
 

 

SYNTHETIC
PROGRAMMING

ON THE HP-41C

 

 

 

 —{J——
FIX A STO b STO ¢ STOd STOM

STO N XM X< N X0 X< P

HH=HHA
RCL M RCL N RCLO RCLP

SEHEHAE- i 
VIEW IND 00 RCL b RCL ¢ RCL d

f. ToNk& )
{ ey Y

RCL Q TONE 7 TONE 8 TONE 9

Aa A 
STOO  TONE 4 TONES  TONE6

STO P TONE1 TONE 2 TONE 3

sTO Q TONE O TONE E TONE F

T L e e o e LS G IR A

by
W.C. Wickes

  
 

        
 

 



 



 

 

SYNTHETIC
PROGRAMMING

ON THE HP-41C

 

 

 

 
 

 

 

FIX A STO b STO ¢ STO d STOM

BEHEE
STON XM X< N X< 0 X< P

RCL M RCL N RCLO RCLP

Ry  
  

  

  

  

  

 

VIEW IND 00 RCL b RCL ¢ RCL d

TONE A _
Yy 3

RCL Q TONE 7 TONE 8 TONE 9

STO O TONE 4 TONE 5 TONE 6

=
STO P TONE 1 TONE 2 TONE 3

STO Q TONE 0 TONE E TONE F

o Y WYA :         [ HEWLETT.-PACKARD 41C

by
W.C. Wickes

 
 



Acknowledgements:

It is a pleasure to acknowledge the crucial contributions of the many people who have
helped me in the preparation of this book. The cover art was provided by William Kolb, who
also did an exhaustive editing of the manuscript, as well as providing encouragement and sup-
port throughout the whole project. Tom Cadwallader, Keith Jarett, and John McGechie, each
an important synthetic programming pioneer, also provided invaluable editing and suggestions,
along with Tom James and Lee Vogel. Charles Close has been an important contributor to our
detailed knowledge of program line coding and other subtle HP-41C properties. The discovery
of enhanced byte jumping by Roger Hill was a major advance in making synthetic programming
a 'friendly' process. Jacob Schwartz developed the Barcode Character Table in Appendix 3.
Richard Nelson, through his fine efforts in founding and maintaining the PPC, has fostered
the world-wide communication necessary for the collective development of synthetic program-
ming.

Professor Carroll Alley of the University of Maryland has been a principal backer of
my synthetic programming efforts right from the arrival of our virgin, buggy HP-41C's.

This book is dedicated to my wife, Susan, the world's most supportive Calculator Widow.
She handled many of the typing and proofreading chores, and kept all of the wolves from
the door while I was closeted with my HP-41C and typewriter. Also, I am grateful to my
children Kenny and Lara, who allow me use 'their' HP-41C whenever I 'want to play with it.

Cowardly Disclaimers:

The programs and descriptions in this book have been developed and tested on a number
of HP-41C's. With the exception of the Text Enabler process (Section 5H), all of the HP- 41C's
performed identically. No program in this book has ever failed to run on any HP-41C tried.
But since the material deals with 'unsupported' features of the HP-41C, I cannot guarantee
that every technique and every program will perform exactly as described under all cir-
cumstances. Hewlett-Packard naturally reserves the right to modify its products within
the 1imits of the descriptions of the Owner's Handbook--the material herein is not covered
by the Handbook, so we cannot expect that future modifications will preserve the unsupported
features.

HP-41C 'crashes', i.e., where the display freezes or blanks and the keyboard becomes
inactive, are an operational hazard of 'synthetic programming'. No program or technique des-
cribed in this book will cause a crash if the directions are followed exactly--but occasional
mistakes are inevitable. If you crash your calculator--don't worry, no harm will result
to the HP-41C. Try removing then replacing the battery pack. If that fails (try it a few
times), remove all peripherals and plug-in modules prior to removing the battery pack.
As a last resort (I have never had to resort to this), remove the battery pack overnight.

The barcodes in the Appendices were produced by offset printing. The process was tested
prior to publication, and worked successfully. If you have difficulty entering the barcode,
check for poorly reproduced bars and black them in by hand.

 

To borrow some well-known words:

The material contained in this book is supplied without representation or warranty of
any kind. The publisher, Larken Publications, and the author assume no responsibility
and shall have no liablility, consequential or otherwise, of any kind arising from the use
of this material or any part thereof.

© 1980 William C. Wickes

Published by:
Larken Publications, Post Office Box 987, College Park, Maryland 20740

i1



TABLE OF CONTENTS

CHAPTER 1. WHY'S AND WHEREFORE'S
1A. Synthetic Programming? ...eceeeesessscccnsscccannnsa 1
1B. Purpose and Organization .eeeeeeeeeeeeeccnescncnnces 2
1C. The Origin of Synthetic Programming ...ceeeeeveccen. 2
1D. No Risk to the HP-41C .veeveerneveesssccennnnsccnnss 3
1E. Some ConventionsS c.eeeececesossecenecscccesscacennnns 3
IF. PrerequisSites ceeeeeeescesseecsssscesssssnosssscnnss 4
1G. ReferencCes ..ceeesocscececenssssssscscecccconnnnnanas 5

CHAPTER 2. INSIDE THE HP-41C
2A. Calculator Language: Bits, Nybbles and Bytes ....... 6
2B. The Byte Table teeeeeseseeececccsnosssssasscccccccns 9
2C. Register, Pl1ease ceveeeeesscceosssccnssscecnnnsacas 16

2D. Memory Partitioning ceeececeesseccessseccsnsssnacans 18
2E. The Key Assignment Registers c.ceeeeeceeceeeeencnns 20

CHAPTER 3. EXOTIC EDITING WITH THE BYTE JUMPER
3A. Normal Editing ceeeeeeeeesccesacoescceaccescconsans 23
3B. The Byte JUMPEr «eeeeeseescescesscosssosscescnsscnssns 25

CHAPTER 4. THE STATUS REGISTERS
4A. Strange POSEfiXES ceeeeesceosscscconscscnsssccannns 29
4B. The Alpha RegiSter ceeeeeeeessscesccssscesscoassans 31
4C. Register Q cececeeeeeeeeececeseenessceosssscsnnnnns 33
4D. The F1ag RegiSter ceeeeeeesccccesscsccesssaccassans 33
4E. The Key Assignment F1ags ceeeeeeeeecescsceaccossons 34
4F. The Address Pointer and the Return Stack seeeecesss 35
4G. Register ¢ and Memory Partitioning .¢.eeeeeeeeeenecss 36

CHAPTER 5. PROGRAMS FOR PROGRAMMING
5A. Unseemly DiSplaysS ceceeecscscccescscnsoscscescnncss 38
5B. Register Exchanges and Normalization «ceeeeeencccss 39
5C. Getting Started: "CODE" ¢eveeeveceoscnsscncsacnnans 40
5D. Direct Access to Program Registers ceeeeeecescceess 42
5E. Synthetic Key Assignments .eeeecececeecccccecosssans 44
5F. Creation of Synthetic Program Lines ...eeeeececeese 49
5G. Enhanced Byte Jumping ceeeeeeeeeceeeeessncseencnnns 52
5H. The Text Enabler ceeeeeeeeeessesceossccsscccsscconas 53
5I. The Q-LoAder ceceeeceerecesaccssccoscenscosscconnns 55
5J. Backtalk from the HP-41C .......................... 57
5K. Code StOrage eeeeeeceesccesccssccessscsscsoscscnnne 58

CHAPTER 6. APPLICATIONS
O6A. Getting to the .END. ceveeveencececnsscscensasanns 60
6B. SIZE-finding and Other Tricks ceceeeececcccececenns 61
6C. Fun and Games in the Alpha Register ..cceeeeeeeene. 63
6D. Character Recognition ...eeceeeeeecececesssscccnnss 66
6E. Synthetic Text Lines and the Printer «..cceeeeeeess 68
6F. Non-Normalized Numbers and Mass Flag Control ...... 70
6G. Raising the Curtain ceeeeeeececeeccccccccssssocnnnes 73
6H. Application Pacs: Sneaking in the Back Door ..eece. 75

CHAPTER 7. AMUSING ANOMALIES
TA. 128 TONES ceceeeessssscesssssossssssssssssascnsssss 77
/B. Tricks with System F1ags eeeeeveeeceeeeneeecncnnees 79
7C. Flying the Goose Backwards c.eeeeeeeceeecceoccnnans 80

APPENDIX 1. NUMBER SYSTEMS ........P82



APPENDIX 2. PROGRAM BARCODE
HCODE" eevveeenceoscensaconsssesssssssssssssssssnscsnses 84
285
"KA" and "EF" ceieeecettceccccescsnssascsscssccsssensas 86
"DECODE" teeeevecosccesaccosscnsscoasssosossccnscassansss 88
"HM" eeeeennan Ceeceescessccesscessseesssessasessscesons 89

APPENDIX 3. THE BAR CODE CHARACTER TABLE ¢eeveeeeececccecenes 91

FIGURES
2-1 Three Levels of Coding in the HP-41C ..ccvveeennnes 7
2-2 HP-=41C Barcode «eeeeececessscceossscccnssans cevenas 8
2-3 Display LOGiC eeveeecsessosceseossescesancconsnnsse 10
2-4 Sample Byte Table BOX eceeceveeeccns ceseesscssessan 11
2-5 HP-41C User Memory Partitioning cceeeeceecccccocss 19
2-6 Key Assignment BytesS ceeececeseccccsccccoccoscnnes 21
4-1 The Status Registers ..cceceeeecens cesscsnsseasssns 32
4-2 Key Assignment Flag Bits eeeeececess. 1
5-1 A Synthetic Programming Keyboard ............ eeess 50
6-1 A Special Graphics Character «ccceeeececcens cesees 69

1-1 Symbols for Status Registers cc.eeeeeecceccceeecens 4
2-1 The HP-41C Byte Table ccveeeeeeenceeccncesscnscnas 12
2-2 Assignment of Non-Programmable HP-41C Functions .. 22
5-1 Non-Programmable Peripheral FunctionS .ceeeeeecees 45
5-2 "KA" Entries for the Keyboard of Figure 5-1 ...... 51
7-1 TONE Frequencies, Numbers, and Durations ......... /8

PROGRAM LISTINGS

Global Label Description

1. "AD" Address Finder cceeeeeeccccocconcss «e. D8
2. "AL" Alphabetize Alpha Data eceeeeeeeecenns 67
3. "BYTE" Determine Byte Number ..cceeeceeecceces 62
4, "CA" Clear All Key Assignments ....cceeeees 47
5. "CD" Character-to-Decimal Conversion ...... 66
6. "CODE" 7-Byte Encoder cceeeceeesceccsccensnns 40
7. "CR" Code Recall teeeeeeeecesncasccosnccnns 59
8. "CS" Code StOre ecaeeeesececesssacconsssanns 59
9. "Cu" Move Program/Data 'Curtain' .eeeeecess 73

10. "DcC" Decimal-to-Character Conversion ...... 67
11. "DECODE" 7-Byte Decoder .eeeecesccesccesccnnncs 57
12. "DI" Turn on Display Annunciators ...c..... 80
13. "EF" END. Encoder cceeeeeeececccoonnncnnnas 46
14. "EN" Find Last User Program ....ccceeeeeeees 60
15. "FL" Set Any F1ag ceceecoccescscesscensonss 79
16. "HM" Hangman Game «.eeeeoecsscccccccscnnses 65
17. "I1S0" Isolate a Single Alpha Character ..... 64
18. "KA" Synthetic Key Assignments ...ceceeeese 46
19. "Kp" Pack Key Assignment Registers ........ 47
20. "MANT" Find Mantissa of X ceeeecnencccccccans 68
21. "RE" Reset ATl F1agS ceceececssssccossscnss 79
22. "REG" Store/Recall into any User Register .. 43
23. "REV" Reverse 6-Character Alpha String ..... 57
24. "ROM" Direct Access to ROM Module Programs . 75
25. "S" Automatic Size-Finder ....ccceeeeeenes 61
26. "SAVE" Save ATT Flags ceeceeeceeeenccescconss 79
27. "SUB" Substitute One Alpha Character ....... 64
28. "TONE" Create A1l Synthetic TONE lines ...... 77

jv



CHAPTER 1

WHY'S AND WHEREFORE'S

"There are more things in the heavenly HP-41C, Hewpackio,
Than are dreamt of in your philosophy."

--apologies to W. Shakespeare

1A. SYNTHETIC PROGRAMMING?
 

No one, from the serious student of computer science, to the occasional user of four-
function calculators, can fail to be impressed with the HP-41C calculator. This machine com-
bines amazing computing power with the convenience of complete portability. The prospective
buyer is attracted by the long list of computing functions built into the calculator; the ex-
perienced owner finds that the HP-41C becomes an ever more important part of his problem
solving techniques as he masters programming and integrates his own ingenuity with the
built-in functions.

And yet, even when an HP-41C user has learned everything the Owner's Handbook can
teach him, he is in for another treat: the list of HP-41C functions and programming capability
is not limited to the properties catalogued in that Handbook. There exists, in fact, a whole
class of functions and programming applications that can be used to enhance greatly the
power of the calculator, even though the new functions cannot, at first, be executed or pro-
grammed with normal, simple keystrokes. The new functions, which are 'synthesized' by creating
new combinations of normal program bytes, are called 'synthetic functions'; their appli-
cation in programs gives rise to the expression 'synthetic programming', and hence, to the
title of this book.

To whet your appetite, here is a sample of some of the typical applications of synthetic
programming that are impossible or impractical without the techniques described herein:

***Addition of twenty-one 'new' display characters for routine use.
***Transformation of the alpha register into four additional data registers. These

registers can provide a 'scratch pad' for a program to use without disturbing data
stored by other programs in numbered data registers. Furthermore, the contents of
these registers can be input and output with the Card Reader operation 'WSTS'.

***Enhanced user control over the 56 user and system flags. Example: Two keystrokes
can clear all 56 flags simultaneously.

***Automatic 'SIZE-finding' in less than 2 seconds.
***Rapid alphabetizing of alphanumeric data.
***Alphanumeric character-string processing
***Addition of six new TONE frequencies, plus variation of TONE duration.
***Interchange of program lines and stored data.
***Improved key assignment control, including two-byte function assignments (e.g., as-

signment of 'STO 65' to a key), automatic clearing of all assignments, and assignment
register packing.

A simple exercise will introduce you to the world of synthetic programming, and
perhaps motivate you to expend the effort to read the rest of this book. Try the following
hocus-pocus:

 

 

1. Insert one memory module into the HP-41C.
2. Execute a 'Master Clear'.
3. Set SIZE 063 (if your module is double density, set SIZE 127).
4, Switch to PRGM mode.
5. Key in these program lines:

01 12345
02 STO IND 17
03 RDN   

6. Turn the HP-41C off.
7. Remove the memory module; wait 60 seconds; replace.

1



8. Turn the HP-41C on.

9. Press RTN.
10. Key in '1.435245455 EEX 59°'.

11. Press SST

12. Switch ALPHA on.

Where did that creepy little 'man' come from? Switch PRGM on, press BST once, and you
will see the program line '01 STO M'. This 'synthetic' program line 1is the combination of
the "IND 17' program byte and the 'RDN' byte that resulted when you eliminated the 'STO'
byte from 'STO IND 17' by removing the memory module. No hint of the existence of a 'STO M'
function is given by the Owner's Handbook, but you will come to know and love 'STO M' and
its friends as you master synthetic programming.
 

1B. PURPOSE AND ORGANIZATION
 

This book is designed to impart the joys and explain the mysteries of synthetic program-
ming to any HP-41C user, from the novice programmer to the expert. It is a compendium of
the theory of calculator operation that makes synthetic programming possible, the mechanical
procedures for implementing the synthetic program lines, and a set of application programs
that serve practical purposes and also illustrate the use of exotic programming techniques.

Chapter Two describes the inner workings of the HP-41C, from a conceptual point of
view that will probably make computer engineers cringe. You will obtain there a working know-
ledge of calculator programming at a deeper level than is possible from the Owner's Manual
alone. Besides laying the groundwork for synthetic programming, the information in Chapter
Two will give you a picture of HP-41C operation that will help you optimize all of your program-
ming work.

Chapter Three introduces the first and most important of the synthetic functions,
the 'byte jumper'. This single keystroke function opens the door to simple procedures for
creating the entire set of synthetic program lines. We will 'create' the byte jumper using
a 'module pulling' trick like we used to make the 'STO M';, once that is done, we will never
again need to resort to module removal.

In Chapter Four, a new set of HP-41C registers, the 'status registers', is introduced.
Access to these registers, which include the alpha register, the 56 flags, memory allocation
information, and the program address pointer and subroutine return stack, results in a host
of practical applications 1ike the examples given in Section lA.

'Programming programs', a package of HP-41C programs and techniques, are described in
Chapter Five. The principal use of these programs is to enable the writing and deciphering
of other programs.

Chapter Six is a 'standard applications' chapter, in which we find a set of synthetic
programs that in themselves are sufficient justification for the study of the material in
the preceding chapters. But more than that, the programs illustrate general synthetic program-
ming techniques that have application to a wide range of problems, limited only by the motiva-
tion and ingenuity of the enlightened user.

Finally, in Chapter Seven, we learn a few 'fun' tricks-of-the-trade that aren't particu-
larly practical but will gladden the heart of the confirmed calculator nut. Included, of
course, is a supreme example of the expenditure of enormous research effort to discover a
totally useless result, namely, how to make that doggoned goose turn around and fly backwards!

Three appendices are included. Appendix 1 is a brief review of the decimal, binary, oc-
tal, and hexadecimal number systems. If you are unfamiliar or perhaps a little rusty with
these notation systems, you will find it useful to study Appendix 1 before tackling Chapter
Two. Appendix 2 contains the Wand barcode for the important programs of Chapter Five, "CODE",
"REG", "KA", and "DECODE", plus the long 'Hangman' program of Chapter Six. Appendix 3 con-
tains special barcode for specific synthetic programming purposes.

 

1C. THE ORIGIN OF SYNTHETIC PROGRAMMING
 

It all came about by accident! Early models of the HP-41C had an unintentional flaw,
or 'bug', in their internal coding, that allowed execution of the operation 'STO IND O1',
for example, with values from 719 to 999 in data register Rgj. This operation caused the
contents of Register X to be stored into program memory. I wondered what would happen if
I used this 'feature' to synthesize new program lines by storing numbers into program that
would link together normally impossible combinations of program 'bytes'. To make a long

2



story short, it worked. Once the new functions started popping up in memory, whence they could
be recorded on a magnetic card and then merged into any program, the practical applications
started coming in droves.

Following the discovery of the synthetic functions, the major advances in synthetic pro-
gramming were 1) the development of synthetic key assignments, which permit single keystroke
execution of the new functions, and also eliminate the need for the hardware 'bug'; and 2) the
discovery of the byte jumper, which is perhaps the most fundamental synthetic function. Since
the byte jumper can be created on any HP-41C, and since it can be used to generate almost
any other synthetic program line, we can start from 'scratch' in this book and show how to
'‘bootstrap’' an HP-41C to have complete synthetic program capability.

1D. NO RISK TO THE HP-41C
 

Synthetic functions, when keyed into the HP-41C with the methods described in this book,
are 'proper' calculator operations. As such, they constitute no physical threat to the
HP-41C. The only risk, which really should be considered a potential annoyance rather than
a danger, is that certain operations with synthetic functions can cause either 'MEMORY LOST'
or a 'crash', i.e., a state where the display freezes or blanks and the keyboard becomes
disabled. The first disaster causes a lot of teeth gnashing and hand wringing, but cer-
tainly doesn't harm the HP-41C. The second problem can virtually always be corrected (99.9%
of the time) by simple removal and immediate replacement of the battery pack, followed by
one or two on-off presses. I have heard of only one case where a crash required overnight
removal of the batteries for recovery, but the cause of that crash is unknown. I can't
guarantee anything, of course, but in the course of developing synthetic programming, I
have accidentally cleared the memory or crashed my calculator literally dozens of times, yet
the HP-41C keeps ticking along.

Because of the risk of accidental memory loss, however, it is not appropriate for Hew-
lett-Packard itself to 'support' the use of synthetic functions. Therefore, you should not
submit programs containing synthetic program lines to the User's Library.

1E. SOME CONVENTIONS
 

The following is a list of special notational conventions I have adopted for this
book, to simplify the description of calculator programs, characters, numbers, instructions,
etc.:

1. You may have already noticed the use of the single quotation marks in place of the
usual double, as in 'example', instead of "example". Double quotation marks are reserved to
indicate HP-41C alphanumeric characters and text 1lines, much as the Printer identifies
characters in program listings. This convention is used also in listing of programs in
this book, most of which are reproductions of Printer listings. Thus you should be aware
that a program line enclosed in quotation marks will show in the HP-41C display as preceded
by the text symbol "T".

In addition, I am deliberately violating the punctuation rule that requires commas and
periods to be included within quotes when they are adjacent, i.e., "ABCD", rather than "ABCD,".
In addition to defying Tlogic, this rule would lead to unacceptable ambiguities in this
book, since the comma and period are also standard HP-41C alpha characters. Their inclusion
within quotation marks could suggest that they are part of the adjacent alpha string.

2. Whenever possible, to provide neater copy, standard typewriter symbols will be
used to represent HP-41C display and printer characters. The identification is usually ob-
vious, with a possible exception the use of the semicolon ";" to represent the HP-41C symbol
" 7II .

3. Numbers in the display will be represented in the same form that they would assume
if entered into the alpha register with 'ARCL'. Thus, numbers in SCI or ENG format will be
listed using "E" to indicate the exponent, e.g., '1.23 E10' rather than '1.23 10' to
eliminate the possibly confusing spaces.

4. Entries such as 'STO mn', 'DEL 1Imn', or 'SF mn' are to be understood as typical
operations with the Tisted function, where the letters 1, m, n, etc., represent digits that
can take any of the normal values associated with the function. Thus, for 'STO mn', 'm' and
'n' can each take the values 0 through 9.

5. In the listing of long hexadecimal or binary numbers, it is often convenient to group
the digits for explanatory purposes. The grouping is indicated by spaces or bars "|" placed
in the numbers, which of course are not contained in the HP-41C's actual coding of the numbers.

3



6. A basic unit of HP-41C user memory is the 'register', a block of seven bytes of code
which may be used for storage of one number or of seven program bytes. Registers will be
identified as follows: a) 'Register Imn' indicates the register found at memory address '1mn'
(see Section 2C), where 'Imn' is a 3-digit hexadecimal number. b) 'Register o', where 'a'
is a single alpha character, refers to any of the 16 'status' registers discussed in Chapter
4. Registers X, Y, Z, T, and L are the usual RPN stack registers. The remaining 11 status
registers, Registers M, N, 0O, P, Q, +, a, b, ¢, d, and e, are so named because of the way
the synthetic 'status register access functions' are displayed in program lines, e.g., 'STO
M', 'RCL ="', 'ISG d', etc. <c) 'Rpy' indicates data Register number 'mn', where 'mn' is a
two (occasionally three)-digit decimal number.

7. Programs are reproduced in this book directly from 82143 Printer 1listings, to
help avoid transcription errors. Unfortunately, the Printer Tists status register access func-
tions for Registers M, N, 0, P, Q, and F using different symbols than the HP-41C display.
The reader will need to become familiar with the following Table:

TABLE
Symbols For Status Registers

Display Symbol Printer Symbol

]
4

T

T
O
v
v
o
=
X

8. Short program routines without alpha labels will be identified by a number shown
in parentheses to the right of the routine. The format is '(Section number-routine number)'.

9. To simplify the instructions for keying in special program lines or operating pro-
grams, the instructions will be shown in most cases in three columns. Entries in the left
column are codes to be entered into memory: either numbers to be keyed into Register X,
alpha characters (enclosed in double quotation marks) to be keyed into the alpha register,
or program lines (shown with program line numbers) to be keyed into the current program.
The center column lists keystroke sequences, such as 'GTO .123' or 'DEL 005', that are not
recorded in the program. The right column will show, when appropriate, the HP-41C display
resulting from each 'center column® instruction. These 'displays' will be enclosed in square
brackets [ ]. Example:

 

 

(Key in) (Operation) (Display)

GTO .000 [00 REG 123]
01 STO 01

SST [02 XOY ]

indicates that you should press 'GTO .000' (to see '0O0 REG 123'), key in the line '0O1 STO 01',
then 'SST' once to see line '02 X<OY'.

1F. PREREQUISITES
 

In order to reach as wide a range of HP-41C users as possible, this book is designed
around a minimal HP-41C 'system'. ATl that you will require are (1) an HP-41C, (2) temporary
use of one memory module, and (3) a few hours' time to wade through all of the material.
The peripheral Card Reader, Printer, and Wand are not necessary, although they are valuable
accessories for synthetic programming just as for any normal use of the HP-41C. The card
reader, for example, provides a great way to store your new programs and key assignments to
ensure against accidental memory loss. The printer is invaluable for listing the programs
as you key them in, and keeping a running record of everything you do. If you are fortunate
enough to have a wand available, you can save a lot of keying by using the barcodes provided
in Appendices 2 and 3.

Chapter 2 is the major 'stumbling block' for beginning synthetic programmers, since
it contains a lot of detailed descriptions without any of the fun of pushing calculator

4



keys. I suggest that you read Chapter 2 rather rapidly the first time through, just carefully
enough to get a general grasp of its contents to prepare you for the more interesting keystrok-
ing starting with Chapter 3. Then as you continue through the later chapters, you will wish
to refer back in more detail to various sections of Chapter 2.

1G. REFERENCES

Most of the discoveries and techniques described in this book were first published in
various issues of the PPC Calculator Journal. The PPC (the initials do not stand for
anything in particular) is an independent, world-wide club of calculator enthusiasts with a
common interest in the study and application of Hewlett-Packard programmable calculators.
The Journal is the principal medium of information exchange among the developers of synthetic
programming, who are scattered all over the world. Any serious HP-41C user, particularly
if he is interested in building upon what he learns from this book, will find it a worthwhile
investment to join the club and subscribe to the Journal. Having contact with several
thousand other programmers can save you a lot of work! Inquiries should be directed to:

 

Richard Nelson
2541 W. Camden Place
Santa Ana, CA 92704

Here is a list of the articles relevant to the development of synthetic programming
(the format is Volume, Number, Page):

Cadwallader, T., 'Improved Synthetic Key Assignments' V/N3P8
Close, C., 'Bug 2: A Practical Application' V7/N3P8
Hewlett-Packard ('Corvallis Column') 'HP-41C Function Table V6N4P11

'HP-41C Postfix Table' V6N5P11
'"HP-41C Data & Program Structure' V6N6P19

Istok, G. 'Pseudo XROM's on the HP-41C' V7N2P32
Kennedy, J. 'The HP-41C Combined Hex Table' V6N5P27
McGechie, J. 'HP-41C Synthetic Key Assignments' V7N2P34
Nelson, R. 'Bugs in the Box' V6N5P27
Wickes, W. 'Direct Status Register Access on the HP-41C' V6N7P31

'Through the HP-41C with Gun and Camera' V6N8P27
'"HP-41C Black Box Programs' V6N2P35
'Freedom From Bugs' V7N2P35
'Synthetic Key Assignments' V7N2P30
'Improved Black Box Programs' V7N2P35
'"HP-41C Synthetic Function Routines' V7N4P26
'Byte-Jumping, or The Poor Man's Black Box' V7N4P26
‘Direct Addressing of ROM Routines' V7N5P55
'Understanding BLDSPEC' V7N5P56

It should be stressed that the development of synthetic programming is a continuing pro-
cess. FEven as this book is being written, curious programmers are turning up new tricks and
extending our understanding of the HP-41C. Even writing this book has increased my own under-
standing of the subject, and led to a few new discoveries, such as the 'text enabler' opera-
tion described in Chapter 5.



CHAPTER TWO

INSIDE THE HP-41C

This chapter will be, to some extent, an excursion into fantasyland. In order to give
you a useful conception of the working of the HP-41C, I will introduce certain fictional,
almost personified, systems to represent important operations of the calculator. These systems
may or may not have exact electronic counterparts inside the HP-41C case; such details are of
interest only to electronic engineers and are outside the scope of this book. The important
thing is that the HP-41C behaves as if these systems were present. First and foremost, you are
asked to conceive of the 'brain' of the calculator as a device called the 'processor'. This
processor is responsible for reading data and programs stored in the memory, then instructing
the other systems in the calculator what to do with what it has read. Depending on your imagi-
nation, you might think of the processor as an almost human taskmaster, busily reading one set
of instructions provided by the user, then issuing its own instructions to the various ‘'workers'
that make up the HP-41C system.

2A. CALCULATOR LANGUAGE: BITS, NYBBLES, AND BYTES 

Riddle: what do the number '1.435245455 E59', the alpha string "*CREEPY", and the program

 

01 LBL 00
02 /
03 SQRT
04 X>Y?
05 X>Y?
06 LN
07 SIN    

have in common? Answer: all three are stored identically in the HP-41C user memory! To under-
stand this apparently obscure concept is to grasp the basis of the entire user memory organi-
zation and coding. By ‘'user memory', we mean that portion of the HP-41C memory under user
control: the data and program registers, the key assignment registers, the RPN stack registers,
the alpha register, etc.

At the elementary level, a calculator is really a very simple device. It can store and
recall numbers, add them if desired, and that's about it. In order to carry out instructions
which may seem elementary to the user, such as '+', or 'LN', the processor must initiate sequen-
ces of dozens of elementary steps. The real power of a calculator lies in its ability to
allow a user to initiate this internal processing by means of a simple sequence of keystrokes.
A programmable calculator is one which can also encode the keystroke sequence, and store the
code for repeated automatic execution.

The HP-41C represents a major advance over previous hand-held calculators in that the user
program codes are displayed to the user in directly readable alphanumeric characters and words.
We might imagine the 41C as containing an invisible 'translator', which takes a section of
stored code and translates it into a displayed number or word. But, in fact, there must also
be another translator, to call up the proper sequence of elementary steps, called 'microcode',
for the calculator to execute. There are, in effect, three levels of 'interpretation' of the
same stored code, illustrated in Figure 2-1.

'Level one' is the rendering of codes into a form directly visible to the user. User input
consists of generating codes by pressing keys; the resulting codes are read back by the 'user
translator' in the form of numbers, characters, or program lines shown in the display.
At 'level two', the codes are realized in a form that permits them to be stored in memory
registers, or to be written into or read from external devices such as the card reader or
wand. Finally, a 'machine translator' is necessary to translate the codes into 'level
three', i.e. the set of elementary machine instructions required to carry out an operation.

We are primarily interested in levels one and two. 'Synthetic programming' is the
process of creating new level two codes by bypassing the keyboard logic that restricts input
to the set of instructions listed in the Owner's Handbook. The resulting synthetic codes can
then be interpreted by both translators, often yielding practical results such as new display
characters and program functions. To achieve this, the user must learn to 'speak' the level
two language so that he can interact directly with the stored codes without depending on

 

6



 

KEYBOARD
   

  

   

 

 
PERIPHERALS

  

F1Gure 2-1.

   UsEeRr
TRANSLATOR

 

 

113 AVIEW
114 STO 05

D1sPLAY 115 GTO 99  

 

 
CopE STORED IN MEMORY

  

MACHINE
TRANSLATOR

 
 

  
MACHINE MICROCODE
 

116 *
117 STOP

Lever 1: User INPUT/OuTPuT

F4 42 49 4C 4C F3 53
55 45 F5 4B 45 4E 4E
59 F4 4C 41 52 41 FF

LEVEL 2: USER MEMORY

ee.l..11.1
«.1111.111
ll..... 11.
..... 11111

LEVeEL 3: MACHINE MICROCODE

THREE LEVELS OF CoDING IN THE HP-41C



the user translator.
The requirement that the memory codes be storable in HP-41C memory and also be able to be

read to or from peripherals dictates the general form the codes must take. The card reader, for
example, uses magnetic cards for code storage; the card itself can only contain information
stored as regions of ordered magnetic fields in the oxide film of the card. To provide repro-
ducible, reliable storage, the ordering must be the simplest possible: the code is represented
by a string of magnetized or non-magnetized bar-shaped regions. This concept is directly analo-
gous to the barcodes used by the wand. As the wand is scanned along the line of bars, it
'sees' either wide or narrow bars. The bar pattern can be considered as a long binary number,
with the wide bars representing 'ones' and the narrow bars 'zeros'. Figure 2-2 is a sample of
the barcode, which we can use to visualize how codes are stored on a magnetic card, or indeed,
in the HP-41C itself.

IIIII|l||||I|||I|||I|||I||||||||I||I||II\IIIIIIII}II|I|II||II||j|j|||||||||III||||||||IJ||IIIII||II|I||I||I|||||II|I|IIIII|||
[ 7

1 O NYBBLE BYTE

Ficure 2-2. HP-41C BARcoODE

In the calculator, the 1's and 0's are represented by the states of microscopic transis-
tors, but the central idea is the same as for the wand or the card reader: user codes are
stored as sections of a long string of binary 'bits'. To make sense of the code, the processor
must know how to break the string into intelligible sections.

Consider again the number '1.435245455 E59'. A count reveals that there are 14 'pieces'’
of information required to represent the number in decimal form: ten mantissa digits, two
exponent digits, a mantissa sign and and exponent sign. The basic unit or building block of
storage code must be able to represent one of the pieces, i.e., it must be able to assume at
least ten different values so that it can represent a single decimal digit. The decimal numbers
0 through 9 are represented in binary as 0000 through 1001 respectively, so we conclude that
the unit must consist of four consecutive binary bits. This unit is called a 'nybble'--it's
half a 'byte' as we shall see (computer jocks can't spel too wel). We shall also refer to a
nybble as a 'digit', referring to its role in number storage. The decimal number above is
thus coded as 14 nybbles, like this:

0000 0001 0100 0011 0101 0010 0100 0101 0100 0101 0101 0OOO 0101 1001
+ 1 4 3 5 2 4 5 4 5 5 + 5 9

(The spaces are provided for clarity.) The 'E' and the '.' do not require explicit coding,
since their positions and 'values' never change. For the sign digits, the first and twelfth
nybbles counting from the left, the HP-41C uses '0000' for '+' and '1001' for '-'.

