
UsER

CobDE

ComvPILER
VERSION 1.45

RerFrerence MANUAL

HAND HELD PRODUCTS

6201 FAIR VALLEY DRIVE

CHARLOTTE, NORTH CAROLINA 28211

PHONE: (704) 377-3841

(C) HAND HELD PRODUCTS, INC. 1982

CONTENTS

INTRODUCTION

WHAT IS 41UCC ?

GETTING STARTED
MAKING A BACKUP COPY
UNDERSTANDING CP/M
HOW TO USE 41UCC
A REAL PROGRAM - LOWPASS
LISTING OF LOWPASS
ANOTHER EXAMPLE PROGRAM - SECANT
INTERACTIVE MODE
INDIRECT COMMAND MODE
LISTING OF SECANT

INTRODUCTION TO SPECIAL FEATURES

DEFINE BYTE

END

EQUATE

STRING EQUATES

EXPRESSIONS

GLOBAL LABELS

#INCLUDE

KEY ASSIGNMENTS

PAGE

SET

TITLE

41UCC COMMAND LINE PARAMETERS

APPENDIX A

INSTRUCTIONS THAT DIFFER FROM THE HP-41

APPENDIX B

SUMMARY OF ERROR MESSAGES

APPENDIX C

SYNTHETIC INSTRUCTIONS

APPENDIX D

PRP LISTINGS AND 41UCC

APPENDIX E

PRINTING BARCODES

APPENDIX F
MODIFYING 41UCC

APPENDIX G

LISTINGS AND BARCODE FOR EXAMPLES

10
17
21
32
32
36

41
41
41
42
44
46
46
46
47
47
47

49

52

53

56

58

60

63

65

INTRODUCTION

WHAT IS 4lUCC ?

41UCC is a "User-Code cross Compiler". The "user-code" part
means that it accepts normal, everyday programs Jjust like you
already write for your {HP-41C/CV. The "cross" part means that it
does not run on the HP-41] - it runs on any 48K or larger
8080/8085/7280 CP/M 2.2 system. The "compiler" part means that
41UCC takes the programs that you have written and compiles them
into the binary codes that the HP-41 understands.

WHAT WILL IT DO FOR ME ?
Simply, it will allow you to write programs for your HP-41

in a fraction of the time previously required. Also, it will
make documentation and modification of your programs a much

simpler task.

HOW DOES IT DO THAT ?

Your work is made easier in several ways:
(1) You can write your program using your favorite text editor.
(2) You can add comments anywhere you like - to improve program
documentation.
(3) You can use meaningful names to refer to registers.
(4) You can make changes more easily - no more going through and
changing every reference to register 01 to register 02 1if you
need to make a change - you need only to make one change at the

start of the program.
(5) Symbolic expressions!
(6) And much more!

WILL IT ACCEPT SYNTHETIC CODES ?

Yes, of course - if you want to use them.

WHERE CAN I GET IT ?

From Hand Held Products 1Inc., 6201 Fair Valley Drive,
Charlotte, N.C. 28211. 41UCC is available from stock. When
ordering, specify 8" CP/M, IBM-PC w/Z-80 card, or Osborne 5 1/4"
formats. Other formats (such as Heath/Zenith 5 1/4", Apple II
w/Z-80 card, Avatar, Televideo, Xerox/Kaypro 5 1/4", or Super-
brain) are available on special request. Please allow an extra
two weeks for delivery if you request a special format. 41UCC
requires an 8080/8085/Z2-80 or similar CP/M system, 48K of memory,
and at least one disk drive to run. More memory and two disk
drives are recommended.

Copyright 1982 by Leslie Brooks.

GETTING STARTED

This section will explain how to make a backup disk, what
41UCC 1is

I am a novice — how do I use 41UCC?

It is important to understand at least the basics of CP/M in
order to effectively use 41UCC. In particular, you should know
how to create a file with a text editor (such as CP/M's ED), how

to get a directory (a listing of all the files on the disk), and
how to make a backup copy of files or disks (with CP/M's command
PIP). If you do not know how to do these things, a good book to
start with is the CP/M PRIMER by Stephen Murtha and Mitchele
Waite, published by Howard W. Sams & Co. Another good choice
would be USING CP/M - A Self-Teaching Guide by Judi Fernandez and
Ruth Ashley. This one is published by Wiley.

This entire manual also assumes that you know how to program
an HP-41C. It is not necessary that you know synthetic program-
ming, nor is it even helpful (unless your application requires it).
Knowledge of any assembly language will be an asset in using 41UCC.

THE FIRST STEP

The first step in using 41UCC is to MAKE A BACKUP COPY.
Should the power fail while you are using your working disk, or
should your dog fetch it for you, or a child smear a banana into
it, you will be very glad of a safe original disk sitting on the
shelf. To make this backup, you need to put a freshly formatted
(initialized) disk into drive B of your machine and your CP/M
system disk in drive A. If you don't know how to format a disk,
look in your system manual under FORMATTING or INITIALIZING A

DISK. The example it gives should look something like this

A> format

FORMAT Version 1.5

Drive A or B? b
(S)ingle or (D)ouble Density? 4

Now formatting drive B double density.
Formatting done.

A>

Here a few notes are in order - the 'A>' is CP/M's prompt,
and the rest is what you typed. I will always put your entries

in bold face so that you can distinguish them from the things the
computer types. I will always assume (unless otherwise noted)
that you hit the RETURN or ENTER key at the end of any line you
type. This tells the computer that you are through with the line
and it can now process it - in general, it ignores the command
line until you press the RETURN or ENTER key. If I need to
explicitly show that you hit the RETURN/ENTERkey, I will use the
'<CR>' symbol (RETURN is short for Carriage Return).

GETTING STARTED

Now we will copy PIP (a file copying program) and a
system image (a copy of CP/M) onto it. To copy PIP to the new

disk, type

A>pip b:=a:pip.com

If you get the response

PIP?

you do not have PIP on the disk, and need to get a disk which

does have it.

Now you have told PIP to send a copy of itself to drive B;
you need only to copy CP/M to your new disk in drive B and then
we can start using it. This is not quite the same as copying a
file with PIP, because CP/M is not a file - so Digital Research
gave us a special program called SYSGEN to GENerate a new SYStem

image. Running it involves typing its name, and then telling it
to get the system (CP/M) from drive A and put it on drive B. It
looks like this:

A>sysgen

SYSGEN VER 2.0

SOURCE DRIVE NAME (OR RETURN TO SKIP)a

SOURCE ON A, THEN TYPE RETURN<CR>

DESTINATION DRIVE NAME (OR RETURN TO REBOOT)b

DESTINATION ON B, THEN TYPE RETURN<CR>

FUNCTION COMPLETE
A>

Now in drive B we have a fresh disk with CP/M and PIP on it.
Put this disk in drive A and type a control-c (hold down the
CONTROL or CTRL key and press C). A common notation for control
functions is the '"' symbol. This symbol followed by a character
means to hold down the control key and press the character. Thus
“C means to hold down the control key and press the 'C' key.
There will be a slight pause followed by CP/M's prompt.

A>

If you do not get CP/M's prompt again you have an error. It
could mean that you did not do the SYSGEN properly, or it could

mean that you have a bad disk or a bad copy of SYSGEN. Try again

until it works.

Your fresh disk is now in drive A. To make it into a

usable disk with 41UCC on it (in addition to CP/M and PIP), place
your 41UCC disk in drive B, and copy everything on it to drive A:

A>pip a:=b:*.*

You now have a backup copy of 41UCC. Put the original 41UCC
disk in a safe place and use the copy for all of your work. If

GETTING STARTED

you damage the copy, you won't lose a week of work while I send

you a new disk.

I HAVE MY BACKUP - WHAT NOW?

Now, it would be helpful if you understood a little bit of
what 41UCC is intended to do, and how it interacts with programs
such as ED, RDS and PBAR before you actually start using it.

We can't really understand how these programs relate to each
other without understanding a bit about CP/M. Okay, so what is
CP/M? Well, CP/M is just a program which allows you to do useful
things on your computer. Let's look at an analogy. What does
your HP-41C do if you push XEQ ALPHA "SIZE" ALPHA? It prompts
you for the SIZE you want, right? But how did it 'know' that it
should do that? The only reason it works that way 1s because
there 1is a program running in it whenever it is on - but you
never 'see' this program, you just see the results. The only
reason it works the way it does is because HP programmed it that
way. However, you don't have to be an expert on the intricacies
of this program in order to use the calculator - you just push
the right button and it works. CP/M can be thought of as being
the program that runs the calculator. You don't have to
understand all of it in order to be able to use it. Now, how did
you know that your calculator would respond properly when you

tried to set the size? Well, there was a number in the display
(i.e. the calculator was turned on) and the PRGM enunciator was

not turned on (the calculator was not running a program). In the

same way, we can give CP/M a command whenever we see

A>

or

B>

This means that CP/M is ready to accept a command. If we do not
see this prompt, or if we see a different prompt (such as * or ?)
then some other program is running and we cannot use CP/M
commands. If the PRGM was showing on your calculator you would

not expect to be able to execute SIZE - programs do not

understand things like SIZE or CATalog 1.

Speaking of CATalog 1, how do you find out what programs are
on a disk? CP/M does have a command that corresponds to CAT 1;
it is called DIR (DIRectory). A CAT 1 catalogs all of the
programs that are in memory and ready to run; in the same way a
DIR catalogs all of the programs that are on disk.

A>DIR (hit a Carriage Return after the R)
A: 41UcCC COM : RDS COM : FILTER COM : SECANT UCC

A: TST28 UCC : HEX uccC
A>

Now you can see that you have the files 41UCC.COM, RDS.COM,

GETTING STARTED

FILTER.COM, SECANT.UCC, and others on your disk. (The file names

are all given as eight letters plus the three letter type, and
the dot in the name is not shown.) So now we have our CATalog 1,

but there is a difference - all of the names you see in a CATalog
1l listing are programs which can be run, but not all of the names
you see in a DIRectory listing can be run. Just as you can have
data files in extended memory, CP/M allows data files on disk.
Programs - anything that can be run - always have a name that

ends in .COM (for COMmand). 41UCC's complete name is 41UCC.COM -
but we rarely have to use the .COM part. If you push XEQ ALPHA

"SIZE" ALPHA on your HP-41C you don't have to specify that SIZE
is an executable (.COM in CP/M) program - it wouldn't make sense
to try to execute anything else. In the same way, in CP/M you

don't have to specify the .COM part in order to run a program -
you Jjust type the programs' name. If you wanted to run 41UCC,
you would just type

A>41lucc

Notice that you did not type the 'A>' - CP/M did that. Also,
just like you have to hit ALPHA at the end of a program name on
the HP-41C, so you had to hit a RETURN (or CR or Carriage Return
on some keyboards.) This tells CP/M that you have reached the

end of the name - just as hitting ALPHA tells the HP-41C that you
have reached the end of the program name.

Finally, if you push XEQ ALPHA "FOO" ALPHA you know that you
should have a program called FOO in memory. If you do not you

will get NONEXISTENT. If you did this to CP/M

A>FOO

CP/M would look on disk for the program FOO.COM. If the program

did not exist, you would get

FOO?

which is CP/M's way of saying "FOO is not a command that I
understand myself, and I can't find it on disk either."

So now you know what CP/M is, how to get a CATalog 1l listing
out of it, how to XEQ a program, and what CP/M's version of
NONEXISTENT looks like. What else do you need to know in order
to effectively use 41UCC? The most important thing you need to
know 1is exactly what you intend to accomplish.

YOUR GOALS

At this point you should have one or more of three goals.

Take a look at figure 1 and think about which of these goals you
have:

1) You have an existing program, on an HP-41C, that you wish
to burn unchanged into EPROMs. This is path 1 in figure 1, and
involves only RDS. You do not need 41UCC to accomplish this.

GETTING STARTED

2) You have an existing program on an HP-41C and you would
like to document it and/or make some changes to it before burning
EPROMs. This is path 2 in figure 1, and involves 41UCC, ED or

some other text editor, and a program called FILTER.COM.
(FILTER.COM is used to convert an HP-41C PRP listing to a format
that 41UCC can understand. When you need to do this, look in
appendix D).

3) You would like to create an HP-41C program from scratch
on your microcomputer, and download it into the HP-41C for
testing. For this you will need a text editor (such as ED) and
41UCC. For downloading the program to the HP-41C you can go
through RDS and burn EPROMs or you can print barcodes on a
suitable printer. For information on burning EPROMs consult the
RDS documentation. For information on printing barcodes see
appendix E.

Now look at figure 1 again, with your goal in mind. Notice
that there are two ways to get a program into RDS - you can

upload it from the HP-41C using the HP-IL, or you can produce it
through 41UCC. For getting programs back down to the HP-41C, you
can go through RDS and burn EPROMS or you can go through PBAR and
print barcode. Notice also that 41UCC has to have an input file,
which you create with a text editor (or FILTER.COM), and 41UCC in
turn produces three output files. The .LST or LiST file 1is
human readable and contains a great deal of useful information
about your program (including a cross reference of all of the
flags, registers, and labels you have used). The .BIN or BINary
file is used as input to RDS and cannot be printed. The .WND or
WaND file contains barcode information which could be transferred
to someone else or printed on your printer (such as an MX-80, MX-
100, Trilog, Printronix, or daisywheel). You can also send the
WaND file to your printer or screen and look at it. If you send
it to your screen some of the letters may flash or look strange -
this is normal.

Using 41UCC involves only two (hopefully) very easy steps.
First take your favorite text editor and type in your HP-41C
program, then save it to disk. This creates a file on disk which
will be used as input to 41UCC. The second step will be to use
41UCC to produce all of the output files discussed above.

THE FIRST STEP

Let's pretend that your program looks something like this:

LBL 'TEST' ;MY FIRST TEST PROGRAM

BEEP ;TELL ME THAT IT RAN

END ;BUT DON'T DO MUCH ELSE

Now, admittedly, this is a very simple program, but it is a
good start. Notice first of all that the label in your test
program is in quotes. This will be true of all alpha labels in
any program to be used with 41UCC. Secondly, notice the comments

Path 2

FILTER.COM

 Path 1 Path 3

xxXxx.,UCC

ED or

WORDSTAR

USER CODE
| COMPILER

 XXXX o« LST

ROM Printed

DEVELOPMENT Listin |

SYSTEM
|

 | BAR.COM

, \

EPROMs Figure 1

bar codes

GETTING STARTED

in the program - these are one of the prime advantages of 41UCC
over programming on an HP-41C. Comments are preceded by a semi-
colon, and may go anywhere in the program. I put the 'LBL' to
the left of the other commands so that labels are easy to spot,

but this is not required. 1In fact, there are no limitations on

the format of lines - commands and labels may go in any column,
and you may use spaces or tabs anywhere you like. If you wish,

you may indent loops (a la Pascal) in order to make them more
obvious. Finally, you should assure yourself that this really is
a normal HP-41C program just like many that you have written.
41UCC supports many other enhancements (listed in alphabetical
order in the next section "INTRODUCTION TO SPECIAL FEATURES"),

but for now we do not need to worry about them. There are a few
41UCC instructions which do not look like their HP-41C counter-
parts; these are all listed in Appendix A.

Now we need to type in this program and save it as a file on
disk so that 41UCC can work on it. Assuming that we use the CP/M
text editor ED, typing in our program will go something like:

A>ed test.ucc

NEW FILE

: *T

1: LBL 'TEST' +:MY FIRST TEST PROGRAM

2: BEEP :TELL ME THAT IT RAN

3: END :BUT DON'T DO MUCH ELSE

4: A

: *E
A>

Again, everything you typed is in bold face; everything the

computer produced is in normal face. The '"Z' on line four means
that you held down the CONTROL key and pressed the 'Z' key. This
tells ED that you want to get out of insert mode. The 'E' on the
following line means that you want to end your editing. ED will
return to CP/M after saving what you typed in as the file
TEST.UCC. If you do not know how to use your text editor please

stop now and learn it. If you are using WordStar you should use
it in non-document mode.

THE SECOND STEP

After you exit from ED your program will exist on disk as
TEST.UCC. You will now want to run 41UCC on it; that looks like
this:

A>41UCC I=TEST.UCC

41UCC - AN HP-41C USER CODE COMPILER. COPYRIGHT 1981 BY LESLIE BROOKS.

DISTRIBUTED BY HAND HELD PRODUCTS INCORPORATED.

VERSION 1.45 - NOVEMBER 8, 1982. Serial Number AC0002

O ERROR(S) IN PHASE ONE

O ERROR(S) IN PASS ONE

O ERROR(S) IN PASS TWO
A>

GETTING STARTED

Had there been any errors in your program, they would have

shown up here. The "I=" in the command line tells 41UCC what
file

(TEST

to process. 41UCC has now read in your source file
.UCC), checked it for errors, and compiled it to produce the

files TEST.LST (the LiSTing file), TEST.BIN (BINary file), and
TEST.WND (WaND or barcode file). Take a look back at Figure 1 if
you need a mental picture of what is happening at this step.
The section titled 41UCC COMMAND LINE PARAMETERS explains how to
turn off the generation of the WaND or BINary files, should you
not want them. Ready for something a bit more complex? Suppose
we modify our test program so that it looks like this:

LBL

THIS

~
e

Se
o

~
o

A>ed

-
'
—
—
l

H
F
O
W
V
W
O
O
J
O
o
O
U
W

-
H
F
O
W
V
W
O
o
O
N
O
W
U
L
I
D
W
N
H
H
H

'"TEST1' ;sMODIFYING MY TEST PROGRAM A BIT

T '"HELLO' ;A TEXT STRING

IS TO BE EXECUTED THE FIRST TIME THE PROGRAM RUNS

APPEND ' WORLD' sADD THIS TO INCLUDE EVERYONE

AVIEW

PSE

XEQ 'TUNE' s PLAY SOME MUSIC

END

To do that, we will need to use ED again.

test.ucc

: *OA

: *STEST"ZTEST1"Z
: *SMY FIRST TEST PROGRAM®~ZMODIFYING MY TEST PROGRAM A BIT"Z
: *LI

: T 'HELLO" :A TEXT STRING

: ;THIS IS TO BE EXECUTED THE FIRST TIME THE PROGRAM RUNS

: APPEND 'WORLD' ;ADD THIS TO INCLUDE EVERYONE
: AVIEW
: PSE

: XEQ 'TUNE' : PLAY SOME MUSIC
: 7
. *K

: *B#T

: LBL '"TEST1' :MODIFYING MY TEST PROGRAM A BIT
: T '"HELLO' :A TEXT STRING

: ;THIS IS TO BE EXECUTED THE FIRST TIME THE PROGRAM RUNS

: APPEND 'WORLD' :ADD THIS TO INCLUDE EVERYONE

. AVIEW
: PSE

: XEQ '"TUNE" : PLAY SOME MUSIC
: BEEP s TELL ME THAT IT RAN

* &

This example gives you a few more things of interest such as

GETTING STARTED

1) text strings are preceded by a "T"

2) having no proof reader's append mark I used "APPEND" for
this function.

