HEWLETT-PACKARD

Step-by-Step Solutions For Your HP Calculator Mechanical Engineering

HP-42S

Help Us Help You!

Please take a moment to complete this postage-paid card, tear it out and put it in the mail. Your responses and comments will help us better understand your needs and provide you with the best procedures to solve your problems. Thank you!

HELP US HELP YOU!

 subjects you would like HP to cover in this or another solution book.)
\qquad
\qquad

Mechanical Engineering

Step-by-Step Solutions
for Your HP-42S Calculator

Notice

This book and any keystroke programs contained herein are provided "as is" and are subject to change without notice. Hewlett-Packard Company makes no warranty of any kind with regard to this book or the keystroke programs contained herein, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Hewlett-Packard Company shall not be liable for any errors or for incidental or consequential damages in connection with the furnishing, performance, or use of this book or the keystroke programs contained herein.

- Hewlett-Packard Company 1988. All rights reserved. Reproduction, adaptation, or translation of this book, including any programs, is prohibited without prior written permission by Hewlett-Packard Company; except as allowed under the copyright laws. Hewlett-Packard Company grants you the right to use any program contained in this book in a Hewlett-Packard calculator.

The programs that control your calculator are copyrighted and all rights are reserved. Reproduction, adaptation, or translation of those programs without prior written permission of Hewlett-Packard Company is also prohibited.

Corvallis Division
1000 N.E. Circle BIvd.
Corvallis, OR 97330, U.S.A.

Printing History

Contents

5 How To Use This Book

$\mathbf{1}$	$\mathbf{7}$	Forces and Vectors
	$\mathbf{8}$	Vectors in the HP-42S
	$\mathbf{9}$	Using the "VEC" Program
	$\mathbf{1 3}$	Static Equilibrium at a Point
$\mathbf{2}$	$\mathbf{2 1}$	Equations of Motion
$\mathbf{3}$	$\mathbf{2 6}$	Analysis Programs
	$\mathbf{2 7}$	Mohr Circle Analysis
	$\mathbf{3 8}$	Soderberg's Equation for Fatigue
	$\mathbf{4 2}$	Composite Section Properties
	$\mathbf{5 8}$	Spring Constant

465 Thermodynamics
66 Equations of State
72 Black Body Thermal Radiation
$5 \quad 78 \quad$ Fluid Dynamics
79 Conduit Flow
85 Flow With a Free Surface
688 Unit Conversions
89 Introduction
97 Writing Your Own Unit Conversion Programs
99 Dimensionless Units of Angle
100 Conversion Factors

How To Use This Book

Please take a moment to familiarize yourself with the formats used in this book.

Organization. Each chapter in this book covers a different area of mechanical engineering. Sections within each chapter highlight the use of each program. These sections are organized like this:

- Description of the program, including equations and variables used.
- Special remarks and limitations.
- General instructions.
- Keystroke examples.
- Program listings.

About the Examples. Unless otherwise stated, the keystrokes and displays shown in each section assume the following conditions:

- The required programs have been keyed into your calculator.
- The stack is clear and you're starting with the default display format (FIX 4). Generally this does not affect the results of the example, except that your displays may not exactly match the ones in this book.
- The SIZE is set to 25 registers (the default). The number of storage registers needed (if any) are listed under "Remarks."

As you work the examples, also remember that lowercase letters are displayed as uppercase letters when they appear in menu labels.

If You Have a Printer. Many of the programs in this book will produce printed output if printing is enabled. Press \square PRINT \triangle FOH to enable printing.

If you are not using a printer, be sure to disable printing ([PRINT Δ FOFF) to avoid losing results.

About Program Listings. It is assumed that you understand how to key programs into your calculator. If you're not sure, review part 2 , "Programming," in the owner's manual.

If you print your programs, remember that the printer may print some characters differently than they are displayed. (For example, the \downarrow character is printed as ϑ.) Also note that some printers cannot print the angle character ((4).

About the Subject Matter. Discussions on the various topics included are beyond the scope of this book. Refer to basic texts on the subjects of interest. Many references are available in university libraries and in technical and college bookstores. The examples in this book demonstrate approaches to solving problems, but they do not cover the many ways to approach general problems in mechanical engineering.

Our thanks to Dex Smith of TwentyEighth Street Publishing for developing this book.

Forces and Vectors

Vectors in the HP-42S

The HP-42S can represent a vector in two ways: as a complex number or a $1 \times n$ matrix. Of course, you can use matrices for all your work with vectors. However, when you are working with coplanar vectors, there are advantages to using complex numbers:

- You can see both parts (coordinates) of each complex number. (The contents of a matrix can only be viewed while editing the matrix.)
- You can enter and display complex numbers using rectangular or polar coordinates. (Vectors stored as matrices are always in rectangular coordinates regardless of the current coordinate mode.)

Using the "VEC" Program

The HP-42S provides most of the tools you will need for working with vectors. This program makes some of those tools easier to use by assigning them to the CUSTOM menu.

Remarks.

- The "VEC" program sets flag 27 to display the CUSTOM menu.
- Registers $\mathrm{R}_{00}, \mathrm{R}_{01}$, and R_{02} are used for temporary storage of the matrix elements. Therefore, the SIZE must be set to at least 3 storage registers (MODES $\boldsymbol{\nabla}$ EIZE 3 ENTER).

Program Instructions.

1. Key the "VEC" program (listed on page 11) into your calculator.
2. Press XEQ VEC to execute the program.
3. Use the CUSTOM menu key assignments created by "VEC" for vector calculations.

DOT calculates the dot product of the vectors in the X - and Y-registers.

EFOSE calculates the cross product of the vectors in the X - and Y-registers.

UWEC: calculates the unit vector of the vector in the X-register.
$\mathrm{ST} \rightarrow[\mathrm{]}$ combines the coordinates in the X -, Y-, and Z-registers into a 1×3 matrix in the X -register.
$[\mathrm{J} \rightarrow \varepsilon \mathrm{T}$ returns the coordinates in a 1×3 matrix to the $\mathrm{X}-, \mathrm{Y}-$, and Z-registers.

FOL= switches to Rectangular mode. (Press REL: to return to Polar mode.)

Example. What is the unit vector of $10 \mathbf{i}-3 \mathbf{j}+17 \mathbf{k}$?

XEQ VEC

$x: 0.0000$

To enter the x-, y-, and z-coordinates into the X-, Y-, and Z-registers (respectively), enter the z-coordinate first.

17 ENTER 3 H/- ENTER 10

x: 10

Put the coordinates into vector (matrix) form.
$\varepsilon T \rightarrow[]$
x: [1×3 Matrix] (Got Mall

Calculate the unit vector.

UVEC

```
x: [ 1\times3 Matrix ]
```


Return the coordinates of the unit vector to the stack.

$$
[]+S T
$$

x: 0.5013	

The x-coordinate of the unit vector is 0.5013 (to four decimal places).
R

```
x:-0.1504
```


The y-coordinate of the unit vector is -0.1504 .
R+
$x: 0.8521$

The z-coordinate of the unit vector is 0.8521 .

＂VEC＂Program Listing．

Program：

『日 136－Eyte Frgm ？
01 LEL＂YEE＂
曰2 ASGIGH＂DOT＂TO E1
GS FGSIGH＂EFOGS TO EE
04 HGSIGH＂UWEO＂TO ES

GE FSSI计＂［］＋ST＂TD ES
ब7 EF 27
बE LEL＂FEEE＂
区 9 FOLAF
1 AGSIGV＂FOL＂TOE
11 FTH
12 LEL＂FOLa＂
13 FEDT
14 HSSI讨＂EEEm＂TD E
15 FTH
1E LEL＂ST＋［］＂
17 ST0 日
15 F．
19 STロ 日
2g Fit
こ1 STロ 日
22 F＋
233
24 EHTEF
251
2G IHDE\％＂FEGS＂
27 GETM
2 E TFAHS
2g FTH
3＠LEL＂［］＋ST＂
31 IHDE＂REGS＂
32 TEAHE
3 B FIITM
34 F．

Comments：

Makes CUSTOM menu key assignments．

Stores the X－，Y－，and Z－register values into registers $00-02$ ．

Gets a 3×1 submatrix from the storage register matrix and transposes it to a 1×3 matrix．

Transposes 1×3 matrix and puts it into the storage register matrix． Recalls the vector elements from registers 00－02．

35 FCL EC
36 FCL E 1
37 FOL E
36 EHP

Static Equilibrium at a Point

This program calculates the two reaction forces necessary to balance two-dimensional resultant force vectors. The direction of the reaction forces must be specified as an angle relative to the arbitrary axis.

$$
\begin{aligned}
& R_{1} \cos \theta_{1}+R_{2} \cos \theta_{2}=\sum F \cos \phi \\
& R_{1} \sin \theta_{1}+R_{2} \sin \theta_{2}=\sum F \sin \phi
\end{aligned}
$$

Variables Used.

In Equations	Description	In Program
ΣF	Sum of forces.	$\mathrm{\Sigma F}$
θ_{1}	Angle of first reaction force.	$\mathrm{F} 1 厶$
θ_{2}	Angle of second reaction force.	$\mathrm{F} 2 \overline{4}$

Remarks.

- Angles are entered and displayed using the current angular mode of the calculator.
- Since complex numbers are used for output, angles are normalized to produce positive magnitudes.
- A positive value of force (tension) points away from the origin; a negative value (compression) points toward the origin.
- The program produces an error if $R 1 \Varangle=R 2 \searrow$.
- This program sets Polar mode.
- Flags 21 and 55 are used to control printer output.

Program Instructions.

1. Key the " $\Sigma \mathrm{F}$ " program (listed on page 17) into your calculator.
2. Press XEQ BF to execute the program.
3. Repeat these steps for each force:
a. Key in the magnitude of the force; press ENTER.
b. Key in the angle of the force (measured from the reference axis).
c. Optional: press COMPLEX. (If you skip this step, the program automatically converts your inputs into a complex number.)
d. Press $\quad \mathrm{EF}+$ to add the force. The current total force is displayed after each force is added.

If you enter a force incorrectly, you can delete it by adding an equal force in the opposite direction. If you notice the mistake immediately after entering it, press \dagger LF + .
4. Store the angles of the reaction forces:
a. Key in $R 1 \measuredangle$ and then press $\mathrm{F} 1 /$.
b. Key in $R 2 \measuredangle$ and then press R2L.
5. Press RIFE to calculate the reaction forces. (Press to clear the results from the display.)
6. To work another problem, press CLEF to clear the accumulated forces and start over at step 3.

Example 1: Balancing a Single Vector. Find the reaction forces in the following diagram.

Set Degrees mode and run the " $\Sigma \mathrm{F}$ " program.
MMODES DEG
$2 F=0.0000<0.0000$
XEQ BF

Enter the force vector.
75 ENTER $135 \mathrm{ZF}+$
$Z F=75.0000<135.0000$

Enter the angles of the reaction forces.
30 R14

270 REL

Now, calculate the reaction forces.

> R1R2

$$
\begin{array}{ll}
R 1=61.2372 & \angle 30.0000 \\
R 2=83.6516 & \Delta-90.0000
\end{array}
$$

Example 2: Forces in a Bridge Truss. Find the reaction forces in structural members A and C. Assume pin connections at the joint.

