TRAVERSE, INVERSE and SIDESHOTS A POINT STORAGE CONVERSION for the HP-41CV/CX SURVEYING PAC

Copyright © 1987 by Ted J. Kerber
All rights reserved. No part of this work covered by the copyright hereon may be reproduced or used in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems - without written permission of the author.
published by D^{0} Zingin Land Survey 2 Development
Pacifica, California 1987

ISBN 0-9616846-4-X

Introduction

Someone once said, "Find a need, and fill it" That, in essence, is what these booklets are all about. To fill the need for software in the field.

Every new book we have published has prompted response that the user wishes that it had ALSO included a program for Or, "l only need the programs for spirals, I haven't tried the rest of them yet."

Most people will buy one of our books for a particular program that it contains, not because they need all of the programs in that particular book. Those comments prompted this series of "do it yourself" booklets. You only buy the ones you have a need for.

This book contains editing procedures for turning your HP Surveying Pac into a point storage system, and instructions for modifying the TRAVERSE, INVERSE AND SIDESHOT program of the Surveying Pac into a system that can store $100+$ coordinate pairs in memory.

Coordinates may be recalled by point number after a traverse has been run, to do further calculations, and the results of those calculations are also stored.

You need a 41, a survey pac and a little time for editing the programs. Extended memory is NOT .needed for point storage.

An added feature of the Traverse modification is an AUTOMATIC COMPASS CORRECTION subroutine.

This book has been published in two versions, one with and one without magnetic cards enclosed. If you have the version with the cards, you will still find the editing lists helpful, and you can further modify the programs to suit your particular needs.

Utility Programs

The Traverse, Inverse and Sideshots frogram contained in your HP Surveying Pac will respond in exactly the same way you are accustomed to, with all of the prompts and responses exactly as shown in the instruction manual you received with your module. At the same time, it will be storing the coordinate values for later use.

An automatic Compass Rule Adjustment program has been included in the modifications. When used, it replaces the original coordinate pairs with the adjusted pairs, and automatically outputs the adjusted bearings and distances of the courses.

The unadjusted data may be written to a data card, stored in extended memory or external memory before adjusting if you like.

There are three short UTILITY programs which must be in program memory as part of the operating system. Two are used for point number manipulation and one is used for automatically inversing between any stored coordinate pairs. A really fast layout routine with pre-stored coordinates.
"Point IN" (PIN) allows direct storage of point-numbered coordinates. "Point OUT" (POUT) will recall any coordinate pair whose point number is in the x-register when executed.

For convenience, assign these utility programs to the keyboard. They are assigned to the shifted functions of the button. as shown to the left.

These programs may be keyed in at any time, and should be left in program memory when ANY of the other routines are being used. The program for radial inversing is called "XX".

Let's begin by typing in the utility programs. Before beginning, execute a GTO.. and enter program mode by using the following keystrokes:

Your display should show 00 REG and a number. NNN. This last number is the number of program registers left in memory. For this program you will need 21 registers available. Type in the program steps shown in the listing below.*

*	22*LBL -PGUT*	44 *
81*LBL - XX	23 Sto 13	4519
02 XROM **1N-	24*LBL "OUT"	$46+$
83 XEQ -C**	25 RCL 13	47 X (>Y
84 CF 18	262	48 STO IND Y
85 KEQ -POUT*	27 *	49 RDN
86 XROH - NE ${ }^{\text {c }}$	2819	501
87 AYIEH	$29+$	$51-$
88 ADY	30 EMTERT	52 XC \% Y
89 ST0 88	31 ENTER	53 STO IND Y
16 RDH	321	54 RTH
11 STO 87	$33-$	55*LBL * C**
12+L8L 83	34 RCL IND X	56.819
13 CF 01	35 RCL IHD 2	578
14 - 70 ? ${ }^{\text {P }}$	36 RTH	580LBL 11
15 PROMPT	37-LBL -PIN"	59 STO IND Y
16 XEQ "POUT*	38 SF 18	68 ISG Y
17 DSE 13	39 STO 13	61 GTO 11
18 STO X	40 XROM -NE*	62 RDN
19 XROM -INYERSE*	$41+L B L=1 N^{-}$	63 RDN
20 GT0 03	42 RCL 13	64 RTN
21 RTN	432	65 END

The steps, XROM "NE" and XROM "INVERSE", are put in as XEQ "NE" and XEQ "INVERSE". The calculator will change the XEQ to XROM for you. For instance, the keystrokes for input of program step 06 are

xEO ALPHA N E ALPHA

Any portion of a program step which is included in quotation marks (" ") indicates that it is alpha input, and must be input with the calculator in alpha mode.
*If your edition of this book includes program cards, see Appendix A.

