12, 117, 166"

Line 16 245, 127, 127, 116, 145%, 124

Line 18 2o, 117 Line 19 266, 123 Line 20 206, 118

Line 21 206, 124

*Indicates an invisible printer character. The hex A6

(decimal 166) character in line 12 causes 6 spaces to be

skipped.

-94-

0
=
O
N
B
G
P
e

39

Numeric function codes for

(XROM numbers are also included for reference)

" EFT n

(XFUNCTIONS, TIME, WAND)

-EXT FCN 1B -TIME- ©

ALENG 25.81 65 ADATE 26,81
AHUM 25,82 &6 ALMCAT 26,82
APPCHR 25,83 47 ALMNON 26,83
APPREC 25.84 3 ATINE 26,84
ARCLREC 25,85 69 ATIME24 26.85
AROT 25.86 78 CLK1Z2 26.86
ATOX 25.87 71 CLK24 26.87
CLFL 25,88 72 CLKT 26,88
CLKEYS 25,89 73 CLKTD 26.89
CRFLAS 25,18 74 CLOCK 26,10
CRFLD 25,11 75 CORRECT 26.11
DELCHR 25.12 76 DATE 26.12
DELREC 25.13 77 DATE+ 26.13
EMDIR 25.14 73 DDAYS 26,14
FLSIZE 25.15 79 DNY 26,15
GETAS 25.16 88 DOM 26,16
GETKEY 25.17 81 MDY 26,17
GETP 25,18 82 RCLAF 26.18
GETR 25.19 Q3 RCLSH 2619
GETREC 25.28 34 RUNSH 26,20
GETRY 25.21 85 SETAF 26,21

2 GETSUB 25.22 86 SETDATE 26,22
GETX 25,23 87 SETINE 26,23
INSCHR 25.24 g3 SETSH 26,24
INSREC 25.25 g9 STOPSH 26,23
PASN 25.26 98 SM 26,26
PCLPS 25,27 91 T+ 26,27
POSR 25,28 92 TIME 26.28
POSFL 25,23 93 XYZALM 26,29
PSIZE 25,38
PURFL 25,31
RCLFLAG 25,32 - NAND IF -
RCLPT 25,33 129 WNDDTR 27,81
RCLPTA 25.34 130 WNDDTX 27,82
REGMOYE 25,35 131 WHDLNK 27.83

REGSHAP 25,36 132 WNDSUB 27.84
SAVEAS 25.37 137 WNDSCN 27.85
SAVEP 25,38 134 TMNDTST 27.86
SAVER 25.39
SAVERY 25.4@
SAVEX 25,41
SEEKPT 25.42
SEEKPTR 25.43
SIZE? 25,44
STOFLAG 25.45
ROF 25.46
XTOR 25,47

-95-

N
P

G
l
P
e

n }:'_.E1T "

and eGOBEEP

eGOBEEP

(HP-IL, PRINTER)

-¥ASS 5T 1H -PRINTER 21
CRERTE 28,81 45 WCR 29,81
LIR 28,82 66 FOTHRE 29,82
HEHM 28,83 57 RLCOL 29,83
PURGE 28,84 g3 WOSPEC 29,04
READA 28,85 @9 ALY 29,85
READK 28,86 7@ ELDSPEC 29.86
READF 28,87 71 LIST 29,87
READR 28,88 77 FRA 29,88
READRX 28,89 73 TPRAXIS 29,89
READS 28,18 74 PREUF 29.18
READSUB 28,11 75 PRFLAGS 29,11
REWAME 28,12 74 PREEYS 29.12
SEC 28,13 77 FRP 29,13
SEEKR 28,14 73 TPRPLOT 29,14
UNSEC 28,15 79 TPRPLOTP 29,15
VERIFY 28,16 8@ PRREZ 29.16
WRTH 28,17 g1 PRREGY 29,17
WRTK 28,18 g2 g 29,18
HRTP 28,19 g3 PRSTK 29.19
WRTPY 28,20 34 PRY 29,20
WRTR 28,21 85 REGPLOT 29.21

WRTRY 28,22 g6 skpcHe 29,22
HRTS 28:23 g7 skproL 2923
ZERD 28,24 g3 sTepLOT 29.24
-- 28,23 29 FMT 29,25
-CTL FNS 28,26 --
puTOIO 28,27
FINDID 28,28
1HA 28,29
IND 28,38
INSTAT 2631 CARD READLR

LOCAL 28,33 [C Lot

HANID ?&§: accessible
OUTR ;ggz through
PHRDN , oBURIIP 28,37 eGCBEEP .

REMOTE 28,38
SELECT 28,39
STOPID 28.48

TRIGGER 28.41

-96-

CHAPTER FIVE

UNDERSTANDING PROGRAM EDITING ON THE HP-41

In Section 2B you were promised an explanation of how

nulls are created when programs are keyed up and edited and

under what conditions they can be removed by PACKing. This

explanation is simplified by the construction of a very

special synthetic instruction called an FY label. The F9

label is capable of displaying several following instructions

as text characters without actually absorbing them as the

byte grabber does.

First construct this special synthetic instruction using

"LB", with inputs 192, ¢, 240. Alternatively, if you have the

byte grabber assigned to a key, you may key 1in the

instructions STO IND 64, RCL IND T, BST twice, BG, and

backarrow to remove the STO byte. With either method you

should PACK immediately so that the calculator can

incorporate this synthetically-created LBL into Catalog 1.

You now have a synthetic global label instruction. It 1is

synthetic since its third byte is 240 decimal = F0J

hexadecimal (hence the name FO label). Normally the third

byte of a Catalog 1 LBL instruction is 241 + n, where n is

the number of characters in the label name. A third byte of

240 gives a name length of -1. It turns out that the

calculator interprets this highly nonstandard length

parameter in contradictory ways. For displaying the F@ label

in PRGM mode, the processor uses n = 15, which is -1 modulo

16. So you see LBL'T followed by 15 characters. The processor

skips one byte (which is normally the byte containing the key

assignment information for the label), and displays the

following 15 bytes as characters. However if you SST in PRGM

mode you'll see that these character bytes have not really

been absorbed into the F@ LBL instruction.

An example should make this point clear. But first a

-97-

word of caution. Do not SST the F@ label in non-PRGM mode or

run a program containing an F@ label. That will "crash" the

HP-41, locking out the keyboard until the battery pack 1is

removed and replaced to clear the crash. Removing the

batteries halts an internal "infinite loop" condition, in

this case without disturbing the memory contents. Executing

an FY label is one of the friendliest crashes. Others (such

as byte-grabbing the .END. and deleting it) cause an almost

almost-unavoidable MEMORY LOST.

Starting with your F© label in the display (PRGM mode),

key in the sequence of instructions -, *, /, X<Y? (Press XEQ

ALPHA X shift COS Y ? ALPHA), X>Y?, X<=Y?, I+, I-, HMSH+,

HMs-, MOD, %, %CH, P-R, R-P, LN, X*2, SQRT, Y*X, CHS, E#tX,

LOG, 1¢*X, E4X-1, SIN, and COS. Now go back to the F©U label

and you'll see

LBL "BCDEFGHIJKLMNOP"

(If you don't see this display, PACK and you should get it.)

The characters B through P are actually the instructions

*, /, through LN, that follow the FU label. Rows 4 and 5 of

the QRC show the correspondence of instructions to these

characters. To further illustrate this correspondence, locate

and backarrow the / instruction and go back to the FU label.

You'll see

LBL "BTDEFGHIJKLMNOP"

This illustrates that when instructions are deleted, they are

replaced by nulls, which are normally invisible. The overline

character is the character representation of a null

(hexadecimal 99U = decimal ©) byte. Now PACK and you'll see

LBL "BDEFGHIJKLMNOPQ",

which shows the removal of nulls by packing.

The FJ label enables us to see a striking demonstration

of the operation of the processor when instructions are

inserted in a program. Single step to the X<Y? instruction,

corresponding to the character D, and insert a + instruction.

Go back to the Fg label and you'll see

LBL "BDPF™™T"777EFGHIJ"

-08-

The @ character corresponds to the + instruction. But you

probably didn't expect the six nulls (overline characters).

This example illustrates that whenever an instruction is

inserted where there is no room (that is, where an

insufficient number of nulls are present), seven null bytes

are opened for the new instruction, even though only one null

may actually be used. The rest of program memory, down to and

including the final .END. , is shifted down one register

(seven bytes), decreasing the number of free registers by

one. (Refer to Chapter 6 for a description of how program

memory 1is organized and where the free registers are.)

Because of the register operations available to the

processor, this one-register shift is much faster than a

one-byte shift would be.

Insertions where sufficient nulls are already present

will not disturb the rest of program memory. For example,

single step to the + instruction and key in the instructions

STO 61, STO ¥W2, STO ©3, STO VW4, STO U5, and STO W6. Go back

to the FY label and you'll see

LBL "BDP123456EFGHIJ"

The six new instruction bytes exactly filled the available

space. Any additional insertion would open another seven

bytes.

Now that you have seen how insertion of instructions is

accomplished by the processor, you can understand why the

byte grabber works. When pressed in PRGM mode, the byte

grabber creates a TEXT 7 prefix, followed by a null byte and

a third byte that has always been decimal 63 in this book (MK

can make it any value you like). A TEXT 7 instruction

occupies 8 bytes of program memory, consisting of a one-byte

TEXT 7 prefix followed by 7 character bytes. But the

processor only knows that it has to make room for the three

bytes that are being inserted. In the usual case there are no

nulls present for the insertion, so 7 new ones are created.

Therefore the eighth byte -- that is, the seventh character

-- 1is taken from the existing program. Figure 5.1 illustrates

-99.

the capture of this byte from program memory for the example

of Chapter 1.

BEFORE

Instructions: ENTER+ STO IND 31 PI

Hex equivalent: 83 91 OF 72

Decimal equivalent: 131 145 159 114

AFTER

Instructions: ENTER * nmTTTTSB" TONE Y

Hex: 83 F7 0 3F 0 0 6 @ @ 91 9F 72

Decimal: 131 247 @ 63 0 @ © © O 145 159 114

Figure 5.1 Creation of TONE Y using the Byte Grabber

The byte grabber can be used to grab up to 5 bytes if

you like. Simply PACK or otherwise make sure there are no

nulls ahead of the bytes you want to grab, just as you would

for using the byte grabber normally. Then, before pressing

the BG key, insert one to four bytes of "filler"

instructions. For example, to grab two bytes you could insert

a "filler" X<>Y before pressing BG. We did this in Chapter 2

to grab the 1 from exponential entry instructions without

packing. To grab three bytes, you could insert the digit 9

and BG. To grab four bytes, insert EEX and BG. To grab five

bytes, insert EEX 9 and BG. In all these cases, the idea is

the same. The processor only requires three bytes for the

byte grabber. If you open 7 bytes with an insertion and fill

four of them (for example by inserting 1lE 9) and press BG,

the byte grabber will drop into the three remaining nulls.

But since the TEXT 7 instruction is 8 bytes long, it must get

its last 5 character bytes from the existing program.

-100-

Be very careful when grabbing more than one byte. You

might accidentally grab part of the .END.. If you do this,

don't backarrow! Immediately EST and BG again to release the

.END. from the previous byte-grabber text line.

You might be under the impression that packing removes

any and all nulls from a program. Not so. Occasionally a null

carries essential information and cannot be deleted.

The first such case occurs when the null is located

between successive numeric entry instructions. Let's continue

where we left off with the F@ label, which when we left it

looked like this:

LBL "BD™123450EFGHIJ" .

5ST once to the - (subtract) instruction just ahead of the *

instruction which corresponds to the character B. Key in the

two successive numeric entry instructions 1lE3 and 56. Switch

into ALPHA mode and back to terminate the 1E3 instruction

before starting on the 56. Now ¢go back to the F©U label and

you'll see

LBL ""BBRTRE"""B

The first three starburst characters comprise the 1E3

instruction, while the next pair of starbursts 1is the 5606

digit entry. Now PACK to see the result

LBL "BER®®:UM123456" .

All the nulls disappeared except the one between the two

numeric entry instructions. That null i1s needed to prevent

the two instructions from merging into a single program line.

This is why a null between successive numeric entry

instructions is nonpackable. The need for nulls to separate

numeric entry instructions from each other explains the nulls

we saw before packing in this example. The HP-41 operating

system insists on adding a null in front of every numeric

entry instruction at the time it is keyed in. This null will

be removed by packing unless the previous instruction 1is also

a numeric entry. The operating system also insists, for

similar reasons, that there be at least one null separating

the numeric entry instruction from the following instruction

-101-

as the numeric entry is being keyed in. In the preceding

example, seven bytes were opened up when the 6 of the 56

numeric entry was keyed in. If no bytes had been opened,

there would have been no space isolating the 56 from the

following program instruction. If that following instruction

had been a numeric entry, the 56 would have merged into it to

create a single (incorrect) numeric entry instruction. Thus

at least one null separator byte was required. Since the

HP-41 opens 7 bytes at a time, seven nulls were created.

Any null byte that is part of a multi-byte instruction

is nonpackable. For instance the instruction ST+ 0¥ appears

in an Fu label as 8~ . The second byte is a null. This byte

cannot be removed by packing, since it is part of an

instruction and thus carries essential information, in this

case the register number. Given the complex rules for

removing nulls, it's no wonder that the PACK instruction can

take a long time to execute.

Cne additional obscure point involving nulls deserves to

be covered. ihormally when you key in an instruction, it is

inserted after the current instruction, overwriting any

existing nulls and opening seven new nulls if space is

needed. tiowever if the current instruction is an kD (or the

.END.), the new instruction is inserted precisely where the

LD was, with the END being shifted down 7 bytes. This occurs

even if there were sufficient nulls preceding the LLD.

To illustrate this behavior at ENDs, start with the

sequence: FO label, -, *, END. Go to the FO label, PACK, and

you'll see LBLT BEB™B followed by more characters. The second,

third, and fourth characters visible are the END. Now delete

the * instruction. If you inserted a new * instruction here

it would exactly take the place of the old one. If however

you SST to the END and then insert a new * instruction, the

result is

LBLT "BTTTT77B%8 plus four more characters.

-102-

The * instruction was inserted where the END used to be,

while the END was shifted down 7 bytes. Six additional nulls

were created where none were really needed. Therefore it 1is

good programming practice not to make insertions into a

program with the END in the display. Instead BST before

making the insertion to take advantage of any nulls preceding

the END. Of course PACK will eliminate the nulls anyway, but

this technique may help you avoid having to resize to key in

a program that barely fits in memory.

You'll note that in the last example the END changed its

appearance when it moved. This is because part of the first

two bytes of an END or a global alpha label is used to store

a relative address to the preceding element in Catalog 1.

Thus if Catalog 1 contains LBL "ABC", END, .END., then the

.END. contains a pointer to the END, the END contains a

pointer to LBL "ABC", and LBL "ABC" contains a blank relative

address field, indicating the top of Catalog 1. The

calculator uses this linked list, climbing the chain of

labels and ENDs from the .END. up each time a global label

search is undertaken. The linked list is also used for

backstepping. When BST is pressed the calculator finds the

nearest preceding global label or END and counts down from

there to find the correct instruction. This is necessary

because line number information is not stored in program

memory. Without starting from a known position like a Catalog

1 label or END, the calculator cannot know whether a given

byte constitutes an instruction or a suffix for a preceding

instruction. The BST operation is implemented the only way it

can be, by counting downward from a known position. This

explains why BST can take so long near the end of a long

program that has a lone global label at line 9Jl.

Relative address information is also contained within

local (non-text) GTO and XEQ instructions, as was mentioned

in Chapter 3. The first execution of one of these

instructions requires a time-consuming search for the

corresponding LBL. But when this search is completed the

-103-

relative address is filled in, allowing much faster branching

on subsequent executions. With the FU label it is possible to

observe GTO and XEQ instructions before and after the

relative address information is filled in. The structure of

this relative address information is explained in detail on

page 21 of the August 1979 PPC Calculator Journal.

Problems

5.1 Predict the result of the following steps, including the

number and location of invisible nulls. Use the F@ label to

verify your prediction.

a) Key in the instructions +, 3, -, 4, 5, and *. Insert I+

and I- after the +. Insert RCL @5 after the 4.

b) Key in the instructions +, -, XEQ @6, GTCG 99, *, and /.

Delete the GTO 99 and key in ST+ 75.

-1lu4-

-105-

OFF-
LINE

MEMORY

ON-
LINE

MEMORY

OFF-LINE
MEMORY

SYSTEM
SCRATCH

N

_ I

ABSOLUTE LOCATION
OF REGISTER

HEX DECIMAL

3FF 1023

3F0 1008
3EF 1007

301 769
300 768
2FF 767

2F0 752
2EF 751

201 513
200 512
1FF 51

1C0 443
1BF 447

180 k|
17F 383

1480 320
13F 319

100 256
OFF 255

oco 192
OBF 191

040 64
03F 63

010 16
O0F 15

000 0

VvOID

EXTENDED
MEMORY239

REGISTERS MODULE 2

VOID !__

A
voID

EXTENDED
MEMORY239REGISTERS MODULE 1

VoID Y

« |1 |
REGISTERS

o
REGISTERS

ONE HP-82170A
“ QUAD MEMORY HA1CY

OR
REGISTERS 4 HP-32106A MEMORY

MEMORY MODULES
64

REGISTERS |

64 } Wpaic INTERNAL
REGISTERS § MEMORY v

128 | EXTENDED
REGISTERS | FUNCTIONS MODULE

(VOID)

HP41
16 STATUS INTERNAL
REGISTERS
 SCRATCH REGISTERS

Figure 6.1 Overall Structure of HP-41 Memory

-106-

CHAPTER SIX

HP-41 MEMORY STRUCTURE AND STATUS REGISTER APPLICATIONS

This chapter will complete your knowledge of the basics

of the workings of the HP-41. Some of the details given here

may not be of immediate use, but they are presented to

provide a reference. They also provide a point of departure

for those of you who want to write your own "bit-fiddling"

synthetic programs. Even if you plan only to use the simpler

techniques of synthetic programming, and use "canned"

synthetic programs from the PPC ROM or the HP User's Library

for the fancy stuff, this information will help you get a

general idea of how such "bit-fiddling" synthetic programs

work.

oA. Memory Structure

Figure 6.1 on the facing page illustrates the

organization of program, data, system scratch, and extended

memory on the HP-41. The extended memory, including that

portion contained in the extended functions module, is called

off-line because programs cannot be executed directly from

extended memory. They must first be brought into the main

(on-line) memory.

