HP42S

 EDM Slope Staking

NOTPTCR

No express or implied warranty is made by D'Zign Land Survey $\&$ Development or the author with regard to the procedures and program material offered or their merchantability or their fitness for any particular purpose. The keystroke procedures and program material are made available solely on an "as-is" basis, and the entire risk as to their quality and performance is with the user. Should the procedures or program material prove defective, the user (and not D'Zign Land Survey 2 Development nor any other party) shall bear any and all cost of all necessary correction and all incidental or consequential damages. D'Zign Land Survey $\&$ Development and/or the author shall not be liable for any incidental or consequential damages in connection with or arising out of the furnishing, use, or performance of the keystroke procedures or program material.

HP42S EDM Slope Staking

Library of Congress Catalog Card No. 89-81214 ISBN 0-944889-08-5

Manufactured in the United States of America

Copyright © 1990 by Ted J. Kerber
All rights reserved. No part of this work covered by the copyright hereon may be reproduced or used in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping or information storage and retrieval systems - without written permission of the author.
published by $D^{2} \mathbb{Z}$ ign Land Survey \& Development
Glendale, California, U.S.A. 1990

ISBN 0-944889-08-5

TECHNICAL ASSISTANCE

The program material, instructions and procedures contained in this book assume that the user has a working knowledge of both surveying and the general operation of the HP-42S calculator.

Technical assistance is limited to verification of the results shown in the various examples used in the book.

If you have any questions or suggestions regarding this book or other D'Zign publications, please feel free to call us. The number is (818) 507-7408, and someone is available to answer technical questions from 3:00 A.M. to 5:30 A.M. and from 4:30 P.M to 6:30 P.M. (Pacific time), as a service to users from other time zones.

This software and book are both protected by U.S. Copyright Law (Title 17 United States Code). Unauthorized reproduction and/or sales may result in imprisonment of up to one year and fines of up to $\$ 10,000$ (17 USC 506). Copyright infringers may also be subject to civil liability.

Hewlett-Packard has produced a really powerful calculator at a very good price, the HP-42 Scientific Calculator, which lends itself nicely to solving surveying problems. It can not be programmed by insertion of a module, or with a card reader, like the HP-41 series, but it has a really simple system for typing in a program.

the operations index

To find a function for the first time, HP has provided an "Operations Index" on pages 310 through 335 of the instruction manual, which tells you exactly what keystrokes to use to type in the function you want.

Even better, this index gives you the page number that you can refer to if you want to know more about the function you are using. If, while typing in a program, you aren't sure how to input a particular function, simply refer to the Operations Index.

the softkey menus

All of the programs in this booklet take advantage of the "softkey" menu system built into this calculator. When you want to start a program you stroke XEQ and then the softkey corresponding to the program you want, from the menu displayed in the bottom half of the screen.

the programs

There are several different ways to slope stake, and we've tried to make this program as convenient as possible for everyone. You can use it as is, or maybe change some of the output labels to match what is used in your particular area.

The main program is set up to allow setting of a catch point at any convenient location, and the station at which the stakes are set is output. There is also a subroutine which lets you precalculate the angle and distance to a specific station, at any offset, to begin at.

It's a good idea to take your time with the input of the program steps, to avoid errors. You might also want to do the programming in stages, rather than all at one sitting. Be extra careful with the proof-reading.

subroutines

Because of the way the calculator works, we will start by input of some subroutines.

Once the subroutine has been input, its name appears in the menu when you stroke xec, and all you have to do to add it as a step in the program you are typing in is stroke GTO or XEQ followed by keystroking the key corresponding to the subroutine to input the program step GTO XXX or XEQ XXX.

getting started

的 1 \{BL 113 Byyte Prgm $\}$
जै "YES"
Й3 KEY 1 GTO Q1
54 "NO"
95 KEY 2 GTD 92
Ā6 MENU
Q7 STOP
-8 LBL B1
99 SF 10
Begin by stroking the shift key, then the XEQ key. The display will show a menu which will be blank (if you haven't yet input any programs) except for .END. on the left. The keys just below each of the menu portions will correspond to the menu instruction above it. Stroke the key just below the .END. in the

10 GTO 03
11 LBL B2
12 CF 10
13 LBL 日3
14 CLMENIJ
15 EXITALL
16 RTN display.

Next, go into program mode by stroking the shifted ras key,
 and you should have a display similar to the one shown to the left. Begin typing in the program "YN".

quick tip

Program steps 03 and 05 use a function which stores the prompt to the menu, and at the same time assigns the key.

