
VIEWEG PROGRAMMBIBLIOTHEK Mikrocomputer 36

HP-41 im technischwissenschaftlichen Einsatz

Dialogsystem, Darstellung von Funktionswerten, Relaisschaltungen, Regelkreis-Optimierung, Polkonfigurationen

Vieweg Programmbibliothek Mikrocomputer 36

HP-41 im technischwissenschaftlichen Einsatz

Aus dem Programm Mikrocomputer

Anwenderhandbuch HP-41 C/CV

von K. Gosmann

Softwareentwicklung am Beispiel einer Dateiverwaltung von M. Gehret

Optimales Programmieren mit dem HP-41

von G. Kruse

Aus der Vieweg Programmbibliothek Mikrocomputer zum HP-41:

Band 14

Lineares Optimieren

11 HP-41-Programme

Band 15

Dienstprogramme (Tool-Kit) für den HP-41

Band 18

Probleme der Festigkeitslehre

23 Programme für den HP-41

Band 21

HP-41 in der Praxis

Band 23

HP-41-Sammlung

Band 27

Kryptologie-Programme (HP-41 C/CV)

Band 28

HP-41 - Hilfen und Anwendungen

Band 36

HP-41 im technisch-wissenschaftlichen Einsatz

Vieweg Programmbibliothek Mikrocomputer Band 36

Harald Schumny (Hrsg.)

HP-41 im technischwissenschaftlichen Einsatz

Dialogsystem, Darstellung von Funktionswerten, Relaisschaltungen, Regelkreis-Optimierung, Polkonfigurationen

Mit 5 Programmen

Springer Fachmedien Wiesbaden GmbH

CIP-Kurztitelaufnahme der Deutschen Bibliothek

HP 41 im technisch-wissenschaftlichen Einsatz:

Dialogsystem, Darst. von Funktionswerten, Relaisschaltungen, Regelkreis-Optimierung, Polkonfigurationen; mit 5 Programmen / Harald Schumny (Hrsg.). [Die Autoren d. Bd.: Edgar Buchinger ...].

(Vieweg-Programmbibliothek Mikrocomputer; Bd. 36) ISBN 978-3-528-04463-3 ISBN 978-3-663-15927-8 (eBook)

NE: Schumny, Harald [Hrsg.]; GT

DOI 10.1007/978-3-663-15927-8

Die Autoren des Bandes:

Dipl.-Ing. (FH) Edgar Buchinger Elsternhag 46 3000 Hannover 61

Karl Hackenberg
Kurt-Schumacher-Straße 12
3300 Braunschweig

Dr.-Ing. E. h. Kurt Hain Peterskamp 12 3300 Braunschweig

Herbert Hoffmann Denkmalsweg 12 5900 Siegen

Prof. Dipl.-Ing. Peter F. Orlowski Erfurter Straße 11 6307 Linden 2

Das in diesem Buch enthaltene Programm-Material ist mit keiner Verpflichtung oder Garantie irgendeiner Art verbunden. Der Autor übernimmt infolgedessen keine Verantwortung und wird keine daraus folgende oder sonstige Haftung übernehmen, die auf irgendeine Art aus der Benutzung dieses Programm-Materials oder Teilen davon entsteht.

1986

Alle Rechte vorbehalten

© Springer Fachmedien Wiesbaden 1986 Ursprünglich erschienen bei Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig 1986

Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Jede Verwertung außerhalb der engen Grenzen des Urheberrechtsgesetzes ist ohne Zustimmung des Verlags unzulässig und strafbar. Das gilt insbesondere für Vervielfältigungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Verarbeitung in elektronischen Systemen.

Umschlaggestaltung: Peter Lenz, Wiesbaden

Inhaltsverzeichnis

Einführung	1
Edgar Buchinger: Ein Dialogsystem für den HP-41	3
Karl Hackenberg: Darstellung von Funktionswerten	15
Herbert Hoffmann: Relaisschaltungen – Entwurf und Test mit dem HP-41	35
Peter F. Orlowski: Regelkreis-Optimierung mit dem Taschenrechner HP-41 CV/CX im Bode-Diagramm	75
<i>Kurt Hain:</i> Polkonfigurationen in bewegten Systemen	96

Einführung

Es wird immer behauptet, die allermeiste Software sei für CP/M-Rechner verfügbar. Dabei wird offenbar übersehen, daß Taschencomputer wie der HP-41 sehr stark verbreitet sind und zu einem großen Teil professionell genutzt werden. Eine Ursache dafür ist sicher die Verfügbarkeit von Detail-Software in einer solch großen Zahl, die von keiner anderen Rechnerkategorie erreicht wird.

Taschencomputer sind nämlich gleichzeitig leistungsfähig und problemlos benutzbar, und sie "verleiten" darum mehr als komplexere Systeme zum Selbstprogrammieren. Es gibt aber auch umfangreichere, hochqualifizierte Programmpakete bzw. -systeme; fünf davon sind in diesem Band der Vieweg Programmbibliothek zusammengefaßt. Die Auswahl erfolgte nach besonderer Eignung für den technisch-wissenschaftlichen Einsatz.

Von Edgar Buchinger stammt das Dialogsystem, mit dessen Hilfe die Abarbeitung aller Programme nach einem einheitlichen Schema möglich wird. Diese Software erzieht aber auch zum systematischen Programmieren; denn alle Programme müssen gleiche Merkmale und Strukturen aufweisen. Als Anwendungsbeispiel ist ein Bemessungsprogramm aus dem Stahlbetonbau vorgestellt.

Karl Hackenberg hat sich der Darstellung von Funktionswerten angenommen. Das erklärte Ziel des Autors ist es, den verwirrenden Doppelbelegungen von Datenspeichern und Tastenzuordnungen sowie den meist sparsam gehaltenen Rechenanweisungen mit einer kompakten Anordnung zu begegnen. Beispiele sind dafür angegeben, wie das Programm bei Kurvendiskussionen eine schnelle Übersicht ermöglicht.

Das umfangreiche Programmpaket von Herbert Hoffmann ist das Resultat konsequenter Weiterentwicklung einer bereits im Band 23 der Programmbibliothek veröffentlichten Arbeit mit dem Titel "Schaltalgebra und Logiknetzwerke". Und sicher hat der Autor recht damit, daß Entwurf und Test von Relaisschaltungen immer noch wesentliche Ingenieurarbeiten sind, obwohl nach Möglichkeit hochintegrierte elektronische Schalter eingesetzt werden. Mit vielen Beispielen wird die beachtliche Leistungsfähigkeit des HP-41 belegt.

Eine Vielzahl technischer Regelkreise läßt sich mit dem Programm von *Peter F. Orlowski* optimieren. Als Grundlage dient das vereinfachte Stabilitätskriterium nach Nyquist und seine Darstellung im Bode-Diagramm. Das Programm ist beschrieben, Optimierungsbeispiele sind durchgerechnet und diskutiert. Ein Haupteinsatzgebiet ist für den Autor die Anwendung als Lernhilfe für Studenten der Regeltechnik.

Das letzte Programm dieses Bandes ist von Kurt Hain; es dient der Untersuchung von Polkonfigurationen in bewegten Systemen. Der Autor: Die Polkonfiguration erfaßt den Gesamtplan der Geschwindigkeitspole, und hier soll auf nicht ausgenutzte Anwendungsmöglichkeiten und auch neuartige Mittel für eine höhere Getriebesynthese hingewiesen werden. Auch bei diesem Programm handelt es sich um die Fortführung umfangreicher Arbeiten, die Kurt Hain bereits in Band 17 der Programmbibliothek (Gelenkgetriebe für die Handhabungs- und Robotertechnik) und in Band 9 der Reihe Anwendung von Mikrocomputern (Gelenkgetriebe-Konstruktion) veröffentlicht hat.

Der HP-41 ist wahrscheinlich auch noch auf längere Sicht ein nützliches Werkzeug für Studenten, Ingenieure und Wissenschaftler. Die hier abgedruckten Programme können dazu beitragen, manches Problem beim technisch-wissenschaftlichen Einsatz zu bewältigen.

Ein Dialogsystem für den HP-41

Edgar Buchinger

1 Zielsetzung

Es geht darum, ein System zu entwickeln, mit dem alle Programme einheitlich abgearbeitet werden können, ohne daß der Benutzer bei jedem neuen Programm umdenken muß. Das bedeutet: alle Programme müssen gleiche Merkmale und Strukturen aufweisen.

Um eine flexible Programm-Bearbeitung zu gewährleisten, sollen Eingabe, Berechnung und Ausgabe als unabhängige, in sich geschlossene Einheiten funktionieren und dem Benutzer als solche, sozusagen im Menü, zur Auswahl angeboten werden.

Alle Eingabewerte und Endergebnisse sollen im Permanentspeicher unverändert erhalten bleiben. Während der Programm-Bearbeitung kann von jeder Funktionseinheit hierauf zurückgegriffen werden. Im Idealfall sind sie sogar als Eingabedaten für ein weiterführendes Programm, sozusagen im Programm-Paket, weiterverwertbar.

Eine Routine zum Eingeben, Ändern und Anzeigen von Daten soll es ermöglichen, die im Permanentspeicher vorgehaltenen Werte anzuzeigen, zu überprüfen und gegebenenfalls zu ändern.

2 Beschreibung

Das Dialogsystem besteht im wesentlichen aus vier Grundelementen. Das erste wird in allen Programmen, die über das Dialogsystem funktionieren, eingebaut. Auf die anderen drei Routinen wird von allen Programmen zurückgegriffen, sie müssen deshalb ständig im Programmspeicher vorgehalten werden.

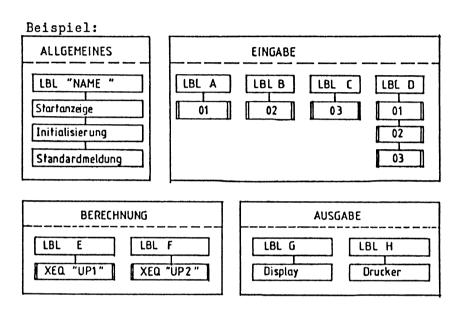
2.1 Steuerungs-Routine mit zugehöriger Programm-Struktur

Kernpunkt der Steuerungs-Routine bilden die Programm-Adreß-Tasten A-J und a-e, der oberen zwei Tastenreihen (vgl. hierzu Abschnitt 4). Diese sind nur im USER-Modus wirksam und ermöglichen es, bestimmte Punkte (Marken) im Programm direkt über die Tastatur anzulaufen.

Dies setzt voraus, daß das Programm unter Verwendung von "lokalen" Alpha-Marken (A-J und a-e) entsprechend strukturiert wurde und daß diesen Tasten keine anderen Funktionen oder Prgm-Namen zugeordnet wurden.

Im Klartext heißt das: wird im USER-Modus die Taste "B" gedrückt, beginnt der Rechner mit der Ausführung des Programms, auf das der Prgm-Zeiger augenblicklich positioniert ist — ab der Marke "B".

Die Suche nach lokalen Alpha-Marken wird allerdings nur innerhalb eines Programms durchgeführt, also zwischen der ersten Programmzeile 000 und der abschließenden nächsten End-Anweisung. Dieser Umstand ermöglicht es, alle Programme in gleicher Wiese mit lokalen Alpha-Marken in einzelne, unabhängig voneinander aufrufbare Moduln aufzuteilen.


2.1.1 Programm-Struktur

Die Programme werden derart aufgebaut, daß mindestens eine Trennung der folgenden Funktionsbereiche vorliegt:

- Allgemeiner Teil (Startanzeige, Initialisierung, Standard-Anzeige)
- Eingabe-Teil (Eingabewerte eingeben, anzeigen und ggf. ändern)

- Berechnungs-Teil (Berechnungen ausführen)
- Ausgabe-Teil (Ergebnisse anzeigen)

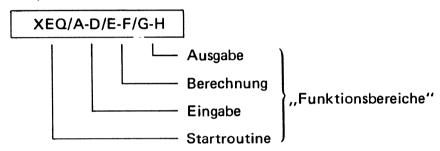
Weiterhin kann jeder dieser Funktionsbereiche wieder aus mehreren, einzelnen Moduln bestehen.

Insbesondere der Eingabeteil wird meist auch noch in thematisch gegliederte Datenmoduln aufgeteilt. (Im Besipiel: Modul A bis D). Bei wiederholtem Prgm-Durchlauf braucht dann nur der Modul aufgerufen zu werden, in dem die Daten verändert werden sollen.

Der letzte Modul (hier "D") umfaßt hintereinander ablaufend die gesamte Eingabe der vorausgehenden Eingabe-Moduln, hier A bis C.

Selbstverständlich muß es auch möglich sein, die Berechnungs-Moduln als Unterprogramme zu benutzen und entsprechend aufzurufen. Hierzu erhalten die Rechenteile je eine "globale" Alpha-Marke mit der sie direkt, ohne Umweg über umständliche Flag-Abfragen, aufgerufen werden können.

2.1.2 Durchführung

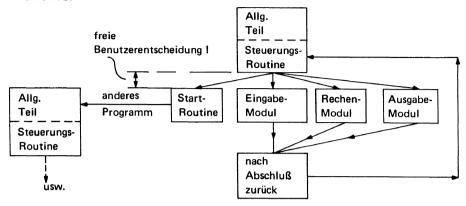

Nach dem Start erscheint zur Kontrolle der Name des gestarteten Programmes in der Anzeige, z. B.:

```
***Name***
```

Durch ein R/S wird dieser durch die sogenannte "Standard-Meldung" ersetzt. Angegeben wird dabei jeweils:

- welche Tasten gedrückt werden dürfen und
- welchen Funktionsbereichen sie zugeordnet sind.

Beispiel:

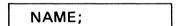


Jede der im Beispiel angegebenen Tasten beherbergt sozusagen ein Prgm-Modul. Jeder dieser Moduln kann über die "Programm-Adreß-Tasten" beliebig oft aufgerufen und bearbeitet werden. Die Reihenfolge bei der Modul-Bearbeitung ist dem Benutzer eigenverantwortlich überlassen. Er soll dabei frei entscheiden können, ob z. B. die Eingabedaten für eine Berechnung richtig bereitstehen oder ob für eine beabsichtigte Ausgabe bereits eine Berechnung vorgenommen wurde.

Nach erfolgter Modul-Bearbeitung wird wieder die "Standard-Meldung" angezeigt.

Im folgenden Bild ist ein Bearbeitungsschema wiedergegeben, welches die Wirkungsweise der Steuerungs-,,Routine" verdeutlichen soll.

Schema:


2.2 Startroutine

Die Aufgabe der Startroutine "XEQ" besteht im wesentlichen lediglich darin, den Programm-Zeiger auf ein bestimmtes Programm zu positionieren. Zur Verwendung im Dialogsystem ist sie der XEQ-Taste zuzuordnen:

Anschließend kann sie einfach durch Drücken der XEQ-Taste aufgerufen werden.

Gefordert wird die Eingabe des Programm-Namens:

Der Alpha-Modus wird automatisch geschaltet. R/S schließt die Eingabe ab und führt zum Start des bezeichneten Programmes. Keine Eingabe wird nicht akzeptiert. Falsche oder unbekannte Namen führen zur Fehlermeldung:

"Name" FEHLT

Nach Drücken von R/S kann das fehlende Programm mit Magnetkarten eingelesen werden, wozu der Rechner mit der Meldung

CARD auffordert.

Nach Abschluß des Lesevorgangs beginnt die Startroutine eigenständig von vorn.

2.3 Anzeige- und Korrektur-Routine

Die folgende Routine zeigt im Permanentspeicher vorgehaltene numerische oder alphanumerische Daten in Verbindung mit erläuternden Variablenkürzeln im Display an. Anschließend können die angezeigten Werte einfach durch Eintasten neuer Werte und abschließendem R/S korrigiert werden. Nur R/S läßt die angezeigten Werte bestehen, so daß die Eingabe neuer Werte nur dann erforderlich wird, wenn die angezeigten Daten verändert werden sollen. Der Alpha-Modus wird ggf. automatisch abgeschaltet.

2.3.1 Durchführung

Übergeben wird eingehend:

- im X-Register, die Registeradresse (a-1) der anzuzeigenden Variablen
- im Alpha-Register die zugehörigen Kürzel
- der Alpha-Modus ist ggf. einzuschalten.

Anschließend wird die Registeradresse im 1 erhöht, dem Variablenkürzel ein Doppelpunkt mit "Space" angehängt und zusammen mit dem Zahlenwert der Variablen im Display angezeigt. Erfolgt eine Eingabe, wird der eingegebene Wert abgespeichert.

Ausgehend enthält:

- das X-Register die Registeradresse a
- der Alpha-Modus ist ausgeschaltet.

2.3.2 Beispiele

Die Tastanfolge: 10, PFUND, XEQ%, KILO, XEQ% ... führt mit R11 = 50 und R12 = 100 zu folgender Anzeige:

PFUND: _50

KILO:_100

Die Tastenfolge: 25, NAME, AON, XEQ%, ANZAHL, XEQ% ... führt mit R26 = EXP und R27 = 12 zu folgender Anzeige:

NAME:_EXP

ANZAHL: 12

2.4 Size-Prüfer

Um in einem Hauptprogramm festzustellen, ob die gegenwärtige Datenregister-Anzahl ausreicht, wird der Size-Prüfer benutzt. Die vom Programm benötigte höchste Registeradresse muß vor Aufruf im X-Register abgelegt werden.

Nur wenn es nötig wird, fordert die Routine dazu auf, "SIZE" im Hauptprogramm neu festzusetzen.

Nach Neufestsetzung geht es mit R/S weiter.

Beispiel:

Für ein Programm, das R17 als höchste Registeradresse benutzt, lautet die Befehlsfolge zur Überprüfung:

17, XEQ"SZ", FC?C25, PROMPT

Eine evtl. erforderliche Neufestsetzung würde mit

SIZE: 18

angezeigt werden.

3 Struktogramme mit Anweisungslisten

Anv	weis	ung	STARTROUTINE	
LBI	LBL XEQ		Globale Alpha-Marke	
Γ	LBL	01	Schnelle Kurzform-Marke	
		SF27	User-Modus ein	
		NAME:	Eintrag ins Alpha-Register	
1		AON	Alpha-Modus ein	
		PROMPT	Eingabe-Aufforderung	
		SF25	Fehlermeldungsflag setzen	
		ASTO Y	Prgm-Name ins Y-Register	
		AOFF	Alpha-Modus aus	
		GTO INDY	Wenn alles OK: "Prgm-Start"	
		r 7.7.23 s	Wenn keine Eingabe erfolgte,	
	٤	GTO 01	zurück zum Anfang	
1 1		⊢FEHLT	Wenn Prgm-Name unbekannt:	
		PROMPT	Fehlermeldung anzeigen, Stop	
	•	RSUB	Einlesen des fehlenden Prgms	
L	<u> </u>	GTO 01	und zurück zum Anfang	

Anweisung	ANZEIGE- UND KORREKTURROUTINE
LBL \$	Globale Alpha -Marke
CF22	Löschen der Eingabeflags:
CF23	"Numeric und Alphanumeric"
F:_	Doppelpunkt und Space anhängen
1	Speicheradresse im X-Register
+	um 1 erhöhen.
ARCL IND X	Zahlenwert anhängen
PROMPT	Eingabe-Aufforderung/Anzeige
s FS?22/c	Ist num. Eingabe erfolgt?
STO IND Y	Ja, dann abspeichern
5 FS?C22/C	Ist num. Eingabe erfolgt?
RDN /	Ja, Stack-Lift beseitigen
5 FS?C23/c	Ist alphanum. Eingabe erfolgt?
ASTO IND X	Ja, dann abspeichern
AOFF	Alpha-Modus aus
RTN	

Anweisung	SIZE-PRUFER
LBL SZ	Globale Alpha-Marke
SF25	Fehlermeldungsflag setzen
RCL IND X	Uberprüfung der Adresse
FIX O	Vorbereiten der Fehler-
1	anzeige, falls Flag 25 ge-
+	löscht wurde:
SIZE:_	Eintrag ins Alpha-Register
ARCL X	Size-Wert anhängen
END	

4 Merkblatt

Das Dialogsystem kann relativ einfach angewendet werden und erlaubt eine bequeme Handhabung der Programme.

Nur wenige Grundbegriffe genügen, auch dem unkundigen Benutzer, zum Verständnis. In dem folgenden Merkblatt ist das Dialogsystem zusammenfassend dargestellt.

5 Programmbeispiel

Im folgenden ist ein Bemessungsprogramm aus dem Stahlbetonbau dargestellt, welches zur Bemessung von vorwiegend auf Biegung beanspruchten Rechteckquerschnitten dient.

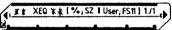
Ein Arbeitsblatt faßt, wie bei allen Programmen, die auf das DIALOGSYSTEM abgestimmt sind, alle wichtigen Programm-Daten zusammen und zeigt die Möglichkeiten der Programm-Handhabung auf.

Abschließend ist die zugehörige Prgm-Struktur mit Anweisungsliste abgebildet, wobei aus Platzgründen auf die Wiedergabe des Berechnungs-Unterprogramms verzichtet wurde.

XEQ

STARTROUTINE UND DIALOGSYSTEM FÜR DEN HP-41CV UNTER VERWENDUNG DER PROGRAMMADRESSTASTEN A-J und a-e.

Dialogsystem:

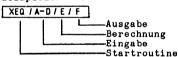

Anzeige:

No.of program lines: 41
No.of data registers: -No.of magnetic cards: 1/2
Name of Prgm.Subà: 5,82

Durchführung:

Die Startroutine wird durch Drükken der XEQ-Taste gestartet. Gefordert wird die Eingabe des Programm-Namens (siehe oben). Keine Eingabe wird nicht akzeptiert. Falsche oder unbekannte Namen führen zu einer Fehlermeldung.

Karte:



Die Startroutine "XEQ" sowie das gesamte Dialogsystem sind für eine Verwendung im USER-Modus konzipiert. Die Startroutine ist der XEQ-Taste zugeordnet.Die Programmadresstasten (siehe unten) sind erst nach dem Start eines Programmes wirksam. Welchen Tasten dabei ein Programm-Modul zugeordnet wurde ist aus einer STANDARD-MELDUNG ersichtlich . (siehe linken Kasten).

Standardmeldung:

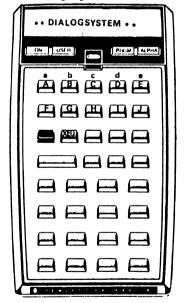
Nach dem Programm-Start erscheint zur Kontrolle nochmals der Name des Programmes in der Anzeige. Durch Drücken der R/S-Taste wird dieser durch die sog. Standard meldung ersetzt: Angegeben wird dabei jeweils, welche Tasten gedrückt werden dürfen und welchen Funktionsbereichen sie zugeordnet sind:

Beispiel: "STANDARDMELDUNG"

Fehlermeldungen:

__ FEHLT ___ ≏Name

Das gewünschte Programm befindet sich nicht im Programm-Speicher. Nach Drücken der R/S-Taste er scheint folgende Meldung:

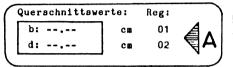

CARD

Nach Einlesen der Magnetkarten beginnt die Startroutine von vorn

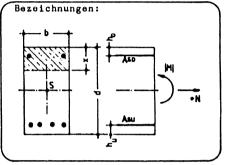
SIZE: n

Speicherverteilung reicht nicht aus: "SIZE: n" ausführen!

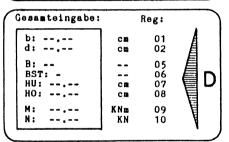
Tastenbelegung im USER-Modus:

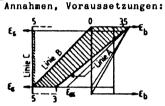

Zur Anwendung des Dialogsystems dürfen den bezeichneten Tasten keine anderen Funktionen und Programm-Namen zugeordnet sein. (Gegebenenfalls löschen!)

RMN

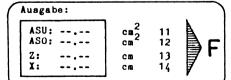

BEMESSUNG VON RECHTECKQUERSCHNITTEN FÜR BIEGUNG UND BIEGUNG MIT LÄNGSKRAFT NACH DIN 1045 ,AUSGABE 1972

Anzeige: XEQ/R-1/E/F


No.of program lines: 200
No.of data registers: R00-R17
No.of magnetic cards: 1-2
ilame of Prgm.Subà:XEQ, \$, \$Z, BR, BS



Bemessungswer	te:	Reg:	
B:]	05	A
BST: -		06	₽R
HU:	C m	07	眉口
HO:	Сщ	08	A


(Schnittkräfte:		Reg:		
	M:	KNm	09	Ac	
	N:	KN	10	4 0	
Ĺ					

Das programmierte Verfahren läßt Dehnungszustände zu, die bei dem oberen Bild im schraffierten Bereich liegen. Der Sicherheitsbei wert beträgt demnach einheitlich %=1.75. Die Biegedruckzone wurde rechteckig angenommen. Für die Spannungsdehnungslinien gilt die DIN 1045, Bilder 11 und 12.

Berechnung:		F	leg:	
ASU: ASO:		cm ² cm ²	11 12	_
Z: X:	:	c m	13 14	C

Fehlermeldungen:

ASO > ASU

Die Anwendungsgrenze des Programmes ist erreicht. Die Zugbewehrung überschreitet die Druckbewehrung Nach DIN 1045, 17.2.3 ist die Bemessung mit symmetrisch angeordneter Bewehrung durchzuführen.

NONEXISTENT

-Speicherverteilung reicht nicht aus: SIZE 018 -Programm wurde nicht voll-

ständig eingelesen.

