HEWLETT-PACKARD HP-41

 USERS' LIBRARY SOLUTIONS Solar Engineering

NOTICE

The program material contained herein is supplied without representation or warranty of any kind. Hewlett-Packard Company therefore assumes no responsibility and shall have no liability, consequential or otherwise, of any kind arising from the use of this program material or any part thereof.

INTRODUCTION

This HP-41C Solutions book was written to help you get the most from your calculator. The programs were chosen to provide useful calculations for many of the common problems encountered.

They will provide you with immediate capabilities in your everyday calculations and you will find them useful as guides to programming techniques for writing your own customized software. The comments on each program listing describe the approach used to reach the solution and help you follow the programmer's logic as you become and expert on your HP calculator.

KEYING A PROGRAM INTO THE HP-41C

There are several things that you should keep in mind while you are keying in programs from the program listings provided in this book. The output from the HP 82143A printer provides a convenient way of listing and an easily understood method of keying in programs without showing every keystroke. This type of output is what appears in this handbook. Once you understand the procedure for keying programs in from the printed listings, you will find this method simple and fast. Here is the procedure:

1. At the end of each program listing is a listing of status information required to properly execute that program. Included is the SIZE allocation required. Before you begin keying in the program, press XEO ALPHA SIZE ALPHA and specify the allocation (three digits; e.g., 10 should be specified as 010).

Also included in the status information is the display format and status of flags important to the program. To ensure proper execution, check to see that the display status of the HP-41C is set as specified and check to see that all applicable flags are set or clear as specified.
2. Set the HP-41C to PRGM mode (press the PRGM key) and press GTO $\square \square$ to prepare the calculator for the new program.
3. Begin keying in the program. Following is a list of hints that will help you when you key in your programs from the program listings in this handbook.
a. When you see " (quote marks) around a character or group of characters in the program listing, those characters are ALPHA. To key them in, simply press ALPHA, key in the characters, then press ALPHA again. So "SAMPLE" would be keyed in as ALPHA "SAMPLE" ALPHA.
b. The diamond in front of each LBL instruction is only a visual aid to help you locate labels in the program listings. When you key in a program, ignore the diamond.
c. The printer indication of divide sign is /. When you see / in the program listing, press 4 .
d. The printer indication of the multiply sign is $\underset{\%}{\%}$. When you see \rightleftharpoons in the program listing, press x.
e. The \vdash^{-}character in the program listing is an indication of the APPEND function. When you see ${ }^{-}$, press \square APPEND in ALPHA mode (press and the K key).
f. All operations requiring register addresses accept those addresses in these forms:
nn (a two-digit number)
IND nn (INDIRECT: \square, followed fy a two-digit number)
X, Y, Z, T, or L (a STACK address: - followed by X, Y, Z, T, or L)
IND X, Y, Z, T or L (INDIRECT stack: $\quad-$ followed by X, Y, Z, T, or L)
Indirect addresses are specified by pressing and then the indirect address. Stack addresses are specified by pressing \bullet followed by $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{T}$, or L . Indirect stack addresses are specified by pressing \square and $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{T}$, or L .

Printer Listing

```
01*LBL "SAM
PLE.
    02 ."THIS IS
    A "...'SAMPLE
03 "FSAMPLE
    0 4 ~ A V I E W
    05 6
    06 ENTERT
    07 -2
    08 <
    09 ABS
    10 STO IND
L
11 "R3="
12 HRCL 03
13 AVIEW
1 4 \text { RTN}
```


Keystrokes

Display
01 LBL $^{\top}$ SAMPLE
02^{\top} THIS IS A
03^{\top} - SAMPLE
04 AVIEW
056
06 ENTER $\boldsymbol{\gamma}$
07 -2
08 /
09 ABS
10 STO IND L
11^{\top} R3 $=$
12 ARCL 03
13 AVIEW
14 RTN

TABLE OF CONTENTS

*1. SOLAR-BEAM IRRADIATION 1
This program estimates radiation impingement on a surface of any orientation and location on the earth. Sunrise and sunset times are also available.
2. SUN ALTITUDE, AZIMNTH, SOLAR POND ABSORPTION 14
This program computes the exact position of the sun at any time of day on any date as well as the percent of radiation that will enter a solar pond of a given index of refraction.
3. ENERGY EQUIVALENTS-FUELS AND PRICES 22
This program converts amounts and prices between 8 different fuel and energy units. Efficiencies may be included.
*4. HEAT EXCHANGERS 29Correlates heat transfer for counterflow, parallel flow, parallel-counterflow and crossflow heat exchangers.
5. VIEW FACTOR 51
Calculates the amount of energy leaving one surface that gets to another surface.
6. HEAT TRANSFER THROUGH COMPOSITE CYLINDERS AND WALLS 58Calculates the heat transfer coefficient.
7. BLACK BODY THERMAL RADIATION 64
Calculates thermal radiation as a function of temperature and wavelength for black bodies.]
8. ECONOMIC BREAK EVEN FOR SOLAR EQUIPMENT 73
Calculates the number of years necessary for solar equipment to pay for itself.
9. SOLAR PANEL ARRAY 79
This program calculates the distance between tilted solar panels so that no shading will occur.
10. CONDUIT FLOW 88Solves a variety of problems involving viscous conduit flow.
**11. ENERGY CASH FLOW 97creates a model of cost and return on an energy related investment.

* Requires an additional memory module.
** Requires two additional memory modules.

SOLAR-BEAM IRRADIATION

(Requires an additional memory module.)

This program enables the user to estimate solar-beam radiation impingement on a surface of any orientation and location on the earth for any day of the year. No prior knowledge of solar orbital mechanics is necessary. Solar-beam radiation rates may be estimated for any hour of the day. The program allows the user to integrate the total beam radiation over a given span of time during the day. Approximations of sunrise and sunset times may be calculated for any day of the year at any location on the earth.


```
Angle of incidence ( \(\theta\) ) of beam radiation.
\(\operatorname{COS} \theta=\operatorname{SIN} \delta \operatorname{SIN} \phi \operatorname{COS} S-\operatorname{SIN} \delta \operatorname{COS} \phi \operatorname{SIN} S \operatorname{COS} \gamma\)
\(+\operatorname{COS} \delta \operatorname{COS} \phi \operatorname{COS} \mathrm{S} \operatorname{COS} \omega+\operatorname{COS} \delta \operatorname{SIN} \phi \operatorname{SIN} S \operatorname{COS} \gamma \operatorname{COS} \omega\)
\(+\operatorname{COS} \delta\) SIN S SIN \(\gamma\) SIN \(\omega\)
WHERE: \(\delta=\) Declination (i.e., angular position of sun at solar noon with respect to plane of equator; north is positive (see below)
\(\phi=\) Latitude; North is positive
\(\omega=\) Surface azimuth angle, the deviation of the normal to the surface from local meridian. The zero point is due south, east is positive and west is negative.
\(\theta=\) Angle of incidence of beam radiation, measured between beam and normal to the plane.
Declination ( \(\delta\) ) (Approximate)
\[
\delta=23.45 \operatorname{SIN}[.9863(284+\eta)]
\]
```

Where: $\eta=$ Numbered day of year (i.e., February 15 is 46th day of year.)

Calculation of solar angle (ω)
Solar time $=$ Standard Time $+\mathrm{E}+4\left(\mathrm{~L}_{\left.\mathrm{st}^{-} \mathrm{L}_{10 c}\right)}\right)$
Where: $E=$ Equation of Time
$E=8 \operatorname{SIN}(1.06 \eta-48)+10 \operatorname{SIN}[1.9(1.1 \eta-30)]$
$\mathrm{L}_{\text {st }}=$ Standard Meridian for local time zone
(Standard meridians for Continental U.S. time zones are: Atlantic, $60^{\circ} \mathrm{W}$; Eastern, $75^{\circ} \mathrm{W}$; Central, $90^{\circ} \mathrm{W}$; Mountain, $105^{\circ} \mathrm{W}$; and Pacific, $\left.120^{\circ} \mathrm{W}.\right)$
$L_{\text {loc }}=$ Longitude of location in question
$\omega=(12-$ solartime) $\times 15$
Where: $\omega=$ hour angle in degrees (positive for morning and negative for afternoon.)

Zenith Angle θ_{z}
$\operatorname{COS} \theta_{z}=\operatorname{SIN} \delta \operatorname{SIN} \phi+\operatorname{COS} \delta \operatorname{COS} \phi \operatorname{COS} \omega$
Radiant Energy (G) received at surface

$$
G=G_{0} \times t^{m} \cos \theta
$$

Where: $G_{0}=$ Solar constant $428 \mathrm{BTU} \mathrm{HR}{ }^{\circ} \mathrm{F} \mathrm{FT}^{2}$
$\mathrm{t}=$ Transmission coefficient for unit air mass
(cloudy, 0.62; mean value, 0.70 ; clear day, 0.81)
$m=$ Secant of zenith angle; $\operatorname{SEC} \theta_{z}$

Time of sunrise and sunset
$\operatorname{COS} \omega_{s}=-$ TAN Φ TAN δ
WHERE: $\omega_{s}=$ Sunrise hour angle
Sunrise solar time $=12-\frac{\omega_{S}}{15}$
Sunrise standard time $=$ Sunrise solar time $-E-4$ ($L_{s t}-L_{1 o c}$)
Sunset solar time $=12+\frac{\omega_{\mathrm{S}}}{15}$
Sunset standard time $=$ Sunset solar time $-E-4\left(L_{s t}-L_{1 o c}\right)$
The total irradiation during a time period

$$
\mathrm{G}_{0} \int_{\omega_{2}}^{\omega_{1}} \mathrm{t}^{\operatorname{SEC} \theta_{z}} \cos \theta \mathrm{~d} \omega=\sum \mathrm{G}\left(\omega_{1}-\omega_{2}\right)
$$

The time of rise and set as computed by "IRRAD" is generally accurate to within 30 minutes. Since 90% of the solar energy arriving at the earth's surface occurs during the middle two thirds of the day, this accuracy is adequate for the computation of solar beam irradiation.

EXAMPLE:

Side Elevation

Find solar-beam radiation rate impinging on a solar collector at 10:45 a.m. and $2: 20 \mathrm{p} . \mathrm{m}$. , and the total energy from 10:30 a.m. to $3: 20 \mathrm{p} . \mathrm{m}$. Also, what is the time of sunrise and sunset? The solar collector is mounted on a roof sloped 12.5° from horizontal and pointed 9° west of south. The date is September 2, 1981 and is an average clear day in Los Angeles, California. The approximate coordinates are $34^{\circ} 10^{\prime}$ north latitude and $118^{\circ} 21^{\prime}$ west longitude. The standard time meridian for Pacific Standard Time is $120^{\circ} \mathrm{W}$.

