RPN Scientific

Programming Examples and Techniques

0000000000 0C0OCGOGCOS

PACKARD

®
: () e
&

Help Us Help You!

Please take a moment to complete this postage-paid card, tear it
out and put it in the mail. Your responses and comments will help
us better understand your needs and will provide you with the
best procedures to solve your problems. Thank you!

HELP US HELP YOU!

Book: Programming Examples and Techniques Date acquired:
Name
Street
City, State, Zip
Phone () Business

1. What calculator will you use this book with?
009 [JHP-428 006 [] Other

2. How many other HP solution books have you bought for this calculator?

3. What is your OCCUPATION?
101] Student 103 [] Professional 109 [] Other

4. Where did you purchase this book?
403 [] Bookstore 404 [] Discount or Catalog Store
407] Mail Order 410 [_]HP Direct 411[] Other

5. How did you first hear about this book?
501 [JHP Owner 503] Advertising 506 [Salesperson 507 [] Brochure
508] Other

6. To what degree did this book influence your calculator purchase decision?
601] Major Influence 602] Minor Influence 603] No Influence

7. How well does this book cover the material you expected?
701 []Good 702 []Moderate 703[]Low

8. What level of knowledge is required to make use of the topics in this book?
801 [JHigh 802[]Medium 803]Low

9. How clearly was the material in this book presented?
901 []Good 902 []Moderate 903 []Low

10. How would you rate the value of this book for your money?
111 [JHigh 112[]Medium 113[]Low

or Home

Comments: (Please comment on improvements and additional applications or sub-
jects you would like HP to cover in this or another solution book.)

L]
L]
L]
L
|
I
L]
L]
L]
I
L]
L]
S31VIS A31INN
3HL NI
a3nvi 4i
AHVSS303N

3OV1SOd ON

8866-0€€.6 HO SITIVAHOO

"‘dA1g 3T104IO 3N 0001+

HOHVIS3H LIMHVIN HOLVINOIVO
ANVdANOO adVvMOVd-L13TM3H

33SS3HAAV A9 AIvd 39 11IM 3DVLSOd

HO ‘SITIVAHOO 0¥ 'ON LINH3d VW SSV1D LSHIA

1IVIN A'lddd SSANISNE

HP-42S
RPN Scientific

Programming Examples and Techniques

ﬁﬁ HEWLETT

PACKARD

Edition1 July 1988
Reorder Number 00042-90020

Notice

This manual and any keystroke programs contained herein are provided
" as is" and are subject to change without notice. Hewlett-Packard Com-
pany makes no warranty of any kind with regard to this manual or the
keystroke programs contained herein, including, but not limited to, the
implied warranties of merchantability and fitness for a particular pur-
pose. Hewlett-Packard Company shall not be liable for any errors or for
incidental or consequential damages in connection with the furnishing,
performance, or use of this manual or the keystroke programs contained
herein.

© Hewlett-Packard Company 1988. All rights reserved. Reproduction,
adaptation, or translation of this manual, including any programs, is prohi-
bited without prior written permission of Hewlett-Packard Company,
except as allowed under the copyright laws. Hewlett-Packard Company
grants you the right to use any program contained in this manual in this
Hewlett-Packard calculator.

The programs that control your calculator are copyrighted and all rights
are reserved. Reproduction, adaptation, or translation of those programs
without prior written permission of Hewlett-Packard Company is also
prohibited.

Corvallis Division
1000 N.E. Circle Blvd.
Corvallis, OR 97330, U.S.A.

Printing History

Edition 1 July 1988 Mfg. No. 00042-90019

Contents

6 List of Examples
9 How to Use This Manual
1 12 Programming
12 Simple Programming
13 Flowcharting
15 Defining the Program
15 Prompting for Data Input
16 Displaying Program Results
19 Executing the Program
21 Branching
22 Conditional Branching
25 Subroutines
29 Menu-Controlled Branching
39 Controlled Looping
43 Indirect Addressing in Programs
46 Flags in Programs
46 User Flags
47 System Flags
49 Error Trapping
51 A Summary Program
58 The Triangle Solutions Program

Contents

2 67 Enhancing HP-41 Programs
67 Using Named Variables
68 Using HP-42S Data Input and Output Functions
68 Prompting for Data with INPUT
68 Displaying Data with VIEW
69 Operations with HP-42S Data Types
69 Using the Two-Line Display
71 Using Menu Variables
73 Assigning a Program to the CUSTOM Menu
3 77 The Solver
77 Basic Use of the Solver
80 Providing Initial Guesses for the Solver
80 Directing the Solver to a Realistic Solution
83 Finding More Than One Solution
86 Emulating the Solver in a Program
92 Using the Solver in Programs
92 Using the Solver and Explicit Solutions in a Program
101 Using the SOLVE and PGMSLYV Functions with
Indirect Addresses
105 More on How the Solver Works
105 The Root(s) of a Function
107 The Solver’s Ability to Find a Root
108 Interpreting the Results of the Solver
123 Round-Off Error and Underflow
4 124 Integration
124 Basic Integration
127 Approximating an Integral That Has an Infinite Limit
131 Using the Solver and Integration Interactively
134 More on How Integration Works
134 The Accuracy Factor and the Uncertainty of
Integration
140 Conditions That Can Cause Incorrect Results
143 Conditions That Prolong Calculation Time
4 Contents

Matrices
146 Using the Matrix Editor and Indexing Functions
147 Creating a Named Matrix
147 Using the Matrix Editor
149 Using Indexing Utilities and Statistics
Functions Interactively

150 Matrix Ultilities
154 Vector Solutions
154 Geometry
156 Coordinate Transformations
163 Solving Simultaneous Equations
168 Using the Solver with Simultaneous Equations
172 Matrix Operations in Programs

6 174 Statistics
175 List Statistics
181 Using the Summation-Coefficient Functions (X +,

¥ -, and CLY) in Programs

193 Curve Fitting in Programs

7 194 Graphics and Plotting
194 Graphics
202 Multifunction Plots
212 Plotting Data from a Complex Matrix

Contents

List of Examples

The following list groups the examples by chapter.

1 Programming
20 Executing a Program from the CUSTOM Menu
32 A Programmable Menu
42 Loop Control in a Program
57 The Flag Catalog Program

2 Enhancing HP-41 Programs
74 Executing an Enhanced HP-41 Program from the
CUSTOM Menu
3 The Solver

78 Basic Use of the Solver
80 Directing the Solver to a Realistic Solution
84 Using the Solver to Find Two Real Solutions
87 Using the Solver for a Simple Resistive Circuit
90 Calculating Complex Values in an RC Circuit
99 Executing Algebraic Solutions for TVM Problems
101 Using SOLVE with an Indirect Address
110 A Case 1 Solution with Two Roots
112 A Case 2 Solution
114 A Discontinuous Function
116 A Pole

6 List of Examples

118

A Relative Minimum

119 An Asymptote

120 A Math Error

121 A Local Flat Region
Integration

125 Basic Integration

128 Evaluating an Integral That Has an Infinite Upper
Limit

131 Using the Solver and Integration Interactively

136 The Accuracy Factor and the Uncertainty of
Integration

138 A Problem Where the Uncertainty of Integration is
Relatively Large

140 A Condition That Causes Incorrect Results

142 Subdividing the Interval of Integration

143 An Upper-Limit Approximation That Prolongs
Calculation Time
Matrices

146 Accumulating Meterological Data

155 The Area of a Parallelogram

161 A Three-Dimensional Translation with Rotation

163 Solving Real-Number Simultaneous Equations

166 Solving Simultaneous Equations That Have
Complex Terms

169 Using the Solver to Find the Value of an Element
in the Coefficient Matrix
Statistics

178 Accumulating Statistical Data in a Matrix

191 A Linear Regression for Three Independent

Variables

List of Examples

7

7 Graphics and Plotting
199 Building a Logo
201 Using Binary Data to Build a Logo
210 Plotting Multiple Functions
219 Plotting Data from a Compression Process
and Fitting a Power Curve to the Data

8 List of Examples

How to Use This Manual

Welcome to the Programming Examples and Techniques manual for your
HP-42S calculator. This manual builds on concepts introduced to you in
the HP-42S Owner’s Manual so that you can more fully utilize your
calculator’s powerful problem-solving capabilities. This manual focuses on
the following subjects:

m Programming techniques for the HP-42S.
m Enhancing existing HP-41 programs.
m Using the HP-42S built-in applications:

m The Solver.

= Integration.

m Matrices.

m Statistics.

= Building and printing graphics patterns and plots.

There are many examples in this manual. We feel that the best way to
help you gain expertise with your calculator is to show you how to solve
practical problems in mathematics, science, engineering, and finance.
Many of these problems are solved using programs. Chapter 1, "Program-
ming," addresses the task of creating programs with the HP-42S. It further
develops material presented to you in chapters 8 through 10 of the
owner’s manual.

Chapter 2 specifically addresses the topic of enhancing programs written
for the HP-41 calculator. It builds on the material introduced in chapter
11 of your owner’s manual.

Chapters 3 through 6 further develop the built-in applications discussed in
chapters 12 through 15 of the owner’s manual. If you wish to learn more

How to Use This Manual 9

about matrix operations, for example, you can turn directly to chapter 5,
"Matrices," without working through the preceding chapters. However,
since many of the examples in the manual are programmed solutions to
problems, you should first review chapter 1.

Chapter 7 describes how to generate graphics patterns and plots using the
HP-42S calculator and, in several examples, the optional HP 82240A
Infrared Printer. It builds on the material presented in chapter 7 of the
owner’s manual.

The notations in this manual are consistent with those in the owner’s
manual:

m Plain typeface is used for numbers and Alpha characters in keystroke
sequences: 1.2345, ABCD.

= Black keyboxes are used for primary keyboard functions in keystroke
sequences: [EXIT].

m Orange keyboxes preceded by the orange shift key are used for secon-
dary (shifted) functions in keystroke sequences: [j[ASSIGN].

m Menu keyboxes are used for functions executed from a menu in
keystroke sequences: : -

m Capital letters are used for any function that is referenced in text:
CLP.

m Capital letters are used for program names that are referenced in
text: SSS.

m Italic letters are used for variable names that are referenced in text:
STEP

m Dot matrix typeface is used for program listings:
81 LBL "AREAR".

At the beginning of each example, it is assumed that the stack registers
(X-, Y-, Z-, and T-registers) are clear (contain the value 0). It is also
assumed that the value of each variable in the examples is 0. Your display
may sometimes differ from the displays in the manual. However, if you exe-
cute the keystroke sequences as they are shown in the examples, the
values of the stack registers and variables in your calculator at the start of
the examples will not affect the answers you obtain.

10 How to Use This Manual

Some examples include optional instructions to print results with the

HP 82240A Infrared Printer. If you have a printer and execute these
instructions, you will not see some of the subsequent displays in the exam-
ple. These displays will be printed.

How to Use This Manual 1

Programming

Your calculator is a powerful and easy-to-use tool for creating and execut-
ing programs. This chapter builds on programming methods introduced to
you in chapters 8 through 10 of your owner’s manual. Specifically, this
chapter addresses:

= Simple programming.

m Branching.

s Looping controlled by a counter.
m Indirect addressing.

m Flags in programs.

m Error trapping.

Simple Programming

The program SSS in this section finds the values of the three angles of a
triangle when the values of the three sides are known. (The annotated list-
ing is on pages 17 through 18.)

12 1: Programming

When the dimensions of the three sides (S, S5, and S3) of a triangle are

known, the following equations are used to calculate the three angles
(A1,Az,and 43).

VPP -S§ S;+S,+S8
Ag = 2 arc cos [——(———2—)—] where P = _(_1__.2—_3_)-
(8153) 2
VPP —sl)}
A, =2arccos | —————
? (5253)

A, =arccos[-cos (As + A3)|*

These equations form the main body of SSS.

Flowcharting

A flowchart is a graphical outline of a program. Flowcharts are used in
this manual to help you understand how programs solve problems.
Flowcharts can also help you design your own programs by breaking them
down into smaller groups of instructions. The flowchart can be as simple
or as detailed as you like. Flowcharts are drawn linearly, from top to bot-
tom, representing the general flow of the program from beginning to end.

* This expression for 4 | enables you to calculate 4 in any angular mode.

1: Programming 13

Here is a flowchart for one possible program solution for the side-side-
side triangle problem.

CALCULATE
A3

v

CALCULATE
Ao

v

CALCULATE
Aq

v

DISPLAY
A1 An.Ag

v

14 1: Programming

This manual uses the following conventions for flowchart symbols:

m An oval represents the beginning or end of a routine. This can be the
beginning or end of a program, a subroutine, or a counter-controlled
loop within a program.

m A circle represents a program label. It also represents a GTO instruc-
tion to a program label from another point in the program. (This con-
vention reduces the need for connecting lines that can make the
flowchart difficult to read.)

m A rectangle represents a functional operation in the program.

m A diamond represents a decision the program makes based on a com-
parison of two values (or based on the status of a flag).

m A triangle represents a decision the user (that’s you) makes by select-
ing one of several possible program routines, each of which performs
a different task.

Defining the Program

Program SSS begins with a global label and ends with an END instruction.
These two instructions define the beginning and end of the program.

#1 LeBL "Zos

45 EHD

Prompting for Data Input

SSS prompts you for data input (prompts you for the three known values
of the sides of the triangle).

@z IMFUT "=1v
Bz IHPUT "szv
Hd IHFUT 'Sz

1: Programming 15

Displaying Program Results

SSS concludes by displaying (or printing) the calculated results (the three
angles).

41 5F 21
42 VIEM "AL1"
43 VIEW "R2"
44 VIEW "A3"

This section of the program begins by setting flag 21, the Printer Enable
flag. When flag 21 is set, a VIEW (or AVIEW) instruction is:

m Printed and displayed if you have executed PRON. Program execution
does not halt when a message is displayed; a subsequent VIEW (or
AVIEW) instruction erases the current message. When you set flag
21 and execute PRON, and then execute a program that has a
sequence of VIEW (or AVIEW) instructions, you must have a printer
present and turned on to record each message; you’ll see only the last
message in the display.

m Displayed by the calculator if you have executed PROFF. (PROFF is
the default mode for the calculator. You need to execute PROFF only
if you have previously executed PRON.) When you set flag 21 in
PROFF mode, program execution halts after each VIEW (or
AVIEW) instruction and must be resumed by pressing [R/S].

16 1: Programming

Helpful hints for keying in programs:

1. If the variables you are using in your program do not already exist,

create them before you select Program-entry mode (by pressing 0
variable for each variable). When you subsequently key in a
STO, RCL, INPUT, or VIEW instruction during program entry and
are prompted for a register or variable, the existing variables
(including the ones you just created) are displayed in the variable-
catalog menu. You only need to press the corresponding menu key,
rather than type the variable name.

2. In Program-entry mode, first key in all the global label instructions

in your program (by pressing ll[PGMFCN] = LEL /abel for each
label). When you subsequently key in branch instructions and are
prompted for a label, the existing global labels (including the ones
you just created) are displayed in the program-catalog menu. You
only need to press the corresponding menu key, rather than type the
name.

Longer programs in this manual are preceded by instructions that list the
variables and labels to create for program entry.

To key in SSS: Create variables S1, 52, §3, 41, A2, A3, and P before
program entry.

Here is an annotated listing of SSS.

Program: Comments:

68 ¢ 115-Byte Prom Line 01: Define the beginning of the
@1 LBL "S55¢ program.

a2 IMPUT "S1° Lines 02-04: Prompt for the values of
82 IMPUT "s2¢ the three sides and store the values in
a4 IHPUT "53¢ named variables.

85 RCL "s1v Lines 05-40: Calculate 4,,A4,, and
fs RCL+ “s2¢ A 5. Store the values in named vari-
gy RCL+ "53¢ ables.

Bg 2

g3 +

1: Programming 17

11 X

12 LASTA

2 RECLx "s2v
14 -

15 RCL "s1"
16 RCL= "gzv

o OSRET

18 570 “"F"
+ ::l

19 RCOS

=
=
=
<=
=
-
=
e -
<t e
=
—
-
=
-
<
=
—
=
=

Ia

el I

o

S i
+

LAST:
RCL= "stiv

RCL+

T 0

Do w B N |

5 STO "R2M
e RCL+ "ASM

39 ACOS

STO "AL

41 5F 21 Lines 41 -44: Display (or print) the
4z VIEMW "A1L" calculated results.

43 WIEM "RZ"

44 WIEM "AZ"

45 EHD Line 45: End the program.

18 1: Programming

Executing the Program

You can execute SSS by using any one of the following keystroke
sequences.

Using the Program Catalog. The global label SSS was automatically
placed in the program catalog when you keyed in program line 01. You
can execute the program by pressing

B(CATALOG) . FGM 88%

This sequence requires a minimum of four keystrokes, depending on
where label @ 552 is in the program catalog. (If you have created more
than five programs subsequent to SSS, use the [¥] key to find label

255)

Using XEQ. When you press (XEQ), the program-catalog menu is
automatically displayed. Thus, you can execute SSS by pressing

This sequence requires a minimum of two keystrokes, depending on
where label SSS is in the program catalog.

Using the CUSTOM Menu. Alternately, you can assign SSS to the
CUSTOM menu by pressing

B(ASSIGN) | FGHM | 587

and then the desired menu key.

i
i

1: Programming 19

The program can now be executed directly from the CUSTOM menu by
pressing

B(CusTOM] : 555

This sequence requires three keystrokes when you first select the
CUSTOM menu, and only one keystroke on subsequent executions if you
stay in the current row of the menu.

Example: Executing a Program from the CUSTOM Menu. Find
the angles (in degrees) of the following triangle.

Assign SSS to the CUSTOM menu. Set the angular mode to Degrees.
Execute PRON if you have a printer and want to print the results. Begin

program execution.
S1708.06600
Lsss | 1 1 1 1 |

W(MODES) pEG
(BPRINT] (&) FOH)
B(CUSTOM] @imaE

Enter the value for S, (in feet) and continue program execution.

24 12 S270. Dooo
[sss1 T 1 [1

20 1: Programming

Enter the value for S,, then for S5. The program now calculates the
three angles and displays 41, the first result. (If you have executed PRON
to print the results, you won’t see the next two displays.)

1 2.75

Continue program execution to see A, .

Continue program execution to see A3.

Exit from the program.
EXIT v: 8, 2792

x: 129.8384
Branching

A branch instruction enables program execution to jump to a different
location in program memory. A branch can be:

m Conditional (based on a test).

m Unconditional (used typically to call a subroutine that, on completion,
returns program execution to the main program).

m Menu-controlled (executed by you from a programmable menu).

1: Programming 21

Conditional Branching

The program SSA on pages 24 through 25 in this section illustrates the
use of conditional branching. SSA finds the two unknown angles and the
unknown side of a triangle when two sides and the adjacent angle (S,
S4, and A5) are known.

The equations used to calculate A5, 4,, and S5 are

| [S2] .
Az =arcsin | | —| sinA,
S1

A; =arccos[-cos (A; + A3)]
S3 = S1 COSA3 + S2 COSA2

Note from the drawing that two possible solutions exist if S, is greater
than S; and A4 5 does not equal 90°. This leads to a fourth equation.

Az’ = arccos (-cosAj3)
SSA calculates both possible answer sets.

Here is a flowchart for the program.

22 1: Programming

SSA

v

INPUT
$1.85. A

v

CALCULATE
Az

v

CALCULATE
Aq,S3

Y

DISPLAY
RESULTS

v

NO

CALCULATE
A ’
3

\

CALCULATE
A1, S3

v

DISPLAY
RESULTS

1: Programming 23

Observe from the flowchart that the program calculates the first answer
set, then compares the values of S, and S,. Depending on the result of
the comparison, the program either returns to label SSA or calculates the
second answer set. SSA accomplishes this with a conditional branch. The
corresponding keystrokes are highlighted in the following annotated list-
ing. (This conditional branch is based on a number test. Later in this
chapter, you’ll write programs that make conditional branches based on
flag tests.)

To key in SSA: Create variables S1, S2, $3, A1, A2, and A3 before pro-
gram entry. (These variables already exist if you keyed in program SSS.)

Program: Comments:
88 { 137-Bute Praom 2

@1 LEL "SSA"

B2 SF 21

B2 IMFUT "Sti" Lines 03-05: Input the known vari-
84 IMFUT "s2" ables.

BS INPUT "AZ"

A5 SIH Lines 06 —23: Calculate the unknown
a7y RCLx "s2v variables.

gz RCL+ "ES1M

B3 ASIN

18 STO "R3"

11 RCL+ "RZ"

12 Cos

12 +.--

14 ACOS

15 STO "AL"

16 RCL "RZ"

17 Cos

18 RCLx "sz"

1% RCL "R3"

2B Cos

21 RCL= "S1t

2z +

24 1: Programming

4 eTh wes
23 §T0 "g3"

r

24 VIEM "A1"
25 VIEMW "s2v
26 VIEM "R3"

27 RCL "S1"

26 GTO "SSA"
21 RCL "A3"

32 COS

23 +--

24 ACOS

25 STO "AZ"

26 RCL+ “"RA2"
57 COS

38 +o-

39 ACOS

48 STO "AL"

41 RCL "A2"

42 COS

42 RCLx "s2"
44 RCL "A3"

45 COS

46 RCLx "S1"
7+

48 STO "S3"
43 YIEM "AL"
56 YIEM "S3"
YIEW "AZ"

1
52 GTO "SSA"

22 EHD

Lines 24 -26: Display (or print) the
unknown variables.

Lines 27-30: Test if S, is less than or
equal to S;. If so, return to the begin-
ning of the program. If not, calculate
the second answer set.

Lines 31-48: Calculate the second
answer set.

Lines 49 -52: Display the second
answer set and return to the beginning
of the program.

1: Programming 25

Subroutines

A routine is a set of program steps defined by a local or global label and a
RTN or END instruction. (Programs SSS and SSA are routines.) A rou-
tine becomes a subroutine when it is called by (executed from) another
routine using an XEQ instruction. After the subroutine has been exe-
cuted, the RTN or END instruction at the end of the subroutine returns
program execution to the main routine.

Notice that SSA calculates the second answer set (if there is one) by first
calculating 4 4° . It then calculates the remaining unknowns using the
same equations that were used to calculate the first answer set and
displays the second answer set using the same instructions that were used
to display the first answer set. By placing these shared instructions in a
subroutine, the program becomes:

m Shorter.
s Easier to read.
m Easier to write.

m Easier to edit.

Here is a flowchart for a new program SSA2 that uses a subroutine.

26 1: Programming

Y
8=

SSA2

v

INPUT
1,55 A

Y

CALCULATE
A3

v

XEQ
SSASUB

v

CALCULATE
A 4
3

CALCULATE
Ay, S3

Y

XEQ
SSASUB

v

DISPLAY
RESULTS

RTN

The corresponding program lines are highlighted in the following anno-

tated listing.

To key in SSA2:

1. Create variables S1, S2, §3, A1, A2, and A3 before program entry.

2. Create label SSASUB when you begin program entry.

1: Programming 27

Program:

a8
a1
[z
@z
a4
@5

A
ar
ot
(53]

18

-

11
12
1=
14

15
16
17
12

£ 1237-Bute Pram 2
LBEL "SSAR2"

SF 21
IHPUT "s1v
INPUT “g2"
INPUT “AZ2"
SIH
F::CLX IISEII
E:I:L_ "81 "
ASIH
#ER "SSHSUER"
RCL "S1"
RCL "S2¢
ney?
GTO "SSR2"
RCL "AR3"
cos
+.=
ACOS
2 =EQ "SSASUBRY
4 GTO "Ssp2"

STO "R
RECL+ "RZ"

1: Programming

Comments:

Lines 06— 09: Calculate 4.

Line 10: Call subroutine SSASUB to
calculate 4, and S 5. This uncondi-
tional branch uses an XEQ instruc-
tion; the next encountered RTN (or
END) instruction will transfer pro-
gram execution back to line 11. (Now
follow the branch to line 21.)

Lines 11-14: If S, is less than or
equal to S, return to the beginning of
the program. If not, calculate the
second answer set.

Lines 15-18: Calculate 45" .

Lines 19 -20: Call subroutine
SSASUB to calculate 4;” and S5”.
Then return to the beginning of the
program.

Subroutine SSASUB, lines 21 -39:;
Calculate the values A; and S5 (A4,"
and S;” in the second answer set), and
display the results.

25 40—

RCOS
27 STO "AL"
ECL "R2"
cos
RCLx "S2"
FCL "R3"

Ma
()

)
<
<
)
P}

N S oy Y o I

RCLx "Siv

STo "53¢
YIEW "A1"
YIEW "S3"
YIEW "A3"
RTH

T

LN I T I I T

e

Ia
Dl

EHD
SSA2 is 13 lines shorter than SSA and 20 bytes shorter than SSA.

Nested Subroutines. The program TRIX in the following section
organizes each of the five possible triangle solutions in subroutines
labeled A through E. Refer to the flowchart for TRIA on pages 30-31,
and note that subroutine B, which calculates the solution to the SSA initial
condition, itself calls subroutine SSASUB to calculate 45 and S3. In

TRI X, subroutine SSASUB is nested in subroutine B. When subroutine
SSASUB is called by subroutine B, there are two pending subroutines.
The HP-42S can have up to eight pending subroutines.

Menu-Controlled Branching

Programmable menus enable you to make a decision during a program,
prompted by labeled menu keys that cause branches to new locations in
program memory. Using KEY XEQ or KEY GTO instructions (which act
just like XEQ and GTO instructions), any label in program memory can
be made the target of a programmable menu key. When MENU and
STOP instructions are subsequently executed, program execution is
suspended, the programmable menu is displayed, and keys 1 through 9
(the six top-row keys, plus the (4], [¥], and keys) assume their
menu definitions.

1: Programming 29

The previous two programs, SSS and SSA, each calculated one of the five
triangle solutions. The other solutions respectively find:

m Sy, Ay,and S5 (when A5, S, and A4, are known).
m S,, S3,and A5 (when S;, A;,and A4, are known).
m A,, S3,and A5 (when S;, A;, and S, are known).
Here is a flowchart for a program named TRIA . TRIX organizes each

of the five solutions in a subroutine, builds a programmable menu, and
allows you to select any solution by pressing the corresponding menu key.

(TRIA)
LBL
TRIA
BUILD MENU

DISPLAY MENU
AND STOP FOR INPUT

KEY 1 KEY 2 KEY 3 KEY 4 KEY 5
SSS "SSA* "ASA" "SAA" "SAS*

XEQ XEQ XEQ XEQ XEQ
A B C D E
XEQ RESULTS

30 1: Programming

P P 9 7P 7

INPUT NPUT] ["TNeUT] [INeUT INPUT
S1,52:S3| |51, 5242 | [A3:S1.A41] [S1,A1,42] |S1.41. 5,
CALCULATE] [CALCULATE| [CALCULATE] [CALCULATE] [CALCULATE

RTN XEQ RTN RTN RTN
D 1o | € o (R) (R)

YES
@
NO

XEQ
RESULTS
CALCULATE
SSASUB A3'
CALCULATE XEQ
Aq,S3 SSASUB

RESULTS

CALCULATE
AREA

v

DISPLAY
INPUTS,
RESULTS

1: Programming

31

The triangle symbol in the flowchart indicates where the program stops to
display the menu. You choose which solution you want to execute by
pressing the corresponding menu key.

Here are the corresponding program lines.

Program:

gz "sose

B4 KEY 1 XER A
a5 "SsA"

B KEY 2 HER E
87 "ASA"

B2 KEY 3 XEQ C
a3 "SAR"

18 KEY HER D
11 "SAS"

12 KEY 5 ¥ER E
13 MEHU

14 STOF

15 HER "RESULTS"
16 GTO "TRIL"

Comments:

Lines 03 -12: Build the menu keys.
(For example, lines 03 and 04 label
menu key 1 with the Alpha string SSS
and define that key to execute a
branch to label A.)

Lines 13-16: Select the menu (line
13) and suspend program execution
(line 14). (The menu is displayed
when program execution halts.) After
execution of any subroutine A through
E, call subroutine RESULTS to
display the results (line 15). Then
return to label TRIXA at the start of
the program (line 16).

The complete listing of TRIX is on pages 6065 at the end of this

chapter.

Example: A Programmable Menu. A surveyor needs to find the
arca and dimensions of a triangular land parcel. From point A, he meas-
ures the distance to points B and C, and the angle between AB and AC.

32 1: Programming

Aqy=98°12"7

S1=171.63m 82=297.35m

This is an SAS (side-angle-side) problem.

Set the angular mode to Degrees. (Execute PRON if you want to print the
results.) Begin program execution.

BMODES) [EG % 0, D000
(BFRNT) &) POH) (555] son [hsn | shn] shs ||

TREI«

Select the SAS routine by pressing menu key 5.

SAHS S170.0600
EAEIIrEIENED

Key in the value for §; and continue program execution.
171.63 IHl?B.B@@B
[555 | S5 | ash | Shh | Shs | -]

Key in the values for 4, (you need to convert 4, to its decimal equivalent)
and S,. The program calculates the unknowns and displays the initial
known values and calculated results.

