

ZEeproim
PROGRAMMER’'S MANUAL

An Erasable Programmable Read Only Memory Module

for the HP-41 Handheld Computer

zZengrange

ZEPROM Module

An Erasable Programmable Read Only Memory Module

for the HP-41 Handheld Computer

Programmer’s Manual

April 1988

© Zengrange Limited, England, 1988

Publisher

Zengrange Ltd, Greenfield Road, Leeds, LS9 8DB, England.

Printing History

EAItiON 1...t2 April, 1988

Copyright

This manual is protected by copyright; with all rights being reserved by
Zengrange Ltd. Duplication, extraction, translation or distribution is permitted

only upon prior written authorisation from the copyright holders.

Trademarks

The following names are trademarks of their respective companies:

ZEPROM & ZENROM........ccoerimrrreinieiiniereenisensseesiesenseseeens Zengrange Limited, Leeds, England.

ZENGIANGEovverenieierrerientesesesrestessesessestessesseseesessessesseseesesses Zengrange Limited, Leeds, England.

HP-41, HP & Hewlett-Packardccccccevueveecrenneeienieeeeeenns Hewlett-Packard Company, U.S.A.

Notice

No expressed nor implied warranty is made with regard to this manual (including
any information, examples, keystrokes, procedures or program material that it

may contain) nor to its merchantability or fitness for any particular purpose. This

manual is made available solely on an "as is" basis, and the entire risk as to
quality and performance is with the user. Should any of this material prove
defective, the user (and neither the producer nor any other party) shall bear the
entire cost of all necessary correction and incidental or consequential damages
in connection with or arising out of the furnishing, use, or performance of this
material.

2 April, 1988 at 2:01

i © Zengrange Ltd - 1988

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

ZEPROM - Programmer’s Manual

Contents

Introduction v

About this Manual.............c.ccocrvirineiieiteeecceeeev

The HP-41 ROM Format 1

The ZEPROM Module 5

Physical DeSCHPLIONcccoveriirieieeseeeeecee5

ZEPROM Configurations............ccecceeeeeueeneeeniesesenieeseseessseseesennes 5

Straight 16K Module............ccoceeveiiereeeeeceeceeeeeeeeee, 5

Bank-Switched 16K Module.............cccoceeiriieceniiieieeeee 6

Straight 8K Module............cccooieiiiiieeieeeee7

Bank-Switched 12K Module............cceveeievieceeieeieeeeiene 8

Selecting the Best Configuration..............cceccevvverrnvnieniencnennenne. 10

Bank Switching 13

INErOAUCHION....13

Implementation onthe HP-41.............cccoiiiiiniieee, 14

Bank Switching of Machine Code............cccocevenevinnccnicnincnene. 15

EXaMPIES.....c..ooiiieeetee18

Bank Switching of User Code Programs............ccccceeeueiinneinncncs 24

EXamPIES........oooiiieieeeeeeces25

ZEPROM Voltage Converter 29

SWItching ON & OFF..ottt29

PlUgging in.....coeeiiiieeeeet30

Batteries.coouieieieee31

Care and Maintenance..............cccecueeueeienieeeeneeeeee32

Burning Methods 33

BUrning FiXTUrES..........cc.covieeiicieeeceeceeeeeveeet33

Controlling SOtWareccoceveverenenereeeee34

The Programmer ROM 37

The INStruction Set...........ccoocveeieieieeeeeecee38

Keying in Arguments for Instructions...........ccccccccevvvrvuennnnnen. 38

Test FUNCLIONScceeviieeeeeeeceeeeeee39

Bank Switching Instructions............ccccoeccevvierveinceenieeeceeeen. 39

© Zengrange Ltd - 1988

ZEPROM - Programmer’s Manual

Appendix A

Appendix B

Appendix C

Appendix D

Burn Instructions and Output Formats.............ccccccceenennene. 40

Function Description IndexX............ccocceevireeeiinnenncenienenenee. 43

The Utility RoUtines...........ccooeeeeeeeeeeceeeeeeeeee88

Technical Data 91

Programming ZEPROM..ot91

VOIAQE.........ooeeieeeecieeecteeetttet e eae eene s aeesneee 91

CYCIB...eeeeeeeeeteeetttenreens 91

RESEHCIONS.......c.eeeeeceeeee92

HP-ROM Compatibilityccceeueermureiininenreeeeeereeeeeees92

Erasing ZEPROM...........ccooiiieceeeecteteetttsnens95

Electrical Informationccccoeeieeeeeenceneeeceeeeee95

Copyright & Using ZEPROM.............coeeeiiereieeeeetereeeeeeeenee96

Programmer ROM Software Listings 97

Utility Routines (RPN)............cccoereeieeeeeeeeeeeeceeceeeeceee97

Bank Switching Code............cccooeeeeueeeeeeieeceeeeeeeeeeee102

Warranty & Servicing 104

Limited Warrantyc.cocoevrrnennenecneeseseeeeesee104

Shipping for ServiCe.............cuoevueeeveeieeeeceeeeeeeee105

Technical ASSIStaNCe............ccceuvuerereeteeerceeeet106

Glossary 107

Index 109

© Zengrange Ltd - 1988

Introduction

Introduction

The ZEPROM Module and its programming fixture, the ZEPROM Voltage Converter,

continue the Zengrange commitment to providing innovative, user oriented solutions for
Hewlett Packard’s hand-held and portable computers. This philosophy began with the
ZENROM Programmer’s Module; which for the first time opened up HP-41 Synthetic
and Machine Code programming (M-code) to the non-technical user without requiring

complex computer hardware or software.

The ZEPROM module continues that tradition by providing users with an ability to store

favourite programs, utility routines and data in a plug-in module. In this way they are
free from accidental erasure, corruption and tampering and are always available to the
HP-41 without the need to load from card, tape or disc. In the past, burning a module

entailed either buying expensive programming fixtures, or ordering a minimum of 100
ROM modules from Hewlett Packard. With its two companion products, the ZEPROM
Voltage Converter and the PROGRAMMER ROM software, ZEPROM can even be burnt

from the HP-41 itself, at a reasonable cost and by the non-technical user.

The ZEPROM module has been designed to be software compatible with the custom

and application ROM modules produced by Hewlett Packard, thereby allowing

ZEPROM to be used for debugging code prior to committing to ROM manufacture.

Compatibility even extendsto the ability to operate ZEPROM in a bank-switching mode.

To ensure durability and reliability under the most testing of conditions, ZEPROM has

been designed to the exacting standards of the British Ministry of Defence and has
been component and type tested to MIL STD 883C and BS9400.

About this Manual

This manualis designed for users intending to program a ZEPROM module. It therefore
assumes that the user is knowledgeable about HP-41 user code programming and has

a good general understanding of the HP-41. The information provided, used together
with the utility routines pre-programmed into one 4K core of ZEPROM,will easily enable

a user to burn user code programs. Where different requirements exist, a user can
quickly write user code programs using the PROGRAMMER ROM functions.

A user wishing to exploit ZEPROM more fully by writing and loading M-code functions,
or intending to operate ZEPROM in bank-switched mode, will require a more in-depth
understanding of the HP-41 and M-code programming in particular. Although we have
explained in some detail the subject of bank-switching within both user code and M-
code programs, M-code programming requires a complete handbook to itself and is
thus beyond the scope of this handbook. Users interested in M-code programming or

synthetic programming should refer to the handbook for the ZENROM Module.

© Zengrange Ltd - 1988 v

'EEPROM Module - Programmer’s Manual

This ZEPROM Programmer’s Manual covers the following topics:

a brief overview of the format used for HP-41 ROM modules,

the organisation of ZEPROM,its possible configurations and how to select

the best for your circumstances,

possible burning methods,fixtures and software,

bank switching in both M-code and user code routines,

burning using the ZEPROM Voltage Converter,

the functions provided in the PROGRAMMER ROM software.

using the automated utility routines; enabling inexperienced users to load
programs from memory directly into ZEPROM.

Because programming skills and requirements vary so widely, it is difficult to detail a

sequence for reading this manual; however, we strongly recommend that you do read
all chapters. Even though you may not fully understand each topic, you will find the
background information of benefit when you eventually come to burn ZEPROM with

your own programs. In writing the manual, we have tried to provide program examples
to illustrate the procedures involved. By examining those examples, users should very

quickly be able to burn and use their own modules.

Throughout this manual we have referenced HP-41 memory address locations, etc., in
hexadecimal notation.

©Zengrange Ltd - 1988

Chapter 1: The HP-41 ROM Format

Chapter1

The HP-41 ROM Format

This chapteris intended only as a brief summary of the subject. For a more detailed
explanation, users should refer to the ZENROM Owner’s Manual, or one of the many
text books on the HP-41.

The HP-41 can address 65536 (64K) words of ROM and each word in that ROM space
has a 4 digit (16 bit) address at which it is located. This 64K of ROM space is split up
into 16 pages of 4K-bytes each, of which pages 0 through 7 are reserved for the HP-41

itself or for system enhancements such as Timer, HP-IL module, etc..

The eight pages 8 through F are dedicated to the four 1/O ports at the rear of the
computer and each port contains two of the 4K-byte pages; thereby allowing either 4 or

8K ROM modules to be plugged into the port. However, most HP application modules
are 4K and as such occupy only the lowest addressed page available in that port. A few

ROMs, such as the HP-IL DEVELOPMENT ROM, contain 8K of data and so occupy both

pages of that port.

~ Port1 - Port 2
Upper Page(9-hex) Upper Page (B-hex)

 LowerPage(he)| Lower Page (A-hey)

Iens| s
Ef UpperPage (D-hex) L Upper Page (F-hex)

 LowerPage(Cher) LowerPage (E-hex)

HP-41 Input & OQutput Ports

This limited address space for each port places restrictions on the use of the high

capacity modules such as ZEPROM, in that because the module contains 16K, it will

electrically occupy two adjacent ports, even though it physically occupies only one
port. For example, if plugged into port 1 or 2, it consumes both port 1 and 2 address
space. Similarly, plugged into port 3 or 4, it uses both ports 3 and 4. It was in order to

overcome these limitations that Hewlett-Packard developed the technique of ‘bank-
switching’ in which only 8K of the module is switched on-line at any one time. These
switched banks, called ‘Primary’ and ‘Secondary’, are shown in the following HP-41
Memory Map. Bank-switching will be described in more detail in Chapter3.

© Zengrange Ltd - 1988 1

ZEPROM Module- Programmer’sManual

 PrmaryBank Page SecondaryBank

Porta | :UpperP.dée: - F Port4 - pp
.LowerPage E.

Porta L UpperPage D Po“:; vvvvv

JPotz UperreeB Pon2
e LowerPageAl : Pa

Port1 . UpperPage 9 Port 1 | UppérPage 9vvvv1
. LowerPage 8| . ~ LowerPage 8|

HP-IL/MassStorage ROM 70 .

Printer ROM 6 _

Timer ROM 5 CXExtended Functions 5"
fiéséfve& page 4| .

CX Extended Functions 3

Operating System 2
HP-41 Memory Map

If no moduleis present in any particular page, then that page will appearto the HP-41 to
be full of NOPs (000 words).

All pages in ROM or ZEPROM must conform to a specified format irrespective of
whether they contain M-code functions or user code programs. This is shown in the
diagram below. In referring to addresses in the page, we will use a general format, e.g.
xFC7h, where the ¥’ refers to the particular page number of the port into which the
module is plugged, and the ‘h’ refers to the value being expressed in hexadecimal
notation.

The first word of each 4K page, at address x000h (hex), is the XROM number of that

page, coded in hexadecimal. For example the first word of the TIMER ROM, which has
an XROM number of 26, will be 01Ah. The maximum value of this word is 01Fh,i.e.

XROM 31. The second word of the page, at address x001h, indicates the number of
catalogue entries in that ROM. (The header of a page, e.g: -TIME 2C, also counts as
an entry in the catalogue.) Once again this word is coded in hexadecimal and can
range in value from 000h, for no catalogue entries, to 040h for 64 catalogue entries.

2 © Zengrange Ltd - 1988

qupter 1: The HP-41 ROM Format

 HP-41 ROMFormat

The next section of the page is called the ‘Function Address Table’, commonly known

as the ‘FAT’. Each entry in the catalogue requires two words in the FAT to determine
the start address of the function (or program) and other status information about that
entry. Because the HP-41 needs to know where each module function or program is

located in order to be able to execute it, the start addresses are stored in the FAT. The

FAT itself is arranged in catalogue order, with the first pair of words pointing to the
address of the first catalogue function, the second pair pointing to the second function,
etc.. The last entry in the FAT must be followed by two NOPs (000h) marking the end of
the FAT. For example, a page with two functions might appear as follows:

Address Word

x000 815 XROM number of page is 21 decimal

x801 002 Page has only 2 catalogue entries
x882 884

x003 02F First function starts at address x42Fh
x004 881

X005 023 Second function starts at address x123h
x006 /00

x007 000 NOPs to mark the end of the FAT

© Zengrange Ltd - 1988 3

___ZEPROM Module - Programmer’s Manual

Normally the first function in a page will be the header, which is coded in the same
manner as any other function. A header should always be at least 8 characters in

length so that it cannot be executed by ‘conventional’ methods and so thatit will show

up as a ROM page header during a CAT 2 on an HP-41CX. It is customary for the first
executable address of the header to be a RTN and for the header name to begin with a
hyphen.

The rest of the page, up to the special reserved words starting at address xFF4h, is
available for function or program code. However, if the page is to be used for bank-

switching, then the special bank-switch code defined by Hewlett-Packard to swap the

banks of a bank-switched module will be loaded at addressesxFC7h through xFCAh.

Addresses xFF4h through xFFAh are reserved for interrupt vectors which are polled by

the operating system at various times. Unless you fully understand the use of these
interrupts, we recommended leaving them as NOPs since their misuse can cause the
HP-41 to lock up.

After the interrupt vectors come 4 words, at addresses xFFB through xFFE, containing
the page trailer. The trailer should contain a four character sequence indicating the

code revision number. In addition, the 8th and 9th bits of the word at xFFD will define
whether or not that page is bank-switched.

The last word of a page, at address xFFF,is always a page checksum.

4 © Zengrange Ltd - 1988

Chapter 1: The HP-41 ROM Format

Chapter 2

The ZEPROM Module

Physical Description

ZEPROM is a 16K EPROM (Erasable Programmable Read Only Memory) module for the
HP-41 housed in a standard-sized module casing which plugs into the computer.

A ZEPROM module can be programmed and erased without dismantling the module,
thus reducing the risk of damage to the circuitry. Erasure is achieved via a window in
the top half of the casing above the EPROM chip by exposing it to an ultra-violet (UV)
light source. A custom chip built into the module, interfacing the EPROM to the HP-41,
also contains a mini-programmer to allow programming by a low-powered, low-cost

device using suitable software. After programming, ZEPROMs can only be erased by
exposure to an intense UV light source. For specifications, etc., see Appendix A.

ZEPROM complies with Hewlett-Packard’s convention for bank-switching and uses the

machine code instructions ENBANK1 (100h) and ENBANK2 (180h) for control of

switching. Because many other devices and software for M-code programming all use

the WMLDL (040h) instruction for programming, we have designed ZEPROM to be
programmed in the same way. However, because EPROM type devices require a
longer write cycle, a special algorithm is needed to ensure that they stay programmed
once the programming voltage is removed. The algorithm is detailed in Appendix A.

ZEPROM Configurations

ZEPROM can be configured and programmed to appear to the HP-41 in a number of

different formats. The most suitable format will be determined by the user's own
particular requirements and is set under software control to give the greatest flexibility.
A ZEPROM module has two basic configurations, ‘bank-switched’ and ‘straight’

(unswitched); these being controlled by data burnt into ZEPROM at the location xFFDh
in each module core. By using a bank-switched format and duplicating code into more
than one core, ZEPROM can emulate various other configurations.

© Zengrange Ltd - 1988 5

'ZEPROM Module - Programmer’s Manual

Straight 16K Module

In its basic form, ZEPROM is configured as a 16K module, split into four 4K

pages. This is the default mode in which ZEPROM is supplied and into which it is
forced by the ZVC when programming. A 16K straight module occupies the

address space of two adjacent ports, no matter which port it is plugged into.

If you consider ZEPROM as consisting of four separate memory cores of 4K

each, the module would appearin the following memory locations:

Page F Page F Core 3

PageE | Page E --EC_)I'_e—Z--

Page D Page D Core 1

PageC | Page C --(-:c-)r;_o-—

Page B Core 3 Page B

Page A --E;r-e-i.’-- PageA |

Page 9 Core 1 Page 9

Page 8 --(—:;r-e-o-- Pages |

ZEPROM in Ports 1 or 2 ZEPROM in Ports 3 or 4

Bank-Switched 16K Module

In a bank switched module, only two of the four 4K cores (the primary banks) are
normally enabled (on-line) at any one time; the other two (secondary banks)
being disabled (off-line). The enabled and disabled cores can be interchanged
when needed under program control.

The advantage of this bank-switching facility to the user is that the module only

consumes the address space of one port, rather than the two of a straight 16K
module. In this way up to 4 ZEPROMs can be plugged into an HP-41 to give a
total capability of 64K.

It is important to note that if you swap the banks of a module in any one port then

that is the only module thatis affected. Bank-switching instructions act only on
the module in which they reside.

6 © Zengrange Ltd - 1988

Chapter 2: The ZEPROM Module

Page F Page F

PageE | PageE |

Page D ‘ Page D

PageC | PageC | secondary banks

Page B Page B

PageA | secondary banks Page A

Page 9 Page 9

Page 8 Page 8

Page F Page F

PageE | secondary banks Page E

Page D Page D secondary banks

Page C PageC |

Page B] Page B

PageA | PageA |

Page 9 Page 9

Pages | Pages |

ZEPROM in Port 3 ZEPROM in Port 4

Straight 8K Module

ZEPROM can also be programmed to emulate a normalstraight 8K module, such
as many of the application ROMs supplied by Hewlett-Packard. The straight 8K
module is in fact a special example of a bank-switched 16K module in which,

although configured as bank-switched, the programmed software never swaps
the banks. However, we recommend that the secondary banks are programmed

©Zengrange Ltd - 1988

'ZEPROM Module -

with the same code as their primaries, rather than being left blank - just in case a
coding error ever causes the banks to switch. If you intend using this mode, you

should bear in mind that the ZEPROM module is supplied by us with the

PROGRAMMER ROM software already loaded into core 3.

Enabled banks (Dummy banks)

Page 9 " Core 1 " " Core 3 copy of core 1 "

Page 8 " Core 0 " " Core 2 copy ofcore 0 "

Bank-Switched 12K Module

In addition to the 16K bank-switched mode, ZEPROM s fully code-compatible

with Hewlett-Packard’s own 12K bank-switched ROM module. This means that
programs developed using ZEPROM can easily be transferred to an HP custom

ROM without modification.

To explain the 12K bank-switched ROM format as used by Hewlett-Packard, let's
consider an HP Advantage ROM plugged into Port 1. The following diagram

showsits configuration:

Enabled banks Disabled bank

4—=p Advantage ROM 2s ||

Page 9 " Advantage ROM 2p

Page 8 " Advantage ROM 1 ”

The lower half of the port is always occupied by ROM 1. However, the upper half

can be occupied by either ROM 2p (primary) or ROM 2s (secondary) depending
on which is required at that time. When power is first applied to the module,
ROM 2p will reside in page 9 and ROM 2s is disabled. If you execute an
Advantage ROM function which requires access to code in ROM 2s then that
function will execute the machine code instruction to enable ROM 2s which will

then appear in page 9 and ROM 2p will in turn be disabled:

Enabled banks Disabled bank

4=Dp Advantage ROM 2p "

Page 9 " Advantage ROM 2s

Page 8 “ Advantage ROM 1 ”

In showing an HP 12K ROM,you will notice we haven’t shown a secondary bank

for ROM 1 in the lower page (page 8). This is because an HP module doesn'’t

contain memory at that location. Instead ROM 1 is non-switching and will always
be available, no matter whether bank ROM 2p or ROM 2s is currently enabled.

© Zengrange Ltd - 1988

Chapter 2. The ZEPROM Module

Because ZEPROM has four cores and both of its secondary banks always swap

together, we use a slightly different technique to program ZEPROM in 12K bank-

switched mode. This involves programming the secondary bank of the lower

page (Core 2) with the same code as in the primary bank (Core 0). This means
the HP-41 always has access to the code, no matter which bank is enabled.

Enabled banks Disabled banks

Page 9 || Core 1 " “ Core 3 "
 <>

Page 8 || Core 0 " || Core 2 copy ofcore 0

When software switches the ZEPROM module by the ENBANK?2 instruction, both

secondary banks will be enabled:

Enabled banks Disabled banks

Page 9 " Core 3 || " Core 1 |I
Id—b

Page 8 || Core 2 copy of core 0 " Core 0 ”

The above example illustrates emulating a 12K ROM with the upper page being
switched (an HP Advantage ROM). However, ZEPROM can also emulate a 12K

bank-switched ROM with its lower page switching. In this case, core 3 would be
programmed to match core 1:

Enabled banks Disabled banks

Page 9 || Core 1 " " Core 3 copy ofcore 1 I
4—-)p

Page 8 " Core 0 " " Core 2 "

© Zengrange Ltd - 1988

_”ZEPROM Module-Programmer’s Manual

Selecting the Best Configuration

The setting of a ZEPROM to straight or bank-switched configuration is controlled by the
upper two bits (bits 9 and 8) of the word burnt into ZEPROM at address location xFFD in

core 1 and core 3 of the module. When first plugged into the HP-41, these bits
determine whether the module is seen as straight or bank-switched. If the bits are zero
then the ZEPROM is configured as a straight 16K module;if they are non-zero then the
ZEPROM is bank-switching. This is procedure is similar to that used in HP custom
ROMs in that the upper two bits at addressxFFD indicateif that page is bank-switched.

There are three main factors to consider when deciding how to best configure your

ZEPROM:

1. Thetotal size of all your programs or data that you want to burn into it,

2. The configuration of the rest of your HP-41 system, i.e. the other modules
plugged in, and

3. How well you understand the techniques of bank-switching.

Software less than 8K

If the total size of all your program and data is less than 8K-bytes, then the simplest

solution is to configure the ZEPROM as a straight 8K module.

An 8K module has the advantage that it will only occupy the address space of the port

into which it is physically plugged and therefore does not conflict with other modules

that you might have plugged into adjacent ports. It will also mean that you don’t have
to worry about incorporating any special bank-switching instructions and thus your
programs will not need to be modified in order to run from ZEPROM.

Note, however that in order to emulate a straight 8K module, you actually configure

ZEPROM as being bank-switched (with bit 8 of the data at addresses FFD in all pages
being set). This forces the module to occupy only 8K of address space (one port).
However,it is very advisable, though not obligatory, to also duplicate your entire 8K of

programmed data into the module’s secondary banks. In this way, if your software
does ever cause the banks to swap by mistake, there will be no effect.

In deciding to use ZEPROM in 8K mode, you should bear in mind that you may have
problems if you later need to add a program to the ZEPROM. If there is not enough

room in the 8K, you may have to erase your ZEPROM, reconfigure it to a larger size,
and then reburn all your programs. Also bear in mind that ZEPROM is supplied with the
PROGRAMMER ROM software already burnt into core 3 and thatthis is lost in erasing.

Software between 8K and 12K

If you have, or envisage having, between 8K and 12K of programs and data to put into a
ZEPROM then your options are limited to using either a 12K configuration, a 16K
straight or a 16K bank-switched configuration. However, if you wish to keep the
PROGRAMMER ROM in your ZEPROM module, then you cannot use the 12K option;
since it is incompatible with a 12K configuration. If you are intending to use other

10 © Zengrange Ltd - 1988

Chapter 2: The ZEPROM Module

burning methods and software, and so do not require the PROGRAMMER ROM, you

can erase the entire module and thus use the 12K configuration.

Using a 12K format has a slight advantage over the 16K bank-switched mode in thatit is

slightly easier to develop bank-switching code. This is because there is a ‘permanent’
4K block that is always on-line and as such you can always call, or return to that block

without having to consider which bank is enabled. Another advantage over the straight

16K mode is that it only occupies the address space of the port into which the module
is plugged and therefore does not affect the rest of your HP-41 system.

Software between 12K and 16K

If you do not mind consuming two adjacent ports with ZEPROM,then the straight 16K is

the simplest format to use since there is no need to alter your software to incorporate
bank-switching and all programs or functions are alwaysreadily available.

Although a straight 16K mode does consume two ports, if you have either a Memory
module, Extended Memory Module, Timer ROM, Printer or HPIL module in the adjacent

port, there will be no conflict. Such modules are classified as ‘system’ modules and
therefore do not occupy a port address. The ZEPROM module comes supplied in this

straight 16K mode and is also forced into it whilst programming is in progress by the
ZEPROM Voltage Converter programming fixture.

Up to 16K with all ports needed

The 16K bank-switched configuration is ideal if you have a lot of data to load into
ZEPROM,yet only want to use up the address space of one port. It is, however, by far
the most difficult to program for, as you must very carefully organise and plan your

code in advance. This is necessary to ensure that the correct module bank is always
enabled, and that the code in the other bank begins at the specific address where you

switched the banks. In addition to this, you will have to modify your existing programs
and functions to include the bank-switching instructions.

Before deciding to use a bank-switched configuration, make sure that you have a full

understanding of bank-switching and its consequences.

© ZengrangeLtd - 1988 11

'ZEPROM Module - Programmer’s Manual

12 © Zengrange Ltd - 1988

Chapter 2: The ZEPROM Module

Chapter 3

Bank Switching

Introduction

Most computers have an address space in which they store their data and programs;
this space having a limit on the total number of bytes it may contain. One common

method to overcome this constraint is to arrange for multiple banks of memory to
appear in the same address locations, and then have some hardware arbitration
scheme which makes only a single bank available to the computer at any one time.

