ADVANCED CIRCUIT ANALYSIS

 with the HP-42S

FduCALC
27953 Cabot Rd.
Laguna Niguel, CA

ADVANCED CIRCUIT ANALYSIS

Wlth the HP-42S
by Robert R. Boyd

Copyright 1989
Robert R. Boyd
All rights reserved

INTRODUCTION

The purpose of this work is to present a novel method of of circuit analysis developed by the author several years ago. The method is derived from Kirchoff's current law and results in a dimensionless coefficient matrix in place of the conventional admittance matrix. Using this method, matrix elements can be written by inspection of the circuit, without algebralc manipulation.

Section I presents the method of setting up the circuit matrices. Merely by labeling the voltage nodes to be analyzed, and the branch impedances connected to the nodes, the node equations can be written using the principle of superposition. It is not necessary to identify loops, trees, chords, links, etc., of the topology. One merely has to know how many impedances are connected to the node and which impedance is connected to the driving voltage. This information can be obtalned from the cirult diagram. In addition, it is not necessary to convert sources to Norton or Thevenin equivalents.

With linear circuits that contain no dependent sources, the symmetric coefficient matrices using loop or node analysis are very easy to set up. Thls mnemonlc method is presented in just about every undergraduate text on network analysis. However, when dependent sources are introduced, the symmetry disappears along with the mnemonic method. With the technique presented here, the symmetry of the coefficient matrix is of no concern.

Other HP calculators/computers can be used with the material in Section I. Some good choices are the HP-71B/Math Pac, the HP-28S*, or the HP-41CV/X/Advantage module. Of course, any computer that has complex matrix and double precision capabilities can be used as well.

Section II is exclusively for those readers with HP-42S calculators and familiarity with the operation of the calculator is assumed. Most of the circuits given in section I are analyzed with complete descriptions of the main programs. No attempt has been made to minimize the program code. The interested reader will probably see a better way to do it.

- See EduCalc book "Advanced Circuit Analysis with the HP-28S".

A PC AT or XT with P-Spice has some advantages over writing out the node equations and setting up the circuit matrices, no matter how easy and systematic the information hereln makes it. There are also analog design workstations appearing on the market that are absolutely fantastic in their capabllities. However, a PC with P-Splce will run about $\$ 5,000$ while the analog workstations are going for over $\$ 50,000$. The HP-42S sells for under $\$ 100$. Comparing capability per dollar, the method presented here using the HP-42S wins hands down.

NOTICE:
The author and/or EduCALC Mall Store makes no warranty of any kind with regard to this material. The author andor EduCALC Mail Store shall not be llable for errors contalned herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this material.

To my Wife LINDA: Prov 31:10-12
To my daughter JANA: Prov 31:29

TABLE OF CONTENTS

TITLE PAGE
Section I - Setting up The Circuit Matrices 1
Example 1 - Solve for Vo by Superposition 1Example $2-\underset{\text { Solve for }}{ } \begin{aligned} & \text { (} \mathrm{N}=4)\end{aligned}$
Example 3 - Ladder Network 4
Example 4 - Lattice Network 6
Example 5-Twin-T Network 8
Example 6 - Collector Feedback 9
Example 7 - CE Hybrid Pi Transistor Model 11
Example 8 - Inverting Op-Amp 12
Example 9 - AdJustable Galn Differential Ampl 13
Example 10 - Non-Linear Circuits 15
Example 11 - Fifth Order Active Filter 16
Example 12 - Complementary Feedback Amplifier 18
Alternate Formulations 21
Section II - HP-42S Programs 22
Example 3 - Ladder Network (DC) 26
Example 3 - Ladder Network (AC) 29
Example 5 - Twin-T Network 33
Example 7 - CE Hybrid Pi Transistor Model 35
Example 8 - Inverting Op-Amp 36
Example 9 - Adjustable Gain Differential Ampl 38
Example 11 - Fifth Order Active Filter 40
Example 12 - Complementary Feedback Ampl 42
Example 10 - Non-linear Circuit 44
Appendix - I. Ladder Network Analysis 49
II. Building Branch Impedances 53 with the HP-42S
III. Floating Voltage Sources 53
IV. Designing with K Factors 55
References 57

SECTION I. Setting up The Circuit Matrices.
Notational convention: $E=>$ Independent voltage source
$V=>$ Dependent voltage source or node voltage
I \Rightarrow Dependent current source or node current
2 => real or complex impedance
Two simple star networks will be analyzed to show a method of solving for the voltage at the center node that is easy to remember. This topology is chosen since any circuit can be formed by combining star networks with 2 or more branches. The method is then generalized to an N -branch star network.

Example 1 Solve for Vo by superposition: ($\mathrm{N}=3$)

a. Set $E_{2}=0$, $V o \rightarrow O^{\prime}:$

$$
\text { Vo }^{\prime}=\frac{E_{1} Z_{2} / / Z_{3}}{Z_{1}+Z_{2} / / Z_{3}}=\frac{E_{1}}{1+\frac{Z_{1}}{Z_{2} / / Z_{3}}}
$$

Page 1

1

E_{1}

$$
\mathrm{Vo}^{\prime}=1+\mathrm{Z}_{1}\left(\begin{array}{c}
1 \\
-12 \\
2_{2} \\
2_{3}
\end{array}\right)
$$

b. Set $E_{1}=0$, Vo \rightarrow Vo":

$$
\text { Vo" }=\frac{E_{2} Z_{1} / / Z_{3}}{Z_{2}+Z_{1} / / Z_{3}}=\frac{E_{2}}{1+\frac{Z_{2}}{Z_{1} / / Z_{3}}}
$$

$$
\begin{aligned}
& \text { Vo" }^{\prime \prime}= E_{2} \\
& 1+Z_{2}\left(\begin{array}{cc}
1 & 1 \\
-\cdots & --- \\
Z_{1}
\end{array}\right)
\end{aligned}
$$

Then by the superposition principle,
where K_{1} and K_{2} are dimensionless constants determined by $\mathrm{Z}_{1}, \mathrm{Z}_{2}, \& \mathrm{Z}_{3}$, and are always < 1.

$$
\begin{aligned}
& =E_{1} K_{1}+E_{2} K_{2},
\end{aligned}
$$

We try a second example to see if there $1 s$ a consistent pattern occurring.

Example 2 Solve for Vo by superposition: ($\mathrm{N}=4$)

Page 3

$$
V 0=E_{1} K_{1}+E_{2} K_{2}+E_{3} K_{3}+E_{4} K_{4} .
$$

Now the pattern is evident. In general:

As shown in the next example, the Ei's can be a mix of Ei and Vi.

Now we will use this method to write node equations by inspection.

Example 3 Ladder network.

Solve for dependent node voltages V_{1} and V_{2}.
We see that the equation for V_{1} will be the superposition sum of E_{1} and V_{2} :
(1) $\quad V_{1}=E_{1} K_{1}+V_{2} K_{2}$, where

$$
\begin{aligned}
K_{1}= & \cdots \\
& 1+Z_{1}\left(\begin{array}{ll}
1 \\
-\cdots & 1 \\
Z_{2} & Z_{3}
\end{array}\right), \\
K_{2}= & \cdots \\
& 1+Z_{3}\left(\begin{array}{cc}
1 & 1 \\
-\cdots & +\cdots \\
Z_{1} & Z_{2}
\end{array}\right)
\end{aligned}
$$

Since there is only one voltage driving node V_{2}, the equation for V_{2} will have only one term:
(2) $V_{2}=V_{1} K_{3}$, where $K_{3}=$

$$
1+\frac{z_{3}}{Z_{4}}
$$

Equations (1) and (2) can be solved for V_{1} and $V_{=}$by elimination or by matrix methods. By elimination:
$V_{1}=E_{1} K_{1}+\left(V_{1} K_{2}\right) K_{2}$, substituting (2) into (1). Then
$V_{1}=\frac{E_{1} K_{1}}{1-K_{2} K_{3}}$
Substitutlng (3) Into (2) glves V_{2}, or
$V_{2}=V_{1} K_{2}=\frac{E_{1} K_{1} K_{3}}{1-K_{2} K_{3}}$
Using matrix methods:
Rearranging (1) and (2) so that the independent terms are on the LH side:
$E_{1} K_{1}=V_{1}-V_{2} K_{2}$

$$
0=V_{2}-V_{1} K_{3} .
$$

From this form it is easy to construct the coefficient matrix and independent column vector:

$$
\left|\begin{array}{cc}
1 & -K_{2} \\
-K_{3} & 1
\end{array}\right|\left|\begin{array}{l}
V_{1} \\
V_{2}
\end{array}\right|=\left|\begin{array}{c}
E_{1} K_{1} \\
0
\end{array}\right|
$$

From now on, matrices will be used exclusively. As the clrcuits get larger and more complicated, solving for the unknown node voltages using algebra and the elimination method becomes too lengthy and error prone.

Example 4 Lattice network.

Now we can be methodical and consisent.
Step 1. Write dependent node equations using superposition and assigning a unique K factor to each term.
$V_{1}=E_{1} K_{1}+E_{2} K_{2}+V_{2} K_{3}$
$V_{2}=E_{1} K_{4}+E_{2} K_{3}+V_{1} K_{6}$ (We dont care what the $K^{\prime} s$ are until after the matrices are formed.)

