HEWLETT-PACKARD HP-41

 USERS' LIBRARY SOLUTIONS Home Construction Estimating
NOTICE

The program material contained herein is supplied without representation or warranty of any kind. Hewlett-Packard Company therefore assumes no responsibility and shall have no liability, consequential or otherwise, of any kind arising from the use of this program material or any part thereof.

INTRODUCTION

This HP-41C Solutions book was written to help you get the most from your calculator. The programs were chosen to provide useful calculations for many of the common problems encountered.

They will provide you with immediate capabilities in your everyday calculations and you will find them useful as guides to programming techniques for writing your own customized software. The comments on each program listing describe the approach used to reach the solution and help you follow the programmer's logic as you become and expert on your HP calculator.

KEYING A PROGRAM INTO THE HP-41C

There are several things that you should keep in mind while you are keying in programs from the program listings provided in this book. The output from the HP 82143A printer provides a convenient way of listing and an easily understood method of keying in programs without showing every keystroke. This type of output is what appears in this handbook. Once you understand the procedure for keying programs in from the printed listings, you will find this method simple and fast. Here is the procedure:

1. At the end of each program listing is a listing of status information required to properly execute that program. Included is the SIZE allocation required. Before you begin keying in the program, press XEO ALPHA SIZE ALPHA and specify the allocation (three digits; e.g., 10 should be specified as 010).

Also included in the status information is the display format and status of flags important to the program. To ensure proper execution, check to see that the display status of the HP-41C is set as specified and check to see that all applicable flags are set or clear as specified.
2. Set the HP-41C to PRGM mode (press the PRGM key) and press GTO \square to prepare the calculator for the new program.
3. Begin keying in the program. Following is a list of hints that will help you when you key in your programs from the program listings in this handbook.
a. When you see " (quote marks) around a character or group of characters in the program listing, those characters are ALPHA. To key them in, simply press ALPHA, key in the characters, then press ALPHA again. So "SAMPLE" would be keyed in as ALPHA "SAMPLE"ALPHA
b. The diamond in front of each LBL instruction is only a visual aid to help you locate labels in the program listings. When you key in a program, ignore the diamond.
c. The printer indication of divide sign is /. When you see / in the program listing, press \rightarrow.
d. The printer indication of the multiply sign is $\stackrel{\%}{\%}$. When you see $\%$ in the program listing, press x.
e. The ${ }^{-}$-character in the program listing is an indication of the APPEND function. When you see ${ }^{-}$, press \square APPEND in ALPHA mode (press and the K key).
f. All operations requiring register addresses accept those addresses in these forms:
nn (a two-digit number)
IND nn (INDIRECT: \square, followed fy a two-digit number)
X, Y, Z, T, or L (a STACK address: $-\quad$ followed by X, Y, Z, T, or L)
IND X, Y, Z, T or L (INDIRECT stack: \quad followed by X, Y, Z, T, or L)
Indirect addresses are specified by pressing \square and then the indirect address. Stack addresses are specified by pressing \bullet followed by $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{T}$, or L . Indirect stack addresses are specified by pressing \square and $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{T}$, or L .

Printer Listing

```
01*LBL "SAM
PLE*
    02 ."this IS
    A "...
    03 "トSAMPLE
    0 4 ~ R V I E W
    05 6
    06 ENTER\uparrow
    07 -2
    08,
    09 ABS
    1g STO INI
L
    11 "R3="
    12 PRCL 03
    13 AVIEW
    14 RTN
```


Keystrokes

LBL ALPHA SAMPLE ALPHA
ALPHA THIS IS A ALPHA
ALPHA AVPEND SAMPLE
AVIEW ALPHA
6
ENTERA
2 CHS
\vdots
XEQ ALPHA ABS ALPHA
STO Q A
ALPHA R3
ARCL 03
ALPHA
RTN

Display
01 LBL $^{\top}$ SAMPLE
02^{T} THIS IS A
03^{\top} - SAMPLE
04 AVIEW
056
06 ENTER 〕
07 -2
08 /
09 ABS
10 STO IND L
11^{\top} R3 $=$
12 ARCL 03
13 AVIEW
14 RTN

TABLE OF CONTENTS

1. CONCRETE VOLUME 1Computes cubic volume of an area of concrete based ondimensions in feet and inches.
2. LINEAR TO BOARD FEET CONVERSION AND COSTING 6
Converts linear to board feet, computes cost, andaccumulates totals of board feet and cost for a seriesof conversions.
3. FRAMING BOARD FEET 11Given the dimensions of a dwelling (1 story only) findsboard feet of framing.
4. LUMBER ESTIMATE 17Estimates material cost, labor cost, and total cost ofrough carpentry based on entered material costs andlabor rates.
5. SHINGLE ESTIMATE 24
Estimates material cost, labor cost, and total cost of roofing based on ceiling area, pitch of roof, material costs and labor rate.
6. WALL \& CEILING AREAS ESTIMATE 30
Computes net and gross wall and ceiling areas.
7. WALLPAPER ESTIMATE 36
Estimates material and labor costs based on area to be papered, size and cost of rolls, and labor rate.
8. DRYWALL AND INSULATION ESTIMATE 42Estimates cost of drywall and insulation given area, itemcost, and labor rate.
9. SHEATHING AND SUBFLOOR ESTIMATE 48Given the area, size and item cost of plywood, and laborfactor, estimates sheathing and subfloor construction amounts.
10. PAINTING ESTIMATE 54Estimates amounts and costs for painting based on paint costand coverage and labor costs.
11. WOOD FLOOR ESTIMATE 60Estimates costs for installing and finishing a hardwood floor.

