HEWLETT-PACKARD

HP-41 USERS' LIBRARY SOLUTIONS Test Statistics

NOTICE

The program material contained herein is supplied without representation or warranty of any kind. Hewlett-Packard Company therefore assumes no responsibility and shall have no liability, consequential or otherwise, of any kind arising from the use of this program material or any part thereof.

INTRODUCTION

This HP-41C Solutions book was written to help you get the most from your calculator. The programs were chosen to provide useful calculations for many of the common problems encountered.

They will provide you with immediate capabilities in your everyday calculations and you will find them useful as guides to programming techniques for writing your own customized software. The comments on each program listing describe the approach used to reach the solution and help you follow the programmer's logic as you become and expert on your HP calculator.

KEYING A PROGRAM INTO THE HP-41C

There are several things that you should keep in mind while you are keying in programs from the program listings provided in this book. The output from the HP 82143A printer provides a convenient way of listing and an easily understood method of keying in programs without showing every keystroke. This type of output is what appears in this handbook. Once you understand the procedure for keying programs in from the printed listings, you will find this method simple and fast. Here is the procedure:

1. At the end of each program listing is a listing of status information required to properly execute that program. Included is the SIZE allocation required. Before you begin keying in the program, press XEO ALPHA SIZE ALPHA and specify the allocation (three digits; e.g., 10 should be specified as 010).
Also included in the status information is the display format and status of flags important to the program. To ensure proper execution, check to see that the display status of the HP-41C is set as specified and check to see that all applicable flags are set or clear as specified.
2. Set the HP-41C to PRGM mode (press the PRGM key) and press GTO $\square \square$ to prepare the calculator for the new program.
3. Begin keying in the program. Following is a list of hints that will help you when you key in your programs from the program listings in this handbook.
a. When you see " (quote marks) around a character or group of characters in the program listing, those characters are ALPHA. To key them in, simply press ALPHA, key in the characters, then press ALPHA again. So "SAMPLE" would be keyed in as ALPHA "SAMPLE" ALPHA.
b. The diamond in front of each LBL instruction is only a visual aid to help you locate labels in the program listings. When you key in a program, ignore the diamond.
c. The printer indication of divide sign is /. When you see / in the program listing, press \Varangle.
d. The printer indication of the multiply sign is $\stackrel{\%}{\%}$. When you see $\%$ in the program listing, press \triangle.
e. The \vdash^{-}character in the program listing is an indication of the APPEND function. When you see ${ }^{-}$, press \square APPEND in ALPHA mode (press and the K key).
f. All operations requiring register addresses accept those addresses in these forms:
nn (a two-digit number)
IND nn (INDIRECT: \square, followed fy a two-digit number)
$\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{T}$, or L (a STACK address: $-\quad$ followed by $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{T}$, or L)
IND X, Y, Z, T or L (INDIRECT stack: \quad followed by $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{T}$, or L)
Indirect addresses are specified by pressing and then the indirect address. Stack addresses are specified by pressing \bullet followed by $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{T}$, or L . Indirect stack addresses are specified by pressing \square and $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{T}$, or L .

Printer Listing

```
01*LBL "SAM
PLE*
    02..THIS IS
    & .
    03 - -SAMPLE
    .
    04 RVIEW
    04 6
    0 6 ~ E N T E R T ~
    07 -2
    08 -
    09 ABS
    10 STO IND
L
    11 .-R3="
    12 ARCL 03
    13 AVIEW
    14 RTN
```


Display

01 LBL $^{\top}$ SAMPLE

02^{\top} THIS IS A
03^{\top} - SAMPLE
04 AVIEW
056
06 ENTER 〕
07 -2
08 /
09 ABS
10 STO IND L
11^{\top} R3 $=$
12 ARCL 03
13 AVIEW
14 RTN

TABLE OF CONTENTS

1. ONE SAMPLE TEST STATISTICS FOR THE MEAN 1Calculates the z statistic for testing the mean if thevariance is known. If the variance is unknown, then thet statistic is calculated.
2. TEST STATISTICS FOR THE CORRELATION COEFFICIENT 6
The t statistic can be used to test if the true correlation coefficient is zero. The z statistic, which can be used to test if the correlation coefficient equals a given number (usually non-zero) is also calculated.
3. DIFFERENCES AMONG PROPORTIONS 10
Calculates the chi-square statistic for testing if several independent binomial distributions have equal means.
4. BEHRENS-FISHER STATISTIC 17
Given random samples form two independent normal populations with unequal variances (unknown), this program calculates the Behren-Fisher statistic for testing the means.
5. KRUSKAL-WALLIS STATISTIC 23
The Kruskal-Wallis statistic can be used to test is the independent random samples come from identical continuous population.
6. MEAN-SQUARE SUCCESSIVE DIFFERENCE 29
The mean-square successive difference is used to test if a given sample is random. Suppose the sample size is large and the population is normal, then a z statistic is used instead.
7. THE RUN TEST FOR RANDOMNESS 34For a given sequence, the z statistic is calculated for testingthe randomness of the sequence.
8. INTRACLASS CORRELATION COEFFICIENT 40
Calculates the intraclass correlation coefficient which measures the degree of association among individuals within classes or groups.
9. FISHER'S EXACT TEST FOR A 2×2 CONTINGENCY TABLE 47Fisher's exact probability test is used to analyze a 2×2contingency table when the two independent samples are smallin size.
10. BARTLETT'S CHI-SQUARE STATISTIC 55

This chi-square statistic can be used to test the homogeneity of variances. Error corrector for erroneous input data is provided.
11. MANN-WHITNEY STATISTIC 61

Calculates the Mann-Whitney statistic on two independent samples of equal or unequal sizes. Error corrector for erroneous input data is provided.
12. KENDALL'S COEFFICIENT OF CONCORDANCE 73

Calculates Kendall's coefficient of concordance to test agreement between rankings. Error corrector for erroneous input data is provided.

ONE SAMPLE TEST STATISTICS FOR THE MEAN

Suppose $\left\{x_{\frac{1}{2}}, x_{2}, \ldots, x_{n}\right\}$ is a sample from a normal population with a known variance σ^{2} and unknown mean μ. A test of the null hypothesis

$$
\mathrm{H}_{0}: \mu=\mu_{0}
$$

is based on the z statistic which has a standard normal distribution.
If the variance σ^{2} is unknown then the t statistic, which has the t distribution with $n-1$ degrees of freedom, is used instead.

Equations:

$$
\begin{aligned}
& z=\frac{\sqrt{n}\left(\bar{x}-\mu_{0}\right)}{\sigma} \\
& t=\frac{\sqrt{n}\left(\bar{x}-\mu_{0}\right)}{s}
\end{aligned}
$$

where \bar{x} and s are sample mean and sample standard deviation.

Remark: $\mathrm{n}>1$.

Reference: This program is a translation of the HP-65 Stat Pac 2 program.

Example:

Calculate the z and the t statistics for the following set of data if $\mu_{0}=2$ and $\sigma=1$.
$\{2.73,0.45,2.52,1.19,3.51\}$

Keystrokes:
[XEQ] [ALPHA] SIZE [ALPHA] 009
[XEQ] [ALPHA] ONEST [ALPHA]
$2.73[\Sigma+] .45[\Sigma+] 2.52[\Sigma+]$
$1.19[\Sigma+] 3.51[\Sigma+]$
[R/S]
2 [R/S]
1 [R/S]
[R/S]
[R/S]
[R/S]

Display:

ONE SAMPLE T.
5.00

MU NAUGHT ?
SIGMA ?
$Z=0.18$
$\mathrm{T}=0.14$
$X B A R=2.08$
$S=1.24$

				SIZE: 009
STEP	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
1	Key in the program.			
2	Initialize the program.		[XEQ] ONEST	ONE SAMPLE T.
3	Input data. Repeat steps 3-4 for			
	$\mathrm{i}=1,2, \ldots, \mathrm{n}$.	x_{i}	[$\Sigma+]$	(i)
4	If you make a mistake inputting x_{k}, delete			
	it and go to step 3.	x_{k} as entered	[Σ -]	(k-1)
5	Input μ_{0} and σ and calculate z and t.		[R/S]	MU NAUGHT ?
		μ_{0}	[R/S]	SIGMA ?
		σ	[R/S]	$\mathrm{Z}=(\mathrm{z})$
			[R/S]	$\mathrm{T}=(\mathrm{t})$
			[R/S]	$\mathrm{XBAR}=(\overline{\mathrm{x}})$
			[R/S]	$\mathrm{S}=(\mathrm{s})$
6	To calculate z and t for a different pair			
	of μ_{0} and σ, go to step 5.			
7	To use the program for another set of			
	data, go to step 2.			