Programm "RMN":

LBL	"RMN"
	+++RMN++
	PROMPT
L	FIX 2
LBL	00
	17
	XEQ "SZ"
	FC?C25
	PROMPT
	SF27
	XEQ/A-D/E/F
	PROMPT
GTO	00

LBL A
XEQ Ø1
GTO ØØ

LBL B XEQ Ø2 GTO ØØ

LBL C
XEQ Ø3
GTO ØØ

LBL D
XEQ Ø1
XEQ Ø2
XEQ Ø3
GTO ØØ

LBL E
XEQ "MN"
GTO F

Programm-Struktur mit den einzelnen Moduln

LBL Ø1
Ø
b
XEQ %
d
XEQ %
RTN

LBL Ø3
8
M
XEQ %
N
XEQ %
RTN

RTN

LBL F

10
ASU
XEQ %
ASO
XEQ %
Z
XEQ %
X
XEQ %
X
XEQ %

LBL "MN"

Berechnungs-Unterprogramm

Darstellung von Funktionswerten

Karl Hackenberg

1 Zweck des Programms

Wie häufig mag es vorkommen, daß Funktionen nach verschiedenen Gesichtspunkten zu untersuchen sind, die hierzu erforderlichen Routinen aber erst aus separat gehaltenen Aufzeichnungen zusammengestellt werden müssen. Hierdurch können verwirrende Doppelbelegungen von Datenspeichern und Tastenzuordnungen entstehen. Ein weiteres Übel betrifft die meist sparsam gehaltenen Rechenanweisungen, deren exakte Anwendung – insbesondere nach längerer Pause – oft erst mühsamer Rückerinnerung bedarf.

Diesen nachteiligen Begleitumständen will die vorliegende Routine mit einer kompakten Anordnung der einzelnen Operationen begegnen. Die darin enthaltenen, mehr oder weniger bekannten elementaren Algorithmen können wahlweise zur Berechnung von Einzel- oder Serienwerten bzw. Aufzeichnungen von Graphen vorgegebener Funktionen abgerufen werden. Das Programm bietet nicht nur eine schnelle Übersicht bei Kurvendiskussionen, sondern erweist sich auch vorteilhaft bei infinitesimalen Übungen, um analytische Lösungen auf Fehlerhaftigkeit zu überprüfen. Die häufigen Fragestellungen – vom Routinier leicht umgehbar – sollen dem Anwender, insbesondere dem Anfänger, zur erfolgreichen Arbeit verhelfen.

2 Programmbeschreibung

Die einzelnen Rechenvorgänge sind den Tasten A bis J und a bis c zugeordnet. Der nach dem Start des Programms ausgedruckten Legende entsprechend, können folgende Operationen ausgeführt werden:

A f(x) = F'(x) H f(x)B f'(x) I f'(x)C f''(x) J f''(x)D If(x)dx = F(x) a E(%) für B und C E Extrem b E(%) für D F Nullstelle c Graph

G Wendepunkt

Hierbei steht If(x)dx für ein bestimmtes Integral mit den Grenzwerten UG und OG, E(%) für den relativen Fehler ϵ in Prozent. Unter A bis G resultieren Einzel-, unter H bis J, hinsichtlich Bereich und Intervall wählbar, Serienwerte.

Zweckmäßigerweise sollten die am Ende des Programms stehenden Testfunktionen (LBL OA bis OD) für gelegentliche Prüfungen belassen werden. Die Winkelmodi RAD und DEG für trigonometrische Funktionen liegen auf den "geshifteten" Tasten 51 und 52 bereit.

Konfiguration:

HP-41, XF-Modul, Thermodrucker (MAN), SIZE 025, 218 Register.

Option:

CCD-Modul für Kleinschreibung und Sonderzeichen (1), Barcode-Leser.

Das CCD-Modul*) enthält eine Vielzahl neuartiger Funktionen. Da es z. Zt. noch wenig verbreitet ist, wurde auf synthetische Befehle zur Einsparung von Bytes bewußt verzichtet. Somit müssen bei Eingabe des Programms ohne Barcode-Leser Kleinbuchstaben und Sonderzeichen in den Datenregistern 00 bis 05 auf etwas umständliche Art erzeugt werden. Z. B. für f(x) und f'(x) ab Programm-Zeile 13/STO 15 nach Fig. 1.

^{*)} CCD-Modul, W & W GmbH, Postfach 800 133, 5060 Bergisch-Gladbach. Preis: ca. DM 400,— incl. MwSt.

14 CLA	25 102
15 102	26 XTOA
16 XTOA	27 39
17 91	28 XTOA
18 XTOA	29 91
19 120	30 XTOA
28 XTOA	31 120
21 93	32 XTOA
22 XTOA	33 93
23 ASTO 00	34 XTOA
24 CLA	35 ASTO 01
	36 CLA

ARCL 	88			AVIEW
	00			AD A
				-B -
-			48	- }-
'- '			41	ARCL 01
IRCL	04		42	*
' }	LBL	•	43	"HLBL "
' -'			44	- } -
105			45	105
KTOA			46	XTOA
ŀΑ•			47	*HB*
			•••	AVIEW
	RCL 'F 'F' 105 KTOA	ARCL 04 *+ LBL *+* 105 KTOA	ARCL 04 "H LBL " "H" 105 KTOA	RCL 04 42 'F LBL - 43 'F- 44 105 45 KTOA 46 'FA- 47

Fig. 1 Teil-Ersatzprogramm

Fig. 2 Teil-Ersatzprogramm

Dasselbe gilt auch für die Legende, deren beide ersten Zeilen A und B ab Programm-Zeile 27/PROMPT — wiederum abweichend von der Programmliste — in Fig. 2 dargestellt sind.

3 Programmdurchführung

Nach Eingabe des Programms und Start durch XEQ DFW sind mit der Anzeige RECHENOPERAT.: die Tasten A bis J in Bereitstellung. R/S bewirkt den Ausdruck der Legende (Fig. 3). Die Terme der zu untersuchenden Funktionen können nunmehr in alphanumerischer Folge den Testfunktionen angegliedert werden. Hierbei ist zu beachten, daß für die Argumente — mit Ausnahme des jeweils ersten — RCL 06 zu setzen ist (übereinstimmend mit dem gleichen Register im ROM-Programm PRPLOT).

Im allgemeinen ist anzunehmen, daß jeweils nur f(x) unter LBL iA vorliegt. Um aber die folgenden Anwendungen erschöpfend beschreiben zu können, soll die Testfunktion

-	
	CAT 1
LBL'DFW	UNI I
LBL'0A	
LBL '0B	
LBL'0C	
LBL '0D	
END	1525 BYTES
.END.	08 BYTES
121121	XEQ -DFH-
RECHENOPER	
	RUN
A f[x] = F	
B f'[x]	LBL iB
C f*[x]	LBL iC
D If[x]dx	= F[x] LBL iD
E EXTREM	
ORDINATE	:
F NULLSTEI	
G NENDEPU	łKT
ORDINATE	_
STEIG.	
	f[x] <kohtih.></kohtih.>
	f '[x]
	[*[x] -
_	1 f'[x], f"[x]
ь • c Graph	If[x]dx
с скиги	
UCUN MEND	ALS 1 X-FAKTOR
***************************************	VORHANDEN, IST
	. 06 ZU SETZEN.
WILKIT KO	

XEQ A
NAME ?
OA RUN
ARGUM.? 500 Run
500 RUN * f[x] = -0,471
+ 1[X]0)+11
XEQ B
NAME ?
0A RUN
ARGUM.?
1,500 RUN
* f'[x] = 0,100
FUNKT. f'[x] YORHD.? >a
NOME 3
NAME ? OB Run
ARGUM.?
1,500 RUN
* E(%) = 1,55E-4
XEQ C
NAME ?
0A RUN
ARGUM.?
500 RUN
* f*[x] = -0,052 FUNKT.f*[x] VORHD.? >a
FUNKIST EXJ YUKUDS! /d
XEQ D
NAME ?
0A RUN
SW, UG, OG, ?
30,000 ENTER†
500 ENTER†
1,500 RUN
*If[x]dx = -0.096
FUNKT. F(x) YORHD.? >b
XEQ b
HAME ?
* E(%) = -9,26E-2
- 2/4/ - 7/200 2

Fig. 3 Katalog, Legende

Fig. 4 Einzel-Ordinate, Integral

f(x) durch ihre zugehörigen Terme für f'(x), f''(x) und F(x) ergänzt werden:

LBL OA
$$f(x) = \frac{2x-1}{x^2+2x+5} = \frac{1}{z}(2x-1)$$

LBL OB $f'(x) = \frac{2}{z^2}(x-x^2+6)$

LBL OC $f''(x) = \frac{2}{z^3}[(1-2x)-4(7x-x^3+6)]$

LBL OD $F(x) = \ln z - \frac{3}{2} \arctan tg \frac{x+1}{2} + c$

Zu A bis C (Fig. 4)

Fehlerbedingungen, z. B. Division duruch 0 u. a., verursachen bei Einzelfunktionswerten eine Unterbrechung der Programmdurchführung. Nach Ausgabe des Ergebnisses ist eine Wiederholung des Rechenvorganges durch Betätigung von R/S vorgesehen. Hierdurch entfällt die nochmalige Eingabe des Funktionsnamens.

Zu D (Fig. 4)

Zur Integrierung verlangt der Rechner außer den Grenzwerten UG und OG die Schrittweite SW. Für mittlere Verhältnisse bezüglich Integrationsintervall, Rechendauer und Fehler (< 0,1%) dürfte SW = 15 bis 30 ausreichen (Rechendauer des Testintegrals ca. 45 s). Sind die Terme von $\int f(x)dx$ in LBL iD gespeichert, so ergibt XEQ b den prozentualen Unterschied zwischen analtyischer und numerischer Lösung.

Zu E bis H (Fig. 5 u. 6)

Zur numerischen Bestimmung eines Extremwertes, Wendepunktes oder einer Nullstelle verlangt der Rechner einen Schätzbereich oder Schätzwert. Es empfiehlt sich daher, für den gewünschten Abszissenbereich vorab durch H eine konti-

XEQ H
NAME ?
0A RUN
SCHLF. KTR. NR?
-5,00701 RUN
MODULT. FAKT.?
.500 RUN
x= -2,500 f[x]= -0,960
x= -2,000 f[x]= -1,000
x= -1,500 f[x]= -0,941
x= -1,000 f[x]= -0,750
x= -0,500 f[x]= -0,471
x = 0.000 f[x] = -0.200
x= 0,500 f[x]= 0,000
x= 1,000 f[x]= 0,125
v= 1.500 f(v)= 0.195
x= 1,500 f[x]= 0,195 x= 2,000 f[x]= 0,231
x= 2,500 f[x]= 0,246
x= 3,000 f[x]= 0,250
x= 3,500 f[x]= 0,247
PLOT OF 0A
X <units= 1=""> ↓</units=>
Y <units= 1=""> →</units=>
-1,05 0,26
9,09
-2,50 ×
-2,00 ×
-1,50 =
-1,00 *
1
-0,50 × !
0,00 * :
0,50 ×
1,00 ; *
1,50 ; *
2:00 *
2,58 { *
3,00 ; =
3,50

```
XEQ E
 NAME ?
                      RUN
 SCHAETZBER.?
            -2,500 ENTER+
            -1,500
                      RUN
 * X-EXTR. = -2,00000
* Y-EXTR. = -1,000
REPET.? >R/S
                      RUN
SCHAETZBER.?
             2,000 ENTER+
             4,000
                      RUN
* X-EXTR. = 3,00000
* Y-EXTR. = 0,250
REPET.? >R/S
                   XEQ F
NAME ?
ØA.
                     RUN
SCHAETZHERT?
            1,000
                     RUN
* NULLSTELLE = 0,50000
REPET.? >R/S
                   XEQ G
NAME ?
ØA
                     RUN
SCHAETZBER.?
           -1,000 ENTER+
            0,000
                     RUN
* WENDEPUNKT
 x = -0.56500
 y = -0.508
 4 = 30,242
```

Fig. 5 Serien-Ordinate, f(x)

Fig. 6 Signifikante Abszissen

nuierliche Folge von Funktionswerten aufzustellen. Mit den daraus resultierenden Maxi- bzw. Minimalordinaten ist der Abschnitt durch c zu plotten. Der nunmehr vorhandene Graph erleichtert die Bestimmung von Schätz-Bereich oder -Wert. Nach Beendigung des PLOT-Vorgangs initialisiert der Rechner erneut das Hauptprogramm und ist mit der Anzeige RECHENOPERAT.: für weitere Ausführungen bereit.

Wird anfänglich oder während des Rechenvorgangs (letztlich nach STOP durch R/S) SF 00 gesetzt, so können bei E und F die sich ständig ändernden Abszissenwerte, bei G die gegen Null konvergierenden Ordinaten der zweiten Ableitung laufend oder zwischenzeitlich beobachtet werden. Eine Wiederholung der Rechenvorgänge für Extremwerte und Nullstellen mit ggf. eingeengten Argumenten ist, wie unter A bis C, durch Betätigung von R/S möglich.

Der Graph f(x) läßt im Bereich – 2,5x bis 3,5x zwei Extrema, eine Nullstelle und einen Wendepunkt erkennen, deren Werte mit meist ausreichender Genauigkeit durch E, F und G ermittelt werden können. An dieser Stelle sei an den Zusammenhang zwischen unbestimmtem Integral und der ersten Ableitung stetiger Funktionen erinnert, wie in horizontaler Folge der Tabelle 1 unter OD, OA und OB dargestellt.

Da allgemein in f(x) ein Extrem durch f'(x) = 0, ein Wendepunkt durch f''(x) = 0 gegeben ist, gelten die für f(x) numerisch erhaltenen Werte signifikanter Punkte sinngemäß auch für die unbekannten Stamm- und Ableitungsfunktionen. Somit entspricht z. B. die Abszisse -0.565 nicht nur dem Wendepunkt in f(x), sondern auch einem Extrem in f'(x) und einer Nullstelle in f''(x).

Die Schätzungen erfordern einige Übung, insbesondere die von Wendepunkten. Für Extrema ist die vom gewählten Schätzbereich der zur negativen Seite gelegene Wert zuerst einzusetzen (z. B. -31-1 oder 214). Für Wendepunkte dagegen ist die Reihenfolge der Eingabe bedeutungslos, da aus beiden Werten das arithmetische Mittel gebildet wird. An-

Tabelle 1 Sche	ma signifikan	ter Abszissen
N = Nullstelle	E = Extrem	W = Wendepunkt

Test-Name	OD	OA	ОВ	ос
Funktion	F (x)	f (x)	f' (x)	f" (x)
Abszisse				
0,500	E	N		
- 2,000 3,000	w	E	N	
– 0,565		w	E	N
(- 1,473) (0,237)			w	E
(- 0,740) (0,811)				w

schließend vermindert sich der resultierende Abszissenpunkt um 15%. Von hier aus wird das Argument in Intervallen von 0,5% in positiver Richtung wiederum erhöht und jeweils f"(x) errechnet. Das Kriterium für den Wendepunkt liefert letztlich das arithmetische Mittel jener beiden Abszissen, deren aufeinanderfolgende Ordinaten entgegengesetzte Vorzeichen aufweisen. Wenn die Neigung der Wendepunkttangente negativ ausfällt, wird durch Addition von 360° der positive Winkel angegeben. Ist f"(x) unter LBL iC vorhanden, kann der erhaltene Wendepunkt als Schätzwert zur Berechnung der Nullstelle in F eingesetzt werden, was einen genaueren Wert (im Testfall – 0,56430) ergibt.

Zu I und J (Fig. 7 u. 8)

Für die automatische Folge von Funktionswerten, wie auch unter H, wird außer der Schleifenkontrollnummer noch ein Modulationsfaktor gefordert. Erst das Produkt beider Zahlen ergibt die gewünschte Stufung der Abszissenwerte. Auch bei

```
XEQ I
NAME ?
                      RUH
ΘA
SCHLF. KTR. HR?
                      RUN
         -5,00701
MODULT. FAKT.?
              .500
                      RUN
x = -2.500 f'[x] = -0.141
x = -2.000 f'[x] = 0.000
x = -1.500 f'[x] = 0.249
x = -1.000 f'[x] = 0.500
x = -9.500 f'[x] = 0.581
x = 0.000 f'[x] = 0.480
x = 0.500 f'[x] = 0.320
x= 1,000 f'[x]= 0,188
x = 1.500 f'[x] = 0.100
x = 2,000 f'[x] = 0,047
x = 2.500 f'[x] = 0.017
= 3,000 f'[x] = 3,333E-7
x = 3.500 f'[x] = -0.009
      PLOT OF 0B
    X (UNITS= 1) ↓
    Y (UNITS= E-1) →
     -1.50
                     6,00
        9,99
      |---|------|
-2.50 \times
-2,00
-1,50
-1,00
-0,50
 0,00
         1
 0,50
 1,60
 1,50
 2,00
 2,50
 3,80
 3,50
```

```
Fig. 7 Serien-Ordinaten, f(x)
```

```
XEQ J
NAME ?
                       RUN
BA
SCHLF. KTR. HR?
          -5,00701
                       RUN
MODULT. FAKT.?
              .500
                       RUN
x = -2.500 f^{*}[x] = 0.172
x = -2,000 f^{*}[x] = 0,400
x = -1.500 f^{*}[x] = 0.560
x = -1.000 f^{*}[x] = 0.375
x = -0.500 f^{*}[x] = -0.052
x = 0.000 f''[x] = 0.000
x = 0.500 f^{*}[x] = -0.307
x = 1.000 f^{*}[x] = -0.219
x = 1.500 f^{*}[x] = -0.136
x=2,000 f^{*}[x]=-0,079
x = 2.500 f^{*}[x] = -0.045
x=3.000 f^{*}[x]=-0.025
x = 3.500 f^{*}[x] = -0.013
      PLOT OF 0C
    X (UNITS= 1) ↓
    Y (UNITS= E-1) →
      -3.50
                      5,70
            0,00
-2,58
-2,00
-1.50
-1.00
-0,50
 0,00 =
 0,50 ×
 1,00
 1,50
 2,88
            z ¦
 2,58
             I,
 3,00
 3,50
```

Fig. 8 Serien-Ordinaten, f(x)

Einteilung der Abszisse in k-fache von Pi, e u. a., erweist sich der Faktor vorteilhaft. Würde im Testbeispiel der Faktor 0,5 durch Pi/12 ersetzt, so resultierte für x die Folge -6Pi/12, -5Pi/12 usw.

Um bei Fehlerbedingungen, z. B. In 0 u. a., die kontinuierliche Folge nicht zu unterbrechen, sind in den zugehörigen Routinen 4 Fehlerignorierflags SF 25 enthalten. Daher kommt man nicht umhin, bei einem 0-Argument eine resultierende 0-Ordinate auf ihre Echtheit zu überprüfen. Im Testbeispiel tritt dieser Fall bei Folgen der zweiten Ableitung unter J auf. Einen Näherungswert erhält man durch das arithmetische Mittel benachbarter Ordinaten, z. B. für $x = \pm 0.05 : f''(x) = -0.303$. Der wahre Wert der Ordinate läßt sich nur bei Kenntnis der betreffenden Funktion oder ggf. durch Grenzwertbestimmung ermitteln. Demzufolge ergäbe beispielsweise die Funktion tan x/x (in H für x = 0 auch y = 0) den Grenzwert $\lim_{x\to 0} f(x) = \lim_{x\to 0} g'(x)/h'(x) = \lim_{x\to 0} 1/\cos^2 x = 1$.

Die in der Tabelle 1 enthaltenen 4 Abszissenpunkte (ohne Klammern) sind den Funktionen F(x), f'(x) und f''(x) — dem Schema entsprechend — nur dann zugehörig, wenn sie in f(x) vorkommen. Ungewiß dagegen ist das Vorhandensein von Wendepunkten in f'(x) oder von Extrema und Wendepunkten in f''(x). Da aber im Testbeispiel die fraglichen Funktionsterme vorliegen, sei übungshalber die Tabelle durch die in Klammern gesetzten Argumente für noch vorhandene Extrema und Wendepunkte der Ableitungsfunktionen ergänzt.

4 Anweisungsliste

"A f[x] = F'[" RCL 23 / STO 14 FS? 02 RTN ** * "+x1 LBL iA" AVIEW ARCL 01 XEQ IND 13 CLA *B f'[x] LBL iB AYIEW "FUNKT. " ARCL 01 •**-***C f*[x] "H YORHD.? >a" RYIEW --LBL iC AVIEW RTH D If[x]dx = T126+LBL C "HF(x) LBL iD" AVIEW XEQ 03 *E EXTREM* AVIEW - ORDINATE- AYIEN 128+LBL 01 "F NULLSTELLE" AVIEW 1 % STO 20 RCL 06 **"G HENDEPUNKT" AYIEN** XEQ IND 16 30 * CHS - ORDINATE- AVIEW STO 19 XEQ 02 16 * STEIG. (GRAD) - AVIEW ST+ 19 XEQ 02 ST- 19 "H ORDIN. f[x" RCL 20 4 * ST- 06 "+) (KONTIN.)" AYIEW RCL 06 SF 25 .] . t.[. XEQ IND 16 ST- 19 "Fx] "" RVIEW XEQ 02 16 * RCL 19 + •j • RCL 20 Xt2 12 * f.[. SF 25 / STO 14 FS? 03 "Fx] -- AVIEW RTN ** * ARCL 02 "a E(%) von f" XEQ IND 13 "FUNKT." "F'[x], f"[x]" AVIEW ARCL 02 "F YORHD.? >a" -b - I-AVIEW RTN "Ff[x]dx" AYIEN "c GRAPH" AVIEW ADV 174+LBL 82 "NENN MEHR AL" RCL 20 ST+ 06 RCL 06 "HS 1 X-FAKTOR" AVIEW SF 25 XEQ IND 16 RTH "IN iA-iD VOR" "HANDEN, IST" AVIEW 181+LBL 93 "HIERF. RCL 0" XEQ IND 15 -ARGUM.?-"H6 ZU SETZEN." AVIEW PROMPT STO 06 RTH RTN 187+LBL a 80+LBL A SF 00 XEQ A XEQ 03 XEQ IND 16 FS?C 00 RTN ** * 190+LBL 04 ARCL 00 XEQ IND 13 RTN RCL 14 4CH SCI 2 ** E(%)* XEQ IND 13 89+LBL B RTH XEQ 03 197+LBL D 91+LBL 00 XEQ IND 15 1 E-2 % X=0? LASTX -SW, UG, OG, ?- PROMPT STO 23 2 / - STO 10 STO 09 X()Y STO 06 STO 06 XEQ IND 16 STO 08 - X(>Y STO 11 STO 12 RCL 10 RCL 23 / STO 23 2 / ST+ 06 + STO 06 XEQ IND 16 , STO 10 RCL 11 STO 11 RCL 12 -RCL 07 X<>Y STO 07 X<>Y

220+LBL 05
RCL 07 X<>Y STO 07
X<>Y STO 11 RCL 06
XEQ IND 16 RCL 23
ST+ 06 * ST+ 10
RCL 11 RCL 07 X<>Y
STO 07 X<>Y DSE 07
GTO 05 STO 07 RCL 10
STO 14 BEEP "*I"
ARCL 05 XEQ IND 13
"FUNKT. " ARCL 03
"I VORHD.? >b" AYIEN
RTH

251 * LBL b

XEQ IND 15 RCL 08

STO 06 XEQ IND 16

STO 11 RCL 09 STO 06

XEQ IND 16 RCL 11
GTO 04

263 * LBL 06 * H = * ARCL X AVIEN FIX 3 CF 00 RTH

270+LBL 07 AON -NAME ?- PROMPT ASTO 16 AOFF FIX 3 RTN

278+LBL E
FC?C 05 XEQ IND 15
-SCHAETZBER.?- PROMPT
X()Y STO 23 - ABS
1 E2 / ABS STO 08
RCL 23 STO 06
XEQ IND 16 STO 09
RCL 08 ST+ 23 RCL 23
STO 06 XEQ IND 16
STO 24 RCL 09 X()Y
X)Y? GTO 09 SF 01
X()Y X)Y? GTO 09

309+LBL 08
CF 01 RCL 23 RCL 08 STO 06 FIX 5 BEEP
-* X-EXTR. XEQ IND 13
XEQ IND 16 -* Y-EXTR. XEQ 12 GTO E

323+LBL 09
RCL 24 STO 09 RCL 08
ST+ 23 RCL 23 FS? 00
PSE STO 06 XEQ IND 16
STO 24 RCL 09 RCL 24
FS? 01 X<>Y X>Y?
GTO 09 GTO 08

341+LBL F
FC?C 05 XEQ IND 15
-SCHAETZWERT?- PROMPT
SF 02 XEQ 00 RCL 11
GTO 11

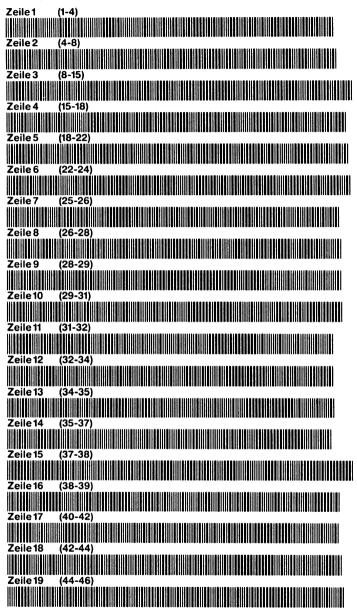
350+LBL 10 RCL 06 XEQ IND 16 STO 11

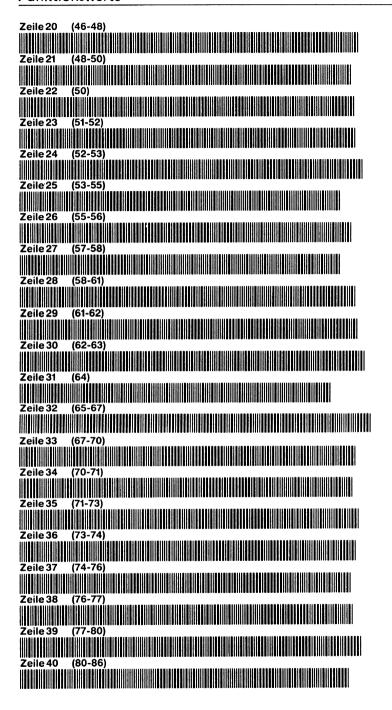
354 • LBL 11
RCL 10 RCL 06 FS? 00
PSE STO 10 - RCL 12
RCL 11 STO 12 - / *
ST- 06 RCL 06 / FIX 7
RND X * 0? GTO 10
RCL 06 FIX 5 CF 02
BEEP ** NULLSTELLE*
XEQ 12 GTO F

