HEWLETT-PACKARD
 HP-41

USERS' LIBRARY SOLUTIONS Lend/Lease/Savings

NOTICE

The program material contained herein is supplied without representation or warranty of any kind. Hewlett-Packard Company therefore assumes no responsibility and shall have no liability, consequential or otherwise, of any kind arising from the use of this program material or any part thereof.

INTRODUCTION

This HP-41C Solutions book was written to help you get the most from your calculator. The programs were chosen to provide useful calculations for many of the common problems encountered.

They will provide you with immediate capabilities in your everyday calculations and you will find them useful as guides to programming techniques for writing your own customized software. The comments on each program listing describe the approach used to reach the solution and help you follow the programmer's logic as you become and expert on your HP calculator.

KEYING A PROGRAM INTO THE HP-41C

There are several things that you should keep in mind while you are keying in programs from the program listings provided in this book. The output from the HP 82143A printer provides a convenient way of listing and an easily understood method of keying in programs without showing every keystroke. This type of output is what appears in this handbook. Once you understand the procedure for keying programs in from the printed listings, you will find this method simple and fast. Here is the procedure:

1. At the end of each program listing is a listing of status information required to properly execute that program. Included is the SIZE allocation required. Before you begin keying in the program, press XEO ALPHA SIZE ALPHA and specify the allocation (three digits; e.g., 10 should be specified as 010).
Also included in the status information is the display format and status of flags important to the program. To ensure proper execution, check to see that the display status of the HP-41C is set as specified and check to see that all applicable flags are set or clear as specified.
2. Set the HP-41C to PRGM mode (press the PRGM key) and press $\square \square \square$ to prepare the calculator for the new program.
3. Begin keying in the program. Following is a list of hints that will help you when you key in your programs from the program listings in this handbook.
a. When you see " (quote marks) around a character or group of characters in the program listing, those characters are ALPHA. To key them in, simply press ALPHA, key in the characters, then press ALPHA again. So "SAMPLE"would be keyed in as ALPHA "SAMPLE" ALPHA.
b. The diamond in front of each LBL instruction is only a visual aid to help you locate labels in the program listings. When you key in a program, ignore the diamond.
c. The printer indication of divide sign is /. When you see / in the program listing, press \rightarrow.
d. The printer indication of the multiply sign is $\%$. When you see $\#$ in the program listing, press x.
e. The ${ }^{-}$- character in the program listing is an indication of the APPEND function. When you see ${ }^{-}$, press \square APPEND in ALPHA mode (press and the K key).
f. All operations requiring register addresses accept those addresses in these forms:
nn (a two-digit number)
IND nn (INDIRECT: \square, followed fy a two-digit number)
$\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{T}$, or L (a STACK address: \bullet followed by $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{T}$, or L)
IND X, Y, Z, T or L (INDIRECT stack: - followed by $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{T}$, or L)
Indirect addresses are specified by pressing \square and then the indirect address. Stack addresses are specified by pressing \bullet followed by $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{T}$, or L . Indirect stack addresses are specified by pressing \square and $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{T}$, or L .

Printer Listing

```
01*LBL "SAM
PLE*
    02 .*THIS IS
    A ."
    03 - FSAMPLE
    "
    04 AVIEW
    05 6
    06 ENTERT
    07-2
    08 <
    09 ABS
    10 STO IND
L
    11 "R3="
    12 ARCL 03
    13 AVIEW
    14 RTN
```


Display

01 LBL ${ }^{\top}$ SAMPLE

02^{\top} THIS IS A
03^{T} - SAMPLE
04 AVIEW
056
06 ENTER 〕
07 -2
08 /
09 ABS
10 STO IND L
11^{\top} R3 $=$
12 ARCL 03
13 AVIEW
14 RTN

TABLE OF CONTENTS

1. CONSTANT PAYMENT TO PRINCIPAL LOAN 1With this type of loan each payment is of a different amount with aconstant amount applied to the principal and a decreasing amount tointerest.
2. RULE OF 78's 8
This program calculates the unearned interest (rebate) as well as the remaining principal due for a prepaid consumer loan using rule of 78's.
3. AMORTIZATION SCHEDULE 13
This program calculates and prints or displays an amortization schedule.
4. ADD-ON TO APR WITH ODD DAYS 21
This program calculates the monthly payment amount, total finance charge, and the Annual Percentage Rate (APR) for an add-on rate loan.
*5. SAVINGS PLAN 28
This program determines interest earned on a savings account using as input the date and amount of each transaction.
5. INTEREST CONVERSIONS 37
This program does simple interest calculations and converts between nominal and effective rates.
6. LEASE WITH ADDITIONAL PAYMENTS IN ADVANCE 47Solves for the payment and APR of a lease when more than one paymentis made at the time of closing.
7. SKIPPED PAYMENTS 54Finds payment amount for a loan or lease with a specific set ofmonthly payments skipped each year.
8. COMPOUNDING PERIODS DIFFERENT FROM PAYMENT PERIODS 60 Calculates number of payments, payment amount or future value.

* 10. COMPOUND INTEREST SOLUTIONS 68Duplicates the top row keys of HP financial calculators. Alsoallows for payments at the beginning or the end of the month.
*Requires one memory module.

CONSTANT PAYMENT TO PRINCIPAL LOAN

This type of loan is structured such that the principal is repaid in equal installments with the interest added to each payment. Therefore, each periodic payment is different; it has a constant amount applied to the principal and a decreasing amount to the interest.

The first part of the program displays the payment number and calculates the payment to interest, total payment, remaining balance, and total interest. The constant payment to principal required as input data (CPMT) can be found by dividing the loan amount by the total number of payment periods. The schedule may be started at any desired payment period; that is, the value entered for K need not be 1 .

The second part of the program calculates the accumulated interest between any two payments J and K. The necessary inputs are the periodic interest rate, constant payment, initial loan amount, and the numbers of the starting and ending payments in the time frame.

Equations:

```
BAL \(_{K}=P V-(K \times C P M T)\)
Kth payment to interest \(=(i)\left(\right.\) BAL \(\left._{K-1}\right)=\left(\text { PMT }_{i}\right)_{K}\)
Kth total payment \(=\) CPMT \(+\left(\text { PMT }_{i}\right)_{K}\)
Total interest to payment \(\mathrm{K}=\)
```

$$
\left[\frac{\frac{(2-\mathrm{K}) \mathrm{CPMT}}{\mathrm{PV}}+2}{2}\right]\left[\begin{array}{lll}
(\mathrm{K}-1) & (\mathrm{I} / 100) & (\mathrm{PV})]
\end{array}\right.
$$

Example:

A twenty year 8% loan for $\$ 100,000.00$ is being amortized by annual payments to principal of $\$ 5000.00$ plus interest on the remaining balance. Generate a two year amortization schedule on this loan. How much interest is accumulated during years 5 to 10 inclusive?

Solution: (Keystrokes reflect a printer in the system)

Keystrokes:
[USER]
[XEQ] [ALPHA] SIZE [ALPHA] 008
[XEQ] [ALPHA] CPMT [ALPHA]
[A]
1 [R/S]
8 [R/S]
5000 [R/S]
100000 [R/S]
[R/S] [B]
8 [R/S]
5000 [R/S]
100000 [R/S]
5 [R/S]
10 [R/S]

Display:
(Set USER mode)

K?
INT?
CPMT?
PV?
$\mathrm{K}=1.00$
PMT. I. $=8,000.00$
T. PMT. $=13,000.00$

BAL. $=95,000.00$
T. INT. $=8,000.00$
$\mathrm{K}=2.00$
PMT. I. $=7,600.00$
T. PMT. $=12,600.00$

BAL. $=90,000.00$
T. INT. $=15,600.00$

INT?
CPMT?
PV?
B. PER. NO.?
E. PER. NO.?