Set Degrees mode and then start the program. (If you just worked the previous example, you do not have to restart the program. Press to clear the message in the display and then press CLEF to clear the forces accumulated above.)
MODES DEG
XEQ ZF

Accumulate the forces.
100 ENTER $45 \mathrm{EF}+$

Enter the angles of the reaction forces．

```
0 F1/
```

R1 $6=0.0000$

180 ENTER 45 曰 REZ

Calculate the reaction forces．

```
F1FE
```

R1＝21．4214 4180.0000 R2 $=100.0000<-45.0000$

Note that for this problem，the reaction forces are displayed in the opposite direction of the angles entered for R_{1} and R_{2} ．This indicates that the forces are compressive．

＇‘F＇＂Program Listing．

Program：

```
E@ &45-Eyte Fram %
Q1 LEL "EF"
G2 EF 21
0% FS% 55
Q4 EF 21
E.5 ELHEHU
EG FOLFF
```

ET PEDE
区 "EF+"
E9 KE' 1 YEQ E1
1E "ELEF"
11 KEY 2 KED E
12 "R1く"
13 KE' 3 RED QS

Comments：

Sets or clears flag 21 to match flag 55 ．Clears the programmable menu and sets Polar mode．

Clears the stack and variables．
Defines the menu keys．

14 ＂F2＂	
15 KE＇Y 4 KED E4	
16 ＂F1F2＂	
17 トE＇Y G XEQ	
18 KE＇ 9 亿TD	
19 LEL EE	Displays the menu and stops．
20 MEEHI	Pressing R／S redisplays the menu．
21 STOF	
ここ ¢TO Q	
23 LEL 91	Adds the input to ΣF ．If the input is
24 FEFL？	not already complex，it＇s converted
25 EOMFLE\％	automatically．
26 STO＋＂EF＂	
27 UIEA＂EF＂	
28 FRTH	
29 LEL EE	Clears the stack and initializes the
30 LLST	variables．
31 ET0＂F1く＂	
S2 STO＂FZご＂	
3 SEOHFL	
34 STD＂SF＂	
35 UIEN＂SF＂	
3 EFTH	
37 LEL 93	Stores and displays R1孔．（R1ぬ
E日 EFW？	cannot be complex．）
39 EOMFLEX	
4 STO ＂R1く＂	
41 UIEN＂F13＂	
42 FETH	
43 LEL 94	Stores and displays R2屯．（R2ム
44 EFr？	cannot be complex．）
45 EOHFLE	
46 STO＂F2s＂	
47 UIEN＂Rこく＂	
4 EFTH	

```
4 9 ~ L E L ~ E E ,
Calculates R1.
506 FLL "EF"
5}1\mathrm{ FEET
52 にOHFLEX
5% FOLAF
5 4 ~ F O L ~ " R 2 ム " ~
55 5IH
5% STOM ST 2
5 7 ~ L A S T \% ~
58 L05
59 STOx ST 2
60%+
61 F%
62 -
63 FCL "F14"
64 EOG
G5 STOM ST T
EFF
GT LAST%
GEIH
GG FLLX ST 2
70 F+
71 -
72 STG ST Z
73 \div
74 FEL "F1S"
75 EOMFLE%
7E "F1="
7% FROL ET X
7B <%%
Calculates }\mp@subsup{R}{2}{}\mathrm{ .
79 FCL "EF"
BG FECT
B1 [OMFLE%
8こ FOLAF
BS FOL "F1{"
84 SIH
ES ST@% ST 2
BE F%
```

```
B7 LHST%
BE EOS
89 <
90 <<Y'
91
92 <>%
9% \div
94 FOL "FES"
95 EDNFLE%
96 ト"4FE="
97 HFCL ST 
```

95 FYIEN
99 ETH
106 LEL 19
101 EKITHLL
102 EHP

Displays the results.

Exits all menus and ends.

Equations of Motion

Equations of Motion

This chapter contains three Solver programs for the following equations of motion for constant acceleration.

$$
\begin{gathered}
s=v_{o} t+1 / 2 a t^{2} \\
v=v_{o}+a t \\
v^{2}=v_{o}^{2}+2 a s
\end{gathered}
$$

Variables Used.

In Equations	Description	In Programs
t	Time.	t
a	Acceleration.	\exists
v_{o}	Initial velocity.	$v a$
v	Final velocity.	v
s	Displacement.	Ξ

Remarks. These Solver programs can also be used for angular motion. Use a, v_{o}, v, and s to represent $\alpha, \omega_{o}, \omega$, and θ, respectively.

Program Instructions.

1. Key the appropriate program ("MO1", "MO2", or "MO3") into your calculator. (The programs are listed on pages 24 and 25.)
2. Press SOLVER.
3. Select "MO1", "MO2", or "MO3" by pressing the corresponding menu key.
4. Use the variable menu to store the known values. Key in each value and then press the corresponding menu key.
5. Optional: Store guesses into the unknown variable to direct the Solver to a particular solution (there might be more than one).
6. Press the menu key for the unknown value. The Solver immediately begins to search for a solution.

Example. If a rock dropped off a bridge hits the water 1.6 seconds later, how high is the bridge? What is the velocity of the rock when it strikes the water?

Since each of the equations only uses four of the five variables, many problems with two unknowns can be solved by carefully choosing the programs you use. In this case, s and v are unknown. First solve for s using the equation that does not require v ("MO1"). Then use one of the other two equations to find v. (Key "MO1" and "MO2" into your calculator before you begin this example.)

SOLVER MO1

x: 0.0000
T in Wi
3

Store the known values: $t=1.6$ seconds, $a=-9.8 \mathrm{~m} / \mathrm{s}^{2}$ (for free falling objects), and $v_{0}=0$.

```
1.6 T
```

$t=1.6000$

9.8 + \quad 日
$a=-9.8000$

0 Q日
$00=0.0000$

ε

$s=-12.5440$				
t	i	00	s	

The bridge is about 12.5 meters above the water．Now find v ．Since s is now known，you can use＂MO2＂or＂MO3＂．

EXIT M02

\square
When you first select a Solver program（as you just have），the first menu key you press executes a store to that variable，even if you don＇t key in a number first．Therefore，you＇ll have to press v twice to start the Solver．
－

4 $0=-15.6800$

The rock is traveling at almost 15.7 meters per second when it hits the water．

＂M01＂Program Listing．

619	（4日－Eyta Fram	69 FCLX＂ヨ＂
Q1	1 LEL＂H01＂	1 E
62	HVAR＂t．＂	
63	MVFR＂ヨ＂	$12 \mathrm{X}) \mathrm{Y}$
$\underline{6}$	4 MVAR＂UG＂	13 RCLX＂U日＂
	HVAR＂${ }^{\text {a }}$	
Q6	FCL＂t＂	$15 \mathrm{RCL}-\mathrm{s}$＂
017	EHTER	16 EHP
08	8×2	

＂MO2＂Program Listing．

01 LEL＂WE＂
日玉 悩HF＂t＂
G3 MUAR＂ョ＂

GE FCL＂t＂
07 FOLX＂ョ＂
日g FRL＋＂ب回＂
09 FCL－＂ 6 ＂
10 EHD
95 MURE＂y＂

＂MO3＂Program Listing．

Analysis Programs

Mohr Circle Analysis

This program calculates the 2-D Mohr's circle for stress using strain gage data (equiangular or rectangular) or using known stresses.

Configuration Code	1	2
Type of Rosette	Rectangular	Delta (Equiangular)
Principal Strains $\epsilon_{1}, \epsilon_{2}$	$\begin{aligned} & \frac{1}{2}\left[\epsilon_{a}+\epsilon_{c}\right. \\ & \left. \pm \sqrt{2\left(\epsilon_{a}-\epsilon_{b}\right)^{2}+2\left(\epsilon_{b}-\epsilon_{c}\right)^{2}}\right] \end{aligned}$	$\left\|\begin{array}{l} \frac{1}{3}\left[\epsilon_{a}+\epsilon_{b}+\epsilon_{c}\right. \\ \left. \pm \sqrt{2\left(\epsilon_{a}-\epsilon_{b}\right)^{2}+2\left(\epsilon_{b}-\epsilon_{c}\right)^{2}+2\left(\epsilon_{c}-\epsilon_{a}\right)^{2}}\right] \end{array}\right\|$
Center of Mohr Circle $\frac{s_{1}+s_{2}}{2}$	$\frac{\mathrm{E}\left(\epsilon_{a}+\epsilon_{c}\right)}{2(1-v)}$	$\frac{\mathrm{E}\left(\epsilon_{a}+\epsilon_{b}+\epsilon_{c}\right)}{3(1-v)}$
Maximum Shear Stress $\tau_{\text {max }}$	$\begin{aligned} & \frac{E}{2(1+v)} \\ & \times \sqrt{2\left(\epsilon_{a}-\epsilon_{b}\right)^{2}+2\left(\epsilon_{b}-\epsilon_{c}\right)^{2}} \end{aligned}$	$\begin{aligned} & \frac{E}{3(1+v)} \\ & \times \sqrt{2\left(\epsilon_{a}-\epsilon_{b}\right)^{2}+2\left(\epsilon_{b}-\epsilon_{c}\right)^{2}+2\left(\epsilon_{c}-\epsilon_{a}\right)^{2}} \end{aligned}$
Orientation of Principal Stresses ϕ	$\frac{1}{2} \tan ^{-1}\left[\frac{2 \epsilon_{b}-\epsilon_{a}-\epsilon_{c}}{\epsilon_{a}-\epsilon_{c}}\right]$	$\frac{1}{2} \tan ^{-1}\left[\frac{\sqrt{3}\left(\epsilon_{c}-\epsilon_{b}\right)}{\left(2 \epsilon_{a}-\epsilon_{l}-\epsilon_{c}\right)}\right]$

Variables Used.

In Equations	Description	In Program
E	Young's modulus.	E
ν	Poisson's ratio.	V
ε_{a}	Strain ε_{0}.	E1
ε_{b}	Strain ε_{45} or ε_{60}.	E
ε_{c}	Strain ε_{90} or ε_{120}.	es
σ_{x}	Normal stress on the x-face.	8
σ_{y}	Normal stress on the y-face.	Y
σ_{1}	Minimum principal stress.	Smir
σ_{2}	Maximum principal stress.	Emisx
$\tau_{x y}$	Shear stress.	TFllwn
$\tau_{\text {max }}$	Maximum shear stress.	Thumbe
ϕ	Counterclockwise angle from ε_{a} to the maximum principal stress.	\checkmark
θ	Counterclockwise angle from the x axis to the maximum principal axis.*	\checkmark
θ^{\prime}	Arbitrary angle counter- clockwise from the x-axis.*	AREES
S	Normal stress.*	
τ	Shear stress.*	
*Refer to the equations on page 32.		

Remarks.

- Shearing stress on any element is positive if it tends to rotate the element clockwise. Tensile forces are considered positive; compressive forces are considered negative.
- Angles are entered and displayed using the current angular mode of the calculator.
- The program calculates the principal stresses for a two-dimensional stress state only. However, a knowledge of the stresses in the z direction is necessary to determine the overall maximum and minimum stresses.
- This program uses storage register R_{00} to store intermediate results. Before running this program be sure the SIZE is set to at least 1 (MODES $\boldsymbol{\nabla}$ EIZE 1 ENTER).
- The program sets flag 21, which causes the program to stop each time a result is displayed if printing is disabled.

Program Instructions.

