HP-41C

NOTICE

The program material contained herein is supplied without representation or warranty of any kind. Hewlett-Packard Company therefore assumes no responsibility and shall have no liability, consequential or otherwise, of any kind arising from the use of this program material or any part thereof.

INTRODUCTION

This HP－41C Solutions book was written to help you get the most from your calculator．The programs were chosen to provide useful calculations for many of the common problems encountered．

They will provide you with immediate capabilities in your everyday calculations and you will find them useful as guides to programming techniques for writing your own customized software．The comments on each program listing describe the approach used to reach the solution and help you follow the programmer＇s logic as you become and expert on your HP calculator．

KEYING A PROGRAM INTO THE HP－41C

There are several things that you should keep in mind while you are keying in programs from the program listings provided in this book．The output from the HP 82143A printer provides a convenient way of listing and an easily understood method of keying in programs without showing every keystroke．This type of output is what appears in this handbook．Once you understand the procedure for keying programs in from the printed listings，you will find this method simple and fast．Here is the procedure：

1．At the end of each program listing is a listing of status information required to properly execute that program．Included is the SIZE allocation required．Before you begin keying in the program，press XEO ALPHA SIZE ALPHA and specify the allo－ cation（three digits；e．g．， 10 should be specified as 010）．
Also included in the status information is the display format and status of flags important to the program．To ensure proper execution，check to see that the display status of the HP－41C is set as specified and check to see that all applicable flags are set or clear as specified．

2．Set the HP－41C to PRGM mode（press the PRGM key）and press GTO $\bullet \square$ to prepare the calculator for the new program．

3．Begin keying in the program．Following is a list of hints that will help you when you key in your programs from the program listings in this handbook．
a．When you see＂（quote marks）around a character or group of characters in the program listing，those characters are ALPHA．To key them in，simply press ALPHA，key in the characters，then press ALPHA again．So＂SAMPLE＂would be keyed in as ALPHA＂SAMPLE＂ALPHA．
b．The diamond in front of each LBL instruction is only a visual aid to help you locate labels in the program listings． When you key in a program，ignore the diamond．
c．The printer indication of divide sign is／．When you see／in the program listing，press \rightarrow
d．The printer indication of the multiply sign is $\underset{\%}{\underset{\%}{*}}$ ．When you see $\underset{\%}{\%}$ in the program listing，press x ．
e．The \vdash^{-}character in the program listing is an indication of the APPEND function．When you see ${ }^{-}$，press \square APPEND in ALPHA mode（press and the K key）．
f．All operations requiring register addresses accept those addresses in these forms：
nn（a two－digit number）
IND nn（INDIRECT：
，followed fy a two－digit number）
X，Y，Z，T，or L（a STACK address：\bullet followed by X，Y，Z，T，or L）
IND X，Y，Z，T or L（INDIRECT stack：\quad followed by X，Y，Z，T，or L）
Indirect addresses are specified by pressing and then the indirect address．Stack addresses are specified by pressing \bullet followed by $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{T}$ ，or L ．Indirect stack addresses are specified by pressing $\square \square$ and $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{T}$ ，or L ．

Printer Listing

```
01*LBL "SHM
PLE*
    日2 .this is
    M*"..トSMMPLE
.
    04 RVIEW
    05 6
    06 ENTER!
    07 -2
    08 -
    09 ABS
    16 STO INL
L
    11 "R3="
    12 HRCL 03
    13 PVIEW
    14 RTN
```

Keystrokes

Display

$01 \operatorname{LBL}^{\top}$ SAMPLE
02^{\top} THIS IS A
03^{\top}－SAMPLE
04 AVIEW
056
06 ENTER 〕
07 －2
08 ／
09 ABS
10 STO IND L
11^{\top} R3 $=$
12 ARCL 03
13 AVIEW
14 RTN

TABLE OF CONTENTS

1. PULMONARY FUNCTIONS/VITAL CAPACITY 1
This program calculates normal values and percent of predicted values for the results of spirometry tests. (Note: This program requires one memory module.)
2. LUNG DIFFUSION AND ARTERIAL CO_{2} NORMALIZATION 9
Calculates lung diffusion capacity from the carbon monoxide diffusion test and necessary additional dead space to compensate for a hypocapnic ventilator patient.
3. VENTILATOR SETUP AND CORRECTIONS (RADFORD) 17
Initial tidal volume is calculated (according to the Radford Nomogram) and corrected for dead space volume, activity, body temperature, altitude, use of a tracheotomy tube or metabolic acidosis.
4. BLOOD CHEMISTRY I 23Calculates total plasma CO_{2} and base excess from $\mathrm{PCO}_{2}, \mathrm{pH}$and hemoglobin and calculates virtual O_{2} tension and $\% \mathrm{O}_{2}$saturation from the hemoglobin dissociation curve.
5. BLOOD CHEMISTRY I I 32Corrects PCO_{2} and pH for anaerobic temperature change andcorrects PO_{2}, at $37^{\circ} \mathrm{C}$, to body temperature.
6. BODY SURFACE AREA FOR CARDIO PULMONARY PROGRAMS 37This program calculates body surface area by either theDu Bois or Boyd methods. In addition it calculates cardiacindex if cardiac output is known.
7. CARDIAC OUTPUTS 42Calcuates outputs from measurements during a dye dilution,cardiac output maneuver or by the Fick method, givenarterial and venous blood O_{2} content.
8. VALVE AREA 50
This program calculates the areas of heart valves across which the pressure gradient has been measured.
9. CARDIAC SHUNTS 55Calculates anatomic and/or physioligic shunts. Alsocalculates Fick cardiac output.

10. CONTRACTILITY AND STROKE WORK 63
 Calculates indices of left ventribular contractility based on pressure rise during isovolumetric contractility. Also calculates stroke work and stroke work index.

PULMONARY FUNCTIONS NITAL CAPACITY

This program provides calculation of predicted and percent predicted values of the following functions:
$\mathrm{VC}=$ Vital capacity in liters.
$\mathrm{FEV}_{1}=$ Forced expiratory volume after one second in liters.
MEFR $=$ Maximum expiratory flow rate in liters/second.
MVV = Maximum ventilatory volume after 12 seconds in liters.
RV = Residual volume in liters.
TLC = Total lung capacity in liters.
FRC $=$ Functional residual capacity in liters.
$\mathrm{FEF}=$ Forced expiratory flow from 25% to $75 \%\left(\mathrm{FEF}_{25 \%-75 \%}\right)$ in liters/sec.

MALE

$$
\begin{aligned}
\mathrm{VC} & =(.058 \cdot \mathrm{Ht})-(.025 \cdot \text { age })-4.24 \\
\mathrm{FEV}_{1} & =(.036 \cdot \mathrm{Ht})-(.032 \cdot \text { age })-1.26 \\
\mathrm{MEFR} & =(.043 \cdot \mathrm{Ht})-(.047 \cdot \text { age })+2.07 \\
\mathrm{MVV} & =(.9 \cdot \mathrm{Ht})-(1.51 \cdot \text { age })+27 \\
\mathrm{RV} & =(.03 \cdot \mathrm{Ht})+(.015 \cdot \text { age })-3.75 \\
\mathrm{TLC} & =(.094 \cdot \mathrm{Ht})-(.015 \cdot \text { age })-9.17 \\
\mathrm{FRC} & =(.051 \cdot \mathrm{Ht})-5.05 \\
\mathrm{FEF} & =(.02 \cdot \mathrm{Ht})-(.04 \cdot \text { age })+2
\end{aligned}
$$

FEMALE

$$
\begin{aligned}
\mathrm{VC} & =(.045 \cdot \mathrm{Ht})-(.024 \cdot \text { age })-2.852 \\
\mathrm{FEV}_{1} & =(.035 \cdot \mathrm{Ht})-(.025 \cdot \text { age })-1.932 \\
\mathrm{MEFR} & =(.057 \cdot \mathrm{Ht})-(.036 \cdot \text { age })-2.532 \\
\mathrm{MVV} & =(.762 \cdot \mathrm{Ht})-(.81 \cdot \text { age })-6.29 \\
\mathrm{RV} & =(.024 \cdot \mathrm{Ht})+(.012 \cdot \text { age })-2.63 \\
\mathrm{TCL} * & =(.078 \cdot \mathrm{Ht})-(.01 \cdot \text { age })-7.36 \\
\mathrm{FRC} & =(.047 \cdot \mathrm{Ht})-4.86 \\
\mathrm{FEF} & =(.02 \cdot \mathrm{Ht})-(.03 \cdot \text { age })-\left(.00006 \cdot \text { age }^{2}\right)+1.3
\end{aligned}
$$

where Ht is in cm and age in years.

$$
\begin{aligned}
& \text { Actual } \mathrm{FEF}=(.5 \cdot \mathrm{VC}) / \Delta \mathrm{t} \\
& \text { where } \Delta \mathrm{t}=\mathrm{t}_{75 \% \mathrm{VC}}-\mathrm{t}_{25 \% \mathrm{VC}} \\
& \qquad \begin{array}{c}
25 \% \mathrm{VC}=.25 \mathrm{VC} \\
75 \% \mathrm{VC}=.75 \mathrm{VC}
\end{array}
\end{aligned}
$$

NOTE: This program requires one extra memory module in the HP-41C because of its length.
*For females, if height is greater than $174 \mathrm{~cm}, 1 \mathrm{~cm}$ is added to the height before TLC is calculated.

References: This program is based on HP-67/97 Users' Library programs and on the HP-65 Medical Pac I.

Morris, J.F., Koski, A., \& L.C. Johnson, AM. REV. RESP. DIS., 57: 103 (1971).
Bates et.al., RESP. FTN, IN DISEASE, Saunders (1971).

Example:
For a male patient, height 72 in., age 28 the measured VC $=5.2 \ell$. Calculate all predicted levels and \% predicted for VC and FEF ($\mathrm{t}_{2} 5 \%=.4, \mathrm{t}_{75 \%}=1.0$).