ACC. INT. $=32,400.00$

User Instructions

Program Listings

T＂1＊LBL＂CPM 62 sTOF 日3＊LEL H 04 CF 01 05 ＂K ？＂ 16 PROMPT 07 STO 00 08＊LBL 51 09 SF 21 10 ＂IHT ？＂ 11 PROMPT 121 E 2 13 ， 14 STO 日1 15 ＂CPMT ？＂ 16 PROMPT $175 T 0$ 日2 18 ＂FV？＂ 19 FROMFT 20 STO 93 21 FS？ 01 22 RTH 23 RCL 0 C 24 ＂K＂ 25 XEQ 99 $26 *$ LBL E 27 REL 93 28 RCL 02 29 RCL 96 39 ＊ 31 － 32 STO 64 33 RCL 02 $34+$ 35 RCL 01 36 ＊ $375 T 097$ 381 $39 \mathrm{ST}+6 \mathrm{C}$ 46 RCL 97 41 ＂PMT．I． 42 XEQ 99 43 RCL 92 $44+$ 45 ．T．FMT． 46 XEQ 99 47 RCL 94 48 ＂BAL．＂	Prompt and store data Calc．Amort． sched．	49 XEQ 09 $50+$ LBL 0 G 512 52 RCL 00 53 － 54 RCL 02 55 ＊ 56 RCL 03 57 582 $59+$ 602 61 62 RCL 09 631 64 － 65 ＊ 66 RCL 91 67 ＊ 68 RCL E 3 69 ＊ 75 FS？ 1 71 RTH 72 ＂T．INT． 73 XEQ 99 74 RCL 93 75 RCL 日2 76 77 REL 10 78 X＞＇？ 79 RTH 86 ADV E1＂K＂ 82 XEQ 09 83 GTO 5 84＊LBL E $855 F 01$ 96 XEQ 91 67 EE．PER． NO． $7 \cdot$ 88 PROMPT 89 STO 06 96 ＂E．PER． NO．？＂ 91 PROMFT 921 $93+$ 94 STO 00 95 XEQ 40 96 STO 95	loan paid off？ Calc．Accumulated interest

Program Listings


```
CONSTANT PAYMENT TO


\section*{RULE OF 78's}

This program calculates the unearned interest (rebate) as well as the remaining principal due for a prepaid consumer loan using the rule of 78's.

Equations:
\[
\begin{aligned}
& \mathrm{REB}_{\mathrm{K}}=(\mathrm{N}-\mathrm{K}) \frac{\mathrm{FC}(\mathrm{~N}-\mathrm{K}+1)}{\mathrm{N}(\mathrm{~N}+1)} \\
& \mathrm{BAL}_{\mathrm{K}}=(\mathrm{N}-\mathrm{K}) \quad \mathrm{PMT}-\mathrm{REBATE}_{\mathrm{K}}
\end{aligned}
\]

\section*{Example:}

A \(\$ 1,000\) loan, with a total finance charge of \(\$ 180.00\) is being paid at \(\$ 39.33\) per month for 30 months. What is the unearned interest (rebate) and remaining balance after the 25 th regular payment?

Solution:
\begin{tabular}{ll} 
Keystrokes: & Display: \\
[XEQ] [ALPHA] SIZE [ALPHA] 005 & \\
[XEQ] [ALPHA] RULE [ALPHA] & \(\mathrm{N} ?\) \\
\(30[\mathrm{R} / \mathrm{S}]\) & \(\mathrm{K} ?\) \\
\(25[\mathrm{R} / \mathrm{S}]\) & \(\mathrm{PMT} ?\) \\
\(39.33[\mathrm{R} / \mathrm{S}]\) & \(\mathrm{FC} ?\) \\
\(180[\mathrm{R} / \mathrm{S}]\) & \(\mathrm{REB}=\$ 5.81\) \\
{\([\mathrm{R} / \mathrm{S}]\)} & \(\mathrm{BAL}=\$ 190.84\)
\end{tabular}

User Instructions
\begin{tabular}{|c|c|c|c|c|}
\hline & & & & SIZE: 005 \\
\hline STEP & INSTRUCTIONS & INPUT & FUNCTION & DISPLAY \\
\hline 1. & Key in the program & & & \\
\hline 2. & Initialize & & [XEQ] RULE & N ? \\
\hline 3. & Input: total no. of monthly payments & N & [R/S] & K ? \\
\hline & no. of last payment made & K & [R/S] & PMT ? \\
\hline & monthly payment amount & PMT & [R/S ] & FC ? \\
\hline & total finance charge & FC & [R/S] & \\
\hline 4. & Find unearned interest (rebate) & & & REB=( ) \\
\hline & remaining balance & & [R/S ] & BAL=( ) \\
\hline & & & & \\
\hline
\end{tabular}

\section*{Program Listings}


REGISTERS, STATUS, FLAGS, ASSIGNMENTS



\section*{AMORTIZATION SCHEDULE}

This program finds both the total interest paid over a specified number of payment periods and the remaining balance at the end of the last specified period, given the periodic interest rate, periodic payment amount, loan amount, and the beginning and ending payment numbers for the time span being considered. The payments associated with both the beginning ( \(J\) ) and the ending (K) payment periods are included in the calculation.

The program can be used for loans with a balloon payment as well as loans arranged to be fully amortized provided two cautions are observed. First, the balloon payment of the loan must be at the same time as, and in addition to, the last payment. Second, care should be taken not to enter a value for \(K\) that is after the last payment since the program has no way of knowing the term of the loan.

An option is available to output the amortization schedule between payments \(J\) and \(K\).

\section*{Equations:}
\[
\begin{aligned}
& \mathrm{BAL}_{\mathrm{K}}=\frac{1}{(1+i)^{-K}}\left[\operatorname{PMT} \frac{(1+i)^{-K}-1}{i}+\mathrm{PV}\right] \\
& I N T_{J-K}=\mathrm{BAL}_{\mathrm{K}}-\mathrm{BAL}_{J-1}+(\mathrm{K}-\mathrm{J}+1) \cdot P M T
\end{aligned}
\]
where:
Kth payment to principal \(=\mathrm{BAL}_{\mathrm{K}-1}-\mathrm{BAL}_{\mathrm{K}}\)
Kth payment to interest \(=P M T-\left(\mathrm{BAL}_{\mathrm{K}-1}-\mathrm{BAL}_{\mathrm{K}}\right)\)
Total payment to interest \(=(K) x(P M T)-\left(P V-B A L_{K}\right)\)

Notes:
For loans scheduled to be fully amortized, the remaining balance after the last payment period may be slightly more or less than zero. This is because the program assumes that all payments are equal to the value entered for PMT. In fact for most loans, the last payment is slightly more or less than the rest.

The calculator performs all internal calculations to ten digits. If the user wishes to round the schedule to dollars and cents, the following sequence may be used:
1. Press [///] [GTO] • 120
2. [PRGM]
3. [XEQ] [ALPHA] RND [ALPHA]
4. [PRGM]

Example 1:

A mortgage is arranged such that the first payment is made at the end of October, 1978 (i.e., October is payment period 1). It is a \(\$ 20,000\) loan at \(9 \%\), with monthly payments of \(\$ 167.84\). What is the accumulated interest for 1978 (periods \(1-3\) ) and 1979 (periods \(4-15\) ) and what would the remaining balance be at the end of each year?


Example 2:
Generate an amortization schedule for the first two payments of a \(\$ 30,000\), \(7 \%\) mortgage having monthly payments of \(\$ 200\). Then jump ahead and generate the data for the 36 th payment.

Solution: (Keystrokes reflect a printer in the system)
[XEQ ] [ALPHA] AMORT [ALPHA]
7 [ENTER 个] 12 [ \(\div\) ] [R/S]
200 [R/S]
30000 [R/S]
1 [R/S]
2 [R/S] [B]

INT ?
PMT ?
PV ?
J ?
K ?
PMT NO. \(=1.00\)
INT=175.00
PRIN \(=25.00\)
\(B A L=29,975.00\)
\(\Sigma I N T=175.00\)
PMT NO. \(=2.00\)

INT \(=174.85\)
PRIN=25.15
BAL \(=29,949.85\)
\(\Sigma \mathrm{INT}=349.85\)
[C]
36 [R/S]
36 [R/S] [B]

J ?
K ?
PMT NO. \(=36.00\)
INT=169.36
PRIN=30.64
BAL \(=29,001.75\)
\(\Sigma I N T=6,201.75\)

\section*{User Instructions}


\section*{Program Listings}
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
日1＊LBL＂FMO RT＂ \\
\(02 S F 21\) \\
03 ＂IHT？ \\
04 FROMPT \\
051 EZ \\
06. \\
07 STO 91 \\
08 ＂PMT ？＂ \\
09 FROMFT \\
15 STO 02 \\
＂FV ？＂ \\
12 FROMPT \\
13 ETG 13 \\
14 ＋LBL C \\
15 ＂」？ \\
16 PROMPT \\
17 STO 07 \\
18 ＂K ？ \\
19 PROMFT \\
20 STO 60 \\
21 STOP \\
\(22+\) LBL \(A\) \\
23 RCL 0 日 \\
24 RCL 07 \\
\(25 \quad \mathrm{X}<=1\)＇ \\
26 GTO 96 \\
27 STO 0日 \\
28 RDH \\
29 STO 日 \\
30＊LBL 10 \\
311 \\
32 RCL 91 \\
\(33+\) \\
34 STO 9 E \\
35 RCL OC \\
36 सEQ 01 \\
37 STO 94 \\
38 RCL 09 \\
39 RCL \(0^{6}\) \\
401 \\
41 － \\
42 XEQ 91 \\
43 CHS \\
44 RCL 04 \\
\(45+\) \\
46 STO 06 \\
47 RCL aㅣㅇ \\
43 RCL 07 \\
\(49-\)
\end{tabular} & \begin{tabular}{l}
Initialize \\
Prompt and store data \\
Calculate total interest between two periods and balance at end
\end{tabular} &  & \begin{tabular}{l}
Generate Amortization \\
schedule \\
\(\mathrm{J} \leq \mathrm{K}\)
\end{tabular} \\
\hline
\end{tabular}

\section*{Program Listings}


REGISTERS, STATUS, FLAGS, ASSIGNMENTS

\begin{tabular}{ll} 
AMORTIZATION SCHEDULE & HEWLETT PACKARD \\
& SOLUTION BOOK: \\
PROGRAM REGISTERS NEEDED: 32 & LENDING SAVING \& LEASING
\end{tabular}


\section*{ADD-ON TO APR WITH ODD DAYS}


This program calculates the monthly payment amount, total finance charge, and the Annual Percentage Rate (APR) for an add-on rate loan.

When a loan is initiated in the middle of a month, the first payment is generally not required until the end of the first full month. The number of days from the beginning of the loan to the beginning of the first month (see above diagram) are called "odd days" and decrease the APR to be quoted with the loan. The calculation of the APR considers these odd days.

Equations:
\[
\begin{aligned}
& \mathrm{FC}=\operatorname{AMT} \cdot\left(\frac{\mathrm{N}+\mathrm{h}}{12}\right) \cdot \operatorname{AIR} \\
& \mathrm{PMT}=\frac{\mathrm{AMT}+\mathrm{FC}}{\mathrm{~N}}=\operatorname{AMT}(1+\mathrm{i})^{\mathrm{h}}\left[\frac{\mathrm{i}}{1-(1+\mathrm{i})^{-\mathrm{N}}}\right] \\
& \mathrm{APR}=12 \mathrm{i}
\end{aligned}
\]
where:
\[
\mathrm{h}=\mathrm{ODD} \cdot 12 / 365
\]

\section*{Example:}

A 36 month car loan for \(\$ 3,500\) with a \(6 \%\) add-on rate is initiated such that there are 18 "odd days". Calculate the monthly payment required to amortize this loan, the total finance charge, and the annual percentage rate.

Solution:

Keystrokes:
[XEQ] [ALPHA] SIZE [ALPHA] 008
[XEQ] [ALPHA] ADD [ALPHA]
18 [R/S]
36 [R/S]
6 [R/S]
3500 [R/S]
[R/S]
[R/S]

Display:

ODD ?
N ?
AIR ?
PV ?
\(\mathrm{PMT}=115.01\)
\(\mathrm{FC}=640.36\)
\(A P R=10.89\)

User Instructions


Program Listings
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
01*LEL "FDI \\
02 "ODN \(?\) \\
03 FROMFT \\
04 STO 06 \\
0.512 \\
Q6: \\
07 365 \\
Qe \\
09 ST0 01 \\
16 "H ? " \\
11 PROMPT \\
12 STO 02 \\
13 "AIR ? " \\
14 PROMFT \\
\(155 T 093\) \\
16 "PV ?" \\
17 PROMPT \\
18 STO 04 \\
19 RCL 02 \\
29 REL 01 \\
\(21+\) \\
2212 \\
23 , \\
24 RCL 03 \\
\(25 *\) \\
26 E2 \\
27 \\
28 RCL 04 \\
29 * \\
\(305 T 060\) \\
31 ECL 94 \\
\(32+\) \\
33 RCL 62 \\
34 - \\
\(355 \operatorname{TO} 5\) \\
36 "PMT" \\
37 KEQ 99 \\
33 RCL EG \\
39 "FE. \\
40 XEQ 09 \\
41 FCL 93 \\
4212 E 2 \\
43 , \\
\(44 x=6 ?\) \\
\(45 \mathrm{GTO} \mathrm{G} 日\) \\
46 STO 09 \\
\(47+L B L\) Q1 \\
481 \\
49 RCL 日G
\end{tabular} & \begin{tabular}{l}
Prompt and store data \\
Calculate payment and finance charge
\end{tabular} &  & Calculate f'(i) \\
\hline
\end{tabular}

\section*{Program Listings}


\section*{REGISTERS, STATUS, FLAGS, ASSIGNMENTS}



\section*{SAVINGS PLAN}

This program determines interest earned on a savings account using as input the date and amount of each transaction in the period. Accomodates:
a) Periodic or continuous compounding; b) 360 or 365 day convention; c) interest earned or forfeited on withdrawal date; and d) adjusts for leap years. One memory module will be required.

Equations:
\begin{tabular}{|c|c|}
\hline For continuous compounding:
\[
r=e^{i y / z}-1
\] & \begin{tabular}{l}
r = effective annual interest rate \\
\(e=\) constant \(=2.718281828\) (decimal) \\
\(\mathbf{i}=\) nominal annual interest rate (decimal)
\end{tabular} \\
\hline For periodic compounding: & ```
y = ## days in full year
z = 360 or 365 (interest convention)
``` \\
\hline \(\mathrm{r}=(1+\mathrm{i} / \mathrm{n})^{\mathrm{ny} / \mathrm{z}}-1\) & \(\mathrm{n}=\) 非 of compounding periods per year \\
\hline Interest \(=\left[(1+r)^{d / y_{-1}}\right] A\) & d = days of interest \\
\hline & \(\mathrm{A}=\) Amount of transaction \\
\hline
\end{tabular}

