
RPN Scientific

Programming Examples and Techniques

ot

0
0
0

0
0
0
O
0
O
G
E
O
G
F
O
G
O
I
O
G
O
S

7
g

flfl HEWLETT
PACKARD

Help Us Help You!

Please take a moment to complete this postage-paid card, tearit
out and put it in the mail. Your responses and comments will help
us better understand your needs and will provide you with the
best procedures to solve your problems. Thank you!

HELP US HELP YOU!

Book: Programming Examples and Techniques Date acquired:

Name

Street

City, State, Zip

Phone () Business

1. What calculator will you use this book with?
009]HP-42S 006] Other

2. How many other HP solution books have you bought for this calculator?

3. What is your OCCUPATION?
101] Student 103] Professional 109] Other

4. Where did you purchase this book?
403] Bookstore 404] Discount or Catalog Store
407 [_] Mail Order 410] HP Direct 411[] Other

5. How did you first hear about this book?
501 [JHP Owner 503]Advertising 506] Salesperson 507] Brochure
508] Other

6. To what degree did this book influence your calculator purchase decision?
601] Major Influence 602] Minor Influence 603] No Influence

7. How well does this book cover the material you expected?

701]Good 702[]Moderate 703[]Low

8. What level of knowledge is required to make use of the topics in this book?
801] High 802]Medium 803[JLow

9. How clearly was the material in this book presented?
901[]Good 902]Moderate 903[]Low

10. How would you rate the value of this book for your money?
111 [JHigh 112[]Medium 113]Low

or Home

Comments: (Please comment on improvements and additional applications or sub-

jects you would like HP to cover in this or another solution book.)

N
O
P
O
S
T
A
G
E

N
E
C
E
S
S
A
R
Y

IF
M
A
I
L
E
D

IN
T
H
E

U
N
I
T
E
D
S
T
A
T
E
S

BU
SI
NE
SS

RE
PL
Y

MA
IL

F
I
R
S
T
C
L
A
S
S

M
A
I
L

P
E
R
M
I
T

N
O
.
4
0

C
O
R
V
A
L
L
I
S
,
O
R

P
O
S
T
A
G
E
W
I
L
L
B
E

P
A
I
D
B
Y
A
D
D
R
E
S
S
E
E

H
E
W
L
E
T
T
-
P
A
C
K
A
R
D
C
O
M
P
A
N
Y

C
A
L
C
U
L
A
T
O
R
M
A
R
K
E
T
R
E
S
E
A
R
C
H

1
0
0
0
N
E
C
I
R
C
L
E

B
L
V
D
.

C
O
R
V
A
L
L
I
S
O
R

9
7
3
3
0
-
9
9
8
8

HP-42S
RPN Scientific

Programming Examples and Techniques

(fifi HEWLETT
PACKARD

Edition 1 July 1988
Reorder Number 00042-90020

Notice

This manual and any keystroke programs contained herein are provided
" as is" and are subject to change without notice. Hewlett-Packard Com-
pany makes no warranty of any kind with regard to this manual or the

keystroke programs contained herein, including, but not limited to, the

implied warranties of merchantability and fitness for a particular pur-

pose. Hewlett-Packard Company shall not be liable for any errors or for
incidental or consequential damages in connection with the furnishing,
performance, or use of this manual or the keystroke programs contained
herein.

© Hewlett-Packard Company 1988. All rights reserved. Reproduction,
adaptation, or translation of this manual, including any programs,is prohi-
bited without prior written permission of Hewlett-Packard Company,
except as allowed under the copyright laws. Hewlett-Packard Company
grants you the right to use any program contained in this manualin this
Hewlett-Packard calculator.

The programs that control your calculator are copyrighted and all rights
are reserved. Reproduction, adaptation, or translation of those programs
without prior written permission of Hewlett-Packard Companyis also
prohibited.

Corvallis Division

1000 N.E. Circle Blvd.

Corvallis, OR 97330, U.S.A.

Printing History

Edition 1 July 1988 Mfg. No. 00042-90019

Contents

6 List of Examples

9 How to Use This Manual

1 12 Programming
12 Simple Programming
13 Flowcharting
15 Defining the Program
15 Prompting for Data Input
16 Displaying Program Results
19 Executing the Program
21 Branching
22 Conditional Branching
25 Subroutines
29 Menu-Controlled Branching
39 Controlled Looping
43 Indirect Addressing in Programs
46 Flags in Programs
46 User Flags
47 System Flags
49 Error Trapping
51 A Summary Program
58 The Triangle Solutions Program

Contents 3

2 67 Enhancing HP-41 Programs
67 Using Named Variables
68 Using HP-42S Data Input and Output Functions
68 Prompting for Data with INPUT
68 Displaying Data with VIEW
69 Operations with HP-42S Data Types
69 Using the Two-Line Display
71 Using Menu Variables
73 Assigning a Program to the CUSTOM Menu

3 77 The Solver
77 Basic Use of the Solver
80 Providing Initial Guesses for the Solver
80 Directing the Solver to a Realistic Solution
83 Finding More Than One Solution
86 Emulating the Solver in a Program
92 Using the Solver in Programs
92 Using the Solver and Explicit Solutions in a Program

101 Using the SOLVE and PGMSLYVFunctions with
Indirect Addresses

105 More on How the Solver Works
105 The Root(s) of a Function
107 The Solver’s Ability to Find a Root
108 Interpreting the Results of the Solver
123 Round-Off Error and Underflow

4 124 Integration
124 Basic Integration
127 Approximating an Integral That Has an Infinite Limit
131 Using the Solver and Integration Interactively
134 More on How Integration Works
134 The Accuracy Factor and the Uncertainty of

Integration

140 Conditions That Can Cause Incorrect Results
143 Conditions That Prolong Calculation Time

4 Contents

146 Matrices
146 Using the Matrix Editor and Indexing Functions
147 Creating a Named Matrix
147 Using the Matrix Editor
149 Using Indexing Utilities and Statistics

Functions Interactively

150 Matrix Ultilities
154 Vector Solutions
154 Geometry

156 Coordinate Transformations
163 Solving Simultaneous Equations
168 Using the Solver with Simultaneous Equations
172 Matrix Operations in Programs

174 Statistics
175 List Statistics
181 Using the Summation-Coefficient Functions (X+,

¥-, and CLY) in Programs

193 Curve Fitting in Programs

194 Graphics and Plotting
194 Graphics
202 Multifunction Plots
212 Plotting Data from a Complex Matrix

Contents S

List of Examples

The following list groups the examples by chapter.

1 Programming
20 Executing a Program from the CUSTOM Menu
32 A Programmable Menu
42 Loop Control in a Program
57 The Flag Catalog Program

2 Enhancing HP-41 Programs
74 Executing an Enhanced HP-41 Program from the

CUSTOM Menu

3 The Solver
78 Basic Use of the Solver
80 Directing the Solver to a Realistic Solution
84 Using the Solver to Find Two Real Solutions
87 Using the Solver for a Simple Resistive Circuit
90 Calculating Complex Values in an RC Circuit
99 Executing Algebraic Solutions for TVM Problems

101 Using SOLVE with an Indirect Address
110 A Case 1 Solution with Two Roots
112 A Case 2 Solution
114 A Discontinuous Function
116 A Pole

6 List of Examples

118 A Relative Minimum
119 An Asymptote
120 A Math Error
121 A Local Flat Region

Integration
125 Basic Integration
128 Evaluating an Integral That Has an Infinite Upper

Limit

131 Using the Solver and Integration Interactively
136 The Accuracy Factor and the Uncertainty of

Integration

138 A Problem Where the Uncertainty of Integration is
Relatively Large

140 A Condition That Causes Incorrect Results
142 Subdividing the Interval of Integration
143 An Upper-Limit Approximation That Prolongs

Calculation Time

Matrices
146 Accumulating Meterological Data
155 The Area of a Parallelogram
161 A Three-Dimensional Translation with Rotation
163 Solving Real-Number Simultaneous Equations
166 Solving Simultaneous Equations That Have

Complex Terms

169 Using the Solver to Find the Value of an Element
in the Coefficient Matrix

Statistics
178 Accumulating Statistical Data in a Matrix
191 A Linear Regression for Three Independent

Variables

List of Examples 7

7 Graphics and Plotting
199 Building a Logo
201 Using Binary Data to Build a Logo
210 Plotting Multiple Functions
219 Plotting Data from a Compression Process

and Fitting a Power Curve to the Data

8 List of Examples

How to Use This Manual

Welcome to the Programming Examples and Techniques manual for your
HP-42S calculator. This manual builds on concepts introduced to you in
the HP-42S Owner’s Manual so that you can more fully utilize your
calculator’s powerful problem-solving capabilities. This manual focuses on
the following subjects:

m Programming techniques for the HP-42S.

m Enhancing existing HP-41 programs.

m Using the HP-42S built-in applications:

m The Solver.

m Integration.

m Matrices.

m Statistics.

m Building and printing graphics patterns and plots.

There are many examples in this manual. We feel that the best way to
help you gain expertise with your calculator is to show you how to solve
practical problems in mathematics, science, engineering, and finance.

Many of these problems are solved using programs. Chapter 1, "Program-
ming," addresses the task of creating programs with the HP-42S.It further
develops material presented to you in chapters 8 through 10 of the
owner’s manual.

Chapter 2 specifically addresses the topic of enhancing programs written
for the HP-41 calculator. It builds on the material introduced in chapter
11 of your owner’s manual.

Chapters 3 through 6 further develop the built-in applications discussed in
chapters 12 through 15 of the owner’s manual. If you wish to learn more

How to Use This Manual 9

about matrix operations, for example, you can turn directly to chapter 5,
"Matrices," without working through the preceding chapters. However,
since many of the examples in the manual are programmed solutions to
problems, you should first review chapter 1.

Chapter 7 describes how to generate graphics patterns and plots using the
HP-42S calculator and, in several examples, the optional HP 82240A
Infrared Printer. It builds on the material presented in chapter 7 of the
owner’s manual.

The notations in this manual are consistent with those in the owner’s

manual;

m Plain typeface is used for numbers and Alpha characters in keystroke
sequences: 1.2345, ABCD.

m Black keyboxes are used for primary keyboard functions in keystroke
sequences: [EXIT].

m Orange keyboxes preceded by the orange shift key are used for secon-
dary (shifted) functions in keystroke sequences: Jj[ASSIGN].

m Menu keyboxes are used for functions executed from a menu in

keystroke sequences:

m Capitalletters are used for any function that is referenced in text:
CLP.

m Capital letters are used for program names that are referenced in
text: SSS.

m Italic letters are used for variable names that are referenced in text:

STEP

m Dot matrix typeface is used for program listings:
a1 LEL "ARER".

At the beginning of each example,it is assumed that the stack registers
(X-, Y-, Z-, and T-registers) are clear (contain the value 0). It is also
assumed that the value of each variable in the examplesis 0. Your display
may sometimes differfrom the displays in the manual. However, if you exe-
cute the keystroke sequences as they are shown in the examples, the
values ofthe stack registers and variables in your calculator at the start of
the examples will not affect the answers you obtain.

10 How to Use This Manual

Some examples include optionalinstructions to print results with the
HP 82240A Infrared Printer. If you have a printer and execute these
instructions, you will not see some of the subsequent displays in the exam-
ple. These displays will be printed.

How to Use This Manual 11

Programming

Your calculator is a powerful and easy-to-use toolfor creating and execut-
ing programs. This chapter builds on programming methods introduced to
you in chapters 8 through 10 of your owner’s manual. Specifically, this
chapter addresses:

m Simple programming,

m Branching.

m Looping controlled by a counter.

m Indirect addressing.

m Flags in programs.

m Error trapping.

Simple Programming

The program SSS in this section finds the values of the three angles of a
triangle when the values of the three sides are known. (The annotated list-
ing is on pages 17 through 18.)

12 1: Programming

When the dimensions of the three sides (S, S5, and S3) of a triangle are
known, the following equations are used to calculate the three angles

(A;,A2,and 43).

VPP -S S;+8,+S
Az = 2 arc cos [M} where P = (—1——2—3)

(51S53) 2

VPP -S
A, = 2 arc cos —(——1—)]

(S253)

Ay =arccos|[-cos (Az + Ag)]*

These equations form the main body of SSS.

Flowcharting

A flowchart is a graphical outline of a program. Flowcharts are used in
this manual to help you understand how programs solve problems.

Flowcharts can also help you design your own programs by breaking them
down into smaller groups ofinstructions. The flowchart can be as simple
or as detailed as you like. Flowcharts are drawn linearly, from top to bot-
tom, representing the general flow of the program from beginning to end.

* This expression for4 ; enables you to calculate4 in any angular mode.

1: Programming 13

Here is a flowchart for one possible program solution for the side-side-
side triangle problem.

CALCULATE

Az

v
CALCULATE

Ao

v
CALCULATE

Ay

v
DISPLAY
A1A2.A3

v

14 1: Programming

This manual uses the following conventions for flowchart symbols:

m An oval represents the beginning or end of a routine. This can be the
beginning or end of a program, a subroutine, or a counter-controlled
loop within a program.

m A circle represents aprogram label. It also represents a GTO instruc-
tion to a program label from another point in the program. (This con-
vention reduces the need for connecting lines that can make the
flowchart difficult to read.)

m A rectangle represents afunctional operation in the program.

m A diamond represents a decision the program makes based on a com-
parison of two values (or based on the status of a flag).

m A triangle represents a decision the user (that’s you) makes by select-
ing one of several possible program routines, each of which performs
a different task.

Defining the Program

Program SSS begins with a global label and ends with an END instruction.
These two instructions define the beginning and end of the program.

H1 LEL "S55

45 EHD

Prompting for Data Input

SSS prompts you for data input (prompts you for the three known values
of the sides of the triangle).

a2 IHFUT "z1*
@z IMPUT "s2t
a4 IHMPUT "szv

1: Programming 15

Displaying Program Resulits

SSS concludes by displaying (or printing) the calculated results (the three
angles).

41 5F 21
42 WIEW "A1"
43 YIEW "A2"
44 YIEW "A3"

This section of the program begins by setting flag 21, the Printer Enable
flag. When flag 21 is set, a VIEW (or AVIEW) instruction is:

w Printed and displayed if you have executed PRON. Program execution
does not halt when a messageis displayed; a subsequent VIEW (or
AVIEW)instruction erases the current message. When you set flag
21 and execute PRON, and then execute a program that has a
sequence of VIEW (or AVIEW) instructions, you must have a printer
present and turned on to record each message; you’ll see only the last
message in the display.

m Displayed by the calculatorif you have executed PROFF. (PROFF is
the default mode for the calculator. You need to execute PROFF only
if you have previously executed PRON.) When youset flag 21 in
PROFF mode, program execution halts after each VIEW (or
AVIEW) instruction and must be resumed by pressing [R/S].

16 1: Programming

Helpful hints for keying in programs:

1. If the variables you are using in your program do not already exist,
create them before you select Program-entry mode (by pressing 0

variable for each variable). When you subsequently key in a
STO, RCL, INPUT, or VIEW instruction during program entry and
are prompted for a register or variable, the existing variables
(including the ones you just created) are displayed in the variable-
catalog menu. You only need to press the corresponding menu key,
rather than fype the variable name.

2. In Program-entry mode, first key in all the global label instructions
in your program (by pressing li[PGM.FCN] abel for each
label). When you subsequently key in branch instructions and are
prompted for a label, the existing globallabels (including the ones
you just created) are displayed in the program-catalog menu. You
only need to press the corresponding menu key, rather than type the
name.

Longer programsin this manual are preceded by instructions that list the
variables and labels to create for program entry.

To key in SSS: Create variables S1, §2, 53, A1, A2, A3, and P before
program entry.

Here is an annotated listing of SSS.

Program: Comments:

g8 £ 115-Bute Prom 2 Line 01: Define the beginning ofthe
@1 LBL "S55¢ program.

a2 IMPUT "S1" Lines 02-04: Promptfor the values of
a2 IMPUT "s2" the three sides and store the values in

a4 IHPUT "S53 named variables.

a5 RCL "sS1 Lines 05-40: CalculateA,A5, and
As RCL+ "s2° A 5. Store the values in named vari-
a7 RCL+ "53v ables.
gz 2

B3 =+

1: Programming 17

T
et

24

-

O
Q
0
o
P

[
V
o
o
T
D
0

L
N
a
0

U
o
I

o
o
0

Q
a
0

18

=TO

M2
© LAST
FCLs=

FCL
w RCL=

P SRRT
S OHCOS

[

=TO

=IH

FCL

IlFlII

n :E' 1 "

T 0

IIFIH

LASTH
FCL=

FCL+

FCL=

SRRET

HCOS

HCOS

=TO

SF 2
* VIEW

1" IE; 1 1

e
Tl

W
o

IIHE:II

IIHIII

1
llHlll

YIEW "Az"
WIEW "AZ"

EHL

1: Programming

Lines 41 -44: Display (or print) the
calculated results.

Line 45: End the program.

Executing the Program

You can execute SSS by using any one of the following keystroke
sequences.

Using the Program Catalog. The global label SSS was automatically
placed in the program catalog when you keyed in program line 01. You
can execute the program by pressing

B(CATALOG] :PGM

This sequence requires a minimum of four keystrokes, depending on
where label is in the program catalog. (If you have created more
than five programs subsequentto SSS, use the [¥] key to find label
888)

Using XEQ. When you press [XEQ], the program-catalog menu is
automatically displayed. Thus, you can execute SSS by pressing

ERae

This sequence requires a minimum of two keystrokes, depending on
where label SSS is in the program catalog.

Using the CUSTOM Menu. Alternately, you can assign SSS to the
CUSTOM menu by pressing

and then the desired menu key.

1: Programming 19

The program can now be executed directly from the CUSTOM menu by
pressing

B(CUSTOM

This sequence requires three keystrokes when you first select the
CUSTOM menu, and only one keystroke on subsequent executions if you
stay in the current row of the menu.

Example: Executing a Program from the CUSTOM Menu. Find
the angles (in degrees) of the following triangle.

Assign SSS to the CUSTOM menu. Set the angular mode to Degrees.
Execute PRON if you have a printer and want to print the results. Begin
program execution.

S$170.8600
SIIID

B(ASSIGN] :

(B(PRINT
B(CusTOM

Enter the value for S, (in feet) and continue program execution.

24 125 $270. D000
essT[T

20 1: Programming

Enter the value for S5, then for S;. The program now calculates the
three angles and displays 41, thefirst result. (If you have executed PRON
to print the results, you won’t see the next two displays.)

1 [R/S] 2.75

Continue program execution to see A,.

Continue program execution to seeA 3.

Exit from the program.

EXIT

R2=33.9479
IIDI.

 A3=16.2136

Branching

A branch instruction enables program execution to jump to a different
location in program memory. A branch can be:

m Conditional (based on a test).

m Unconditional (used typically to call a subroutine that, on completion,
returns program execution to the main program).

m Menu-controlled (executed by you from a programmable menu).

1: Programming 21

Conditional Branching

The program SSA on pages 24 through 25 in this section illustrates the
use of conditional branching. SSA finds the two unknown angles and the
unknown side of a triangle when two sides and the adjacent angle (S,
S, andA;) are known.

The equations used to calculate 45, A,, and S5 are

| [S2] .
Az =arcsin |—| sinA,

S1

A, =arccos|[-cos (A; + A3)]

S3=5,c0s43+ S,c05sA4,

Note from the drawing that two possible solutions exist if S, is greater
than S; and43 does not equal 90°. This leads to a fourth equation.

Az = arccos (-cosAj3)

SSA calculates both possible answer sets.

Here is a flowchart for the program.

22 1: Programming

SSA

INPUT
S1.S,. Ay

v

CALCULATE
Az
v

CALCULATE
A1, S3

Y
 DISPLAY

RESULTS
v

NO

CALCULATE
A
3

Y

CALCULATE
A1, S3

v

DISPLAY

RESULTS

v

1: Programming 23

Observe from the flowchart that the program calculates the first answer
set, then compares the values of §; and S,. Depending on the result of
the comparison, the program either returns to label SSA or calculates the
second answer set. SSA accomplishes this with a conditional branch. The
corresponding keystrokes are highlighted in the following annotated list-
ing. (This conditional branch is based on a numbertest. Later in this
chapter, you’ll write programs that make conditional branches based on
flag tests.)

To key in SSA: Create variables S1, S2, $3, A1, A2, andA3 before pro-
gram entry. (These variables already exist if you keyed in program SSS.)

Program: Comments:

Y 1
5
v [L 157-Bute Pram 2

LEL "SsA"[
x

]
—

[
}

[2 SF 21

Y '
t IMFUT "S1" Lines 03-05: Input the known vari-

IMFUT "S2" ables.

IHFUT "AZ2"o 2
N

L
0

1 0}5 SIH Lines 06 —23: Calculate the unknown

RCLx "2 variables.

ECL+ "S1"

ASIN

STO "R3"

RCL+ "AZ"
COsS

3 -

14 ACO:

15 =STO "AL"

16 RCL "AZ"
17 COsS

18 RCLx "g2"
19 RCL "R:

28 COS

21 ROLx "S1°

15
0

o
0

0
0

=
y

-
s
s
T
T

[
=

24 1: Programming

0
3
M

r
d
)

o
0

0
0

=
)

£
D
o

n
w
0

Q
0
=
)

A
o
p

00
0
w
)

G
0

)
-

43

o
=

N [
n]

STO g3

VIEW "A1"
VIEW "S3"
YIEW "A3"

RCL "S1"
RCL "s2"
KLY
GTO "SSA"

RCL "A3"
COS
+./-

ACOS
sTO "AZ"
RCL+ "A2"
COS
+./-

ACOS
5TO "AL"
RCL "AZ2"
COS
RCLx "S2"
RCL "AS"
COS
RCLx "S1v
+

STO "Sge

VYIEW "A1"

VIEW "S3

VYIEW "R=2"

GTO "SSAY

» EMD

Lines 24 -26: Display (or print) the
unknown variables.

Lines 27-30: Test if S, is less than or
equal to S, . If so, return to the begin-
ning of the program. If not, calculate
the second answerset.

Lines 31-48: Calculate the second

answer set.

Lines 49 - 52: Display the second
answer set and return to the beginning
of the program.

1: Programming 25

Subroutines

A routine is a set of program steps defined by a local or global label and a
RTN or END instruction. (Programs SSS and SSA are routines.) A rou-
tine becomes a subroutine when it is called by (executed from) another
routine using an XEQ instruction. After the subroutine has been exe-
cuted, the RTN or END instruction at the end of the subroutine returns

program execution to the main routine.

Notice that SSA calculates the second answerset (if there is one) by first
calculating4 3" . It then calculates the remaining unknowns using the
same equations that were used to calculate the first answer set and
displays the second answer set using the same instructions that were used
to display the first answer set. By placing these shared instructions in a
subroutine, the program becomes:

m Shorter.

m Easier to read.

m Easier to write.

m Easier to edit.

Here is a flowchart for a new program SSA?2 that uses a subroutine.

26 1: Programming

YB-=<>

SSA2

 v
INPUT

S1:52,4

v

CALCULATE
Aj

Y

XEQ

SSASUB

v

ICALCULATE
A ’

3

CALCULATE

Ay S

Y

XEQ SSASUB

v

DISPLAY

RESULTS

RTN

The corresponding program lines are highlighted in the following anno-
tated listing.

To key in SSA2:

1. Create variables S1, 52, §3, A1, A2, andA3 before program entry.

2. Create label SSASUB when you begin program entry.

1: Programming 27

Program:

= =
=

=
N

Q
0
D
o

o
D

0
o

o
=
]
I

= L

P
t

A o

11

12

12

14

15

1e

17

1=

[
=

o
L

28

£ 127-Bute Pram >

LEL "SSAR2"

SF 21

IMFUT "S1"

INFUT "“S2"

INFUT "R2"

SIH

RCLx "S2
o E:':L+ llsl "

A ASIM

XEG “"SSRSUBR"

RCL "S1"
RCL "s2"
KLY
GTO "SSAZ"

RCL "R3"

Ccos

+.-

ACOS

9 XEQ "SSASUEY

D
]
I [
0

GTO "S55

1 LEL "SSRSUE

STO "RI"
RCL+ "AZ"
Cos

1: Programming

Comments:

Lines 06—09: Calculate4.