Keystrokes:
[XEQ] [ALPHA] SIZE [ALPHA] 008
[XEQ] [ALPHA] VITCAP [ALPHA]
M [R/S]
72 [CHS] [R/S]
28 [R/S]
5.2 [A]
[R/S]
[B]
[C]
[D]
[E]
[F]
[G]
[H]
[R/S]
[R/S]
.4 [R/S]
[R/S]
1 [R/S]
[R/S]

Display:

M/F?
HT=?
AGE=?
28.00

VC=5.67
\%PRED=91.76
FEVI=4.43
MEFR=8. 62
MVV=149.31
$R V=2.16$
TLC=7. 60
FRC=4.28
FEF=4.54
$25 \% \mathrm{VC}=1.30$
T25\%=?
$75 \% \mathrm{VC}=3.90$
T75\%=?
ACT FEF=4. 33
\%PRED=95.50

				SIZE :
STEP	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
8a	and 25\% VC		[R/S]*	$25 \% \mathrm{VC}=$
8b	Input time associated with 25\% VC from		[R/S]*	T25\%=?
	spirogram and display 75\% VC.	T@25\%VC	[R/S]	$75 \% \mathrm{VC}=$
8 c	Input time associated with 75\% VC and		[R/S]*	T75\%=?
	display actual FEF followed by \% predicted.	T@75\%VC	[R / S]	ACT FEF=
			[R/S] *	\%PRED $=$
9	For a new calculation go to step 2.			
	*This [R/S] not needed if calculator is used	with pr		

E1＊LEL＂YIT CHF： 02 SF 09 03 CF E1 04 CF 62 05 SF 21 EG $\Xi F 27$ 67 FIX 2 06 ＂M＂ 09 ASTO Y 10 －トンF？ 11 MOH 12 FROMPT 13 AOFF 14 ASTO X 15 CLA $16 \mathrm{X}=\mathrm{Y} ?$ 17 CF 日可 1 B ＂HT＝？＂ 19 PROMFT $20 \quad x>6 ?$ zi GTO GE $22 \quad 2.54$ 23 ＊ 24 CHS $25 *$ LBL 69 26 STO 06 27 ＂AGE＝？＂ zs PROMFT $295 T 0 \quad 11$ 36 STOF $31+$ LEL \quad－ $32+L B L \quad$＂VC＂ 33 ＂vC． 34 FS？22 35 STO 02 36 FS？ 06 37 GTO 06 $38-058$ 39 STO 05 $46-925$ 41 STO Ge 424.24 43 STO 曰न 44 GTO 1 45 －LEL EG 46.045 47 STO 05 $48 \quad .024$ $495 T G \quad 06$	Initialize Male or female？ M or F Male Input HT CM or inches Convert to CM Input age Calculate vital capacity VC Input Female？ Yes Male constants Female constants	```502.852 \(51570 \quad 67\) 52 GTO 01 \(53+L B L E\) 54 +LBL "FEV 1 . 55 "FEV1" 56 FS? 60 57 GTO 0. \(59 \quad 036\) 59 STG 05 60. 032 61 STO EE 621.26 63 STO 日7 64 GTG 01 65 *LBL 01 \(66-035\) 67 ST0 0.5 68.025 69 STO 96 301.932 71 STO 07 72 GTO 61 \(73+\) LBL 74*LBL "MEF R" 75 "MEFR" 76 FS? 96 77 GTO 90 78.043 79 STO 05 80.047 81 STO 日6 \(82-2.0^{27}\) \(836 T 007\) 84 GTO 11 85*LBL 日6 86. 057 87 STO 95 88 - 036 89 STO E6. 902.532 91 STO 97 92*LBL 61 93 CF 03 94 RT 95 RCL 0. 96 FS ? Cl 97 XEQ \(0:\)```	Go to calculation routine Calculate FEV1 Calculate MEFR

98 RCL 95		148 "RV"	
99 *		149 FS? 00	
160 RCL 91		150 GTO OG	
161 RCL 96		151.03	
102 *		1525 TO 55	
$103-$		$153-.015$	
104 RCL 97		154 STO EG	
105 -	FEF Calc.?	1553.75	
166 FS? 02	Yes	15651007	
107 KEQ 09	Was measured	157 GTG 91	
108 FC?C 22	value input?	158 *LBL E6c	
109 SF 03	value input.	159-024	
110 XEQ 10		160 STO 95	
111 FS?C	FEF Calc.?	$161-012$	
112 RTH	Yes, stop	162 sta be	
113 FS? 03	No measured value	1632.63	
114 STOP	input. Stop	164 ST0 07	
$115+$ LEL 07	Calc. \% of	165 GTG 1	
116	predicted value	16.6 +LBL F	
1171 Ez		167*LBL - TLC	Calculate TLC
$118 *$			
119 "\% FREI*	- - - - - - - -	168 "TLC"	
126*LEL 10	Output subroutine	169 FS ? 06	
121 "ト="	Output subroutine	170 GTG 69	
122 ARCL X		171.094	
123 AVIEW		172 STO	
124 RTH	--------	173-615	
125*LBL D	Calculate MVV	1745 S0 06	
126*LEL "MVV		1759.17	
\because		$1765 T 067$	
127 "MVソ"		177 GTO 01	
128 FS ? 60		178*LBL 66	
129 GTO 09		179174	
130.9		180 RCL 0 O	
1315 ST ¢		181 X>Y?	
1321.51		$1825 F 61$	
133 STO 06		$183-678$	
13427		184 STO 05	
135 CHS		185.01	
136 STO 07		186 STO G6	
137 GTO 61		1877.36	
$138+$ LBL 09		1885 SO G	
$139-762$		$189 \mathrm{GTO} \mathrm{c}^{1}$	- - - - - -
140 ST0 05		$190+$ LBL G	Calculate FRC
$141-81$		191*LEL "FRC	
$1425 T 0$ E6			
1436.29		192 "FRC.	
144 STO 47		193 CLX	
145 GTO 01	---------	194 STO EG	
146*LEL E	Calculate RV	195 FS ? 19	

Program Listings

196 GTG 96			246 RCL 0こ	
$197-651$			2472	
1985 TO			248	
1995.65			$249 x<\gamma$	
200506			250	
201 GTD 01			251 －ACT FEF	Output actual FEF
$202+L E L$ 터			－	
203.047			$252 \times \mathrm{XE} 10$	
204 ST0 95			253 RCL 04	
2654.86			254 GTO G7	Calc．\％predicted
$2065 T 007$			$255+L B L$ 09	FEF Calc．
207 GTO E1	－－－－－－		256 FC？ 00	Male？
208＋LBL H	Calculate FEF		257 RTH	Yes，RTN．
$209+L B L$＂FEF			$\begin{array}{ll} 258 & 6 \\ 259 & \text { RCL } \\ 251 \end{array}$	Female，alternate calculation．
$210 \sim$＂FEF			266 ※サこ	
211 SF E2			261 ＊	
$212-02$			$262-$	
213 ST0 05			263 RTH	
214 FS？00			264＊LBL ES	TLC，female
215 GTOGG			26.51	＞174 cm．
$216-14$			26E＋	
217 STD 6\％			ZET ENI	
$218-2$				
219 ST0 6\％				
ここ0 GTD 心ご				
こ21＊LEL ED				
こここ－日3				
$2235 T 0 \mathrm{EE}$				
224－1－3		80		
225 ST0 97				
226＊LBL 日こ				
$227 \times E 001$				
こ28 STO 04				
こ29 RCL O2				
230 4				
231 －	Output 25\％VC			
ご2＂25\％VC＂	Output 25\％VC			
233 XED 10				
234 ＂Tこ5E＝？	$\begin{aligned} & \text { Input time at } \\ & 25 \% \text { VC } \end{aligned}$	90		
235 FROMPT				
2365 S0 ¢3				
237 ＇x ${ }^{2}$				
2383				
239 \＃	Output 75\％VC			
246 ＂75\％VC＂	Output 75\％VC			
241 KEQ 1G	Input time at			
242＂T75\％＝？＂	$75 \% \text { VC }$			
243 PROMPT				
244 RCL 245		00		

REGISTERS, STATUS, FLAGS, ASSIGNMENTS

LUNG DIFFUSION AND ARTERIAL CO_{2} NORMALIZATION

Lung Diffusion: This portion of the program evaluates the equation to calculate the lung diffusion capacity (DLCO) using the single breath method.

Equation used:

$$
\mathrm{DLCO}=\frac{\mathrm{V}_{\mathrm{A}}(0.084)}{B H T} \ln \frac{\mathrm{~F}_{\mathrm{A}} \mathrm{CAR}}{\mathrm{~F}_{1} \mathrm{CAR}} \frac{0.3}{\mathrm{~F}_{\mathrm{A}} C 0}
$$

Note: The initial concentration of carbon monoxide (F, CO) is assumed to be 0.3%. If a different standard value for $\mathrm{F}_{\mathrm{l}} \mathrm{CO}$ is desired, it may be entered.

Reference: Comroe, et.al., The Lung, Year Book Medical Publishers Inc., 1962.

Arterial CO_{2} Normalization: This portion of the program calculates the additional dead space (DS add) needed in a hypocapnic ventilator patient's breathing circuit to raise the arterial CO_{2} partial pressure $\left(\mathrm{P}_{\mathbf{a}} \mathrm{CO}_{2}\right)$ to 40 millimeters of mercury (mmHg).

Equations used:

$$
\begin{aligned}
& \mathrm{DS}_{\text {add }}=\frac{\mathrm{TV}-\mathrm{DS}}{40-\Delta \mathrm{P}_{\mathrm{CO}_{2}}}\left(40-\mathrm{PaCO}_{2}\right) \\
& \Delta \mathrm{PCO}_{2}=\mathrm{PaCO}_{2}-\mathrm{P}_{\mathrm{E}} \mathrm{CO}_{2} \text { (or } \mathrm{PaCO}_{2}-5 \text { if } \mathrm{P}_{\mathrm{E} C O_{2}} \text { is not entered) } \\
& \mathrm{TV}-\mathrm{DS}=\mathrm{TV}-\left[1.47 \mathrm{Wt}(\mathrm{~kg})+\mathrm{DS}_{\mathrm{p}}\right] \\
& \text { where } D S_{p}=\text { dead space. }
\end{aligned}
$$

Detailed Instructions for Arterial CO_{2} Normalization calculation:
Input the patient's weight in kilograms, or in pounds followed by [CHS]. Then input the PaCO_{2} in mmHg. If the patient's lung status is abnormal answer the question LUNG NORMAL? by inputting N and then inputting $\mathrm{P}_{\mathrm{E}} \mathrm{CO}_{2}$ (the mixed expired CO_{2} partial pressure). If lung condition is normal answer $\mathrm{Y}\left(\mathrm{P}_{\mathrm{E}} \mathrm{CO}_{2}\right.$ is not required). Then input the present tidal volume and ventilator dead space. The additional rebreathing dead space is calculated. This must be added to the patient's circuit to achieve $\mathrm{P}_{\mathrm{a}} \mathrm{CO}_{2}$ normalization.

Warning: The additional dead space required by this program must be inserted into the patient's breathing circuit without changing the ventilator rate or tidal volume.

Measure and input the mixed expired CO_{2} partial pressure if lung function is abnormal.

References: Suwa, Kunio; Geffin, Bennie; Pontoppidan, Henning; Bendixen, Henry; "A Nomogram for Dead Space Requirement During Prolonged Artificial VentiZation", Anesthesiology, v. 29, 1968 Nov.-Dec.

Lung Diffusion

Example 1:

Calculate the lung diffusing capacity using an initial helium carrier gas concentration of 10%, an alveolar helium concentration of 8%, an alveolar carbon monoxide concentration of 0.159%, an initial carbon monoxide concentration of 0.3%, a breath holding time of 10 seconds, and an alveolar volume of 4930 milliliters.

Example 2:

For the same data, calculate lung diffusing capacity assuming an initial carbon monoxide concentration of 0.45%.

Keystrokes: Example 1
[XEQ] [ALPHA] SIZE [ALPHA] 012
[XEQ] [ALPHA] DLCO [ALPHA]
[R/S]
10 [R/S]
8 [R/S]
.159 [R/S]
10 [R/S]
4930 [R/S]

Keystrokes: Example 2

[A]

.45 [R/S]
10 [R/S]
8 [R/S]
. 159 [R/S]
10 [R/S]
4930 [R/S]

Display:
$\mathrm{FICO}=.3$?
FICAR=?
FACAR $=$?
$\mathrm{FACO}=$?
$\mathrm{BHT}=$?
$\mathrm{VA}=$?
DLCO $=17.05$

Display:
$\mathrm{FICO}=.3$?
FICAR=?
FACAR $=$?
$\mathrm{FACO}=$?
$\mathrm{BHT}=$?
$\mathrm{VA}=$?
DLCO $=33.84$

Arterial CO_{2} Normalization

Example:

Calculate the additional dead space required by a 50 kilogram patient with a PaCO_{2} of 25 mmHg with normal lung status having a tidal volume of 900 ml and a present dead space of 25 ml .