NOTE:

If the effective annual interest rate is known, rather than the nominal rate, it should be used at step 3.

References: HP-65 USERS' LIBRARY program 非02063A by Keith Rumbel HP-67 /HP-97 USERS' LIBRARY program \#00288D by Howard Kutner

Example:
Nominal Interest Rate - \(5 \frac{1}{4} \%\)
Continuously compounded
Leap year
Interest on withdrawal date
360 Day basis
\begin{tabular}{lllr}
\multicolumn{4}{c}{ Transaction } \\
Opening balance & Date & & \multicolumn{1}{c}{ Amt. } \\
Withdrawal & \(1 / 1\) & & 4377.53 \\
Deposit & \(1 / 15\) & & 700.00 \\
& \(3 / 5\) & & 425.00
\end{tabular}

Solution:

Keystrokes:
[USER]
[XEQ] [ALPHA] SIZE [ALPHA] 012
[XEQ] [ALPHA] SAVE [ALPHA]
5.25 [R/S]
[ALPHA] CONT [ALPHA] [R/S]
[ALPHA] LEAP [ALPHA] [R/S]
[ALPHA] Y [ALPHA] [R/S]
360 [R/S]
1 [R/S] [A]
1.01 [R/S]
4377.53 [R/S]
[B]
1.15 [R/S]

700 [R/S]
[A]
3.05 [R/S]

425 [R/S] [D]
[R/S]
[R/S]

Display:
(Set USER mode)

INT ?
CONT /PER ?
LEAP /NORM ?
INT ON W/D DATE ? (Y/N)
INT BASIS ? (360/365)
QUARTER NO. ?
DATE (MM.DD) ?
DEP. AMT ?
NEXT TRANS.?
DATE (MM.DD) ?
W/D AMT ?
NEXT TRANS.?
DATE (MM.DD) ?
DEP. AMT ?
ACC. \(\mathrm{INT}=\$ 52.36\)
\(B A L=\$ 4,102.53\)
T. \(\mathrm{BAL}=\$ 4,154.89\)