Line 10: Call subroutine SSASUB to
calculate 4, and S5. This uncondi-
tional branch uses an XEQ instruc-
tion; the next encountered RTN (or
END) instruction will transfer pro-
gram execution back to line 11. (Now
follow the branch to line 21.)

Lines 11-14: If S, is less than or
equal to Sy, return to the beginning of
the program. If not, calculate the
second answer set.

Lines 15-18: Calculate 45" .

Lines 19 -20: Call subroutine
SSASUB to calculate 4," and S3”.
Then return to the beginning of the
program.

Subroutine SSASUB,lines 21 -39:

Calculate the values 4, and S5 (4~
and S3” in the second answerset), and
display the results.

N +.=

26 ACOS
27 STO "A1"
28 RCL "A2"
29 €03
36 RCLx "52"
31 RCL "A3"
3z COS
3 RCLx "S1v

=4 +

35 STO "S3"
36 YIEW "A1"
37 VIEM "53"
32 VIEM "A3"
3% RTH

46 EMD

SSA2 is 13 lines shorter than SSA and 20 bytes shorter than SSA.

Nested Subroutines. The program TRIX. in the following section
organizes each of the five possible triangle solutions in subroutines
labeled A through E. Refer to the flowchart for TRIXA on pages 30-31,
and note that subroutine B, which calculates the solution to the SSA initial

condition,itself calls subroutine SSASUB to calculate A5 and S5. In
TRIX, subroutine SSASUB is nested in subroutine B. When subroutine
SSASUB is called by subroutine B, there are two pending subroutines.
The HP-42S can have up to eight pending subroutines.

Menu-Controlled Branching

Programmable menus enable you to make a decision during a program,
prompted by labeled menu keys that cause branches to new locations in
program memory. Using KEY XEQ or KEY GTO instructions (which act
just like XEQ and GTO instructions), any label in program memory can
be made the target of a programmable menu key. When MENU and
STOP instructions are subsequently executed, program execution is
suspended, the programmable menu is displayed, and keys 1 through 9
(the six top-row keys, plus the (4], [¥], and keys) assume their
menu definitions.

1: Programming 29

The previous two programs, SSS and SSA, each calculated one of the five
triangle solutions. The other solutions respectively find:

m S,, Ay, and S3(when A3, S;,and A, are known).

m S,, S3,and A3 (when S,;, 4,, and A, are known).

m A,, S3,and A5 (when S, 4,, and S, are known).

Here is a flowchart for a program named TRIA . TRIA organizes each
of the five solutions in a subroutine, builds a programmable menu, and
allows you to select any solution by pressing the corresponding menu key.

TRIA
LBL
TRIA

BUILD MENU

DISPLAY MENU

AND STOP FOR INPUT

30

KEY 1 KEY 2 KEY 3 KEY 4 KEY 5

SSS "SSA" "ASA" "SAA" "SAS”

XEQ XEQ XEQ XEQ XEQ

A B C D E

v v

@

1: Programming

v v

XEQ RESULTS

v

§ vy 7

INPUT INPUT INPUT INPUT INPUT
S1:52:53| |S1:52: 42| |43, S1. A1 |S1,41. 4 1S1:41, 2

CALCULATE] [CALCULATE] [CALCULATE| [CALCULATE] [CALCULATE
A AyA Ag Sy, A5, 53 |55, 53. 45 Ay, S3. 45

RTN XEQ RTN RTN RTN
) o2iQe (B (B)

SSASUB

CALCULATE

Ay,S3

YES

@
NO

XEQ

 RESULTS

v

CALCULATE
A ’

3
v

XEQ
SSASUB

RESULTS

CALCULATE
AREA

v

DISPLAY

INPUTS,
RESULTS
v

1: Programming 31

The triangle symbolin the flowchart indicates where the program stops to
display the menu. You choose which solution you want to execute by
pressing the corresponding menu key.

Here are the corresponding program lines.

Program:

@3 "s55¢
B4 KEY #“EG A

a5 "SSA"
B KEY 2 ®EQ B

67 "ASA"
B2 KEY 2 XEQ C

A3 "SAAR"

18 KEY 4 REQ D

11 "SAS"
12 KEY 5 KEQ E

2 MEHU

4 STOP

o WER "REESULTS"

& GTO "TRIZ"

Comments:

Lines 03 - 12: Build the menu keys.
(For example, lines 03 and 04 label
menu key 1 with the Alpha string SSS
and define that key to execute a
branch to label A.)

Lines 13- 16: Select the menu (line
13) and suspend program execution
(line 14). (The menu is displayed
when program execution halts.) After
execution of any subroutine A through
E, call subroutine RESULTSto

display the results (line 15). Then
return to label TRIX at the start of
the program (line 16).

The complete listing of TRIX is on pages 60—65 at the end of this
chapter.

Example: A Programmable Menu. A surveyor needs to find the
area and dimensions of a triangular land parcel. From point A, he meas-
ures the distance to points B and C, and the angle between AB and AC.

32 1: Programming

Aq=098°12"

This is an SAS (side-angle-side) problem.

Set the angular mode to Degrees. (Execute PRON if you want to print the
results.) Begin program execution.

@(MODES] [EG % 0. 0000
(B(PRINT) (A] FOH)

[

555

1

ssn

[

sh

|

s

|

shs

|

|

TREIZ

Select the SAS routine by pressing menu key 5.

HE S170.8000
[355 |s |hsn |San |Shs ||

Key in the value for §; and continue program execution.

171.63 A1706. 0008

EAIrEIEES

Key in the values for A, (you need to convert A, to its decimal equivalent)
and S,. The program calculates the unknowns and displays the initial
known values and calculated results.

98.12[CONVERT] +HF: S1=171.6300
297.35 x: 25, 256.2094

Press three times to see A,.

[R/S] [R/S] [R/S] A2=27,8278
X: 29y 236.2094

1: Programming 33

Press again to see S.

R/S] $3=363.9118
X: 29y 226. 2094

Press again to seeA 5.

R/S] A3=53. 9734
X: 29y 296.2094

Press again to see AREA.

R/S) ARER=25,256. 2094
X: 25y 256, 2094

Press again to display the menu.

%: 255 256. 2094
EASR

End the program.

EXIT v: 27.8270
X: 29y 296.2094

Multirow Menus. The preceding program, TRIX, builds menu labels
for five of the six top-row keys, and assigns a KEY XEQ instruction to
each labeled key.

A multirow menu has more than one row of labeled keys. (For example,

the CLEAR menu has two rows.) When you enter a multirow menu, the
(¥] and (4] keys enable you to move to each row in the menu. (The va
annunciator appears in the display to show you that these keys may be
used to display more rows.)

You can emulate a multirow menu in a program by assigning KEY GTO
instructions to menu key 7 (the [A] key) and menu key 8 (the (V] key).
(KEY GTO or KEY XEQ instructions for menu keys 7 and 8 also
automatically turn on the va annunciator in the display.)

34 1: Programming

Consider the following simple menu of calculator functions.

cpon
LH

VA

Ry

- Ccos

VA

Biay
; +G

Here is a program that emulates this multirow menu.

To key in ROW1:

1. Create labels ROW1, ROW2, and ROW3 when you begin program

entry.

2. Note that program lines 03, 05, 07, 16, 18, 20, 29, and 31 are Alpha

strings.

Program: Comments:

AR £ 124-Bute Pram X

A1 LEL "ROMW1"

@z CLMEHU Lines 01-13: Clear the current menu
az " definitions, then build and display the
a4 EEY 2 RER 81 first row of the menu. Assign branch
S "LOG" instructions to keys 7 and 8 (the [(A]

@& KEY 4 KEQ @2 and (V] keys) to the previous and
a7 “"LH" succeeding rows respectively (lines
B2 KEY S wER B2 09-10).

@3 KEY ¢ GTO "REoMz"

18 EEY & GTO "ROM2Y

11 MEHU

12 STOF

12 GTO "ROM1™

1: Programming 35

J
u

i
[
y
l

o
o

0
=
g

P
T
g

T
l
T
o
e
e
e

Fo
o

0
3
M
O

'I_
.

r'
l_
.l

I
—

o T
L

=
l

o
0

2
N
Q
3

Q
0

Q
0

D
0
0
O

0
3
O

0
2

P
O
[

1
T

[
-

-.
J

w
0

0
o

a
o
f
a

J
o

J
o
O

0
0

[
=

2
f
u

J
u

T
L
N
e

D
0

a
=
J

J
u
O

LEL "ROKZ"
CLMEHU
=
KEY 2 HER &4
nGIM"
KEY 4 HER 85
"ogse

KEY 5 XER 86
KEY 7 GTO "ROK1"
EEY & GTO "ROMzSM

MEHU
STOF
GTO "ROKZ"

LEL "ROWz"

CLMENU

ROY"

KEY 3 REQ @7
Nys

KEY 4 XER 88

KEY ¥ GTO "ROWZ"

KEY & GTO "ROWL"

MEHLU

STOF

GTa "ROMZ"

LEL &1

SRET

FTH

LEL [
n

]
[+

2

CLOG

FETH

LEL

LH

FTH

LEL

R4

..
_

1
!

e
t

(
A

J
a

2 ETH

1: Programming

Lines 14-26: Clear the current menu
definitions, then build and display the
second row of the menu. Assign
branch instructions to keys 7 and 8 to
the previous and succeeding rows
respectively (lines 22 -23).

Lines 27-37: Clear the current menu
definitions, then build and display the
third row of the menu. Assign branch
instructions to keys 7 and 8 to the pre-
vious and succeeding rows respectively
(lines 33-34).

Subroutines 01 -08, lines 38 - 61: Exe-

cute the calculator functions

corresponding to each menu label.

n [l
_
m - 1 n

o
n
o
c

SIH

FTH

LEL
Ll

RTH
LEL @7
HEPY
RTH
LEL
+./-

RTH

EHD

o
n
o
o
n

[a
x]
T

n
o
o
n
o
C
n

C
n
o
n

=
g
0
N

0
0
D
o

E

%
)
! [
n
]

T
N
w
0

0
0

T —
i [

Nested Menus. In many menus, one or more ofthe six top-row menu
keys bring up a new menu called a nested, or submenu. For example, in
the PGM.FCN menu, when you press the%78menu key, a nested

menu of related functions (X=0?, X#07?, ..., X>0?) is displayed. To return
to the main menu, you press the key.

You can emulate a nested menu in a program by assigning a KEY GTO
instruction to any labeled top-row menu key. Consider the following sim-
ple menu of calculator functions.

IR e e

_
-
|

I
R
Y
D

Y

Here is a program that emulates this menu structure.

To key in LVL1:

1. Create labels LVL1 and LVL2 when you begin program entry.

2. Note thatlines 03, 05, 07, 14, 16, and 18 are Alpha strings.

1: Programming 37

Program:

.
.
_
,
.
.

o
l

1
5 =
5

T o
)

1
L

%
1

D
T

T
L
N
e
0
3
T

I
I i

=
o
0

O
O
=

b
e

e
k

k
e

P
k

e
k

T
N
e
O

1
—

— i

M
g
o

o
T

o
0

O
O
)

r'
l_

.l
'l_

:
'I_

'

[
[o

S
i

1
T

L
0

D
0
0
0

M
Y
P
D
T

T
T

B
0
3

P
O

o
=
3
0
0

0
0

=
)

38

182-Bute Pram 2
LE:L IILI.I'IL1 n

CLMEMU
n + "

KEY 2 HER @1

KEY 2 ®ER @Z2

"TRIG"
KEY S GTO “"LwWLz"

MEHL

STOP

GTO "LAvVLLY

;:| LE:L IIL"I'IL.I:_'"

CLMEMU
"IN
KEY 4 HER 11
"cose

KEY 5 HER 12
"TAH"
KE'Y
KE'
MEMU
STOP

“ER 13
GTO "LvVL1"

El

9

} GTO "LyLz"

LEL &1
<+

FTH
LEL 82

FETH
LEL 11
SIH
RETH
LEL 12

1: Programming

Comments:

Lines 01-11: Build and display the
primary level of the menu. Assign to
key 3 (labeled TRIG) a branch
instruction to label LVL2 to build the
nested menu (line 08).

Lines 12-23: Build and display the
nested menu. Assign a branch instruc-
tion to key 9 (the key) back to
label LVL1 (line 20).

Subroutines 01, 02, and 11-13, lines

24 -38: Execute the calculator func-

tions corresponding to each menu
label.

| - *TH

EL 13T

—
H

I

o
D

O
0
O

g
=
]

A*TH

0 0 m - wa
l
e
e

2

Controlled Looping

A controlled loop is a loop thatis executed a specified number of times.
You can build a controlled loop with a local or global label, an ISG or
DSE instruction, and a GTO instruction.

The program DISPL in this section uses a controlled loop to calculate
successive linear displacements of an object traveling at a constant velo-
city.

The equation of motion for constant velocity on a smooth surface is

X =Xxo t+ WVt

where:

x is the total displacement.
X is the initial position.
v is the velocity.
t is the elapsed time.

DISPL calculates the displacement at successive time intervals from ¢ = 0
tot = t; . It builds a loop counter of the form fffcc by prompting you for
the value of ¢;, and for the value of STEP (the value of the time interval).
t; becomesthefff portion of the counter and STEP becomesthe ii portion
of the counter.

1: Programming 39

Here is a flowchart for DISPL.

DISPL LBL

DISPL

INPUT
Xg Vs tf,STEP

v
BUILD COUNTER
FROM t, , STEP

FOR EACH TIME
(0TO t))

CALCULATE

INCREMENT

t

@&

=
The program segmentthat uses a controlled loop to calculate successive
values ofx is highlighted in the following annotated listing.

40 1: Programming

To key in DISPL: Create variables x, x0, v, tF, STEP,fff, ii, and COUNT

before program entry.

Program:

g8 £ 116-Bute Pram >

81 LEL "DISPL"

Bz SF 21

B2 IHPUT "x@"

@4 IMPUT "ot

a5 IMPUT "“tF"

Be IMPUT "STEPR"

a7 RCL "tF"

Az 1E-2

B39 X

18 STO "fff"

11 RCL "STEPRP"

12 1E-5

12 x

14 STO "ii"

15 RCL+ "fff"

16 STO "COUMHT"

17 LEL @81
18 RCL "COUNT"

12 IP

28 RCLx "ot

21 RCL+ "x@"

22 STO "=

22 CL=»

24 WIEMW "x"

25 ISG "COuHT"

26 GTO @1
27 GTO "DISFL"

22 EHD

Comments:

Lines 03-16: Promptfor the vari-
ables. Build the counter.

Lines 17-27: Calculate successive

values ofx in the counter-controlled

loop. (Note that the integer part of
COUNTin line 19 is the time ¢.)

1: Programming 41

Example: Loop Control in a Program. Find successive values of
the displacement x of an object in intervals offive seconds from ¢ = 0 to
t = 15 seconds whenx, = 10 meters and v = 20 meters/second.

Begin program execution.

XEQ] I v: B.08080
- xB870.08800

Enter the values for xy and v.

10 [R/S] 20 (R/S] v: 28.008080
tF"B [5]5]%]%

Enter the value for ¢, and continue program execution.

15 [R/S] v: 15, 0000
STEP?0. 0000

Enter the value of STEP (the size of the interval) and continue program
execution.

5 [R/S] x=

The value ofx at ¢t = 0 is 10. Press again to display the value ofx at
t=35.

TR
Press to see the value ofx at t = 10.

5
Press [R/S] again to see the value ofx at t = 15

T

Press again to prompt for new values. Exit from the program.

[R/S] EXIT] v: 8.0000
x 10. 0000

42 1: Programming

Indirect Addressing in Programs

Indirect addressing is a useful programming tool, particularly when used
in combination with a controlled loop. The operation index in your
owner’s manual indicates which functions can use indirect addresses. In
this section, three applications of indirect addressing in programs are
presented.

Using Indirect Addressing to Initialize Data Storage
Registers. Program INIT prompts for data and storesit in successive
registers using INPUT IND in a controlled loop. Thisis a useful initializa-
tion routine if you are using registers instead of variables for data storage
and recall.

.'
_

1
5
!
- oY
) £ 27-Bute Pram

@1 LEL "IMIT"

Az 1.a1 Lines 02-03: Build a counter and
A2 STO "COuMT" store it in COUNT. The counter has a

beginning value of 1, a test value of 10,
and a default increment value of1.

a4 LEL @1 Lines 04—-07: Prompt for data for suc-
B85 IMPUT IHD "COUHT" cessive registers Rg; —Rg.

Be ISG "COUWT"

a8y GTO 81

Bz EMD

1: Programming 43

Using Indirect Addressing to Clear Registers. The following
routine clears a specified number of storage registers using STO IND in a
controlled loop.

Program:

Hi

] M
S
S

o
0

0
0
=
g
O

e
0

—
P
t

[
—
—
-

N

b
b

k
e

o
o

=)
i

P L
I

44

L 74-Bute Pram

LEL "CLERE"

-]

"FIRST?"
FROMPT
STO "COUNT"

. "LAST?"
FEOMFT

1E-=

STO+ "COuWT"

LEL 1@

: d

STO IMD "COUMT"
ISG "COouWT"

GTO 148

& TOME 9
7 "READY"
& PROMPT

2 EMD

1: Programming

-
-

Comments:

Line 02: Initialize the X-register to 0.

Lines 03-10: Build a counter in
COUNT. The counter has a beginning
value equalto the first data storage
register to be cleared, a test value
equalto the last register to be cleared,
and an increment value of one.

Lines 11-15: Successively set the
values of the block ofspecified regis-
ters to 0.

Lines 16—18: Sound a tone and

display the message FERLD'Y. Press
to end the program.

Using Indirect Addressing to Execute Subroutines. The follow-
ing routine retrieves data (telephone numbers) from subroutines using
XEQ IND.

Program:

T o
=
T

- i
l

™ '
o

I
O
O

=
~
O
O

F
a

0
0
[

-~ [
N

]

124-Byte Fram

LEL "FHOME"

"HAMET?"

HOH

FROMFT

ROFF

ASTO ST =

REG IMD ST =W

FROMPT

LEL "JAHET"

"BER-5355-9374"

RTH

LEL "BRUCE"

"BEE-355-135"

FTH

LEL "FPAM"

"BERE-555-c022"

FTH

g LEL "CHRIS"
"HEE-555-6276"
RTH
LEL "EOE"
"BEE-555-2411"
RTH

EHL

Comments:

Lines 02-08: Prompt for the name
(Alpha string) whose telephone
number is desired (lines 02-05) and
store the string in the X-register (line
06). (The string may besix Alpha
characters maximum; the X-register
holds only up to six Alpha characters.)
Execute the subroutine whose label
matches the Alpha string (line 07),
then suspend program execution (line
08).

Lines 09 -23: Build the telephone
numbers (actually Alpha strings)in
the Alpha register.

1: Programming 45

Flags in Programs

Earlier in this chapter you wrote a program SSA that makes a branch
based on a numbertest; specifically, SSA uses the X<Y? function to con-
struct the branch. The program asks the question: Is S5 < S, ? Then it
makes a decision based on the answer —either calculate the second answer
set or end the program.

The X?0 and X?Y sets of functions enable programs to ask questions only
concerning number values.” However, programs can also make condi-
tional branches (ask questions and make decisions) based onflag tests.
Flag tests follow the "do-if-true" rule. If the test is true, the next instruc-
tion is executed. If the test is false, the next instruction is skipped.
Because flags have unique meanings for the calculator, they greatly
expand the logic control you can exercise in a program. (User flags 00
through 35 and 81 through 99 may be set, cleared and tested. System flags
36 through 80 may only be tested. Refer to appendix C in your owner’s
manual for a complete listing of the HP-42S flags and their meanings.)

User Flags

Flags 00 through 35 and 81 through 99 are user flags; they may be set,
cleared, and tested.

General Purpose Flags. Generalpurpose flags (flags 00 through 10
and 81 through 99) are not used internally by the calculator; what they
mean depends entirely on howyou define them.

* The X=Y? and X#Y? functions are exceptions; they can compare Alpha strings.

46 1: Programming

The program LIST on pages 176 through 178 creates a matrix LLIST
using the following instruction sequence.

LEL B2

1

EMTER

FC? @1
bl

LIM "ELIST"

J
o

O
3
O
o

on
T

B
0
Q
0
0

0
0

O
l

0
0

D
)
O

0
0

T ORER I

2 E4

2 E+

A GTO 88

Before you execute LIST, you set flag 01 if you want ZLIST to be a 1-
column matrix, or you clear flag 01 if you want £LIST to be a 2-column
matrix. Flag 01 is defined to have a unique meaning in the program,;its
status determines the number of columns in the matrix XLIST.
(Remember that current status of user flags is maintained by HP-42S
Continuous Memory. This can affect other programs that use the same
flags.)

Control Flags. Controlflags 11 through 35 have a specific meaning and
are used internally by the calculator. For example, flag 21, the Printer
Enable flag, affects the way the VIEW and AVIEW functions work in
programs. When flag 21 is set in PROFF mode, VIEW and AVIEW mes-
sages are displayed, and program execution halts. When flag 21 is set and
PRONis executed, VIEW and AVIEW messages are printed and pro-
gram execution does not halt. Many programs in this manual that use
VIEW or AVIEW alsoset flag 21.

System Flags

System flags 36 through 80 also have a specific meaning for the calculator.
You cannot directly set or clear these flags. However, you can test them.

The following program, MINMAX, searches for the maximum or
minimum element of the matrix in the X-register. In line 23, it tests the
status of system flag 77, the Matrix End-Wrap flag, to determine if the last
element of the matrix has been checked.

1: Programming 47

MINMAX also uses general purpose flag 09 in line 08 to determine
whetherto search for the maximum or minimum element of the matrix.
Before you execute the program, you set flag 09 to find the maximum ele-
ment, or clear flag 09 to find the minimum element.

(The annotated listing is on pages 152 through 153.)

.,
..

1
5
0
— ' L Bl-Bute Fram >

LEL "MIHMA="i e
K
X
! STO "MIMMAX"

THDEY "MIHMA:"o
d

- L
A

|

FCLEL
GTO &2[

y
] S

on
D
U
] i

J
a
r
r

L
y
a
0
m o
P

™ ~
b
e
T

"
o
0

0
0

=
)

L
ea

2
3

i
t

D

|

1
o — 1

- N
Q
0

o
o

—
F.

@
- [n
}
h

J
a

e LEL Bz

1V RCLIJ

1= RCL =T

17 EMTER

I
J

=8 LEL &4

21 F4
2z J+

22 FC? 7Y

24 GTO @1

=2 EHMD

48 1: Programming

Error Trapping

When you attempt an improper operation during function execution, the
operation is not executed and an explanatory message is displayed. For
example, if you execute the keystroke sequence

1 (E] 260 (7]

the calculator returns the message Cut of Fanas, and leaves the value
1 x 10® in the X-register.

If an improper operation is attempted in a program, the calculator returns
the corresponding message, and program execution halts at the instruction
that caused the error. Consider the following program.

L Z2e-Bute Fram >

LEL "TERF"

SF 21

IMFUT "av

At
STO "y

= WIEW "W

* GTO "TRAFR

= EHD

T o
o

e
’

0
[
=
=

™
T

I
l

i
t

|
o o
L

.
.
_
.
.
_

12
0
)

o
=

If you execute TRAP and supply the value 1 x 10?® for X, the program
halts at line 03 and the calculator displays the message Cut of Range.
To supply a new value for X, you must restart the program at line 01 (by
pressing TEHAF). In a short program like TRAP, this method of
recovery from an error presents little problem. However, when executing
a program that performs time-consuming calculations, or that has
numerous stops for intermediate data entry, it may be inconvenient to
restart the program at line 01 each time an error occurs.