This process, known as ‘bank switching’, allows a significant increase in memory

capacity with only a small increase in program complexity.

Benefits:

The principal benefit of bank-switching is the expansion of memory it offers;
instead of being limited to 32K of available port address space, by bank-switching

all plug-in modules, 64K becomes available. An additional benefit for the
commercial software developer is that of making programs and data stored in
modules harder to ‘crack’.

Disadvantages:

Because the HP-41’s bank-switching scheme is an add-on to the memory
system, programming support for it in the operating system is nonexistent; you
have to do everything yourself. Even for the programmer working at machine
code level, this can lead to some fairly complex code if you don’t plan things
carefully in advance. For the user code programmer, bank switching has only

now become possible with the advent of ZEPROM and the PROGRAMMER ROM.
However, although the PROGRAMMER ROM functions make user code bank
switching possible, its use does require careful planning and a good
understanding of the HP-41 and its ROM structure.

© Zengrange Ltd - 1988 13

Implementation on the HP-41

On the HP-41, bank-switching was an after-thought to the original system design. As

such, it does not integrate as smoothly into the system as one would perhapslike; for
example, the operating system offers no support for bank-switching memory.

Nevertheless, where an application requires it, it does offer the ability to increase the
addressable memory by doubling the total amount of memory capable of being

connected to the machine (via its I/O ports), from 32K to 64K.

The HP-41 has four 1/O ports at its rear; each providing the addressing connections for

a plug-in module containing two pages of 4K-bytes each. It is normalto refer to these
as being the upper and lower pages, or by their positions in the HP-41 memory map

(pages 8h to Fh). See Chapter 1, or the ZENROM Owner’s Manual.

Port 1 Port 2
Upper Page (9-hex) Upper Page (B-hex)

Lower Page (8-hex) Lower Page (A-hex)

Port 3 Port 4
Upper Page (D-hex) Upper Page (F-hex)

Lower Page (C-hex) Lower Page (E-hex)

In a bank-switched module, either one or both of the two 4K pages visible to the HP-41
in each port can be made bank-switching. For a bank switched ROM, there will be both

a visible and a hidden bank for each single 4K page that allows switching. To make the
banks swap over, Hewlett-Packard defined two spare CPU instructions as ‘ENBANK1’
and ‘ENBANK2’ to enable bank 1 and bank 2 respectively.

Bank 1 in a bank-switching pageis often referred to as the primary bank, and bank 2 the

secondary (or alternate) bank. Whenever a bank switching moduleis first plugged into
the HP-41, its primary banks will always be visible. When an ENBANK2 instruction is

issued by the module (not the HP-41 itself, which regards these instructions as
harmless no-ops), it hides its primary bank and enables the secondary banks. The
module remains this way until an ENBANK]1 instruction is issued, or the module is

removed from the HP-41 and then replaced.

In order to prevent all bank-switching modules from switching, the ENBANK1 and
ENBANK2 instructions have been implemented such that they are only acted upon by
the particular module that contains them. Whilst this causes some difficulties for the

programmer, it does mean that all other modules ignore the instructions.

When writing bank-switching code for a particular module at an M-code level, you just

put the ENBANK2 instruction in the code of that module, and when it executes, the

module’s secondary banks replace its primary banks (both 4K pages can swap). To
allow one module to ‘poke’ another module into showing its alternate banks, HP have

established a convention in which bank-switching instructions are placed at fixed
locations within each 4K bank-switching page. By simply jumping direct to these
locations, an M-code program can force another module to select a particular bank.

 © Zengrange Ltd - 1988

Chapter 3: Bank Switching

Bank Switching of Machine Code

We recommend two methods of implementing bank switching of ZEPROMSsthat contain

mostly M-code functions and routines. One is ideal for situations where you have a few

very large M-code functions; the otheris ideal for the case where you have a very large
number of smaller functions. As the latter is simpler to implement, we’ll explain thatfirst.

A Large Number of Small Functions

Consider the case where you have in excess of 200 short functions to put into a
ZEPROM. Supposing the four pages of a ZEPROM plugged into port 1 of the 41
were initialised using the PROGRAMMER ROM functions and (ADDMCF},
to contain 64 functions per page. adds the M-coded instructions to an
alreadyinitialised page. ZEPROM will subsequently look like this:

Primary Banks Secondary Banks

XROM 01 64functions in page XROM 03 64functions in page

fROMJ1 o Page header -ROM-3 Page header
P PBO1 } These functions PB03 } These functions
A sBO1 } added byADDMCF SBO3 } added byADDMCF
G - o . e
E

8 S : : s
_bank switching } added by bank switching } added by

code } INITPG code } INITPG
RM1A Page trailer RM3A ~ Page trailer

XROM 02 64functionsin page XROM 04 64functions in page

-ROM-2 Page header -ROM-4 Page header
P PB02 } These functions PB04 } Thesefunctions
A SB02 } addedbyADDMCF SB04 } added byADDMCF
G : :
E

9 : :
bank switching } added by bank switching } added by
_code } INITPG code } INITPG
RM2A Pagetrailer RM4A Page trailer

You can then fill up each of the four pages with function entries and code;trying
as far as possible to keep the function code in the same page (and bank) as the

© Zengrange Ltd - 1988 15

'ZEPROM Module - Programmer’s Manual

function entry itself. When you wish to execute a function in your ZEPROM, you
would perform the following steps from the keyboard or in a user code program:

- Execute the primary or secondary bank enable instruction in the currently

enabled page,e.g. or
- Execute the desired function by name

Example:

Suppose your function called SOLVEresides in ‘ROM-3’ (page 8, alternate bank),
and the primary bankis currently enabled. The steps to execute it are as follows:

Key Sequences Description

(s)(B])(0])(1) Execute instruction to select
the secondary bank of ZEPROM.

is used because, ROM-1 is
currently enabled.

The ZEPROM will switch banks, and

enable the alternate bank.

(s](o)(1])(v](E) Execute the M-coded function that
you wish to use from that bank.

After executing, it will exit with the
alternate bank still enabled. To
return to the primary bank, use
ROM3'’s enable primary bank

function ((PBo3)).

In the case where you have only a few, very long functions to put into a ZEPROM, the
recommended practice is slightly different.

A Small Number of Large Functions

Suppose that you have four M-coded functions, each of about 4K in length, to put
into a 16K-ZEPROM module plugged into /O port 1 of the HP-41.

Initialise both the primary banks in both pages (with as being bank-
switched, with three entries in each FAT (for two functions and the header).
Instead of initialising the two secondary banks with (INITPG}, just use to
add the necessary bank switching code into both secondary banks and to set the
bank-switched bit at FFDh. As can be seen from the diagrams, only the two
primary banks now contain XROM numbers, page headers, FATSs, etc.

Next add all the necessary bank-switching bytes (required by all bank-switching

ROM banks) to both primary and secondary banks. The module will now look
like the following:

16 © Zengrange Ltd - 1988

©
m
e
O
>
T

©
m
e
O
P
U

Primary Banks Secondary Banks

XROMo1 "3fiznctions in page

ROPacheads

bankswitchingcode~~ bank switching code
RMIA Pagetrailer P

XROMO23functons npag
. .,ROM-Z - Page header

bank switching code bank switching code
RM2A Pagetrailer

Instead of trying to spread the code for two functions over each bank, make the

execution code for one of the functions (preferably the first) in the first bank just
an enable secondary bank instruction. You can then follow this with the second
function’s code in its entirety. The real execution code of the first function is
placed in the secondary bank. However, it must always start at one address after

that at which the enable secondary bank instruction is located in the primary

bank.

The reason for needing to align the code at corresponding locations in both

banks is because of the way bank-switching is achieved on the HP-41. With
more sophisticated computers, the computer can both bank-switch and begin

execution from a different point in the new bank. With the HP-41, however,it just
bank-switches and then continues execution from the address after the one it had
reached in the previous bank. This is a restriction that applies whenever you

switch banks in a running M-code function or user code program. To overcome
this you need to plan your code carefully.

In writing your function for the secondary bank, you should end it in a different

way. Normally, you would just use the M-code RTN instruction. If you did this

with a bank-switching function, execution would halt with the secondary bank still
enabled. Instead, you should replace the RTN instruction with a jump to the
ENBANK1 code in that page - normally at location xFC7h (where x is the

particular page number). This procedure will ensure that the primary bank is re-
enabled when execution of the page-switched function is over.

This procedure is perhaps better explained by the following diagrams. These
show only part of the module - the two banks of the lower page of port 1:

© Zengrange Ltd - 1988 17

®
m
O
>
»
0

ZEPROM Modul

Primary Bank Secondary

XROM 01 3functzonsin page :

-ROM-1 Page header : e Blanklocations
FUNC1 Istfunction name : v =
_enablebank2 Switch over to bank2 1 i . G
FUNC2 2ndfunction name » funct code } Executable code

func2 code } . : - } of the Istfunction
-} Executable code = } (note this starts
- } ofthe 2nd - } one address after
- } function - ~ } the enable bank2
- } - } instruction in the
o= } } other bank)

endfunc2code} jump toenable bank1 code

bank switching code ' bank switching code
RM1A Page trailer : .

As this shows,this practice does leave unused areas in the ROM’s bank, but you
can always utilise them by having your code jump to those locations.

Let’'s now more closely examine the procedures involved in bank-switching of M-code
by means of practical examples.

Examples

As explained earlier,it is beneficial to be able to execute all the ROM’s functions
without having to first enable the secondary bank. This entails grouping all FAT
entries in the primary bank and putting the function’s real executable code in the
secondary bank. To do this, each secondary bank routines needs a dummy

catalogue entry in the primary bank. Each of those entries points to a routine
containing the following code:

JNC +81 Used only for compatibility with HP’s ROMs
xAdr ENBANK2 Enable secondary bank. Execution continues

from same location plus one in new bank.

Note: The JNC +81 instruction is only necessary if you are writing code that

may eventually be burned by Hewlett-Packard into a custom module.
This because of a hardware error in the chip used by HP. If you are
writing code specifically for ZEPROM, the instruction is not necessary,
but for compatibility we recommend including the JNC +81.

No other code for the functions is needed in the primary bank; since execution
will be in the secondary (alternate) bank.

18 © Zengrange Ltd - 1988

The address of the line xAdr in the primary bank corresponds to one less than the

start of the execution code in the secondary bank. This is because the banks

switch between reading the ENBANK2 instruction in the primary ROM, and the
reading of the next instruction from the secondary ROM. The execution process

runs as follows, for simplicity, we have assumed that the primary bank is initially

enabled (the default state when the ROM isfirst plugged in):

Addr Primary code Secondary code

8188 JNC +81 ???
8181 ENBANK2 2?7

[banks switch at this point]
81@2 27?7 Ist byte of target routine

8118 ?2? last byte of target code
8111 2?72 *
8112 ??? *

8113 277 NCGO 8FC? 3-wordjump to enable
the other bank

8FC? ENBANK1 ENBANK1 enable other bank

[banks switch atthis point]
8FC8 RTN RTH

Note: In the above example, it is important note that the instruction at

address 8113h (NCGO) is a 3-word jump. If a 2-word jump was used
instead, the module containing this code would be port-dependent and
would only work if plugged into a particular port.

In this example, ???’ means "don’t care”, and the addresses are only examples.

In practice, the code is arranged such that all the ENBANK2’s are in a block,
aligned with a block of local jumps on the secondary ROM side to the target

routines, which may be just JNCs, or which may be three-word jumps (calls to

GOL@..GOL3 in the HP-41 operating system, followed by a single-byte offset). Note
that neither is a two-word jump, so it is not possible to interleave the JNCs and
three-word jumps in one bank with the JNC +81 & ENBANKZ combination in the

other without requiring padding bytes somewhere.

It is also usual to arrange ENERNK1 as a common exit routine to save having more
than one ENBANK1 in the secondary ROM. This minimises the total number of
ENBANK1 & ENBANK2 instructions that are required between the two ROMs, which,
in turn, minimises the effort needed to align code in the two switching banks.

An Example:

Suppose our ROM has three routines that need to be bank-switched, because
there is no room for them in the primary 4K bank. For this example, the primary

bank has been initialised with the catalogue (FAT) containing just ten entries
including those entries for our three routines called ‘JOHN’, ‘BILL’ and ‘DAVE'.

Primary Bank Code: The following code should be loaded into the primary

bank of the page.

toJohn 8BB JNC +01d

© Zengrange Ltd - 1988 19

8019 186

toBill 08B

881B 188

toDave B8B

881D 180

801E BBE
801F @88
8020 B66F
8821 @eRA
8022 3B3

8023 88C
8824 @ac
8025 089
8026 882
80827 398

8028 885
8629 816
862A BBl
8028 804
802C 383

ENBARNK2

JNC +aid

ENBANK2

JNC +81d

ENBANK2

N
H

0
J

JNC toJohn

L
L

I
B

JNC toBill

E

Yy

A
D

JHC toDave

Aligns with the line labelled ‘fmJohn’

Aligns with the line labelled ‘fmBill’

Aligns with the line labelled ‘fmDave’

Catalogue entry for JOHN points here

Catalogue entry for BILL points here

Catalogue entry for DAVE points here

That's all that’s needed in the primary bank.

Secondary Bank Code: In the secondary bank, the code which ‘accepts’
control when it is passed in from the primary bank should look as follows:

fmJohn 873

8018 006
fmBill 8B3

801D o@en

JNC John

NOP

JNC Bill

NOP

Loaded at 801Ah

Just padding. Never gets executed

Just padding. Never gets executed

No need to jump to routine ‘Dave’, because we can start it here

fmDave 2E8@

881F 3C1

8020 ©B6

8821 3BD

8822 @1C
8023 B804
8624 001
8825 0816

8026 265

8827 BRA3

John 2EB
8829 3C1

802A BEM
8028 3BD
g8@2C eviC
802D BeA
802E BOF
802F 088
8036 20E

DISOFF
*

NCXQ 2CF@
*

NCX@ B7EF
D
A
Y
E

JHC Out

DISOFF
*

NCXQ 2CF@
*

NCXQ BYEF
N

o

Switch display off whilst updating

Clear & enable display

Send message to display

Jump to common exit routine

Switch display off whilst updating

Clear & enable display

Send message to display

© Zengrange Ltd - 1988

Chapter Bank Switching

8631 853 JUNC Out Jump to common exit routine

Bill 2E@ DISOFF Switch display off whilst updating
8833 3C1 =*

8034 BB@ NCXQ 2CF@ Clear & enable display
8835 3BD *

8836 B1C NCX@ @7EF Send message to display
8837 @82 B

8638 0869 I

86839 @eC L
803R 28C L

Out 3BD * Start of common exit code
803C @1C NCX@ @7EF Send message to display
883D 028

883E 0883
883F 881

8640 BoC
8841 @ecC
8842 885
8843 0804

8044 220 Needn't left-justify with this space here
8045 328 DISTOG Restore/turn on the display
8046 149 *

8047 024 NCXQ 0952 Disable display
8848 1F9 *

8049 8BC NCXQ B837E Set the message flag
884A 3AD * Re-enable primary banks, and exit
8048 88C *

804C 3C7 NCGD 8FCY?

o
m
r
r
r
r
o
D
o

The address in both files can be practically anything you like, but the simplest
place to put these bank-switching instructions is immediately following the
catalogue, which means you need to work out the catalogue size for the ROM to

figure out where to load the routines. In this example, we've assumed that the
catalogue has ten entries (including these three functions), so the catalogue size

is 2+10*2+2 [XROM+FCNS*entries + nulls], and so ends at 8017 (hex), so we
have shown the example code loaded at 8018h in the primary bank. The code in
the secondary bank now has to be positioned alongside the code in the primary

bank, according to the alignment requirement specified in the code; hence, it
would be loaded at 801Ah.

This would then give code arranged as follows:

Addr Primary Secondary
program ZZOW

8818 JUNC +81 277
8819 ENBRNK2 >----- 1 2??
881A JNC +81 Loeene- > JNC John

881B ENBANK2 >o---- 1 NOP
881C JNC +81 Loeeee- > JNC Bill

881D ENBANK2 >o----1 NOP

881E ?7? L> Dave code begins here

© Zengrange Ltd - 1988 21

ZEPROM Modul

This procedure also copes with returning from the routine back to the primary
bank by means of a 3-word jump (NCGO 8FC?7) which will always be ENBANK1 & RTH

instructionsin all bank switched pages.

Following the flow of control while executing ‘JOHN’, the jump at 8018h jumps to

the ENBANK2 at 8019h, which causes a bank-switch to occur before the instruction

at 801Ah executes. This causes the JNC John to become visible as the next
instruction, and execution continues with the remainder of the ‘JOHN’ code until
the jump to 8FC7h causes the ENBANK1 instruction to switch banks back again to

the primary set. This makes the RTN visible as the next (and final) instruction

executed by the HP-41 as part of the ‘JOHN’ code, and leaves the primary banks
enabled. A similar thing will happen when ‘BILL’ is executed. ‘DAVE’ only differs
in that there is no jump on the secondary side and execution continues directly

with the DISOFF instruction.

For many simple applications, this scheme will suffice, although its use does

require careful planning.

If your function should need to force a different module to switch its banks, you
can use the following subroutines. These select the primary [or secondary] bank
of a given ROM page. They do this by exploiting a feature of the Hewlett-Packard
bank-switching specification; which is that the four addresses from xFC7 through

xFCAh in any bank-switching page must contain the four instruction sequence:

xFC7?7 ENBRNK1
xFC8 RTH
xFC9 ENBRNKZ
xFCA RTH

This code is loaded at the same location in both the primary and secondary
banks which switch with one another. Being therefore always visible to the
HP-41, it can be used to force selection of either the primary or secondary banks
at any time. The following two subroutines, which expect to be called from
another piece of code, will force selection of the page specified by digit ‘6" of

CPU register ‘C’. In M-code programming, this is normally represented as ‘C[6]’.

Note: these routines rely on the pages being bank-switched and having the

bank-switch code at locations xFC7 through xFCA. In order to check if a

page is bank-switching, you should check that one of the top two bits of
the word at location FFD in that page is set. In these example routines,
we have assumed the ROM is bank-switching, and therefore haven’t

checked it.

BANK1N and BANK2N Routines

Input: C[6] -- page number for ROM to select.

Output: Desired ROM with bank1 [bank2] enabled, C[6:3] is the
execute address of routine called in selected ROM to
perform bank-switch.

Uses: C[5:3]

Assumes: ROM page specified actually exists, and is bank-switching

© Zengrange Ltd - 1988

Chapter 3: Bank Switching

WARNING: Do not GOTO (branch) to these routines - only call them!

Purpose: Bank1N forces the specified bank-switching ROM to have

its primary banks enabled.

Bank2N forces the secondary bank to be enabled.

The call to the alternate bank is done by jumping to

address xFC7h in that ROM to enable its primary banks,

and xFCgh for the secondary banks when returning to the

callerfor exit.

If you want to incorporate this code into some other routine, and can’t cope with
the operating system overhead of the subroutine call, you will need to make you

own arrangements for pushing the appropriate returr address onto the stack.

BANK1N Code:

Bank1N 83C RCR 3 C[3] == ROM page number
2 138 LDI

3 838 CON 838 inverse of FC7
4 833 JNC +84 jump to common code

BANK2N Code:

Bank2N @83C RCR 3 C[3] = = page number
6 138 LDI

7 836 CON 836 inverse of FC9

At this point, C[3] contains the page address of the ROM which we want to

use, and C[X] the bit-wise inverse of the jump address.

8 2R6 C=-C-1 X find true address in that page
9 1BC RCR 11 rotate final address into C[6:3]

18 1E@ GTOC do the call

At this point the ENEANK1 [ENEANK2] instructions will have been processed, so the

primary [secondary] ROM bank will have reappeared, and the secondary
[primary] ROM bank will have disappeared. The ENBRANK1 [ENBANKZ] is followed at

xFC8h [xFCAh] by a RTN, which pops the return address of the function which

called this code.

© Zengrange Ltd - 1988 23

ZEPROM Module - Programmer’s Manual

Bank Switching of User Code Programs

Theoretically, bank-switching of user code programs is considerably more complicated
than performing bank-switching in M-code. The reason being that the means of
swapping banks is really only available at a machine code level, and that there are no

user code equivalents to the ENBANK1 and ENBANK2 M-code instructions.

However, in designing ZEPROM and its associated products, the design team decided
that the ability to switch banks should also be available within user code programs. The

PROGRAMMER ROM software, provided pre-programmed in one bank of ZEPROM,
therefore supplies functions that allow the user to accomplish this.

Because of the nature of bank-switching, as discussed earlier in this chapter, bank-

switching instructions can only operate on the particular module in which they reside.
Forthis reason, each page, and the switched banks within that page, must contain the
functions necessary to perform bank-switching. These functions are loaded into an

initialised page by executing and from the PROGRAMMER ROM.

loads three special functions (BGTOxx), (BXEQxx] and [BRTNxx}; which are the
bank-switching equivalent of the normal GTO, RTN and XEQ. [ADDMCF loads the
functions and which allows enabling of the primary or secondary banks as
desired. In each case, the ‘xx’ in the function’s name represents the XROM-ID of the
page into which the function is loaded. These unique numbers are necessary as an
identification of the particular page or bank in which the functions reside and thus

provide a means of specifying which ZEPROM is to switch its banks. Although these

XROM:-identities are used for all HP-41 plug-ins, they are normally seen only when you
assign a module function to a key, or enterit in a program, then remove the module.

Whenever a user code program is loaded into a ZEPROM or ROM, all global alpha
labels in that program are given an entry in the Function Address Table (FAT) for that

ROM. This means that all such labels will also take on an XROM number; this being a

combination of the ROM’s XROM-ID and the FAT entry number within that ROM.
Normally, if your program is to branch to an alpha label, you simply key in the

instruction, e.g. GT0 "ABC. When the program is run the 41 will search through CAT 1
followed by CAT 2 until it finds the label corresponding to the GTO. An XEQ is slightly

different in that, when the program is typed in, the function is loaded as either
XROM TRBC, or XEQ "ABC depending upon whether or not the label was found in ROM.
When run, the program either searches for the XROM number or searches through
CAT 1 and CAT 2, label depending upon how the function was stored.

If the target label of a GTO or XEQ is in a bank-switched ROM and that bank is not

selected (enabled) at the time of execution, then the label will not be found since the

built-in GTO and XEQ functions cannot bank-switch. It is for this reason that the
PROGRAMMER ROM provides and functions. However, since both
functions expect an alpha label in Reg X,a restriction of six characters is placed on the
length of any such label. In operation, and switch banks and then
execute either GTO IND X or XEQ IND X for that label. It is perhaps worth pointing out
that these functions could not be made prompting, as per the ordinary GTO and XEQ,
since the 41 operating system dictates that external functions which prompt for an
argument must be non-programmable.

24 © Zengrange Ltd - 1988

Because and cause the banks to swap before calling the label, a
special RTN function is also required that first swaps the banks and then performs the

RTN. This function is [BRTNxx.
©

m
O
P
>
T

©
m
O
>
»

Examples

Consider the following situation where a ZEPROM module is configured as 16K
bank-switched. Each page has previously been initialised with INITPG and
ADDUCF

Primary Banks

XROM 01

ROM-1 Page header
BGTOO1 } Thesefunctions
BRTNO1 } added byADDUCF
BXEQO! }

bankswitching } addedby
_ code } INITPG
RM1A Pagetrailer

XROM 02

-ROM-2 Page header
BGTO02 } These functions
BRTNO2 } added byADDUCF

BXEQO2 }

bank Switching } added by
code } INITPG

RM2A Page trailer

Secondary Banks

XROM 03

ROM-3 Page header
BGTOO03 } Thesefunctions
BRTN03 } added byADDUCF

BXEQO3 }

bank switching }added by
~ code '} INITPG
RM3A Pagetrailer

XROM 04

-ROM-4 Page header
BGTO04 } Thesefunctions
BRTNO4 } added byADDUCF

BXEQO4 }

bank switching } added by
code } INITPG

RM4A Page trailer

Now suppose we load one user code program into each core; "FROG1 into page 8
primary, "PROGZ into page 9 primary, "PROG3 into page 8 secondary and "PR0OG4

into page 9 secondary. The ZEPROM module will now appear as in the following
diagram:

© Zengrange Ltd - 1988 25

ZEPRQM Module - Programmerjs Manual

©
m
O
P
>
T

©
m
E
O
>
o

bankswiching
ode
AM2A

TPROGD

PROG2 }wercodeprogram

Secondary Banks

ROM3
BGTOO3
BRTNO3
BXEQO3

3 wer codeprogram

Bank swifching . :

code
RM3A

XROM 04

ROM4
BGTO04
BRTNO4

'PROG4 }user codeprogram

bank switching
code

RM4A

Let’'s suppose that we have written our programs in the following manner with
"PROG1 calling both "PROG2 and "PROG3 as subroutines. The code for "PROG1 will
thus have the following structure:

 LBL"PROGI™

XEQ “PROG2*

“PROG3"
 RSTO X
 BREQB1

END

Call "PROG2 as normal sub-routine

Load label of bank-switched routine

Store it into Reg X

Call "PROG3 as bank-switched

Notice that, in this instance, there is no need to call "PROG2 as bank-switching,
since we know that "PROG2 must be in the currently selected bank because the
calling program is also in that bank. However, in order to call "PROG3, its label
must be loaded into Reg X and the bank-switching XEQ function ((BXEQo1)) used

© ZengrangeLtd - 1988

since the program resides in a different bank. It is particularly important to note

that the function used is (BXEQo1] and not (BXEQo3). This is because you must
always use a bank-switching function resident in the currently enabled bank - the
target bank’s functions being effectively invisible until that bank is enabled.