\section*{User Instructions}

Program Listings
\begin{tabular}{|c|c|c|c|}
\hline O1*LEL "SAV & & 46 ASTO \(X\) & \\
\hline E' & & \(47 \mathrm{X}=\mathrm{Y}\) ? & \\
\hline 02 "IHT ? & & 48 SF 01 & \\
\hline 63 FROMPT & Prompt and store & \(49 . . \quad\) INT & \\
\hline 04 Ez & data & BASIS? & \\
\hline \[
056
\] & & 50 " \(1<360<3\) & \\
\hline 076 & & 51 PROMPT & \\
\hline \(085 T 098\) & & 52 STO 16 & \\
\hline \(99+\) & & 53 - QUARTER & \\
\hline 19 CF 90 & & HO. ? \({ }^{\text {a }}\) & \\
\hline 11 CF 11 & & 54 PROMPT & \\
\hline 12 CF 03 & & 5531 & \\
\hline 13 CF 62 & & 56 STO 01 & \\
\hline R 14.0 COHT/PE & & \(575 T 0\) 92 & \\
\hline F \(?^{\circ}\) FROMFT & & 58 STO 03 & days in each \\
\hline 15 FROMFT
16 HSTO & & 59 CLX & month of the \\
\hline 17 "COHT" & & 615 S 0 0 & quarter \\
\hline 18 ASTO \(X\) & & \(62+\) & \\
\hline \(19 \mathrm{x}=17\) & & 63 STO 11 & \\
\hline 20 GTO 59 & & 643 & \\
\hline 21 "NO. PER & & 65 * & \\
\hline IODS ? & & \(665 T 0.94\) & \\
\hline 22 PROMPT & & 671 & \\
\hline 23 ST0 06 & & 68 DSE 11 & \\
\hline 24 SF D2 & & 69 GTO 02 & \\
\hline \(25 *\) LRL 99 & & 70 RCL 02 & \\
\hline 26365 & & 713 & \\
\hline 27 ST0 99 & & 72 - & \\
\hline 28 CF 90 & & \(73 \mathrm{FS?} 0 \mathrm{C}\) & \\
\hline 29 "LEAF/NO & & 741 & \\
\hline RM \(3 \cdot \cdots\) PROMPT & & 75 FS? 90 & \\
\hline \begin{tabular}{l}
30 \\
31 \\
\hline 1
\end{tabular} & & \(76+\) & \\
\hline 32 "NORM" & & \(\begin{array}{ll}77 & \text { STO 02 } \\ 78 \\ 780\end{array}\) & \\
\hline 33 ASTO \(<\) & & \(79+\) LEL 02 & \\
\hline 34 x \(=\mathrm{y}\) ? & & 8 BC DSE 11 & \\
\hline 35 GTO 19 & & 81 GTO 03 & \\
\hline 36 SF 60 & & 82 ST - \(\mathrm{El}^{1}\) & \\
\hline \(\begin{array}{lll}37 & 366 \\ 38 & \\ 390\end{array}\) & & 83 ST- 03 & \\
\hline 3851099 & & S4 GTO 07 & \\
\hline \(39+L B L 10\) & & \(85+\) LBL 03 & \\
\hline \(\begin{array}{lllll}40 & \text { CF } & 01 & \\ 41 & \cdots & \text { INT }\end{array}\) & & \(\begin{array}{lll}86 & \text { DSE } & 11 \\ 87 & \text { GTO } & 04\end{array}\) & \\
\hline HW<D DE" & & 88 ST- 93 & \\
\hline 42 - 1 TE \(?\) < & & 89 GTO 07 & \\
\hline Y/N>" & & 96*LBL 184 & \\
\hline 43 PROMPT & & 91 ST- 02 & \\
\hline 44 ASTO \(\gamma\) & & \(92+L B L\) 97 & \\
\hline 45 "'\% & & 93 RCL 09 & \\
\hline
\end{tabular}

\section*{Program Listings}
\begin{tabular}{|c|c|c|c|}
\hline 94 RCL 10 & & 143 Y Y & \\
\hline 95 & & 1441 & \\
\hline 96 FS?C 02 & & 145 - & \\
\hline 97 GTO 日s & & 146 * & \\
\hline 98 RCL 60 & Continuous com- & 147 RHI & \\
\hline 99 * & pounding & \(148 \mathrm{ST}+\mathrm{G} \epsilon\) & \\
\hline 1001 & effective rate & 149 HEXT TR & \\
\hline 101 E†X & & ANS ? \({ }^{\text {P }}\) & \\
\hline \(102 \mathrm{x}<\gg\) & & 150 PROMPT & \\
\hline \(103 \mathrm{Y}+\mathrm{X}\) & & 151 -LBL 13 & \\
\hline 104 STO 05 & & 152 - DATE <M & Determine no. of \\
\hline 105 RTN & & M. DD>? \({ }^{\text {a }}\) & days \\
\hline \(106+L B L 68\) & & 153 PROMPT & \\
\hline 107 RCL 08 & & 154 FRC & \\
\hline \(108 *\) & Periodic com- & 155 RCL 04 & \\
\hline 109 RCL 00 & pounding & 1561 & \\
\hline 110 LASTX & effective rate & 157 LAST\% & \\
\hline 111 & & 158 INT & \\
\hline 1121 & & \(159-\) & \\
\hline \(113+\) & & 16. & \\
\hline 114 X< \({ }^{\text {c }}\) & & 161 STO 11 & \\
\hline 115 YTX & & 162 RCL 13 & \\
\hline 116 GTO 05 & & 163 Rt & \\
\hline 117 RTH & & 164 E2 & \\
\hline \(118 *\) LBL \({ }^{\text {B }}\) & & 165 * & \\
\hline 119 XEQ 13 & & 166 - & \\
\hline \(120 \cdot W / D \quad\) HMT & & 167 DSE 11 & \\
\hline ? & & 168 GTO 01 & \\
\hline 121 FROMPT & & 169 RTH & \\
\hline 122 CHS & & \(170+L B L\) O1 & \\
\hline 123 FS ? 01 & & 171 RCL \(\mathrm{Q}^{2}\) & \\
\hline 124 SF 02 & & \(172+\) & \\
\hline 125 SF 0.3 & & 173 DSE 11 & \\
\hline 126*LBL \({ }^{\text {P }}\) & & 174 GTO 02 & \\
\hline 127 FC? 03 & & 175 RTH & \\
\hline 128 XEQ 13 & & \(176+\) LBL 92 & \\
\hline 129 "DEP. AM & & 177 RCL 01 & \\
\hline T ? \({ }^{\text {™ }}\) & Deposit routine & \(178{ }^{179}\) + & \\
\hline 131 PROMPT & & \(180+L B L T\) & Display results \\
\hline \(132 \mathrm{ST}+\mathrm{G7}\) & & 181 RCL 96 & \\
\hline 133 X< \({ }^{1} \mathrm{Y}\) & & 182 - \(18 . \mathrm{IN}\) & \\
\hline 134 FS?C 92 & & T" & \\
\hline 135 GTO 03 & & 183 XEQ 12 & \\
\hline 1361 & & 184 RCL Q & \\
\hline \(137+\) & & 185 "BAL" & \\
\hline \(138+L B L 63\) & & & \\
\hline 139
149 & Interest calculation & \[
\begin{array}{ll}
187 \\
188 & + \\
1 . & \text { BAL }
\end{array}
\] & \\
\hline 141 RCL 05 & & \(189+L B L 12\) & \\
\hline \(142 \mathrm{x}<\gg\) & & & \\
\hline
\end{tabular}

\section*{Program Listings}

\section*{INTEREST CONVERSIONS}

The first part of the program permits the user to solve for any variable of an accrued simple interest calculation. Given three of the four variables (number of days, annual interest rate, beginning amount, and accrued interest) the fourth is calculated. Accrued interest can be based on a 360 or 365 day year. In addition, the user may choose to add the calculated accrued interest to the initial principal to determine the final amount.

The second part deals with nominal to effective interest rate conversions, and vice-versa. By definition, an annual effective interest rate demonstrates the effect of compounding for a full year of compounding periods at a particular periodic interest rate. The periodic interest rate to be used is determined by dividing the number of compounding periods in a year into the stated annual nominal interest rate. The effect is such that if the nominal rate is held constant, as the number of compounding periods per year is increased, the annual effective interest rate will increase. The ultimate, or upper limit, in this process is to have an infinite number of compounding periods in a year, commonly called continuous compounding.

Given the number of compounding periods in a year, and one of the rates (nominal or effective), the other rate can be calculated. If for example, you require the periodic interest rate for a calculation, given the effective rate, use this program to determine the annual nominal rate first. Dividing the annual nominal rate by the number of compounding periods in a year will give the required periodic interest rate.

The third part is for continuous compounding. Given either rate, the other is calculated.

The most common and straightforward definition of effective interest rate has been implemented. Occasionally other definitions will be used and the results will not compare exactly with those calculated by these programs. For example, since the maximum annual nominal rate that savings institutions can offer is regulated by law, they may modify the process (also regulated) so that the effective rate is even higher (e.g., for daily compounding, the periodic rate may be divided by 360 and then compounding accomplished for 365 periods). It is important then, when attempting to match results, to understand the process employed.

Equations:
\[
\begin{aligned}
& \text { INT } 360=\frac{\text { DAYS }}{360} \cdot \text { BEG AMT } \bullet \text { RATE } \\
& \text { INT } 365=\frac{\text { DAYS }}{365} \cdot \text { BEG AMT } \bullet \text { RATE }
\end{aligned}
\]
finite coumpounding
\[
E F F=\left(1+\frac{N O M}{C}\right)^{C}
\]
continuous compounding
\[
E F F=\left(e^{N O M}-1\right)
\]

Example 1:
Calculate the accrued interest and final amount (both 360 and 365 day basis) for a \(\$ 30,000,8 \%, 90\) day interest at maturity note.

