# Includes harcode for cases, software entry HEWLETT-PACKARD HP-41 USERS' LIBRARY SOLUTIONS Business Stat/Marketing/Sales



#### NOTICE

The program material contained herein is supplied without representation or warranty of any kind. Hewlett-Packard Company therefore assumes no responsibility and shall have no liability, consequential or otherwise, of any kind arising from the use of this program material or any part thereof.

#### INTRODUCTION

This HP-41C Solutions book was written to help you get the most from your calculator. The programs were chosen to provide useful calculations for many of the common problems encountered.

They will provide you with immediate capabilities in your everyday calculations and you will find them useful as guides to programming techniques for writing your own customized software. The comments on each program listing describe the approach used to reach the solution and help you follow the programmer's logic as you become and expert on your HP calculator.

#### **KEYING A PROGRAM INTO THE HP-41C**

There are several things that you should keep in mind while you are keying in programs from the program listings provided in this book. The output from the HP 82143A printer provides a convenient way of listing and an easily understood method of keying in programs without showing every keystroke. This type of output is what appears in this handbook. Once you understand the procedure for keying programs in from the printed listings, you will find this method simple and fast. Here is the procedure:

1. At the end of each program listing is a listing of status information required to properly execute that program. Included is the SIZE allocation required. Before you begin keying in the program, press **XEQ ALPHA** SIZE **ALPHA** and specify the allocation (three digits; e.g., 10 should be specified as 010).

Also included in the status information is the display format and status of flags important to the program. To ensure proper execution, check to see that the display status of the HP-41C is set as specified and check to see that all applicable flags are set or clear as specified.

- 2. Set the HP-41C to PRGM mode (press the **PRGM** key) and press **GTO** • to prepare the calculator for the new program.
- 3. Begin keying in the program. Following is a list of hints that will help you when you key in your programs from the program listings in this handbook.
  - a. When you see " (quote marks) around a character or group of characters in the program listing, those characters are ALPHA. To key them in, simply press ALPHA, key in the characters, then press ALPHA again. So "SAMPLE" would be keyed in as ALPHA "SAMPLE" (ALPHA).
  - b. The diamond in front of each LBL instruction is only a visual aid to help you locate labels in the program listings. When you key in a program, ignore the diamond.
  - c. The printer indication of divide sign is /. When you see / in the program listing, press  $\div$  .
  - d. The printer indication of the multiply sign is # . When you see # in the program listing, press X.
  - e. The I- character in the program listing is an indication of the **APPEND** function. When you see I-, press **APPEND** in ALPHA mode (press **APPEND** and the K key).
  - f. All operations requiring register addresses accept those addresses in these forms:

nn (a two-digit number) IND nn (INDIRECT: , followed fy a two-digit number) X, Y, Z, T, or L (a STACK address: followed by X, Y, Z, T, or L) IND X, Y, Z, T or L (INDIRECT stack: followed by X, Y, Z, T, or L)

Keystrokes

Indirect addresses are specified by pressing and then the indirect address. Stack addresses are specified by pressing • followed by X, Y, Z, T, or L. Indirect stack addresses are specified by pressing • and X, Y, Z, T, or L.

#### **Printer Listing**

Display

| 01+LBL "SAM          | LBL ALPHA SAMPLE ALPHA | 01 LBL <sup>T</sup> SAMPLE |
|----------------------|------------------------|----------------------------|
| PLE"                 | ALPHA THIS IS A ALPHA  | $02^{T}$ THIS IS A         |
| 02 "THIS IS<br>A "   |                        |                            |
| 03 "HSAMPLE          |                        | 04 AVIEW                   |
| 04 AVIEW             | 6                      | 05 6                       |
| 05 6                 | ENTER+                 | 06 ENTER 1                 |
| 06 ENTER↑<br>07 -2   | 2 CHS                  | 07 -2                      |
| 08 /                 | +                      | 08 /                       |
| 09 ABS<br>10 STO IND | XEQ ALPHA ABS ALPHA    | 09 ABS                     |
| L                    | STO • L                | 10 STO IND L               |
| 11 "R3="             | ALPHA B3= ARCL 03      | $11^{T}R3 =$               |
| 12 ARCL 03           |                        | 12 ARCL 03                 |
| 14 RTN               |                        | 13 AVIEW                   |
|                      |                        | 14 RTN                     |

#### TABLE OF CONTENTS

- 1. FORECASTING USING EXPONENTIAL SMOOTHING......1 This program is a singly-smoothed exponential forecasting routine with consideration for seasonal variation.

Calculates means, standard deviations, covariance, correlation coefficient, and coefficients of variation from a set of grouped or ungrouped data points.

Calculates one or more different moving averages from a single set of data. Allows data storage if card reader is available.

Program fits data to a Gompertz curve and calculates estimated values for future data points. The sales curves for many products follow this trend during the introductory, growth and early mature phases.

- 9. EXPERIENCE (LEARNING) CURVE FOR MANUFACTURING COST...59 Produces standard learning curve parameters useful in projecting production costs as a function of units produced.

#### FORECASTING USING EXPONENTIAL SMOOTHING

1

Exponential smoothing is a special kind of moving average. It is often used for short-term sales and inventory forecasts. Typical forecast periods are monthly or quarterly.

Unlike a moving average, exponential smoothing does not require a great deal of historical data. This program, for example, forecasts demand by using only a smoothing constant, an "old smoothed average," and a currentperiod usage statistic.

This program is a singly-smoothed exponential forecasting routine which: (1) accomodates quarterly seasonal correction factors, (2) can handle some trend in the data, (3) produces smoothed estimates of current demand,  $D_t$ , (4) produces next-period smoothed demand estimates,  $D_t + 1$ , (5) calculates a mean absolute deviation, MD, and a tracking ratio, T, (6) provides a goodness of fit measure, V, which measures the variance between the next period's demand estimate to that period's actual demand, and (7) provides for convenient restarting when the user wishes to update a data series.

This program should not be used with data which has more than a moderate amount of up or down trend. And, at least two projections of  $D_{t+1}$  must be done before MD or T can be calculated.

Counter  $Q_i$  is used with the deseasonalizing adjustment option.  $Q_i$  keeps track of the fiscal quarter or calendar quarter associated with a given  $X_i$ , and should always be for time period t-1.

Equations:

 $\alpha = \text{smoothing constant } ( 0 < \alpha < 1 )$   $X_{t} = \text{actual current period usage smoothed average,}$   $S_{t} = \alpha X_{t} + (1-\alpha) S_{t-1}$   $\text{change, } C_{t} = S_{t} - S_{t-1}$   $\text{trend, } T_{t} = \alpha C_{t} + (1 - \alpha) T_{t-1}$   $\text{current period expected usage, } D_{t} = S_{t} + \frac{(1 - \alpha)}{\alpha} T_{t}$   $\text{forecase of next period expected usage, } D_{t+1} = S_{t} + (\frac{1}{\alpha}) T_{t}$   $\text{error, } e = D_{t} - X_{t}$   $\text{cumulative error } = \sum_{t=1}^{m} e^{2}$   $\text{initial conditions: } S_{t-1} = X_{t-1}$   $T_{t-1} = 0$ 

SV = seasonal variation factor

References:

HP-67/97 Users' Library program #01206D written by Professor Robert Olsen.

Robert Goodell Brown, <u>Smoothing</u>, <u>Forecasting</u>, <u>and Prediction</u> <u>of Discrete Time</u> <u>Series</u>, Englewood Cliffs, New Jersey: Prentice-Hall, 1963.

Elwood S. Buffa and William H. Taubert, <u>Production-Inventory</u> <u>Systems</u>: <u>Planning and Control</u>, Rev. ed., Homewood, Illinois: Richard D. Irwin, 1972.

Norbert Lloyd Enrick, <u>Market and Sales</u> <u>Forecasting</u>, San Francisco, California: Chandler Publishing Co., 1969.

#### Example:

Test Data when deseasonalization done.

| Actual X <sub>t</sub> |
|-----------------------|
| 100                   |
| 100                   |
| 150                   |
| 70                    |
|                       |

 $\alpha = 0.2 \text{ Q}_{0} = 4$ , SV<sub>1</sub>=1.15, SV<sub>2</sub>=0.94, SV<sub>3</sub>=0.89, SV<sub>4</sub>=1.02

Keystrokes:

Display:

| [USER]                                               | (Set USER mode)                                   |
|------------------------------------------------------|---------------------------------------------------|
| [XEQ] [ALPHA] SIZE [ALPHA] 023                       |                                                   |
| [XEQ] [ALPHA] SMOOTH [ALPHA]                         | ALPHA=?                                           |
| .2 [R/S]                                             | 0.00                                              |
| 1.15 [ENTER <sup>†</sup> ] .94 [ENTER <sup>†</sup> ] |                                                   |
| .89 [ENTER↑] 1.02 [///] [B]                          | 1.02                                              |
| 4 [ENTER <sup>†</sup> ] 100 [A]                      | 102.00                                            |
| 100 [B]                                              | B=1                                               |
| [R/S]                                                | D1=106.68 (Deseasonalized smoothed $D_t$ )        |
| [R/S]                                                | SD1=92.77 (Seasonalized smoothed $D_t$ )          |
| [R/S]                                                | D2 <sup>+</sup> =107.20 (Deseasonalized forecast) |
| [R/S]                                                | $SD2^{+}=114.04$ (Seasonalized forecast)          |

| Keystrokes: | Display:              |
|-------------|-----------------------|
| 150 [B]     | B=2                   |
| [R/S]       | D2=119.37             |
| [R/S]       | SD2=126.99            |
| [R/S]       | D3↑=121.24            |
| [R/S]       | SD3↑=136.22           |
| [C]         | MD=33.80              |
| [R/S]       | T=1.00                |
| [R/S]       | $\Sigma e2 = 1142.44$ |
| [R/S]       | B=2.00                |
| [R/S]       | V=571.22              |
| 70 [B]      | B=3                   |
| [R/S]       | D3=100.02             |
| [R/S]       | SD3=112.38            |
| [R/S]       | D4↑=99.54             |
| [R/S]       | SD4↑=97.58            |
| [C]         | MD=46.37              |
| [R/S]       | T=-0.54               |
| [R/S]       | ∑e2=4616.36           |
| [R/S]       | B=3.00                |
| [R/S]       | V=1538.79             |
|             |                       |

### **User Instructions**

|      |                                                                |                  |                       | SIZE: 023            |
|------|----------------------------------------------------------------|------------------|-----------------------|----------------------|
| STEP | INSTRUCTIONS                                                   | INPUT            | FUNCTION              | DISPLAY              |
| 1.   | Load program and set USER mode                                 |                  | [USER]                |                      |
| 2.   | Initialize                                                     |                  | [XEQ] SMOOTH          | ALPHA=?              |
| 3.   | Key in value of alpha                                          | α                | [R/S]                 | 0.00                 |
| 4.   | (Optional) Key in seasonal coefficients                        | sv               | [ENTER ]              | SV                   |
|      |                                                                | SV <sub>2</sub>  | [ENTER†]              | SV2                  |
|      |                                                                | SV <sub>3</sub>  | [ENTER <sup>†</sup> ] | SV3                  |
|      |                                                                | sv <sub>4</sub>  | [///] [B]             | SV4                  |
| 5.   | (Optional) Store $T_{t-1}$ if known.                           | <sup>T</sup> t   | [STO] 04              | T <sub>t-1</sub>     |
| 6.   | Key in $Q_i$ for $T_{t-1}$ , $X_{t-1}$ (or $S_{t-1}$ if known) | Q <sub>i</sub>   | [ENTER <sub>↑</sub> ] | Q <sub>i</sub>       |
|      |                                                                | X <sub>t-1</sub> | [A]                   | X <sub>t-1</sub> (D) |
| 7.   | Key in X <sub>t</sub> and calculate expected current           |                  |                       |                      |
|      | usage                                                          | x <sub>t</sub>   | [B]                   | B=t <sub>n</sub>     |
|      |                                                                |                  | [R/S]                 | $Dt_n =$             |
| 8.   | Calculate expected seasonalized current                        |                  |                       |                      |
|      | usage                                                          |                  | [R/S]                 | SDt_=                |
| 9.   | Calculate $D_{t+1}$ and set up calculations for                |                  |                       |                      |
|      | MD, T and V                                                    |                  | [R/S]                 | Dt <sub>n+1</sub> =  |
|      |                                                                |                  | [R/S]                 | SDt <sub>n+1</sub> = |
| 10.  | Calculate MD, T, ∑e <sub>i</sub> , V                           |                  | [C]                   | MD=                  |
|      |                                                                |                  | [R/S]                 | T=                   |
|      |                                                                |                  | [R/S]                 | ∑e2=                 |
|      |                                                                |                  | [R/S]                 | В=                   |
|      |                                                                |                  | [R/S]                 | V=                   |
| 11.  | Continue keying in data using steps 7-9,                       |                  |                       |                      |
|      | repeating step 10 as often as desired.                         |                  |                       |                      |
|      |                                                                |                  |                       |                      |
|      |                                                                |                  |                       |                      |

| 01+LBL "SMU |                                                  | 50 9       | 1                      |
|-------------|--------------------------------------------------|------------|------------------------|
| OTH"        | Initialize                                       | 51 +       |                        |
| 02 SE 21    |                                                  | 52 RIN     |                        |
|             |                                                  |            |                        |
| 03 CF 27    |                                                  | D3 RUL IND |                        |
| 04 CLRG     | 1                                                | T          |                        |
| 05 1        |                                                  | 54 *       |                        |
| 02 CTO 10   |                                                  | EE CTO 22  |                        |
|             |                                                  | 33 310 22  |                        |
| 07 510 11   |                                                  | 56 1       |                        |
| 08 STO 12   |                                                  | 57 ST+ 09  |                        |
| 00 STO 17   |                                                  | 50 "B="    |                        |
|             |                                                  |            |                        |
| 10 "HLPHH=? |                                                  | 59 XEQ 02  |                        |
|             |                                                  | 60 AVIEW   |                        |
| 11 PROMPT   |                                                  | 61 1       |                        |
|             | $\alpha \rightarrow \mathbf{P}$                  |            |                        |
| 12 510 10   | u / K18                                          | 62 KUL 07  |                        |
| 13 -        |                                                  | 63 X=Y?    |                        |
| 14 STO 19   | $1 - \alpha \rightarrow \mathbf{R}_{1 - \alpha}$ | 64 GTO 01  |                        |
|             | - ~                                              |            | Prior period           |
| 13 010      |                                                  | 63 RUL 22  | estimate D             |
| 16 RIN      |                                                  | 66 RCL 17  | t+1(I)                 |
| 17+LBL b    |                                                  | 67 -       |                        |
| 18 510 13   | Enton CVI-                                       | 20 GT+ 14  |                        |
|             | Enter SV'S                                       |            |                        |
| 19 RUN      |                                                  | 69 510 16  |                        |
| 20 STO 12   |                                                  | 70 ABS     |                        |
| 21 R T N    |                                                  | 71 ST+ 15  |                        |
| 00 CTO 11   |                                                  |            |                        |
| 22 310 11   |                                                  | (2 612     | <b>F</b> 2             |
| 23 RDN      |                                                  | 73 ST+ 03  | Ze, -                  |
| 24 STO 10   |                                                  | 74+LBL 01  | <b>L</b> .             |
| 25 PTN      |                                                  | 75 PCL 19  |                        |
|             |                                                  |            |                        |
| 26 KIN      |                                                  | 76 KUL 01  | Calculate $S_{\pm(D)}$ |
| 27+LBL A    |                                                  | 77 *       | e (b)                  |
| 28 STO 20   |                                                  | 78 RCL 18  |                        |
|             | Enter start-up                                   | 70 001 22  |                        |
|             | data                                             | (7 KUL 22  |                        |
| 30 510 98   |                                                  | 80 510 21  |                        |
| 31 9        |                                                  | 81 *       |                        |
| 72 +        |                                                  | .92 +      |                        |
| 77 000      |                                                  |            |                        |
| 33 KUM      |                                                  | 83 310 62  | Coloulate C            |
| 34 RCL IND  |                                                  | 84 RCL 01  | t(D)                   |
| Т           |                                                  | 85 -       | 0(2)                   |
| 75 *        |                                                  | 02 PCI 19  |                        |
|             | ł                                                |            |                        |
| 36 510 21   |                                                  | 87 *       |                        |
| 37 STO 01   |                                                  | 88 RCL 04  |                        |
| 38 RTN      |                                                  | 89 RCL 19  | Calculate T            |
|             | Enter X                                          |            | t(D)                   |
| JUNE D      | t t                                              | 70 4       |                        |
| 40 STO 00   |                                                  | 91 +       |                        |
| 41 RCL 08   |                                                  | 92 STO 04  |                        |
| 42 4        |                                                  | 93 RCI 19  |                        |
|             |                                                  |            | Colorian D             |
| 43 /        |                                                  | 94 KUL 10  | Calculate D + (D)      |
| 44 FRC      |                                                  | 95 /       |                        |
| 45 4        |                                                  | 96 *       |                        |
| 1 AC 4      |                                                  | 07 PC1 02  |                        |
| 40 *        | 1                                                | 77 RUL 86  |                        |
| 47 1        |                                                  | 98 510 81  |                        |
| 48 +        |                                                  | 99 +       |                        |
| 49 STO 08   |                                                  | 100 STO 06 | м                      |

| 101 XEQ 03<br>102 XEQ 00<br>103 RCL 08<br>104 9<br>105 +<br>106 RCL 06<br>107 RCL IND<br>Y<br>108 /<br>109 "SD"<br>110 XEQ 02<br>111 XEQ 00<br>112 1 | Calculate D <sub>t</sub> (S) | 151 "B"<br>152 RCL 09<br>153 XEQ 00<br>154 /<br>155 "V"<br>156+LBL 00<br>157 "F="<br>158 ARCL X<br>159 AVIEW<br>160 RTN<br>161+LBL 03<br>162 "D"<br>167+LPL 02 | V<br>Output routine |
|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| 113 ST+ 09<br>114 RCL 02<br>115 RCL 04<br>116 RCL 18<br>117 /<br>118 +<br>119 XEQ 03<br>120 "⊢↑"                                                     | Calculate D <sub>t+1</sub>   | 163 FIX 0<br>164 FIX 0<br>165 ARCL 09<br>166 FIX 2<br>167 .END.                                                                                                |                     |
| 121 XEQ 00<br>122 STO 17<br>123 RCL 08<br>124 10<br>125 +<br>126 RCL 17<br>127 RCL IND<br>Y                                                          |                              |                                                                                                                                                                |                     |
| 128 /<br>129 "SD"<br>130 XEQ 02<br>131 "⊢↑"<br>132 1<br>133 ST- 09<br>134 RDN<br>135 GTO 00                                                          | Calculate D <sub>t+1(S</sub> | 80                                                                                                                                                             |                     |
| 136+LBL C<br>137 RCL 14<br>138 RCL 15<br>139 RCL 09<br>140 1<br>141 -<br>142 /<br>143 "MD"<br>144 YEC 29                                             | Calculate MD                 | 90                                                                                                                                                             |                     |
| 144 XEQ 00<br>145 /<br>146 "T"<br>147 XEQ 00<br>148 RCL 03                                                                                           | Calculate T                  |                                                                                                                                                                |                     |
| 149 "ΣεΖ"<br>150 ΧΕQ 00                                                                                                                              | i                            | 00                                                                                                                                                             |                     |

### **REGISTERS, STATUS, FLAGS, ASSIGNMENTS**

| DATA REGISTERS |                                      | STATUS                                |                    |          |                                    |                      |              |                  |           |
|----------------|--------------------------------------|---------------------------------------|--------------------|----------|------------------------------------|----------------------|--------------|------------------|-----------|
| 00             | Xt<br>St-1<br>St<br>Σei <sup>2</sup> | 50                                    | SIZE<br>ENG<br>DEG | 02       | 2 <u>3</u> TOT<br>— FIX -<br>— RAD | . REG<br>2 SCI<br>GR | 61<br><br>AD | USER MOI<br>ONXC | DE<br>)FF |
| 05             | Tt                                   | 55                                    | #                  |          |                                    | FL                   | AGS          |                  | CATES     |
|                |                                      | <b>+++++++++++++++++++</b> - <b>+</b> | $\frac{\pi}{21}$   | 1        | Drinto                             | r on ohl             |              |                  | CATES     |
|                | Oi                                   |                                       | $\frac{21}{29}$    |          | TITULE                             |                      | <u> </u>     | Suppress dec     | rimal     |
|                | Bi                                   |                                       |                    | 1        |                                    |                      | f            | uppress det      |           |
| 10             | SV1                                  | 60                                    |                    |          |                                    |                      | — †          |                  |           |
|                | SV <sub>2</sub>                      |                                       |                    |          |                                    |                      |              |                  |           |
|                | SV 3                                 |                                       |                    |          |                                    |                      |              |                  |           |
|                | SV 4                                 |                                       |                    |          |                                    |                      |              |                  |           |
|                | CFE                                  |                                       |                    |          |                                    |                      |              |                  |           |
| 15             | CAD                                  | 65                                    |                    |          |                                    |                      |              |                  |           |
|                | Temp ei                              |                                       |                    |          |                                    |                      |              |                  |           |
|                | Dt+1                                 |                                       |                    |          |                                    |                      |              |                  |           |
|                | α.                                   |                                       |                    |          |                                    |                      |              |                  |           |
|                | $1-\alpha$                           |                                       |                    |          |                                    |                      |              |                  |           |
| 20             | Xt-1 (s)                             | 70                                    |                    |          |                                    |                      |              |                  |           |
|                | Xt-1 (D)                             |                                       |                    |          |                                    |                      |              |                  |           |
|                | Xt (D)                               |                                       |                    |          |                                    |                      |              |                  |           |
|                |                                      |                                       |                    |          |                                    |                      |              |                  |           |
|                |                                      |                                       |                    |          |                                    |                      |              |                  |           |
| 25             |                                      | 75                                    |                    |          |                                    |                      |              |                  |           |
|                |                                      |                                       |                    | L        |                                    |                      |              |                  |           |
|                |                                      |                                       |                    |          |                                    |                      |              |                  |           |
|                |                                      |                                       |                    |          |                                    |                      |              |                  |           |
| - 00           |                                      |                                       |                    |          |                                    |                      |              |                  |           |
| 30             |                                      | 80                                    |                    |          |                                    |                      |              |                  |           |
|                |                                      |                                       |                    |          |                                    |                      |              |                  |           |
|                |                                      |                                       |                    |          |                                    |                      |              |                  |           |
|                |                                      | <u> </u>                              |                    |          |                                    |                      |              |                  |           |
| 25             |                                      | 85                                    |                    |          |                                    |                      |              |                  |           |
| 35             |                                      |                                       | <b> </b>           | <b> </b> |                                    |                      |              |                  |           |
|                |                                      |                                       |                    |          |                                    |                      |              |                  |           |
| <b> </b>       |                                      | <b>  </b>                             | 1                  |          |                                    | ASSIGN               | IMEN         | TS               |           |
|                |                                      |                                       |                    | FUNCI    |                                    | KEY                  | F            | UNCTION          | KEY       |
| 40             |                                      | 90                                    | t'                 |          |                                    |                      | · · ·        |                  |           |
| <u> </u>       |                                      |                                       | 1                  |          |                                    |                      |              |                  |           |
|                |                                      | 1 1                                   | 1                  |          |                                    | 1                    |              |                  |           |
| <b></b>        |                                      |                                       | 1                  |          |                                    |                      |              |                  |           |
|                |                                      |                                       | 1                  |          |                                    | 1                    |              |                  |           |
| 45             |                                      | 95                                    |                    |          |                                    |                      |              |                  |           |
|                |                                      |                                       |                    |          |                                    |                      |              |                  |           |
|                |                                      |                                       |                    |          |                                    |                      |              |                  |           |
|                |                                      |                                       |                    |          |                                    |                      |              |                  |           |
|                |                                      |                                       |                    |          |                                    |                      |              |                  |           |

7

#### MONTHLY SEASONAL VARIATION FACTORS BASED ON CENTERED MOVING AVERAGES

Seasonal variation factors are a useful concept in many types of forecasting. There are several methods of developing seasonal moving averages, one of the more common ways being to calculate them as the ratio of the periodic value to a centered moving average for the same period.

