UseER
CobE
CovipPILER

VERSION 1.45

RerFrerence MANUAL

HAND HELD PRODUCTS

6201 FAIR VALLEY DRIVE
CHARLOTTE, NORTH CAROLINA 28211
PHONE.: (704) 377-3841

(C) HAND HELD PRODUCTS, INC. 1982

CONTENTS

INTRODUCTION
WHAT IS 41lUCC ?

GETTING STARTED

MAKING A BACKUP COPY
UNDERSTANDING CP/M

HOW TO USE 41UCC

A REAL PROGRAM - LOWPASS

LISTING OF LOWPASS

ANOTHER EXAMPLE PROGRAM - SECANT
INTERACTIVE MODE

INDIRECT COMMAND MODE

LISTING OF SECANT

INTRODUCTION TO SPECIAL FEATURES
DEFINE BYTE
END

EQUATE

STRING EQUATES
EXPRESSIONS
GLOBAL LABELS
#INCLUDE

KEY ASSIGNMENTS
PAGE

SET

TITLE

41UCC COMMAND LINE PARAMETERS

APPENDIX A

INSTRUCTIONS THAT DIFFER FROM THE HP-41

APPENDIX B

SUMMARY OF ERROR MESSAGES

APPENDIX C

SYNTHETIC INSTRUCTIONS

APPENDIX D

PRP LISTINGS AND 41UCC

APPENDIX E

PRINTING BARCODES

APPENDIX F

MODIFYING 41UCC

APPENDIX G

LISTINGS AND BARCODE FOR EXAMPLES

10
17
21
32
32
36

41
41
41
42
44
46
46
46
47
47
47

49

52

53

56

58

60

63

65

INTRODUCTION

WHAT IS 4lUcCC 2

41UCC is a "User-Code cross Compiler". The "user-code" part
means that it accepts normal, everyday programs Jjust like you
already write for your HP-41C/CV. The "cross" part means that it
does not run on the HP-41] - it runs on any 48K or larger
8080/8085/7280 CP/M 2.2 system. The "compiler" part means that
41UCC takes the programs that you have written and compiles them
into the binary codes that the HP-41 understands.

WHAT WILL IT DO FOR ME 2

Simply, it will allow you to write programs for your HP-41
in a fraction of the time previously required. Also, it will
make documentation and modification of your programs a much
simpler task.

HOW DOES IT DO THAT ?

Your work is made easier in several ways:
(1) You can write your program using your favorite text editor.

(2) You can add comments anywhere you like - to improve program
documentation.

(3) You can use meaningful names to refer to registers.

(4) You can make changes more easily - no more going through and
changing every reference to register 0l to register 02 if you
need to make a change - you need only to make one change at the

start of the program.
(5) Symbolic expressions!
(6) And much more!

WILL IT ACCEPT SYNTHETIC CODES 2

Yes, of course - if you want to use them.

WHERE CAN I GET IT 2

From Hand Held Products Inc., 6201 Fair Valley Drive,
Charlotte, N.C. 28211. 41UCC is available from stock. When
ordering, specify 8" CP/M, IBM-PC w/Z-80 card, or Osborne 5 1/4"
formats. Other formats (such as Heath/Zenith 5 1/4", Apple II
w/Z-80 card, Avatar, Televideo, Xerox/Kaypro 5 1/4", or Super-
brain) are available on special request. Please allow an extra
two weeks for delivery if you request a special format. 41UCC
requires an 8080/8085/72-80 or similar CP/M system, 48K of memory,
and at least one disk drive to run. More memory and two disk
drives are recommended.

Copyright 1982 by Leslie Brooks.

GETTING STARTED

This section will explain how to make a backup disk, what
41UCC 1is

I am a novice - how do I use 41UCC?

It is important to understand at least the basics of CP/M in
order to effectively use 41UCC. 1In particular, you should know
how to create a file with a text editor (such as CP/M's ED), how
to get a directory (a listing of all the files on the disk), and
how to make a backup copy of files or disks (with CP/M's command
PIP). If you do not know how to do these things, a good book to
start with is the CP/M PRIMER by Stephen Murtha and Mitchele
Waite, published by Howard W. Sams & Co. Another good choice
would be USING CP/M - A Self-Teaching Guide by Judi Fernandez and
Ruth Ashley. This one is published by Wiley.

This entire manual also assumes that you know how to program
an HP-41C. It is not necessary that you know synthetic program-
ming, nor is it even helpful (unless your application requires it).
Knowledge of any assembly language will be an asset in using 41UCC.

THE FIRST STEP

The first step in using 41UCC is to MAKE A BACKUP COPY.
Should the power fail while you are using your working disk, or
should your dog fetch it for you, or a child smear a banana into
it, you will be very glad of a safe original disk sitting on the
shelf. To make this backup, you need to put a freshly formatted
(initialized) disk into drive B of your machine and your CP/M
system disk in drive A. If you don't know how to format a disk,
look in your system manual under FORMATTING or INITIALIZING A
DISK. The example it gives should look something like this

A> format
FORMAT Version 1.5

Drive A or B? b
(S)ingle or (D)ouble Density? 4

Now formatting drive B double density.
Formatting done.

A>

Here a few notes are in order - the 'A>' is CP/M's prompt,
and the rest is what you typed. I will always put your entries
in bold face so that you can distinguish them from the things the
computer types. I will always assume (unless otherwise noted)
that you hit the RETURN or ENTER key at the end of any line you
type. This tells the computer that you are through with the line
and it can now process it - in general, it ignores the command
line until you press the RETURN or ENTER key. If I need to
explicitly show that you hit the RETURN/ENTER key, I will use the
'<CR>' symbol (RETURN is short for Carriage Return).

GETTING STARTED

Now we will copy PIP (a file copying program) and a
system image (a copy of CP/M) onto it. To copy PIP to the new
disk, type

A>pip b:=a:pip.com
If you get the response
PIP?

you do not have PIP on the disk, and need to get a disk which
does have it.