Keystrokes:
[USER]
[XEQ] [ALPHA] SIZE [ALPHA] 007
[XEQ] [ALPHA] CONV [ALPHA]
[A]
365 [R/S]
90 [R/S]
8 [R/S]
30000 [R/S]
[R/S]
[+]

Display:
(Set USER mode)

INT BASIS (360/365) ?
NO. DAYS ?
INT RATE ?
BEG. AMT ?
ACC. INT ?
\(I N T=591.78\)
30,591.78 (Final Amount)

\section*{Example 2:}

What is the nominal rate if the effective annual rate is \(13 \%\) compounded quarterly?

Keystrokes:
[B]
4 [R/S]
[R/S]
13 [R/S]

Display:
NO. PER. ?
NOM ?
EFF?
NOM=12.41

Example 3:
A bank offers a savings plan with a \(5 \%\) annual nominal interest rate. What is the annual effective rate if compounding is continuous?

Keystrokes:
[C]
5 [R/S]
[R/S]

Display:
NOM ?
EFF ?
C. \(\mathrm{EFF}=5.13\)

Example 4:
In the above example, what is the annual effective rate if compounding is continuous on a 365/360 basis?

Keystrokes:
Display:
[D]
NOM ?
5 [R/S]
C. \(\mathrm{EFF}=5.20\)

\section*{User Instructions}

User Instructions
\begin{tabular}{|c|c|c|c|c|}
\hline STEP & INSTRUCTIONS & input & FUNCTION & DISPLAY \\
\hline & (365/360 basis) & & [D] & NOM ? \\
\hline 15. & Input nominal rate & NOM & [\(\mathrm{R} / \mathrm{S}\)] & C. \(\mathrm{EFF}=()\) \\
\hline & & & & \\
\hline
\end{tabular}

\section*{Program Listings}
\begin{tabular}{|c|c|c|c|}
\hline 01*LBL "COH & & 44*LBL 03 & Calculate \\
\hline \(v\) V & & 45 RCL 04 & beginning amount \\
\hline 02 STOP & & 46 RCL 05 & \\
\hline \(03+L B L \quad A\) & Simple interest & 47 * & \\
\hline 04 1.1 & & 48 RCL 01 & \\
\hline 05 ST0 00 & & 49 & \\
\hline 06 "INT BRS & & 50 RCL 02 & \\
\hline IS <360\%. & & 51 & \\
\hline 07 "1-365> ? & & 52 "AMT" & \\
\hline & & 53 XEQ 13 & \\
\hline 08 PROMPT & Prompt and store & 54 -LBL 04 & Calculate accu- \\
\hline 09 STO 05 & data & 55 RCL 03 & mulated interest \\
\hline 10 CF 22 & & 56 RCL 01 & \\
\hline 11 "NO. DAY & & 57 RCL 05 & \\
\hline S ? \({ }^{\text {² }}\) & & 58 & \\
\hline 12 XEQ 12 & & 59 RCL 03 & \\
\hline 13 "INT RAT & & 60 * & \\
\hline E ? \({ }^{\circ}\) & & 61 RCL 02 & \\
\hline 14 XEQ 12 & & 62 * & \\
\hline 15 -BEG. AM & & 6.3 "INT" & \\
\hline T ? " & & 64 XEQ 13 & \\
\hline \(16 \times 12\) & & \(65+L B L\) B & Nom. (-) eff. \\
\hline 17 "ACC. IH & & 661.1 & \\
\hline T ? \({ }^{\prime}\) & & 67 ST0 09 & \\
\hline 18 XEQ 12 & & 68 "NO. PER & \\
\hline 191 E 2 & & - ? \({ }^{\text {P }}\) & \\
\hline 20 ST 02 & & 69 PROMPT & \\
\hline 21 GTO IND & & 70 STO 05 & Prompt and store \\
\hline 06 & & 71*LBL 14 & \\
\hline 22*LBL 01 & & 72 CF 22 & \\
\hline 23 RCL 04 & days & 73 "HOM ? & \\
\hline 24 RCL 05 & & 74 XEQ 12 & \\
\hline 25 * & & 75 "EFF ? & \\
\hline 26 RCL 03 & & 76 XEQ 12 & \\
\hline 27 & & 77 GTO IND & \\
\hline 28 RCL 02 & & 06 & \\
\hline 29 < & & 78*LBL 01 & Calculate nominal \\
\hline 30 "DAYS" & & 79 RCL 02 & rate \\
\hline \(31 \times 13\) & & 80152 & \\
\hline 32*LBL 02 & Calculate Int. & 81 & \\
\hline 33 RCL 05 & rate. & 821 & \\
\hline 34 RCL 04 & & \(83+\) & \\
\hline 35 * & & 84 RCL 05 & \\
\hline 36 RCL 01 & & 851 - 8 & \\
\hline 37 & & 86 YヤX & \\
\hline 38 RCL 03 & & 871 & \\
\hline 39 & & 88 - & \\
\hline 401 E2 & & 89 RCL 95 & \\
\hline 41 * & & 96 * & \\
\hline 42 "RATE" & & 911 EZ & \\
\hline 43 XEQ 13 & & \(92 *\) & \\
\hline
\end{tabular}

\section*{Program Listings}

\section*{REGISTERS, STATUS, FLAGS, ASSIGNMENTS}

\section*{LEASE WITH ADDITIONAL PAYMENTS IN ADVANCE}

Payments on loans are typically made at the end of the period (in arrears). However, there are situations where payments are made in advance (leasing is a good example). Sometimes these agreements call for extra payments to be made when the transaction is closed, before the payments would normally be due. Or, the transaction has advance payments and a residual value at the end of the normal term.

This program solves for the periodic payment amount necessary to achieve a desired yield when a number of payments are made in advance. And, given the periodic payment, the program finds the yield. Either amount may be calculated when a residual value exists.

The necessary inputs are the total number of periods in the loan (\(n\)), the number of payments made in advance (A), the loan amount (PV), and either the periodic payment amount (PMT) or the periodic yield (i). The residual value at the end of the nth period (RESID) is optional.

Equations:
\[
\text { PMT }=\frac{P V-\operatorname{RESID}(1+i)^{-n}}{\left[\frac{1-(1+i)^{-(n-A)}}{i}+A\right]}
\]

Notes:

The value of \(A\) must be less than the value of \(n . ~ A=0\) implies an ordinary annuity calculation, while \(A=1\) means an annuity due calculation.

\section*{Example:}

A lease has been written to run for 60 months. The leased equipment has a value of \(\$ 25,000\) with a \(\$ 600\) monthly payment. The lessee has agreed to make 3 payments at the time of closing. What is the annual yield? (There is no residual value at the end of 60 months.)
\begin{tabular}{ll}
Keystrokes: & Display: \\
[XEQ] [ALPHA] SIZE [ALPHA] 008 & \\
[XEQ] [ALPHA] ADV [ALPHA] & NO. ADV. PMTS? \\
\(3[\mathrm{R} / \mathrm{S}]\) & NO. PER. ? \\
\(60[\mathrm{R} / \mathrm{S}]\) & PV ? \\
\(25000[\mathrm{R} / \mathrm{S}]\) & RESID. ? \\
\(0[\mathrm{R} / \mathrm{S}]\) & PMT ? \\
\(600[\mathrm{R} / \mathrm{S}]\) & INT=1.44 \\
\(12[\mathrm{x}]\) & \(17.33 \quad\) (annual)
\end{tabular}

\section*{User Instructions}
\begin{tabular}{|c|c|c|c|c|}
\hline & & & & SIZE: 008 \\
\hline STEP & INSTRUCTIONS & InPUT & FUNCTION & DISPLAY \\
\hline 1. & Key in the program & & & \\
\hline 2. & Initialize the program & & [XEQ] ADV & NO. ADV. PMTS \\
\hline 3. & Input: no. of payments made in advance & A & [R/S] & NO. PER. ? \\
\hline & no. of periods in the of loan & n & [\(\mathrm{R} / \mathrm{S}\)] & PV ? \\
\hline & loan amount & PV & [R/S] & RESID. ? \\
\hline & residual value at end of nth period & RESID & [R/S] & PMT ? \\
\hline & and periodic payment & PMT & [R/S] & INT \(=(\)) \\
\hline & (if unknown, press & & [\(\mathrm{R} / \mathrm{S}\)] & INT ? \\
\hline & and input periodic interest) & INT & [R/S] & PMT \(=(\)) \\
\hline & & & & \\
\hline
\end{tabular}

\section*{Program Listings}

\section*{REGISTERS, STATUS, FLAGS, ASSIGNMENTS}

\section*{SKIPPED PAYMENTS}

Sometimes a loan (or lease) may be negotiated in which a specific set of monthly payments are going to be skipped each year. Seasonality is usually the reason for such an agreement. For example, because of heavy rainfall, a bulldozer cannot be operated in Oregon during December, January, and February, and the lessee wishes to make payments only when his machinery is being used. He will make nine payments per year, but the interest will continue to accumulate over the months in which a payment is not made.

```

where: $A=$ number of payment periods per year
$B=$ number of years
C = annual percentage rate (as decimal)
D = periodic payment amount
$\mathrm{E}=$ loan amount
$\mathrm{K}=$ number of last payment before payments close the first time
$\mathrm{L}=$ number of skipped payments

```

Example:
A bulldozer worth \(\$ 100,000\) is being purchased in September. The first payment is due one month later, and payments will continue over a period of 5 years. Due to the weather, the machinery will not be used during the winter months, and the purchaser does not wish to make payments during January, February, and March (months 4 thru 6). If the current interest rate is \(83 / 4 \%\), what is the monthly payment necessary to amortize the loan?