User instructions

The only program steps which might give you trouble are the "indirect" store and recall instructions. An example of the input for these is program step 34, which is input by keystroking

RCl

\square - 6

The only other one that may be misleading is step $49, \mathrm{RDN}$, this is the printout for "rolldown", and is shown on the keyboard as Rt. The symbol at each label is inserted by the calculator, and you don't need to input it.

Next, let's assign these programs to the keyboard so that we can try them out. Keystroke

Size your calculator to 040, and we'll input some coordinates by point number, using "PIN" (assigned to the shifted CHS key, \#-42). The keystroke instructions are as follows:
$1 . \quad$ Input the point number, and stroke
$2 \mathrm{NX}=$?
Input the north coordinate for the point, and stroke

R/S

3
EX=?
Input the east coordinate for the point, and stroke

R/S

That's all there is to it! Continue in the same manner until all of your coordinates have been stored. We'll do some keystroke examples on the next page, inputting a few coordinate pairs to practice with.
"XX" uses both of the shorter programs as sub-routines, and taps the Surveying Pac to do the inversing between the points. In the keystroke procedures which follow. it is assumed that "XX" has already been assigned to key \#-41, the shifted CHS key. Just follow these simple steps:

1

2
Input the beginning point number, and stroke

CHS
output: $\mathbf{N} \mathbf{x}=\mathbf{X X X X X} . \mathbf{x x x x}$

3
If a printer is attached the output is automatic. If no printer is present keystroke

R/S
output: EX=XXXXX.XXXX TO?
4
Input the point number of the point you are inversing to, and stroke

R/S
output: AZ=DDD.mmss*

5
Stroke
R/S
output: $H D=X X X . \times x \times x$
6**
Stroke**
R/S
output: $\mathbf{N y}=\mathbf{X X X X X} \mathbf{X x X x}$
7**
Stroke**
R/S
output: $\mathbf{E y}=\mathbf{X X X X X} \mathbf{X X X X}$
*Bearing output will be shown instead of azimuth when flag 00 is set.
**These last two steps are automatic with the printer attached. If no printer is present, continue stroking R/s until the prompt to? appears.

Keystroke Examples

Continue calculating RADIAL ties by inputting the next point number each time the TO? prompt appears, and stroking

You may also use this routine to do an inverse traverse between pre-stored points. The program will "move up" to the new point when FLAG 01 is set.

For INVERSE TRAVERSE: Each time the TO? prompt appears, input the next point number and stroke

For examples of how this program group works, first we'll input the point numbers from the illustration below, using "PIN".

keystroke:

prompt: $\mathbf{N} \mathbf{1 =}$?
keystrokes:

keystrokes:
 keystrokes:

keystrokes:
155 a/s
keystrokes:
keystrokes:

keystrokes:

prompt: E4=?
keystrokes:
130 R/S
We now have all of the points in storage. We'll use these points for the next two examples, starting with an example of radial inversing.

Using point \#1 as the "setup" point, we may calculate radial ties to each of the other points (FLAG 01 is clear) as follows:
keystrokes:

N1 $=108.8088$ $E I=100.8080$
prompt: TO?
keystrokes:
2 R/S
output:
$A 2=8.3151$ HD=191.118?
$\mathrm{N}=280.88 \mathrm{Be}$ E2=115.0900
prompt: TO?
keystrokes:
output:
$A Z=82.1485$
$H D=111.8180$
N3=115.0800
E3=210.0000
*
prompt: TO?
keystrokes:
4 R/S
output:
$A Z=153.2686$ $H D=67.9828$

H4=40.0988
E4=130. 9000
prompt: TO?
*An additional Res will be needed if used without printer

Keystroke Examples

We'll use the same stored coordinates to do a keystroke example of an INVERSE TRAVERSE, using "XX". The only difference between this example and the last is that we set FLAG 01 each time, prior to entering the point number.