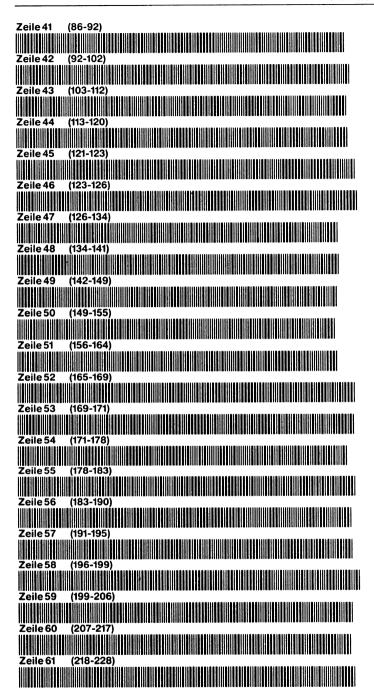

381+LBL 12 XEQ IND 13 "REPET.? >R/S" PROMPT SF 05 RTN

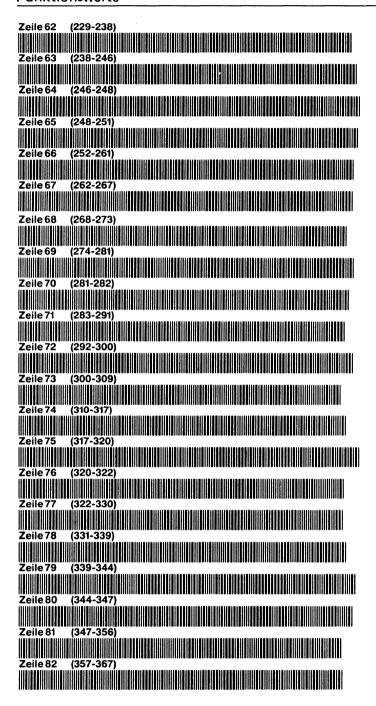
387*LBL G
SF 03 CF 04 XEQ IND 15
"SCHAETZBER.?" PROMPT
+ 2 / X=0? GTO G
ENTER† SIGN 15 * %

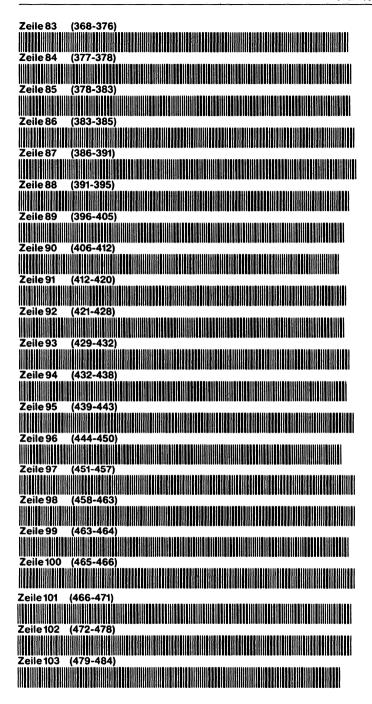
404+LBL 13 STO 06 STO 17 XEQ 01 FS? 00 PSE SIGN FS? 04 GTO 15 STO 18

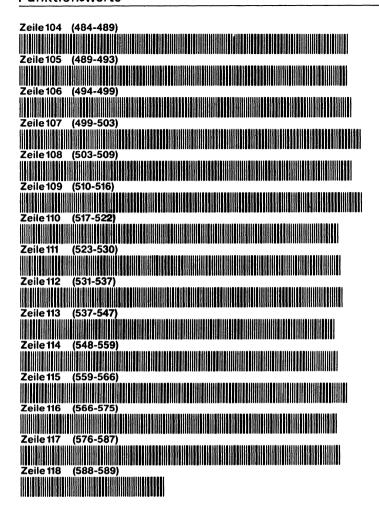

414+LBL 14 RCL 17 STO 21 ,5 % ENTER† SIGN * + SF 04 GTO 13 425+LBL 15 495+LBL J X() 18 RCL 18 X=Y? SF 03 GTO H GTO 14 FIX 5 BEEP ** WENDEPUNKT* AVIEW 498+LBL 19 RCL 21 RCL 17 + 2 / XEQ 01 "- " ARCL 02 STO 06 - x-XEQ IND 13 XEQ IND 16 502+LBL 20 "H= " ARCL X AVIEW - y- XEQ IND 13 SF 02 RCL 06 XEQ 00 ATAN ISG 21 GTO 17 CF 02 X(0? XEQ 16 - 4-CF 03 RTN XEQ IND 13 , X()F CLX RTN 511+LBL c , STO 03 XROM "PRPLOT" 457+LBL 16 XEQ -DFH- RTH 360 + RTN 517+LBL *8A* 461+LBL H 2 * 1 - XEQ 21 / XEQ IND 15 RTH "SCHLF. KTR. NR?" PROMPT STO 21 525+LBL *0B* RCL 06 Xt2 - 6 + 2 -MODULT. FAKT.?- PROMPT STO 22 * XEQ 21 X+2 / RTH 469+LBL 17 537+LBL "8C" SF 25 RCL 21 INT 2 * CHS 1 + 2 * RCL 22 * STO 06 XEQ 21 * RCL 06 7 * STO 18 "x= " ARCL X RCL 06 3 YTX - 6 + FS? 02 GTO 18 FS? 03 8 * - XEQ 21 3 YtX GTO 19 XEQ IND 16 / RTN -- - ARCL 00 GTO 20 564+LBL *0D* 487+LBL I RAD XEQ 21 LN RCL 06 SF 02 GT0 H 1 + 2 / ATAN 1,5 * - DEG RTN 490+LBL 18 XEQ 00 "- " ARCL 01 579+LBL 21 GTO 20 RCL 06 Xt2 RCL 06 2 * + 5 + RTN END


Vollständiges Flußdiagramm




Darstellung von Funktionswerten


Benötigte Programmregister: 218



Funktionswerte

Relaisschaltungen – Entwurf und Test mit dem HP-41

Herbert Hoffmann

1 Einleitung

Trotz stürmischer Entwicklung der industriellen Elektronik werden in nicht wenigen Industriezweigen — aus welchen Gründen auch immer — weiterhin kontaktbehaftete Schaltungen verwendet. Da sich hier Maßnahmen zur Minimisierung meist vorteilhaft auswirken, sollte jede Möglichkeit zur Einsparung von Kontakten genutzt werden. Eine davon ist das hier vorgestellte Programm. Es hilft beim Entwurf von Relaisschaltungen und gestattet die Überprüfung entworfener Kontaktschaltungen.

Das Programm liefert eine Kontaktkaskase mit möglichst wenig Kontakten. Anregung dazu gab das Buch "Grundlagen der Struktursynthese von Relaisschaltungen" von W. N. Roginskij, R. Oldenbourg, München. In diesem Buch wird unter anderem eine graphische Methode für den Entwurf von Kontaktschaltungen beschrieben. Der Verfasser bemerkt dazu: "Proben der Anwendung der graphischen Methode zeigen, daß die damit erstellten Schaltungen besonders im Falle von Kontaktvielpolen meist einfacher sind als Schaltungen, die man mit anderen Methoden erhält."

Die Gleichförmigkeit der Kaskadenmethode ermöglicht einen Algorithmus zum Entwurf von Schaltungen mit Hilfe eines Programms. Dem handlichen HP-41 sind natürlich durch seinen Speicherumfang und seine Anzeige Grenzen gesetzt.

Achtung! Vor dem Arbeiten mit dem Programm ist ein ASCII-File mit 124 Registern (Kapazität des X-Funktions-Moduls) und dem Namen "K" mit XEQ "CRFLAS" anzulegen und ein beliebiger Wert in das Alpha-Register mit XEQ "APREC" einzugeben. Weiter ist durchzuführen: FIX 0, CF 29;SIZE 030; \(\Sigma\) REG 22; SIZE 021; ASN "RS" BEEP; ASN "SIGN" SCI; ASN "FC?" CF.

Folgende lokale Marken werden verwendet:

A: Anfangswerte

B: Basis

C: Eingabe einer Kontaktschaltung

D: Eingabe der Nummernsätze

E: Eingabe der Erregerzahlen

F: Vergleich einer Schaltung mit einem Nummernsatz

G: Vergleich zweier Schaltungen
H: Hohes Potential an Relaisspulen

I: Ausgabe aller Kontakte und Verbindungen

J: Ausgabe der Nummernsätze

a: Ausgabe aller Ausgangswerte einer Schaltung

b: Berechnung der Nummernsätze

e: Ausgabe von Einzelkontakten.

2 Die einzelnen Marken

A: Nach A! fragt der Rechner mit "EING. VAR.?" nach der Anzahl der Eingangs-Variablen, die bis maximal 5 mit R/S! eingegeben wird. Anschließend wird mit "AUSG.?" die Anzahl der Ausgänge erwartet. Dann erscheint in der Anzeige "a-e?". Hier möchte der Rechner wissen, in welcher Reihenfolge die Kontakte in die Schaltung eingehen sollen (Basis). Die Reihenfolge ist frei wählbar, jedoch kann z. B. bei 4 Eingangs-Variablen nur zwischen den Kontakten "a-d" gewählt werden.

Der Rechner verweigert mit "NONEXISTENT" eine unrichtige Anzahl der Kontakte und mit "DATA ERROR" die Eingabe eines falschen Kontaktes, jedoch nicht die unzulässig mehrfache Eingabe des gleichen Kontaktes. Zur Kontrolle wird die Reihenfolge der Kontakte am Ende der Übernahme angezeigt.

B: Mit dieser Taste kann die Reihenfolge der Kontakte verändert werden. Bei einer Änderung der Basis ändern sich die "Gewichte" der Relais. Hierdurch können verschiedene Schaltungen entstehen; die günstigste ist manuell auszuwählen. Ist die Basis "abcde", dann sind die Gewichte:

$$a = 2^4$$
; $b = 2^3$; $c = 2^2$; $d = 2^1$; $e = 2^0$.

C: Kontaktschaltungen werden als Unterprogramme in den Rechner eingegeben. Nach C! wird mit "MARKE?" nach der globalen Marke des Unterprogramms gefragt, die für den Ausgangspunkt "P1" gelten soll. Bei mehreren Ausgängen sind die entsprechenden Marken der Unterprogramme einzugeben. Die einzelnen Schaltungen werden durchlaufen und alle Kombinationsnummern mit dem Ausgangswert "1" in das X-Funktions-Modul eingespeichert. (Alle Kombinationsnummern einer Schaltung mit dem Ausgangswert "1" werden als "Nummernsatz" dieser Schaltung bezeichnet.)

Da das Nullzeichen Schwierigkeiten bereiten kann, sind alle eingegebenen Kombinationsnummern um 1 erhöht. Der Rechner übernimmt maximal 23 Nummern. Bei 5 Eingangs-Variablen können — je nach Schaltung — mehr als 23 Kombinationen den Ausgangswert "1" annehmen. Der Rechner verweigert die Übernahme mit "OUT OF RANGE" und gibt ein BEEP-Signal.

D: Liegen die Ausgangswerte einer Schaltung in Form einer Funktionstabelle oder eines Nummernsatzes vor, wird die Taste D betätigt. Der Rechner fragt mit "NS 1?" nach dem Nummernsatz des Ausgangs 1. Hier sind die Kombinationsnummern mit Ausgangswert "1" einzeln einzuge-

ben. Sind alle Nummern eingegeben, wird nach einer weiteren Frage "NS 1?" ohne eine Eingabe R/S! betätigt. Liegen mehrere Ausgänge vor, wird jetzt nach den Nummernsätzen der weiteren Ausgänge gefragt.

E: Die Taste E vereinfacht die Eingabe bei einer symmetrischen Schaltung. Was ist darunter zu verstehen? Die Antwort in Form einer Aufgabe: "Am Ausgang einer Schaltung soll dann ein "1"-Signal vorhanden sein, wenn von 4 Relais 2 oder 3 beliebige Relaisspulen unter Spannung stehen, nicht bei 0, 1 oder 4!" Natürlich könnte diese Bedingung in eine Funktionstabelle übertragen und mit Taste D in den Rechner eingegeben werden. Einfacher geht es jedoch mit E! Der Rechner fragt mit "EZ P1?" nach den Erregerzahlen der Schaltung für den Ausgangspunkt 1. Für obige Aufgabe sind einzugeben: 2 R/S!; 3 R/S!; R/S!. Der Rechner ermittelt den entsprechenden Nummernsatz.

Das Programm benutzt für "D" und "E" auf weite Strecken die gleichen Programmschritte. Bei D! wird in den DEG-Modus, bei E! in den RAD-Modus geschaltet und Flag 43 an entsprechender Stelle des Programms getestet.

- Für C, D und E gilt: Nach der jeweils "letzten" Eingabe wird eine günstige Kontaktschaltung ermittelt.
- F: Nach F! fragt der Rechner mit "MARKE?" nach der globalen Marke einer Schaltung und anschließend mit "P?" nach dem Ausgangspunkt. Bei Übereinstimmung aller Ausgangswerte erscheint "=", im anderen Fall das "\neq"-Zeichen mit Angabe der Kombinations-Nummer, bei der erstmals Ungleichheit auftritt.
- G: Mit Betätigung dieser Taste werden zwei Schaltungen miteinander verglichen, deren Marken mit "MARKE 1?" und "MARKE 2?" erfragt wurden. Bei G! wird in den GRAD-Modus geschaltet und Flag 42 zum Test herangezogen.

- H: Nach H! fragt der Rechner mit "MARKE?" nach der Marke einer Schaltung und anschließend mit "A-E↑?", welche Relaisspule an Spannung liegen soll. Die Eingabe erfolgt mit großen Buchstaben "A — E" in beliebiger Reihenfolge; falsche Buchstaben werden mit "DATA ERROR" verweigert. Mit diesem Test kann geprüft werden, wie sich eine Umschaltung von Kontakten innerhalb einer gegebenen Schaltung auswirkt. Soll kein Relais an Spannung liegen, wird R/S! ohne Eingabe betätigt. Bei einem weiteren Test der gleichen Schaltung wird R/S! betätigt; die Frage nach der Marke unterbleibt.
- I: Nach I! gibt der Rechner den ersten ermittelten Kontakt und seine Verbindung heraus. Mit jeweils R/S! werden die weiteren Kontakte genannt. Die Anzeige kann folgendes Aussehen haben:

"c1A-2" : Arbeitskontakt von c1 geht nach Punkt 2

"b2A1b1R/6": Arbeitskontakt von b2 ist verbunden mit

Ruhekontakt b1

"a1A+/8" : Arbeitskontakt von a1 geht zum Pol der

Spannungsquelle

"a1R *9" : Ruhekontakt von a1 entfällt

"b1x-5" : Kontakt b1 entfällt; Verbindung nach

Punkt 5.

- J: Der Rechner fragt mit "P?" nach dem Ausgangspunkt, dessen Nummernsatz gewünscht wird. Mit R/S! werden alle Werte des Nummernsatzes genannt. Die Ausgabe wird mit z. B. "P (1) Σ 4" beendet, was bedeuten soll, daß der Nummernsatz des Punktes 1 4 Werte hat. Die Eingabe eines nicht vorhandenen Ausgangspunktes wird mit "DATA ERROR" verweigert.
- a: Nach Eingabe der Marke der Schaltung werden jeweils bis 8 Ausgangswerte errechnet und dann gemeinsam ausgegeben. Außerdem bringt die Anzeige die erste und die letzte Kombinationsnummer, für die die Ausgangswerte errech-

net wurden. Den Abschluß bildet die Meldung "AW Σ " = alle Ausgangswerte sind ausgegeben.

- b: Diese Taste wird betätigt, wenn ohne Berechnung einer Kontaktkaskade nur der Nummernsatz gewünscht wird. Nach b! fragt der Rechner mit "CE?", ob eine Kontaktschaltung nach "C" oder ob die Erregerzahlen einer symmetrischen Schaltung nach "E" "vorhanden" sind. Bei einer symmetrischen Schaltung wird "E" eingegeben und R/S! betätigt. Bei einer Kontaktschaltung genügt die Betätigung von R/S!; der Buchstabe "C" wird automatisch übernommen. Die Eingabe der benötigten Werte geschieht wie unter "C" bzw. "E" beschrieben. Die Berechnung wird mit der Meldung "NSΣ" abgeschlossen. Der Nummernsatz wird mit J! abgerufen.
- e: Diese Taste bringt die "Kennzeichen" eines gewünschten Punktes der Schaltung (außer Ausgangspunkte) und wird verwendet, wenn einzelne Punkte der Schaltung überprüft werden sollen.

3 Eingabe von Schaltungen

Die Bedingungen einer Schaltung können durch einen Schaltplan, durch Nummernsätze oder bei symmetrischen Schaltungen durch die Erregerzahlen vorgegeben sein. Wir üben zunächst die Eingabe einiger Schaltungen nach modifizierten Schaltplänen. Bei Kontakten werden "Öffner", "Schließer" und "Wechsler" unterschieden. Da der Umlaut "ö" von dem Rechner nicht dargestellt werden kann und der Buchstabe "S" bei der Anzeige des Rechners mit der Zahl "5" leicht zu verwechseln ist, wird hier ein Öffner als "Ruhekontakt" und ein Schließer als "Arbeitskontakt" bezeichnet und mit "R" bzw. "A" abgekürzt.

Im Unterprogramm lassen sich für die Kontakte die im Rechner vorhandenen Flags einsetzen; als Wechsler allerdings nur in "Flußrichtung" vom "Pol" zu bei beiden "Ausgängen". Die als Unterprogramm eingegebene Schaltung wird vom

Testprogramm immer mit dem Signalwert Null "Ø" begonnen. Erst beim "Pluspol" "+" wird der Signalwert "1" erzeugt. Von den verschiedenen Rechnermöglichkeiten habe ich dafür den Befehl "Signum" ausgewählt und der Taste SCI zugeordnet.

Für die Kennzeichnung der Flags geben wir mit den Tasten "ABCDE" den entsprechenden Index ein. Die Taste "A" erzeugt z.B. den Index 01; die Taste "E" z.B. den Index 05. Als globale Marke des Unterprogramms verwenden wir die Bezeichnung der Abbildung; als "Klemmen" numerische Labels.

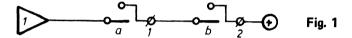
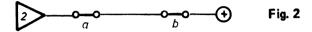


Fig. 1 zeigt eine Reihenschaltung der beiden Arbeitskontakte a und b. Wir können formulieren: "Wenn Arbeitskontakt a geschlossen ist, gib Spannung auf Klemme 1; wenn Arbeitskontakt b geschlossen ist, gib Spannung auf Klemme 2!" Im Unterprogramm sagen wir dafür: "FS? A!:GTO 01; FS? B!: GTO 02." Eine Spannungsunterbrechung signalisieren wir mit "RTN" (kehre mit Signalwert "Ø" zurück). Damit haben wir eine Möglichkeit, Arbeitskontakte darzustellen. Das Unterprogramm für die Schaltung nach Fig. 1 lautet:

```
"1"
01 LBL
02 FS?
                 (Eingabe: FS?! A!)
        01
03 GTO 01
04 RTN
05 LBL
        01
06 FS?
        02
                 (Eingabe: FS?! B!)
07 GTO 02
08 RTN
09 LBL 02
10 SIGN
                 (Eingabe: SCI!)
11 END
```

Nach der Eingabe des Unterprogramms: BEEP! Damit springen wir ins Testprogramm. Für den weiteren Ablauf verwenden wir folgende Tabelle:

Anzeige	Eingabe	Taste
"?" "EING. VAR.?" "AUSG.?" "a-e?" "ab" "MARKE ?" "0:0001:3"	2 1 "ab" "1"	A! R/S! R/S! R/S! a! R/S! R/S!


Ergebnis: Die Schaltung nach Fig. 1 hat bei den Kombinationen 0-2 jeweils den Ausgangswert "Ø", bei der Kombination 3 den Wert "1".

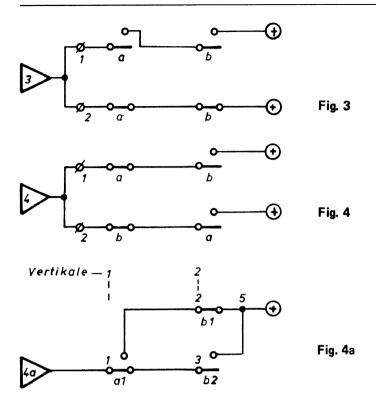
Bei einer anderen Fragestellung können wir auf die GTO-Befehle und die "Klemmen" verzichten. "Ist der Arbeitskontakt NICHT geschlossen? Dann kehre mit Signalwert "Ø" zurück!" Im Unterprogramm verwenden wir dafür: "FC?! RTN"

Den Befehl FC? habe ich das Taste "CF" zugeordnet. Mit der globalen Marke "1a" lautet das Unterprogramm für die Schaltung nach Fig. 1 jetzt:

```
01 LBL "1a"
02 FC? 01 (Eingabe: CF! A!)
03 RTN
04 FC? 02 (Eingabe: CF! B!)
05 RTN
06 SIGN (Eingabe: SCI!)
07 END
```

Wir testen auch dieses Unterprogramm. Da sich die "Anfangswerte" nicht geändert haben, können wir auf A! verzichten und geben nach a! die Marke "1a" ein. Das *Ergebnis* ist ebenfalls "0:0001:3".

Für Ruhekontakte geben wir ein: "FS?! RTN". Das Unterprogramm für die Schaltung nach Fig. 2 lautet:


```
01 LBL "2"
02 FS? 01 (Eingabe: FS?! A!)
03 RTN
04 FS? 02 (Eingabe: FS?! B!)
05 RTN
06 SIGN (Eingabe: SC!!)
07 END
```

Ergebnis: "0:1000:3". Die Schaltung nach Fig. 2 hat bei der Kombination 0 den Ausgangswert "1", bei den Kombinationen 1—3 jeweils den Wert "0".

Eine Parallelschaltung der beiden Reihenschaltungen nach Fig. 1 und 2 müßte als *Ergebnis* bringen: "0:1001:3".

Das Unterprogramm für die Schaltung nach Fig. 3 hat folgende Schritte

01 LBL	"3"	05	LBL	01	12	LBL	02
02 XEQ	01	06	FC?	01	13	FS?	01
03 XEQ	02	07	RTN		14	RTN	
04 RTN		80	FC?	02	15	FS?	02
		09	RTN		16	RTN	
		10	SIGN		17	SIGN	
		11	RTN		18	END	

Auch hier haben sich die "Anfangswerte" nicht geändert. Nach a! geben wir als MARKE "3" ein. Als *Ergebnis* erhalten wir wie gewünscht: "0:1001:3".

Die Schaltung nach Fig. 4 stellt ein Exklusiv-Oder dar.

Hierfür gilt: Am Ausgang ist nur dann ein "1"-Signal, wenn von zwei Relais nur eins in Arbeitsstellung ist, nicht wenn beide in Ruhestellung oder beide in Arbeitsstellung sind.

Das Unterprogramm für die Schaltung nach Fig. 4 hat folgende Schritte:

01 LBL	"4"	06 FS?	01	13 FS?	02
02 XEQ	01	07 RTN		14 RTN	
03 XEQ	02	08 FC?	02	15 FC?	01
04 RTN		09 RTN		16 RTN	
05 LBL	01	10 SIGN		17 SIGN	
		11 RTN		18 END	
		12 LBL	02		

Nach a! geben wir "4" ein und erhalten als *Ergebnis:* "0:0110:3".

Bei dieser Schaltung wollen wir den Einsatz der Taste "H" üben. Also H! "MARKE?" "4" R/S! "A-E?—". Wir betätigen R/S! ohne eine Eingabe. Das bedeutet: Alle Relaisspulen sind spannungslos. Ergebnis: "0". Nun R/S! "A-E??" "A" R/S! (die Spule des Relais A steht unter Spannung, die Kontakte dieses Relais sind in Arbeitsstellung). Ergebnis: "1". R/S! "A-E??" "B" R/S! Ergebnis: "1". R/S! "A-E??" "AB" R/S! (die Spulen beider Relais stehen unter Spannung, die Kontakte beider Relais sind in Arbeitsstellung). Ergebnis: "0".

Wir wollen sehen, ob der Rechner diese einfache Schaltung ebenfalls findet. C!: "MARKE P1?" "4" R/S! Nach ca. 1,5 Minuten ertönt ein BEEP-Signal; in der Anzeige steht die Ziffer 7. Die Ziffer 7 besagt, daß der Rechner eine Schaltung mit 7 Punkten ermittelt hat, die wir wie folgt "auf's Papier" bringen (siehe Fig. 4a):

Wir zeichnen an den linken Rand ein Dreieck, dessen Spitze zum Punkt 1 zeigt. (Da sich die Schaltung nach oben hin "ausbreitet", darf das Dreieck nicht zu weit oben angesetzt werden.) Nach II bringt der Rechner: "a1A-2", d.h. der Arbeitskontakt des Relais a geht nach Punkt 2. Dieser Punkt 2 liegt auf der 2. Vertikalen. R/SI: "a1R-3", d.h. der Ruhekontakt des Relais a geht nach Punkt 3. Die beiden Punkte 2 und 3 stellen die Pole eines weiteren Relais dar. R/SI: "b1A*/4".

Es besagt: Der Arbeitskontakt des Relais b1 entfällt, die Nummer des Punktes 4 dient nur zur Kontrolle. R/S!: "b1R+/5", d.h. der Ruhekontakt des Relais b1 geht an den Pluspol der Spannungsquelle. Hier tragen wir die Nummer des Punktes 5 ein. R/S!: "b2A+/6", d.h. der Arbeitskontakt des Relais b2 geht ebenfalls an "+". R/S!: "b2R*/7", d.h. der Ruhekontakt des Relais b2 entfällt. Damit haben wir alle 7

Punkte übernommen. Zur Kontrolle R/S!: " Σ ab", alle Kontakte der Relais a und b mit ihren Verbindungen sind ausgegeben.