For instance, to determine the sales for the 7th month of a given year, a centered moving average for that month would be calculated from sales figures from the 1st thru 12th months of that year and the 1st month of the following year. The seasonal variation factor for the 7th month would then be the ratio of the actual sales in the 7th month to the centered moving average for that month.

Equations:

$$\overline{x}_{c} = \frac{X_{1}}{2} + (X_{2} + X_{3} + \dots + X_{m}) + \frac{X_{m} + 1}{2}$$

$$m$$

$$SV = \frac{X_{1}}{\overline{x}_{1}}$$

where  $\overline{X}_{c}$  = centered moving average m = number of elements in the centered moving average SV = seasonal variation factor  $X_{i}$  = value of the ith data point  $\overline{X}_{i}$  = centered moving average of the data point

Example:

Econo-Wise Home Appliance Company's monthly sales for the last 15 months are:

| Month | Sales (\$K) | Month | Sales (\$K) |
|-------|-------------|-------|-------------|
| 1     | 397         | 9     | 513         |
| 2     | 376         | 10    | 434         |
| 3     | 460         | 11    | <b>5</b> 62 |
| 4     | 501         | 12    | 593         |
| 5     | 455         | 13    | 579         |
| 6     | 390         | 14    | 601         |
| 7     | 530         | 15    | 598         |
| 8     | 560         |       |             |

Find the centered 12-month moving average and seasonal variation factor for months 7-9.

| Keystrokes:                    | Display                                   |
|--------------------------------|-------------------------------------------|
| [XEQ] [ALPHA] SIZE [ALPHA] 014 |                                           |
| [XEQ] [ALPHA] SV [ALPHA]       | MONTH 1=?                                 |
| 397 [R/S] 376 [R/S]            |                                           |
| 460 [R/S] 501 [R/S]            |                                           |
| 455 [R/S] 390 [R/S]            |                                           |
| 530 [R/S] 560 [R/S]            |                                           |
| 513 [R/S] 434 [R/S]            |                                           |
| 562 [R/S] 593 [R/S]            | MONTH 13=?                                |
| 579 [R/S]                      | AVG=488.50 (Centered average for month 7) |
| [R/S]                          | SV%=108.50 (Seasonal variation factor)    |
| [R/S]                          | NEXT MONTH=?                              |
| 601 [R/S]                      | AVG=505.46 (Centered average for month 8) |
| [R/S]                          | SV%=110.79 (Seasonal variation factor)    |
| [R/S]                          | NEXT MONTH=?                              |
| 598 [R/S]                      | AVG=520.58 (Centered average for month 9) |
| [R/S]                          | SV%=98.54 (Seasonal variation factor)     |

### **User Instructions**

|      |                                          |       |          | SIZE: 014    |
|------|------------------------------------------|-------|----------|--------------|
| STEP | INSTRUCTIONS                             | INPUT | FUNCTION | DISPLAY      |
| 1.   | Load program                             |       |          |              |
| 2.   | Initialize                               |       | [XEQ] SV | MONTH 1=?    |
| 3.   | Key in lst month sales                   | lst   | [R/S]    | MONTH 2=?    |
| 4.   | Key in 2nd month sales                   | 2nd   | [R/S]    | MONTH 3=?    |
| 5.   | Repeat until month 13 sales are entered  | 13th  |          |              |
| 6.   | Calculate moving average for month 7     |       | [R/S]    | AVG =        |
| 7.   | Calculate seasonal variation factor      |       | [R/S]    | SV% =        |
| 8.   | Press [R/S] for next prompt.             |       | [R/S]    | NEXT MONTH=? |
| 9.   | Key in 14th month sales                  | 14th  |          |              |
| 10.  | Calculate moving average for month 8.    |       | [R/S]    | AVG =        |
| 11.  | Calculate seasonal variation factor      |       | [R/S]    | SV% =        |
| 12.  | Press [R/S] for next prompt.             |       | [R/S]    | NEXT MONTH=? |
| 13.  | Repeat steps 9-12 for the balance of the |       |          |              |
|      | data.                                    |       |          |              |
|      |                                          |       |          |              |
|      |                                          |       |          |              |
|      |                                          |       |          |              |
|      |                                          |       |          |              |
|      |                                          |       |          |              |
|      |                                          |       |          |              |
|      |                                          |       |          |              |
|      |                                          |       |          |              |
|      |                                          |       |          |              |
|      |                                          |       |          |              |
|      |                                          |       |          |              |
|      |                                          |       |          |              |
|      |                                          |       |          |              |

| AIALB! "SV"             |                 | E1 DC1 10   |          |
|-------------------------|-----------------|-------------|----------|
| 02 05 21                | Initialize      | DI RUL IO   |          |
| 02 37 21                |                 | 52 STO 09   |          |
| 03 12                   |                 | 53 +        |          |
| 04 510 00               | 1               | 54 RCL 11   |          |
| 05 1                    | 1               | 55 STO 10   |          |
| 06+LBL 00               | 1               | 56 +        |          |
| 07 FIX 0                | 1               | 57 PCL 12   |          |
| 08 CF 29                | 1               | 57 KUL 12   |          |
| 00 07 25<br>00 "MONTH " |                 | 58 510 11   |          |
|                         |                 | 59 +        |          |
| IO HRUL A               | 1               | 60 RCL 13   |          |
| 11 "+=?"                | Data prompt     | 61 STO 12   |          |
| 12 PROMPT               |                 | 62 2        |          |
| 13 FIX 2                | 4               | 63 /        |          |
| 14 SF 29                | ļ               | 64 +        |          |
| 15 STO IND              |                 |             |          |
|                         | Toput Jata      | 65 KUL 00   |          |
|                         |                 | 66 /        |          |
| TO KUN                  | 1               | 67 "AVG="   | Output   |
|                         | 1               | 68 ARCL X   |          |
| 18 +                    | 4               | 69 AVIEW    |          |
| 19 13                   | 4               | 70 RCL 06   | 1        |
| 20 X<>Y                 |                 | 71 82.58    |          |
| 21 X<=Y?                |                 |             |          |
| 22 CTO 00               | 1               | 72 /        |          |
|                         | 1               | 73 1 E2     |          |
| 23VLDL 01               | 1               | 74 *        |          |
| 24 RCL 01               | 4               | 75 "SV%="   |          |
| 25 2                    | Sum contents of | 76 ARCL X   |          |
| 26 /                    | registers and   | 77 AVIEW    |          |
| 27 RCL 02               |                 | 70 "NEVT MO |          |
| 28 STO 01               | SULL            |             | New data |
| 29 +                    | 1               |             |          |
|                         | 1               | 79 PRUMPT   |          |
| 30 KLL 03               |                 | 80 STO 13   |          |
| 31 510 02               |                 | 81 GTO 01   |          |
| 32 +                    |                 | 82 .END.    |          |
| 33 RCL 04               | 1               |             | ]        |
| 34 STO 03               |                 |             |          |
| 35 +                    | 1               |             | 1        |
| 36 RCL 05               | t               |             | 1        |
| 37 970 04               | 1               |             | 4        |
|                         | 4               |             | 4        |
|                         | 4               |             | 4        |
| 39 KUL 06               | 1               |             |          |
| 40 STO 05               |                 | 90          | 7        |
| 41 +                    | 1               |             | 1        |
| 42 RCL 07               | 1               |             | 1        |
| 43 STO 06               | 1               |             | 4        |
| 44 +                    | 4               |             | 4        |
| 45 PCL 08               | Į               |             | 4        |
| 40 KCL 00<br>47 CTO 07  | 1               |             | _        |
| 46 510 07               | ]               |             |          |
| 47 +                    | 1               |             | 7        |
| 48 RCL 09               | 1               |             | 1        |
| 49 STO 08               | 1               |             | 4        |
| 50 +                    | 4               | 00          | 4        |
|                         |                 |             |          |

### REGISTERS, STATUS, FLAGS, ASSIGNMENTS

|          | DATA REC                                                | GISTERS |                    |       |                                       | STA                                                                                                             | TUS               |                    |           |
|----------|---------------------------------------------------------|---------|--------------------|-------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------|--------------------|-----------|
| 00       | n<br>X <sub>1</sub><br>X <sub>2</sub><br>X <sub>3</sub> | 50      | SIZE<br>ENG<br>DEG |       | 4_ TOT<br>FIX -<br>RAD                | . REG<br>SCI<br>GR                                                                                              | 32<br><br>AD      | USER MOI<br>_ ON O | DE<br>DFF |
| 05       | X4<br>X5                                                | 55      |                    | INIT  |                                       | FL/                                                                                                             | AGS               |                    |           |
|          | X <sub>6</sub>                                          |         | #                  | S/C   | SET                                   | NDICATE                                                                                                         | S                 | CLEAR INDI         | CATES     |
|          | X7                                                      |         | 21                 |       | Printe                                | er enabl                                                                                                        | e                 |                    |           |
|          | X <sub>8</sub>                                          |         |                    |       |                                       |                                                                                                                 |                   |                    |           |
| 10       | Xg                                                      | 60      |                    |       |                                       |                                                                                                                 |                   |                    |           |
| <u> </u> |                                                         |         |                    |       |                                       |                                                                                                                 |                   |                    |           |
|          |                                                         |         |                    |       |                                       |                                                                                                                 |                   |                    |           |
|          |                                                         |         |                    |       |                                       |                                                                                                                 |                   |                    |           |
|          | 1 3                                                     |         |                    |       |                                       |                                                                                                                 |                   |                    |           |
| 15       |                                                         | 65      |                    |       |                                       |                                                                                                                 |                   |                    |           |
|          |                                                         |         |                    |       |                                       |                                                                                                                 |                   |                    |           |
|          |                                                         |         |                    |       |                                       |                                                                                                                 |                   |                    |           |
|          |                                                         |         |                    |       |                                       |                                                                                                                 |                   |                    |           |
|          |                                                         |         |                    |       |                                       |                                                                                                                 |                   |                    |           |
| 20       |                                                         | 70      |                    |       |                                       |                                                                                                                 |                   |                    |           |
|          |                                                         |         |                    |       |                                       |                                                                                                                 |                   |                    |           |
|          |                                                         |         |                    |       |                                       |                                                                                                                 |                   |                    |           |
|          |                                                         |         |                    |       |                                       |                                                                                                                 |                   |                    |           |
| L        |                                                         |         |                    |       |                                       |                                                                                                                 |                   |                    |           |
| 25       |                                                         | 75      |                    |       |                                       |                                                                                                                 |                   |                    |           |
|          | ·                                                       |         |                    |       |                                       |                                                                                                                 |                   |                    |           |
|          | łł-                                                     |         |                    |       |                                       |                                                                                                                 |                   |                    |           |
|          |                                                         |         |                    |       |                                       | de la Romanda de La contra de la compositione de la compositione de la compositione de la compositione de la co |                   |                    |           |
| 30       |                                                         | 80      |                    |       |                                       |                                                                                                                 |                   |                    |           |
| <u> </u> |                                                         |         |                    |       |                                       |                                                                                                                 |                   |                    |           |
|          |                                                         |         |                    |       |                                       |                                                                                                                 |                   |                    |           |
|          |                                                         |         |                    |       |                                       |                                                                                                                 |                   |                    |           |
|          |                                                         |         |                    |       |                                       |                                                                                                                 |                   |                    |           |
| 35       |                                                         | 85      |                    |       |                                       |                                                                                                                 |                   |                    |           |
|          |                                                         |         |                    |       |                                       |                                                                                                                 |                   |                    |           |
|          |                                                         |         |                    |       |                                       | ASSIGN                                                                                                          | IMEN <sup>.</sup> | TS                 |           |
|          |                                                         |         |                    | FUNCT | ION                                   | KEY                                                                                                             | F                 | UNCTION            | KEY       |
| 40       |                                                         | 90      |                    |       |                                       |                                                                                                                 |                   |                    |           |
|          |                                                         |         |                    |       |                                       |                                                                                                                 |                   |                    |           |
|          |                                                         |         |                    |       |                                       |                                                                                                                 |                   |                    |           |
| <b> </b> | <b> </b> -                                              |         |                    | -     |                                       |                                                                                                                 |                   |                    |           |
| 45       | <u>↓</u>                                                |         |                    |       | · · · · · · · · · · · · · · · · · · · |                                                                                                                 |                   |                    |           |
| 45       | <u>↓</u>                                                | 95      |                    |       |                                       |                                                                                                                 |                   |                    |           |
|          |                                                         |         |                    |       |                                       |                                                                                                                 |                   |                    |           |
|          | <u> </u>                                                |         |                    |       |                                       |                                                                                                                 |                   |                    |           |
|          | <u> </u>                                                |         |                    |       |                                       |                                                                                                                 |                   |                    |           |
| L        |                                                         |         |                    |       |                                       |                                                                                                                 |                   |                    |           |

#### MULTIPLE LINEAR REGRESSION

This program performs a least squares multiple linear regression for a series of data points x, y, z. Linear regression is a statistical method for finding a straight line that best fits a set of data points. The equation of this straight line expresses the linear relationship between independent (x and y) and dependent (z) variables and is of the form:

$$z = a + bx + cy$$

The three variables are input by pressing [A]. If one or more of the data points was entered incorrectly, simply re-enter the incorrect value(s) and press [///] [A]. Then continue as before. The three coefficients (a, b, c) are calculated by pressing [B].

In addition, the program also calculates the coefficient of determination  $r^2$  ([C]). This is an indication of the "goodness of fit" for the calculated straight line, and is a number between 0 and 1. Values closer to 1 indicate "better" fits than values closer to 0.

Having determined the equation (the [B]key), the user can then project estimates of z for given x, y values ([D]). The sums  $(\Sigma x_i; \Sigma y_i; \Sigma z_i)$ , the sums of squares  $(\Sigma x_i^2; \Sigma y_i^2; \Sigma z_i^2)$ , and the sums of cross products  $(\Sigma x_i y_i; \Sigma x_i z_i; \Sigma y_i z_i)$  are stored in registers 07-09, 04-06, and 01-03 respectively.

Equations:

$$z = a + bx + cy$$

$$\Sigma z_{i} = an + b\Sigma x_{i} + c\Sigma y_{i} \qquad i = 1, 2, ..., n$$

$$\Sigma x_{i} z_{i} = a\Sigma x_{i} + b\Sigma x_{i}^{2} + c\Sigma x_{i} y_{i}$$

$$\Sigma y_{i} z_{i} = a\Sigma y_{i} + b\Sigma x_{i} y_{i} + c\Sigma y_{i}^{2}$$

$$c = \frac{A - B}{[n\Sigma x_{i}^{2} - (\Sigma x_{i})^{2}] [n\Sigma y_{i}^{2} - (\Sigma y_{i})^{2}] - [n\Sigma x_{i} y_{i} - (\Sigma x_{i}) (\Sigma y_{i})]^{2}}$$

where:

$$A = [n\Sigma x_i^2 - (\Sigma x_i)^2] [n\Sigma y_i z_i - (\Sigma y_i) (\Sigma z_i)]$$
$$B = [n\Sigma x_i y_i - (\Sigma x_i) (\Sigma y_i)] [n\Sigma x_i z_i - (\Sigma x_i) (\Sigma z_i)]$$
$$b = \frac{[n\Sigma x_i z_i - (\Sigma x_i) (\Sigma z_i)] - c[n\Sigma x_i y_i - (\Sigma x_i) (\Sigma y_i)]}{n\Sigma x_i^2 - (\Sigma x_i)^2}$$

$$a = \frac{1}{n} (\Sigma z_i - c \Sigma y_i - b \Sigma x_i)$$

$$R^2 = \frac{a\Sigma z_i + b\Sigma x_i z_i + c\Sigma y_i z_i - \frac{1}{n} (\Sigma z_i)^2}{(\Sigma z_i^2) - \frac{(\Sigma z_i)^2}{n}}$$

#### Example:

A commercial land appraiser has examined 5 vacant lots in the downtown section of a local community, all of which have different depths, frontages, and values as shown below. Based on this data, what is the relationship between depth, frontage, and lot value? What is the coefficient of determination? What predicted value would a lot have with 50 foot depth and 70 foot frontage? With a 75 foot depth and 80 foot frontage?

| Lot | Depth | (feet) | Lot Frontage | (feet) | Lot Value |
|-----|-------|--------|--------------|--------|-----------|
|     |       |        |              |        |           |
|     | 70    |        | 70.8         |        | \$101,000 |
|     | 90    |        | 60.0         |        | 82,190    |
|     | 85    |        | 90.0         |        | 170,000   |
|     | 40    |        | 70.0         |        | 100,000   |
|     | 100   |        | 60.0         |        | 90.000    |

| Keystrokes:                                        | Display:      |      |      |       |
|----------------------------------------------------|---------------|------|------|-------|
| [USER]                                             |               | (set | USER | mode) |
| [XEQ] [ALPHA] SIZE [ALPHA] 015                     |               |      |      |       |
| [XEQ] [ALPHA] MULT [ALPHA]                         | 0.00          |      |      |       |
| 70 [ENTER†] 70.8 [ENTER†]                          |               |      |      |       |
| 101000 [A]                                         | N=1.00        |      |      |       |
| 90 [ENTER <sup>†</sup> ] 60 [ENTER <sup>†</sup> ]  |               |      |      |       |
| 82190 [A]                                          | N=2.00        |      |      |       |
| 85 [ENTER <sup>†</sup> ] 90 [ENTER <sup>†</sup> ]  |               |      |      |       |
| 170000 [A]                                         | N=3.00        |      |      |       |
| 40 [ENTER <sup>†</sup> ] 70 [ENTER <sup>†</sup> ]  |               |      |      |       |
| 100000 [A]                                         | N=4.00        |      |      |       |
| 100 [ENTER <sup>†</sup> ] 60 [ENTER <sup>†</sup> ] |               |      |      |       |
| 90000 [A]                                          | N=5.00        |      |      |       |
| [B]                                                | a=-118,499.03 |      |      |       |
| [R/S]                                              | b=314.71      |      |      |       |
| [R/S]                                              | c=2,892.02    |      |      |       |
| [C]                                                | R2=0.98       |      |      |       |
| 50 [ENTER†] 70 [D]                                 | Z=99,678.08   |      |      |       |
| 75 [ENTER†] 80 [D]                                 | Z=136,466.08  |      |      |       |
|                                                    | -             |      |      |       |