To access the function, stroke \square PGM.FCN \triangle UE

You'll receive a prompt, KEY - Stroke the key number (we'll use 1 as the example), and you will get a prompt, KEY 1 GTO__. Now type in the 01 .

next subroutine

This one has three steps we might want to review before you start：

09 ARCL $5 T \times$ To use a store or recall function involving the stack，stroke STO（or RCL） －．This brings up a menu from which you can select the function to complete the program step．

051 E 2 Third row down，second from the right， is a key，E ．Stroke this key，then the number（in this case 2）．Nothing will happen until you input the next step，usually＇times＇or＇divide＇．
$11 \vdash^{\prime+" ~ T h e ~} \vdash$ symbol is＂append＂，which adds to what is already in the alpha register．

	$\begin{aligned} & \text { LBL "ETA" } \\ & \underline{C F} 29 \end{aligned}$
03	FIX 0
04	ST0 こ1
05	$1 E z$
（16）	$\stackrel{\square}{\square}$
07	ENTER
08	IF
09	AFCL ST
10	
11	$\vdash^{\prime \prime}+{ }^{\prime \prime}$
12	FIX 6.5
13	$1 E 2$
14	X
15	10
16	$x>y ?$
17	ト＂可＂
15	ARCL $5 T$
19	ROL 21
20	5 F 29
21	FIX 14
22	END

This program changes the output of the stationing to really read like stationing．It takes up 48 bytes of memory．

After you＇ve input the program make sure to proof read it．Look，in particular，for steps that are alpha but shouldn＇t be，or should be alpha and aren＇t．

Follow the same procedure to begin the input as with the first subroutine， ＂YN＂，and type in the steps．When you input the END at step 22 ，do it by stroking XEQ before going into alpha mode to type in the rest．

testing

After you do the proof－reading，you can give it quick check，to see if it＇s working properly．First，clear the alpha register，then input 1204.78 and execute the program．Now，if you go into alpha mode，or execute AVIEW，the display portion should read as $12+04.780$ ．

If you go to the program, "STA", which was just input and scroll up to 00 , you can begin the next subroutine. When you input the last step, END, the calculator will automatically divide the two programs.

You could also use a RTN, instead
 of END as step number 15. This leaves the two programs together but, since neither of them uses any subroutine lables, they will both still work properly.
"CL1" is a register clearing routine. The other, "FCL", clears all of the flags 00 through 13.

This group of programs uses 44 bytes of memory for both programs.

By now you should be familiar with most of the strokes used in the programming. The next subroutine (below) outputs angles labeled with the ${ }^{\circ}$, ' and " symbols.

All of these subroutines can be used with other programs. In this one, if flag 19 is set the program clears the alpha register before it starts. When flag 19 is clear alpha labels ahead of the numeric portion are retained.

Take a few minutes to look the program over after you finish with the input. Like "STA", "DMS" may be checked by using it. Input 12.34567 and stroke XEO WHET. If you execute AVIEW, or go into alpha, the display should be $12^{\circ} 34^{\prime} 56.7^{\prime \prime}$. If it isn't, something is wrong with one or more of the program steps.

When a program is long it runs slower. The search for a specific label goes all of the way around the loop until it comes to the label it's looking for. For this reason, the input prompting sequences have been set up as a separate program, "INPT", which is the next to be put in.

important strokes

The symbol, 4 , is "line feed", and we use it to control the display (the first time we use it is at program step $04)$. You can input it by stroking

This time, put the program in at the permanent .END. and it will have the secondary effect of removing .END. from your GTO/XEQ menu. The programs should be grouped in such a way that the ones you use most often appear in the first menu, for convenience. Enter program mode and scroll up to 00 to begin.

```
ब0% 51द -Byt? Frgm ?
ENEL
GS "Instrument"
04 ト"St,ation?!"
05 PROMPT
06 5T0 05
07 "0ffset?L"
PROMPT
09 STO 06
10 RCL 05
11 <<0
12 XEQ 06
13 "Eacksight"
15 FROMPT
16 STO }0.
17 "0ff set?4r"
1S FROMPT
19 STO 04
20 ROL
<<<
E XEQ 02
4 ROL 6% 
FCL- 16
```



```
8 +POL
```


