## HEWLETT-PACKARD

Step-by-Step Solutions For Your HP Calculator
Electrical Engineering


HP-42S

## Electrical Engineering

## Step-by-Step Solutions for Your HP-42S Calculator

## Notice

This book and any keystroke programs contained herein are provided "as is" and are subject to change without notice. Hewlett-Packard Company makes no warranty of any kind with regard to this book or the keystroke programs contained herein, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Hewlett-Packard Company shall not be liable for any errors or for incidental or consequential damages in connection with the furnishing, performance, or use of this book or the keystroke programs contained herein.

- Hewlett-Packard Company 1988. All rights reserved. Reproduction, adaptation, or translation of this book, including any programs, is prohibited without prior written permission by Hewlett-Packard Company; except as allowed under the copyright laws. Hewlett-Packard Company grants you the right to use any program contained in this book in a Hewlett-Packard calculator.

The programs that control your calculator are copyrighted and all rights are reserved. Reproduction, adaptation, or translation of those programs without prior written permission of Hewlett-Packard Company is also prohibited.

Corvallis Division
1000 N.E. Circle Blvd.
Corvallis, OR 97330, U.S.A.

## Printing History

Edition 1
November 1988
Mfg. No. 00042-90023

## Contents

## 5 How To Use This Book

1 | 1 | $\mathbf{7}$ | Circuit Calculations |
| :--- | :--- | :--- |
|  | $\mathbf{8}$ | Voltage Division ("V $\div$ ") |
|  | $\mathbf{1 3}$ | Current Division ("I $\div$ ") |
|  | $\mathbf{1 7}$ | Power Triangle ("PWR3") |
|  | $\mathbf{2 3}$ | Frequency Response of Transfer Function ("FQRS") |
|  | $\mathbf{2 8}$ | RC Timing ("RC") |
|  | $\mathbf{3 2}$ | Delta-Wye Conversions ("DY") |

## 238 Network Analysis

39 Using the Circuit Editor ("CIRCT")
39 Starting the "CIRCT" Program
40 Initializing the Circuit
40 Displaying Circuit Elements
41 Adding Circuit Elements
42 Deleting a Circuit Element
42 Printing the Circuit
43 Quitting "CIRCT"
43 Saving Circuits
43 Storing Elements
53 Mesh Analysis ("MESH")
63 Nodal Analysis ("NODAL")
67 Impedance of a Ladder Network ("LADDR")

| 3 | $\begin{aligned} & 72 \\ & 73 \\ & 82 \end{aligned}$ | Filter Design <br> Active Filter Design ("AF") <br> Butterworth Filter Design ("BF") |
| :---: | :---: | :---: |
| 4 | $\begin{array}{r} 95 \\ 96 \\ 108 \end{array}$ | Transmission Lines <br> Transmission Line Calculations ("LINE") <br> Transmission Line Impedance ("TLI") |
| 5 | $\begin{aligned} & 115 \\ & 116 \\ & 123 \end{aligned}$ | Amplifier Analysis <br> Transistor Amplifier Performance ("TAP") <br> Transistor Amplifier Bias Optimization ("BIAS") |
| 6 | $\begin{aligned} & 136 \\ & 137 \\ & 139 \\ & 143 \end{aligned}$ | Truth Tables <br> Writing a Logical Expression as a Program Printing a Truth Table ("PTTBL") An Interactive Truth Table ("ITTBL") |
| 7 | $\begin{aligned} & 147 \\ & 148 \\ & 148 \\ & 149 \\ & 149 \\ & 150 \\ & 156 \\ & 157 \\ & 158 \\ & 159 \end{aligned}$ | Utilities <br> Circuit Calculation Utilities <br> Impedance of an Element (" $\mathrm{C} \rightarrow \mathrm{Z}$ " and " $\mathrm{L} \rightarrow \mathrm{Z}$ ") <br> Combining Parallel Impedances ("ZP") <br> Entering Radian Frequency ("FQ?") <br> Circuit Element Input Utility ("EL?") <br> Function Name Utility ("FCN?") <br> Yes/No Utility ("Y?N") <br> Product Over Sum Utility ("P/S") <br> Size Utility ("SIZE?") |

## How To Use This Book

Please take a moment to familiarize yourself with the formats used in this book.

Organization. Each chapter in this book covers a different area of electrical engineering. Sections within each chapter highlight the use of each program. The sections are organized like this:

- Description of the program, including equations and variables used.
- Special remarks and limitations.
- General instructions.
- Keystroke examples.
- Program listings.

About the Examples. Unless otherwise stated, the keystrokes and displays shown in each section assume the following conditions:

- The required programs have been keyed into the calculator.
- The stack is clear and you're using the specified display format. Generally, this does not affect the results of the example, but your displays may not exactly match the ones in this book.
- The SIZE is set to 25 registers (the default). The number of registers needed (if any) is listed under "Remarks."

As you work the examples, remember that lowercase letters are displayed as uppercase letters when they appear in menu labels.

If You Have a Printer. Many of the programs in this book will produce printed output if printing is enabled. Press $\square$ PRINT $\Delta$ FON to enable printing.

If you are not using a printer, be sure to disable printing (TPRINT $\Delta$ FOFF ) to avoid losing results.

About Program Listings. It is assumed that you understand how to key programs into your calculator. If you're not sure, review part 2, "Programming," in the owner's manual.

If you print your programs, remember that the printer may print some characters differently than they are displayed. (For example, the $\downarrow$ character is printed as $v$.) Also note that some printers cannot print the angle character (4).

About the Subject Matter. Discussions on the various topics included are beyond the scope of this book. Refer to basic texts on the subjects of interest. Many references are available in university libraries and in technical and college bookstores. The examples in this book demonstrate approaches to solving problems, but they do not cover the many ways to approach general problems in electrical engineering.

Our thanks to Dex Smith of TwentyEighth Street Publishing for developing this book.

## 1

## Circuit Calculations

This chapter contains programs that solve for an unknown circuit parameter (when the other parameters are known), define a power triangle from voltage and current, and convert impedances between delta and wye circuit configurations.

## Voltage Division ("Vㄴ’)

For a circuit in the following general form, the "V $\div$ " program solves for any of the four complex values provided the other three are known.


$$
V_{2}=\frac{Z_{2} V_{T}}{Z_{1}+Z_{2}}
$$

## Variables Used.

| In Equation | Description | In Program |
| :---: | :--- | :---: |
| $V_{T}$ | Terminal voltage (volts). | $\Psi T$ |
| $V_{2}$ | Voltage across impedance $Z_{2} \cdot$ | U 2 |
| $Z_{1}$ | Impedance (ohms). | 21 |
| $Z_{2}$ | Impedance (ohms). | $Z 己$ |

Since any of these values can be a complex number, the Solver cannot be used. The following program ("V $\div$ ") emulates the Solver by displaying a menu containing the four variables in the above equation.

## Remarks.

- "V $\div$ " does not alter the angular and coordinate modes; you may use them as you wish when keying in complex values.
- Flag 21 (printer enable) is set or cleared to match flag 55 (printer existence). This automatically produces printer output if flag 55 is set.


## Program Instructions.

1. Key the "V $\div$ " program (listed on page 10 ) into your calculator.
2. Press XEQ ${ }^{-} \div$(to run the "V $\div$" program).
3. Use the variable menu displayed by the program to store the known values.
4. Press the key for the value you want to calculate.
5. To work another problem, go to step 3 ; to quit, press EXIT].

Example. Given the following circuit and voltage measurements, what must the impedance, $Z_{2}$, be?


Select Degrees and Polar modes, select the FIX 2 display format, and run the " $V \div$ " program.


Store the known values.
80 ENTER 10 COMPLEX $\because T$

Now，solve for the unknown impedance．
22
$22=37.71 \quad 679.29$

WT ME E1 है।


The unknown impedance $\left(Z_{2}\right)$ is $37.71 \measuredangle 79.29^{\circ}$ ohms．

## ＂V：－＂Program Listing．

## Program：

日6 \＆148－Bute From ？
61 LEL＂Vㄷ＂
Ge MVAR＂VT＂
GE MVAR＂V2＂
G4 MVRR＂Z1＂
0．5 MVAR＂Z己＂
G6 CF 21
07 FS？ 55
日家 SF 21
69 LEL 90
16 CLA
11 UARMENU＂Vテ＂
12 sTOP

Comments：

Defines menu variables．

Sets or clears flag 21 to match flag 55.

Displays the variable menu and stops．


46 LEL 41
47 FCL "Zこ"
$4 \mathrm{~B} E \mathrm{CL} \times$ " $V T$ "
49 RCL $\div$ " $42 "$
$5 \mathrm{ECL}-$ " 2 "
51 ST0 " $21 "$
5 YIEN "こ1"
53 EHD

## Current Division ("I - "')

For a circuit in the following general form, the "I $\div$ " program solves for any of the four complex values provided the other three are known.


## Variables Used.

| In Equation | Description | In Program |
| :---: | :--- | :---: |
| $I_{T}$ | Terminal current (amps). | $\mathrm{I} . \mathrm{T}$ |
| $I_{2}$ | Current in impedance $Z_{2}$. | $\mathrm{I} z$ |
| $Z_{1}$ | Impedance ${ }_{1}$ (ohms). | Z 1 |
| $Z_{2}$ | Impedance ${ }_{2}$ (ohms). | $\mathrm{z} Z$ |

Since any of these values can be a complex number, the Solver cannot be used. The following program ("I-") emulates the Solver by displaying a menu containing the four variables in the above equation.

## Remarks.

- "I - " does not alter the angular and coordinate modes. You may use them as you wish when keying in complex values.
- Flag 21 (printer enable) is set or cleared to match flag 55 (printer existence). This automatically produces printer output if flag 55 is set.


## Program Instructions.

1. Key the "I-" program (listed on page 15) into your calculator.
2. Press XEQ I- (to run the "I-" program).
3. Use the variable menu displayed by the program to store the known values.
4. Press the key corresponding to the value you want to calculate.
5. To work another problem, go to step 3 ; to quit, press EXIT].

Example. Given the following circuit, what is the input current $\left(I_{T}\right)$ if the current ( $I_{2}$ ) through the $10 \Omega$ resistor is $12 \measuredangle 45^{\circ}$ amperes?


Select Degrees and Polar modes, select the FIX 2 display format, and run the $\mathrm{I} \div$ program.


Key in the three known values.

$$
17.5 \geq 1
$$

|  |
| :---: |
|  |  |


$12=12.00 \quad 645.00$ | I．T | E | Z |
| :--- | :--- | :--- | :--- | :--- |

Now calculate the unknown current．
I．T

|  |
| :---: |
|  |  |

The unknown current $\left(I_{T}\right)$ is $18.86 \measuredangle 45^{\circ}$ amperes．

## ＂I－’＂Program Listing．

## Program：

日6 \＆15s－Eute Frgm 〕
01 LEL＂I $\div$＂
日兩 MAR＂I．T＂
ब3 HVAR＂Iz＂
04 HVAF＂Z1＂
65 WWAF＂ 22 ＂
ब6 EF 21
日7 FS？55
Q8 EF 21
09 LEL 09
10 CLA
11 UHFMEFH＂I $\div$＂
12 STOF
13 ATOK
14 HTOX
15－
$16 \% E \mathrm{IHD} \mathrm{ST} \%$
17 GTO 日G

## Comments：

Defines menu variables．

Sets or clears flag 21 to match flag 55.

Displays the variable menu and stops．

Determines the selected variable by subtracting the ASCII codes of the first two characters in the variable name．For example，when you press I．T．the program branches to LBL 27 because the ASCII code of ＂ I ＂is 73 ，the ASCII code of＂．＂is 46 ， and $73-46=27$ ．

18 LEL 23
19 FCL＂Z1＂
20 FCLX＂I．T＂
21 FCL＂Zこ＂
22 LAST：
$23+$
$24 \div$
25 STO＂I2＂
26 YIEN＂IZ＂
27 RTH
28 LEL 27
29 RCL＂22＂
$36 \mathrm{FCL}+" Z 1 "$
31 RCL×＂Iz＂
32 FCL $\div$＂こ1＂
33 STO＂I．T＂
34 UIEN＂I．T＂
35 RTH
36 LEL 46
37 FCL＂Z1＂
38 RCLX＂I．T＂
$39 \mathrm{FCL} \div$＂Iz＂
$4 \mathrm{ECL}-$＂ 21 ＂
41 ST口＂Zこ＂
42 VIEW＂ここ＂
43 RTH
44 LEL 41
45 FCL＂IZ＂
46 RCL×＂ここ＂
47 FCL＂I．T＂
48 LAST\％
49 －
$50 \div$
51 STO＂こ1＂
52 YIEM＂Z1＂
53 EHD

Calculates $I 2$ ．

Calculates I．T．

Calculates Z2．

Calculates 21 ．

## Power Triangle ("PWR3")

The "PWR3" program calculates any value for the power triangle, provided that certain other values are known.

$$
P=V / \cos \theta
$$




## Variables Used.

| In Figure | Description | In Program |
| :---: | :--- | :---: |
| $V$ | Voltage (volts). | V |
| $I$ | Current (amperes). | I |
| $P$ | Average power (watts). | F |
| $Q$ | Reactive power (vars). | Q |
| $S$ | Apparent power (watts). | S |
|  | Power factor (cos $\theta$ ). | Ff |

## Remarks.

- Be sure to enter $V$ and $I$ as complex numbers. If the values in $V$ and $I$ are not complex numbers, the program will stop and display Inval id Tupe. If you generate this error, restart the program by pressing EXIT XEQ FWFE.
- The "PWR3" program sets Degrees and Polar modes.
- The "PWR3" program uses flag 10 to control the calculations of $V$ and $I$.
- A minus sign preceding a (result or input) value for power factor indicates a lagging power factor.


## Program Instructions.

1. Key the "PWR3" program (listed on page 20) into your calculator.
2. Press XEQ FWRS (to run the "PWR3" program).
3. Use the variable menu displayed by the program to store the known values and to calculate the unknowns:

To calculate $P, Q, S$, or $p f$ :
a. Key in the voltage (in polar form) and press $\square$ $\stackrel{\square}{4}$
b. Key in the current (in polar form) and press I
c. Calculate any of the four values by pressing F , Q, $\quad$, or PF.

To calculate the voltage, $V$ :
a. Key in the current (in polar form) and press I.
b. Key in the apparent power and press $S$
c. Key in the power factor and press PF
d. Calculate the voltage by pressing $\because$.

To calculate the current, $I$ :
a. Key in the voltage (in polar form) and press
b. Key in the apparent power and press $S$
c. Key in the power factor and press FF
d. Calculate the current by pressing I
4. To work another problem, go to step 3 ; to quit, press EXIT.

Example. For a circuit with an applied voltage of $100 \measuredangle 10^{\circ}$ volts and a resulting current of $2.85 \measuredangle-40^{\circ}$ amperes, determine the power triangle and the power factor.

Select the FIX 2 display format, and run the "PWR3" program. DISP FIX 02 XEQ PWR3


100 ENTER 10 COMPLEX $V$


F
$P=183.19$

| $\mathbf{p}$ | $\mathbf{l}$ | P | Q | E | PF |
| :--- | :--- | :--- | :--- | :--- | :--- |

The average power is 183.19 watts.

| $Q=218.32$ |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |

The reactive power is 218.32 vars. (The sign of the power factor ( $\mathrm{F} f$ ) indicates if Q is a leading or a lagging value.)


The apparent power is 285 watts.

> FF

| $P f=-0.64$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $p$ | 1 | $P$ | $Q$ | $s$ | $P F$ |

The power factor is 0.64 . Because a minus sign indicates a lagging power factor, the reactive power, $Q$, is also lagging. If all other variables remain unchanged, what voltage would be required to increase the apparent power to 300 watts?

The required voltage is $105.26 \measuredangle 10.00^{\circ}$ volts．

## ＂PWR3＂Program Listing．

## Program：

区6 193－Eute Fram ）
01 LEL＂FHFS＂
Ge MUAR＂V＂
G3 MUAR＂I＂
04 MUHR＂F＂
65 MUAR＂Q＂
EG MWHR＂S＂
Q7 MWRE＂Ff＂
Q8 DEG
09 FOLAR
10 EF Z1
11 FS 55
$1 こ \mathrm{SF}$ こ1
13 LEL F
14 WHFMEHU＂FWFS＂
15 CLA
16 STOF
17 ATOX
$18 \%=0 \%$
19 GTO
20 KTOA
211
22 HFOT
$23 \mathrm{~F}+$
2473
25－
26 KED IHD ST $\%$

## Comments：

Declares the menu variables．

Sets Degrees and Polar modes．Sets or clears flag 21 to match flag 55.

Displays variable menu and stops．
Pressing R／S redisplays the menu．

The ASCII character code of the first letter in the variable name is subtracted from 73 to determine which routine to execute．

| 27 HETO ST L | Stores the variable name into the |
| :---: | :---: |
| 2 STO IHD ST L | Last X-register and displays the |
| 29 WIEN IHD ST L | result. |
| 30 ¢TO A |  |
| 31 LEL 13 | Calculates V. |
| 32 FCL "I" |  |
| 33 FF 60 |  |
| 348 XD E |  |
| 35 FiTH |  |
| 36 LEL E6 | Calculates $I$. |
| 37 FLL " ${ }^{3}$ |  |
| 38 CF 60 |  |
| 39 SED E |  |
| 40 FTH |  |
| 41 LEL ET | Calculates $P$. |
| 42 KEQ 39 |  |
| 43 FCL " ${ }^{4}$ " |  |
| 44 FCLX "I" |  |
| 45 HES |  |
| 4E FCL $\times$ "Ff" |  |
| 47 AES |  |
| 4 E ETH |  |
| 49 LEL ES | Calculates $Q$. |
| 56 KEQ 39 |  |
| 51 XEQ [ |  |
| 52 FCL "Ff" |  |
| 53 ACOS |  |
| 545 IH |  |
| $55 \times$ |  |
| 56 FRTH |  |
| 57 LEL 10 | Calculates $S$. |
| 58 KED |  |
| 59 HES |  |
| G6 RTH |  |

```
61 LEL B
62 COMFLEK
63 FLL "Ff"
64 FS? 00
65 +/-
6G ACOS
67+
68 EHTER
69 EHTER
70 RCL "S"
71 R+t
72 \div
7S <<>Y
74 EOHFLEX
75 FE%C 60
76 +ノ-
7% ETH
7B LEL E
7G RCL "I"
8@ FCL< "y"
81 HES
82 RTH
83 LEL 39
84 RCL "w"
85 COMFLEX
86 RCL "I"
87 [OMFLEX
88 <<>Y
89 R+
90 -
91 C0S
92 LHST%
93 SIGH
94 +ノ-
95 <
96 ST0 "Ff"
9 7 \text { EHD}
```


## Frequency Response of Transfer Function ("FQRS")

For a transfer function of the form

$$
G(S)=\frac{K\left(Z_{1} S+1\right)}{S^{N}\left(Z_{2} S+1\right)\left(Z_{3} S+1\right)\left(\frac{S^{2}}{\omega_{0}^{2}}+\frac{2 Z_{4} S}{\omega_{0}}+1\right)}
$$

the "FQRS" program calculates $G(S)$ and $\log |G(S)|$ for any input frequency $\omega$ (where $S=j \omega$ ).