Let's compile this new file and see what we get. Before we
do though, you should notice that this time I will refer to the
file just as 'TEST' - not as 'TEST.UCC'. The '.UCC' is optional
and 41UCC will assume that you mean it even if you leave it off.

A>41UCC I=TEST

41UCC - AN HP-41C USER CODE COMPILER. COPYRIGHT 1981 BY LESLIE BROOKS.

DISTRIBUTED BY HAND HELD PRODUCTS INCORPORATED.

VERSION 1.45 - NOVEMBER 8, 1982. Serial Number ACO0002

O ERROR(S) IN PHASE ONE

O ERROR(S) IN PASS ONE

O ERROR(S) IN PASS TWO

THERE WERE REFERENCES TO ALPHA LABELS NOT DEFINED IN THIS PROGRAM.

IF THESE LABELS ARE NOT IN ANOTHER PROGRAM, YOU HAVE AN ERROR.

CHECK THE CROSS REFERENCE IN THE .LST FILE FOR DETAILS.

A>

In our modification of the test program we had an error -
the label 'TUNE' was not defined, so 41UCC warned us about this.
This is only a warning, it is not a fatal error. If you print a
copy of TEST.LST, you will discover in the cross reference (at
the end of your program) a page that looks like this:

UNDEFINED ALPHA LABELS

(THESE ARE ERRORS IF NOT DEFINED IN ANOTHER PROGRAM)

LABEL DEFINED VALUE LINE NUMBERS OF REFERENCES TO THE SYMBOL

NAME ON

TUNE 10 0000 10-X

TAG MEANINGS ARE: G GOTO

X EXECUTE

This means that you referred to an alpha label TUNE on line 10 of

your program, but you did not define the label anywhere in your
program. If in fact you do have a label 'TUNE' in some other
program currently in your HP-41C, then you can safely ignore this
warning and continue. If you do not have a label 'TUNE' in any of
the programs in your HP-41C, then attempting to run the program
'TEST1' that we Jjust compiled will produce a 'NONEXISTENT' error
message. All error messages and their meanings are listed in
Appendix B.

Now suppose I were going to burn an EPROM with my program in
it. I don't need the WaND file to burn an EPROM, and I don't
like wasting space on disk for it, so I use

A>41UCC I=TEST,L=LST:,NW

GETTING STARTED

which tells 41UCC to compile the file "TEST.UCC", send the lis-
ting directly to the printer, and produce no wand file at all.
These parameters (or options) may be specified in any order. A
complete listing of command line parameters is given in the
section titled 41UCC COMMAND LINE PARAMETERS.

A REAL PROGRAM

Now let's look at a real problem, and develop a real program

to solve it. Suppose we want to design a low-pass filter (for a
CB antenna filter or for a stereo bypass). We could go to a
handbook such as the "ARRL Amateur Radio Handbook", or "Basic
Computer Programs in Science and Engineering" and get a formula
for this type of filter. Page 196 of the Basic book shows us a
schematic of a simple filter, and we can see from the formulas
that we will need to specify

1) the terminating resistance (52 ohms for a CB, 8 ohms for
a stereo)

2) the cutoff frequency of the filter

The filter contains one coil and two capacitors. The

formulas for their values are

coil - R/(PI * F) [terminating resistance divided by

the cutoff frequency times PI]

capacitor -1/ (2 * PI * R * F) [l over 2 times PI times
the terminating resistance times the cutoff frequency]

Now from this information we can write a program to prompt
for input and produce the proper output. It would look something
like this:

LBL 'LOWPASS' ;OUR LOW-PASS FILTER PROGRAM
T 'FREQUENCY=?" ;ASK FOR THE CUTOFF FREQUENCY
PROMPT
STO 00 ;SAVE IT
T 'R(TERM)=?" ;ASK FOR THE TERMINATING RESISTANCE
PROMPT
STO 01l ;SAVE THE RESISTANCE

CALCULATE THE INDUCTOR (COIL) FIRST
L = R/(PI * FREQUENCY)

~
e

Se
o

S
e
o
o

RCL 00 :GET THE FREQUENCY
PI
* ;PI * FREQUENCY
/ +DIVIDE INTO THE RESISTANCE
STO 02 :SAVE IT FOR FUTURE USE

:NOW DISPLAY THE CALCULATED INDUCTOR VALUE
T 'L=
ARCL X

AVIEW
PSE

NOW CALCULATE THE CAPACITOR

C=1/(2 * PI * RESISTANCE * FREQUENCY)

e
S
0
-

~
e

RCL 01 ;GET THE RESISTANCLC AGAIN

RCL 00 ;AND THE FREQUENCY
*

10

A REAL PROGRAM

PI
*

STO+ X ;DOUBLE IT

STO 03 ;SAVE FOR FUTURE USE

;NOW DISPLAY THE CAPACITOR VALUE

T 'C= !

ARCL X

AVIEW

PSE

END

You can see from this that a 41UCC program really does look
very much like a normal HP-41C program. The two most obvious
differences in this example are the T that precedes a text line
and the fact that comments can go anywhere in the program. There
are a few 41UCC instructions which do not look like their HP-41C
counterpart; these are all listed in Appendix B - 'Instructions
Which Differ From the HP-41C.'

If you only use this filter program once a month or so, this
version may be adequate, but suppose you use it very often, and
also use HP's circuit analysis module. You will quickly get
tired of having the module write over your stored values of
capacitance and inductance for the filter. Now you would like to
move the registers used by this program out of the way - say to
50-53. If the filter program were very long you would get very
tired of looking for every occurrence of '0O' and changing it to
'50'. 41UCC has provided a way around this - we can give a
register a name and then refer to it by name. Since we normally
put the definitions of the names at the beginning of the program,
we have only one place to look to change which registers we are
using. Here is our filter program converted to use names for the

registers.

; LOW-PASS FILTER PROGRAM

;sWRITTEN BY LESLIE BROOKS

;NOVEMBER 17, 1982.

;REGISTER EQUATES

EQU FREQUENCY 00 ;USE REGISTER O FOR THE FREQUENCY

EQU RESISTANCE 0l ;USE REGISTER 1 FOR THE RESISTANCE

EQU CAPACITOR 02 ;CAPACITOR VALUE

EQU INDUCTOR 03 ;COIL VALUE

LBL 'LOWPASS' ;OUR LOW-PASS FILTER PROGRAM

T 'FREQUENCY=?" ;ASK FOR THE CUTOFF FREQUENCY

PROMPT

STO FREQUENCY ;SAVE IT

T 'R(TERM)=?" ;ASK FOR THE TERMINATING RESISTANCE
PROMPT

STO RESISTANCE ;SAVE THE RESISTANCE

CALCULATE THE INDUCTOR (COIL) FIRST
L = R/(PI * FREQUENCY)~

o
“
o
o

11

A REAL PROGRAM

-
3

RCL FREQUENCY ;GET THE FREQUENCY

PL

* ;PI * FREQUENCY

/ sDIVIDE INTO THE RESISTANCE

STO INDUCTOR sSAVE IT FOR FUTURE USE

;NOW DISPLAY THE CALCULATED INDUCTOR VALUE
T 'L= "'

ARCL X

AVIEW

PSE

NOW CALCULATE THE CAPACITOR
C =1 /(2 * PI * RESISTANCE * FREQUENCY)

N
S
0

S
0
S

RCL RESISTANCE ;GET THE RESISTANCE AGAIN
RCL FREQUENCY :AND THE FREQUENCY
*

PI
*

STO+ X ; DOUBLE IT
STO CAPACITOR :SAVE FOR FUTURE USE

;NOW DISPLAY THE CAPACITOR VALUE
T IC= !

ARCL X
AVIEW
PSE
END

Again, it looks pretty much like a standard HP-41C program -
except for calling registers by names. 41UCC will convert these
names to the proper register numbers for the HP-41C. If you
looked at this program on your calculator you would see the
correct register numbers in place of the names - but you could
put your 41UCC listing beside the calculator and see the names.

This is better than the first program, but we still have to

change four lines in order move the registers we are using to 50-
53. The four lines

EQU FREQUENCY 00 ;USE REGISTER O FOR THE FREQUENCY
EQU RESISTANCE 0l ;USE REGISTER 1 FOR THE RESISTANCE
EQU CAPACITOR 02 ;CAPACITOR VALUE
EQU INDUCTOR 03 ;COIL VALUE

would have to be changed to

EQU FREQUENCY 50 ;USE REGISTER O FOR THE FREQUENCY

EQU RESISTANCE 51 ;USE REGISTER 1 FOR THE RESISTANCE

EQU CAPACITOR 52 ;CAPACITOR VALUE

EQU INDUCTOR 53 ;COIL VALUE

and the rest of the program would be unchanged.

This isn't too difficult, but could it be easier? Suppose

12

A REAL PROGRAM

that there were forty or fifty registers involved rather than

just four? I wouldn't want to have to change forty or fifty
register numbers! There is in fact an easier way to do this - we
would change the same four lines to look like this

EQU BASE 50 ;USE 50 FOR THE BASE REGISTER

EQU FREQUENCY BASE+0 ;THE CUTOFF FREQUENCY
EQU RESISTANCE BASE+1 ;THE TERMINATING RESISTANCE
EQU CAPACITOR BASE+2 ;CAPACITOR VALUE
EQU INDUCTOR BASE+3 ;COIL VALUE

and we added a new line to define the base register. Now to

change the registers we are using we only need to change one
linel This is a big improvement over the original program where
we had to go through every line making changes in order to change
the register assignments. It is also much more readable than the
original program - we don't have to remember what went in
register 1 - we just save a resistance in RESISTANCE and recall
it in exactly the same way.

Now, before you get too excited and run off naming every
register in site, you should remember that 41UCC only looks at
the first seven letters in each name. If we tried to define a
register (in the filter program) with the name RESISTABLE we
would get an error when we ran 41UCC. The reason for this is
that 41UCC would not be able to tell the difference between
RESISTANCE and RESISTABLE, and would complain about it. 41UCC
does not treat upper and lower case differently here, so either
one would produce the same result. Also, you can't put any
character you can think of in a name - just letters, numbers,
dollar signs '$', and underlines ''. One person who will remain
nameless tried to use a name that was something like BASE-PAGE.
It worked fine until he put a

STO BASE-PAGE

in his program and 41UCC tried to subtract PAGE from BASE to see
what register he was using! NOT what the nice man had in mindg,
but exactly the sort of thing you will get if you try putting
funny characters in register names. (Please remember that this
is not true for alpha labels - 41lUCC will accept anything for
them.)

You should also be aware that the symbols R1l, R2, R3, and R4
are special symbols and belong to 41UCC. You should not try to
create your own symbols by these names. 41UCC uses them like
this

A>41UCC I=LOWPASS,R1=50
41UCC- AN HP-41C USER CODE COMPILER. COPYRIGHT 1981 BY LESLIE BROOKS.
DISTRIBUTED BY HAND HELD PRODUCTS INCORPORATED.

VERSION 1.45 - NOVEMBER 8, 1982. Serial Number AC0002

O ERROR(S) IN PHASE ONE

13

A REAL PROGRAM

O ERROR(S) IN PASS ONE

O ERROR(S) IN PASS TWO
A>

41UCC accepted the value of Rl as a parameter on the command
line, and passed it to the program. If we modified LOWPASS to
look like

EQU BASE R1 ;USE R1 FOR THE BASE REGISTER

EQU FREQUENCY BASE+O sTHE CUTOFF FREQUENCY

EQU RESISTANCE BASE+1 s THE TERMINATING RESISTANCE

EQU CAPACITOR BASE+2 sCAPACITOR VALUE

EQU INDUCTOR BASE+3 ;COIL VALUE

then we could change the registers LOWPASS uses simply by re-
compiling the program with a new value for Rl. There would be no
need to go in and edit the program. If we don't give Rl a value
on the command line it will get the default value of zero.

However, enough on register names, and let's get back to the
program. The values that we are producing are in Henries and
Farads - not common units of measure. Most people would be much
happier if we divided the inductor value by 1000 to produce
millihenries, and the capacitor by 1 million to produce micro-
farads. This change is very easy to make in our program - just
put in the division right before storing and displaying the
values. We would also want to label them, so (for the inductor)
we get something like this:

/ ;DIVIDE INTO THE RESISTANCE

1000 ;CONVERT TO MILLIHENRIES

/
STO INDUCTOR ;SAVE IT FOR FUTURE USE

;NOW DISPLAY THE CALCULATED INDUCTOR VALUE

T 'L= "

ARCL X

APPEND ' MH' ;UNITS ARE MILLIHENRIES

AVIEW

PSE

We can see something new here - the text string append is
APPEND for 41UCC. Most keyboards do not have an append mark, so
this seems reasonable, and is certainly readable. So now our
inductor value is labeled as being in millihenries, 1let's do the
capacitor.

Here we run into a problem - MICROFARADS is too long to put

on the display with the capacitor value. The usual notation for
microfarads uses the Greek letter mu "u". If the HP-41C had a
lower case U we could use that. But wait - the HP-41C display
has the Greek letter mu - but we can't get to it from the key-
board. Will 41UCC allow us to use it? Yes, 41UCC will but we
will need to know a bit about the HP-41C instruction set.

14

A REAL PROGRAM

In thz HP-41C the character code for a "mu" is 12 (0OC

hexadecimal.) Ilow do we put this into a character string? Vell,

an append text string of three characters 1is encoded as

CF411,C7T7f, followed by the three characters. If we change our

program like this:

STC+ X ;DOUBLE IT

EQU TEXT4 OF 4l ;APPEND TLEXT ESTRING OF THREE CHRS.

EQU APPEND O7FII ; THE APPCND FUNCTION

ZGeU MU 12 ; GREEK LETTER MU

£6 ; COUVERT TO MICROFARADS

/
STO CAPACITOR ;SAVE FOR FUTURE USE

;1JOW DISPLAY TIE CAPACITOR VALUL

T 'c= !

ARCL X

DB LXT4,APPEND, ' ',MU,'F' ;LABEL IT AS MICROFARADS

AVIEW

PSE

EID

it will cause the capacitor value to be properly labeled as being
in microfarads. The DB instruction is not a standard HP-41C
instruction. In fact it is not an lIP-41C instruction at all, but
what is called a pseudo-op. It is a pseudo HP-41C instruction
called DEFINE BYTE, and it actually evaluates the rest of the
line and passes the values it finds to the HP-41C unchanged.
This is not something you will need to use in every program but
is very handy to have when you do need it.

This seems to be about as much damage as we can do to such a
simple program. If you don't understand something at this stage
try going back, typing the program into your computer, and
running it through 41UCC. Then feed it into your calculator and
see what it looks like there. It will appear to be an old and
familiar friend there, and you will be able to compare it to the
410CC listinag and see what was actually produced. Just as a
passing note, if you want to make a direct comparison between the
two programs you should add a '4L' on the command line for 41UCC.

A>41UCC I=LOWPASS, 4L

This means 'use {IP-41C Line numbers' - so the line numbers in

41UCC's LiST file and the line numkers you see on the HP-41C will

be exactly the same. It makes the two programs much easier to

compare. The barcode for this one is given in Appendix G - you
might learn a good bit by reading it into your calculator, then

comparing it to the listing.

There are two thing that we can still do to this program -

if we use it a lot, we will always want to assian it to a key.

In 41UCC this reauires that we put a key assignment number after

a label. To assign LCYPASS to the 'LN' key, we would modify our

A REAL PROGPRAM

program like this

LEL 'LOVUPASS' : 15 i1 N IGiv TO TIE 'LN' KUY

and the assignment would automatically be made for us when we

scanned in the barcode for the proaram. RDE does not yet suvport
automatic Xey assiagnments, but will in the next version.

YNow let's take a lock at the listing that 41UCC produced for
our filter program. I will make a few notations on it to point
out things of interest.

41UCC ¥ 1.45, Copyright 1981 by Leslie Brooks. NU
Distributed by Hand Held Products Incorporated. l/fN’/

sLOU-PRSS FILTER PROGRAN

JURITTEN BY LESLIE BROOKS

sNOVEMBER 17, 1982.

1
1
1 0000
1 0000 SSPECIAL EQUATES
1 0000
1 0000 EQU TEXTG OFGH SAPPEND TEXT STRING OF THREE CHRS.
1 0000 EQU APPEND OTFH STHE APPEND FUNCTION
1 0000 EQU Y 12 S6REEK LETTER MU
1 0000
1 0000 SREGISTER EQUATES
1 0000
1 0000 EQU BASE R1 3USE R1 FOR THE BASE REGISTER
1 0000
1 0000 EQU FREQUENCY BASEsQ ;THE CUTOFF FREQUENCY
1 0000 EQU RESISTANCE BASEsl ;THE TERMINATING RESISTANCE
1 0000 EQU CAPACITOR BASEs2 CAPACITOR VALUE
1 0000 EQU INDUCTOR BASEs3 COIL VALUE
1 0000
1 0000 COOOFB00 LBL ’LOMPASS’ 30UR LOU-PASS FILTER PROGRAN

4C4F5T50
415353

2 0008 5946624 T ’FREQUENCY=?” 3ASK FOR THE CUTOFF FREQUENCY
5155454
wmF) acTuAlL CODE 65NERATED

3 0017 8 PROMPT
¢ 0018 30 STO FREQUENCY SAVE IT
5 0019 F952854 T RCTERMI=2” 3ASK FOR THE TERNINATING RESISTANCE

45524029
303F

6 0023 BE PRONPT
1 o024 31 STO RESISTANCE ;SAVE THE RESISTANCE
B 0025 ;
8 0025 SCALCULATE THE INDUCTOR (COIL) FIRST
8 0025 L = R/CPI ¥ FREQUENCY)
8 0025 ;
8 0025 20 RCL FREQUENCY SGET THE FREQUENCY
3 0026 12 PI

10 0027 @ x SP1 % FREQUENCY
11 0028 43 / SDIVIDE INTO THE RESISTANCE
12 0029 11101010 1000 SCONVERT T MILLIHENRIES
13 o020 43 /
16 002 33 $TO INDUCTOR SAVE IT FOR FUTURE USE
15 00 SNOU DISPLAY THE CALCULATED INDUCTOR VALUE
15 02F F3aC3020 T L:
16 0033 9873 ARCL X
11 0035 FGTF206D APPEND ’ MW’ SUNITS ARE MILLIHENRIES

@
18 003 T AVIEN
19 0038 89 PSE
20 003C 33 STO INDUCTOR *SAVE IT FOR FUTURE USE

G1UCC V 1.45, Copyright 1981 by Lesiie Brooks.

Distributed by Hand Held Products Incorporated.