Solution:

Keystrokes:
[XEQ] [ALPHA] SIZE [ALPHA] 008
[XEQ] [ALPHA] SKIP [ALPHA]
12 [R/S]
5 [R/S]
8.75 [R/S]

100000 [R/S]
3 [R/S]
3 [R/S]

Display:

NO. PER./YR. ?
NO. YRS. ?
INT ?
PV ?
LAST PMT NO. ?
NO. PMTS SKIPPED ?
E. \(\mathrm{PMT}=2,761.44\)

\section*{User Instructions}

\section*{Program Listings}

REGISTERS, STATUS, FLAGS, ASSIGNMENTS

\section*{COMPOUNDING PERIODS DIFFERENT FROM PAYMENT PERIODS}

Payments into a savings plan may not occur with the same frequency as the compounding frequency offered. This program solves for the number of payments, the periodic payment amount, or future value.

The diagrams above depict two of the many combinations that may be encountered. Note that payments are assumed to occur at the beginning of the payment period (annuity due).

Another assumption of this program is that payments deposited for a partial compounding period will accrue simple interest for the remainder of the compounding period. Thus, a deposit at the beginning of the 2nd month of a quarter into a savings plan that compounds quarterly is assumed to accrue two months simple interest. This is often the case, but is not true for all institutions.

Equations:
\[
P M T=\frac{F V}{Z}\left[\frac{Q}{(1+Q)^{n}-1}\right]
\]
when \(P / C \leq 1\)
\[
\text { when } P / C>1
\]
\[
\begin{aligned}
& \mathrm{Q}=(1+\mathrm{i})^{\mathrm{C} / \mathrm{P}}-1 \\
& \mathrm{n}=\text { 非PAY } \\
& \mathrm{Z}=(1+\mathrm{Q})
\end{aligned}
\]
\[
\mathrm{Q}=\mathrm{i}
\]
\[
\mathrm{n}=(\text { 非 PAY) } \mathrm{x}(\mathrm{C} / \mathrm{P})
\]
\[
Z=(P / C+1) \times\left(\frac{Q}{2}\right)+(P / C)
\]

Example 1:
Quarterly deposits of \(\$ 95\) are to be made into a savings account paying 5\% compounded monthly. What amount will be in that account after 7 years (28 total payments)?

Keystrokes:
[XEQ] [ALPHA] SIZE [ALPHA] 008
[XEQ] [ALPHA] CPDPP [ALPHA]
4 [R/S]
12 [R/S]
5 [ENTER \(\uparrow\)] 12 [\(\div\)] [R/S]
7 [ENTER \(\uparrow\)] 4 [x] [R/S]
95 [R/S]
[R/S]

Display:

NO. PMT /YR ?
NO. PER./YR ?
INT ?
NO. PMTS ?
PMT ?
FV ?
\(\mathrm{FV}=3,203.59\)

\section*{Example 2:}

In 2 years, you will need \(\$ 4000\). If a savings account will pay \(5 \frac{1}{4} \%\) compounded quarterly, what amount must you deposit each month to accumulate the desired amount:

Keystrokes:
[XEQ] [ALPHA] CPDPP [ALPHA]
12 [R/S]
4 [R/S]
5.25 [ENTER \(\uparrow\)] 4 [\(\div\)] [R/S]

24 [R/S]
[R/S]
4000 [R/S]

Display:

NO. PMT / YR ?
NO. PER./YR ?
INT ?
NO. PMTS ?
PMT ?
FV ?
\(\mathrm{PMT}=157.78\)

\section*{User Instructions}

\section*{Program Listings}
\begin{tabular}{|c|c|c|c|}
\hline 日1＊LBL＂CPI & & 471 & \\
\hline PF＊＊ & Prompt and store data & \(48+\) & \\
\hline 021 & & 49 LN & \\
\hline 6.3 HO．FMT & & 50 RCL 05 & \\
\hline ＇YR ？ & & 51 LN & \\
\hline 04 PROMPT & & 52 & \\
\hline 05 ＂HO．PER & & 53 ＂ H ＂ & \\
\hline ．YR ？ & & 54 XEQ 13 & \\
\hline G6 PROMPT & & \(55+\) LBL 10 & Calculate N \\
\hline 07 & & 56 RCL 02 & P／C＞ 1 \\
\hline 085 STO 04 & & 57 FCL Q 3 & \\
\hline 09 X＞Y？ & & 58 ＊ & \\
\hline 16 SF O日 & P／C＞ 1 & 59 RCL 04 & \\
\hline 11 ＂IHT ？ & & 601 & \\
\hline 12 PRDMPT & & \(61+\) & \\
\hline 13106 & & 62 RCL 03 & \\
\hline 14 & & 632 & \\
\hline 15 ST0 03 & & 64 － & \\
\hline 16 LAST\％ & & 6.5 ＊ & \\
\hline 17 ＊ & & 66 RCL 04 & \\
\hline 18 RCL 03 & & \(67+\) & \\
\hline 191 & & 68 RCL 01 & \\
\hline \(29+\) & & 6.9 ＊ & \\
\hline 21 RCL 04 & & 70 & \\
\hline \(221 \times\) & & 711 & \\
\hline 23 YヶX & & \(72+\) & \\
\hline 24 STO 05 & & 73 LH & \\
\hline 25－1 & & 74 RCL 03 & \\
\hline 26 STO 96 & & 751 & \\
\hline 27 CF 22 & & \(76+\) & \\
\hline 28. NO．FMT & & 77 LN & \\
\hline & & 78 FCL 04 & \\
\hline & & \(\begin{array}{lll}79 & \mathrm{RCL} \\ 80 \\ 80\end{array}\) & \\
\hline 31 XEQ 99 & & 81 ＂N＂ & \\
\hline 32 ＂FV ？ & & 32 XEQ 13 & \\
\hline 33 XEQ 99 & & \(83+\) LEL 11 & \\
\hline \(30^{3}\) GTO IHD & & 84 FS？C 86 & \[
\mathrm{P} / \mathrm{C} \leq 1
\] \\
\hline 07 \(35+L B L\) 日日 & Calculate N & 85 RCL 05 & \\
\hline 36 FS？C 60 & \(\mathrm{P} / \mathrm{C} \leq 1\) & E\％ 1 & \\
\hline 37 GTO 19 & & 38 － & \\
\hline 38 RCL 05 & & 69 RCL 05 & \\
\hline 391 & & 96 RCL 06 & \\
\hline 40 － & & 91 YイX & \\
\hline 41 RCL 02 & & 921 & \\
\hline 42 ＊ & & \(93-\) & \\
\hline 43 RCL 05 & & 94 & \\
\hline 44 RCL 11 & & 95 RCL Q2 & \\
\hline \(45 \%\)
\(46 \%\) & & \(96 *\)
97
RCL & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& 98 \text { "PMT. } \\
& 99 \text { " }
\end{aligned}
\] & \multirow{49}{*}{\begin{tabular}{l}
Calculate PMT P／C＞ 1 \\
Ca1culate FV \(\mathrm{P} / \mathrm{C} \leq 1\)
\end{tabular}} & & \[
\begin{aligned}
& 149 \\
& 150
\end{aligned}
\] & \[
\begin{array}{ll}
\hline \operatorname{RCL} & 64 \\
1
\end{array}
\] & \[
\begin{aligned}
& \text { Calculate FV } \\
& \text { P/C > }
\end{aligned}
\] \\
\hline 100 XEQ 13 & & & \(151+\) & ＋ & \\
\hline \(101+\) LBL 11 & & & 152 P & RCL 03 & \\
\hline 102 RCL 94 & & & 1532 & 2 & \\
\hline \(1031 \times\) & & & 154 & & \\
\hline 104 RCL 00 & & & 155 ＊ & & \\
\hline 10.5 ＊ & & & 156 R & RCL 04 & \\
\hline 106 RCL 03 & & & \(157+\) & ＋ & \\
\hline 1071 & & & 158 R & RCL 03 & \\
\hline \(108+\) & & & 1591 & 1 & \\
\hline \(109 \times<\gg\) & & & \(160+\) & ＋ & \\
\hline \(110 \%\) Yヶ & & & 161 R & RCL 60 & \\
\hline 1111 & & & 162 R & RCL 04 & \\
\hline 112 － & & & 1631 & 1 － 8 & \\
\hline 113 RCL 03 & & & 164 ＊ & ＊ & \\
\hline \(114 \mathrm{X}<\ggg\) & & & 165 & & \\
\hline 115 & & & 1661 & 1 & \\
\hline 116 RCL 04 & & & 167 & － & \\
\hline 1171 & & & 168 ＊ & ＊ & \\
\hline \(118+\) & & & 169 P & RCL 91 & \\
\hline 119 RCL 03 & & & 170 & ＊ & \\
\hline 1202 & & & 171 R & RCL 03 & \\
\hline 121 & & & 172 & \(\checkmark\) & \\
\hline 122 ＊ & & & 173 & ＂FV＇＂ & \\
\hline 123 RCL 04 & & & \(174 *\) L & LBL 13 & Display routine \\
\hline \(124+\) & & & 175 & ＂ト＝＂ & \\
\hline 125 － & & & 176 & ARCL \(X\) & \\
\hline 126 RCL 日2 & & & 177 P & FROMPT & \\
\hline 127 ＊ & & & 178 F & FTH & \\
\hline 128 ＂PMT＂ & & & \(179+1\) & LBL 99 & \\
\hline 129 XEQ 13 & & & 180 & PROMPT & Input routine \\
\hline \(130+L B L\) & & & 1815 & STO IND & \\
\hline 131 FSTC 00 & & & 06 & & \\
\hline 132 GTO 12 & & & 182 R & RCL 06 & \\
\hline 133 RCL 95 & & & 183 F & FC？C 22 & \\
\hline 134 RCL 00 & & & 184 & STO 07 & \\
\hline \(135 \mathrm{Y} \uparrow \mathrm{X}\) & & & 185 & ISG 06 & \\
\hline 1361 & & & 186 & RTH & \\
\hline \(137-\) & & & 187. & ．END． & \\
\hline 138 RCL 05 & & su & & & \\
\hline 139 ＊ & & & & & \\
\hline 14 R RCL 01 & & & & & \\
\hline 142 RCL 05 & & & & & \\
\hline 1431 & & & & & \\
\hline 144 － & & & & & \\
\hline 145 & & & & & \\
\hline 146 ＂FV＂ & & & & & \\
\hline 147 XEQ 13 & & & & & \\
\hline \(148+\) LBL 12 & & 00 & & & \\
\hline
\end{tabular}