You may already have observed that the four bits required to represent a decimal digit
could take values up to binary 1111, or decimal 15. The coding is thus sufficient to represent
'hexadecimal' numbers, as well as decimal. This capacity would be wasted if the HP-41C only
dealt with decimal numbers. However, even a four-bit nybble is not adequate as a basic unit
for coding program lines.

The HP-I%C uses 2 consecutive nybbles, 8 bits, as its elementary unit of program code,
called a 'byte'. Binary 11111111 (hex FF) is decimal 255, so there are 256 possible elementary
program codes, which is sufficient even for a calculator with the HP-41C's capability. As the
41C runs a program, we can imagine it 'byting' off successive 8-bit chunks of code for process-
ing. The meaning of the riddle at the beginning of this section should now start to become
clear. The number '+1.435245455 E+59' is stored as seven bytes, '01 43 52 45 45 50 59'. When
these same bytes are in program memory, they represent the program lines 'LBL 00', '/', 'SQRT',

8



X>Y?, X>Y?, 'LN', and 'SIN' respectively. The HP-41C's user translator is even more sophisti-
cated than we might have thought. The translation to the display depends not only on the
code read by the translator, but also on the current mode (PRGM, ALPHA, etc.) of the calculator.
The riddle suggests yet a third way of translating the same code--if the sample code were in
the alpha register, it would be displayed as the seven alpha characters "*CREEPY".

The output medium of the user translator is the display. Whatever you see in the HP-41C
display is a rendering of the contents of some register into an alphanumeric display. When
you first turn the calculator on, it is in a 'default' mode, in which the contents of Register
X are copied into the display as a number, with each number character representing one digit
from Register X. If the HP-41C is switched to ALPHA mode, the alpha register is copied, with
one displayed character for each alpha register byte. If a 'VIEW mn' is executed, the Message
Flag 50 is set to indicate a non-default display, with the contents of Ry, displayed. This
display scheme permits the viewing without disturbing the contents of Register X. Similarly,
we can view the alpha register by using AVIEW. A 'CLD' clears Flag 50, restoring the default
display. In PRGM mode, the display shows a program line made from program bytes. In a running
program, the 'flying goose' is the default display, which can be replaced by means of a 'VIEW'
or 'AVIEW' idinstruction. Figure 2-3 illustrates the logic involved in the display process.

We have seen that user programs and data stored in the HP-41C are coded as a long string
of 1's and 0's called bits. In data memory, each successive group of 4 bits, called a nybble,
can represent a single decimal digit, or a sign for the mantissa or exponent. Since a number
requires 14 nybbles, successive l4-nybble sections (56 bits) of code are stored and recalled
together from a fundamental storage location called a register. The operation 'RCL 01', for
example, instructs the calculator to copy the 56 bits of code found in the section of memory
designated as Rgp into another section, Register X. In program memory, the code is recalled
and stored one or more bytes at a time. As described in the next section, each of the 256
possible bytes represents a unique set of program instructions. The division of memory into
registers is less apparent in program memory than in data memory, but the addressing scheme
described in Section 2C, nevertheless, is organized by 7-byte registers, so that registers
can be used interchangeably for data or program storage.

 

2B. THE BYTE TABLE
 

Before continuing with a discussion of the addressing scheme used in the HP-41C, let's
consider in more detail the coding of program lines. The element of program coding is the
byte; each byte has 256 possible values, from hex 00 through FF. However, there are many
more than 256 different program lines--this variety is achieved by allowing program lines to
use one or more bytes, up to a maximum of sixteen. Thus even though the display shows what
appears to be just one instruction, a program line, that single line may actually consist of
several bytes of stored code.

Table 2-1, the 'HP-41C Byte Table', shows the 256 possible bytes in a 16x16 grid. This
table is a powerful tool, indispensable for synthetic programming, so it 1is important for
the new programmer to understand its use. It is, in effect, the dictionary used by the
user translator. The numbers 0-F labeling the horizontal rows of the table represent the
first nybble or digit of a byte code. The numbers labeling the vertical columns give the
second digit of the byte. The box in a particular row and column lists a number of 'features',
i.e., the various ways that the corresponding byte can be interpreted, depending upon its
position in memory. Figure 2-4 shows a sample box, using fictitious entries to illustrate
all of the possibilities.

The first number in the box, in the upper left-hand corner, is the decimal equivalent
of the 2-digit hexadecimal byte value. This number is also the value used with the printer
function 'ACCHR' to obtain the printer character shown in the box to the right of the decimal
number. (The decimal equivalents will also be used as inputs for the key assignment program
"KA" described in Chapter 5.) For example, in box 34 (row 3, column 4), we see decimal number
52 (3x16+4=52), and the corresponding printer character "4".

The next entry in each box is the name of an HP-41C function. For the bytes in rows O-
8 (except for bytes 1D and 1E), each byte by itself constitutes an entire program line. Byte
34 displays and executes as 'STO 04', byte 5C is 'ASIN', etc. These bytes can be called
'one-byte functions', or 'stand-alone' bytes, since they cause operations that are independent
of any succeeding bytes in the program.

The HP-41C departs from its Hewlett-Packard predecessors by allowing multi-byte program
'lines' rather than only single-byte 'steps'. The bytes in row 9, bytes A8-AE, and bytes CE
and CF are 'prefix' bytes for two-byte program lines. When the processor encounters one of

 

9



 

YES NO
FLYING GOOSE
 &  

YES VIEW

 

 DATA REGISTER
 

 

AVIEW ALPHA REGISTER
 

 

KEY YES YES
DOWN? PROGRAM LINE
 

v
 

NO NULL
 

 

PRGM YES
MODE? PROGRAM LINE
 

Y
 

NULL
 

 

ALPHA YES
MODE? ALPHA REGISTER
 

 B

 FUNCTION NAME
 

Y
  NULL
 

 

 

  FLAG 50
SET?
 ERROR MESSAGE
   
 

PROGRAM LINE
 

 

ALPHA REGISTER
 

 

 

 REGISTER X
 

F1Gure 2-3. DisPLAY LoGIcC

10

 



DEcIMAL PRINTER

 

  
 

VALUE CHARACTER

\ 7
302

FuncTIon k{L

OR PREFIX\\\\\\ PRINTER POSTFIX
NR OR

PosTFIX v ,//////”///’NUMERICAL EQUIVALENT
o oF LETTER PoSTFIX

(D1spLAY) 132 o
\

\|l/ \/ | SYNTHETIC
| v FuncTion ONLY

/ 4 J

SPEciAL NUMBER INDICATES NoN-KEYABLE

DispLAY CHARACTER DISPLAY DispLAY CHARACTER

(2C, 2E, 3A) CHARACTER

FIGure 2-4, SaMPLE BYTE TABLE "Box”

these bytes, it also must look at the following byte to complete the program instruction.
For example, byte 90 is the prefix 'RCL', which requires a second, or 'postfix', byte to identify
the register to be recalled. The postfix value of each byte is given by the number or letter
listed immediately below the function name in a Byte Table box. To decipher the bytes '90
4C', for example, we observe from the Table that the first byte, 90, is the 'RCL' prefix, so
we must look at the next byte, 4C, as a postfix, specifically '76'. Hence bytes 90 4C consti-
tute the line 'RCL 76'. Similarly, 92 1D is 'ST0+29', A8 03 is 'SF 03', etc. Notice that
for bytes 00-63, the postfix value for the byte is the same as the decimal equivalent of the
byte value. The first 5 bytes of row 7, when used as postfixes, access the stack registers
T, Z, Y, X, and L (Last X), so that 91 70 is 'STO T', 98 73 is 'VIEW X', and so forth.

Some of the bytes in rows 6 and 7 are shown with two postfix values, one or both of
which is double-underlined. The underlines indicate a postfix value that is only accessible
with synthetic program techniques. These alternate values will be explained in Chapter 4.

The postfix values found in rows 0-7 are duplicated in rows 8-F, apparently shortchanging
us by 127 possible postfixes. However, this is not a real duplication: the postfixes in the
Tower half-table enable indirect execution of the prefix functions. For example, 91 52 is
'STO 82', but 91 D2 is 'STO IND 82'. This feature allows use of any data register from Rpp-Rgg
for indirect addressing. Other examples are AA AA = 'FS?C IND 42'; 9D 8F = 'SCI IND 15';
9F 86 = 'TONE IND 06'.

Byte 'AE' has a dual role when used as a prefix. If the postfix is from the upper
half-table, AE executes as 'GTO IND'; if the postfix is from the lower half-table, AE becomes
'XEQ IND'. For example, AE 2A is 'GTO IND 42', whereas AE AA is 'XEQ IND 42'.

Bytes AO-A7 have 'XROM' as their 'function' names. These bytes are prefixes, but not
in quite the same sense as described in the preceding. Each peripheral function, such as 'WDTA'
or 'ACSPEC', including the non-programmable functions like 'WALL' or 'LIST', has a unique
two-byte code associated with it, found in the Table in the range between A0 00 and A7 FF.

11



12

T
A
B
L
E

2-
1.

TH
e

H
P
-
4
1
C

By
TE

T
A
B
L
E

 

0
1

2
3

4
5

6
7

8
9

A
B

C
D

E
F
 

B
»

1
=]

2
%X

|3
€|

4
a
|
s
B
|
l
e
6
r
|

7
4
|

8
a
|
]
9
0
c

|1
8
e

|11
2
|
1
2

»
|1

3
|

1
4
|
1
5

@

0
N
U
L
L

 |
LB

L
0
0

[L
BL

O
1

|L
BL

02
|
L
B
L

03
|
L
B
L

04
|
L
B
L

05
|
L
B
L
0
§

L
B
L

0
7
|
L
B
L
0
8

|L
BL

0
9

L
B
L

10
{
L
B
L

11
|
L
B
L

12
|
L
B
L

13
|
L
B
L

14

0
0

0
1

02
0
3

0
4

0
5

0
6

0
7

0
8

0
9

10
11

12
13

1
4

15

 

-
T

T
7

T
u

/
/
\
4

l
j

7
/
‘
[

,
‘

4

Q|
18

&|
19

A|
20

a|
21

A|
22

4|
23

O]
2¢

6|
25

O]
26

O|
27

E|
28

|
29

=]
30

£]
31

%

1
1
0

1
2

3
4

5
6

7
8

9
.

E
E
X

C
H
S

G
T
O
o

|X
EQ

O
S
P
A
R
E

16
17

18
19

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

 

32
33

1
3
4

=|
35

#[
{3
6

$
|3

7
%

I8
&
|
3
9

|
40

C|
41

2
|
4
2

x
|4

3
+

|4
4

,
|4

5
—

|4
6

.
|9

7
-

2
R
C
L
0
0
|
R
C
L
0
1
|
R
C
L
0
2
|
R
C
L

03
|
R
C
L
0
4
|
R
C
L

05
|
R
C
L

06
|
R
C
L

O
7
/
R
C
L
0
8

|R
CL

0
9

[R
CL

10
[R

CL
1
1
R
C
L

1
2
|
R
C
L

1
3
|
R
C
L

14
|
R
C
L

15

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

A
’

1
7

.
/
 

8
8
|
4
9

1
|
5
8

2
|
5
1

3
|
5
2

4
|
5
3

5
|
5
4
6
|
5
7
%

8
|
5
7
9
5
8

:
]
9
5
9

5
|
6
0

<
|6

1
=
]
|
6
2
>
|
6

?

S
T
O
0
0
|
S
T
O
0
1
|
S
T
O
0
2
|
S
T
O

03
|
S
T
O
0
4
|
S
T
O

0
5
|
S
T
O

0
6
{
S
T
O

0
7
|
S
T
O

0
8

|S
TO

0
9
|
S
T
O

10
|S

TO
1
1

S
T
O

12
|{

ST
O

1
3
|
S
T
O

14
|
S
T
O

15

4
8
—

|4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
3

 

/'

|

N

N

3
3

0

3

7

m|o

N

3

68
D

|6
9
E
|
7
0

F
|
G
|

H
|
T
B

1
|
1
4
J
|
T
5
K
|
W
L
|
7
M
|
N
|

P
O

4
1
+

-
*

/
X
Y
?

|X
>Y
?

X
<
Y
?

T
+

%
-

H
M
S
+

H
M
S
-

|M
OD

%
%
C
H

P
-
R

R
-
P

 

5
|L

N
x2

SQ
RT

[Y
X

CH
S

|e
¥

LO
G

|1
0

|e
X-

1
[S
IN

|c
os

|T
AN

|A
SI

N
|A
cO
os

|A
TA

N
|D
EC

80
81

82
83

84
85

86
87

88
89

90
91

92
93

94
95

IS~

-

b

N

J~~

G

C

0.

 

q] v

3

4

ri LJ

5

9%
Y

|9
7
2
|
9
8

b
|9

10
08

d
|1
0]
1
e

18
2

F
(1
63

<
o
|
1
6
4

h
|1
65

i
|1

66
J

|1
87

k
|
1
6
8

1
|1
89

m
11
6

n
|
l
l
l

©

6
1

6l
1
/
X

A
B
S

F
A
C
T

|[
X£

0?
|X

>0
?

|
L
N
1
+
X

|X
<0
?

|X
=0

?
I
N
T

F
R
C

D
-
R

R
-
D

H
M
S

H
R

R
N
D

o
C
T

9
6

9
7

9
8

9
9

0
0
1
0
0
0
1

10
1f

A
1
0
2

|B
1
0
3

(
C
_
1
0
4

D
1
0
5

E
1
0
6

|{F
1
0
7

|G
1
0
8

|H
1
0
9

|I
1
1
0

|J
1

 

11
2
»

|1
13

@
|1
l4

r
11
5

s
|
1
1
6

¢
[1
17

w
1
1
8

V
1
1
9

w
|
1
2
0

x
|1
21

¥
|1
22

=z
|1
23

w
|[1

24
|

|1
25

>
|1
26
Z
|
1
2
7

C
L
Z

X
>
Y

|P
I

C
L
S
T

|R
*

R
D
N

L
A
S
T
X

C
L
X

X
=
Y
?

X
£
Y
?

S
I
G
N

|X
<0

?
M
E
A
N

|S
DE

V
|A
VI
EW

C
L
D

=
=

=
=

=
=

=
T

I
 

 

          
 

      
 
 



13

 
— E
 

1
2
8

D
E
G

0
0

12
9

=

0
1

13
8

G
R
A
D

0
2

13
1
€

E
N
T
E
R

0
3

13
2
o

S
T
O
P

0
4

13
3

B

R
T
N

0
5

1
3

B
E
E
P

0
6

13
5

C
L
A

0
7

13
6
A

A
S
H
F

0
8

13
7
o

P
S
E

0
9

13
8

<

C
L
R
G

1
0

13
9
=

A
O
F
F

1
1

14
8

A
O
N

1
2

A
14
1

<

O
F
F

1
3

1
4
2

P
R
O
M
P
T

1
4

14
3

%

A
D
V

15

 

14
4
B

R
C
L

1
6

14
5
Q

S
T
O

1
7

14
6
&

S
T
O
+

1
8

14
7
A

S
T
O
-

1
9

14
8
a

ST
O*

20

14
99

A

S
T
O
/

2
1

15
8

a

I
S
G

2
2

15
1
O

D
S
E

2
3

15
2
©

V
I
E
W

2
4

15
3

O

Z
R
E
G

2
5

13
4

©

A
S
T
O

2
6

15
5
&

A
R
C
L

2
7

1
5
6
o

F
I
X

2
8

15
7

=

S
C
I

2
9

15
8

£

E
N
G

3
0

1
5
9

T
O
N
E

|9
3
1

 

16
8

X
R
O
M

3
2

16
1

1

X
R
O
M

3
3

16
2

=

X
R
O
M

3
4

16
3

#

X
R
O
M

3
5

16
4
$

X
R
O
M

3
6

16
5

X
R
O
M

3
7

16
6
&

X
R
O
M

3
8

16
7

°

X
R
O
M

3
9

16
8

<

S
F

4
0

16
9

>

C
F

4
1

17
8
*

F
s
?
C

4
2

17
1

+

F
C
?
C

4
3

1
7
2

F
S
?

4
4

17
3

F
C
?

4
5

17
4

.

G
T
O

I
N
I

X
E
Q

I
N
L

4
6

17
5

-~

S
P
A
R
E

4
7

<

 

17
6
B

S
P
A
R
E

4
8

17
7

1

4
9

G
T
O

0
0

17
8
2

G
T
O

0
1

5
0

17
19

3

G
T
O

0
2

5
1

18
8

4
G
T
O

0
3

5
2

18
1
S

G
T
O

0
4

5
3

18
2
6

G
T
O

0
5

5
4

18
3

7

G
T
O

0
6

5
5

18
4
8

G
T
O

0
7

5
6

18
5

9

G
T
O

0
8

5
7

1
8
6

G
T
O

0
9

5
8

1
8
7

G
T
O

1
0

5
9

18
8

<

6
0

G
T
O

1
1

18
9

G
T
O

1
2

6
1

19
8

>

G
T
O

1
3

6
2

19
1

2

G
T
O

1
4
|
B

6
3

 

19
2
@

G
L
O
B
A
L

6
4

19
3
A

6
5

G
L
O
B
A
L

19
4

B

G
L
O
B
A
L

6
6

19
5
C

G
L
O
B
A
L

6
7

1
9

D

G
L
O
B
A
L

6
8

19
7
E

G
L
O
B
A
L

6
9

19
¢
F

G
L
O
B
A
L

7
0

19
9

G

G
L
O
B
A
L

7
1

20
0
H

G
L
O
B
A
L

7
2

28
1

I

G
L
O
B
A
L

7
3

20
2

|

G
L
O
B
A
L

7
4

28
3
K

G
L
O
B
A
L

7
5

7628
4

L

G
L
O
B
A
L

28
5
M

G
L
O
B
A
L

7
7

20
6
N

X
<

>

7
8

28
7

0O

L
B
L

C

7
9

 

28
8 G
T
O

8
0

P
28
9

@

G
T
O

8
1

21
8

R

G
T
O

8
2

21
1

S

G
T
O

8
3

21
2

T

G
T
O

8
4

21
3
U

G
T
O

8
5

21
4

¥

G
T
O

8
6

21
5

W

G
T
O

8
7

21
6

=

G
T
O

8
8

21
7

¥

G
T
O

8
9

21
8

Z

G
T
O

9
0

21
9

[

G
T
O

9
1

G
T
O

9
2

22
8

~
22
1

1

G
T
O

9
3

22
2

T

G
T
O

94

22
3

G
T
O

D

9
5

 

2
¢

T

X
E
Q

9
6

22
5

a

X
E
Q

9
7

22
6

b

X
E
Q

9
8

22
7

c

X
E
Q

9
9

23
8

f
23
2

h

X
E
Q

C
1
0
4

X
E
Q

23
5

k

X
E
Q

F
1
0
7

23
9
o

XE
Q

|E
J

11
1
 

24
0

m

T
E
X
T

O

24
1

a

T
E
X
T

1

2
8
2

r

T
E
X
T

2

2
4
3

=

T
E
X
T

3

24
4

1,
2
4
3

=

TE
XT

8
)

29
l
w

T
E
X
T
1
1

a

[

T
E
X
T
1
4

d

U
U

ul T
E
X
T
1
5
|
F

     
    

    
    

  
 

 



More properly, we might consider the leading nybble 'A' as the prefix, and the remaining 3
nybbles as a postfix identifying a specific peripheral function.

The 'XROM' codes that display when a peripheral is absent are derived directly from the
byte values for the peripheral functions. The three nybbles following an ‘A' prefix nybble
are broken up into two 6-bit sections. The two numbers displayed with 'XROM' are just the
decimal equivalents of the two sections. For example:

'PRX' = hex A7 54 = binary 1010|0111 01|01 0100 = 'XROM 29,20'

29 20

'WSTS'= hex A7 8A = binary 1010|0111 10|00 1010 = 'XROM 30,10’

30 10

Some confusion might arise from the one-byte functions in rows 0, 2, and 3. In order
to allow direct storage and recall from as many as 100 registers, the 'STO' and 'RCL' functions
must be two bytes; otherwise too much of the hex table would be used up with explicit functions
such as STO 99 or RCL 50. On the other hand, a lot of two-byte functions in a program uses up
memory rapidly. As a compromise, the HP-41C allows one-byte access to Rpg-Rig5 by reserving
one-byte codes for STO and RCL 00-15. For R1g-Rgg, a two-byte prefix/postfix combination
is necessary. At the same time, there could have been direct access to R%PO-RZSS’ by assign-
ing different numerical postfix numbers to each byte in the table, but that would have left
no room for the versatile indirect addressing properties of the existing scheme.

The same choice between function versatility and program conservation appears in the
availability of 'short form', or one-byte, labels, as well as two-byte labels. Labels 00-14
are explicitly coded in row O of the Table, whereas labels 15-99 require two bytes each: the
prefix CF and a postfix from the upper half-table. The two-byte labels may also use postfixes
66-6F and 7B-7F, generating the so-called 'local alpha labels', 'LBL A' through 'LBL J' and
'LBL a' through 'LBL e'.

Matters begin to look a little more mysterious as we continue to progress downwards
through the table, entering the regions beginning with row B. Look, for example, at row E.
Why are there 16 different 'XEQ' prefixes? In this region of the table, the function beginning
with each byte consists of two or more bytes, so the Byte Table as drawn becomes inadequate
to list every detail. Consider first the 'two-byte GTO's' in row B contrasted with the 'three-
byte GTO's' found in row D--again we have the compromise between versatility and memory use
similar to that of the one- and two-byte STO's and RCL's.

When 'GTO 05', for example, is keyed into program, these two bytes are coded into
memory :

1011 0110|0000 0000

The first byte is 'B6', which the table tells us corresponds to 'GTO 05'. What, then, is the
second byte for? Here we encounter one of the many invisible but wondrous features of the
HP-41C: 'rapid branching'. The first time that a running program encounters the 'GTO 05'
line, the processor must search through the current program until it finds 'LBL 05', a (rela-
tively) slow process. Once it finds its destination, it then records the distance between
the 'GTO 05' and the 'LBL 05' in the second byte of the 'GTO 05' line code, so that in all
subsequent executions of the GTO it can jump directly to the LBL. We will cover the details
of how this information is coded in the next section--suffice it to say that the one byte
reserved for the jump information allows Jjumps of up to 16 registers in length, either
forward or backward. The three-byte GTO's of row D have an extra 5 bits for the distance
record, permitting jumps of up to 512 registers. A programmer's choice of two- or three-
byte GTO's thus amounts to a choice between program speed and program length: if the jump is
less than 16 registers, the two-byte GTO and its corresponding one-byte LBL save two bytes
without loss of speed. For longer jumps, however, the short forms will require considerably
more execution time.

The XEQ's found in row E of the table are structured the same as row D three-byte
GTO's. They also execute the same way, with the additional feature that the address of the
XEQ Tine 1is recorded as well as the length of the jump to the LBL. The return addresses are
stored in two special registers, as part of a 'return stack' (see Section 4F).

Take heart--we're almost done with the table! Row F next: these bytes identify alpha
text program lines. When the processor encounters an F (binary 1111) as the first nybble of
a byte, it is alerted that the program line contains alpha text. The number of characters

14



in the text, from one to fifteen, is indicated by the second nybble of the text byte. In
PRGM mode, an 'Fn' byte results in a display with the text symbol "T" followed by n characters
derived from the next 'n' bytes of program memory. In a running program, or with SST, the
processor simply copies the next 'n' bytes of program into the alpha register, then resumes
execution with the byte following the Tast of the 'n' text bytes. Examples:

_TA=F1 41
__TBIG = F3 42 49 47
THRILL = F6 54 48 52 49 4C 4C

Text Tines require explanation of the final entry in each Byte Table box. The character
in the lower right-hand corner shows the alpha character displayed if the corresponding byte
is either in the alpha register, in a program text line, or in a global alpha program line .
The display mechanism is capable of generating 83 different characters. Of these, 59 constitute
the normal character set and may be keyed in directly. Two more, the text symbol "T" and the
append symbol "+", can be 'keyed in', but not in arbitrary positions.

Nineteen characters, identified by the black triangle in the lower right corner of a box,
cannot be keyed in directly. They do appear in displays resulting from use of the printer
function 'BLDSPEC'. The 'flying goose' " >" is seen doggedly making its rounds during a run-
ning program, but its counterpart "—<€" requires extraordinary effort to flush from its nest
since the code 2C normally displays as the comma character. The bytes 2C, 2E and 3A are shown
with two characters. The normal character is shown on the right-notice that these three
characters, ",", ".", and ":", are displayed using the special LCD dot/comma segments between
the main "starburst" segments. The left character can be user controlled in special number
displays, as described in Section 7/C. Finally, if a byte is not assigned one of the 82 charac-
ters mentioned so far, it 'defaults' to the full 'starburst' character "®". Except for byte
3A, the starburst characters are not shown in the Table.

Two notes: First, the 'append' operation is coded with byte 7F. If this byte appears
by itself, it is 'CLD', but if is the second byte of a text line, it causes the remaining
bytes in the line to be appended to the current contents of the alpha register. The second
nybble 'n' of the 'Fn' text byte will have a value one greater than the number of characters
actually appended. "LEG" is 'F3 4C 45 47' but "~LEG" is 'F4 7F 4C 45 47'. Second, byte FO, or
'text 0', normally does not appear in user programs except as the 'IND T' suffix, but does
play a role in the coding in key assignment registers (Section 2E).

We have come to the 'END'. The bytes CO-CD, 'GLOBAL', play a dual role--they identify
both 'END' lines and global alpha labels. If the third byte of a line starting with 'Cn'
(0Kn<E) is a text byte 'Fn', then the line is a global alpha label. Otherwise, it is a three-
byte 'END'.  For both types of lines, the second, third and fourth nybbles give the distance
from the current line to the next 'END' or alpha label preceding in memory. The distance is
coded as in the three-byte GTO's (Section 2C). Thus, all the global Tines are linked together;
a GTO-alpha or XEQ-alpha starts searching the global chain from the end of program memory,
the permanent .END., backwards to the first global line in memory, which is identified by its
first two bytes 'CO 00'. 'CAT 1' shows the labels and END's in order forward from the first
global Tline.

In 'END' lines, the third byte is used to provide information about the current program

--whether it has been packed and whether it is the last program in memory, i.e., if the END

is the permanent .END. In the third byte, a first nybble 'O' indicates a normal END; a '2'
identifies the permanent .END. For the second nybble, '9' means that the program file is
packeds 'D' indicates that the file needs packing.

The global alpha labels are the most complicated of the HP-41C program lines. The third
byte is an 'Fn', where 'n' is the hex number one greater than the number of characters in the
label name. The fourth byte in the line, the extra byte reserved by the 'Fn', contains a
code for the key assigned to the label. '00' indicates no key assignment. The remaining
'n-1' bytes of the line spell out the name of the label. Example: LBL "ABC" = 'C1 mn F4 ab
41 42 43', where 'Imn' is the distance to the next label, and 'ab' identifies an assigned key.

There are a few mavericks in the Byte Table remaining to be examined. Bytes 1D and 1E,
alien prefixes in the land of one-byte functions, are the prefixes for GTO (alpha) and XEQ
(alpha), respectively. When one of these bytes starts a line, it is followed by an 'Fn' byte,
reserving the next 'n' bytes for the name of the label called. For example:

GTO "BLAZES"
XEQ "SPY"

1D F6 42 4C 41 5A 55 53
1E F3 53 50 59

15



Next, we have the 'invisible man', byte '00'--the 'null' function. These bytes are
normally invisible to the programmer, but are used by the HP-41C to facilitate editing and as
place holders for future coding. As an example of its use, a null is automatically inserted
in front of the first digits of a number entry line. The null serves to isolate this line
from the previous line in case that also is a number line; the null is equivalent to an
invisible 'ENTER' in this context. Upon execution of 'PACK', such a null is removed if it is
found to be unnecessary, along with all other superfluous nulls in current program memory.

Finally, the bytes 1F, AF, and BO are 'spare' function codes; that is, they have no
prefix or stand-alone use, showing up in memory only as postfixes.

2C. REGISTER, PLEASE
 

We have seen that the HP-41C user memory, and its replicas on magnetic cards or in bar
code, can be viewed as a long string of binary bits, like a machine-gun belt with a pattern
of missing bullets. To make sense of the string, as the processor scans along it groups the
bits into nybbles and bytes for decoding, and into 7-byte registers for data storage and
retrieval. But, in order for the processor to know which bits to group, there must be an ad-
dressing scheme to identify each section of memory. The scheme must permit both 'absolute'
addressing so the processor can retrieve information in permanent locations such as the stack
registers, and also 'relative' addressing, to ensure that program jumps such as used by 'GTO'
or 'XEQ' will remain unchanged by the 'SIZE' operation.

Since the smallest element of program storage is the byte, and since data registers are
an integral number of bytes, it is sufficient to have individual addresses only down to the
byte level, rather than for each nybble or even every bit. There should also be an address for
each register, to facilitate data handling, and to speed up the process of finding an address
--what we want is something like a street address, with the register and byte numbers analogous
to the street name and house number, respectively. These simple ideas lead us right to the
actual addressing system used in the HP-41C. Each byte in user memory has an address of the
form:

[ nabcl].

'abc' is a three-digit hexadecimal number designating a particular register. We should make
a distinction between the absolute address of a data register and its data register number,
which is a relative address. The memory location of the number stored in data register Rqp,
for example, is not fixed. When a new 'SIZE' is executed, the contents of memory are moved
around to change the allocation between program and data storage. For convenience to the
user, the original contents of Rgg will still be accessed by 'STO 00', etc., even though the
location, or absolute address, of the contents may have changed (see Section 4G).

The remaining digit of the 4-digit address, 'n', is the 'byte number'. Each register
is 7 bytes, so 'n' can assume one of the 7 values 0 through 6. We now expand our conception
of the processor to include an address 'pointer', which always contains the 4-digit address
of the program byte currently being processed. The convention used by the HP-41C is that
‘forward' in program memory in the direction of increasing program line numbers corresponds
to decreasing address (see Figure 2-5). Upon execution of 'SST', the pointer decrements the
byte number by the number of bytes in the program line, with byte 6 as the first byte of a
register, and 0 as the last. When a register boundary is crossed, 'n' starts over at 6, and
'abc' is decremented by 1. The data registers are numbered in the opposite direction, so
that if Ryg, for example, is (absolute) register '123', then Ryp will be '124', Ryp will be
'125', etc. If we could place the pointer in a data register, then single-step in PRGM mode,
we would see seven program bytes for each register, starting with a byte consisting of the
mantissa sign nybble and first mantissa digit, and finishing with the two exponent digits.

It was stated that program branch jumps caused by 'GTO' and 'XEQ' store the jump lengths,
rather than the absolute addresses of the labels, in the initiating program lines. This is
so that a shift of program register contents such as caused by 'SIZE' or by inserting a new
program file at a higher address will not require changing the stored jumps. The distance of
a jump is expressed as a number of whole 7-byte registers plus remaining bytes. The distance
is measured from the byte containing the (first part of the) jump distance code, to the byte
immediately preceding the designated label. To clarify this coding, let's look at a few
examples. First, take the routine:

16



 

01 GTO 05 B6 22,
02 "ABCDEFGHIJKLMNO" FF 41 42 .... 4E 4F

  
03 LBL 05 « 06 (2¢-1)
04 "ABCDEFGHIJ" FA 41 42 .... 49 4A
05 GTO 05 B6 82,
 

where the numbers to the right of the program lines are the byte codes for the lines. Prior
to the first execution of the routine, the code for lines 01 and 05 would have been 'B6 00'.
The 'B6' identifies 'GTO 05'; the '00' indicates that the jump distance is unknown. Following
execution, the codes are as shown above, with each '00' replaced by a distance code. Writing
out the bytes in binary, we can see how the bits are interpreted:

Direction # Bytes # Registers
0 010 0010
1 000, 0010,

 
(line 01) 22
(line 05) 82

If the first bit is zero, the jump is forward (to a lTower address); if the bit is a one, the
Jump is backward. For two-byte GTO's, the jump information is entirely in the second byte of
each 'GTO 05', so we count the jump distance from there. From the '22' in line 01, we count
off 2 registers + 2 bytes = 16 bytes, starting with the FF in line 02, so that the pointer
ends up at the "0" character byte of Tine 02. The pending instruction is then the 'LBL 05'.
For the GTO in line 05, we count backwards 2 registers + 0 bytes = 14 bytes, starting with
the B6. Again, the pointer goes to the "0". The maximum length of such jumps is F registers
+ 7 bytes = 112 bytes, or 16 registers. The 3-byte GTO's and XEQ's are similar to the 2-byte
GTO's, but with a different ordering of the jump information. Substituting the longer forms
in Routine 2C-1:

 

 

01 GT0 45 D8,02 2D,
02 "ABCDEFGHIJKLMNO" FF 41 42 .... 4E 4F
03 LBL 45 JCF 2D, (2C-2)
04 "ABCDEFGHIJ" FA 41 42 .... 49 4A
05 XEQ 45 E0,02 AD,   

Again breaking the codes into bits, and grouping:

Type # Bytes # Registers Direction Label
1101 100 000000010 0 0101101
1110 000 000000010, 1 0101101,
! ) { ! i !\

 

(1ine 01) D8 02 2D
(1ine 05) EO 02 AD

} ' 1 ) I )

Only 7 bits are required for label postfixes up to decimal 99; 3 more bits are needed for the
number of bytes, 0-6. So with 4 bits for the line type (1101 for 'GTO', 1110 for 'XEQ'), and
1 bit for the direction, 9 bits remain for the number of registers. The jumps can therefore
be up to 27 = 512 registers, which is larger than the memory.

The first byte of the GTO or XEQ Tine starts the jump coding, so we count off the jump
from that first byte. For the 'GTO 45' in line 01, we count 4 bytes + 2 registers = 18 bytes
from the D8 byte, which places the pointer on the "0" as before. Line '05 XEQ 45' moves the
pointer backwards from the EO byte, O bytes + 2 registers = 14 bytes.