Details of the contents and structure of extended memory

can be found on page 18 of the lMarch 1982 PPC Calculator

Journal. Another article on page 26 of the April 1982 PPC CJ

shows how synthetic techniques can permit execution of

programs directly from extended memory.

The functional organization of main memory is shown in

Figure 6.2 on the next page. The data registers extend upward

from a partition (more about this when we discuss status

~107-

TOP OF ON-LINE
MEMORY
(511 FOR HP-41CV)

DATA/PROGRAM PARTITION —*
CONTROLLED BY SIZE
FUNCTION

THESE PARTITIONS ARE
MAINTAINED AND MOVED |
AUTOMATICALLY BY THE
CALCULATOR

BOTTOM OF ON-LINE
MEMORY (HEX 0C® = 192)

SIZE -1

LBL “ABC”

END
LBL “NEXT"

END

(-t———— — —

“FREE"
REGISTERS

ALARMS

-—-

FUNCTION
KEY

ASSIGNMENTS S_——

DATA
REGISTERS

PROGRAM
MEMORY
(CATALOG 1
PROGRAMS)

NUMBER OF REGISTERS
AVAILABLE IS SHOWN
AS 00 REG nn OR AS
.END. REG mn.

TIME MODULE
ALARM DATA

CAT 20R CAT 3
FUNCTION KEY
ASSIGNMENTS AT
TWO PER REGISTER

Figure 6.2 On-Line Memory Usage

-108-

register c¢) to the top of main memory. User programs extend

downward from the same partition to the .LND., which is moved

automatically by the calculator as required. Below the .END.

are the "free" registers -- those available for additional

programs, timer alarms, or key assignments. They can also be

converted to data registers by increasing the SIZbL, which

pushes down all data and programs into the free register

block. Decreasing the SIZE pushes the program and data

upwards in memory, adding to the number of free registers and

causing some of the higher numbered data registers to be lost

off the top of memory. The number of free registers present

at any time can be checked by executing GTO .U@E@ in PRGM mode

or else RTN in RUN mode then switch to PRGM mode. In either

case the display will show @0 REG nn, where nn is the number

of free registers.

Below the free registers are the alarms and key

assignments. Key assignments of Catalog 2 (peripheral) or

Catalog 3 (built-in) functions occupy registers starting at

decimal location 192 and proceeding upward. Each register

that contains key assignments begins with a hex FO marker

byte. The other six bytes of the key assignment register

contain a pair of function key assignments, each of which

requires three bytes. Of these three bytes, the first two

define the function. These are the two bytes that you provide

decimal values for when using MK. The third byte defines

which key the function is assigned to. The specifics of what

byte is used to define a given key can be found in William C.

Wickes's classic article on page 28 (second column) of the

November 1979 PPC Calculator Journal. Page 280 of the PPC ROM

User's Manual has a clear summary as well.

Timer alarms reside immediately above the key assignment

registers. Each alarm requires one register for the alarm

time, plus additional spaces if there is a message and/or a

repeat interval associated with the alarm. One "header"

register at the bottom of the alarm registers, Jjust above the

-109-

BYTE NUMBER WITHIN REGISTER
3 2 1 0% e

BIT MAP FOR SHIFTED I LINE
ASSIGNED KEYS i SCRATCH | yymBER

USER FLAGS: 070 29
|
| SYSTEM FLAGS: 30 TO 55

|
|

ASSIGNED KEYS

T T |
2 REG | NOT | COLD START | CURTAIN .END.

POINTER | USED | CONSTANT | POINTER I POINTER

| | |
| T T

THIRD | SECOND RTN | FIRST RTN l PROGRAM

RTN : POINTER { POINTER l POINTER

| ! T

SIXTH RTN | FIFTH RTN | FOURTH RTN | THIRD

POINTER | POINTER | POINTER I RTN

| | |

BIT MAP FOR iOR UNSHIFTED : SCRATCH

|

TEMPORARY SCRATCH FOR ALPHA LBL, GTO, XEQ,
OR WHEN KEYING IN DIGIT ENTRY INSTRUCTIONS

T T
DISPLAY | CATLN | ALPHA REGISTER

FORMAT } NUMBER | (26) (25) 24 23 22
|

ALPHA REGISTER
21 20 19 18 17 16 15

ALPHA REGISTER
14 13 12 1 10 9 s

ALPHA REGISTER
7 6 5 4 3 2 1

LAST X REGISTER

STACK REGISTER X

STACK REGISTER Y

STACK REGISTER 2

STACK REGISTER T
 SIGN [<—— MANTISSA (10 DIGITS) *—lSIGN lsxrouzur

Figure 6.3 The Status Registers

-119¢-

REGISTER
NUMBER

15

14

13

12

n

uppermost key assignment register, is required to define the

total number of alarm registers in use. Another register

delimits the top of the alarms.

This completes the description of HP-41 memory

structure, except for one very important area -- the status,

or system scratch, registers. The name "status registers" is

due to the fact that the contents of these 16 registers is

recorded on track 1 of a status card by the card reader's

WSTS function.

The 16 system scratch registers reside at the very

bottom of the HP-41 address space, at locations ¥ through 15

(decimal). The register names are T, %2, Y, X, L, M, N, O, P,

9, +, a, b, ¢, d, and e, respectively. You are already

familiar with most of these registers; the first five are

described in your Owner's Manual, while several of the others

were introduced in Chapter 2. Figure 6.3 is a brief summary

of the processor's usage of these registers.

The stack registers, T, Z, Y, X, and L are available to

the user through normal means. In addition to the ENTERH*%,

RDN, R4, and LASTX instructions that have been incorporated

in many HP calculators, the HP-41 allows direct access to all

the stack registers through instructions like RCL Z or X<> L.

With synthetic programming, the use of STO, RCL, and X<> can

be extended to the other status registers as well.

Registers M, N, O, and P contain the 24-character ALPHA

register. The ALPHA register contents are always

right-justified in the status registers. The rightmost byte,

byte U, of the M register contains the rightmost character.

Byte 1 contains the second-to-last character, and so on. If

the ALPHA register contains 7 or fewer characters, only the M

register is used. As more characters are appended, the

leading characters are bumped right-to-left then upward into

registers N, O, and P. When the 24th position is filled (in

-111-

register P), a warning tone sounds. Appending more characters

will then push the leftmost characters into the scratch

portion of register P. Lowever if you remain in ALPHA mode,

or at least have a non-numeric display, the four characters

in positions 25 to 28 (the leftmost 4 bytes of P) will remain

in place for extraction by synthetic methods such as RCL P.

The Morse code program in Appendix B uses this 28-character

capability.

The leftmost two bytes of P are used by the processor

under some conditions. The first byte is an encoded

representation of the numeric display status (FIX, SCI, LIKG,

I'lag 28, Flag 29, and the number of digits). This byte is set

up by the processor whenever a numeric display is needed or

when a digit entry instruction is executed. The second byte

of P is used for digit entry, whether it be manual or in a

running programn.

Executing the CATalog function also alters the first and

second bytes of P. The first byte contains the catalog number

(1, 2, or 3), while the second byte contains the line number

within the cataloy.

Details of the bit usage in the first two bytes of the P

register can be found on page 153 of the July 1981 PPC

Calculator Journal.

The ¢ register is used whenever an ALPHA label name is

spelled out. This happens when the label instruction is keyed

in or when the corresponding GTO or XEQ is keyed in or

eXxecuted. The label name is placed, in byte-reversed order,

in Q.

The Q register is also used during digit entry, whether

manual or in a running program. The number is composed in ¢

before being transferred to the X register.

Details of ¢ register usage can be found on page 78 of

the August 1981 PPC Calculator Journal. Be aware that the Q

register is also used by the printer if one is connected.

-112-

The - register contains a bit map for the unshifted

assigned keys in its first four bytes and half of the fifth

byte. This is part of a clever technique that the [iP-41

operating system uses to speed execution of functions from

the keyboard. When an unshifted key is pressed in USER mode,

the processor checks the corresponding bit of the register.

If the bit is clear, the processor knows that the key has not

been assigned, and one of two actions is taken.

If the key in question is not in the top row or in the

unshifted second row (ALPHA keys A-J and a-e), the default

function (that is, the one that is printed on the key) is

executed. If the key is in the top row or unshifted second

row, a search of the current program for the corresponding

local label (A through J or a through e) is initiated. If the

label is found, program execution begins at that point. If

the entire program is searched without finding the label, the

processor (finally!) executes the default function.

If the bit in the }- register 1is set the processor knows

that the key has been assigned. It then searches for the key

assignment information first in the key assignment registers.

If no function assignment is found, the processor checks the

key assignment byte (the fourth byte) in each global label in

Catalog 1, from the .EKND. up to the curtain. If no global

label assignment is found (this is not a normal case), then a

function like CAT, ABS, or 1/x is executed.

Thanks in part to the key assignment bit map, the first

step in the above USER mode execution sequence occurs qguite

rapidly. liowever the local label search can be very time

consuming if the current program is more than 104 lines or

so. This is why it is a good idea to assign X<>Y and RDN to

their default keys. In USER mode the seemingly redundant

function assignment takes precedence over the local label

search, eliminating the delay associated with that search.

The rightmost two and a half bytes of the |- register

contain the hexadecimal code for the last function executed

from the keyboard. The printer may make use of this area as

well.

-113-

legisters a and b contain the program pointer and the

stack of return pointers. Each pointer occupies two bytes,

expressible in four hexadecimal digits. Bytes 1 and U of

register b contain the current program pointer. When an XEQ

instruction is encountered, this pointer 1is pushed onto the

return stack -- that is, into bytes 3 and 2 of register b. If

another XEQ is encountered before the RTN from the first one,

the program pointer and the first return are pushed leftward

two more bytes. The return stack in registers a and b can

accommodate up to six pending return addresses in this way.

When a RTN instruction is encountered, the first return

address in bytes 3 and 2 of register b is checked. If its

value 1is zero, the current program pointer is retained and

control returns to the keyboard. Otherwise the return stack

is shifted leftward two bytes, with the former first return

address being moved into the program pointer slot. LExecution

continues from that location in program memory, one step past

the XLC instruction that caused the return address to Dbe

pushed onto the return stack.

wow for a little technical detail on program pointers.

The four hexadecimal digits of the program pointer are

interpreted one way for RAM (read/write Random Access Memory)

and another way for RCM pointers (those from a plug-in kead

Cnly Memory). For RAM the first four bits denote the byte

number within the register, while the other 12 bits denote

the register's absolute address from the bottom of memory.

The format 1is

Cbbb,YdYr,rrrr,rrrr ,

where bbb denotes the byte number (expressible in three bits

since the maximum value is 6 = 0110 base 2) and where

r,rrrr,rrrr denotes the register number (expressible in 9

bits since the maximum value is 511 = ¥0d1,1111,1111 base 2).

For example W0lul,0001,1010¢,1110 = hex 51AE denotes byte 5 of

register 1AE (= 430 decimal). Byte numbers range from 6 to ©

as the program pointer moves downward through one register of

a program. Thus 6lAE is above 41AE in a program, and 41AE is

above 61AL.

-114-

RAM return address pointers are the same as ordinary RAM

pointers, except that the three bits that designate the byte

number within the register are shifted to the right. These

bits, normally the second, third, and fourth from the left of

the 16-bit pointer, are shifted three positions over, to the

fifth, sixth, and seventh bit positions. The RAM return

pointer format is

bO06, bbbr ,,rrrr,rrrr .

ROM pointers consist of a port address in the first four

bits plus a 12-bit byte number within that port:

pppp, bbbb, bbbb, bbbb .

The port address part of a ROM pointer is not the same as the

physical port number. The correspondence is:

port address physical port or device

© internal ROM &

internal ROM 1

internal ROM 2

not used

Service RCM module

Time module

Printer

Tape Drive (IL monitor)

Port 1, Lower 4K

Port 1, Upper 4K

Port

Port

, Lower 4K

0
0
O

O
0
N
U

W
N

, Upper 4K

w
N
N

Port , Lower 4K

T
O

Port w ~ Upper 4K

rl SPort

F Port 4, Upper 4K

, Lower 4K

Each port address can accomodate a 4 Kilobyte RCM (4096 = hex

FFF +1 bytes). The 12-bit byte number starts at zero and

increases toward FFF as sequential ROM program instructions

are executed.

-115-

Another important detail: When you KRCL b in RUKN mode at

a specific line of program memory, the pointer value 1is

usually one byte above the location where the instruction

resides. Thus if a RCL M instruction is located in bytes 6

and 5 of register 1lAE, and you RCL b at this line of program

memory, the resulting pointer value will be W@1AF hex, one

byte above the actual location of the RCL M instruction.

Where nulls are present, the pointer will be farther above

the instruction. In fact it will be one byte above the group

of nulls preceding the instruction.

Status register c contains essential pointer information

needed to define the configuration of memory usage. Referring

to Figure 6.3, we'll proceed right to left through the c¢

register.

The last (rightmost) three hexadecimal digits of

register c contain a pointer to the register containing the

.END., which marks the bottom of user program memory. The

.END. 1s always positioned in the rightmost three bytes of

the register, with nulls preceding it as needed to occupy the

space between the last instruction and the .END.

The next three hex digits of c contain a pointer to data

register ©OW. This pointer, often called the "curtain",

effects the separation of program and data memory. Any time

the SIZE is changed, this pointer is adjusted and the

contents of memory are shifted. Several short synthetic

programs have been written to move the curtain, transforming

program steps to data or vice versa. In Section 6C you will

encounter one such program, together with an introduction to

curtain moving. Within 3 and @@ are instruction

sequences that temporarily place the curtain at WlW hex = 16

decimal. This allows program memory or the key assignment

registers to be accessed by STO IND and RCL IND instructions.

RCL will, of course, normalize the register contents. The

previous contents of register c are held in the stack or in

-116-

other status registers for replacement before the program

halts. LB and MK illustrate the power of curtain control.

The next three hex digits of ¢ contain the "cold start

constant". These three digits are 1, 6, and 9 in every HLHP-41

manufactured so far. If the processor ever finds that these

digits have been altered, it clears all of memory, giving the

MEMORY LOST message in the display. The rationale behind this

action is that since the processor never alters these digits,

any alteration must be due to power failure. (No provisions

were made for errant synthetic programmers.) Presumably other

parts of memory would also have been altered, so clearing the

memory 1s required to prevent an unsuspecting user from

getting erroneous results. The main thing to remember about

the cold start constant is not to store anything in ¢ unless

these three hex digits are 169, under penalty of MEMORY LOST.

Incidentally, if the register immediately below the curtain

pointer is nonexistent, you'll also get MEMORY LOST. So watch

what you store in c.

The fourth and fifth hex digits from the left are

apparently not used by the operating system or the printer.

The leftmost three hex digits of c constitute a pointer

to the lowest register of the summation register block. For

example if the curtain is at hex 1lEB (SIZE 620 with full

memory) and a IREG @1 command is executed, the IREG pointer

will be set to hex 1EC which is 1EB + 1.

The d register contains all 56 flags. Byte 6, the

leftmost byte, contains flags @ through 7, while byte ¢

contains flags 48 to 55. The flag register is used as the

cornerstone of synthetic programming. Until the advent of the

extended functions module, most bit manipulation could be

done only by dropping one or more bytes of data into the flag

register. Once in the flag register, the first thirty bits of

the data can be directly modified as flags @@ through 29. A

prime example of this technique is the "RAMBYT" program of

Chapter 4. You'll find pairs of X<> d instructions, separated

-117-

by several lines of bit-fiddling flag operations, in many of

the synthetic routines in the PPC ROM.

The e register contains a bit map for shifted assigned

keys. This bit map is precisely analogous to the one for

unshifted keys in the - register. It also occupies the

leftmost four and a half bytes of the register.

The next two hex digits, half of byte number 2 and half

of byte 1, are used as scratch by the processor.

The last three hex digits of the e register constitute

the program line number. Since the line number is not stored

with the instructions in program memory, and since

instructions vary in length from 1 to several bytes, the

processor must calculate the line number. This calculation is

time consuming and must be redone every time you execute the

Catalog function, SST a GT0O or XEQ instruction in RUN mode,

or otherwise jump to a location with an unknown line number.

Because the calculation is time consuming, it is not

performed in a running program. This speeds program

execution, but it also causes a noticeable delay when you try

to switch to PRGM mode after running a program. The processor

will not show you the program instruction until it has

computed the line number that goes with it. How does the

processor know that the line number needs to be recomputed?

it's simple. Before the processor starts running a program

(88T execution does not count as "running a program" in this

context), it sets the line number to hex FFF = decimal 4695.

The line number remains FFF as the program is executed. When

you try to SST or to switch to PRGM niode, the processor sees

that the line number is FFF and automatically recomputes the

correct line number for the current program pointer by

counting down from the preceding END.

