HP41CV

OPERATION IN DETAIL

- ..! o !-.. -

Summary of Conventions Used in This Manual

Notation -
Description
(Example) P

STO Black keybox. Primary keyboard function.

Gold keybox. Shifted keyboard function. Press and release the shift key (1) first. These
can be on the Normal or Alpha keyboard.

END Blue keybox. Nonkeyboard function. For Alpha execution: use followed by the Alpha
name spelled out on the Alpha keyboard. For User-key execution: assign the function to
the User keyboard.

ABC Blue letters. Alpha characters.
Gold digits or characters. Shifted Alpha characters.
Black letters in keyboxes. These are special functions, not Alpha characters, and are active
] only in special circumstances.
parameter | The type of parameter required for a function.

For a full description, refer to “How This Manual Represents Keystrokes,” page 14 in the HP-41CV
Owner’s Manual.

[ﬁp HEWLETT

PACKARD

HP-41CV

Operation in Detail

April 1986

00041-90531 Rev. B

Printed in U.S.A. © Hewlett-Packard Company 1984

Printing History

Edition 1 July 1984

Notice

Hewlett-Packard Company makes no express or implied warranty with regard to the key-
stroke procedures and program material offered or their merchantability or their fitness for
any particular purpose. The keystroke procedures and program material are made avail-
able solely on an “as is” basis, and the entire risk as to their quality and performance is
with the user. Should the keystroke procedures or program material prove defective, the
user (and not Hewlett-Packard Company nor any other party) shall bear the entire cost of
all necessary correction and all incidental or consequential damages. Hewlett-Packard
Company shall not be liable for any incidental or consequential damages in connection
with or arising out of the furnishing, use, or performance of the keystroke procedures or
program material.

Introducing HP-41CV Operation in Detail

This is a companion volume to the HP-41CV Owner’s Manual, which covered “Basic Operation.” This
manual is an advanced, detailed examination of all aspects of the HP-41CV.
The organization of this manual emphasizes reference information and completeness of information.
e Part I is “Fundamentals in Detail.”
e Part II is “Programming in Detail.”

e There is a comprehensive summary of all the functions in the Function Tables (just in front of the
subject index).

e The Function Index is listed inside the back cover.

e There are appendices about error conditions, null characters, printer operation, and peripherals
devices available for the HP-41.

HP-41CV Operation in Detail
Contents

Part I: Fundamentals in Detail

Section 1: The Keyboard and Display
* The Toggle Keys * The Keyboards
* Keying In Numbers and Characters ° Status Annunciators
* Numeric Display Format * Standard Displays and Messages
* Display Scrolling * Specifying Parameters * Redefining the User Keyboard
* Function Preview and Null * The Catalogs ° Error Messages

Section 2: The Automatic Memory Stack
* Introduction * RPN Calculations * The LAST X Register
» Other Stack Operations

Section 3: Numeric Functions
* Introduction * One-Number Functions ¢ Two-Number Functions ° Statistics

Section 4: Main Memory i
* Organization * Program Memory ¢ User Keyboard Memory
» Data Register Memory Data Register Operations

Part II: Programming in Detail

Section 5: Programming Basics,
* Loading a Program ° Executing a Program ° Program Lines
* Nonprogrammable Operations ° Positioning Within Program Memory
« Editing a Program - Clearing Programs * Programming Examples

Section 6: Flags
* Introduction * Types of Flags * Summary of Flag Status

Section 7: Branching
* Introduction Branching to a Label * Calling a Subroutine
= Conditional Functions ° Looping

Contents

Section 8: Alpha and Interactive Operations 76
« Introduction - Requesting Input « Producing Output

Section 9: Sample Programs, 80
« Introduction « RPN PRIMER « FINANCIAL CALCULATIONS
» CURVE FITTING - WORD GUESSING GAME - BLACKJACK

Appendices
Appendix A: Error and Status Messages 124

Appendix B: Null Characters 126
» Null Characters and the Alpha Register
« Treatment of Null Characters

Appendix C: Printer Operation 128
« Paper Advance
« Controlling Program Execution and Display with Flags 21 and 55

Appendix D: Peripherals, Extensions, and HP-IL 130
» HP-41 Peripherals « Extensions
» Hewlett-Packard Interface Loop (HP-IL) and Peripherals
+ XROM Functions and XROM Numbers

Function Tables 138
Subject Index 152
Function Index Inside Back Cover
List of
Diagrams and Tables
The Alpha Keyboard 1"
Special Keys for Specifying Parameters 19
The User Keyboard 21
The Statistics Registers 43
Main Memory Configurations 47
Summary of Flag Status 66

Display of a Program Instruction, 134

5

Part I:
Fundamentals in Detail

Section 1

The Keyboard and Display

Contents
The Toggle Keys 9
The Keyboards 9
The Normal Keyboard 10
The User Keyboard 10
The Alpha Keyboard 10
Keying In Numbers and Characters 12
Keying In Numbers 12
Keying In Characters e 13
Status ANNUNCIAtOrS 14
Numeric Display Format 14
Formatting Numbers 14
Punctuation 15
Standard Displays and Messages i 15
Display Scrolling 15
Specifying Parameters 16
Indirect Parameter Specification 16
Special Keys 18
Redefining the User Keyboard 20
Restoring Normal Functions 22
The Top TWO ROWS 22
Function Preview and Null 23
The Catalogs 23
Basic Catalog Operation 23
Types of Catalogs 24
Error Messages 24

Section 1: The Keyboard and Display 9

The Toggle Keys

Just below the display are four toggle keys labeled [ON], (USER], [PRGM], and [ALPHA]. They control how
the computer interprets the other keys. The toggle keys are so named because of their dual action:
when you press one, it gives a particular interpretation to the keyboard which generally continues until
you press the same toggle key again, returning the keyboard to its previous state.

The Key. This toggle key turns the computer on and off. After about 10 minutes of inactivity the
computer automatically turns itself off to prolong battery life.* While the computer is off, Continuous
Memory maintains the contents of main memory and the status of certain flags. To reset the computer
(that is, to clear main memory and set all flags to default status):

1. Turn the computer off.
2. Hold down [«].

3. Press (ON].

4. Release [(«].

The display will show MEMORY LOST.

The Key. This toggle key activates and deactivates the User keyboard, which is your redefined
version of the Normal keyboard. The USER annunciator appears (and flag 27 is set) when the User
keyboard is active.

The Key. This toggle key shifts the computer between Execution mode and Program mode.
When you turn on the computer, it is in Execution mode—you can execute functions and programs. In
Program mode you can write or edit programs; functions are stored as program steps to be executed
later when you run the program in Execution mode. The PRGM annunciator indicates that the com-
puter is in Program mode or that a program is running in Execution mode.

The Key. This toggle key activates and deactivates the Alpha keyboard, which includes the
blue letters on the lower face of the keys. The ALPHA annunciator appears (and flag 48 is set) when the
Alpha keyboard is active. Pressing or deactivates the Alpha keyboard.

The Keyboards

This manual shows each function name in a color that indicates how to execute that function. The
following overview of the keyboards covers this use of color and the basic purpose of each keyboard.

* Unless you execute [ON], which sets flag 44 (Continuous On). Flag 44 is cleared each time you turn on the computer.

10 Section 1: The Keyboard and Display

The Normal Keyboard

The Normal keyboard comprises the functions printed in white on the upper face of the keys and the
functions printed in gold above the keys. This is the default keyboard—it is active after Continuous
Memory is cleared.

When you press [l the SHIFT annunciator appears, indicating that a shifted function will be executed.
The annunciator disappears when you press a second key (to execute the shifted function) or press [a
second time (to cancel the shift command).

This manual represents an unshifted function by its name in black inside a black box, and a shifted
function by its name in gold inside a gold box. For example, is the unshifted function on the top
right key, and is the shifted function. This rule applies to other keyboards too; for example,

is a shifted function on the Alpha keyboard.

When a key has a special meaning associated with the letter on the its lower face, that key is repre-
sented by the letter in black inside a black box. For example, the keystroke sequence that produces

Z would be (-] (2], with [Z] representing the (1] key.

The User Keyboard

The User keyboard is your customized version of the Normal keyboard. You can assign a function or
global label to any key except the toggle keys or the [shift key. You can then execute that function, or
start program execution at that global label, by pressing the redefined key on the User keyboard.

Because shifted key positions can be redefined as well, one key can execute four different functions,
depending on whether the User keyboard is active and whether the [shift key is pressed first. The
operation of the User keyboard is described in this section under “Redefining the User Keyboard,” page
20.

Many functions are not on the Normal keyboard but can be assigned to the User keyboard. These are
called nonkeyboard functions. This manual represents a nonkeyboard function by its name in blue
inside a blue box.

The Alpha Keyboard

The Alpha keyboard comprises letters, functions, symbols, and digits considered as characters rather
than numbers. The blue letters and symbols on the lower face of the keys are the unshifted characters
on the Alpha keyboard. Digits 0 through 9 and the arithmetic symbols are shifted characters on the
keys where they appear on the upper face. Shown on the next page is the entire Alpha keyboard, which
includes functions and additional symbols in shifted positions.

The Alpha Keyboard

y - —

P Y DN KKK
ALPHA

| Prw || ALPHA

ooooa
Y- ¥ ¥
=F-F ¥-¥-
— o oo
S = = m
® o
@ ==

- = m

12 Section 1: The Keyboard and Display

There are two distinct uses for the Alpha keyboard.

e To spell out a function or global label as a parameter for , (cLP], [coPY], , , or
(xEQ]. In such cases the characters become part of the instruction.

e To key characters into the Alpha register. Here they are saved until you write over them or clear
the register. The Alpha register is used to display your own messages, to specify file names and
global labels for certain functions, and to manipulate bytes of data.

This manual shows unshifted characters on the Alpha keyboard in blue, shifted characters in gold.
Note that a digit printed in gold represents an Alpha character while a digit printed in black represents
a number on the Normal keyboard.

Keying In Numbers and Characters

Keying numbers into the X-register and keying characters into the Alpha register are similar processes.
In both cases:

e When you enter the first digit or character, the display shows that digit or character followed by
the input cue (_).

e The input cue indicates that the computer will append the next entry from the keyboard to the
string of digits or characters in the display.

e When the input cue is displayed, you can correct your entry by pressing [«] to delete the rightmost
digit or character.* The input cue then moves left to replace it.

o If the input cue is not displayed, entry has been terminated and the next entry from the keyboard
will start a new number or Alpha string.*

Keying In Numbers

Up to 10 digits can be keyed into the X-register—additional digits will be ignored. The only keys used
for digit entry are digit keys [0] through (9], (-], (change sign), (enter exponent), and [«].
Pressing any key other than a digit entry key, [, or terminates digit entry—subsequent digits
will be considered a new number.

Pressing | replaces the number in the X-register with zero; if you key in another number now, it
will replace this zero. If there is only one digit in the display or if digit entry has been terminated,
has the same effect as

*If you key 10 digits or a two-digit exponent into the X-register, the input cue will disappear because no additional digits are
allowed. However, entry has not been terminated: your next entry will not start a new number, and pressing («] will delete the
rightmost digit.

Section 1: The Keyboard and Display 13

Entering an Exponent. To enter a number in the form a x 10, first key in the digits and decimal
point for a and then press if the number is negative. To enter more than eight digits for a, you
must key in a decimal point somewhere to the left of the ninth digit.

Second, press (EEX]. Any digits to the right of the eighth digit will disappear but will remain internally.
Enter one or two digits for the exponent b and press if b is negative. If you press without
first entering a value for a, the computer sets a equal to 1.

Entering . Pressing has the same effect as keying in 3.141592654 and terminating digit entry.

Keying In Characters

In Execution Mode. If the Alpha keyboard is active and you are not specifying a parameter, the
characters go into the Alpha register. For keyboard input to the Alpha register under program control,
execute before the program pauses or halts for input, and then when execution resumes.

The Alpha register can hold up to 24 characters. As you key in the 24th character, a tone sounds to
warn you that the Alpha register is full. If you key in a character when the Alpha register is full, the
leftmost character is pushed out of the Alpha register and is lost.

Character entry is terminated by , , [8sT], , [R/S], or by deactivating the Alpha
keyboard. Character entry is restored by (append) or by

Pressing deletes all characters from the Alpha register. If character entry has been terminated,
has the same effect as

In Program Mode. Up to 15 characters can be stored in a program line, which will be displayed with
a leading T. The characters that follow are entered into the Alpha register when the program is run. To
add a string of characters to the Alpha register without replacing the previous contents, begin the
string with . For example, you can load more than 15 characters into the Alpha register by using
two program lines, beginning the second line with . (The character | appears only when the pro-
gram line is displayed; the “append function” is executed when the program is run.)

Note: Alpha strings appear within quotation marks when listed by a printer or video monitor. Only
program lines that begin and end with quotation marks are Alpha strings; if a listed program line is
not within quotation marks, it is a function. Don’t mistake an unfamiliar function name for an Alpha
string—Dbe sure to press before keying in the function name.

For an example of the use of in a program, see lines 12 and 13 in the FINANCIAL CALCULATIONS
program, 82 through 84 in the WORD GUESSING GAME program, or lines 174 and 175 in the BLACK-
JACK program, all in section 9.

14 Section 1: The Keyboard and Display

Status Annunciators

The status annunciators appear along the bottom of the display. In addition to the USER, PRGM,
ALPHA, and SHIFT annunciators mentioned above, the following annunciators may appear.

o BAT indicates that the batteries are low. With alkaline batteries, about 5 to 15 days of operating
time remain after BAT first appears. With the HP 82120A Rechargeable Battery/Reserve Power
Pack, about 2 to 50 minutes of operating time remain. If you use the HP 82104A Card Reader or
the HP 82153A Optical Wand, the operating time remaining will be reduced. For more information
about batteries, refer to appendix B in the HP-41CV Owner’s Manual.

e GRAD or RAD indicates that the computer is in Grads or Rads mode for trigonometric and
rectangular/polar functions. If neither GRAD nor RAD appears, the computer is in Degrees mode.

e 0 12 3 4 indicates that the corresponding flag (00, 01, 02, 03, or 04) is set.