1. Key the "MOHR" program (listed on page 34) into your calculator.
2. Press XEQ MOHF to execute the program.
3. When the program displays Tupe if Infut?, press one of the following:

EQ.
FEE: if rectangular strain gage readings are known.
ETRES if stresses are known directly.
4. The program then displays Store Values; [R G$]$ and a variable menu containing the variables to be entered. Store each variable by keying in the value and then pressing the corresponding menu key. After all of the values have been stored, press R/S. The program then calculates and displays the results. If you are not using a printer, press R/S after each result.
5. Optional: To calculate the normal stress and the shear stress, do the following:
a. When you see $\operatorname{ARES} \subset$, key in the arbitrary angle of rotation.
b. Press R/S. If you are not using a printer, press R/S after each result.

Example 1: Equiangular Strain Gage. An equiangular rosette strain gage measures the following strains:
$\varepsilon_{0}=180 \mu$
$\varepsilon_{60}=200 \mu$
$\varepsilon_{120}=-290 \mu$
Find the principal stresses and their orientation. The material properties are $E=30 \times 10^{6}$ psi and $\nu=0.3$.

MODES DEG XEQ MOHR

E0.

Store Values; [R/S] | E | W |
| :---: | :---: | :---: | :---: | :---: |

30 因 6 E
.3
$V=0.3000$

180 国 6 + H E
e1=0.0002

E	Y	G1	E	E	

Smax $=8,675.1358$ x：8，675．1358

$\begin{array}{l}\text { Smin＝－6，163．7072 } \\ \times:-6,103.7072\end{array}$

TAUMax $=7,389.4215$

 $x:-6,103.7072$$\mathrm{R} / \mathrm{S}$

```
<=31.0333
x:-6,103.7072
```

Example 2：Known Stresses．The stresses acting on an element are shown below（all stresses are in MPa）．

$$
\begin{gathered}
\tau_{\max }=\left[\left(\frac{S_{x}-S_{y}}{2}\right)^{2}+\tau_{x y}^{2}\right]^{\frac{1}{2}} \\
S_{1}=\frac{S_{x}+S_{y}}{2}+\tau_{\max } \\
S_{2}=\frac{S_{x}+S_{y}}{2}-\tau_{\max } \\
\theta=\frac{1}{2} \tan ^{-1}\left(\frac{-2 \tau_{x y}}{S_{x}-S_{y}}\right) \\
S=\frac{S_{1}+S_{2}}{2}+\tau_{\max } \cos 2\left(\theta^{\prime}-\theta\right) \\
\tau=\tau_{\max } \sin 2\left(\theta^{\prime}-\theta\right)
\end{gathered}
$$

Find the principal stresses and their orientation, and the stresses on the face of the element oriented 45° counterclockwise from the x-axis.

MODES DEG XEQ MOHR

Type of Input?
ESS REC

GTRES

| Store Values; [R/S] |
| :--- | :--- |
| [imple: |

30 ThUSY
TRUXY=30.0000

20 +/-	Y	$\begin{aligned} & Y=-20.0000 \\ & \text { fumm } 8: 1 \end{aligned}$
R/S		$\begin{aligned} & \text { Smax=83.6805 } \\ & x: 83.6805 \end{aligned}$
R/S		$\begin{aligned} & \begin{array}{l} \text { Smin }=-28.6805 \\ x:-28.6805 \end{array} \end{aligned}$
R/S		$\begin{aligned} & \text { TRUMmax }=56.1805 \\ & \times:-28.6805 \end{aligned}$
R/S		$\begin{aligned} & \quad \leq=-16.1378 \\ & x:-28.6805 \\ & \hline \end{aligned}$
R/S		$\begin{aligned} & \text { Y:-28.6805 } \\ & \text { RRB } 20.0000 \end{aligned}$
$45 \mathrm{R} / \mathrm{S}$		$\begin{aligned} & \text { Norm=-2.5000 } \\ & x:-2.5000 \end{aligned}$
R/S		$\begin{aligned} & \text { Shear=47.5000 } \\ & x: 47.5060^{-500} \end{aligned}$

＂MOHR＂Program Listing．

Program：

```
60 41z-Eyte Frgm %
|
G SF z1
EG ELHEHUI
04 "ED<"
Q5 KE'Y 1 XED E1
बG "FEE"
G KE'Y 2 XEQ E%
@S "STFES"
@ KE'Y % KED ES
1日 &E'G GTO 9G
11 LEL F
1z "TリFE Gf Infut?"
13 HEH|l
14 FFODFT
15 GTOA
1E LEL "M1"
17 MWHE "E"
1E MWHF "乡"
19 MWHF "巨1"
2@ HWHF "Ez"
21 MWHF "こ\Xi"
2 LEL "Mこ"
23 HUAF "TH|Ny"
24 MWHE "%"
25 MUHR "'"
2G LEL EG
27 UHFHEHDl "\1"
28 %ED ES
2g FCL "E"
301
31 FOLL "W"
```

```
82\div
35T0 E10
34 FCL "E"
85 1
3E FLL+ "W"
37\div
3日 ST口 "TA|mG×"
39 FCL "巨1"
4@ FCL "巨こ"
4 1 ~ F C L ~ " 曰 З " ~
42 RTH
43 LEL E1
44 %E EG
45 -
46 3
47 SORT
48 %
4 9 ~ F O L ~ " 巨 Z " ~
5@ FOL+ "ES"
5 1 2
5%
5S FOL- ST 2
54 3
55 \div
5G FOL ST Z
5% にT0 04
58 LEL EG
59 %EG EG
6日 FOL+ ST 2
61 己
62\div
63 FLL- ET Y
64 FOL "ES"
EFT
GG にT0 04
67 LEL ES
6g WHFMEND "けこ"
6% %EG EG
```

Calculates results using equiangular strain gage readings．

Calculates results using rectangular strain gage readings．

Selects the second variable menu for input．

7 F 1
71 ET口 日
てこ ETD＂THUかヨะ＂
73 FOL＂THUX』＂
$74+\%-$
75 FLL＂＇i＂
TG FOL＂Y＂
77 LEL E4
7 STロ＂Sゅiヶ＂
$79+$
8 E 2
$81 \div$
B2 ETO\％E0
Bg ELL－＂G円iп＂
B4 AES
$8 \mathrm{~B}+\mathrm{FOL}$
B6 STOX＂THUrIG×＂
87 ＜$\%$
E日
$89 \div$
90 STロ＂～＂
91 FCL＂THUME×＂
$9 \mathrm{FEL}+6 \mathrm{E}$

94 リIEN＂SMヨx＂
95 FCL E E
$96 \mathrm{FOL}-$＂THUME×＂
97 STO＂G円iп＂
98＇YEN＂S円ir＂
99 UIE川＂THOME×＂
106 YIEA＂ぐ＂
101 IHFIIT＂HEES
1E玉 FCL－＂ム＂
1032
104%
105 EH

Calculates results using known stresses．

Calculates $\tau_{\text {max }}$ and θ ．

Calculates $S_{\text {max }}$ and $S_{\text {min }}$ ．

Displays $\tau_{\text {max }}$ and θ ．

Optional routine calculates normal and shear stress at an arbitrary angle．

```
1@G LAGT%
107 [0G
10G FOLX "TH|MEx"
109 FLL+ EG
11日 "F目品="
111 HFILL ST %
112 AVIEM
113 F%
114 FLL< "TH|MEx"
115 "Sトに.ョr="
11G HFOL ST %
117 FWIEN
118 FTH
119 LEL EG
12@ "Stロre Uヨlues; "
1こ1 ト"[F%S]"
12z FROMFT
123 LEL ब9
124 E%ITHLL
125 EHD
```

Prompts for input using the selected variable menu．Pressing R／S clears the menu and continues．

Soderberg's Equation for Fatigue

This program is used with the Solver to calculate any one of the six variables in Soderberg's equation for fatigue when the other five are known. Soderberg's equation is shown graphically in the following figure.

$$
\frac{s_{y p}}{F S}=\frac{1}{2}\left(s_{\max }+s_{\min }+K\left(\frac{s_{y p}}{s_{e}}\right)\left(s_{\max }-s_{\min }\right)\right)
$$

Variables Used.

In Equation	Description	In Program
$s_{y p}$	Yield point stress.	Sep
s_{e}	Endurance stress.	Se
$s_{\text {max }}$	Maximum applied stress.	Smax
$s_{\text {min }}$	Minimum applied stress.	Smiri
K	Stress concentration factor.	K
FS	Factor of safety.	FS

Remarks.

- Soderberg's equation is valid for ductile materials only.
- Fatigue effects are magnified in corrosive environments.

Program Instructions.

1. Key the "SODER" program (listed on page 41) into your calculator.
2. Press SOLVER EODEF to select the Solver equation.
3. Store each of the known variables by keying in the value and then pressing the corresponding menu key.
4. Press the menu key for the unknown variable.

Example. Given the following values, what is the maximum allowable applied stress if the minimum applied stress is $15,000 \mathrm{psi}$?

$$
\begin{aligned}
& s_{y p}=80,000 \mathrm{psi} \\
& s_{e}=30,000 \mathrm{psi} \\
& K=1.5 \\
& F S=2.0
\end{aligned}
$$

CSOLVER SLIDER	X: 0.0000 SWP SE EPMAR SHINI
80000 - YF	
30000 SE	
15000 SMIH	Smin SP SE
1.5 ¢.	
2 FS	
SMA.	

＂SODER＂Program Listing．

E19	\＆Es－Eytu Fr＇rm	11 FCL－＂Gmin＂
$\underline{6} 1$	LEL＂SODEF＂	$12 \mathrm{FCL} \times$＂K゙＂
Q2	MWHE＂SUF＂	13 FLL ¢＂SyF＂
013	HWHR＂S巨＂	$14 \mathrm{FCL} \div$＂S®＂
$\underline{0} 4$	内吹＂Smax＂	$15+$
E15		162
Q6	MWAF＂K゙＂	$17 \div$
07	HWPR＂FS＂	18 FCL ＂SuF＂
08	FLL＂SmGx＂	$19 \mathrm{FEL} \div$＂FS＂
09	FCL＋＂Smin＂	20－
19	LAST\％	21 EHPD

Composite Section Properties

The mathematical properties of a cross section composed of a finite number of rectangular elements can be computed by adding the contribution of each rectangular region individually. This program uses this principle to calculate the area of a section, the moments of inertia about the specified set of axes, the moments of inertia about an axis translated to the centroid, the moments of inertia of the principal axes, and the angle of rotation between the translated axes and the principal axis.

$$
\begin{gathered}
A_{s i}=\Delta x_{i} \Delta y_{i} \\
A=A_{s 1}+A_{s 2}+A_{s 3}+\cdots+A_{s n} \\
\bar{x}=\frac{\sum_{i=1}^{n} x_{0 i} A_{s i}}{A} \\
\bar{y}=\frac{\sum_{i=1}^{n} y_{0 i} A_{s i}}{A} \\
I_{x y}=\sum_{i=1}^{n} x_{0 i} y_{0 i} A_{s i} \\
I_{x}=\sum_{i=1}^{n}\left(y_{0 i}^{2}+\frac{\Delta y_{i}^{2}}{12}\right) A_{s i}=I_{x y}-A \bar{x} \bar{y}_{\bar{x}} \\
I_{y}=\sum_{i=1}^{n}\left(x_{0 i}^{2}+\frac{\Delta x_{i}^{2}}{12}\right) A_{s i} \\
J=I_{x}+I_{y}
\end{gathered}
$$

$$
\begin{gathered}
\phi=\frac{1}{2} \tan ^{-1}\left(\frac{2 I_{\bar{x} \bar{y}}}{I_{\bar{x}}-I_{\bar{y}}}\right) \\
I_{\bar{x} \phi}=I_{\bar{x}} \cos ^{2} \phi+I_{\bar{y}} \sin ^{2} \phi+I_{\bar{x} \bar{y}} \sin 2 \phi \\
I_{\bar{y} \phi}=I_{\bar{y}} \cos ^{2} \phi+I_{\bar{x}} \sin ^{2} \phi+I_{\bar{x} \bar{y}} \sin 2 \phi \\
J_{\phi}=I_{\bar{x} \phi}+I_{\bar{y} \phi}
\end{gathered}
$$

Variables and Storage Registers Used.