Program Listings

REGISTERS, STATUS, FLAGS, ASSIGNMENTS

ONE SAMPLE TEST
STATISTICS FOR THE MEAN
PROGRAM REGISTERS NEEDED: 16

TEST STATISTICS FOR THE CORRELATION COEFFICIENT

Under the assumptions of normal correlation analysis, the t statistic, which has the t distribution with $n-2$ degrees of freedom, can be used to test the null hypothesis that the true correlation coefficient $\rho=0$.

To test the null hypothesis $\rho=\rho_{0}$, where ρ_{0} is a given number, the z statistic is used. z has approximately the standard normal distribution.

Equations:

$$
\begin{gathered}
t=\frac{r \sqrt{n-2}}{\sqrt{1-r^{2}}} \\
z=\frac{\sqrt{n-3}}{2} \ln \left[\frac{(1+r)\left(1-\rho_{0}\right)}{(1-r)\left(1+\rho_{0}\right)}\right]
\end{gathered}
$$

where r is an estimate (based on a sample of size n) of the correlation coefficient ρ.

Remarks: 1. This program requires that $n>3,|r|<1$ and $\left|\rho_{0}\right|<1$; otherwise 'DATA ERROR" will result.
2. Usually, the z statistic is used when the sample size is large.

References: 1. Hogg and Craig, Introduction to Mathematical Statistics, Macmillan and Co., 1970.
2. J. Freund, Mathematical Statistics, Prentice-Ha11, 1971.
3. This program is a translation of the HP-65 Stat Pac 2 program.

Example:
Given $\mathrm{r}=0.12, \mathrm{n}=31$, and $\rho_{0}=0$, find t and z .

Keystrokes:
[USER]
[XEQ] [ALPHA] SIZE [ALPHA] 003
[XEQ] [ALPHA] CORRTS [ALPHA]

31 [R/S]
.12 [R/S]
[E]
0 [R/S]

Display:
(set USER mode)

COR. COEF. T.S.
N ?
R ?
$\mathrm{T}=0.65$
RHO NAUGHT ?
$Z=0.64$

User Instructions

				SIZE: 003
STEP	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
1	Key in the program and set USER mode.		[USER]	
2	Initialize the program.		[XEQ] CORRTS	COR. COEF. T. S.
3	To calculate t,			N ?
		n	[R/S]	R ?
		r	[R/S]	$\mathrm{T}=$
4	To calculate z,		[E]	RHO NAUGHT ?
		ρ_{0}	[R / S]	$\mathrm{Z}=$
5	For a new case, go to step 3 or 4.			
	(
-				
-				

Program Listings

Q1＊LBL＂COF			49	
RTS＂			50 LH	
Q2 FIX 2			51 RCL 01	
Q3＂COR．CO	Initialize		523	
EF．T．S．＇			$53-$	
04 MVIEW			54 SQRT	
05 FSE			55 ＊	
06 ＂H ${ }^{0}$			562	
07 PROMPT			57	
08 STO 91			58 ＂2＂	
093			$59 *$ LBL 11	
$10 \mathrm{X}<\gg$	n		6 C ＂ト＝＂	
$11 \times \ll \gamma ?$	Test n ＞ 3 ？		61 ARCL \times	
12 GTO O9	Test $\mathrm{n}>3$ ？		62 AVIEN	Display routine
13 FR ？${ }^{3}$			6.3 STOP	
14 PROMPT	r		64 RTH	
15 STO 60			$6.5+$ LEL 69	
16 XEQ 09	Test $\|\mathbf{r}\|<1$ ？		66 ABS	
17 RCL 11			671	
182			$68 \times<>$	Test r and ρ_{0}
$19-$			$69 \times>Y$ ？	
291			70 GTO 09	
21 RCL 69			71 RTH	
$22 \times \uparrow 2$			72＊LBL 09	
23 －			73 10	
24 ，	Calculate t		74 ＜	
25 SRRT			$75 . E N D$.	Generate
26 RCL 60				＂Data $e r r o r " ~$
$27 *$				＂DATA ERROR＂
28 ＂T＂				
29 GTO 11		80		
$30+L E L E$				
31 ＂RHO HAU				
GHT ？${ }^{\text {G }}$				
32 FROMFT	Test $\left\|\rho_{0}\right\|<1$			
$335 T 0 ⿴ 囗 ⿱ 一 𧰨$	Test $\left\|\rho_{0}\right\|<1$			
34 XEQ 90				
35 RCL 06				
361				
$37+$				
381		90		
39 RCL 06				
45 －				
41 ，				
421				
43 RCL 02				
44 －				
45 ＊	Calculate z			
$46 \quad 1$				
47 RCL 92				
$49+$		00		

REGISTERS, STATUS, FLAGS, ASSIGNMENTS

DIFFERENCES AMONG PROPORTIONS

Suppose $x_{1}, x_{2}, \ldots, x_{k}$ are observed values of a set of independent random variables having binomial distributions with parameters n_{i} and $\theta_{i}(i=1$, 2,, k).

A chi-square statistic χ^{2} can be used to test the null hypothesis $\theta_{1}=\theta_{1}=$ $\ldots=\theta_{k}$. The χ^{2} statistic has the chi-square distribution with $k-1$ degrees of freedom.

Equations:
$x^{2}=\sum_{i=1}^{k} \frac{\left(x_{i}-n_{i} \hat{\theta}\right)^{2}}{n_{i} \hat{\theta}(1-\hat{\theta})}=\sum_{i=1}^{k} n_{i}\left[\frac{1}{\sum_{i=1}^{k} x_{i}} \sum_{i=1}^{k} \frac{x_{i}{ }^{2}}{n_{i}}+\frac{1}{\sum_{i=1}^{k}\left(n_{i}-x_{i}\right)} \sum_{i=1}^{k} \frac{\left(n_{i}-x_{i}\right)^{2}}{n_{i}}-1\right]$
where

$$
\hat{\theta}=\sum_{i=1}^{k} x_{i} / \sum_{i=1}^{k} n_{i}
$$

References: 1. J. Freund, Mathematical Statistics, Prentice-Hall, 1971.
2. This program is a translation of the HP-65 State Pac 2 program.

Example:

	$\mathrm{n}_{\mathbf{i}}$	$\mathrm{x}_{\mathbf{i}}$
Sample 1	400	232
Sample 2	500	260
Sample 3	400	197

User Instructions

				SIZE: 010
STEP	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
1	Key in the program and set USER mode.		[USER]	
2	Initialize the program.		[XEQ] DIFF	DIFF.A. PROPS
3	Input data. Repeat steps 3-4 for			N1 ?
	$\mathrm{i}=1,2, \ldots, \mathrm{n}$.	n_{i}	[R/S]	$\mathrm{X}(\mathrm{i})$?
		x_{i}	[R / S]	$\mathrm{N}(\mathrm{i}+1)$?
4	If you make a mistake inputtine n_{k} or x_{k},		[C]	$\mathrm{N}(\mathrm{K})$?
	delete the incorrect entry and go back to	n_{k} as entered	[R/S]	$\mathrm{X}(\mathrm{K})$?
	step 3.	x_{k} as entered	[R/S]	$\mathrm{N}(\mathrm{K})$?
5	Calculate χ^{2}.		[E]	CHI-SQ $=\left(x^{2}\right)$
6	Calculate df.		[R / S]	$\mathrm{dF}=(\mathrm{d} f)$
7	Calculate $\hat{\theta}$.		[R/S]	THETA $=(\hat{\theta})$
8	To use the program for another set of data,			
	go to step 2.			