Now you have told PIP to send a copy of itself to drive B;
you need only to copy CP/M to your new disk in drive B and then
we can start using it. This is not quite the same as copying a
file with PIP, because CP/M is not a file - so Digital Research
gave us a special program called SYSGEN to GENerate a new SYStem
image. Running it involves typing its name, and then telling it
to get the system (CP/M) from drive A and put it on drive B. It
looks like this:

A>sysgen

SYSGEN VER 2.0

SOURCE DRIVE NAME (OR RETURN TO SKIP)a

SOURCE ON A, THEN TYPE RETURN<CR>

DESTINATION DRIVE NAME (OR RETURN TO REBOOT)b
DESTINATION ON B, THEN TYPE RETURN<CR>
FUNCTION COMPLETE

A>

Now in drive B we have a fresh disk with CP/M and PIP on it.
Put this disk in drive A and type a control-c (hold down the
CONTROL or CTRL key and press C). A common notation for control
functions is the '"' symbol. This symbol followed by a character
means to hold down the control key and press the character. Thus
"C means to hold down the control key and press the 'C' key.
There will be a slight pause followed by CP/M's prompt.

A>

If you do not get CP/M's prompt again you have an error. It
could mean that you did not do the SYSGEN properly, or it could

mean that you have a bad disk or a bad copy of SYSGEN. Try again
until it works.

Your fresh disk is now in drive A. To make it into a
usable disk with 41UCC on it (in addition to CP/M and PIP), place
your 41UCC disk in drive B, and copy everything on it to drive A:

A>pip a:=b:*.*

You now have a backup copy of 41UCC. Put the original 41UCC
disk in a safe place and use the copy for all of your work. 1If

GETTING STARTED

you damage the copy, you won't lose a week of work while I send
you a new disk.

I HAVE MY BACKUP - WHAT NOW?

Now, it would be helpful if you understood a little bit of
what 41UCC is intended to do, and how it interacts with programs
such as ED, RDS and PBAR before you actually start using it.

We can't really understand how these programs relate to each
other without understanding a bit about CP/M. Okay, so what is
CP/M? Well, CP/M is just a program which allows you to do useful
things on your computer. Let's look at an analogy. What does
your HP-41C do if you push XEQ ALPHA "SIZE" ALPHA? It prompts
you for the SIZE you want, right? But how did it 'know' that it
should do that? The only reason it works that way is because
there 1is a program running in it whenever it is on - but you
never 'see' this program, you just see the results. The only
reason it works the way it does is because HP programmed it that
way. However, you don't have to be an expert on the intricacies
of this program in order to use the calculator - you just push
the right button and it works. CP/M can be thought of as being
the program that runs the calculator. You don't have to
understand all of it in order to be able to use it. Now, how did
you know that your calculator would respond properly when you
tried to set the size? Well, there was a number in the display
(i.e. the calculator was turned on) and the PRGM enunciator was
not turned on (the calculator was not running a program). In the
same way, we can give CP/M a command whenever we see

A>
or
B>

This means that CP/M is ready to accept a command. If we do not
see this prompt, or if we see a different prompt (such as * or ?)
then some other program is running and we cannot use CP/M
commands. If the PRGM was showing on your calculator you would
not expect to be able to execute SIZE - programs do not
understand things like SIZE or CATalog 1.

Speaking of CATalog 1, how do you find out what programs are
on a disk? CP/M does have a command that corresponds to CAT 1;
it is called DIR (DIRectory). A CAT 1 catalogs all of the
programs that are in memory and ready to run; in the same way a
DIR catalogs all of the programs that are on disk.

A>DIR (hit a Carriage Return after the R)

A: 41UcCC COM : RDS COM : FILTER COM : SECANT UCC
A: TST28 UCC : HEX UcCcC

A>

Now you can see that you have the files 41UCC.COM, RDS.COM,

GETTING STARTED

FILTER.COM, SECANT.UCC, and others on your disk. (The file names
are all given as eight letters plus the three letter type, and
the dot in the name is not shown.) So now we have our CATalog 1,
but there is a difference - all of the names you see in a CATalog
1l listing are programs which can be run, but not all of the names
you see in a DIRectory listing can be run. Just as you can have
data files in extended memory, CP/M allows data files on disk.
Programs - anything that can be run - always have a name that
ends in .COM (for COMmand). 41UCC's complete name is 41UCC.COM -
but we rarely have to use the .COM part. If you push XEQ ALPHA
"SIZE" ALPHA on your HP-41C you don't have to specify that SIZE
is an executable (.COM in CP/M) program - it wouldn't make sense
to try to execute anything else. In the same way, in CP/M you
don't have to specify the .COM part in order to run a program -
you Jjust type the programs' name. If you wanted to run 41UCC,
you would just type

A>41ucc

Notice that you did not type the 'A>' - CP/M did that. Also,
just like you have to hit ALPHA at the end of a program name on
the HP-41C, so you had to hit a RETURN (or CR or Carriage Return
on some keyboards.) This tells CP/M that you have reached the
end of the name - just as hitting ALPHA tells the HP-41C that you
have reached the end of the program name.

Finally, if you push XEQ ALPHA "FOO" ALPHA you know that you
should have a program called FOO in memory. If you do not you
will get NONEXISTENT. If you did this to CP/M

A>FO0O

CP/M would look on disk for the program FOO.COM. If the program
did not exist, you would get

FOO?

which is CP/M's way of saying "FOO is not a command that I
understand myself, and I can't find it on disk either."

So now you know what CP/M is, how to get a CATalog 1l listing
out of it, how to XEQ a program, and what CP/M's version of
NONEXISTENT looks like. What else do you need to know in order
to effectively use 41UCC? The most important thing you need to
know is exactly what you intend to accomplish.