### **User Instructions**

|      |                                                         |       |                       | SIZE: 015    |
|------|---------------------------------------------------------|-------|-----------------------|--------------|
| STEP | INSTRUCTIONS                                            | INPUT | FUNCTION              | DISPLAY      |
| 1.   | Load program and set USER mode                          |       | [USER]                |              |
| 2.   | Initialize                                              |       | [XEQ] MULT            | 0.00         |
| 3.   | Key in x, y and corresponding z value                   | x     | [ENTER†]              |              |
|      |                                                         | у     | [ENTER↑]              |              |
|      |                                                         | z     | [A]                   | N=           |
| 4.   | Repeat step 3 for all data                              |       |                       |              |
| 5.   | If data was input incorrectly, re-enter                 |       |                       |              |
|      | incorrect x, y and z values.                            | x     | [ENTER↑]              |              |
|      |                                                         | У     | [ENTER <sup>†</sup> ] |              |
|      |                                                         | Z     | [///] [A]             | N=           |
| 6.   | Calculate coefficients.                                 |       | [B]                   | a=           |
|      |                                                         |       | [R/S]                 | b=           |
|      |                                                         |       | [R/S]                 | с=           |
| 7.   | Calculate coefficient of determination(r <sup>2</sup> ) |       | [C]                   | R2=          |
| 8.   | Key in x and y values and calculate the                 |       |                       |              |
|      | estimated z value, 2̂, displayed as                     |       |                       |              |
|      | Z↑ (repeat as often as desired)                         | x     | [ENTER†]              |              |
|      |                                                         | у     | [D]                   | Z <b>↑</b> = |
| 9.   | For a new case, go to step 2.                           |       |                       |              |
|      |                                                         |       |                       |              |
|      |                                                         |       |                       |              |
|      |                                                         |       |                       |              |
|      |                                                         |       |                       |              |
|      |                                                         |       |                       |              |
|      |                                                         |       |                       |              |
|      |                                                         |       |                       |              |
|      |                                                         |       |                       |              |

| 01+LBL "MUL            | Initialize                                                                    | 51 PRUMPT   | Subroutine for                 |
|------------------------|-------------------------------------------------------------------------------|-------------|--------------------------------|
| T                      |                                                                               | 52+LBL 01   |                                |
| 02 FIX 2               | 1                                                                             | 53 FS? 01   | Σχ.,                           |
| 67 CE 21               | 1                                                                             | 54 CHS      | 1                              |
|                        | 4                                                                             |             | $\Sigma = \frac{2}{2}$         |
| 04 CLRG                |                                                                               | JJ 517 IND  | <sup>2</sup> <i>x</i> , ,<br>i |
| 05 CF 01               |                                                                               | 14          | _                              |
| 06 CLX                 | 1                                                                             | 56 RCL 14   |                                |
| 07 RTN                 | 1                                                                             | 57 3        |                                |
|                        | -                                                                             | 58 -        |                                |
| DOVLDL H               | - ·                                                                           |             |                                |
| 09 510 12              | Input x <sub>i</sub> ,y <sub>i</sub> ,z <sub>i</sub>                          | J7 310 14   |                                |
| 10 RDN                 | 1                                                                             | 60 KDN      |                                |
| 11 STO 11              | 1                                                                             | 61 X†2      |                                |
| 12 RTN                 | 4                                                                             | 62 FS? 01   |                                |
| 17 910 10              | 1                                                                             | 63 CHS      |                                |
|                        |                                                                               | 64 ST+ IND  |                                |
| 14 7                   |                                                                               | 64 317 1110 |                                |
| 15 STO 14              | Compute                                                                       | 14          |                                |
| 16 RDN                 | -                                                                             | 65 RTN      |                                |
| 17 XEQ 01              |                                                                               | 66+LBL B    | Calculate a, b,                |
| 10 0                   | i'''i''i                                                                      | 67 RCL 00   | с                              |
|                        |                                                                               | 68 RCI 04   |                                |
| 19 510 14              | $\Sigma = 2 \Sigma = 2 \Sigma = 2$                                            | 00 KCE 04   |                                |
| 20 RCL 11              | i <sup>, 2</sup> , <sup>2</sup> i                                             |             |                                |
| 21 XEQ 01              |                                                                               | 70 RCL 07   |                                |
| 22 9                   |                                                                               | 71 X†2      |                                |
| 23 STO 14              | <sup>2x</sup> i <sup>y</sup> i <sup>,2y</sup> i <sup>2</sup> i <sup>2</sup> i | 72 -        |                                |
| 20 0/0 1/<br>04 DCL 12 |                                                                               | 73 STO 13   |                                |
| 24 RUL 12              | $\Sigma z_{i} x_{i}$                                                          | 74 PCL 00   |                                |
| 25 XEQ 01              |                                                                               |             |                                |
| 26 RCL 10              |                                                                               | 75 RLL 03   |                                |
| 27 RCL 11              |                                                                               | 76 *        |                                |
| 28 *                   | [                                                                             | 77 RCL 08   |                                |
| 29 FS2 01              |                                                                               | 78 RCL 09   |                                |
|                        |                                                                               | 79 *        |                                |
|                        |                                                                               | 90 -        |                                |
| 31 51+ 01              |                                                                               |             |                                |
| 32 RCL 10              |                                                                               | 81 *        |                                |
| 33 RCL 12              |                                                                               | 82 STU 12   |                                |
| 34 *                   |                                                                               | 83 RCL 00   |                                |
| 75 532 01              |                                                                               | 84 RCL 01   |                                |
|                        |                                                                               | 85 *        |                                |
| 35 673                 |                                                                               | 06 PC: 07   |                                |
| 37 51+ 02              |                                                                               |             |                                |
| 38 RCL 11              |                                                                               | 87 KUL 08   |                                |
| 39 RCL 12              |                                                                               | 88 *        |                                |
| 40 *                   |                                                                               | 89 -        |                                |
| 41 FS2 01              |                                                                               | 90 STO 10   |                                |
|                        |                                                                               | 91 RCL 00   |                                |
|                        |                                                                               | 92 801 92   |                                |
| 43 51+ 03              |                                                                               |             |                                |
| 44 1                   |                                                                               |             |                                |
| 45 FS?C 01             |                                                                               | 94 RUL 07   |                                |
| 46 CHS                 |                                                                               | 95 RCL 09   |                                |
| 47 ST+ 00              |                                                                               | 96 *        |                                |
|                        | 1                                                                             | 97 -        |                                |
| 40 KUL 00              |                                                                               |             |                                |
| 49 "N="                |                                                                               |             |                                |
| 50 ARCL X              |                                                                               |             | l                              |

| 100 RCL 12        |                        | 152 RCI 12         |                |
|-------------------|------------------------|--------------------|----------------|
| 101 X<>Y          |                        | 157 001 07         |                |
| 102 -             |                        | 100 RUL 00         |                |
| 102<br>107 DCL 17 |                        | 154 *              |                |
| 103 RUL 13        |                        | 155 +              |                |
| 104 RCL 00        |                        | 156 RCL 09         |                |
| 105 RCL 05        |                        | 157 242            |                |
| 106 *             |                        |                    |                |
| 107 PCL 89        |                        | 138 RLL 00         |                |
| 107 KCL 00        |                        | 159 /              |                |
| 108 XT2           |                        | 160 -              |                |
| 109 -             |                        | 161 RCL 06         |                |
| 110 *             |                        | 162 RCL 09         |                |
| 111 RCL 10        |                        | 102 802 00         |                |
| 112 842           |                        | 163 /12            |                |
| 112 012           |                        | 164 RUL 00         |                |
| 113 -             |                        | 165 /              |                |
| 114 /             |                        | 166 -              |                |
| 115 STO 12        | $c \rightarrow R_{12}$ | 167 /              |                |
| 116 RCL 11        |                        | 160                |                |
| 117 RCL 10        |                        | 100 KZ             |                |
| 110 PCL 12        |                        | 169 GIU 00         | ^              |
| 110 KCL 12        |                        | 170+LBL D          | Calculate z    |
| 119 *             |                        | 171 RCL 12         | for given x, y |
| 120 -             |                        | 172 *              | 8 , ,          |
| 121 RCL 13        |                        | 177 9239           |                |
| 122 /             |                        |                    |                |
| 127 STO 11        | $b \rightarrow R_{11}$ | 174 RUL 11         |                |
| 120 010 11        |                        | 175 *              |                |
| 124 RUL 07        |                        | 176 +              |                |
| 125 RCL 12        |                        | 177 RCL 10         |                |
| 126 RCL 08        |                        | 178 +              |                |
| 127 *             |                        | 170                |                |
| 128 -             |                        | 177 21             |                |
| 129 PCI 11        |                        | 180 GIO 02         |                |
| 120 ROL 11        |                        | 181 <b>+</b> LBL a |                |
| 130 KLL 07        |                        | 182 SF 01          | Correction of  |
| 131 *             |                        | 183 GTO A          | input waluog   |
| 132 -             |                        | 184+1 BL 00        | input values   |
| 133 RCL 00        |                        | 105 004            |                |
| 134 /             |                        | 10J HDV            | Output routine |
| 175 STO 10        | $a \rightarrow R_{10}$ | 186+LBL 02         |                |
|                   |                        | 187 "+="           |                |
| 136 °a°           |                        | 188 ARCL X         |                |
| 137 XEQ 00        |                        | 189 AVIEW          |                |
| 138 RCL 11        |                        | 190 END.           |                |
| 139 "b"           |                        |                    |                |
| 140 XEQ 02        |                        | 90                 |                |
| 141 PCL 12        |                        | 90                 |                |
| 140 828           |                        |                    |                |
| 142 0             |                        |                    |                |
| 143 GIU 02        |                        |                    |                |
| 144+LBL C         | Calculate $r^2$        |                    |                |
| 145 RCL 10        |                        |                    |                |
| 146 RCL 09        |                        |                    |                |
| 147 *             |                        |                    |                |
| 140 001 11        |                        |                    |                |
| 148 RUL 11        |                        |                    |                |
| 149 RUL 02        |                        |                    |                |
| 150 *             |                        | 00                 |                |
| 151 +             |                        |                    |                |

### **REGISTERS, STATUS, FLAGS, ASSIGNMENTS**<sup>19</sup>

| DATA REGISTERS |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    | STATUS |                    |      |                       |                                           |              |                            |           |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--------|--------------------|------|-----------------------|-------------------------------------------|--------------|----------------------------|-----------|
| 00             | $ \begin{array}{c} \mathbf{n} \\ \Sigma \mathbf{x}_{i} \mathbf{y}_{i} \\ \Sigma \mathbf{x}_{i} \mathbf{z}_{i} \\ \Sigma \mathbf{y}_{i} \mathbf{z}_{i} \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 50 |        | SIZE<br>ENG<br>DEG | 01:  | 5 TOT<br>FIX -<br>RAD | <sup>2</sup> REG. <u>5</u><br>2 SCI<br>GR | 0<br> <br>AD | USER MO<br>- ON <u>X</u> C | DE<br>IFF |
| 05             | $\frac{\sum_{i=1}^{2} \sum_{i=1}^{2} \sum_{i=1}^{2}}{\sum_{i=1}^{2} \sum_{i=1}^{2} \sum$ | 55 |        | "                  | INIT | 057                   | FL                                        | AGS          |                            | 0.1750    |
|                | $\frac{\lambda z}{\nabla \mathbf{v}}$ i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |        | #                  | S/C  | SEI                   | INDICATE                                  | <u>s</u>     | CLEAR INDI                 | CATES     |
|                | iΣv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |        | 21                 |      | Drinto                | n on ch l                                 |              |                            |           |
|                | $\sum z_i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |        | 21                 |      | Frince                | <u>enabre</u>                             |              |                            |           |
| 10             | x, a i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 60 |        |                    |      |                       |                                           |              |                            |           |
|                | y <sub>ii</sub> b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |        |                    |      |                       |                                           |              |                            |           |
|                | z <sup>ij</sup> c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |        |                    |      |                       |                                           |              |                            |           |
|                | Used                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |        |                    |      |                       |                                           |              |                            |           |
|                | Used                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |        |                    |      |                       |                                           |              |                            |           |
| 15             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 65 |        |                    |      |                       |                                           |              |                            |           |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |        |                    |      |                       |                                           |              |                            |           |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |        |                    |      |                       |                                           |              |                            |           |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |        |                    |      |                       |                                           |              |                            |           |
| 20             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 70 |        |                    |      |                       |                                           |              |                            |           |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10 |        |                    |      |                       |                                           |              |                            |           |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |        |                    |      |                       |                                           |              |                            |           |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |        |                    |      |                       |                                           |              |                            |           |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |        |                    |      |                       |                                           |              |                            |           |
| 25             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 75 |        |                    |      |                       |                                           |              |                            |           |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |        |                    |      |                       |                                           |              |                            |           |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |        |                    |      |                       |                                           |              |                            |           |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |        |                    |      |                       |                                           |              |                            |           |
| 20             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 00 |        |                    |      |                       |                                           |              |                            |           |
| 30             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 00 |        |                    |      |                       |                                           |              |                            |           |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |        |                    |      |                       |                                           |              |                            |           |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |        |                    |      |                       |                                           |              |                            |           |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |        |                    |      | 2                     |                                           |              |                            |           |
| 35             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 85 |        |                    |      |                       |                                           |              |                            |           |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |        |                    |      |                       |                                           |              |                            |           |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |        |                    |      |                       | ASSIGN                                    | IMENT        | rs                         |           |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |        | F                  | UNCT | ION                   | KEY                                       | FI           | UNCTION                    | KEY       |
| 40             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 90 |        |                    |      | -                     |                                           |              |                            |           |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |        |                    |      |                       |                                           |              |                            |           |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |        |                    |      |                       |                                           |              |                            |           |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |        |                    |      |                       |                                           |              |                            |           |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |        |                    |      |                       | <b> </b>                                  |              |                            |           |
| 45             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 95 |        |                    |      |                       |                                           |              |                            |           |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |        |                    |      |                       | <b> </b>                                  |              |                            |           |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    | `      |                    |      |                       | ł                                         |              |                            |           |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |        |                    |      |                       | <b> </b>                                  |              |                            |           |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |        |                    |      |                       |                                           |              |                            |           |

These programs evaluate the standard normal density function f(x), the normal integral Q(x) for a given x and the cumulative distribution P(x) for a given x and degrees of freedom v, and the integral of the F distribution for given values of x.

Equations:

1. Standard normal density

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$

2. Normal integral

$$Q = \frac{1}{\sqrt{2\pi}} \int_{x}^{\infty} e^{-\frac{t^2}{2}} dt.$$

(Solving for x given Q as the inverse normal distribution)

3. t density function

$$f(x) = \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\pi\nu}\,\Gamma\left(\frac{\nu}{2}\right)} \left(1 + \frac{x^2}{\nu}\right)^{-\frac{\nu+1}{2}}$$

4. Cumulative distribution function

$$P(x) = \int_{-\infty}^{x} f(y) dy$$

5. F distribution

$$P(x) = \int_{x}^{\infty} \frac{\Gamma\left(\frac{\nu_{1} + \nu_{2}}{2}\right) y^{\frac{\nu_{1}}{2} - 1} \left(\frac{\nu_{1}}{\nu_{2}}\right)^{\frac{\nu_{1}}{2}}}{\Gamma\left(\frac{\nu_{1}}{2}\right) \Gamma\left(\frac{\nu_{2}}{2}\right) \left(1 + \frac{\nu_{1}}{\nu_{2}} y\right)^{\frac{\nu_{1} + \nu_{2}}{2}}} dy$$

The iterative technique used by the program to solve this integral requires that at least one of the degrees of freedom ( $\nu$ , or  $\nu_2$ ) be even.

#### Reference:

Abramowitz and Stegun, <u>Handbook</u> of <u>Mathematical</u> <u>Functions</u>, National Bureau of Standards, 1970.

```
Example 1: (Program 1)
Using normal distribution, find f(x) and Q(x) for x = 1.18.
Keystrokes:
                                              Display:
[USER]
                                                           (set USER mode)
[XEQ] [ALPHA] SIZE [ALPHA] 016
[XEQ] [ALPHA] NORMAL [ALPHA]
                                              0.0000
1.18 [A]
                                                          (f(1.18))
                                              F=0.1989
1.18 [B]
                                                          (Q(1.18))
                                              Q=0.1190
Example 2: (Program 2)
Using t distribution, find f(x) and P(x) for x = 2.2, v = 11.
Keystrokes:
                                             Display:
[USER]
                                                            (set USER mode)
[XEQ] [ALPHA] SIZE [ALPHA] 013
                                             0.0000
[XEQ] [ALPHA] T [ALPHA]
                                             v=11.0000
11 [A]
                                             F=0.0437
                                                          (f(2.2))
2.2 [B]
                                             P=0.9750
                                                          (P(2.2))
2.2 [C]
Example 3: (Program 3)
Using F distribution, find P(x) for x = 4.21, v_1 = 7, v_2 = 6.
                                             Display:
Keystrokes:
                                                            (set USER mode)
[USER]
[XEQ] [ALPHA] SIZE [ALPHA] 008
[XEQ] [ALPHA] FDIST [ALPHA]
                                             0.0000
                                             V1=7.0000
7 [A]
                                             V2=6.0000
6 [B]
                                                           (P(4.21))
                                              P=0.0499
4.21 [C]
```

### **User Instructions**

|      |                                           |       |              | SIZE: 016 |
|------|-------------------------------------------|-------|--------------|-----------|
| STEP | INSTRUCTIONS                              | INPUT | FUNCTION     | DISPLAY   |
| 1.   | Load program and set USER mode            |       | [USER]       |           |
| 2.   | Initialize                                |       | [XEQ] NORMAL | 0.0000    |
| 3.   | Key in x to compute f(x)                  | x     | [A]          | F=        |
| 4.   | Key in x to compute Q(x)                  | x     | [B]          | Q=        |
| 5.   | Key in Q(x) to compute x                  | Q(x)  | [C]          | X=        |
| 6.   | For a new case, return to step 3,4, or 5. |       |              |           |
|      |                                           |       |              |           |
|      |                                           |       |              |           |
|      |                                           |       |              |           |
|      |                                           |       |              |           |
|      |                                           |       |              |           |
|      |                                           |       |              |           |
|      |                                           |       |              |           |
|      |                                           |       |              |           |
|      |                                           |       |              |           |
|      |                                           |       |              |           |
|      |                                           |       |              |           |
|      |                                           |       |              |           |
|      |                                           |       |              |           |
|      |                                           |       |              |           |
|      |                                           |       |              |           |
|      |                                           |       |              |           |
|      |                                           |       |              |           |
|      |                                           |       |              |           |
|      |                                           |       |              |           |
|      |                                           |       |              |           |
|      |                                           |       |              |           |

| 01+LBL "NOR   | Initialize and | 46 RTN      |                |
|---------------|----------------|-------------|----------------|
| MOL "         |                | 47 """      |                |
|               | store coeffi-  |             |                |
| 02 CF 00      | cients         | 48 610 09   |                |
| 03 CF 01      |                | 49+LBL B    |                |
| 04 CE 02      | 1              | 50 STO 00   |                |
| 05 SE 21      |                | 51 SE 02    | Input x to     |
|               | 1              |             |                |
| 06.2316419    |                | JZ AEW H    | calculate Q(x) |
| 07 STO 02     |                | 53 CF 02    |                |
| 08 1.330274   |                | 54 RCL 00   |                |
| 429           | 1              | 55 X<0?     |                |
| 20 OT2 20     |                | 56 GTO 01   |                |
| 40 1 00105    |                | 50 010 01   |                |
| 10 -1.02125   |                | 57 SF 00    |                |
| 5978          |                | 58+LBL 13   |                |
| 11 STO 04     |                | 59 1        |                |
| 12 1.781477   |                | 60 RCL 00   |                |
| 977           |                | 61 RCL 02   |                |
|               |                |             |                |
| 13 510 05     |                | 62 *        |                |
| 14356563      |                | 63 +        |                |
| 782           |                | 64 1/X      |                |
| 15 STO 06     |                | 65 ENTER1   |                |
| 12 7197915    |                | 66 ENTERA   |                |
| 16 .3193013   |                |             |                |
| 3             |                | BY ENIERI   |                |
| 17 STO 07     |                | 68 RCL 03   |                |
| 18 2.515517   |                | 69 *        |                |
| 19 STO 09     |                | 70 RCL 04   |                |
| 20 002957     |                | 71 +        |                |
| 20.002000     |                |             |                |
| 21 510 10     |                |             |                |
| 22 .010328    |                | 73 RCL 05   |                |
| 23 STO 11     |                | 74 +        |                |
| 24 1.432788   |                | 75 *        |                |
| 25 STO 12     |                | 76 RCL 06   |                |
| 20 010 12     |                | 77 +        |                |
| 26 .107207    |                |             |                |
| 27 \$10 13    |                | 78 <b>*</b> |                |
| 28.001308     |                | 79 RCL 07   |                |
| 29 STO 14     |                | 80 +        |                |
| ZA CLX        |                | 81 *        |                |
|               |                | 82 PCL 01   |                |
| JI KIN        |                |             |                |
| 32+LBL H      |                |             |                |
| 33 STO 00     | Input x to     | 84 "Q"      |                |
| <u>34 X↑2</u> | calculate f(x) | 85 FS? 00   |                |
| 35.2          |                | 86 GTO 09   |                |
| 74 /          |                | SZ RTN      |                |
|               | 1              |             |                |
| 37 UHS        |                |             |                |
| 38 E↑X        |                | 89 67 00    |                |
| 39 PI         |                | 90 RCL 00   |                |
| 40 2          |                | 91 CHS      |                |
| 41 *          |                | 92 STO 00   |                |
|               |                | 97 XE0 17   |                |
| 42 OUR I      |                |             |                |
| 43 /          |                |             |                |
| 44 STO 01     |                | 95 X<>Y     |                |
| 45 FS? 02     |                | 96 -        |                |

|                       |                 | t deserve and the second s |                |
|-----------------------|-----------------|----------------------------------------------------------------------------------------------------------------|----------------|
| 97 STO 08             |                 | 148 CHS<br>149 RTN                                                                                             |                |
| 99 GTO 09             | 1               | 150+LBL 00                                                                                                     | Data error     |
| 100+LBL C             | 1               | 151 0                                                                                                          |                |
| 101 X<0?              | 1               | 152 /                                                                                                          |                |
| 102 GTO 00            | Input Q(x) to   | 153 <b>+</b> LBL 10                                                                                            |                |
| 103 1                 | ] calculate x   | 154 "X"                                                                                                        |                |
| 104 X<=Y?             |                 | 155+LBL 09                                                                                                     | Output routine |
| 105 GTU 00            | ]               | 156 CF 02                                                                                                      |                |
| 106 RUN               |                 | 157 CF 01                                                                                                      |                |
| 100 4/54              |                 | 158 LF 00<br>159 "L-"                                                                                          |                |
| 100 3327              |                 | 157 F-<br>160 ORCI X                                                                                           |                |
| 110 XEQ 08            |                 | 161 AVTEW                                                                                                      |                |
| 111 X12               |                 | 162 .END.                                                                                                      |                |
| 112 1/X               | •               |                                                                                                                | -              |
| 113 LN                | •               |                                                                                                                | -              |
| 114 SQRT              | •               |                                                                                                                | -              |
| 115 STO 15            |                 |                                                                                                                | -              |
| 116 RCL 11            |                 | 70                                                                                                             | -              |
| 117 *                 | 1               |                                                                                                                | -              |
| 118 RCL 10            | 1               |                                                                                                                | -              |
| 117 +<br>100 PCI 15   |                 |                                                                                                                | 1              |
| 120 RCL 13            | 1               |                                                                                                                | 1              |
| 122 RCL 09            | ]               |                                                                                                                |                |
| 123 +                 |                 |                                                                                                                | ]              |
| 124 RCL 15            |                 |                                                                                                                |                |
| 125 RCL 14            |                 |                                                                                                                |                |
| 126 *                 |                 |                                                                                                                | -              |
| 127 RCL 13            |                 | 80                                                                                                             |                |
| 128 +                 |                 |                                                                                                                | -              |
| 129 RCL 15            |                 |                                                                                                                | -              |
| 130 *                 | •               |                                                                                                                | -              |
| 131 KUL 12<br>172 +   |                 |                                                                                                                | 4              |
| 132 PCL 15            |                 |                                                                                                                | -              |
| 134 *                 |                 |                                                                                                                | -              |
| 135 1                 |                 |                                                                                                                | -              |
| 136 +                 | ]               |                                                                                                                | 1              |
| 137 /                 |                 | 90                                                                                                             |                |
| 138 RCL 15            |                 |                                                                                                                | ]              |
| 139 X<>Y              |                 |                                                                                                                |                |
| 140 -                 | 4               |                                                                                                                | 1              |
| 141 F57 01<br>142 F49 | -               |                                                                                                                | 4              |
| 142 CH3               |                 |                                                                                                                | 4              |
| 144+LBL 08            | •               |                                                                                                                | 4              |
| 145 SF 01             |                 |                                                                                                                | 4              |
| 146 1                 | For $Q(x) < .5$ |                                                                                                                | 4              |
| 147 -                 | 1               | 00                                                                                                             | 4              |