REGISTERS, STATUS, FLAGS, ASSIGNMENTS

BEHRENS-FISHER STATISTIC

Suppose $\left\{x_{1}, x_{2}, \ldots, x_{n_{1}}\right\}$ and $\left\{y_{1}, y_{2}, \ldots, y_{n_{2}}\right\}$ are independent random samples from two normal populations having means μ_{1}, μ_{2} (unknown). If the variances $\sigma_{1}{ }^{2}, \sigma_{2}{ }^{2}$ cannot be assumed equal, then the Behrens-Fisher statistic d is used instead of the t statistic to test the null hypothesis

$$
\mathrm{H}_{0}: \mu_{1}-\mu_{2}=\mathrm{D}
$$

Equation:

$$
\mathrm{d}=\frac{\overline{\mathrm{x}}-\overline{\mathrm{y}}-\mathrm{D}}{\sqrt{\frac{\mathrm{~s}_{1}^{2}}{\mathrm{n}_{1}}+\frac{\mathrm{s}_{2}^{2}}{\mathrm{n}_{2}}}}
$$

where \bar{x}, \bar{y} and $s_{1}{ }^{2}, s_{2}{ }^{2}$ are sample means and variances.
Critical values of this test are tabulated in the Fisher-Yates Tables for various values of n_{1}, n_{2}, α and θ, where α is the level of significance and

$$
\theta=\tan ^{-1}\left(\frac{s_{1}}{s_{2}} \sqrt{\frac{n_{2}}{n_{1}}}\right)
$$

Remark: $\mathrm{n}_{1}>1, \mathrm{n}_{2}>1$.

References: 1. Fisher and Yates, Statistical Tables for Biological, Agricultural and Medical Research, Hafner, Publishing Co., 1970. 2. This program is a translation of the HP-65 Stat Pac 2 program.

Example:

Calculate the Behrens-Fisher statistic for $D=0$.

$\mathrm{x}:$	79,	84,	108		
$\mathrm{y}:$	91,	103,	90,	113,	108

Keystrokes:	Display:
[USER]	(set USER mode)
[XEQ] [ALPHA] SIZE [ALPHA] 010	
[XEQ] [ALPHA] BEH [ALPHA]	BEHRENS-FISH.
$79[\Sigma+] 84[\Sigma+] 108[\Sigma+]$	3.00
[R / S]	$\mathrm{XBAR}=90.33$
[R/S]	S2/N=80.11
$91[\Sigma+] 103[\Sigma+] 90[\Sigma+] 113[\Sigma+]$	
108 [$\Sigma+$]	5.00
[R/S]	YBAR $=101.00$
[R/S]	S2/N=20.90
[E]	D ?
0 [$\mathrm{R} / \mathrm{S}]$	$\mathrm{d}=-1.06$
[R/S]	THETA $=62.94$

User Instructions

Program Listings

REGISTERS, STATUS, FLAGS, ASSIGNMENTS

KRUSKAL-WALLIS STATISTIC

Suppose we want to test the null hypothesis that k independent random samples of sizes $n_{1}, n_{2}, \ldots, n_{k}$ come from identical continuous populations.

Arrange all values from k samples jointly (as if they were one sample) in an increasing order of magnitude. Let $\mathrm{R}_{\mathrm{ij}}\left(\mathrm{i}=1,2, \ldots, k, j=1,2, \ldots, \mathrm{n}_{\mathrm{i}}\right.$) be the rank of the j th value in the ith sample.

The Kruskal-Wallis statistic H can be used to test the null hypothesis.
When all sample sizes are large (>5), H is distributed approximately as the chi-square with $k-1$ degrees of freedom. For small samples, the test is based on special tables.

Equation:

$$
H=\frac{12}{N(N+1)} \sum_{i=1}^{k} \frac{\left(\sum_{j=1}^{n_{i}} R_{i j}\right)^{2}}{n_{i}}-3(N+1)
$$

where

$$
N=\sum_{i=1}^{k} n_{i}
$$

References: 1. W.J. Conover, Practical Nonparametric Statistics, John Wiley and Sons, 1971.
2. Table for small samples ($k=3$):

Alexander and Quade, On the Kruskal-Wallis Three Sample Hstatistic, University of North Carolina, Department of Biostatistics, Inst. Statistics Mimeo Ser. 602, 1968.
3. This program is a translation of the HP-65 Stat Pac 2 program.

Example:

$$
\text { Ranks } R_{i j}
$$

i	1	2	3	4	5	6	7	8	9	10
1	29	5	26	10	33	30				
2	11	12	9	7	20	18	19	21		
3	14	28	8	25	17	15	32	4	2	
4	6	27	3	16	24	13	1	31	22	23

Keystrokes:
[USER]
[XEQ] [ALPHA] SIZE [ALPHA] 006
[XEQ] [ALPHA] KRU [ALPHA]

29 [R/S]
5 [R/S]
26 [R/S]
:
30 [R/S]
[B]
11 [R/S]
12 [R/S]
!
21 [R/S]
[B]
14 [R/S]
28 [R/S]
:
2 [R/S]
[B]
6 [R/S]
27 [R/S]
:
23 [R/S]
[B]
[E]
[R/S]
[R/S]

Display:

(set USER mode)

KRUSKAL-WALL.
R1,1 ?
R1,2 ?
R1,3 ?
R1,4 ?
:
R1,7 ?
R2,1 ?
R2,2 ?
R2,3 ?
:
R2,9 ?
R3,1 ?
R3,2 ?
R3,3 ?
:
R3,10 ?
R4,1 ?
R4,2 ?
R4,3 ?
:
R4,11 ?
R5, 1 ?
$\mathrm{H}=2.29$
$d F=3.00$
$\mathrm{N}=33.00$

				SIZE: 006
STEP	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
1	Key in the program and set USER mode.		[USER]	
2	Initialize the program.		[XEQ] KRU	KRUSKAL-WALL.
3	Perform steps 3-5 for $\mathrm{i}=1,2, \ldots, \mathrm{k}$			R1,1 ?
	and $\mathrm{j}=1,2, \ldots, \mathrm{n}_{\mathrm{i}}$. Input R_{ij}.	R_{ij}	[R / S]	$R(i),(j+1)$?
4	If you make a mistake inputting $\mathrm{R}_{\text {ih }}$,		[C]	$\mathrm{R}(\mathrm{i})$, (h) ?
	delete it and go to step 3.	$\begin{aligned} & \hline \mathrm{R}_{\mathrm{ih}} \text { as } \\ & \text { entered } \end{aligned}$	[R / S]	$\mathrm{R}(\mathrm{i})$, (h) ?
5	For the end of the i'th sample, press		[B]	$R(i+1) .1$?
6	Calculate H,		[E]	$\mathrm{H}=$
	df,		[R / S]	$\mathrm{dF}=$
	and N		[R/S]	$\mathrm{N}=$
7	To use the program for another set of			
	data, go to step 2.			

Program Listings

REGISTERS, STATUS, FLAGS, ASSIGNMENTS

MEAN SQUARE SUCCESSIVE DIFFERENCE

When test and estimation techniques are used, the method of drawing the sample from the population is specified to be random in most cases. If observations are chosen in sequence $x_{1}, x_{2}, \ldots, x_{n}$, the mean-square successive difference η can be used to test for randomness.

If the sample size n is large (say, greater than 20) and the population is normal, then $a \operatorname{ztatistic}$ has approximately the standard normal distribution. Long trends are associated with large positive values of z and short oscillations with large negative values.

Equations:

$$
\begin{gathered}
\eta=\sum_{i=2}^{n}\left(x_{i}-x_{i-1}\right)^{2} / \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}=\sum_{i=2}^{n}\left(x_{i}-x_{i-1}\right)^{2} /\left[\sum_{i=1}^{n} x_{i}^{2}-\frac{\sum_{i=1}^{n} x_{i}}{z}\right] \\
z=\frac{1-n / 2}{\sqrt{\frac{n-2}{n^{2}-1}}}
\end{gathered}
$$

References: 1. Dixon and Massey, Introduction to Statistical Analysis, McGraw-Hill, 1969.
2. This program is a translation of the HP-65 Stat Pac 2 program.

Example:

Find the mean-square successive difference for the following set of data:
$\{0.53,0.52,0.39,0.49,0.97$

Keystrokes:
[USER]
[XEQ] [ALPHA] SIZE [ALPHA] 009
[XEQ] [ALPHA] MNSQD [ALPHA]
.53 [A] . 52 [A] . 39 [A] . 49 [A] . 97 [A]
[E]
[R/S]

Display:

(set USER mode)

MEAN SQ DIFF
5.00

ETA=1. 27
$Z=1.03$

User Instructions

Program Listings

	Initialize Correction routine Compute summations $R_{y}=x_{i}-x_{i-1}$ Calculate n Calculate z	70 		Display routine

REGISTERS, STATUS, FLAGS, ASSIGNMENTS

MEAN-SQUARE
SUCCESSIVE DIFFERENCE
PROGRAM REGISTERS NEEDED: 15

THE RUN TEST FOR RANDOMNESS

Consider a sequence of symbols such that the symbols are of two types only. A run is a continuous string of identical symbols preceded and followed by a different symbol or no symbol at all. For example, the sequence 1110100011 has five runs.