Step 2. Put independent terms on LH side:
$E_{1} K_{1}+E_{2} K_{2}=V_{1}-V_{2} K_{3}$
$E_{1} K_{4}+E_{2} K_{5}=V_{2}-V_{1} K_{6}$
Step 3. Put in matrix form:

$$
\left|\begin{array}{cc}
1 & -K_{3} \\
-K_{6} & 1
\end{array}\right|\left|\begin{array}{c}
V_{1} \\
V_{2}
\end{array}\right|=\left|\begin{array}{l}
E_{1} K_{1}+E_{2} K_{2} \\
E_{1} K_{4}+E_{2} K_{5}
\end{array}\right|
$$

Step 4. From the circuit diagram and the equations of step 1 , write out the K factors.

Before doing this, a functional notation for the K factors will be defined.

Let $\quad \frac{1}{-\cdots-\frac{A}{B}}=F 2(A, B)$,

$$
\begin{aligned}
& \begin{array}{l}
1+A\left(\begin{array}{cc}
1 \\
-\cdots+\frac{1}{C} \\
B
\end{array}\right)=F 3(A, B, C), ~
\end{array} \\
& 1 \\
& 1+A\binom{1}{-\frac{1}{C}+\frac{1}{C}+\frac{1}{D}}
\end{aligned}
$$

Note, for example, that $F 3(B, C, A)=---$

$$
1+B\binom{1}{-\frac{C}{A}}
$$

$=F 3(B, A, C), 1 . e .$, after the flrst varlable, the order is not important since the reciprocals can be summed in any order.

Getting back to Example 4, we can write out the K factors using this functional notation:
$K 1=F 3(21,22,24), \quad K 2=F 3(24,21,22)$
$K 3=F 3(22,21,24), \quad K 4=F 3(25,22,23)$
$K 5=F 3(23,22,25), \quad K 6=F 3(22,23,25)$
Remember that the first 2 in F3 is in serles with the E or V in question. For example, in $V_{1}=E_{1} K_{1}+\ldots$, the first Z in K_{1} is between V_{1} and E_{1}, or Z_{1}. Be sure to account for all the remaining Z^{\prime} s connected to node V_{1}; in this case Z_{2} and Z_{4}.

One last example before going on to transistor and op-amp circuits:

Example 5 Twin-T Network

$$
\begin{aligned}
& V_{1}=E_{1} K_{1}+V_{3} K_{2} \\
& V_{2}=E_{1} K_{3}+V_{3} K_{4} \\
& V_{3}=V_{1} K_{5}+V_{2} K_{0}
\end{aligned}
$$

Step 2.

$$
\begin{aligned}
E_{1} K_{1} & =V_{1}-V_{3} K_{2} \\
E_{1} K_{3} & =V_{2}-V_{3} K_{4} \\
0 & =V_{3}-V_{1} K_{3}-V_{2} K_{0}
\end{aligned}
$$

Step 3.

$$
\left|\begin{array}{ccc}
1 & 0 & -K_{2} \\
0 & 1 & -K_{4} \\
-K= & -K_{0} & 1
\end{array}\right|\left|\begin{array}{c}
V_{1} \\
V_{2} \\
V_{3}
\end{array}\right|=\left|\begin{array}{c}
E_{1} K_{1} \\
E_{1} K_{3} \\
0
\end{array}\right|
$$

Step 4.

$$
\begin{aligned}
& K 1=F 3(21,22,23), K 2=F 3(23,21,22), \\
& K 3=F 3(24,25,26), K 4=F 3(26,24,25), \\
& K 5=F 3(23,26,27), K 6=F 3(26,23,27) .
\end{aligned}
$$

The circuit is now ready for solution by the HP-42S.

At this polnt, we modify our basic star network by adding current sources:

Agaln, by superposition:
$V_{0}=E_{1} K_{1}+V_{2} K_{2}+V_{3} K_{3}+P_{1} I_{4}-P_{1} I_{5}$,
where $K 1=F 3(21,22,23), K 2=F 3(22,21,23)$,
$\mathrm{K} 3=\mathrm{F} 3(23,21,22)$, and $\mathrm{P} 1=21 / / 22 / / 23$.
Note direction of current flow and the sign attached; toward node => +, away from node => -.

Example 6 Collector Feedback.

$V_{2}=E_{2} K_{3}+V_{1} K_{4}-P_{2} I b$
$V_{3}=23 I e$
$V_{2}-V_{3}=$ Vbe ($\left.=0.6 \mathrm{~V}\right)$

Step 2. (Express Ic and Ie in terms of Ib.)

$$
\begin{array}{rlr}
E_{1} K_{1} & =V_{1}-V_{2} K_{2}+P_{1} B I b & (I c=\text { Beta } I b=B I b) \\
E_{2} K_{2} & =V_{2}-V_{1} K_{4}+P_{2} I b & {[I e=(1+B) I b]} \\
0 & =V_{2}-(1+B) I b Z & \\
V b e & =V_{2}-V_{3}
\end{array}
$$

Step 3.
$\left|\begin{array}{cccc}1 & -K_{z} & 0 & P_{1} B \\ -K_{4} & 1 & 0 & P_{z} \\ 0 & 0 & 1 & -(1+B) Z_{3} \\ 0 & 1 & -1 & 0\end{array}\right|\left|\begin{array}{c}V_{1} \\ V_{z} \\ V_{3} \\ I b\end{array}\right|=\left|\begin{array}{c}E_{1} K_{1} \\ E_{z} K_{z} \\ 0 \\ \text { VDe }\end{array}\right|$

Step 4.

$$
\begin{aligned}
& \mathrm{K} 1=\mathrm{F} 2(21,24), \mathrm{K} 2=\mathrm{F} 2(24,21), \\
& \mathrm{K} 3=\mathrm{F} 2(22,24), \mathrm{K} 4=\mathrm{F} 2(24,22) \\
& \mathrm{P} 1=\mathrm{Z} 1 / / 24, \mathrm{P} 2=22 / / 24
\end{aligned}
$$

This circuit is not easily solved by conventional methods. Using the above matrices, the $H P-42 S$ will solve for all node voltages and the base current Ib. Collector and emmitter currents are easily obtained from Ic $=B I b$, and $I e=(1+B) I b$.

Note that in forming the $P^{\prime} s$ associated with current sources, they are easily remembered as the parallel combination of all impedances connected to the node in question.

Example 7 Common Emitter Hybrid Pi Transistor Model

Note that ($g_{m} V_{1}$) is a voltage-controlled-current-source, or VCCS.

Step 1.

$$
\begin{aligned}
& V_{1}=E_{1} K_{1}+V_{2} K_{2} \\
& V_{2}=V_{1} K_{3}-g_{m} V_{1} P_{1}=V_{1}\left(K_{3}-g_{m} P_{1}\right)
\end{aligned}
$$

Step 2.

$$
\begin{aligned}
E_{1} K_{1} & =V_{1}-V_{2} K_{2} \\
0 & =V_{2}-V_{1}\left(K_{2}-g_{m} P_{1}\right)
\end{aligned}
$$

Step 3.

$$
\left|\begin{array}{lr}
1 & -K_{2} \\
\left(g_{m} P_{1}-K_{3}\right) & 1
\end{array}\right|\left|\begin{array}{l}
V_{1} \\
V_{2}
\end{array}\right|=\left|\begin{array}{c}
E_{1} K_{1} \\
0
\end{array}\right|
$$

Step 4.

$$
\begin{aligned}
& K 1=F 3(21,22,23), \quad K 2=F 3(23,21,22) \\
& K 3=F 2(23,24), P 1=23 / / 24
\end{aligned}
$$

Example 8 Inverting op-amp

A simplifled model of the op-amp is obtained by the dependent voltage source $V_{3}=-A V_{1}$, where A is the open loop gain. (Vo is a voltage-controlled-voltage-source, or VCVS.)

The variable A can be complex to show the first order rolloff without adding additional reactive components:

Aol
$A=-\ldots--$, where $A 01=$ about $10,000 \mathrm{v} / \mathrm{v}$, jw
$1+---$
w_{1}
and $w 1=2 p i(f 1)$ is the frequency breakpoint, and $10<f 1<100$ in Hz for most op-amps.

Gain A can have zeros as well as poles:

$$
\frac{A 01}{\left(1+\begin{array}{c}
j \omega \\
\omega_{2}
\end{array}\right)}\left(\begin{array}{c}
\left.1+\begin{array}{c}
j \omega \\
\omega_{1}
\end{array}\right)\left(\begin{array}{cc}
1+\frac{j \omega}{\omega_{3}}
\end{array}\right)
\end{array}\right.
$$

For most op-amp circuits, the single pole rolloff will suffice.

Again, steps 1 thru 4 are no different:
Step 1.

$$
\begin{aligned}
V_{1} & =E_{1} K_{1}+V_{2} K_{2} \\
V_{2} & =V_{1} K_{3}+V_{3} K_{4}=V_{1} K_{3}-A V_{1} K_{4} \\
& =V_{1}\left(K_{3}-A K_{4}\right)
\end{aligned}
$$

Step 2.

$$
\begin{aligned}
E_{1} K_{1} & =V_{1}-V_{2} K_{2} \\
0 & =V_{2}-V_{1}\left(K_{3}-A K_{4}\right)
\end{aligned}
$$

Step 3.

$$
\left\lvert\, \begin{gathered}
1 \\
\left(A K_{4}-K_{3}\right)
\end{gathered}\right.
$$

$$
\begin{gathered}
-K_{2} \\
1
\end{gathered}\left|\left|\begin{array}{c}
V_{1} \\
V_{2}
\end{array}\right|=\left|\begin{array}{c}
E_{1} K_{1} \\
0
\end{array}\right|\right.
$$

Step 4

$$
\begin{aligned}
& \mathrm{K} 1=\mathrm{F} 2(21,22), \mathrm{K} 2=\mathrm{F} 2(22,21) \\
& \mathrm{K} 3=\mathrm{F} 3(22,23,24), \mathrm{K} 4=\mathrm{F} 3(24,22,23)
\end{aligned}
$$

Example 9 Adjustable galn differential amplifier.