Numeric Display Format

The computer represents every number internally in the form a x 10° where @ is number with nine
decimal places, 1 < |a| < 10, and b is a two-digit integer, 0 <|b| < 100. You can control how numbers
are displayed without altering their internal representation. (If you do want to alter the number in-

ternally to match the display, refer to in section 2.) The format and punctuation you specify are
maintained by Continuous Memory.

Formatting Numbers

There are three options for formatting numbers, which are selected by the functions , , and

n. This format displays numbers with up to n decimal places (0 < n < 9). If the integer portion
of a number requires more than (10 — n) digits, fewer than n decimal places will be displayed. For
example, the default format is 4, which displays numbers to four decimal places; but if a number
has eight digits before the radix mark, only two decimal places will be displayed.

The last displayed digit is rounded up if the first hidden digit is 5 or greater. If the fractional portion of
a number requires fewer than n digits, trailing zeros are added. If a number is too large or too small for
the display, the format automatically and temporarily switches to n.

n. This format displays numbers with one digit before and n digits after the radix mark
(0 < n <9), multiplied by a power of 10. For n < 7, the number is rounded to n decimal places. A
maximum of 7 decimal places can be displayed, so 8 or 9 cause rounding to occur outside the
display. (These formats can be useful when numbers are printed.)

Section 1: The Keyboard and Display 15

n. This format displays a number with the same digits as n, but with an exponent that is

always a multiple of three. The radix mark is moved to the right to compensate for any change in the
exponent.

Punctuation

Flags 28 and 29 control how periods and commas are used in number displays. In the U.S.A. a period is
used as the radix mark (usually called the decimal point) to separate the integer and fractional parts of
a number, and a comma is used as the separator mark between groups of digits in a large number. In
some other countries, the comma is the radix mark and the period is the separator mark.

Flag 28 determines the roles of periods and commas. The default state for flag 28 is set, which produces
the display normal for the U.S.A. Clearing flag 28 switches the roles of periods and commas to corre-
spond with usage in some other countries.

Flag 29 determines whether a separator mark is displayed, regardless of which symbol represents the
separator mark. The default state for flag 29 is set, which displays the separator mark. Clearing flag 29

suppresses all separator marks and, in the special case of 0 format, suppresses display of the radix
mark.

Standard Displays and Messages
The computer displays either the standard display or a message. The contents of the X-register are the
standard display unless:

e The Alpha keyboard is active (and you're not keying in a parameter), in which case the contents of
the Alpha register are the standard display.

e The computer is in Program mode, in which case the current program line is the standard display.
e A program is running, in which case the program execution indicator (-) is the standard display.
Any other display is a message such as a program’s messages for the user (section 8). Examples covered

in this section include the displays for parameter specification, function preview, the catalogs, and error
messages. Flag 50 is set when the display contains a message.

Display Scrolling

To show more characters than the display can hold at one time, the computer “scrolls” the characters
across the display until the last character enters the display. While the characters are moving you can
press any key to bypass this process and immediately see the final display. The function whose key you
pressed isn’t executed.

16 Section 1: The Keyboard and Display

Specifying Parameters
Certain functions require parameters to become complete commands. When the display shows the
function name followed by one or more input cues (), you must enter a parameter.

e For a numeric parameter such as a register address, flag number, local numeric label, program line
number, and so on, observe how many input cues are shown and key in the desired digits. (You
might need to add leading zeros, like 042 to specify program line 42.)

e For an Alpha parameter such as a function name or global label, press to activate the
Alpha keyboard, then spell out the name or label, and then press again to complete param-
eter specification.

Indirect Parameter Specification

The parameters for most functions can be specified indirectly: rather than entering the parameter itself
in response to the input cue, you enter the address of a register (the “indirect register”) that contains
the parameter. This feature is particularly useful when the value of the parameter depends on previous
calculations in a program or when a routine is executed repeatedly to access sequential registers. In
addition, the addresses for main memory registers R ;o) through R 3;5) must be specified indirectly.
To specify a parameter indirectly:

1. Execute the function.

2. In response to the input cue, press [|. The display will show IND _ _ after the function name.

3. Specify the indirect register.
The following examples demonstrate how indirect parameter specification works for three types of

parameters. In each example R, is the indirect register containing a parameter of 5; in the first exam-
ple 5 is simply a number, in the second example 05 is an address, and in the third example 05 is a label.

Example. Suppose that R, contains 5. If you execute IND 10, the number in R, becomes the
parameter for [TONE]. Therefore, IND 10 is equivalent to 5 when R;, contains 5.

(TONE] IND 10
+ (TOoNE] 5.

Ry

Section 1: The Keyboard and Display 17

Example. Suppose that R;, contains 5. If you execute IND 10, the address in R;; becomes the
parameter for (STO]. Therefore, IND 10 is equivalent to 05 when R;, contains 5.

IND 10
+ (7o) 05.

Ryo [5 |

Indirect specification of an address—called indirect addressing—is the most common use for indirect
parameter specification, and the most common use for indirect addressing is to access a series of reg-
isters by a looping routine in a program. For example, a loop containing IND 10, (1/x], IND
10 will replace the number in Ry; with its reciprocal when R}, contains 5 (as illustrated above). The
loop can then increment the address in R, from 5 to 6 and start over, this time replacing the number
in Ryg with its reciprocal and incrementing the address in R;, from 6 to 7, and so on. (Loops are
described in section 7, “Branching.”)

Example. Suppose that R,y contains 5. If you execute IND 10, the label in R;, becomes the
parameter for (XEQ]. Therefore, IND 10 is equivalent to 05 when R;, contains 5.

IND 10
+ 05.
Rip| 5

You can also indirectly specify any global label listed in catalog 1 or any programmable function or
global label listed in catalog 2, provided that the label doesn’t exceed six characters.

18 Section 1: The Keyboard and Display

Parameters can be indirectly specified for the following functions:

e Functions with register-address parameters.

(sT0], [RCL].
(s10] (+], (s170] (=], (8710] (%], [STO] [=].

s L2

ISG], [DSE].
x> , (VIEW], [(ZREG].
e [(XEQ], [GTO].
e [SF], [CF], (Fs?], [FC?], [FS2C], [FC2C].
e (FIX], [SC1], [ENC
o (TONE].

Three programs in section 9 use indirect addressing. The CURVE FITTING program uses indirect
addressing with and [GTO] (lines 27, 32, 60, 119 and 146) to specify which routine to use to handle
the data, depending on which of the curve fits you are using.

The WORD GUESSING GAME uses indirect addressing with [ARCL] and [ASTO | (lines 31, 40, 57 and 100)
to store Alpha information in or recall Alpha information from sequential registers.

BLACKJACK uses indirect addressing with (RCL], [DSE], and (lines 19, 27 and 88).

Special Keys

The following diagram shows the keys that have special meanings when you’re specifying a parameter
for functions in catalog 3.

Section 1: The Keyboard and Display 19

Special Keys for Specifying Parameters

A i\

- . -
a— e o
= = o

(D] HEWLETT - PACKARD 41CV

20 Section 1: The Keyboard and Display

Stack Register Addresses. To specify a stack register or the LAST X register, press [-] followed by
’ 9 5 , or .

Program Line Numbers. To specify line numbers over 999, press (EEX]. The display will show
1__ _. Then key in the remaining three digits.

Single-Key Parameter Specification. For convenience, you can specify a one-digit parameter of 0
through 9, or a two- or three-digit parameter of 1 through 10, by pressing the appropriate key in the
two top rows. For example, when one, two, or three input cues are displayed, pressing enters a
parameter of 1, 01, or 001. If only one input cue is displayed, pressing enters a parameter of 0; if
two or three input cues are displayed, pressing enters a parameter of 10 or 010.

Redefining the User Keyboard

There is a nonprogrammable function that assigns functions and global labels to the User keyboard:
ASN | (assign).
To make an assignment:

1. Execute [ASN .

2. Press [ALPHA], key in the function name or global label, and press again.

3. Press the key (or [}l and the key) to be redefined.

The following diagram shows the keycodes for the User keyboard. Note that:
e All keycodes have two digits.
e Keycodes for shifted locations are negative.
e You can’t redefine the toggle keys or the shift key.

e You can redefine the key. Your redefinition supersedes the “run” function in Execution mode
and the function in Program mode, but you can still press to stop a running program.

When you assign a function listed in catalog 2 or 3, or a global label listed in catalog 2, the assignment
is stored in User keyboard memory. (User keyboard memory is a part of main memory and is described
in section 4.) However, when you assign a global label listed in catalog 1, that assignment is stored as a
part of the label itself. If the label is deleted from program memory, the assignment is cancelled. If the
program containing the assigned label is stored in extended memory, and if the User keyboard is active
(flag 27 is set) when the program is recalled from extended memory, the assignment stored in the label
will be reactivated.

The RPN PRIMER program, in section 9, redefines much of the keyboard. When you press one of the
redefined keys, the assigned routine is executed instead of the normal function.

Section 1: The Keyboard and Display 21

The User Keyboard

o oo
=N - -
o oo
ER-N-N-

(@] HEWLETT « PACKARD 41cv

22 Section 1: The Keyboard and Display

Restoring Normal Functions

To cancel the assignment to a redefined key:
1. Execute

2. Press twice.
3. Press the appropriate key.

The Two Top Rows

There is a special type of program label, the local Alpha label, that is designed for use with the two top
rows of the User keyboard. The name of each label corresponds to an Alpha character on the top two
rows: A through E on the top row, F through J on the second row, and a through e on the shifted top
row. Section 7, “Branching,” discusses how to program with these labels; the discussion here covers
only the conditions required to execute a local Alpha label on the User keyboard. These conditions are:

e The User keyboard is active.

e The current program contains the local Alpha label.

e You haven’t redefined the key that corresponds to the local Alpha label.
These conditions combine with the general rules for the User keyboard to produce the following prior-
ities. When you press a key on the top two rows of the User keyboard:

1. If you have assigned a function or global label to the key, that function is executed or program
execution begins at that global label.

2. If you haven’t redefined the key and the corresponding local Alpha label exists within the current
program, execution begins at that local Alpha label.

3. If neither of the first two conditions is true, the Normal keyboard function—the one printed on (or
above) the key—is executed.

Execution of a Normal keyboard function may take significantly more time when the User keyboard is
active because the computer checks the higher priorities first. To avoid this delay when executing a
Normal keyboard function, you can deactivate the User keyboard before pressing the key or else assign
the Normal keyboard function to that key.

The FINANCIAL CALCULATIONS program in section 9 uses local Alpha labels A through E and a to
store and calculate the various financial parameters.

Section 1: The Keyboard and Display 23

Function Preview and Null

You can display the current meaning of a key, without necessarily executing the resulting function, by
holding down the key. This preview is particularly helpful on the User keyboard when you’re not sure
which keys are redefined.

e If the function requires a parameter (one or more input cues appear), release the key. If you want
to cancel the function, press [«].

e If the function doesn’t require a parameter, you can either release the key to execute the function
or else hold the key down until NULL is displayed to cancel the function.
In addition, there are four situations when a program line is previewed. (Assume that you release the
key before NULL is displayed.)

e If the User keyboard is active and you press a key to which you’ve assigned a global label, that
label is displayed and program execution begins at that label.

e If the User keyboard is active and you press a key that corresponds to a local Alpha label in the
current program, XEQ Jabel is displayed and program execution begins at that label.

e If you press (R/S], the current program line is displayed and program execution begins at the
current program line.

e If you press [SST], the current program line is displayed and only the current program line is
executed.

The Catalogs

There are three catalogs that enable you to review memory contents. The function is not
programmable. The rules of operation common to all catalogs are described first, followed by an over-
view of each catalog.

Basic Catalog Operation
Execute n to start the listing of catalog n.

While the listing is running:
e Pressing any key except and slows down the listing.
e Pressing stops the listing.

24 Section 1: The Keyboard and Display

While the listing is stopped:
e Pressing displays the next item in the catalog.
e Pressing displays the previous item in the catalog.
e Pressing restarts the listing.
e Pressing exits the catalog.

A printer in Trace mode will print a catalog listing.

Types of Catalogs

Catalog 1: User Programs. A list of all global labels and instructions. With the permanent
.END. (the final entry) appears the number of registers available for new programs.

You can use catalog 1 to make any program the current program: press to stop the listing at that
program’s global label or instruction, and then press to exit the catalog. (Section 5.)

Catalog 2: External Functions. A list of all functions and programs currently available to the com-
puter from peripheral devices and plug-in modules, plus all extended memory and time functions. A T
precedes global labels for programs to distinguish them from functions.

Functions and programs are grouped by source. (Appendix D.)

Catalog 3: Standard Functions. An alphabetical listing of the standard functions of the HP-41.
This listing shows the Alpha name for each function, which may differ from the name that appears on
the keyboard. You need to know the Alpha name to assign a function to the User keyboard and to
interpret program lines.

Error Messages

An operation that is illegal is never executed. If the attempted operation is a program instuction, the
computer stops program execution and displays an error message.*

e To clear the error message from the display, press [«].

e To execute a different function, simply press the appropriate key—you don’t need to clear the error
message first.

e To discover which instruction caused the error, press to switch to Program mode. The dis-
play then shows the program line containing the illegal operation (or an XROM number if a miss-
ing plug-in module caused a NONEXISTENT error).