The mysterious line 4094 you saw in Chapter 1 when you

created the byte grabber was due to the fact that when you

pressed backarrow in ALPHA mode, the calculator decremented

the line number by 1 without realizing that the FFF line

-118-

number was invalid. The RCL 1 that you saw was a phantom

instruction that appears when the program pointer register

(status register b) contains zero.

6B. Status Register Application 1 -- Suspend Key Assignments

As part of its compatibility with 1P-67 operation, the

HP-41] has 15 keys (top two rows unshifted plus top row

shifted) which, when pressed in USER mode, will find and

execute the corresponding local label (A-J and a-e). But this

feature conflicts with any global label or function key

assignments to these keys, since the HP-41 gives precedence

to function and global label assignments. iow many times have

you wanted to use the automatic assignment of local labels

A-J and a-e, but found a function or global 1label key

assignment in your way? You press LOG to execute LEL D, but

instead you get another function that you have assigned to

that key. Wouldn't it be nice if there were a way to

temporarily eliminate the conflicting key assignment, then

bring it back later?

Synthetic programming technigques permit this to be done,

and the PPC ROM contains two routines that do it. You use

B3 +to suspend the function and global label key

assignments, and (@8 to reactivate them.

To use EE® , simply key in a register number k, and XEQ

"SK". The key assignment bit maps from status registers ' and

e are stored in data registers k and k+1, while the bit map

areas in the /- and e registers are cleared. Because the bit

maps are clear, the calculator thinks that there are no key

assignments’ present. Therefore you can press the LOG key in

USER mode to execute LBL D. Any function or global label key

assignments that are present are held in suspended animation.

When you want to reactivate the global label and

function key assignments, just key in the same data register

number k, and XEQ "RK". The contents of data registers k and

-119-

k+1 are recalled and put into status registers i and e. Since

the calculator now has the proper bit maps, the key

assignments operate normally again.

There is another way to reactivate your function key

assignments. You need only read in a program card on the card

reader. It doesn't matter whether you read the card in USER

mode or not, but it must be a program card. This technique 1is

valuable if you accidentally disturb data registers k and k+l

that hold the key assignment bit maps after you execute "SK".

Let's analyze the workings of PPC ROM routines E8 and

¥ (suspend and reactivate key assignments). If you don't

have a PPC ROM, key in E8 and @8 using LB:

¥l LBL "SK" "LB" inputs:

B2 SIGN

W3 CLX

4 X<> 206, 122

L5 XEG 14

g6 ISG L

w7 TEXT © 240

08 .

g9 X<> e 200, 127

1 LBL 14

11 "*"

12 X<> M 206, 117

13 STO N 145, 118

14 ASTO 1IND L

15 RDN

16 RTW

17 LBL "RK"

18 SIGN

19 ARCL IND L

20 hex F2 7F 00 242, 127, ©

21 ISG L

-120-

22 TEXT 0 240

23 ARCL IND L

24 hex F3 7F @F FF 243, 127, 15, 255

25 X<> N 206, 118

26 STO K 145, 122

27 X<> M 206, 117

28 STO e 145, 127

29 RDN

30 CLA

31 END

The accompanying "Stack and ALPHA Register Analysis

Form" is an indispensible tool for step-by-step tracing of

synthetic programs. You'll understand its value after you've

used it to trace E@ and 3 .

When you execute Ed , the register number k is first

stored in LASTX by the SIGN function. Thén an X<> F

instruction is used to extract the contents of the i register

and simultaneously clear it. The LBL 14 subroutine uses the

ASTO function to store a six-character string in register k.

This six-character string consists of an asterisk character

followed by the first five bytes of the former i register

contents. The asterisk is needed as a place holder in case

the leftmost byte of the - register is zero. The three-step

sequence "*", X<> M, STO N, sets up the ALPHA register

contents for the ASTO operation, as you can see on the ALPHA

register analysis form. Take the time to understand this

three-step sequence if you want to write your own synthetic

programs.

The rest of the E8 routine performs a similar

operation, extracting the contents of register e and clearing

it, and storing a similar six-character string in data

register k+l.

When you execute [I# the data register number k is first

stored in LASTX by the SIGN function. Then the six-character

string is ARCL'ed from register k and shifted left one byte

-121-

S
t
a
c
k
a
n
d
A
l
p
h
a
An

al
ys

is
F
o
r
m

L
I
N
E

I
N
S
T
R
U
C
T
I
O
N

N

C
l
e
a
r
e
d

C
l
e
a
r
e
d

C
l
e
a
r
e
d

C
l
e
a
r
e
d

-122-

C
l
e
a
r
e
d

C
l
e
a
r
e
d

LI
NE

I
N
S
T
R
U
C
T
I
O
N

-123-

S
T
A
C
K
A
N
D
A
L
P
H
A
A
N
A
L
Y
S
I
S
F
O
R
M

by appending a null, though an asterisk would do just as

well. Register k+1 is then ARCL'ed, shifting the previous

string another six characters to the left. Two more bytes,

hex OF and FF, are appended, causing a further two-byte shift

to the left. The ALPHA analysis form reveals all this action

in detail.

At this point the N register contains the required 7

bytes for -, while the M register contains the correct bytes

for e. The last several lines of L@ extract the contents of

N and M, store them in ' and e, and clean up ALPHA and the

stack. Note that the last two bytes of e are OF FF, requiring

the calculator to compute a correct line number. Earlier

versions of B8 stored 00 99 in the rightmost bytes of e,

causing the line number to be incorrect if the program was

single-stepped or run in TRACE mode.

6C. Status Register Application 2 —-- Register Renumbering

Suppose you have a program which calls a user-supplied

program as a subroutine. A typical example would be a root

finder program which finds a value of x such that f(x) = 0.

In this case f(x) is calculated by a user-supplied

subroutine. The user supplies the name of the f(x) program,

the root finder stores the name in a data register and calls

it as needed with an XEQ IND nn instruction.

In writing such a root finder program, you have a

difficult decision to make. The root finder will need to use

some numbered data registers to hold its data, and it is

essential that these registers not be disturbed by the user's

f(x) program. No matter which registers you choose, there is

always the possibility of a register usage conflict between

the root finder and the f(x) program. You might try using

data registers 50 and up for the root finder, figuring that

-124-

most reasonable f(x) programs wouldn't be using those

registers. But even if this would work, it is wasteful. In

most cases the user's f(x) program won't use anywhere near 5¢

registers.

Synthetic programming provides a way out of this

predicament. A short synthetic routine can reposition the

curtain that separates data registers from program memory,

effectively renumbering the data registers.

For example, suppose the root finder program uses the

five data registers @@ through ©4. Just before calling the

f(x) program, the root finder calls the synthetic routine

"CU" (curtain up) to raise the curtain five registers. The

figure below shows the effect of raising the curtain five

registers. Although the contents of the registers haven't

changed, a RCL U will now extract the contents of what used

to be called data register 065.

BEFORE AFTER

R o6 R’ 01

Ros Moo
NEW “CURTAIN"

R “ R'_M THESE DATA REGISTERS

R 03 R'—DZ HAVE TEMPORARILY

R 02 R'__” BECOME PROGRAM STEPS

R01 3204 IN THE TOP PROGRAM

R 00 R'_os | OF CATALOG 1.

LBL “TOP” <«— LBL “TOP”

END «<— END

. . PROGRAM

MEMORY

.END. <+— .END.
Similarly a RCL Gl instruction will produce the contents of

what used to be register ¥6. The important registers that the

-125-

root finder needs to protect from the user's f(x) program are

now inaccessible by STO and RCL instructions. The contents of

what used to be called data registers 0@ through @94 are now

regarded as part of program memory by the calculator. In fact

if you were to go to the top program of Catalog 1, you'd find

this data at the top of the program. Of course it would appear

in the form of program instructions rather than as numbers.

The important point is that after raising the curtain by

five registers, the root finder program can call the f(x)

program without fear that i1ts essential data will Dbe

disturbed. The f(x) program will have free use of what it

thinks are data registers @@ and up.

When the f(x) program returns control to the root finder

program, the first thing the root finder does is to lower the

curtain back to the original location. This restores the

original data register numbering and makes the root finder's

data accessible again as data registers @@ through 04.

The accompanying program listings for the curtain-raising

routine "CU" and a typical root finder program "SOLVE"

illustrate the principles we've been discussing. This version

of "CU" was written by Tapani Tarvainen, and represents a

major breakthrough from previous versions.

LB inputs for "CU":

Line ©3 144, 125 Line ¥4 145, 117

Line @5 245, 127, v, P, 9, 33

Line ©8 206, 117 Line ¢¥9 206, 126 Line 10 145, 119

Line 13 176, 245 Line 15 240 Line 21 168, 245

Line 22 151, 117 Line 27 2006, 119 Line 28 2006, 126

Line 29 145, 117

Line 3¢ 244, 127, ©, 9, @

Line 31 206, 118 Line 32 206, 125

-126-

BielBL =5OLVE 18+LBL i# i E-5 fieiB =Ll 19 FRC
32 "FHHBEY" 19 ROL @A 37 E{=Y? 87 IHT 28 X287
B3 K 28 RCL 83 38 G670 14 a3 BLL ¢ 21 5F INB £
A4 S70F 21 XEg 14 39 ECL #3 B4 570 [22 DSE I

d3 ASTO B8 22 ENTERY 48 BEEF AT “Heesl 23 HBS

A6 AOFF 23 ENTER? 41 ETH A6 EIH 24 -

a7 “XGUESSI?: 24 X{) &l BY it 25 X#8?
88 PRONFT 23 - 42¢LBL 14 Az 24 I 26 GT0 83
@3 570 83 26 ¢ 43 4 B9 Z{: d 2i A5 1

18 =XGUESSZ2?= 27 RCL 82 44 XE§ =Ck- i# 570] 28 ¥d
11 PROWFT 28 * 43 XEG IKD ¥ {1 RIH 23 570 [

12 - 29 CHS 46 4 38 “hHeesr
13 570 &2 38 5T0 82 47 CHS 12¢LBL 83 3 RG A
14 RCL @4 31 RCL 83 48 ¥EB “CE* {3 FS?C IND © 32 20 ¢
15 LASTX 32+ 49 END 14 I5G ¥ 33 RIN

17 570 &1 34 RCL &1 END i6 2 35 END

33 AB5 . i7 7 LBL™CU

97 BYTES 18 ENTERt END 67 BYTES

Barcode for "SOLVE" and "CU" can be found in Appendix E.

The SOLVE routine starts by asking for the name of the

guesses at the

SOLVE then

user-supplied f(x) program and for two initial

the value of x such that f(x) = 0.

actual root of

root, that is,

proceeds to apply Newton's method to find the

f(x) = W. To do this it will need to evaluate f(x) at several

points. Each evaluation of f(x) is accomplished through the

LBL 14 subroutine, which raises the curtain 4 registers, calls

f(x),

location.

then lowers the curtain 4 registers to its original

The "CU" routine raises the curtain by the number of

registers specified in X. If this number 1is negative the

curtain is lowered. Two stack registers are preserved, so that

the original contents of Y and Z (before executing "CU") end

up in X and Y. This feature is used in the "SOLVE" program to

preserve the function name and the trial value of x in the

127

stack. Then an XEQ IND Y instruction 1is sufficient to call the

f(x) function with the correct input.

To try out the SOLVE/CU combination, try this example.

GTO.. and key 1in:

©l1 LBL"TEST"

2 1/X

¥3 LASTX

w4 -

05 1

wo +

This short program calculates f(x)=(1/x)-x+1. Comparing

problem 2.4, you can confirm that the solution to f(x)=0 is

x=1+1/x, which is the Golden Ratio.

XEC"SOLVE" now and supply the requested information:

Prompt Response

FNAME? TEST (R/S)

XGULSS1? 1 (R/S)

XGUESS2? 2 (RrR/S)

After about 40 seconds you'll hear a BEEP and see the result

1.618033989. This example does not really make use of the full

capabilities of the SOLVE/CU combination, but you can be

assured that SOLVE and CU will work just as well with any

user-supplied f(x) program, regardless of any apparent

register usage conflicts. Of course the usual limitations of

root finding by Newton's method still apply. Certain

ill-behaved functions can cause problems, as can bad initial

guesses. But in most real-world cases, it works quickly and

well.

Constraints on the use of "CcU"

1.) While the curtain is in a raised position, data registers

temporarily become program steps at the top of the first

program in program memory. Some of these temporary

program steps may be labels. Therefore do not branch

-128-

backwards to a local label in the first program block

when the curtain is up.

2.) Don't PACK program memory while the curtain is raised. It

is more than likely that the protected data registers

will contain null bytes which will be removed by packing.

You can partially protect yourself from data alteration

by PACKing before raising the curtain. This way the

processor thinks your top program is already packed. Also

make sure that several free registers (below the .END.)

are present before using "CU". Then if you insert a

program instruction, make a key assignment, or set an

alarm you won't inadvertently cause a PACK to occur.

3.) Always restore the curtain to its original position. This

is a matter of good programming practice. If you

accidentally leave the curtain up you'll have to go into

the first program in memory, delete the extraneous

instructions at the top (thereby clearing your protected

data), and PACK to bring the program up to the new

curtain.

4.) Don't put the curtain immediately above a void, or

nonexistent, location. For example a curtain location of

16 (decimal) is OK since register 15 (status register e)

exists. But if you put the curtain at 17 you'll get

MEMORY LOST, since register 16 does not exist. MEMORY

LOST can be avoided if you bring the curtain back to an

allowable location before halting ("MK" and "LB" do

this), but you'd better know exactly what you're doing.

With the "CU" program, not only can one program renumber

the registers before calling another program, but this second

program can do a second renumbering before calling a third

program. The process can be continued indefinitely, creating

a multi-level data "stack". The critical sequence of steps to

be embedded in any program to allow it to guard data

registers ¥ through k-1 from a subroutine is:

k

XEQ "cu"

XEQ subroutine

-k

XEQ "cu"

Register renumbering through curtain control adds

greatly to program flexibility. For example a program that

uses data registers 10U through 19 can be run with a SIZE of

only 10. You need only lower the curtain 10 registers before

executing the program, transforming registers @9 through ©9

into registers 10 through 19. Don't forget to put the curtain

back where it was immediately after running the program -- an

inadvertent RCL U@ could wipe out part of your programs.

Tapani Tarvainen's "CU" program is functionally

equivalent to Bill Wickes's (B (curtain up) program that is

in the PPC ROM, so they may be used interchangeably. If speed

is important you should be aware that Tapani's "CU" is

significantly faster than . Also available are the

even-faster PPC ROM curtain control routines BB , 0B , and

. These three routines have additional restrictions on

their use which you should understand before you use them.

For background information on curtain moving in general and

on the routines named here, see the PPC Calculator Journal:

May 1980 page 23, June 1980 page 45, July 1980 page 2, and

March 1981 page 2. The programs "MS" and "RS" discussed in

the PPC CJ articles are earlier versions of EB and 03 .

1The PPC ROM User's Manual contains helpful information in the

writeups for G, BB,), and BEI. Appendix M of the

ROM Manual contains even more background material on curtain

moving.

How the "CU" routine works

First the contents of status register c are placed in

the rightmost part of the ALPHA register. Then line 05

appends four bytes. At this point status register M, which

consists of the the last seven characters of ALPHA, contains

the last three bytes of ¢, followed by three null bytes anda a

hexadecimal 21 byte. The curtain pointer resides in the first

byte and a half of M.

Next M 1s extracted and swapped with the flags. The

curtain pointer now resides in flags @ through 11. Actually

flags ¥ and 1 are guaranteed to be clear, since the curtain

is always less than or equal to 512 = @010,0000, 00010 base 2.

The original flags are saved in status register O for later

restoration, while the number 11 is stored in M for later use

as a loop index.

The mysterious hex 21 byte sets flags 50 and 55. Flag 50

prevents any message in the display from moving (see Example

6 under H@ in the PPC ROM User's Manual). Flag 55 must be

set to allow "CU" to be interrupted or single-stepped with a

printer attached. If flag 55 were clear, flags 55 and 21

would both be set on interruption, possibly altering the

portion of the flag register that corresponds to the .END.

pointer.

The LBL ©3 loop performs binary addition in the flag

register using Tapani's unique, elegant algorithm. The binary

number in flags © through 11 is converted to decimal and

added to the decimal increment (the number of registers by

which the curtain is to be raised). Then the resulting

decimal sum is converted back to binary and placed in flags 0

through 11.

-131-

The feature that makes Tapani's program unique is that

this binary to decimal to binary conversion is completed at

each bit before the next bit is considered. Each time through

the LBL U3 loop one bit of the current curtain pointer 1is

replaced by the correct bit for the new curtain pointer.

Consider the way this process works for the least significant

bit, the first time through the LBL 63 loop.

When LBL ©3 is encountered for the first time, X

contains the curtain increment you asked for. Lines 13 and 14

clear flag 11, the "ones" bit of the curtain pointer, and add

1l to X if flag 11 was set. This effectively converts the flag

11 bit to decimal, adding it to X. The flag 11 bit of the new

curtain pointer will be set if and only if the number in X is

now odd. If you don't see why this is so, consider that the

new curtain pointer is the sum of the number in X plus the

binary number residing in flags 8 through 11. Since flag 11

is clear, the binary number is divisible by 2. Thus the sum

is odd, and flag 11 is to be set, if and only if X is odd.