The code for "PROG3, loaded in a secondary bank, would be written as follows:

LBL "PROG3" Notice the use of and not
s to bank-switch RTN to the
e - v primary bank since secondary bank

BRTNG3 will be enabled at that time

Now let’'s suppose that "PROG4 also needs to call "PROG3. If "PROG3 is left as
above (with a BRTN83 instruction at its tail), then a call by "PROG4 will return
execution to the wrong place since it will have swapped the banks over.

It is therefore necessary to establish a protocol by which a subroutine can

determine if it was called from the same or another bank. The simplest way to do
this, is by means of a flag:

LBL °"PROGI”

REQ "PROG2" Call "PROGZ as normal sub-routine

“PROG3™ Load LBL of switched routine

RSTO X Store it into Reg X
SF 88 Set flag to indicate bank-switch call
BXEQBL Call "PR0OG3 as bank-switched

!:ZND'

~ LBL "PROG4"

CF @@ Clearflag to indicate non-switched
¥EQ "PROGY4” Call "PROG4 as an ordinary XEQ

LBL *PROG3"

: Test flag to determine whether
FS? 08 called from another bank?
BRTNB3 Yes, then do a bank-switched RTN

RTH ’ No, so do an ordinary RTN

In the preceding example, we have only used to add the user-code functions
(BGTOxx], (BRTNxx] and [BXEQxx] in the switching banks. In cases where you intend
loading all your sub-routines into the secondary bank and will only call them via the

© Zengrange Ltd - 1988 27

ZEPROM Modul

main programs in the primary bank, this will suffice. However,it is also possible that

you may, for space or other reasons, need to insert some main programs into the
secondary bank. See WARNING below. Executing main programs in the secondary
bank can be achieved by either of the following means:

1. Enabling the page’s secondary bank with (SBxx), then
Executing the desired program by name with XEQ, and finally

Re-enabling the primary bank with [PBxx]. ((SBxx)and (PBxx) are added to
an initialised page by ADDMCF }.)

2. Executing the desired program by name with (BXEQxx).

Suppose a program, called "PROG3, resides in ROM-3 (page 8, secondary bank) and the
primary bank is currently enabled. You could execute it from the keyboard as follows:

Key Sequences Description

(s)(B](0](1) Enables the secondary bank. Note:
is used because, ROM-1 is

currently enabled.

(r)(rR)(0])(G](3] Executes program in that bank and
exits with the secondary bank still

enabled.

(r)(B](0](3) Re-enable the primary bank. Note:
PBo3 is used because, ROM-3 is

currently enabled.

' Exercise extreme care when executing programs in other banks

= either from the keyboard or from another program. Before doing so,

Warning you must be absolutely sure how that program is structured.
and should also only be used in a running program when the
code in both primary and secondary banks of that page is exactly

identical (e.g. in emulating a 12K module) since otherwise the banks
switch and the next program instruction is no longer available.

Wheneither of the two methods discussed are executed from the keyboard, the called
program will either terminate with the secondary bank enabled (if normal RTN/ENDs
were used) or swap back to the primary bank (if was used).

If is executed within a running program, then the called program will either
swap banks and correctly continue execution (if was used), or will stay in that
bank, but return to an address within that bank that has totally unrelated codein it (if a
normal RTN/END was used). The result of this is absolutely unpredictable.

The need to use correct terminating returns is dictated by the HP-41 method of bank-
switching. More sophisticated computers can both bank-switch and recommence
execution from a different address, however, the HP-41 just bank-switches and blindly
continues execution from one address after that it had reached in the previous bank.
To overcome this you need to plan your bank-switched programs very carefully.

28 © ZengrangeLtd - 1988

Chapter 3: Bank Switchiqg

Chapter 4

ZEPROM Voltage
Converter

The ZEPROM Voltage Converter, or ZVC, has been designed as a companion product
to ZEPROM and provides the user with an inexpensive, simple-to-use means of burning
(programming) ZEPROMs when used with software such as the PROGRAMMER ROM.

The ZVC is a single unit, bare board device protruding from the back of a standard
HP-41 module housing. This housing allows the ZVC to be plugged directly into one of

the four 1/O ports at the back of the HP-41. The contacts at the other end of the ZVC

are provided for plugging the ZEPROM module onto.

When plugged into the HP-41, the ZVC increases the 6V supply available from the HP-

41’s batteries to the 12.5V needed to burn ZEPROM.

Switching ON & OFF

The ZVC contains a small vertically moving switch (S1) next to the connector for
attaching a ZEPROM module. This switch, used in programming, has two purposes:

To activate the 12.5V programming voltage

To force the attached ZEPROM module into a straight 16K mode. This applies
even if that particular ZEPROM module has already been part-burnt and

configured as bank-switched, etc.. Forcing the ZEPROM into 16K mode is
necessary in order that the HP-41 can see all four 4K-cores in the module during

programming.

Programming
Switch

Set to OFF
Position

© Zengrange Ltd - 1988 29

rammer’s Manual 'ZEPROM Module

The programming switch is activated (turned ON), by pushing the switch actuator

downwards. To turn the switch OFF,lift the actuator upwards with a fingernail. The

direction of movement to turn the switch ON is marked on one side of the switch body.

Plugging in

The ZVC plugs into any of the HP-41’s 1/O ports in the same manner as a normal

module. The correct orientation, with the HP-41 resting on a table, is with the ZVC'’s
components facing uppermost - see diagram below. In this orientation, the ZVC can be
gently slid into the port.

. The HP-41 computer must be switched OFF before modules

are plugged into or removed from it. This also applies

whenever the ZVC device is inserted or removed, and when a

ZEPROM module is attached to or removed from the ZVC.
Failure to do this may cause the computer to reset, causing a

loss or corruption of data in memory.

. To insert or remove a ZVC, hold it by its edges between
' thumb and forefinger. Avoid holding the device by its

contacts or underneath.

. The ZVC can only be inserted one way into an HP-41 port. If

any obstruction is felt, the orientation is mostlikely incorrect.
Never force the ZVC into a port as this can damage contacts
in either or both devices.

. Protect the HP-41’s ports from dust by keeping a port cap
installed in any empty port. Do not place fingers, tools or

other foreign objects into the ports. Such action can cause
serious damage to port contacts and/or internal circuitry.

"

Cautions

 S
With the ZVC plugged into the HP-41, the ZEPROM module can be attached to the ZVC.
Before attaching a ZEPROM, ensure that the ZVC’s programming switch is set to the

OFF position. When attaching a ZEPROM,it is critical that the module is correctly
attached. The module must be orientated such that the erasure window is
uppermost.

—_—

30 © Zengrange Ltd - 1988

Chapter 4: ZEPROM Voltage Converter

When the ZEPROM module is attached to the ZVC, and the programming switch is set

to ON, the ZEPROM module is forced into a straight 16K mode. In this mode, all four

4K cores in the ZEPROM can be programmed. However, because the module appears

as 16K, it will always consume the addressing space of two ports whilst it is being

programmed. Forthis reason, the user must ensure that the port adjacent to the ZVC
is empty, or contains only memory modules or system modules such as HP-IL, printer,
Timer, etc. If this is not done, there will be an addressing conflict and data will not be

correctly verified after burning.

 /

Whilst data is being burnt into a module, you should avoid handling the ZVC, module or
HP-41. If the PROGRAMMER ROM software is used, the HP-41’s keyboard is disabled
during burning; however,this may not be the case with other controlling software.

Batteries

Because the HP-41’s own batteries are used by the ZVC to generate a 12.5-volt burning
voltage needed to burn data into a ZEPROM module, it is essential that adequate

charge is available in the batteries whenever burning is commenced.

Unless you will only be burning very small amounts of data, we recommend that you
alwaysstart with a fresh set of batteries in your HP-41. When purchasing the batteries,
buy them from shops that have a high turnover of such cells. While your local corner

shop may be convenient, the batteries they stock may have been sitting on their shelves
for quite a while.

Although it may also be tempting to use Ni-Cd cells, in most cases our advice is, don’t!
The re-chargeable battery pack manufactured by HP may not have the capacity to burn

a 4K image into ZEPROM. This applies even if a mains recharger is connected,
because the recharger cannot compensate for the drain on the cells. It is possible that
using separate ‘size N’ Ni-Cd cells will suffice to power the burning of an image, but this
cannot be guaranteed. For these reasons, we strongly recommend using alkaline
batteries. With a fresh set of alkaline batteries, the user could expect to be able to burn
in excess of 512K of data into ZEPROM modules.

The programming switch on the ZVC activates the voltage conversion. When ON, the
12.5V burning voltage is continually being generated, although the highest current drain

only occurs when programming is actually taking place. To minimise the current drain

©Zengrange Ltd - 1988 31

from the cells, we recommend that you only turn the switch to ON just before beginning
to burn and then turn it OFF again immediately after finishing. With the switch set to
OFF, you can access (read) the module plugged onto the ZVC as if it were plugged

directly into that port. The configuration that you have burnt into the module is also

effective in this condition. Note that when the programming switch is set to ON, the

module always appears to the HP-41 asif it were a straight 16K module.

Care and Maintenance

The ZVC does not contain any user serviceable parts and should not require servicing

during normal or extended use. However, whilst not in use the user should keep the
ZVC in the antistatic packaging in which it is supplied and protect it from physical
damage.

Whenever the ZVC is handled, the user should avoid touching any contacts,

components or the underneath of the printed circuit board. Try to hold it by gripping
the PCB edges between thumb and forefinger. Over a long span of time,it is possible

that the ZVC'’s contacts, where the ZEPROM module is plugged onto it, may become
oxidised. If this should happen, very gently rub the contacts with a soft pencil eraser.
Avoid using a hard, typewriter eraser as this can easily damage the contacts.

32 © Zengrange Ltd - 1988

Chapter 4: ZEPROM Voltage Converter

Chapter 5

Burning Methods
The ZEPROM module has been designed to be as flexible as possible within the
constraints of the HP-41 system.

Burning (also called programming) of ZEPROMSs, as with other EPROM type devices,
involves the use of a programming fixture, onto which the ZEPROM is placed, and

suitable software driving the fixture and controlling the burning process itself.

Burning Fixtures

In designing ZEPROM,the intention has been to provide solutions for differing markets:

. a cost effective solution that could be used by the HP-41 user without
considerable technical expertise and investment in equipment. This is the
ZEPROM Voltage Converter (ZVC); a simple device that plugs directly into

one of the four 1/O ports on the HP-41 and then allows the ZEPROM

module to be plugged onto it. To use the ZVC, ancillary software must be
used to control the burning process. The recommended software is the

PROGRAMMER ROM that is pre-programmed into one ZEPROM core.

= a medium to high volume ZEPROM Gang Burner that allows up to eight
ZEPROMs to be burnt and tested simultaneously. The device has built in

software and is intended for connection to a microcomputer via RS232C.

In addition, it can be used in a stand-alone mode to copy existing

modules. The unit is recommended for use with various HP-41 software
development systems available for most MS/PC-DOS desktop computers.

In addition to these fixtures designed and marketed by Zengrange Ltd, another solution
is available from a third party source:

= The ZEPROM Programmer is available from Firmware Corporation, 605

NW 5th Street, Suite 2A,Corvallis, OR 97330, USA. This fixture is intended

for low to medium volume use, and can burn two ZEPROMs

simultaneously. The Zeprom Programmer can be connected by a cable to
the HP-41, or via a RS232C connector, to a micro computer running

suitable data-communication software. This product also contains

additional RAM and controlling software allowing the user to build up and
test the complete image before burning. The unit is recommended for use
with a number of HP-41 Software Development Systems available for
MS-DOS computers.

© Zengrange Ltd - 1988 33

ZEPROM Module - Programmer’s Manual

Controlling Software

In addition to dedicated software packaged inside some programming fixtures, the

following may be used for developing and burning ROM images into ZEPROM.

The PROGRAMMER ROM

The PROGRAMMER ROM is a companion product for the ZEPROM Voltage
Converter. lts software provides complete control over the burning of both user

code (RPN) programs and M-Code (Machine language) functions into ZEPROM.

The PROGRAMMERsoftware is burnt into each ZEPROM module as part of the

extensive quality control procedures used during manufacture. This ensures that

each user can immediately begin burning ZEPROM, without needing to purchase
or write their own programming software, and also ensures that the correct
ZEPROM burning algorithm is used. An added innovation, is the provision of
functions allowing bank switching of user code programs. Until ZEPROM and the

PROGRAMMER ROM,this was not possible. Also included in the function set are
routines to copy code between an HP-IL mass storage device and ZEPROM.

Chapter 5 - The Programmer ROM, contains a complete description of all
PROGRAMMER ROM functions.

HP-41 Software Development Systems

A number of HP-41 Software Development Systems have been released as

complete development packages running on MS/PC-DOS and CP/M desktop

computers. Most of the packages provide the facilities to develop user code
and/or machine code routines in the format required by HP for burning into a

mask-programmed ROM. As ZEPROM is completely downwards compatible
with HP’s ROM formats, these SDS packages can be used to develop code for
and burn ZEPROM modules. These modules can then be used for field testing
before submitting to HP for ROM burning.

ZENROM-3B - The Programmer’s Module

The ZENROM Programmer’s Module, another Zengrange product, opened up the
world of synthetic and machine code programming to the HP-41 user by

providing unique functions that permit direct access to the HP-41 operating
system.

Included in its function set is a machine code editor, MCED, that can be used to
transfer code from a Q-ROM (Quasi-ROM) device to ZEPROM or to burn directly
into a ZEPROM module. When using ZENROM to burn a module,it is essential
that the correct burning algorithm is followed.

34 © Zengrange Ltd - 1988

Chapter 5:Burnmg Methods

Example using ZENROM with the ZVC

This example illustrates using ZENROM to write the single machine code word

3EOh at location 8A60h. It assumes that you have already checked the HP-41’s
batteries, plugged the ZVC into port 8 or 9, connected the ZEPROM onto the
ZVC, and have pressed the burn switch to ON.

ZENROM functions can also be used to transfer blocks of code rather than single

words. When doing this remember that you must verify correct burning, and

when correct, repeat the burn again twice more to ensure ZEPROM stays

programmed.

sequence Description Resulting Display

Execute the MCED function:

(M)(c)(E)(0) e7|

MCED now waits for a command to be
entered. Use the goto function to enable
movement to an address:

B (cm0o) Hie===]

Key in the address 8A60h: I _

(8)(a)(e)(0) LHIR HHERS |

/s Dooe.]

The three 000h digits indicate that the
address 8A60his currently blank.

Key in the word value that you wish to

burn at this address; i.e. 3EOh:

EIEE |

R/S |

0 R A | 3Se0'1;,I
SRR :I

LTHTREA]
A LLo = =

Back step to the previous address in order
to check that the correct value was burnt:

@(esT) |HHbBS dea|

Because EPROMSsneed a longer burn

cycle than RAM, you may find that the
word has not been burnt. If this is the
case, re-key the word 3EOh by repeating
the last two steps until the word is correct.

© Zengrange Ltd - 1988 35

?EPROM Module - Pr rammer’s Mar_u_xal

Once correct, you must re-burn the word
twice more. Because EPROMs may revert
if the burn cycle was not long enough, you

must do this to ensure that the word will
remain programmed.
Key in the word value 3EOh again:

(B[]

R/S

3 ‘.
.

S o r
3 dE8 AEA]

2 - -
t

3 £
3
£
3

F
—

Back step to the previous address.

8(es) [BRED 3Fg __ |
Key in the word value 3EOh again: _ _ _
EE© |HHRD R0 38

R/S [HHE § oot|

The word should now be programmed.

Other Software

Various software packages are available for writing code into Q-ROM or RAM
Storage devices. Whilst not intended for burning ZEPROMs, they can often be
used for that purpose with the ZVC. In most instances, it is necessary to write
small user code routines using functions in the software. This is necessary

because programming an EPROM requires a longer write cycle.

In general, software that uses the machine code WMLDL (040h) instruction for

writing to Q-ROM devices, with the address in C[6:3] and the data in C[X], can be
used with ZEPROM. However,it should be noted that a special algorithm should

be used for programming the module as ZEPROM uses the Peripheral Flag 4
(accessed with the ?PF 4 (06Ch) instruction) to control burning. This algorithm is

discussed in Appendix A.

Reference should be made to the relevant manuals or product manufacturers for

further details of the programming methods and software. A typical example of
this type of software is:

MLDL Operating System/David Assembler

The MLDL Operating System & David Assembler are products of the Dutch

company Eramco Systems BV (Loodsgracht 23, 1781 KM Den Helder, The
Netherlands). Both of these are machine code development utilities
intended for use with Eramco’s own RAM Storage Units (Q-ROMs). Many

of the functions provided in these software packages can be incorporated
into user code routines to control the burning of software into ZEPROM.

36 © Zengrange Ltd - 1988

Chapter 6: The Programmer ROM

Chapter 6

The Programmer ROM
The PROGRAMMER ROM software has been designed and especially written to provide
complete control over the burning of both User Code (Reverse Polish Notation)
programs and M-Code (Machine Code) functions into a ZEPROM. The software is

intended as a companion product to the ZEPROM Voltage Converter (ZVC). When

used together, they form a powerful, low-cost solution for low-volume burning of
ZEPROM Modules. The simple, user orientated design of the complete package also

brings the burning of ZEPROMs well within the ability of normal users who might want

to have their favourite RPN programs permanently available in a module.

The software contains an instruction set of special machine coded functions that

perform necessary housekeeping tasks and control burning at the byte, program, block
and ROM page level. To aid the non-technical user code programmer, these functions

have also been incorporated into an automated, prompting burn program. For
simplicity, the software is described in two sections:

= Instruction Set describes all the low level functions giving ultimate control

over each stage of burning;

. Utility Routines describes the user orientated routines that automate the

burning process by prompting for input of relevant arguments.

These software descriptions assume the user understands the various HP-41 owner’s

manuals,is proficient in user code programming and conversant with the general terms

and concepts of the HP-41 computer. To successfully use this software in user code
programs, the user should also understand how flag 25 can be used to affect trapping

and handling of burn and othererrors.

For more detailed information about the 41’s structure, ROM formats, machine code

and synthetic programming, we recommend reading the ZENROM Programmer’s
Module handbook - which is also available from Zengrange Ltd.

' All copy, design, patent and ownership rights of this manual,
= together with its associated hardware, software, source code and

descriptions shall remain with Zengrange Ltd and others. The
© provision of the software, and inclusion of any source code in this

Copyright manual does not, and shall not, constitute its passing into the public
domain. The user is permitted to use the software for purposes of
burning ZEPROM modules, but neither the software, listings nor

descriptions may be further distributed, modified or included in any
other commercial product without the prior written approval and
agreement of Zengrange Ltd.

© Zengrange Ltd - 1988 37

WZEPROM Module - Programmer’s Manual

' The PROGRAMMER ROM contains functions that facilitate the
= copying of ROM software. However, since software is covered by

copy, design or patent rights, it is illegal to make copies for
Caution distribution, duplication or modification unless permission has been

granted by the holder of those rights. Obtaining such permission is
the specific responsibility of the user.

In cases where a Zengrange product is used to infringe copy,
design or patent rights, the user shall bear the entire responsibility

and assume all liability for infringement. Neither Zengrange Ltd, nor
its agents, shall be in any way liable for the user’s actions.

The Instruction Set

The PROGRAMMER ROM Instruction Set incorporates all those functions necessary for
ultimate control over the burning process. This may be necessary for reasons of

burning only a small numberof bytes, or because the user wishes to burn ZEPROM in a

particular way. A complete understanding of the instruction set is not necessary for

users wishing to burn programs from the HP-41, or for copying modules or code from a
Q-ROM/RAM storage device. However, we still recommend reading the complete
manual, asthis will give a better understanding of the procedures involved.

Instruction set functions are described in alphabetical order. Unless stated otherwise,
functions can be executed from the keyboard, or under control of a running program.

Keying in Arguments for Instructions

In general, instructions requiring the user to supply arguments (parameters) for
addresses, pages, number of bytes, etc., allow this to be done in two forms:

a floating point decimal value Decimal addresses range from 0 to 65535.

However, since locations below 32768 are
e.g. 40812. used by the HP-41 itself, valid input for all

burning operationsis limited to between
32768 & 65535. Similarly, valid pages for

burning operations are from 8 to 15.

a hexadecimal alpha string Hexadecimal addresses range from 0 to

FFFFh. However, since locations below
e.g: 9F6C 8000h are used by the HP-41 itself, valid

input for all burn operations is limited to

between 8000h & FFFFh. Similarly, valid
pages for burning operations are 8h to Fh.

Where permitted, the user may enter values in either format depending upon
preference. Those functions that return a value to registers or the display, will

generally use the same format as that of the input. However, the incrementing
burn counter and burn error messages always display addresses in hexadecimal.

38 © Zengrange Ltd - 1988

Chapter 6: The Programmer ROM

Hexadecimal values can be keyed into the Alpha register and then stored into a

stack register by the function. E.g. would copya string of up
to six characters from Alpha into Reg X. Hexadecimal values can be entered in
either upper or lower-case letters, e.g. ‘9f6éa’ or ‘9F6A’, with valid input being 0-9,
A-F and af. For clarity in this manual we have shown hexadecimal values in

uppercase, followed by the letter ‘h’; e.g. ‘9F6AR’.

Two utility functions, and (DECHEX), have also been provided for
converting the Reg X content between the two formats.

Test Functions

In general, the test functions, those with names terminating in a ‘?’, follow the
usual HP convention and perform tests in the same manner as standard HP-41
test functions such as (x=Y7), etc. Different results are obtained
depending upon whether the function is executed from the keyboard, or from a

running program.

Under Keyboard Execution

When executed from the keyboard, these functions display a YES or NO
answer depending upon the outcome of the test:

If test was TRUE, display: YES

If test was FALSE, display: NO

Under Program Control

Under program control there is no displayed result, but the program
instruction following the test will be executed or skipped depending upon

the test. The "DO IF TRUE"rule is followed by all these tests:

If test was TRUE: PERFORM the next program step.

If test was FALSE: SKIP the next program step.

Some functions may also modify the content of stack registers dependent upon

the outcome of the test.

Bank Switching Instructions

Special bank switching instructions are provided by the PROGRAMMER ROM to

allow the user to more fully utilise a bank-switched ZEPROM. These instructions
allow the user to branch to and execute user code subroutines in other banks,

and to swap the banks from the keyboard. The instructions, (BGTOxx), (BRTNxx),
(BXEQxx], (PBxx and [SBxx], are loaded into bank-switched ZEPROM banks by
the PROGRAMMER ROM functions and (ADDMCF). During loading, the
bank-switching instruction always take on the XROM identity of the ZEPROM
bank into which they are being loaded. E.g. if a bank is initialised with an XROM

© Zengrange Ltd - 1988 39

__EEPROM Module - Programmer’s Manual

identity of 28, the functions would appear as (BGTO28), (BRTN28), [BXEQ28),

(PBz8) and (Sez8).
The reason for this adoption of the XROM identity is that such functions can only

operate on and within the particular bank in which they reside. Because each
ROM or ZEPROM page connected to the 41 must have a unique XROM identity,

the instruction itself must possess that same XROM identity. In describing the
functions in this manual, we have referred to them as (BGTOxx), (BRTNxx),
(BXEQxx), (PBxx] and SBxx J.

When writing user code programs for ZEPROM (that will call subroutines in other

banks of a bank-switched ZEPROM), the user must ensure that the instruction
has the correct XROM identity; this always being that of the ZEPROM bank into
which the program is to be loaded. For example, if a program in one bank

(XROM 28) is to execute a subroutine in a switched bank (XROM 15), the
programs would be written as follows:

Main Program program Sub-Program
(in bank of XROM 28) flow (in bank of XROM 15)

MLBL “MAIN®

Entryfrommain
__prog in other bank

 PRetumtomain
 proginother bank

Burn Instructions and Output Formats

All PROGRAMMER ROM instructions to burn data into ZEPROM pages have a

common display and output format. During burning, the display will show one of
the following message sequences:

Successful Burn Unsuccessful Burn
T IR T =S 1R IL BLIRNTNGZrren | | RNTNGZreran|

followed by: followed by:

T — AN L T = g - :(BNTOMPLETE] [BRN ERF nonn]
a TONE 7 is also sounded to a TONE 0 is also sounded to
indicate completion. indicate the error.

40 © Zengrange Ltd - 1988

Errors during burning operations generally occur when the PROGRAMMER ROM
reads back and compares the information that it has just tried to burn into

ZEPROM. If the data is not identical, the PROGRAMMER ROM considers this to

be a burn error and so aborts burning. In most instances, such burn errors are
caused by low HP-41 batteries, attempting to burn into a non-ZEPROM module

page or an already burnt page, or not having the ZVC programming switch set to
the ON position.

The PROGRAMMER ROM'’s burn instructions fall into two groups:

Burning User Code Programs

provides the necessary control to burn user code programs
from main memory into a ZEPROM page. During burning, stack registers
are restored or modified as follows:

During user code burning: Reg X: contains the address of the
first line of code burnt.

User code burn succeeded: On completion, stack registers are
restored to their original content.

Reg X: page number to burn into.

Alpha: name of program to burn.

Burn operation failed: Reg X: replaced by the burn failure
address. This is the address at
which the data it tried to burn was
verified incorrectly.

Reg L: contains the address of the

first line of code burnt.

Alpha: name of main memory
program to be burnt into ZEPROM.

If an error should occur whilst burning a user code program,it is essential

that the user does not just re-try using (BURNUC]. If restarted,
will insert the new image after that of the aborted attempt. To prevent this,
a instruction has been provided for recovering from user code
burn errors. Please note that must not be used in other
instances.