* Flags 24 and 25 can prevent certain anticipated errors from stopping program execution. These flags are described in section 6.

Section 1: The Keyboard and Display 25

A list of error and status messages appears in appendix A. Many devices that plug into the computer
have their own messages which may appear in the computer display. Refer to the literature for those
devices to learn about such messages.

Section 2

The Automatic Memory Stack

Contents
Introduction L 26
RPN Calculations 27
Stack Lift and Stack Drop 27
USING [ENTER®] ..ottt e e e e e e 28
Enabling/Disabling Stack Lift 28
Order of Entry 28
Filling the Stack 29
The LAST X Register 31
Correcting Errors 31
Constant Arithmetic 32
Other Stack Operations 32
Exchanging Stack Contents L. 33
Rolling the Stack 33
Store and Recall 34
Register Arithmetic 34
Clearing the Stack 35
Introduction

Numeric functions use four registers called the automatic memory stack. Numbers automatically move
“up and down” in the stack when you enter numbers and perform calculations. The logic used is Re-
verse Polish Notation (RPN), which minimizes keystrokes and produces all intermediate results. If you
are unfamiliar with RPN, refer to section 1 of the HP-41CV Owner’s Manual. The RPN PRIMER pro-
gram in section 9 will also help you use and understand RPN, because the program displays the con-
tents of the stack during a calculation.

e The first topic in this section, “RPN Calculations,” evaluates a typical numeric expression and
describes the principles underlying use of the stack. Included is a method for constant arithmetic
based on filling the stack with a constant.

26

Section 2: The Automatic Memory Stack 27

e The second topic, “The LAST X Register,” covers a special register closely related to the stack
registers. The LAST X register is used for error correction and for a second method of constant
arithmetic.

e The third topic describes other stack operations that give you more flexibility in using the stack,
again emphasizing the repeated use of a constant.

RPN Calculations

The diagrams below show the contents of the automatic memory stack and the LAST X register
following each step of an RPN calculation. Let x, y, z, t, and [represent numbers in the stack initially.
The calculation evaluates the expression

32
52 — 9

lost lost lost
T| t / z / y |- v |—»| vy / X i X i X
Z| z / y / x |—» x |—| x / 32 X X
Y| vy / X / 32 |—»| 32 |—| 32 / 25 \ 32 \ X

X X / 32 4 32 5 / 9
LAST X | | r l l (l \ 5 ((5 \ 9 \ 16

Keys: 32 5 9 =) =

This example will be the basis for explaining how the stack works and how to use it efficiently.

Stack Lift and Stack Drop

The automatic movements of stack contents are called stack lift (moving upward in the diagram) and
stack drop (moving downward).

Stack Lift. This usually occurs when a number is moved into the X-register. The numbers in the Y-
and Z-registers are lifted into the Z- and T-registers; the number in the T-register is lost. In the exam-
ple, stack lift occurs when 32 is keyed in, when copies 32 into the Y-register, and when 9 is
keyed in.

Stack Drop. This usually occurs when a function combines the numbers in the X- and Y-registers.
The number in the Z- and T-registers are dropped into the Y- and Z-register; the number in the LAST
X register is lost. In the example, stack drop occurs when [=] and (=] are executed.

28 Section 2: The Automatic Memory Stack

Using [ENTER+

Pressing separates two numbers keyed in one after the other (32 and 5 in the example). This
copies the number in the X-register (32) into the Y-register. The copy left in the X-register is replaced
by the next number keyed in (5) because disables stack lift.

Enabling/Disabling Stack Lift

Nearly all functions enable stack lift: the stack will lift if you place a number in the X-register after
executing the stack-lift enabling function. However, four functions disable stack lift and others are
neutral.

Stack-Lift Disabling Functions. The four functions that disable stack lift are (ENTER#*], [CLx |, (Z+],
and [Z- . If you execute one of these functions and then place a number in the X-register, that number

will replace the previous contents and the Y-, Z- and T-registers will not be affected. Stack diagrams
show when stack lift is disabled by shading the X-register, indicating that its contents will be replaced.

Neutral Functions. The following functions neither enable nor disable stack lift, but maintain the
previous status:
e The toggle keys ([ON], (USER], [PRGM], [ALPHA]).
e The backarrow key ([«]) during digit or character entry.
e The shift key
e Catalogs 1, 2, and 3.

Order of Entry

Two major considerations affect the order in which you should enter operands. You can save many
keystrokes by observing the following rules, although sometimes you must choose between them.

Nested Terms. For expressions with terms nested in parentheses, calculate the innermost term first
and then use that result in the simplified expression. If two nested terms must be calculated before you
can combine them, the automatic memory stack saves the result of the first term while you evaluate the
second term. The example in “Polynomial Expressions” below demonstrates this rule.

Noncommutative Functions. Functions like subtraction and division are called noncommutative be-
cause the order of the operands is essential: 5 — 3 # 3 — 5, and 5 = 3 # 3 =+ 5. For expressions involv-
ing noncommutative functions, enter or calculate the number that must be in the Y-register before
entering or calculating the number that must be in the X-register. The previous example demonstrates
this rule twice.

e The numerator (32) is entered before the denominator (52 — 9) is calculated.

e The term 52 is calculated before 9 is subtracted from it.

Section 2: The Automatic Memory Stack 29

Filling the Stack

Note in the last three steps of the previous example how x propagates from the T-register into the Y-
and Z-registers. This consequence of stack drop can keep the Y-register filled with a constant, as dem-
onstrated in the next two examples. This technique is particularly appropriate when the constant must
be in the Y-register for noncommutative operations like (=] and (=]. (In contrast, [LASTx | supplies the
constant in the X-register.)

Cumulative Growth. Suppose that you want to calculate the growth of a quantity that starts at a
value of 16 and increases by 50% each period. First fill the stack with the growth factor (1.5) and key
the starting value (16) into the X-register. Then press to calculate the value after the first period
and press again for each subsequent period.

/ lost lost
T| ¢t / z 1.5 [> 1.5 i 1.5 i 1.5 i 1.5 i 1.5
Z| 2 y 15 | = 15 |« 1.5 1.5 1.5 1.5
Y| vy ; X 15 | —>| 15 s \ 1.5 \ 1.5 \ 1.5
X| x 1.5 15 ((16
LAST X | ! (l l ! l 16 24 36 54
Keys: 15 16 =

Polynomial Expressions. Filling the stack aids the evaluation of a polynomial, which requires sev-
eral copies of the variable. For efficiency, use Horner’s Method to rewrite the polynomial in a nested
fashion that eliminates exponents greater than 1. Suppose that you want to evaluate

xt — 2x% + 5x
for x = 3. First, rewrite the polynomial to eliminate the exponents.
xt — 2x3 + Bx = (23 — 2x2 + 5)x
= ((x2 — 2x)x + 5)x

= (((x — 2)x)x + 5)x

30 Section 2: The Automatic Memory Stack

Then fill the stack with the variable by pressing (3], (ENTER*], (ENTER#], (ENTER#], and execute the
steps below. Note that the calculation begins at the innermost nested term.

/ lost
T| 3 |—>| 8 3 3 3 3 3 3
Z| 3 |—| 3 3 3 § 3 3 3 ;: 3 § 3 3 3
Y| 3 |—>| 8 3 3 9 3 3
X| 3 2 / 5
LAST X [l \ 2 \ 1 \ 3 (3 \ 5 \ 14
Keys: 2 = B 5

Once you are familiar with Horner’s Method you can key in the steps for a polynomial without actually
rewriting it. For example, the steps to evaluate the polynomial

ax® + bxt + cx® + dx? + ex + f

after filling the stack with the variable are:

a, @, b, , E]’ ¢, ’ ’ d’ ’ E]’ e, ! ’ f: '

e Note that coefficients (except the first and last) are followed by and [x]. (There is no previous
result to add to first coefficient, and the last coefficient isn’t multiplied by any power of the
variable.)

e If the first coefficient is 1, start with the second coefficient. (The variable is already in the X-
register.)

e For negative coefficients you may enter a positive value and substitute (=] for following that
coefficient.

e When there is no term for a power of x, just press [x]. (In effect, this enters a coefficient of 0 for
that power.)

Noncumulative Results. You can also use constant arithmetic to perform a series of unrelated (non-
cumulative) operations with a constant. After each calculation, press to clear the X-register before
you key in the next operand. This disables stack lift, preventing the previous result from displacing the
constant in the Y-register.

Section 2: The Automatic Memory Stack 31

The LAST X Register

The LAST X register holds the x-operand from the last numeric function (except [CHS]). To recall this
number to the X-register, press . This enables you to recover from errors and to retrieve an
operand for further calculations.

Correcting Errors
One-Number Function Errors. If you execute the wrong one-number function, you can recover from
your error as follows:
1. Press [«]. This replaces the incorrect result with zero and disables stack lift.
2. Press . This recalls your operand, which replaces the zero in the X-register.
3. Continue your calculation with the correct function.
Two-Number Function Errors. If you make a mistake with a function like or (+], you can use
and the inverse function ([=] or [x]) to recover. Suppose that you made a mistake in adding two

numbers. Press and then [=] as shown below. The nature of your mistake determines how you
should continue; the alternatives are listed after the diagram.

lost

T t t t / t i t
Z| :z t / z t
Y| 16 N z ? 20 \ z
X| 4 4
LAST X | 1 4 | 4 4
Keys: =)
e If you wanted to multiply instead of add, execute again to return the stack to its original

state, and then multiply.

e If 16 was the wrong number to add, press [«] to clear 16, key in the correct number, execute
to recover 4, and then add.

e If 4 was the wrong number to add, key in the correct number and then add.

Errors with some other types of two-number functions are even easier to correct. For example, you can
cancel the effect of by executing , and you can correct errors with and as you
would for a one-number function. To correct errors with other functions, determine how the function
affects the stack, and then reverse that process.

32 Section 2: The Automatic Memory Stack

Constant Arithmetic

The following example shows how to retrieve a constant for further calculations. Suppose that you
want to divide both 63 and 87 by a factor of 1.5. This constant factor is entered second (after 63) to be
in the X-register for the first calculation, and is subsequently maintained in the LAST X register.

Iozst / onst - - / onst
y ;: X § y ? X
AR RRSE
N

! ! ! 15 | 15 | 15 | 15 |

lost
X i X
42 X
87 \ 42

1.5 58

' vy

63

NOO

— OO\

LAST X | !
Keys: 63 1.5 =) 87 (LASTS =)

This technique is particularly appropriate when the constant must be in the X-register for
noncommutative operations like (=] and (=]. (In contrast, constant arithmetic using stack drop supplies
the constant in the Y-register.)

Other Stack Operations

You can consider the four stack registers as two pairs of registers. The X- and Y-registers are the
center of almost all activity, while the Z- and T-registers are like storage registers connected by stack
lift and stack drop to the more active X- and Y-registers. If you make an extra copy of a number while
it’s in the X-register or retrieve a copy from the LAST X register, you can temporarily store that copy
in the higher stack registers and retrieve it later.

To take full advantage of the Z- and T-registers, plan ahead when you’re programming a series of
calculations. Figure out where the operands must be for each step, work backwards from the final
calculation, and use the operations in the remainder of this section to link the result of one calculation
with the input for the next. This efficient use of the stack saves program memory and reduces the need
for storage registers.

Section 2: The Automatic Memory Stack 33

Exchanging Stack Contents

Exchanging the X- and Y-registers. Executing (X exchange Y) exchanges the contents of the
X- and Y-registers. This function has several uses:

e To examine the contents of the Y-register. Press [xxy], examine the display, and then press
again to restore the numbers to their original order. This is useful when a function returns results
to both the X- and Y-registers, as do the statistics functions and polar/rectangular coordinate
conversions.

e To switch numbers that are in the wrong order for noncommutative operations such as subtraction
and division.

e To rearrange the contents of the stack in combination with or (Rt]; refer to “Rolling the
Stack” below.

Exchanging X and Other Stack Registers. To exchange the contents of the X-register with a stack
register or the LAST X register, execute [X<>] and then press (-] followed by (Y], (2], [T], or (L]. Refer
to “Stack Register Arithmetic” below for an example of this function’s use.

Rolling the Stack

The (roll down) and (roll up) functions shift all stack contents without duplicating or losing
any data.

T t \ X T t / z
Z| z |[\Y ¢ Z| : // y
Y| vy \\ z Y| vy // X
X[x A y X[x |7 t
LASTX| ¢« | ¢] LASTX| ¢ |—| 1 |
Keys: Keys:

Note that the LAST X register is unchanged. To review all numbers in the stack, press either or
four times. Each number is displayed when it is rolled into the X-register, and the stack returns to
its original state after four shifts.

34 Section 2: The Automatic Memory Stack

Use and (R+]in combination with (xxy] to exchange stack registers other than the X-register. You
can rearrange the stack in any order with these functions; here are two simple examples.

T ¢t |— t \r y T| ¢ gz |77z

Z| z |—> z |- RV zZ| z |7 P —» y

Y[v |~ PIEESES N Y| v |/ PR \1 t

X / y A x X / t |7 X

LASTX| [|[—| | |— 1 LASTX| [|[—>| 1 l
Keys: x% Keys: (Rt) xxy

Store and Recall

You can duplicate any number in the stack by executing or and then specifying a stack
register. Both functions result in the X-register and the specified register containing the same number.

Store. To copy the number in the X-register into a stack register or the LAST X register, press
(-] followed by [Y], (2], (T] or [(L]. The number in the specified register is lost.

Recall. To copy the number in a stack register or the LAST X register into the X-register, press
(-] followed by (Y], (2], (TJ, or [L]. The number in the T-register is lost as the stack lifts (unless stack
lift is disabled).