1: Programming 49

You can enable program execution to continue after an error has occurred
by setting flag 25, the Error Ignore flag. When flag 25 is set:

m One error during program execution is ignored. The instruction that
causes the error is not performed and program execution continues at
the next instruction.

m The error clears flag 25.

Consider this revision to TRAP.

.,
.

1
5
1
- 1
5
!

+ S52-Bute Pram

LEL "TERF"i —

- [
] SF 21

SF 25
IHPUT "3"
K42
FC?C 25
GTO @e
STO "y
WIEW "y
GTO "TRAF"

™
T

T
T
T
=
T
T

o
D

0
0

=
g
T
O
f
O
O

- e LEL @8

CF 21

EEEF

"Out of Rangs"

AYIEHW

FSE

FSE

2 GTO "TEARF"

1
—

T
L
N
e

[
y

-
]

P
t

o

19 EHMD

TRAP now responds to the error condition by:

m Displaying an error message.

m Resetting flag 25 and prompting for a new value for X.

This programming technique, called error trapping, adds program steps,
but is effective when you can identify operations in a program that are
likely to generate errors.

50 1: Programming

A Summary Program

The program FCAT in this section displays the currentstatus of flags 00
through 99. The flags are displayed in a multirow menu in sets of six.
Each of the menu keysis labeled with a flag number. You can set and
clear user flags 00 through 35 (except flag 25) and 81 through 99 by press-
ing the corresponding menu key. The "=" character is appended to the
menu label if that flag is currently set. When you attempt to set or clear a
system flag, FCAT beeps and displays the error message Festricted
Operat ion. The previous set of six flags is displayed by pressing menu
key 7 ([A)), and the succeeding set is displayed by pressing menu key 8

().

FCAT uses many of the programming concepts discussed in this chapter:

Global and local labeling.

Prompting for data input.

Conditional branching based on:

= Numbertests.

m Flag tests.

Subroutines.

Multirow menus.

Counter-controlled looping.

Indirect addressing.

Error trapping.

1: Programming 51

Here is a flowchart for FCAT.

INITIALIZE

O

BUILD A MENU

OF SIX FLAGS

X
KEYS 1 THRU 6 KEY 7 KEY 8

(PAGE UP) (PAGE DOWN)

SET ERROR INCREMENT

IGNORE FLAG COUNTER BY 6

v
TOGGLE FLAG

Y
DECREMENT

 COUNTER BY 6

RESET

COUNTERTO 0
 YES

ERROR ?

*RESTRICTED

OPERATION*

MESSAGE

RESET

COUNTER TO 96

-]

52 1: Programming

Here is the annotated listing.

Program:

BE L 224-Bute Fram X

@1 LEL "FCRAT"

B2 B, 89086

Bz STO Bd

B4 LEL H

HS RCL B8

Be HER B8

By KEY 1 GTO 81

BE HKER B8

83 KEY 2 GTO a2

18 =EQ B8

11 EEY 2 GTO B2

12 REQ B8

12 EEY 4 GTO &4

14 =ER @@

o KEY S GTO 8%

16 #2EQ B8

17 KEY & GTO Bg

13 KEY 7 GTO
19 KEY & G =

]

L — I
t

I

23 "FLAG CATALOG"

21 MEHU

s E'

2= STO 81

24 FROMFT

23 GTO A

Comments:

Lines 02-03: Store the loop counter
ifl R 00 -

Lines 4—17: Build menu keys 1-6.

The label for each menu key is built by
calling subroutine 00. (Now go to sub-
routine 00.)

Lines 18 -19: Assign GTO instructions
to menu keys 7 and 8.

Lines 20 -25: Build the Alpha string
FLAG CATALOG (line 20). Display
the menu (line 21). Initialize register
R, to 6 (lines 22-23). Display the
Alpha register, suspend program exe-
cution, and prompt for numeric input
(line 24).

1: Programming 53

T

[
[

[
0
[

T
O
f

0
0
o
=

S
0

o
0

0
D

=
)

O
O
D

G
l
O
O
O

-
]

W
0

0
0

o
of

o
J
o

D
0

0
D

P
t

=
g

N
B
0
[

S P

28

a1
s

54

W
RTH
ALF
Fo?
I__ " n "

1
+

FTH

LEL

L=E

LEL

LSE

LEL

bSE

LEL

L=E

> LEL

DsSE

LEL

2 DsE

LEL

RCL

IMD 5T =

|1

a1

-
T
D

S
I
=
S

&
Fo
o

=
=
T
o

o
=

0
=
[

a1

ECL+ 88

1: Programming

Subroutine 00, lines 26 —37: Build the

Alpha string for each menu key. First,
test to see if the current value in the
X-register (the loop counter) is
greater than 99 (lines 28-31).If yes,
do not build a label for the menu key.
(The highest numbered flag is 99.) If
no, append the (integer portion of) the
value in the X-register to the Alpha
register (line 32). Test the status of
the flag whose number is in the X-
register. If that flag is set, append the
"w" character to the Alpha register
(lines 33—-34). (Thus, the Alpha label
for each menu key consists of a
number, and,if the correspondingflag
is set, a "u".) Increment the value of
the X-register by 1 (lines 35-36).

Lines 38 - 52 establish the flag to be
set or cleared: Successively decrement
R, by 1 (lines 38-49). (If menu key 1
is pressed, the value in R, is 0 when
Ry is recalled to the X-registerin line
51. If menu key 6 is pressed, the value
in Ry, is 5 when Ry is recalled to the
X-register.) Add the current value in
R (the counter) to the current value
in the X-register (line 52). (The value
in the X-register after execution of
line 52 is the value ofthe flag to be set
or cleared.)

i
n J
a

n
To
o

[n
}

T
O
N

C
n
o
n

=
W
0

0
0

=
)

T
I
y
T
T

I
I
T

0
g
R
O

[n
p)

SF 25

FC?C IMD ST =

SF IND ST ¥
GTO A

T
M
r [
]

=
~

I
o
A

> [a
n])

Lines 53 - 56 build the set/clear toggle
and error trap: Set the Error Ignore
flag (line 53). Testif the flag (whose
numbervalue is in X) is clear, then
clear it (line 54). If the flag was clear
when tested in line 54, or the attempt
to clear causes a Restricted Operation
error, go to label 09 (line 55). If the
flag was set, and the clear operation
does not cause a Restricted Operation
error, return to the menu-label rou-
tine to update the flag status (line 56).

Lines 57-61: If the branch to label 09
was caused by a Restricted Operation
error, go to label 10 (lines 57-59). If
the branch to subroutine 09 was exe-
cuted because the flag was clear, then
set it, and return to the menu-label
routine to update the flag status (lines
60-61).

Lines 62—-69: Decrement R, by6.
(Thus, when [¥] is pressed, the top-
row menu keys are each relabeled
with the numberthat is six /ess than in
the previous menu. IfR, has the
value 12 when (V] is pressed, R, takes
the value 6, and the menu keys are
relabeled 6-11.) Testif the new value
ofRy is less than 0. If yes, store 96 in
R (lines 66 —-68). (Menu keys 1-4
will be labeled 96-99.)

1: Programming 55

GTO A
} GTO "FCAT"0

[
o
=

— o
l
G x
]
T

0
0

-
]

=
]

=
]

=
l

N LEL 18

FS?C 21

GTO 11

wER 12

GTO A

LEL 11

nmER 12

SF 21

GTO A

LEL 12

EEEF

"REestricted "

F'Operation”

AYIEHN

FSE

RETH

n
",

l:
r'

u
N

Q
0
D
o

I
D

0
1
T

O
O

0
0

0
0

Q
0

Q0
0

0
0

Q
0

0
0

0
0

0
0

=
)

=
)
)

o
)
=
)

o
0

0
0

=
)

o
o

g

I
I
'

= EHD

56 1: Programming

Lines 70-73: Increment R i, by 6 using
the ISG function. (Rememberthat the
number in Ry, is the loop counter; it
has the initial value 0.09906. When [A]
is pressed, the top row menu keys are
each relabeled with the number thatis
six greater than in the previous menu.
When the counter test value exceeds
96, program execution transfers to

FCAT, restoring the counterto its ini-
tial value; the menu keys are thus rela-
beled 0-5.)

Lines 74-89: Execute the BEEP func-
tion, display the Alpha message
Festricted Operation, and

transfer program execution back to
label A. If flag 21 is set, clear it before
displaying the Alpha message, then
reset it. (Program execution continues,
redisplaying the flag menu, and the
status offlag 21 is maintained.)

Example: The Flag Catalog Program. Use FCATto setflag 01.
Check the status of flag 38. Attemptto set or clearit.

Start FCAT.

ECAT FLAG CATALOG
(o1213415

Set flag 01.

FLAG CATALOG
[o]1o|2|3|4|5|

Check the status offlag 38.

v (v [v) lFLFlG CATALOG __I
V) V) V) 3637«3839Yom41

Flag 38 is clear. Attemptto setit.

FLAG CATALOG
36[37w|38|39|4om|41|

The calculator beeps, displays the message Restricted Operation,
and returns to the state before the error. Exit from FCAT.

EXIT v: 42.0961
x: 6.0800

1: Programming 57

The Triangle Solutions Program

This section contains the complete set of equations for the triangle solu-
tions, instructions for keying in TRIX , an annotated listing of TRIX., and
instructions for using TRIX .

Ay

Ag A2

Program Equations. The following equations are used in the program:

m Condition 1: S;, S, and S5 (three sides) are known:

VP(P _Sz) (S1+S2+S3)

A=2 — whereP = ———~~3 arc cos[(s, 53)]w ere >

VP(P -sl)]
A, =2arccos |————

2 (S2S3)

A, =arccos[-cos (Az + A3)]

58 1: Programming

m Condition 2: S, S, and4, (two sides and the adjacent angle) are
known:

| [S2] .
Agz = arcsin [—| sinA,|*

S

A, = arccos [-cos (A; + A3)]

The problem has been reduced to the A5, S,A, configuration.

m Condition 3: 43, S, and 4, (two angles and the included side) are
known:

Ag = arccos[-cos (Az + A;)]

< < SinA3

27+ SinA2

S3=8,c0sA3 + S,c0sA,

m Condition 4: §,,4, andA, (one side and the following two angles)

are known:

Az =arccos|[-cos (4, + A3)]

The problem has been reduced to the A3, S, A4, configuration.

m Condition 5: S, S, (two sides and the included angle) are known:

S3 = \/Slz + S22 - 2S1S2COSA1

The problem has been reduced to the S, S, S3 configuration.

m For any triangle, the area is:

AREA = -;—5153 sinA

* Two possible solutions exist if S, is greater than §; and A3 does not equal 90°. Both
possible answersets are calculated.

1: Programming 59

To key in TRIX :

1. Create variables S1, S2, §3, 41, A2, A3, P, andAREA before pro-

gram entry.

2. Create labels RESULTS and SSASUB when you begin program
entry.

Here is an annotated listing of TRIX .

Program: Comments:

BE £ S7V3-Bute Pram

I
'
l
"

! [
y LEL "TRIZ"

Bz SF 21

@z nsoge Lines 03-12: Build the menu key
a4 KEY XE® A assignments.
BHa "SSRY

Be KEY 2 BEQ B

gy "ASR"

B[S KEY 2 BEQ C

|3 "SHA"

A 4 HER D

—
_
.
.

[
=

N
o
m

w
D
=
L

7

m n > m [m

MEHMLI Lines 13-16: Display the menu keys.
4 STOF

P
t
e
k

o HER "RESULTS"

= GTO "TRISY

LEL A Subroutine A, lines 17-59: Calculate

IHFUT "S1 the SSS solution.

IHPUT "s2"
IHFUT "S53
FCL "S1t

RECL+ "S52M

RCL+ "53v
—

o
0

0
0
]

r'
l_

:l
r'

l_
:l

r'
:_
'l
[

r'
l_

.l
r'

l_
"
b
b
b

N
O
3
[
=

60 1: Programming

T
o
0

0
0

=
g

L
o

0
0
O
e

on
i

-
]

o
D

0
o

0
D

Q
O

Q
0
0
0

O
3

o
)

0
0
0

0
0
o
[
D
O

My
=

a
o £
W

5 o

STO “po

H*E

LAST

RCL»x "sz2©

FCL "S1v

RCL»x wgav

SORT
ACOS

—

sSTO "A3"

SIH

RCLx "S1*

STO @8
RI:L n Fl "

nre

LASTX

RCLx "S1*

RCL+ "32"

RCL+ "S3"

SORT

ACOS

o
M

: 5TO “"A2"

J
n
o
o
n

C
n
o
C
n
o
a
n

o
w
0

=
)
I
N
R

on
1
T =

T

D
S
I

i
T

RCL+ "RAZ"

COs
4+-
HCOS

5TO "AL"
RETH

LEL E Subroutine B, lines 60—100: Calculate

IMFUT "Z1v the SSA solution.

IHFUT "5z
IMFUT "R2"

1: Programming 61

SIH

RCL= "52"

» RCL+ "51"

ASIH

STO "R3"

SIN

RCLx "S1"

STO 68

HER "SSASUBM

RCL "S1

RCL "Sz2"

ney?

RTH

#ER "RESULTS"

RCL "R3"

cos

+./—

ARCOS

STO "R3"

RER "SSASUBY

FETH

LEL "SSARSUBM

RCL "AR3"

RCL+ "R2"

cos

+./—

ACOS

STO "AL"

RCL "mRz2"

cos

RCLx "s2"

RCL "R2"

cas

RCL= "S1*
+

STO 5o

13 RETH

T
T

n
o
f

T 0
o
o
y

=
O
N

0
0
O

=
J

W
0

O
O

S
0
3
D
e

N
O
k

D
D
D

0
0

0
0

0
0

0
0

0
3
0

0
0

0
D

Q
0
0
0
)
s
)
]
)
T

[
A
W
M

=
@
0
0
3

0
w0
D n

L
w
0

V
o
o

0
0

=
)
M

g
,

—

62 1: Programming

T
I

o
o

0
0
O
e

T

F
_
F

1
o

15
0

1
5

T

-
~

S
o
)

1
5
0

o
0

0
0

=
g

P
k
e

e
k

e
t

e
k

e
k

e
k

e
k

e
k

e
k
b

e
k

e
k

—
b
b

0
o

11e

117

11z

113

128

121

122

LEL C
INFUT "AZ"
IHPUT "51"
IHFUT "AL"
RCL "A3"
RCL+ "AL"
Cos

+.=

HCOS

5TO "AZ"
RCL “AZ"

© RCL St
v +RELC

114 Hwy
115 =

STo s

Ft
oo S

124

el

126

+

STO oo

FTH

v LEL D

T
N
e
l

IHFUT "51"
IHFUT "A1"
IHFUT "AZ"
RCL+ AL

+.=

ACOS

STO "AEM

FCL "s1t

Subroutine C, lines 101 - 126: Calcu-

late the ASA solution.

Subroutine D, lines 127 -150: Calcu-

late the SAA solution.

1: Programming 63

P
t
b

e
k

e
k
b
b

Fo
o

F
a

fa
o

0
3
Q
0

V
o
T

w
0

o
0
)

145
144
145
146
147 =
148
143
156— ke

z
n
o
o
n

o
c
n
o
o
n

e
O
e

0
l
O
e

)
=
A

=
i

o3
=H

T
a
T

T
T
T
T
T
T

1
T

e
L
N
e

0
l

[
0
o
=

P
t
b
b

e
k

e
k

e
k

b
k

e
k

e
k

e
k

e
k

e
k

e
k

e
k

b
k

e
k

e
k

e
k

e
k

e
k

e
k

e
k

e
k

e
k

T
Jo
o

D
0
o

D
0

0
0
)

=
]

=
]

=
]

=
)
=

64

STO B8

ECL "R2"

1

STO "San

Ft-

+

=TO ngav

FTH

LEL E
IMFUT "s1"
IHFUT "AL"
IHFUT "=z
RCL ALY
M
+RELC

RCL "S1t

+FoL

STO vgoo

RCL+ "S1"
RCL+ v5zv

to
cl

e
T

=T "po

L4

LAST:

RCLx "5zm

RCL "ste
FCL= wgov

SEET

=
—

1: Programming

Subroutine E, lines 151 -194: Calcu-

late the SAS solution.

o
n

l
T
I

o
D

)
0
0

0
D

0
0

0
0

0
0

0
0
)
)
]

]
=

2
N
o
f
0
o
=

o0 I:
I"

-

w
0

o
0

0
0

0
D

O
O

o
0

0
0

=
y

0
l
D
o

o
o
W
O

o
o

W
O

o
W
0
0

o
0

P
y
S
0

0
0

=
)
O
N

=
-
~
e

-
~
[

an
|‘

_T
‘I

P
O
P

P
l

P
l

P
O
P
3
O

[
l
o
=

e
t
s

P
e
t
b

e
k
b
b

p
d

b
k

e
k

e
k

e
k

e
k

e
k

pe
k

e
k

e
k

e
k

e
k

e
k

e
k

T
o
a
o
=
J

[x
n]

M
2
= o

ACOS

¥

STO "R3"

SIH

RCLx "S1"

STO B8

RECL "P"

Ktz
LAST:

RCLx "S1"

RCL+ "=

ECL+ "S5

SERET

RCOS

X

sTo "A2"
RTH

LEL "RESULTS" Subroutine RESULTS,lines 195 -208:

RCL && CalculateAREA and display the initial
RCLx "S2v known values and the results.
=

STO “"ARER"
'.lll I Elr'j " E; 1 "

VIEW "AL"

VIEMW "S2¢

VIEW "R2"
VIEM "S2"
VIEM "AZ"
VIEW "ARER"
FTH

EHD

1: Programming 65

To use TRI% :

1. Press TR

2. Select a solution by pressing the corresponding menu key.

3. Input values as prompted. You can name any side §;. A, is the
adjacent angle. You can enter values in a clockwise or counterclock-
wise order. The values are displayed in the same order as they were
entered.

66 1: Programming

2

Enhancing HP-41 Programs

In chapter 11 of your owner’s manual, you keyed in and executed a pro-
gram originally written for the HP-41 calculator. That program, named
QUAD,solves for (real number) roots of quadratic equations. Two pro-
grams Q2 and Q3 in this chapter use HP-42S features and functions to
enhance QUAD.A third program QSHORT uses only 11 lines to solve
for quadratic equation roots.

Using Named Variables

In the HP-42S, data may be stored in and recalled from data storage
registers or named variables. Programs that use named variables for data
storage and recall can be easier to write and read.

In QUAD, the values of coefficients a, b, and ¢ are stored in and recalled

from data storage registers. In Q2 these values are stored in and recalled
from named variables a, b, and c. (Q2 also stores the values of the two

roots r, and r, in named variables R1 and R2. In QUAD,these values are
calculated and displayed, but not saved.)

2: Enhancing HP-41 Programs 67

Using HP-42S Data Input and Output
Functions

Prompting for Data with INPUT

The HP-42S INPUT function enables programs to prompt for data in one
program line.

QUAD prompts for the value ofa, then stores the value 2a in a data
storage register with the three-instruction sequence

" -3=.?' 1"

FROMFT

STO B8

%
N

o
o

T
0
[

- 15
0

Q2 uses INPUT (and the named variable a) to replace these three
instructions with one.

B2 IHFUT "a"

Displaying Data with VIEW

The HP-42S VIEW function enables programsto display data in one pro-
gram line.

QUAD displays the labeled value of ; with the three-instruction
sequence

29 "ROOTs="

28 ARECL =

=1 AVIEW

o
t

Q2 uses VIEW (and the named variable R1) to replace these three
instructions with one.

22 VMIEW "REL"

68 2: Enhancing HP-41 Programs

Operations with HP-42S Data Types

Programs written for the HP-41 calculators can operate on only two data
types: real numbers and Alpha strings. Programs for the HP-42S, how-
ever, can also operate on complex numbers and matrices.

In QUAD, complex-number roots cannot be calculated; instead,if the
value b2 - 4ac is less than 0, the calculationis halted and the message
ROOTS COMPLEX is displayed. In Q2, complex number roots are calcu-
lated, stored in variables, and displayed.

Using the Two-Line Display

Programs can effectively show longer messages in the HP-42S two-line
display. In Q2, the two-line message

Zero Imput Inwalid.

Fress E<S to continue.

is displayed if 0 is supplied for variables a or c.

To key in Q2: Create variables a, b, ¢, R1, and R2 before program

entry.

Here is an annotated listing of Q2.

Program: Comments:

Aa £ 132-Bute Pram X Lines 01-05: Display the 0-input error
a1 LEL B84 message.

B2 "Zero Input Inwa"

a2 F"lid.4%Fress RsSY

84 F" to continue.”

n FROMFT

2: Enhancing HP-41 Programs 69

[
]

T

™]
=

o
0

0
0

=
g

—
t

P

—
—

2
N
o
f
e
0

1
T

o
0

D
0

=
g

W
[
e
e
e

n
l:

r'
l

o
0

0
0
—

3
0

o
0

[
l
o
o

P
t

0
0

o
[

70

> LBEL "Rzt

CFHRES
SF 21
IMFUT "a"
H=@7
GTO @@
IMFUT "h"
IMFUT "
H=E7
GTO @3

ROL b
+.=

EMTEF:
M2
4

RCLx "a"
RCL= "e”

SRET

FECL "B

ZIGH

STO "RLM

VIEW "RE1M

Lines 06— 15: Set the program to cal-
culate complex numbers, prompt for
the values of @, b, and c, and test if 0 is
supplied for a or c. (Flag 21 is set in
line 08 so that VIEW results are
displayed in PROFF mode, or printed
if PRON has been executed.)

Lines 16 —24: Calculate

Vb? - dac

Lines 25-31: Calculate either

-b + Vb2 - 4ac

2a
or

-b - Vb2 - 4qc

2a

depending on the sign of b. Lines 25—
27 ensure that the root that has the
greatest absolute value is calculated
first. This improves the accuracy of
the results.

Lines 32-33: Store the calculated

value inR and display R1.

2: Enhancing HP-41 Programs

34 RCL "c Lines 34-38: Calculate the second
25 RCL+ "a root, store the value in R2, and display
26 RCL+ "R1“ R2.*

a7 STO "R2"
28 YIEM "R2"

39 GTO "mz¢ Line 39: Return program execution to
label Q2.

48 EHND

Using Menu Variables

Q2 uses the INPUT function to prompt for the values of the program
variables a, b, and c. Q3 uses a variable menu to prompt for these values.
The corresponding program lines are highlighted in the following anno-
tated listing.

* The quadratic equation ax? + bx + ¢ = 0 can be divided by a (since a cannot equal 0)

yielding x2 + bx 4 € _ 0. Tnis equation can be factored as (x - R,)(x - R,) where
a

R, and R, are the roots of the equation. By definition of the factoring process,
C C

(Rl)(RZ) = z‘ Thercfore,R2 = za——R—l—)-

2: Enhancing HP-41 Programs 71

To key in Q3: Create variables a, b, ¢, R1, and R2 before program
entry.

Program:

T
S
S
S

F
o

0
3
O

o
=
I

= n
o

o
0

0
0
=

s
b

0
w

M
l

o
=

b
b
k
b
b

e
k

e
k

T
N

B
W
0

)

oo

0
0

[
w
0

P

72

£ 143-Byte Pram

LEL @&

"Zero Input Inuwa"

F'lid.%Press R-S"

F" to continue. "

FROMFPT

» LEL "nRa2
r.‘l".IHF‘: n 3 1]

F‘ l."IHF: " t| "

MYAR "
CPXRES
SF 21

2 YARMENU "G3"
} STOP

RCL "a"

H=@7
GTO 6@
RCL “c"
W=@7
LTO a8

RCL "b"
+./=

EMTER

W2
4

RCLx "g"

FECL= "ot

SRET

FECL "b"

SIGH

Comments:

Lines 06 —-13: Declare menu variables
a, b, and c, set the program to calcu-
late complex numbers, set flag 21, and
display the variable menu.