CONCRETE VOLUME

Given the dimensions of an area of concrete to be poured in feet and/or inches, this program calculates, in cubic yards, the volume of concrete required. It also maintains a running sum of the volumes of concrete required for when dimensions are complex or subdivided.

Reference: HP-65 Users' Library program 非01816A.

Example:
Given a footing for a building with the following dimensions, calculate the volume of concrete required:

W		D		L
$20^{\prime \prime}$	x	$15^{\prime \prime}$	x	$78^{\prime} 6^{\prime \prime}$
$20^{\prime \prime}$	x	$15^{\prime \prime}$	x	$54^{\prime} 6^{\prime \prime}$
$20^{\prime \prime}$	x	$9^{\prime \prime}$	x	64^{\prime}
2^{\prime}	x	1^{\prime}	x	$39^{\prime} 3^{\prime \prime}$

Keystrokes:
[USER]
[XEQ] [ALPHA] SIZE [ALPHA] 004
[XEQ] [ALPHA] CONC [ALPHA] CONCRETE VOL.
.20 [R/S] D?
. 15 [R/S]
78.06 [R/S]
[A]
.20 [R/S]
:
1 [R/S]
39.03 [R/S]
[R/S]

W?
Display:
(set USER mode)

L?
CU. YDS. $=6.06$
W ?
D?
:

L?
CU. YDS. $=2.91$
TOTAL=16.13

User Instructions

				SIZE: 004
STEP	INSTRUCTIONS	InPUT	FUNCTION	DISPLAY
1	Key in the program and set USER mode.		[USER]	
2	Initialize the program.		[XEQ] CONC	CONCRETE VOL.
				W?
3	Input dimensions: width,	W	[R/S]	D?
	depth,	D	[R/S]	L?
	and length.	L	[R/S]	$\begin{aligned} & \text { CU. YDS. }= \\ & \text { (cu. yds) } \end{aligned}$
	(Input format is FF.II, where F is feet			
	and I is inches, e.g., 78'6' is input as			
	78.06)			
4	To see total volume:		[R/S]	TOTAL=(cu. yds)
5	To input another section:		[A]	W?
	then go to step 3.			
6	For a new set, go to step 2.			

Program Listings

REGISTERS, STATUS, FLAGS, ASSIGNMENTS

LINEAR TO BOARD FEET CONVERSION AND COSTING

This program will convert linear feet to board feet for any size lumber as specified, and will compute a cost based on a specified unit cost. Conversion may be done repeatedly with several sizes of lumber, with total board feet and total cost accumulated. A waste factor is included in the calculations.

Reference: HP-65 Users' Library program 非01583A.

Example:

You are costing a building project that includes the following quantities of lumber, with sizes and costs as specified.

Size	Cost/BF	Quantity
2×4	$\$ 0.265$	3256 LF
2×6	$\$ 0.257$	2665 LF
2×12	$\$ 0.27$	339 LF
1×5 pine	$\$ 0.46$	850 LF

Compute the cost and quantity sub-totals and totals. Incorporate a waste factor of 25% for all lumber.

Keystrokes:
[USER]
[XEQ] [ALPHA] SIZE [ALPHA] 002
[XEQ] [ALPHA] LIN [ALPHA]
2.4 [R/S]

25 [R/S]
3256 [R/S]
.265 [R/S]
[R/S]
[A]
2.6 [R/S]
:
[R/S]
[R / S]
[R/S]

Display:
(set USER mode)

LIN. <> B.F.
SIZE <XX.X>?
\% WASTE ?
LINEAR FT ?
UNIT COST ?
B.F. $=2,713.00$

COST=718.95
SIZE <XX. X>?
\% WASTE?
:
$\operatorname{COST}=203.78$
TOTAL B.F. $=7335.00$
TOTAL COST=3007. 75

User Instructions

Program Listings

REGISTERS, STATUS, FLAGS, ASSIGNMENTS

FRAMING BOARD FEET

This program finds Board Feet in Standardized Dwellings. For 8-2x4 boards, 8 ft. long, the number of board feet is

$$
\frac{8 \times 2 \times 4 \times 8}{12}=422 / 3
$$

The formula is reduced as much as possible for each item as it is incorporated in the program. The program assumes the following sizes of boards: Girder,
 ($1 / 3$ as many as rafters), $2 \times 6 \times \frac{1}{2}$ width; joists, $2 \times 8 \times w i d t h$ (see below); header, $1-2 x^{2} \mathrm{xL}_{1}$; Ridge board, $1-2 \times 8 \times L_{2} ;$ Bridging, $1-1 \times 4 \times 6$ times L_{1}; Plates, 1 - $2 \times 4 \times 3$ times (perimeter plus intervals); studs, $2 \times 4 \times 8$ (see below); gable studs, 2×4 (see below). $16^{\prime \prime}$ spacing is assumed for rafters, joists and studs. Rafter length, including waste, for $\frac{1}{4}$ pitch is 1.27 of width (considers eave). Wall studs for entire building (includes corners, doors, etc.) is assumed to be one stud per linear foot. The length of the gable studs, for $\frac{1}{4}$ pitch, is assumed to be $\frac{1}{4}$ of the width. The waste from one end is used for the other end.

Note: The Dwelling is assumed to have: One story, one-foot eaves, $\frac{1}{4}$ pitch, rectangular configuration, and above sizes.

The program does not consider that lumber comes in lengths of multiples of 2 ft . This is an estimate only. Other methods may differ slightly, especially in determining waste.

Reference: HP-65 Users' Library program \#04577A.

Example:

(not to scale)

Estimate the board feet in the frame of the above dwelling.