As input requires: Reg X: addressof thefirstline of
the program code burnt. This is the
start of the program that
was burning when error occurred.

Alpha: name of program
failed to completely burn.

Because the burn error moves the start address to RegL, the
user must use LASTX to recall this to Reg X before using (REBURN).

© Zengrange Ltd - 1988 41

}EPROM Module - Programmer’s Manual

All Other Burning Operations

Various other instructions are provided in the PROGRAMMER ROM to
control the burning of ZEPROMsat the page, block and word level. The
input to these instructions varies according to the number of parameters
required.

The stack registers are restored or modified by the instructions as follows:

Burn operation succeeded: All stack registers: data is

unchanged. The exact data content

depends upon the actual operation
currently being performed.

Burn operation failed: Reg X: replaced by the burn failure

address . This is the address at
which the data it tried to burn was

verified incorrectly.

Reg L: replaced by the original

content of Reg X at the start of the
operation.

Other registers: unchanged.

In the event of an error terminating the burning process, e.g. because of

low batteries, the operation can usually be retried using the same data.
However, because the value originally in Reg X will have been moved to

Reg L, the user must recall this to Reg X before re-trying the instruction.

Because these operations return the burn failure address to Reg X, this
can be used with a suitable editor, such as ZENROM’s MCED, to examine
that address location in the ZEPROM page.

42 © Zengrange Ltd - 1988

Chapter 6: The Programmer ROM

Function Description Index

Function XROM ID Description Page No

ADDBSW 09,01 Add bank-switching code to initialised page..............c.c........ 44

ADDMCF 09,02 Add M-code bank-switching functionsc.cccccceoeeenene. 45

ADDUCF 09,03 Add user code bank-switching functions............c..ccccoeeeee.. 46

BGTOxx User code bank-switching GTOcccociiiriinveniieiieneeee 47

BLANK? 09,04 Test if the page in Reg Xis blank............ccccoeirnininennenne 49

BNKSW? 09,05 Test if page in Reg X is bank-switched............cccccoecrenennee 50

BRTNxx User code bank-switching RTN............cocoiiniininiiieneeee. 52

BURNUC 09,06 Burn user code program from RAM or ROM........................ 54

BURNWD 09,07 Burn word in Reg X into address inReg Ycccccoeeenennene 56

BXEQxx User code bank-switching XEQ............cccooeieeneeeciecceeeieeene 57

CHKSUM 09,08 Compute & return checksum for specified page.................. 59

COMPUC 09,09 Compile user code program in main memory...........cc.c....... 60

COPYPG 09,10 Copy entire 4K image between pages X & Y.....ccceceveveenene62

CPXYZ 09,11 Copy data as specified in Regs X,Y,Z.......cccecevervienencnneenn. 63

DECHEX 09,12 Convert decimal value in Reg X into hexadecimal............... 64

ENABLEP 09,13 Enable primary bank of ROM page in Reg X.......cccccceeue.e. 65

ENABLES 09,14 Enable secondary bank of ROM page in Reg X................... 66

FRSPC? 09,15 Address and amount of free space of page in Reg X........... 67

HEXDEC 09,16 Convert hexadecimal string into decimal number................ 68

ILBURN 09,25 Burn page using image from IL mass storage file 69

ILSAVE 09,26 Save ZEPROM page image into HP-IL mass storage file.....71

INITPG 09,17 Initialise @ ZEPROM Page..........coceecieuerenieneeeenceeeneeeeene 73

PB09 09,22 Enable primary bank of Programmer ROM module............. 75

PBxx Enable primary bank of ROM with XROM-id of xx................ 76

PGX=Y? 09,23 Compare two 4K ROM pages for equalityccccecveeueneeee. 77

PRGMLN 09,24 Return program length and number of LBLs........................79

READWD 09,25 Read word from ROM page in Reg X........cccooeeverrinencnnennn. 81

REBURN 09,26 Recover from error in burning user code program 82

RRBURN 09,27 Burn ZENROM ROMREG + format data into ZEPROM........ 84

SB09 09,28 Enable secondary bank of Programmer ROM module......... 86

SBxx Enable secondary bank of ROM with XROM-id of xx........... 87

© Zengrange Ltd - 1988 43

ZEPROM Modul

ADDBSW Add bank-switching code to initialisedpage
XROM 09,01 | .

Makes a blank or previously initialised page into bank switching. The
function sets the bank switching bit at page location FFDh and adds the
necessary bank switching code in the locations FC7h to FCAh - these
being the locations reserved for that purpose by Hewlett-Packard.

requires that locations FC7h to FCAh and FFDh are currently
unused. If subsequently intending to add the M-code bank switching

functions (PBxx and (SBxx] (added with [ADDMCF) and/or the user code
functions [BGTOxx), (BRTNxx] and (BXEQGxx) (added with [ADDUCF)), then
the page locations FCBh through FF2h should also be unused.

The user must supply a value for the following argument:

Reg X: target-page Target page specified either as a
floating point value, or a
hexadecimalstring.

Stack registers are unchanged unless an error occurs during burning. See
page 40 for details of standard outputs following burn errors.

Refer to the HP-41 Owner’s Manuals for details of standard messages.

P S invali ified.IIN‘ oy '.JH'.)'.:I An invalid page was specified

e T R Specified ROM page has already
[Ph 1% HHNKS] been initialised as being bank-

switched.

[YY I The page locations FC7h to FCAh
rut rar_t_t

and FFDh have already been used.

adds just the essential bank-switching codeto a blank page, or
one previously initialised with as being not bank-switched. It can
therefore be used in setting up a bank-switched ZEPROM.
When initialising ZEPROM as a bank-switched module, all banks must be
initialised as being bank-switched. Because it is not always practical to
initialise all pages at once, can be used to add the necessary
switching code into the other pages, until you are ready to all
remaining banks with XROM-id, header, FAT,etc.. See also [INITPG].
As described on page 16, can be used to add the necessary
switching code into a blank alternate bank where a small number of large
M-code functions are to be inserted into ZEPROM. In this way, valuable
space in the secondary bank is not consumed by the XROM-id, header,
FAT,etc..

44 © Zengrange Ltd - 1988

ADDMCF3j . AddM-codebank-smtchmgfunctlons

XRoMfioga2 . to initialisedpage

Adds the machine coded bank switching functions and into a
page previously initialised as being bank-switched. The two instructions
are loaded into the specified page at locations FE9h through FF2h and
their names entered into the FAT. These instructions permit the user to
switch between primary and secondary banks as required. During
loading, these instructions always take on the XROM identity of that bank.
E.g. if a bank is initialised with an XROM of 28, the functions would appear
as and (sB28). See page 39 for a more detailed description of this
procedure.

requires that locations FESh to FF2h are currently unused. If
subsequently intending to add the user code instructions (BGTOxx),

and with (ADDUCF), then the page locations FCBh
through FE8h should also be unused.
Note that ADDUCF must be used to insert the bank-switching

functions into both banks of that page. Failure to do so will mean that a

particular bank can be enabled, but not disabled.

The user must supply a value for the following argument:

Reg X: target-page Target page specified either as a
floating point value, or a
hexadecimalstring.

Stack registers are unchanged unless an error occurs during burning. See

page 40 for details of standard outputs following burn errors.

Refer to the HP-41 Owner’s Manuals for details of standard messages.

T 1 T T e An invalid e was specified.[IFALTT PAGE] Page sp
I NI T (YTLf v I The page specified is not bank-
rutd ANyI| I switched.

I SHT ThERRT I There are not enough spare FAT

LIL ey IR RWY entries remaining.
I Ta T TLT¥I The page must be initialised before
Ared (PTRY FTAVED functions can be added into it.

© Zengrange Ltd - 1988 45

 ZEPROM Modul

 ADDUCF Add user code bank-swutchmgmstructr
XROM 09,03 ~into mitlallsedpage

Purpose] Adds the user code bank-switching functions [BGTOxx), and
into a page previously initialised as being bank-switched. The

three instructions are loaded into the specified page at locations FCBh
through FE8h and their names entered into the FAT. These functions
permit the user to perform a GTO, XEQ and RTN between running user

code programs in different banks of a switched ZEPROM. During loading
the instructions always take on the XROM identity of that bank. E.g. if a

bank is initialised with an XROM of 28, the functions would appear as
(BGTO28), and (BXEQ28] See page 39 for a more detailed
description of this procedure.

requires that locations FCBh to FE8h are currently unused. If
subsequently intending to add the M-codeinstructions (PBxx), and
into the bank with ADDMCF), then the locations FESh through FF2h should
also be unused.
Note that ADDUCF must be used to insert the bank-switching

functions into both banks of that page. Failure to do so will mean that a
particular bank can be enabled, but not disabled.

The user must supply a value for the following argument:

Reg X: target-page Target page specified either as a
floating point value, or a

hexadecimalstring.

Stack registers are unchanged unless an error occurs during burning. See
page 40 for details of standard outputs following burn errors.

Refer to the HP-41 Owner’s Manuals for details of standard messages.

T a T L An invalid page was specified.[T RLTT PRGE] Page sp
=, = (T T L The e specified is not bank-l:'.':_: ST TEHED] red

lT SOy i | There are not enough spare FAT
PLONE ety LVRTTL ot entries remaining.

Tr(T T TT The e must be initialised before
[INTTHR FTHST pag

functions can be added into it.

46 © Zengrange Ltd - 1988

Chapter 6: The Programmer ROM

BGTOXX . User code bank-switching GTO instruction

Purpose

Action

in ROM with XROM-id of xx

Perform a bank-switched GTO instruction to a user code program or sub-
routine in an alternate bank.

When the HP-41 encounters a normal GTO instruction in a running

program, it searches both RAM and ROM for the specified LBL and then

transfers execution to that program. However, with bank switched ROMs,
the 41 cannot see programs in alternate banks unless those banks are first

enabled. For this reason a special GTO function has been included to
perform the bank switching. The function, (BGTOxx), being loaded into a
switched bank by (ADDUCF). During loading the instruction always takes
on the XROM identity of that bank. See page 39 for a fuller explanation.

When is encountered in a running program, in place of the
normal GTO instruction, the HP-41 switches banks in that page and uses a
GTO IND X sequence to search for and branch to the program whose
name the user has stored as an alpha string in Reg X.

This instruction should be used with extreme care as no error

checking can be performed by the function. Users should ensure that

the specified global LBL actually exists in the alternate bank and that the

alternate bank routine has been written for bank-switched usage. For
example, unless a is used to replace a terminating RTN, the
program will terminate with the alternate bank still enabled.
Because ZEPROM always switches both banks of both pages at the same

time, the subroutine can reside in either page, but must be in the alternate

bank and in the same ROM.
In writing programs to branch to routines in another bank, the user must
replace GTOs with instructions wherever bank-switching is
required and ensure that the XROM identity;is used.

Because takesits LBL as an alpha string from Reg X, a maximum
of 6 characters can be used for the label.

The user must supply a value for the following argument:

Reg X: alpha LBL The global alpha LBL to be called

stored as alpha string. Maximum
string length is 6 characters.

Stack remains unchanged.

Reg X: alpha LBL The global alpha LBL to be called
stored as alpha string. Maximum
string length is 6 characters.

Refer to the HP-41 Owner’s Manuals for details of standard messages.

v A non-existent global alpha LBL was
! specified in Reg X.

© Zengrange Ltd - 1988 47

This example illustrates the use of to branch execution of a
program running in the primary bank to a subroutine in the secondary

bank. The primary bank has been initialised with the XROM identity 21 and
the secondary bank with XROM 31.

Primary bank code (XROM 21)
e o RETRTIRRIIIIY, : Main program in primary bank

Name of program to execute
Load alpha string into Reg X
Go to the label in the other bank
Program counteris left here after

returning from secondary bank

Secondary bank code (XROM 31)

o ogaminsecondary bank
.RN End subroutine in secondary bank,
= v . swap back to primary bank

48 © Zengrange Ltd - 1988

Chapter 6: The Programmer ROM

BLANK’S ' Test if the page in Reg X is blank

XROM 09,04

Purpose Checks every location in the 4K page specified in Reg X and verifies that it
is blank. The function behaves as a normal HP-41 test function.

The user must supply a value for the following argument:

Reg X: target-page Page to verify specified as a floating
point value, or hexadecimal string.

Output The function’s action varies depending upon it being executed from the
keyboard, or under program control. See Page 39 for details of the

general format of comparison tests.

Under Keyboard Execution: Displays a YES or NO answer.
Reg X: unchanged (target-page)

Page is blank (TRUE) Displays ‘YES’ answer.

Page is not blank (FALSE) Displays ‘NO’ answer.

Under Program Control: Doesn’t display an answer, rather
executes or skips the next program
instruction depending upon the
result. Follows ‘DO IF TRUE’ rule:

Page is blank (TRUE) Executes the next program step.
Reg X: unchanged (target-page)

Page is not blank (FALSE) Skips the next program step.

Reg X: unchanged (target-page)

Refer to the HP-41 Owner’s Manuals for details of standard messages.

= = An invalid page was specified.LINVHL T T PHGE | page sp
This example uses to creates in Alpha a string of hexadecimal

characters representing all blank pages found between 8h and Fh.

B14LEL "BLANKS" Program name

82 CLA Clear alpha ready forlist
83 8.815 Load ISG control number (8-15)

~ B4eLBL 04 : Start of ISG loop
B85 BLANK? Is this page blank ?

@p XEQAL Yes, call ‘append’ subroutine
. B7 ISC X Increment page number

@8 GTO BB ' Repeat to check next page
@83RTN RTN when all pages checked
1a+LBL B1 o Start of ‘append’ subroutine

. 1Y DECHER® == Convert page numberinto hex
.12 ARCLX Append page number to Alpha

XL Restore ISG control to Reg X
1 RIN End of subroutine

© Zengrange Ltd - 1988 49

Purpose Tests to see if the page specified in Reg X is bank-switched. The bank-
switching protocol developed by Hewlett-Packard requires that a bank-
switched page has a non-zero value in the most significant two bits of the

word at page location FFDh. therefore checks this location and
returns an indicator value to Reg X. Because ZEPROM uses a superset of

HP’s protocol, is able to distinguish between pages in an HP
ROM, and primary and secondary banks of a ZEPROM. With HP switched

banks, the value returned is -1’. For ZEPROMs, a value of ‘+1’ or ‘+2’ is
returned indicating primary (bank 1) or secondary (bank 2) respectively.

The user must supply a value for the following argument:

Reg X: target-page Page specified as a floating point

value, or a hexadecimal string.

The function’s action depends upon keyboard or program execution. See
Page 39 for details of the general format of comparison tests.

Under Keyboard Execution: Displays a YES or NO answer.

Reg X:is replaced by the bank

switched status value indicator
Reg L: contains the target page

originally in Reg X.

Page is switched (TRUE) Displays ‘YES’ answer.

Reg X: contains either:
-1 = HP primary/secondary bank
+1 = ZEPROM primary bank
+2 = ZEPROM secondary bank

Page not switched (FALSE) Displays ‘NO’ answer.
Reg X: contains the value ‘0’.

Under Program Control: Doesn’t display an answer, rather
executes or skips the next program

step depending upon the result.
Reg X: is replaced by the bank
switched status indicator in FFDh.

Reg L: contains the target page
originally in Reg X.

Pageis switched (TRUE) Performs the next program step.
Reg X: contains either:

-1 = HP primary/secondary bank
+1 = ZEPROM primary bank
+2 = ZEPROM secondary bank

Page not switched (FALSE) Skips the next program step.

Reg X: contains the value ‘0’

50 © Zengrange Ltd - 1988

Refer to the HP-41 Owner’s Manuals for details of standard messages.

T An invalid page was specified.AGE] page spe

This example uses to determine if the page specified in Reg X is
a bank-switched ZEPROM page. If unswitched, or in an HP bank-switched

ROM,it displays a message and exits. If a bank-switched ZEPROM page,

the enabled and disabled banks are swapped over. The program expects
the number of the page to be tested in Reg X.

Program: Swap ZEPROM banks.
Expects the page # in Reg X

Is page bank-switched?

Yes, so go check what type
No, so load error message, then

Go to display routine
Check bank switched type
Is page a ZEPROM? (value=1 or 2)

Yes, so go swap banks
No, so load "HP" message
Display routine entry point
View message in Alpha register

Exit
ROM is ZEPROM & bank-switched

Put page # in Reg X and current
bank in Reg L

Branch depending upon currently
enabled bank

Primary bank currently enabled
So enable secondary bank

Exit
Secondary bank currently enabled
So enable primary bank
Exit

© Zengrange Ltd - 1988 51

rammer’s Manual

_ZEPROM Module - Pr

BRTNXX usercode bank-switching RTN instruction- ~_inROM with XROM-id of xx

Perform a bank-switched RTNinstruction to a user code program or sub-
routine in an alternate bank.

When the HP-41 encounters a normal RTN instruction in a running
program, it takes the next pending return address and transfers execution
to that address. However, if called as a sub-routine by a program in
another bank of a bank-switched ROM, that address will be incorrect
because it resides in a different bank. For this reason a special Return
instruction, (BRTNxx), has been provided to perform the bank switching.
During loading with (ADDUCF), the function always takes on that bank’s
XROM identity. See page 39 for a full explanation of the procedure.

instructions should replace RTNs wherever bank switching is
required. However, if the routine is to be called by programs within that

bank and from other banks, then the user must ensure that the correct

type of return is used. The most suitable method of doing this is to set or

clear a flag depending upon the calling program. By testing the flag, either
a RTN or can be executed. should also be used to
precede the normal END if that instruction is also to bank-switch execution

back to a calling program.

When is used in place of the normal RTN instruction, the banks
are switched and then execution continues from the next pending RTN

address. If no return is pending, execution will halt after the banks have
been swapped.

Cautions This instruction should be used with extreme care. Because no error

checking can be performed, users must ensure that is only
used when it is necessary to return control to another bank. If
incorrectly used (instead of a RTN), the banks will swap, and program

execution will continue from the next address on the return stack. This

could contain user or machine code, so results are totally unpredictable!

None.

None.

Refer to the HP-41 Owner’s Manuals for details of standard messages.

Example] This illustrates the use of to bank-switch return from a sub-routine
in another bank. The routine also checks to determine whether it was
called from the same bank; in which case a normal RTN is used. The
primary bank has been initialised with the XROM identity 21 and the
secondary bank with XROM 31.

52 © ZengrangeLtd - 1988

Chapter6:

Primary bank code (XROM 21)

Secondary bank code (XROM 31)

Main program in primary bank.

Load alpha LBL

Load as alpha string into Reg X
Set flag = IS a bank-switched call
Call sub-routine label specified

End of main program

Program in secondary bank

Clear flag = IS NOT bank-switched
Call subroutine in this bank

End main program in this bank

Start of subroutine

Called by another bank?

Yes, do switched return to primary
No, do an ordinary return

©Zengrange Ltd - 1988 53

EEPROM Module - Programmer’s Manual

Purpose

Takes a user code (RPN) program from main memory, another plug-in
module, or a Q-ROM/RAM Storage Device and burns it into the ZEPROM

page specified in Reg X. The function requires a program name in Alpha

and searches sequentially through RAM followed by plug-in's, and uses
the first program it finds that contains a global alpha LBL of that name. If

alpha is empty, takes the program to which the program pointer
is currently located; provided that it contains has at least one global alpha
LBL.

requires that the program to be loaded has already been
packed. If not already packed, use PACK or press l . before

(BURNUCexecuting (BURNUC]. If the program came from RAM will
compile it (to link XEQs and GTOs with their labels) before burning the

program into the specified page. Programs taken from ROM are deemed
to already be compiled, so does not do so. When the program
is loaded, a FAT entry is made for every global LBL in the program.
If burn errors occur due to low batteries, etc., the burn failure address is

returned to Reg X. The instruction can be used to recover and
complete the burn operation, but the user must recall the burn starting
address to Reg X from LASTX. See page 41 regarding use of (REBURN).

Enough spare FAT entries must exist for every global alpha label in the
program to be burnt.

does not search for program files in Extended Memory.
If your program contains synthetic instructions (and intentional nulls) you
may not want it to be packed. In this case you must not use (BURNUC).
Instead, execute to ascertain the amount and address of free
space in a specified page, then execute the instruction to burn
the program into the page. is used in this case to bypass the
compilation and packed status checks in (BURNUC).

The user must supply values for the following arguments:

Reg X: target-page Page specified as either a floating

point value, or a hexadecimal string.

Alpha: program-LBL Maximum 7 character global alpha

LBL. If blank takes program to
which the pointeris positioned.

Stack registers are unchanged unless a burn error occurs. See page 40
for standard outputs. In the case of burn errors, registers are modified to:

Burn operation failed: Reg X: replaced by the burn failure

address (address at which the data
was verified incorrectly).

Reg L: contains the address of the
first line of code burnt.

Alpha: program-name being burnt.

© Zengrange Ltd - 1988

See the HP-41 Owner’s Manuals for standard messagwill also
(comPuCreturn messagesin case of compilation errors. See

[FRNERRrnen]

rrirn|[LINBRT:

or.;-;BnW AT AWT
eesey

NT T
Io:' Mot .L»fip‘ |

M DTN
Ir V1 H:.-u;.n i I

Ny ‘hl“::\l‘r_ Y“:fiIT

IIWMA “:’H Loye]

for details.

An invalid page was specified.

The specified user code program

has not been packed.

A burn error occurred at address

indicated by ‘nnnn’. Commonly

caused by specifying an empty or
non-ZEPROM destination page.

Low battery terminated burning at

the address ‘nnnn’. Check, replace
the batteries and then (REBURN).
The program LBL in Alpha exceeds
7 characters.

The program LBL in Alpha is that of
a machine code function in ROM or
in the HP-41 operating system.

Not enough spare FAT entries for
the number of global alpha LBLs in

specified program. Change some
to local LBLs.

Not enough free space is left to load
the program specified in Reg X.

A non-existent global alpha LBL was

specified in Alpha.

© Zengrange Ltd - 1988 55

Burns an individual 10-bit HP-41 word specified in Reg X into the 16-bit

The input required for is compatible with the output of (CHKSUM
so that (BURNWD can be used to burn a checksum into the pageafterall

The user must supply values for the following arguments:

Target address input as a floating
point value, or hexadecimalstring.

Word to burn input as a floating
point value, or hexadecimal string.

Purpose

ROM page address that is specrfledinReg Y.

other data has been burned.

RegY: target-address

Reg X: 10-bit-word

Stack registers are unchanged unless an error occurs during burning. See
page 40 for details of standard outputs following burn errors.

IAL THEI,‘-‘?I

TodT OFRARNGE]

HTH]

v|

Frrara |

Refer to the HP-41 Owner’s Manuals for details of standard messages.

An invalid page was specified.

A negative or other invalid address
valuewas specified in Reg Y.

Check that valid and positive

hexadecimal characters were used.

The checksum value in Reg X
exceeds ‘3FFh’ (1023).

A negative or other invalid data
value was specified in Reg X.

A burn error occurred at the page
address ‘nnnn’.

Low battery terminated burning at

addresslocation ‘nnnn’. Check and
replace batteries.

is used to burn a computed page checksum into location FFFh.
The checksum is computed by (CHKSUM), which returns a checksum and
its address to Reg X & RegY respectively. Program expects a page
number in Reg X and exits with the checksum read by in Reg X.

,az”ouksun -

'aloLBL "BRHSUM“:“i

.P3BURNMD

Burn computed page checksum.
Expects page number in Reg X

Get checksum & address into X & Y

- G Burn that value into ROM page
.B4RIN Move address to Reg X
PB4 READWD Read word at that address in ROMe Evt

© Zengrange Ltd - 1988

inROMwnthXROM-idbfxx__g

Purpose Perform a bank-switched execute (XEQ) instruction to a user code
program or subroutine in another bank
When the HP-41 encounters a normal XEQ instruction in a running
program, it searches both RAM and ROM for the specified LBL and then
transfers execution to that program. However, with bank switched ROMSs,

the 41 cannot see programs in alternate ROM banks unless those banks
are first enabled. Forthis reason, a special Execute instruction, BXEQxx),
being provided to perform the bank switching. During loading into a

switched bank by (ADDUCF), the instruction always takes on the XROM
identity of that bank. See page 39 for a fuller explanation.

Whenever is encountered in place of a normal XEQ instruction,
the HP-41 saves the RTN address in the current bank, switches ROM

banks and uses the XEQ IND X sequence to search for and execute the
function whose name the user has stored as an alpha string in Reg X.

With the program name as an alpha string in Reg X, it may also be used
from the keyboard to execute a program in the alternate bank.

This instruction should be used with extreme care as no error
checking can be performed by Users must ensure that the
called LBL actually exists in the alternate bank and that the called routine
has been written for bank switching. Whereverthe called routine returns to
the calling routine, the RTN must be replaced with a If a normal
RTN or END is used instead, the 41 will not swap banks, but simply use the
next return stack address and continue execution in the current bank.

Depending upon the particular ROM, this address may contain user or
machine code, so the result is totally unpredictable.

Because ZEPROM always switches both banks of both pages at the same
time, the called sub-routine can reside in either page, but must be in the

alternate bank and in the same ROM.

In writing programs to call subroutines in another bank, the user must
replace XEQs with instructions wherever bank switching is
required and ensure that the correct XROM identity is used.
Because takesits LBLas an alpha string from Reg X, a maximum
of 6 characters can be used for the alpha label.

The user must supply a value for the following argument:

Reg X: alpha LBL The global alpha LBL to be called
stored as an alpha string.
Maximum striiig length is 6

characters.

None
Refer to the HP-41 Owner’s Manuals for details of standard messages.
IR, v T TAT] A non-existent global alpha LBL was
PO NMETI Te specified in Reg X.

