
HP-41CV

OPERATION IN DETAIL

i

Summary of Conventions Used in This Manual

Notation A
Description

(Example) P

STO Black keybox. Primary keyboard function.

10% Gold keybox. Shifted keyboard function. Press and release the shift key (1) first. These

can be on the Normal or Alpha keyboard.

Blue keybox. Nonkeyboard function. For Alpha execution: use followed by the Alpha
name spelled out on the Alpha keyboard. For User-key execution: assign the function to
the User keyboard.

ABC Blue letters. Alpha characters.

123 Gold digits or characters. Shifted Alpha characters.

Black letters in keyboxes. These are special functions, not Alpha characters, and are active

(-] only in special circumstances.

parameter The type of parameter required for a function.

For a full description, refer to “How This Manual Represents Keystrokes,” page 14 in the HP-41CV

Owner’s Manual.

(fifi HEWLETT
PACKARD

HP-41CV

Operation in Detail

April 1986

00041-90531 Rev. B

Printed in U.S.A. © Hewlett-Packard Company 1984

Printing History

Edition 1.oJuly 1984

Notice

Hewlett-Packard Company makes no express or implied warranty with regard to the key-

stroke procedures and program material offered or their merchantability or their fitness for

any particular purpose. The keystroke procedures and program material are made avail-

able solely on an “as is” basis, and the entire risk as to their quality and performance is

with the user. Should the keystroke procedures or program material prove defective, the

user (and not Hewlett-Packard Company nor any other party) shall bear the entire cost of

all necessary correction and all incidental or consequential damages. Hewlett-Packard

Company shall not be liable for any incidental or consequential damages in connection

with or arising out of the furnishing, use, or performance of the keystroke procedures or

program material.

Introducing HP-41CV Operation in Detail

This is a companion volume to the HP-41CV Owner’s Manual, which covered “Basic Operation.” This

manual is an advanced, detailed examination of all aspects of the HP-41CV.

The organization of this manual emphasizes reference information and completeness of information.

e Part I is “Fundamentals in Detail.”

e Part II is “Programming in Detail.”

e There is a comprehensive summary of all the functions in the Function Tables (just in front of the

subject index).

e The Function Index is listed inside the back cover.

e There are appendices about error conditions, null characters, printer operation, and peripherals

devices available for the HP-41.

HP-41CV Operation in Detail
Contents

Part I: Fundamentals in Detail

Section 1: The Keyboard and Display

* The Toggle Keys * The Keyboards

» Keying In Numbers and Characters * Status Annunciators

* Numeric Display Format * Standard Displays and Messages

* Display Scrolling * Specifying Parameters * Redefining the User Keyboard

* Function Preview and Null * The Catalogs * Error Messages

Section 2: The Automatic Memory Stack

* Introduction * RPN Calculations * The LAST X Register

* Other Stack Operations

Section 3: Numeric Functions

¢ Introduction * One-Number Functions * Two-Number Functions ¢ Statistics

Section 4: Main Memory

* Organization * Program Memory * User Keyboard Memory

* Data Register Memory * Data Register Operations

Part II: Programming in Detail

Section 5: Programming Basics,

* Loading a Program « Executing a Program * Program Lines

* Nonprogrammable Operations ¢ Positioning Within Program Memory

* Editing a Program ¢ Clearing Programs * Programming Examples

Section 6: Flags

* Introduction * Types of Flags * Summary of Flag Status

Section 7: Branching

* Introduction ¢« Branching to a Label * Calling a Subroutine

* Conditional Functions * Looping

.. 26

.. 62

.. 68

Contents

Section 8: Alpha and Interactive Operations 76

« Introduction « Requesting Input - Producing Output

Section 9: Sample Programs 80

« Introduction -« RPN PRIMER « FINANCIAL CALCULATIONS

« CURVE FITTING - WORD GUESSING GAME - BLACKJACK

Appendices

Appendix A: Error and Status Messages 124

Appendix B: Null Characters 126

« Null Characters and the Alpha Register

« Treatment of Null Characters

Appendix C: Printer Operation o 128

» Paper Advance

« Controlling Program Execution and Display with Flags 21 and 55

Appendix D: Peripherals, Extensions, and HP-IL 130

« HP-41 Peripherals « Extensions

» Hewlett-Packard Interface Loop (HP-IL) and Peripherals

« XROM Functions and XROM Numbers

Function Tables138

Subject Index152

Function Index Inside Back Cover

List of

Diagrams and Tables

The Alpha Keyboard1

Special Keys for Specifying Parameters 19

The User Keyboard21

The Statistics Registers43

Main Memory Configurations 47

Summary of Flag Status66

Display of a Program Instruction 134

5

Part I:

Fundamentals in Detail

Section 1

The Keyboard and Display

Contents

The Toggle Keys9

The Keyboards9

The Normal Keyboard10

The User Keyboard10

The Alpha Keyboard10

Keying In Numbers and Characters 12

Keying In Numbers12

Keying In Characters13

Status Annunciators14

Numeric Display Format14

Formatting Numbers14

Punctuation15

Standard Displays and Messages 15

Display Scrolling15

Specifying Parameters16

Indirect Parameter Specification 16

Special Keys18

Redefining the User Keyboard 20

Restoring Normal Functions 22

The Top TWO ROWS22

Function Preview and Null23

The Catalogs23

Basic Catalog Operation23

Types of Catalogs24

Error Messages24

Section 1: The Keyboard and Display 9

The Toggle Keys

Just below the display are four toggle keys labeled [ON], (USER], [PRGM], and [ALPHA]. They control how
the computer interprets the other keys. The toggle keys are so named because of their dual action:

when you press one, it gives a particular interpretation to the keyboard which generally continues until

you press the same toggle key again, returning the keyboard to its previous state.

The Key. This toggle key turns the computer on and off. After about 10 minutes of inactivity the

computer automatically turns itself off to prolong battery life.* While the computer is off, Continuous

Memory maintains the contents of main memory and the status of certain flags. To reset the computer

(that is, to clear main memory and set all flags to default status):

1. Turn the computer off.

2. Hold down [«].

3. Press [ON].

4. Release [«].

The display will show MEMORY LOST.

The Key. This toggle key activates and deactivates the User keyboard, which is your redefined
version of the Normal keyboard. The USER annunciator appears (and flag 27 is set) when the User

keyboard is active.

The Key. This toggle key shifts the computer between Execution mode and Program mode.
When you turn on the computer, it is in Execution mode—you can execute functions and programs. In

Program mode you can write or edit programs; functions are stored as program steps to be executed

later when you run the program in Execution mode. The PRGM annunciator indicates that the com-

puter is in Program mode or that a program is running in Execution mode.

The Key. This toggle key activates and deactivates the Alpha keyboard, which includes the
blue letters on the lower face of the keys. The ALPHA annunciator appears (and flag 48 is set) when the

Alpha keyboard is active. Pressing or deactivates the Alpha keyboard.

The Keyboards

This manual shows each function name in a color that indicates how to execute that function. The

following overview of the keyboards covers this use of color and the basic purpose of each keyboard.

* Unless you execute [ON], which sets flag 44 (Continuous On). Flag 44 is cleared each time you turn on the computer.

10 Section 1: The Keyboard and Display

The Normal Keyboard

The Normal keyboard comprises the functions printed in white on the upper face of the keys and the

functions printed in gold above the keys. This is the default keyboard—it is active after Continuous

Memory is cleared.

When you press [l the SHIFT annunciator appears, indicating that a shifted function will be executed.

The annunciator disappears when you press a second key (to execute the shifted function) or press [a

second time (to cancel the shift command).

This manual represents an unshifted function by its name in black inside a black box, and a shifted

function by its name in gold inside a gold box. For example, is the unshifted function on the top

right key, and is the shifted function. This rule applies to other keyboards too; for example,

is a shifted function on the Alpha keyboard.

When a key has a special meaning associated with the letter on the its lower face, that key is repre-

sented by the letter in black inside a black box. For example, the keystroke sequence that produces

Z would be (-](2], with representing the key.

The User Keyboard

The User keyboard is your customized version of the Normal keyboard. You can assign a function or

global label to any key except the toggle keys or the [l shift key. You can then execute that function, or

start program execution at that global label, by pressing the redefined key on the User keyboard.

Because shifted key positions can be redefined as well, one key can execute four different functions,

depending on whether the User keyboard is active and whether the [shift key is pressed first. The

operation of the User keyboard is described in this section under “Redefining the User Keyboard,” page

20.

Many functions are not on the Normal keyboard but can be assigned to the User keyboard. These are

called nonkeyboard functions. This manual represents a nonkeyboard function by its name in blue

inside a blue box.

The Alpha Keyboard

The Alpha keyboard comprises letters, functions, symbols, and digits considered as characters rather

than numbers. The blue letters and symbols on the lower face of the keys are the unshifted characters

on the Alpha keyboard. Digits 0 through 9 and the arithmetic symbols are shifted characters on the

keys where they appear on the upper face. Shown on the next page is the entire Alpha keyboard, which

includes functions and additional symbols in shifted positions.

Section 1: The Keyboard and Display

The Alpha Keyboard

b c d e

oo oo
% # < >

Sess8
+ ASTO ARCL BST

oo oo
A CLA

o s o
== =m
=o Em
= ===
=g

LA |

HEWLETT - PACKARD

11

12 Section 1: The Keyboard and Display

There are two distinct uses for the Alpha keyboard.

e To spell out a function or global label as a parameter for [ASn], [CLP], [COPY]|, [GTO], [LBL], or

(XEQ]. In such cases the characters become part of the instruction.

e To key characters into the Alpha register. Here they are saved until you write over them or clear

the register. The Alpha register is used to display your own messages, to specify file names and

global labels for certain functions, and to manipulate bytes of data.

This manual shows unshifted characters on the Alpha keyboard in blue, shifted characters in gold.

Note that a digit printed in gold represents an Alpha character while a digit printed in black represents

a number on the Normal keyboard.

Keying In Numbers and Characters

Keying numbers into the X-register and keying characters into the Alpha register are similar processes.

In both cases:

e When you enter the first digit or character, the display shows that digit or character followed by

the input cue (_).

e The input cue indicates that the computer will append the next entry from the keyboard to the

string of digits or characters in the display.

e When the input cue is displayed, you can correct your entry by pressing to delete the rightmost

digit or character.* The input cue then moves left to replace it.

e If the input cue is not displayed, entry has been terminated and the next entry from the keyboard

will start a new number or Alpha string.*

Keying In Numbers

Up to 10 digits can be keyed into the X-register—additional digits will be ignored. The only keys used

for digit entry are digit keys [0] through (9], (-], (change sign), (enter exponent), and [+].
Pressing any key other than a digit entry key, [, or terminates digit entry—subsequent digits

will be considered a new number.

Pressing replaces the number in the X-register with zero; if you key in another number now, it

will replace this zero. If there is only one digit in the display or if digit entry has been terminated,

has the same effect as [CLx].

*If you key 10 digits or a two-digit exponent into the X-register, the input cue will disappear because no additional digits are

allowed. However, entry has not been terminated: your next entry will not start a new number, and pressing [«] will delete the

rightmost digit.

Section 1: The Keyboard and Display 13

Entering an Exponent. To enter a number in the form a x 10°, first key in the digits and decimal

point for a and then press if the number is negative. To enter more than eight digits for a, you

must key in a decimal point somewhere to the left of the ninth digit.

Second, press [EEX]. Any digits to the right of the eighth digit will disappear but will remain internally.

Enter one or two digits for the exponent b and press if b is negative. If you press without
first entering a value for a, the computer sets a equal to 1.

Entering =. Pressing has the same effect as keying in 3.141592654 and terminating digit entry.

Keying In Characters

In Execution Mode. If the Alpha keyboard is active and you are not specifying a parameter, the

characters go into the Alpha register. For keyboard input to the Alpha register under program control,

execute before the program pauses or halts for input, and then when execution resumes.

The Alpha register can hold up to 24 characters. As you key in the 24th character, a tone sounds to

warn you that the Alpha register is full. If you key in a character when the Alpha register is full, the

leftmost character is pushed out of the Alpha register and is lost.

Character entry is terminated by [ASTO|, | BST|, [SST], |AVIEW], [R/S], or by deactivating the Alpha

keyboard. Character entry is restored by (append) or by [ARCL .

Pressing deletes all characters from the Alpha register. If character entry has been terminated,

has the same effect as [CLA .

In Program Mode. Up to 15 characters can be stored in a program line, which will be displayed with

a leading ". The characters that follow are entered into the Alpha register when the program is run. To

add a string of characters to the Alpha register without replacing the previous contents, begin the

string with - |. For example, you can load more than 15 characters into the Alpha register by using

two program lines, beginning the second line with |. (The character | appears only when the pro-

gram line is displayed; the “append function” is executed when the program is run.)

Note: Alpha strings appear within quotation marks when listed by a printer or video monitor. Only

program lines that begin and end with quotation marks are Alpha strings; if a listed program line is

not within quotation marks, it is a function. Don’t mistake an unfamiliar function name for an Alpha

string—be sure to press before keying in the function name.

For an example of the use of in a program, see lines 12 and 13 in the FINANCIAL CALCULATIONS
program, 82 through 84 in the WORD GUESSING GAME program, or lines 174 and 175 in the BLACK-

JACK program, all in section 9.

14 Section 1: The Keyboard and Display

Status Annunciators

The status annunciators appear along the bottom of the display. In addition to the USER, PRGM,

ALPHA, and SHIFT annunciators mentioned above, the following annunciators may appear.

o BAT indicates that the batteries are low. With alkaline batteries, about 5 to 15 days of operating

time remain after BAT first appears. With the HP 82120A Rechargeable Battery/Reserve Power

Pack, about 2 to 50 minutes of operating time remain. If you use the HP 82104A Card Reader or

the HP 82153A Optical Wand, the operating time remaining will be reduced. For more information

about batteries, refer to appendix B in the HP-41CV Owner’s Manual.

e GRAD or RAD indicates that the computer is in Grads or Rads mode for trigonometric and

rectangular/polar functions. If neither GRAD nor RAD appears, the computer is in Degrees mode.

e 0 12 3 4 indicates that the corresponding flag (00, 01, 02, 03, or 04) is set.

Numeric Display Format

The computer represents every number internally in the form a x 10° where a is number with nine

decimal places, 1 < |a| < 10, and b is a two-digit integer, 0 < |b| < 100. You can control how numbers

are displayed without altering their internal representation. (If you do want to alter the number in-

ternally to match the display, refer to in section 2.) The format and punctuation you specify are

maintained by Continuous Memory.

Formatting Numbers

There are three options for formatting numbers, which are selected by the functions [Fix], [SCI], and
ENG |.

n. This format displays numbers with up to n decimal places (0 < n < 9). If the integer portion

of a number requires more than (10 — n) digits, fewer than n decimal places will be displayed. For

example, the default format is 4, which displays numbers to four decimal places; but if a number

has eight digits before the radix mark, only two decimal places will be displayed.

The last displayed digit is rounded up if the first hidden digit is 5 or greater. If the fractional portion of

a number requires fewer than n digits, trailing zeros are added. If a number is too large or too small for

the display, the format automatically and temporarily switches to n.

n. This format displays numbers with one digit before and n digits after the radix mark
(0 < n <9), multiplied by a power of 10. For n < 7, the number is rounded to n decimal places. A

maximum of 7 decimal places can be displayed, so 8 or 9 cause rounding to occur outside the
display. (These formats can be useful when numbers are printed.)

Section 1: The Keyboard and Display 15

n. This format displays a number with the same digits as n, but with an exponent that is
always a multiple of three. The radix mark is moved to the right to compensate for any change in the

exponent.

Punctuation

Flags 28 and 29 control how periods and commas are used in number displays. In the U.S.A. a period is

used as the radix mark (usually called the decimal point) to separate the integer and fractional parts of

a number, and a comma is used as the separator mark between groups of digits in a large number. In

some other countries, the comma is the radix mark and the period is the separator mark.

Flag 28 determines the roles of periods and commas. The default state for flag 28 is set, which produces

the display normal for the U.S.A. Clearing flag 28 switches the roles of periods and commas to corre-

spond with usage in some other countries.

Flag 29 determines whether a separator mark is displayed, regardless of which symbol represents the

separator mark. The default state for flag 29 is set, which displays the separator mark. Clearing flag 29

suppresses all separator marks and, in the special case of 0 format, suppresses display of the radix

mark.

Standard Displays and Messages

The computer displays either the standard display or a message. The contents of the X-register are the

standard display unless:

e The Alpha keyboard is active (and you’re not keying in a parameter), in which case the contents of

the Alpha register are the standard display.

e The computer is in Program mode, in which case the current program line is the standard display.

e A program is running, in which case the program execution indicator (/) is the standard display.

Any other display is a message such as a program’s messages for the user (section 8). Examples covered

in this section include the displays for parameter specification, function preview, the catalogs, and error

messages. Flag 50 is set when the display contains a message.

Display Scrolling

To show more characters than the display can hold at one time, the computer “scrolls” the characters

across the display until the last character enters the display. While the characters are moving you can

press any key to bypass this process and immediately see the final display. The function whose key you

pressed isn’t executed.

16 Section 1: The Keyboard and Display

Specifying Parameters

Certain functions require parameters to become complete commands. When the display shows the

function name followed by one or more input cues (—), you must enter a parameter.

e For a numeric parameter such as a register address, flag number, local numeric label, program line

number, and so on, observe how many input cues are shown and key in the desired digits. (You

might need to add leading zeros, like 042 to specify program line 42.)

e For an Alpha parameter such as a function name or global label, press to activate the

Alpha keyboard, then spell out the name or label, and then press again to complete param-

eter specification.

Indirect Parameter Specification

The parameters for most functions can be specified indirectly: rather than entering the parameter itself

in response to the input cue, you enter the address of a register (the “indirect register”) that contains

the parameter. This feature is particularly useful when the value of the parameter depends on previous

calculations in a program or when a routine is executed repeatedly to access sequential registers. In

addition, the addresses for main memory registers R(;op through R3;g) must be specified indirectly.

To specify a parameter indirectly:

1. Execute the function.

2. In response to the input cue, press . The display will show IND _ _ after the function name.

3. Specify the indirect register.

The following examples demonstrate how indirect parameter specification works for three types of

parameters. In each example R,is the indirect register containing a parameter of 5; in the first exam-

ple 5 is simply a number, in the second example 05 is an address, and in the third example 05 is a label.

Example. Suppose that R, contains 5. If you execute IND 10, the number in R;, becomes the
parameter for [TONE |. Therefore, IND 10 is equivalent to 5 when Ry, contains 5.

(TONE] IND 10

+ [TONE] 5.

Rig

Section 1: The Keyboard and Display 17

Example. Suppose that R, contains 5. If you execute IND 10, the address in Ry, becomes the
parameter for [STO]. Therefore, IND 10 is equivalent to 05 when R, contains 5.

IND 10

+ 05.

Ryo

Indirect specification of an address—called indirect addressing—is the most common use for indirect

parameter specification, and the most common use for indirect addressing is to access a series of reg-

isters by a looping routine in a program. For example, a loop containing IND 10, [1/x], IND

10 will replace the number in Rwith its reciprocal when R, contains 5 (as illustrated above). The

loop can then increment the address in R, from 5 to 6 and start over, this time replacing the number

in Ry with its reciprocal and incrementing the address in R;, from 6 to 7, and so on. (Loops are
described in section 7, “Branching.”)

Example. Suppose that R;, contains 5. If you execute IND 10, the label in R;; becomes the
parameter for (XEQ]. Therefore, IND 10 is equivalent to 05 when R, contains 5.

IND 10

+ 05.

Ryo

You can also indirectly specify any global label listed in catalog 1 or any programmable function or

global label listed in catalog 2, provided that the label doesn’t exceed six characters.

18 Section 1: The Keyboard and Display

Parameters can be indirectly specified for the following functions:

e Functions with register-address parameters.

(s10], (RCL].
(s10] (+], (870] (], (8710] (], [+].
(ASTO], [ARCL].
(1sG], (DSE].
[x<>], [VIEW], [EREG].

e (XEQ], [GTO].
e [SF), (CF], [Fs?], [FC?], [FS2C], [FC?C].

e [Fix]J, (sc1], [ENG].
e [TONE].

Three programs in section 9 use indirect addressing. The CURVE FITTING program uses indirect

addressing with and (lines 27, 32, 60, 119 and 146) to specify which routine to use to handle
the data, depending on which of the curve fits you are using.

The WORD GUESSING GAME uses indirect addressing with and (lines 31, 40, 57 and 100)
to store Alpha information in or recall Alpha information from sequential registers.

BLACKJACK uses indirect addressing with (RCL], [DSE], and (lines 19, 27 and 88).

Special Keys

The following diagram shows the keys that have special meanings when you're specifying a parameter

for functions in catalog 3.

Section 1: The Keyboard and Display

Special Keys for Specifying Parameters

 A A
 ’

BEREas s

_—SsSass

-

= =

3 HEWLETT - PACKARD r8[

19

20 Section 1: The Keyboard and Display

Stack Register Addresses. To specify a stack register or the LAST X register, press (-] followed by

xJ, vl (2], (0J, or [L].

Program Line Numbers. To specify line numbers over 999, press (EEX]. The display will show

1 __ _. Then key in the remaining three digits.

Single-Key Parameter Specification. For convenience, you can specify a one-digit parameter of 0

through 9, or a two- or three-digit parameter of 1 through 10, by pressing the appropriate key in the

two top rows. For example, when one, two, or three input cues are displayed, pressing enters a

parameter of 1, 01, or 001. If only one input cue is displayed, pressing enters a parameter of 0; if

two or three input cues are displayed, pressing enters a parameter of 10 or 010.

Redefining the User Keyboard

There is a nonprogrammable function that assigns functions and global labels to the User keyboard:

(assign).

To make an assignment:

1. Execute [ASN].

2. Press [ALPHA], key in the function name or global label, and press again.

3. Press the key (or [}l and the key) to be redefined.

The following diagram shows the keycodes for the User keyboard. Note that:

e All keycodes have two digits.

e Keycodes for shifted locations are negative.

e You can’t redefine the toggle keys or the shift key.

e You can redefine the key. Your redefinition supersedes the “run” function in Execution mode
and the function in Program mode, but you can still press to stop a running program.

When you assign a function listed in catalog 2 or 3, or a global label listed in catalog 2, the assignment

is stored in User keyboard memory. (User keyboard memory is a part of main memory and is described

in section 4.) However, when you assign a global label listed in catalog 1, that assignment is stored as a

part of the label itself. If the label is deleted from program memory, the assignment is cancelled. If the

program containing the assigned label is stored in extended memory, and if the User keyboard is active

(flag 27 is set) when the program is recalled from extended memory, the assignment stored in the label

will be reactivated.

The RPN PRIMER program, in section 9, redefines much of the keyboard. When you press one of the

redefined keys, the assigned routine is executed instead of the normal function.

Section 1: The Keyboard and Display 21

The User Keyboard

-12 —13 —14 —15

0o oo
—21 —22 —23 —24 —25

 HEWLETT « PACKARD L2l

22 Section 1: The Keyboard and Display

Restoring Normal Functions

To cancel the assignment to a redefined key:

1. Execute [ASN].

2. Press twice.

3. Press the appropriate key.

The Two Top Rows

There is a special type of program label, the local Alpha label, that is designed for use with the two top

rows of the User keyboard. The name of each label corresponds to an Alpha character on the top two

rows: A through E on the top row, F through J on the second row, and a through e on the shifted top

row. Section 7, “Branching,” discusses how to program with these labels; the discussion here covers

only the conditions required to execute a local Alpha label on the User keyboard. These conditions are:

e The User keyboard is active.

e The current program contains the local Alpha label.

e You haven’t redefined the key that corresponds to the local Alpha label.

These conditions combine with the general rules for the User keyboard to produce the following prior-

ities. When you press a key on the top two rows of the User keyboard:

1. If you have assigned a function or global label to the key, that function is executed or program

execution begins at that global label.

2. If you haven’t redefined the key and the corresponding local Alpha label exists within the current

program, execution begins at that local Alpha label.

3. If neither of the first two conditions is true, the Normal keyboard function—the one printed on (or

above) the key—is executed.

Execution of a Normal keyboard function may take significantly more time when the User keyboard is

active because the computer checks the higher priorities first. To avoid this delay when executing a

Normal keyboard function, you can deactivate the User keyboard before pressing the key or else assign

the Normal keyboard function to that key.

The FINANCIAL CALCULATIONS program in section 9 uses local Alpha labels A through E and a to

store and calculate the various financial parameters.

Section 1: The Keyboard and Display 23

Function Preview and Null

You can display the current meaning of a key, without necessarily executing the resulting function, by

holding down the key. This preview is particularly helpful on the User keyboard when you’re not sure

which keys are redefined.

o If the function requires a parameter (one or more input cues appear), release the key. If you want

to cancel the function, press [«].

e If the function doesn’t require a parameter, you can either release the key to execute the function

or else hold the key down until NULL is displayed to cancel the function.