Step 1.

$$
\begin{aligned}
& V_{1}=E_{1} K_{1}+V_{2} K_{2} \\
& V_{2}=V_{1} K_{3}+V_{3} K_{4}+V_{5} K_{5} \\
& V_{3}=A\left(V_{4}-V_{1}\right) \\
& V_{4}=E_{2} K_{4}+V_{5} K_{7} \\
& V_{5}=V_{4} K_{6}+V_{2} K_{9}
\end{aligned}
$$

Step 2.

$$
\begin{aligned}
E_{1} K_{1} & =V_{1}-V_{2} K_{2} \\
0 & =V_{2}-V_{1} K_{3}-V_{3} K_{4}-V_{3} K_{3} \\
0 & =V_{3}-A V_{4}+A V_{1} \\
E_{2} K_{6} & =V_{4}-V_{5} K_{7} \\
0 & =V_{3}-V_{2} K_{9}-V_{4} K_{6}
\end{aligned}
$$

Step 3.

$$
\left|\begin{array}{ccccc}
1 & -K_{2} & 0 & 0 & 0 \\
-K_{3} & 1 & -K_{4} & 0 & -K_{3} \\
A & 0 & 1 & -A & 0 \\
0 & 0 & 0 & 1 & -K_{7} \\
0 & -K_{9} & 0 & -K_{0} & 1
\end{array}\right|\left|\begin{array}{c}
V_{1} \\
V_{2} \\
V_{3} \\
V_{4} \\
V_{5}
\end{array}\right|=\left|\begin{array}{c}
E_{1} K_{1} \\
0 \\
0 \\
E_{2} K_{6} \\
0
\end{array}\right|
$$

Step 4.

$$
\begin{aligned}
& K 1=F 2(R 1, R 2), K 2=F 2(R 2, R 1) \\
& K 3=F 3(R 2, R 3, R 4), K 4=F 3(R 3, R 2, R 4), \\
& K 5=F 3(R 4, R 2, R 3), \\
& K 6=F 2(R 5, R 6), K 7=F 2(R 6, R 5), \\
& K 8=F 3(R 6, R 4, R 7), K 9=F 3(R 4, R 6, R 7)
\end{aligned}
$$

Example 10 Non-linear Circuits.
Some non-linear diode circuits can be solved by converting the diodes to resistors (in serles with a 0.6 V source if need be). The method is to monitor the voltages across the resistor (diode) for polarity. If the "diode" becomes reverse biased, then change its value to 10 Megohms. If it becomes forward biased, change its value to, say, 10 ohms.

Step 1 (For the circuit on the right)

$$
\begin{aligned}
& V_{1}=E_{1} K_{1}+E_{3} K_{2}+V_{3} K_{3} \\
& V_{2}=E_{2} K_{4}+E_{3} K_{3}+V_{3} K_{6} \\
& V_{3}=V_{1} K_{7}+V_{2} K_{6}
\end{aligned}
$$

Step 2.

$$
\begin{aligned}
E_{1} K_{1}+E_{3} K_{2} & =V_{1}-V_{3} K_{3} \\
E_{2} K_{4}+E_{3} K_{5} & =V_{2}-V_{3} K_{6} \\
0 & =V_{3}-V_{2} K_{6}-V_{1} K_{7}
\end{aligned}
$$

Steps 3 and 4 are, as they say, "left as an excerclse for the student".

During the analysis in section II, if $\left(V_{1}-V_{s}\right)<0$, set $R_{6}=10$ ohms; if >0 set $R_{6}=10$ Megohms. Similarly, if ($V_{2}-V_{3}$) > 0 , set $R_{7}=10$ ohms; if <0 set $R_{7}=10$ Megohms.

Examples 11 and 12 following lllustrate the ease of writing node equations using the K method for relatively large and complicated circuits.

Example 11 Fifth Order Active Filter

Step 1.

$$
\begin{aligned}
& V_{1}=E_{1} K_{1}+V_{2} K_{2}+V_{4} K_{3} \\
& V_{2}=V_{1} K_{4}+V_{3} K_{5} \\
& V_{3}=V_{2} K_{4}+V_{4} K_{7} \\
& V_{4}=V_{1} K_{6}+V_{3} K_{9}+V_{6} K_{10} \\
& V_{5}=V_{4} K_{11} \\
& V_{4}=A\left(V_{3}-V_{5}\right)
\end{aligned}
$$

Step 2.

$$
\begin{aligned}
E_{1} K_{1} & =V_{1}-V_{2} K_{2}-V_{4} K_{3} \\
0 & =V_{2}-V_{1} K_{4}-V_{3} K_{5} \\
0 & =V_{3}-V_{2} K_{4}-V_{4} K_{7} \\
0 & =V_{4}-V_{1} K_{6}-V_{3} K_{9}-V_{4} K_{10} \\
0 & =V_{5}-V_{4} K_{11} \\
0 & =V_{4}-A V_{3}+A V_{3}
\end{aligned}
$$

Step 3.

$$
\left|\begin{array}{lccccc}
1 & -K_{2} & 0 & -K_{3} & 0 & 0 \\
-K_{4} & 1 & -K_{5} & 0 & 0 & 0 \\
0 & -K_{6} & 1 & -K_{7} & 0 & 0 \\
-K_{6} & 0 & -K_{9} & 1 & 0 & -K_{10} \\
0 & 0 & 0 & 0 & 1 & -K_{11} \\
0 & 0 & -A & 0 & A & 1
\end{array}\right|\left|\begin{array}{c}
V_{1} \\
V_{2} \\
V_{3} \\
V_{4} \\
V_{5} \\
V_{6}
\end{array}\right|=\left|\begin{array}{c}
E_{1} K_{1} \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right|
$$

Step 4.

$$
\begin{aligned}
K 1 & =F 4(21,22,23,24), K 2=F 4(23,21,22,24) \\
K 3 & =F 4(24,21,22,23) \\
K 4 & =F 3(23,25,26), K 5=F 3(26,23,25) \\
K 6 & =F 3(26,27,28), K 7=F 3(27,26,28) \\
K 8 & =F 3(24,27,29), K 9=F 3(27,24,29) \\
K 10 & =F 3(29,24,27), K 11=F 2(210,211)
\end{aligned}
$$

Example 12 Complementary Feedback Amplifier.

Step 1.

$$
\begin{aligned}
V_{1} & =E_{1}-I e_{2} Z_{1} \\
V_{2} & =E_{1} K_{1}+V_{3} K_{2}+I b_{2} P_{1} \\
V_{3} & =V_{2}-I c_{1} Z_{3} \\
V_{4} & =E_{3}-I b_{1} Z_{4} \\
V_{5} & =E_{2} K_{3}+V_{6} K_{4}+I e_{1} P_{2} \\
V_{6} & =E_{2} K_{3}+V_{5} K_{4}+I c_{2} P_{3} \\
V b_{1} & =V_{4}-V_{5} \\
V b e_{2} & =V_{1}-V_{2}
\end{aligned}
$$

Step 2.

$$
\begin{aligned}
E_{1} & =V_{1}+\left(1+B_{2}\right) I b_{2} Z_{1} \\
E_{1} K_{1} & =V_{2}-V_{3} K_{2}-I b_{2} P_{1} \\
0 & =V_{3}-V_{2}+B_{1} I b_{1} Z_{3} \\
E_{3} & =V_{4}+I b_{1} Z_{4} \\
E_{2} K_{3} & =V_{5}-V_{4} K_{4}-\left(1+B_{1}\right) I b_{1} P_{2} \\
E_{2} K_{5} & =V_{4}-V_{5} K_{4}-B_{2} I b_{2} P_{3} \\
V_{b e_{1}} & =V_{4}-V_{5} \\
V_{b e_{2}} & =V_{1}-V_{2}
\end{aligned}
$$

Step 3.

$$
\left|\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & \left(1+B_{2}\right) Z_{1} \\
0 & 1 & -K_{2} & 0 & 0 & 0 & 0 & -P_{1} \\
0 & -1 & 1 & 0 & 0 & 0 & B_{1} Z_{3} & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & Z_{4} & 0 \\
0 & 0 & 0 & 0 & 1 & -K_{4} & -\left(1+B_{1}\right) P_{z} & 0 \\
0 & 0 & 0 & 0 & -K_{6} & 1 & 0 & -B_{2} P_{3} \\
0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 \\
1 & -1 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right|\left|\begin{array}{c}
V_{1} \\
V_{2} \\
V_{3} \\
V_{4} \\
V_{5} \\
V_{6} \\
I b_{1} \\
I b_{2}
\end{array}\right|
$$

$=1 E_{1} E_{1} K_{1} 0 \quad E=E=K=\quad E=K=$ Vbe ${ }_{1} \quad$ Vbe $=1 T$
(The ${ }^{T}$ transposes the row vector into a column vector.)
Step 4.

$$
\begin{aligned}
& K 1=F 2(22,23), K 2=F 2(23,22) \\
& K 3=F 2(25,27), K 4=F 2(27,25) \\
& K 5=F 2(26,27), K 6=F 2(27,26) \\
& P 1=22 / / 23, P 2=25 / / 27, P 3=26 / / 27
\end{aligned}
$$

In setting up the coefficient matrix, advantage should be taken of all the zeros in the matrix (a so-called sparse matrix) and that the main diagaonal is nearly all $1^{\prime} s$. That is, one should form an identity matrix first, and then store only the nonzero elements.