Register Arithmetic

You can combine the number in the X-register with any stack register by pressing], (=]
-, (x] (), or (=] (] followed by (Xx], (Y], (2], (T], or (L]. Remember that the order of the

operands is essential for subtraction and division; the operand in the specified register corresponds to
the operand in the Y-register for stack arithmetic. Register arithmetic in the stack differs in several
ways from normal arithmetic in the stack:

e The result is placed in the specified register.

e The X-register is unchanged (unless you specify it as the parameter).

e The LAST X register is unchanged (unless you specify it as the parameter).
e The stack doesn’t drop.

Section 2: The Automatic Memory Stack 35

The following routine cubes the number in the X-register and places the original value in the LAST X
register without disturbing the other stack registers.

lost

T t ;: z |—»| z |—» z |—» z |—» =z
Z| z y |- v |- v |— v |—] v

Y| y / x |— x |—| x |— x |—
X| x / 4 4 || 4 64

A .

N— /\1
LAST X | ! l 4 16 4
Keys: 4 L L L

Clearing the Stack

To place zeros in the X-, Y-, Z-, and T-registers, execute [CLST] (clear stack). The LAST X register is
unchanged.

Section 3

Numeric Functions

Contents
INtrodUCHION 36
One-Number FUNCLIONS 37
General FUNCHIONS 37
Number-Alteration FUNCtions 38
Trigonometric Operations 38
CONVEISIONS . . oottt e e 39
Logarithmic and Exponential Functions 39
Two-Number FUNCHIONS 39
Basic Arithmetic 40
Time Arithmetic 40
Percentages 40
Polar/Rectangular CONVersions i, 41
Other Two-Number Functions i 41
StatiStiCS 42
Statistics Registers 42
Entering Data 43
MeaN . 44
Standard Deviation 44
Introduction

This section describes the numeric functions in the computer. All one- and two-number functions op-
erate in the stack; their actions are shown by stack diagrams. Although data for the statistical func-
tions are entered from the stack, they are accumulated in statistics registers in main memory. The
results of operations on these accumulations are then returned to the stack. Certain other functions
that involve calculations but do not necessarily return results to the stack (such as register arithmetic
and) are not included here.

36

Section 3: Numeric Functions 37

There are three error conditions that can result from numeric functions.

1. If you try to calculate with an operand that is illegal for that function (such as division when
x = 0), a DATA ERROR results.

2. If you try to calculate with an operand that is not a number, an ALPHA DATA error results. Note
that a string of Alpha digits from the Alpha register is not a number.

3. If you attempt a calculation that would produce a number with magnitude greater than
9.999999999 X 10%, an OUT OF RANGE error results. (Statistical accumulations and [2-] are
exceptions.)

The computer does not execute a function that causes an error condition. Unless flag 25 is set, a DATA
ERROR or ALPHA DATA error will stop program execution (if a program is running) and display the
error message; an OUT OF RANGE error will stop execution and display the error message unless either
flag 24 or 25 is set.

One-Number Functions

One-number functions replace the operand in the X-register with the result, save the operand in the
LAST X register, and leave the Y-, Z-, and T-registers unchanged. f(x) represents the result in the
stack diagram on the left. The only exception is (change sign), shown on the right, which doesn’t
save the operand.

T t |—>| ¢t Tl t |—>| t
Z| z |—»| =z Z| z |—| =z
Y| v [—] vy Y| yv [— vy
X[«x f(x) X| «x —Xx
LAST X | ¢ |\| x| LASTX| ¢ || 1 |
One-Number Functions CHS

General Functions
Reciprocal. Executing returns the reciprocal of x.

Square and Square Root. Executing | x* | returns the square of x. Executing returns the positive
square root of x.

Factorial. For a positive integer n, executing returns n!=n(n—-1)(n—2)... 1

38 Section 3: Numeric Functions

Number-Alteration Functions

Absolute Value and Sign. Executing [ABS] returns |x|, the absolute value of x. Executing [SIGN]
returns:
1if x =0,

—1ifx <0,
0 if the X-register contains Alpha data.

Integer Part and Fractional Part. These functions reduce a number to its integer part or its frac-
tional part. For example, if the X-register contains 777.888, executing [INT | returns 777 or executing
FRC | returns 0.888.

Round. Recall that the display-format functions affect only how a number is displayed, not its in-
ternal representation. To round the internal representation of the number in the X-register:

1. Set the display format to the number of decimal places that you want the rounded number to

contain.
2. Execute [RND].
For example, to round a number to the nearest integer, execute 0 and then [RND].

Trigonometric Operations

Angular Modes. The angular mode determines how the computer interprets numbers as angles. Your
choice of angular mode is maintained by Continuous Memory. These functions alter only the angular
mode; they do not alter any numbers currently in the computer.

e Execute to select Radians mode. The RAD annunciator appears, indicating that numbers will
be interpreted as angles expressed in radians. (There are 27 radians in a circle.)

e Execute to select Grads mode. The GRAD annunciator appears, indicating that numbers will
be interpreted as angles expressed in grads. (There are 400 grads in a circle.)

e Execute to select decimal Degrees mode. This is the default angular mode; when neither the
RAD nor the GRAD annunciator appear, numbers will be interpreted as angles expressed in degrees.
Digits following the decimal point in the argument are interpreted as a decimal fraction of one
degree, not as minutes and seconds.

Trigonometric Functions.

° (sine) and (arc sine).

° (cosine) and (arc cosine).

o (tangent) and (arc tangent).

Section 3: Numeric Functions 39

Conversions

Degrees/Radians Conversions. Execute [D-R| (degrees to radians) to convert a number expressing
an angle in decimal degrees into the number that expresses the same angle in radians. For the inverse

Hours-Minutes-Seconds/Decimal Hours Conversions. Hours and degrees can be expressed in
HMS (hours-minutes-seconds) format rather than the normal decimal format. The first two digits
following the decimal point are interpreted as minutes, the next two digits as seconds, and any sub-
sequent digits as a decimal fraction of seconds. For example,

HH.MMSSssss = HH hours + MM minutes + SS.ssss seconds (HMS format)
= HH + MM/60 + SS.ss/3600 (decimal format)

For the inverse conversion, execute [HR | (to decimal hours).

Decimal/Octal Conversions. To convert a decimal integer into its octal (base 8) equivalent, execute
OCT] (to octal). To convert an octal integer into its decimal (base 10) equivalent, execute [DEC]| (to
decimal).

Logarithmic and Exponential Functions

Common Logarithmic and Exponential Functions. Press to calculate the common loga-
rithm (logarithm to base 10) of the number in the X-register. Press to calculate 10 raised to the
power of the number in the X-register.

Natural Logarithmic and Exponential Functions. Press to calculate the natural logarithm
(logarithm to base e) of the number in the X-register. Press to calculate e raised to the power of the
number in the X-register.

Hyperbolic functions, inverse hyperbolic functions, and certain financial calculations evaluate the ex-
pressions In (1 + x) and e* — 1 for arguments near zero and with results also near zero. To allow
greater accuracy in such calculations, [LN1+x | and [E4+X-1] evaluate these expressions directly.

o computes In (1 + x).
° computes e* — 1.

Two-Number Functions

All two-number functions use operands in the X- and Y-registers; most return a single number to the
X-register and cause the stack to drop. (Percentages and polar/rectangular coordinate conversions are
exceptions.)

40 Section 3: Numeric Functions

Basic Arithmetic
Stack diagrams for (+], (=], (x], and [+] appear in the previous section. Remember the order of entry for
subtraction and division: for x in the X-register and y in the Y-register,

e Subtraction returns y — x (not x — y).

e Division returns y/x (not x/y).

Time Arithmetic

To add or subtract numbers that are in HMS (hours-minutes-seconds) format, use (hours-min-
utes-seconds add) or (hours-minutes-seconds subtract). The order of entry and stack drop are
identical to those for normal addition and subtraction.

Percentages

The two percentage functions use the number in the Y-register as a base and alter the number in the
X-register, expressing it in terms of the base. Note that the base number in the Y-register is unaltered
and that the stack doesn’t drop.

T t — t T t — t
Y4 z —> z Y4 z — z
Y y e y Y y —> y
X X X X

LAST X ! |\| x | LAST X C Y«

Percent. To calculate a percentage, place the base number in the Y-register and the percent rate in
the X-register, and then execute

Percent Change. To calculate the increase or decrease from one number to another, place the first
(base) number in the Y-register and the second number in the X-register, and then execute [%CH]. The
increase or decrease is returned as a positive or negative percentage of the first (base) number.

Section 3: Numeric Functions 41

Percent of Total. To calculate the percentage that one number is of another number:

1. Place the total (base) number in the Y-register and the number to be converted to a percentage in
the X-register.

2. Execute [(1/x].

3. Execute

4. Execute [1/x].

Polar/Rectangular Conversions

A point in a plane can be described by either polar or rectangular coordinates. Polar coordinates are r
(magnitude) and 6 (angle); rectangular coordinates are x (horizontal) and y (vertical). (An illustration
of these coordinates is on page 53 in the HP-41CV Owner’s Manual.) Two functions, and ,
convert between polar and rectangular coordinates.

e To convert polar coordinates to rectangular coordinates, execute (polar to rectangular).
e To convert rectangular coordinates to polar coordinates, execute (rectangular to polar). The
resulting # will have the same sign as the y-coordinate input.

As input or output, 6 is interpreted according to the current angular mode. In the stack diagrams below,
note the order of the coordinates in the stack and that the stack doesn’t drop. Press to see the
result returned to the Y-register.

Tl ¢t |—>| t T ¢t [—| ¢
Z| z |—| =z Z| z |—»| =z
Y| o Y| vy
X[r X| x

o~

LASTX| ¢ | | r | LAST X |

Other Two-Number Functions

Raising a Number to a Power. To raise a number to a power, place the base number in the Y-
register and the power in the X-register, and then execute . Stack drop is the same as for arithmetic
functions. Legal values for x depend on the value of y:

e If y is positive, x can be any number.

e If y is negative, x must be an integer.

42 Section 3: Numeric Functions

e If y is zero, x must be positive.
Any other combination causes a DATA ERROR.

Finding Roots. To calculate the nth root of a number:
1. Place the number in the Y-register.
2. Place n in the X-register.
3. Execute [1/x].

4. Execute

Modulo. For positive integers x in the X-register and y in the Y-register, executing [MOD | calculates
the remainder when y is divided by x (“y mod x”). For example, you can test whether y is evenly
divisible by x by executing [MOD] and testing whether the result is zero. Stack drop is the same as for
arithmetic functions.

You can also use [MOD | with numbers that are not positive integers. The general equation for y mod x is
y — x <y/x>, where <y/x> represents the largest integer not larger than y/x. Performing y mod x
when x = 0 returns an answer of y.

Statistics

There are two stages in performing statistical calculations. First you enter data from the stack; the
computer accumulates intermediate statistics from this data. Then you execute statistical calculations;
the computer uses the intermediate statistics to calculate the overall results, which are returned to the
stack. Basic statistical operations are described in section 5 of the HP-41CV QOwner’s Manual.

For an example of using statistical functions in a program, refer to the CURVE FITTING program in
section 9. The program uses [ZREG | to move the statistical registers, and and to sum and
correct the data.

Statistics Registers

The statistics registers are a block of six data registers in main memory that hold the intermediate
statistics accumulated from your data. When the computer memory is reset, the statistics registers are
R;; through Ry.

e You can assign other storage registers to be the statistics registers by executing [ZREG] and specify-
ing the address of the first register in the block you select. This assignment is maintained by
Continuous Memory.

e To place zeros in all six statistics registers, execute

Section 3: Numeric Functions 43

The statistics registers accumulate the following intermediate statistics from your data in the X- and
Y-registers.

The Statistics Registers

Register Contents
Ri1 Zx Summation of x-values.
Rio =x2 Summation of squares of x-values.
Ri3 Zy Summation of y-values.
Ria Zy?2 Summation of squares of y-values.
Ris Zxy Summation of products of x- and y-values.
Rig n Number of data points accumulated. (Displayed.)

Entering Data

Accumulating Data Points. When you press [Z+]:

® The results of calculations using the numbers in the X- and Y-registers are added to the first five
statistics registers. If this causes the contents of a register to exceed +9.999999999 x 10%, there is
no overflow error; the overflowed register contains +9.999999999 x 10%.

® The number of data points n in the sixth register is incremented and its current value is returned
to the X-register.

® The number previously in the X-register is saved in the LAST X register.

o Stack lift is disabled, so the next data entered will replace n in the X-register.
You can accumulate either one-value or two-value data points, as discussed in part I. If you are accu-
mulating only x-values, clear the Y-register first (0 (ENTER#*]). Because and disable stack lift,
the Y-register will remain clear while you accumulate x-values.
Error Correction. To correct erroneous data that have been accumulated:

1. Re-enter the erroneous data. If you just accumulated the erroneous data, simply press to
retrieve them. (The erroneous y-value is still in the Y-register and the erroneous x-value was saved
in the LAST X register.)

2. Press . This function acts similarly to except that the results are subtracted from (rather
than added to) the first five statistics registers, and the sixth register is decremented (rather than
incremented).

3. Enter the correct data.

4. Press [T+].

44 Section 3: Numeric Functions

Limitation on Data Values. The computer might be unable to perform some statistical calculations
if your data values differ by a relatively small amount. To avoid this, you should normalize your data by
entering the values as the difference from one value (such as the mean). This difference must then be
added back to any calculations of the mean. For instance, if your x-values were 665999, 666000, and
666001, you should enter the data as —1, 0, and 1; then add 666000 back to the relevant results.

Mean

Executing returns the arithmetic average x of the accumulated x-values to the X-register and

the arithmetic average y of the accumulated y-values to the Y-register, according to the following
formulas:

= Ex’ y = Ey‘
n n

Press to display the resulting y-value. The number previously in the X-register is saved in the
LAST X register; the number previously in the Y-register is lost.