98.12(CONVERT] =+HFE S1=171.6300
297.35 X: 29, 256.2894

Press three times to see 4,.

R/S] [R/S] [R/S) A2=27.8270
x: 25, 256.2094

1: Programming 33

Press again to see Sj.

R/S) S53=363.9118
x: 29, 256.20894

Press again to see A3.

R/S) A3=53,9730
x: 25, 256. 2094
Press again to see AREA.
[RRER=25, 256. 2094
x: 25, 256. 2094

Press again to display the menu.

X: 25, 296. 2094
|-|

End the program.

EXIT

Multirow Menus. The preceding program, TRIX | builds menu labels
for five of the six top-row keys, and assigns a KEY XEQ instruction to
each labeled key.

A multirow menu has more than one row of labeled keys. (For example,
the CLEAR menu has two rows.) When you enter a multirow menu, the
(¥] and [A] keys enable you to move to each row in the menu. (The va
annunciator appears in the display to show you that these keys may be
used to display more rows.)

You can emulate a multirow menu in a program by assigning KEY GTO
instructions to menu key 7 (the [A] key) and menu key 8 (the (V] key).
(KEY GTO or KEY XEQ instructions for menu keys 7 and 8 also
automatically turn on the YA annunciator in the display.)

34 1: Programming

Consider the following simple menu of calculator functions.

I
LOG
LH
VA
F+
=IH
Cos
VA

Here is a program that emulates this multirow menu.
To key in ROW1:

1. Create labels ROW1, ROW2, and ROW3 when you begin program

entry.
2. Note that program lines 03, 05, 07, 16, 18, 20, 29, and 31 are Alpha
strings.
Program: Comments:

BE £ 1284-Bute Pram 2

81 LEL "ROWL™

B2 CLMEHMU Lines 01-13: Clear the current menu
gz e definitions, then build and display the
B4 KEY 2 HER @81 first row of the menu. Assign branch
a5 "LOG" instructions to keys 7 and 8 (the [A]
Ae KEY 4 #ER 82 and (V] keys) to the previous and

8y LMt succeeding rows respectively (lines
a3 EEY 5 XER 83 09-10).

@3 KEY ¥ GTO “"ROMZ"

1@ KEY & GTO "ROMz2"

11 MEHU

12 STOF

12 GTO "ROWLI™

1: Programming 35

14 LEL "ROMZ" Lines 14-26: Clear the current menu
15 CLMEHU definitions, then build and display the
16 "REa4." second row of the menu. Assign

17 EEY 2 XER 84 branch instructions to keys 7 and 8 to
18 "SIH" the previous and succeeding rows

17 KEY 4 XKER 85 respectively (lines 22-23).

2 "cost

21 KEY 5 RKER B8

22 EEY ¥ GTO "ROMWL"®

22 EEY & GTO "ROMa"

24 MEHU

25 STOF

25 GTO "ROM2"

27 LEL "ROMWZ" Lines 27-37: Clear the current menu
28 CLMEHU definitions, then build and display the
29 "HOY third row of the menu. Assign branch
38 KEY 3 XKER 87 instructions to keys 7 and 8 to the pre-
31 "+o-n vious and succeeding rows respectively
32 KEY 4 XEQ 83 (lines 33-34).

33 KEY 7 GTO "ROW2"

24 KEY & GTO "ROW1"

25 MEHU

25 STOFR

a7 GTO "ROWa"

2 LeEL &1 Subroutines 01-08, lines 38 -61: Exe-
39 SORT cute the calculator functions

48 RTH corresponding to each menu label.
41 LBL A2

42 LOG

42 RETH

44 LEL @3

45 LH

45 ETH

47 LEL 84

42 R4

43 ETH

36 1: Programming

‘—

A
-
m
=
[ax]
n

SIH
RTH
LEL
Cos
RTH
LEL a7
HERY
FTH
LEL
+=
RTH

onon o
)
[y

on oo

anoan

n

n
LU o N e R) (R R T R
[
[xx]

[E R 4Y

—

(a4}
KA

EHD

Nested Menus. In many menus, one or more of the six top-row menu
keys bring up a new menu called a nested, or submenu. For example, in
the PGM.FCN menu, when you press the =78 menu key, a nested
menu of related functions (X=0?, X#0?, ..., X>0?) is displayed. To return
to the main menu, you press the key.

You can emulate a nested menu in a program by assigning a KEY GTO
instruction to any labeled top-row menu key. Consider the following sim-
ple menu of calculator functions.

+

TREIG

LN R
L

m
S

\
— 00
I

Here is a program that emulates this menu structure.
To key in LVL1:

1. Create labels LVL1 and LVL2 when you begin program entry.
2. Note that lines 03, 05, 07, 14, 16, and 18 are Alpha strings.

1: Programming 37

Program:

.,.
[ix
—

lx

....
)
—

e B B B R o R A B BN
Lo USSR ¢ (R S T T oY

Jao 03 o

on

T

DoV I o Y |

I R N T S S S S S S —y

DO I NIV I 8 T G O G N
IV I xS B x) B o8 DO SN I

BRI NN

38

188-Bute Pram 2
LE:L IILI'.,ILI n
CLMEHL
|I+II
KEY 2 XER a1

"w_mn

KEY 2 WER 82
"TRIG"

KEY S GTO "LyLz"
MEHL

STOF

GTO "LWL1"

LEL "LyLz"
CLMEHL

"IN

KEY 4 MEQ 11
cose

KEY S ER 12
"TAH"

KEY & HE@ 13
KEY 9 GTO "LyLi"
MEHL

STOF

GTO "LVLE"

LEL a1
+
RTH
LEL ©
RTH
LEL 11
SIH
RETH
LEL 12

cos

(2]

1: Programming

Comments:

Lines 01-11: Build and display the
primary level of the menu. Assign to
key 3 (labeled TRIi) a branch
instruction to label LVL2 to build the
nested menu (line 08).

Lines 12-23: Build and display the
nested menu. Assign a branch instruc-
tion to key 9 (the key) back to
label LVL1 (line 20).

Subroutines 01, 02, and 11-13, lines
24 -38: Execute the calculator func-

tions corresponding to each menu
label.

n

FTH
LEL 1%
TAH
RTH

3 EHD

DO I N N)
DO R I L

k]
]

Controlled Looping

A controlled loop is a loop that is executed a specified number of times.
You can build a controlled loop with a local or global label, an ISG or
DSE instruction, and a GTO instruction.

The program DISPL in this section uses a controlled loop to calculate
successive linear displacements of an object traveling at a constant velo-
city.

The equation of motion for constant velocity on a smooth surface is
X =Xp + vt
where:

x is the total displacement.
X is the initial position.

v is the velocity.

t is the elapsed time.

DISPL calculates the displacement at successive time intervals from ¢ = 0
tot = t; . It builds a loop counter of the form fffcc by prompting you for
the value of ¢;, and for the value of STEP (the value of the time interval).
t; becomes the fff portion of the counter and STEP becomes the ii portion
of the counter.

1: Programming 39

Here is a flowchart for DISPL.

DISPL LBL
DISPL
INPUT
Xg Vs tf,STEP

v

BUILD COUNTER
FROM t, , STEP

FOR EACH TIME
(0TO t)

CALCULATE

INCREMENT
t

&
&

The program segment that uses a controlled loop to calculate successive
values of x is highlighted in the following annotated listing.

40 1: Programming

To key in DISPL: Create variables x, x0, v, tF, STEP, fff, ii, and COUNT
before program entry.
Program: Comments:

g8 £ 118-Byte Pram
@1 LBL "DISPL"

Bz SF 21
a3 IMPUT "x@" Lines 03-16: Prompt for the vari-
84 IHPUT "ot ables. Build the counter.

85 IMPUT "tF"
@& INPUT "STEP"
67 RCL "tF"

Bz 1E-2

a9 x

18 STO "fff"
11 RCL "STEPR"
12 1E-3

12 =

14 STO "ii"

15 RCL+ "“fff"
1 STO "COUHT"

17 LEL &1 Lines 17-27: Calculate successive
12 RCL "COUHT" values of x in the counter-controlled
12 IF loop. (Note that the integer part of
28 RCLx "w® COUNT in line 19 is the time ¢.)

21 RCL+ "x@"

22 STO "w"

23 CLY

24 YIEM "x"

25 ISG "CouMT®

26 GTO @1

27 GTO "DISPL"

22 EHD

1: Programming 41

Example: Loop Control in a Program. Find successive values of
the displacement x of an object in intervals of five seconds from ¢ = 0 to
t = 15 seconds whenx, = 10 meters and v = 20 meters/second.

Begin program execution.

DISFL v: 8. 0000

Enter the values for x4 and v.

10 [R/S] 20 R/S]

Enter the value for ¢, and continue program execution.

15 [R/S) v: 15,0000
STEP?8. 000808

Enter the value of STEP (the size of the interval) and continue program
execution.

5 [R/S] x=

The value of x at t = 0 is 10. Press again to display the value of x at
t=5.

AN
Press to see the value of x at ¢t = 10.
Press again to see the value of x at t = 15.

Press again to prompt for new values. Exit from the program.

[R/S) [EXIT) " 9.0000
= % 10.6OD0

42 1: Programming

Indirect Addressing in Programs

Indirect addressing is a useful programming tool, particularly when used
in combination with a controlled loop. The operation index in your
owner’s manual indicates which functions can use indirect addresses. In
this section, three applications of indirect addressing in programs are
presented.

Using Indirect Addressing to Initialize Data Storage
Registers. Program INIT prompts for data and stores it in successive
registers using INPUT IND in a controlled loop. This is a useful initializa-
tion routine if you are using registers instead of variables for data storage
and recall.

,.

Dx)
ot

[x)

L 37-Bute FPram

@1 LEL "IMIT"

Gz 1.81 Lines 02-03: Build a counter and

B3 STO "COUHT" store it in COUNT. The counter has a
beginning value of 1, a test value of 10,
and a default increment value of 1.

a4 LEL @1 Lines 04—07: Prompt for data for suc-

@5 IHFUT IHD “COUMT" cessive registers Rg; —Ryg.

B ISG “COUHT"

@y GTO a1

32 EHD

1: Programming 43

Using Indirect Addressing to Clear Registers. The following
routine clears a specified number of storage registers using STO IND in a
controlled loop.

Program:

.,.,.
DU L
o

——

[n]
[
[n]

Do T v T I o I |
[T I

—
[y I
[RN w N |

—

44

£ 74-Bute Pran
LEL "CLERR"

"FIRST?"
FROMFT

STO "COUNT"
"LAST?"
FROMFT

1E-3

*

STO+ "COUHT"

LEL 1@
STO IML "COUMT®
ISG "COUuWT"

GTO 18

-
M

TOHE 9
"RERDY"

3 PROMFT
? EMD

1: Programming

-
:

Comments:

Line 02: Initialize the X-register to 0.

Lines 03-10: Build a counter in
COUNT. The counter has a beginning
value equal to the first data storage
register to be cleared, a test value
equal to the last register to be cleared,
and an increment value of one.

Lines 11-15: Successively set the
values of the block of specified regis-
ters to 0.

Lines 16— 18: Sound a tone and
display the message RERALD'Y. Press
to end the program.

Using Indirect Addressing to Execute Subroutines. The follow-

ing routine retrieves data (telephone numbers) from subroutines using
XEQ IND.

Program:

DoV
-

[]
[l OO W

oI I O

=
[S N n 1)

a9
18
11
12
1=
14
15
1e
17

1%
21

o
[l

-
[t

134-Byte Fram >

LEL "FHOHE"

"HAME?"

AHOH

FROMFT

ROFF

ASTO ST X
REG IHD ST ®
FROMPT

LEL "JAMET"
"BaE-555-9874"
RTH

LEL "ERUCE"
"BEE-555-1256"
ETH

LEL "PAM"
"EEE-5355-c823"
FTH

LEL "CHREIS
"ERE-555-627E8"
FETH

LEL "EOE"
"EEE-555-2411"
FETH

EHD

13

Comments:

Lines 02-08: Prompt for the name
(Alpha string) whose telephone
number is desired (lines 02-05) and
store the string in the X-register (line
06). (The string may be six Alpha
characters maximum; the X-register
holds only up to six Alpha characters.)
Execute the subroutine whose label
matches the Alpha string (line 07),
then suspend program execution (line
08).

Lines 09-23: Build the telephone
numbers (actually Alpha strings) in
the Alpha register.

1: Programming 45

Flags in Programs

Earlier in this chapter you wrote a program SSA that makes a branch
based on a number test; specifically, SSA uses the X<Y? function to con-
struct the branch. The program asks the question: Is S < S, ? Then it
makes a decision based on the answer —either calculate the second answer
set or end the program.

The X?0 and X?Y sets of functions enable programs to ask questions only
concerning number values.” However, programs can also make condi-
tional branches (ask questions and make decisions) based on flag tests.
Flag tests follow the "do-if-true” rule. If the test is true, the next instruc-
tion is executed. If the test is false, the next instruction is skipped.
Because flags have unique meanings for the calculator, they greatly
expand the logic control you can exercise in a program. (User flags 00
through 35 and 81 through 99 may be set, cleared and tested. System flags
36 through 80 may only be tested. Refer to appendix C in your owner’s
manual for a complete listing of the HP-42S flags and their meanings.)

User Flags

Flags 00 through 35 and 81 through 99 are user flags; they may be set,
cleared, and tested.

General Purpose Flags. General purpose flags (flags 00 through 10
and 81 through 99) are not used internally by the calculator; what they
mean depends entirely on how you define them.

* The X=Y? and X#Y? functions are exceptions; they can compare Alpha strings.

46 1: Programming

The program LIST on pages 176 through 178 creates a matrix SLIST
using the following instruction sequence.

LEL &2

1

EHTER

FC? a1

LIM "ZLIST"
HER T

F

E+

GTO 88

L I R R

I8 e T T T O I W I W I N }

Do RN w I xR B n 1)

Before you execute LIST, you set flag 01 if you want £LIST to be a 1-
column matrix, or you clear flag 01 if you want £LIST to be a 2-column
matrix. Flag 01 is defined to have a unique meaning in the program; its
status determines the number of columns in the matrix ZLIST.
(Remember that current status of user flags is maintained by HP-42S
Continuous Memory. This can affect other programs that use the same

flags.)

Control Flags. Control flags 11 through 35 have a specific meaning and
are used internally by the calculator. For example, flag 21, the Printer
Enable flag, affects the way the VIEW and AVIEW functions work in
programs. When flag 21 is set in PROFF mode, VIEW and AVIEW mes-
sages are displayed, and program execution halts. When flag 21 is set and
PRON is executed, VIEW and AVIEW messages are printed and pro-
gram execution does not halt. Many programs in this manual that use
VIEW or AVIEW also set flag 21.

System Flags

System flags 36 through 80 also have a specific meaning for the calculator.
You cannot directly set or clear these flags. However, you can test them.

The following program, MINMAX| searches for the maximum or
minimum element of the matrix in the X-register. In line 23, it tests the
status of system flag 77, the Matrix End-Wrap flag, to determine if the last
element of the matrix has been checked.

1: Programming 47

MINMAX also uses general purpose flag 09 in line 08 to determine
whether to search for the maximum or minimum element of the matrix.
Before you execute the program, you set flag 09 to find the maximum ele-
ment, or clear flag 09 to find the minimum element.

(The annotated listing is on pages 152 through 153.)

A
=
—

,_ ,_,_
[[N]
DO X

oy
[x]

[
Ia

[y I
n

DU U U)
Do B o B B e 1Y
= L !

[P
Mo =

—
o

15

£ 8l1-Bute Pram >
LEL "MIHMA=R"

2 STO "MIMMARY
» THDEX "MIMMAR"

RCLEL
STO @z

GTO 64

£ LEL B2

RCLI
FCL ST 2

2 EMTER

LEL @4
R
J+

FCor vF
GTO @1

EHD

1: Programming

Error Trapping

When you attempt an improper operation during function execution, the
operation is not executed and an explanatory message is displayed. For
example, if you execute the keystroke sequence

1 [E] 260 @[?)

the calculator returns the message Out of Fanoe, and leaves the value
1 x 10® in the X-register.

If an improper operation is attempted in a program, the calculator returns
the corresponding message, and program execution halts at the instruction
that caused the error. Consider the following program.

L 2&6-Bute PFram
LEL "TRRF"

SF 21

IHFUT "=t

Atz

STO "y

VIEW "y

;7 GTO “"TRAR"

2 EHD

[xn] [I o x|
W} I ORI O v |

-
T

(I 5o T O cn |
=] T

.,_
A
L)

If you execute TRAP and supply the value 1 x 10?® for X, the program
halts at line 03 and the calculator displays the message Qut of Ranoe.
To supply a new value for X, you must restart the program at line 01 (by
pressing TREAF). In a short program like TRAP, this method of
recovery from an error presents little problem. However, when executing
a program that performs time-consuming calculations, or that has
numerous stops for intermediate data entry, it may be inconvenient to
restart the program at line 01 each time an error occurs.

1: Programming 49

You can enable program execution to continue after an error has occurred
by setting flag 25, the Error Ignore flag. When flag 25 is set:

m One error during program execution is ignored. The instruction that
causes the error is not performed and program execution continues at
the next instruction.

m The error clears flag 25.

Consider this revision to TRAP.

e
.

,.
)
=
)

S2-Bute Pram >
LEL "TRAF"

1=
!
-

]

SF 2
SF 25
IMPUT "
W42

FC?C 25
GTO 86
STO "yn
YIEKM "o
GTO "TRAF"

[T o T T o T o T B cw |
DoURRY I xR I) B CRR R RV

— [y
4

LEL @@
* CF 21
EEEF
"Out of Range"
AYIEWM
& PSE
FZE
GTO “"TRAF"

—
M

— .
[) [N N

[|

19 EHD

TRAP now responds to the error condition by:

® Displaying an error message.
m Resetting flag 25 and prompting for a new value for X.
This programming technique, called error trapping, adds program steps,

but is effective when you can identify operations in a program that are
likely to generate errors.

50 1: Programming

A Summary Program

The program FCAT in this section displays the current status of flags 00
through 99. The flags are displayed in a multirow menu in sets of six.
Each of the menu keys is labeled with a flag number. You can set and
clear user flags 00 through 35 (except flag 25) and 81 through 99 by press-
ing the corresponding menu key. The "s" character is appended to the
menu label if that flag is currently set. When you attempt to set or clear a
system flag, FCAT beeps and displays the error message Reztricted
Operat ion. The previous set of six flags is displayed by pressing menu
key 7 ([A]), and the succeeding set is displayed by pressing menu key 8
(@)

FCAT uses many of the programming concepts discussed in this chapter:
m Global and local labeling.
m Prompting for data input.
m Conditional branching based on:
m Number tests.
m Flag tests.
Subroutines.
Multirow menus.
Counter-controlled looping.

Indirect addressing.

Error trapping.

1: Programming 51

Here is a flowchart for FCAT.

YES

INITIALIZE

®—

BUILD A MENU
OF SIX FLAGS

v

/\

KEYS 1 THRU 6

SET ERROR

IGNORE FLAG

!

TOGGLE FLAG

Y

COUNTER BY 6

KEY 7 KEY 8
(PAGE UP) | (PAGE DOWN)
INCREMENT

DECREMENT
COUNTER BY 6

ERROR ?

MESSAGE

*RESTRICTED
OPERATION*

52

1: Programming

RESET
COUNTERTO 0

RESET
COUNTER TO 96

e

Here is the annotated listing.

Program:

BE { 234-Bute Pram >
@1 LEL "FCAT®
B2 B, @368

Bz STO B8

B4 LEL H

A5 RCL 98

BE HEQD B3

BY EEY 1 GTO @1
B2 HEQ QA

@3 KEY 2 GTO &2
18 ©EQ &8

11 EEY 2 GTO @3
12 HER &8

Z KEY 4 GTO @84
14 ©ER ©8

5 KEY S GTO @5
16 HEQ @3

17 EEY & GTO /&
12 KEY 7 GTO &7
19 KEEY & GTO a2

28 "FLAG CATALOG"
21 MEHU

=]

24 FROMFT
25 GTO A

Comments:

Lines 02-03: Store the loop counter
in Rw .

Lines 4-17: Build menu keys 1-6.
The label for each menu key is built by
calling subroutine 00. (Now go to sub-
routine 00.)

Lines 18 -19: Assign GTO instructions
to menu keys 7 and 8.

Lines 20-25: Build the Alpha string
FLAG CATALOG (line 20). Display
the menu (line 21). Initialize register
R, to 6 (lines 22-23). Display the
Alpha register, suspend program exe-

cution, and prompt for numeric input
(line 24).

1: Programming 53

Subroutine 00, lines 26 —37: Build the
Alpha string for each menu key. First,
test to see if the current value in the
X-register (the loop counter) is
greater than 99 (lines 28-31). If yes,
do not build a label for the menu key.
(The highest numbered flag is 99.) If

F57? IHD ST X no, append the (integer portion of) the
24 F'm value in the X-register to the Alpha
35 1 register (line 32). Test the status of
S5+ the flag whose number is in the X-
37 RTH register. If that flag is set, append the
"w" character to the Alpha register
(lines 33-34). (Thus, the Alpha label
for each menu key consists of a
number, and, if the corresponding flag
is set, a "w".) Increment the value of
the X-register by 1 (lines 35-36).
32 LEL a1 Lines 38 - 52 establish the flag to be
29 DSE 461 set or cleared: Successively decrement
48 LEBEL A2 R by 1 (lines 38-49). (If menu key 1
41 DSE a1 is pressed, the value in R, is 0 when
42 LBL @z Ry, is recalled to the X-register in line
@ D3E a1 51. If menu key 6 is pressed, the value
44 LEL 84 in R, is 5 when R, is recalled to the
45 DSE @81 X-register.) Add the current value in
46 LBEL 85 R (the counter) to the current value
47 DSE 81 in the X-register (line 52). (The value
42 LBL @8 in the X-register after execution of
43 DSE A1 line 52 is the value of the flag to be set
568 LEL 14 or cleared.)
51 RCL 81

52 RCL+ b@E

54 1: Programming

on

n
DA [SRR AR

on oo

n
[ag

onoanoan

[ns]
el Y L X I |

o

o s O s SO s
[I SO L B OO TV I SN

o
i)

SF 23
FC?C IMD ST X
GTO @9
GTO A

LEL @9
FC?C 25
GTO 18

SF IMD ST =
GTO A

LEL &7
RCL 8@

[=]

nea?

96. 89686
STO 6@
GTO A

Lines 53— 56 build the set/clear toggle
and error trap: Set the Error Ignore
flag (line 53). Test if the flag (whose
number value is in X) is clear, then
clear it (line 54). If the flag was clear
when tested in line 54, or the attempt
to clear causes a Restricted Operation
error, go to label 09 (line 55). If the
flag was set, and the clear operation
does not cause a Restricted Operation
error, return to the menu-label rou-
tine to update the flag status (line 56).

Lines 57-61: If the branch to label 09
was caused by a Restricted Operation
error, go to label 10 (lines 57-59). If
the branch to subroutine 09 was exe-
cuted because the flag was clear, then
set it, and return to the menu-label
routine to update the flag status (lines
60-61).

Lines 62-69: Decrement R, by 6.
(Thus, when (V] is pressed, the top-
row menu keys are each relabeled
with the number that is six less than in
the previous menu. If Ry has the
value 12 when (V] is pressed, R takes
the value 6, and the menu keys are
relabeled 6-11.) Test if the new value
of Ry is less than 0. If yes, store 96 in
R (lines 66-68). (Menu keys 1-4
will be labeled 96-99.)

1: Programming 55

-]
i

=1 =) =)

LU SR

T N fa

e B B
Do RN w B I

(s B x]

1 -

Ja

n

o

o
ba]
o]
ba]
o
bai
=)
=
o
=
-
o

KT LR Y |

fan}

Xu]
[xx)

56

LEL &
ISG
GTO
GTO “FCART"

LEL 18

Fs7?C 21

GTO 11

HER 12

GTO A

LEL 11

HER 12

SF 2

GTO A

LEL 12

EEEF
"Restricted "
F'Operation”
AYIELW

FZE

RTH

EHD

1: Programming

Lines 70-73: Increment Ry, by 6 using
the ISG function. (Remember that the
number in R is the loop counter; it
has the initial value 0.09906. When [4]
is pressed, the top row menu keys are
each relabeled with the number that is
six greater than in the previous menu.
When the counter test value exceeds
96, program execution transfers to
FCAT, restoring the counter to its ini-
tial value; the menu keys are thus rela-
beled 0-5.)

Lines 74 -89: Execute the BEEP func-
tion, display the Alpha message
Restricted Operation, and
transfer program execution back to
label A. If flag 21 is set, clear it before
displaying the Alpha message, then
reset it. (Program execution continues,
redisplaying the flag menu, and the
status of flag 21 is maintained.)

Example: The Flag Catalog Program. Use FCAT to set flag 01.
Check the status of flag 38. Attempt to set or clear it.

Start FCAT.
ECHY [FLFIG CATALOG |
Le | 4 [2 [3] 4165 |
Set flag 01.
1 IF LAG CATALOG l
L o—| 4s | 2 | 3 | 4 ['S§ |
Check the status of flag 38.

poy R P —

Flag 38 is clear. Attempt to set it.

(EN
oo

FLAG CATALOG
[36 [37e | 38 | 39 | Yow | 41 |

The calculator beeps, displays the message Festricted Operation,
and returns to the state before the error. Exit from FCAT.

EXIT v: 42,0961
x: 6.0080

1: Programming 57

The Trlangle Solutlons Program

This section contains the complete set of equations for the triangle solu-
tions, instructions for keying in TRIX., an annotated listing of TRIX., and
instructions for using TRIX .

Ay

Asg Az

Program Equations. The following equations are used in the program:

m Condition 1: S, S, and S5 (three sides) are known:

VP(P -S,)] _(Si+ s2 (S1+8,+85)

As = 2 arc cos
° [(5155)

A, = 2 arc cos

\/TP-S_]

(5253)

A, =arccos[-cos (A3 + A3)]

58 1: Programming

m Condition 2: S, S,, and 4, (two sides and the adjacent angle) are
known:

| S2] .
Ay = arcsin | | —| sinA,|*
Sy

A, = arccos[—-cos (A; + A3)]

The problem has been reduced to the A5, S, , A, configuration.

m Condition 3: A3, S, and 4, (two angles and the included side) are
known:

Ag =arccos[-cos (Az + Ay)]

sinAj
So=8| ——
sinA,

S3=8,cosA5+ S,c08 A,

m Condition 4: S, A, and A, (one side and the following two angles)
are known:

Az =arccos|[-cos (4; + A3)]

The problem has been reduced to the 43, S, , 4, configuration.
m Condition 5: §;, S, (two sides and the included angle) are known:

S3=vS2+82 -2S8,5,c0s4,

The problem has been reduced to the S, S, S 3 configuration.
m For any triangle, the area is:

AREA = %SlsssinA3

* Two possible solutions exist if S, is greater than S, and 45 does not equal 90°. Both
possible answer sets are calculated.

1: Programming 59

To key in TRI X :

1. Create variables S1, S2, §3, 41, A2, A3, P, and AREA before pro-
gram entry.

2. Create labels RESULTS and SSASUB when you begin program
entry.

Here is an annotated listing of TRI X .

Program: Comments:

FoETa

L 5¥2-Bute Pram X
LEL "TRI&™

,.,_
[ROUR RN

-
—

D
(B
ol
M
g
—

5 Lines 03—12: Build the menu key
ki HER A assignments.

—
U A

[xn}

B A
= =

m w

[x]

n
m oo
-
M

.,_
[ix]

J T L

- -

[
Do RN I Y |

> HER B

[
o)
I

» HER C

,_
U A
= =

oMo
o

—_ .
[

2 KEY o ¥ER E

' MEHU Lines 13-16: Display the menu keys.
4 STOF

sER "RESULTS

GTO "TRIL"

bt et .
RN]

n

()

" LEL A Subroutine A, lines 17-59: Calculate
2 IMPUT "S1t the SSS solution.

IHFUT "2t

IHFUT "=zt

RCL "S1t

RCL+ "sav

22 RCL+ "s3v

el
P I

| I N I o
Do I I Y |

M
fg = 00

60 1: Programming

[na}

DN o B |

ORI LR

on

(13

I

=J

L0000 00 00 O3 G 03 O3 00 RI P R

au]

o
U}

5Ta "p
H12

LASTH
RCLx “"gzn
RCL "s1"
RCLx "53"

SORT

RCOS

5TO "A3"
SIH

RCLx "g1"
STO @a
RCL "P"
X2
LASTX
RCLx "S1*
RCL+ "s2"
RCL+ "S3"
SORT

ACOS

-
o<

=

} 5TO "A2"

RCL+ "AZ"

S5 +.—
 ACOS

S2 STO "AL"
A RTH

(s
-
X

i

DO S B S

o

LEL E Subroutine B, lines 60—-100: Calculate
IMFUT "=iv the SSA solution.