Just as it is desirable for a data register number to be a relative rather than an
absolute address to facilitate shifts of memory contents, there is no absolute program line
number associated with any memory locations. The line number is a quantity that is recomputed
each time it is required, i.e., for each program step displayed in PRGM mode or by a held SST
or BST key. You may have noticed that the first time you switch to PRGM mode after running a
program, or press 'BST', near the end of a long program, there is a noticeable pause before
the current line is displayed. This 'dead time' is used for the processor to compute the
1ine number, which it can only do from scratch by going back to the top of the current program
file and chugging forward through the program, incrementing the line counter (stored in a
special register) by one for each complete program line. It would be superfluous and time-
consuming for the processor to keep track of line numbers during a running program, so it must
do the full line number computation once when the user next switches to PRGM mode. Subsequent
SST's are fast, but a BST can be slow because the processor has no way of knowing whether the
preceding byte is a stand-alone byte or a postfix in a multi-byte function. It must again
return to the top of the file and count forward by Tines until it reaches a number one less

 

17



than the starting line.

2D. MEMORY PARTITIONING
 

Figure 2-5 is a pictorial representation of the HP-41C user memory, where we visualize
all of the memory registers as stacked one on top of the other. The chart shows the 'mainframe’
plus all four possible memory modules. The top of the chart is the 'top of memory', the high-
est numbered available data register. Going down the chart corresponds to decreasing data
register number and absolute address, or increasing program line number. The horizontal
direction represents the byte number, with the first byte, '6', of each register at the left,
and the last, '0', at the right. Single-stepping moves the address pointer to the right through
the bytes of a register, then back to the left to byte '6' of the next register Tlower.

The first data register, Rpg, and the first program line of the first user program are
immediately adjacent in memory, with no physical boundary between them. The current absolute
address of Rpp is stored by the HP-41C, so that the processor always knows which registers
are allocated for data (those above Rpgg) and which are reserved for program (those below).
The current 'size' is the number of registers between the top of memory and Rpg. When a
memory module is added, its 64 registers are added at the top of memory, so that the 'size'
automatically increases by 64 (hex 40). When 'SIZE abc' is executed, the contents of data
and program registers are moved upwards or downwards until the original contents of Rgp are
in Register 'mno' (mno is a three digit hexadecimal number), 'abc' registers from the top.

Register 'mno-1' is the first register of program memory. If we start with no programs
in memory, the last three bytes of Register 'mno-1' automatically contain the permanent .END.
line. This .END. 1is always present in user memory, necessarily since it is the first 1link
in the global address chain connecting all global labels and END's in memory. When we start
keying in a program, the first four bytes overwrite the null bytes remaining in Register
'mno-1'. If more bytes are added, the .END. is automatically shifted to the last 3 bytes of
the next program register, providing 7 more bytes for program. This process 1is repeated
until the program is complete, or until all available program registers are full. If we key
in an 'END' at some point, we erect a 'barrier' in memory, serving to divide the previously
keyed program lines into a self-contained program file. The 'END' line itself is the barrier,
for when it is encountered using SST, or during a program search for a local label, it causes
the address pointer to jump back to the next 'END' up the label chain, or to byte 'Oabc', if
the current program is the first in memory.

If we have keyed in a total of 'def' registers of program (including the .END.), the
address of the register containing the .END. will be [pqr = mno - def]. Remember that all
such register address arithmetic is done in hexadecimal. In the HP-41C, ‘'pqr' can never be
less than hex 0CO (decimal 192). The choice of 'OCO' for the bottom of programmable memory
makes addresses in the 'mainframe' range from 0CO to OFF. If the first digit of a register
number is a 'l', the register is in a memory module: module 1l--registers 100 through 13F;
module 2--140 through 17F; module 3--180 through 1BF; module 4--1CO through 1FF.

At any time, there are [pqr - 0CO] registers available for program, less the current
number of registers used for key assignments. The user function key assignments are encoded
in a block of registers starting at 0CO and going upwards in memory (the details of the coding
are given in Section 2E). If 'jk1' registers are used for key assignments, then there are
[ghi = mno - def - jkl - 0CO] registers still available for new program lines or assignments.
Overall we have

(N+1)*40 = abc + def + ghi + jkl

registers in the system, where 'N' is the number of memory modules currently inserted.
Below Register 0CO, there is a gap in the chart, meant to represent a void in the

addressing scheme, since no registers exist that would correspond to addresses in the
region. Between addresses 000 and O00OF, however, there is a highly interesting block of 16
registers. We will call these registers the 'status registers', since their contents are
recorded by the card reader on Track 1 of the cards generated with the 'WSTS' ('Write
Status') function. Access to these registers is the basis of synthetic programming; their
study merits an entire chapter, Chapter 4.

18



R
E
G
I
S
T
E
R

N
U
M
B
E
R

BYTE NUMBER

6 5 4 3 2 1 0
 

 

 

 

 

  

1 | | 1 1 |

1FF TOP OF MEMORY -
wl
-
oD

A
o

DATA =
1C0

N

R w

moff 0O ____________f3

FIRST USER PROGRAM g
=

180

N

wl
-l
-

a
o
=

140

—

pqr|[LAST_USER_PROGRAM _ _.END. _|[I'4
a
o

n " =

100 AVAILABLE

KEY ASSIGNMENTS ]

0CO i
=
<

&
(NON-EXISTENT ADDRESSES) =

=

OO0F

STATUS REGISTERS

000

Ficure 2-5. HP-41C User MeEMORY PARTIONING

    
 

 

 

 

     

19

 

ghi

J W .
—
l



2E. THE KEY ASSIGNMENT REGISTERS
 

The key assignment registers extend from Register 0CO up to, but not including, the
register containing the .END. The registers contain codes that tell the processor which
functions are assigned to which keys (recall that user global label assignments are recorded
in the label itself). Consider the following key sequence:

ASN ALPHA "LN" ALPHA 8 (Assign 'LN' to the 8 key)

If we were able by some sleight-of-hand to place the address pointer into Register 0CO in
PRGM mode and list the contents, we would see the following (with arbitrary line numbers, and
the byte codes listed to the right):

 

  

or "* FO
02 LBL 03 04
03 LN 50
04 RCL 05 25
 

(Line 01, byte FO or 'TEXT 0', shows in the display as '01 T'.) Four bytes are not enough
to fill a register--there are three invisible null bytes between 1ines 01 and 02. The nulls
disappear when we make a second assignment:

ASN ALPHA "LOG" ALPHA SHIFT 8 (Assign 'LOG' to the shifted 8 key)

Now Register 0CO contains:

 

o1 "* FO
02 LBL 03 04
03 LOG 56
04 RCL 13 2D
05 LBL 03 04
06 LN 50
07 RCL 05 25    

As a program, the sequence of lines doesn't mean anything, although we recognize the 'LOG'
and 'LN' that were assigned. Rather, the bytes make up a special code. The first byte, 'FO',
identifies the register as a key assignment register and divides it off from adjacent assignment
registers. The next three bytes are a code for the 'LOG' assignment, the second assignment
made. The last three bytes encode the 'LN' assignment. In both sets of three bytes, the
first two bytes identify the assigned function and the third designates the key. For assign-
ments of HP-41C functions, only one byte is required to identify the function, so that the
'04' byte (LBL 03) is stuck in as a filler. If a peripheral function is assigned, both function
bytes are required to represent the function. For example, if we had assigned 'PRP' and 'WSTS'
instead of 'LN' and 'LOG', Register 0CO would contain:

 

 

o1 "" FO
02 WSTS A7 8A
03 RCL 13 2D
04 PRP A7 4D
05 RCL 05 25   

The code for a designated key is as follows: Suppose we assign key 'MN', i.e., the key
in row M and column N of the keyboard. Then the byte representing that key will be hexadecimal
'XY', where [X = N-1], and [Y = M]. The '8' key assigned above is key '53', so that [X = 2]
and [Y = 5], yielding the 'RCL 05' line in the assignment register. Other examples: the 'COS'
key, key 24, is represented by byte 32, or 'STO 02'; 'R/S', key 84, is coded with byte 38 =
'STO 08'.

The code for the shifted key '-MN' is obtained from [X = N-1], [Y = M+8]. Thus the
assignment of the shifted '8' key, key -53, is coded with byte 2D = 'RCL 13'. For shifted
keys in row 8, where N=8, we carry the '1' resulting from [8+8=10] into X. For example, the
'"VIEW' key, key -84, is coded with byte 40 = '+'.

The keys ordinarily numbered 42, 43, and 44, i.e., 'CHS', 'EEX' and ", and their

20



shifted counterparts, are physically in columns 3, 4, and 5, respectively, and must be so
numbered for use in the key assignment byte formula. It is as if the 'ENTER' key covers an
imaginary key 42. Figure 2-6 shows the key assignment codes in a keyboard chart form for
easy reference. The number on each key is the key designation byte for assignment of that
key. The codes for the shifted keys are shown above the keys.

 

09 19 29 39 49
 

 

 

 

    
        
  

   

  

   

  

  
 

   

01 11 21 311 |41

0A 1A 2A  3A 4A

02 12 22 32 42

OB 1B 2B 3B 4B

03 13 23 33 43

0cC 2C 3C 4C

04 24 34 44

0D 1D 2D 3D

05 15 25 35

OE 1E 2E 3E

06 16 26 36

OF 1F 2F F

07 17 27 37

10 20 0 40

08 18 28 38              
FIGUuRE 2-6. KeY AsSIGNMENT BYTES

If the assigned function is a prefix, such as 'STO', 'ISG', 'GTO', etc., the listing of
the assignment register will show the function byte and the key designation byte merged into
a single program line. The key designation byte acts as a postfix for the assigned prefix.

When a non-programmable HP-41C function is assigned, the function byte is found in row
0 of the Byte Table, so that the corresponding program line is one of the short-form labels,
or a null. Table 2-2 shows the correspondence.

Although most of the entries in Table 2-2 correspond to normal assignments, bytes 01,
05, 0B, OC, OD, and OE represent 'functions' that are not normally assignable. Using the key
assignment programs in Chapter 5, however, we can place these bytes into assignment registers
with amusing results. The 'functions' '@c' and '2__' are so named because pressing the key
to which one is assigned produces the display indicated by the name. Execution of '@Gc' some-
times does nothing; at other times a 'GTO..' executes. '2__', upon entry of a two-digit
number, causes the HP-41C to 'lock up' for some time. The more practical use of bytes 05,
OB, and OE allows us to reassign the 'R/S', '@B', and 'SHIFT' functions, respectively. Pres-
sing the reassigned correction key always deletes the current program line, regardless of
whether or not the HP-41C is in PRGM mode. Finally, the byte OC reassigns the 'rocker key'
functions 'ALPHA', 'PRGM' and 'USER'. The choice of function depends upon the designated key
('): if the key is in row 1 or 5, 'ALPHA' is assigned; keys in rows 2 and 6 will be assigned
to 'PRGM'; 'USER' results from assignments to keys in the remaining rows 3, 4, 7, and 8.

21



TABLE 2-2

Assignment of Non-Programmable HP-41C Functions

Function Byte Program Line

CAT 00 null

@c 01 LBL 00
DEL 02 LBL 01

COPY 03 LBL 02

CLP 04 LBL 03
R/S 05 LBL 04
SIZE 06 LBL 05

BST 07 LBL 06

SST 08 LBL 07
ON 09 LBL 08

PACK 0A LBL 09

0B LBL 10
ALPHA/PRGM/USER 0C LBL 11

2. oD LBL 12

SHIFT OE LBL 13
ASN OF LBL 14

22



CHAPTER 3

EXOTIC EDITING WITH THE BYTE JUMPER

3A. NORMAL EDITING
 

Every HP-41C programmer knows the simple rules governing normal editing: (1) In PRGM
mode, a program line keyed in is inserted immediately following the program line initially
shown in the display. All subsequent lines have their line numbers increased by one. (2)
When the correction key is pressed, the displayed program line is deleted, and subsequent
lines have their lines numbers decreased by one. The display will show the line preceding
the deleted line. (3) Execution of 'DEL Tmn' causes 'Imn' program lines to be deleted,
including the line displayed. (4) 'PACK' does some kind of housekeeping, deleting invisible
nulls to maximize the available program space.

These operations provide a simple, fast editing capability for the HP-41C. But for our
purposes, the information in steps (1) through (4) above is inadequate; we need to know exactly
what is going on in memory at the byte level, not at the program line level. So let us rewrite
the rules as follows:

(1) The program line displayed in PRGM mode is the program line starting with the
first non-null byte following the byte where the address pointer is currently situated. When
a new program line is keyed in, the bytes constituting the new line are placed immediately
following the last byte of the initially displayed line, by overwriting null bytes. If no
null bytes are available, i.e., if the byte at the insertion location is not '00', the proces-
sor automatically inserts 7 nulls (or multiples of 7 nulls if required) before entering the
new program bytes. The new line then overwrites as many of the new nulls as it requires,
leaving the rest (invisibly) 1in the program. Insertion of exactly seven nulls makes the
process of moving subsequent 1lines down 1in memory simple--each register containing user
programs is just copied into the next register down, starting at the .END. and working back
up to the register where the insertion is occurring.

A manual 'RTN', 'GT0.000', or 'GT0.001', moves the address pointer to the last byte of
the preceding program. The first two operations, by setting the line number to '00', result
in a display of '00 REG Imn' instead of a program line. When the line number is '00', program
bytes are keyed in immediately after the current pointer byte rather than after the pending
program line.

(2) When the correction key 1is pushed in PRGM mode, the bytes of the displayed line
are replaced by an equal number of null bytes. The program pointer moves back one Tline.

(3) The 'DEL 1mn' operation replaces all of the bytes in the next 'Imn' program lines
with nulls. You might observe that an 'SST' following the deletion of a large number of
lines requires a noticeable pause, which is actually the time required for the processor to
scan through all the null bytes resulting from the deletion until it finds a non-null byte
for display.

(4) An editing session can introduce a substantial number of superfluous nulls into a
program file. The PACK operation removes all unnecessary nulls by moving non-null program
bytes upwards in memory. Nulls found within multi-byte program Tlines are not removed.

When program bytes are shifted around in memory, either by editing (inserting or deleting
bytes) or by packing, various jump-distance codes may become invalid. Hence, following any of
these operations, the jump-distance bytes in all local labels in the file being edited are
set to zero, so that they will have to be recomputed the next time the program is run. Further-
more, the relative addresses in the global label chain must be updated. Finally, the END
line terminating the edited file is recoded to indicate that the file needs packing.

An example of program editing should clarify the rewritten rules. Starting from 'MEMORY
LOST', we key in this simple program:

 

01 LBL 00
.END.   

If we write out all the bytes in the file, the program looks like this:

23



Address Line Number Line Byte Code
  

60EE 01 LBL 00 01
50EE 00
40EE 00
30EE 00
20EE .END. cO
10EE 00
OOEE 29

The addresses follow from the consideration that the 41C 'wakes up' with 47 (hex 2F) registers
of program space, starting with Register 0CO: [0C0+02F-1=0EE]. So Register OEE is the highest
program register. In the .END. Tline, the '000' nybbles indicate that this is the topmost
global Tabel in memory; the '29' indicates a packed file, permanent .END. Now suppose we
insert three '+' lines following line 01:

60EE 01 LBL 00 01
50EE 02 + 40
40EE 03 + 40
30EE 04 + 40
20EE .END. co
10EE 00
OOEE 29

The nulls have been replaced by the '40' bytes. Now delete 1line 03:

60EE 01 LBL 00 01
50EE 02 + 40
40EE 00
30EE 03 + 40
20EE -END. co
10EE 00
OOEE 2D

The '40' at address 40EE has been replaced by a null; the last byte of the .END. has changed
to a '2D' to indicate an unpacked file. If we packed at this point, the '40' at 30EE would
move up to 40EE, but then another '00' would be inserted at 30EE to keep the .END. in the
last three bytes of the register. If we were to insert a one-byte line after line 02, it would
simply overwrite the null at 40EE. But if we insert a two-byte line, e.g. 'STO 65', we get:

60EE 01 LBL 00 01
50EE 02 + 40
40EE 03 STO 65 91
30EE 41
20EE 00
10EE 00
OOEE 00
60ED 00
50ED 00
40ED 00
30ED 04 + 40
20ED -END. co
10ED 00
00ED 2D

Since there was only one null byte available between 1ines 02 and 03, 7 more nulls were inser-
ted. Two were then overwritten by the 'STO 65' bytes. The '40' at 30EE was moved down to
30ED. Finally, the .END. was reinserted, at the end of Register OED. Following a 'PACK',
the program becomes:

24



60EE 01 LBL 00 01
50EE 02 + 40
40EE 03 STO 65 91
30EE 41
20EE 04 + 40
10EE 00
OOEE 00
60ED 00
50ED 00
40ED 00
30ED 00
20ED -END. CcO
10ED 00
00ED 29

The user program lines have been pushed together, but since there is not room for the
.END. in Register OEE, it remains in Register OED.

3B. THE BYTE JUMPER 

Armed now with sufficient knowledge of normal HP-41C operation, we can boldly sally
forth into brand-new territory. It should be re-emphasized at this time that even if some of
the procedures we are about to use seem strange, there is no risk for the HP-41C. Follow me
through the following procedure:

1. Insert one memory module into the HP-41C.
2. Master clear. (HP-41C off; hold down correction key; HP-41C on.) A clean break with

the past!
3. Execute 'SIZE 000'. This places the '.END.' in the module.
4, ASN "X<O" +; ASN " +" T+. This fills Register 0CO with two assignments.
5. HP-41C off; remove memory module; wait 60 seconds or so; replace module; HP-41C on.

If you a have second module available, you can save the 60 seconds by plugging the 'dead’
module in in place of the one removed. Now the .END., which we placed within the module has
‘evaporated'. If you had turned the calculator on before replacing the module, 'MEMORY LOST'
would have resulted. Evidently the processor checks to see if the register where the .END.
is supposed to be exists, but not whether the .END. bytes are actually present in that register.

6. Switch to PRGM mode; you should see 'O0 REG 126' (190 if your module is double
density). Now press SST once. After a few seconds' wait, you will see 'Ol T'. The address
pointer is now in Register 0CO, the first assignment register! With the .END. absent, there
was nothing to stop the pointer from rolling merrily through empty memory until it encountered
the first non-null byte, which in this case is the 'FO' from the key assignments we made in
step 4. If you SST 5 more times, the following should appear in sequence:

 

 

02 LBL 03
03 2+

04 LBL 00
05 LBL 03
06 X<>06    

(If you press SST again, the pointer will end up in the status registers.) You will recognize
this set of lines as the code for the key assignments made in Step 4.

7. Use BST to return to Tline 03. Don't be distressed if some of these SST's and BST's
take a few seconds. Now push the correction key twice to delete lines 03 and 02.

8. Now key in ALPHA "A" ALPHA, resulting in line '02 TA'. (Actually, any single char-
acter will work as well as "A".)

9. Press 'GTO0..'s the display 'GTO..' will persist for a few seconds, followed by a
quick 'PACKING'. SST once, and delete the line 'Ol LBL 01'. For the second and last time in
this book, you have carried out a synthetic programming operation by the trick of 'module
pulling'. From now on, we will be able to achieve all our goals without having to resort to
such unpleasant tactics.

10. Press and hold the ' IZ+' key in USER mode. You should see a display of 'XROM
05,01'. If this does not occur, you must have made a mistake, so repeat steps 1 through 9.
By direct editing of an assignment register, you have created a brand new key assignment,

25



called the 'byte jumper'.
The best explanation of the operation of the byte-jumper is that it is, in effect, a

manually executed program text line. To understand this, recall from Section 2B what happens
when the automatic execution of a text line occurs: the processor looks at the second nybble
of the current program byte, i.e., the 'Fn' byte that signals the text instruction, copies the
next 'n' bytes of program code into the alpha register, and advances the pointer by 'n' bytes.
The byte jumper is the manual equivalent of this operation, not to be confused with the single
stepping of a text line. The 'F' nybble that starts the process is 'provided' by pressing
the USER key to which we have assigned "A" ('F1 41'). To see why this operation is of interest,
key in these lines:

 

 

01 STO 04 34 (38-1)
02 "ABCDEFG" F7 41 42 43 44 45 46 47   

With Tine 02 still showing in the display, switch PRGM off, USER on, and press the byte
jumper key (z+). Switch to PRGM mode again, and you will see by single stepping:

 

02 X<Y? 44
03 X>Y? 45
04 X<=Y? 46
05 Z+ 47    

Where did these program lines come from? As you can see by looking at the byte values of the
‘'new' program Tlines, the Tlines are simply the stand-alone functions corresponding to the
characters "D", "E", "F", and "G" in the original text 1ine "ABCDEFG". We started with the
display showing the line '02 "ABCDEFG"', i.e., the address pointer was positioned on the '34'
byte, line 01. Then we executed the byte jumper, which made the processor think it was execu-
ting a text line (don't confuse this imaginary text line with the real line 02). So it looked
at the second nybble of the current byte, '34', copied the next 4 bytes into the alpha register,
and advanced the pointer by 4 bytes to the '43' byte. With the pointer there, the display
will show the next program line, which is the one-byte line '02 X<Y?' corresponding to the
'44' byte. If you now press PRGM (off), ALPHA, you will see the four characters "®ABC", which
are the four bytes copied from the program. The starburst character is the 'F7' byte. Since
the byte jumper is a manually executed function, it does not change the current program line
number, even though the pointer moves, so that the Tine '02 X<Y?' has the same line number as
the '02 "ABCDEFG"' line from which the jump was executed.

While the pointer is 'inside' the text line, 'SST' operates normally, but a 'BST' from
any of the bytes sends the pointer back to the 'STO 04' line. Remember that 'BST' sends the
processor back to the start of the program file, whence it counts forwards by lines, refusing
naturally to jump into the middle of a multi-byte line.

Let's see what use can be made of byte jumping. To condense future instructions, I
will introduce a new instruction, 'JUMP .Imn', which means 'byte jump from line Imn'. That is:

'JUMP .1mn' means: 1. GTO .1mn (do even if the displayed
Tine number is already 'lmn')

2. PRGM off
3. Press the byte jumper key
4. PRGM on

'JUMP' without a line number means 'byte jump' from the current line, i.e., step 1 is omitted.
Now, using Routine 3B-1, try 'JUMP .002'. After step 4 of the jump you will see displayed

‘02 X<Y?'. Press the correction key once, then 'SST'. You should now see '02 "ABC-EFG".
The '=' 1is the display character for a null, in this case the null with which the "D" byte
was replaced by the deletion. You have modified a program text line, without having to delete
the entire line! This is only the beginning--now change line 01 of the routine to 'STO 03'.
(If you make any mistakes while editing that may introduce invisible nulls, eliminate them
with 'PACK'. If, for example, a null preceded line 02, which we wouldn't know from the display,
'JUMP .002"' would do nothing, since the second nybble of the null is '0O'.) Next, 'JUMP .002'
to see the line '02 /', i.e., the "C" byte. Key in '03 LBL 00', then press 'GTO .002'. The
display will show '02 "ABCXEFG"'. You have replaced the null following the "C" with byte
'01', from the 'LBL 00', which displays as the 'full man' character "%" when the full text
line is displayed. The following sequence will produce the program steps shown to its right:

26



 

JUMP .002 01 STO 03
Key in: 02 "ABCu)]"

03 LBL 11 03 LBL 00
04 DEC —> 04 X>Y?
05 RCL 09 05 X<=Y?
06 ACOS 06 z+

GTO .002 .END.   
This is your first serious example of 'synthetic programming', where non-keyable byte combina-
tions are synthesized by extraordinary means. According to the byte-level editing rules of
Section 3A, when we tried to insert the 'LBL 11', the processor had to insert 7 nulls to clear
space for the new line. This also provided room for the 'DEC', 'RCL 09', and 'ACOS', but
at the same time pushed the "DEFG" bytes down in memory, clear out of the 'range' of the 'F7'
byte. Those four bytes thus 'become' stand-alone program lines 03-06.

Any such synthetic text line created with the byte jumper will execute normally, as you
can verify by single-stepping the new line 02 (PRGM off), then checking the alpha register to
see the resulting characters. We may use this technique to place in a program text line any
of the 19 non-keyable HP-41C display characters, plus the append and text symbols (but not
the geese). Each of these characters is found in the upper half of the Byte Table, so that
each may be edited in as above using a directly keyable one-byte program line. Furthermore,
any of the 128 printer characters can be placed in a text line (those without display equiva-
lents will display as starbursts), for transfer to the print buffer using 'ACA' (see Section
6E).

Program lines that 'append nulls' to the existing character string in alpha are used
frequently in synthetic programs. Here is an example of the creation of such a line--in this
case, to append 5 nulls:

Key in:

01 ASTO 02
02 "FABCDE"

JUMP
DEL 005
DEL 001

The line '02 "FABCDE" is chosen to have the same number of characters as the number of nulls
to be appended. The 'DEL 005' changes the characters to nulls. The 'DEL 001' removes the
"ASTO 02' used to control the byte jump.

The byte jumper editing described so far has the limitation that the first character in
a text line cannot be changed, except to delete it to a null. In "ABCDEFG" for example, the

"A" cannot be altered, since to key a new byte into the "A" position would require that the
preceding byte be displayed prior to insertion of the replacement byte, but since the byte
preceding the "A" is the 'F7', the display insists upon showing the entire text line. Inserted
bytes will enter the program following the full text line.

However, arbitrary text lines, with non-keyable characters in any or all positions, can
be created through an elaboration of the byte jumping procedure. Suppose we wish to make the
text line "(#)", i.e. bytes 'F3 28 23 29'. In the previous example, the text bytes were
created normally along with 'temporary' characters, which are then pushed out of the line by
the desired characters. This time it will be the text byte itself that is created within yet
another text line. The desired text characters will be first entered as normal one-byte
instructions. Start with this routine:

 

01 STO 01 31 (38-2)
02 "BJ" F2 42 4A   

The 1ine '01 STO 01' is used to provide the 'l' nybble to produce a byte jump of one byte;
we shall refer to such a line as the 'controller', since it controls the length of a byte
jump. Similarly the line '02 "BJ"' is a temporary text 1ine we shall call the 'generator'.
The 'controller' and the 'generator' are to be deleted once the byte jump editing is completed.
Now execute 'JUMP .002' and key in the line '03 "ABC"'. The full program is now:

27



 

 

01 STO 01 31
02 "B®R" F2 42 F3
03 - 41
04 * 42
05 / 43
06 HMS- 00 00 00 4A   

The entry of the line '03 "ABC"' places an 'F3' right after the '42', where it becomes the
last byte of the generator line. The '41 42 43' ("ABC") do not 'fit' in the generator, so
these three bytes will show up as three independent program lines 03-05. Finally, we have
the '4A' byte, the original "J", which was pushed out of the generator by the insertion, so
it becomes line '06 HMS-'. The three nulls left over from the insertion are, as usual, invis-
ible.

Next, press 'GTO .002' and key in:

03 RCL 08
04 RCL 03
05 RCL 09

to place the bytes '28 23 29' in position immediately following the 'F3' byte. Then 'JUMP
.002', key in '03 HMS-'. Now the program is:

 

 

01 STO 01 31
02 "BJ" F2 42 4A
03 "(#)" 00 00 00 00 00 00 F3 28 23 29
04 - 00 00 00 00 41
05 * 42
06 / 43
07 HMS- 00 00 00 4A   

The insertion of the 'HMS-' pushes the 'F3' out of the controller, whereupon it reassumes its
role as a 'TEXT 3', grabbing the bytes '28 23 29' to complete the text line as the characters
“(", "#", and ")", respectively. The various nulls are left over from the groups of 7 nulls
placed into program for each insertion. To clean up, we delete lines 01, 02, and 04-07, then
'PACK'. With some practice, you will find that the whole procedure goes quite rapidly.

Byte jumper editing is in no way restricted to text 1lines, particularly using the
‘controller-generator' method described last. As an amusing example, try the following:
start again with Routine 3B-2 (recall the instruction format described in Section 1E):

JUMP .002 [02 * ]
03 TONE 1

GTO .002 (02 "B®B" ]
03 LBL 09

JUMP .002 [02 * ]
03 HMS-

SST [04 TONE O ]

The 'TONE 0' Tooks normal, but try executing it by single-stepping with PRGM off. You should
hear a new, low frequency tone lasting over 2 seconds!

With the controller-generator method, we can create almost any combination of prefix
and postfix that we want, to make synthetic two-byte functions. The most important set of
such functions are the status register access functions that we will investigate in Chapter
4.

28



CHAPTER 4

THE STATUS REGISTERS

4A. STRANGE POSTFIXES
 

By the end of Section 2B, we had examined the Byte Table in great detail, accounting
for almost every entry in the Table. But there is still one important feature still to explore:
Notice that bytes 64-65 have their postfixes shown with a double underline, and that each of
bytes 66-6F has two postfix 'values', one or both of which are underlined. The underlined
postfixes never arise in 'normal' HP-41C programming. Consider postfixes 66 through 6F,
shown as the letters "A" through "F". These letter postfixes are only seen in program lines
involving the 'local alpha labels', such as 'LBL C' or 'XEQ F'. The keyboard logic prevents
us from attaching these postfixes to other prefixes. For example, when we press 'STO', the
ALPHA key is disabled so that only numerical postfixes can be entered. But the byte jumper
has freed us from keyboard constraints, so let's try making a 'STO A'.

01 STO 01
02 IIBJII

JUMP .002 [02 * ]

03 STO 22 (arbitrary postfix)
GTO .002 [02 "BR" ]

03 X<0?
JUMP .002 [02 * ]

At this point, we're ready to push the 'STO' prefix out of the generator. But while we're
at it, let's also make a 'RCL A':

03 RCL 22 (pushes out the 'STO', puts 'RCL' in the
generator)

GTO .002 [02 "BE" ]
03 X<07?

JUMP .002 [02 * ]
03 HMS -

The program is now:

 

01 STO 01
02 IIBJII

03 RCL A
04 6 (4A-1)
05 STO A
06 6
07 HMS-   

The '6's in lines 04 and 06 are the stand-alone equivalents of the '22' postfix bytes. Now try:

SIZE 103
PRGM (off)

12345
GTO .005
SST
CLX [0.0000 ]

At this point, the number '12345' has disappeared from the display. To retrieve it, press
'GTO .003', SST. The number reappears, showing that it was stored in Register 'A'. To see
where the number actually went, store '102' in Rgg, then press 'VIEW IND 00'. As you might

29



have expected, 'STO A' is equivalent to 'STO 102'. If the numerical postfixes were continued

past decimal 99, the 'A' postfix would be '102'. Synthetic programming thus allows us to

extend direct data register access up to Ryjj(postfix 'J'), Tleading to the underlined
postfixes for bytes 66-6F in the Byte Table.

But why stop at 111? There is another row of postfixes available; could we not use
them to access up to Register 127? Notice first that postfixes 70, 71, 72, 73, and 74 are
already used to access the stack registers T, Z, Y, X, and L, respective]y But the remaining
bytes beckon to us: they turn out to be the keys to 'Pandora's Box' of synthetic programming!
Let's try a dramatic example: Using Routine 4A-1:

JUMP .002 [02 * ]
03 STO 22

GTO .002 [02 "BR" ]
03 AVIEW

JUMP .002 [02 * ]
03 HMS-

GTO .003 [03 STO d ]

Now switch PRGM off; press 'SF 00, SF 01, SF 02, SF 03, SF 04, FIX 9, SF 28, GRAD, USER, CLX,
ALPHA', which turns on various display annunciators. Now press 'SST' once. As the resulting
display makes quite clear, the simple operation 'STO d', with zero in Register X, clears all
56 HP-41C flags in one fe]l swoop! The implication is obvious--the two-byte code '91 7E',
or 'STO d', that we made with the byte jumper, allows us to store directly into a spec1a1
register, which we shall call 'Register d', that contains the 56 flags.

The 'status registers' (Registers 000-00F) mentioned at the end of Section 2D are recorded
by the card reader 'WSTS' operation. The status of all user and system flags is part of the
information stored on the status card, so we infer that Register d is one of the 16 status
registers. The observation that the stack registers, also accessed by postfixes in row 7 of
the Byte Table, are status registers, leads us, in a bold leap of inspiration, to guess that
all of the postfixes in row 7 refer to status registers--16 postfixes, 16 registers. It only
remains to identify the roles of the 16 registers. From the 'WSTS' and 'WALL' operations, we
would expect the status registers to contain, in addition, the alpha register, the address
pointer, the subroutine returns, the current 'size', and the location of the summation regis-
ters.

As shown 1n the Byte Tab]e postfixes 75 through 7F display as 'M', 'N', '0', 'P', 'Q',
'+', 'a', 'b', 'c¢', 'd', and 'e', respectively. The second postfix values shown for bytes 75
through 7A are the postfixes shown with printer listing of the status register functions.
Thus the line 'STO M' shown in the display would print as 'STO ['. The correspondence is
also shown in Table 1-1.

In order to study the properties and uses of each of the status registers, we will
synthesize program lines that allow us to view or change the contents of these registers.
The function 'X<>' serves this purpose admirably, since it can act both as 'STO' and 'RCL'.
Since storage into Registers a, b, and c can produce occasionally unpleasant results ('O,
STO ¢' causes 'MEMORY LOST', as the most unpleasant example), we will limit ourselves to
verbal descriptions of those registers for the time being. As an exercise, you should try to
use the byte jumper to create Routine 4A-2 without guidance. Refer to the instructions in

the next paragraph if you get lost. As we did in the creation of 'STO A' and 'RCL A', we
will save keystrokes by using each successive 'X<>' prefix to push the previous one out of
the generator. If you have cleared the assignment of 'X<>' that you made in Chapter 3, you
should restore it now.

Start with Routine 3B-2. As usual, the choice of a temporary postfix for the 'X<!
prefixes is arbitrary (just don't use 'X<>29, 30, or 31', since the corresponding postfix
bytes are prefixes themselves). The best choice is 'X<>00', since the '00' is hex '00', the
null. A1l the Tleftover postfixes are 'invisible', and will be eliminated by packing. Now
try:

JUMP .002 [02 * ]
03 X<>00

GTO .002 [02 "BE" ]
03 CLD (e)

JUMP 002 [02 * ]
03 X<>00

30



GTO .002 [02 "BR" ]
03 AVIEW (d)

JUMP .002 [02 * ]
03 X<>00

GTO .002 [02 "BR" ]
03 SIGN ()

JUMP .002 [02 * ]
03 X<>00

GTO .002 [02 "B®" ]
03 X#Y?  (Q)

JUMP .002 [02 * ]
03 X<>00

GTO .002 [02 "B@" ]
03 X=Y? (P)

JUMP .002 [02 * ]
03 X<>00

GTO .002 [02 "B&" ]
03 CLX  (0)

JUMP .002 [02 * ]
03 X<>00

GTO .002 [02 "B&" ]
03 LAST X (N)

JUMP .002 [02 * ]
03 X<>00

GTO .002 [02 "B@" ]
03 RON (M)

JUMP .002 [02 * ]
03 HMS-

Following this sequence, we are left with Routine 4A-2 (delete 1line '11 HMS-'):
 

 

01 STO 01 06 X<OP
02 "BJ" 07 X<Q
03 X<OM 08 X<k (4A-2)
04 XN 09 X<>d
05 X<>0 10 X<e   

Now, if we want to execute an 'X<>M', for example, then with PRGM off we press 'GTO .003',
'SST'. In the remainder of this chapter, we will use the program lines in the above routine
to explore the status registers. The practical programming applications of the properties we
discover will be discussed in Chapter 6. Figure 4-1 is a diagram summarizing the use of the
various parts of the status registers, in a format similar to that of Figure 2-5.