## Variables Used.

| In Equation | Description | In Program |
| :---: | :---: | :---: |
| $K$ | Transfer function parameter. | K |
| $N$ | Transfer function parameter. | H |
| $Z_{1}$ | Transfer function parameter. | 21 |
| $Z_{2}$ | Transfer function parameter. | 22 |
| $Z_{3}$ | Transfer function parameter. | 23 |
| $Z_{4}$ | Transfer function parameter. | 24 |
| $\omega_{0}$ | Transfer function parameter. | W61 |
| $\omega$ | Input frequency, $2 \pi f$ (radians/sec). | w |

## Remarks.

- For type 0 systems, enter $N=0$.
- $Z_{1}, Z_{2}$, and $Z_{3}$ can be entered as 0 . If there is no quadratic term, enter $Z_{4}$ as 0 and $\omega_{0}$ very large compared to $1 / Z_{3}$, where $Z_{3}$ is the smallest first-order term used (other than zero).
- The "FQRS" program sets Degrees and Polar modes.


## Program Instructions.

1. Key the "FQRS" program (listed on page 26) into your calculator.
2. Press XEQ FQRS (to run the "FQRS" program).
3. The program prompts you for values of $K, N, Z_{1}, Z_{2}, Z_{3}, Z_{4}$, and $\omega_{0}$. At each prompt, key in the value and press R/S.
4. The program displays $G(S)$ and $\log |G(S)|$ and stops. Press $R / \mathbf{S}$ to go to step 3 for another problem.

Example. Find $\mathrm{G}(S)$ and $\log |\mathrm{G}(S)|$ for

$$
G(S)=\frac{12(S+0.6)}{S(S+1)\left(S^{2}+6 S+36\right)}
$$

The frequency, $\omega$, is $0.01 \mathrm{rad} / \mathrm{sec}$.
First put $\mathrm{G}(S)$ into proper form:

$$
G(S)=\frac{.2(1.67 S+1)}{S(S+1)\left[\left(\frac{S}{6}\right)^{2}+\left(\frac{S}{6}\right)+1\right]}
$$

Select the FIX 2 display format and run the "FQRS" program.
-DISP FIS 02 XEQ FQRS
Y: 0.00 K?0.00
. 2 R/S

| N?O:.0.0 |  |  |
| :---: | :---: | :---: |
|  |  |  |

1 R/S
Y: 1.000
.01 R/S
$\mathrm{G}(S)$ and $\log |\mathrm{G}(S)|$ for the given conditions are $20.00 \measuredangle-89.71^{\circ}$ and 1.30.

## ＂FQRS＂Program Listing．

## Program：

06（159－Byte Firgm ）
01 LBL＂FQRS＂Prompts for each input value．
02 IHFUT＂K＂
03 INFUT＂H＂
04 IHFUT＂Z1＂
05 IHFUT＂Z2＂
06 IHFUT＂ 23 ＂
07 IHPUT＂Z4＂
日8 IHPUT＂w日＂
09 LEL 90
10 IHPUTT＂w＂
11 DEG
12 RECT
131
$148<\gamma$
$15 \mathrm{FCL} \div$＂wの＂
$168+2$
172
18 ECLX＂Z4＂
19 RCLX＂w＂
$20 \mathrm{RCL} \div$＂w日＂
$21+$
22 COMFLEX
231
24 RCL＂Z3＂
25 RCL×＂w＂
26 COHFLEX
$27 \times$
281
29 RCL＂22＂
30 RCLX＂ 6 ＂
31 COMFLEX
$32 \times$
33 FOLAR
34 COMFLEX
3590

## Comments：

Calculates $G(S)$ ．

```
36 FCLX "H"
37+
38 +
89 <<>
40 RCL "w"
4 1 ~ F C L ~ " H " ~
42 %+%
43 x
4 4 1 \%
45 <<>
46 [OMFLEX
4 7 ~ R E C T
48 RCL "K"
49 EHTER
50 FCLX "Z1"
5 1 ~ F C L < ~ " w " ~
5 2 ~ C O M P L E X ,
53 <
5 4 ~ F O L A R :
Displays results.
55 "G(5)="
SG ARCL ST X
5 7 \text { AES}
5% LOG
59 ト"t&DG |G(S)|="
60 FRCL ST X
61 AVIEW
G2 EHD
```


## RC Timing ("RC")

The "RC" Solver program computes any of the six variables in the following figure and equation, provided the other five are known.


By rearranging terms, the equation can be written as:

$$
\left(\frac{t C}{\left[-e\left(1-\frac{V_{i}-V_{1}}{V_{2}-V_{1}}\right)\right]}\right)-R=0 .
$$

where $e$ is the base of natural logarithms.

## Variables Used.

| In Equations | Description | In Program |
| :---: | :--- | :---: |
| $V_{1}$ | Voltage before step (volts). | $\psi 1$ |
| $V_{2}$ | Voltage after step (volts). | $\psi z$ |
| $V_{i}$ | Instantaneous voltage (volts). | $\psi \mathrm{i}$ |
| $R$ | Resistance (ohms). | F |
| $C$ | Capacitance (farads). | t |
| $t$ | Time (seconds). | t |

## Remarks.

- The "RC" Solver program uses only real-number inputs.
- For voltages across the resistor and capacitor, $V_{R}+V_{C}=V$ applies at all times.


## Program Instructions.

1. Key the "RC" Solver program (listed on page 31) into your calculator.
2. Select the "RC" Solver program: press $\square$ SOLVER RE:
3. Use the variable menu to store the five known variables: key in the value and press the corresponding key.
4. Press the key corresponding to the unknown variable. The Solver searches for the unknown and displays the solution (if one can be found).
5. To work another problem, go to step 3, or press EXIT EXIT to quit.

Example. A 555 type of integrated circuit timer uses an external RC configuration for time determination. When used as a one-shot, its output pulse terminates when the capacitor charges to two-thirds of the supply voltage. Until the pulse starts, the capacitor is shorted so $V 1=0$. Given a supply voltage of 12 V and a $47 \mu \mathrm{~F}$ capacitor, what size resistor should you use to generate a one-second pulse?

Select the ENG 3 display format and the＂RC＂Solver program．

## DISP EHG 03 <br> SOLVER RC

```
0.4
```

12 － 92

2 ENTER 3 （ 12 冈 4

47 因 6 ＋

1 T

R

Use a 19．37 Kohm resistor．
$\mathrm{x}: 0.000 \mathrm{E} 0$

| $W 1$ | WE | WI | $B$ | $E$ | $T$ |
| :--- | :--- | :--- | :--- | :--- | :--- |

V1 $=0.000 \mathrm{E} 0$

| 11 | リ2 | M | B | C | $T$ |
| :--- | :--- | :--- | :--- | :--- | :--- |

$\mathrm{V} 2=12.00 \mathrm{E} 0$

| $W 1$ | $W$ | $W$ | W | K | G |
| :--- | :--- | :--- | :--- | :--- | :--- |

$\mathrm{Vi}=8.000 \mathrm{E} 0$

| MI | 呵 | WI | F | C | T |
| :--- | :--- | :--- | :--- | :--- | :--- |

$\mathrm{C}=47.00 \mathrm{E}-6$

| MI | W | WI | E | C | T |
| :--- | :--- | :--- | :--- | :--- | :--- |

$t=1.000 \mathrm{E} 0$

| V1 | Ve | ग1 | E | $C$ | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: |

$\mathrm{R}=19.37 \mathrm{E} 3$

| VI | We | II | F | C | T |
| :--- | :--- | :--- | :--- | :--- | :--- |

## "RC" Program Listing.

| 60 | ¢ 58-Eyte From | 12 FCL "V2" |
| :---: | :---: | :---: |
| $\underline{1}$ | LEL "RC" | 13 LASTX |
| $\underline{6}$ | HUAR "V1" | 14 - |
| 63 | MVAR "Vて" | $15 \div$ |
| 04 | MWAR "Vi" | 16- |
| 05 | MWAR "E" | 17 LH |
| 66 | MWAR "C" | $18+/-$ |
| $\underline{9}$ | MUAR "t." | 19 RCLX "C" |
| Q8 | 1 | $2 \mathrm{FCL} \div$ "t" |
| 69 | ECL "Yi" | $211 \%$ |
| 10 | ECL "Y1" | 22 RCL- "R" |
| 11 | - | 23 EHP |

## Delta-Wye Conversions ('DY')

This program allows you to convert impedance values between delta and wye configurations. That is, given the three wye values $\left(Z_{Y 1}, Z_{Y 2}\right.$, and $Z_{Y 3}$ ), you can calculate any of the three delta values ( $Z_{12}, Z_{23}$, and $Z_{13}$ ). Likewise, given the delta values, you can calculate any of the wye values.



3

## Variables Used.

| In Figure | Description | In Program |
| :---: | :---: | :---: |
| $Z_{Y 1}$ | Impedance (ohms). | $z Y 1$ |
| $Z_{Y 2}$ | Impedance (ohms). | $Z Y Z$ |
| $Z_{Y 3}$ | Impedance (ohms). | $2 Y 3$ |
| $Z_{12}$ | Impedance (ohms). | $Z 12$ |
| $Z_{13}$ | Impedance (ohms). | $Z 13$ |
| $Z_{23}$ | Impedance (ohms). | $Z 23$ |

## Remarks.

- Flag 21 (printer enable) is set or cleared to match flag 55 (printer existence). This automatically produces printer output if flag 55 is set.
- The program will give erroneous results (original inputs) if the calculated outputs are used directly as inputs.


## Program Instructions.

1. Key the "DY" program (listed on page 35) into your calculator.
2. Select the coordinate mode you want to use: press MODES

RECT for Rectangular mode, or MODES POLAE for Polar mode.
3. Press XEQ DY to run the "DY" program.
4. The program displays a variable menu containing the six variables in the above illustration.

To calculate wye values,
a. Store each of the three delta values by keying in the value and pressing the corresponding menu key.
b. Press the key for the wye value you want to calculate. (Repeat for each of the other two unknown wye values.)

To calculate delta values,
a. Store each of the three wye values by keying in the value and pressing the corresponding menu key.
b. Press the key for the delta value you want to calculate. (Repeat for each of the other two unknown delta values.)
5. You can work as many problems as you want. The menu stays active until you press EXIT or select an application menu.

Example. Given the following delta circuit, determine the equivalent wye circuit.


Select the Rectangular mode and the FIX 4 display format, and run the "DY" program.


Enter the delta values.
45
213

| 13=45.0006 |
| :---: |
|  |

0 ENTER 22 COMPLEX 212
212=0.0000 i22.0000 2Y1 2

5 ENTER 17 +/-
COMPLEX 223
$223=5.0000-i 17.0000$

Now calculate each of the wye values.

## ＂DY＂Program Listing．

## Program：

日6 \＆219－Byte Prem ？
01 LEL＂DY＂Declares menu variables．
日 M MVR＂ZY＇1＂
ब3 MUAR＂ZYこ＂
Q4 MWAR＂ZYS＂
日 5 MUR＂こ12＂
－6 MWAR＂ 223 ＂
ब7 MWRR＂Z13＂
08 EF 21
09 FS？ 55
Sets or clears flag 21 to match flag

10 EF 21
11 LEL A
12 WRFMEHU＂ロY＂
13 STOF
14 ATOX
15 \％TOA
16 ATOX
17 KTOH
18 ATOX
$19 \% T \mathrm{~A}$
$20+$
2195
$22-$
23 KED IHD ST \％

## Comments：

 55.Returns the ASCII character codes of the selected variable name and restores the name in the Alpha register．

Adds the ASCII codes of the last two characters of the selected variable and subtracts 95 to determine which subroutine to execute．

| 24 SF 25 | Stores the variable name in the Last |
| :---: | :---: |
| $25 \div$ | X register and displays the result． |
| 26 HSTO ST L | Division by zero is detected with flag |
| 27 FC？C 25 | 25 （error ignore）and an appropriate |
| 28 KEQ 63 | message is displayed．If this happens， |
| 29 STO IHD ST L | line 31 is skipped because flag 50 |
| 30 FC ？ 50 | （message）is set． |
| 31 YIEN IHD ST L |  |
| 32 GTO A |  |
| 33 LEL 43 | Calculates $Z_{Y 1}$ ． |
| 34 FCL＂Z12＂ |  |
| 35 FCLX ＂213＂ |  |
| 36 GT0 91 |  |
| 37 LEL 44 | Calculates $Z_{Y 2}$ ． |
| 38 RCL＂Z1ご |  |
| 39 GTO 60 |  |
| 49 LEL 45 | Calculates $Z_{Y 3}$ ． |
| 41 RCL＂こ13＂ |  |
| 42 LEL E6 | Shared subroutines． |
| 43 FCLX＂2ころ＂ |  |
| 44 LEL 01 |  |
| 45 RCL ＂Z12＂ |  |
| $46 \mathrm{FCL}+$＂213＂ |  |
| $47 \mathrm{FCL}+$＂223＂ |  |
| 48 RTH |  |
| 49 LEL 94 | Calculates $Z_{12}$ ． |
| 56 RCL ＂こソS＂ |  |
| 51 GT0 92 |  |
| 59 LEL 9 | Calculates $Z_{13}$ ． |
| 53 ECL ＂こけを＂ |  |
| 54 GTO 92 |  |
| 55 LEL 96 | Calculates $Z_{23}$ ． |
| 56 RCL＂Zソ1＂ |  |

```
5 7 ~ L E L ~ E 2 ~
Shared subroutine.
5G FLCL "こY1"
5 9 ~ F C L X ~ " Z Y こ " ~
60 LAST%
G1 RCLX "ZYS"
62+
63 FCL "ZYZ"
64 FCLX "ZYS"
6.5+
66 <<>Y
6% RTH
68 LEL 03
```



```
70 9.99E499
71 FVIEN
72 EHD
```

Division by zero indicates an open circuit (infinite resistance). Infinity is approximated with $9.99 \times 10^{499}$.

## 2

## Network Analysis

This chapter contains programs for performing mesh and nodal network analyses for circuits containing any combination of resistors, capacitors, inductors, and general impedances. Circuits for mesh analysis may also contain voltage sources and circuits for nodal analysis may contain current sources.

Circuits are entered into the calculator using the "CIRCT" program and then processed by running the "MESH" or "NODAL" program.

## Using the Circuit Editor ("CIRCT")

"CIRCT" is a menu-driven program that allows you to add, delete, and print elements in a circuit. The circuit elements are stored in a matrix named CIRCT, where each row in the matrix contains an element.

Required Programs. "CIRCT" (page 45), "EL?" (page 151), and "Y?N" (page 157).

## Starting the "CIRCT" Program

If there are no elements stored in $C I R C T$ (if no circuit exists), you'll see this display when you run the "CIRCT" program:

XEQ EI RCT

| K 0 -El ement Circuit 3 |
| :---: | :---: | :---: |

Or, if the matrix CIRCT exists, the program assumes that it contains $n$ circuit elements (where $n$ is the number of rows in the matrix), and you'll see a display like this:

XEQ CIFLT


You can view the elements in the circuit by using the $\Delta$ and $\nabla$ keys.

If the CIRCT matrix exists but does not contain circuit information that the "CIRCT" program recognizes, the program can be thrown far off course. To prevent this from happening, either clear the $C I R C T$ variable (CLEAR
CLU CIRCT) before starting the program, or initialize the circuit as shown in the next section.

## Initializing the Circuit

To initialize CIRCT (that is, to delete the CIRCT matrix), press IHIT
YES.

IHIT

| INITIALIZE Circuit? |  |
| :--- | :--- |
| YE | PI |

YES

| \{ E-Element Circuit $\}$ |  |  |
| :--- | :--- | :--- |
| mod |  |  |

When there are no circuit elements, note that the DEL, PRIHT, and IHIT menu keys are not displayed or active.

## Displaying Circuit Elements

Use the $\Delta$ and $\nabla$ keys to move up and down through the list of elements.

Here's a typical display:


Element Value

For nodal analysis this display reads: "The third circuit element is a voltage source connected between node 2 and node 4 with a value of $120.00 \measuredangle 60.00^{\circ}$ volts." (For mesh analysis, the location numbers would represent meshes 2 and 4.)

When a circuit element is displayed, the menu keys ADC , DEL, FRINT, and IHIT are active even though they are not visible. (If you press to clear the message, you'll see that the menu is active.)

## Adding Circuit Elements

1. Use the $\Delta$ and $\nabla$ keys to move to the position in the list of circuit elements where you want to add an element. The new element will be inserted after the displayed element.
2. Press ADD , the first menu key. (The menu keys are active, even though the message temporarily covers them.) The program displays Locat ion: \# [ENTER] \# and a menu of the six types of circuit elements.
3. Key in the location of the element.

For mesh analysis: mesh\# ENTER mesh\#, where the two mesh numbers indicate the meshes that share the element. For an element in a single mesh, press mesh\# ENTER].

For nodal analysis: from-node\# ENTER to-node\#, where the circuit element is connected from the first node to the second.

The order of the location numbers is important only when entering a voltage or current source. For example, the illustration on page 40 shows a voltage rise from node 2 to node 4 . If the node numbers had been entered in the opposite order, the value should be negative to represent a voltage drop from node 4 to node 2.
4. Press a menu key to specify the type of element you want to add:

R (resistor, ohms)
C. (capacitor, farads)

L (inductor, henrys)
$\geq$ (general impedance, ohms)
ข. (voltage source, volts)
I (current source, amperes)
5. The program displays a menu of the common units for the element you're entering. Key in the value of the element and then press the appropriate key. (For example, to enter a 1,000 -ohm resistor you could press 1000 OHM or 1 KOHM .)

All elements are converted to their default units (see the table on page 44) before being added to CIRCT.

To add another element, go to step 3. To return to the main menu, press EXIT.

Examples later in this chapter demonstrate how to use the "CIRCT" program for entering circuit elements for mesh and nodal analyses.

## Deleting a Circuit Element

To delete a circuit element:

1. Use the $\Delta$ and $\nabla$ keys to display the element you want to delete.
2. Press DEL , the second menu key. (The menu keys are active, even though the message temporarily covers them.)
3. To prevent accidentally deleting an element, the program displays DELETE Element? Press YES to complete the operation. (Press $\mathrm{NO}_{\mathrm{NO}}$ or EXIT if you change your mind.)

## Printing the Circuit

If you want a printed record of the circuit, press PRINT, the fifth menu key. Note that this printing is slower than most other printing operations because it involves printing graphics in the display.