In addition, there are four situations when a program line is previewed. (Assume that you release the

key before NULL is displayed.)

e If the User keyboard is active and you press a key to which you’ve assigned a global label, that

label is displayed and program execution begins at that label.

e If the User keyboard is active and you press a key that corresponds to a local Alpha label in the

current program, XEQ /abel is displayed and program execution begins at that label.

e If you press (R/S], the current program line is displayed and program execution begins at the

current program line.

e If you press [SST], the current program line is displayed and only the current program line is

executed.

The Catalogs

There are three catalogs that enable you to review memory contents. The function is not
programmable. The rules of operation common to all catalogs are described first, followed by an over-

view of each catalog.

Basic Catalog Operation

Execute n to start the listing of catalog n.

While the listing is running:

e Pressing any key except and slows down the listing.

e Pressing stops the listing.

24 Section 1: The Keyboard and Display

While the listing is stopped:

e Pressing displays the next item in the catalog.

e Pressing displays the previous item in the catalog.

e Pressing restarts the listing.

e Pressing exits the catalog.

A printer in Trace mode will print a catalog listing.

Types of Catalogs

Catalog 1: User Programs. A list of all global labels and instructions. With the permanent
.END. (the final entry) appears the number of registers available for new programs.

You can use catalog 1 to make any program the current program: press to stop the listing at that

program’s global label or instruction, and then press [«] to exit the catalog. (Section 5.)

Catalog 2: External Functions. A list of all functions and programs currently available to the com-

puter from peripheral devices and plug-in modules, plus all extended memory and time functions. A T

precedes global labels for programs to distinguish them from functions.

Functions and programs are grouped by source. (Appendix D.)

Catalog 3: Standard Functions. An alphabetical listing of the standard functions of the HP-41.

This listing shows the Alpha name for each function, which may differ from the name that appears on

the keyboard. You need to know the Alpha name to assign a function to the User keyboard and to

interpret program lines.

Error Messages

An operation that is illegal is never executed. If the attempted operation is a program instuction, the

computer stops program execution and displays an error message.*

e To clear the error message from the display, press [«].

e To execute a different function, simply press the appropriate key—you don’t need to clear the error

message first.

e To discover which instruction caused the error, press to switch to Program mode. The dis-
play then shows the program line containing the illegal operation (or an XROM number if a miss-

ing plug-in module caused a NONEXISTENT error).

* Flags 24 and 25 can prevent certain anticipated errors from stopping program execution. These flags are described in section 6.

Section 1: The Keyboard and Display 25

A list of error and status messages appears in appendix A. Many devices that plug into the computer

have their own messages which may appear in the computer display. Refer to the literature for those

devices to learn about such messages.

Section 2

The Automatic Memory Stack

Contents

INntroducCtion26

RPN Calculations27

Stack Lift and Stack Drop 27

Usingo28
Enabling/Disabling Stack Lift 28

Order of Entry28

Filling the Stack29

The LAST X Register31

Correcting Errors31

Constant Arithmetic32

Other Stack Operations32

Exchanging Stack Contents 33

Rolling the Stack33

Store and Recall34

Register Arithmetic34

Clearing the Stack35

Introduction

Numeric functions use four registers called the automatic memory stack. Numbers automatically move

“up and down” in the stack when you enter numbers and perform calculations. The logic used is Re-

verse Polish Notation (RPN), which minimizes keystrokes and produces all intermediate results. If you

are unfamiliar with RPN, refer to section 1 of the HP-41CV Owner’s Manual. The RPN PRIMER pro-

gram in section 9 will also help you use and understand RPN, because the program displays the con-

tents of the stack during a calculation.

e The first topic in this section, “RPN Calculations,” evaluates a typical numeric expression and

describes the principles underlying use of the stack. Included is a method for constant arithmetic

based on filling the stack with a constant.

26

Section 2: The Automatic Memory Stack 27

e The second topic, “The LAST X Register,” covers a special register closely related to the stack

registers. The LAST X register is used for error correction and for a second method of constant

arithmetic.

e The third topic describes other stack operations that give you more flexibility in using the stack,

again emphasizing the repeated use of a constant.

RPN Calculations

The diagrams below show the contents of the automatic memory stack and the LAST X register

following each step of an RPN calculation. Let x, y, 2, t, and [represent numbers in the stack initially.

The calculation evaluates the expression

32

G
lost lost lost

T / z / y |— v / X X
Z / x |—»| «x / 32 X

Y X / 32 —»| 32 / 25 \ 32

X 32 4 32 5 / 9 16

LAST X 1 L] l(ll\s(s\g\m

Keys: 32 5 9 (-] (+]

This example will be the basis for explaining how the stack works and how to use it efficiently.

Stack Lift and Stack Drop

The automatic movements of stack contents are called stack lift (moving upward in the diagram) and

stack drop (moving downward).

Stack Lift. This usually occurs when a number is moved into the X-register. The numbers in the Y-

and Z-registers are lifted into the Z- and T-registers; the number in the T-register is lost. In the exam-

ple, stack lift occurs when 32 is keyed in, when copies 32 into the Y-register, and when 9 is
keyed in.

Stack Drop. This usually occurs when a function combines the numbers in the X- and Y-registers.

The number in the Z- and T-registers are dropped into the Y- and Z-register; the number in the LAST

X register is lost. In the example, stack drop occurs when (=] and [+] are executed.

28 Section 2: The Automatic Memory Stack

Using ENTER+

Pressing separates two numbers keyed in one after the other (32 and 5 in the example). This
copies the number in the X-register (32) into the Y-register. The copy left in the X-register is replaced

by the next number keyed in (5) because disables stack lift.

Enabling/Disabling Stack Lift

Nearly all functions enable stack lift: the stack will lift if you place a number in the X-register after

executing the stack-lift enabling function. However, four functions disable stack lift and others are

neutral.

Stack-Lift Disabling Functions. The four functions that disable stack lift are [ENTER#*], [CLx |, [T+],
and-. If you execute one of these functions and then place a number in the X-register, that number

will replace the previous contents and the Y-, Z- and T-registers will not be affected. Stack diagrams

show when stack lift is disabled by shading the X-register, indicating that its contents will be replaced.

Neutral Functions. The following functions neither enable nor disable stack lift, but maintain the

previous status:

e The toggle keys ([ON], (USER], [PRGM], [ALPHA]).

e The backarrow key ([«]) during digit or character entry.

e The shift key (I).

e Catalogs 1, 2, and 3.

Order of Entry

Two major considerations affect the order in which you should enter operands. You can save many

keystrokes by observing the following rules, although sometimes you must choose between them.

Nested Terms. For expressions with terms nested in parentheses, calculate the innermost term first

and then use that result in the simplified expression. If two nested terms must be calculated before you

can combine them, the automatic memory stack saves the result of the first term while you evaluate the

second term. The example in “Polynomial Expressions” below demonstrates this rule.

Noncommutative Functions. Functions like subtraction and division are called noncommutative be-

cause the order of the operands is essential: 5 — 3 # 3 — 5, and 5 = 3 # 3 + 5. For expressions involv-

ing noncommutative functions, enter or calculate the number that must be in the Y-register before

entering or calculating the number that must be in the X-register. The previous example demonstrates

this rule twice.

e The numerator (32) is entered before the denominator (52 — 9) is calculated.

e The term 52 is calculated before 9 is subtracted from it.

Section 2: The Automatic Memory Stack 29

Filling the Stack

Note in the last three steps of the previous example how x propagates from the T-register into the Y-

and Z-registers. This consequence of stack drop can keep the Y-register filled with a constant, as dem-

onstrated in the next two examples. This technique is particularly appropriate when the constant must

be in the Y-register for noncommutative operations like (-] and (+]. (In contrast, supplies the

constant in the X-register.)

Cumulative Growth. Suppose that you want to calculate the growth of a quantity that starts at a

value of 16 and increases by 50% each period. First fill the stack with the growth factor (1.5) and key

the starting value (16) into the X-register. Then press to calculate the value after the first period

and press [x] again for each subsequent period.

lost lost

15 15 15 15 15 15S MR
y 1.5 1.5 1.5 1.5 1.5 1.5

/ x 15 15 15 15 N 15 N 15
% 15 15 16 24 36 54 81

LASTX 1 |r| [[I\\| 24|\| 36|\ 54 |

Keys: 15 16

Polynomial Expressions. Filling the stack aids the evaluation of a polynomial, which requires sev-

eral copies of the variable. For efficiency, use Horner’s Method to rewrite the polynomial in a nested

fashion that eliminates exponents greater than 1. Suppose that you want to evaluate

xt — 2x3 + bx

for x = 3. First, rewrite the polynomial to eliminate the exponents.

xt — 2x3 4+ B5x = (x3 — 2x2 + H)x

= ((x2 — 2x)x + H)x

= (((x — 2)x)x + 5)x

30 Section 2: The Automatic Memory Stack

Then fill the stack with the variable by pressing [3], [ENTER#], [ENTER#], ([ENTER#], and execute the

steps below. Note that the calculation begins at the innermost nested term.

/ lost

3

, e
v NSNS ST
X S

LAST X ! l \ 2 N 1 |\| 3 | (l 3

Keys: 2 =) 5

Once you are familiar with Horner’s Method you can key in the steps for a polynomial without actually

rewriting it. For example, the steps to evaluate the polynomial

ax® + bx* + cx® + dx? + ex + f

after filling the stack with the variable are:

a’ ’ b’ ’ ’ c’ ’ ’ d’ ’ [E’ e’ ’ [z]’ f’ '

e Note that coefficients (except the first and last) are followed by and [x]. (There is no previous

result to add to first coefficient, and the last coefficient isn’t multiplied by any power of the

variable.)

o If the first coefficient is 1, start with the second coefficient. (The variable is already in the X-

register.)

e For negative coefficients you may enter a positive value and substitute (-] for following that

coefficient.

e When there is no term for a power of x, just press [x]. (In effect, this enters a coefficient of 0 for

that power.)

Noncumulative Results. You can also use constant arithmetic to perform a series of unrelated (non-

cumulative) operations with a constant. After each calculation, press to clear the X-register before

you key in the next operand. This disables stack lift, preventing the previous result from displacing the

constant in the Y-register.

Section 2: The Automatic Memory Stack 31

The LAST X Register

The LAST X register holds the x-operand from the last numeric function (except (CHS]). To recall this

number to the X-register, press [LASTx|. This enables you to recover from errors and to retrieve an

operand for further calculations.

Correcting Errors

One-Number Function Errors. If you execute the wrong one-number function, you can recover from

your error as follows:

1. Press [«]. This replaces the incorrect result with zero and disables stack lift.

2. Press LASTx]. This recalls your operand, which replaces the zero in the X-register.

3. Continue your calculation with the correct function.

Two-Number Function Errors. If you make a mistake with a function like or (+], you can use

and the inverse function ([-] or [x]) to recover. Suppose that you made a mistake in adding two
numbers. Press and then (-] as shown below. The nature of your mistake determines how you
should continue; the alternatives are listed after the diagram.

lost

T t t

Z t

Y \ z

X 16

LASTX 1 \ |\ 4

Keys: =)
e If you wanted to multiply instead of add, execute again to return the stack to its original

state, and then multiply.

e If 16 was the wrong number to add, press («]to clear 16, key in the correct number, execute
to recover 4, and then add.

e If 4 was the wrong number to add, key in the correct number and then add.

Errors with some other types of two-number functions are even easier to correct. For example, you can

cancel the effect of by executing (R+F |, and you can correct errors with and as you
would for a one-number function. To correct errors with other functions, determine how the function

affects the stack, and then reverse that process.

32 Section 2: The Automatic Memory Stack

Constant Arithmetic

The following example shows how to retrieve a constant for further calculations. Suppose that you

want to divide both 63 and 87 by a factor of 1.5. This constant factor is entered second (after 63) to be

in the X-register for the first calculation, and is subsequently maintained in the LAST X register.

lost lost lost lost

/ z / y / y / X i X

/ y / X / X / 42 X

/ X / 63 / 42 ? 87 \ 42

/ 63 / 63 . 42 / 87 / 1.5 58

LAST X ! | (! ! 1.5 1.5 \ 1.5|

Keys: 63 1.5 B 87 (=]

This technique is particularly appropriate when the constant must be in the X-register for

noncommutative operations like (=] and [+]. (In contrast, constant arithmetic using stack drop supplies

the constant in the Y-register.)

Other Stack Operations

You can consider the four stack registers as two pairs of registers. The X- and Y-registers are the

center of almost all activity, while the Z- and T-registers are like storage registers connected by stack

lift and stack drop to the more active X- and Y-registers. If you make an extra copy of a number while

it’s in the X-register or retrieve a copy from the LAST X register, you can temporarily store that copy

in the higher stack registers and retrieve it later.

To take full advantage of the Z- and T-registers, plan ahead when you’re programming a series of

calculations. Figure out where the operands must be for each step, work backwards from the final

calculation, and use the operations in the remainder of this section to link the result of one calculation

with the input for the next. This efficient use of the stack saves program memory and reduces the need

for storage registers.

Section 2: The Automatic Memory Stack 33

Exchanging Stack Contents

Exchanging the X- and Y-registers. Executing (X exchange Y) exchanges the contents of the

X- and Y-registers. This function has several uses:

e To examine the contents of the Y-register. Press (xxy], examine the display, and then press
again to restore the numbers to their original order. This is useful when a function returns results

to both the X- and Y-registers, as do the statistics functions and polar/rectangular coordinate

conversions.

e To switch numbers that are in the wrong order for noncommutative operations such as subtraction

and division.

e To rearrange the contents of the stack in combination with or [Rt]; refer to “Rolling the
Stack” below.

Exchanging X and Other Stack Registers. To exchange the contents of the X-register with a stack

register or the LAST X register, execute and then press (-] followed by (Y], (Z], (T], or [(L]. Refer
to “Stack Register Arithmetic” below for an example of this function’s use.

Rolling the Stack

The (roll down) and (roll up) functions shift all stack contents without duplicating or losing

any data.

X
<

N
-

X
<

N
-

LAST X —1] LAST X —1]

Keys: Keys:

Note that the LAST X register is unchanged. To review all numbers in the stack, press either or

four times. Each number is displayed when it is rolled into the X-register, and the stack returns to
its original state after four shifts.

34 Section 2: The Automatic Memory Stack

Use and in combination with to exchange stack registers other than the X-register. You
can rearrange the stack in any order with these functions; here are two simple examples.

X
<

N
-+

LasTx[@ |-1 |- 1 LASTx: z |—> z | 1

Keys: Keys: X%y

Store and Recall

You can duplicate any number in the stack by executing or and then specifying a stack

register. Both functions result in the X-register and the specified register containing the same number.

Store. To copy the number in the X-register into a stack register or the LAST X register, press
(-] followed by (Y], (2], or [(L]. The number in the specified register is lost.

Recall. To copy the number in a stack register or the LAST X register into the X-register, press

(-] followed by (Y], (Z], (T], or (L]. The number in the T-register is lost as the stack lifts (unless stack
lift is disabled).

Register Arithmetic

You can combine the number in the X-register with any stack register by pressing (-], (-]
Bt (], or (+] (-] followed by (x], (Y], (2], (T, or [L]. Remember that the order of the
operands is essential for subtraction and division; the operand in the specified register corresponds to

the operand in the Y-register for stack arithmetic. Register arithmetic in the stack differs in several

ways from normal arithmetic in the stack:

e The result is placed in the specified register.

e The X-register is unchanged (unless you specify it as the parameter).

e The LAST X register is unchanged (unless you specify it as the parameter).

e The stack doesn’t drop.

Section 2: The Automatic Memory Stack 35

The following routine cubes the number in the X-register and places the original value in the LAST X

register without disturbing the other stack registers.

lost

T ;: z

Z y

Y / X

X / 4
\ AN

N\ \ /\:
LAST X ! l 4 16 64 4

Keys: 4 L L L

Clearing the Stack

To place zeros in the X-, Y-, Z-, and T-registers, execute (clear stack). The LAST X register is
unchanged.

Section 3

Numeric Functions

Contents

INtrodUCHON36

One-Number FUNCLIONS37

General FUNCHIONS37

Number-Alteration Functions 38

Trigonometric Operations38

CONVEISIONS . . ooe39

Logarithmic and Exponential Functions 39

Two-Number FUunCtions39

Basic Arithmetic40

Time ArithmetiC40

Percentages40

Polar/Rectangular Conversionsi 41

Other Two-Number Functions 41

StatiStiCS42

Statistics Registers42

Entering Data43

MeaN.44

Standard Deviation44

Introduction

This section describes the numeric functions in the computer. All one- and two-number functions op-

erate in the stack; their actions are shown by stack diagrams. Although data for the statistical func-

tions are entered from the stack, they are accumulated in statistics registers in main memory. The

results of operations on these accumulations are then returned to the stack. Certain other functions

that involve calculations but do not necessarily return results to the stack (such as register arithmetic

and [1SG]) are not included here.

36

Section 3: Numeric Functions 37

There are three error conditions that can result from numeric functions.

1. If you try to calculate with an operand that is illegal for that function (such as division when

x = 0), a DATA ERROR results.

2. If you try to calculate with an operand that is not a number, an ALPHA DATA error results. Note

that a string of Alpha digits from the Alpha register is not a number.

3. If you attempt a calculation that would produce a number with magnitude greater than

9.999999999 x 10%%, an OUT OF RANGE error results. (Statistical accumulations and are

exceptions.)

The computer does not execute a function that causes an error condition. Unless flag 25 is set, a DATA

ERROR or ALPHA DATA error will stop program execution (if a program is running) and display the

error message; an OUT OF RANGE error will stop execution and display the error message unless either

flag 24 or 25 is set.

One-Number Functions

One-number functions replace the operand in the X-register with the result, save the operand in the

LAST X register, and leave the Y-, Z-, and T-registers unchanged. f(x) represents the result in the

stack diagram on the left. The only exception is (change sign), shown on the right, which doesn’t

save the operand.

T T

Z Z

Y Y

X| x f(x) X

dorx[T]2] wasrx[])[
One-Number Functions CHS

General Functions

Reciprocal. Executing returns the reciprocal of x.

Square and Square Root. Executing »”| returns the square of x. Executing returns the positive

square root of x.

Factorial. For a positive integer n, executing returns n! =n(n—1)(n—2) ... 1.

38 Section 3: Numeric Functions

Number-Alteration Functions

Absolute Value and Sign. Executing returns |x|, the absolute value of x. Executing
returns:

1if x =0,

—1if x <0,

0 if the X-register contains Alpha data.

Integer Part and Fractional Part. These functions reduce a number to its integer part or its frac-

tional part. For example, if the X-register contains 777.888, executing returns 777 or executing
returns 0.888.

Round. Recall that the display-format functions affect only how a number is displayed, not its in-

ternal representation. To round the internal representation of the number in the X-register:

1. Set the display format to the number of decimal places that you want the rounded number to

contain.

2. Execute [RND].

For example, to round a number to the nearest integer, execute 0 and then [RND].

Trigonometric Operations

Angular Modes. The angular mode determines how the computer interprets numbers as angles. Your

choice of angular mode is maintained by Continuous Memory. These functions alter only the angular

mode; they do not alter any numbers currently in the computer.

e Execute to select Radians mode. The RAD annunciator appears, indicating that numbers will

be interpreted as angles expressed in radians. (There are 27 radians in a circle.)

e Execute to select Grads mode. The GRAD annunciator appears, indicating that numbers will
be interpreted as angles expressed in grads. (There are 400 grads in a circle.)

e Execute to select decimal Degrees mode. This is the default angular mode; when neither the
RAD nor the GRAD annunciator appear, numbers will be interpreted as angles expressed in degrees.

Digits following the decimal point in the argument are interpreted as a decimal fraction of one

degree, not as minutes and seconds.

Trigonometric Functions.

© (sine) and (arc sine).

® (cosine) and (arc cosine).

& (tangent) and (arc tangent).

Section 3: Numeric Functions 39

Conversions

Degrees/Radians Conversions. Execute (degrees to radians) to convert a number expressing
an angle in decimal degrees into the number that expresses the same angle in radians. For the inverse

conversion, execute (radians to degrees).

Hours-Minutes-Seconds/Decimal Hours Conversions. Hours and degrees can be expressed in

HMS (hours-minutes-seconds) format rather than the normal decimal format. The first two digits

following the decimal point are interpreted as minutes, the next two digits as seconds, and any sub-

sequent digits as a decimal fraction of seconds. For example,

HH.MMSSssss = HH hours + MM minutes + SS.ssss seconds (HMS format)

= HH + MM/60 + SS.ss/3600 (decimal format)

To convert a number in decimal format into HMS format, execute (to hours-minutes-seconds).

For the inverse conversion, execute (to decimal hours).

Decimal/Octal Conversions. To convert a decimal integer into its octal (base 8) equivalent, execute

(to octal). To convert an octal integer into its decimal (base 10) equivalent, execute (to
decimal).

Logarithmic and Exponential Functions

Common Logarithmic and Exponential Functions. Press to calculate the common loga-
rithm (logarithm to base 10) of the number in the X-register. Press to calculate 10 raised to the
power of the number in the X-register.

Natural Logarithmic and Exponential Functions. Press to calculate the natural logarithm

(logarithm to base e) of the number in the X-register. Press to calculate e raised to the power of the
number in the X-register.

Hyperbolic functions, inverse hyperbolic functions, and certain financial calculations evaluate the ex-

pressions In (1 + x) and e* — 1 for arguments near zero and with results also near zero. To allow

greater accuracy in such calculations, LN1+x and evaluate these expressions directly.

@ computes In (1 + x).

% computes e* — 1.

Two-Number Functions

All two-number functions use operands in the X- and Y-registers; most return a single number to the

X-register and cause the stack to drop. (Percentages and polar/rectangular coordinate conversions are

exceptions.)

40 Section 3: Numeric Functions

Basic Arithmetic

Stack diagrams for (+], =], (], and [+] appear in the previous section. Remember the order of entry for
subtraction and division: for x in the X-register and y in the Y-register,

e Subtraction returns y — x (not x — y).

e Division returns y/x (not x/y).

Time Arithmetic

To add or subtract numbers that are in HMS (hours-minutes-seconds) format, use (hours-min-
utes-seconds add) or (hours-minutes-seconds subtract). The order of entry and stack drop are
identical to those for normal addition and subtraction.

Percentages

The two percentage functions use the number in the Y-register as a base and alter the number in the

X-register, expressing it in terms of the base. Note that the base number in the Y-register is unaltered

and that the stack doesn’t drop.

t t

z z

y y

X
<

N
o

X
<

N
—

 xy/100 100(x—y)/y

—\- —\—

Percent. To calculate a percentage, place the base number in the Y-register and the percent rate in

the X-register, and then execute %|.

Percent Change. To calculate the increase or decrease from one number to another, place the first

(base) number in the Y-register and the second number in the X-register, and then execute [%CH]. The
increase or decrease is returned as a positive or negative percentage of the first (base) number.

Section 3: Numeric Functions 41

Percent of Total. To calculate the percentage that one number is of another number:

1. Place the total (base) number in the Y-register and the number to be converted to a percentage in

the X-register.

2. Execute [1/x].

3. Execute % |.

4. Execute [1/x].

Polar/Rectangular Conversions

A point in a plane can be described by either polar or rectangular coordinates. Polar coordinates are r

(magnitude) and 6 (angle); rectangular coordinates are x (horizontal) and y (vertical). (An illustration

of these coordinates is on page 53 in the HP-41CV Owner’s Manual.) Two functions, and [R+P |,
convert between polar and rectangular coordinates.

e To convert polar coordinates to rectangular coordinates, execute (polar to rectangular).

e To convert rectangular coordinates to polar coordinates, execute (rectangular to polar). The

resulting 6 will have the same sign as the y-coordinate input.

As input or output, § is interpreted according to the current angular mode. In the stack diagrams below,

note the order of the coordinates in the stack and that the stack doesn’t drop. Press to see the

result returned to the Y-register.

X
<

N
o

X
<

N
—

s s

LAST X

P+R R+P

LAST X

Other Two-Number Functions

Raising a Number to a Power. To raise a number to a power, place the base number in the Y-

register and the power in the X-register, and then execute ,* |. Stack drop is the same as for arithmetic

functions. Legal values for x depend on the value of y:

e If y is positive, x can be any number.

e If y is negative, x must be an integer.

42 Section 3: Numeric Functions

e If y is zero, x must be positive.

Any other combination causes a DATA ERROR.