# **REGISTERS, STATUS, FLAGS, ASSIGNMENTS**<sup>25</sup>

| DATA REGISTERS |                      |                                       | STATUS             |       |                                  |                                                                                                                 |             |                  |           |
|----------------|----------------------|---------------------------------------|--------------------|-------|----------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------|------------------|-----------|
| 00             | x<br>f(x)<br>r<br>b5 | 50                                    | SIZE<br>ENG<br>DEG | 01    | <u>6</u> TOT<br>— FIX -<br>— RAD | . REG. <u>5</u><br>SCI<br>GR                                                                                    | 9<br><br>AD | USER MOI<br>ON O | DE<br>IFF |
| 05             | Եւ<br>Եյ             | 55                                    |                    | INIT  |                                  | FL                                                                                                              | AGS         |                  |           |
|                | b <sub>2</sub>       |                                       | #                  | S/C   | SET                              | NDICATE                                                                                                         | 5           | CLEAR INDI       | CATES     |
|                | b1                   |                                       | 00                 |       | Posit                            | ive                                                                                                             |             |                  |           |
|                | USED                 |                                       | 01                 |       | Q(x)                             | < .5                                                                                                            |             |                  |           |
|                | CO                   |                                       | 02                 |       | Q(x)                             |                                                                                                                 |             |                  |           |
| 10             | c1                   | 60                                    | 21                 |       | Print                            | er enab                                                                                                         | Le          |                  |           |
|                | C <sub>2</sub>       |                                       | · · ·              |       |                                  |                                                                                                                 |             |                  |           |
|                | dı                   |                                       |                    |       |                                  |                                                                                                                 |             |                  |           |
|                | d <sub>2</sub>       |                                       |                    |       |                                  |                                                                                                                 |             |                  |           |
| 45             | d 3                  | 05                                    |                    |       |                                  |                                                                                                                 |             |                  |           |
| 15             | t                    | 65                                    |                    |       |                                  |                                                                                                                 |             |                  |           |
|                |                      |                                       |                    |       |                                  |                                                                                                                 |             |                  |           |
|                |                      |                                       |                    |       |                                  |                                                                                                                 |             |                  |           |
|                |                      |                                       |                    |       |                                  |                                                                                                                 |             |                  |           |
| - 00           |                      | 70                                    |                    |       |                                  |                                                                                                                 |             |                  |           |
| 20             |                      | 70                                    |                    |       |                                  |                                                                                                                 |             |                  |           |
|                |                      |                                       |                    |       |                                  |                                                                                                                 |             |                  |           |
|                |                      |                                       |                    |       |                                  |                                                                                                                 |             |                  |           |
|                |                      |                                       |                    |       |                                  |                                                                                                                 |             |                  |           |
| 25             |                      | 75                                    |                    |       |                                  |                                                                                                                 |             |                  |           |
| 25             |                      | 75                                    |                    |       |                                  |                                                                                                                 |             |                  |           |
|                |                      |                                       |                    |       |                                  |                                                                                                                 |             |                  |           |
|                |                      | · · · · · · · · · · · · · · · · · · · |                    |       |                                  |                                                                                                                 |             |                  |           |
|                |                      |                                       |                    |       |                                  |                                                                                                                 |             |                  |           |
| 30             |                      | 80                                    |                    |       |                                  |                                                                                                                 |             |                  |           |
|                |                      |                                       |                    |       |                                  |                                                                                                                 |             |                  |           |
|                |                      |                                       |                    |       |                                  |                                                                                                                 |             |                  |           |
|                |                      |                                       |                    |       |                                  |                                                                                                                 |             |                  |           |
|                |                      |                                       |                    |       |                                  |                                                                                                                 |             |                  |           |
| 35             |                      | 85                                    |                    |       |                                  |                                                                                                                 |             |                  |           |
|                |                      |                                       |                    |       |                                  | an fan menemenen en er en fan de f |             |                  |           |
|                |                      |                                       |                    |       |                                  |                                                                                                                 |             |                  |           |
|                |                      |                                       |                    |       |                                  | ASSIGN                                                                                                          |             | 12               |           |
|                |                      |                                       |                    | FUNCT | ION                              | KEY                                                                                                             | F           | UNCTION          | KEY       |
| 40             |                      | 90                                    |                    |       |                                  |                                                                                                                 |             |                  |           |
|                |                      |                                       |                    |       |                                  |                                                                                                                 |             |                  |           |
|                |                      |                                       |                    |       |                                  |                                                                                                                 |             |                  |           |
|                |                      |                                       |                    |       |                                  |                                                                                                                 |             |                  |           |
|                |                      |                                       |                    |       |                                  |                                                                                                                 |             |                  |           |
| 45             |                      | 95                                    |                    |       |                                  |                                                                                                                 |             |                  |           |
|                |                      |                                       |                    |       |                                  |                                                                                                                 |             |                  |           |
|                |                      |                                       |                    |       |                                  |                                                                                                                 |             |                  |           |
|                |                      | ļļ                                    |                    |       |                                  |                                                                                                                 |             |                  |           |
|                |                      |                                       |                    |       |                                  |                                                                                                                 |             |                  |           |

### **User Instructions**

|      |                                          |       |          | SIZE: 013 |
|------|------------------------------------------|-------|----------|-----------|
| STEP | INSTRUCTIONS                             | INPUT | FUNCTION | DISPLAY   |
| 1.   | Load program and set USER mode           |       | [USER]   |           |
| 2.   | Initialize                               |       | [XEQ] T  | 0.0000    |
| 3.   | Key in degrees of freedom $v$            | ν     | [A]      | V=        |
| 4.   | Key in x to compute f(x)                 | x     | [B]      | F=        |
| 5.   | Key in x to compute P(x)                 | x     | [C]      | P=        |
| 6.   | For a new case with the same $v$ , go to |       |          |           |
|      | step 4 or 5. For a new case with a       |       |          |           |
|      | different v, go to step 3.               |       |          |           |
|      |                                          |       |          |           |
|      |                                          |       |          |           |
|      |                                          |       |          |           |
|      |                                          |       |          |           |
|      |                                          |       |          |           |
|      |                                          |       |          |           |
|      |                                          |       |          |           |
|      |                                          |       |          |           |
|      |                                          |       |          |           |
|      |                                          |       |          |           |
|      |                                          |       |          |           |
|      |                                          |       |          |           |
|      |                                          |       |          |           |
|      |                                          |       |          |           |
|      |                                          |       |          |           |
|      |                                          |       |          |           |
|      |                                          |       |          |           |
|      |                                          |       |          |           |
|      |                                          |       |          |           |

|                  | T                       |                        |                  |
|------------------|-------------------------|------------------------|------------------|
| 01+LBL "T"       | Initializa              | 52 INT                 |                  |
| 02 SF 21         | Inicialize              | 53 LASTX               |                  |
| 07 CE 01         | 1                       | 54 X±Y2                |                  |
|                  | 1                       | 55 CTO 01              |                  |
| 04 ULA<br>05 DTU | ł                       | 55 610 61              |                  |
| US KIN           | 1                       | 26 1                   |                  |
| Ø6+LBL H         |                         | 57 -                   |                  |
| 07 STO 00        | Input v                 | 58 FACT                |                  |
| 08 "V"           |                         | 59 STO 03              |                  |
| 09 GTO 10        | 1                       | 60 RTN                 |                  |
| 10+LBL B         | 1                       | 61+LBL 01              | Check for        |
| 11 STO 12        | 1                       | 62.5                   | v/2 = 1/2        |
| 12 PCL 00        | 4                       | 63 X=Y2                |                  |
| 17 450 11        | + · ·                   | 64 CTO 02              |                  |
|                  | Input x to              |                        |                  |
| 14 510 10        | calculate f(x)          | 65 8/21                |                  |
| 15 RCL 00        |                         | 66 1                   |                  |
| 16 1             |                         | 67 -                   |                  |
| 17 +             | 1                       | 68 ST* 03              |                  |
| 18 XEQ 11        | 1                       | 69 GTO 01              |                  |
| 19 STO 09        |                         | 70+LBL 02              |                  |
| 20 RCL 12        |                         | 71 PI                  | Γ(4)             |
| 20 ROL 12        |                         | 72 SORT                | 1 (~2)           |
| 21 KCL 07        |                         | 77 PCL 07              |                  |
| 22 RUL 10        |                         | 73 KCL 00              |                  |
| 23 /             |                         | 74 *                   |                  |
| 24 P1            |                         | 75 510 03              |                  |
| 25 RCL 00        |                         | 76 RIN                 |                  |
| 26 *             |                         | 77+LBL C               | 1                |
| 27 SQRT          |                         | 78 STO 12              |                  |
| 28 /             |                         | 79 ABS                 | Input x to       |
| 29 1             |                         | 80 RCL 00              | calculate $P(x)$ |
| 30 RCL 12        |                         | 81 RAD                 |                  |
| 31 X12           |                         | 82 SQRT                |                  |
| 32 RCL 00        |                         | 83 /                   |                  |
| 37 /             |                         | 84 ATAN                |                  |
|                  |                         | 85 STO 02              |                  |
|                  |                         | 00 010 02<br>04 pri 00 |                  |
| 30 KCC 00        |                         | 00 KCL 00              |                  |
| 36 1             |                         |                        |                  |
| 37 +             |                         |                        |                  |
| 38 2             |                         | 89 INI                 |                  |
| 39 /             |                         | 90 LHS1X               |                  |
| 40 CHS           |                         | 91 X≠Y?                |                  |
| 41 YTX           |                         | 92 GTO 04              |                  |
| 42 *             |                         | 93 0                   |                  |
| 43 "F"           |                         | 94 STO 05              |                  |
| 44 GTO 10        |                         | 95+LBL 12              |                  |
| 45+LBL 11        |                         | 96 RCL 02              |                  |
| 46 1             | Calculate $\Gamma(v/2)$ | 97 COS                 |                  |
| 47 STO 03        |                         | 98 X12                 |                  |
| 48 X<>Y          |                         | 99 STO 03              |                  |
| 49 2             |                         | 100 RCL 02             |                  |
| 50 /             |                         | 101 STN                |                  |
|                  |                         | 102 010 04             |                  |
| 51 510 81        |                         | 102 310 04             |                  |

| 107 PCL 00 |            | 154 009     |                 |
|------------|------------|-------------|-----------------|
| 103 KUL 00 |            | 104 000     |                 |
| 104 2      |            | 155 *       |                 |
| 105 X=Y?   |            | 156 2       |                 |
| 106 610 08 |            | 157 *       |                 |
| 103 4.0 00 |            | 150 DT      |                 |
| 107 /      |            | 1J0 F1      |                 |
| 108 INT    |            | 159 /       |                 |
| 109 STO 11 |            | 160 RCL 07  |                 |
| 110 1      |            | 161 +       |                 |
|            |            |             |                 |
| 111 510 06 |            | 162 RUL 12  |                 |
| 112 DSE 11 |            | 163 GTO 06  |                 |
| 113 GTO 03 |            | 164+LBL 09  | For odd ν       |
| 114 CTO 17 |            | 145 PCL 07  |                 |
|            |            | 100 KCL 01  |                 |
| 115♦LBL 03 |            | 166 RUL 12  |                 |
| 116 RCL 03 |            | 167 GTO 06  |                 |
| 117 *      | For even v | 168+LBL 08  |                 |
| 110 PCL 05 |            | 160 PCL 04  | Ferrary and the |
| 118 KUL 00 |            | 107 KCL 04  | For even V      |
| 119 1      |            | 170 RCL 12  |                 |
| 120 +      |            | 171+LBL 06  |                 |
| 121 *      |            | 172 XX02    | Colorian D(x)   |
|            |            | 177 CTO 00  | Calculate F(X)  |
| 122 LHSIX  |            | 173 610 00  | from R(x)       |
| 123 1      |            | 174 X<>Y    |                 |
| 124 +      |            | 175 1       | for $x < 0$     |
| 125 STO 05 |            | 176 -       | —               |
| 120 0,0 00 |            | 177 040     |                 |
| 126 /      |            | 177 085     |                 |
| 127 ST+ 06 |            | 178 2       |                 |
| 128 DSE 11 |            | 179 /       |                 |
| 129 CTO 03 |            | 180 "P"     |                 |
| 170 001 06 |            | 101 CTO 10  |                 |
| 130 KCL 00 |            |             |                 |
| 131+LBL 13 |            | 182+LBL 00  | Calculate P(x)  |
| 132 RCL 04 |            | 183 X<>Y    | <b>5 1 0</b>    |
| 133 *      |            | 184 1       | for $x > 0$     |
| 174 592 81 |            | 105 +       |                 |
| 134 F3: 01 |            |             |                 |
| 135 RIN    |            | 186 2       |                 |
| 136 RCL 12 |            | 187 /       |                 |
| 137 GTO 06 |            | 188 "P"     |                 |
| 179ALRI 04 |            | 109+1 BI 10 |                 |
| 1304000 04 |            |             |                 |
| 139 RUL 02 |            | 190 "F="    | Output routine  |
| 140 2      |            | 191 ARCL X  | -               |
| 141 *      | For odd v  | 192 AVIEW   |                 |
| 142 PT     | ICI Cuu V  | 193 END.    |                 |
|            |            |             |                 |
| 143 /      |            |             |                 |
| 144 STO 07 |            |             |                 |
| 145 RCL 00 |            |             |                 |
| 146 1      |            |             |                 |
| 147 CTO 05 |            |             |                 |
| 147 510 83 |            |             |                 |
| 148 X=Y?   |            |             |                 |
| 149 GTO 09 |            |             |                 |
| 150 SE 01  |            |             | 1               |
| 151 VED 12 |            |             |                 |
| 101 660 12 |            |             | •               |
| 152 CF 01  |            |             |                 |
| 153 RCL 02 |            | 00          |                 |

## **REGISTERS, STATUS, FLAGS, ASSIGNMENTS**<sup>29</sup>

| DATA REGISTERS |                        | STATUS   |                    |       |                                |                    |               |                    |           |
|----------------|------------------------|----------|--------------------|-------|--------------------------------|--------------------|---------------|--------------------|-----------|
| 00             | ν<br>USED<br>Θ<br>USED | 50       | SIZE<br>ENG<br>DEG |       | <u>3</u> TOT<br>— FIX<br>— RAD | . REG<br>SCI<br>GR | _47<br><br>AD | USER MOI<br>- ON 0 | DE<br>IFF |
| 05             | SIN O<br>USED          | 55       | FLAGS              |       |                                |                    |               |                    |           |
|                | USED                   |          | #                  | S/C   | SET                            | INDICATE           | <u>s</u>      | CLEAR INDI         | CATES     |
|                | $2\Theta/\pi$ , R      |          | 01                 |       | odd v                          |                    |               |                    |           |
|                | $\Gamma(\mu+1/2)$      |          | 21                 |       | Dut                            | 11                 |               |                    |           |
| 10             | $\Gamma(v/2)$          | 60       |                    |       | Printe                         | r enabl            | e l           |                    |           |
|                | Index                  |          |                    |       |                                |                    |               |                    |           |
|                | x                      |          |                    |       |                                |                    |               |                    |           |
|                |                        |          |                    |       |                                |                    |               |                    |           |
|                |                        |          |                    |       |                                |                    |               |                    |           |
| 15             |                        | 65       |                    |       |                                |                    |               |                    |           |
|                |                        |          |                    |       |                                |                    |               |                    |           |
|                |                        |          |                    |       |                                |                    |               |                    |           |
|                |                        |          |                    |       |                                |                    |               |                    |           |
|                |                        |          |                    |       |                                |                    |               |                    |           |
| 20             |                        | 70       |                    |       |                                |                    |               |                    |           |
|                |                        |          |                    |       |                                |                    |               |                    |           |
|                |                        |          |                    |       |                                |                    |               |                    |           |
|                |                        |          |                    |       |                                |                    |               |                    |           |
| 25             |                        | 75       |                    |       |                                |                    |               |                    |           |
| -25            |                        | 75       |                    |       |                                |                    |               |                    |           |
|                |                        |          |                    |       |                                |                    |               |                    |           |
|                |                        |          |                    |       |                                |                    |               |                    |           |
|                |                        |          |                    |       |                                |                    |               |                    |           |
| 30             |                        | 80       |                    |       |                                |                    |               |                    |           |
|                |                        |          |                    |       |                                |                    |               |                    |           |
|                |                        |          |                    |       |                                |                    |               |                    |           |
|                |                        |          |                    |       |                                |                    |               |                    |           |
|                |                        |          |                    |       |                                |                    |               |                    |           |
| 35             |                        | 85       |                    |       |                                |                    |               |                    |           |
|                |                        |          |                    |       |                                |                    |               |                    |           |
|                |                        | ll       |                    |       |                                | ASSIGN             | IMEN          | rs                 |           |
|                |                        | <u> </u> |                    | FUNCT |                                | KFY                | FI            |                    | KEY       |
| 40             |                        | 90       | <u> </u> '         |       |                                |                    |               |                    |           |
|                |                        |          | 1                  |       |                                |                    |               |                    |           |
|                |                        |          | 1                  |       |                                |                    |               |                    |           |
|                |                        |          |                    |       |                                |                    |               |                    |           |
|                |                        |          |                    |       |                                |                    |               |                    |           |
| 45             |                        | 95       |                    |       |                                |                    |               |                    |           |
|                |                        | l        |                    |       |                                |                    |               |                    |           |
|                |                        | <b>I</b> |                    |       |                                |                    |               |                    |           |
|                |                        | l l      |                    |       |                                |                    |               |                    |           |
|                |                        |          |                    |       |                                |                    |               |                    |           |

### **User Instructions**

|      |                                 |       |             | SIZE: 008 |
|------|---------------------------------|-------|-------------|-----------|
| STEP | INSTRUCTIONS                    | INPUT | FUNCTION    | DISPLAY   |
| 1.   | Load program and set USER mode. |       | [USER]      |           |
| 2.   | Initialize                      |       | [XEQ] FDIST | 0.0000    |
| 3.   | Key in ν <sub>1</sub>           | ν1    | [A]         | v1=       |
| 4.   | Key in $v_2$                    | ν2    | [B]         | V2=       |
| 5.   | Key in x to calculate P(x)      |       | [C]         | P =       |
| 6.   | For a new case to to step 3.    |       |             |           |
|      |                                 |       |             |           |
|      |                                 |       |             |           |
|      |                                 |       |             |           |
|      |                                 |       |             |           |
|      |                                 |       |             |           |
|      |                                 |       |             |           |
|      |                                 |       |             |           |
|      |                                 |       |             |           |
|      |                                 |       |             |           |
|      |                                 |       |             |           |
|      |                                 |       |             |           |
|      |                                 |       |             |           |
|      |                                 |       |             |           |
|      |                                 |       |             |           |
|      |                                 |       |             |           |
|      |                                 |       |             |           |
|      |                                 |       |             |           |
|      |                                 |       |             |           |
|      |                                 |       |             |           |
|      |                                 |       |             |           |
|      |                                 |       |             |           |

|             |                            | E + +       |                |
|-------------|----------------------------|-------------|----------------|
| 01*LBL "FDI | Initialize                 | 51 1        |                |
| ST"         |                            | 52 STO 05   |                |
| 02 SE 21    |                            | 53 RCL 03   |                |
| 07 CE 01    |                            | 54 -        |                |
|             |                            |             |                |
| 04 0        |                            | 33 510 03   |                |
| 05 STO 05   |                            | 56 RCL 02   |                |
| 06 RTN      |                            | 57 2        |                |
| 97AL PL 0   |                            | 58 /        |                |
|             |                            | 50 /        |                |
| 08 STU 01   | Input v <sub>l</sub>       | 59 *        |                |
| 09 "V1"     | -                          | 60 ST+ 05   |                |
| 10 GTO 10   |                            | 61 DSE 00   |                |
|             |                            | 62 GTO 03   |                |
|             | Trout                      |             |                |
| 12 510 02   | $\operatorname{Input} V_2$ | 63 610 02   |                |
| 13 "V2"     |                            | 64+LBL 03   |                |
| 14 610 10   |                            | 65 RCL 02   |                |
|             |                            | 66 2        |                |
| IJVLDL C    |                            |             |                |
| 16 "P"      |                            | 67 +        |                |
| 17 STO 06   |                            | 68 STO 02   |                |
| 18 RCL 01   |                            | 69 RCL 07   |                |
| 10 4        |                            | 70 2        |                |
|             |                            | 74 4        |                |
| 20 RCL 02   |                            |             |                |
| 21 +        |                            | 72 510 07   |                |
| 22 LASTX    |                            | 73 /        |                |
| 27 8458     |                            | 74 RCL 03   |                |
|             |                            | 75 4        |                |
| 24 /        |                            |             |                |
| 25 STU 03   | If $v_1$ odd then          | 76 <b>*</b> |                |
| 26 RCL 01   | go to LBL 01               | 77 ST+ 05   |                |
| 27.2        | 80 00 222 02               | 78 DSE 00   |                |
|             |                            | 79 GTO 03   |                |
|             |                            |             |                |
| 29 FRU      |                            | OUVEDE OZ   |                |
| 30 X≠0?     |                            | 81 RUL 05   |                |
| 31 GTO 01   |                            | 82 RCL 04   |                |
| 72+1 BL 00  |                            | 83 *        |                |
|             | Vi even                    | OA PTN      |                |
| 33 RUL 03   | vi even                    |             |                |
| 34 RCL 02   |                            | 82+LBL 01   |                |
| 35 2        |                            | 86 RCL 01   | $v_1$ odd      |
| 36 STO 07   |                            | 87 X<> 02   |                |
| 77 /        |                            | 88 STO 01   |                |
|             |                            |             |                |
| 38 YTX      |                            | 87 1        |                |
| 39 STO 04   |                            | 90 RCL 03   |                |
| 40 RCL 01   |                            | 91 -        |                |
| 41 2        |                            | 92 STO 03   |                |
|             | 1                          | 97 YEO 00   |                |
| 42 -        |                            | 73 ALW 00   |                |
| 43.2        |                            | 94 1        |                |
| 44 /        |                            | 95 X<>Y     |                |
| 45 STO 00   | 1                          | 96 -        |                |
| 46 X # 02   | 1                          | 97♦LBL 1Й   |                |
| 47 0TO 05   |                            | 00 "L-"     | output routine |
| 47 610 00   |                            |             |                |
| 48 RCL 04   |                            | 99 HRUL A   |                |
| 49 GTO 10   | 1                          | 100 AVIEW   |                |
| 50+1 BL 05  | ł                          | 101 .END.   |                |
|             | 1                          |             |                |