In Equations	Description	In Program
Δx_{i}	Width of a rectangular element.	H
Δy_{i}	Height of a rectangular element.	H
$A_{s i}$	Area of an element.	R_{02}
A	Total area of the section.	R_{01}
\bar{x}	x-coordinate of the centroid (total).	$\mathrm{R}_{03} \div \mathrm{R}_{01}$
\bar{y}	y-coordinate of the centroid (total).	$\mathrm{R}_{04} \div \mathrm{R}_{01}$
$x_{0 i}$	x-coordinate of the centroid of an element.	$x=$
$y_{0 i}$	y-coordinate of the centroid of an element.	$\because-$
I_{x}	Moment of inertia about the x-axis. I_{y}	Moment of inertia about the y-axis. J
Polar moment of inertia about the origin.	R_{07}	
$I_{x y}$	Product of inertia about the origin.	R_{08}

In Equations	Description	In Program
$I_{\bar{x}}$	Moment of inertia about the x-axis translated to the centroid. Moment of inertia about the y-axis translated to the centroid. $I_{\bar{y} y}$	R_{06}
ϕ	R_{07}	
Product of inertia about the translated axis.	R_{09}	
$I_{\bar{x} \phi}$	Angle between the translated axis and the principal axis. Moment of inertia about the principal x-axis. Moment of inertia about the principal	R_{05}
$I_{\bar{y} \phi}$	y-axis. Polar moment of inertia about the principal axis.	R_{08}
J_{ϕ}		

Remarks.

- Angles are entered and displayed using the current angular mode of the calculator.
- For a given origin, the polar moment of inertia is constant regardless of the angular rotation. Therefore, $I_{\overline{\mathrm{xy}}}$ is equal to J_{ϕ}
- It is possible to obtain a negative value for the product of inertia.
- Before using "SECTION" be sure to set the SIZE to at least 11 registers (MODES ∇ SIZE 11 (ENTER). The table above shows that some of the registers are used more than once. Storage registers not listed in the table are used for other intermediate results.
- This program clears all of the storage registers.
- Results are labeled and displayed in the same order as in the table above. The program uses variables only for the four section inputs.
- This program uses flags 21 and 55 to control printer output.

Program Instructions.

1. Key the "SECTION" program (listed on page 53) into your calculator.
2. Press XEQ EECTI to execute the program.
3. When you see Number of Sect ions?, key in the number of composite sections and then press R / S.
4. Enter the data for each section:
a. Key in the x-coordinate of the centroid and then press 8C.
b. Key in the y-coordinate of the centroid and then press

YC.
c. Key in the width of the section and then press W
d. Key in the height of the section and then press H
e. Press R / S to continue.

If you store an incorrect value, simply repeat the step to store the correct value. If you notice that you've made a mistake after pressing [R/S], start over at step 2.
5. After the data for each section has been entered, the program calculates the results. If you are not using a printer, press R/S after each result is displayed.

Example 1: Rectangular Section. Calculate the section properties of the following cross section.

Table of Inputs

x_{c}	y_{c}	$\Delta \mathrm{x}$	$\Delta \mathrm{y}$
2	1.5	4	3

MODES DEG
XEQ SECTI
Number of Sections?
x: 0.0000

1 R/S
Input Section 1;[R/S]

$x c=2.0000$

H
1.5 YL

$Y C=1.5000$ | K | K | \mathbf{K} | \mathbf{H} |
| :---: | :---: | :---: | :---: |

4 W
$\mathrm{W}=4.0000$

3 H
$\mathrm{H}=3.0000$

KC	KC	\boldsymbol{H}	H

R/S
Area=
x: 12.0000

R/S

R/S

$Y C=$
$x=1.5000$

R/S

R/S
$1 y=$
$x: 64.0000$

R/S
$\mathrm{J}=100.0000$
$\mathrm{x}=100$

R/S

```
I×c \(\mathrm{Phi=}\) x: 9.0006
```

R/S

```
Iyc phi= \(x: 16.0000\)
```

R/S

Example 2: Composite Section. Calculate the section properties of the following section.

Table of Inputs

	x_{c}	y_{c}	$\Delta \mathrm{x}$	$\Delta \mathrm{y}$
1	5	11.5	6	1
2	1	6	2	12
3	7	1	10	2

MODES DEG
XEQ SECTI

3 R/S

5
8 C
Xc=5.0000
KC M

Input Section 1;[R/S]

Number of Sections?
x: 25. 2000

6 内

W=6.0000	

1 H

$\mathrm{H}=1.0000$				
KC	K	W	H	

R/S

$$
\text { Input Section 2; }[R / S]
$$

18 C

| $X C=1.0000$ | | |
| :--- | :--- | :--- | :--- | :--- |
| | | |

6 YC

$Y C=6.0000$			
K	M	W	H

2 日

12 H

H=12.0000	

R/S

78 C

$X C=7.0000$				
$K C$	$M C$	N	H	

```
1 YO
```

| $Y C=1.0000$ | | | |
| :--- | :--- | :--- | :--- | :--- |
| X | | | |

10 W

2 H
$\mathrm{H}=2.0000$

K	MG	W	H

R/S
Area= x: 50.0000

R/S
$x=$
$x: 3.8800$

R/S
$Y C=$
$x: 4.6600$
R / S

R/S

$\mathrm{I} y=1,346.6667$
$x: 1,346$

R/S

$J=3,319.3333$
$x: 3$

$\mathrm{I} \times \mathrm{c}, \mathrm{phi}=$
$\mathrm{x}: 1,052.0261$

＂SECTION＂Program Listing．

Program：

```
E@ E95-Eyte Fr'gm %
```

01 LEL＂GECTIDH＂Defines the menu variables．

区4 以WFR＂は＂

EG LEL EG
曰7＂ト小mber of＂
曰日 ト＂乌こにtiのnき？＂
E9 FFOMFT
10 HES
11 IF
$12 \%=6$
13 亿TG
14 ELFG
$151 E 3$
$16 \div$
171
$18+$
19 STO
2G LEL E1
21 WHFMEFHB＂SEETIDH＂
ここ＂Infut EEにtiori＂
23 FIL EG
24 HIF
こらト＂：［F゙S］＂
26 EF 21
27 HUIEM
2 E EA
295 F 21
36 STOF
31 FLEFH：

Comments：

Prompts for the number of sections； rejects a zero input．

Clears the storage registers and stores a loop counter in R_{00} ．

Selects the variable menu．

Builds the prompt string using the loop counter．

Displays the prompt and stops． Pressing R／S continues the program．
$32 \% \%$
33 ■TD 01

34 EKITHLL
35 FEL＂H＂
36 FCLX＂は＂
$375 T 0$ 日
38 STO 91
39 FCL×＂Yに＂
40 STO＋ 94
41 FCL＂XG＂
42 FCL× 62
43 STO＋ 93
44 ECL＂Yに＂
$45 \%+2$
46 FOL＂H＂
$47 \%+2$
$48 \quad 12$
$49 \div$
5 5＋
51 FCL× 62
52 STO＋日6
53 FCL ＂ $\mathrm{K}=$
$548+2$
5 ECL＂中＂
$568+2$
5712
$58 \div$
$59+$
$6 \mathrm{ECL} \mathrm{E}=$
61 STO＋日T
$\theta 2+$
$635 T 0+88$
G4 FOL＂KG＂
6 FELX＂＇G＂
66 FCLX 日Z
67 ET01 69
68 ISG 60
69 亿T0 61

Accumulates the inputs into the appropriate storage registers．（Refer to the table starting on page 43. ）

```
7E FLL EG
71 FOL EG
72 FLL* E4
7B FLL\div -1
74 -
75 ST口 1@
7G FLL ES
77 FLL 91
78 "Ar-ョ"
79 %EG EG
80 \div
Calculates and displays}\overline{x}\mathrm{ .
81 "员に"
82 %EQ E%
B3 <+z
Calculates and displays}\overline{x}\mathrm{ .
84 FOL 04
85 FCL\divE1
86 "Yに"
87 %EQ E%
88 2+2
Displays }\mp@subsup{I}{x}{}\mathrm{ and calculates }\mp@subsup{I}{\overline{x}}{}\mathrm{ .
BG FCLX E1
96 +%-
91 FCL EE
9こ "I<"
93 <ED 63
94 +
95 ST0 6E
96 F+
97 FCL< E1
98 +%-
99 FOL ET
106 "I』"
101 %E0 EG
102 FOL बE Displays J.
103 ".l
104 SEO ES
```

165 F	Displays $I_{x y}$ ．
10E FCL E9	
107 ＂IXy＂	
109 XED 09	
$109 \mathrm{~F}+$	Calculates $I_{\bar{y}}$ ．
$110+$	
112 FCL EG	Displays $I_{\bar{x}}$ ．
113 ＂IXG＂	
114 SEO 6	
115 STO 88	Displays $I_{\bar{y}}$ ．
116 \％\％	
117 ＂I』に＂	
118 XEQ 6	
119 STO＋日G	Displays $I_{\overline{x y}}$ ．
129－	
121 STG 94	
12 ECL 10	
12马＂I×ッ゙＂	
124 XEQ 93	
$125 \times=6$	Calculates ϕ ．
12G ■Tロ 日	
$127 \div$	
1281%	
1292	
$136 \times$	
131 FTHH	
1322	
$133 \div$	
$134+7$	
135 LEL E2	
136 5T0 95	
137 ＂ $4 \mathrm{Fh} \mathrm{Hi}^{\prime}$	
138 KED 63	

1392
14日 $\%$
1415 IH
142 FLL 1 1区
$143+-$
144 FCL E 5
1455 IH
146 ※＋2
147 FOL $\times 4$
$145-$
$149 \mathrm{FL} L+6 \mathrm{E}$
150＂IXG FHi＂
151 NED 9
152 FLL － 9
$153+-$
154＂I』心 Fhi＂
155 YED 93
156 EL E 6
157 ＂Ifトii＂
158 SEO 9
159 亿TD 6.
16 CEL E 9
161 ト＂＝＂
162 F 95
163 HFCL ST $\%$
164 FWIEM
165 EHD
E

\qquad

Calculates and displays $I_{\bar{x} \phi}$

Spring Constant

This Solver program calculates the value of any of the five variables in the following spring equation, given the other four.

$$
k=\frac{F_{1}-F_{2}}{X_{2}-X_{1}}
$$

Variables Used.

In Equations	Description	In Program
X_{1}	First spring length.	X 1
F_{1}	Force required to retain spring at length X_{1}.	F 1
X_{2}	Second spring length.	
F_{2}	Force required to retain spring at length X_{2}.	Fe
k	Spring constant.	k

Remarks. The "SPRING" Solver program can also be used to solve any general linear equation of the form $y-y_{0}=m\left(x-x_{0}\right)$.