Keystrokes:
[XEQ] [ALPHA] SIZE [ALPHA] 026
[XEQ] [ALPHA] IRRAD [ALPHA] MM.DDYYY ?
9.021981 [R/S]
34.1 [R/S]
118.21 [R/S]

120 [R/S]
12.5 [R / S]

9 [CHS] [R/S]
. 7 [R / S]
10.45 [A]
14.20 [A]
10.30 [ENTER \uparrow
15.20 [ENTER \uparrow
. 5 [B]
If a collector of $150 \mathrm{ft}^{2}$ is used, how many BTU is this.
150 [X]
[c]
[R/S]

Display:

LAT. ?
LONG.?
TIME MER. ?
SLOPE ?
AZIMUTH ?
TRAN. COEF. ?
A, B OR C ?
$\mathrm{G}=258\left(\mathrm{BTU} / \mathrm{HR} \mathrm{FT}{ }^{2}\right)$
$\mathrm{G}=213\left(\mathrm{BTU} / \mathrm{HR} \mathrm{FT}{ }^{2}\right)$
$\Sigma \mathrm{G}=1,173\left(\mathrm{BTU} / \mathrm{FT}^{2}\right)$

175921 (BTU)
SUN $R=5: 34$ (AM)
SUN $\mathrm{S}=18: 14$ (6:14 PM)

User Instructions

				SIZE: 026
STEP	INSTRUCTIONS	InPUT	FUNCTION	DISPLAY
1	Load the program.			
2	Initalize.		[XEQ] IRRAD	MM. DDYYYY ?
3	Key in the date.	date	[R/S]	LAT
4	Key in the latitude (neg. for south)			
	in degrees, minutes and seconds.	ϕ	[R/S]	LONG. ?
5.	Key in the longitude (neg. for east)			
	in degrees, minutes and seconds.	$\mathrm{L}_{1 \mathrm{oc}}$	[R/S]	TIME MER. ?
6	Key in the time meridian for			
	local standard time:			
	Atlantic $=60^{\circ} \mathrm{W}$			
	Eastern $=75^{\circ} \mathrm{W}$			
	Central $=90^{\circ} \mathrm{W}$			
	Mountain $=105^{\circ} \mathrm{W}$			
	Pacific $=120^{\circ} \mathrm{W}$	$\mathrm{L}_{s t}$	[R / S]	SLOPE ?
7	Key in the slope of the plane in decimal			
	degrees.	S	[R/S]	AZIMUTH ?
8	Key in the surface azimuth in degrees,			
	minutes, seconds:			
	East is positive			
	South is zero			
	West is negative	γ	[R/S]	TRAN. COEF.?
9	Key the solar transmission coefficient:			
	Cloudy $=.62$			
	Mean $=.70$			
	Clear $=.81$	t	[R/S]	A, B OR C?

User Instructions

				SIZE:
STEP	INSTRUCTIONS	InPUT	FUNCTION	DISPLAY
10	To find solar beam rate:			
a	Key in time of interest in hours, minutes			
	and seconds using a 24 hour clock	time	[A]	$\mathrm{G}=\left({ }^{\mathrm{BTU}} / \mathrm{FT}^{2}\right)$
11	To find total solar radiation over a			
	period of time:			
a	Key in starting time in hours, minutes			
	and seconds	T beg	[ENTER]	
b	Key in ending time in hours, minutes			
	and seconds	T end	[ENTER]	
c	Key in step time in decimal hours (. 5			
	is good)	$\Delta \mathrm{T}$	[B]	$\Sigma \mathrm{G}=\left({ }^{\mathrm{BTLT}} / \mathrm{FT}^{2}\right)$
12	To find sunrise and sunset:		[C]	SUN R=
	(to within ~ 30 minutes)		[R/S]	SUN S=

Program Listings

G1＊LEL＂IRE		50 FROMPT	Latitude
GI＇		51 FSTG 22	Latitude
日2 SF 21	Input	52 HE	
03 CF 01		53 STO 06	
G4 FIX G		541	
0.5 DEG		$55 \mathrm{~F}-\mathrm{R}$	
G6 CF 29		56 GT0 11	
07 EF 27		57 RDH	
Gs＂Mm＝DHYY		$595 T 010$	
Y＇\because		59 ＂LONG ？	
09 CF 22			
10 RCL 66		6 6 RCL 62	
11 PROMFT	Date	61 FROMFT	Longitude
12 FG CL E		62 FSTC 22	
13 GTO GG		6.3 HR	
14 INT	Calculate	$645 T 062$	
15 STO E	DDY	65 ＂TIME ME	
16 LASTX		$\mathrm{F}=?$	
17 FRC		66 ECL 91	
18106		67 FROMPT	Time Meridian
19 ＊		63 ST0 61	
2 E IHT		69 SLOFE ？	
$215 T 066$			
22 LASTX		70 FCLL 03	
23 FRC		71 FROMPT	Slope
242560		$72 \leqslant T 063$	
25 ＊		731	
EG FRC		$74 \mathrm{~F}-\mathrm{F}$	
27 STO Cz		75 STO 13	
23 RICL 61		76 RDH	
2930.56		77 STO 12	
36 ＊		78 ＂日EIMUTH	Azimuth
31 INT		7	
3236		79 ECL 04	
$33-$		B日 CF 22	
$345 T+66$		Q1 FROMPT	
35 FEL EC		$82 \mathrm{Fs?c} 22$	
36 ENTERT		83 HE	
37×0 ¢		$845 T 0104$	
38 ＜		851	
391		$86 \mathrm{P}-\mathrm{F}$	
$46+$		$975 T 015$	
41 z		8 ES RIH	
42 ECL 01		89 STO i4	
$43 \times<=Y ?$		90 ＂TRAH．C	
44 GTO 06		DEF＝？${ }^{\text {a }}$	
45 RCL 2		91 REL 07	
46 ST － 66		92 PROMPT	Transmission
$47+$ LEL 60		93 STO 97	
		$\begin{array}{ll}94 & \text { ECL } 66 \\ 95 & 284\end{array}$	Set up

Program Listings

Program Listings

Program Listings

REGISTERS, STATUS, FLAGS, ASSIGNMENTS

sun altitude, AZIMUTH, SOLAR POND ABSORPTION

This program computes the Sun's azimuth and altitude (Z_{n} and H_{C}) in decimal degrees given any latitude, longitude, date and time. Then, if you wish, you can input an index of refraction for any fluid and calculate the percent of radiation which would penetrate the surface of the fluid.

The almanac equations used in this program have been checked to the end of the century for accuracy and found to be accurate to within a $.2^{\prime}$ arc.

Example:

Find the Sun's asimuth, altitude, and the fraction of the Sun's radiation which will penetrate the surface of a solar pond under the following circumstances:

Date $\quad 9 / 1 / 79$
Latitude $44^{\circ} 34^{\prime}$
Longitude $123^{\circ} 17^{\prime}$
GMT
Index of refraction
20:00:00 (Noon PST)
1.33

Keystrokes:
Display:
[XEQ] [ALPHA] SIZE [ALPHA] 009
[XEQ] [ALPHA] ALMANAC [ALPHA]
MM.DDYYYY ?
9.011979 [R/S]

LAT ?
44.34 [R/S]

LONG ?
123.17 [R/S]

GMT ?
20 [R/S]
ZN=174. 5022
[R/S]
$\mathrm{HC}=53.5985$
[B]
1.33 [R/S]

N ?
$\% \mathrm{E}=97.7355$

Find the same information for 5 hours later.

Keystrokes:
[A]
[R/S]
[R/S]
[R/S]
25 [R/S]
[R/S]
[B]
[R/S]

Display:
MM.DDYYYY ?

LAT ?
LONG ?
GMT ?
$\mathrm{ZN}=262.9527$
HC=18.7391
N ?
\% $E=85.1269$

User Instructions

Program Listings

61*LBL "ALM AHAC: $025 F 27$ $03+$ LEL A 04 SF 21 05 CF 22 06 "MM. DDYY Y' ?" 67 PROMPT 08 FC?C z2 09 GTO 00 10 INT 11 STO 06 12 LASTX 13 FRC 14100 15 * 16 IHT 17 STO 03 18 LASTX 19 FRC 20 1 E4 21 * $22 x<>2$ 233056 24% 25 IHT $26 \mathrm{ST}+03$ 27 RT 28 STO 14 29 RCL 06 303 31 X>Y? 321 33 RCL 94 344 35 , 36 FRC $37+$ 361 $39 \mathrm{x<}>\mathrm{y}$ $40 \mathrm{X}=\mathrm{Y}$? 412 42 RCL 04 437 44 - 45 RCL 03 $46 \quad 365.25$ 47 , $48+$ 49 STO 06			Input other quantities Calculate Z_{n} and H_{c}

Program Listings

REGISTERS, STATUS, FLAGS, ASSIGNMENTS

ENERGY EQUIVALENTS - FUELS AND PRICES

Given an amount of fuel or energy expressed in one of the units in Table I, this program converts to an equivalent amount of another of the fuels or energy units in Table I. Also, given the price per unit of two fuels or energy units the program will convert an amount spent on one into an amount spent on the other. You may also include efficiencies between conversions. For example coal to electricity is not 100% efficient.

TABLE I

1 Barrel of Oi1	$=1 \mathrm{BBL}=5.8 \mathrm{MBTU}$
1000 Cubic Feet of Gas	$=1 \mathrm{TCF}=1.03 \mathrm{MBTU}$
1 Gigajoule	$=1 \mathrm{GJ}=1.055 \mathrm{MBTU}$
1 Short Ton of Eastern Bituminous Coal	$=1 \mathrm{STE}=26 \mathrm{MBTU}$
1 Short Ton of Western Coal	$=1 \mathrm{STW}=18 \mathrm{MBTU}$
1 Megawatt-hour	$=1 \mathrm{MWH}=3.412 \mathrm{MBTU}$
1 Pound $\mathrm{U}_{3} 08$	
1 Million British Thermal Units	$=1 \mathrm{U} 308=220 \mathrm{MBTU}$
* All U^{235} atoms fissioned	

Example:
How many Gigajoules can you get from 20,000 cubic feet of gas if the overall efficiency is 30%.

Keystrokes:
[XEQ] [ALPHA] SIZE [ALPHA] 005
[XEQ] [ALPHA] ENERGY [ALPHA]
TCF [R/S]
[R/S]
GJ [R/S]
[R/S]
30 [R/S]
20 [B]
[B] 5.86 GJ
If you wanted 10 GJ how many thousand cubic feet of gas are required?
10 [C]
31.14 TCF

User Instructions

Program Listings

日1*LBL "ENE RGY" 02 SF 27 031 04 STO 02 $05+$ LBL A 06 AOH 07 CF 23 08 "UHITS 1 ? 09 PROMPT 10 FS?C 23 11 ASTO E1 12 RCL 03 14 ROFF 15 PROMPT 16 STO 03 17 "UHITS 2 18 AON 19 PROMPT 20 FS?C 23 21 ASTO 06 22 AOFF 23 "声? 24 RCL 04 25 PROMPT 26 STO 04 27 "\% FOR 1 T0 2" 28 CF 22 29 PROMPT 30100 31 32 FS?C 22 33 STO 02 34 "READY" 35 PROMPT $36+$ LBL B 37 XEQ 01 38 CLA 39 - LBL 03 40 ARCL \times 41 " 42 ARCL 0 43 PROMPT 44 *LBL C 45 KEQ 02 46 CLA 47*LBL 04	Initialize Input Forward		\$ Forward $\$$ Backward Conversion Conversion constants

Program Listings

REGISTERS, STATUS, FLAGS, ASSIGNMENTS

HEAT EXCHANGERS

(Requires one memory module)

This program allows analysis of counterflow, parallel flow, parallelcounterflow, and crossflow heat exchangers.