Finding Roots. To calculate the nth root of a number:

1. Place the number in the Y-register.

2. Place n in the X-register.

3. Execute [1/x].

4. Execute y*].

Modulo. For positive integers x in the X-register and y in the Y-register, executing calculates

the remainder when y is divided by x (“y mod x”). For example, you can test whether y is evenly

divisible by x by executing and testing whether the result is zero. Stack drop is the same as for

arithmetic functions.

You can also use with numbers that are not positive integers. The general equation for y mod x is
y — x <y/x>, where <y/x> represents the largest integer not larger than y/x. Performing y mod x

when x = 0 returns an answer of y.

Statistics

There are two stages in performing statistical calculations. First you enter data from the stack; the

computer accumulates intermediate statistics from this data. Then you execute statistical calculations;

the computer uses the intermediate statistics to calculate the overall results, which are returned to the

stack. Basic statistical operations are described in section 5 of the HP-41CV Owner’s Manual.

For an example of using statistical functions in a program, refer to the CURVE FITTING program in

section 9. The program uses to move the statistical registers, and and to sum and
correct the data.

Statistics Registers

The statistics registers are a block of six data registers in main memory that hold the intermediate

statistics accumulated from your data. When the computer memory is reset, the statistics registers are

R11 through R16'

¢ You can assign other storage registers to be the statistics registers by executing and specify-

ing the address of the first register in the block you select. This assignment is maintained by

Continuous Memory.

e To place zeros in all six statistics registers, execute CLZ |.

Section 3: Numeric Functions 43

The statistics registers accumulate the following intermediate statistics from your data in the X- and

Y-registers.

The Statistics Registers

Register Contents

R4 Zx Summation of x-values.

Ry =x2 Summation of squares of x-values.
Ris Zy Summation of y-values.

Ris4 Zy?2 Summation of squares of y-values.

Ris Zxy Summation of products of x- and y-values.

Rie n Number of data points accumulated. (Displayed.)

Entering Data

Accumulating Data Points. When you press [£+]:

® The results of calculations using the numbers in the X- and Y-registers are added to the first five

statistics registers. If this causes the contents of a register to exceed +9.999999999 x 109, there is

no overflow error; the overflowed register contains +9.999999999 x 1099.

* The number of data points n in the sixth register is incremented and its current value is returned

to the X-register.

¢ The number previously in the X-register is saved in the LAST X register.

e Stack lift is disabled, so the next data entered will replace n in the X-register.

You can accumulate either one-value or two-value data points, as discussed in part I. If you are accu-

mulating only x-values, clear the Y-register first (0 (ENTER#]). Because and disable stack lift,
the Y-register will remain clear while you accumulate x-values.

Error Correction. To correct erroneous data that have been accumulated:

1. Re-enter the erroneous data. If you just accumulated the erroneous data, simply press to
retrieve them. (The erroneous y-value is still in the Y-register and the erroneous x-value was saved

in the LAST X register.)

2. Press [2-]. This function acts similarly to except that the results are subtracted from (rather
than added to) the first five statistics registers, and the sixth register is decremented (rather than

incremented).

3. Enter the correct data.

4. Press [Z+].

44 Section 3: Numeric Functions

Limitation on Data Values. The computer might be unable to perform some statistical calculations

if your data values differ by a relatively small amount. To avoid this, you should normalize your data by

entering the values as the difference from one value (such as the mean). This difference must then be

added back to any calculations of the mean. For instance, if your x-values were 665999, 666000, and

666001, you should enter the data as —1, 0, and 1; then add 666000 back to the relevant results.

Mean

Executing returns the arithmetic average X of the accumulated x-values to the X-register and
the arithmetic average y of the accumulated y-values to the Y-register, according to the following

formulas:

7 = Ex’ y = Ey.

n n

Press to display the resulting y-value. The number previously in the X-register is saved in the

LAST X register; the number previously in the Y-register is lost.

Standard Deviation

Executing returns the sample standard deviation s, of the accumulated x-values to the X-register
and the sample standard deviation s, of the accumulated y-values to the Y-register, according to the

following formulas:

o — 1 /n20G) — (Sx)? s —1/n20%) = ()?
x nin — 1) ’ Y nin — 1) '

Press to display the resulting y-value. The number previously in the X-register is saved in the

LAST X register; the number previously in the Y-register is lost.

Section 4

Main Memory

Contents

Organization46

Program MemOry48

Program LineS49

NUIl Bytes...49

PacKing50

User Keyboard Memory50

Data Register Memory50

AlloCation50

Registers Above Rgg51

Data Register Operations51

Store and Recall51

Register Arithmetic52

Exchange52

Clearing Registers52

Organization

Main memory contains 319 registers divided into two major groups.*

e One group contains the data storage registers. The number of main memory registers allocated to

data storage changes only when you execute a function to specify the allocation.

e The other group contains programs, key redefinitions, and uncommitted registers. The uncommit-

ted registers are automatically committed to programs, and key redefinitions as needed. However,

the size of this group as a whole changes only when you change the number of registers allocated to

data storage.

* Main memory actually contains 320 registers, but program memory always contains at least one register for the permanent .END.

46

R(272)

Data
Registers

Rie72)

Data
Registers

Roo

Section 4: Main Memory

Main Memory Configurations

.END.
 Program

Memory

.END.

 User
Keyboard

Memory

Rnn Rnn

Data Data
Registers Registers

Roo ~ Roo

Program Program
Memory Memory

.END.

.END.

User \
Keyboard User

Memory Keyboard

Memory

47

48 Section 4: Main Memory

The preceding diagram illustrates four configurations of main memory—each column represents all of

main memory at one time. The leftmost column shows the default configuration, 273 registers allocated

to data storage and 46 registers for all other purposes. The columns to the right show main memory at

three later times. The computer handles most of these details automatically, but understanding main

memory will help you use it more effectively.

The first column represents the default configuration after Continuous Memory is cleared. There are

273 registers for data storage with the largest-numbered register at the top. The first register below the

data register block holds the permanent .END., which marks the bottom of program memory. The un-

committed registers below the permanent .END. are available for programs and key redefinitions.

The second column shows main memory after you’ve entered programs and assigned functions to keys.

Program memory consumes uncommitted registers as the permanent .END. is pushed down by new

program lines. User-keyboard memory consumes one uncommitted register for every two assignments.

The third column shows the result after you allocate fewer registers to data storage, but write more

programs, and redefine more keys. When all registers are committed (as in this column), any operation

that would consume main memory registers causes the computer to display PACKING and then TRY

AGAIN.

If packing doesn’t produce a sufficient number of uncommitted registers, you’ll have to reduce the size

of the data storage block or delete other memory contents. You can review the contents of program

memory by executing CATALOG 1.

The fourth column shows the reappearance of uncommitted registers after you delete programs and

User-key assignments. You could gain even more uncommitted registers by allocating fewer registers to

data storage.

Program Memory

When Continuous Memory is cleared, program memory contains only the permanent .END.. If you

press (-](-] and key in a program, each instruction is added just before the permanent .END. which
moves down to make room. As a result:

e The first instruction of the program you keyed in first is at the top of program memory.

e The last instruction of the program you keyed in most recently precedes the permanent .END. at

the bottom of program memory.

Catalog 1 shows the number of uncommitted registers along with the permanent .END. (.END. REG

nnn). There can be up to six bytes (nearly a full register) available in addition to nnn registers.

Section 4: Main Memory 49

Program Lines

Each function, number, or Alpha string in a program is considered to be a separate program line. The

number of program lines depends on how many functions, numbers, and Alpha strings are in the pro-

gram; the number of registers and bytes occupied by these program lines depends on the particular

functions and the lengths of the numbers and Alpha strings:

e Functions require from one to four bytes, depending on the particular function (and on the param-

eter if one is needed). The number of bytes required for each function is listed in the Function

Tables at the back of this manual.

e Functions with global labels as parameters require one byte per character in addition to their nor-

mal length.

e Numbers require one byte per digit, plus another byte for each (-], [CHS], or keyed in with the
number.

e Alpha strings require one byte per character, plus one additional byte for the entire string.

Null Bytes

Usually the first byte of an instruction immediately follows the last byte of the previous instruction,

but sometimes there are null bytes between instructions. Null bytes result from:

Deleting an Instruction. When you delete an instruction, the bytes it occupied are replaced by null

bytes.

Inserting an Instruction within a Program. If there are not already null bytes available where you

want to insert a new instruction, seven null bytes are inserted and all subsequent instructions bumped

down seven bytes in memory. The new instruction replaces inserted null bytes and, if the new instruc-

tion requires fewer than seven bytes, the rest of the inserted null bytes remain.

Program Lines That Are Numbers. The computer places a null byte before a string of bytes

representing a number. This is done in case the previous program line is also a number. The null byte

acts as a spacer between the two program lines so they won’t be misinterpreted as a single number.

50 Section 4: Main Memory

Packing

When your program is complete, the only useful null bytes are those separating sequential program

lines that are both numbers. To eliminate unneeded null bytes, execute (-](:). When memory is
packed, bytes within all programs move up in program memory to replace unneeded null bytes. (User-

keyboard memory is also packed as described below.) Main memory is packed when:

e You execute PACK].

e You execute]

e You clear a program by executing [CLP|.

e There are not enough uncommitted registers available to complete an operation that requires

them. Such operations are: increasing the data register allocation, entering a program line, or

assigning a function to a key.

User Keyboard Memory

When you assign a function to a key, that information is stored in User keyboard memory. An assign-

ment for either a function or global label in a plug-in module is also stored in User keyboard memory.

However, when you assign a global label listed in catalog 1 to a key, that information is not stored in

User-keyboard memory, but rather with that global label in program memory.

A register can hold two assignments. The first assignment requires one register; the second assignment

fits with the first assignment in that register. Similarly, each odd-numbered assignment adds another

register to the User keyboard memory, and each even-numbered assignment fills out the register.

An assignment is cancelled when you assign a different function to the same key, or if you explicitly

cancel the assignment as explained in section 1. If both assignments in a register have been cancelled

and main memory is packed, that register becomes an uncommitted register.

Data Register Memory

Allocation

Changing the Allocation. The [SiZE] function allocates main memory registers to data storage.

Decreasing the number of registers loses the data in the largest-numbered registers.

You can change the allocation to data storage by executing and then specifying the number of
registers to be allocated. This function is not programmable.

Section 4: Main Memory 51

Registers Above Rgg

If you allocate more than 100 registers to data storage, registers whose addresses exceed 99 can be

accessed only by indirect addressing. To emphasize this distinction, this manual shows three-digit ad-

dresses in parentheses: R(;9(), for example.

Data Register Operations

Store and Recall

There are two sources/destinations for the data in data registers: the stack registers and the Alpha

register. The functions that move data between the stack registers or the Alpha register and the data

registers in main memory are described in this section.

Specifying a Register as a Parameter. Most data register functions access just one register, whose

address must be specified as a parameter. You can specify a register in several ways.

e For R\ through Rgg, key in the two-digit address.

e For convenience, Rj; through R, can be specified with a single key in the top two rows.

o For the stack or LAST X registers, press (-] followed by (X], (Y], (2], (T], or [L].

o For any register to be addressed indirectly, press [] and then specify the address of the indirect

register by one of the means above.

Store. To copy data from the X-register into a data register, press and then specify the destina-

tion register. The X-register is unchanged; the data previously in the data register are lost.

Recall. To copy data from a data register into the X-register, press and then specify the source

register. The contents of the source register are unchanged. If stack lift was disabled, the recalled data

replace the contents of the X-register; otherwise the stack is lifted.

Alpha Store. To copy the six leftmost characters from the Alpha register into a data register, press

and then specify the destination register. The contents of the Alpha register are unchanged and
the data previously in the destination register are lost.

e A punctuation mark counts as one of the six characters.

e A string of digits in the Alpha register is not a number. If you store Alpha digits in a register, the

contents appear to be a number, but you can’t perform numeric operations on those contents.

e Copying data from the Alpha register to the X-register by using is not like [RCL]—that is,

the stack does not lift and so the previous contents of the X-register are lost.

52 Section 4: Main Memory

To copy more than six characters into a data register you must alter the contents of the Alpha register

before repeating (or you will copy the same characters again). To remove the six characters you

already copied, execute (Alpha shift). The six leftmost characters are shifted out of the Alpha
register.

Alpha Recall. To copy data from a data register into the Alpha register, execute and then

specify the source register. The contents of the source register are unchanged, the data are appended to

the contents of the Alpha register, and character entry is activated. If you want the copied data to start

a new message, execute before recalling that data.

For an example of the use of and in a program, refer to the WORD GUESSING GAME
program in section 9.

Register Arithmetic

Register arithmetic enables you to combine a number in the X-register and a number in a data register

without recalling the stored number to the stack.

e Executing nn adds the number in the X-register to the number in R,,,, and then stores the
sum in R,,,.

e Executing (=] nn subtracts the number in the X-register from the number in R,,, and then
stores the difference in R,,,.

o Executing nn multiplies the number in the X-register by the number in R,,, and then
stores the product in R,,,,.

e Executing (+] nn divides the number in the X-register into the number in R,,, and then
stores the quotient in R,,.

As with [STO]J, the original number in Rnn is lost and the number in the X-register is unchanged. This
allows you to reuse a constant in the X-register without executing LASTx].

Exchange

Note that and duplicate one number and lose another. To move numbers without duplicat-
ing or losing any data, execute and specify the register whose contents you want to exchange with

the X-register.

Clearing Registers

To clear a single register, store zero in that register. To clear all data registers, execute [CLRG .

Part 11

Programming in Detail

Section 5

Programming Basics

Contents

Loading a Program54

Keying In a Program54

Copying @ ROM Program55

Enlarging Program Memory55

Executing a Program56

Program Lines56

Nonprogrammable Operations 57

Positioning Within Program Memory 57

Using ()57
Using Catalog 158

Single Step and Back Step 58

Other Methods59

Editing @ Program59

Deleting Instructions59

Inserting Instructions60

Clearing Programs60

Programming Examples61

Loading a Program

Keying In a Program

l. Press to select Program mode.

2. Press (-] (-] to set the computer to the bottom of program memory.

3. Press followed by a global label.

4 . Key in instuctions using the Normal, User, and Alpha keyboards just as you would in Execution

mode.

5. Press (-] (-] to complete the program (optional).

54

Section 5: Programming Basics 55

Pressing (-] (] has the following effects:

e Main memory is packed, ensuring that the maximum number of registers will be available for the

next program or key redefinition.

e An instruction is inserted to complete the last program, creating a null program (consisting

of the permanent .END.) at the bottom of program memory. (One reason to press (-] (] after

loading a program is to give the program its own instruction.)

e The computer is positioned to this null program and displays 00 REG nnn where nnn indicates the

number of registers available for a new program. As you key in instructions, they become a new

program at the bottom of program memory.

The number of available registers also appears with the permanent .END.. If the last program line is

displayed, you can press to see .END. REG nnn. To then continue adding instructions, simply key

them in. To then review your program:

o Press to set the computer to the first line of your program.

e Press to set the computer back to the last line keyed in.

Copying a ROM Program

If you want to alter a program that is in ROM (read-only memory) such as an application module, you

must first copy the program into program memory. To do so, execute and specify any global label
in the ROM program. A copy of the ROM program is then added to the bottom of program memory.

Enlarging Program Memory

If there is not enough room in memory to store an instruction being added or a program being copied,

the computer displays PACKING and then TRY AGAIN. If you try again but TRY AGAIN appears a sec-

ond time, do one or more of the following steps to increase the number of registers available for pro-

gram instructions:

o Allocate fewer registers to data storage using SIZE |.

e Delete complete programs using [CLP |.

e Cancel User-keyboard assignments other than global labels listed in catalog 1, then execute

or [GTOJ[J (.

56 Section 5: Programming Basics

Executing a Program

You can execute a program by ensuring that the computer is in Execution mode and then performing

one of the following:

e Pressing and specifying a global label in the program. Execution starts with that global label

e Assigning a global label to a key and then pressing that key when the User keyboard is active.

Execution starts with that global label.

e Positioning the computer to the beginning of the program and then pressing (R/S]. Execution

starts with the current program line.

¢ Positioning the computer to the beginning of the program and then pressing (SST]. Only the cur-

rent program line is executed and the computer is positioned to the next program line. This single-

step execution is most useful when you’re trying to isolate an error in a program. By checking the

result after each instruction is executed, you can find where the program goes wrong.

¢ Positioning the computer to the beginning of the program, setting flag 11, and turning off the

computer. When you next turn it on, the computer automatically runs the program starting at the

current program line.

The PRGM annunciator appears in the display while a program is running. Unless a function like

displays a message, the program execution indicator (") appears in the display; each time the
program executes a label, the program execution indicator moves one position to the right.

Program Lines

In Program mode the computer displays one line of program memory at a time. Lines are created

automatically as you key in instructions. Each line is assigned a number to indicate its position within

the program, and each separate program has its own set of line numbers. Each line contains a complete

instruction consisting of:

e A function.

e An Alpha string of up to 15 characters.

® A complete number of up to 10 digits, or up to 10 digits plus a two-digit power of 10.

For details about keying in Alpha strings and numbers, refer to section 1, “The Keyboard and Display.”

In a displayed program line, the symbol " indicates that the characters following comprise an Alpha

string or (if preceded by XEQ, GTO, or LBL) a global label. To enter a function into a program line

using its Alpha name you must press first. Otherwise, the computer won’t recognize the Alpha

characters as a function name, but will treat them as an Alpha string and enter them into the Alpha

register when it executes that program line.

Section 5: Programming Basics 57

Nonprogrammable Operations

The following operations are not programmable, but some can be accomplished by other means. Pro-

grammable alternatives are shown in parentheses following the nonprogrammable operation.

e Destructive operations:

(], (DEL].
CLP |.

e Positioning operations:

(JC, (610, (ssT], [B5T 1.
e All catalogs.

o Toggle keys:

(but is programmable).

(PRGM].
(but a program can set or clear flag 27).

(but and are programmable).

e Other nonprogrammable functions:

(CoPY], (ON], [PACK], (to run a program).

ASN |.

(SizE].

Positioning Within Program Memory

There are several methods of positioning the computer within Program memory. Some enable you to go

to any program in memory (that is, to any global label) while others enable you to go to any line within

a program. Some work only in Execution mode, while others work only in Program mode. Only one

function, (], can do either job in either mode.

Using (]
In Program or Execution mode:

o To position the computer to any global label, press (-] and specify the global label. The search
for the label begins with the last global label (as listed by catalog 1) and proceeds upward in mem-

ory, stopping at the first matching label encountered.

e To position the computer to line number nnn of the current program, press (-] nnn. If nnn
exceeds the line number of the last line in the program, the computer is positioned to the last line.

To position the computer to line 1nnn (the line number exceeds 999), press (-] (EEX]. When
the computer displays GTO .1__ _, key in nnn.

58 Section 5: Programming Basics

Using Catalog 1

In a few cases you can’t use (-] to position the computer to the desired program. Such cases
include:

e The program contains no global labels.

e The desired labelis duplicated later in program memory, so that (-] always finds the duplicate
label first.

e You've forgotten the exact spelling of the global label.

You can position the computer to any global label or statement in program memory using catalog

1 in Program or Execution mode as follows:

l. Press 1 to display all global labels and statements in program memory.

2. To speed up the listing, press any key other than or [R/S].

3. Press to halt the listing at the desired global label or statement.

4. To display the next item or the previous item in the catalog listing, press or [BST].

5. Press [«] to position the computer to the displayed item.

If a program doesn’t contain any global labels, follow the five steps above to position the computer to

the program’s statement. (When two statements appear sequentially, the second state-

ment belongs to a program without global labels.) You should then insert a global label at the start of

the program by pressing (-] 000 and then (in Program mode) keying in the global label.

Single Step and Back Step

In Program mode you can position the computer to the next program line or to the previous program

line by pressing or [BsT /.

o Press to position the computer to the next program line. If the current program line is the
last program line, pressing positions the computer to the first program line (line 01).

e Press to position the computer to the previous program line. If the current program line is

the first program line (line 01), pressing positions the computer to the last program line.

01 LBLTABC
Pressing when the computer is . Pressing when the computer is
positioned at the bottom of the pro- . positioned at the top of the program

gram moves the calculator back to . moves the calculator to the end of

the beginning of this program. this program.

16 END

Section 5: Programming Basics 59

Other Methods

When the computer is in Execution mode you can position it within program memory by using any of

the following methods:

Positioning to a Global Label. Press and specify the global label.

Positioning to an Assigned Global Label. If a global label is assigned to a key, hold down that

redefined key while you press [R/S], and then release the redefined key.

Positioning to a Numeric Label in the Current Program. To position the computer to nn,

press nn. The computer searches for nn (as described in section 7, “Branching”) and stops at
the first matching label encountered.

Positioning to the Top of the Current Program. To position the computer to line 00, press [RTN .

The computer displays 00 REG nnn, indicating that there are nnn registers available; if you key in an

instruction, that instruction becomes line 01. This is the easiest way to add an instruction at the very

beginning of a program.

Editing a Program

All program editing—both deleting and inserting instructions—takes place in Program mode.

Deleting Instructions

Deleting Single Lines. To delete a single instruction, position the computer to the desired program

line, and then press («]. That program line is deleted, the computer is positioned to the previous line,

and the line number of each subsequent instruction is reduced by one.

When deleting a few lines, start with the last (largest-numbered) line to be deleted. In the example

below, suppose that you want to delete lines 02 through 04. At left, the computer is positioned to line

04. Pressing («] deletes line 04 and positions the computer to line 03; pressing [«] again deletes line 03

and positions the computer to line 02; and pressing a third time deletes line 02 and positions the

computer to line 01.

01 LBLTAREA

02 X12 01 LBLTAREA
03 PI 02 X12 01 LBLTAREA

CurrentProgram [,", 03 Pl 02 X12 01 LBLTAREA
Line (displayed)

05 END 04 END 03 END 02 END

60 Section 5: Programming Basics

Deleting Multiple Lines. To delete a long sequence of instructions:

1. Position the computer to the first (smallest-numbered) line to be deleted.

2. Execute (delete).
3. Specify the number of lines to be deleted. To delete more than 1000 lines, press (EEX]. When the

computer displays DEL 1___, key in the remaining three digits.

In the previous example, lines 02, 03, and 04 are deleted one by one. Alternatively you could position

the computer to line 02 and execute 003. This deletes lines 02, 03, and 04, leaving the computer
positioned to the previous line (line 01). The line number of each subsequent instruction is reduced by

three.

If you execute nnn when there are fewer than nnn program lines following the current line, the

current line and all subsequent lines except are deleted.

Inserting Instructions

To insert an instruction in a program, position the computer to the existing line that you want the new

line to follow, and then key in the new instruction. (If you just deleted an instruction using and now

you're replacing it, the computer is already properly positioned.) The new instruction becomes the cur-

rent line, and the line number of each subsequent instruction is increased by one.

When inserting several instructions, start with the first (smallest-numbered) line to be inserted. Sup-

pose that you want to restore the instructions deleted in the previous example. At left, the computer is

positioned to line 01. As each instruction is keyed in, it is inserted after the previous current program

line and becomes the new current program line.

01 LBLTAREA

01 LBLTAREA 02 Xt2

01 LBLTAREA 02 Xt2 03 P

CurrentProgram [7." 5/TAREA 02 X12 03 PI 04 %
Line (displayed)

02 END 03 END 04 END 05 END

Clearing Programs

The nonprogrammable function (clear program) will clear one program.

Section 5: Programming Basics 61

Execute and specify any global label in the program to be cleared. The computer then:

. Searches upward through program memory for the specified global label, beginning with the last

global label (as listed by catalog 1).

2. Deletes all instructions (line 01 through [END]) in the first program encountered that contains the
specified global label.

3. Packs main memory.

Executing and pressing without specifying a global label clears the current
program.

Programming Examples

Section 9 contains five sample programs. The five programs are:

e RPN PRIMER, to aid in understanding and using the stack;

FINANCIAL CALCULATIONS, converts your HP-41 into a financial calculator;

e CURVE FITTING, fits data to one of four curves: straight line, exponential, logarithmic or power;

e WORD GUESSING GAME, a version of the word game “hangman;”

BLACKJACK, a simple version of the card game.

These programs demonstrate many of the basics described in this section and the other sections in this

manual.

Contents

INtroducCtion62

Types of Flags63

User Flags (00 through 10)63

Control Flags (11 through 29)63

System Flags (30 through 55) 65

Summary of Flag Status65

Introduction

A flag has only two states, set and clear. These states can be interpreted as “on/off” (like a switch), as

“yes/no” (like a decision), or as “1/0” (like a binary digit, or bit). The computer has 56 flags, grouped

into three types according to use.

User Flags. You can both test and alter user flags. Their status is altered only by your instructions.

Control Flags. You can both test and alter control flags. The computer resets some control flags to

default status each time you turn it on, and alters some in the course of operation.

System Flags. You can test system flags but you can’t alter them.