2: Enhancing HP-41 Programs

o
0
0
l

2
N
0
3

|

F I::L_:_ "n-n

e STO "E1IM

a7 MIEM “"RE1"

=22 RCL "M

32 ROL+ "a"
48 RECL+ "RE1"

41 =TO "R2"

42 YIEW "R2"

4=z GTO "=t

44 EHD

Assigning a Program to the CUSTOM Menu

When you created the global label Q3 in program line 06, that label was
automatically placed in the HP-42S program catalog. You can now exe-
cute Q3 by pressing

XEQ Lz

(requiring a minimum of two keystrokes, depending on where label
@2 1sin the program catalog).

Alternately, you can assign Q3 to the CUSTOM menu by pressing

M(ASSIGN] FGHM RE

then selecting the desired row of the menu and pressing the desired menu
key in that row. The program now can be executed directly from the
CUSTOM menu with one keystroke.

2: Enhancing HP-41 Programs 73

Example: Executing an Enhanced HP-41 Program from the
CUSTOM Menu.

Part 1. Execute Q3 from the CUSTOM menu to find the roots of the

equation

x2+46x +1=0(a =1,b =6,c =1)

Assign Q3 to the CUSTOM menu using the keystroke sequence just
described. If you wantto print the results, execute PRON.Start the pro-
gram from the CUSTOM menu.

(B[PRINT] (A]“an) %: 0.0000
BCUSTOM) &g3 TIN..

Enter the values for a, b, and c. Then calculate R1. (If you are printing the
results, you won’t see this display.)

IRI— 5.8284
6|B|€||1|

e
r_T

_'I
I

E
_
n
c
)
_
;

R1 is calculated and displayed. Now check R2.
 2 R2=-8.1716
TCEODN.

Return to the start of the program for new data.

x: -8.1716
a&¢1]

 5

74 2: Enhancing HP-41 Programs

Part 2. Find the complex roots of the equation

2x2+x +3=0(a =2,b =1,c =3)

Set the angular mode to Rectangular. Enter the values for a, b, and c.
Then calculate R1. (If you are printing the results, you won’t see this

display.)

B(MODES] RECT E =-0.2500 -i1.1990
Y (oeT¢l1[

1.B
3g
[R/S)

R1 is calculated and displayed. Now check R2.

R/S R2=-0.25808 il1.1990
&|&|¢|11|

Exit from Q3.

[EXIT] v: -8.2508 -11.1998
x: -0.2508 i1.19906

A Short Quadratic Program. In conclusion, here is an 11-line, 26-
byte quadratic equation solver.

i = x
]

e
AI

T
i

o
t

T
i
o
v

[a
cx

]
o
D

0
0
g
T

L
N
e
O
O

—

k
e

P
t

+ 26-Bute Pram

LEL "@SHORT"

X

ENTER

EMTER

L HtE
RCL- ST T
SORT
sTO+ ST 2

EHD

L

2: Enhancing HP-41 Programs 75

To use QSHORT:

1. Set the calculator to Rectangular mode and to Complex Results
mode.

2. Key in the value £ then press [ENTER].
a

3. Key in the value b .
a

4. Press QEHO.

76 2: Enhancing HP-41 Programs

The Solver

The material in this chapter builds on concepts introduced to you in
chapter 12 of your owner’s manual.

The following topics are covered:

m Basic use ofthe Solver.

m Providing initial guesses for the Solver.

m Emulating the Solver.

m Using the Solver in programs.

m More on how the Solver works.

Basic Use of the Solver

The general procedure for executing the Solveris:

1. Create a program that:

a. Uses MVARto define the variable(s) in the equation.

b. Expresses the equation such thatits right side equals 0. (Note
that each variable in the equation must be recalled to the X-
register.)

2. Apply the Solver to the program:

a. Press M(SOLVER],

b. Select the program by pressing the corresponding menu key.

c. Enter the value for each known variable by keying in the
value, then pressing the corresponding menu key.

d. Optional: Supply one or two guesses for the unknown variable
by keying in the guess(es), then pressing the corresponding
menu key.

3: The Solver 77

e. Find the value of the unknown variable by pressing the
corresponding menu key.

Example: Basic Use of the Solver. The equation ofstate for an
ideal gasis

PV =nRT

where:

P is the pressure of the gas (in atmospheres).
V is the volume of the gas (in liters).
n is the weight of the gas (in moles).
R is the universal gas constant (0.082057 liter-atmosphere/Kelvin-mole).
T is the temperature of the gas (in Kelvins).

Part 1. Create a program for the Solver that declares the variables and
expresses the equation.

First, set the right side of the equation equalto 0.

PV -nRT =0

Now write the program.

Program: Comments:

BE C 42-Bute Pram

@1 LEL "GAS"

gz MVAR "PM Lines 02-05: Declare the variables.
E1 :E: I-,'I I'."HF: 11 |..II 1

B3 MVARE "n

B3 MVAR T

A& RCL "R Lines 06— 12: Express the equation
BY RCLx= "y such thatits right side equals 0.
B2 RECL "m

B3 RCLx "T"

18 8,832a857v
11 =

12 -

1= EHD

78 3: The Solver

Part 2. Use the Solverto find the solution to the following problem.

Calculate the pressure exerted by .305 mole of oxygen in .950 liter at
150 °C (423 K), assuming ideal gas behavior.

Select the Solver application.

B(SOLVER] Select Solve Program
TNIIDD

Select the program you just created.

GRS x: B.8800
pvN7|

Enter the values for the variables you know.

T=423. 08080
ITTI

Solve for the pressure.

s P=11.1438
IITO

Part 3. Given the same volume and weight of oxygen, whatis the tem-
perature of the gas at a pressure of 15 atmospheres?

Since the values of the volume and weight are unchanged, you need only
enter the value of the pressure.

15F P=15.08600
PvNT[|

Now solve for the temperature.

T T=569.3763
pvN71|

Exit from the Solver application.

EXIT] [EXIT v: 969.3763
x: 969.3763

3: The Solver 79

Providing Initial Guesses for the Solver

For certain functions, it helps to provide one or two initial guesses for the
unknown variable. This can speed up the calculation, direct the Solver to a
realistic solution, and find more than one solution,if appropriate.

Directing the Solver to a Realistic Solution

Often, the Solver equation that describes a system may have solution(s)
that are mathematically valid but that do not have physical significance.
In these cases, it may be necessary to direct the Solver to the realistic
solution by providing appropriateinitial guesses.

Example: Directing the Solver to a Realistic Solution. The
volume of the frustum ofa right circular cone is found by

V= %wh(a"’ +ab +b?)

where:

V is the volume ofthe frustum.
h is the height of the frustum.
a is the radius at the top of the frustum.
b is the radius at the base ofthe frustum.

80 3: The Solver

Part 1. Write a Solver program that declares the variables and expresses
the equation such thatits right side equals 0.

g8 { 45-Byte Pram *

#1 LEBL "COHE"

MYAR "y
MYAR "h"
MYAR "3
MYAR “b"=

2
3
S

N
f
W
M

= T RCL "a"

By wt2

B2 LASTX

@9 RCLx "b"

18 +

11 RCL "b"

12 K2

12 +

14 RCLx "h"

153 PI

e x

17 3
18 +

19 RCL- "W\"

28 EHWD

For the purposes ofthis example, assume that you have already created
variable @ and used it in a previous program. Assume that the value
—3.7765 is currently stored in a (Go ahead now and store that value in a
by pressing 3.7765)

3: The Solver 81

Part 2. For a frustum of volume V' = 119.381 meters®, heighth = 6
meters, and radius b at the base of the cone = 3 meters, use the Solver to

find radius a .

Select the Solver application and then program CONE.

B(SOLVER) (COHE: X: =3. (69
vHAE||

Enter the values for the known variables.

119.381
6

b=3. 086808
vHsB||

Solve for a.

.{:Ii':f.;:..:M a=-5.8000

TTIN.

The Solver uses the current value ofvariable @ (—3.7765) as an initial
guess and finds the solution @ = -5 meters. The answer is mathematically
valid. However, a negative radius clearly has no physicalsignificance. Try
guesses of 0 and 5.

a=2. 800
¢HaB||

The value 2.0000 meters for radius a is mathematically valid and has phy-
sical significance.

Exit from the Solver.

EXIT) [EXIT

: 2.00800
: 2. 0800X

=
<

82 3: The Solver

Finding More Than One Solution

The equation of motion for an object experiencing constant acceleration
due to gravity 1s

Y =Yotvol + %gtz

where:

y is the total displacement.
Yo 1s the initial position.
Vv, 1s the initial velocity.
g is the acceleration due to gravity (- 9.8 meters/second?).
t is the time.

In your owner’s manualin section "More Solver Examples" in chapter 12,
you solved several problems in which an object was dropped from an ini-
tial position; v, was equal to 0 and the direction of the object’s motion was
down at all times. The object attained a given displacement y at only one
time t. However, an object thrown upwards attains a given displacement y
at two different times—once on the way up, and again on the way down.

3: The Solver 83

To find both times¢, and ¢,, you must execute the Solver twice, and at
least once provide the Solver with an initial guess to directit to the second
solution.

Example: Using the Solver to Find Two Real Solutions. A boy
throws a ball with an initial vertical velocity v, = 15 meters/second, from
an initial height y, = 2 meters. Use the Solver to find the two times¢, and
t> when the ball has a height y = 5 meters.

Part 1. Create a Solver program that declares the variables and expresses
the equation such that its right side equals 0.

B3 { S3-Bute From 3
@1 LEL "MOTION"

B2 MYAR "y
A3 MYAR "y@"
B4 MYAR "u@"
85 MYARA "t

BE RCL "g@"
a7 RCL "w@"
B2 RCLx "t
@3 RCL "t"
18 K2
11 -9.8
12 x
13 2
14 +
15 +
e +

17 RCL- "y

12 EMD

84 3: The Solver

Part 2. Execute the Solver to find the first time ¢, . Since you know that
this time is close to 0 seconds, provide initial guesses of 0 and 1.

Select the Solver application and then program MOTION.

B(SOLVER] MOTIO

Enter the values for the known variables.

vB=15. 0000
ITTAI

Solve for time ¢; using initial guesses of 0 and 1.

t=0.2151
[yTwe[ww|1T[1

The Solver finds the value of t; = 0.2151 seconds. Now find the second
time ¢, by providing two initial guesses that you can expect to bound the
second solution. Guesses of 1 and 20 seem reasonable. (You need not
enter values for the other variables since they have not changed.)

t=2.8461
vvowov1|

The Solver finds the value of ¢, = 2.8461 seconds.

Exit from the Solver.

EXIT) [EXIT

3: The Solver 85

Emulating the Solver in a Program

For certain types of functions, the Solver algorithm cannot find solutions.
For example, the Solver cannot solve for complex numbers. However, for
such functions, you can write a program that finds explicit solutions and
acts like the Solver during program execution.

First, consider the following simple circuit.

M
=)

Ohm’s law defines the relationship between the voltage potential E, resis-
tance R, and current / for this circuit as

m lll
ll-

i-

E =1IR

Since there are no complex termsin this equation, the Solver can be used
to find the value of any variable in the equation.

86 3: The Solver

Example: Using the Solver for a Simple Resistive Circuit. For
a simple resistive circuit, use the Solver to find the resistance R when the
voltage E = 10 V, and the current = 5 A.

First, create a Solver program that declares the variables and expresses
the Ohm’s law equation such thatits right side equals 0.

aa £ 29-Bute Pram X

81 LEL "CIRCUIT"

A2 MVYAR "E

#2 MVYAR "I

34 MVYAR “R"

a5 RCL "I

He RCLx "R

a7 RCL- "E"

82 EHD

Select the Solver application and then program CIRCUIT.

B(SOLVER] CIRCU %: 8. 0000

Enter the known values for E and 7, then solve for R.

R=2.00080
ITAD

Exit from the Solver application.

([EXIT] (EXIT] Y: 2.0000
x: 2.00008

3: The Solver 87

Now consider the following circuit.

R

W

T~ €

Application of Ohm’s law to this circuit results in the following expression.

E=1Z

where:

E is the circuit voltage.
I is the circuit current.
Z is the circuit impedance.

The impedance Z is the complex number (in rectangular form)

]
where:

R is the circuit resistance.
w is the circuit frequency (in radians/second).
C is the circuit capacitance.

Because the voltage, current, and impedance are complex numbers, you
cannot use the Solver to find their values. However, the HP-42S can per-
form arithmetic operations on complex numbers. (Refer to chapter 6 in
your owner’s manual for a discussion of complex-number arithmetic.) The
following program, EIZ, solves explicitly (algebraically) for the complex
numbers E, I, and Z, and uses a variable menu to simulate the external

appearance of the Solver. (Refer to the section "Using a Variable Menu"
in chapter 9 of your owner’s manual for a discussion of variable menus.)

88 3: The Solver

Here is an annotated listing of the program.

Program:

A - o
’ L 9e-Bute Pram

LEL "EIZ"= P
t

15
0 r,‘l.l.IHE: n E£ "

MYAR "<
MYAR "Z&"
VARMEMU "EIZ"o N

o
f
e

0
0
0

= T- FOLAR

CPHEES

CLA
STOF

ALEHG

n=at

z GTO "EIZ"=
T

M
o
=
0

0
3

=
)

12 ASTO ST =

14 HER IHD ST =

15 STO IHD ST Y%

16 YIEW IHMHD ST %

17 GTO "EIZ"

12 LBL "E&L"

1% RCL "I&"

o8 RCL= "ZaM

21 ETH

22 LBL "I&M

22 RCL “"EZM

24 RCL+ "Z4"

25 RTH

Comments:

Lines 02-05: Declare variables E, I,
and Z and build the variable menu.

Lines 06 —12: Setthe calculator to
Polar mode and to calculate complex
results. Suspend program execution
for data entry. If a variable to solve for
has not been specified, return to the
start of the program.

Lines 13- 17: Recall the current Alpha
string to the X-register and execute
the corresponding subroutine. (The
current Alpha string is the name of
the variable for which no value is sup-
plied.) Store the calculated result from
the subroutine in the Y-register and
view the result. Then return to the
start of the program.

Subroutine EX, lines 18 —21: Calcu-

late EX. in terms of/X and RAX..

Subroutine 1.4, lines 22-25: Calcu-

late /X interms ofEX and ZX..

3: The Solver 89

26 LBL "Z2&" Subroutine ZX, lines 26 —-29: Calcu-

27 RCL "E& late ZX interms of EX. and IX..

28 RCL+ "I4"
29 ETH

28 EHD

(Line 06 sets the calculator to Polar mode. Multimeterstypically display
complex voltage, current, and impedance values in polar form, that is, as a
magnitude and phase angle.)

Example: Calculating Complex Values In an RC Circuit. A
10-volt power supply at phase angle 0° drives an RC circuit at a frequency
of 40 radians per second. A current of .37 A at phase angle 68° is meas-
ured. Whatis the resistance of the circuit? What is the capacitance of the
circuit?

Begin program EIZ.

sE1Z

Enter the known value for the voltage.

10 [ENTER] 0 B(COMPLEX

Enter the known value for the current.

.37 [ENTER] 68 M[COMPLEX

Solve for the impedance.

90 3: The Solver

x: 8.080008
E&1424|2|

E<=10.08000 <0.0000
INY.

1£=0.37880 £68.0000
[E& |142 ||||

Z24=27.0278 £-68.0000
[E<L |1 [2]|||

The impedance ofthe circuit (in polar form) is 27 Q at phase angle —68°.
Convert the impedance to rectangular form to find the circuit resistance
and capacitance. (Remember,R is the real term and C is one factor in the
imaginary term ofthe rectangular form of the impedance Z.)

[MODES] :RECT x: 10, 1245 -129.0590
% Immm———l

The circuit resistance is 10 €. Now calculate the capacitance.

X: 8.0010

40 [xJ

BMOPFCN] 1/
E<

1

1aLeal11

The circuit capacitance is .001 F.

If, at the original input voltage, the impedance is now varied and measures
20 2 at phase angle —45°, whatis the current?

Return to polar mode. Then enter the new value for the impedance and
solve for the current.

B(MODES] FOLAR 1<=0.5000 £45.0000
20 45 Im——-l

BM(COMPLEX]
ol

The current is 0.5 A at phase angle 45°.

Exit from EIZ.

EXIT v: "IL"
x: 8.5008 <£45.0000

3: The Solver 91

Using the Solver in Programs

Using the Solver and Explicit Solutions in a
Program

The Solver uses an iterative method to find solutions for the variables in
an equation. You rmust use an iterative method to find the solution for a
variable that cannot be isolated (cannot be expressed uniquely in terms of
the other variables in the equation). However,in cases where the
unknown variable can be isolated by algebraic manipulation, an explicit
solution for that variable is always faster than an iterative solution using
the Solver.

Some functions may contain a variable whose value must be found itera-
tively, and other variables whose values can be calculated explicitly. In
your owner’s manual, in the section "More Solver Examples” in chapter
12, you worked an example in which the Solver was used to find the solu-
tions to time-value-of-money (TVM) problems. The TVM equation is

. 1'!1+i!—N -\ -N
= -PV + (1 +ip) PMT - +FV (1 +1i)

i

where:

N is the number of compounding periods or payments.
i is the decimal form of the periodic interestrate.

PV is the present value. (This can also be an initial cash flow or the
discounted value of a series of future cash flows.) PV always
occurs at the beginning ofthe first period.

PMT is the periodic payment.
FV is the future value. (This can also be a final cash flow or the

compounded value of a series of cash flows.) It always occurs at
the end N* period.

p is the payment timing. Ifp = 1, payments occur at the beginning
of the period. Ifp = 0, payments occur at the end of the period.

92 3: The Solver

In the example in your owner’s manual, you wrote a program TVM that
declares each of the TVM variables and expresses the TVM equation.
The Solveris used to find the solution for each of the function variables.
Notice, though, that the variables PV, N, FV, and PMT can each be iso-
lated. For example, PV can be expressed as

- -\ -N

PV = -1 +ip)pmr |1 H!
l

] -Fv(a+i)™¥

Only the variable i cannot be isolated; you need to use the Solver only
when you wantto find the value of i.

The following program, TVM2, calculates the solutions to PV, N, FV, and
PMTexplicitly, and calls the Solver to find the solution for i. The pro-
gram uses a programmable menu and flag 22, the Numeric Data Input
flag, to simulate the external appearance of the Solver application.

To key in TVM2: Create variables P/YR, p, CNTRL, N, FV, MODE,
PMT,i, I%YR, and PV.

Here is an annotated listing.

Program: Comments:

aa L 53zZ-Bute FPram >
@1 LEL "TWM2"

@2 FREALRES Lines 02— 15: Ensure results are real

az CF 21 numbers. Display AVIEW messages
a4 12 and continue program execution. Call
a5 SF 25 subroutine 21 to set the default pay-
& RCL "PoYR" ments per year to 12. Set the default
a7 HER 21 payment mode to End mode. Call sub-
B2 SF 25 routine 20 to display the payments per
@3 RCL "p" year and the payment mode.

18 CF 25

11 1

12 H=y'?

= 0

14 STO "p*

15 HER 20

3: The Solver 93

16 LBL 29 Lines 16 —35: Build the main menu,

17 CLMEHU display it, and wait for data input
13 "H" (lines 17-31). Display the value of the
19 KEY 1 XKER® a1 entered or calculated variable (lines
z2a "IXYR" 32-34).

21 KEY 2 HKERQ B2

zz "Ry
22 EEY 2 HEQ @3

24 "PMT"

23 KEY 4 RER 84

26 FY
27 EEY S HKER @5

"MODES"

KEY & GTO 88

MEHLI
STOF

H=TO "CHTREL"

22 STO IMD "CHTEL"

=4 VIEM IMD "CHTEL"

GTO 29

0
0

0
3

0
3
M
o
o

M
g

o
=
0

w
0

0
0

0
3
0

n
o
f

i 2LEL 26 Subroutine 20, lines 36— 48: Build and

CLA display the payments-per-year and
RCL "FoYE" payment-mode message.
HIF

Ft PR
RCL “p"
n=aT

1= " EHD MODE"

44 ==a7

453 K" EBEGIH MODE"

4 AVIEW

47 CLMEHL

42 ETH

Fo
oo
o

F
a

0
0

0
3

Q
0
0

o
o
=
T

o
0

0
0

=
)

94 3: The Solver

w
0

k
e

l'
:I

l.
l'

.'
..

n
N
o
o
n

o
n

i
O
u
N

I
I

o
n

T
C
n
C
n
o
C
n

C
n
o

fo
d
=
0

o
0

0
0

=
]
M

T
T
T

|_
'_

|"
.

T
B
0

I
y

T
IJ
'l

o
0

0
0
)

=
]

=
]

=
]

=
]

0
3
o
o

J
a

n
I_
T'
l

=4
=
=

-
w
0

0
0

o
0

=
]

=
)

—

LEL @&
HER 28
n F."’,l.l"F-: "

KEY 1 HER 21
"BEG"
KEY 2 HER 22
"EMD"
KEY 2 HER 23
TN
KEY 4 GTO "TwmMz"
MEMU
RCL "PrYR"
STOF

GTO &6

STO "FoYR"

Lines 49 -62: Build and display the
payments-per-year and payment-mode
menu.

Subroutine 21, lines 63— 73: Check if

the specified number of payments per
year is valid. If not, substitute 12 pay-
ments per year.

Subroutine 22, lines 74-77: Set pay-
ment mode to Begin by supplying 1 for
P-

Subroutine 23, lines 78 -81: Set pay-
ment mode to End by supplying 0 for
P

3: The Solver 95

LEL &1 Subroutine 01, lines 82-107: If

"M numeric input is made for N,return to
FS?C 22 the main menu and display the value
RETH of N. If not, calculate N in terms of
1 the other variables. If i = 0, go to label
STO "H" 00 to calculate N (lines 93-95).
“EQ 18

RCL "FW"

RCL+ "MODE"
+/=

RCL "PMT"

RCL "i1"

=87

GTO aa

WO
00

00
00

QO
00

0D
00

0O
J
y
i
o
o
o

W
0

.fl

+

LASTY
RCL "PY"
RCL+ "MODE"
+

w
0
0
W
0
0

:
2
R

2
D
0
N
R

W
M
o

3
0
0
0
I
R
Y

-
s
s

L
)

LH
RCL " 1 "

185 LH1+x

s
3

PO
I

P
t
e

=
=

S
i

—
n

o
t
T

RTHe [x
n]

=
J

% e
’ LEL @@ Lines 108 - 113: Calculate N if i is 0.

RCL "PY"
RCL+ "FY"
RCL+ "FMT"
+/-

ETH

= ho
n

b
e
k

e
k
b
s

—
.
e

0
3
o
=

I
3

W
0

0
0

96 3: The Solver

114

115

11e

117

112

119
128

— I e
0
3

—
-

M
M

T
N
b

-
]

o
o

™ (
]

P
t
b

e
k

e
k

e
k

e
k
b

e
k

G
o

P
O
D
D

P
O
T

i
[
—
y

N
o
F
o

T
0
0
D

o
0
O

0
0

0
0
)

=
]

b
e
k
b

e
k

e
k

e
k

e
k

e
k

e
k

W
0

—
-

£
o
0

[
=

143
144
145
145
147
148

LEL &2
"IEYR"
FS7C 22
RTH
PGMSLY "i"
%)

STO " I%YR"
26
SOLVE "I%YR"
RTH

LEL "i"
KEG 16
RCLx "PHT"
KO
RCL:x "Fy™
+

RCL+ "FY"
FETH

LEL 82
n Fll'l" 1

FS?C 22

RTH

#ER 18

RCLx "PMT"
nory

RCL= “Fy"
+

+=

z RTH

LEL B4
"PMT
FS?C 22
RTH
HEQ 1@
LYVS
S

Subroutine 02, lines 114-123: Use the

Solver to calculate I1%YR. Specify the
Solver subroutine "i". Supply initial
guesses of 0 and 20 for I%YR.

