TOMSROM 1

A SURVEYING MODULE
FOR THE HP-41 WITH EXTENDED FUNCTIONS / MEMORY

MANUAL

By Thomas A. Bruns, L.S.

TOMSROM 1

A SURVEYING MODULE

FOR THE HP-41 WITH EXTENDED FUNCTIONS / MEMORY

MANUAL

By Thomas A. Bruns, L.S.
P. O. Box 3692

Santa Rosa, CA 95402

Copyright 1986

All rights reserved. This manual and accompanying module may not be reproduced, either in whole or in part, without the written consent of the author.

The material in this manual and module is supplied without representation or warranty of any kind. The author assumes no responsibility and shall have no liability, consequential or otherwise, arising from the use of any material contained in this manual and module.

TABLE OF CONTENTS

A Word About 1
Functions 3
Coordinate Management 7
Driver Programs
Coordinate Geometry 20
Traverse with Compass Rule Adjust 33
Coordinate Transformation 44
Successive Points and Radial Stakeout 51
Intersections 56
Subroutines 64

A WORD ABOUT ...

This module requires extended functions/memory to operate properly.

CAUTION

Always turn the HP-41 off before inserting or removing any plug-in extentions or accessories. Failure to turn the HP-41 off could damage both the calculator and the accessory.

KEY NOTATION

KEYS	DESCRIPTION
[SHIFT]	The gold key on the calculator.
$\begin{aligned} & {[\mathrm{CHS}]} \\ & {[\mathrm{FIX}]} \end{aligned}$	A keyboard function. A shifted keyboard function.
[HMS+]or [INV]	A non-keyboard function. To execute it, press [XEQ] [ALPHA] HMS + [ALPHA]. Optionally, you can assign functions to a User key. Shifted Alpha-keyboard characters are shown on the back of the calculator.
$\begin{aligned} & {[\mathrm{A}]} \\ & {[\mathrm{b}]} \end{aligned}$	A local Alpha label. Keys A-J. A shifted local Alpha label. Keys a-e.
[XEQ] CDM or CDM	A global label. To execute it, press [XEQ][ALPHA] CDM [ALPHA]. Optionally, you can assign global labels to a User key. Shitted Alpha-keyboard characters are shown on the back of the calculator.

KEY ASSIGNMENTS

The module makes no key assignments. Do not assign programs and functions to the local Alpha labels, that is keys A-E, H-J, and a-e. I would advise assigning [$\mathrm{X}<>\mathrm{Y}$] to its own key, it will work faster.

SIZE

When necessary the programs in this module check for, and if necessary set, a minimum size of 19 registers.

STACK

When a program prompts for data input try not to disturb the stack as it may contain temporary data.

TONES

If you do not wish the calculator to emit any tones or beeps clear flag 26 at turn on.

CONFLICTS WITH OTHER ROMS AND PROGRAMS

This module uses the XROM number 06, this conficts with the HP circuits pac. Functions and global labels used in this module:

TOMSROM 1	'\%
HMS*	'?
HMS/	'
HS	'日?
R*P	${ }^{*}+{ }^{\text {c }}$
F-M	MZ
H-F	'P1
$p \neq$ R	'P2
CLXM	${ }^{1} \mathrm{E}$ ¢
2 N	${ }^{\prime}$
'8-9	'MFL
' A - $\mathrm{B}^{\text {a }}$	${ }^{\text {'CDM }}$
INY	'Sc
'P?	'Rc
'FL?	'TCH
${ }^{\text {THG }}$	'CG
'12	'ee
' ? $^{\text {? }}$	'Hd
TM1	'CRT
'M3	'CIC
'?Y	'SSP
'EA	'RSO
${ }^{\top} \uparrow$	'INTS

FUNCTIONS

The new functions in this module are programmable and will consume two bytes of program memory when used in a program. You may wish to assign some functions to a User key.

[INV] INVerse

This function does an inverse from the coordinates contained in the stack. The function also sets the degree mode.
... from this ...
T N1
Z E1
Y N2
X E2
... to this.
T Δ departures
Z Δ latitudes
Y Az1-2
X Distance 1-2

Example:

\mathbf{T}	100.0000		\mathbf{T}	100.0000
\mathbf{Z}	200.0000		\mathbf{Z}	50.0000
\mathbf{Y}	150.0000		\mathbf{Y}	63.2606
\mathbf{X}	300.0000	[INV]	\mathbf{X}	111.8034

INPUT	KEYS	DISPLAY	COMMENTS
100	$[E N T E R]$	100.0000	Begin
200	$[E N T E R]$	200.0000	
150	$[E N T E R]$	150.0000	distance, review stack
300	$[$ INV]	111.8034	azimuth
	$[R D N]$	63.2606	Dlatitudes
	$[R D N]$	50.0000	Δ departures, end of example.

[HMS*] Hours, Minutes, and Seconds multiply.
[HMS/] Hours, Minutes, and Seconds divide.
These functions are used to multiply and divide time and angles specified in the H.MS format by a number in the X -register. The function also sets the degree mode.
... from this ...
T 0.0000
[HMS*] or [HMS/]
... to this.
T 0.0000
z 0.0000
Y 0.0000
\mathbf{X} angle \mathbf{x} \#(HMS)

Example: An angle was turned six times, the first angle was $236^{\circ} 32^{\prime} 20^{\prime \prime}$ and the last angle was $339^{\circ} 14^{\prime} 30^{\prime \prime}$, what is the mean.

INPUT	KEYS	DISPLAY	COMMENTS
236.322	[ENTER]	236.3220	Begin
6	$\left[\mathrm{HMS}^{*}\right]$	$1,419.1400$	
360	$\left[\mathrm{HMS}^{\prime}\right]$	3.5632	3 extra circles
3	$\left[{ }^{*}\right]$	$1,080.0000$	
339.143	[HMS+]	1419.1430	
6	[HMS]	236.3225	mean, end of example.

[CLXM] CLear eXtended Memory

This function clears the extended memory. If the function is executed from the keyboard it will display "XM LOST".
[M-F] Meters to Feet
[F-M] Feet to Meters
These functions are used to convert meters to feet, and feet to meters. The conversion factor is based on the US survey foot (1200/3937).

The polar/rectangular coordinate conversion functions have been enhanced to accept input and output in an H.MMSS format. the angle outputs are also based on a 360° circle as opposed to the $\pm 180^{\circ}$. The X-and Y-register values are different than the HP -41 functions. This function also sets the degree mode.

Example: Use the [R*P] function to compute the distance and angle right for the different offset at station $1+25$ and the fire hydrant. Transit is at station $1+00$ backsighting station $2+00$.

Note: Y-register input= positive for right, negative for left. X -register input= positive for ahead, negative for back.

INPUT	KEYS	DISPLAY	COMMENTS
3	[CHS]	3	3^{\prime} left, 25' ahead
	[ENTER]	-3.0000	
25	[$\mathrm{R}^{*} \mathrm{P}$]	25.1794	distance
	[$\mathrm{X}<\gg \mathrm{Y}$]	353.0926	angle right (HMS)
10	[ENTER]	10.0000	10^{\prime} right, 15 back
15	[CHS]	-15-	
	${ }^{[R+P]}$	18.0278	distance
	$[\mathrm{X}<>\mathrm{Y}]$	146.1836	angle right (HMS)

[$\mathrm{H} \Varangle$] Horizontal angle
This function will divide the angle (HMS) in the X-register by two. If the angle in the X-register is a negative value 360° will be added to the angle before division by two. This function also sets the degree mode.

Example: What is the mean angle?
Direct angle $=261^{\circ} 21^{\prime} 50^{\prime \prime}$
Reverse angle $=162^{\circ} 43^{\circ} 50^{\prime \prime}$

INPUT	KEYS	DISPLAY	COMMENTS
162.435	[CHS]	-162.435	
	$[H \times]$	261.2155	

[MZ] Mean Zenith
This function means a zenith angle from the direct and reverse angles (HMS) in the Y - and X -registers. This function also sets the degree mode.
... from this ...
T 0.0000
Z 0.0000
Y Direct zenith (HMS)
X Reverse zenith (HMS)
... to this.
T 0.0000
Z 0.0000
Y mean (HMS)
X sum (HMS)
[ZN] ZeNith
This function turns a vertical angle or a reverse zenith angle to a direct zenith angle. This function also sets the degree mode. Vertical and direct zenith angles must be less than 45° from the horizontal.

COORDINATE MANAGEMENT

This program is used to manage coordinates and files. The driver programs (CG, INTS, etc.) use the working file for coordinate access. File names are limited to six characters or less. Point numbering is unlimited, but you are limited to the capacity of the calculator. Extended memory files consist of consecutive blocks of point numbers. A mass storage device refers to the HP cassette drive (82161) or the HP disc drive (9114).

POINT NUMBER CAPACITIES

Basic extended memory $=61$ points
One extended memory module $=180$ points
Two extended memory modules $=299$ points

NO CAN DO'S

Nonexistent files
Out of range point numbers
To point less than from point number

FILE STRUCTURE

EXTENDED MEMORY FILE

$\#$	CONTENTS
00	File name <6 char.
01	Beginning pt \#-1
02	Nbeg pt\#
03	Ebegpt\#
04	Nbegpt\# +1
05	Ebeg pt \#+1
06	Nbeg pt\# +2
07	Ebegpt\#+2
08	etc.

MASS STORAGE FILE

$\#$	CONTENTS
00	N1
01	E1
02	N2
03	E2
04	N3
05	E3
06	N4
07	E4
08	etc.

[J] MFL
Label MFL Make FiLe
This key and program are used to create files to store coordinates. File names must be six characters or less. This program may be executed from the coordinate management program or executed by its own global label.

STEP	INSTRUCTIONS	INPUT	KEYS	DISPLAY
1	Begin.		[XEQ]CDM	CDM ${ }^{\text {SLCTK KEY }}$
	Select MFL key. OR		[J]	XMBMS
1 a	Begin using the global label.		[XEQ] MFL	XMBMS
2	Choose type of file to be created:			
2 a	To create a file in the extended memory.		[A]	FL NAME?
	(This is also the default file created if			
	[R/S] is pressed without prior data entry after step 1.)			
2 b	To create a file in both the extended memory			
	and in a mass storage device. (Both files will		[B]	FLNAME?
	becre same name and begin with point number one.)			
2 c	To create a file in a mass storage device.		[C]	FLNAME?
3	input the desired file name. (The file name must be six characters or less.)	"ABC"	[R/S]	NO OF PTS?
4	Input the number of points you wish the file to hold. If you chose step 2 b or 2 c go to step 6.	\#	[R/S]	
5	Input the point number you wish the extended memory file to begin with. (Defaults to point number one if [RNS] is pressed without prior data entry.)	\#	[R/S]	XM BEG PT?
6	The calculator will beep if the file or files were successfully created. The extended memory file created will become the working file.			
7	If you began the program as in step 1 you will return to the coordinate management program.			CDM ${ }^{\text {S SLCT KEY }}$
7a	If you began the program as in step 1 a and flag 2 is clear you may restart the program with [R/S].		[R/S]	XMBMS

Example 1: Create a 25 point file, beginning with point 1, called " ABC " in the extended memory. This file is the working file for many of the examples in this manual.