You can set and clear flags 00 through 29, which are the user and control flags.

e To set a flag, press and then specify the flag number.

e To clear a flag, press and then specify the flag number.

You can test flags 00 through 55 by pressing and then specifying the flag number. The display

shows YES if the flag is set, or NO if the flag is clear. Flag tests like are used primarily to control
program execution, as described in section 7, “Branching.”

62

Section 6: Flags 63

Types of Flags

User Flags (00 through 10)

The user flags are solely for your own use; what they mean depends entirely on how you use them. For

example, a program can ask whether the user wants English or metric units, and then store the user’s

response as the status of one user flag. Afterwards, whenever the program needs to check which units

to use, it can test that user flag.

The state of each user flag is maintained by Continuous Memory. Once you set or clear a user flag, its

status is fixed until you alter it. When any of the first five flags is set, the corresponding annunciator

(0, 1, 2, 3, or 4) appears in the display.

Two programs in section 9, RPN PRIMER and BLACKJACK, use the user flags. RPN PRIMER uses flag 5

to represent the status of the stack: enabled or disabled. The BLACKJACK program uses flags 6 through

9 to represent various playing situations. (The meaning of each flag is listed after the program listing.)

Control Flags (11 through 29)

The control flags have specific meanings to the computer, listed below. The status of these flags repre-

sent certain operating conditions and options. You can alter these flags to indicate your choice of op-

tions; the computer alters some of these flags to indicate conditions, which you can then check by

testing the flags.

Flag 11: Automatic Execution. Flag 11 allows a program to run automatically. If you set flag 11

before you turn off the computer, the following will happen when you next turn it on:

e A tone sounds.

e Program execution begins from the current program line.

e Flag 11 is cleared.

Flags 12 through 20: External Device Control. These flags direct the operation of external de-

vices that are controlled by the computer. All flags for external device control are cleared each time you

turn on the computer. The precise meaning of these flags depends on the particular devices that are

present; refer to the appropriate manuals for details.

Flag 21: Printer Enable. Flag 21 allows your program to control how functions like and
are executed, depending on whether an output device is present. For details, refer to appendix

C, “Printer Operation.”

64 Section 6: Flags

Flags 22 and 23: Data Input. These flags allow a program that prompts for input to determine the

the user’s response.

e Flag 22 is set when numbers are keyed into the X-register.

e Flag 23 is set when characters are keyed into the Alpha register.

These flags are cleared automatically only when you turn on the computer. If you intend to test these

flags, you should clear them before prompting for the response.

The FINANCIAL CALCULATIONS program and BLACKJACK program in section 9 use flag 22.

Flags 24 and 25: Error Ignore. Normally, an error condition halts program execution. These flags

allow you to avoid unnecessary program halts and to use error conditions as a programming tool.

o If flag 24 is set, the computer ignores all OUT OF RANGE errors. This error normally results from

any calculation (except statistical accumulations) that produces a number x such that

x| > 9.999999999 x 10%. If flag 24 is set, +9.999999999 x 10% is returned as an approximation
to the correct answer, and program execution continues.

Flag 24 is cleared each time you turn on the computer. Once you set flag 24, it remains set until

you explicitly clear it or turn off the computer. If you want to branch to your own error subroutine

rather than use +9.999999999 x 10% as an approximation, use flag 25.

o If flag 25 is set, the computer ignores only one error of any kind and then clears flag 25. The

command that caused the error is not executed. Flag 25 is cleared each time you turn on the

computer.

If both flags 24 and 25 are set, an OUT OF RANGE result will be handled by flag 24—flag 25 will

not be cleared. Note that if flag 25 is set but not flag 24, an OUT OF RANGE result will not cause

+9.999999999 x 10% to be placed in the appropriate register.

You can detect an error by setting flag 25 just before a command and, just after the command,

testing if flag 25 was cleared. (Generally you should test and clear flag 25—it’s dangerous to ignore

unanticipated errors.) This enables a program to branch rather than stop execution in case of an

error.

Flag 26: Audio Enable. When flag 26 is set, [EEEF], [TONE], alarms, and the stopwatch produce
audible tones. Flag 26 is set each time you turn on the computer. (This is the only control flag whose

default status is set.) You can silence the computer by clearing flag 26.

Flag 27: User Keyboard. Flag 27 is set when the User keyboard is active—that is, when the USER

annunciator is displayed. A program can check or alter this flag exactly as you can check the annun-

ciator or press [USER]. Flag 27 is maintained by Continuous Memory.

Section 6: Flags 65

Flags 28 and 29: Display Punctuation. These flags control the use of periods and commas in nu-

meric displays and are maintained by Continuous Memory. For details, refer to “Display Format” in

section 1.

RPN PRIMER, CURVE FITTING, WORD GUESSING GAME, and BLACKJACK, in section 9, clear flag 29

so that no separator marks will be displayed.

System Flags (30 through 55)

The system flags are primarily for internal use by the computer; their utility to the user is limited. You

can test system flags, but several always test clear. You can’t directly alter individual system flags, but

you can save and restore the status of those that represent user options. Listed below are ways you can

use some of the system flags.

Flags That Represent Options. Some external devices controlled by the computer use system flags

to represent options relating to those devices; refer to the appropriate manuals for details. The follow-

ing system flags represent options in the computer:

e Flags 36 through 39 represent the number of displayed digits, described in section 1.

e Flags 40 and 41 represent the display format, described in section 1.

e Flags 42 and 43 represent the angular mode, described in section 3.

Flags That Represent Conditions. The following flags provide information that is useful for some

programs:

e Flag 44 is set when (continuous on) is executed.

e Flag 48 is set when the Alpha keyboard is active—that is, when the ALPHA annunciator is

displayed.

e Flag 49 is set (and the BAT annunciator is displayed) when battery power is low. A long-running

program can occasionally test flag 49 and execute if flag 49 is set. Otherwise, if a program

continues to run when battery power is low, the memory contents of the computer can be affected.

e Flag 50 is set when a message is displayed.

e Flag 55 is set if a printer is present. This flag works with flag 21 (Printer Enable); their interaction

is described in appendix C, “Printer Operation.”

Summary of Flag Status

The chart on the next page indicates flag status when Continuous Memory has been cleared (“Reset”)

and whenever you turn on the computer (“Turn-On”). In addition to clear and set, there are two flag

states coded as follows:

M = Maintained by Continuous Memory.

? = Dependent on other conditions.

66 Section 6: Flags

Summary of Flag Status

Flag Number Flag Name Status at Reset, at Turn-On

00-10 User Flags Clear M

11 Automatic Execution Clear Clear

12-20 External Device Control Clear Clear

21 Printer Enable ? ?

22 Numeric Data Input Clear Clear

23 Alpha Data Input Clear Clear

24 Range Error Ignore Clear Clear

25 Error Ignore Clear Clear

26 Audio Enable Set Set

27 User Keyboard Clear M

28 Display Puncuation Set M

29 Separator Mark Set M

36 Number of Digits Clear M

37 ” Set M

38 ” Clear M

39 ” Clear M

40 Display Format Set M

41 ” Clear M

42 Angular Mode Clear M

43 ” Clear M

44 Continuous On Clear Clear

48 Alpha Keyboard Clear Clear

49 Low Battery ? ?

50 Message Clear Clear

55 Printer Existence ? ?

Section 7

Branching

Contents

INtroducCtione68

Branching to a Label69

Global Labels69

Global Label Searches69

Local Labels69

Local Label Searches 70

Bytes for a Instruction70
Calling a Subroutine70

The Subroutine Return Stack 72

Global-Label Subroutine Searches, 72

Bytes for an Instruction 73
Conditional Functions73

Flag Tests74

CoMPaAriSONS74

LoOPINg ...74

Looping Using Conditional Functions 75

Loop-Control Functions75

Introduction

Branching occurs whenever program execution jumps to an instruction other than the next program

line—that is, whenever program steps are not executed sequentially. Two types of functions cause

branching:

e Executing label or label causes program execution to branch to the specified label.

e Executing a flag test, comparison, or loop control function can cause program execution to skip the

next program line, depending on whether a certain condition is true.

Often these two types of functions are used together: a flag test can be followed by label, so that

the status of the specified flag determines whether program execution branches to the specified label.

This section describes the use of first, next, conditional functions (flag tests and compari-

sons) next, and looping last. For examples of branching, refer to the programs in section 9.

68

Section 7: Branching 69

Branching to a Label

The only purpose of labels is to serve as targets for branching instructions. The two basic types of

labels are global labels, which can be accessed from any program in program memory, and local labels,

which can be accessed only from inside their own program. Any label other than a local Alpha label can

be specified indirectly as well as directly.

Global Labels

Global labels consist of up to seven Alpha characters including digits. Commas, periods, and colons are

not allowed. Single letters from A through J and from a through e are called local Alpha labels and

can’t be used as global labels. However, other single letters or digits are legal global labels. Global labels

require four bytes of program memory plus one additional byte for each character.

Programs are identified by their global labels. Functions that act on entire programs (like [CLP]) re-

quire a global label to specify the program. At the same time, a global label also identifies a particular

line in a program—namely itself. You can branch to different parts of a program from outside that

program if it contains several global labels; any one of these global labels can serve to identify the

entire program.

Global Label Searches

When the computer executes followed by a global label, it first searches within program memory.

The search begins with the last global label (as listed by catalog 1) and proceeds upward through pro-

gram memory, stopping at the first label that matches the specified label. The search is in the opposite

order from the catalog 1 listing. If there are two global labels using the same characters, the higher

label (listed first by catalog 1) is never found because the search always stops at the lower label.

If the computer reaches the top of program memory without finding the specified label, it then searches

in catalog 2. If a program in a plug-in module or peripheral device includes the specified global label,

execution is transferred to the module or device and continues from that label.

Local Labels

Local labels are the internal markers in a program, used for branching within the current program. The

three types of local labels are described first, followed by how the computer searches for local labels.

Local Numeric Labels. There are two types of numeric labels, one for branching a limited distance

and another for branching any distance within a program.

e Labels 00 through 14 are short-form numeric labels, requiring only a single byte of program mem-

ory. Use them only when the distance in program memory from the instruction to the labelis
112 bytes or less.

e Labels 15 through 99 are long-form numeric labels, requiring two bytes of program memory. They

can be used for branching any distance within a program.

70 Section 7: Branching

Local Alpha Labels. Local Alpha labels require two bytes of program memory and can be used for

branching any distance within a program. They are designed for manual execution: when the User

keyboard is active, a local Alpha label is automatically assigned to each key on the top two rows (as

described in “The Top Two Rows” in section 1 and demonstrated in the FINANCIAL CALCULATIONS

program in section 9). You can then use these keys to execute the corresponding local Alpha labels in

the current program.

Local Label Searches

Searches for local labels occur only within the current program. To find a local label, the computer first

searches sequentially downward through the current program, starting at the instruction. If the

specified label is not found before reaching the end of the program, the computer continues the search

from the beginning of the program.

A local label search can consume a significant amount of time, depending on the length of the current

program. To minimize the search time, the computer records the distance in program memory from the

instruction to the specified local label when the instruction is first executed. This elimi-
nates the search time for subsequent executions of that instruction.

Bytes for a Instruction

The number of bytes of program memory required by a instruction depends on which type of

label is specified:

o A instruction specifying a global label of n characters requires 2 + n bytes.

o A instruction specifying a long-form numeric label or a local Alpha label requires three bytes.

o A instruction specifying a short-form numeric label or an indirect address requires two bytes.

Calling a Subroutine

A program instruction consisting of followed by a label is a special type of branch named a

subroutine call. label and label are similar in that:

e Both transfer program execution to the specified label.

e All types of labels that can be specified for can also be specified for [XEQ].

Section 7: Branching 71

A subroutine call is special because of what occurs after has transferred execution to the specified

label: the next or instruction executed will return program execution to the instruction that
follows the instruction, as illustrated below.

Program ABC branches to program DEF, so Program ABC calls program DEF as a sub-

execution stops when the instruction is routine, so execution returns to ABC when

encountered at the end of DEF. the instruction is encountered at the
end of DEF.

01 LiLTABC /01 LBLTDEF 01 LBLTABC /01 LBLTDEF

10 GTOTDEF 40 END 10 XEQ'DEF 40 END

11 STO 01 11sTO01 <

30 END 30 END

Using subroutines saves space in program memory. The instructions in the subroutine appear only

once, but they can be executed any number of times both within a program and (if the subroutine

begins with a global label) from any number of programs.

Either or causes execution to return to the instruction following the subroutine call. How-

ever, marks the end of the program and thus affects local label searches and functions that act on
entire programs; marks only the end of a subroutine within a program. In the following program

terminates the subroutine and terminates program execution. (In practice, there would be

no reason to execute lines 22 through 29 as a subroutine because they are executed only once.)

01 LBLTABC

10 XEQ 00
11 STO 01 <

20 RTN

21 LBL 00

22 SIN

30 END

If you call ABC as a subroutine from another program, execution returns to the calling program when

20 RTN is executed. That is, if a program calls a subroutine that calls a second subroutine, the second

subroutine is completed and execution returns to the first subroutine; then the first subroutine is com-

pleted and execution returns to the calling program.

72 Section 7: Branching

Alternatively, you can ensure that execution will stop at line 20, even if ABC is called as a subroutine,

by entering 20 STOP. Press in Program mode to enter a instruction.

The Subroutine Return Stack

When an instruction calls a subroutine, the computer remembers the location in program memory

of that instruction, so that execution can return there when the subroutine is completed. While

the subroutine is being executed, this return location is stored in the subroutine return stack. When the

subroutine is completed and execution returns to the instruction, the location of the
instruction is removed from the subroutine return stack.

Subroutine Limits. When a subroutine calls another subroutine, all pending return locations in the

subroutine return stack are “pushed up” in the stack. The subroutine return stack can hold six pending

return locations, so the computer can return from subroutines up to six levels deep.

LBLTMAIN LBL 01 LBL 02 LBL 04

l X!Q03 /

XEQ 01 XEQ 05

l XEQ 02 XEO04 XEQ 06

RTN R#’N RTN RTNRN RTN RTN

Loss of Subroutine Returns. Pending return locations are lost from the subroutine return stack

under the following conditions.

e If there are already six pending return locations in the subroutine return stack when a subroutine

is called, the earliest return location is lost from the stack. In this case, program execution never

returns to the instruction that called the first subroutine; instead, excution halts when the
first subroutine is finally completed because there are no further return locations in the stack.

e All pending return locations are lost when you manually execute a program. Therefore, if you stop

a program ABC in the middle of a subroutine and manually execute a program DEF, it will be

impossible to resume ABC. DEF need not be a different program from ABC; for example, executing

a local Alpha label by pressing a key on the User keyboard clears the subroutine return stack.

Global-Label Subroutine Searches

When the computer executes followed by a global label, it first searches the contents of program

memory just as it does for [GTO|. However, if the specified label isn’t found in program memory, the

next stages of the search caused by differ from the search caused by [GTO]. The order of the
complete search caused by corresponds to the numbers of catalogs 1, 2, and 3.

Section 7: Branching 73

Searching Catalog 1. The search begins with the last global label (as listed by catalog 1) and pro-

ceeds upward through program memory, stopping at the first label that matches the specified label.

Execution then resumes at that matching label.

Searching Catalog 2. If the specified label isn’t found in program memory, the computer then

searches catalog 2 for a global label or function name that matches the specified label. (Refer to appen-

dix D for a detailed explanation of the contents of catalog 2.) Execution then resumes at that matching

label, or the function with the matching name is executed.

Searching Catalog 3. If the specified label isn’t found in catalog 2, the computer then searches cat-

alog 3 for a function whose name matches the specified label. If such a function is found, it is executed;

otherwise a NONEXISTENT error occurs.

Bytes for an Instruction

The number of bytes of program memory required by an instruction depends on which type of

label is specified.

e An instruction specifying a global label of n characters requires 2 + n bytes.

e An instruction specifying a local label requires three bytes.

e An instruction specifying an indirect address requires two bytes.

Conditional Functions

Flag tests and comparisons are conditional functions. They express a proposition that is true or false

depending on current conditions, and their effect depends on whether the proposition is currently true

or false.

e If you manually execute a conditional function, the computer displays YES if the proposition is

currently true or NO if the proposition is currently false.

e If a program executes a conditional function, the result follows the rule: DO IF TRUE. The program

line that follows the conditional function is executed if the proposition is currently true, or else is

skipped if the proposition is currently false. That is, DO the next instruction IF the proposition is

TRUE.

Is Flag 01 Set?

FS? 01 + If NO (flag 01 is clear):

Skip one line before resuming execution.

If YES (flag 01 is set):

Continue with the next line.

(Do If True.)

-
-
.
-

74 Section 7: Branching

Flag Tests

The following functions can test any flag.

nn Is flag nn set? (00 < nn < 55)

nn Is flag nn clear? (00 < nn < 55)

Two functions test and then clear a flag. They can’t act on system flags (30 through 55) because you

can’t alter system flags.

nn Is flag nn set? Clear flag nn. (00 < nn < 29)

nn Is flag nn clear? Clear flag nn. (00 < nn < 29)

Comparisons

Comparing X with Zero. The following five functions compare the number in the X-register with

Zero:

Comparing X with Y. The following five functions compare the number in the X-register with the

number in the Y-register.

Two of these functions, and Y7, can compare Alpha data as well as numeric data. Executing
any of the three other functions with Alpha data in the X- or Y-register causes an ALPHA DATA error.

Looping

A loop is a sequence of instructions that starts with a label and ends with a branch back to that label.

The simplest case is an infinite loop such as the following program.

01 LBLTLOOP

02 BEEP

03 GTO'LOOP

04 END

Once started, this program would run until the batteries expired. Infinite loops should generally be

avoided, but loops that repeat themselves until some condition is met are a powerful programming tool.

Section 7: Branching 75

Looping Using Conditional Functions

When you want to perform an operation until a certain condition is met but you don’t know exactly

how many times to repeat the operation, you can create a loop with a conditional function just before

the instruction. For example, the following program subtracts one from a number, tests the result,

and repeats the loop if the result is positive. As soon as the number is reduced to zero (assuming that

the original number was positive), the program exits the loop and beeps.

01 LBLTABC
02 1
03 —
04 X>07?

05 GTOTABC
06 BEEP
07 END

Loop-Control Functions

When you want to execute a loop a specific number of times, you can use special functions for that

purpose instead of the conditional functions in the previous examples. These special functions are

(increment, skip if greater) and (decrement, skip if equal). Both functions use a control number in

a register to control looping. This register can be a data register in main memory, a stack register, or

the LAST X register; it can be specified indirectly as well as directly.

The format of the loop-control number is iiiii.fffcc, where:

[15G|) or decremented (for [DSE|) by the value of cc. The part iiiii can consist of one through five
digits.

fff is the final counter value. Each time or increments or decrements iiiii, the

100, 020, or 009.

cc is the increment/decrement value. If cc is 00 (or unspecified), the computer uses a default

value of 01 instead. If specified, cc must consist of two digits like 30 or 03.

When the computer executes 15C it first increments iiiit by cc, and then tests if the resulting value of

The WORD GUESSING GAME in section 9 uses loop-control numbers and to break a word into

letters and store the letters in sequential registers.

Section 8

Alpha and Interactive Operations

Contents

INntroducCtion76

Requesting Input76

USINg ..o77
Using77

Producing Output77

UsSiNg oo77
UsSiNg oo78
Using78
Using and ...78

Introduction

This section covers the use of the Alpha register: the interaction between the user and a program.

Interaction between the user and a program involves the functions that display a message and the

functions that interpret the user’s response.

Moving data between the Alpha register and the X-register involves the and functions.

Executing X copies the contents of the X-register into the Alpha register; X copies six
characters from the Alpha register into the X-register. (Digits placed in the X-register by are

characters and cannot be used in computations.) The functions and [ASTO |, which in general
access data registers, are discussed in section 4, “Main Memory.”

Requesting Input

There are several functions and combinations of functions that request input from the user. In compar-

ing the alternatives there are two issues:

1. Is program execution stopped until a response is given, or does execution eventually continue even

if no response is given?

2. What types of response are possible?

The alternatives below are described in terms of these two issues.

76

Section 8: Alpha and Interactive Operations 77

Using [PROMPT

When is executed, the computer displays the contents of the Alpha register and stops execu-
tion. The displayed message should indicate the type of response that is expected: numeric input, Alpha

input, a procedure, a keystroke that the program will interpret, or many other possibilities. Before

considering the specific examples below, note that there are only two ways to restart program

execution:

¢ You can press to restart execution beginning with the program line that follows [PROMPT |; or

e You can branch to a local Alpha label by pressing the corresponding key in the top two rows.

Execution resumes at the local Alpha label.

The WORD GUESSING GAME in section 9 uses to ask the user for a word and letters.

Using
You can use (pause) much like [PROMPT |, but with the following differences:

s delays execution for slightly less that a second. Keying in a number or Alpha string during a

pause causes the pause to be repeated; executing a function halts program execution.

e Normally, displays the X-register. To display a message that is in the Alpha register, either

or must precede [PSE |.

A string of consecutive instructions allows more time to begin a response. Each time 18

executed, the PRGM annunciator blinks once. Digit and character entry are terminated at the end of

each pause; if you key in a few digits, wait for more than a second, and then key in more digits, the two

groups of digits will be treated as two separate numbers.

Producing Output

The following functions allow the computer to display a message and generate audible signals.

Using [AVIEW

When a program executes [AVIEW], the computer displays the contents of Alpha register until

(clear display) clears the display or another message is displayed. Executing might also stop

program execution, depending on the status of flags 21 (Printer Enable) and 55 (Printer Existence) as

described in appendix C. All the programs in section 9 use to display program results.

78 Section 8: Alpha and Interactive Operations

Using
To display the contents of R, without recalling the register’s contents to the X-register, execute

nn. The register to be viewed can also be specified indirectly. When a program executes nn, the

computer displays the contents of R, until clears the display or another message is displayed.

Like [AviEw], [VIEwW]’s operation is affected by flags 21 and 55.

Using
can be used to briefly display a message. When is executed, program execution halts for

slightly less than a second.

e If the display already contained a message (rather than the program execution indicator), this

message remains displayed.

o If there was no message in the display and the Alpha keyboard is active, the contents of the Alpha

register are displayed.

e Otherwise, the contents of the X-register are displayed.

Using and
Executing n produces a single audible tone with a pitch specified by the value of n. The lowest
pitch is produced when n = 0, the highest when n = 9.

Executing BEEP produces a fixed sequence of four tones.

Section 9

Sample Programs

Contents

INtrodUCtion80

RPN PRIMER..82

Running RPN PRIMER82

Program Highlight85

Program Listing85

FINANCIAL CALCULATIONS88

Running FINANCIAL CALCULATIONS, 90

Program Highlight91

Program Listing92

CURVE FITTING...97

Running CURVE FITTING99

Program Highlight102

Program Listing103

WORD GUESSING GAME107

Running WORD GUESSING GAME, 107

Program Highlight108

Program Listing109

BLACKJACK.112

Running BLACKJACK113

Program Highlights114

Program Listing116

Introduction

This section contains five programs to help you understand programming techniques on the HP-41.

These programs are useful in their own right, but they also have been referenced throughout the man-

ual to demonstrate a function or technique. The five programs are:

1. RPN PRIMER—An aid to understanding and using RPN logic, by illustrating the four stack reg-

isters. It will help when you are learning how you can use the stack in calculations and programs.

80

Section 9: Sample Programs 81

2. FINANCIAL CALCULATIONS—Converts your HP-41 into a financial calculator. The program, aside

from being useful, demonstrates the use of local alpha labels and a procedure known as inter-

changeable solutions, whereby the HP-41 knows whether to store the value that is in the X-register

or calculate a new value.

3. CURVE FITTING—Four curve fitting routines: straight line, exponential, logarithmic or power

curve. The program demonstrates the use of indirect addressing to determine how to process the

data, then uses one routine to calculate a, b and R2.

4. WORD GUESSING GAME—Demonstrates the use of the alpha functions [AOFF], [AON], [ARCL],

(ASHF], [ASTO], and [AVIEW]. Included are routines for breaking a word into letters and putting a
word back together, using [DSE |, and indirect addressing.

5. BLACKJACK—A simple version of the card game. Included in this program is a random number

generator.

The programs also demonstrate the use of flags, prompting for information, labeling your results with

alpha labels, branching, storing and recalling information, and writing a program based on an equation.

Each program includes instructions on running the program, examples of using the program, and the

program listing of the steps that you must key in to the HP-41. (These listings include comments about

the steps.) The conventions used in these instructions, examples and program listings are the same as

the conventions inside the front cover and used throughout the manual.

The instructions for running each program are listed in a five column table. The first column, labeled

Step, is the instruction step number. Column two is the Instruction column, which gives instructions

and comments concerning the operations to be performed.