Lines 15 through 24 perform several operations that are

equivalent in effect to setting flag 11 and subtracting 1

from X if X is odd, otherwise leaving flag 11 clear, then

dividing X by two. This division has an integer as the result

because the previous step ensured that X would be even. The

flag index is decremented from 11 to 10 for the next pass

through the loop. Flag 11 attains the proper state for the

new curtain pointer: set if and only if X was odd. Lines 25

and 26 cause the addition to proceed to the next most

significant bit if the increment has not been reduced to zero

yet.

The second time through the loop the binary number is

only 11 bits long (flags @ through 19). We had to divide X by

2 so that it would be a decimal increment consistent with the

new "ones" bit at flag 18. The number in X does not merely

represent the originally requested curtain increment. It now

-132-

contains a component corresponding to a "carry", if there was

any, from the previous bit.

This time through the loop flag 1¢U is cleared and

transferred to X, then flag 10 is set if and only if X is

odd. Once again, X is made even and divided by 2 for the next

pass. This procedure continues until X is reduced to zero, as

it must eventually be because of the repeated division by 2.

Notice that nowhere in the routine do we require

knowledge of whether X is positive or negative. "CU" works

the same in either case. When a flag is cleared X 1is

incremented. When a flag is set X is decremented. Each time

through the loop X 1is divided by 2, until eventually X

becomes zero.

Lines 27 through 29 extract the contents of the flag

register and place them in status register M, restoring the

original flags and placing the modified last three bytes of c

adjacent to the first four bytes of ¢ which still occupy the

rightmost 4 bytes of N. The ALPHA register is shifted left

three bytes by an append instruction. All seven bytes of the

new Cc register are now in status register N. They are

extracted and stored in c. The X<> c¢ instruction is used in

case you want to restore the old curtain later with a simple

STO c. Of course to do that you'll have to find the old c

register contents in the stack, if it's still there.

The last few lines clear the ALPHA register for neatness

and straighten out the stack. The former Y and Z end up in X

and Y; Z contains the previous c¢ register contents, and T

contains zero.

Follow through this analysis a few times until you

understand it. It may help to load the stack with 4 ENTER* 3

ENTERt+ 2 ENTER* 1 and GTO "CU". Make sure the SIZE is at

least ©@GW1l. Then you can SST through the routine and see

what's going on for this simple case of raising the curtain 1

register.

Don't be concerned if much or even most of this Chapter

is difficult to fathom at first reading. After all, that's

why I saved it for last. Consider that the byte grabber and

the "bootstrap" method of assigning it to a key were both

discovered two years after synthetic programming began. There

is undoubtedly much more yet to be discovered about your

liP-41. Perhaps you will be the one to do it.

-134-

SOLUTIONS TO PROBLEMS

CHAPTER 2

2.1 Here's one version of "CQ":

g1 LBL"CQ" @ /0@ inputs:

¥d2 RAD

¥3 CLX

¥4 TONE

¥5 TONE

W6 TONE

©7 TONE

08 SIN

K9 TONE

19 TONE

11 TONE

12 TGCNE

13 END

159, 12¢

'
o

W
@

159, 126

159, 120

c
9w
o

2.2 Key in

¢l ENTER*?

w2 1LE1

GTO .wPl, key in RPN, BG, and backarrow twice. You now have

El on line ¥2. wext key in STO 28, PACK, BST, BG, and

backarrow. The PACKing placed the 28 suffix byte adjacent to

the E1 instruction, purging the intervening nulls. When the

STO prefix is grabbed, the 28 suffix becomes a NEG digit

entry byte and is incorporated in the adjacent El

instruction.

inputs for -El1 are 28, 27, 17.

2.3 ¥l LBL"VX" / @@ inputs:

g2 " " (2 spaces)

@3 RCL d 144, 126

g4 SCI 9

5 ARCL Y (not X since the stack was raised by RCL 4)

-135-

W6 STO d 126

@7 RDN

¥8 AVIEW

U9 END

145,

In cases like this you should get in the habit of doing the

AVIEW after the STO d rather than before.

altering system flags.

This prevents

In this particular case the display

will revert to normal (the AVIEWed number will disappear) at

completion of the program if the AVIEW is done first, since

STO d clears flag 50, the message flag.

2.4 liere's one solution to the Golden Ratio problem.

¥l LBL"GR" / B inputs:

w2 FIX 9

g3 E 27 or 27, O

¥4 RCL b 144, 124

g5 X<>Y

g6 1/X

W7 E 27 or 27, ©

28 +

09 X<>Y

190 VIEW Y

11 STO b 145, 124

It converges to a 1U-digit solution in 8 seconds.

2.5 a) g1 LBL"PX" inputs:

¥2 FI1IX ©

@3 CF 29

W4 "X (" 242, 88, 4¢

g5 ARCL 09

06 "})=2" 244, 127, 41, 61, 63

g7 PROMPT

-130-

To generate the synthetic lines using the byte grabber,

key in

0l ENTEK+

sz "XX"

w3 "rFx=2" .

GTO .wWWw2, BG, GTC .WW5, backarrow, KCL @9, GT0 .02, BG, DEL

bgz, GTO .0W1l, BG, GTO .0W4, backarrow, RCL 08, GTO L0001, BG,

DEL 002, backarrow, and key in the nonsynthetic lines.

b) To preserve the display mode, insert RCL d and STO d as

shown:

01 LBL"PX" / W inputs:

02 RCL d 144, 124

w3 CF 29

w4 FIX ©

05 "X ("

06 ARCL WU

g7 “ik)=32"

w8 STO d 145, 124

09 RDU

16 PKOMPT

1t is possible to save one byte by replacing lines w2z - @3 of

this program by

w2 . (decimal point)

U3 X<> d 206, 126

This stores zero in the flay register, clearing all b0 flags.

The we need only to FIX U to get the desired status of flags

29 and 36-41. The old flay register contents are in X just

as before, ready for the subsequent STCU d that restores the

previous flag settings. To make the X<>d instruction using

the byte grabber, start with STO IND 78 followed by AVILW.

Grab the STO byte and backarrow. The IND 78 becomes X<> and

the AVILW becomes the d suffix.

-137-

2.6 ¥l LBL"CX" B inputs:

U2 RCL d 144, 126

¥3 FIX 2

g4 "our="

€5 ARCL Y

K6 STC d 145, 126

@7 RDN

vy AV 243, 127, 12, 86

Line @8 can be constructed using the byte grabber as follows.

Key in

U1 ENTER?

b2 "rxXv"

GTO .8¢l, BG, GTC .¥WP4, backarrow, LBL 11, GTO .001, BG, DEL

YwZz, backarrow.

2.7 LBL"CMOD" / @@ inputs:

02 X<>Y

g3 STO M 145, 117

G4 X<>Y

¥5 MOD

V6 ST- M 147, 117

@7 LASTX

U8 ST/ M 149, 117

@9 CLX

10 X<>M 266, 117

Lines ©Gl1-0P4 save y in M and x in L. Then y mod X is

subtacted from M. Lines ©7-10 divide M by X, bring M back to

X, and clear L.

CHAPTER 3

3.1 GTO.. and key in LBL"++", at least 45 +'s, and XEQ"LB".

switch out of PRGM mode, R/S, and respond to the prompts as

follows:

-138-

pronpt response

1? 27 R/S

2? 145 K/S

3? 119 R/S

472 146 R/S

52 119 R/S

62 206 R/S

72 119 K/S

1? 145 R/S

2? 117 R/S

3? 150 R/S

4?2 117 R/S

572 249 R/S

6? 153 R/S

77? 245 R/S

1? 152 R/S

272 119 R/S

372 172 R/S

472 245 R/S

572 159 K/S

6? 166 R/S

72 244 K/S

1? 1 R/S

272 4 R/S

32 5 R/S

47?2 6 R/S

572 242 R/S

6? 127 R/S

772 96 R/S

17 154 R/S

2? 118 R/S

32 152 R/S

4?2 116 R/S

52 R/S

When the program stops you can press 55T to get back to

-139-

LBL"++" and see your new synthetic instructions.

3.2 Here's a simple nonsynthetic program to compute the LB

inputs from XROM numbers. This program takes advantage of

the fact that ©4*(i mod 4) is the same as 256*FRC(i/4). At

the right we note how the stack register contents change

through the program. Where there is no entry, the contents

of that register are unchanged from the previous step.

LBL"XRLEB" L X Y Z T

X<y i Jj z t

4 4 i j z

/ 4 i/4 5 z z

INT i/4 INT(1/4)

X<y j INT(1i/4)

LASTX i/4 j INT(1/4) z

FRC i/4 FRC(1/4)

256 256 FRC(i/4) j INT(i/4)

* 256 64 (i mod 4) j INT(1i/4) INT(i/4)

+ 64 (i mod 4) byte 2 INT(i/4)

X<>Y INT(1/4) Dbyte 2

160 160 j byte 2
+ l6w byte 1 byte 2 INT(i/4) INT(i/4)

END

To use XRLB, key in 1 LNTER* j and XEQ"XRLB". The output

in X is byte 1 in decimal. &Eyte 2 is in the Y register.

Here's a synthetic version of "XRLB" that does not disturb

stack registers Z and T. At the right are noted the

important stack and status register contents as they change

through the program.

-140-

LBL"XRLB" N M L X Y z T

STO M j J i z t

RDN i z t j

4 4 i z t

/ 4 i/4 z t t

S10 N i/4

FRC i/4 FRC(1i/4)

2560 256 FRC(i/4) =z t

* 256 64(1i mod 4) z t t

RCL M j 04(i mod 4) =z t

+ Jj byte 2 z t t

loy 1oy byte 2 z t

ST+ N l6@0+i/4

X<> N lo0 160+i/4

INT leW+i/4 byte 1 byte 2 z t

CLA %) 14}

END byte 1 byte 2 z t

5.3 Use at least 17 +'s and execute LB. The 7 inputs are

207, 120, 159, 37, 208, W, 124.

5.4 Use at least 31 +'s and load decimal values 192, G, 255,

0, 82, vw, 78, 32, ©7, 65, 76, €7, 85, 76, o5, 84, 79, 2.

PACK to incorporate this new global label into Catalog 1.

Since this label i1s longer than 6 characters it cannot be the

object of a GTC IND or XEQ IND instruction.

3.5 The proper LB inputs are 144,

206,

117,

145,

125,

117,

144,

CHAPTER 4

4.2 The decimal byte equivalents required are

125,v, 2, 27, 20,

117,

145,

206,

125.

125,

206, 125, 145,

145,

124,

125,

206,

242,

117,

127,

206,

b,

118,

200,

244,

206,

127,

125,

9,

242, 127, 9, 145,

-1l41-

125. GTO.. and key in LBL "LB". Then in RUN mode do CLA,

125, XTOA, 145, XTOA, 125, XTOA, 206, XTOA, ¥, XTOA, 127,

XTOA, 242, XTOA. GTO "LB", RCL M, STO Q, enter PRGM mode,

Q-LOAD, BG, and backarrow twice.

Switch back to RUN mode and do CLA, 125, XTOA, 145, XTOA,

125, XTOA, 206, XTOA, 20, XTOA, 27, XTOA. GTO "LB", RCL M,

STO ¢, and enter PRGM mode. No PACKing is required here

since the 242 byte is not part of a preceding instruction.

Thus no direct attachment to the new bytes is required.

Still in PRGM mode at LBL "LB", Q-LOAD, BG, and backarrow

twice.

Continue with CLA, 2, XTOA, W, XTOA, ©, XTOA, 127, XTOA, 244,

XTOA. GTO "LB", RCL M, STO Q, enter PRGM mode, G-LOAD, BG,

and backarrow twice. The fact that we did not include the

decimal 2 byte in the second group of bytes saved us from the

need to PACK before loading the third group. Moreover, this

procedure was essential anyhow since the one weakness of

Q-loading is its inability to load trailing null bytes. We

could not have loaded the sequence hex F4 7F 00 00

successfully by itself.

4.3 a) XROM 61,25

b) XROM 57, 26

c) XROM 27,54

CHAPTER 5

5.1 The byte sequences in hexadecimal are as follows:

a) 40, 47, 48, 99, 09, 99, 909, 00, @Y, 13, 41, @, 14, 25,

15, 42. There was room for the I+ (hex 47), but the I- opened

seven bytes. The RCL @5 fit in the null that was already

present between the 4 and 5 digit entry instructions.

b) 40, 41, EO, 00, 99, 92, 4B, 00, 42, 43. The ST+ 75 takes

two of the 3 bytes formerly used by GTO 99.

-142-

APPENDIX A

INSTRUCTION TIMING

In reading Chapter 2, you might have wondered how anyone

could determine that the synthetic digit entry instruction E

executes faster than 1, or that the decimal point executes

faster than the digit zero. In HP-67 days, these results were

obtained by keying in a sequence of 140 or more identical

instructions, measuring the time needed to execute the entire

sequence, then dividing by the number of instructions in the

sequence. Needless to say, this procedure was both laborious

and time-consuming.

Synthetic programming permits automation of. the procedure

of entering hundreds of copies of a particular instruction. (or

even copies of a short sequence of instructions). The proper

byte sequences are created and stored, in 7-byte groups, 1in

contiguous registers. The bytes can then be executed as

program instructions by placing the prcoper code in the program

pointer register.

As a measure of the capability of the HHP-41 system, the

HP 82182A time module allows even the timing of the sequence

of synthetically stored instructions to be automated. Clifford

Stern has written a synthetic program which uses the time

module to time an arbitrary group of one to seven bytes. The

program creates and stores as many replicas of the byte group

as it can within the unused portion of program memory. It then

executes the full sequence of byte groups, measures the

elapsed time, divides by the number of identical groups, and

displays the resulting time per group.

Table A.l gives typical results for instruction execution

time. Emphasis has been placed on instructions for which

alternatives are available. If you need a LOG function, it

doesn't realy matter how long it takes since you don't have

any faster way to calculate the logarithm. But to increment a

register, you may be interested to know that the sequence E,

-143-

+, at 78.7 msec, is slightly slower than the sequence 1SG X,

TEXT ©, at about 74 msec. If you need the speed you may be

willing to use the extra byte of program memory to get it.

Other conclusions fron the timing chart are:

K* R* is faster than RDN RDN ;

X<> is faster than RCL but slower than STO ;

Status register operations are always faster than the

corresponding numbered register operations ;

compiled GTO's are very fast, with XEQ being a bit

slower ;

digit entry is very slow. This is due to the fact

that status registers P and Q must be loaded before

the X register ;

For faster numeric entry use i instead of 1, and the

decimal point instead of zero. Kote that CLX, SIGN 1is

a much faster way to get 1.

For faster entry of negative numbers, use a positive

number entry followed by a separate CHS instruction,

rather tnan a sincle instruction containing the

negative numnber. Press ALPHA ALPHA to terminate the

positive numiber entry, then press CilS to get the

separate CHS instruction. CiiS 1s much faster than RNEG

(negation within a number entry instruction).

These results from the tining program are another example

of how knowledge of synthetic programming can improve your

general programming techniqgue.

If you have a PPC ROM, an extended functions module, and

a time module, you can use Clifford Stern's program to do some

instruction timing of your own. Here are the instructions:

1) Make sure that there is an END above this program in the

Catalog 1 1list. This is necessary to allow the GTO

instructions to work properly with the program/data

"curtain" positioned at hex (¢1l0. For further explanation,

see "CU" constraint 1 in Section 6C.

-144-

Table A.1 Typical execution times (in milliseconds)

Stack operations

ENTER? 11.7

X<>Y 19.3

RDN l6.9

R#* 12.0

CLX 9.8

LASTX 13.9

CLST 19.5

SIGN 13.3
CHS 12.5

CLA 9.5

RCL status 20.3

STO status 16.8

X<> status 19.7

Misc instructions

LBL 00-14 19.6

two-byte LBL 13.1
CLD 20.6

TEXT U 12.3

AON, AOFF 19.0

ADV (no printer) 9.2

BEEP (flag 26 set) 1042.4

(flag 26 clear) 14.9
DEG 19.8

RAD 19.9

GRAD 20.5
PSE 1333.2

NULL 5.7

Storage register operations

STO WYW-15 19.3

STO 16-99 20.6

STO status 16.8
STO IND @@-99 32.3
STO IND status 32.1

RCL ©@90-15 22.8
RCL 16-99 24.1

RCL status 20.3

RCL IND ©9@-99 35.7

RCL IND status 35.6

X<> @@-99 23.4
X<> status 19.7

X<> IND @@-99 35.1

X<> IND status 35.0

-145-

ST+ 0W-99 38.9
ST+ status 35.3

ST— WKW-99 40 .8

ST- status 37.3

ST* ©Gw-99 46.8

ST* status 43.¢

ST/ WY-99 49,5
sT/ status 45.8

ISG X , TEXT © (skip) 73.2 (x = 1)
(non-skip) 74.4 (x = -1)

DSE X , TLXT ¢ (skip) 72.9 (x = 1)
(non-skip) 74.9 (x = 2)

Digit Entry

] 09.7

1 through 9 59.6
. 6l1.8

E 53.0

- (NEG, negates the 6.9
mantissa or exponent.

By itself, it places

a zero in X.)

Miscellaneous multi-byte instructions

GTO €W¥-14 , compiled 17.3
GTO(three byte),compiled 24.5

XEQ, compiled 35.2

global LBL, 1 character 45.4

2 character 49.3

3 character b51.9

2) Clear flag ©2 and set SIZE at least Wid4. Clear all timer

3)

alarms (you can use the "SA" program from Section 4E).

Make any key assignments you want now. Do not make any

key assignment’s (except global labels) after you've

started step 3 and before you've finished step 9.