We will also set FLAG 00 before we start, to have bearing output instead of azimuth.
keystrokes:

keystrokes:

output: \quad N 8.3151 E $H D=101.1187$
$N 2=206.80006$
$E 2=115.90000$

* prompt: TO?
keystrokes:

output:
548.1847 E HD=127.4755
$N 3=115,0090$
E3=218. 9090
prompt: TO?
*An additional Res will be
needed if used without printer

keystrokes:

output :
§ 46.5851 N $H D=189.6586$
$\mathrm{N}=40 . \mathrm{RO日g}$
E4=130. 8080
* prompt: TO?
keystrokes:

To use "POUT", simply input the point number. and stroke \qquad ECL. This recalls the point's coordinates to the x and y registers. The Easting will be displayed, and you may verify that the northing is in the y-register by stroking either Xzv or Rt.

The time has come to modify our Surveying Pac traverse program. Do a GTO.. and shift into program mode for a minute, stroking PRGM. Check to insure that you have enough available registers (you will need at least 80), then stroke prgm again.

We want to copy the program "TRAV" from the Surveying Pac. and this is done by stroking

XEO ALPHA C C O Y ALPHA

at the prompt: ALPHA \mathbf{T} R A \mathbf{R} ALPHA
Next, go to program step 001 by stroking

The display should say 001 LBL TRAV. Stroke USER so that you are not in user mode (the shifted "STO" function is assigned to "PIN" right now) and type in

This has renamed the program "TRA", and deleted the old name. The revisions to the existing program will be done from the bottom, working upward through the program steps, so that we can keep our program step numbers easy to find. Now, follow these steps in the order shown:

1. Stroke

to go to program step 275. Use
the - key to delete steps 275
thru 268, and type in
 Eex to have RTN at step 268.
2. Go to step 208 by stroking

Editing the Surveying Pac

$170 \ldots \mathrm{O}$
$191+$

192 XEQ 05
193 RDN
194 RCL 13
195 ENTER \uparrow
196 CF 81
197 CLA
198 ㅇ CORR-
199 ASTO 13
209 SF 10
281 XROM "NE*
282 -Closure
203 R \dagger
294 STO 13
285 RDN
286 AVIEM
207 XEQ a
288 SF 81
289 STOP

replace with
168 XROM "INYERSE -
3. Go to step 181 and delete program steps 181 thru 168. Type in XEQ "INVERSE"; backstep. and add these steps
 1681 169 ST- 13 170 RDN
4. Go to program step number 157 (RTN) and delete all of the program steps thru step 102 (RCL 00), backstep and delete step number 100 (LBL "TS").

Singlestep once (the display should now show 100 LBL D) and type in these steps: 101 KROC 182 REQ "IN" 183 RTE

5. Go to step number 042 (CF 01). We want to insert the steps shown to the left between steps
 42 and 43 ("SS").
6. If you Single Step ahead as a check, the next step should now read 48 "SS". Step 49 should be AVIEW. and step 50 should be RTN.

Editing the Surveying Pac

7. Backstep to step 023 (XROM "NE"), delete all of the program steps thru step 17 (SF 10).

Type in the new steps shown to the right.

8. Go to step 010 (LBL 12) and delete it. $18+8 \in-12$

Go to the end of the program. As a check, this should be program step 207 END. If it isn't, recheck the steps so far, and correct any errors.

Backstep to program step 206 and type in the following program steps:

297 RTN	222 ADY
298*LBL "INY"	223 RTH
289 RCL 88	$224 \times$ BL ${ }^{-60}$
218	225
$211 \mathrm{X}\rangle Y$	226 ST0 11
212 RCL 87	227 ST0 14
213 -	228 ST0 15
214 R-P	229 -BEG. PT. *
215 - $\mathrm{HD}={ }^{\text {- }}$	238 PROMPT
216 ARCL X	231 XEQ -POUT:
217 AYIEH	232 XROH "NE*
218 X< \% Y	233 DVIEH
219 HMS	234 Rby
228 XROM -BRG"	2351
221 AVIEH	$236 \mathrm{ST}+13$