© Zengrange Ltd - 1988 57

MZEPROM Module - Programmer’s Manual

This illustrates how to call a sub-routine in either the primary or secondary

bank of the module. The primary bank is currently enabled and has an
identity XROM of 21. Note that for the error trapping, via flag 25, to work

correctly, the program expects the primary bank routine to leave flag 25
set.

Primary bank code (XROM 21)

Program: Find & Execute. Expects
program name to be in alpha

Store program name in Reg X
Ignore error if occurs
Try to find LBL in this bank (NB. the

routine should leave Flag 25 set)
Was LBL found (F-25still set ?)
Yes, thus do normal RTN to caller

No, so swap banks and search forit
in other bank. Halt if not found

Sub-routine found and executed

 58 © Zengrange Ltd - 1988

Compute & return checksum

for specified page

Purpose Computes a checksum for any HP-41 page specified in Reg X. After

calculation, that checksum along with its address are returned into Reg X

and Reg Y respectively ready for burning into the page with (BURNWD).

The user must supply a valuefor the following argument:

Reg X: target-page

For a valid page number:
RegY: checksum-address

Reg X: page checksum

RegL: target-page

For an invalid page number:

Reg X: target-page

Target page specified as a floating

point value, or hexadecimal string.

Valid pages are 0 to Fh, 0 to 15.

Checksum addressin either floating
point or hexadecimal string format.

Checksum in either floating point or
hexadecimal string format.

Target page specified as a floating

point value, or hexadecimal string.

Targetpage specified as a floating
point value, or hexadecimal string.

Refer to the HP-41 Owner’s Manuals for details of standard messages.

LIMGHL T T PHL)
3

An invalid page was specified.

Uses to calculate the checksum of the page specified in Reg X
and then verifies thatthis is the same as that already burnt into the page.

~ @1eLBL "VERSUM"
82 CHKSUM
A3 XY
B4 READWD
85 X<OY

85RDN
A7 “GOOD

B8 XzY?
B89 "BAD "

{o+LBL 81

11 “FCHKSUM
12 AVIEW
13 RIN

Program: Verify page checksum

Get checksum & address
Move address to Reg X
Read that address in the ROM
Move actual checksum backto Y
X=actual, Y=correct checksum

Load default "good" message

Is actual checksum bad ?
Yes, so load "bad" message
Display entry point
Append "checksum" to message

Show message to user
End of routine

© Zengrange Ltd - 1988 59

ZEPROM Module - Programmer’s Manual

COMPUC
XROM09,09 3 mmainmemdrv?i

Purpose

Compiles and links all local and numeric GTO and XEQ instructions to their
corresponding LBLs in the user code program specified in the Alpha
register. By compiling programs, the effective execution speed is
increased because the HP-41 needs to perform less label searching.

Whenever a program in RAM is run for the first time, the HP-41 has to find
all LBLs in the program by searching:

- For numeric labels (0 to 99), or local alpha labels (A to J, a to e),

the HP-41 attaches the actual GTO/XEQ jump distance to that LBL
and therefore does not need to search again.

- For global alpha labels such as "AB99", the HP-41 must search al/
alpha LBLs in program memory and plug-in's to find that LBL every
time the program is run. Searching always begins at the /ast LBL in
memory and continues upwards to the first corresponding LBL is
found.

ROM programs, however, must always be compiled, because the HP-41

cannot search ROM for numeric LBLs over 14 or any local alpha LBLs. If a
program was not compiled before burning into ROM, the HP-41 will crash!

searches sequentially through all programs in main memory for
the first program containing the program LBL specified in the Alpha
register. If no program LBL was specified, compiles the
program to which the program pointeris currently positioned.

requires that the program is already packed (removing null
bytes). Use PACKor press (1) (.) to pack the program.
Compilation aborts with a "NONEXISTENT" message if the sought local or
numeric LBL is not available. At the same time the decimal value of that
LBLis returned to Reg X.

Programs for loading into ZEPROM must always be compiled - see
above. (COMPUC expects the program to reside in main memory.

If the program is subsequently to be loaded into ZEPROM, it must contain

at least one global alpha LBL in order to appearin the FAT of that page.

The user should supply a value for the following argument:

Alpha: program-LBL Global alpha LBL in the user code
program to be compiled. If left

blank, takes the program
in which the pointer is positioned.

Registers are unchanged unless a compile error occurs.

Alpha: program-LBL Global alpha LBL within program

being compiled, or blank if no LBL
was specified.

RegL: previous-Reg-X-value Previous value moved from Reg X.

60 © Zengrange Ltd - 1988

Chapter 6: The Programmer ROM

Reg X: LBL value Decimal value of nonexistent local

alpha or numeric LBL. These values

are shown in the following table:

LBLO2|1BLO3 ||

. ima|
o102 |

LBLE | o ’L',BL F

106| 107

LBLI|

By
o|
 ______ LBLN et

;122 -

3“_LBL‘dL iBieI
.126¢ 127

Is 100, 101,T,Z,Y,X,L,M,N,O,P, O,+(R)can onlybecreate. |
y'meansofsynthencprogrammmg techmques(SP))

Numerlc and LocalAlpha LabelValues
(decimal values returned by (COMPUC to Reg X)

Refer to the HP-41 Owner’s Manuals for details of standard messages.

Y A non-existent global alpha LBL was

i specified in Alpha.
The program contains a GTO or
XEQ to a non-existent local LBL.

The specified user code program

has not been packed.

The program LBL in Alpha is that of
a machine code function in ROM or
in the HP-41 operating system.

I,NHhJ;" e ‘r;' ;".
wodIvt

© Zengrange Ltd - 1988 61

rammer’s Manual

'ZEPROM Module

COPYPG Copy entire 4K image‘betwéeh' Péééé X &Y

XROM 09,10 : G -

Copies a complete 4K ROM image from an origin page specified in Reg Y
into a destination page specified in Reg X. This function is useful for

copying a complete block of code in a Q-ROM or RAM Storage Device, or

for duplicating existing ROMs.

Because software is covered by copy, design or patent rights,it is
illegal to make copies for distribution, duplication or modification

unless permission has been granted by the holder of those rights.

Obtaining such permission is the specific and sole responsibility of the

user. In all cases where a Zengrange product is used to infringe such
rights, the user shall bear the entire responsibility and assume all liability

for infringement. Neither Zengrange Ltd, nor its agents, shall be in any

wayliable for the user’s actions.
is not able to detect the case where the pages specified in both

Rg X &Y are those of an empty port. Because the burnt and read data are
blank, will believe that data was burnt correctly.

The user must supply values for the following arguments:
Reg Y: origin-page Origin page specified either as a

floating point value, or a

hexadecimalstring.

Reg X: destination-pages Target page specified either as a
floating point value, or a

hexadecimal string.

Stackregisters are unchanged unless an error occurs during burning. See
page 40 for details of standard outputs following burn errors.

Refer to the HP-41 Owner’s Manuals for details of standard messages.

= ~ An invalid e was specified.
LINVHL T T PHLGE] pag P

TROC T T e The origin and destination are
Arey T 4 At L ! identical.

Tg T - ... A low battery has caused burning to
I" Livd HFEe I terminate at the address location

indicated by ‘nnnn’. Check &
replace batteries.

Tigrl L0 - A burn error occurred at the

LHRN EFRFD address indicated by ‘nnnn’. This is
often caused by specifying a blank
or non-ZEPROM destination page.

62 © ZengrangeLtd - 1988

CPX_YZ Copy data as specified in Regs X,Y,Z

XROM09,11

Purpose Takes the number of data bytes specified in Reg X from the origin address
specified in Reg Z and copies it into the destination address specified in

Reg Y. The maximum number of data bytes that can be specified is 4096;
this being an entire 4K ROM page.

Because software is covered by copy, design or patent rights, it is
illegal to make copies for distribution, duplication or modification

unless permission has been granted by the holder of those rights.
Obtaining such permission is the specific and sole responsibility of the

user. In all cases where a Zengrange product is used to infringe such
rights, the user shall bear the entire responsibility and assume all liability
for infringement. Neither Zengrange Ltd, nor its agents, shall be in any

way liable for the user’s actions.

The user must supply values for the following arguments:

Reg X: number-of-bytes Number of bytes to copy beginning

from the origin address. Can be
specified as a floating point value,
or a hexadecimal string. Maximum

size is 4096 bytes (1000h).

Reg Y: target-address Target address specified as floating

point value, or hexadecimal string.

Reg Z: origin-address Origin address specified as floating

point value, or hexadecimal string.

Stackregisters are unchanged unless an error occurs during burning. See
page 40 for details of standard outputs following burn errors.

Refer to the HP-41 Owner’s Manuals for details of standard messages.

= = An invalid page was specified.[INVHLTT PHGE] pageWassp
IT S(P I The origin and destination are
Arwy P44 =& identical.

I Trliitgr TN W Ty I The byte counter in Reg X exceeds
dray PLAt A TP 4096 (1000h) or is negative.

ITTI A low battery has caused burning to
e A) terminate at the address location

indicated by ‘nnnn’. Check &

replace batteries.

VEIP] Cobdbd = oo e A burn error occurred at the
LERN EHHe address indicated by ‘nnnn’. This is

often caused by specifying a blank
or non-ZEPROM destination page.

© Zengrange Ltd - 1988 63

__fiZEPROM Module - Programmer’s Manual

Converts the decimal address or word value stored in Reg X into
hexadecimal format. The function takes the absolute integer portion of the
number, and checks that it is a valid HP-41 ROM address or word, then

converts it into the equivalent hexadecimal alpha string. The original value
is saved to LASTX.

The user must supply a value for the following argument:

Reg X: decimal-number (nnnnn) Only the absolute integer portion of
the numberis used. DECHEX will

convert numbers from 0 to 65535
(‘Oh’ to ‘FFFFh’).

For a valid decimal number:

Reg X: hexadecimal-string (hhhh) The equivalent hexadecimal alpha

string ‘Oh’ to ‘FFFFh’

RegL: decimal-number (nnnnn) The original decimal number in Reg
Xis saved to LASTX.

For an invalid decimal number: (Registers are not changed)

Reg X: decimal-number (nnnnn) The original number nnnnn.

Refer to the HP-41 Owner’s Manuals for details of standard messages.

 E,.Ly TN gng] A negative or otherinvalid address
iy r.4 4tFRATAr value was specified in Reg X.

The value in Reg X was already an
Alpha value.

The value in Reg X to be converted

exceeds 65535 (‘FFFFh’).

This example shows the key sequence needed to convert a decimal
number of 1247 into a hexadecimal number.

Key Sequences Description

(1](2)(a) Input the decimal numberinto the X
register.

(0)(e)(c])(n])(E](x) Execute the DEC to HEX function to
convert the value.

lgI Display shows the hexadecimal
4 — S equivalent, which has been stored

into Reg X as an alpha string.

© Zengrange Ltd - 1988

Chapter 6: The Programmer ROM

ENABLEP.. ~Enable primary bank of ROM

XROM09,13 whose page is in Reg X

(ENABLEP takes a ROM page number from Reg X and swaps the banks in
that bank-switched ROM page such that the primary bank (bank 1) is
enabled and the secondary bank (bank 2) is disabled. This function,

together with (ENABLES}, permits the user to swap between the two banks
of any bank-switched ROM plugged into the HP-41.

This program is provided specifically for use whilst programming ZEPROM

modules. With the aid of this function, users can control the bank-

switching of any module currently plugged into the HP-41. This may prove

useful with ZENROM'’s MCED function for examining and debugging code

that you have already burnt into switched banks.

The instruction only acts upon the particular ROM module
whose page number has been specified in Reg X. However, because of

the way the module operates, both primary pages in that module are

enabled at the same time.

The user must supply a value for the following argument:

Reg X: target-page Target page specified as a floating
point value, or a hexadecimal string.

None.

Refer to the HP-41 Owner’s Manuals for details of standard messages.

T = T N e An invalid e was specified.[TVHL T T PHGE pag P
ITY (YTI The page in the ROM specified in
pMbtt NPA Reg X is not bank switching.

© Zengrange Ltd - 1988 65

_.“_ZEPROM Module - Programmer’s Manual

ENABLES , Enablesecondaryban' of ROM
XROM0914 .;::i;f- f-| . whosepageisinRegX

(ENABLES takes a ROM page number from Reg X and swaps the banks in
that bank-switched ROM page such that the secondary bank (bank 2) is

enabled and the primary bank (bank 1) is disabled. This function, together
with (ENABLEP), permits the user to swap between the two banks of any
bank-switched ROM plugged into the HP-41.

This program is provided specifically for use whilst programming ZEPROM
modules. With the aid of this function, users can control the bank-

switching of any module currently plugged into the HP-41. This may prove
useful with ZENROM'’s MCED function for examining and debugging code
that you have already burnt into switched banks.

The instruction only acts upon the particular ROM module
whose page number has been specified in Reg X. However, because of
the way the module operates, both secondary pages in that module are

enabled at the same time.

g g S

The user must supply a value for the following argument:

Reg X: target-page Target page specified as a floating

point value, or a hexadecimalstring.

None.

Refer to the HP-41 Owner’s Manuals for details of standard messages.

An invalid page was specified.- r <«

= o
e «

ot o

[MY LTTI The page in the ROM specified in
Mt ettt ! Reg X is not bank switching.

66 © Zengrange Ltd - 1988

Chapter 6: The Programmer ROM

Det_ rmmeaddressandamountoffreespace

. o ofpageinRegx

Calculate the free (unused) space remaining between the FAT and the
beginning of the bank-switching code/normal interrupts. [f the specified
page contains free space,its starting address is placed into Reg Y, and the

number of free bytes and remaining FAT entries is placed into Reg X.

Cautions cannot check whether or not the specified page contains a plug-
in module, orif that module is a ZEPROM.

The user must supply a value for the following argument:
Reg X: target-page Target page specified as a floating

point value, or hexadecimalstring.

Output depends upon whether it was executed from the keyboard, or
under program control. See page 39 for full details of comparison tests.

Under Keyboard Execution: Displays a YES or NO answer.

Has free space (TRUE) Displays ‘YES’ answer.

Reg Y: free space starting address
in floating point or hexadecimal.

Reg X: free bytes (nnnn) and
remaining FAT entries (fff) in format

of a floating point value ‘nnnn . fff’
Reg L: rarget page saved from Reg X

No free space (FALSE) Displays ‘NO’ answer .
Reg X: remains unchanged (page).

Under Program Control: Doesn’t display an answer, rather
executes or skips the next program
instruction depending upon the

result. Follows ‘DO IF TRUE’rule:

Has free space (TRUE) Perform the next program step.
Reg Y:free space starting address
in floating point or hexadecimal.
Reg X: free bytes (nnnn) and
remaining FAT entries (fff) in format
of a floating point value nnnn . fff’
Reg L: target page saved from Reg X

No free space (FALSE) Skips the next program step.
Reg X: unchanged (target page).

Refer to the HP-41 Owner’s Manuals for details of standard messages.

INL'FN I I: ; p:quE I An invalid page was specified.

© ZengrangeLtd - 1988 67

_;EPROM Module - Programmer’s Manual

Converts a hexadecimal alpha string stored in Reg X into its floating point
decimal integer equivalent. The function accepts an alpha string of up to 4
characters, checks that it is a valid HP-41 ROM address or word, then

converts it. The original value is saved to the LASTX register.

The user must supply a value for the following argument:

Reg X: hexadecimal-string (hhhh) A hexadecimal string of maximum 4

characters of value ‘Oh’ to ‘FFFFh’.

For a valid hexadecimal string:

Reg X: decimal-number (nnnnn) The equivalent decimal integer

value 0 to 65535.

RegL: hexadecimal-string (hhhh) The original hexadecimal alpha
string in Reg X is saved to LASTX.

For an invalid hexadecimal string: (Registers are not changed)

Reg X: hexadecimal-string (hhhh) The original hexadecimal string.

Refer to the HP-41 Owner’s Manuals for details of standard messages.

Ya(i/ilg)T WTgWTILy A negative or other invalid address
INVALTD HIGR| value was specified in Reg X.
ity Y L4 L.Lytyrity Reg X contains a decimalvalue.
LIHTHERFOH Store as an alpha string.

T(TL.CIearir. The value in Reg X to be converted

This example shows the key sequences needed to convert a hexadecimal
value of 4DCh into a decimal number.

Key Sequences Description
(ALPHA Input the hex..adecimal number into
B(0)(c) the aI;phaxreg|ster.l T:ents.tore that
B (5s10) () (X) into Reg as an alpha string.

ALPHA](H])(E](x](p](E](c] Execute thhe H|EX to DEC function to

convert the value.

TTTJLJL] TNTATATY Display shows the number
Laadae converted into decimal.

68 © Zengrange Ltd - 1988

Chapter 6: The Programmer ROM

Purpose

(Theory]

Retrieves the named file containing an entire 4K ZEPROM page image
from HP-IL mass storage medium and burns that image direct into the
specified ZEPROM page. The function will work with any HP-41 LIF

(Logical Interchange Format) medium such as cassette or 34" micro-disc.

expects that specified mass storage file contains an HP-41
ROM image in the Eramco compressed 640 register/20 record format.
This is the format that has been adopted as a de facto standard by most

Machine Language Development Laboratory (MLDL) operating systems,

e.g. the SAVEROM function in the Eramco MLDL operating system. This
format has been chosen because it provides both maximum compression

and compatibility with already established products.

requires that the HP-41 has been correctly set up ready for
burning of a ZEPROM module, with a ZEPROM Voltage Converter and a
ZEPROM connected and the ZVC’s programming switch set to the ON

position. It also requires that an HP-IL module and mass storage drive are
connected and turned-on.

will only search the directory of the currently SELECTed HP-IL
drive. If more than one exists, the user should SELECT the intended drive

before executing the function.

The user must supply valuesfor the following arguments:

Reg X: target-page Target page specified as a floating
point value, or a hexadecimal string.

Alpha: mass-storage-file-name Valid mass storagefile name of

maximum 7 characters.

Stack registers are unchanged unless an error occurs during burning. See
page 40 for details of outputs during burning. In the event of a burn failure

the stack registers are modified as follows.

Burn failed: Alpha: unchanged (file name)

Reg X: burn failure address in
hexadecimal format.

Reg L: Target pagebeing burnt.

Refer to the HP-41 & HP-IL Owner’s Manuals for details of standard HP-41

and HP-IL messages.

An invalid page was specified.

A non existent file name was

specified

© Zengrange Ltd - 1988 69

ZEPROM Module - Programmer’s Manual

 e No HP-IL module is connected to{00| the HP41.

TTYig Y-7 A low battery has caused burning to
LotedBRI Zrnaey ‘] terminate at the address location

indicated by ‘nnnn’. Check &

replace batteries.

b vLYe wv A burn error occurred at address

LERN ERF Crnnn indicated by ‘nnnn’. This is often
caused by specifying a blank or
non-ZEPROM destination page.

H

This example uses to burn 4 ZEPROM pages with images stored
as files on the currently SELECTed HP-IL mass storage device. It assumes
that the ZVC and ZEPROM module are plugged-in with the programming

switch already set to ON and that the HP-IL and mass storage device are
connected and turned-on. The mass storage files to be loaded are called:

fileO, file1, file2, file3. It also expects the first page number (in decimal
format) to be in Reg X and takes the base part of the file name from Alpha

and appends ‘0,1,2,3’ in turn..

Expects Reg X: base page number
Alpha: "file" (basis of filename)

Ensure ARCL is only integer part
without a decimal point.

Load control numberfor ISG loop

Store filename in Reg Z.

compute next page number
Clear Alpha for flename building
Recall base filename to alpha
Append next page number to alpha
Swap next page & base page
Recall counter

Reg X=base page, Reg T= counter

oA Add base to next page number
15 ILBURN Burn the image into ZEPROM bank

TR Base page to Y & counter to X
leIsexo Increment loop control number

18 GTO 59f.’? - Loop back to get other pages
" 19'RTN . Done all four pages

© Zengrange Ltd - 1988

_Chapter 6: The Programmer ROM
Purpose Saves the entire 4K ZEPROM page specified in Reg X into an HP-IL mass

storage medium file. The function will work with any HP-41 LIF (Logical
Interchange Format) medium such as cassette or 314" micro-disc.

Theory saves the specified page into a mass storage file in the Eramco
compressed 640 register/20 record format. This is the format that was
adopted as a de facto standard by most Machine Language Development
Laboratory (MLDL) operating systems, e.g. the GETROM function in the

Eramco MLDL operating system. This format has been chosen because it
provides both maximum compression and compatibility with already

established products.

Cautions The data is written to the currently selected mass storage device present

on HP-IL, and if more than one device exists the intended device can be
specified by the SELECT function in the HP-IL module. expects
that the HP-IL mass storage medium (micro-disc, cassette, etc.) has
already been initialised by the NEWM instruction, has a free catalogue
entry and enough free spacefora file of 5120-bytes (640 registers).

The user must supply values for the following arguments:

Reg X: target-page Target page specified as a floating
point value, or a hexadecimalstring.

Alpha: mass-storage-file-name Valid mass storage file name of
maximum 7 characters.

Registers remain unchanged.

Refer to the HP-41 & HP-IL Owner’s Manuals for details of standard HP-41
and HP-IL messages.

= T= An invalid e was specified.(TPAL TT PRGE] pag P
I“ T oaT : I No HP-IL module is connected to
pMt A A ’ the HP-41.

This example uses to save an entire straight 16K ZEPROM into
four 4K image files on the currently SELECTed HP-IL mass storage device.

It assumes that ZEPROM module is plugged-in and that the HP-IL and
mass storage device are connected and turned-on. The mass storage files
will be saved as: FILEQ, FILE1, FILE2, FILE3. It expects the first page
number (decimal format) to be in Reg X and takes the base part of the file
name from Alpha.

© Zengrange Ltd - 1988 71

ZEPROMModuIe Programmer’s Manual

Expects Reg X: base page nhumber
Alpha: "file" (basis of filename)

Ensure ARCL is only integer part

without a decimal point.

Load control numberfor ISG loop
Store filename in Reg Z.

compute next page humber
Clear Alpha forfilename building

Recall base filename to alpha
Append next page numberto alpha

Swap next page & base page
Recall counter

Reg X=base page, Reg T= counter
Add base to next page number

Save the image onto mass storage

Base page to Y & counter to X
Increment loop control number

Loop back to get other pages.
Done all four pages

72 ©ZengrangeLtd - 1988

Chapter 6: The Programmer ROI\Q

Purpose Initialises (formats) a ZEPROM page specified by the value in Reg Y.

Arguments for bank switching, the XROM number and maximum number
of Function Address Table (FAT) entries are taken from Reg X, while the

ROM-header and trailer information are taken from Alpha.
If a negative XROM-id is specified, INITPG will set up the page by loading

the necessary switching code at location xFC7h through xFCAh and set
the switched status bit at location xFFDh.

Before initialisig the page checks the page location x000h to
determine whether or not the specified page is blank. If location 0000h is

non-zero, then INITPG terminates.

The argument for FAT entries should be the maximum numberof functions
and programs that you will be putting into that page plus one for the
header,if desired.

Because the HP-41 cannot perform a CAT 2 on a page with blank FAT
entries, as the FAT chain and links are incomplete, do not perform a CAT 2

on that page until the FAT is completely filled with functions/programs. If
a CAT 2 is performed with blank entries, the HP-41 may crash.
If any ZEPROM page isinitialised as being bank-switched, then all banks

of all pages in that ZEPROM must be bank-switching. This applies
whichever bank-switched configuration is being used. After initialising the

first page in a ZEPROM, use to just add the switching code into
all other banks until you are ready to those banks with XROM
numbers, headers, FATSs,etc..

The user must supply values for the following arguments:
RegY: target-page Target page specified as a floating

point value, or a hexadecimalstring.

Reg X: XROM .functions A floating point numberin the
format ‘an.fff* where:
‘nn’ is an XROM-id number from 01

to 31. A negative XROM-id
indicates that the page is to be
bank-switched.

i is a value between 0 & 64
indicating the maximum FAT entries

desired. If ‘0’ is specified,
defaults to 64 entries.

© Zengrange Ltd - 1988 73

‘A_..ZEPROM Module - Programmer’s Manual

(Exampie)

Alpha: header , trailer Two alpha strings separated by a

comma. The header can be up to 11
characters but the trailer must be 4

characters. Valid characters are
those of byte values of 20h to 5Fh.

True page headers should be of 8
or more charactersif they are to

appear in a 41CX CAT 2. Normally
have a ‘-’ as theirfirst character.

Stack registers are unchanged unless an error occurs during burning - See

page 40 for details of standard outputs following burn errors.

Refer to the HP-41 Owner’s Manuals for details of standard messages.

[I0HLTPHGE |

- -L Cd BRTe|-o ~

LERNERFZrvrvn|

[TRTH ERFOR]

Page specified in Reg Y is not blank
at location x000h. If it contains
data, the page is considered invalid.

A low battery has caused burning to

terminate at the address location

indicated by ‘nnnn’. Check &

replace batteries.

A burn error occurred at the

address indicated by ‘nnnn’. This is

often caused by specifying a blank

or non-ZEPROM destination page.

Reg X contains an invalid value for

either XROM-id or number of
functions for the FAT.

This example illustrates the key sequences used to initialise page 8 of
ZEPROM with an XROM-id of 31 and a FAT of 25 entries. In addition, a
header of -MYROM 1A and trailer of MR1A are burnt into the page.

Key Sequences

-MYROM1A,MR1A
(ALPva)
(@) (EiER)

AOOEEE

(FE) (ALFHA)INITPG (ALPHA)

Description

Input the page-header, trailer into
the alpha register.

Input the target-page number and
duplicate it into Reg Y.