Keystrokes:
[XEQ] [ALPHA] SIZE [ALPHA] 005
[XEQ] [ALPHA] FRAM [ALPHA]
47 [R/S]
63 [R/S]
30 [R/S]
200 [R/S]

Display:

L1 ?
L2 ?
WIDTH ?
INTERIOR ?
9289 B.F.

User Instructions

				SIZE: 005
STEP	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
1	Key in the program.			
2	Initialize the program.		[XEQ] FRAM	L1 ?
3	Input L_{1} (length excluding garage),	L_{1}	[R/S]	L2 ?
	L_{2} (length including garage),	L_{2}	[R/S]	WIDTH ?
	width,	width	[R / S]	INTERIOR ?
	linear feet of interior walls.	int	[R/S]	() B.F.
4	For a new case, go to step 2.			

REGISTERS, STATUS, FLAGS, ASSIGNMENTS

LUMBER ESTIMATE

This program estimates material cost, labor cost and total cost for rough carpentry. User must supply local lumber costs and local labor rate. This program also determines number of studs and joists.

Equations:

$\mathrm{BF}=$ (width in inches x thickness in inches x length in feet) $\div 12$
$\operatorname{PCS}=[$ length x (12/spacing in inches)] +1 , where "spacing" is the distance from the center of a stud, joist or rafter to the center of the adjacent stud, joist or rafter. "Pieces" refers to the number of studs, joists or rafters.

Note: Costs are rounded to the nearest dollar. Labor hours are to the nearest $\frac{1}{2}$ hour.

Reference(s): Thomas, Paul I., How to Estimate Building Losses and Construction Costs, 2nd Ed., Prentice-Hall, Inc., 1971, Chapter 9.

National Construction Estimator, 23rd Ed., 1975, Craftsman Book Co.

HP-65 Users' Library program 非04056A.

Example:
Perform the calculations for $2^{\prime \prime} \times 8^{\prime \prime} \times 16^{\prime}$ floor joists spaced at $16^{\prime \prime}$ (note that 2 sets are needed) and a $2^{\prime \prime} x 8^{\prime \prime}$ joist header for a $40^{\prime} \times 28^{\prime}$ building (floor joists are 2^{\prime} longer than half the width and joist headers are twice the length of the basement). The cost per 1000 board feet of $2 x 8$'s is $\$ 312.80$ and the labor factors for joists and headers respectively are 22 and 20 hours per 1000 board feet. Use a labor rate of $\$ 13.21 / \mathrm{hr}$.

Keystrokes:
[USER]
[XEQ] [ALPHA] SIZE [ALPHA] 006
[XEQ] [ALPHA] LUM [ALPHA]
13.21 [R/S]
[B]
40 [R/S]
16 [R/S]
2 [x] [A]
2 [x] 8 [x] 16 [x]
[R/S]
312.8 [R/S]

22 [R/S]
[R/S]
[R/S]
[R/S]
[R/S]
[A]
2 [ENTER \uparrow] 8 [x] 80 [x] 1 [x] [R/S]
312.8 [R/S]

20 [R/S]
[R/S]
[R/S]
[R/S]
[R/S]
[C]
[R/S]
[R/S]
[R/S]

Display:
(set USER mode)

LABOR RATE ?
WTLP ?
LENGTH ?
SPACING ?
$\mathrm{PCS}=31.00$
WTLP ?
15,872
COST / 1000BF?
LAB. / 1000 BF ?
B.F. $=1,323.00$

MAT. $=\$ 414.00$
HOURS $=29.00$
LAB. $=\$ 383.00$
TOTAL=\$797.00
WTLP ?
COST / 1000BF?
LAB. / 1000 BF ?
B. F. $=107.00$

MAT. $=\$ 33.00$
HOURS $=2.00$
LAB. $=\$ 26.00$
TOTAL=\$59.00
T. B.F. $=1,430.00$
T. MAT. $=\$ 447.00$
T. LAB. $=\$ 409.00$
T. COST=\$856.00

User Instructions

Program Listings

01＊LEL＂LJM		$47 \mathrm{ST}+03$	
－	Initialize	$48 \mathrm{ST}+05$	
02 CLRG		49 ＂LAB．＂	Labor cost
Q3＂LABOR F		50 XEQ 11	
ATE $?^{\prime}$		51 RCL 05	
64 PROMFT	Input：	52 ＂TOTAL＂	Total cost
05 STO 06	Labor rate	$53+$ LBL 11	
$06+L B L$ A		54 ＂ト＝車＂	
07 ＂WTLP ${ }^{0}$		$55+L B L 10$	
09 PROMPT	WxTxLxP	56 ARCL X	Display routine
0912		57 PROMPT	
10		55 RTH	
11 KEQ 90		$59+L B L C$	
12 STO 04		60 RCL 01	
$13 \mathrm{ST}+\mathrm{Cl}_{1}$		61 －T．B．F．	
14 －cost 16	Cost／1000 BF	＝${ }^{\text {－}}$	Display totals
日GBF？＂		62 XEQ 10	
15 PROMPT		63 RCL 02	
16 RCL 04		64 ＂T．MRT．	
17 ＊		．	
181 E3		65 XEQ 11	
19		66 RCL 03	
20 XEQ $0 ¢$		67 ＇T．LRB．	
215 ST 05			
$225 T+02$		68 XEQ 11	
23 ＂LAB． 10	Labor／1000 BF	$69+$	
日GEF？		$70 . \mathrm{T} . \operatorname{cost}$	
24 FROMFT	Display：		
$25 *$	Board feet	71 GTO 11	
26 RCL 04	Board feet	アごLEL E	
ご＂B－F－＝＂		73 ＂LENGTH	
28 XEQ 19		？	
29 RCL 05		74 PROMPT	
30 ＂MAT－＂	Material cost	75 XEQ Q ${ }^{7}$	of pieces
31 XEQ 11		76 ＂SPACING	
32 LASTX		7	
33 RCL 04		77 PROMPT	
34 ＊		7812	
351153		79	
36		80	
372		811	
3 E ＊		E2＋	
39 XEQ 96	Round to nearest	83 XEQ 00	
402	$\frac{1}{2}$ hour	84 ＂PCS＝＂	
41 ，		85 XEQ 10	
42 HOURS＝	Hours	36 GTO A	
＂	Hours	$87+$ LBL 00	
43 XEQ 10		88.5	
44 RCL 10		$89+$	Rounding routine
45 ＊		90 INT	
46 XEQ 日G		91 RTH	