YOUR GOALS

At this point you should have one or more of three goals.
Take a look at figure 1 and think about which of these goals you
have:

1) You have an existing program, on an HP-41C, that you wish
to burn unchanged into EPROMs. This is path 1 in figure 1, and
involves only RDS. You do not need 41UCC to accomplish this.

GETTING STARTED

2) You have an existing program on an HP-41C and you would
like to document it and/or make some changes to it before burning
EPROMs. This is path 2 in figure 1, and involves 41UCC, ED or
some other text editor, and a program called FILTER.COM.
(FILTER.COM is used to convert an HP-41C PRP listing to a format
that 41UCC can understand. When you need to do this, look in
appendix D).

3) You would like to create an HP-41C program from scratch
on your microcomputer, and download it into the HP-41C for
testing. For this you will need a text editor (such as ED) and
41UCC. For downloading the program to the HP-41C you can go
through RDS and burn EPROMs or you can print barcodes on a
suitable printer. For information on burning EPROMs consult the
RDS documentation. For information on printing barcodes see
appendix E.

Now look at figure 1 again, with your goal in mind. Notice
that there are two ways to get a program into RDS - you can
upload it from the HP-41C using the HP-IL, or you can produce it
through 41UCC. For getting programs back down to the HP-41C, you
can go through RDS and burn EPROMS or you can go through PBAR and
print barcode. Notice also that 41UCC has to have an input file,
which you create with a text editor (or FILTER.COM), and 41UCC in
turn produces three output files. The .LST or LiST file is
human readable and contains a great deal of useful information
about your program (including a cross reference of all of the
flags, registers, and labels you have used). The .BIN or BINary
file is used as input to RDS and cannot be printed. The .WND or
WaND file contains barcode information which could be transferred
to someone else or printed on your printer (such as an MX-80, MX-
100, Trilog, Printronix, or daisywheel). You can also send the
WaND file to your printer or screen and look at it. If you send
it to your screen some of the letters may flash or look strange -
this is normal.

Using 41UCC involves only two (hopefully) very easy steps.
First take your favorite text editor and type in your HP-41C
program, then save it to disk. This creates a file on disk which
will be used as input to 41UCC. The second step will be to use
41UCC to produce all of the output files discussed above.

THE FIRST STEP

Let's pretend that your program looks something like this:

LBL 'TEST' ;MY FIRST TEST PROGRAM
BEEP ;TELL ME THAT IT RAN
END ;BUT DON'T DO MUCH ELSE

Now, admittedly, this is a very simple program, but it is a
good start. Notice first of all that the label in your test
program is in quotes. This will be true of all alpha labels in
any program to be used with 41UCC. Secondly, notice the comments

HP-41 CRT

Path 2

-
> xxxx.,CPM

FILTER.COM

Path 1 Path 3
xxxx.UCC

ED or

WORDSTAR

USER CODE
COMPILER

,_<xxxx.BIN { >< XXXX .WND

XXXX.LST

ROM Printed
DEVELOPMENT Listin
SYSTEM i

' BAR.COM

EPROMs Figure 1

bar codes

¥/ '

GETTING STARTED

in the program - these are one of the prime advantages of 41UCC
over programming on an HP-41C. Comments are preceded by a semi-
colon, and may go anywhere in the program. I put the 'LBL' to
the left of the other commands so that labels are easy to spot,
but this is not required. 1In fact, there are no limitations on
the format of lines - commands and labels may go in any column,
and you may use spaces or tabs anywhere you like. If you wish,
you may indent loops (a la Pascal) in order to make them more
obvious. Finally, you should assure yourself that this really is
a normal HP-41C program just like many that you have written.
41UCC supports many other enhancements (listed in alphabetical
order in the next section "INTRODUCTION TO SPECIAL FEATURES"),
but for now we do not need to worry about them. There are a few
41UCC instructions which do not look like their HP-41C counter-
parts; these are all listed in Appendix A.

Now we need to type in this program and save it as a file on
disk so that 41UCC can work on it. Assuming that we use the CP/M
text editor ED, typing in our program will go something like:

A>ed test.ucc

NEW FILE
s *T
1: LBL 'TEST' ;MY FIRST TEST PROGRAM
2: BEEP :TELL ME THAT IT RAN
3: END ;:BUT DON'T DO MUCH ELSE
4: "%
: *E
A>

Again, everything you typed is in bold face; everything the
computer produced is in normal face. The '"Z' on line four means
that you held down the CONTROL key and pressed the 'Z' key. This
tells ED that you want to get out of insert mode. The 'E' on the
following line means that you want to end your editing. ED will
return to CP/M after saving what you typed in as the file
TEST.UCC. If you do not know how to use your text editor please
stop now and learn it. If you are using WordStar you should use
it in non-document mode.

THE SECOND STEP

After you exit from ED your program will exist on disk as
TEST.UCC. You will now want to run 41UCC on it; that looks like
this:

A>41UCC I=TEST.UCC

41UCC - AN HP-41C USER CODE COMPILER. COPYRIGHT 1981 BY LESLIE BROOKS.
DISTRIBUTED BY HAND HELD PRODUCTS INCORPORATED.

VERSION 1.45 - NOVEMBER 8, 1982. Serial Number ACO0002

O ERROR(S) IN PHASE ONE

0 ERROR(S) IN PASS ONE

0 ERROR(S) IN PASS TWO
A>

GETTING STARTED

Had there been any errors in your program, they would have
shown up here. The "I=" in the command line tells 41UCC what
file to process. 41UCC has now read in your source file
(TEST.UCC), checked it for errors, and compiled it to produce the
files TEST.LST (the LiSTing file), TEST.BIN (BINary file), and
TEST.WND (WaND or barcode file). Take a look back at Figure 1 if
you need a mental picture of what is happening at this step.
The section titled 41UCC COMMAND LINE PARAMETERS explains how to
turn off the generation of the WaND or BINary files, should you
not want them. Ready for something a bit more complex? Suppose
we modify our test program so that it looks like this:

LBL 'TEST1' ;sMODIFYING MY TEST PROGRAM A BIT
T 'HELLO' ;A TEXT STRING

THIS IS TO BE EXECUTED THE FIRST TIME THE PROGRAM RUNS

~e ~o ~o

APPEND ' WORLD' ;ADD THIS TO INCLUDE EVERYONE
AVIEW

PSE

XEQ 'TUNE' ; PLAY SOME MUSIC

END

To do that, we will need to use ED again.