IMFUT "Z2v

IHFUT "R2"

1: Programming 61

SIH

RCLx "g2"
RCL+ "S1"
ASIM

STO "AZ"

SIN

RCLx "S1"
STO @@

HER "SSASUE"
RCL "s1"

RCL "s2"
HEY?

RTH

KER "RESULTS"
RCL "A3"

Cos

/-

ACOS

STO "AZ"

HER "SSASUE"
RTH

LEL "SSRSUE"
RCL "AZ"
RCL+ "A2"
oS

+/=

ACOS

STO "AL"

RCL "A2"

Cos

RCLx 52"
RCL "A2"

03

RCLx "S1n

RVt R w RN o T e e R B e T B e M B B I BN I n B L w A0 x s s 1Y

DouS R B U L A B - Y I B U Y N T SN IR Y I w TN I SO Y N I O I I T B LY s I 8

LYY d Y]

98 +
9% STO "S53
186 RTH

62 1: Programming

—
[y

LEL Subroutine C, lines 101 -126: Calcu-
IMFUT "Rz late the ASA solution.

IHFUT "=1t

IMFUT "H1"

RCL "A3"

ECL+ "AL"

Cos

4=

-
X

U o0 I N |
[T 1 O R T % I

[I]

ACOS
STO "RZ"
RCL "AZ"
RCL "=1t
= »RELC

-
[x,

OUNEN W B |

Pt bk bk pk ek ek ek ek ek b
[n]

ot
— -
-

—_
—_
r

121 5TO "s2
2z Rt

+
25 STO wSae

126 RETH

" LEL [Subroutine D, lines 127 -150: Calcu-
2 IMPUT "=ziv late the SAA solution.

IHFUT "AL1"

IMFUT "Az"

ECL+ "A1M

*COs

+.=

HCOS

STO YREC

ROCL "S1

]

on

1T

1: Programming 63

39 5T0 B
48 ROL "RE
141 1

142 +REC

143 R

144 +

145 STO "s2o
146 Rt

[y

142 +
149 STO ws3v
o8 RETH

on

LEL E Subroutine E, lines 151-194: Calcu-
IHFUT "siv late the SAS solution.

IMFUT "A1"

IMFUT "zzv

ECL "AL"

wma et

+RELC

t RCL O"sLt

+FoL

STO wsae

- RCL+ "S
» RCL+ sz

N
Joo O O

n

N

N
~J T

TN Cnoon

T T

T

1T

& STO "pv

T

-

T

AST:

RCLx szo
RCOL st
RCL= wgao

SRET

T T

[n)
Doy I I Y |

b b b peb ek b et b bk bt b bbb b b b b b b b b b b
[n)
[n I IS S o T % T S o SN o o Y |

R R

a0 e e

64 1: Programming

LU e R |

¥ OO I N I o BN i]

|

Do w I BN I n 4

fO D0 D D 0000 03 00 00 00 00 00 03 Q0
LR R

b b b e b bk pd b b h b ek b ek b b b b b b

£

woon0

w0

DoV w Y v]
DO R e L) B ST T T BT I xR I w A |

Do B U o U N]

AL
Do

—
Lot

LI I T T R I I T e R e T T e

o)

M
[¥u]

5T "AZ"
SIH

RCLx "1
STO 68
RCL "P"
K2
LASTH
RCLx "S1

STO "AZ2"

LEL "RESULTS" Subroutine RESULTS, lines 195 -208:
RCL 88 Calculate AREA and display the initial
RCLx "szv known values and the results.

el

STO “"REER"
VIEW "=51v
VIEW "AL"
VIEW "zt
YIEW "R2"
VIEMW "Sav
VIEW "R3"
VIEK "ARER"
ETH

EHD

1: Programming 65

To use TRl X :

1. Press TRI: .
2. Select a solution by pressing the corresponding menu key.

3. Input values as prompted. You can name any side S;. A, is the
adjacent angle. You can enter values in a clockwise or counterclock-
wise order. The values are displayed in the same order as they were
entered.

66 1: Programming

Enhancing HP-41 Programs

In chapter 11 of your owner’s manual, you keyed in and executed a pro-
gram originally written for the HP-41 calculator. That program, named
QUAD, solves for (real number) roots of quadratic equations. Two pro-
grams Q2 and Q3 in this chapter use HP-42S features and functions to
enhance QUAD. A third program QSHORT uses only 11 lines to solve
for quadratic equation roots.

Using Named Variables

In the HP-42S, data may be stored in and recalled from data storage
registers or named variables. Programs that use named variables for data
storage and recall can be easier to write and read.

In QUAD, the values of coefficients a, b, and ¢ are stored in and recalled
from data storage registers. In Q2 these values are stored in and recalled
from named variables a, b, and c. (Q2 also stores the values of the two
roots r; and r, in named variables RI and R2. In QUAD, these values are
calculated and displayed, but not saved.)

2: Enhancing HP-41 Programs 67

Usmg HP 428 Data Input and Output
Functions

Prompting for Data with INPUT

The HP-42S INPUT function enables programs to prompt for data in one
program line.

QUAD prompts for the value of a, then stores the value 24 in a data
storage register with the three-instruction sequence

a.: a it
FROMFT
STO @@

-
LU At

1
[n S I AY)

Y
M

Q2 uses INPUT (and the named variable a) to replace these three
instructions with one.

a3 IHFUT "a"

Displaying Data with VIEW

The HP-42S VIEW function enables programs to display data in one pro-
gram line.

QUAD displays the labeled value of r, with the three-instruction
sequence

29 "ROOTE="
26

8 ARCL
21 AVIEM

ot

Q2 uses VIEW (and the named variable R1I) to replace these three

instructions with one.

22 VIEW "R1LIM

68 2: Enhancing HP-41 Programs

6p"éwrations with HP-42S Data Types

Programs written for the HP-41 calculators can operate on only two data
types: real numbers and Alpha strings. Programs for the HP-42S, how-
ever, can also operate on complex numbers and matrices.

In QUAD, complex-number roots cannot be calculated; instead, if the
value b? - 4ac is less than 0, the calculation is halted and the message
ROOTS COMPLEY is displayed. In Q2, complex number roots are calcu-
lated, stored in variables, and displayed.

Using the Two-Line Display

Programs can effectively show longer messages in the HP-42S two-line
display. In Q2, the two-line message

Zero Input Inwalid.
Frez=z R-S to continue.

is displayed if 0 is supplied for variables a or c.

To key in Q2: Create variables a, b, ¢, R1, and R2 before program
entry.

Here is an annotated listing of Q2.

Program: Comments:

. 122-Bute Pram X Lines 01 -05: Display the 0-input error
LEL @& message.

"Zero Input Inuwa®

F'lid.4%Fress R-s5"

F' to comtinue."

FROMFT

o
Do

-

—

o

1 [0

Do T o T
o 0 [e

[x}
on

2: Enhancing HP-41 Programs 69

I
[yl

LEL "@z"
CPHRES
SF 21
IHFUT "a"

e T T
| ORI o BN o T Y |
[e
—
[
=
=

—
I O I N

INFUT b
IHPUT "c*
H=@7

GTO Q&

—
on

RCL "B
+.=
EHTER
H1E

T

DU I xR |

1
1
1
1

S RCL "b"

STO "R1"
YIEW "R1"

DO]
DO Y]

Lines 06— 15: Set the program to cal-
culate complex numbers, prompt for
the values of @, b, and c, and test if 0 is
supplied for a or c. (Flag 21 is set in
line 08 so that VIEW results are
displayed in PROFF mode, or printed
if PRON has been executed.)

Lines 16 —24: Calculate

Vb2 - 4ac

Lines 25-31: Calculate either

-b + Vb? - dac

2a

or

-b - Vb2 - 4ac
2a

depending on the sign of b. Lines 25—
27 ensure that the root that has the
greatest absolute value is calculated
first. This improves the accuracy of
the results.

Lines 32-33: Store the calculated
value in R1 and display R1.

70 2: Enhancing HP-41 Programs

34 RCL "c" Lines 34 -38: Calculate the second

35 RCL+ "a" root, store the value in R2, and display

25 RCL+ "RIM R2*

a7 STO "R2"

a3 VIEW "R2"

39 GTO "Gz Line 39: Return program execution to
label Q2.

48 EMD

Using Menu Variables

Q2 uses the INPUT function to prompt for the values of the program
variables a, b, and c. Q3 uses a variable menu to prompt for these values.
The corresponding program lines are highlighted in the following anno-
tated listing.

* The quadratic equation ax? + bx + ¢ = 0 can be divided by a (since a cannot equal 0)
yielding x2 + bx e 0 . This equation can be factored as (x - R,)(x - R,) where
R, and R, are the roots of the equation. By definition of the factoring process,

RDR) = % Therefore, R, = -(-‘1—23

2: Enhancing HP-41 Programs 7

To key in Q3: Create variables a, b, c, R1, and R2 before program
entry.

Program: Comments:

B8 £ 143-Bute Pram »
81 LEL @8
B2 "Zero Input Inuwa"
82 F'lid.4%Press R-S"
84 F" to continue."
B85 PROMPT

Be LEL "nzv Lines 06— 13: Declare menu variables
87 MYAR "a" a, b, and c, set the program to calcu-
a3 MWAR "b" late complex numbers, set flag 21, and
a3 MMAR "ot display the variable menu.

18 CPXRES

1 5F 21

12 VARMEHU "@3"
12 STOP

4 RCL "a"

5 H=@7

=
el
[}
=
o

+=
EHTER
Nz

4

FECL= "g"
RCLx "c"

ALRN L I 0

o

o

-

0P [B3 RS RS T T
oW

RCL "b"

300 [
[N u]
S o

—

o

-

=

72 2: Enhancing HP-41 Programs

DU N I X]

L) [SN

FI:L__ "n-n
28 STO "RLM
37 YIEW "R1"
2 RCL "ot
23 RCL+ "a"
48 RCL+ "R1"
41 STO “"RE"
42 YIEW "RZ"
= GTO "Rt
44 EHD

Assigning a Program to the CUSTOM Menu

When you created the global label Q3 in program line 06, that label was
automatically placed in the HP-42S program catalog. You can now exe-
cute Q3 by pressing

XEQ (BB

(requiring a minimum of two keystrokes, depending on where label
1= isin the program catalog).
Alternately, you can assign Q3 to the CUSTOM menu by pressing
B(ASSIGN] FGM @3

then selecting the desired row of the menu and pressing the desired menu
key in that row. The program now can be exccuted directly from the
CUSTOM menu with one keystroke.

2: Enhancing HP-41 Programs 73

Example: Executing an Enhanced HP-41 Program from the
CUSTOM Menu.

Part 1. Execute Q3 from the CUSTOM menu to find the roots of the
equation

x2+6x +1=0(a =1,b =6,c =1)

Assign Q3 to the CUSTOM menu using the keystroke sequence just
described. If you want to print the results, execute PRON. Start the pro-
gram from the CUSTOM menu.

(M(PRINT] [A] FOH) x: B.0000
BCUsToM) o= [al &L cl[[[|

Enter the values for a, b, and c. Then calculate R1. (If you are printing the
results, you won’t see this display.)

1 H |R1=-5.8284 |
6 = La 1 B 1 ¢ 1 1 |
1 i

R1 is calculated and displayed. Now check R2.

5

R2=-8.1716
Lo | & [¢ | | 1 |

Return to the start of the program for new data.

% -0.1716
T A I N

74 2: Enhancing HP-41 Programs

Part 2. Find the complex roots of the equation
2x2+x +3=0(a =2,b =1,c =3)

Set the angular mode to Rectangular. Enter the values for a, b, and c.
Then calculate R1. (If you are printing the results, you won’t see this
display.)

B(MODES) ‘RECT R1=-0.2500 -i1.1990
2 =1 L a] & | ¢ | | 1]
1 E
3 0
R1 is calculated and displayed. Now check R2.
R2=-0.2500 i1.1990
| o | & | ¢ | 1 1 |
Exit from Q3.
EXIT v: -8.2508 -1i1,1990
x: -0.2508 il1.1990

A Short Quadratic Program. In conclusion, here is an 11-line, 26-
byte quadratic equation solver.

g8 { 2e-Bute Pram
@1 LBEL "QSHORT"

= I

EHTER
EMTER
a2
RCL- S
SERT
STO+ S

Do R oy B oy B]
U I B DO) [S T
o ()]
— —
rJ —

=

—
—

EHD

2: Enhancing HP-41 Programs 75

To use QSHORT:

1. Set the calculator to Rectangular mode and to Complex Results
mode.

2. Key in the value < , then press [ENTER].
a

3. Key in the value LA .
a

4. Press (XEQ] GEHD .

76 2: Enhancing HP-41 Programs

The Solver

The material in this chapter builds on concepts introduced to you in
chapter 12 of your owner’s manual.

The following topics are covered:

m Basic use of the Solver.

= Providing initial guesses for the Solver.
= Emulating the Solver.

m Using the Solver in programs.

m More on how the Solver works.

Basic Use of the Solver

The general procedure for executing the Solver is:
1. Create a program that:
a. Uses MVAR to define the variable(s) in the equation.

b. Expresses the equation such that its right side equals 0. (Note
that each variable in the equation must be recalled to the X-
register.)

2. Apply the Solver to the program
a. Press H[S

b. Select the program by pressing the corresponding menu key.

c. Enter the value for each known variable by keying in the
value, then pressing the corresponding menu key.

d. Optional: Supply one or two guesses for the unknown variable
by keying in the guess(es), then pressing the corresponding
menu key.

3: The Solver 77

e. Find the value of the unknown variable by pressing the
corresponding menu key.

Example: Basic Use of the Solver. The equation of state for an
ideal gas is

PV = nRT
where:

P is the pressure of the gas (in atmospheres).

V is the volume of the gas (in liters).

n is the weight of the gas (in moles).

R is the universal gas constant (0.082057 liter-atmosphere/Kelvin-mole).
T is the temperature of the gas (in Kelvins).

Part 1. Create a program for the Solver that declares the variables and
expresses the equation.

First, set the right side of the equation equal to 0.

PV -nRT =0
Now write the program.
Program: Comments:
BE L 4Z2-Bute FPram
841 LEL "GRS"
@z MVAR “P" Lines 02-05: Declare the variables.
E1 'E: r,1 I‘:"HF: " I".I n
a4 MYAR "0
a5 MyAR T
A& RCL “P" Lines 06 —-12: Express the equation
A7 RCL= "y such that its right side equals 0.
Bz RCL "m"
B3 RCL= T
18 B.B822857
11
12 -
12 EHMD

78 3: The Solver

Part 2. Use the Solver to find the solution to the following problem.

Calculate the pressure exerted by .305 mole of oxygen in .950 liter at
150 °C (423 K), assuming ideal gas behavior.

Select the Solver application.

B(SOLVER] Select Solve Program
(Gas | 1 1 [1| |

Select the program you just created.

GRS

x: 8.00008
L P | v | N] T] [|

Enter the values for the variables you know.

95 W T=423. 0000
305 M [P [¢ [N [1 [[
423 T

Solve for the pressure.
F P=11.1438
L P 1 ¥ I N 1T 7T] 1 |

Part 3. Given the same volume and weight of oxygen, what is the tem-
perature of the gas at a pressure of 15 atmospheres?

Since the values of the volume and weight are unchanged, you need only
enter the value of the pressure.

15 F P=15.0600808
LP 1 ¥ I NT T] 1 |
Now solve for the temperature.
T T=569.3763
Le | v I N JT T 1 1 |

Exit from the Solver application.

v: 969.3

x 3.3

~~
oo
W

3: The Solver 79

Providing Initial Guesses for the Solver

For certain functions, it helps to provide one or two initial guesses for the
unknown variable. This can speed up the calculation, direct the Solver to a
realistic solution, and find more than one solution, if appropriate.

Directing the Solver to a Realistic Solution

Often, the Solver equation that describes a system may have solution(s)
that are mathematically valid but that do not have physical significance.
In these cases, it may be necessary to direct the Solver to the realistic
solution by providing appropriate initial guesses.

Example: Directing the Solver to a Realistic Solution. The
volume of the frustum of a right circular cone is found by

= %—wh @+ ab + b?)

where:

V is the volume of the frustum.

h is the height of the frustum.

a is the radius at the top of the frustum.
b is the radius at the base of the frustum.

80 3: The Solver

Part 1. Write a Solver program that declares the variables and expresses
the equation such that its right side equals 0.

a8 { 45-Bute Pram
81 LEL "COHE"

Bz MYAR "W
MYAR "h"
MYAR "a"
MYAR “"B"

o B B
L I

RCL "a"
M2
LASTX
RCLX "Bb"
+

RCL "b"
M2

+

RCLx "h"
PI

>

!

RE:L__ " l"ll "

—_ e et e e e = T S

— . -
DI o T o) (Y S T LN i U Y S R et B]

28 EHD

For the purposes of this example, assume that you have already created
variable @ and used it in a previous program. Assume that the value
—3.7765 is currently stored in @ . (Go ahead now and store that value in a
by pressing 3.7765 R

3: The Solver 81

Part 2. For a frustum of volume V' = 119.381 meters, height h = 6
meters, and radius b at the base of the cone = 3 meters, use the Solver to
find radius a .

Select the Solver application and then program CONE.,

SOLVER] COHE lx: -3.7765 |
BisoLVER L v T W [T w [&] [|

Enter the values for the known variables.

119.381. % |b=3. [a]5]%) l
6 H Lv I H | o | & J 1 |

3: B

Solve for a.

H a=-5.066060
Lv [u [a | & [1 |

The Solver uses the current value of variable @ (—3.7765) as an initial
guess and finds the solution @ = -5 meters. The answer is mathematically
valid. However, a negative radius clearly has no physical significance. Try
guesses of 0 and 5.

0 H 3=2. 0000
5 f I-:--r-n—-l

H

The value 2.0000 meters for radius @ is mathematically valid and has phy-
sical significance.

Exit from the Solver.

EXIT] [EXIT

82 3: The Solver

Finding More Than One Solution

The equation of motion for an object experiencing constant acceleration
due to gravity is

Yy =Yotvol + %gtz
where:

y is the total displacement.

Yo is the initial position.

v, is the initial velocity.

g is the acceleration due to gravity (- 9.8 meters/second?).
t is the time.

In your owner’s manual in section "More Solver Examples" in chapter 12,
you solved several problems in which an object was dropped from an ini-
tial position; v, was equal to 0 and the direction of the object’s motion was
down at all times. The object attained a given displacement y at only one
time ¢t. However, an object thrown upwards attains a given displacement y
at two different times —once on the way up, and again on the way down.

tq t2

3: The Solver 83

To find both times ¢, and ¢,, you must execute the Solver twice, and at
least once provide the Solver with an initial guess to direct it to the second
solution.

Example: Using the Solver to Find Two Real Solutions. A boy

throws a ball with an initial vertical velocity v, = 15 meters/second, from

an initial height y, = 2 meters. Use the Solver to find the two times f, and
t> when the ball has a height y = 5 meters.

Part 1. Create a Solver program that declares the variables and expresses
the equation such that its right side equals 0.

BE £ S2-Bute Pram X
81 LEL "MOTIOH"
B2 MVYAR "y

Bz MYAR "ug@"

84 MVYAR "wa"

85 MVARA "t

B RCL "wg@"

a7 RCL "wa"

B2 RCLx "t"

83 RCL "t"

18 H+2

11 -9.8

12 =

12 2

14 =+

15 +

1e +

17 RCL- "y

12 EHD

84 3: The Solver

Part 2. Execute the Solver to find the first time ¢, . Since you know that
this time is close to 0 seconds, provide initial guesses of 0 and 1.

Select the Solver application and then program MOTION.
B(SOLVER]) MOTIO

Enter the values for the known variables.

50 ¥ |UG=15.BBBB |
'y Ly L we [Mo [¥] [|

15 V@

Solve for time ¢, using initial guesses of 0 and 1.

0. 1 t=0. 2151
1007 I T T Y
T

The Solver finds the value of t; = 0.2151 seconds. Now find the second
time ¢, by providing two initial guesses that you can expect to bound the
second solution. Guesses of 1 and 20 seem reasonable. (You need not
enter values for the other variables since they have not changed.)

t=2.8461
L v [wo [wo [7 [[|

T
The Solver finds the value of ¢, = 2.8461 seconds.

Exit from the Solver.

EXIT] [EXIT v:
x:

3: The Solver 85

Emulating the Solver in a Program

For certain types of functions, the Solver algorithm cannot find solutions.
For example, the Solver cannot solve for complex numbers. However, for
such functions, you can write a program that finds explicit solutions and
acts like the Solver during program execution.

First, consider the following simple circuit.

M
=)

Ohm’s law defines the relationship between the voltage potential E, resis-
tance R, and current / for this circuit as

|+

m
il

E =1R

Since there are no complex terms in this equation, the Solver can be used
to find the value of any variable in the equation.

86 3: The Solver

Example: Using the Solver for a Simple Resistive Circuit. For
a simple resistive circuit, use the Solver to find the resistance R when the
voltage E = 10 V, and the current] = 5 A.

First, create a Solver program that declares the variables and expresses
the Ohm’s law equation such that its right side equals 0.

aa { 29-Buyte Pram
a1 LBL "CIRCUIT"

@z MvYAR “E"
@3 MVYAR "I1"
B4 MYAR “R"
@5 RCL "I"
@6 RCLx "R
@7 RCL- "E"
a3 EHD

Select the Solver application and then program CIRCUIT.

B(SOLVER) CIRCU % 0. 0000
I I S N W

Enter the known values for E and I, then solve for R.

10 R=2.080808

Le [+ [R T 1 1 |
Exit from the Solver application.
[EXIT] (EXIT] v: 2.00008

x: 2.00080

3: The Solver 87

Now consider the following circuit.

R

W

™ C

Application of Ohm’s law to this circuit results in the following expression.
E =17
where:

E is the circuit voltage.
I is the circuit current.
Z is the circuit impedance.

The impedance Z is the complex number (in rectangular form)

where:

R is the circuit resistance.
w is the circuit frequency (in radians/second).
C is the circuit capacitance.

Because the voltage, current, and impedance are complex numbers, you
cannot use the Solver to find their values. However, the HP-42S can per-
form arithmetic operations on complex numbers. (Refer to chapter 6 in
your owner’s manual for a discussion of complex-number arithmetic.) The
following program, EIZ, solves explicitly (algebraically) for the complex
numbers E, I, and Z, and uses a variable menu to simulate the external
appearance of the Solver. (Refer to the section "Using a Variable Menu"
in chapter 9 of your owner’s manual for a discussion of variable menus.)

88 3: The Solver

Here is an annotated listing of the program.

Program: Comments:

ga L 9e-Bute Pram X

@1 LEL "EIZ"

B2 MVYAR “"EL" Lines 02-05: Declare variables E, I,

a3 MVAR “"IgL and Z and build the variable menu.

84 MYAR "Z24

85 WARMEHU "EIZ"

@& FOLAR Lines 06—12: Set the calculator to

a7 CPXRES Polar mode and to calculate complex

a2 CLA results. Suspend program execution

83 STOP for data entry. If a variable to solve for

18 ALEHG has not been specified, return to the

11 ¥=87 start of the program.

12 GTO "EIZ"

12 ASTO 3T & Lines 13—-17: Recall the current Alpha

HEG IHD 5T ® string to the X-register and execute

15 STO IHD ST Y the corresponding subroutine. (The

16 WIEW IMWD ST Y current Alpha string is the name of

17 GTO “"EIZ® the variable for which no value is sup-
plied.) Store the calculated result from
the subroutine in the Y-register and
view the result. Then return to the
start of the program.

12 LEL "E&" Subroutine E X, lines 18 —21: Calcu-

19 RCL "Ig" late E X in terms of /X and RA..

26 ROLx "Z&"

21 ETH

© LBEL "Ig® Subroutine I.X., lines 22-25: Calcu-
'z RCL O “"EL™ late /X interms of EX and Z A .
ROL= "Za"

ETH

3: The Solver 89

[n4d

LEL "Z£" Subroutine Z X., lines 26 -29: Calcu-

2¥ RCL "E&L" late ZX interms of EA and 1 X..
28 RCL+ "Ig"

29 RETH

28 END

(Line 06 sets the calculator to Polar mode. Multimeters typically display
complex voltage, current, and impedance values in polar form, that is, as a

magnitude and phase angle.)

Example: Calculating Complex Values In an RC Circuit. A
10-volt power supply at phase angle 0° drives an RC circuit at a frequency
of 40 radians per second. A current of .37 A at phase angle 68° is meas-
ured. What is the resistance of the circuit? What is the capacitance of the

circuit?

Begin program EIZ.
ElZ

Enter the known value for the voltage.

10 [ENTER] 0 B(COMPLEX

Enter the known value for the current.

.37 [ENTER) 68 B(COMPLEX

Solve for the impedance.

s

90 3: The Solver

|><: 0. bvB8 I
[E< | 18 fad |] | |

E<=10.08000 <06.8000
LE< [1& faa | [] |

1£=0.3700 <68.0000
[E< | 14 Jad |] | |

Z24=27.8270 £-68.0000
LE& [14 [ad | | | |

The impedance of the circuit (in polar form) is 27 1 at phase angle —68°.
Convert the impedance to rectangular form to find the circuit resistance
and capacitance. (Remember, R is the real term and C is one factor in the
imaginary term of the rectangular form of the impedance Z.)

B(MODES] RECT x: 10.1245 -125.8590
[E4 [1d e | | | |

The circuit resistance is 10 Q2. Now calculate the capacitance.

COMPLEX] x: 8.8018
40 [x) |mlmm--—|

B(TOP.FCN] 1+

The circuit capacitance is .001 F.

If, at the original input voltage, the impedance is now varied and measures
20 2 at phase angle —45°, what is the current?

Return to polar mode. Then enter the new value for the impedance and
solve for the current.

B(MODES) FOLAR 14=0.50080 <45.0000
20 45 (€<] 1a [2a] [| |

B(COMPLEX] 24
Iz

The current is 0.5 A at phase angle 45°.

Exit from EIZ.

EXIT v: "IL"
x: 8.5000 £45.0000

3: The Solver 91

Using the Solver in Programs

Using the Solver and Explicit Solutions in a
Program

The Solver uses an iterative method to find solutions for the variables in
an equation. You must use an iterative method to find the solution for a
variable that cannot be isolated (cannot be expressed uniquely in terms of
the other variables in the equation). However, in cases where the
unknown variable can be isolated by algebraic manipulation, an explicit
solution for that variable is always faster than an iterative solution using
the Solver.

Some functions may contain a variable whose value must be found itera-
tively, and other variables whose values can be calculated explicitly. In
your owner’s manual, in the section "More Solver Examples" in chapter
12, you worked an example in which the Solver was used to find the solu-
tions to time-value-of-money (TVM) problems. The TVM equation is

- iy-N
= -PV + (1 +ip) PMT 1—&)—] +FV (A +i)N
]

where:

N is the number of compounding periods or payments.
i is the decimal form of the periodic interest rate.

PV is the present value. (This can also be an initial cash flow or the
discounted value of a series of future cash flows.) PV always
occurs at the beginning of the first period.

PMT is the periodic payment.

FV is the future value. (This can also be a final cash flow or the
compounded value of a series of cash flows.) It always occurs at
the end N* period.

p is the payment timing. If p = 1, payments occur at the beginning
of the period. If p = 0, payments occur at the end of the period.

92 3: The Solver

In the example in your owner’s manual, you wrote a program TVM that
declares each of the TVM variables and expresses the TVM equation.
The Solver is used to find the solution for each of the function variables.
Notice, though, that the variables PV, N, FV, and PMT can each be iso-
lated. For example, PV can be expressed as

PV = -(1 + ip) PMT

1-Q+ 7 1;'" =] -FV @A +i) N

Only the variable i cannot be isolated; you need to use the Solver only
when you want to find the value of i.

The following program, TVM2, calculates the solutions to PV, N, FV, and
PMT explicitly, and calls the Solver to find the solution for i. The pro-
gram uses a programmable menu and flag 22, the Numeric Data Input
flag, to simulate the external appearance of the Solver application.

To key in TVM2: Create variables P/YR, p, CNTRL, N, FV, MODE,
PMT, i, I%YR, and PV.

Here is an annotated listing.

Program: Comments:
BE L S5233-Bute Pram 3
81 LEL "Tvmz"
B2 REALRES Lines 02-15: Ensure results are real
Az CF 21 numbers. Display AVIEW messages
a4 12 and continue program execution. Call
A5 SF 25 subroutine 21 to set the default pay-
ge RCL "FPoYRY ments per year to 12. Set the default
a7y HER 21 payment mode to End mode. Call sub-
BE SF 25 routine 20 to display the payments per
@3 RCL e year and the payment mode.
18 CF 25
11 1
12 =B=y47

2 a
14 STO "p"
15 ©ER 2@

3: The Solver 93

[na)

U R N I e
O U R o I B |

LEL 29
CLMEHU

nEyn

KEY 1 ®ER 81
nInYRY

EEY 2 HER 8z
" F..'n" "

EEY 2 HER B2
"PHT"

=3 KEY 4 RER 84

T Fl't'l "

4

[o T T o T

n

&

Do RS I x)

—

4
4

()]

94

FEY 5 ¥ER 85
"MODES"

2 EEY & GTO B8

MEHLI

STOF

ASTO "CHTREL"

STO IML "CHTREL"
VIEW IHD "CHTRL"

GTO 99

LEL 2@

CLA

RCL PR
ALF

B PovRY
RCL "p"
H=@7
F' EHD MODE"
HEET
k" BEGIM MODE"

= AYIEHW

CLMEHL
FTH

3: The Solver

Lines 16 -35: Build the main menu,
display it, and wait for data input
(lines 17-31). Display the value of the
entered or calculated variable (lines
32-34).