4B. THE ALPHA REGISTER
 

A HP-41C programmable memory register is 7 bytes long. The 'alpha register' appears to
be an exception to this rule, since we can store up to 24 bytes (characters) in alpha. In
fact, the alpha register consists of four status registers, Registers M, N, 0, and P. Four
registers gives us a total of 28 bytes, but only 24 of these can be displayed, or accessed
with 'ASTO' and 'ARCL'.

To illustrate the structure of the alpha register, we can use Routine 4A-2. Start by
keying in 24 characters into alpha, such as "ABCDEFGHIJKLMNOPQRSTUVWX". If Flag 26 is set,
you will hear the warning tone upon entering the "X" to inform you that the alpha register is
full. Now press 'GTO .003', 'CLX', 'ALPHA(on)', 'SST', to see "ABCDEFGHIJKLMNOPQ=-----< ",
The overline "~" is the character corresponding to a null byte '00'. The 'CLX' filled Register
X with nulls; the 'SST' executed an 'X<>M', moving the nulls to Register M, which is revealed
to be the rightmost 7 bytes of the alpha register. If you switch the HP-41C out of ALPHA
mode, then set 'FIX 9', you will see '-2.5354555 E-42' in X. The hex code for the character
string "RSTUVWX" is '52 53 54 55 56 57 58'. These bytes are now in Register X, where the
processor is trying valiantly to display a decimal number. There is a '5' in the mantissa
sign digit, and a '7' for the exponent sign, resulting in the minus signs (see Section 5A).
The mantissa digits are all normal decimal digits, so the mantissa shows as '2.5354555565',

31



<
t
M

O
o

LWl
U
1
U

000

100

¢00

¢00

00

S00

900

£00

800

600

V00

400

J00

doo0

300

400

¢€

SY3LSI93YSNLVLS3H|‘T-f3¥n9I4

LNINOdXIN91S}@——————YSSTINVW————+—INOIS
\1I¥
 

!

AIVLS

-
l
r
-
'
—
j

 

--—
—

-

7AIVLS
11
vv
 

geT-

AMOV1S
 11L1

IILB

XWOVLS

-
t

-

 

-

iL
TI

7WOVLS

-—
—

-
+

 

-

|41

ITvV

/=T431SI1934VH4V
L  

eTT

1
1v1

hT-8¥31S193¥VHAV
 

-
LollLL

TTTRI

TZ2-ST¥3LS1934VHdIV
1L411  
¥TVv¥

hz-77¥31S193¥(8Z-GZ¥3LSI934VHATY)
HJLY¥2S YHJTV.!L  

L 
TvTT

HOLVYISVHdTVAYVI0dW3Il
%1L1L1  
1IIv1T

HJ1VY43SSINIWNOISSYAINd3IL4IHSNN
 1L1  

II I

N”g;;“NSNL3YHlp| NNL3¥HIG| NuN13¥HLg
   
 

¥3LINIOdNidnl3y NynL3 SS3800VNL3y¥LSTN¥NL13Y¥aNZs
4   
 T

00yS|Howveas|93wz
iL%

1

*dN3*

     ¥T|T |

SOVIdW3LSASES9V4¥3sn
11i1  l

TTT1
L
TT

HgS?QNHOLVYDSSLNIWNOISSYA3NQ3LJIHS
1111Ll     0I¢¢hS9

43IGWNN31A4

W



the last two digits of which are suppressed to make room for the exponent. The byte code
for a negative exponent '-xy' is the complement of the exponent, '100-xy'(decimal); in this
case we see an exponent [100-58=42].

To continue your explorations, try 'ALPHA(on)', 'SST', to see "ABCDEFGHIJRSTUVWX=====-- "
The 'SST' executed line '04 XON', so that now the original contents of Register M, "RSTUVWX",
have been moved to Register N, the next 7 bytes of the alpha register. To complete the exer-
cise, key 'ALPHA(off)', 'GTO .003', 'SST', 'ALPHA'; the display is "ABCDEFGHIJRSTUVWXKLMNOPQ"
--the original contents of M and N are interchanged. All told, the original 24-character
alpha string divided up like this:

XXXXABC|DEFGHIJ | KLMNOPQ|RSTUVKWX
Register: P 0 N M

When a fresh character string is keyed into the alpha register, the first character keyed
enters the last byte (the exponent byte) of Register M, address 0005. The next character
also goes to 0005, pushing the previous character leftwards in the alpha register, i.e., to
the next-to-last byte of Register M, byte 1005. Subsequent characters continue the process;
when M is full, the next character entry will push the first into the last byte of Register
N, byte 0006, and so on up into Registers 0 and P. When a character enters the third-to-last
byte of Register P, 2008, the warning tone sounds. Appending further characters shoves the
leading characters into the first four bytes of P(shown above as "xxxx"), where they vanish
from the display.

Now press 'GTO .006', turn ALPHA on, and append four more characters "YZ=?" to the
original 24. "ABCD" disappears, but surprisingly, it is still present in Register P. Press
'SST' once, to execute 'X<>P', then 'ALPHA(off)'. You will see '-1.4243444 E-53'. To translate
this into characters, try 'GTO .003', 'ALPHA', 'CLA', 'SST'('X<>M'). The characters "ABCDEFG"
reappear--these were the initial contents of Register P, which we moved into Register M via
Register X. However, if we repeat the whole process starting with the keying in of the 28
characters, but, this time, switching out of ALPHA mode before the 'SST' that executes the
X<>P, we end up with "®BCDEFG". The processor occasionally uses the first four bytes of
Register P for 'scratch' purposes, wiping out part or all of the original contents. Evidently,
pressing the 'ALPHA' key requires processor use of Register P. Studies by Charles Close have
revealed that, during a program execution, only ‘'VIEW', 'AVIEW', and number entry program
lines cause loss of the leading bytes of P. If these steps are avoided, we can use a full
28-byte ALPHA register for character string manipulations. As an example of the processor
use of Register P, bytes 1, 2, and 3 are used to record the current size and summation registers
location on a magnetic card with the 'WSTS' operation.

There are two important areas of application of direct access to Registers M, N, 0, and
P. First, as demonstrated in the above examples, we have obtained a new class of alpha string
manipulations, which when added to the conventional 'ASTO', 'ARCL', 'APPEND', and 'ASHF',
provides efficient, fast character sorting useful for displays, games, word sorting, etc. The
second application is the use of the alpha register as an additional three (or four, if Register
P is included) data registers, with the same capabilities as ordinary data registers, but
with the advantage of fixed memory locations and non-normalizing recall(Section 5B). These
applications will be explored in detail in Chapters 5 and 6.

4C. REGISTER Q

Register Q is primarily a scratch register for the processor. It is used so frequently
that it is virtually useless as an additional data register. Of primary interest for synthetic
programming is the use of Register Q for temporary storage of alpha strings that don't directly
enter the alpha register. Such strings are obtained during execution of functions or programs
that are 'spelled out' by the user, or during the entry of program text lines. For example,
using Routine 4A-2, try 'XEQ' 'ALPHA' "GTO" 'ALPHA' '.007', 'SST', 'GTO .003', 'ALPHA', 'CLA',
'SST'. The "OTG" now in the alpha register is the reverse of the letters "G", "T", "0" that
you used to spell out "GT0". This feature can be used to simplify the creation of non-keyable
program text lines (Section 5I).

4D. THE FLAG REGISTER
 

We discovered at the beginning of this chapter that Register d 'contains' all 56 HP-41C
user and system flags. When we recall that a register consists of exactly 56 bits, it is

33



obvious that each of the flags is just one of the bits of Register d. The 'first' (or leftmost,
or highest, or most significant, depending on how you like to visualize a register) bit is
Flag 00, the second Flag 01, and so forth to the 56th bit, Flag 55.

As a sample of the behavior of Register d, configure your HP-41C as follows: SF 04,
SF 09, SF 17, SF 18, SF 26, USER (on), SF 28, FIX 9, RAD; all other user flags clear. Now, using
Routine 4A-2, call up the contents of Register d by pressing: 'GTO .009', 'SST', ‘ENTER', 'BST',
'SST', 'RDN', 'ALPHA', 'CLA', 'ARCL X'. This sequence allows us to view the contents of d
without changing them. We use the 'ARCL X' so that we can view all 10 mantissa digits as
well as the exponent. Recalling that the positive exponent and mantissa correspond to zeros
in the sign digits, we conclude from the alpha display that the bytes of Register d are '08
40 60 38 09 90 10', which is, writing out all 56 bits (grouped by nybbles):

Flags: 4 9 17 18 26 27 28 36 39 40 43 51
l 4 A VL /

Bits: 0000 1000 0100 0000 0110 0000 0011 1000 0000 1001 1001 0000 0001 0000

Each '1' in the string corresponds to one of the flags we set. The first 'l' from the left,
in the second nybble, is Flag 04, for example. The next 'l' is Flag 9, and so forth, over to
the last 'l', in the second nybble from the right, which is Flag 51, the 'SST' Flag, which
was set momentarily because we used an 'SST' to execute the 'X<>d'.

To give yourself a taste of what can be done through use of the flag register, multiply
the existing number '8.405038099 E10' in Register X by '1 E30'. Then execute 'GTO .009', 'SST'.
No--you don't have a low battery, you just set Flag 49, the Tow battery flag. (To clear it,
turn the HP-41C off, then on.) This is an example of the use of user-controlled bytes, i.e.,
the number you placed in Register X, to control system flags through exchanges with Register
d. Now conceive of the reverse process--using explicit control over the user flags to create
arbitrary bytes in Register d, whence they can be transferred to Register X and elsewhere
with status register access functions (see Chapter 5). It was, in fact, the implementation
of this concept that originally led to the development of serious synthetic programming.

4E. THE KEY ASSIGNMENT FLAGS
 

When a key 1is pressed USER mode, if that key is assigned to other than its default
function, the processor must check the user global labels and the key assignment registers to
discover what program or function the key is intended to execute. To save a lot of fruitless
searches, the HP-41C keeps a set of 72 'key assignment flags', one for each key and shifted
key (counting the imaginary key under the ENTER key). When a user key is pressed, the proces-
sor first checks the corresponding assignment flag. Only if the flag is set does the assign-
ment search begin.

As in Register d, a memory bit is used for each assignment flag. Since 72 bits are too
many for a single register, the assignment flags are divided between Register F and Register
e. The 36 unshifted key flags are the first 36 bits of Register I; the shifted key flags are
similarly situated in Register e. Figure 4-2 shows the correspondence between bit number and
key location.

To see one of these registers 'in action', we will use Register + as an illustration.
The only key assignments we have made so far were made in Chapter 3, i.e., the assignment of
the byte jumper to the 'Z+ ' key, and the assignment of the 'X<>' function to the '+' key.
If you have made additional assignments in the meantime, your results in the following will
differ from what is shown here, so you might want to delete those extra assignments.

To view the contents of Register + using Routine 4A-2, press 'GTO .008', 'CLX', 'SST',
'FIX 7'. You should see '0.0000021'. The 6 zeros plus the positive sign show that the first
[7x4=28] bits of the number (which is the original content of Register k) are zeros. The '2'
digit, which is 0010 binary, indicates that assignment bit 31 is set; the 'l', binary 0001,
comes from setting assignment bit 36. Referring to Figure 4-2, we see that those bits corres-
pond to the '+' key and the '+ ' key respectively, which are just the keys we had assigned.

Inspection of the contents of Registers  and e thus provides a quick means of finding
which USER keys are assigned, without requiring use of the printer. We used 'FIX 7' because
we were only interested for this purpose in the first 9 nybbles of the register. This trick
is not completely general in its application--if too many keys are assigned, the numbers
derived from a 'RCL F' or 'RCL e' may contain hex digits A-F, which can be hard to decipher
in the display (see Section 5A). You must be sure to restore the original values to the key
assignment registers; otherwise, you will lose the user key assignments, including the portion

34



of user memory used to encode the assignments. If you now press the '+' key in USER mode, the
HP-41C will execute '+' rather than 'X<>', because the zero we stored into Register + with
'XOF' cleared the key assignment flags. To recover, press ('LASTX', if you executed the '+')
'GTO .008', 'SST'. If you accidentally lose the contents of Register + or e while playing
such games, execution of a card reader 'WSTS' followed by reading back the resulting status
card will restore the original key assignments.

The last three nybbles of Register e are the storage location for the program 1line number
(coded in hexadecimal). If the line number nybbles are '000', as when following a 'GTO .000',
a manual 'RTN', or program execution that terminates with an 'END', the next program display
shows '00 REG Tmn'. When program execution halts at a position other than an 'END', the line
number is set to 'FFF'. When the processor 'sees' that mythical line number, it knows that
it must recompute the actual line number before showing the current program line upon the
next activation of PRGM mode or 'SST'.

 

 

36| [28| |20] [12] 4
 

 

35| |27 19 11 3
 

 

34 26 18 10 2   
        
   

   

   

  

   

   

     
33 17 9 1

32 24 16 8

31 23 15 7

30 22 14 6

29 21 13 5           
FiGurRE 4-2. Key AssIGNMENT FLAG BiTs

4F. THE ADDRESS POINTER AND THE RETURN STACK
 

In Chapter 2 we learned that the address pointer uses a 4-digit address consisting of
the byte number plus three register number digits. The address pointer itself is the last
four nybbles of Register b. That is, if the address pointer is positioned at byte 'n' of
Register 'abc', then Register b will contain the number '0000000000nabc'. If a subroutine is
called, the return address is recorded in the next four nybbles to the left of the address
pointer, with the new current address, following the jump to the subroutine, entered into the
pointer nybbles. As further subroutine calls occur, previous return addresses are pushed to
the left. When Register b is full, the addresses continue on into Register a, so that there
is sufficient room in Registers a and b for the current address plus six pending return addres-
ses. At any time, the contents of Registers a and b Took like this:

|yzab uvwx qrst mn|op ijk1 efgh abcd|

| Register a | Register b |

35



where 'efgh' is the first pending return address, 'ijkl' the second, and so forth. When a

'RTN' or 'END' is executed, the 'stack' of return addresses shifts to the right, so that the

first return address becomes the new pointer address, the second return address becomes the

first, etc. The only complication in this nifty scheme is that the return addresses are

written in a slightly different format than the pointer addresses. For example, if the return

is to address '3160', the address would be stored in the return stack as '0760'. The '0760'

is actually a compressed form of '3160'. If we write out all the bits of '3160' we get:

3160 = 0011 0001 0110 0000

For user program addresses (i.e. locations in the HP-41C or memory modules) the first, fifth,
sixth, and seventh bits are always zero, since the first nybble only takes values up to 7
(0111) and the second is always 0000 or 000l. So in the return addresses the three 'used'
bits of the first nybble are moved to the three 'unused' bits of the second. The '3160'
becomes:

0760 = 0000 0111 0110 0000

This compression of the address code frees the first nybble to contain additional information.
Specifically, if the first nybble is zero, the return is to a user program address; whereas
if it is nonzero, the processor knows to return to an address contained in some peripheral
device. For example, all addresses in the printer memory start with the nybble '0110°'.

The most obvious application of knowledge of the structure of the return stack and of
synthetic function access to the stack through functions such as 'STO b' or 'RCL a' is to allow
the user to move the address pointer to arbitrary positions in memory, including to the key
assignment registers or even into the status registers themselves. Also, using a 'STO b', we
can move the pointer directly to any byte of a multi-byte program line for editing just as we
did with the byte-jumper. For full control of such operations, we first need to develop a
facility that allows us to generate arbitrary 7-byte hex codes, and to decipher such codes.
This facility will be developed in Chapter 5.

4G. REGISTER c AND MEMORY PARTITIONING
 

The last unexplored section of user memory in the HP-41C is Register c, which is full
of interesting nybbles and bytes. The 14 hexadecimal digits of Register c¢ are laid out as
follows:

stu|vw|169|mno|pgr

where the letters representing the digits are grouped as the digits are used by the processor.
The letters are chosen to correspond to the memory partitioning shown in Figure 2-5. The
first three digits, 'stu' are the absolute register address of the first of the six summation
registers as specified by the function ' ZREG'. This address is changed each time either
'ZREG' or 'SIZE' is executed. When 'Z+', 'z-', 'CLZ ', 'SDEV', or 'MEAN' is executed, the
processor refers to digits 'stu' to find out which registers are currently designated as the
summation registers.

The new two digits, 'vw' are used for scratch purposes by the printer. Digits 6, 7,
and 8, shown with the explicit value '169', are interesting in a perverse sort of way, since
they are the so-called 'cold-start constant'. At various times during routine operation,
particularly when the HP-41C is turned on, the processor checks the value of the three digits
and compares it with the fixed value '169'. If the digits are other than '169', the processor
assumes that something drastic has occurred to the memory, and so takes the irreversible
step of clearing the user memory and displaying 'MEMORY LOST'. This explains why 'O, STO c'
causes memory loss--that operation clears the '169'.

Digits 'mno' and 'pqr' are three-digit register numbers that correspond to the Registers
‘mno' and 'pqr' shown in Figure 2-5. 'mno' is the absolute address of the lowest numbered
data register, Rgg. The processor refers to 'mno' for each use of a data register. Data
register Ryp 1is tfle memory register with absolute address [mno+ab] (with 'ab' converted to
hexadecima]?.

Digits 'pgr' indicate the current location of the permanent '.END.'. Since the global
label/END chain starts with the '.END.', a 'GTO (alpha)' or 'XEQ (alpha)' instruction starts
the label search in Register 'pqr'.

36



Despite the risk of memory loss when dealing with Register c, there are many important
applications of the manipulation of its contents. Foremost among these are control of the
program/data memory dividing line, and the capability of storing data into program registers,
as will be described in Chapter 5.

37



CHAPTER 5

PROGRAMS FOR PROGRAMMING

The central theme of this chapter is to develop a set of HP-41C programs that allows us
to create, decipher, store and recall arbitrary 7-byte hexadecimal codes, giving us great
power for synthetic programmming. The 'programming' programs and techniques are intended to
perform specific synthetic programming tasks, while acting as examples of the uses of synthetic
functions. Even if you do not use every program from this chapter, you will find it instructive
to study the techniques and programming philosophy embodied in the routines. It is assumed
at this point that you have mastered the byte jumping techniques of Chapters 3 and 4 suffi-
ciently to be able to 'key in' any two byte synthetic function, such as 'RCL M' or 'X<>d', when-
ever it is required in a program. As we did when creating Routine 4A-2, you will find it con-
venient, when byte jumping a series of functions, to start at the bottom of the program and work
upwards, using each prefix entered into the byte jumper generator to ‘'eject' the previous
one. After all the synthetic functions are keyed in, you can insert normal functions with
ordinary keystrokes.

Three crucial synthetic programming techniques are featured in the programs:

1. Multiple use of flags. Direct access to Register d allows a set of user flags to
be used for several purposes simultaneously, simply by saving a current flag status with 'RCL
d' or 'X<>d', using the flags for a second purpose, then restoring the original status of all
flags with a 'STO d' or 'RCL d'. This permits, for example, a program to employ different
display or trigonometric statuses yet always return the HP-41C to the user's favorite flag
status at the end of the program.

2. Use of flags as bits. User control and testing of Flags 0-29 allow programmable
conversion of 30-bit binary numbers to and from decimal or octal. This technique is the indis-
pensable key to creating and deciphering memory bytes and .wultiple-byte codes automatically.

3. Alpha string manipulations. The powerful synthetic alpha register access functions,
used in this chapter's programs to assemble individual bytes into 7-byte codes, and vice-versa,
are encountered again and again in practical synthetic programming, as we will see in Chapter
6.

 

 

 

The HP-41C is designed to process only program- or user-generated data that are normal
decimal numbers. We might, therefore, anticipate that asking the processor to deal with
numbers containing digits 'A' through 'F' will at least cause some unexpected behavior.
Before exploring the promised programming programs, we should first learn how various 7-byte
codes are 'interpreted' by the display, and also study how the codes are affected by register
exchanges such as caused by 'STO' or 'RCL'.

5A. UNSEEMLY DISPLAYS
 

When presented with a sequence of bytes to be displayed (PRGM off) the processor must
first decide whether to display the bytes as a number or as a string of alpha characters. If
ALPHA mode is on, or if 'AVIEW' is executed, there is no choice: all bytes in the alpha register
are displayed as characters. But if ALPHA is off, so that the display is showing a data
register, the choice is determined by the value of the mantissa sign digit. We already know
that if the sign digit is 'l' (0000) or '9' (1001), the register contents are displayed as a
positive or a negative number, respectively. The only other 'normal' sign digit is 'l1' (0001),
for which the register is assumed to contain a six character alpha data string, such as might
result from an 'ASTO' operation. Each of the last six bytes in the register is displayed as
a character; the first byte is not shown. Any sign digit other than the normal '0', 'l', or
'9' will cause the register contents to display as a negative number, but to be treated as
‘alpha data' in many arithmetic operations.

When the displayed register contains alpha data, as indicated by the sign digit 'l',
the display is simplified through suppression of null bytes. A1l null bytes, rather than
just leading nulls as in alpha register displays, are not only blanked but are also 'eliminated’
by moving the non-null characters into adjacent positions. For example, the alpha data coded
'10 00 41 00 00 42 00', which would show as "A=-B=" if viewed in the alpha register following
an 'ARCL', would display simply as "AB" in Register X.

38



Number displays have the additional feature of user choice of the number of digits that
will be shown, including appropriate rounding, using the display format functions 'FIX',
'"ENG' and 'SCI'. We should remember that this choice is only a display feature--the number
is still stored as a full seven bytes.

In many situations numbers containing any of digits 'A' through 'F' will display using
only ordinary decimal characters 'O' through '9'. Since A through F are greater than 9, each
such digit found in the mantissa of a number 'carries' a 'l' into the next digit to the left.
For example, the bytes '0O1 03 BO OF 00 00 00', which 'should' be the number '1.03BOOF', will
display in FIX 6 format as '1.041015'. The F digit shows as 'l5', using two positions. The
B becomes an 'l1', but since there was already a 3 in the next digit, the combination '3B'
displays as '41'.

An exception to this general rule occurs when the displayed number has a non-negative
exponent, and is displayed in a format that shows all ten mantissa digits. These requirements
can only be satisfied by 'FIX' format displays of numbers with exponents between 00 and 09.
If we switch to 'FIX 9' format, the number '1.03BOOF' will be displayed as '1.03;007000'.
The digits B and F are represented by single characters ";" and "?" respectively. These charac-
ters are found in row 3 of the Byte Table, just as are the decimal number characters "0"
through "9". Similarly, digits 'C', 'D', and 'E' display as characters "<", "=", and ">",
respectively. An 'A' digit is represented by the starburst character shown in the lower left
corner of the table box for byte 3A. If a number is 'copied' into the alpha register using
'ARCL', the special characters are preserved, except that the starburst will 'change' to
the alpha character ':'.

Numbers with an exponent zero as '1.03BOOF' are displayed with ten mantissa digits only
in FIX 9 format. If the number were '10.3BOOF' ('l1.03BOOF EOl1'), the special display would
result with FIX 8 as well as FIX 9. In general, we obtain the special display characters
with formats FIX 'n' through FIX 9, where 'n' is nine minus the exponent. However, when the
exponent itself contains any digits A-F, the exponent will display using the special characters
(but not the mantissa, since 10 mantissa digits cannot be displayed with an exponent).

5B. REGISTER EXCHANGES AND NORMALIZATION
 

As we prepare to deal with data registers containing arbitrary 7-byte codes, let us intro-
duce the following classification of codes: first, an 'alpha data string' is any 7-byte code
for which the first nybble is '0001'. A 'number' is any code for which the first and twelfth
nybbles are either '0000' or '1001', and the remaining twelve nybbles are any of the decimal
digits '0' through '9'. Any other code will henceforth be called a 'Non-Normalized Number',
or simply an 'NNN'.

That this classification is useful follows from consideration of the treatment of 7-
byte codes by register exchange functions 'STO', 'RCL', 'X<>', and 'VIEW'. 'STO' is the
most straightforward--'STO mn', where 'mn' refers to any register whether addressed directly
or indirectly, exactly copies the content of Register X into the designated register. Unfor-
tunately for synthetic programming, the other three exchange functions are not so benign.
'RCL pq', 'X<Opq', or 'VIEW pq', if 'pq' refers to a numbered data register, causes the content
of R q to be 'normalized' before it is copied. (Exchanges between status registers do not
cause normalization.) By 'normalized', we mean that NNN's are changed, either into ordinary
decimal numbers (containing no heretical digits greater than 9) if the original mantissa sign
digit was 0 or 9, or into alpha data with a sign digit of 1 if the original sign was other
than 0 or 9. For example, an NNN coded with bytes 'Ol OC 00 DO OE 00 FF', which displays as
'1.1201301 E??', is normalized following 'STO 01', 'RCL O1' to the number '1.120130140 E-35'.
The bytes have actually changed to '0O1 12 01 30 14 09 65'. The NNN '21 OC 42 34 7E 40 DD',
which has an abnormal sign digit, displays as '-1.1242348 E=='. If normalized, it will change
to the alpha data "uB4Z@E", i.e., bytes '11 OC 42 34 7E 40 DD'.

'"ASTO' and 'ARCL' perform still different kinds of register exchanges. 'ASTO' takes
the first six bytes in the alpha register, starting with the first non-null byte, adds a '10'
alpha-identifier byte to the 'front' to make a total of seven bytes, then stores the resulting
bytes in the addressed register. 'ARCL' reverses the process if the addressed register contains
alpha data, dropping the 'Ol' byte and appending the alpha characters to the right end of the
existing string in the alpha register. Leading nulls in the alpha data are dropped; trailing
or intermediate nulls are retained. For example, start with "ABC" in alpha. Then 'ARCL X',
where Register X contains '10 44 45 46 47 48 49' ("DEFGHI") will result in "ABCDEFGHI". If
Register Y contains '10 00 4A 00 00 4B 00' (displayed as "JK"), 'ARCL Y' yields the string
"ABCDEFGHIJ--K-" in the alpha register. Finally, if the register addressed by 'ARCL' contains

39



a number or an NNN, the operation does not copy the bytes of the number into alpha, but rather
changes each digit, as shown in a number display, into the corresponding row 3 character for
storage in the alpha register. 'ARCL' also normalizes the contents of the addressed register.

5C. GETTING STARTED: "CODE"
 

The byte jumper is so far the only tool we have for creation of non-standard program
lines and NNN's (from 'RCL M', etc.) However, the byte jumper is strictly a manual operation,
and has some limitations in the byte codes it can generate (bytes from the lower half of the
Byte Table are difficult to handle). We are now going to write a program called "CODE" which
will automatically generate any 7-byte code specified by the user, placing the code into both
Registers X and M. This program will, through use of an accompanying routine "REG" (which
allows storage of the code into any register), enable generation of any program sequence,
NNN, or non-standard alpha character string. Furthermore, we will be able to make 'synthetic
key assignments' that assign any two-byte functions to user keys. This ability will finally
place the synthetic functions on an equal footing with any normal HP-41C or peripheral function:
namely, they will be able to be executed manually or inserted anywhere into a program with
single keystrokes.

"CODE" is designed to satisfy several requirements. Upon execution, the program should
halt and prompt the user for entry of an easy-to-key code that specifies a 14-digit hexadecimal
number. Following entry, the program should run with no further user intervention, yielding
the desired number coded with the proper bytes. Even though the flag register will be required
for the byte creation, the program should restore the original flag status at the finish.
Finally, for reasons which will become clear later (Section 6G), "CODE" should use no numbered
data registers. This set of requirements is rather difficult to implement--the version of
"CODE" described here is many times revised from the original (see 'HP-41C Black Box Programs',
PPC Calculator Journal, V6 N8 P27).

 

 

@1eLBL “CODE" 24 CHS 46 SF 15 68 RCL \
82 “CODE=?" 25 FS? 06 47 F$? 15 69 RCL I
83 AON 26 CHS 48 CHS 70 570 \
84 5TOP 27 SF 06 49 FS? 14 71 Rt
85 AOFF 28 %(8? 58 CHS 72 ST0
@6eLBL ~CO* 29 CF 86 51 SF 14 73 “her
87 “HABCDEFG" 36 X(8? 52 X(8? 74 %O\
88 .086 31 SF 65 53 CF 14 75 Rt
89 570 L 32¢LBL 91 54 X(8? 76 ST0 1
164LBL “HB" 33 ST* ¥ 55 SF 13 77 Rt
11 34 FS2C 94 564LBL 81 78 §T0 \
12 RCL 35 SF 00 57 FS2C 12 79 “heer
13 %d 3 FS2C 85 58 SF 84 88 RCL 2 “CODE"
14 %OV 37 SF o1 59 FS7C 13 81 ST0 [
{5 CF 90 38 FS7C 96 68 SF 85 82 1SG L 191 ByTEs
16 CF 1 39 SF 92 61 FS2C 14 83 CT0 "He"
17 CF 92 48 FS7C 07 62 SF 86 84 RCL [
18 FS?C 03 41 SF 03 63 FS?C 15 85 CLA
19 T0 61 42 FS2C 11 64 SF 87 86 ST0 [
20 SF @4 43 CTO 61 65 RN 87 AVIEW
21 FC2C 87 44 SF 12 66 %O d 88 TONE 9
22 SF 97 45 FC7C 15 67 RCL ] 89 END
23 FS? 07   

Instructions for use of "CODE":
1.

2.

'F',respectively.

XEQ "CODE".
_ At the prompt "CODE=?", key in 14 alpha characters to represent the desired code,

using the characters "0" through "9" and "A" through "F" for the nybbles '0' through

3. R/S.
4. At the beep, the requested code will be in Registers X and M (shown with 'AVIEW').
an 'AVIEW'.

40



To test that your version of "CODE" is correct, try these examples:

Input Output (AVIEW)

"41 42 43 44 45 46 47" —>  "ABCDEFG"
"00 01 28 29 00 7F 7E" —  "R()"F 1"

[The remainder of this section is a detailed discussion of the operation of "CODE", and
may be skipped at a first reading.]

The task for "CODE" is to convert 14 characters, entered by the user following the
halt at line 04, into the corresponding bytes. (The gTobal labels "CO" and "HB" are for use by
other programs calling portions of "CODE" as subroutines.) To minimize program length, this
task is handled by a routine that converts one pair of input characters into one output byte.
The routine is run 7 times, using the alpha register to append the successive output bytes
together. The problem is complicated by the requirement that we use no data registers, leaving
only the alpha register(s) and the stack for juggling the input code, the output code, the
original contents of the flag register, and any arithmetic that might be required for the
conversions. _

The basic conversion routine is found in lines 10-64. To understand how it works,
let's start by assuming that one pair of input characters has been moved into the first two
bytes of Register d. For example, take the characters "49", which are to be changed into the
single byte '49'. The initial characters are actually bytes '34 39'--what we must do is
ignore the '3's and move the '4' into the first nybble, and the '9' into the second:

34 39— 49 39

after which we will concentrate only on the first of the two bytes. The shifting of digits
is done with ordinary flag operations--recall that in Register d, the first four bits are
Flags 0-3, the next four are Flags 4-7, etc. The program lines to do the copying are as
follows (to the right of each line is shown the effect of execution of the line on the first
16 bits of Register d):

Program Line Flags 00-15

(initial value '34 39') 0011 0100 0011 1001
15 CF 00 "
16 CF 01 !
17 CF 02 0001 0100 0011 1001
18 FS?C 03 0000 0100 0011 1001
19 GTO 01

32 LBL 01

34 FS?C 04 "
35 SF 00 "
36 FS?C 05 0000 0000 0011 1001
37 SF 01 0100 0000 0011 1001
38 FS?C 06 "
39 SF 02 "
40 FS?C 07 "
41 SF 03 "
42 FS? 11 !
43 GTO 01 !

56 LBL 01 "
57 FS? 12 !
58 SF 04 0100 1000 0011 1001
59 FS? 13 "
60 SF 05 !

61 FS? 14 "

41



62 SF 06 !
63 FS? 15 !
64 SF 07 0100 1001 0011 1001 = 49 39

The simplicity of the preceding set of program lines arises from the circumstance that
the second nybble of each character "0" through "9" is the same as the numerical equivalent
of the character. Unfortunately, this is not true for characters "A" through "F", requiring
a more complicated conversion process. The program must test each input character to determine
whether it is 'greater' than "9" and thus needs extra processing. The testing is done for
the first of the pair of input characters in line 18. The additional conversion is performed
in lines 20-31 (and uses line 11). The second input character of the pair is tested in line
42; lines 33 and 44-55 provide the corresponding conversion.

The remainder of "CODE" is centered around the basic routine described so far: the
program must place two input character bytes in the first two bytes of Register d, run the
routine, then extract one output byte from Register d. Registers N and 0O are used to store
the input characters; Register M contains the ‘'growing' output code. You may find it of
interest to single-step through lines 66-81 to see how the leading byte from Register d is
appended to the last character position in Register M, while simultaneously the user input
code is moved Teft by two positions in Registers N and 0. After seven iterations (Register L
is used as a counter) M contains the final output bytes.

When the input characters are stored into Register d (line 13), numerous system flags
are set or cleared (half the fun of "CODE" is watching the various annunciators blink on and
off), including possibly Flag 52, the PRGM mode flag. If this flag is set during a running
program, certain operations will cause the HP-41C to go berserk and start to program itself!
(See Section 7B.) Included among these operations are ordinary number entry lines, so to
avoid such a catastrophe, the entry of a 'l' in line 11 precedes line '13 X<>d', necessitating
the otherwise wasteful inclusion of Tine 'l4 X<OY'.