Enter the number of registers to be used for storing the

byte sequence. The number of registers should be selected

to provide an exact multiple of the number of bytes per

group of instructions, except that 1- and 7-byte groups

are always OK. For example if the group is 3 bytes long,

the number of registers should be a multiple of 3. If it

-l406-

4)

5)

6)

is not a multiple of the number of bytes per group,

you'll eventually get DATA ERROR at line 114. If you pick

a multiple of 60 registers, you can't go wrong. XEQ "IN"

to initialize to this number of registers. The timing

program will adjust the SIZE if needed to provide the

requested number of free registers below the .END. . If

the existing combination of SIZE and free registers is

not sufficient to allow the requested number of free

registers to be provided for timing, a DATA ERROR message

will appear at line 49. If this happens, clear a program

or reduce the number of free registers requested and

repeat from the beginning of step 3.

The "IN" procedure automatically falls into LBL "S", the

instruction storage routine. The "S" routine will prompt

you for a group of one to seven bytes. Key in a decimal

number between © and 255 for each byte, and press R/S

without an input to indicate the end of a byte group. The

group of bytes will then be duplicated and stored

throughout the initialized block of registers below the

.END. and above the key assignments.

With flag Wl clear the "S" routine halts at LBL "T", the

timing routine. At this point the stack 1s clear. You are

free to load the stack as needed for your instruction

sequence. Press R/S or XEC "T" to start the timing. The

result, expressed in milliseconds per group of bytes, 1is

returned in the X register when the timing routine halts.

If you happen to have an error condition that causes a

halt in the stored instruction sequence, you must press

GTO "S" and XE¢Q 10U. You can then store a new seqgquence of

instructions as in step 4, or simply enter a valid

argument and XEQ "T"

To repeat the timing for another initial condition,

reload the stack and XEQ "T" again (do not simply press

R/S -- see step 9). If you want to set up the alpha

register as well as stack contents, Jjust set flags 1 and

2 before executing "T". The timing routine will stop for

-147-

7)

8)

9)

19)

you to load the alpha register (as well as the stack, 1if

you like). Note that "T" can be called as a subroutine

for automated timing of the same function with a variety

of stack 1inputs.

To switch to timing a different group of instructions,

XEQ "S" again. You have the option of setting flag 1

first if you wish the timing to proceed automatically

with a clear stack. Set flags 1 and 2 if you need to load

the alpha register for timing.

To select a different number of registers for instruction

storage, enter the number and XbQ "IN" again.

To clear out the free register block at the end of the

timing session, press RTN and R/S, or just R/S after

using the "T" routine.

Three additional convenience routines are provided in

this program. They are each non-prompting versions of the

instruction storage routine "S".

XEQ "1" with a decimal input (U to 255) to store a

sequence of one-byte instructions.

XEQ "2" with a decimal input to store the repeating

sequence: one-byte instruction, LASTX. This sequence is

helpful when timing unary operations like SIN or LN.

XEQ "3" with a decimal input to store the repeating

sequence: one-byte instruction, X<> L. This is useful for

timing binary operations like + or MOD. Just initialize

by filling the stack with "Y" arguments, then putting the

"X" argument in X and executing "T".

When you use "2" or "3" you'll have to separately

time LASTX or X<> L and subtract to get the net execution

time for the particular function you're timing.

When you time numeric entry instructions, you must

separate them so they don't run together into a single

huge instruction. Use a null or LASTX, and subtract the

time for the separator.

Barcode for the complete instruction timer program is

included in Appendix E.

-148-

81 AROH “RF-
82 AYIEH

#3 XROH “LF-
84 XR0R 0K
a5 A0V
B 156 %

#7 AR0R “BC"
88 GT0 13

B9¢LBL "3"
18 =t=

10 @i[
0

eo
et
e

[
N

|

1
i

13¢LBL 2"
14 “y©
15 2
16 GT0 &1

17+LEL
18 CLA
19 E

2@+LBL 61
21 570 a
22 ASTO ¥
23 CLA
24 RYIEH

38 GT0 16

JieLBL “IK"
32 570 &3

33 XROM "F7"
34 INT
35 ENTERt

36 AROM “E?"
37 ROV
38 -
39 570 81
48 SIZE?
41 ENTERt
42 Rt
43 +
44 RCL 43
43 -
46 7
47 -
48 {87
43 SORT
a8 4
al +
3z #Y?
33 PSIZE

54 XRON -OH~
35 Rt
36 E
¥+
58 XROK -CX~
39K
68 RCL 83
6l E
62 +
63 RO
b4 (i c

Ae"
66 RCL I
&7 570 @8

X

69 ASTO IND 2
78 RIN
iR ¢
72 (> 8}

73+
74 2361
73+
76 7
77 %

78 XROK ~DF-
79 ASTO 82
8@ BEEP

BieLBL 18
82 STOPSK
83 CLX
84 SETSK

85¢LBL "5~
86 CF 29
87 FIX &
88 CLA
89 CLX

J@eLBL 11
91 XTOR
9z 156 a
33 -
94 320 10
95 "DEC. -
96 ARCL a
97 k7"
98 AYIEH
99 570 1
188 STOP
181 FS2C 22
182 GT0 1l
183 CLA
184 AVIEHW
185 570
186 DSE 3

187¢LBL 16
188 RCL &3
189 7
118 *
111 RCL a
112 7
113 570 @8

-149-

114 00T
115 GTO IND a

{16¢LEL &7
117 2 0
118 B3]
119 570 a
126 610 12

12i¢LBL 84
122 FIZ 1

123¢LBL &0
124 SF 2%

125¢LBL 86
126+LBL 83
127¢LBL 82
125¢LBL 81
129 ASTO X
138 17
131 RCL a
132 7
133 INT
134 RCL b
135 ARCL 2
136 DSE ¥
137 ST0 b
R
139 FC? 29
148 “Fax-
141 RCL a
142 ES
143 7

144¢LBL 12
145 RCL 83
146 +
147 ABS
148 RCL 81
149 X% ¢
158 RCL]
151 GTO &9

152¢LEL @

133 &
134 51- L
155 ARCL ¥
136 LASTE
157 Rt
158 RCL 1

159¢LBL 49
168 STO IND 2
161 BSE £
162 GT0 83
163 BSE a
164 GT0 68

165¢LBL 13
ie6 CLD
167 RO
168 ST0 ¢
169 CLST
178 FC? &2
171 FC? @i
172 TOME 8
73 FC? 8l
174 RTH

179¢LBL =T"
176 ARCL 82

177 ¥ROK ~XE-
178 SETSH
179 200
188 36 ES
181 =
182 RCL o4
183 7
184 FIX ¢
185 TOHE 8
186 END

LBL™3
LEL™Z
LBL™1
LBLYIH
LBL™S
LBL™T
ERE 329 BYTES

The complete instruction timer program listing is shown

on the previous page. A few of the synthetic lines have

ambiguous representations in the printout. These are listed

here together with their decimal equivalents for LB:

 Line hex decimal

10 F2 CL 74 242 206 116

14 F1l 70 241 118

65 F7 A6 99 A6 93 ob 1C &5 247 106 153 1lo6 147 109 28 133

68 F5 AC ©¥2 84 A6 94 245 172 2 132 166 148

Lines 65 and 68 contain printer control characters. The hex

A6 character causes 6 spaces to be skipped; hex AC causes 12

spaces to be skipped.

Summary of Error Traps:

Line 49 DATA ERROR means available memory is

insufficient to produce the requested

number of storage registers.

Line 114 DATA ERROR means that the number of bytes per

group does not evenly divide the number of

registers allocated ("IN") for storage of the

full instruction sequence.

Line 115 NONEXISTENT means that you tried to time an

8-byte group. This program will handle 1l- to

7-byte groups.

Timer program data register usage:

Rgy = scratch (number of instruction groups)

Rp1 = curtain lowering code (temporarily placed in c)

Rgy = return pointer for the stored byte sequence

Rp3 = number of storage registers

If any of Rg; through Rp3 are altered, you must

re-initialize (enter the number of registers and XEQ"IN").

-150-

APPENDIX B

MORSE CODE AND STO b

The idea of using the HP-41 to produce machine-perfect

Morse code was introduced by Richard Nelson (the founder of

PPC and editor of the PPC Calculator Journal) on page 50 of

the February 198¢J PPC CJ. His program employed the synthetic

TONE P, but at that time synthetic programming was in its

infancy, so the execution logic was confined to standard

techniques. As a result, transmission speed was only about 6

words per minute. However a General class amateur radio

license requires you to be able to receive 13 words per

minute. Conventional methods are clearly inadequate to produce

code at this speed.

Clifford Stern has written a Morse code program that

brings the full power of synthetic programming to bear on the

problem. To understand the technique used, first consider the

following execution loop which appeared in an earlier version

of this program:

LBL o1

RCL IND L

XEQ IND X

ISG L

GTO ¥l

The individual characters of the message have been stored in

series of data registers, and the LASTX register contains

counter for those registers. The KCL IND L instruction puts

p
o
p

o
R

single character in the X register, then XEQ IND X calls

short tone routine corresponding to the character in X. For

example if X contains the letter "C", then the following

sequence is executed:

-151-

LBL "C"

TONE

TONE

TONE

TONE

TONE

RTN

©
"

o
'

C

The simplicity of this procedure is due to the use of

synthetic single-character global labels. These are used for

three of the punctuation marks and the letters A through J.

The non-synthetic labels for those letters are local, not

global, and cannot be the object of indirect addressing.

However, speed is still a problem with this approach.

Because XEQ IND X has to search Catalog 1 to find the proper

tone sequence, it requires a relatively long time to execute.

In fact, 16 milliseconds per label is spent climbing up the

global label chain from the .ENLC. in the search for a

specified global label. This causes a noticeable delay for

labels placed high in the catalog.

The major breakthrough for this Morse code program 1is

replacing XEQ IND X with a STO b instruction so as to jump

directly to each tone sequence. Not only does this provide a

dramatic breakthrough in speed, but it 1s a striking example

of how synthetic programming makes possible that which cannot

be done by normal means, no matter how elaborate. In effect,

synthetic techniques are used to compile indirect branching

addresses.

Some details have to be considered when applying this

procedure. First, there must be a method to determine the

correct address to branch to. This is accomplished here by

inserting a RCL b instruction before each set of tones; for

example:

-152-

LBL "c"

RCL b

TONE 8

TONE P

TONE 8

TONE P

RTN

(STO b will cause execution to pick up here)

The sequences are called with flag 26 clear during the setup

process. The RCL b results are incorporated into codes which

are stored in a series of data registers. The other detail to

be taken care of is the inclusion of return addresses in the

code so that the RTN at the end of each tone sequence brings

execution back to the ISG L instruction.

For the ultimate in speed, the GTO 61 instruction is

replaced by a RTN. A second return address is included with

the one just discussed to make this work. This second return

address is set up to transfer execution directly to the RCL

IND L instruction, eliminating the need for LBL 01l.

Furthermore, RTN is 15% faster than a compiled two-byte GTO.

The primary pointer and two return pointers account for

six bytes of each STO b code. The leading byte is taken from

row 1 of the QRC to avoid normalization problems when

recalling the stored codes from data registers. (The fact that

the first byte is from row 1 guarantees that the code will Dbe

treated as legitimate alpha data.) Because the leftmost hyte

is nonzero, a STOP instruction, rather than a RTN, is required

to halt execution.

In the system used here, both of the return pointers are

constructed by normal subroutine calls. This technique is much

simpler than synthesizing the pointers because it does not

require calculation of the program's location in memory or

merging return addresses onto a program pointer. The first

return pointer is constructed by the XEQ IND T instruction at

line 58, while the second pointer is constructed by XEQ 65 at

-153-

line 45. Thus the RCL b instruction preceding each set of

tones provides the complete code for storage, since the two

returns are pending at that time.

The result is a Morse code program that produces code at

16 words per minute -- a substantial improvement over

conventional methods. Also, the true capacity of the ALPHA

register is highlighted, as 28 characters may be entered at a

time during the setup phase. This capability is made possible

by the fact that the calculator remains in ALPHA mode during

data entry (see the information on status register P in

Section 6A). Ambitious synthetic programmers should also

consult the P register summary on page 13 of the July 1981 PPC

CJ for full details of how the digit entries on lines 42 and

52 are used to modify the P register.

Here are the instructions for using Clifford's Morse code

program "MC":

1) Execute a SIZE of at least one greater than the number of

characters in the message.

2) Xy "MC". Enter the message in groups of 1 to 28

characters. The tone prompt that signals the end of the

standard ALPUHA register indicates here that 4 more

characters can still be entered. Press R/S to process

each group. If you get NOWNEXISTENT, increase the SIZE and

start over.

3) Push R/S without making an entry to transmit the message.

Press R/S or XE(Q 1¢ to repeat the message.

4) To get slower code output, insert any instructions which

do not affect LASTX between lines 45 and 46 and XLKQ "MC"

again. This change increases the character spacing.

If you have an optical wand, use the barcode in Appendix

E to load the Morse code program. If you do not have a wand,

-154-

there are a few things you can do to speed up keying in the

program.

The following synthetic key assignments will facilitate

keying in "MC" from the listing: 159, 1286 (TONE P); 159, 8

(TONE 8); and 205, ¢ (the global label counterpart of the

Q-loader). This last assignment was discovered by Tom

Cadwallader, and can be used to produce’ the required synthetic

labels. For example to create LBL "A", key in XEQ A or LBL A.

This loads the character "A" into the Q register. Delete that

instruction (if you were in PRGM mode when you keyed it in),

and press the assigned key in PRGM mode to create LBL "A".

This procedure was discovered by Valentin Albillo, another

synthetic programming pioneer, and can be used to key in the

program's global labels for A-J.

A different process must be used to produce labels for

the colon, period, and comma. One method is to enter the.

punctuation mark into the ALPHA register, ASTO X, and press

GTO IND X (all in RUN mode). This loads the punctuation mark

into Q. After NONEXISTENT appears, switch to PRGM mode and

press the assigned key to obtain the corresponding global

label.

As an alternative, the byte grabber can be used to

synthesize any of these labels:

¥J1 ENTER* inputs:

g2 STO IND 66 192,

63 SIN d, (any value is OK)

w4 "z:" 242, @, character byte.

Pressing the byte grabber at line U1 removes the STO byte and

creates LBL ":" . PACKing is essential to incorporate these

synthetic labels into the global chain, regardless of the

means by which they are created.

-155-

Bi#LBL “HL"
82 SF 26

g3 7=

a4 {7 [
83 > d
8h RCL b
87 FC2C 26
88 GT0 8l
#9 CLH
18 ASTO £
11 21
12 SIGH
i3 A5T0 X
14 2
15 ARCL 2
16 ASTO b

17+LBL a1
18 5F 26

19 =CHARACTERS?"
28 PROMPT
21 FL2C 23
22 G0 86
23 YIEW £
24 CF 26
23 CLX
26 ENTERt
27 Xt
28 ¥=Y?
29 GT0 a2
3@ 5F 85
31 ¥]
32 Rz ™
33 80
34 RO

J3+LBL 82
36 “hHe"
37 K
38 X=87
35 GTO 82
4@ 570 ¢
41 RDIH
42 @
42 FL2C 25

44 GT0 #3
45 XE@ 85

46 RCL IWE
47 5T0 b

48¢LBL 83
49 STG IND |
38 RIN

J44LBL 85
33 Bt
3t RIH
37 SF 23

38 XEG INED
33 156 L

63 DSE L
66 FC2C 85
6/ GT0 8f
68 510]
63 GTD 84

78+BL 8o
71 LASTX
72 E3
73+
74 LASTZ
73 7
76 570 448
7 SIGHN
8 RY
9570 4
RCL 81

81 5TG b

ey
,

2
D

a
d

=
]

=
)

82¢LBL &7
83 RCL a8

.