Subroutine 20, lines 36— 48: Build and
display the payments-per-year and
payment-mode message.

onon b

M = o0

anoanon o OnoCn oOn oo
DoUsy WU B R I G

(g}

[S

[

T T

D I G

[a e A R Y

T
DU o o N B e 1

=] =] =] =]

DOV PR

-] =
LN

o

=] =]

-]

DS w B]

D B B N |

—

LEL @& Lines 49-62: Build and display the
“ER 2B payments-per-year and payment-mode
"PoYRY menu.

KEY 1 ¥ER 21

"BEG"

EEY 2 RER 22

"EHD"

FEY 2 RER 22

"TWM

KEY 4 GTO "TWMz"

MEHL

RCL "PoYR"

STOF

GTO G&

LEL 21 Subroutine 21, lines 63-73: Check if
AES the specified number of payments per

IF year is valid. If not, substitute 12 pay-
1688 ments per year.

STO "FoYR"

LEL 22 Subroutine 22, lines 74-77: Set pay-
1 ment mode to Begin by supplying 1 for
sTO "p" p-

LEL 2= Subroutine 23, lines 78 -81: Set pay-
& ment mode to End by supplying 0 for
5TO "p" p-

3: The Solver 95

N of T

LS B u BT o w R u B xR w0
N WMo @000 M

LY RS
o

98

99

180
181
1a2
182
184
185
185
187y

[xa]
o

—_
Doy o
[¥u]

118
111
112
1132

LEL 81
Upyn
FS?C 22

1

STO “"H®

HEQ 18

RCL "Fy"
RCL+ "MODE"
+/—

RCL "PHT"
RCL "i"
®=@7

GTO &

+

LASTH

RCL "pPy"
RCL+ "HMODE"
+

LH

RCL "i"
LH1+X

RTH

: LEL Ba

RCL "Py"
RCL+ "Fy"
RCL+ "PMT™
+/-

RTH

3: The Solver

Subroutine 01, lines 82— 107: If
numeric input is made for N, return to
the main menu and display the value
of N. If not, calculate N in terms of
the other variables. If i = 0, go to label
00 to calculate N (lines 93-95).

Lines 108 -113: Calculate N if i is 0.

114 LEL B2

115 "IxvYR"

11e FS?C 22
117 ETH

118 PGMSLY "it
112 a8

126 STO "IXYR"
121 26

122 SOLVME "IXY

122 RTH

LEL "i"
HER 18
RCLx "FMT"
HBY

RCLx “Fyo
+

RCL+ "pye
RTH

R I I I S

L T~ S SN
DO NI O OO S S I Y]
DoUEN v] =]

—

LEL &2
"Fll...lll
FS?C 22
ETH

RER 18
RCLx “"PMT"
wOEY

RCLx “FW
+

+.=

RTH

Loy B S U LV

DB w B n R |

- b b b b ek b b ek b

—
b B 00 Q0 00 00 Q0 03 Q0 0

[

—

143 LEL @4
144 "FMT"
145 FS7C 22
146 RTH

147 HEQ 18

148 HOY

F:ll

Subroutine 02, lines 114-123: Use the
Solver to calculate I%YR. Specify the

Solver subroutine

"in

guesses of 0 and 20 for I%YR.

. Supply initial

Subroutine "i", lines 124 -131: Express
the TVM equation for the Solver.

Subroutine 03, lines 132-142: If
numeric input is made for PV return
to the main menu and display the

value of PV. If not, calculate PV in

terms of the other variables.

Subroutine 04, lines 143 -154: If
numeric input is made for PMT,
return to the main menu and display

the value of PMT. If not, calculate
PMT in terms of the other variables.

3: The Solver

97

. e e s
nooanan dnoan QN e
n OO TN O I o Y)

o0

=

TN CnoCnoCn

T

1o 1

el e
T T Ty [n3
[} I SN DoV]

T

T T T T
[n}

[ng
Do RN w I B |

[I S I Y

T

-]

DoV W x]

1

O w I B T B B I B BN (Y I (Y |

b bt bt b b b ek ek bk b bk b b bk bk ek b bk b b b

TN

98

RCLx “"Fyn
RCL+ "F4
nOy

T e

RETH

LEL @5
n F II.II "
FS?l 22

FETH

2 oRER 18

FCL= "PMT"
RCL+ "F.v

+=
FETH

= LEL 18

FECL "IXYE"
RCL+ "PoYR"
1848

SToO it
RCLx "p"

1

+

STO "MODE"
1

EHTER

RCL+ "i"
RCL "H"

4=

Yt

STO 5T 2
RCL:= "HMODE"
SF 25

FCL+ "1t

3: The Solver

Subroutine 05, lines 155-165: If
numeric input is made for FV, return
to the main menu and display the
value of FV. If not, calculate FV in
terms of the other variables.

Subroutine 10, lines 166 —188: Calcu-
late terms of the TVM equation based
on the value of I%YR. Calculate i; the
decimal form of the periodic interest
rate (lines 167-171). Calculate
MODE (1 + ip) (lines 172-175). Cal-
culate the FV coefficient (1 + i)™V
(lines 176 - 182). Calculate the PMT
coefficient. If i = 0, go to line 189
(lines 183 -188).

187V FS7C 25
182 RETH
139 1 Lines 189-191: If i = 0, then the FV/
128 RCL "H" coefficient is 1 and the PMT
191 EHD coefficient is N.
To use TVM2:

1. Press TWHE .

2. Supply values for the known variables. For example, press 60

H

3. Solve for the unknown variable by pressing the corresponding menu
key.

4. TVM2 uses the variable /%YR to prompt for and display the
interest rate. I%YR is the percent form of the annualized interest
rate.

5. The default payment period is one month (12 payments per year).

The default payment timing is the end of each period. To specify a

different payment period or payment timing, first select the MODE

menu. Then, for example, to specify six payments per year, press 6
PAYR .

To specify payment timing at the beginning of each period, press
EEG .

To return to the main menu, press T4HM .

Example: Executing Algebraic Solutions for TVM Problems.
In the section "More Solver Examples" in chapter 12 of your owner’s
manual, Penny of Penny’s Accounting wants to calculate the monthly pay-
ment PMT for a 3-year loan financed at a 10.5% annual interest rate,
compounded monthly. The loan amount is $5,750.

In that example, you executed the program TVM to calculate the value
PMT = —-186.89. TVM uses the Solver to calculate PMT. The calculation
takes about three seconds with initial guesses of 0 and —500.

Part 1. Use TVM2 to calculate the value of PMT explicitly.

3: The Solver 99

Set the display format to FIX 2. Then execute TVM2.

BWDISP]) . EIX 2 12 P/YR___END MODE
TVHEZ [N_L1xif | PV | PMT | Py |MOCE]

Enter the known values.

5750 FBY FV=0.80

105 I%YR I T O T O T
36 H

0 F¥

Solve for the payment.

FMT PMT=-186.89
[N_[izvR | Py [PHT] FY¢ [HOCE]

The explicitly calculated value is —186.89 (the same as when you used
TVM) and the calculation takes less than one second. Also note that the
calculation time is independent of the previously calculated value PMT.
(The Solver interprets the previously calculated value as a guess if two
guesses are not supplied. The explicit solution does not use guesses.)

Part 2. Another bank has offered to loan Penny’s customer $5,750, to be
paid in monthly installments of $200. What interest rate is this bank
charging?

200 BHT I%YR=15. 24
CIEYR |I:-lmslmmnmnsl

TVM uses the Solver to calculate the new interest rate. The Solver uses
the guesses 0 and 20 (supplied by the program) to start its iterative search.
The calculation takes about 11 seconds.

Exit from TVM2 and return the display format to FIX 4
EXIT v 15.2393
BDISP] FIX 4 [ENTER) x: 15,2393

100 3: The Solver

Using the SOLVE and PGMSLYV Functions with
Indirect Addresses

In the previous section, you used the SOLVE function in TVM2 to find
the value of the interest rate i in the TVM equation:

122 SOLVE "IxYR"

You used the PGMSLY function to specify the routine that expresses the
TVM equation:

118 PGMSLY "it

In TVM2, the SOLVE and PRGSLYV instructions directly address the vari-
able and the subroutine. Such use of direct addressing enables you to
specify only one Solver routine and, within that routine, only one variable.
However, the use of indirect addressing expands the utility of the Solver by
enabling you to specify any of multiple routines, and any of multiple vari-
ables.

Example: Using SOLVE with an Indirect Address. Restating the
ideal gas equation of state:

PV -nRT =0

The "van der Waals" equation of state refines the ideal gas equation to

[P+":/Z](V—nb) -nRT =0

where a and b are constants characteristic of the gas in question.

Part 1. Write a program that enables you to solve for the value of any of
the variables using either the ideal gas or van der Waals equation of state.

3: The Solver 101

Here is a flowchart for the program, named GAS2.

@D

v

DECLARE MENU
VARIABLES

!

DISPLAY VARIABLE MENU
FOR DATA INPUT

KEY 1 iKEYZ lKEYS ¢KEY4 ¢KEY5 KEY 6
V IIPII IIVII llnll IITH llall V llbll

STORE NAME OF
UNKNOWN VARIABLE
FROM ALPHA REGISTER
TO VARIABLE CONTROL
SPECIFY SOLVER
PROGRAM WAALS
[SOLVEFOR |
|UNKNOWN VARIABLE |
WAALS
VIEW SOLUTION
EXPRESS THE
VAN DER WAALS
EQUATION

® v

102 3: The Solver

Here is an annotated listing of the program.

Program:

B8 { 129%-Bute Pram
81 LBL "GASZ"

82 MVAR P

Bz MVAR "W

a4 MVAR "n"

85 MYAE "T

Be MVYAR "a"

a7 MVAR "b"

B8 YARMENU "GRSZ"

@3 CF 21

18 REALEEES

11 =TOF

12 ASTO "COMTROL"

13 PGMSLY "WAALS"

14 SOLVE IHD "COWTEROL®
15 VIEW IHD "COMTROL"
1 GTO "GRSZ"

LEL “MWAALS"
RCL P
" rl "

=1

F' ': L " "-'I "

1 -
b I
D
-

| R N N I i
"\l Do RN o T e |

el

(]

l_'

rn
o W b "

Comments:

Lines 02-08: Build the variable menu.

Lines 09-16: Clear flag 21 to continue
program execution after a VIEW
instruction. Set to calculate real results
only. Display the menu. Store the
name of the unknown variable in
CONTROL (line 12). Specify Solver
routine WAALS (line 13). Indirectly
specify the variable to be solved (line
14). View the solution and return to
label GAS?2 (lines 15-16).

Lines 17-34, the Solver routine
WAALS: Express the van der Waals
equation such that its right side equals
0.

3: The Solver 103

DO R I A
=S P
eal
[
-
3

o
n
m
]

Part 2. Use the van der Waals equation of state to calculate the pressure
exerted by 0.250 mole of carbon dioxide in 0.275 liter at 373 K, and com-
pare this value with the value expected for an ideal gas. For CO,,

a = 3.59 liters? - atmosphere/mole?, and b = 0.0427 liter/mole.

Execute GAS2.

GHEZ x: 8.08080
(P [v [N | ¥ | n | E |

Enter the values for the known variables.

250 H |b=8. 0427 |
275 [P | v | N | T | & | E |

373 T
359 H
.0427 E

Enter guesses of 10 and 30 for P, and solve for P.

10 P P=25.9816
30 F |nu-r-nn“|

F-

Using the van der Waals equation of state, the predicted pressure is
25.9816 atmospheres.

Now use the ideal gas equation to predict the pressure. Simply supply the
value 0 for @ and b and solve for P. The previously calculated value for P
serves as an initial guess.

0 H P=27.8248
0 E L P I v I N T T | a | E |

104 3: The Solver

The ideal gas equation predicts a pressure of 27.8248 atmospheres. (The
actual observed pressure is 26.1 atmospheres.)

Exit from GAS2.
EXIT

More on How the Solver Works

The Root(s) of a Function

To use the Solver, you have learned that you first create a program that
expresses the equation such that its right side equals 0 (by subtracting the
terms on the right side from both sides of the equation). If the equation
has more than one variable, you must, after selecting the Solver applica-
tion, supply values for all but the one unknown variable. At this point,
your equation has taken the form f(x) = 0, where x is the unknown vari-
able, and f(x) is a mathematical shorthand for the function that defines x.
Consider the equation

2x2+xy +10 =3xz + 2z

Setting the equation equal to 0 by subtracting the terms on the right side
from both sides gives

2x2+xy +10-3x2 -2z =0

To use the Solver, you now write a program that declares the variables x,
y, and z and expresses the equation. When you select the Solver applica-
tion and, for example, supply the value 2 for y, and 3 for z, by substitution
the equation becomes

2x2-7x -2=0

where x is the unknown variable and f(x) = 2x? - 7x — 2. Each value x
for which f(x) = 0is called a root of the function. The Solver iteratively

3: The Solver 105

seeks a root for f(x) by evaluating the function repeatedly at estimates of
x, and comparing the results to previous estimates. Using a complex algo-
rithm, the Solver intelligently "predicts" a new estimate of where the graph
of f(x) might cross the x-axis. Here is a graph of the function

f(x) = 2% - Tx - 2. The graph shows two roots. (The example on pages
110-112 calculates these roots.)

f(x)
A

All except one of the functions in the examples in this section are func-
tions of one variable x only. Remember, though, that the situations
described in the examples apply equally to multivariable functions, since
multivariable functions become single variable functions when, in the
Solver application, you supply values for the known variables.

106 3: The Solver

The Solver’s Ability to Find a Root

For the Solver to find a root, the root has to exist within the range of
numbers of the calculator, and the function must be mathematically
defined where the iterative search occurs. The Solver always finds a root
if one or more of the following conditions is met:

m Two estimates yield f(x) values with opposite signs, and the function’s
graph crosses the x-axis in at least one place between those estimates
(figure 3-1a).

m f(x) always increases or always decreases as x increases (figure 3-1b).

m The graph of f(x) is either concave everywhere or convex everywhere
(figure 3-1c).

m If f(x) has one or more local minima or maxima, each occurs singly
between adjacent roots of f(x) (figure 3-1d).

f(x) f(x)

;"V’" ;,u \‘\ /
// > x / \ / > x

Figure 3-1. Functions for Which a Root Can Be Found

3: The Solver 107

In most situations, the calculated root is an accurate estimate of the
theoretical, infinitely precise root of the function. An ideal solution is one
for which f(x) exactly equals 0. However, a nonzero value for f(x) is often
also acceptable, because it results from approximating the root with lim-
ited (12-digit) precision.

Interpreting the Results of the Solver

The Solver returns data to the stack registers on completion of its iterative
search for a root of the specified function, and in four conditions, returns
a message to the display. These messages and data can help you interpret
the results of the search:

m The X-register contains the best guess. This guess may or may not be
a root of the function.

m The Y-register contains the previous guess.

m The Z-register contains the value of the function f(x) evaluated at the
best guess.

m The T-register contains a code 0—-4 that indicates the Solver’s
interpretation of its search for a root. (This code is displayed in the
current display mode; in FIX 4, code 0 is displayed as 8.888a.).

108 3: The Solver

Code in
T-register

Interpretation

0
1

The Solver has found a root.

The Solver has generated a sign
reversal in f(x) at neighboring
values of x, but f(x) has been
strongly diverging from 0 as x
approaches the two neighbors
from both sides.

The Solver has found an approxi-
mation to a local minimum or
maximum of the numerical abso-
lute value. If the solution is
+9.999999999999 x 10%%, it
corresponds to an asymptotic
extremum.

One or both initial guesses lie out-
side the domain of f(x). That is,
f(x) returns an error when
evaluated at the guess points.
f(x) returns the same value at
every point evaluated by the
Solver.

Exttremum

Bad Guessi{ez)

Constant?

When a Root Is Found. There are two cases in which a root is found:

m In case 1, the calculated root sets f(x) exactly equal to 0 (figure 3-2a).

m In case 2, the calculated root does not set f(x) exactly equal to 0, but is
a 12-digit number adjacent to the place where the function’s graph
crosses the x-axis (figure 3-2b). This occurs when the final two esti-
mates are neighbors (they differ by 1 in the 12th digit) and f(x) is posi-
tive for one estimate and negative for the other. In most cases, f(x)
will be relatively close to 0.

3: The Solver 109

f(x) f(x)

Figure 3-2. Case When A Root Is Found

In both cases, the code in the T-register is a 0 and no message is
displayed. You can differentiate between the two cases by:

m Viewing the contents of the Z-register (the value of f(x) at the calcu-
lated root). For a case 2 solution, it will be a nonzero number.

m Comparing the best guess (the contents of the X-register) and the
previous guess (the contents of the Y-register). For a case 2 solution,
the guesses differ by 1 in the 12th digit.

= Immediately solving again for the variable. For a case 2 solution, the
Solver will return the message Zizn REewsr=al on the second
attempt to find the root.

Example: A Case 1 Solution with Two Roots. Find the two roots
of the equation

2x2-7x -2=0

Express the function in program AA.

"
L

L 25-Bute Fram
LEL "ARA"
MWYAR "R
RECL "R

.,_
2B ot B oy |
DOC SN S x|

110 3: The Solver

-+
M

DoV acn]
T N b

N Rt

[l
[0}

%

SCLx "Rt

[n]
AR |

g I e oo |
I oy Y v]
LI |

m
=

Set the display format to ALL. Select the Solver application and then pro-
gram AA.

B0DISP) ALL %: B
B(SOLVER) L« 1 1 I 1 J |
HA

Enter guesses of 1 and 5 for x. Solve for x.

1 b X=3.765564437088
5 L& 1 1 1 1 1 |

i
)

Roll the stack contents down to see the previous guess.

%: 3. 765956443708
(w1 T T 1T T

The estimates are the same in all 11 decimal places. Roll the stack con-
tents down to see the value of f(x) at the root.

x: B
L« [1 [[[]

f(x) is exactly 0. Now enter guesses of —0.1 and -1 for the second root
and solve.

A X=-2.65564437B75E-1
1 L Le 1 1 1 1 1 |

3: The Solver 11

Roll the stack contents down to see the value of f(x) at the root. Again,
f(x) is exactly 0.

x: 8
[I O S

Exit from the Solver and return the display format to FIX 4.

EXIT v: B.08000
WOISE] FI¥ 4 ENTER] x: 8.0808080

Example: A Case 2 Solution. In the example on pages 101-105 in
this chapter, you found the value of the pressure P in the ideal gas equa-
tion of state given values for the other variables V, n, and T.

Using the same values for the variables V, n, and T, solve again for P.

Set the display format to ALL.

BDISP] fHLE Select Solve Program
Gesa] 1 1 1 1| |

Start program GAS2. (Reenter the program if you have cleared it from
the calculator.)

GHE2 |x: %] I
L P 1 v [N T | & | E]

Enter the values for the known variables and solve for the pressure.

25 H P=27.8247827273
75 |nn-:--:-n|
0o H

Roll the stack down to see the previous estimate.

%: 27.8247827272
(P [v TN 17T 1 a[6E]

112 3: The Solver

The estimates differ by 1 in the last decimal place. Roll the stack down to
see the value of f(x).

% 0. 000PO0DO0O 1
(P 1 v I NT T 1w E]

The value of f(x) at the root is a very small nonzero number. The root is
not an exact root, but it is a very good approximation. Exit from the pro-
gram and return the display format to FIX 4.

EXIT v: B.08000
i‘g EIw 4m] x: 1.0000E-11

Problems That Require Special Consideration. Some types of
problems require special consideration. The following function has a
discontinuity that crosses the x-axis.

el BN > x

The Solver will return an x-value adjacent to the discontinuity. The value
of f(x) may be relatively large.

3: The Solver 113

Example: A Discontinuous Function. Find the root of the equation
IP(x) -15=0

Express the function in program BB.

{ 12-Byte Pram X
LEL "EB"

MVAR "R

RCL "H"

IF

1.5

ae -

EHD

AR A ==
L) R N T LN i]

=
-l

Select the Solver, select program BB, provide guesses of 0 and 5, and
solve for x.

B(SOLVER] i EE %=2. 0000
0w I N I I .
5%

—_
4

The Solver finds a root at x = 2.0000. Now check the value of f(x).

% -8, 5000
|——————|

The value of f(x) seems relatively large. This indicates that you should
further evaluate the function. By plotting the function, you find that the
root atx = 2.0000 is in fact a discontinuity, and not a true zero crossing.

Exit from the Solver.

EXIT] [EXIT

Finally, consider the following function. This function has a very steep
slope in the area of the root. Evaluation of the function at either neighbor
may return a very large value even though the function has a true root
between the neighbors.

114 3: The Solver

f(x)

» x

Use care in interpreting the results of the Solver. The Solver is most
effective when used in conjunction with your own analysis of the function
you are evaluating.

A Sign Reversal. The values of the following function are approaching
infinity at the location x, where the graph changes sign.

f(x)
A

/

The function has a pole at x,. When the Solver evaluates such a function,
it returns the message Sian Rewsr=al.

3: The Solver 115

Example: A Pole. Find the root of the equation

_x
(x* - 6)

As x approaches Vs, f(x) becomes a very large positive or negative
number.

Express the function in program CC.

o T

+ 22-Bute Pram
LeEL "CC"
MVAR "=
ECL "=K"
ECL "=R"

o]
At

[o T o T o T o T e T o O O o O n |
DoURIY W B I L) B CR C R N
L I

—_
—

EHD

Select the Solver and then select program CC.

B(SOLVER] | CC x: 0. 0000
s 11 1 1 1

Provide guesses of 2.3 and 2.7, and solve for x.

23 =R %=2.4495
27 Sign Reversal

R
P

116 3: The Solver

The initial guesses yielded opposite signs for f(x). The interval between
successive estimates was then narrowed until two neighbors were found.
These neighbors made f(x) approach a pole instead of the x-axis. The
function does have roots at -2 and 3, which can be found by entering
better guesses.

Exit from the Solver.

EXT) EXIT) v: 2.4495
x: 2.4495

An Extremum. When the Solver returns the message E:xtremumn, it
has found an approximation to a local minimum or maximum of the
numerical absolute value of the function. If the solution (the value in the
X-register) is + /- 9.99999999999 x 10*%, the Solver has found an asymp-
fotic extremum.

N/ N

Relative minimum Asymptote

f(x)
A

» X

Relative maximum

3: The Solver 117

Example: A Relative Minimum. Find the solution of the parabolic
equation

x2-6x+13=0
(It has a minimum atx = 3.)

Express the function in program DD.

L 23-Bute Pram

LEL "DD"
MYAR "w
RECL "E"

[
At

,_
LU
e
[x)

U U I A |
LU U 7

&

RCLx et
13

<+

18 EHD

[y o B v)
DOUIEN B LI | R Y

o
IS

Select the Solver application and then program DD.

B(SOLVER] & b x: 0, 0000
L& 1 1 1 1 1 |
Provide guesses of 0 and 10 and solve for x.
0 = X=3.0000
10 = Extremum
-
Exit from the Solver.
EXIT] [EXIT) v: 3.0000
x: 3.00080

118 3: The Solver

Example: An Asymptote. Find the solutions for the equation

10 - Lo
X

Express the function in program EE.

88 { 17-Bute Pram X
@81 LBL "EE"

82 MVYAR "X"

a2 18

B84 RCL "R"

85 1-¥

a5 -

a7y EHND

Select the Solver application and then program EE.

x: 8.0000
L 1 1 [1 []

Enter guesses of 0.005 and 5, and solve for x.

IX=G.18@B I
Ls 1 1 [1 1]

The Solver finds a root at x = 0.1000. Now enter guesses that have nega-
tive values.

1 ¥=-1. DOODE 500
2 - Extremum
oo
The Solver finds an asymptotic extremum. (Press [i[SHOW] to verify that

the solution is actually —9.99999999999 x 10*®.) It’s apparent from
inspecting the equation that if x is a negative number, the smallest that
f(x) can be is 10; f(x) approaches 10 as x becomes a large negative number.

Exit from the Solver.

([EXIT) [EXIT] v: -5. 9246E498
x: -1.0000ESH0

3: The Solver 119

Bad Guess(es). The Solver returns the message Ead Guessiesd
when one or both initial guesses lie outside the domain of the function. (If
a guess lies outside the domain of the function, the function returns a
math error when evaluated at that guess point.)

Example: A Math Error. Find the root of the equation

x —
V iy 00

Express the function in program FF.

£ 2e-Bute Fram
LEL "FF"

MYWAR "Rt

RCL "at

A, 3

RCL+ "en

SEET

1.5

Do I T o T ot T o B M
D B N T S S e |

)
[n)

._
[]
Do BN B B

-
Dx)

- T

EHL

Select the Solver application and then program FF.

BEOLVER] FF %: 0. 0000
Cx 1 T 1 1 1 |

First attempt to find a positive root, using guesses 0 and 10.

0 = |X=@.1888 |
10 L& 1 1 1 1 1 |

120 3: The Solver

The Solver finds a root at x = 0.1. Now attempt to find a negative root
using guesses of —0.1 and —0.2. Note that the function is undefined for
values of x between 0 and —0.3, since those values produce a positive
denominator but a negative numerator, causing a negative square root.
Although the HP-42S can execute arithmetic operations with complex
numbers, the Solver cannot find a complex number solution. If evaluation
of f(x) returns a complex number, the Solver considers the function
undefined at that x-value.

A A x=-0.2000
2 g Bad Guess(es)

Exit from the Solver.

EXIT| ([EXIT & -gé
x: —d.

5]5]5)
(5]5]%)

A Constant. The Solver returns the message Const ant ? when it
finds that f(x) returns the same value at every sample point x. Such a
situation can occur if guesses are confined to a local "flat" region of a
function.

Example: A Local Flat Region. Find the root of the equation

1 _10-=0
X

Express the function in program GG.

17-Bute Pram
LEL "GG"
2 MYARRE "
L RCL "R
1a

" EHMD

150
MUY
™
150

Do I o I x)
N O N

(A]
n

X
A
o

Do)
=

3: The Soiver 121

Select the Solver and then program GG.

B(SOLVER]: GB x: B.806800
L& 1 [1 [1 |

Supply guesses of 10% and 10% .

B 202mE %=1, DOOOE 500
B30 # Constant?

5

In this region of the function, the value of f(x) is, within the 12-digit preci-
sion of the calculator, the same at every sample point. Here is a graph of
the function.

f(x)
A
\) X
Try guesses of 0 and 10.
0 & »=0.1080
10 L O I O N W —

L
o

The Solver finds the root atx = 0.1. Exit from the Solver.
v: 8' %888

X: Y.

122 3: The Solver

Round-Off Error and Underflow

Round-Off Error. The 12-digit precision of the calculator is adequate
for almost all cases. However, round-off errors can sometimes affect
Solver results. For example,

[(lx] +1)+ 10812 - 10° = 0

has no roots because f(x) is always positive. However, given initial guesses
of 1 and 2, the Solver returns the answer 1.0000 because of round-off
error.

Round-off error can also cause the Solver to fail to find a root. The equa-
tion

[x2-7] =0

has a root at V7 . However, no 12-digit number exactly equals V7,50 the
calculator can never make the function equal to 0. Furthermore, the func-
tion never changes sign. The Solver returns the message E:t .
However, the final estimate of x is the best possible 12-digit approxima-
tion of the root when the routine ends.

Underflow. Underflow can occur when the magnitude of a number is
smaller than the calculator can represent; in such a case, it will substitute
the number 0. This can affect the Solver’s results. For example, consider
the equation

whose root is infinity. Because of underflow, the Solver returns a very
large (finite) value as a root. (The calculator cannot represent infinity,

anyway.)

3: The Solver 123

Integration

In this chapter, the following topics are covered:

m Basic use of the Integration application.
m Approximating an integral that has an infinite upper or lower limit.
m Using Integration and the Solver interactively.

m More on how Integration works.

Basic Integration

The procedure for execution of the Integration application is:
1. Create a program that:

a. Uses MVAR to define the variable(s) in the integrand (the
function to be integrated).

b. Expresses the integrand. (Note that each variable in the
integrand must be recalled to the X-register.)

2. Apply the Integration application to the program.
a. Select the Integration application (press M(/f(x)]).
b. Select the program by pressing the corresponding menu key.

€. Specify the values for any known variables in the integrand.
Select the variable of integration.

d. Specify the values for LLIM, ULIM, and ACC.
e. Press . [tobegin the calculation.

124 4: Integration

Example: Basic Integration. The angle of twist in a round shaft
under torsional loading is calculated by evaluating the following integral.

where:

6 is the angle of twist of the shaft (in radians).