21 0030 sNOU DISPLAY THE CALCULATED INDUCTOR VALUE

21 0030 F34C3D20 T o

22 0041 9873 ARCL X

23 0043 7Tt AVIEN

24 0044 89 PSE

25 0045 ;

23 0045 sNOW CALCULATE THE CAPARCITOR

25 0045 5 C=1/7@Q % PI ¥ RESISTANCE X FREQUENCY)

2% 0045 ;

25 0045 21 RCL RESISTANCE s6ET THE RESISTANCE AGAIN

26 0046 20 RCL FREQUENCY sAND THE FREQUENCY
21 0047 42 X

28 0048 T2 PI

29 0043 42 X

30 004 9273 ST0+ X s00UBLE IT

k)| 004C 111B16 1E6 sCONVERT TO NICROFARADS

R 004F 43 /

33 0050 32 STO CAPACITOR 7SRVE FOR FUTURE USE

34 0051 sNOW DISPLAY THE CAPACITOR VALUE

34 0051 F3433020 T Cz’

35 0055 9873 ARCL X

36 0057 Fd4TF200C DB TEXT4,APPEND,” * NU,”F” FLABEL IT RS NICROFARADS

46

37 005C 7TE AVIEU

38 0050 89 PSE

39 005t C0000D END

¢. Ros5
41UCC ¥ 1.45, Copyright 1981 by Leslie Brooks.

Distributed by Hand Held Products Incorporated.

UNDEF INED ALPHA LABELS

(THESE ARE ERRORS IF NOT DEFINED IN ANGTHER PROGRAMN)

LABEL DEFINED VALUE LINE NUMBERS OF REFERENCES TO THE SYnBOL

NANE ON

xxxxx NO SYNMBOLS WUERE UNDEF INED xxxxx

41UCC b 1.45, Copyright 1981 by Leslie Brooks.

Distributed by Hand Held Products Incorporated.

FLAG USAGE SUNNARY

FLR6 & LINE NUNBERS OF REFERENCES TO THE FLAR6

Xx%%% NO FLAGS WERE USED exxxx

41UCC V 1.45, Copyright 1981 by Leslie Brooks.

Distributed by Hand Held Products Incorporated.

NUMERIC LABEL USAGE SUMMARY

LABEL DEFINED LINE NUMBERS OF REFERENCES TO THE LABEL

s ON

xxxxx NO NUNERIC LABELS WERE USED xxxxx

REFERENCE-

41UCC V 1.45, Copyright 1981 by Leslie Brooks.

Distributed by Hand Held Products Incorporated.

REGISTER USAGE SUNNARY

REGISTER LINE NUMBERS OF REFERENCES TO THE REGISTER 8

000 4-S 8-R

001 1-S 25-R

002 33-§

003 14-5 20-S

X 16-R 22-R

TAG MEANINGS ARE : CF

DI

0s

FC

FS

6l

II

IS

R

RI

S

SF

S1

T

X1

XC

26-R

30-S 35-R

CLEAR FLAG INDIRECT

DECRERENT INODIRECT AND SKIP IF EQUAL

DECRENENT AND SKIP IF EQUAL

FLA6 CLEAR? INDIRECT

FLAG SET? INDIRECT

60TO INDIRECT

INCREMENT INDIRECT AND SKIP IF GREATER

INCREBENT AND SKIP IF GREATER

RECALL
RECALL INDIRECT

STORE

SET FLAG INDIRECT

STORE INDIRECT

FLAG TEST AND CLEAR INDIRECT

EXECUTE INDIRECT

EXCHANGE X AND R

41UCC V 1.45, Copyright 1981 by Leslie Brooks.

Distributed by Hand Held Products Incorporated.

ALPHA LABEL USAGE SUMNMARY

LABEL DEFINED VALUE LINE NUNBERS OF REFERENCES TO THE LABEL

LOUPASS 1 0000

TAG NEANINGS ARE: 6

X

6070

EXECUTE

41UCC V 1.45, Copyright 1981 by Leslie Brooks.

Distributed by Hand Held Products Incorporated.

INTEGER SYMBOL USRGE SUMNARY

SYNBOL DEFINED VALUE LINE NUMBERS OF REFERENCES TO THE SYNMBOL

NANE ON

APPEND 1 007F 36-

BASE 1 0000

CAPACIT 1 0002 33-

FREQUEN 1 0000 4- 8- 26-

INDUCTO 1 0003 14- 20-
nu 1 000C 36-

R1 1 0000

R2 1 0000

R3 1 0000

R4 1 0000

RESISTA 1 0001 1- 25-

TEXT4 1 00F¢ 36-

41UCC V 1.45, Copyright 1981 by Leslie Brooks.

Bistributed by Hand Held Products Incorporated.

STRING SYMBOL USAGE SUNNARY

SYNBOL DEFINED VALUE LINE NUMBERS OF REFERENCES TO THE SYmBOL

NANE ON

xxxxx N0 STRING SYNBOLS WUERE USED xxxx

41UCC V 1.45, Copyright 1981 by Leslie Brooks.

Distributed by Hand Held Products Incorporated.

VARIABLE USAGE SUMNARY

VARIABLE DEFINED VALUE LINE NUMBERS OF REFERENCES TO THE PARIABLE

NARE ON

%xx%% N0 VARIABLES WERE USED sxx:xx

ANOTHER EXAMPLE PROGRAM

Let's move on to another example program. This one will
solve a common mathematical problem - finding zeros of a
function. The method I will use is called the secant method; it

is fairly fast and simple. A good explanation of the secant
method, including a FORTRAN program example, is given in
Elementary Numerical Analysis: An Algorithmic Approach by Conte
and de Boor. For now all we need to know is the formula and how
to use it. The secant method is described by

X - x £(X.) Xn = Xp-1

n+l ~ -

LA,

)~~~——=——=—=—=—=—=——==="%n n £(X,) - £(Xq-1)

It starts with a function f(X) and two guesses (n,n-1) for a

zero of the function; the guesses should be on either side of the
actual zero. The formula above is then evaluated, and the result

(Xn+l) becomes the new X . The previous X_ becomes the new X.q,
and the old X3 is discarded. The formula is then reevaluated,

and this continues until f(X) reaches zero (or very close to it).
As an example, if we wanted to find the square root of 5, we
would say that our function is

because 5 minus X squared obviously equals zero if X is the
square root of 5. We would also need to guess that the square
root of 5 must lie between 1 and 5. From this information we
could use the secant method to find the square root. By plugging

our guesses 1 and 5 into the formula for the secant method we get

5 -1

fre=TT
or

4

Kar 8 (2OTT
which gives

Xh41 = 1.6666, X =5

Plugging these guesses back into the formula will produce

a new (and closer) guess, and so forth. Now let's write a
program to do this.

TITLE 'SECANT METHOD FOR F(X)=0. BY LESLIE BROOKS'

LBL 'ScC' ;ENTRY POINT TO THE PROGRAM

T 'GUESS 1?2 ;ASK FOR GUESS 1

22

ANOTHER EXAMPLE PROGRAM

PROMPT
STO 00 ;SAVE X__,
T 'GUESS 22 ;ASK FOR GUESS 2
STO 01 ; SAVE X_
T 'FUNCTION NAME?' ;ASK FOR THE FUNCTION NAME
AON
PROMPT
ASTO 04 ;SAVE THE FUNCTION NAME
AOFF
.01
STO 02 ; LOOP 10 TIMES

;CALCULATE F(GUESS1) TO START THE PROGRAM

LBL 01
RCL 00 ;GET X__; BACK AGAIN
XEQ IND 04 ;EXECUTE THE FUNCTION
STO 05 ;AND SAVE F(X__q)
RCL 01 ;GET X,
XEQ IND 04 ; EVALUATE F(X_)
RCL 01 ;GET X,
RCL 00 ;AND X4
- ;SUBTRACT THEM
X<>Y ;GET £(X_) BACK
STO % ;SAVE IT AGAIN
RCL 05 ;AND GET £(X__;)
- ;SUBTRACT THESE
/ POXg = Xy) /0 E(X) = £(X1))
* sMULTIPLY BY f£(X,)

;X now contains a correction factor to be added to Xn

RCL 01 ;GET Xp
X<>Y

;NOW WE HAVE Xn+l IN THE X REGISTER

X<> 01 ;EXCHANGE X, WITH Xp
STO 00 X, BECOMES THE NEW X,_;
ISG 02 : INCREMENT THE LOOP COUNTER
GTO 01 ;LOOP IF NOT DONE

;IF WE GET HERE, WE ARE DONE - DISPLAY THE RESULT

ANOTHER EXAMPLE PROGRAM

RCL 01 : X
END

This program will certainly work, although it is hardly the

best that we could do. However, there are several things we can

learn from i1it. The first thing to notice here is the TITLE at
the top - this is another pseudo instruction which causes a title
to be printed at the top of every page of the listing. Other
than this there is nothing of any importance in this version of
the program. However, putting numbers directly into a program is
very bad practice - they should always be equates so that they
may be found and changed easily. Let's do that for this one.

TITLE 'SECANT METHOD FOR F(X)=0. BY LESLIE BROOKS'

; REGISTER EQUATES

EQU GUESSL 00 ;FIRST GUESS FOR X
EQU GUESS2 01 ;SECOND GUESS FOR X
EQU LOOP 02 ; LOOP COUNT
EQU FUNCTION 04 ; FUNCTION NAME
EQU SCRATCH 05 ; SCRATCH REGISTER (USUALLY

;HOLDS f£(X,_1)
; LABELS

QU START 01 ;START OF THE MAIN LOOP

LBL 'scC' ;ENTRY POINT TO THE PROGRAM
T 'GUESS 1?2 ;ASK FOR GUESS 1
PROMPT
STO GUESSI1 ;SAVE X__,
T 'GUESS 27?' ;ASK FOR GUESS 2
STO GUESS2 ;SAVE X_
T 'FUNCTION NAME?' ;ASK FOR THE FUNCTION NAME
AON
PROMPT
ASTO FUNCTION ;SAVE THE FUNCTION NAME
AOFF
.01
STO LOOP ;LOOP 10 TIMES

;:CALCULATE F(GUESS1) TO START THE PROGRAM

LBL START

RCL GUESS p
—
d

i GET Xn—l BACK AGAIN

24

ANOTHER EXAMPLE PROGRAM

XEQ IND FUNCTION : EXECUTE THE FUNCTION

STO SCRATCH ;AND SAVE F(X_ _q)

RCL GUESS?2 ;GET Xp,
XEQ IND FUNCTION ; EVALUATE F(X)

RCL GUESS?2 ;GET X
RCL GUESS1 sAND X_4
- ; SUBTRACT THEM
X<>Y ;GET £(X,) BACK
STO Z :SAVE IT AGAIN

RCL SCRATCH ;AND GET £(X,_;)
- : SUBTRACT THESE

/ P (X, - X1) /(X)) - £(Xg-1))
* sMULTIPLY BY f£(X,)

: X now contains a correction factor to be added to Xn

RCL GUESS2 ;GET X,

X<>Y

s NOW WE HAVE Xn+l IN THE X REGISTER

X<> GUESS2 s EXCHANGE X[47 WITH X,

STO GUESS1 7Xn BECOMES THE NEW X_4

ISG LOOP ; INCREMENT THE LOOP COUNTER

GTO START ;LOOP IF NOT DONE

;IF WE GET HERE, WE ARE DONE - DISPLAY THE RESULT

RCL GUESS2 ' X

END
n

This is much easier to read than the original but it still
has a constant embedded in it - the loop count (.01). If this
were a large program the loop count might be referred to in many
places, and we would want to be able to change it easily. 1In
order to do this we would add another equate

EQU COUNT ' .01' ;s MAXIMUM NUMBER OF TIMES THROUGH

; (DIVIDED BY 1000)

and the lines

.Ol

STO LOOP ;LOOP 10 TIMES

would become

25

ANOTHER EXAMPLE PROGRAM

COUNT

STO LOOP ;LOOP 10 TIMES

This may seem a bit unusual at first, but it really isn't
hard to understand. The symbol COUNT has been given a string of

characters - ' .01' - as its value. If we then put the word
COUNT all by itself as the first symbol on a line, 41UCC will

convert it to the eguivalent string and evaluate the string.
This same technique will also work after an XROM, but nowhere
else. If you want to know more about this, look up STRING

EQUATES in the section titled INTRODUCTION TO SPECIAL FEATURES.

Now if we have the need to put this loop count in several
places throughout our program, someone else reading the program

can immediately tell that this is the same loop count. If we had
a different constant which also happened to be .01, we could give
it a different name so that they would never be confused.

The next thing to do to our program is to allow a user to

call it as a subroutine, which means we must skip the prompting
for the initial guesses and function name. We can use flag 10 to
tell us whether or not to prompt for this information - if flag
10 is set, we will skip the prompts and begin executing
immediately. We will need to add

EQU NO_PROMPT 10 ;FLAG IS SET IF GUESSES ARE ALREADY

;ENTERED

LBL 'sc' ;ENTRY POINT TO THE PROGRAM

FS?C NO_PROMPT :SET IF CALLED AS A SUBROUTINL

GTO START ;SKIP THE PROMPTING IF SE

to our program in order to allow this. Now our program looks

like this

TITLE 'SECANT METHOD FOR F(X)=0. RY LESLIE BROOKS'

;REGISTER EQUATES

EQU GUESS1 00 ;FIRST GUESS FOR X
EQU GUESS2 0l ;SECOND GUESS FOR X
EQU LOOP 02 ; LOOP COUNT
EQU FUNCTION 04 ;FUNCTION NAME
EQU SCRATCH 05 s SCRATCH REGISTER (USUALLY

;HOLDS f(X,_7)
; LABELS

EQU START 01 ; START OF THE MAIN LOOP

; FLAGS

26

ANOTHER EXAMPLE PROGRAM

EQU NO_PROMPT 10 ;FLAG IS SET IF GUESSES ARE ALREADY

s ENTERED

LBL 'SC' ;ENTRY POINT TO THE PROGRAM

;BRANCH IF FLAG 10 IS SET - ACT LIKE A SUBROUTINE, DON'T

: PROMPT THE USER FOR THE INITIAL GUESSES OR FUNCTION NAME

FS?C NO_PROMPT ;SET IF CALLED AS A SUBROUTINE

GTO START ;SKIP THE PROMPTING IF SET

;ELSE PROMPT NORMALLY

T 'GUESS 1?' sASK FOR GUESS 1

PROMPT

STO GUESS1 : SAVE Xn—l

T 'GUESS 27 ;ASK FOR GUESS 2

STO GUESS2 ; SAVE Xn

T '"FUNCTION NAME?' ;ASK FOR THE FUNCTION NAME

AON

PROMPT

ASTO FUNCTION ;SAVE THE FUNCTION NAME

AOFF

.01

STO LOOP ;LOOP 10 TIMES

;CALCULATE F(GUESS1) TO START THE PROGRAM

LBL START

RCL GUESS1 ;GET Xn—l BACK AGAIN

XEQ IND FUNCTION ; EXECUTE THE FUNCTION

STO SCRATCH ;AND SAVE F(X__7)

RCL GUESS?2 ; GET Xn

XEQ IND FUNCTION ; EVALUATE F(Xn)

RCL GUESS2 ; GET Xn

RCL GUESS1 ; AND Xn—l

- ;SUBTRACT THEM

X<>Y ;GET £(X_) BACK
STO 7 ;SAVE IT AGAIN

RCL SCRATCH ;AND GET f£(X,_q)

- ;SUBTRACT THESE

/ P (Xn - Xpor) /O E(Xg) - £(Xq1))

27

ANOTHER EXAMPLE PROGRAM

* sMULTIPLY BY f(X,)

iX now contains a correction factor to be added to X4

RCL GUESS2 ; GET X,

X<>Y

s NOW WE HAVE Xn+l IN THE X REGISTER

X<> GUESS?2 s EXCHANGE X4, WITH X,

5TO GUESS1 7Xn BECOMES THE NEW X_y

ISG LOOP ; INCREMENT THE LOOP COUNTER

GTO START ; LOOP IF NOT DONIL

;IF WE GET HERE, WE ARE DONE - DISPLAY THE RESULT

RCL GUESS?2 ;X

END
n

This seems to be about as much as we can do toward cleaning

up the program as it is now - but perhaps we could generalize a
few things. For example, the lines

T '"FUNCTION NAME?' ;ASK FOR THE FUNCTION NAME

AON

PROMPT

ASTO FUNCTION ;SAVE THE FUNCTION NAME

AOFF

perform a function which could be used in many programs without
change - is there any way we could actually do this? In fact
there is - let's change these lines to a real routine:

EQU FUNCNAME LBLBASE ;CREATE A LABEL NUMBER FOR THIS

s ROUTINE

SET LBLBASE LBLBASE+1 ;CREATE A NEW LABEL RASE

LBL FUNCNAME

T '"FUNCTION NAME?' ;ASK FOR THE FUNCTION NAME

AON

PROMPT

ASTO FUNCTION ;SAVE THE FUNCTION NAME

AOFF

This creates a compblete and useful function - but where did
LBLBASE come from, and what is this SET? The LBLBASE is a

symbol whose value comes from outside the function, and SET gives
LBLBASE a new value. If we come into this routine with LBLBASE
equal to 5, then FUNCNAME will have the value 5, and our routine

28

ANOTHER EXAMPLE PROGRAM

will be labeled by label 5. The symbol LBLBASE will get a new
value - 6 - so that the next routine will be guaranteed to have a

label that does not conflict with any other. Create this routine
with your text editor and save it on disk as FUNCNAME.INC, we
will use it in the next step.

Now we will change our secant program to look like this:

TITLE 'SECANT METHOD FOR F(X)=0. BY LESLIE BROOKS'

;s SPECIAL EQUATES

EQU LBLBASE 02 sWE HAVE USED LABEL 1

s REGISTER EQUATES

EQU GUESS1 00 ;FIRST GUESS FOR X
EQU GUESS2 01 ;SECOND GUESS FOR X
EQU LOOP 02 ; LOOP COUNT
EQU FUNCTION 04 ;FUNCTION NAME
EQU SCRATCH 05 ;SCRATCH REGISTER (USUALLY

sHOLDS £(X,_1)
; LABELS

EQU START 01 ;START OF THE MAIN LOOP

; FLAGS

EQU NO_PROMPT 10 ;FLAG IS SET IF GUESSES ARE ALREADY
; ENTERED

LBL 'sC' ;ENTRY POINT TO THE PROGRAM

;BRANCH IF FLAG 10 IS SET - ACT LIKE A SUBROUTINE, DON'T

; PROMPT THE USER FOR THE INITIAL GUESSES OR FUNCTION NAME

FS?2C NOPROMPT sSET IF CALLED AS A SUBROUTINE

GTO START ;SKIP THE PROMPTING IF SET

; LLSE PROMPT NORMALLY

T 'GUESS 12" ;ASK FOR GUESS 1

PROMPT

ANOTHER EXAMPLE PROGRAM

STO GUESS1 ;SAVE Xp-1

T '"GUESS 27 sASK FOR GUESS 2

STO GUESS?2 i SAVE Xp

s NOW PROMPT FOR THE FUNCTION NAME

#INCLUDE FUNCNAME.INC

.01

STO LOOP ;LOOP 10 TIMES

; CALCULATE F(GUESS1) TO START THE PROGRAM

LBL START

. (This part of the program is unchanged.)