C
X
X
3
+
5

$C L X$
8
360
+
ST0 07
"Inst. H.I.?ヶ"
PROMPT

PROMPT
5T0 20
5 T0 33
ENTER
ENTER
PROMPT
$+$
5 50 27
RT
MF
PRO
+
KJO
PRO
$1 E 2$
\div
Fi
ROM
RO
EO
OMPT
028
arde?
MPT

57	$\begin{aligned} & 5 T^{0} \\ & 81 \end{aligned}$
59	"Vertical curve?"
60	AVIEW
61	5 F 21
62	CLMENU
63	XEQ "YN"
64	FC? 10
65	GTO 09
66	SF 04
67	"B.V.C."
68	$\vdash^{\prime \prime}$ st, ation?t"
69	PROMPT
70	ST0 16
71	"Length V.C.?t"
72	PROMPT
73	$5 T 017$
74	"Grade out? ${ }^{\text {che }}$
75	PROMPT
76	1E2
77	
78	$5 T 009$
79	GTO 09
80	LBL 00
81	CF 01
82	"B.C. Station?t"
83	PROMPT
84	$x<0$?
85	5 F ¢ 1
86	$x<0$?
87	+/-
88	LBL 87
89	CLMENU
90	ST0 15
91	FS? 01
92	RTN
93	"Radius?t"
94	PROMPT
95	STO 14
96	"Delta?ts"
97	PROMPT
98	$\rightarrow \mathrm{HR}$
99	$x<0$?
100	SF 05
181	$5 T 013$
102	$\rightarrow \mathrm{RAD}$
103	RCLX 14

Proof read the program at least once, looking for typos. One quick check is to execute the program and run/stop through the prompts. This will check the sequence of the prompts, and should run as follows:

First, execute "INPT", to bring up the first prompt.
stroke ars after each of the prompts appears, until you get to the beginning of the prompts for the vertical curve.

Answer this one "yes" to bring up the remaining vertical prompts, and finally, the prompt for "NEXT" and the prompt bar for selection of either an ending point or a B.C. station.

When you stroke a/S at this prompt the display should clear. Go into program mode, and your program pointer should be at step 93, "Radius?؛".

Exit and stroke a/s twice to bring up the next prompt, and continue. A a/S after "Delta?" will not bring up another prompt. If you go into program now, you should be at step 120 , LBL 01.

the main program, "SS"
The best place to put this next program is at the bottom of "INPT". GTO "INPT" and enter program mode. Scroll upward 3 times, to put the pointer at step 197, GTO 07, and type in the first step of the new program, LBL "SS".

Next, scroll upward to GTO 07 again, stroke XEO and then enter alpha mode and type in "END". This separates the programs and positions the new one correctly. Leave program mode and GTO "SS" to input the rest of the program listing which begins on page 8.

Take your time with the programming, because this is a rather long one, and extremely difficult to debug.

90 \{ 1008 -Byte Prgm \}
Q1 LLBL
62 XEQ
63 XEQ
64 CLST
65 SF
66 XEQ
$67 D L B L$

68 CLX
69 CHMENU

3 "Zく" KEY Z GTO 01
14 "S.D."
15 KEY 3 GTO 01
17 KEKY 4 GTO C
19 KEY 5 GTO F
1 KEY 6 GTO A
$\begin{array}{llll}\text { KEY } 7 \text { GTO } & \text { Q2 } \\ \text { KEY } 8 \text { GTO } & 02\end{array}$ KEY 9 GTO 0З MENU
STOP GTO 04
9BL 02

55 ¢F 5022	
	LBL 06
585 T0 30	
	CLA
60 CF 21	
62 AUIEW ${ }^{6}$	
635 F 21	
$65 . L B L 14$	
	$\mathrm{RCL}+33$
6751027	
	$5 T 020$
	LBL 25
71 RCL+ 33	
	5 T0 28
7357020	
	STOP
75 LBL 17	
	FIX 02
7 CLA	
78 RP Eleu $=$	
80 ト"ti ${ }^{\text {¢ }}$	
81 RCL- 12	
$83 \times 1 \times 0$?	
85 fR	
87 ARCL 34	
	$\vdash^{\prime \prime}$ to 5.5."
89 RUIEW	
	CF 06
91 ADU	
92 LBL ${ }^{\text {a }}$	
945 F 03	
	FC? 22
96 RCL 01	
97 F5? 22	
99 ST0 01	
100 R 4	
101	$x<>Y$
$102 \rightarrow H R$	
	$\rightarrow \mathrm{REC}$
	RCL +
	$\mathrm{RCL}+81$
	F5? 06
108	XEQ 17

Before starting with the user's instructions and the keystroke examples, this is a good place to look at how the program is set up.
vertical grade

When the station that is occupied by the instrument is within a vertical curve, the elevation that is input as profile grade is the elevation of the vertical tangent at the instrument station.

It's a simple matter to calculate this elevation since it is just the extention of the back vertical tangent (even if the instrument is upstation of the PVI).

slope ratio

The slope ratio is carried as a constant, and is displayed each shot. If you want to change it, input the new number before stroking a / S. If it is the ratio you plan to use just stroke B / S.

half-width

Like the slope ratio, the half-width (distance from the centerline to the hinge point) is displayed each shot. If it is the width you want to use, stroke a/s. If not, input the new number and then stroke m / s.