Die beiden Kontakte b1 und b2 gehören zur gleichen Relaisspule B. Der Rechner hat die einfache Schaltung nach Fig. 4 noch weiter vereinfacht und die beiden Kontakte des Relais a zu einem Wechsler vereinigt. (Leider schafft es der Rechner nicht, auch die beiden Kontakte des Relais b zu einem Wechsler zu vereinigen. In der Praxis ist der letzte Kontakt der Schaltung zu einem Wechsler mit Pol zur Spannungsquelle umzuzeichnen!)

Die Schaltung nach Fig. 4a geben wir wie folgt als Unterprogramm ein:

01 LBL	"4a"	05 GTO	05	09 RTN
02 FS?	01	06 RTN		10 LBL 05
03 GTO	02	07 LBL	02	11 SIGN
04 FS?	02	08 FS?	02	12 END

Nach der Eingabe des Unterprogramms wieder mit BEEP! ins Testprogramm. Wir wollen prüfen, ob die beiden Schaltungen nach Fig. 4 und 4a gleiche Ausgangswerte haben. Hierfür G!:

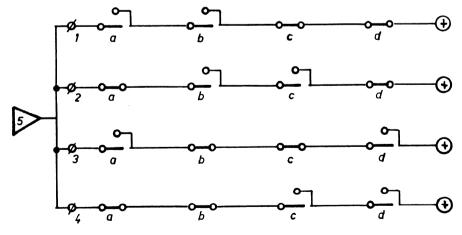


Fig. 5

"MARKE 1?" "4" R/S!: "MARKE 2?" "4a" R/S! Nach knapp 10 Sekunden meldet der Rechner mit "=", daß beide Schaltungen übereinstimmen.

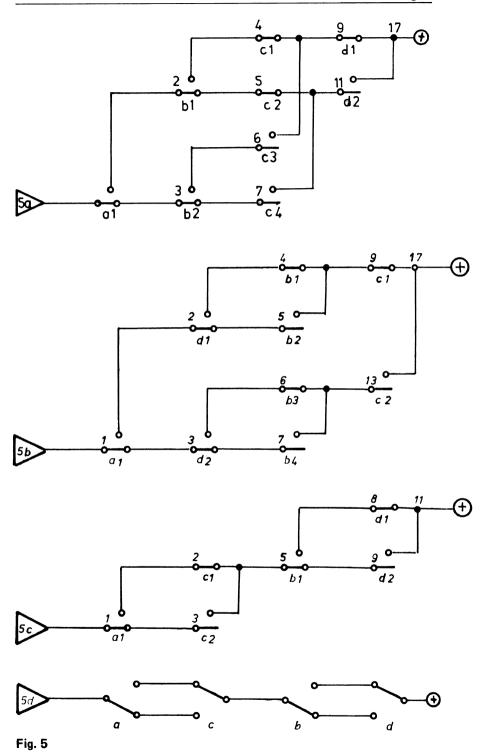
Nun übertragen wir die Schaltung nach Fig. 5 und lassen vom Rechner feststellen, welche Vereinfachungen möglich sind. Hier das Unterprogramm:

01 LBL	"5"	18 LBL	02	35 RTN	
02 XEQ	01	19 FS?	01	36 FC?	04
03 XEQ	02	20 RTN		37 RTN	
04 XEQ	03	21 FC?	02	38 SIGN	
05 XEQ	04	22 RTN		39 RTN	
06 RTN		23 FC?	03	40 LBL	04
07 LBL	01	24 RTN		41 FS?	01
08 FC?	01	25 FS?	04	42 RTN	
09 RTN		26 RTN		43 FS?	02
10 FC?	02	27 SIGN		44 RTN	
11 RTN		28 RTN		45 FC?	03
12 FS?	03	29 LBL	03	46 RTN	
13 RTN		30 FC?	01	37 FC?	04
14 FS?	04	31 RTN		48 RTN	
15 RTN		32 FS?	02	49 SIGN	
16 SIGN		33 RTN		50 RTN	oder END
17 RTN		34 FS?	03		

4 Berechnungen

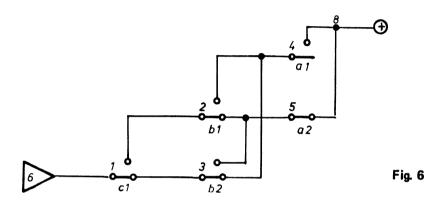
Nach der Eingabe der Schaltung verwenden wir für den weiteren Ablauf folgende Tabelle:

Anzeige	Eingabe	Taste
beliebig		BEEP!
"?"		A!
"EING. VAR.?"	4	R/S!
"AUSG.?"	1	R/S!
"a-e?"	"abcd"	R/S!
"abcd"		C!
"MARKE P1?"	" 5".	R/S!


Nach ca. 4 Minuten ertönt ein BEEP-Signal mit der Meldung, daß eine Schaltung mit 19 Punkten ermittelt wurde. Die mit I! ausgegebene Schaltung zeigt Fig. 5a. Auch hier werden die beiden Kontakte d1 und d2 zu einem Wechsler vereinigt. Wir versuchen, ob durch Veränderung der Basis die Schaltung weiter vereinfacht werden kann. B! "a-e?", beliebig einmal "adbc" R/S! Die Zahl 19 in der Anzeige läßt uns vermuten, daß keine günstigere Schaltung gefunden wurde, wie auch die ausgegebene Schaltung nach Fig. 5b zeigt.

Noch einmal B! "a-e?" Wieder auf gut Glück "acbd" R/S! R/S! Nach ca. 2 Minuten 45 Sekunden meldet der Rechner eine Schaltung mit 13 Punkten. Die ermittelte Schaltung zeigt Fig. 5c. Die für die Praxis umgezeichnete Schaltung nach Fig. 5d zeigt einen Wechsler je Relais. Gegenüber der Schaltung nach Fig. 5 eine erstaunliche Vereinfachung.

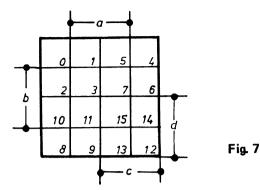
Aus der Funktionstabelle lesen wir den Nummernsatz NS = 1, 2, 4, 7 ab, den wir wie folgt eingeben:


С	b	а	K	Α
Ø	Ø	Ø	Ø	Ø
Ø	Ø	1	1	1
Ø	1	Ø	2	1
Ø	1	1	3	Ø
1	Ø	Ø	4	1
1	Ø	1	5	Ø
1	1	Ø	6	Ø
1	1	1	7	1

Anzeige	Eingabe	Taste
beliebig		A!
"EING. VAR.?"	3	R/S!
"AUSG.?"	1	R/S!
"a-e?''	"cba"	R/S!
"cba"		D!
"NS 1?"	1	R/S!
"NS 1?"	2	R/S!
"NS 1?"	4	R/S!
"NS 1?"	7	R/S!
"NS 1?"		R/S!

Die ermittelte Schaltung mit 11 Punkten zeigt Fig. 6, die wir als Unterprogramm eingeben:

01 LBL	"6"	06 GTO	04	11 FS?	01	16 RTN	
02 FS?	03	07 LBL	02	12 RTN		17 LBL	80
03 GTO	02	08 FS?	02	13 GTO	80	18 SIGN	
04 FS?	02	09 GTO	04	14 LBL	04	19 END	
05 GTO	05	10 LBL	05	15 FC?	01		



Nach der Eingabe der Schaltung wollen wir prüfen, ob sie mit dem Nummernsatz des Ausgangspunktes 1 übereinstimmt.

Anzeige	Eingabe	Taste
beliebig "?"		BEEP! F!
"MARKE ?" "P?"	"6" "1"	R/S! R/S!

Nach ca. 15 Sekunden wird mit "=" Übereinstimmung gemeldet.

Fig. 7 zeigt ein Karnaugh-Veitch-Diagramm für vier Eingangsvariablen. Wir nehmen einmal an, daß die Kombinationen 2, 3, 7 und 6 ein "1"-Signal bringen sollen. (Der Kenner weiß, daß in diesem Fall die Kontakte a und c verschwinden.)

Die Eingabe wieder in Tabellenform:

Anzeige	Eingabe	Taste
beliebig		BEEP!
"?"		A!
"EING. VAR.?"	4	R/S!
"AUSG.?"	1	R/S!
"a-e?"	"dcba"	R/S!
"dcba"		D!
"NS 1?"	2	R/S!
"NS 1?"	3	R/S!
"NS 1?"	7	R/S!
"NS 1?'	6	R/S!
"NS 1?"		R/S!

Das Ergebnis zeigt Fig. 8. Der Rechner meldet mit "-1", daß nicht alle Kontakte in die Schaltung eingegangen sind. Für c1 meldet der Rechner "c1x-4", d. h. dieser Kontakt entfällt. Die Ausgabe der Schaltung wurde beendet mit " Σ dcba", d. h. alle Punkte sind ausgegeben. Der Kontakt a wurde nicht genannt.

Wir wählen versuchsweise die Basis "bdac" B! "a-e?" "bdac" R/S! R/S! Wie erwartet erhalten wir wieder in der Anzeige "-1". Die Schaltung zeigt Fig. 8a; die Kontakte a und c sind nicht mehr vorhanden.

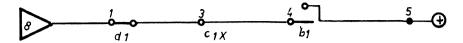
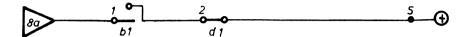
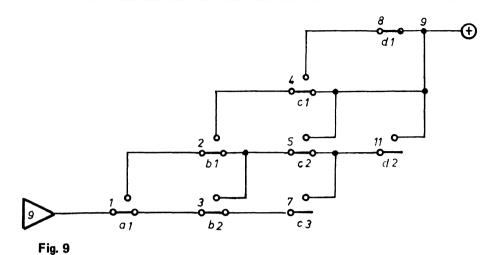


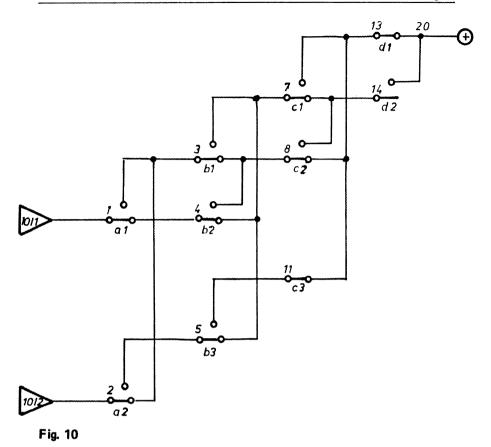
Fig. 8




Fig. 8a

Die unter "E" für eine symmetrische Schaltung gegebene Aufgabe lautete: "Am Ausgang einer Schaltung soll dann ein "1"-Signal vorhanden sein, wenn von vier Relais 2 oder 3 beliebige Relaisspulen unter Spannung stehen, nicht bei 0, 1 oder 4."

Hier die Eingabe:


Anzeige	Eingabe	Taste
beliebig		BEEP!
"?"		A!
"EING. VAR.?"	4	R/S!
"AUSG.?"	1	R/S!
"a-e?"	"abcd"	R/S!
"abcd"		E!
"EZ P1?"	2	R/S!
"EZ P1?"	3	R/S!
"EZ P1?"		R/S!

Der Rechner ermittelt zuerst den für die Erregerzahlen 2 und 3 gültigen Nummernsatz und anschließend eine günstige Schaltung. Der "Suchvorgang" dauert ca. 4 Minuten 15 Sekunden. Das Ergebnis zeigt Fig. 9.

Hier wollen wir eine symmetrische Schaltung mit 2 Ausgängen ermitteln. Ausgangspunkt 1 soll Spannung erhalten, wenn von vier Relais 1 oder 3 beliebige Relais "erregt" sind, Punkt 2 bei 0 oder 2.

Anzeige	Eingabe	Taste
beliebig		BEEP!
"?"		A!
"EING. VAR.?"	4	R/S!
"AUSG.?"	2	R/S!
"a-e?"	"abcd"	R/S!
"abcd"		E!
"EZ 1?"	1	R/S!
"EZ 1?"	3	R/S!
"EZ 1?"		R/S!
"EZ 2?"	Ø	R/S!
"EZ 2?"	2	R/S!
"EZ 2?"		R/S!

Bei der Übertragung "auf's Papier" beachten wir, daß zwei Ausgangspunkte aufgezeichnet werden. Als globale Marken wählen wir "10/1" und "10/2". Die gesamte Schaltung zeigt Fig. 10.

Das Unterprogramm für diese Schaltung kann folgende Schritte haben:

01 LBL	"10/2"	07 GTO 1	1	13 LBL	"10/1"
02 FS?	01	08 GTO 0	7	14 FS?	01
03 GTO	05	09 LBL 1	1	15 GTO	03
04 GTO	03	10 FS? 0	3	16 FS?	02
05 LBL	05	11 RTN		17 GTO	80
06 FS?	02	12 GTO 1	3	18 GTO	07

(Fortsetzun	ng)				
19 LBL	03	26 LBL	07	32 LBL	13
20 FS?	02	27 FS?	03	34 FS?	04
21 GTO	07	28 GTO	13	35 RTN	
22 LBL	08	29 LBL	14	36 LBL	20
23 FS?	03	30 FS?	04	37 SIGN	
24 GTO	14	31 GTO	20	38 END	
25 GTO	13	32 RTN			

Bei diesem Unterprogramm sind alle Kontakte einheitlich mit FS? dargestellt.

Zur Kontrolle: BEEP! "?" F! "MARKE?" "10/1" R/S! "P?" "1" R/S! Nach ca. 30 Sekunden: "=".

F! "MARKE?" "10/2" R/S! "P?" "2" R/S!

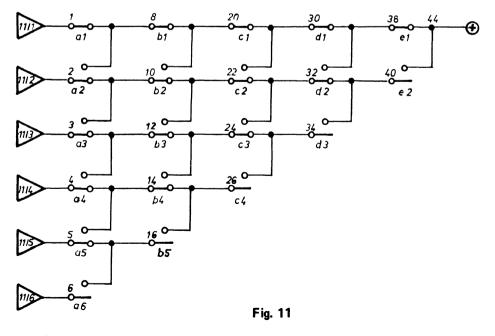
Nach ca. 30 Sekunden: "=". Beide Ausgänge stimmen mit den gewünschten Erregerzahlen überein.

Vom Rechner wünschen wir die Ausgabe einer Schaltung für fünf Eingangs-Variablen und sechs Ausgängen, wobei die Ausgänge folgenden Erregerzahlen genügen sollen:

P1: EZ = 0

P2: EZ = 1

P3: EZ = 2


P4: EZ = 3

P5: EZ = 4

P6: EZ = 5

Anzeige	Eingabe	Taste
beliebig		BEEP!
"?"		A!
"EING. VAR.?"	5	R/S!
"AUSG.?"	6	R/S!
"a-e?"	"abcde"	R/S!
"abcde"		E!
"EZ P1?"	Ø	R/S!
"EZ P1?"		R/S!
"EZ P2?"	1	R/S!
"EZ P2?"		R/S!
"EZ P3?"	2	R/S!
"EZ P3?"		R/S!
"EZ P4?"	3	R/S!
"EZ P4?"		R/S!
"EZ P5?"	4	R/S!
"EZ P5?"		R/S!
"EZ P6?"	5	R/S!
"EZ P6?"		R/S!

Nach ca. 17 Minuten meldet der Rechner 46 Punkte. Die ermittelte Schaltung zeigt Fig. 11.

Das Unterprogramm kann folgende Schritte aufweisen:

01 LBL	"11/6"	24 GTO	10	47 LBL	40
02 FS?	01	25 LBL	12	48 FS?	05
03 GTO	16	26 FS?	02	49 GTO	44
04 RTN		27 GTO	22	50 RTN	
05 LBL	"11/5"	28 LBL	24	51 LBL	"11/1"
06 FS?	01	29 FS?	03	52 FS?	01
07 GTO	14	30 GTO	32	53 RTN	
08 LBL	16	31 LBL	34	54 LBL	80
09 FS?	02	32 FS?	04	55 FS?	02
10 GTO	26	33 GTO	40	56 RTN	
11 RTN		34 RTN		57 LBL	20
12 LBL	"11/4"	35 LBL	"11/2"	58 FS?	03
13 FS?	01	36 FS?	01	59 RTN	
14 GTO	12	37 GTO	0 8	60 LBL	30
15 LBL	14	38 LBL	10	61 FS?	04
16 FS?	02	39 FS?	02	62 RTN	
17 GTO	24	40 GTO	20	63 LBL	38
18 LBL	26	41 LBL	22	64 FS?	05
19 FS?	03	42 FS?	03	65 RTN	
20 GTO	34	43 GTO	30	66 LBL	44
21 RTN		44 LBL	32	67 SIGN	
22 LBL	"11/3"	45 FS?	04	68 END	
23 FS?	01	46 GTO	38		

Zur Kontrolle der einzelnen Punkte:

Anzeige	Eingabe	Taste
beliebig "'?" "MARKE ?" "P?" "="	"11/1" "1"	BEEP! F! R/S! R/S!

Die weiteren Punkte werden analog getestet.

Für die Schaltung nach Fig. 11 stellen wir folgende Aufgabe:

Von fünf Relais soll dann ein "1"-Signal erzeugt werden, wenn 1 oder 3 beliebige Relais "erregt" sind, nicht bei 0, 2, 4, 5.

Dazu schalten wir die Ausgänge "11/2" und "11/4" parallel. Als Marke wählen wir LBL "11b" und geben zusätzlich als Unterprogramm ein:

01 LBL "11b" 02 XEQ "11/2" 03 XEQ "11/4" 04 END

Nach der Eingabe des zusätzlichen Unterprogrammes für die Parallelschaltung:

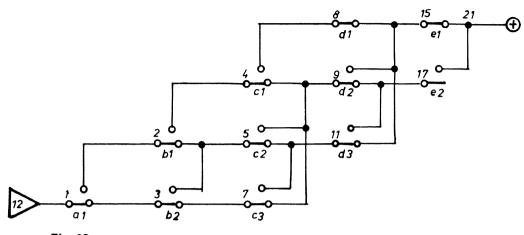
Anzeige	Eingabe	Taste
beliebig		BEEP!
"?"		A!
"EING. VAR.?"	5	R/S!
"AUSG.?"	1	R/S!
"a-e?"	"abcde"	R/S!
"abcde"		b!
"CE?"	"e"	R/S!
"EZ P1?"	1	R/S!
"EZ P1?"	3	R/S!
"EZ P1?"		R/S!

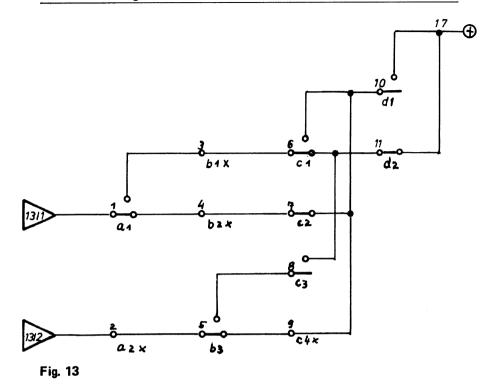
(Der Rechner ermittelt jetzt den für die gestellte Aufgabe erforderlichen Nummernsatz und speichert diesen in Punkt 1)

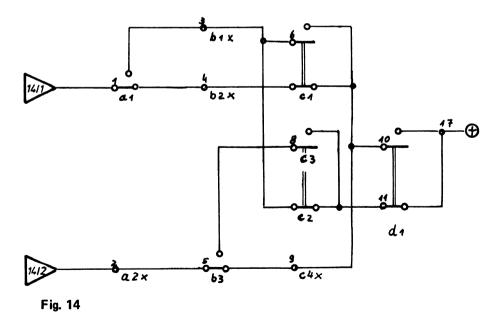
"NSΣ"	1	F!
"MARKE ?"	"11b"	R/S!
"P?"	"1"	R/S!
"="		

Für den Test benötigt der Rechner etwas über 1 Minute.

In der Praxis wird natürlich für einen konkreten Fall die symmetrische Schaltung nach Fig. 11 nicht verwendet. Für obige Aufgabe ermittelt der Rechner eine Schaltung nach Fig. 12.




Fig. 12


Das Unterprogramm für diese Schaltung kann folgende Schritte enthalten:

01 LBL	"12"	13 FS?	03	25 LBL	17
02 FS?	01	14 GTO	09	26 FS?	05
03 GTO	02	15 LBL	11	27 GTO	21
04 FS?	02	16 FS?	04	28 RTN	
05 GTO	05	17 GTO	17	29 LBL	80
06 FS?	03	18 GTO	15	30 FS?	04
07 GTO	11	19 LBL	04	31 RTN	
08 GTO	09	20 FS?	03	32 LBL	15
09 LBL	02	21 GTO	80	33 FS?	05
10 FS?	02	22 LBL	09	34 RTN	
11 GTO	04	23 FS?	04	35 LBL	21
12 LBL	05	24 GTO	15	35 SIGN	
				37 END	

W. N. Roginskij macht in seinem oben erwähnten Buch darauf aufmerksam, daß in manchen Fällen durch Umzeichnen eines Schaltplanes weitere Kontakte eingespart werden können. Für eine Schaltung mit vier Eingangs-Variablen und zwei Ausgängen sollen die beiden Nummernsätze gelten:

NS 1: 1, 3, 8, 10, 13, 15. NS 2: 6, 7, 8, 9, 12, 13.

Die vom Rechner ermittelte Schaltung zeigt Fig. 13. Nach dem Umzeichnen der Kontakte d1 und d2 enthält diese Schaltung vier Wechsler, einen Ruhekontakt und einen Arbeitskontakt. Die für unseren Test modifizierte Schaltung nach Fig. 14 enthält fünf Wechsler.

Das Unterprogramm für die Schaltung nach Fig. 14 kann lauten:

01	LBL	"14/2"	11 GTO	06	21	GTO	17
02	FS?	02	12 FS?	03	22	LBL	10
03	GTO	80	13 RTN		23	FS?	04
04	GTO	10	14 GTO	10	24	GTO	17
05	LBL	08	15 LBL	06	25	RTN	
06	FS?	03	16 FS?	03	26	LBL	17
07	GTO	11	17 GTO	10	27	SIGN	
80	RTN		18 LBL	11	28	END	
09	LBL	"14/1"	19 FS?	04			
10	FS?	01	20 RTN				

Test über Taste F!

5 Heizungsregelung

Als Abschluß soll eine praktische Aufgabe dienen:

Ein Betrieb mit fünf etwa gleich großen Werkhallen wird über eine Warmluftanlage beheizt. Zur Verfügung steht ein Warmluftgebläse mit einem Zweistufenbrenner und einem dreistufigen Ventilator. In jeder Halle ist ein Thermostat installiert, der eine Luftklappe steuert. Bei geöffneter Luftklappe wird ein Relais angesprochen, welches mit den Relais der anderen Klappen folgende Kombinationen bewirken soll:

Brenner Stufe 1	bei 1 oder 2 Relais
Brenner Stufe 2	bei 3, 4 oder 5 Relais
Ventilator Stufe 1	bei 1 Relais
Ventilator Stufe 2	bei 2 oder 3 Relais
Ventilator Stufe 3	bei 4 oder 5 Relais.

Für diese Aufgabe geben wir ein:

Anzeige	Eingabe	Taste
beliebig		BEEP!
"?"		A!
"EING. VAR.?"	5	R/S!
"AUSG.?"	5	R/S!
"a-e?"	"abcde"	R/S!
"abcde"		E!
"EZ P1?"	1	R/S!
"EZ P1?"	2	R/S!
"EZ P1?"		R/S!
"EZ P2?"	3	R/S!
"EZ P2?"	4	R/S!
"EZ P2?"	5	R/S!
"EZ P2?"		R/S!
"EZ P3?"	1	R/S!
"EZ P3?"		R/S!
"EZ P4?"	2	R/S!
"EZ P4?"	3	R/S!
"EZ P4?"		R/S!
"EZ P5?"	4	R/S!
"EZ P5?"	5	R/S!
"EZ P5?"		R/S!

Für diese Aufgabe benötigt der Rechner fast 27 Minuten. Den Aufbau der Schaltung zeigt Fig. 15. Das Unterprogramm ist auf Seite 63 abgedruckt.

Die mit J! erfragten und in der Funktionstabelle mit "+" gekennzeichneten Kombinationen stimmen mit der Aufgabenstellung überein; ebenso die mit a! errechneten Ausgangswerte.

Einige Anmerkungen zum Programm:

Nach der Berechnung oder Eingabe der Nummernsätze werden die Sätze aller Ausgänge der Kontakte einer Vertikalen überprüft: Ausgänge mit gleichen Sätzen werden miteinander verbunden (Zeichen "1"), leere Kontakte entfallen (Zeichen "*, das Multiplikationszeichen des Rechners), gleiche Sätze

23	02	10	9		60	41	21	51	37	02	37	22	17	47	33		
					30 LBL												
05	07	01	33	05	80	03	20	04	57	07	35	02	16	04		02	
					29 GTO												
60	01	"15c"	03	10	01	23	02	41	03	90	03	51	02	35	03	47	
03 GTO	08 FS?	13 LBL	18 FS?	23 LBL	28 FS?	33 LBL	38 FS?	43 LBL	48 FS?	53 GTO	58 FS?	63 LBL	68 FS?	73 LBL	78 FS?	83 LBL	88 END
10	"15d"	21	16	51	"15b"	21	80	37	20	01	19	22	90	33	16		
02 FS?	07 LBL	12 GTO	17 GT0	22 GTO	27 LBL	32 GTO	37 LBL	42 GTO	47 LBL	52 FS?	57 LBL	62 GTO	67 LBL	72 GTO	77 LBL	82 RTN	87 SIGN
"15e"		19	02	47	16	02		03		"15a"	17	04		C3	57	04	22
01 LBL	06 RTN	11 GTO	16 FS?	21 GTO	26 GTO	31 FS?	36 RTN	41 FS?	46 RTN	51 LBL	56 GTO	61 FS?	66 RTN	71 FS?	76 GTO	81 FS?	86 LBL

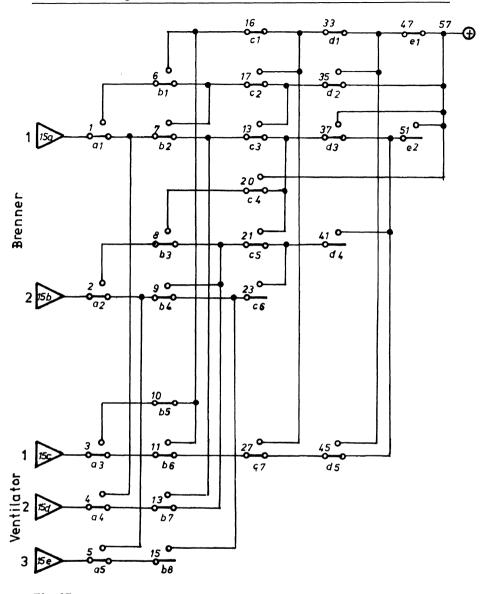


Fig. 15

Die Nummernsätze der Punkte P1-P5 und die Ausgangswerte der Marken "15a"-"15e" übertragen wir in die Funktionstabelle für fünf Eingangs-Variablen.