END

Notice that there is now a definition for LBLBASE, and
notice what has happened to the lines that used to ask for the
function name.

T '"FUNCTION NAME?' ;ASK FOR THE FUNCTION NAME

AON

PROMPT

ASTO FUNCTION ;SAVE THE FUNCTION NAME

AOFF

has been replaced by the single line

#INCLUDE FUNCNAME.INC

When 41UCC sees this line it will go out to the disk, find

the file FUNCNAME.INC which we created, and insert it into the

program in place of the #INCLUDE line. ©Notice that the #INCLUDE
begins in the first column, that there is exactly one space

between the INCLUDE and the file name, and that there is nothing

else on the line. All of these things must be exactly so 1n
order for 41UCC to replace the line by the file. What this means

is that you may have a symbol called INCLUDE, and text strings

like

T '"#INCLUDE'

and 41UCC will not do strange things with them behind your back.

30

ANOTHER EXAMPLE PROGRAM

Now when we look at the listing of our secant program, it

will be similar to this

TITLE 'SECANT METHOD FOR F(X)=0. BY LESLIE BROOKS'

; SPECIAL EQUATES

SET LBLBASE 02 ;WE HAVE USED LABEL 1

;REGISTER EQUATES

EQU GUESS1 00 ;FIRST GUESS FOR X
EQU GUESS2 0l ; SECOND GUESS FOR X
EQU LOOP 02 ; LOOP COUNT
EQU FUNCTION 04 ;FUNCTION NAME
EQU SCRATCH 05 ;SCRATCH REGISTER (USUALLY

;HOLDS f(Xp_7)
; LABELS

EQU START 0l ;START OF THE MAIN LOOP

; FLAGS

EQU NOPROMPT 10 ;FLAG IS SET IF GUESSES ARE ALREADY
; ENTERED

LBL 'scC' ;ENTRY POINT TO THE PROGRAM

;BRANCH IF FLAG 10 IS SET - ACT LIKE A SUBROUTINE, DON'T

; PROMPT THE USER FOR THE INITIAL GUESSES OR FUNCTION NAME

F'S?C NO_PROMPT ;SET IF CALLED AS A SUBROUTINE

GTO START ;SKIP THE PROMPTING IF SET

s LLSE PROMPT NORMALLY

T '"GUESS 1?2 ;ASK FOR GUESS 1

PROMPT

STO GUESS1 ; SAVE Xn—l

T 'GUESS 27?2 ;ASK FOR GUESS 2

STO GUESS2 ; SAVE Xn

31

ANOTHER EXAMPLE PROGRAM

; NOW PROMPT FOR THE FUNCTION NAME

EQU FUNCNAME LBLBASE ;CREATE A LABEL NUMBER FOR TIIS

; ROUTINE

SET LBLBASE LBLBASE+l ;CREATE A NEW LABEL BASE

LBL FUNCNAME

T '"FUNCTION NAME?' ;ASK FOR THE FUNCTION NAMLE

AON

PROMPT

ASTO FUNCTION ;SAVE THE FUNCTION MNAME

AOFF

.01

STO LOOP ; LOOP 10 TIMES

;CALCULATE F(GUESS1) TO START THE PROGRAM

LBL START

(This part of the program is unchanged.)

END

and we can see that the function has been included exactly as we

wished. Because we put a label on the function we can GTO or XEQ
it from anywhere in the program, just as though we had typed it
into the program rather than #INCLUDE'ing it. This is a very
power ful technique, and can be used to build up libraries of
useful functions which may then be used in many different
programs. If a bug is discovered in one of your library routines
you make the correction in only one place, and then recompile all
of the affected programs - there is no need to edit each program
that uses the routine.

As a final note you should notice that the same method used

to guarantee that the label for our function was unique could be
used to provide a unique register or group of registers for

local storage. In the general case where we have a routine that

needs two labels, three registers, and one flag all to itself, we

would write it something like

rMY OWN LABELS

EQU LBL1 LBLBASE ;MY FIRST LABEL

EQU LBL2 LBLBASE+l ;MY SECOND LABEL

ANOTHER EXAMPLE PROGRAM

SET LBLBASE LBL_BASE+2 ;CREATE A NEW LABEL BASE

sMY OWN REGISTLRS

EQU REG1 REG_BASE ;MY FIRST REGISTER

EQU REG_2 REG_BASE+1 ;MY SECOND REGISTER

EQU REG3 REGBASE+2 ;MY THIRD REGISTER

SET REG_BASE REG_BASE+3 ;CREATE A NEW REGISTER BASE

rMY OWN FLAG

EQU FLAG_1 FLGBASE ;MY OWN PERSONAL FLAG

SET FLGBASE FLGBASE+l ;CREATE A NEW FLAG BASE

Now let's suppose that we do make a change to a library

routine and we want to update all of our programs that use this

routine. A quick check of our documentation reveals that the
programs affected are SECANT, GEAR, NEWTON, and PI. Rather than

recompiling them with

A>41UCC I=SECANT

A>41UCC I=GEAR

A>41UCC I=NEWTON

and so on ad nauseum, why don't we just

A>41uUcCC
41UCC- AN HP-41CUSER CODE COMPILER. COPYRIGHT 1981 BY LESLIE BROOKS.

DISTRIBUTED BY HAND HELD PRODUCTS INCORPORATED.

VERSION 1.45 - NOVEMBER 8, 1982. Serial Number ACO0002

2I=SECANT

O ERROR(S) IN PHASE ONE
O ERROR(S) IN PASS ONE
O ERROR(S) IN PASS TWO

2I=GEAR

O ERROR(S) IN PHASE ONE
O ERROR(S) IN PASS ONE
O ERROR(S) IN PASS TWO

? I=NEWTON

O ERROR(S) IN PHASL ONE
O ERROR(S) IN PASS ONE
O ERROR(S) IN PASS TWO

2I=PI

33

ANOTHER EXAMPLE PROGRAM

O ERROR(S) IN PHASE ONE
O ERROR(S) IN PASS ONE
O ERROR(S) IN PASS TWO

This 1is much quicker and easier than the first method,
because 41UCC does not have to be reloaded from disk each time.
An even easier method, if we are going to be making a number of
changes to the same set of programs, would be to create a file

I=SECANT

I=GEAR

I=NEWTON

I=P1I

and call it something like TEST.IND. We can now use it as an

INDIRECT COMMAND FILE to pass instructions to 41UCC, simply by

typing:

41UCC @TEST

After 41UCC has executed, the screen will look like this:

A>41UCC QTEST

41UCC - AN HP-41C USER CODE COMPILER. COPYRIGHT 1981 BY LESLIE BROOKS.

DISTRIBUTED BY HAND HELD PRODUCTS INCORPORATED.

VERSION 1.45 - NOVEMBER 8, 1982. Serial Number AC0002

I=SECANT

O ERROR(S) IN PHASE ONE

O ERROR(S) IN PASS ONE

O ERROR(S) IN PASS TWO

O ERROR(S) IN PHASE ONE

0O ERROR(S) IN PASS ONE
O ERROR(S) IN PASS TWO

I=NEWTON

O ERROR(S) IN PHASE ONE
O ERROR(S) IN PASS ONE
O ERROR(S) IN PASS TWO

O ERROR(S) IN PHASE ONE
O ERROR(S) IN PASS ONE
O ERROR(S) IN PASS TWO

34

ANOTHER EXAMPLE PROGRAM

41UCC has read the file TEST.IND one line at a time, and has
executed those lines just as though they had been typed in at the
console. This is a very powerful feature, and very advantageous
whenever you are working with multiple programs at one time.

A REAL LISTING

Now let's take a look at the listing 41UCC produces from the
program SECANT. I will make some notes on it to point out things
of particular interest. A listing of TST28 and barcode for
FILTER, SECANT, and TST28 is included in Appendix G. TST28 is a
test program which contains an example of every instruction 41UCC
understands, all in alphabetical order. If you have doubts about

the form of a particular instruction, take a look at this listing
and it may help.

35

41UCC ¥ 1.45, Copyright 1981 by Leslie Brooks.
Distributed by Hand Held Products Incorporated.

A
A

p
h
h
A
A
A
A
A
A
A
A
A
A
A
A
A
A

m
h
A
A
A
A
A
A
A
A

o
S

L&
/
W
O

-
3

O
©

O
W
O
W

WO
V

W
V
W
W
™

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0006

0006

0006

0006

0006

0008

000A

000A

000A

000A

0013

0014

0015

001E

001F

001F

001F

001F

001F

001F

001F

C000F300

9343

AROA

B200

F8475545

53532031

3F

8t
30

F8475545

53532032

3F

)|

TITLE "SECANT NETHOD FOR F(X)=0. BY LESLIE BROOKS”

sSPECIAL EQUATES

SET LBL_BASE 02 sUE HAVE USED LABEL 1

sREGISTER EQUATES

EQU 6UESS1 00 sFIRST GUESS FOR X

EQU 6UESS2 01 sSECOND GUESS FOR X

EQu LooP 02 sLOOP COUNT

EQU FUNCTION 04 sFUNCTION NANE
EQU SCRATCH 05 7SCRATCH REGISTER (USUALLY

sHOLDS f(Xn-1)

sLABELS

EQU START 01 sSTART OF THE NAIN LOOP

sFLAGS

EQU NO_PROMPT 10 sFLAG IS SET IF GUESSES ARE ALREADY

7ENTERED

LBL ’SC’ sENTRY POINT TO THE PROGRAN

sBRANCH IF FLA6 10 IS SET - ACT LIKE A SUBROUTINE. DON’T

sPROMPT THE USER FOR THE INITIAL GUESSES OR FUNCTION WARE

FS2C NO_PRONPT sSET IF CALLED AS A SUBROUTINE

6T0 START 5SKIP THE PRONPTING IF SET

sELSE PRONPT NORMALLY

T ’6UESS 1?7 #ASK FOR GUESS 1

PRONPT
STO 6UESS1 sSAVE Xn-1

T ’6UESS 27 sRSK FOR BUESS 2

STO 6UESS2 sSAVE Xn

sNOU PRONPT FOR THE FUNCTION NARE

EQU FUNC_NANE LBL_BASE sCREATE A LABEL NUNBER FOR THIS

sROUTINE

SET LBL_BASE LBL_BASE+1 sCREATE A NEW LABEL BASE

41UCC V 1.45, Copyright 1981 by Leslie Brooks.

Distributed by Hand Held Products Incorporated.

SECANT NETHOD FOR F(X)=0. BY LESLIE BROOKS

11

12

13

14

135

15

16

17

11

17

17

18
19

20

21

22

23

24

25

26

21

28

29

30

31

3

R

32

32

33
34

35

3%

35

35

36

31

38

39

39

39

39

001F

0020

002F

0030

0031

0033

0034

0034

0037

0038

0038

0038

0038

0039

003A

003C

003D

003t

0040

0041

0042

0043

0044

0046

0047

0048

0049

0044

0044

0044

004A

0048

004C

0040

0040

0040

004D

004F
0050

00352

0054

0054

0054

0054

0055

03 LBL FUNC_NANE

FEG46554E T ’FUNCTION NARE?’

4354494F
sASK FOR THE FUNCTION WANE

GE204E41

4D453F

8C AON

Bt PRORPT

9A04 ASTO FUNCTION »SAVE THE FUNCTION NARE

8B AOFF

1A1011 01

32 STO LoOP sLOOP 10 TINES

»CALCULATE FCGUESS1) TO START THE PROGRAN

02 LBL START

20 RCL 6UESS1 s6ET Xn-1 BACK AGAIN

REBG XEQ IND FUNCTION EXECUTE THE FUNCTION

35 STO SCRATCH sAND SAVE F(Xn-1)

21 RCL 6UESS? s6ET Xn

AEBS XEQ IND FUNCTION EVALUATE F(Xn)

21 RCL GUESS2 s6ET Xn

20 RCL GUESSI sAND Xn-1
41 - »SUBTRACT THEN

11 XOY s6ET £(Xn) BACK

9171 ST0O 2 sSAVE IT AGAIN

25 RCL SCRATCH »AND GET f(Xn-1)

41 - »SUBTRACT THESE

a3 / CRn - Xn-1) /7 C £(Xn) - £(¥n-1))

42 X *NULTIPLY BY f(Xn)

»% nou contains a correction factor to be added to Xn

21 RCL GUESS2 36ET Xn
1 ROY
a1 -

sNOU UE HAVE Xn+1 IN THE X REGISTER

CE01 X<> GUESS2 SEXCHANGE Xn+i WITH Xn

30 STO GUESS1 +¥n BECONES THE NEH Xn-1
9602 1S6 LOOP 7 INCRENENT THE LOOP COUNTER

8200 6T0 START sLOOP IF NOT DONE

»IF UE GET HERE, UE ARE DONE - DISPLAY THE RESULT

21 RCL 6UESS2)

€00000 END

41UCC V 1.45, Copyright 1981 by Leslie Brooks.

Distributed by Hand Held Products Incorporated.

SECANT NETHOD FOR F(X)>=0. BY LESLIE BROOKS

UNDEF INED ALPHA LABELS

(THESE ARE ERRORS IF NOT DEFINED IN ANOTHER PROGRAMN)

LABEL DEFINED VALUE LINE NUMBERS OF REFERENCES TO THE SYnBoL

NANE ON

Xxxxx N0 SYNBOLS UERE UNDEFIMEDs

41UCC P 1.45, Copyright 1981 by Leslie Brooks.

Distributed by Hand Held Products Incorporated.

SECANT NETHOD FOR F(X)=0. BY LESLIE BROOKS

FLAG USAGE SURMNARY

FLAG & LINE NUNBERS OF REFERENCES TO THE FLAG

010 2-TC

TA6 MEANINGS ARE: CF CLEAR FLAG

FS FLAG SET?

FC FLAG CLEAR?

SF SET FLAE

TC FLAG TEST AND CLEAR

41UCC ¥ 1.45, Copyright 1981 by Leslie Brooks.

Distributed by Hand Held Products Incorporated.

SECANT NETHOD FOR F(X)=0. BY LESLIE BROOKS

NUNERIC LABEL USAGE SUMMARY

LABEL DEFINED LINE NUNBERS OF REFERENCES TO THE LABEL

t ON

001 17 3-6 38-6

002 9

TAG NEANINGS ARE: b 60T0

X EXECUTE

G1UCC b 1.45, Copyright 1981 by Leslie Brooks.

Distributed by Hand Held Products Incorporated.

SECANT RMETHOD FOR F(X)>=0. BY LESLIE BROOKS

REGISTER USAGE SUNNARY

REGISTER LINE NUMBERS OF REFERENCES TO THE REGISTER #

000 6-S i8-R 24-R 36-S

001 8-S 21-R 23-R 32-R 35-XC 39-R

002 16-S 31-15

004 13-$ 19-%1 22-XI

005 20-$ 28-R

Z 21-$

TAG NEANINGS ARE: CF CLEAR FLAG INDIRECT

01 DECREMENT INDIRECT AND SKIP IF EQUAL

s DECREMENT AND SKIP IF EQUAL

FC FLAG CLEAR? INDIRECT

FS FLAG SET? INDIRECT

61 60T0 INDIRECT

I1 INCRENENT INDIRECT AND SKIP IF GREATER

IS INCRENENT AND SKIP IF GREATER

R RECALL

RI RECALL INDIRECT

S STORE

SF SET FLAG INDIRECT

SI STORE INDIRECT

TC FLAG TEST AND CLEAR INDIRECT

X1 EXECUTE INDIRECT

XC EXCHANGE X AND R

G1UCC V 1.45, Copyright 1981 by Leslie Brooks.

Distributed by Hand Held Products Incorporated.

SECANT NETHOD FOR F(X)>=0. BY LESLIE BROOKS

ALPHA LABEL USAGE SURHARY

LABEL DEF INED VALUE

ON
LINE NUNBERS OF REFERENCES TO THE LABEL

SC 1 0000

TR6 NEANINGS ARE: 6

X

6070

EXECUTE

41UCC V 1.45, Copyright 1981 by Leslie Brooks.

Distributed by Hand Held Products Incorporated.

SECANT NETHOD FOR F(X)=0. BY LESLIE BROOKS

INTEGER SYNBOL USAGE SUMRARY

SYNBOL DEFINED PALUE LINE NUMBERS OF REFERENCES TO THE SYMBOL

NANE ON

FUNCTIO 1 0004 13- 19- 22-
FUNCNA 9 0002 9-
GUESST 1 0000 6- 18- 26- 36-
GUESS2 1 0001 8- 21- 23- 32- 35- 39-

LOOP 1 0002 16- 37-
NO_PROT 1 000A 2-
R1 1 0000
R2 1 0000
R3 1 0000
R4 1 0000
SCRATCH 1 0005 20- 28-
START 1 0001 3- 11- 38-

G1UCC V 1.45, Copyright 1981 by Leslie Brooks.

Distributed by Hand Held Products Incorporated.

SECANT NETHOD FOR FCX)=0. BY LESLIE BROOKS

STRING SYNBOL USAGE SURMNARY

SYNBOL DEFINED VALUE LINE NURMBERS OF REFERENCES TO THE SYnBOL

NANE ON

%xxx% N0 STRING SYNMBOLS WERE USED xxxxx

61UCC v 1.45, Copyright 1981 by Leslie Brooks.

Distributed by Hand Held Products Incorporated.

SECANT NETHOD FOR F(X)-0. BY LESLIE BROOKS

PARIABLE USAGE SUMNARY

VARIABLE DEF INED VALUE LINE NUMBERS OF REFERENCES TO THE VARIABLE

NANE ON

LBL_BAS 1 0003 9-

INTRODUCTION TO SPECIAL FEATURES

This section will explain (in fairly dry and technical
detail) some of the features available in 41UCC that are not
found in the HP-41l. Most cof the examples of their uses are in
the previous sections. These features can be very powerful.

Probably the first thing that people notice about an HP-41
program to be run through 41UCC is the comments. A comment may

appear anywhere in the program, on any line, so long as it 1is
preceded by a semicolon. Everything following a semicolon on a
line is considered to be a comment and is ignored by 41UCC.

;this is a comment, because it is preceded by a semicolon

Comments in a program are extremely useful and important,

particularly if you ever want to go back and modify a program,
but that is not all that you get from using 41UCC.

DEFINE BYTE

One very useful feature included in 41UCC is the "DEFINE
BYTE" pseudo-op. (A pseudo-op is an instruction for 41UCC rather
than for the HP-41C). The DB pseudo-op allows you to define
bytes which will be included in your program as is, with no
questions asked. For example, suppose you wish to display a
capacitor value in microfarads - the HP-41 has the Greek letter

mu available, but it is not on the keyboard. The "DB" pseudo-op
makes it very easy to include this character in a text string.