The following sample output was printed after entering the circuit on page 54:

$$
\begin{aligned}
& \text { \{ 7-Element, Circuit \} } \\
& \text { (1): } 1=0 \\
& 150.60 \div 10.00 \\
& \text { (2) } 1 \rightarrow 1 \\
& 16.06 \\
& \text { (3):1-2 } \\
& 0.00 \text { i } 20.00 \\
& \text { (4):1-3 } \\
& 0.06-124.00 \\
& \text { 5):2-2 } \\
& \text { 32. } 0 \\
& \text { (6):2 }{ }^{6}-3 \\
& \text { (7):3-3 }{ }^{3} \\
& 0.06-\mathrm{i} 16.00
\end{aligned}
$$

## Quitting "CIRCT"

Press EXIT to exit the "CIRCT" program. After exiting, if you don't run any other programs (or move the program pointer in any other way), you can restart "CIRCT" by pressing R/S.

## Saving Circuits

To save a copy of your circuit:

1. Press EXIT to quit "CIRCT".
2. Press RCL CIRCT to recall a copy of CIRCT.
3. Press STO ENTER name ENTER to store a copy of CIRCT (where name is the name of a new variable).
4. Press R/S to restart the "CIRCT" program.

To restore a saved copy of a circuit:

1. Press EXIT to quit "CIRCT".
2. Press RCL rame to recall a copy of a circuit that's been saved.
3. Press STO CIRCT to store a copy of the matrix into CIRCT.
4. Press $R / S$ to restart the "CIRCT" program.

## Storing Elements

The CIRCT variable contains a three-column matrix. Each row in the matrix represents a single circuit element:

- The first column contains a number in the form $t t . m m n n$ where $t t$ is the type code for the element (see the table below), mm is the first location number, and $n n$ is the second location number. If tt.mmnn is negative, the value for the element is complex.
- The second column contains the real value of the element in the default units (see the table below). Voltage and current sources are stored in Polar form; all other elements are stored in Rectangular form.
- The third column contains the imaginary part of the element value.

| Element Type | Units | Type Code |
| :--- | :--- | :---: |
| Resistor | Ohms | 82 |
| Capacitor | Farads | 67 |
| Inductor | Henrys | 76 |
| General impedance | Ohms | $90^{\star}$ |
| Voltage source | Volts | $86^{\star}$ |
| Current source | Amperes | $73^{\star}$ |
| *If the element value is a complex number, the type code is negative. |  |  |

## Remarks.

- CIRCT is an $n \times 3$ matrix containing the circuit elements. An example of entering the elements of a circuit is contained in the next section, "Mesh Analysis."
- Values for all elements are displayed using the default units (see the table above).
- Flag 09 is set when the editor is extracting a complex value from CIRCT.
- Flag 10 is set if there is no variable CIRCT.
- Flag 25 is used to determine if CIRCT exists.
- Register $\mathrm{R}_{00}$ contains the current circuit-element number.
- Register $\mathrm{R}_{01}$ contains the total number of circuit elements.


## ＂CIRCT＂Program Listing．

## Program：

玉曰 © 626－Byte Frgm ？
01 LEL＂EIFCT＂
02 PROFF
03 CLX
04 STD 6n
05 STO 01
06 CF 10
07 SF 25
QS IHDEX＂CIFET＂
69 FC？C 25
16 SF 1区
11 FS？10
12 GTO A
13 FCL＂CIFCT＂
14 DIM？
$15 \%<>$
$165 T 01$
17 LEL $\overline{\text { H }} \quad$ Defines the menu for the program．If
18 CLMEHU
19 ＂ ADP ＂
20 KEY 1 GTO 91
21 ＂DEL＂
22 FC？ 10
23 KE＇ 2 GTO 日
24 ＂FRIHT＂
25 FC？10
26 KE＇ 5 KEQ 12
27＂IHIT＂
28 FC？10
29 KE＇ 6 亿TO 66
30 KE＇ 7 KEQ 日 7
31 KE＇Y 8 KEQ 08
32 KEY 9 GTO 99

## Comments：

Initializes the program．
flag 10 is set（no circuit），defines only the＂ADD＂key．

```
33 LEL E
Displays the menu and stops.
34 XEQ 0®
35 MEHU
36 STOP
37 GTO E
38 LBL 01
39 XEQ "EL?"
40 FC?C 08
41 GTO F
42 FS? 10
4 3 1
4 4 ~ F S ? C ~ 1 0 , ~
45 GT0 03
46 RCL 00
47 }\textrm{K}=0\mathrm{ ?
48 GTO 10
49 FCL E1
50 XF'?
51 GT0 05
52 R+
5% R+
5 4 ~ R C L ~ " C I R C T " ~
5 5 ~ D I M ?
56 R+
5 7 1
58 +
59 LBL 03
60}
61 DIM "CIRCT"
62 IHDEX "CIRCT"
63 LBL 04
64 CLX
6. 1
6G STOIJ
67 R*
68 R+
```

```
69 <>%
70 -
71 <<>
72 REFL?
73 GTO 11
74 COMFLEK
75 <<>%
76 +
77 <<>Y
78 LEL 11
79 STOEL
80 RCLI.J
81 <<>Y
82 ST0 E0
83 1
84 5TO+ 日1
85 GTO Q1
86 LEL [5
87 I+
86 IHSR
89 R+
90 R+
9 1 \text { RCLI.J}
92 GTO G4
93 LEL 10
94 R+
9 5 1
9 6 ~ E N T E R R
97 STOI.J
9 8 ~ I H S R
99 GT0 64
```

Inserts a new row into the CIRCT matrix.

Inserts a new row at the top of the CIRCT matrix.

100 LEL 96
101 RCL 90
102 IF
$1038=0 ?$
104 GTO C
105 FS 10
106 GTO C
107 ＂（＂
108 AIF
169ト＂）：＂
11日 1
111 STOI，
112 RCLEL
113 CF EF
$1148<6 \%$
115 SF 69
116 ABG
117 IF
118 LASTK
119 FF
120160
$121 \times$
122 IF
123 HIF
124 LAGTK
125 FF
126160
$127 \times$
12 f ト＂
129 RIF
130 ト＂ヶ＂
131 」
$132 \mathrm{~F}+$
$133 \mathrm{R}+$
134 FECT
13586
$136 \%=\%$
137 FOLAR
$13 \mathrm{~F}+$

Displays the current element．If $R_{00}=0$ ，then displays top－of－list message．（Note that line 128 contains three blank spaces between the double quotes．）

```
13973
140 X='?
141 POLAR
142 R.
143 RCLEL
144 EHTTER
145 FS? 09
146 +
147 FSOC 69
148 EOHFLEX
149 AFCL ST %
150 AWIEM
151 FEFH?
152 R+
153 R+
154 1
155 ENTER
156 32
157 FOSH
158 6
159 <
1604
161 +
162 XEQ IHD ST T
163 AGRAFH
164 RTH
16.5 LEL C Displays top-of-list message.
166 RCL Q1
167 "& "
16S HIF
169 ト"-Element."
17@ ト"Cirロuit う"
171 FWIEM
172 RTH
173 LEL 82
```



```
Alpha string to produce graphic
175 RTH
```

Displays top－of－list message．
166 RCL 91
167 ＂
168 HIF
$169 \vdash$ ト－Element．＂
179ト＂Eirロuit う＂
171 FUIEW
172 RTH
173 LEL 82
174 ＂
175 RTH
resistor．
Alpha string to produce graphic

176 LEL 67
177 ＂$\div \leftarrow \div \leftarrow 1 \div 1 \div+\div \div$＂
178 RTH
179 LEL 76
18日＂$\div+\mathrm{Cl}^{\circ}$
1814
182 KTOA
18马 ト＂E＂
184 KTOA
185ト＂Eヶヶ＂
186 下t
187 RTH
188 LEL 96

196 RTH
191 LEL 86
192 ＂£££8DDD马廹＂
193 RTH
194 LEL 73
195 ＂$\div 8 \mathrm{BDOD}+\mathrm{TB} \div$
196 RTH
197 LEL 12
198 RCL 60
$199 \%=0 ?$
260 GTO A
201 ＂DELETE Element？＂
202 KEQ＂Yフサ＂
203 人 0 ？
204 GTO A
205 5 F 25
206 DELR
207 FE？C 25
20G GTO 14
209 FCLI
$210 \%<\%$

Alpha string to produce graphic capacitor．

Alpha strings to produce graphic inductor．

Alpha string to produce graphic impedence．

Alpha string to produce graphic voltage source．

Alpha string to produce graphic current source．

Deletes the current circuit element．

```
211 ST0 00
2121
213 STO- @1
214 GTO A
215 LBL 06
216 "IHITIFLIZE "
217 ト"Circuit?"
218 KEQ "Y?H"
219 <=0?
220 GTO A
221 LEL 14
2ここ CLY "EIROT"
223 CLK
224 STO E0
225 STO 01
226 SF 10
227 GTO A
228 LEL @7
229 FCL E01
2301
231 -
232 <<@?
233 RCL 日1
234 STO 60
235 RTH
236 LEL 08
Increments the element pointer.
237 1
238 STO+ 6@
239 RCL 01
240 RCL 60
241 <>%?
242 CLX
243 STO 00
244 RETH
```

Initializes the pointers and deletes CIRCT variable．

245 LEL 12
246 RCL 01
247 1E-3
246 x
249 STO 10
250 LEL 13
251 KED 00
252 PROH
253 PRLCD
254 CLA
255 PRA
256 PROFF
257 ISG 60
258 GTO 13
$259 \mathrm{CL} \%$
260 STO 06
261 RTN
262 LEL 99
263 EKITALL
264 EHD

Prints the graphic display for circuit elements in CIRCT.

## Mesh Analysis ("MESH’)

The "MESH" program (listed on page 57) calculates the mesh currents of a circuit containing any combination of resistors, capacitors, inductors, general impedances, and voltage sources. (If the circuit you want to analyze contains current sources, convert them to voltage sources.)

How "MESH" Works. "MESH" uses the elements in the CIRCT matrix to create the following matrices:

$$
\mathbf{I}=\frac{\mathbf{Z}}{\mathbf{V}}=\frac{M A T A}{M A T B}=M A T X
$$

## Variables Used.

| In Equation | Description | In Program |
| :---: | :--- | :---: |
|  | $n \times 3$ matrix containing circuit <br> elements. | CIFCT |
| $\mathbf{Z}$ | Impedance matrix, $\mathbf{Z}$. | MATA |
| $\mathbf{V}$ | Voltage matrix, $\mathbf{V}$. | MATE |
| I | Solutions matrix. | MAT\% |
|  | Radian frequency, $2 \pi f$ (radians/sec). | $\omega$ |

Since the variable names $M A T A, M A T B$, and $M A T X$ are used, you can use the Simultaneous Equations application to work with the data after using "MESH". Press MATRIX SIMQ $n n$ (where $n n$ is the number of mesh currents).

## Remarks.

- Flag 08 is cleared for mesh analysis.
- Flag 10 is set when the location numbers are equal (for mesh analysis).
- "MESH" leaves the calculator in the Polar mode.
- Register $\mathrm{R}_{00}$ contains the element counter. Register $\mathrm{R}_{02}$ contains the number of mesh currents. Register $\mathrm{R}_{03}$ is used for intermediate
results. Be sure to set the SIZE to at least four registers MODES V SIZE 4 [ENTER) before running "MESH".

Programs Required. "MESH" (page 57), "CIRCT" (page 45), "C $\rightarrow$ Z" (page 148), "EL?" (page 151), "FQ?" (page 149), and "Y?N" (page 157).

## Program Instructions.

1. Enter the circuit elements using the "CIRCT" program. Press EXIT when you are finished.
2. If you want the results to be printed, press $\square$ PRINT $\triangle$ POH to enable printing. If you're not using a printer, be sure to disable printing (press PRINT $\triangle$ POFF).
3. Press XEQ MESH (to run the "MESH" program).
4. When you see Ho. Mesh Current $\equiv$ ?, key in the number of mesh currents and press R/S.
5. When you see Radian Frequencu( $2 \pi f$ )?, key in the radian frequency and press R/S. (This value is used only if the circuit contains capacitance or inductance.)
6. The mesh currents are then calculated and displayed. If you're not using a printer, press $\mathrm{R} / \mathrm{S}$ after each result is displayed.

Example: Calculating Mesh Currents. Use the "CIRCT" program to enter the following circuit. Then execute "MESH" to calculate the mesh currents, $I_{1}, I_{2}$, and $I_{3}$.


First, select FIX 2 display format and then enter the circuit elements using the "CIRCT" program.

```
DISP FIX 02 XEQ CIRCT
```

| C 7-Element Circuit |
| :---: | :---: |
| Mol |

If the circuit contains any elements, delete them by initializing it.
IHIT YES

| CO-Element Circuit |
| :---: | :---: | :---: |

Now, add the new elements to the circuit.

| Location: \# [ENTER] \# |  |  |  |
| :---: | :---: | :---: | :---: |
| B | c | 2 | 2 |

Enter all of the elements in mesh 1 . Since the voltage source isn't shared by another mesh, its location is entered like this:

```
1 ENTER - |
```

| Value? |
| :--- |
| MW/ KU |

Enter the value for the voltage source.

```
150 ENTER 10 COMPLEX v
```

| ation: \# [ENTER] |  |  |
| :---: | :---: | :---: |
|  |  |  |

Enter the location and value for the 16 -ohm resistor. Like the voltage source, the resistor is unique to mesh 1 , so its location is entered the same way (1 ENTER).

1 ENTER R . 16 OHM

| Location: $\#$ | [ENTER] $\#$ |  |  |
| :---: | :---: | :---: | :---: |
| B | c | L | 2 |

Since a complex impedance is provided for the inductor, enter it as a general impedance. This element is shared between mesh 1 and mesh 2, so enter both location numbers.


Enter the capacitor shared by mesh 1 and mesh 3 in the same way.


Now enter the elements in mesh 2 that have not already been entered.
2 ENTER $\mathrm{R}=32 \mathrm{OHM}$

| Location: \# [ENTER] \# <br> g $/ \mathrm{c}$ |  |
| :---: | :---: |
|  |  |

2 ENTER 3 R. 12 OHM


Enter the last element, which is the capacitor unique to mesh 3. (Note that you could have entered these elements in any order.)


| Location: $\#$ [ENTER] \# |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $\boldsymbol{B}$ | i | L | 2 | $\boldsymbol{i}$ |

Press EXIT to return to the main level. You'll see the last element that you entered.

```
(7):3-3
0.00-i16.00
```

At this point you can use $\Delta$ and $\nabla$ to view the elements in the circuit.
Exit from the "CIRCT" program and calculate the mesh currents. If you want the results printed, press $\square$ PRINT $\Delta$ FOH to enable printing.

| r: 1.00 |
| ---: | :--- |
| $x: 34.00$ |

XEQ MESH

| No. Mesh Currents? |
| :---: |
|  |  |

Key in the number of mesh currents.
3 R/S


Since the inductor and capacitors were given as complex impedances, the frequency will not be used. Press $R / S$ to display the current in mesh 1.

R/S

```
I1=
x:6.28 <4.72
```

If you're not using a printer, press $R / S$ to display the current in mesh 2.

If you're not using a printer, press $R / S$ again to display the current in mesh 3.

## R/S

| $13=$ |  |
| :--- | :--- |
| $\times: 3.09$ | $6-2.73$ |

## "MESH" and "NODAL" Program Listing.

## Program:

60 < 491-Bute Frgm )
01 LEL "MESH"
02 CF 06
日3 "Ho. Mesh"
64 ト"Currents?"
05 GTO A
66 LEL "HODHL"
07 BF 93
as "Ho. Hodes?"
09 LEL A
16 RCL 12
11 PROMPT
12 sTO 02
13 EHTER
14 HENMAT
15 ENTER:
16 COMFLE $\%$
17 STO "MATA"
18 DIM?
191
20 STO 90
21 HEWMAT
22 EHTER
23 COMFLEK
24 STO "MATE"
25 KED "FQ?"

## Comments:

Clears flag 08 (to indicate mesh analysis) and prompts for the number of mesh currents.

Sets flag 08 (to indicate nodal analysis) and prompts for the number of nodes.

Stores the number of mesh currents or nodes.

Creates the complex matrices MATA and $M A T B$, and prompts for a frequency.


```
62 STOEL
63 CLX
64 LASTX
6. R+
6G ST0 63
67 R+
68 EHTER
69 STOI,
70 R+
71 RCLEL
72 R゙+
73 XEQ b
74 RCL 03
75 EHTER
76 STOIJ
77 FCLEL
78 LASTY
79 LEL b
80 +
81 STOEL
82 RTH
83 LEL 82
84 XEQ F
85 XEQ E
86 GTO B
87 LBL 67
88 XEQ F
89 XEQ E
90 XEQ "C->Z"
91 GTO E
92 LEL 76
93 KEQ F
94 XED E
95 KEQ "L->Z"
96 GTO E
97 LEL 90
Stores a general impedance value.
98 XEQ F
Stores a value into the matrix.
\(8 \mathrm{~g}+\)
81 STOEL
82 RTH
83 LEL 82
Stores a resistor value.
84 KEQ F
85 KEQ E
86 GTO E
87 LBL 67
Stores a capacitor value.
S9 XEQ E
90 XEQ "C-Z"
91 GTO E
92 LEL 76
Stores an inductor value.
93 KED F
94 KEQ E
95 KEQ "L \(\rightarrow\) Z"
96 GTO E
97 LEL 90
Stores a general impedance value.
98 XEQ F
```

```
99 XEQ E
106 XEQ E
101 FECT
102 EOMFLEX
103 GTO E
104 LEL 73
105 LEL 86
106 XEQ F
107 XEQ E
108 XEQ E
109 FOLFF:
110 EOHFLEX
111 IHDE% "MATE"
112 FCL ST 2
113 FC? बS
114 GTOに
115 FC? 19
116 GTO G
117 <%ब%
118 GTG [
119 << ST z
120 <<>%
1こ1-1
122 <
123 <<>Y
124 LEL E
125 1
126 STOI.\
127 FCLEL
128 F.t
129 +
130 STOEL
131 RTH
132 LEL I
133 1
134 STOI.l
135 CL%
13G FCL ST T
```

```
137 EHTER
138 RCLEL
139 R+
14] +
141 STOEL
142 R+
143 X=Y?
144 RTH
145 1
146 STOI.l
147 RCLEL
148 LRSTX
149 -
150 STOEL
151 RTH
152 LEL D
153 FOLAR
154 RCL "MATE"
155 RCL\div "NATA"
156 STO "MAT%"
157 SF 21
15S IHDEX "MAT&"
159 LEL d
160 RCLI.l
161 R+
162 "I"
163 FS? ge
164 "Y"
165 AIF
1\epsilonG ト"="
167 RCLEL
168 FS? 55
169 ARCL ST %
176 AVIEN
171 I+
172 FG? 77
173 GTO &
174 RTH
```

Calculates the results using matrix division.
ROL

Flag 77 is tested to determine when the end of MATX has been reached.