Figure 1:

Figure 2:

Parallel-Flow

Figure 3:

Parallel-Counter-Flow (Even Number Of Tube Passes)

Figure 4:

Equations:

Heat exchanger effectiveness E is the ratio of actual heat transfer to maximum possible heat transfer.

where:
Q is the actual heat transfer.
$\mathrm{T}_{\text {hin }}$ and $\mathrm{T}_{\text {cin }}$ are the inlet temperatures of the hot and cold fluids respectively.
$\mathrm{T}_{\text {ho }}$ and $\mathrm{T}_{\text {co }}$ are the outlet temperatures of the hot and cold fluids respectively.
C_{h} and C_{c} are the heat capacities of the hot and cold fluids, respectively, e.g., $C_{h}=m_{h} \times c_{p h}$, where m_{h} is the flow rate and $c_{p h}$ is the specific heat capacity of the hot fluid.
$C_{\text {min }}$ and $C_{\max }$ (which are used later) are the smaller and larger values of C_{h} and C_{c}.

Effectiveness can be related to the product of the surface area of the heat exchanger and the overall heat transfer coefficient for specific geometries. This product is designated AU. The geometrics considered in this pac have the following correlations:

Counterflow (see figure 1)

$$
E=\frac{1-e^{-\frac{A U}{C_{\min }}}\left(1-\frac{C_{\min }}{C_{\max }}\right)}{1-\left(C_{\min } / C_{\max }\right) e^{-\frac{A U}{C_{\min }}}\left(1-\frac{C_{\min }}{C_{\max }}\right)}
$$

For $C_{\min } / C_{\max }=1$

$$
\mathrm{E}=\frac{\mathrm{AU} / \mathrm{C}_{\min }}{1+\mathrm{AU} / \mathrm{C}_{\min }}
$$

Parallel Flow (see figure 2)

$$
E=\frac{1-e^{-\frac{A U}{C_{\min }}\left(1+C_{\min } / C_{\max }\right)}}{1+C_{\min } / C_{\max }}
$$

For $C_{\min } / C_{\max }=0, C_{\min }$ is set to 1.

Parallel-Counterflow (well mixed with an even number of tube passies; see Figure 3)

$$
E=\frac{2}{\left(1+\frac{C_{\min }}{C_{\max }}\right)+\sqrt{1+\left(\frac{C_{\min }}{C_{\max }}\right)^{2}\left[\frac{1+e^{-x}}{1-e^{-x}}\right]}}
$$

where:

$$
\mathrm{x}=\frac{\mathrm{AU}}{\mathrm{C}_{\min }} \sqrt{1+\left(\frac{\mathrm{C}_{\min }}{\mathrm{C}_{\max }}\right)^{2}}
$$

Crossflow (both fluids unmixed; see figure 4)
No exact expression exists for this case, but the following is a very good approximation. Note that an iterative solution is required for $A U$.

$$
\left.\left.E=1-e^{\left(e^{\left(-\frac{A U}{C_{\min }}\right.} \frac{C_{\min }}{C_{\max }}\right.} \mathrm{y}\right)-1\right)\left(\frac{C_{\max }}{C_{\min }} \frac{1}{y}\right)
$$

where:

$$
\mathrm{y}=\left[\frac{\mathrm{C}_{\min }}{\mathrm{AU}}\right]^{0.22}
$$

References:

W.M. Kays and A.L. London, Compact Heat Exchangers, National Press, 1955

Eckert and Drake, Heat and Mass Transfer, McGraw-Hill.

Remarks:

For cases where the inlet and outlet temperatures of one of the fluids are equal(change of phase), use zero for the heat capacity of that fluid.

The solution for $A U$ in the crossflow configuration takes significantly longer than other solutions because of the iterative technique required.

The program must be allowed to solve for all values (AU, $Q, T_{c o}, T_{h o}$, and E). It is quite possible for the heat balance equations to yield physically meaningless solutions for a particular configuration. However, the message "2ND LAW ERR" will be displayed if the 2nd law of thermodynamics has been violated during the calculation of $A U$ or Q.

This program is organized into five routines. The first routine performs heat balance calculations and acts as a controller for the four configuration subroutines. Each configuration subroutine has two sections that calculate $A U$ and E for that heat exchanger. You should first load the controller, then load the configuration of interest as a separate program.

You may wish to write your own configuration routines. A routine for a configuration must be in the following format:

Example:
A liquid at $168^{\circ} \mathrm{F}$ is to be cooled to $117^{\circ} \mathrm{F}$. The liquid has a heat capacity of $0.42 \mathrm{Btu} / \mathrm{LBM}-{ }^{\circ} \mathrm{F}$ and flows at $7700 \mathrm{LBM} / \mathrm{hr}$. Cooling water (heat capacity $=1.00$)
is available at $48001 \mathrm{bm} / \mathrm{hr}$ at $50^{\circ} \mathrm{F}$. For counterflow, crossflow, parallelcounterflow, and parallel flow heat exchangers with overall coefficients of $55 \mathrm{Btu} / \mathrm{hr}-\mathrm{ft}^{2}-{ }^{\circ} \mathrm{F}$ what areas are required?

Keystrokes: (SIZE $\geqslant 023)$
Display:
[///] [FIX] 4
Load main routine and counterflow subroutine.
[XEQ] [ALPHA] HEATX [ALPHA]
TC IN=?
50 [R/S]
168 [R/S]
TH IN=?

4800 [R/S]
MH=?
7700 [R/S]
$\mathrm{CPC}=$?
1 [R/S]
$\mathrm{CPH}=$?
.42 [R/S]
SELECT KEY: E AU Q TC TH
Since the temperature of the outgoing fluid is known, press the [E] key.
[E]
117 [R/S]
[R/S]*
[R/S]*
[R/S]*
[R/S]*

THO = ?
$\mathrm{E}=0.4322$
$\mathrm{AU}=2,198.7662$
$\mathrm{Q}=164,933.9999$
$\mathrm{TCO}=84.3612$
SELECT KEY: E AU Q TC TH

Keystrokes:
Since $A=A U / U$, calculate A.
2198.7662 [ENTER] 55 [\div]

Load crossflow subroutine.
[XEQ] [ALPHA] HEATX [ALPHA]
[R/S]
[R/S]
[R/S]
[R/S]
[R/S]
[R/S]
[E]
[R/S]
[R/S]*
[R/S]*
[R/S]*
[R/S]
2353.6675 [ENTER] 55 [\div]

Display:
39.9776

TC $\mathrm{IN}=$?
TH IN=?
$\mathrm{MC}=$?
$\mathrm{MH}=$?
$\mathrm{CPC}=$?
$\mathrm{CPH}=$?
SELECT KEY: E AU Q TC TH
$\mathrm{THO}=$?
$\mathrm{E}=0.4322$
$\mathrm{AU}=2,353.6675$
$\mathrm{Q}=164,934.0000$
$\mathrm{TCO}=84.3613$
SELECT KEY: E AU Q TC TH
42.7940

An analogus procedure will yield areas of $42.2776 \mathrm{ft}^{2}$ and $45.1494 \mathrm{ft}^{2}$ for parallel-counterflow and parallel exchanges respectively.

User Instructions

User Instructions

				SIZE: 023
STEP	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
10.	For a new problem, go to step 2 or step 9.			E AU Q TC TH
	It is not necessary to key in any values			
	which do not change. Ignore the prompts			
	and press [R/S].			
*	Press [R/S] if you do not have a printer.			

Program Listings

Heat Exchanger－Main Routine

	Input values．	49 KEQ ＂IH＂ 50 GIV 51 GTO 16	
03 STO 09		$52+L E L E$	
04 ＂TC IH＂		$535 F$ G3	Input AU．
GS EEQ ＂IH＂		5410	Input AU．
06－TH IH＂		55 ST0 60	
07 XEQ＂IH＂		56＂以山＂	
C8 14			
09 STO 90		58 HIV	
10 ＂MC：		59 GTG 01	
$11 \times E Q \quad$＂IH＂		$6 \mathrm{E}+\mathrm{LEL} \mathrm{C}$	
12 ＂MH＂		$E 1$ SF E4	
$13 \times E Q \quad$＂IH＂		6211	Input Q．
14 ＂CPC＂		$635 T 090$	
$15 \times E Q \quad$＂IH＂		E4＂0．	
16 RCL 15		E5 XEQ＂IH＂	
17 ＊		EE HIV	
18 STG5		G7 GTD E5	
19 ＂CFH＂		$E E+L E L T I$	
2以 $2 E Q *$＂H＂		69 SF 65	Input TCO．
21 Ficl 16		7 C 12	
ご2＋		71 ST0 9G	
$こ ゙ S T \square 日 6$		72 ＂TCD＂	
24 ＂CAH＂		73 XEQ＂IH＂	
$こ 5 \mathrm{ASTO} 2 \mathrm{Z}$		74 FПv	
$\Xi G+L B L E 6$		75 GTO 14	
27 CF Ex		フロ＊LEL E	
28 CFE	input．	77 SF 日6	Input THO．
29 CF M4		7813	
39 CF 95		79 ST0 90	
31 CF Ct		SE＂THO＂	
32 CF 21		S1 XEQ＂IH＂	
33 SF ご		SE Aly	
34 ＇SELETT		S3 GTO 04	
KEY：${ }^{\text {¢ }}$		E4＊LEL 16	
35 AVIEH		G5FSTC G3	
36 SF 21		S6 GTO GE	Calculate AU．
37 FEE		37 PCL 10	
$38+L E L$ 9G		8B＂A＂	
39 HD4		G9 人EQ ES	
4 CE －AU		$905 T 011$	
TC TH＂		91 ＂AH＂	
41 FRGMFT		92 XEQ $\because \square$	
42 GTO G日		93＊LEL G1	
$43+$ LEL	Input E．	94 FS？C G4	Calculate Q．
$443 F \mathrm{Ba}$		95 96 GCL GE	
46 STO ¢		97＂E．	
47 EF 01		$93 \times E Q 10$	
$43^{\prime \prime}$＂${ }^{\text {．}}$		99 RCL 97	

Program Listings

Heat Exchanger - Main Routine

Program Listings

Program Listings

Parallel Flow Subroutine

Program Listings

Counter Flow Subroutine

Program Listings

Parallel-Counter Flow Subroutine

Program Listings
Cross Flow Subroutine

REGISTERS, STATUS, FLAGS, ASSIGNMENTS

ROW 15 ($70-75$)

ROW 16 (76-81)

ROW 18 (88-94)

HEAT EXCHANGERS
PAR-COUNTER FLOW
PROGRAM REGISTERS NEEDED: 12

VIEW FACTOR

Given two surfaces, oriented as shown below, this program calculates the fraction of radiation leaving one surface that gets to the other, assuming a 90° angle.