L is the length of the shaft (in meters).

T is the torque applied to the shaft (in Newton-meters).

J is the polar moment of inertia of the shaft (in meters?).

G is the shear modulus of the shaft material (in Newtons/meters?).

Torque T increases along
the length of the shaft
as a function of x .

Consider a solid steel shaft (G = 83 x 10° N/m?) that has a constant
diameter of 0.03 meters (J = 7.9521 x 1078 m*) and a total length L of 2
meters. Find the angle of twist in the shaft when loaded by a torque that
varies along the length x of the shaft as a function of x:

T =13x*+8x3+ 15x2+9x + 6

For programming purposes, use Horner’s method to expand the polyno-
mial.

T=(((13x +8)x +15)x +9)x +6

4: Integration 125

Substituting this expression for 7, the equation becomes

5= fL (1Bx+8)x +15)x +9)x +6
R JG

Express the integrand in the program TORQUE.

Program: Comments:
B £ S2-Bute Pram

81 LEL "TORGUIE"

Bz MYAR X" Lines 02-04: Declare the variables.
Bz MYAR "J"

a4 MYAR "G"

B3 13 Lines 05-19: Express the integrand.
85 RCLx "R

5]

as +

B3 ROLx "

18 15

11 +

12 RCLx ""

12 2

14 +

S RCLx "a"

1e &

17 +

12 RCL+ "J"

1% RCL+ "G"

28 EHD

Select the Integration application.

B/fx) Select Sf(x) Program
RTTTEN I I I .

Select program TORQUE.

TORG Set Vars; Select JSvar
| 8 [o 1 6 1 | T |

126 4: Integration

Supply the known values for J and G, and specify the variable of integra-
tion X.

79521 (18 FA) 0 EER A
83E9 & AT (TR T N N

"

Specify the lower limit (0), the upper limit L (2), and an accuracy factor of
0.01.

0 LLIN ACC=0. 0100
2 ULIM NI TN T I I
01 ACC

Start the calculation.

ik S=0.0281

[NNTEN TN TS I .

The shaft twists through an angle § = 0.0281 radians (1.6077 degrees).
Exit from the Integration application.

[EXIT] (EXIT) [EXIT)

Approximating an Integral That Has an
Infinite Limit

It is often of interest to evaluate an improper integral (an integral that has
an infinite upper or lower limit). An improper integral with an infinite
upper limit
(e]
[foc) de

is calculated "by hand" by evaluating the equivalent expression

lim, oo [fx) d

4: Integration 127

You cannot use the HP-42S to directly evaluate such an expression. You
can, however, approximate an answer by substituting a large number for
the infinite limit.

Example: Evaluating an Integral That Has an Infinite Upper
Limit. Calculate the integral

® dx
":) 1+x2

by hand. Then approximate the integral with the HP-42S.

Part 1. The result is calculated by hand as follows.

*® dx i ¢ dx
'!;’ 1+x2 e T2

lim,_ ., (arctana)

r
2

Use the HP-42S to calculate 7/2 to 12-digit precision.

BDISP] i fLE

v: B
B 2F x: 1.5707963268

Part 2. Use the Integration application to evaluate the same integral,
using the value 1,000 to approximate the upper limit. First, express the
integrand in the program INFIN,

88 { 28-Bute Fram X
LEL "IHFIH"

MYAR "=R"

RCL "®"

ez

1

+

1%

EHD

[R o
—

=
Lo B U) I A TR

- -
LROURN AU 12

128 4: Integration

Select the Integration application and then program INFIN.

B/fx)] THEIH Set Varsj Select Jfvar
Le I I T 1T 1T |

Select the variable of integration.

h x: 1.5787963268
NI TG AT I .

Specify the lower limit (0), the upper limit approximation (1,000), and an

accuracy factor of 0.01.
|HCC=B.91 l
Lteidfuiiaf e |]] o]

Calculate the integral.

S=1.57820935993
eofunafwcc [[1 o |

Using an upper limit of 1,000, and an accuracy factor of 0.01, the calcula-
tor returns the result 1.57020935993. The calculation takes about 36
seconds and is correct to three decimal places.

Exit from the Integration application and return the display format to FIX
4.

[EXIT) [EXIT) [EXTT) vy
BODISP] FI® 4 [ENTER x: 1

.0156
. 5702

The following table summarizes results and calculation times for upper
limit approximations of 100, 1,000, and 10,000, and accuracy factors of
0.01 and 0.0001.

4: Integration 129

Acc. Calc. Time
Factor ULIM Result (seconds)
(% actual) 15707963268
0.01 100 1.57518831857 5
1,000 1.57020935993 36
10,000 1.57088603739 140
0.0001 100 1.5607891695 18
1,000 1.56979476064 69
10,000 1.57069673168 279

Note that the principle determining factor in the accuracy of the result is
the value of the upper-limit approximation, not the accuracy factor. Also
note that the calculations using an accuracy factor of 0.0001 require about

twice the time of those using an accuracy factor of 0.01.

In general, when you are approximating an integral, assess the extent to
which you are constraining the accuracy of the true integral with the
approximation of the limit, and choose an accuracy factor wisely. If the
limit that you substitute results in only a rough approximation of the true
integral, it makes little sense to calculate the approximation to a high
degree of accuracy.

130 4: Integration

Using the Solver and Integratlon
Interactively

In the first example in this chapter, you found the twist angle 4 at the end
of a shaft by integrating the applied torque with respect to x. (The torque
varied as a function of the position x along the shaft.) You were limited, in
that example, to solving specifically for the twist angle . In general, for
the equation

LM f(x) dx (calculated to accuracy ACC)

the Integration application enables you to solve only for the value I of the
integral. To solve for 7, you:

m Write a program P that defines the integrand f(x).

m Specify values for the known variables in the integrand.

m Specify the variable of integration.

m Specify values for the variables LLIM, ULIM, and ACC.

However, by writing a program S for the Solver that declares each vari-
able in the equation and invokes the Integration application on program P,
you can solve for any of the variables in the equation:

m/
m The variables in the integrand f(x).
m LLIM,ULIM.

In the following example, you’ll solve for the length L of a shaft (the vari-
able ULIM in the Integration application) in the angle-of-twist equation.

Example. Using the Solver and Integration Interactively.
Restating the equation for twist in a shaft under torsional loading:

4: Integration 131

Consider again the solid steel shaft of the first example in this chapter.
For this shaft, G = 83x 10° N/m? andJ = 7.9521 x 10~ 8 m*. The shaft
is subjected to the same torsional loading 7 as in the first example. That
loading varies along the length x of the shaft as a function of x.

T = 13x* + 8x3 + 15x2 + 9x + 6.

Find the length L that results in a twist angle 6 of 0.1396 radians (8
degrees).

The variables in the equation are §, L, T, J, and G. The unknown variable
L is the upper limit of integration ULIM.

Part 1. Write a Solver program SHAFT that:

m Declares each variable in the equation.
m Expresses the equation such that its right side equals 0.

L r
—dx -6=0
0 JG
Program: Comments:
B8 { &8-Bute Pram
@1 LEL "SHAFT"
Bz MVYAR “"THETA" Lines 02-08: Declare the variables in
a3z MVAR "G the equation.
a4 MVAR "J"
B3 MVAR "LLIW"
Be MYAR “ULIM"
67 MVAR “ACC®
B2 MVAR "R
83 PGMINT "TORGUE" Lines 09-11: Express the equation
18 IHTEG "X such that its right side equals 0. First,
11 RCL- "THETR" calculate the first term of the equation
(the integral) (lines 09-10). The
value of the integral is returned to the
X-register. Subtract the second term
(THETA) (line 11).
12 EHMD

132 4: Integration

In lines 09 - 10, the integral is calculated using the current value of ULIM,
which is iteratively supplied by the Solver as it searches for a solution.
Note that the specified integration program is TORQUE from the first
example in the chapter. If you've deleted this program, you need to key it
into the calculator now.

Part 2. Select the Solver application and then program SHAFT.

M(SOLVER] SHAFT %: 0. 0000
|mnn-allulmmmmmmmmﬂ

(The variable X is on the second line of the menu.) Enter values for the
known variables.

1396 THETH IFICC=G.BIBB I
83E9 & UHETH] G [J JLLIMJULIM] ACC]

7.9521 [E] 8
OLLIM
01 ZRCE:

Now solve for the upper limit L, providing initial guesses of 1 and 10.

1 ULIN ULIN=2. 9528

2 THETH] G | J JLLIM]ULIM
10 ULIM
uLIn

The shaft must be 2.9528 meters long to twist through an angle of 0.1396
radians.

Exit from the Solver application.

EXIT] [EXIT

4: Integration 133

More on How I"t‘egl’atlon WOrI;sw o

The Accuracy Factor and the Uncertainty of
Integration

The Integration algorithm calculates the integral of a function f(x) by
computing a weighted average of the function’s values at many values of x
(sample points) within the interval of integration. The accuracy of the
result depends on the number of sample points considered; generally, the
more the sample points, the greater the accuracy. There are two reasons
why you might want to limit the accuracy of the integral:

1. The length of time to calculate the integral increases as the number
of sample points increases.

2. There are inherent inaccuracies in each calculated value of f(x):

a. Empirically-derived constants in f(x) may be inaccurate. If, for
example, f(x) contains empirically-derived constants that are
accurate to only two decimal places, it is of little value to cal-
culate the integral to the full (12-digit) precision of the calcu-
lator.

b. If f(x) models a physical system, there may be inaccuracies in
the model.

c. The calculator itself introduces round-off error into each com-
putation of f(x).

To indirectly limit the accuracy of the integral, specify the accuracy factor
of the function, defined as

true value of f(x) - computed value of f(x)

ACC =
computed value of f(x)

134 4: Integration

The accuracy factor is your estimation of the (decimal form of the) per-
cent error in each computed value of f(x). This value is stored in ACC.
The accuracy factor is related to the uncertainty of integration (a measure-
ment of the accuracy of the integral) by:

uncertainty of integration = accuracy factor x f | fx)] dx

f(x)
A

A\

W

The striped area is the value of the integral. The orange-shaded area is
the value of the uncertainty of integration. It is the weighted sum of the
errors of each computation of f(x). You can see that at any point x, the
uncertainty of integration is proportional to f(x).

The Integration algorithm uses an iterative method, doubling the number
of sample points in each successive iteration. At the end of each iteration,
it calculates both the integral and the uncertainty of integration. It then
compares the value of the integral calculated during that iteration with the
values calculated during the two previous iterations. If the difference
between any one of these three values and the other two is less than the
uncertainty of integration, the algorithm stops. The current value of the
integral is returned to the X-register, and the uncertainty of integration is
returned to the Y-register.

It is extremely unlikely that the errors in each of the three successive cal-
culations of the integral —that is, the differences between the actual
integral and the calculated values—would all be larger than the disparity
among the approximations themselves. Consequently, the error in the
final calculated value will almost certainly be less than the uncertainty of

4: Integration 135

integration.

Example: The Accuracy Factor and the Uncertainty of
Integration. Certain problems in communications theory (for example,
pulse transmissions through idealized networks) require calculating an
integral (sometimes called the sine integral) of the form

¢
Si(t) =,':) 51;1x l
Find Si (2).

First, write a program that expresses the function.

B8 ¢ 16-Bute Pram X

A1 LEL "SI
B2 MYAR "X"
B3 RCL "R
B4 SIH
B3 RCL+ "R"
85 EMD

Set the display format to ALL. Set the angular mode to RAD.

B0DisP) | ALL v
B(MODES] RAD x: B

Select the Integration application and then program SI.

B S8l Set VYars; Select Jvar
I I R R P

Select the variable of integration X, then enter a lower limit of 0 and an
upper limit of 2.

a UCIF=2 ‘
0 LLIM fhelutmlace | 1 T 1
2 ULIN

136 4: Integration

Since the function

fix) = sinx

X

is a purely mathematical expression containing no empirically-derived
constants, the only constraint on the accuracy of the function is the
round-off error introduced by the calculator. It is, therefore, at least

analytically reasonable to specify an accuracy factor of 0.00000000001
(1x1071),

E 11 - ACC=0. 0PPPBREOP0O 1
[Leidjunifwce | | | o]
Calculate the integral.
B S=1.6854129768
[Lupfoum]acc | [| & |

Check the uncertainty of integration.

(xxy]

x: 2.10542218626E-11
INTN TS TR I .

The uncertainty of integration is significant only with respect to the last
digit of the integral. The calculation took about 19 seconds. If you can
accept a less accurate answer, you can shorten the calculation time. Try an
accuracy factor of 0.001.

.001 ACC & S=1.68541531589
Ludjuiifacc [| | o |

Check the uncertainty of integration.

(xzy] %: 1.60600822892E-3
[turfoomlacc I T [& |

4: Integration 137

The error of integration is much larger now. However, it is still relatively
small compared to the value of the integral, and the calculation takes only
3 seconds.

Exit from the Integration application and return the display format to FIX
4.

|EX|T| [EXIT] [EXIT) v: 1.6854
SP] FIX 4 [ENTER) x: B.8016

Example: A Problem Where the Uncertainty of Integration Is
Relatively Large. In the previous example, the uncertainty of integra-
tion was relatively small compared to the value of the integral. This is
because the value of the function was always positive within the interval of
integration. Now consider the simple function

f(x) = sinx

Integrate the function fromx = 0 tox = 6 (radians).

f(x)
A

By inspection, you can see that the value of the integral is a small positive
number, since the area with positive value from 0 to « is almost cancelled
by the area with negative value from = to 6.

138 4: Integration

Write the program that expresses the function.

B8 £ 14-Bute Pram 2
@81 LBL "SIH"

MVYAR "x"

RCL "®"

SIH

EHD

o0 I 3ot B A]
3 T

U A
[N N

Set the angular mode to RAD. Select the Integration application and then
program SIN.

B(MODES] : FRD Set Vars; Select Jvar
S1IH

Select the variable of integration X enter the lower and upper limits (0
and 6), and an accuracy factor of 0.01. Then integrate with respect to x.

" J=0.08398
0 LLTH TSN AT T I N
6 ULIM
.01 AcC

e

Now check the uncertainty of integration.

(xzy]

x: B.0398
(LLiJutifacc |]] o |

The uncertainty of integration is large compared to the value of the
integral.

Exit from the Integration application.

([EXIT] (EXIT] [EXIT)

4: Integration 139

Conditions That Can Cause Incorrect Results

Although the integration algorithm in the HP-42S is one of the best avail-
able, in certain situations it - like all algorithms for numeric integration—
might give you an incorrect answer. The possibility of this occurring is very
remote. The integration algorithm has been designed to give accurate
results for almost any smooth function. Only for functions that exhibit
extremely erratic behavior is there any substantial risk of obtaining an
inaccurate answer. Such functions rarely occur in problems related to
actual physical systems.

Example: A Condition That Causes an Incorrect Result. Con-
sider the approximation of

j:oxe" dx

Since you’re evaluating this integral numerically, you might think that you
should represent the upper limit of integration with a large number, say
100,000. Try it and see what happens. First write a program that expresses

f@x).

B8 { 17-Bute Pram
81 LEL "XKE="

a2 MYAR "=E"

A3 RCL "X"

B4 ENTER

B +-/-

BE EtA

By x

83 EHD

Now select the Integration application and then program XEX.

BfX) : gER Set Vars; Select Jvar
I N N R .

140 4: Integration

Select the variable of integration X, then enter the lower and upper limits
and an accuracy factor of 0.001.

b ACC=0.8010
0 LLTH (LU JULIM] e]]] o
E 5 ULIH
) 0 0 1 s H |: D :ﬁ::ﬁi

Integrate with respect to x. (Stay in the Integration application after exe-
cuting this calculation. You will integrate this function again in the next
section.)

[LLiuLid] e |] | o |

The answer is clearly incorrect, since the actual integral of f(x) = xe ~*
evaluated from 0 to oo, is exactly 1. But the problem is not that you
represented oo by 100,000, since the actual integral of this function from 0
to 100,000 is very close to 1. The reason you obtained an incorrect answer
becomes apparent if you look at the graph of f(x) over the interval of
integration.

b

f(x)
A

>» X

The graph has a spike (illustrated here with a greatly exaggerated width)
very close to the origin . Because no sample point discovered the spike,
the algorithm assumed that f(x) was equal to 0 throughout the interval of

4: Integration 141

integration. Even if you increased the number of sample points by specify-
ing an accuracy factor of 1x 107! | none of the additional sample points
would discover the spike when this particular function is integrated over
this particular interval.

Subdividing the Interval of Integration. If you suspect the validity
of the approximation of an integral, subdivide the interval of integration
into two or more subintervals, integrate the function over each subinter-
val, then add the resulting approximations. This causes the function to be
evaluated at a new set of sample points, more likely revealing any previ-
ously hidden spikes. If the initial approximation is valid, it equals the sum
of the approximations over the subintervals.

Example: Subdividing the Interval of Integration. Consider
again the integral

j:)ooxe" dx

Approximate the integral by subdividing the interval of integration into
three subintervals, one from 0 to 10, the second from 10 to 100, and the
third from 100 to 100,000.

First, integrate between 0 and 10. If you are still in the Integration appli-
cation, simply supply the new value for ULIM.

10 ULIH S=08.9995

¥

The answer is very close to 1. Now integrate between 10 and 100.

10 LLIM S=0.0085
100 LILTH (NN T TS N I

I

The answer is very close to 0. The sum of the approximations over the two
subintervals is 1. Finally, integrate between 100 and 100,000. (Stay in the
Integration application after executing this calculation. You will integrate
this function again in the next section.)

100 LLIM
100000 UL IM

JS=0.00080
TN TN T I .

142 4: Integration

The integral over the third subinterval is 0. The sum of the integrals over
the three subintervals is 1.

Conditions That Prolong Calculation Time

In the first example in the preceding section, the algorithm gave an
incorrect answer because it never detected the spike in the function

f(x) = xe ~* . This happened because the variation in the function was too
quick relative to the width of the interval of integration. In the second
example, you obtained a very good approximation by subdividing the
interval of integration into three subintervals between 0 and 100,000.
However, for this function, there is a range of intervals that is small
enough to obtain the correct answer, yet result in a very long calculation
time.

Example: An Upper-Limit Approximation That Prolongs
Calculation Time. Consider again the integral

f xe " dx
0
Approximate the integral by calculating it over the interval (0, 1,000).

Enter the new values for LLIM and ULIM. Then integrate with respect to
x.

OFLETI 7=1.0000
1000 ULTHM N AT I W

This is the correct answer, but it took a long time to calculate. To under-
stand why, compare the graph of the function betweenx = 10 andx = 10°
(which looks about the same as that shown on page 141) with the follow-
ing graph of the function betweenx = 0 andx = 10.

4: Integration 143

()

—>x
10

O e

You can see that the function is "interesting" only at small values of x. At
greater values of x, the function is not interesting since it decreases
smoothly and gradually in a predictable manner.

The algorithm samples the function at increasing numbers of sample
points until it has sufficient information about the function to provide an
approximation that changes insignificantly when further samples are con-
sidered. In the previous section, when you evaluated the integral between
0 and 10, the algorithm needed to sample the function only at values
where it was interesting but relatively smooth. The sample points, after
the first few iterations, contributed no new information about the
behavior of the function and the algorithm stopped.

In the last example, most of the sample points capture the function in the
region where its slope is not varying much. The algorithm finds that the
few sample points at small values of x return values of the function that
change appreciably from one iteration to the next. Consequently, the func-
tion has to be evaluated at additional sample points before the disparity
between successive approximations becomes sufficiently small.

144 4: Integration

For the integral to be approximated with the same accuracy over the larger
interval as over the smaller interval, the density of sample points must be the
same in the region where the function is interesting. To achieve the same
density of sample points, the total number of sample points required over
the larger interval is much greater than the number required over the
smaller interval. Consequently, several more iterations are required over
the larger interval to achieve an approximation of the same accuracy, and
the calculation requires considerably more time.

4: Integration 145

5

Matrices

This chapter builds on material introduced to you in chapter 14 of your
owner’s manual. The following topics are covered:

Using the matrix editor and indexing functions.

Vector solutions.

Solving simultaneous equations.

Using the Solver with simultaneous equations.

Matrix operations in programs.

Using the Matrix Editor and Indexing
Functions

In the following example, you’ll:

m Create a matrix.
m Use the matrix editor to manipulate data.

m Use indexing functions and statistics functions interactively.
Example: Accumulating Meteorological Data. Dr. Steven

Stormwarning, noted meteorologist, has accumulated the following data
and wishes to store it in a matrix in the HP-42S.

146 5: Matrices

Day # | Temp | Wind | Humid
1 67 8 54
2 69 14 36
3 74 4 72

Creating a Named Matrix

Create a 4 X 4 matrix "WTHR".
4 [ENTER] B(MATRIX] (W] DIM
ENTER] WTHR [ENTER

x: 4.00008
[00T JCROSS] UMEC | DM JINDER[EDITH]

Using the Matrix Editor

Enter the matrix editor and select the matrix you just created.
EDITH MWIHE

1:1=0.08000

GOTD

Fill element 1:1 with the Alpha string DAY #. (Remember, to execute
[ASTO], press in ALPHA mode.)

B(ALPHA] DAY # 0
5T ¥ [EXIT

1:1="DAY #"

GOTO

Fill the remaining elements in row 1 with the corresponding Alpha strings
from the table. (The keystrokes for element (1:2) are shown here.)

+ W[ALPHA] TEMP [ASTO]
0 5T ¥ EXT) ..

1:4="HUMID"

5: Matrices 147

Now fill the remaining elements with the corresponding data.

.. BE 4:4=72_
67 g 8
- 54 -
2. = 69
514 s
36 =+ 3
> 74 -
4 = 72

Stormwarning finds that his assistant has incorrectly recorded the tem-
perature on day 1; it was 77, not 67.

30TO 2 [ENTER) 2 [ENTER] 77 [EXIT)

X: 77. 0000
L 00T JCROSS{UMEC] DIM [INGERJEDITN]

Several days later the doctor has more data to add: on day #4, the tem-

perature is 77, the windspeed is 5, and the humidity is 76. First, set the cal-

culator to Grow mode to create a new row in the matrix.

EDITH WTHE £ 2t 1=0.686800

(V)] GROW [A)
.}

Fill in the new data.

aEwns 77 5T4=76
s 5 mmgEE 76

Stormwarning now realizes he has entered the data for day #5, not day
#4. For day #4, the temperature was 68, the windspeed was 12, and the
humidity was 41. First change the value in element 5:1 to 5.

* o 08 1=5_
L op | € Jow] + | + |Goto] & |

Now insert the new row.

(V] IHER ot 1=0.08800
LIN:R] [UELR] [W4R4P[GROs |

148 5: Matrices

Enter the actual data for day #4.

@4 =+ 68 5:d4=41_
gEE {0 EEREEE 41 [€ Jow [+ | 4 [Goro] » |

Exit from the Matrix application.

EXIT] ([EXIT

Using Indexing Utilities and Statistics Functions
Interactively

Dr. Stormwarning now wants to execute statistical operations on segments
of his accumulated data. He would like to find the mean temperature and
windspeed for the five days. He’ll execute GETM to create in the X-
register a 5 x 2 submatrix that contains the temperature and windspeed
data. He’ll then execute £+ to store the data from this submatrix in the
summation (statistical) registers, select the STAT menu, and find the
mean. (Remember that the £+ function automatically stores the data
from an n-row X 2-column matrix into the currently defined summation
registers. Refer to the discussion of the £+ function in chapter 15 of your
owner’s manual for more information.)

Specify WTHR as the indexed matrix.
BMATRIX] (W) IHDEY WTHR

x: 41.0600608
L 00T _JCROSS] UVEC | DIk JINGER[ECITN]

Set the index pointers to element 2:2 (the first temperature data entry).

2 [ENTER] (V] 5TOTI x: 2.0000
[sTol]RCLII[STOELIRCLEL[PUTH[GETH]

Now get the 5 x 2 submatrix that contains the temperature and windspeed
data.

5 [ENTER] 2 GETH

x: [Sx2 Matrix 1
[STOI[RCLI[STOEL[RCLEL[PUTHGETH

5: Matrices 149

Clear the summation registers, then store the data from the matrix in the
summation registers. (If the calculator returns the message
Honexistent, the current SIZE allocation is insufficient.)

x: O. 0000
sTO]RELI[ETOEL

M(CLEAR] CLZ
B(TOPFCN] | =+

Select the STAT menu and find the mean of the temperature data.

B(STAT] HMEAH |x: 73,0000 I
[£+ T surt [MEAN]LMNT s0E] CFIT |

Find the mean of the windspeed data.

X% x: 8.6800
[Z+ | suM [HEANTIHMN] s0EV] CFIT |

The mean temperature for the five days is 73. The mean windspeed is 8.6.

Exit from the STAT menu.

EXIT ?3.@88@
(515]

Matrix Utilities

The following routines use existing matrix functions to build useful matrix
utilities.

Finding the Column Sum of a Matrix. CSUM calculates the
column sum of the matrix in the X-register. (The column sum of a matrix
A is a row matrix, each element of which is the sum of the elements of the
corresponding column of matrix 4.) The resultant matrix is returned to
the X-register.

Ba £ 14-Bute Pram
@1 LBL "Csum"

32 TRAHS

33 RSUM

150 5: Matrices

B4 TRAHS
a5 EHD

Finding the Column Norm of a Matrix. CNRM calculates the
column norm of the matrix in the X-register. (The column norm of a
matrix 4 is the maximum value (over all columns) of the sums of the
absolute values of all elements in a column.) The result is returned to the
X-register.

88 { 12-Bute Pram 3
81 LBL "CHREM"

a2 TRANS

83 RHREHM

a4 END

Finding the Conjugate of a Complex Matrix. To find the conju-
gate of a complex matrix:

1. Place the matrix in the X-register.
2. Press B[COMPLEX].

3. Press [*/4].

4. Press l(COMPLEX].

The conjugate is returned to the X-register.

Finding the Matrix Sum of a Matrix. MSUM calculates the matrix
sum (the sum of all the elements) of the matrix in the X-register. The
result is returned to the X-register.

88 { 18-Bute Pram
@1 LEBL "MSUM"

Az HEQ@ "Csumt

83 RSUM

84 DET

a5 EMD

5: Matrices 151

Finding the Maximum and Minimum Elements of a Matrix.
MINMAX finds the maximum or minimum element of the real matrix in
the X-register. The element is returned to the X-register. The indexed
location of the element is returned to the Y- and Z-registers (column
number in Y, row number in Z). Set flag 09 to find the maximum ele-
ment. Clear flag 09 to find the minimum element.

Program:

515
a1

a2
a3
a4
Bs

(512)
av
aa

e e
My o= 00

— -
Fowd

— —_
L W B i}

I R N
-

[A]

152

= GTO

{ 61-Bute Pram
LEBL "MIHMAA"

STO "MIMMAR"
IHDEX "MIMMAX"
RCLEL

GTO B2

LEL @1
RCLEL

57 @5
GTO
HaY?

GTO

Yoo

[xn]
[

DU A]
W

I
[

LEL
pranly]

GTO B4

LEL &z
FCLI
RCL ST
EMTER

-l

LEL &4
FE+
J+

5: Matrices

Comments:

Lines 02-05: Store the matrix
currently in the X-register in
MINMAX, index MINMAX, and
establish element 1:1 as the current
maximum or minimum element.

Lines 06—12: If flag 09 is clear, test if
the current element is greater than the
current minimum. If yes, go to label 04
(to maintain the current minimum). If
no, go to label 03 (to make the current
element the new minimum).

Lines 13-15: If flag 09 is set, test if
the current element is less than the
current maximum. If yes, go to label
04 (to maintain the current max-
imum). If no, make the current ele-
ment the new maximum.

Lines 16 —19: Make the current ele-
ment the new maximum or minimum.

Lines 20— 24: Maintain the current
maximum or minimum element.

_- -

Ma M
$o 0
o
=
[QRN
DoV |

2 EHND

Mo

Sorting a Matrix. SORT sorts the rows of the matrix in the X-register
in ascending order by the values in column 1. The sorted matrix is
returned to the X-register.

Program: Comments:

A8 { 81-Bute Pram >
A1 LEL "SORT™

B2 STO "SORTHAT"

83 IMDEX "SORTHAT"

84 LEL 91 Lines 07-10: Establish the row

as I+ number to sort. (On the first pass, row
as F37? 76 2 is the row to sort, against row 1. On
a7 GTO G4 the second pass, row 3 is the row to
a3 RCLIJ sort, against rows 1 and 2.) Continue
B KLY until all rows are sorted.

18 RCLEL

11 LEL B2 Lines 11-24: Successively move the
12 I- "sort row" up the matrix until its

13 RCLEL column 1 value is greater than the
14 F5% F& column 1 value of the previous row.
15 GTO 832

18 Rey?

17 GTO 8=

12 R4

19 RCLIJ

28 RCL+ =T Y

21 ROE

22 R

23 R+

24 GTO &2

5: Matrices 153

n
-
m
-
[n)
o

Lines 25-32: Increment the "sort-row"

26 R+ number. If the increment causes the
P index pointer to wrap, return the
28 1 sorted matrix to X and end the pro-
29 STOIJ gram.