A>ed test.ucc

: *OA

l: *STEST"ZTEST1"Z

1l: *SMY FIRST TEST PROGRAM”ZMODIFYING MY TEST PROGRAM A BIT"Z

1: *LI

2: T 'HELLO" :A TEXT STRING

3: :

4. ;THIS IS TO BE EXECUTED THE FIRST TIME THE PROGRAM RUNS

5: :

6: APPEND 'WORLD' ;sADD THIS TO INCLUDE EVERYONE
7: AVIEW

8: PSE

9: XEQ 'TUNE' ; PLAY SOME MUSIC
10: “z
11: *K

: *B#T

1l: LBL 'TEST1' ;s MODIFYING MY TEST PROGRAM A BIT
2: T 'HELLO" ;A TEXT STRING

3: H

4 ;THIS IS TO BE EXECUTED THE FIRST TIME THE PROGRAM RUNS

5: :

6: APPEND 'WORLD' sADD THIS TO INCLUDE EVERYONE
7: AVIEW

8: PSE

9: XEQ 'TUNE' ; PLAY SOME MUSIC

10: BEEP ;sTELL ME THAT IT RAN

1: *E

This example gives you a few more things of interest such as

GETTING STARTED

1) text strings are preceded by a "T"

2) having no proof reader's append mark I used "APPEND" for
this function.

Let's compile this new file and see what we get. Before we
do though, you should notice that this time I will refer to the
file just as 'TEST' - not as 'TEST.UCC'. The '.UCC' is optional
and 41UCC will assume that you mean it even if you leave it off.

A>41UCC I=TEST

41UCC - AN HP-41C USER CODE COMPILER. COPYRIGHT 1981 BY LESLIE BROOKS.
DISTRIBUTED BY HAND HELD PRODUCTS INCORPORATED.

VERSION 1.45 - NOVEMBER 8, 1982. Serial Number AC0002

0 ERROR(S) IN PHASE ONE
0 ERROR(S) IN PASS ONE
0O ERROR(S) IN PASS TWO

THERE WERE REFERENCES TO ALPHA LABELS NOT DEFINED IN THIS PROGRAM.
IF THESE LABELS ARE NOT IN ANOTHER PROGRAM, YOU HAVE AN ERROR.
CHECK THE CROSS REFERENCE IN THE .LST FILE FOR DETAILS.

A>

In our modification of the test program we had an error -
the label 'TUNE' was not defined, so 41UCC warned us about this.
This is only a warning, it is not a fatal error. If you print a
copy of TEST.LST, you will discover in the cross reference (at
the end of your program) a page that looks like this:

UNDEFINED ALPHA LABELS
(THESEC ARE ERRORS IF NOT DEFINED IN ANOTHER PROGRAM)
LABEL DEFINED VALUE LINE NUMBERS OF REFERENCES TO THE SYMBOL
NAME ON

TUNE 10 0000 10-X

TAG MEANINGS ARE: G GOTO

X EXECUTE

This means that you referred to an alpha label TUNE on line 10 of
your program, but you did not define the label anywhere in your
program. If in fact you do have a label 'TUNE' in some other
program currently in your HP-41C, then you can safely ignore this
warning and continue. If you do not have a label 'TUNE' in any of
the programs in your HP-41C, then attempting to run the program
'TEST1' that we Jjust compiled will produce a 'NONEXISTENT' error
message. All error messages and their meanings are listed in
Appendix B.

Now suppose I were going to burn an EPROM with my program in
it. I don't need the WaND file to burn an EPROM, and I don't
like wasting space on disk for it, so I use

A>41UCC I=TEST,L=LST:,NW

GETTING STARTED

which tells 41UCC to compile the file "TEST.UCC", send the lis-
ting directly to the printer, and produce no wand file at all.
These parameters (or options) may be specified in any order. A
complete listing of command line parameters is given in the
section titled 41UCC COMMAND LINE PARAMETERS.

A REAL PROGRAM

Now let's look at a real problem, and develop a real program
to solve it. Suppose we want to design a low-pass filter (for a
CB antenna filter or for a stereo bypass). We could go to a
handbook such as the "ARRL Amateur Radio Handbook", or "Basic
Computer Programs in Science and Engineering" and get a formula
for this type of filter. Page 196 of the Basic book shows us a
schematic of a simple filter, and we can see from the formulas
that we will need to specify

1) the terminating resistance (52 ohms for a CB, 8 ohms for
a stereo)
2) the cutoff frequency of the filter

The filter contains one coil and two capacitors. The
formulas for their values are

coil - R/(PI * F) [terminating resistance divided by
the cutoff frequency times PI]

capacitor - 1/ (2 * PI * R * F) [l over 2 times PI times
the terminating resistance times the cutoff frequency]

Now from this information we can write a program to prompt
for input and produce the proper output. It would look something
like this:

LBL 'LOWPASS' ;OUR LOW-PASS FILTER PROGRAM
T 'FREQUENCY=?' ;ASK FOR THE CUTOFF FREQUENCY
PROMPT
STO 00 ;SAVE IT
T 'R(TERM)=?" ;ASK FOR THE TERMINATING RESISTANCE
PROMPT
STO 01 ;SAVE THE RESISTANCE

CALCULATE THE INDUCTOR (COIL) FIRST
L = R/(PI * FREQUENCY)