237 RCL 10	272 ST+ 14
238 RCL 81	273 RCL 11
239 CHS	274 RCL 85
240 P-R	275 *
241 RCL 06	276 ST+ 15
242 /	277 RCL 14
243 CHS	278 RCL 15
244 STO 16	279 XEQ - IN*
245 X (>Y	288 RCL 13
246 RCL 86	2811
247 /	282
248 CHS	283 XEQ -POUT*
249 STO 85	284 STO 08
2590LBL 82	285 X ${ }^{\text {(}) Y}$
251 RCL 13	286 ST0 87
252 RCL 18	287
$253 \mathrm{X}=\mathrm{Y}$?	288 ST+ 13
254 GTO 01	289 XEQ -0UT"
255 XEQ -OUT*	298 XEQ -INY"
256 STO 81	291 RCL 60
257 STO 15	292 STO 07
258 K ${ }^{\text {\% }}$ Y	293 RCL 81
259 ST0 80	294 ST0 88
260 STO 14	295 XEQ "OUT*
261 X<>Y	296 XROM "NE*
262 RCL 88	297 AVIEH
263 -	298 IST, 13
264 X $<$ 》 Y	299 AnY
265 RCL 87	300 ADY
266	381 GTO 02
267 R-P	302 RTN
$268 \mathrm{ST}+11$	303*LBL 01
269 RCL 11	384 STOP
278 RCL 16	305 RTN
271 *	386 END

Go to "XX". Go to step 065 (END), and delete it. Now all of the programs are combined, and may be used with each other from the keyboard.

Traversing

Before you try out your new program, you need to re-size the calculator to establish enough storage registers for your coordinates.

With an otherwise empty calculator memory (only "TRA" and the utilities in program memory) you can store 100 coordinate pairs. The storage registers begin at register 20 and two are needed for each coordinate pair.

One easy way to check storage capacity is to size the calculator to 020, pack with a GTO ... and stroke PRGM The number of registers left, divided by two, is the number of points you may store.

Resize the calculator to the number of registers shown after packing, divided by two, +18.

The program steps are exactly the same as shown on pages 10 through 28 of the HP Surveying Pac instruction manual, with two exceptions. The first of these is an added prompt following the DSP BRG? and DSP L/D? prompts. The added prompt is "PT. NO.?

This prompt is added for insurance against overwriting any coordinates you may already have in storage. The second difference is in the closure routine, LBL E, and we'll do a short example traverse before we look at that. Otherwise, you won't notice any real difference (it runs a little faster), but it's storing the coordinates as it calculates them.

Begin with XEO ALPHA T R A ALPHA and we'll work the little traverse shown below.
prompt: DSP BRG? keystrokes:
prompt: DSP L/D? keystrokes:
N R/S

Compass Correction

There are actually two differences in the closure routine, compared to the Surveying Pac. The first was the added prompt for a closure point number, and the second is that the closure isn't labeled. The closing to one point number higher than the actual point is the same in the Surveying Pac. There, the number is generated by the program.

If you leave these coordinates in storage and begin another traverse, or want to do some sideshots, you can begin with point number 5 , since it is a duplicate point of number one. You could also re-use point number 4, after the traverse has been adjusted, since it will then be equal to point number 1.

A couple of words of caution: Most of the routines in the Surveying Pac begin with a sequence which includes CLRG, the command to clear the registers. If you have to use a HP routine, it is a good idea to protect your points by storing them.

At this point, if you want to use the built-in compass correction routine, the procedure is:
stroke xEO ALPHA C O ALPHA
prompt: BEG PT?
keystrokes:

1 R/S

output: the output is shown to the

NI $=189.0089$ $E 1=109.8088$
$\mathrm{HD}=128.3685$
N 25,3016 E
H2=215. 8528
$E 2=155.2698$
HD=326.8292
§ 62.2857ε
$N 3=64.8588$
EJ=445. 1249
$H D=346.9162$
H 84.1185 H
N4 188.8090 $E 4=100.8880$

That last isn't as difficult as it sounds, because we can inverse traverse by point number. To do the sideshots. execute "TRA" and answer the first few prompts, through the input of the starting coordinates. Recall the second point (\#2 in the example) by executing "POUT", and inverse to it.
$H I=186.9800$
$E 1=108.0800$
keystrokes:
pause
2
 RCL output:

H 25.3016 E $H D=128.3685$

N2=215.8528 $\mathrm{E}=155.2698$
Repeat the process, and inverse to point 3 keystrokes:

pause 3	RCL
output:	\bigcirc A
	$\begin{gathered} 562.2857 \mathrm{E} \\ \mathrm{HD}=326.8292 \end{gathered}$
	$\begin{aligned} & N 3=64.8588 \\ & E 3=445.1249 \end{aligned}$
keystroke: J	

keystrokes:
output:
SS
keystrokes:

output:
keystrokes: $\quad \mathrm{H} 48.2857 \mathrm{~W}$
 keystrokes:

5 R/S

output:
SS
keystrokes:
 keystrokes:

$H D=185.8008$
N5 $=249.3885$ E5=386. 4769
keystroke: 1
output:
TRAV
Resume inversing to the next point (in this case point number 1).

```
* An additional R/s will be
needed if used without printer
```


Appendix

The storage registers of any point may be found as follows: north coordinate

$$
\begin{gathered}
18+2(\mathrm{PT} \#) \\
\text { east coordinate } \\
19+2(\mathrm{PT} \#)
\end{gathered}
$$

To store data onto a magnetic card, place 20.eee (where eee is the three-digit number of the highest register) and execute WDTAX.

If your edition of this book includes the program cards, the program is carried on tracks 1 and 2 of cards A, B and C, and on track 1 of card D.

To help with the "proof reading" chores after editing, a complete program listing of the final form of the program is included below.

$81+1 \mathrm{BL}$ - XX -	25 RCL 13	9 ${ }^{\text {N }}$	73 CF 80	97 SF 91
82 XROH ${ }^{\text {E }}$ IN"	262	1	$74{ }^{\text {- DSP L }}$ LD*	98 CF 82
83 XEQ "C**	27 *	$51-$	75 XROH -*YN-	99 "tray-
94 CF 10	2819	$52 \mathrm{X} \times \mathrm{Y}$	76 FS? 18	108 AYIEN
85 Yeg -POUT-	$29+$	53 STO IND Y	77 SF 03	101 RTN
86 XROM - ME-	38 ENTERT	54 RTH	78*LBL A	1020LBL J
07 RYIEM	31 ENTER \dagger	55*LBL * ${ }^{\text {* ** }}$	79 SF 82	103 CF 01
98 RDY	321	56.819	88 XEQ "C**	184 "PT. NO.?
09 ST0 08	$33-$	570	81 -PT. H0.?*	185 PROHPT
10 RIM	34 RCL IHD X	58*LBL 11	82 PROMPT	1861
1155087	35 RCL IND 2	59 STO IND Y	83 XEQ 'PIN"	187-
12+LBL 83	36 RTH	60 ISG Y	84 XEQ -OUT"	18851013
13 CF 81	$37+$ L8L -PIN ${ }^{\text {- }}$	61 CTO 11	85 FC ? 55	189 -s5*
14 -T0?-	38 SF 18	62 RDH	86 CTO 88	119 avien
15 PROMPT	39 STO 13	63 RDN	87 CF 10	111 RTN
16 XES -POUTT"	48 KROM "NE"	64 RTN	88 XROH -HE-	1120LbL H
17 DSE 13	$41+L B L \cdot 1 N^{*}$	65*LBL ${ }^{\text {TRA }}$	89 Avien	113 SF 85
18 ST0 X	42 RCL 13	66 XROM "*IN"	98 ADY	114*LBL C
19 XROM -IHVERSE-	432	67 CF 95	$91+$ LEL 89	115 Pl
28 GT0 93	44 *	68 SF 01	92 STO 08	$116 \mathrm{R}-\mathrm{D}$
21 RTN	4519	69 SF 80	93 RDN	117 HHS+
22-LBL -POUT-	46 +	78 - ${ }^{\text {PSP PRG }}$	94 STO 87	118 FS? 65
23 STO 13	$47 \mathrm{XC} \times \mathrm{Y}$	71 KROM - ${ }^{\text {FY\% }}$ -	95 STOP	119 CTO b
24+LBL *OUT*	48 STO IND Y	72 FC? 18	96* CLL L	$129+$ LBL c