5D. DIRECT ACCESS TO PROGRAM REGISTERS

The program "CODE" developed in the last section is a powerful synthetic programming
tool, but so far there's not much we can do with it, beyond creating strings of non-keyable
alpha characters, since the output codes can only be transferred into other data registers.
But consider this: the division of the HP-41C memory into program and data registers is entirely
controlled by one number--namely, the absolute address of Rpg, Stored in Register c. Changing
that address is normally done only with the 'SIZE' function, which also shifts the contents
of memory registers so that program stays program and data stays data. As ambitious program-
mers, we will not let this minor detail deter us--synthetic functions give us access to Register
c, and now "CODE" allows us to create any bytes we might wish to store there. By placing the
proper code into Register c, we can move the 'curtain' separating program and data registers
anywhere we want without using 'SIZE', and thereby transform the contents of data registers
into program lines, or vice-versal!

Furthermore, to maintain the proper spirit, we will write a program to perform the
whole process of storing into program registers automatically. The general approach is this:
we use "CODE" twice, once to create a temporary value to store into Register c that will
specify as Rgp the program register into which we wish to store; and again, to create the
special code to be stored. Then we swap the new value for Register ¢ with the original,
using 'X<>c', execute 'STO 00' with the special code in X, then restore the original contents
of Register ¢ so that access to existing programs and data is preserved.

The specific value that we wish to store into Register c¢ is '10 00 01 69 xy zl1 00',
where 'xyz' is the 3-digit absolute address of the program register we wish to access. The
'169' is the 'coldstart' constant needed to prevent 'MEMORY LOST'. '100' is chosen for simpli-
city for both the ' REG' address and the '.END.' address--since this value for Register c is
only temporary, it is not too important which values we use. Having the byte 'l0' starting
the code is convenient because it makes the string 'alpha data', which can be stored and
recalled without normalization. The only variable in the new Register ¢ value are the digits
'xyz', so we can save execution time by only using "CODE" to create two bytes (in this case
'xy z1') rather than a full seven. The next program, 'REG', is an implementation of these
ideas.

42



 

@1eLBL “RREG" 14 570 » 26 ¥¢
02 SF 18 15 “Feeeeeeferi- 27 RCL (
83 GT0 o1 16 .881 28 X(> 09
84¢LBL “REG" 17 8TO L 29 FS7C 12
85 CF 18 18 XEQ =HB-" 38 STO @9
B6+LBL 81 19 “pe- 31RO "REG"
87 “REG?" 20 RCL [ 32810 ¢
98 AON 21 STO @@ 33 XY
89 STOP 22 CLD 34 “REG-" 100 Brres
18 AOFF 23 FC? 19 35 ARCL @1
11 ASTO 81 24 XEQ “CODE" 36 AYIEN >1ZE 002
12 *F1" 25 RCL 08 37 END
13 RCL [   
 

Instructions for "REG":
1. XEQ "REG". (If you only wish to recall the contents of a register, XEQ "RREG".)
2. At the prompt "REG?", enter three alpha characters to identify the absolute address
of a register, then R/S.
3. At the prompt "CODE=?', enter 14 alpha characters to specify the code to be stored,
then R/S.

4. The display "REG-abc" (abc is the register address) announces that program execution
is complete.

Line 15 of "REG" is a synthetic program line, code 'FA 00 00 00 00 00 00 10 00 01 69°'.
It can be created by byte jumping as follows:

15 STO 07
16 STO 02
17 "+ABCDEFGHIJ"

JUMP .016 [16 X>Y? ]
17 0
18 /
19 LBL 00
20 FRC

JUMP .016 [16 X>Y? ]
SST, SST [18 / ]
DEL 001 [17 STO 02 ]
JUMP .017 [17 - ]
DEL 005 [16 STO 02 ]
GTO .018 [18 X<=Y? ]
DEL 005 [17 "="""""@~%@" ]
GTO .015 [15 STO 07 ]
DEL 002 [14 STO N ]

The label "RREG" 1is provided in case you want only to recall the contents of a register.
Remember, however, that the recalled register will be normalized by the recall.

As an example of the use of "REG", execute 'SIZE 010' (if no memory modules are inserted
--use 'SIZE 074' for one module, 'SIZE 138' for two, 'SIZE 202' for three, or 'SIZE 266' for
four). Now use 'CAT 1' to place the pointer in the first program in memory, then press 'RTN'
to put the pointer at the start of the program. The address of the first program register in
this configuration is 'OF5'. In PRGM mode, key in seven 'ENTER' lines, which just fill Register
OF5, pushing the already existing programs down in memory. To create the synthetic text line
"R

XEQ "REG" ["REG?" ]
IIOFSII

R/S ["CODE=?" ]
"F6232323232323"

R/S ["REG-OF5" ]

43



GTO first program (use CAT 1)
GTO .001
PRGM (on) [01 "“######" ]

If you repeat the above sequence, replacing the "F6232323232323" with "0191759F0A9676", the
following program lines will be placed at the top of program memory:

 

01 LBL 00
02 STO M
03 TONE O
04 ISG N    

(The 'TONE O0' in line 03 is actually 'TONE 10'--see Section 7A.)
Any synthetic program lines can be created in this manner. To make a line requiring

more than 7 bytes, we simply use "REG" twice (or even three times), storing 7 bytes of the
code at a time into adjacent registers.

SE. SYNTHETIC KEY ASSIGNMENTS
 

A powerful application of "REG" is for the generation of 'synthetic key assignments',
i.e., assigning synthetic two-byte functions to user keys so that they can be executed manually
or entered directly into programs. To achieve the assignments, we simply use "REG" to store
special codes into the key assignment registers. Each such use of "REG" can assign two user
keys. The procedure is best illustrated by use of an example: we will assign the functions
'RCL M' and 'STO M' to the 'TAN' (25) key and the 'ATAN' (-25) key respectively.

1. Clear all existing key assignments except the byte-jumper. (This drastic step is
not usually necessary, but you should do it this time.) 'PACK', then assign any function to
any key.

2. Assign any HP-41C function to the two keys to be assigned (for the example, assign
the 'TAN' key and the 'ATAN' key). This puts a 'dummy' code into Register 0CO, the lowest
assignment register, and also sets the proper key assignment flags in Registers F and e.

3. Determine the required code to overwrite the dummy code in Register 0CO. This code
follows the format described in Section 2E. The byte codes for the functions to be assigned
can be found in the Byte Table; the key assignment bytes are shown in Figure 2-6. In this
case the code is:

FO starts a key assignment register
90 75 'RCL M'
42 assignment of 'TAN' key
91 75 'STO M
4A assignment of 'ATAN' key

4. Use "REG" to store the assignment register code into Register 0CO. For this example,
we enter "OCO" at the "REG?" prompt, and "F090754291754A" at the "CODE=?" prompt. After
"REG-0CO" displays, we will find that pressing the 'TAN' key executes 'RCL M'; the 'ATAN' key
executes 'STO M',

This synthetic assignment technique is by no means limited to synthetic functions. The
whole point of key assignments is to allow the user to replace frequently-used multi-key
sequences with single keystrokes. Ordinarily, a single instruction like 'ST+IND X' takes
five keystrokes; the best we can do normally is reduce it to four by assigning 'ST+' to a
user key.. But with synthetic assignment techniques, there is no reason not to assign the
entire function 'ST+IND X' to a key (the function code in this case would be '92 F3'.)

In addition, synthetic assignments are not limited to HP-41C functions; we can also
assign peripheral functions to keys. We simply obtain the 'XROM' code for the desired function
from the appropriate peripheral manual, convert the 'XROM' code to hexadecimal using the
conversion described in Section 2B, then store the resulting byte codes into an assignment
register. This method allows a user to enter programs containing peripheral functions into
memory even when the peripheral is unavailable. Also, we can enter 'nonprogrammable’ functions,
such as 'LIST' or 'WALL', into programs. The codes for nonprogrammable card reader and
printer functions are shown in Table 5-1.

When a normal HP-41C function is assigned to a key, only one of the two function bytes
in one half of an assignment register is used to identify the function. The first of the two

44



TABLE 5-1

Non Programmable Peripheral Functions

 

Function XROM Number Byte Code Execution?

CARD READER 30,00 A7 80 Clears digits flags
VER 30,05 A7 85 Normal
WALL 30,06 A7 86 Normal
WPRV 30,09 A7 89 Normal
-PRINTER- 29,00 A7 40 Crash
LIST 29,07 A7 47 Lists from next line
PRP 29,13 A7 4D NONEXISTENT

bytes is always '04' (LBL 03). If the first byte is other than '04', the processor knows that
the assignment corresponds to a two-byte peripheral function. If the peripheral is absent
pressing the assigned key produces the appropriate 'XROM' code. In the case of two-byte syn-
thetic assignments, the first function byte differs from '04', again with the result that
pressing and holding the key displays an 'XROM' code. In our example of assigning 'RCL M' to
the 'TAN' key, pressing the TAN key gives a display 'XROM 01,53'. Releasing the key prior to
the 'NULL' display causes 'RCL M' to execute.

Synthetic XROM codes can be deciphered in the same manner as normal XROM's, as described
in Section 2B. For example, to determine the XROM code corresponding to 'RCL M', we write
out the hex code '90 75' for 'RCL M' in binary, then group the last 12 bits into two 6-bit
numbers, which we convert to decimal:

hex: 9 0 7 5
binary: 1001 |0000 01|11 0101|
decimal: 01 53

Hence 'RCL M' = 'XROM 01,53'. Similarly, 'STO M' = 'XROM 05,53'.
To facilitate the construction of a large set of key assignments, it is convenient to

automate the synthetic assignment procedure more than is possible through use of "REG". Use
of the 'Key Assignment' program, "KA", listed next, eliminates preliminary manual key assign-
ments, use of Figure 2-6 to determ1ne key codes, and any necessity for worrying about the
current contents of the key assignment registers. "KA" will refuse to overwrite an existing
assignment unless the user manually clears the assignment when prompted.

Three additional utility routines are listed with "KA". "KP" 'packs' the key assignment
registers. Although two key assignments use only one key assignment register, clearing two
key assignments will not recover one register for further use unless both assignments were
recorded in the same register. It is thus possible to have a number of half-filled assignment
registers. "KP" compresses the code in the assignment registers, leaving at most one half-
filled register when there are an odd number of active key assignments. The half-filled regis-
ter will be Register 0CO, so that a new assignment will fill that register.

The "Clear Assignments" program "CA" automatically clears all function and user program
assignments. However, "CA" does not clear the key assignment bytes in global labels, so that
if a program is assigned to a key that was first assigned to another program lower in memory
then cleared by "CA", that first assignment will be reactivated.

"EF", or 'End Finder', is a routine used by "KA", "CA", and "KP" to locate the '.END.'.
If 'xyz' is the number ofreg1sters separating Register OCO and the '.END.' register, then "EF"
places the number 'O.xyz' into Register X, to control iterations involving recalling each of
the assignment registers in turn. Line 31 of "EF" places the code 'FO 00 00 00 OC OC OC'
into Register M. This NNN is stored by the other programs into Register ¢ so that Register
0CO temporarily becomes data register Rpg. When this value is in Register c, a program
halt will cause 'MEMORY LOST'. To avoid tihis, do not halt the execution of "“KA", "CA" or
"KP" while they are running. Furthermore, always be sure that none of the four routines is
the first program file in memory. There must be at lTeast one 'END' preceding the routines so
that their backward-jumping 'GTO's will function properly. When a GTO causes a jump to a
label higher in memory, the label search proceeds downwards to the 'END' of the file, then
resumes at the top until the label is found. With the program/data 'curtain' moved to Register
0CO, the search will jump into data memory unless there is an 'END' in a program file higher

 

 

45



in memory.

 

 

@14LBL "KA" 51 SF 99 188+LBL 81 149 SF 18
B2 XEQ “EF* 52 ABS 181 SF IND Y 156 FS?C 15
83 CF 99 53 .1 162 X(> d 151 SF 17
84 CF 81 54 # 183 ST0 [ 152 FS?C 14
85 SF 83 55 LASTY 104 “Fesss" 153 SF 16
86 RCL [ 56 - 185 FC7C 81 154 CF 87
87 ENTER® 57 INT 186 “Feees 155 SF 83
08 X¢ 5% 5T- a 187 RCL » 156 %> d
89 XY 59 LASTY 168 FS? @@ 157 ARCL X
18 ¥()> 08 68 FRC 189 ST0 e 158 *HARC*
114LBL 89 61 20 118 FC?C 88 159 8
{2 - 62 * 111 70 168 %¢> \ “KA"
13 %0 [ 63 ST- a 112 CLA 161 STO [
14 “Fe £4 2 113 ARCL L 162 RDN 334 BYTES
15 XN 65 * 114 RCL a 163 RDN
16 X=0? 66 + 115 XEQ 82 164 END
17 GT0 91 67 § 116 FS2C @3
18 *b------ - 68 FC7 0@ 117 GT0 85 81eLBL “EF*
19 %O\ 69 CLX 118+LBL 86 82 RCL ¢
20 156 2 79 + 119 ASTO ¥ 83 ST0 [
21 GTO 82 71 %> a 129 == 04 “Feesex-
22 STO 0@ 72 24 121 FCIC 22 85 RCL [
23 RDN 73 ¥{=Y? 122 "Feoe- 86 X{> d
24 ST0 ¢ 74 SF 81 123 ARCL ¥ 87 CF 90
25 GT0 15 75 FC? 81 124 RCL [ 88 CF o1
264LBL 83 76 CLX 125 =ppy* 89 CF 82
27 %> IND 2 27 - 126 RCL [ 18 CF 83
28 GTO 99 78 FS? 09 127 %O ¢ 11 F52C 87
29¢LBL 81 79 RCL e 128 XOY 12 SF 85
38 RDN 88 FC? o9 129 STO 69 13 FS?C 88
31 §T0 ¢ 81 RCL 138 XY 14 SF 86
32 CLA 82 ASTO L 131 %O ¢ 15 F$?C 89 WEEH
gBOLBL gs 83 STO [ 132 *DONE" 16 SF 87
4 CF 2 84 FS? 81 133 BEEP 17 FS2C 18

35 ASTO L g5 “Feeen 134 PRONPT 18 SF 89 /79 ByTEs
36 "PRETPOSTHKEY* 86 X[ 135¢LBL 82 19 FS2C 11
37 TONE 8 87 %> d 136 ¥=0? 20 SF 19
38 PROMPT 88 FC? IND Y 137 “Feseer 21 FS2C 12
39 CLA 89 GTO 01 138 0OCT 22 SF 11
48 ARCL L 9 %> d 139 €3 23 %O d
41 FC? 22 91 RCL © 148 / 24 DEC
42 GT0 96 92 FIX 9 141 19 25 193
43 %2 93 *CLEAR * 142 + 26 -
44 XEQ 82 94 ARCL T 143 %O d 27 %(8?
45 XEQ 82 95 TONE 4 144 FS2C 19 28 GT0 15
46 36 9 PROMPT 145 SF 29 29 1 E3
47 ST0 a 97 STO \ 146 FS7C 18 30 /
48 RN 98 RDN 147 SF 19 31 “estppp*
49 ENTER? 99 %> d 148 F52C 17 32 END
50 %(8?   

Instructions for "KA". (Should not be first program in memory.) To make one or two assignments:
1. XEQ "KA". The display will show 'NONEXISTENT' if no registers are available for
assignments. DO NOT ATTEMPT TO HALT EXECUTION; IF STARTED, MAKE AT LEAST ONE ASSIGNMENT.
2. At the prompt "PRE POST KEY", key in three numbers:

'prefix', 'ENTER+', 'postfix', 'ENTER+', 'keycode', R/S

The 'prefix' and 'postfix' are the decimal values of the prefix and postfix bytes of
the function to be assigned, which can be determined from the Byte Table. For example,

46



the function 'STO N' ('91 76') would be entered as prefix '145', postfix '118'. The
'keycode' is the same row-column code that is displayed during ordinary assignments.
Thus the 'l1/X' key has keycode 'l12', the 'FS?' key has code '-54', etc. The 'CHS',
'"EEX', and keys (and their shifted counterparts) should be entered with keycodes
'43', '44', and '45' (negative for shifted keys), respectively, as if the 'ENTER+'
key covers an imaginary key '42'.
3. If the key designated in Step 2 is already assigned, TONE 4 will sound, and the
display will shown "CLEAR nm", where 'nm' is the keycode. The user should manually
clear the assignment, then press 'R/S' to continue.
4, Step 2 will repeat automatically for the second assignment. If only one assignment
is desired, press 'R/S' at the prompt. At the completion of "KA", the BEEP will sound,
and "DONE" will be displayed. For further assignments, return to Step 1.

 

Instructions for "CA":

   
 

@ieLBL =Ca" 11 %> IND [

82 @ 12 ¥=Y?

83 ST ¢ 13 GTO 81

84 STO T 14 RCL 2 ”CA”

83 XEQ “EF*" 19 ISG [

86 X{> [ 16 GTO @A

87 O ¢ 17¢LBL 81 41 BYTEs
88¢LBL A@ 1§ RCL Z

89 8 19 570 ¢

18 ENTERt 28 END

1. XEQ "CA". If no function assignments are present, "NONEXISTENT" will be displayed.
DO NOT HALT EXECUTION.

BieLBL “KP" 23 CL¥ 49 CLA 73 (> ©

82 XEQ “EF" 26 “he" 28 RARCL L 74 STO

83 ST0 Y 27 STO ~ 21 ARCL X 79 X=@?7

84 RCL [ 28 “hees 32 SF 83 76 GTO 14

83 (> c 29 XX N 23 156 2 77 ASTO X
86 ENTER? 30 “Fe" 24 CF 82 78 ASHF
87 CLA 31 RGN 99 GTO 85 79 ASTO L

88 CF 83 32 ¥=8? Jb¢LBL 87 8a ==

89¢LBL 14 33 GT0 81 af ¥ [ 81 ARCL X

18 FS?C a3 34 XN 98 XEQ @9 82 CLX

11 GTO @7 35 ASTO [ 39 ¥{> 08 83 x> [

12 CLX 36 “he" o8 SIGHN 84 STOIND T "KP"

13 %> IND 2 37 ST0 ~ 6l X8? 85 ARCL L

14 SF 25 38 “e" 62 GTO 83 86 ISG T

15 =07 39 %O 63 CLY 87 CT0 14 190 Bvres
16 FS?C 25 48¢LBL 81 b4 LASTY 88 RTH

17 GTO 87 41 STO » oo XEQ @0 89¢LBL 68

18 ASTO L 42 FC2C 81 b6 STO IND T 98 -*

19 CF o1 43 “Feee- b7¢LBL 82 91 XX [

28 STO [ 44 XN 68 RDN 92 “Ht-

21 ASHF 45 CLA 89 STO ¢ 93 XO

22 X( 46 570 ( 78 TONE 9 94 “Hittttt-

23 ¥=8? 47¢LBL 89 71 RTH 95 X(» ™

24 SF 61 48 ASTO X 72¢LBL 85 9% END   
Instructions for "KP":

1. XEQ "KP". "NONEXISTENT" will display if the key
DO NOT HALT EXECUTION.

Certain lines in the key assignment programs require careful byte-jumping.

assignment registers are empty.

step procedures for keying the lines into program are listed next.

47

Step-by-



Lines 12 and 120 in "KA", and lines 80 and 90 in "KP" all have the byte code 'F1 FO'.
To make one of these, e.g., "KA" line 12, use this procedure:

12 STO 01
13 IIBJ "

JUMP [13 * ]
14 GTO 07
15 STO IND T

PACK [14 STO IND T ]
JUMP .013 [13 = ]

14 llAll

GTO .014 [14 - ]
DEL 002 [13 "Bm" ]
PACK
JUMP [13 * ]

14 X<OY
GTO .015 [15 HMS- ]
DEL 001 [14 "B" ]
GTO .012 [12 STO 01 ]
DEL 002 [11 LBL 00 ]

Line 125 in "KA" is code ‘F30CoOC oCc' :

125 STO 01
126 "BJ"

JUMP [126 * ]
127 “ABC"

GTO .127 [127 - ]
DEL 004 [126 "Bm" ]

127 LBL 11
128 LBL 11
129 LBL 11

JUMP .126 [126 * ]
127 XY

GTO .125 [125 STO 01 ]
DEL 002 [124 RCL M ]

The code for "EF" 1ine 04 is 'F6 7F 00 00 00 00 02':

04 STO 02
05 "-ABCDE"

JUMP [05 - ]
SST 3 times [08 X<Y? ]

09 LBL 01
JUMP .005 [05 - ]
DEL 004 [04 STO 02 ]
DEL 001 [03 STO M ]
GTO .005 [05 X>Y? ]
DEL 001 [04 "p=—---m" ]

Finally, line 31 of "EF", 'F7 FO 00 00 00 OC OC OC':

31 STO 01
32 IIBJ "

JUMP [32 * ]
33 GTO 10
34 STO IND T

PACK [33STOINDT ]
JUMP .032 [32 * ]

33 "ABCDEFG"
GTO .033 [33 - ]

48



DEL 008 [32 "B®" ]
PACK

GTO .033 [33 " ]
34 +
35 +

36 +
37 LBL 11
38 LBL 11
39 LBL 11

GTO .034 [34 + ]
DEL 003 [33 " ]
JUMP .032 [32 * ]

33 XY
GTO .031 [31 STO 01 ]
DEL 002 [30 / ]
GTO .032 [32 HMS- ]
DEL 001 [31 "@--upu" ]

As an example of the use of "KA", use it to assign the functions 'RCL b' (prefix
144/postfix 124) and 'STO b' (145/124) to keys. These functions are allow us to move the
address pointer to usually inaccessible locations in memory. Try this (follow exactly;
keying in extra lines while the pointer is in the status registers will cause 'MEMORY LOST'.)

XEQ "CODE" [CODE=? ]
"00000000000006"

R/S [n)'n ]

AL PHA [nrn ]
"ABCDEFGHIJ"

ALPHA (0,000,000.000 ]
STO b (use the assigned key)
PRGM, SST [01 Xx<Y?
DEL 003 [00 REG --- ]

01 RCL 08
02 STO 15
03 RCL 09

PRGM (off)
ALPHA [ABC(?)GHIJ ]

You actually edited the alpha register--the 'STO b' sent the address pointer to address 0006,
the last byte of Register N. The 'DEL 003' wiped out the first three bytes of Register M,
which you then replaced with the characters "(?)" by inserting the corresponding program
lines. Similarly, if you change the characters in the alpha register, you will see new program
lines in PRGM mode.

5F. CREATION OF SYNTHETIC PROGRAM LINES
 

Synthetic program lines may be grouped into four general types: (1) two-byte synthetic
'functions', usually a combination of a status register postfix with a normal prefix; (2)
synthetic text lines, containing at least one non-keyable character; (3) other non-standard
multi-byte lines, principally global labels, 'GTO's and 'XEQ's, where the label name contains
non-keyable characters; (4) 'En' lines, where a normal line 'l En', entering a power of ten
such as 'l E3', is shortened to 'En' by removing the superfluous 'l' byte. Of these four,

types 1 and 2 are most common. Type 3 lines, given the abundance of normally available global

labels, are primarily just curiosities which will interest only advanced program tinkerers.

Generation of type 4 lines will appeal to the purist to whom a single wasted byte is offensive.
We will discuss in detail methods of making types 1 and 2, and learn in passing how to make
type 4 lines. Type 3 lines will be given little attention; in general they can be created
using the same methods as for type 2.

We have studied three approaches to the task of creating synthetic program lines. The
most powerful of these is use of a custom byte preparing routine, "CODE", to create arbitrary

49



byte sequences that can be stored into program memory using "REG". This 'programmed program-
ming' method is unlimited in its application--with it, we can create all four types of synthetic
program lines, with any combinations of bytes. The price of this power is the program 'over-
head' of the nearly 300 bytes required for "CODE" and "REG". Furthermore, we need a means of
determining the address of the register where the new lines are to be stored, requiring yet
another program (see Section 5J).

The second program line-generating technique is to use "KA" to assign synthetic functions
to keys so that they can be entered into programs at will. This method is limited to type 1
lines. Since "KA" 1is such a long program, it is best used to create several assignments in one
session, followed by its removal from memory.

The availability of certain special key assignments, which depend upon quirks in HP-41C
operation, provides a third approach to synthetic line generation. The prototype of such
assignments is the byte jumper, which we used to start the whole synthetic programming process.
As we shall see in the next section, the use of key-assigned 'RCL e' and 'STO e' results in an
important improvement of the byte jumper process. Sections 5H and 5I describe two new special
assignments for exotic editing, the 'text-enabler' and the 'Q-loader'. The text-enabler allows
us to convert arbitrary existing program lines into text lines, and vice-versa. The Q-loader
is used with "CODE" to store arbitrary 7-byte codes into program as text lines. The byte
jumper and the text enabler require very little program overhead, but are limited somewhat in
the byte combinations they can produce separately (used together, the byte-jumper and the
text-enabler can make any byte combinations except those containing bytes E4 through EF).
Any combination of seven or fewer bytes can be made using the Q-loader with "CODE".

From the above considerations, a recommended approach to synthetic programming is to
use a ‘'standard synthetic programming keyboard', such as that shown in Figure 5-1, with key
assignments for the most frequently used synthetic functions. When the need arises for other
synthetic program lines, use the byte jumper and/or the text enabler. When these are insuffi-
cient, load in "CODE" and use the Q-loader. Finally, if necessary, use "REG" for any strange
byte combinations that defy the other methods.

 

 

  

  

 

    
        
  

  

  

  

 

  

REG §TO b RCL ¢ X< >d RCL 4

r L
AD RCL b CODE {)ECODI-]: STO d

Byte Jump x<>. ¥< >N STO N STO M

X<>M RCL RCL lfl

cs CR

$TO Q

RCL e STO e DEL

PACK

Q-Loader
               

FIGURE 5-1, A SYNTHETIC PROGRAMMING KEYBOARD

50



A study of the various programs in this book will reveal that the following synthetic
functions are used frequently enough to justify permanent key assignments: STO M, RCL M,
XOM, STO N, RCL N, and X<>N, for ready access to the alpha registers; STO b and RCL b to
move the program pointer around; X<>c and RCL c¢ for manipulating data register addresses;
STO d, RCL d, and X<>d, for flag register access; STO e and RCL e for 'enhanced byte jumping'
(Section 5G); STO Q and the Q-loader (see Section 5I); the byte jumper. If memory space
permits, it is convenient to have "CODE", "REG", "CS" and "CR" (Section 5K), and "AD" (and
even "DECODE"--see Section 5J) in memory and assigned to user keys. Figure 5-1 shows a con-
venient set of user keys assigned to make a 'synthetic programming keyboard'. Note that all
'STO' and most 'X<>' functions are assigned to shifted keys to reduce the risk of accidental
storage into a sensitive register.

"KA" can be used to make the function key assignments required for the user keyboard
shown in Figure 5-1. Table 5-2 lists the prefixes, postfixes and keycodes required, as well
as the 'XROM' code that will display when one of the assigned keys is pressed and held.

TABLE 5-2

"KA" Entries for the Keyboard of Figure 5-1

 

Function Prefix Postfix Keycode XROM Code
STO b 145 124 -12 ,
RCL b 144 124 12 01,60
RCL ¢ 144 125 -13 01,61
X<>d 206 126 -14 57,62
STO d 145 126 -15 05,62
RCL d 144 126 15 01,62
X<>ce 206 125 =22 57,61
X<ON 206 118 -23 57,54
X<OM : 206 117 23 57,53
RCL N 144 118 24 01,54
STO N 145 118 -24 05,54
RCL M 144 117 25 01,53
STO M 145 117 -25 05,53
STO Q 145 121 -51 05,57
RCL e 144 127 -62 01,63
STO e 145 127 -63 05,63
Q-Loader 4 25 -82 "oD"
Byte Jumper 241 65 -21 05,01

The following sequence will also assign the functions from Table 5-2:

1. Assign any HP-41C function to the following keys:

1/X yX X=Y?
10X x2 ASIN
LN eX ACOS
% TAN ATAN
SIN CLZ P-R
cOS BEEP T

2. Execute "REG" nine times, entering the codes as listed, at the corresponding prompts:

RUN "REG?" Entr "CODE=?" Entr
T 0CO F091763K917SE%
2 0C1 FOF1410ACE762A
3 0C2 FOCE7E39CE7522
4 0C3 F0917C19907C11
5 0C4 FOCE7D1A907D29
6 0C5 FO917E49907E41
7 0C6 F0907542907632
8 0C7 F091790D041920
9 0C8 FO907F1E917F 2E



5G. ENHANCED BYTE JUMPING (eJUMP)
 

The principal defect of byte jumper editing is its inability to alter directly the
second byte of a multi-byte program line. As a result, we have to resort to use of the 'gener-
ator', a dummy text line used to 'hide' prefix bytes so that postfixes can be inserted into
program then attached to the prefix when it is 'pushed' out of the generator. Besides requiring
a double use of the byte jumper, this method leaves a lot of leftover bytes that must be
deleted, including the generator itself.

This inability to alter 'second bytes' arises from the fact that bytes are normally
inserted in program following the last byte of the currently displayed line. But as was
first pointed out by Roger Hill, this rule is not applied if the current program line number
is '00'. In that case, inserted bytes enter program immediately after the current address
pointer byte. ‘'Enhanced byte jumping' takes advantange of this feature to eliminate the need
for the generator line.

The easiest method of setting the line number to zero is to press 'RTN', although this
returns the pointer to the top of the current program file. But the simple sequence (PRGM
off) 'RTN', 'RCL e', 'GTO .1mn', 'STO e', changes the line number of any program line from
its normal value 'Imn' to '00'. Register e contains the line number--at any point, restoring
to Register e the value it contained following a 'RTN', resets an arbitrary 1ine number to zero.
Switching to PRGM mode following this sequence always results in the display '00 REG Imn'.
You can also achieve the same result with 'GTO .Imn', 'RCL b', 'RTN', 'STO b'.

As we did for the original byte jumper, it is convenient for simplification of programming
instructions to introduce a new instruction 'eJUMP .1mn', which instructs the user to make the
following keystrokes:

'eJUMP .1mn' means 1. PRGM off 1. PRGM off
2. RTN 2. GTO .1mn
3. RCL e 3. Press byte jumper
4. GTO .1mn OR 4, RCL b
5. Press byte jumper 5. RTN
6. STO e 6. STO b
7. PRGM on 7. PRGM on

For an extended program editing session, the first method is preferred. If steps 2 and 3 are
performed at the beginning of the session, then as long as the Register e contents are left
undisturbed in Register X (and as long as no shifted key assignments are changed), these two
steps can be omitted from the sequence.

To illustrate the use of enhanced byte jumping, let's create a 'RCL M'.

01 STO 01 (controller)
02 RCL 99 (any data register number greater than 15)

eJUMP .002 [00 REG 1mn ]
DEL 001* [00 REG 1mn ]

01 RDN
GTO .001 [01 STO 01 ]
DEL 001

SST [01 RCL M ]

*In this case, DEL 001 is not equivalent to [€]. You can substitute 'SST', [€].

Two-byte functions, other than 'STO', 'RCL', and 'LBL' (which have one-byte forms for
'STO 00', 'RCL 00, and 'LBL 00'), are easiest to edit if they are initially keyed with '00'
as their postfixes, for then the 'DEL 001' following the 'eJUMP' is not necessary:

01 STO 01
02 ISG 00

eJUMP .002 [00 REG Tmn ]
01 LASTX

GTO .001 [01 STO 01 ]
DEL 001
SST [01 ISG N ]

52



This method is not limited to two-byte functions--in the following, we create the 9-
character text line found as line 90 of the 'Hangman' program in Section 6C. The code is
'F9 40 40 40 40 40 40 43 4C 5F'.

90 STO 01
91 "ABCDEFGHI"

eJUMP .091 [00 REG Tmn ]
DEL 009 [00 REG 1mn ]

01 +

02 +
03 +
04 +

05 +
06 +
07 /
08 %
09 DEC

GTO .090 [01 STO 01 ]
DEL 001
SST ["eeeeeeCL_" ]

5H. THE TEXT ENABLER
 

Creation of program text lines is an interesting process. When the user presses the
initial character key, in PRGM-ALPHA mode, the processor writes an 'F1' text byte, followed by
the character byte, into memory. For each subsequent character added to the string, the
processor must update the text byte as well as adding the new character byte. The information
required for the processor to keep track of this operation is recorded in Register Q during
the text line entry. The first nybble of Q is the current number of characters in the string;
the Tlast four nybbles record the address of the last byte entered. Flag 45, the 'Data Entry
Flag', is set during the 1ine entry. Once Flag 45 is cleared by any keystrokes that terminate
the entry of characters, it is normally not possible to resume adding characters to the line.
Thus there should be no way to alter characters in an existing text line except by deleting
the entire line and starting over.

But again, synthetic programming leads us into dark and uncharted territory. We can
turn on any flag we want (see Section 6F) by storing the appropriate NNN into Register d. In
particular, if we use 'STO d' to set simultaneously Flags 45 (Data Entry), 48 (ALPHA) and 52
(PRGM), we can actually add characters to an existing program text line. Furthermore, we
will find that we can change any sequence of program bytes into a text line, and vice versa!

But a word of caution. These are 'deep waters', so that the instructions below must be
carried out exactly, to avoid HP-41C 'crashes' that require battery pack removal for recovery.
Furthermore, not all HP-41C's will behave exactly alike. So be prepared to experiment.

The act of storing the magic NNN into Register d will be referred to as the 'Text Enabler',
and the NNN itself will be called the 'TEN' (Text Enabler Number). A suitable 'TEN' is any
NNN that has 'O' as its first nybble and '488' as its last three nybbles. The '488' comes
from the three bits of Register d that correspond to Flags 45, 48, and 52. Since the storage
into Register d affects all 56 flags, we might as well choose the unspecified nybbles of the
'TEN' to produce some 'nice' display format. The NNN 'O0 00 02 3C 04 84 88' used in the
examples below acts as a 'TEN', while setting Flags 26 (audio), 27 (USER), 28 and 29, FIX 4
format, and DEG mode.