Keystrokes:
[XEQ] [ALPHA] NORM [ALPHA]
50 [R/S]
25 [R/S]
Y [R/S]
900 [R/S]
25 [R/S]

Display:
WT=?
PaCO2=?
LUNG NORMAL?
$\mathrm{TV}=$?
DSP=?
DSadd $=343.50$

User Instructions

Program Listings

Program Listings

		Display DS add Display routine	51			
10				60		
20			70			
30			80			
40			90			
50			00			

VENTILATOR SETUP AND CORRECTIONS

This program calculates the initial tidal volume for a ventilator patient. The first part calculates an approximation to the Radford nomogram tidal volume with correction for ventilator dead space only. The second part corrects the tidal volume for altitude, patient's temperature, daily activity, use of a tracheotomy tube, and metabolic acidosis in anesthesia.

Equations Used:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{A}}=\text { Alveolar minute volume }=10\left(\mathrm{C}_{1} \mathrm{LOG} \mathrm{WT}+\mathrm{C}_{2}\right) / 100 \\
& \mathrm{ml} / \mathrm{min} \\
& \mathrm{TV}_{\mathrm{A}}=\text { Alveolar tidal volume }=\frac{\mathrm{V}_{\mathrm{A}}}{\mathrm{r}} \mathrm{ml} \\
& \mathrm{TV}_{\text {bas }}=\text { Basal tidal volume }=\left(\mathrm{V}_{\mathrm{T}_{\mathbf{A}}}+\mathrm{Wt}(\mathrm{lbs})\right) \mathrm{ml} \\
& \mathrm{TV} \text { corr }=\text { Basal tidal volume }+ \text { ventilator dead space }
\end{aligned}
$$

where:

$$
\mathrm{r}=\text { Breathing rate (breaths per minute) }
$$

For Females:

$$
\begin{aligned}
& 124 ; \mathrm{Wt} \leqslant 8 \mathrm{~kg} \\
\mathrm{C}_{1}= & 61 ; 8 \mathrm{~kg}<\mathrm{Wt} \leqslant 23 \mathrm{~kg} \\
& 44.2 ; \mathrm{Wt}>23 \mathrm{~kg} \\
& 193 ; \mathrm{Wt} \leqslant 8 \mathrm{~kg} \\
\mathrm{C}_{2}= & 249 ; 8 \mathrm{~kg}<\mathrm{Wt} \leqslant 23 \mathrm{~kg} \\
& 272 ; \mathrm{Wt}>23 \mathrm{~kg}
\end{aligned}
$$

Corrections:

Temperature: $+5 \%$ per ${ }^{\circ} \mathrm{F}$ above 99° (rectal)

Altitude: $+5 \%$ per 2000^{\prime} above sea level
Activity: +10\%
Tracheotomy: $-\frac{1}{2}$ body weight in pounds
Metabolic acidosis in anesthesia: $+20 \%$

For Males:

$$
\begin{aligned}
& \mathrm{C}_{1}= 124 ; \mathrm{Wt} \leqslant 8 \mathrm{~kg} \\
& 61 ; \mathrm{Wt}>8 \mathrm{~kg}
\end{aligned}, \begin{aligned}
& 193 ; \mathrm{Wt} \leqslant 8 \mathrm{~kg} \\
& \mathrm{C}_{2}= \\
& 249 ; \mathrm{Wt}>8 \mathrm{~kg}
\end{aligned}
$$

Reference: Radford, Edward P., "Ventilation Standards for Use in Artificial Respiration", Journal of Applied Physiology, 7:451, 1955.

Warning:

-This program yields an approximation to the Radford nomogram. The nomogram may not be applied with confidence to patients with muscular activity or abnormal lung function.
-Apply only the corrections which pertain to the patient for whom the program is being run.

Example:

1) Calculate the predicted tidal volume for a 170 pound comatose male having a breath rate of 15 breaths per minute, ventilator dead space of 25 milliliters, fever of $101^{\circ} \mathrm{F}$, who is located 500 feet above sea level.
2) What would be the corrected tidal volume if this patient were in metabolic acidosis?

Keystrokes:
[XEQ] [ALPHA] SIZE [ALPHA] 009
[XEQ] [ALPHA] VENT [ALPHA]
170 [CHS] [R/S]
M [R/S]
15 [R/S]
[R/S]
25 [R/S]
[R/S]
101 [CHS] [R/S]
[R/S]
500 [CHS] [R/S]
[XEQ] [ALPHA] METACID [ALPHA]

Disp1ay:

WT=?
M/F ?
$\mathrm{BR}=$?
BASAL TV=461.74
DSV=?
DSV CORR TV=486.74
$\mathrm{BT}=$?
TEMP CORR TV=535.42
ALT $=$?
ALT CORR TV=542.11

ACIDOSIS CORR
TV $=650.53$

Gi＋LEL＂YEr	Ventilator corr．	5044.2	
T－		$51+L E L E 4$	Common male／femal
日2 FIX	Initialize	52 RCL GG	
$935 F-1$		53 LOG	
$\underline{9} 5 F=7$		54 \％	
65＊LEL A	Input wt．	$55+$	
G6＂月T＝？		56 Ez	
QT FROMPT		57	
ब9 \％＞6？		Es 101\％	
09 GTO 06		59 RLL 98	
$10-2.205$	Convert to kg	6er	
11 ＜		61 RCL GE	
$12+L E L 60$	STO wt	622.205	
$135 T 066$		$63:$	
14 ＂M＂	Male or female？	$64+$	Output basal TV
15 HSTO γ	Male or female？	ES ETO 01	
16 ＂M－F？		6G＂ERSAL＂	
17 CF Q1		67 KEQ 16	Input dead space
18 AOH		$6 \underbrace{-15 \%}=?$	
19 FROMFT		69 FROMPT	
ZG ADFF		$36 \mathrm{ST}+\mathrm{OL}$	
21 ASTO X	$\mathrm{X}=$＂M＂？	71 ECL 01	Output DSV corr．
22 23 	Yes，male	72＂DEv＂	Input body temp
24 ＂ER＝？	Input breathing	$\frac{74}{7} \times \mathrm{BET}=\frac{\square}{?}$	Input body temp．
25 FROMFT	rate	75 FROMPT	
26 ST0 98	Female？	$\bigcirc 6 \times<6$	
27 FC？C 91	Yes，GTO female	37 GTO F	Convert to ${ }^{\circ} \mathrm{F}$
28 GTO 61	calc．	781.8	
$29+$ LEL 05	Male calc．	79 \％	
3 BC		9 Ba	
31 RCL 06		E1＋	
33 GT0 63		E2 CHE	
34249	Input constants	B3＊LEL E1	
35 EHTERT		8599	T－99
3661		86	
37 GTO 94		87 ＜ $6=0 ?$	No corr．if
38＊LEL 63		ge gTo de	$\mathrm{BT} \leq 99^{\circ} \mathrm{F}$
39193		89.05	Correct for BT＞
46 EHTERT		96%	$99^{\circ} \mathrm{F}$
41 1 4		91 FCL 01	
42 GTO 94		92 ：	
$43+L B L E 1$	Female constants	$93.5 T+61$	
45 FEL GE		94＊LEL 日2	
$46 \mathrm{X}=4 \%$		95 RCL 91	
47 GTO 日5		96 ＂TEMP＂	Output temp．TV
43 ごこ		97 XEQ 97	
49 EHTER +		98 FROMF＇	Input altitude

Program Listings

REGISTERS, STATUS, FLAGS, ASSIGNMENTS

BLOOD CHEMISTRY I
 BLOOD ACID - BASE STATUS
 VIRTUAL PO_{2} AND O_{2} SATURATION AND CONTENT

These two programs perform various related blood chemistry and blood gas calculations.

Blood-Acid Base Status

This program computes total plasma CO_{2} and base excess from $\mathrm{PCO}_{2}, \mathrm{pH}$ and hemoglobin concentration.

Equations:
Total plasma CO_{2} is calculated from the Henderson-Hasselbalch equation:

$$
\mathrm{TCO}_{2}=\mathrm{s} \cdot \mathrm{PCO}_{2}\left[1+10^{\mathrm{pH}-\mathrm{pK}}\right]
$$

where

$$
\begin{aligned}
\mathrm{TCO}_{2} & =\text { total } \mathrm{CO}_{2} \text { in plasma, mmol/l } \\
\mathrm{s} & \left.=\text { solubility of } \mathrm{CO}_{2} \text { in plasma, mmol/l (taken to be } 0.0307\right) \\
\mathrm{PCO}_{2} & =\text { partial pressure of } \mathrm{CO}_{2} \text { in the blood, } \mathrm{mmHg} \\
\mathrm{pK} & =6.11
\end{aligned}
$$

This does not take into account the small temperature dependence of both s and pK , nor the pH dependence of pK . For this reason the formula for TCO_{2} will be most accurate if $37^{\circ} \mathrm{C}$ values for for PCO_{2} and pH are used.

The base excess is calculated from an equation suggested by Siggaard-Andersen:

$$
[\mathrm{BE}]_{\mathrm{b}}=(1-0.0143 \mathrm{Hgb}) \cdot\left(\left[\mathrm{HCO}_{3}\right]-(9.5+1.63 \mathrm{Hgb})(7.4-\mathrm{pH})-24\right)
$$

where

$$
\begin{aligned}
{[\mathrm{BE}]_{\mathbf{b}} } & =\text { Base Excess in meq/l of blood } \\
\mathrm{Hg} b & =\text { Hemoglobin concentration in } \mathrm{g} / 100 \mathrm{ml}
\end{aligned}
$$

and plasma $\left[\mathrm{HCO}_{3}\right]$ is calculated from the Henderson-Hasselbalch equation in the form:

$$
\left[\mathrm{HCO}_{3}\right]=\mathrm{s} \cdot \mathrm{PCO}_{2} \cdot 10^{\mathrm{pH}-\mathrm{pK}}
$$

Siggaard-Andersen used $38^{\circ} \mathrm{C}$ values for PCO_{2} and pH . Only small errors will result from using $37^{\circ} \mathrm{C}$ values, but body temperature corrected values should not be used if the patient has any significant hyper or hypothermia. In only body temperature values are know, the "Anaerobic PCO_{2} and pH change" program may be used to correct them back to $37^{\circ} \mathrm{C}$. (See special instructions for that program).

NOTE: While Thomas has shown that this equation may produce large errors for very abnormal conditions, it matches the Siggaard-Andersen nomogram for $[B E]_{b}$, to within $\pm 1 \mathrm{meq} / \ell$ in most cases.

VIRTUAL PO_{2} AND O_{2} SATURATION CONTENT:
The first part of this program computes virtual PO_{2} for use in estimating 0_{2} saturation. Generally, it will be more convenient to calculate venous values first, as arterial values are frequently needed in other programs and, thus, will be left in the storage registers after both calculations.

The equation solved is:

$$
\mathrm{VPO}_{2}=\mathrm{PO}_{2} \cdot 10^{\left.[0.024(37-\mathrm{BT})+0.48) \mathrm{pH}-7.4)+0.06\left(\log \mathrm{PCO}_{2}\right)\right]}
$$

which is a hybrid of the equation used by Thomas and that used by Kelman. There is some disagreement regarding the best value of the pH multiplier, 0.48 being used by most workers, but see, for example, Kelman.

The second part of the program estimates O_{2} saturation of blood from virtual PO_{2} and computes O_{2} content. If the actual O_{2} saturation is known, O_{2} content may be computed directly.