### **REGISTERS, STATUS, FLAGS, ASSIGNMENTS**

32

| DATA REGISTERS |                                                                  |    | STATUS             |       |                    |                                  |             |                 |            |
|----------------|------------------------------------------------------------------|----|--------------------|-------|--------------------|----------------------------------|-------------|-----------------|------------|
| 00             | USED<br>$v_1 \text{ or } v_2$<br>$v_2 \text{ or } v_1$<br>t, 1-t | 50 | SIZE<br>ENG<br>DEG | 008   | 3 TO<br>FIX<br>RAI | T. REG. <u>2</u><br>SCI<br>D GR. | 8<br><br>AD | USER MC<br>ON X | )DE<br>OFF |
| 05             | USED<br>USED                                                     | 55 |                    | FLAGS |                    |                                  |             |                 |            |
|                | х                                                                |    | #                  | S/C   | SET                | INDICATES                        | S           | CLEAR IND       | ICATES     |
|                | USED                                                             |    | 21                 |       | Print              | er enabl                         | e           |                 |            |
|                |                                                                  |    |                    |       |                    |                                  |             |                 |            |
| 10             |                                                                  | 60 |                    |       |                    |                                  |             |                 |            |
| <b>–</b> ––    |                                                                  |    |                    |       |                    |                                  |             |                 |            |
|                |                                                                  |    |                    |       |                    |                                  |             |                 |            |
|                |                                                                  |    |                    |       |                    |                                  |             |                 |            |
|                |                                                                  |    |                    |       |                    |                                  |             |                 |            |
| 15             |                                                                  | 65 |                    |       |                    |                                  |             |                 |            |
|                |                                                                  |    |                    |       |                    |                                  |             |                 |            |
|                |                                                                  |    |                    |       |                    |                                  |             |                 |            |
|                |                                                                  |    |                    |       |                    |                                  |             |                 |            |
| 20             |                                                                  | 70 |                    |       |                    |                                  |             |                 |            |
|                |                                                                  |    |                    |       |                    |                                  |             |                 |            |
|                |                                                                  |    |                    |       |                    |                                  |             |                 |            |
|                |                                                                  |    |                    |       |                    |                                  |             |                 |            |
|                |                                                                  |    |                    |       |                    |                                  |             |                 |            |
| 25             |                                                                  | 75 |                    |       |                    |                                  |             |                 |            |
|                |                                                                  |    |                    |       |                    |                                  |             |                 |            |
|                |                                                                  |    |                    |       |                    |                                  |             |                 |            |
|                |                                                                  |    |                    |       |                    |                                  |             |                 |            |
| 30             |                                                                  | 80 |                    |       |                    |                                  |             |                 |            |
|                |                                                                  |    |                    |       |                    |                                  |             |                 |            |
|                |                                                                  |    |                    |       |                    |                                  |             |                 |            |
|                |                                                                  |    |                    |       |                    |                                  |             |                 |            |
|                |                                                                  |    |                    |       |                    |                                  |             |                 |            |
| 35             |                                                                  | 85 |                    |       |                    |                                  |             |                 |            |
|                |                                                                  |    |                    |       |                    |                                  |             |                 |            |
|                |                                                                  |    |                    |       |                    | ASSIGN                           | MENTS       | 5               |            |
|                |                                                                  |    | F                  | UNCT  |                    | KEY                              | FUI         |                 | KEY        |
| 40             |                                                                  | 90 |                    |       |                    |                                  |             |                 |            |
|                |                                                                  |    |                    |       |                    |                                  |             |                 |            |
|                |                                                                  |    |                    |       |                    |                                  |             |                 |            |
|                |                                                                  |    |                    |       | •                  |                                  |             |                 |            |
| 45             |                                                                  | 05 |                    |       |                    |                                  |             |                 |            |
|                |                                                                  | 90 |                    |       |                    |                                  |             |                 | +          |
|                |                                                                  |    |                    |       |                    |                                  |             |                 | +          |
|                |                                                                  |    |                    |       |                    |                                  |             |                 | 1          |
|                |                                                                  |    |                    |       |                    |                                  |             |                 |            |
### BASIC STATISTICS FOR TWO VARIABLES

This program calculates means, standard deviations, covariance, correlation coefficient, and coefficients of variation from ungrouped data points  $[(x_i,y_i), i=1,2,...,n]$  or grouped data points  $[(x_i,y_i,f_i), i=1,2,...,n]$ .  $f_i$  denotes the frequency of repetition of  $(x_i,y_i)$ .

Equations:

Mean 
$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
  $\overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$ 

Standard deviation

$$s_{x} = \sqrt{\frac{\sum x_{i}^{2} - n\overline{x}^{2}}{n-1}}$$

$$s_{x}' = \sqrt{\frac{\sum x_{i}^{2} - n\overline{x}^{2}}{n}}$$

$$s_{y} = \sqrt{\frac{\sum y_{i}^{2} - n\overline{y}^{2}}{n-1}}$$

$$s_{y}' = \sqrt{\frac{\sum y_{i}^{2} - n\overline{y}^{2}}{n}}$$

covariance

$$s_{xy} = \frac{1}{n-1} (\Sigma x_i y_i - \frac{1}{n} \Sigma x_i y_i)$$

$$s_{xy}' = \frac{1}{n} (\Sigma x_i y_i - \frac{1}{n} \Sigma x_i y_i)$$

correlation coefficient

$$\gamma_{xy} = \frac{s_{xy}}{s_x s_y}$$

coefficients of variation

$$V_{x} = \frac{s_{x}}{\overline{x}}$$
 .100,  $V_{y} = \frac{s_{y}}{\overline{y}}$  .100

Note: n is a positive integer > 1.

Example:

For the following set of data, find the means, standard deviations, covariance, correlation coefficient and coefficients of variation.

| x <sub>i</sub> | 4.8  | 5.2  | 4.1  | 3.8  |
|----------------|------|------|------|------|
| y <sub>i</sub> | 15.1 | 11.5 | 13.6 | 14.3 |
| f              | 1    | 3    | 2    | 1    |

Keystrokes:

Display:

| [USER]                                                     | (set USER mode) |
|------------------------------------------------------------|-----------------|
| [XEQ] [ALPHA] SIZE [ALPHA] 017                             |                 |
| [XEQ] [ALPHA] STAT [ALPHA]                                 | 0.0000          |
| 4.8 [ENTER <sup>†</sup> ] 15.1 [ENTER <sup>†</sup> ] 1 [B] | 1.0000          |
| 5.2 [ENTER <sup>†</sup> ] 11.5 [ENTER <sup>†</sup> ] 3 [B] | 4.0000          |
| 4.1 [ENTER↑] 13.6 [ENTER↑] 2 [B]                           | 6.0000          |
| 3.8 [ENTER <sup>†</sup> ] 14.3 [ENTER <sup>†</sup> ] 1 [B] | 7.0000          |
| [C]                                                        | MEANX=4.6286    |
| [R/S]                                                      | MEANY=13.0143   |
| [R/S]                                                      | VX=13.2429      |
| [R/S]                                                      | VY=11.5550      |
| [D]                                                        | SX=0.6130       |
| [R/S]                                                      | SY=1.5038       |
| [R/S]                                                      | SX.=0.5675      |
| [R/S]                                                      | SY.=1.3923      |
| [E]                                                        | SXY=-0.6538     |
| [R/S]                                                      | SXY.=-0.5604    |
| [R/S]                                                      | VXY=-0.7093     |

|      |                                                    |                |                                       | SIZE: 017                       |
|------|----------------------------------------------------|----------------|---------------------------------------|---------------------------------|
| STEP | INSTRUCTIONS                                       | INPUT          | FUNCTION                              | DISPLAY                         |
| 1.   | Load program and set USER mode                     |                | [USER]                                |                                 |
| 2.   | Initialize                                         |                | [XEQ] STAT                            | 0.0000                          |
| 3.   | For grouped data points, go to step 6.             |                |                                       |                                 |
|      | For ungrouped data points, go to                   |                |                                       |                                 |
|      | step 4.                                            |                |                                       |                                 |
| 4.   | For $i = 1, 2, \ldots, n$ , key in $x_i$ and $y_i$ | x.             | [ENTER †]                             |                                 |
|      |                                                    | y <sub>i</sub> | [A]                                   | i                               |
| 5.   | If you made a mistake in keying in x.<br>k         |                | · · · · · · · · · · · · · · · · · · · |                                 |
|      | and y <sub>k</sub> , the correct by                | k              | [ENTER †]                             |                                 |
|      |                                                    | y <sub>k</sub> | [///] [A]                             | i-l                             |
| 6.   | For $i = 1, 2,, n$ , key in x, y, and              |                |                                       |                                 |
|      | f_(grouped data)                                   | × <u>i</u>     | [ENTER ↑]                             |                                 |
|      |                                                    | y,             | [ENTER ^]                             |                                 |
|      |                                                    | f              | [B]                                   | f <sub>i</sub>                  |
| 7.   | If you made a mistake in keying in x, y            |                |                                       |                                 |
|      | and f, then correct by                             | k              | [ENTER 1]                             |                                 |
|      |                                                    | y_k            | [ENTER A]                             |                                 |
|      |                                                    | fk             | [///] [B]                             | f <sub>i</sub> - f <sub>k</sub> |
| -8.  | Calculate means (x and y) and coefficients         |                |                                       |                                 |
|      | of variation (V and V) $x$                         |                | [C]                                   | MEANX =                         |
|      | ,<br>                                              |                | [R/S]                                 | MEANY =                         |
|      |                                                    |                | [R/S]                                 | VX =                            |
|      |                                                    |                | [R/S]                                 | VX =                            |
| 9.   | Calculate standard deviations                      |                |                                       |                                 |
|      | (s, s, s ' and s ')<br>x y x y                     |                | [D]                                   | SX =                            |
|      |                                                    |                | [R/S]                                 | SY =                            |
|      |                                                    |                | [R/S]                                 | SX.=                            |

|      |                                                     |       |          | SIZE: 017 |
|------|-----------------------------------------------------|-------|----------|-----------|
| STEP | INSTRUCTIONS                                        | INPUT | FUNCTION | DISPLAY   |
|      |                                                     |       | [R/S]    | SY.=      |
| 10.  | Calculate covariance and correlation                |       |          |           |
|      | coefficient ( $s_{yy}$ , $s_{yy}$ ', and $V_{yy}$ ) |       | [E]      | SXY=      |
|      | xy xy xy                                            |       | [R/S]    | SXY.=     |
|      |                                                     |       | [R/S]    | VXY=      |
| 11.  | For a new case, go to step 2.                       |       |          |           |
|      |                                                     |       |          |           |
|      |                                                     |       |          |           |
|      |                                                     |       |          |           |
|      |                                                     |       |          |           |
|      |                                                     |       |          |           |
|      |                                                     |       |          |           |
|      |                                                     |       |          |           |
|      |                                                     |       |          |           |
|      |                                                     |       |          |           |
|      |                                                     |       |          |           |
|      |                                                     |       |          |           |
|      | ·                                                   |       |          |           |
|      |                                                     |       |          |           |
|      |                                                     |       |          |           |
|      |                                                     |       |          |           |
|      |                                                     |       |          |           |
|      |                                                     |       |          |           |
|      |                                                     |       |          |           |
|      |                                                     |       |          |           |
|      |                                                     |       |          |           |
|      |                                                     |       |          |           |

| 01+LBL "STA         | Initialize                           | 51+LBL C    |                 |
|---------------------|--------------------------------------|-------------|-----------------|
| T"                  |                                      | 52 MEHN     |                 |
| 02 CLRG             |                                      | 53 STO 00   | Calculate x, y, |
| 03 SF 21            |                                      | 54 "MEANX=" | V V             |
| 04 CF 00            | 1                                    | 55 XEQ 00   | ху              |
|                     | 1                                    | 54 XZNY     |                 |
|                     | 4                                    |             |                 |
| 06 CLX              |                                      | 57 510 02   |                 |
| 07 RTN              |                                      | 58 "MEHNY=" |                 |
| 08+LBL a            | Correction for                       | 59 XEQ 00   |                 |
| 09 X<>Y             |                                      | 60 SDEV     |                 |
| 10 Σ-               |                                      | 61 1 E2     |                 |
| 11 RTN              | 1                                    | 62 *        |                 |
| 12+1 BL 0           |                                      | 63 X<>Y     |                 |
| 17 9/19             | _                                    | 64 LOSTX    |                 |
| 13 8021             | Input x <sub>i</sub> ,y <sub>i</sub> | 45 *        |                 |
|                     | 1 1                                  |             |                 |
| 15 RIN              |                                      |             |                 |
| 16+LBL B            |                                      | 67 RUL 00   |                 |
| 17 STO 05           | Input y y f                          | 68 /        |                 |
| 18 FS? 01           | i i i i                              | 69 "VX="    |                 |
| 19 CHS              |                                      | 70 XEQ 00   |                 |
| 20 ST+ 01           |                                      | 71 X<>Y     |                 |
| 21 PDN              |                                      | 72 RCL 02   |                 |
| 22 KDO<br>22 STO 04 |                                      | 73 /        |                 |
| 22 310 84<br>27 DDM |                                      | 74 "VY="    |                 |
| 23 KDR              |                                      | 75 VEO 00   |                 |
| 24 310 03           |                                      | 70 AL& 00   |                 |
| 25 RT               |                                      |             |                 |
| 26 RT               |                                      | TO ODEN     | Calculate S, S, |
| 27 ABS              |                                      | 78 SDEV     |                 |
| 28 STO 06           |                                      | 79 "SX="    | x y             |
| 29+LBL 02           |                                      | 80 XEQ 00   |                 |
| 30 RCL 04           |                                      | 81 X<>Y     |                 |
| 31 RCL 03           |                                      | 82 "SY="    |                 |
| 32 XEQ 03           |                                      | 83 XEQ 00   |                 |
| 77 DSE 06           |                                      | 84 X<>Y     |                 |
| 33 DJC 80           |                                      | 85+1 BL 01  |                 |
|                     |                                      | 02 PCL 14   |                 |
| 30 RUL 01           |                                      | 07 ENTERA   |                 |
| 36 510 16           |                                      |             |                 |
| 37 RTN              |                                      |             |                 |
| 38+LBL b            |                                      | 891         |                 |
| 39 SF 01            | Correction for                       | 90 -        |                 |
| 40 XEQ B            | x, y, f                              | 91 /        |                 |
| 41 CF 01            | KKK                                  | 92 SQRT     |                 |
| 42 RTN              |                                      | 93 /        |                 |
| 43+LBL 03           |                                      | 94 FS?C 00  |                 |
| 44 FS? 01           |                                      | 95 GTO 05   |                 |
| 45 GTO 04           |                                      | 96 "SX.="   |                 |
| 46 5+               |                                      | 97 XEQ 00   |                 |
| 47 RTN              |                                      | 98 LASTX    |                 |
|                     |                                      | 99 SDEV     |                 |
| 40 2-               |                                      | 100 8754    | }               |
| 49 2-               |                                      | 100 0124    |                 |
| 50 RTN              |                                      | 101 5- 00   | 1               |

| 102 GTO 01  |                | 51 |  |
|-------------|----------------|----|--|
| 103+LBL 05  |                |    |  |
| 104 "SY ="  |                |    |  |
| 105 CTO 00  |                |    |  |
|             |                |    |  |
| 106+LBL E   | Calculate      |    |  |
| 107 MEAN    | S, S, '        |    |  |
| 108 X<>Y    | xy xy          |    |  |
| 109 STO 02  |                |    |  |
| 110 RCL 15  |                |    |  |
| 111 PCL 11  | •              |    |  |
|             |                | 60 |  |
| 112 RUL 02  |                |    |  |
| 113 *       |                |    |  |
| 114 -       |                |    |  |
| 115 RCL 16  | 1              |    |  |
| 116 1       |                |    |  |
| 117 -       |                |    |  |
| 118 /       |                |    |  |
| 110 /       |                |    |  |
| 119 510 07  |                |    |  |
| 120 "SXY="  |                |    |  |
| 121 XEQ 00  |                | 70 |  |
| 122 RCL 16  |                |    |  |
| 123 ENTER1  |                |    |  |
| 124 X<>Y    |                |    |  |
| 125 1       |                |    |  |
| 106 -       |                |    |  |
|             | 1              |    |  |
| 127 /       |                |    |  |
| 128 /       |                |    |  |
| 129 "SXY.=" |                |    |  |
| 130 XEQ 00  |                |    |  |
| 131 SDEV    |                |    |  |
| 132 RCL 07  |                | 80 |  |
| 177 /       |                |    |  |
| 174 4       | 1              |    |  |
| 134 *       | 1              |    |  |
| 135 1/X     |                |    |  |
| 136 "VXY="  | 4              |    |  |
| 137+LBL 00  | Output routing |    |  |
| 138 ARCL X  |                |    |  |
| 139 AVIEW   |                |    |  |
| 140 END     | 1              |    |  |
|             | 1              |    |  |
| 40          | 4              | 00 |  |
| +0          | 4              |    |  |
|             | 4              |    |  |
|             | 4              |    |  |
|             |                |    |  |
|             | 1              |    |  |
|             | 1              |    |  |
|             | 1              |    |  |
| <u>├</u>    | 4              |    |  |
|             | ł              |    |  |
|             | 4              |    |  |
|             | ]              |    |  |
| 50          |                | 00 |  |

# **REGISTERS, STATUS, FLAGS, ASSIGNMENTS**<sup>39</sup>

|    | DATA RI                                       | EGISTERS                                       |        |                    |       |                     | STA                                         | TUS          |                          |            |
|----|-----------------------------------------------|------------------------------------------------|--------|--------------------|-------|---------------------|---------------------------------------------|--------------|--------------------------|------------|
| 00 | X<br>Σfi<br>y<br>x.                           | 50                                             |        | SIZE<br>ENG<br>DEG |       | 17 TO<br>FIX<br>RAC | T. REG5<br>SCI<br>0 GR                      | 2<br> <br>AD | USER MC<br>- ON <u>X</u> | )DE<br>OFF |
| 05 | <sup>1</sup> y <sub>i</sub><br>f <sub>i</sub> | 55                                             |        |                    | INIT  |                     | FL/                                         | AGS          |                          |            |
|    | USED                                          |                                                |        | #                  | S/C   | SET                 | INDICATE                                    | S            | CLEAR IND                | ICATES     |
|    | USED                                          |                                                |        | 00                 |       | s <sub>y</sub> '    |                                             |              |                          |            |
|    |                                               |                                                |        | 01                 |       | Córre               | ction                                       |              |                          |            |
| 10 |                                               | 60                                             |        | 21                 |       | Print               | er enabl                                    | e            |                          |            |
|    | <b>P</b>                                      | 60                                             |        |                    |       |                     |                                             |              |                          |            |
|    | $\sum_{r=1}^{2}$                              |                                                |        |                    |       |                     |                                             |              |                          |            |
|    | <u> </u>                                      |                                                |        |                    |       |                     |                                             |              |                          |            |
|    | <sup>2y</sup> <sub>5</sub> i <sub>2</sub>     |                                                |        |                    |       |                     |                                             |              |                          |            |
| 15 |                                               | 65                                             |        |                    |       |                     |                                             |              |                          |            |
| 15 | <sup>2x</sup> i <sup>y</sup> i                | 05                                             |        |                    |       |                     |                                             |              |                          |            |
|    | 11                                            |                                                |        |                    |       |                     |                                             |              |                          |            |
|    |                                               | +                                              |        |                    |       |                     | F84-00-0-5-6-5-00-0-0-0-0-0-0-0-0-0-0-0-0-0 |              |                          |            |
|    |                                               |                                                |        |                    |       |                     |                                             |              |                          |            |
| 20 |                                               | 70                                             |        |                    |       |                     |                                             |              |                          |            |
|    |                                               | / °                                            |        |                    |       |                     |                                             |              |                          |            |
|    |                                               |                                                |        |                    |       |                     |                                             |              |                          |            |
|    |                                               |                                                |        |                    |       |                     |                                             |              |                          |            |
|    |                                               |                                                |        |                    |       |                     |                                             |              |                          |            |
| 25 |                                               | 75                                             |        |                    |       |                     |                                             |              |                          |            |
|    |                                               |                                                | ·····, |                    |       |                     |                                             |              |                          |            |
|    |                                               |                                                |        |                    |       |                     |                                             |              |                          |            |
|    |                                               |                                                |        |                    |       |                     |                                             |              |                          |            |
|    |                                               |                                                |        |                    |       | 2                   |                                             |              |                          |            |
| 30 |                                               | 80                                             |        |                    |       |                     |                                             |              |                          |            |
|    |                                               |                                                |        |                    |       |                     |                                             |              |                          |            |
|    |                                               |                                                |        |                    |       |                     |                                             |              |                          |            |
|    |                                               |                                                |        |                    |       |                     |                                             |              |                          |            |
|    |                                               |                                                |        |                    |       |                     |                                             |              |                          |            |
| 35 |                                               | 85                                             |        |                    |       |                     |                                             |              |                          |            |
|    |                                               |                                                |        |                    |       |                     |                                             |              |                          |            |
|    |                                               | <b> </b>                                       |        |                    |       |                     | ASSIGN                                      |              | rs                       |            |
|    |                                               | <u>                                       </u> |        |                    | FUNCT | ΓΙΟΝ                | KEY                                         | F            | UNCTION                  | KEY        |
| 40 |                                               | 90                                             |        |                    |       |                     | 1                                           |              |                          |            |
|    |                                               |                                                |        |                    |       |                     |                                             |              |                          |            |
|    |                                               |                                                |        |                    |       |                     |                                             |              |                          |            |
|    |                                               |                                                |        |                    |       |                     |                                             |              |                          |            |
|    |                                               |                                                |        |                    |       |                     |                                             |              |                          |            |
| 45 |                                               | 95                                             |        |                    |       |                     |                                             |              |                          |            |
|    |                                               |                                                |        |                    |       |                     |                                             |              |                          |            |
|    |                                               |                                                |        |                    |       |                     |                                             |              |                          |            |
|    |                                               |                                                |        |                    |       |                     |                                             |              |                          |            |
|    |                                               |                                                |        |                    |       |                     |                                             |              |                          |            |

#### MOVING AVERAGE

In a moving average, a specified number of data points are averaged. When there is a new piece of input data, the oldest piece of data is discarded to make room for the latest input. This replacement scheme makes the moving average a valuable tool in following trends. The fewer the number of data points, the more trend sensitive the average becomes. With a large number of data points, the average behaves more like a regular average, responding slowly to new input data.