Subroutine "i", lines 124-131: Express
the TVM cquation for the Solver.

Subroutine 03, lines 132-142: If
numeric input is made for PV return
to the main menu and display the
value ofPVIf not, calculate PV in

terms of the other variables.

Subroutine 04, lines 143 -154: If

numeric input is made for PMT,
return to the main menu and display
the value ofPMT. If not, calculate

PMT in terms of the other variables.

3: The Solver 97

o
n
o
C
n
b

w
0

o
o

P
k

e
k

e
k

e
k

e
k

e
k

o
n
o
o
a
n

n
S

on
o
n
o
o
n

T
N

T
T
T
T

P
k

e
k
b
b

e
k

e
k

e
k

e
k

o
k

e
k

e
k

T
]

=
]

b
b

e
k

e
k

e
k

e
k

e
k

e
k
e

o
s 00

M
g
e

P
k
e

o
0
0
0

=
)

=
)

=)
i

—

P
k
e

e
k

e
k

e
k

98

T
T

0]
o
u
n

0
O

=
)

0
0
T
e

T
o
n

O
0
0
o
=

0
o
o
0

0
0

-
]

T
£

n
T

o
D

=
)

-
~

k
e

o
L

e
O

RCLx "FW"

F‘EL+
n F'I'.'l n

RO

+ .-"- -

ETH

LEL &5
" F"." n

FS?C 22
RTH
HER 18
RCL "PHT"
ROL+ "Fy
<>y

+.=

FTH

LEL 1@
RCL "IxvR"
FCL+ "P-YRE"

136

STO Uit
RECL= “"p"

1
+
STO "MODE"
1
EMTER
RCL+ "i®
RCL "M
+.=

LR
STo =T 2

FCL= "MODE"

SF 25
RCL+ "iv

3: The Solver

Subroutine 05, lines 155-165: If
numeric input is made for FV, return
to the main menu and display the
value of FV. If not, calculate FV in

terms of the other variables.

Subroutine 10, lines 166 —188: Calcu-

late terms of the TVM equation based
on the value of 1%YR. Calculate i; the

decimal form of the periodic interest
rate (lines 167-171). Calculate
MODE (1 + ip) (lines 172-175). Cal-
culate the FV coefficient (1 + i)™V
(lines 176 - 182). Calculate the PMT
cocfficient. If i = 0, go to line 189
(lines 183 -188).

— D
o

w
n

]
o
o

=
)

e
L

o
o
o

L
o
D

1
FS?C 25

FETH

1 Lines 189-191: If i = 0, then the FV

RCL "H" coefficient is 1 and the PMT

EHD coefficient is N.

To use TVM2:

Press TWHME .

Supply values for the known variables. For example, press 60
. H.

Solve for the unknown variable by pressing the corresponding menu
key.

TVM2 uses the variable /%YR to prompt for and display the
interest rate. /%YR is the percent form of the annualized interest
rate.

The default payment period is one month (12 payments per year).
The default payment timing is the end of each period. To specify a
different payment period or payment timing, first select the MODE
menu. Then, for example, to specify six payments per year, press 6
AR

To specify payment timing at the beginning of each period, press
BEG .

To return to the main menu, press T4HM.

Example: Executing Algebraic Solutions for TVM Problems.
In the section "More Solver Examples" in chapter 12 of your owner’s
manual, Penny of Penny’s Accounting wants to calculate the monthly pay-
ment PMT for a 3-year loan financed at a 10.5% annualinterest rate,
compounded monthly. The loan amountis $5,750.

In that example, you executed the program TVM to calculate the value
PMT = -186.89. TVM uses the Solver to calculate PMT. The calculation
takes about three seconds with initial guesses of 0 and —500.

Part 1. Use TVM2 to calculate the value of PMT explicitly.

3: The Solver 99

Set the display format to FIX 2. Then execute TVM2.

FlIx®2 12 P/YR END MODE
i N_Ji=vRPVPMT]FY[MOCE]

Enter the known values.

5750 F Fv=0.80
NJi=vRPYPHTFY[HODE]10.5

spyre PHT=- 186,69
[N[=R]PY |PMT |FY|MODE]

The explicitly calculated value is —186.89 (the same as when you used
TVM) and the calculation takes less than one second. Also note that the
calculation time is independent of the previously calculated value PMT.
(The Solver interprets the previously calculated value as a guess if two
guesses are not supplied. The explicit solution does not use guesses.)

Part 2. Another bank has offered to loan Penny’s customer $5,750, to be

paid in monthly installments of $200. Whatinterest rate is this bank
charging?

1%YR=15.24
TNTTNTS

200

TVM uses the Solver to calculate the new interest rate. The Solver uses

the guesses 0 and 20 (supplied by the program)to startits iterative search.
The calculation takes about 11 seconds.

Exit from TVM2 and return the display format to FIX 4.

EXIT v 15.2393
BDisP) 4 x: 15,2393

100 3: The Solver

Using the SOLVE and PGMSLYV Functions with
Indirect Addresses

In the previous section, you used the SOLVE function in TVM2 to find
the value of the interest rate i in the TVM equation:

122 SOLVE "IXYR"

You used the PGMSLYVfunction to specify the routine that expresses the
TVM equation:

112 PGMsLY "1

In TVM2, the SOLVE and PRGSLYVinstructions directly address the vari-
able and the subroutine. Such use of direct addressing enables you to
specify only one Solver routine and, within that routine, only one variable.
However, the use of indirect addressing expands the utility of the Solver by
enabling you to specify any of multiple routines, and any of multiple vari-
ables.

Example: Using SOLVE with an Indirect Address. Restating the
ideal gas equation ofstate:

PV - nRT =0

The "van der Waals" equation ofstate refines the ideal gas equation to

 [P+ ";;’](V—nb) -nRT =0

where a and b are constants characteristic of the gas in question.

Part 1. Write a program that enables you to solve for the value of any of
the variables using either the ideal gas or van der Waals equation ofstate.

3: The Solver 101

Here is a flowchart for the program, named GAS2.

GAS2

4 Y
DECLARE MENU
VARIABLES

v
DISPLAY VARIABLE MENU

FOR DATA INPUT

KEY 1 iKEYZ ¢KEY3 ¢KEY4 iKEYS KEY 6
v IlPIl IIVII Hnll 'ITII “all V llbll

STORE NAME OF
UNKNOWN VARIABLE
FROM ALPHA REGISTER
TO VARIABLE CONTROL

SPECIFY SOLVER
PROGRAM WAALS

SOLVE FOR
UNKNOWN VARIABLE

i WAALS

VIEW SOLUTION
, EXPRESS THE

VAN DER WAALS
EQUATION

RTN

102 3: The Solver

Here is an annotated listing of the program.

Program:

E”’:“ N 15_";‘—E:I=|fe F' =g ::

o1 LEL "GASz"
BZ MYAR P
B2 MVYAR "y

B4 MYAR “n
B3 MVAE "T™

A& MYAR “a"
a7 MYAR b
B2 YARMEMU "GASZ"

a2 CF 21

18 EEALEES

11 STOP

12 ASTO "COMTROL"
S PGMSLY "WAALS"

14 SOLYE IMD “"COMTROL®
15 VIEW IHD "COMTROL"
16 GTO "GARS2"

17 LEL "MHAALS"
12 RCL P
19 RCL "n"
26 K2
21 RCLx "a"
22 ROL "4
23 M2

25 +
FCL "y

FCL "B

FECL= "h"

0
3
O
o
o
o

o
0

0
=
)

|

Comments:

Lines 02 - 08: Build the variable menu.

Lines 09-16: Clear flag 21 to continue
program execution after a VIEW
instruction. Set to calculate real results
only. Display the menu. Store the
name of the unknown variable in
CONTROL (line 12). Specify Solver
routine WAALS (line 13). Indirectly
specify the variable to be solved (line
14). View the solution and return to
label GAS2 (lines 15-16).

Lines 17-34, the Solver routine

WAALS: Express the van der Waals
equation such that its right side equals
0.

3: The Solver 103

1 B.82z2857
=2 RCLx "m"

22 RCLx "T"

24 -

35 EHD

Part 2. Use the van der Waals equation of state to calculate the pressure
exerted by 0.250 mole of carbon dioxide in 0.275 liter at 373 K, and com-
pare this value with the value expected for an ideal gas. For CO,,
a = 3.59 liters? - atmosphere/mole?, and b = 0.0427 liter/mole.

Execute GAS2.

GR=Z x: @. 0000
TT.

Enter the values for the known variables.

b=0.06427¢
IUTOR

0427B

Enter guesses of 10 and 30 for P, and solve for P.

10F P=25.9816
30g Ill]lllflllfifllll]lIlfllll!l

Using the van der Waals equation of state, the predicted pressure is
25.9816 atmospheres.

Now use the ideal gas equation to predict the pressure. Simply supply the
value 0 for @ and b and solve for P. The previously calculated value for P
serves as an initial guess.

0 H P=27.8248

0O B [P]v|N1T|A|E|

104 3: The Solver

The ideal gas equation predicts a pressure of 27.8248 atmospheres. (The
actual observed pressure is 26.1 atmospheres.)

Exit from GAS2.

EXIT v: 2
X: 2

More on How the Solver Works

The Root(s) of a Function

To use the Solver, you have learned that you first create a program that
expresses the equation such thatits right side equals 0 (by subtracting the
terms on the right side from both sides of the equation). If the equation
has more than one variable, you must, after selecting the Solver applica-
tion, supply values for all but the one unknown variable. At this point,
your equation has taken the form f(x) = 0, where x is the unknown vari-
able, and f(x) is a mathematical shorthand for the function that defines x.
Consider the equation

2x2+xy + 10 =3xz + 2z

Setting the equation equal to 0 by subtracting the terms on the right side
from both sides gives

2x%2+xy +10 -3xz -2z =0

To use the Solver, you now write a program that declares the variables x,
¥, and z and expresses the equation. When you sclect the Solver applica-
tion and, for example, supply the value 2 for y, and 3 for z, by substitution
the equation becomes

2x2-7x -2=0

where x is the unknown variable and f(x) = 2x2 - 7x — 2. Each value x
for which f(x) = 01is called a root of the function. The Solver iteratively

3: The Solver 105

seeks a root for f(x) by evaluating the function repeatedly at estimates of
x, and comparing the results to previous estimates. Using a complex algo-
rithm, the Solver intelligently "predicts" a new estimate of where the graph
off(x) might cross the x-axis. Here is a graph of the function
f(x) = 2x2 - Tx - 2. The graph shows two roots. (The example on pages
110-112 calculates these roots.)

f(x)
A

All except one of the functions in the examplesin this section are func-
tions of one variable x only. Remember, though, that the situations
described in the examples apply equally to multivariable functions,since
multivariable functions become single variable functions when,in the
Solver application, you supply values for the known variables.

106 3: The Solver

The Solver’s Ability to Find a Root

For the Solverto find a root, the root has to exist within the range of
numbers of the calculator, and the function must be mathematically
defined where the iterative search occurs. The Solver always finds a root
if one or more of the following conditions is met:

m Two estimates yield f(x) values with opposite signs, and the function’s
graph crosses the x-axis in at least one place between those estimates
(figure 3-1a).

m f(x) always increases or always decreases as x increases (figure 3-1b).

m The graph off(x) is either concave everywhere or convex everywhere
(figure 3-1c).

m Iff(x) has one or more local minima or maxima, each occurs singly
between adjacent roots off(x) (figure 3-1d).

f(x) f(x)

BT

f(x) f(x)

y N/
| Voo

Figure 3-1. Functions for Which a Root Can Be Found

3: The Solver 107

In most situations, the calculated root is an accurate estimate of the

theoretical, infinitely precise root of the function. An ideal solution is one
for whichf(x) exactly equals 0. However, a nonzero value for f(x) is often
also acceptable, because it results from approximating the root with lim-
ited (12-digit) precision.

Interpreting the Results of the Solver

The Solver returns datato the stack registers on completion ofits iterative
search for a root of the specified function, and in four conditions, returns
a message to the display. These messages and data can help you interpret
the results of the search:

m The X-register contains the best guess. This guess may or may not be
a root of the function.

m The Y-register contains the previous guess.

m The Z-register contains the value of the functionf(x) evaluated at the
best guess.

m The T-register contains a code 0-4 that indicates the Solver’s
interpretation ofits search for a root. (This code is displayed in the
current display mode;in FIX 4, code 0 is displayed as @.@33a.).

108 3: The Solver

Code in
T-register

Interpretation

0

1

The Solver has found a root.

The Solver has generated a sign
reversal in f(x) at neighboring
values of x, but f(x) has been
strongly diverging from 0 as x
approaches the two neighbors
from both sides.

The Solver has found an approxi-
mation to a local minimum or
maximum of the numerical abso-
lute value. If the solution is
+9.999999999999 x 10%%, it

corresponds to an asymptotic
extremum.

One or both initial guesseslie out-
side the domain of f(x). Thatis,
f(x) returns an error when
evaluated at the guess points.

f(x) returns the same value at
every point evaluated by the
Solver.

Extremum

Bad Guessi{es)

Constant?

When a Root Is Found. There are two cases in which a root is found:

m In case 1, the calculated root sets f(x) exactly equal to 0 (figure 3-2a).

m In case 2, the calculated root does not set f(x) exactly equal to 0, but is
a 12-digit number adjacent to the place where the function’s graph
crosses the x-axis (figure 3-2b). This occurs when the final two esti-
mates are neighbors (they differ by 1 in the 12th digit) andf(x) is posi-
tive for one estimate and negative for the other. In mostcases, f(x)
will be relatively close to 0.

3: The Solver 109

f(x) f(x)

/ /
o

a b

 > X

Figure 3-2. Case When A Root Is Found

In both cases, the code in the T-register is a 0 and no message is
displayed. You can differentiate between the two cases by:

m Viewing the contents of the Z-register (the value off(x) at the calcu-

lated root). For a case 2 solution, it will be a nonzero number.

m Comparing the best guess (the contents of the X-register) and the
previous guess (the contents of the Y-register). For a case 2 solution,
the guesses differ by 1 in the 12th digit.

m Immediately solving again for the variable. For a case 2 solution, the
Solver will return the message Zian Eewersal on the second
attemptto find the root.

Example: A Case 1 Solution with Two Roots. Find the two roots
of the equation

2x2-7x -2=0

Express the function in program AA.

.
.
_
.
,
_

.
.

=
2

o
o

3 + 25-Bute Fram -

LEL "HA"

FMWHRE "=t

FCL Met- o
l

1
)

o

110 3: The Solver

S
3

o
0

0
0
)

I
O

|
1
- I

— v

|

Set the display format to ALL. Select the Solver application and then pro-
gram AA.

BDIsP]) ALL %: B
B(SOLVER BIN.

AR

Enter guesses of 1 and 5 for x. Solve for x.

10 A& X=3., 76556443708
r IIRIR

Roll the stack contents down to see the previous guess.

X: 3. 76556443708
IIIIS

The estimates are the same in all 11 decimal places. Roll the stack con-
tents down to see the value off(x) at the root.

x: 8
III

f(x) 1s exactly 0. Now enter guesses of —0.1 and -1 for the second root
and solve.

1 - X=-2.65564437075E- 1
oA IlfllllllllllllllllllllllJ

3: The Solver 111

Roll the stack contents down to see the value off(x) at the root. Again,
f(x) is exactly 0.

x: 8
Ce|[1||

Exit from the Solver and return the display format to FIX 4.

v 0.0000
BDisP] : 4 x: 9. 0000

Example: A Case 2 Solution. In the example on pages 101-105 in
this chapter, you found the value of the pressure P in the ideal gas equa-
tion ofstate given values for the other variables V, n, and T.

Using the same values for the variables V, n, and T, solve again for P.

Set the display format to ALL.

Select Solve Program
[TIIII.

Start program GAS2. (Reenter the program if you have cleared it from
the calculator.)

X: @
|fl“l§..§l“|

Enter the values for the known variables and solve for the pressure.

P=27.8247827273
(P|¥|N|7|#|E]

Roll the stack down to see the previous estimate.

X: 27.8247827272
P¢N7T&B

112 3: The Solver

The estimatesdiffer by 1 in the last decimalplace. Roll the stack down to
see the value off(x).

x: 8. 08080080001
PvNTfE

The value off(x) at the rootis a very small nonzero number. The rootis
not an exact root, but it is a very good approximation. Exit from the pro-
gram and return the display format to FIX 4.

EXIT ¥ 0.0000
BDISP] FI# 4 (ENTER x: 1.0000E-11

Problems That Require Special Consideration. Some types of
problems require special consideration. The following function has a
discontinuity that crosses the x-axis.

1T~ >x

The Solver will return an x-value adjacent to the discontinuity. The value
off(x) may be relatively large.

3: The Solver 113

Example: A Discontinuous Function. Find the root of the equation

IP(x) -15=0

Express the function in program BB.

B8 { 12-Byte Pram 2

@1 LEL "EB"

MVAR "R

RCL "X"

IF

1.5

EHD

= N
o

0
0
M

.
I-

T'
I

3

= =
J

Select the Solver, select program BB, provide guesses of 0 and 5, and
solve for x.

B(SOLVER] iEE X=2.0000

The Solver finds a root at x = 2.0000. Now check the value off(x).

%: -8, 5000
TINNN

The value off(x) seems relatively large. This indicates that you should
further evaluate the function. By plotting the function, you find that the
root atx = 2.0000 is in fact a discontinuity, and not a true zero crossing.

Exit from the Solver.

EXIT) [EXIT v 0
X -

Finally, consider the following function. This function has a very steep
slope in the area of the root. Evaluation of the function at either neighbor
may return a very large value even though the function has a true root
between the neighbors.

114 3: The Solver

fx)

 > X

Use care in interpreting the results of the Solver. The Solver is most
effective when used in conjunction with your own analysis of the function
you are evaluating.

A Sign Reversal. The values ofthe following function are approaching
infinity at the location x, where the graph changes sign.

f(x)
A

/

—
_
—
—
—
—
e
e
—

-

The function has a pole at x,. When the Solver evaluates such a function,
it returns the message Sian REewver=zal.

3: The Solver 115

Example: A Pole. Find the root of the equation

_x
(x* - 6)

As x approaches Ve,f(x) becomes a very large positive or negative
number.

Express the function in program CC.

1
= £ 23-Bute Pram

LEL "CC"

MVAR "R

RCL "R"

RCL "=R"

WA

.
I

T
I
I

[
I
u

T
N
e

0
0
O
e

s IJ
'I

—
=
T
T
T

—
W
0

0
0

=
)

—

EHD

Select the Solver and then select program CC.

B(SOLVER]i x: 0. 0000
INIIN

Provide guesses of 2.3 and 2.7, and solve forx.

23¥ %=2.4495

 27 Sign Reversal

 116 3: The Solver

The initial guesses yielded opposite signs for f(x). The interval between
successive estimates was then narrowed until two neighbors were found.
These neighbors made f(x) approach a pole instead of the x-axis. The
function does have roots at —2 and 3, which can be found by entering
better guesses.

Exit from the Solver.

EXIT] [EXIT

An Extremum. When the Solver returns the message E:xtremum, it
has found an approximation to a local minimum or maximum of the
numerical absolute value of the function. If the solution (the value in the
X-register) is +/— 9.99999999999 x 10%%, the Solver has found an asymp-
fotic extremum.

N\
Relative minimum Asymptote

f(x)

A

 » X

Relative maximum

3: The Solver 117

Example: A Relative Minimum. Find the solution of the parabolic
equation

x2-6c+13=0

(It has a minimum atx = 3.)

Express the function in program DD.

+ 23-Bute Pram *

LEL "DD"

MYAR "=

RECL "="

W

.,
.
=

— 1
5

I
B

0
3
[

o
=

T
=
M
T
T
T

o
0

0
0

=
)
s
N

+
A
T

] — -

Select the Solver application and then program DD.

B(SOLVER] | x: B, 0000
[«11111|

Provide guesses of 0 and 10 and solve for x.

X=3.080080
Ex tremum

Exit from the Solver.

[EXIT] [EXIT) v: 3.0000
x: 3.00080

118 3: The Solver

Example: An Asymptote. Find the solutions for the equation

110 - ==0
X

Express the function in program EE.

88 { 17-Bute Pram 2

@1 LBL "EE"

82 MVYAR "R"

a3 18

84 RCL "X"

83 1-¥

86 -

a7y EHND

Select the Solver application and then program EE.

&

x: 0.0000
(+1111[

Enter guesses of 0.005 and 5, and solve for x.

x=0.1000
IETIIRB.

The Solver finds a root at x = 0.1000. Now enter guesses that have nega-
tive values.

%=-1.000ODESOD
Extremum

The Solver finds an asymptotic extremum. (Press Jj[SHOW] to verify that
the solution is actually —9.99999999999 x 10%%°) It’s apparent from
inspecting the equation that ifx is a negative number, the smallest that
f(x) can be is 10; f(x) approaches 10 as x becomes a large negative number.

Exit from the Solver.

EXIT) [EXIT] v: -5.9246E498
x: -1.0000E500

3: The Solver 119

Bad Guess(es). The Solver returns the message Ead Guess(es)
when one or both initial guesseslie outside the domain of the function. (If
a guesslies outside the domain of the function, the function returns a
math error when evaluated at that guess point.)

Example: A Math Error. Find the root of the equation

X

\/(x vo03) =0

Express the function in program FF.

.,
_

1
5
!

1 ! £ 2e-Bute Pram o

LEL "FF"

MYAR "R

[

i3

ROL+ "x"

SEHET

B.5

T
T
N
e

O
3
o
l

™
T

T
o
o

o o
0

1
)

o
o

-

EHL— K
N]
e
l

Select the Solver application and then program FF.

B(SOLVER] FF x: 0. DPPD
TAIN

First attemptto find a positive root, using guesses 0 and 10.

0 = x=0.1860
100 = [#|1111|

120 3: The Solver

The Solver finds a root at x = 0.1. Now attemptto find a negative root
using guesses of —0.1 and —0.2. Note that the function is undefined for
values ofx between 0 and —0.3, since those values produce a positive
denominator but a negative numerator, causing a negative square root.
Although the HP-42S can execute arithmetic operations with complex
numbers, the Solver cannot find a complex number solution. If evaluation
off(x) returns a complex number, the Solver considers the function
undefined at that x-value.

A X=-0, 2000
7] Bad Guess(es)
 2 [*[]

Exit from the Solver.

EXITJ [EXIT

v: -@. 1080
x: -0.20080

A Constant. The Solver returns the message Constant? when it
finds that f(x) returns the same value at every sample point x. Such a
situation can occur if guesses are confined to a local "flat" region of a
function.

Example: A Local Flat Region. Find the root of the equation

1 _10-=0
X

Express the function in program GG.

,.
_
i ™) 17-Bute Fram

LEL "G

MWAR "=

RCL "=

18

" EMD

e
- 1
0

1
5
l

o
1;

_1
3
[

T
[e
N

.,
_
e T

[A =
]

3: The Solver 121

Select the Solver and then program GG.

[SOLVER]: GG x: 8. 00008
E BDID

Supply guesses of 10% and 10% .

(E] 20

X=1.0000ES08
Constant?

In this region of the function, the value off(x) is, within the 12-digit preci-
sion of the calculator, the same at every sample point. Here is a graph of
the function.

f(x)

—
Try guesses of 0 and 10.

 0 X=0.1000
_ [&11111|

The Solver finds the root atx = 0.1. Exit from the Solver.