Let the total number of runs in a given sequence be u, and let n_{1} and n_{2} represent the number of symbols of type 1 and type 2 respectively. If the sample sizes are large (say, n_{1} and n_{2} are both greater than 10), then the randomness of the sequence may be tested using a z statistic which has the standard normal distribution.

Equations:

The sample distribution of the run has the mean μ and the standard deviation σ.

$$
\begin{gathered}
\mu=\frac{2 n_{1} n_{2}}{n_{1}+n_{2}}+1 \\
\sigma=\sqrt{\frac{2 n_{1} n_{2}\left(2 n_{1} n_{2}-n_{1}-n_{2}\right)}{\left(n_{1}+n_{2}\right)^{2}\left(n_{1}+n_{2}-1\right)}}
\end{gathered}
$$

The test is based on the statistic

$$
z=\frac{u-\mu}{\sigma}
$$

Remarks: 1. For small samples, the test is based on special tables.
2. This program can also be used for other tests involving runs. For example, one might want to test runs of scores above and below the median based on the order in which the scores were obtained. In this case, a sequence could be constructed in which each score would be replaced by a 1 if it was above the median or a 0, if below the median. The run test for randomness can then be applied to the sequence of 0 's and 1 's.

Another use might be for Wald-Wolfowitz run test, which tests the null hypothesis that two random samples have been drawn from identical populations. The data from both groups are combined into one sequence according to magnitude. Each value may be assigned a 0 or 1 depending on which population it came from, and the run test for randomness then performed on the resulting sequence.

References: 1. Freund and Williams, Dictionary/Outline of Basic Statistics, McGraw-Hill, 1966.
2. This program is a translation of the HP-65 Stat Pac 2 program.

Example:
A statistician sits by the roulette table one night in a Las Vegas casino, suspiciously watching the house rake in stake upon stake. To test the null hypothesis that the sequence of numbers is random, the statistician observes the following sequence of red (R) and black (B) numbers (ignoring 0 and 00):

RRRR B RRR BBBBB RR BBB RR BB RRR
In the sequence are 14 R 's, 11 B 's and a total of 9 runs. Find the mean and standard deviation of the sampling distribution and the z statistic.

Keystrokes:
[XEQ] [ALPHA] SIZE [ALPHA] 009
[XEQ] [ALPHA] RUNTEST [ALPHA] RUN TEST
NO. OF RUNS?
9 [R/S]
14 [R/S]
11 [R/S]
[R/S]
NO. OF TYPE1?
[R/S]
NO. OF TYPE2?
$\mathrm{MU}=13.32$
SIGMA=2.41
$Z=-1.79$
(His suspicion is not entirely unjustified).

User Instructions

				SIZE: 009
STEP	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
1	Key in the program.			
2	Initialize the program.		[XEQ] RUNTEST	RUN TEST
				No. OF RUNS?
3	Key in the number of runs.	u	[R/S]	NO. OF TYPE1?
4	Key in the number of type 1.	n_{1}	[R/S]	NO. OF TYPE2?
5	Key in the number of type 2 .	n_{2}	[R/S]	$\mathrm{MU}=(\mu)$
			[R/S]	SIGMA $=(\sigma)$
			[R/S]	$\mathrm{Z}=(\mathrm{z})$
6	For another case, go to step			

Program Listings

REGISTERS, STATUS, FLAGS, ASSIGNMENTS

INTRACLASS CORRELATION COEFFICIENT

The intraclass correlation coefficient r_{I} measures the degree of association among individuals within classes or groups.

		Observations			
	Groups	1	x_{11}	x_{12}	\cdots
2	x_{21}	x_{22}	\cdots	$x_{1 n}$	
	\cdot	\cdot	\cdot		$x_{2 n}$
	\cdot	\cdot	\cdot		\cdot
	\cdot	\cdot	\cdot		\cdot
	k	$x_{k_{1}}$	$x_{k_{2}}$	\cdots	$x_{k n}$

The coefficient is most easily calculated using the analysis of variance techniques. r_{I} is the sample estimate of the population intraclass correlation coefficient ρ_{I}. If we can assume that the individuals within groups are random samples from normal populations with the same variance, then the hypothesis $\rho_{I}=0$ can be tested using the F statistic.

Equations:

1. Sums

Group

$$
\begin{gathered}
T_{i}=\sum_{j=1}^{n} x_{i j} \quad i=1,2, \ldots, k \\
T=\sum_{i=1}^{k} T_{i}
\end{gathered}
$$

Total
2. Sums of squares

Mean

$$
\mathrm{MSS}=\mathrm{T}^{2} / \mathrm{kn}
$$

Among groups

$$
\text { ASS }=\sum_{i=1}^{k} T_{i}^{2} / n-M S S
$$

Within groups

$$
W S S=\sum_{i=1}^{k} \sum_{j=1}^{n} x_{i j}^{2}-M S S-A S S
$$

3. Intraclass correlation coefficient

$$
r_{I}=\left(\frac{\mathrm{ASS}}{\mathrm{k}-1}-\frac{\mathrm{WSS}}{\mathrm{k}(\mathrm{n}-1)}\right) \div\left(\frac{\mathrm{ASS}}{\mathrm{k}-1}+\frac{\mathrm{WSS}}{\mathrm{k}}\right)
$$

4. F statistic

$$
F=\frac{\mathrm{ASS}}{\mathrm{k}-1} \div \frac{\mathrm{WSS}}{\mathrm{k}(\mathrm{n}-1)}
$$

with $\mathrm{df}_{1}=\mathrm{k}-1$ and $\mathrm{df}_{2}=\mathrm{k}(\mathrm{n}-\mathrm{l})$ degrees of freedom.

References: 1. B. Ostle, Statistics, in Research, Iowa State University Press, 1972.
2. This program is a translation of the HP-65 Stat Pac 2 program.

		Observations	
Example:			
		1	71

Keystrokes: Display:
[USER]
[XEQ] [ALPHA] SIZE [ALPHA] 010
[XRQ] [ALPHA] INT [ALPHA] INTRACLASS C.

2 [R/S]
71 [R/S]
71 [R/S]
[R/S]
69 [R/S]
72 [R/S]
:
70 [R/S]
68 [R/S]
[E]
[R/S]
[R/S]
[R/S]

N ?
Display:

X1,1 ?
X1,2 ?
$\mathrm{Tl}=142$
X2,1 ?
X2,2 ?
$\mathrm{T} 2=141$
:
X8,2 ?
T8=138
RI $=0.70$
$\mathrm{F}=5.61$
$\mathrm{dF1}=7.00$
$\mathrm{dF} 2=8.00$

User Instructions

				SIZE: 010
STEP	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
1	Key in the program and set USER mode.		[USER]	
2	Initialize the program.		[XEQ] INT	INTRACLASS C.
				N ?
3	Input n (the number of columns).	n	[R/S]	$\mathrm{X1,1}$?
4	Perform steps 4-5 for $\mathrm{i}=1,2, \ldots, \mathrm{k}$	$\mathrm{x}_{\text {ij }}$	[R/S]	$X(i),(j+1)$?
	and $\mathrm{j}=1,2, \ldots, \mathrm{n}$. T_{i} is automatically			$\mathrm{Ti}=(\mathrm{Ti})$
	displayed when $\mathrm{x}_{\text {in }}$ is input. Press		[R/S]	$\mathrm{X}(\mathrm{i}+1), \mathrm{I}$?
	[R / S] to continue.			
5	Is you make a mistake inputting x_{i},		[C]	$X(i),(h)$?
	correct it and go to step 4 ($\mathrm{x}_{\text {in }}$ cannot be	$\begin{aligned} & \mathrm{x}_{i \mathrm{i}} \text { as } \\ & \text { entered } \end{aligned}$	[R/S]	$\mathrm{X}(\mathrm{i}),(\mathrm{h})$?
	corrected -- go to step 2).			
6	Calculate r_{I},		[E]	$\mathrm{RI}=\left(\mathrm{r}_{\mathrm{I}}\right)$
	F,		[R/S]	$\mathrm{F}=(\mathrm{F})$
	and the degrees of freedom.		[R/S]	$\mathrm{dFl}=\left(\mathrm{df}_{1}\right)$
			[R/S]	$\mathrm{dF} 2=\left(\mathrm{df}_{2}\right)$
7	For another set of data, go to step 2.			