This program allows for a moving average of 14 points with no memory modules and 64 more points with each additional memory module. It also allows for more than one moving average to be computed with the same set of data. For example, instead of obtaining only a 6 month moving average, you could obtain a 3 month and 12 month as well with the same data. For each additional moving average you wish to compute, the maximum number of data points is reduced by three. For example if you have no memory modules and wish to compute 2 moving averages with the same data, the maximum size for an average is 11.

This program is most useful when a card reader is available. With data card(s) to remember your old data points you need only input the most recent data point to compute current moving average(s).

Example 1:

A six period and three period moving average is desired to project monthly sales. The first 6 months of sales follows:

| Month | 1   | 2   | 3   | 4   | 5   | 6   |
|-------|-----|-----|-----|-----|-----|-----|
| Sales | 125 | 183 | 207 | 222 | 198 | 240 |

Compute the 3 month moving average for months 3,4,5, and 6, and the 6 month moving average for month 6.

| Keystrokes:                          | Display:                                   |
|--------------------------------------|--------------------------------------------|
| [XEQ] [ALPHA] SIZE [ALPHA] 006       |                                            |
| [XEQ] [ALPHA] AVG [ALPHA]            | NO. OF AVGS ?                              |
| 2 [R/S]                              | N MAX?                                     |
| 6 [R/S]                              | SET SIZE 15 (mark a data card<br>SIZE 015) |
| [XEQ] [ALPHA] SIZE [ALPHA] 015 [R/S] | N2 ?                                       |
| 3 [R/S]                              | DATA ?                                     |
| 125 [R/S]                            | DATA ?                                     |
| 183 [R/S]                            | DATA ?                                     |
| 207 [R/S]                            | DATA ?                                     |
| [R/S]                                | MA3=171.6667                               |
| [R/S] [R/S]                          | DATA ?                                     |
| 222 [R/S]                            | DATA ?                                     |
| [R/S]                                | MA3=204.0000                               |
| [R/S] [R/S]                          | DATA ?                                     |
| 198 [R/S]                            | DATA ?                                     |
| [R/S]                                | MA3=209.0000                               |
| [R/S] [R/S]                          | DATA ?                                     |
| 240 [R/S]                            | DATA ?                                     |
| [R/S]                                | MA3=220.0000                               |
| [R/S]                                | MA6=195.8333                               |

Now record the data for example 2.

[XEQ] [ALPHA] UPDATE [ALPHA] RDY 01 OF 01 Insert one side of the data card into the card reader.

Now turn the calculator off assume a month has passed. Turn the calculator on and load the program.

Example 2:

The actual sales for the seventh month totaled 225 units. Compute new moving averages and output the current points in the averages.

| Keystrokes:                |     | Display      |                                 |
|----------------------------|-----|--------------|---------------------------------|
| [XEQ] [ALPHA] SIZE [ALPHA] | 015 |              | (as marked on<br>the data card) |
| load the data card         |     |              |                                 |
| [XEQ] [ALPHA] PT [ALPHA]   |     | DATA ?       |                                 |
| 225 [R/S]                  |     | DATA ?       |                                 |
| [R/S]                      |     | MA3=221.0000 |                                 |
| [R/S]                      |     | MA6=212.5000 |                                 |
| [XEQ] [ALPHA] OUT [ALPHA]  |     | PT1=225.0000 |                                 |
| [R/S]                      |     | PT2=240.0000 |                                 |
| [R/S]                      |     | PT3=198.0000 |                                 |
| [R/S]                      |     | PT4=222.0000 |                                 |
| [R/S]                      |     | PT5=207.0000 |                                 |
| [R/S]                      |     | PT6=183.0000 |                                 |
|                            |     |              |                                 |

|      |                                             |          |                | SIZE: 6+       |
|------|---------------------------------------------|----------|----------------|----------------|
| STEP | INSTRUCTIONS                                | INPUT    | FUNCTION       | DISPLAY        |
| 1.   | Load program.                               |          |                |                |
| 2.   | If starting new moving average(s) go to     |          |                |                |
|      | step 4.                                     |          |                |                |
| 3.   | Set size to that marked on the data card(s) |          |                |                |
|      | (during step 7) containing previous moving  |          |                |                |
|      | average(s) data load the card(s) and go     |          |                |                |
|      | to step 11.                                 |          | [XEQ] SIZE nnn |                |
| 4.   | Initialize                                  |          | [XEQ] AVG      | NO. OF AVGS ?  |
| 5.   | Key in the number of moving averages you    |          |                |                |
|      | wish to compute with the one set of data.   | k        | [R/S]          | N MAX?         |
| 6.   | Key in the number of points that the        |          |                |                |
|      | longest moving average will deal with.      | n<br>max | [R/S]          | SET SIZE nnn   |
| 7.   | Set the required size and mark your data    |          |                |                |
|      | cards with the size (for step 3.)           |          | [XEQ] SIZE nnn |                |
|      |                                             |          | [R/S]          | N2?(or)DATA?   |
| 8.   | Key in the length of the other moving       |          |                |                |
|      | averages as they are asked for. When        |          |                |                |
|      | "DATA?" is displayed continue to step 9.    | n<br>i   | [R/S]          | N(i+1)?orDATA? |
| 9.   | Key in data as desired. When all the        |          |                |                |
|      | points desired are in, go to step 11 or     |          |                |                |
|      | press [R/S] and continue to step 10.        | data     | [R/S]          | DATA ?         |
|      |                                             |          | or             |                |
|      |                                             |          | [R/S]          | MA(i)=         |
| 10.  | Obtain the other moving averages by         |          |                |                |
|      | pressing [R/S] for each. When one more      |          |                |                |
|      | [R/S] is pressed than is needed you are     |          |                |                |
|      | back to the data input routine,             |          |                |                |

|      |                                            |       |             | SIZE: 6+       |
|------|--------------------------------------------|-------|-------------|----------------|
| STEP | INSTRUCTIONS                               | INPUT | FUNCTION    | DISPLAY        |
|      | go to step 9.                              | -     | [R/S]       | MA(i)=         |
|      |                                            |       |             | (or)<br>DATA ? |
| 11.  | Any of the following steps can be done in  |       |             |                |
|      | any order and at any time after step 8.    |       |             |                |
| 12.  | To input more data:                        |       | [XEQ]PT     | DATA ?         |
|      | then go to step 9.                         |       |             |                |
| 13.  | To output data in newest to oldest format: |       | [XEQ] OUT   | PT1=           |
|      |                                            |       | [R/S]       | PT2=           |
|      |                                            |       | :           | :              |
| 14.  | To obtain current moving averages:         |       | [XEQ]AVGS   | MA(i)=         |
|      | then go to step 10.                        |       |             |                |
| 15.  | To store current data on cards:            |       | [XEQ]UPDATE | RDY () OF ()   |
|      | then load cards requested                  |       |             |                |
|      |                                            |       |             |                |
|      |                                            |       |             |                |
|      |                                            |       |             |                |
|      |                                            |       |             |                |
|      |                                            |       |             |                |
|      |                                            |       |             |                |
|      |                                            |       |             |                |
|      |                                            |       |             |                |
|      |                                            |       |             |                |
|      |                                            |       |             |                |
|      |                                            |       |             |                |
|      |                                            |       |             |                |
|      |                                            |       |             |                |
|      |                                            |       |             |                |

| 01+LBL "AVG   | Initialization | 47 RIN             |                        |
|---------------|----------------|--------------------|------------------------|
|               |                | 48 1               |                        |
| 02 CLRG       |                | 49 +               |                        |
| 03 "NO. OF    |                | 50+LBL 04          |                        |
| AVGS ?"       | 1              | 51 ISG 02          |                        |
| 04 PROMPT     |                | 52 GTO 03          |                        |
| 05 1          |                | 53+LBL "PT"        | Input a data           |
| 06 +          |                | 54 CF 22           | point                  |
| 07 STO 00     |                | 55 "DATA ?"        |                        |
| 08 3          |                | 56 PROMPT          |                        |
| 09 *          |                | 57 RCL 01          |                        |
| 10 STO 01     |                | 58 FC?C 22         |                        |
| 11 "N MAX?" 1 | n<br>max       | 59 GTO "AVG        | lt no point            |
| 12 PROMPT     |                | S"                 | calculate average      |
| 13 STO 05     |                | 60 1 E3            |                        |
| 14 RUL 01     |                |                    |                        |
|               |                | 62 4.00003<br>27 x |                        |
| 10 010 0      |                | 63 T<br>24 STO 82  |                        |
| 10 "CF 27     |                | 64 310 82          |                        |
| 18 3E( 312    |                | 66 -               |                        |
| 19 ARCL X     |                | 67 X<>Y            |                        |
| 20 PROMPT     | Brompt for     | 68+LBL 01          |                        |
| 21 RCL 00     | Prompt for     | 69 ST+ IND         | Add pt. to $\Sigma$ 's |
| 22 3          | correct size   | Y                  |                        |
| 23 *          |                | 70 RCL IND         |                        |
| 24.96         |                | 02                 |                        |
| 25 -          |                | 71 RCL 05          |                        |
| 26 1 E3       |                | 72 MOD             |                        |
| 27 /          |                | 73 RCL 01          |                        |
| 28 4          |                | 74 +<br>75 DCL IND |                        |
|               |                | V YO REL IND       |                        |
| 30 310 82     |                | 76 ST- IND         | Subtract ald at        |
| 32 6TO 04     |                | т                  | Bubliace of pt.        |
| 33+LBL 03     |                | 77 ISG IND         |                        |
| 34 "N"        |                | 02                 |                        |
| 35 ARCL X     |                | 78+LBL 00          | Point to next          |
| 36 "H?"       |                | 79 RDN             | oldest pt.             |
| 37 CF 22      |                | 80 RDN             |                        |
| 38 PROMPT     | n,             | 81 ISG Y           |                        |
| 39 FC?C 22    |                | 82 ISG 02          |                        |
| 40 GTO "PT"   |                | 83 610 01          |                        |
| 41 STO IND    |                | 84 KUL 04          | •                      |
|               |                | 96 -               | •                      |
| 42 013        |                | 87 PCI 05          | •                      |
| 44 ST- 02     |                |                    |                        |
| 45 RDN        |                | 89 RCL 01          | 1                      |
| 46 STO IND    | Pointer:       | 90 +               | 1                      |
| 02            |                | 91 X<>Y            | 1                      |
|               | 4              | •                  | 4                      |

| 92 STO IND<br>Y<br>93 GTO "PT"<br>94+LBL "AVG<br>S"<br>95 CF 29<br>96 RCL 01<br>97 3<br>98 -<br>99 .00205<br>100 +<br>101 STO 02                                                                | Compute the<br>moving averages                          | 137 FIX 0<br>138 ARCL 02<br>139 "⊢="<br>140 FIX 4<br>141 ARCL IND<br>X<br>142 PROMPT<br>143 RDN<br>144 ISG 02<br>145 GTO 05<br>146 GTO "OUT | Output point           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| 102+LBL 02<br>103 RCL IND<br>02<br>104 2<br>105 ST+ 02<br>106 RDN                                                                                                                               | Store counter<br>Recall <u></u> i                       | 147+LBL "UPD<br>ATE"<br>148 WDTA<br>149 RTN<br>150 .END.                                                                                    | Update data<br>card(s) |
| 107 RCL IND<br>02<br>108 /<br>109 "MA"<br>110 FIX 0<br>111 ARCL IND<br>02<br>112 "H="<br>113 FIX 4<br>114 ARCL X<br>115 PROMPT<br>116 DSE 02<br>117 GTO 02<br>118 GTO "PT"<br>119+LBL "OUT<br>" | Recall n<br>i<br>Output moving<br>avg.<br>Output points | 80                                                                                                                                          |                        |
| 120 RCL 05<br>121 1 E3<br>122 /<br>123 1<br>124 +<br>125 STO 02<br>126 RCL 04<br>127 + LBL 05<br>128 1<br>129 -                                                                                 | Store counter                                           | 90                                                                                                                                          |                        |
| 130 ENTERT<br>131 ENTER↑<br>132 RCL 05<br>133 MOD<br>134 RCL 01<br>135 +<br>136 "PT"                                                                                                            | Scale pointer                                           | 00                                                                                                                                          |                        |

### **REGISTERS, STATUS, FLAGS, ASSIGNMENTS**

|          | DATA RE                                            | GIS | TERS |                    |        |                     | STA               | TUS            |                |                    |
|----------|----------------------------------------------------|-----|------|--------------------|--------|---------------------|-------------------|----------------|----------------|--------------------|
| 00       | k + 1<br>data array pointer<br>counter<br>Σ1       | 50  |      | SIZE<br>ENG<br>DEG | 6+<br> | TOT<br>FIX .<br>RAD | . REG<br>SC<br>GR | 49+<br> <br>AD | . USER MOI<br> | DE<br>DFF <u>X</u> |
| 05       | pointer<br>n <sub>1</sub> is also n <sub>max</sub> | 55  |      |                    | INIT   |                     | FL                | AGS            |                |                    |
|          | Σ <sub>2</sub>                                     |     |      | #                  | S/C    | SET                 | NDICATE           | S              | CLEAR INDI     | CATES              |
| L        | pointers                                           |     |      | 22                 |        | data                |                   |                | no data        |                    |
|          | n <sub>2</sub>                                     |     |      | 29                 |        | decima              | 1                 |                | no decimal     |                    |
| 10       | •                                                  | 60  |      |                    |        |                     |                   |                |                |                    |
|          | data                                               | 60  |      |                    |        |                     |                   |                |                |                    |
|          | data                                               |     |      |                    |        |                     |                   |                |                |                    |
|          | data<br>•                                          |     |      |                    |        |                     |                   |                |                |                    |
|          | •                                                  |     |      |                    |        |                     |                   |                |                |                    |
| 15       |                                                    | 65  |      |                    |        |                     |                   |                |                |                    |
|          |                                                    | 05  |      |                    |        |                     |                   |                |                |                    |
|          |                                                    |     |      |                    |        |                     |                   |                |                |                    |
|          |                                                    |     |      |                    |        |                     |                   |                |                |                    |
|          |                                                    |     |      |                    |        |                     |                   |                |                |                    |
| 20       |                                                    | 70  |      |                    |        |                     |                   |                |                |                    |
| 20       |                                                    | 70  |      |                    |        |                     |                   |                |                |                    |
|          |                                                    |     |      |                    |        |                     |                   |                |                |                    |
|          |                                                    |     |      |                    |        |                     |                   |                |                |                    |
|          |                                                    |     |      |                    |        |                     |                   |                |                |                    |
| 25       |                                                    | 75  |      |                    |        |                     |                   |                |                |                    |
| -25      |                                                    | 15  |      |                    |        |                     |                   |                |                |                    |
|          |                                                    |     |      |                    |        |                     |                   |                |                |                    |
|          |                                                    |     |      |                    |        |                     |                   |                |                |                    |
|          |                                                    |     |      |                    |        |                     |                   |                |                |                    |
| 30       |                                                    | 80  |      |                    |        |                     |                   |                |                |                    |
| <u> </u> |                                                    |     |      |                    |        |                     |                   |                |                |                    |
|          |                                                    |     |      |                    |        |                     |                   |                |                |                    |
|          |                                                    |     |      |                    |        |                     |                   |                |                |                    |
|          |                                                    |     |      |                    |        |                     |                   |                |                |                    |
| 35       |                                                    | 85  |      |                    |        |                     |                   |                |                |                    |
|          |                                                    |     |      |                    |        |                     |                   |                |                |                    |
|          |                                                    | -   |      |                    |        |                     | ASSIGN            | IMEN           | TS             |                    |
|          |                                                    |     |      |                    | FUNCT  |                     | KFY               | F              |                | KEY                |
| 40       |                                                    | 90  |      |                    | 0.101  |                     |                   | · ·            |                |                    |
| <u> </u> |                                                    |     |      |                    |        |                     |                   |                |                |                    |
|          |                                                    |     |      |                    |        |                     |                   |                |                |                    |
|          |                                                    |     |      |                    |        |                     |                   |                |                |                    |
|          |                                                    |     |      |                    |        |                     |                   |                |                |                    |
| 45       |                                                    | 95  |      |                    |        |                     |                   |                |                |                    |
|          |                                                    |     |      |                    |        |                     | 1                 |                |                |                    |
|          |                                                    |     |      |                    |        |                     |                   |                |                |                    |
|          |                                                    |     |      |                    |        |                     |                   |                |                |                    |
|          |                                                    |     |      |                    |        |                     |                   |                |                |                    |

47

#### GOMPERTZ CURVE TREND ANALYSIS

A useful curve for evaluating sales trends, etc., is the Gompertz curve. This is a "growth" curve having a general "S" shape and may be used to describe series of data where the early rate of growth is small, then accelerates for a period of time and then slows again as the time grows long. The sales curves for many products follow this trend during the introductory, growth and early mature phases.

The data points to be fit to a Gompertz curve should be equally spaced along the X (or time) axis and all the data points must be positive. The points are divided serially into 3 groups for data entry.

This program processes the data, fits it to a Gompertz curve and calculates extimated values for future data points. The 3 constants (a,b,c) which characterize the curve are available if desired.