Both of the variables above may be changed at any time, during the shot input, allowing for widening the roadbed or flattening the slope as the cut or fill approaches a "daylight" area.

referencing

A routine has also been included which calculates the angle to turn and the distance to measure to set the
reference stake. The amount of offset is input by the user and the angle and distance are calculated. A shot taken on the reference hub after it is set will output the elevation of the RP and the plus or minus to the slope stake.

setting specific stations

This program allows the flexibility of setting stakes wherever the terrain forms a high or low point, to best define the top or toe of slope. Since the program calculates the finished grade at any station you shoot, it isn't necessary to only set those points with elevations shown on the profile.

To stake at specific stations, at 25^{\prime} or 50^{\prime} intervals, you can set the station at an offset (determined as approximate catch point based on the drawings) for the

After input of the station and offset the program will output the angle and distance to that point. Set a temporary point there and take a shot on it. The output will tell you which way, and how far, to the catch point.

Since the ground changes, it should be understood that this distance is where the catch point would be if the ground were flat.

the cut and fill factors

The actual point where the slope will end is seldom at the same elevation as profile grade. Use of these factors causes the adjustments to profile grade to be made automatically. These factors are discussed in more detail as part of the keystroke instructions.

sizing

To use the basic program, the calculator should be sized to 0035 . This means that registers 00 through 34 are used for storage. If you decide to add either or both of the optional routines (resection and data storage) additional registers will have to be allocated for their use.

To begin, the program is initialized by keystroking XEO 雃 of the flags, and calls up the first prompt:

Instrument Station?

Input the station which (or opposite which) is occupied by the instrument. If this station is within a curve on the alignment, stroke tom before stroking

R/S

Offset?

If the instrument is on centerline, input 0 . If the instrument is at an offset distance from centerline, input the offset distance. If the offset is left of centerline, stroke $t \rightarrow$ before

Backsight Station?
Input the station at the backsight. If the station is within a curve (and the instrument station was not), first stroke $t \rightarrow$, then

R/S
Offset?
Input 0 if the sight is on centerline, or input the offset distance. If the offset of the point is to the left of centerline, stroke the before
B.C. Station?

This prompt will appear after the instrument station input, if the instrument is on a curve in the alignment, or after input of the backsight information, if it is on a curve. If there is a curve, the prompts marked * will appear.

If neither point was on a curve, but there is a curve in the work area, a later prompt provides the opportunity to input the curve data. Input the station,

Radius*

Input the length of the radius of the curve

Delta?*
Input the central angle of the curve. If the curve is a curve to the left, $t /-$ before stroking

Inst. H.I.?
Input the elevation of the height of instrument. Stroke

Profile Elev.?

Input the finished grade elevation at the instrument station. If the instrument is at a station which is located within a vertical curve, input the elevation of the back tangent profile grade.

Cut Factor?

Input the "cut factor". This is the difference in elevation between the finished (profile) grade and the hinge-point of the cut section. If negative, $t /$, then stroke

Fill Factor?
Input the "fill factor". This is the difference between profile grade and the hinge-point in a fill section. If negative, +T- and stroke

\% Grade?

Input the percent of grade for the vertical alignment. If negative, \uparrow. Stroke

R/S

Vertical Curve?

This prompt requires a yes or no answer. If the answer is "YES", the next three prompts for input of the vertical data will appear:

B.V.C. Station?

Input the station at the beginning of the vertical curve. In the case of a grade break, instead of a curve, input the station at the grade break

R/S
Length V.C.?
Input the length of the vertical curve. If this is a grade break instead of a curve, input 0

Grade Out?

Input the percent of grade leaving the vertical curve. If negative, the before stroking

NEXT

AT

If there is a curve in the work area, input the B.C. station and stroke 组霊. If there is not, input a station that is as far as you intend to go, to set the auto-stop option, stroke [सीमा.

INPUT SHOT

The first time this prompt appears, or at any time when you want to change the hinge point elevation (from cut to fill or from fill to cut) select the appropriate factor

If staking a cut, stroke

If staking a fill, stroke

INPUT SHOT

Input the horizontal angle

Input the zenith angle

Input the measured slope distance

E下:

 Because, in slope staking, the rod is always a minus the program will indicate that; you need not change the signOnce the rod has been input you do not have to input it again, unless it changes. Stroking will cause the program to repeat the last rod reading for this shot.

Input the rod reading

The next two prompts are for the "half-width" and the slope ratio. Since they both vary, the value about to be used for the calculation is displayed, and may be changed at this time by input of a new value, prior to stroking R/S.

$$
\begin{aligned}
& \text { W/2 }=\mathbf{0 . 0 0} \\
& \text { Input the correct half-width value, if it } \\
& \text { is different than the value which is } \\
& \text { displayed }
\end{aligned}
$$

At this point the display will show the distance to the actual catch point. If the distance is considered to be within tolerance, stroke 이표 . If it is not, have the rodman move to a new position (based on the display), scroll once, with $\boldsymbol{\Delta}$ or $\boldsymbol{\nabla}$ and begin with input of the data from the new shot.

to set a reference stake

Once you have reached the catch point, stroking ${ }^{[1]}$ will display the information for making out the slope stake.