REGISTERS, STATUS, FLAGS, ASSIGNMENTS


```
LUMBER ESTIMATE
PROGRAM REGISTERS NEEDED: 39



\section*{SHINGLE ESTIMATE}

Given ceiling area and pitch of roof, this program finds the roof area and the number of squares rounded to nearest bundle. Given local costs and labor rates, material costs, labor costs and total costs are found.


Pitch = rise/span

One Square \(=\) one hundred square feet
Three Bundles \(=\) one square (shingles are sold by the bundle)

Note: Rounds internally to nearest \(\$ 1, \frac{1}{2}\) hour, and \(1 / 3\) square; \(10 \%\) waste is added internally; cannot be used for built-up roofs; should not be used for roll roofing.

Reference(s): Thomas, Paul I., How to Estimate BuiZding Losses and Construction Costs, 2nd Ed., Prentice-Hall, Inc., 1971, Chapter 13.

National Construction Estimator, 1975, 23rd Ed., Craftsman Book Co.

HP-65 Users' Library program \#04303A.

\section*{Example:}

\section*{Dwe11ing size:}


Plain gable roof:
```

pitch = 1/4

```

ceiling area (including eaves) \(=58^{\prime} \mathrm{x} 32^{\prime}=1,856\)
For the dwelling with the above dimensions, find the roof cost. Use a labor rate of \(\$ 11.90 / \mathrm{hr} .\), a labor factor of 2 hours per square, and a cost per Square of \(\$ 24.45\).

\section*{Keystrokes:}
[USER]
[XEQ] [ALPHA] SIZE [ALPHA] 006
[XEQ] [ALPHA] SHN [ALPHA]
11.9 [R/S]
24.45 [R/S]

2 [R/S]
58 [ENTER \(\uparrow\) ] 32 [ x\(]\) [R/S]
8 [R/S]
32 [R/S]
[B]
[R/S]
[R/S]
[R/S]

Display:
(set USER mode)

LABOR RATE ?
COST/SQ. ?
LABOR/SQ. ?
AREA ?
RISE ?
SPAN ?
AREA \(=2,075.00\)
SQRS=22.67
MAT=\$554.00
LAB=\$541.00
TOTAL=\$1,095.00

\section*{User Instructions}
\begin{tabular}{|c|c|c|c|c|}
\hline & & & & SIZE: 006 \\
\hline STEP & INSTRUCTIONS & InPUT & FUNCTION & DISPLAY \\
\hline 1 & Key in program and set USER mode. & & [USER] & \\
\hline 2 & Initialize the program. & & [XEQ] SHN & LABOR RATE ? \\
\hline 3 & Input: labor rate, & \begin{tabular}{l}
labor \\
rate
\end{tabular} & [R/S] & COST/SQ. ? \\
\hline & cost per Square, & cost & [R/S] & LABOR/SQ.? \\
\hline & labor factor per Square, & labor & [R/S] & AREA ? \\
\hline 4 & ceiling area including eaves & area & [R/S] & RISE ? \\
\hline & rise, & rise & [R/S] & SPAN ? \\
\hline & span. & span & [R/S] &  \\
\hline 5 & (Optional) For another section, press & & [A] & AREA ? \\
\hline & and go to step 4. & & & \\
\hline 6 & Find: total number of Squares & & [B] & \[
\begin{aligned}
& \hline \text { SQRS }= \\
& \quad \text { (squares) }
\end{aligned}
\] \\
\hline & cost of materials & & [R/S] & \[
\begin{aligned}
& \hline \text { MAT }=\$ \\
& \quad \text { (materials) }
\end{aligned}
\] \\
\hline & labor cost & & [R/S] & LAB \(=\) \$ (1abor) \\
\hline & total, labor and materials & & [R/S] & \[
\begin{array}{r}
\text { TOTAL }=\$ \\
\text { (total) } \\
\hline
\end{array}
\] \\
\hline & & & & \\
\hline
\end{tabular}

\section*{Program Listings}


\section*{REGISTERS, STATUS, FLAGS, ASSIGNMENTS}



\section*{WALL AND CEILING AREAS ESTIMATE}

Given dimensions of rooms and sizes of openings, this program finds the ceiling area, net wall area, and total area of each room and totals for the entire structure.
```