Equations:

y=ca<sup>b<sup>x</sup></sup>

where a,b,c,x, and y are positive

$$b = \left(\frac{s_{3}-s_{2}}{s_{2}-s_{1}}\right)^{1/n}$$

$$c = \exp\left[\frac{1}{n}\left(\frac{s_{1}-s_{2}-s_{2}}{s_{1}+s_{3}-2s_{2}}\right)\right]$$

$$a = \exp\left[\frac{(b-1)(s_{2}-s_{1})}{b(b^{n}-1)^{2}}\right]$$

where  $s_1, s_2$ , and  $s_3$  are:

$$s_{1} = \sum_{i=1}^{n} \ln y_{i} = nlnc+b(lna) \frac{b^{n}-1}{b-1}$$

$$s_{2} = \sum_{i=n+1}^{2n} lny_{i} = n lnc+b^{n+1} (lna) \frac{b^{n}-1}{b-1}$$

$$s_{3} = \sum_{i=2n+1}^{3n} lny_{i} = nlnc+b^{2n+1} (lna) \frac{b^{n}-1}{b-1}$$

Example:

The X-Presso Company marketed a revolutionary new coffee brewing maching in 1968. Sales grew at a steady pace for several years then began to slow. The sales records for the first 9 years of the product's life were as follows:

| Year | Sales (\$K) | Year | Sales (\$K) |
|------|-------------|------|-------------|
| 1    | 18          | 6    | 260         |
| 2    | 41          | 7    | 282         |
| 3    | 49          | 8    | 322         |
| 4    | 151         | 9    | 340         |
| 5    | 188         |      |             |

What are the projected sales volumes for this product in its 10th and 12th year? What is the maximum yearly sales volume for this product if the present trend continues? What annual sales rate would the curve have predicted for the 5th year of the product's life? (Arrange the data as follows)

| Group I                       | Group | II | Group III            |                                                      |
|-------------------------------|-------|----|----------------------|------------------------------------------------------|
| 18                            | 151   |    | 282                  |                                                      |
| 41                            | 188   |    | 322                  |                                                      |
| 49                            | 260   |    | 340                  |                                                      |
| Keystrokes:                   |       |    | Display:             |                                                      |
| [USER]                        |       |    |                      | (Set USER mode)                                      |
| [XEQ] [ALPHA] SIZE [ALPHA] 00 | 7     |    |                      |                                                      |
| [XEQ] [ALPHA] GOMP [ALPHA]    |       |    | 0.0000               |                                                      |
| 18 [A] 41 [A] 49 [A]          |       |    | 3.0000               |                                                      |
| 151 [B] 188 [B] 260 [B]       |       |    | 6.0000               |                                                      |
| 282 [C] 322 [C] 340 [C]       |       |    | 9.0000               | (Total # of entries)                                 |
| [D]                           |       |    | a=0.0042             | (a)                                                  |
| [R/S]                         |       |    | <b>b=0.6456</b>      | (b)                                                  |
| [R/S]                         |       |    | <b>c=373.9</b> 220   | (c)                                                  |
| 10 [E]                        |       |    | Y.=349.0896          | (\$K sales in l0th year)                             |
| 12 [E]                        |       |    | Y <b>.=</b> 363.3649 | (#K sales in 12th year)                              |
| 100 [E]                       |       |    | Y.=373.9220          | (Maximum annual sales<br>after long product life)    |
| 5 [E]                         |       |    | Y.=202.5965          | (\$K sales in 5th year-<br>actual sales were \$188K) |

|      |                                  |         |            | SIZE: 007   |
|------|----------------------------------|---------|------------|-------------|
| STEP | INSTRUCTIONS                     | INPUT   | FUNCTION   | DISPLAY     |
| 1.   | Load program and set USER mode   |         | [USER]     |             |
| 2.   | Initialize                       |         | [XEQ] COMP | 0.0000      |
| 3.   | Key in the first group of data.  | Group 1 | [A]        | #of entries |
| 4.   | Key in the second group of data. | Group 2 | [B]        | #of entries |
| 5.   | Key in the third group of data.  | Group 3 | [C]        | #of entries |
| 6.   | Compute coefficients.            |         | [D]        | a=          |
|      |                                  |         | [R/S]      | b=          |
|      |                                  |         | [R/S]      | c=          |
| 7.   | Compute estimated value y        | x       | [E]        | У•=         |
|      |                                  |         |            |             |
|      |                                  |         |            |             |
|      |                                  |         |            |             |
|      |                                  |         |            |             |
|      |                                  |         |            |             |
|      |                                  |         |            |             |
|      |                                  |         |            |             |
|      |                                  |         |            |             |
|      |                                  |         |            |             |
|      |                                  |         |            |             |
|      |                                  |         |            |             |
|      |                                  |         |            |             |
|      |                                  |         |            |             |
|      |                                  |         |            |             |
|      |                                  |         |            |             |
|      |                                  |         |            |             |
|      |                                  |         |            |             |
|      |                                  |         |            |             |

| 01+LBL "GOM         | Initialize      | 51 -                 |                |
|---------------------|-----------------|----------------------|----------------|
| P"<br>  62.9        | 4               | 52 /<br>53 RCL 00    | 4              |
| 02 0<br>03 STO 00   | -               | 54 /                 | •              |
| 04 STO 01           | 1               | 55 E1X               | 1              |
| 05 STO 02           |                 | 56 STO 06            |                |
| 06 STO 03           | 1               | 57 RCL 05            |                |
| 07 SF 21            |                 |                      |                |
| 08 KIN<br>09+1 BL B | -               | 60 RCL 05            |                |
| 10 LN               | Accumulate      | 61 RCL 00            |                |
| 11 ST+ 01           | variables       | 62 Y1X               |                |
| 12 GTO 00           |                 | 63 1                 |                |
| 13+LBL B            | ]               | 64 -<br>25 VA2       |                |
| 14 LN<br>15 ST+ 02  |                 | 66 /                 |                |
| 16 GTO 00           |                 | 67 RCL 05            |                |
| 17+LBL C            | 4               | 68 /                 |                |
| 18 LN               |                 | 69 RCL 02            |                |
| 19 ST+ 03           |                 | 70 RCL 01            |                |
| 20+LBL 00           |                 | 72 *                 |                |
| 22 ST+ 00           |                 | 73 E1X               |                |
| 23 RCL 00           |                 | 74 STO 04            |                |
| 24 RTN              |                 | 75 "a"               |                |
| 25+LBL D            | Compute a h a   | 76 XEQ 01            |                |
| 26 3<br>27 ST/ 00   | compute a, b, c | 78 RCL 05            |                |
| 28 RCL 03           |                 | 79 XEQ 01            |                |
| 29 RCL 02           |                 | 80 °c"               |                |
| 30 -                |                 | 81 RCL 06            |                |
| 31 RCL 02           |                 | 82*LBL 01<br>97 "H=" | Output routine |
| 32 RCL 01           |                 | 84 ARCL X            |                |
| 34 /                |                 | 85 AVIEW             |                |
| 35 RCL 00           |                 | 86 RTN               |                |
| 36 1/X              |                 | 87+LBL E             | ^              |
|                     |                 | 88 KCE 85            | Compute y      |
| 39 RCL 01           |                 | 90 YTX               |                |
| 40 RCL 03           |                 | 91 RCL 04            |                |
| 41 *                |                 | 92 X<>Y              |                |
| 42 RCL 02           |                 | 93 YTX<br>94 PCI 06  |                |
| 43 XTZ<br>44 -      |                 | 95 *                 |                |
| 45 RCL 01           |                 | 96 "Y."              |                |
| 46 RCL 03           |                 | 97 XEQ 01            |                |
| 47 +                |                 | 98 .END.             | _              |
| 48 RCL 02           |                 | ·····                | 4              |
| 47 4<br>  50 *      |                 | 00                   | -              |

### **REGISTERS, STATUS, FLAGS, ASSIGNMENTS**

| DATA REGISTERS |                     |    | STATUS             |        |                       |                   |                |             |           |  |
|----------------|---------------------|----|--------------------|--------|-----------------------|-------------------|----------------|-------------|-----------|--|
| 00             | n<br>S1<br>S2<br>S3 | 50 | SIZE<br>ENG<br>DEG | 00<br> | 7 TOT<br>FIX -<br>RAD | . REG<br>SC<br>GR | 26<br>I<br>AD  | USER MO<br> | DE<br>DFF |  |
| 05             | a<br>b              | 55 |                    | INIT   |                       | FL                | AGS            |             |           |  |
|                | с                   |    | #<br>21            | S/C    | SET<br>Print          | er enab           | <b>S</b><br>1e | CLEAR IND   | ICATES    |  |
| 10             |                     | 60 |                    |        |                       |                   |                |             |           |  |
|                |                     |    |                    |        |                       |                   |                |             |           |  |
| 15             |                     | 65 |                    |        |                       |                   |                |             |           |  |
|                |                     |    |                    |        |                       |                   |                |             |           |  |
| 20             |                     | 70 |                    |        |                       |                   |                |             |           |  |
|                |                     |    |                    |        |                       |                   |                |             |           |  |
| 25             |                     | 75 |                    |        |                       |                   |                |             |           |  |
|                |                     |    |                    |        |                       |                   |                |             |           |  |
| 30             |                     | 80 |                    |        |                       |                   |                |             |           |  |
|                | · · · · ·           |    |                    |        |                       |                   |                |             |           |  |
| 35             |                     | 85 |                    |        |                       |                   |                |             |           |  |
|                |                     |    |                    | EUNCT  |                       |                   |                |             | KEV       |  |
| 40             |                     | 90 |                    |        |                       |                   |                | UNCTION     |           |  |
|                |                     |    |                    |        |                       |                   |                |             |           |  |
| 45             |                     | 95 |                    |        |                       |                   |                |             |           |  |
|                |                     |    |                    |        |                       |                   |                |             |           |  |

Break-even analysis is a technique for analyzing the relationships among fixed costs, variable costs, and income. Until the break-even point is reached, at the intersection of the total income and total cost lines, the producer operates at a loss. After the break-even point, each unit produced and sold makes a profit. Break-even analysis may be represented as follows:



Units

Given four of the following variables: fixed costs (F), sales price per unit (P), variable costs per unit (V), number of units sold (U), and gross profit (GP), this program evaluates the remaining variable. To calculate the breakeven values, simply let the gross profit equal zero.

The degree of operating leverage (OL) at a point is defined as the ratio of the percentage change in net operating income to the percentage change in units sold. The greatest degree of operating leverage is found near the break-even point, where a small change in sales may produce a very large increase in profits. This happens because the profits are close to zero near the break-even point. Likewise, firms with a small degree of operating leverage are operating farther from the break-even point, and they are relatively insensitive to changes in sales volume.

The necessary inputs to calculate the degree of operating leverage are fixed costs (F), sales price per unit (P), variable costs per unit (V), and number of units (U).

For subsequent calculations, it is necessary only to input new data.

Break Even Analysis

$$GP = U(P-V) - F$$

 $OL = \frac{U(P-V)}{U(P-V) - F}$ 

Example 1: The Cooper Company sells finance textbooks at \$13 each. Given costs and revenues below, how many textbooks must be sold to break even?

FIXED COSTS

| Typesetting<br>Graphics production<br>Printing and binding | \$ 4,000<br>5,000<br>3,000 |
|------------------------------------------------------------|----------------------------|
| Total fixed costs                                          | \$12,000                   |
| VARIABLE COSTS PER COPY                                    |                            |
| Distribution<br>Commissions<br>Royalties                   | \$ 1.00<br>3.75<br>2.00    |
| Total variable costs per copy                              | \$ 6.75                    |
| Sales price per copy                                       | \$13.00                    |

Example 2: What is the Cooper Company's degree of operating leverage at 2000 units? At 5000 units?

Keystrokes: Display: [USER] (Set USER mode.) [XEQ] [ALPHA] SIZE [ALPHA] 007 [XEQ] [ALPHA] BEA [ALPHA] FIXED ? 12000 [R/S] PRICE ? 13 [R/S] VARIABLE ? 6.75 [R/S] UNITS ? [R/S]G. PROFIT ? 0 [R/S]UNITS=1920.00 [B] UNITS ? 2000 [R/S] % LEV.=25.00 [B] UNITS ? 5000 [R/S] % LEV.=1.62

|      |                                          |       |           | SIZE: 007           |
|------|------------------------------------------|-------|-----------|---------------------|
| STEP | INSTRUCTIONS                             | INPUT | FUNCTION  | DISPLAY             |
| 1    | Key in the program and set USER mode     |       | [USER]    |                     |
| 2    | Initialize                               |       | [XEQ] BEA | FIXED ?             |
| 3    | Input 4 of the following: fixed cost;    | F     | [R/S]     | PRICE ?             |
|      | price;                                   | Р     | [R/S]     | VARIABLE ?          |
|      | variable cost;                           | v     | [R/S]     | UNITS ?             |
|      | no. of units;                            | U     | [R/S]     | G. PROFIT ?         |
|      | and gross profit.                        | G.P.  | [R/S]     | FIXED=\$( )         |
| 3    | When prompted for the unknown quantity,  |       |           | -or-<br>PRICE=\$( ) |
|      | press [R/S] (make no input). The         |       |           | -or-<br>VAR.=\$( )  |
|      | unknown will be calculated automatically |       |           | -or-<br>UNITS=( )   |
|      | when all the data is input               |       |           | -or-<br>G.P.=( )    |
| 4    | To find percent operating leverage       |       | [в]       | UNITS ?             |
| 5    | Input number of units                    | U     | [R/S]     | % LEV.=( )          |
|      |                                          |       |           |                     |
|      |                                          |       |           |                     |
|      |                                          |       |           |                     |
|      |                                          |       |           |                     |
|      |                                          |       |           |                     |
|      |                                          |       |           |                     |
|      |                                          |       |           |                     |
|      |                                          |       |           |                     |
|      |                                          |       |           |                     |
|      |                                          |       |           |                     |
|      | · · · · · · · · · · · · · · · · · · ·    |       |           |                     |
|      |                                          |       |           |                     |
|      |                                          |       |           |                     |
|      |                                          |       |           |                     |

Г

| Ø1◆LBL "BEA             | Initialize and | 45 -                     |                 |
|-------------------------|----------------|--------------------------|-----------------|
|                         | input data     | 46 STO 03                |                 |
| 02 1.1                  |                | 47 "VAR."                |                 |
| 03 STO 00               |                | 48 XEQ 00                |                 |
| 04 CF 22                |                | 49+LBL 04                | Solve for U     |
| 05 "FIXED ?             |                | 50 RCL 01                |                 |
| ••                      |                | 51 RCL 05                |                 |
| 06 XEQ 09               |                | 52 +                     |                 |
| 07 "PRICE ?             |                | 57 PCI 02                |                 |
|                         |                | 54 PCL 07                |                 |
| 08 XFQ 09               |                | 55 -                     |                 |
| 09 "VORIOR!             |                | 55 -                     |                 |
| E 2"                    |                | J6 /<br>57 CTO 04        |                 |
| 10 VED 09               |                | 57 510 04<br>50 #UNITC-" |                 |
| 10 AEQ 07<br>11 HUNTE 7 |                | 58 "UN115-               |                 |
| II UNITS :              |                | 59 HRUL A                |                 |
| 40 VEO 80               |                | 60 PROMPT                |                 |
| 12 XEQ 09               |                | 61+LBL 05                | Solve for G.P.  |
| 13 "G. PROF             |                | 62 RCL 02                |                 |
| 11 ?"                   |                | 63 RCL 03                |                 |
| 14 XEQ 09               |                | 64 -                     |                 |
| 15 GTO IND              |                | 65 RCL 04                |                 |
| 06                      |                | 66 *                     |                 |
| 16+LBL 01               | Solve for F    | 67 RCL 01                |                 |
| 17 RCL 02               |                | 68 -                     |                 |
| 18 RCL 03               |                | 69 STO 05                |                 |
| 19 -                    |                | 70 "G.P."                |                 |
| 20 RCL 04               |                | 71 XEQ 00                |                 |
| 21 *                    |                | 72+LBL B                 | Solve for OL    |
| 22 RCL 05               |                | 73 "UNITS ?              |                 |
| 23 -                    |                |                          |                 |
| 24 STO 01               |                | 74 PROMPT                |                 |
| 25 "FIXED"              |                | 75 RCL 02                |                 |
| 26 XEQ 00               |                | 76 RCL 03                |                 |
| 27+LBL 02               | Solve for P    | 77 -                     |                 |
| 28 RCL 01               |                | 78 *                     |                 |
| 29 RCL 05               |                | 79 STO 06                |                 |
| 30 +                    |                |                          |                 |
| 31 RCL 04               |                |                          |                 |
| 32 /                    |                | 01  KCL  01              |                 |
| 33 RCL 03               |                | 07 /                     |                 |
| 34 +                    |                | 00 / 00 / EV -           |                 |
| 35 STO 02               |                | 04 % LEV                 |                 |
| 36 "PRICE"              |                | 95 0PC1 V                |                 |
| 37 XEQ 00               |                | OJ HRUL A<br>OZ DROMRT   |                 |
| 38+1 BI 03              |                |                          | Display routine |
| 39 RCI 02               | Solve for V    | 0(VLDL 88<br>00 "L-4"    | 10001100        |
| 40 RCL 01               |                | 00 F=₽<br>00 0PCL V      |                 |
| 41 RCL 01               |                | 07 HKUL A<br>08 DD0MDT   |                 |
| 42 +                    |                | 70 FKUMF1<br>01 DTN      |                 |
| 47 RCI 04               |                |                          | Input storage   |
| 40 KUL 04<br>11 /       |                | 924LBL 09                | routine         |
|                         |                | 93 PRUMPI                |                 |

| 94 STO IND |       | 51  |       |
|------------|-------|-----|-------|
| 00         | 1 1   |     |       |
|            | 4 1   |     |       |
| 75 KUL 00  | 4     |     |       |
| 96 FU(U 22 | 4 4   |     |       |
| 97 510 06  | ļ     |     |       |
| 98 ISG 00  | ]     |     |       |
| 99 RTN     | 1 1   |     |       |
| 100 .END.  | Ì     |     |       |
|            | 1 1   |     |       |
|            | 1 1   | 60  |       |
| h          | 4 }   |     |       |
|            | 4 }   |     |       |
|            | 4 }   |     |       |
|            | 4 1   |     |       |
|            | 4 l   |     |       |
|            | 4 l   |     |       |
|            | j l   |     |       |
|            | ] [   |     |       |
|            | 1 1   |     |       |
|            | 1 1   |     |       |
| 20         | 1 I   | 70  |       |
|            | 4 }   | , 0 |       |
|            | 4 }   |     |       |
|            | 4     |     |       |
|            | 4     |     |       |
|            | 4     |     |       |
|            | 4     |     |       |
|            | 4 . I |     |       |
|            | 1     |     |       |
|            |       |     |       |
|            | 1 1   |     |       |
| 30         | 1 1   | 80  |       |
|            | 1 1   | -   |       |
| <b> </b>   | 1     |     |       |
|            | 1     |     | <br>1 |
| h          | 4     |     | <br>• |
|            | 4     |     | <br>4 |
|            | 4     |     | <br>• |
|            | 4     |     | <br>4 |
|            | 4     |     |       |
|            | 4     |     |       |
|            |       |     | <br>l |
| 40         |       | 90  |       |
|            | ]     |     | ]     |
|            | ]     |     |       |
|            | 1     |     | 1     |
|            |       |     | <br>1 |
|            | 4     |     | <br>1 |
|            | 4     |     | <br>4 |
|            | 1     |     | <br>4 |
| 50         |       | 00  |       |

# **REGISTERS, STATUS, FLAGS, ASSIGNMENTS**

58

|    | DATA REGISTERS         |    | STATUS                                |                    |         |                     |                       |               |                               |           |
|----|------------------------|----|---------------------------------------|--------------------|---------|---------------------|-----------------------|---------------|-------------------------------|-----------|
| 00 | pointer<br>F<br>P<br>V | 50 |                                       | SIZE<br>ENG<br>DEG | 007<br> | TOT<br>FIX -<br>RAD | . REG<br>_2 SCI<br>GR | 43<br>I<br>AD | _ USER MOI<br>_ ON <u>X</u> C | DE<br>DFF |
| 05 | U<br>G.P.              | 55 |                                       |                    | INIT    |                     | FL                    | AGS           |                               |           |
|    | subroutine pointer     |    |                                       | #                  | S/C     | SET                 | INDICATE              | S             | CLEAR INDI                    | CATES     |
|    |                        |    |                                       | 22                 | С       | refer               | to owne               | r's r         | anual                         |           |
|    |                        |    |                                       |                    |         |                     |                       |               |                               |           |
| 10 |                        | 60 |                                       |                    |         |                     |                       |               |                               |           |
|    |                        |    |                                       |                    |         |                     |                       |               |                               |           |
|    |                        |    |                                       |                    |         |                     |                       |               |                               |           |
|    |                        |    |                                       |                    |         |                     |                       |               |                               |           |
| 15 |                        | 65 |                                       |                    |         |                     |                       |               |                               |           |
|    |                        |    |                                       |                    |         |                     |                       |               |                               |           |
|    |                        |    |                                       |                    |         |                     |                       |               |                               |           |
|    |                        |    |                                       |                    |         |                     |                       |               |                               |           |
| 20 |                        | 70 |                                       |                    |         |                     |                       |               |                               |           |
|    |                        |    |                                       |                    |         |                     |                       |               |                               |           |
|    |                        |    |                                       |                    |         |                     |                       |               |                               |           |
|    |                        |    |                                       |                    |         |                     |                       |               |                               |           |
| 25 |                        | 75 |                                       |                    |         |                     |                       |               |                               |           |
|    |                        |    |                                       |                    |         |                     |                       |               |                               |           |
|    |                        |    |                                       |                    |         |                     |                       |               |                               |           |
|    |                        |    |                                       |                    |         |                     |                       |               |                               |           |
| 30 |                        | 80 |                                       |                    |         |                     |                       |               |                               |           |
|    |                        |    |                                       |                    |         |                     |                       |               |                               |           |
|    |                        |    |                                       |                    |         |                     |                       |               |                               |           |
|    |                        |    |                                       |                    |         |                     |                       |               |                               |           |
| 35 |                        | 85 |                                       |                    |         |                     |                       |               |                               |           |
|    |                        |    |                                       |                    |         |                     |                       |               |                               |           |
|    |                        |    |                                       |                    |         |                     | ASSIGN                | MEN           | ITS                           |           |
|    |                        |    |                                       |                    | FUNCT   |                     | KEY                   |               | FUNCTION                      | KEY       |
| 40 |                        | 90 |                                       |                    |         |                     |                       |               |                               |           |
|    |                        |    | · · · · · · · · · · · · · · · · · · · |                    |         |                     |                       |               |                               |           |
|    |                        |    |                                       |                    |         |                     | ł                     |               |                               |           |
|    |                        |    |                                       |                    |         |                     |                       |               |                               |           |
| 45 |                        | 95 |                                       |                    |         |                     |                       |               |                               |           |
|    |                        |    |                                       |                    |         |                     | <b> </b>              |               |                               |           |
|    |                        |    |                                       |                    |         |                     |                       |               |                               |           |
|    |                        |    |                                       |                    |         |                     |                       |               |                               |           |

#### EXPERIENCE (LEARNING) CURVE FOR MANUFACTURING COST

Many production process costs vary with output in close relation to the learning curve:

$$C_n = C_1 n \frac{\log r/\log 2}{r}$$

where

C is the cost of the first unit produced  $C_n$  is the cost of the nth unit produced n is the number of units produced r is the learning factor

This program solves for any of the above variables and also solves for the average cost over a range from i to j using the formula:

$$\overline{C}_{n} = \frac{C_{1}}{j-i} \qquad \frac{j^{B+1} - i^{B+1}}{B+1}$$

where  $B = \log r / \log 2$ 

The theory applies to a single product, or closely related series of similar products developing through the evolutionary process. The average cost is approximate because of the finite, discrete nature of the function. Small values of i may produce incorrect results.