121 RCL 00	171 * $=$ -	221 STI 11	271 RTN	32157015
122 HMS	172 ARCL X	222 SIGH	272*LBL -INY*	322 X 3 Y
123 HMSt	173 AVIEH	223 XisY	273 RCL 08	323 \$70 08
124 GT0 b	$174{ }^{\text {\% }} \mathrm{D=}$ =	224 CHS	274 -	324 \$10 14
125-LBL B	175 GRCL Y	225 LASTX	275 X 3 Y	325 XV)Y
126 SF 18	176 AYIEM	226×12	276 RCL 87	326 RCL 88
127 XROM **A1"	177 ADY	227 *	277-	327 -
128 HMS	178 RTH	2282	278 R-P	328 X 3 Y
129*LBL b	179+LBL a	229 ,	279 -HD=*	329 RCL 87
130 HR	1801	230 *	289 ARCL X	339 -
1311	181 ST- 13	$2315 \mathrm{~T}+85$	281 AYIEM	331 R-P
132 P-R	182 RDN	232 -SEG=*	282 K()Y	$332 \mathrm{ST}+11$
133+LBL 68	183 KROM -INYERSE-	233 ARCL X	283 HMS	333 RCL 11
134 CF 10	184 RTM	234 AYIEN	284 XROH "BRG"	334 RCL 16
$135 \mathrm{R}-\mathrm{P}$	1854 LBL E	235 RCL 14	285 GYIEW	335 *
136 STO 01	186 SF 94	236 RCL 11	286 ADY	$336 S T+14$
137 K $2>Y$	187 - $2 H D=$	237 *	287 RTN	337 RCL 11
138 X>0?	188 ARCL 66	238 ABS	288* ${ }^{\text {LBL }}{ }^{\circ} \mathrm{CO}{ }^{-}$	338 RCL 85
139 GTO 87	189 AVIEM	$239 \mathrm{ST}+86$	2898	339 *
148368	198 RCL 84	248 "L="	298 ST0 11	348 ST+ 15
$141+$	191 A8S	241 ARCL X	291 STO 14	341 RCL 14
1424LEL 87	192 RCL 85	242 AVIEH	292 STO 15	342 RCL 15
143 FS?C 22	$193+$	243 RCL 12	293 -BEG. PT.	343 XEQ - IN*
144 STO 08	194 XEQ 85	2442	294 PROMPT	344 RCL 13
145 FS? 01	195 'CLSR PT?*	245 \%	295 XEQ -POUT*	3451
146 STO 00	196 PROMPT	246 TAN	296 XROH - ME ${ }^{\text {a }}$	346 -
147 STO 18	197 SF 18	247 RCL 11	297 AVIEM	347 XEQ -POUT -
148 FC? 08	198 STO 18	248*	298 ADY	348 STO 98
149 GTO 99	199 XEQ 'PIN"	249 ABS	2991	349 X ${ }^{\text {¢ }}$)Y
150 XROM ${ }^{*} * 81{ }^{\text {- }}$	208 XEQ -OUT*	250 - $\mathrm{T}=\times$	380 ST+ 13	358 STO 87
151 AYIEN	291 DSE 13	251 ARCL X	301 RCL 18	3511
152 RTN	202 ADY	252 AVIEH	382 RCL 81	$352 \mathrm{ST}+13$
1534LEL 89	283 CF 01	253 RCL 12	303 CHS	353 XEQ -OUT"
154 HNS	284 XEQ	2542	304 P-R	354 XEQ -INY*
155 KROM **90*	205 SF 91	255 ,	385 RCL 86	355 RCL 68
156 AYIEH	286 RCL 13	256 SIN	306%	356 STO 87
157 RTN	287 STOP	257 RCL 11	387 CHS	357 RCL 81
158 LBL d	208*LBL	258*	308 ST0 16	358 STO 88
159 - $6=$?	289 SF 10	2592	309 X<3Y	359 XEQ -OUT-
169 PROMPT		269 *	318 RCL 86	368 XROH "ME"
161 HR	211 CF 18	261 ABS	311 /	361 AYIEH
162 X ¢ Y^{\prime}	212 HR	262 ST- 86	312 CHS	362 156 13
163 P-R	213 ST0 12	263 "C=*	313 ST0 05	363 ADY
$164 \mathrm{X}\langle=Y$?	214 SIN	264 ARCL X	314 LBL 82	364 ADY
165 X ${ }^{168}$	215 LASTX	265 AYIEM	315 RCL 13	365 GT0 82
166+LBL D	216 D-R	266 RTN	316 RCL 18	366 RTN
167 XROH -TS ${ }^{-}$	217 ST0 14	267*LBL 85	$317 \mathrm{X}=\mathrm{Y}$?	367-1, BL 81
168 KEQ -IN*	218 -	268 -RREA $=-$	318 GTO 01	368 STOP
169 RTN	$219 \sim R=?$	269 ARCL X	319 XEQ -OUT	369 RTN
170.LBL 10	228 PROMPT	278 AYIEN	320 STO 81	370 END