Program Instructions.

1. Key the "SPRING" program (listed on page 60) into your calculator.
2. Press SOLVER GFRIH.
3. Use the variable menu to store each of the known values by keying in the value and then pressing the corresponding menu key.
4. Press the menu key for the unknown.

Example．A compression spring is 4.0 cm long under no compressive forces．A force of 27 Newtons compresses the spring to a length of 2.8 cm ． Find the spring constant，k ，if the solid（fully compressed）height of the spring is 2.5 cm ．Also find the force required to fully compress the spring．

SOLVER SFRIH
4×1

0 F1

F1＝0．0000

M1	F1	伴	F	

$X 1=4.0000$

x： 0.0000

品	F1	品	F	K

2.8 xe
$x 2=2.8000$

| M |
| :--- | :--- | :--- | :--- |

The spring constant is 22.5 ．

2.5
 82

$x 2=2.5000$

F2

$F 2=33.7500$

A force of 33.75 Newtons would completely compress the spring (to 2.5 cm).
"SPRING" Program Listing.

910	- 49-Eyte Frgm	97 FEL "F
$\underline{0}$	LEL "SFRIHG"	ES FCL- "F2"
$\underline{0}$	HWAF " $\%$ 1"	E9 FLL "K2"
	HWPF: "F1"	
Q4	HWPF "¢2"	$11 \div$
0.5	HWPF "Fこ"	12 FCL - "k"
06	MWAE "E"	13 EHL

Linear or Angular Deformation

This program solves for linear deflection under tensile load, or the analogous angular deflection under torque. Given four of the five variables, the unknown is calculated.

Variables Used. Since the form of the two equations is identical, either type of deformation problem can be solved using this program. Use the following table to relate the variables used in the equations to the variables used in the program.

In Equations	Description	In Program
Δl	Change in length.	Del t.a
P	Applied load.	F
l	Length.	L
A	Cross-sectional area.	F
E	Modulus of elasticity.	E
θ	Deflection angle (in radians).	$\mathrm{Del} \mathrm{t} . \mathrm{E}$
T	Applied torque.	F
J	Polar moment of the section.	F
G	Modulus of elasticity in shear.	E

Remarks.

- This program is not applicable for non-elastic media or elastic media where stress exceeds the elastic limit. Materials must be isotropic. The equation for angular deflection is not valid in the neighborhood of the applied torque.
- Even though the polar moment must be expressed in radians, it is not necessary to set Radians mode because no trigonometric functions are used in the program.

Program Instruction.

1. Key the "DEFORM" program (listed on page 64) into your calculator.
2. Press SOLVER DEFOR to select the program.
3. Store each of the known values by keying in the value and then pressing the corresponding menu key.
4. Solve for the unknown value by pressing the corresponding menu key.

Example. Steel bars (each 10 meters long) affixed to a roof are to be used to support the end of a cantilever balcony. The load on each bar will be $50,000 \mathrm{~N}$. If the maximum allowable deflection is 0.001 meters, what should the area of the bars be? The modulus of elasticity is given as $2.068 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$.

SOLVER DEFOF

. 001 DELTH
Delta=0.0010

50000 F
$P=50,000.0000$ GzLTM P L L

10 L

$L=10.0000$

2.068 因 11 E

H

A=0.0024 | GELTA | P | L |
| :---: | :---: | :---: | :---: | :---: | :---: |

"DEFORM" Program Listing.

Thermodynamics

Equations of State

This section contains programs for both ideal gas and Redlich-Kwong equations of state.

The ideal gas equation is

$$
P V=n R T
$$

The Redlich-Kwong equation is

$$
P=\frac{n R T}{(V-b)}-\frac{a}{T^{1 / 2} V(V+b)}
$$

where:

$$
\begin{aligned}
a & =4.934 b n R T_{c}^{1.5} \\
b & =0.0867 \frac{n R T_{c}}{P_{c}}
\end{aligned}
$$

Variables Used.

In Equations	Description	In Program
P	Absolute pressure.	F
V	Volume.	\ddots
n	Number of moles present.	FI
R	Universal gas constant.	F
T	Absolute temperature.	T
P_{c}	Critical temperature.	TE

Values of the Universal Gas Constant

Value of R	Units of R	Units of P	Units of V	Units of T
8.314	$\mathrm{~N}-\mathrm{m} / \mathrm{g}$ mole-K	$\mathrm{N} / \mathrm{m}^{2}$	$\mathrm{~m}^{3} / \mathrm{g}$ mole	K
83.14	$\mathrm{~cm}^{3}-\mathrm{bar} / \mathrm{g}$ mole-K	bar	$\mathrm{cm}^{3} / \mathrm{g}$ mole	K
82.05	$\mathrm{~cm}^{3}-\mathrm{atm} / \mathrm{g}$ mole-K	atm	$\mathrm{cm}^{3} / \mathrm{g}$ mole	K
0.7302	$\mathrm{~atm}-\mathrm{ft}^{3} / \mathrm{lb}$ mole- -R	atm	$\mathrm{ft}^{3} / \mathrm{lb}$ mole	${ }^{\circ} \mathrm{R}$
10.73	$\mathrm{psi-} \mathrm{ft}^{3} / \mathrm{lb}$ mole- -R	psi	$\mathrm{ft}^{3} / \mathrm{lb}$ mole	${ }^{\circ} \mathrm{R}$
1545	$\mathrm{psf}-\mathrm{ft}^{3} / \mathrm{lb}$ mole- -R	psf	$\mathrm{ft}^{3} / \mathrm{lb}$ mole	${ }^{\circ} \mathrm{R}$

Critical Temperatures and Pressures

Substance	$T_{c}, \mathrm{~K}$	$T_{c},{ }^{\circ} \mathrm{R}$	P_{c}, atm
Ammonia	405.6	730.1	112.5
Argon	151	272	48.0
Carbon dioxide	304.2	547.6	72.9
Carbon monoxide	133	239	34.5
Chlorine	417	751	76.1
Helium	5.3	9.5	2.26
Hydrogen	33.3	59.9	12.8
Nitrogen	126.2	227.2	33.5
Oxygen	154.8	278.6	50.1
Water	647.3	1165.1	218.2
Dichlorodifluoromethane	384.7	692.5	39.6
Dichlorofluoromethane	451.7	813.1	51.0
Ethane	305.5	549.9	48.2
Ethanol	516.3	929.3	63
Methanol	513.2	923.8	78.5
n-Butane	425.2	765.4	37.5
n-Hexane	507.9	914.2	29.9
n-Pentane	469.5	845.1	33.3
n-Octane	568.6	1023.5	24.6
Trichlorofluoromethane	471.2	848.1	43.2

Remarks.

- P, V, n, and T must have units compatible with R.
- At low temperatures or high pressures, the ideal gas law does not represent the behavior of real gases.
- No equation of state is valid for all substances over an infinite range of conditions. The Redlich-Kwong equation gives moderate to good accuracy for a variety of substances over a wide range of conditions. Results should be used with caution and tempered by experience.

Program Instructions.

1. Key the "IDEAL" program (listed on page 70) or the "RK" program (listed on page 71) into your calculator.
2. Press SOLVER IDEFL (for an ideal gas) or SOLVER EK. (for Redlich-Kwong).
3. Use the variable menu to store each of the known values: key in the value and then press the corresponding menu key. Notice that there are seven menu variables. Therefore, you must use Δ or ∇ to enter or solve for P_{c}.
4. Solve for the unknown by pressing the corresponding menu key.

Example 1: An Ideal Gas. What is the pressure (in bars) when 0.63 g moles of air is enclosed in a $25,000 \mathrm{~cm}^{3}$ space at 1200 K ? Assume an ideal gas. From the table on page $67, R$ is given as 83.14. (Key the "IDEAL" program into your calculator.)

$\mathrm{V}=25,000.0000$		
F	V	N

F

$P=2.5142$

\boldsymbol{P}	$\boldsymbol{0}$	\boldsymbol{H}	B	T	\square

Example 2: Using Redlich-Kwong's Equation. The specific volume of a gas in a container is $800 \mathrm{~cm}^{3} / \mathrm{g}$ mole. The temperature will reach 400 K . Given the following constants, what will the pressure be using the Redlich-Kwong relation?
$T_{c}=305.5 \mathrm{~K}$
$P_{c}=48.2 \mathrm{~atm}$
$R=82.05 \mathrm{~cm}^{3} \mathrm{~atm} / \mathrm{g}$ mole K

SOLVER RK
$x: 2.5142$

F	1	N	B	T	$T 1$

800
$\mathrm{V}=800.0000$

\mathbf{F}	\mathbf{V}	N	F	T	TC

$1 H$
$n=1.0000$

\mathbf{P}	\mathbf{V}	\mathbf{N}	\mathbf{F}	\mathbf{T}	IC

82.05 F
$R=82.0500$

	P \mathbf{P}

400 T
305.5 TC

T 48.2 FC
$\Delta \mathrm{F}$

＂IDEAL＂Program Listing．

60 40－Eyte Frem ？
01 LEL＂IDEFL＂ EQ FELX＂R＂
GE MURE＂F＂
Q M MWE＂ Q ＂
Q4 MWF：＂r＂
日 気 MAR＂E゙＂
G6 MWHE＂T＂

Tc＝305．5000

\boldsymbol{P}	\boldsymbol{H}	H	\boldsymbol{B}	T	T

Pc＝48．2000

$F C$					

$P=36.2669$

\mathbf{P}	$\boldsymbol{\%}$	N	\boldsymbol{F}	T	T

＂RK＂Program Listing．

	－113－Eyte Fram ？	23 KEO1
01	LEL＂EK＂	24 ECL＂W＂
Q2	HWHE＂F＂	$25+$
63		2 LHST
04		$27 \times$
0.5		2 ECL ＂T＂
E6	WサAF＂T＂	29 SORT
Q7	サWAF＂TE＂	368
69	HWPF：＂FE＂	$31 \div$
69	FCL＂T＂	$32-$
10	YEQ E6	33 FLL－＂F＂
11	FCL＂Y＂	34 FTH
12	XEQ 91	35 LEL E6
13	－	36 FLL \times＂r＂
14	\div	37 FLL 3 ＂${ }^{\text {P }}$
15	2ED 91	38 Fith
16	4.934	39 LEL 91
17	\％	4 E 9． 06.7
15	FCL＂TE＂	41 FCLX＂TE＂
19	1．5	42 XEG E19
20	Y＋产	$43 \mathrm{FCL} \div$＂FE＂
21	XED 0 （10	44 Er ${ }^{\text {d }}$
22	x	

Black Body Thermal Radiation

All bodies emit thermal radiation according to their temperature. The higher the temperature, the more thermal radiation emitted. A black body is one that emits the maximum possible amount of energy at every wavelength for a specified temperature. The figure below represents the black body thermal emission as a function of wavelength.

This program can be used to calculate the following:

- The wavelength of maximum emissive power for a given temperature.
- The temperature corresponding to a particular wavelength of maximum emissive power.
- The total emissive power for all wavelengths at a particular temperature.
- The emissive power at a particular wavelength and temperature.

$$
\lambda_{\max } \mathrm{T}=c_{3}
$$

$$
\begin{gathered}
E_{b(0-\chi)}=\sigma \mathrm{T}^{4} \\
E_{b \lambda}=\frac{2 \pi c_{1}}{\lambda^{5}\left(e^{c_{2} / \lambda \mathrm{T}}-1\right)}
\end{gathered}
$$

Variables Used.