EQUATIONS:

The part of the program for estimating O_{2} saturation is based on the polynomial curve fit of Thomas, where VPO_{2} is in mmHg.

$$
0_{2} \text { Sat }=\frac{\left(\mathrm{VPO}_{2}\right)^{4}-15\left(\mathrm{VPO}_{2}\right)^{3}+2045\left(\mathrm{VPO}_{2}\right)^{2}+2000\left(\mathrm{VPO}_{2}\right)}{\left(\mathrm{VPO}_{2}\right)^{4}-15\left(\mathrm{VPO}_{2}\right)^{3}+2400\left(\mathrm{VPO}_{2}\right)^{2}+31,100\left(\mathrm{VPO}_{2}\right)+2,400,000}
$$

This calculation assumes that the oxygen dissociation curve for the hemoglobin is normal. The O_{2} content is computed from:

$$
\mathrm{C}_{\mathrm{x}} \mathrm{O}_{2}(\mathrm{Vo} 1 . \%)=1.34 \cdot \frac{\mathrm{SAT}(\%)}{100} \cdot \mathrm{Hgb}(\mathrm{~g} / 100 \mathrm{ml})+0.0031 \mathrm{PO}_{2}(\mathrm{mmHg})
$$

NOTE: Virtual PO_{2} is not in any way a real physiologic PO_{2}. Its only function is for use in estimating O_{2} saturation, and it should never be confused with PO_{2} corrected to body temperature. Furthermore, it must always be calculated from blood parameters measured at or corrected to $37^{\circ} \mathrm{C}$. The calculation will give inaccurate results for fetal hemoglobin, present in babies less than six months old, and for some abnormal adult hemoglobins and certain other blood conditions. The results of the estimation and any subsequent calculations based on it should be viewed with caution unless the dissociation curve has been previously established to be normal. If both PO_{2} and O_{2} saturation are measured, the program may be used as a convenient means to check for the normality of the dissociation curve.

References: Siggaard-Andersen, "Titratable Acid or Base of Body Fluids", Annals New York Academy of Sciences, 133: 41-48, 1966.
Thomas, L.J. Jr., "Algorithm for Selected Blood Acid-Base and Blood Gas Calculations", J. App1. Physiol., 33: 154-158, 1972.

Kelman, G. Richard, "Digital Computer Subroutine for the Conversion of Oxygen Tension into Saturation", J. Appl. Physiol., 21: 1375-1376, 1966.

Example 1:

From the following patient data calculate total plasma CO_{2}, base excess, and plasma [HCO3]. Also calculate virtual PO_{2} and estimated O_{2} saturation and content. Store the value as venous O_{2} content.

$$
\begin{array}{rlrl}
\mathrm{PO}_{2} & =75 \mathrm{mmHg} & \mathrm{BT}-40^{\circ} \mathrm{C} \\
\mathrm{PCO}_{2} & =45 \mathrm{mmHg} & \mathrm{Hgb}=16 \mathrm{~g} / 100 \mathrm{ml} \\
\mathrm{pH} & =7.35 &
\end{array}
$$

Keystrokes:
[XEQ] [ALPHA] SIZE [ALPHA] 012
[XEQ] [ALPHA] ACID [ALPHA] $\mathrm{PCO2}=0.00$?
45 [R/S]
7.35 [R/S]

16 [R/S]
[R/S]
[R/S]
[XEQ] [ALPHA] PO2 [ALPHA]
75 [R/S]
[R/S]
[R/S]
40 [R/S]
[R/S]
[D]
[R/S]
[R/S]
[///] [E]

Display:
$\mathrm{PH}=0.00$?
$\mathrm{HGB}=0.00$?
$\mathrm{TCO}=25.39$
$\mathrm{BE}=-1.36$
HCO3-=-24.01
$\mathrm{PO} 2=0.00$?
$\mathrm{PCO}=45.00$?
$\mathrm{PH}=7.35$?
$\mathrm{BT}=0.00$?
$V P O 2=59.70$
$\% \mathrm{SAT}=90.92$
$\% \mathrm{SAT}=90.92$
$\mathrm{HGB}=16.00$?
$02 \mathrm{CONT}=19.68$
19.68 (stored as venous)

Example 2:
Assuming that VPO2 is actually 75 mmHg , calculate the estimated O_{2} saturation and O_{2} content.

Keystrokes:
75 [C]
[D]
[R/S]
[R/S]

Display:
\% SAT=95.08
\% SAT=95.08
$\mathrm{HGB}=16.00$?
02 CONT=20.62

91＊LEL MGU	
De FIY	Initialize
03 EF 21	B1ood－Acid base
$945 F=7$	
GE＊LEL H	${ }_{\text {RCL }} \mathrm{PCO}_{2}$
ge XEQ 日E	
QT XEQ E3	
98 KEQ 04	
69 FCL EG	Calc．total
106.11	plasma CO_{2}
$11-10$	
13 FCL 05	
14 S2． 5	
15	
1 E	
17 STa 92	
18 LASTK	
$19+$	Display TCO_{2}
20 ＂Tcos＂	Display KCO_{2}
21 XEQ 10	Ca1c．base excess
2 ECL 09	
231.63	
24 ：	
2 S 9.5	
$2 \epsilon+$	
27 FCL EG	
2 B －4	
$29-$	
36 \％	
31 FCL 日E	
$32+$	
3324	
34 －	
351	
36 ECL 69	
37 76	
38	
39 －	
49 ：	
41 ＂EE＂	Display B E
42 XEQ 10	Printer？
43 FG 55	Yes
44 ETOF	RCL HCO－
$4{ }^{4} \mathrm{HCOS}$	
$4 \overrightarrow{7}$ GTO 1E	Display $\mathrm{HCO}_{3}{ }^{2}$
4S＊LEL＂FOE	$\begin{aligned} & \text { Initialize } \\ & \mathrm{VPO}_{2} \& \mathrm{O}_{2} \text { SAT } \end{aligned}$

49 FIX 2	
5 SF 21	
$519 F 27$	
$5 \Sigma+$ LEL E	RCL PO_{2}
53 SEQ 61	RCL PCO_{2}
54 XEQ 日2	RCL pH
55 XEQ 03	
56 RCL 11	
57 ＂ET＂	RCL BT
58 XEQ 99	
$595 T 011$	Calc． VPO_{2}
60^{67}	
$\epsilon 1 \times \%$	
$E 2-$	
63 － 924	
64 ：	
ES RCL EE	
6574	
67 －	
68.48	
E9 ：	
$7 \mathrm{~F}+$	
7146	
72 ECL ES	
73	
74 Lロ心	
75.66	
TE ：$*$	
$77+$	
78 19t\％	
79 FCL 10	
8 C ：	
$815 T 0 \mathrm{ET}$	Display VPO_{2}
Q2＂YFOE＂	Calc．\％SAT
G3 SEQ 10	
84＊LEL C	
S5 ETO 91	
EE EHTERT	
8T EHTERT	
SG EHTER：	
8915	
$96-$	
91 ：	
92 2045	
$93+$	
94 ：	
9 EE	
$96+$	
97	
98 ET0 Es	
99 CL\％	
10615	

IProgram Listings

BLOOD CHEMISTRY II

ANAEROBIC PCO_{2} AND ${ }_{\mathrm{p}} \mathrm{H}$ CHANGE AND ANAEROBIC PO_{2} CHANGE

Corrections of PCO_{2} and pH for anaerobic temperature change are calculated by this program. In addition, PO_{2} measured at $37^{\circ} \mathrm{C}$ is corrected to body temperature.

Anaerobic PCO_{2} and pH Change:
Corrections of PCO_{2} and pH for anaerobic temperature change are calculated. The equation for pH is a simplification of a formula from Severinghaus. It ignores the pH and BE dependent terms. This introduces a very small error except at extreme conditions of acid-base status and large temperature shifts. For example, at a pH of 7.2 or 7.6 , the error is 0.0013 pH units per ${ }^{\circ} \mathrm{C}$.

Equations Used: $\quad \mathrm{PCO}_{2}(\mathrm{BT})=\mathrm{PCO}_{2}(37) \cdot 10^{0.019(\mathrm{~T}-37)}$

$$
\mathrm{pH}(\mathrm{BT})=\mathrm{pH}(37)-0.0146(\mathrm{~T}-37)
$$

Anaerobic PO_{2} Change:

This program corrects PO_{2}, measured at $37^{\circ} \mathrm{C}$, to Body Temperature.
Equation Used: Correction of PO_{2} for anaerobic temperature change is calculated taking into account the exchange of oxygen between HgbO_{2} and the dissolved state at high saturation. Below 80\% Sat., the relation is approximately

$$
\frac{\Delta \operatorname{Log~PO}}{2} \text { }=0.031
$$

This factor falls at higher saturations, approaching 0.006 at 100% Sat. The curve given by Severinghaus has been approximated by the following equation in this program:

$$
\frac{\Delta \log \mathrm{PO}_{2}}{\Delta \mathrm{~T}}=\frac{3130-62.5 \mathrm{Sat}+0.312008 \mathrm{Sat}^{2}}{100,000-1993 \mathrm{Sat}+9.9313 \mathrm{Sat}^{2}}
$$

Reference: Severinghaus, John W., Blood Gas Calculator, J. Appl. Physiol., 21 (3): 1108-1116, 1966.

Detailed User Instructions:

PO_{2} (BT) replaces the $37^{\circ} \mathrm{C}$ value in memory with the body temperature value. Therefore, calculation based on the $37^{\circ} \mathrm{C}$ values in programs for virtual PO_{2} and O_{2} saturation $\&$ content should be accomplished before this program is run. If O_{2} saturation has not been measured, it should be estimated by using program for "Virtual PO_{2} and O_{2} Saturation and Content."

This program may also be used to convert PO_{2} between any two temperatures, for example, from body temperature to $37^{\circ} \mathrm{C}$. To do this, first determine what the desired temperature change is in ${ }^{\circ} \mathrm{C}$. Add this to $37^{\circ} \mathrm{C}$ algebraically, and enter the result as BT. For example, suppose values known at $41^{\circ} \mathrm{C}$ are to be converted to $37^{\circ} \mathrm{C}$. The temperature change is $-4^{\circ} \mathrm{C}$. Add this to $37^{\circ} \mathrm{C}$, resulting $33^{\circ} \mathrm{C}$. Executing the program with $\mathrm{BT}=33^{\circ} \mathrm{C}$ will then result in the $37^{\circ} \mathrm{C}$ value for PO_{2}.

Example:
For a patient with PCO_{2} of 45 mmHg and a pH of 7.35 at $40^{\circ} \mathrm{C}$, calculate corrected values for PCO_{2} and pH . If the patient's PO_{2} is 75 mmHg and $\%$ saturation is 90 , what is the corrected PO_{2} ?

Keystrokes:
Display:
[XEQ] [ALPHA] SIZE [ALPHA] 012
[XEQ] [ALPHA] ANRB [ALPHA] 0.00
[A]
$\mathrm{PCO}=0.00$?
45 [R/S]
$\mathrm{PCO}=0.00$?
7.35 [R/S]
$\mathrm{PH}=0.00$?
40 [R/S]
[R/S]
[B]
90 [R/S]
$\mathrm{BT}=0.00$?
PCO2 CORR. $=51.31$
PH CORR. $=7.31$

75 [R/S]
\% SAT=0.00?
[R/S]
$\mathrm{PO} 2=0.00$?
$\mathrm{BT}=40.00$?
PO2 CORR. $=92.31$

36
 REGISTERS, STATUS, FLAGS, ASSIGNMENTS

BODY SURFACE AREA FOR CARDIO PULMONARY

This program calculates body surface area by either the method of DuBois or the method of Boyd. In both cases, the required inputs are height and weight, which may be input either in metric (cm, kg) or English (in, 1b) units. Quantities in English units should be input as negative numbers. If cardiac output is given, the cardiac index can also be calculated.