The fraction of radiation that gets from 1 to 2 is the same as that which gets from 2 to 1 .

Equations:

$$
\begin{aligned}
& \lambda=a \mu, \gamma=c / b, Z=X^{2}+Y^{2}-2 X Y \cos \Phi \\
& F_{A_{1}-A_{2}}(\pi Y)=-\frac{\sin 2 \|}{4}\left[X Y \sin \Phi+\left(\frac{\pi}{2}-\Phi\right)\left(X^{2}+Y^{2}\right)\right. \\
& +Y^{2} \tan ^{-1}\left(\frac{X-Y \cos \Phi}{Y \sin \Phi}\right) \\
& \left.+X^{2} \tan ^{-1}\left(\frac{Y-X \cos \Phi}{X \sin \Phi}\right)\right] \\
& +\frac{\sin ^{2} \Phi}{4}\left\{\left(\frac{2}{\sin ^{2} \Phi}-1\right) \ln \left[\frac{\left(1+X^{2}\right)\left(1+Y^{2}\right)}{1+Z}\right]\right. \\
& \left.+Y^{2} \ln \left[\frac{Y^{2}(1+Z)}{\left(1+Y^{2}\right) Z}\right]+X^{2} \ln \left[\frac{X^{2}\left(1+X^{2}\right)^{\cos 2 \Phi}}{Z(1+Z)^{\cos 2 \Phi}}\right]\right\} \\
& +Y \tan ^{-1}\left(\frac{1}{Y}\right)+X \tan ^{-1}\left(\frac{1}{X}\right)-\sqrt{Z} \tan ^{-1}\left(\frac{1}{1 Z}\right) \\
& +\frac{\sin (\downarrow \sin 2(\downarrow)}{2} X \sqrt{1+X^{2} \sin ^{2} \phi} \\
& \times\left[\tan ^{-1}\left(\frac{X \cos \Phi}{\sqrt{1+X^{2} \sin ^{2} \phi}}\right)\right. \\
& \left.+\tan ^{-1}\left(\frac{Y-X \cos \Phi}{\sqrt{1+X^{2} \sin ^{2} \Phi}}\right)\right] \\
& +\cos \Phi \int_{0}^{Y} \sqrt{1+\xi^{2} \sin ^{2} \Phi}\left[\tan ^{-1}\left(\frac{X-\xi \cos \Phi}{\sqrt{1+\xi^{2} \sin ^{2} \Phi}}\right)\right. \\
& \left.+\tan ^{-1}\left(\frac{\xi \cos \Phi}{\sqrt{1+\xi^{2} \sin ^{2}(\mathrm{D}}}\right)\right] d \xi
\end{aligned}
$$

Example:

Find the view factor for the arrangement below:

Keystrokes:	Display:
[XEQ] [ALPHA] SIZE [ALPHA] 006	
$[\mathrm{XEQ}]$ [ALPHA] VIEW [ALPHA]	WIDTH ?
$30[\mathrm{R} / \mathrm{S}]$	HEIGHT ?
$10[\mathrm{R} / \mathrm{S}]$	DEPTH ?
$20[\mathrm{R} / \mathrm{S}]$	$\mathrm{F}=0.1595$

(what if the height were only 8'?)
[A]
[R/S]
8 [R/S]
[R/S]

WIDTH ?
HEIGHT ?
DEPTH ?
$\mathrm{F}=0.1379$

User Instructions

Program Listings

	Initialize Input Calculate X, Y and Z Calculate F		

Program Listings

REGISTERS, STATUS, FLAGS, ASSIGNMENTS

HEAT TRANSFER THROUGH COMPOSITE CYLINDERS AND WALLS

This program can be used to calculate the overall heat transfer coefficient for composite tubes and walls from individual section conductances and surface coefficients.

Equations:

The overall heat transfer coefficient U is defined by:

$$
\begin{aligned}
\mathrm{q} / \mathrm{L} & =\mathrm{U} \Delta \mathrm{~T} \\
& \text { or } \\
\mathrm{q} / \mathrm{A} & =\mathrm{U} \Delta \mathrm{~T}
\end{aligned}
$$

where ΔT is the total temperature difference $\left(T_{2}-T_{1}\right), q / L$ is the heat transfer per unit length of pipe, and q / A is the heat transfer per unit area of wall.

For cylinders

$$
\mathrm{U}=\frac{2 \pi}{\frac{2}{\mathrm{~h}_{1} \mathrm{D}_{1}}+\frac{\ln \left(\mathrm{D}_{2} / \mathrm{D}_{1}\right)}{\mathrm{k}_{1}}+\frac{\ln \left(\mathrm{D}_{3} / \mathrm{D}_{2}\right)}{\mathrm{k}_{2}}+\ldots+\frac{\ln \left(\mathrm{D}_{\mathrm{n}} / \mathrm{D}_{\mathrm{n}-1}\right)}{\mathrm{k}_{\mathrm{n}-1}}+\frac{2}{\mathrm{~h}_{\mathrm{n}} \mathrm{D}_{\mathrm{n}}}}
$$

For walls

$$
\mathrm{U}=\frac{1}{\frac{1}{\mathrm{~h}_{1}}+\frac{\mathrm{x}_{1}}{\mathrm{k}_{1}}+\frac{\mathrm{x}_{2}}{\mathrm{k}_{2}}+\ldots+\frac{\mathrm{x}_{\mathrm{n}}}{\mathrm{k}_{\mathrm{n}}}+\frac{1}{\mathrm{~h}_{\mathrm{n}}}}
$$

where
h is the convective surface coefficient;
D_{n} is the outside diameter of the annulus;
k is the conductive coefficient;
x is the thickness of a wall section.

Remarks:

These equations are for steady state heat transfer through materials with constant properties in all directions.

For composite cylinders, inputs must start with the inside convective coefficient and work out.

Zero is an invalid input for D, k, and h.

Dimensional consistency must be maintained.

Example:
A steel pipe with an inside diameter of 4 inches and a thickness of 0.5 inches has a conductivity of $25 \mathrm{Btu} / \mathrm{ft}-\mathrm{hr}-{ }^{\circ} \mathrm{F}$. Two inches of asbestos ($k=0.1 \mathrm{Btu} / \mathrm{hr}-\mathrm{ft}-{ }^{\circ} \mathrm{F}$) enclose the pipe bringing the total diameter to 9 inches. If the inside convective coefficient is $1000 \mathrm{Btu} / \mathrm{hr}-\mathrm{ft}^{2}{ }^{\circ}{ }^{\circ} \mathrm{F}$ and the outside coefficient is $5 \mathrm{Btu} / \mathrm{hr}-\mathrm{ft} \mathrm{t}^{2}{ }^{\circ} \mathrm{F}$, what is the overall heat transfer coefficient? What is the heat loss for 100 feet of pipe if ΔT is $115^{\circ} \mathrm{F}$?

Keystrokes:
[XEQ] [ALPHA] SIZE [ALPHA] 009
[XEQ] [ALPHA] CYL [ALPHA]
2 [R/S]
4 [ENTER $\uparrow 12$ [\div] [R/S]
1000 [R/S]
5 [ENTER \uparrow] 12 [\div] [R/S]
25 [R/S]
9 [ENTER $\uparrow 12$ [\div] [R/S]
0.1 [R/S]

5 [R/S]
115 [X]
100 [X]

Display:

NO. OF SECTS?
D?
H?
D?
K?
D?
K?
H?
$\mathrm{U}=0.98$
112.44

11,244.20

Btu/hr-ft- ${ }^{\circ} \mathrm{F}$
Btu/hr-ft
Btu/hr

User Instructions

Program Listings

REGISTERS, STATUS, FLAGS, ASSIGNMENTS

BLACK BODY THERMAL RADIATION

Bodies with finite temperatures emit thermal radiation. The higher the absolute temperature, the more thermal radiation emitted. Bodies which emit the maximum possible amount of energy at every wavelength for a specified temperature are said to be black bodies. While black bodies do not actually exist in nature, many surfaces may be assumed to be black for engineering considerations.

Notes:
A half minute or more may be required to obtain $E_{b(0-\lambda)}$ or $E_{b\left(\lambda_{1}-\lambda_{2}\right)}$ since the integration is numerical.

Sources differ on values for constants. This could yield small discrepancies between published tables and program outputs.

Figure 1 is a representation of black body thermal emission as a function of wavelength. Note that as temperature increases, the area under the curves (total emissive power $\mathrm{E}_{\mathrm{b}(0-\infty)}$) increases. Also note that the wavelength of maximum emissive power $\lambda_{\max }$ shifts to the left as temperature increases.

This program calculates the wavelength of maximum emissive power for a given temperature, the temperature for which a given wavelength would be the wavelength of maximum emissive power, the total emissive power over all wavelengths, the emissive power at a particular wavelength, the emissive power from zero to a specified wavelength, and the emissive power between specified wavelengths.

Equations:

$$
\begin{gathered}
\lambda_{\max } T_{\lambda_{\max }}=c_{3} \\
\mathrm{E}_{\mathrm{b}(0-\infty)}=\sigma T^{4} \\
\mathrm{E}_{\mathrm{b} \lambda}=\frac{2 \pi c_{1}}{\lambda^{5}\left(e^{c_{2} / \lambda T}-1\right)} \\
\mathrm{E}_{\mathrm{b}(0-\lambda)}=\int_{0}^{\lambda} \mathrm{E}_{\mathrm{b} \lambda \mathrm{~d} \lambda} \\
=2 \pi c_{1} \sum_{k=1}^{\infty}-T / k c_{2} e^{-\frac{k c_{2}}{T \lambda}}\left[\left(\frac{1}{\lambda}\right)^{3}+\frac{3 T}{\lambda^{2} k c_{2}}\right. \\
\left.+\frac{6}{\lambda}\left(\frac{T}{k c_{2}}\right)^{2}+6\left(\frac{T}{k c_{2}}\right)^{3}\right] \\
E_{b\left(\lambda_{1}-\lambda_{2}\right)}=E_{b\left(0-\lambda_{2}\right)}-E_{b\left(0-\lambda_{1}\right)}
\end{gathered}
$$