Program Listings

a1＊LEL＂INT		50 ST0 01	
＂02 FIX 0		$\begin{array}{llll}51 & 5 T 0 & 06\end{array}$	
63 CLRG		$53 \mathrm{ST}+62$	
04 CF 29	Initialize	54 RCL 08	
05 CF 60	Initialize	55 ＂T＂	
06 ＂IHTRACL		56 ARCL 02	
MSS C．．		57 XEQ 11	
07 RVIE川		5 EGTO ヨ	
08 PSE		$59+$ LEL E	
69 ＂H？		6.6 FIX 2	
16 PROMPT		61 RCL 04	
11 STO 09		62 RCL 03	
12 GTO		63×12	
$13 * L B L C$	Correction	64 RCL 62	
14 SF 00	Correction	65	
151	routine	$66-$	
16 ST－ 01		67 RCL 09	
17＊LBL a		6857001	ASS
18 RCL 1		69 \％	ASS
191		70 RCL 02	
$20+$	Input prompt	711	Calculate r_{I}
21 RCL 92	Input prompt	72－	
221	routine	73	
$23+$		74 ST0 60	
24 ＂\times＂		75 RCL 05	
25 ARCL X		76 RCL 04	
26 ＂ト，＂		77 RCL 01	
27 ARCL Y		78	
2 s ＂${ }^{\text {P }}$		79 －	
29 PROMPT		8 E RCL 02	
30 FS ？ 06		81	WSS／k
31 CHS		82 STO 08	
$32 \mathrm{ST}+06$		83 RCL 61	
33×12		841	
34 FS？ 00		85 －	
35 CHS		$86510 \mathrm{E1}$	
$36 \mathrm{ST}+0.5$		87	
371		88 －	
38 FC？C 00		89 RCL 06	
$395 T+01$		96 RCL 98	
40 RCL 09		$91+$	
41 RCL 01	j	92 －RI．	
42 X＊Y？		93 ＂RI＂	
43 GTO a		94 KEQ 11	
44 RCL 06		95 RCL 00	
45 STO 08	Calculate T_{i}	96 RCL 08	
$46 \mathrm{ST}+03$		97 RCL 1	Calculate F
47×12		98	Calculate F
$48 \mathrm{ST}+04$		99	
49		109＂F＊	－

Program Listings

FISHER'S EXACT TEST FOR A 2×2 CONTINGENCY TABLE

Fisher's exact probability test is used for analyzing a 2×2 contingency table when the two independent samples are small in size.

a	b
c	d

Suppose a, b, c, d are the frequencies and a is the smallest frequency, this program calculates the following:

1. The exact probability p_{0} of observing the given frequencies in a 2 x 2 table, when the marginal totals are regarded as fixed.
2. The exact probability $p_{i}(i=1,2, \ldots, a)$ of each more extreme table having the same marginal totals.
3. The sum S_{i} of the probabilities of the first $i+1$ tables.
4. The sum S of the probabilities of all tables with the same margins (i.e., $S=S_{a}$).

Equations:

1.

$$
\mathrm{p}_{0}=\frac{(\mathrm{a}+\mathrm{b})!(\mathrm{c}+\mathrm{d})!(\mathrm{a}+\mathrm{c})!(\mathrm{b}+\mathrm{d})!}{\mathrm{N}!\mathrm{a}!\mathrm{b}!\mathrm{c}!\mathrm{d}!}
$$

where

$$
N=a+b+c+d
$$

2. For the more extreme table (with the same margins)

$a-i$	$b+i$
$c+i$	$d-i$

$$
p_{i}=\frac{(a+b)!(c+d)!(a+c)!(b+d)!}{N!(a-i)!(b+i)!(c+i)!(d-i)!}
$$

where

$$
\text { i can be } 1,2, \ldots \text { or } a
$$

3.

$$
s_{n}=\sum_{i=0}^{n} p_{i}
$$

where

$$
\text { n can be } 1,2, \ldots, \text { a. }
$$

4.

$$
S=\sum_{i=0}^{a} p_{i}
$$

Remarks: 1. a must be the smallest among the frequencies. Rearrange the table if necessary.
2. This program requires $N \leqslant 69$. However, Fisher's exact test is normally used for $N \leqslant 30$.

References: 1. S. Siegel, Nonparametric Statistics, McGraw-Hill, 1956.
2. Sir R. A. Fisher, Statistical Methods for Research Workers, Oliver and Boyd, 1950.
3. This program is a translation of the HP-65 Stat Pac 2 program.

Example:

Calculate $p_{0}, p_{1}, p_{2}, S_{4}$ and S for the following table

7	10
8	5

Note:

The table must be rearranged as

5	8
10	7

Keystrokes:	Display:
[USER]	(set USER mode)
[XEQ] [ALPHA] SIZE [ALPHA] 009	
[XEQ] [ALPHA] FIS [ALPHA]	FISHERS TEST
	a?
5 [R / S]	b ?
8 [R/S]	c?
10 [R/S]	d?
7 [R/S]	$\mathrm{PO}=0.16$
[A]	$\mathrm{Pl}=0.06$
[A]	$\mathrm{P} 2=0.01$
[A] [A] [R/S]	$S 4=0.23$
[E]	$\mathrm{S}=0.23$

User Instructions

				SIZE: 009
STEP	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
1	Key in the program and set USER mode.		[USER]	
2	Initialize the program.		[XEQ] FIS	FISHERS TEST
				a?
3	Input frequencies and calculate P .	a	[R/S]	b ?
		b	[R/S]	c?
		c	[R/S]	d?
		d	[R/S]	$\mathrm{PO}=\left(\mathrm{P}_{0}\right)$
4	(Optional) Perform steps 4-5 for			
	$i=1,2, \ldots, a . \quad$ Calculate P_{i}.		[A]	$\mathrm{Pi}=\left(\mathrm{P}_{\mathrm{i}}\right)$
5	Calculate S_{i}.		[R/S]	$\mathrm{Si}=\left(\mathrm{S}_{\mathrm{i}}\right)$
6	Calculate the sum of all probabilities.		[E]	$\mathrm{S}=(\mathrm{S})$
7	For another set of data, go to step 2.			

Program Listings

61＊LBL＂FIS		$50 \mathrm{RCL} 01$	
02 FIX 2		52	Loop to
$03 \mathrm{CF} \mathrm{D1}$		53 RCL 02	calculate P_{1}
04 CF 29	Initialize	54 FACT	calculate P_{i}
0.5 FISHERS		55 RCL	
TEST．		56 RCL 03	
06 PVIEN		57 FACT	
07 PSE		58 R9CL 04	
08 CLRG		5 F FCL 04	
09 ＂ョ？		60 FACT	
10 PROMPT		61 \％	
11 STO 1		$62 \mathrm{ST}+65$	
12 ST0 0s		63 FS？ 01	
13 ＂b？	Store a，b，c，	64 RTH	
14 PROMPT	d and calculate	65.7 P ＂	
15 STO 02		66 XEQ 11	
$16+$	numerator of P_{i}	67 RCL 05	
17 STO		$68 \quad{ }^{6} \mathrm{~S}$	
18 ＂と？		69 XEQ 11	Display Si
19 PROMPT		76 STOP	
20 STO 03		71＊LBL A	
21 ＂d？${ }^{\text {c }}$		721	
22 PROMPT		73 ST－ 01	Set up to
23 STO 04		$745 T+62$	
$24+$		75 ST＋ 03	calculate $\mathrm{P}_{\mathrm{i}+1}$
25 ST0 06		76 ST－ 04	
26 FACT		77 ST－ 98	
27 RCL 05		$78 \mathrm{ST}+00$	
28 FACT		79 RCL 07	
29 ＊		80 GTO 00	
30 RCL 05		$81+L B L E$	
31 RCL 96		82 SF 01	
$32+$		83 RCL 08	Calculate S
33 FACT		84 a	
34 －		S5 $X=\gamma$ ？	
35 RCL 01		86 XEQ 01	
36 RCL 03		87 XEQ A	
$37+$		88 GTO E	
38 FACT		89＊LBL 01	
39 ＊		90 CF 01	
49 RCL 92		91 RCL 05	Display S
41 RCL 94		$92-5=$	
$42+$		93 ARCL \times	
43 FACT		94 RVIEM	
44 ＊		95 STOF	
45 STO Q		$96 *$ LBL 11	
46		97 FIX 0	
47 ST0 05		98 ARCL 00	Display routine
48 RDH		99 ＂ト＝＂	
49＊LBL 00		100 FIX 2	