Input the distance you want to use，from the slope stake to the reference stake． If it is left of centerline，$t /$ ，then stroke

Output will be the distance to the reference point and the horizontal angle to turn to set it．

INPUT SHOT
After setting the reference point，take a shot on it and input it in the same manner as the previous shots．

Output will be the elevation of the reference point and the difference in elevation to the slope stake．

changing the cut or fill factors

At times，design conditions change and a new ＂Typical Section＂means using a different cut or fill factor． There are keys for doing this in the second menu．

To change the cut factor，input the new factor and stroke

To change the fill factor，input the new factor and stroke

This will calculate the elevations based on the new input until you change it again．The new factor also becomes the current factor．If you have just input a new fill factor，but are currently staking a cut stroke［［ before beginning input of the shot．

Before you begin input of the alignment information, take a moment to calculate the cut and fill factors. This is simply the difference in elevation between the finish profile grade and the hinge point you are staking to. If for instance, you were staking to the back of a bench in a cut section, this could be a difference of 20 or more feet.

We are going to use the roadway details shown on the opposite page for the keystroke examples, so we won't have that type of condition. In the typical cut section we are going to be staking to the flowline of the ditch.

The factor will be the sum of the differences. We have 17.5 feet at $-2 \%,+0.5$ ' for the curb, and 8.5^{\prime} at $+4 \%$ on both sides; (17.5)(-.02) $+0.5+(8.5)(.04)=+0.49$. This is the fill factor. For a cut, we have the added ditch, 4^{\prime} @ $2: 1$, which is -2^{\prime}, so the cut factor will be -1.51^{\prime}.

Let's start with the keystrokes for input of the basic information about our setup and the alignments of our roadway. The calculator should be sized at 030 , and we initialize the program by stroking \square XEO $\$$

Instrument Station?
keystrokes:

$\begin{array}{lllll}1 & 0 & 0 & 0 & \text { R/S }\end{array}$ Offset?

keystrokes:
7 HRS

Backsight Station?

keystrokes:

```
lllllllll
(it's on a curve)
```


Offset?

keystrokes:
0 R/S

B.C. Station?

keystrokes
1250 R/S
Radius?
keystrokes:
8 0 0 R/S
Delta?
keystrokes:

Inst. H.I.?
keystrokes:
$\begin{array}{lllllll}1 & 1 & 3 & \cdot & 2 & \text { R/S }\end{array}$
Profile Elev?
keystrokes：

$1006 \cdot 75$ R／S

Cut Factor？
keystrokes：
1 • 5 5 1 H R／S
Fill Factor？
keystrokes：
\％Grade？
keystrokes：

keystroke：

B．V．C．Station？
keystrokes：
$\begin{array}{lllll}1 & 0 & 5 & 0 & \text { R／S }\end{array}$
Length V．C．？
keystrokes：

Grade Out？

keystrokes：

4 R／S

$$
x: 0.00
$$

Prior to the first shot input， we need to say whether it＇s a cut or fill section．We＇ll assume that the first shot will be fill，and stroke

INPUT SHOT

Let＇s try a shot using the following data：

```
horiz. angle = 130}1\mp@subsup{0}{}{\prime}2\mp@subsup{0}{}{\prime\prime
zenith angle = 92`05'15'
slope distance = 187.40'
the rod reading is 5.00'
```

keystrokes：

睘票器

$$
\mathrm{W} / 2=0.00
$$

keystrokes：

Slope Ratio $=0: 1$
keystrokes：
3 R／S
display：TRY 2．55＇RIGHT
You need to have the rodman go about $2 \frac{1}{2}$ feet to the right．We take a shot there， with the following data：
horiz．angle $=13^{\circ} 57^{\prime} 00^{\prime \prime}$
zenith angle $=92^{\circ} 42^{\prime} 00^{\prime \prime}$
slope distance $=187.90^{\prime}$
the rod reading is 5.00^{\prime}

Input this data the same as we did the first shot．This time the prompts for the half－width and the slope ratio will already show us the right information，so we can just continue at that point．
keystrokes：

$\mathbf{W} / 2=26.00$
keystroke：
Slope Ratio＝3：1
keystroke：
display：TRY 0．94＇LEFT
The ground slope has made a difference，and you need to go left about a foot，at the same elevation，for a catch point．On this shot we get：
horiz．angle $=13^{\circ} 30^{\prime} 25^{\prime \prime}$
zenith angle $=92^{\circ} 27^{\prime} 00^{\prime \prime}$
slope distance $=187.70^{\prime}$
the rod reading is 5.00^{\prime}