Use "CODE" to generate the 'TEN':

XEQ "CODE" [CODE=? ]

"0000023C048488"

R/S (E/x BE ]
ASTO 00

The 'ASTO 00' saves the 'TEN' for future use. If you wish to recall the 'TEN', however, use

53 |



'CLA', 'ARCL 00', 'RCL M', rather than 'RCL 00', to eliminate the alpha-identifier byte that
the 'ASTO 00' adds to the NNN.

Now execute 'GTO .." to start a new program file. Switch to PRGM mode, and key in the
text line "ABC". If you switch 'ALPHA' off following entry of the "C", the line is 'terminated'.
But if you next turn 'PRGM' off, and press 'STO d' (with the 'TEN' in Register X), you will
see the line '01 "ABC" in PRGM mode, with 'ALPHA' on; pressing any character key adds that
character to the text line (plus the "_" to prompt for further characters). Pressing the
correction key deletes characters from the string, including the original "ABC" if desired.
However, this trick only works if the contents of Register Q are undisturbed since the original
string entry was terminated. In general, returning to a text line by means of the text enabler
after some intervening instructions have been executed will not enable further character addi-
tion but will most likely cause a crash. The processor needs the correct information in Regi-
ster Q to continue with text 1ine building, otherwise it gets hopelessly lost.

S0 we resort to an even stranger process. Rather than try to add to an existing text
line from the end of the line, we deliberately set the first nybble of Register Q to zero by
storing the 'TEN' into Q immediately before we store it into Register d. Remarkably, with
the 'TEN' in Q, the processor will make text Tines out of bytes that are already present in
memory. If the starting byte doesn't happen to be an 'Fn' the processor simply replaces it
with an 'Fn', changing 'n' whenever characters are added to or deleted from the text line.

A11 of this is best explained with examples. One more 'shorthand' notation is required:

 

‘TE .1mn' means
1. PRGM off
2. Place the 'TEN' in Register X (e.g., CLA,

ARCL 00, RCL M)
3. GTO .1mn
4, STO Q
5. STO d

Now clear the existing program, and key in:

01 "ABC"
02 X<Y?
03 X>Y?

04 X<=Y?
PACK

TE .001 [01 "ABC" ]

Press "A" key [01 "A_" ]
Press "A" key [01 "AB_" ]
Press "A" key [01 "ABC." ]
Press "A" key [01 "ABCD_" ]
Press "A" key [01 "ABCDE_" ]
Press "A" key [01 "ABCDEF." ]

SST [.END. ]

Each pressing of the "A" key took an existing byte from program and incorporated it
into the text line. Any 'character key' would have acted the same way as the "A" key, i.e.,
any key other than 'SST', 'BST', 'SHIFT', 'R/S', and the correction key. If we had continued
beyond the six "A" keystrokes, the '.END.' itself would have been absorbed into the text.
However, some HP-41C's will not continue beyond a 7-character text line; pressing an eighth
key causes a crash. Unfortunately, the only way to determine which type of HP-41C you have
is to try to make an eight character text line with the text enabler.

The correction key works in a unique manner with the text enabler. If it is pressed
anytime after the text line has been started with at least one character, the rightmost char-
acter will be 'deleted' from the text line but remains in memory as a stand-alone line (or
prefix). At present, you have the 1ine '0O1 "ABCDEF™" in memory. Try:

TE .001 [01 "ABCDEF" ]
Press "A" six times [01 "ABCDEF_." ]

[01 "ABCDE." ]
SST [02 X<=Y? ]

54



As you see, the "F" byte was not deleted, only rejected from the text line to resume its role
as line '02 X<=Y?'. If you had not pressed the 'SST' key, further use of the correction key
would have removed the "E", "D", "C", and "B" from the line, leaving their bytes in memory.
But one more deletion, with '01 "A_"' displayed, deletes the "A" and the 'F1' text byte from
memory entirely.

If the correction key is the first key pressed following the 'STO d' of the text enabler,
the first byte of the displayed line is replaced with an 'FF', and the next 15 bytes of program
are incorporated into a text line. Subsequent presses of the correction key 'back up' the
process, restoring each successive rightmost character to its original role and shrinking the
text line.

The text enabler makes it quite simple to generate text lines containing non-keyable
characters. Each desired character is entered into program as a one-byte program line. The
string should be preceded by one 'dummy' one-byte line, which will be converted to the text
byte. Once we are happy with the sequence of characters, we simply use the text enabler to
transform the one-byte lines into a text line, like adding beads to a string:

01 X<>Y (dummy)
02 LBL 11
03 X<=Y?
04 RCL 08
05 E4+X-1
06 RCL 09

TE .001
Press 5 character keys

ALPHA [01 "HF(X)" ]

If you want a line of more than 7 characters but your HP-41C won't cooperate, you can
press the correction key following the text enabler, then use it to delete characters until
you are left with the desired line.

The text enabler can be used to generate synthetic functions, by using it to move an
existing prefix into a text line, editing in a new postfix, then using the text enabler again
to eject the prefix. This procedure is usually more complicated for two-byte functions than
use of the enhanced byte jumper. But we shall see in the next section that a combination of
the text enabler and the Q-loader provides a neat way of making synthetic lines directly from
NNN's in Register X.

Making Type 4 program lines is a pleasant exercise with the text enabler:

01 1E25

TE .001 [01 1 E25 ]
Press one character key [01 "m" ]
Press correction key, SST [01 E25 ]

This works so cleanly because the null automatically inserted in front of the 'l' byte
acts as the 'dummy' byte to be turned into an 'F1', then deleted along with the '1'. If you
want to delete the 'l' from an already existing line, in a packed program file, you must edit
in a dummy byte first, then PACK prior to using the text enabler.

5I. THE Q-LOADER
 

In Section 4C it was shown how Register Q is used for the temporary storage of alpha
strings that are not stored either in program or in the alpha register. Through another
quirk in HP-41C operation, we can exploit this behavior to assist in the creation of text
Tines up to seven characters in length. We need key assignments for 'STO Q' and the 'Q-loader’
(prefix 4, postfix 25) that we made in Section 5F.

The 'Q-loader' is at first glance just the assignment to a user key of the number '9°',
i.e., byte '19'. Actually, the assignment of any byte from '10' to 'IC' will work as a Q-
loader, but the '19' assignment is easy to use, and gives an easily recognizable display "OD"
when pressed and held. If pressed with PRGM off, the Q-loader enters a '9' into Register X.
But in PRGM mode, the Q-loader enters two program lines: the first is just a '9' entry line,
but the second is a text line, containing whatever characters were present in Register Q. To
illustrate, execute 'PACK' (PRGM on) by spelling out 'XEQ "PACK"', then press the Q-loader.
You will see the '9' line, followed by a text line "PACK". The letters "P-A-C-K" were placed

55



in Register Q by the 'XEQ "PACK"', then transferred to the text line by the Q-loader.
By using 'STO Q', we are not limited to sequences that we can 'spell out'--any NNN can

be placed in Q. For complete versatility, we can use "CODE" to make the NNN. Hence, to make
a text line of up to seven arbitrary bytes:

1. Use "CODE" to create a string of seven bytes corresponding to the characters you want
in the text line, entered in reverse order. If you want only 'n' characters, where 'n' is less
than seven, then the first [7 - n] bytes entered for "CODE" should be nulls (00).

2. 'GTO' the program line preceding the point where you want to insert the new text
line.

3. With PRGM off, press 'STO Q'.
4. Switch PRGM on, and press the Q-loader key. Delete the resulting '9' line, then

SST to see the new text line.

As an example, let us use the Q-loader to make line 81 from the 'Hangman' program in
Section 6C. The code for this 1line is 'F5 60 06 04 05 01':

XEQ "CODE" [CODE=? ]

"00000105040660"

R/S REIVAR ]
GTO .000*

STO Q
PRGM (on)
Q-loader [01 9 ]
DEL 001

SST [01 "Trxzx" ]

*In the actual construction of the 'Hangman' program, this would be 'GTO .080'.

The Q-Toader inserts its text line anywhere in a program, without any consideration of
the register boundaries or addresses required for the use of "REG". By using the text enabler
to transform Q-loader generated text lines into separate program lines, we can make arbitrary
synthetic program lines of up to seven bytes in length, or several shorter lines simultaneously.
Let us make the sequence 'Ol "(#)"', '02 ASTO M':

XEQ "CODE" [CODE=? ]

"0000759A292328"

R/S ["mm)#(" ]
GTO ..

STO Q
PRGM on
Q-loader [01 9 ]
DEL 001

PACK
PRGM off

TE .001

Press three character keys. [01 "(#)" ]
SST [02 ASTO M ]

If we want none of the seven characters in the text 1ine to remain as text characters,
we could use the text enabler to remove the text byte from the string, just as we eliminated
the '1' from 'l En' lines in Section 5-H.

There are other types of Q-loader assignments available, corresponding to the other
uses of program text strings. The following assignments have been developed by Tom Cadwallader:

Byte Code "KA" Prefix/Postfix Loads Q Contents Into:
 

04 1C 4/28 GTO éa]pha;
04 1D 4/29 XEQ (alpha
CD 00 205/00 LBL (alpha)

56



One minor annoyance in the use of the Q-loader is the requirement for encoding the byte
sequences in reverse order, which is easy to forget. However, if the desired byte sequence
is 6 bytes or fewer, the following routine will reverse the sequence automatically:

 

01 LBL "REV"
02 ASTO M
03 SF 25 "

04 GTO IND M “REV
05 RCL Q
06 STO M 20 BYTES

07 END    
"REV" is designed to reverse a string of up to 6 characters in the alpha register. To reverse
a string in Register X, execute a 'STO M' prior to 'XEQ REV'. Notice that "REV" will not
work properly if there is a global label anywhere with the same name as the alpha string, but
that is a rare occurrence. Also, "REV" will fail if the printer is attached.
 

5J. BACKTALK FROM THE HP-41C
 

At this point, we can 'tell' the HP-41C anything we want, by using "CODE" to translate
user-readable characters into HP-41C internal byte codes. But for a complete dialogue with
the machine, we also need a program to take existing codes and decipher them into readable
characters. The program "DECODE", 1listed next, exactly reverses the operation of "CODE",
taking an arbitrary 7-byte code in Register X and translating it into 14 characters in the
alpha register. As an added touch, the output characters are grouped into pairs (bytes) by
using colons as separators. The basic operation of "DECODE" is quite similar to that of
"CODE". "DECODE" serves as an illustration of the use of Register P as a full 7-byte extension
of the alpha register, as described in Section 4B.

 

B14LBL *DECODE" 27 CF 89 53 RCL 1 79 FC7 14
82 CLA 28 SF 10 54 ST0 ] 88 RTH
83 .88¢ 29 SF 11 55 Rt 81 CF 13
84 STO L 38 FS7C 84 56 16 L 82 RTN
85 XOY 31 ¥EQ 81 57 €10 13 g3eLBL 82
86 CT0 14 32 F$7 603 58 @ 84 FS? 85
B74LBL 13 33 SF 97 59 ST0 4 85 CF 82
88 STO ¢ 34 F$? 82 68 TONE 9 8 FS? 96
89- 35 SF 86 61 AYIEW 87 CF 82
18 RCL 1 36 FSC 81 62 RTH 88 FS? 82
11eLBL 14 37 SF 85 634LBL 81 89 RTN “DECODE"
12 ENTER 38 FS7C 09 64 FS? 13 99 CF 84
13 8¢ d 39 SF 04 65 CF 18 91 CF 03 205 ByTES
14 CF 12 48 SF 82 66 FS? 14 92 SF o
{5 CF 13 41 SF 83 67 CF 10 93 FCC 87
16 CF 14 42 FS? 04 68 FS? 10 94 SF 87
17 CF 15 43 XEQ 82 69 RTH 95 FL? 87
19 FSIC 87 44 FI% 5 78 CF 12 9% RTH
19 SF 15 45 ARCL L 71 CF 11 97 FC7C 86
20 FS7C 86 4 %> d 72 SF 89 98 SF 96
21 SF 14 47 ST0 73 FC7C 15 99 FC7 86
22 FSC 85 48 "F12- 74 SF 15 180 RTH
23 SF 13 49 %A 75 FC? 15 181 CF 65
24 FS? 04 58 ST0 [ 76 RTH 162 RTH
25 SF 12 51 RCL ] 77 FC7C 14 183 ENI
26 CF 88 52 ST0 78 SF 14
   

Instructions for "DECODE":
1. Place the code to be deciphered in Register X.
2. XEQ "DECODE".
3. 'Output characters' are placed in alpha, shown with AVIEW.

57



Examples:
ALPHA "ABCDEFG" ALPHA, RCL M, XEQ "DECODE" —» "41:42:43:44:45:46:47"
-1.234567891 E-56, XEQ "DECODE" —» "91:23:45:67:89:19:44"

"DECODE" is designed to handle full 7-byte codes, which is a bit of 'overkill' for one
particular application, namely, for determining the current program pointer address. If we
have 'RCL b' assigned to a key, then 'RCL b', 'XEQ "DECODE"' will certainly decipher Register b
for us. Usually, however, we are not interested in the first 5 bytes of Register b (subroutine
return addresses). "AD" (for 'Address') is a quick and dirty routine that will decode a two-
byte address, sacrificing the power and elegance of "DECODE" for execution speed.

"AD" is 'quick because it is so short, but 'dirty' because it uses the display properties
of 'FIX 9' for rapid conversion of hex codes into characters. Notice that since the output
is viewed in the alpha register, a digit 'A' will be represented by the colon ":" rather than
the 'starburst'. Refer to Section 5A.

"AD" leaves the original address in Register X, so that a 'STO b' executed following
"AD" will return the pointer to that address. This feature requires the otherwise superfluous
line '15 STOP', to ensure that a switch to PRGM mode after the 'STO b' will give the correct
1ine number (if the 'END' terminated execution of "AD" we would end up with line number '00').

 

A1eLBL *AD" 89 -
82 ST0 I 18 X [
B3 “Feesr 11§70
84 RCL d 12 ASTO L
85 FIY 9 13 RDN “AD"
86 ARCL [ 14 YIEN L
87 STO d 15 $T0P 39 ByTEs
88 X[ 16 END   

Instructions for "AD":
1. Press RCL b (PRGM off).
2. XEQ "AD"
3. Output is four alpha characters (shown with AVIEW) corresponding to the four digit

pointer address obtained with the 'RCL b'. The hexadecimal digits greater than '9' are
represented as follows: 'A' = ":", 'B' = "g", 'C' = "<", 'D' = "=", 'E' = ™", and
IFI = ll?ll.

4. To return to the original byte (where the 'RCL b' was executed), press 'STO b'.

5K. CODE STORAGE
 

A pair of short routines will round out our 'library' of special 'programming programs'.
There are many occasions when it is desirable to store an NNN into a data register for future
recall, but the normalization of NNN's during any recall from a numbered data register is a
major obstacle.

One means of recalling an NNN without normalization is to use the byte jumper to transfer
the NNN to the alpha register. For example, suppose the NNN of interest is in Rgg, which
we determine to be Register 123 by decoding Register c. Then we store 'l E7' into Register 124,
i.e., Rpj. Next we use "CODE" to make the 'address' '0O0 00 00 00 00 01 24', followed by
'STO b'. Pressing the byte jumper key will then copy the NNN in Rgg into Register M. The
'1 E7' in Rg] placed the byte '07' at address '0124', providing for a gyte jump of seven bytes.

This method is rather clumsy, and can only be used manually. For automatic storage
and recall, we can use the routines "CS" and "CR". "CS" takes an NNN and breaks it into two
pieces, each of which is converted to alpha data for ordinary storage. This requires two
data registers to store the entire NNN code. "CR" reverses the process, recalling the two
alpha data strings and reassembling them into a single 7-byte NNN. For convenience, the
routines are designed to execute manually just like ordinary 'STO' and 'RCL': Assign "CS"
and "CR" to user keys, then execute either by pressing the appropriate key followed (during
the subsequent pause, which starts almost immediately) by the desired data register number.
Each routine uses the designated data register plus the next higher-numbered register.

58



 

@1eLBL “CS” @1#LBL “CR"
82 CLA 82 PSE
83 5T0 [ 83 5T0 L
84 570 L 84 CLA
85 RDN 85 ARCL IND L
#6 PSE B6 “Hee"

87 X0 L 87 I5G L
neQu B8 “Fee" 83 CLD uepn

CS 9 .9 89 CLX CR
18 ST+ L 18 RCL IND L40 ByTEs 1 1 e 37 BYTEs

12 ASHF 12 “Fesees-
SIZE 002 13 ASTO IND L 13 ¥ SIZE 002

14 ISG L 14 CLA
15 CLA 15 END
16 STO [
17 ASTO IND L
18 CLA
19 RDN
28 END  
 

Instructions for "CS":
1. Manual use: XEQ "CS"; during the subsequent pause, enter a data register number
'mn' .The NNN will be stored in Ryn and Rpp+1- The contents of Registers X, Y, and Z
are preserved.
2. Subroutine use: the calling program should have the NNN in X, and 'mn' in Y.
Following execution, the contents of Registers T and Z will 'drop' to Z and Y, respec-
tively.

Instructions for "CR":
1. Manual use: XEQ "CR"; during the subsequent pause, enter a data register number
‘mn'. The NNN in Ry, and Rpn+1 will be placed in Register X, replacing 'mn' and, in
effect, 'raising' the stack contents present prior to execution of "CR"
2. Subroutine use: the calling program should place 'mn' in X prior to calling "CR".
Following execution, the recalled NNN will replace 'mn' in X.

59



CHAPTER 6

APPLICATIONS

This chapter is intended to serve as a 'standard applications handbook' for synthetic
programming. Included are numerous HP-41C routines, which, like the programs of Chapter 5,
illustrate the creative use of synthetic functions as well as having powerful practical appli-
cations. The purpose and justification of synthetic programming is embodied in these routines.
First, the use of synthetic functions enables the HP-41C to perform various important operations
faster and with less program memory usage than is possible with the standard functions alone.
Examples are the 'SIZE-Finder' (Section 6B) and the alpha string manipulations (Section 6C).
Second, synthetic programming provides a new class of operations that cannot be carried out
at all using only standard functions. Such operations include alpha character identification
and comparison (Section 6D) and direct access to 'Application Pac' programs (Section 6H).

The set of routines described in this chapter by no means constitutes a complete list
of the uses of synthetic functions--no list of programs can ever exhaust the capability of the
HP-41C, especially as enhanced with synthetic functions. The development of the techniques
and applications of synthetic programming is an ongoing process. (As an example, the discovery
of the 'text enabler' described in Section 5H came from a typographical error in a preliminary
draft of this book!) When you have completed studying the material in this book, you will be
ready to use synthetic functions routinely in your own programs, as readily and with little
more effort than you would use standard HP-41C functions. You might even discover a few new
‘tricks of the trade' yourself. In this regard, an appropriate slogan is 'take nothing for
granted'. If you get an idea, try it to see if it works, no matter how outlandish it might
seem. It took months of widespread synthetic programming before anybody noticed, for example,
that Register P acts as a full 7-byte continuation of the alpha register. Since the display
shows a maximum of 24 characters, it was assumed that characters lost from the left side of
the alpha register were gone forever. Yet, there they were, hiding in Register P.

6A. GETTING TO THE .END.
 

More often than not, a program under development is the last program file in memory,
i.e., the file containing the '.END.'. If the address pointer is moved to some other file,
there are only two ways to return it to that last file: wuse 'GTO' and spell out a global
label within the program, or use 'CAT 1', running to the end of the catalog. If the new
program does not have a global label, the first method is eliminated. If there are several
memory modules and many programs in the HP-41C, the second method can be annoyingly slow.
The program "EN" adds a third method, which you will find to be a great convenience during
many editing sessions, particularly when you are programming using the routines of Chapter 5.

 

   

@1¢LBL "EN" i@ SF 83

82 RCL ¢ 11 Xd
83 STO [ 12 CLA
B4 “Feeeee 13 ST0 [

85 XO [ 14 “Foer “EN”
86 X(> d 19 (>

87 CF o8 16 STO b% or o1 16 510 45 ByTEes

@89 SF @2

Instructions for "EN":
1. XEQ "EN".
2. At completion, the program pointer will be at the top of the program file containing
the '.END.'

The '.END.' is situated in bytes 2, 1, and 0 of the register identified by the address
recorded in the last three nybbles of Register c. "EN" takes that address 'Imn' (line 02),
shifts it into the first two bytes of Register d (lines 03-06), and makes the code '3Imn' by
clearing Flags 0 & 1, and setting Flags 1 & 2 (lines 07-10). That code is next shifted to
the last two bytes of Register N (lines 11-15). When the code is finally transferred to

60



Register b in line 16, the address pointer immediately jumps to the byte immediately preceding
The program continues to run, so that the .END. itself is executed, which stops

execution with the pointer at the top of the file.
the .END.

6B. SIZE-FINDING AND OTHER TRICKS

An elegant demonstration of how synthetic functions allow improved HP-41C performance
is found in th? following 'SIZE-Finder' routine, written by Keith Jarett (PPC Calculator Jour-
nal, V7 N5 P57):

 

@1eLBL -5* 14 FS?C 13 27 CHS
82 -Ag- 15 SF 11 28 B4
83 RCL ¢ 16 FS?C 14 29 MOD
84 X[ 17 SF 13 38 SF 25
83 ST0 18 FS7C 135 31eLBL 14 ngH
#6 ASHF 19 SF 14 32 YIEW IND ¥
87 Lot 28 F5?C 16 33 FC? 23
88 XO> [ 21 SF 15 34 RTH /5 BTes
89 X(> d 22 ¥(> d 33 64
18 FS?2C 11 23 1 E3 36 +
11 SF 89 24 * 37 GTO 14
12 FS?2C 12 23 INT 38 END
13 SF 18 26 DEC   

Instructions for "S":
1. XEQ "S".
2. At completion, the current 'size' will be displayed in Register X.

There is, unfortunately, no direct way to determine the current program/data 'size' in
the HP-41C. No 'top of memory' address is maintained in memory, since it changes with each
insertion or removal of a memory module. The only way of determining the size is to try to
access successively higher numbered data registers until a 'NONEXISTENT' message indicates
that the last existing data register has been passed. This method can be automated .in a
program, taking advantage of the Error Ignore Flag 25, but if the number of data registers is
large, the process can be very slow. Even the cleverest of such programs takes at least
four seconds to run. The routine "S" takes a maximum of 1.5 seconds. The improvement arises
from a partial decoding of Register c, which provides a starting value for the size that
needs only to be increased by 64 times the number of memory modules present. Only a maximum
of four registers must be tested to determine the number of modules.

The 'heart' of the size finder routine is found in lines 09-26, which constitute a 3-
digit hexadecimal-to-decimal conversion routine developed by Roger Hill. The three hex digits
of interest are digits 9, 10 and 11 of Register c--the absolute address of Rgg. Lines 01-09
o{ "5“8;Tgce those digits in Register d as the third, fourth, and fifth digits, i.e., as
Flags 8-19.

Consider a typical Rpp address, say '12A', which in decimal 1is [256+32+10 = 298]; use
the 'OCT' function to find that 29819 equals 452g. Let's write out both of the numbers
"12A' and '452' as they are coded in the HP-41C:

0001 0010 1010
0100 0101 0010

Hexadecimal 12A
Octal 452

binary
binary

Notice that the two numbers have the same number of bits with the value 'l'. The difference
between the two representations is that the first bit of each octal digit is always '0O',
since octal digits have a maximum value of 7 (0111). To convert the hexadecimal bit pattern
to octal, we only have to shift the values of certain bits 'leftward' to 'make room' for the
extra '0' bits. Here's a second example, with arrows showing the shifting of the bits from
the hexadecimal pattern to octal:

0001 1011 1100
/2)/ L

0110 0111 0100

Hexadecimal 1BC

Octal 674

61



This shifting of bits is easily accomplished though explicit user flag operations, as seen in
lines 10-21 of "S". Lines 22-26 complete the hex-to-decimal conversion, taking the three digits
from Register d and converting them to a decimal integer in Register X.

The result 's' in X is still the absolute address of Rggp, now expressed in decimal. If
there are no memory modules in the calculator, the 'size' is [256-'s'], where the '256' is the
decimal address of the top of memory. However, since [256-'s'] is always less than 256 (for
no modules), and since 256 is an integral multiple of 64, [-s mod 64] (which, since '-s' is
negative, is the smallest positive number obtained by adding multiples of 64 to 's') is the
same as [256 + N*64 -s], where 'N' is the current number of modules. Thus, lines 27-29 yield
the distance, in registers, from Rgg to the next higher module boundary. The size is this num-
ber plus an unknown multiple of 64. Lines 30-37 are a trial-and-error method of determining
'N', by incrementing 's' in steps of 64 until 'VIEW IND X' causes an error that clears Flag

The hexadecimal-to-octal-to-decimal conversion scheme in "S" can be used in a variety
of programs. Only a slight modification of "S" would be required, for example, to yield the
current location of the statistics registers block from the first three digits of Register c.
A different example is provided by the next routine, "BYTE", which is designed to give the
current address pointer location as a decimal number of bytes, counting from the bottom of
user program memory. In this context, byte 'l' is byte '00CO'.

 

 

g1+LBL “BYTE" 12 SF 15 23 LASTX
82 CLA 13 F52C 18 24 FRC
83 570 [ 14 SF 17 25 1 E3
84 “Lesee- 15 FS?C 19 26 % " "

85 %[ 16 SF 18 27 DEC BYTE
96 %O d 17 FS2C 20 28 7
87 FS2C 15 18 SF 19 29 * 69 ByTES
83 SF 13 19 %> d 30+
89 FS2C 16 20 10 31 1343
18 SF 14 21 32 -
11 FS2C 17 22 INT 33 END  
 

Instructions for “"BYTE":
1. Press 'RCL b'.
2. XEQ "BYTE".
3. Output is byte number in decimal.

Following the user-executed 'RCL b', which places the current pointer address into the
last two bytes of Register X, lines 01-06 of "BYTE" move the two bytes into the second and
third bytes of Register d (Flags 08-23). The first digit of the address is a byte number,
which never exceeds six. The remaining three digits number registers of 7 bytes, taking a
maximum value of hex 1FF or octal 777. Thus Flag 12 will always be zero. Lines 07-21 perform
the hex-to-octal conversion, placing in X the number 'n.abc', where 'n' is the byte number,
and 'abc' is the number of the register in three octal digits. Line 22 isolates 'n', where-
upon lines 23-27 convert ‘'abc' into a decimal integer. Lines 28-30 compute the total bytes
[n + 7*abc], measured from '0000'. Lines 31-32 subtract 1343, so that the output byte number
is measured from the bottom of normal program memory, byte '00CO'.

There are two obvious applications for "BYTE", both of which require two executions.
More useful than the byte number of any single address is the distance in bytes between two
memory locations. "BYTE" saves the original value in Register X present prior to the manual
'RCL b', placing it in Register Y above the output value at the end of program execution.
Thus the sequence

GTO 'point A’
RCL b
GTO 'point B'
RCL b

62



XEQ “"BYTE"
XY
XEQ "BYTE"

which can be executed manually or by a program, will give the distance in bytes between 'point
A' and 'point B' in memory. The first application of this procedure is to have 'point B' be
the first line of a program, and 'point A' the first 1ine of the next program down in memory.
Then the byte difference is the length of the program, as is also given by a 'CAT 1' using
the printer. The second type of use is to have 'point B' be a two-byte 'GTO' program line
and 'point A' the corresponding label, to determine whether the jump between the 'GTO' and
the label is fewer than 112 bytes. The only other means of determining this result is by labor-
jous counting of program bytes, line-by-1line.

6C. FUN AND GAMES IN THE ALPHA REGISTER
 

Perhaps the single most useful group of synthetic functions are those which access the alpha
register, such as 'STO M, 'RCL N' or 'X<>IND 0'. The fact that the 'M', 'N', 'O', and 'P’
postfixes can be attached to any normal data register function prefix means that the alpha
register can be used as four (with some limitation on the use of P) extra data registers. This
is obviously advantageous when memory space is limited--the use of the alpha register frees
four ordinary registers for additional program or data storage. The best use of these 'extra'
data registers is for 'scratch' purposes (almost like an extension of the RPN stack) that can
be sandwiched in between normal uses of the alpha register for messages, etc. Examples are
indirect function indexing (e.g., 'ISG M', 'DSE 0', 'STO+ IND N'), accumulations ('STO+M',
'STO-N', etc.), and temporary storage of intermediate numerical results. Note that all four
alpha registers are cleared simultaneously by the one-byte function 'CLA'. The alpha registers
(and the stack registers) can only be addressed indirectly through the extraordinary step of
adjusting the contents of Register ¢ so that one of the status registers (any will work except
Register T) becomes Rpg, but that is seldom practical.

The alpha register access functions combine with the standard alpha functions 'APPEND',
'"ASTO', 'ARCL', 'ASHF', and 'CLA' to provide alpha character string manipulations of a speed
and flexibility greatly exceeding that possible with the standard functions alone. Consider,
as a first example, the problem of isolating a particular character from an alpha string,
such as might be required by a variety of word-guessing games. Here is a routine that will
isolate (i.e., leave by itself in the alpha register) the 'nth' character (counting from the
left) in a string of up to six characters, using only standard functions:

 

@1+LBL A jgeLBL A1
82 7 {1 =%~
83 - 12 ARCL Y
84 CHS 13 ASTO Y (6C-1)
#5 1 E2 14 ASHF
86 7 15 I5G ¥
7 1 16 GTO 81
g + 17 AYIEM
89 ASTO ¥ 12 .END.    

To use the routine, either the user or program places 'n' into Register X. Then 'XEQ
"A"' isolates the 'nth' character in the alpha register. There are two problems with this
routine that make it less than satisfactory: first, it is relatively slow, requiring from
0.9 to 2.1 seconds to execute, depending upon the value of 'n'; second, it is not directly
extendable to strings of more than six characters. If the strings to be processed can be
more than six characters, the program has no way of knowing where the 'first' character is
situated in the alpha register. This latter problem can be overcome to some extent by numbering
the characters from right-to-left so that 'n = 1' corresponds to the last (rightmost) character
in the alpha string. Then the string can be broken into up to four 6-character strings, with
the appropriate string, depending on 'n', being searched by Routine 6C-1 for the desired
character. But, as advertised, the use of synthetic functions provides a better method.

The invisible boundaries between Registers M, N, 0, and P simplify the task of chopping
up alpha strings. All we have to do is find an automated procedure for shifting the strings

63



around so that the desired character is at one of the boundaries. Consider the sequence 'CLX',
'FIX 4', 'ARCL X'. Following execution of these steps, the alpha register will contain its
original contents, now shifted left by the appending of the six characters "0.0000". If we
had used 'FIX 6' instead of 'FIX 4', the original string would have been shifted by eight posi-
tions. This demonstrates a non-iterative (and hence, fast) method of shifting alpha strings
by a variable amount, which is used in the following version of "IS0". If you 'single-step’
through the program, with the HP-41C in ALPHA mode, you can see the characters shifted around
and selectively cleared to leave only one character.

 

A1+LBL “150" 88 %O ]
92 1@ 49 *Ht*
83 - 18 %1 o
84 CHS i1 CLA [SO
85 SCI IND X 12 870 ¢
96 ARCL ¥ 13 AYIEH 30 BYTES
87 CLY 14 END  
 

Instructions for "ISO"
1. Start with a string of up to 10 characters in the alpha register.
2. Place a number 'n' between 1 and 10 into Register X.
3. XEQ "ISOQ".
4. At completion, only the 'nth' character from the original string will remain. 'n’
is counted from the right.

This routine is both shorter and faster than Routine 6C-1, requiring only 0.8 seconds
for execution, independent of 'n'. 'SCI IND X' is used (1ine 05) rather than 'FIX IND X', to
provide shifts of between 4 (for n=10) and 13 (n=1) characters. "ISO0" has the disadvantage
of changing the HP-41C display mode, but this can be corrected at an expense of 4 additional
program bytes by replacing steps 05 and 06 with:

 

05 X<>d
06 SCI IND d
07 ARCL d
08 X<>d   

Similar operations are found in the next routine, "SUB", which is used to replace a
character in an alpha string, leaving the string otherwise intact:

 

A14LBL 5UB" 12 "Ht- 23 %O ] 34 ARCL X
82 18 13 %01 24 LASTY 15 Rt
83 - 14 %O ] 25 %> 1 36 STO d
B4 CHS {5 “p======" 26 %O T 37 CLX
85 RCL d 16 CLX 27 9 38 ¥ 1 "SUB"
86 SCI IND ¥ 17 %O © 28 - 39 §T0 [
87 ARCL Y 18 5T0 I 29 CHS 48 CLY 86 BYTES
88 RCL ¢ 19 CLY 38 FIX 0 4 %Ot
89 STO L 28 %> 1 31 RHD 42 STO ©
18 CLY 21 $T0 32 CF 29 43 AVIEN
11 %> 1] 22 3> T 33 184X 44 END    

Instructions for "SUB"
1. Start with a string of up to ten characters in alpha.

. Place one alpha character in Register Y.

. Place a number 'n' between 1 and 10 in X.
XEQ "SUB"

. Following execution, the character from Y will replace the 'nth' character in the
Ipha string. 'n' is counted from the right.

2
3
4
5
a

64



In lines 30-34 of "SUB" we see another type of variable character shift, using the func-
tion '10X' to produce a number 'x+1' characters long in Register X.

The 'Hangman' game ("HM") listed next demonstrates a practical application of the string
manipulations made possible with routines "ISO" and "SUB". Versions of these routines are
found in lines 169-183 and 114-168 respectively.