Equations: Let Ht be height, Wt be weight, and BSA be the body surface area in m^{2}.

Ht (cm) $=2.54 \mathrm{Ht}$ (in.)
Wt (kg) $=0.45359237$ Wt (lb.)
DuBois:
BSA $\left(\mathrm{m}^{2}\right)=\mathrm{Ht}(\mathrm{cm})^{0.725} \cdot \mathrm{Wt}(\mathrm{kg})^{0.425} \cdot 7.184 \cdot 10^{-3 .}$
Boyd:
BSA $\left(\mathrm{m}^{2}\right)=\mathrm{Wt}(\mathrm{g})^{(0.7285-0.01881 \mathrm{logWt})} \cdot \mathrm{Ht}(\mathrm{cm})^{0.3} \cdot 3.207 \cdot 10^{-4}$

$$
\mathrm{CI}=\frac{\mathrm{CO}}{\mathrm{BSA}}
$$

where CO is cardiac output in ℓ / min.

NOTE: The DuBois formula for BSA is undefined for children with a BSA less than $0.6 \mathrm{~m}^{2}$. In such cases BSA should be calculated by the Boyd formula.

Reference: D. DuBois and E.F. DuBois, Clin. Cal. 10, Arch. Int. Med., 17,863,1916.

Edith Boyd, Growth of the Surface Area of the Human Body, U. of Minnesota Press, 1935, p. 132.

Example 1:
Patient is 176 cm in height and weights 63.5 kg . What is the body surface area by both the Du Bois and Boyd methods?

Keystrokes:
[XEQ] [ALPHA] SIZE [ALPHA] 012
[XEQ] [ALPHA] BSA [ALPHA]
176 [R/S]
63.5 [R/S]

D $[R / S]$
[B]

Display:
$\mathrm{HT}=$?
$\mathrm{WT}=$?
B/D?
DUBOIS BSA=1.78
BOYD BSA=1.76

Example 2:

A patient 60 inches in height and 100 pounds in weight has a cardiac output of $51 / \mathrm{min}$. Calculate the body surface area and cardiac index by Boyd. What is the cardiac index using the Du Bois BSA?

Keystrokes:
[A]
60 [CHS] [R/S]
100 [CHS] [R/S]
B $[R / S]$
[C]
5 [R/S]
[D]
[C]
[R/S]

Display:
$\mathrm{HT}=$?
$\mathrm{WT}=$?
B/D?
BOYD BSA $=1.40$
$\mathrm{CO}=(\quad)$?
$\mathrm{CI}=3.58$
DUBOIS BSA=1.39
$\mathrm{CO}=5.00$?
$\mathrm{CI}=3.60$

				SIZE: 012
STEP	InStructions	InPUT	FUNCTION	DISPLAY
1	Load the program and begin execution.		[XEQ] BSA	HT $=$?
2	Input the patient height (cm or -inches)	cm or -in	[R/S]	WT=?
3	Input the patient weight (kg or -1bs.)	kg or -1 bs	[R/S]	B/D?
4 a	To calculate body surface area by Boyd			
	method, input B .	B	[R/S]	BOYD BSA=
	or			
4b	To calculate body surface area by Du Bois			
	method, input D. Go to step 5 or 6 .	D	[R/S]	DUBOIS BSA=
5	To calculate body surface area by the			
	alternate method:			
	- by Boyd method		[B]	BOYD BSA=
	- by Du Bois method		[D]	DUBOIS BSA=
6	Optional: Calculate cardiac index.			
	Recall cardiac, if previously stored.		[C]	$\mathrm{CO}=(\mathrm{l}$?
	(If cardiac output is incorrect, input			
	correct cardiac output)	CO		
	Calculate cardiac index.		[R/S]	$\mathrm{CI}=$
7	For a new case press [A] and go to step 2.		[A]	HT=?

91＊LEL＂ESF			49 ケナर	
日z FIX	Initialize		511 E3	
Q3 SF 21	Initialize		52 ：	
04 SF 27			5.5 EHTERT	
日S．LEL ${ }^{\text {a }}$			54 LOG	
¢6． $\mathrm{HT}^{\text {H }}$ ？			55.9189	
ET PREMPT	Input HT		56 ＊	
$0 \mathrm{C} \times \mathrm{x}$ \％	Metric？		57.7285	
09 GTO 61	Yes		$56-$	
16 CHS	No，convert to cm		$59 \% 8$	
112.54			E日	
12 ：			613118	
$13 *$ LEL 01			$\epsilon \mathrm{E}$	
14 ETO 65	STO HT		63 ST0 67	STO Boyd BSA
15 ＂以T＝\％＇	Input WT		64 ＂EOYR ES	
16 FRGMFT			A＊	
$17 \times 2 \mathrm{C}$	Metric		65 GTO 19	Display Boyd BSA
1 G GTO Ez	Yes		66．LEL C	
19 CHS	No，convert to kg		67 RCL ES	Recall CO
26 2． 20.5			6E＂CO＂	
21			69 KEQ 99	
$22+L E L E 2$	STO WT		76 ST0 06	STO new CO
23 ST0 26			71 RCL 1 ？	
24 ＂E二T？ 2 HOH	Choose Boyd or Du Bois		$\frac{72}{73} \quad \mathrm{CI}$	Calc．CI
25 AOH	Du Bois		$74 *$ LEL 16	
27 ＂！${ }^{\text {¢ }}$			75 ＂トニ＊	Display routine
2 g AOFF			76 AREL X	
29 ASTO X			77 RVIEU	
$3 G$ GTO IHN	Go to calc．		78 ETH	
	routine		$\begin{aligned} & 79+\text { LEL } \\ & 669 \\ & \hline 6=. \end{aligned}$	Recall stored CO
$\begin{aligned} & 31+\operatorname{LEL} \mathrm{B} \\ & 32+\operatorname{LEL} \quad " \mathrm{IAH} . \end{aligned}$	Du Bois calc．		81 HFCL X	
33 RCL 65			S2＂r－？	
$34-725$			83 FEOMPT	
35 Y1\％			Q4 EHI	
36 RCL 日6				
37.425				
38 Yt\％				
$39:$				
$40 \quad 139.2$				
41 ¢T0				
42 STO 43 MUROIS	STO Du Bois BSA			
EsA． $43 . \mathrm{DUBOIS}$				
ESA＂GTO 40	Display Du Bois			
$45 * \text { LEL E }$	BSA			
$4 E+$ LEL＂EA	Boyd calc．			
47 REL 05				
48.3		00		

REGISTERS, STATUS, FLAGS, ASSIGNMENTS"

CARDIAC OUTPUTS

Dye Curve Cardiac Output:

This portion of the program calculates cardiac output from measurements taken directly from an indicator dilution curve. It computes the area of the first part of the curve by trapezoidal rule integration. The part after the last point is calculated from an exponential projection based on the first measured point below 65% of the peak measured point; and the first measured point after that which is below 45% of the peak. This not only avoids problems of indicator recirculation in most cases, but also limits the amount of data to be input. Thus it is important to have a measured point which is below 45% of the peak, but before recirculation becomes obvious. If this isn't possible, an approximation can be obtained by guessing at the curve without recirculation and entering values.

Equation Used: $\quad C O(\ell / \mathrm{min})=\frac{\operatorname{DOSE}(\mathrm{mg}) \cdot 60(\mathrm{sec} / \mathrm{min})}{\operatorname{CAL}(\mathrm{mg} /(\ell \cdot \mathrm{div})) \cdot \operatorname{AREA}(\mathrm{div} \cdot \mathrm{sec})}$

Detailed Instructions for Dye Curve Output:

To obtain accurate results, it is important to measure the curve at frequent intervals. Generally, about ten points on the curve, equally spaced in time between onset and the 40%-of-peak point on the downslope, will be adequate. Choose and input a measurement time interval accordingly

Input the values measured from the curve (DC) and press [R/S] after each. The units of measurement are arbitrary; for example, divisions on the paper or volts, so long as the same units are used in inputting the calibration. The values are measured relative to the baseline, or starting level, of the curve. After each input entry, the display will indicate the number of points input.

As points on the downslope are input, the program compares each with the peak value. When the first point whose value is less than 65% of the peak value is found, it is stored for later use in the exponential projection as indicated by a minus sign preceding the displayed value representing the number of points input.

When a point having a value less than 45% of the peak value is input, the program automatically makes the exponential projection and displays the area under the curve, rather than the number of points entered.

At this time, input the CAL value. If indocyanine green dye is being used, it will generally be measured as milligrams of dye per liter of the patient's blood per division or unit of curve measurement. For other indicators, equivalent calibration factors must be determined.

Finally, input the dose of indicator given (for dye, this will usually be in mg.). Cardiac output in liters/min. is calculated and stored in memory.

Fick Cardiac Output:

This portion of the program computes cardiac output, stroke volume, and cardiac index by the Fick method.

$$
\begin{aligned}
& \text { Equations Used: } \quad \mathrm{CO}(\ell / \mathrm{min})=\frac{\mathrm{VO}_{2}(\mathrm{ml} / \mathrm{min} \mathrm{STPD}) \cdot 100(\%)}{\left(\mathrm{C}_{\mathrm{a}} \mathrm{O}_{2}-\mathrm{C}_{\left.\mathrm{V} \mathrm{O}_{2}\right)(\mathrm{vol} \%) \cdot 1000(\mathrm{~m} \ell / \ell)}\right.} \begin{array}{l}
\mathrm{SV}(\mathrm{ml} / \mathrm{beat})=\frac{\mathrm{CO}(\ell / \mathrm{min}) \cdot 1000(\mathrm{ml} / \ell)}{\mathrm{HR}(\text { beats } / \mathrm{min})} \\
\\
\mathrm{CI}\left(\ell / \mathrm{min} \mathrm{~m}^{2}\right)=\frac{\mathrm{CO}(\ell / \mathrm{min})}{\mathrm{BSA}\left(\mathrm{~m}^{2}\right)} \\
\\
\\
\mathrm{SI}\left(\mathrm{~m} \ell / \mathrm{m}^{2}\right)=\frac{\mathrm{SV}(\mathrm{ml})}{\mathrm{BSA}\left(\mathrm{~m}^{2}\right)}
\end{array}
\end{aligned}
$$

Detailed Instructions for Fick Output:
If the Virtual PO_{2} and O_{2} Saturation and Content has just been run either or both CaO_{2} and $\mathrm{C}_{\mathrm{v}} \mathrm{O}_{2}$ will be stored. The program will automatically recall these stored values for input. Proceed as usual by inputting values or accepting recalled values for each parameter. Be sure VO_{2} is in $\mathrm{ml} / \mathrm{min}$ STPD.

To calculate cardiac index-assuming BSA has been previously stored, press [R/S] to recall BSA, or input the correct value. To calculate stroke volume input the heart rate. After calculating stroke volume pressing [R/S] will yield the stroke index. Pressing [R/S] again returns to the display of SV .

Example 1: (For dye curve CO)
Eight consecutive values are taken at one second intervals from an indicator dilution curve. They are as follows: 5, 20, 45, 60, $50,38,28,20$. The calibration is $0.2 \mathrm{mg} / 1 / \mathrm{div}$. The dose is 3 mg. Calculate the cardiac output from the dye curve data.

Keystrokes:
[XEQ] [ALPHA] SIZE [ALPHA] 012
[XEQ] [ALPHA] DYE [ALPHA]
1 [R/S]

Display:

TIME=?
$\mathrm{DC}=$?