$\mathrm{W} / 2=26.00^{\prime}$
keystroke：
R／S
Slope Ratio＝3：1
keystroke：
R／S
display：TRY 0.09^{\prime} RIGHT
This is close enough to use for the catch point．Stroke Titi
output：

Let＇s set the reference point at 15 ＇

R／S keystrokes：

15 霊咅票

output：

INPUT SHOT

Turn the angle shown and set the reference point at the distance given．After the point is set，take a shot on it to get the elevation． We＇ll use the following data：
horiz．angle $=17^{\circ} 48^{\prime} 30^{\prime \prime}$ zenith angle $=93^{\circ} 06^{\prime} 15^{\prime \prime}$ slope distance $=192.20^{\prime}$ the rod reading is 5.00^{\prime}
keystrokes：

THI意
output：

x：0．00

Let＇s try one on the cut
side．First，change the
factor by stroking
INPUT SHOT

We＇ll use the following data：
horiz．angle $=348^{\circ} 23^{\prime} 00^{\prime \prime}$
zenith angle $=89^{\circ} 19^{\prime} 50^{\prime \prime}$
slope distance $=201.90^{\prime}$
the rod reading is 5.00^{\prime}
keystrokes：

恝点：
谓！
$\mathrm{W} / 2=26.00$
keystrokes：

Slope Ratio＝ $\mathbf{3 . 0 0}$
keystrokes：
1 • 5 R／S
display：TRY 0．29＇RIGHT
Let＇s go a little to the right and try another shot．We get：
horiz．angle $=348^{\circ} 25^{\prime} 40^{\prime \prime}$
zenith angle $=89^{\circ} 17^{\prime} 20^{\prime \prime}$
slope distance $=202.30^{\prime}$
the rod reading is 5.00^{\prime}
keystroke：
$\mathrm{x}: 0.00$

keystrokes：
$\begin{array}{llllllll}3 & 4 & 8 & \cdot & 2 & 5 & 4\end{array}$

$202 \cdot 3$

$$
\mathrm{W} / 2=\mathbf{3 0 . 0 0}
$$

keystroke:

INPUT SHOT

After setting the RP, we get a shot of:
horiz. angle $=345^{\circ} 39^{\prime} 00^{\prime \prime}$
zenith angle $=87^{\circ} 32^{\prime} 00^{\prime \prime}$
slope distance $=204.10^{\prime}$
the rod reading is 5.00^{\prime}
keystrokes:

output:

$$
\begin{aligned}
& \text { RP Eley }=117.40 \\
& \mathrm{x}: \mathbf{- 6 . 0 0} \mathrm{O}
\end{aligned}
$$

The shots listed below will give you some additional practice with the keystrokes. The shots are to the catch points, still using the same alignment. Remember to change the cut or fill factor (if necessary) before input of the shot. Forgetting to do so will result in an error at the catch point.

1. Cut section, set the RP @ 15'. Use a zenith angle of $88^{\circ} 12^{\prime} 20^{\prime \prime}$ for the RP shot.
horiz. angle $=354^{\circ} 40^{\prime} 50^{\prime \prime}$
zenith angle $=88^{\circ} 29^{\prime} 25^{\prime \prime}$
slope distance $=400.70^{\prime}$
the rod reading is 5.00^{\prime}
```
CUT 6.4
    HT 9.6
    sta \(13+94.686\)
at 39.57 Left
Eleu. \(=119.18\)
Grade \(=112.78\)
\(0 I 5 T=403.87\)
\(L^{\prime}=352^{\circ} 35^{\prime} 47.1^{\prime \prime}\)
RP Eley \(=121.27\)
-2.09 W 15.40 to 5.5.
```

2. Fill section, set the RP @ 15'. Use a zenith angle of $89^{\circ} 40^{\prime} 30^{\prime \prime}$ for the RP shot.
horiz. angle $=6^{\circ} 13^{\prime} 55^{\prime \prime}$
zenith angle $=89^{\circ} 25^{\prime} 40^{\prime \prime}$
slope distance $=477.50^{\prime}$
the rod reading is 5.00^{\prime}
3. Cut section, set the RP @ 15^{\prime}. Use a zenith angle of $87^{\circ} 52^{\prime} 10$ " for the RP shot.
horiz. angle $=351^{\circ} 23^{\prime} 30^{\prime \prime}$
zenith angle $=88^{\circ} 21^{\prime} 00^{\prime \prime}$
slope distance $=315.00^{\prime}$
the rod reading is 5.00^{\prime}
```
FILL 4.8
    HT 14.4
5t.a \(14+79.939\)
at 40.40 Right
Elev. \(=113.39\)
Grade \(=118.19\)
```



```
RP Eley \(=111.33\)
+2.06 15.00 to 5.5.
CUT \({ }_{1}^{6} .3 .5\)
st.a \(13+69.986\)
at 42.54 Left
Eleu. = 117.69
Grade \(=109.39\)
```


The two most likely sources of error when using this program are forgetting to change the factor when going from cut to fill (or fill to cut) and not checking that the half-width and slope ratio are correct for the shot being taken.