The Input column specifies the input data, or appropriate alpha response to a prompt. The Function

column specifies the keys to be pressed after keying in the input data. The last column, Display, shows

all prompts and results that appear in the display.

Above and at the right of the instruction table is a box specifying the minimum size and the display

format expected by the program. The HP-41CV Owner’s Manual tells you how to use and [Fix].

These programs, and five more, are also available in the Standard Applications Module (part number

00041-15001). Bar code for these programs is included in the HP 82153A Wand Owner’s Manual.

82 Section 9: Sample Programs

RPN PRIMER

This program is an aid to understanding and using RPN, the logic system in the HP-41. All four

registers of the operational stack are visible simultaneously so that the effect on the stack of a given

keystroke sequence can be seen rather than inferred. The functions in the program should be assigned

as shown on the keyboard below. These functions all exit to a routine that displays the stack. You can

observe the effect on the stack of any function by executing the function, then the routine STACK. The

only operational differences between this redefined calculator and the actual one are that only single-

digit numbers can be keyed in and that and address only a single register (thus requiring no
address).

Running RPN PRIMER

 ===2mEA
=S
M||

==
" l ‘ l.sucx‘ }

TS oT)

Section 9: Sample Programs 83

STATUS: 010, 02

Step Instructions Input Function Display

1 Set status (above) and key in the pro-

gram (pages 85-88).

2 Assign the routines to the following keys
and activate the User keyboard.* These
User assignments result in the keyboard
shown on the previous page.
SWAP 9 9
ST STO 8 8
RDWN 7 7

Et 6 6
RC RCL 5 5
CLR 4 4
CHSN 3 3
PL 2 2
Mi (-] 1 1

MU 0 0
DI (£) LSTX

STACK [R/S

3 Press desired keystroke sequence and

watch stack contents change.

4 The functions RUP and CLSTK are ob-
tained by: RUP

and:
CLSTK (or you could also assign these functions

to keys).
 * To assign a function, say SWAP, to a key, say the key: SWAP (x<>Y).

84 Section 9: Sample Programs

Example 1:

Evaluate the expression

2+ 0b)0b

8 — b

for b = 3

Keystrokes Display

CLSTK X:0 Y:0 Z:0 T:0

X:2 Y:0 Z:0 T:0

X:2 Y:22Z:0T:0 After an (ENTER#], the stack does not lift
when new data is keyed in.

X:3Y:22Z:0T:0

X:5 Y:0 Z:0 T:0

LASTX X:3 Y:52Z:0T:0

X:15 Y:0 Z:0 T:0

X:8 Y:15 Z:0 T:0

LASTX X:3 Y:8 Z:15 T:0

X:5 Y:15 Z:0 T:0

X:3 Y:0 Z:0 T:0E
]
[
I
I
D
“
H
I
H
‘
*
’

i
"
’
l

m X ->

Example 2:

Without disturbing the above results, compute

2+40-17

6 — 4

Keystrokes Display

9 X:9 Y:3 Z:0 T:0

X:9 Y:9 Z2:3T:0

7 X:7 Y:9Z:3T:0

(-] X:2 ¥:3 Z:0 T:0

4 X:4 Y:2 Z:3 T:0

X:8 Y:3 Z:0 T:0

2 X:2 Y:8 Z:3 T:0

X:10 Y:3 Z:0 T:0

6 X:6 Y:10 Z:3 T:0

X:6 Y:6 Z:10 T:3

Section 9: Sample Programs 85

Keystrokes Display

4 X:4 Y:6 Z:10 T:3

(-] X:2 Y:10 Z:3 T:3

B X:5Y:32:3T:3 Notice that the answer remaining from

Example 1 did not cause a difficulty in Exam-

ple 2.

Example 3:

Convert the complex number 3 + 4i to polar form.

Keystrokes Display

4 X:4 Y:5Z:3T:3

X:4 Y:4Z:5T:3

3 X:3 Y:4Z:5T:3

5
X:5 Y:53 Z:5 T:3 Remember that is assigned to [R/S].

Program Highlight

One especially useful function in this program is the display routine STACK (lines 57-67). You might

like to keep it handy to view the entire stack from time to time as you solve your own problems.

Program Listing

O1eLBL “CLSTK” Lines 01 through 03 clear the stack.
02 CLST
03 GTO 14

04+LBL “1” Line 05 checks if lift is disabled (if flag 5 is set).
05 FS?C 05 If it 1s, line 06 clears the X-register. If not, line

06 CLX 06 is skipped. Line 07 inputs a 1.
07 1
08 GTO 14

09¢LBL “2” Lines 09 through 13 input a 2.
10 FS?C 05
11 CLX
12 2
13 GTO 14

14+LBL “3” Lines 14 through 18 input a 3.

15 FS?C 05
16 CLX
17 3
18 GTO 14

86 Section 9: Sample Programs

Lines 19 through 23 input a 4.

Lines 24 through 28 input a 5.

Lines 29 through 33 input a 6.

Lines 34 through 38 input a 7.

Lines 39 through 43 input an 8.

Lines 44 through 48 input a 9.

Lines 49 through 53 input a 0.

Enable stack lift by clearing flag 05.

56¢LBL 14
57+LBL “STACK”
58 “X:”
59 ARCL X
60 “} Y
61 ARCL Y
8e - &
63 ARCL Z
64 “+ T
65 ARCL T
66 AVIEW
67 RTN

68¢LBL “Et”
69 SF 05
70 ENTER?
71 GTO 14

72+LBL “RDWN"
73 RDN
74 GTO 13

75¢LBL “SWAP”

76 X<>Y

77 GTO 13

78¢LBL “RUP”
79 Rt
80 GTO 13

81+LBL “PL”
g2 +
83 GTO 13

84+LBL “MI”
g5 —
86 GTO 13

87+LBL “MU”
88 *
89 GTO 13

90«LBL “DI
91 /
92 GTO 13

93¢LBL “CLR”
94 SF 05
95 CLX
96 GTO 14

Section 9: Sample Programs 87

Lines 57 through 67 display the stack.

Lines 68 through 71 disable stack lift by
setting flag 05.

Lines 72 through 74 roll down the stack.

Lines 75 through 77 swap X and Y.

Lines 78 through 80 roll up the stack.

Lines 81 through 83 add the contents of the
X- and Y-registers.

Lines 84 through 86 subtract the contents of

X from the contents of Y.

Lines 87 through 89 multiply X and Y.

Lines 90 through 92 divide Y by X.

Lines 93 through 96 disable stack lift and
clear X.

88 Section 9: Sample Programs

97+LBL “CHSN” Lines 97 through 99 change the sign of X.

98 CHS
99 GTO 13

100eLBL “ST” Lines 100 through 102 store X in Ryy.

101 STO 00
102 GTO 13

103¢LBL “RC” Lines 103 through 107 check if lift disabled. If
104 FS?C 05 it is, clear X first. Line 106 recalls the contents

105 CLX of Roo.

106 RCL 00
107 GTO 14

108¢LBL “LSTX" Lines 108 through 112 get the value in LAST
109 FS?C 05 X register.
110 CLX

111 LASTX
112 GTO 14

Registers Used

Roo: Storage

Flags Used

FO05: Set = disable stack; Clear = enable stack F29: Clear for no separator marks

FINANCIAL CALCULATIONS

This program converts your HP-41 into a powerful financial calculator. The program can solve for any

of the unknowns relating to a cash flow situation as shown below.

PV

N periods

Cash in
shown

e T
shown
negative

«
—
-
—
—
<

2z
|

Section 9: Sample Programs 89

PV = Present Value: the amount loaned, borrowed, invested, etc.

I = Periodic Interest rate.

N = Number of periods.

PMT = Payment amount: the amount paid on a loan or earned on an investment.

FV = Future Value: the amount remaining, accumulated, saved, etc.

The sketch above shows a standard loan amortization cash flow from the borrower’s point of view.

From the lender’s point of view, PV wuld be shown negative and the PMT stream would be positive. By

changing the signs of PV, PMT and FV, different cash flow situations may be realized. Cash flow

diagrams for the four basic compound interest problems are presented below along with some of the

more common terminology.

——————————————————————————T
T T

Mortgage Mortgage w/Balloon
Lease Lease w/Buy Back

Direct Reduction Loan Lease w/Residual
Installment Loan Annuity

Amortization
Annuity

L T
T
Compound Growth Savings Plan
Savings Account Sinking Fund
Appreciation Pension Fund

Annuity (series of payments)

The five top-row keys ([A] through [E]) are used to enter or calculate these financial parameters. If you

key in any three parameters, pressing one of the other two keys calculates the corresponding value; if

you key in any four parameters, pressing the remaining key calculates its corresponding value. Pre-

viously input values can be recalled by pressing followed by the appropriate key. The key se-

quence 2| may be used to clear all the registers used by this program. When the registers have been

cleared in this manner, the message N,I,PV,PMT,FV is put into the display to remind you of the func-

tions of the keys.

90 Section 9: Sample Programs

For some combinations of values, this program fails to converge to a solution for periodic interest i.

This effect may be avoided by using a different initial value for 1.

Reference: More information regarding cash-flow analysis may be found in Grant, E.L. and Ireson,

W.G., Principles of Engineering Economy, Fourth Edition, The Ronald Press Company, New York,

1964.

Running FINANCIAL CALCULATIONS

STATUS: 010, 02

Step Instructions Input Function Display

1 Set status (above) and key in the pro-
gram (pages 92-96).

2 Begin the program:

3 To clear the finance registers: (a) N,I,PV,PMT,FV

4 Store input as desired:

number of periods. N N

periodic interest rate, percent. I I

present value of investment. PV* PV

periodic payment. PMT* (D] PMT

future value of investment. Fv* (E] FV

5 Compute desired output:

number of periods. N = (N)

periodic interest rate. | = ()%
(See Note)

present value of investment. PV = $(PV)*

periodic payment. (D] PMT = $(PMT)*

future value of investment. (E] FV = $(FV)*

* Positive for cash received, negative for cash paid out.

Note: Should the routine for i fail to return an answer, you may try your own non-zero initial value

for i. For example, to try a guess of 1%:

01 09 (XEa) 06

Section 9: Sample Programs 91

Example I:

A couple purchases a $50,000 house, borrowing $40,000 at 8.5% for 30 years less one month. What is

their monthly payment?

Keystrokes Display

(2] 40000 40,000.00

8.5 12 (] 0.71

30 12(x]1(=](A]J(D] PMT=$-307.75

Example 2:

The couple in example 1 sold their house 18 months later, netting $25,000. At what interest rate would

they have had to invest their original $10,000 and $307.75 monthly payments to obtain $25,000?

Keystrokes Display

18

25000 [E] 25,000.00
10000 | = 3.21% Monthly interest rate.

12 [x] 38.51 Annualrate.

Program Highlight

This program demonstrates a technique called an interchangeable solution. Each of the five variables in

the equation can be written in terms of the remaining four. The five top-row keys are used both for

storing inputs and computing outputs using the program structure outlined below.

LBL £ One of the labels A-J or a-e.

STO r Store the variable in R,.
FS?C22 Test the digit-entry flag and clear it.

RTN Stop here if this data was just keyed in.

: Compute the value of the unknown.

STO r Store the computed value in R,.

: Display the new value.

RTN

This building block may be repeated as many times as necessary depending on the number of variables.

See lines 16 through 38 for an example of this structure.

92 Section 9: Sample Programs

Program Listing

O1eLBL “FIN”
02 SF 27
03 FIX 2
04+LBL a
05 CLX
06 STO 01
07 STO 02
08 STO 03
09 STO 04
10 STO 05
11 STO 09
12 “N, |, PV, PMT,F”
13 “+V”
14 AVIEW
15 RTN

16¢LBL A
17 STO 01
18 FS?C 22
19 RTN
20 RCL 04
21 RCL 09
22 /
23 STO 00
24 RCL 05
25 -
26 RCL 03
27 RCL 00
28 +
29 /
30 LN
31 RCL 09
32 LN1+X
33/
34 STO 01
35 “‘N="
36 ARCL X
37 AVIEW
38 RTN

Lines 01 through 15 start the program and
initialize the HP-41. Line 02 puts the HP-41 in
User mode. Line 03 sets two decimal places.
Label a, lines 04 through 15, stores zero in R,
through Ry5 and Ryg, then puts the key labels in
the display.

Lines 16 through 38 deal with N, the number
of periods. Line 17 stores the value in the X-
register. Line 18 checks the status of flag 22, the
numeric data input flag. When set, indicates new
data, so stop; else skip line 19. Lines 20

through 33 calculate new N. Line 34 stores the
new N. Lines 35 through 37 display new N.

39+LBL B
40 STO 02
411E2
42 |
43 STO 09
44 1
45 +
46 STO 07
47 RCL 02
48 FS?C 22
49 RTN
50 RCL 04
51 X+#07?
52 GTO 01

53 RCL 05
54 RCL 03
55 /
56 CHS
57 RCL 01
58 1/X
59 YtX
60 1
61 —
62 STO 09
63 GTO 00

64+LBL 01
65 RCL 05
66 ABS
67 RCL 04
68 RCL 01
69 *
70 RCL 03
o+
72 ABS
ie —
74 RCL 04
75 RCL 01
76 %
77 RCL 05
78 +
79 ABS
80 RCL 03
81 ABS
82 —
83 %
84 ENTER?
85 ABS

Section 9: Sample Programs 93

Lines 39 through 135 deal with i, the interest
rate. Lines 40 through 46 store i and some
functions of i. Line 48 checks the status of flag
22, the numeric data input flag. When set,
indicates new data, so stop; else skip line 49.

Lines 50 recalls payment. Line 51 checks if
payment is zero. If it is, skip line 52 and compute
new I by simple formula, lines 53 through 63.

Lines 64 through 126 calculate i using
Newton’s method. Line 86 is the initial guess.

94 Section 9: Sample Programs

Lines 90 through 125 contain the loop that is
repeated until A: is small. This is determined in
lines 123 and 124. The Y-register contains Al
and the X-register contains 1 E—7 (line 123).
Line 124 compares the values in the X- and Y-
registers. If x < y, then repeat loop; if not, skip
line 125.

127+LBL 00
128 1 E2
129 %
130 STO 02
131 “1="

132 ARCL X

133 “+ %"
134 AVIEW

135 RTN

136¢LBL C

137 STO 03
138 FS?C 22
139 RTN
140 RCL 04
141 XEQ 08
142 *
143 RCL 05
144 RCL 08
145 %

146 +

147 CHS
148 STO 03
149 “‘PV=9¢"
150 ARCL X
151 AVIEW
152 RTN

153¢LBL D
154 STO 04
155 FS?C 22
156 RTN
157 XEQ 08
158 1/X
159 RCL 03
160 RCL 05
161 RCL 08
162 *
163 +
164 *
165 CHS
166 STO 04
167 “PMT=$"
168 ARCL X
169 AVIEW
170 RTN

Section 9: Sample Programs 95

Lines 127 through 130 store i. Lines 131
through 134 display .

Lines 136 through 152 deal with PV, present

value. Line 137 stores the value in the X-register.
Line 138 checks the status of flag 22, the
numeric data input flag. When set, indicates new
data, so stop; else skip line 139. Lines 140
through 147 calculate new PV. Line 148 stores
the new PV. Lines 149 through 151 display
new PV,

Lines 153 through 170 deal with PMT, the
payment amount. Line 154 stores the value that
is in the X-register. Line 155 checks the status
of flag 22, the numeric data input flag. When set,
indicates new data, so stop; else skip line 156.
Lines 157 through 165 calculate new PMT.
Line 166 stores new PMT. Lines 167 through

169 display new PMT.

96 Section 9: Sample Programs

171¢LBL E Lines 171 through 187 deal with FV, the
172 STO 05 future value. Line 172 stores the value that is in
173 FS?C 22 the X-register. Line 173 checks the status of
174 RTN flag 22, the numeric data input flag. When set,
175 XEQ 08 indicates new data, so stop; else skip line 174.

176 RCL 04 Lines 175 through 182 calculate new F'V. Line

177 % 183 stores new F'V. Lines 184 through 186

178 RCL 03 display new FYV.

179 +

180 RCL 08
181 /
182 CHS
183 STO 05
184 “FV=9"
185 ARCL X
186 AVIEW
187 RTN

188¢LBL 08 Lines 188 through 198 compute
189 1 \—n
190 XEQ 09 1_<1+ l)
191 RCL 01 100

192 CHS i
1983 YtX 100

194 STO 08
195 —
196 RCL 09
197 |
198 RTN

199+LBL 09 Lines 199 through 204 compute 1 + i/100.
200 RCL 09
201 1
202 +
203 STO 07
204 RTN

Registers Used

RooI Used ROS: FV

R01: N Roe: Used

ROQI i R07: 1+ |/1 00

R03Z PV ROB: Used

R04: PMT Rog: l/1 00

Section 9: Sample Programs 97

Flags Used

F22: Digit entry flag F27: User mode flag

CURVE FITTING

For a set of data points (x;, y;), i = 1,2, ..., n, this program can be used to fit the data to any of the

following curves:

— . Straight line (linear regression): y: a + bx.

2. Exponential curve: y: ae®® (a > 0).

3. Logarithmic curve: y = a + b In «x.

4 . Power curve: y = ax? (a > 0).

The regression coefficients a and b are found by solving the following equivalent system of linear

equations.

AEXL + BZ)([2 = ZYiXL'

The relations of the variables are defined by the following:

Regression A B X; Y;

Linear a b X; 7

Exponential |Ina |b X; In y;

Logarithmic a b |Inx; 7

Power na |b |Inx;|Iny
The coefficient of determination is:

ASY, + bZX, Y, — = (3Y,)?
n R? =

S(Y2) — L (3v)?
n

l

98 Section 9: Sample Programs

Linear Regression Exponential Curve Fit

y y

y = a + bx y = aebx

/
/

/ X X
Power Curve Fit Logarithmic Curve Fit

y

y = axP y=a+blinx

 , a—

1. The program applies the least square method, either to the original equations (straight line and

logarithmic curve) or to the transformed equations (exponential curve and power curve).

Remarks:

2. Negative and zero values of x; will cause a calculator error for logarithmic curve fits. Negative and

zero values of y; will cause a machine error for exponential curve fits. For power curve fits both x;

and y; must be positive, non-zero values.

3. As the difference between x and/or y values becomes small, the accuracy of the regression co-

efficients will decrease.

4. The statistical registers are relocated to R;, through R;5 (line 20).

Running CURVE FITTING

Section 9: Sample Programs 99

STATUS: 016, 02

Step Instructions Input Function Display

1 Set status (above) and key in the pro-

gram (pages 103-106).

2 Initialize the program:

for STRAIGHT LINE. LIN

or for EXPONENTIAL CURVE. EXP

or for LOGARITHMIC CURVE. LOG LOG

or for POWER CURVE. POW

3 Repeat step 3 and 4 for i =1,2,...,n
input:

Xi X;

Yi Yi (1)

4 If you made a mistake in inputting x, and
Yk » then correct by: Xy

Vi (k = 1)
5 Calculate R? and regression coefficients (E] R2 = (R2)

a and b.

R/S a = (a)

b = (b)

6 Calculate estimated y from regression, A
input x: X R/S Y. = (y)

Repeat step 6 for different x’s.

Repeat step 5 if you want the results

again.

9 To use the same program for another set

of data, initialize the program by: (a] LIN or
EXP or

LOG or
POW

then go to step 3.

10 To use another program, go to step 2.

100 Section 9: Sample Programs

Example 1:

Fit a straight line to the following set of data and compute y for x = 37 and x = 35.

Keystrokes

LIN

40.5 104.5
38.6 102
37.9 100
36.2 97.5
35.2 95.5
35.2 95.5
35.1 95.5
34.6 94

R/S

R/S

37
35

Example 2:

40.5 ‘ 38.6 ‘ 37.9 ‘ 36.2 | 35.1 ‘ 34.6

¥i \ 104.5 l 102 ’ 100 ’ 97.5 ‘ 95.5 ‘ 94

Display

LIN Remember, to execute a program, press

LIN or assign the program to a
key.

1.00

2.00

3.00

4.00

5.00 Oops!

4.00 Correct error.

5.00 Use proper values.

6.00

R2 = 0.99

a = 33.53

b = 1.76

Y. = 98.65

Y. = 95.13

Fit an exponential curve to the following set of data and compute y for x = 1.5 and x = 2.

X
72 | 1.31 | 1.95 I 2.58 | 3.14

¥i ’ 2.16 ‘ 1.61 ‘ 1.16 l .85 ‘ 0.5

Keystrokes

EXP

72 2.16
1.31 1.61
1.95 (ENTER*] 1.16 [A)
2.58 [ENTER?) .85 [A)
3.15 [ENTERY) .05 [A]

3.15 05
3.14 0.5

R/S

R/S

1.5
2.0

Example 3:

Display

EXP

1.00

2.00

3.00

4.00

5.00 If you don’t make a mistake you can skip two

steps.

4.00

5.00

R2 = 0.98

a =345

b = —0.58

Y. = 1.44

Y. = 1.08

Section 9: Sample Programs

Fit a logarithmic curve to the following set of data and compute y for x = 8 and x = 14.5.

Keystrokes Display

LOG LOG

3 1.5 1.00

4 9.3 2.00

6 23.4 3.00

10 45.8 4.00
12 6.01 5.00 Another mistake.

12 6.01 4.00

12 60.1 5.00

R2 = 0.98

R/S a = —47.02

R/S b = 41.39

8 Y. = 39.06

14.5 Y. = 63.67

102 Section 9: Sample Programs

Example 4:

Fit a power curve to the following set of data and compute y for x = 18 and x = 23.

X
10|12|15|17l20|22]25|27|30|32|35

¥ I 0.95 ‘ 1.05 ‘ 1.25 l 1.41 ' 1.73 ‘ 2.00 | 2.53 ‘ 2.98 | 3.85 | 4.59 | 6.02

Keystrokes

POW

10 (ENTER®] 0.95
12 (ENTERY) 1.05 (&)
15 (ENTER®] 1.25 [A)
17 (ENTERY] 1.41
20 (ENTERT) 1.73 (A
22 2.00 (A
25 2.53
07 (ENTERT) 2.98
30 (ENTER®] 3.85
32 4.59 (A
35 60.2 (&)
35 (ENTER®] 60.2 (C)
35 6.02 (&)
(E]
R/S
R/S
18
23

Program Highlight

Display

POW

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

11.00

10.00 Error correction.

11.00

R2 = 0.94

a = 0.03

b = 1.46

Y. = 1.76

Y. = 2.52

This program uses a single section of code for most ot the calculations it needs to do. Since each of the

four types of curve fitting requires the input data to be in a different form, it would seem that a

different program should be used for each curve type. Instead, each of the set-up programs, LIN, LOG,

EXP and POW,stores a code in Ry,. Then the single function on line 32, IND 00, takes care of the
four different ways of processing the input data by executing the function whose labelis stored in Ry,.

Program Listing

O01eLBL “LIN”
025
03 “LIN”
04 GTO 13

05+LBL “EXP”
06 6
07 “EXP”
08 GTO 13

09+LBL “LOG”
107
11 “LOG”
12 GTO 13

13+LBL “POW"
14 8
15 “POW”

16+LBL 13
17 XEQ “INIT”
18 STO 00
19 ASTO 08
20 ZREG 10
21 CLZ
22 BEEP
23 AVIEW
24 STOP

25¢LBL C

26 X<>Y

27 XEQ IND 00
28 >—
29 STOP

30+LBL A
31 X<>Y

32 XEQ IND 00
33 Z+
34 STOP

35¢LBL 07
36 LN
37 RTN

38¢LBL 08

39 LN

Section 9: Sample Programs 103

Lines 01 through 04 begin the linear curve fit
program. The 5 in line 02 is the subroutine called
indirectly in lines 27 and 32 to process the
data.

Lines 05 through 08 begin the exponential
curve fit program. The 6 in line 06 is the
subroutine called indirectly in lines 27 and 32
to process the data.

Lines 09 through 12 begin the logarithmic
curve fit program. The 7 in line 10 is the
subroutine called indirectly in lines 27 and 32
to process the data.

Lines 13 through 15 begin the power curve fit
program. The 8 in line 14 is the subroutine called
indirectly in lines 27 and 32 to process the
data.

Lines 16 through 24 sets up the HP-41 to run
the program. Line 17 calls the initialization
subroutine. Line 18 stores the subroutine
number in Ry,. Line 19 stores the type of fit in
Ryg. Line 20 sets the statistical registers to
begin with R;(. Line 21 clears the statistical
registers. Line 22 beeps. Line 23 displays the
type of fit. Line 24 stops the program, waiting for
data input.

Lines 25 through 29 contain the subroutine
for corrections. Line 27 calls the appropriate data
processing routine and line 28 subtracts the x
and y values from the statistical registers.

Lines 30 through 34 process the data, calling

the subroutine stored in R, then summing the
processed data.

Subroutine for logarithmic curve fit.