 

 

BLeLBL “HN" 47 RCL d 93 ASTI A4 139 %3\
82 @ 48 AYIEM 94 GT0 81 148 STO I
83 ST0 d 49 $T0 d 954LBL @3 141 CLY
84 889 SGeLBL 62 % 16 82 142 %3 1
85 STO 97 51 FS? IND @6 97 GT0 85 143 STO ©
86 FIX @ 52 CT0 B4 9§ = *«DONE*=" 144 X3 T
87 SF 26 53 RCL 85 99 AVIEM 145 %> ]
83 “WORD?" 54 CLA 106 TONE 3 146 LASTX
89 AON 55 ARCL A8 181 TONE ¢ 147 %0
18 STOP 56 ARCL A1 162 TONE 5 148 X3 T
11 57 RCL 85 183 TONE 8 149 9
12 ASTO 9@ 58 INT 164 TONE 7 156 -
13 ASHF 59 XEQ 08 185 TONE 8 151 CHS
14 ASTO ¥ 68 ASTO X 186 CLA 152 FIX @
15 CLA 61 X=Y? 107 PSE 153 RND
16 ARCL ¥ 62 ¥EQ 03 105 RCL 87 154 CF 29
17 “Fttter 63+LBL 04 189 INT 155 184X
13 RCL © 64 1SG 86 116 ARCL ¥ 156 ARCL ¥
19 CLA 65 10 @82 111 *F HRONG. " 157 Rt
26 5T0 | 66 FS?C 19 112 AOFF 158 STO d
21 ASTO 81 67 GT0 81 113 PROMPT 159 CLX e
22 *mmen 68 1SG 87 1144LBL 85 168 %> 1
23 ASTO 83 69 GT0 @6 115 SF IND 86 161 STO I
24 ARCL 03 76 “ARRRRGGH..." 116 SF 19 162 CLY 586 ByTES
25 ASTO 82 71 AVIEH 117 RCL 96 163 %> t
26 CLA 72 TONE @ 118 INT 164 STO SIZE 009
27 ASTO 84 73 TONE 8 119 CLA 165 ASTO 82
25 1,889 74 PSE 126 ARCL 82 166 RASHF
29 ST0 @8 75 "WORD 15: - 121 ARCL 03 167 ASTO 83
38 STO 96 76 ARCL @0 122 18 163 RTH
31 SF 19 77 ARCL @1 123 - 1694LBL 93
2. 78 AOFF 124 CHS 178 18
33 ASTD 95 79 PROMPT 125 RCL d 171 -
34 GT0 92 864LBL 86 126 SCT IND ¥ 172 CHS
356LBL 81 81 *'TaBr" 127 ARCL Y 173 %O d
36 1,089 82 19 128 RCL t 174 SCI IND d
37 $T0 86 83 RCL 07 129 STL 175 ARCL d
38 CLA 84 INT 136 CLY 176 %> d
39 ARCL 82 85 - 131 %5 1 177 CLX
48 ARCL 83 86 ¥EQ @Y 132 *Ht* 178 %> ]
T 87 ASTO ¥ 133 %O T 179 “Ht-
42 ARCL B4 88 RCL 87 134 %1 188 %> ]
43 TONE 9 89 INT 135 CLX 181 CLA
44 CLD 9§ “RRARRACL" 136 FIX 4 182 STO [
45 STOP 91 ¥EQ 88 137 ARCL ¥ 183 END
46 ASTD 85 92 ARCL Y 138 CL¥   
* APPEND 11 SPACES

65



Instructions for "HM":

1. XEQ "HM".
2. First player keys in a word of up to nine letterss R/S.
3. At the tone, the display will show as many dashes "-" as there are letters in the
unknown word. The second player guesses a letter by pressing the corresponding letter
key, then R/S.
4. At the next tone, all occurrences of the guessed letter will be shown in the display.
If the guessed letter is not present, one 'piece' will be added to the 'gallows' "m"
or to the 'man' "3X" at the right of the display. Play resumes with step 3.
5. If the full word is guessed with fewer than 10 wrong guesses, "**DONE**" is displayed,
followed by the total number of wrong guesses.
6. On the tenth wrong guess, the 'man' is 'hung', and the unknown word is displayed.

'Hangman' works with words of up to nine letters. If the first player enters fewer
than nine letters, the program fills out the word with spaces (lines 11-21), then 'guesses'
the 'space' character, the same way a player would, in order to display the correct number of
unknown letters to the second player.

Some synthetic programming notes for "HM": Lines 72 and 73 are "TONE 10", hex '9F OA',
which can be created with the byte jumper. The construction of line 81, 'F5 60 06 04 05 01',
was described in Section 5I; Line 90, 'F9 40 40 40 40 40 40 43 4C 5F', was made as an example
of enhanced byte jumping in Section 5G. The trick used to make the guessed letters 'goose-step’
around the display (lines 47-49) is described in Section 7B.

Data storage is allocated by "HM" as follows:

Roo & Ro1 mystery word
Ro2 & Rp3 current guessed word
Rog "hangman’
Ros current guessed letter
Ro6 loop counter
Ro7 wrong guess counter
Ros right guess counter

6D. CHARACTER RECOGNITION
 

Although a user can simply look at an alphanumeric display to read its contents, the
HP-41C itself has no means of determining what characters, if any, are present in the alpha
register, except by laborious one-by-one comparisons with known characters. Thus, for example,
alphabetizing a group of alpha data strings is a prohibitively slow, memory-expensive process.
However, synthetic functions can extend the capability of the HP-41C into the domain of 'word-
processing', by allowing conversions of characters into numbers and vice-versa.

Suppose we wish to identify or give a numerical value to a single alpha character.
Since there are 256 characters (not all display differently, of course), the identification
should consist of a decimal number in the range 0 to 255--i.e., the decimal equivalent of the
byte code for the character. The same hexadecimal-to-octal-to-decimal conversion used in Sec-
tion 6B can be used for this purpose, as shown in this 'Character-to-Decimal ("CD") program:

 

81eLBL “CD" 18 SF 89

B2 "Feeeex- 11 FS?C 1}

83 X> [ 12 S5F 18

84 Xd 13 FS2C 12 "CD"
85 FS?C a3 14 SF 11

86 SF 86 15 ¥{> d L|3 BYTES

87 FS?C 89 16 DEC

88 SF 87 17 END

89 FS2C 18   
(Line 02 is 'F6 7F 00 00 00 00 02', the same as in the program "EF" in Section 5E.)
Examples: "A", XEQ "CD" gives '65'; "$", XEQ "CD" gives '36'.

66



The reverse process, 'Decimal-to-Character' ("DC"), is only slightly more complicated.
Lines 03-06 of "DC" ensure that the three octal digits of the input number always go into the
same set of flags in Register d, even if the number is only a one- or two-digit decimal integer.

 

B1eLBL -DC- 11 5F 19 28 “Fess
82 0cT 12 FS?C 17 2 CLY

83 E3 13 SF 18 22 STO
"y 14 FSC 15 53 *HA “DC”
85 1@ 15 SF 17 24 ¥N

86 + 16 FS7C 14 25 (LA 58 BYTES
87 %> d 17 SF 16 2% %3 I
88 FSC 19 18 %< d 27 RYIEN
89 SF 28 19§70 [ 2§ END
1% FS7C 18    

Examples: '37', XEQ "DC" gives "%"; '64', XEQ "DC" gives "@".

The problem of alphabetizing a set of alpha data strings requires a more complicated
character recognition scheme than provided by "“CD". Since the only alpha comparison the HP-
41C can make is 'X=Y?", we need numerical equivalents for entire alpha data strings in order
to make the 'X<Y?' comparison necessary for alphabetizing. Once such a comparison is made,
standard number sorting techniques can be used to alphabetize a 1ist of alpha strings. A
straightforward way of generating such an equivalent would be to use "CD" on each character
of an alpha data string and combine the results into a single number. Notice that since the
decimal equivalent of the character "Z" is 90, the maximum value of a six-letter string is
906 = 5.3 E11, which is greater than the largest integer the HP-41C can handle. Therefore,
this conversion process should subtract 64 from the decimal value of each character (making
"A" = 1, "B" = 2, etc.) before making the combination of the six values into a single number.

Synthetic programming offers a method of generating numerical equivalents for alpha
strings that is much shorter and faster than a character-by-character conversion. The next
routine, "AL", alphabetizes a single pair of alpha data strings. It should be combined with
the user's choice of ordinary number-sorting routines to alphabetize a set of alpha data.

 

@1+LBL "AL" 12 RTN 22 RCL [
82 XEQ 81 13 %> IND T 23 RTN
83 XEQ 8f 14 X<> IND 2 24+1BL 81 _
84 X2Y? 15 ¥¢> IND T 25 "xx= (F2@747) wpyu
85 GT0 03 16 RTN 26 ARCL IND Y AL
86 RDN 17¢LBL 82 27 "Feee"
87 RN {8 *xxz* (F3 o/5/97) 28 ASTO [ /0 BYTES
88 XEQ 82 19 ARCL IND Y 29 “Fes"
@9 XEQ 82 28 ASHF 38 RCL [ SIZE 002
18eLBL 83 21 feer 31 END
11 X372    

Instructions for "AL":
1. Two alpha data strings to be ordered should be in numbered data registers. The
strings can be 1 to 6 characters.
g. ;1SceAthe number of one data register in X, the number of the other in Y.

. E " Lll'

4. "AL" places the string that comes first alphabetically in the register originally
designated in Y; the other string goes to the register originally designated in X.

"AL" first uses subroutine 01 (lines 24-31) to change the first four characters of the
two strings into numbers for comparison. A ‘'number' is characterized by a first nybble of
'0' or '9'; furthermore, numerical comparisons of alpha strings are only meaningful if the
assigned numbers have common exponents. These two considerations restrict the alpha comparisons
to four characters at a time, since we need to put a number identifier ("AL" uses byte 'Ol')
at the left of the string, and two bytes '00 00' on the right to standardize the exponents.
This leaves only four 'free' bytes in a seven-byte register. Four characters are usually

67



sufficient to distinguish two strings; if the remaining two bytes of the original strings are
required, subroutine 02 (lines 17-23) provides for that additional comparison.

The trick of changing an alpha data string into a number can be 'reversed'. The next
routine, "MANT", shows how a number can be changed into alpha characters to use alpha instruc-
tions 1ike 'APPEND' or 'ASTO' to change the number. In this case, we want to replace a number
with its mantissa by chopping off its exponent. We could do this using the 'LOG' and '10X'
functions, but that occasionally introduces error into the last digit of the mantissa. "MANT"
always gives an exact result. Upon execution of "MANT", the number in Register X is replaced
by its mantissa (including the sign); Y and Z are undisturbed; T, L, and the alpha register
are lost.

 

BIeLBL ~MANT 49 1 E58
B2 STO [ 19 *
83 CLY {1 LASTX
a4 FI¥ 4 12 %)Y "MANT"
85 ARCL X 13 17%
86 (> [ 14 7 4?2 BYTES

87 Ht* 15 FIX 9
83 %> 16 END  
 

6E. SYNTHETIC TEXT LINES AND THE PRINTER
 

Synthetic text lines, created by any of the methods described in Chapters 3 and 5, are
particularly useful for printer applications. Any of the 128 standard printer characters can

be included in a program text line by placing the corresponding byte (as found in the Byte

Table) in the line. This eliminates the necessity for repeated use of the printer function

'"ACCHR'. For example, consider a routine that would print the characters "Big Deal #7". Using

'ACCHR', we would need the following steps,”a total of 40 bytes: Exactly the same result can

be obtained in only 14 bytes by writing a synthetic text line that contains the lower case

lTetters and the "#" symbol explicitly:
 

0l TBBE Deal #7
02 PRA   

Line 01 is coded 'FB 42 69 67 20 44 65 61 6C 20 23 37'. It can be created easily with byte

jumping, or with the text enabler:

01 +
02 * (uBu)

03 FRC g“i"g *

04 X=0? "g" 13

e (1) T" "
A

o7 N (re) hep Bin 8T
08 ABS ("a") 06 ACA 12 ACA 18 ADV

09 HMS ("1")

10 RCL 00 (" ")
11 RCL 03 ("#")

12 STO 07 ("7")

13 PRA
TE .001 [01"B®® Dead #7" ]

Press correction
key 5 times.

In a similar manner, we can replace the printer function 'BLDSPEC'. Consider the special

graphics character shown in Figure 6-1, where we show the dot pattern and the corresponding

'values' and 'column print numbers' as called for by the 'BLDSPEC' instructions (82143A Printer

68



Owner's Handbook, pp. 64-66).
 

COLUMN NUMBERS

3 4 5 6 7

=

Q
0
0
O
O
O
0
+
~

O ® O O

00
000
OO0
OO0
OO0
ONON®
7 6 4

Q@
O0
O
O
O
O
O
-

@
0
O
O
O
O
0
0
O
O
0

@
0
0

O
0
O
O
0

~

120 o o (o
0}
o ~ N

COLUMN PRINT NUMBERS

FIGUuRE 6-1. A SPEcIAL GRAPHICS CHARACTER

The column print numbers are just the decimal equivalents of numbers made by treating
each column as a 7-bit binary number, with dark dots as 1's and blank dots as 0's. The first
time 'BLDSPEC' is executed, with zero in Register Y and the first column print number (120)
in X, an alpha data string is created in X which uses the seven bits of the first column
print number (1111000) as the last seven bits of the string:

X = 0001000000000000000000000000000000000000000000000| 1111000

When 'BLDSPEC' operates on the next column print number (96), its seven bits are copied into
the last seven bits of X, with the previous entry 'pushed' to the left:

X = 000100000000000000000000000000000000000000{1111000| 1100000

After the last column print number is entered, Register X contains:

| 120 | 96 | 80 | 72 | 7 | 6 | 4

X = 0001 000|1 1110 00|11 0000 0|101 0000 |1001 000|O0 0001 11|00 0011 0|000 0100

(hex) 1 1 E 3 0 5 0 9 0 1 C 3 0 4

The successive column print numbers are shown above the binary representation of X. Below
X, we show the byte codes corresponding to the bit pattern. This byte code is entered into
program as a /-character text line 'F7 11 E3 05 09 01 C3 04' that will place the byte code
into the alpha register, whence it can be transferred to Register X using 'RCL M'. Then the
printer function 'ACSPEC' can be executed normally.

In practice, the step of computing the column print numbers is unnecessary. All you
have to do is write out a 49-bit binary number to represent the 7 x 7 dot grid, using 1's for

69



dark dots and 0's for blanks. Start with the lower left corner of the grid as the leftmost
bit, then work up to the top of the first column, then bottom-to-top on the second column,
etc. When all the dots are encoded, add the 7 bits '0001000' to the left of the number for a
total of 56 bits. Group the 56 bits into 4-bit digits, then make a 7-character text line from
the hexadecimal equivalents. Since these bytes may come from anywhere in the Byte Table, use
of "CODE" plus the Q-loader is an ideal way of creating the desired text line.

This procedure may seem like a lot of trouble, but with practice, it's scarcely more
difficult than the normal 'BLDSPEC' method. The savings in program memory are obvious from
the following comparison:

  

   

   

'"Normal' Program: Synthetic Program:

010 10 BLDSPEC 01 "ERARXEX "
02 ENTER 11 7 02 RCL M
03 120 12 BLDSPEC 03 ACSPEC
04 BLDSPEC 13 6
05 96 14 BLDSPEC --12 bytes
06 BLDSPEC 15 4
07 80 16 BLDSPEC
08 BLDSPEC 17 ACSPEC
09 72

--30 bytes

Of course, you could execute the normal 'BLDSPEC' sequence manually and store the result-
ing special character alpha data string in a data register for use by a program, ending up
with a total memory use (counting the data register) of only 10 bytes. But if the program is
read from magnetic cards, a data card must also be read; furthermore, the data register used
must be guarded against use by any other program as long as you desire to use the special
character program.

If you are bothering to read this section, you are probably using a printer to list
the programs. On printer output, 1ine 01 of the synthetic program last described will print
as:

81 “QBoxoa”

There are only five characters shown, because the program listing of a text line will only
show characters from the top half of the Byte Table. Characters corresponding to bytes in
the lower half of the table are invisible. Furthermore, the print buffer uses bytes from
rows A, B, D, and E for internal purposes related to special character printouts, single and
double width instructions, etc. Hence, text lines containing characters from those four rows
may print out in very strange ways. For example, if a text line contains the character corres-
ponding to byte 'D5', a program listing containing that line will have all printout following
that character printed double-wide and lower case.

6F. NON-NORMALIZED NUMBERS AND MASS FLAG CONTROL

The use of synthetic text lines is by no means restricted to the programmed generation
of non-standard character strings in the alpha register. A synthetic text line of up to seven
characters, followed by a 'RCL M', will place an NNN into Register X. An important use of
NNN's so created is for 'mass flag control' through storage of the NNN into Register d. We
have already seen one application of mass flag control in the use of the text enabler.

The programs described in previous sections have contained numerous examples of the use
of instructions such as 'X<>d' to restore an initial flag status after the flag register has
been used as a 'binary encoder'. The ability to create any NNN allows us to set or clear all
56 flags in one operation. The basic sequence is:

 

01 "xxxxxxx"
02 RCL M (6F-1)
03 STO d   

70



where "xxxxxxx" represents the synthetic text line used to generate the NNN. Routine 6F-1
uses 12 program bytes, the same as would be required for six 'SF mn' or 'CF mn' program lines.
In general, therefore, it is more efficient to use Routine 6F-1 rather than individual 'SF'
or 'CF' lines whenever more than six flags are to be set or cleared. Such occasions arise
frequently in program initialization routines, where various user flags are set or cleared,
and desired display and trigonometric formats are established.

As an illustration, let us write a routine to set the HP-41C flags as follows: Flags 1,
2, 3, 26 (audio enable), 28 (radix), and 29 (separator) are set; 'FIX/ENG 3' display format
(Flags 38, 39, 40, and 41 set); 'RAD' mode (Flag 43 set); continuous ON (Flag 44); all other
flags clear. The 'FIX/ENG' display is chosen particularly because it is a number display
format that is not available without synthetic programming. In ordinary 'FIX' format (Flag
40 set, Flag 41 clear), numbers which are too large or too small to display properly cause
the display to default to the 'SCI' format. In the 'FIX/ENG' format, however, the default is
to 'ENG' mode.

To determine the synthetic text line required to generate the desired flag status, we
write out the states of all of the flags as a 56-bit binary number, with 1's for set flags
and 0's for clear flags, then group the bits into eight-bit hexadecimal bytes:

audio radix digits RAD
123 enable I separator\FIX/ENV ON
\ |/ \ |/ N S
0111 0000|0000 0000|0000 0000|0010 1100|0000 0011|1101 1000|0000 0000

7 0] 0 ©0| 0 O] 2 C| O 3| D 8| 0 o©

We see that the required text line is 'F7 70 00 00 2C 03 D8 00'. This particular byte code
is a challenge to each of the synthetic text line generating methods we have studied. For
example, because the line is eight bytes long, it can't be created with a single operation of
"REG". However, we can key into program a 'dummy' 7-character text line and jockey it around
in memory by adding or deleting bytes higher in memory until the seven character bytes are
positioned all in the same register (i.e., with the program display showing the dummy line,
'RCL b', XEQ "AD" should give an address starting with a byte number 'l'). Then we can use
"REG" to store the code '70 00 00 2C 03 D8 00' into the register containing the dummy characters,
leaving the 'F7' byte intact.

It is tricky to use the byte jumper or the text enabler to edit in the text 1line because
of the 'D8' byte, which cannot be keyed in as a stand-alone line. Also, the Q-loader won't
work because of the '00' byte on the end. If we used the Q-loader on the code, we would
obtain a six-character text line, since the Q-loader 'ignores' any leading nulls in the input
code. But a combination of the byte jumper and the Q-loader will do the trick. We first use
the Q-loader with the code '01 D8 03 2C 00 00 70', where we have replaced the '00' byte with
an '01'. Then we byte-jump to the 'Ol' and delete it.

XEQ "CODE" [CODE="? ]
"01 D8 03 2C 00 00 70" R/S ["*E®,=" ]

GTO new program
01 STO 07 PRGM off

STO Q
PRGM on
press Q-loader [02 9 ]
DEL 001 [01 STO 07 ]
PACK, SST [02 "&™~ ,BRX" ]
JUMP .002 [02 LBL 00 ]
DEL 001 [01 STO 07 ]
DEL 001 [00 REG abc ]

We finish by adding the Tines '02 RCL M', '03 STO d' to match Routine 6F-1.
Storing NNN's into Register d is the only way we can set many of the 'system' flags,

i.e., Flags 30-35, 45-47, and 49-55. Although control of these flags usually leads to some
amusing but not particularly useful effects (see Section 7B), an example of a practical appli-
cation involves setting the system Data Entry Flag 45 (already encountered through use of the
text enabler).

71



Often, especially during calculations using statistical accumulations, we are required
to enter a string of numbers that differ only in the last digit or two, like '123456', '123457',
'123460', etc. To save entering the '1234' each time, we could add a few program steps that
add '123400' to our entries so that we only have to enter the final two digits of each number.
But we can make the process even more 'friendly' by asking the HP-41C to enter and display
the '1234"' in such a way that when we key in the final two digits, we see the '1234' at the
same time. Setting Flag 45 allows this kind of operation:
 

01 "®" (F2 84 00)
02 RCL M
03 X<> d
04 1234 (6F-2)
05 STOP
06 X<>Y
07 STO d   

The first character of 1ine 01, byte '84', sets Flags 40 and 45 when stored into Register
d. When the program halts at line 05, with Flag 45 set, the processor thinks it is still in
the process of data entry. At the halt, the display will show '1234' (Register X). If we
press a number key, '5' for example, the display will become '12345_', with the underline
indicating that further digit entry is possible. Lines 06 and 07 are optional--they serve to
restore the initial flag status, leaving the newly entered number in Register Y.

The same trick used in Routine 6F-2 works with alpha character entry, so that we can
add alpha characters to a current alpha string while displaying the entire string. Or, to
go one better, we can append alpha characters to a display message, yet have only the newly
entered characters remain in alpha for processing. To illustrate, replace the first five
lines of "CODE" with this sequence:

 

01 LBL "CODE"
02 "zm" (F2 04 80)
03 RCL M
04 X<>d
05 "CODE="
06 AVIEW
07 CLA
08 STOP
09 X<>d   

Lines 02-04 set Flags 45 and 48 (ALPHA on). Lines 05-07 arrange that when the program halts
at lTine 08, the display will show "CODE=", even though the alpha register has been cleared.
When we key in the alpha characters for the code, they enter the alpha register normally, but
also appear in the display appended to the "CODE=". If, during the halt, we clear the display
by turning ALPHA off, then on, the phantom "CODE=" will disappear, leaving only the keyed-in
characters in the display. This is not a profound achievement, but it does. make the HP-41C
even 'friendlier'. Unfortunately, there doesn't (yet) seem to be a way to add numerical
entries to alpha prompts.

A cautionary note is in order regarding the use of NNN's in the HP-41C. The arithmetic
routines in the calculator were designed to handle only normal decimal numbers. Their use
with NNN's can have surprising and occasionally unpleasant results. For example, use "CODE"
to generate the NNN '0O0 00 01 00 00 00 00', which will be displayed in 'SCI 5' format as
'0.00010 EOO'. Now execute 'l/X', and watch what happens. The display will blank for about
5 seconds, during which time the keyboard is 'locked out', i.e., the HP-41C will not respond
to any key presses, including the 'ON' switch. The NNN denominator causes the delay: the
'divide' process (or 1/X) assumes that both numerator and denominator are stored in proper
scientific format. Dividing is carried out as a series of subtractions--the two exponents
are subtracted, then the denominator is repeatedly subtracted from the numerator--in effect,
a reverse of multiplication by repeated adding. The process doesn't take long if both numerator
and denominator mantissas are of order unity, as they should be, but in our example, the denom-
inator mantissa is only 0.0001, so that 10% times as many subtractions are necessary to
complete the division. Five seconds is not long, but other NNN's could easily require 5000

72



seconds or more for divisions. Other functions may take even longer: 'LOG (0.0001 EO)' takes
45 seconds, compared to the 5 seconds for 'l/X'. The 'normalization' of register contents
that occurs when register recall functions are executed is specifically designed to eliminate
the danger of calculator 'lockups' caused by NNN's that might be introduced into data registers
when a memory module is inserted. So, be careful. As with most other crashes, battery removal
and replacement will unlock the machine.

6G. RAISING THE CURTAIN
 

Because of the savings in program bytes associated with the use of the one-byte 'STO'
and 'RCL' functions, it is desirable for programs to use data registers Rgg-Rp5 whenever
possible. Thus, it is quite common to have several programs in the HP-41C memory which each use
the same block of data registers, so that execution of one program would destroy the data
used by another. One solution is to write a data transfer program that moves the contents of
a block of data registers to another block, clearing the first set of registers for use by
another program. If the number of registers involved is large, this will be a slow process.
The program "CU" (for 'Curtain') offers an alternate, faster solution.

 

AieLBL ~CU" 13 CLY 25¢LBL 12 37 DSE [
Az STO L i4 LASTX 26 FC?C IND ¥ 38 G670 11

83 LK 19 INT 27 SF IND ¥ 39¢LBL 14

B4 RCL ¢ 16 X=87 28 FC? IND ¥ 48 (> 1]

83 570 17 GT0 14 29 CHS 41 X{> d "CU"

B6 "Feses" ig 2 Ja %87 42 STO [

87 11 19 7 31 GTO 13 43 "FABC"

B8 ¥{: [ 28 RCL [ 32 FC? IND Y 44 X{(> 87 BYTES

83 X{> d 21 B{XY 33 CHS 43 STO ¢

16 510 1 22 FRC 34 DSE Y 46 RDN

t1¢LBL 11 23 X=A7 35 GTO 12 47 END

iz EIH 24 GT0 13 36eLBL 13   
 

Instructions for "CU":
1. Enter an integer number 'n' into Register X.
2. XEQ "Cu"“.
3. If n>0, Ry will become the new Rgg. If n<0, R_p will become the new Roo- All other
data registers will shift accordingly.

"CU" takes an integer number 'n' from Register X (entered manually or by another program)
and adds it to the address of Rgg stored in Register c. If 'n' is positive, data registers
Rop through R,_1 will be 'transformed' into program registers, by raising the imaginary
'‘curtain' that separates data and program memory from its initial position below Rpp to a
new position below R,; Rp becomes the new Rgg. If 'n' is negative, the curtain is Towered,
so that 'n' registers of program memory are transformed into data registers. A1l of this occurs
without alteration or moving of the contents of the registers involved.

Suppose ‘Program 1' is executed, leaving data in Rog-R5p that is required for future
use. But in the meantime we wish to execute 'Program 2', which uses registers Rpg-Rog for
its own purposes. In this case, we enter '51' into X and execute "CU" (the 'size' should be
77 or greater). Following execution of Program 2, we can prepare for a second run of Program
1 by pressing '-51', 'XEQ "CU"'.

**Warning: Raising the curtain above the top of memory, i.e., executing "CU" for 'n'
greater than the current 'size', or lowering it to (hex) addresses from '010' through '0CO',
or to '000', will cause 'MEMORY LOST'.

"CU" works by performing a binary addition of the number 'n' to the hexadecimal digits
9-11 of Register c that constitute the 'curtain' address. The corresponding Flags 32-43 in
Register d cannot be controlled individually, so the contents of Register ¢ are transferred
to Register M and shifted 'left' by appending null bytes (line 06). Then lines 08-09 place
the curtain address into Register d as Flags 00-11.

Binary addition is a very simple process. To add 1 to a binary number, we merely switch
the value of the last bit, from 1 to 0 or vice versa. If the last bit becomes a 1, we stop.

73



If it becomes a 0, we switch the next bit to the left. If the next bit becomes a 1, we stop;
if it becomes a 0O, we go on to the next bit to the left, and so forth until we stop at a bit
that changes from O to 1. Subtracting 1 is almost the same--we follow the same procedure,
starting on the rightmost bit and working left until we encounter a bit that changes from 1
to 0. Adding 2 (binary 10) works the same way, only we start with the next-to-last bit. In
general, to add 2M, we start with the 'm+l' bit, counting from the right.

Binary addition is performed in lines 11-35 of "CU". The entered number 'n' is broken
up into binary bits through repeated division by 2 (1ines 18-19). The successive bits are
added or subtracted to the address bits according to the test in line 30. Once the addition
is complete, the three bytes of the Register ¢ code that are in Register d are rejoined to
the first four bytes waiting in Register N (lines 40-42). Then the full code is bumped into
N (line 43), and finally restored to Register c in line 45. When "CU" is finished, the contents
of stack Registers X and Y prior to entry of 'n' are restored.

The HP-41C will operate quite normally while the curtain is raised or lowered from the
position last established by a 'SIZE' operation. However, if the curtain is raised, changing
data into program, the memory should not be 'PACKed', since that will most likely change the
data stored below the curtain irreversibly by removing all the null bytes in the data. This
difficulty can be avoided if an 'END' is placed at the top of program memory, followed by
execution of 'PACK'. If the curtain is subsequently lowered, the data registers transformed

to program memory will be unaffected by the 'PACK'. They are protected by the 'END', which
was coded to indicate a packed file.

A second important application of "CU" is to change data into program permanently,
providing us with yet another means of generating synthetic program lines. This method is
most useful when several consecutive registers of program, or perhaps an entire program,
contains sufficient synthetic program lines to justify being written entirely with "CODE".
In that case, we use "CODE" to generate the byte code for each seven bytes of program, storing
the successive codes into adjacent data registers. The last seven bytes go into Rgg, the
next-to-last into Rg1, etc. (This, incidentally, is a major justification for writing "CODE"
so that it uses no numbered data registers.) When the coding is complete, we use "CU" to
raise the curtain above the highest data register containing program. The synthetic codes
will then appear as program lines, starting at the top of program memory. To access the new
lines, we use 'CAT 1', stopping at the first global label or 'END', followed with a manual
'RTN'. Here's a sample:

XEQ "CODE" [CODE=? ]
"CO00F400600401"

R/S ["®& TA% " ]
STO 01
XEQ "CODE" [CODE=? ]

"F32801297E8685"
R/S ("6 (%) Zmm" ]
STO 00

2
XEQ uCUu

CAT 1--stop at first label or END
RTN
SST to see new program:

01 LBL " Tx% "
02 II(I)"

03 AVIEW
04 BEEP

| 05 RTN |

At this point, the LBL " TX% " will not show up in the user catalog since it is not part
of the global chain. This can be fixed by inserting then deleting a temporary program line
anywhere among the new lines, followed by 'PACK'.

74



6H. DIRECT ROM ACCESS
 

The Application Pac 'Read-Only Memory (ROM)' modules for the HP-41C are an important

means of extending the memory capacity of the calculator to include an extensive library of

preprogrammed routines. Unfortunately, many of the routines suffer from the limitation that
they cannot be called as automatic subroutines from user programs because of the various halts
for manual input and output included in the routines. In many cases, this Timitation can be
overcome by using the following routine, which permits direct branching to any point in any
ROM routine:

 

B1+LBL "RON" 1 XG0 21 %> 1]
82 SF a1 12 % N 22 %(» a
83 X{> a 13 X[ 23 X0
84 X 14 ARCL @9 24 570 b "ROM"
85 CLX 15 "F----- : 25+LBL @8
86 RCL b 16 %> t 26 8O N 73 BYTES
87 FC?2C ot 17 %> 1 27 CLA
88 GT0 08 18 *k+t 28 END SIZE 001
89 ST0 [ 19 870 [
18 “Httttes 20 “hxx"    

Instructions for "ROM":
Prior to execution of "ROM", store in Rggp the absolute address of the point in the

ROM routine where you wish execution to.begin. Then, your program should call "ROM" as a
subroutine rather than calling the ROM routine directly. The RPN stack and data registers
should be configured as expected by the ROM program at the point of entry. "ROM" transfers
execution to the specified address in the ROM, following which the routine executes normally,
returning to the original main program upon encountering the final 'RTN' or 'END' in the ROM
routine. Although ordinarily a ROM program called by its global label can be a sixth-level
subroutine (i.e., during its execution, there can be up to six pending addresses in the return
stack), "ROM" can only be called as a fifth level subroutine.

The loss of one subroutine level arises from the way that "ROM" works. Following execu-
tionbof line 09, the alpha register will contain a replica of the return stack in Registers a
and b:

R6 R5 R4 R3 R2 R1 A6

where 'A6' is the absolute address of the second byte of line 06 (that's where the RCL b was
made); 'R1' is the return address of the program line from which "ROM" was called as a subrou-
tine; 'R2' is the second pending subroutine return, etc. Lines 10-20 shuffle the characters
in the alpha register around until Registers 0 and N contain a new return stack of the form:

R5 R4 R3 R2 R1 ER A6

where 'ER' is the address of the entry point in the external ROM, recalled from Rgpp. Notice
that the 'R6' address has been lost, accounting for the loss of one subroutine Tevel when
executing "ROM". The new return stack is stored into Registers a and b by lines 21-24. At
the execution of line '24 STO b', 'A6' becomes the pointer address, so that execution will
resume with line 07. This time through, Flag 01 is clear, so the program jumps to Tline
'25 LBL 00'. Lines 26-27 complete some 'housekeeping', restoring the RPN stack to its state
at the point when "ROM" was called. The 'END' drops the return stack, so that 'ER', the
address in the ROM, becomes the pointer address, whereupon execution transfers to the ROM
program. At the final 'END' or 'RTN' encountered there, execution returns to the user program
at the calling address 'R1'. Remember that the ROM routine itself may add subroutine levels,
causing 'R5', 'R4', etc. to be lost.

The procedure for determining the correct ROM entry point address is quite simple. First,
execute a 'GTO' to any global label within the ROM program of interest. Then press 'GTO .1mn',
where 'Imn' is the line number of the line where you want program execution to transfer. Then
press 'RCL b', 'CLA', 'STO M', 'ASTO 00', which places the address in Rgg, in the proper form

75



for use by "ROM". The choice of Rgg is arbitrary; if that register is required for some other
purpose, any data register may be used if line 14 is altered accordingly.

As an example of the use of "ROM", suppose we want to use the "SSS" routine in the Math
Pac. This routine prompts for manual entry of the lengths of three sides of a triangle, then
outputs the angles, sides, and area of the triangle. If the printer is not attached to the
HP-41C, the output requires manual 'R/S's to produce each of the seven outputs, precluding
use of "SSS" as an automatic subroutine.