INPUT	KEYS	DISPLAY	COMMENTS
	$[$ XEQ $]$ CDM	CDM	SLCTKEY:
	$[J]$	XMBMS	Begin
	$[A]$	FLNAME?	
"ABC"	$[R / S]$	NOOF PTS?	
25	$[R / S]$	XM BEG PT?	
	$[R / S]$	CDM*SLCTKEY:	end of example.

Example 2: Create a 25 point file, beginning with point 101, called " $86-2$ " in the extended memory. Look on the back of the calculator for [SHIFT] ALPHA characters.

INPUT	KEYS	DISPLAY	COMMENTS
	$[$ XEQ] MFL	XM BMS	Begin, use global label.
	$[A]$	FLNAME?	
$86-2 "$	$[R / S]$	NOOFPTS?	
25	$[R / S]$	XM BEG PT?	
101	$[R / S]$	"86-2"	XMBMS

The next examples require a mass storage device.
Example 3: Create a 50 point file called " $86-3$ " in both the extended memory and in a mass storage device. (Cassette drive or disc drive.)

INPUT	KEYS	DISPLAY	COMMENTS
	$[$ XEQ $]$ CDM	CDM ${ }^{*}$ SLCTKEY:	Begin
	$[J]$	XM BMS	
	$[B]$	FLNAME?	
$56-3^{\prime \prime}$	$[R S]$	NOOFPTS?	
50	$[R / S]$	CDM ${ }^{*}$ SLCTKEY:	end of example.

Example 4: Create a 1000 point file called " $86-4$ " in a mass storage device.

INPUT	KEYS	DISPLAY	COMMENTS
$\begin{aligned} & " 86-4 " \\ & 1000 \end{aligned}$	$\begin{aligned} & \text { [XEQ] CDM } \\ & {[\mathrm{J}]} \\ & \text { [C] } \\ & \text { [RS] } \\ & \text { [RUS] } \end{aligned}$	CDM*SLCT KEY: XMBMS FL NAME? NO OF PTS? CDM*SLCTKEY:	Begin end of example.

[A] EMDIR

This key merely executes the extended function [EMDIR] the extended memory file directory. It can be used to select a working file. The HP-41CX [EMDIR] works differently than the extended functions [EMDIR], refer to your HP-41 manual for more information on [EMDIR].

[a] PURGE

This key is used when you wish to purge the working file from the extended memory. Any file in the extended memory may be selected as the working file by using [EMDIR].

STEP	INSTRUCTIONS	INPUT	KEYS	DISPLAY
1	Begin.		[XEQ]CDM	CDM ${ }^{\text {SLCT KEY: }}$
2	Select the purge key.		[a]	PURGE: "FILE"?
3	The program will ask if you wish to purge the working file. You have ten seconds to answer this question, the program will defautt to a no answer if ten seconds passes. If the answer is yes press the " γ " key and the file will be purged, if the answer is no press any key except the " γ " key and the file will not be purged.			
4	The program will then execute a [EMDIR] to establish a new working file. The program will retum to the coordinate management program if the [EMDIR] is allowed to run to completion.			CDM ${ }^{\text {SLCTK KEY: }}$

[C] W FILE

This key will put into the ALPHA register and display the beginning point, the last point, and the name of the working file. Press [R/S] to return to the coordinate management prompt.

ALPHA: "101-125*ABC" This indicates the working file is called "ABC' and contains points 101 to 125 .
[d] E\&A (Enter and Assign)
This key will store coordinates, by point number, in the working file of the extended memory. This key is also available in all the driver programs.

STEP	INSTRUCTIONS	INPUT	KEYS	DISPLAY
1	Begin.		[XEQ]CDM	CDM ${ }^{\text {SLCT KEY }}$
2	Select the enter and assign key.		[d]	NEW PTNO?
3	Input desired point number.	Pt\#	[R/S]	N?
4	Input northing of point.	N	[R/S]	E?
5	Input easting of point.	E	[R/S]	NEW PTNO?
6	If you have more coordinates to store go to step 3; if you are finished storing coordinates press [R/S] without prior data entry after any prompt to return to the coordinate management program.		[R/S]	CDM ${ }^{\text {SLCT KEY }}$
7	If the point number has already been used you will hear a tone and see: You can either input a new point number, or press [R/S] without prior data entry to use the point number again.	Pt\#	[R/S] [R/S]	\#. USED NEW PTNO? NEWPTNO?
8	If you hear a tone and see: This means the point number does not fall within the point range of the working file. Input a point number that does.	Pt\#	[R/S]	Pt\#-Pt \#*Pt\# NEW PTNO?

[e] Delete

This key is used when a coordinates are to be deleted from the working file of the extended memory.

STEP	INSTRUCTIONS	INPUT	KEYS	DISPLAY
1	Begin.		[XEQ] CDM	CDM ${ }^{\text {SLCTKEY }}$
2	Select the delete key.		[e]	XM BEG PT?
3	Input the beginning point to be deleted.	Pt \#	[R/S]	TOPTNO?
4	Input the last point to be deleted. (If you wish only one point to be deleted press [R/S] without prior data entry.)	Pt \#	[R/S]	CDM ${ }^{\text {SLCTCTKEY: }}$
5	If the last point number is less than the beginning point number a tone will sound and "NO CAN DO" will be displayed and no coordinates will be deleted.			NOCANDO CDM'SLCTKEY:

[E] Renumber
This key is used to change the point number of coordinates within the working file of the extended memory. The old point number is not deleted.

STEP	INSTRUCTIONS	INPUT	KEYS	DISPLAY
$\mathbf{1}$	Begin		[XEQ]CDM	CDM•SLCT KEY
3	Select the renumber key.		[E]	OLD PTNO?
4	Input the point number you wish to renumber.			
5	Input the new point number. If you have more points to renumber go to step 3. lf you are finished renumbering press [R/S] without prior data entry after any prompt to return to coordinate management program. Pt\#	[R/S]	NEW PT NO?	

[D] LIST XM

This key is used to list the coordinates of certain points or all the points in the working file of the extended memory. If the printer is on line they will be printed.

STEP	INSTRUCTIONS	INPUT	KEYS	DISPLAY
1	Begin.		[$X E Q$] CDM	CDM*SLCTKEY
2	Select the list extended memory key. The working file's name will be displayed for one second and will be printed if a printer is on line.		[D]	FILE:ABC XM BEG PT?
3	Input the beginning point of the coordinates you wish to view or have printed. (If you wish to list the entire file press [R/S] without prior data entry.)	Pt*	[R/S]	TOPTNO?
4	Input the last point you wish to list. If you wish only one point to be listed press [R/S] without prior data entry. (If the last point number is smaller than the beginning point number you will exit the program via "NO CAN DO".)	Pt\#	$\begin{aligned} & {[\mathrm{R} / \mathrm{S}]^{+}} \\ & {[\mathrm{Z} / \mathrm{S}]^{+}} \\ & {[\mathrm{R} /]^{+}} \end{aligned}$	N\#= \# E\#=\# etc.
5	The program will retum to the coordinate management prompt when finished.			CDM ${ }^{\text {S }}$ LCT KEY

*This [RSS] not necessary when printer is on line.

This key requires a mass storage device on line.
[B] LIST MS
This key is used to list coordinates of certain points or all the points in a mass storage file. If the printer is on line they will be printed.

STEP	INSTRUCTIONS	INPUT	KEYS	DISPLAY
1	Begin.		[XEQ] CDM	CDM ${ }^{\text {SLCT KEY }}$:
2	Select the list mass storage key.		[B]	MS FL?
3	Input name of mass storage file. (If you wish to use the name of the working file in the extended memory press [R/S] without prior alpha entry.) The file name will be displayed for one second and will be printed if a printer is on line.	"ABC"	[R/S]	FILE: ABC MSBEGPT?
4	Input the beginning point of the coordinates you wish to view or have printed. (If you wish to view or print the entire file press [R/S] without prior data entry.)	Pt\#	[R/S]	TO PTNO?
5	Input the last point you wish to view or print. If you wish only one point to be listed press [R/S] without prior data entry. (If the last point number is smaller than the beginning point number you will exit via "NO CAN DO".)	Pt\#	$\begin{aligned} & {[\mathrm{R} /]^{*}} \\ & {[\mathrm{R} /]^{*}{ }^{*}} \\ & {\left[\mathrm{R} / \mathrm{s}^{*}\right.} \end{aligned}$	N\#=\# E\#= \# etc
6	This program will not retum to the coordinate management program if an entire file was listed. The program will retum to the coordinate management program if only a block of points were listed.			CDM*SLCT KEY:

*This [P/S] not necessary when printer is on line.

The following routines require a mass storage device on line.
The routines provide transfer of coordinates from the extended memory to mass storage and visa versa. The routines will use all available data registers for transfer, but will check for a minimum size of 19 registers. The extended memory file last used will become the working file.

NO CAN DO'S

Nonexistent files
Out of range point numbers
To point number less than from point number

[c] XM-MS

This key transfers coordinates in extended memory files to mass storage files.

STEP	INSTRUCTIONS	INPUT	KEYS	DISPLAY
1	Begin.		[XEQ] CDM	CDM ${ }^{\text {SLCT KEY }}$:
2	Select extended memory to mass storage key.		[c]	XM FL?
3	Input name of extended memory file. (Defaults to the working file if $[R / S]$ is pressed without prior alpha entry.)	"ABC"	[R/S]	XMBEGPT?
4	Input the extended memory beginning point you wish the transfer to start from. (Defaults to the starting point of the extended memory file if [R/S] is pressed without prior data entry.)	Pt\#	[R/S]	TO PT NO?
5	Input the last point you wish to transfer. (If [R/S] is pressed without prior data entry only one point will be transfered.)	Pi\#	[R/S]	MS FL?
6	Input name of mass storage file. (Defaults to the working file's name if [R/S] is pressed without prior alpha entry.)	"DEF"	[R/S]	MS BEG PT?
7	Input the beginning point in the mass storage file. (Defaults to the same point number as in step 4 if [RUS] is pressed without prior data entry.)	Pt\#	[R/S]	STANDBY
8	When finished the calculator will beep.			CDM*SLCTKEY:

[b] MS-XM

This key transfers coordinates in mass storage files to extended memory files.

STEP	INSTRUCTIONS	INPUT	KEYS	DISPLAY
1	Begin.		[XEQ] CDM	CDM ${ }^{\text {SLCTKKY }}$
2	Select mass storage to extended memory key.		[b]	MS FL?
3	Input name of mass storage file. (Defaults to the extended memory working file if [R/S] is pressed without prior alpha entry.)	"ABC"	[RS]	MS BEG PT?
4	Input the beginning point in mass storage you wish transfer to start from. (Defaults to point number one if $[R / S]$ is pressed without data entry.)	Pt\#	[R/S]	TO PTNO?
5	Input the last point number you wish to transfer. (If [R/S] is pressed without prior data entry only the beginning point is transferred.)	Pt\#	[R/S]	XM FL?
6	Input name of extended memory file. (Defaults to the working file it [R/S] is pressed without prior alpha entry.)	"DEF"	[R/S]	XM BEG PT?
7	Input the beginning point in the extended memory file. (Defaults to the same point number as in step 4 if [R/S] is pressed without prior data entry.)	Pt\#	[R/S]	STANDBY
8	When finished the calculator will beep.			CDM*SLCTKEY

Available files.