Program Listings

51	
60	
70	

REGISTERS, STATUS, FLAGS, ASSIGNMENTS

BARTLETT'S CHI-SQUARE STATISTIC

$$
\chi^{2}=\frac{f \ln s^{2}-\sum_{i=1}^{k} f_{i} 1 n s_{i}^{2}}{1+\frac{1}{3(k-1)}\left[\left(\sum_{i=1}^{k} \frac{1}{f_{i}}\right)-\frac{1}{f}\right]}
$$

where: $s_{i}{ }^{2}=$ sample variance of the i th sample

$$
f_{i}=\text { degrees of freedom associated } s_{i}{ }^{2}
$$

$$
\mathrm{i}=1,2, \ldots, k
$$

$$
\mathrm{k}=\text { number of samples }
$$

$$
\sum^{k} f_{i} s_{i}{ }^{2}
$$

$$
s^{2}=\frac{i=1}{f}
$$

$$
\mathrm{f}=\sum_{i=1}^{\mathrm{k}} \mathrm{f}_{\mathrm{i}}
$$

This χ^{2} has a chi-square distribution (approximately) with $k-1$ degrees of freedom which can be used to test the null hypothesis that $s_{1}{ }^{2}, s_{2}{ }^{2}, \ldots, s_{k}{ }^{2}$ are all estimates of the same population variance σ^{2}; i.e., H_{0} : Each of $\mathrm{s}_{1}{ }^{2}$, $s_{2}{ }^{2}, \ldots, s_{k}{ }^{2}$ is an estimate of σ^{2}.

References: 1. Statistical Theory with Engineering Applications, A. Hald, John Wiley and Sons, 1960.
2. This program is a translation of the HP-65 Stat Pac 1 program.

Example:
Apply the program to the following data:

i	1	2	3	4	5	6
$\mathrm{~s}_{\mathrm{i}}{ }^{2}$	5.5	5.1	5.2	4.7	4.8	4.3
$\mathrm{f}_{\boldsymbol{i}}$	10	20	17	18	8	15

Keystrokes:	Display:	
[USER]		(set USER mode)
[XEQ] [ALPHA] SIZE [ALPHA] 009		
[XEQ] [ALPHA] BAR [ALPHA]	BARTLETTS	
	F1?	
10 [R/S]	S1 SQ?	
5.5 [R/S]	F2?	
:	:	
15 [R/S]	S6SQ?	
4.3 [R/S]	F7?	
[E]	CHI SQ $=0.25$	
[R/S]	$\mathrm{dF}=5.00$	

User Instructions

				SIZE: 009
STEP	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
1	Key in the program and set USER mode.		[USER]	
2	Initialize the program.		[XEQ] BAR	BARTLETTS
3	Perform steps 3-4 for $i=1,2, \ldots, k$.			F1?
	Input f_{i}.	f_{i}	[R/S]	S (i) SQ?
	Input $\mathrm{S}_{\mathrm{i}}{ }^{2}$.	$\mathrm{S}_{\mathrm{i}}{ }^{2}$	[R/S]	$F(i+1)$?
4	If you make a mistake inputting f_{h} or			
	$\mathrm{S}_{\mathrm{h}}{ }^{2}$, perform this step and go back to step 3.	$\begin{array}{\|l\|} \hline \mathrm{f}_{\mathrm{h}} \text { or } \mathrm{S}_{\mathrm{h}}{ }^{2} \\ \text { as entered } \end{array}$	[C]	$\begin{aligned} & \hline \mathrm{F}(\mathrm{~h}) ? \text { or } \\ & \mathrm{S}(\mathrm{~h}) \mathrm{SQ} \text { ? } \\ & \hline \end{aligned}$
5	Calculate χ^{2}		[E]	CHI SQ $=\left(\mathrm{X}^{2}\right.$)
	and df.		[R/S]	$\mathrm{dF}=$ (df)
6	To use the program for another set of			
	data, go to step 2.			

Program Listings

61*LBL "BAF			56 CF C1	
"			51 STO 08	
02 FIX 0			52 RCL 11	
03 CLRG			53 *	
04 CF 01			54 ST+ 00	
05 CF 29	Initialize		55 RCL 08	
06 "BARTLET	Initialize		56 LH	
TS"			57 RCL 01	
G7 RVIEW			58 *	
08 PSE			$595 T+06$	
09 GTO A			601	
$10+L E L C$			$615 \mathrm{ST}+05$	
11 FS? 01			62 GTO A	
12 GTO 1			$63 *$ LBL E	
13 STO 98	Correct $\mathrm{s}_{\mathbf{i}}{ }^{2}$		64 FIX 2	
14 RCL 01			6.5 RCL 09	
15 *			66 RCL 03	Calculate χ^{2}
16 ST- 09			67 \%	Calculate ${ }^{2}$
17 RCL 08			68 LH	and df
18 LH			69 RCL 03	
19 RCL 1			70 *	
20 *			71 RCL 06	
21 ST- 06			72 -	
221			73 RCL 04	
23 ST- 05			74 RCL 03	
24 GTO b	Correct f_{i}		$751 / \mathrm{K}$	
$25 * L B L 1$			76-	
26 ST- 03			77 RCL 05	
$271 \times$			781	
28 ST-04			79 -	
$29+L B L$ A			80 ST0 02	
$30 \cdot \mathrm{~F}$ "			813	
31 RCL 05			82 *	
321			83	
$33+$			841	
34 HRCL X			$85+$	
35 "ト?"			86	
36 PROMPT			S7 "CHI SQ"	
37 SF 01			88 XEQ 11	
38 STO 3^{3}			$39 \text { RCL } 02$	
$395 T+03$	Accumulate sums		$90.4 \mathrm{CF}{ }^{\text {91 }}$	---------
$\begin{array}{ll}40 \\ 41 & \text { ST } \\ 4\end{array}$			$\begin{aligned} & 91+\text { LBL } 1 \\ & 92 \cdot=\cdot \end{aligned}$	
42 +LBL b			93 ARCL X	Display routine
43 "S"			94 RVIEW	Display routine
44 RCL 05			95 STOP	
451			96 RTN	
$46+$			97 - END.	
47 ARCL X				
48 "ト SQ?"				
49 PROMPT		00		

REGISTERS, STATUS, FLAGS, ASSIGNMENTS

MANN-WHITNEY STATISTICS

This program calculates the Mann-Whitney test statistic on two independent samples of equal of unequal sizes. This test is designed for testing the null hypothesis of no difference between two populations.

Mann-Whitney test statistic is defined as:

$$
\mathrm{U}=\mathrm{n}_{1} \mathrm{n}_{2}+\frac{\mathrm{n}_{1}\left(\mathrm{n}_{1}+1\right)}{2}-\sum_{\mathrm{i}=1}^{\mathrm{n}_{1}} \mathrm{R}_{\mathrm{i}}
$$

where n_{1} and n_{2} are the sizes of the two samples and $R_{i}(i=1,2, \ldots, n)$ is the rank assigned to the values of a given sample. All values from both samples should be arranged jointly (as if they were one sample) in an increasing order of magnitude.

When n_{1} and n_{2} are small, the Mann-Whitney test bases on the exact distribution of U and specially constructed tables. When n_{1} and n_{2} are both large (i.e., greater than 20) then:

$$
\mathrm{Z}=\frac{\mathrm{U}-\frac{\mathrm{n}_{1} \mathrm{n}_{2}}{2}}{\sqrt{\mathrm{n}_{1} \mathrm{n}_{2}\left(\mathrm{n}_{1}+\mathrm{n}_{2}+1\right) / 12}}
$$

is approximately a random variable having the standard normal distribution.
If the size of neither sample is greater than 20 , the user should consult the special U-tables (for example, Handbook of Statistical Tables, D. B. Owens, AddisonWesley, 1962), using the smaller of the two possible U's (one for each sample). When this occurs, the program automatically determines and displays the approximate U and does not compute Z.