~e So Se Se

RCL 00 ;:GET THE FREQUENCY

PI

* ;PI * FREQUENCY

/ :DIVIDE INTO THE RESISTANCE

STO 02 ;SAVE IT FOR FUTURE USE
:NOW DISPLAY THE CALCULATED INDUCTOR VALUE

T 'L=

ARCL X

AVIEW

PSE

NOW CALCULATE THE CAPACITOR
C=1/(2 * PI * RESISTANCE * FREQUENCY)

e So ~o ~o

RCL 01 ;GET THE RLESISTANCLC AGAIN
RCL 00 ;AND THE FREQUENCY
*

10

A REAL PROGRAM

PI

*

STO+ X ;DOUBLE IT

STO 03 ;SAVE FOR FUTURE USE
;NOW DISPLAY THE CAPACITOR VALUE

T 'c= '

ARCL X

AVIEW

PSE

END

You can see from this that a 41UCC program really does look
very much like a normal HP-41C program. The two most obvious
differences in this example are the T that precedes a text line
and the fact that comments can go anywhere in the program. There
are a few 41UCC instructions which do not look like their HP-41C
counterpart; these are all listed in Appendix B - 'Instructions
Which Differ From the HP-41C.'

If you only use this filter program once a month or so, this
version may be adequate, but suppose you use it very often, and
also use HP's circuit analysis module. You will quickly get
tired of having the module write over your stored values of
capacitance and inductance for the filter. Now you would like to
move the registers used by this program out of the way - say to
50-53. If the filter program were very long you would get very
tired of looking for every occurrence of '0' and changing it to
'50'. 41UCC has provided a way around this - we can give a
register a name and then refer to it by name. Since we normally
put the definitions of the names at the beginning of the program,
we have only one place to look to change which registers we are
using. Here is our filter program converted to use names for the
registers.

;LOW-PASS FILTER PROGRAM
;sWRITTEN BY LESLIE BROOKS
;NOVEMBER 17, 1982.

;REGISTER EQUATES

EQU FREQUENCY 00 ;USE REGISTER O FOR THE FREQUENCY
EQU RESISTANCE 01 ;USE REGISTER 1 FOR THE RESISTANCE
EQU CAPACITOR 02 ;CAPACITOR VALUE
EQU INDUCTOR 03 ;COIL VALUE
LBL 'LOWPASS' ;OUR LOW-PASS FILTER PROGRAM
T 'FREQUENCY=?" ;ASK FOR THE CUTOFF FREQUENCY
PROMPT
STO FREQUENCY ;SAVE IT
T 'R(TERM)=?"' ;ASK FOR THE TERMINATING RESISTANCE
PROMPT
STO RESISTANCE ;SAVE THE RESISTANCE

CALCULATE THE INDUCTOR (COIL) FIRST
L = R/(PI * FREQUENCY)

S Se Se

11

A REAL PROGRAM

~a

RCL FREQUENCY ;GET THE FREQUENCY

PI

* :PI * FREQUENCY

/ ;DIVIDE INTO THE RESISTANCE

STO INDUCTOR :SAVE IT FOR FUTURE USE
:NOW DISPLAY THE CALCULATED INDUCTOR VALUE

T 'L=

ARCL X

AVIEW

PSE

NOW CALCULATE THE CAPACITOR
C=1 /(2 * PI * RESISTANCE * FREQUENCY)

~e Seo S0 So

RCL RESISTANCE :GET THE RESISTANCE AGAIN

RCL FREQUENCY :AND THE FREQUENCY

*

PI

*

STO+ X : DOUBLE IT

STO CAPACITOR :SAVE FOR FUTURE USE
;NOW DISPLAY THE CAPACITOR VALUE

T 'c= !

ARCL X

AVIEW

PSE

END

Again, it looks pretty much like a standard HP-41C program -
except for calling registers by names. 41lUCC will convert these
names to the proper register numbers for the HP-41C. If you
looked at this program on your calculator you would see the
correct register numbers in place of the names - but you could
put your 41UCC listing beside the calculator and see the names.

This is better than the first program, but we still have to
change four lines in order move the registers we are using to 50-
53. The four lines

EQU FREQUENCY 00 ;USE REGISTER O FOR THE FREQUENCY
EQU RESISTANCE 01 ;USE REGISTER 1 FOR THE RESISTANCE
EQU CAPACITOR 02 ;CAPACITOR VALUE

EQU INDUCTOR 03 ;COIL VALUE

would have to be changed to

EQU FREQUENCY 50 ;USE REGISTER O FOR THE FREQUENCY
EQU RESISTANCE 51 ;USE REGISTER 1 FOR THE RESISTANCE
EQU CAPACITOR 52 ;CAPACITOR VALUE

EQU INDUCTOR 53 ;COIL VALUE

and the rest of the program would be unchanged.

This isn't too difficult, but could it be easier? Suppose

12

A REAL PROGRAM

that there were forty or fifty registers involved rather than
just four? I wouldn't want to have to change forty or fifty

register numbers! There is in fact an easier way to do this - we
would change the same four lines to look like this

EQU BASE 50 ;USE 50 FOR THE BASE REGISTER
EQU FREQUENCY BASE+0 :THE CUTOFF FREQUENCY

EQU RESISTANCE BASE+1 ;THE TERMINATING RESISTANCE
EQU CAPACITOR BASE+2 ;CAPACITOR VALUE

EQU INDUCTOR BASE+3 ;COIL VALUE

and we added a new line to define the base register. Now to
change the registers we are using we only need to change one
line! This is a big improvement over the original program where
we had to go through every line making changes in order to change
the register assignments. It is also much more readable than the
original program - we don't have to remember what went in
register 1 - we just save a resistance in RESISTANCE and recall
it in exactly the same way.