Extended Memory		Mass Storage	
ABC	$1-25$	$86-4$	$\mathbf{1 - 1 0 0 0}$
$86-2$	$101-125$		

Example 1: Transfer points 1-5 in the XM file "ABC" to points 601-605 in the MS file " $86-4$ ".

INPUT	KEYS	DISPLAY	COMMENTS
	$[X E Q]$ CDM	CDM*SLCT KEY:	Begin
	$[\mathrm{Cc}$	XM FL?	
ABC	$[R / S]$	XM BEG PT?	
1	$[R / S]$	TOPT NO?	
5	$[R / S]$	MSFL?	
$86-4$	$[R / S]$	MSBEGPT?	
601	$[R / S]$	STANDBY	end of example.

Example 2: Transfer points 101-110 in the MS file "86-4" to points 101-110 in the XM file "86-2".

INPUT	KEYS	DISPLAY	COMMENTS
		CDM*SLCT KEY:	Begin, should still be in CDM
	[b]	MS FL?	
$86-4$	[R/S]	MS BEG PT?	
101	[R/S]	TOPTNO?	
110	[R/S]	XM FL?	
$86-2$	[R/S]	XM BEG PT?	
	[R/S]	STANDBY	
		CDM*SLCTKEY:	end of example.

[H] $\quad \mathrm{Sc}$
Label Sc (Store coordinates)
This program can be used from the coordinate management program or by its own global label. The program transfers coordinates from the working file to a file in the mass storage with the same name and point numbers.

STEP	INSTRUCTIONS	INPUT	KEYS	DISPLAY
1	Begin.		[XEQ] CDM	CDM ${ }^{\text {SLCT KEY? }}$
2	Select store coordinates key.		[H]	STANDBY
3	When finished the calculator will beep.			CDM*SLCT KEY:
	OR			
1	Begin. (Can be used as a subroutine.)		[XEQ] Sc	STANDBY
2	When finished the calculator will beep and stop, or if used as a subroutine will retum to the calling program.			

Available Files
Extended Memory
86-4 1-50
Mass Storage
86-4 1-1000
Example : Store points $1-50$ in the XM file " $86-4$ " to its mass storage file.

INPUT	KEYS	DISPLAY	COMMENTS
	$[\mathrm{XEQ}]$ CDM $[H]$	CDM 	STANDCTKEY: CDM
		BLCTKEY:	end of example.

[1] Rc

Label Rc (Recall coordinates)
This program can be used from the coordinate management program or by its own global label. The program transfers coordinates from mass storage to the working file. File names must be the same.

STEP	INSTRUCTIONS	INPUT	KEYS	DISPLAY
1	Begin.		[XEQ] CDM	CDM*SLCT KEY:
2	Select recall coordinates key.		[I]	XMBEG PT?
3	Input the point number you wish to become the new beginning point of the working file. (Defaults to point number one if $[R / S]$ is pressed without prior data entry.)	Pt\#	[R/S]	STANDBY
4	When finished the calculator will beep. OR			CDM ${ }^{\text {SLCT KEY: }}$
1	Begin. (Can be used as a subroutine.)		[XEQ] R	XMBEG PT?
2	Input the point number you wish to become the new beginning point of the working file. (Defaults to point number one if [RSS] is pressed without prior data entry.)	Pt \#	[R/S]	STANDBY
3	When finished the calculator will beep and stop, or if used as a subroutine will retum to the calling program.			

Available files.

Extended Memory
86-4 1-50

Mass Storage

86-4 1-1000

Example: Recall MS file " $86-4$ " points 601-650 to the 50 point XM file.

INPUT	KEYS	DISPLAY	COMMENTS
	$[$ XEQ]CDM	CDM*SLCTKEY: 601	$[1]$
	$[R / S]$	XM BEGPT? STANDBY CDM*SLCT KEY:	Begin, should still be in CDM
		end of example.	

COORDINATE GEOMETRY

This program is useful for general coordinate geometry problems; traversing, inversing, curved sides, and sideshots.

DIRECTION INPUTS

DISTANCE INPUT

Along with a variety of distance reductions / conversions, described in the user instructions, the program provides for a user routine for distance input. Your user routine can be used for a scale factor or perhaps a personal EDMI reduction. The user routine must be called Label "UHD" and return with the horizontal distance in the X-register. If your user routine uses local Alpha labels, (the subroutine return stack is cleared when a local Alpha label key is pressed), you can return to CG or TCA by ending your routine with [GTO] Hd.

CURVED SIDES

Along with a variety of ways to traverse or inverse a curved side, described in the users instructions, the program provides for a user routine for curve input or a general escape and return to the CG program. The user routine must be called Label "UCV". If your user routine uses local Alpha labels, (the subroutine return stack is cleared when a local Alpha label key is pressed), you can return to CG by ending your routine with [GTO] ee.

AREA

The program accumulates area by the equation:

$$
\text { Area }=\sum_{k=1}^{n} \operatorname{Lat}_{k}\left(1 / 2 \operatorname{Dep}_{\mathbf{k}}+\sum_{j=1}^{\mathbf{k}-1} \operatorname{Dep}_{\mathrm{j}}\right)
$$

STEP	INSTRUCTIONS	INPUT	KEYS	DISPLAY
1	Begin. The working file's name is displayed for one second and printed if printer is on line.		[XEQ] CG	FILE: ABC POB?
2	Input beginning point number.	Pt\#	[R/S]	BS PTNO?
3	Input a point number you wish to backsight. If you have no backsight go to step 4. OR if you wish to input a bearing or azimuth as a backsight press [R/S] without prior data entry to the "BS PT NO?" prompt.	Pt \#	[R/S] [R/S]	TRAV BKBRG?
	entry to the "BSPTNO? Input bearing or azimuth of backsight.	BrgorAz	[RSS]	$\begin{aligned} & \text { BK BRG? } \\ & \text { QD? } \end{aligned}$
	Input quadrant code. If you input an azimuth press [R/S] without prior data entry to the "QD?" prompt.	Qd	[R/S]	TRAV
4	Input direction of course.			
	input Azimuth; or Bearing	Az Bra	[b]	HD? QD?
	and Quadrant code;	Qd	[RS]	HD?
	or Field angle right:	Angle(HMS)	[C]	HD?
	or Field angle left;	Angle(HMS)	[CHS][C]	HD?
	or Deflection angle right;	Angle(HMS)		HD?
	or Deflection angle left.	Angle(HMS)	[CHS][c]	HD?
5	Input horizontal distance.	HD	[P/S]	NEW PTNO?
	to the prompt.		[R/S]	SDMCHU
	Input slope distance, (Default input.)		[A] or [RSS]	
	and zenith or vertical angle;	Angle(HMS)	[R/S]	NEW PT NO?
	or Feet to Meters conversion;	Feet	[b]	NEW PTNO?
	or Meters to Feet conversion;	Meters	[B]	NEWPTNO?
	or Feet to Chains conversion;	Feet	[c]	NEW PTNO?
	or Chains to Feet conversion;	Chains	[C]	NEW PTNO?
	or User key. (See text.)	???	[D]	NEW PT NO?
	If printer is on line the bearing, azimuth, and the horizontial distance of the course will be printed.			
6	Input new point number;	Pt\#	[R/S]	TRAV
	or if you do not wish to assign a point number input a zero or press [R/S] without prior			
	data entry.			
	If the printer is on line the coordinates will be printed.			
7	Repeat steps 4,5, and 6 for successive courses.			
8	Initiate closure. The word "CLOSURE" is displayed for one second and printed if printer is on line.		[a]	CLOSURE CLOSE PTNO?

STEP	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
9	Input closing point number. Press [R/S] without prior data entry if there is no closing point number. Output closing bearing and azimuth; and error distance; and total distance traversed; and precision ratio; and area, including error course, in square units.	Pt\#	[R/S] [R/S] ${ }^{*}$ [R/S] ${ }^{*}$ [R/S] ${ }^{*}$ [R/S] ${ }^{*}$ [R/S]*	"BEARING" $A Z=$ HD= $\Sigma \mathrm{HD}=$ PR=1/ AREA $=$
10	For a new problem. OR Anytime.		[R/S] ${ }^{\text {+ }}$ [[A]	FILE: ABC POB? POB?
1	Inverse: Begin.		[A]	POB?
2	Input beginning point number. (Steps 1 and 2 may not always be necessary.)	P7	[R/S]	BSPTNO?
3	Input point number to inverse to. Output bearing and azimuth; and distance of new course. If the printer is on line the coordinates will also be printed.	Pt\#	[目] [RS] ${ }^{*}$ [R/S] ${ }^{+}$ $[\mathrm{R} / \mathrm{S}]^{*}$	"BEARING" $A Z=$ HD= TRAV or SS
4	Repeat step 3 for successive courses.			
5	To initiate inverse closure.		[a]	CLOSURE CLOSE PTNO?
6	For area press [R/S] without prior data entry to the prompt.		$\begin{aligned} & {[\mathrm{R} / \mathrm{S}]} \\ & {[\mathrm{R} / \mathrm{S}]^{*}} \end{aligned}$	AREA= FILE: ABC POB?
	Traverse and Sideshots: The user may switch between the travese mode and sideshot mode, atter a beginning point has been established, at will. In the traverse mode flag 1 will be set. in the sideshot mode flag 1 will be cleared.		$\left[\begin{array}{l} {[J]} \\ {[J]} \end{array}\right.$	TRAV SS TRAV
	Automatic point numbering: The user may switch between a prompting request for a point number and automatic point numbering, after a beginning point has been established.			