Subroutine for power curve fit.

104 Section 9: Sample Programs

Subroutine for exponential curve fit. Power
curve also uses.

Calculate A, b and a, b.

85 RCL 09
86 —
87 /
88 “R2”
89 XEQ 88
90 RCL 06
91 “a”
92 XEQ 88
93 RCL 05
94 “b”
95 GTO 01
96¢LBL 06

97+LBL 08
98 EtX
99¢LBL 05
100+LBL 07
101 RTN

102+LBL 09
103 *
104 STO 07
105 RDN
106 *
107 RCL 07
108 —
109 RTN

1104LBL 00
11y
1124LBL 01
113 “p =
114 ARCL X
115 AVIEW
116 FS? 55
117 STOP
118¢LBL 04
119 GTO IND 00
120+LBL 08
121 RCL 05
122 YtX
123 GTO 09
124+LBL 06
125 RCL 05
126 *
127 EtX

Section 9: Sample Programs 105

Calculates the coefficient of determination.

Lines 110 through 117 display the value of y.

Input x to calculate y.

106 Section 9: Sample Programs

128¢LBL 09
129 RCL 06
130 *
131 GTO 00
132+LBL 07
133 LN

134¢LBL 05

135 RCL 05
136 *
137 RCL 06
138 +
139 GTO 00

140+LBL 88
141 “p ="
142 ARCL X
143 AVIEW
144 RTN
1454LBL a
146 GTO IND 08

147¢LBL “INIT”

Lines 140 through 144 contain the subroutine
for displaying results.

Lines 145 and 146 initializes the program so a
new set of data can be entered. Goes to the label

stored in Ryg: LIN, EXP, LOG or POW.

Lines 147 through 153 initialize the HP-41 by

148 CLRG clearing the registers, setting the number of
149 FIX 2 decimal places, setting flags 21 (printer enable
150 SF 21 flag) and 27 (user mode flag) and clearing flag 29
151 SF 27 (to suppress the decimal point).
152 CF 29
153 RTN

Registers Used

Roo: Index Rog: LIN or EXP or LOG or POW

Ro1: Not used

Ro2: Not used

Ros: R?
R04: A

R05: b

Rosi a

Ro7: Used

Rog: (Zy)?/n
R10: X

Ry =x2

Ry2: 2y
Ria: 2y?
Ri4: Zxy

Ris: n

Flags Used

Section 9: Sample Programs 107

F21: Printer enable flag

F27: User keyboard flag

F29: Clear to suppress separator mark

F55: Printer existence flag

WORD GUESSING GAME

This program is a version of the word game “hangman.” The first player picks a six-character word and

gives it to the calculator. The second player guesses various letters until he has completed the word.

After each guess, the calculator displays all correctly guessed characters in their appropriate places.

When the entire word has been guessed, the number of guesses is displayed.

Running WORD GUESSING GAME

STATUS: 019, 00

Step Instructions Input Function Display

1 Set status (above) and key in the pro-
gram (pages 109-111).

2 Begin the program. KEY IN WORD

First player: Key in your word: any six R/S LETTER?
characters

4 Second player: Guess a character: any character R/S word so far
LETTER?

5 Repeat step 4 to guess more characters.
When word is complete, you will see
DONE, WORD is <word>, and YOU

TOOK nn GUESSES.

Example:

Hide “HP41CV” and then guess it.

Keystrokes Display

KEY IN WORD
HP41CV LETTER?

A
LETTER?

Notice that the program activates the Alpha

keyboard.

108 Section 9: Sample Programs

Keystrokes Display

P P

LETTER?

C P C

LETTER?

H HP C

LETTER?

4 HP4 C

LETTER?

1 HP41C
LETTER?

Vv DONE

WORD

IS<HP41CV >

YOU TOOK 7

GUESSES

Program Highlight

Two special routines were used while developing this program: SPEL and DESPEL. SPEL builds up a

word from a collection of letters and DESPEL takes apart a word into its component letters. Only

DESPEL remains in the program because the job performed by SPEL is done by the letter-comparison

portion of the program.

SPEL and DESPEL use indirect addressing to recall or store letters. A loop-control number must be

passed to the routines to indicate which registers are to be addressed. The loop-control number must be

in the X-register when SPEL or DESPEL is called. The loop-control number is of the form

f1.0ll for SPEL or [l.0ff for DESPEL

where

f1 = register for first letter

Il = register for last letter

ff=1—1

SPEL and DESPEL (or other similar routines) can be used to encode and decode many types of strings.

O1eLBL “SPEL”

02 STO 07

03+LBL 08
04 ARCL IND 07

05 ISG 07
06 GTO 08
07 RTN

O1+LBL “DESPEL”
02 STO 07

03 ASTO 00

04+LBL 07
05 “ "

06 ARCL 00
07 ASTO 00

08 ASHF
09 ASTO IND 07

10 DSE 07
11 GTO 07
12 RTN

Program Listing

O1eLBL “WORDS”
02 “KEY IN WORD”
03 AON
04 PROMPT
05 ASTO 08
06 6
07 XEQ “DESPEL”
08 .9
09 STO 17
10 “ .
11 ASTO 09
12 16.01
13 XEQ “DESPEL”

Section 9: Sample Programs 109

Assumes a cleared Alpha register.

Store the counter f1.0ll.

Build the word.

If not last letter, then repeat the loop.

Store the counter [.0ff.

Store the word.

Save all but the last letter.

Save the last letter.

If not all letters, then repeat loop.

Lines 02 through 04 prompt for the secret
word. Line 05 stores the word in Ryg. Line 06 is
the counter for DESPEL. Line 07 calls DESPEL
which places the letters in the secret word in Ry,
through Rg. Line 08 and 09 set up a counter.
Lines 10 through 13 put blanks in Ry9 and Ry,
through Ry¢. Line 10 is six spaces.

110 Section 9: Sample Programs

14+LBL “LTTR”
15 CLA
16 ASTO 09
17 LETIERY
18 AON
19 PROMPT
20 ASTO 10
21 1SG 17
22 1.006
23 STO 18

24+LBL 06
2 "
26 ASTO Y
27 RCL 18
28 10
29 +
30 CLA
31 ARCL IND X
32 RDN
33 ASTO X
34 X#Y?
35 GTO 00
36 CLA
37 ARCL 10
38 ASTO Y
39 CLA
40 ARCL IND 18
41 ASTO X
42 X=Y?
43 GTO 00
a8
45 ASTO X

46+LBL 00
47 CLA
48 ARCL 09
49 ARCL X
50 ASTO 09
51 AVIEW
52 10
53 RCL 18
o4 +
55 CLA
56 ARCL Y
57 ASTO IND X
58 ISG 18
59 GTO 06
60 CLA

Lines 14 through 19 prompt the player for a
letter. Line 19 saves the letter in Ry,. Line 21
adds one to the number of guesses. Lines 22
and 23 initialize the counter in Ryg.

Lines 24 through 26 store a blank in the
Y-register. Line 25 is one space. Lines 27
through 31 recalls the value in the address in
the X-register. Line 32—if position already has
letter, then display it. Line 41—if guess is
correct, then display it. Else display blank. Line
44 is one space.

Line 48 adds a letter to the display. Line 58
increments the counting loop. Line 65—if the
words are the same, then done, else ask for
another guess.

61 ARCL 08
62 ASTO Y
63 CLA
64 ARCL 09
65 ASTO X
66 X=Y?
67 GTO 00
68 PSE
69 PSE
70 GTO “LTTR”

71+LBL 00
72 “DONE”
73 AVIEW
74 “WORD IS <”
75 ARCL 09
79 ">
77 AVIEW
78 PSE
79 PSE
80 RCL 17
81 INT
82 CF 29
83 FIX 0
84 “YOU TOOK ”
85 ARCL X
86 “+ GUESSES”
87 AVIEW
88 SF 29
89 FIX 2
90 AOFF
91 RTN

92+LBL “DESPEL’
93 STO 07
94 ASTO 00
95¢LBL 07
yo
97 ARCL 00
98 ASTO 00
99 ASHF
100 ASTO IND 07
101 DSE 07
102 GTO 07
103 RTN

Section 9: Sample Programs 111

Lines 74 through 79 display the word. Lines
80 through 87 display the number of guesses.

Lines 92 through 103 contain the subroutine
DESPEL to separate a word into its letters, then
store the individual letters indirectly. Line 96 is
one blank.

112 Section 9: Sample Programs

Registers Used

Rog: Temporary Ryg: Current letter

Roq: First letter, secret word R44: First letter, player's word

Roo: Second letter, secret word Ri2: Second letter, player’'s word

Ros: Third letter, secret word R3: Third letter, player's word

Ro4: Fourth letter, secret word R14: Fourth letter, player’'s word

Ros: Fifth letter, secret word R,s: Fifth letter, player's word

Roe: Sixth letter, secret word Rie: Sixth letter, player’s word

Ro7: Counter R47: Counter

Rog: Secret word Rig: Counter

Rog: Player’s word
Flags Used

F29: Clear to suppress separator mark

BLACKJACK

This program plays a simple version of the card game blackjack (twenty-one). The calculator deals

(without replacement) from a 104-card deck, reshuffling when all but 13 cards have been dealt. The

player may bet any amount; if he doesn’t place a bet, the value of his previous one will be used.

The player and dealer each receive two cards, one of the dealer’s cards being exposed. The player may

then either draw additional cards (hit) or not draw (stand). The object of the game is to reach, but not

exceed, a score of 21 points, counting 10 for face cards, 1 or 11 for aces, and the face value for the

remaining cards. If a player’s first two cards count 21, he has blackjack and immediately collects 1%

times his bet unless the dealer also has blackjack.

When hitting, a player who draws a card bringing his score over 21 is said to bust or be busted and he

loses his bet. When the player stands on a score of 21 or less, the dealer must hit his own hand until

his score exceeds 16. At that point the higher hand wins and the player’s bank is updated. If the player

and dealer should have the same score, the bet is a stand-off or a push.

Options allowed in casino-style blackjack such as splitting pairs, going down for double, and purchasing

insurance are not included in this program.

Running BLACKJACK

Section 9: Sample Programs 113

STATUS: 027, 00

Step Instructions Input Function Display

1 Set status (above) and key in program
(pages 116-122).

2 Assign DL, HT and S to User keys. A
seed (0 < seed < 1) may be placed in
Roo-

3 Store yourinitial bank: bank 21

To shuffle the deck: SHUFFLING

5 Place your bet: BET | SHOW c*
You have 1

You have 1 2t

6a Hit, then repeat this step or go to 6b YOU HAVE
or cards

6b Stand, and the dealer will show his hand | HAVE cards
and then hit or stand as appropriate. :

7 Repeat from step 5 as desired.

*c is any card, cards is a string of cards—the card numbers are linked so a 10 and a 7 will look like 107.

t If you get blackjack in step 5, the display will show BLACKJACK, and [S(TAND)] will be executed automatically.

Example:

Shuffle the deck, key in a seed of .6, and play blackjack using a $2 bet.

Keystrokes Display

ASN DL 11
ASN HT 12
ASN S 13
SHUFFLING

104

0 21

6 00
2 | SHOW 4

YOU HAVE 10K

The function is assigned to [£+].

114 Section 9: Sample Programs

Keystrokes Display

| HAVE 4J The function is assigned to (Jx].

| HAVE 4J2

| HAVE 4J2J

BUST

YOUR BANK IS $2

| SHOW 2

YOU HAVE 92

YOU HAVE 9210

| HAVE 24
| HAVE 24A

YOUR BANK IS $4

Program Highlights

An interesting portion of this program is the random number generator (lines 07 through 17):

rn+ 1= FRC (9821 x r n + .211327)

This generator was developed by Don Malm as part of an HP-65 Users’ Library program. It passes the

spectral test (Knuth, The Art of Computer Programming, Addison Wesley, Reading, Mass., 1978, V.2, §

3.4) and, because its parameters satisfy Theorem A (op.cit., p. 15), it generates one million distinct

random numbers between zero and 1 regardless of the value selected for ry,.

Because the basic random number generator delivers numbers between zero and 1, it is necessary to do

further manipulation of the random numbers to get the integers required for the program. By multiply-

ing the random numbers by an integer n, then taking the integer part, numbers from zero to n—1 may

be generated. This program used the maximum desired number plus 1 to generate numbers from zero to

the desired maximum.

With the registers left after keying in this program, you can write a program to play blackjack using

simple playing and betting schemes. The routine below check registers and flags used by the blackjack

program to determine whether to hit or stand. If the playing program loses, it doubles its bet, even-

tually winning.

Note that this program requires the memory allocation of atleast 28 data storage registers.

O1«LBL “PL” Place new bet

02 2

03 SF 22

04+LBL 02

05 XEQ “DL” Deal

06+LBL 00

07 RCL 24
08 12

09 ENTER?
10 10
11 FS? 07

12 CLX
13

14 X<=Y?

15 GTO 01
16 FC? 09
17 GTO 01

18 XEQ “HT”
19 GTO 00
20+LBL 01

21 FS? 09
22 XEQ “S”
23 RCL 27
24 RCL 21

25 STO 27
20 ~

27 X<07?
28 GTO “PL”
29 X=07?
30 GTO 02
312
32 ST* 22
33 GTO 02
34 END

Section 9: Sample Programs 115

Check score

Adjustment for ace. If no ace, clear adjustment.

If 12 > score or if blackjack then stand,
otherwise hit.

If no blackjack then stand.

Save last bank.

If game won, place new bet.

If game drawn, use last bet.

If game lost, double the bet.

116 Section 9: Sample Programs

Program Listing

O1eLBL “CRD”

02 CLA
03 ASTO 19
04 1

05 STO 15
06 RCL 00
07 9821 Lines 07 through 17 generate the random
08 % numbers.

09 .211327
10 +
11 FRC

12 STO 00
13 RCL 14

14 %

15 INT
16 1

1l +

18+LBL 02

19 RCL IND 15
20 X>Y?
21 GTO 03
22 —
23 ISG 15
24+LBL 99

- 25 GTO 02
26¢LBL 03
27 DSE IND 15
28¢LBL 99 Lines 28 through 34 check to see if 12 or less

29 DSE 14 cards remain, and, if true, shuffle the deck.
30 12
31 RCL 14

32 X>Y?
33 GTO 04
34 XEQ “SH”

35¢LBL 04
36 RCL 15
37 STO 16
38 10
39 X<=Y?
40 GTO 00
41 X<>Y
42 STO 16
43 1

44 X=Y?
45 GTO A
46 CLA
47 ARCL Y
48 GTO 01

49¢LBL 00
50 STO 16
51 CLX
52 10
53 X=Y?
54 GTO “10”
55 1
o6 +
57 X=Y?
58 GTO J
59 1
60 +
61 X=Y?
62 GTO “Q”
63 “K”
64 GTO 01

65¢LBL A

66 “A”
67 CF 07
68 GTO 01
69+LBL “Q”
70 “Q”
71 GTO 01
72¢LBL J
73 °J
74 GTO 01
75¢LBL “10”
76 “10”
77+LBL 01
78 ASTO 19
79 RCL 16
80 RTN

Section 9: Sample Programs

Lines 77 through 80 store the alpha
representation of the card.

117

118 Section 9: Sample Programs

81¢LBL “SH” Lines 81 through 96 reconstruct the deck.
82 SF 27
83 CF 29
84 “SHUFFLING”
85 AVIEW
86 1.013
87 ENTER?
88 8
89+LBL 14

90 STOIND Y
91I1SG Y
92 GTO 14
93 104
94 STO 14
95 CLD
96 RTN

97¢LBL “DL” Lines 98 and 99 alter flags to indicate
98 CF 09 blackjack, no ace. 106 specifies whether to use
99 SF 07 old bet or store a new bet. Line 110 calls the
100 ABS CRD routine to get the dealer’s first card. Line
101 INT 113 calls CRD to get the dealer’s second card.
102 FS?C 22 Line 117 saves the dealer’s A-flag. Line 121
103 STO 22 stores the dealer’s hand. Lines 122 through
104 RCL 22 124 display the dealer’s up card.
105 STO 20
106 SF 06
107 CLA
108 ASTO 26
109 ASTO 25
110 XEQ “CRD”

111 RCL 15
112 STO 17
113 XEQ “CRD”
114 STO 23

115 CF 08
116 FS? 07
117 SF 08
118 CLA
119 ARCL 19
120 ARCL 25
121 ASTO 25
122 “| SHOW”
123 ARCL 25
124 AVIEW

125 SF 07

126 0
127 STO 24
128 XEQ “CRD”
129 XEQ “PH”
130 XEQ “CRD”
131 XEQ “PH”
132 RCL 24
133 10
134 FS? 07
135 CLX
136 +
137 21
138 X#Y?
139 SF 09
140 FS? 09
141 RTN
142 21.5
143 STO 24
144 1.5
145 ST* 20
146 “BLACKJACK”
147 AVIEW

148¢LBL “S”
149 CF 06
150 FS? 07
151 GTO 05
152 11
153 RCL 24
154 X>Y?
155 GTO 05
156 10
1567 ST+ 24

158¢LBL 05
159 CF 07
160 FS? 08
161 SF 07
162 RCL 17
163 STO 15
164 XEQ 04
165 XEQ “DH”
166 FS? 07
167 GTO 07
168 11
169 RCL 23

Section 9: Sample Programs 119

Line 128 gets the player’s first card. Line 130
gets the player’s second card. Line 132 displays
the player’s hand. If no blackjack, line 139 sets
flag 9. If blackjack, continue with lines 142
through 147.

Lines 148 through 157 contain the routine

called when player stands.

Lines 158 through 167 reinstate dealer’s ace-

flag, recover dealer’s hole card, and display
dealer’s hand. If no dealer ace, skip to LBL 07.

120 Section 9: Sample Programs

170 X#Y?

171 GTO 07
172 215

173 STO 23
174 “| HAVE BLACKJAC” Lines 174 through 176 display blackjack when
175 “+HK” the dealer wins.
176 AVIEW

177 GTO 07

178¢LBL 06 Lines 178 through 180 hit the dealer.
179 XEQ “CRD”
180 XEQ “DH”

181+LBL 07 Lines 181 through 200 make playing
182 FS? 06 decisions. If player busted, then settle bets. If
183 GTO 09 player blackjack set the blackjack. If dealer’s
184 FC? 09 score is above 17, then settle. If no ace, the dealer

185 GTO 08 hits. Lines 193 through 195—if ace and score

186 RCL 23 is between 7 and 11, then dealer hits. Lines 199
187 17 through 200 add 10 for ace.
188 X<=Y?
189 GTO 08
190 FS? 07
191 GTO 06
192 11
193 RCL 23
194 X>Y?

195 GTO 06
196 7
197 X>Y?

198 GTO 06
199 10
200 ST+ 23

201+LBL 08 Lines 201 through 211 check for dealer bust
202 21.5 and check for push.
203 RCL 23
204 X>Y?

205 XEQ “DB”
206 RCL 24
207 —
208 X=07?
209 XEQ “P”
210 X>07?

211 SF 06

212+LBL 09
213 RCL 20
214 FS? 06
215 CHS
216 ST+ 21

217 “YOUR BANK IS §”
218 ARCL 21
219 AVIEW
220 RTN

221¢LBL “HT”
222 XEQ “CRD”
223 XEQ “PH”
224 RCL 24
225 215
226 X>Y?
227 RTN
228 “BUST”
229 AVIEW
230 GTO 05

231+LBL “DB”
232 “BUST”
233 AVIEW
234 0
235 RTN

236+LBL “PH”
237 ST+ 24
238 CLA
239 ARCL 26
240 ARCL 19
241 ASTO 26
242 “YOU HAVE ”
243 ARCL 26
244 AVIEW
245 RTN

246+LBL “DH”
247 ST+ 23
248 CLA
249 ARCL 25
250 ARCL 19
251 ASTO 25
252 “| HAVE ”
253 ARCL 25
254 AVIEW
255 RTN

Section 9: Sample Programs 121

Lines 212 through 220 adjust and display the
bank when the player loses.

Lines 221 through 230 handle a player hit: get
a new card, display the new hand, then check for
bust.

Lines 231 through 235 handle dealer bust.

Lines 236 through 245 display the player’s
hand.

Lines 246 through 255 display the dealer’s
hand.

122 Section 9: Sample Programs

256+LBL “P” Lines 256 through 259 take care of a push.
257 "A PUSH”
258 AVIEW
259 ST* 20

Registers Used

Roo: Random Number Ry4: Number of cards left in deck

Ro1: Aces Ry5: Counter

Ro2: 2's Rie: Value of current card

Ro3: 3's R17: Dealer’s hidden card

Ro4: 4's R1g: Not used

Ros: 5's Ryg: Value of current card

Rog: 6's Rop: Payoff

Ro7: 7's R,¢: Player’'s bank

R08: 8's R22: Bet

Rog: 9's Ro3: Dealer’s score

Rio: 10’s Ro4: Player’s score

Rqiq: J’s Ros: Dealer’s hand

Rio: Q’s Rog: Player’s hand

R13: K’s

Flags Used

F06: Player busted F21: Should match printer existence flag (flag 55)

FO7: Set = no Ace; Clear = Ace F22: Keyboard entry

FO08: Set-= no dealer Ace; Clear = dealer Ace F29: Clear to suppress separator mark

F09: Set = no Blackjack; Clear = Blackjack

Appendices

Appendix A

Error and Status Messages

This appendix lists all error and status messages given by the HP-41CV.

When an illegal operation is attempted on the HP-41, the operation is not performed and an error

message appears in the display. To clear the display, press [«]. If the error was caused during a running

program, switch to Program mode to see the offending program line.

Some messages are marked as status messages. A status message is for your information and does not

indicate an error condition.

The variables x, y, and z below refer to the contents of the X-register, the Y-register, and the Z-register,

respectively.

Display

ALPHA DATA

DATA ERROR

Functions Meaning

Mathematical Nonnumeric data was used for a function needing
Any other numeric data: the X-register (or Y-register, if rele-

function using vant) contains Alpha data.

numeric data

Mathematical Illegal math operation with the given operands (di-
vision by zero, square root of a negative number).

x <0 and y = 0, or x is noninteger and y < 0.

x =10 or x < 0.

n = 0.

|x| > 1073741823, or x is noninteger.

x 1s noninteger, or any digit in x is an 8 or a 9.

x < 0 or is noninteger.

y = 0.

w|
[m

|
[l

(70
|o

-4
|

[0

!
E
a
é
a
g
fi
g
!
g

I
|4

_
|
)
z
>
m

<

|n| = 10.

m P o

124

Display

MEMORY LOST

NO

NONEXISTENT

NULL

OUT OF RANGE

PACKING

TRY AGAIN

PRIVATE

RAM

ROM

YES

Functions

Flags
Conditionals

Storage
Recall

Card Reader

Custom ROMs

Flags
Conditionals

—
_
—
_
—
N
N
N

j

Appendix A: Error and Status Messages

$9.999999999 99.

Meaning

A number has exceeded the computational
storage capability of the HP-41. Overflow

125

Continuous Memory has been cleared and reset.

Status message. The result of a flag test or con-
ditional test is false.

One or more registers specified do not exist in data
storage.

The label (of a program) specified or called does
not exist. (If the function used requires a global la-
bel, then specifying a local one also causes this
error.)

The function called does not exist. If a catalog-2
function is called, its source device must be at-
tached to the HP-41.

Status message. The function was cancelled

holding its key down.
by

Status message. Packing program memory; repeat
the operation just attempted. If TRY AGAIN appears
again, then there is not enough space in main mem-
ory to carry out the operation. Try to resize

((51ZE)-
Packing program memory; repeat the operation. If

TRY AGAIN repeats, then then there is not enough
space to resize.

Attempting to view a private program; refer to the
owner’s handbook for the HP 82104A Card Reader.

Attempting to copy into RAM a program whose
global label (as specified) is already in RAM (main
memory).

Attempting to alter or access a program that is in
ROM (read-only memory, as in an application
module).

Status message. The result of a flag test or con-
ditional test is true.

Appendix B

Null Characters

Contents

Null Characters and the Alpha Register 126

Treatment of Null Charactersst 126

Null Characters and the Alpha Register

The null character is the ~ (overbar) and corresponds to character code 0.*f Normally the computer

does not generate null characters. However, under certain conditions, you can place null characters in

Alpha data strings.

Since the null character is not commonly generated, the HP-41 uses the null character as a special

indicator. As a result, nulls in the Alpha register occasionally cause unexpected displays, as described in

this appendix.

Treatment of Null Characters

The distinction between the Alpha register and the Alpha display is important when considering the

treatment of nulls.

e The Alpha register is always 24 characters long; when it is “empty” it actually contains 24 null

characters. As characters enter the Alpha register from the right side, they displace nulls. Any

leading nulls (either that you entered or that were already there) remain, but they are ignored by

computer operation.

e The Alpha display consists of the characters in the Alpha register after the leading nulls. It starts

with the first (leftmost) non-null character and displays all others to the right, including any

embedded or trailing nulls.