Now, before you get too excited and run off naming every
register in site, you should remember that 41UCC only looks at
the first seven letters in each name. If we tried to define a
register (in the filter program) with the name RESISTABLE we
would get an error when we ran 41UCC. The reason for this is
that 41UCC would not be able to tell the difference between
RESISTANCE and RESISTABLE, and would complain about it. 41UCC
does not treat upper and lower case differently here, so either
one would produce the same result. Also, you can't put any
character you can think of in a name - just letters, numbers,
dollar signs '$', and underlines ' '. One person who will remain
nameless tried to use a name that was something like BASE-PAGE.
It worked fine until he put a

STO BASE-PAGE

in his program and 41UCC tried to subtract PAGE from BASE to see
what register he was using! NOT what the nice man had in mingd,
but exactly the sort of thing you will get if you try putting
funny characters in register names. (Please remember that this

is not true for alpha labels - 41UCC will accept anything for
them.)

You should also be aware that the symbols R1l, R2, R3, and R4
are special symbols and belong to 41UCC. You should not try to

create your own symbols by these names. 41UCC uses them like
this

A>41UCC I=LOWPASS,R1=50

41UCC- AN HP-41C USER CODE COMPILER. COPYRIGHT 1981 BY LESLIE BROOKS.
DISTRIBUTED BY HAND HELD PRODUCTS INCORPORATED.

VERSION 1.45 - NOVEMBER 8, 1982. Serial Number ACO0002

O ERROR(S) IN PHASE ONE

13

A REAL PROGRAM

0 ERROR(S) IN PASS ONE
0 ERROR(S) IN PASS TWO
A>

41UCC accepted the value of Rl as a parameter on the command
line, and passed it to the program. If we modified LOWPASS to
look 1like

EQU BASE R1 ;USE Rl FOR THE BASE REGISTER
EQU FREQUENCY BASE+0 :THE CUTOFF FREQUENCY

EQU RESISTANCE BASE+1 ;THE TERMINATING RESISTANCE
EQU CAPACITOR BASE+2 ;CAPACITOR VALUE

EQU INDUCTOR BASE+3 ;COIL VALUE

then we could change the registers LOWPASS uses simply by re-
compiling the program with a new value for Rl. There would be no
need to go in and edit the program. If we don't give Rl a value
on the command line it will get the default value of zero.

However, enough on register names, and let's get back to the
program. The values that we are producing are in Henries and
Farads - not common units of measure. Most people would be much
happier if we divided the inductor value by 1000 to produce
millihenries, and the capacitor by 1 million to produce micro-
farads. This change is very easy to make in our program - just
put in the division right before storing and displaying the
values. We would also want to label them, so (for the inductor)
we get something like this:

/ ;DIVIDE INTO THE RESISTANCE

1000 ;CONVERT TO MILLIHENRIES

/

STO INDUCTOR ;SAVE IT FOR FUTURE USE
;sNOW DISPLAY THE CALCULATED INDUCTOR VALUE

T ‘L= "'

ARCL X

APPEND ' MH' ;UNITS ARE MILLIHENRIES

AVIEW

PSE

We can see something new here - the text string append is
APPEND for 41UCC. Most keyboards do not have an append mark, so
this seems reasonable, and is certainly readable. So now our

inductor value is labeled as being in millihenries, 1let's do the
capacitor.

Here we run into a problem - MICROFARADS is too long to put
on the display with the capacitor value. The usual notation for
microfarads uses the Greek letter mu "u". If the HP-41C had a
lower case U we could use that. But wait - the HP-41C display
has the Greek letter mu - but we can't get to it from the key-
board. Will 41UCC allow us to use it? Yes, 41UCC will but we
will need to know a bit about the HP-41C instruction set.

14

A REAL PROGRAM

In thz HP-41C the character code for a "mu" is 12 (OC
hexadecimal.) Ilow do we put this into a character string? Vell,
an append text string of three characters is encoded as
CF41,C7TF!, followed by the three characters. If we change our
program like this:

STO+ X ;DOUBLE IT
ECU TEXT4 OF 411 ;APPEND TLEXT ETRING OF THREE CHRS.
EQU APPEND O7FII ; THE APPEND FUNCTION
Qe MU 12 ; GREEK LETTER MU
156 ; COUVERT TO MICROFARADS
/
STO CAPACITOR ;SAVE FOR FUTURE USE
;IOW DISPLAY THE CAPACITOR VALUL
T 'c= !
ARCL X
DB TEXT4, APPEND, ' ',MU,'F’ ;LABEL IT AS MICROFARADS
AVIEW
PSE
END

it will cause the capacitor value to be properly labeled as being

in microfarads. The DB instruction is not a standard HP-41C
instruction. In fact it is not an HP-41C instruction at all, but
what is called a pseudo-op. It is a pseudo HP-41C instruction

called DEFINE BYTE, and it actually evaluates the rest of the
line and passes the values it finds to the HP-41C unchanged.
This is not something you will need to use in every program but
is very handy to have when you do need it.

This seems to be about as much damage as we can do to such a
simple program. 1If you don't understand something at this stage
try going back, typing the program into your computer, and
running it through 41UCC. Then feed it into your calculator and
see what it looks like there. It will appear to be an old and
familiar friend there, and you will be able to compare it to the
41UCC listing and see what was actually produced. Just as a
passing note, if you want to make a direct comparison between the
two programs you should add a '4L' on the command line for 41UCC.

A>41UCC I=LOWPASS, 4L

This means 'use (IP-41C Line numbers' - so the line numbers in
41UCC's LiST file and the line numkers you see on the HP-41C will
be exactly the same. It makes the two programs much easier to
compare. 'The barcode for this one is given in Appendix G - you
might learn a good bit by reading it into your calculator, then
comparing it to the listing.

There are two thing that we can still do to this program -
if we use it a lot, we will always want to assiagn it to a key.
In 41UCC this requires that we put a key assignment number after
a label. To assign LCYWPASS to the 'LM' key, we would modify our

A REAL PROGFRAM

progran like this

LEL 'LOUPALS' ¢ 15 NS

(1}

Dl ' '
ICik TO TIE A3 KDY

and the assignment would automatically be made for us when we
scanned in the barcode for the proaram. RDS does not yet suvnort
automatic Xey assianments, but will in the next version.

liow let's take a lock at the listing that 41UCC produced for
our filter program. I will make a few notations on it to point
out things of interest.