The following program includes two options. Option I assigns and enter ranks based on the number of times a datum occurs in both samples. Rank is determined by:

$$
\begin{aligned}
& R_{n}=\frac{F_{1} n+F_{2} n+1}{2}+\sum_{i=0}^{n-1} F_{1} n+\sum_{i=0}^{n-1} F_{2 n} \\
& \text { Where } F_{10}=F_{20}=0
\end{aligned}
$$

Frequencies are entered sequentially corresponding to increasingly larger data values. There is one error deletion routine for option I.

Option II is used when the ranks for the data values are already known. The inputs are the ranks and the corresponding frequencies for the sample. This option includes two error deletion routines.

References: 1. Mathematical Statistics, J. E. Freuno, Prentice-Hall, 1962.
2. Nonparametric Statistics for the Social Sciences, Sidney Siegel, McGraw-Hill, 1956, pp. 115-123; 271-277.

Find U and Z for the following data:
Example:

Sample 1		Sample 2	
Data	Ranks	Data	Ranks
4	4.5	4	4.5
4	4.5	4	4.5
4	4.5	4	4.5
		4	4.5
		4	4.5
6.2	10	6.2	10
6.2	10		
7.1	14.5	7.1	14.5
7.1	14.5	7.1	14.5
7.1	14.5	7.1	14.5
8	22.5	8	22.5
8	22.5	8	22.5
8	22.5	8	22.5
8	22.5	8	22.5
		8	22.5
		8	22.5
10	29	10	29
10	29		
		13	32
17	37	13	32
		13	32
		14	35

OPTION I (ranks not yet assigned):			
	Va		$\mathrm{F}^{\text {i }}$
1	4	3	5
2	6.2	2	1
3	7.1	3	3
4	8	4	6
5	10	2	1
6	13	0	3
7	14	1	2
8	17	1	0

OPTION II (ranks already assigned):		
\mathbf{i}	F_{i}	R_{i}
1	3	4.5
2	2	10
3	3	14.5
4	4	22.5
5	2	29
6	1	35
7	1	37

SOLUTION: Option I

Input	Function	Display	Comments
Load M-W Set size 006	GTO. .	Packing	Load program and set size
			Start program
	[XEQ]M-W	Mann-Whitney	
		$1: \mathrm{F}_{1} \uparrow \mathrm{~F}_{2}$?	Enter the number of times a datum occurs in both samples
3	[ENTER]	3	
5	[R/S]	Rank $=4.5$	
		2: $\mathrm{F}_{1} \uparrow \mathrm{~F}_{2}$?	
2	[ENTER]	2	
1	[R/S]	Rank $=10.0$	
		3: $\mathrm{F}_{1} \uparrow \mathrm{~F}_{2}$?	
3	[ENTER]	3	
	[R/S]	Rank $=14.5$	
		4: $\mathrm{F}_{1} \uparrow \mathrm{~F}_{2}$?	
44	[ENTER]	44	
66	[R/S]	Rank $=72.5$	
		$5: \mathrm{F}_{1} \uparrow \mathrm{~F}_{2}$?	Oops: Need to correct that error.
	[XEQ] "a"	4: $\mathrm{F}_{1} \uparrow \mathrm{~F}_{2}$?	Input correct values \& continue.
4	[ENTER]		
6	[R/S]	Rank $=22.5$	
		$5: \mathrm{F}_{1} \uparrow \mathrm{~F}_{2}$?	
2	[ENTER]		
1	[R/S]	Rank $=29.0$	
		6: $\mathrm{F}_{1} \uparrow \mathrm{~F}_{2}$?	
0	[ENTER]		
3	[R/S]	Rank $=32.0$	
		7: $\mathrm{F}_{1} \uparrow \mathrm{~F}_{2}$?	
2	[R/S]	Rank $=35.0$	1 is "entered" by default
		8: $\mathrm{F}_{1} \uparrow \mathrm{~F}_{2}$?	
0	[R/S]	Rank $=37.0$	
		9: $\mathrm{F}_{1} \uparrow \mathrm{~F}_{2}$?	Last item already entered. Calculate U \& Z.
	[XEQ]"C"	$\mathrm{u}=175.0000$	
	[R/S]	$\mathrm{z}=0.2146$	

OPTION II

Input	Function	＊Display	Comments
Set size 007			
	［XEQ］＂E＂	Mann－Whitney	
		N_{1} ？	No．data items－sample 1？
16	［R／S］	N_{2} ？	No．data items－sample 2？
21	［R／S］	1：FヶR？	Enter frequency \＆rank
3	［ENTER］	3	
4.5	［R／S］	$2: F \uparrow R$ ？	
3	［ENTER］	3	
100	［R／S］	3： $\mathrm{F} \uparrow \mathrm{R}$ ？	Need to correct the last input
	［XEQ］＂e＂	3100 deleted	
		2 ： $\mathrm{F} \uparrow \mathrm{R}$ ？	Enter correct value
2	［ENTER］	2	
10	［ R / S ］	$3: F \uparrow R$ ？	
3	［ENTER］	3	
14.5	［ R / S ］	4：FヶR？	
5	［ENTER］	5	
225	［R／S］	$5: F \uparrow R$ ？	4 was entered incorrectly－to delete
2	［ENTER］	2	
29	［R／S］	6：FヶR？	
5	［ENTER］	5	
225	［XEQ］＂d＂	5225 deleted	
		5：F ¢R？	Enter correct value
4	［ENTER］	4	
22.5	［R／S］	6：FヶR？	
35	［R／S］	7：FヶR？	
37	［R／S］	$\mathrm{U}=175.0000$	
	［R／S］	$\mathrm{Z}=0.2146$	

＊Display shown as appears without a printer－printer output shown on page 非 55

```
    PRINTER OUTPUT
        Output I
MANH-WHITHEY
F1=3
F2=5
RANK=4.5
F1=2
F2 = 1
RQMK = 19.0
F1=3
F2 = 3
RQHK=14.5
F1 = 44
F2 = 66
ROMK =72.5
F1 = 44
F2 = 66
F1 = 4
F2 = 6
RAKK=22.5
Fl=2
F2=1
RAHK =29.0
F1=0
F2 = 3
RANK = 32.0
F1 =1
F2 = ?
RRMK = 35.0
F1 =1
F2 = 8
RANK = 37.8
IJ=175.9090
z=8.2146
```


User Instructions

User Instructions

REGISTERS, STATUS, FLAGS, ASSIGNMENTS

103	PROMPT		156	RCL 02	
104	STO D2	If no printer	157	$\mathrm{X}>\mathrm{Y}$ ？	
10.5	FC？ 55	jump to Label 4	158	GTO 0.5	
106	GTO 04		159	RCL 2	Compute U for
107	ADV	If printer exists	16.9	STO Y	Sample 2
108	－ $\mathrm{Hi}=$	display input for	161	CHS	
109	ARCL 61	N1 \＆N2	162	RCL 01	
119	QVIEW		16.3	RCL 92	
111	＂ $\mathrm{NZ}=$		164		
112	ARCL 02		165	＋	
113	AVIEW		166	$x \ggg$	
114	ADV		167	$x<>\gamma$	Select smaller u \＆display（Sample
$115 *$	LBL 04		168	GTO 06	\＆display（Sample <20)
116		Set up counter	169＊	LBL 07	Subroutine to echo
117 118	CT＋ 03 CLA		170	FIX 1 $F={ }^{\text {a }}$	print values of F
119	AREL 03	Prompt for \＆store	172	ARCL 04	\＆ R if printer
120	＂ト：FTR？	input（ F_{i} \＆ R_{i} ）	173	＂ト R＝．＂	attached
121	PROMPT		174	AREL 05	
122	STO 05		175	AVIEW	
123	$\mathrm{X}<>\mathrm{y}$		176	FIX $\mathrm{C}^{\text {d }}$	
124	STO 04		177	RTH	
125	FS？ 55	Printer exist？	$178+1$	LBL 05	
126	XED 07	Jump to Label 7	179	5 F 21	
127	ST＋ 06	Number of data	180	$F S ? 55$	
128	＊	Calculate RI \＆	181	ATV	Display U
129	5 CH 00	accumulate	182	RCL 2	（Sample＞20）
130	RCL 01		183	AREL X	
131	RCL 06		184	GVIEW	
132	X＜Y＇${ }^{\text {cta }}$	Any more entries？	185	RCL 01	Calculate value
133	GTO 64		186	RCL 62	of z
135	5 F 29		188	＊	
136	FIX 4		189	／	
137	REL 01	Compute u for	196	－	
138	RCL Mz	Sample 1	191	RCL 61	
139	＊	（Option I）	192	RCL 62	
140	RCL 01		193	＊	
141	1		194	RCL 01	
142	＋		195	RCL 02	
143	RCL 01		196	$+$	
144	＊		197	1	
145	2		198	＋	
146	－		199	＊	
147	＋		20.1	12	
148	RCL 00		201	\checkmark	
149	－		202	SQRT	Display final out－
150	$\cdots \mathrm{U}=\cdot$	Determine if	203	\checkmark	put（U or Z depen－
151	20	sample size >20	204	$\cdots マ="$	ding on sample
152	$\begin{aligned} & \mathrm{RCL} \operatorname{By} \\ & x>\mathrm{C}^{2} \end{aligned}$	If so calculate z	205＊	LBLCL ${ }^{\text {AG }}$	size）
154	GTO 05		207	AVIEN	
155	CLX		208	－END．	