EQU APPEND O07FH ;41C APPEND FUNCTION

EQU MU OCH s GREEK LETTER MU

EQU TEXT4 OF 41 ;41C TEXT STRING 4 FUNCTION

T 'c= ! ;SHOW THE CAPACITOR VALUE

ARCL X ;VALUE IS IN X

DB TEXT4, APPEND,' ',MU, 'F' sMICROFARADS

This will append "space, mu, F" to the capacitor value in

the alpha register. Notice that "DB" may take multiple arguments
(or operands), all separated by commas. These operands may in

fact be completely general expressions - there is no inherent
limit on what you may put in a "DB" statement, provided that it
can be evaluated properly.

END

The "END" instruction informs 41UCC that the end of the
program has been reached. 1WNo further lines will be processed,
and you will get an error message if there are lines after the
"END". The "END" is not mandatory.

EQUATES

An equate assigns a permanent value to a symbol. This
symbol may then be used anywhere in the program. For example,

41

INTRODUCTION TO SPECIAL FEATURES

EQU FREQUENCY 00 ; INPUT FREQUENCY

assigns the value 0 to the symbol FREQUENCY, and you may then use
FREQUENCY freely throughout your program. Thus we have decided
to use register 0 for storing a frequency and we can now say

STO FREQUENCY ; SAVE THE INPUT FREQUENCY

STO+ FREQUENCY ;ADD AN OFFSET TO THE FREQUENCY

ST+ FREQUENCY+3 ;STORE IN REGISTER 3

RCL FREQUENCY s RECALL THE LAST USED FREQUENCY

anywhere in our program. 41UCC will understand that we are

referring to register O.

ONLY THE FIRST SEVEN CHARACTERS of a symbol are significant.
That is, FREQUENCY, FREQUENC, FREQUEN1, and FREQUENTLY will all

be treated as identical by 41UCC. Also, the only characters
allowed in a symbol are the letters A-7Z, the digits 0-9, the
dollar sign '$', and the underline ''. Lower case letters are
considered the same as upper case letters. All symbols must

begin with a letter.

The EQUate may go anywhere in your program, and may in some

cases be referred to before its definition, as here

STO TIME ;SAVE THE CURRENT TIME

EQU T IME 05 ;REGISTER FOR CURRENT TIME

It is usually a good idea to put equates at the beginning of
your program, so that they are easy to find, but there are excep-

tions. When we look at the SET and #INCLUDE psuedo-ops we will
see that it can be advantageous (or even essential) to put
certain EQUates elsewhere in the program. It would be good
practice to set them off in some special way so that they are
still easy to find - for example, by using PAGE to go to the top
of a new page before any embedded equates, or by putting several

comment lines ahead of them like this

;:: LEQUATES FOR THE DATE MODULE

THE DATE MODULE PERFORMS THE FOLLOWING FUNCTIONS:

l)-ooooo

2)...-.

3)....

S
~

S
8

S
e

S
e

S
o

S
o

THE FOLLOWING SYMBOLS ARE DECLARED~
e

EQU CDATE BASE + 1 ; CURRENT DATE

EQU SDATE BASE + 2 ; STAR DATE

EQU PDATE BASE + 3 ; PREVIOUS DATE OF INTEREST

STRING EQUATES

Another form of the equate is the string equate, so called

42

INTRODUCTION TO SPECIAL FEATURES

because it assigns a text string value to a symbol. String

equates have the following form:

EQU MATRIX 'XROM 30,01" sMATH PAC FUNCTION

EQU SIMEQ 30,02 ; SIMULTANEOUS EQUATIONS

EQU DET 'XROM 30,06 s TAKE THE DETERMINANT'

EQU TEXT '"HELLO WORLD'

Probably the most common use for this will be to define XROM

functions for later use in a program. To execute the MATRIX
program we need only have a program such as the following:

EQU MATRIX 'XROM 30,01 ;HP MATH PAC MATRIX FUNCTION'

EQU SIMEQ '30,02"

LBL 'MATH1A' sMATH PAC NAME

MATRIX

XROM SIMEQ

END

41UCC will recognize that the symbol MATRIX has the value

'XROM 30,01', and will expand it and evaluate the resulting XROM.
The LiST file that is produced will look (in part) like this:

LBL 'MATHIA' sMATH PAC NAME

XROM 30,01 ;1P MATH PAC MATRIX FUNCTION

XROM SIMEQ

Notice that any text string may be included in a string equate -
it does not have to be used merely for XROM's. Also, you may
include a comment within the string equate if you wish, and this
comment wil. then appear on any line where you use the equated

symbol as an operator. This is demonstrated by the MATRIX
definition and use above. You should also notice that the two
methods of defining an XROM produce different results in the
listing - the first method (used for MATRIX) produces the XROM

number in the 1listing, the second method (used for SIMEQ)
produces the XROM name. This can be used to advantage, as we can

see in this example:
EQU ACCURACY '2 E-90 ;s MAXIMUM ERROR ALLOWED'

EQU CERROR 03 ;USE REGISTER 3 FOR THE CALCULATED

; CTRROR

LBL '"ERROR'

ACCURACY

RCL CERROR ;GET THE CALCULATED ERROR

X<Y? ;IS THE ERROR LESS THAN THE LIMIT?

RTN sRETURN IF LESS THAN

. ;ELSE KEEP GOING

After 41UCC has been run on this program, we can look at the

listing and see (in part):

43

INTRODUCTION TO SPECIAL FEATURES

LBL 'ERROR'

2 E-90 sMAXIMUM ERROR ALLOWED

RCL ERROR ;GET THE CALCULATED ERROR

Now it 1s easy to see that the symbol ACCURACY has been
converted to its value - the number 2 E-90. This allows you to
put frequently used constants at the beginning of the program
where they are easy to find. 1If the constants change, it is very
simple to change the constants in just one place - where they are

defined - rather than going through the entire program to find
and change all of them.

Symbols having string values may appear only as the first
symbol on a line or as the operand of XROM.

EXPRESSIONS

Expressions may appear anywhere a numeric operand would Dbe
valid. The supported operators are:

+ addition
- subtraction
* multiplication
/ division
AND Dboolean product
EQ test for equality
GE test for greater than or equal to
GT test for greater than
LE test for less than or equal to
LT test for less than

MOD remainder after division

NE test for not equal
NOT unary one's complement

OR boolean sum

SHL shift a left b bits, end off, zero fill

SHR shift a right b bits, end off, zero fill

XOR boolean difference

Standard evaluation hierarchy is used, but nested
parentheses may be used to force any order of evaluation desired.
Constants may be either numeric or ASCII (ASCII constants must be
in quotes). Numeric constants may have a post radix (B=binary,
0,Q=0ctal, D=Decimal, and H=Hexadecimal). The default base is
decimal. All numeric constants must start with a digit from O
through 9. All of the following are valid constants:

OABH 10 525 10010011B 125Q 1250 525D

while these are invalid:

F5H - does not start with a digit
10010011 - is too large to be a valid decimal number
525E3 - not a valid decimal number. (This would be a

44

INTRODUCTION TO SPECIAL FEATURES

valid number for the HP-41C, if entered into a program like this:

525E3 sconstant offset

STO OFFSET ;save the initial wvalue

but it is not valid in an expression that 41UCC must evaluate -
such as:

TONE OFFSET AND 525E3

or

STO INDEX + 525E3

41UCC works with 16 bit quantities in expressions, and 525E3 Jjust

isn't valid.)

We could fix the invalid numbers above as follows:

OF 5H - valid hex number
10010011B- valid binary number
25E3H - valid hex number

All arithmetic is sixteen bit integer only. Some examples
of using expressions in 41UCC are:

SET BASE 10 ;SET THE BASE REGISTER TO 10

EQU FREQ BASE+0O

EQU TIME FREQ+1

EQU TIME1 TIME+1

EQU COMPLEX TIME1l+l1l ; COMPLEX SUM

EQU ROTATION (COMPLEX+2)/FREQUENCY

SET BASE BASE+6 s NEW BASE REGISTER

Now we can change where our registers are merely by changing

one definition - for the base register.

GLOBAL LABELS

Global labels "A" (global labels being those that show up in
catalog 1 listings) are perfectly understood by the HP-41, in
spite of Hewlett-Packard's failure to provide a convenient means
of producing them. 41UCC has several instructions that support
single character global labels that would normally be local
labels. The first instruction in this class is "GLBL", which

forces a label to be global. For example:

GLBL 'A’ ; PRODUCES A GLOBAL LABEL 'A'

GLBL 'FRED' ;HAS NO AFFECT ON 'FRED'

GLBL 'c!' ; PRODUCES A GLOBAL 'c'

Now to access these labels, we need instructions which

explicitly reference a global label. Because 41UCC has these
instructions, a global "A" and a local "A" are not considered to
be the same label and do not cause a double definition error.

45

INTRODUCTION TO SPECIAL FEATURES

GTOG ‘A’ ; PRODUCES A GOTO GLOBAL LABEL 'A'’

GTOG '"FRED' ; PRODUCES A NORMAL GOTO 'FRED'

GTOG 'c! ; PRODUCES A GOTO GLOBAL 'c'

XEQG ‘A’ ; PRODUCES AN EXECUTE GLOBAL LABEL 'A'

XEQG 'FRED' ; PRODUCES A NORMAL XEQ 'FRED'

XEQG 'c! ; PRODUCES AN EXECUTE GLOBAL 'c'

INCLUDE

A very frequent problem in large programming projects is the
passing back and forth (or sharing) of modules between
programmers oOr between programs. 41UCC provides a very
convenient mechanism to solve this problem - the #INCLUDE
feature. Assuming that a file MATHIA.INC exists on drive A, and
that it contains the definitions of all of the HP math module
functions, these definitions may be inserted directly into your
program by placing the following line at the appropriate place:

#INCLUDE MATHI1A.INC

You should type the #INCLUDE exactly as it appears here,

with nothing else on the line, and with just one space or tab
between the end of the #INCLUDE and the name of the file to

include. The #INCLUDE line will be replaced (in your program's
listing) by the actual text of the file MATHIA.INC. This feature
is not limited to including definitions; any text, including
subroutines, may be inserted into a file this way. However,
nested includes (an include within an included routine) are not
allowed.

You may wish to put a PAGE instruction immediately before or
after the #INCLUDE, so that the #INCLUDE'd text will be set off

from the rest of your program. This makes for easier reading and
easier recognition of text that was brought in from another file.

KEY ASSIGNMENTS

Key assignments are a great convenience, and are supported
by 41UCC. For example, suppose you have a long program which you
wish to compile under 41UCC, and you would like to have the main
entry point assigned to a key for easy execution. You could
assign the key by hand every time you download a new copy of your

program to the HP-41C, but this would get very tiring after a
while. 41UCC provides a means for you to put the key assignment
into the program so that it is automatically assigned by the bar
code reader whenever you read in the program.

LBL 'KEY' : 15 ;ASSIGN TO THE 'LN' KEY

LBL 'KEY2' : -15

This will assign KEY to the LN key (key code 15) and assign KEY?2
to the shifted LN key. The key codes are exactly the same as the
ones you would see on the HP-41 display if you assigned the keys

46

INTRODUCTION TO SPECIAL FEATURES

manually. If you are not sure what keycode to use for a
particular key, just pick up your HP-41C and assign some function
to the key you wish to use. The calculator will display a keycode
after the function name when you make the assignment. Use this
same keycode after your label in your program, and 41UCC will
automatically make the key assignment for you in the barcode.

PAGE

PAGE is a pseudo-op that tells 41UCC to go to the top of the
next page before printing the next line of your LiST file. You
may place the PAGE command anywhere in your program, and may have
as many as you wish. It is very useful for formatting your
program for ease of reading, and is frequently used to separate
major routines from each other, or to separate #INCLUDE files
from each other.

SET

The SET pseudo-op assigns a value to a variable. For

example, you could define a base register using SET, and change
it further down in your program with another SET instruction.
Notice that a symbol defined with EQU may not have its value
changed later - its value is permanent.

SET BASE 00 ;BASE REGISTER
EQU TIME BASE+00 ; CURRENT TIME
EQU ANGLE BASE+1 ; PHASE ANGLE
SET BASE BASE+2

#INCLUDE SUB1l.UCC

Now the subroutine can be guaranteed to have non-conflicting

register assignments if it looks like this:

s SUBROUTINE ONE

EQU THETA BASE+00
EQU GAMMA BASE+1
EQU DELTA BASE+2
SET BASE BASE+3 ;NEW BASE REGISTER

TITLE
The TITLE psuedo-op tells 41UCC that you would like a title

to be printed at the top of every page of your LiST file. The
TITLE psuedo-op is followed by the title (in quotes) that you
wish to have printed.

TITLE 'MY PROGRAM TO SOLVE A PROBLEM. COPYRIGHT 1982. '

Now you will have a title printed at the top of every page
of your listing, just as you have it within the quotes. You may
have more than one title within a single program if you wish.
Multiple TITLEs might be used to have major routines or sections

47

INTRODUCTION TO SPECIAL FEATURES

of the program clearly identified at the top of the page, or to
have #INCLUDE files clearly identify themselves.

48

41UCC COMMAND LINE PARAMETERS

Parameters for 41UCC may be given in any order and are
separated by commas. Only one is mandatory - the input file
specification. The parameters specified are valid only for the

line on which they are specified. That is, if you are in inter-

active mode, specifying PR on one line will give you private bar

code for that one compilation, but the file compiled by the next
line will have public bar code unless you use the PR command
again. The only exceptions to this are

1l)the LC= option (line count)
2)the BC= option (barcode length)
3)the TL= option (total lines on a page)

These three options, once changed, remain valid until you reload
410CC from disk. The reason for this difference 1s that the
paper size you are using (and therefore the Line Count per page)
is not likely to change from one compilation to the next, while
the other parameters may easily change.

4L specifies that you would like the listing line numbers to
match exactly the line numbers for the same program on the HP-41l.
If you do not specify 4L, every line of the listing will have a
unique line number.

B= specifies the binary file name. If no binary file name is
given, it defaults to the input file name and type "BIN".

BC= specifies the barcode Bar Count. This is the number of unit
width bars that your printer can print on one line. For narrow
printers such as the Epson MX-80 (BC=250), 41UCC will generate
only about 10 bytes of bar code per line. For wide printers such
as the Printronix or Trilog, BC may be set to a higher value
(about 400) and 41UCC will generate a full 16 bytes of barcode
per line.

CO= specifies a console output name. If no output file name 1is

given, it defaults to CON: (i.e. the physical console). If a
filename is specified, all messages that would normally go the
console will go to the file specified. This can be very handy
when you want to go get a cup of coffee.

I= specifies the input file name. Type "UCC" is assumed and may
not be overridden. This is the only required parameter.

L= specifies the listing file name. If no listing file name 1is

given, it defaults to the input file name and type "LST".

LC= specifies the line count to be used in the listing file.
This is the actual number of lines per page on which you wish
printing to occur. Ileader lines and blank lines are included 1in
this count. The line count may be specified in decimal, hex,
octal, or even binary, provided that the proper post radix is
used. If no post radix is given, decimal is assumed. This is
the only parameter which carries over from one compilation to the

49

41UCC COMMAND LINE PARAMETERS

next when you are in interactive mode or indirect mode.

NB specifies that no binary file is to be generated.

NL specifies that no listing file is to be generated.

NwW specifies that no wand file is to be generated.

NX specifies that no cross reference is to be generated in the
LiST file

PR specifies that private bar code is desired.

Rl= specifies the value of the symbol Rl. If no Rl is given in
the command line, Rl will assume the value zero. These symbols

may currently be given only numeric values - not strings. They
will accept any number which can be represented in 16 bits,
signed or unsigned. Thus you could say

A>41UCC I=TEST,R1=25

A>41U0CC I=TEST,R1=25H

A>41UCC I=TEST,R1=0010010111B

A>41UCC I=TEST,R1=-87H

and all of these would be valid.

R2=, R3=, R4= all work like Rl above

TL= specifies the total number of lines on a page. Thus if you

had an 8 line per inch printer and 11 inch paper, you might wish
to specify

TL=88, LC=80

on the command line. This would cause 41UCC to print on 80 of
the 88 available lines.

W= specifies the wand file name. If no wand file name is
given, it defaults to the input file name and type "WND".

Valid file names include standard CP/M file names, and also
the logical device names (CON:, LST:, PUN:, RDR:, or NUL:). For
example, the command line:

A>41UCC 1=TEST1,L=LST:,BC=300,NB

will run 41UCC with TEST1 as the input file, send the listing
file directly to the list device, generate bar code up to 300
unit widths long per line, and produce no binary file.

SYSTEM COMMANDS

50

41UCC COMMAND LINE PARAMETERS

System commands are not options or parameters on the command

line; they must appear as the only command on a line. The
supported system commands are:

/DIR d:afn
prints a directory to the console of all files on drive A4:

satisfying the specified file name. The default file name is *.*
and the default drive is the current drive. Read/Only files will
be preceded by a greater than sign (>) rather than a colon.
System files will not be listed.

/DRIVE Q:
specifies a new drive as the current drive.

/ERA d:afn
erases the specified file(s). If the file name *.* 1is

specified, the user will be asked to confirm this before the
files are erased.

/REN newfn=oldfn
renames a file. The file names specified must be

unambiguous.

/RESET
makes all drives read/write again.

/SET afn Sa
sets attribute "a" on all files satisfying the file name.

Legal attributes are:

DIR make file(s) appear in the directory
SYS do not list file(s) in the directory
R/W make file(s) Read/Write
R/O make file(s) Read/Only

/TYPE ufn
type the specified file to the console.

J/USER n
sets the user number to n (0-15).

These commands are quite useful when 41UCC is used in the
interactive mode - for instance, we could erase files and get a
directory from within 41UCC, simply by typing the command in
response to 41UCC's prompt.

A>41UCC I=TEST.UCC

41UCC - AN HP-41C USER CODE COMPILER. COPYRIGHT 1981 BY LESLIE BROOKS.

DISTRIBUTED BY HAND HELD PRODUCTS INCORPORATED.

VERSION 1.45 - NOVEMBER 8, 1982. Serial Number ACO0002

?/dir b:*.ucc

will give us a directory of all files of type "UCC" on drive B.

51

APPENDIX A - INSTRUCTIONS THAT DIFFER FROM THE HP-41 STANDARD

A few instructions had to be changed from their familiar HP-
41C form due to limitations of standard keyboards. A few are
also allowed to have alternate forms. All of these are in the

following list.