28 GTO &1

21 LEL &4

22 RCL "SORTHMAT"

32 EHD

Vector Solutions

Vectors are a special subset of matrices. You can describe a vector with
either a 1-row X n-column matrix, or a 1-column X n-row matrix.

Geometry
The area of a parallelogram can be determined by the equation
A = Frobenius norm (magnitude) of (V'V; xV;)

where (' V; X V3) is the vector cross product V; and V,.

154 5: Matrices

Example: The Area of a Parallelogram. Find the area of the fol-

lowing parallelogram.

Create vectors V; and V.

B(MATRIX

1 3(V) LIN
[ENTER] V1 [ENTER]

1 [ENTER]3 [:IH
[ENTER] V2 [ENTER]

Enter values for each element in V; .

EDITH & Vi
3FA L %

24 ¢
2 [EXIT)

Enter values for each element in V.

EDITH @ VE2
2FA) +

2
3

Calculate the area.
RCL) %1 [RCL) =

CREOSZ BICATALOG] FLCH
(V] ... FHEH

x: 3. 080808
[00T [CROSS]UMEC] DIt JINDERJEDITN]

X: 2.0008
[00T [CROSS]UMEC] DI JINDER[ECITN]
x: 3.00008
L 00T [CROSS[UMEC] DIrt JINDERJECITH]

x: 15.0000
L 00T [CROSS[UMEC] Ditd [INDER[ECITH]

5: Matrices 155

The area of the parallelogram is 15.0000.

Exit from the Matrix application.

EXIT

Coordinate Transformations

It is often necessary in dynamics or mechanical design problems to per-
form coordinate transformations. Coordinate transformations require you
to:

m Calculate a unit vector.

m Add vectors.

m Calculate a vector dot product.

m Multiply vectors.

m Calculate a vector cross product.

156 5: Matrices

ORIGINAL
SYSTEM

\\ \\ ?X

X

X 4
\ € &__~NEW SYSTEM
]

Notes: AXIS (the rotation axis vector)
P is pointing out of the page
- atpoint T .

The rotation is relative to the
translated origin.

The equation for a coordinate transformation of a point from the old sys-
tem to a new system is

P =[(P-T) n]n(1-cosf) + (P -T)cosd + [(P - T)xn]sind

The equation for a coordinate transformation of a point from a new sys-
tem to the old system is

P=[(P *n)n(1-cosf) + P cosf + (P"xn)sin(-6)]+T
where:

P’ is the coordinates of the point in the new system.

P is the coordinates of the point in the old system.

T is the origin of the new system.

n is the unit vector of the axis about which the rotation is to be done.
6 is the rotation angle.

5: Matrices 157

Note that the translation occurs before the rotation. The rotation is rela-
tive to the translated origin.

The following program, COORD, enables you to fill the vectors P,

(or P”), T, and AXIS with data by programmatically invoking the matrix
editor and enables you to specify either an old-to-new or new-to-old
transformation. (AXIS is the rotation axis vector. COORD stores the data
you supply for AXIS in the variable n, then calculates the unit vector n.)

To key in COORD: Create variables P, T, P*, n, and X before pro-
gram entry.

Here is an annotated listing of COORD.

Program: Comments:

L 2le-Bute Fram 2
LEL "COORDR"

.,.

=
=

[x]

,.
v
—

—
R

[<A (N]

EXITHLL Lines 02— 11: Build the main menu.
CLMEHL

" FI "

EEY 1 GTO @1

n T "
EEY
"R T

-
oo

AR
DAUR U K

i

HER B2

-
OUBN AN |

DU)
D I W Y |

—_—

m

[I N

—_
—
m
oY
m
]
[xn]
e

LEL == Lines 12-15: Display the main menu.
MEHL
STOF

GTO 2=

—_

B SN X]

—_ -
n

[y

LEL &1 Lines 16 -22: Display the submenu to
N edit vector P (or P”) and choose the
HER 39 direction of the transformation.
"He0"

EEY S GTO &%

M = = .

Do I BN |

158 5: Matrices

I KN

M

(L) I N

[I U R
-

[y B W n]

DO I O Y]

[

[AT) B S N]

Qo0 0l Q) 00

by

SRS A L]
R I U BN x|

U eyl
EEY & GTO 88

LBL 27 Lines 23-27: Display the submenu.
MEHLU

CF a8

STOP
GTO

[¥u)
=4

[xx]
[

LEL Lines 28 -32: Place the vector names
T T and n in the Alpha register to create
GTO ¢ the vector.

LEL
" rl "

M N]
03 o0

LEL =22 Lines 33-46: Create a 1 x 3 vector P,
CLMEMU T, or n and open it for editing. Build
ASTO ST L matrix editor menu labels and prompt
1 for data input.

EHTER

LIM IMD ST L

ECLITH IMD 5T L

" & "

KEY 1 HEQ 11

" _} "
KE'
KE'
ETH

M

HER 12
GTO "COoarpv

[¥u]

" LEL 11 Lines 47 - 52: Execute the matrix edi-

s tor functions.
9 RETH
LEL 12

=Y

52 RTH

: LEL 94 Lines 53-55: Prompt for the value of
IMFUT "t A
FTH

5: Matrices 159

on
(03}

n
=l

o
]

DoUEY v]

Ty I T

[0}
L) S L LR

oy

R R R
oD G S T

LI I A

L I e 1)

)

LU R B N R I B |
W =@

$a

o

LS o B w x|

DoURES w I B I)

w0
—

LEL &85

SF e

LEL &8s

EXITALL
RCL "P"
FC? @a
RCL- T
STO P
RCL "
UYEC

5TO "n"
poT

1

ROL "&"
oS

RCL¥ "n"
s

ROL "4"
cos

RCLx “p'
+

RCL "P'"
RCL "n"
CEOSS
RCL "
F5? 08
+-

SIH

+

F57 @8
RCL+ "T"
sTO "P"
GTO @1
EMD

5: Matrices

Lines 56— 57: Set flag 00 for a new-to-
old transformation.

Lines 58 —90: Evaluate the transfor-
mation equation. If flag 00 is clear,
calculate the old-to-new transforma-
tion. If flag 00 is set, calculate the
new-to-old transformation.

To use COORD:
1. Press COORD.

2. Press T , then supply values for the elements of T using the
matrix editor labels in the menu. Press [EXIT] to return to the main
menu.

3. Press HAHI% ,then supply values for the elements of the rotation
axis using the matrix editor labels in the menu. Press to
return to the main menu. Note that COORD stores the rotation
axis in variable n, calculates the unit vector of the rotation axis, and
stores the unit vector back in n. If you press A®IS after executing
a three-dimensional transformation, you will see the newly calcu-
lated elements of the unit vector, not the original rotation axis.

For a two-dimensional transformation, set the rotation axis to
0,0, 1).

4. Press < ,then supply a value for X and press [R/S].

5. Press F , then supply values for the elements of P (or P”)
using the matrix editor labels in the menu. Then press 0+H to
convert from the old system to the new system, or press - H=11 to
convert from the new system to the old system. The calculation is
now executed.

Example: A Three-Dimensional Translation with Rotation. A
three-dimensional coordinate system is translated from (0, 0, 0) to (2.45,
4,00, 4.25). After the translation, a 62.5° rotation occurs about the (0, -1,
—1) axis. In the original system, a point had the coordinates (3.90, 2.10,
7.00). What are the coordinates of the point in the translated, rotated sys-
tem?

For this problem:

P = (3.90, 2.10, 7.00)
T = (2.45, 4.00, 4.25)
AXIS = (0, -1, -1)
A =625

5: Matrices 161

Set the display format to FIX 2. Set the angular mode to Degrees. Exe-
cute program COORD.

02 x: 8,008

: LP I T Jamis] &] |]
Enter the elements of T.
ks X: 2.49
245 L P 1 7 fwis] &] | |
4
425 @ &
EXIT

Enter the elements of the rotation axis.

X115

Enter the value of X..
= % 62,50
62.5 [R/S) (P 1 7 lemsl & [|

Enter the elements of P.

p 1:1=3.90
a0 55 Ce 1 > | [N+0l03N]
2.1
7
Calculate the transformation.
C0sH 1:1=3.59
[€ | > [| [nN»0]0+N]

Element 1:1 of P~ is 3.59. Check element 1:2.

e 1:2=0.26
[€ | 3 [1 IN+0]03N]

162 5: Matrices

Check element 1:3.

1:3=08.59
L€ | » | | [N»D[O4N]|

The coordinates of the point in the new system are (3.59, 0.26, 0.59). Exit
from program COORD and return the display format to FIX 4.

EXIT) [EXIT v: 1. 0000
BDISP] i FI® 4 [ENTER x: @.5891

Solving Simultaneous Equations
Evaluation of an electrical circuit by the technique of loop currents gen-
erates a system of simultaneous equations. The number of equations in
the system is equal to the number of loops in the circuit. The first example
in this section finds the currents in a four-loop, purely resistive circuit (the
terms in the system of equations are real numbers). The second example

finds the currents in a four-loop circuit that has complex impedances (the
terms in the system of equations are complex numbers).

Example: Solving Real-Number Simultaneous Equations.
Consider the following four-loop circuit.

R4 R3 Rs Rz

W—W—TMN—7W

Apply the technique of loop currents to find the currents I, I5, 15,14

5: Matrices 163

The equations to be solved are (in variable form):

1. (Ry+R3)(I)) - (Ry)(I2) =V

2. -(Rz)(11) + (Rz+ R3+ Ry)(12) - (Ry)(I3) =0
3. -(Ry)(I2) + (R4 +Rs+ Re)(Is) - (Re)({4) =0
4. -(Rg)(I3) + (Rg + R7 + Rg)(14) =0

Put the equations in matrix form, substituting the following values for the
variables: V' = 34 V and R, through Rz = 1 Q.

2 -1 0 of |
-1 3-1 0 I,
0 -1 3 -1 I,
0 0-1 3 1

OOO%

4

Select the Simultaneous Equation application, and specify the number of
unknowns.

B(MATRIX] SIMG 4 [ENTER

x: B.0000
(HaTalMaTEfMaTR] | | |

Enter the values for the elements of the coefficient matrix MATA. (The
keystrokes for the entering the first row data are shown here.) After
entering all the values, return to the main menu.

x: 3.00080
(MATAJHATE[MATR]] |]

EXIT

Enter values for the constant matrix MATB.

HATE x: 0.0000

34 CEE G GETE I .
0

0 4+

0

164 5: Matrices

Calculate the unknowns.

MAT =

I,1is 21 A. Now check I, .

4

Check I .

I: .;’

Check I, .

1:1=21.06600
[€ [owp] + | 4+ [GOTO] + |

2: 1=8.0000
L € fon] + | 4 [GOTO] + |

3:1=3.0000
[€ Jon] + | 4 [GOTO] -+ |

4:1=1.00008
L € fon] + | 4 |GOTO] - |

Leave the matrix editor. (Stay in the Simultaneous Equation application

for the next example.)

EXIT

x: 1.060008
(MATATMATEIMATR]] |]

5: Matrices 165

Example: Solving Simultaneous Equations That Have Com-
plex Terms. Now consider the following circuit.

A} A} AY A}
/1 /1 /1 J1
c, C, Cy Cy

The capacitor in each loop of the circuit introduces a complex term into

each loop equation:

1. |(R; +R2) - i(wci‘l) (1)) - (R2)(Ip) =V

2. - (R)(I3) +
3. -(RY(I) +
4. - (Re)(Is) +

166 5: Matrices

[1]
LR2+R3+R4_I(_(»_C—2.)_

R4+R5+R6—i(w—é;)

R6+R7+R8"i(%4)

I2) - (R4)(13) =0

(Is) - (Rs)(14) =0

(Iy) =0

Put the equations in matrix form, substituting the following values for the
variables: V' = 34V, R, through Rg = 501, w = 100 radians/second,
and C; through C,=1F.

10 - i0.01 -5 0 0 I,

34
-5 15 - i0.01 -5 0 I; 0
0 -5 15-i001 -5 ILi{ = |o
0 0 -5 15-i001| |1, 0

Set the coordinate mode to Rectangular. Make MATA a complex matrix.

B(MODES) : @, 0000 _10.0000
0 [ENTER] | [T N7 7 I I

[STOJ [x] !

Enter the values for the elements of the matrix. (The keystrokes for the
entering the first row data are shown here.) After entering all values,
return to the main menu.

MAT
10 m 01 4]

x: 15.0000 -i0.0100
T [T [T I .

EXIT

Solve for MATX. (MATB has the same value as in the previous example.)

1:1=4.26008 1i08.06061
L < loe| + | 4 [cOvO] + |

I, is 42000 + i0.0061 A. Now check I, .

2:1=1.6000 iB8.0037
L« fowe | + [4 [Govof =+ |

5: Matrices 167

Check I5.

e 3:1=p0.6000 i8.0019
Check I, .
¥ 4:1=0.2000 i0.0008
Exit from MATX.
EXIT x: 8. 2000 i8.0008

MATEJHnTE] | []

Make MATA and MATX real matrices. Exit from the Matrix application.
M TH B(COMPLEX] v: [4x1 Matrix]
[5TO) MATH x: [4x1 Matrix 1]

(RCL) HMATH W(COMPLEX]

(STO) MATH

EXIT] [EXIT

Usmg the Solver W|th Slmultaneous
Equations

In the examples in the previous section, you found the loop currents I,
through 1, by dividing the constant matrix MATB by the coefficient matrix
MATA. You were limited in that example to solving specifically for the
loop currents in the solution matrix MATX.

In the following example, you’ll use the Solver and matrix division to find
the value of one element of the coefficient matrix, MATA, given:

m Values for the other elements of the coefficient matrix.
m Values for the elements of the constant matrix.

m A specified relationship between two values of the solution matrix.

168 5: Matrices

Example. Using the Solver to Find the Value of an Element
of the Coefficient Matrix. Consider again the circuit from the previ-
ous section in this chapter.

Find the resistor value R, such that loop current I, is 20 A greater than
loop current I, (I; = I;+20), when V' = 40 V, and R, through Rg = 1 ().

These conditions generate the following matrix equation.

R -1 0 of [[2*t20 40
-1 3-1 0 I; 0
0 -1 3 -1 I, 1o
0 0-1 3 1, 0

5: Matrices 169

Part 1. Write the program for the Solver.

Program:

B8 { 82-Bute Pram 2
@1 LEL "SIMUL"
#2 MVYAR "R"

82 MVAR "ROW"
84 MYAR "CoOL"
83 MVAR "D"

85 IHDEY "MATA"
a7 RCL "ROW"

82 RCL "CoL"

B3 STOIJ

168 RCL "R"

11 STOEL

12 RCL "MATE"
12 RCL+ "MATA"
14 STO "MATR"
15 IHDEX "MATH"
16 RCLEL

17 I+

12 RCLEL

19 RCL+ "D"

28 -

21 EHD

170 5: Matrices

Comments:

Lines 02-05: Declare the variables R,
ROW, COL, and D.

Lines 06— 11: Index the coefficient
matrix, and set the index pointer to
the element specified by the current
values of ROW and COL (lines 05—
08). Store the current value of R (sup-
plied first by you as initial guesses, and
then iteratively by the Solver) in the
specified element (lines 09 -10).

Line 12-14: Solve for MATX. MATA
has the current value of R in the
specified element.

Lines 15-20: Index the just-calculated
solution matrix (line 14). Calculate

I, - (I; + D) (lines 15-20). The
Solver iteratively supplies values for R
untill;, - (I; + D) = 0.

Part 2. Enter the Matrix application, and specify a system of equations
with four unknowns.

B(MATRIX] SIME 4 [ENTER x: B.0000
ATATMATE[MATE] |] |

Fill MATA with the known coefficients. Element 1:1 contains the
unknown resistor value R. You can leave this element at its current value.
(The keystrokes for the first two rows are shown here.) After entering all
the data, return to the main menu.

MATH : e %: 3.0000
1[4 G [nTATMATE[MATR] |] |

164 =
<]
AE -

EXIT

Fill MATB with the known constants, then exit from the Matrix applica-
tion.

MATE 40 - 0,000
0 x: 40,0000
0o

0 %

EXIT) EXIT) [EXIT)

Select the Solver application, and then program SIMUL.

SOLVER] §1MULE x: 40,0000
B o I“ﬂﬂ!l“--l

Specify element 1:1 of the coefficient matrix.

COL=1.08000
L f JrROMJCOL] O | | |

Enter 20 for D.

20 D D=20.80600
L f [rROMJCOL] O | | |

5: Matrices 171

Enter guesses of 0 and 10 for R and solve for R.

0 R R=1.6190
10 R [R frOoWfeoLf o [[|

R

Verify that element 1:1 of the coefficient matrix (R) is 1.6190.

BMATRIX] (V) 1:1=1.6198
EDITN MATA

R; =R - R, = 0.619 Q. Check the values for I; and I, .

EDITH MATX 1:1=32,3077

I,is 323077 A. Check I,

2:1=12.3677
[€ fon] + | 4 |GOTO] -+ |

I,is 12.3077 A. Exit from the Matrix application.

Matrix Operations in Programs

All matrix functions except GOTO are programmable. The programs for
advanced statistical operations in the following chapters use matrices
extensively.

The program LIST on pages 176 — 178 enables you to accumulate statisti-
cal data in a matrix with the same keystroke sequence that you use in nor-
mal data entry into the summation registers.

The program MLR on pages 186—192 uses matrix and statistical functions
to calculate a linear regression for data sets of three independent vari-
ables. MLR creates a coefficient matrix MATA and a constant matrix
MATB. It executes matrix editor functions to fill them with data, then exe-
cutes matrix division to calculate the solution matrix MATX.

172 5: Matrices

The program PFIT on pages 218 -222 plots the statistical data from the
matrix currently in the X-register, then fits and plots a curve to the data
using the current statistical model. It plots the curve and the data points
using x-y data pairs from complex matrices.

5: Matrices 173

6

Statistics

This chapter presents five programs for statistical operations. The pro-
grams use statistical functions introduced in chapter 15 of your owner’s
manual, and integrate matrix operations presented in the previous chapter
and in chapter 14 of your owner’s manual.

m Three programs enable you to accumulate data in a matrix for subse-
quent statistical operations:

m LIST enables you to fill an n x 2 matrix ELIST with x- y data
pairs with the same keystroke sequence that you use to enter data
into the summation registers.

m YFORM stores an n X m matrix in XLIST and redimensions
ELIST to nm x 2. Each element of the original matrix becomes
an element of column 2 of ZLIST. Column 1 is filled with zeros.

m XVALS fills column 1 of XLIST with x-values 1, 2, 3, ..., n for
linear or exponential curve fitting.

m MLR calculates a multiple linear regression for two or three indepen-
dent variables using the £+ function and matrix operations.

m PFIT plots the x-y data pairs from LLIST and uses FCSTY to plot a
curve to the data according to the currently selected statistical model.
(The annotated listing of PFIT is in chapter 7 on pages 218-222.)

174 6: Statistics

List Statisticsﬁ

To supply a set of x-y data pairs to the calculator for subsequent statistical

operations, you use the keystroke sequence

y-value [ENTER] x-value

for each data pair. The summation coefficients in the 6 (or 13) summation
registers are automatically recalculated each time you press [£4]. The cal-

culator does not, however, maintain a list of the individual data pairs.

To update the summation registers and maintain a list of the x-y data
pairs, you:

1. Create a 2-column matrix.

2. Use matrix editor functions to fill the matrix with the data pairs.

3. Place the matrix in the X-register.

4. Execute X+ to accumulate the data in the summation registers.

(You did this in chapter S in the section "Using Indexing Utilities and
Statistics Functions Interactively".)

6: Statistics

175

The LIST Program. The following program, LIST, enables you to fill a
1- or 2-column matrix XLIST with x-y data pairs using the keystroke
sequence

y-value [ENTER] x-value L 15T + (for each data pair).

where LI5T+ is one of three menu keys built by LIST. Note that this is
the same keystroke sequence that you use to enter statistical data into the
summation registers.

To key in LIST:

1. Create variable ELIST before program entry.

2. Assign functions J+ and J - to the CUSTOM menu before program
entry.

3. Create labels LIST, LIST +, LIST -, and CLIST when you begin
program entry.

Here is an annotated listing of LIST.

Program: Comments:

._
[x]

=
[ix]

L 197-Bute Pram X
LEL "LIST"

Do
—

[xn)
M

=
AU I R SR LN

CLMEHU Lines 02-11: Build and display the
"LIST+" menu keys.

EEY 1 HEQ "LIST+"

"LIsT-"

EEY & ¥ER "LIST-"

"CLIST"

+ KEY & #ER "CLIST"

S MEHU

STOF

GTO "LIST"

Lo T T T o T O
(04}

et D
Doy BN w I x|

—

176 6: Statistics

* LBL "LIST+" Lines 12-20: If SLIST exists, index it
SF 25 and make it grow by one row. If it
HER I doesn’t exist, create and index it (in
FC?C 25 lines 32-42).

5 GTO B2

GROM

\.‘ -

3+

LU LR

5

[KO I LN I

ICUI I A
o T n

[BN n]

DO N A

—

L) I A K I

[N R]

(13

DoV w I R |

B A N I N

[

WEAF

LEL 88 Lines 21-28: Store the x-value into
STOEL the matrix. If flag 01 is clear, then also
F57 @1 store the y-value.

GTO &1

J+

nay

STOEL

wlxy

LEL &1 Lines 29-31: View the £LIST matrix.
YIEW "ZLIST"
ETH

LEL @z Lines 32—-42: Create the 1- or 2-
1 column matrix XLIST.
Fs7? 61

LIM “"ZLIST
HER I

]
— €
o
[
=

6: Statistics 177

onon DI I A R O I i S
nof W= 000w

on

on

n

n
DoUNRY w4

[e e] gl
OV SV

o
<Y

178

LEL "LI=T-"
SF 25

RER I

FC? 25

RTH

Jd-

RCLEL

F5? @1

GTO Bz

-_""

FCLEL

LEL @3
DELR
Fs?C 25

GTO @1

LEL "CLIST"
cLY "ELIST"
RTH

LEL I

* IHDEX "ZLIST"
: RTH

EML

6: Statistics

Lines 43 -53: Recall the element(s) in
the last row of LLIST to the X- (or X-
and Y-) register(s).

Lines 54 - 57: Delete the last row of
YLIST.

Subroutine CLIST, lines 58— 60: Clear
the variable LLIST.

Subroutine I, lines 61-63: Index
LLIST.

To use LIST:

1. For two-variable statistics (x- and y-values), clear flag 01. For one-
variable statistics (x-values only), set flag 01; the program makes
YLIST a 1-column matrix.

2. Press i
3. Clear LLIST by pressing CLIST.

4. Enter data pairs by pressing y-value x-value LIST#+ (for
each data pair).

5. You can delete the last data pair by pressing LIZT~.

Example: Accumulating Statistical Data in a Matrix. Use pro-
gram LIST to accumulate the following x-y data pairs in the matrix ZLIST.
Then find the mean of the x- and y-values.

x-value | y-value

6 2
5 3
9 5
6
1
4

12
21 1
7

Clear flag 01 for two-variable statistics. Start LIST.

B(FLAGS] © cF ot x: B.0000

ppe LisTefuest=] [] JCLiET]
Clear TLIST.

CLIST x: B.0000

LisT-] |] JCLIET]

6: Statistics 179

Enter the first data pair.

2 [ENTER]6LIST+ ZLIST=[1x2 Matrix 1]
CETeuisT=]]] — [eLisT]

Key in the next data pair.
3 5LIST+

ZLIST=L 2x2 Matrix 1]
[LisTefuist-] | | JCLIsT]

Key in the remaining data pairs (the keystrokes are not shown here). Exit
from LIST.

EXIT

Clear the summation registers. Recall ZLIST to the X-register.

M(CLEAR] cCLZ v 7.0000
[RCL ZLIST x: [62 Matrix 1

Accumulate the data from XLIST into the summation registers.

v: 7. 00808
X: 6.8000

Find the mean of the x- and y-values.

B(STAT] MEAH %: 10. 0000
||3-mmnmmnm|

The mean of the x-values is 10. Check the mean of the y-values.

[xzy] %: 5. 1667
[Z+ 1 SUM [MEWN]IMN | S0EY | CFIT |

Exit from the STAT menu.
EXIT

180 6: Statistics

Redimensioning the XL/ST Matrix to nm x 2. In the previous exam-
ple, you used LIST to create a 6 X 2 matrix XLIST. You then recalled
YLIST to the X-register, and executed £+ to accumulate the x-y data
pairs from the matrix into the summation registers. To execute T+ when a
matrix is in the X-register, that matrix must have a column dimension equal
to 2. If, for example, you use LIST to create an n x 1 matrix XLIST (by
setting flag 01), you must redimension it before executing ¥ +.

The following program, EFORM, redimensions any matrix SLIST of
dimension n X m to dimension nm x 2. All of the elements in the input
matrix are moved to the second column. The first column is filled with 0’s
(zeros).

g8 { S8-Bute Pram
81 LBL "ZFORM"

gz 2

a2 RCL “"ZELIST®
B4 DIM?

a5 X

Be DIM "ZLIST"
IMDEx "ELIST™
1

EMTER

2

R<FE

RCL “"ELIST™
TRANS

STO “ELIST"

=
=J

5]

=
=0 00

T e
oS R L

—
n

EHD

Filling Column Two of XL/ST with Evenly Spaced Integers.
You may want to fit a linear or exponential curve to a set of one-variable
statistical data. The following program, XVALS, fills the first column of
the SLIST matrix with integers 1, 2, 3, ..., n. If ELIST is a 1-column
matrix, XVALS automatically creates the new column.

6: Statistics 181

Program: Comments:

88 { 46-Bute Pram 3
@1 LEL "XVALS"
@2 RCL "ZLIST" Lines 02-08: Recall ZLIST. If it is a
Bz DIM? 1-column matrix, execute ZFORM to
64 1 make it a 2-column matrix. Then index
As - it.
BE HLOT
By XER "ZFORM"
@3 IMDEX "ZLIST"
B3 LEL 8@ Lines 9-14: Fill column 1 with
18 RCLI integers 1, 2, 3, ..., n. Continue to the
11 HaxY end of the column.
12 4
3 FC7? 76
14 GTO 68
15 EHMD

Using the Summation-Coefficient Functions
(X+, ¥-, and CLY)) in Programs

The program MLR in this section uses the ¥+ function and matrix opera-
tions to calculate a multiple linear regression for three independent vari-
ables.

For a set of data points { (x; ,¥;,2;,4),i =1,2,..,n }, MLR fits a
linear equation of the form

t=a+bx+cy+dz

by the least squares method.

182 6: Statistics

Regression coefficients a, b, ¢, and d are calculated by solving the follow-
ing set of equations.

DY “EEEED) VD) 4 ¥,

a
G Ex)2 Iy Ixz b Ix; b
o Zyix; Z00)? Dy c|l T |Zns
X Tzx, Tzy I(z)? d Lz 4

The coefficient of determination R?is defined as

aEt,- + bEx,-t,- + cEy,-t; + dEz,- L - l (Et,')z
R? = &

£ - 5 (B6)?

Here is a flowchart for MLR.

6: Statistics 183

MLR

BUILD MATRICES
MATA, MATB, MATX

v

CLEAR FLAG 00 TO
UPDATE STATISTICAL
COEFFICIENTS WITH

NEW DATA SET

LBL
00

BUILD MAIN

MENU KEYS

!

DISPLAY MAIN MENU
AND STOP FOR INPUT

KEY 1 KEY 2 KEY 3 KEY 3
v 0= Ndd v”z__” v ”CLE” V 'CALC"
[xea11 || xeQ12 || xEQ13 |
USE STACK ARITH USE STACK ARITH USE CLZ TO CLEAR
ANDZ+TO UPDATE | |ANDZ-TO SUBTRACT| | ALL SUMMATION
STATISTICAL COEFF.| | THE LAST DATA SET REGISTERS
RTN RTN RTN

184 6: Statistics

FILL MATA, MATB
WITH SUMMATION
COEFFICIENTS

v

CALCULATE MATX
AND R2

!

BUILD SOLUTION

MENU

DISPLAY SOLUTION MENU

__AND WAIT FOR DATA INPUT KEYS
¢KEY1 iKEYZ ¢KEY3 lKEY4 iKEYS KEY 6
IAI IIBI ICI HDH ”Rz" IT?.
DISPLAY
R2
LOAD ALPHA REGISTER
WITH VARIABLE NAME CALCULATE
AND X-REGISTER WITH AND DISPLAY T

CORRESPONDING COLUMN
NUMBER OF MATX

y

INDEX MATX AND
DISPLAY VARIABLE

6: Statistics

00

185

To key in MLR:

1. Assign functions —, 1,

before program entry.
2. Create variables MATA, MATB, MATX, R2, and T before program

entry.

+, 1, I- and J+ to the CUSTOM menu

Here is an annotated listing of the program.