length times width = ceiling area
2 times (length plus width) times height = wall area
gross area less openings $=$ net area

```

Note: This program may be used only for rectangular rooms.

Reference: HP-65 Users' Library program 非04247A.

Example:
\begin{tabular}{|c|c|c|c|c|c|}
\hline height \(=7\) ' & ROOM SIZE & CEIL. & OPEN & NET WALL & TOTAL \\
\hline & BED1 \(12 \times 14\) & 168 & 86 & 278 & 446 \\
\hline & BED2 8x10 & 80 & 73 & 179 & 259 \\
\hline & CLST 3x7 & 21 & 40 & 100 & 121 \\
\hline & LIV. \(16 \times 14\) & 224 & 99 & 321 & 545 \\
\hline & STRS. \(4 \times 10\) & 40 & 20 & 176 & 216 \\
\hline & HALL 16x4 & 64 & 204 & 76 & 140 \\
\hline & D/K 20x14 & 280 & 102 & 374 & 654 \\
\hline & GRG \(14 \times 28\) & 392 & 103 & 485 & 877 \\
\hline & TOTAL & 1269 & 727 & 1989 & 3258 \\
\hline
\end{tabular}

Run the program with the information given above.

Keystrokes:
[USER]
[XEQ] [ALPHA] SIZE [ALPHA] 005
[XEQ] [ALPHA] AREA [ALPHA]
7 [R/S]
12 [R/S]
14 [R/S]
86 [R/S]
[R/S]
[R/S]
[A]
8 [R/S]
:
[R/S]
[R/S]
[R/S]
[R/S]

Display:
(set USER mode)

HEIGHT ?
LENGTH ?
WIDTH ?
N. WALL=278.

CEIL. \(=168\).
TOTAL=446.
LENGTH ?
WIDTH ?
:
TOTAL=877.
T.N. WALL=1,989.
T.G. WALL=2,716.
T. CEIL. \(=1,269\).

\section*{User Instructions}
\begin{tabular}{|c|c|c|c|c|}
\hline & & & & SIZE: 005 \\
\hline STEP & INSTRUCTIONS & INPUT & FUNCTION & DISPLAY \\
\hline 1 & Key in the program and set USER mode. & & [USER] & \\
\hline 2 & Initialize the program. & & [XEQ] AREA & HEIGHT ? \\
\hline 3 & Input height & height & [R/S] & LENGTH ? \\
\hline 4 & Input length, & length & [R/S] & WIDTH ? \\
\hline & width, and & width & [ \(\mathrm{R} / \mathrm{S}\) ] & OPENINGS ? \\
\hline & openings. & openings & [R/S] & \\
\hline & (all openings for a room must be entered & & & \\
\hline & at once) & & & \\
\hline 5 & Find: Net Wall Area; & & & N.WALL \(=(\quad)\) \\
\hline & Ceiling Area, and & & [ \(\mathrm{R} / \mathrm{S}\) ] & CEIL. \(=(\quad)\) \\
\hline & Net Wall and Ceiling Area. & & [R/S] & TOTAL \(=(\quad)\) \\
\hline 6 & (Optional) Find: total net wall area, & & [ \(\mathrm{R} / \mathrm{S}\) ] & T.N. WALL= () \\
\hline & total gross wall area, & & [ \(\mathrm{R} / \mathrm{S}\) ] & T.G. WALL= () \\
\hline & total ceiling area. & & [R/S] & T.CEIL. \(=(\quad)\) \\
\hline 7 & For another room of the same height: & & [A] & LENGTH ? \\
\hline & and go to step 4. & & & \\
\hline 8 & For another room with a different height: & & [B] & HEIGHT ? \\
\hline & and go to step 3. & & & \\
\hline & & & & \\
\hline
\end{tabular}

\section*{Program Listings}


REGISTERS, STATUS, FLAGS, ASSIGNMENTS



\section*{WALLPAPER ESTIMATE}

Given the areas to be papered, size of rolls, and cost per roll, this program finds number of rolls, material cost, number of hours, labor cost and total cost. Intended to be used with "Wall and Ceiling Area Estimate".

Note: Output is rounded to the nearest dollar, roll, and half hour.

Reference: HP-65 Users' Library program \#04427A.

\section*{Example:}

Find the number of rolls required and the material cost of wallpapering the walls and ceiling of a room. Also, find the labor hours, the labor cost, the total cost for wallpapering. The areas of the room are to be 80 sq . ft. for the ceiling and 179 sq . ft. for the walls. Use 30 square feet of wallpaper per roll. Use \(\$ 3.25\) rolls on the ceiling and \(\$ 6.50\) rolls on the walls. Use a labor rate of 3 rolls per hour and \(\$ 11.83\) per hour.

Keystrokes:
[USER]
[XEQ] [ALPHA] SIZE [ALPHA] 005
[XEQ] [ALPHA] WPAP [ALPHA]
11.83 [R/S]

80 [R/S]
30 [R/S]
3.25 [R/S]

3 [R/S]
[R/S]
[R/S]
[R/S]
[A]
179 [R/S]
30 [R/S]
6.50 [R/S]

3 [R/S]
[R/S]
[R/S]
[R/S]
[R/S]
[R/S]
[R/S]

Display:
(set USER mode)

LABOR RATE ?
NET AREA ?
COVERAGE ?
COST/ROLL ?
ROLLS /HR ?
HOURS \(=1.00\)
LABOR=\$12.00
ROLLS \(=3.00\)
MAT. \(=\$ 10.00\)
NET AREA ?
COVERAGE ?
COST/ROLL ?
ROLLS /HR ?
HOURS \(=2.00\)
LABOR=\$24.00
ROLLS \(=6.00\)
MAT. \(=\$ 39.00\)
T. MAT. \(=\$ 49.00\)
T. LAB. \(=\$ 36.00\)

TOTAL=\$85.00

User Instructions


\section*{Program Listings}


\section*{REGISTERS, STATUS, FLAGS, ASSIGNMENTS}

```

WALLPAPER ESTIMATE

DRYWALL AND INSULATION ESTIMATE

Given area, item cost, and labor factor, this program finds material cost, labor hours, labor cost, and total cost for drywall and insulation. (Intended for use with other estimate programs.)