Standard Deviation

Executing returns the sample standard deviation s, of the accumulated x-values to the X-register
and the sample standard deviation s, of the accumulated y-values to the Y-register, according to the
following formulas:

o \/ nZ(x?) — (22)2 . = V nZ(?%) — (2y)?
x nin — 1) ’ Y nin — 1))

Press to display the resulting y-value. The number previously in the X-register is saved in the
LAST X register; the number previously in the Y-register is lost.

Section 4

Main Memory

Contents
Organization 46
Program Memory 48
Program Lines 49
Null Bytes 49
Packing 50
User Keyboard Memory 50
Data Register Memory 50
Allocation 50
Registers Above Rgg 51
Data Register Operations 51
Store and Recall 51
Register Arithmetic 52
EXChange 52
Clearing Registers 52
Organization

Main memory contains 319 registers divided into two major groups.*

e One group contains the data storage registers. The number of main memory registers allocated to

data storage changes only when you execute a function to specify the allocation.

e The other group contains programs, key redefinitions, and uncommitted registers. The uncommit-
ted registers are automatically committed to programs, and key redefinitions as needed. However,
the size of this group as a whole changes only when you change the number of registers allocated to

data storage.

* Main memory actually contains 320 registers, but program memory always contains at least one register for the permanent .END.

46

Ri272)

47

Section 4: Main Memory

Main Memory Configurations
Ri272) Ran Rnn
Data Data
Registers Registers
Roo | Roo
y
Data Data /
Registers Registers /
Program Program
Memory Memory
/,‘
/ .END.
/
/
/
Roo . Roo
-END. Program
Memory
.END.
\\\; .END.
// User \
User K’jyboard User
Keyboard emory Keyboard
Memory

Mem

ory

48 Section 4: Main Memory

The preceding diagram illustrates four configurations of main memory—each column represents all of
main memory at one time. The leftmost column shows the default configuration, 273 registers allocated
to data storage and 46 registers for all other purposes. The columns to the right show main memory at
three later times. The computer handles most of these details automatically, but understanding main
memory will help you use it more effectively.

The first column represents the default configuration after Continuous Memory is cleared. There are
273 registers for data storage with the largest-numbered register at the top. The first register below the
data register block holds the permanent .END., which marks the bottom of program memory. The un-
committed registers below the permanent .END. are available for programs and key redefinitions.

The second column shows main memory after you’ve entered programs and assigned functions to keys.
Program memory consumes uncommitted registers as the permanent .END. is pushed down by new
program lines. User-keyboard memory consumes one uncommitted register for every two assignments.

The third column shows the result after you allocate fewer registers to data storage, but write more
programs, and redefine more keys. When all registers are committed (as in this column), any operation
that would consume main memory registers causes the computer to display PACKING and then TRY
AGAIN.

If packing doesn’t produce a sufficient number of uncommitted registers, you’ll have to reduce the size
of the data storage block or delete other memory contents. You can review the contents of program
memory by executing 1.

The fourth column shows the reappearance of uncommitted registers after you delete programs and
User-key assignments. You could gain even more uncommitted registers by allocating fewer registers to
data storage.

Program Memory

When Continuous Memory is cleared, program memory contains only the permanent .END.. If you
press (-](c] and key in a program, each instruction is added just before the permanent .END. which
moves down to make room. As a result:

e The first instruction of the program you keyed in first is at the top of program memory.
e The last instruction of the program you keyed in most recently precedes the permanent .END. at
the bottom of program memory.

Catalog 1 shows the number of uncommitted registers along with the permanent .END. (.END. REG
nnn). There can be up to six bytes (nearly a full register) available in addition to nnn registers.

Section 4: Main Memory 49

Program Lines

Each function, number, or Alpha string in a program is considered to be a separate program line. The
number of program lines depends on how many functions, numbers, and Alpha strings are in the pro-
gram; the number of registers and bytes occupied by these program lines depends on the particular
functions and the lengths of the numbers and Alpha strings:

e Functions require from one to four bytes, depending on the particular function (and on the param-
eter if one is needed). The number of bytes required for each function is listed in the Function
Tables at the back of this manual.

e Functions with global labels as parameters require one byte per character in addition to their nor-
mal length.

e Numbers require one byte per digit, plus another byte for each (-], [CHS], or keyed in with the
number.

e Alpha strings require one byte per character, plus one additional byte for the entire string.

Null Bytes

Usually the first byte of an instruction immediately follows the last byte of the previous instruction,
but sometimes there are null bytes between instructions. Null bytes result from:

Deleting an Instruction. When you delete an instruction, the bytes it occupied are replaced by null
bytes.

Inserting an Instruction within a Program. If there are not already null bytes available where you
want to insert a new instruction, seven null bytes are inserted and all subsequent instructions bumped
down seven bytes in memory. The new instruction replaces inserted null bytes and, if the new instruc-
tion requires fewer than seven bytes, the rest of the inserted null bytes remain.

Program Lines That Are Numbers. The computer places a null byte before a string of bytes
representing a number. This is done in case the previous program line is also a number. The null byte
acts as a spacer between the two program lines so they won’t be misinterpreted as a single number.

50 Section 4: Main Memory

Packing

When your program is complete, the only useful null bytes are those separating sequential program
lines that are both numbers. To eliminate unneeded null bytes, execute (-J(-). When memory is
packed, bytes within all programs move up in program memory to replace unneeded null bytes. (User-
keyboard memory is also packed as described below.) Main memory is packed when:

You execute [PACK].
You execute (10

e You clear a program by executing [CLP].

e There are not enough uncommitted registers available to complete an operation that requires
them. Such operations are: increasing the data register allocation, entering a program line, or
assigning a function to a key.

User Keyboard Memory

When you assign a function to a key, that information is stored in User keyboard memory. An assign-
ment for either a function or global label in a plug-in module is also stored in User keyboard memory.
However, when you assign a global label listed in catalog 1 to a key, that information is not stored in
User-keyboard memory, but rather with that global label in program memory.

A register can hold two assignments. The first assignment requires one register; the second assignment
fits with the first assignment in that register. Similarly, each odd-numbered assignment adds another
register to the User keyboard memory, and each even-numbered assignment fills out the register.

An assignment is cancelled when you assign a different function to the same key, or if you explicitly
cancel the assignment as explained in section 1. If both assignments in a register have been cancelled
and main memory is packed, that register becomes an uncommitted register.

Data Register Memory

Allocation

Changing the Allocation. The [SiZE] function allocates main memory registers to data storage.
Decreasing the number of registers loses the data in the largest-numbered registers.

You can change the allocation to data storage by executing [SiZE | and then specifying the number of
registers to be allocated. This function is not programmable.

Section 4: Main Memory 51

Registers Above Rgg

If you allocate more than 100 registers to data storage, registers whose addresses exceed 99 can be
accessed only by indirect addressing. To emphasize this distinction, this manual shows three-digit ad-
dresses in parentheses: R(;5), for example.

Data Register Operations

Store and Recall

There are two sources/destinations for the data in data registers: the stack registers and the Alpha
register. The functions that move data between the stack registers or the Alpha register and the data
registers in main memory are described in this section.

Specifying a Register as a Parameter. Most data register functions access just one register, whose
address must be specified as a parameter. You can specify a register in several ways.

e For Ry, through Rgyg, key in the two-digit address.
e For convenience, Rj; through R;; can be specified with a single key in the top two rows.

o For the stack or LAST X registers, press (-] followed by (X], (Y], (2], (TJ, or [L].

o For any register to be addressed indirectly, press [and then specify the address of the indirect
register by one of the means above.

Store. To copy data from the X-register into a data register, press and then specify the destina-
tion register. The X-register is unchanged; the data previously in the data register are lost.

Recall. To copy data from a data register into the X-register, press and then specify the source
register. The contents of the source register are unchanged. If stack lift was disabled, the recalled data
replace the contents of the X-register; otherwise the stack is lifted.

Alpha Store. To copy the six leftmost characters from the Alpha register into a data register, press
and then specify the destination register. The contents of the Alpha register are unchanged and
the data previously in the destination register are lost.

e A punctuation mark counts as one of the six characters.

e A string of digits in the Alpha register is not a number. If you store Alpha digits in a register, the
contents appear to be a number, but you can’t perform numeric operations on those contents.

o Copying data from the Alpha register to the X-register by using is not like [RCL]—that is,
the stack does not lift and so the previous contents of the X-register are lost.

52 Section 4: Main Memory

To copy more than six characters into a data register you must alter the contents of the Alpha register
before repeating 70| (or you will copy the same characters again). To remove the six characters you
already copied, execute (Alpha shift). The six leftmost characters are shifted out of the Alpha
register.

Alpha Recall. To copy data from a data register into the Alpha register, execute [ARCL | and then
specify the source register. The contents of the source register are unchanged, the data are appended to
the contents of the Alpha register, and character entry is activated. If you want the copied data to start
a new message, execute [CLA | before recalling that data.

For an example of the use of [ASTO| and [ARCL| in a program, refer to the WORD GUESSING GAME
program in section 9.

Register Arithmetic

Register arithmetic enables you to combine a number in the X-register and a number in a data register
without recalling the stored number to the stack.

e Executing nn adds the number in the X-register to the number in R,,,,, and then stores the
sum in R,

e Executing (=] nn subtracts the number in the X-register from the number in R,,, and then
stores the difference in R,,.

e Executing (x] nn multiplies the number in the X-register by the number in R,,, and then
stores the product in R,,.

e Executing (=] nn divides the number in the X-register into the number in R,,, and then
stores the quotient in R,,,,.

As with [STO], the original number in Rnn is lost and the number in the X-register is unchanged. This
allows you to reuse a constant in the X-register without executing [LASTx .

Exchange

Note that and duplicate one number and lose another. To move numbers without duplicat-
ing or losing any data, execute and specify the register whose contents you want to exchange with
the X-register.

Clearing Registers

To clear a single register, store zero in that register. To clear all data registers, execute [CLRG].

Part 11
Programming in Detail

Section 5

Programming Basics

Contents
Loading a Program 54
Keying In a Program 54
Copying @ ROM Program 55
Enlarging Program Memory 55
Executing @ Program 56
Program Lines 56
Nonprogrammable Operations i 57
Positioning Within Program Memory 57
Using P 57
Using Catalog 1 58
Single Step and Back Step 58
Other Methods 59
Editing @ Program 59
Deleting Instructions 59
Inserting Instructions 60
Clearing Programs 60
Programming Examples 61

Loading a Program

Keying In a Program
l. Press to select Program mode.

2. Press (-](¢] to set the computer to the bottom of program memory.

3. Press followed by a global label.

4. Key in instuctions using the Normal, User, and Alpha keyboards just as you would in Execution
mode.

5. Press (-] to complete the program (optional).

54

Section 5: Programming Basics 55

Pressing (-] (-] has the following effects:

e Main memory is packed, ensuring that the maximum number of registers will be available for the
next program or key redefinition.

e An [END] instruction is inserted to complete the last program, creating a null program (consisting
of the permanent .END.) at the bottom of program memory. (One reason to press (-] (] after
loading a program is to give the program its own [END | instruction.)

e The computer is positioned to this null program and displays 00 REG nnn where nnn indicates the
number of registers available for a new program. As you key in instructions, they become a new
program at the bottom of program memory.

The number of available registers also appears with the permanent .END.. If the last program line is
displayed, you can press to see .END. REG nnn. To then continue adding instructions, simply key
them in. To then review your program:

e Press to set the computer to the first line of your program.

e Press to set the computer back to the last line keyed in.

Copying a ROM Program

If you want to alter a program that is in ROM (read-only memory) such as an application module, you
must first copy the program into program memory. To do so, execute [COPY] and specify any global label
in the ROM program. A copy of the ROM program is then added to the bottom of program memory.

Enlarging Program Memory

If there is not enough room in memory to store an instruction being added or a program being copied,
the computer displays PACKING and then TRY AGAIN. If you try again but TRY AGAIN appears a sec-
ond time, do one or more of the following steps to increase the number of registers available for pro-
gram instructions:

e Allocate fewer registers to data storage using [SIZE].
e Delete complete programs using [CLP].
e Cancel User-keyboard assignments other than global labels listed in catalog 1, then execute

or G100

56 Section 5: Programming Basics

Executing a Program

You can execute a program by ensuring that the computer is in Execution mode and then performing
one of the following:

e Pressing and specifying a global label in the program. Execution starts with that global label

e Assigning a global label to a key and then pressing that key when the User keyboard is active.
Execution starts with that global label.

e Positioning the computer to the beginning of the program and then pressing (R/S]. Execution
starts with the current program line.

o Positioning the computer to the beginning of the program and then pressing [SST]. Only the cur-
rent program line is executed and the computer is positioned to the next program line. This single-
step execution is most useful when you’re trying to isolate an error in a program. By checking the
result after each instruction is executed, you can find where the program goes wrong.

e Positioning the computer to the beginning of the program, setting flag 11, and turning off the
computer. When you next turn it on, the computer automatically runs the program starting at the
current program line.

The PRGM annunciator appears in the display while a program is running. Unless a function like
-W | displays a message, the program execution indicator (’-) appears in the display; each time the
program executes a label, the program execution indicator moves one position to the right.

Program Lines

In Program mode the computer displays one line of program memory at a time. Lines are created
automatically as you key in instructions. Each line is assigned a number to indicate its position within
the program, and each separate program has its own set of line numbers. Each line contains a complete
instruction consisting of:

e A function.

e An Alpha string of up to 15 characters.

e A complete number of up to 10 digits, or up to 10 digits plus a two-digit power of 10.
For details about keying in Alpha strings and numbers, refer to section 1, “The Keyboard and Display.”