## Nodal Analysis ("NODAL")

The "NODAL" program (listed on page 57) calculates the node voltages of a circuit containing any combination of resistors, capacitors, inductors, general impedances, and current sources. (If the circuit you want to analyze contains voltage sources, convert them to current sources.)

How "NODAL" Works. "NODAL" uses the circuit information in the CIRCT matrix to create the following matrices:

$$
\mathbf{V}=\frac{\mathbf{Z}}{\mathbf{I}}=\frac{M A T A}{M A T B}=M A T X
$$

## Variables Used.

| In Equation | Description | In Program |
| :---: | :--- | :---: |
|  | $n \times 3$ matrix containing circuit <br> elements. | CIRCT |
| $\mathbf{Z}$ | Impedance matrix. | MATA |
| $\mathbf{V}$ | Voltage matrix. | MATX |
| I | Current matrix. | MATB |
|  | Radian frequency, $2 \pi f$ (radians/sec). | $\omega$ |

Since the variable names $M A T A, M A T B$, and $M A T X$ are used, you can use the Simultaneous Equations application to work with the data after you've finished using "NODAL". Press MATRIX SIMO nn (where $n n$ is the number of nodes).

## Remarks.

- Flag 08 is set for nodal analysis.
- Flag 10 is set when one location number is zero (for nodal analysis).
- "NODAL" leaves the calculator in Polar mode.
- Register $\mathrm{R}_{00}$ contains the element counter. Register $\mathrm{R}_{02}$ contains the number of nodes. Register $\mathrm{R}_{03}$ is used for intermediate results. Be
sure to set the SIZE to at least four registers (MODES $\boldsymbol{\nabla}$ SIZE 4 (ENTER) before running "NODAL".

Programs Required. "MESH" (page 57), "CIRCT" (page 45), "C $\rightarrow$ Z" (page 148), "EL?" (page 151), "FQ?" (page 149), "Y?N" (page 157).

## Program Instructions.

1. Enter the circuit elements using the "CIRCT" program. Press EXIT when you're finished.
2. If you want the results to be printed, press $\square$ PRINT $\Delta$ FOH to enable printing. If you're not using a printer, be sure to press $\square$ PRINT $\triangle$ POFF to disable printing.
3. Press XEQ HODFL (to run the "NODAL" program).
4. When you see Ho. Hodes?, key in the number of nodes and press $\mathrm{R} / \mathrm{S}$.
5. When you see Radian Frequency( $2 \pi f$ )?, key in the radian frequency and press $R / S$. (This value is used only if the circuit contains capacitance or inductance.)
6. The node voltages are then calculated and displayed. If you're not using a printer, press $\mathrm{R} / \mathrm{S}$ after each result is displayed.

Example: Calculating Node Voltages. Use the "CIRCT" program to enter the following circuit. Then execute "NODAL" to calculate the node voltages, $V_{1}, V_{2}$, and $V_{3}$.


Begin by selecting FIX 2 display format and running "CIRCT".

```
DISP FIK 02 XEQ CIRCT
```

| ( 7-Element | Circuit ${ }^{\text {3 }}$ |
| :---: | :---: |
| Momaldel | [al\| |

If "CIRCT" has any elements stored in it, delete them by initializing it.

## INIT YES

| C O-Element Circuit $\}$ |
| :--- | :--- |

Now, add the new elements to the circuit.


Enter the current source from node 0 to node 1 .


Enter the resistor from node 1 to node 2.
1 ENTER 2 R 8 OHM


Enter the impedance from node 0 to node 2 .

```
0 [ENTER] 2 z 4 ENTER 9
COMPLEX OHM
```



Enter the resistor from node 0 to node 3.
0 ENTER 3 $\mathrm{F} \quad 17$ OHM

|  |  |
| :---: | :---: |
| 6 c | 2 ${ }^{\text {\% }}$ |

Enter the current source from node 3 to node 2. (Note that if you entered this source from node 2 to node 3 , the $\operatorname{sign}$ is reversed: $-10 \Varangle 5^{\circ} \mathrm{A}$.)


Enter the impedance from node 2 to node 3.
2 ENTER 3 z 6 [ENTER
4 [ + COMPLEX OHM

| Location: | \# | [ENTER] | $\#$ |  |
| :---: | :---: | :---: | :---: | :---: |
| $\boldsymbol{B}$ | c | L | z | $\boldsymbol{y}$ |

Press EXIT to return to the program's main menu.

| $(6): 2-3$ |
| :--- |
| 6.00 |

At this point you can use $\Delta$ and $\nabla$ to view the elements in the circuit. Exit the "CIRCT" program and calculate the node voltages. If you want the results printed, press $\square$ PRINT $\Delta$ POH to enable printing. EXIT $r: 1.00$ x: 34.00

XEQ NODA
No. Nodes?
$\mathrm{x}: \mathrm{D} .0 \mathrm{a}$

Key in the number of nodes. (Do not include the reference node).
3 R/S
Radi ${ }^{\text {R }}$ Frequency ( $2 \pi f$ )? $x=0.01$

Since no capacitors or inductors were entered, the frequency is not needed; press $R / S$ to calculate the results.

R/S

| $V 1=$ |
| :--- | :--- |
| $x: 68.66 \quad 447.03$ |

If you're not using a printer, press $R / S$ to display the voltage at node 2 . R/S


If you're not using a printer, press $R / S$ again to display the voltage at node 3.

R/S

V3=
$x: 58.07<126.80$

## Impedance of a Ladder Network ("LADDR")

This program calculates the input impedance, $Z_{\text {in }}$, of a ladder network. Elements are added one at a time starting with the element furthest from the terminals where $Z_{\text {in }}$ is measured. The first element must be connected in parallel.

Given an input admittance of $Y_{\text {in }}$, adding a shunt (parallel) $R, L$, or $C$ results in a new input impedance:

$$
Y_{\text {new }}=\left\{\begin{array}{l}
Y_{\text {in }}+\left(\frac{1}{R_{p}}+j 0\right) \\
Y_{i n}+\left(0-j \frac{1}{\omega L_{p}}\right) \\
Y_{\text {in }}+\left(0+j \omega C_{p}\right)
\end{array}\right.
$$

Adding a series $R, L$, or $C$, we have:

$$
Y_{\text {new }}=\left\{\begin{array}{l}
\left(\frac{1}{Y_{\text {in }}}+\left(R_{s}+j 0\right)\right)^{-1} \\
\left(\frac{1}{Y_{\text {in }}}+\left(0+j \omega L_{s}\right)\right)^{-1} \\
\left(\frac{1}{Y_{\text {in }}}+\left(0-j \frac{1}{\omega C_{s}}\right)\right)^{-1}
\end{array}\right.
$$

where $Y=1 / Z$ and $\omega=2 \pi f$.
Variable Used. Zin is the impedance looking into the ladder network.

## Remarks.

- Elements are entered in rectangular form; however, the input impedance is displayed in polar form. (If you want the impedance displayed in rectangular mode, you can change line 29 of the "LADDR" program listing to 29 RECT and then delete line 31.)
- If a circuit element is given as a complex impedance, key in the complex value and then add it to the circuit using RF and RS.
- Flag 00 is set when $Z_{\text {in }}=0$.
- Flag 21 (printer enable) is set or cleared to match flag 55 (printer existence). This automatically produces printer output if flag 55 is set.

Programs Required. "LADDR" (page 70), "C $\rightarrow$ Z" (page 148), and "FQ?" (page 149).

## Program Instructions.

1. Key the required programs into your calculator.
2. Press XEQ LADDR (to run the "LADDR" program).
3. When you see Radian Frequency( $2 \pi f$ )?, key in the radian frequency and press R/S. (If the correct frequency is already in the X-register, just press R/S.)
4. The program displays a menu of the elements that can be added. For each element in the network (starting with the element furthest from the terminals where $Z_{i n}$ is measured), key in the value of the element and then press the corresponding key.

RF (parallel resistor, ohms)
LF (parallel inductor, henrys)
CF (parallel capacitor, farads)
RS (series resistor, ohms)
Ls (series inductor, henrys)
CS (series capacitor, farads)
The series elements are not displayed until the first parallel element has been entered. Each time you add an element, the new impedance is displayed.
5. To quit, press EXIT. After quitting, you can restart "LADDR" by pressing $\mathrm{R} / \mathrm{S}$.

Example．Find the input impedance of the following circuit at a frequency of 1 MHz ：


Select the FIX 2 display format and run the＂LADDR＂program．

Radi
x： 0.01

The frequency is given in Hz ．Convert it to radians／second．


Zin＝0．00 60.00
KP LP

Enter the four elements（working right to left）．Notice that the current value of $Z_{\text {in }}$ is displayed after each element is entered．

| Zin＝10 <br> GP |  |  |  | LP |
| :---: | :---: | :---: | :---: | :---: |

650 因 12 世／CS


120 因 6 ＋LF
Zin＝384．34 6－56．67 LRP LP

1000 RF
Zin＝306．73 6－41．82


The input impedance is $306.73 \measuredangle-41.82^{\circ}$ ohms．

## ＂LADDR＂Program Listing．

## Program：

日曰 \＆154－Eyte Frgm 3
01 LBL＂LADDR＂
Q2 XEQ＂FQ？＂
ब3 5F 60

04 ELY
05 EHTER
ब6 EOMPLEX
日
日8 CF 21
09 FS？ 55
10 SF 21
11 CLMEHUI
12 LEL H
13 ＂EF＂
14 KEY 1 KEQ 01
15 ＂LF＂
16 KE＇ 2 XEQ 92
17 ＂CP＂
$18 \mathrm{KEY} 3 \times \mathrm{XD} \mathrm{Q}$
19 FS ？ 6
20 GTO E
21 ＂RS＂
22 KE＇ 4 XED Q4
23 ＂LS＂
24 KEY 5 XED 05
25 ＂СS＂
$26 \mathrm{KEY} G \mathrm{KEQ} \mathrm{EG}$

## Comments：

Inputs the frequency using the ＂FQ？＂utility on page 149.

Sets flag 00 （until the first element is entered）．

Initializes $Z_{\text {in }}$ and sets or clears flag 21 to match flag 55.

Defines the menu keys for entering elements in parallel．

If flag 00 is clear，declares the menu keys for entering elements in series．


## Filter Design

This chapter contains programs for calculating component values for standard active filters and for Butterworth filters between equal terminations.

## Active Filter Design ('AF')

This program calculates element values for the standard active filter circuits shown below. You must provide $F$ (the corner or center frequency), $G$ (the midband gain), $P F$ or $\alpha$ (the peaking factor), and $C$ (a capacitor). The program then displays (and optionally prints) the list of elements that form the desired filter.

## Low Pass Filter.



$$
\begin{gathered}
C_{5}=C \\
C_{2}=\frac{4 C(G+1)}{P F^{2}} \\
R_{1}=\frac{P F}{4 G \pi f_{0} C} \\
R_{3}=\frac{P F}{4 \pi f_{0} C(G+1)}=\frac{G}{G+1} R_{1}
\end{gathered}
$$

$$
R_{4}=G R_{1}
$$

High Pass Filter.


$$
\begin{gathered}
C_{1}=C_{3}=C \\
C_{4}=\frac{C}{G} \\
R_{2}=\frac{P F}{2 \pi f_{0} C\left(2+\frac{1}{G}\right)} \\
R_{5}=\frac{2 G+1}{P F 2 \pi f_{0} C}
\end{gathered}
$$

Bandpass Filter.


$$
\begin{gathered}
C_{3}=C_{4}=C \\
R_{1}=\frac{1}{G 2 \pi f_{0} C P F} \\
R_{2}=\frac{1}{\left(\frac{2}{P F^{2}}-G\right) 2 \pi f_{0} C P F} \\
R_{5}=\frac{2}{P F 2 \pi f_{0} C}
\end{gathered}
$$

## Variables Used.

| In Equations | Description | In Program |
| :---: | :--- | :---: |
| $f_{0}$ | Center frequency (Hz). | F |
| $G$ | Midband gain (db). | G |
| $P F$ | Peaking factor. | FF |
| $C$ | Capacitor (farads). | C |

Remarks. Flag 21 (printer enable) is set by the program.

## Program Instructions.

1. Key the "AF" program (listed on page 78) into your calculator.
2. Press XEQ AF (to run the "AF" program).
3. Press IHFUT. The calculator prompts for $F, G, P F$, and $C$.
a. Key in a frequency, $F$, in Hertz; press $R / \mathbf{S}$.
b. Key in the midband gain, $G$; press $R / S$.
c. Key in a peaking factor, $P F$; press $R / S$.
d. Key in a capacitance, $C$, in Farads; press R/S.

After entering these values, the program returns to the main menu.
4. Press LOWF (low pass), HIGHF (high pass), or EAHD (band pass) to calculate the elements needed to build the particular filter.
5. When all of the elements have been displayed, press R/S to return to the main menu. Then go to step 3 to work another problem or press EXIT to quit.

Example. Design a high-pass active filter with the following characteristics: $F=10 \mathrm{~Hz}, G=10, P F=1$, and $C=1 \mu \mathrm{~F}$.

Select the ENG 3 display format and run the "AF" program.

$$
\text { IDISP ENG: } 03 \text { XEQ AF }
$$

x: 0.000 E 0
LIFP IITHP ESNNT

Y: 10, 0 OE
G?0.000E0

10 R/S
Y: 10.00 ED PF?日. 000E0
$18 / S$
$Y: 1.000 \mathrm{E} 0$ C?O.000E0

因 6 +/ $\mathrm{R} / \mathrm{s}$
$x: 1.000 \mathrm{E}-6$ LOMP UITHP EANM


If you're not using a printer, press R/S after each result.
R/S

x: 334.2 E 3
$R / S$

| $C 1=C 3=C=$ |
| :--- |
| $x: 1.000 E-6$ |

R/S

| $C 4=$ |
| :--- |
| $x: 100.0 \mathrm{E}-9$ |

R/S
x: 100.0E-9

## "AF" Program Listing.

## Program:

00 < 309-Byte Frgm )
01 LBL "AF"
02 SF 21
03 CLMENIJ
04 "LOHF"
05 KEY 1 KEQ H
ब6 "HIGHF"
07 KEY 2 KEQ B
Q8 "EAHD"
09 KEY 3 KEQ C
10 "IHFUT"
11 KEY 6 XEQ I
12 KE' 9 GTO 99
13 LEL 69
14 CLD
15 HEHU
16 STOF
17 GTO 60
18 LEL A
19 "R1"
20 RCL "FF"
214
22 RCLX "G"
23 XEQ 94
$24 \div$
25 XEQ 08
26 "R3"
27 RCL× "G"
28 EHTER
29 EHTER
30 LASTX
311
$32+$
$33 \div$
34 XEQ 08

## Comments:

Defines the menu for selecting a filter type.

Clears any message that may be displayed, displays the menu and stops. Pressing R/S redisplays the menu.

Calculates the elements for a low pass filter.

```
35 "R4"
36 R+
37 XEQ 93
38 "C2"
39 1
40 RCL "G"
4 1 ~ R C L X ~ " C " ~
424
43 x
44 RCL "FF"
45 8+2
46\div
47 XEQ 08
48 "C5=C"
49 LEL 10
50 RCL "C"
5 1 ~ G T O ~ 9 6 ~
5 2 ~ L E L ~ E ~
5 3 ~ " R 2 " ~
542
55 XEQ 04
56 RCL "G"
5% 1/X
582
59 +
60 8
61 RCL\div "PF"
62 1%
63 XEQ 08
64 "R5"
652
66 RCLX "G"
6 . 1
68 +
692
70 XEQ Q4
71 RCLX "FF"
72 %
73 KEQ QS
74 "C1=03=C"
```

```
75 XEQ 10
76 "C4"
77 RCL\div "G"
78 GT0 6S
79 LEL C
8@ "R1"
Calculates the elements for a band
pass filter.
812
82 KEQ 04
83 FCLX "G"
84 EHTEF
85 EHTEF
8G FCLX "G"
87 1%
88 KEQ 08
89 "R2"
90 CL%
912
92 FCL "PF"
93 <+2
94 \div
95 ECL- "G"
96 <
97 1%%
98 REQ 68
99 "R5"
106 CLY
1012
102 <<>Y
103\div
104 XEQ 0S
105 "CS=C4=["
1@G GTO 1Q
107 LEL Q4
108 FI
109 FCLX "F"
110 RCLX "E"
111 %
112 RTH
```

113 LEL I
114 EXITALL
115 IHFUT "F"
116 IHFUT "G"
117 IHFUTT "FF"
118 IHFUT "E"
119 RTH
120 LBL 98
121 EXITALL
$12 \varepsilon ト "="$
123 F5? 55
124 AFCL $S T \%$
125 FWIEN
126 LEL 99
127 EHD

Exits all menus and inputs $F, G, P F$, and $C$.

Exits all menus. If results are being printed (flag 55 set), puts label and value on the same line.

Ends program.

## Butterworth Filter Design ('BF’)

This program calculates component values for Butterworth filters between equal terminations. Inputs are termination resistance, passband characteristics, and attenuation at some out-of-band frequency.

Before the filter elements can be calculated, a normalized frequency must be computed from the desired cutoff or center frequency and passband characteristics. The normalized frequency is computed by one of these formulas:

$$
\begin{array}{ll}
\text { Low Pass } & \text { High Pass } \\
\omega_{n}=\frac{\omega}{\omega_{0}} & \omega_{n}=\frac{\omega_{0}}{\omega}
\end{array}
$$

Band Pass Band Elimination

$$
\omega_{n}=\frac{\omega^{2}-\omega_{0}^{2}}{B W \omega} \quad \omega_{n}=\frac{B W \omega}{\omega_{0}^{2}-\omega^{2}}
$$

The basic form of the filter is this low-pass prototype:

whose elements are given by the following set of formulas:

$$
\begin{gathered}
C_{i}=\frac{1}{\pi f_{c} R} \sin \frac{(2 i-1) \pi}{2 n}, i=1,3,5, \ldots, n-1 \\
L_{i}=\frac{R}{\pi f_{c}} \sin \frac{(2 i-1) \pi}{2 n}, i=2,4,6, \ldots, n
\end{gathered}
$$

where:

$$
n=I N T\left[\frac{1+\ln \left(2 \times 10^{-\Delta d B / 10}-1\right)}{2 \ln \left(\omega / \omega_{0}\right)}\right]
$$

Once the low-pass values have been calculated, if another passband characteristic is desired, the filter components are changed by one of the frequency transformations shown on the next page.