KENDALL'S COEFFICIENT OF CONCORDANCE

Suppose n individuals are ranked from 1 to n according to some specified characteristic by k observers, the coefficient of concordance W measures the agreement between observers (or concordance between rankings).

$$
\mathrm{W}=\frac{12 \sum_{i=1}^{n}\left(\sum_{j=1}^{k} R_{i j}\right)^{2}}{k^{2} n\left(n^{2}-1\right)}-\frac{3(n+1)}{n-1}
$$

Where $R_{i j}$ is the rank assigned to the ith individual by the j th observer.
W varies from 0 (no community of preference) to 1 (perfect agreement). The null hypothesis that the observers have no community of preference may be tested using special tables, or if $n>7$, by calculating

$$
\chi^{2}=k(n-1) W
$$

which has approximately the chi-aquare distribution with $n-1$ degrees of freedom (df).

Operating Limits and Warnings:
For small samples (say, less than or equal to 7) the specially constructed tables should be used. For example: Rank Correlation Methods, M.G. Kendall, Hafner Publishing Co., 1962.

References: 1. Nonparametric Statistical Inference, J. D. Gibbond, McGrawHi11, 1971.
2. This program is a translation of the HP-65 Stat Pac 1 program.

Example:
Find W, X^{2}, and $d f$ for the following data:

\mathbf{i}	Table for $R_{i j}(n=4, k=3)$		
1	1	2	3
2	6	7	3
3	1	4	2
4	9	3	5

Keystrokes:	Display:
[USER]	(set USER mode)
[XEQ] [ALPHA] SIZE [ALPHA] 007	
[XEQ] [ALPHA] KEN [ALPHA]	KENDALLS COF.
	K?
3 [R / S]	R1,1 ?
$6[\mathrm{R} / \mathrm{S}]$	R1,2 ?
7 [R/S]	R1,3 ?
3 [R/S]	S $1=16$
[R/S]	R2,1 ?
1 [R/S]	R2,2 ?
!	:
:	R4,3 ?
1 [R/S]	S4 $=9$
[E]	$\mathrm{W}=10.00$
[R/S]	CHI SQ $=90.00$
[R/S]	$\mathrm{dF}=3.00$
NOTE: Although this example vi data to be entered has through the example in	rning ($n<7$), the amount of 1 to allow the user to run

User Instructions

				SIZE: 007
STEP	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
1	Key in the program and set USER mode.		[USER]	
2	Initialize the program.		[XEQ] KEN	KENDALLS COF.
				K?
3	Input k.	k	[R/S]	R1,1 ?
4	Input R_{ij}. Repeat steps 4-5 for			
	$\mathrm{i}=1,2, \ldots, \mathrm{k}$.	R_{ij}	[R/S]	$R(i),(j+1)$
5	If you make a mistake inputting $\mathrm{R}_{\text {ih }}$,			
	delete it and go to step 4.	$\mathrm{R}_{\text {ih }}$	[C]	$\mathrm{R}(\mathrm{i}),(\mathrm{h})$?
6	The sum of the i'th row is automatically			Si= $\left(\Sigma R_{i j}\right)$
	calculated when $\mathrm{R}_{\mathrm{i}}, \mathrm{k}$ is input. Press		[R / S]	$\mathrm{R}(\mathrm{i}+1), 1$?
	[R / S] to continue, or calculate W ,		[E]	$\mathrm{W}=$ (W)
	x^{2},		[R/S]	CHI $\mathrm{SQ}=\left(\mathrm{X}^{2}\right)$
	and df .		[R/S]	$\mathrm{dF}=(\mathrm{df})$
7	For another set of data, go to step 2.			

Program Listings

REGISTERS, STATUS, FLAGS, ASSIGNMENTS

NOTES

NOTES

NOTES

NOTES

NOTES

Hewlett-Packard Software

In terms of power and flexibility, the problem-solving potential of the HP-41 programmable calculator is nearly limitless. And in order to see the practical side of this potential, HP has different types of software to help save you time and programming effort. Every one of our software solutions has been carefully selected to effectively increase your problem-solving potential. Chances are, we already have the solutions you're looking for.

Application Pacs

To increase the versatility of your HP-41, HP has an extensive library of "Application Pacs". These programs transform your HP-41 into a specialized calculator in seconds. Included in these pacs are detailed manuals with examples, miniature plug-in Application Modules, and keyboard overlays. Every Application Pac has been designed to extend the capabilities of the HP-41.

You can choose from:

Aviation (Pre-Flight Only) 00041-15018
Clinical Lab 00041-15024
Circuit Analysis 00041-15024
Financial Decisions 00041-15004
Mathematics 00041-15003
Structural Analysis 00041-15021
Surveying 00041-15005
Securities 00041-15026

Statistics 00041-15002
Stress Analysis 00041-15027
Games 00041-15022
Home Management 00041-15023
Machine Design 00041-15020
Navigation 00041-15017
Real Estate 00041-15016
Thermal and Transport Science 00041-15019
Petroleum Fluids 00041-15039

Users' Library

The Users' Library provides the best programs from contributors and makes them available to you. By subscribing to the HP-41 Users' Library you'll have at your fingertips literally hundreds of different programs from many different application areas.

*Users' Library Solutions Books

Hewlett-Packard offers a wide selection of Solutions Books complete with user instructions, examples, and listings. These solution books will complement our other software offerings and provide you with a valuable tool for program solutions.

You can choose from:

Business Stat/Marketing/Sales 00041-90094
Home Construction Estimating 00041-90096
Lending, Saving and Leasing 00041-90086
Real Estate 00041-90136
Small Business 00041-90137
Geometry 00041-90084
High-Level Math 00041-90083
Test Statistics 00041-90082
Antennas 00041-90093
Chemical Engineering 00041-90100
Control Systems 00041-90092
Electrical Engineering 00041-90088
Fluid Dynamics and Hydraulics 00041-90139
Games II 00041-90443

Civil Engineering 00041-90089
Heating, Ventilating \& Air Conditioning 00041-90140
Mechanical Engineering 00041-90090
Solar Engineering 00041-90138
Calendars 00041-90145
Cardiac/Pulmonary 00041-90097
Chemistry 00041-90102
Games 00041-90099
Optometry I (General) 00041-90143
Optometry II (Contact Lens) 00041-90144
Physics 00041-90142
Surveying 00041-90141
Time Module Solutions 00041-90395

[^0]ONE SAMPLE TEST STATISTICS FOR THE MEAN
TEST STATISTICS FOR THE CORRELATION COEFFICIENT
DIFFERENCES AMONG PROPORTIONS
BEHRENS-FISHER STATISTIC
KRUSKAL-WALLIS STATISTIC
MEAN-SQUARE SUCCESSIVE DIFFERENCE
THE RUN TEST FOR RANDOMNESS
INTRACLASS CORRELATION COEFFICIENT
FISHER'S EXACT TEST FOR A 2×2 CONTINGENCY TABLE
BARTLETT'S CHI-SQUARE STATISTIC
MANN-WHITNEY STATISTIC
KENDALL'S COEFFICIENT OF CONCORDANCE

(1) $\begin{aligned} & \text { HEWLETT } \\ & \text { PACKARD }\end{aligned}$

[^0]: *Some books require additional memory modules to accomodate all programs.