The HP-41 and its functions always consider that an Alpha string starts at the first non-null character,

ignoring leading nulls. Nulls embedded between non-null characters are retained.

* The null character has nothing to do with the NULL message (which occurs when a function is being cancelled).

t A displayed null is printed as # (which corresponds to character codes 0 and 10) by the HP 82143A and HP 82162A Printers.

126

Appendix B: Null Characters 127

Appending Characters. If you append a character to the Alpha register (using F |, the append key

on the Alpha keyboard), the display will differ from the actual contents of the Alpha register if the last

character (before appending) was a null.

If the last character in the Alpha register is a null, then—while you enter characters to append—the

HP-41 acts like the register is empty, and displays only the characters that you are appending. (The

input cue (—) is present in the display while you append characters.) However, the Alpha register itself

properly retains the original string and combines it with the appended string.

You can view the full, appended contents by pressing |AVIEW | or [ALPHA][ALPHA]. (Remember that lead-

ing nulls are never displayed.)

Deleting Characters While Appending. If you use or and the last character in the Alpha

string is a null, using [«] to delete the rightmost character will clear the entire Alpha register. This is

because when a null character gets deleted the computer figures that it has encountered the leading

nulls that precede a string, and it concludes that the register is empty—so it clears everything.

Alpha Strings in Data or Stack Registers. If you store an Alpha string containing nulls in a data

or stack register, none of the nulls will be displayed when you view (or print) the contents of that

register (as with or [RCL]). However,if you recall those contents to the Alpha register and then

view them ([ARCL]), all the characters in the Alpha data string will be displayed (except, of course,

leading nulls).

If you print out the Alpha string contents of a data or stack register, only the characters to the left of

the first null (the first null from the left) are printed. Any characters to the right of that first null are

not printed.

Appendix C

Printer Operation

Contents

Paper AQVancCe128

Controlling Program Execution and Display With Flags 21 and 55 128

Paper Advance

The programmable function (advance) causes the printer paper to advance one line. If no printer

is attached to the HP-41, has no effect at all. also has no effect if the printer is attached but
off, or if flag 21 (below) is clear during a running program.

Controlling Program Execution and Display With Flags 21 and 55

Flag 21 (printer enable) and flag 55 (printer existence) are set or cleared automatically by the computer

each time it is turned on. Normally, then, they are either both cleared or both set: set if a printer is

attached, and cleared if no printer is attached.

By using the or functions and manipulating flag 21 (which can be changed by the user;
55 cannot), you can control the display of messages and results during program execution; that is,

whether execution stops to show the result or merely displays the result and continues.

The status of flags 21 and 55 determine how and affect a running program. When their
status is the same—the usual, default case—operation is normal:

e If no printer is present, or causes the specified register or the Alpha register to be
displayed until a later display command places new data in the display. and do not
halt program execution.

e If a printer is present and turned on, the HP-41 acts as above and, in addition, the displayed data

are printed.

There are two reasons to use and in a program. 1) A message can tell you what the
program is doing—for example, which subroutine is being executed. However, there is no need for a

permanent record of these messages. 2) Other messages give you the results of the program, and you

probably want a record of these results. If you don’t have a printer, you’ll need to halt program execu-

tion when results are displayed so you can write them down.

128

Appendix C: Printer Operation 129

Note that the normal operations above don’t halt program execution (to write down data) if a printer is

not present, and they record all VIEWed data or messages if a printer is present. By clearing or setting

flag 21 before executing or AVIEW |, you can control whether the program stops while displaying
data and messages regardless of whether a printer is present.

e Clear flag 21 to display but not record messages. If flag 21 is clear when or is
executed, and no printer is present or it is off, the messages and results are displayed and program

execution is not halted. This is the first type of normal operation above.

If a printer is present and turned on, the message is displayed but not printed, and program execu-

tion is not halted.

e Set flag 21 to record results—whether by printer or by hand. If flag 21 is set when or

is executed, and if no printer is present or the printer is off, program execution halts so you

can write down the displayed result. Press to resume program execution.

If a printer is present, the result is printed and program execution is not halted. This is the second

type of normal operation above.

Therefore, with a printer connected you can still choose whether to print all displays or not. With no

printer connected you can choose whether to halt execution or not for displayed results and messages.

Appendix D

Peripherals, Extensions, and HP-IL

Contents

HP-41 Peripherals130

HP 82104A Card Reader130

HP 82143A Printer131

HP 82153A Optical Wand131

EXtensiONS131

HP 82182A Time Module131

HP 82180A Extended Functions/Memory Module 131

Application Pac Modules 131

Hewlett-Packard Interface Loop (HP-IL) and Peripherals 132

XROM Functions and XROM Numbers 132

Catalog 2: The Catalog of External Functions 132

Programs Versus Functions in External ROM 132

How XROM Functions are Displayed as Program Instructions 133

Duplicate XROM Numbers135

The HP-41 handheld computer becomes a controller for a computing system when it is connected to

HP peripheral devices and extensions. In addition, the Hewlett-Packard Interface Loop (HP-IL) Mod-

ule can integrate the HP-41 and up to 30 other devices in a serial communications loop.

Four input/output (I/O) ports are provided on the computer for plugging in system extensions—one

device per port. (The HP-IL module uses one port, but each additional HP-IL peripheral does not—it

just hooks up by cable to the module or another HP-IL device.)

HP-41 Peripherals

HP 82104A Card Reader

The card reader can record programs, data registers, and key assignments from the HP-41 onto mag-

netic cards. In turn, programs, registers, and assignments recorded on magnetic cards can then be

loaded into the main memory of an HP-41 by the card reader.

The card reader provides quick storage and loading of information (no keying in instructions!). All

programs from the Users’ Library come with magnetic cards. Furthermore, the card reader can also

read cards of HP-67 and HP-97 programs, automatically translating them into the internal code used

by the HP-41.

130

Appendix D: Peripherals, Extensions, and HP-IL 131

HP 82143A Printer

The printer prints instructions and programs quietly on 24-character-wide thermal paper. The printer

can produce upper- and lower-case alphabetic characters, digits, and double-wide characters. There are

several printing modes, so you can determine what kinds of output will be printed. This lets you, for

instance, check long calculations or diagnose programming problems.

HP 82153A Optical Wand

The wand reads programs encoded in HP bar code, and stores them in the main memory of the HP-41.

This is much faster and more accurate than manual key entry; data and individual functions can also

be read from bar code into the computer. All Users’ Library programs and HP Solutions Books for the

HP-41 come with bar code versions of their programs.

Extensions

HP 82182A Time Module

A time module gives your HP-41 a clock, a calendar, a stopwatch, and the ability to set alarms. The

alarms can control programs as well as keep appointments for you. In all, this module supplies 29 time-

related functions.

HP 82180A Extended Functions/Memory Module

An extended-functions/memory module adds 127 registers of extended memory to your HP-41. Only

124 registers are available to the user because three are used for overhead by the system. These reg-

isters can be used to store program files, data files, or text files. The module supplies 47 functions for

the creation and modification of these files, as well as for the manipulation of Alpha and numeric data.

This module is for people interested in exploiting the programming power of the HP-41 to its fullest.

There is also an HP 82181A Extended Memory Module available, which provides an additional 238

registers of extended memory. You can add one or two of them if you also have an extended-functions

module.

Application Pac Modules

The application pac modules are prewritten ROM (read-only memory) software for solving specific

problems in specific fields (like Circuit Analysis and Financial Decisions). You can add up to four

application pac modules. The programs and functions contained in the application module are listed by

catalog 2.

132 Appendix D: Peripherals, Extensions, and HP-IL

Hewlett-Packard Interface Loop (HP-IL) and Peripherals

By plugging the HP 82160A HP-IL Module into one of the HP-41 ports, you can create a serial inter-

face loop containing up to 30 other HP-IL-compatible devices. The HP-41 itself acts as the controller

for the loop, monitoring and controlling the activity of the other devices. The HP-IL module contains

the functions necessary to manipulate HP-IL printing and mass storage peripherals.

Among the HP-IL peripherals are devices for mass storage, video display, printing, plotting, and

measurement. In addition, the HP 82183A Extended I/O Module extends the function set of the HP-IL

module for I/O device control, and the HP 82184A Plotter Module provides advanced plotting capabili-

ties (including bar code formulation). Check with your authorized HP dealer for a complete and up-to-

date list of current HP-IL products.

XROM Functions and XROM Numbers

Every user-accessible function or program provided by an HP-41 peripheral or extension is considered

an “external ROM” (XROM) function. Catalog 2 (below) makes a list of each external device. It can

also list every individual function of a source device. Every external ROM function is identified in-

ternally by a two-part, XROM number.

Catalog 2: The Catalog of External Functions

Catalog 2 (see also “The Catalogs” in section 1) is a listing of all XROM functions/programs by device.

Catalog 2 shows the name of each external source device (the “ROM header”) followed by a listing of

its individual functions and programs.

and work as for other catalogs. When a catalog listing of individual functions reaches the
end of the list for that device, the listing goes on to the next source header and the functions for that

device.

Programs Versus Functions in External ROM

An operation in ROM in an applications or extension module or in a peripheral is provided either as a

program or as a function. A program can be copied into user memory, then listed and altered, etc. A

function, on the other hand, cannot be viewed—only used. When you list out catalog 2, the computer

differentiates the two with the “raised T” in front of programs:

Appendix D: Peripherals, Extensions, and HP-IL 133

SECUR 1B «—— ROM header (device identification)

TBONDS
TSTOCK <«—— program

TATP

JDAY <«——— function

TBEP

How XROM Functions Are Displayed as Program Instructions

When an external function is written into a program instruction, the display of that instruction de-

pends on whether or not the module containing that function is currently plugged in to the HP-41, and

whether that XROM function is presented as a program or a function.

The XROM number identifies an XROM function by its device (ROM identification number) and its

location within that device (function number).

If the necessary module is not plugged in, then the HP-41 has no knowledge of any of its XROM

functions—unless a function was assigned to a User key, in which case its XROM number is known

because it was assigned to that key. Similarly, if a module is removed after one of its functions has been

entered in a program, the computer identifies the “missing” function by its XROM number.

Therefore:

e If the computer currently has access to an XROM function, then it will be entered into a program

line as either

label for an external function, or

XROMT/abel for an external program.

This is also the result if a User-defined key is used to enter the program instruction.

e XROM number, number replaces the /abel or XROM'/abel display of a program instruction when the

relevant module is removed. The XROM number remains only as long as its module is missing; that

is, the original display is restored when the module is reconnected. This is also the result if a User

key is used with the relevant module unplugged.*

* An external function can only be assigned to a User key when the module containing it is connected to the HP-41. Otherwise, the

error message NONEXISTENT results.

134 Appendix D: Peripherals, Extensions, and HP-IL

o If the relevant module is not connected and you do an Alpha execution of an XROM function for a

program line, then the program line will read simply

XEQT/abel, just like a call for a program in main memory.

When the module is subsequently restored, the program line does not change, and remains

XEQT/abel.

Display of a Program Instruction

A. If the relevant module is plugged in, or a User key is used:

XROMT/abel (program)

or unplug module . XROM nn,mm
<«— plug module back in

label (function)

(This program instruction uses two bytes of memory.)

B. If the relevant module is not plugged in, and a User key is not used:

plug in module ———
) XEQT/abel

<«—— unplug again
XEQT/abel

(This program instruction uses two bytes plus one byte per character in the label.)

Execution Time. Although the instruction XEQT/abe/—entered when the module was out—will work

when the module is back in to execute the specified external function/program (case B, above), this

instruction is not really equivalent to XROM"/abel or /abel (case A, above). Case B is less efficient and

will take longer to execute, for the following reason: an XROM call (including simply /abel for an

XROM function) goes directly to catalog 2 to search for that particular XROM function. An XEQT/abe/

command, on the other hand, first goes to catalog 1, searching through all the user programs.* When it

doesn’t find the particular label there, it goes on to catalog 2 to continue the search.

* This brings up the interesting point of what happens if you have a user program in main memory with the same global label as

the name of an XROM function or program. Since the search for XEQT/abel always starts with catalog 1, it will always execute

the user program, and not the XROM function. This feature allows you to copy a program from an external ROM module into

main memory, modify it, and then execute the modified version rather than the ROM module version even when the module is

plugged in.

Appendix D: Peripherals, Extensions, and HP-IL 135

Memory Space. An XROM'/abel or /abel instruction (case A) requires two bytes of memory, while an

XEQT/abel instruction requires two bytes plus one byte per character in the label.

Duplicate XROM Numbers

All plug-in ROM modules have ROM identification numbers, and some of them are duplicated. Avoid

simultaneously using any ROM modules with duplicate ROM identification numbers. (Internal functions

do not have XROM numbers.)

Function Tables

Function Tables

Contents

IntroducCtion138

Locating a Function138

Explanation of Table Entries 138

System/Format Functions 140

Clearing Functions141

Stack/Data Register Functions 142

Numeric Functions144

Editing Functions146

Functions That Direct Program Execution 147

Alpha FUNCtioNS149

Interactive Functions150

Introduction

These tables describe the functions in the computer. Each table describes functions with common

characteristics, and some functions appear in more than one table. Most tables include the information

found in “Explanation of Table Entries.”

Locating a Function

e To find a function that performs a particular operation, look through the function table whose title

describes the desired type of operation.

e To find out what a function does when you know only its name, refer to the Function Index inside

the back cover. The last page reference listed will direct you to the proper function table.

Explanation of Table Entries

Alpha Name. This is how the the function is named in catalog 2 or 3, in a program listing, and when

you hold down a key for function preview. This is how you must specify the function to assign it to the

User keyboard; if the function has no entry in this column, you can’t assign it to the User keyboard.

138

Function Tables 139

Keyboard Name. This is how the function is indicated on the Normal or Alpha keyboard. (If the

entry is printed in gold, you must press || before the appropriate key.) If the function has no entry in

this column, you must use and the Alpha name or else assign the function to the User keyboard.

IND. An “I” in this column indicates that you can indirectly specify the parameter for this function.

To do so, enter the function and press [/ ; IND will then appear in the display following the function

name. Then specify the register holding the address of the register to access.

Stack. This shows how the function affects the automatic memory stack.

L =LAST X. The previous contents of the X-register are copied into the LAST X register.

{ =The stack drops. The contents of the Z-register are copied into the Y-register and the contents

of the T-register are copied into the Z-register.

t =The stack lifts. The contents of the X-, Y- and Z-registers are copied into the Y-, Z-, and T-

registers respectively; the previous contents of the T-register are lost. (This assumes that stack lift

was previously enabled.)

E =Stack lift enabled. If the next function executed shows “t” in the “Stack” column or if you key

in a number, the stack will lift. (Almost all functions enable stack lift.)

D =Stack lift disabled. If the next function executed shows “t” in the “Stack” column or if you key

in a number, the new number in the X-register replaces the previous contents and the stack doesn’t

lift. (Only [Cix|, (ENTER#®], [Z+], and disable stack lift.)
N =Neutral. Stack lift is neither enabled nor disabled; the previous status is maintained.

Flags. These are the flags that affect or are affected by the function’s operation.

Bytes. This is the number of bytes of program memory required when the function is used in a pro-

gram. If the function has no entry in this column, it is not programmable.

140 Function Tables

System/Format Functions

Most of these functions involve options that remain in effect indefinitely: display formats, angular

mode, main memory allocation, User-keyboard assignments, and so on. Included are certain system

operations such as the toggle keys and the catalogs.

Alpha Keyboard .
Name Name Description IND Stack Flags Bytes Page

Activates/deactivates Alpha 48 9
keyboard.

Deactivates Alpha keyboard. E 48 1 13

Activates Alpha keyboard. E 48 1 13

ASN ASN Assigns specified function or E 20

global label to specified key on
User keyboard.

n n Executes catalog n,
1<n<3.

Catalogs 1, 2, 3. N 23

nn nn Clears flag nn, 00 < nn < 29. I E nn 2 62

DEG Selects decimal Degrees an- 42-43 1 38
gular mode.

n n Selects engineering display | E 36-41 2 15
format with n + 1 digits.

n n Selects fixed-point display for- | E 36-41 2 14
mat with n decimal places.

Selects Grads angular mode. E 42-43 1 38

Turns computer on/off. 11-26, 9
45-55

Selects continuous on (dis- 44 9
ables time-out).

Enters/exits Program mode. 9

RAD Selects Radians angular mode. E 42-43 1 38

n n Selects scientific display for- | E 36-41 2 14
mat with n decimal places.

nn nn Sets flag nn, 00 < nn < 29. I E nn 62

nn Assigns statistics registers to I E 42
R, through R, ; s.

Function Tables 141

System/Format Functions (continued)

Alpha Keyboard L
Name Name Description IND Stack Flags Bytes Page

nnn Allocates nnn main memory E 50
registers for data storage.

Activates/deactivates User N 27 9
keyboard.

Clearing Functions

To interpret this table, refer to “Explanation of Table Entries” on page 138.

Alpha Keyboard .
Name Name Descripcription Stack Flags Bytes Page

When input cue (-) is displayed, * 12
clears last digit or character entered. 13

When digit or character entry is ter- 59
minated, clears X-register or Alpha

register in Execution mode; deletes

displayed program line in Program

mode.

When message is displayed, clears N 50
message.

down, Clears all of computer’s memory 00-55 9
(ON], except for clock time and date.

up
CLA CLA Clears Alpha register. E 1 13

CLD Clears message from display. E 50 1 77

label Clears the program in main memory E 60
containing specified global label.

Clears all data storage registers in E 1 53
main memory.

CLZ CLE Clears statistics registers. E 1 42

Clears automatic memory stack. E 1 35

CLX CLx Clears X-register. D 1 12

nnn Deletes nnn program lines, starting N 60
with displayed line.
 * When pressing +] clears the X-register, stack lift is disabled. Otherwise, +] is neutral.

142 Function Tables

Stack/Data Register Functions

These functions manipulate the stack or the data storage registers, or take one of those registers as a

parameter. To interpret this table, refer to “Explanation of Table Entries” on page 138.

Alpha Keyboard .
Name Name Description IND Stack Flags Bytes Page

nn nn Appends contents of R, to Al- I E 28,29, 2 51
pha register. 36-41

nn nn Copies six leftmost I E 2 52
characters in Alpha register

into R,,,.

Clears all data storage E 1 52
registers.

CLX CLX Clears statistics registers E 1 42

Clears automatic memory E 1 35
stack.

ClLx Clears X-register. D 1 12

nn Foriiiii.fffcc in R,,,, decrements | E 2 75
iiiii by cc and skips next pro-

gram line if

iiiii — cc < fff.

Copies number in X-register t, D 1 27
into Y-register and lifts stack.

ISG nn nn For iiiii.fffcc in R,,,, I E 2 75
increments Jiiii by cc and skips

next program step if

iiiii + cc > fff.

Recalls number in LAST X t, E 1 31
register.

Rolls up stack. E 1 23

nn nn Recalls contents of R, I t, E * 51

Rolls down stack. E 1 33

Accumulations for statistics. L,D 1 43

Corrects statistics L,D 1 43

accumulations.

*1f 00 < nn < 15, requires 1 byte; otherwise, requires 2 bytes.

Function Tables 143

Stack/Data Register Functions (coninued)

Alpha Keyboard o
Name Name Description IND Stack Flags Bytes Page

nn Assigns statistics registers to I E 2 42
R, through R,, ; s.

nnn Allocates nnn main memory E 50
registers for data storage.

nn nn Adds number in X-register to I E 2 52
number in R,, and places re-

sult in R,,,.

nn (=] nn Subtracts numberin I E 2 52
X-register from number in R,,
and places result in R,,.

nn nn Multiplies number in I E 2 52
X-register by number in R,,
and places result in R,,.

nn (+] nn Divides number in X-register | E 2 52
into number in R,, and places
result in R,,.

nn nn Copies contents of X-register | E * 51

into R,

nn nn Displays contents of R,,,. | E 21,50, 2 77

55

nn Exchanges contents of I E 2 52
X-register with contents of
R,

xxy Exchanges contents of E 1 33 X-register with contents of Y-

register.
 *1f 00 < nn < 15, requires 1 byte; otherwise, requires 2 bytes.

144 Function Tables

Numeric Functions

All numeric functions are programmable, requiring one byte of program memory. The operation of

trigonometric functions and rectangular/polar coordinate conversions depends on the angular mode

(flags 42 and 43). To interpret this table, refer to “Explanation of Table Entries” on page 138.

a;pmh: Keg:;zrd Description Stack Page

y + x. L,+,E 40

(-] (-] y — X. L,+,E 40

(%] y X X. L,+,E 40

(] y | x. L,+.E 40

1/x 1/x Reciprocal. L,E 37

Common exponential. L,E 39

|x| (Absolute value). LE 38

Arc (inverse) cosine. L.E 38

Arc (inverse) sine. L,E 38

TAN Arc (inverse) tangent. L,E 38

Change sign. E 37

CoS Cosine. L,E 38

Degrees to radians conversion. L,E 39

DEC Octal to decimal conversion. L.E 39

Natural exponential. L,E 39

Natural exponential for arguments close to zero. L,E 39

x! (Factorial). L.E 37

Fractional part. L,E 38

Decimal hours to hours-minutes-seconds conversion. L.E 39

Hours-minutes-seconds add. L,+,E 40

Hours-minutes-seconds subtract. L,+,E 40

Hours-minutes-seconds to decimal hours conversion. L,E 39

Integer part. L,E 38

Natural logarithm. L.E 39

Natural logarithm for arguments close to 1. L.E 39

Function Tables 145

Numeric Functions (continued)

filapmh: Ki}’:;:rd Description Stack Page

LOG Common logarithm. L,E 39

Means of accumulated x- and y-values. = 44

y mod x (Remainder). L,+,E 42

Decimal to octal conversion. L,E 39

P+R Polar to rectangular conversion. L,E 41

% % x percent of y. L,E 40

Percent change from y to x. L,E 40

Pi (3.141592654). t,E 13

Radians to degrees conversion. L,E 39

R-+P Rectangular to polar conversion. L,E 41

Round. L,E 38

Standard deviations of accumulated x- and y-values. L.E 44

Accumulations for statistics. L,D 43

Accumulations correction. L,D 43

Sine. LE 38

Sign of x. L,E 38

Square root. L,E 37

Tangent. L,E 38

Square. L.E 37

Y4X y raised to the x power. L,+,E 41

146 Function Tables

Editing Functions

These are non-programmable functions that are executed in Program mode. They help you write or edit

your programs. Like the toggle keys [ON], [USER], and [ALPHA], these functions don’t require you to
return to Execution mode for execution. To interpret this table, refer to “Explanation of Table Entries”

on page 138.

:meh: Keh}(::‘zrd Description Flags Page

(«] When input cue (-) is displayed, clears last digit or 59
character entered; otherwise, clears displayed program
line.

ASN ASN Assigns specified function or global label to specified 20
key on User keyboard.

BST BST Displays preceding program line. 58

CAT n CATALOG n xecutes catalog n, < n < 3.[CAT [CATALOGn E log 1 3 23

label Clears program in main memory containing specified 60
global label.

label Copies ROM program containing specified global label 55
to program memory.

nnn Deletes nnn program lines, starting with displayed line. 60

(-] Goes to specified line number or global label. 57

(GTO|(J[:) Goes to bottom of program memory; packs program 55
memory and creates null program.

Selects continuous on (disables time-out). 44 9

PACK acks program memory.PACK Pack 50

nnn Allocates nnn main memory registers for data storage. 50

SST SST Displays next program line. 58

Functions That Direct Program Execution

Function Tables 147

These are functions that can halt program execution or cause program lines to be executed other than

sequentially. To interpret this table, refer to “Explanation of Table Entries” on page 138.

Alpha Keyboard .
Name Name Description IND Stack Flags Bytes Page

Displays contents of Alpha E 21, 50, 1 77
register; if flag 21 is set and 55
flag 55 is clear, stops program
execution.

nn Foriiiii.fffcc in R,,, decrements I E 2 75
iiiii by cc and skips next pro-
gram line if jiiii — cc < fff.

END Marks end of program. E 71

nn Tests flag nn (00 < nn < 55) I E nn 2 74

and skips next program line

unless flag nn is clear.

nn Tests flag nn (00 < nn < 29), I E nn 2 74

clears flag nn, and then skips
next program line unless flag

nn was clear.

nn nn Tests flag nn (00 < nn < 55) I E nn 2 74
and skips next program line
unless flag nn is set.

nn Tests flag nn (00 < nn < 29), I E nn 2 74

clears flag nn, and then skips
next program line unless flag

was set.

label [GTO|label Transfers execution to | E * 70
specified global, numeric, or lo-
cal Alpha label.

nn nn For iiiii.fffcc in R,,, increments I E 2 75
iiiii by cc and skips next pro-

gram step if jiiii + cc > fff.

bytes; otherwise, requires 3 bytes. *1f 00 < nn < 14 or parameteris indirectly specified, requires 2 bytes; if parameter is global label of m characters, requires 2 + m

1 B 8 Function Tables

Functions That Direct Program Execution (continued)

 number in X-register < num-

ber in Y-register.