EXIT] ([EXIT v: B. 18008
x: 8. 10008

122 3: The Solver

Round-Off Error and Underflow

Round-Off Error. The 12-digit precision ofthe calculator is adequate
for almost all cases. However, round-off errors can sometimes affect

Solver results. For example,

[(]x] +1)+10®°P -10¥=0

has no roots becausef(x) is always positive. However, given initial guesses
of 1 and 2, the Solver returns the answer 1.0000 because of round-off

error.

Round-off error can also cause the Solverto fail to find a root. The equa-
tion

|x2-7] =0

has a root at V7 . However, no 12-digit numberexactly equals V7, s0 the
calculator can never make the function equal to 0. Furthermore, the func-
tion never changes sign. The Solver returns the message E:xtremum.
However, the final estimate ofx is the best possible 12-digit approxima-
tion of the root when the routine ends.

Underflow. Underflow can occur when the magnitude of a numberis
smaller than the calculator can represent; in such a case, it will substitute

the number 0. This can affect the Solver’s results. For example, consider
the equation

1
2=0

X

whose root is infinity. Because of underflow, the Solver returns a very
large (finite) value as a root. (The calculator cannot representinfinity,
anyway.)

3: The Solver 123

Integration

In this chapter, the following topics are covered:

m Basic use of the Integration application.

m Approximating an integral that has an infinite upper or lower limit.

m Using Integration and the Solver interactively.

m More on how Integration works.

Basic Integration

The procedure for execution of the Integration application is:

1. Create a program that:

a. Uses MVARto define the variable(s) in the integrand (the
function to be integrated).

b. Expresses the integrand. (Note that each variable in the
integrand must be recalled to the X-register.)

2. Apply the Integration application to the program.

a. Select the Integration application (press B[/f(x)]).

b. Select the program by pressing the corresponding menu key.

c. Specify the values for any known variablesin the integrand.
Select the variable of integration.

d. Specify the values for LLIM, ULIM, andACC.

e. Press _to begin the calculation.

124 4: Integration

Example: Basic Integration. The angle oftwist in a round shaft
under torsional loading is calculated by evaluating the following integral.

where:

g is the angle of twist of the shaft (in radians).
L is the length of the shaft (in meters).
T is the torque applied to the shaft (in Newton-meters).
J is the polar moment of inertia of the shaft (in meters*).
G is the shear modulus of the shaft material (in Newtons/meters?).

Torque T increases along

the length of the shaft

as a function of x .

Consider a solid steel shaft (G = 83 x 10° N/m?) that has a constant
diameter of 0.03 meters (J = 7.9521x 10" m*) and a total length L of 2
meters. Find the angle of twist in the shaft when loaded by a torque that
varies along the length x of the shaft as a function ofx:

T =13x* + 8x3 + 15x2+9x + 6

For programming purposes, use Horner’s method to expand the polyno-
mial.

T=(((13x +8)x +15)x +9)x +6

4: Integration 125

Substituting this expression for T, the equation becomes

dx P ((1Bx +8)x +15)x +9)x +6

’= !; JG

Express the integrand in the program TORQUE.

Program: Comments:

— 1
)

Y i
l L 53-Bute FPram

LEL "TORGUE"A el —

- I
= DR
I
Y MVAR "X Lines 02-04: Declare the variables.

r,1 I:||' H F: 1 |_I n

r|1 I|'ll HF_:I " I:'I. n

[a
n

J
u

z
Lines 05-19: Express the integrand.

FECLxv

T
T
N

=
o
0

0
0
—

+

RCLx "e"

15
+

RCLx> "wn

3

J
o

O
3
O
e

n FECL=
"sY

ECL+ "d"

RCL+ "Ge
t

e
k

p
k

e
k

b
k

e
k

e
k

e
k
b
b

o
0

0
0

=
]

I
y

+

[1 m

Select the Integration application.

B0 Select Sff(x)> Program
TNIAN

Select program TORQUE.

TORR Set Vars; Select Jvar |
'N

126 4: Integration

Supply the known values for J and G, and specify the variable of integra-

tion X.

7.9521 [E] 8 [+ |x: 83,6860, 868, 000.0 I
e IRYDGN83 [E]

Specify the lower limit (0), the upper limit L (2), and an accuracy factor of
0.01.

OLLIM
2 UL

 ACC=0.01060
(eeijueid]wee||o0

Start the calculation.

e S=0.6281
LLijucif wee|o

The shaft twists through an angle § = 0.0281 radians (1.6077 degrees).
Exit from the Integration application.

v g.ggg?
x: -

Approximating an Integral That Has an
Infinite Limit

It is often ofinterest to evaluate an improper integral (an integral that has
an infinite upper or lower limit). An improper integral with an infinite
upper limit

o0

[o) ax
is calculated "by hand" by evaluating the equivalent expression

lim,oo [, f0¢) d

4: Integration 127

You cannot use the HP-42S to directly evaluate such an expression. You
can, however, approximate an answer by substituting a large number for
the infinite limit.

Example: Evaluating an Integral That Has an Infinite Upper
Limit. Calculate the integral

 © dx

":’ 1+ x2

by hand. Then approximate the integral with the HP-42S.

Part 1. The result is calculated by hand as follows.

M,oo

1+ x2 0 1+ x2
lim,_, (arctana)

° v . o dy
l

r
2

Use the HP-42S to calculate 7/2 to 12-digit precision.

B 235 x: 1.5707963268

Part 2. Use the Integration application to evaluate the same integral,
using the value 1,000 to approximate the upper limit. First, express the
integrand in the program INFIN.

B8 { 28-Bute FPram 2

LEL "IMFIH"

MYAR "\

RCL "x"

Atz

1
+

178

EHMD

T
S

0
o

e
N
B
0
O
e

v 1
5
0

128 4: Integration

Select the Integration application and then program INFIN.

] IHFIH Set Vars; Select Jvar
NDDD

Select the variable of integration.

x: 1.5707963268
IlmnfllmmfllflfillllllllllllJ

Specify the lower limit (0), the upper limit approximation (1,000), and an
accuracy factor of 0.01.

ACC=0.081
NNTNBTI.

Calculate the integral.

F=1.57020935993
TNTTIN

Using an upper limit of 1,000, and an accuracy factor of 0.01, the calcula-
tor returns the result 1.57020935993. The calculation takes about 36
seconds and is correct to three decimal places.

Exit from the Integration application and return the display format to FIX
4

EXIT] ([EXIT] [EXIT

v: 8.0156

B0DISP) iFI%4 x: 1.5702

The following table summarizes results and calculation times for upper
limit approximations of 100, 1,000, and 10,000, and accuracy factors of

0.01 and 0.0001.

4: Integration 129

Acc. Calc. Time
Factor ULIM Result (seconds)

(% actual) 1.5707963268

0.01 100 1.57518831857 5

1,000 1.57020935993 36
10,000 1.57088603739 140

0.0001 100 1.5607891695 18

1,000 1.566979476064 69

10,000 1.57069673168 279

Note that the principle determining factor in the accuracy ofthe result is
the value of the upper-limit approximation, not the accuracy factor. Also
note that the calculations using an accuracy factor of 0.0001 require about
twice the time of those using an accuracy factor of 0.01.

In general, when you are approximating an integral, assess the extent to
which you are constraining the accuracy of the true integral with the
approximation ofthe limit, and choose an accuracy factor wisely. If the
limit that you substitute results in only a rough approximation of the true
integral, it makeslittle sense to calculate the approximation to a high
degree of accuracy.

130 4: Integration

Using the Solver and Integration
Interactively

In the first example in this chapter, you found the twist angle 6 at the end
of a shaft by integrating the applied torque with respect to x. (The torque
varied as a function of the position x along the shaft.) You were limited, in
that example, to solving specifically for the twist angle 6. In general, for
the equation

ULIM
I = LM f(x) dx (calculated to accuracyACC)

the Integration application enables you to solve only for the value 7 of the
integral. To solve for 7, you:

m Write a program P that defines the integrandf(x).

m Specify values for the known variablesin the integrand.

m Specify the variable of integration.

m Specify values for the variables LLIM, ULIM, andACC.

However, by writing a program S for the Solver that declares each vari-
able in the equation and invokes the Integration application on program P,
you can solve for any of the variables in the equation:

m/

m The variables in the integrand f(x).

m LLIM,ULIM.

In the following example, you’ll solve for the length L of a shaft (the vari-
able ULIM in the Integration application) in the angle-of-twist equation.

Example. Using the Solver and Integration Interactively.
Restating the equation for twist in a shaft under torsional loading:

4: Integration 131

Consider again the solid steel shaft of the first example in this chapter.
Forthis shaft, G = 83 x 10° N/m? andJ = 7.9521 x 10"® m*. The shaft
is subjected to the same torsional loading T asin the first example. That
loading varies along the length x ofthe shaft as a function ofx.

T =13x* + 8x3 + 15x2+ 9x + 6.

Find the length L that resultsin a twist angle 6 of 0.1396 radians (8
degrees).

The variables in the equation are , L, T, J, and G. The unknown variable

L is the upper limit ofintegration ULIM.

Part 1. Write a Solver program SHAFT that:

m Declares each variable in the equation.

m Expresses the equation such thatits right side equals 0.

LT
—dx -0=0

0 JG

Program: Comments:

88 { eB-Bute Pram >

@1 LEL "SHAFT"

82 MVYAR “"THETR" Lines 02-08: Declare the variables in
a2 MYAR "G the equation.
a4 MYAR "J"

a3 MVAR "LLIM®

@5 MYAR “ULIM"
@7 MYAR "ACC"
B2 MYAR "R

8% PGMINT "TORGUE" Lines 09-11: Express the equation
18 IHMTEG "=x" such thatits right side equals 0. First,
11 RCL- "THETR" calculate the first term of the equation

(the integral) (lines 09-10). The
value of the integralis returned to the
X-register. Subtract the second term
(THETA)(line 11).

12 EHD

132 4: Integration

In lines 09 - 10, the integralis calculated using the current value of ULIM,
which is iteratively supplied by the Solver as it searches for a solution.
Note that the specified integration program is TORQUE from thefirst
example in the chapter.If you’ve deleted this program, you need to key it
into the calculator now.

Part 2. Select the Solver application and then program SHAFT.

B(SOLVER] SHAFT x: 8. 0000
TOIT

(The variableX is on the second line of the menu.) Enter values for the
known variables.

 .1396 TH RACC=0.0100

THETH]GJfLLIMULIM]ACC

 7.9521 [E] 8

0
.01

Now solve for the upper limit L, providing initial guesses of 1 and 10.

ULIM=2.9528
DOITR

The shaft must be 2.9528 meters long to twist through an angle of 0.1396
radians.

Exit from the Solver application.

EXIT] [EXIT

4: Integration 133

More on How Integration Works

The Accuracy Factor and the Uncertainty of
Integration

The Integration algorithm calculates the integral of a function f(x) by
computing a weighted average of the function’s values at many values ofx
(sample points) within the interval of integration. The accuracy of the
result depends on the number of sample points considered; generally, the
more the sample points, the greater the accuracy. There are two reasons
why you might wantto limit the accuracy of the integral:

1. The length of time to calculate the integral increases as the number
of sample points increases.

2. There are inherent inaccuracies in each calculated value off(x):

a. Empirically-derived constants inf(x) may be inaccurate. If, for
example, f(x) contains empirically-derived constants that are
accurate to only two decimal places,it is of little value to cal-
culate the integral to the full (12-digit) precision of the calcu-
lator.

b. Iff(x) models a physical system, there may be inaccuracies in
the model.

c. The calculator itself introduces round-off error into each com-

putation off(x).

To indirectly limit the accuracy of the integral, specify the accuracyfactor
of thefunction, defined as

true value off(x) - computed value off(x)

computed value off(x)
 ACC =

134 4: Integration

The accuracy factor is your estimation of the (decimal form of the) per-
cent error in each computed value off(x). Thisvalue is stored inACC.
The accuracy factor is related to the uncertainty of integration (a measure-
ment of the accuracy ofthe integral) by:

uncertainty of integration = accuracy factor x f | fx)] ax

f(x)
A

The striped area is the value of the integral. The orange-shaded area is
the value of the uncertainty of integration. It is the weighted sum ofthe
errors of each computation off(x). You can see that at any point x, the
uncertainty of integration is proportional tof(x).

The Integration algorithm uses an iterative method, doubling the number
of sample points in each successive iteration. At the end of each iteration,
it calculates both the integral and the uncertainty of integration. It then
compares the value of the integral calculated during that iteration with the
values calculated during the two previous iterations. If the difference
between any one of these three values and the other two is less than the
uncertainty of integration, the algorithm stops. The current value of the
integral is returned to the X-register, and the uncertainty of integration is
returned to the Y-register.

It is extremely unlikely that the errors in each of the three successive cal-
culations of the integral —that is, the differences between the actual
integral and the calculated values —would all be larger than the disparity
among the approximations themselves. Consequently, the error in the
final calculated value will almost certainly be less than the uncertainty of

4: Integration 135

integration.

Example: The Accuracy Factor and the Uncertainty of
Integration. Certain problems in communications theory (for example,
pulse transmissions through idealized networks) require calculating an
integral (sometimes called the sine integral) of the form

t .

fl0=L$?@x

Find Si (2).

First, write a program that expresses the function.

B8 £ 1&6-Bute Pram X

a1 LEL "SI

8z MYAR "X
a3 RCL "X
84 SIH
83 RCL+ "X
a5 EMD

Set the display format to ALL. Set the angular mode to RAD.

WO SALL: g
@(MODES] RAD x: B

Select the Integration application and then program SI.

B81 Set Vars; Select JSvar
&11111|

Select the variable of integration X, then enter a lower limit of 0 and an
upper limit of2.

ULIM=2
TNTWTENATI.

0LLIM
2ULIH

136 4: Integration

Since the function

 fx) = sinx

X

is a purely mathematical expression containing no empirically-derived
constants, the only constraint on the accuracy of the function is the
round-off error introduced by the calculator. Itis, therefore,at least
analytically reasonable to specify an accuracy factor of 0.00000000001
(1x10711),

[E] 114]

ACC=0. 0880080800081
(eeidjucidlwce || |o |

Calculate the integral.

f=1.6054129768
[LLIMJOUM]AeC || |& |

Check the uncertainty of integration.

(xy]

X: 2. 10942218026E-11
NTRTNI

The uncertainty ofintegration is significant only with respect to the last
digit of the integral. The calculation took about 19 seconds. If you can
accept a less accurate answer, you can shorten the calculation time. Try an
accuracy factor of 0.001.

|I=1 . 68541531589 I
TNTSNATI.

001ACC

Check the uncertainty of integration.

[xzy) x: 1.68608822892€-3
ISNTENTNBTSNI.

4: Integration 137

The error of integration is much larger now. However,it is still relatively
small compared to the value of the integral, and the calculation takes only
3 seconds.

Exit from the Integration application and return the display format to FIX
4

EXIT) [EXIT] ([EXIT

v: 1.6054

B(DisP) | 4 x: B.0016

Example: A Problem Where the Uncertainty of Iintegration Is
Relatively Large. In the previous example, the uncertainty of integra-
tion was relatively small compared to the value ofthe integral. Thisis
because the value of the function was always positive within the interval of
integration. Now consider the simple function

fx) = sinx

Integrate the function from x = 0 tox = 6 (radians).

f(x)

A

By inspection, you can see that the value ofthe integral is a small positive
number, since the area with positive value from 0 to = is almost cancelled
by the area with negative value from = to 6.

138 4: Integration

Write the program that expresses the function.

B3 ¢ 14-Bute Pram 2

a1 LEL "SIH"

a2 MVYAR "R

B3 RCL "=&"

B4 SIH

85 EHND

Set the angular mode to RAD. Select the Integration application and then
program SIN.

B(MODES] |FRl} Set Vars; Select Jfvar

B/X)] &[[11T|
EI

Select the variable ofintegration X, enter the lower and upper limits (0
and 6), and an accuracy factor of 0.01. Then integrate with respect to x.

= 7=0. 0398

6 ULIM
.01 AL

Now check the uncertainty of integration.

(xxy] x: B.0398
[LLijuiimfacc]o

The uncertainty of integration is large compared to the value of the
integral.

Exit from the Integration application.

EXIT] [EXIT] (EXIT

4: Integration 139

Conditions That Can Cause Incorrect Results

Although the integration algorithm in the HP-42S is one ofthe best avail-
able, in certain situations it —like all algorithms for numeric integration—
might give you an incorrect answer. The possibility of this occurring is very
remote. The integration algorithm has been designed to give accurate
results for almost any smooth function. Only for functions that exhibit
extremely erratic behavior is there any substantial risk of obtaining an
inaccurate answer. Such functions rarely occur in problemsrelated to
actual physical systems.

Example: A Condition That Causes an Incorrect Result. Con-
sider the approximation of

j;ooxe" dx

Since you’re evaluating this integral numerically, you might think that you

should represent the upper limit of integration with a large number, say

100,000. Try it and see what happens. First write a program that expresses

fx).

£ 17-Bute Pram 2

LEBL "HE=XR"

MVAR "E"

RCL "X"

EMTER
+/-

Etx
®

EHD

=
I
O

W
~

O
A
l
B
W
M
o

I
o
3

Now select the Integration application and then program XEX.

B .BER Set Vars; Select Sfvar
ETNDDDNe

140 4: Integration

Select the variable ofintegration X, then enter the lower and upper limits
and an accuracy factor of 0.001.

ACC=0.0010
NTNTIN

Integrate with respect to x. (Stay in the Integration application after exe-
cuting this calculation. You will integrate this function again in the next
section.)

J=0.00800
NNTNTRIN

The answeris clearly incorrect, since the actual integral off(x) = xe ™% ,
evaluated from 0 to oo, is exactly 1. But the problem is not that you
represented oo by 100,000, since the actualintegral of this function from 0
to 100,000 is very close to 1. The reason you obtained an incorrect answer
becomes apparent if you look at the graph off(x) over the interval of
integration.

f(x)

A

 —)x
The graph has a spike (illustrated here with a greatly exaggerated width)
very close to the origin . Because no sample point discovered the spike,
the algorithm assumed that f(x) was equal to 0 throughout the interval of

4: Integration 141

integration. Even if you increased the number of sample points by specify-
ing an accuracy factor of 1 x 107! | none of the additional sample points
would discover the spike when this particular function is integrated over
this particular interval.

Subdividing the Interval of Integration. If you suspect the validity
of the approximation of an integral, subdivide the interval of integration
into two or more subintervals, integrate the function over each subinter-
val, then add the resulting approximations. This causes the function to be
evaluated at a new set of sample points, more likely revealing any previ-
ously hidden spikes. If the initial approximation is valid, it equals the sum
of the approximations over the subintervals.

Example: Subdividing the Interval of Integration. Consider
again the integral

j:oxe" dx

Approximate the integral by subdividing the intervalof integration into
three subintervals, one from 0 to 10, the second from 10 to 100, and the

third from 100 to 100,000.

First, integrate between 0 and 10. If you arestill in the Integration appli-
cation, simply supply the new value for ULIM.

10 ULIM 7=08.9995
s ATATTI

The answeris very close to 1. Now integrate between 10 and 100.

10 LLIM f=0.0808085
100 TUCTHE OTTII

The answer is very close to 0. The sum of the approximations over the two
subintervals is 1. Finally, integrate between 100 and 100,000. (Stay in the
Integration application after executing this calculation. You will integrate
this function again in the next section.)

100LLIM J=0.0000
100000 ULIM [LLijuiifwec|o

142 4: Integration

The integral over the third subinterval is 0. The sum ofthe integrals over
the three subintervalsis 1.

Conditions That Prolong Calculation Time

In the first example in the preceding section, the algorithm gave an
incorrect answer because it never detected the spike in the function
f(x) = xe ~* . This happened because the variation in the function was too
quick relative to the width of the interval of integration. In the second
example, you obtained a very good approximation by subdividing the
interval of integration into three subintervals between 0 and 100,000.
However, for this function, there is a range ofintervals that is small

enough to obtain the correct answer, yet result in a very long calculation
time.

Example: An Upper-Limit Approximation That Prolongs
Calculation Time. Consider again the integral

fooxe T dx0

Approximate the integral by calculating it over the interval (0, 1,000).

Enter the new values for LLIM and ULIM. Then integrate with respect to

 S=1.0800
ISRTNTSI.N

This is the correct answer, but it took a long time to calculate. To under-
stand why, compare the graph of the function betweenx = 10 andx = 10°
(which looks about the same as that shown on page 141) with the follow-
ing graph ofthe function betweenx = 0 andx = 10.

4: Integration 143

f(x)

 >

10O

You can see that the function is "interesting" only at small values ofx. At
greater values ofx, the function is not interesting since it decreases
smoothly and gradually in a predictable manner.

The algorithm samples the function at increasing numbers of sample
points until it has sufficient information about the function to provide an
approximation that changes insignificantly when further samples are con-
sidered. In the previous section, when you evaluated the integral between
0 and 10, the algorithm needed to sample the function only at values
where it was interesting but relatively smooth. The sample points,after
the first few iterations, contributed no new information about the

behavior of the function and the algorithm stopped.

In the last example, most of the sample points capture the function in the
region where its slope is not varying much. The algorithm finds that the
few sample points at small values ofx return values of the function that
change appreciably from one iteration to the next. Consequently, the func-
tion has to be evaluated at additional sample points before the disparity
between successive approximations becomes sufficiently small.

144 4: Integration

Forthe integral to be approximated with the same accuracy overthe larger

interval as over the smaller interval, the density ofsample points must be the
samein the region where the function is interesting. To achieve the same
density of sample points, the total number of sample points required over
the larger interval is much greater than the number required over the
smaller interval. Consequently, several more iterations are required over
the larger interval to achieve an approximation of the same accuracy, and
the calculation requires considerably more time.

4: Integration 145

S

Matrices

This chapter builds on material introduced to you in chapter 14 of your
owner’s manual. The following topics are covered:

Using the matrix editor and indexing functions.

Vector solutions.

Solving simultaneous equations.

Using the Solver with simultaneous equations.

Matrix operations in programs.

Using the Matrix Editor and Indexing
Functions

In the following example, you’ll:

m Create a matrix.

m Use the matrix editor to manipulate data.

m Use indexing functions and statistics functions interactively.

Example: Accumulating Meteorological Data. Dr. Steven
Stormwarning, noted meteorologist, has accumulated the following data
and wishesto store it in a matrix in the HP-42S.

146 5: Matrices

Day # Temp Wind Humid

1 67 8 54
2 69 14 36
3 74 4 72

Creating a Named Matrix

Create a 4 X 4 matrix "WTHR".

4 [ENTER] B(MATRIX] (W] DIH x: 4.0000
ENTER] WTHR C007JCROSSTUNEC]DM[INGEREDITN

Using the Matrix Editor

Enter the matrix editor and select the matrix you just created.

ERLITH HWTHRE

1:1=0.060800

Fill element 1:1 with the Alpha string DAY #. (Remember, to execute
[ASTO], press in ALPHA mode.)

B(ALPHA] DAY # U 1:1="DAY ¥"

Fill the remaining elements in row 1 with the corresponding Alpha strings
from the table. (The keystrokes for element (1:2) are shown here.)

B(ALPHA] TEMP 1:4="HUMID"
[EXT) ...

5: Matrices 147

Now fill the remaining elements with the corresponding data.

4:4=72_
ITIT

Stormwarning finds that his assistant has incorrectly recorded the tem-
perature on day 1; it was 77, not 67.

GOTO2 [ENTER] 2 ([ENTER] 77 [EXIT]

X: 77. 00080
00TJEROSS]UMEC]DIk[INDER[EDITN]

Several days later the doctor has more data to add: on day #4, the tem-
perature is 77, the windspeed is 5, and the humidity is 76. First, set the cal-
culator to Grow mode to create a new row in the matrix.