G	erät					Brei	nner			Ven	tilator				
					EZ	1,	2	3,4	1, 5	1		2	, 3	4,	5
а	b	С	d	е	К	P1	15a	P2	15b	Р3	15c	Р4	15d	P5	15e
Ø	Ø	Ø	Ø	Ø	Ø	_	Ø	-	Ø	-	Ø	-	Ø	_	Ø
Ø	Ø	Ø	Ø	1	1	+	1	-	0	+	1	-	Ø	-	Ø
Ø	Ø	Ø	1	Ø	2	+	1	-	Ø	+	1	-	Ø	-	Ø
Ø	Ø	Ø	1	1	3	+	1	-	Ø	_	Ø	+	1	-	Ø
Ø	Ø	1	Ø	Ø	4	+	1	-	Ø	+	1	-	Ø	-	Ø
Ø	Ø	1	Ø	1	5	+	1	-	Ø	-	Ø	+	1	-	Ø
Ø	Ø	1	1	Ø	6	+	1	-	Ø	-	Ø	+	1	-	Ø
Ø	Ø	1	1	1	7	-	Ø	+	1	-	Ø	+	1	-	Ø
Ø	1	Ø	Ø	Ø	8	+	1	-	Ø	+	1	-	Ø	-	Ø
Ø	1	Ø	Ø	1	9	+	1	-	Ø	-	Ø	+	1	-	Ø
Ø	1	Ø	1	Ø	10	+	1	-	Ø	_	Ø	+	1	-	Ø
Ø	1	Ø	1	1	11	-	Ø	+	1	-	Ø	+	1	-	Ø
Ø	1	1	Ø	Ø	12	+	1	-	Ø	-	Ø	+	1	-	Ø
Ø	1	1	Ø	1	13	-	Ø	+	1	-	0	+	1	-	Ø
Ø	1	1	1	Ø	14	_	Ø	+	1	-	Ø	+	1	-	Ø
Ø	1	1	1	1	15	_	Ø	+	1	-	0	-	Ø	+	1
1	Ø	Ø	Ø	Ø	16	+	1	-	Ø	+	1	-	Ø	-	Ø
1	Ø	Ø	Ø	1	17	+	1	-	Ø	_	0	+	1	-	Ø
1	Ø	Ø	1	Ø	18	+	1	-	Ø	-	Ø	+	1	-	Ø
1	Ø	Ø	1	1	19	-	Ø	+	1	-	Ø	+	1	-	Ø
1	Ø	1	Ø	Ø	20	+	1	-	Ø	-	Ø	+	1	-	Ø
1	Ø	1	Ø	1	21	-	Ø	+	1	-	Ø	+	1	_	Ø
1	Ø	1	1	Ø	22	-	Ø	+	1	-	Ø	+	1	-	Ø
1	Ø	1	1	1	23	_	Ø	+	1	-	Ø	-	Ø	+	1
1	1	Ø	Ø	Ø	24	+	1	-	0	_	Ø	+	1	-	Ø
1	1	Ø	Ø	1	25	-	Ø	+	1	-	Ø	+	1	-	Ø
1	1	Ø	1	Ø	26	_	Ø	+	1	-	Ø	+	1	-	Ø
1	1	Ø	1	1	27	-	Ø	+	1	-	Ø	-	Ø	+	1
1	1	1	Ø	Ø	28	-	Ø	+	1	-	Ø	+	1	-	Ø
1	1	1	Ø	1	29	-	0	+	1	-	Ø	-	0	+	1
1	1	1	1	Ø	30	-	0	+	1	-	Ø	-	Ø	+	1
1	1	1	1	1	31	-	0	+	1	-	Ø	-	Ø	+	1

bei den beiden Ausgängen des gleichen Wechslers bedeuten, daß der Wechsler entfällt (Zeichen "X"), volle Sätze am Ausgang eines Kontaktes bedeuten, daß dieser Ausgang direkt mit dem Pol der Spannungsquelle verbunden wird (Zeichen "+").

Die Daten werden im X-Funktions-Modul gespeichert. Nach dem Durchgang aller Ausgänge einer Vertikalen werden die nicht mehr benötigten Daten gelöscht. Dadurch ist die Möglichkeit gegeben, auch umfangreiche Schaltungen zu testen. Die Löschung benötigt leider verhältnismäßig viel Zeit. Im Testprogramm ist auf Unterprogramme weitgehend verzichtet.

W. N. Roginskij bemerkt in seinem vorgenannten Buch, "daß in jeder Etappe des Entwurfes immer nur die Kontakte eines Relais eingeführt werden". Parallelschaltungen werden als solche nicht erkannt. Bei zwei Eingangsvariablen hat eine Parallelschaltung der beiden Kontakte a und b den Nummernsatz 1, 2, 3. Der Rechner ermittelt zwar eine funktionsfähige Schaltung, bringt jedoch einen nicht erforderlichen Ruhekontakt des ersten Relais.

Der kurze Programmteil mit der globalen Marke LBL "%" wird in den Wert "1" verwandelt und umgekehrt. Für Schaltungen mit inversen Ausgängen zu verwenden.

Das Programm ist eingehend getestet. Eine Garantie dafür, daß in jedem Fall eine einwandfreie Schaltung entworfen wird, kann jedoch nicht übernommen werden.

Das Programm verarbeitet nur Nummernsätze mit obligatorischen Nummern; bedingte (gleichgültige) Nummern werden nicht berücksichtigt.

Programmliste

001	LBL RS	002 CF 28 005 LBL A 008 PROMPT 011 STO 12 014 Y	003 '?'
004	PROMPT	005 LBL A	006 5
007	'EING. VAR.?'	oo8 PROMPT	009 X 🕿 Y?
010	ACOS	o11 STO 12	012 2
013	X/Y	o14 Y 🖊 X	o15 1
016		o17 1 E3	o18 STO 13
019	/	020 STO 14	o21 'AUSG.?'
022	PROMPT	o23 STO 11	o24 RCL 13
025	1	026 1	027 +
028	STO 15	o29 LBL B	o3o 'a-e?'
031	RCL 12	o 32 AON	o33 PROMPT
034	AOFF	o 35 ALENG	o 36 X ≠ Y?
037	SF 66	038 STO 00	o 39 CLX
0/10	SEEKPT	o41 DELREC	o42 INSREC
043	T.RT. 15	044 2	o45 RCL oo
045	1	047 =	048 Y 4 X
040	2	050 ATOY	051 STO 04
047	Σ .ω∪γ	653 R1	054 =
052	X 10A	055 07	057 -
055	X Z Z 04	050 51	060 STO 05
070	Y 1 4	off moon	063 STO TND 04
001	I 7 A	-45 DOT 12	065 8 V2
004	KCT 02	00) RUL 12	000 A Z = I:
061	ACOS	-71 CMO 01	009 GIO 19
070	PROMPT	071 GTO 21	0 / Z LDL 0
073	SF 28	0/4 'UE!'	0/5 AUN
076	PROMPT	011 AUFF	O O ATUA
079	XEQ IND X	080 'NSZ'	OSI PROMPT
082	SF 66	083 TBT C	084 LBL 67
085	XEQ 29	086 LBL 16	087 AUN
o 88	'MARKE P'	o89 ARCL o2	ogo APPEND '?'
091	PROMPT	o92 AOFF	093 ASTO 09
094	RCL 14	o95 STO o1	o96 APPREC
097	DELREC	o98 LBL 17	o99 RCL o1
100	2	101 x	102 X Z J F
103	CLX	1o4 XEQ IND o9	105 X = 0?
106	GTO oo	107 CLA	108 RCL 01
109	INT	110 +	111 XTOA
112	APPCHR	113 LBL 00	114 ISG o1
115	GTO 17	116 RCL o2	117 INT
118	SEEKPT	119 3	12o GETREC
		· · · · · · · · · · · · · · · · · · ·	

121 FC?C 17	122 GTO 00	123 1o 🖊 X
124 BEEP	125 1o 🖊 X	126 LBL oo
127 ISG o2	128 GTO 16	
130 LBL D	131 DEG	132 GTO oo
133 LBL E	134 LBL 69	135 RAD
136 LBL 00	137 XEQ 29	138 1
	140 2	141 RCL 12
142 ST+ o2	143 Y 🖊 X	144 FC? 43
145 STO o2	146 RCL 12	147 RCL 13
148 /	149 1	150 +
151 STO 03	152 RCL 15	153 STO o1
154 STO 07	155 LBL 18	156 APPREC
157 DELREC	158 RCL o3	159 STO oo
160 1,023	161 FC? 43	162 STO oo
163 CF 22	164 LBL o2	165 'EZ P'
166 FC? 43	167 'NS'	168 ARCL o1
169 APPEND '?'	170 RCL 02	171 PROMPT
172 FC?C 22	173 GTO 00	174 1
175 + 178 CLA	176 X \(\square\) Y?	177 ACOS
178 CLA	179 XTOA	180 APPCHR
181 ISG oo	182 GTO o2	183 LBL oo
184 ISG o1		186 FC? 43
187 GTO 21	188 LBL 19	
190 STO 01	191 CLX	192 X 🗸 📐 F
193 CF o8	194 CF o9	195 CF 10
196 1	197 SEEKPT	198 GETREC
199 DELREC	200 APPREC	201 DELREC
202 ALENG	203 STO 00	204 LBL 03
205 ATOX	206 4	207 +
208 SF IND X		210 GTO 03
211 X ∠ \ F	212 STO 03	213 LBL 20
214 RCL 01	215 RCL 03	216 +
217 X Z J F		219 ENTER
220 ENTER	221 ENTER	222 CLX
223 FS?C oo	224 +	225 FS? o1
226 +	227 FS? o2	228 +
229 FS? o3	230 +	231 FS? o4
232 +	233 STO o 2	234 FC? o5
235 GTO 00	236 x = 0?	237 SF 00
238 LBL 00	239 FC? o6	240 GTO 00
241 RCL 02	242 1	243 X = Y?

		245 LBL 00	246 FC? o7
247		248 RCL 02	249 2
250	X = Y?		252 LBL 00
253	FC? 08		255 RCL 02
		257 X = Y?	258 SF oo
259	LBL oo	260 FC? o9	261 GTO 00
262	RCL o2	263 4	264 X = Y?
265	SF oo	266 LBL 00	267 FC? 1o
268	GTO oo	269 RCL 02	270 5
271	X = Y?		273 LBL 00
274	FC? oo	275 GTO 00	276 CLA
277	RCL o1	278 INT	279 1
28 o	+	281 XTOA	282 APPCHR
283	LBL oo	284 ISG o1	285 GTO 20
286	ISG o7	287 GTO 19	288 LBL 21
289	FS?C 28		291 APPREC
292	RCLPT		294 RCL 11
295	STO e2	296 RCL 13	297 /
298	STO o1	299 +	300 STO 00
301	LBL o4	302 RCL oo	303 INT
304		3o5 DELREC	306 DSE 00
307	GTO 04	308 1	309 ST+ 01
31o	ST+ 02	311 RCL 12	312 STO 08
313	33	314 +	315 STO 07
316	LBL 22	317 RCL o1	318 INT
	SEEKPT		321 23
	ALENG		324 GTO 00
325	1o 🖊 X	326 BEEP	327 10 🖊 X
328	LBL oo		330 LBL 23
331	ATOX	332 1	333 -
	ENTER 🖊	335 X ∠ ∆ F	336 X Z Z Y
337	FS? oo	338 RCL 16	339 FS?C oo
340	+		342 RCL 17
343	FS?C o1	- · ·	345 FS? o2
346	RCL 18	347 FS?C o2	348 +
	FS? o3	350 RCL 19	351 FS?C o3
352	+	353 FS? o4	354 RCL 20
355	FS?C o4	356 +	35 7 1
358		359 XTOA	360 DSE 00
-	GTO 23	_	363 XTOA
364	-1	365 AROT	366 APPREC

367 ISG o1	368 GTO 22	369 LBL 24
370 CLX	371 SEEKPT	372 GETREC
373 RCL 12	374 RCL o8	375 -
376 AROT	377 ATOX	378 STO 07
379 RCL 02	380 STO 01	381 APPREC
382 DELREC	383 RCLPT	384 STO 02
385 181	386 STO 06	387 LBL 25
	389 RCL o1	390 SEEKPT
391 RCL 08	392 33	393 +
394 XTOA	395 POSFL	396 X ∠ o?
397 GTO 26	398 GETREC	399 SEEKPT
	4e1 DELCHR	4o2 ATOX
4o3 ALENG	404 STO 00	4o5 APPREC
		408 RCL 08
409 STO 09	410 1	411 -
		414 Y 🖊 X
	416 -	417 STO 10
_	419 ST+ o9	420 CLX
	422 STO 04	423 LBL 05
424 RCL 05	422 STO 04 425 ATOX	426 X Z = Y?
	428 RCL 05	429 -
430 XTOA	431 1	432 -
433 2	434 X ∠ \ Y	435 Y / X
436 ST+ 03	437 LBL 00	438 DSE 00
	440 RCL 03	441 X \neq 0?
	443 '*'	444 INSREC
445 LBL 00	446 X = 0?	447 GTO 00
448 ARCL 03	449 RCL o9	450 XTOA
	452 AROT	453 INSREC
454 RCL o3	455 RCL 1o	456 X ≠ Y?
457 GTO 00	458 '+'	459 DELREC
460 INSREC	461 LBL 00	462 GETREC
463 DELREC		465 STO 00
466 LBL 06	467 RCL o5	468 ATOX
469 X \(\sqrt{Y}?\)	470 GTO 00	471 XTOA
472 1	473 -	474 2
475 X ∠ \ Y		477 ST+ 04
478 LBL 00		480 GTO 06
		483 GTO oo
484 '*'		486 LBL 00
487 X = 0?		489 ARCL 04
-	· +	•

40-	DOT -O	491 XTOA	492 -1
	RCL o9		495 RCL 04
		497 X ≠ Y?	498 GTO 00
		500 DELREC	501 INSREC
			504 RCL 04
	LBL oo	503 RCL 03 506 GTO 00	507 DELREC
	X ≠ Y?	500 410 00	51o -
	RCLPT	509 1 512 'X'	513 RCL o7
		515 RCL o6	
_			519 ARCLREC
-			522 GTO 07
		521 INSCHR	525 INT
	TBT 00		528 RCL 67
	SEEKPT	527 CIM	20 KOT 01
	XTOA	530 RCL 06 533 APPEND 'R'	531 ATUA
		533 AFFEND 'R'	5 34 INSURK
		536 1	537 -
	SEEKPT		540 ARCL oo
541	APPEND 'A'	542 INSCHR	543 LBL 07
244	i	747 ST+ 00	546 GTO 25
547	LBL 26	548 CLA 551 1	549 RCL o7
550	XTOA	551 1	552 SEEKPT
ううろ	POSFL	554 X ∠ o?	555 GTO 28
556		557 DELREC	
559			561 RCL 13
			564 STO 01
			567 RCL 01
	INT		570 GETREC
			573 FC?C 22
			576 ATOX
	ATOX	578 ATOX	579 CLA
	R #	581 R #	582 XTOA
	R /	584 XTOA	585 R #
			588 LBL 08
			591 CLX
	POSFL	593 X ∠ o?	594 GTO 00
	RCLPT	596 INT	597 SEEKPT
	GETREC	599 ANUM	600 RCL 03
	X ≠ Y?	602 GTO 08	603 RCLPT
	INT	605,003	606 +
	SEEKPT	608 50	609 DELCHR
	141	611 ARCL 00	612 APPCHR
613	GTO 08	614 LBL 00	615 ISG o1

616	GTO 27	617 RCL 04	618,001
619	+	620 STO 01	621 INT
622	STO o2	617 RCL 04 620 STO 01 623 LBL 09	624 RCL o1
625	INT	626 SEEKPT	627 GETREC
631	GFO OO	632 CLA	633 ARCL X
634	RCL of	635 INT	636 SEEKPT
637	POSTI.	638 50	639 DELCHR
640	T.BT. 00	641 TSG 01	642 GTO 09
643	DSE 08	644 GTO 24	645 LBL 28
646	סשישם	629 ANUM 632 CLA 635 INT 638 50 641 ISG 01 644 GTO 24 647 RTN 650 CLX 653 ASTO 06 656 'K' 659 ARCL 06 662 LBL e 665 PROMPT	648 SB 66
640	ממם	650 CIV	640 DF 00
650	משמשט המ	650 CDA	CEA DOT 15
652	GETREC	CEC +V+	CET OTHE
655	STO 02	650 ADGT (CC- ADDDDG
658	CLA	659 ARCL OB	660 APPREC
661	RTN	662 LBL e	663 RCL 11
664	'PUNKT ?'	665 PROMPT	$666 X \angle = Y?$
667	SF 66	668 STO 02	669 GTO 30
670	LBL I	671 'K'	672 APPREC
673	DELREC	674 RCLPT	675 1
676	•	677 RCL 13	67 8 /
679	RCL 11	662 LBL e 665 PROMPT 668 STO o2 671 'K' 674 RCLPT 677 RCL 13 680 1 683 STO o2 686 X \(\subseteq	681 +
682	+	683 STO o 2	684 LBL 30
685	CLX	686 X 🗸 📐 F	687 RCL o2
688	INT	689 SEEKPT	69o GETREC
691	3	692 ALENG	693 X = Y?
694	SF oo	695 STO 00	696 LBL 10
697	132	695 STO 00 698 ATOX	699 X ∠ Y?
700	GTO oo	701 X / Y	7o2 -
703	LBL eo	704 XTOA	7e5 DSE oo
706	GTO 10	797 FS? 00	708 APPEND '-'
709	FC?C oo	7e1 X \(\simeq \simeq \) 7e4 XTOA 7e7 FS? oo 71e APPEND '/'	711 ARCL 02
712	PROMPT	713 ISG 02	714 GTO 30
715	CLX	716 SEEKPT	717 '5'
718	ARGIREC	719 PROMPT	720 SF 66
	LBL J	722 RCL 11	723 'P?'
		725 X \(\(\cdot \) Y?	726 ACOS
	$\begin{array}{c} PROMPT \\ X = o? \end{array}$	728 LN	729 STO 01
		731 GETREC	732 ALENG
	SEEKPT		
	STO oo	734 STO 02	735 LBL 11 738 -
	ATOX	737 1	• •
139	RTN	740 DSE 00	741 GTO 11

742 'P' 745 ARCL o1 748 APPEND '\sumset' 751 SF 66 754 'MARKE?' 757 ASTO 09 760 2 763 STO 02 766 STO 02 769 STO 04 772 STO 03 775 APPEND ':'	743 40	744 XTOA
745 ARCL o1	746 41	747 XTOA
748 APPEND '∑'	749 ARCL 02	750 PROMPT
751 SF 66	752 LBL a	753 AON
754 'MARKE?'	755 PROMPT	756 AOFF
757 ASTO 09	758 CLX	759 STO o1
760 2	761 RCL 12	762 Y 🖊 X
763 STO 02	764 8	765 X ∠ Y?
766 STO 02	767 /	768 INT
769 STO 04	770 LBL 31	771 RCL o2
772 STO 03	773 CLA	774 ARCL 01
775 APPEND ':'	776 LBL 12	777 RCL 01
778 2	779 x	780 X 🗸 🖍 F
781 CLX	782 XEQ IND 09	783 ARCL X
784 1	785 ST+ o1	786 DSE 03
787 GTO 12	788 APPEND ':'	789 RCL o1
79 o 1	791 -	792 ARCL X
772 STO 03 775 APPEND ':' 778 2 781 CLX 784 1 787 GTO 12 790 1 793 PROMPT 796 'AW\(\)' 799 LBL F 802 LBL G 805 AON 808 APPEND '1' 811 ASTO 09 814 'P?' 817 ASTO 10 820 FS? 42	794 DSE 04	795 GTO 31
796 'AW∑'	797 PROMPT	798 SF 66
799 LBL F	800 DEG	801 GTO 00
802 LBL G	8o3 GRAD	804 LBL 00
805 AON	806 'MARKE'	807 FS? 42
808 APPEND '1'	809 APPEND '?'	81 PROMPT
811 ASTO 09	812 'MARKE 2?'	813 FC? 42
814 'P?'	815 PROMPT	816 AOFF
817 ASTO 10	818 RCL 14	819 STO o1
820 FS? 42	821 GTO 13	822 ATOX
009.40	004	OUE GERKEN
826 GETREC	827 LBL 13 830 x 833 XEQ IND 09 836 0 839 LBL 00 842 1 845 SIGN	828 RCL o1
829 2	830 x	831 X 🗸 📐 F
832 CLX	833 XEQ IND 09	834 FC? 42
835 GTO 00	836 o	837 XEQ IND 10
838 GTO o1	839 LBL 00	840 RCL 01
841 INT	842 1	843 +
844 POSA	845 SIGN	846 X ∠ o?
847 CLX	848 LBL o1	849 X = Y?
85e GTO ee	851 ' ∤'	852 APPEND ' K'
	854 INT	855 ARCL X
	857 SF 66	858 LBL 00
	860 GTO 13	861 '='
862 PROMPT	863 SF 66	864 LBL H

865 AON	866 'MARKE ?'	867 PROMPT
868 PS?C 23	869 ASTO 09	870 LBL 32
871 AON	872 CLX	873 X 🗸 🖒 F
874 'A-E/?'	875 PROMPT	876 AOFF
877 FC?C 23	878 GTO 00	879 ALENG
88e STO oo	881 LBL 14	882 5
883 ATOX	884 64	885 -
886 X 7 X 588	887 ACOS	888 SF IND X
889 DSE 00	890 GTO 14	891 LBL 00
892 CLX	893 XEQ IND 09	894 RTN
895 GTO 32	896 LBL %	897 X = 0?
898 GTO oo	899 CLX	900 RTN
9o1 LBL oo	9o2 SIGN	9o3 END

Regelkreis-Optimierung mit dem Taschenrechner HP-41 CV/CX im Bode-Diagramm

Peter F. Orlowski

Einleitung

In diesem Beitrag wird ein Taschenrechnerprogramm vorgestellt, mit dem sich eine Vielzahl technischer Regelkreise optimieren läßt. Als Grundlage dient das vereinfachte Stabilitätskriterium nach *Nyquist* und seine Darstellung im Bode-Diagramm. Vergleichbare Literatur ist in [2] angegeben.

Stabilitätsbegriff

Ist von einer Regelung das Übertragungsverhalten von Regler und Strecke bekannt, läßt sie sich auf Stabilität untersuchen bzw. optimieren [1]. Besonders anschaulich ist dabei die Darstellung des Übertragungsverhaltens im Bode-Diagramm. Dort werden der Frequenzgangbetrag $|F_0|$ des offenen Regelkreises und sein Phasenwinkel φ_0 im logarithmischen Maßstab aufgezeichnet. Dabei wird $|F_0|$ als logarithmische Summe des Reglerfrequenzgangs $|F_R|$ und Streckenfrequenzgangs $|F_S|$ aufgetragen, also

$$\frac{|F_0|}{dB} = 20 |g| |F_R| + 20 |g| |F_S|$$
und
$$\varphi_0 = \varphi_R + \varphi_S.$$

Ein so definierter Regelkreis ist stabil, wenn der Frequenzgangbetrag $|F_0|$ bei der Frequenz ω_D (dort ist $|F_0|=1$) einen Phasenwinkel $\varphi_0>-180^\circ$ aufweist. Dieses Stabilitätskriterium nach Nyquist liegt auch dem folgenden Taschenrechnerprogramm zugrunde.

Programmbeschreibung

Entsprechend dem vereinfachten Stabilitätskriterium nach Nyquist wird im Programm folgender Formelsatz angewendet:

$$|F_0| \stackrel{!}{=} 1 \qquad \longrightarrow \quad \text{Durchtrittsfrequenz } \omega_D$$

$$\alpha_R = 180^\circ + \varphi_0(\omega_D) \stackrel{!}{>} 0 \qquad \longrightarrow \quad \text{Phasenreserve } \alpha_R$$

$$0 \stackrel{!}{=} 180^\circ + \varphi_0(\omega_z) \qquad \longrightarrow \quad \omega_z$$

$$A_R = 10 \qquad \longrightarrow \quad \text{Amplitudenreserve } A_R$$

Mit dem in Fig. 1 abgedruckten Programm lassen sich, je nach Wahl der Parameter, folgende Regler realisieren:

nach Wahl der Parameter, folgende Reg P-Regler
$$T_N = 10^{50} \, \text{s}$$
, $T_V = 0$ PI-Regler $T_N = T_{N_J}$, $T_V = 0$ PD-Regler $T_N = 10^{50} \, \text{s}$, $T_V = T_V$ PID-Regler $T_N = T_N$, $T_V = T_V$

Als Regelstrecke lassen sich aus einer Liste von acht typischen Strecken jeweils zwei auswählen. Dazu erscheint mit dem Start des Programms ein Vorspann auf dem Drucker, der die Kennbuchstaben und ihre zugehörige Regelstrecke angibt. Auf diese Weise lassen sich mehr als 80 verschiedene Regelkreise zusammenstellen und optimieren.