Program:

aa
a1

(S
a2
a4

186

{ 468-Bute Pram
LEL "MLR"

REALRES
4
EMTER

1

5 DIM "MATA"

LIM "MATE"
4

EMTER

DIM "MATA"
CF a8

LINE

LEL B8

CF 21

CLMENU

" 2+ n

KEY 1 XER 11
" E_ "

KEY 2 XER 12
" CLZ n

KEY 3 XEQ 13
"CALC"

KEY & GTO 14
MENU

CLD

STOP

GTO Ba

6: Statistics

-
+

Comments:

Lines 02-12: Set to calculate real
results only. Create 4 x 1 matrices
MATX and MATB. Create 4x 4
matrix MATA. Clear flag 00 (set to
£+ mode). Set to Linear (statistics)
mode (calculate six summation
coefficients).

Lines 13-27: Build and dlsplay the
menu keys

— 1 0

29
48
4

Mo

o

oo

£
=] O

43
43
56
51
52
53
54
55
56
57
58

STO+ 16
CLx
LASTX
R+

ZREG 87
FS? B8
RTH

I+

rJ

rJ

Subroutine 11, lines 28 — 58: Emulate
I+ (or - if flag 00 set) to update the
following summation coefficients: Zxz
in Ry3, Xxt in R 5, Yyz in R4, Tyt in

R . Execute £+ to update the follow-
ing coefficients: £z in Ry, $22 in R g,
¥ in Ry, 22 in Ry, Xzt in Ry, 1 in
Ry,

6: Statistics 187

n
¥}

LEL 81
CLA
LASTA
R+

R4

ZREG 81
FS?C B84@
RTH

=+

2 RTH

[T b

[L0 s LI S s S
bt e L Y SN TV SV

[}
)

LEL 12
SF @9
HED 11

-

HER @81
ol
FTH

] T
o0

I IRV IS I
1 N IV VR

-

gl

LEL 132
ZREG 11
CLZ
ZREG &7
CLZ
ZREG &1
CLZ
RTH

L B B By |
LY BN |

[]

00D o

]

LEL 14
"Calculating"
AYIEW

5]

STOx= "MATA"
IMDE® "MATR"

oo
OO S T B e

[Fu N o TN o BN w I x B R
[xx]
0
+

LU PR
4

188 6: Statistics

Subroutine 01, lines 59 -68: Execute
X+ to update the following
coefficients: x in Ry, Zx? in Ry, Ty
in Rgs, y2in Ry, By in Ryg, and 71 in
Ros - (Note that n is also calculated in
subroutine 11.)

Subroutine 12, lines 69 —75: Emulate
- (set flag 00) to update the
coefficients calculated in subroutine
11. Execute £- to update the remain-
ing coefficients.

Subroutine 13, lines 76 —83: Execute
CLX to clear all defined summation
registers.

Lines 84 - 147, calculation of
coefficients a, b, ¢, d, and R? : Fill
MATA with x, y, z summation
coefficients. Fill MATB with ¢t summa-
tion coefficients. Calculate MATX
(MATB <+ MATA). Calculate R2.

294 >

35 RCL &7
95 4

a7 RCL 13
92 «

99 RCL @3
168 4

181 J+

162 RCL 14
182 4

184 RCL "MATR"
185 TEAHS
165 STO+ "MATAR"
187 RCL @82
182 +

189 «

118 RCL a4
111 +

112 «

112 RCL B2
114 +

115 +«

116 RCL B&
117 STOEL
112 IHDEX "MATE"
119 RCL A2
128 4

121 RCL 15
122 4

122 RCL 1&
124 4

125 RCL 11
126 STOEL

Do R I x]

—_ . e e s
DO I N I R]
[

o

¥ RCL "MATE"

RCL+ "MATA"
STO "MATH"
LASTH
TRANS

=

FHRHM

6: Statistics

189

Q30 Q3 0
L0d =~ O n

—_ . e e, e
$ L0
=0

—_
o f
[

14z
144
145
145

-

— —
+u +
[-,

TN 03 R o= & 0

D) I <

on

onoon

onoon on

onon o

T T

[ag]

b b ek b b b b b b ek b b b b b b
[np) n

[ng
I ORI S T o BN T o Y |

i

T
on

(039
[n}

[0y
[N I N

DY

—_ . et b b b b

=] =]

190

ral

C

>
ra
[xn]
Nu)

+
C

)
=
=

LASTHA
RCL 18
naEy

sTO "R2"

CLD

D’ [=4 =~
S b

SF 21

LEL &2
n H n
KEY 1
" E: n
KEY
" ': "
KEY
n [:I n
KEY 4
"RE"
KEY 5
n T‘? n
KEY &
KEY 2
MEHL
STOF
GTO B2

-
)

I

LEL 21
1

"] "

GTO
LEL

" t‘ 1]

-
[ix]

| K]

Il

6: Statistics

MER 2

HER 22

KER 23

HER 2

“ERE

“ER
STO

1T

A
-
ol

Lines 148 -164: Build and display the
solution menu.

Subroutines 21-25, lines 165-192:
Display the calculated coefficients a,
b, c,d, and R2. If PRON has been exe-
cuted, print the coefficients (lines 187
and 191).

bt BN By Bt Bl B B |

LY N I LR) B S T I N

0000 00 00

W o=@

un]

Iris

Tn

0000 00

by

[S T T e e T e e e e e e e S T el el el el
L u S I A]
[R W B x]

Do I oy B oy IS Y w BN I w S o BN o I W n | (¥}
LA | I CR R L

LU LV R Y R s Y

[O T I I N I e e o el
1z

[
on of

GTO
LEL
3

"I:"

GTO
LEL :
4

Ildll
LEL 8=

1

IMDEX "MATH"
STOIJ

RCLEL

l_" = "

ARCL =T X
AYIEL

RTH

LEL 25

RCL "R2"
VIEW "R2"
RTH

LEL 28 Subroutine 26, lines 193 -205: Fore-
IHDEX "MATH" cast T based on the calculated

XEQ B84 coefficients a, b, ¢, and d. Display T
HEQ B84 and, if PRON has been executed, print
#EG B84 T.

+

+

I -

RCLEL

+

ST T

YIEW "Tv

ETH

5
DOV N

I:'. i

M =
R oSN k]

6: Statistics 191

]

LEL 84 Subroutine 04, lines 206 —210: Calcu-
I- late terms bx, cy, and dz.

RCLEL

RCL= ST T

RTH

IO I
Lo Y R RN B R

[T T I L
[an]

Ma
—_- =
—

EMD

To use MLR:

1. Press MLE
2. Press ©CLZ to clear the summation registers.

3. Enter each data set, using the keystroke sequence t-value [ENTER
z-value [ENTER] y-value [ENTER] x-value @ Z+

4. Press CHLC .

5. Press the corresponding menu keys to see the values of variables a,
b, c,d, and R2.

6. To forecast T, use the keystroke sequence z-value [ENTER] y-value
ENTER] x-value 1%

7. To return to the main menu, press [EXIT].

Example: A Linear Regression For Three Independent Vari-
ables. Find the regression equation for the following set of data.

il1]12)13|4]|5

x| 7| 1|11 7
yi | 25|29 |56]|31]52
z| 6|15| 8| 8| 6
t |60|52|20|47]|33

Execute MLR.
MLE

192 6: Statistics

Clear the summation registers. Enter the first data set, starting with the
t-value.

ey

60 [ENTER] 6 [ENTER] 25 [ENTER]
78024

Enter the second data set.

52 [ENTER] 15 [ENTER] 29 ([ENTER]

1. 2+

x: 2. 0000
[« [=- JoLE]] JCALC]

Enter the remaining data sets (the keystrokes are not shown here). Now
calculate the regression coefficients and the coefficient of determination.

CHLC x: 8,9989
L a | B] ¢ J o | ra]Ty |
Check the value of a.
s 3=103.4473
Lo | e | ¢ J o Rl T% |
Check the value of b.
E b=-1.2841
| A | B | ¢ J o [Ra T2 |
Check the value of c.
o c=-1.0369
Lo] e] ¢ o |r 7% |
Check the value of d.
O d=-1.3395
Lo [B | ¢] o |ra] Ty |
Check the value of R2.
- EZ2 R2=0.,9989

6: Statistics 193

Calculate T (the forecasted value of ¢ given values for x, y, and z). Use the
values from data set #4.

8 [ENTER] 31 [ENTER] 11 T=46.4616
T T R I T N

(The actual value of ¢ in data set #4 is 47.) Return to the main menu and
clear the statistics registers for new data.

EXIT] CLZE x: 46.4616
[£+ | =- JoZ] | JoALc]

Exit from MLR.

EXIT 11.0000
46.4616

Curve Fitting in Programs
The curve fitting functions FCSTX, FCSTY, SLOPE, YINT, CORR,
LINF, LOGF, EXPF, PWRF, and BEST are programmable.

Refer to program PFIT on pages 218 —222 in the following chapter. PFIT
uses FCSTY in line 89 to forecast a y-value based on the currently
selected statistical model for each of 110 x-values. A curve is then plotted
with the 110 data pairs.

194 6: Statistics

Graphics and Plotting

The following topics are covered in this chapter:

m Building graphics patterns.
m Multifunction plotting.

m Plotting statistical data from a complex matrix.

Graphics
The program HPLOGO in this section uses the XTOA and AGRAPH

functions to build the Hewlett-Packard company logo in the center of the
display.

To key in HPLOGO:

1. Assign the functions XTOA, CLA, ARCL, and XEQ to the
CUSTOM menu.

2. Create the variable BLOCK.

7: Graphics and Plotting 195

Here is the annotated listing.

Program: Comments:

88 £ 441-Bute Pram >

&1 LEL "HPLOGO"

B2 CLLCD Lines 02-04: Clear the display for

B3 CF 24 graphics. Clear flags 34 and 35 so that

B4 CF 25 graphics placed in the display with
AGRAPH are merged with any

graphics already in the display. (The
top and bottom halves of the logo are
built separately and merged in the

display.)
A5 HKER® "TOP" Lines 05-09: Call subroutine TOP to
e 1 build the top half of the logo. Then
A7 EMTER display the top half of the logo, start-
a3 44 ing at pixel (1, 40).
B2 AGRAFH
16 HEQ “"BOT" Lines 10-15: Call subroutine BOT to
11 9 build the bottom half of the logo.
12 EMTER Then display the bottom half of the
13 48 logo, starting at pixel (9, 40).
14 AGEAFH
15 RTH
16 LEL "TOP" Subroutine TOP, lines 16-91: Build
17 CLA the Alpha string that represents the
12 255 top half of the logo. (Begin by building
19 XTOA the Alpha string that represents an 8 x
28 XTOA 6 block of on-pixels and storing that
21 KTOR string in the variable BLOCK.)
22 ®TOA
23 ®TOA
24 KTOA
23 ASTO “"BLOCK"
2& CLA
27 254

196 7: Graphics and Plotting

21

47
48
49
24
a1
a2

52

55

[» SO n SO s A0 n A 0 A
[I O T

[
sl

H“TOA
ARCL
233
®TOR
63
®TOR
15

®TOA

“TOR
XTOA

XTOA

KTOA
129
®TOR
224
»TOR
128
®TOR
&2
“TOR
39
“TORA
161
®TOR
224
®TOR
=l
®TOR
a8
“TOA

®TOA
129

“TOA

[ty g

> »TOA

"BLOCKE"

7: Graphics and Plotting

197

&7
&8
&3

=
P o= @

-

-
4%

on ok

~ = s = =

LS W I I u 1)

[n]
=

1

T B0

=

.]
b=l
[l
=]
-
kel
fu]
bl
P
b
P
o
P
o
P
bl
29
9

=

LY IS Y w LY IS WY o BN B w Y v}
n-ﬁo:-umm&f.-:anH
=

-
o
[

18z
184

198

a7
KTOA
23
®TOA
KTOA
325
®TOA
1e2

“TOAR

“TOA
ARCL "BLOCK"

Pl
SO

LEL "BOT"

ARCL "BLOCK"
235

®TOA

252

®TOA

240

= KTOR

224
“TOR

7: Graphics and Plotting

Subroutine BOT, lines 92— 156: Build
the Alpha string that represents the
bottom half of the logo.

165
186
187
183
189
118
111
112
113
114
115
116
117
118
113
1z8
121
122
123
124
125
126
127
128
129
138
131
132
133
134
135
136
137
138
139
148
141
142
143

“TOA
192
®TOA
198
®TOA
135
XTOA
129
XTOA

XTOA
®TOA

KTOA

KTOA
129
®TOA
224
KTOA
126
XTOA
38
XTOA

®TOA

XTOR
122
XTOA
XTOA
XTOA
198
XTOA
199
®TOR
225
XTOA
224

7: Graphics and Plotting

199

"BELOCKE"

154 127
155 HTOA
156 RTH

157 EHD

Example: Building a Logo. Display the Hewlett-Packard logo. If you
have a printer, modify HPLOGO to print the logo. Then print it.

Execute HPLOGO.
HFLO

| G/ |

Insert the instruction PRLCD after line 14 of HPLOGO to print the logo.

B(PRGM] B(GTO] [J 14 [ENTER

(V] FELCD

Print the logo.

(PRINT] [A] FOH

HFELDO

EXIT

v: 9, 60808
x: 40.0000

ra O

Using Binary Data to Build a Graphics Pattern. To build the
logo in the previous example, you had to calculate the column print
number for each of 91 columns —a time-consuming effort. The following
program, BINDATA, calculates the column print number when you input
the equivalent sequence of binary numbers in a column pattern.

200 7: Graphics and Plotting

Program:

...
[ix)
[

+ BB-Byte Fram
LEL "BIHDATA"

Do I o
—

CF 3
CF 3

EIHM

Do B R
BN TN 3
L I <

[xn]
on

LEL @3
£ CLY
STOF
1:

DoUE]
=-J

[n]
o

]
w0

[

RV » 1)

re

MY
GTO 81
“TOA

}_ nn n

—_ . e e s .
E SRR DU e)

n

—
[n}

- LEL @1
ARIF

¢ AVIEM
9 CLA

28 ATOA
21 1

22 EHTER
232 BB

24 AGEAFH
25 GTO 66

— . .
SR RN |

2 EHD

Comments:

Lines 02-04: Clear flags 34 and 35.
Set the calculator to Binary mode.

Lines 05-15: Clear the X-register and
suspend program execution for binary
data entry (lines 06—07). Build an
Alpha string of five spaces (line 08).
Test if the binary data (converted to
decimal form) is greater than 126. If
s0, go to label 01. If not, enclose the
corresponding HP-42S Alpha charac-
ter in quotes and append two spaces
to the Alpha register.

Lines 16-25: Append the number in
the X-register (the decimal equivalent
of the binary data) to the Alpha regis-
ter and display the current contents of
the Alpha register (lines 17-18). (The
Alpha register contains the decimal
number equivalent of the binary data.
If that number is less than 128, the
Alpha register also contains the
corresponding HP-42S character,
enclosed in quotes). Build the
equivalent column pattern and display
it, beginning at pixel (1, 66) (lines
20-24). Return to label 00 for the
next data entry (line 25).

7: Graphics and Plotting 201

To use BINDATA:

1. An on-pixel has value 1. An off-pixel has value 0.
2. Enter digits beginning at the bottom of the column.

3. If, for example, you enter only six digits, the bottom two digits are
interpreted to be zeros.

4. Press after data entry to see the calculation. After the calcula-
tion is displayed, simply key in the next sequence of numbers when
you are ready.

Example: Using Binary Data to Build a Logo. Columns 16-18 of
the Hewlett-Packard logo in the previous example have the following pixel
patterns.

O O 0O |LastDigitEntered

O o nm

O O =m

O m nu

O B n

H E N

HE B O

M O O FirstDigitEntered
Column# 16 17 18

Use BINDATA to calculate the column print number for each column.

Start the program.

B

x: B
Lh...F [HERM[DECH[OCTH] EINS [LOGIE |

Enter the binary data for column 16.
11100000 224

202 7: Graphics and Plotting

The column print number for column 16 is 224. There is no equivalent
Alpha character. The column pattern is at the right of the display. Now
enter the binary data for column 17.

01111000 (R/S] "x" 120

The column print number for column 17 is 120. The equivalent HP-42S
character is "x". (You can therefore either accumulate 120 in the X-
register and execute XTOA, or accumulate character "x" in the Alpha
register. The column pattern is at the right of the display. Enter the
binary data for column 18.

00111110 [R/S] "6]

The column print number for column 18 is 62. The equivalent HP-42S
Alpha character is ">". Now exit from the program.

EXIT

v: 1.00008
x: 0. 00808

(Refer to the character table in your owner’s manual (appendix E) and
note that five of the first 127 characters cannot be typed from the HP-42S
keyboard. The character codes are 4, 6, 13, 27, and 30. Program
BINDATA shows you the character corresponding to each of these codes,
but because these characters cannot be typed, you must accumulate the
corresponding character code in the X-register and execute XTOA.)

Multifunction Plots

The program PLOTS3 in this section enables you to plot up to three func-
tions concurrently on the HP 82240A Infrared Printer. It is based on the
program PLOT in the section "Example Programs" in chapter 10 of your
owner’s manual. As in PLOT, you supply to the program the name of the
routine that defines the function you wish to plot. However, in PLOT3,
you can supply up to three routine names.

7: Graphics and Plotting 203

Here is a flowchart for PLOT3.

PLOT3

LBL
A

v

USE VARIABLE MENU TO

STORE PLOT PARAMETERS

\

INPUT FUNCTION
ROUTINE NAMES

\

PLOT HEADER INFO
AND INITIALIZE

\

SET INITIAL x-VALUE

LBL
00

Y

CLEAR DISPLAY

Y

YES

(YMIN, YMAX, AXIS,
XMIN, XMAX, XINC)

NO |LABEL AXIS

«—1

@ YES

NO |DRAW AXIS

204 7: Graphics and Plotting

€OR EACH PIXEL ROW
(170 16)

A
GOR EACH FUNCTION

J

i
|
|
|
| + 'T‘ EVALUATE f(x)
i INCREMENT|
| X - VALUE |
+ ! i PLOT PIXEL
|
, I
PRINT FINAL ! |
DISPLAY ! '-———(NEXT FUNCTION)
\2 i
STOP l
|
|
|
|

-——(NEXT PIXEL ROW)

To key in PLOT3: Create variables YMIN, YMAX, AXIS, XMIN,
XMAX, XINC, FCN1, FCN2, and FCN3 before program entry.

Here is an annotated listing of the program.

Program: Comments:

e ¢ 424-Bute Fram

#1 LEL "FLOTZ"

B2 MVAR "YMIH" Lines 02-07: Declare the menu vari-
a2 MYAR "YMAR" ables.

64 MVYAR "ARIS"

65 MYWAR "EMIHY

BE MYAR "HEMAR"

a7 MVYAR "HEIMC

7: Graphics and Plotting 205

=

LEL A

w000

o
=

CF 24
CF 35
 CLA

: STOP
EXITALL

el
¥ U o

15 "FCHL"
16 HEQ @7
17 “"FCH2"

—
[un]

3 HER @7
"FCHE"
28 HER 67

—
)

21 AlY

22 "Plot of:t
22 FER

=24 ALY

2% BF 12

25 RCL "FCHLY
27 RER B8

22 RECL "FCHz"
2% RER Bg

E@ RCL “"FCHz"
AER a3

* ALY

+ CF 12

FEY "S%HMIH"
FREY "SHAR"
> PREY "RRISM
FREW "EMINY
FREY "EMAR"
FRW "SIHCY
ALY

e YMIMY

Do I o I Y |

B e il B U U L N T A

DOCEE S

FFA

206 7: Graphics and Plotting

VARMEMU "PLOTZ"

o M

Lines 08 - 14: Display the menu and
suspend program execution for data
input.

Lines 15-20: Prompt for the function
names (the subroutine labels).

Lines 21-43: Print the header infor-
mation. (In line 42, there are seven

spaces in the Alpha string before
YMAX.)

44
45
46
47
48

43
58

51

n
T

._l

[3=}
ot

onoon
N

n o
o

T T N n
Ll RN W W BN |

[T R A
BN]

[T I
n

T T

o
DU B I L

R R R

[I N T N

1260
RCL "YMAR"
RCL- "%MIH"

o

TO B8

"KMIN
a1

oy A
o

A
ST

LEL B8E
CLLCD
FC? @@
HER 835
FC? b1
RER B8&
1.81c

K

LEL @z
"FCH"

RCL @8z
“TOR

ASTO ST =

RCL IMD ST =

STR?
HER
156G
GTO az
RCL "HIHCY
16

[V)
ST

]
T

SToO+ &1

Lines 44 -48: Calculate the relative y-
value of one pixel.

Lines 49— 50: Store the first x-value.

Lines 51-58: Clear the display. If flag
00 is clear, label the x-axis. If flag 01 is
clear, draw an axis. Build a loop
counter corresponding to the 16 rows
in the display.

Lines 59-61: Build a loop counter for
the three possible functions. (The
character codes for characters "1", "2",
and "3" are 49, 50, and 51 respectively.
Routine 02 uses these numbers to
create the variables.)

Lines 62-83: Create the Alpha strings
FCN1, FCN2, and FCN3 successively.
Call each string to the X-register, then
recall to the X-register the variable
that matches that string. Test if the
variable has an Alpha string (a func-
tion program name) in it (lines 62—
68). If so, plot a pixel for each func-
tion. Increment the x-value. If the plot
is complete (if x-value > XMAX), go
to label 03. If the current display is
complete (if rows 1-16 are filled),
then print the display and start a new
one.

7: Graphics and Plotting 207

=~J

RCL 81
w7

GTO a3
ISG B2
GTO 61
FRLCD
GTO aa

000 NN
Wy o= W00~ T

00

LEL 83
FRLCD
> RTH

GTO A

nn i B s e}
i B) Y

o0

wDo0D

LEL 84
RCL 81
KEQ IND
SF 24

DO % I v |

RCLx 8@
1

+

CF 24
RCL B2
nary
nrE?
FIXEL
FTH

L) I

03 =) M

gy LB RN Y Y RN WY w R w N w N w B

I D
-

]

LEL @3
CF 21
CLA
ARCL &1
AYIEW
SF 21
RTH

AR

=
L) [A R N]

AR

[un]
L I I 4

Pt b b b b b et
[an]

=

208 7: Graphics and Plotting

RCL "XMAR"

RCL=- "%MIW"

e
1

Lines 84 -87: Print the final display
and stop. (Line 87 enables you to res-
tart the program by pressing [R/S].)

Subroutine 04, lines 88 —101: Evaluate
the function at x and plot the
appropriate pixel.

Subroutine 05, lines 102 - 108: Label
the x-axis.

L B

[0 IR R N 8
DoUEEY n]

() I R R N

Qo0 0 0 Q0
()

T T T T O T T

Fa Q3 QD
Do RS N |

—_
£ f
[

143
144

LEL B&
1

RCL "AXIS"
RCL- "YMIN"

RCLx @&
+/=
1

FIXEL

R P

2
"
AGEAFH
RTH

LEL av¥
CF 21

- ASTO ST

CLA
AYIEMW
SE

CLA

Fs? 55
SF 21
SF 25
RCL IMD
CF 25
STR?

ARCL ST =

AOH
CLD

STOP
AOFF

* ALEHG

neEa?

ASTO ST &

Subroutine 06, lines 109-123: Draw
the axis. (In line 120, the Alpha string
is five "multiply” characters: press

B(ALPHA] (x] (x] (x] (x] [x] [ENTER].)

Lines 124 -146: Prompt for an Alpha
string (function name). If the variable
already contains an Alpha string, that
string is recalled to the Alpha register
as the default.

7: Graphics and Plotting 209

145

STO O IMD ST L

& RTH

LEL &8z Subroutine 08, lines 147-153: Print

2 CLA
STR?

the function names.

ARCL ST =

STR?
= FRA
: RTH

EHD

To use PLOT3:

-h
.

210

Execute PRON and turn on your Infrared Printer.

. Write a routine for each function that you want to plot. The current

x-value is in the X-register when the program calls the function rou-

tines.

The routines need not recall the current x-value to the X-

register.
Set the display format to ALL.
Start the program (press FLOTZ).

Supply the plot parameters. For example, specify 20 for YMIN by
pressing 20 WMIH .

. After supplying values for the plot parameters, press [R/S].

As prompted, store the name of each function routine in a
function variable. For example, to supply the name TAN for
FCNI1, press TAN at the first prompt.

. If you have already supplied a routine name for a function

variable, that name is displayed at the prompt. If you want to
leave that name in the variable, simply press [R/S].

If you want to plot only two functions, supply names for only
two variables. Leave the Alpha register clear for the third
variable (just press when prompted). If a name is
displayed for the third variable, press [«] to clear the Alpha
register, then press [R/S]. If you want to plot only one func-
tion, supply a name for only one variable and leave the Alpha
register clear (or clear it) for the other two variables.

7: Graphics and Plotting

Example: Plotting Multiple Functions. Use PLOTS3 to plot the fol-
lowing functions.

1. y = sinx
2. y = 0.35(Inx) (cosx)

First, write routines to describe the functions.

B8 £ 9-Bute FPram
H61 LEL "SIHE"

12 SIN

2 EHD

DU]

Program: Comments:

...

[x]
—

[ix]

{ ZF-Bute PFram X Lines 04-05: Ensure that the program
LEL "LHCOS" does not attempt to execute In (0).
cos

LASTH

-
U o I ot B

—
L

Do I U hox B o]
DN w I IS R R N S o T O T
m = = 5
0wt
=

.,.
n)

-

Set the Display format to ALL. Execute PRON. Clear flags 00 and 01 to
draw and label the x-axis. Start PLOT3.

BDisP] HLL A
BPRINT) (&) FOH Immmﬂmml
B(FLAGS] B(FLAGS]
CF 00 CF oOf
FLOTZ

Plot y-values between —3 and 3, and set the axis aty = 0.

3[FA YMIH AXIS=0
3 YHAY [YHIN v | il | BHIN (M | SING]
0 AXIS

7: Graphics and Plotting 211

Plot x-values between 0 and 720 in increments of 60 per display.

HMIN XINC=60
720 22 B [EHIN TTHAE] il |GHIN [HAE] NG

60 KIHNC

Supply the program name SINE for the first function variable.

SINE SINE_
[RECUE] FGHI [JKLH | NDPG: [RETUY] bty 2]

Supply the program name LNCOS for the second function variable.

LNCOS LNCOS_
(MECUE] FGHI [JKLMNDPG [RETUN] 1Y 2]

212 7: Graphics and Plotting

Leave the Alpha register clear for the third function variable and start the

plot. The printer output is shown here.

Plot of:

g ° T ONEEEIZ r0
- ZDrD IH
=X ODCZ".[?:G:%

; wonn nz
am
1)

—
(o)

[=

—
[ua)
=
\s
y

7

240 a
38 N T

420 T
483 :.'..'_..-" 4

YMAX

SN

-J

T
DR WW

Exit from the program. Return the display format to FIX 4.

EXIT
B(isp]

4 [ENTER

v: 720.080800
x: 723.7500

7: Graphics and Plotting

213

Plotting Data from a Complex Matrix

In previous programs, you have used:

m PIXEL to turn on individual pixels in the display. You specify the
pixel number in the X- and Y-registers (row number in Y and column
number in X).

m AGRAPH to display a graphics pattern. You specify the location of
the pattern in the display by placing a pixel number in the X- and Y-
registers (row number in Y and column number in X).

PIXEL and AGRAPH operate on the numbers in the X- and Y-registers.

The efficiency of these functions is enhanced by enabling them to operate
on a complex matrix in the X-register, where each element of the complex
matrix has the form

x-value + iy-value
When such a matrix is in the X-register, PIXEL turns on each pixel in the

display as specified by the elements in the matrix. For example, consider
the following complex matrix.

1+i10 5+i20
10+i30 16+i40

If you execute PIXEL when this matrix is in the X-register, pixels (1, 10),
(5, 20), (10, 30), and (16, 40) are each turned on.

214 7: Graphics and Plotting

Similarly, AGRAPH places the graphics pattern that is encoded in the
Alpha register at each position in the display as specified by the elements
in the matrix.

Note that PIXEL and AGRAPH operate on the rectangular form of the
complex matrix. Before entering numbers into the complex matrix, set the
angular mode to Rectangular.

The program PFIT in this section plots the individual data pairs from the
real n x 2 matrix in the X-register, then fits and plots a curve to that data
using the currently selected statistical model. PFIT creates one complex
matrix and executes AGRAPH to mark each data point with a "+" charac-
ter. PFIT then creates a second complex matrix and executes PIXEL to
plot the forecasted curve.