HP-41 INSTRUCTION 41UCC FORM

10 to the X POWER 10**X, 107X
APPEND TEXT STRING APPEND, APPND, APND
CLEAR THE SUMMATION REGISTERS CLS,CLSIGMA
DEGREES TO RADIANS D-R, D->R
e to the X POWER E**X, E*X
e to the X POWER MINUS ONE E**X-1, E"X-1
ENTER ENTER, ENTER”®
GTO GTO, GOTO
POLAR TO RECTANGULAR P-R, P->R
RADIANS TO DEGREES R-D, R->D
RECTANGULAR TO POLAR R-P, R->P
ROLL (STACK) UP R®
SIGMA PLUS S+, SIGMA+
SIGMA MINUS S-, SIGMA-
STATISTICAL REGISTERS SREG, SIGMAREG
STORE TIMES ST*, STO*
STORE PLUS ST+, STO+
STORE DIVIDE sT/, sTO/
STORE MINUS ST-, STO-
TEXT STRING T
X NOT EQUAL TO ZERO X1=0?, X#0?, X<>0?
X NOT EQUAL TO Y X1=Y?, X#Y?, X<>Y?
X SQUARED X**2 X*2
Y to the X POWER Y**X, Y°X

52

APPENDIX B - SUMMARY OF ERROR MESSAGES

LISTING ERROR MESSAGES

A - Argument error - the wrong type of Argument was

encountered when evaluating a line - for example, a quoted string
was encountered following a "TONE" instruction.

C - An 1illegal Character was encountered 1in the

operand. This could be caused by using WordStar to edit your
program and forgetting to use non-document mode. It could also

be caused by something obvious like trying to use a =~ 1in a
symbol.

D - A symbol was Defined twice or more. This may Dbe
caused by accidentally giving two routines the same name, oOr by
#INCLUDE'ing a file which contains a name conflicting with one of
your own. Only the first seven characters of a symbol are
significant, so 1long symbols may also cause a doubly-defined
error if sufficient care is not used in naming them. Look in the
cross reference in the 1listing to find the conflicting
definition. That will give you the line number and you can then
go see exactly what 41UCC is complaining about. Trying to SET an

EQUated symbol (or vice versa) will also produce this error.

E - An Expression was encountered which could not be

properly evaluated. This could be caused by an improperly formed
expression (e.g. 3+*5) or by an undefined symbol.

0o - A symbol Overflowed the symbol buffer. This
should be a very rare error, and would normally indicate
something seriously wrong with 41UCC, your program oOr your
system. If you have an extremely long line try breaking it up.

P - Phase error - the first and second passes of 41UCC
did not agree on how many bytes were in your program. The most
likely causes of this would be an undefined symbol or an illegal
forward reference. Because of the problems people frequently
have with this error, let's have an example:

0 0000 LBL 'TEST' s TEST PROGRAM

1 U 0008 GTO ‘A’ ; 'A' IS UNDEFINED

2 P 0008 LBL 'B' ; SECOND ENTRY POINT

END

Here, 1label 'B' got a phase error, Dbecause label 'A' was
undefined. If you fix the "U" error on line 1, the "P" error on
line 2 will disappear. A more difficult problem to catch is an
illegal forward reference:

0 0000 EQU INPUT OUTPUT+1 ;USE FOR INPUT ROUTINE

1 0000 EQU OUTPUT 02 ;USE LABEL 2 FOR OUTPUT ROUTINE

2 0000

3 0000 LBL 'TEST2'

4 E 0008 GTO INPUT ; INPUT SOME DATA

5 0009 LBL 'B' ;SECOND ENTRY POINT

53

APPENDIX B - SUMMARY OF ERROR MESSAGES

0009

0009 ENDN
O

This error was caused because when we tried (in line 0) to
find the value of INPUT we did not yet know the value of OUTPUT.
If we reverse the order of the equates the problem will go away.
As a general rule of thumb, unless there is a particular need for
their being elsewhere, PUT ALL EQUATES BEFORE ANY REFERENCES TO

THEM! .

U - A symbol was Undefined. The usual causes of this
are a typographical error or forgetting to include the referenced
routine.

OTHER ERROR MESSAGES

Argument Error on Command Line - an illegal or improperly
formed command line was entered.

A>41UCC I=FRED,Q,W=2.5.3

would produce this message, because 41UCC does not have a "Q"
option, and 2.5.3 is not a valid file name.

Disk Error on Write to File - 41UCC encountered an error in
trying to write a file to disk. This is a fatal error and will
cause processing to stop immediately. Possible errors are disk
or directory full, or a bad disk.

Include Error - the #include was improperly formed, or the
file was not found on the specified drive. Includes may not have
any comment on the line with them - this and not having the file

on the disk will probably be your most common mistakes. You
should be able to do a 'DIR' - a disk directory of the current
drive - and see the name of the include file. 1If it is not on
the current drive, then you need to copy it there in order for
the #include to work.

Symbol Table Overflow - 41UCC's internal symbol table
over flowed. Deleting unused string equates will be the quickest
way to fix this, as string equates require a good bit of room in

the symbol table. If you have included comments inside the
quoted part of the string equate you might consider removing
them. Specifying NX on the command line (no Cross Reference
desired) will also decrease the amount of table space needed. If

you continue to get this message, you need more memory in the

system, or you need to break your program up into more manageable

pieces.

**** SYSTEM FAILURE **** _ This is the worst error message
you can get. It goes on to say that you may have a bad computer
(memory, cpu, who knows), or a bad copy of 41UCC, or you have

found a really bad bug. TIf you can get it to fail in the same
way on two separate systems you have probably found a bug or have
a bad copy of 41UCC - go ahead and give us a call. 41UCC 1is

54

APPENDIX B - SUMMARY OF ERROR MESSAGES

actually capable of catching many disk, memory, cpu, and author
(meaning me) errors - many of the routines check their own input
for validity, even though it was passed to them by another
routine. Thus, if a bit gets changed, the chances are very good
that it will make the input to some routine invalid, at which

point everything will come to a screeching halt and you will get
this message.

55

APPENDIX C - SYNTHETIC INSTRUCTIONS

Synthetic instructions are those instructions which are
perfectly understood by the HP-41C, but which HP did not provide
access to. Thus, they have been synthesized from other instruc-
tions hitherto. Now, you can enter them as easily as any other
instruction through the use of 41UCC. 41UCC supports instruc-
tions using the following registers as operands:

a,b,c,d,e and M,N,0O,P,Q,R

in addition to the standard registers 0-99 and stack. The "R"
register corresponds to the one that prints as an append mark.
Thus the following instructions are completely acceptable to
41UCC:

STO A

STO a sGENERATES THE SAME CODE

STO M

ISG P

In addition to these extra registers, 41UCC allows operands
ranging from O to 111 for those HP-41 operators which normally
allow only O to 99 (i.e. STO, RCL, DSE) with the exception of
LBL, GTO, and XEQ, which may have operands only in the range 0 to
99. Thus the following instructions are wvalid:

STO 111

STO IND 110

DSE 100

while these are invalid:

LBL 100
GTO 100
XEQ 100

Those instructions which normally have a range less than 99

are limited to their normal range with 41UCC, with the exception
of the TONE instruction, which is allowed to have an operand in
the range 0 to 127. The following instructions are legal:

TONE 66

FIX 9

ENG 3

while these are still illegal:

ENG 10

SF 30

FS?C 60

The reasons for these non-restrictions and restrictions are

sometimes complex, but simply put, I have tried to provide the
maximum number of meaningful functions within the limitation of
the HP-41C instruction set, the way it works in practice, the

56

APPENDIX C - SYNTHETIC INSTRUCTIONS

utility of and need for certain extensions, and what HP can

reasonably be expected to support. If you really need to

generate a "FIX 11", probably the best way to do it is with a DB
statement such as this:

EQU FIX 9CH : "FIX" PREFIX

EQU FIX11 'DB FIX,11' ; GENERATES A TRUE FIX 11

LBL '"MYPROG"'

FIX11 MY OWN PSEUDO-FUNCTION

END

IMPORTANT NOTE:

In order to protect those users who do not know synthetic

programming, and have no desire to learn the hard way, USER

EQUATES OVERRIDE SYNTHETIC FUNCTIONS! This means that the
following program segment:

EQU M 01 ;MY VARIABLE

STO M

will produce a store into register 01 - not into the M register.
In this program, there is now no way to reference the M register
without resorting to a DB statement.

57

APPENDIX D - PRP LISTINGS AND 41UCC

It is often the case that you already have a very nice
program on an HP-41C and you would like to take this program,
document it, edit it, run it through 41UCC, and then move it back

into the calculator for testing. In order to do this you will
probably need some knowledge of the hardware of your computer -
enough at least to hook the HP 82166 HP-IL to parallel converter

(or, when it becomes available, the RS-232 converter) to a port
on your computer. For example, suppose your computer has a
parallel port for the printer, and the CP/M RDR device (paper
tape reader) is implemented so that it reads from the printer
port. On many machines you will need to assign the port your
82166 is hooked to to the RDR device. For example, on the
Osborne, if your 82166 were hooked to the Centronics port you
would need to assign the RDR to this port by using STAT as
follows:

A>STAT RDR:=UR1l:

This tells STAT to assign User Reader 1 (the Centronics port on
the Osborne) to the logical device RDR.

You would then type

A>PIP MYFILE.41C=RDR:

This tells PIP to read from the paper tape reader (on your
system, the printer port) and send whatever it reads to
MYFILE.41C. Then, on the calculator, you would

XEQ ALPHA MANIO ALPHA

to go to manual (rather than automatic) I/0, then you would
address the 82166 as a listener. If it were the second device in
the loop, addressing it as a listener would be

2 ENTER"
XEQ ALPHA LISTEN ALPHA

Now to actually send a program to the computer we will

"print" it - but the 82166 will copy the entire listing to the
computer.

XEQ ALPHA PRP ALPHA

When PRP prompts for the file name, you would give it the name of
the file you wish to modify. When the file is completely
"printed", type

26 ENTER”™
XEQ ALPHA ACCHR ALPHA

which sends an end-of-file to PIP. PIP will then finish writing
the file on the disk, and return to CP/M.

58

APPENDIX D - PRP LISTINGS AND 41UCC

There is only one thing left - to convert the PRP listing to
something 41UCC will understand. There is a special program
called FILTER.COM to do this, and all we have to do is type

A>FILTER MYFILE

Filter will find MYFILE.41C on the disk and convert it to
MYFILE.UCC, which 41UCC will be able to understand. (If you have
used synthetics in your program FILTER will not do quite all of
the work - you will still need to work on the synthetic lines by
hand.)

Should you wish to you can use PIP to do other things with
information from your HP-41. For example you could say

A>PIP CON:=RDR:

and everything that the calculator sent out on the loop would be

displayed on the screen of your computer. Or you could say

A>PIP LST:=RDR:

and everything would be sent to your printer (or your modem if
you used a funny cable to hook it to your printer port....).
Don't hook a modem to your Osbornes' printer port though - it
would destroy the port at least. Other computers do not have
this problem.

59

APPENDIX E - PRINTING BARCODES

41UCC produces a .WND (WaND) file which contains all of the
information needed to produce a barcode listing of your program.
Of course, you need a printer capable of producing barcode in the
first place. Some that are (and for which I have already written
the programs) are the Epson MX-80/MX-100 (without Graftrax) and
the Trilog. I have also tried to use a Microline (Okidata) 80a,
but the positioning was very poor and produced unreadable bar-
codes. Included on your 41UCC disk are several programs for
printing barcodes, including source to a simple version. If you
have a printer that is not already supported, take a look at

these files (or get a friend to if you do not know 8080 assembly
language). It should not be too hard to figure out how to make
your printer work (if it is possible at all). Any daisywheel
printer should be able to do it (with the proper type wheel), and
many matrix printers can print barcodes.

Using My Standard Barcode Printing Programs

If you can use one of the programs that I have already
written, or if you have modified one of them to work with your
printer, then they all work alike. Using PMX (for the MX-80/MX-
100 without Graftrax) as an example, you could print FILTER.WND

by typing

A>PMX I=FILTER

Now that isn't too difficult is it? If you wish to print several

files at once, use it Jjust like 41UCC

A>PMX
?I=FILTER
? I=SECANT
?I=HEX
?7Z

This will tell PMX to print the files FILTER.WND,

SECANT.WND, and HEX.WND as barcode.

Finally, you could put all of the lines that you typed in

above into a file (which I will call BAR.IND):

A>TYPE BAR.IND

I=FILTER

I=SECANT
I=HEX

Z
A>

Now to print all of these files as barcode, Jjust type

A>PMX @BAR

and they will be printed one at a time. It works just 1like

41UCC!

60

APPENDIX E - PRINTING BARCODES

Format 9£ the WaND File

The WaND file contains all of the sequencing, data, and

checksum information for the barcode - the only thing it does not
contain is the header and trailer bars. Each row of barcode is
required to have two zero bars at the beginning and a one zero at
the end (so that the wand knows in which direction you are
scanning). It is the responsibility of your barcode printing
routine to add these bars. If you need more information on the
contents of a row of barcode, I suggest that you read the HP
publication "Creating Your Own Barcode."

A typical row of barcode might look in part like this

041000C0O00F3415343....

Now, assuming that your barcode printing program has read this
in, you need to:

1) Print the left header bars - two bars of zero.
2) Strip off the top bit.
3) Convert each character in order into binary.
4) For each bit, print a zero bar if the bit is zero, or a

one bar if the bit is a one. Thus, the first character in the

line is a zero. Converting this to binary yields 0000, so we
print 4 zero bars. The next character is a one, which yields
0001, so we print 3 zero bars and a one Dbar.

5) When you reach the carriage return, line feed at the end
of the row you must print the trailer bars - a one bar followed
by a zero bar.

Now go to a new line on your printer, read another row of
barcode, and start the whole process over.

Getting Fancy

There are a couple of things which may be done to produce
better or more useable barcode.

First, you could print line numbers for each row of barcode.
This is very easy to do, and makes the barcode a bit easier to

use because the wand prompts for the 1ine number it wants next.

Second, you could print the listing line numbers above the
corresponding row of barcodes. Thus if row 3 of the barcode

produces lines 7 through 10 of the listing, you could print (7-
10) above the row. This involves counting the high bits that are
set in the WaND file - each high bit that is set marks the
beginning of a new line of the listing. The high bits were set
for Jjust this purpose.

Third, you could print the same row of barcode more than
once. If your printer allows you to roll the paper less than a
full line you can print tall barcodes that are easier to read

ol

APPENDIX E - PRINTING BARCODES

than very short ones. This can also make the difference between
having to use a straightedge and not.

LOOKING FORWARD

If you write your own barcode printing program or modify one
of mine you should make a few allowances for future changes.

First, you should ignore all spaces and null bytes in the
WaND file - some printers require a space on a line in order for
the carriage return (or linefeed) to work, and therefore these

spaces will show up in the WaND file. Also, some printers
require a null after the linefeed, and the nulls will be in the
WaND file also.

Second, you should ignore any line which begins (after
discarding any spaces or nulls) with a '$'. I intend to use the
$ in the future to mark such things as a title and comments to be

printed with the barcode.

Your 41UCC distribution disk contains the source code to
portions of the barcode printing programs that I have written.
Feel free to modify these to work with your own printer; I put
them there for that purpose. You may also give away copies of
the barcode printing programs (NOT 41UCC!) freely. You may not
sell the barcode printing programs even if you modify the printer
drivers.

If you intend to do much programming in 8080 assembly

language I strongly recommend that you take a look at the
assembler, linker, and I/0 library from Mycroft Labs 1in
Tallahassee. I use their package for all of my work (including
41UCC and the barcode printing programs) and for large projects I
think it is the best available. (Far better than RMAC or M80.)
However, plain old ASM, which came on your CP/M disk, will do for

modifying the barcode printing programs.

APPENDIX F - MODIFYING 41UCC

There are portions of 41UCC that are set up to make it easy
for you to customize them. The file called 41UCX.ASM on your
41UCC distribution disk is the source code to certain pointers
and parameters that you may change. In particular it contains a

string to initialize and de-initialize your printer, a string to

do a line feed and a form feed, and pointers to a user

customization area and to the command line parameters. If you
modify this file, reassemble it, and then merge it back into

41UCC with SID or DDT, you will have a customized version.

For example, suppose your printer (an MX-80) needs only a
carriage return in order to go to the next line. You would
modify PLF: from

PLF: DB 2,CR,LF ; PRINTER STRING TO DO A LINE FEED

DB 0

DB 0,0,0,0

to

PLF: DB 1,CR ; PRINTER STRING TO DO A LINE FEED

DB 0,0

DB 0,0,0,0

and your MX-80 would now work correctly with 41UCC. The first
byte of each of the strings is the number of bytes in the string.
Note that you cannot use more bytes than I made available! Thus

you may use at most 8 bytes for the line feed string.

Now reassemble this program

A>ASM 41UCX

and merge it with 41UCC

A>DDT 41UCC.COM

-I141UCX.COM

-R

_*C

A>SAVE 120 41UCCX.COM

(this saves the result as 41UCCX.COM). Now test out your new

version, make any more changes you wish, and you have your

customized version. Be certain to keep an original copy of 41UCC
so that you can undo any damage you cause to your working copy!

63

APPENDIX F - MODIFYING 41UCC

If you need to make more involved changes, such as having
410CC produce no WallD file as the default you will need to use
the EXTRAl area that is set aside for such things. You may use
EXTRAl, which contains 128 bytes, for anything you wish. EXTRA2
is reserved for my use - bug fixes and things like that. 41UCC
contains a pointer to this extra segment. You can find this
pointer by looking at the first three bytes of the program. This
is a jump to START which then jumps around the pointers,
jump vectors, constants, and strings.

In order to have no WaND file produced (by default) you
would need to use JV3 - the jump vector called immediately after
the command 1line. Change this to point to your routine in
EXTRAl. The routine in EXTRA1l should set NW+3 to a non-zero
value. This will tell 41UCC that the user put the NW option on
the command line, and no WaND file will be produced. If you

later wish to get a WaND file all you need to do is specify W=A:
(or something similar) on the command line. This will override

the NW option.

The jump vectors JV1 through JV4 are entirely yours to use
as you wish.

04

APPENDIX G - PROGRAM LISTINGS AND BARCODE

41UCC ¥ 1.45, Copyright 1981 by Leslie Brooks.
Distributed by Hand Held Products Incorporated.

@
-

O
V
N
W

N
o

11

12

13

14

15

16

17

18

13

20

21

22

23

24

25

26

27

28

29

30

3

3

33

34

35

36
37

38

39

41

43

45

47

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0009

000A

0008

000C

000D

000E

000F

0010

0011

0012

0013

0014

0015

0016

0017

001A

0024

0020
0030

0032

0034

0036

0038

003A

003C

003E

0040

0042

0044

0046

0047

0048

0044

CO00F600

94535432

38

2
8
8
8
8

43

60

31

57

61

30

8F

88

8C

F27F41

FFTF3031

32333435

36373839

31323334

F2TF41

F2TF41
9873

9800

9814

9863

9878

9880

9885

9894

9BE3

9BF3

9BFB

88

SC

9R00

IA1d

»TEST 28 OF THE HP-41C CROSS ASSEMBLER

sFULL BLOUN TEST - APRIL 9, 1982

sThis progran 1s a test of 41UCC.