Der in Fig. 2 dargestellte Rechnerstatus zeigt die Anzahl der notwendigen Programm- und Datenspeicher sowie die verwendeten Unterprogramme. Es ist darauf zu achten, daß der Rechner wegen der Länge des gesamten Programms auf SIZE 072 gestellt werden muß. Zum besseren Verständnis des Programms ist in Fig. 3 ein Flußdiagramm abgebildet, das den Programmablauf verdeutlichen soll.

Mit dem Eintippen des Programmnamens "BODE-SY" erscheint zunächst der Textvorspann zur Auswahl der Regelstrecken. Dann erfolgt die Eingabe der Reglerparameter (Reglerverstärkung V_R , Nachstellzeit T_N und Vorhaltzeit T_V). Anschließend fragt der Rechner nach dem Kennbuchstaben der ersten Regelstrecke. Nach Eintippen des Buchstabens drückt man "RUN", und es kommt die Abfrage der zugehörigen Streckenparameter. Wenn weitere Strecken gewünscht sind, ist nun "1" einzugeben (sonst "0"). Danach ist wieder der Streckenname gefragt. Mit Eintippen des gewählten Kennbuchstabens werden die Parameter abgefragt. Damit ist die Regelung definiert, und der Rechner fragt nun nach dem ersten Frequenzwert ω (bzw. w). Mit diesem Wert werden der Frequenzbetrag |F₀|/dB und sein Phasenwinkel φ₀/Grad berechnet und ausgedruckt. Es können nun beliebige Werte von $\omega \approx 0$ bis 10^6 Hz eingegeben werden. Dabei ist es sinnvoll, für die später erforderliche Eingabe von Frequenzwerten des Nullstellen-Unterprogramms solche ω -Werte zu wählen. bei denen zum einen $|F_0|/dB = 0$ wird und zum anderen der Phasenwinkel φ_0 /Grad = -180° erreicht.

Wird eine Frequenz $\omega \ge 10^6$ Hz eingetippt, springt der Rechner in das Unterprogramm zur Bestimmung der Durchtrittsfrequenz ω_D . Es sind zwei ω -Werte einzugeben, zwischen denen der Nulldurchgang von $|F_0|/dB$ liegen muß. Nach einigen Sekunden druckt der Rechner das Ergebnis aus und setzt die "Flag" 10.

Nach der Berechnung des Frequenzbetrags und Phasenwinkels für die Frequenz ω_D wird die Phasenreserve α_R /Grad ermittelt, Flag 10 gelöscht und Flag 00 gesetzt. Ist die Phasenreserve $\alpha_R > 0$ (stabile Regelung), erfolgt die Berechnung von ω_z mit dem Nullstellen-Unterprogramm. Ist $\alpha_R < 0$, liegt

eine instabile Regelung vor, und das Programm wird beendet. Es kann für eine geänderte Parameter-Eingabe mit den Befehlen "GTO.001" und "RUN" neu gestartet werden. Erfolgt die Berechnung von $\omega_{\mathbf{Z}}$, erhält man nach einigen Sekunden das Ergebnis und anschließend die Angabe der Amplitudenreserve $A_{\mathbf{R}}$. Sie gibt den Abstand der Verstärkung der Regelung bis zum Erreichen der Stabilitätsgrenze an.

Optimierungsbeispiele

Für eine gut optimierte Regelung läßt sich folgende Vorschrift bezüglich der Phasen- und Amplitudenreserve angeben:

$$\alpha_{R} = 40^{\circ} \dots 60^{\circ}$$
 $A_{R} = 4 \dots 10$
bei Sollwertänderungen
$$\alpha_{R} = 20^{\circ} \dots 50^{\circ}$$
 $A_{R} = 1 \dots 3$
bei Störgrößenänderungen

Außerdem sollte die Durchtrittsfrequenz ω_D möglichst groß sein, da sie ein Maß für die Reaktionsfähigkeit der Regelung auf Sollwert- bzw. Störgrößenänderungen ist.

Fig. 4 zeigt den Ausdruck, wie ihn der Drucker produziert, wenn man eine Regelung aus PD-Regler und $PT_1-PT_1-PT_t$ -Strecke wählt, Dazu ist bei den Regler-Parametern $T_N=10^{50}\,\mathrm{s}$ vorzugeben sowie die Strecken-Namen N und R einzutippen.

Mit den eingegebenen Parametern für Regler und Strecke erhält man die ausgedruckten Ergebnisse:

$$\omega_{D} = 44.052 \text{ Hz}$$
 $\alpha_{R} = 10,502^{\circ}$
 $\omega_{z} = 51,85 \text{ Hz}$
 $A_{B} = 1,303$

Die Regelung ist zwar stabil, jedoch reicht die Phasenreserve nicht aus. Dies zeigt auch das in **Fig. 5** dargestellte Bode-Diagramm.

In einem zweiten Rechnerlauf wird die Reglerverstärkung von $V_R = 10$ auf $V_R = 5$ reduziert, alle anderen Parameter bleiben unverändert. Dann erhält man die optimierte Regelung mit

 $\omega_{D} = 28,284 \text{ Hz}$ $\alpha_{R} = 38,117^{\circ}$ $\omega_{z} = 51,84 \text{ Hz}$ $\Delta_{R} = 2,605$

Die Regelung ist für Störgrößenänderungen bis zu einer Frequenz von $\omega = \omega_D = 28,284$ Hz geeignet und besitzt eine gute Phasen- und Amplitudenreserve (siehe Optimierungsvorschrift).

Als Hilfsmittel zur Regelkreisoptimierung ist das Bode-Diagramm besonders gut geeignet, da es sich aus den ausgedruckten Werten zeichnen läßt. Meist reicht eine Änderung der Reglerverstärkung jedoch aus, um die günstigsten Parameter zu erreichen.

In Fig. 6 ist ein Ausdruck dargestellt, wie er sich für eine Regelung aus PI-Regler und PT $_2$ -I-Strecke ergibt. Es ist T $_V$ = 0 zu setzen und für die Strecken-Namen K und P einzugeben. Nach Abfrage der einzelnen Parameter erhält man einen stabilen Regelkreis mit folgenden Werten:

 $\omega_{D} = 12,342 \text{ Hz}$ $\alpha_{R} = 23,042^{\circ}$ $\omega_{z} = 17,32 \text{ Hz}$ $A_{R} = 1,5$

Ist man bestrebt, die Regelung auf Sollwertänderungen zu optimieren, zeigt sich im Bode-Diagramm (**Fig. 7**), daß eine Verstärkungsänderung des Reglers nicht ausreicht, da der Phasenwinkelverlauf davon unberührt bleibt. Soll also eine Phasenreserve von $\alpha_R = 40^\circ \dots 60^\circ$ erreicht werden, muß zusätzlich die Nachstellzeit T_N des Reglers verändert werden.

Für die geänderten Parameter des Reglers ergibt sich eine stabile Regelung mit den optimierten Werten:

 $\omega_{D} = 3.076 \text{ Hz}$ $\alpha_{R} = 71,815^{\circ}$ $\omega_{z} = 19,747 \text{ Hz}$ $A_{B} = 6,499$

Die Phasenreserve beträgt zwar mehr als 60°, das kann jedoch nur von Vorteil sein. Allerdings hat sich bei der Optimierung eine verkleinerte Durchtrittsfrequenz ergeben. Dies ist immer dann der Fall, wenn die Verstärkung des Reglers reduziert wird.

Zusammenfassung

Das vorliegende Taschenrechner-Programm ist in der Lage Regelkreise optimal einzustellen, wenn die Parameter der Regelstrecke bekannt sind. Es ermittelt die zugehörigen Werte zur Darstellung des Bode-Diagramms und druckt die für eine Stabilitätsaussage wichtigen Werte $\omega_{\rm D}, \alpha_{\rm R}, \omega_{\rm z}$ und $A_{\rm R}$ aus. Haupteinsatzgebiet dürfte die Anwendung als Lernhilfe für Studenten der Regeltechnik sein.

Literatur

- [1] Orlowski, P. F.: Praktische Regeltechnik. München: Oldenbourg 1985
- [2] Martin, P.: Mathematische Verfahren der Regelungstechnik. Verfahren gezeigt mit dem HP 41. München: Oldenbourg 1984

01+LBL "BODE-SY"	43 AYIEN 44 ADV 84 ** 45 FIX 3 46 **VR=?** 47 PROMPT 48 STO 00 49 **TN/S=?** 50 PROMPT 51 STO 01 52 **TY/S=?** 53 PROMPT 54 STO 02 55 ADV	83+LBL 0 2
02 CF 00	44 ADY 84 -	
93 CF 91	45 FIX 3	85 AVIEW
04 CF 02	46 "VR=?"	86 1
05 CF 03	47 PROMPT	87 STO 10
06 CF 04	48 STO 00	88 1
97 CF 95	45 FIX 3 46 "VR=?" 47 PROMPT 48 STO 00 49 "TN/S=?" 50 PROMPT	89 STO 11
98 CF 96	50 PROMPT	90 1
09 CF 07	50 PROMPT 51 STO 01	91 STO 12
18 CF 88	52 "TY/S=?"	92 1
11 CF 89	53 PROMPT	93 STO 13
12 CF 10	54 STO 02	94 1
13 CF 11	54 STO 02 55 ADY	95 STO 14
14 *EIN PID-REGLER*	56 "STRECKPARAM."	96 1
15 AVIEW	56 "STRECKPARAM." 57 AVIEN 58 ADV	97 STO 15
16 "KANN MIT ZWEI"	58 ADV	98 1
15 AVIEN 16 "KANN MIT ZWEI" 17 AVIEN	59 "STRECKEN-NAME ?"	99 STO 16
		100 1
18 "STRECKEN MULTI-" 19 AVIEW	61 PROMPT	
20 PLIZ. WERDEN.	62 ASTO 03	
21 AVIEW	63 AOFF	103 STO 20
22 °K. I°	64 XEQ IND 03	104 0
23 AVIEW	65 -WEITERE STRECKE"	105 STO 21
24 °L. 12°	65 -WEITERE STRECKE- 66 AVIEW	106 0
24 "L. 12" 25 AVIEW 26 "M. PT1" 27 AVIEW	67 "GENUENSCHT ?" 68 AYIEN	107 STO 22
26 -M. PT1-	68 AVIEW	108 0
27 AVIEW	69 "WENN JA, TASTE1" 70 AYIEN 71 "WENN NEIN, 0"	109 STO 23
		110 0
29 AVIEW	71 "WENN NEIN, 0"	111 STO 24
30 °0. PT1-PT1-PT1"	70 HYLEM 71 "WENN NEIN, 0" 72 PROMPT 73 STO 04 74 RCL 04 75 X=0?	112 0
31 AYIEW	73 STO 04	113 STO 25
32 °P. PT2°	74 RCL 04	114 0
33 AVIEN	75 X=0?	115 STO 26
34 *Q. PT1-PT1-PT2*	76 GTO 02	116 0
35 AVIEW	77 "STRECKEN-HAME ?"	117 STO 27
36 "R. PTT"	78 AON	
37 AVIEW	79 PROMPT	118+LBL 01
38 ADV	80 ASTO 05	119 ADV
39	81 AOFF	120 "W/HZ=?"
40 RYIEN	82 XEQ IND 05	121 PROMPT
41 ADY		122 STO 06
42 "REGLER-PARAN."		123 RCL 06

Fig. 1 HP-41-CV-Taschenrechnerprogramm für das Bode-Diagramm

Fig. 1 (Fortsetzung)

124 1 E6 159+LBL 12	194 179	
	174 170	232 SQRT
124 1 E6 159+LBL 12 125 X<=Y? 160 FS? 03	195 STO 11	233 1/X
126 GTO -NULLST- 161 XEQ IND 57	196 -189	234 RCL 45
	197 STO 21	235 *
127+LBL 97 162+LBL 13	198 CTO 12	276 970 17
128 RCL 06 163 FS? 04		237 RCL 86
128 RCL 06 163 FS? 04 129 RCL 02 164 XEQ IND 58	199+LBL -MM-	238 RCL 46
170 +	200 RCL 44	239 *
131 RCL 06 165+LBL 14 132 RCL 01 166 FS? 05	201 PC) 06	240 ATAN
132 RCL 01 166 FS? 05	202 *	241 CHS
	203 Xt2	242 RCL 06
		243 RCL 47
135 - 168*LBL 13	285 +	244 *
134 1/X 168+LBL 15 135 - 169 FS? 06 136 Xt2 170 XEQ IHD 60	205 + 206 SQRT	245 ATAN
137 1 178 XEW IND 60	207 1/X	246 -
138 +	208 RCL 43	
139 SQRT 171 FC2 07	209 *	248 GTO 14
140 RCL 00 173 XEQ IND 61	210 STO 12	
141 * 173 XEW IND 61		249+LBL -00-
142 STO 97	211 RCL 44	250 RCL 06
174+LBL 17 175 FS? 08	212 RCL 06	251 RCL 49
143+LBL 18 176 XEQ IND 62	213 *	252 *
144 RCL 06 177 GTO 10	LA 3 (111111)	253 Xt2
145 RCL 02 178+181 -KK-	215 CHS 216 STO 22	254 1
146 * 179 RCI 49	216 510 22	255 +
146 * 179 RCL 40 147 RCL 06 180 RCL 06	217 GTO 13	256 RCL 06
148 KCL 81 181 *	218+LBL "NN"	
	219 RCI 86	258 *
149 * 182 1/X 150 1/X 183 STO 16 151 - 184 -90	219 RCL 86 228 RCL 46	259 X12
151 - 184 -90 152 ATAN 105 CTO 20	221 *	260 1
132 HINN 185 STO 28	222 X†2	261 +
153 STO 08 186 GTO 11	223 1	262 *
154 FS? 01	224 +	263 RCL 06
155 XEQ IND 55 1974181 -11 -	225 RCL 06	264 RCL 51
155 XEQ IND 55 187+LBL -LL-	226 RCL 47	265 *
126+FRF 11 186 but 45	227 *	266 XT2
157 FS? 02 190 *	228 X12	267 1
158 XEQ IND 56 191 RCL 06	228 X†2 229 1	268 +
192 Xt2	230 +	269 *
193 +	230 + 231 *	270 SQRT
.,,		

Fig. 1 (Fortsetzung)

271 1/X	310 SQRT 311 1/X 312 RCL 52 313 * 314 STO 15 315 RCL 06 316 RCL 53 317 * 318 X†2 319 CHS 320 1 321 + 322 1/X 323 2 324 * 325 RCL 54 326 * 327 RCL 06 328 * 329 RCL 53 330 * 331 ATAN 332 CHS 333 STO 25 334 RCL 25 335 X<0? 336 GTO 16 337 RCL 25 338 180 339 - 340 STO 25 341 GTO 16 342•LBL •QQ• 343 RCL 06 344 RCL 06 344 RCL 06 344 RCL 06 344 RCL 06	350 RCL 65	390 1/X
272 RCL 48	311 1/X	351 *	391 2
273 *	312 RCL 52	352 Xt2	392 *
274 STO 14	313 *	353 1	393 RCL 67
275 RCL 06	314 STO 15	354 +	394 *
276 RCL 49	315 RCL 0 6	355 *	395 RCL 06
277 *	316 RCL 53	356 SQRT	396 *
278 ATAN	317 *	357 1/X	397 RCL 66
279 CHS	318 X†2	358 RCL 63	398 *
280 RCL 06	319 CHS	359 *	399 ATAN
281 RCL 50	320 1	360 STO 16	400 CHS
282 *	321 +	361 RCL 06	401 STO 26
283 ATAN	322 1/X	362 RCL 66	402 RCL 26
284 -	323 2	363 *	403 X<0?
285 RCL 06	324 *	364 Xt2	404 GTO 08
286 RCL 51	325 RCL 54	365 CHS	405 RCL 26
287 *	326 *	366 1	406 180
288 ATAN	327 RCL 06	367 +	407 -
289 -	328 *	368 Xt2	408 STO 26
298 STO 24	329 RCL 53	369 RCL 06	
291 GTO 15	330 *	370 RCL 66	409+LBL 08
	331 ATAN	371 *	410 RCL 26
292+LBL -PP-	332 CHS	372 RCL 67	411 RCL 06
293 RCL 06	333 STO 25	373 *	412 RCL 64
294 RCL 53	334 RCL 25	374 Xt2	413 *
295 *	335 X<0?	375 4	414 ATAN
296 X12	336 GTO 16	376 *	415 -
297 CHS	337 RCL 25	377 +	416 RCL 06
298 1	338 180	378 SQRT	417 RCL 65
299 +	339 -	379 1/X	418 *
300 X12	340 STO 25	380 RCL 16	419 ATAN
301 RCL 06	341 GTO 16	381 *	420 -
302 RCL 53	342+LBL "QQ"	382 STO 16	421 STO 26
303 *	343 RCL 06	383 RCL 06	422 GTO 17
304 2	344 RCL 64	384 RCL 66	
305 *	345 *	385 *	423+LBL "RR"
306 RCL 54	346 Xt2	386 Xt2	424 RCL 68
307 *	347 1	387 CHS	425 STO 17
308 X12	348 +	388 1	426 RCL 69
309 +	349 RCL 06	389 +	427 RCL 86

Fig. 1 (Fortsetzung)

428 *	466+LBL "N" 467 SF 04 468 "YS=?"	504 STO 53	542+LBL 10
429 189	101 01 01	000 a	010 10: 10
430 *			
431 PI	469 PROMPT 470 STO 45	507 STO 54	545 RCL 07
432 /	470 STO 45	503 -PP-	546 RCL 18
433 CHS	470 510 45 471 "T11/S=?"	509 ASTO 60 510 RTN	547 *
434 STO 27	472 PROMPT	510 RTN	548 RCL 11
435 GTO 10	473 STO 46		549 *
	474 "T12/S=?" 475 PROMPT	511+LBL -Q-	550 RCL 12
436+LBL -K-	475 PROMPT	512 SF 0 7	551 *
	476 STO 47		
438 "TI/S=?"	477 "NH"	514 PROMPT	553 *
439 PROMPT	478 ASTO 58	515 STO 63	554 RCL 14
440 STO 40	479 RTN		555 *
441 "KK"		517 PROMPT	556 RCL 15
442 ASTO 55	480+LBL -0-	518 STO 64	
443 RTH	481 SF 05	519 *T12/S=?*	558 RCL 16
444+LBL -L-	400 ×UC-0*	JAN PRIIMPI	559 *
445 SF 02	483 PROMPT	521 STO 65	560 RCL 17
446 "TI1/S=?"	484 STO 48	522 "T2/S=?"	561 *
447 PROMPT	485 *T11/S=?* 486 PROMPT 487 STO 49	523 PROMPT	562 LOG
448 STO 41	486 PROMPT	524 STO 66	563 2 0
449 "TI2/S=?"	487 STO 49	525 *d=?*	564 *
450 PROMPT	488 "T12/S=?"	526 PROMPT	565 FS? 09
451 STO 42	489 PROMPT	527 STO 67	566 GTO 0 6
452 "LL"	490 STO 50	528 -QQ-	567 STO 70
453 ASTO 56	491 "T13/S=?"	529 ASTO 61	565 FS? 89 566 GTO 86 567 STO 78 568 */F8/ IN d8=*
454 KIN	492 PROMPT	530 KIN	569 ARCL 70
	493 STO 51 494 "00"		570 AYIEN
455+LBL "M"	494 -00-	531+LBL -R- 532 SF 08	571 FS? 00
	495 ASTO 59		572 GTO "AR"
457 "VS=?"	496 RTN	533 - VS=?-	
458 PROMPT		534 PROMPT 535 STO 68	573+LBL 09
459 STO 43	497*LBL *P*	535 STO 68 536 *TT/S=?*	574 RCL 08
	498 SF 06	536 *TT/S=?*	575 RCL 20
	499 "YS=?"		
462 STO 44	500 PROMPT	538 STO 69	577 RCL 21
463 "MM"	501 STO 52 502 "T2/S=?" 503 PROMPT	539 -RR-	578 +
464 ASTO 57	502 "T2/S=?"	540 ASTO 62	579 RCL 22
465 RTN	503 PROMPT	541 RTN	580 +

Fig. 1 (Fortsetzung)

581 RCL 23	619 RCL 39 620 X<0? 621 STOP 622 GTO B	655 PROMPT
582 +	620 X<0?	656 STO 31
583 RCL 24	621 STOP	657 "WD2/HZ=?"
584 +	622 GTO B	658 PROMPT
585 RCL 25		659 STO 32
586 ±	623+LBL "WZ"	660 GTO 38
587 RCL 26	624 RCL 34	
588 +	625 STO 06	661+LBL B
589 RCL 27	626 SF 10	662 "NZ"
598 ±	623+LBL *WZ* 624 RCL 34 625 STO 06 626 SF 10 627 CF 11 628 GTO 18	663 ASTO 33
591 STO 71	628 GTO 18	664 "NZ1/HZ=?"
592 FS? 10		665 PROMPT
593 GTO 19	629+LBL 19	666 STO 31
594 "PHI A/CRAN="	630 RCI 71	667 •W72/H7=?•
595 OPCI 71	629+LBL 19 630 RCL 71 631 179,99 632 + 633 STO 71 634 RTN 635+LBL "AR" 636 RCL 70 637 CHS	668 PROMPT
596 OVIEW	632 +	669 STO 32
597 FC2 11	633 STO 71	007 010 02
598 CTO *2P*	674 PTN	678+1 BL 38
599 FC2 19	034 KIN	671 RCL 31
577 3: 10 499 CTO *0P*	63541 RI "OR"	672 STO 34
COL CTO AK	636 PCI 79	673 XFQ IND 33
001 010 01	637 CHS	674 STO 35
COOMIDI «UN»	638 28	675 RCL 32
0024FDF WN	639 /	676 STO 34
003 KUL 34 (01 CTN 01	640 10	677 XFQ TND 33
607 310 00 605 CTO 07	641 X()Y	678 STO 36
605 410 81 60641 RI - 96	642 YtX	679 RCL 35
497 DTN	643 STO 38	680 *
001 KIN	636 RCL 70 637 CHS 638 20 639 / 640 10 641 X<7Y 642 YTX 643 STO 38 644 "AR="	681 X>0?
60841 Rt = = P*	645 ARCL 38 646 AYIEW 647 STOP	682 GTO 35
600 VLDL AK 600 PCI 71	646 OVIEW	
619 199	647 STOP	683+LBL 30
616 100 611 1	0.1. 0.0.	684 RCL 32
240 OTO 30	ZAGALDI WAIRLET	£05 011 17
612 =20/CD0J==	649 FIX 3	686 RCL 31
614 ODLI 20 013 av.avun-	649 FIX 3 650 "ND" 651 ASTO 33 652 SF 09 653+LBL A 654 "ND1/HZ=?"	687 -
CIT ANDL 37	651 9STO 33	688 RCL 36
616 CE AQ	652 SE 89	689 RCL 35
617 CF 11	653+1 BL A	690 -
011 Cf 11	454 -UN1/U7-2-	691 /

Fig. 1 (Fortsetzung)

692 RCL 36	714 RCL 34	733 CF 09
693 *	715 STO 32	734 SF 11
694 -	716 RCL 37	735 ADY
695 STO 34	717 STO 36	736 GTO 07
696 XEQ IND 33	718 GTO 30	737+LBL 40
697 STO 37	110 010 00	738 *WZ/HZ=*
698 X=0?	719+LBL 31	739 ARCL 34
699 GTO 34	720 2	740 AYIEW
700 ABS	721 ST/ 35	741 RCL 34
701 1 E-4	722 GTO 32	742 STO 06
702 X>Y?	723+LBL 34	743 CF 10
703 GTO 34	724 FS? 09	744 SF 00
704 RCL 37	725 GTO 39	745 ADV
705 RCL 36	725 GTO 39 726 GTO 40	746 GTO 97
706 *	720 610 48	110 010 01
707 X>0?	707.101.70	747+LBL 35
708 GTO 31	727+LBL 39	
709 RCL 32	728 "ND/HZ="	748 *KEINE HULLST.*
710 STO 31	729 ARCL 34	749 AYIEW
710 310 31 711 RCL 36	730 AVIEN	750 FS? 09
711 KCL 36 712 STO 35	731 RCL 34	751 GTO A
	732 STO 06	752 GTO B
713+LBL 32		753 END

```
Rechner-Status
SIZE 072
Unterprogramme:
LBL'BODE-SY
                LBL PP
                                 LBL'M
                                                 LBL'WD
                LBL'QQ
                                                 LBĹ'aR
LBL*KK
                                 LBL'H
                LBL'RR
                                                 LBL'WZ
                                 LBL'0
LBL'LL
                LBL'K
                                 LBL'P
                                                 LBL'AR
LBL'MM
                                                 LBL'NULLST
LBL'HH
                LBL'L
                                 LBL'Q
LBL'00
                                 LBL'R
Belegte Flags:
FS 00 - 11
Benutzte Speicher:
 ST0 00 - 08
               Parameter-Eingaben
 St0 10 - 17
               Werte für | FS |
 St0 20 - 27
              Werte für 95
 St0 30 - 37
               Nullstellenwerte
 St0 38 - 39
              Werte für A_R und \alpha_R
 St0 40 - 54
              Streckenparameter
 St0 63 - 69
 St0 70 - 71
               Werte für |F_0| und \varphi_0
AST0 55 - 62 Streckenprogramme
```