7: Graphics and Plotting 215

216

PFIT

STORE THE (DATA)
MATRIX IN DATAMTX

v

INDEX DATAMTX

v

XEQ MM TO FIND MIN
AND MAX VALUES, THEN
CALCULATE SCALING
FACTORS

4

PLOT
AXES

v

STORE DATA FROM
DATAMTX IN SUMMATION
REGISTERS

v

BUILD PLOTTING
MARKER

|
'

7: Graphics and Plotting

|
'

\/

SCALE EACH
X AND y VALUE

v

ICREATE COMPLEX MATRIX
OF x AND y VALUES

v

[PLOT THE DATA POINTS |

ICREATE 1 X 22 TEMPORARY
MATRIX AND FILL IT WITH
x -VALUES 1-22

v

FOR EACH SET 1-6
OF 22 x -VALUES
A
+ |[FORECAST 22 y -VALUES |

PRINT THE
DISPLAY [SCALE EACH x, y VALUE |

|

|

|

|

|

|
& Y
m : COMBINE x, y MATRICES

|

|

|

|

|

|

i

INTO A COMPLEX MATRIX

\

PLOT 22 PIXELS
(DRAW THE CURVE)

To key in PFIT:

1. Create variable DATAMTX before program entry.
2. Create label MM when you begin program entry.

7: Graphics and Plotting 217

Here is an annotated listing of PFIT.

Program:

68 £ 295-Bute Pram X
a1 LEL "PFIT"

62 CF 24

B2 CF 35

a4 RECT

85 STO "DATAMTX"
Be INDEX "DATAMTX"
av KER "MM"

@3 STO @82

a9 -

18 128

11 +

12 STO 81

13 sTO+ @z

14 =EGQ "MM"

15 Ry

1e STO 84

17 -

18 13

19 K<Y

28 =+

21 STO @3

22 STOx B4

23 2

24 STO- 04

25 STO- B2

218 7: Graphics and Plotting

Comments:

Lines 02-06: Clear flags 34 and 35.
Store the matrix that is in the X- regis-
ter in DATAMTX and index
DATAMTX.

Lines 07-13: Call subroutine MM to
find the minimum and maximum x-
values. Then calculate the x-value scal-
ing factor.

Lines 14-25: Call subroutine MM to
find the minimum and maximum y-
values. Then calculate the y-value scal-
ing factor.

T

=J

My = G

[N TR I8 T L O R
= o0 00

k]

on

i

[I A A]
oS

by

DO
ool

£
=

PO OO S N
BN VI

45
46
47
48
49
56
51
52
53
54
55

CLLCD

RCL B4
nea?

RCL- ST =
RCL B8z
nea?

CLx

FIXEL

ZREG 11

CLE

RCL "DATAMTH"
=+

CLA

“TOR

7

“TOR

AN

“TOR

RCL "DATAMT="
TEAMHS
STO "DATAMTHE"

IMDE» "DATAMTH"

DImz

1

nFY
GETH
DELR
RCL+ @1
RCL- 82

Lines 26— 33: Plot the axes.

Lines 34-37: Store the data in
DATAMTX into the summation regis-
ters.

Lines 38 —44: Build the "+" character
(used to mark each data point in the

plot).

Lines 45-55: Make the matrix 2 xn
and index it (lines 45 -48). Make two
1 x n matrices, where the matrix in the
X- register is the x-values, and the
matrix in DATAMTX is the y- values
(lines 49 -53). Convert the x-values to
screen coordinates for plotting (lines
54-56).

7: Graphics and Plotting 219

S RCL "DATAMTH" Lines 56—59: Convert the y-values to

57 RCLx B2 screen coordinates (lines 56— 58).

58 RCL- 64 Convert the matrices in X and Y to

5% COMPLEX one complex matrix in X, each ele-
ment of which is: x-value + iy-value
(line 57).

3 1 Lines 60—64: Subtract 1 + i1 from

&1 EMTER each value (to set the center of the "+"

&2 COMPLER character at the data point) (lines

63 - 60-63). Place the center of the "+" at

&3 AGRAFH the coordinates defined by each ele-
ment of the matrix (plot the data
points) (line 64).

&5 RCL "REGS" Lines 65-69: Recall the registers

£6 1 matrix to the X-register, and redimen-

&7 EMTER sion it to a 1 X 22 temporary matrix.

g2 22

&3 0IM "REGES"

ra 21 Lines 70-75: Fill the temporary

71 LBEL 81 matrix with values 0 through 21.

72 STO IHD ST

3 DSE ST X

4 GTO &1

S OSTO 88

TE Rt Lines 76 - 80: Store the data from the

77 RCL "REGS" registers back into REGS, then clear

TE RO the X-register.

73 5TO "REGS"

28 CLa

220 7: Graphics and Plotting

T

=)

L8 o o O O B |

o0

N}

NN
O Y

on

[B w T B (R 4

—
[n)

[T S NN w BN o RN o B N

U
[

-
I A]

Doy n |
T B 0

-
DoV]

. b b b b b b b
DU

[Sra—y

I ot IS Y |

[Sra—y
[Sra—y
[

114
115

LEL &2
EMTER
RCL+ @2
RCLx @81
FCSTY
RCLx 83
RCL- 84
COMPLES
FIXEL
COMPLE=
R+

2
<=

™
[ix]

-

2
o
+

bSE ST Y

GTO a8z

FRLCD

CLY "DATAMTE"

2 RTH

LEL "MH"
RCLEL
EMTER
LEL @32
I+

FS? 76
RTH
RCLEL

LA
AR

[Ny
DR |

3 RCEY

R4
Hry?

Lines 81-84: Establish a loop counter
6.00000 in the Y-register. Change the
values in the temporary matrix to 1
through 22. (These values represent
the first set of 22 x-values.)

Lines 85-102: Forecast y-values for a
set of 22 x-values, make a complex
matrix of x-y data pairs, and plot each
data pair. Repeat for five more sets of
x-values.

Subroutine MM, lines 103 -120: Find
the maximum and minimum elements
of one column of the matrix for scal-
ing. At the start of the subroutine, the
matrix DATAMTX is indexed with the
index pointer at the top of a column.
At the end of the subroutine, the
minimum element of the column is in
X, the maximum element is in Y, and
the index pointer is at the top of the
next column.

7: Graphics and Plotting 221

116 WY

117 R4

113 RCL ST 2
119 GTO @3
1268 RTH

121 EHMD

To use PFIT:

1. Select a statistical model. For example, press B[STAT] ‘CFIT

2. Place a 2-column real matrix of data pairs in the X-register.

3. Press FFIT

Example: Plotting Data from a Compression Process and
Fitting a Power Curve to the Data. Many compression processes
can be correlated using the power curve

P =aV?
where:

P is the pressure.
V is the volume.
-b is the polytropic constant.

Enter the following pressure-volume data in the ELIST matrix.
Then use PFIT to plot the data and to plot a power curve to the data.

v P
10 | 210
30 40
50 12
70 9
90 | 68

222 7: Graphics and Plotting

Execute program LIST. (If you've deleted the program, you need to key it in
again. The listing is in section "List Statistics" in chapter 6.)

E1eE

x: B.0860
(LizTeLizT-] | | [CLIET)

Clear the XLIST matrix, then fill it with the data.

CLIST ZLIST=[S5x2 Matrix 1]
210 ENTER) 10 L IST#* NEQ NED I N . EH
40 0L IST+

12 50 T+
9 [ENTER] 70 LIST+
6.8 [ENTERJ90 L IST+

Exit from LIST. Recall XLIST to the X-register.

EXIT v: 90. 6800 .
[RCL) SLIST x: [9x2 Matrix 1

Set the statistical model to a power fit. Execute PRON if you have a
printer. Execute PFIT.

MODL FPHREF F\~___

) L=
PEIT

Exit from PFIT. Check the correlation coefficient for the data.
EXIT) CORR

x: -0.9939
(FESTH[FESTV[ELOPE] VINT | CORF [HODL]

The correlation coefficient is —0.9939. Check the value of —b.

SLOFE x: =1.6152
[FCSTH[FCSTVELOPE] VINT [CORF |MOOL

The value of —-b is —1.6252. Exit from the STAT menu.

v: -9.9939
x: -1.6152

7: Graphics and Plotting 223

Index

Special Characters

Y+ function
emulating in LIST program, 176
in programs, 182
stores data from 2-column
matrix to summation regis-
ters, 149, 181, 175
YFORM program, listing of, 181
YLIST matrix
filling column 2 with evenly
spaced integers, 181
in curve fitting example, 220
in LIST program, 176
redimensioning to nm x 2, 181

A

ACC variable. See Accuracy factor
Accuracy factor
affects Integration calculation
time, 130
definition, 134
effect on calculation time, 137
in basic integration, 124
related to uncertainty of
integration, 135
Addressing. See Indirect

224 Index

addressing
AGRAPH function
in HPLOGO program, 195
operates on complex matrices,
213
Algebraic solution. See Explicit
solutions
Angle of twist equation, 131, 125
Approximating an integral that has
an infinite limit, 127-130
Asymptote, Solver results with,
117

Ead Guess{es=z) message, 120
Binary data, building a graphics
pattern with, 200-203
BINDATA program, listing of,
201
Branching, 21-39
conditional, 22 -25
emulating a multirow menu with
KEY GTO, 34-37
emulating a nested menu with
KEY GTO, 37-39
menu-controlled, 29 -39
types of, 21

C

Calculation time
for an explicit solution, 100
for Integration approximations,
129-130
for the Solver, 99
Integration conditions that pro-
long, 143 -145
Case 1 and 2 (Solver) solutions,
how to differentiate
between, 110
Case 1 (Solver) solution,
definition, 109
Case 2 (Solver) solution,
definition, 109
CIRCUIT program, listing of, 87
CLEAR program, listing of, 44
Coefficient matrix. See MATA
Column norm of a matrix, 151
Column sum of a matrix, 150-151
Complex numbers. See Emulating
the Solver; HP-41 programs,
enhancing with HP-42S data
types; Simultaneous equa-
tions, complex-number
Compression process equation,
220
Conditional branching, 22 - 25
based on a number test, 24
CONE program, listing of, 81
Conjugate of a complex matrix,
151
Constant matrix. See MATB
Cornst ant ? message, 121
Constant velocity equation, 39
Control flags, 47
definition, 47
flag 21 used to control VIEW
and AVIEW functions, 47,
16

Controlled looping, 39-43
definition, 39
DSE function in, 39
GTO function in, 39
indirect addressing with, 43
INPUT IND in, 43
ISG function in, 39
STO IND in, 44
XEQ IND in, 45
COORD program, listing of,
158-160
Coordinate transformations,
156-163
Correlation coefficient, 221
Curve fitting in programs, 194
CUSTOM menu, executing pro-
grams from, 73, 19

D

Data input, prompting for in a
program, 68, 15
Data output, displaying in a pro-
gram, 68, 16
Declaring variables. See MVAR
function
Directing the Solver to a realistic
solution, 80 — 82
Discontinuous function, Solver
results with, 113-114
DISPL program
flowchart for, 40
listing of, 41
Displaying program results. See
Data output
DSE function, in a controlled
loop, 39

Index 225

E

EIZ program, listing of, 89-90
Electrical circuits. See Simultane-
ous Equations; Emulating
the Solver
Emulating
a multirow menu, 34-37
a nested menu, 37-39
X+ function, 176
the Solver, 86-91
END function, 15
Enhancing HP-41 programs, 67—
76
Equation(s)
angle of twist, 131, 125
asymptote, 119
compression process, 220
constant acceleration due to
gravity, 83
constant velocity, 39
ideal gas, 101, 78
local flat region, 121
loop current, 166, 169, 163
math error, 120
multiple linear regression,
182-183
Ohm’s law, 86, 88
pole, 116
relative minimum, 118
setting equal to 0 for the Solver,
105, 77
sine integral, 136
SSA (triangle solution), 22
SSS (triangle solution), 13
time-value-of-money, 92
triangle solutions, 58 - 59
van der Waals, 101
volume of the frustum of a right
circular cone, 80
Error Ignore flag, used in error

226 Index

trapping, 50
Error trapping, 49-50
Examples, displays in the manual
may differ from your
displays, 10
Executing a program
from the CUSTOM menu, 73,
19
from the program catalog, 19
with the XEQ function, 73, 19
Explicit solutions
calculation time, 100
faster than iterative solutions, 92
for complex numbers, 88
using with the Solver in pro-
grams, 92-100
E:tremum message, 117

F

FCAT program
flowchart for, 52
listing of, 53 -56
uses programming concepts dis-
cussed in chapter 2, 51
Finding more than one solution
with the Solver, 83 -85
Flag 21
and PROFF function, 16
and PRON function, 16
effect on VIEW and AVIEW
instructions, 47, 16
Flag 25, used in error trapping, 50
Flag 77, used in MINMAX pro-
gram, 47
Flag tests, follow do-if-true rule,
46
Flags, 46 -57
control, 47
current status maintained by
Continuous Memory, 47

Error Ignore, 50

general purpose, 46 —47

have unique meanings for the
calculator, 46

listing of in appendix C of
owner’s manual, 46

Matrix End-Wrap, 47

Numeric Data Input, 93

Printer Enable, 47, 16

system, 47 —48

user, 4647

Flat region, Solver results with,
121
Flowchart

definition of, 13

for DISPL program, 40

for FCAT program, 52

for GAS2 program, 102

for MLR program, 184

for PFIT program, 214-215

for PLOT3 program, 204 - 205

for SSA program, 23

for SSA2 program, 27

for SSS program, 15

for TRIX program, 30-31

symbols for, 15

G

GAS program, listing of, 78
GAS?2 program
flowchart for, 102
listing of, 103 -104
General purpose flags, 4647
definition of, 46
in LIST program, 47
in MINMAX program, 48
Global label, defines start of a
program, 15
Graphics, 195-203
binary data to build, 200-203

GTO function, in a controlled
loop, 39

H

Horner’s method, 125
HP 82240A Infrared Printer
some examples include optional
instructions for, 11
HP-41 programs, enhancing, 67—
76
with HP-42S data types, 69
with INPUT function, 68
with menu variables, 71-73
with named variables, 67— 68
with the two-line display, 69
with VIEW function, 68
HPLOGO program, listing of,
196 -200

Ideal gas equation, 101, 78
Improper integral, definition of,
127
Incorrect results in Integration,
140-143
Indexing (matrix) functions, 146 —
154
Indirect addressing, 43 -45
clearing storage registers with,
4
controlled looping with, 43
executing subroutines with, 45
initializing data storage registers
with, 43
INPUT function with, 43
SOLVE and PGMSLYV func-
tions with, 101 -105
STO function with, 44
XEQ function with, 45

Index 227

Infinite limit, approximating an
integral that has an, 127 -
130
Infrared Printer.
some examples include optional
instructions for, 11
See also Printing
INIT program, listing of, 43
Initial guesses, for the Solver,
80-85
INPUT function, 15
brings up variable catalog in
Program-entry mode, 17
enhancing HP-41 programs
with, 68
indirect address with, 43
Integration, 124 -145
ACC variable in, 124
accuracy factor and uncertainty
of integration, 134-139
approximating an integral that
has an infinite limit, 127 -
130
basic use of, 124-127
calculation time for approxima-
tions, 129-130
conditions that can cause
incorrect results, 140 —143
conditions that prolong calcula-
tion time, 143 - 145
limiting the accuracy of, 134
LLIM variable in, 124
more on how it works, 134-145
MVAR function in, 124
Solver and, 131-133
subdividing the interval of
integration, 142 -143
ULIM variable in, 124
uncertainty of. See Uncertainty
of integration
Interactive use of the Solver

228 Index

and Integration, 131-133
and Simultaneous Equations,
168-172
Interpreting the results of the
Solver, 108 -122
ISG function, in a controlled loop,
39

K

KEY GTO function
emulating a multirow menu
with, 34-37
emulating a nested menu with,
37-39
to build programmable menu,
29
turns on VA annunciator when
assigned to menu key 7 or 8,
34
KEY XEQ function
to build programmable menu,
29
turns on VA annunciator when
assigned to menu key 7 or 8,

34

Keying in programs, helpful hints
for, 17

Keystrokes, required to execute a
program, 19-20

L

LIST program

accumulates statistical data for
plotting, 220

emulating ¥+ function in, 176

fills XLIST matrix with x-y data
pairs, 176

general purpose flag in, 47

listing of, 176 -179

matrix operations in, 172
List statistics, 175-182
LLIM variable
in basic integration, 124
solving for with the Solver, 131
Local maximum or minimum,
Solver results with, 117
Loop current equations, 166, 169,
163
LVL1 program, listing of, 38 -39

MATA matrix
in MLR program, 172
in Simultaneous Equations
application, 164
solving for an element of, 168
MATB matrix
in MLR program, 172
in Simultaneous Equations
application, 164
Math error, Solver results with,
120
Matrices, 146-173
coordinate transformations with
vectors, 156 -163
creating a named matrix, 147
filling a matrix element with an
Alpha string, 147
finding the column norm of a
matrix, 151
finding the column sum of a
matrix, 150-151
finding the conjugate of a com-
plex matrix, 151
finding the matrix sum of a
matrix, 151
finding the maximum and
minimum elements of a
matrix, 152-153

geometric calculations with vec-
tors, 154-156
interactive use of indexing utili-
ties and statistics functions,
149-150
matrix editor and indexing func-
tions, 146 — 154
matrix operations in statistics
and graphics programs,
172-173
matrix utility programs, 150 -
154
solving simultaneous equations,
163-168
sorting a matrix, 153 -154
vector solutions, 154-163
Matrix editor, 146 —154
Matrix End-Wrap flag, in MIN-
MAX program, 47
Matrix sum of a matrix, 151
MATX matrix
in MLR program, 172
in Simultaneous Equations
application, 165
Maximum and minimum elements
of a matrix, 152-153
Menu
multirow, emulating in a pro-
gram, 34-37
nested, emulating in a program,
37-39
programmable, 29
MENU function, 29
Menu keys, 29
Menu variables
enhancing HP-41 programs
with, 71-73
to simulate the Solver, 88
Menu-controlled branching, 29 -
39
Messages

Index 229

Bad Guessiesi, 120
Constant?, 121
Extremun, 117
Out of Ranas, 49
Festricted Operation, 56
Sian Rewversal, 115
MINMAX program, flags in, 47
MLR program
flowchart for, 184
listing of, 186 -192
matrix operations in, 172
MOTION program, listing of, 84
Multifunction plotting, 203 -213
Multiple linear regression, 182 -
194
Multiple-linear-regression
equations, 182-183
Multirow menu
VA annunciator in, 34
(¥] and (4] keys in, 34
emulating in a program, 3437
MVAR function
defines variables in Integration
programs, 124
defines variables in Solver pro-
grams, 77

Neighbors, 109

Nested menu, emulating in a pro-
gram, 37-39

Notations, consistent with owner’s
manual, 10

Numeric Data Input flag, 93

230 Index

o

Ohm’s law equation, 86, 88
Out of Rangoe message, 49

P

Parabolic equation. See
Equation(s), relative
minimum

PFIT program

flowchart for, 214-215
listing of, 216-220
matrix operations in, 173

PGMSLYV function, indirect
address with, 101-105

PHONE program, listing of, 45

PIXEL function, operates on com-
plex matrices, 213

PLOT3 program

flowchart for, 204 -205
listing of, 205-210
Plotting, 203 -222
multifunction plotting, 203 -213
plotting data from a complex
matrix, 213 - 222

Pole, Solver results with, 115

Printer Enable flag, 47, 16

Printing

HPLOGO program results, 200

optional instructions for, 11

PLOT3 program results, 212

Q3 program results, 74

SSS program results, 33
PROFF function, and flag 21, 16
Program catalog

executing a program from, 19

global labels placed in, 19
Program listing

for BINDATA, 201

for CIRCUIT, 87

for CLEAR, 44

for CONE, 81

for COORD, 158 -160

for DISPL, 41

for EIZ, 89-90

for FCAT, 53-56

for GAS, 78

for GAS2, 103-104

for HPLOGO, 196 -200

for INIT, 43

for LIST, 176-179

for LVL1, 38-39

for matrix utility programs,
150-154

for MLR, 186-192

for MOTION, 84

for PFIT, 216 -220

for PHONE, 45

for PLOT3, 205-210

for Q2, 69-71

for Q3,72-73

for QSHORT, 75

for ROW1, 35-37

for SFORM, 181

for SHAFT, 132

for SIMUL, 170

for SSA, 24-25

for SSA2, 28-29

for SSS, 17-18

for TORQUIE, 126

for TRAP (revised), 50

for TRIA., 60-65

for TVM2, 93-99

for XVALS, 182

Programmable menu

definition of, 29

in TRIA program, 32

Programming, 12 -66

branching, 21-39

controlled looping, 39-43

curve fitting functions in

programs, 194
defining the program, 15
displaying results, 16
error trapping, 49-50
flags, 4657
helpful hints for keying in pro-
grams, 17
indirect addressing, 43 -45
prompting for data input, 15
simple programming, 12-21
Solver and explicit solutions in
programs, 92-100
Solver in programs, 92 -105
subroutines, 26 —29
summation-coefficient functions
in programs, 182 -194
Programs
executing from the CUSTOM
menu, 19
executing from the program
catalog, 19
executing with XEQ function,
19
keystrokes required to execute,
19-20
Prompting for data input. See
Data input
PRON function, and flag 21, 16
Providing initial guesses for the
Solver, 80 -85

Q

Q2 program, listing of, 6971
Q3 program, listing of, 72-73
QSHORT program, listing of, 75

Index 231

R

RCL function, brings up variable
catalog in Program-entry
mode, 17

Realistic solution, directing the
Solver to, 80-82

Redimensioning £LIST matrix,
181

Regression, multiple linear, 182 -
194

Festricted Operation mes-
sage, 56

Root(s) of a function

approximations of, 108
definition of, 105
ideal solutions for, 108

multivariable function roots, 106

Solver’s ability to find, 107 -108

Round-off error, can affect Solver
results, 123

ROW1 program, listing of, 35-37

S

SHAFT program, listing of, 132
Sian Rewersal message, 115
Simple programming, 12-21
SIMUL program, listing of, 170
Simultaneous equations
complex-number, 166 —168
real-number, 163 -165
Simultaneous Equations, 163 -172
Solver and, 168 -172
Sine integral equation, 136
Solution matrix. See MATX
SOLVE function, indirect address
with, 101-105
Solver, 77-123
ability to find a root, 107 -108
approximations for which f(x) is

232 Index

nonzero, 108

Bad Guess{e=s) message, 120

basic use of, 77-80

calculation time in TVM pro-
gram, 99

cases when a root is found,
109-115

codes returned to the T-register,
108-109

Const ant ? message, 121

differentiating between Case 1
and Case 2 solutions, 110

directing to a realistic solution,
80-82

emulating in a program, 8691

explicit solutions and, 92 -100

E:xt remum message, 117

finding more than one solution,
83-85

ideal solution, definition, 108

Integration and, 131-133

interpreting the results of],
108 -122

more on how it works, 105-123

MVAR function in, 77

providing initial guesses for,
80-85

results may be affected by
round-off error or
underflow, 123

results with a discontinous func-
tion, 113-114

Sign Rewersal message, 115

Simultaneous Equations and,
168-172

using in programs, 92 -105

Sorting a matrix, 153 -154
SSA program

flowchart for, 23
listing of, 24-25

SSA (triangle solution) equations,

22
SSA2 program
flowchart for, 27
listing of, 28 -29
SSS program
flowchart for, 15
listing of, 17-18
SSS (triangle solution) equations,
13
Stack registers, contain results of
the Solver, 108
Statistics, 174-194
calculating a multiple linear
regression, 182 -194
correlation coefficient, 221
curve fitting in programs, 194
linear or exponential curve
fitting for one-variable data,
181
list statistics, 175-182
matrix indexing utilities and,
149-150
redimensioning £LIST matrix to
execute ¥+, 181
summation-coefficient functions
in programs, 182 -194
STO function
brings up variable catalog in
Program-entry mode, 17
indirect address with, 44
STOP function, 29
Subdividing the interval of integra-
tion, 142143
Subroutines, 26 —29
advantages of, 26
called with XEQ, 26
definition, 26
end with RTN or END, 26
in SSA2 program, 26
Summation registers. See X+
function; Summation-

coefficient functions
Summation-coefficient functions,
using in programs, 182 -194
System flags, 47 -48
in MINMAX program, 47

T

Time-value-of-money equation, 92
TORQUE program, listing of, 126
Translations, coordinate. See
Coordinate transformations
TRAP program, listing of, 50
TRIX. program
flowchart for, 30 -31
listing of, 60— 65
Triangle solutions equations, 58 —
59
TVM2 program, listing of, 93-99

U

ULIM variable
in basic integration, 124
solving for with the Solver, 131
Uncertainty of integration
definition, 135
is greater than error in final cal-
culation, 135
may be relatively large, 138 -
139
returned to the Y-register, 135
Underflow, can affect SolverV
results, 123
User flags, 46—47

Index 233

\'

Valid solution. See Directing the
Solver to a realistic
van der Waals equation, 101
Variable menu
enhancing HP-41 programs
with, 71-73
to simulate the Solver, 88
Variables
ACC, 124
keying in in programs, 17
LLIM, 124
MATA, 164
MATB, 164
MATX, 165
YLIST, 176
ULIM, 124
Vector solutions, 154-163
VIEW function, 16
brings up variable catalog in
Program-entry mode, 17
enhancing HP-41 programs
with, 68
Volume of frustum of right circu-
lar cone, equation, 80

X

XEQ function
executing a program with, 73, 19
indirect address with, 45
XTOA function
in HPLOGO program, 195
used if corresponding character
cannot be typed, 203
XVALS program, listing of, 182

234 Index

Programming Examples and Techniques
for Your HP-42S Calculator

Programming Examples and Techniques contains examples in mathe-
matics, science, engineering, and finance to help you more fully
utilize the built-in applications in your HP-42S calculator. Programmed
solutions are emphasized. Graphics and plotting with the HP 82240A
Infrared Printer are also addressed.

B Programming
Simple Programming ¢ Branching ¢ Controlled Looping ¢ Indirect
Addressing in Programs ¢ Flags in Programs ¢ Error Trapping

B Enhancing HP-41 Programs
Using Named Variables ¢ Using HP-42S Data Input and Output
Functions ¢ Operations with HP-42S Data Types ¢ Using the Two-
Line Display ¢ Using Menu Variables ¢ Assigning a Program to the
CUSTOM Menu

B The Solver
Basic Use of the Solver ¢ Providing Initial Guesses for the Solver

* Emulating the Solver « Using the Solver in Programs ¢« More on
How the Solver Works

B Integration
Basic Integration ¢ Approximating an Integral That Has an Infinite
Limit « Using the Solver and Integration Interactively « More on
How Integration Works

® Matrices
Using the Matrix Editor and Indexing Functions ¢ Vector Solutions
* Solving Simultaneous Equations * Using the Solver with
Simultaneous Equations ¢ Matrix Operations in Programs

B Statistics
List Statistics « Using the Summation-Coefficient Functions in
Programs * Curve Fitting in Programs

B Graphics and Plotting
Graphics ¢« Multifunction Plots ¢ Plotting Data from a Complex
Matrix

HEWLETT
U2 Sackaro
Reorder Number
00042-90020
00042-90019 English
0 ""88698"00036" " 6

Printed in US.A. 7/88

	Cover
	Contents
	List of Examples
	How to Use This Manual
	1: Programming
	Simple Programming
	Flowcharting
	Defining the Program
	Prompting for Data Input
	Displaying Program Results
	Executing the Program

	Branching
	Conditional Branching
	Subroutines
	Menu-Controlled Branching

	Controlled Looping
	Indirect Addressing in Programs
	Flags in Programs
	User Flags
	System Flags

	Error Trapping
	A Summary Program
	The Triangle Solutions Program

	2: Enhancing HP-41 Programs
	Using Named Variables
	Using HP-42S Data Input and Output Functions
	Prompting for Data with INPUT
	Displaying Data with VIEW

	Operations with HP-42S Data Types
	Using the Two-Line Display
	Using Menu Variables
	Assigning a Program to the CUSTOM Menu

	3: The Solver
	Basic Use of the Solver
	Providing Initial Guesses for the Solver
	Directing the Solver to a Realistic Solution
	Finding More Than One Solution

	Emulating the Solver in a Program
	Using the Solver in Programs
	Using the Solver and Explicit Solutions in a Program
	Using the SOLVE and PGMSLV Functions with Indirect Addresses

	More on How the Solver Works
	The Root(s) of a Function
	The Solver’s Ability to Find a Root
	Interpreting the Results of the Solver
	Round-Off Error and Underflow

	4: Integration
	Basic Integration
	Approximating an Integral That Has an Infinite Limit
	Using the Solver and Integration Interactively
	More on How Integration Works
	The Accuracy Factor and the Uncertainty of Integration
	Conditions That Can Cause Incorrect Results
	Conditions That Prolong Calculation Time

	5: Matrices
	Using the Matrix Editor and Indexing Functions
	Creating a Named Matrix
	Using the Matrix Editor
	Using Indexing Utilities and Statistics Functions Interactively
	Matrix Utilities

	Vector Solutions
	Geometry
	Coordinate Transformations

	Solving Simultaneous Equations
	Using the Solver with Simultaneous Equations
	Matrix Operations in Programs

	6: Statistics
	List Statistics
	Using the Summation-Coefficient Functions (Σ+, Σ-, and CLΣ) in Programs
	Curve Fitting in Programs

	7: Graphics and Plotting
	Graphics
	Multifunction Plots
	Plotting Data from a Complex Matrix

	Index