By now the astute reader has probably seen the similarity of the F3 and F4 K factor functions with the parallel impedance function. There are two alternate formulations of these functions that may result in shorter HP-42S programs.

For example, if
$\mathrm{K} 1=\mathrm{F} 4(21,22,23,24), \mathrm{K} 2=\mathrm{F} 4(22,21,23,24$,
$K 3=F 4(23,21,22,24), K 4=F 4(24,21,22,23)$,
a shorter way of computing K1 through K4 is
$K 1=F 4(21,22,23,24), K 2=(K 1 * 21) / 22$,
$K 3=(K 1 * 21) / 23, K 4=(K 1 * 21) / 24$.
Note that the denominator of Ki is $2 \mathrm{i}, 1=2,3,4$.

Still another way of calculating K1 through K4 is
P1 $=21 / / 22 / / 23 / / 24$, then
$\mathrm{K} 1=\mathrm{P} 1 / 21, \mathrm{~K} 2=\mathrm{P} 1 / 22, \mathrm{~K} 3=\mathrm{P} 1 / 23$, and $\mathrm{K} 4=\mathrm{P} 1 / 24$.
The form here is $\mathrm{Ki}=\mathrm{P} 1 / 21$
Also note that $K 1+K 2+K 3+K 4=1$. Then $K 4$ can also be calculated by K4 = 1 - K1 - K2 - K3. Similary, for $N=3$
$\mathrm{K} 1=\mathrm{F} 3(21,22,23) ; \mathrm{K} 2=\mathrm{F} 3(22,21,23) ; \mathrm{K} 3=\mathrm{F} 3(23,21,22) ;$
but it ls quicker to compute $\mathrm{K} 3=1$ - K 1 - K2.

SECTION II. HP-42S Programs

Due to word processor character limitations, the following substitutions will be used for the given HP-42S characters: (Substituting j for i is due to electrical engineering preference, and should not cause undue confusion.)

HP-42S Character Text Character

\rightarrow	ra (right arrow)
\downarrow	da (down arrow)
$R \uparrow$	Rup
$R \downarrow$	Ran
$10 \uparrow X$	$10^{\wedge} X$
\div	$/$
1	J

We will begin from the bottom and work up. That is, the following subprograms with global labels will be used with main programs "SETUP", "DCAP", and "ACAP", to be described later. They should be keyed in now.

Circult element:	Capacitor	Inductor	Resistor in series with capacitor	Resistor in serles with inductor
Complex expression:	$0-\mathrm{J} / \mathrm{wC}$	$0+J w L$	R - j/wC	$R+J w L$
Stack must contain:				
Y-reg:	any	any	R	R
X-reg:	C	L	C	L
Listing:	01 LBL "XC"	01 LBL "XL"	01 LBL "SRC"	01 LBL SRL
	02 RCLx"w"	02 RCLx"w"	02 RCLx"w"	02 RCLx"w"
	03 1/X	030	03 1/X	03 COMPLEX
	04 +/-	04 X < > Y	04 +/-	04 END
	050	05 COMPLEX	05 COMPLEX	
	$06 \mathrm{X}<>\mathrm{Y}$	06 END	06 END	
	07 COMPLEX			
	09 END			

Circuit element:	Resistor in parallel with capacitor	Resistor in parallel with inductor	Operatlonal amplifler
Complex expression:	$1 /(1 / R+J w C)$	1/(1/R - j/wL)	$\begin{aligned} & A O 1 /\left(1+j w / W_{1}\right)= \\ & A O l /\left(1+j f / f_{1}\right) \end{aligned}$
Stack must contain:			
Y -reg:	R	R	any
X-reg:	C	L	any
Listing:	01 LBL "PRC"	01 LBL "PRL"	01 LBL "OPAMP"
	02 RCLx"w"	02 RCLx"w"	021
	03 X < > Y	$031 / \mathrm{x}$	03 ENTER
	$041 / X$	04 +/-	04 RCL "F"
	05 X < > Y	$05 \mathrm{X}<>\mathrm{Y}$	$0510^{\wedge} \mathrm{X}$
	06 COMPLEX	$061 / X$	0610 (f_{1})
	$071 / x$	$07 \mathrm{X}<>\mathrm{Y}$	071
	08 END	08 COMPLEX	08 COMPLEX
		$091 / \mathrm{x}$	091 E 4 (AOL)
		10 END	10 X < $>$ Y
			11 /
			12 STO "A"
			13 END
Function:	F2(21,22)	21/122	
	1	1	
Complex expression:			
	$1+21 / 22$	$1 / 21+1 / 22$	
Stack must contaln:			
Y-reg:	21	Z_{1} or Za_{2}	
X-reg:	Z2	Z_{2} or Z_{1}	
Listing:	01 LBL "F2"	01 LBL "P22"	
	$021 / X$	$021 / \mathrm{X}$	
	$03 \times$	03 X < > Y	
	041	04 1/X	
	$05+$	$05+$	
	$061 / X$	$061 / \mathrm{X}$	
	07 END	07 END	

Function:	$Z_{1} / / Z_{2} / / Z_{3}$	$Z_{1} / / Z_{2} / / Z_{3} / Z_{4}$
Complex	1	1
expression:	$1 / Z_{1}+1 / Z_{2}+1 / Z_{3}$	$1 / Z_{1}+1 / Z_{2}+1 / Z_{3}+1 / Z_{4}$

Stack must contain:
T-reg: any 2

Z-reg: Z_{1}
Y-reg: $\quad 2=$
X-reg: $\quad Z_{3}$
Listing: 01 LBL "P23" 01 LBL "P24"
02 XEQ "PZ2" 02 XEQ "PZ3"
03 XEQ "P22" 03 XEQ "P22"
04 END 04 END
For "P23" and "P24", the $2^{\prime} s$ can be in any order in the stack.
The following program is an initializing routine that must be run before analyzing any new circuit. It need not be executed more than once for the same circult.

After a menu cholce of $A C$ or $D C$ analysis, the required input is the order n of the $n x n$ coefficient matrix.

Listing
Comments
01 LBL "SETUP"
02 WRAP
03 CF 01
04 CLV "MATK"
05 CLV "MATE"
06 CLV "MATV"
07 "AC" 1 GTO 01
09 "DC"
10 KEY 4 GTO 02
11 MENU
12 STOP
13 LBL 02
14 SF 01
15 LBL 01
16 EXITALL
17 "Order?"
18 PROMPT
19 ENTER
20 DIM "MATK" Dimension K (coefficient) matrix
211
22 DIM "MATE"
23 DIM "MATV"
24 RECT
250
26 ENTER
27 COMPLEX
28 FS? 01
29 GTO 01
30 STOX "MATK"
31 STOx "MATE"
32 STOx "MATV"
33 LBL 01
34 INDEX "MATK"
35 Rup
36 ENTER
37 ENTER
38 LBL 00
39 STOIJ
401
41 STOEL
42 Rdn
43 DSE ST Y
44 DEG
45 DSE ST X
46 GTO 00
47 FC? 01
48 GTO "ACAP"
49 GTO "DCAP"
50 END

Clear AC/DC selection flag Clear old circuit matrices

Begin menu setup

Set flag 01 for $D C$ analysis

Dimension E (independent) column vector
Dimension V (node voltage) column vector

DC analysis?
Then do not create complex matrices Create complex matrices for AC analysis

Begin creating MATK = I (Identity matrix)
Place n in X-reg.
Start in lower rh corner (element n, n)

Store $1 \ln$ element $1, J=1$
Decrement i and j pointers

If i, J not 0 then repeat
Go to AC Analysis Program
Go to DC Analysis Program

As an introduction, a DC analysis example will be given first. The ladder network on page 4 will be analyzed with resistors for the impedances Z_{1} thru Z_{4}.

Generally speaking, a circult under analysis has component designations such as $\mathrm{R}_{1}, \mathrm{C}_{2}, \mathrm{~L}_{3}, \mathrm{R}_{4}$, etc. Thus we can store R_{1} in numbered register 01, C_{2} in reg. 02, etc. This keeps alot of clutter out of the varlable catalog and provides easy assoclation of registers vs. components.

Circuits analyzed here will have less than 15 components, so the numbered registers can be SIZEd to 15. This will leave room for some scratch storage if needed.

Example 1 (DC) Ladder Network
First, the main program "DCAP" will be listed so that the program flow can be demonstrated.

Listing Comments

01 LBL "DCAP"
02 XEQ "SKF"

04 LBL 01

07 STOP
08 GTO 01
09 END

03 XEQ "MAT" Form the $n \times n$ K-matrix, the $n \times 1$ E-vector, and solve for the $n \times 1 \quad V$-vector containing the node voltages.

05 INPUT "Vn" Choose which node voltage to display
06 XEQ "GETV" This subprogram recalls and displays the node voltage selected in line 05.