84 SIGH
85 STOF

8oeLBL 18
87 RCL 81
88 5T0 b

89¢LBL =:"
98 RCL b
91 TONE
92 TONE
93 TONE 8
94 TONE t
93 TONE t
96 TONE t
97 RTH

S
N

JBeLBL =-~
99RCL b
188 TONE 8
181 TOHE
182 TONE ¢
183 TONE 1
184 TOWE 28
183 RTH

186+LBL =/~
187 RCL b
188 TONE &8
189 TONE ¢
118 TONE ¢
111 TONE 8
112 TONE ¢
113 RTH

1144LBL =7-
113 RCL b
116 TONE t
117 TONE 1
118 TONE 8
119 TONE 8
128 TONE ¢
121 TONE ¢t
122 RTH

-156-

123¢LBL =."
124 RCL b
125 TONE ¢
126 TONE 8
127 TORE t
128 TONE 8
129 TONE ¢
138 TONE &
131 RTN

132¢LBL =."
133 RCL b
134 TONE 8
135 TONE 8
136 TONE t
137 TONE t
138 TONE 8
139 TOKNE 8
148 RTH

141+LBL =&~
142 RCL b
143 TONE 8
144 TONE &
143 TONE 8
146 TONE &
147 TONE &
148 RTH

149¢LBL =9~
158 RCL b
151 TONE &
132 TONE 8
133 TONE &
134 TONE 8
135 TONE ¢
136 RTH

137¢LBL =8~
138 RCL b
139 TONE 3
168 TONE §
161 TONE 3
162 TONE t
163 TONE ¢

164 RTN

165¢LBL =7"
166 RCL b
167 TONE 8
168 TONE &
169 TONE ¢
178 TOKRE
171 TONE ¢
172 RTH

173¢LBL "6~
174 RCL b
175 TONE 8
176 TONE t
177 TONE ¢
178 TONE
179 TONE ¢
188 RTH

181¢LBL "5
182 ECL b
183 TONE t
184 TONE 1
185 TONE ¢
186 TONE t
187 TONE ¢t
188 KTH

189¢LBL =4~
198 RCL b
191 TOHE t
192 TONE t
193 TOHE 1t
194 TONE t
195 TONE 8
196 RTH

197¢LBL =3~
198 RCL b
199 TONE t
288 TONE t
281 TOKRE 1
282 TONE 8
283 TOKHE 8

284 RN

285¢LBL "2~
286 RCL b
287 TONE t
288 TONE t
289 TONE 3
218 TONE 8
211 TONE 8
212 RN

213¢LBL °1-
214 RCL b
215 TOKE 1
216 TONE 8
217 TONE
218 TONE
219 TONE
228 RTH

G
0

2214LBL "Z-
222 RCL b
223 TOME 8
224 TONE 8
225 TONE 1
226 TOKE t
227 RTH

228¢LBL 0"
229 RCL b
238 TONE §
231 TONE 8
232 TONE t
233 TUKE. 3
234 RTH

235¢LBL =07
236 RCL b
237 TONE t
238 TONE 8
239 TONE 8
244 TONE 8
241 RTN

2424LBL X"

243 RCL b
244 TONE §
245 TONE ¢
246 TONE ¢
247 TONE 8
248 RTN

249+BL “K-
258 RCL b
251 TOHE
252 TONE
233 TONE
254 RTN

i
0
0

<

2553¢LBL "¥”
256 RKCL b
257 TOHE 1
258 TONE 1
259 TOME 1
268 TOHE
261 RTH

e
y

Z6Z2¢LBL “B*

263 RCL b
264 TONE 8
265 TONE %
266 TONE 1
267 TOHE t
268 RTH

269¢LBL "5
278 RCL b
271 TORE
272 TONE
273 TONE.
274 RTH

i
l
A
T

275¢LBL "
276 RCL b
277 TONE t
278 TONE
279 TORE
288 RTH

o
0

[
]

281¢LBL "Y"

282 RCL b
283 TONE 3
284 TONE t
283 TOME 8
286 TONE 3
287 ETN

285¢LBL “F-
289 RCL b
298 TONE t
291 TONE
292 TOHE
293 TONE t
294 ETN

295¢LBL = -
29 RCL b
297 FC? 26
298 ETH
299 LASTX
388 LN
381 RTH

3026LEL "
383 RCL b
384 TONE &
385 TONE &
386 ETH

JB7eLBL U
388 RCL b
389 TONE 1
318 TONE 1
311 TOKE =
312 ETH

J13¢LBL "F"
314 RCL b
315 TOKE 1
316 TOHE 1
317 TONE 38
318 TONE t
319 RTH

J2a+LBL -C-

o

321 RCL b
322 TONE 5
323 TONE ¢
324 TONE 8
325 TONE 1
326 RTH

J27+LBL "L”
328 RCL b
329 TOME ¢
338 TONE &
331 TONE
332 TONE ¢
333 RTH

e
l

fa
d

Ca
l
e
l

Ca
l)

G
l

J4@eLEL “H"

341 BCL b

342 TOME §

343 TOWE ¢

344 TOKE ¢

345 TOKE

346 RTH

347¢LBL "5°
348 ECL b
349 TONE 1
358 TONE 1
331 TOHE t
3532 ETN

J33¢LEL 17
354 ECL b
333 TOKE ¢
356 TONE 1
357 RTH

JoB¢LBL "R"
3539 RCL B

Jo8 TOKE + LBL'HC
361 TONE &8 LBL™:
362 TONE + LBL™-
363 RTN LBLT

LBLT?
Jo4¢LBL "N LBL".
365 RCL b LBLT.
366 TONE &8 LBL'B
367 TONE + LBL™Z
368 RTH LBL™E

LBLTY
369¢LBL "0° LBL'%
J7e BCL b LBLTS
371 TONE 5 LBL"4
372 TOHE 5 LBL'3
373 TORE 8 LBL'Z
374 ETH LBLTE

LBLTZ
J75¢LEL “H™ LBLTE
376 BLL b LBLT
377 TOHE ¢ LBL7E
378 TONE & LBLTE
379 ETN LBLTY

LBLTE
38@eLBL "7 LEL'G
381 RCL b LBL'H
382 TONE & LBL'Y
383 RTH LELTF

LBLT
J84¢LEL “E" LEL'H
8O RCL b LBLTU
386 TOWE t LBL'F
387 END LBLTC

LBLTL
LBLTE
LBLTH
LBLTS
LBLTI
LBLTE
LBL'H
LBLTG
LBL™A
LBL™T
LBL'E
END

845 EYTES

Three of the text instructions in the Morse code program

appear in an ambiguous form in the printed listing. These

are:

line hex decimal

03 F4 2C @1 80 81 244 44 1 128 129

36 F2 7F 00 242 127 ©

53 F2 7F 00 242 127 ©

-158-

APPENDIX C

SYNTHETIC PROGRAMMING REFERENCES

tlere 1s a list of sources for information on iP-41

synthetic programming:

1. PPC Calculator Journal, published by Personal

Programming Center, a non-profit, public benefit California

corporation dedicated to personal computing. The issues from

July 1979 (Volume 6, Number 4) to the present contain a wealth

of information on the HP-41 in general, and on synthetic

programming in particular. The PPC CJ is still the most

up-to-date and comprehensive source for synthetic programs,

techniques,and discoveries.

To obtain a PPC membership application and a price list

for back list for back issues of PPC CJ, send a 9" by 12"

self-addressed stamped envelope with 3 ounces of postage to:

PPC

2545 W. Camden Place

sSanta Ana, CA, 92704

To speed the processing, mark the lower left corner of your

outer envelope with "New member info plus HP-41 back issues."

You don't need to enclose a letter; it will only slow things

down .

2. PPC Technical Notes, published by the Melbourne,

Australia chapter of PPC. PPC TN 1s a smaller-scale

publication than PPC CJ, but it specializes in synthetic

programming. Issue number 9 contains the best summary of

HP-41 microcode currently available. The current subscription

price is 20 Australian dollars per year to US and Europe. Mail

Australian currency, a check payable through an Australian

bank, or an Australian currency money order to:

-159-

R.M. Eades

P.O. Box 15

Hampton, Victoria, 3188

AUSTRALIA

Since the subscription rate may have changed by the time

you read this, be prepared to send an additional payment.

3. PPC-UK Journal, published by the United Kingdom

chapter of PPC. PPC-UK J is a relatively new publication, but

so far it has placed considerable emphasis on tutorials and

other helpful information for beginners. For more information

and a membership application, send a self-addressed stamped

envelope to:

David M. Burch

Astage

Rectory Lane

windlesham, Surrey

GU20 6BW

ENGLAND

Overseas inquiries should include an addressed envelope

with an international postal reply coupon or two magnetic

cards in lieu of postage.

4. The Hewlett-Packard Users' Library catalog contains a

few synthetic programs. The Users' Library did not accept

synthetic programs until January 1982, so the current catalog

may not reflect the extent of synthetic programs in the

Library.

The current membership fee for the Users' Library is

$2¢0.04 in the US or Canada, and $3U.Y elsewhere. Mail your

payment in the form of a check payable through a US bank to:

HP Users Library

1960 N.E. Circle Boulevard

Corvallis, Oregon 97330

-l60-

5. HP Key Notes, published 3 times a year by Hewlett-

Packard. A limited number of synthetic programs have appeared

in Key Notes since the January 1982 initiation of synthetic

programming to the Users' Library. Key Notes is a bargain at

the current rate of $5 per year for US and Canadian residents.

Residents of other countries can obtain Key Notes with a

Users' Library membership. Send a check drawn on a US bank to:

HP Key Notes

1000 N.E. Circle Boulevard

Corvallis, Oregon 97330

For 1982, a Users' Library membership carries with it a free

Key Notes subscription. This offer may or may not be continued

through 1983.

6. Synthetic Programming on the HP-41C, a book by Bill

Wickes, published by Larken Publications. This book was the

first compilation of synthetic programming information and

techniques. because it was written in 1984, Wickes' book does

not contain any examples using the byte grabber or Extended

Functions module or Time Module functions. lNevertheless it

remains a excellent reference book. Wickes's approach 1is

substantially different than that of HP-41 Synthetic

Programming Made Easy. Each subject is covered in full depth

before the next subject 1is begun.

1f you want to learn more about synthetic programming, I

strongly recommend that you read "Synthetic Programming on the

HP-41C". The knowledge you've gained from reading HP-41

Synthetic Programming Made Easy will enable you to get through

Bill Wickes's book more quickly and with better understanding

of the details. Wickes's book contains several interesting

synthetic programs together with line-by-line analysis that

will help complete your mastery of synthetic programming.

"Synthetic Programming on the HP-41C" is available at

many calculator dealers and college bookstores. Alternatively,

-l01-

you may mail your order to:

Larken Publications

Dept. SPME

4517 NW Queens Ave.

Corvallis, Oregon, 9733¢

U.S.A.

The current price is $11 postpaid, by surface mail. For

airmail, add: for USA, Mexico, Canada $1, for Europe and South

America $2, for elsewhere $3. Payment should be in the form of

a check payable through a US bank.

7. The PPC ROM User's Manual, which accompanies the PPC

ROM. The PPC ROM is a custom ROM module for the HP-41 designed

by PPC members and manufactured by liewlett-Packard. The PPC

ROM contains over 64 synthetic programs, each of which 1is

analyzed line-by-line in the User's Manual.

By the time you read this, the PPC ROM may be available

at calculator dealers. You may also order the PPC ROM from

Personal Programming Center. For price and ordering

information mail a self-addressed stamped envelope to :

PPC

2545 W Camden Place

Santa Ana, CA 92704

Mark the lower left corner of your outer envelope "PPC ROM

ordering info". A substantial discount is available to PPC

members. This discount could almost pay for your first year's

membership.

8. Calculator Tips and Routines (Lspecially for the

HP-41C/41CV), edited by John Dearing, published by Corvallis

Software Inc. This book contains listings for many of the PPC

ROM routines, some of which are synthetic. A great number of

nonsynthetic programming tricks are also described.

"Calculator Tips and Routines" is available from dealers

or directly from :

-162-

Corvallis Software, Inc.

Dept. SPME

P.C. Box 1412

Corvallis, Oregon 97339-1412

U.S.A.

The current price is $15 within the USA and Canada, $2u

elsewhere, airmail postpaid. Payment should be in the form of

a check in US dollars, payable through a US bank.

9. The hP-41 SYNTHETIC Quick Reference Guide, a

pocket-sized (3-1/2 inch by 6 inch) compilation of synthetic

programming information. S$lightly wider than than the plastic

Quick Reference Card for Synthetic Programming (so that the

card will fit inside), the booklet contains XROM listings, a

memory map, a byte table, tone tables, function timings, and

some more exotic goodies. This is a reference book and not a

"how to" book. However reference to the PPC Calculator Journal

and other sources are included where further explanation 1is

required. The HP-41 SYNTHETIC Quick Keference Guide is

available from:

J.J. Smith

Dept. SPME

19451 Mesa Drive

Villa Park, CA 92667

USA

The price is $5.00 plus postage of $1.00 (US or Canada) or

$2.00 (elsewhere). Instead of postage you may include a

self-addressed stamped envelope with sufficient postage for

twO ounces.

1. The HP-41C Quick Reference Card for Synthetic

Programming. Extra copies of this 2-7/8 inch by 6 inch plastic

card are available from some dealers and college bookstores.

Check the dealer from whom you bought this book.

-lo3-

Alternatively you may mail your order to:

Synthetix

Dept. SPME

1540 Mathews Ave.

Manhattan Beach CA 90266 USA

The price is $3 per card plus $1.50 per order shipping charge.

US orders can enclose a self-addressed stamped envelope in

lieu of the shipping charge. Payment should be in the form of

a check payable through a US bank. If this is a problem, US

currency is equally acceptable.

An earlier, more compact, black-and-white version of the

QRC is also available while supplies last. It is 2-5/8 inch by

4-1/2 inch, so like the QRC it fits in the HP-41 carrying case

alongside the calculator. Called the "HP-41C Combined

nex/Decimal Byte Table", it contains essentially the same

basic byte table as the CRC. The only noticeable differences

are the lack of a flag listing, multi-byte structure summary,

and color tinting. The price is lower than the QRC at $2 for

one card plus either §1 shipping or a self-addressed stamped

envelope. Additional cards on the same order are $1 each to

USA, Canada, and Mexico, $1.2u each to other countries. Checks

(payable through a US bank) should be made payable and mailed

to: Keith Jarett, Dept. SPME, 1540 Mathews Ave., Manhattan

Beach, CA 9¢U2606 USA.

-164-

APPENDIX D

THE QUICK REFERENCE CARD FOR SYNTHETIC PROGRAMMING ("QRC")

The QRC is a 2-7/8 inch by 6 inch plastic card that

contains a wealth of information that is essential for

synthetic programming. Each copy of HP-41 Synthetic

Programming Made Easy comes with a CRC on the back cover.

The letftmost two-thirds of the (KC is occupied by a byte

table. kach box in the byte table illustrates the several

possible interpretations of a byte. Refer to the "Legend for

the CRC" on the next page. These equivalences are introduced

and explained in Chapters 1 and 2.

Display characters are not shown for the second half of

the byte table (rows & through F), since they are all

starbursts (all 14 segments 1lit). This allows the full

indirect sutfix equivalents to be shown on the second line of

each box. Printer characters shown are those that result from

PrRA when the byte in question resides in the ALPHA register.

At the bottom of each half of the byte table are binary

equivalents for the hexadecimal digits & through F.

To the right of the first half of the byte table is a

summary listing of the functions of all 56 HP-41 flags. Lext

to the second half of the byte table is a quick reference

summary of LB inputs (decimal byte equivalents) for each type

of instruction. Chapter 3 covers this subject.

Obscure aspects of the QRC: Characters from rows &

through F disappear in printed program listings (not PRA

output), except that characters that are shaded will cause

additional strange behavior (see Section 2E). Row U shows the

required MK inputs, ¥ through 15, for non-programmable

functions in small letters. See Section 4A for details. Row 1

includes the W7 function which has no effect except to lock

up the keyboard until the batteries are removed. The SPARE

bytes will form two-byte No Operation instructions.

If this summary of the QRC seems confusing, you probably

haven't read Chapters 1 and 2. Go back and read them!

-165-

PRIMARY (PREFIX)

DISPLAY
SUFFIX CHARACTER

DECIMAL PRINTER
EQUIVALENT CHARACTER

0 | F
0 1 /

A

“FIRST
HALF”

(ROWS 0 TO 7)

7

- tBIT OR FLAG NUMBERS 0 TO 55 FLAG FUNCTIONS

7 BYTES x 8 BITS PER BYTE = 56 BITS

0 F
s TWO-BYTE

(YELLOW)

“SECOND
HALF” THREE-BYTE

(ROWS 87O F) (GREEN)

VARIABLE
LENGTH

F (BLUE)

\mmv EQUIVALENTS FOR T
EACH HEXADECIMAL DIGIT

BYTE STRUCTURE
FOR LB AND MK

Legend for the QRC

-l66-

-l67-

F
L
A
G
S

(R
eg
is
te
r

d)

00
-1

0
ge

ne
ra

l
pu
rp
os
e

11
au

to
ex
ec
ut
e

1
2

do
ub

le
wi

de
1
3

lo
we
r
ca

se
1
4

ov
er

wr
it

e
15
-1
6

IL
pr

in
te

r
0

0
M
A
N

0
1
N
O
R
M

1
0

T
R
A
C
E

1
1
T
R
/
S
T
A
C
K

7
re

co
rd

in
co
mp
le
te

18
TJ

ge
ne

ra
l
us
e

1
9

|c
le
ar
ed

at
2
0

Jt
ur

n-
on

21
pr

tr
en

ab
le

2
2

n
u
m
.

en
tr

y

2
3

al
ph

a
en

tr
y

24
ra

ng
e

ig
no

re
25

er
ro

r
ig

no
re

2
6

au
di

o
en
ab
le

2
7

U
S
E
R
m
o
d
e

2
8

d
e
c
.
/
c
o
m
m
a

29
di

gi
t
gr
ou
pi
ng

3
0

C
A
T

31
ti

me
r

D
M
Y
/
M
D
Y

3
2

m
a
n
u
a
l

IL
1/
0

1

33
IL

ab
so

lu
te

ma
nu

al
34

no
t
us
ed

35
no

t
us
ed

36
-3

9
nu

mb
er

of
di
gi
ts

40
-4

1
di
sp
la
y

0
SC
i

1
E
N
G

0
FI

X
1

FI
X/

EN
G

-4
3

tr
ig

m
o
d
e

0
D
E
G

1
R
A
D

0
G
R
A
D

1
R
A
D

44
co

nt
.
O
N

45
sy

st
em

da
ta

en
tr
y

46
pa
rt
ia
l
ke
y

se
qu

en
ce

47
SH

IF
T

48
A
L
P
H
A

49
lo
w
B
A
T

50
me
ss
ag
e

51
SS

T
52

P
G
R
M

53
1/

0
54

PS
E

55
pr
in
te
r

ex
is

te
nc

e

OO0~ NOO r—r—
<

St
ru
ct
ur
e

of
mu
lt
i-
by
te

in
st
ru
ct
io
ns

Tw
o-
by
te

in
st
ru
ct
io
ns

S
T
O
1
6
=
1
4
5
,
1
6

DS
E
IN
D
55

=
1
5
1
,
1
8
3

LB
L
e
=
2
0
7
,
1
2
7

F
S
?
C
I
N
D
Y

=
1
7
0
,
2
4
2

R
C
L
b
=
1
4
4
,
1
2
4

T
O
N
E
8
9

=
1
5
9
,
8
9

X
<
>
M
=
2
0
6
,
1
1
7

S
T
+

IN
D
N

=
1
4
6
,
2
4
6

LB
L
Q
=
2
0
7
,
1
2
1

V
I
E
W
H
(
1
0
9
)
=
1
5
2
,
1
0
9

Tw
o-
by
te

sp
ec
ia
l
ca
se
s

G
T
O
I
N
D
=
1
7
4
,
r
e
g
.
X
E
Q
I
N
D
=
1
7
4
,
1
2
8
+
r

G
T
O
I
N
D
0
9
=
1
7
4
,
9

X
E
Q
IN
D
X
=
1
7
4
,
2
4
3

X
R
O
M

i,j
=
1
6
0
+
i
/
4
,
6
4
(
i
m
o
d
4
)
+
j

W
S
T
S
=
X
R
O
M

30
,1
0
=

16
7,
13
8

sh
or
t
fo
rm

G
T
O
=
1
7
7
+

la
be
l,
0

G
T
O

12
=
1
8
9
,
0

Th
re
e-
by
te

in
st
ru
ct
io
ns

lo
ng

fo
rm

G
T
O
=
2
0
8
,
0
,
la
be
l

G
T
O
32

=
2
0
8
,
0
,
3
2

X
E
Q

=2
24
,0
,l
ab
el

X
E
Q
D
=
2
2
4
,
0
,
1
0
5

E
N
D
=
1
9
2
,
0
,
9
+
s
u
m

of
st
at
us

in
di
ca
to
rs

32
(.
EN
D.
),

4
(
r
e
P
A
C
K
)
,

2(
de
co
mp
il
e)

Va
ri
ab
le

le
ng
th

in
st
ru
ct
io
ns

TE
XT

=
2
4
0
+

n,
n
ch
ar
ac
te
r
by
te
s

Ap
pe
nd

sy
mb
ol

co
un
ts

as
fi
rs
t
ch
ar
.