[^0]| STEP | INSTRUCTIONS | INPUT | KEYS | DISPLAY |
| :---: | :---: | :---: | :---: | :---: |
| 1 | To initiate auto-point numbering input the point number you wish numbering to start with. Flag 0 will be set. | Pt\# | [1] | TRAV or SS |
| 2 | Thenew point numbers will be displayed as you use them. | | | |
| 3 | To stop using auto-point numbering. Flag 0 will be cleared. | | [I] | TRAV or SS |
| 4 | For a new auto-point starting number step 3 must be performed first, then go to step 1. | | | |
| 5 | When you start a new traverse the autopoint will be cleared (stopped). | | | |
| 1 | Curved sides:
 Traverse or inverse to the point where the curve begins. | | | TRAV |
| 2 | Initiate curve routine. | | [e] | INBTDTU |
| 3 | For a non-tangent inverse go to step 4.
 For a tangent inverse go to step 5.
 For a tangent bearing traverse go to step 6.
 For a tangent delta traverse go to step 7.
 For a users routine go to step 8. | | | |
| 4 | Non-tangent inverse: Input point number to inverse to; and go to step 9.
 (The back azimuth is along the chord). | Pt\# | [a] | $\begin{aligned} & \text { INBTDTU } \\ & \text { R?+l- } \end{aligned}$ |
| 5 | Tangent inverse: Input point number to inverse to; and go to step 9. | Pt\# | [A] | INBTDTU R?+1- |
| 6 | Tangent bearing traverse: Input bearing or azimuth of tangent course out of the curve; and quadrant code (if you input an azimuth press [RSS] without prior data entry in response to the "QD?" prompt); and go to step 9 . | BRG or AZ | [B] [R/S] | INBTDTU
 QD?
 R?+/- |
| 7 | Tangent delta traverse: Input central angle of the curve, positive if curve is to the right or negative if curve is to the left; and go to step 9. | +or-
 Angle(HMS) | [C] | IN BTDTU R?+ $/-$ |

STEP	INSTRUCTIONS	INPUT	KEYS	DISPLAY
8	User routine (see text).	???	[D]	
9	Input radius of curve, positive if the segment area is to be added to the traverse or negative if the segment area is to be subtracted from the traverse.	+or-R	[R/S]	$\mathrm{R}=$
10	Output radius and delta; and length of curve; and tangent; and chord; the segment area is also output if the printer is on line.		[R/S] ${ }^{*}$ [R/S]* [R/S] [R/S] ${ }^{*}$ [R/S]	$\begin{aligned} & \text { DELTA= } \\ & \mathrm{L}= \\ & \mathrm{T}= \\ & \mathrm{C}= \\ & \text { TRAV } \end{aligned}$
11	You have retumed to the CG program, input the next course.			
1	Storing coordinates: Select the enter and assign key.		[d]	NEW PT NO?
2	Input desired point number.	Pt\#	[R/S]	N?
3	Input northing of point.	N	[R/S]	E?
4	Input easting of point.	E	[R/S]	NEW PTNO?
5	If you have more coordinates to store go to step 2; if you are finished storing coordinates press [R/S] without prior data entry atter any prompt to return to the CG program.		[R/S]	TRAV or SS
6	If the point number has already been used you will hear a tone and see: You can either input a new point number, or press [R/S] without prior data entry to use the point number again.	Pt\#	[R/S] [R/S]	\#. USED NEW PTNO? NEW PTNO?
7	If you hear a tone and see: This means the point number does not fall within the point range of the working file. Input a point number that does.	Pl\#	[R/S]	Pt \#-Pt \#*Pt\# NEW PTNO?
1	Displaying coordinates: Input the point number of the coordinates you wish to display.	Pt\#	[D]	N\#=
2	Display easting. This step must be performed to return to the calling program.		[R/S] ${ }^{*}$	E\#=
3	You have retumed to the CG program.		[R/S]	TRAV or SS

*This [R/S] not necessary if the printer is on line.

STEP	INSTRUCTIONS	INPUT	KEYS	DISPLAY
1	Storing coordinates in mass storage: li a mass storage device is on line you may store the working file's coordinates. The files must have the same name and point numbers. When finished the calculator will beep and restart the CG program.			

DATA REGISTERS:				FLAGS:			
\#	CG/TCA	*	TCA Adj	\#	SET INDICATES	CLEAR INDICATES	
00	aztrav (HMS)	00	close N next N	00	auto point	no auto point	
01	HD	01	close E/ next E	01	TRAV	SS	
02	N beg	02	Nbeg	02			
03	Ebeg	03	Ebeg	03			
04	ᄃHD	04	इHD/dist	04	closure	no closure	
05	Elat	05	$\operatorname{adj} \mathrm{N}$	05	"open"	closed loop	
06	इdep	06	adj E	06	curve left	curve right	
07	area	07	$\Delta \mathrm{N} / 2 \mathrm{HD}$	07	subtract seg area	add seg area	
08	$\Sigma \mathrm{seg}$ area	08	$\triangle E / 2 H D$	08	TCA	CG	
09	\| Id ep		09				
10	azss (HMS)	10					
11		11	close pt \#				
12		12	beg pt				
13		13	counter pt \#		STATUS:		
14	auto pt\#	14	end pt \#				
15	pt \# pointer	15	pt \# pointer		SIZE 019, FIX	DEG, USER.	
16	delta						
17	radius						
18	seg area						

Example 1: A Traverse.

*This [R/S] not necessary if the printer is on line.

Example 2: Using Example 1 as control coordinates generate coordinates for the given sideshots. Use auto-point numbering for points 10,11, and 12.

[^1]Example 3: Generate the coordinates for points 6-9 using auto point numbering.

INPUT	KEYS	DISPLAY	COMMENTS
1 6 90 175 85.3 20 65.4 180 0 100		FILE: ABC POB? BS PTNO? TRAV HD? 6.0000 TRAV INBTDTU R?+1- 7.0000 $R=20.0000$ DELTA=85.3000 L=29.8451 $T=18.4878$ C=27.1520 TRAV INBTDTU QD? R?+1- 8.0000 $\mathrm{R}=180.0000$ DELTA=61.1000 $L=192.1608$ $\mathrm{T}=106.3810$ $\mathrm{C}=183.1648$ TRAV HD? 9.0000 TRAV TRAV	Begin no backsight start auto point next course initiate curve delta traverse to left curve output next course initiate curve bearing out of curve same as azimuth subtract segment area curve output next course tangent course, deflection 0° stop auto point numbering end of example.

[^2]Example 4: Calculate the area of lot 1 . Points 1,6 , and 7 are from example 3; store the missing coordinates.

*This [R/S] not necessary if printer is on line.

INPUT	KEYS	DISPLAY	COMMENTS
	$[R / S]^{*}$	HD=125.0000	
	$[\mathrm{R} / \mathrm{S}]^{*}$	TRAV	initiate ciosure
	$[\mathrm{Ca}]$	CLOSURE	I did already
	$[\mathrm{R} / \mathrm{S}]$	AREA=PTNO?	
	$[\mathrm{R} /]^{*}$	FILE:ABC 924.3969	
		POB?	end of example.

- This [R/S] not necessary if printer is on line.

Example 5: This example demonstrates the use of the User distance input. Input the program into the RAM of your calculator. The program multiplies the input distance by a scale factor of 0.9998.

```
01^LBL *UHD*
```

82.9998
83 *
84 END

INPUT	KEYS	DISPLAY	COMMENTS
	[XEQ] CG	FILE:ABC	Begin
1	[RSS]	POB?	
75	[b]	BSPTNO?	
1,000	[R/S]	HD?	
16	[D]	SDMCHU	
70	[R/S]	NEWPTNO?	
2	[B]	TRAV	
1,500	[R/S]	QD?	
17	[D]	HD?	SDMCHU
	[RSS]	NEWPTNO?	end of example.

EXAMPLE 5:

FILE: ABC
PGB
$\mathrm{HI}=500.8909$
$E!=598$. 日990
H 75. ARAM E
$A Z=75.9090$
$H D=999.8 B A И$

N16 $=758.7673$
E16=1,465.7326
s 79. Agha E
$A Z=116.9890$
HD $=1,499,7$ 明
N17 $=245.8397$
$E 17=2.874 .9997$

TRAVERSE WITH COMPASS RULE ADJUST

This program is used to generate and adjust a traverse by the compass or Bowditch rule. Point numbers for the traverse legs are consecutive starting from the given beginning point number, prestored in the working file. Adjust angles prior to input.

Directional and distance inputs are the same as in the CG program.
"OPEN" (CONNECTING TRAVERSE)

CLOSED LOOP TRAVERSE

Known
Coordinates

STEP	INSTRUCTIONS	INPUT	KEYS	DISPLAY
10	Input closing point number. OR if the traverse is a closed loop press any button except the " γ " key. Output closing bearing and azimuth; and error distance; and total distance traversed; and precision ratio.	Pt\#	[R/S] [R/S] [R/S] [R/S] [R/S] [R/S] ${ }^{*}$	"BEARING" "BEARING" $\begin{aligned} & A Z= \\ & H D= \\ & \Sigma H D= \\ & P R=1 / \end{aligned}$
11	The program will now adjust the traverse, standby until tone sounds.		[$\mathrm{R} / \mathrm{S}]^{+}$	COMPASS ADJUST
12	Output. The program will now inverse through the traverse. For a final look or printout of the adjusted traverse. If the traverse is a closed loop the area is also output.		$\begin{aligned} & {[\mathrm{R} / \mathrm{S}]^{*}} \\ & {[\mathrm{R} / \mathrm{S}]^{*}} \\ & {[\mathrm{R} / \mathrm{S}]^{*}} \\ & {[\mathrm{R} /]^{*}} \\ & {[\mathrm{R} /]^{*}} \end{aligned}$	"BEARING" AZ= $H D=$ N\# $=$ E\#= etc
13	For a new problem. OR Anytime.		$\left[\right.$ R/S] ${ }^{+}$ [A]	FILE: ABC POB? POB?

*This [R/S] not necessary if printer is on line.

STEP	INSTRUCTIONS	INPUT	KEYS	display
1	Storing coordinates: Select the enter and assign key.		[d]	NEW PTNO?
2	Input desired point number.	Pt\#	[R/S]	N ?
3	Input northing of point.	N	[R/S]	E ?
4	Input easting of point.	E	[R/S]	NEW PTNO?
5	If you have more coordinates to store go to step 2; if you are finished storing coordinates press [R/S] without prior data entry after any prompt to retum to the TCA program.		[R/S]	TRAV orSS
6	If the point number has already been used you will hear a tone and see: You can either input a new point number, or press [R/S] without prior data entry to use the point number again.	Pt\#	$[R / S]$ $[R / S]$	\#. USED NEW PTNO? NEW PTNO?
7	If you hear a tone and see: This means the point number does not fall within the point range of the working file. Input a point number that does.	Pt\#	[R/S]	Pt\#-Pt\#*Pt NEW PT NO?
1	Displaying coordinates: Input the point number of the coordinates you wish to display.	Pt\#	[D]	N\#=
2	Display easting. This step must be performed to retum to the calling program.		[R/S] ${ }^{\text { }}$	E\#=
3	You have returned to the TCA program.		[R/S]	TRAV or SS
1	Storing coordinates in mass storage: If a mass storage device is on line you may store the working file's coordinates. The files must have the same name and point numbers.		[H]	STANDBY
2	When finished the calculator will beep and restart the CG program.			FILE: ABC POB?

-This [R/S] not necessary if printer is on line.

Example 1: Adjust angles.

Example 2: Compute and compass rule adjust traverse.