Display node voltage
Select another node if desired
Store K Factors subprogram. Creates and stores all the required K factors. For the DC ladder network, this will be K_{1}, K_{2}, and K_{3} (see page 4).

Before going any further, the following resistor values for the ladder network should be stored in the corresponding numbered registers:

| 1000 | STO 01 | $\left(R_{1}\right)$ |
| :--- | :--- | :--- | :--- |
| 2000 | STO 02 | $\left(R_{2}\right)$ |
| 3000 | STO 03 | $\left(R_{3}\right)$ |
| 4000 | STO 04 | $\left(R_{4}\right)$ |

Also store 10 in "E1", so that the input voltage is 10 V .

The first subprogram encountered is "SKF", which is given below:
Listing
Comments
01 LBL "SKF"
02 RCL 01
03 RCL 02
04 RCL 03
05 XEQ "P23"
Create K_{1}
06 ENTER
07 RCL/ 01
$K_{1}=P / R_{1}$
08 STO "K1"
09 Rdn
10 RCL/ $03 \quad \mathrm{~K}_{2}=\mathrm{P} / \mathrm{R}_{3}$
11 STO "K2"
12 RCL 03
13 RCL 04
14 XEQ "F2"
15 STO "K3"
16 END
Now the HP-42S has created all three K factors and we are ready to fill the 2×2 K-matrix, and the 2×1 E-vector shown on page 5, with the subprogram "MAT":

Listing

Comments
01 LBL "MAT"
02 INDEX "MATK
$03 \mathrm{~J}+$
04 RCL "K2"
05 +/-
06 ra Put $-\mathrm{K}_{2}$ at 1:2
07 RCL "K3"
08 +/-
09 ra
10 INDEX "MATE"
11 RCL "E1"
12 RCLx "K1"
13 da
14 RCL "MATE"
15 RCL/ "MATK"
Pointers at $i=j=1$.
Skip to element $1: 2$, slnce "SETUP" already has put 1 's on the main diagonal.

Put - K_{3} at 2:1

16 STO "MATV"
17 END

Note that lines $01,02,10$, and 14 thru 17 must be included for every circult to be analyzed. Thus the general format for every "MAT" subprogram is:

01 LBL "MAT"
02 INDEX "MATK"
.
(fill K matrix)

INDEX "MATE"
-
(fill E vector)
.

RCL "MATE"
RCL/ "MATK"
STO "MATV"
END
The last subprogram run by the main program "DCAP" is "GETV", which is given below:

Listing

Comments
01 LBL "GETV"
02 INDEX "MATV"
03 RCL "Vn" $\quad V n=$ the selected node voltage, which is the numbered column element of the node voltage vector "MATV"
041
05 STOIJ
06 RCLEL
07 END

Store Vn:1 polnter Get Vn

Now the DCAP program is ready to run; but we must first execute "SETUP" before analyzing any circuit:

XEQ "SETUP".
Choose DC (the LOG key) when the menu appears. In response to Order?, key in the order of the K matrix, which is 2 for this example:

2 , R/S. The display should then be:
Y: [2×1 Matrix]
Vn? (any)
For Vn?, key in 2 to get the voltage at node 2:
2, R/S. V_{2} should $=3.478$ (volts) as displayed in the X-reg.
Repeat for node $1: R / S, 1, R / S . V_{1}$ should $=6.087$ (volts).
As a check, $\mathrm{K}_{1}=0.545 ; \mathrm{K}_{2}=0.182 ; \mathrm{K}_{3}=0.571$.

Example 1 (AC) Ladder Network
AC analysis is performed by the maln program "ACAP", which is listed below:

01 LBL "ACAP"

02 "Log F1"
03 PROMPT
04 STO "F"
05 INPUT "PD"
06 INPUT "ND"
07 RCL+ "F"
08 STO "FL"
09 INPUT "Vn"
10 RCL "F"
11 LBL 00
$1210^{\wedge} \mathrm{X}$
132
14 PI
$15 \times$
$16 \times$
17 STO "w"
18 XEQ "SKF"
19 XEQ "MAT"
20 XEQ "GETV"
21 -> POL
22 COMPLEX
23 X<>Y
24 LOG
2520
26 x
27 FIX 02
28 CLA
29 ARCL "F"
30 เ"" "
31 FIX 03
32 ARCL ST X
33 Rdn
34 FIX 00
35 RND
$36 \vdash "$
37 ARCL ST X
38 AVIEW
39 RCL "PD"
40 1/X
41 STO+ "F"
42 RCL "FL"
43 RCL "F"
$44 \mathrm{X} \leq \mathrm{Y}$?
45 GTO 00
46 FIX 03
47 END

Logio beginning frequency in Hz
$P D=$ points per decade of frequency
$N D=$ number of decades
Add beginning frequency to get ending or last frequency polnt
Node to be analyzed
To convert $F 1$ to radians/sec ("w")
Get F from Log F

Store radians/sec

Store K Factors subprogram (same as "DCAP")
Create \& solve matrices (same as "DCAP")
Get node voltage selected by "Vn" Input
Convert to polar form
complex \rightarrow real
Put magnitude in X-reg
Convert to dBV. Lines 24 thru 26 can be deleted if volts are desired.

Begin display setup

Append space

Dlsplay format for $d B V$

For phase angle ls deg

Set flag 21 to stop

Increment frequency

Repeat if not done

As an introduction to an AC analysis, the ladder network analyzed in the DC analysis will have the components changed as follows:

Element	Reference Designator	New AC value	Stored Regist
21	R1	10 K ohms	01
22	C2	0.01 uF	02
23	R3	10 K ohms	03
24	C4	0.01 uF	04
E1	E1	1	"E1"

These values should now be stored in the registers shown above.
Since the matrix on page 5 has the same form whether real or complex (DC or AC), subprogram "MAT" does not have to be modifled from the DC analysis. Only "SKF" must be modified as shown below:

Listing Comments
01 LBL "SKF"
02 RCL 02
03 XEQ "XC" Get $\mathrm{Z}_{2}=0-j / \omega C_{2}$
04 STO "Z2"
05 RCL 04 Do the same for C_{4}
06 XEQ "XC"
07 STO "24"
08 RCL $01 \quad Z_{1}=R_{1}$
09 RCL "22"
10 RCL 03
$Z_{3}=R_{3}$
11 XEQ "P23"
Get $P=R_{1} / / Z_{2} / / R_{3}$
12 ENTER
13 RCL/ 01
$K_{1}=P / R_{1}$
14 STO "K1"
15 Rdn
16 RCL/ $03 \quad K_{2}=P / R_{3}$
17 STO "K2"
18 RCL 03
19 RCL " 24 "
20 XEQ "F2"
21 STO "K3" The K factors are now all complex
22 END
After keying in "SKF" above, we are ready to start the AC analysis of the ladder network, which has now become a 2-pole low-pass passive fllter. Agaln, always execute "SETUP" prior to analyzing any new circuit:

XEQ "SETUP"; choose AC from the menu, and the order is still 2.

We will select a frequency sweep of from 100 Hz to 100 KHz at 10 points per the 3 decades: In response to the "Log F1" prompt, key in $2(\log 100=2)$.

In response to $P D$?, key in 10 (points per decade); and in response to ND?, enter 3 (decades); for Vn?, we still want to look at node 2 , so key in $2, R / S$.

A sample of the outputs you should have obtained is shown below:
Log $F \quad d B V \quad$ Deg

2.00	-0.118	-11
2.10	-0.186	-13
2.20	-0.292	-17

4.90-67.939-177
5.00-71.935-177 (End of frequency sweep)

The slope of the Bode magnitude at $\log F=5$ is the $d B$ value at $\log F=4.9$ minus the $d B$ value at $\log F=5$ divided by the frequency increment of $1 / \mathrm{ND}$ or

$$
\text { slope }=(-71.935-(-67.939)) 10=-39.96 \mathrm{~dB} / \text { decade }
$$

or approximately $-40 \mathrm{~dB} /$ decade. This is what would be expected for a two pole low-pass filter well beyond the second pole frequency.

Example 4, the lattice network ls omitted.