41UCC ¥ 1.45, Copyright 1981 by Leslie Brooks. NUL
Distributed by Hand Held Products Incorporated. Lfo/
wUN’rﬁk
7LOU-PASS FILTER PROGRAN
1 SURITTEN BY LESLIE BROOKS
1 sNOVENBER 17, 1982.
1 0000
1 0000 7SPECIAL EQUATES
1 0000
1 0000 EQU TEXT4 OFGH SAPPEND TEXT STRING OF THREE CHRS.
1 0000 EQU APPEND O7FH 5 THE APPEND FUNCTION
1 0000 EQ my 12 s6REEK LETTER hU
1 0000
1 0000 SREGISTER EQUATES
1 0000
1 0000 EQU BASE R1 7USE R1 FOR THE BASE REGISTER
1 0000
1 0000 EQU FREQUENCY BASE+0 ;THE CUTOFF FREQUENCY
1 0000 EQU RESISTANCE BASE+1 ;THE TERMINATING RESISTANCE
1 0000 EQU CAPACITOR BASE+2 ;CAPACITOR VALUE
1 0000 EQU INDUCTOR BASE+3 COIL VALUE
1 0000
1 0000 COOOFB800 LBL ’LOMPASS’ 70UR LOH-PASS FILTER PROGRAR
4C4F5750
415353
2 0008 _FB468 T ’FREQUENCY=?" 3ASK FOR THE CUTOFF FREQUENCY
51556454€
@F) pcTuAL COPE 65 NERRTED
3 0017 8E PRONPT
4 0018 30 ST FREQUENCY FSAVE IT
5 0019 F9522854 T ’RCTERM)=?” ;ASK FOR THE TERMINATING RESISTANCE
45524029
3D3F
6 0023 8E PRONPT
1 0024 31 STO RESISTANCE 7SAVE THE RESISTANCE
8 0025 ;
8 0025 sCALCULATE THE IMDUCTOR (COIL) FIRST
8 0025 5 L = R/CPI ¥ FREQUENCY)
8 0025 ;
8 0025 20 RCL FREQUENCY 76ET THE FREQUENCY
9 0026 T2 PI
10 0027 @] sP1 % FREQUENCY
11 0028 43 / sDIVIDE INTO THE RESISTAMCE
12 0029 11101010 1000 7CONVERT TO MILLIHEMRIES
13 0020 43 /
14 002E 33 STO INDUCTOR 7SAVE IT FOR FUTURE USE
15 002F #NOW DISPLAY THE CALCULATED IMDUCTOR VALUE
15 002F F34C3020 T L=’
16 0033 9873 ARCL X
17 0035 F47F204D APPEND ’ RH’ FUNITS ARE NILLIHENRIES
a8
18 0038 TE AVIEW
19 0038 89 PSE

20 003C 33 ST0 INDUCTOR 7SAVE IT FOR FUTURE USE

41UCC b 1.45, Copyright 1981 by Lesiie Brooks.
Distributed by Hand Held Products Incorporated.

a1 0030 sNOW DISPLAY THE CALCULATED INDUCTOR VALUE

21 0030 F34C3D20 T L=’

22 0041 9873 ARCL X

23 0043 TE AVIEW

24 0044 89 PSE

25 0045 ;

25 0045 sNOU CALCULRTE THE CAPACITOR

25 0045 5 C=17(% PI % RESISTANCE % FREQUENCY)

25 0045 ;

25 0045 21 RCL RESISTANCE 56ET THE RESISTANCE AGAIN

26 00d6 20 RCL FREQUENCY 7AND THE FREQUENCY

21 0047 42 X

28 0048 72 PI

29 0049 42 ¥

30 004p 9273 ST0+ b sDOUBLE IT

3 004C 111B16 1E6 sCONVERT TO NICROFARADS

R 004F 43 /

33 0050 32 STO CAPACITOR 5SAVE FOR FUTURE USE

34 0051 sNOU DISPLAY THE CAPACITOR VALUE

34 0051 F3433D20 T C=’

35 0055 9873 ARCL b

36 0057 F47F200C DB TEXTG,APPEND,” *.MU,”F” FLABEL IT RS MICROFARADS
46

37 005C 7TE AVIEU

38 0050 89 PSE

39 005E C0000D END

¢. RosS

41UCC ¥ 1.45, Copyright 1981 by Leslie Brooks.
Distributed by Hand Held Products Incorporated.

UNDEF INED ALPHA LABELS
(THESE ARE ERRORS IF NOT DEFINED IN ANOTHER PROGRAMN)
LABEL DEFINED VALUE LINE NUMBERS OF REFERENCES TO THE SYNBOL
NANE ON

¥xxx% N0 SYNBOLS WERE UNDEF INED ¥xxxx

41UCC V 1.45, Copyright 1981 by Leslie Brooks.
Distributed by Hand Held Products Incorporated.

FLAG USAGE SUMNARY

FLRG 8 LINE NUPMBERS OF REFERENCES TO THE FLAG6

xxxxx NO FLRGS WERE USED xxxx

41UCC P 1.45, Copyright 1981 by Leslie Brooks.
Distributed by Hand Held Products Incorporated.

NURERIC LABEL USAGE SUNMARY

LABEL DEFINED LINE NUMBERS OF REFERENCES TO THE LABEL
$]]

xxxx% NO NUNERIC LABELS WERE USED xxx

REFERENCE

41UCC V 1.45, Copyright 1981 by Leslie Brooks.
Distributed by Hand Held Products Incorporated.