5 [R/S]	(1.00)
	DC=?
20 [R/S]	(2.00)
	DC=?
45 [R/S]	(3.00)
	DC=?
60 [R/S]	(4.00)
	DC=?
50 [R/S]	(5.00)
	DC=?
38 [R/S]	(-6.00) past 65% point.
	DC=?
28 [R/S]	(-7.00)
	DC=?
20 [R/S]	AREA $=318.32$
[R/S]	CAL=?
. 2 [R/S]	DOSE=?
3 [R/S]	$\mathrm{CO}=2.83$

Example 2: (For Fick CO)
Calculate Fick cardiac output and index, and stroke volume and index from the following data:

$$
\begin{aligned}
\mathrm{CaO}_{2} & =18 \mathrm{vol} . \% \\
\mathrm{C}_{\mathrm{V}} \mathrm{O}_{2} & =15 \mathrm{vol} \% \\
\mathrm{VO}_{2} & =250 \mathrm{ml} / \mathrm{min} \cdot \mathrm{STPD} \\
\mathrm{BSA} & =2 \mathrm{~m}^{2} \\
\text { Heart rate } & =60 \mathrm{BPM}
\end{aligned}
$$

Keystrokes:
[XEQ] [ALPHA] FICK [ALPHA]
1.8 [R/S]

15 [R/S]
250 [R/S]
[R/S]
2 [R/S]
[R/S]
60 [R/S]
[R/S]

Display:
$\mathrm{CaO}=(\quad)$?
CVO2=()?
$\mathrm{VO} 2=(\quad)$?
$\mathrm{CO}=8.33$
BSA=()?
CI=4.17
HEART BPM=?
SV=138.83
SI=69.42

Q1＊LEL＂MYE	Dye Curve CO	51.45	Do 45\％test
＂GCtme			If not past 45\％
Gz LEL		54 GT0 68	Display negative
04 CF EI	Initialization	55 RDH	count else
95 SF 2		56 STO 日2	calculate
G6 $9 F 27$		57 RCL 94	exponential area
G7 CLY		58 RCL 6 C	
Qe STO EG		$59-$	
$995 T 061$		66 RCL 03	
$105 T 062$		61 RCL Qz	
11 ＂TIME＝？＂	Input time int．	62	
12 PEOMPT		63 LH	
13 STO 10		64	
14＊LEL EG	Input dye curve	65.5	
$15 \sim \mathrm{DC}=7 \times$	values	66－	
16 FROMFT	Count entries	67 \％	
17 ISE 9 C		68 RCL 01	
1 B LEL 11		$69+$	
$195 T+61$	Integrate	76 FCL 1 E	
20 RCL 62	New Peak？	71 ：	
21 X－		72 CF O1	
22 GTO 61	Yes	$735 T 062$	
23 \％${ }^{3}$		74 ＂AREA＂	Display area
$24 \leq T 0 日 2$		$75 \times 2 \mathrm{XEQ} 18$	
E5 X＜ CH	Clear 65\％flag	76 ＂CAL＝？＂ 77 FROMPT	Input calibration
25 CF G1	clear 65\％flag	$\begin{aligned} & 77 \text { FROMPT } \\ & 75 \text { ST: } \end{aligned}$	
$27 * L E L$ 29		79 －DOSE＝？	Input dose
29 GTO GE		36 FROMPT	
$36-65$		31 RCL Ez	Calculate CO
$31 *$	If past 65\％GTO	82	
उद 29%	03 else display	8360	
33 GTO 93	count	84 ＊	
34 RCL 96		35 Etin	
35 CHE		86＊LEL 05	
36 PSE		87 OTO 08	Store and display
37 GTO 09	Do 65\％test	S8＂CO＂	
3G＊LEL 53		89＊LEL 16	
$39 \times 2 \%$		99＂ト＝＂	Display routine
49 STO EJ		91 ARCL 8	
41 RCL Eat		92 RUIEM	
42 ST0 04		93 RTN ．．FIC	
43 EF 91		K． 9 LEL＂FIC	
44 FSE		K－${ }^{-1}$ EL F	Fick CO
45 GTO G 9		$95+L B L$ 96	
$46+$ LEL $0 \cdot$	Display negative count	$\begin{aligned} & 96 \text { FIX } 2 \\ & 97 \text { SF } 21 \end{aligned}$	Initialize
$\begin{array}{ll}47 & \mathrm{ECL} \\ 49 & \mathrm{~F}, \mathrm{E}\end{array}$		$\begin{aligned} & 97 \\ & 99 \\ & 9 F \\ & \hline \end{aligned}$	
49 GTO 90		99 FCL 04	
$50+L E L E 2$		109＂Canz＂	$\mathrm{RCL} \mathrm{CaO}_{2}$

REGISTERS, STATUS, FLAGS, ASSIGNMENTS ${ }^{\circ}$

VALVE AREA

This program calculates the areas of heart valves from measured pressure gradients.

Equations Used:

$$
\text { Valve Area }\left(\mathrm{cm}^{2}\right)=\frac{\text { Mean Flow }}{0.0445 \sqrt{\text { mean gradient }}}
$$

where

$$
\begin{aligned}
& \text { Mean Flow }(\ell!\mathrm{sec})=\frac{\mathrm{CO}(\ell / \mathrm{min} .) \cdot \mathrm{R}-\mathrm{R}(\mathrm{sec})}{\text { Valve Open Time }(\mathrm{sec} / \mathrm{beat}) \cdot 60(\mathrm{sec} / \mathrm{min} .)} \\
& \text { Mitral Valve Area only }=\frac{\text { Valve Area }}{0.7}
\end{aligned}
$$

Detailed User Instructions:

Choose whether the calculation is for mitral or aortic valve, then input the time duration, in seconds, of blood flow through the valve of interest; that is, the systolic ejection period (SEP) for outflow tract valves or the diastolic filling period (DFP) for $A-V$ valves. Press [R/S].

This program permits averaging of a number of pressure gradients across the valve measured at different times while the valve is open. If the pressure gradient is to be measured at a number of different times, the time intervals should be equally spaced across the duration of the valve opening to obtain a true average. Simply input each value of pressure difference, ($\triangle \mathrm{P}$), in $m m H g$, and press [R/S] after each. The display will then show the number of input entries made. When all input entries have been made, press [R/S] without data entry. The average of all the $\Delta \mathrm{P}$ values will be displayed ($\overline{\Delta \mathrm{P}}$). If only one pressure gradient measurement is to be input, because averaging has been accomplished by some other means, simply input the value, press [R/S] and then press [R/S] without data entry. The input value will be displayed.

Input the $R-R$ interval, in seconds, and press [R/S]. Cardiac output, if previously stored, will be recalled. If not, input it. Pressing [R/S] will display the valve area, in cm^{2}.

References: Gorlin, F., Gorlin, S.G., Hydraulic Formula for Calculation of the Area of the Stenotic Mitral Valve, Other Cardiac Valves, and Central Circulatory Shunts, American Heart Journal, Jan. 1957 VOL. 41, No. 1.

Hewlett-Packard Users' Library program 非00207A.

Example:
DFP (mitral valve) $=0.55 \mathrm{sec}$.
$\Delta \mathrm{P}=10,12,8,6,2 \mathrm{~mm} \mathrm{Hg}$.
$R-R=0.94 \mathrm{sec}$.
$\mathrm{CO}=5.731 / \mathrm{min}$.

Keystrokes:
[XEQ] [ALPHA] SIZE [ALPHA] 012
[XEQ] [ALPHA] VALVE [ALPHA]
Y [R/S]
. 55 [R/S]
10 [R/S]

12 [R/S]
etc.
2 [R/S]
[R/S]
[R/S]
.94 [R/S]
5.73 [R/S]

Display:

MITRAL?
TIME $=$?
PRESS DIFF=?
(1.00)

PRESS DIFF=?
(2.00)

PRESS DIFF=?
etc.
(5.00)

PRESS DIFF=?
AVE PRESS DIFF=7.60
$\mathrm{R}-\mathrm{R}=$?
$\mathrm{CO}=(\quad)$?
MITRAL VALVE AREA=1.90

				SIZE: 012
STEP	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
1	Load program and execute Valve Area.		[XEQ] VALVE	MITRAL?
2	If for mitral valve input	Y	[R/S]	TIME=
2a	or, if for other valve input	N	[R/S]	TIME=?
3	Input the ejection period	seconds	[R/S]	PRESS DIFF=?
4	Input the pressure difference	$\triangle \mathrm{P},(\mathrm{mmHg})$	[R/S]	(1.00)
				PRESS DIFF=?
4 a	Repeat step 4 for all values of pressure	$\Delta \mathrm{P}_{\mathrm{n}}(\mathrm{mmHg})$	[R/S]	(n)
	difference			PRESS DIFF=?
5	When all values of pressure difference			
	have been input calculate average by			
	pressing [R/S] without prior data entry		[R/S]	AVE PRESS DIt
6	Input the $\mathrm{R}-\mathrm{R}$ interval		[R/S]*	$\mathrm{R}-\mathrm{R}=$?
		R-R (sec)	[R/S]	$\mathrm{CO}=(\mathrm{l}$?
7	Cardiac output, if stored, is recalled.			
	If incorrect, input correct value and press			
	[R/S]. Valve area is calculated.	CO(1/min)	[R/S]	VALVE AREA=
				$\begin{gathered} \text { or } \\ \text { MITRAL VALVE } \end{gathered}$
				AREA $=$
8	For a new case press [A] and go to step 2			
	*This [R/S] not required if printer is used.			

REGISTERS, STATUS, FLAGS, ASSIGNMENTS

CARDIAC SHUNTS

This program calculates anatomic shunts or a physiologic shunt from measured oxygen concentrations.

Anatomic Shunts:

This routine calculates left-to-right and right-to-left shunts and displays them as a percentage. The program uses the method of allegations and can calculate bi-directional shunts.

Equations Used:

$$
\begin{aligned}
& \mathrm{R}-\mathrm{L} \text { shunt }(\%)=\frac{(\mathrm{L}-\mathrm{PUL})-(\mathrm{L}-\mathrm{SYST})}{(\mathrm{L}-\mathrm{PUL})-(\mathrm{R}-\mathrm{SYST})} \cdot 100 \\
& \mathrm{~L}-\mathrm{R} \text { shunt }(\%)=\frac{(\mathrm{R}-\mathrm{PUL})-(\mathrm{R}-\mathrm{SYST})}{(\mathrm{L}-\mathrm{PUL})-(\mathrm{R}-\mathrm{SYST})} \cdot 100
\end{aligned}
$$

The program assumes oxygen concentration values taken from four sites in the cardiovascular system. Since these sites may be various chambers in the heart or great vessels, they are labeled right systemic, right pulmonary, left pulmonary and left systemic. For example, suppose oxygen concentration values are known for the right atrium, pulmonary artery, left ventricle, and aorta; then the right systemic site would be the right atrium, the right pulmonary site would be the pulmonary artery, the left pulmonary site would be the left ventricle, and the left systemic site would be the aorta.

Note that it is possible to enter either oxygen contents or saturations, assuming hematocrit does not change during the sampling interval.

Physiologic Shunt and Fick Cardiac Output:

The Fick cardiac output and physiologic shunt fraction are calculated from arterial, venous and alveolar oxygen concentration and oxygen intake.