where:
$\lambda_{\text {max }}$ is the wavelength of maximum emissivity in microns;
T is the absolute temperature in ${ }^{\circ} \mathrm{R}$ or K ;
$\mathrm{E}_{\mathrm{b}(0-\infty)}$ is the total emissive power in $\mathrm{Btu} / \mathrm{hr}-\mathrm{ft}^{2}$ or Watts $/ \mathrm{cm}^{2}$;
$\mathrm{E}_{\mathrm{b} \lambda}$ is the emissive power at λ in $\mathrm{Btu} / \mathrm{hr}^{-\mathrm{ft}}{ }^{2}-\mu \mathrm{m}$ or Watts/ $\mathrm{cm}^{2}-\mu \mathrm{m}$;
$\mathrm{E}_{\mathrm{b}(0-\lambda)}$ is the emissive power for wavelengths less than λ in $\mathrm{Btu} /$ $\mathrm{hr}-\mathrm{ft}^{2}$ or Watts/ $/ \mathrm{cm}^{2}$;
$\mathrm{E}_{\mathrm{b}\left(\lambda_{1}-\lambda_{2}\right)}$ is the emissive power for wavelengths between λ_{1} and λ_{2} in Btu/hr- ft^{2} or Watts $/ \mathrm{cm}^{2}$.
$\mathrm{c}_{1}=1.8887982 \times 10^{7} \mathrm{Btu}-\mu \mathrm{m}^{4} / \mathrm{hr} \cdot \mathrm{ft}^{2}$
$=5.9544 \times 10^{3} \mathrm{~W} \mu \mathrm{~m}^{4} / \mathrm{cm}^{2}$
$\mathrm{c}_{2}=2.58984 \times 10^{4} \mu \mathrm{~m} \cdot{ }^{\circ} \mathrm{R}=1.4388 \times 10^{4} \mu \mathrm{~m} \cdot \mathrm{~K}$
$\mathrm{c}_{3}=5.216 \times 10^{3} \mu \mathrm{~m}-{ }^{\circ} \mathrm{R}=2.8978 \times 10^{3} \mu \mathrm{~m}-\mathrm{K}$
$\sigma=1.713 \times 10^{-9} \mathrm{Btu} / \mathrm{hr}-\mathrm{ft}^{2}{ }^{\circ} \mathrm{R}^{4}=5.6693 \times 10^{-12}$
$\mathrm{W} / \mathrm{cm}^{2} \cdot \mathrm{~K}^{4}$
$\sigma_{\text {exp }}=1.731 \times 10^{-9} \mathrm{Btu} / \mathrm{hr} \cdot \mathrm{ft}^{2} .{ }^{\circ} \mathrm{R}^{4}=5.729 \times 10^{-12}$
$\mathrm{W} / \mathrm{cm}^{2} \cdot \mathrm{~K}^{4}$

References: HP-67/97 Users' Library Program.

Example:
What percentage of the radiant output of a lamp is in the visible range (0.4 to 0.7 microns) if the filament of the lamp is assumed to be a black body at 2400 K ?

Keystrokes: (SIZE $\geqslant 009)$
[USER]
[XEQ] [ALPHA] BB [ALPHA]
SI [R/S]
2400 [R/S]
. 4 [R/S]
[F]
. 7 [R/S]
[C]
[\div]
100 [x]

Display:
(set USER mode)
UNITS?
TEMP?
WAVELENGTH?
SOLVE
WV LNTH 2?
EbL-L=4. 9679
EbTOT=188.094
0.0264
2.6412

				SIZE: 009
STEP	Instructions	InPUT	FUNCTION	DISPLAY
1	Load program and set USER mode.		[USER]	
2.	Initialize program		[XEQ] BB	UNITS?
3.	Input code for desired units SI, or EN	SI	[R/S]	
	or EN	EN	[R/S]	TEMP?
4.	Input temperature, if temperature is	Temp	[$\mathrm{R} / \mathrm{S}]$	WAVELENGTH?
	unknown, press [R/S].			
5.	Input first wavelength, if wavelength is	λ	[R/S]	SOLVE
	unknown, press [R/S].			
6.	Calculate any or all of the following:			
	λ max for a given temperature		[A]	WLMAX=
	T such that λ is λ max for T		[B]	TEMP $=$
	total emissive power at T		[C]	EbTOT $=$
	emissive power at T and λ		[D]	EbL=
	emissive power between zero and λ		[E]	Eb0-L $=$
	emissive power between λ_{1} and λ_{2}		[F]	WV LNTH 2?
		λ_{2}	[R/S]	EbL-L $=$
7.	For a new case, go to step 2.			

Program Listings

Progiram Listings

REGISTERS, STATUS, FLAGS, ASSIGNMENTS

ECONOMIC BREAK EVEN FOR SOLAR EQUIPMENT

This program calculates the number of years necessary for solar equipment to pay for itself.

Equation:

YEARS $=\frac{-\ln \left\{1-\frac{\text { S SPENT (\%INT-\%INF) }}{365(\mathrm{BTU} / \mathrm{DAY})(\$ / \mathrm{BTU})(1+\% \text { INF })}\right.}{\ln \left\{1+\frac{\% \text { INT } \% \text { INF }}{1+\% \text { INF }}\right\}}$
where:

$$
\begin{aligned}
& \text { \$ SPENT }=\text { the cost of the solar equipment. } \\
& \text { \$/BTU }=\text { the cost of purchased energy per BTU. } \\
& \text { BTU/DAY }=\text { the amount of energy drawn from your solar equipment } \\
& \\
& \text { \% per day. } \\
& \% \text { INT }=\text { the current lending rate to buy equipment } \\
& \% I N F= \\
& \text { YEARS }==\text { the expected inflation rate for the cost of energy. }
\end{aligned}
$$

Example:
Aaron B. Waters wants to buy $\$ 2000$ worth of solar equipment with which he hopes to bring in 75,000 BTU per day. The cost per BTU for the energy source he is replacing is $\$ 3.66 \times 10^{-6} \$ / B T U$. The lending rate is 14.5% and the inflation rate is 15%. How long will it take the equipment to pay for itself?

Keystrokes:
Display:
[XEQ] [ALPHA] SIZE [ALPHA] 005
[XEQ] [ALPHA] EBE [ALPHA] \$ SPENT ?
2000 [R/S]
\$/BTU ?
3.66 [EEX] 6 [CHS] [R/S]

BTU/DAY ?
75000 [R/S]
14.5 [R/S]
\%INT ?
\%INF ?
15 [R/S]
19.10 YEARS

What if he spent $\$ 1500$ and got 65,000 BTU/DAY?

$[\mathrm{R} / \mathrm{S}]$	S SPENT ?
$1500[\mathrm{R} / \mathrm{S}]$	\$/BTU ?
$[\mathrm{R} / \mathrm{S}]$	BTU/DAY ?
$65000[\mathrm{R} / \mathrm{S}]$	\%INT ?
$[\mathrm{R} / \mathrm{S}]$	\%INF ?
$[\mathrm{R} / \mathrm{S}]$	16.62 YEARS

User Instructions

				SIZE: 005
STEP	INSTRUCTIONS	InPuT	FUNCTION	DISPLAY
1	Load the program.			
2	Initialize.		[XEQ] EBE	\$ SPENT ?
3	Key in amount spent on solar equipment.	\$ SPENT	[R / S]	\$/BTU ?
4	Key in amount per BTU for the energy source			
	being replaced.	\$/BTU	[$\mathrm{R} / \mathrm{S}]$	BTU/DAY ?
5	Key in the number of BTU per day to be			
	drawn from the solar equipment.	BTU/DAY	[R/S]	\%INT ?
6	Key in the current lending rate.	\%INT	[R / S]	\%INF ?
7	Key in the expected fuel inflation rate.	\%INF	[R / S]	() YEARS
8	For a new problem press [A] and go to step			
	3.		[R/S]	\$ SPENT ?
	For any value which does not change just			
	press [R / S].			

Program Listings

```01*LEL "EEE 02 "F SPEHT Input ? 03 FCL 90 0 4 ~ P E O M P T 05 STG 00 06 RTL 91 07 "क/ETU?" 0S FROMPT 09 STO 01 16 FCL G2 -11 "BTU/DAG 12 FROMPT 13 STO 日2 14 FCL g.  15 "EIHT?" 16 FROMPT 17 STO g.  18 RCL 04 19 "#INF%" 20 FROMPT 215T0 04 22 RCL 03 23 X<>Y Calculate break- 24 - even 25 1 2\epsilon % 27 RCL 64 zs 1 EZ 29 30} 31+ 32 3 RCL 6G 34 365 35 RCL 01 36 :* 37 RCL G2 36 * 39 40 <<>Y 41 X=0? 42 GTO 01 4.3* 44 CHS 45 LN1+% 4\epsilon CHE 47 X<>Y 48 LH1+%```	49   50 GTO 02   $51+L E L$ G1   $5 z$ LASTY   53 FEL GC   54 FCL 94   55   $56+$   $57 \quad x<y$   58   $59+L E L$ Q2   G日 CLH   61 ARCL $\because$   Ez "F YEPFS   G. 3 AYIEN   64 EHD	Special case where $\%$ INT $=\%$ INF   Output \# of years

REGISTERS, STATUS, FLAGS, ASSIGNMENTS



## SOLAR PANEL ARRAY

When solar panels are installed on flat roofs or on the ground it often is necessary or desirable to arrange the collectors in several rows, one in back of another. In such an array the arrangement to prevent the southmost rows from shading the others becomes important. This program calculates the appropriate distance between the collector arrays. Input is the Date, Latitude, Longitude, Time of Day, Local Standard Time Meridian, and the length of the solar collector panel.

Actual distance between rows, will, in final analysis, be a matter of judgement based on available space and economic conditions. For example, partial shading during the early morning and late afternoon hours in late December may be an accpetable compromise based on limited space available for panel mounting.

A most important factor in establishing the array is to establish the sun angle, S , and shade length, $\mathrm{D}_{2}$, on an hourly and daily basis. Assuming that the array is facing south, and that you know the latitude of the location, this can be accomplished for any day of the year and time of day.

## Equations:

$$
\begin{aligned}
N= & {\left[\operatorname{INT}\left(365.25 y^{\prime}\right)+\operatorname{INT}\left(30.6001 \mathrm{~m}^{\prime}\right)+\operatorname{DD}+1,720,983\right]-} \\
& {[\operatorname{INT}(365.25(\mathrm{YYYY}-1))+\operatorname{INT}(30.6001(\mathrm{MM}+13))+1,720,983] }
\end{aligned}
$$

Where:

```
 N=Numbered day of the year counting from Jan. l as day l
 MM=Month
 DD=Day of the month
 YYYY=Year
 y'= Year-1, if MM=1 or 2
 Year, if MM > 2
 m'= Month+l3, if MM=1 or 2
 Month +1, if MM > 2
\delta=23.45SIN [\frac{360(284+N)}{365}]
Where:
```