REGISTER USAGE SUNMARY

REGISTER LINE NUPMBERS OF REFERENCES TO THE REGISTER %

000 4-S 8-R 26-R
001 1-5 25-R
002 33-§

003 14-§ 20-$
b 16-R 22-R 30-S 35-R

TA6 NEANINGS ARE: CF CLEAR FLAG INDIRECT

DI DECRERENT INDIRECT AND SKIP IF EQUAL
DS DECREMENT AND SKIP IF EQUAL

FC FLAG CLEAR? INDIRECT

FS FLAG SET? INDIRECT

6l 60T0 INDIRECT

II INCRENENT INDIRECT AND SKIP IF GREATER
IS INCRENENT AND SKIP IF GREATER

R RECALL
RI RECALL INDIRECT
S STORE

SF SET FLAG INDIRECT

S1 STORE INDIRECT

T FLAG TEST AND CLEAR INDIRECT
K1 EXECUTE INDIRECT

XC EXCHANGE X AND R

41UCC ¥ 1.45, Copyright 1981 by Leslie Brooks.
Distributed by Hand Held Products Incorporated.

ALPHA LABEL USAGE SUMNARY

LABEL DEFINED VALUE LINE WUNBERS OF REFERENCES TO THE LABEL
ON

LOUPASS 1 0000

TAG NEANINGS ARE: 6 6070
X EXECUTE

41UCC b 1.45, Copyright 1981 by Leslie Brooks.
Distributed by Hand Held Products Incorporated.

INTEGER SYMBOL USAGE SUMMARY

SYNBOL DEFINED VALUE LINE NUNBERS OF REFERENCES TO THE SYMBOL
NANE ON

APPEND 1 007F 36-

BASE 1 0000

CAPACIT 1 0002 33-

FREQUEN 1 0000 4- 8- 26-
INDUCTO 1 0003 14- 20-
n 1 o000C 36-

R1 1 0000

R2 1 0000

R3 1 0000

R4 1 0000

RESISTA 1 0001 1- 23-
TEXT4 1 00F4 36-

41UCC U 1.45, Copyright 1981 by Leslie Brooks.
Distributed by Hand Held Products Incorporated.

STRING SYNBOL USAGE SURMARY

SYNBOL DEFINED VALUE LINE NUNBERS OF REFERENCES TO THE SYmBOL
NANE ON

xxxx% N0 STRING SYNBOLS UERE USED xxxx

41UCC ¥ 1.45, Copyright 1981 by Leslie Brooks.
Distributed by Hand Held Products Incorporated.

VARIABLE USAGE SUNNARY

VARIABLE DEF INED VALUE LINE NURMBERS OF REFERENCES TO THE PARIABLE
NANE ON

xxxxx NO DARIABLES WERE USED xxxx

ANOTHER EXAMPLE PROGRAM

Let's move on to another example program. This one will
solve a common mathematical problem - finding zeros of a
function. The method I will use is called the secant method; it
is fairly fast and simple. A good explanation of the secant
method, including a FORTRAN program example, is given in
Elementary Numerical Analysis: An Algorithmic Approach by Conte
and de Boor. For now all we need to know is the formula and how
to use it. The secant method is described by

Xne1 = X - (X

It starts with a function f(X) and two guesses (n,n-1) for a
zero of the function; the guesses should be on either side of the
actual zero. The formula above is then evaluated, and the result
(X,+1) becomes the new X_ . The previous X, becomes the new X, .1,
and the old X,_j is discarded. The formufa is then reevaluated,
and this continues until f(X) reaches zero (or very close to it).
As an example, if we wanted to find the square root of 5, we
would say that our function is

£(X) = 5 - X2

because 5 minus X squared obviously equals zero if X 1is the
square root of 5. We would also need to guess that the square
root of 5 must lie between 1 and 5. From this information we
could use the secant method to find the square root. By plugging
our guesses 1 and 5 into the formula for the secant method we get

5 -1
Xnep = 2~ f(5)———;z;;—:-;113-__
or
4
Foar =% 7 (720) T

which gives

Xn+1 = l.6666, X =5
Plugging these guesses back into the formula will produce
a new (and closer) guess, and so forth. Now let's write a
program to do this.

TITLE 'SECANT METHOD FOR F(X)=0. BY LESLIE BROOKS'
LBL ‘'scC' ;ENTRY POINT TO THE PROGRAM
T 'GUESS 12 ;ASK FOR GUESS 1

22

ANOTHER EXAMPLE PROGRAM

;SAVE X

n-1

22! ;ASK FOR GUESS 2
; SAVE Xn

'"FUNCTION NAME?'

PROMPT
STO 00
T 'GUESS
STO 01
T

AON
PROMPT
ASTO 04
AOFF
.01

STO 02

;ASK FOR THE FUNCTION NAME

;SAVE THE FUNCTION NAME

;LOOP 10 TIMES

;CALCULATE F(GUESS1) TO START THE PROGRAM

LBL 01
RCL
XEQ
STO
RCL
XEQ
RCL
RCL
X<>Y
STO
RCL

/

*

00
IND 04
05
01
IND 04
01
00

~

;GET Xn—l BACK AGAIN
;EXECUTE THE FUNCTION
;AND SAVE F(Xn—l)
iGET X,

; EVALUATE F(Xn)

iGET X,

;AND X

n-1

;SUBTRACT THEM
:GET f(xn) BACK
;SAVE IT AGAIN

;AND GET f(Xn

1)

;SUBTRACT THESE

i (Xnp = Xpo1) /| £(x,)
;MULTIPLY BY f(Xn)

£(X, 1))

;X now contains a correction factor to be added to Xn

RCL
X<>Y

01

:GET X,

;NOW WE HAVE X,+1 IN THE X REGISTER

X<>
STO
ISG
GTO

01
00
02
01

;IF WE GET HERE,

i EXCHANGE X 4, WITH Xp
7Xn BECOMES THE NEW X, _;

; INCREMENT THE LOOP COUNTER

<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>