Fig. 2 Rechner-Status und belegte Speicher

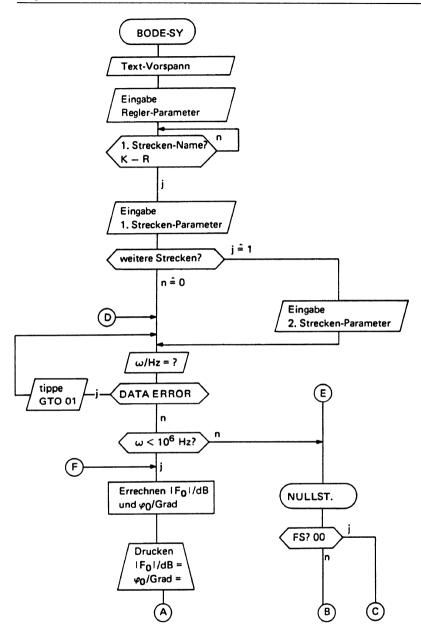
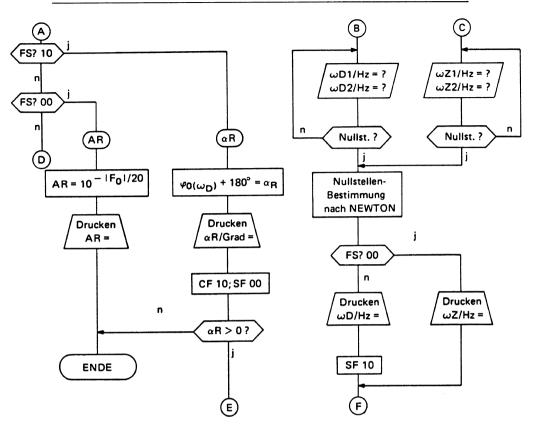
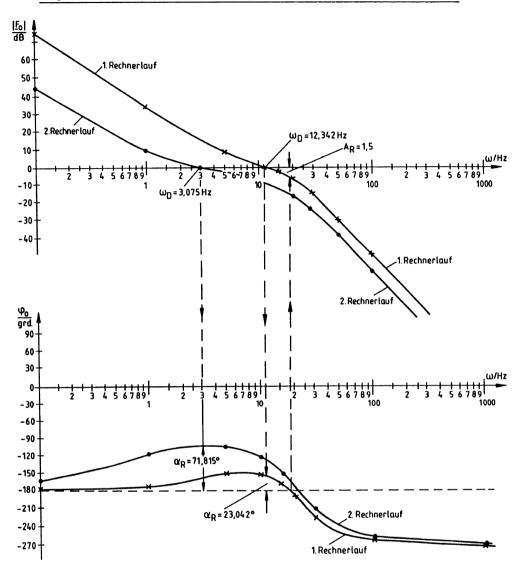


Fig. 3 Flußdiagramm des Bode-Programms




Fig. 3 (Fortsetzung)

XEQ "BODE-SY"		1,000	RUN
EIN PID-REGLER		STRECKEN-HAME ?	
KANN MIT ZWEI		R	RUN
STRECKEN MULTI-		¥\$=?	E
PLIZ. WERDEN.		1,000	RUN
K. I		TT/S=?	Bir
L. I2		0,020	RUN
M. PTI			
N. PTI-PTI		11717-0	
0. PT1-PT1-PT1		W/HZ=?	D. I
P. PT2		1,800	RU
Q. PT1-PT1-PT2		/F0/ IN dB=19,946	
R. PTT		PHI 0/GRAD=-9,146	
		N/HZ=?	
		18,000	RUH
REGLER-PARAM.		/F0/ IN dB=16,064	
		PHI 0/GRAD=-77,314	
VR=?			
19,988	RUN	W/HZ=?	
TN/S=?		20,000	RUN
1+50	RUN	/F0/ IN dB=10,170	
TV/S=?		PHI 0/GRAD=-120,04	3
0,010	RUH		
		N/HZ=?	
STRECKPARAN.		30,000	RUH
		/F0/ IN dB=5,255	
STRECKEN-NAME ?		PHI 0/GRAD=-145,55	3
N	RUN	11.4036	
VS=?	NVII	W/HZ=?	n
1,000	RUH	50,000	RUN
T11/S=?	KUII	/F0/ IN dB=-1,784	
0,100	RUH	PHI 0/GRAD=-177,61	9
T12/S=?	KUN	U .U3 A	
0,050	RUN	W/HZ=?	
WEITERE STRECKE	KON	78,000	RUN
		/F0/ IN dB=-6,480	
GENUENSCHT ? NENN JA, TASTE1		PHI 0/GRAD=-201,14	1

Fig. 4 Ausdruck der Parameter und Ergebnisse für eine Regelung aus PD-Regler und $PT_1-PT_1-PT_t$ -Strecke

Fig. 4 (Fortsetzung)

W/HZ=?	STRECKEN-NAME ?
100,000 RUN	N RUN
/F0/ IN dB=-11,183	V S=?
PHI 0/GRAD=-232,571	1,000 RUH
	T11/S=?
W/HZ=?	0,100 RUN
1+06 RUN	T12/S=?
WD1/HZ=?	8,050 RUN
30,000 RUN	WEITERE STRECKE
ND2/HZ=?	GENUENSCHT ?
50,000 RUN	WENN JA, TASTE1
WD/HZ=44,052	WENN NEIN, 0
	1,000 RUN
/F0/ IN d8=-9,499E-6	STRECKEN-NAME ?
PHI 0/GRAD=-169,498	R RUN
aR/GRAD=10,502	¥ S=?
dr. drib 10700E	1,000 RUN
WZ1/HZ=?	TI/S=?
50,000 RUN	0,020 RUN
WZ2/HZ=?	
60,000 RUN	
WZ/HZ=51,850	W/HZ=?
ME7/112-017/030	1+06 RUN
/F0/ IN dB=-2,296	WD1/HZ=?
AR=1,303	25,000 RUN
HK-17383	ND2/HZ=?
	30,000 RUN
•	WD/HZ=28,284
2. Rechnerlauf	AD-112-207207
	/F0/ IN d8=-2,000E-5
REGLER-PARAM.	PHI 0/GRAD=-141,883
115. 5	aR/GRAD=38,117
VR=?	
5,000 RUN	WZ1/HZ=?
TH/S=?	50,000 RUN
1+50 RUN	WZ2/HZ=?
TV/S=?	60,000 RUN
0,010 RUN	WZ/HZ=51,842
	MC/ NC-J1 / 042
STRECKPARAM.	/EQ / TU JO_ 0 745
	/F0/ IN dB=-8,315
	AR=2,605

Fig. 5 Bode-Diagramm des Regelkreises aus PD-Regler und $PT_1-PT_1-PT_1-PT_1$ -Strecke

1. Rechnerlauf		¥ S=?		
XEQ *BODE-SY*		T2/S=?	1.000	RUN
EIN PID-REGLER	22 01	12/3-:	0,050	RUH
KANN MIT ZWEI		d=?	0.000	
STRECKEN MULTI-			0,500	RUN
PLIZ. WERDEN.				
K. I				
L. I2		W/HZ=?		
M. PT1			9,100	RUH
N. PT1-PT1		/F8/ IN d		
0. PT1-PT1-PT1		PHI 0/GRA	D=-179,141	
P. PT2		W/HZ=?		
Q. PT1-PT1-PT2		M/114-:	5,000	RUN
R. PTT		/F0/ IN d		KUI
			D=-149,931	
		THE GOOD		
REGLER-PARAM.		W/HZ=?		
REGER TORRIT			10,000	RU
VR=?		/F0/ IN c		
10,008	RUH	PHI 0/GRA	D=-150,255	
TN/S=?		U 417 . A		
	RUH	W/HZ=?	12,000	RU
TY/S=?		/F0/ IN c		KUI
8,008	RUN		10-0,24) 10=-155,772	
ATOTAL BARAN		THE O' GRI	1007112	
STRECKPARAM.		W/HZ=?		
STRECKEN-NAME ?			15,000	RUI
K	RUN	/F0/ IN c	18=-1,837	
TI/S=?	Kon	PHI 0∕GRA	ND=-168,179	
1,000	RUN	,		
WEITERE STRECKE		W/HZ=?	00 000	5
GENUENSCHT ?		BATA FRA	20,000	RU
WENN JA, TASTE1		DATA ERRO		TA A4
MENN NEIN, 0			u	TO 01 Rui
1,000	RUN			KUI
STRECKEN-NAME ?				
P	RUN			

Fig. 6 Ausdruck der Parameter und Ergebnisse für eine Regelung aus PI-Regler und PT_2 -I-Strecke

Fig. 6 (Fortsetzung)

11 /117 - 0		2 D	
W/HZ=? 21,000	RUN	2. Rechnerlauf	
/F0/ IN d8=-6,670	KUN	REGLER-PARAN.	
PHI 0/GRAD=-198,968		VR=?	
W/HZ=?		3,000	RUH
39,000	RUN	TN/S=?	
/F0/ IH dB=-15,236		2,000	RUH
PHI 0/GRAD=-229,268		TY/S=?	
		0,008	RUH
N/HZ=?	B1111	STRECKPARAM.	
50,000 F0/ IN dB=-29,227	RUN	SIKEUK. TEHKHEL	
PHI 0/GRAD=-250,247		STRECKEN-NAME ?	
1111 0/ UKNU- 230) 241		K	RUH
W/HZ=?		TI/S=?	
100,000	RUN	1,000	RUN
/F0/ IN dB=-47,778		WEITERE STRECKE	
PHI 0/GRAD=-261,094		GENUENSCHT ?	
U /U7_1		WENN JA, TASTE1 WENN NEIN, 0	
W/HZ=? 1.000,000	DIIN	1,880	RUN
/F0/ IH dB=-107,957	KON	STRECKEN-NAME ?	KON
PHI 0/GRAD=-269,140		P	RUN
		VS=?	
N/HZ=?		1,000	RUH
1+96	RUN	T2/S=?	
WD1/HZ=? 12,000	RUH	0,050 d=?	RUN
WD2/HZ=?	KUN	u-? 0,500	RUH
15,000	RUN		Kon
WD/HZ=12,342		ND1/HZ=?	
		1,000	RUH
/F0/ IN dB=-4,875E-6	5	WD2/HZ=?	
PHI 0/GRAD=-156,958		5,000	RUH
aR/GRAD=23,042		ND/HZ=3,075	
WZ1/HZ=?		/50 / 10 /D_ / 3005 5	
15,000	RUN	/F0/ IN d8=-6,399E-5 PHI 0/GRAD=-108,185	
WZ2/HZ=?	KON	aR/GRAD=71,815	
21,000	RUN	G10.11-GUND.4ND	
WZ/HZ=17,321	•-	WZ1/HZ=?	
		15,000	RUN
/F0/ IN dR=-3,522		WZ2/HZ=?	
AR=1,500		21,000	RUN
·		WZ/HZ=19,747	
		/F0/ IN dB=-16,257	
		AR=6,499	

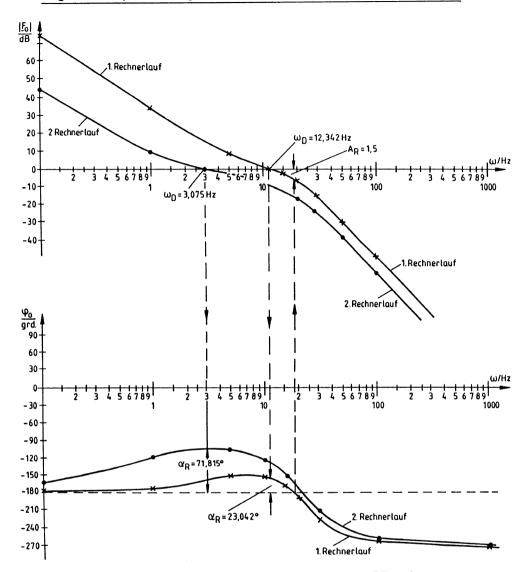
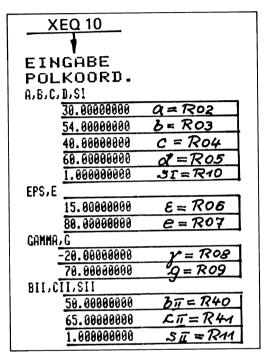


Fig. 7 Bode-Diagramm des Regelkreises aus PI-Regler und PT₂-I-Strecke

Polkonfigurationen in bewegten Systemen

Kurt Hain

Einleitung


In bewegten Systemen sind neben den Hauptbewegungen zusätzliche Relativbewegungen zu verzeichnen, die, wie in ungleichmäßig übersetzenden Getrieben, mit Erfolg für praktische Forderungen ausgenutzt werden können. Ein einfaches
Mittel, sämtliche Relativbewegungen darstellen zu können,
bieten die Geschwindigkeitspole als augenblickliche Drehpunkte eines Getriebegliedes relativ zu einem beliebigen anderen Gliede. Die Polkonfiguration erfaßt den Gesamtplan
der Pole, und hier soll auf nicht ausgenutzte Anwendungsmöglichkeiten und auch neuartige Mittel für eine höhere Getriebesynthese hingewiesen werden. Die Berechnungsgrundlagen werden für den Rechner HP-41CV zu Verfügung gestellt.

Die Lagenberechnungen

In Fig. 1 ist eine von zwei zwangsläufigen sechsgliedrigen kinematischen Ketten, die Stephensonsche Kette, dargestellt. Sie besteht aus den zwei ternären (dreigelenkigen) Gliedern 1 = d und 3 = b, sowie aus den vier binären (zweigelenkigen) Gliedern 2 = a, 4 = c, $5 = b_{11}$, $6 = c_{11}$. Zunächst ist es notwendig, diese Kette als Getriebe z.B. mit dem Glied 1 = d als Abszisse eines x-y-Achsenkreuzes mit A_0 als Ursprung und mit einem Winkel φ festzulegen.

Nach Tabelle 1 gelten in Übereinstimmung mit Fig. 1 die hier angegebenen Eingabewerte mit dem Abruf XEQ 10. Das Gesamtprogramm läuft dann nach Tabelle 2 mit dem Abruf XEQ 05.

Tabelle 1
Eingangswerte mit Speicherzurodnungen für das Getriebe
nach Fig. 1

Tabelle 2Polberechnungen für eine gegebene Getriebelage für das Getriebe nach Fig. 1

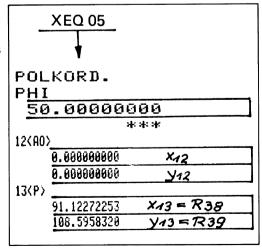


Tabelle 2 (Fortsetzung)

14(B0)	
60.0000000	
0.00000000	y14
15	
<u>81.0569857</u>	
-8.96993780	$y_{15} = R44$
16(G)	
<u>65.7784834</u>	
-23.9414100	3 Y16 = R19
23(A)	
19.2836282	X23 = R12
22.9813332	$y_{23} = R_{13}$
24(0)	
-57.5695481	X24= R38
0.00000000	"
25	
-15.26161484	×25= R47
1.68883263	
26	725-1148
-7.82432425	X26 = R49
2.84782113	
34(B)	<u> </u>
71.0200526	X34 = R14
38.4520277	
35(E))54-11.5
87.3864996	X35 = R16
64.95750412	
36	- 33-11
83.9330342	X36 = R45
70.9974864	
45	y 30 - 15 40
49.9265733	X45 = R51
4.29111799	
46	y+5-A32
58.3976381	7 VII 6- DED
6.63890480	
	y46=R54
56(F)	VEC - Poo
112.204535	
21.5516852	956 = R21

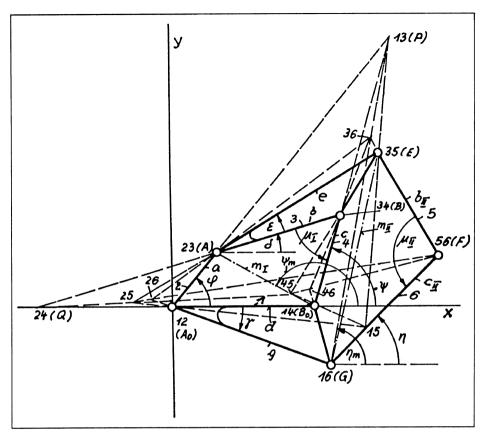


Fig. 1 Pollagen-Berechnungen in einem sechsgliedrigen zwangsläufigen Getriebe

Tabelle 3 Auflistung des Gesamt-Rechenprogrammes für Pollagen-Berechnungen

01+LBL -KH11-	11 -	21 RCL 03	31 CHS
02+LBL 01	12 R-P	22 Xt2	32 RCL 10
03 RCL 01	13 STO 32	23 -	33 *
04 RCL 02	14 X<>Y	24 2	34 RCL 33
05 P-R	15 STO 33	25 /	35 +
06 STO 12	16 RCL 32	26 RCL 32	36 STO 34
07 X<>Y	17 Xt2	27 /	37 RCL 04
08 STO 13	18 RCL 04	28 RCL 04	38 P-R
89 X <>Y	19 Xt2	29 /	39 RCL 05
10 RCL 05	20 +	30 ACOS	40 ÷

Tabelle 3 (Fortsetzung)

41 STO 14	82 / 83 - 84 / 85 STO 38 86 RCL 01 87 TAN 88 * 89 STO 39 90 RCL 17 91 RCL 19 92 - 93 RCL 16 94 RCL 18 95 - 96 R-P 97 STO 32 98 X(>Y 99 STO 33 100 RCL 32 101 X†2 102 RCL 41 103 X†2 104 + 105 RCL 40 106 X†2 107 - 108 2 107 - 108 2 107 / 118 RCL 32 111 / 112 RCL 41 113 / 114 ACOS 115 CHS 116 RCL 11 117 * 118 RCL 33 119 + 120 STO 42 121 RCL 41 122 P-R	123 RCL 18	163 -
42 X<>Y	83 -	124 +	164 /
43 STO 15	84 /	125 STO 20	165 STO 31
44 RCL 13	85 STO 38	126 X<>Y	166 RCL 22
45 -	86 RCL 01	127 RCL 19	167 -
46 RCL 14	87 TAN	128 +	168 RCL 30
47 RCL 12	88 *	129 STO 21	169 *
48 -	89 STO 39	130 RTN	178 RCL 23
49 P-P	90 RCL 17	131+LBL 92	171 + 5
59 X()Y	91 RCL 19	132 RCL 25	172 STO 39
51 910 35	92 -	133 RCL 23	173 RTN
52 RCI 96	93 RCL 16	134 -	
53 +	94 RCL 18	135 RCL 24	174+LBL 15
54 PCI 97	95 -	136 RCL 22	175 RCL 38
55 P-D	96 R-P	137 -	176 STO 22
56 PCL 12	97 STO 32	138 7	177 RCL 39
57 +	98 X<>Y	130 / 139 STN 30	178 STO 23
58 STO 16	99 STO 33	140 o i Ri 67	179 RCL 16
59 X/ \Y	100 RCL 32	141 RCL 29	180 STO 24
60 PCL 17	101 X†2	142 RCL 27	181 RCL 17
60 KGE 10	102 RCL 41	147 -	182 STO 25
62 STD 12	103 X†2	144 PCL 28	183 RCI 18
62 DCI 98	104 +	145 ROL 26	184 STO 26
64 RCI 99	105 RCL 40	146 -	185 RCL 19
65 P-R	106 Xt2	147 /	186 STO 27
66 STO 18	107 -	148 STO 31	187 RCL 20
67 X()Y	108 2	210 010 01	188 STO 28
68 STO 19	109 /	149+1RI 94	189 RCI 21
69 RCI 12	118 RCL 32	150 RCL 30	198 STO 29
79 RCL 13	111 /	151 RCL 22	191 XFD A2
71 RCL 35	112 RCL 41	152 *	i 92 RCL 31
72 TAN	113 /	153 PCI 31	193 STO 43
73 /	114 9008	154 RCI 26	194 RCI 38
74 -	115 CHS	155 ±	195 STO 44
75 STO 76	116 RCI 11	156 -	196 PTN
76 PCI 85	117 *	157 PCL 27	170 KIH
77 1	118 RCL 33	158 +	197#! RI 36
79 PCI A1	119 +	150 PCI 27	198 RCI 38
79 TON	120 STO 42	157 ROL 25	199 STN 22
89 80 74	121 RCI 41	161 Pri 70	200 pri zg
81 TON	122 P-R	162 RCL 30	200 RCE 37
V. 11111	• • • • • • • • • • • • • • • • • • • •	IAT WAT AT	201 310 23

Tabelle 3 (Fortsetzung)

202 RCL.18	241 STO 48	279 STO 27 280 RCL 16	318 PRA
203 STO 24	242 RTN	280 RCL 16	319 "PHI"
284 RCL 19		281 STO 28	320 PRA
205 STO 25	243+LBL 26	282 RCL 17	321 RUL 01
206 RCL 16	244 XEQ 36	281 STO 28 282 RCL 17 283 STO 29	322 PRX
206 RCL 16 207 STO 26 208 RCL 17	245 RCL 45	284 XEQ 02	323 CF 12
208 RCL 17	246 STO 28	283 STO 29 284 XEQ 62 285 RCL 31	324 "12 <ao>"</ao>
289 STO 27	247 RCL 46	286 STO 51	325 PRA
210 RCL 20	248 STO 29	287 RCL 30	326 0
211 STO 28	249 0	288 STO 52	326 0 327 PRX 328 0
212 RCL 21	249 0 250 STO 22	289 RTH	328 0
213 STO 29	251 STO 23		329 PRX
214 XEQ 02	252 RCL 18	290+LBL 46	
215 PCI 31	257 STO 24	291 XED 36	
216 STO 45	254 RCL 19	291 XEQ 36 292 RCL 45 293 STO 28	332 RCL 38
217 RCL 30	254 RCL 19 255 STO 25	293 STO 28	333 PRX
218 STO 46	256 RCL 12	204 001 47	774 00 70
219 RTH	257 STO 26	295 STO 29	335 PRX
217 KIII	258 RCL 13	294 KCL 46 295 STO 29 296 RCL 14	336 -14(B0)-
22841 BI 25	258 RCL 13 259 STO 27 260 XEQ 82 261 RCL 31	296 RCL 14 297 STO 26 298 RCL 15	337 PRA
221 XFD 15	269 XEQ 82	298 RCL 15	338 RCL 05
222 8	261 RCL 31	299 STO 27	339 PRX
227 970 22	262 STO 49	388 RCI 85	340 0
224 970 27	263 RCL 30	301 STO 22	341 PRX
225 PCI 43	264 STO 58	302 6	342 *15*
226 STO 24	265 RTN	303 STO 23	343 PRA
227 RCL 44		301 STO 22 302 0 303 STO 23 304 RCL 18	344 XEQ 15
228 STO 25	266+LBL 45	305 STO 24	345 RCL 43
229 RCL 12	266+LBL 45 267 XEQ 15	305 STO 24 306 RCL 19 307 STO 25	346 PRX
270 070 27	268 RCL 43	307 STO 25	347 RCL 44
231 RCL 13	269 STO 24	308 XEQ 02	348 PRX
232 STO 27	270 RCL 44	308 XEQ 02 309 RCL 31 310 STO 53 311 RCL 30	349 "16 <g>"</g>
233 RCL 16	271 STO 25	310 STO 53	350 PRA
234 STO 28	272 RCL 05	311 RCL 30	351 RCL 18
235 RCI 17	273 STO 22	311 RCL 30 312 STO 54 313 RTN	352 PRX
236 STO 29	274 0	313 RTH	353 RCL 19
237 XEQ 02	275 STO 23	314+LBL 05	354 PRX
238 RCL 31	276 RCL 14	315 XEQ 01	355 *23(A)*
239 STO 47	276 RCL 14 277 STO 26	315 XEQ 01 316 SF 12	356 PRA
248 RCL 38	278 RCL 15	317 "POLKORD."	357 RCL 12

Tabelle 3 (Fortsetzung)

358 PRX	399 PRX	438 RCL 05 439 PRX 440 RCL 10 441 PRX 442 "EPS,E" 443 PRA 444 RCL 06 445 PRX 446 RCL 07 447 PRX 448 "GAMMA,G" 449 PRA 450 RCL 08 451 PRX 452 RCL 09 453 PRX 454 "BII,CII,SII" 455 PRA 456 RCL 40 457 PRX 458 RCL 41 459 PRX 460 RCL 11 461 PRX 462 ADV 463 ADV 463 ADV 464 STOP 465 LBL 06 466 RCL 01 467 90 465 PR 471 STO 12 472 XC>Y 473 STO 13 474 STO 23 475 XC>Y 476 STO 22	477 RCL 01
359 RCL 13	400 "45"	439 PRX	478 TAN
360 PRX	401 PRA	440 RCL 10	479 STO 30
361 "24(0)"	402 XEQ 45	441 PRX	480 RCL 03
362 PRA	403 RCL 51	442 "EPS,E"	481 STO 26
363 RCL 36	404 PRX	443 PRA	482 0
364 PRX	405 RCL 52	444 RCL 06	483 STO 27
365 0	406 PRX	445 PRX	484 RCL 35
366 PRX	487 *46*	446 RCL 07	485 TAN
367 "25"	403 PRA	447 PRX	486 STO 31
368 PRA	409 XEQ 46	448 "GAMMA,G"	487 XEQ 04
369 XEQ 25	410 RCL 53	449 PRA	488 RCL 31
370 RCL 47	411 PRX	450 RCL 08	489 STO 14
371 PRX	412 RCL 54	451 PRX	490 RCL 30
372 RCL 48	413 PRX	452 RCL 09	491 STO 15
373 PRX	414 "56(F)"	453 PRX	492 0
374 "26"	415 PRA	454 "BIL,CIL,SII"	493 STO 22
375 PRA	416 RCL 20	455 PRA	494 STO 23
376 XEQ 26	417 PRX	456 RCL 40	495 RCL 01
377 RCL 49	418 RCL 21	457 PRX	496 99
378 PRX	419 PRX	458 RCL 41	497 -
379 RCL 50	420 ADY	459 PRX	498 TAN
380 PRX	421 ADV	460 RCL 11	499 STO 30
381 "34(B)"	422 STOP	461 PRX	500 RCL 14
382 PRA		462 ADV	501 STO 26
383 RCL 14	423+LBL 10	463 ADV	502 RCL 15
384 PRX	424 SF 12	464 STOP	503 STO 27
385 RCL 15	425 "EINGABE"		504 KCL 35
386 PRX	426 PRA	465♦LBL 06	505 90
387 *35(E)*	427 "POLKOORD."	466 RCL 81	506 -
388 PRA	428 PRA	467 98	507 TAN
389 RCL 16	429 CF 12	468 -	508 STO 31
390 PRX	430 "A.B.C.D.SI"	469 PCI A2	509 XEQ 04
391 RCL 17	431 PRA	470 P-D	510 RCL 31
392 PRX	432 RCL 02	471 CTN 12	511 STO 38
393 *36*	433 PRX	472 4724	512 RCL 30
394 PRA	434 RCL 03	477 STN 13	513 STO 39
395 XEQ 36	435 PRX	474 STO 23	514 RCL 01
396 RCL 45	436 RCL 04	475 X()Y	515 RCL 24
397 PRX	437 PRX	476 STO 22	516 +
398 RCL 46		TIV JIV LL	