> It contains every legal 41UCC instruction in several possible forns.

»It also contains nost of the alloued pseudo-ops.

sAl1 of the instructions are in alphabetical order, so it provides a handy

sreference.

»IF YOUR COPY OF G1UCC CANNOT COMPILE THIS PROGRAN UITHOUT ERRORS YOU HAVE A

sPROBLER' YOU COULD HAVE A BAD COPY, A BAD DISK, OR A BAD MACHINE.

EQU SCRATCH 05

EQu NATRIX ”30,01” 7HP NATH PAC NATRIX ROUTINE

LBL ’TST28”

7

/CH

X
.

/

1/%

10%xX

10°%

ABS

ACO0S

AOY

AOFF

AON

APPEND A’

APPEND ’012345678912346’

APPND A’

APND A’

ARCL X

ARCL 00

ARCL 20
ARCL 99

ARCL A

ARCL IND 00

ARCL IND SCRATCH

ARCL IND 20

ARCL IND 99

ARCL IND X

ARCL IND A

ASHF

ASIN

ASTO 00

ASTO 20

41UCC ¥ 1.45, Copyright 1981 by Leslie Brooks.
Distributed by Hand Held Products Incorporated.

49 004C 9R63 ASTO 99

50 004t 9AT3 ASTO X

51 0050 9A7C ASTO B

32 0052 9A80 ASTO IND 00

33 0054 9A8S RSTO IND SCRATCH

3 0056 9A94 ASTO IND 20

5% 0058 9AE3 ASTO IND 99

56 005A 9AF3 ASTO IND X

57 005C 9AFB ASTO IND A

58 005E SE ATAN

5 00SF 1Tt AVIEN

60 0060 86 BEEP

61 0061 A900 CF 00

62 0063 A91D CF 29

63 0065 A9F3 CF IND X

64 0067 AJE3 CF IND 99

63 0069 A980 CF IND 00

66 0068 A985 CF IND SCRATCH

67 0060 R994 CF IND 20

68 006F AIFI CF IND e

69 0071 54 CHS

70 0072 87 CLA

11 0073 TF CLD

12 0074 BA CLR6

13 0075 70 CLS

14 0076 70 CLSI6NA

15 0077 13 CLST

16 0078 177 CLX

1 0079 SA cos

18 0078 ©A 0-R

19 0078 48454C4C DB "HELLO HORLD’,25+03H+000100008

4F20574F

524(442C

80 0087 dddFdE27 0B "DON’T 60 AUAY" sDOUBLE QUOTES ARE ALLOWED

5420474F

20415741

59

81 0094 SF DEC

82 0095 80 DEG

83 0096 9700 DSE 00

84 0098 9714 DSE 20

85 009 9763 DSE 99

86 003C 9773 DSE X

87 009E 9775 DSE n

88 00A0 9780 DSE IND 00

89 00R2 9785 DSE IND SCRATCH

90 00Ad 9794 DSE IND 20

91 00A6 ITE3 DSE IND 99

92 00R8 97F3 DSE IND X

93 00AR I9TFS DSE IND n

94 00AC 55 ExxX

95 00AD 55 E~X

41UCC ¥ 1.45, Copyright 1981 by Leslie Brooks.

Distributed by Hand Held Products Incorporated.

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142
143

144

145

146

00AE

00AF

0080

0082

0084

0086

0088

00BA

00BC

008D

00BE

008F

00C1

00C3

00C5

00C?

00C3

00CB

00CD

00CF

0001

0003

0005

0007

0003

0008

0000

000F

00E1

00E3

00ES

00E?

00E9

00EB

00ED

00EE

00F0

00F2

00F4

00F6

00F8

00FA

00FC

00FE

0100

0102

0104

0106

0108

010A

010F

58

58

9E00

9E09

9EF3

9EE3

IE94

IEFS

83

83

62
ADOO

ADOS

ADOF

AD37?

ADF3

ADFS

ADE3

AD8O

AD94

ABOO

AB1D

ABF3

ABFS

AB8O

AB94

ABE3

9C00

9C09

9CF3

9CFS

9C80

9C94

9CE3

69

ACoo

AC37

ACF3

ACF6

AC80

AC94

ACE3

AROO

AATD

ARF3

ARF1T

ARBO

AR94

AAE3

C000F 200

41

C000F500

46524544

ExxX-1

EAX-1

ENG

ENG

ENG

ENG

ENG

ENG

ENTER

ENTERA

FACT

FC?

FC?

FC?

FC?

FC?

FC?

FC?

FC?

FC?

FC?C

FC?C

FC?C

Fc?C

Fc2C

FC?C

Fc?C

FIX

FIX

FIX

FIX

FIX

FIX

FIX

FRC

FS?

FS?

FS?

FS?

FS?

FS?

FS?

FS?C

FS?C

FS2C

FS?C

FS2C
FS?C

Fs2C

6LBL

6LBL

00

IND

IND

IND

IND

00

15

35

IND

IND

IND

IND

IND

00

29

IND

IND

IND

IND

IND

IND

IND

IND

IND

IND

00

55

IND

IND

IND

IND

IND

00

29

IND

IND

IND

IND

IND
’n’

"FRED”

99

20

W
N
O
X
X

w
o

N
O
X

X
X

W
D
O
X
X

“
w
o

N
N
O
©
X

41UCC V 1.45, Copyright 1981 by Leslie Brooks.

Distributed by Hand Held Products Incorporated.

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

in

172

113

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

0117

0118

011A

011D

011F

0121

0123

0125

0127

0129

012F

0138

0138

013D

0140

0142

0144

0146

0148

0144

014C

0152

0158

015E

0164

0167

0168

0169

016A

0168

016C

016E

0170

0172

0174

0176

0178

017A

017C

017E

0180

0161

0182

0184

0186

82

B100

000063

AE0O

AE14

AE63

AET3

AETS

RETF

1DFd4652

4544

1DF74652

45515545

4t

D00066

B100

000063

AE0O

AE14

AE63

AET3

RET8
RETF

1DF44652

4544

1DF74652

43515545

3

D00066

1DF44652

4544

1DF141

6C

49

dA

6D

68

9600

9614

9663

96173

967F

9680

9694

96E3

96F3
96F9

16

01

CFeé3

CF66

CF7B

6RAD

6070

6070

6070

6070

60T0

60T0

6070

6070

60T0

60T0

60T0

670

6T0

6T0

6T0

6T0

6T0

6T0

6T0

6T0

6T0

6T0

6706

6706

HNS

HAS+
HRS-

HR

INT

156

156

156

156

156

156

156

I1S6

156

156

LASTX

LBL

LBL

LBL

LBL

00

99

IND 00

IND 20

IND 99

IND X

IND P

IND E

"FRED”

"FREQUENCY’

’a'

00

99

IND 00

IND 20

IND 99

IND X

IND P

IND E

"FRED”

"FREQUENCY’

’n’

"FRED”

’“’

00

20

99

IND 0

IND 20

IND 99

IND X

IND e

00

99
’R’

’d)

41UCC V 1.45, Copyright 1981 by Leslie Brooks.

Distributed by Hand Held Products Incorporated.

192

193

194

195

196

197

198

199

200

201

202

203
204

205

206

207

208

203

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224
225

226

221

228

229

230

231

232

233

234

235

236

2317

238

239

240

241

242

0188

018A

0195

0196

0197

0198

0199

019A

0198

019C

0190

019¢

013F

01A0

01A1

01A2

01A3

01Ad

01RS

01R6

01A7

01A9

0148

0140

01AF

0181

0183

01B5

0187

01B9

0188

01BC

0180

01BE

018BF

01C0

01C1

01C3

0105

01C7

01C9

01CB

01CD

01CF

0100

0102

0104

0106

0108

010A

010C

CFTF

C000F 800

46524551

55456E

36

50

65

7c

48

6F

80

qE

qt

12

8E

89

68

4

4F

81

20

2F

9010

9014

9063

9073

907C

9080

9094

90E3

30F3

90F9

15

6E

85

14

47

3000

9009

90F3
9080

3094

30E3

30FD

70

AB00

ABidg

A81D

A880

AB94

ABE3

ABF3

LBL e’

LBL "FREQUENCY’

L06

LN

LNi+X

NEAN

noo

ocT

OFF

P->R

P-R

Pl

PRONPT

PSE

R-D

R->P

R-P

RAD

RCL 00

RCL 15

RCL 16

RCL 20

RCL 99

RCL X

RCL B

RCL IND 00

RCL IND 20

RCL IND 99

RCL IND X

RCL IND Q

RON

RND

RTN
RA

S+

S-

SCI 00

SCI 9

SCI IND X

SCI IND 00

SCI IND 20

SCI IND 93

SC1 IND C

SOEV

SF 00

SF 20

SF 29

SF IND 00

SF IND 20

Sk IND 99

Sk IND X

41UCC V 1.45, Copyright 1981 by Lesiie Brooks.

Distributed by Hand Held Products Incorporated.

243

244

243

246

241

248

249

250

251

252

253

254

233

256

257

258

239

260

261

262

263

264

265

266

267

268

269

270

271

212

213

274

275

276

211

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

010E

01E0

01E2

01E3

01E4

01E6

01E7?

01E8

01E9

01EB

01ED

01EF

01F1

01F3

01FS

01F7

01F9

01FB

01FD

01FF

0201

0203

0205

0207

0209

0208

020D

020F

0211

0213

0215

02117

0219

0218

0210

021F

0221

0223

0225

0227

0229

0228

0220

022F

0231

0233

0233

0237

0239

0238

023C

023D

023t

RBFE

ABF4

47

9900

TR

59

52

9900

9914

9963

9980

9994

99E3

99¢F3

99F 1

99F8

9400

9414

9463

9480

9494

94E3

94F3

94F2

9200

9214

9263

9213

9280

9294

92E3

92F3

92FB

9300

9314

9363

9380

9394

93E3

93F3

93FF

9500

9514

9563

9580

9594

95E3

95F3

30

3t

3F

9110

SF IND

Sk IND

SI6NA+

SI6NA-

SIGNAREG 00

SIGN

SIN

SQRT

SRE6 00

SRE6 20

SRE6 99

SREG IND

SREG IND

SREG IND

SREG IND

SRE6 IND

SREG IND

STx 00

STx 20

STx 99

STx IND

STx IND

ST IND

STx IND

STx IND

ST+ 00

ST+ 20

ST+ 99

ST+ X

ST+ IND

ST+ IND

ST+ IND

ST+ IND

ST+ IND

ST0- 00

ST0- 20

sT0- 99

STO- IND

STO- IND

STO- IND

ST0- IND

STO- IND

sT0/ 00

sT0/ 20

sT0/ 99

ST0/ IND

sT0/ IND

ST0/ IND

ST0/ IND

STO 00

STO 14

STO 15

STO 16

00

20

>

00

20

99

00

20

99

41UCC vV 1.45, Copyright 1981 by Leslie Brooks.

Distributed by Hand Held Products Incorporated.

296

291

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

321

328

329

330

331

332

333

334

335

336

337

338

339
340

341

362

343

344

345

0240

0242

0244

0246

0248

0244

0248

0251

0257

0250

025E

0260

0262

0264

0266

0268

026A

026C

026E

0270

0272

0274

0276

02178

0274

027C

027t

027F

0280

0281

0282

0283

0284

0285

0286

0288

028A

028C

028E

0290

0292

0294

0296

0298

0299

0294

0298

029C

0230

029E

9163

9180

918F

91E3

91FC

84

F548454C

4C4F

F5592741

4C4C

F5592741

aC4C

58

9Fo00

9F09

IFTF

9F80

IF94

IFE3

9FF3

9800

9814

9863

9873

9880

9894

98E3

98F3

98F0

63

63

13

19

51

66

8

46

CEOO

CEid

CE63

CET0

CESO

CE9d

CEE3

CEF3

CEFS

11
44

67

78

64

45

£00000

STO

STO

STO

STO

STO

SToP

TAN

TONE

TONE

TONE

TONE

TONE

TONE

TONE

VIEM

VIEU

VIEW

VIEW

VIEU

VIEM

VIEN

VIEW

VIEN

X1=0?

X807

Ri=¥?

Xey?

Xxx2

%<0?

X<=0?

X<=y?

RO

X

XO

X

O

XO

RO

RO

X

ROY

X<y?

X=0?

X=y?

X>0?

X>Y?

XEQ

99

IND 00

IND 15

IND 99

IND B

"HELLO®

“Y’ALL"

’Y’ ’nLL »

0

9

121

IND 00

IND 20

IND 99

IND X

00

20

99

X

IND 00

IND 20

IND 99

IND X

IND T

00

20

99
T

IND 00

IND 20

IND 99

IND X

IND n

00

¢1UCC V 1.45, Copyright 1981 by Leslie Brooks.

Distributed by Hand Held Products Incorporated.

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

02A1

0244

02A7

02AR

02AD

02AF

0281

0283

0285

0288

028t

02C7

02CA

0200

0202

0204

0205

0206

0207

E00063

£00066

E0007B

E0007F

AEBO

AE94

AEE3

AEF3

£00066

1EF44652

4544

1EF76652

45515545

qE

1EF141

1EF44652

4544

A782

A781

31

33

33

C0000D

XEQ

XEQ

XEQ

XEQ

XEQ

XEQ

XEQ

XEQ

XEQ

XEQ

KEQ

XEQ6

XEQG

XRON

XRON

kA2

Yxxx

YA

END

99
’a'

'd’

'e’

IND 00

IND 20

IND 99

IND X
'n!

’FRED”

"FREGUENCY”

’n’

"FRED’

30,02

NATRIX

41UCC V 1.45, Copyright 1981 by Leslie Brooks.
Distributed by Hand Held Products Incorporated.

UNDEF INED ALPHA LABELS

(THESE ARE ERRORS IF NOT DEFINED IN ANOTHER PROGRAN)

LABEL DEFINED VALUE LINE NUNBERS OF REFERENCES TO THE SYnBOL

NANE ON

xxxxx NO SYNBOLS WERE UNDEF INED 3xsexx

41UCC ¥ 1.45, Copyright 1981 by Leslie Brooks.

Distributed by Hand Held Products Incorporated.

FLA6 USAGE SUMMARY

FLAG # LINE NUMBERS OF REFERENCES TO THE FLAG

000 61-CF 107-FC 116-TC 131-FS 138-TC 236-SF

009 108-FC

015 109-FC

020 237-SF

029 62-CF 117-TC 139-TC 238-SF

055 110-FC 132-FS

TA6 NEANINGS ARE: CF CLEAR FLAG

FS FLAG SET?

FC FLA6 CLEAR?

SF SET FLAG

TC FLAG TEST AND CLEAR

¢1UCC V 1.45, Copyright 1981 by Leslie Brooks.

Distributed by Hand Held Products Incorporated.

NURERIC LABEL USAGE SUMMARY

LABEL DEFINED LINE NUMBERS OF REFERENCES T0 THE LABEL

8 ON

000 188 148-6 159-6 345-X%

099 189 149-6 160-6 366-X

A 190 158-6 169-6 347-X% 356-%

a 191 348-X%

e 192 349-%

TA6 NEANINGS ARE: 6 6070

X EXECUTE

41UCC b 1.45, Copyright 1981 by Leslie Brooks.

Oistributed by Hand Held Products Incorporated.

REGISTER

000

005

014

0135

016

020

099

-

L

n

N

0

P

e

a

b

d

e

TAG NEANINGS ARE:

LINE NUNBERS OF REFEREMCES TO THE REGISTER

35-R

114-FC

182-11

272-S1

330-XC

40-R1

293-$

211-R

212-R

36-R

115-FC

183-11

273-51

351-K1

3T-R

113-FC

184-11

274-S1

332-%C

333-XC

267-S1

34-R

111-FC

185-11

283-S1

244-SF
87-0S

134-FS

141-TC

154-61
68-CF

38-R

91-§

243-SF

155-61

REGISTER USAGE SUNNARY

39-RI

120-TC

210-R

211-$S

334-XC

33-S1

294-$S

295-$

41-RI

121-TC

213-R

218-S

42-R1

122-TC

214-R

219-§

336-XC

43-RI

118-TC

215-R

291-S1

93-DI

165-61

186-11

44-R1

216-R

166-61

CF

DI

DS

FC

FS

61

I1

IS

RI

Sk

47-$

135-FS

217-R1

280-S1

350-X1

66-CF

298-S1

48-$

136-FS

218-RI

281-S1

49-S

137-FS

219-R1

282-S1

352-X1

30-$

133-FS

220-R1

337-XC

112-FC

221-R1

37-S1

300-S1

181-1S

32-51

142-TC

239-SF

285-$5

89-01

54-S1

143-TC

240-SF

286-S

55-S1

144-TC

261-SF

287-$S

36-S1

140-TC

242-SF

353-K1

119-TC

276-S1

284-S1

65-CF

150-61

260-S

288-S1

67-CF

151-61

261-S

289-S1

64-CF

152-61

262-S

290-S1

63-CF

153-61

266-S1

338-XC

CLEAR FLAG INDIRECT

DECRERENT INDIRECT AND SKIP IF EQUAL

DECRENENT AND SKIP IF ERUAL

FLA6 CLEAR? INDIRECT

FLA6 SET? INDIRECT

6070 INDIRECT

t

83-0S

161-61

263-SI

292-§

84-DS

162-61

266-S1

331-XC

85-0S

163-61

265-S1

296-$

86-DS

164-61

271-$

88-DI

1717-1S

268-5

297-S1

90-D1

178-1S

269-S

335-XC

91-01

179-1S

210-$

299-S1

92-D1

180-1IS

215-S1

INCRERENT INDIRECT AND SKIP IF GREATER

INCREMENT AND SKIP IF GREATER

RECALL

RECALL INDIRECT

STORE

SET FLAG INDIRECT

SI

TC

X1

XC

STORE INDIRECT

FLA6 TEST AND CLEAR INDIRECT

EXECUTE INDIRECT

EXCHANGE X AND R

41UCC ¥ 1.45, Copyright 1981 by Lesiie Brooks.

Distributed by Hand Held Products Incorporated.

ALPHA LABEL USAGE SUNNARY

LABEL DEFINED PALUE LINE NUMBERS OF REFERENCES TO THE LABEL

ON

A 145 0104 111-6 357-X

FRED 146 010F 156-6 167-6 170-6 355-X 358-X

FREQUEN 193 018A 157-6 168-6 356-X

TST28 15 0000

TR6 NEANINGS ARE: 6 6070

X EXECUTE

INTEGER SYNBOL USAGE SUMNARY

SYnsoL DEFINED PALUE LINE NUMBERS OF REFERENCES TO THE SYNBOL

NANE OoN

R1 1 0000

R2 1 0000

R3 1 0000

R4 1 0000

SCRATCH 12 0005 40~ 53- 66- 83-

STRING SYNBOL USAGE SUMMARY

SYNBOL DEFINED PALUE LINE NUMBERS OF REFERENCES TO THE SYNBOL

NANE oM

NATRIX 13 "30,01" 360-

PARIABLE USAGE SUMMARY

VARIABLE DEF INED VALUE LINE NUMBERS OF REFERENMCES TO THE VARIABLE

NANE ON

¥xxxx NO UARIABLES UERE USED xx¥xx

RVRO

AAAARRO

ARS

&1

&2

AARARAR
ROO
a
OROA
AAR
JERRO
ARRR
AARARAN
AR
e
RS
AAAR
ARARAAR
AARR
1AOARARR
0A
0R
0O
IRARR
OA

RO)

61UCC Y 1.45, Copyright 1981 by Leslie Brooks.