```
\delta = Sun's declination, degrees
```

```
\delta = Sun's declination, degrees
```

$$
\text { AST }=\mathrm{LST}+4(\mathrm{LSM}-\mathrm{LON})
$$

Where: LON = Local Longitude

> AST = Apparent Solar Time

LST $=$ Local Standard Time
LSM $=$ Local Standard Meridian
$\mathrm{S}=\mathrm{TAN}^{-1} \frac{\sin \delta \operatorname{SIN} \emptyset+\cos \delta \cos \emptyset \cos \mathrm{w}}{\cos \delta \operatorname{SIN} \emptyset \cos \mathrm{w}-\operatorname{SIN} \delta \cos \emptyset}$

Where:
S = sun angle in a plane perpendicular to the earth and parallel to the longitude
$\emptyset=1$ latitude (north positive)
$\mathrm{w}=$ hour angle, solar noon being zero, and each hour equaling $15^{\circ}$ of longitude with morning positive and afternoon negative
$\mathrm{V}=\mathrm{L} \operatorname{SIN} \mathrm{T}$
$D_{1}=\frac{V}{\operatorname{TAN~}}+L \cos T$
$\mathrm{D}_{2}=\frac{\mathrm{V}}{\text { TAN } \mathrm{S}}$

Where:
$\mathrm{V}=$ height from the horizontal to the top of solar panel, FT.
$D_{1}=$ distance from front of first row of collectors to the front of the row behind, FT.
$\mathrm{D}_{2}=$ shade length, FT.
$\mathrm{L}=$ solar collector panel length, FT.


Establishing Distance Between Rows on a Flat Mounting Surface

## Examp1e:

In an array of $7^{\prime}$ panels located at $36^{\circ} 25^{\prime}$ north latitude and $97^{\circ} 30^{\prime}$ west longitude with a panel tilt of $46^{\circ}$ find $\mathrm{V}, \mathrm{D}_{1}$ and $\mathrm{D}_{2}$ at 12 noon Central Stand ard Time on 12/21/1979.

Keystrokes:
[XEQ] [ALPHA] SIZE [ALPHA] 012
[XEQ] [ALPHA] PANEL [ALPHA]
12.211979 [R/S]
36.25 [R/S]
97.3 [R/S]

12 [R/S]
90 [R/S]
46 [R/S]
7 [R/S]
[R/S]
[R/S]
What about at 1 PM on $6 / 1 / 1979$ ?
[A]
6.011979 [R/S]
[R/S ]
[R/S]
13 [R/S]
[R/S]
[R/S]
[R/S]
[R/S]
[R/S]

Display:
MM. DDYYYY?

LAT ?
LONG ?
TIME ?
TIME MER ?
TILT 反 ?
LENGTH ?
$\mathrm{V}=5.0354$
$D_{1}=13.6006$
$D_{2}=8.7380$
MM. DDYYYY?

LAT ?
LONG ?
TIME ?
TIME MER ?
TILT b ?
LENGTH ?
$V=5.0354$
$\mathrm{D}_{1}=6.1373$
$D_{2}=1.2747$

## User Instructions

				SIZE: 012
STEP	InStructions	INPUT	FUNCTION	DISPLAY
1	Load the program.			
2	Initialize.		[ XEO ] ${ }^{\text {PANEL }}$	MM. DDYYYY ?
3	Key in the date.	Date	[ $\mathrm{R} / \mathrm{S}$ ]	LAT ?
4	Key in the latitude in Degrees, Minutes			
	and Seconds (D.MS). [CHS] for south.	(D.MS)	[ $\mathrm{R} / \mathrm{S}$ ]	LONG ?
5	Key in the longitude in D.MS. [CHS] for	D.MS)	[ $\mathrm{R} / \mathrm{S}$ ]	TIME ?
	east. Key in the local time from a 24			
	hour clock.	t (H.MS)	[ $\mathrm{R} / \mathrm{S}$ ]	TIME MER ?
6	Key in the time meridian:			
	$60^{\circ}=$ At lantic Standard Time			
	$75^{\circ}=$ Eastern Standard Time			
	$90^{\circ}=$ Central Standard Time			
	$105^{\circ}=$ Mountain Standard Time			
	$120^{\circ}=$ Pacific Standard Time	(D.MS)	[R/S]	TILTb ?
7	Key in the angle of panel tilt.	T (D.MS)	[ $R / S$ ]	LENGTH?
8	Key in the length of the panel.	L	[ $\mathrm{R} / \mathrm{S}]$	$\mathrm{V}=$
			[ $\mathrm{R} / \mathrm{S}]$	D1 $=$
			[ $R / S]$	$\mathrm{D} 2=$
9	For a new length press [B] and go to step 8.		[B]	LENGTH?
10	To change any or all of the other variables,			
	press [A] and go to step 3.		[A]	MM. DDYYYY ?
	Skip unchanging values with [R/S].			

## Program Listings

a1*LBL "PAH		50 *	
EL*	Initialization	51 IHT	
62 SF 27		$52+$	
$03+L B L \quad A$		53 RCL 08	
04 CF 22	Input	$54+$	
65 "MM. DDYY		551720982	
YY?.		$56+$	
66 PROMPT		57 FS? 02	
07 FC?C 22		58 GTO 02	
08 GTO 04		59 STO 01	Day \#
09 STO 00	Calculate DOY	6.1	Get Day \# for
10 ENTERT	and declination	61 STO 07	Jan. 1
11 IHT		62 ST0 08	
12 STO 07		63 SF 02	
$13-$		64 GTO 01	
141 E2		$65+$ LBL 02	
15 *		66 RCL 01	
16 EHTERT		671	
17 INT		$68+$	
18 STO 98			
19 -		79 -	
20154		71 STO 09	DOY
$21 *$		72 RCL 00	
22 ST0 09		73 CF 02	
23 CF 02		74360	
24*LBL 01		75 ENTERT	
252		76284	
26 RCL 07		77 RCL 09	
27 X ${ }^{2}$ Y?		$78+$	
28 GTO 00		79365	
29 RCL 09		80	
301		81 *	
$31-$		82 SIH	
32 ST0 09		8323.45	
33 RCL 97		84 *	
3413		85 STO 08	Declination
$35+$		$86 \%$ LBL 6.4.	
36 ST0 67		88 PR "LAMP?	
$38+$ LBL 69		89 HR	
39 RCL 日f		90 FS?C 22	
491		91 STO 05	
$41+$		92 "LONG ?	
42 ST0 07		93 PROMPT	
43 +LBL 63		94 HR	
44 365.25		95 FS?C 22	
45 RCL 09		96 STO 02	
46 *		97 "TIME ? ${ }^{\text {- }}$	
47 INT		98 PROMPT	
4830.6001		99 HR	
49 RCL 97		100 FS?C 22	

## Program Listings



REGISTERS, STATUS, FLAGS, ASSIGNMENTS




## CONDUIT FLOW

This program solves for the average velocity, or the pressure drop for viscous, incompressible flow in conduits.

Equations:

$$
v^{2}=\frac{\Delta \mathrm{P} / \rho}{2\left(\mathrm{f} \frac{\mathrm{~L}}{\mathrm{D}}+\frac{\mathrm{K}_{I}}{4}\right)}
$$

For laminar flow (Re < 2300)

$$
f=16 / \operatorname{Re}
$$

For turbulent flow (Re > 2300)

$$
\frac{1}{\sqrt{\mathrm{f}}}=1.737 \ln \frac{\mathrm{D}}{\varepsilon}+2.28-1.737 \ln \left(4.67 \frac{\mathrm{D}}{\varepsilon \operatorname{Re} \sqrt{\mathrm{f}}}+1\right)
$$

is solved by Newton's method.

$$
\frac{1}{\sqrt{\mathrm{f}_{0}}}=1.737 \ln \frac{\mathrm{D}}{\varepsilon}+2.28
$$

is used an an initial guess in the iteration.
where: Re is the Reynolds number, defined as $\rho D v / \mu$;
D is the pipe diameter;
$\varepsilon$ is the dimension of irregularities in the conduit surface (see table 2);
$f$ is the Fanning friction factor for conduit flow;
$\Delta \mathrm{P}$ is the pressure drop along the conduit;
$\rho$ is the density of the fluid;
$\mu$ is the viscosity of the fluid;
$\nu$ is the kinematic viscosity of the fluid and $\mu=\rho \nu$;
L is the conduit length;
$v$ is the average fluid velocity;
$K_{T}$ is the total of the applicable fitting coefficients in table 1.

Table 1
Fitting Coefficients

Fitting	K
Globe valve, wide open	$7.5-10$
Angle valve, wide open	3.8
Gate valve, wide open	$0.15-0.19$
Gate valve, $3 / 4$ open	0.85
Gate valve, $1 / 2$ open	4.4
Gate valve, $1 / 4$ open	20
$90^{\circ}$ elbow	$0.4-0.9$
Standard 45 elbow	$0.35-0.42$
Tee, through side outlet	1.5
Tee, straight through	.4
$180^{\circ}$ bend	1.6
Entrance to circular pipe	$0.25-0.50$
Sudden expansion	$\left(1-\mathrm{A}_{\text {up }} / \mathrm{A}_{\mathrm{dn}}\right)^{2} \star$
Acceleration from v=0 to v=ventrance	1.0

${ }^{*} A_{u p}$ is the upstream area and $A_{d n}$ is the downstream area.

Table 2
Surface Irregularities

Material	$\varepsilon$ (feet)	$\varepsilon$ (meters)
Drawn or Smooth Tubing	$5.0 \times 10^{-6}$	$1.5 \times 10^{-6}$
Commercial Steel or Wrought Iron	$1.5 \times 10^{-4}$	$4.6 \times 10^{-5}$
Asphalted Cast Iron	$4.0 \times 10^{-4}$	$1.2 \times 10^{-4}$
Galvanized Iron	$5.0 \times 10^{-4}$	$1.5 \times 10^{-4}$
Cast Iron	$8.3 \times 10^{-4}$	$2.5 \times 10^{-4}$
Wood Stave	$6.0 \times 10^{-4}$ to	$1.8 \times 10^{-4}$ to
	$3.0 \times 10^{-3}$	$9.1 \times 10^{-4}$
Concrete	$1.0 \times 10^{-3}$ to	$3.0 \times 0^{-4}$ to
	$1.0 \times 10^{-2}$	$3.010^{-3}$
Riveted Stee1	$3.0 \times 10^{-3}$ to	$9.1 \times 10^{-4}$ to
	$3.0 \times 10^{-2}$	$9.1 \times 10^{-3}$

## Reference:

Welty, Wicks, Wilson, Fundamentals of Momentum, Heat and Mass Transfer, John Wiley and Sons, Inc., 1969.

## Remarks:

The correlation gives meaningless results in the region $2300<\operatorname{Re}<4000$.
The solution requires an iterative procedure. The time for solution will range from 10 seconds for $\Delta P$, to several minutes for $v$. The display setting is used to determine when the solution for $v$ is adequately accurate. Time for solution of $v$ is roughly proportional to the number or significant digits in the display setting.
If the conduit is not circular, an equivalent diameter may be calculated using the formula below:

$$
\mathrm{D}_{\mathrm{eq}}=4 \frac{\text { cross sectional area }}{\text { wetted perimeter }}
$$

Unitary consistency must be maintained.

## Example:

A heat exchanger has 20,3 meter tube passes ( 60 m of pipe) with 180 degrees bends connecting each pair of tubes (from table $1, K_{T}=10 \times 1.6$ ). The fluid is water $\left(\nu=9.3 \times 10^{-7} \mathrm{~m}^{2} / \mathrm{s}, \rho=10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)$. The surface roughness is $3 \times 10^{-4} \mathrm{~m}$ and the diameter is $2.54 \times 10^{-2} \mathrm{~m}$. If the fluid velocity is $3.05 \mathrm{~m} / \mathrm{s}$, what is the pressure loss? What is the Reynolds number? What is the Fanning friction factor?

Keystrokes:
[XEQ] [ALPHA] SIZE [ALPHA] 015
[///] [ENG] 3
[XEQ] [ALPHA] CONDUIT [ALPHA]
9.3 [EEX] [CHS] 7 [ENTER $\uparrow$
[EEX] 3 [X] [R/S] RHO=?
[EEX] 3 [R/S] E=?
3 [EEX] [CHS] 4 [R/S] L=?
60 [R/S] $\mathrm{D}=$ ?
2.54 [EEX] [CHS] 2 [R/S] KT=?

16 [R/S]
$3.05[\mathrm{R} / \mathrm{S}] \quad \mathrm{DP}=$ ?
[R/S]
[R/S]
[R/S]
$\mathrm{U}=$ ?
Display:

```
E=?
```

$\mathrm{V}=$ ?

DP=521.9E3
$\mathrm{Re}=83.30 \mathrm{E} 3$
$\mathrm{F}=10.18 \mathrm{E}-3$

## User Instructions



## Program Listings

		$\begin{array}{lll} 50 & \text { XEQ } & 08 \\ 51 & \text { RND } \end{array}$	
02 SF 21		52 RCL 09	
03 SF 27		53 X＜${ }^{\text {c }}$ Y	
04 －U $=$ ？${ }^{\text {－}}$		54 X＊＇？	
05 PROMPT		55 GTO 03	
06 STO 09		$56 . \mathrm{V}=$ ？${ }^{\text {－}}$	
07 －RHO＝？		57 RCL 02	
08 PROMPT	Input	58 GTO 10	
09 STO 10		59＊LBL 09	Calculate
10 ST 1109		60 RCL   61 RCL	constants
11 ＂ER＝？ 12 PROMP		62 RCL 14	
13 STO 14		$63 /$	
14 ＂L＝？${ }^{\text {P }}$		64 STO 06	
15 PROMPT		6.5 LN	
16 STO 03		661.737	
		67 STO 07	
18 PROMPT		$63 *$	
19 STO 13		692.28	
$20.6 \mathrm{KT}=$ ？${ }^{\text {－}}$		$70+$	
21 PROMPT		71 STO 12	
224		72 ST0 05	
23 ／		73 FS？ 06	
24 ST0 08		74 GTO 日7	
$25 * L B L C$		75＊LBL 08	
26 CF 22		7616	turbulent？
27 ＂V＝？		77 RCL 02	
28 PROMPT		78 RCL 13	
29 SF 09		79 ＊	
30 FS？ 22		S日 RCL 09	
31 CF 00		81 ＜	
32 STO 02		82 STO 91	
33 －DP＝？		832300	
34 PROMPT		$84 \mathrm{X}<=\mathrm{Y}$ ？	
35 STO 04		85 GTO 02	
36 XEQ 09	1st V	86 RDN	
37 FS？ 00	1st $V$	87	
38 GTO 0.3		88 SQRT	
39 RCL 02		891 － 8	
40 メイさ	Calculate $\Delta \mathrm{P}$	90 STO 05	
41 ＊	Calculate $\mathrm{AP}^{\text {P }}$	91 GTO 97	
42 RCL 10		92＊LBL 92	
43 ＊		93 RCL 12	$1$
44 STO 04		94 RCL 05	$\frac{1}{\sqrt{f}}$
45 －DP＝＂		95 －	
46 GTO 19		964.67	
$47+$ LBL 93 48 RND	V using 1st V	97 RCL 96	
49 STO 00	as guess	99 RCL 11	

Program Listings


## REGISTERS, STATUS, FLAGS, ASSIGNMENTS




## ENERGY CASH FLOW

Energy cash flow gives information about the affordability of an energy related investment. This program uses many input variables (several are optional) to create a more accurate model of the cost and return on an energy investment than is possible with simple breakeven analysis. One of the major advantages of energy cash flow is that results appear in dollars on an annual basis so answers are meaningful to the typical investor. The program automatically uses the general inflation rate to adjust dollar amounts back to base year value.

The workhorses of this program are the local alpha labels and labels 00 and 16. The labels "A" through "F" and "a" through "e" pass alpha descriptors and pointers to label 00 which uses flag tests to determine whether to attach a "?" to the descriptor and then store the user's input, or to append ": " then ARCL the current parameter value. The bulk of the calculations are handled by label 19 which is initialized by label "J". Label 19 calls label 16 which is the subroutine that handles all the computation relating to inflation and discounting. Label 16 is derived from the uniform present worth modified formula:

$$
P=A \frac{(1+e)}{(i-e)} \quad\left[1-\left(\frac{1+e}{1+i}\right)^{N}\right]
$$

where: $\quad P=a \operatorname{present}$ sum of money
$A=$ an end of period payment in a uniform series of payments over $N$ periods at i rate
i $=$ an interest or discount rate
$e=$ rate of escalation of $A$ in each of $N$ periods
$\mathrm{N}=$ number of interest or discounting periods
For clarity, let us divide the formula into four components

P
A $\frac{(1+e)}{(i-e)}$ and $1-\left(\frac{1+e}{1+i}\right)^{N}$
$P=$ the accumulated present value in base year dollars after N years

A = at various times when label 16 is called, the base year's energy bills (before or after the proposed energy/conservation investment) the base year's maintenance costs (before or after . . .), or the annual loan payment
i $=$ the general inflation rate
$\mathrm{e}=$ at various times when label 16 is called, the energy cost inflation rate, the maintenance cost inflation rate, or when figuring the discounted value of the loan payment (which is constant) 0
$N=$ the number of years that have passed since the end of the base period

A bit of inspection reveals that the above formula is, for any given year with the same $i$ and $e$, equivalent to $P=A * C$ where $C$ is a constant multiplier for various A's. Label 16 computes that constant for the year of concern since for both the before and after cases of energy costs and maintenance costs we are assuming the same rate of escalation (from before to after--not necessarily the same escalation rates for energy as for maintenance.) Thus we see that label 16 is computing the last two of the four sections of our formula.

Here is a typical output for one year with description:
year
after investment costs are lower for this year than if no investment were made
yearly cost- cumulative costno investment no investment

1,970. 5,354.
1,916.
5,459.
yearly cost- cumulative costafter investment after investment

Reference: "Simplified Energy Design Economics", by H. E. Marshall and Rosalie T. Ruegg, National Bureau of Standards Special Publication 544, U. S. Department of Commerce, January 1980.

## SAMPLE PROBLEM:

Sven Junquist lives in Zumbrota, Minnesota. Due to the severe Minnesota winters, his fuel bill was $\$ 1400$ in 1982 , and he is interested in reducing it by installing solar equipment. His old natural gas furnace and water heater consumed 2800 CCF (hundred Cubic feet) of gas in 1982. The new equipment will reduce that to about 1800 CCF. The old system costs about $\$ 50$ per year to maintain and the new system will add another $\$ 50$ for a total maintenance cost of $\$ 100$ per year. Natural gas costs about $\$ 0.50$ per CCF, but that price is going up at $20 \%$ per year even though the general inflation rate is only $8 \%$. The cost of maintenance is increasing at the $8 \%$ general inflation rate. If Sven takes out a 15 -year loan for $\$ 3500$ to buy the solar equipment, and the interest rate is $18 \%$, will his investment save money?

SOLUTION:

Input	Function		Display	Comments
	[XEQ] "SIZE"			
	[XEQ] "ECF"		NO. YEARS?	Enter number of years for which calculations are to be made
5	[R/S]		START YEAR?	Enter lst year
1983	[ $\mathrm{R} / \mathrm{S}]$		LOAN TERM?	Enter loan term
15	[ $\mathrm{R} / \mathrm{S}$ ]		LOAN \%?	Enter interest rate on loan
18	[ $\mathrm{R} / \mathrm{S}$ ]		LOAN AMT?	Enter amount of loan
3500	[R/S]		E BEFORE?	Enter energy costs before and after investment
2800	[R/S]		E AFTER?	
1800	[R/S]		E \$/UNIT?	Enter cost per unit of energy source
. 5	[R/S]		\% E INF?	Enter rate of inflation for energy source
20	[R/S]		\% G INF?	Enter general inflation rate
8	[R/S]		\% M INF?	Enter rate of inflation for maintenance
8	[ $\mathrm{R} / \mathrm{S}]$		M BEFORE?	Enter maintenance costs before investment
50	[R/S]		M AFTER?	Enter maintenance costs after investment
				The above values are echo printed if a printer is in the system
100	[R/S]		E \% CH=-35.71	\% change in energy costs with investment
	[R/S]*		MO $\mathrm{PMT}=56.36$	Monthly payment required


Input	$\frac{\text { Function }}{[R / S] *}$	Display	
		AN	$\mathrm{PMT}=676.32$
	[R/S]*	83	1,606. 1,606.
	[R/S] *		1,726. 1,726.
	[R/S] *	84	1,778. 3,384.
	[R/S]*		1,791. 3,517.
	[R/S] *	85	1,970. 5,354.
	[R/S] *	Y	1,871. 5,389.
	[R/S]*	86	2,184. 7,538.
	[R/S]*	$\Sigma$	1,969. 7,357.
	[R/S]*	87	2,421. 9,959.
	[R/S]*	$\Sigma$	2,084. 9,442.

Comments
Annual payment required
(Rest of output as described
in program description section)
*It is not necessary to press [R/S] if a printer is in the system.

SAMPLE PROBLEM (Part II):

Sven has found that he can get a low interest loan at 14\% from the Department of Clever Conservation Techniques. In addition, he has increased his estimate of annual maintenance to $\$ 250$. How much money would he save by the end of seven years.

SOLUTION:

Input	Function	Display	Comments
	[USER]		Set User mode. Enter new interest rate
14	[B]	LOAN \%: 14.00	Enter new annual maintenance cost
250	[shift] [e]	M AFTER: 250.00	
	[I]	NO. YEARS?	Enter number of years to be calculated
10	[R/S]	START YEAR?	Start year remains the same. Push J to obtain new results
	[J]	E \% CH=-35.71	
	[R/S]	MO $\mathrm{PMT}=46.61$	
	[R/S]	AN PMT=559.32	
	[R/S] *	83 1,606. 1,606.	
	[R/S] *	1,768. 1,768.	
	[R/S]*	84 1,778. 3,384.	
	[R/S]*	1,841. 3,609.	


*It is not necessary to press [R/S] if a printer is in the system.

## User Instructions



User Instructions


## User Instructions

				SIZE:
STEP	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
		\# years	[R/S]	START YEAR?
		year	[R/S]	year
*19.	To reprint cashflow after changes.		[J]	yr y\$bef t\$bef
			$[\mathrm{R} / \mathrm{S}]^{\mathrm{p}}$	** y\$aft t\$aft
			:	:

## Program Listings

E1*LEL *EEF		
*		
02	CLEG	Initialize and
03	CF EG	enter the prompt-
04	XED I	ed sequence
05	SF 05	
06	CF DE	
$07+$	LEL 13	Establish loop
08	1.911	parameters for
09	$F 3 \% 66$	case with or
10	1.008	without mainten-
11	STD 60	ance
12	LEL 14	Loop to prompt
13	CF 22	for input or
14	KED IHD	print output if
Q60		printer is
15	$F S 708$	present
16	FRA	
17	15G 6M	
18	GT0 14	
19	FSPC E5	If finished
2 E	GTD I	prompting go to
21	RTH	J else return 124
22	LEL A	
23	LEL C1	Local labels also
24	1	serve as source
25	"LOAH TE	of register ad-
RM ${ }^{\text {P }}$		dresses and vari-
26	GTD E0	able descriptors
27	LEL B	for prompted se-
$28+$	LEL Ez	quence and prin-
29	2	ted output
30	"LİH $\leqslant$ "	
31	GTD EG	
32	LEL C	
33	LEL E3	
34	3	
35	- LOAH AM	
T ${ }^{\prime}$		
36	GTD GG	
37	LEL II	
38	LEL E4	
39	4	
40	$\because E$ EEFOR	
E ${ }^{\text {- }}$		
41 GTO E®		
$42+L E L E$		
$43+L B L E 5$		
445		
$45 \sim E$ HFTEF		
..		



## Program Listings

89 ARCL $X$		137	RCL 08	
90 FC ? 08		138		$1+\frac{\text { ¢M }}{100}$
91 PROMPT		139		
92 RTH		140	STO 18	
$93 *$ LBL 00		141	RCL 04	
94 CLX		142	RCL 05	
95 - 1 ? ${ }^{\text {P }}$		143	\%CH	Calculate and
96 PROMPT		144	SF 21	output \% E change
97 STO IND		145	ADV	
06		146	"E \% CH=	
98 RTH		.		
$99+$ LBL I		147	ARCL $X$	
10 O HO. YEA	Prompt for number	148	AVIEW	
RS? ..	of years and put	149	REL 01	
101 PROMPT	in loop control	150	12	Calculate monthly
1 EZ INT	form	151	*	and annual loan
1031 E3		152	1	payment
104		153	RCL 02	
105 STO 12		154	$x=0 ?$	
106 CLX		155	GTO 28	If loan interest
107 -START ${ }^{\prime}$	Prompt for and	156	LASTK	$=0 \mathrm{branch}$ to
EAR?	store start year	157	-	label 28
108 PROMPT		158	\%	
109 STO 13		159	+	
110 RTN		160	STO 14	
111 -LBL J		161	$\mathrm{x}<3 \mathrm{y}$	
112 CF 12		162	Y'X	
113 FIX 2		163	STO Y	
114 CF 05	Clear prompted	164	1	
115 CF 06	sequence, clear   "no maintenance",	165	-	
116 RCL 10	test for mainten-	166	Rel 03	
117 118 119	ance	168	RCL 0.3	
$119 x=0 ?$		169	RCL 14	
129 SF 06		170	1	
121 FS? 55	If printer is	171	-	
122 SF 08	a.ttached list	172	*	
123 FS? 08	variable para-	173	LBL 29	Re-entry point
124 XEQ 13	meters	174	RHD	for 0\%
125 CF 08		175	STO 14	
1261	Calculate and	176	- MO PMT $=$	
127 RCL 07	store:			
$128 \%$		177	ARCL $X$	monthly and annua
$129+$	$1+\frac{100}{10}$	178	RVIEW	
130 STO 16		189	12	
1311		180	ST* 14	
132 RCL 09		181	RCL 14	
$133 \%$	$1+\frac{\text { \% }}{100}$	182	"AN PMT=	
134 +		-		
135 STO 17		183	ARCL $X$	
1361		184	RVIEW	

## Program Listings

185	FC? 55		236	RCL 22	
186	CF 21	Reset flag 21	237	CHS	
187	1 E3		238	$\mathrm{X}<\gg$	
188	RCL 13	Set up for column	239	5 TO 22	
189	$X<Y$ ?	\#1, \# of years to	240	57029	
190	+	be examined	241	+	
191	STO 13		242	ST0 23	If there is main-
192	RCL 12		243	FC? 06	tenance calculate
193	FRC		244	XEQ 17	it
194	1		245	FIX ${ }^{\text {a }}$	
195	+		246	CF 29	Accumulate cur-
196	STO 12		247	"APAP"	rent year digits
197	ADV		248	RCL 13	in row \#1
198	ADV		249	RCL 12	
199	FC? 55		250	INT	
200	GTO 23		251	+	
201	7		252	1	
202	SKPCHR	Format and print	253	-	
203	"YEARLY ${ }^{\text {- }}$		254	ARCL $X$	
204	ACA		255	SF 29	
205	5		256	ASHF	
206	SKPCHR		257	FC? 55	
207	- ACEUM ${ }^{\text {- }}$		258	GTO 24	separate output
298	ACA		259	ACA	separate output
209	PRBUF		260	RCL 23	
210	"YR"		261	XEQ 15	Format output for printer
211	ACP		26.2	RCL 29	
212	5		26.3	XEQ 15	
213	SKPCHR		264	PRBUF	Print row \#1
214	"costs		26.5	LBL 26	
215	ACP		266	RCL 05	Re-entry for non-
216	6		26.7	RCL 06	print
217	SKPCHR		268	*	Load working regi sters with data
218	PCA		269	RCL 21	sters with data   for "after" cal-
219	PRBUF PDV		270 271	$\begin{array}{lll}* \\ \text { STO } & 30\end{array}$	for "after" calculation
$221 *$	LBL 23	Clear working	272	EHTERT	
222	EREG 20	registers	273	x<> 25	
223	CLE		274	-	
224	EREG 25		275	ST0 26	
225	CLE	Reset discounting	276	RCL 20	
226	CF 10	flag	277	RCL 11	
227+	LBL 19	Set pointer for	278	*	
228	7	energy calc.	279	$5 T+30$	
229	STO 19		280	ENTERT	
230	XEQ 16	Calculate energy	281	¢く 27	
231	STO 21	multiplier	282	-	
232	RCL 04	Load working regi-	283	$5 T+26$	
233	RCL 06	sters with data	284	RCL 01	
234	*	for "before"	285	RCL 12	
235	*	calculation	286	INT	

## Program Listings



## Program Listings