\section*{REGISTERS, STATUS, FLAGS, ASSIGNMENTS}

\section*{COMPOUND INTEREST SOLUTIONS}

Commonly described as annuities and compound amounts, this program converts your HP-41C into a financial calculator, giving you the ability to solve complex problems involving savings, mortgages, annuities, and other financial calculations in a simple and straightforward manner. It duplicates the convenient and powerful built-in functions of the "top row keys" found on HP financial calculators. One Memory Module is needed to execute the program.

The five variables which have become standard for formatting and describing most compound interest problems can best be explained by referring to a pictorial representation called the cash flow diagram.

Cash out is negative

The diagram begins with a horizontal line called the time line. It represents the duration of a financial problem and is divided into \(N\) compounding periods of equal duration (length).

Exchange of cash is represented with vertical arrows. Money received is represented by an arrow pointing up (positive) from the time line where the transaction occured and money paid out is represented by an arrow pointing down (negative).

Payments (PMT) represent a series of cash exchanges of the same direction and amount. In the standard cash flow diagram the payments occur coincidental with the compounding periods and are equal to the number of periods. The first payment can either occur at the beginning of the first period (BEGIN) or at the end of the first period (END).

It is always necessary when working compound interest problems involving payments (PMT) to specify which of the two possible payment streams is applicable, (BEGIN) or (END). In the parlance of various industries BEGIN payments are often referred to as annuity due, or first payment in advance. END payments are referred to as ordinary annuity, payment in arrears, or immediate annuity.

A single cash flow at the start of the time line is called the present value (PV). A similar single cash flow at the end of the time line is called the future value (FV).

The fifth variable is \(I\), the compound interest rate per period.
This program solves for any of the five standard compound interest variables:
```

    N = the number of payments or compounding periods
    I = the interest rate per period (as a percent)
    PV = the initial transaction (present value)
    PMT = the periodic payment coinciding with the compounding period
FV = the final transaction (future value)

```

When using the cash flow diagram and the cash flow sign convention to format compound interest problems the following rules always apply.
- \(N\) and I must correspond to the same period of time
- Both \(N\) and I must be present in a problem. Either both values are known, or one is known and the other is to be solved for.
- A valid financial transaction must always include at least one positive cash flow and one negative cash flow.

The cash flow diagram can be used to describe many variations of compound interest problems. Although the terminology used to describe a particular cash transaction may vary from industry to industry the cash flow diagram remains consistent. In providing a means of describing financial problems without using terminology specific to a particular segment, the cash flow diagram becomes, in a sense, a universal language.

Equations:
\[
0=P V+(1+\delta i) P M T\left[\frac{1-(1+i)^{-N}}{i}\right]+F V(1+i)^{-N}
\]
where \(i=I / 100\)
\[
\delta= \begin{cases}0 & \text { in END } \\ 1 & \text { in BEGIN }\end{cases}
\]

Example 1:
What monthly payment will amortize a mortgage loan of \(\$ 50,000\) over 30 years at \(10 \frac{1}{2} \%\) interest? The first payment is made 1 month after the exchange of the initial loan amount (END).

\section*{Keystrokes:}
[USER]
[XEQ] [ALPHA] SIZE [ALPHA] 010
[XEQ] [ALPHA] MONEY [ALPHA]
30 [///] [A]
50000 [C]
10.5 [///] [B]
[D]

Display:
(Set USER mode)
0.00
\(\mathrm{N}=360.00\)
\(P V=50,000.00\)
\(\mathrm{I}=0.88\)
PMT \(=-457.37 \quad\) (Monthly payment)

Example 2:
In the previous example, what amount would be necessary to prepay the mortgage (remaining balance) at the end of the 6th year?

Keystrokes:
6 [///] [A]
[E]

Display:
\(\mathrm{N}=72.00\)
\(\mathrm{FV}=-48,018.77 \quad\) (Remaining balance)

Example 3:
How much money must be set aside in a savings account each month in order to accumulate \(\$ 4,000\) in three years if the account compounds monthly at \(6 \%\) per year? The deposits "begin" immediately.

Keystrokes:
[///] [E]
[///] [C]
4000 [E]
3 [///] [A]
6 [///] [B]
[D]

Display:
0.00

BEGIN
\(\mathrm{FV}=4,000.00\)
\(\mathrm{N}=36.00\)
\(\mathrm{I}=0.50\)
PMT=-101.18 (Month1y deposit)
(Clears financial data registers) (Set BEGIN mode)

\section*{Example 4:}

What interest rate did the bank pay (in the previous example) if the actual amount at the end of the 3 years was \(\$ 4,025.50\) ?

Keystrokes:
4025.50 [E]
[B]
12 [X]

Display:
\(\mathrm{FV}=4,025.50\)
\(\mathrm{I}=0.53\)
6.40 (Annual interest rate)

\section*{User Instructions}

been made, computation will occur.

\section*{Program Listings}
\begin{tabular}{|c|c|c|c|}
\hline & \begin{tabular}{l}
Initialize \\
Output routine \\
12 \\
Store N \\
\(12 \div\) \\
Store I \\
Store PV \\
Store PMT
\end{tabular} & \begin{tabular}{l}
51 GTO 14 52 XEQ＂PMT \\
53 GTO 14 \\
\(54 *\) LBL E \\
55 ＂FV＂ \\
56 STO 05 \\
57 FS？C 22 \\
58 GTO 14 \\
59 XEQ＂FY＂ \\
60 GTO 14 \\
G1＊LBL - \\
62 ＂EHI＂ \\
636 \\
64 STO EO \\
65 FS？C 90 \\
66 PROMPT \\
6.1 \\
68 STO 日G \\
69 FF 日g \\
7 ＂BEGIN＂ \\
71 PROMPT \\
\(72+L B L\) d \\
73 ADV \\
74 FS？日G \\
75 GTO 00 \\
76 ＂EHI＂ \\
77 GVIEN \\
78 GTO 日1 \\
\(79+\) LBL 日G \\
8日＂BEGIH＂ \\
81 AVIEN \\
\(82+\) LBL 01 \\
83 ＂H＂ \\
84 RCL 91 \\
85 KEQ 14 \\
86＂I＂ \\
87 RCL 12 \\
89 XEQ 14 \\
89 ＂PV＂ \\
90 RCL 13 \\
91 XEQ 14 \\
92 ＂PMT＂ \\
93 RCL 14 \\
94 XEQ 14 \\
95 ＂Fy＂ \\
96 RCL 05 \\
97 GTO 14 \\
98＊LBL＂H＂ \\
99 RCL 12 \\
\(106 x=0 ?\)
\end{tabular} & Store FV
Begin／End
List variables
Calculate N \\
\hline
\end{tabular}