If you're using the calculator without a printer, remember to continue stroking $\operatorname{s/S}$ after output, until the next answer or prompt appears.

resection

This program has been added as an option, for those days when you could stake the whole job if you had a point "up on that hill". It works with the stations and offsets, so you can determine the station and offset of a random point anywhere that you can see three known points from.

The progrom locates the station and offset of the instrument setup point, and then outputs the distances to the points which were used as backsights, as a check on the shots used. All that is required is the input of the Station/Offset information for three points and the angles between the first and second and second and third points.

The best place to put this one is on top of "SS".
 .END. to begin. When you have finished the input, the "END" on this program will separate them.

Execute "R'SEC" to bring up the first prompt.
prompt: sta 1 + 0/s
keystrokes:

prompt: sta $2 \uparrow 0 / 5$
keystrokes:

prompt: sta $3 \uparrow 0 / 5$
keystrokes:

prompt: Curve?

keystrokes:

```
                                    ######
```

prompt: B.C.station?
keystrokes:

prompt: Radius?
keystrokes:
prompt: Delta?
keystrokes:
0 R/S
5000 R/S

S

The example for using the program will use the alignment that is shown to the left. The program is fully prompted, so that the keystrokes example can also serve as the instructions.

Remember to size the calculator to at least size 0040 before beginning, or you'll get a "size error" the first time you try to use a register that isn't there.

```
    prompt: s 1st - 2nd?
keystrokes:
\(\begin{array}{lllllllll}2 & 2 & \cdot & 2 & 4 & 3 & \mathrm{R} / \mathrm{S}\end{array}\)
prompt: \(\leq 2 n d-3 r d ?\)
```

keystrokes:

$\begin{array}{lllllllll}1 & 0 & \cdot & 5 & 9 & 0 & 7 & R / S\end{array}$

output:
Inst. Located at sta. $11+25.543$ e 503.60 Rt

Dist to 5ta 1519.01
Dist to sta 2509.07
Dist to sta 3523.33

Do the usual proof reading after you are done with the program input. Try the example to check the program.

coordinate resection

This same program will do coordinate resection, if you input the north-coordinate as the station and the east-coordinate as the offset.

Answer all of the CURVE? prompts NO, and the answer will be the coordinates of the new point, even though they are labled as "station" and offset".

To have more than the two place accuracy, you can fix the display at 04 or 06 places, and then recall the newly computed coordinates directly out of register 16 (north) and 17 (east), where they are stored.

Inst. Located at, st, a. $6+26.000$ E 907.00 Rt

Dist, to 5ta 1 E11.50
Dist, to st, a 2416.49
Dist to sta 3573.53

These coordinates could then be added to your coordinate file, and a radial inverse
626.000195
907.8181043 program such as "SPRAY" (book, "HP42S SURVEYING SOLUTIONS", pages 50 and 51) may be used for layout calculations.

limitations

This program will not pass the E.C. of the curve. The setup point must be opposite a station which is part of the curve or on the back tangent.

storing the slope stake data

It is pretty easy to print out the data in the field while you slopestake, just point the calculator at the printer each time you reach a catch point. If you want to STORE the shots as you go, you can do so with the little program to the right.*

You can put it in right above "STA", and it'll be out of the way. Go to "STA" and scroll up to 00 to begin input. When you've finished, the "END" will separate the two programs.

modify "SS"

You'll need two insertions in the program, "SS", to make it work. Go to the program, then go to label 12 and enter program mode with R/S. Stroke XEO and the key that is now corresponding to your new menu label "STOD".

Stroke \square XEC - $00_{0} 0$ to go to program step 03, and type in 40 STO 40 and exit by stroking Exir.
62 ISG 48
03 STO ST X
04 CLST
05
06
6
FIX
61
06
07
RND

08
08 ENTER
69 RCL 30
16 RND
11 1E6
$12 \div$
$13 \dot{x}\rangle Y$
14 1E3
$15 \times$
$16+$
17 STO IND 40
18 ISG 40
19 STO ST X
20 CLST
2 FIX 01
2 RCL 02
RND
24 ENTER
5 RCLX 29
26 ABS
1 1E3
$\stackrel{1}{\dot{x}}$
$x<>y$
1E3
$1 \times$
32 +
S3 STO IND 40
$\begin{array}{lll}34 & \text { ISG } & 40 \\ 35 & 5 T 0 \\ 5 T\end{array}$
36 RCL 12
37 STO IND 40
98 END
aic (71-Eute Prom) Those insertions should be the recall data program

We've called this one "GETD", and you should put it into the main menu. You can do this by putting it at the top of "SS".