Example 5. Twin-T Network
Step 1. Store the following values in the registers indicated:
Reference
Element Designator

21	C1	0.01 uF	01
22	R2	133 K	02
23	C3	0.01 uF	03
24	R4	267 K	04
25	C5	0.02 uF	05
26	R6	267 K	06
27	R7	10 Meg	07
E1	E1	1	"E1"

Step 2. Clear the previous "SKF" and "MAT" programs, and key in the following new ones given without comments: (see page 8)

01 LBL "SKF"
02 RCL 01
03 XEQ "XC"
04 STO "21"
05 RCL 03
06 XEQ "XC"
07 STO "Z3"
08 RCL 05
09 XEQ "XC"
10 STO "25"
11 RCL "Z1"
12 RCL 02
13 RCL "23"
14 XEQ "PZ3"
15 ENTER
16 RCL/ "Z1"
17 STO "K1"
18 Rdn
19 RCL/ "23"
20 STO "K2"
21 RCL 04
22 RCL " 25"
23 RCL 06
24 XEQ "PZ3"
25 ENTER
26 RCL/ 04
27 STO "K3"
28 Rdn
29 RCL/ 06

01 LBL "MAT"
02 INDEX "MATK"
$03 \mathrm{~J}+$
04 J+
05 RCL "K2"
06 +/-
07 ra
$08 \mathrm{~J}+$
$09 \mathrm{~J}+$
10 RCL "K4"
11 +/-
12 ra
13 RCL "K5"
14 +/-
15 ra
16 RCL "K6"
17 +/-
18 ra
19 INDEX "MATE"
20 RCL "E1"
21 RCLX "K1"
22 da
23 RCL "K3"
24 da
25 RCL "MATE"
26 RCL/ MATK"
27 STO "MATV"
28 END

```
30 STO "K4"
31 RCL "23"
32 RCL 06
33 RCL 07
34 XEQ "PZ3"
35 ENTER
36 RCL/ "23"
37 STO "K5"
38 Rdn
39 RCL/ 06
40 STO "K6"
4 1 ~ E N D
```

The given component values are for a 60 Hz notch filter. Hence we want to look at one decade between 10 and 100 Hz . Twenty points should be enough, therefore execute the following:

XEQ "SETUP"; Choose AC; Order? 3, R/S, Log F1?, 1, (log $10=1$), R/S, PD?, $20, R / S, N D ?, 1, V n ?, 3, R / S$. Output samples are:

Log $F \quad d B V \quad$ Deg
$1.00-2.046-34$
-
\cdot
$1.80-31.18490$ (the notch)
-
$2.00-11.777 \quad 76$
To see what the output is at exactly 60 Hz : XEQ "ACAP", Log F1?, 60, LOG, (see 1.778), R/S, PD?, 1, R/S, ND?, $0, V n ?, 3$, will give Just one output at $\log 60 \mathrm{~Hz}=1.778$:
$1.78-51.048100$
which verifles the notch filter design.
For the remaining circuits, just component values, listings for "SKF" and "MAT", output sample points to verify the analysis, and a schematic if necessary will be provided. Be sure to execute "SETUP" prior to analyzing each new circuit. The "Order?" can be obtalned by inspection of the corresponding K-matrix in section I.

Example 7. Common Emitter Hybrid Pi Transistor Model
The circult used for the analysis is shown below:

Note that $21--->\mathrm{R} 1 ; 22--->\mathrm{R} 2 / / \mathrm{C} 3 ; 23--->\mathrm{R} 4 / / \mathrm{C} 5$; and $24--->$ R6//R7. (See page 11.)

Component storage:

Reference
Element Designator
Gm GM
21
22
22
23
23
24
24
E1

R1
R2
C3
R4
C5
R6
R7
E1

Value	Stored in Register
0.025	00
100	01
1 K	02
100 pF	03
4 Meg	04
3 pF	05
80 K	06
10 K	07
1 Not stored	

Listing for "SKF" and "MAT":
01 LBL "SKF"
02 RCL 02
03 RCL 03
04 XEQ "PRC"
05 STO "Z2"
06 RCL 04
07 RCL 05
08 XEQ "PRC"
09 STO "23"
10 RCL 06

01 LBL "MAT"
02 INDEX "MATK"
$03 \mathrm{~J}+$
04 RCL "K2"
05 +/-
06 ra
07 RCL "P1"
08 RCLx 00
09 RCL- "K3"
10 ra

```
11 RCL 07
12 XEQ "PZ2"
13 STO "24"
1 4 \text { RCL O1}
15 RCL "22"
16 RCL "23"
17 XEQ "PZ3"
18 ENTER
1 9 ~ R C L / ~ 0 1 ~
20 STO "K1"
2 1 ~ R d n
22 RCL/ "23"
23 STO "K2"
24 RCL "23"
25 RCL "24"
26 XEQ "P22"
27 STO "P1"
28 RCL/ "23"
29 STO "K3"
30 END
Output samples for node 2:
Log F dBV Deg
3.00 46.045 180
6.20 43.336 136
(3 dB rolloff point)
8.15 -0.222 18 (Gain-bandwidth-product \cong 1, or ft
= 10^8.15 = 141.3 MHz.)
```

Example 8. Inverting op-amp

Element	Reference Designator	Value	Stored in Register
21	R1	10 K	R01
22	R2	15 K	R02
23	R3	1 K	R03
23	C4	0.015 UF	R04
24	R5	15 K	R05
E1	E1	,	Not stor

To lllustrate the affects of op-amp rolloff, change line 06 in program "OPAMP" to: O6 10E6.

Since we desire the output $V=$, the matrix given on page 1315 recreated without the substitution $V_{3}=-A V_{1}$:

$$
\left|\begin{array}{ccc}
1 & -K_{2} & 0 \\
-K_{3} & 1 & -K_{4} \\
A & 0 & 1
\end{array}\right|\left|\begin{array}{c}
V_{1} \\
V_{2} \\
V_{3}
\end{array}\right|=\left|\begin{array}{c}
E_{1} K_{1} \\
0 \\
0
\end{array}\right|
$$

(An alternative method $1 s$ to solve the orlginal matrix for V_{1} and modify "GETV" to multiply V_{1} by -A.)

Listing for "SKF" and "MAT":

01 LBL "SKF"	01 LBL "MAT"
02 RCL 03	02 INDEX "MATK"
03 RCL 04	$03 \mathrm{~J}+$
04 XEQ "SRC"	04 RCL "K2"
05 STO "23"	05 +/-
061	06 ra
07 RCL 01	$07 \mathrm{~J}+$
08 RCL 02	08 RCL " K3"
09 XEQ "F2"	09 +/-
10 STO "K1"	10 ra
11	$11 \mathrm{~J}+$
12 STO "K2"	12 RCL "K4"
13 RCL 02	13 +/-
14 RCL "23"	14 ra
15 RCL 05	15 RCL "A"
16 XEQ "P23"	16 ra
17 ENTER	17 INDEX "MATE"
18 RCL/ 02	18 RCL "K1"
19 STO "K3"	19 da
20 Rdn	20 RCL "MATE"
$21 \mathrm{RCL} / 05$	21 RCL/ "MATK"
22 STO "K4"	22 STO "MATV"
23 XEQ "OPAMP"	23 END
24 END	

As can be seen from the above $3 \times 3 \mathrm{~K}$-matrix, the order 1 s 3 when executing "SETUP".

Some output points for node 3 are:
Log F dBV Deg
$1.00 \quad 9.539-180 \quad$ (DC gain of $30 \mathrm{~K} / 10 \mathrm{~K}$ in dBV . -180 since this is an inverting opamp circult.
6.00 28.094-179 (Galn Increase due to feedback T network.)

Now change line 06 of "OPAMP" to: 06100
This gives an opamp pole of 100 Hz , which is more realistic. The output at node 3 is now:

Log F dBV			
$1.00 \quad 9.539$	-180	(No Change.)	
$6.00-4.231$	191	(The opamp is not cap $\left.F=10^{\wedge} \sigma=1 \mathrm{MHz}.\right)$	pable of
Example 9 A	Adjustable Gain Differentlal Amplifler (Reference 2.)		
Element	Reference Designator	Value	Stored in Reglster
21	R1	20 K	RO1
22	R2	2 K	R02
23	R3	2 K	R03
24	R4	1 K	R04
25	R5	20 K	R05
26	R6	2 K	R06
27	R7	2 K	R07
E1	E1	10	"E1"
E2	E2	-10	"E2"
Listing for "SKF" and "MAT":			
01 LBL "SKF"		01 LBL "MAT"	
021		02 INDEX "MATK"	
3 RCL 01		$03 \mathrm{~J}+$ -	
04 RCL 02		04 RCL "K2"	
05 XEQ "F2"		05 +/-	
06 STO "K1"		06 ra	
07 -		$07 \mathrm{~J}+$	
08 STO "K2"		$08 \mathrm{~J}+$	
09 RCL 02		$09 \mathrm{~J}+$	
10 RCL 03		10 RCL "K3"	
11 RCL 04		11 +/-	
12 XEQ "P23"		12 ra	
13 ENTER		$13 \mathrm{~J}+$	
$14 \mathrm{RCL} / 02$		14 RCL "K4"	
15 STO "K3"		15 +/-	
16 Rdn		16 ra	
$17 \mathrm{RCL} / 03$		$17 \mathrm{~J}+$	
18 STO "K4"		18 RCL "K5"	
19 Rup		19 +/-	
201	Using	20 ra	
21 X<>Y K	$K 3+K 4+K 5=1$	21 RCL "A"	
$22-$		22 ra	
$23 \mathrm{X}<>\mathrm{Y}$		$23 \mathrm{~J}+$	
24 -		24 J+	
25 STO "K5"		25 RCL "A"	

261
27 RCL 05
28 RCL 06
29 XEQ "F2"
30 STO "K6"
31 -
32 STO "K7"
33 RCL 06
34 RCL 04
35 RCL 07
36 XEQ "PZ3"
37 ENTER
38 RCL/ 06
39 STO "K8"
40 Rdn
41 RCL/ 04
42 STO "K9"
43 XEQ "OPAMP"
44 END

```
26 +/-
27 ra
28 J+
29 J+
30 J+
31 J+
32 J+
33 RCL "K7"
34 +/-
35 ra
36 J+
37 RCL " K9"
38 +/-
39 ra
40 J+
4 1 ~ R C L ~ " K 8 " ~
42 +/-
4 3 ~ r a
4 4 ~ I N D E X ~ " M A T E " ~
4 5 ~ R C L ~ " E 1 " '
46 RCLX "K1"
4 7 ~ d a
4 8 ~ I +
49 I +
50 RCL "E2"
51 RCLx "K6"
52 da
5 3 ~ R C L ~ " M A T E " ~
54 RCL/ MATK"
55 STO "MATV"
5 6 \text { END}
```

Though all components are real (resistive), the opamp has an AC rolloff component, so when executing "SETUP", choose AC. From page 14, the order $1 s 5$.