Alpha Keyboard .
Name Name Description IND Stack Flags Bytes Page

LBL LBL Global, numeric, or local Alpha E * 69
label.

Turns off the computer. N 11-26 1 65
44-55

Displays contents of the Alpha E 50 1 77
register and stops execution.

RTN RTN Returns execution to line E 1 71
following instruction that
called this subroutine.

R/S Stops execution. E 1 72

nn nn Displays contents of R,, and, I E 21, 50, 2 77
if flag 21 is set and flag 55 is 55
clear, stops execution.

Skips next instruction unless E 1 74
number in X-register = 0.

Skips next instruction unless E 1 74
number in X-register # 0.

Skips next instruction unless E 1 74
number in X-register < 0.

Skips next instruction unless E 1 74
number in X-register < 0.

Skips next instruction unless E 1 74
number in X-register > 0.

X=Y? Skips next instruction unless E 1 74
contents of X-register =

contents of Y-register.

Skips next instruction unless E 1 74
contents of X-register #
contents of Y-register.

Skips next instruction unless E 1 74
number in X-register < num-

ber in Y-register.

x < y? Skips next instruction unless E 1 74

 *1f 00 < nn < 14, requires 1 byte; if parameter is global label of m characters, requires 4 + m bytes; otherwise, requires 2 bytes.

Function Tables 149

Functions That Direct Program Execution (continued)

Alpha Keyboard .
Name Name Description IND Stack Flags Bytes Page

Skips next instruction unless E 1 74
number in X-register > num-
ber in Y-register.

label label Calls specified global, numeric, | E * 71
or local Alpha label as

subroutine.

(If you specify a function, refer 71 to the table entry for that
function.)
 * If label is specified indirectly, requires 2 bytes;if local label is specified, requires 3 bytes; if global label of m characters is specified,

requires 2 + m bytes.

Alpha Functions

These functions involve moving data into and out of the Alpha register, and manipulating the data in

the Alpha register. Not included are functions that use the Alpha register for a file name. To interpret

this table, refer to “Explanation of Table Entries” on page 138.

Alpha Keyboard L.
Name Name Description IND Stack Flags Bytes

Appends subsequent characters to Al- N
pha register.

Deactivates Alpha keyboard. E 48 1

AON Activates Alpha keyboard. E 48

nn nn Appends contents of R,, to Alpha | E 28, 29, 2
register. 36-41

Shifts six leftmost characters out of the E 1
Alpha register.

nn nn Copies six leftmost characters in Alpha | E 2
register into R,,.

Displays contents of Alpha register. E 21, 50, 1
55

CLA CLA Clears Alpha register. E 1

Displays contents of Alpha register and E 21, 50, 1
stops program execution. 55

150 Function Tables

Interactive Functions

To interpret this table, refer to “Explanation of Table Entries” on page 138.

Alpha Keyboard .
Name Name Description IND Stack Flags Bytes Page

Advances paper (if printer is E 21,55 1 84
present).

Sounds four tones. E 26 1 78

Displays contents of Alpha E 50 1 77
register and stops execution.

Delays execution for about one E 1 77
second.

n Sounds tone n, 0 < n < 9. I E 26 2 78

Indexes

Subject Index

Page numbers in bold type indicate primary references; page numbers in regular type indicate second-

ary references.

A

Absolute value, 38

Addressing, 16
indirect, 16

Alpha characters, 13
copying, 52

Alpha digits, 51
Alpha display, 15

of null characters, 126
Alpha entry, 13
Alpha execution, 56
Alpha keyboard, 9-10, 11, 13

in Execution mode, 13
flag, 65
in Program mode, 13

Alpha labels, 22
Alpha names, 56
Alpha parameter specification, 16
Alpha register, 12
appending to, 13
capacity of, 13
clearing, 13
copying into X, 76
manipulating data in, 76
null characters in, 126

shifting, 52
Alpha strings, 13, 49, 76, 126

with nulls, 127

in programs, 56
Angular conversion, 39
Angular modes, 38, 65
Angular-mode flags, 65
Annunciators, 14
Append key, 13
Appending characters, 13, 127
Application module programs, 55
Application pacs, 131
Arithmetic, 40. See also Calculations,

Noncommutative operations
in data storage registers, 52

152

Assigning functions to keys, 10, 20
Audio-enable flag, 64
Automatic memory stack. See Stack
Automatic-execution flag, 63
Average, 44

B
Base conversion, 39

BAT, 14
BLACKJACK program, 13, 18, 61, 63, 64, 112-122
Branching
around a line, 68, 73
bytes required for, 70
functions for loops, 75
to a label, 68, 71
in loops, 74

Bytes required
for branching, 70
for labels, 69
for program lines, 49
for subroutines, 73

C

Calculations, 27, 28. See also Constants, calculat-
ing with

with nested terms, 28
noncommutative, 28, 32, 33

overflow or underflow. See Overflow; Underflow
in the stack, 32, 34

Cancelling functions, 23
Catalog 1, 24, 48, 58

searching, 69, 73

Catalog 2, 24, 132
searching, 69, 73

Catalog 3, 24
searching, 73

Catalogs, 23
Changing sign, 12, 37
Character. See Alpha characters
Clear flag, 62

Clearing
Alpha register, 13
assignments to User keyboard, 22
data registers, 53
the display, 12, 13
programs, 61-62
the stack, 35
the statistics registers, 42

Comparing Alpha data, 74
Comparing X
with Y, 74
with zero, 74

Comparison functions, 73, 74
Conditional functions, 73

for loops, 75
Constant factors, 32
Constants, calculating with, 29-30, 32
Continuous Memory, 9
Continuous-on feature, 9
Continuous-on flag, 65
Conversion

angular, 39
base, 39
of coordinates, 39

Coordinate conversion, 41
Copying programs from application modules, 55
Correcting errors

in calculation, 31
in display, 12

Cubing x, 35
Cumulative growth, calculating, 29
Current program, 61
Current program line, 56

viewing, 58
CURVE FITTING program, 18, 42, 61, 64, 97-107
Customized keys, 10

D

Data
input flags, 64
storage registers. See Registers

Decimal degrees, 39
Decimal point, 15
Decimal-octal conversion, 39
Default keyboard, 10
DEG, 38
Degrees

converting, 39
minutes-seconds, 39
mode, 38

Subject Index 153

Deleting. See also Clearing
characters after appending, 127
program lines, 59

Digit. See also Alpha digits
entry keys, 12
grouping, 15
separation, 15

Directory
of external functions. See Catalog 2
of programs. See Catalog 1
of standard functions. See Catalog 3

Display. See also Clearing; Message; Program;
Scrolling; Parameter-function display

format flags, 65
of key’s meaning, 23
message, 15
of null characters, 126
punctuation flags, 64
standard, 15

E

Embedded nulls, 126
END instruction, 55
moving to, 58

Engineering-notation display, 15
Error

conditions, 24
displays, 24
ignore flags, 64, 75
messages, 24, 124

Errors
correcting in calculations, 31
with numeric functions, 37

overriding an, 64
Exchanging x and y, 33
Execution. See Current program; Functions; Pro-

gram; Subroutine
Execution mode, 9, 56
Exponential functions, 39
Exponents, 13, 14-15
External-device-control flags, 63
External functions

catalog. See Catalog 2
execution time of, 134

and program lines, 133
program memory for, 135

External ROMs (XROMs), 132

154 Subject Index

F

Factorial, 37
FINANCIAL CALCULATIONS program, 13, 22, 61,

64, 88-97
Fixed decimal-place display, 14
Flag annunciators, 63
Flags

control, 62, 63

for program control, 62
setting and clearing, 62
system, 65
testing, 62, 68, 74
testing and clearing, 74
types of, 62
user, 62, 63

Flag tests, 73, 74
Formats

angular, 38
display, 14, 65

Formula
for mean, 44

for standard deviation, 44
Fractional part of a number, 38

Function preview, 23

G

Global labels, 56, 69
branching to, 69
displaying all, 58
duplicated, 58
inserting, 58
missing, 58
moving to a, 57, 58, 59

moving to an assigned, 59
searches for, 69, 72-73

GRAD, 14, 38
Grads mode, 38

H

Horner’s method, 29
HP-IL (Hewlett-Packard Interface Loop), 132

I

K

Keyboard conventions, 10
Keyboards, HP-41CV, 12
Keycodes, 20

L
Labels. See also Global label; Local Alpha label;

Local label; Numeric label
bytes required for, 69
searching for, 61, 69, 70, 71, 72

LAST X register, 27, 31, 32, 33, 37
Leading nulls, 126
Line numbers, specifying, 20
Loading programs. See Programs, entering
Local Alpha labels, 22, 70
Local label, 69, 70

searching for, 70, 71
Logarithm, 39
Loop control, 68, 74, 75
number, 75

Low-power flag, 65

M

Main memory, 46
allocation of, 46—-48, 50, 55
available for data registers, 50
available for programs, 55
default configuration of, 48
key redefinitions in, 48, 50
programs in, 48, 49

Mean, 44

Message
displays, 15
flag, 65

Messages, 12
in programs, 56, 76, 77, 78

Modules, missing, 134
Modulo, 42

N

Indirect addressing, 16, 51
Indirect parameters, functions with, 18
Input cue, 12
Inserting program lines, 60
Integer part of a number, 38
Intermediate statistics, 43
Inverse functions, 31

Negative numbers, 12
Noncommutative operations, 28, 32, 33

Nonkeyboard functions, 10

Nonprogrammable functions, 57
Normal keyboard, 9, 10
NULL, 23

Null bytes in a program, 49, 50
Null characters

in Alpha register, 126
and appended characters, 127
deleting, 127
display of, 126
in a string, 126, 127

Null program, 55
Numbers, 12

entering, 12, 27, 28

Numeric
displays, 14
functions, errors with, 37

Numeric labels, 69
branching to, 69
long-form, 69
moving to a, 59
short-form, 69

Numeric parameter specification, 16
special keys for, 19-20

o

Octal-decimal conversion, 39
One-number functions, 36
Out-of-range result, 64

P

Packing memory, 48, 50, 55
Parameter specification, 12, 16, 51

indirect, 16
special keys for, 19-20

Percent change, 40
Percent of total, 41
Percentage, 40
Peripherals, description of, 130
Permanent .END., 48, 55
Pi, 13
Polar coordinates, 41
Polynomial expressions, calculating, 29
Position in program memory, changing, 57-59
Power function, 41

Power on and off, 9

PRGM, 9, 56
Program mode, 9
Printer

advancing paper, 128
enable flag, 63
existence flag, 65

during programs, 128

Subject Index 155

Program. See also Current program; Program
execution; Program line; Programs

automatic execution of a, 63

branching, 68
catalog. See Catalog 1
clearing a, 60-61

copying from application modules, 55
displaying results of a, 129
editing, 59-60
entering, 54
executing a, 56

in a module, 132, 133

interrupting a, 77, 78

memory. See Memory, programs in
messages, 56, 76, 77, 78

mode, 59
moving to a, 57-59
moving to beginning of a, 59
name, missing, 58

pause, 78
pointer, moving, 57-59
preview, 23
running a, 56
storing a, 54
viewing stepwise, 58

Program execution
automatic, 56

halting, 84
indicator, 14, 56
with printer, 128
returning from a subroutine, 71
stepwise, 56
with User keyboard, 56

Program line, 49, 56. See also Current program line
deleting a, 59
inserting a, 60
memory requirements for a, 47
moving to a, 57
number, 56

skipping a, 68, 73
Programs

clearing, 60-61
displaying all, 58

Prompts, 77

156 Subject Index

R

RAD, 14, 38
Radians, 38

converting, 39
mode, 38

Radix mark, 14, 15, 64
Raised T. See T
Random number generator, 113, 115
Recalling
Alpha characters, 52
numbers, 34, 51

Reciprocal, 37
Rectangular coordinates, 41
Redefining keys, 10, 20

limits on, 20

Register
address, specifying, 51
arithmetic, 52
contents, displaying, 77
specification, 18

Registers. See also Stack registers; LAST X
register; Alpha register

above Rgg, 51
allocation of, 50, 55

available for data, 50
available for programs, 55
available for programs, increasing, 55
changing allocation of, 50
data, clearing, 53
data storage, 46
exchanging contents of, 52
statistics. See Statistics registers
uncommitted, 46
uncommitted, remaining, 48

Remainder, 42
Roll down/up stack, 33
ROM (read-only memory), 55
ROM modules, 131, 134
Root, finding, 42
Rounding a number, 38
RPN (Reverse Polish Notation), 26

RPN PRIMER program 26, 61, 63, 64, 82—88

S

Scientific-notation display, 14
Scrolling, 15
Separator mark, 15, 64
Set flag, 62
SHIFT, 10

cancelling, 10
Shift key, 10
Shifted functions, 10
Sign of a number, 38

Sizing main memory, 50
Software modules, 131
Square, 37
Square root, 37
Stack, 26-27, 37. See also Subroutine return stack

calculating in the, 32
clearing the, 35
drop, 27
filling the, 29
lift, 27
lift, disabling, 28

lift, enabling, 28

lift, neutral, 28
operation, with numeric functions, 36

registers, 27, 32

registers, addressing, 20
register arithmetic in the, 34
registers, exchanging, 33, 34
rolling the, 33

Standard deviation, 44
Standard-functions catalog. See Catalog 3
Statistical data

correcting, 43
summing, 43

Statistics registers, 42
assigning, 42
clearing, 42
overflow of, 44

Status messages, 124
Stepwise program

execution, 56

viewing, 58
Storing
Alpha characters, 51
numbers, 34, 51

Strings. See Alpha strings
Subroutines, 70-72

bytes required for, 73
calling, 70
ending, 71
returning from, 71
return stack, 71

Summation of data, 43
correcting, 43

T

T 13, 24, 56, 132-133
T-register, 27, 31, 32
Toggle keys, 9
Tones, 78
Trailing nulls, 126
Two-number functions, 39

U

Uncommitted registers. See Registers
USER, 9
User functions, 10
User keyboard, 9, 10, 20, 50

cancelling assignments on, 22, 24
flag, 64
making assignments to, 20
priorities, 22

vV

Subject Index 157

\

WORD GUESSING GAME program, 18, 52, 61, 64,
75, 77, 107-112

X

X-register, 12-13, 27, 31, 32

exchanging contents of, 52
recalling into, 31, 34

storing from, 34
XROM

functions, 132, 133

number, 132, 133

number, and program lines, 133-134
number, duplicate, 135
programs, 132

Y

Viewing

the Alpha register, 77
register contents, 77

Y-register, 27, 31, 32

Z

Z-register, 27, 31, 32

Function Index

For each function, its Alpha name is given first (in blue), and its keyboard name follows (in black or

gold), although not all functions have both an Alpha name and a keyboard name. (These conventions

are explained on the inside of the front cover.)

Each function has up to two page references. The first one is for the text, while the second one, in

boldface, is for the Function Tables.

Function Pages

(«) 12, 141

13, 149

+1(#) 40, 144

== 40, 144

=1(xD 40, 144

7HE) 40, 144

(/%) (GZ2) 37, 144
104X ([10%]) 39, 144

38, 144

[Acos] ((cosT)) 38, 144
84, 150
9, 140

13, 149

13, 149
(ARCL] ((ARCL]) nn 52, 149

52, 149

(&S] ((SIvT)) 38, 144
([ASN]) name, key 20, 140

[ASTO] ([ASTO]) nn 51, 149

[ATAN] ((TANT)) 38, 144
(AVIEW] ([AVIEW]) 77, 149
(BEEP] ([BEEP)) 78, 150

(BST] ((BST)) 58, 146
(CAT] ([CATALOG])n 23, 140
[CF]([CF]) nn 62, 140

(CHs] ([chs)) 37,144
((cLa)) 13, 149

CLD 77, 141

[CLP] Iabel 60, 146

53, 142

[C=) ((ez)) 42, 142

Function Pages

35, 142

(cx] ([CcLx])) 12, 142

55, 146

([c0s)) 38, 144
39, 144

DEC 39, 144

DEG 38, 140

nnn 60, 146

nn 75, 147

EEX 13

71, 147

(ENG] ((ENG)) n 15, 140
[ENTER* ((ENTER*]) 27,142
(Exx] ([(&)) 39, 144

39, 144

37, 144

nn 74, 147

nn 74, 147

((Fix])y n 14, 140

FRC 38, 144

((Fs2]) nn 74, 147

nn 74, 147

38, 140

([GT0)) label 70, 147

(-] nnn or label 57, 146

[cTol (] 55, 146

39, 144

40, 144

40, 144

39, 144

INT 38, 144

158

Function Pages

(1G] ([156)) nn 75, 147

[ASTX) ((TASTS)) 31, 142
(LBL] ([LBL]) labe! 69, 148

(LN ([IN)) 39, 144
39, 144

LOG ([LOG]) 39, 145

44, 145
42, 145
39, 145
65, 148
9, 140
9, 140

(P-R] ([P=R]) 41,145
50, 146

%) ([%)) 40, 145
40, 145

P (=) 13, 145
9, 140

77, 150
77, 150
33, 142
39, 145

(R=P] ((R=P)) 41,145
20, 148
38, 140

[RCL] ([RCL)) nn 51, 142

(RDN] ((R)) 33, 142
38, 145

(RTN] ([RTN]) 71, 148

(sci)([sci)) n 14, 140
44, 145

Function Pages

(sFI([sF)) nn 62, 140

(Z+](z+) 43, 145

Z=1([==)) 43, 145

nn 42, 140

(SIN] ((SIN]) 38, 145
38, 145

nnn 50, 141

(sarT] ([&]) 37,145
(ssT] ([s8T)) 58, 146
(57+]((8T0) () nn 52, 143
(57-)((ET0) (2)) nn 52, 143

((S70) (xJ) nn 52, 143

Function Pages

(s/]((8T0) [£]) nn 52, 143
[sT0]((sT0]) NN 51, 143

(5707 ((R75)) 72, 148
(TAN] ((TAN)) 38, 145

n 78, 150

9, 141

(VIEW] ([VIEW]) nn 77, 143

(x#2] ([x7]) 37,145
x=07) ([x=07)) 74, 148

74, 148

74, 148
74, 148

Function Index 159

Function Pages

74, 148

X=v2) ((x=»7)) 74, 148
74, 148

74, 148

(=7)) 74, 148
X>¥2) ([(x>5?]) 74,149

nn 52, 143

<>V ((x2y]) 33, 143
(XEQ ((xEQ)) label 71, 149

Crax] () 41, 146

1: The Keyboard and Display (page 8)

2: The Automatic Memory Stack (page 26)

3: Numeric Functions (page 36)

4: Main Memory (page 46)

5: Programming Basics (page 54)

6: Flags (page 62)

7: Branching (page 68)

8: Alpha and Interactive Operations (page 76)

9: Sample Programs (page 80)

A: Error and Status Messages (page 124)

B: Null Characters (page 126)

C: Printer Operation (page 128)

D: Peripherals, Extensions, and HP-IL (page 130)

Function Tables (page 138)

Subject Index (page 152)

Function Index (inside back cover)

() Prytret
Portable Computer Division

1000 N.E. Circle Blvd., Corvallis, OR 97330, U.S.A.

European Headquarters HP-United Kingdom

150, Route du Nant-D’Avril (Pinewood)
P.O. Box, CH-1217 Meyrin 2 GB-Nine Mile Ride, Wokingham

Geneva-Switzerland Berkshire RG11 3LL

00041-90531 Rev. B English Printed in U.S.A. 4/86

	Cover
	Contents
	Part I: Fundamentals in Detail
	Section 1: The Keyboard and Display
	The Toggle Keys
	The Keyboards
	The Normal Keyboard
	The User Keyboard
	The Alpha Keyboard

	Keying In Numbers and Characters
	Keying In Numbers
	Keying In Characters

	Status Annunciators
	Numeric Display Format
	Formatting Numbers
	Punctuation

	Standard Displays and Messages
	Display Scrolling
	Specifying Parameters
	Indirect Parameter Specification
	Special Keys

	Redefining the User Keyboard
	Restoring Normal Functions
	The Top Two Rows

	Function Preview and Null
	The Catalogs
	Basic Catalog Operation
	Types of Catalogs

	Error Messages

	Section 2: The Automatic Memory Stack
	Introduction
	RPN Calculations
	Stack Lift and Stack Drop
	Using [ENTER↑]
	Enabling/Disabling Stack Lift
	Order of Entry
	Filling the Stack

	The LAST X Register
	Correcting Errors
	Constant Arithmetic

	Other Stack Operations
	Exchanging Stack Contents
	Rolling the Stack
	Store and Recall
	Register Arithmetic
	Clearing the Stack

	Section 3: Numeric Functions
	Introduction
	One-Number Functions
	General Functions
	Number-Alteration Functions
	Trigonometric Operations
	Conversions
	Logarithmic and Exponential Functions

	Two-Number Functions
	Basic Arithmetic
	Time Arithmetic
	Percentages
	Polar/Rectangular Conversions
	Other Two-Number Functions

	Statistics
	Statistics Registers
	Entering Data
	Mean
	Standard Deviation

	Section 4: Main Memory
	Organization
	Program Memory
	Program Lines
	Null Bytes
	Packing

	User Keyboard Memory
	Data Register Memory
	Allocation
	Registers Above R₉₉

	Data Register Operations
	Store and Recall
	Register Arithmetic
	Exchange
	Clearing Registers

	Part II: Programming in Detail
	Section 5: Programming Basics
	Loading a Program
	Keying In a Program
	Copying a ROM Program
	Enlarging Program Memory

	Executing a Program
	Program Lines
	Nonprogrammable Operations
	Positioning Within Program Memory
	Using [GTO][.]
	Using Catalog 1
	Single Step and Back Step
	Other Methods

	Editing a Program
	Deleting Instructions
	Inserting Instructions

	Clearing Programs
	Programming Examples

	Section 6: Flags
	Introduction
	Types of Flags
	User Flags (00 through 10)
	Control Flags (11 through 29)
	System Flags (30 through 55)

	Summary of Flag Status

	Section 7: Branching
	Introduction
	Branching to a Label
	Global Labels
	Global Label Searches
	Local Labels
	Local Label Searches
	Bytes for a [GTO] Instruction

	Calling a Subroutine
	The Subroutine Return Stack
	Global-Label Subroutine Searches
	Bytes for an [XEQ] Instruction

	Conditional Functions
	Flag Tests
	Comparisons

	Looping
	Looping Using Conditional Functions
	Loop-Control Functions

	Section 8: Alpha and Interactive Operations
	Introduction
	Requesting Input
	Using [PROMPT]
	Using [PSE]

	Producing Output
	Using [AVIEW]
	Using [VIEW]
	Using [PSE]
	Using [TONE] and [BEEP]

	Section 9: Sample Programs
	Introduction
	RPN PRIMER
	Running RPN PRIMER
	Program Highlight
	Program Listing

	FINANCIAL CALCULATIONS
	Running FINANCIAL CALCULATIONS
	Program Highlight
	Program Listing

	CURVE FITTING
	Running CURVE FITTING
	Program Highlight
	Program Listing

	WORD GUESSING GAME
	Running WORD GUESSING GAME
	Program Highlight
	Program Listing

	BLACKJACK
	Running BLACKJACK
	Program Highlights
	Program Listing

	Appendices
	Appendix A: Error and Status Messages
	Appendix B: Null Characters
	Null Characters and the Alpha Register
	Treatment of Null Characters

	Appendix C: Printer Operation
	Paper Advance
	Controlling Program Execution and Display with Flags 21 and 55

	Appendix D: Peripherals, Extensions, and HP-IL
	HP-41 Peripherals
	HP 82104A Card Reader
	HP 82143A Printer
	HP 82153A Optical Wand

	Extensions
	HP 82182A Time Module
	HP 82180A Extended Functions/Memory Module
	Application Pac Modules

	Hewlett-Packard Interface Loop (HP-IL) and Peripherals
	XROM Functions and XROM Numbers
	Catalog 2: The Catalog of External Functions
	Programs Versus Functions in External ROM
	How XROM Functions are Displayed as Program Instructions
	Duplicate XROM Numbers

	Function Tables
	Function Tables
	Introduction
	Locating a Function
	Explanation of Table Entries

	System/Format Functions
	Clearing Functions
	Stack/Data Register Functions
	Numeric Functions
	Editing Functions
	Functions That Direct Program Execution
	Alpha Functions
	Interactive Functions

	Indexes
	Subject Index
	Function Index