INPUT	KEYS	DISPLAY	COMMENTS
$\begin{aligned} & 388.55 \\ & 92.282 \end{aligned}$	[R/S]	\$?	
	[R/S]	5.0000	
	[a]	TRAV CLOSURE	initiate closure
		OPEN?Y	no
	[R/S]	S 48.4260 E	closure output
	[R/S]*	$A Z=131.1700$	
	[R/S]*	HD=0.0483	
	[R/S]*	$\sum \mathrm{HD}=1,521.2261$	
	[R/S] ${ }^{*}$ [R/S] ${ }^{*}$	PR=1/31,526. COMPASS ADJUST	adjusting traverse, standby until
		N62.1548E	tone sounds adjusted traverse output
	[R/S]*	$A Z=62.1548$	
	[R/S]*	HD=397.9321	
	[R/S]*	N2=685.2008	
	[R/S ${ }^{*}$	E2=852.2082	
	[R/S]*	S50.3036E	
	[R/S] ${ }^{*}$	$A Z=129.2924$	
	[R/S]*	HD=380.1417	
	[R/S]*	N3=443.4519	
	[R/S]*	E3=1,145.5769	
	[R/S]*	S64.1350 W	
	[R/S]*	$A Z=244.1350$	
	[R/S]**	$H D=354.9760$	
	[R/S]*	N4=289.1257	
	[R/S]*	E4-825.9030	
	[R/S]*	N57.0543 W	
	[R/S] ${ }^{*}$	$A Z=302.5417$	
	[R/S] ${ }^{+}$	HD $=388.1762$	
	[R/S]*	N1 $=500.0000$	
	[R/S]*	E1 $=500.0000$	
	[RSS] ${ }^{+}$	AREA=128,592.2389	
	[R/S] ${ }^{*}$	FILE: ABC POB?	end of example.

[^3]Example 3: Adjust angles and store coordinates for points 5 and 25.

INPUT	KEYS	DISPLAY	COMMENTS
1	[XEQ] CG or TCA	FILE: ABC POB?	Begin input any point
	[R/S]	BS PTNO?	
	[R/S]	BKBRG?	
305.1428	[R/S]	QD?	azimuth
	[R/S]	TRAV	
124.192	[C]	HD?	ignore prompt
243.294	[C]	HD?	
101.423	[C]	HD?	
200.522	[C]		
	[RCL] 00 or VIEWI00	75.3818 75818	
	[VIEW] 00	75.3818	4" short, add 1" per angle
	[d]	NEW PTNO?	store points
5	[R/S]		
500 500	[R/S]	E? 5. USED	
500	[R/S]	5. USED NEW PTNO?	use again
25	[R/S]	N ?	
553.194	[R/S]	E?	
1274.322	[R/S] [R/S]	NEW PT NO? TRAV	return to CG or TCA end of example.

Example 4: Compute and compass rule adjust the open (connecting) traverse.

INPUT	KEYS	DISPLAY	COMMENTS
5	[$X E Q$] TCA	FILE:ABC POB? BSPTNO?	Begin
	[R/S]		
	[RIS]	BKBRG? QD?	
305.1428	[RIS]		azimuth
	[R/S]	$\begin{aligned} & \text { QD? } \\ & \text { TRAV } \end{aligned}$	1st course
124.1921	$[\mathrm{C]}]$	HD?	
	[R/S]		
290.5	[R/S]	SDMCHU $t ?$	next course
95.14	[R/S]	TRAV	
243.2941	[C]	HD?	
	[R/S]	SDMCHU	
$\begin{aligned} & 336.48 \\ & 88.38 \end{aligned}$	[RSS]		
88.38	[R/S]	7.0000 TRAV	last course
101.4231	[C]	HD?	
315.17	[R/S]		
	[a]	TRAV CLOSURE	initiate closure
		OPEN?Y	yes
${ }^{*}{ }^{\prime \prime}$	[RUS] [R/S]* [R/S] ${ }^{*}$ [R/S]* [RSS] ${ }^{*}$ [RUS] ${ }^{*}$	CLOSE PTNO?	closure output
25		$A Z=43.4134$	
		HD=0.0344	
		EHD=940.8433	
		$P R=1 / 27,327$. COMPASS ADJUST	
			adjusting traverse, standby until tone sounds adjusted traverse output
	[R/S] ${ }^{*}$[RSS][RS] ${ }^{*}$	N69.3346E	
		AZ $=69.3346$	
		$\begin{aligned} & H D=289.2986 \\ & N 6=601 \end{aligned}$	

*This [R/S] not necessary if printer is on line.

INPUT	KEYS	DISPLAY	COMMENTS
		E6=771.0886 S 46.5638 E $A Z=133.0322$ $H D=336.3844$ N7=371.3629 E7=1,016.8793 N54.4560 E $A Z=54.4560$ HD=315.1813 N25=553.1940 E25=1,274.3220 FILE: ABC POB?	end of example.

- This [R/S] not necessary if printer is on line.

PRINTOUTS

FILE: ABC	COMPASS ADJUST
POB	POB
$\mathrm{NI}=580.8980$	$\mathrm{NL}=568.0890$
E1=500. 9880	E1=588. 8080
N 62.1542 E	N 62.1548 E
AZ $=62.1542$	AZ $=62.1548$
$\mathrm{HD}=397.9276$	$H D=397.9321$
N2=685.2992	H2=685. 2888
$E 2=852.1987$	$E 2=852.2882$
S 59.3836 E	S 50.3836 E
$\mathrm{AZ}=129.2924$	AZ $=129.2924$
HD $=388.1297$	$\mathrm{HD}=388.1417$
$N 3=443.4681$	H3 $=443.4519$
$E 3=1,145.5583$	$E 3=1,145.5769$
S 64.1356 H	S 64.1359 प
A2 244.1356	$A Z=244.1350$
$H D=354.9884$	$H D=354.9769$
N4=289. 1494	N4-289. 1257
$E 4=825.8769$	$E 4=825.9039$
N 57.8542 H	N 57.0543 H
RZ 2032.5418	AZ 282.5417
HD=388.1884	$H D=388.1762$
H5=589.8318	H1 $=508.88808$
$E 5=499.9637$	$\mathrm{El}=500.0080$
CLOSURE	AREA $=128,592.2389$
S 48.426n E	
A $2=131.1789$	FILE: ABC
$H D=9.4483$	
EHD $=1,521.2261$	
PR $=1,31,526$.	

EXAMPLE 4:

FILE: ABC	COMPASS ADJUST
POB	POB
H5 $=588.8090$	HS=580.9880
E5 $=588.8889$	$E 5=588.8080$
N 69.3349 E	H 69.3346 E
AZ $=69.3349$	AZ $=69.3346$
$H D=289.2891$	$H D=289.2986$
$N 6=601.8183$	N6=601.9179
$E 6=771.8813$	$E 6=771.8886$
S 46.5630 E	S 46.5638 E
A2 $=133.8338$	AZ $=133.9322$
$H D=336.3843$	HD=336.3844
N7 $=371.3464$	H7 $=371.3629$
$E 7=1,016.8635$	E7=1,016.8793
N 54.4601 E	H 54.4568 E
AZ $=54.4681$	AZ=54,4568
$H D=315.1780$	$\mathrm{HD}=315.1813$
H8=553.1691	H25=553. 1948
$E 8=1,274.2982$	E25=1,274.3228
CLOSURE	
	FILE: ABC
N 43.4134 E	
$A Z=43.4134$	
$\mathrm{HD}=0.8344$	
EHD $=946.8433$	
$\mathrm{PR}=1 / 27,327$.	

COORDINATE TRANSFORMATION

This program rotates, translates, and rescales coordinates stored in the working file. The program CTC transforms coordinates if two points in both the old and new system are known. The program CRT transforms coordinates by inputing the necessary data; old bearing, new bearing, scale factor, and the new coordinates of pivot point.

\begin{tabular}{|c|c|c|c|c|}
\hline STEP \& INSTRUCTIONS \& INPUT \& KEYS \& DISPLAY \\
\hline 1 \& Coordinate Rotation and Transformation: Begin. The working file's name is displayed for one second and printed if the printer is on line. \& \& [XEQ] CRT \& FILE: ABC OLD PIV PT? \\
\hline 2 \& Input pivot point number of old system. \& Pt\# \& [R/S] \& OLD 2ND PT? \\
\hline 3 \& \begin{tabular}{l}
Input a second point number in old system to be used for azimuth. \\
OR Press [R/S] without prior data entry and input old system bearing or azimuth. (If you Input an azimuth press [R/S] without prior data entry to the "QD?" prompt.)
\end{tabular} \& \begin{tabular}{l}
Pt\# \\
BrgorAz \\
Qd
\end{tabular} \& \begin{tabular}{l}
[R/S] \\
[R/S] [R/S] [R/S]
\end{tabular} \& \begin{tabular}{l}
NEWBRG? \\
OLD BRG? QD? NEW BRG?
\end{tabular} \\
\hline 4 \& Input new system bearing or azimuth for the line input in step 3. (If you input an azimuth press [R/S] without prior data entry to the "QD?" prompt.) \& BrgorAz Od \& \[
\begin{aligned}
\& \text { [R/S] } \\
\& \text { [R/S] }
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { QD? } \\
\& \text { S.F.? }
\end{aligned}
\] \\
\hline 5 \& Input scale factor. If the scale factor is one press [R/S] without prior data entry. \& S.F. \& [R/S] \& TRANS?Y \\
\hline 6 \& You have ten seconds to answer this question. If you do not answer within ten seconds the answer is assumed to be no. If you wish to translate the coordinates press " \(\gamma\) "; OR if you do not wish to translate the coordinates press any key other than the " Y "key, and go the step 8. \& \({ }^{\prime \prime}\) \& [R/S] \& \begin{tabular}{l}
NEW PIV PT? \\
FROM PT NO? NEW PIV PT?
\end{tabular} \\
\hline 7 \& \begin{tabular}{l}
Input the new pivot point number. \\
OR Press [R/S] without prior data entry \\
to input coordinates. \\
Input northing; \\
and easting. \\
Go to step 8.
\end{tabular} \& Pt\#

N

\mathbf{E} \& \[
$$
\begin{aligned}
& \text { [R/S] } \\
& \text { [R/S] } \\
& {[R / S]} \\
& {[R / S]}
\end{aligned}
$$

\] \& | FROM PT NO? |
| :--- |
| N ? |
| E ? |
| FROM PTNO? |

\hline 1 \& | Coordinate Transformation by Coordinates: |
| :--- |
| Begin. The working file's name is displayed for one second and printed if printer is on line. | \& \& [XEO] CTC \& FILE: ABC OLD PIV PT?

\hline 2 \& Input pivot point number in the old system. \& Pt\# \& [R/S] \& OLD 2ND PT?

\hline 3 \& Input second point number in the old system. \& Pt\# \& [R/S] \& NEW PIV PT?

\hline 4 \& | Input pivot point number in the new system. |
| :--- |
| OR Press [R/S] without prior data entry to input coordinates. |
| Input northing; and easting. | \& Pt \#

N

E \& \begin{tabular}{l}
[R/S]

[R/S] [R/S] [RS]

 \&

NEW 2ND PT?

N?

E?