In Equations	Description	In Program
$\lambda_{\max }$	Wavelength of maximum emissivity in microns.	H
T	Absolute temperature in ${ }^{\circ} \mathrm{R}$ or K.	T
$E_{b(0-\chi)}$	Total emissive power in $\mathrm{Btu} / \mathrm{hr}-\mathrm{ft}^{2}$ or watts $/ \mathrm{m}^{2}$.	E
$E_{b \lambda}$	Emissive power at λ in $\mathrm{Btu} / \mathrm{hr}-\mathrm{ft}^{2}-\mu \mathrm{m}$ or watts $/ \mathrm{m}^{2}-\mu \mathrm{m}$.	F

Remarks.

- This program uses flag 00 to determine which set of units to use for the following constants:

	SI Units (Flag 00 Clear)	English Units (Flag 00 Set)
c_{1}	$5.9544 \times 10^{-8} \mathrm{~W}-\mathrm{m}^{2}$	$1.8887982 \times 10^{7} \mathrm{Btu}-\mu \mathrm{m}^{4} / \mathrm{hr}-\mathrm{ft}^{2}$
c_{2}	$1.4388 \times 10^{4} \mu \mathrm{~m}-\mathrm{K}$	$2.58984 \times 10^{4} \mu \mathrm{~m}-{ }^{\circ} \mathrm{R}$
c_{3}	$2.8978 \times 10^{3} \mu \mathrm{~m}-\mathrm{K}$	$5.216 \times 10^{3} \mu \mathrm{~m}-{ }^{\circ} \mathrm{R}$
σ	$5.6697 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2}-\mathrm{K}^{4}$	$1.713 \times 10^{-9} \mathrm{Btu} / \mathrm{hr}-\mathrm{ft}^{2}-\mathrm{o}^{4}$

- This program uses flags 21 and 55 to control printer output.

Program Instructions.

1. Key the "BBODY" program (listed on page 76) into your calculator.
2. Clear flag 00 to select SI units (FLAGS EF 00) or set flag 00 to select English units (FLAGS SF 00).
3. Press XEQ EEDOT to execute the program.
4. Use the variable menu to store each of the known values (key in the value and then press the corresponding menu key). Then calculate the desired unknown by pressing its menu key. Be sure to use values with consistent units.

To Calculate	You Must Provide
W	T
T	W
E	T
P	W and T

Example. If sunlight has a maximum wavelength of $0.550 \mu \mathrm{~m}$, what is the sun's temperature in K? Assume the sun is a black body. What is the total emissive power and the emissive power at $\lambda_{\max }$? What is the emissive power at $\lambda=0.400 \mu \mathrm{~m}$ (ultraviolet limit) and $0.700 \mu \mathrm{~m}$ (infrared limit)? (Clear flag 00 for SI units.)

.55 日

$\mathbf{1}$	\boldsymbol{T}	E	P		\square

The sun's temperature is $5,269 \mathrm{~K}$.
E

The total emissive power is approximately $43,690,000 \mathrm{~W} / \mathrm{m}^{2}$.

```
F
\(P=5.2229 \mathrm{E}-8\)
```


The power at $0.550 \mu \mathrm{~m}$ is $5.2229 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2}-\mu \mathrm{m}$.
.4 Н

F

$P=3.9649 E-8$				
	T	T	E	P

The power at $0.400 \mu \mathrm{~m}$ is $3.9649 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2}-\mu \mathrm{m}$.

$$
.7 \cong
$$

$W=0.7000$

F
$P=4.5934 E-8$

W	T	E	F

The power at $0.700 \mu \mathrm{~m}$ is $4.5934 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2}-\mu \mathrm{m}$.
"BBODY'" Program Listing. This program uses a variable menu for input. When you select a variable that you want to calculate, the program uses the character number (ASCII value) of the variable name to cause the program to branch to the appropriate subroutine (lines 13 through 15). For example, when you press T to calculate T, the program branches to LBL 84 because the character number of " T " is 84 .

Program：

E1 LEL＂EEDDY＂
E2 MUHF＂小＂
E 3 MURF＂T＂
E4 WHE＂E＂
E5 W以 5 ＂F＂
EE EF 21
Q7 FS 5
ES SF こ1
09 LEL E 6
16 ＂HFHEHU＂EEBCY＂
11 ELA
12 ETOF
13 HTDK
$14 \% \neq 6$
15 KED IHD GT \＆
16 门TO E
17 LEL ET
18 KEQ 1
$19 \mathrm{FL} \div$＂T＂
2日 STロ＂中＂
こ1 UIE中＂は＂
2a FRTH
23 LEL 84
24 RED 11
25 FLL \div＂中＂
2も STO＂T＂
27 UIEM＂T＂
2G FTH
29 LEL 69
36 ECL ＂T＂
$31 \%+2$
$32 x+2$
33 FG 6
$345.697 \mathrm{E}-\mathrm{E}$

Comments：

Declares the menu variables and sets or clears flag 21 to match flag 55.

Displays the variable menu and stops．Pressing R / S redisplays the menu．If a menu key is pressed to calculate an unknown，the character code of the variable name is used to branch to the appropriate routine．

Calculates W ．

Calculates E ．Flag 00 is tested to determine which value to use for the constant，σ ．

```
85F% 00
86 1.718E-G
37 <
8日 ET口 "E"
39 UIEN "E"
40 FTH
41 LEL EG
42 2
43 FI
44 <
45 FE% E10
46 5.9544E-8
47 FS? E16
48 18887982
49 %
50%% EG
51 14380
5% FS% E0
5% 2508.4
S4 FOL\div "W"
55 FLL< "T"
SEF%
5, 1
58-
5G FOL "N"
605
G1%%
G%
6% %
G4 GTO "F"
65 WIEN "F"
GE FTH
G LEL E1
G8 FE% EG
6% 2G97.8
7G FSO EG
71 5%16
72 EH[D
```

Tests flag 00 and enters the appropriate value for the constant c_{3}.

5

Fluid Dynamics

Conduit Flow

This program solves for either the average velocity or the pressure drop for viscous, incompressible flow in conduits.

$$
V^{2}=\frac{\Delta P / \rho}{2\left(f \frac{L}{D}+\frac{K_{T}}{4}\right)}
$$

For laminar flow $(\mathrm{Re} \leq 2300)$

$$
f=16 / \mathrm{Re}
$$

For turbulent flow ($\mathrm{Re}>2300$)

$$
f=\frac{0.0772}{\left\{\log \left[\frac{6.9}{\operatorname{Re}}+\left(\frac{\varepsilon}{3.7 D}\right)^{1.1111}\right]\right\}^{2}}
$$

Results calculated when $2300<\mathrm{Re}<4000$ are meaningless. To determine if results are valid, examine the Note calculated Reynolds number after the calculation (step 5 in the program instructions).

Variables Used.

In Equations	Description	In Program
V	Average velocity.	ψ
ΔP	Pressure drop.	F
L	Conduit length.	L
D	Conduit diameter. If the conduit is not circular, use an equivalent diameter defined by: $D_{\text {eq }}=4 \times \frac{\text { Cross Sectional Area }}{\text { Wetted Perimeter }}$	D
ε	Surface irregularity.	E
Re	Reynolds number; $\mathrm{Re}=\mathrm{DV} / \nu$.	F
ν	Fluid kinematic viscosity.	E
ρ	Fluid density.	5
f	Fanning friction factor.*	F
K_{T}	Sum of fitting coefficients.	k
*The Fanning friction factor is one-forth the Darcy friction factor. That is, $f=f_{D} \div 4$.		

Fitting Coefficients

Fitting	K
Globe valve, wide open	7.5 to 10
Angle valve, wide open	3.8
Gate valve, wide open	0.15 to 0.19
Gate valve, $3 / 4$ open	0.85
Gate valve, $1 / 2$ open	4.4
Gate valve, $1 / 4$ open	20
90° elbow	0.4 to 0.9
Standard 45° elbow	0.35 to 0.42
Tee, through side outlet	1.5
Tee, straight through	0.4
180° bend	1.6
Entrance to circular pipe	0.25 to 0.50
Sudden expansion	$\left(1-A_{u p} / A_{d n}\right)^{2 *}$
Acceleration from $V=0$ to $V=V_{\text {entrance }}$	1.0
${ }^{*} A_{u p}$ is the upstream area and $A_{d n}$ is the downstream area.	

Surface Irregularities

Material	ε (Feet)	ε (Meters)
Drawn or smooth tubing	5.0×10^{-6}	1.5×10^{-6}
Commercial steel or wrought iron	1.5×10^{-4}	4.6×10^{-5}
Asphalted cast iron	4.0×10^{-4}	1.2×10^{-4}
Galvanized iron	5.0×10^{-4}	1.5×10^{-4}
Cast iron	8.3×10^{-4}	2.5×10^{-4}
Wood stave	6.0×10^{-4} to	1.8×10^{-4} to
	3.0×10^{-3}	9.1×10^{-4}
Concrete	1.0×10^{-3} to	3.0×10^{-4} to
	1.0×10^{-2}	3.0×10^{-3}
Riveted steel	3.0×10^{-3} to	9.1×10^{-4} to
	3.0×10^{-2}	9.1×10^{-3}

Program Instructions.

1. Key the "FLOW" program (listed on page 84) into your calculator.
2. Press SOLVER FLOW to select the program.
3. Use the variable menu to store the known values. Key in each value and then press the corresponding menu key. Since there are more than six variables, use the ∇ and Δ keys to display the alternate rows of the variable menu.
4. Solve for the unknown value by pressing the corresponding menu key.
5. View the Reynolds number by pressing \quad PGM.FCN V IEW EENTER R ENTER. If the Reynolds number is greater than 2300 and less than 4000, the results calculated are meaningless.
6. Optional: To view the Fanning friction factor, press PGM.FCN YIEN [ENTER F ENTER].

Example．A 60 －meter pipe has three 180° bends（ $K_{T}=3 \times 1.6$ ）．The fluid is water（ $\nu=9.3 \times 10^{-7} \mathrm{~m}^{2} / \mathrm{s}, \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$ ）．The pipe diameter is 0.030 m and the surface roughness is $3 \times 10^{-4} \mathrm{~m}$ ．If the average velocity is $3.20 \mathrm{~m} / \mathrm{s}$ ，what is the pressure drop in Pascals？What is the Reynolds number？What is the Fanning friction factor？

SOLVER FLOH

$x: 0.0000$

E	0	0	E	L	K

3 因 4 世／E
$E=0.0003$

E	$\mathbf{0}$	U	E	L	K

$\mathrm{D}=0.0300$

\mathbf{E}	$\mathbf{0}$	Y	E	L	K

3.2 \square
$\mathrm{V}=3.2000$

E	0	0	E	L	K

9.3 因 7 ＋／ー E

60 L

$L=60.0000$	

3 ENTER 1.6 区 K
$K=4.8000$

E	O	Y	E	L	K

因 3 者
S＝1，000．0000

Check the Reynolds number and the Fanning friction factor.
PGM.FCN $\because I E H$ ENTER R ENTER

PGM.FCN YIEN ENTER F ENTER
$F=0.0096$
E F

"FLOW" Program Listing.

Flow With a Free Surface

This Solver program allows you to solve for any of the five variables in the Manning flow formula, provided the other four are known.

$$
S=\frac{(n Q)^{2}}{2.2082 r^{4 / 3} \times a^{2}}
$$

Variables Used.