Input the XROM number , number of

functions into Reg X.

Execute the function

74 © Zengrange Ltd - 1988

Chapter 6: The Programmer ROM

PBOQ- | ~ Enable primary bank of

XROM09,22 “ Programmer ROM module

Purpose Disables the secondary bank (bank 2) and enables the primary bank

(bank 1) of the PROGRAMMER ROM module. This function, together with

(SB09], enables users to switch between the banks of the PROGRAMMER
ROM if this module has been made bank switching by the user.

Because HP-41 bank-switching has been implemented such that only the
particular module containing the bank-switching instruction will obey it,
each bank of each page in a bank-switching must contain the bank-

switching functions. As a user may have more than one ZEPROM module
plugged in at any time, and each of these functions must have a unique

XROM-id to avoid confusion between them, the functions all adopt the
XROM:-id of the page into which they are loaded. The general form of
these functions is and (SBxx), see separate entries. When loaded
into an initialised page by the functions take on the XROM-id of
that page. Therefore, in the PROGRAMMER ROM (XROM-id of 09), these

functions appear as and (SBo9).
These functions have been provided in the PROGRAMMER ROM in case a

user decides to make that module bank-switching, and thus allow the user

to switch between the primary and secondary banks.
See additional explanation about bank-switching functions on page 39.

None.

None.

None.

© Zengrange Ltd - 1988 75

ZEPROM Module - Programmer’s Manual

Purpose

Enable primarybank of ROM
with XROM-id of xx

Disables the secondary bank (bank 2) and enables the primary bank

(bank 1) of the bank-switched ROM page whose XROM-id number is
specified in Reg X. This function, together with (SBxx], enables users to
switch between the two banks of any particular bank-switched ROM as
desired.

Because HP-41 bank-switching has been implemented such that only the
particular module containing the bank-switching instruction will obey fit,

each bank of each page in a bank-switching must contain the bank-

switching functions. As a user may have more than one ZEPROM module

plugged in at any time, and each of these functions must have a unique
XROM-id to avoid confusion between them, the functions all adopt the
XROM:-id of the page into which they are loaded. When loaded into an
initialised page by the functions take on the XROM-id ofthat
page. Therefore, in a ROM page of XROM-id of 28), these functions
appear as and (sB28).
See additional explanation about bank-switching functions on page 39.

None.

None.

None.

76 © Zengrange Ltd - 1988

Chapter 6: The Programmer ROM

PGX=Y? Comparetwo 4K ROMpagesfor equality
XROM 09,23 |

Purpose Performs a comparison of the ROM page specified by Reg X against the
master specified in Reg Y. If both images are not identical, then the
location address of the first mismatched codeis returned to Reg X.

The user must supply values for the following arguments:
RegY: First-page Master 4K-page specified as floating

point value, or hexadecimalstring.

Reg X: Second-page 4K-page to be verified specified as
either a floating point value, or
hexadecimal string.

Varies according to whether the function was executed from the keyboard,
or under program control. See Page 39 for details of the general format of

comparison tests.

Under Keyboard Execution: Displays a YES or NO answer.

Pages identical (TRUE) Displays ‘YES’ answer.
Reg X & Y remain unchanged.

Pages not identical (FALSE) Displays ‘NO’ answer

Reg Y: unchanged (Ist-page).
Reg X: address of first mismatched

code. Addressis eitherfloating
point or hexadecimal string

depending upon original value in X.

Reg L: Verified page. Original page
number moved from Reg X.

Under Program Control: Doesn'’t display an answer,rather
executes or skips the next program

instruction depending upon the
result. Follows ‘DO IF TRUE’ rule.

Pages identical (TRUE) Performs the next program step.
Reg X & Y remain unchanged.

Pages not identical (FALSE) Skips the next program step.

Reg Y: unchanged (Master-page).
Reg X: address offirst mismatched
code. Addressis either floating
point or hexadecimalstring
depending upon original value in X.
Reg L: Verifiedpage. Original page
number moved from Reg X.

© Zengrange Ltd - 1988 77

ZEPROM Module - Programmer’s Manual

Refer to the HP-41 Owner’s Manuals for details of standard messages.

An invalid page was specified.

The origin and destination are
identical.

This example compares a 16K straight (non-bank-switched) ZEPROM in
port 1 or 2 with anotherstraight 16K ZEPROM module in port 3 or 4.

@1+LBL “CMPZEP

82 12.1

a3 g.n11

B84¢LEL B8

B5 PGX=Y?
86 GTO @81
67 "PRAGE *

88 DECHEX

89 ARCL X
18 “F#
11 XY

12 DECHEX
13 ARCL ¥

14 GTO 82

15¢LBL 81
16 ISG Y

17 156G X

18 GTO 06

19 "ZEPROMS ARE =
20+LBL 82

21 AVIEW
22 RTN

Compare two ZEPROMs
Load port 3 & 4 control number

(page 12 to 15). Test set so that
‘skip’ will never happen

Load port 1 & 2 control number
(pages 8to 11)

Start comparison loop
Test equivalence of pages

These two pages are equal
Pages are not equal. Load start of

error message
Convert page numberto hex for

appending to alpha string
Append first page number to alpha
Append the ‘not equals’ sign

Get other page number to Reg X

Convert to hexadecimal
Append it to alpha

Go to message view routine
Pages tested equal so far
Increment page number of second

ZEPROM module
Increment page number offirst

ZEPROM module. Skip next
step if done.

Not finished yet, so loop back

All done. All pages are the same

Display message routine
Display message in alpha

78 © Zengrange Ltd - 1988

Chapter 6: The Programmer ROM

PRGMLN f ~ Return program length and number of LBLs

XROM 09,24

Purpose Calculates the length of the user code program specified in the Alpha
register and returns the number of bytes and FAT entries needed for that

program to be stored in a ZEPROM page. This information can

subsequently be compared with the output of to determine
whether or not adequate space and free FAT entries remain for that

program to be loaded into.
The Alpha register may contain the name of any global alpha label in the
intended program,orif blank takes the current program.

calculates the length of the specified program,irrespective of
whether or not that program is currently packed. To determine the length

of a program that will be loaded with (BURNUC], the program should be
PACKed before executing PRGMLN].

The user must supply values for the following arguments:

Alpha: program-name An alpha string containing the
program’s name or any global alpha
LBL within that program. If blank

the current program is to be used).

Register X is modified as follows:

Reg X: bbbbb . ccc A floating point number in the
format bbbbb.ccc’ where:

‘bbbbb’ is the number of bytes in a
ROM page required to insert the

program, and

‘ccc’ is the number of FAT entries
required for all global alpha LBLs in
the program.

Refer to the HP-41 Owners Manuals for details of standard messages.

NI, v TTA(T A non-existent global alpha LBL was
I-rw_n VS v AT) l specified

I MOT) P' I The program LBL in Alpha is that of
LoBl b AN a machine code function in ROM or

in the HP-41 operating system.

11 T 1 SN The program LBL in Alpha exceeds
II_ I‘r_ Lt 0 I

7 characters.

© Zengrange Ltd - 1988 79

'ZEPROM Module - Programmer’s Manual

This example uses to compute the size and FAT entries of a
program named in Alpha, then uses to check whether or not
enough free space and FAT entries remain in the ROM page specified in

Reg X.

 PISLBL "LENSPCT

Rt

N0 ROON*
R5Y?

RDH
RN
“FAT OYERFLOW"
%Y

"SPACEIN PG"
sLBL61
AVIENW .
RTN

80

Compute length/FAT entries for

program in Alpha and check
available space/FAT in ROM
page specified in Reg X.

Get program length & FAT entries
(RegX = bytes.FAT entries)

Take number of bytes (integer)
Recall the value

Take number of FAT entries needed
Recall the page number
Room left ? (Reg X = bytes.FAT,

Reg Y = start address)

Swap start address to Reg X

Roll down (Reg X = bytes.freeFAT)
Number of free FAT entries
Recall last value
Numberof free bytes remaining

Reg Y =free space; Reg X=prog length
Load "no room" message
Program length > space ?

Yes, so go tell him "no room"
Roll stack down

Reg Y = labels, Reg X = freeFAT
Load "overflow" message

LBLs required less than freeFAT?

Yes, so load "space" message

Go show him the result

Terminate

© Zengrange Ltd - 1988

Chapter 6: The Programmer ROM

READWD Read word from ROM pagein Reg X
XROM09,25

Purpose Reads (recalls) the content of the word at any HP-41 ROM page address

(specified in Reg X) and returns that word value to Reg X.

The user must supply a value for the target address in floating point

decimal or hexadecimal format. Note that accepts all valid
HP-41 addresses from 0000h to FFFFh (0 to 65535) and therefore can be
used to read words in HP-41 system addresses in addition to the four 1/O
ports. E.g: using 73F2h (29682) causes read of word at address 3F2h in
the HP-IL/Mass Storage ROM,if the HP-IL module is plugged into HP-41.

Reg X: target-address 16-bit target address specified in
floating point, or hexadecimal.

The data word read by is returned in the same format as that
used for the original input of the target address and therefore can be
floating point decimal or hexadecimal.

Valid Address: Reg Y: target-address from Reg X.

Reg X: Word read from address.

Invalid Address: Reg X:target-address as input.

Refer to the HP-41 Owners Manuals for details of standard messages.

 i I A negative or other invalid address

k3 value was specified in Reg X.
Check that positive and/or valid
positive characters were used.

IRs] The value in Reg X to be converted
== = = exceeds ‘FFFFh’ (65535).

Uses in verifying the checksum currently burnt in the ROM page
specified in Reg X against that calculated for the page by (CHKSUM).

B1¢LBL "YERSUM" Program: Verify page checksum

B2 CHKSUM ’ Get checksum & address
B3 ROY Move address to Reg X

A4 RERDWD Read that address in the ROM
85 RBOY Move actual checksum back to X

. 86 RN X=actual, Y=correct checksum
87 "GOOD ’ Load default "good" message

A8 X#Y? . Is actual checksum NOT ok?
83“BAD * Yes, so replace with "bad" message
18 "FCHKSUM Append "checksum" to message
11 RYIEHW Show message to user
12 RTN : End of routine

© Zengrange Ltd - 1988 81

._"ZEPROM Module - Programmer’s Manual

REBURN
wmoMoszs;ifjj '

.'i"'usercodep'rogram

Allows the user to overcome burn errors occurring whilst burning a user
code program into a ROM page with (BURNUC],
During burning with (BURNUC], the address at which the function began
burning the program is stored into Reg X. If a burn error occurs, the burn
failure address is returned to Reg X and the start address of the program is

moved to Reg L. It is essential that a user does not just re-try using
since this will insert a new, duplicate image after that of the

aborted attempt. To prevent this, use the instruction. To use
(REBURN], use LASTX to recall to Reg X the addressofthefirst line of code
burnt during the aborted attempt . The program name should still be in
Alpha.

checks the program data already burnt into the ROM page and
then continues burning the remainder of the program. However, it does
not perform any checks for a packed and compiled program, so it is

essential that the program is not edited before is used. A
"synthetics” programmer may therefore also use to load an
uncompiled and/or unpacked program into ZEPROM.

This function is really intended only for use in recovering from
errors and cannot be used to recover from errors occurring during other

burn operations. In most instances, other aborted functions can just be
restarted.

The user must supply values for the following arguments:

Reg X: start-address Address at which program started
burning during aborted attempt with
(BURNUC]. Either floating point
value, or a hexadecimal string.

Alpha: program-name Name of user code program being

burnt.

Stack registers are unchanged unless an error occurs during burning - See
page 40 for details of standard outputs following burn errors.

Refer to the HP-41 Owner’s Manuals for details of standard messages.

= An invalid e was specified.[Tr7AL TT PHGE] page

was

sp
= == A burn error occurred at address

L BFN ERFe
 indicated by ‘nnnn’. Commonly

caused by specifying an empty or
non-ZEPROM destination page.

T LT T Low battery terminated burning at
_BHT trnnn | the address ‘nnnn’. Check,replace

the batteries and then (REBURN).

82 © Zengrange Ltd - 1988

Chapter 6: The Programmer ROM

 The program LBL in Alpha exceeds

7 characters.

IM;;‘;;Thnoam | The program LBL in Alpha is that of
e AeA a machine code function in ROM or

in the HP-41 operating system.

o=TT I Not enough spare FAT entries for.
ke the number of global alpha LBLs in

specified program. Change some

to local LBLs.

I;_n,;q,g,fipqe] Not enough free spaceis left to load
peryRN the program specified in Reg X.
MR VYT ERTT A non-existent global alpha LBL was

I""—" SndX | specified in Alpha.

© Zengrange Ltd - 1988 83

ZEPROM Module - Programmer’s Manual

RRBURN ' BurnZENROM ROMREG + formatted data
XROM09,27~fromRAMinto ZEPROM page

Purpose Burns data that has been copied from a Q-ROM device into main memory

registers by the ZENROM module’s Machine Code Editor (MCED).

takes data from main memory registers according to the format
of data input by the user. This allows the user to specify registers by their

number, e.g. Reg:050, or by referencing an absolute memory address in
the HP-41’s main and extended memory.

This function has been provided primarily for ZENROM users. For more
information on the ROMREG + format, see the ZENROM Owner’s Manual.

In developing M-code programs or functions using a ZENROM module
and a Q-ROM, MCED can be used to save (SVE) or restore (GET) M-code

data in a compressed format in normal HP-41 memory registers. This data
format, known as ‘ROMREG+’ format, is a superset of the ROMREG
format used by many other M-code development packages and is based

around storing five 10-bit ROM-words into each data register.

Although the older ROMREG format only stored multiples of five ROM-

words into each data register, this restriction does not apply to the
ROMREG + format used by ZENROM. ROMREG + format therefore avoids

the difficulties encountered where the last register of ROMREG data
contains unwanted words. Because of the ROMREG format, these
unwanted words are also transferred into ZEPROM during burning with

Extended memory registers can only be accessed in the absolute memory
addressing mode. In register mode, a starting address input in floating

point decimal, access is restricted to main memory registers.

The user must supply values for the following arguments. The format of
the starting address input into Reg Z will determine whether absolute
(hexadecimal input) orregister(floating point decimal) addressing is used.

Absolute Memory Addressing: Hexadecimal input into Reg Z

Reg Z: Ist-register-address Address of the first register to be

burnt specified as a hexadecimal
string.

RegY: Number-of-registers Quantity of registers specified as a
floating point decimal number.

Reg X: target-address ZEPROM module target address
specified as a floating point decimal
number or hexadecimalstring.

Data Register Addressing: Floating point input in Reg Z.

84 © Zengrange Ltd - 1988

Chapter6 The Programmer ROM

Reg Z: Ist-register-number Numberof thefirst register to be

burnt specified as a floating point
decimal value. E.g. Reg 017

RegY: Number-of-registers Numberof registers specified as a
floating point decimal number.

Reg X: target-address ZEPROM module target address
specified as a floating point decimal
number or hexadecimalstring.

Stack registers are unchanged unless an error occurs during burning - See
page 40 for details of standard outputsfollowing burn errors.

Referto the HP-41 Owners Manuals for details of standard messages.

TReTNNy Specified address is negative or
LINHLTEHITH | otherwise invalid. Check that valid

hexadecimal characters were used.

BYve Specified registeris outside the
I*iPitHEn | current SIZE setting.

=T z Alow h rning to|=Lf'rr'.'uu“ HF‘=nrv‘«fi ow battery has caused burning
terminate at the address location

indicated by ‘nnnn’. Check &

replace batteries.

B WLl A burn error occurred at the
LHHN ERFrron address indicated by ‘nnnn’. This is

often caused by specifying a blank
or non-ZEPROM destination page.

Specified data register contains
data not in ROMREG + or ROMREG

format.

I MMTTTRY I A specified data register was not
ALEUAIERAS 5 =l found during burning.

FOAY e e The decimal value input exceeds

© Zengrange Ltd - 1988 85

Purpose

Theory

ZEPROM Module - Programmer’s Manual

~ ProgrammerROMmodule

Disables the primary bank (bank 1) and enables the secondary bank
(bank 2) of the PROGRAMMER ROM module. This function, together with

(PB09], enables users to switch between the banks of the PROGRAMMER
ROM if this module has been made bank switching by the user.

Because HP-41 bank-switching has been implemented such that only the
particular module containing the bank-switching instruction will obey it,

each bank of each page in a bank-switching must contain the bank-
switching functions. As a user may have more than one ZEPROM module

plugged in at any time, and each of these functions must have a unique
XROM:-id to avoid confusion between them, the functions all adopt the

XROM-id of the page into which they are loaded. The general form of
these functions is and (SBxx), see separate entries. When loaded
into aninitialised page by ADDMCF the functions take on the XROM-id of
that page. Therefore, in the PROGRAMMER ROM (XROM:-id of 09), these
functions appear as and (SB09).
These functions have been provided in the PROGRAMMER ROM in case a
user decides to make that module bank-switching, and thus allow the user
to switch between the primary and secondary banks.

See additional explanation about bank-switching functions on page 39.

None.

None.

None.

© ZengrangeLtd - 1988

Purpose

Chapter 6: The Programmer ROM

w:thXROM-idofxx

Disables the primary bank (bank 1) and enables the secondary bank

(bank 2) of the bank switched ROM page whose XROM-id number is

specified in Reg X. This function, together with (PBxx], enables users to
switch between the two banks of any particular bank-switched ROM as
desired.

Because HP-41 bank-switching has been implemented such that only the

particular module containing the bank-switching instruction will obey it,
each bank of each page in a bank-switching must contain the bank-
switching functions. As a user may have more than one ZEPROM module

plugged in at any time, and each of these functions must have a unique
XROM-id to avoid confusion between them, the functions all adopt the
XROM:-id of the page into which they are loaded. When loaded into an
initialised page by the functions take on the XROM-id of that
page. Therefore, in a ROM page of XROM-id of 28), these functions

appearas and (sB28)
See additional explanation about bank-switching functions on page 39.

None.

None.

None.

©Zengrange Ltd - 1988 87

NVZEPROM Module - Programmer’s Manual

Provides an automated, prompting routine for non-technical users to allow
initialising and burning of user code program(s) into a ZEPROM page.

Note that programs cannot be retrieved from extended memory or mass

Key Sequences & Comments

Ensure the ZVC and ZEPROM are

properly connected and the ZVC is
switched ON. In addition, ensure

the HP-41 has a fresh set of alkaline
batteries, and that the programs to

be copied are in main memory.

To start the "UCBURNutility:

UCBURN
Input page number you want the
programs loaded into. Remember
ZEPROM is forced into 16K mode.

8
If the page specified has already

been initialised then goto step 10.

Routine promptsfor all initialisation

parameters. If any other pages in

ZEPROM are alreadyinitialised as

bank-switched, then goto step 5. (In

such cases new page automatically
made bank-switching).

If module is to be bank-switching,

input 1, otherwise input 0.

0
Header name (if required). Should
be at least 8 characters long to
show up in a CAT 2 on an HP-41CX.

‘MY ROM 1A

Purpose

storage and that input of all valuesis in floating point decimal.

Step Display

1 -

2. [FPHGE NEERY |

3.

4, LWHNT BHNH S

5. |HEHTIER?]

6. [TRAILER? |

88

Page trailer(if required). Should be
exactly 4 characters in length.

MY1A

© Zengrange Ltd - 1988

Chapter 6: The Programmer ROM

Y g_jr' N ML N TT XROM numberfor page. Should be

7. LiFirtNHE R | unique to your HP-41 configuration;
i.e. not used by any other module.

21 (A/5)
8 MT) E; T, I Add number of m-code functions to

: S S number of globalalpha labels in
your programs to give total number
of labels. Remember that once
initialised, this cannot be changed!

If unsure of exact number,it is best
to over-estimate! Don’t add entries
for the header or bank-switching

functions that will be automatically

loaded, since they are added by the
program.

40 (/75)
9 I T= = I Program initailising page with FAT,

. =t XROM:-id (plus header & trailerif
specified). Functions PBxx, SBxx,

BGTOxx, BXEQxx & BRTNxx are
also loaded if bank-switching.

IhICJrAE. T "UCBURNready to load user code

10. l} Finey perirer 0 programs. Input name (global alpha
label) of program to load. Specified
program is compiled and burned.

PROG1

11 [IRV| The program is now being loaded
. LNPOt intO the ZEPROM

TILITAT, NILJNAL, I If more programs to burn, repeat

12. [HHOL NHME | from step 10 until either all your
programs are burned or you need
to copy in more from mass storage.

Once finished, respond to the
PROG NAME? prompt by pressing

without any input. This will
terminate the program.

R/S

Sub-routines:

"UCBURN utility has 2 subroutines, "INIT and "INITP, used to initialise ZEPROM pages.
In essence they cover step 2 through step 9 of the above example, except that "INIT is

intended forcalling from the keyboard and " INITP to be called from another program.

©Zengrange Ltd - 1988 89

'ZEPROM Modul

Register & Flag usage:

"UCBURN and the "INIT and " INITP subroutines use 6 registers and two flags:

Register 00: Page number
Register 01: XROM number

Register 02: Number of labels
Register 03: Header (leading chars.)

Flag 19: set if INITP called,
cleared if INIT

Flag 20: set if bank-switching,

cleared if not
Register 04: Header (trailing chars.)
Register 05: Trailer

Error Messages:

LINVHL TTNAME

[TrVHLTTTRLR

LINVHL TTRO

[INVHLIT LRLS]

INENEISTENT |

[Pt RIS |

LEHT TREREFT

[LTdBRTI]

LERNERFIrnen]

Input was required at the prompt. The program

re-prompts for input.

Page number specified was invalid. The
program re-prompts for correct input.

"INIT only. The page number specified is not
blank. Program re-prompts for another page.

Incorrect or no input at the WANT BANKSW?

prompt. Program re-prompts for correct input.

The page header entered was too long (max 11

chars). Program re-prompts for correct input.

Program name was more than 7 characters
long. Re-prompts for correct input.

The trailer entered was not exactly 4 characters
long. Program re-prompts for correct input.

The XROM ID entered was not in the range 1 to
31. The program re-prompts for correct input.

Either: number of labels input was 0, or number

input added to header & bank-switch functions
(if specified) is greater than 64. Re-prompts.

Program not found. Name either wrong, or not
in main memory. Re-prompts for input. If

necessary, copy in from mass storage & restart.

Page has not enough space to burn program.
Abort, use new page, or load smaller programs.

Not enough free FAT entriesleft for program.

Remove a few global labels or abort and restart
specifying a new page. Re-prompts for input.

Battery too low to continue burning. Replace
batteries and use the to finish off
burning this program. Then restart "UCBURN.

Error in burning program. Check for wrong
page number input. Restart with correct page.

90 © Zengrange Ltd - 1988

Appendix A: Technical Data

Technical Data

Programming ZEPROM

In common with other HP-41 add-on memory devices, such as Q-ROMs, the ZEPROM

module uses the WMLDL (040h) opcode as its write instruction. However, it should be

noted that programming a ZEPROM location correctly is not as simple as programming

a location in a Q-ROM device. A Q-ROM is essentially a RAM based device, and as
such, only requires a very short programming cycle - in fact just one write instruction
will correctly program a RAM location. However, EPROM type devices are different in
that they require both a long write cycle and a much higher than normal voltage for
programming.

Programming Voltage

The necessary programming voltage (12.5V) is generally supplied by the programming

fixture. Inthe case of the ZEPROM Voltage Converterthis voltage is generated from the

HP-41’s own 6-volt batteries and supplied to the module when the ZVC’s programming
switch is set to the ON position. Whenever this programming voltage is applied to the
ZEPROM module, the configuration bits programmed into the chip are ignored and the
module is forced into a straight 16K mode. This ensures that all four cores are available

while programming takes place.

Programming Cycle

Whenever the WMLDL instruction is issued on the 41 bus the ZEPROM module

compares the address stored in C[6:3] (which is obtained from the DATA line) with its

own address space. If the address to be programmed is within the ZEPROMs address
space, then the ZEPROM starts its programming cycle. During a programming cycle

the ZEPROM module goes off-line,(i.e. it does not respond to any instructions from the

bus) and it sets the HP-41’s peripheral flag 4 to indicate it has entered this state. The
chip has to go off-line to ensure that the address loaded on the EPROMs address lines
does not alter during the write cycle. The ZEPROM module stays off-line for a total of
16 HP-41 instruction cycles (typically 2.5ms). Once the cycle is completed, the

ZEPROM comes back on-line and peripheral flag 4 is reset.

© Zengrange Ltd - 1988 o1

rammer’s Manual

ZEPROM Module - Pr

As with most EPROM devices there is a recommended ‘Intelligent’ or ‘Quickburn’

algorithm for programming the device; this algorithm requires that each location is
programmed until the data read back from that location is the same as the data written.

Then, in order to prevent ‘bit drop-out’ after the programming voltage has been
removed, the location should be programmed twice more. Naturally, should the

ZEPROM module fail to program correctly within a given number of tries then the

programming operation should be aborted.

To illustrate the typical implementation of this algorithm, we have shown it in the

following pseudo-code:

Reset retry counter

DO
Load address and data
Start writegycle (WMLDL)

D
UNTIL peripheral flag 4 clear
END

Increment retry counter
Read data from address

UNTIL
data read = data written OR retry counter = 32

END

IF data read = data written

THEN burn successful

ELSE burn failure

Programming Restrictions

Because the ZEPROM module is taken off-line during the programming cycle it would
be impossible for the module to program itself since the instructions following a WMLDL

would not be seen. Therefore, if the WMLDL instruction is issued from the same
ZEPROM module as that being programmed, the ZEPROM will ignore the write
instruction. The PROGRAMMER ROM circumvents this restriction by making an

operating system call to initiate the write cycle.