```
387 *
388 RTH
389*LBL 12
390 RCL 12
391 INT
392 RTH
393*LBL 24
394 "\vdash "
395 ARCL 23
396 "म
3 9 7 \text { ARCL 29}
398 PROMPT
399 GTO 26
40日*LBL 25
401 "\vdash"
402 ARCL 26
403 "ト "
404 ARCL 30
4 0 5 ~ P R O M P T
406 GTO 99
407*LBL 28
408 RCL 03
409 R+
410
```



```
412*LBL 17
4 1 3 9
4 1 4 ~ 5 T O ~ 1 9 ~
4 1 5 ~ < E Q ~ 1 6 ,
```



```
4 1 7 ~ R C L ~ 1 0 , ~
418*
4 1 9 ~ R C L ~ 2 4
420 CHS
421 x<>Y
42こ ST0 24
423 ST+ 29
424 +
425 ST+ 23
426 . END.
```

Deal with case where $\%$ E or $\% \mathrm{M}$
$=\% \mathrm{G}$
Non－printer out－ put for row \＃1

Non－printer out－ put for row \＃2

Deal with case where loan in－ terest $=0$

Calculate maintenance

## REGISTERS, STATUS, FLAGS, ASSIGNMENTS







## NOTES

## Hewlett-Packard Software

In terms of power and flexibility, the problem-solving potential of the HP-41 programmable calculator is nearly limitless. And in order to see the practical side of this potential, HP has different types of software to help save you time and programming effort. Every one of our software solutions has been carefully selected to effectively increase your problem-solving potential. Chances are, we already have the solutions you're looking for.

## Application Pacs

To increase the versatility of your HP-41, HP has an extensive library of "Application Pacs". These programs transform your HP-41 into a specialized calculator in seconds. Included in these pacs are detailed manuals with examples, miniature plug-in Application Modules, and keyboard overlays. Every Application Pac has been designed to extend the capabilities of the HP-41.

You can choose from:

Aviation (Pre-Flight Only) 00041-15018
Clinical Lab 00041-15024
Circuit Analysis 00041-15024
Financial Decisions 00041-15004
Mathematics 00041-15003
Structural Analysis 00041-15021
Surveying 00041-15005
Securities 00041-15026

Statistics 00041-15002
Stress Analysis 00041-15027
Games 00041-15022
Home Management 00041-15023
Machine Design 00041-15020
Navigation 00041-15017
Real Estate 00041-15016
Thermal and Transport Science 00041-15019
Petroleum Fluids 00041-15039

## Users' Library

The Users' Library provides the best programs from contributors and makes them available to you. By subscribing to the HP-41 Users' Library you'll have at your fingertips literally hundreds of different programs from many different application areas.

## *Users' Library Solutions Books

Hewlett-Packard offers a wide selection of Solutions Books complete with user instructions, examples, and listings. These solution books will complement our other software offerings and provide you with a valuable tool for program solutions.

You can choose from:

Business Stat/Marketing/Sales 00041-90094
Home Construction Estimating 00041-90096
Lending, Saving and Leasing 00041-90086
Real Estate 00041-90136
Small Business 00041-90137 Geometry 00041-90084
High-Level Math 00041-90083
Test Statistics 00041-90082 Antennas 00041-90093
Chemical Engineering 00041-90100
Control Systems 00041-90092
Electrical Engineering 00041-90088
Fluid Dynamics and Hydraulics 00041-90139
Games II 00041-90443

Civil Engineering 00041-90089
Heating, Ventilating \& Air Conditioning 00041-90140
Mechanical Engineering 00041-90090
Solar Engineering 00041-90138
Calendars 00041-90145
Cardiac/Pulmonary 00041-90097
Chemistry 00041-90102
Games 00041-90099
Optometry I (General) 00041-90143
Optometry II (Contact Lens) 00041-90144
Physics 00041-90142
Surveying 00041-90141
Time Module Solutions 00041-90395
*Some books require additional memory modules to accomodate all programs.

## SOLAR ENGINEERING

SOLAR-BEAM IRRADIATION
SUN ALTITUDE, AZIMUTH, SOLAR POND ABSORPTION
ENERGY EQUIVALENTS-FUELS AND PRICES
HEAT EXCHANGERS
VIEW FACTOR
HEAT TRANSFER THROUGH COMPOSITE CYLINDERS AND WALLS
BLACK BODY THERMAL RADIATION
ECONOMIC BREAK EVEN FOR SOLAR EQUIPMENT
SOLAR PANEL ARRAY
CONDUIT FLOW
ENERGY CASH FLOW