Distributed by Hand Held Products Incorporated.

O
=
2
O
U
H
w
i

11

12

13

14

15

16

17

18
19

20

21

22

23

24

25

26

21

28

29

30

31

3R

33

34

35
36

31

38

39

41

43

45

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000
0000

0008

0017

0018

0019

0023

0024

0025

0025

0025

0025

0025

0026

0027
0028

0029

0020

002E

002F

002F

0033

0035

003A

0038

003C

sLOU-PASS FILTER PROGRAN

sURITTEN BY LESLIE BROOKS

7NOVENBER 17, 1982.

»SPECIAL EQUATES

EQU TEXTS OFdH sAPPEND TEXT STRING OF THREE CHRS.

EQU APPEND O7TFH »THE APPEND FUNCTION

EQ nu 12 76REEK LETTER MU

sREGISTER EQUATES

EQU BASE R1 sUSE R1 FOR THE BASE REGISTER

EQU FREQUENCY BASE+0 > THE CUTOFF FREQUENCY

EQU RESISTANCE BASE+1 FTHE TERMINATING RESISTANCE

EQU CAPACITOR BASE+2 ;CAPACITOR VALUE

EQU INDUCTOR BASE+3 sCOIL PALUE

CO00F800 LBL "LOWPARSS’ 7O0UR LOU-PASS FILTER PROGRAN

4C4F5750

415353
FB465245 T ’FREQUENCY=?" ;ASK FOR THE CUTOFF FREQUENCY

5155454t

4359303F

8E PRONPT

30 STO FREQUENCY sSAVE IT

F9522854 T ’RCTERN)=?? 7ASK FOR THE TERPMINATING RESISTANCE

45524029

303F

8t PRONPT

31 STO RESISTANCE 7SAVE THE RESISTANCE

’

7CALCULATE THE INDUCTOR (COIL)> FIRST

; L = RZ/(PI % FREQUENCY)

20 RCL FREQUENCY 76ET THE FREQUENCY

12 Pl

42 X sP1 % FREQUENCY
43 / sDIVIDE INTO THE RESISTANCE

11101010 1000 7CONVERT TO MILLIHENRIES

43 /

33 STO INDUCTOR »SAVE IT FOR FUTURE USE

sNOU DISPLAY THE CALCULATED INDUCTOR PALUE

F34C3020 T L=’

9873 ARCL X

F4TF2040 APPEND ” MR’ sUNITS ARE MILLIHENRIES

48

Tt AVIEW

89 PSE

33 STO INDUCTOR sSAVE IT FOR FUTURE USE

41UCC ¥ 1.45, Copyright 1981 by Leslie Brooks.

Distributed by Hand Held Products Incorporated.

47

49

50

51

32

53

56

3%

56

51

58

59

60

61

62

63

64

65

66
67

68

69

10

1

0030

0030

0041

0043

0044

0045

0045

0045

0045

0045

0046

0047

0048

0049

004A

004C

004F

0050

0051

0051
0035

0057

005C

0050

005E

sNOU DISPLAY THE CALCULATED INDUCTOR VALUE

F34C3020 T Lz’

9873 ARCL X

1€ RVIEH

89 PSE

sNOU CALCULATE THE CAPACITOR

5 C=1/Q x PI ¥ RESISTANCE * FREQUENCY)

»

21 RCL RESISTANCE 5GET THE RESISTANCE AGAIN

20 RCL FREQUENCY >AND THE FREQUENCY
42 X

12 Pl

G2 X

9213 STO+ X >DOUBLE IT

111B16 iE6 >CONVERT TO MICROFARADS

43 /

32 STO CAPACITOR »SAVE FOR FUTURE USE

»NOU DISPLAY THE CAPACITOR VALUE

F3433020 T ’c=

9B73 ARCL X

F4TF200C 0B TEXTG,APPEND,” “,NU,"F” ;LABEL IT AS MICROFARADS

46
1€ AVIEN

89 PSE

coo00D END

¢1UCC P 1.45, Copyraght 1981 by Leslie Brooks.

Distributed by Hand Held Products Incorporated.

UNDEF INED ALPHA LABELS

(THESE ARE ERRORS IF NOT DEFINED IN ANOTHER PROGRAM)

LABEL DEFINED VALUE LINE NURMBERS OF REFERENCES TO THE SYnBOL

NANE ON

xxxxx NO SYNBOLS WERE UNDEFINED 3xxxx

41UCC ¥ 1.45, Copyright 1981 by Leslie Brooks.

Distributed by Hand Held Products Incorporated.

FLAG USAGE SUMNARY

FLAG # LINE NUNBERS OF REFERENCES TO THE FLAG6

¥x%%x N0 FLAGS WERE USED xxxx

G1UCC V 1.45, Copyright 1981 by Leslie Brooks.

Distributed by Hand Held Products Incorporated.

NUMERIC LABEL USAGE SURMARY

LABEL DEFINED LINE NUMBERS OF REFERENCES TO THE LABEL

% OoN

¥x%xx NO NUNERIC LABELS HERE USED x3%xxx

41UCC V 1.45, Copyright 1981 by Leslie Brooks.

Distributed by Hand Held Products Incorporated.

REGISTER USAGE SUNNARY

REGISTER LINE NUMBERS OF REFERENCES TO THE REGISTER #

000 25-S 33-R

001 28-S 56-R

002 64-S

003 39-S 46-S

X 42-R 49-R

TA6 NMEANINGS ARE: CF

oI

s
FC

FS

6l

II

IS

RI

SF

Sl

X1

XC

57-R

61-S 67-R

CLEAR FLAG INDIRECT

DECRENENT INDIRECT AND SKIP IF EQUAL

DECREMENT AND SKIP IF EQUAL

FLAG CLEAR? IMDIRECT

FLAG SET? INDIRECT

60T0 INDIRECT
INCREMENT INDIRECT AND SKIP IF GREATER

INCREMENT AND SKIP IF GREATER

RECALL

RECALL INDIRECT

STORE

SET FLAG INDIRECT

STORE INDIRECT

FLA6 TEST AND CLEAR INDIRECT

EXECUTE INDIRECT

EXCHANGE X AND R

41UCC V 1.45, Copyright 1981 by Leslie Brooks.
Distributed by Hand Held Products Incorporated.

ALPHA LABEL USAGE SUNNARY

LABEL DEFINED PALUE LINE NUMBERS OF REFERENCES TO THE LABEL

ON

LOUPASS 22 0000

TAG MEANINGS ARE: 6

X

6070

EXECUTE

41UCC ¥ 1.45, Copyright 1981 by Leslie Brooks.

Distributed by Hand Held Products Incorporated.

INTEGER SYNBOL USAGE SUMNMARY

SYNBOL DEFINED VALUE LINE NUNBERS OF REFERENCES TO THE SYnBOL

NANE ON

APPEND 10 007F 68-

BASE 15 0000

CAPACIT 19 0002 64-

FREQUEN 17 0000 25- 33- 31~

INDUCTO 20 0003 39- 46-

nu 11 000C 68-

R1 1 0000

R2 1 0000

R3 1 0000

R4 1 0000

RESISTR 18 0001 28- 36-

TEXT4 9 00F4 68-

41UCC V 1.45, Copyright 1981 by Leslie Brooks.

Distributed by Hand Held Products Incorporated.

STRING SYMBOL USAGE SUNMNARY

SYNBOL DEFINED VALUE LINE NUNBERS OF REFERENCES TO THE SYMBOL

NANE ON

¥X%%x NO STRING SYNBOLS WERE USED xxxxx

¢1UCC ¥ 1.45, Copyright 1981 by Leslie Brooks.

Distributed by Hand Held Products Incorporated.

VARIABLE USAGE SUNNARY

PARIRBLE DEF INED VALUE LINE NUNBERS OF REFERENCES TO THE VARIABLE

NANE ON

xxxxx N0 VARIABLES WERE USED exxxx

41UCC ¥ 1.45, Copyright 1981 by Leslie Brooks.

Distributed by Hand Held Products Incorporated.

P
=
0
0
N
N
N

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

21

28

29
30
3
3R
3
34
3%
36
3t
38

39

41

43

43

47

49

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0006

0006

0006

0006

0006

0008

000A

0004

000A

000A

0013
0014

0015

001E

001F

001F

001F

001F

001F

001F

001F

TITLE ’SECANT NETHOD FOR F(X)=0. BY LESLIE BROOKS’

*SPECIAL EQUATES

SET LBL_BASE 02 sHE HAVE USED LABEL 1

sREGISTER EQUATES

EQU GUESST 00 sFIRST GUESS FOR X

EQU G6UESS2 01 »SECOND GUESS FOR X

EQu Loop 02 5LOOP COUNT

EQU FUNCTION 04 sFUNCTION NARE

EQU SCRATCH 05 *SCRATCH REGISTER CUSUALLY

sHOLDS f(Xn-1)

7LABELS

EQU START 01 »START OF THE NAIN LOOP

sFLAGS

EQU NO_PRONMPT 10 sFLAG IS SET IF GUESSES ARE ALREADY

sENTERED

CO00F300 LBL ’SC’ sENTRY POINT TO THE PROGRAN

5343

sBRANCH IF FLAG 10 IS SET - ACT LIKE R SUBROUTINE, DON’T

sPRONPT THE USER FOR THE INITIAL GUESSES OR FUNCTION NARE

AROA FS2C NO_PRONPT #SET IF CALLED AS A SUBROUTINE

B200 6T0 START #SKIP THE PRONPTING IF SET

sELSE PRONPT NORNMALLY

F8475545 T ’6UESS 1?” sASK FOR GUESS 1

93532031

3F

8t PRONPT

30 STO GUESS1 sSAVE Xn-1

F8475545 T ’6UESS 2?” sRSK FOR GUESS 2

93532032

3F

3 STO 6UESS? 5SAVE Xn

»NOW PRONPT FOR THE FUNCTION NANE

EQU FUNC_MANE LBL_BASE sCREATE A LABEL NUMBER FOR THIS

*ROUTINE

SET LBL_BASE LBL_BASE+1 sCREATE A NEM LABEL BASE

41UCC V 1.45, Copyright 1981 by Leslie Brooks.

Distributed by Hand Held Products Incorporated.

SECANT METHOD FOR F<X)=0. BY LESLIE BROOKS

50

51

92

33

34

55

56

51

38

59

60

61

62

63

64

65

66

67

68

69

70

11

12

73

14

15

16

11

8

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

001F

0020

002F

0030

0031

0033

0034

0034

0037

0038

0038

0038

0038

0039

0034

003C

0030

003E

0040

0041

0042

0043

0044

0046

0047

0048

0049

0044

0044

0044

0044

0048

004C

0040

0040

0040

004D

004F

0050

0052

0054

0054

0054

0054

0055

03 LBL FUNC_NANE

FEG6554E T "FUNCTION NARE?’

4354494F

7ASK FOR THE FUNCTION NARE

GE204E 41

4D453F

8C AON

8t PRONPT

9A04 ASTO FUNCTION sSAVE THE FUNCTION NANE

88 AOFF

141011 01

32 ST0 LooP sLO0P 10 TINES

sCALCULATE F(GUESS1)> TO START THE PROGRAN

02 LBL START

20 RCL 6UESS1 *6ET Xn-1 BACK AGRIN

AE8Y XEQ IND FUNCTION EXECUTE THE FUNCTION

35 STO SCRATCH sAND SAVE F(¥n-1)

21 RCL GUESS2 s6ET Xn

AEB4 XEQ IND FUNCTION EVALUATE F(Xn)

21 RCL GUESS2 S6ET Xn

20 RCL GUESS1 sAND Xn-1

41 - »SUBTRACT THER

71 OV >6ET f(Xn) BACK

9171 ST0 2Z 7SAVE IT AGAIN

25 RCL SCRATCH 7AND GET f(Xn-1)

41 - »SUBTRACT THESE

63 / sCXn - Xn-1) /7 C f(¥n) - f(Xn-1))

42 X SNULTIPLY BY f(¥n)

;¥ nou contains a correction factor to be added to Xn

21 RCL GUESS?2 S6ET Xn

1 XOY

41 -

>NOU UE HAVE Xn+1 IN THE X REGISTER

CEo1 X<> BGUESS? >EXCHANGE Xn+1 UITH Xn

30 STO GUESS1 »Xn BECONES THE NEW Xn-1

9602 IS6 LOOP > INCRENENT THE LOOP COUNTER

8200 6T0 START »LOOP IF NOT DONE

»IF UE GET HERE, WUE ARE DONE - DISPLAY THE RESULT

21 RCL GUESS?2 >Xn

€00000 END

41UCC U 1.45, Copyright 1981 by Leslie Brooks.

Distributed by Hand Held Products Incorporated.

SECANT METHOD FOR F(X)>=0. BY LESLIE BROOKS

UNDEF INED ALPHA LABELS

(THESE ARE ERRORS IF NOT DEFINED IN ANOTHER PROGRAM)

LABEL DEFINED VALUE LINE NURBERS OF REFERENCES TO THE SYMBOL

NARE ON

XX%xx N0 SYNBOLS WERE UNDEFINEDs

41UCC V 1.45, Copyraght 1981 by Leslie Brooks.

Distributed by Hand Held Products Incorporated.

SECANT NETHOD FOR F(X)-0. BY LESLIE BROOKS

FLAG USAGE SURNMARY

FLAG % LINE NUMBERS OF REFERENCES TO THE FLRG

010 33-TC

TAG NEANINGS ARE: CF CLEAR FLAG

FS FLAG SET?
FC FLAG6 CLERR?

SF SET FLR6

T FLAG TEST AND CLEAR

G1UCC V 1.45, Copyright 1981 by Leslie Brooks.

Distributed by Hand Held Products Incorporated.

SECANT NETHOD FOR F(X)>=0. BY LESLIE BROOKS

NUMERIC LABEL USAGE SUMMARY

LABEL DEFINED LINE NUNBERS OF REFERENCES TO THE LABEL

$ ON

001 62 34-6 89-6

002 50

TRG NEANINGS ARE: 6 6070

X EXECUTE

41UCC V 1.45, Copyright 1981 by Leslie Brooks.

Distributed by Hand Held Products Incorporated.

SECANT NETHOD FOR F(X)>=0. BY LESLIE BROOKS

REGISTER USAGE SUNNARY

REGISTER LINE NUMBERS OF REFERENCES TO THE REGISTER %

000 40-5 63-R 69-R 81-5

001 62-5 66-R 68-R 80-R 86-XC 93-R

002 98-$ 88-1S

004 36-S 66-X1 67-X1

005 65-5 73-R

z 12-5

TR6 NEANINGS ARE : CF CLEAR FLRG INDIRECT

DI DECRERENT INDIRECT AND SKIP IF EQUAL

0sS DECRENENT AND SKIP IF EQUAL

FC FLAG CLEAR? INDIRECT

FS FLRG SET? INDIRECT

61 6070 INDIRECT

II INCRENENT INDIRECT AND SKIP IF GREARTER

IS INCRENENT AND SKIP IF GREATER

R RECALL

RI RECALL INDIRECT

S STORE
SF SET FLAG INDIRECT

SI STORE INDIRECT

TC FLAG TEST AND CLEAR INDIRECT

X1 EXECUTE INDIRECT

XC EXCHANGE X AND R

41UCC b 1.45, Copyright 1981 by Leslie Brooks.

Distributed by Hand Held Products Incorporated.

SECANT NETHOD FOR F(X)>=0. BY LESLIE BROOKS

ALPHA LABEL USAGE SUNNARY

LABEL DEFINED VALUE LINE NUNBERS OF REFERENCES TO THE LABEL

ON

SC 28 0000

TA6 NEANINGS ARE: 6 60T0

X EXECUTE

4iuCl ¥ 1.45, Copyright 1981 by Leslie Brooks.

Distributed by Hand Held Products Incorporated.

SECANT NETHOD FOR F(X)>=0. BY LESLIE BROOKS

INTEGER SYMBOL USARGE SUMNARY

SYNBOL DEFINED VALUE LINE WUNBERS OF REFERENCES TO THE SYMBOL
NARE ON

FUNCTIO 15 0004 56- 64- 61-

FUNC_NA 46 0002 50-

GUESS1 12 0000 G0- 63- 69- 87-

6UESS2 13 0001 G2- 66- 68- 80- 86- 93-

LoopP 14 0002 58- 88-

NO_PRON 26 000A 33-

R1 1 0000

R2 1 0000

R3 1 0000

R4 1 0000

SCRATCH 16 0005 65- 13-

START 20 0001 34- 62- 89-

41UCC V 1.45, Copyright 1981 by Leslie Brooks.

Distributed by Hand Held Products Incorporated.

SECANT NETHOD FOR F(X)-0. BY LESLIE BROOKS

STRING SYMBOL USAGE SUNNARY

SYNBOL DEFINED PALUE LINE NUNBERS OF REFERENCES TO THE SYRBOL

NANE ON

xxxxx N0 STRING SYNBOLS WERE USED xxxx

G1UCC V 1.45, Copyraght 1981 by Leslie Brooks.

Distributed by Hand Held Products Incorporated.

SECANT NETHOD FOR F(X)>=0. BY LESLIE BROOKS

VARTABLE USAGE SUNRARY

VARIABLE DEF INED VALUE LINE NUMBERS OF REFERENCES TO THE VARIRBLE
NANE ON

LBLBRS 7 0003 48-

O0O
ARRAARAR
NO
ARARA
A0AAROO
L
O0RAA
ARA
0AR
H:IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

	Cover
	Contents
	1. Introduction
	What Is 41UCC ?

	2. Getting Started
	Making a Backup Copy
	Understanding CP/M
	How to Use 41UCC
	A Real Program - Lowpass
	Listing of Lowpass
	Another Example Program - Secant
	Interactive Mode
	Indirect Command Mode
	Listing of Secant

	3. Introduction to Special Features
	Define Byte
	End
	Equate
	String Equates
	Expressions
	Global Labels
	#INCLUDE
	Key Assignments
	Page
	Set
	Title

	4. 41UCC Command Line Parameters
	Appendix A: Instructions that Differ from the HP-41
	Appendix B: Summary of Error Messages
	Appendix C: Synthetic Instructions
	Appendix D: PRP Listings and 41UCC
	Appendix E: Printing Barcodes
	Appendix F: Modifying 41UCC
	Appendix G: Listings and Barcode for Examples