Note: The program rounds to the nearest dollar, and half hour.

Reference(s): Thomas, Paul I., How to Estimate Building Losses and Construction Costs, 2nd Ed., Prentice-Hall, Inc., 1971.

HP-65 Users' Library program 非04457A.

Example:
Given a net area of 3615 sq . ft. to be drywalled and a net area of 932 sq . ft. to be insulated (from the "Wall and Ceiling Areas Estimate" program) figure the cost of the drywall and insulation, breaking the figure up into labor and material. Use a cost of $\$ 8.70$ per hundred sq. ft. for drywall. Use a labor factor of 1.5 hours per hundred sq. ft. at a carpenter's rate for installation. Use a factor of 1.2 hours at a painter's rate for the joint system. Use a factor of .4 hours at a painter's rate for texturing. Use a cost of $\$ 11.00$ per hundred sq. ft. for wall insulation. Use a labor factor of 1.5 hours per hundred sq. ft. at a carpenter's rate for stapling the wall insulation. The painter's rate is $\$ 11.28$ and the carpenter's rate is \$13.21.

Keystrokes:
[USER]
[XEQ] [ALPHA] SIZE [ALPHA] 005
[XEQ] [ALPHA] DRY [ALPHA]
3615 [R/S]
8.7 [R/S]
1.5 [R/S]
13.21 [R/S]
[R/S]
[R/S]
[R/S]
[A]
3615 [R/S]
0 [R/S]
1.2 [R/S]
11.28 [R/S]
[R/S]
[A]
3615 [R/S]
:
[R/S]
[R/S]
[R/S]
[R/S]
[R/S]

Display:
(set USER mode)

NET AREA ?
COST/100SF ?
LAB./100SF ?
LABOR RATE?
HOURS $=54.00$
LAB. $=\$ 713.00$
MAT=\$315.00
TOTAL=\$1,028.00
NET AREA ?
COST/100SF ?
LAB./100SF?
LABOR RATE?
HOURS $=43.50$
LAB. $=\$ 491.00$
NET.AREA ?
:
TOTAL=\$288.00
T. HRS. $=126.00$
T. MAT. $=\$ 418.00$
T. LAB. $=\$ 1,553.00$
G.T. $=\$ 1,971.00$

User Instructions

				SIZE: 005
STEP	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
1	Key in the program and set USER mode.		[USER]	
2	Initialize the program.		[XEQ] DRY	NET AREA ?
3	Input: net area,	net area	[R/S]	COST/100SF ?
	material cost/100 sq. ft.,	cost	[R/S]	LAB./100SF ?
	labor factor/100 sq. ft.,	labor	[R / S]	LABOR RATE?
	labor rate.	rate	[R / S]	
4	Find: labor hours,			HOURS = ()
	labor cost,		[R/S]	LAB. $=$ \$ ()
	materials cost,		[R/S]	MAT $=$ \$ ()
	total cost.		[$\mathrm{R} / \mathrm{S}]$	TOTAL $=$ S ()
5	For another item:		[A]	NET AREA ?
	and go to step 3.			
6	Find: total labor hours,		[R/S]	T. HRS. $=(\quad)$
	total material cost,		[R/S]	T. MAT. $=$ \$()
	total labor cost,		[R / S]	T. LAB. $=$ \$ ()
	grand total (labor and materials).		[R/S]	G.T. $=$ \$ ()

Program Listings

REGISTERS, STATUS, FLAGS, ASSIGNMENTS

SHEATHING AND SUBFLOOR ESTIMATE

Given the area to be covered, the size of plywood, the item cost, and the labor factor, this program finds gross area, material cost, labor hours, labor cost, and total cost. (Intended for use with other estimate programs.)

To find the gross area, divide the area to be covered by the size of the plywood (usually 32 square feet). Round the answer up to the nearest integer and multiply the integer by the size of the plywood. The gross area is used for the material cost and for determining the labor hours.

The labor factor is the number of hours it takes for a thousand square feet of plywood.

Note: Works only for plywood sheathing and subflooring. For boards, use Lumber Estimate. Rounds to the nearest one dollar and $\frac{1}{2}$ hour.

Reference(s): National Construction Estimator, 23rd Ed., 1975, Craftsman Book Co., Solano Beach, California.

Thomas, Pau1 I., How to Estimate Building Losses and Construction Costs, 2nd Ed., 1971, Prentice-Hall.

HP-65 Users' Library program 非04478A.

Example:

Find the quantities required and costs for sheathing and subflooring. A roof area of $2,075 \mathrm{sq}$. ft. was determined in the "Shingle Estimate" program and a net exterior wall area of $1,093 \mathrm{sq}$. ft. in the "Wall and Ceiling Area Estimate" program. Floor area is $40^{\prime} x 28^{\prime}$. Use 4×8 sheets of plywood and labor factors of 14 for the roof, 13 for the walls and 12 for the floor. Use costs of $\$ 320$ per thousand sq . ft. for the roof plywood, $\$ 200$ for the wall, and $\$ 265$ for the floor. Use a labor rate of $\$ 13.21$.