In a displayed program line, the symbol T indicates that the characters following comprise an Alpha
string or (if preceded by XEQ, GTO, or LBL) a global label. To enter a function into a program line
using its Alpha name you must press first. Otherwise, the computer won’t recognize the Alpha
characters as a function name, but will treat them as an Alpha string and enter them into the Alpha
register when it executes that program line.

Section 5: Programming Basics 57

Nonprogrammable Operations
The following operations are not programmable, but some can be accomplished by other means. Pro-
grammable alternatives are shown in parentheses following the nonprogrammable operation.
e Destructive operations:
(], [DEL].
CLP].
Positioning operations:

0, [eTo] 0, (ssT], [

o All catalogs.

Toggle keys:
(but is programmable).
(PRGM].
(but a program can set or clear flag 27).
(but and are programmable).

e Other nonprogrammable functions:

(copY], (ON], [PACK], (to run a program).
(size].

Positioning Within Program Memory

There are several methods of positioning the computer within Program memory. Some enable you to go
to any program in memory (that is, to any global label) while others enable you to go to any line within
a program. Some work only in Execution mode, while others work only in Program mode. Only one
function, [GTO] (-], can do either job in either mode.

Using (GO (-]

In Program or Execution mode:

e To position the computer to any global label, press (-] and specify the global label. The search
for the label begins with the last global label (as listed by catalog 1) and proceeds upward in mem-
ory, stopping at the first matching label encountered.

o To position the computer to line number nnn of the current program, press [GT0O] (-] nnn. If nnn
exceeds the line number of the last line in the program, the computer is positioned to the last line.

To position the computer to line 1nnn (the line number exceeds 999), press (GT0 | (-] (EEX]. When
the computer displays GTO .1__ _, key in nnn.

58 Section 5: Programming Basics

Using Catalog 1
In a few cases you can’t use (-] to position the computer to the desired program. Such cases
include:

e The program contains no global labels.

o The desired label is duplicated later in program memory, so that (-] always finds the duplicate
label first.

e You've forgotten the exact spelling of the global label.

You can position the computer to any global label or [END] statement in program memory using catalog
1 in Program or Execution mode as follows:

l. Press 1 to display all global labels and [END] statements in program memory.
2. To speed up the listing, press any key other than or (R/S].

3. Press to halt the listing at the desired global label or [END]| statement.

4. To display the next item or the previous item in the catalog listing, press or

5. Press to position the computer to the displayed item.

If a program doesn’t contain any global labels, follow the five steps above to position the computer to
the program’s statement. (When two statements appear sequentially, the second state-
ment belongs to a program without global labels.) You should then insert a global label at the start of
the program by pressing (-] 000 and then (in Program mode) keying in the global label.

Single Step and Back Step

In Program mode you can position the computer to the next program line or to the previous program
line by pressing or

e Press to position the computer to the next program line. If the current program line is the
last program line, pressing positions the computer to the first program line (line 01).

e Press to position the computer to the previous program line. If the current program line is
the first program line (line 01), pressing positions the computer to the last program line.

01 LBLTABC
Pressing when the computer is . Pressing when the computer is
positioned at the bottom of the pro- . positioned at the top of the program
gram moves the calculator back to . moves the calculator to the end of
the beginning of this program. . this program.
16 END

Section 5: Programming Basics 59

Other Methods

When the computer is in Execution mode you can position it within program memory by using any of
the following methods:

Positioning to a Global Label. Press and specify the global label.

Positioning to an Assigned Global Label. If a global label is assigned to a key, hold down that
redefined key while you press [(R/S], and then release the redefined key.

Positioning to a Numeric Label in the Current Program. To position the computer to nn,
press nn. The computer searches for nn (as described in section 7, “Branching”) and stops at
the first matching label encountered.

Positioning to the Top of the Current Program. To position the computer to line 00, press

The computer displays 00 REG nnn, indicating that there are nnn registers available; if you key in an
instruction, that instruction becomes line 01. This is the easiest way to add an instruction at the very
beginning of a program.

Editing a Program

All program editing—both deleting and inserting instructions—takes place in Program mode.

Deleting Instructions

Deleting Single Lines. To delete a single instruction, position the computer to the desired program
line, and then press [«]. That program line is deleted, the computer is positioned to the previous line,
and the line number of each subsequent instruction is reduced by one.

When deleting a few lines, start with the last (largest-numbered) line to be deleted. In the example
below, suppose that you want to delete lines 02 through 04. At left, the computer is positioned to line
04. Pressing deletes line 04 and positions the computer to line 03; pressing [(«] again deletes line 03
and positions the computer to line 02; and pressing a third time deletes line 02 and positions the
computer to line 01.

01 LBLTAREA

02 Xt2 01 LBLTAREA

03 PI 02 Xt2 01 LBLTAREA
Current Program [" 03 PI 02 X12 01 LBLTAREA
Line (displayed)

05 END 04 END 03 END 02 END

60 Section 5: Programming Basics

Deleting Multiple Lines. To delete a long sequence of instructions:

1. Position the computer to the first (smallest-numbered) line to be deleted.

2. Execute (delete).

3. Specify the number of lines to be deleted. To delete more than 1000 lines, press (EEX]. When the
computer displays DEL 1__ _, key in the remaining three digits.

In the previous example, lines 02, 03, and 04 are deleted one by one. Alternatively you could position
the computer to line 02 and execute 003. This deletes lines 02, 03, and 04, leaving the computer
positioned to the previous line (line 01). The line number of each subsequent instruction is reduced by
three.

If you execute nnn when there are fewer than nnn program lines following the current line, the
current line and all subsequent lines except are deleted.

Inserting Instructions

To insert an instruction in a program, position the computer to the existing line that you want the new
line to follow, and then key in the new instruction. (If you just deleted an instruction using [«] and now
you’re replacing it, the computer is already properly positioned.) The new instruction becomes the cur-
rent line, and the line number of each subsequent instruction is increased by one.

When inserting several instructions, start with the first (smallest-numbered) line to be inserted. Sup-
pose that you want to restore the instructions deleted in the previous example. At left, the computer is
positioned to line 01. As each instruction is keyed in, it is inserted after the previous current program
line and becomes the new current program line.

01 LBLTAREA
01 LBLTAREA 02 Xt2

01 LBLTAREA 02 Xt2 03 PI
Current Program ["o1") g TAREA | [02 X12 03 PI 04 %
Line (displayed)
02 END 03 END 04 END 05 END

Clearing Programs

The nonprogrammable function (clear program) will clear one program.

Section 5: Programming Basics 61

Execute and specify any global label in the program to be cleared. The computer then:

1. Searches upward through program memory for the specified global label, beginning with the last
global label (as listed by catalog 1).

2. Deletes all instructions (line 01 through [END]) in the first program encountered that contains the
specified global label.

3. Packs main memory.

Executing and pressing without specifying a global label clears the current

program.

Programming Examples

Section 9 contains five sample programs. The five programs are:
RPN PRIMER, to aid in understanding and using the stack;
FINANCIAL CALCULATIONS, converts your HP-41 into a financial calculator;

CURVE FITTING, fits data to one of four curves: straight line, exponential, logarithmic or power;
WORD GUESSING GAME, a version of the word game “hangman;”

BLACKJACK, a simple version of the card game.

These programs demonstrate many of the basics described in this section and the other sections in this
manual.

Contents
Introduction 62
Types of Flags 63
User Flags (00 through 10) 63
Control Flags (11 through 29) 63
System Flags (30 through 55) 65
Summary of Flag Status 65
Introduction

A flag has only two states, set and clear. These states can be interpreted as “on/off” (like a switch), as
“yes/no” (like a decision), or as “1/0” (like a binary digit, or bit). The computer has 56 flags, grouped
into three types according to use.

User Flags. You can both test and alter user flags. Their status is altered only by your instructions.

Control Flags. You can both test and alter control flags. The computer resets some control flags to
default status each time you turn it on, and alters some in the course of operation.

System Flags. You can test system flags but you can’t alter them.

You can set and clear flags 00 through 29, which are the user and control flags.

e To set a flag, press and then specify the flag number.

e To clear a flag, press and then specify the flag number.
You can test flags 00 through 55 by pressing and then specifying the flag number. The display
shows YES if the flag is set, or NO if the flag is clear. Flag tests like are used primarily to control

program execution, as described in section 7, “Branching.”

62

Section 6: Flags 63

Types of Flags

User Flags (00 through 10)

The user flags are solely for your own use; what they mean depends entirely on how you use them. For
example, a program can ask whether the user wants English or metric units, and then store the user’s
response as the status of one user flag. Afterwards, whenever the program needs to check which units
to use, it can test that user flag.

The state of each user flag is maintained by Continuous Memory. Once you set or clear a user flag, its
status is fixed until you alter it. When any of the first five flags is set, the corresponding annunciator
(0, 1, 2, 3, or 4) appears in the display.

Two programs in section 9, RPN PRIMER and BLACKJACK, use the user flags. RPN PRIMER uses flag 5
to represent the status of the stack: enabled or disabled. The BLACKJACK program uses flags 6 through
9 to represent various playing situations. (The meaning of each flag is listed after the program listing.)

Control Flags (11 through 29)

The control flags have specific meanings to the computer, listed below. The status of these flags repre-
sent certain operating conditions and options. You can alter these flags to indicate your choice of op-
tions; the computer alters some of these flags to indicate conditions, which you can then check by
testing the flags.

Flag 11: Automatic Execution. Flag 11 allows a program to run automatically. If you set flag 11
before you turn off the computer, the following will happen when you next turn it on:

® A tone sounds.

e Program execution begins from the current program line.

e Flag 11 is cleared.
Flags 12 through 20: External Device Control. These flags direct the operation of external de-
vices that are controlled by the computer. All flags for external device control are cleared each time you

turn on the computer. The precise meaning of these flags depends on the particular devices that are
present; refer to the appropriate manuals for details.

Flag 21: Printer Enable. Flag 21 allows your program to control how functions like and
are executed, depending on whether an output device is present. For details, refer to appendix
C, “Printer Operation.”

64 Section 6: Flags

Flags 22 and 23: Data Input. These flags allow a program that prompts for input to determine the
the user’s response.

e Flag 22 is set when numbers are keyed into the X-register.

e Flag 23 is set when characters are keyed into the Alpha register.

These flags are cleared automatically only when you turn on the computer. If you intend to test these
flags, you should clear them before prompting for the response.

The FINANCIAL CALCULATIONS program and BLACKJACK program in section 9 use flag 22.

Flags 24 and 25: Error Ignore. Normally, an error condition halts program execution. These flags
allow you to avoid unnecessary program halts and to use error conditions as a programming tool.

o If flag 24 is set, the computer ignores all OUT OF RANGE errors. This error normally results from
any calculation (except statistical accumulations) that produces a number x such that
|x| > 9.999999999 X 1099, If flag 24 is set, +9.999999999 x 10% is returned as an approximation
to the correct answer, and program execution continues.

Flag 24 is cleared each time you turn on the computer. Once you set flag 24, it remains set until
you explicitly clear it or turn off the computer. If you want to branch to your own error subroutine
rather than use +9.999999999 x 10% as an approximation, use flag 25.

o If flag 25 is set, the computer ignores only one error of any kind and then clears flag 25. The
command that caused the error is not executed. Flag 25 is cleared each time you turn on the
computer.

If both flags 24 and 25 are set, an OUT OF RANGE result will be handled by flag 24—flag 25 will
not be cleared. Note that if flag 25 is set but not flag 24, an OUT OF RANGE result will not cause
+9.999999999 X 10% to be placed in the appropriate register.

You can detect an error by setting flag 25 just before a command and, just after the command,
testing if flag 25 was cleared. (Generally you should test and clear flag 25—it’s dangerous to ignore
unanticipated errors.) This enables a program to branch rather than stop execution in case of an
error.

Flag 26: Audio Enable. When flag 26 is set, , [TONE], alarms, and the stopwatch produce
audible tones. Flag 26 is set each time you turn on the computer. (This is the only control flag whose
default status is set.) You can silence the computer by clearing flag 26.

Flag 27: User Keyboard. Flag 27 is set when the User keyboard is active—that is, when the USER
annunciator is displayed. A program can check or alter this flag exactly as you can check the annun-
ciator or press (USER]. Flag 27 is maintained by Continuous Memory.

Section 6: Flags 65

Flags 28 and 29: Display Punctuation. These flags control the use of periods and commas in nu-
meric displays and are maintained by Continuous Memory. For details, refer to “Display Format” in
section 1.

RPN PRIMER, CURVE FITTING, WORD GUESSING GAME, and BLACKJACK, in section 9, clear flag 29
so that no separator marks will be displayed.

System Flags (30 through 55)

The system flags are primarily for internal use by the computer; their utility to the user is limited. You
can test system flags, but several always test clear. You can’t directly alter individual system flags, but
you can save and restore the status of those that represent user options. Listed below are ways you can
use some of the system flags.

Flags That Represent Options. Some external devices controlled by the computer use system flags
to represent options relating to those devices; refer to the appropriate manuals for details. The follow-
ing system flags represent options in the computer:

e Flags 36 through 39 represent the number of displayed digits, described in section 1.

e Flags 40 and 41 represent the display format, described in section 1.

e Flags 42 and 43 represent the angular mode, described in section 3.
Flags That Represent Conditions. The following flags provide information that is useful for some
programs:

e Flag 44 is set when [ON] (continuous on) is executed.

e Flag 48 is set when the Alpha keyboard is active—that is, when the ALPHA annunciator is
displayed.

e Flag 49 is set (and the BAT annunciator is displayed) when battery power is low. A long-running
program can occasionally test flag 49 and execute [OFF | if flag 49 is set. Otherwise, if a program
continues to run when battery power is low, the memory contents of the computer can be affected.

e Flag 50 is set when a message is displayed.

e Flag 55 is set if a printer is present. This flag works with flag 21 (Printer Enable); their interaction
is described in appendix C, “Printer Operation.”