NEW 2ND PT?
\end{tabular}

\hline
\end{tabular}

STEP	INSTRUCTIONS	INPUT	KEYS	DISPLAY
5	Input second point number in the new system. OR Press [RSS] without prior data entry to input coordinates. Input northing: and easting. Go to step 8.	PI\#	[RSS]	FROM PT NO?
			[RSS]	N?
		N	[RIS]	
		E	[RS]	FROM PTNO?
8	Input starting point number in the old system to be transformed. OR press [R/S] without prior data entry if you do not have a consecutive block of points to transform and go to step 10.	Pt\#	[R/S]	TOPTNO?
9	Input last point number in the old system to be transformed. If the printer is on line the "OLD" and "NEW" coordinates will be printed.	P1\#	[R/S]	NOF:T
$\begin{aligned} & 10 \\ & \text { 10a } \end{aligned}$	Select key: To transform coordinates from the old system to the new system, input point number in old system.	PI\#	[A]	N O F:T
10b	To transform coordinates from the new system to the old system, input point number in newsystem.	PI\#	[B]	N O F:T
10c	To transform a consecutive block of points from the old system to the new system. Input starting point; and last point.	$\begin{aligned} & \text { PI\# } \\ & \text { Pt\# } \end{aligned}$	[C] [R/S] [RUS]	FROM PTNO? TOPTNO? N O F:T
11	Repeat step 10 as needed.			
12	For a new case; and go to step 2.		[a]	FILE: ABC OLD PIV PT?

STEP	INSTRUCTIONS	INPUT	KEYS	DISPLAY
1	Storing coordinates: Select the enter and assign key.		[d]	NEW PTNO?
2	Input desired point number.	P1*	[R/S]	N?
3	Input northing of point.	N	[R/S]	E ?
4	Input easting of point.	E	[R/S]	NEW PTNO?
5	If you have more coordinates to store go to step 2; if you are finished storing coordinates press [R/S] without prior data entry after any prompt to retum to the CRTprogram.		[R/S]	OLD PIV PT?
6	If the point number has already been used you will hear a tone and see: You can either input a new point number, or press [R/S] without prior data entry to use the point number again.	Pt\#	[R/S] [RS]	\#.USED NEW PTNO? NEW PTNO?
7	If you hear a tone and see: This means the point number does not fall within the point range of the working file. Input a point nmber that does.	Pt\#	[R/S]	PT\#-PT\#PT\# NEW PTNO?
1	Displaying coordinates: Input the point number of the coordinates you wish to display. Display nothing.	Pt\#	[D]	$N=$
2	Display easting. This step must be performed to retum to the calling program.		[P/S] ${ }^{+}$	E\#=
3	You have returned to the CRT program.		[R/S]	OLD PIV PT?
1	Storing coordinates in mass storage: If a mass storage device is on line you may store the working file's coordinates. The files must have the same name and point numbers.		[H]	STANDBY
2	When finished the calculator will beep and restart the CRT program.			FILE: ABC QLD PIV PT?

*This [R/S] not necessary if printer is on line.

DATA REGISTERS:	FLAGS:		
$\#$ CRT/CTC 00 rotation \times (HMS)		SET INDICATES CTC	CLEAR INDICATES CRT
01 scale factor	\ldots		
02 N old piv pt	08	RTN	prompt
03 Eold piv pt	09	"OLD"	"NEW"
04 N new piv pt	10	store coord. no V	
05 Enew piv pt			
13 frompoint	STATUS:		
14 to point			
15 pt\#pointer	SIZE 016, FIX 4, DEG, USER.		

Example 1: Transform coordinates of the closed traverse in example 1 of TCA.

INPUT	KEYS	DISPLAY	COMMENTS
	[$X E Q]$ CRT	FILE: ABC OLD PIV PT?	Begin
1	[R/S]	OLD 2ND PT?	have azimuth
	[R/S]	OLD BRG?	
321.132	[R/S]	QD?	
	[R/S]	NEWBRG?	
321.4104	[R/S]	QD?	
	[R/S]	S.F.?	scale factor
$\text { . } 9999549$ γ^{\prime}	[R/S]	TRANS?Y NEW PIV PT?	translate? yes"Y"
	[R/S]	N ?	
280,057.34	[R/S]	E ?	
1,789,930.929	[R/S]	FROM PTNO?	
1 4	[R/S]	TOPTNO? NOF:T	end of example.

Example 2: Transform the coordinates below. Store necessary coordinates.
$1=\frac{280,057.3400}{1,789,930.929}$
$\left(\frac{277,469.2663}{1,799,589.752}\right)$
$\frac{1000}{1000} \quad 5 \cdot 1$

- $6 \frac{1000}{1100}$
$-24 \frac{1000}{11000}$
$=9 \frac{279,970.2248}{1,790,062.871}$
$\frac{900}{1000} 8=$
- $7 \frac{900}{1100}$
$\frac{850}{950} 11$.
- $10 \frac{850}{1150}$

INPUT	KEYS	DISPLAY	COMMENTS
	[XEQ] CTC	FILE: ABC OLD PIV PT?	Begin
5	[R/S]	OLD 2ND PT?	
24	[RS]	NEW PIV PT?	
1	[R/S]	NEW 2ND PT?	only have coordinates
	[R/S]		
277,469.2663	[R/S]		
1,799,589.752	[RNS]	FROM PTNO?	
5	[RNS]	TOPTNO?	
8	[R/S]	NOF:T	
10	[C]	FROM PTNO?	
11	[R/S]	N O F:T	
9	[B]	N O F:T	new system to old system
24	[A]	N O F:T	old system to new system end of example.

PRINTOUTS

EXAMPLE 1:	EXAMPLE 2	
FILE: ABC	FILE: ABC	
OLD	OLB	OLD
H1 $=580.08988$	N5 $=1,080.0898$	$N 19=859.9888$
$E 1=509.8808$	E5=1,800.0898	$E 18=1,159.8990$
NEM	HEM	HEN
H1=288,857.3480	H5=280, 857.3499	N18 $=279,873.6365$
$E 1=1,789,938.929$	$E 5=1,789,939.929$	$E 18=1,798,836.990$
OLD	OLD	OLD
H2=685. 2998	H6=1,880.8899	H11 $=858.8080$
E2=852. 2982	E6=1,180.8898	E11 $=959.9980$
HEX	HEX	NEM
N2=288,239.6852	H6=280, 031.4593	H11 $=279,925.3988$
E2 $=1,798,284.684$	$E 6=1,798,827.517$	E1I $=1,789,843.814$
0LD	OLD	HEN
M3=443.4519	N7=909.8099	N9 $=279,978.2248$
$E 3=1,145.5769$	$E 7=1,180.8009$	$E 9=1,790,862.871$
HEN	HEW	OLD
$N 3=279,995.5885$	H7=279,934.8718	H9=956.0809
$E 3=1,798,576.888$	$E 7=1,798,801.636$	$E 9=1,150.8860$
OLD	OLD	
H4=289.1257	H8=900.9800	H24=1,080.8988
$E 4=825.9039$	E8=1,800.0880	$E 24=11,898.9888$
NEH	NEW	HEN
H4=279,843.8538	48=279,960.7518	H24=277,469.2663
$E 4=1,790,255.106$	$E 8=1,789,995.848$	$\mathrm{E} 24=1,799,589.752$

SUCCESSIVE POINTS AND RADIAL STAKEOUT

These programs calculate the horizontal distance, the field angle right, the field angle right doubled, the bearing, and azimuth of either successive points or from a fixed point.

RADIAL POINTS

STEP	INSTRUCTIONS	INPUT	KEYS	DISPLAY
$\begin{aligned} & 1 \\ & 1 a \end{aligned}$	Begin Successive Points. OR Begin Radial Stakeout. The working file's name is displayed for one second and printed if printer is on line.		$\begin{aligned} & \text { [XEQ] SSP } \\ & \text { [XEQ] RSO } \end{aligned}$	FILE: ABC FILE: ABC POB?
2	Input the point that will be occupied first.	Pt \#	[R/S]	BSPTNO?
3	Input the point you wish to backsight. OR if you wish to input a back bearing or azimuth press [R/S] without prior data entry to the prompt. (If you input an azimuth press [R/S] without prior data entry to the "QD?" prompt.)	Pt\# Brgor Az Quadrant	$\begin{aligned} & \text { [R/S] } \\ & \text { [R/S] } \\ & \text { [R/S] } \\ & \text { [R/S] } \end{aligned}$	NEXT PT NO? or FSPTNO? BK BRG? QD? NEXT PTNO? or FS PT NO?
4	Input the next successive point number, or the radial point you wish to foresight.	Pt\#	[R/S]	$\mathrm{HD}=$
5	Output. Horizontal distance; and the angle right; and angle right doubled; and bearing; and azimuth.		$\begin{aligned} & {[\mathrm{R} / \mathrm{S}]^{*}} \\ & {[\mathrm{R} /]^{*}} \\ & {[\mathrm{R} /]^{*}} \\ & {[\mathrm{R} /]^{*}} \\ & {[\mathrm{R} / \mathrm{S}]^{*}} \end{aligned}$	* $1=$ *2 $=$ "BEARING" $A Z=$ NEXT PT NO? or FS PTNO?
6	Go to step 4. OR If you do not need all of the output supplied you may input the next point when you wish.	Pt\#	$\begin{aligned} & {[\mathrm{E}]} \\ & {[\mathrm{R} /]^{\star}} \end{aligned}$	$H D=$ etc.
7	You may switch between SSP and RSO at will. The backsight will be the same as the previous solution. SSP sets flag 1, RSO clears flag 1.		$\begin{aligned} & {[J]} \\ & {[J]} \end{aligned}$	NEXT PTNO? FSPTNO? NEXT PTNO?
8	For a new case. Go to step 2.		[A]	POB?

*This [R/S] not necessary is printer is on line.

STEP	INSTRUCTIONS	INPUT	KEYS	DISPLAY
1	Storing coordinates: Select the enter and assign key.		[d]	NEW PTNO?
2	input desired point number.	Pt \#	[R/S]	N?
3	Input northing of point.	N	[R/S]	E?
4	Input easting of point.	E	[R/S]	NEW PT NO?
5	If you have more coordinates to store go to step 2; if you are finished storing coordinates press [R/S] without prior data entry after any prompt to return to the SSP/RSO program.		[R/S]	POB?
6	If the point number has already been used you will hear a tone and see: You can either input a new point number, or press [R/S] without prior data entry to use the point number again.	Pt\#	[R/S] [R/S]	\#.USED NEW PTNO? NEW PTNO?
7	If you hear a tone and see: This means the point number does not fall within the point range of the working file. Input a point number that does.	Pt\#	[R/S]	Pt\#-Pt\#*P\# NEW PTNO?
1	Displaying coordinates: Input the point number of the coordinates you wish to display. Display nothing.	Pt\#	[D]	N\# $=$
2	Display easting. This step must be performed to return to the calling program.		[R/S] ${ }^{*}$	E\#=
3	You have retumed to the SSP/RSO program.		[R/S]	POB?