HP-ROM Compatibility

The configuration of HP roms differs slightly from the configuration of a ZEPROM. An

HP rom comprises just three 4K cores (total 12K) whereas the ZEPROM has four(total
16K).

With an HP ROM,each 4K core in the ROM has the following configuration options:

92 © Zengrange Ltd - 1988

Appendix A: Technical Data

Enabled or Disabled

Hard addressed Port addressed

 Address Lower page T Upper page
 Permanent / Primary Bank / Secondary Bank

The options for HP ROMs are further explained as follows:

If a core is disabled,it is not seen by the HP-41.

If a core is hard configured, a configuration address must supplied.

If the core is port configured, it must be configured for the upper or lower

page in that port’s address space.

Each core, whether hard or soft configured, can also appearas:

Permanent Bank Always present to the HP-41
Primary Bank Present at power-up and enabled with ENBANKI;

disabled with ENBANK2
Secondary Bank Not present at power-up but enabled with ENBANK2;

disabled with ENBANK1
Note, however, that the ENBANKX instruction only affects the module in which it

is executed, but affects all cores in that ROM.

For ZEPROM, the situation is different. This is mainly because ZEPROM must emulate

a numberof different possibilities and must also be capable of being reconfigured under

software control. HP’s ROMs, being mask programmed ROMs rather than EPROMs,
are hard configured and can never be changed.

ZEPROM cannot have disabled cores; all cores being always enabled.

However,it is possible to simulate disabling certain cores by configuring

the zeprom as being bank-switched and then duplicating the data content

of cores. See chapter 2, page 8 for details.

ZEPROM cannot be hard addressed; its address always being dependant

upon the port into which it is plugged. See Chapter 1, page 1 & 2 for
diagrams illustrating port addressing. The position of each core within a
port (i.e. in it's upper or lower page) is determined by the core number;

cores 0 and 2 being the two lower pages and cores 1 and 3 being the two
upper pages. This is not a restriction on the configuration of ZEPROM, but
just means that the user must program the required data into the correct

core.

ZEPROM can emulate an HP ROM'’s permanent core by duplication of the
primary bank code into the secondary bank. The selection of a bank being
primary (Bank 1) or secondary (Bank 2) is controlled by the core number-

cores 0 and 1 being primary banks, cores 2 and 3 being secondary banks.

© Zengrange Ltd - 1988 93

rammer’s Manual

“..ZEPROM Module - Pr

In fact, the only configuration option directly offered by ZEPROM is a

choice between a straight 16K configuration and a 16K bank-switched
configuration. All other configurations, e.g. straight 8K, 12K bank-

switched, are emulated by duplicating selected cores.

The following tableillustrates how these various HP configurations can be

emulated with ZEPROM:

HP-ROM Core Configurations Emulation with ZEPROM

Enabled, Port addressed, Upper Page, Permanent Core 1 duplicated into core 3

Enabled, Port addressed, Upper Page, Primary Bank (1) Core 1

Enabled, Port addressed, Upper Page, Secondary Bank (2) Core 3

Enabled, Port addressed, Lower Page, Permanent Core 0 duplicated into core 2

Enabled, Port addressed, Lower Page, Primary Bank (1) Core 0

Enabled, Port addressed, Lower Page, Secondary Bank (2) Core 2
The ZEPROM hardware initially determines if the configuration is bank-switched or

straight from the two mostsignificant bits of data at address location xFFD in core 1. If
both bits are clear, then the module is considered as straight 16K. If either or both bits

are set, then the module is considered as being bank-switched. In a bank-switched

configuration then either one or both of the two most significant bits of the data at
address xFFD in core 3 should also be set. If this is not done, then ZEPROM will be
able to select the secondary bank, but will not be able to return to the primary bank.

The use of the most significant bits of address xFFD complies with the bank-switching
convention established by Hewlett-Packard; in which any bank switching page will have
the most significant bit of the data at address xFFD in that page, set. Remember
however that ZEPROM only references the bits in core 1 (and core 3) to determine if the

entire ZEPROM is bank switching. The PROGRAMMER ROM software also uses an
extension of the HP convention to determine if a page is bank-switched and also which

page is currently selected:

Data Word at xFFD Meaning of bits
bit-9 bit-8
0 0 Page not bank-switched
0 1 Bank-switched, primary bank
1 0 Bank-switched, indeterminate bank (HP)
1 1 Bank-switched, secondary bank

The ZEPROM module is 100% code compatible with HP ROMs. This means that all

user or M-code designed to run in an HP ROM will also run on ZEPROM. However,

users should be aware of a slight incompatibility problem in the reverse direction.
Because of a flaw in the chip currently being used by HP, all bank-switching instructions

94 ©Zengrange Ltd - 1988

Appendix A: Technical Data

(ENBANK1 and ENBANK2) must be preceded by an instruction in which the most

significant bit is clear. The simplest way to do this is to precede the ENBANK1 or 2 with

a JNC +1 (003h) instruction. This restriction does not apply to the ZEPROM chip and
code written specifically for ZEPROM can omit the JNC +1.

Erasing ZEPROM

The ZEPROM module can be erased by exposing the EPROM chip, via the window in
the top of the module casing, to an intense ultra-violet (UV) light source. A dosage of

15W-seconds/cm’ is required to completely erase the module. This dosage can be

obtained by exposure to a UV lamp of wavelength 2537 Angstroms (A) with an intensity
of 12000 uW/m’ for 15 to 20 minutes. During erasure, all filters should be removed

from the UV source and the ZEPROM module should be positioned about 2.5cm from

the source. Note, however, that EPROMs can also be erased by light sources having

wavelengths shorter than 4000A. Although erasure time will be considerably longer
than with a UV source at 2537A, nevertheless a prolonged exposure to fluorescentlight
or sunlight will eventually erase the chip, To realise maximum reliability, accidental

erasure should be prevented by covering the module window with an opaque label.

' Ultra violet light and UV-Erasers can be hazardous if not used strictly
= in accordance with the manufacturer’s instructions. During erasure,

Warning all necessary precautions should be taken.

Electrical Information

The following current drain data has been established by direct measurements on an

HP-41. Due to manufacturing tolerances in the HP-41, ZEPROM and ZVC, slight

variances may be obtained in individual circumstances. All values quoted are typical.

ZEPROM Module

Sleep state LA
Run mode 2.5mA

ZEPROM Voltage Converter

Programming switch OFF 0
Programming switch ON 4.9mA

ZVC & ZEPROM - Programming

Average 14.6mA

Peaks 15.1mA
(Note: the HP-41 consumes an additional 10 to 15mA in run mode)

© Zengrange Ltd - 1988 95

ZEPROM Module - Programmer’s Manual

Copyright & using ZEPROM

All copy, design, patent and ownership rights of this manual, its associated products,
software, source code and descriptions shall remain with Zengrange Ltd and others.
The provision of the software, and inclusion of any source code in this manual does not,

and shall not, constitute its passing into the public domain. The User is permitted to

use the software for purposes of burning ZEPROM modules, but neither the software,
listings nor descriptions may be further distributed, modified or included in any other

commercial products without the prior written approval and agreement of Zengrange.

' The PROGRAMMER ROM contains functions that facilitate the

= copying of ROM software. However, since software is covered by

copy, design or patent rights, it is illegal to make copies for
Caution distribution, duplication or modification unless permission has been

granted by the holder of those rights. Obtaining such permission is

the specific responsibility of the user.

In all cases where a Zengrange product is used to infringe copy,
design or patent rights, the user shall bear the entire responsibility
and assume all liability for infringement. Neither Zengrange Ltd, nor
its agents, shall be in any way liable for the user’s actions.

 96 © Zengrange Ltd - 1988

Appendix B: Annotated Li ting§

Appendix B

Annotated Listings
© Alllistings in this manual are the copyright of Zengrange Ltd. The user’s attention

is drawn to the copyright notice in Appendix A.

Utility Routines (RPN)

" UCBURN provides forinitialising and subsequently loading user code programs into a
ZEPROM page. See Chapter 5 for explanation. The program also includes synthetic

instructions (STO M, etc) and synthetic text, which is shown in hexadecimal format.

@81+LBL "UCEURN"
82 XROM “INITP"

Entry point for loading user code programs
Go initialise page if necessary

B3+LBL 12 Get name of program to burn
84 "PROG NAME" Load "prog name" message

85 XEQ@ @7 Go get Alpha input from user

@86 FC? 23 Did we get any input?
87 RTN No, so terminate the program
88 . Load zero into Reg X
89 RCL M Wasthere any Alpha input (prog name) ?

18 X=Y?
11 RTN No, so terminate program
12 XY Get zero into Reg X
13 RCL N Did the user goof and input more than

14 X=¥? 7 charactersfor the program name ?

15 GTO 13 Length okay, so go process it

16+LBL 14 Error in program name returned

17 XEQ@ 15 Go get "invalid" message

18 "FNAME" Append "name"
19 XEQ 18 Go show the user
28 GTO 12 Go and retry to get a valid program name

21+LBL 13 Got the program name
22 SF 25 Trap any PRGMLN errors
23 PRGMLN Get program length & FAT entries (RegX = bytes.FAT entries)

24 FS5? 25 Did PRGMLNcause an error ?
29 GTO 13 No, so program length is in Reg X
26 "NONEXISTENT" Yes, program not found, or M-code function

27 GTO 14 Go tell user about error

28¢LBL 13 Program length in Reg X
29 INT Take numberof bytes (integer)

38 LASTX Recall the value
31 FRC Take number of FAT entries needed (fraction)

32 RCL 08 Recall the page number
33 FRSPC? Any room left ?
34 GTO 13 Yes, Reg X=bytes.FAT; Reg Y =start address

© Zengrange Ltd - 1988

35+LBL 11

36
37

“NO ROOM*"
GTO 14

38¢LBL 13

39
40
41
42

31
32

XY
RIN
FRC
LASTX
INT
Rt
XY?
GTO 11
RDN
RDN
XEOY
X<{=Y?
GTD 13
"FAT OYERFLOW"

J3+LBL 14
94
395

XEQ 18
GTO 12

S6¢LBL 13
37
38
39
60

RCL @@
CF 25
BURNUC
GTO 12

61+LBL "INIT"
62
63

CF 19
GTO 88

64¢LBL "INITP"
65 SF 19

66+LBL 08
67
68
69
70
71
72
73
74
73
76
77
78
79
30

"PAGE"
XEQ 88
Fs? 22
"FPRGE"
FC? 25
GTO 14
STO 68
BLANK?
GTO 13
"PG NOT BLRAMNK"
RCL 88
FS?C 19
RTN
GTO 14

81+LBL 13
82
83

FS? 25
GTO 13

84+LBL 14
85
86

XEQ 18
GTO 08

87+LBL 13

No room left in page

Load "no room" message

Gotell user there's no room at the inn

Page has some free space available

Swap starting address of free space to Reg X

Roll stack down (RegX= bytes.FAT entries)

Numberof free FAT entries (fraction)

Recall last value

Numberof free bytes remaining (integer)

Reg Y = free space, Reg X = program length

Is program greater than free space ?

Yes, so go tell user of error

Roll stack down
Reg Y = number of labels, Reg X = freeFAT

Swap them over

Is number of LBLs required less or equal to free FAT entries?

Yes, so go processit
No, so load "overflow" message

FAT overflow routine

Go tell user he's overweight
Then go back to the beginning & get new program name

Valid program name & free space, so proceed

Recall page number

Clear error flag to allow abort on error

Burn the program into ZEPROM

Done so get next program

Set up/initialise page routine
Not called from another program, so clear INITP flag

Go append " number" to message

Entry point if calling this programmatically
Called programmatically, so set INITP flag

Get page number and check if blank

Load "page" message to alpha

Go append " number"to it & get input
Test again if input made

Append "page" to invalid message

Errorflag still clear ?

Yes, so go tell user about error

Store the page numberinto Reg:00
Check that the page is blank, validate input.
Invalid input or our page is blank.

Load "non-blank page" message

Recall page number

Did we call this via " INITP from another program ?

Yes, so assume page already initialised.

Go show error message to user

Detect blank page orinvalid input
Error flag set ?

Tell the user aboutit

Go show him the message

Then go get another page number

98 © Zengrange Ltd - 1988

88 CF 20
89 RCL o080
98 11.887
91 X<Y?
92 15.811

93+LBL 85
94 BNKSW?
95 GTO 13
96 LASTX
97 DSE X
98 GTO 85

99+LBL 86
1860 "WANT B
181 XEQ @9
182 ~INPUT
183 FC? 25
184 GTO 14
185 E
186 XY
187 X<=Y¥?
188 GTO 13

189+LBL 14
116 XEQ 18
111 GTO @6

1124LBL 13
113 X407
114 SF 20
115 X#8?
116 6
117 STO @2

118+LBL a1

ANKSW"

6 OR 1"

119 "HEADER"
120 XEQ @7
121 FC? 23
122 GTO 13
123 CLX
124 F4: 7F
125 RCL O
126 X#Y?
127 GTO 14
128 F5: 7F
129 X<> 0
138 X<> N
131 STO M
132 GTO 13

133+LBL 14
134 XEQ 15
135 "HHDR"
136 XEQ 10
137 GTO el

138¢LBL 13
139 ASTO 83
148 ASHF
141 ASTO B4

B0 69 09

69 08 00 60

Appendix B: Anriotated Listings

Clear bank-switched flag

Recall page number

Set up DSE loop counter

Is page numberless than/equal to Reg X ?

Yes, then replace DSE loop counter in Reg X

No
Any of the pages bank-switched?

Yes, so they all will be.

Recall page number

Check loop counter
Not yet equal, so loop back

Determine whether bank-switching wanted

Load "do you want bank-switching" message

Go get input - needs either 0 or 1

Tell him we want ‘1’ for bank-switched, otherwise ‘0’

Test error flag Is it still clear ?

Yes, Go tell user aboutit
Input value of 1 fortesting

Swap input and 1 around

Is bank-switching input less than or equal to 1 ?

Tell user about it

Go show him the message
Go repeat the bank-switching question

Set up bank-switching flag & minimum FAT entries

Is bank-switching input non-zero ?
Yes, so set bank-switching flag

Is bank-switching input non-zero ?

Yes, so set minimum FAT entries for bank-switched page

Store temporarily in Reg:02

Page header routine

Load "page header" message

Go prompt for alpha input
Is input flag clear ? (no alpha input?)

Reg:X = 0 & disable stack lift

Append three null

}
} Was the alpha input greater than 11 characters ?

Yes, so go tell user of error

Append four more nulls

}
} Restore alpha register to its original content

}
Go store the header message in Reg:03 & Reg:04

Bad "page header" routine

Go load "invalid" message
Append "header"to it

Go show him the message
Then go ask him for the page header again

Store header routine
Store first 6 characters of header in Reg:03

Shift Alpha by 6 characters to the right
Store the last part of the header in Reg:04

©Zengrange Ltd - 1988

142 ISG 82

143+LBL 82
144 "TRAILE
145 XEQ 87
146 FC? 23
147 GTO 13
148 CLX
149 F4: 7F
158 RCL N
131 X#Y?
152 GTO 14
153 F2: 7F
154 RCL N
135 X=Y?
156 GTO 14
157 F4: 7F
158 CLX
1539 <> N
1686 STO M
161 GTO 13

162+LBL 14
163 XEQ@ 15
164 "FTRLR"
165 XEQ 18
166 GTO @2

167+LBL 13
168 ASTO @5

169+LBL 83
178 "XROM"
171 XEQ @8
172 FS? 22
173 "FXROM"
174 X402
175 FC? 25
176 GTO 14
177 32
178 X>¥?
179 GT0 13

180+LBL 14
181 XEQ 1@
182 GTO @3

183+LBL 13
184 X{OY
185 ST0 @1

186+4LBL B4
187 "NO OF
188 XE@ @9
189 FS5? 22
198 "FLBLS"
191 X#@?
192 FC? 25
193 GTO 14
194 RCL @2
195 +

RII

0@ @e@ aa

68

00 66 66

LELS "

Assume SKIP past LBL 02

Gettrailer routine

Load "pagetrailer" message

Go prompt for alpha input

Did he input anything ?

Yes, so store it in Reg:05

No, so clear Reg:X

Append three nulls

}
} Was alpha input greater than 4 characters

Yes, so go tell user abouterror

Append another null

}
} Was alpha input less than 4 characters

Yes, so go tell user abouterror

Append three more nulls

}
} Restore alpha registerto its original content

}
Go store the trailer to Reg:05

Invalid trailer routine

Go load "invalid" message

Append "trailer"to it

Go show him the message

Then go ask him for the pagetrailer again

Storetrailer into Reg:05

Get XROM number routine
Load "xrom" message

Go append "number ?" & get numeric input from user

Did he input anything ?

Append " xrom" to invalid message in alpha

Is it non-zero ?
Errorflag still clear ?

Go tell user aboutit

Load maximum XROM-ID number

Was his input less than 32 ?

Yes, so proceed

Go tell user XROM too big

Go show him the message

Then go ask him to pick another number

Store XROM:-ID routine

Recall XROM to Reg:X

Store XROM-ID into Reg:01

Get maximum number of FAT entries required

Load "how many FAT entries wanted" message

Go get numeric input
Did user input anything ?

Append "labels" to invalid message

Is the input non-zero ?

Errorflag still clear ?

Go tell user aboutit

Recall minimum number of FAT entries (6 if bank-switched)

Add minimum FAT to required number

 100 © Zengrange Ltd - 1988

Appendix B: Annotated Listings

196 65
197 X>Y?
198 GTO 13

199¢LBL 14
208 XEQ 1@
281 GTO 64

202+LBL 13
203 XOY
204 STO @2
285 CLA
2086 RARCL 83
2087 ARCL 04
288 "k, "
209 ARCL 85
218 RCL @8
211 RCL @81
212 RCL 82
213 E3
214 v
215 +
216 FS? 28
217 CHS
218 CF 25
219 INITPG
228 FC?C 28
221 RTN
222 RCL 00
223 RDDUCF
224 RDDMCF
2235 RTN

226+LBL 87
227 "k 7
228 CF 23
229 RON
238 PROMPT
231 ROFF
232 FC? 23
233 CLR
234 RTN

235+LBL 88
236 "F NUMEER"

237+LBL 89
238 k7"
239 CLST
248 CF 22
241 PROMPT
242 "INPUT REG'D"

243 FS? 22
244 XEQ 15
245 CF 23
246 FS? 22
247 X(@?
248 RTN
249 INT
258 LASTX

Load maximum possible FAT size

Is required value less than maximum ?

Yes, so continue

Tell user about error

Show him the message
Then go ask him for number of FAT entries again

Process number of FAT entries

Recall FAT entries to Reg:X

Store it into Reg:02

Blank alpha ready for input

Recall first part of header

Recall second part of header

Append "comma”

Recall trailer

Recall page number

Recall XROM number
Recall number of FAT entries required

Load 1000
Divide FAT entries by 1000

Add to XROM-ID to give "xrom.fat"
Is this a bank-switched page ?

Yes, so change the XROM sign to negative

Clear errorflag to allow abort on error

Now initialise the page

Is bank-switched flag clear (and clearit) ?

Yes (page is not bank-switched), so return

Recall page number

Now add the user code bank-switching stuff

Followed by the m-code bank-switching stuff

Then return

Alpha input routine

Append "question mark”

Clearalpha input flag
Turn on Alpha ready for input

Get input from user
Turn off Alpha

Didn't input anything ?

No input, so clear alpha

Append "number" to message

Numeric input routine

Append "question mark" to message

Clear the stack registers

Clear flag to test for numeric input

Stop for userto key in numeric value

Load message telling user "input really is necessary"

Was there input ?
Yes, so go load "invalid" message

Clearerror flag to allow abort on error

Was there really any input ?

Yes, so test whether input was negative

Take integerof input

Recall the input value to Reg X

© Zengrange Ltd - 1988

231 X=Y? Wasinput value an integer ?

292 SF 25 Set error trap flag
293 RTN

254+LBL 15 Invalid input message message routine

295 "INVYALID - Load "invalid" part of error message
296 RTN Go back to append the rest

257+LBL 18 Display routine

298 AYIEMW Display message for the user to see
299 TONE 8 Then wake him up

268 PSE Pause for him to see message
261 END

Bank Switching Code

The following listings detail the bank-switching code provided in the PROGRAMMER

ROM. Note, however, that the functions assume the XROM number of the particular

page into which they are loaded; e.g. XROM 09.

Functions Description

Bank-switched GTO from User-code.

Bank-switched RTN from User-code.

Bank-switched XEQ from User-code.
Enable primary bank of XROM xx.
Enable secondary bank of XROM xx.

Bank-switching code

This code is added into ZEPROM when the bank is initialised as being bank-
switched with (INITPG), or when later changed to bank-switching with
and provides the low level ability to swap banks in that ROM page.

$LOAD AT FC7#
pFC? 188 EHBANKI

xFC8 3E@ RTH
pFC9 188 ENBANK2Z

xFCA 3E@® RTH

Functions for bank-switching in User code

The functions (BGTOxx), [BRTNxx] and [BXEQxx] perform bank-switching from
within user-code programs. These functions are added into ZEPROM by the

instructions. Note that they assume the XROM number of the particular
page into which they are loaded; in this case, XROM 09.

xFCB BB9 9
xFCC 830 @
xFCD @@F 0
xFCE 814 T
xFCF 887 G

102 © Zengrange Ltd - 1988

xFD@
BGT0@9

xFD2
xFD3

xFD4

xFDS

xFD6

xFD?

xFD8

xFD9

BXEQ®B9

xFDB

godoit

xFDD

xFDE
xFDF

xFEB
xFE1

xFE2
xFE3
xFE4

xFES
BRTNB9

xFE?
xFES

Be2
138

873
883

689

838
811
885
818

802
130
8F3
358

100
31D
892

aB9
830

BBE
B14
812

802
100
aeD
89E

LDI

CON
JNC

o
X
M
o

o
w

LDI
CON
ST=C

ENBANK1
*
NCGO

o
o

-
4
Z
0
w

ENBANK1
*
NCGO

This is the post-fix byte for 'GTO IND X'.

873h

godoit

This is the post-fix byte for 'XEQ IND X'.

8F3h

This is where 'XGI' expects it's argument.

Swop banks (re-burnt as ENBANK2 for lower page)

XGI Arrive here from same function, other bank.
24C7h Exit to mainframe, GTO or XEQ - IND X.

Swop banks (re-burnt as ENBANK2 for lower page)

XRTN
2783h Exit to mainframe, RTN to calling User-code.

M-code bank-switching functions

The functions, and (SBxx), enable either the primary or secondary bank of
the page of XROM-ID xx. These functions are added into ZEPROM by the

instructions. Note, however, that the functions assume the XROM
number of the particular page into which they are loaded; in this case, XROM 09.
Similar functions & are used in the PROGRAMMER ROM to
switch between primary and secondary banks of that ROM.

xFE9

xFER
xFEB
xFEC

xFED

xFEE

xFEF

xFF@

xFF1

xFF2

889
830
6@2
a1e

083

289
830
882
813

083

9

@
B
P

JNC

W
D

W

JNC

rFC?

PFCI

© ZengrangeLtd - 1988

“_‘ZEPROM Module - Programmer’s Manual

Appendix C

Warranty & Servicing

Limited Warranty

Zengrange products have been developed and manufactured to high standards.

Products carry a limited warranty effective from the date of original purchase.

Zeprom Voltage Converter:
Warranted against defects in materials and workmanship affecting

electronic and mechanical performance for 90 days.

ZEPROM Module:
Warranted against defects in materials and workmanship affecting
electronic and mechanical performance of the module casing, connector

and associated logic circuitry for 90 days.

The ZEPROM module is supplied fully tested, with the PROGRAMMER

ROM software ready programmed into one bank. On receipt, the module

should be tested in an HP-41, and if it appears to be defective, returned
immediately to Zengrange Ltd, or their local agent, for a free-of-charge

replacement. However, once a ZEPROM module has been erased, or any
location in the module has been programmed, neither Zengrange Ltd nor
its agents, can accept any further responsibility due to the introduction of
procedures totally beyond our control.

A ZEPROM module will normally be capable of being programmed and

erased more than 100 times, but because these processes are outside our
control, this cannot be guaranteed. The expected life far exceeds the
frequency of reprogramming expected or intended for this type of device.

If given as a gift, the product warrantyis transferred to a new owner for the remainder of

that period, provided that proof of purchase date is supplied. During the warranty, we
will repair or, at our option, replace a defective product, provided it is returned, shipping
prepaid, together with proof of purchase to an official service representative.

Products are sold on the basis of specifications as at manufacture. There shall be no

obligation to modify or update a product once manufactured.

Consumer Transactions in the United Kingdom

This warranty shall not affect the statutory rights of a consumer whose rights as

Buyer and the obligations of Seller are determined by statute.

104 © Zengrange Ltd - 1988

Appendix C: Warranty & Servicing

Warranty Restrictions

This warranty does not, and shall not apply if a product has been damaged by

accident, misuse, modification, or service by unauthorised persons or
organisations. No other expressed or implied warranty is or shall have been
given. The repair, or replacement of the product is your exclusive remedy.

Under no circumstances shall ourliability extend to consequential or incidental
damages, no matter how caused, nor shall it exceed the catalogue or sale price
of the product at the time of sale. Under no circumstances shall any liability

attach to us for loss or corruption of program or data material stored in any
computer using our products.

Shipping for Service

During normal, or extended use, these Zengrange products will not require any
maintenance. There are no user serviceable parts inside the ZEPROM module, nor in
the ZVC device.

Because many factors could affect the performance of your product, including flat

batteries, software corruption or the particular configuration or way in which you are

using it, we recommend that you make contact with us by telephone or letter before
returning a product. In this way we can help isolate any difficulties that do not require

the return of a product.