Keystrokes:

[USER]

[XEQ] [ALPHA] SIZE [ALPHA] 006
[XEQ] [ALPHA] SHE [ALPHA]
13.21 [R/S]

2075 [R/S]
32 [R/S]
320 [R/S]
14 [R/S]
[R/S]
[R/S]
[R/S]
[A]
1093 [R/S]
:
[R/S]
[R/S]
[R/S]
[R/S]
[R/S]

Display:
(set USER mode)

LABOR RATE ?
NET AREA ?
PLYWD. AREA ?
COST / 1000SF?
LAB. / 1000 SF ?
HRS $=29.00$
LABOR=\$383.00
MAT. $=\$ 666.00$
TOTAL=\$1,049.00
NET AREA ?
PLYWD. AREA?
!
TOTAL $=\$ 475.00$
T. PCS. $=135.00$
T. MAT. $=\$ 1,187.00$
T. LAB. $=\$ 753.00$
G.T. $=\$ 1,940.00$

User Instructions

Program Listings

REGISTERS, STATUS, FLAGS, ASSIGNMENTS

PAINTING ESTIMATE

Given the area to be painted, the cost per gallon, the coverage per gallon, and the labor factor, this program finds material cost, labor hours, labor cost and total cost. (Intended to use with other estimate programs.)

Note: The program rounds to the nearest dollar, gallon, and $\frac{1}{2}$ hour.

Reference(s): National Construction Estimator, 1975, Craftsman Book Co. Thomas, Paul I., How to Estimate Building Losses and Construction Costs, 2nd Ed., 1971, Prentice-Hall.

HP-65 Users' Library program 非04477A.

Example:
Given a net area of 1312 sq . ft. for the exterior and a net area of 5070 sq. ft . for the interior of a house (as determined by the "Wall and Ceiling Areas Estimate" program), run the program for two coats of paint. Use labor factors of 150 for the interior and 125 for the exterior. Use spread rates of 400 sq. ft. per gallon for the exterior and 450 for the interior. Use costs of $\$ 10$ per gallon exterior and $\$ 9.50$ interior. Double the above areas for 2 coats. Use a labor rate of $\$ 11.28$ per hour.

Keystrokes:
[USER]
[XEQ] [ALPHA] SIZE [ALPHA] 007
[XEQ] [ALPHA] PAINT [ALPHA]
11.28 [R/S]

150 [R/S]
10140 [R/S]
450 [R/S]
9.5 [R/S]
[R/S]
[R/S]
[R/S]
[R/S]
[A]
125 [R/S]
2624 [R/S]
400 [R/S]
10 [R/S]
[R/S]
[R/S]
[R/S]
[R/S]
[R/S]
[R/S]
[R/S]
[R/S]

Display:
(set USER mode)

LABOR RATE ?
LAB. FACTOR ?
NET AREA ?
COVERAGE ?
COST/GAL . ?
HRS. $=67.50$
LAB. $=\$ 761.00$
MAT. $=\$ 219.00$
TOTAL $=\$ 980.00$
GALS . $=23.00$
LAB. FACTOR ?
NET AREA ?
COVERAGE ?
COST/GAL . ?
HRS. $=21.00$
LAB. $=\$ 237.00$
MAT. $=\$ 70.00$
TOTAL=\$307.00
GALS. $=7.00$
T. GALS. $=30.00$
T. MAT. $=\$ 289.00$
T. LAB. $=\$ 998.00$
G.T. $=\$ 1,287.00$

User Instructions

Program Listings

REGISTERS, STATUS, FLAGS, ASSIGNMENTS

PAINTING ESTIMATE	HEWLETT PACKARD
	SOLUTION BOOK:
PROGRAM REGISTERS NEEDED: 32	HOME CONST. ESTIMATING

```
ROW 1 (1 - 3)
```



```
ROW 2 (3 - 6)
```



```
ROW 4 (7 - 10)
```



```
ROW 5 (10 - 13)
```



```
ROW 6 (13 - 20)
```



```
ROW 8 (22 - 31)
```



```
ROW 9 (31 - 36)
```



```
ROW 10 (37-42)
```



```
ROW 11 (42 - 47)
```



```
ROW 13 (49 - 52)
```



```
ROW 14 (52 - 56)
```



```
ROW 15 (56 - 59)
```



```
ROW 16 (60 - 64)
```



```
ROW 17 (64 - 73)
```



```
ROW 18 ( \(73-73\) )
```


WOOD FLOOR ESTIMATE

Given floor area, material cost, and labor factors, this program finds labor hours, material costs, labor costs, and total costs for laying and sanding hardwood floors. Use the "Painting Estimate" program to determine filler and finishing costs.

Note: The program rounds to the nearest one hour, one dollar and $\frac{1}{2}$ hour.

Reference(s): Thomas, Paul I., How to Estimate Building Losses and Construction Costs, 2nd Ed., Prentice-Hall.

HP-65 Users' Library program ${ }^{2} 04580 \mathrm{~A}$.

Example:

Find the costs of flooring, sanding, filler, and finishing for a floor with a net area of 1120 square feet. Use a waste factor of $331 / 3 \%$ for $1 x 3$ boards. Use a labor factor of 32 hours per 1,000 board feet (in this case, the same as square feet). Use a cost of $\$ 1,120$ per 1,000 board feet. Use labor factors of 10 hours for sanding, 180 for filler, and 450 for seal and finish. Use spread rates of 500 sq . ft. per gallon for filler and 400 for seal and finish. Use a cost of $\$ 7.50$ per gallon for the filler and $\$ 11.00$ for the seal and finish. Use a labor rate of $\$ 13.34$ per hour.