We will examine the affects of gain setting resistor R4 at 10 Hz : (Node 3)

Log F	$d B V$	Deg	R4 value
1	21.579	-180	1 K
1	16.476	180	3 K
1	20.001	180	1.332 K

The last setting of R 4 gives an output of -10 V .
(Example 10, Non-linear circult, will be covered after example 12.)
Example 11. Flfth Order Active Fllter

Element	Reference Designator	Value	Stored in Register
21	C1	0.03 uF	RO1
22	R2	2.0 K	R02
23	R3	70 K	R03
24	C4	0.02 uF	R04
25	C5	1.9 nF	R05
26	R6	140 K	R06
27	C7	0.01 uF	R07
28	R8	12 K	R08
28	C9	0.4 nF	R09
29	R10	2.7 K	R10
210	R11	3.2 K	R11
211	R12	10 K	R12
E1	E1	1	Not stored

Listing for "SKF" and "MAT":

01 LBL "SKF"
02 RCL 01
03 XEQ "XC"
04 STO "21"
05 RCL 04
06 XEQ "XC"
07 STO " 24 "
08 RCL 05
09 XEQ "XC"
10 STO "25"
11 RCL 07
12 XEQ "XC"
13 STO "Z7"
14 RCL 08
15 RCL 09
16 XEQ "PRC"
17 STO "28"
18 RCL "21"
19 RCL 02
20 RCL 03
21 RCL "24"
22 XEQ "P24"
23 ENTER
24 ENTER
25 RCL/ "21"
26 STO "K1"
27 Rdn

01 LBL "MAT"
02 INDEX "MATK"
$03 \mathrm{~J}+$
04 RCL "K2"
05 +/-
06 ra
07 J+
08 RCL "K3"
09 +/-
10 ra
$11 \mathrm{~J}+$
$12 \mathrm{~J}+$
13 RCL "K4"
14 +/-
15 ra
16 J+
17 RCL "K5"
18 +/-
19 ra
$20 \mathrm{~J}+$
$21 \mathrm{~J}+$
$22 \mathrm{~J}+$
$23 \mathrm{~J}+$
24 RCL "K6"
25 +/-
26 ra
27 J+

Log F	$d B V$	Deg
2.00	-51.890	84
2.70	-55.156	-107
2.80	-37.701	-122
3.60	2.553	64
6.00	-2.610	-52

The area between $\log F=2.0$ and $\log F=3.6$ should show an elliptical response with a very steep climb to the peak value at $\log F=3.6$. The slope between $\log F=2.7$ and $\log F=2.8$ is:

$$
\frac{-37.701-(-55.156)}{2.8-2.7}=\frac{17.455}{0.1}=174.55 \mathrm{~dB} / \mathrm{dec} \text { ade. }
$$

which indicates a very sharp high pass response.

Example 12	Complementary Element Reference Deslgnator	Value	Stored in
Register			


```
Llstlng for "MAT" Cont":
97 RCLx "K3"
98 da
9 9 ~ R C L ~ " E 2 " '
100 RCLx "K5"
1 0 1 ~ d a ~
102 0.6
1 0 3 ~ d a
104 0.6
105 da
106 RCL "MATE"
107 RCL/ "MATK"
108 STO "MATV"
109 END
```

Using STOIJ and STOEL function names for large, sparse matrices will result in a shorter listing for "MAT".

Execute "SETUP", DC, Order? = 8. The node voltages and currents are given below in FIX 03 format:
$V 1=3.860$
$V 2=3.260$
$V 3=3.258$
$V 4=3.771$

```
V5 = 3.171
V6 = 1.636
Ib1 = 1.229E-4 (7:1)
Ib2 = 0.001 (8:1)
```

For an $A C$ analysis of this circult, it $1 s$ suggested that the CE hybrid pi high frequency model be substituted for the simple linear DC model used here. A more accurate non-linear model can be created by using the diode equations in reference 5 and the Ebers-Moll models in reference 6.

01 LBL "SKF"	01 LBL "MAT"
02 RCL 01	02 INDEX "MATK"
03 RCL 02	$03 \mathrm{~J}+$
04 RCL 06	$04 \mathrm{~J}+$
05 XEQ "PZ3"	05 RCL "K3"
06 ENTER	06 +/-
07 ENTER	07 ra
08 RCL/ 01	$08 \mathrm{~J}+$
09 STO "K1"	$09 \mathrm{~J}+$
10 Rdn	10 RCL "K6"
11 RCL/ 02	11 +/-
12 STO "K2"	12 ra
13 Rdn	13 RCL "K7"
$14 \mathrm{RCL} / 06$	14 +/-
15 STO "K3"	15 ra
16 RCL 04	16 RCL " K8"
17 RCL 03	17 +/-
18 RCL 07	18 ra
19 XEQ "P23"	19 INDEX "MATE"
20 ENTER	20 RCL "E1"
21 ENTER	21 RCLx "K1"
22 RCL/ 04	22 RCL "E3"
23 STO "K4"	23 RCLx "K2"
24 Rdn	24 +
25 RCL/ 03	25 da
26 STO "K5"	26 RCL "E2"
27 Rdn	27 RCLx "K4"
28 RCL/ 07	28 RCL "E3"
29 STO "K6"	29 RCLx "K5"
30 RCL 06	30 +
31 RCL 07	31 da
32 RCL 05	32 RCL "MATE"
33 XEQ "P23"	33 RCL/ "MATK"
34 ENTER	34 STO "MATV"
35 RCL/ 06	35 END
36 STO "K7"	
37 Rdn	
38 RCL/ 07	
39 STO "K8"	
40 END	

In order to see the affect of a varying input voltage E 3 and to change the "diode" resistor values if forward or reverse biased, a different main program is required which will be labled "VSWP" for "voltage sweep". This maln program is similar in structure to "ACAP" and is given below with comments:

01 LBL "VSWP"
02 CF 01
03 10E6
04 STO 06
05 STO 07
06-16
07 STO "EL"
08 LBL 00
09 STO "E3"
10 XEQ "SKF"
11 XEQ "MAT"
121
13 STO "Vn"
14 XEQ "GETV"
15 STO 11
163
17 STO "Vn"
18 XEQ "GETV"
19 STO 13
20 CLA
21 FIX 00
22 ARCL "E3"
23 1-" "
24 FIX 03
25 ARCL 13
26 AVIEW
27 RCL 11
28 X<>Y
29 -
$30 \times \leq 0$?
31 SF 01
3210
33 10E6
34 FS?C 01
$35 \mathrm{X}<>\mathrm{Y}$
36 STO 06
372
38 STO "Vn"
39 XEQ "GETV"
40 RCL- 13
$41 \quad \mathrm{X} \leq 0$?
42 SF 01
43 10E6
4410
45 FS?C 01
$46 \mathrm{X}<>\mathrm{Y}$
47 STO 07
481
49 STO+ "EL"
5016
(Diode ON/OFF flag)
(Inltial values)
"
(Sweep starts from -16 V)
(Left voltage)
(Varying input voltage)
(Get V1)
(Get V3)
(Display setup)
(Append space)
(E3 V3)
(V3 - V1 < O => D6 1s ON)
(ON resistance)
(OFF resistance)
(Get V2)
(V2 - V3) < O => D7 1s OFF
(Increment input voltage)

51 RCL "EL"
$52 \mathrm{X} \neq \mathrm{Y}$?
(Stop at +15 V)
53 GTO 00
(Repeat)
54 END
In "SETUP", temporarily change line from 48 GTO "DCAP" to 48 GTO "VSWP". Execute "SETUP", choose DC, and from page 15 the order must be 3 , since we are analyzing three nodes, V_{1}, V_{2}, and V_{3}.

The output from -15 V to +15 V is shown below: (Ignore the first output at $E 3=-16 \mathrm{~V}$, since this step determines which diode should be turned on.)

E3	V3	
-15	-6.245	
-14	-5.710	
-13	-5.174	
-12	-4.639	
-11	-4.104	
-10	-3.569	
-9	-3.033	
-8	-2.498	
-7	-1.963	
-6	-1.428	
-5	-0.893	
-4	-0.357	Begln dead zone
-3	0.178	$1 . e .$, both diodes OFF
-2	-0.002	
-1	-0.001	
0	0.000	
1	0.001	
2	0.002	
3	0.004	
4	0.005	End dead zone
5	0.893	
6	1.428	
7	1.963	
8	2.498	
9	3.033	
10	3.569	
11	4.104	
12	4.639	
13	5.174	
14	5.710	
15	6.245	

The "glitch" at E3 $=-3 \mathrm{~V}$, is due to the discrete 1 V steps in E3. Ideally, the program should be structured so that smaller steps such as 0.1 V , are applied to the circult and the output displayed only at 1 V or 2 V intervals. The "glitch" would then disappear since the program would more closely simulate the actual circuit where E3 $1 s$ continuous. However, this is not necessary since the actual circuit operation can be understood using 1 V increments.

APPENDIX

I. Ladder Network Analysis

All circuits analyzed so far have used matrices for the solution form. Ladder networks lend themselves to a more efflcient solution form which will run faster.