Equations Used:

$$
\begin{aligned}
& \text { Phys. Shunt }=\frac{\mathrm{C}_{\mathrm{A}} \mathrm{O}_{2}-\mathrm{C}_{\mathrm{a}} \mathrm{O}_{2}}{\mathrm{C}_{\mathrm{A}} \mathrm{O}_{2}-\mathrm{C}_{\mathrm{V}} \mathrm{O}_{2}} \\
& \mathrm{CO}(\ell / \mathrm{min})=\frac{\mathrm{VO}_{2}(\mathrm{ml} / \mathrm{min} \operatorname{STPD}) \cdot 100(\%)}{\left(\mathrm{C}_{\mathrm{a}} \mathrm{O}_{2}-\mathrm{C}_{\mathrm{V}} \mathrm{O}_{2}(\mathrm{vol} . \%) \cdot 1000(\mathrm{ml} / \ell)\right.}
\end{aligned}
$$

These are the standard physiologic shunt and Fick cardiac output equations. If measured O_{2} saturations are used, these equations will be accurate.

If the content values have been derived from saturation estimates on PO_{2} measurements for arterial and venous blood, the results should be viewed with caution unless the patient's oxygen dissociation curve has been established to be normal.

After cardiac output is calculated, stroke volume may be calculated by heart rate and multiplying by 1000 (to convert from 1 to ml). Alternatively, cardiac index may be calculated by dividing by body surface area.

If the program is to be used to calculate output only, it is not necessary to input $\mathrm{C}_{\mathrm{A}} \mathrm{O}_{2}$.

References: Zimmerman, H.A., Intravascular Catheterization, Charles C. Thomas, Springfield, IL, 1966.

Comroe, Julius H., Jr., et al. The Lung, 2nd ed., Year Book Medical Publishers, Inc., Chicago, 1962, p. 345.

Hang, Sing San, et a1, From Cardiac Catheterization Data to Hemodynomic Porometers, F.A. Davis Co., Phil., 1972, p. 21.

Example 1:
Calculate the left-to-right or right-to-left shunts for a patient having the following oxygen saturation values at the listed sites. Right atrium, 85%; pulmonary artery, 88%; left ventricle, 95%; left atrium, 93%.

Keystrokes:
[XEQ] [ALPHA] SIZE [ALPHA] 012
[XEQ] [ALPHA] ANATOM [ALPHA]
85 [R/S]
88 [R/S]
95 [R/S]
93 [R/S]
[R/S]

Display:

R-SYST=?
R-PUL=?
$\mathrm{L}-\mathrm{PUL}=$?
L-SYST=?
L-R SHUNT=30.00
R-L SHUNT=20.00

Example 2:
Calculate physiologic shunt and Fick cardiac output from the following data:

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{A}} \mathrm{O}_{2}=20 \mathrm{vol} . \% \\
& \mathrm{C}_{\mathrm{a}} \mathrm{O}_{2}=18 \mathrm{vol} . \% \\
& \mathrm{C}_{\mathrm{V}} \mathrm{O}_{2}=15 \mathrm{vol} . \% \\
& \mathrm{VO}_{2}=250 \mathrm{ml} / \mathrm{min} . \mathrm{STPD}
\end{aligned}
$$

Keystrokes:
[XEQ] [ALPHA] PHYS [ALPHA]
20 [R/S]
18 [R/S]
15 [R/S]
[F]
250 [R/S]

Display:
$\mathrm{CAO}=(\quad) ?$
$\mathrm{CaO}=(\quad)$?
$\mathrm{CVO}=(\quad)$?
PHYS SHUNT=40.00
VO2 $=(\quad)$?
FICK CO=8.33

				SIZE:
STEP	INSTRUCTIONS	InPuT	FUNCTION	DISPLAY
	uptake is known) press [F] recalling			
	stored oxygen uptake, input correct			
	oxygen uptake or if correct press [R/S]			
	without prior data entry. Fick cardiac			
	output is then calculated.		[F]	VO2 $=(\quad)$?
		VO_{2} or no input	[R/S]	FICK CO=
5	For a new anatomical shunt press [A] and			
	go to step 2		[A]	R-SYST=?
6	For a new physiologic shunt press [C] and			
	go to step 3		[C]	$\mathrm{CAO}=(\mathrm{l}$?
6a	For a new Fick cardiac output press [F]			
	and go to step 4		[F]	$\mathrm{V} 02=()$?

$\begin{gathered} \text { Q1+LEL "AHA } \\ \text { TMM" LEL } A \end{gathered}$	Anatomic shunts	$\begin{array}{ll} 47 \text { KEQ } & 16 \\ 48+\operatorname{LEL} & 64 \\ 49 \text { FS? } & 55 \end{array}$	Yes, display shunt
Q3 FIX 2		565 TOF	Toggle for
04 EF 21	Initialize	51 GTO 09	
05 SF 27		$52+L E L E 1$	
Q6 SF E1		$53 \sim \vdash$ H0 S	Display: no
Q7 "R-SYST=		HUHT*	shunt
$? \cdot$		54 RVIEN	
Qs FROMFT		55 FS ? 91	
09 STO 00		56 GTO 04	Go to toggle
$10 . \mathrm{FR}$-FUL=?	Input right and	57 ETH	
11 FROMPT	left pulmonary	$58+$ LEL 10	
12 STo gz		$={ }^{59}$ "F SHUHT	Display shunt
$13 \quad \because L-F U L=?$	and systemic	60 HECL X	
"	O_{2} concentra-	G1 GVIEM	
14 FEOMPT	tions	62 FS ? 61	
15 STO 95		63 GTO 54	Go to togg1e
$16 \cdot L-S Y S T=$		64 RTH	
?		65*LEL "PHY'	
17 PROMPT		$E \cdot$	Calc. physiologic
18 STO GE		6E-LEL C	shunt
195766		67 FIX 2	
20*LEL 90		$6 \underbrace{6} \mathrm{~F}$ 21	Initialize
21 FS?C E0		69 SF 27	
22 GTO 02	to R-L calc.	76 CF 91	
23 SF 09		71 RCL 91	
24 RCL 05	Calc. R-L shunt	72 "CAOE"	
25 RCL 66		73 XEQ 09	
26 -		74 STO 91	STO $\mathrm{C}_{\mathrm{A}} \mathrm{O}_{2}$
27 FCL 95		75 RCL 04	
28 RCL 日6		76 "CaOz"	RCL $\mathrm{Ca}_{\mathrm{a}} \mathrm{O}_{2}$
$29-$		77 XEQ 99	
36		78 STO 79 64 8	STO $\mathrm{Ca}_{\mathrm{a}} \mathrm{O}_{2}$
32 GTO 03		86 "cyoz"	RCL $\mathrm{C}_{\mathrm{V}} \mathrm{O}_{2}$
33+LEL 92	Calc. L-R shunt	81 XEQ 09	
34 FCL 92		82 ST0 03	STO $\mathrm{C}_{\mathrm{V}} \mathrm{O}_{2}$
35 RCL 60		83 FCL 64	Calculate shunt
36 R-CL 05		34 ECL 04	
38 FECL 09		86 RCL 01	
39		87 RCL 93	
40		es -	
41 -L-E"		89	
42 LEL 6.3		901 EZ	
431 EZ		91 :	
44 :		92 "FHYE"	
$45 \times<=0 \%$	Is result pos.	$93 \times<=0$	
46 GTO 61	No	94 GTO 61	No shunt

Program Listings

62
 REGISTERS, STATUS, FLAGS, ASSIGNMENTS

CONTRACTILITY AND STROKE WORK

Contractility:

This portion of the program, entitled "Vmax," calculates the indices of left ventricular contractility based on pressure rise during isovolumetric contraction.

Equations Used:

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{N}}=\text { most recently entered pressure (mmHg) } \\
& \mathrm{P}_{\mathrm{N}-1}=\text { next previously entered pressure } \\
& \Delta \mathrm{t}=\text { time interval between pressure measurements (sec) } \\
& \mathrm{P}_{\mathrm{P}}=\text { pressure at which } \mathrm{dP} / \mathrm{dt} / \mathrm{P} \text { is calculated } \\
& \Delta \mathrm{P}=\mathrm{P}_{\mathrm{N}}-\mathrm{P}_{\mathrm{N}-1} \\
& \frac{\mathrm{dP}}{\mathrm{dt}}=\frac{\Delta \mathrm{P}}{\Delta \mathrm{t}} \mathrm{mmHg} / \mathrm{sec} \\
& \mathrm{P}_{\mathrm{P}}=\frac{\mathrm{P}_{\mathrm{N}}+\mathrm{P}_{\mathrm{N}-1}}{2} \\
& \mathrm{dP} / \mathrm{dt} / \mathrm{P}=\frac{\mathrm{dP} / \mathrm{dt}}{\mathrm{P}_{\mathrm{P}}} \mathrm{sec}{ }^{-1} \\
& \mathrm{P}_{\mathrm{M}}=\mathrm{P}_{\mathrm{P}} \text { where dP/dt/P is a maximum} \\
& \mathrm{V}_{\mathrm{MAX}}=\frac{1}{30} \frac{\left(\mathrm{P}_{\mathrm{P}} \mathrm{LAST} \cdot \mathrm{MAX} \mathrm{dP/dt/P)-(P}_{\mathrm{M}} \cdot \mathrm{dP} / \mathrm{dt} / \mathrm{P}\right. \text { LAST) }}{}
\end{aligned}
$$

$\mathrm{dP} / \mathrm{dt}$ is calculated as the difference between successive pressure inputs divided by the time interval Δt. The largest value found is stored as maximum dP/dt.
$d P / d t / P$ is calculated for each pair of successive inputs, by first determining $\mathrm{dP} / \mathrm{dt}$ as above, then dividing by the mean of the two pressures. The largest value found is stored as maximum dP/dt/P.
$V_{\text {MAX }}$ is found in this program by a linear projection of the downslope of the $d P / d t / P$ vs. P curve back to $P=0$, and by dividing the resulting $\mathrm{dP} / \mathrm{dt} / \mathrm{P}$ by 30. The projection is based on the point at which the maximum $\mathrm{dP} / \mathrm{dt} / \mathrm{P}$ was found, and the last point input. The constant is controversial, values between about 28 and 32 having appeared in the literature. The value 30 is used in this program.

Detailed Instructions:

The indices of left ventricular contractility calculated by this program are based on the pressure rise during isovolumetric contraction. Measurements, equally spaced in time, should be input for the isovolumetric phase only. Inputting values from the systolic ejection period can cause significant errors. Generally, between 5 and 10 pressure measurements should be input, and the time interval between measurements, Δt, chosen accordingly. Too few measurements will cause the maximum values to be missed. Too many will introduce excessive "noise" resulting in errors.

After each input except the first, $d P / d t / P$ for the two most recent points will be displayed with a pause. When all inputs have been made the results: maximum $\mathrm{dP} / \mathrm{dt}$, maximum $\mathrm{dP} / \mathrm{dt} / \mathrm{P}$ and $\mathrm{V}_{\mathrm{MAX}}$, maximum velocity of the contractile element at zero pressure in circumferences or lengths/sec., are displayed.

If the contractility parameters are to be calculated using developed pressure, or any pressure reference other than zero, perform the subtraction before entering pressure values.

Stroke Work:

This routine calculates stroke work (SW) and stroke work index (SWI). For stroke work based on systolic minus end-diastolic pressure, perform subtraction before data input.