*This [R/S] not necessary if printer is on line.
$\left.\begin{array}{|ll|ll|}\hline \text { DATA REGISTERS: } & \text { FLAGS: } & \\ \text { \# } & \text { SSP/RSO } & \text { \# } & \text { SET INDICATES }\end{array} \quad \begin{array}{l}\text { CLEAR INDICATES } \\ 00 \\ \text { back az (HMS) }\end{array}\right)$

Example 1: A successive point problem. Store necessary coordinates first.

INPUT	KEYS	DISPLAY	COMMENTS
16 15 17 18	[XEQ] SSP [RS] [R/S] [R/S] [RSS] ${ }^{*}$ [R/S] ${ }^{*}$ [R/S] ${ }^{*}$ [RSS] $[R / S]^{*}$ [RS] [R/S] ${ }^{*}$ [RNS] ${ }^{*}$ [RST] $\left.{ }^{[R / R S}\right]^{+}$	FILE: ABC POB? BS PTNO? NEXT PT NO? HD=134.5362 *1=281.0834 *2=202.1709 S 41.5914 E $A Z=138.0046$ NEXT PTNO? HD=119.2686 * $1=75.0040$ $\star 2=150.0120$ N33.0126E $A Z=33.0126$ NEXT PTNO?	Begin input occupied PT\# output output

-This [RJS] not necessary if printer is on line.
Example 2: A radial stakeout problem. Store necessary coordinates first. No printer.

INPUT	KEYS	DISPLAY	COMMENTS
$\begin{aligned} & 16 \\ & \\ & 36.5212 \\ & 3 \\ & 17 \\ & \\ & 18 \end{aligned}$	[XEQ] RSO [R/S] [R/S] [RS] [R/S] [R/S] [R/S] [${ }^{[1]}$ [R/S] [R/S] [RS] [RNS [RS]	FILE: ABC POB? BS PT NO? BK BRG? QD? FS PT NO? HD=134.5362 * $1=281.0834$ $H D=155.0000$ $\$ 1=233.0748$ $\Varangle 2=106.1536$ S90.0000 E AZ $=90.0000$ FS PTNO?	Begin use back bearing output all i want end of example.

Example 3：A combination problem．Store necessary coordiates first．No printer．

INPUT	KEYS	DISPLAY	COMMENTS
	［ ${ }^{\text {］}}$	POB？	Begin，program should still be in the RSO program
16	［R／S］	BS PTNO？	use back azimuth
	［R／S］	BKBRG？	
216.5212	［R／S］	QD？	
	［R／S］	FSPTNO？	
17	［R／S］	HD＝134．5362	
	［R／S］	\＄1＝281．0834	
	$[\mathrm{J}]$	NEXT PTNO？	switch to SSP
18	［R／S］	HD＝155．0000	
	［R／S］	\＄1 $=233.0748$	
	［ $]$	FS PTNO？	switch to RSO
19	［R／S］ ［RS］	$\begin{aligned} & H D=122.0656 \\ & k 1=235.0029 \end{aligned}$	end of example．

PRINTOUTS

EXAMPLE 1：
FILE：ABC
16 BS 15 FS 17
$H D=134.5362$
$\triangle 1=281.0834$
$\leq 2=282.1799$
S 41.5914 E
$\mathrm{AZ}=138.9046$
：7 BS 16 FS 18
$H D=113.2686$
$\Delta 1=75.8948$
$\Delta 2=158.8120$
N $33.0125 E$
$A Z=3.3 .8126$

EXAMPLE $2:$
FILE：ABC
$A Z=216.5212$
16 BS AZ FS 17
$H D=134.5362$
く1 $=281.9834$
$\angle 2=282.1788$
S 41.5914 E
$A Z=138.8045$
16 BS AZ FS $1 \overline{8}$
$H D=155 . \quad$ ARA日
$41=233.9748$
$\leq 2=186.1536$
S 90. 9月 0 E
$\mathrm{Hz}=90.9 \mathrm{~A} 90$

EXAMPLE $3:$

$A Z=216.5212$
16 BS AZ FS 17
$H D=134.5362$
$\triangle 1=281.8834$
$\Delta 2=292.1798$
S 41.5914 E
$A Z=138.4246$
$168 S A 2 F S 18$
$H D=155.80 日 M$
$\leq 1=233.07748$
$\Delta 2=186.15 .36$
S 90.09 Añ E
$A Z=9 Q . B A B Q$

18 PS 16 FS 19
$H D=122.8656$
$\Delta 1=235.6929$
$\Delta 2=110.8057$
334.5931 E
$A Z=145.9029$

INTERSECTIONS

This program calculates the missing data of various intersections between two lines. The coordinates generated may then be stored in the working file.

BEARING-BEARING

DISTANCE - DISTANCE
(TWO SOLUTIONS)
 (Two solutions

BEARING - DISTANCE
(TWO SOLUTIONS)
BEARING - DISTAN
(TWO SOLUTIONS)

OFFSET

STEP	INSTRUCTIONS	INPUT	KEYS	DISPLAY
1	Begin. The working file's name is displayed for one second and printed if printer is on line.		[XEQ] INTS	FILE: ABC BB BD DDCO
2	Select type of intersection:			
	Bearing-Bearing;		[A]	1STPTNO?
	or Bearing-Distance;		[B]	1STPTNO?
	or Distance-Distance;		[C]	1STPTNO?
	or Store coordinates;		[d]	NEW PTNO?
	or View coordinates;		[D]	N\#= 1STPTNO?
	or Offset from a point to a line.		[$]^{\text {] }}$	1STPTNO?
3	Input first point number.	Pt\#	[R/S]	
	For Bearing-Bearing go to step 4;			
	For Bearing-Distance go to step 5; For Distance-Distance go to step 6;			
	For Offiset go to step 7 .			
4	Bearing-Bearing intersection:			2ND PT NO?
	Input second point number;	Pt \#	[R/S]	BRG 1?
	and input bearing or azirnuth from first point,	BrgorAz	[R/S]	QD?
	and quadrant code, (if you input an azimuth press [R/S] without prior data entry in		[R/S]	BRG 2 ?
	press [R/S] without prior data entry in response to the "QD?" prompt);			
	OR if you wish to input a line point			
	press [R/S] without prior data entry to the			BRG 1?
	"BRG 1?" prompt,		[R/S]	LINE PTNO?
	and input line point number;	Pt\#	[R/S]	BRG 2?
	and input bearing or azimuth from second point,	BrgorAz	[R/S]	QD?
	and quadrant code, (if you input an azimuth		[R/S]	"BRG 1-3"
	press [RSS] without prior data entry in			(output)
	response to the "QD?" prompt);			
	[R/S] without prior data entry to the			
	"BRG 2?" prompt,		[R/S]	LINE PTNO?
	and input line point number.	Pt\#	[R/S]	"BRG 1-3"
	Go to step 8.			(output)
5	Bearing-Distance intersection:			2ND PT NO?
	Input second point number;	Pt\#	[RS]	BRG 1?
	and input bearing or azimuth from first point,	BrgorAz	[RS]	QD?
	and quadrant code, (if you input an azimuth		[RS]	D2?
	press [R/S] without prior data entry in			
	response to the "QD?" prompt); OR if you wish to input a line point press			
	[R/S] without prior data entry to the			BRG 1 ?
	"BRG 2?" prompt,			LINE PTNO?
	and input line point number;		[RS]	
	and input distance from point 2.	Distance	[R/S]	"BRG 1-3"
	Go to step 8.			(output)

STEP	INSTRUCTIONS	INPUT	KEYS	DISPLAY
6	Distance-Distance intersection: Input second point number; and input distance from first point; and input distance from second point. Go to step 8.	Pt\# Distance Distance	$[\mathrm{R} / \mathrm{S}]$ $[\mathrm{R} / \mathrm{S}]$ $[\mathrm{R} / \mathrm{S}]$	2NDPTNO? D1? D2? "BRG 1-3" (output)
7	Offset from a point to a line intersection: Input bearing or azimuth from first point, and quadrant code, (if you input an azimuth press $[R / S]$ without prior data entry in response to the "QD?" prompt); OR if you wish to input a line point press [R/S] without prior data entry to the "BRG 1?" prompt, and input line point number; and input offset point number.	Brgor Az ad Pl\# Pi\#	[R/S] [R/S]	BRG 1 ? QD? OFS PTNO? BRG 1 ? LINE PTNO? OFS PTNO? "BRG 1-3"
8	Output. Bearing and distance from point 1 , and bearing from point 2 , and distance from point 2.		$\begin{aligned} & {[\mathrm{RS}]^{*}} \\ & {[\mathrm{R} /]^{*}} \\ & {[\mathrm{PR}]^{*}} \\ & {[\mathrm{R} / \mathrm{S}]^{+}} \end{aligned}$	$\begin{aligned} & \text { D1= } \\ & \text { "BRG 2-3" } \\ & \text { D2= } \\ & \text { NEW PTNO? } \end{aligned}$
9	If you wish to store the coordinates of the intersection point, input new point number. OR if you do not wish to store the new coordinates either press [R/S] without prior data entry or input a zero as your point number. The northing will be output.	Pi\#	[R/S] [R/S]	N\#= NEW PTNO? $\mathrm{NO}=$
10	Output easting. This step must be performed to return to INTS program.		[$R / S]^{*}$	$E \#=$ or $E 0=$
11	If a second solution exists press [R/S]. The results are output as in steps 8-10. If a second solution does not exist the program will stop, press [R/S] again and go to step 2. OR		[R/S]	"BRG 1-3" (output)
11a	If you are executing an offset intersection you will be prompted for a new offset point.		[R/S]	OFS PTNO?
12	For a new intersection problem you may press the appropriate local Alpha label OR press.		[a]	BBBDDDCO

- This [RJ] not necessary if printer is on line.

STEP	INSTRUCTIONS	INPUT	KEYS	DISPLAY
1	Storing coordinates: Select the enter and assign key.		[d]	NEW PTNO?
2	Input desired point number.	Pt\#	[R/S]	N?
3	Input northing of point.	N	[R/S]	E ?
4	Input easting of point.	E	[R/S]	NEW PTNO?
5	If you have more coordinates to store go to step 2; if you are finished storing coordinates press [R/S] without prior data entry after any prompt to retum to the INTS program.		[R/S]	BB BD DDC 0
6	If the point number has already been used you will hear a tone and see: You can either input a new point number, or press [R/S] without prior data entry to use the point number again.	Pt\#	[R/S] [R/S]	\#. USED NEW PT NO? NEW PT NO?
7	If you hear a tone and see: This means the point number does not fall within the point range of the working file. Input a point number that does.	Pt\#	[RUS]	Pt\#-Pt\#*Pt\# NEW PTNO?
1	Displaying coordinates: Input the point number of the coordinates you wish to display. Display nothing.	Pt\#	[D]	N\#=
2	Display easting. This step must be performed to return to the calling program.		[R/S] ${ }^{*}$	E\#=
3	You have returned to the INTS program.		[R/S]	BBBDDDCO
1	Storing coordinates in mass storage: If a mass storage device is on line you may store the working file's coordinates. The files must have the same name and point numbers.		[H]	STANDBY
2	When finished the calculator will beep and restart the INTS program.			FILE: ABC BBBDDDCO

* This [R/S] not necessary if printer is on line.