In Equation	Description	In Program
S	Slope of the bottom (dimensionless).	Ξ
n	Roughness coefficient.	\square
r	Hydraulic radius (in feet).	r
Q	Discharge flow rate (in $\left.\mathrm{ft}^{3} / \mathrm{sec}\right)$.	\square
a	Cross-sectional area $\left(\right.$ in ft^{2}).	Ξ

Program Instructions.

1. Key the "MANN" program (listed on page 87) into your calculator.
2. Press SOLVER MAHN to select the Manning flow formula Solver program.
3. Use the variable menu to store the known values. Key in each value and then press the corresponding menu key.
4. Solve for the unknown value by pressing the corresponding menu key.

Example. Find Q for $S=0.001, n=0.013, R=5 / 12 \mathrm{ft}$, and $A=5.0$ ft^{2}.
.001 5
$5=0.0010$

$$
.013 \mathrm{H}
$$

$n=0.0130$

S	A	\boldsymbol{B}	\boldsymbol{O}	\boldsymbol{H}

5 ENTER 12 安 R

5 A

12
a=5.0000

S	N	B	B	H

$Q=10.0826$

S	N	F

R
h

＂MANN＂Program Listing．

¢6－5\％－Eute Fremi	12 EL ＂r＂
Q1 LEL＂MFH．ty	134
Ec MWARE＂S＂	14 EHTEF
Q3 MUAF＂r＂	153
Q4 MWFE＂r＂	$16 \div$
6．5 MUAR＂Q＂	17%
E6 MVAF＂．ョ＂	$18 \div$
＠7 FCL＂ri＂	19 FCL＂ヨ＂
QS FOL\％＂Q＂	$208+2$
区9 \％\％	$21 \div$
102.2082	こと FCL－＂S＂
$11 \div$	2 EFH

Unit Conversions

Introduction

This chapter contains three programs for converting values from one system of units to another: "LENGTH," "FORCE," and "TEMP." Instructions for writing your own unit conversion programs and the conversion factors for 120 units of measure are also included.

Variable Used. UNIT contains the current value expressed in the base units.

Remarks.

- The following "Program Instructions" can be used with any of the programs in this chapter.
- The program tests flag 22 to determine when a number has been keyed in.
- Flags 21 and 55 are used to control printer output.

Program Instructions.

1. Key the appropriate program into your calculator. There are three sample programs listed in this chapter: "LENGTH" (page 91), "FORCE" (page 93), and "TEMP" (page 95).
2. Press XEQ followed by the menu key corresponding to the program (such as XEQ FOFEE).
3. Key in the value you want to convert and then press the menu key corresponding to the old units.
4. Press the menu key corresponding to the new units. The new value is displayed. Repeat this step for as many different units as you wish.
5. To perform another conversion, go to step 3. Press EXIT to quit.

Example 1: Length Conversions. How many inches are in one kilometer? (Key the "LENGTH" program into your calculator.)

What is the same distance in feet?

```
FT
```

$3,280.8399 \mathrm{ft}$

GM	M	KM	IN	FT	MII

Now convert six miles to meters.
6 MI

11

EXIT
Example 2: Force Conversions. Convert a 135 pound force to Newtons. (Key the "FORCE" program into your calculator.)

XEQ FOFICE

135 LEF

H

135.0000 lbf

x: 9,656.0640

1 r EXIT
＂LENGTH＂Program Listing．This program performs unit conversions using centimeters，meters，kilometers，inches，feet，and miles． The base unit is the meter．

Program：

01 LEL＂LEHGTH＂
E2 CF 21
ब3 FS？55

$045 \mathrm{~F} \quad 2$

0.5 CLHEHUI

E6 STO＂IHIT＂
07 KEQ 01
बE KE＇ 1 KEQ 日 1
区9 REQ E2
10 KEH 2 XED E
11 KEQ E 3
12 KE 3 XED O
13 KED 4
14 सE＇ 4 XEQ 94
15 KED
16 KE＇ 5 REQ 9
17 KEQ EG
$18 \mathrm{KEY} G \mathrm{XEQ} \mathrm{EG}$
19 KEY 9 GTD 99
20 FCL ＂UHIT＂
$215 F 22$
22 LEL H
23 HEHU
24 ETOF
25 FEO 22
26 「Tロ 区
$27 \times$
2 STO ＂IHIT＂
$29 \mathrm{~F}+$
30 LASTM

Comments：

Sets or clears flag 21 to match flag 55.

Defines the unit menu．The value in the X －register is temporarily saved in the variable UNIT．

Displays the menu and stops．

If flag 22 is not set（no data entry）， converts the value into new units．

$\begin{aligned} & 31 \text { LEL } \\ & 321 \% \end{aligned}$	Displays the new value and the unit string．
33 FCL\％＂UHIT＂	
34 HSTO ST L	
35 ELA	
36 HFEL ST X	
37 ト＂	
38 FFEL ET L	
39 HVIEN	
4 BTO	
41 LEL 区1	Subroutines for each menu key．
$42 \mathrm{Ca゙}$	Each routine enters a string into the
43 E ． 11	Alpha register and a conversion
44 ETH	factor into the X －register．
45 LEL E2	
46 ＂队＂	
471	
48 ETH	
49 LEL E9	
$55^{61 \mathrm{Em}}$	
51 1690	
52 FTH	
59 LEL 04	
54 ＂ir＂	
55.0254	
56 ETH	
57 LEL 515	
58 ＂ft＂	
59.8048	
6.1 FTHH	
G 1 LEL EE	
62 ＂mi＂	
631609.344	
6.4 ETH	
6.5 LEL 69	Ends the program（when EXIT is
GE EHD	pressed）．

＂FORCE＂Program Listing．This program performs unit conversions using gram－force，kilopound－force，Newtons，pound－force，and poundals． The base unit is the Newton．

Program：

01 LEL＂FDFEE＂
बこ EF こ1
03 F？ 5
区4 5F 21
E．5 LLMEHU
区G ETB＂园HT＂
Q7 2E 日1
बE KE＇ 1 YEQ 区
区9 2ED
1日 KE＇ $2 \times E D$ 天
11 ※ED 9
12 KE＇ 3 KEG E
13 KEG 94
14 KE＇Y 4 KED 94
15 KE 日
16 KE＇S XED E
17 KE＇ 9 亿TG 9
18 FLL＂UHIT＂
$19 \Xi F 2$
2日 LEL $\overline{\mathrm{H}}$
21 HEHU
22 ETOF
23 FEO 2 C
24 GTG 40
$25 \times$
こも STO＂ㅂHIT＂
27 F．t
2马 LASTK
29 LEL E E
301%

Comments：

Sets or clears flag 21 to match flag 55.

Defines the unit menu．The value in the X－register is temporarily saved in the variable UNIT．

Displays the menu and stops．

If flag 22 is not set（no data entry）， converts the value into new units．

Displays the new value and the unit string．

To key in lines 46 and 47 of the following program，press 1 ENTER 0 ．Use the same technique（pressing ENTER and + after the first number and before the second）to key in lines 51 and 52， 56 and 57，and 61 and 62.

Program：

01 LEL＂TEMF＂Sets or clears flag 21 to match flag
02 EF 21
03 FG？5．
045 F 21
E．5 CLHEHUI
ब6 ST口＂IHIT＂
ब 9 CED
बG KEY 1 KED 1
69 KED
10 KE＇ 2 KEQ E
11 KEO EG
$12 \mathrm{KE} \boldsymbol{O} \mathrm{XEQ} \mathrm{E}$
13 RED 44
14 KEY 4 XEQ 94
15 KE＇ 9 亿Tロ 日G
16 FCL＂UHIT＂
17 BF 2
13 LEL \bar{H}
19 HEH
2 ETOF
こ1 ST口＂＋＂
ここ Ft
23 FEO 2

$25 \times$
こも STG＂BrIT＂

Comments：

 55.Defines the unit menu．The value in the X －register is temporarily saved in the variable UNIT．

Displays the menu and stops．

If flag 22 is not set（no data entry）， converts the value into new units．

Writing Your Own Unit Conversion Programs

If the sample programs in this chapter do not contain the units that you work with regularly, you may want to write your own unit conversion programs.

1. Using the table at the end of this chapter (or from other reference material), select up to six units of measure.
2. Using the conversion program that follows, fill in the blank lines as follows:
a. Line 01 should be a global label that indicates the type of units included (such as LEL "MASS" or LEL "TIME").
b. The two lines immediately following each label, LEL 11 (line 41) through LEL EG (line 61), should include the unit name and the conversion factor.

Each conversion factor you use should be expressed in relation to the same base unit. (For example, in the "LENGTH" program above, the base unit is the meter.)
c. Optional: If you assign your unit conversion programs to the custom menu, you can make them appear to be submenus of CUSTOM by inserting EF 27 after LEL 99.

The Blank Conversion Program．

Q6＜nnn－Eigte Fr＇eri ？	E4 ASTO ST L
01 LEL＂program name here＂	35 CLA
日e CF 21	36 AFCL ST 8
Q9 FG？55	37 ト＂
645 F 21	38 ARCL ST L
6.5 CLMEHU1	39 AVIEN
EG STO＂DHIT＂	46 GTO
07 KED－ 1	41 LEL 61
6E KEY 1 KED 日1	42 ＂unit name here＂
69 \％E0 Q2	43 conversion factor here
16 KE＇ 2 KEQ Ge	44 ETH
11 KEQ 63	45 LEL 92
12 KEY 3 KEQ G	46 ＂unit name here＂
13 KEQ 44	47 conversion factor here
14 KEY 4 XEQ 44	48 RTH
15 KEQ	49 LEL 93
16 KEH 5 SEO 9	5 E ＂unit name here＂
17 RED 6.	51 conversion factor here
18 KEY G XEQ EG	52 RTH
19 KEH 9 GTO 9	53 LEL 64
2 EGLCL ＂UHIT＂	54 ＂unit name here＂
215 Ez	55 conversion factor here
$22^{\text {LEL }} \mathrm{A}$	56 RTH
23 MEHH	57 LEL 0.5
24 sTof	58 ＂unit name here＂
25 FLTO 22	59 conversion factor here
	6.6 RTH
$27 \times$	61 LEL E6
23 gTO＂UHIT＂	62 ＂unit name here＂
29 K	63 conversion factor here
301 LAET：	64 RTH．
31 LEL E16	65 LEL 69
321%	EG EHP
3 ECLC ＂IHIT＂	

Dimensionless Units of Angle

Plane and solid angles are called dimensionless because they involve no physical dimensions. The following table relates these dimensionless units to their actual values.

Dimensionless Unit	Abbreviation	Value
Arcmin	arcmin	$\frac{1}{21600}$ unit circle
Arcsec	arcs	$\frac{1}{1296000}$ unit circle
Degree	0	$\frac{1}{360}$ unit circle
Grade	grad	$\frac{1}{400}$ unit circle
Radian	r	$\frac{1}{2 \pi}$ unit circle
Steradian	sr	$\frac{1}{4 \pi}$ unit sphere

Conversion Factors

The conversion factors in the following table are based on the International System of Units (SI).

If you use a unit that is not in the table, be sure that the conversion factor correctly relates the unit to the base unit for your program.