Equations Used:

$$
\begin{aligned}
& \mathrm{SW}(\mathrm{gm} \cdot \mathrm{~m})=\frac{13.6 \cdot \mathrm{P}(\mathrm{mmHg}) \cdot \mathrm{CO}(\ell / \mathrm{min}) \cdot \mathrm{R}-\mathrm{R}(\mathrm{sec})}{60(\mathrm{sec} / \mathrm{min})} \\
& \mathrm{SWI}(\mathrm{gm} / \mathrm{m})=\frac{\mathrm{SW}(\mathrm{gm} \cdot \mathrm{~m})}{\mathrm{BSA}\left(\mathrm{~m}^{2}\right)}
\end{aligned}
$$

Detailed Instructions:

The mean systolic pressure, \bar{P}, is required for stroke work calculation. The program will average pressures measured at equal time intervals through systole to obtain the mean. When all inputs have been made, press $[R / S]$ without prior data entry to obtain the mean systolic pressure.

If averaging is accomplished by other means, only a single value is input. If an error is made in the pressure inputs, restart program by pressing [B] and rekey the input data.

Reference: Yang, Sing San, et al, From Cardiac Catheterization Data to Hemodynamic Parameters, F.A. Davis Co., Phil., 1972.

Example 1:

Find maximum $d P / d t$, maximum $d P / d t / P$ and maximum ventricular contractility if the time interval is 0.005 seconds and P_{N} is $10,20,40,60$, and 80 mmHg .

Keystrokes:
[XEQ] [ALPHA] SIZE [ALPHA] 012
[XEQ] [ALPHA] VMAX [ALPHA]
. 005 [R/S]
10 [R/S]
20 [R/S]

40 [R/S]

60 [R/S]

80 [R/S]
[R/S]
[R/S]
[R/S]

Display:

TIME INT. $=$?
$P 1=$?
P2=?
(133.33)

P3=?
(133.33)

P4=?
(80.00)

P5 $=$?
(57.14)

P6=?
MAX dP/dT=4000
MAX $\mathrm{dP} / \mathrm{dT} / \mathrm{P}=133.3$
$\operatorname{VMAX}=5.14$

Display:
PSYST=?
PSYST=?
PSYST=?
AVE $P=105.00$
$\mathrm{R}-\mathrm{R}=$?
$\mathrm{CO}=(\quad)$?
STROKE WORK=119.00
$\mathrm{BSA}=(\quad)$?
SW INDEX=59.50

STEP				SIZE: 012
	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
1	Load the program. For Contractibility			
	(Vmax) calculation go to step 2. For			
	stroke work go to step 8.			
	CONTRACTIBILITY			
2	Begin contractibility calculation.		[XEQ] VMAX	TIME INT. $=$?
3	Input the time interval.	$\Delta \mathrm{T}$ (sec)	[R/S]	$\mathrm{P} 1=$?
4	Input first pressure reading.	P1 (mmHg)	[R/S]	$\mathrm{P}(\mathrm{n})=$?
5	Input next pressure reading.	P2 (mmHg)	[R/S]	(dP/dt/P)
	(dP/dt/P for two most recent points is			$\mathrm{P}(\mathrm{n}+1)=$?
	displayed with a pause).			
6	Repeat step 5 for remainder of pressure			
	readings. When all readings are input,			
	press [R/S] without prior data entry.	no entry	[R/S]	MAX dP/dT=
	Maximum dP/dt (mmHg/sec) is displayed.			
7	Calculate maximum $\mathrm{dP} / \mathrm{dt} / \mathrm{P}\left(\mathrm{sec}^{-1}\right)$ and Vmax		[R/S]*	$\mathrm{MAX} \mathrm{dP} / \mathrm{dT} / \mathrm{P}=$
	(circ/sec).		[R/S]*	VMAX=
	STROKE WORK			
8	Begin stroke work calculation.		[XEQ] WORK	PSYST=?
9	Input systolic pressure.	$\mathrm{P}_{\mathrm{Sys}}^{(\mathrm{mmHg})}$	$[\mathrm{R} / \mathrm{S}]$	PSYST=?
10	Repeat step 9 for all valyes of Psys.			
	After all valves have been input press			
	[R/S] without prior data entry.	no entry	[R / S]	AVE $\mathrm{P}=$
	Average Psys is displayed.			
11	Input $\mathrm{R}-\mathrm{R}$ interval.		[R/S]	$\mathrm{R}-\mathrm{R}=$?
		R-R (sec)	[R/S]	$\mathrm{CO}=(\quad)$?
	*This [R/S] not necessary if calculator is used with printer.			

				SIZE :
STEP	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
12	Stored cardiac output is displayed input			
	correct cardiac output or, if correct,	CO		
	press [R/S]. Stroke work is calculated		[R/S]	STROKE WORK=
13	Recall stored body surfact Area. Input		[R/S]	$\mathrm{BSA}=(\quad)$?
	correct value or, if correct, press [R/S]	BSA		
	stroke work index is displayed.		[R/S]	SW INDEX=

61＊LEL＂YMF		$\begin{array}{lll} 50 \\ 51 & \text { FIS } & 2 \end{array}$	Display dP／dt／P
$\cdots 2+L E L A$	Contractility		
035 SF 21	Initialization	53 GTO 6 E	
$045 F 27$	$\Delta \mathrm{T}$ input	$545 T 0 \quad 04$	
0.5 ＂TIME IH	$\Delta 1$ input	55 LAST\％	
T．$=$ ？${ }^{\circ}$		$565 T 085$	
06 FROMPT		57 RLit	
07 ST0 日6		59 GTO 90	
08 CLX		$59+$ LEL 61	
09 ST0 09		60 ECL 03	
10 ST0 1			
11 STO 03		dT＂	
12 STO 04		62 ASTO 10	
13 STO 95		63 XEQ 10	Display MAXdP／dt
14 CF 22		64 GF 29	
15＊LEL 69		65 RCL 64	
16 ISG 09		EG FI\％ 1	
17＊LEL 11		67 CLA	
18 CLX		68 AFCL 16	
19 FIX 0^{1}		69 ＂ト／dT／F＂	
20 CF 29		76 KEQ 10	Display MAXdP／dt
z1＂F＇＂		71 RCL 09	
22 ARCL 06	Input $\mathrm{P}_{1--\mathrm{m}}$	72 RCL 04	
23＂ト＝？＂		73 ＊	
24 PEROMPT		74 RCL 05	Calc ${ }_{\text {max }}$
25 FC？C 22		75 RCL E2	
26 GTO 日1		76＊	
27 EHTERT		77 －	
		78 RCL 69	
$29 \quad 8=0 ?$		79 ECL 05	
36 GTO 90		$80-$	
31 －		81 8\％ 8 ？	
32 EHTERT	Calc dP／dt	82	
33 EHTER		8330	
34 RCL 66		84	
35 \％		95 FIX 2	
36 RCL EJ		S6＂पMAX＂	
37 र＜ 4		S7＊LEL 19	Display Vmax
38 X＞Y		83 ＂ト＝＂	Display Routine
39 ETO 93	Save MAX dP／dt	89 ARCL X	
40 ECL E 1		90 RVIEM	
$41 \mathrm{R}+$		91 FTH	
42 2		92＋LEL＊NOR	WORK
43		＜＇	
$44-$	Save P_{1}		
45 STO 69		94 FIX 2	
46		95 CF 61	
47 ST0 02		96 CF 22	Initialization
48 RCL 04		$97 \quad 5 \mathrm{~F} \quad 21$	
$498<2 \%$		$98 \quad 5 \mathrm{~F}$ こ7	

${ }^{20}$
 REGISTERS, STATUS, FLAGS, ASSIGNMENTS

NOTES

Hewlett-Packard Software

In terms of power and flexibility, the problem-solving potential of the HP-41C programmable calculator is nearly limitless. And in order to see the practical side of this potential, HP has different types of software to help save you time and programming effort. Every one of our software solutions has been carefully selected to effectively increase your problem-solving potential. Chances are, we already have the solutions you're looking for.

Application Pacs

To increase the versatility of your HP-41C, HP has an extensive library of "Application Pacs". These programs transform your HP-41C into a specialized calculator in seconds. Included in these pacs are detailed manuals with examples, minature plug-in Application Modules, and keyboard overlays. Every Application Pac has been designed to extend the capabilities of the HP-41C.

You can choose from:

Aviation
Clinical Lab
Circuit Analysis
Financial Decisions
Mathematics

Structural Analysis
Surveying
Securities
Statistics
Stress Analysis
Games

Users' Library

The Users' Library provides the best programs from contributors and makes them available to you. By subscribing to the HP-41C Users' Library you'll have at your fingertips literally hundreds of different programs from many different application areas.

* Users' Library Solutions Books

Hewlett-Packard offers a wide selection of Solutions Books complete with user instructions, examples, and listings. These solution books will complement our other software offerings and provide you with a valuable tool for program solutions.

You can choose from:

```
Business Stat/Marketing/Sales
Home Construction Estimating
    Lending, Saving and Leasing
            Real Estate
        Small Business
            Geometry
        High-Level Math
            Test Statistics
                Antennas
        Chemical Engineering
            Control Systems
        Electrical Engineering
        Fluid Dynamics and Hydraulics
```

Civil Engineering Heating, Ventilating \& Air Conditioning Mechanical Engineering
Solar Engineering
Calendars
Cardiac/Pulmonary
Chemistry
Games
Optometry I (General) Optometry II (Contact Lens)
Physics
Surveying

[^0]
CARDIAC/PULMONARY

PULMONARY FUNCTIONS/VITAL CAPACITY
LUNG DIFFUSION AND ARTERIAL CO_{2} NORMALIZATION
VENTILATOR SETUP AND CORRECTIONS (RADFORD)
BLOOD CHEMISTRY I
BLOOD CHEMISTRY II
BODY SURFACE AREA FOR CARDIO PULMONARY PROGRAMS
CARDIAC OUTPUTS
VALVE AREA
CARDIAC SHUNTS
CONTRACTILITY AND STROKE WORK

HEWLETT-PACKARD

HP-41C

USERS' LIBRARY SOLUTIONS
 Bar Codes Cardiac/Pulmonary

CARDIAC/PULMONARY

PULMONARY FUNCTIONS/VITAL CAPACITY 1
LUNG DIFFUSION AND ARTERIAL CO_{2} NORMALIZATION 4
VENTILATOR SEIUP AND CORRECTIONS (RADFORD) 5
BLOOD CHEMISTRY I. 7
BLOOD CHEMISTRY II. 9
BODY SURFACE AREA FOR CARDIO PUIMONARY PROGRAMS 10
CARDIAC OUTPUTS 11
VALVE AREA. 13
CARDIAC SHUNTS 14
CONTRACTILITY AND STROKE WORK. 16

NOTICE

The program material contained herein is supplied without representation or warranty of any kind. Hewlett-Packard Company therefore assumes no responsibility and shall have no liability, consequential or otherwise, of any kind arising from the use of this program material or any part thereof.

```
PULMONARY FUNCTIONS/
HEWLETT PACKARD
VITAL CAPACITY
PROGRAM REGISTERS NEEDED: }8


```

LUNG DIFFUSION AND ARTERIAL
CO2 NORMALIZATION
PROGRAM REGISTERS NEEDED: 33

ROW 5 (16-20)

ROW 6 (21-26)

ROW 7 (27-37)

ROW 8 (37-40)

ROW 9 (40-45)

ROW 10 (46-53)

ROW 14 (68-72)

ROW 15 (72-78)

ROW 16 ($78-88$)

ROW 17 (89-95)

ROW 18 (96-99)

BLOOD CHEMISTRY I	HEWLETT PACKARD
	SOLUTION BOOK:
PROGRAM REGISTERS NEEDED: 50	CARDIAC/PULMONARY

hp HEWLETT
HEWLETT
PACKARD

[^0]: * Some books require additional memory modules to accomodate all programs.