Use of "ROM" can eliminate this difficulty by allowing "SSS" to be 'called' at a point
in the program after the input halts, and also after the 'SF 21' instruction (line 65) that
causes the output halts in the absence of the printer. A good entry point is line '06 LBL 05'.
At this point, the program assumes that the lengths 'S1', 'S2', and 'S3' are already in Rqqp,
Ro2, and Rpg, respectively, so we should arrange the calling program to accomplish that
storage:

 

B1eLBL “MAIN-
8z 23
83 STO 89
84 35
@5 STD 82
86 45
87 STO 84
88 XE@ “ROM"
89 “DONE"
18 AYIEW
11 END    

In the sample program "MAIN", we put in explicit side lengths of '25', '35' and '45'. To run
the program:

1. GTO ."SSS"
2. CLA
3. GTO 05 (or GTO .006)
4. RCL b
5. STO M
6. ASTO 00
7. XEQ "MAIN"

When "DONE" appears in the display, we will find the solutions

Al = 95.74 1in Rp]
A2 = 33.56 in Rq3
A3 = 50.70 in Rgsg
AREA = 435.31 in X.

Since "SSS" uses Rpg, it would be preferable to change the register used to store the ROM
address to some other register, say Rjg, so that steps 1 through 6 would not have to be
repeated for each subsequent execution of "MAIN".

76



CHAPTER 7

AMUSING ANOMALIES

The primary purpose of synthetic programming is to extend the programming capability of
the HP-41C. The application programs in Chapter 6 are the results of straightforward use of
synthetic functions, plus a lot of experimentation, wild ideas, diligent searching, etc. It
should not be surprising that this exploration of the inner workings of the HP-41C has also
turned up a number of oddities, which have no important practical uses, but are nevertheless
amusing to play with. This chapter contains descriptions of several of these oddities.

JA. 128 TONES?

In normal operation, the HP-41C can execute the ten tones 'TONE 0' through 'TONE 9',
corresponding to the byte codes '9F 00' through 'OF 09'. We saw at the the end of Chapter 3,
however, that the code '9F OA' executes a new tone, lTonger in duration and lower in frequency
than any of the standard tones. 'OF OA' displays in program mode as 'TONE 0', as we saw in
the 'Hangman' program of Section 6C. We can use synthetic programming techniques to attach
to the '9F' prefix any of the 128 postfixes from rows O through 7 of the Byte Table. It turns
out that almost every combination gives a different tone. There are 16 frequencies, correspond-
ing to the 16 possible values of the second nybble of the tone line postfix. Two tone codes
differing only in the first nybble of the postfix produce tones of the same frequency, but
usually of varying duration.

In program mode, any 'TONE' line with postfix less than hex '65' (decimal 101) will dis-
play as 'TONE n', where 'n' is the second digit of the decimal equivalent of the postfix byte
For higher postfixes, the lines will display as 'TONE @', where 'a' is a single alpha character
postfix, such as 'TONE D' for code '9F 69' or 'TONE P' for code 'OF 78'. Table 7-1 shows the
tone durations and frequencies for each of the 128 possible postfixes. The data in the table
was assembled by Richard Nelson (PPC Calculator Journal, V7 N1 P21, 1980). There are a few
cases of duplication, so that there are actually only 114 'different' tones.

In order to experiment with these tones, you can execute the program "TONE", which will
automatically create 127 'TONE' program lines (all but 'TONE 0', '9F 00', which can be made
normally). After execution of "TONE", the first 127 lines of the first program in memory will
be 'TONE' lines, with the Tine number of each line being the same as the tone number, from 1
to 127. "TONE" calls "DC" (Section 6D) and "CU" (Section 6G). Prior to execution, set 'SIZE
046 (or greater)'. After execution the size will be reduced by 43 registers.

The 'synthetic tones' are no more 'musical' than the standard tones. Nevertheless, the
additional frequencies and variety of tone durations allows much more interesting audible
output from the HP-41C.

 

 

 

B14LBL “TONE" 14 ASTO X 27 43
82 FS? 55 15 RCL 43 28 XEQ “CU"
83 CF 21 16 INT 29 BEEP
84 1.126 {7 %EQ *DC* 38 RTH ., ,
85 ST0 43 18 ASTO ¥ 314LBL 03 TONE
B6 42 19 CLA 32 156 44
87 ST0 45 28 ARCL ¥ 33 GT0 81 88 BYTES

A3eLBL 82 21 ARCL X 34 “he-
89 .992 22 156 43 35 RCL [ SIZE 046
18 STO 44 23 GT0 83 36 STO IND 45
11 CLA 24 b= 37 ISE 45
12¢LBL 81 | 25 RCL ( 38 GT0 82
13 b+ (F2 77 97) 26 $T0 00 39 END   

77



78

T
A
B
L
E

7
-
1
.

T
O
N
E

F
r
R
e
a
u
e
n
c
i
e
s
,

N
u
M
B
E
R
S
,

A
N
D

D
u
r
A
T
I
O
N
S

(S
EC
)

 '
l

o
1

2
3

4
5

6
7

8
9

A
B

C
D

E
F
 

F
r
e
q
.
(H
z)

1
7
5

1
9
7

2
2
5

2
6
3

3
1
5

3
9
4

5
2
5

6
2
9

7
8
8

1
0
5
1

1
0
5

1
1
3

1
2
1

1
3
1

1
4
3

1
5
8

o
[T

ON
E

0
1

2
3

4
5

6
7

8
9

0
1

2
3

4
5

0
.
2
8

0
.
2
8

0
.
2
8

0
.
2
8

0
.
2
8

0
.
2
8

0
.
2
8

0
.
2
8

0
.
2
8

0
.
2
8

2
.
2
0

2
,
2
0

2
.
7
0

3
.
5
0

0
.
8
0

2
.
3
0
 

L[
TO

NE
6

7
8

9
0

1
2

3
4

5
6

7
8

9
0

1

2.
00

0.
34

1.
50

0.
33

0.
50

1.
00

0.
45

0.
84

0.
30

0.
55

5.
00

3.
50

2.
00

4.
10

0.
30

2.
40
 

T
O
N
E

2
3

4
5

6
7

8
9

0
1

2
3

4
5

6
7

0.
02
5|

1
,
1
3

2
.
3
5

2
.
0
0

1
.
3
5

0.
02
3|

0.
02

3|
0.
35
|

0
.
7
0

0
.
5
2

0
.
8
5

0
.
4
5

3
.
2
0

0
.
1
8

1
.
3
6

0
.
1
3

 

T
O
N
E

8
9

0
1

2
3

4
5

6
7

8
9

0
1

2
3

0
.
5
4

0
.
3
7

2
.
1
0

1
,
9
5

0
.
2
8

0
.
1
5

0
.
8
0

0
.
7
7

0
.
6
5

0.
05

8]
0
.
4
2

0
.
4
1

3
.
3
0

0
.
3
9

0
.
9
7

0
.
3
0

 

T
O
N
E

4
5

6
7

8
9

0
1

2
3

4
5

6
7

8
9

1
.
8
8

2
.
3
5

0
.
4
0

0
.
2
4

1
.
0
5

0
.
2
9

0.
03

2|
0
.
2
4

0
.
1
4

0
.
1
5

3
.
7
0

0
.
3
0

3
.
7
6

3
.
4
0

0
.
8
9

0
.
9
0

 

T
O
N
E

0
1

2
3

4
5

6
7

8
9

0
1

2
3

4
5

0.
08

5]
0
.
2
2

1
.
7
5

0
.
7
4

0
.
2
8

1
.
2
5

0
1
5
0

0
.
1
4

0
.
5
8

0.
05
0|

2
.
7
0

0
.
4
2

3
.
2
1

2
.
9
5

0
.
3
0

2
.
4
0

FIRST POSTFIX DIGIT

 

T
O
N
E

6
7

8
9

0
1

A
B

C
D

E
F

G
H

I
J

0
.
6
5

2
.
3
2

0
.
4
3

|1
.2

5
0
.
1
2

1
,
0
0

0
.
9
9

0
.
8
4

0
.
7
0

0
.
5
2

0
.
2
3

0
.
4
5

3
.
6
2

0
.
3
3

2
.
1
0

0
.
3
5

 

T
O
N
E

T
Z

Y
X

L
M

N
o

P
Q

+
a

b
C

d
e

1
.
7
0

0
.
6
5

1
.
4
5

|0
.5

2
1
.
2
5

1
.
3
0

0
.
2
4

0
.
8
4

0
.
1
4

0
.
3
3

0
.
2
5

4
.
6
0

0
.
7
6

4
.
0
0

3
.
5
0

2
.
9
0

 

 
     

 
   

       12
3

4
5

6
7

8
9

A
B

C
D

E
F

  
 

S
E
C
O
N
D

P
O
S
T
F
I
X

D
I
G
I
T



7B. TRICKS WITH SYSTEM FLAGS
 

In our development of synthetic programming, we have encountered several examples of the
deliberate setting of normally inaccessible system flags to produce surprising (such as the
setting of the Low Battery Flag 49 in Section 4D) or useful (the text enabler, Section 5H)
results. Some further amusing effects can be produced by setting system flags. Here is a
set of routines for use in flag register explorations:

 “SAVE"

Bl4LBL "SAVE" 18 RTN 19 SF IND ¥
18 ByTes 8z @ 11¢LBL "FL" 28 RCL d

83 RCL d 12 24 21 §T0 [ gL
SIZE 002 B4 XER *CS 3 - 22 *HABCD®
nprn 85 RTH 14 ¥{> d 23 XN 42 BYTES

RE B64LBL "RE" 15 §T0 [ 24 $T0 d
87 0 16 “Feoe 25 RTN

16 BYTES

|

ag %o -cp- 17 ROL [ 26 END

SIZE 002 |®°™¢ 19 %0 0    
Prior to experimenting with the system flags, you should execute "SAVE", which recalls the
current content of Register d and stores it (using "CS") in Rgg and Rgj. Then, at any time,

you ;an return your calculator to its initial flags status by executing "RE" (which calls
IICRII .

"FL" provides a means of setting any system flag (up to Flag 53) by moving the content
of Register d 'to the left', where control of user flags allows us to set the bit in the
'shifted' location of the system flag of interest. Then the Register d bytes are shifted
back to their original position; when the program halts, the chosen system flag will be set.
For example, '49 XEQ "FL"' turns on the BAT annunciator; '47 XEQ "FL"' halts execution with
the SHIFT annunciator active (and the next key pressed will execute its shifted function).

Setting Flag 30 will produce some unusual 'catalog' displays. These phantom catalogs
don't have any particular application, but it is interesting to watch the various 'entries'
in the catalogs as they cycle through. According to Thomas Cadwallader, different catalogs
are accessed by choosing various number display formats before setting the catalog flag. To
see one such catalog, try 'FIX 9, 30, XEQ "FL", R/S'. Notice that these catalogs can be
halted and single-stepped just as any normal catalog.

For whatever it's worth, we can turn on program mode with '52 XEQ "FL"'. You may have
wondered how, in programs like "CODE" and "DECODE", we could be so cavalier about storing 'any
old thing' into Register d--why, for example, doesn't the HP-41C switch to PRGM mode when
Flag 52 is set during a running program? The answer lies in the fact that the processor only
checks the statuses of the various flags at particular times, not continuously, so as long as
potentially dangerous flags are cleared before they are checked, nothing untoward happens. But
there certainly are pitfalls: to see what can happen, alter "FL" by inserting a line '25 1'
following line '24 STO d', then press '52 XEQ "FL"'. The processor does turn on PRGM mode,
but since the program is still running, the HP-41C starts to program itself, filling up avail-
able space with 'l' Tlines until memory is full, at which point the display shows 'PACKING,
TRY AGAIN'! Evidently, one of the times Flag 52 is 'checked' is at number entry program lines.

Flag 50, the Message Flag, is perhaps the most interesting of the system flags. At the
time Flag 50 is set, whatever happens to be in the display is 'frozen in'. To see four dif-
ferent possibilities, key in (after cleaning up all the 'l' program lines made in the last
experiment) a line '24 STOP' following line '23 X<>N'. Then try '50 XEQ "FL"', and observe
the display when the program halts. Press and release 'SST' quickly. The number displayed
(in 'SCI 0' format) remains as it is, although various annunciators may change at the 'SST'.
Pressing the correction key will return the display to its 'pre-"FL"' format. Now try '50,
XEQ "FL", SST' again, only this time press and hold the SST key to see '25 STO d', then release
--the '25 STO d' remains in the display. Next, run '50 XEQ "FL"', and execute a 'STO d' manu-
ally (you will have to turn on USER mode to access the 'STO d' key assignment). This time
the display will freeze as 'XROM 05,62'. Finally, do one more '50 XEQ "FL", then press 'R/S'.
The flying goose is brought to roost! To move the little fellow to a different position,
insert a few 'LBL 01' lines into "FL", delete the 'STOP' 1ine, and try another '50 XEQ "FL"'.

Judicious clearing of Flag 50 can also produce an interesting result. During a running
program, if Flag 50 is clear, the display shows the flying goose. However, if a 'VIEW mn'

79



or an 'AVIEW' is executed, Flag 50 is set and the content of the specified register is displayed.
A 'CLD' clears Flag 50, and returns the goose to the display. But if, during a 'VIEW', we
clear Flag 50 without use of 'CLD', the processor restarts the default display, but steps the
'"VIEW' display around instead of the goose. In effect, we can replace the flying goose with
any other character, or string of up to twelve characters. The easiest way to accomplish
this trick is to have the program execute an 'RCL d' just before the 'VIEW' 1ine, i.e., at a
time when Flag 50 is clear. Then immediately after the 'VIEW' is executed, the program does
a 'STO d', restoring the pre-VIEW status of Flag 50:

01 "ABCD" 050
02 RCL d 06 LBL 01
03 AVIEW 07 SIN
04 STO d 08 GTO 01

 

   
When you run this routine, you will see "ABCD" stepping around the display. Lines 05-08
provide an endless loop to make our ersatz goose fly. Lines 01-04 can be included in any
program, using any l2-character display to 'personalize' your running program. This trick is
used in the 'Hangman' program of Section 6C to display the 'guessed letter' in a novel manner.

Here's a one question quiz to test your HP-41C ingenuity. There are 216 independent LCD
segments in the HP-41C display--12 'starburst' characters times 14 segments = 168 segments;
plus 12 'colon & comma' characters times 3 segments = 36 segments; plus 12 number and word
segments in the annunciators; [168 + 36 + 12 = 216]. The question: How many segments can be
‘on' simultaneously, with the 41C in 'standby' mode (i.e., on, but not running a program)?
When you think you have the answer, and can demonstrate your number with an actual display,
try running the routine "DI". If you can turn on more segments than "DI", you have learned
more than this book can teach you!

 

@1eLBL -DI"
82 =++8¢! |(F7 F8 00 00 10 00 21 E8) 1line 02

83 RCL [
g4 =:::" (76 89 SABY3AEIIA) [ine F¥

85 ASTD Y ”DI”

86 ARCL Y

87 ARCL Y BYTES

89 ARCL ¥ 37
89 AYIEM
16 %> d
{1 END    

7C. FLYING THE GOOSE BACKWARDS

To wrap up the exposition of synthetic programming, I'd Tike to give you one more example
of 'they said it couldn't be done, but we did it (with synthetic programming, of course)!'
As far as the user community was concerned, the best kept secrets of the HP-41C were the
existence of the backward-facing goose character, and the means to display it. (Of course,
there may be better-kept secrets, but they're still secrets.) To coax this shy creature
into the display, we need one last new synthetic function, 'FIX 10'.

Numeric displays in the HP-41C are controlled by Flags 36-41. The 'FIX' format, for
example, is established if Flag 40 is set and Flag 41 is clear. Digits Flags 36-39 control
the number of digits that are displayed following the decimal point. The four flags constitute
one hexadecimal digit; the number of digits displayed is equal to the value of that digit.
Normally, the 'FIX' format is chosen from among 'FIX 0' through 'FIX 9', where the corresponding
values of the four Digits Flags range from '0000' to '1001'.

With synthetic programming techniques, we can place any values we wish into the Digits
Flags, extending the range of 'FIX' formats to include 'FIX 10' through 'FIX 15'. The display
can't show more than ten digits, of course; in fact, 'FIX 11' through 'FIX 15' produce displays
identical to that of 'FIX 0'. But 'FIX 10' does produce a new display format. For numbers
with positive exponents, only the full ten mantissa digits are shown, with the exponent sup-
pressed. Thus, for example, '1.234567891 E56', will show in 'FIX 10' as '1.234567891', whereas
in 'FIX 9' it would display as '1.2345678 E56'.

80



There are several ways to place the HP-41C in 'FIX 10' format. As suggested above, we
can directly set the value 10 (1010, or hex 'A') into the Digits Flags by storing an appropriate
NNN into Register d. Another easy way is to set 'FIX 8', which sets Flag 36 and clears Flags
37-39, then use '38 XEQ "FL"'. Or, the synthetic function 'FIX 10' (code 9C OA) can be used,
either as a program line (it displays as 'FIX 0') or by assigning it to a user key (the pre-
fix/postfix for "KA" is 156/10). Finally, we could place the NNN 'OA 00 00 00 00 00 00' into
Register X, and execute 'FIX IND X'.

'FIX 10' has a moderately useful practical application as a means to display only the
mantissa of a number with a positive exponent. Unfortunately, the method isn't quite clean:
if the exponent is 10, 11, 12, or 13, when taken modulo 14, some of the mantissa digits will
be represented in the display by character from row 2 of the Byte Table rather than by the
proper number characters from row 3. The most dramatic example is when the exponent is 13
(or 27, or 41, etc.) and Flags 28 and 29 are clear. In this case, only the first mantissa
digit will display normally. '1.234567891 E13' will display in this mode as '1"#$%&'(): '
--still decipherable, if you have your Byte Table handy, but not very convenient.

The display of row 2 characters is by no means limited to the normal decimal digits 'O’
through '9'. Referring to the Byte Table, you will observe that bytes '2C', '2E', and '3A'
each have two associated characters. In alpha displays, these bytes always show up as the
characters “,", ".", and ":", respectively. But in number displays, the individual number
digits are each represented by a character--10 and behold, in a number with the proper exponent,
mantissa digits 'C' and 'E' are represented by the geese " <" and " »", respectively. The
'3A' number character is the 'starburst'--as we found out in Section 5A.

To catch a couple of geese, set 'FIX 10' by any method, and clear Flags 28 and 29. Then:

XEQ "CODE" [CODE=? ]
"0100E00C000013" -

R/S ["* By =" ]
press [+ » =< ]

A maximum of nine goose characters can be made in a single display. The first
character in the number display will always come from row 3--perhaps the most innocuous of
these is the 'semicolon' character (byte '3B'). For example, the NNN 'OB CC CC CC CC CO 13'
will display as:

[7 <<€ << <€<<]

At the risk of gilding the 1ily, let us return once more to "CODE", the quintessential
synthetic program. What could be more fitting than making the goose fly backwards while
"CODE" is running? Line 07 of "CODE" (1ine 11 if you modified "CODE" as suggested in Section
6F) is '07 "FABCDEFG"'. The seven characters appended can be any characters--they might as
well be a 7-byte NNN containing a backwards goose. Replace line 07 with:

 

07 "+HEMB ® F8 7F OB CO 00 00 00 00 13
08 RCL d
09 FIX O 9C OA
10 CF 28
11 CF 29
12 CF 21 (necessary only with printer)
13 VIEW M

14 STO d   
As the goose flies backwards around the display, he will be pursued by a "»". Perhaps that's
a goose dropping???

* * *

On this charming note, we come to the end of this book. You've done a lot of work, and
learned a lot about the HP-41C. Henceforth, 'synthetic programming' should mean 'normal
programming' for you. You are now entitled to call yourself an 'NNU'--a ‘Non-Normalized
User'!

81



APPENDIX 1

NUMBER SYSTEMS

Every HP-41C user is familiar with the decimal number system, in which the fundamental
quantity, or 'base' of the system is the number ten. Consider the following group of letters:

ABCDEFGHIJKLMN.

If we count the letters, we say we have 'thirteen' letters; as a shorthand notation for the
number thirteen we write, in 'decimal’:

13

The short notation possible with the decimal system arises from the repeated use of a
limited set of symbols, i.e., the numerals 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9, rather than
having a different symbol for each possible number. When we write the double symbol '13',
the value represented by each of the numerals depends upon its position in the '13'. That
is, '13' means 'one times ten plus three'. Each numeral is multiplied by the base number
raised to an integer power:

13 = (1 x 101) + ( 3 x 100)

Each numeral in a number is called a digit; we say '13' is a 'two-digit number'. For an 'N-
digit number':

ab...de = (a x 10N-1) + (b x 10N-2) + ... + (d x 101) + (e x 100)

The digits a, b, ..., can take values from O through 9, i.e., up to one less than the base
of the number system, ten.

There is nothing sacred to a mathematician, however, about the number ten: we can equally
well choose any number as the base of a number system. For example, try eight: in 'base
eight', usually called the 'octal number system' or just 'octal', the maximum value of a
digit is seven. The number thirteen is represented by:

15 = (1 x 81) + (5 x 80) = 13y,

When more than one number system is in use, numbers with two or more digits should be
written with subscripts to identify the base to which they are referred. We can write equali-
ties like:

158 = 1310

129510= 2417g

The 'OCT' and 'DEC' functions in the HP-41C provide an easy means of converting numbers back
and forth between the octal and decimal systems. It is important to remember that such conver-
sions do not change number, but only the symbols used to represent the number. 7654g apples
remain the same quantity of apples even if we write 401219 apples.

Two other number systems are of interest in our study of the HP-41C. The first is the
'binary number system' in which the base is two. Only two symbols are needed, 'l' and 'O'.
Our Tucky number thirteen is represented in binary as

1101, = (1 x 23) + (1 x 22) + (0 x 21) + (1 x 29) = 13},

The binary system is ideal for computer use, since each digit can take only two values, which
is very easy to implement mechanically or electronically. Each digit, or 'bit' as binary
digits are usually called, can be represented by the state of any kind of simple switch,

where 'on' means 'l', and 'off' means 'O'. All calculator computations are carried out in

82



binary--the conversion to a decimal display is only for the convenience of the user. As a
matter of fact, even the decimal numbers in the HP-41C are represented internally in 'binary-
coded-decimal', or 'BCD', where each decimal digit is coded with four binary bits. For example,

'13' is stored as

13 —0001 0011

Each group of four bits can represent a number up to 1579 = 1111, which leads us to
the last number system that we need to consider--the 'hexadecimal' system, base sixteen. In
hexadecimal notation, each digit can take a value from zero to fifteen, so the symbols 'O’
through '9' alone are insufficient. We add the symbols 'A' through 'F':

ten
eleven
twelve

thirteen

fourteen

fifteenM
M
O
O
>

n
u
w

n
n
u
n

So, for example,

8A16 = (8 x 1610) + (1010) = 13810

1FF16 = 51179

Notice that the values of single digit numbers are always unambiguous. It is only when
two or more symbols are combined into a multi-digit number that we need a subscript to specify
the number system in use.

83



APPENDIX 2. PROGRAM BARCODE
CODE PAGE 1

OF 1
PROGRAM REGISTERS NEEDED: 28

ROW 1 (1:2)

ROW 2 (2:7)

OW3 (7:9)

ROW 4 (10 : 15)

      

   
R

        

                             

ROW 5 (15 : 21)

AL OO
ROW 6 (22 : 29)

A0 AR
ROW 7 (30 : 37)

TR A
ROW 8 (37 : 43)

R
OA
0
TR
IAArA
OeAT
i

|

                                                      
ROW 9 (44 51)

1W 10 (51:59)

ROW 11 (59 : 66)

12ROW (66 : 73)

                

O
E
E
E
m
E
E
n
)
N
S

. . I O

                               
ROW 13 (73 :79)

ROW 14 (79 : 84)

ROW 15 (85 : 89)

                                               

84



REG

PROGRAM REGISTERS NEEDED: 15

ROW 1 (1: 4)

ROW 2 (4:7)
  

    

          
           
ROW S5 (16:

ROW 6 (2

ROW 7 (2

ROW 8 (34 :

o n e                   

o
o

_
Q
—
g
—
,
\
,
_

=

                                                    

[Due to an oversight in the adaptation of the author's programs
for barcoding, line 34 of "REG" is '34 "B2-"' rather than the '34 "REG"'
described in the text. The "B2" refers to the PPC designation of the
hardware bug ('Bug 2') in the HP-41C that led to synthetic programming.
You may, of course, alter the line once the program is scanned into the
calculator.]

85

PAGE 1
OF 1



KEY ASSIGNMENT PROGRAM PAGE 1
n n n n OF 2

PROGRAM REGISTERS NEEDED: 59 KA" anp “EF

ROW 1 (1:4)

ROW 2 (4 : 12)

ROW 3 (12: 18

ROW 4 (18:22

ROW § (23 :30

ROW 6 (31: 36)

W7 (RO 36 : 40)

ROW 8 (40 : 45)

ROW 9 (46 : 54)

ow 10 (55 : 64)

W 11 (65 : 74)

   

ROW 15 (93 : 97)

ROW 16 (98 : 104)

ROW 17 (104 : 108)

ROW 18 (108 : 115)

86

   

              
                -

S
-
—

"
S

—
—
—

—

               
7                                   

R                                                                                                                                               



KEY ASSIGNMENT PROGRAM PAGE 2
OF 2

ROW 19 (115: 121)

ROW 20 (122 : 125)

ROW 21 (126 : 132)

ROW 22 (132 : 139)

ROW 23 (139 : 146)

ROW 24 (147 : 153)

ROW 25 (153 : 158

ROW 26 (158 165)

ROW 27 (165 168)

    

  

          

                                    

~                                           
ROW 28 (169 : 175)

ROW 29 (175: 181)

ROW 30 (182 : 188)

ROW 32 (195 : 196)

                                       
ROW 31 (189 : 195)                                             

87



DECODE PAGE 1
OF 1

PROGRAM REGISTERS NEEDED: 29

ROW 1 (1:3)

ROW 2 (3:9)

ROW 3 (10: 17)

ROW 4 (17 : 23)

ROW 5 (24 : 30)

o

     

  

            

                    
W6 (30 :36)

ROW 7 (36 42)

ROW 8 (43 : 48)

R

                                                                                                           
85)

1 92)

7

5

2 :99)

: 103)9

        
ROW 14 (8

ROW 15 (9

ROW 16 (9

                                                               

38



HANGMAN PAGE 1
OF 2

PROGRAM REGISTERS NEEDED: 56

ROW 1 (1:4)

ROW 2 (5: 10)

ROW 3 (11: 11)

ROW 4 (12: 17)

  R
O
A
A
OOI
O
L
O
O
(UT
A
AA
e
ROW 14 (75:77)

e
OW 15 (77 : 83)

N
ow 4

K
OW 17 (90 : 93)

ROW 18 (94 :

e
89

                      
               

ROW 5 (17 :23)

ROW 6 (23 : 28)

ROW 7 (29 : 36)

ROW 8 (36 : 42)

ROW 9 (42 : 50)0O

oROW 10 (51 : 59)

w 11 (5

w 12 (66 : 70)

ROW 13 (70 : 74)

                                                                            
RO             
RO                                     
R          
R             
R                     

16 (84 : 90)

98)                                              



HANGMAN PAGE 2
OF 2

ROW 19 (98 : 103)

ROW 20 (103: 11

111:ROW 21 (11

(116 : 125

 OO
A

| O
oW 22

e
ROW 23 (125 : 132)

A
OW 24 (132 : 139)

Re
OW 25 (139 : 146)

O
ROW 26 (147 : 155)

O
ROW 27 (156 : 163)

O
ROW 28

AA
ROW 29 (173 : 179)

0

1

  

          
R                     
R              
R              

                         
ROW 30 (179 : 183)                    

90



APPENDIX 3

THE BARCODE CHARACTER TABLE

This book represents the results of a year of experimentation with synthetic programming
on the HP-41C. At this time, it is clear that the Wand will be a powerful tool for synthetic
programming, largely due to the work of Jacob Schwartz (a PPC member who is also responsible
for the eminently sensible layout of the Wand Paper Keyboard). Most of the wand techniques
for synthetic programming are still in their infancy, but a few examples will convince you of
the promise of this device.

**Always use a protective sheet over the barcodes while you are scanning with the wand!**

First, you can add to your 'Paper Keyboard' barcodes for the byte jumper and the Q-
loader:

BYTE JUMPER:

Q-LOADER:

The 'Bar Code Character Table' on the following page was supplied by Jacob Schwartz.
Any non-standard alpha character from the upper half of the Byte Table can be added directly
to an alpha string, either in the alpha register, or in a program text line, by simply scan-
ning the barcode in the appropriate location in the chart.

91



92

112@911'3&“11-%(‘ llfws llwt 117gu118@‘) 11‘3&!»129%)( 121%7 li'igzl'>

3
o

(
S

&
»

w
N

-
h

o

 

32

(space)

o &
[
N

@

o R
11

11
1

+
 

64 g @65
L a

= w

X
Q = 0

~
.

[ w

33
/
/

=

&=
(
A

fe
}

O
1
1
1
1
1
 

,g66

r

-

N
I

@ &
(
I

O
=
I
 

T

2|5

° L
T

D

I
 

BGPP SIUQ 82RR 835’8847"

s %
(
U
M

a.
>+
[
N

&
 

Ties) i
(5]

EBG?CCGSDDS?E

34 |35 #|3¢6 .F|37
n fl 5 %

D

S
(
I
R

5
>4
I
 

h

uiss) ,

v

“Z|38

X

N
5
[
N

o
(
N
I
 

£)39 , *

o
&
[
N

C
T
 

v(87) [ uW|s2
w

335&1_%453555456557?565

=
(
I

o

=
(
I
R
 

S
T
 

.

857D958-
4

© &
(
I

¢
 

: 159
7

.

=
(
I

Y
 

w24

xxw)/ 7952291[_-[92\\

‘

40<( 41>) 42** 43++ 44’ .

zsgu 2Sgd 2%5 28fl

N -
(
N
H
R
R

©
 

I

Nz
—J

60 s L|61

45

®|29

A
T

*

@ g
L
T

~N
 

1 947

& n

7/

v

H T .

s
<
T

]
th

- & Q
  S12e ol& A

MEY 3 ; o 2y f|18: il1e5 il1av k192 1199 1169i§‘r‘ 9’[3a9obb99cclflydlh‘1a-elfi"g 183$9184gh195g116’w415$ lfl?fl l'wm ifinliig  0T[98
—   E?BF_‘F?IEG?Z}{H 731" I?4J[J?5’L< K?SL L??/\,’M?SNN?QDO

 6"1’—3 ?

 = ~ N
 s[  a %

(
I

o
 
 

THE BARCODE CHARACTER TABLE



ERRATA: Synthetic Programming on thé HP-41C

1. Page 15, par. 6, 4th line: '9' means packed
2. Page 68: the 40-byte 'normal' steps omitted from

par. 1 of sect. 6F are:
01 CF 13 07 CF 13 13 CF 13
02 “B" 08 "p" 14 35
03 ACA 09 ACA 15 ACCHR
04 SF 13 10 SF 13 16 "7
05 "IG" 11 "EAL" 17 ACA
06 ACA 12 ACA 18 ADV

3. Page 48: Line 125 of “KA" is 'F3 0C OC 0C'
4. The following synthetic codes were omitted:

Page Program Line # Code
67 AL" 18 F3 01 01 01

“AL" 25 F2 01 01
“TONE" 13 F2 7F 9F
"TONE" 24 F2 9F 7F
“pI" 04 F6 80 3A 80 3A 80 3A

5. In all programs, the symbol *s" in program
listings indicates byte '00'

 



 

 

KEYBOARDLOCKY

'Twas octal, and the synthetic codes
Were scanned without a loss.
In and out of PRGM mode,
Byte-gjumpers nybbled the CMOS.

"Beware § STO e, my son,
The MEMORY LOST, the keyboard lock.
Beware the NNN, and shun
The curious phase 1 clock."

He took his black box codes in hand,
Long time the backwards goose he sought;
The secret beast from Aitchpee land--
All searches came to nought.

In demented thought he stood, and then:
The goose, with LCD's alight,
A leap for every LBL 10,
Came honking left-to-right!

ST0 bl 8Ta-d!, and RCL P!
His keyboard went clickety-clack.
With the proper code in number mode
The goose came flapping back.

"And hast thou found the phantom fowl?
Come to my arms, my binary boy.
Let Corvallis hear us howl
As we chortle in our joy!"

'Twas octal, and the synthetic codes
Were scanned without a loss.
In and out of PRGM mode,
Byte-jumpers nybbled the CMOS.

~--Apologies to Lewis Carroll

  


	Cover
	Table of Contents
	Chapter 1. Why's and Wherefore's
	1A. Synthetic Programming?
	1B. Purpose and Organization
	1C. The Origin of Synthetic Programming
	1D. No Risk to the HP-41C
	1E. Some Conventions
	1F. Prerequisites
	1G. References

	Chapter 2. Inside the HP-41C
	2A. Calculator Language: Bits, Nybbles and Bytes
	2B. The Byte Table
	2C. Register, Please
	2D. Memory Partitioning
	2E. The Key Assignment Registers

	Chapter 3. Exotic Editing with the Byte Jumper
	3A. Normal Editing
	3B. The Byte Jumper

	Chapter 4. The Status Registers
	4A. Strange Postfixes
	4B. The Alpha Register
	4C. Register Q
	4D. The F1ag Register
	4E. The Key Assignment F1ags
	4F. The Address Pointer and the Return Stack
	4G. Register c and Memory Partitioning 

	Chapter 5. Programs for Programming
	5A. Unseemly Displays
	5B. Register Exchanges and Normalization
	5C. Getting Started: "CODE"
	5D. Direct Access to Program Registers
	5E. Synthetic Key Assignments
	5F. Creation of Synthetic Program Lines
	5G. Enhanced Byte Jumping
	5H. The Text Enabler
	5I. The Q-Loader
	5J. Backtalk from the HP-41C
	5K. Code Storage

	Chapter 6. Applications
	6A. Getting to the .END.
	6B. SIZE-finding and Other Tricks
	6C. Fun and Games in the Alpha Register
	6D. Character Recognition
	6E. Synthetic Text Lines and the Printer
	6F. Non-Normalized Numbers and Mass Flag Control
	6G. Raising the Curtain
	6H. Application Pacs: Sneaking in the Back Door

	Chapter 7. Amusing Anomalies
	7A. 128 Tones
	7B. Tricks with System F1ags
	7C. Flying the Goose Backwards

	Appendix 1. Number Systems
	Appendix 2. Program Barcode
	"CODE"
	"REG"
	"KA" and "EF"
	"DECODE"
	"HM"

	Appendix 3. The Bar Code Character Table