Passband
Characteristic
Circuit Elements

Low pass



High pass

Band pass


$$
L_{n}=\frac{1}{\omega_{0} C_{n}}
$$

$$
c_{n}=\frac{1}{\omega_{0} L}
$$

$$
L_{b p}=\frac{B W}{\omega_{0}^{2} c_{n}}
$$



$$
c_{b p}=\frac{c_{n}}{B W}
$$

$L_{b e}=\frac{L_{n} B W}{\omega_{0}{ }^{2}}$


## Variables and Storage Registers Used.

| In Equations | Description | In Program |
| :---: | :--- | :---: |
| $R$ | Resistor (ohms). | F |
| $F_{0}$ | Center frequency (Hz). | FQ |
| $\omega_{0}$ | Center frequency (radians/sec.). | $\mathrm{R}_{01}$ |
| $F_{1}$ | Attenuation frequency (Hz). | F 1 |
|  | Amount of attenuation (dB). | H |
| $B W$ | Band width (Hz). | EW |
|  | Band width (radians/sec.). | $\mathrm{R}_{02}$ |
| $n$ | Filter type (1-4). | $\mathrm{R}_{07}$ |
| $i$ | Filter order. | $\mathrm{R}_{09}$ |
|  | Element counter. | $\mathrm{R}_{11}$ |

## Remarks.

- Flag 01 (set and cleared by the program) is used for branch control.
- Flag 21 (printer enable) is set by the program.
- Registers $\mathrm{R}_{08}, \mathrm{R}_{10}, \mathrm{R}_{13}$, and $\mathrm{R}_{14}$ are used to store intermediate results. Be sure to set the SIZE to at least 15 registers (MODES $\boldsymbol{\nabla}$ SIZE 15 (ENTER).
- The "BF" program sets Radians mode.

The program will give erroneous results if asked to calculate a filter order when $A$ is small (when $\Delta \mathrm{dB}$ is close to $\operatorname{Loss}\left(\omega_{0}\right)$ ).

## Program Instructions.

1. Key the "BF" program (listed on page 88) into your calculator.
2. Press XEQ EF (to run the "BF" the program).
3. The program displays a variable menu containing $R, F 0, F 1, A$, and $B W$. Store a value into each variable by keying in the value and then pressing the corresponding menu key.
4. After each of the five values has been stored, press R/S.
5. The program displays $T \in f \in ?$ and a menu containing the four types of filters. Press one of these keys to select a filter type:

LOWF (low pass)
HIGHF (high pass)
EFASS (band pass)
BELIM (band elimination)
6. The program then calculates and displays $N$ and the filter elements. If you're not using a printer, press R/S after each result is displayed.

Example. Design a $100-\mathrm{Hz}$ wide Butterworth filter centered at 800 Hz with a $30-\mathrm{dB}$ attenuation at 900 Hz . $R_{0}$ is 50 ohms. The termination resistance, $R$, is also 50 ohms.

Select ENG 3 display format and run the "BF" program.

## DISP ENG 03 XEQ EF

| 50 |  |
| :---: | :---: |
|  |  |

Store the five inputs.

| $\mathrm{R}=50.00 \mathrm{O}$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| F | 50 | $F 1$ | i | EV] |  |

800 Fa

F0=800.0E0

| $\boldsymbol{F}$ | Fi | Fi | A | ER |
| :--- | :--- | :--- | :--- | :--- |

Continue with the program.

## R/S

Type?


Select a band-pass filter. If you are not using a printer, press R/S after each result is displayed.

## EPHSS

| $N=$ |
| :--- |
| $x: 6.000 \mathrm{E} 0$ |

$R / S$
C1=16.48E-6
$L 1=2.402 \mathrm{E}-3$

R/S
$\angle 2=112.5 \mathrm{E}-3$
$C 2=351.7 \mathrm{E}-9$

R/S
$C 3=61,49 E-6$
$3=643,6 E-6$

R/S
$4=153 \cdot 7 E-3$
$C 4=257.5 \mathrm{E}-9$

R/S
$C 5=45.02 \mathrm{E}-6$
$L 5=879.2 \mathrm{E}-6$

Therefore, the filter you've calculated looks like this:

"BF" Program Listing. This program demonstrates that local labels do not have to be unique within a program as long as careful consideration is given to the local label search order (described in the owner's manual).

## Program:

60 \& 394-Eyt.E Frgm ?
01 LEL "EF"
62 MUAR "R"
03 MURF "FE"
04 MUAR "F1"
0.5 WHR "A"

Q6 MURF "EW"
07 RAD
ब18 LEL A
69 URFMEHII "EF"
10 CLA
11 STOF
12 FLEHG
$13 \% \neq 6$ ?
14 GTO A

## Comments:

Declares the menu variables and sets Radians mode.

Displays the variable menu and stops. Pressing R/S is the only way to continue the program.

| 15 FCL "FQ" | Converts the center frequency to radians/second. |
| :---: | :---: |
| 16 XEQ 19 |  |
| 17 ST0 1 |  |
| 18 CLMENU | Defines the menu for selecting a filter type. The EXIT key is defined to return to the variable menu. |
| 19 "LOWP" |  |
| 20 KEY 1 GTO |  |
| 21 "HIGHF" |  |
| 22 KEY 2 GTO |  |
| 23 "EFRSS" |  |
| 24 KEY 3 GTO |  |
| 25 "EELIM" |  |
| 26 KEY 4 GTO |  |
| 27 KEY 9 GTO |  |
| 28 LEL E | Displays the menu and prompts for a filter type. Pressing $R / S$ redisplays the menu. |
| 29 MENH |  |
| 30 "Type?" |  |
| 31 PROMFT |  |
| 32 GTO E |  |
| 33 LEL C | Calculates the elements of a low pass filter (type 1). |
| 341 |  |
| 35 GTO OL |  |
| 36 LEL D | Calculates the elements of a high pass filter (type 2). |
| 372 |  |
| 38 GTO 91 |  |
| 39 LEL E | Calculates the elements of a band pass filter (type 3). |
| 493 |  |
|  |  |
| 42 LEL F | Calculates the elements of a band elimination filter (type 4). |
| 434 |  |
| 44 LEL 61 | Exits all menus, stores the filter type, and sets flag 21 for proper output. |
| 45 EXITALL |  |
| 46 STO 07 |  |
| 47 SF 21 |  |


| 48 RCL "EW" | Converts the band width to |
| :---: | :---: |
| 49 XEQ 10 | radians/second. |
| 50 STO Ca |  |
| 51 LEL 0 日 | Calculates the filter order. |
| 52 RCL "F1" |  |
| 53 RCL " H " |  |
| 5410 |  |
| $55 \div$ |  |
| $5610+\%$ |  |
| 572 |  |
| $58 \times$ |  |
| 591 |  |
| 60 |  |
| 61 LH |  |
| 62 STO 96 |  |
| $63 \mathrm{X}>\mathrm{Y}$ |  |
| 64 XEQ 10 |  |
| 65 PED 97 |  |
| 66 RCL 96 |  |
| $67 \mathrm{~K}>\mathrm{Y}$ |  |
| 6 SLH |  |
| 69 HES |  |
| $70 \div$ |  |
| 711 |  |
| $72+$ |  |
| 732 |  |
| $74 \div$ |  |
| 75 IP |  |
| 76 ST0 99 |  |
| 77 STO 10 |  |
| 78 " $\mathrm{H}=1$ | Displays the filter order. If results |
| 79 FS? 55 | are being printed (flag 55 set), the |
| 80 AIF | label and result are displayed on the |
| 81 RVIEN | same line. |
| 82 ADN |  |
| 83 LEL 98 | Evaluates the Butterworth equations. |
| 84 RCL 09 |  |
| $85 \mathrm{RCL}-10$ |  |

```
86 1
87+
88 STO 11
892
90\times
911
92-
93 FI
94×
95 2
96\div
97 RCL\div69
98 SIH
992
100 <
101 LEL 09
102 STO 14
103 RCL "F"
104-1
105 RCL 11
106 Y+%
107 Y'%
108 <
109 GTO IHD @7
110 LEL 01
111 RCL}\div0
112 %EQ E6
113 GTO 60
114 LEL 62
115 RCLX 61
11G 1% 
117 KEQ E6
118 +
119 GTO EG
120 LEL 05
121 GF 01
122 ROL\div 日2
123 KEQ EG
124 XEQ E6
125 HBS
```

Calculates the frequency transformation for the particular filter type.

```
126 1/%
127 RCL 日1
128 <+2
129 \div
130 XEQ 06
131 +/-
132 GTO 00
133 LEL 04
134 SF 01
135 RCLX 日2
136 RCL 01
137 <+2
138\div
139 XEQ 06
140 XEQ E6
141 HES
142 RCL @1
143 X+2
144 <
145 1/8
146 XEO G6
147 +/-
148 LEL 66
149 FS? 01
150 CLH
151 %<0?
152 ト"L"
153 <<6?
154 ト"C"
155 RCL 11
156 FIF
157 ト"="
158 F%
159 ABS
160 ARCL ST <
161 ト"L&"
162 FC? 01
163 RUIEW
164 FS?C Q1
165 RTH
```



203 LBL 10
2042
$265 \times$
206 PI
$207 \times$
208 END

Converts the frequency in the X register (in Hz ) to radians/second.

## 4

## Transmission Lines

This chapter contains programs that calculate the impedance of a lossy high-frequency transmission line and the high-frequency characteristic impedances for five types of transmission line configurations.

## Transmission Line Calculations (‘LINE’)

This program calculates the input impedance of a lossy transmission line terminated in $Z_{L}$. The program provides an exact solution when the distributed line parameters $R_{0}$ (defined as $\sqrt{L \div C}$ ), $R$, and $G$ are given. It provides an approximate solution when $R_{0}$ and the conductor and dielectric losses are given.


The transmission line shown has a lumped model composed of elements $L, C, R$, and $G$ as follows:


From this model the following equations can be derived:

$$
\begin{gathered}
R_{0}=\sqrt{\frac{L}{C}} \\
r=\frac{R}{L}=\frac{v R}{R_{0}} \\
g=\frac{G}{C}=v R_{0} G
\end{gathered}
$$

where:
$L=$ inductance/unit length.
$C=$ capacitance/unit length.
$G=$ conductance/unit length .
$R=$ resistance/unit length.
$v=3 \times 10^{8} v_{r}$.
$v_{r}=$ relative phase velocity.
$f=$ frequency, Hz .
$\omega=2 \pi f$ radians $/$ second .
and

$$
\begin{aligned}
& \alpha=\frac{1}{\sqrt{2 v}}\left[r g-\omega^{2}+\sqrt{\left(r^{2}+\omega^{2}\right)\left(g^{2}+\omega^{2}\right)}\right]^{1 / 2} \\
& \beta=\frac{1}{\sqrt{2 v}}\left[\omega^{2}-r g+\sqrt{\left(r^{2}+\omega^{2}\right)\left(g^{2}+\omega^{2}\right)}\right]^{1 / 2}
\end{aligned}
$$

The approximate solution is:

$$
\begin{gathered}
\operatorname{Re}\left\{Z_{0}\right\}=R_{0}\left[1+\frac{1}{2}\left(\frac{\alpha_{C}-\alpha_{D}}{\beta_{0}}\right)\left(\frac{3 \alpha_{D}+\alpha_{C}}{\beta_{0}}\right)\right] \\
\operatorname{Im}\left\{Z_{0}\right\}=R_{0}\left[\frac{\alpha_{D}-\alpha_{C}}{\beta_{0}}\right] \\
\alpha=\alpha_{C}+\alpha_{D} \\
\beta=\beta_{0}\left[1+\frac{1}{2}\left(\frac{\alpha_{C}-\alpha_{D}}{\beta_{0}}\right)^{2}\right]
\end{gathered}
$$

where:
$\alpha_{C}=$ conductor loss, nepers $/$ unit length $=0.5\left(R / R_{0}\right)$
$\alpha_{D}=$ dielectric loss, nepers/unit length $=0.5(G R)$
$\beta_{0}=\omega / \mathrm{v}$
Then

$$
Z_{\text {in }}=Z_{0}\left(\frac{1+\Gamma_{L} e^{-2 \gamma l}}{1-\Gamma_{L} e^{-2 \gamma l}}\right) \text { ohms. }
$$

where:

$$
\Gamma_{L}=\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}}
$$

$l=$ line length
$Z_{L}=$ impedance of termination (ohms)
$Z_{0}=$ characteristic impedance of line $=\operatorname{Re}\left\{Z_{0}\right\}+j \operatorname{Im}\left\{Z_{0}\right\}$ (ohms)
$\gamma=$ propagation constant of line $=\alpha+j \beta$
$Z_{0}$ and $\gamma$ are computed differently depending on which solution is selected.

$$
\begin{gathered}
\operatorname{Re}\left\{Z_{0}\right\}=\frac{R_{0}}{\sqrt{2\left(g^{2}+\omega^{2}\right)}}\left[r g+\omega^{2}+\sqrt{\left(r^{2}+\omega^{2}\right)\left(g^{2}+\omega^{2}\right)}\right]^{1 / 2} \\
\operatorname{Im}\left\{Z_{0}\right\}=\frac{ \pm R_{0}}{\sqrt{2\left(g^{2}+\omega^{2}\right)}}\left[-\left(r g+\omega^{2}\right)+\sqrt{\left(r^{2}+\omega^{2}\right)\left(g^{2}+\omega^{2}\right)}\right]^{1 / 2}
\end{gathered}
$$

The $+\operatorname{sign}$ is chosen when $g \geq r$ and the $-\operatorname{sign}$ is chosen when $g<r$.

## Variables Used.

| In Equations | Description | In Program |
| :---: | :--- | :---: |
| $f$ | Frequency. | f |
| $v_{\boldsymbol{r}}$ | Relative phase velocity. | vr |
| $R_{0}$ | Characteristic impedance. | FQ |
| $l$ | Line length. | 1 |
| $Z_{L}$ | Impedance of termination. | $z \mathrm{~L}$ |

## Remarks.

- Flag 21 (printer enable) is set or cleared to match flag 55 (printer existence). This automatically produces printer output if flag 55 is set.
- Registers $\mathrm{R}_{00}$ thru $\mathrm{R}_{06}$ are used for storing intermediate results. Be sure to set the SIZE to at least seven registers (MODES $\boldsymbol{\nabla}$ SIZE 7 [ENTER) before running "LINE".


## Program Instructions.

1. Key the "LINE" program (listed on page 102) into your calculator.
2. Select the desired angular and coordinate modes.
3. Press XEQ LIHE (to run the "LINE" program). The program displays a variable menu containing $f, \nu_{r}, R_{0}, l$, and $Z_{L}$ (displayed as F, VR, R0, L, and ZL).
4. Store a value into each variable by keying in the value and pressing the corresponding menu key.
5. After all five variables have been stored, press $R / S$.
6. Select an exact or approximate solution.

For an exact solution:
a. Press EXACT.
b. The program prompts for $G$. Key in the conductance value and press R/S.
c. The program then prompts for $R$. Key in the resistance value and press R/S.

For an approximate solution:
a. Press AFROX.
b. The program prompts for the conductor loss. Key in the value and press R/S.
c. The program then prompts for the dielectric loss. Key in the value and press $R / S$.
7. The value for $Z_{i n}$ is calculated and displayed. To calculate another solution, go to step 6. To work a new problem, press EXIT and go to step 4.

Example. A transmission line has the following properties:
$R=1.2664 \mathrm{ohms} / \mathrm{cm}$.
$G=0.00004187$ siemens $/ \mathrm{cm}$.
$R_{0}=55$ ohms.
$v_{r}=0.85$.
What is the input impedance of 3.5 cm of this line at 2 GHz if it is terminated in $Z_{L}=75 \measuredangle-30^{\circ}$ ohms?

Select Degrees and Polar modes, select FIX 2 display format, and run the "LINE" program.
MODES DEG MODES FOLAR
DISP FI8 02 XEQ LINE


2因9-F

## .85 UR

| Yr=0. 85 |
| :---: |

55 RG


### 3.5 L

| $1=3.50$ |  |  |
| :--- | :--- | :--- | :--- | :--- |
| $F$ | 0 |  |

75 ENTER 30 +/ー
ZL=75.00 $6-30.00$
COMPLEX 2L

| $F$ | Wi | 60 | L | EL |
| :--- | :--- | :---: | :---: | :---: |

R/S


ESACT
Y:2.75
$6 ? 0.00$
4.187 国 5 + $\mathrm{R} / \mathrm{S}$

Y: 4.19E-5
R?0.00
1.2664 R/S

| $\mathrm{Zin}=48.01 \quad 628.48$ |  |
| :--- | :--- | :--- |

The required input impedance is $48.01 \Varangle 28.48^{\circ}$ ohms.

## "LINE" Program Listing.

## Program:

60 4 44-Byte Frgm 3
01 LEL "LIHE" Defines the menu variables and sets
Q2 MUAR "f"
63 MVAR "Wr"
04 MUAR "RE"
0.5 MUFR "1"

日G MWAR "ZL"
97 CF 21
68 FS? 55
09 SF 21
10 LEL A
11 CLA
1z WHFHEHU "LIHE"
13 STOF
14 FLEHG
$15 \% \neq \underline{9}$
16 GTO A
17 ECL "f"
18 1E16
$19 \div$
$205 T 0.04$
212
$2 こ \mathrm{FI}$
$23 \times$
$24 \times$
25 5T0 93
26 FCL "1"
272
$28 \times$
293
30 RCL× "Vr"
315 TO 6
$32 \div$
35 ST0 02

## Comments:

 or clears flag 21 to match flag 55.Displays the variable menu and stops. The program continues only when $R / S$ is pressed.

Calculates intermediate results used by both solutions.


```
73 5T0 05
74 FCL 06
75 FEL- 03
7G STD "Yr"
77 FCL E1
7B FOL\div EG
79 STOx "RG"
80 FCL Q1
B1 RCL% EG
82 STON 日2
8S GTO E
84 LEL D
85 ENITFLL
8E CLMEHU
87 "C 10EE?"
8日 FROMFT
89 ST0 00
90 "D loss?"
91 FFOMFT
92 ST0 03
93 FCL "l"
94 FOL "乡r"
95 FCL E4
96 FI
97 <
98 1.5
99 \div
101 <<Y
101 \div
102 STO 06
103 <
104 2
105 <
106 STO G2
107 FCL 05
10日 10
109 LH
110 20
111\div
```

```
112 ROL % बG
113 STOX GE
114 STO% 63
115 FCL ES
116 FCL- 06
117 EHTER
118 STO Q1
119 FCL 63
120 3
121 <
12z FCL 60
123 +
124 %
125 2
126 \div
127 +
128 1
129 +
130 +FOL
131 STOM "EG"
132 <<>%
13S ST口 "Wr"
134 FCL E1
135 <+2
1362
137\div
138 1
139 +
140 FCL EG
141 FLL+ 63
142 +FOL
143 STO% ब2
144 <<>%
145 STO 05
```

```
14G LEL E
147 FOLFF
148 FOL "ZL"
149 EONFLEK
150 STO 06
151 <<>%
152 STO @1
153 RCL 65
154 RCL 02
155 +REC
156 +/-
157 E+%
158 STO E2
159 <<>Y
160 180
161 %
162 PI
163 \div
164 STO 03
165 FCL 06
16G RCL- "Vr"
167 FCL 01
168 FCL\div "RG"
169 +FEC
1701
171 +
172 +FOL
173 1/%
174-2
175 x
176 <<>Y
177 +/-
17S X<>Y
179 +REC
180 1
181 +
182 +FOL
183 FCL< E2
```

```
184 1%
185 <<>%
186 ROL- 03
187 +
18S <<>%
189 子REC
1901
191 -
192 +FOL
193 1%
194 2
195 <
196 <<>%
197 +
198 <<%
199 +FE[
20101
201 +
202 +FOL
203 RCLX "FG"
204 <<>
205 FCL "Yr"
206 +
207 COMFLEX
208 "Zin="
209 ARCL ST }
21日 HWIEM
211 EHD
```

Displays the result and returns to the menu at LBL B.