Example:

A computer manufacturer begins a pilot run on a component. Cost accounting informs him that the first unit off of the line cost \$975 and the 100th unit a week later costs \$643. What cost can the manufacturer expect for the 10,000th unit of the line? What is the average cost of the 10,000 units?

| Keystrokes:                    | Display:     |                            |
|--------------------------------|--------------|----------------------------|
| [USER]                         |              | (Set USER Mode)            |
| [XEQ] [ALPHA] SIZE [ALPHA] 008 |              |                            |
| [XEQ] [ALPHA] LEARN [ALPHA]    | 0.00         |                            |
| 975 [A]                        | COST1=975.00 |                            |
| 100 [D]                        | N=100.00     |                            |
| 643 [C]                        | COSTN=643.00 |                            |
| [B]                            | R=0.94       | (Learning factor)          |
| 10000 [D]                      | N=10,000.00  |                            |
| [C]                            | COSTN=424.05 | (10,000 unit cost)         |
| 1 [ENTER <sup>↑</sup> ]        | 1.00         |                            |
|                                |              |                            |
| 10000 [E]                      | AVG\$=466.13 | (Average for 10,000 units) |

|      |                                       |                |             | SIZE: 008 |
|------|---------------------------------------|----------------|-------------|-----------|
| STEP | INSTRUCTIONS                          | INPUT          | FUNCTION    | DISPLAY   |
| 1.   | Load program and set USER mode        |                | [USER]      |           |
| 2.   | Initialize                            |                | [XEQ] LEARN | 0.00      |
| 3.   | Input three of the following:         |                |             |           |
|      | cost of the first unit                | c <sub>1</sub> | [A]         | COST1=    |
|      | learning factor                       | r              | [B]         | R=        |
|      | cost of the nth unit                  | Cn             | [C]         | COST N=   |
|      | number of units                       | n              | [D]         | N=        |
| 4.   | Compute the remaining variable:       |                |             |           |
|      | cost of the first unit                |                | [A]         | COST 1=   |
|      | learning factor                       |                | [B]         | R=        |
|      | cost of the nth unit                  |                | [C]         | COST N=   |
|      | number of units                       |                | [D]         | N=        |
| 5.   | Compute the average cost from the ith |                |             |           |
|      | to the jth unit                       | i              | [ENTER†]    |           |
|      |                                       | j              | [E]         | AVG\$=    |
|      |                                       |                |             |           |
|      |                                       |                |             |           |
|      |                                       |                |             |           |
|      |                                       |                |             |           |
|      |                                       |                |             |           |
|      |                                       |                |             |           |
|      |                                       |                |             |           |
|      |                                       |                |             |           |
|      |                                       |                |             |           |
|      |                                       |                |             |           |
|      |                                       |                |             |           |
|      |                                       |                |             |           |

Г

| 01+LBL "LEA          | Initialize        | 51 Y†X                 |                          |
|----------------------|-------------------|------------------------|--------------------------|
| RN"                  |                   | 52 RCL 01              |                          |
| 02 CE 22             |                   | 53 <b>*</b>            |                          |
| 03 FIX 2             |                   | 54 STO 03              |                          |
| 60 FIN E             |                   | 55 CTO 02              |                          |
| 04 36 21<br>05 CLV   |                   | 56 AL RI D             |                          |
|                      |                   | 57 "N"                 |                          |
| 06 KIN               |                   | 57 N<br>50 CTO 84      |                          |
| 07+LBL H             |                   | 58 510 04              |                          |
| 08 "CUSI1"           |                   | 59 FS?C 22             |                          |
| 09 STO 01            |                   | 60 GIU 02              |                          |
| 10 FS?C 22           |                   | 61 RCL 02              | Calculate n              |
| 11 GTO 02            |                   | 62 XEQ 00              |                          |
| 12 RCL 02            | Calculate Cost 1  | 63 2                   |                          |
| 13 XEQ 01            | (C <sub>1</sub> ) | 64 1/X                 |                          |
| 14 RCL 04            | 1                 | 65 +                   |                          |
| 15 X<>Y              |                   | 66 INT                 |                          |
| 16 Y1X               |                   | 67 STO 04              |                          |
| 17 RCL 03            |                   | 68 GTO 02              |                          |
| 18 X<>Y              |                   | 69+LBL 01              |                          |
| 19 /                 |                   | 70 LOG                 |                          |
| 20 510 01            |                   | 71.2                   |                          |
| 21 610 02            |                   | 72 106                 | B=log r/log <sup>2</sup> |
| 21 GTO 02            |                   | 77 /                   |                          |
|                      |                   | 74 PTN                 |                          |
| 23+LDL 5             |                   | 75+LR! F               |                          |
| 25 670 02            |                   | 76 "0906\$"            |                          |
|                      |                   | 70 8994                |                          |
|                      |                   | 70 00 00               | $Calculate \overline{C}$ |
| 27 610 02            |                   | 70 KUL 02<br>70 VEO 01 | n n                      |
| 28 KLL 04            | Calculate r       | 77 AEQ 01              |                          |
| 29 XEQ 00            |                   | 801                    |                          |
| 30 510 02            |                   | 81 +                   |                          |
| 31 GTU 02            |                   | 82 510 07              |                          |
| 32+LBL 00            |                   | 83 YTX                 |                          |
| 33 XEQ 01            |                   | 84 X<>Y                |                          |
| 34 RCL 03            |                   | 85 STO 06              |                          |
| 35 RCL 01            |                   | 86 RCL 07              |                          |
| 36 /                 | 1                 | 87 Y1X                 |                          |
| 37 LOG               |                   | 88 -                   |                          |
| 38 X<>Y              |                   | 89 RCL 07              |                          |
| 39 /                 |                   | 90 /                   |                          |
| 40 10 <b>1</b> X     | 1                 | 91 RCL 01              |                          |
| 41 RTN               | 1                 | 92 *                   |                          |
| 42+LBL C             | İ                 | 93 RCL 05              |                          |
| 43 "COSTN"           | 1                 | 94 RCL 06              |                          |
| 44 STO 03            | 1                 | 95 -                   |                          |
| 45 ES2C 22           | 1                 | 96 /                   |                          |
| 46 GTO 02            | 1                 | 97+LBL 02              |                          |
| 47 RCI 02            | 4                 | 98 "+="                |                          |
| 48 XF0 01            | Calculate Cost n  | X 1790 00              |                          |
| 49 PCI 04            |                   | 100 OVIEN              |                          |
| 47 KUL 04<br>50 V/NV |                   | 101 END                |                          |
| 34 AK DC             |                   | 101 .CMD.              |                          |

### **REGISTERS, STATUS, FLAGS, ASSIGNMENTS**

|    | DATA REGISTERS                         |    |                    | STATUS      |                          |                                |               |                                       |          |
|----|----------------------------------------|----|--------------------|-------------|--------------------------|--------------------------------|---------------|---------------------------------------|----------|
| 00 | C <sub>1</sub><br>r <sup>1</sup><br>Cn | 50 | SIZE<br>ENG<br>DEG | 0           | 08 TOT<br>— FIX<br>— RAD | . REG. <u>0</u><br>2 SCI<br>GR | 31<br> <br>AD | USER MOI<br>0 <u></u> 0<br>           | DE<br>FF |
| 05 | n<br>i; Cn<br>j<br>B+1                 | 55 | #                  | INIT<br>S/C | SET<br>Digit             | FL/<br>INDICATES<br>entered    | AGS<br>s      | CLEAR INDI                            | CATES    |
| 10 |                                        | 60 |                    |             |                          |                                |               |                                       |          |
| 15 |                                        | 65 |                    |             |                          |                                |               |                                       |          |
| 20 |                                        | 70 |                    |             |                          |                                |               |                                       |          |
| 25 |                                        | 75 |                    |             |                          |                                |               |                                       |          |
| 30 |                                        | 80 |                    |             |                          |                                |               | · · · · · · · · · · · · · · · · · · · |          |
| 35 |                                        | 85 |                    |             |                          | ASSIGN                         |               | TS                                    |          |
| 40 |                                        | 90 |                    | FUNCT       | ΓΙΟΝ                     | KEY                            | F             | UNCTION                               | KEY      |
| 45 |                                        | 95 |                    |             |                          |                                |               |                                       |          |

### PRICE ELASTICITY OF DEMAND

Using historical (or estimated)prices and resulting unit sales, this program calculates the elasticity of demand (elasticity of quantity sold with respect to a change in price).

Equations:

$$E_{d} = \frac{\Delta Q}{\frac{1}{2}(Q_{i} + Q_{i+1})} - \frac{\Delta P}{\frac{1}{2}(P_{i} + P_{i+1})}$$

where:

$$E_{d} = demand elasticity$$

$$Q_{i+1} = quantity sold after price change$$

$$Q_{i} = quantity sold before price change$$

$$P_{i+1} = new price$$

$$P_{i} = old price$$

$$i = 1,2,3,..., n$$

$$\Delta Q = Q_{i+1} - Q_{i}$$

$$\Delta P = P_{i+1} - P_{i}$$

$$\frac{\Delta P}{\frac{1}{2}[P_{i} + P_{i+1}]} \neq 0$$

#### Example:

The sales volume of a product varied with the different price changes per unit as follows:

| N | Quantity sold (Q) | <u>Price/Unit (P)</u> |
|---|-------------------|-----------------------|
| 1 | 0                 | 6                     |
| 2 | 10                | 4                     |
| 3 | 20                | 2                     |
| 4 | 30                | 0*                    |

Compute the price elasticity of demand.

\*hypothetical price for simplicity

Keystrokes:

[XEQ] [ALPHA] SIZE [ALPHA] 005 [XEQ] [ALPHA] DEMAND [ALPHA] 6 [R/S] 0 [R/S] 4 [R/S] 10 [R/S] [R/S] 2 [R/S] 20 [R/S] [R/S] 0 [R/S] 30 [R/S] Display:

PRICE=? QUANTITY=? PRICE=? QUANTITY=? Ed=5.0000 PRICE=? Ed=1.0000 PRICE=? Ed=0.2000

|      |                                          |             |              | SIZE: 005  |
|------|------------------------------------------|-------------|--------------|------------|
| STEP | INSTRUCTIONS                             | INPUT       | FUNCTION     | DISPLAY    |
| 1.   | Load program                             |             |              |            |
| 2    | Initialize                               |             | [XEO] DEMAND |            |
| 2.   | Vow in first price of conice             | Durf e.e. 1 |              |            |
| 5.   | key in first price of series             | Price 1     | [K/5]        | QUANTITY=: |
| 4.   | Key in first quantity of series          | Quantityl   | [R/S]        | PRICE=?    |
| 5.   | Key in subsequent price                  | Price n     | [R/S]        | QUANTITY=? |
| 6.   | Key in subsequent quantity and calculate |             |              |            |
|      | demand elasticity                        | Quantityn   | [R/S]        | Ed=        |
| 7.   | Press [R/S] to return to step 5 to enter |             |              |            |
|      | next price                               |             | [R/S]        | PRICE=?    |
| 8.   | For a new case, go to step 2.            |             |              |            |
|      |                                          |             |              |            |
|      |                                          |             |              |            |
|      |                                          |             |              |            |
|      |                                          |             |              |            |
|      |                                          |             |              |            |
|      |                                          |             |              |            |
|      |                                          |             |              |            |
|      |                                          |             |              |            |
|      |                                          |             |              |            |
|      |                                          |             |              |            |
|      |                                          |             |              |            |
|      |                                          |             |              |            |
|      |                                          |             |              |            |
|      |                                          |             |              |            |
|      |                                          |             |              |            |
|      |                                          |             |              |            |
|      |                                          |             |              |            |
|      |                                          |             |              |            |
|      |                                          |             |              |            |

|                         |               | 1  |       |
|-------------------------|---------------|----|-------|
| 01+LBL "DEM             | Initialize    | 51 |       |
| AND"                    | 1120201200    |    |       |
| 02 SF 21                |               |    |       |
| 03 XEQ 03               |               |    |       |
| 04 STO 02               |               |    |       |
| 05 XEQ 04               |               |    |       |
| 06 510 04<br>07 1 P! 00 |               |    |       |
| 07VLBC 00<br>08 XF0 03  |               |    |       |
| 00 X(> 02               | Shift data    | 60 |       |
| 10 STO 01               |               |    |       |
| 11 XEQ 04               |               |    |       |
| 12 X<> 04               |               |    |       |
| 13 STO 03               |               |    |       |
|                         |               |    |       |
|                         |               |    |       |
| 15+LBL 01<br>17 VEO 02  |               |    |       |
| 10 DSF 00               | Calculate E d |    |       |
| 19 GTO 01               |               | 70 |       |
| 20 /                    |               |    |       |
| 21 CHS                  |               |    |       |
| 22 "Ed="                |               |    |       |
| 23 ARCL X               |               |    |       |
| 24 AVIEW                |               |    |       |
| 25 GIU 00               |               |    |       |
| 25 TEL 02               |               |    |       |
|                         |               |    |       |
| 28 ENTER1               |               |    |       |
| 29 DSE 00               |               | 80 |       |
| 30 RCL IND              |               |    |       |
| 00                      |               |    |       |
| 31 -                    |               |    |       |
|                         |               |    |       |
| 33 LHSIA                |               |    | 1     |
| 34 7                    |               |    | ]     |
| 36 RTN                  |               |    |       |
| 37+LBL 03               |               |    |       |
| 38 "PRICE=?             | Promoting     | 90 |       |
|                         | subroutines   |    | <br>4 |
| 39 PROMPT               |               |    | <br>4 |
| 40 RTN                  |               |    | <br>4 |
|                         |               |    | <br>4 |
| 42 "QUHNIII<br>9-2"     |               |    | 4     |
|                         |               |    | <br>4 |
| 44 . FND.               |               |    | <br>1 |
|                         |               |    | 1     |
|                         |               | 00 | 1     |

### **REGISTERS, STATUS, FLAGS, ASSIGNMENTS**

68

| DATA REGISTERS |                                    | STATUS |                   |                       |                            |                    |                |                 |                    |
|----------------|------------------------------------|--------|-------------------|-----------------------|----------------------------|--------------------|----------------|-----------------|--------------------|
| 00             | USED<br>P<br>P<br>P<br>i+1<br>O.   | 50     | SIZ<br>EN(<br>DE( | E <u>00</u><br>G<br>G | <u>5</u> TOT<br>FIX<br>RAD | ". REG<br>SC<br>GI | 18<br>N<br>RAD | USER MO<br>ON ( | DE<br>DFF <u>X</u> |
| 05             | <sup>°</sup> 1 <sub>Q</sub><br>1+1 | 55     | -                 | INIT                  |                            | FL                 | AGS            |                 |                    |
|                |                                    |        | #                 | S/C                   | SET                        | INDICATE           | S              | CLEAR IND       | CATES              |
|                |                                    |        | 21                |                       | Printe                     | r enabl            | e              |                 |                    |
| 10             |                                    | 60     |                   |                       |                            |                    |                |                 |                    |
|                |                                    |        |                   |                       |                            |                    |                |                 |                    |
|                |                                    |        |                   |                       |                            |                    |                |                 |                    |
| 15             |                                    | 65     |                   |                       |                            |                    |                |                 |                    |
|                |                                    |        | _                 |                       |                            |                    |                |                 |                    |
|                |                                    | +      | _                 |                       |                            |                    |                |                 |                    |
|                |                                    |        |                   |                       |                            |                    |                |                 |                    |
| 20             |                                    | 70     | _                 |                       |                            |                    |                |                 |                    |
|                |                                    |        |                   |                       |                            |                    |                |                 |                    |
|                |                                    |        |                   |                       |                            |                    |                |                 |                    |
| 25             |                                    | 75     |                   |                       |                            |                    |                |                 |                    |
|                |                                    |        |                   |                       |                            |                    |                |                 |                    |
|                |                                    |        |                   |                       |                            |                    |                |                 |                    |
| 30             |                                    | 80     |                   |                       |                            |                    |                |                 |                    |
|                |                                    |        |                   |                       |                            |                    |                |                 |                    |
|                |                                    |        |                   |                       |                            |                    |                |                 |                    |
| 35             |                                    | 85     |                   |                       |                            |                    |                |                 |                    |
|                |                                    |        |                   |                       |                            |                    |                |                 |                    |
|                |                                    |        |                   |                       |                            | ASSIG              | NMEN           | TS              |                    |
| 40             |                                    | 90     |                   | FUNC                  | TION                       | KEY                | F              | UNCTION         | KEY                |
|                |                                    |        |                   |                       |                            |                    |                |                 |                    |
| <u> </u>       |                                    |        |                   |                       |                            |                    | +              |                 |                    |
| AE             |                                    | 05     | _                 |                       |                            |                    |                |                 |                    |
| 45             |                                    | 30     |                   |                       |                            |                    | <u> </u>       |                 |                    |
|                |                                    |        | _                 |                       |                            |                    |                |                 |                    |
|                |                                    |        |                   |                       |                            |                    |                |                 |                    |
### NOTES

NOTES

#### **Hewlett-Packard Software**

In terms of power and flexibility, the problem-solving potential of the HP-41C programmable calculator is nearly limitless. And in order to see the practical side of this potential, HP has different types of software to help save you time and programming effort. Every one of our software solutions has been carefully selected to effectively increase your problem-solving potential. Chances are, we already have the solutions you're looking for.

### **Application Pacs**

To increase the versatility of your HP-41C, HP has an extensive library of "Application Pacs". These programs transform your HP-41C into a specialized calculator in seconds. Included in these pacs are detailed manuals with examples, minature plug-in Application Modules, and keyboard overlays. Every Application Pac has been designed to extend the capabilities of the HP-41C.

You can choose from:

Aviation Clinical Lab Circuit Analysis Financial Decisions Mathematics Structural Analysis Surveying Securities Statistics Stress Analysis Games Home Management Machine Design Navigation Real Estate Thermal and Transport Science

#### **Users'** Library

The Users' Library provides the best programs from contributors and makes them available to you. By subscribing to the HP-41C Users' Library you'll have at your fingertips literally hundreds of different programs from many different application areas.

### \* Users' Library Solutions Books

Hewlett-Packard offers a wide selection of Solutions Books complete with user instructions, examples, and listings. These solution books will complement our other software offerings and provide you with a valuable tool for program solutions.

You can choose from:

- Business Stat/Marketing/Sales Home Construction Estimating Lending, Saving and Leasing Real Estate Small Business Geometry High-Level Math Test Statistics Antennas Chemical Engineering Control Systems Electrical Engineering Fluid Dynamics and Hydraulics
- Civil Engineering Heating, Ventilating & Air Conditioning Mechanical Engineering Solar Engineering Calendars Cardiac/Pulmonary Chemistry Games Optometry I (General) Optometry II (Contact Lens) Physics Surveying Time Module Solutions I

\* Some books require additional memory modules to accomodate all programs.

### **BUSINESS STATISTICS/MARKETING SALES**

FORECASTING USING EXPONENTIAL SMOOTHING MONTHLY SEASONAL VARIATION FACTORS BASED ON CENTERED MOVING AVERAGES MULTIPLE LINEAR REGRESSION NORMAL, INVERSE NORMAL, T AND F DISTRIBUTIONS BASIC STATISTICS FOR TWO VARIABLES MOVING AVERAGE GOMPERTZ CURVE TREND ANALYSIS BREAK-EVEN ANALYSIS EXPERIENCE (LEARNING) CURVE FOR MANUFACTURING COST PRICE ELASTICITY OF DEMAND



# HEWLETT-PACKARD HP-41 USERS' LIBRARY SOLUTIONS Business Stat/Marketing/Sales Bar Codes

# **BUSINESS STAT/MARKETING/SALES**

| FORECASTING USING EXPONENTIAL SMOOTHING1             |
|------------------------------------------------------|
| MONTHLY SEASONAL VARIATION FACTORS BASED ON CENTERED |
| MOVING AVERAGES                                      |
| MULTIPLE LINEAR REGRESSION4                          |
| NORMAL AND INVERSE NORMAL DISTRIBUTIONS              |
| T DISTRIBUTIONS                                      |
| F DISTRIBUTIONS10                                    |
| BASIC STATISTICS FOR TWO VARIABLES                   |
| MOVING AVERAGE                                       |
| GOMPERTZ CURVE TREND ANALYSIS15                      |
| BREAK-EVEN ANALYSIS16                                |
| EXPERIENCE (LEARNING) CURVE FOR MANUFACTURING COST17 |
| PRICE ELASTICITY OF DEMAND                           |

## NOTICE

The program material contained herein is supplied without representation or warranty of any kind. Hewlett-Packard Company therefore assumes no responsibility and shall have no liability, consequential or otherwise, of any kind arising from the use of this program material or any part thereof. FORECASTING USING EXPONENTIAL SMOOTHING PROGRAM REGISTERS NEEDED: 39



# ROW 19 (148 - 153) ROW 20 (153 - 161) ROW 21 (162 - 167)

MONTHLY SEASONAL VARIATION FACTORS – CENTERED MOVING AVGS PROGRAM REGISTERS NEEDED: 19



MULTIPLE LINEAR REGRESSION







NORMAL AND INVERSE NORMAL DISTRIBUTIONS



T DISTRIBUTIONS



# ROW 19 (190 – 193)

F DISTRIBUTIONS



BASIC STATISTICS FOR TWO VARIABLES PROGRAM REGISTERS NEEDED: 36



BASIC STATISTICS FOR TWO VARIABLES







GOMPERTZ CURVE TREND ANALYSIS



BREAK-EVEN ANALYSIS



EXPERIENCE(LEARNING) CURVE FOR MANUFACTURING COST PROGRAM REGISTERS NEEDED: 24



PRICE ELASTICITY OF DEMAND



NOTES

# NOTES



00041-90094 Rev. D 4/81 Printed in U.S.A.