[^0]Go to＂SS＂，scroll up in the usual manner and type in the new program（below）．

（10）［ 2－14－Eyt，e	Frgm ？	44	HVIEN
（1）LEL＂GETO＂		45	ISG 40
＠2 XEQ＂FCL＂		46	ST0 ST
63 XEQ＂CL1＂		47	CLST
04 ＂Number of	Shot，${ }^{\text {＂}}$	48	CLA
05 ト＂？${ }^{\text {¢ }}$		49	FIX 1
06 PROMPT		50	RCL IND
473		51	ENTER
$68 \times$		52	FP
0940		53	0
$10+$		54	$x<\gg$
11 1E3		55	$x<0$ ？
$12 \div$		56	5 F 00
1341		57	$x<0$ ？
$14+$		58	1
15 STO 40		59	＋
16 LBL A		68	1 E3
17 CLST		61	
18 RCL IND 40		62	ST0 39
19 ENTER		63	R＋
20 IP		64	FS？ 600
21153		65	R．
22 \div		66	IP
23 ST0 37		67	1 E3
24 R＋		68	
25 FP		69	$x>6$ ？
26×0 ？		70	＂FILL
271		71	$x<6$ ？
$28+$		72	＂CUT
$291 E 6$		73	RBS
$50 \times$		74	ARCL
31 CLA		75	\vdash^{-1}
32 XEQ＂STA＂		76	HRCL 39
33 ド		77	ISG 40
34 FIX 02		78	STO ST
35 RCL 37		79	AVIEW
36×20 ？		80	FIX 82
37 SF 00		81	＂Eleu＝
38 ABS		82	ARCL IN
39 ARCL ST X		83	AVIEW
40 FC ？ 18		84	ADV
$41 \mathrm{F"Rt}^{\text {R }}$		85	I5G 40
42 FS ？ C^{40}		86	GTO A
43 ト＂Lt，＂		87	END

The output from＂GETD＂for the two catch points set in the examples are shown to the right．

Label＂GETD＂ can be used to output the station，offset， cut and distance as well as the elevation of the catch point．

It does not output any of the reference data．

When you are finished slope staking for the day，you can turn on the printer and print out the catch points wich were set，by execut－ ing＂GETD＂．The only prompt is for the number of shots．

Because＂GETD＂ routine will only be executed when you stroke the 팸 key， the output shots are the ones actually set， not the trial shots．

Proof－read the program carefully and，if you want to try it out，do the examples again．
$11+80.200$ e 44.90 Rt FILL 6.3 18．9 Elev $=10 \overline{6} .60$

```
11+99.800 巴 38.69 Lt
```

CUT 5.8 甼 8.7

MORE HP42S PROGRAMS

Vertical Curves (booklet, \$8.00)
Calculates CONTINUOUS vertical alignment without changing back and forth between Grade and Curve routines. Also calculates vertical intersections, symmetrical or asymmetrical vertical curves. Solves for station when the elevation is known, or the station can be given, to calculate the elevation.

Spiral Curves (booklet, \$8.00)
Calculate the coordinates to any station, or offset to a station, within a spiral system. Options include coordinate output, auto-inverse, or both.

Calculates intersections of the entrance or exit spiral with a circular curve or straight line.

Triangle Solutions (booklet, \$8.00)
The 42 S version of the most complete triangle solutions program ever available. Solves with any of the following knowns: ASA SAA SAS SSA SSS Area-SS Area-AA Area-SA.

Topography (booklet, \$8.00)
This one turns your 42 S into a manual data collector, complete with a labeling system that you can customize to suit the type of topo work you do.
All shots are stored as finished data, by shot number, for later output. Choice of 3-D coordinates or Station-Offset-Elevation for the output.

Urban Survey Programs (book, \$20.00)
Contains programs for stakeout (or design) of street intersections, returns, culs-de-sac, bulbs and knuckles. A special program calculates and prorates blocks from the street intersections (with auto-store and auto-inverse of the points) from the street intersection setups for A.L.T.A. surveys.
Also contains layout programs for curb and gutter, or storm/sanitary sewers, which can store the data and later print out cut sheets before leaving the job site.

Software by

P.O. Box 11570, Glendale, CA 91226

[^0]: *The calculator uses registers $0-40+3$ registers for each point stored. In order to store 20 catch points you have to size to at least 0101.