## Transmission Line Impedance ("TLI")

This program calculates the high frequency characteristic impedance $\left(Z_{0}\right)$ for five types of transmission lines:

Open two-wire line:

$$
Z_{0}=\frac{120}{\sqrt{\varepsilon_{r}}} \ln \left(\frac{2 D}{d}\right)
$$

Single wire near ground:

$$
Z_{0}=\frac{138}{\sqrt{\varepsilon_{\mathrm{r}}}} \log \left(\frac{4 h}{d}\right)
$$

Balanced wires near ground:

$$
Z_{0}=\frac{276}{\sqrt{\varepsilon_{r}}} \log \left\{\frac{2 D}{d}\left[1+\left(\frac{D}{2 h}\right)^{2}\right]^{-1 / 2}\right\}
$$

Wires in parallel near ground:

$$
Z_{0}=\frac{69}{\sqrt{\varepsilon_{r}}} \log \left\{\frac{4 h}{d}\left[1+\left(\frac{2 h}{D}\right)^{2}\right]^{+1 / 2}\right\}
$$

Coaxial line:

$$
Z_{0}=\frac{60}{\sqrt{\varepsilon_{r}}} \ln \frac{D}{d}
$$

Variables Used.

| In Equations | Description | In Program |
| :---: | :--- | :---: |
| $D$ | Wire spacing. | 0 |
| $\boldsymbol{d}$ | Wire diameter. | $\triangleleft i . a$ |
| $h$ | Height of wire (above ground). | h |
| $\varepsilon_{\boldsymbol{r}}$ | Relative permittivity. | $E$ |

Remarks. Flag 21 (printer enable) is set or cleared to match flag 55 (printer existence). This automatically produces printer output if flag 55 is set.

## Program Instructions.

1. Key the "TLI" program (listed on page 111) into your calculator.
2. Press XEQ TLI (to run the "TLI" program).
3. Use the variable menu displayed by the program to store the required inputs for the particular line configuration you're working with.
4. Press R/S.
5. The program displays Line Config? and a menu containing the five types of line configurations. Select a configuration by pressing the corresponding menu key:

OF (open two-wire line)
SH (single wire near ground)
B (balanced wires near ground)
F. (wires in parallel near ground)

C (coaxial line)
6. The value of $Z_{0}$ is displayed and the program returns to the input menu (step 3).

Example. Calculate $Z_{0}$ of RG-218/U coaxial cable with wire spacing, $D=0.68 \mathrm{in}$., wire $d i a=0.195 \mathrm{in}$., and $\varepsilon_{r}$ of the polyethylene insulation $=2.3$.

Select FIX 2 display format and run the "TLI" program.

```
DISP FIX 02 XEQ TLI
```

| x: $0.0 \square$ |  |
| :---: | :---: |
|  |  |

Store the inputs.

Calculate $Z_{0}$ for the coaxial configuration.
$\qquad$

| Config? |
| :---: |
|  |  |

C .


Now calculate $Z_{0}$ for an open two-wire (air) line with $D=6 \mathrm{in}$. and dia $=0.0808 \mathrm{in}$. $\left(\varepsilon_{r}\right.$ of air $\left.=1\right)$.

| P=6.00 |  |
| :---: | :---: |
|  |  |

.0808 DIA

1 E
E

R/S



This time, calculate $Z_{0}$ of an air line $\left(\varepsilon_{r}\right.$ of air $\left.=1\right)$ consisting of a single 0.1285 inch diameter wire 6 inches from a ground plane.
.1285 DIA

6 H

1 E

R/S
sW

## "TLI" Program Listing.

## Program:

ब6 < 2es-Eyte Frgm ?
Q1 LEL "TLI"
Ge MVAR "D"
GS MVFR "dig"
64 MURR "ヶ"
05 MVAR "e"
GE CF 21
07 FS? 55
06 SF 21
$20=313.44$
O/GIM H



Line Config?
W

## Comments:

Declares menu variables and sets or clears flag 21 to match flag 55.

| 09 LEL A | Displays the variable menu and |
| :---: | :---: |
| 16 VRRMENU "TLI" | stops. |
| 11 CLA |  |
| 12 STOP |  |
| 13 fLEHG |  |
| $14 \times 70$ |  |
| 15 GTO A |  |
| 16 CLMENU | Defines the programmable menu for |
| 17 "OF" | the five configurations. The EXIT |
| 18 KEY 1 XEQ Q1 | key is defined to return to the |
| 19 "5は" | variable menu. |
| 20 KEY 2 KEQ 02 |  |
| 21 "E" |  |
| 22 KEY 3 XEQ Q3 |  |
| 23 "P" |  |
| 24 KEY 4 XEQ 94 |  |
| 25 "C" |  |
| 26 KEY 5 XEQ 0.5 |  |
| 27 KEY 9 GTO A |  |
| 28 MEFHI | Displays the menu and prompts for a |
| 29 "Line Config?" | selection. After the appropriate |
| 30 FROMPT | routine is executed, returns to the |
| 31 GTO A | variable menu. |
| 32 LEL 91 | Calculates $Z_{0}$ for an open two-wire |
| 35 KEQ 67 | configuration. |
| 34 LH |  |
| 35120 |  |
| 36 GTO 96 |  |
| 37 LEL 92 | Calculates $Z_{0}$ for a single wire near |
| 38 KED 98 | the ground. |
| 39 LOG |  |
| 40138 |  |
| 41 GTO 96 |  |


| 42 LEL 93 | Calculates $Z_{0}$ for balanced wires near the ground． |
| :---: | :---: |
| 43 XEQ 99 |  |
| $441 \%$ |  |
| 451 |  |
| $46+$ |  |
| 47 SQRT |  |
| $481 \%$ |  |
| $49 \mathrm{KEQ} \mathrm{Q7}$ |  |
| $50 \times$ |  |
| 51 LOG |  |
| 52276 |  |
| 59 亿T0 66 |  |
| 54 LEL 64 | Calculates $Z_{0}$ for wires in parallel near the ground． |
| $55 \times 6 \mathrm{E}$ ¢9 |  |
| 561 |  |
| $57+$ |  |
| 58 KEQ Q8 |  |
| 59 SQRT |  |
| 60 XEQ ES |  |
| $61 \times$ |  |
| 62 LOG |  |
| 6369 |  |
| 64 GT0 06 |  |
| 65 LEL 59 | Calculates $Z_{0}$ for a coaxial line configuration． |
| 66 RCL＂D＂ |  |
| $67 \mathrm{FCL} \div$＂日ia＂ |  |
| 68 LH |  |
| 6960 |  |
| 70 LEL E6 | Completes the calculation and displays the result． |
| 71 ECL＂巨＂ |  |
| 72 SORT |  |
| $73 \div$ |  |
| $74 \times$ |  |
| 75＂20＝＂ |  |
| TG ARCL ET |  |
| 77 RVIEM |  |
| 38 FETH |  |

79 LEL 87
802
81 FCL
82 FCL $\div$ "dig"
BS RTH
84 LEL 98
854
E6 RCL× "ト"
87 FCL $\div$ " $\mathrm{ti} . \mathrm{g}$ "
8 BRTH
89 LEL 69
962
91 FCL× "ト"
$92 \mathrm{ECL} \div$ "D"
$93 \times+2$
94 EHD

Calculates an intermediate result.

Calculates an intermediate result.

Calculates an intermediate result.

# 5 

## Amplifier Analysis

This chapter contains programs that calculate small-signal properties of a transistor amplifier and automate a method of transistor bias optimization.

## Transistor Amplifier Performance ("TAP")

This program calculates certain small-signal properties of a transistor amplifier given the h -parameter matrix and the source and load impedances. The program calculates current and voltage gains, and input and output impedances.


Equations. The definition of the $h$-parameter matrix is:

$$
\left[\begin{array}{l}
V_{1} \\
I_{2}
\end{array}\right]=\left[\begin{array}{ll}
h_{i} & h_{r} \\
h_{f} & h_{o}
\end{array}\right]\left[\begin{array}{l}
I_{1} \\
V_{2}
\end{array}\right]
$$

The current gain is:

$$
A_{i}=\frac{i_{2}}{i_{1}}=\frac{-h_{f}}{1+h_{o} Z_{L}}
$$

The voltage gain is:

$$
A_{v}=\frac{v_{2}}{v_{1}}=\frac{A_{i} Z_{L}}{Z_{\text {in }}}
$$

The voltage gain with a source resistor is:

$$
A_{v a}=\frac{v_{2}}{v_{S}}=\frac{A_{i} Z_{L}}{Z_{i n}+Z_{S}}
$$

The input impedance is:

$$
Z_{\text {in }}=h_{i}+h_{r} Z_{L} A_{i}
$$

The output impedance is:

$$
Z_{\text {out }}=\frac{h_{i}+Z_{S}}{h_{o} h_{i}+h_{o} Z_{S}-h_{f} h_{r}}
$$

## Variables Used.

| In Equations | Description | In Program |
| :---: | :--- | :---: |
| $h_{i}$ | Matrix h-parameter. | hi |
| $h_{r}$ | Matrix h-parameter. | hir |
| $h_{f}$ | Matrix h-parameter. | hif |
| $h_{o}$ | Matrix h-parameter. | ho |
| $Z_{S}$ | Source impedance. | $z \Xi$ |
| $Z_{L}$ | Load impedance. | $z 1$ |

Remarks. Flag 21 (printer enable) is set or cleared to match flag 55 (printer existence). This automatically produces printer output if flag 55 is set.

## Program Instructions.

1. Key the "TAP" program (listed on page 120) into your calculator.
2. Press XEQ TAF" (to run the "TAP" program).
3. Use the variable menu displayed by the program to store the four h-parameter values ( $h_{i}, h_{r}, h_{f}$, and $h_{o}$ ) and the source and load impedances ( $Z_{S}$ and $Z_{L}$ ).
4. Press $R / \mathbf{S}$ to display the result menu.
5. Press the appropriate menu key for each result you want to calculate:

- AI to display the current gain, $A_{i}$.
- AV to display the voltage gain, $A_{v}$.
- RVS to display the voltage gain with a source resistor, $A_{v s}$.
- ZIN to display the input impedance, $Z_{\text {in }}$.
- ZOUT to display the output impedance, $Z_{\text {out }}$.

6. Press EXIT to return to the variable menu (step 3).

Example. What are the small-signal properties of a transistor that has the following h-parameter matrix and has source and load impedances of 1,000 and 10,000 ohms, respectively?

$$
h=\left[\begin{array}{rr}
1100 & 250 \mathrm{E}-6 \\
50 & 25 \mathrm{E}-6
\end{array}\right]
$$

Select the FIX 4 display format and run the "TAP" program.

```
DISP FIX. 04 XEQ TAF
```

$\mathrm{x}: 0.0000$

| HI | HF | HF | HO | ZS | ZL |
| :--- | :--- | :--- | :--- | :--- | :--- |

Using the variable menu, enter each of the six input values and then press R/S.
1100 HI
hi=1, 100.0000

| HI | Hi | HF | HI | द5 | EL |
| :--- | :--- | :--- | :--- | :--- | :--- |

$\mathrm{hr}=0.0003$

| HI | Hi | HF | HI | EE | दL |
| :--- | :--- | :--- | :--- | :--- | :--- |

$h f=50.0000$


25 因 6 + +HO

1000
25
ho=2.5000E-5

| HI | Hi | HF | HI | 关 | 2L |
| :--- | :--- | :--- | :--- | :--- | :--- |

$\mathrm{Zs}=1,000.0000$

| HI | HF | HF | HD | ES | ZL |
| :--- | :--- | :--- | :--- | :--- | :--- |

For each of the outputs you want to calculate, press the corresponding menu key.A I
Ai $=-40.0000$
M1 MN MUS EIN ETMUI
Press EXIT to return to the input menu. EXIT

| x: 52,500.0000 |  |
| :---: | :---: |
| - | T |

From here you can work another problem or press EXIT again to quit.

## ＂TAP＂Program Listing．

## Program：

00（ 2こア－Bute Frgm ？
01 LEL＂TAF＂
Q2 MURF＂hi＂
03 MUAR＂hr＂
04 MURE＂hf＂
05 MUAR＂ho＂
Q6 HUAR＂Zs＂
07 MURE＂Zl＂
08 CF 21
69 FS？ 55
10 SF 21
11 LEL A
12 URFMEHU＂TAF＂
13 LLA
14 STOF
15 RLEHG
$16 \% \neq 0$ ？
17 GTO A
18 CLMEHU
19 ＂ Hi ＂
20 KE＇ 1 KEQ 日1
21 ＂Hu＂
22 KEY 2 XED 巨玉
23 ＂Hus＂
24 KE＇ 3 KED 93
25＂Zin＂
26 KE＇ 4 XEQ 94
27 ＂Zout．＂
25 KE＇ 5 KEQ 95
29 KEY 9 GTO A
30 LEL 16
31 MEHU
$325 T O F$
33 GTO 60

## Comments：

Declares the menu variables and sets or clears flag 21 to match flag 55.

Displays the variable menu and stops．

Defines the programmable menu for displaying the results．The EXIT key is defined to return to the variable menu．

Displays the programmable menu and stops．The menu is redisplayed after each result．

| 34 LEL 61 | Calculates $A_{i}$ ． |
| :---: | :---: |
| 35 KE＠ $\mathrm{O}_{7}$ |  |
| 36 ＂ Hi ＂ |  |
| 37 万T0 96 |  |
| 38 LEL 92 | Calculates $A_{v}$ ． |
| 39 KEQ ¢ |  |
| $40 \div$ |  |
| 41 ＂Hu＂ |  |
| 42 GT0 66 |  |
| 43 LEL E 9 | Calculates $A_{v s}$ ． |
| 44 KEQ 98 |  |
| $45 \mathrm{FCL}+$＂Zs＂ |  |
| $46 \div$ |  |
| 47 ＂Fus＂ |  |
| 48 GTO 06 |  |
| 49 LEL 64 | Calculates $Z_{\text {in }}$ ． |
| 5 S 人EQ 98 |  |
| 51 ＂Ziп＂ |  |
| 52 GT0 66 |  |
| 53 LEL 0.5 | Calculates $Z_{\text {out }}$ ． |
| 54 FCLL＂Hi＂ |  |
| $55 \mathrm{RCL}+$＂Zs＂ |  |
| 5 LFSTK |  |
| 57 ECL＂hロ＂ |  |
| $58 \times$ |  |
| 59 LASTX |  |
| 60 FCL×＂Zs＂ |  |
| $61+$ |  |
| 62 FCL＂hf＂ |  |
| 63 FLCLx＂hr＂ |  |
| 64 － |  |
| $6.5 \div$ |  |
| EG＂Zout＂ |  |


| 67 LEL 96 | Displays a result. |
| :---: | :---: |
| $68 \vdash$ - $=$ " |  |
| 69 AFEL ST 8 |  |
| 76 AVIEN |  |
| 71 RTH |  |
| 72 LEL 67 | Calculates $A_{i}$. |
| 73 RCL "hf" |  |
| 74 + $/-$ |  |
| 751 |  |
| 76 RCL "ho" |  |
| 77 FCLX "Zl" |  |
| $78+$ |  |
| $79 \div$ |  |
| 80 RTH |  |
| 81 LEL Q8 | Calculates $Z_{\text {in }}$. |
| 82 KEQ 97 |  |
| 83 RCL× "Zl" |  |
| 84 ENTER |  |
| 85 FCL× "hr" |  |
| B6 RCL+ "hi" |  |
| 87 EHD |  |

## Transistor Amplifier Bias Optimization ("BIAS")

This program automates the method of bias optimization described in "Designing Class 'A' Amplifiers to Meet Specified Tolerances," by Ward J. Helms (Electronics, August 8, 1974). The program requires you to specify a set of parameters from which it determines, by an iterative technique, the optimum values for $R_{1}, R_{2}, R_{E}$, and $R_{L}$. The minimum power gain is also computed.


How "BIAS" Works. First, values are input for the variables listed in the table on page 126. Then, the transistor's thermal resistance is calculated:

$$
\theta_{J A}=\left(T_{\max }-25^{\circ} \mathrm{C}\right) / P_{D}
$$

and the minimum load resistance and emitter resistance are estimated:

$$
\begin{gathered}
R_{L 1}=\frac{\theta_{J A} V_{C C}^{2}}{4.4\left(T_{J \max }-T_{A \max )}\right.}=R_{L n} \\
R_{E 1}=0.1 R_{L 1}=R_{E n}
\end{gathered}
$$

Next, the quiescent, maximum, and minimum collector currents are calculated:

$$
\begin{gathered}
I_{C Q}=\frac{V_{C C}}{2\left(R_{L n}+R_{E n}\right)} \\
I_{C \max }=I_{C Q}\left(1+\Delta I_{C Q}\right) \\
I_{C \min }=I_{C Q}\left(1-\Delta I_{C Q}\right)
\end{gathered}
$$

From these, we can calculate the base-emitter voltage under hot, highcurrent conditions ( $V_{B E X}$ ) and under cold, low-current conditions ( $V_{B E N}$ ).

$$
\begin{gathered}
T_{\max }=\theta_{J A} I_{C Q}\left(V_{C C} / 2\right)+T_{A \max } \\
V_{B E X}=V_{B E 1 \min }+\Delta V_{B E} \log \left(I_{C \max } / I_{1}\right)-0.0022\left(T_{\max }-25^{\circ} C\right) \\
T_{\min }=\theta_{J A} I_{C Q}\left(V_{C C} / 2\right)\left(1-\left(\Delta I_{C Q}\right)^{2}\right)+T_{A \min } \\
V_{B E N}=V_{B E 1 \max }+\Delta V_{B E} \log \left(I_{C \min } / I_{1}\right)-0.0022\left(T_{\min }-25^{\circ} C\right)
\end{gathered}
$$

Now, a better estimate of the emitter resistance can be made:

$$
R_{E(n+1)}=\frac{-2\left(V_{B E X}-V_{B E N}\right)}{I_{C \max }-I_{C \min }}
$$

From this point, if $V_{B E X}>V_{B E N}$, then $R_{E}$ is set to zero, $R_{L}$ is increased by $10 \%$ and the design procedure is repeated. Iterations continue until

$$
\frac{R_{E(n+1)}-R_{E n}}{R_{E n}}<0.5 \%
$$

If at any time the condition $T_{\max }>T_{J \max }$ occurs, $R_{L}$ is increased by $10 \%$. When the iterative procedure is complete, $T_{\max }, I_{C \text { max }}, T_{\min }$, and $I_{C \text { min }}$ are displayed.