T
&
=
2
4
1
,
3
8

TI
F)
?
=
2
4
3
,
1
2
7
,
4
1
,
6
3

G
T
O
™

=
2
9
,
2
4
0
+
n
,

n
ch
ar
ac
te
r
by
te
s

G
T
O
"
X
Y
Z

=
2
9
,
2
4
3
,
8
8
,
8
9
,
9
0

X
E
Q
™

=
3
0
,
2
4
0
+
n
,

n
ch
ar
ac
te
r
by
te
s

X
E
Q
T
A

=
3
0
,
2
4
1
,
6
5

(s
yn
th
et
ic
)

L
B
L
™

=
1
9
2
,
0
,
2
4
1
+
n
,

(k
ey
),

n
ch
ar
s.

LB
L™
:

=
1
9
2
,
0
,
2
4
2
,
0
,
5
8

(s
yn
th
et
ic
)

HP
-4

1C
QU
IC
K
RE
FE
RE
NC
E
C
A
R
D

FO
R
SY

NT
HE

TI
C
P
R
O
G
R
A
M
M
I
N
G

©
19
82

,
SY

NT
HE

TI
X

1
3

4
5

6
7

8
9

A
C

E
F

CA
T

@
c

(G
TO
..
)

C
O
P
Y

CL
P

R/
S

SI
ZE

BS
T

SS
T

O
N

P
A
C
K

«
(
P
R
G
M
)

U
S
R
/
P
/
A

SH
IF
T

AS
N

N
U
L
L

LB
L
0
0

01
%

1
»

LB
L
02

03
&

3
«

LB
L
0
3

0
4

*
4

o

LB
L
0
4

05
<

5
B

LB
L
05

0
6

7
6

Ir

LB
L
0
6

07
&

7
4

LB
L
07

08
8

8§
&

LB
L
0
8

0
9

B
9

o

LB
L
09

10
8

1
0

«

LB
L
10

1M
8

11
=

LB
L

11
1
2
~

1
2

»

LB
L
1
3
|
L
B
L

1
4

1
4

8
|
1
5

B
1
4

~
|1

5
¥

1 17
B8

17
Q

3 19
8

19
A

4 2
0

8
2
0

a

5 21
8

21
A

6 22
8

22
4

7 23
B

23
O

8 24
B8

24
&

9 25
8

25
0O

26
B

26
O

EE
X

27
B

2
]

N
E
G

28
&

2
8

X
E
Q
T

|
W
T

30
8

|3
1

B
30

£
|3

1
¥

RC
L

01
3
3

33
!

RC
L
03

35 35

RC
L
0
4

36
&

36
&

RC
L
05

37 37

S0
o~ g%

RC
L
06

38
3

3
8

&

RC
L
07

3
9
3
9

RC
L
08

40
<

40
¢

RC
L
09

4
1

41
>

RC
L

10
4
2

x

4
2

*

RC
L
1

4
3

43
+

RC
L

12
a
4

44
-

RC
L
1
4
|
R
C
L

15
46

.
-
|
4
7

46
-

|4
7
-

ST
O

01
4
9

49
1

ST
O

51 51

n#[Smm

ST
O
04

52
“

52
4

ST
O
05

53 53
511

ST
O
06

54
6

54
6

ST
O
07

55
7

55
7

ST
O
08

56
8

56
8

ST
O
09

57
9

57
9

ST
O

10
58

'
8

58

ST
O
1

59
>

5
9

ST
O

12
60

¢
60

<

S
T
O
1
4
|
S
T
O
1
5

6
2

.
1
6
3

7
6
2

=
1
6
3

2

-1l68-

e @

<
O

65
R

65
A

/ 67

Lt Q)

~
O

X
<
Y
?

68
T

68
D

X
>
Y
?

6
9

=
6
9

E

X
<
Y
?

7
0

F
7
0

F

L
+

71
G

71
G

Y
—

7
2

H

72
H

H
M
S
+

73
I

73
I

H
M
S
-

7
4

74
|

M
O
D

7
5

K

7
5

K

% 76
L

76
L

P
-
+
R

|
R
-
P

78
N

(7
9

O
78

N
|7
9
O

o

oo
© ©

X
1
2

81
&

81
@

CH
S

84
7

84
T

E
T
X

85
U

85
U

L
O
G

86
v

86
W

1
0
1
X

8
7

W

87
W

Et
X-

1
88

x
88

X

SI
N

89
v

89
v

co
s

9
0

/
90

2

T
A
N

91
C

91
C

A
S
I
N

9
2

9
2

~

A
T
A
N

|-
DE
C

9
4
7
|
9
5

9
4

1
|
9
5

—

*

O
o~

A
B
S

9
7

o

9
7
a

X
>
0
?

10
0
o

10
0
d

L
N
1
+
X

10
1

¢
10
1
e

X
<
0
?

A
B

10
2

£

X
=
0
7
?

B
8

1
0
3
3

IN
T

c
&

10
4
h

FR
C

D
&

10
5

1

D
—
R

E
&

1
0
6
J

R
-
D

F
&

1
0
7

k

+
H
M
S

G
&

10
8

1

R
N
D

|-
OC

T
I

8
|
)

8
1
1
0
|
1
1
1

0

X
<
>
Y

R?
*

L
B

1
1
6

t

R
D
N

M
L

8
11

7
U

LA
ST

X
N
\

8
11
8
v

C
L
X

0
1
8

1
1
9
w

X
=
Y
?

P
t

&
SI
GN

X
<
0
?

a
B

1
2
3
w

M
E
A
N

A
V
I
E
W

|C
LD

d
I
|
l
e

1
2
6
Z

|1
27
+

 4
0
1
0
0

 5
01
01

6
0
1
1
0

 7
01
11

B

10
11

 E
F

1
1
1
0

11
11

 O N O~ ————O- NNANM|<TW CNONJON NN O o~~ o~N1

o
0

N
O
N
M

,
_
™

Q
V
‘
)
O

T
T

«
bi
t
n
u
m
b
e
r
s

in
a

7-
by

te
re
gi
st
er

VSN
‘99206

V
D

‘4o0eg
UDHDYUDWY

‘'3AY
SMBYIOW

0
S
|

‘XILIHINAS
04

2dojaAua
padwpjs

passeppo-3jas
D
puas

‘DJD
JNOA

Ul
SI[D3P

JO
4si|

D
puD

uolDWIOUI
d
L
d

Jo4

LLLL
oLLL

tott
ooLt

LioL
o
t
o
L

tooL
o
o
o
L

LLLO
O
L
L
O

LOLO
O
O
L
O

LLOO
O
L
O
O

LOOO
0
0
0
0

1
3

a
J

8
v

6
8

L
9

S
v

€
¢

L
0

<
SSZ|

2
v
S
T
|
«

€ST|
1

TST|
*

LSZ|
Z

0ST|
~

6¥T|
x

8YT]
™

LYT|
»
V
T

N
SYT|

3
Y¥T]

S
EVT|

A
TVC|

v
L¥T|

a
O
V

@
ANI|

P
ANI|

2ANI|
9ANI]

©QaNI|
.
~

QGNI|
~
D
A
N
I
|
4
d

ANIJ
C
O
A
N
I
|
\
N

ONI{IJWANI|
TANI}

X
GNI]

A
QNI|

Z
ANIf

1
QNI

SLIXIL|
P
LIXIL{€LLXIL|ZLAXILY

LLIXIL|OLLXIL|
6

LX3L|
8

IX3L]
£

LX3L|
9

AX3L{
S

LX3L]
¥

IX3L)
€

IX3L|
€

IX3L]
|
IX3L]

0
IXiL

O
6ET|

Y
BET|

W
LET|

T
9ET|

A
SET|

r
vET|

T
€
E
T
|
M

TETZ|
&

LET|
+

OET|
@

6TT|
P

8TL]
2

LTT|
A

9CC|
©

STT|
a

VTT
LLLANI{OLLANI|{60LANI|80LANIJZOLANI{90LANI|SOLANI|¥OLANIJE0LANI|ZOLANI|LOLANI|O0OLANI}

66
GNI|

86
ANI|

L6
ANI|

96
N
I

--
0
3
X

--
B
I
X

|-
B
I
X
|
-
—
B
I
X
]
-
—
V
I
X
|
-
-
V
I
X
|
-
-
B
I
X
|
-
—
B
I
X
]
-
-

VIX

BIX|~—
B
I
X
|
-
-

BIX]
-

OIX]
--

DIX]|
-~

DIX|
-~

D
I
X

—
€CT|

4
TTT|

L
L
T
~

0C2T]
1

61Z|
Z
8
L
Z
|

A
LIT|

X
9
T

M
S
I
Z
|
A

V
I
Z
I
N
E
L
Z
|
L

TIZ|
S

LIZ|
&

0LZ|
B

60Z(
d
8
0

S6
ANI|

¥6
ANI|

€6
GNI|

26
ANI]

L6
ANI|

06
ANI|

68
ANI|

88
ANI|

£8
ANI|

98
ANI|

S8
ANI|

¥8
ANIf

€8
ANI|

Z8
ANI|

L8
ANI|

08
ANI

-=
0
1
9
[
-
-

019]|--
0
1
9
{
-
-
0
1
9
]
-
-
0
1
9
|
-
-
0
1
9
|
-
-
0
1
9
|
—
-

019]|--
0
1
9
[
-
-
019|~~

0
1
9
|
~
~
O
1
9
]
-
~
0
1
9
|
-
-
0
1
9
|
-
-
0
1
9
[
-
-
0
1
9

O
LOZ|

N
90Z|

W
SOZ|

11
¥0Z]

A
€0Z|

i~
2OZ|

I
LOZ|

H
00Z]

D
66L|

4
86L]

3
L6L|

@
96L]

D
S6L|

T
v6L(

B
€6l

@
Z61

6L
ANI|

8/
G
N
I
|
Z
Z

ANI|
9L

A
N
I
J
S
Z

ANI|
¥£

ONI{
€£

ONI|{
ZZ

GNI]
LZ

GNI|
OZ

ANI|
69

GNI|
89

NI}
£9

ANI|
99

ANI|
S9

ONIf
¥9

ANI
--

181]
—
-
<
>
X
[
1
V
8
0
1
9
{
1
v
8
0
1
9
1
1
v
E
0
1
9
{
1
v
8
0
1
9
|
1
v
8
0
1
9
|
1
v
E
0
1
9
1
v
8
0
1
9
1v8019[1vE8019[1vE019{1vE019|1v8019

[1VE019[1VE019

&
Lol

€
06L|

=
6
8
l
>

88L]
¢

[8Ll|
:

98L|
&

S8L|
B

v8L|
£

€8L|
D

Z8L|
S

L8L|
¥

OBL]
£

6L1|
2

8LL|
¥

LLL|
B

9LL
€9

ANI|
29

GNI|
L9

ANI|
09

ANIJ
65

ANI|
85

ANI|
£S

ANI|
95

A
N
I
|
S
S

ANI|
¥S

ANI|
€S

GNI|
¢S

NI}
LS

GNI|
0S

ONI|
6%

ONI|
8%

ONI
vl

O
L
9
|
€
L
0
1
9
2
1

O
L
9
|
L
L
O
L
9
J
O
L
O
L
9
[
6
0
O
L
9
|
8
0
O
L
9
|
£
0
O
L
I
]
9
0
O
L
I
|
S
O
OLI|¥0

0
1
9
]
€
0
0
1
9
4
2
0
0
1
9
]
1
0
0
1
9
{
0
0

019|
FAVdS

2
S
l

=
v
l

=
e
l
2

T
L
L
f
#
o
L
o
L
L
|
€
6
9
1
>

89L)
.

£9L[%®
99|

%
S9L|

&
vIL|

#
€91

«
TL|

i
191

091
v

|4y
aNI|

97
ONI

St
ONI|

¥¥
ONIJ

€
ANI|

Z¥
ANI|

Lt
ONI|

Ov
ANIJ

6€
ANI|

8€
ANI|

LE
ANI|

9€
ANIJ

S€
ANI|

¥€
ANI|

€€
ANI|

CE
N
I

34vdS|
aNI

83X
¢Jd

¢S4
Jédd|

¢
S
4

1
ISJLE-8TX|

LT-YTX|ET-0ZX|6L-9LX]SL-TLX]|LL-8dX|
L-¥

dX[
E-0

d
X

#
6SL|

F
8SL|

=
LSL|

2
9SL]

B
SSL|

D
vSL|

O
ESL|

2
ZSL]

Q
LSL{

2
OSL|

¥
6vL|

@
BYL]

Y
LVL|

<
9VL|

D
SPL|

B
v
l

LE
ANI|

OE
A
N
I
|
6
Z

ANI|
8Z

ANI|
£

ANI|
9T

ANI|
ST

ANI|
¥Z

ANI|
€

ANI|
ZZ

ANIj
LZ

A
N
I
|
0
Z

ANIJ
6L

ANI|
8L

GNIf
ZL

ANI|
91

QNI
INOL|

O
N
3

1
S

Xid]
1Ddv|

01SVv]
9
3
3

M
I
I
A

EN4
oS|I

[1S|
%15}

-—1S|
+
I
S

015
1
Y

F
EVL|

A
TYL|

™
LbL|

7
O
]

<
6EL|

»
8EL|

0
LEL|

¥
9EL|

T
GEL|

J
PEL|

S
EEL|

@
CEL]

»
LEL|

2
OEL|

=
6CL|

&
8
L

S
L
A
N
I
[
v
L

O
N
I
{
E
L

ONI|
ZL

NIJ
LL

ONI|OL
GNI|

6
0
A
N
I
|
8
0

GNI|
£O

GNI|
90

ANI|{SO
G
N
I
|
¥
0

GNIJ
€0

ANIf
O

ANI|
LO

ANI{
00

N
I

AQV]LdWO¥d]
 440]

NOV]
d440V[
¥

3Sd|
4JHSV]

VID|
d338]

NLd|
dOIS|I¥3INI]

avy9|
avif

93d

i
3

d
J

g
v

6
8

L
9

S
v

£
¢

L
0

XILIHINAS
‘2861

©
O
N
I
W
W
V
Y
O
0
Y
d

JILIHLNAS
304

Q
Y
Y
D

FDONF¥3AY
M
I
I
N
D
JLY-dH

-169-

-170-

APPENDIX E

BARCODE FOR PROGRAMS

Barcode is provided here for all of the utility programs

in this book, so that you may conveniently enter these

programs into your HP-41 using the 82153A Optical Wand. If

you have a wand or if you can borrow one, this will save you

some time.

Always protect the surface of the barcode with a clear

plastic sheet. It may also be helpful to place a seid 6QSCA

sheet of paper behind the barcode to improve the contrast.

This barcode was tested in a trial printing and found to

be readable. If your barcode is not readable, ttry inking in

any incomplete bars, scanning the rows faster with the aid of

a straightedge, or holding the wand at a different angle. If

all else fails, try another wand.

If you have a card reader, you should record these

programs in case your dog finds this book. Other methods of

storing the programs include mass storage (IL tape drive) or

extended memory. Extended memory should not be considered as

a permanent storage, however, since it is susceptible to

MEMORY LOST.