DATA REGISTERS:				FLAGS:	
	INTS				CLEAR
$\stackrel{\#}{0}$	N1	08	az 2-3 (HR)	05 offset/BRG1	indICATES no offset/BRG2
01	$E 1$	09 10	HD 2-3 N3		
02	$\begin{aligned} & \text { az 1-2 (HR) } \\ & \text { HD 1-2 } \end{aligned}$	10	$\begin{aligned} & \text { N3 } \\ & \text { E3 } \end{aligned}$		
04	N2	12	scratch	STATUS:	
05	E2	\cdots			
06	az 1-3 (HR)	15	pt \# pointer	SIZE 016, FIX	DEG, USER.
07	HD 1-3				

Example 1: A Bearing-Bearing intersection problem. Store necessary coordinates first.

*This [R/S] not necessary if printer is on line.
Example 2: A Bearing-Distance intersection problem. Store necessary coordinates first.

INPUT	KEYS	DISPLAY	COMMENTS
	[XEO] INTS	FILE: ABC	Begin
		BBBDDDCO	select BD
15	$[B]$	1STPTNO?	
19	$[R / S]$	2NDPTNO?	use line point
	$[R / S]$	BRG1?	
21	$[R / S]$	LINEPTNO?	first solution output

INPUT	KEYS	DISPLAY	COMMENTS
20	[R/S] ${ }^{\text {+ }}$	D1=319.7960	
	[R/S] ${ }^{+}$	N2.1004E	
	[R/S] ${ }^{\text {+ }}$	D2=100.0000	
	[R/S] ${ }^{\text {P }}$	NEW PT NO?	none, want second solution
	[R/S]	NO $=599.9284$	
	[R/S]*	E07803.7825	
	[R/S] ${ }^{\text {a }}$	N71.4729E	second solution output
	$\left.{ }^{[R / P S}\right]^{*}$	D1=250.1595	
	${ }^{\text {[R/S }}$ [${ }^{+}$	N38.3505 W	
	[RSS] ${ }^{*}$	NEW PT NO?	use 20
	[RS]	20. USED	use again
	[R/S]	N20 578.1687	
	[R/S] ${ }^{+}$	E20 20737.6329	
	[RIS ${ }^{-}$	737.6329	
	[RS]	BB BD DD Co	end of example.

*This [RSS] not necessary if printer is on line.
Example 3: A Distance-Distance intersection problem.

INPUT	KEYS	DISPLAY	COMMENTS
$\begin{array}{\|l\|} 15 \\ 19 \\ 236.1 \\ 252.9 \end{array}$	[XEQ]INTS [C] [RS] [RS] [RUS] [R/S] [RUS] ${ }^{*}$ [PVS]* $[\mathrm{R} / \mathrm{S}]^{*}$ $[\mathrm{R} / \mathrm{S}]^{*}$ [RUS] [RUS] ${ }^{+}$	FILE: ABC BB BDDDCO 1ST PTNO? 2ND PTNO? D1? D2? S35.1547E D1=236.1000 S40.2007 W D2=252.9000 NEW PTNO? $\mathrm{N}=307.2220$ $E 0=636.3080$	Begin select DD first solution output none, want second solution

INPUT	KEYS	DISPLAY	COMMENTS
20		N35.1547E D1=236.1000 N 40.2007 W D2=252.9000 NEW PTNO? 20. USED $\mathrm{N} 20=692.7780$ E20=636.3080 636.3080 BB BD DDCO	second solution output use 20 I know end of example.

* This [R/S] not necessary if printer is on line.

Example 4: An Offset from a point to a line problem. Store necessary coordinates first.

\begin{tabular}{|c|c|c|c|}
\hline INPUT \& KEYS \& DISPLAY \& COMMENTS

\hline 15
21
19

23 \& \& \begin{tabular}{l}
FILE: ABC

BB BDDDCO

1ST PTNO? BRG1?

LINE PTNO?

OFS PT NO?

N71.4729E

D1=284.9777

N18.1231 W

D2=93.7427

NEW PT NO?

$\mathrm{NO}=589.0486$

E $0=770.7077$

OFS PTNO?

N71.4729E

D1=203.9216

S 18.1231 E

D2=11.8741

NEW PTNO?

$\mathrm{NO}=563.7205$

$\mathrm{E} 0=693.7104$

OFSPTNO?

 \&

Begin select 0

use line point use 21

first offiset output

none

second offset output

none

end of example.
\end{tabular}

\hline
\end{tabular}

[^4]
PRINTOUTS

EXAMPLE 1:	EXAMPLE $2:$	EXPMPLE 3:	EXAMPLE
FILE: ABC	FILE: ABC	FILE: ABC	FILE: RBC
$\text { N } 35.1539 \mathrm{E}$	N 71.4729 E	S 35.1547 E	N 71.4729 E
$D 1=236.8761$	$D 1=319.7960$	D1=236.1099	$D 1=284.9777$
N 48.2938 H	N 2.1084 E	S 40.2087 W	N $18.123 i$ W
$\mathrm{D} 2=252.9130$	$\mathrm{D} 2=188.8080$	$\mathrm{D} 2=252.9898$	$02=93.742$?
$\mathrm{N} 28=692.7697$	$N 8=599.9284$	$N 8=387.2229$	$N 8=599.6486$
$E 28=636.2782$	$E 9=893.7825$	$E 9=636.3080$	$E 8=770.7977$
	$\text { N } 71.4729 \text { E }$	$\text { N } 35.1547 \text { E }$	$\begin{aligned} & N 71.4729 E \\ & D I=293.9216 \end{aligned}$
	$D 1=258.1595$	$D 1=236.1880$	$D I=293.9216$
	$N 38.3505$ N	N 40.2007 H	S 18.1231 E
	$\mathrm{B} 2=189.8980$	D2=252. 9808	02=11.8741
	$N 20=578.1687$	$N 20=692.7780$	$N 0=563.7285$
	E28=737.6329	$\mathrm{E} 28=636.3089$	$E 8=693.7184$

SUBROUTINES

These subroutines will consume two bytes each when used in a program. They may also be assigned to a User key.

Label A-B
This subroutine converts an azimuth to a bearing.
... from this ...
$\begin{array}{ll}\mathbf{T} & \mathbf{T} \\ \mathbf{Z} & \mathbf{Z} \\ \mathbf{Y} & \mathbf{Y} \\ \mathbf{X} & \text { Azimuth (HMS) }\end{array}$
.. to this.
T T
Z Z
Y Y
X bearing (HMS)
ALPHA "BEARING"

Label B-A

This subroutine converts a bearing to an azimuth.

... from this ...

\mathbf{T}	\mathbf{T}
\mathbf{Z}	Z
\mathbf{Z}	Bearing (HMS)
\mathbf{X}	Quadrant code

... to this.
T T
Z T
Y Z
X azimuth (HMS)

Label P?
This subroutine puts into the Alpha register the point number limits of the working file and the current point number stored in register 15 . It is up to the calling program to display.

ALPHA: "1-50*34" (This means the working file is from point 1 to 50 and the current point number is 34 .)

Label MG
This subroutine will pause and display the Alpha register, and if the printer is on line, it will be printed.

Label FL?
This subroutine will pause and display the working file's name, and if the printer is on line, it will be printed.

Label Q?

This subroutine prompts for a quadrant code input, if none is input (i.e. [R/S] is pressed without prior data entry) the routine will assume an azimuth in the \mathbf{X}-register and return, if a quadrant code was input it will be converted to an azimuth and return.

Label P1
This subroutine clears flag 22 and appends to the Alpha register " PT NO?" and returns. It is up to the calling program to prompt or display.

Label P2
This subroutine clears flag 22 and appends to the Alpha register " BEG NO?' and returns. It is up to the calling program to prompt or display.

Label M1
This subroutine adds 180° to the angle (HMS) in the X-register and then does a modulo 360°.
Label M3
This subroutine does a modulo 360° to the angle (HMS) in the X-register.
Label IZ
This subroutine is used to initialize a program. Besides setting various flags it also checks for a minimum size of 19 registers. It partially disturbs the stack, the X - and Y -registers are maintained.

43*LSL - $12{ }^{-}$	59 SIZE?
44 FIS 4	5119
45 DEC	52 XPY ?
46 SF 21	53 PSIZE
47 SF 27	54 Rt
48 SF 28	55 Rt
49 SF 29	56 RTN

Label ?Y

This is a yes/no question routine. The subroutine appends "?Y" to the message in the Alpha register then displays the message and waits ten seconds for a key to be pressed. If the answer is yes press the " Y " key, flag 10 will be set and return to the calling program. If any other key is pressed or if ten seconds pass the answer is assumed to be no, flag 10 will be cleared and retum to the calling program. The subroutine partially disturbs the stack, the X - and Y -registers are maintained.

Label Sc
Label Rc See coordinate management.

Label EA
This is an " Enter and Assign " coordinates subroutine. The program will prompt for a "NEW PT NO?", "N?" (northing), and "E?" (easting), then check if the point number is already used, if not store the coordinates in the working file of the extended memory. To return to the calling program press $[R / S]$ without prior data entry after any prompt.

Label f
This subroutine returns, from the working file, the coordinates assigned to the point number in the X -register to the Y - and X-registers.
... from this ...
T T
Z Z
Y Y
X Point number
... to this.
$T Z$
$Z \quad Y$
Y Northing
X Easting

Label \%

This subroutine is used to aview or print coordinates. The northing and easting must be in the Yand X-register and the point number stored in register 15 . Both coordinates must be aviewed before the subroutine returns to the calling program.

Label ?
This subroutine is used to store new coordinates. The northing and easting to be stored must be in the Y- and X-register upon entry to ?. The program will prompt for a "NEW PT NO?", (if [R/S] is pressed without prior data entry, the subroutine will return to the calling program) the new point number (zero is not a point number) will be stored in register 15, flag 10 will be cleared indicating to
check if the new point number has already been used, and then the subroutine will execute Label $\$$ before retuming to the calling program.

Label \$

This subroutine is used to store coordinates into the working file. Upon entry the northing and easting must be in the Y - and X-registers, the point number to be used must be stored in register 15 (zero is not a point number), also flag 10 is used, if flag 10 is clear $\$$ will check if the point number has already been used, if flag 10 is set $\$$ will not check if the point number has been previously used. If the point number has been used you have the opportunity to input another point number or use the point number again. Also the subroutine makes a check to see if the point number is within the point number range of the working file, if not the subroutine will stop for a new point number input. When the subroutine returns to the calling program the northing and easting are in the Y - and X-registers.

USE PT No AGAIN

[^0]: *This [RJS] not necessary if printer is on line.

[^1]: * This [R/S] not necessary if printer is on line.

[^2]: - This [R/S] not necessary if printer is on line.

[^3]: *This [R/S] not necessary it printer is on line.

[^4]: *This [R/S] not necessary if printer is on line.