Unit	Full Name	Description	Value
a	Are	Area	$100 \mathrm{~m}^{2}$
A	Ampere	Electric current	1 A
acre	Acre	Area	$4046.87260987 \mathrm{~m}^{2}$
arcmin	Minute of arc	Plane angle	$4.62962962963 \mathrm{E}-5$
arcs	Second of arc	Plane angle	$7.71604938272 \mathrm{E}-7$
atm	Atmosphere	Pressure	$101325 \mathrm{~N} / \mathrm{m}^{2}$
au	Astronomical unit	Length	149597900000 m
A	Angstrom	Length	0.0000000001 m
b	Barn	Area	$1 . \mathrm{E}-28 \mathrm{~m}^{2}$
bar	Bar	Pressure	$100000 \mathrm{~N} / \mathrm{m}^{2}$
bbl	Barrel, oil	Volume	$158987294928 \mathrm{~m}^{3}$
Bq	Becquerel	Activity	$1 / \mathrm{s}$
Btu	International Table	Energy	Btu
bu	Bushel	Volume	$0.03523907 \mathrm{~m}^{3}$
c	Speed of light	Velocity	$299792458 \mathrm{~m} / \mathrm{s}$
C	Coulomb	Electric charge	$1 \mathrm{~A}-\mathrm{s}$
cal	International Table	Energy	$4.1868 \mathrm{Kg}-\mathrm{m}^{2} / \mathrm{s}^{2}$
calorie	Candela	Chain	1 cd

Unit	Full Name	Description	Value
Ci	Curie	Activity	$3.7 \mathrm{E} 10 \mathrm{1} / \mathrm{s}$
ct	Carat	Mass	0.0002 Kg
cu	US cup	Volume	$2.365882365 \mathrm{E}-4 \mathrm{~m}^{3}$
d	Day	Time	86400 s
dyn	Dyne	Force	$0.00001 \mathrm{Kg}-\mathrm{m} / \mathrm{s}^{2}$
erg	Erg	Energy	$0.0000001 \mathrm{Kg}-\mathrm{m}^{2} / \mathrm{s}^{2}$
eV	Electron volt	Energy	$1.60219 \mathrm{E}-19 \mathrm{Kg}-\mathrm{m}^{2} / \mathrm{s}^{2}$
F	Farad	Capacitance	$1 A^{2}-s^{4} / \mathrm{Kg}-\mathrm{m}^{2}$
fath	Fathom	Length	1.82880365761 m
fbm	Board foot	Volume	$0.002359737216 \mathrm{~m}^{3}$
fc	Footcandle	Luminance	0.856564774909
Fdy	Faraday	Electric charge	96487 A-s
fermi	Fermi	Length	1.E-15 m
flam	Footlambert	Luminance	$3.42625909964 \mathrm{~cd} / \mathrm{m}^{2}$
ft	International foot	Length	0.3048 m
ftUS	Survey foot	Length	0.304800609601 m
g	Gram	Mass	0.001 Kg
ga	Standard freefall	Acceleration	$9.80665 \mathrm{~m} / \mathrm{s}^{2}$
gal	US gallon	Volume	$0.003785411784 \mathrm{~m}^{3}$
galC	Canadian gallon	Volume	$0.00454609 \mathrm{~m}^{3}$
galUK	UK gallon	Volume	$0.004546092 \mathrm{~m}^{3}$
gf	Gram-force	Force	$0.00980665 \mathrm{Kg}-\mathrm{m} / \mathrm{s}^{2}$
grad	Grade	Plane angle	0.0025
grain	Grain	Mass	0.00006479891 Kg
Gy	Gray	Absorbed dose	$1 \mathrm{~m}^{2} / \mathrm{s}^{2}$
h	Hour	Time	3600 s
H	Henry	Inductance	$1 \mathrm{Kg}-\mathrm{m}^{2} / \mathrm{A}^{2}-s^{2}$

Unit	Full Name	Description	Value
hp	Horsepower	Power	$745.699871582 \mathrm{Kg}-\mathrm{m}^{2} / \mathrm{s}^{3}$
Hz	Hertz	Frequency	$11 / \mathrm{s}$
in	Inch	Length	0.0254 m
inHg	Inches of mercury	Pressure	$3386.38815789 \mathrm{~N} / \mathrm{m}^{2}$
inH2O	Inches of water	Pressure	$248.84 \mathrm{~N} / \mathrm{m}^{2}$
J	Joule	Energy	$1 \mathrm{Kg}-\mathrm{m}^{2} / \mathrm{s}^{2}$
kip	Kilopound-force	Force	$4448.22161526 \mathrm{Kg}-\mathrm{m} / \mathrm{s}^{2}$
knot	Knot	Speed	$0.514444444444 \mathrm{~m} / \mathrm{s}$
kph	Kilometer per hour	Speed	$0.277777777778 \mathrm{~m} / \mathrm{s}$
1	Liter	Volume	$0.001 \mathrm{~m}^{3}$
lam	Lambert	Luminance	$3183.09886184 \mathrm{~cd} / \mathrm{m}^{2}$
lb	Avoirdupois pound	Mass	0.45359237 Kg
Ibf	Pound-force	Force	$4.44822161526 \mathrm{Kg}-\mathrm{m} / \mathrm{s}^{2}$
Ibt	Troy lb	Mass	0.3732417 Kg
Im	Lumen	Luminance flux	$7.95774715459 \mathrm{E}-2 \mathrm{~cd}$
Ix	Lux	Illuminance	$7.95774715459 \mathrm{E}-2 \mathrm{~cd} / \mathrm{m}^{2}$
lyr	Light year	Length	9.46052840488 E 15 m
m	Meter	Length	1 m
mho	Mho	Electric conductance	$1 A^{2}-s^{3} / \mathrm{Kg}-\mathrm{m}^{2}$
mi	International mile	Length	1609.344 m
mil	Mil	Length	0.0000254 m
min	Minute	Time	60 s
miUS	US statute mile	Length	1609.34721869 m
mmHg	Millimeter of mercury	Pressure	$133.322368421 \mathrm{~N} / \mathrm{m}^{2}$
mol	Mole	Amount of substance	1 mol
mph	Miles per hour	Speed	$0.44704 \mathrm{~m} / \mathrm{s}$

Unit	Full Name	Description	Value
N	Newton	Force	$1 \mathrm{Kg}-\mathrm{m} / \mathrm{s}^{2}$
nmi	Nautical mile	Length	1852 m
ohm	Ohm	Electric resistance	$1 \mathrm{Kg}-\mathrm{m}^{2} / \mathrm{A}^{2}-\mathrm{s}^{3}$
oz	Ounce	Mass	0.028349523125 Kg
ozfl	US fluid oz	Volume	$2.95735295625 \mathrm{E}-5 \mathrm{~m}^{3}$
ozt	Troy oz	Mass	0.031103475 Kg
ozUK	UK fluid oz	Volume	$0.000028413075 \mathrm{~m}^{3}$
P	Poise	Dynamic viscosity	$0.1 \mathrm{~N} / \mathrm{m}$
Pa	Pascal	Pressure	$1 \mathrm{~N} / \mathrm{m}^{2}$
pc	Parsec	Length	3.08567818585 E 16 m
pdl	Poundal	Force	$0.138254954376 \mathrm{Kg}-\mathrm{m} / \mathrm{s}^{2}$
ph	Phot	Luminance	$795.774715459 \mathrm{~cd} / \mathrm{m}^{2}$
pk	Peck	Volume	$0.0088097675 \mathrm{~m}^{3}$
psi	Pounds per square inch	Pressure	$6894.75729317 \mathrm{~N} / \mathrm{m}^{2}$
pt	Pint	Volume	$0.000473176473 \mathrm{~m}^{3}$
qt	Quart	Volume	$0.000946352946 \mathrm{~m}^{3}$
r	Radian	Plane angle	0.159154943092
R	Roentgen	Radiation exposure	0.000258 A-s/Kg
rad	Rad	Absorbed dose	$0.01 \mathrm{~m}^{2} / \mathrm{s}^{2}$
rd	Rod	Length	5.02921005842 m
rem	Rem	Dose equivalent	$0.01 \mathrm{~m}^{2} / \mathrm{s}^{2}$
s	Second	Time	1 s
S	Siemens	Electric conductance	$1 A^{2}-s^{3} / \mathrm{Kg}-\mathrm{m}^{2}$
sb	Stilb	Luminance	$10000 \mathrm{~cd} / \mathrm{m}^{2}$
slug	Slug	Mass	14.5939029372 Kg
sr	Steradian	Solid angle	7.95774715459E-2

Unit	Full Name	Description	Value
st	Stere	Volume	$1 \mathrm{~m}^{3}$
St	Stokes	Kinematic viscosity	$0.0001 \mathrm{~m}^{2} / \mathrm{s}$
Sv	Sievert	Dose equivalent	$1 \mathrm{~m}^{2} / \mathrm{s}^{2}$
t	Metric ton	Mass	1000 Kg
T	Tesla	Magnetic flux	$1 \mathrm{Kg} / \mathrm{A}-\mathrm{s}^{2}$
tbsp	Tablespoon	Volume	$1.47867647813 \mathrm{E}-5 \mathrm{~m}^{3}$
therm	EEC therm	Energy	$105506000 \mathrm{Kg}-\mathrm{m}^{2} / \mathrm{s}^{2}$
ton	Short ton	Mass	907.18474 Kg
tonUK	Long ton	Mass	1016.0469088 Kg
torr	Torr	Pressure	$133.322368421 \mathrm{~N} / \mathrm{m}^{2}$
tsp	Teaspoon	Volume	$4.92892159375 \mathrm{E}-6 \mathrm{~m}^{3}$
u	Unified atomic mass	Mass	$1.66057 \mathrm{E}-27 \mathrm{Kg}$
V	Volt	Electric potential	$1 \mathrm{Kg}-\mathrm{m}^{2} / \mathrm{A}-\mathrm{s}^{3}$
W	Watt	Power	$1 \mathrm{Kg}-\mathrm{m}^{2} / \mathrm{s}^{3}$
Wb	Weber	Magnetic flux	$1 \mathrm{Kg}-\mathrm{m}^{2} / \mathrm{A}-\mathrm{s}^{2}$
yd	International yard	Length	0.9144 m
yr	Year	Time	31556925.9747 s
。	Degree	Angle	2.77777777778E-3
${ }^{\circ} \mathrm{C}$	Degree Celsius	Temperature	1 K *
${ }^{\circ} \mathrm{F}$	Degree Fahrenheit	Temperature	$0.555555555556 \mathrm{~K}^{*}$
K	Degree Kelvin	Temperature	$1 \mathrm{~K}^{*}$
${ }^{\circ} \mathrm{R}$	Degree Rankine	Temperature	$0.555555555556 \mathrm{~K}^{*}$
μ	Micron	Length	0.000001 m
*Refer to the "TEMP" program listing starting on page 94.			

Step-by-Step Solutions for Your HP-42S Calculator

Mechanical Engineering contains a variety of programs and examples to provide solutions for mechanical engineers and engineering students.

- Forces and Vectors

Vectors in the HP-42S • Static Equilibrium at a Point

- Equations of Motion
- Analysis Programs

Mohr Circle Analysis • Soderberg's Equation for Fatigue - Composite Section Properties • Spring Constant • Linear or Angular Deformation

- Thermodynamics

Equations of State • Black Body Thermal Radiation

- Fluid Dynamics

Conduit Flow • Flow With a Free Surface

- Unit Conversions

Writing Your Own Unit Conversion Programs • Dimensionless Units of Angle • Conversion Factors

Reorder Number 00042-90022