Tabelle 3 (Fortsetzung)

517 RCL 11	556 STO 30	595 STO 27	635 STO 27 636 RCL 46 637 TAN 638 STO 31 639 XEQ 04 640 RCL 31 641 STO 53 642 RCL 30 643 STO 54 644 RTN 645*LBL 20 646 SF 12 647 "SCHUBGETR." 648 PRA 649 "POLKOORD." 650 PRA 651 "PHI" 652 PRA 653 RCL 01 654 PRX 655 CF 12 656 "12(AO)" 657 PRA 658 0 659 PRX 660 0 661 PRX 662 XEQ 06 661 PRX 662 XEQ 06 663 "13(P)" 664 PRA 665 RCL 38 666 PRX 667 RCL 39 668 PRX 669 "TAU 14" 670 PRA 671 RCL 35 672 90 673 + 674 PRX
518 +	557 RCL 14	596 RCL 01	636 RCL 46
519 STO 34	558 STO 26	597 RCL 24	637 TAN
520 RTN	559 RCL 15	598 ÷	638 STO 31
	560 STO 27	599 98	639 XEQ 04
521+LBL "15"	561 RCL 01	600 -	640 RCL 31
522 RCL 38	5 62 9 8	601 TAN	641 STO 53
523 STO 22	563 -	602 STO 31	642 RCL 30
524 RCL 39	564 TAN	603 XEQ 04	643 STO 54
525 STO 23	565 STO 31	604 RCL 31	644 RTN
526 RCL 01	566 XEQ 04	605 STO 51	
527 RCL 24	567 RCL 31	606 RCL 30	645+LBL 20
528 +	568 STO 36	607 STO 52	646 SF 12
529 98	569 RCL 30	608 RTH	647 "SCHUBGETR."
530 -	570 STO 37		648 PRA
531 TAN	571 RTN	609+LBL *36*	649 "POLKOORD."
532 STO 30		610 "TRU 36"	650 PRA
533 RCL 05	572+LBL *25*	611 PRA	651 "PHI"
534 STO 26	573 •TAU 25•	612 RCL 39	652 PRA
535 0	574 PRA	613 CHS	653 RCL 01
536 ST0 27	575 RCL 44	614 RCL 05	654 PRX
537 RCL 34	576 RCL 43	615 RCL 38	655 CF 12
538 90	577 /	616 -	656 *12(80)*
539 -	578 ATAN	617 /	657 PRA
540 TAN	579 STO 33	618 ATAN	658 0
541 STO 31	580 PRX	619 STO 46	659 PRX
542 XEQ 04	581 RTH	620 PRX	660 0
543 RCL 31		621 RTN	661 PRX
544 STO 43	582+LBL -45-	622+LBL "46"	662 XEQ 06
545 RCL 30	583 RCL 43	623 RCL 05	663 *13(P)*
546 STO 44	584 STO 22	624 STO 22	664 PRA
547 RTH	585 RCL 44	625 0	665 RCL 38
	586 STO 23	626 STO 23	666 PRX
548+LBL *24*	587 RCL 35	627 RCL 35	667 RCL 39
549 0	588 90	628 90	668 PRX
550 STO 22	589 -	629 -	669 •TAU 14•
551 STO 23	590 TAN	630 TAN	670 PRA
552 RCL 35	591 STO 30	631 STO 30	671 RCL 35
553 98	592 RCL 14	632 RCL 14	672 90
554 -	593 STO 26	633 STO 26	673 +
555 TAN	594 RCL 15	634 RCL 15	674 PRX

Tabelle 3 (Fortsetzung)

675 *15*	699 RCL 37		
676 PRA	700 PRX		748 "SCHUBGETR.
	701 XEQ *25		749 PRA
	702 "TAU 26"		750 CF 12
679 PRX	703 PRA	727 PRX	751 *D.V.K.DELTA
680 RCL 44	764 6	728 "TAU 46"	752 PRA
681 PRX	705 PRX	729 PRA	753 RCL 05
682 -16-	706 "34 "	730 XEQ "46"	754 PRX
683 PRA	707 PRA	731 RCL 53	755 RCL 02
684 RCL 95	708 RCL 14	732 PRX	756 PRX
685 PRX	709 PRX	733 RCL 54	757 RCL 03
	710 RCL 15	734 PRX	758 PRX
	711 PRX	735 *TAU 56*	759 RCL 35
688 *T9U 23*	712 "TAU 35"	736 PRA	760 PRX
689 PRA	713 PRA	737 RCL 34	761 "BETA, MUE-II"
690 RCL 01	714 RCL 01	738 90	762 PRA
	715 RCL 24		763 RCL 24
	716 +	740 PRX	764 PRX
	717 98	741 ADV	765 RCL 11
	718 +	742 ADV	766 PRX
695 PRO	719 PRX	743 STOP	767 ADV
696 XEQ *24*	720 XEQ *36*	744+LBL 18	768 ADV
697 RCL 36	721 "45"	745 SF 12	769 STOP
698 PRX	722 PRA	746 "EINGABE"	770 .END.

Aus der Programmauflistung, **Tabelle 3**, ist zu erkennen, daß im Label 05 zunächst Label 01 (XEQ 01) abgerufen wird, und dieses dient zur Lagenberechnung. Es werden mit φ die Koordinaten von A, mit der Diagonalen m_I deren Länge und deren Winkel $\Psi_{\mathbf{m}}$ berechnet. Nun muß $\stackrel{\checkmark}{+}$ AB₀B mit $^{\pm}$ Vorzeichen zu $\Psi_{\mathbf{m}}$ addiert werden: wenn $0 < \mu_{\mathbf{I}} < 180^{\circ}$ positiv, ist der Lagenwert + s_I einzusetzen. Nun findet man Ψ . Mit dem berechenbaren Winkel δ und den gegebenen Werten ϵ und e lassen sich die Koordinaten von E berechnen und mit γ und g diejenigen von G. Hinsichtlich der Diagonalen m_{II} = GE ist

bei positivem Winkel $0 < \mu_{\rm I} < 180^{\circ}$ der Lagenwert $\rm s_{II}$ das Winkel-Vorzeichen, so daß sich die Winkel $\eta_{\rm m}$, η und die Koordinaten von F berechnen lassen, womit nunmehr der gesamte Lagenplan mit den Koordinaten der sieben Gelenke $\rm A_0$, $\rm B_0$, $\rm A$, $\rm B$, E, G, F, bekannt sind.

Unterprogramm "Schnittpunkt zweier Geraden"

Im folgenden Gesamtprogramm ist immer wieder der Schnittpunkt zweier Geraden zu berechnen. Im ersten Fall sind diese Geraden durch je zwei Punkte R und S, sowie T und U, im zweiten Falle durch je zwei Punkte R und S, einen Punkt T und eine Steigungs-Tangente m₁, und im dritten Falle durch je einen Punkt R und U und die Steigungs-Tangenten m₁ und m₂ gegeben. Deshalb gilt Label 02 für den ersten, Label 03 den den zweiten und Label 04 für den dritten Fall, Tabelle 3. Diese "Labels" gehen in der angeführten Reihenfolge nahtlos ineinander über.

Die Pollagen

Jedes sechsgliedrige, zwangläufige Getriebe hat 15 Pole, hier die sieben Gelenke als reelle und die restlichen acht als ideelle Pole. Es gibt für diesen Fall 20 Polgerade, auf jeder liegen i. allg. je 3 der 15 Pole, und damit gehen durch jeden Pol 4 Polgerade. Die noch unbekannten ideellen Pole können in bestimmter Reihenfolge durch die Schnittpunkte je zweier Polgeraden gefunden werden. Hier zunächst die Zusammenstellung der 15 Pole:

- Die Pole nullter Ordnung (z. B. 12/0) sind die Gelenke, die im Lageplan sofort zur Verfügung stehen, sie sind mit 12/0-14/0 usw. gekennzeichnet.
- Die Pole erster Ordnung k\u00f6nnen im Gelenkviereck als Schnittpunkte je zweier Gelenke gefunden werden. Es sind:

13/1 (P)	24/1 (Q)
12/0 — 23/0	12/0 — 14/0
14/0 - 34/0	23/0 - 34/0

3. Die Pole zweiter Ordnung brauchen außer den Polen nullter Ordnung noch je einen Pol erster Ordnung. Es sind:

15/2	36/2
13/1 - 35/0	13/1 - 16/0
16/0 — 56/0	35/0 - 56/0

4. Die Pole dritter Ordnung brauchen außer den Polen nullter Ordnung noch je einen Pol zweiter Ordnung. Es sind:

25/3 26/3		45/3	46/3	
12/0 — 15/2	12/0 — 16/0	14/0 — 15/2	14/0 — 16/0	
23/0 - 35/0	23/0 - 36/2	34/0 - 35/0	34/0 - 36/2	

In dieser Reihenfolge erhalten die Pole 2. und 3. Ordnung (0. und 1. Ordnung sind bereits im Lageplan gefunden worden) die nach ihren Ziffern benannten Unterprogramme, so daß sie sämtlich im Führungs-Label 05 abgerufen werden können. In Fig. 1 sind sämtliche 15 Pole mit ihren Polgeraden aufgezeichnet worden.

Das Zusammenfallen von Polen

Über Polkonfigurationen i. allg. liegt eine große Zahl von Untersuchungen vor, aber es sind nur Ansätze zu erkennen, welche Folgen und insbesondere Vorzüge ein Zusammenfallen

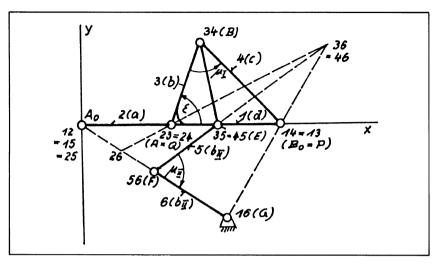


Fig. 2 Pollagen-Berechnung in einem sechsgliedrigen zwangsläufigen Getriebe mit dem mehrfachen Zusammenfallen einiger Polgruppen

von Polen haben kann. Es ist bekannt, daß jede Umkehrlage eines Getriebegliedes, d. h. jede Null-Geschwindigkeitslage das Zusammenfallen der beiden anderen Pole auf der Polgeraden voraussetzt. Zum anderen ist es auch möglich, daß drei Pole in einem Punkt zusammenfallen, daß hier also eine Polgerade in einen Punkt entartet ist! Dies könnte z. B. mehr als bisher bei Untersuchungen an mehrgliedrigen Umlaufräder-Getrieben zu einer besseren Übersicht führen.

In Fig. 2 sind gleichzeitig zwei dieser Sonderfälle angezeigt. Wenn das Glied 6 (b_{II}) durch den Pol 12 (A_0) geht, fallen in A_0 die Pole 12 = 15 = 25 zusammen. Liegt das Gelenk 35 (E) auf der Polgeraden 14–15, so muß 35 mit 45 zusammenfallen. Der dritte zugehörige Pol 34 (Paarung der ungleichen Ziffern von 35 und 45) muß dann eine Umkehrlage in 34, also zwischen den beiden Gliedern 3 und 4 verursachen. Da der Pol 34, wie jeder andere Pol, auf vier Polgeraden liegen muß, gehören zu 34 noch die Pol-Paarungen 13 = 14, 23 = 24, 36 = 46.

In Tabelle 4 und Tabelle 5 sind mit den Eingabewerten XEQ 10 im Pol-Programm mit XEQ 05 die Pollagen von Fig. 2 mit für den allgemeinen Fall, Fig. 1, gültigen Programm berechnet worden.

Tabelle 4 Eingangswerte für das Getriebe nach Fig. 2 mit Pol-Koinzidenzen

XEQ 10	EPS,E
-	-70.45500000
	20.00000000
EINGABE	GAMMA.G
POLKOORD.	-32.50000000
A,B,C,D,SI	72.00000000
38.00000000	BII,CII,SII
36.00000000	33.73400006
48.00000090	36.0000000
84.00000000	-1.000000000
1.00000000	

Tabelle 5 Polberechnungen für die Getriebelage mit Polkoinzidenzen des Getriebes nach Fig. 2

XEQ 05	16 <g></g>	34(6)
	60.72418410	50.04347825
Ī	-38.68557180	33.92572226
POLKORD.	23(A)	35(E)
PHI	38.00000000	58.00000000
0.000000000	0.000000000	0.000128240
***	24(Q)	36
12<00>	38.00000000	102.9117030
0.00000000	0.00000000	31,43219758
0.00000000	25	45
13(P)	-0.000303349	58.00000002
84.00000000	-0.000243658	0.000128240
9.889989999	26	46
14(80)	16.41018187	102.9117030
	-10.45443884	31.43219758
84.00000000		
0.000000000		56(F)
15		30.36226038
0.000515808		-19.34252168
0.000414311		

Da, wie bereits erwähnt, mit dem Zusammenfallen von Polen (Pol-Koinzidenz) bemerkenswerte Vorzüge entstehen können [1], muß das Fehlen grundlegender Untersuchungen über Koinzidenzen dieser Art, insbesondere für vielgliedrige Getriebe, als empfindliche Lücke vermerkt werden.

Getriebe mit Schubgelenken

Unter Berücksichtigung der Grüblerschen Restriktionen [2] lassen sich Drehgelenke durch Schubgelenke ersetzen, und solche Schubgelenke führen gegenüber Drehgelenken nicht nur zu einfacheren mathematischen Zusammenhängen, sie ermöglichen auch Bewegungsgesetze mit mathematischer Genauigkeit, die mit reinen Drehgelenk-Getrieben nicht bzw. nur mit Annäherungen möglich sind, kinematisch darzustellen.

Wenn z.B. auf einer Polgeraden zwei Drehpole und ein Schubpol liegen, so müssen die Winkelgeschwindigkeiten der beiden Drehpole gleich groß sein! Bei zwei Schubpolen muß der dritte ebenfalls ein Schubpol sein. Die gleich großen Winkelgeschwindigkeiten ermöglichen die Wirkung der Oldham-Kupplung und anderer wellenbeweglicher Kupplungssysteme [3], auch bei Parallel-Wellenverschiebungen ein konstant bleibendes Übersetzungsverhältnis zu garantieren. Damit sind auch verstellbare Hubbewegungen mit gleichbleibender Bewegungs-Charakteristik durchführbar [4]. Mit Schubgelenkgetrieben können geometrische Kurven auch höheren Grades genau erzeugt werden [5], und es könnten mannigfaltige neue Erkenntnisse gewonnen werden, wenn der Großteil solcher Getriebe in Computer-Programmen festgehalten würde. Es gibt insgesamt 78 sechsgliedrige kinematische Ketten mit verschiedenartiger Verteilung der Schubgelenke. Aus der hier behandelten Stephensonschen Kette entstehen 26 Bauformen, davon 3 mit einem, 8 mit zwei, 10 mit drei und 5 mit 4 Schubgelenken [6]. Eine der letzteren, mit 4 Schubgelenken, ist in Fig. 3 dargestellt.

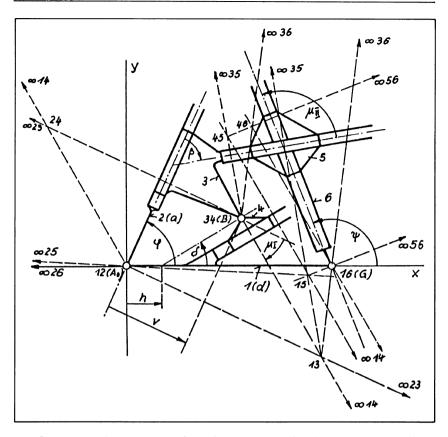


Fig. 3 Pollagen-Berechnung in einem sechsgliedrigen zwangsläufigen Getriebe mit vier Schubgelenken

Im "Gestell" 1 (d) sind zwei Drehgelenke 12 (A_0) und 16 (G) und ein Schubgelenk 14 angeordnet, und dieses ist durch die Geradschub-Bewegung δ und h des Drehgelenkes 34 (B) festgelegt. Das zweite Schubgelenk 23 definiert die Lage des Schleifenhebels 2 (a) mit der Versetzung des Schubgliedes 3, wobei der Winkel β die Neigung der beiden Schubführungen des Gliedes 3 kennzeichnet. Schließlich gibt es noch den Doppelschieber 5, dessen Kreuzungswinkel $\mu_{\rm II}$ das alleinige Maß dieses Getriebe-Gliedes ausmacht. Schubglied 3 und der in 16 (G) gelagerte Schleifenhebel 6 sind durch Kreuzschieber 5 "gelenkig" miteinander verbunden.

Tabelle 6 Eingangswerte mit Speicherzuordnungen für das Getriebe nach Fig. 3 mit vier Schubgelenken

XEQ 18	
EINGABE	
SCHUBGETR. D.Y.H.DELTA	
90.00000000	d = R05
37.00000000	V ≈ 1202
15.66000600	h= R03
30.0000000	of= 1235
BETA, MUE-II	
-56.00000000	B= R24
101.0000000	UI = RM
	•

Für jedes Schubgelenk gibt es den im Unendlichen liegenden Pol, senkrecht zur Schubrichtung, und mit diesen Richtstrahlen, durch die zugehörigen Drehgelenke gehend, lassen sich nun sämtliche noch fehlenden Pole der insgesamt 15 möglichen bestimmen. Nach **Tabelle 6** werden mit XEQ 18 die Eingabewerte abgerufen.

Zuerst muß aber das Getriebe in die dem gegebenen φ -Winkel zugeordnete Lage gebracht werden. Im Schleifenhebel 2 (a) wird bei gegebenem φ der Schieber 3 so lange verschoben, bis sein Gelenkpunkt 34 (B) die mit δ und h vorgegebene Geradbahn schneidet. Damit erhält der Kreuzschieber 5 relativ zu 3 eine eindeutige Lage, wenn mit μ_{II} die Parallele durch 16 (G) gezogen wird, womit auch die Lage von 6 durch Ψ bestimmt ist. Diese einfache geometrische Konstruktion wird im Hauptprogramm, XEQ 20 (vgl. Tabelle 3) nach Label 06 (XEQ 06) weitergeleitet und dort rechnerisch nachvollzogen, wobei die Pole 34 und 13 anfallen, der letztere als Schnittpunkt der Senkrechten in 12 zur Führung 2 mit der Senkrechten in 34 zur δ-Führung. In Tabelle 7 sind nun nach Eingabe $\varphi = R_{01}$ sämtliche 15 Pole in ihrer numerischen Reihenfolge aufgelistet. Den Einzelpolen ist je ein Unterprogramm mit der zugehörigen Nummer, hier im α-Modus, gewidmet,

 $\begin{tabular}{ll} \textbf{Tabelle 7} & \textbf{Polberechnungen} & \textbf{für} & \textbf{eine} & \textbf{gegebene} & \textbf{Getriebelage} \\ \textbf{für das Getriebe nach Fig. 3} & \end{tabular}$

XEQ 20	
1	•
SCHUBGETR.	
POLKOORD.	
PHI	
65.000000	100 4=R01
	: *: *
12(A0)	•
0.000000000	X12
0.000000000	Y12
13(P)	
85.00369352	$X_{13} = R_{38}$
-39.63787326	Y13 = 739
TAU 14	J-10 - 11.57
120.0000000	7.14
15	<u> </u>
79.34018014	X15 = R43
-3.879857880	Y15 = R44
16	J'IJ 'YTT
98.00000000	X16=R05
9.00000000	Y16
TAU 23	946
155.0000000	T23
24	
-34.66462596	X24=R36
60.04089346	Y24=R37
TAU 25	
-2.799621703	T25 = R33
TAU 26	
0.000000000	T26
34(B)	
50.33906754	X34 = R14
20.40302015	Y34 = R15
TAU 35	
99.00000000	T35
TAU 36	
82.81582381	T36=R46
45	
44.67555416	X45 = R51
56.16103636	y45 = R52
46	<u></u>
55.33537402	X46 = R53
60.04039344	Y46 = R54
TAU 56	7.0
20.00000000	756
20.000000	

das entweder allein für sich oder auch in der Zusammenfassung nach Tabelle 7 abgerufen werden kann. Diese "Labels" sind in Tabelle 3 aufgelistet. Für einige Pole mit Winkelwerten können im Label 20 aus den Eingabewinkeln unmittelbar die zugehörigen Winkelwerte untergebracht werden. Nach Tabelle 7 und Fig. 3 ist für die gewählte Struktur festzustellen, daß es 8 Drehpole und 7 Schubpole (diese durch " τ " gekennzeichnet) gibt. Der Relativpol 26 für die Bewegungen von 2 und 6 liegt auf der Geraden 1 im Unendlichen, d. h. jeder Winkeländerung von $\Delta \varphi$ entspricht die gleich große und gleich gerichtete Winkeländerung $\Delta\Psi$! Dies trifft aber für sämtliche Drehpole untereinander zu. Dies bedetuet nunmehr, daß dieses Getriebe mit 4 Schubgelenken und drei Drehgelenken hinsichtlich sämtlicher Drehbewegungen genau gleichförmige Übertragungen erzeugt. Ungleichförmige Übertragungen, die dieses Getriebe immer noch als ungleichförmig übersetzend herausstellen, treten dafür lediglich als Relativ-Schubbewegungen auf [7].

Schlußbetrachtung

An willkürlich herausgegriffenen Getriebebeispielen sollte auf die besondere Bedeutung der *Pole* hingewiesen werden, insbesondere sollte aber kenntlich gemacht werden, daß hier bei der beachtlich großen Zahl der Getriebestrukturen noch viele Fragen offen sind. Die vorhandene Erkenntnislücke erscheint noch wesentlich größer, wenn der Übergang zu den achtgliedrigen, zwangläufigen Getrieben [8] zu vollziehen ist oder Getriebe mit höherem Freiheitsgrad einbezogen werden sollen [9].

Aus der Vor-Computerzeit liegen noch bemerkenswerte Untersuchungen vor, die der Tatsache gerecht zu werden versuchten, daß die Polbahnen, d. i. der geometrische Ort der aufeinander folgenden Pollagen, durch ihr Abrollen aufeinander die Relativbewegungen eines bewegten Systems in

klarer Weise offenlegen. Es ist deshalb eine verheißungsvolle Aufgabe, die Anwendung der Umkehrung zu versuchen [10], nämlich aus den gegebenen Polbahnen die Getriebedimensionen für gegebene praktische Bedingungen zu bestimmen.

Literatur

- [1] Hain, K.: Entwerfen von Gelenkgetrieben mit gegebenem Verlauf des Übersetzungsverhältnisses. Maschinenmarkt 83 (1977), Nr. 35 S. 694/697
- [2] Grübler, M.: Getriebelehre. Berlin: Springer 1917
- [3] Duditza, R.: Querbewegliche Kupplungen. Strukturelle und kinematische Systematisierung. Antriebstechnik 10 (1971), H. 1., S. 409/419
- [4] Hain, K.: Die Oldham-Kupplung als wandlungsfähiges Getriebe. Konstruktion 34 (1982), H. 7, S. 265/270
- [5] Artobolevskii, I.: Mechanisms for the Generation of Plane Curves. Oxford, London, Edinbourgh, New York, Paris, Frankfurt: Pergamon 1964
- [6] Hain, K.: Systematik sechsgliedriger kineamtischer Ketten. Maschinenmarkt 74 (1968), Nr. 38, S. 717/ 723
- [7] Hain, K.: Bewegungen in sechsgliedrigen Getrieben. Verteilung von Umlauf-, Schwing- und Schubbewegungen. Maschinenmarkt 75 (1969), Nr. 11, S. 170/177
- [8] Hain, K. und A.-W. Zielstorff: Die zwangläufigen, achtgliedrigen Getriebe mit Einfach- und Mehrfachgelenken. Maschinenmarkt 70 (1984), Nr. 64, S. 12/18
- [9] Hain, K.: Die Polbestimmung in Getrieben mit zwei Freiheitsgraden bei beliebiger Verteilung der Antriebsbewegungen. Forsch. Ing.-Wes. 41 (1975), Nr. 2, S. 51/62
- [10] Sieker, K.-H.: Ermittlung von Gelenkvierecken aus den Krümmungshalbmessern der Polbahnen und deren Änderungen. Technik 3 (1948), S. 170/174

VIEWEG PROGRAMMBIBLIOTHEK Mikrocomputer

Die Bände der Programmbibliothek enthalten ausgetestete Programme zu jeweils einem ausgewählten Themenschwerpunkt oder für einen aktuellen Mikrocomputer. Dabei wird der jeweilige Entwicklungsstand der Rechnertechnik berücksichtigt.

Die Programme sind, ausgehend von einer konkreten Aufgabenstellung, in der Regel in ihrem Ablauf beschrieben und durch ausgeführte Beispiele ergänzt. Wenn es nötig scheint, sind auch theoretische Grundlagen für die Programmierung erläutert.

Durch die graphischen, tabellarischen oder in Textform gegebenen Ablaufbeschreibungen wird die Übertragbarkeit auf andere Rechnertypen erleichtert, so daß die wirtschaftliche Nutzung der einzelnen Bände möglich ist. An Hand gleichartiger Aufgabenstellungen wird fallweise auch die unterschiedliche Arbeitsweise verschiedener Rechnertypen aufgezeigt.

Der Herausgeber bemüht sich ständig um eine sorgfältige Auswahl und Begutachtung der eingesandten Programme. Trotzdem kann keine Gewährleistung für vollständige Fehlerfreiheit übernommen werden. Programme zeigen ja oft erst nach vielen Testläufen mit wechselnden Parametern und Grenzbedingungen logische Fehlreaktionen und Sackgassen.

Für die Fälle, die zu Anregungen oder Kritik führen, sind in jedem Band die Anschriften der einzelnen Autoren angegeben. Wir erhoffen uns dadurch einen regen Gedankenaustausch zwischen Autoren und Benutzern der Programmbibliothek, der sich für beide Seiten als nützlich erweisen dürfte.