In the unlikely event that the product proves to be defective, return it, postage prepaid,

to:

Zengrange Ltd., Telephone:
Greenfield Road, National: Leeds (0532) 489048
Leeds, W.Yorks, International: + 44 532 489048

England,
LS9 8DB.

or to otherofficial, local service representatives.

When returning products, be sure to include the following:

= A copy of your sales receipt, or other proof of purchase - if the warranty

period has not expired.

= Adescription of the problem, detailing the circumstances of when and how

the problem occurs.

= Details of your particular computer system - including serial number,
memory configuration, ROMs plugged in,etc.

Whether or not a product is still under the warranty,it is the responsibility of the owner

to ensure that the device is securely packaged to prevent damage in transit (which is
not covered by our warranty) and that shipping costs to ourselves are paid.

© ZengrangeLtd - 1988 105

mmer’s Manual 'ZEPROM Modul

Technical Assistance

The operating instructions in this manual are supplied with the assumption that the user
has a working knowledge of the concepts, terminology, technology and equipment

used. Whilst we are happy to advise on general suitability and usage of our products,
the multitude of programs that could be used on our products makes it impossible for

us to provide detailed technical assistance except where it relates to our own product
design. Any information given, not directly relating to our products, shall be used

entirely at the recipient’s own risk.

POTENTIAL FOR
RADIO AND TELEVISION INTERFERENCE

(For U.S.A. only)

The ZVC and HP-41 generate and use radio frequency energy and, if not installed and

used properly, that is, in strict accordance with the manufacturer’s instructions, may
cause interference to radio and television reception. It has been type tested and found
to comply with the limits for a Class B computing device in accordance with the

specifications in subpart J of part 15 of FCC Rules, which are designed to provide
reasonable protection against such interference in a residential installation. However,
there is no guarantee that interference will not occur in a particular installation. If your

product does cause interference to radio or television reception, you are encouraged to
try to correctthe interference by one or more ofthe following measures:

= Reorientate the receiving antenna.

. Relocate the computer with respect to the receiver.

. Move the computer away from the receiver.

If necessary, you should consult your dealer or an experienced radio/television

technician for additional suggestions. You may find the following booklet prepared by
the Federal Communication Commission helpful: How to Identify and Resolve Radio &
TV Interference Problems. This booklet is available from the U.S. Government Printing
Office, Washington, D.C. 20402, Stock No. 004-000-00345-4.

106 © Zengrange Ltd - 1988

Appendix D:

Appendix D: Glossary

Glossary

Address............coovrenniiniieninesinennns HP-41 memory location.

Argument................oovvvcvenincrnennenee Input value required from the user. E.g. number of page to burn.

ASCIL.......oerrereceneeretreaeeensAmerican Standard Code for Information Interchange (pronounced:
As’kee). Standardised codesforletters, numbers and symbols.

Backup A spare copy of data kept in case the original is lost/damaged.

Bank 4K memory block residing within module page. In a Bank-switched

module, 4K blocks can be switched on and off-line as needed.

Bank-switching.................cccovurunnnee. Process by which blocks of RAM or ROM are moved into and out of
the 41's addressing space as they are needed. Allows effective

expansion of computer memory. See Primary & Secondary banks.

Bit Binary Digit. The Boolean values representing ‘0’ or ‘1'.

Burning...........cccoococvnnneneerenenes Process of programming data into an EPROM device.

Byte.......oooosBasic unit of measure for computer memory or disc capacity.

Usually one ASCII character takes up one byte (8-bits) of memory.

Configuration...............ccccovevrennee. Organisation or set up of memory or peripherals.

Core A 4K block of memory in ZEPROM or HP-ROM module.

Crash Trauma suffered by the HP-41 resulting in temporary loss of control

and/or data held in memory. May be caused by keying in wrong

input (in writing M-code), wrongly burning code to interrupt

locations in ZEPROM, from static-discharge,etc.

Default...,Avalue or selection made by the program in lieu of operator input.

Directory............ovcvenennrecnennnnees A list (catalogue) offiles on a disc or cassette tape.

EPROM....Erasable & Programmable Read Only Memory. Integrated Circuit

(re)programmable with software for insertion into an HP-41 port.

File A collection of related information, such as a program stored on
cassette or disc.

Filename.............cccocouverrvvenneccninennns Unique name given to a file saved on cassette or disc.

Function Address Table.................. FAT. List of pointers to functions/programs in a ROM.

Hardware............ccccoovvvnvnenevcrnenennns Electronic equipment (disc drives, display, etc) making up a
computer.

HP-IL Hewlett-Packard Interface Loop. System for interconnecting low,

battery powered devices such as disc drives or displays on HP-41.

I/OPOrtS...Slots at the rear of HP-41 into which modules and other accessories
are plugged.

© Zengrange Ltd - 1988 107

_TZEPROM Module - Programmer’s Manual

Initialiseccoooovvvevvvciriieirnee,

Machine Code....................ccccueuueue....

Main Memory..............ccccooovinirununnee

Mass storage medium......................

Memory cores.............c.cccoconvvrnennnen

Module..............cvoieen,

Off-line.........ccoooveeeeceeeree

On-line......oooeeveeeeeeeeeeen,

Operating System..................c...........

Page header.................ccccovuvuvinnnnnnn.

Page trailer................cccoocoevvrnrnnnnnne,

Parameter...............ccccoocovenernennrns

Primary bank..............ccccocevnnnn.,

(08:70).Y(R

Secondary bankcccooneeee

Software..............coocneinenencreinns

Synthetic Programming..................

User Code...........covveveerereerennne.

Utility

Word

XROM number.................ueuenne..

Process a ZEPROM to allow data/programs to be stored. Until

initialised ZEPROM doesn’t contain data necessary to be

recognised by HP-41. Also applied to cassette/disc media.

Thousand bytes (actually 1024 bytes). Also known as ‘Kb’ or ‘K’

LBL. Point in a program to which the 41 can branch to.

The native, low-level language of the HP-41's processor (CPU).

The area of the HP-41 memory used for register and program

storage.

A cassette or disc used in an HP-IL device such as a Cassette or

Disc drive.. Also called a flexible, floppy or micro-disc or diskette.

See Core.

Plug-in case containing RAM or ROM chip for connecting to HP-41.

Disabled (invisible) to the HP-41. Data cannot be accessed until

device or memory is once again On-line. See On-line.

Enabled (visible) to the HP-41. Data can only be accessed from

On-line storage. See Off-line.

Software built into the HP-41 that controls operation.

Identifying ROM name normally stored at the start of a ROM page.

4-characterrevision code stored at the end of all ROM cores.

Input value required from the user. E.g. number of page to burn.

4K-bank in a bank-switched page that is enabled by the HP-41 by

default. See Secondary bank.

Quasi-ROM device, also called RAM Storage Unit. Large, battery
backed-up RAM expansions that simulate 41 ROMs. Can be used

to develop M-Code.

Random Access Memory. (More correctly: Read & Write Memory.)

Integrated circuits (chips) making up a computer’s volatile memory.

Read Only Memory. Non-volatile chip programmed with software

for insertion into an HP-41 port.

Alternative 4K-bank in a bank-switched page that is can be

swapped (enabled) in place of Primary bank as desired.

Programs used by the HP-41. E.g. Zenrom, Advantage, Maths Pac.

Technique for creating user code instructions unintended by HP

and which the user cannot key-in directly.

Programs written using Reverse Polish Notation (RPN) instructions.

An extra program, supplied with an application, but separate from

it, that provides extensions to the application.

Logical grouping of bits. In the case of the HP-41, a word is 10 bits.

An identifying number assigned to a ROM page.

108 © Zengrange Ltd - 1988

Index

INDEX

A

About this manual...........cccceveneninncnininnnennenn, v

Add bank-switching code............c.ccoouvvuirnnnnnee.44

Add M-code bank-switching functions..............45

Add user coded bank-switching instructions....46

ADDBSW......ccoiiriiiniininiiiienencinceseenes44

ADDMCF ..39, 45

ADDUCF 39, 46

Algorithm, for burning ZEPROM.............c.c.c....92

ALPHA DATA €IT0r........coeruiririninnenieiniiesreneenes64

Annotated listingsc.ceceevvevrenersinnienenieennennens97

bank-switching (M-code functions)........ 103
bank-switching (user-code functions).... 102
bank-switching code.............cocevvininnnnns 102

Arguments, keying in.........c.coccevevinnincncniienne38

B

Bank-switching on HP-41cccccceciiniiiinnne 14

Bank-switching

adding M-code functions.........c..ccccceenes 45
adding switching code to page................. 44

adding user-code instructions................... 46
Large number of small functions.............. 15

listings of code.........c.cocevrininiininiinnns 102
listings of M-code functions.................... 103

listings of user-code functions................ 102
M-code.......ccorinnniininiine 15, 103
setting status bitsccccecvvnininiinnnnnn 94

small numberof large functions............... 16
special functionscccceeeerrieecieenennne. 39
testing if page is..........cccvvniiiirenininiininne 50

user code
GTO instruction (BGTOXX).......c.coenune47
RTN instruction (BRTNXX).................52
XEQ instruction (BXEQXX).........c.....57

user code Programs..........ccueveenveneseenens 39

Banks, enablingcccoeoevciiinninnne 75, 76, 86, 87

Batteries
Alkaline . 31
drain during burningccecceveniiniininnnn 31
types tO USecccevriviriiriiiicnieiniennnens 31

BGTOXX...ccevineereeneiiinieeniseisseessssesenns 39, 46, 47

BLANK? ...ttt49

BNKSW? 50

BRN ERR: nnnn error......... 55, 56, 62, 63, 69, 74,

82, 85, 90

BRTNXX....oovtireiniiiinniiniienissesisseennenes39, 46, 52

Burning
block copying dataccccevveniiiiiinnnnne. 63

display duringccoevniiniencninicnene, 40, 42
errors during.......cocceeeeneerseeseeniesieenenns 40, 42

fixtures for.......cccovivniniininiiniis 33

methods Ofccceviiviiiiniiiiies 33

multiple ZEPROMS.........cccoceivninnecnnenenne 33
ROMREG + formatted data 84
single Wordscoceveviivecninncnneeneninenne 56
software options.........c.ccevuerviininniiniennnnnne. 36

taking page from HP-IL mass storage 69
user code programs.........ceeeeervernnenne 41,54

loading with " UCBURN..................... 97
user code,error recovery during............... 82

with PROGRAMMER ROM & 2VC............. 37
ZENROM & the ZVC, usingccoevvenenn 35
ZVC..ieeeees29

BURNUC...t41,54

BURNWD........ccevtiiiiiiincncircnecneneene 56

BXEQXX c..ovveerrreiirieeeirrerennereesssnesessseneens 39, 46, 57

Cc

Care and maintenance of ZVC..............cccceceuee 32

Cautions, plugging in a ZVC..........ccoccevervencnnene 30

Checksum, computing for page...........c.ccccouvune 59

CHKSUM........ccovvvinininnnnns . .59

Comparing pages for equalityccccceuennnee 77

Comparison tests
from the keyboard...........cc.cccovvirerincnnnnne. 39
under program control.........c..cceeeeveesnennnes 39

Compatibility with HP-ROMsc.coccevnuinnnnne 94

Compiling user code programs.............ceeeueunes 60

COMPUC.......ccviiiiiicsscseinenens60

Computing checksums...........cocevvevreniinnisninnennes 59

Connecting a module to ZVC.............cccccevurnennee 30

Contents....... . iii

Conversion, decimal into hexadecimal............ 64

Conversion, hexadecimal into decimal............ 68

Copy 4K image..........ccccvvevvveninnnninreninennennenns 62

Copying blocks of data............ccceeuvvvireireennennennns 63

COPYPG.........cccueuuee. 62

Copyright 96

CPXYZ..... . 63

CUrrent drain..........cocevveereeennneseeneseseeesseesssnene 95

© Zengrange Ltd - 1988 109

ZEPROM Modul

D

DATA ERROR €f70rccocerninrerrinnnnenes 68, 74, 85

Data, reading word from ROM.............ccceeurueneee81

DECHEX 39, 64

Decimal into hexadecimal conversion.............. 64

DO IF TRUE rule..........cooenmmiminnicririiinccsencninnes 39

E

Electrical information.............ccoeeeennnenncrnsunnenne 95

Emulating HP-ROMs.........5-8, 10, 18, 73, 93, 94

ENABLEP 65

ENABLES 66

Enabling banks....................65, 66, 75, 76, 86, 87

Erasing ZEPROM.........ccovvinnnnininnenisencnnnnene95

Error messages

ALPHA DATA.......ccooitrinrenrenrensesressesnsnsnens 64
BRN ERR: nnnn.......... 55, 56, 62, 63, 69, 74,

82, 85, 90
DATA ERROR.......ccccevemrerrerrrrerrennene 68, 74, 85
FAT OVERFLOW................ 45, 46, 55, 82, 90
INITPG FIRST.......coceovrurrerrnreerreeranrenens 45, 46
INPUTOOR 1.....cverieercnrcrerneseseenennens 90
INPUT REQ'D......oocevverrerrenrenrrnnesennesnnnenns 90
INVALID ADDR..........cc0eune 56, 64, 68, 81, 85
INVALID BCTR......ccccverrrrererreenreenasrenennnne 63
INVALID DATA........cotrtrerenreerenesneseennnens 56
INVALID HDR.......ccoevtrererrinrrnrenrenrennnennes 90
INVALID LBLS.........cceevereerreererrenreresennennes 90
INVALID NAMEcccoovevrrenrenrernienenneneas 90
INVALID PAGE.....44 - 46, 49, 51, 55, 56, 59,

62, 63, 65 - 67, 69, 71, 74, 78, 82, 90
INVALID REG..........ccou.... 85
INVALID TRLR......c.ccovrtririnrirnnsesennennnnnns 90
INVALID XROMccoovirrreenrrenerreeseenenns 90
INVALID X=Y ...covrirrrrenenenreeeeenennenns 62,78
INVALID Y =2Z......ocoverrrrerrenrerrnrenessesneseenes 63
LBL TOO LONG.......ccccvvvrerrenrenne 55, 79, 82
LOW BAT: nnnn.......... 55, 56, 62, 63, 69, 74,

82, 85, 90
M-CODE LBL......cccceoerrererrrrenens 55, 61, 79, 82
NO HPIL......covrtrererirrenenreeneseseeen 69, 71
NO ROOM........cccoceevrvirerrennne 44, 55, 82, 90
NONEXISTENT........... 47, 55, 57, 61, 69, 79,

82, 85, 90
NOT PACKED........ccoceoverrerrrerrenrenrenenne 55, 61
NOT SWITCHED...........c.ccecen. 45, 46, 65, 66
OUT OF RANGE................. 56, 64, 68, 81, 85
PG IS BANKSW........ccccverrenrinrcrnenennennenes 44
PG NOT BLANK........cccevrrrrernnrennrenensnaens 90

Error recovery in burning user code.................. 82

F

FAT OVERFLOW error 45, 46, 55, 82, 90

FAT
free Space..........cccverceererennrenenensrenaenens 67
location

numberof entries...................... 3,67,73, 79

Firmware Corp., Zeprom Programmer.............33

Floating point decimal..............cocevuireniiieniinnns 38

Free space in ROM page.............ccccevuiiiunnrune 67

FRSPC? 67

Function Address Table (see: FAT)..................... 3

Function descriptions, Programmer ROM........ 43

G

Global alpha labels . 60

Glossary 107

H

Header, page 2,4

Hexadecimal alpha strings.........c.ccecevvernncinnnnne. 38

Hexadecimal into decimal conversion 68

HEXDEC 39, 68

HP-IL, burn file from mass storage................... 69

HP-IL, saving image to mass storage............... 71

HP-ROMs
compatibility.........ccccovereninininnnisininnne 92

format of 1

|

I/O ports 1

ILBURN.......cooertrrerrenrenennenees 69

ILSAVE 71

Index to functions descriptions.............ccccueunee. 43

Initialise a ZEPROM Page..............cccoveievnennennen 73

TINIT & TINITP..o.eeeceeeeeererennns 88, 89, 90

INITPG 73

INITPG FIRST @I1O0r......cccveereeenreenreeceerereenns 45, 46

Interrupt VECLOrS..........ccovereeerrnriniennnecsneessnessneens 4

Introduction . v

INPUT O OR 1 €ITOr.....c..cocvrreerecnrerennenanesnennennne 90

INPUT REQ'D €ITOr.......coereerirenrenrnenesesnennnenes 90

INVALID ADDR error.........cccceueee 56, 64, 68, 81, 85

INVALID BCTR @ITOF......ccerverrenrereresesnssesnsnnnne 63

INVALID DATA ©ITOFcovverrrereernricnnsnesnesnsenaens 56

INVALID HDR @rTOT.......cccoovrnerenniniiinennsnnnnnes 90

INVALID LBLS @rTOT.........c0oceererrerernnnrnenesesnennens 90

INVALID NAME ©fT0T.......cccovvvnrerrinnnsesnnesnnnnnnns 90

INVALID PAGEerror.....44 - 46, 49, 51, 55, 56, 59,
62, 63, 65 - 67, 69, 71, 74, 78, 82, 90

INVALID REG eITOr.......ccceoverreererrresennnsessennens 85

INVALID TRLR @ITOF......ccoverrriiniincninsnesnserennns 90

INVALID XROM €170......cceerernieiniinnsnesnisnessenns 90

INVALID X=Y @ITOF......ccocvrrernrerrrnreresneensnnene 62, 78

INVALID Y=Z €IrOr.......c.cortrreiriinrinesensnssnessenes 63

© Zengrange Ltd - 1988

L

Labels
FAT entries in ROM...........cccoccvvnnvernnnnnnnnn. 79
global alpha...........c.covivinnincncnnnnnennns 60

local alpha.........coccovevviniinnncncnicenne, 60
numeric 60

LBL TOO LONG error.........ccoovreerrnnsennnes55, 79, 82

Loading user code programs with "UCBURN..97

Local alpha labels...............ccccoveeririnnnsnnennnnnnnd60

LOW BAT: nnnn error..........55, 56, 62, 63, 69, 74,

82, 85, 90

M

M-code bank-switching (see: Bank-switching)

M-CODE LBL @rr0r........cccevrrrenrnnnnes55, 61, 79, 82

Mass storage, burning image from...................69

Mass storage, saving image toc.ceueuee71

MCED, burning ZEPROM with ZENROM..........34

Memory Map 2

N

NO HPIL error 69, 71

NO ROOM err0r......coovvrnenennininnnens44, 55, 82, 90

NONEXISTENTerror........... 47, 55, 57, 61, 69, 79,
82, 85, 90

NOT PACKED @ITO.......ccoovrnemnnrensennsresessnnens55, 61

NOT SWITCHEDerror.........c.ceueeen..45, 46, 65, 66

Numeric labels 60

0]

OUT OF RANGE error................ 56, 64, 68, 81, 85

P

Page
checksum 4
comparing for equality............cccceeveruruenne 77
copying entire...........ccceveeenninneenncnsesinennens 62

initialising with header & trailer 4,73

PB09 75

PBxx 39, 45, 76

Permanent Bank............cccoovvinenniiniincnncniinnens93

PG IS BANKSW @ITOT........ccocecurrenerennenrenneenenenns44

PG NOT BLANK efTOr........coceeirririiinnecnneninnens90

PGX=Y? 77

Physical description, ZEPROMccccocevurnnnne5

Physical description, ZVC...........ccccceeevuriirrenne29

Plugging in @ ZVC.........ccovvininenenrnncniscncsnenenns30

Ports, Input & Output (see; |/O ports)

PRGMLN . 79

Primary bank, enabile....................... 65, 75, 76, 93

Program length in ROMccccceuriccninnnennnee 79

PROGRAMMER ROM.............cceoeverurinneninnrenisnnnes 34
burning Withcceceevncnnnniiniiniinn 37
function index 43

instruction set...........c.cocevvveniinnininnnn 37,38
utility routines.........cccecrnennnniinncniinnennen, 37
XROM-identitiescccceerrvrursnisrnsennnnes 43

Programmers (see: Burning, fixtures for)

Programming switch (ZVC)...........ceceveninenuinennes 29

Programming

algorithm 92
cycle 91

restrictions...........ccccevveveiniinninnnnininennen, 92
177011-To[2N29, 91

Q

Q-ROM (Quasi-ROM) device..........c..cccrvne. 34, 36

R

Radio & TV interference.............ccccceoervreriunnnanns 106

Read word from ROM page...........c..cccocvurncnnnnen 81

READWD.........ccvtiiinininiriinisnsssnsinnssssssssas 81

REBURN 41,82

ROM format 1,3

ROM page, burn image from mass storage.....69

ROM page, saving image to mass storage.......71

ROMREG + formatted data, burning into
ZEPROM........ooeiirmrririiisrinnsnisennnnnnens 84

ROMs, copying with ZEPROM...........ccceoevunene.96

RRBURN 84

S

Saving page to HP-IL mass storage 71

SB09 86

SBxx 39, 45, 87

Secondary bank, enable.................. 66, 86, 87, 93

Selecting the best configuration........................ 10

Servicing
shipping for.........coevvininnicisnninneniennen 105
Zengrange Ltd, address of 105

ZEPROM 104
2VC 104

Software development systems.................. 33,34

Software
burning ZEPROMs..........cccoovveinennnnne. 34, 36
to control ZVC..........cocvvviiniicnnrenesninnnennene 34

Status bits, settings for bank-switched............. 94

Straight 16K mode.........c.ccceveeereninieneninenennenenns 29

Structure of HP-41 ROMs.........cccocecniiinrininnininnes 3

Switching ZVC ON & OFF.........ccccccvvvvevuvrirnennn 29

© Zengrange Ltd - 1988 111

A_'_'ZEPROM Module - Programmer’s Manual

T

Technical assistance.............c..cecervinirencnninennne 106

Technical data 91

Test functions 39

Test if ROM page is bank-switched 50

Test if ROM page is blankc..cccceevervrrennns 49

Trailer, page 4

TV & radio interference..............cccocevreereverennne 106

U

TUCBURN......covvrmrtrnrerntrsrssssessesissenans88-90, 97

User code
bank-switchingccccccecerevennivenvenennnne 102

functions...........cocevriniinniiennninennnne 39
GTO instruction (BGTOxx)................ 47
RTN instruction (BRTNxx)................. 52
XEQ instruction (BXEQXX) 57

burning programs...........ccceceevreverreenernenes 54
compiling programs............coeeeevvereererenens 60
error recovery in burningccceeceenee 82
FAT entries required in ROM..................... 79
program length in ROM...........cccccvevnenen. 79
utility routine,listings............ccccceevvrerennnene 97

UV-light, erasing ZEPROM with........................ 95

v

Voltage Converter (see: ZVC)

w

Warranty

restrictions...........cccoccevvevnevenncneneienninens 105

ZEPROM.......corrirrneeenersrersnnnsessssnenns 104
NG 104

WMLDL,using to write to ZEPROM...................91

X

XROM-identity.........cccccvreverreererrernrrerennes 2,39,73

PROGRAMMER ROM functions................ 43

Z

Zengrange Ltd, address of.............cccccceuvueunnne 105

ZENROM 34
using to burn ZEPROM...........ccccceverurrnene. 35

ZENROM ROMREG + data, burning of............. 84

ZEPROM configurations............ceceeeeeerenennnnnnns 5
Bank-switched 12K moduile........................ 8
Bank-switched 16K module........................ 6

selecting the best..............ccccceeuevrrernennnne. 10
Straight 16K module.............ccccevriririerenenne 6
Straight 8K module.............ccccceveveerrererrenene 7

ZEPROM Gang Burner, Zengrange Ltd............ 33

ZEPROM module, physical description.............. 5

ZEPROM Programmer, Firmware Corp............ 33

ZEPROM, €rasingc.cceerrerenvenesnesissesessesnsnene 95

VG 29, 33
attaching a module...........c.cocceevuirurvennnns 30
burning with ZENROM...........cccocvirurennnne 35
care and maintenance of.................ecu... 32
controlling software..............cccceceuenee 34, 36
handling 32
plugging in, cautions about...................... 30
programming SWitCh..........ccceeerervrccnnnnne. 29

switching ON & OFF...........cceoevvvvinecennnne. 29
using with PROGRAMMER ROM........ 34,37

112 © Zengrange Ltd - 1988

	Cover
	Contents
	Introduction
	About this Manual

	Chapter 1: The HP-41 ROM Format
	Chapter 2: The ZEPROM Module
	Physical Description
	ZEPROM Configurations
	Straight 16K Module
	Bank-Switched 16K Module
	Straight 8K Module
	Bank-Switched 12K Module

	Selecting the Best Configuration

	Chapter 3: Bank Switching
	Introduction
	Implementation on the HP-41
	Bank Switching of Machine Code
	Examples

	Bank Switching of User Code Programs
	Examples

	Chapter 4: ZEPROM Voltage Converter
	Switching ON & OFF
	Plugging in
	Batteries
	Care and Maintenance

	Chapter 5: Burning Methods
	Burning Fixtures
	Controlling Software

	Chapter 6: The Programmer ROM
	The Instruction Set
	Keying in Arguments for Instructions
	Test Functions
	Bank Switching Instructions
	Burn Instructions and Output Formats
	Function Description Index

	The Utility Routines

	Appendix A: Technical Data
	Programming ZEPROM
	Voltage
	Cycle
	Restrictions

	HP-ROM Compatibility
	Erasing ZEPROM
	Electrical Information
	Copyright & Using ZEPROM

	Appendix B: Programmer ROM Software Listings
	Utility Routines (RPN)
	Bank Switching Code

	Appendix C: Warranty & Servicing
	Limited Warranty
	Shipping for Service
	Technical Assistance

	Appendix D: Glossary
	Index