\section*{Program Listings}

\section*{Program Listings}
\begin{tabular}{|c|c|c|c|}
\hline 203 RCL 02 & & 253 RCL Q1 & \\
\hline 203
204 RCL
\(\mathrm{x}=0\) & & 254 * 25 & \\
\hline 205 GTO 00 & & 256 ETX & \\
\hline 206 XEQ 07 & & 257 ST0 07 & \\
\hline 207 RCL 07 & & 258 LASTX & \\
\hline 208 RCL 05 & & 259 ETX-1 & \\
\hline 209 * & & 260 CHS & \\
\hline 210 RCL 03 & & 261 RCL 02 & \\
\hline \(211+\) & & 2621 E2 & \\
\hline 212 RCL 06 & & 26.3 & \\
\hline 213 & & 264 & \\
\hline 214 GTO 01 & & 26.5 LASTX & \\
\hline \(215+L B L 00\) & Calculate PMT & 266 RCL 00 & \\
\hline 216 RCL 03 & if \(I=0\) & 267 * & \\
\hline 217 RCL 05 & & 2681 & \\
\hline \(218+\) & & \(269+\) & \\
\hline 219 RCL 01 & & 276 & \\
\hline 220 & & 271 ST0 06 & \\
\hline 221*LBL 01 & & 272 RTH & \\
\hline 222 CHS & & \(273+\) LBL **I. & \\
\hline 223 ST0 04 & & 274 RCL 01 & Calculate I \\
\hline 224 RTH & & 275 RCL 04 & \\
\hline 225*LBL "FV" & Calculate FV & 276 * & \\
\hline 226 RCL 02 & & 277 RCL 03 & \\
\hline \(227 \times 06\) & & 278 + & \\
\hline 228 GTO 00 & & 279 RCL 05 & \\
\hline 229 XEQ 07 & & \(286+\) & \\
\hline 230 RCL 06 & & \(281 \times 00\) & \(\mathrm{I}=0\) \\
\hline 231 RCL 04 & & 282 GTO 02 & \\
\hline 232 * & & 283 CF 05 & \\
\hline 233 RCL 03 & & 284 RCL 03 & \\
\hline \(234+\) & & 285 RCL 04 & \\
\hline 235 RCL 07 & & 286 RCL 06 & \\
\hline 236 & & 287 * & \\
\hline 237 GTO 01 & & 288 + & \\
\hline \(238+\) LBL 06 & & 289 ST0 06 & \\
\hline 239 RCL 04 & Ca1culate FV & 290 LASTX & \\
\hline 240 RCL 01 & if \(\mathrm{I}=0\) & 291 RCL 04 & \\
\hline 241 * & & \(292-\) & \\
\hline 242 RCL 03 & & 293 CHS & \\
\hline 243 + & & 294 RCL 05 & \\
\hline 244*LEL 01 & & \(295+\) & \\
\hline 245 CHS & & 296 STO 07 & \\
\hline 246 STO 05 & & 297 RCL 01 & \\
\hline 247 RTH & & 2981 & \\
\hline \(248 \cdot L B L\) 日 & & 299 X=Y? & \\
\hline 249 RCL 62 & & 300 GTO 00 & \\
\hline 2501 E 2 & & 301 RCL 04 & \\
\hline 251 & & \(302 x \neq 0\) ? & \\
\hline 252 LH1+\% & & 303 GTO 01 & \\
\hline
\end{tabular}

Program Listings

\section*{Program Listings}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & 4062 CH & & 51 & & \\
\hline & 407 ABS & & & & \\
\hline & 4081 E－6 & If I not small， & & & \\
\hline & \(409 \quad x<=r ?\) & repeat loop & & & \\
\hline & 410 GTO 12 & & & & \\
\hline & 411 FS？日S & & & & \\
\hline & 412 XEQ 05 & & & & \\
\hline & 413 CF 45 & & & & \\
\hline & 414 FCL 日ت & & & & \\
\hline & 4151 & & 60 & & \\
\hline & 416 － & & & & \\
\hline & 417 STO日2 & & & & \\
\hline & \(418+L B L\) ब2 & & & & \\
\hline & 4191 EZ & Multiply by & & & \\
\hline & 420 & 100 and store & & & \\
\hline & 421 STO 日2 & \(\mathrm{R}_{0}\) & & & \\
\hline & 422 FTH & & & & \\
\hline & 423＊LEL 日S & & & & \\
\hline & \(4245 F 05\) & & & & \\
\hline & 425 RCL 日2 & & & & \\
\hline & \(4261 \times\) & & 70 & & \\
\hline & 427 STO 日2 & & & & \\
\hline & 428 RCL ©T & & & & \\
\hline & \(429 \times<66\) & & & & \\
\hline & 430 STO 47 & & & & \\
\hline & 431 －EHD． & & & & \\
\hline & & & & & \\
\hline 30 & & & 80 & & \\
\hline & & & & & \\
\hline 40 & & & 90 & & \\
\hline & & & & & \\
\hline 50 & & & 00 & & \\
\hline
\end{tabular}

REGISTERS, STATUS, FLAGS, ASSIGNMENTS

NOTES

NOTES

\section*{Hewlett-Packard Software}

In terms of power and flexibility, the problem-solving potential of the HP-41 programmable calculator is nearly limitless. And in order to see the practical side of this potential, HP has different types of software to help save you time and programming effort. Every one of our software solutions has been carefully selected to effectively increase your problem-solving potential. Chances are, we already have the solutions you're looking for.

\section*{Application Pacs}

To increase the versatility of your HP-41, HP has an extensive library of "Application Pacs". These programs transform your HP-41 into a specialized calculator in seconds. Included in these pacs are detailed manuals with examples, miniature plug-in Application Modules, and keyboard overlays. Every Application Pac has been designed to extend the capabilities of the HP-41.

You can choose from:

Aviation (Pre-Flight Only) 00041-15018
Clinical Lab 00041-15024
Circuit Analysis 00041-15024
Financial Decisions 00041-15004 Mathematics 00041-15003
Structural Analysis 00041-15021
Surveying 00041-15005
Securities 00041-15026

Statistics 00041-15002
Stress Analysis 00041-15027
Games 00041-15022
Home Management 00041-15023
Machine Design 00041-15020
Navigation 00041-15017
Real Estate 00041-15016
Thermal and Transport Science 00041-15019
Petroleum Fluids 00041-15039

\section*{Users' Library}

The Users' Library provides the best programs from contributors and makes them available to you. By subscribing to the HP-41 Users' Library you'll have at your fingertips literally hundreds of different programs from many different application areas.

\section*{*Users' Library Solutions Books}

Hewlett-Packard offers a wide selection of Solutions Books complete with user instructions, examples, and listings. These solution books will complement our other software offerings and provide you with a valuable tool for program solutions.

You can choose from:
```

Business Stat/Marketing/Sales 00041-90094
Home Construction Estimating 00041-90096
Lending, Saving and Leasing 00041-90086
Real Estate 00041-90136
Small Business 00041-90137
Geometry 00041-90084
High-Level Math 00041-90083
Test Statistics 00041-90082
Antennas 00041-90093
Chemical Engineering 00041-90100
Control Systems 00041-90092
Electrical Engineering 00041-90088
Fluid Dynamics and Hydraulics 00041-90139
Games II 00041-90443

```

Civil Engineering 00041-90089
Heating, Ventilating \& Air Conditioning 00041-90140
Mechanical Engineering 00041-90090
Solar Engineering 00041-90138
Calendars 00041-90145
Cardiac/Pulmonary 00041-90097
Chemistry 00041-90102
Games 00041-90099
Optometry I (General) 00041-90143
Optometry II (Contact Lens) 00041-90144
Physics 00041-90142
Surveying 00041-90141
Time Module Solutions 00041-90395

\footnotetext{
*Some books require additional memory modules to accomodate all programs.
}

\section*{LENDING, SAVING AND LEASING}

CONSTANT PAYMENT TO PRINCIPAL LOAN
RULE OF 78'S
AMORTIZATION SCHEDULE
ADD-ON TO APR WITH ODD DAYS
SAVINGS PLAN
INTEREST CONVERSIONS
LEASE WITH ADDITIONAL PAYMENTS IN ADVANCE SKIPPED PAYMENTS
COMPOUNDING PERIODS DIFFERENT FROM PAYMENT PERIODS COMPOUND INTEREST SOLUTIONS```