DECIMAL TO CHARACTER PROGRAM REGISTERS NEEDED: 8

T
A
O
O
i

-171-

LOAD BYTES PAGE 1
OF 1

PROGRAM REGISTERS NEEDED: 31

RO

RO

RO

I
J
—

-172-

LOAD BYTES PAGE 1
(EXTENDED FUNCTIONS VERSION) OF 1

PROGRAM REGISTERS NEEDED: 23

-173-

MAKE KEY ASSIGNMENTS Pg(FEEz1

PROGRAM REGISTERS NEEDED: 45

O
O
O
e
O
R
O
T
O
||IIIIII||||II||I|||I|||||||||||I|II||||II||||||IIIIIIII||III|I|||I||II|||IIIIII||||||||I|||I|||I||||I|II|III|||I|III|II||I||||III|
e
A
O
ow

O
ow

O
ROW

e
ROW

L
O

-174-

ROW

O
_
.
_

I
J
_

T

MAKE KEY ASSIGNMENTS PAGE 2

OF 2

-175-

MAKE KEY ASSIGNMENTS PAGE 1
(EXTENDED FUNCTIONS VERSION) OF 1

PROGRAM REGISTERS NEEDED: 18

-176-

RAM BYTE COUNTER PAGE 1
OF 1

PROGRAM REGISTERS NEEDED: 23

A
T
0
O
O
O
A
O
O
O
O
O
A

-177-

SAVE ALARMS/ RECALL ALARMS PAGE1 1
OF

PROGRAM REGISTERS NEEDED: 25

-178-

EXTENDED FUNCTIONS / TIME PAGE 1
MODULE OF 1
PROGRAM REGISTERS NEEDED: 9

T |I|I|I|I||||I||||I|

ROW 5 (24 : 26)

SUSPEND KEY ASSIGNMENTS/ PAGE 1
REACTIVATE KEY ASSIGNMENTS OF 1

PROGRAM REGISTERS NEEDED: 10

-179-

PAGE 1
OF 1

SOLVE f(x) =0 for x

PROGRAM REGISTERS NEEDED: 14

ROW 1 (1:2)

00000
ROW 2 (2:7)

000
ROW 3 (7 : 10)

OO
ROW 4 (10 : 19)

00A
ROW 5 (20 : 29)

OA
ROW 6 (30 : 39)

000
|||II||I|II||I|II||||||||II||||II|I||||I|I||||II|I|||I|I|||||IIII|IIII||II|I||||II|I|I|I|II|I|III|IIII||I||||I|I|||I|I||||||||I|III|
A

CURTAIN UP PAGE 1

OF 1
PROGRAM REGISTERS NEEDED: 10

180

TR I I R PAGE 1ION E

PROGRAM REGISTERS NEEDED: 47

ROW 1 (1:8)

A
ROW 2 (8: 13)

e
ROW 3 (13: 17)

O
ROW 4 (17 : 26)

O
|||II||||I|||I|I|||||I||||||||||I||III||||I|I||III||I|IIII|||IIIIIIIIIIIIIII||||I|||l|||l|||||||||II|II|I||I|||IIIIIIIIIIIIIIIIIIIII
		II				I			I			I							I	IIII!IIIIIIIII				I		III	I					I				I			II		I		I						II					I			IIIIII		II			I	I					I		II			II	I		II	I			
			III	I				I							I					IIIII		I					II	III	I			I								IIIIIIIIIIIIIIIIIIIIIIIII				I					II		I	I		I	I		I	I			I		I				I			I		I								
		I	I		I					IIII								I	I		II				II	I			I		II			III					II	I					II	II	I						I	I			I	I	I				IIIIIIIII	III	I				I				I			I		I		
IIIIIII	II				I			I	I				I	III					III				II		III		II	II	IIIIIIIIIIII		II	I		I			II	I		I		I		I		II	IIIIIII			III		I				I	II		I				I																	
IIIIIIII		IIIIIIIIIIIIII				II	I	I		II				IIII	I	IIII	II	I	I				I	I				I		I				I	IIIIIII					II	I	II	I			I		II	I	III		I	I		IIII			I																						
llIIIII	II			II	I						I	III	IIII								I	I		III			II		III		I	I	I		IIIIII		II		II	I		I						III	I	I						I	I		II	I	II	I	III	II	I	I														
	I		I		II		III	I				I										III	IIIIIIIIIIIIIII					I	I		I	I	I	III	IIIIIII	II	I			I		III		II						I			IIII		I										I	I			III											
	I		IIIIIIIIIIII									I	I				I				II	IIIIIII	IIlIII								III	IIIIIII				IIIIIIII	II	III		IIII		I	II		IIII	II	I			I	I				III																									
	I				II					II	I			I					III	I	IIIII			I	I							I					I	I			III				II				I					I	III	II	IIII	IIIIII		I	IIIIIIIIIIIIIIIIIIIIII		I																	
III		II	I				III						I					I			I	III	I	II				I		I	I	I	I				I	II	I	III																III	I	II	I	I		I			I	II		I	II	IIIIIIIIIIIIIIII										
		I	II	I				IIII									II		IIII			I						I			II			I	III	I		I	IIII	I					IIIIII							II		II					II	IIIII	I	III		IIIIIII				I			I									
			III	I				I											I	I		III		III	I		I			III		III	IIIIIII			I	IIII	III	IIII	I															II		III						l		I					II	I	I	I			I				
T

-181-

INSTRUCTION TIMER PAGE 2
OF 2

O
A
O
O
O
O
A
i

-182-

MORSE CODE

PROGRAM REGISTERS NEEDED: 121

RO

RO
RO

OW 14 (91:

ow

OW 16 (103 : 108)

D

ZJ

PAGE 1
OF 4

RO

RO

RO

RO

RO

 RO

RO

-183-

MORSE CODE PAGE 2
OF 4

ROW 19 (120 : 125)

-184-

RSE C PAGE 3MORSE CODE
OF 4

ROW 37 (224 : 229)

-185-

MORSE CODE PAGE 4
OF 4

-186-

INDEX

AbsOlute 1OCaAtiON .. eeeeseeeeeeeooesoesososssossosccsscssasses 106

Biteeoeooon.ceeeeeeeen sessescsessssssses 5, 23, 26

Bit MApPSeceeeeeseccoonssss et e e e e e e e ececeseeeenn 113, 118, 119

BG (Byte Grabber).ceeeeeeeeessccess et eeeees s sa set9

BLDSPEC. ¢ e ceeeeecees e s s e s e s s e e e e s e e s e e s et s s e s e e s 34, 37

BYt€eeeeoeeeeeoanannnseettt..5, 11-14

Byte Grabber..... ceececssescnneO6-9

Byte Jumper..... see PPC Calculator Journal: May and July 1980

Byte Loader, poor man's (also see LB).ceeeeeseconnns cees17,79

Byte StruUCtUIrE .. eeeeeeeeeececcocccccsccossccsocsncossses 57-62, 167

Byte Table...o... cecsteccccssesesssssestse e ceccescens .11, 165

Catalog l.eceeeenen ceces ceceene ceceeccace cecseceene 61, 71, 116

Complete MOD function........ cecccccscnoasee cessescs ...48, 138

CUrtaAlNececeeceoscocsccscccse e e ee e e e et ees o0 e e cee..88, 116, 127

Curtain Moving..... ceccseceeans et eeeesee e cess.l1llo, 124, 13¢

Default FUNCtiON.eeeeeeeeeoeoocoes cesccess s ceecsececese «..113

Disclaimer...... cecscnessees cecsssescsses cscscces cecsene5

Display mOde€.eceeeeeeesss ceceectessoaane ceceeccenesRXX

€GOBEEP..cceceeen creecsccese e cececccsccns cececccocccc o 76, 95

Extended Functions Module...... ...35, 49, 64, 08, 77, 93, 144

Flag register....... ceccccnenn ceececeenns 23, 24, 8o, 117, 131

GLOBAL instruction (Alpha LBL or END in Catalog 1)..... 61, 62

Golden RAtiOeeeseese ceecc e e et ceocecce e e ceessscesesd48, 128

HeX Table.eeoeeeeeeeeeessessosossossssossscsssosscscas see Byte Table

IND (indirecCt).eeeeeceeeeeececccanans ceceeses ceconne cececssne 10

Key assignments, synthetic......iiiieiieitiiececccccccnns .67-76

LB -- Load Bytes:

Basic version "LB"...... cetscsveansne cecseseccssace s ..52

PPC ROM version HEBttt eenenencnnanannnns 49

Extended Functions version "LBX"...ceceeeeeeeocencns . .65

Line NUMDEIrSeceoeeececosocccocssssssscs 12, 28, 94, 103, 118, 124

MASTER CLEAR::cc¢ccceeececaase s s e e s s s e e s s s e e s e e s s e s et se s casee e 7

-187-

Dll};;b/IORY LOST e & o o o o o o ® @ & o & o 0 0 0 o 0007' 40’ 53' 70' 117

MK -- HMake Key assignments:

Basic version "MK"....eeieeeeeeeeeonacons ceecseceees s 69

PPC ROM version W@cccvvvuen. Ceeeeaeaeas ceee..67

Extended Functions version "MKX".......... cecessssssse 91

Non-programmable funCtionsS.....ceeeeeeeeececcoccccsss ceseessdD

NOP (also see TEXT)ceeeeee et e eet cececees 15, 38, 39

HOrmalizZationeeeeeeeseeeesesessesosscsesesoasosscscssccss ceccen .25

NULL:eeeeooososooccas ceeecescssceceasenn cescscnsace 21, 34, 98-103

Plastic card (Ssee QORC) e eeeeseeeeosoosescsossosassssssssssssesesll

PPC (Personal Programming Center)..c.ceeeessssscssces 4, o, 159

PPC CJ (PPC Calculator JoUrNal).cecececcecescscscscscscscssd, 159

PPC ROMe e oo et e ec s s e cc s e s e ss s e s s essessesesn 0 ane cees4d, 162

Prefix Masker (see Byte Grabber)...... c e e eecesesesessssnsesl2

Printer:

CONtroOl ChArACteYr Seeeeeoeeecsoossccsscosscsscsossscsscssos .37

shaded characters..ccecececeee e e s e s e e e s e e e et eecsseseeeense 37

invisible characters in listings.......... ceeeccsseess3?

Program pointer...cceceeecscecsccsccsscssessea2?, 114, 150, 152

0=10Ader eeeeecooscccncscas e e s st s essesscssesessscccsoens 29, 77-81

QRC (Quick Reference Card for Synthetic Programming)..1ll1l, 165

Return addresseS.cecececececccccces e e e e se et st eesssccccnos 114, 115

Root finder..eeeceeeeeeeoses cesessssescsssseasesseel24-128, 127

Shaded characters..cecececeeee. e e e e cs s eecsseeesecsecsscen e 37, 165

Stack and ALPHA register analysis......... ceeeeesl21-124, 123

Starburst character (also called Boxed Star).cee.... eeeo13, 41

Status cardeceecececcececececes cecescecceas ceceseccceccsns eee9, 111

Status registers..ceceecscecececcccssccscnns cececesccas .39, 111

Suspend Key assignments..... cecessrsssas ceeecsssccsessesssll9

Synthetic Programming......... ceescsnes ceecescccscsssssenses 1

System scratch registers....cceeeceese ...see Status Registers

TEXT instruction......cee.. coeccsnccas ceececescccnseseses29=-30

TEXT Beeeeeceececsoonssosossoscsscsas cecevcessvesccssas 15, 38, 39

Wife.eeeeeeeoeoooonnnnn cessesesses cecesseseene ceescessessessdldl

-188-

ADDENDUM

Errata and Selected Useful Facts

Printer slows execution

Having a printer attached to your HP-41 will slow

execution of your programs, regardless of whether flag 21 is

set or the printer is turned on. Even instructions that are

not intended to involve the printer are slowed.

This speed penalty can be reduced by synthetically

clearing flag 55, the printer existence flag. Any of the

following sequences of instructions will accomplish this:

with "bare" with XFUNCTIONS with PPC ROM:

HP-41: module™:

sr 87" RCLFLAG 55
RCL d SIGN FS? 55

CLA STC d RDN

STO M X<> L FC? 55

ASTC M STOFLAG XROM

- RDN

X<> M

S0 d *this routine was written by Steve Wandzura

RON **any flay from Wi to U7 can be used.

As long as your program continues to run without

encountering a printer function, flag 55 will remain clear and

execution will be speeded. 1f flag 21 is clear, encountering a

printer function will not set flag 55 either. The function

will be 1gnored just as it would normally.

if flag 21 is set, the behavior depends on the type of

printer present. With an 82143A printer, all printer functions

are disabled until the program halts, at which time flags 21

and 55 are immediately set (even if 21 was clear). With an

LP-1L printer, the set status of flag 21 will cause the

printer function to be executed and flag 55 to be set. Simply

-189-

halting execution will not set flag 55 as for the 82143A

printer, but executing a flag test, VIEW, or related

instruction from the keyboard will set flag 55.

Avoid decompiling

Suppose you record a program on magnetic cards after

executing it once to compile all the GTO's and XEQ's. (Refer

to page 60 for a definition and explanation of compiling.)

When you read the cards back in, the GTO's and XEQ's will

still be compiled, so that no searches for the LBL's are

required. However the branching information contained in the

GTO's and XEQ's will be lost the next time you GTO.. or PACK.

A simple synthetic technique invented by Clifford Stern allows

you to pack without losing this information:

After reading the program into memory, switch to PRGM

mode and BST. This puts you at the .END., which is the last

line of the program. Make sure that there are at least 2 free

registers (.END. REG ¥W2 or greater). Press ENTER*, STC IND 66,

BST, BG, backarrow twice, and PACK (not GTO..). The INL 66

suffix becomes the first byte of a packed END, which prevents

the processor from clearing the compiled branch information.

No bytes are wasted because the PACK operation removes all

packable nulls from the program. The presence of the new END

eliminates the decompiling which would ordinarily follow.

This method applies identically to programs read in from

tape, extended memory, or any other source.

ROM/RAM distinction with STO b

Most RAM program pointers would constitute equally valid

ROM program pointers (see pages 114 and 115). The HP-41

therefore must remember internally with some sort of flag

whether the current location is in ROM or RAM. This flag

cannot be changed by STO b.

Thus STO b can only be used to jump from one ROM location

to another or one RAM location to another. A common mistake 1is

-196-

to press a STO b assigned key while the program pointer is in

ROM, expecting to jump to a particular location in RAM. This

will not work. Instead you should execute Catalog 1 (it is OK

to R/S immediately) to get back to RAM before pressing STO b.

Q-register shortcuts

When you spell out an ALPHA label name from the keyboard

(while keying in a LBL, a GTO, or an XEQ), the name will be

loaded into the Q register. This fact is helpful when using

eGOBEEP 77 to execute PRP (see page 76). For example, to print

a program that contains LBL"ABC", you can press GTO ALPHA A B

C ALPHA, eGOBEEP 77. You can get even fancier by pressing

eGOBEEP ALPHA A B C ALPHA, eGOBEEP 77. This latter example

makes use of the obscure fact, discovered by Robert Edelen,

that eGOBEEP'"name" has the same result as LBL"name".

Another useful shortcut, discovered by Clifford Stern, is

to clear the ¢ register by pressing XEC ALPHA backarrow. You

can then obtain a TEXT U instruction by pressing Q-LOAD (MK

inputs 27, @) and backarrow. Refer to page 79. If you press

eGOBEEP 77 after clearing @, you will cause the current

program to be printed, just as if you had pressed PRP ALPHA

ALPHA.

Subroutine use of "RA"

If "RA" (recall alarms, see page 89) must be called as a

subroutine, replace line 38 (the OFF instruction) by ALMNOW

and RTN. The ALMNOW instruction will reset the Time Module's

countdown to the pending alarm.

"EFT" use of PCLPS

The useful PCLPS function can be executed by means of the

"EFT" routine (page 94) as long as "EFT" itself is not cleared

in the process. PCLPS provides the fastest method of clearing

main memory programs.

-191-

“SOUP UP” YOUR HP-41 — It’s Easy and Fun!

Synthetic programming encompasses the creation and use of synthetic

instructions — those instructions that cannot be keyed up by normal means.
Applications of synthetic instructions included expanded key assignment

capability (assign SF 14 or GTO IND X to a key), 21 additional display

characters, and renumbering of data registers under program control.

If you have heard about synthetic programming and want to know more,

or if you have found other sources of information on synthetic programming

confusing or difficult to read, try this book. HP-41 SYNTHETIC PROGRAM-

MING MADE EASY uses all the latest synthetic programs and techniques,

and gives many cross-references to other sources, all of which will be much

more readable after you have been through this book. Barcode for all

programs is included for those readers who have access to an optical wand.

Also included is the handy plastic QUICK REFERENCE CARD FOR

SYNTHETIC PROGRAMMING, a $3.00 value.

If you like your HP-41, you'll like HP-41 SYNTHETIC PROGRAMMING

MADE EASY. Thousands of HP-41 owners have learned synthetic

programming. Shouldn’t you?

	Cover
	Table of Contents
	Introduction —- What Is Synthetic Programming?
	1. Creating Your First Synthetic Instruction
	2. Frequently Used Synthetic Instructions
	2A. Synthetic Tones
	2B. Short Form Exponents
	2C. Flag Register Control
	2D. Program Pointer Control
	2E. Synthetic Text Lines
	2F. The TEXT 0 instruction
	2G. Using ALPHA for numeric storage
	2H. Other scratch registers

	3. Byte Loading
	4. Synthetic Key Assignments
	4A. Create and use a key assignment program
	4B. The "poor man's byte loader"
	4C. Pseudo-XROM function previews
	4D. The RCL b key assignment
	4E. Save/Recall Time Module alarms

	5. Understanding Program Editing on the HP-41
	6. HP-41 Memory Structure and Status Register Applications
	6A. Memory structure, functional setup, the status registers
	6B. Suspend and Reactivate key assignments
	6C. Renumbering data registers under program control

	Solutions to Problems
	Appendix A: Instruction Timing
	Appendix B: Morse Code and STO b
	Appendix C: Synthetic Programming References
	Appendix D: The Quick Reference Card for Synthetic Programming
	Appendix E: Barcode For Programs
	Index