Summary of Flag Status

The chart on the next page indicates flag status when Continuous Memory has been cleared (“Reset”)
and whenever you turn on the computer (“Turn-On”). In addition to clear and set, there are two flag
states coded as follows:
M = Maintained by Continuous Memory.
? = Dependent on other conditions.

66

Section 6: Flags

Summary of Flag Status

Flag Number Flag Name Status at Reset, at Turn-On

00-10 User Flags Clear M
11 Automatic Execution Clear Clear

12-20 External Device Control Clear Clear
21 Printer Enable ? ?
22 Numeric Data Input Clear Clear
23 Alpha Data Input Clear Clear
24 Range Error Ignore Clear Clear
25 Error Ignore Clear Clear
26 Audio Enable Set Set
27 User Keyboard Clear M
28 Display Puncuation Set M
29 Separator Mark Set M
36 Number of Digits Clear M
37 ” Set M
38 ” Clear M
39 ” Clear M
40 Display Format Set M
41 ” Clear M
42 Angular Mode Clear M
43 ” Clear M
44 Continuous On Clear Clear
48 Alpha Keyboard Clear Clear
49 Low Battery ? ?
50 Message Clear Clear
55 Printer Existence ? ?

Section 7

Branching
Contents
Introduction 68
Branching to a Label 69
Global Labels 69
Global Label Searches 69
Local Labels 69
Local Label Searches 70
Bytes for a |[GTO | Instruction 70
Calling a Subroutine 70
The Subroutine Return Stack 72
Global-Label Subroutine Searches 72
Bytes for an Instruction 73
Conditional Functions 73
Flag Tests 74
COMPANISONS . . . o 74
LOOPING ... 74
Looping Using Conditional Functions 75
Loop-Control Functions 75
Introduction

Branching occurs whenever program execution jumps to an instruction other than the next program
line—that is, whenever program steps are not executed sequentially. Two types of functions cause
branching:

e Executing [GTO] label or label causes program execution to branch to the specified label.
e Executing a flag test, comparison, or loop control function can cause program execution to skip the

next program line, depending on whether a certain condition is true.

Often these two types of functions are used together: a flag test can be followed by [GTO | /abel, so that
the status of the specified flag determines whether program execution branches to the specified label.
This section describes the use of [GTO] first, next, conditional functions (flag tests and compari-
sons) next, and looping last. For examples of branching, refer to the programs in section 9.

68

Section 7: Branching 69

Branching to a Label

The only purpose of labels is to serve as targets for branching instructions. The two basic types of
labels are global labels, which can be accessed from any program in program memory, and local labels,
which can be accessed only from inside their own program. Any label other than a local Alpha label can
be specified indirectly as well as directly.

Global Labels

Global labels consist of up to seven Alpha characters including digits. Commas, periods, and colons are
not allowed. Single letters from A through J and from a through e are called local Alpha labels and
can’t be used as global labels. However, other single letters or digits are legal global labels. Global labels
require four bytes of program memory plus one additional byte for each character.

Programs are identified by their global labels. Functions that act on entire programs (like [CLP]) re-
quire a global label to specify the program. At the same time, a global label also identifies a particular
line in a program—namely itself. You can branch to different parts of a program from outside that
program if it contains several global labels; any one of these global labels can serve to identify the
entire program.

Global Label Searches

When the computer executes [GT0 | followed by a global label, it first searches within program memory.
The search begins with the last global label (as listed by catalog 1) and proceeds upward through pro-
gram memory, stopping at the first label that matches the specified label. The search is in the opposite
order from the catalog 1 listing. If there are two global labels using the same characters, the higher
label (listed first by catalog 1) is never found because the search always stops at the lower label.

If the computer reaches the top of program memory without finding the specified label, it then searches
in catalog 2. If a program in a plug-in module or peripheral device includes the specified global label,
execution is transferred to the module or device and continues from that label.

Local Labels

Local labels are the internal markers in a program, used for branching within the current program. The
three types of local labels are described first, followed by how the computer searches for local labels.

Local Numeric Labels. There are two types of numeric labels, one for branching a limited distance
and another for branching any distance within a program.

e Labels 00 through 14 are short-form numeric labels, requiring only a single byte of program mem-
ory. Use them only when the distance in program memory from the instruction to the label is
112 bytes or less.

e Labels 15 through 99 are long-form numeric labels, requiring two bytes of program memory. They
can be used for branching any distance within a program.

70 Section 7: Branching

Local Alpha Labels. Local Alpha labels require two bytes of program memory and can be used for
branching any distance within a program. They are designed for manual execution: when the User
keyboard is active, a local Alpha label is automatically assigned to each key on the top two rows (as
described in “The Top Two Rows” in section 1 and demonstrated in the FINANCIAL CALCULATIONS
program in section 9). You can then use these keys to execute the corresponding local Alpha labels in
the current program.

Local Label Searches

Searches for local labels occur only within the current program. To find a local label, the computer first
searches sequentially downward through the current program, starting at the instruction. If the
specified label is not found before reaching the end of the program, the computer continues the search
from the beginning of the program.

A local label search can consume a significant amount of time, depending on the length of the current
program. To minimize the search time, the computer records the distance in program memory from the

instruction to the specified local label when the instruction is first executed. This elimi-

nates the search time for subsequent executions of that instruction.
Bytes for a Instruction
The number of bytes of program memory required by a instruction depends on which type of
label is specified:

o A instruction specifying a global label of n characters requires 2 + n bytes.

o A instruction specifying a long-form numeric label or a local Alpha label requires three bytes.

o A instruction specifying a short-form numeric label or an indirect address requires two bytes.

Calling a Subroutine

A program instruction consisting of followed by a label is a special type of branch named a
subroutine call. label and label are similar in that:
e Both transfer program execution to the specified label.

o All types of labels that can be specified for can also be specified for (XEQ].

section 7: Branching 4

A subroutine call is special because of what occurs after has transferred execution to the specified
label: the next or [END | instruction executed will return program execution to the instruction that
follows the instruction, as illustrated below.

Program ABC branches to program DEF, so Program ABC calls program DEF as a sub-

execution stops when the [END] instruction is routine, so execution returns to ABC when
encountered at the end of DEF. the [END] instruction is encountered at the
end of DEF.
01 LBLTABC 01 LBLTDEF 01 LBLTABC 01 LBLTDEF
. - : Py Py
10 GTO'DEF 40 END 10 XEQ'DEF ~ 40 END
11 STO 01 11 STO 01 <
. . |
: : /
30 END 30 END

Using subroutines saves space in program memory. The instructions in the subroutine appear only
once, but they can be executed any number of times both within a program and (if the subroutine
begins with a global label) from any number of programs.

Either or [END | causes execution to return to the instruction following the subroutine call. How-
entire programs; marks only the end of a subroutine within a program. In the following program
terminates the subroutine and terminates program execution. (In practice, there would be
no reason to execute lines 22 through 29 as a subroutine because they are executed only once.)

01 L?LTABC

10 szQ 00 —

11 STO 01—
A /

20 RTN

21 LBL 00 <

22 SIN

A
30 END

If you call ABC as a subroutine from another program, execution returns to the calling program when
20 RTN is executed. That is, if a program calls a subroutine that calls a second subroutine, the second
subroutine is completed and execution returns to the first subroutine; then the first subroutine is com-
pleted and execution returns to the calling program.

72 Section 7: Branching

Alternatively, you can ensure that execution will stop at line 20, even if ABC is called as a subroutine,
by entering 20 STOP. Press in Program mode to enter a [STOP] instruction.

The Subroutine Return Stack

When an instruction calls a subroutine, the computer remembers the location in program memory
of that instruction, so that execution can return there when the subroutine is completed. While
the subroutine is being executed, this return location is stored in the subroutine return stack. When the
subroutine is completed and execution returns to the instruction, the location of the
instruction is removed from the subroutine return stack.

Subroutine Limits. When a subroutine calls another subroutine, all pending return locations in the
subroutine return stack are “pushed up” in the stack. The subroutine return stack can hold six pending
return locations, so the computer can return from subroutines up to six levels deep.

LBLTMAIN LBL 01 L?L 02 LB L 04 LBL 05 LBL 06
i / ‘
ﬁ XEQ 03 /
Y /
XEQ 017 l XEQ 05
l XEQ 02 XEQ 04 XEQ 06
RTN RTN RTN RTN N RTN RTN

Loss of Subroutine Returns. Pending return locations are lost from the subroutine return stack
under the following conditions.

e If there are already six pending return locations in the subroutine return stack when a subroutine
is called, the earliest return location is lost from the stack. In this case, program execution never
returns to the instruction that called the first subroutine; instead, excution halts when the
first subroutine is finally completed because there are no further return locations in the stack.

e All pending return locations are lost when you manually execute a program. Therefore, if you stop
a program ABC in the middle of a subroutine and manually execute a program DEF, it will be
impossible to resume ABC. DEF need not be a different program from ABC; for example, executing
a local Alpha label by pressing a key on the User keyboard clears the subroutine return stack.

Global-Label Subroutine Searches

When the computer executes followed by a global label, it first searches the contents of program

memory just as it does for . However, if the specified label isn’t found in program memory, the
next stages of the search caused by differ from the search caused by . The order of the

complete search caused by corresponds to the numbers of catalogs 1, 2, and 3.

Section 7: Branching 73

Searching Catalog 1. The search begins with the last global label (as listed by catalog 1) and pro-
ceeds upward through program memory, stopping at the first label that matches the specified label.
Execution then resumes at that matching label.

Searching Catalog 2. If the specified label isn’t found in program memory, the computer then
searches catalog 2 for a global label or function name that matches the specified label. (Refer to appen-
dix D for a detailed explanation of the contents of catalog 2.) Execution then resumes at that matching
label, or the function with the matching name is executed.

Searching Catalog 3. If the specified label isn’t found in catalog 2, the computer then searches cat-
alog 3 for a function whose name matches the specified label. If such a function is found, it is executed;
otherwise a NONEXISTENT error occurs.

Bytes for an Instruction

The number of bytes of program memory required by an instruction depends on which type of
label is specified.

e An instruction specifying a global label of n characters requires 2 + n bytes.
e An instruction specifying a local label requires three bytes.
e An instruction specifying an indirect address requires two bytes.

Conditional Functions

Flag tests and comparisons are conditional functions. They express a proposition that is true or false
depending on current conditions, and their effect depends on whether the proposition is currently true
or false.

e If you manually execute a conditional function, the computer displays YES if the proposition is
currently true or NO if the proposition is currently false.

e If a program executes a conditional function, the result follows the rule: DO IF TRUE. The program
line that follows the conditional function is executed if the proposition is currently true, or else is
skipped if the proposition is currently false. That is, DO the next instruction IF the proposition is
TRUE.

Is Flag 01 Set?
/

|
FS? 01 \ If NO (flag 01 is clear):
Skip one line before resuming execution.

If YES (flag 01 is set):
Continue with the next line.
(Do If True.)

- < <« =

74 Section 7: Branching

Flag Tests
The following functions can test any flag.

nn Is flag nn set? (00 < nn < 55)

FC?] nn Is flag nn clear? (00 < nn < 55)

Two functions test and then clear a flag. They can’t act on system flags (30 through 55) because you
can’t alter system flags.

(FS7C] nn Is flag nn set? Clear flag nn. (00 < nn < 29)
0

(Fc2Cc] nn Is flag nn clear? Clear flag nn. (00 < nn < 29)

Comparisons

Comparing X with Zero. The following five functions compare the number in the X-register with
Zero:

[(x<07] (x<=07) (x#0?] [x>07]

Comparing X with Y. The following five functions compare the number in the X-register with the
number in the Y-register.

Two of these functions, and (X # Y?], can compare Alpha data as well as numeric data. Executing

any of the three other functions with Alpha data in the X- or Y-register causes an ALPHA DATA error.

Looping

A loop is a sequence of instructions that starts with a label and ends with a branch back to that label.
The simplest case is an infinite loop such as the following program.

01 LBLTLOOP
02 BEEP

03 GTO'LOOP
04 END

Once started, this program would run until the batteries expired. Infinite loops should generally be
avoided, but loops that repeat themselves until some condition is met are a powerful programming tool.

Section 7: Branching 75

Looping Using Conditional Functions

When you want to perform an operation until a certain condition is met but you don’t know exactly
how many times to repeat the operation, you can create a loop with a conditional function just before
the instruction. For example, the following program subtracts one from a number, tests the result,
and repeats the loop if the result is positive. As soon as the number is reduced to zero (assuming that
the original number was positive), the program exits the loop and beeps.

01 LBLTABC
02 1

03 —

04 X>07?

05 GTOTABC
06 BEEP

07 END

Loop-Control Functions

When you want to execute a loop a specific number of times, you can use special functions for that
purpose instead of the conditional functions in the previous examples. These special functions are
(increment, skip if greater) and [DSE | (decrement, skip if equal). Both functions use a control number in
a register to control looping. This register can be a data register in main memory, a stack register, or
the LAST X register; it can be specified indirectly as well as directly.

tiiii is the current counter value. Each time or [DSE | is executed, iiiii is incremented (for
) or decremented (for [DSE]) by the value of cc. The part iiiii can consist of one through five

digits.

fff is the final counter value. Each time or [DSE | increments or decrements iiiii, the

100, 020, or 009.

cc is the increment/decrement value. If cc is 00 (or unspecified), the computer uses a default
value of 01 instead. If specified, cc must consist of two digits like 30 or 03.

When the computer executes , it first increments iiiii by cc, and then tests if the resulting value of

The WORD GUESSING GAME in section 9 uses loop-control numbers and [DSE | to break a word into
letters and store the letters in sequential registers.