EDITH WIHE =¢ 5: 1=0. 0000

3515 ATy [€(o[+|+[coto]»

W&l
»

2:4=76_
ISTSO(T

Stormwarning now realizes he has entered the data for day #5, not day
#4. For day #4, the temperature was 68, the windspeed was 12, and the
humidity was 41. First change the value in element 5:1 to 5.

S:1=5_
[€Jow|+|+|Goto]=+|

Now insert the new row.

(V] IHER 5: 1=0, 000D
[IN:R|_[CELR| |WRAP)GROS]

148 5: Matrices

Enter the actual data for day #4.

@45

5:4=41_

a1 ITN[T

Exit from the Matrix application.

v: 4, 0000
x: 41.0800

Using Indexing Utilities and Statistics Functions
Interactively

Dr. Stormwarning now wants to execute statistical operations on segments
of his accumulated data. He would like to find the mean temperature and
windspeed for the five days. He’ll execute GETM to create in the X-
register a 5 X 2 submatrix that contains the temperature and windspeed
data. He’ll then execute X+ to store the data from this submatrix in the
summation (statistical) registers, select the STAT menu, and find the
mean. (Remember that the £+ function automatically stores the data
from an n-row X 2-column matrix into the currently defined summation
registers. Refer to the discussion of the £+ function in chapter 15 of your
owner’s manual for more information.)

Specify WTHR as the indexed matrix.

BMATRIX] (V)IHDEY WTHR

x: 41.0000
00TJEROSSJUVEC|DIt[INDER[EDITN]

Set the index pointers to element 2:2 (the first temperature data entry).

2 [ENTER] (V] =TIJ x: 2.0000

Now get the 5 x 2 submatrix that contains the temperature and windspeed
data.

5 [ENTER] 2 GETH x: [5x2 Matrix 1
(ST0I[RCLI[STOELRELEL]PUTH[GETH)

5: Matrices 149

Clear the summation registers, then store the data from the matrix in the
summation registers. (If the calculator returns the message
Monexi=stent, the current SIZE allocation is insufficient.)

B(CLEAR]il x: 5.0000
BOOPFCN) :=%

Select the STAT menu and find the mean of the temperature data.

BISTAT] MEAH Ix: 73.0800 |
[Z+|SUM[MEAN]MN]Z0EV]CFIT|

Find the mean of the windspeed data.

X% x: 8.68008
[I+ |SUMJMEAN]MMN |S0EV |CFIT |

The mean temperature for the five days is 73. The mean windspeed is 8.6.

Exit from the STAT menu.

EXIT Y:
x.

Matrix Utilities

The following routines use existing matrix functions to build useful matrix
utilities.

Finding the Column Sum of a Matrix. CSUM calculates the
column sum of the matrix in the X-register. (The column sum of a matrix
A is a row matrix, each element of which is the sum of the elements of the

corresponding column of matrix4.) The resultant matrix is returned to
the X-register.

a8 L 14-Bute Pram X

a1 LBEL "CsuM"

B2 TRAMS

A2 RSUM

150 5: Matrices

a4 TRAHS

a3 END

Finding the Column Norm of a Matrix. CNRM calculates the
column norm of the matrix in the X-register. (The column norm of a
matrixA is the maximum value (over all columns) of the sums of the
absolute values ofall elements in a column.) The result is returned to the
X-register.

88 { 12-Bute Pram 2

81 LEBL "CHEM"

A2 TEANS

B33 RHEM

84 EHD

Finding the Conjugate of a Complex Matrix. To find the conju-
gate of a complex matrix:

1. Place the matrix in the X-register.

2. Press l[COMPLEX].

3. Press [*/-].

4. Press B[COMPLEX].

The conjugate is returned to the X-register.

Finding the Matrix Sum of a Matrix. MSUM calculates the matrix
sum (the sum ofall the elements) of the matrix in the X-register. The
result is returned to the X-register.

A8 { 18-Bute Pram

a1 LBL "MsSUM"

Az XKER "CsuUM"

B3 RSUM

B4 DET

A5 END

5: Matrices 151

Finding the Maximum and Minimum Elements of a Matrix.

MINMAX finds the maximum or minimum element of the rea/ matrix in
the X-register. The element is returned to the X-register. The indexed
location of the elementis returned to the Y- and Z-registers (column
number in Y, row number in Z). Set flag 09 to find the maximum ele-
ment. Clear flag 09 to find the minimum element.

Program:

,. e
’ o

= P LEL "MIMMAX"

STO "MIMMAX"

IMDEX "MIHMAR"

RCLEL

GTO 8=

I

R
N

L
U

A
N

$
0
0

= an
1= o LEL ©1

RCLEL
FS7? @9

I ETO 82

a7
GTO

2 GTO

0
|l
'|

1
=
o
)

[
]

-
~

44

45-
T

M
o
=
S

W0

=

LEL @2
HLYT
GTO G4

— F
o
D

on

12 RCL ST

19 EMTER

r-
J

8 LEL B4

21 E4

22 J+

152 5: Matrices

+ &61-Byte Pram .

Comments:

Lines 02-05: Store the matrix

currently in the X-register in
MINMAX, index MINMAX, and

establish element 1:1 as the current

maximum or minimum element.

Lines 06—12: If flag 09 is clear,test if
the current elementis greater than the
current minimum.If yes, go to label 04
(to maintain the current minimum). If
no, go to label 03 (to make the current
element the new minimum).

Lines 13-15: If flag 09 is set,test if
the current element is less than the
current maximum. If yes, go to label
04 (to maintain the current max-
imum). If no, make the currentele-
ment the new maximum.

Lines 16 -19: Make the current ele-

ment the new maximum or minimum.

Lines 20 —24: Maintain the current

maximum or minimum element.

23 FC? 7v
24 GTO 81

23 EMD

Sorting a Matrix. SORT sorts the rows of the matrix in the X-register
in ascending order by the values in column 1. The sorted matrix is
returned to the X-register.

Program: Comments:

A8 { 21-Bute Pram 2

A1 LEBL "SORT"

A2 STO "SORTHAT™

B2 IHMDEX "SORTHMATY

a4 LEL 91 Lines 07-10: Establish the row
as I+ numberto sort. (On the first pass, row
a5 F5? T 2 is the row to sort, against row 1. On
a7 GTO G4 the second pass, row 3 is the row to
a2 RCLI sort, against rows 1 and 2.) Continue
a9 KOy until all rows are sorted.
18 RCLEL

1 LEL B2 Lines 11-24: Successively move the
12 I- "sort row" up the matrix until its
12 RCLEL column 1 value is greater than the
14 F57 V& column 1 value of the previous row.
15 GTO 83

16 Rey'?

17 GTO B3

12 R4

12 RCLI

28 RCL+ ST Y

21 R4XE

22 F+

23 FEu

24 GTO @82

5: Matrices 153

25 LeBL @z Lines 25-32: Increment the "sort-row”

26 R4 number. If the increment causes the
27 R+ index pointer to wrap, return the
22 1 sorted matrix to X and end the pro-
23 STOILJ gram.

28 GTO a1

21 LBL B84

22 RCL "SORTHMAT"

o) k] EHD

Vector Solutions

Vectors are a special subset of matrices. You can describe a vector with
either a 1-row X n-column matrix, or a 1-column X n-row matrix.

Geometry

The area of a parallelogram can be determined by the equation

A = Frobenius norm (magnitude) of (V'V; xV;)

where (' V; X V,) is the vector cross product V; and V.

154 5: Matrices

Example: The Area of a Parallelogram. Find the area ofthe fol-
lowing parallelogram.

Create vectors V; and V.

BMATRIX]
1 [ENTER])3 (V] [IH

Vi
1 3DINM

V2

Enter values for each element in V; .

2 [EXIT

Enter values for each element in V.

3 [EXIT

Calculate the area.

(0,0,0)

x: 3.0000
00TJCROSS]UMEC]DIM[INDER[EDITN]

X: 2. 9@99
00T |CROSS

x: 3.00008
B [UVEC]DMJINDERJEDITN

5: Matrices 155

The area of the parallelogram is 15.0000.

Exit from the Matrix application.

EXIT

Coordinate Transformations

It is often necessary in dynamics or mechanical design problemsto per-
form coordinate transformations. Coordinate transformations require you
to:

m Calculate a unit vector.

m Add vectors.

m Calculate a vector dot product.

m Multiply vectors.

m Calculate a vector cross product.

156 5: Matrices

ORIGINAL

SYSTEM

 - - P X

\\ \\ X 7

\ §7

. - W~NEWSYSTEM

\ - f(Tr_.7) -

AN
_- \ Notes: AXIS (the rotation axis vector)

o7 is pointing out of the page
P .

- atpointT.
7

The rotation is relative to the

translated origin.

The equation for a coordinate transformation of a point from the old sys-
tem to a new system is

P =[(P-T)'n]n(1-cosf) + (P -T)cosd + [(P - T)xn]sinf

The equation for a coordinate transformation of a point from a new sys-
tem to the old system is

P=[(P" *n)n(1-cosf) + Pcosf+ (P xmn)sin(-6)] +T

where:

P’ is the coordinates of the point in the new system.
P is the coordinates of the point in the old system.
T is the origin of the new system.
n is the unit vector of the axis about which the rotation is to be done.
g is the rotation angle.

5: Matrices 157

Note that the translation occurs before the rotation. The rotation is rela-

tive to the translated origin.

The following program, COORD, enables you to fill the vectors P,
(or P"), T, and AXIS with data by programmatically invoking the matrix
editor and enables you to specify either an old-to-new or new-to-old
transformation. (AXIS is the rotation axis vector. COORD stores the data
you supply for AXIS in the variable n, then calculates the unit vector n.)

To key in COORD: Create variables P, T, P’, n, and X before pro-
gram entry.

Here is an annotated listing of COORD.

Program: Comments:

,
_

1
5
0
- [
N

':: 215-E8t= Fo o

LEL "COORD"-
~
'
t
e

EXITALL Lines 02-11: Build the main menu.

CLMEHML
1 Fl 1"

EEY 1 GTO 8
. 1] T I

" KEY
g "AXI
3 KEY

KEY 4 XEQ B4

T
wl

a
b

1
)

=
=

2
N
0

g

—_

[
}
i

=
T
I
T

o
0

0
0

=
g

—
0

HER @2

0
0
U
l
M

sEQ B3

12 LBL 2= Lines 12-15: Display the main menu.
12 MEHU

14 =STOF

1 o GTO 28

T LEL @1 Lines 16 -22: Display the submenu to
"p edit vector P (or P”) and choose the
HER 93 direction ofthe transformation.
MH
EEY 2 GTO 8%[

l
b=

t
=
t

o
0

o
0

=
]

158 5: Matrices

[
a
—

e

KEY & GTO B85r M

LEL 37 Lines 23-27: Display the submenu.
MEHL

CF B8

STOP

GTO

L
0

i
L

[
P

T
d
P
[

n
-
]

v
L =
]

FaLEL Lines 28 —32: Place the vector names

" T and n in the Alpha register to create
GTO the vector.

LEL

"

w
0

o
W
0

O
3
0
0
M

i

M
o
=
T

W
O

0
0

LEL 299 Lines 33-46: Create a 1 x 3 vector P,

CLMEHU T, or n and openit for editing. Build
ASTO ST L matrix editor menu labels and prompt
1 for data input.
ENTER

LIM IMD ST LEDITH IND ST L
' KEY 1 ¥ER 11

1" _} n

KEY
EEY

ETH

on
|‘
_T
'-

O
O

0
0

G
0
0

5
0
=

[
N

a
f
u
o

J
a
0

fo
d3
=

5
0

o
0

RER 12
GTO "COoRD"

r'
l:

l

2
T

L
N
e

s

S T

LEL 11 Lines 47 -52: Execute the matrix edi-

& tor functions.

FETH

LEL 12

FTH

0
y

o
=

o
b
b

[
=

&
0
W

n
o
o
n

N
il J
a

L
0 LEL &4 Lines 53 -55: Prompt for the value of

IMFUT " A

FTHn n

5: Matrices 159

n |'_
‘I"

.

n =
]

n
o
n

o
0
0
0

(
i
)

i
T

[
y

T
Q
N
B

Q
0
d

I
T
T
y

w
O
O
d
=

K
X

'
t

=
]

=
l

=
=

Fa
o

0
0
O
e

=
]

=
)
=

o
l
T
l

g
0

~
J

M
y
o
=

£
on

T
W
J
O
o
D

=
~

| io
0

0
0

Q
0

Q
D

0
0

0
0

OO
0

Q
0

0
0

Q
0

0
0

=
)

=
)

=
)

(
Y
—

[n

o

EL

F & -
~
o
l

LEL @&
EXITALL
RCL “P"
FC? @a
RCL- "T"
STO "pro
RCL "n"

UVEC

5TO "n"
Dot
1
RCL "&"
cos

FECLx "m"

RCL "a
cos

RCL3x "p'®
<+

RCL "p'"
RCL "n"
CROSS

RCL "«

FS7 oa
RCL+ "T™
STO P
GTO &1

EMD

5: Matrices

Lines 56— 57: Set flag 00 for a new-to-
old transformation.

Lines 58 —90: Evaluate the transfor-

mation equation. If flag 00 is clear,
calculate the old-to-new transforma-

tion. If flag 00 is set, calculate the
new-to-old transformation.

To use COORD:

1. Press COORD.

2. PressT, then supply values for the elements of T using the
matrix editorlabels in the menu. Press [EXIT] to return to the main
menu.

3. Press H&IES ,then supply values for the elements of the rotation

axis using the matrix editor labels in the menu. Press to
return to the main menu. Note that COORD stores the rotation

axis in variable n, calculates the unit vector of the rotation axis, and

stores the unit vector back in n. If you press H? after executing

a three-dimensional transformation, you will see the newly calcu-
lated elements ofthe unit vector, not the original rotation axis.

For a two-dimensional transformation, set the rotation axis to

0,0, 1).

4. Press 1

5. PressF, then supply values for the elements of P (orP)

using the matnx editor labels in the menu. Then press
convert from the old system to the new system, or press =M=+
convert from the new system to the old system. The calculatlon is
now executed.

, then supply a value for % and press [R/S].

Example: A Three-Dimensional Translation with Rotation. A
three-dimensional coordinate system is translated from (0, 0, 0) to (2.45,
4,00, 4.25). After the translation, a 62.5° rotation occurs aboutthe (0, -1,
—1) axis. In the original system, a point had the coordinates (3.90, 2.10,
7.00). What are the coordinates of the point in the translated, rotated sys-
tem?

Forthis problem:

P = (3.90, 2.10, 7.00)
T = (2.45, 4.00, 4.25)
AXIS = (0, -1, -1)
A = 62.5°

5: Matrices 161

Set the display format to FIX 2. Set the angular mode to Degrees. Exe-
cute program COORD.

Enter the elements of T.

EXIT |

Enter the elements of the rotation axis.

Enter the value of ..

62.5

Enter the elements of P.

x: B.008
IITS.

X: 2449
|l[lllllllflfill!!llllllllJ

x: B.080
PTJeiis]&2||

X: 62,00
NT.

1:1=3.90
NNBCEY REETE

1:1=3.59
BNTRT

Element 1:1 of Pis 3.59. Check element 1:2.

162 5: Matrices

1:2=0.26
[€ |» ||[N30[03N]

Check element 1:3.

1:3=0.59
e>|[N3D|0+N

The coordinates of the point in the new system are (3.59, 0.26, 0.59). Exit
from program COORD and return the display format to FIX 4.

v 1.00090

BDISP] : 4 x: B.5891

Solving Simultaneous Equations

Evaluation of an electrical circuit by the technique of loop currents gen-
erates a system of simultaneous equations. The number of equations in
the system is equal to the number of loops in the circuit. The first example
in this section finds the currents in a four-loop, purely resistive circuit (the
termsin the system of equations are real numbers). The second example
finds the currents in a four-loop circuit that has complex impedances (the
termsin the system of equations are complex numbers).

Example: Solving Real-Number Simultaneous Equations.
Consider the following four-loop circuit.

R4 R3 R s Rz

M—W

Apply the technique of loop currents to find the currents I, 15,15,14.

5: Matrices 163

The equations to be solved are (in variable form):

1. (Ri+R3)(11) - (R) (1) =V

2. -(R2)(I;) + (Rz+R3+Ry)(I2) - (Ry)(I3) =0

3. -(Ry)(I2) + (R4+ Rs+ Rg)(I3) - (Rg)(14) =0

4. -(Rg)(I3) + (R¢+ R7; + Rg)(14) =0

Put the equations in matrix form, substituting the following values for the
variables: V' = 34 V and R, through Rg = 111.

2 -1 0 of |I
-1 3-1 0 I,
0 -1 3 -1 I,
0 0 -1 3 I, O

O
O
%

Select the Simultaneous Equation application, and specify the number of
unknowns.

BMATRIX] SIMG4 [ENTER

x: 8.080008
[(MATRIMATE[MATHR]]|]

Enter the values for the elements of the coefficient matrix MATA. (The
keystrokes for the entering the first row data are shown here.) After
entering all the values, return to the main menu.

x: 3.00800
(MATA[MATE[MATR]||]

EXIT

Enter values for the constant matrix MATB.

x: 0.008008
(MATA[MATEIMATR]|]|

164 5: Matrices

Calculate the unknowns.

MAT =

I,1s 21 A. Now check 7, .

Check I5.

1:1=21.0600008
€jop]+|4|GOTOf+|

2:1=8.08000
ISTIT[T

3:1=3.06000
[€Joww]+|4[cOT0f3|

4:1=1.080080
[€jotp|+|4|GOTO|-|

Leave the matrix editor. (Stay in the Simultaneous Equation application
for the next example.)

EXIT

x: 1.0800
(MATAIMATEIMATR]||]

5: Matrices 165

Example: Solving Simultaneous Equations That Have Com-
plex Terms. Now consider the following circuit.

)| AY AY AY
J1 I /1 /1
C, C, Cg Cy

The capacitor in each loop ofthe circuit introduces a complex term into
each loop equation:

1 |(Ry+ Ra) = (5| (1) = (Ra)(Ja) = ¥

2. = (Ra)(Ia) + Ry + Ry + Ry = i(25)| (1) = (Ra) (Is) = 0

3. - (RO)(I3) + Ry + Ry + Re =i (25| (Ia) = (Ra) (1y)= 0

 4. - (Re)(I3) + —Re + Ry + Rg - i(w(%).(h) =0

166 5: Matrices

Put the equations in matrix form, substituting the following values for the
variables: V' = 34V, R, through Rg = 50, w = 100 radians/second,
and C; through C, =1F.

10 - i0.01 -5 0 0 I, 34
-5 15 - i0.01 -5 0 I; 0
0 -5 15-i001 -5 I.] = |o
0 0 -5 15-i001| |f, 0

Set the coordinate mode to Rectangular. Make MATA a complex matrix.

B(MODES] x: 0.0000 10,0000

 0 [ENTER (MATAlHRTEIMATE]]

|

|

(x]

Enter the values for the elements of the matrix. (The keystrokes for the
entering the first row data are shown here.) After entering all values,
return to the main menu.

x: 15.0000 -10.0100
 10 ENTER] .01 [+ CHRGEIEGN

B(COMPLEX

5[4

EXIT

Solve for MATX. (MATB has the same value as in the previous example.)

1:1=4.2600 i0.0061
[<fote]+|4[GOTO[3|

I, is 42000 + i0.0061 A. Now check I, .

 2:1=1.6000 i0.0037

5: Matrices 167

Check I5.

 e 3:1=0. 6000 10,0019

Check I, .

4:1=0.206800 i8.0008

Exat from MATX.

EXIT

x: B.2000 i8.06808
(HaTh[MATE[MATR]|]

Make MATA and MATX real matrices. Exit from the Matrix application.

_MATHB(COMPLEX] v: [4x1 Matrix]

X:[4x1 Matrix]

B(COMPLEX

Using the Solver with Simultaneous
Equations

In the examples in the previous section, you found the loop currents I
through 7, by dividing the constant matrix MATB by the coefficient matrix
MATA. You were limited in that example to solving specifically for the
loop currents in the solution matrix MATX.

In the following example, you’ll use the Solver and matrix divisionto find
the value of one element ofthe coefficient matrix, MATA, given:

m Values for the other elements of the coefficient matrix.

m Values for the elements of the constant matrix.

m A specified relationship between two values of the solution matrix.

168 5: Matrices

Example. Using the Solver to Find the Value of an Element
of the Coefficient Matrix. Consider again the circuit from the previ-
ous section in this chapter.

R4 Rg Rz

 W
+

v = Iy

I

y—

=S

W

Find the resistor value R; such that loop current I, is 20A greater than
loop current I, (I; = I5+20), when V' = 40 V, and R, through Rg = 1 Q.

These conditions generate the following matrix equation.

R

-1

0

0

-1 0 0 I, + 20

3 -1 0 I,
-1 3 -1 I,

0 -1 3 I, O
O
O
S

5: Matrices 169

Part 1. Write the program for the Solver.

Program:

#8 { S2-Byte Pram

#1 LEBL "SIMUL"™

B2 MVAR "R"

22 MVAR "ROW"

A4 MVAR "CoL"

83 MVAR "D"

#5e IMDEX "MATA"

87 RCL "ROW"

A2 RCL "coL"

B9 STOIJ

14 RCL "R"

11 STOEL

12 RCL "MATE"

12 RCL+ "MATAH"

14 STO "MAT="

15 IHDEX "MATH"

16 RCLEL

17 I+

12 RCLEL

19 RCL+ "D"

28 -

21 EHD

170 5: Matrices

Comments:

Lines 02-05: Declare the variables R,

ROW, COL, and D.

Lines 06— 11: Index the coefficient
matrix, and set the index pointer to
the elementspecified by the current
values ofROW and COL (lines 05-
08). Store the current value ofR (sup-
plied first by you as initial guesses, and
then iteratively by the Solver) in the
specified element (lines 09 - 10).

Line 12-14: Solve for MATX. MATA

has the current value ofR in the

specified element.

Lines 15-20: Index the just-calculated
solution matrix (line 14). Calculate
I, - (I; + D) (lines 15-20). The
Solver iteratively supplies values for R
until7, - (I; + D) = 0.

Part 2. Enter the Matrix application, and specify a system of equations
with four unknowns.

BMATRIX] SIMi4 [ENTER) %: B, 0000

[MAThMATEAT|||

Fill MATA with the known coefficients. Element 1:1 contains the

unknown resistor value R. You can leave this element atits current value.

(The keystrokes for the first two rows are shown here.) After entering all
the data, return to the main menu.

MATA %3. 8000
1 [MATHIMATE[MATR]]|

EXIT

Fill MATB with the known constants, then exit from the Matrix applica-

tion.

 0

EXIT] (EXIT] [EXIT

Select the Solver application, and then program SIMUL.

[SOLVER] # |x: 40. 8000 I
") IATTTI

Specify element 1:1 of the coefficient matrix.

COL=1.06080608
R[RroMfcoLo]|

Enter 20 for D.

D=20.8000
ITNTTI.

5: Matrices 171

Enter guesses of 0 and 10 for R and solve for R.

R=1.6190
GTTTI

Verify that element 1:1 of the coefficient matrix (R) is 1.6190.

B(MATRIX] (V] 1:1=1.6190
EDITH MATH

R; = R - R, = 0.619 Q. Check the values for I; and I, .

1:1=32.30677
[¢«Jote]+|4|GOTOf&|

I, is 32.3077 A. Check I,

2:1=12.307°7

I,is 12.3077 A. Exit from the Matrix application.

Matrix Operations in Programs

All matrix functions except GOTO are programmable. The programs for
advanced statistical operationsin the following chapters use matrices
extensively.

The program LIST on pages 176 —178 enables you to accumulate statisti-
cal data in a matrix with the same keystroke sequence that you use in nor-
mal data entry into the summation registers.

The program MLR on pages 186 - 192 uses matrix and statistical functions
to calculate a linear regression for data sets of three independent vari-
ables. MLR creates a coefficient matrix MATA and a constant matrix

MATB.1t executes matrix editor functions to fill them with data, then exe-
cutes matrix division to calculate the solution matrix MATX.