Values for
$h_{F E \text { max }}=$ maximum worst-case current gain at $T_{\max }$ or $T_{\min }$ and $I_{C \text { max }}$ or $I_{C \text { min }}$
and
$h_{F E \text { min }}=$ minimum worst-case current gain at $T_{\max }$ or $T_{\min }$ and $I_{C \text { max }}$ or $I_{C \text { min }}$
are determined from the transistor's data sheet. The Thevenin-equivalent resistance ( $\mathrm{R}_{B}$ ) and voltage ( $\mathrm{V}_{B B}$ ) of the amplifier's bias network are calculated:

$$
\begin{gathered}
R_{B}=\frac{h_{F E \max } h_{F E \min }\left[R_{E(n+1)}\left(I_{C \text { max }}-I_{C \min }\right)+V_{B E X}-V_{B E N}\right]}{h_{F E \max } I_{C \text { min }}-h_{F E \min } I_{C \max }} \\
V_{B B}=V_{B E N}+I_{C \text { min }}\left(\left(R_{B} / h_{F E \min }\right)+R_{E(n+1)}\right)
\end{gathered}
$$

Now the bias resistors are calculated:

$$
\begin{gathered}
R_{1}=\frac{R_{B} V_{C C}}{V_{B B}} \\
R_{2}=\frac{R_{B} V_{C C}}{V_{C C}-V_{B B}}
\end{gathered}
$$

Finally, the minimum power gain and minimum signal power are calculated:

$$
\begin{gathered}
A_{P}=\frac{R_{B} R_{L} h_{F E \min }}{R_{E}\left(R_{B}+h_{F E \min } R_{E}\right)} \\
P_{S}=\left(1-\Delta I_{C Q}\right)^{2}\left(\frac{V_{C C}^{2} R_{L}}{8\left(R_{L}+R_{E}\right)^{2}}\right)
\end{gathered}
$$

## Variables Used.

| In Equations | Description | In Program |
| :---: | :---: | :---: |
| $V_{C C}$ | Source voltage (volts). | VCL |
| $\Delta I_{C Q}$ | Maximum desired percentage variation of quiescent current. | dice |
| $T_{\text {A max }}$ | Maximum ambient temperature (use the maximum case temperature for a transistor mounted on a heat sink). | TAmax |
| $T_{A \text { min }}$ | Minimum ambient temperature. | Tfrim |
| $T_{J \text { max }}$ | Maximum junction temperature. | T. $\operatorname{lm}$ ax |
| $P_{D}$ | Maximum rated power dissipation at $25^{\circ} \mathrm{C}$. | FD |
| $I_{1}$ | Collector current, usually selected for convenience so that $I_{1}$ and $10 I_{1}$ at $25^{\circ} \mathrm{C}$ bracket the expected operating point. | I 1 |
| $\Delta V_{B E}$ | Typical base-emitter voltage change over the range of $I_{1}$ to $10 I_{1}$ at $25^{\circ} \mathrm{C}$. | dVEE |
| $V_{B E 1 \text { min }}$ | Minimum base-emitter voltage at $I_{1}$ at $25^{\circ} \mathrm{C}$. | VEE1min |
| $V_{B E 1 \text { max }}$ | Maximum base-emitter voltage at $\mathrm{I}_{1}$ at $25^{\circ} \mathrm{C}$. | VEE1max |
| $h_{\text {FE max }}$ | Maximum worst-case current gain at $\mathrm{T}_{\text {max }}$ or $\mathrm{T}_{\text {min }}$ and $\mathrm{I}_{C_{\text {max }}}$ or $\mathrm{I}_{C \text { min }}$. | $\mathrm{R}_{01}$ |
| $h_{F E \text { min }}$ | Minimum worst-case current gain at $\mathrm{T}_{\text {max }}$ or $\mathrm{T}_{\text {min }}$ and $\mathrm{I}_{C_{\text {max }}}$ or $\mathrm{I}_{C \text { min }}$. | $\mathrm{R}_{02}$ |

## Remarks.

- Flag 01 is used for branching control.
- Flag 02 is used to control the labels given to results.
- Flag 21 (printer enable) and flag 55 (printer existence) control printer output.
- Registers $\mathrm{R}_{00}$ through $\mathrm{R}_{09}$ are used for storing intermediate results. Be sure to set the SIZE to at least 10 registers (MODES $\boldsymbol{\nabla}$ SIZE 10 [ENTER) before running "BIAS".


## Program Instructions.

1. Key the "BIAS" program (listed on page 130) into your calculator.
2. Press XED EIRS (to run the "BIAS" program).
3. Input the variables as prompted; press $\mathrm{R} / \mathrm{S}$ after each entry.
4. After the last input, the program calculates and displays $T_{\max }$ and $I_{\max }$. The program then calculates and displays $T_{\min }$ and $I_{\min }$.
5. When you see $\mathrm{Hrim}_{\mathrm{F}} \times$ ?, key in a value for the maximum worst-case current gain at $T_{\text {max }}$ or $T_{\text {min }}$ and $I_{C \text { max }}$ or $I_{C_{\text {min }}}$. Press R/S.
6. When you see $\mathrm{H}_{\mathrm{ri}} \mathrm{i} \boldsymbol{r}$ ?, key in a value for the minimum worst-case current gain at $T_{\max }$ or $T_{\text {min }}$ and $I_{C \text { max }}$ or $I_{C_{\min }}$. Press R/S.
7. The program then calculates values for $R_{E}, R_{L}, R_{1}, R_{2}$, and $A_{P}$. If you are not using a printer, press $R / S$ after each result is displayed.

Example. A single-stage class " A " amplifier is connected to a 30 -volt power supply. Calculate the maximum power output and maximum power gain obtained from a transistor over an ambient temperature range of $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$, with a maximum quiescent-current variation of $\pm 20 \%$ (or .2).

From the transistor's data sheet,

$$
\begin{aligned}
& T J_{\max }=150^{\circ} \mathrm{C} \\
& P D=0.36 \mathrm{~W} \\
& \Delta V_{B E}=0.10 \mathrm{v} \text { from } 3 \text { to } 30 \mathrm{~mA} \\
& V_{B E 1 \min }=0.52 \mathrm{v} \text { at } 3 \mathrm{~mA} \text { at } 25^{\circ} \mathrm{C} \\
& V_{B E 1 \max }=0.72 \mathrm{v} \text { at } 3 \mathrm{~mA} \text { at } 25^{\circ} \mathrm{C}
\end{aligned}
$$

$I_{1}=0.001 \mathrm{~A}$
$h_{\text {FEmax }}=600$
$h_{\text {FEmin }}=100$

Select ENG 2 display format and run the "BIAS" program.
DISP EHG 02 XEQ BIRS
$r: 0,00 E D$ VCC?D. ODED

30 R/S
Y: 30.0 E 0 dicQ?
. R/S
Y: 200. E-3
TAmax?0.00E0

70 R/S
Y: 70.0 OE
TAmin? 0.00 E

0 R/S
Y: 0.0 OEE
TJImax?0.00E0

150 R/S
Y: $150 . \mathrm{E} 0$
PD?0.0060
.36 R/S

| Y: $360 . \mathrm{E}-3$ |
| :--- |
| I1? 0. DED |

.001 R/S
Y: $1.00 \mathrm{O}-3$
dVBE? 0.00 E 0

Refer again to the transistor's data sheet and input $h_{\text {FEmax }}$. 600 R/S

```
Hmin?
x:60ด. E0
```

Now, input $h_{\text {FEmin }}$.
100 R/S

```
RE=
x:115.E0
```

```
RL=
x:888.E0
```

R/S $\square$

R/S

| $R 1=$ |
| :--- |
| $x: 45.0 E 3$ |

## "BIAS" Program Listing.

## Program:

610 553-Eute Frgm 3
01 LEL "EIFS" Inputs values.
G2 IHFUT "VCC"
03 IHFUT "AICD"
04 IHFUT "THmax"
05 STO 67
06 IHFIT "TAmin"
07 STO 68
ge IHFUT "T,Imヨ×"
E9 IHFUT "FD"
10 ST0 69
11 IHFUT "I1"
12 IHFUT "dWEE"
13 IHFUT "VEE1min"
14 IHFUT "ЧEE1m.

## 15 CF 91

16 SF 62
17 SF 21
18 ECL "TJME×"
1925
20 -
$21 \mathrm{FCL} \div 69$
$225 T 069$
23 ECL "WCO"
$24 x+2$
$25 \times$
26 FCL "TJmax"
27 RCL- "THmヨ×"
284.4
$29 \times$
$30 \div$

## Comments:

```
315T0.05
32 0.1
3% <
34 5T0 04
35 LEL E19
Begins iterative loop.
36 RCL "YCC"
37 2
88\div
39 EHTER
40 EHTER
41 RCL ES
42 ECL+ 04
43\div
44 STO 50
45 FLL< 6%
46 <
4 7 \mathrm { FCL } + 8 7
4\Omega RCL "TSmق×"
49 <<>%
50 <>Y?
51 GT0 [品
52 XEQ 0%
5% +
5 4 ~ F C L ~ " - I E G " ~
55 1
56 +
57 XED 04
58 FCL+ "VEE1mir"
59 5T0 05
601
G1 FCL "-IEQ"
628+2
63-
6 4 2
65 \div
66 FLCL% EG
67 FEL< E9
68 FCLX "WCO"
69 FCL+ 6S
70 XEQ EG
```

```
71 +%-
72 1
73 FCL- "-ACO"
74 XEQ 04
75 FCL+ "VEE1mG家"
7G STO @G
77 FLL ES
78 \%?
79 口T口 बこ
80-
81 FCL\div E0
B2 FCL\div "AICO"
B3 FCL 04
84 <<>Y
85 STD 04
86 %%H
Repeats iterative loop as needed.
87 0.5
88 %<%?
89 GT0 E0
90 FS% 01
91 凸T0 01
92 5F 61
98 亿TG 06
\begin{tabular}{|c|c|}
\hline 94 LEL E1 & Prompts for \(h_{\text {FEmax }}\) and \(h_{F E \text { min }}\) ． \\
\hline 95 EF 91 & \\
\hline 96 ＂Hmax？＂ & \\
\hline 97 FFOMPT & \\
\hline 98 ST0 日1 & \\
\hline 99 ＂Hmiri？＂ & \\
\hline 106 FROMFT & \\
\hline 101 STG E & \\
\hline \(102 \times>\) & Calculates \(R_{B}\) ． \\
\hline 103 FOL＂日IOQ＂ & \\
\hline 1042 & \\
\hline \(165 \times\) & \\
\hline \(106 \mathrm{FCL} \times \mathrm{C}\) & \\
\hline \(107 \mathrm{FCL} \times 64\) & \\
\hline \(108 \mathrm{FCL}+6.5\) & \\
\hline
\end{tabular}
```

```
109 FCL- EG
110 FCL< ES
111 FCLX E1
112 1
113 FCL- "GICO"
114 FCLX 01
1151
116 FCL+ "JICO"
117 FCLX Ez
118 -
119\div
120 FOL\div 60
1こ1 STG ब%
12ב FCL\div ब2
Calculates }\mp@subsup{V}{BB}{}\mathrm{ .
123 FOL+ 04
124 FLL\% 010
125 1
12G FCL- "GIEO"
127 <
12G FCL+ 6G
129 STO ES
130 FOL "WC:" Calculates }\mp@subsup{R}{1}{
131 <<'%
132\div
133 FLLX Q7
134 FOL "WCO" Calculates R2.
135 FCL< 日7
1SG LAGTX
137 FCL- EG
138\div
139 FCL 03
140 FCL Q4
141 "EE"
142 \ED 日2
143 "FL"
144 YEQ 日2
145 "Fこ"
146 XEO E2
```

Recalls $R_{L}$ and $R_{E}$ ，and then displays each of the four values in the stack．

| 147 | ＂R1＂ |  |
| :---: | :---: | :---: |
| 148 | KEQ 62 |  |
| 149 | $\div$ | Calculates and then displays the |
| 150 | RCLX 92 | power gain．（When the RTH at line |
| 151 | FCL 97 | 168 is reached，the program ends |
| 152 | $x$ | because there are no pending |
| 153 | LASTX | subroutine calls．） |
| 154 | FCL 04 |  |
| 155 | RCL× 02 |  |
| 156 | ＋ |  |
| 157 | $\div$ |  |
| 158 | LOG |  |
| 159 | 10 |  |
| 160 | $\times$ |  |
| 161 | ＂AF＂ |  |
| 162 | LEL E2 | Displays a result and rolls the stack |
| 16.3 | ト＂＝＂ | down one register（for the next |
| 164 | FS？55 | result）． |
| 16.5 | AREL ST $\because$ |  |
| 166 | AVIEN |  |
| 167 | 「．+ |  |
| 168 | FTH |  |
| 169 | LEL 93 | Calculates temperature． |
| 170 | FS？ 01 |  |
| 171 | XEQ A |  |
| 172 | 25 |  |
| 173 | － |  |
| 174 | $2.2 \mathrm{E}-3$ |  |
| 175 | $\times$ |  |
| 176 | FiTH |  |
| 177 | LEL H | Displays proper label and |
| 178 | ＂Tmヨ×＝＂ | temperature． |
| 179 | FC？ 62 |  |
| 189 | ＂Tmin＝＂ |  |
| 181 | FRCL ST $X$ |  |
| 182 | ト＂L：＂ |  |
| 183 | FRTH |  |

Calculates and then displays the power gain．（When the RTH at line 168 is reached，the program ends because there are no pending subroutine calls．）

Displays a result and rolls the stack down one register（for the next result）．

Calculates temperature．

Displays proper label and temperature．

184 LEL 94
185 RCLX 日 10
186 FS ？ 01
187 XEQ I
$188 \mathrm{RCL} \div$＂II＂
189 LOG
196 RCLX＂dVEE＂
$191+$
192 RTH
193 LBL I
194 FS？ 62
$195 \vdash$＂ 1 mヨ $\times=$＂
196 FC？C 92
197 ト＂Imin＝＂
198 ARCL ST $\%$
199 RUIEN
206 RTH
201 STO 97
202 CL X
203 STO 04
204 LEL 05
20．5 1.1
206 STOX 93
207 GTO 60
208 EHD

Calculates current．

Displays proper label and current．

Increases $R_{L}$ by $10 \%$ ．

## 6

## Truth Tables

This chapter contains two programs for testing logical expressions. The first program, "PTTBL" (print truth table), allows you to print a complete truth table. The second program, "ITTBL" (interactive truth table), allows you to display any row of a truth table.

## Writing a Logical Expression as a Program

Before using "PTTBL" or "ITTBL" you must enter a logical expression. This is done by writing a program that represents the expression.

Each of the storage registers $\mathrm{R}_{00}$ through $\mathrm{R}_{05}$ holds a 1 or 0 . These are the inputs to the function that you write. In your program recall each register as it's needed and use the Boolean logic functions (AND, OR, and XOR) to create the expression.

Here's a simple example. This program represents the expression $A$ OR $B$, where $A$ is stored in $\mathrm{R}_{01}$ and $B$ is stored in $\mathrm{R}_{00}$.


```
@1 LEL "OF"
G2 ROL Q1
03 RCL 60
04 OR
0.5 EHD
```

The calculator's built-in NOT function returns the 36-bit logical NOT of the number in the X-register. To perform a single-bit logical NOT, execute these three functions:

SIGH
LRST:

The logical expression

$$
(A \text { AND } B \text { AND } C) \text { OR }(A \text { AND } \bar{B} \operatorname{AND} \bar{C})
$$

can be represented with the following program (assuming $A$ is in $\mathrm{R}_{02}, B$ is in $\mathrm{R}_{01}$, and $C$ is in $\mathrm{R}_{00}$ ).

## "EXMPL" Program Listing.

## Program:

```
00 < 31-Byte Frgm ?
02 RCL 02
03 RCL 01
0 4 ~ A H D
05 RCL 6@
06 FHD
```

01 LEL "EXMFL" Calculates $A$ AND $B$ AND $C$.
07 RCL 96
08 SICH
09 LASTK
10-
11 FCL 91
12 SIGN
13 LASTK
14 -
15 AH
16 RCL 92
17 AHD
18 OR
19 EHD

## Comments:

Calculates $A$ AND $B$ AND $C$.

Calculates $\bar{B}$.

Calculates $\bar{B}$ AND $\bar{C}$.
Calculates $A$ AND $\bar{B}$ AND $\bar{C}$.

Calculates $(A$ AND $B$ AND $C$ ) OR
( $A$ AND $\bar{B}$ AND $\bar{C}$ )

[^0]
## Printing a Truth Table ('‘PTTBL’’)

This program prints a truth table for a logical expression written as previously described. You must provide the name of the function (global label) and the number of the most significant input bit. (Bits are numbered right to left; the right-most bit is number 0 and is stored in $\mathrm{R}_{00}$.)

Required Programs. "PTTBL" (page 141) and "FCN?" (page 156).

## Variables Used.

| Description | In Program |
| :--- | :--- |
| Function name. | FCN |
| Loop counter. | count. |
| Most significant bit. | $\mathrm{m} \equiv \mathrm{b}$ |

## Remarks.

- Registers $\mathrm{R}_{00}$ through $\mathrm{R}_{05}$ are used as input registers (bits) for the Boolean expression. Be sure to set the SIZE to at least six registers (MODES $\nabla$ SIZE 6 [ENTER) before running "PTTBL".
- This program clears all of the storage registers.
- Flag 12 is used to produce double-wide output from the printer.


## Program Instructions.

1. Key the "PTTBL" and "FCN?" programs into your calculator.
2. Key in the program that represents the logical expression (described in the "Writing a Logical Expression as a Program" section on page 137).
3. Press XEQ FTTEL (to run the "PTTBL" program).
4. When you see Funct ion Hame?, use the ALPHA menu to type the name of the function (global label). Press $\mathrm{R} / \mathrm{S}$.
5. The program then prompts you for the most significant bit (mミち?). Key in the number of the highest register you want to use as an input to your function ( $1 \leq m s b \leq 5$ ).
6. Press $\mathrm{R} / \mathrm{S}$ to print the truth table.

Example. Print a truth table for the expression on page 137. (If you haven't done it already, key in the "EXMPL" program on page 138.)

Run the "PTTBL" program.
XEQ PTTEL

Key in the name of the logical expression you want to print. EXMPL

R/S Y: 0
msb?

Since the logical expression uses three inputs ( $A, B$, and $C$ ), the most significant bit is stored in $\mathrm{R}_{02}$.