Given the 4 L-section ladder network shown below:

Let $\mathrm{Be}_{\mathrm{o}}=1 / 20$
$B_{\alpha}=1 / Z_{\alpha}+1 /\left(Z_{7}+1 / B_{0}\right)$
$B_{4}=1 / Z_{4}+1 /\left(Z_{5}+1 / B_{6}\right)$
$B_{2}=1 / Z_{2}+1 /\left(Z_{3}+1 / B_{4}\right)$
Then
$V_{1} / V_{2}=1+Z_{1} B_{2}$
$V_{2} / V_{3}=1+2_{3} B_{4}$
$V_{3} / V_{4}=1+Z_{5} B_{6}$
$V_{4} / V_{s}=1+2>B e$
Finally $V_{1} / V_{5}=$
$\left(1+Z_{1} B_{2}\right)\left(1+Z_{3} B_{4}\right)\left(1+Z_{s} B_{6}\right)\left(1+2 \rightarrow B_{6}\right)$
Taking the inverse will give the transfer function V_{s} / V_{1}.

For output Impedance 20:
$Z_{0}=Z_{a} / /\left(Z_{7}+Z_{a} / /\left(Z_{5}+Z_{a} / /\left(Z_{3}+Z_{1} / / Z_{2}\right)\right)\right)$
Or by chalned fractions:
Let $A_{2}=1 / Z_{2}+1 / Z_{1}$
$A_{4}=1 / Z_{4}+1 /\left(Z_{3}+1 / A_{2}\right)$
$A_{6}=1 / Z_{6}+1 /\left(Z_{5}+1 / A_{4}\right)$
$A_{\theta}=1 / 2_{0}+1 /\left(Z_{7}+1 / A_{6}\right)$
$Z o=1 / A_{e}$, and similarly for the input impedance $Z i n$.
The ladder network shown below will be analyzed using the above expressions for the output voltage. The circuit is a model of a high frequency transformer. (Ref. 4) The topology 1 s a 3 L-section ladder network.

Although "SKF" and "MAT" may now be Inapproprlately named, they are retalned for the sake of conslstency. The high frequency transformer model can be analyzed faster with the following routines than the matrix format used previously.			
Store the following values in the registers indicated:			
Element	Reference Designator	New AC value	Stored in Register
21	R1	10	01
22	C2	20 pF	02
23	R3	1.5	03
23	L4	1 uH	04
24	R5	20 K	05
24	L6	2 mH	06
25	R7	1.5	07
25	L8	1 uH	08
26	R9	1 K	09
26	C10	20 pF	10
Listing for "SKF" and "MAT":			
01 LBL "SKF"		01 LBL "MAT"	
02 RCL 02		02 RCL " 26 "	
03 XEQ "XC"		03 RCL+ "25"	
04 STO "22"		041 1 \times	
05 RCL 03		05 RCL "24"	
06 RCL 04		$061 / \mathrm{x}$	
07 XEQ "SRL"		07 +	
08 STO "23"		08 STO "B4"	
09 RCL 05		$091 / \mathrm{X}$	
10 RCL 06		10 RCL+ "23"	
11 XEQ "PRL"		11 1/X	
12 STO "24"		12 RCL "22"	
13 RCL 07		$131 / X$	
14 RCL 08		$14+$	
15 XEQ "SRL"		15 STO "B2"	
16 STO "25"		16 RCL "25"	
17 RCL 09		17 RCL/ "26"	
18 RCL 10		181	
19 XEQ "PRC"		$19+$	
20 STO " 26 "21 END		20 RCL "B4"	
		21 RCLx "23"	
21 END		221	
		$23+$	
		$24 \times$	
		25 RCL "B2"	
		26 RCLx 01	
		271	
		$28+$	

$29 \times$
30 1/X
31 END
The program "ACAP" must be modifled slightly slnce we are not looking for an element of the "MATV" vector. Delete or flag around line 20 XEQ "GETV", and Ignore the Vn? prompt. Some outputs of the transformer model are given below:

Log F dBV Deg
2.00 -19.296 8
$5.00-0.122$
$7.40 \quad 8.849 \quad-89$
(Low frequency response)
(Mid-band response)
(Resonance peak)
$8.00 \quad-23.496 \quad 177$
(High frequency rolloff)
Note that the resonance peak $1 s$ followed by a sharp rolloff.
II. Bullding Branch Impedances with the HP-42S

Branch impedances other tha the simple serles and parallel RC or RL given by the subprograms on page 22 are easy to construct. For example, for the branch impedance 21 shown below

the HP-42S sequence 1s:
RCL 01 RCL 02 XEQ "PRC" RCL 03 RCL 04 XEQ "SRC" XEQ "PZ2"
RCL 05 RCL 06 XEQ "SRL" XEQ "P22" RCL 07 RCL 08 XEQ "SRC"

+ STO "21"
(Insure that the stack does not fill up and an impedance lost into the T-register.)

III. Floating Voltage Sources

Floating voltage sources are sometimes required for diode and transistor models where the value of the voltage source in serles with a resistor is about 0.6V. Whatever the purpose, they are analyzed as shown in the example below:

Page 53

Step 1.

$$
\begin{aligned}
& V_{1}=E_{1} K_{1}+V_{2} K_{2}+\left(V_{2}-E_{3}\right) K_{3} \text { or } \\
& V_{1}=E_{1} K_{1}+V_{2}\left(K_{2}+K_{3}\right)-E_{3} K_{2} \\
& V_{2}=E_{2} K_{4}+V_{1} K_{3}+\left(V_{1}+E_{2}\right) K_{4} \text { or } \\
& V_{2}=E_{2} K_{4}+V_{1}\left(K_{3}+K_{4}\right)+E_{3} K_{4}
\end{aligned}
$$

Step 3.

$$
\left|\begin{array}{cc}
1 & -\left(K_{2}+K_{3}\right) \\
-\left(K_{3}+K_{4}\right) & 1
\end{array}\right|\left|\begin{array}{l}
V_{1} \\
V_{2}
\end{array}\right|=\left|\begin{array}{l}
E_{1} K_{1}-E_{3} K_{3} \\
E_{2} K_{4}+E_{3} K_{4}
\end{array}\right|
$$

where the intermediate step 2. 13 skipped. Note that node V_{1} "sees" a voltage of V_{2} - E_{3} when "looking at" node V_{2} via impedance Z_{4}. Conversely, node V_{2} "sees" a voltage of $V_{1}+E_{3}$ when "looklng at" node $V_{1} v i a Z_{4}$. Hence the polarity of the floating source must be observed with care when writing the node equations.
IV. Designing with K Factors

The following is an example of how K factors can be used in circuit design:

Given the $N=4$ star network shown on page 3 where the 2^{\prime} 's will be assumed all $R^{\prime} s$, determine the required resistor values such that:

$$
\begin{aligned}
V_{0} & =E_{1} K_{1}+E_{2} K_{2}+E_{3} K_{3}+E_{4} K_{4} \\
& =E_{1}(0.1)+E_{2}(0.2)+E_{3}(0.3)+E_{4}(0.4)
\end{aligned}
$$

for any values of E_{1} thru E_{4}. Note that

$$
\begin{equation*}
\mathrm{K}_{1}+\mathrm{K}_{2}+, \ldots+\mathrm{K}_{N}=1 \tag{1}
\end{equation*}
$$

for a star network of N branches.
One solution method would be to generate a set of four simultaneous equations from Kirchoff's Current Law or Kirchoff's Voltage Law, for the four unknown reslstor values. However, using K factors allows the simultaneous equations to be avolded:

Let $R_{1}=1 \mathrm{~K}$ (or any convenient value), then:

$$
\begin{aligned}
& R_{2}=R_{1} K_{1} / K_{2}=1000(0.1) / 0.2=500 \text { ohms. } \\
& R_{3}=R_{1} K_{1} / K_{3}=100 / 0.3=333 \text { ohms. } \\
& R_{4}=R_{1} K_{1} / K_{4}=100 / 0.4=250 \text { ohms. }
\end{aligned}
$$

For an $N=3$ branch, assume the design requirements are:

$$
\mathrm{K}_{1}=0.2, \mathrm{~K}_{2}=0.25, \& \mathrm{~K}_{3}=0.15 .
$$

In this case, $K_{1}+K_{2}+K_{3}=0.6$, and to satisfy (1) above, we must provide a fourth branch with V4 = 0 and

$$
K_{4}=1-0.6=0.4 .
$$

Again letting R_{i} be $1 K$:

$$
\begin{aligned}
& R_{2}=1000(0.2) / .25=800 \text { ohms }, \\
& R_{3}=200 / 0.15=1333 \text { ohms }, \\
& R_{4}=200 / 0.4=500 \text { ohms } .
\end{aligned}
$$

The star or summing network $1 s$ useful where the output Vo $1 s$ connected to a high impedance such as non-inverting op amp or comparator inputs.

References:

1. Pulse, Digital, and Swltchlng Waveforms, Millman \& Taub, 1965, p. 7.
2. Operational Ampliflers, Deslan and Applications, Graeme, Tobey, \& Huelsman, 1971, p. 202.
3. Introduction to Operational Amplifler Theory and Appllcations, Walt, Huelsman, \& Korn, 1975, p. 147.
4. Reference Data for Radio Englneers, 5th Ed., ITT/Sams, p. 12-1.
5. Algorlthms for RPN Calculators, Ball, 1978, p. 272.
6. Modelling The Bipolar Translstor, Getreu, 1976, Tektronix.