Keystrokes:	Display:
[USER]	(set USER mode)
[XEQ] [ALPHA] SIZE [ALPHA] 006	
[XEQ] [ALPHA] FLOOR [ALPHA]	LABOR RATE ?
13.34 [R/S]	AREA ?
1120 [ENTER \uparrow] 1.333 [x] [R/S]	COST / 1000SF?
1120 [R/S]	LAB. FACTOR ?
32 [R/S]	HRS. $=48.00$
[R / S]	LAB . $=$ \$640.00
[R / S]	MAT. $=\$ 1,672.00$
[R/S]	TOTAL $=$ \$2,312.00 (flooring)
[A]	AREA ?
1120 [R/S]	COST/1000SF?
0 [$/ \mathrm{L} / \mathrm{S}$]	LAB. FACTOR ?
10 [R/S]	HRS. $=11.00$
[R / S]	LAB. $=$ \$147.00
[R/S]	MAT. $=$ \$0.00
[R/S]	TOTAL $=$ \$147.00 (sanding)
[R / S]	T. $\mathrm{HRS} .=59.00$
[R/S]	T. MAT. $=\$ 1,672.00$
[R/S]	T. LAB. $=\$ 787.00$
[R/S]	G.T. $=$ \$2,459.00

From the "Painting Estimate" program, the respective costs of labor and materials for filler are $\$ 80.00$ and $\$ 23.00$ and for seal and finish (2 coats) are $\$ 67.00$ and $\$ 66.00$ respectively.

User Instructions

				SIZE: 006
STEP	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
1	Key in the program and set USER mode.		[USER]	
2	Initialize the program.		[XEQ] FLOOR	LABOR RATE ?
3	Input labor rate	rate	[R/S]	AREA ?
4	Input area (include waste),	area	[R / S]	COST / 1000SF?
	material cost/1000 sq. ft.,	cost	[R / S]	LAB. FACTOR ?
	labor factor/1000 sq. ft.	factor	[R/S]	
5	Find: labor hours,			HRS. $=(\quad)$
	labor costs,		[R / S]	LAB. $=$ \$ ()
	material cost,		[R / S]	MAT. $=$ \$ ()
	total cost.		[R / S]	TOTAL=\$()
6	For another job, press:		[A$]$	AREA ?
	and go to step 4.			
7	Find: total hours,		[R / S]	T. $\mathrm{HRS} .=()$
	total materials,		[R / S]	T. MAT. $=$ \$()
	total labor,		[R / S]	T. LAB. $=$ \$()
	grand total (labor and materials).		[R/S]	G.T. $=$ \$()

REGISTERS, STATUS, FLAGS, ASSIGNMENTS

NOTES

NOTES

NOTES

Hewlett-Packard Software

In terms of power and flexibility, the problem-solving potential of the HP-41 programmable calculator is nearly limitless. And in order to see the practical side of this potential, HP has different types of software to help save you time and programming effort. Every one of our software solutions has been carefully selected to effectively increase your problem-solving potential. Chances are, we already have the solutions you're looking for.

Application Pacs

To increase the versatility of your HP-41, HP has an extensive library of "Application Pacs". These programs transform your HP-41 into a specialized calculator in seconds. Included in these pacs are detailed manuals with examples, miniature plug-in Application Modules, and keyboard overlays. Every Application Pac has been designed to extend the capabilities of the HP-41.

You can choose from:

Aviation (Pre-Flight Only) 00041-15018 Clinical Lab 00041-15024
Circuit Analysis 00041-15024
Financial Decisions 00041-15004 Mathematics 00041-15003
Structural Analysis 00041-15021 Surveying 00041-15005 Securities 00041-15026

Statistics 00041-15002
Stress Analysis 00041-15027
Games 00041-15022
Home Management 00041-15023
Machine Design 00041-15020 Navigation 00041-15017
Real Estate 00041-15016
Thermal and Transport Science 00041-15019
Petroleum Fluids 00041-15039

Users' Library

The Users' Library provides the best programs from contributors and makes them available to you. By subscribing to the HP-41 Users' Library you'll have at your fingertips literally hundreds of different programs from many different application areas.

*Users’ Library Solutions Books

Hewlett-Packard offers a wide selection of Solutions Books complete with user instructions, examples, and listings. These solution books will complement our other software offerings and provide you with a valuable tool for program solutions.

You can choose from:

Business Stat/Marketing/Sales 00041-90094
Home Construction Estimating 00041-90096
Lending, Saving and Leasing 00041-90086
Real Estate 00041-90136
Small Business 00041-90137
Geometry 00041-90084
High-Level Math 00041-90083
Test Statistics 00041-90082 Antennas 00041-90093
Chemical Engineering 00041-90100
Control Systems 00041-90092
Electrical Engineering 00041-90088
Fluid Dynamics and Hydraulics 00041-90139 Games II 00041-90443

Civil Engineering 00041-90089
Heating, Ventilating \& Air Conditioning 00041-90140 Mechanical Engineering 00041-90090

Solar Engineering 00041-90138
Calendars 00041-90145
Cardiac/Pulmonary 00041-90097
Chemistry 00041-90102
Games 00041-90099
Optometry I (General) 00041-90143
Optometry II (Contact Lens) 00041-90144
Physics 00041-90142
Surveying 00041-90141
Time Module Solutions 00041-90395

[^0]
HOME CONSTRUCTION ESTIMATING

CONCRETE VOLUME
LINEAR TO BOARD FEET CONVERSION AND COSTING
FRAMING BOARD FEET
LUMBER ESTIMATE
SHINGLE ESTIMATE
WALL \& CEILING AREAS ESTIMATE
WALLPAPER ESTIMATE
DRYWALL AND INSULATION ESTIMATE
SHEATHING AND SUBFLOOR ESTIMATE
PAINTING ESTIMATE
WOOD FLOOR ESTIMATE
(h) HEWLETT

PACKARD

[^0]: *Some books require additional memory modules to accomodate all programs.