2 R/S


## Printer Output.



## ＂PTTBL＂Program Listing．

## Program：

日6 168－Eute Fram ？
01 LEL＂FTTEL＂
日z SED＂FDH？＂
0.3 FFOH

04 EF 12
ES CLST
EE FLL
ET IHFUT＂m三6＂
Q8 1
$09+$
102
$11 \%$ Y
$12 \%+\%$
131
14 －
151 E
$16 \div$
17 ST曰＂ロロurit＂
18 ELF
19 FFH
20 FCL ＂mEb＂
21 LEL $\operatorname{E16}$
22 AFCL $\Xi T \%$
こる ト＂＂
24 ［SE ST $\%$
25 GT0 60
$2 G$ AFCL ST $X$
27ト＂＂
2 BFOL ＂FEH＂
29ト＂しゃ＂
30 FFA
$316 F 12$

## Comments：

Prompts for a function name using the＂FCN？＂utility．Printing is enabled．

Prompts for the number of the most significant bit and sets up the loop counter．

Prints a single blank line．

Prints a table header．（Note that line 27 has seven blank spaces between the double quotes．）

|  | LEL 01 | Initializes the inputs (storage registers) and prepares to print a row in the truth table. |
| :---: | :---: | :---: |
| 33 | CLFG |  |
| 34 | RCL "Eount." |  |
| 35 | IP |  |
| 36 | RCL "mst" |  |
| 37 | LEL 92 | Stores the input bits into the appropriate storage registers. |
| 38 | EIT? |  |
| 39 | XED 94 |  |
| 46 | DSE ST $X$ |  |
| 41 | GTO 92 |  |
| 42 | EIT? |  |
| 43 | KEQ 94 |  |
| 44 | XEQ IHD "FCH" | Evaluates the expression for the given inputs. |
| 45 | CLA | Accumulates the input bits into the Alpha register. |
| 46 | RCL "mEt" |  |
| 47 | LEL 93 |  |
| 48 | ARCL IHD ST $X$ |  |
| 49 | DSE ST $X$ |  |
| 50 | GTO 03 |  |
| 51 | HRCL IHD ST 8 | Accumulates the output bit into the Alpha register. (Note that line 52 has four blank spaces between the double quotes.) |
| 52 | ト" |  |
| 53 | ARCL ST Y |  |
| 54 | PREA | Prints a line in the truth table and completes the loop. |
| 5 | ISG "courit. |  |
| 56 | GTO 61 |  |
| 57 | CF 12 | Resets the double-wide flag and ends. |
| 58 | FTH |  |
| 59 | LEL 64 | Stores an input bit into the storage register identified in the Y-register. |
| 6.6 | 1 |  |
| 61 | STO IHD ST Y |  |
| 62 | $\mathrm{F}+$ |  |
| 63 | EHD |  |

## An Interactive Truth Table (‘ITTBL’)

This program allows you to change any of the inputs and display the corresponding output. Here's a typical display:


Required Programs. "ITTBL" (page 145) and "FCN?" (page 156).

## Remarks.

- FCN (the function name) is the only variable used by this program.
- Registers $\mathrm{R}_{00}$ through $\mathrm{R}_{05}$ are used as input registers (bits) for the Boolean expression. Be sure to set the SIZE to at least six registers ( MODES $\boldsymbol{\nabla}$ SIZE 6 ENTER) before running "ITTBL".
- This program clears all of the storage registers.
- This program does not produce printed output.


## Program Instructions.

1. Key the "ITTBL" and "FCN?" programs into your calculator.
2. Key in the program that represents the logical expression (described in the "Writing a Logical Expression as a Program" section on page 137).
3. Press XEQ ITTBL (to run the "ITTBL" program).
4. When you see Funct ion Name?, use the ALPHA menu to type the name of the function (global label). Press R/S.
5. The program enters an interactive mode. The menu labels represent the inputs ( $\mathrm{R}_{05}$ through $\mathrm{R}_{00}$ ) as shown above.

To change one of the inputs, press the corresponding menu key. The program returns the result to the X-register. By toggling the inputs you can view the value of the expression for any combination of inputs.
6. To quit, press EXIT.

Example. Change the inputs and view the value of the expression. (If you haven't done it already, key in the "EXMPL" program on page 138.)

Run the "ITTBL" program.

## XEQ ITTEL

Function Name? 

Key in the name of the logical expression you want to print. (If you just worked the example in the previous section, $F C N$ probably still contains "EXMPL". Press ${ }^{\circ}$; if you see EXMFL, then simply press $R / S$ to continue.)

EXMPL

EXMPL


Toggle the most significant bit (bit 2 for this example) by pressing the fourth menu key.

- 9 (the LOG key)


Notice that the output (X-register) is now 1 . Now toggle bits 1 and 0 (the fifth and sixth menu keys).

- (the $\boxed{L N}$ key)

| $x: 0$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 1 | 1 | 0 |

[^1]

When you＇re finished，press EXIT to quit．

## EXIT



## ＂ITTBL＂Program Listing．

## Program：

06 \＆125－Byte Frgm 3
01 LEL＂ITTEL＂Prompts for a function name using
日2 KEQ＂FCN？＂
03 FLEHG
$04 \%=0$ ？
日 5 GTO 69
EGEIHM
07 FLL
Q8 CLEG
ब9 ELMEHII
10 KEY 9 GTO
11 LEL A
12 CLA
13 ARCL 0.5
14 KEY 1 KEQ 91
15 CLA
16 ARCL 94
17 KEY 2 KED E
18 CLA
19 AFCL 63
20 KEY 3 XEQ 93
21 CLA
22 HFCL 12
23 KE＇ 4 KED 64
24 CLA
25 ARCL 61
2G KEY 5 XEQ 日 5
27 느́
28 ARCL 66
$29 K E Y$ K XEQ 日

## Comments：

 the＂FCN？＂utility．Initializes by selecting Binary mode， selecting ALL display format，and clearing the storage registers and programmable menu definitions．

Defines the EXIT key to branch to LBL 09．Defines the six top－row menu keys using the numbers in the corresponding storage registers as menu labels．

| 30 | SEQ IHD "FEH" | Evaluates the logical expression and leaves the value in the X-register. |
| :---: | :---: | :---: |
| 31 | MEH | Displays the menu and stops. |
| 32 | STOP | Pressing R/S redisplays the menu. |
| 33 | GTO A |  |
| 34 | LEL 01 | Produces the appropriate register |
| 35 | 5 | number, depending on which menu |
| 36 | GTO 07 | key is pressed. |
| 37 | LEL 62 |  |
| 38 | 4 |  |
| 39 | GTO 67 |  |
| 40 | LEL E3 |  |
| 41 | 3 |  |
| 42 | GTO 67 |  |
| 43 | LEL 区4 |  |
| 44 | 2 |  |
| 45 | GTO 07 |  |
| 46 | LEL $\square^{5}$ |  |
| 47 | 1 |  |
| 48 | [TO 07 |  |
| 49 | LEL E6 |  |
| 5 | CLK |  |
| 51 | LEL 07 | Toggles the bit in a particular |
| 52 | FCL IHD ST $X$ | storage register. |
| 53 | SICH |  |
| 54 | LAST |  |
| 55 | - |  |
| 56 | STO IHD ST Y |  |
| 57 | FTH |  |
| 58 | LEL 69 | Exits all menus and ends. |
| 59 | EXITALL |  |
| 60 | EHD |  |

## 7

## Utilities

The programs in this chapter are general-purpose utilities and subroutines used by other programs in this book. You may also find them useful when writing your own programs.

## Circuit Calculation Utilities

## Impedance of an Element (" $\mathbf{C} \rightarrow \mathbf{Z}$ " and ' $\mathbf{L} \rightarrow \mathbf{Z}$ ')

This program converts the value for a capacitor or inductor in the X-register to a complex impedance. Before executing " $\mathrm{C} \rightarrow \mathrm{Z}$ " (capacitance to impedance) or " $\mathrm{L} \rightarrow \mathrm{Z}$ " (inductance to impedance), store the radian frequency in the variable $w$.

## Remarks.

- $w$ is the radian frequency, $2 \pi \mathrm{f}$ radians/second. (A lowercase " W " is used because the HP-42S does not have a lowercase omega character.)
- This program sets Rectangular mode.


## " $C \rightarrow Z$ " and " $L \rightarrow Z$ " Program Listing.

## Program:


G1 LEL "C+Z"
日2 REQ 90
ब3 $1 \%$
04 ETH
0.5 LEL "L $\rightarrow$ Z"

6e LEL 60
07 RECT
Q3 RCLX "w"
096
16 队>
11 COMFLEX
12 EHD

## Comments:

Calculates the impedance for the given capacitance (which is the reciprocal of impedance for inductance).

Calculates the impedance for the given inductance.

## Combining Parallel Impedances（＇‘ZP’）

The＂ZP＂program takes two complex impedances（in the X－and Y－registers）and returns the combined impedance for the two elements connected in parallel．
＂ZP＂Program Listing．


## Entering Radian Frequency（‘FQ？’）

The＂FQ？＂program prompts for a value of $w$ ，the radian frequency value used by several programs in this book．Whenever you see Redian Frequencuc $2 \pi f) ?$ ，key in the frequency and press $R / S$ ．

## Remarks．

－$w$ is the radian frequency， $2 \pi \mathrm{f}$ radians／second．（A lowercase＂ W ＂is used because the HP－42S does not have a lowercase omega character．）
－The program sets flag 25 （error ignore）to prevent an error from stopping the program if $w$ doesn＇t exist．

## ＂FQ？＂Program Listing．

```
00 44-Eyte Frgm?
EG FLL "@"
01 LEL "FQ?"
```



```
G7 EF 2S
ES FFEDNFT
ब゙\Xi ト"\unlhd(ごf)?"
G9 ETO "w"
04 SF 25
10 EHO
g.5 CL%
```


## Circuit Element Input Utility ('EL?’)

This program displays a menu for entering six types of circuit elements. It is designed to be used by other circuit analysis programs, such as the "CIRCT" program on page 45.

Each routine in this program displays a menu for entering an element using common units. For example, when you enter a resistor, the calculator displays:

```
Value?
```



You can enter a 2,000-ohm resistor by pressing $2000 \mathrm{OHH}, 2$ KOHM , or .002 MOHM .

The program returns two numbers to the stack:

> r: ee.yyxx
> <: element value
where the X-register contains the element value you keyed in adjusted to the default units shown in the following table. $e e$ is the element type in the table, and $y y$ and $x x$ are the location numbers entered into the stack. These numbers are used by programs such as "CIRCT" to indicate where a particular element occurs in a circuit.

| Element Type | Units | Type Code |
| :--- | :--- | :---: |
| Resistor | Ohms | 82 |
| Capacitor | Farads | 67 |
| Inductor | Henrys | 76 |
| General impedance | Ohms | $90^{\star}$ |
| Voltage source | Volts | $86^{\star}$ |
| Current source | Amperes | $73^{\star}$ |

*If the element value is a complex number, the type code is negative.

## Remarks.

- The type code is temporarily stored in a variable named TYPE.
- Flag 08 is set to indicate when an element has been entered successfully.


## "EL?" Program Listing.

## Program:

60 < 374-Bute Frgm ?
01 LEL "EL?"
02 LEL $A$
03 FECT
04 CF 68
0.5 "R"

06 KEY 1 GTO 69
07 "C"
日G KEY 2 GTO 12
69 "L"
10 KEY 3 GTO 13
11 "Z"
12 KEY 4 GTO 1®
13 "W"
14 KEY 5 GTO 14
15 "I"
16 KEY G GTO 15
17 KEY 9 GTO 99

## Comments:

Defines menu for entering location and type of element. The EXIT key is defined to cause a branch to the "END" (which causes a return to the calling program).

```
18 "Locgtion: "
19 ト"# [EHTEF] #"
20 HENU
21 FFOMPT
22 GTO H
23 LBL 09
24 82
25 GT0 11
26 LEL 10
2790
28 LEL 11
29 XEQ ब@
30
31 KE'Y 1 XED 01
32 "KOHM"
33 KEY 2 %ED Q2
84 "MOHM"
35 KEY 3 XED 03
86 "S"
37 KEY 6 XED GS
88 GTO E
39 LEL 12
406
41 %EQ E@
42 "FF"
43 KEY 1 XEQ 0%
44 "пIF"
45 KE'Y 2 XEQ 0G
```



```
47 KEY 3 XEQ 0S
48 "mF"
49 KE'Y 4 XEQ 04
50 "F"
51 KE'Y 5 XEQ ब1
52 GTO E
```

Displays the input message and the menu. Pressing R/S redisplays the menu.

Enters the code for a resistor.

Enters the code for a general impedance.

Defines a menu for entering units for a resistor of general impedance. (The $s$ in line 36 refers to the SI unit "siemens.")

Enters the code for a capacitor and defines a menu for entering units of capacitance.

```
53 LEL 13
5476
55 REQ 60
56 "mH"
57 KEY 1 XEQ 04
58 "H"
59 KEY 2 XEQ 01
60 "KH"
61 KEY 3 XEQ Q2
62 "MH"
63 KEY 4 XEQ QS
64 GTO B
65 LEL 14
6G FOLFR
6786
68 XEQ 00
69 "mv"
70 KEY 1 KE0 64
71 "Y"
72 KEY 2 KEQ @1
73 "KV"
74 KEY 3 KEQ G2
75 GTO E
76 LEL 15
7% FOLAR
78 73
79 XEQ 00
80 "mF"
81 KE'' 1 KE0 G4
82 "A"
83 KEY 2 KE0 61
84 "K月"
85 KEY 3 KE0 G2
EG GTO E
```

Enters the code for an inductor and defines a menu for entering units of inductance.

Enters the code for a voltage source and defines a menu for entering voltage units.

Enters the code for a current source and defines a menu for entering current units.

87 LEL 98
$881 / \%$
89 RTH
90 LEL 97
91 KEQ 94
92 LEL 66
93 KED 04
94 LEL 0.5
95 XED 04
96 LEL 04
971 ES
$98 \div$
99 FTH
106 LEL 93
101 KEQ 92
102 LEL 12
$1031 E 3$
$104 \times$
195 LEL 01
106 RTH
107 LEL E6
$108 《<\%$
1991
$110 \%$
111 Fi -
$112+$
1131
$114 \%$
115 Fi .
$116+$
117 STO "T'FFE"
118 CLMEHU
119 KEY 9 GTD
120 RTH

Adjusts the element value to be expressed in the default units.

Combines the location number and element type code into a single number and stores it in the variable TYPE.

Clears the programmable menu and defines the EXIT key to return to the first menu.

121 LEL E
122 MEHU
1231
124 "Vョlue?"
125 FROHFT
126 SF GE
127 RCL "TYFE"
12 CLV "T'YFE"
$129 \times<>$
130 FEFL ?
131 RTH
$132 \times>\%$
$133+$
$134 \times>\%$
135 LEL 99
136 EHD

Displays the units menu and prompts for a value. Pressing R/S causes the default value of 1 to be used.

Sets flag 08 to indicate an element has been entered. Returns the type code in the Y-register and the element value in the X -register. If the element value is complex, the type code is made negative.

Ends the program.

## Function Name Utility ("FCN?")

This program prompts for a function name and then stores the name into a variable named $F C N$. If $F C N$ contains a string, it is recalled into the Alpha register (press to clear the Function Hame? message). Use the ALPHA menu to type the name of the function (global program label) and then press $R / S$ to continue.

## Remarks.

- $F C N$ contains the variable name (up to six characters).
- Flag 21 (printer enable) is cleared by the program.
- Flag 25 (error ignore) is used to prevent the program from stopping if $F C N$ doesn't exist.
- The plotting programs in the owner's manual use a similar technique to prompt for a function name. If you have the "FCN?" program in your calculator, you can shorten one or both of the plotting programs by calling "FCN?" as a subroutine (\%ED "FCH?").


## "FCN?" Program Listing.

## Program:

日6 48-Byte Frgm 〕
01 LEL "FCH?" Displays the prompt.
at "Function Hame?"
G3 CF 21
64 FVIEN
0.5 SF 25
-6 RCL "FCH"
07 CF 25
06 CLF
69 STR?
$10 \mathrm{ARCL} \mathrm{ST} K$
11 FOH
12 STOP
13 fOFF
14 ASTO "FCH"
15 END

## Comments:

If $F C N$ exists and contains an Alpha string, recalls that string to the Alpha register.

Turns on the ALPHA menu and stops.

Turns off the ALPHA menu and stores the first six characters in the Alpha menu into FCN.

## Yes/No Utility ('Y?N’)

This program displays a menu for a Yes/No decision. It returns a zero if you press 1 HO , R/S, or EXIT; it returns a 1 if you press YES.

If you want to use this utility in your own programs, simply place a message in the Alpha register and then execute the utility (KEQ "Yo "). Your program can then test the X-register to detect a "yes" (1) or a "no" (0).

## Remarks.

- Flag 21 (printer enable) is cleared by this program.
- This program redefines the programmable menu.


## "Y?N" Program Listing.



## Product Over Sum Utility (‘P/S’)

This routine is quite useful for many electrical engineering applications. It simply takes two values (in the X- and Y-registers) and returns the product of the two values divided by the sum of the two values:

$$
\frac{x y}{x+y}
$$

If $x+y=0$, the program will error at line 05
(Divide bug

## "P/S" Program Listing.

```
@@ < 15-Byte Frgm %
01 LEL "F/S"
02 FCLX ST Y
ब3 <<>
04 FCL+ ST L
0.5 %
06 EHD
```


## Size Utility ("SIZE?’)

This program returns the number of storage registers available.
"SIZE?" Program Listing.

| 日6 - 27-Eyte Frgm 3 | -6 FCoc 25 |
| :---: | :---: |
| 01 LEL "SIZE?" | 07 FTH |
| $\underline{9}$ SF 25 | 08 DIM? |
| 03 FCL "REGS" | $69 \times$ |
| 04 FC? 25 | 10 EH CD |
| 0.50 |  |

Step-by-Step Solutions for Your HP-42S Calculator

Electrical Engineering contains a variety of programs and examples to provide solutions for electrical engineers and engineering students.

## - Circuit Calculations

Voltage Division • Current Division • Power Triangle • Frequency Response of Transfer Function $\bullet$ RC Timing • Delta-Wye Conversions

- Network Analysis

Using the Circuit Editor • Mesh Analysis • Nodal Analysis

- Impedance of a Ladder Network
- Filter Design

Active Filter Design • Butterworth Filter Design

- Transmission Lines

Transmission Line Calculations - Transmission Line Impedance

- Amplifier Analysis

Transistor Amplifier Performance - Transistor Amplifier Bias Optimization

- Truth Tables

Writing a Logical Expression as a Program • Printing a Truth Table - An Interactive Truth Table

## - Utilities

Circuit Calculation Utilities • Circuit Element Input Utility • Function Name Utility • Yes/No Utility • Product Over Sum Utility • Size Utility

## hp <br> HEWLETT <br> PACKARD

## Reorder Number 00042-90021


[^0]:    Note
    Since the name of your program is stored in a variable ( $F C N$ ), do not use a global label longer than six characters.

[^1]:    - (the XEQ key)