Section 8

Alpha and Interactive Operations

Contents
Introduction 76
Requesting Input 76
USING [PROMPT |« oo ettt e e e e e e e 77
USING [PSE] ..o 77
Producing Output 77
USING [AVIEW | oo 77
UsSiNg [VIEW | oo 78
UsINg [PSE| 78
Using [TONE] and [BEEP | 78
Introduction

This section covers the use of the Alpha register: the interaction between the user and a program.
Interaction between the user and a program involves the functions that display a message and the
functions that interpret the user’s response.

Moving data between the Alpha register and the X-register involves the [ARCL] and [ASTO | functions.

Executing [ARCL | X copies the contents of the X-register into the Alpha register; [ASTO| X copies six
characters from the Alpha register into the X-register. (Digits placed in the X-register by [ASTO]| are
characters and cannot be used in computations.) The functions [ARCL] and [ASTO |, which in general
access data registers, are discussed in section 4, “Main Memory.”

Requesting Input

There are several functions and combinations of functions that request input from the user. In compar-
ing the alternatives there are two issues:

1. Is program execution stopped until a response is given, or does execution eventually continue even
if no response is given?

2. What types of response are possible?

The alternatives below are described in terms of these two issues.

76

Section 8: Alpha and Interactive Operations 77

Using

When [PROMPT | is executed, the computer displays the contents of the Alpha register and stops execu-
tion. The displayed message should indicate the type of response that is expected: numeric input, Alpha
input, a procedure, a keystroke that the program will interpret, or many other possibilities. Before
considering the specific examples below, note that there are only two ways to restart program
execution:

e You can press to restart execution beginning with the program line that follows [PROMPTJ; or
e You can branch to a local Alpha label by pressing the corresponding key in the top two rows.
Execution resumes at the local Alpha label.

The WORD GUESSING GAME in section 9 uses [PROMPT | to ask the user for a word and letters.

Using

You can use (pause) much like [PROMPT |, but with the following differences:

° delays execution for slightly less that a second. Keying in a number or Alpha string during a
pause causes the pause to be repeated; executing a function halts program execution.

e Normally, displays the X-register. To display a message that is in the Alpha register, either
[AVIEW] or must precede [PSE |.

A string of consecutive instructions allows more time to begin a response. Each time is
executed, the PRGM annunciator blinks once. Digit and character entry are terminated at the end of
each pause; if you key in a few digits, wait for more than a second, and then key in more digits, the two
groups of digits will be treated as two separate numbers.

Producing Output

The following functions allow the computer to display a message and generate audible signals.

Using [AVIEW]

When a program executes [AVIEW |, the computer displays the contents of Alpha register until
(clear display) clears the display or another message is displayed. Executing [AVIEW | might also stop
program execution, depending on the status of flags 21 (Printer Enable) and 55 (Printer Existence) as
described in appendix C. All the programs in section 9 use [AVIEW] to display program results.

78 Section 8: Alpha and Interactive Operations

Using

To display the contents of R,,,, without recalling the register’s contents to the X-register, execute

nn. The register to be viewed can also be specified indirectly. When a program executes nn, the
computer displays the contents of R,,, until [CLD] clears the display or another message is displayed.
Like , ’s operation is affected by flags 21 and 55.

Using

PSE] can be used to briefly display a message. When [PSE | is executed, program execution halts for
slightly less than a second.

e If the display already contained a message (rather than the program execution indicator), this
message remains displayed.

o If there was no message in the display and the Alpha keyboard is active, the contents of the Alpha
register are displayed.

e Otherwise, the contents of the X-register are displayed.

Using and

Executing [TONE | n produces a single audible tone with a pitch specified by the value of n. The lowest
pitch is produced when n = 0, the highest when n = 9.

Executing produces a fixed sequence of four tones.

Section 9

Sample Programs

Contents
INtrodUCHiON 80
RPN PRIMER .. . 82
Running RPN PRIMER 82
Program Highlight 85
Program Listing 85
FINANCIAL CALCULATIONS 88
Running FINANCIAL CALCULATIONS 90
Program Highlight 91
Program Listing 92
CURVE FITTING ... e 97
Running CURVE FITTING 99
Program Highlight 102
Program Listing 103
WORD GUESSING GAME e 107
Running WORD GUESSING GAME 107
Program Highlight 108
Program Listing 109
BLACKJACK . 112
Running BLACKJACK 113
Program Highlights 114
Program Listing 116
Introduction

This section contains five programs to help you understand programming techniques on the HP-41.
These programs are useful in their own right, but they also have been referenced throughout the man-
ual to demonstrate a function or technique. The five programs are:

1. RPN PRIMER—An aid to understanding and using RPN logic, by illustrating the four stack reg-
isters. It will help when you are learning how you can use the stack in calculations and programs.

80

Section 9: Sample Programs 81

2. FINANCIAL CALCULATIONS—Converts your HP-41 into a financial calculator. The program, aside
from being useful, demonstrates the use of local alpha labels and a procedure known as inter-
changeable solutions, whereby the HP-41 knows whether to store the value that is in the X-register
or calculate a new value.

3. CURVE FITTING—Four curve fitting routines: straight line, exponential, logarithmic or power
curve. The program demonstrates the use of indirect addressing to determine how to process the
data, then uses one routine to calculate a, b and R2.

4. WORD GUESSING GAME—Demonstrates the use of the alpha functions [AOFF], [AON], [ARCL],

(ASHF], , and . Included are routines for breaking a word into letters and putting a
word back together, using [DSE], and indirect addressing.

5. BLACKJACK—A simple version of the card game. Included in this program is a random number
generator.

The programs also demonstrate the use of flags, prompting for information, labeling your results with
alpha labels, branching, storing and recalling information, and writing a program based on an equation.

Each program includes instructions on running the program, examples of using the program, and the
program listing of the steps that you must key in to the HP-41. (These listings include comments about
the steps.) The conventions used in these instructions, examples and program listings are the same as
the conventions inside the front cover and used throughout the manual.

The instructions for running each program are listed in a five column table. The first column, labeled
Step, is the instruction step number. Column two is the Instruction column, which gives instructions
and comments concerning the operations to be performed.

The Input column specifies the input data, or appropriate alpha response to a prompt. The Function
column specifies the keys to be pressed after keying in the input data. The last column, Display, shows
all prompts and results that appear in the display.

Above and at the right of the instruction table is a box specifying the minimum size and the display
format expected by the program. The HP-41CV Owner’s Manual tells you how to use [S1ZE | and [Fix].

These programs, and five more, are also available in the Standard Applications Module (part number
00041-15001). Bar code for these programs is included in the HP 82153A Wand Owner’s Manual.

82 Section 9: Sample Programs

RPN PRIMER

This program is an aid to understanding and using RPN, the logic system in the HP-41. All four
registers of the operational stack are visible simultaneously so that the effect on the stack of a given
keystroke sequence can be seen rather than inferred. The functions in the program should be assigned
as shown on the keyboard below. These functions all exit to a routine that displays the stack. You can
observe the effect on the stack of any function by executing the function, then the routine STACK. The
only operational differences between this redefined calculator and the actual one are that only single-
digit numbers can be keyed in and that and address only a single register (thus requiring no
address).

Running RPN PRIMER

r ‘.' V. . _N

HEHEEHEHHA

===
AEES
/e e
M6 e
M M@ A |
Mo | e

l%

Section 9: Sample Programs 83
STATUS: 010, 02
Step Instructions Input Function Display

1 Set status (above) and key in the pro-

gram (pages 85-88).
2 Assign the routines to the following keys

and activate the User keyboard.* These

User assignments result in the keyboard

shown on the previous page.

SWAP 9 9

ST 8 8

RDWN 7 7

Et ENTER4 6 6

RC 5 5

CLR (<] 4 4

CHSN [cHS 3 3

PL 2 2

Mi =) 1 1

MU =] 0 0

DI (=) LSTX

STACK

3 Press desired keystroke sequence and

watch stack contents change.
4 | The functions RUP and CLSTK are ob-

tained by: RUP

and:

CLSTK

(or you could also assign these functions
to keys).

* To assign a function, say SWAP, to a key, say the key:

[ALPHA] SWAP [ALPHA] [X<>Y].

84 Section 9: Sample Programs

Example 1:

Evaluate the expression

for b = 3
Keystrokes

CLSTK

ENTER+#

LASTX

CHEE® "
F0] E

w

_{

>

Example 2:

2 +0b)b

8 —b

Display

X:0 Y:0 Z:0 T:0
X:2 Y:0 Z:0 T:0
X:2Y:22Z:0T:0

X:3Y:22Z:0T:0
X:5 Y:0 Z:0 T:0
X:3Y:52Z:0T:0
X:15 Y:0 Z:0 T:0
X:8 Y:15 Z2:0 T:0
X:3Y:8 Z:15 T:0
X:5 Y:15 Z:0 T:0
X:3 Y:0 Z:0 T:0

Without disturbing the above results, compute

Keystrokes

ENTER#

ENTER ¢

After an [ENTER#], the stack does not lift
when new data is keyed in.

2+409-17

6 — 4

Display

X:9 Y:3 Z:0 T:0
X:9 Y:9 Z:3 T:0
X:7 Y:9 Z:3 T:0
X:2 Y:3Z:0T:0
X:4 Y:2 Z:3 T:0
X:8 Y¥:3 Z2:0 T:0
X:2 Y:8Z:3T:0
X:10 Y:3 Z:0 T:0
X:6 Y:10 Z:3 T:0
X:6 Y:6 Z:10 T:3

Keystrokes

4

=]
(=]

Example 3:

Convert the complex number 3 + 4i to polar form.

Keystrokes

4

3

[R

+P

Program Highlight

Display

X:4 Y:6 Z:10 T:3
X:2 Y:10 Z:3 T:3
X:5Y:3Z:3T:3

Display

X:4 Y:5 Z:3 T:3
X:4 Y:4Z:5T:3
X:3Y:42Z5T:3
5

X:5 Y:53 Z:5 T:3

Section 9: Sample Programs 85

Notice that the answer remaining from
Example 1 did not cause a difficulty in Exam-
ple 2.

Remember that is assigned to [R/S].

One especially useful function in this program is the display routine STACK (lines 57-67). You might
like to keep it handy to view the entire stack from time to time as you solve your own problems.

Program Listing

01+LBL “CLSTK”

02 CLST
03 GTO 14

04+LBL “1”
05 FS?C 05
06 CLX

07 1

08 GTO 14

09+LBL “2”
10 FS?C 05
11 CLX

12 2

13 GTO 14

14¢LBL “3”
15 FS?C 05
16 CLX

17 3

18 GTO 14

Lines 01 through 03 clear the stack.

Line 05 checks if lift is disabled (if flag 5 is set).
If it is, line 06 clears the X-register. If not, line
06 is skipped. Line 07 inputs a 1.

Lines 09 through 13 input a 2.

Lines 14 through 18 input a 3.

86

Section 9: Sample Programs

194LBL 4"

20 FS?C 05
21 CLX

22 4

23 GTO 14

24+LBL “5”
25 FS?C 05
26 CLX

27 5

28 GTO 14

29¢LBL “6”
30 FS?C 05
31 CLX
326

33 GTO 14

34+LBL “7”
35 FS?C 05
36 CLX
377

38 GTO 14

39+LBL “8”

40 FS?C 05
41 CLX

42 8

43 GTO 14

44+ BL 9’

45 FS?C 05
46 CLX

47 9

48 GTO 14

49¢LBL “0”
50 FS?C 05
51 CLX

52 0

53 GTO 14

54+LBL 13
55 CF 05

Lines 19 through 23 input a 4.

Lines 24 through 28 input a 5.

Lines 29 through 33 input a 6.

Lines 34 through 38 input a 7.

Lines 39 through 43 input an 8.

Lines 44 through 48 input a 9.

Lines 49 through 53 input a 0.

Enable stack lift by clearing flag 05.

56¢LBL 14
57+LBL “STACK”
58 “X:"

59 ARCL X
60 | Y
61 ARCL Y
62 | 2
63 ARCL Z
64 ‘I 1"
65 ARCL T
66 AVIEW
67 RTN

68¢LBL “Et”
69 SF 05

70 ENTER?
71 GTO 14

72+LBL “RDWN"
73 RDN
74 GTO 13

75¢LBL “SWAP”
76 X<>Y
77 GTO 13

78+LBL “RUP”
79 Rt
80 GTO 13

81+LBL “PL”
82 +
83 GTO 13

84+LBL “MI"
85 —

86 GTO 13
87+LBL “MU”
88 *

89 GTO 13

90+LBL “DI"
91/

92 GTO 13
93+LBL “CLR"
94 SF 05

95 CLX

96 GTO 14

Section 9: Sample Programs 87

Lines 57 through 67 display the stack.

Lines 68 through 71 disable stack lift by
setting flag 05.

Lines 72 through 74 roll down the stack.

Lines 75 through 77 swap X and Y.

Lines 78 through 80 roll up the stack.

Lines 81 through 83 add the contents of the

X- and Y-registers.

Lines 84 through 86 subtract the contents of
X from the contents of Y.

Lines 87 through 89 multiply X and Y.

Lines 90 through 92 divide Y by X.

Lines 93 through 96 disable stack lift and
clear X.

88 Section 9: Sample Programs

97¢LBL “CHSN”
98 CHS
99 GTO 13

100¢LBL “ST”
101 STO 00
102 GTO 13

103+LBL “RC”
104 FS?C 05
105 CLX

106 RCL 00
107 GTO 14

108¢LBL “LSTX"
109 FS?C 05
110 CLX

111 LASTX

112 GTO 14

Lines 97 through 99 change the sign of X.

Lines 100 through 10