172 5: Matrices

The program PFIT on pages 218 - 222 plots thestatistical data from the
matrix currently in the X-register, then fits and plots a curve to the data
using the current statistical model. It plots the curve and the data points
using x-y data pairs from complex matrices.

5: Matrices 173

6

Statistics

This chapter presents five programs for statistical operations. The pro-
grams use statistical functions introduced in chapter 15 of your owner’s
manual, and integrate matrix operations presented in the previous chapter
and in chapter 14 of your owner’s manual.

m Three programs enable you to accumulate data in a matrix for subse-
quentstatistical operations:

m LIST enables you to fill an n x 2 matrix 2LIST with x- y data
pairs with the same keystroke sequence that you use to enter data
into the summation registers.

m YFORM stores an n X m matrix in £LIST and redimensions
LLIST to nm x 2. Each element of the original matrix becomes
an element of column 2 of XLIST. Column 1 is filled with zeros.

m XVALS fills column 1 of XLIST with x-values 1, 2, 3,..., n for

linear or exponential curve fitting.

m MLR calculates a multiple linear regression for two or three indepen-
dent variables using the £+ function and matrix operations.

m PFIT plots the x-y data pairs from XLIST and uses FCSTY to plot a
curve to the data according to the currently selected statistical model.
(The annotated listing of PFIT is in chapter 7 on pages 218 -222.)

174 6: Statistics

List Statistics

To supply a set ofx-y data pairs to the calculator for subsequentstatistical
operations, you use the keystroke sequence

y-value [ENTER] x-value

for each data pair. The summation coefficients in the 6 (or 13) summation
registers are automatically recalculated each time you press [Z+]. The cal-
culator does not, however, maintain a list of the individual data pairs.

To update the summation registers and maintain a list of the x-y data
pairs, you:

1. Create a 2-column matrix.

2. Use matrix editor functionsto fill the matrix with the data pairs.

3. Place the matrix in the X-register.

4. Exccute X+ to accumulate the data in the summation registers.

(You did this in chapter 5 in the section "Using Indexing Utilities and
Statistics Functions Interactively".)

6: Statistics 175

The LIST Program. The following program, LIST, enables you to fill a
1- or 2-column matrix XLIST with x-y data pairs using the keystroke
sequence

y-value [ENTER] x-value LIST+(for each data pair).

where L15T+is one of three menu keys built by LIST. Note thatthis is

the same keystroke sequence that you use to enter statistical data into the
summation registers.

To key in LIST:

1. Create variable XLIST before program entry.

2. Assign functions J+ and J - to the CUSTOM menu before program
entry.

3. Create labels LIST, LIST +, LIST —, and CLIST when you begin

program entry.

Here is an annotated listing of LIST.

Program: Comments:

Ba £ 197-Bute Pram >

A1 LBL "LIST"

A2 CLMEHU Lines 02-11: Build and display the

a3 "LIST+" menu keys.
g4 EEY 1 HEQ "LIST+"

Ba "LIST-"

BE KEY 2 HER "LIST-"
gy "CLI=T"

B2 KEY & XEQ "CLIST"

#3 MEHLU

18 STOF
11 GTO "LIST"

176 6: Statistics

12 LEL "LIST+" Lines 12-20: If ZLIST exists, index it

£
0

o
o

g
I
N

M
O
=

=
t

b
t
b

e
t
e

=
M
P
T

P
O

O
[

D
I
N
B
0
T

e
0

0
3
M

=
W
0

[
y

2
M

£

M
M
=

T

o
n

T
w
0
0
=
]

F
o
o
p
B

0
0
0
0
O
0

0
0

0
0
0

r‘
l_

'l
—
t

SF 25 and make it grow by one row. If it
HEQR I doesn’t exist, create and index it (in
FC?C 25 lines 32-42).
GTO @2

GROW

._l—

J+

WERF

LEL @&a Lines 21-28: Store the x-value into
STOEL the matrix. If flag 01 is clear, then also
F5? @1 store the y-value.
GTO &1
J+

naey

STOEL

waey

LEL &1 Lines 29-31: View the ¥LIST matrix.

VIEWM "ZLIST™

ETH

LEL @z Lines 32-42: Create the 1- or 2-

1 column matrix XLIST.

= [
—
y

'
] J

1% k
e

DIM “"ZLIST"

“ER I

F4

F4

GTO 1
5 - 2
t

6: Statistics 177

43

T
T
N

oC
n

0
[
e

o
W

0
0

|:
T'

-
()

]
£

178

LEL "LIST-"
- -
SF 25

RER T

» FC? 25

> RTH
J

RCLEL

Fs? 81

GTO 83
o

FCLEL

LEL &3
DELR
FS7C 25
GTO 81

LEL "CLIST"
CLY "ELIST"
RTH

LEL I
INDEX "ZLIST"
RTH

EHND

6: Statistics

Lines 43 -53: Recall the element(s) in
the last row of XLISTto the X- (or X-
and Y-) register(s).

Lines 54 -57: Delete the last row of

YLIST.

Subroutine CLIST, lines 58 - 60: Clear

the variable XLIST.

Subroutine I, lines 61 -63: Index

YLIST.

To use LIST:

1. For two-variablestatistics (x- and y-values), clear flag 01. For one-
variablestatistics (x-values only), set flag 01; the program makes
LLIST a 1-column matrix.

2. Press (XEQ] LIST.
3. Clear XLISTbypressing

4. Enter data pairs by pressingy-value [ENTER] x-value LIST+(for
each data pair).

5. You can delete the last data pair by pressing LI

Example: Accumulating Statistical Data in a Matrix. Use pro-
gram LIST to accumulate the following x-y data pairs in the matrix XLIST.
Then find the mean of the x- and y-values.

x-value y-value

6 2

5 3

9 5

6

1

4

12

21 1

7

Clear flag 01 for two-variable statistics. Start LIST.

BFLAGS] .cF01 x: 9, 0000
e NEDEDNN.

Clear LIST.

CEISTE Ix: 0. 0808008
ListeuisT-]|1JCLIsT)

6: Statistics 179

Enterthe first data pair.

2 [ENTER)6LIST+ SLIST=L 1x2 Matrix 3
CEreluist=]1[[eLisn

Key in the next data pair.

3 SLIGST+ ZLIST=L 2x2 Matrix 1
LisTejLisT=]]| [cLIST]

Key in the remaining data pairs (the keystrokes are not shown here). Exit
from LIST.

EXIT v: 4.0800
x: 7. 80008

Clear the summation registers. Recall ZLIST to the X-register.

BCLEAR] cLZ T .

[RCL]) ZLIST x: [62 Matrix 1

Accumulate the data from LLIST into the summation registers.

v: 7. 8008
x: 6.08008

Find the mean of the x- and y-values.

B(STAT] MEAH %: 10. 0000
|mlmmmmam|

The mean ofthe x-values is 10. Check the mean ofthe y-values.

(xzy] %: 5. 1667
Z+SUM[MEAN[IENSDEYCRIT

Exit from the STAT menu.

EXIT v: 18,8000
X: D. 1667

180 6: Statistics

Redimensioning the XL/ST Matrix to nm x 2. In the previous exam-
ple, you used LIST to create a 6 X 2 matrix LLIST. You then recalled
LLIST to the X-register, and executed £+ to accumulate the x-y data
pairs from the matrix into the summation registers. To execute £+ when a
matrix is in the X-register, that matrix must have a column dimension equal
to 2. If, for example, you use LIST to create an n x 1 matrix XLIST (by
setting flag 01), you must redimension it before executing X+.

The following program, XFORM,redimensions any matrix XLIST of
dimension n X m to dimension nm X 2. All of the elements in the input
matrix are moved to the second column. Thefirst column is filled with 0’s
(zeros).

aa £ S52-Bute Pram

@1 LEL "ZEZFOEM"

o
—

RCL “"ELIST"

LIM?

> DIM "ELIST"

IMDE® "ZLIST"

1

ENTER

2

R<>R

FCL "ELIST"

TEAMS

ST “ELIST"

=

F
o

O
3
[

o
o

S
3

T
N

=
o

W
0

0
0

=
~

T £
0
3

M
Y
o

e i
n EHD

Filling Column Two of ©L/ST with Evenly Spaced Integers.
You may wantto fit a linear or exponential curve to a set of one-variable
statistical data. The following program, XVALS,fills the first column of
the ELIST matrix with integers 1,2, 3, ..., n. If ELIST is a 1-column

matrix, XVALS automatically creates the new column.

6: Statistics 181

Program: Comments:

g8 ¢ 46-Bute Fram 2

A1 LEL "=®VALS"

a2 RCL "ZLIST" Lines 02—-08: Recall ZLIST. If itis a

Az DIM? 1-column matrix, execute ZFORM to

a4 1 make it a 2-column matrix. Then index

HS - it.

HE wLl?

a7y =EQ "EFOREMM

A2 IMDES "ZELISTM

a9 LEL B4 Lines 9- 14: Fill column 1 with

18 RCLIJ integers 1, 2, 3, ..., n. Continue to the

11 =Yy end of the column.

12 +

12 FC7 76
14 GTO B8

15 EHD

Using the Summation-Coefficient Functions

(x+, X, and CLY) in Programs

The program MLR in this section uses the £+ function and matrix opera-
tions to calculate a multiple linear regression for three independentvari-
ables.

For a set of data points { (x; ,y; ,2;,4),i = 1,2,..,n }, MLR fits a
linear equation of the form

t=a+bx+cy+dz

by the least squares method.

182 6: Statistics

Regression coefficients a, b, ¢, and d are calculated by solving the follow-
ing set of equations.

n g Yy Xy ¥a
o Z()? Iy Ixz b Lx; ¢

o Zyixi TO)? Zyiz c Ly

EZ,' EZ,‘ X EZ" Yi E (Z,') 2 d EZ,' tl'

The coefficient of determination R?2is defined as

aXt;, +b¥x;t; + cEy,- ;;, +dXz; t; - %(Et,')2

 R? =
£ - o (B6)*

Here is a flowchart for MLR.

6: Statistics 183

sonsnes912:1

CrusChwCrs)

1!! SH31SIO3Y13Svivd1SV13HL|'44300TvOILSILVY1S

NOILVWWNNS11VLOVHLENSOL-XANV|31vaddNOL+XANV

Hv310OlX17038NHLIHVMOVLS3SNHLIHVMOVLS3Sn

DL)

>

@|SLEBXI&iax"LL23X1
uO-]VOnA//Z-]Ow“wA//"Z//A++<.,A

€A€A¢AIMFAIX

1NdNIHO4dO1SANV

NN3INNIVINAV1dSId

! SAIMNNINW
NIVaTing

00
1971

13Sv1vdM3N

HLIMSIN3I0144300
IVOILSILVLS31vddn

0100V14V31O

A
XLYW‘GLYWVIV
S3DIHLVNaling

41N

FILL MATA, MATB

WITH SUMMATION

COEFFICIENTS

v
CALCULATE MATX

AND R2

v
BUILD SOLUTION

MENU

DISPLAY SOLUTION MENU

AND WAIT FOR DATA INPUT

KEY 9@

KEY 5 KEY 6 oL

6_@2 &xmfi &xmé &xmf e
A . oo 0" “Ro" —

& DISPLAY
R2

LOAD ALPHA REGISTER
WITH VARIABLE NAME CALCULATE
AND X-REGISTER WITH AND DISPLAY T

CORRESPONDING COLUMN

NUMBER OF MATX

'
INDEX MATX AND

DISPLAY VARIABLE

6: Statistics 185

To key in MLR:

before program entry.
1. Assign functions —, 1, +, |, I- and J+ to the CUSTOM menu

2. Create variables MATA, MATB, MATX, R2, and T before program
entry.

Here is an annotated listing of the program.

Program:

aa

a1

o
S
S
S

T
N
B

0
0
M

s
e
S
S

=
0
0
0

M
-

P
t
b
b
b
b

e
k
b

O
O
~
W

N
N

M
o
=
@

N
M
M
M

o
e
W

M =-
J

186

{ 460-Bute Pram 2
LEL "MLR"

FEALRES
4

EHTER

1

CIM "MATA"

LIM "MATE"
4

ENTER

DIM "MATA"

CF oa

LINE

LEL 86

CF 21

CLMENU
" E+ 1

KEY 1 XKER 11
" E__ "

KEY 2 XKE& 12
n CLE n

KEY 3 XEQ 13
" CHLC n

KEY & GTO 14

MENU

CLD

STOP

GTO B8

6: Statistics

Comments:

Lines 02-12: Setto calculate real
results only. Create 4 x 1 matrices
MATX and MATB. Create 4 x 4
matrix MATA. Clear flag 00 (set to
£+ mode). Set to Linear (statistics)
mode (calculate six summation
coefficients).

Lines 13-27: Build and display the
menu keysE——

w
0

0
0

o
o

0
3
[
e

n
1
T

o
0

0
0
—
~

B
P
O
O
0

Q
0

0
0

0
0

Q
0
O

0
0
O
Q
0

l
_
‘
.
—
"

43

a
n
o
n
b

W
0

r-
._
'l
e

0
1

n
o
n
o
n

£
a
a
n

a
n
o
d

=
]

A 0-t

ZREG @7

FS? ba

RTH
=+

r-
J

-
l

Subroutine 11,lines 28 — 58: Emulate

X+ (or - if flag 00 set) to update the
following summation coefficients: Lxz

in Ry3, Bt in Ryg, Tyz in R4, Tyt in
R 6. Execute £+ to update the follow-
ing coefficients: £z in Ry, 222 in R gg,
¥ in Ry, %t2in Ryg, Y2t in Ry, 1 in
Ry

6: Statistics 187

T
W
0

T
i
T

N
W

f
r
a
o
—

T
N
T

1
T

|'
_T
'-

o
=

|'
_T
'-

[¥
u]

=
£

0
3
M
o

~J
s
g

s
=

n

=
]

=

(
g

o
=

o
W
0

M
=

0
0

0
D

Q
0
0

~
)

=
~

n
o

o
l

=
]
T

g
W
O

M
g
0

0
3
o

w
0

LEL &1

CLA

LAST®

F4

R4

ZREG 81

FS?C 8a

ETH
=+

FETH

LBL 12

SF g

AER 11

AER &1

FETH

LEL 12

ZEEG 11

CLE

ZREG @7

CLE

EZREG 81

CLZE

RTH

LEL 14

"Calculating"

AYVIEHN
=

} STOx "MATA"
IMDE:= "MATH"

6: Statistics

Subroutine 01,lines 59 - 68: Execute

L+ to update the following
coefficients: £x in Ry, 22 in Ry, Ly
in R, Ly2in Ry, Lxy in Rgg, and 1 in
Ry . (Note that n is also calculated in
subroutine 11.)

Subroutine 12, lines 69 —-75: Emulate

Y- (set flag 00) to update the
coefficients calculated in subroutine
11. Execute £- to update the remain-
ing coefficients.

Subroutine 13, lines 76 - 83: Execute
CLEX to clear all defined summation

registers.

Lines 84— 147, calculation of

coefficients a, b, ¢, d, and R? : Fill
MATA with x, y, z summation
coefficients. Fill MATB with t summa-

tion coefficients. Calculate MATX
(MATB +~ MATA). Calculate R2.

o Ja
u

L N
L
1

I_
T‘
l

o
o
T

o
0

0
0
=

=
=

o
S
S

g
0

=
)

.

-
b
t
b
b

b
k
b
b
b
b
b
e
e
0

L
0
O

—
_

o
=

L
N

B
0
0
O
e

o
T

b
b

P
t
b

1

114

115

11e

117

112

112

128

121

122

122

124

125

P
t

r'
l_
.l

i
1 "

o
o

0
0

-

P
k

k
e

e
k

e
k

e
k

e
k

e
k

e
k

O
O
3
O

0
3

0
3
P
O

F
o
O
O
e

n_l +

2 RCL 14

T 4

RCL "MATAR"

TEAMS

» STO+ "MATAR"

RCL @2
4+

4:_

ACL -) 4

+
>+
3
4
+

>
o F
‘

= M

RCL 85

STOEL

IMDEX "MATE"

RCL 89
4

ECL 15

+

FCL 1&
+

FCL 11

> STOEL

RECL "MATE"

RCL+ "MATA"

STO "MAT="

LASTA

TEAHS
LEs e
SN ST

FHEM

6: Statistics 189

B33A -
~2

:.f. -

'A —
ra

+ BE

o
=

I
N

-
b
‘
d
-

b LASTH
RCL 18
KO

143 +
144 STO "R2"
145 CLD
146 FS7 S5
147 SF 21

e
e
e
e

Ja
o

D
0

Q
O

Q
0
g

Q
0

i
)

F My
=
I

1

= S) -@ LBL &8z Lines 148 -164: Build and display the

"H" solution menu.
KEY 1 RER 21
nEn

EEY
" I:: "

KEY
n ['I "

KEY 4 HED 24
"R
KEY 5 XER 25
n T'-_,l n

KEY & HEQ 2
KEY 9 GTO &
MEHMU

STOF

— Ja
u

L

[
N

T
N
e
O
O

I
W
0

i
n

N M
2 HER 22

N

=ERN 232

n
o
c

o
o
N

o
B

0
0
a
0

0
=
)

b
b
b
b

e
k

e
k

e
k

e
k

e
k

e
k

e
k

e
k

e
k

e
k

e
k

(T
n

4 GTO 82

U
"
.

n LEL 21 Subroutines 21-25, lines 165-192:

1 Display the calculated coefficients a,
gt b, c,d, and R2. If PRON has been exe-

T
T

(
T
i

GTO B3 cuted, print the coefficients (lines 187
LEL 22 and 191).T

o
W

0
=
)

[

1 t' "

P
k

e
k

e
k

e
k

e
k

e
k
e

i
=
g
=

[
y

190 6: Statistics

T
N

f
a

0
3
[

Q
=
g
=
)

o
=
y

=
0
0
0
D

0
0

Q
D

0
3

P
O
e

o
T
N

b
O
~

=
o

o
0

Q
D

Q
0

Q
0

0
0

P
k

e
k

e
k

P
k

o
k

e
k

e
k

e
k

o
k

e
k

e
k

e
k

e
k

e
k

o
k

e
k

e
k

e
k

e
k

e
k

e
k

g M
y
=

|_
£|

v

T
N

0
D

o
o

o
o

M
S

g
o
W
a

0
o

3
0

0
3
)

g 1
)

P
O
D
P
3
O
P
)
o

e
t
e
e

e
t
e

o
o

-
~

e
k

GTO

LEL
]
2

GTO

LEL :
4
lldll

LEL B

1

IMDER "MAT=A"

STOIJ

RCLEL
'_II___II

ARCL ST =

AVIEW

RTH

LEL 25

RCL "Rz2"

VIEW "R2"

RTH

LEL 26 Subroutine 26, lines 193 -205: Fore-

INDEX® "MAT=" cast T based on the calculated

“EG 84 coefficientsa, b, c, and d. Display T

HER 04 and, if PRON has been executed, print
AER B84 T.
+

+

I -—

RCLEL
+

STO wT™

VIEW "T"
RETH

.,
.

wae
dle

’

o
3

o
o

M
5 A
N

[0
0

ol

6: Statistics 191

o
T i

=

C
o
o
u

0
D
)

M
a

M
y
P
T
g
T

e
-
T

—

% LEL 64 Subroutine 04, lines 206 -210: Calcu-
I- late termsbx, cy, and dz.

RCLEL

RCL= ST T

RTH

EHD

To use MLR:

7.

Press SMER

Press

 _to clear the summation registers.

Enter each data set, using the keystroke sequence t-value [ENTER
Z-value ([ENTER] y-value [ENTER] x-value @Z-

Press CHLC.

. Press the corresponding menu keys to see the values ofvariables a,
b, c,d, and R2.

To forecast 7, use the keystroke sequence z-value [ENTER] y-value
ENTER] x-value @17.

To return to the main menu, press [EXIT].

Example: A Linear Regression For Three Independent Vari-
ables. Find the regression equation for the following set of data.

i11]12|3|4]|5

x| 7| 1|1nf11] 7
y 25|29 |56 |31]52
z| 6|15| 8| 8| 6
t, |60 |52|20|47 |33

Execute MLR.

192

 x: 4.0800
Z+E-JoE]| JeRLo]

6: Statistics

Clear the summation registers. Enterthe first data set, starting with the
t-value.

EpETE
60 [ENTER] 6 [ENTER] 25 [ENTER]

7=

Enter the second data set.

52 [ENTER]J 15 [ENTER] 29 ([ENTER]

x: 2.0800
ITS.T

Enter the remaining datasets (the keystrokes are not shown here). Now
calculate the regression coefficients and the coefficient of determination.

CRLC x: B. 9989
GGTS

Check the value of a.

a=103.4473
GNA

Check the value of b.

b=-1.2841
IBAOT

Check the value of c.

B

Check the value of d.

s d=-1.3395
HFHEEFREESEEEEECE

Check the value of R2.

s [R2=8.9589
TGGTT

6: Statistics 193

Calculate T (the forecasted value of ¢ given values for x, y, and z). Use the
values from data set #4.

8 31 1
s-fT "‘-

(The actual value of ¢ in data set #4 is 47.) Return to the main menu and
clear the statistics registers for new data.

CLE x: 46.4616
Z+Z-JCLE] JCALCH

Exit from MLR.

EXIT

Curve Fitting in Programs

The curvefitting functions FCSTX, FCSTY, SLOPE, YINT, CORR,

LINF, LOGF, EXPF, PWRF, and BEST are programmable.

Refer to program PFIT on pages 218 -222 in the following chapter. PFIT
uses FCSTY in line 89 to forecast a y-value based on the currently
selected statistical model for each of 110 x-values. A curve is then plotted
with the 110 data pairs.

194 6: Statistics

Graphics and Plotting

The following topics are covered in this chapter:

m Building graphics patterns.

m Multifunction plotting.

m Plotting statistical data from a complex matrix.

Graphics

The program HPLOGO in this section uses the XTOA and AGRAPH
functions to build the Hewlett-Packard company logo in the center of the
display.

To key in HPLOGO:

1. Assign the functions XTOA, CLA, ARCL, and XEQ to the

CUSTOM menu.

2. Create the variable BLOCK.

7: Graphics and Plotting 195

Here is the annotated listing.

Program:

[a
x]A6

.11p
—

™
1
T

.E
.

|'_
-;3

|
[
0

o
o

W
O

0
o
=
g
o
L
n

™]
.

-
o
=

13

— £

[
y

o
n

o
0

2
0
=
)

F
J
P
P

P
o
=
=
=

2
N
o
F
O

[
d
e

P
P

[0
T

=
J
T

196

* 441-Bute Pram >

LEL "HPLOGO"

CLLCD
CF 34
CF 35

HER "TOP"
1
ENTER
46
AGRAFH

wEG "BOT"
-

2 ENTER

48

AGREAFH

FTH

LEL "TOP"
CLA
e
et

“TOA

“TOA

“TOA

“TOR

“TOA

“TOR
H=ZTO "BLOCE"

CLA

254

7: Graphics and Plotting

Comments:

Lines 02-04: Clear the display for
graphics. Clear flags 34 and 35 so that
graphics placed in the display with
AGRAPH are merged with any
graphics alreadyin the display. (The
top and bottom halves of the logo are
built separately and merged in the
display.)

Lines 05-09: Call subroutine TOP to
build the top half of the logo. Then
display the top half of the logo, start-
ing at pixel (1, 40).

Lines 10-15: Call subroutine BOT to
build the bottom half of the logo.
Then display the bottom half of the
logo, starting at pixel (9, 40).

Subroutine TOP,lines 16 —91: Build

the Alphastring that represents the
top half of the logo. (Begin by building
the Alpha string that represents an 8 x
6 block of on-pixels and storing that
string in the variable BLOCK.)

W
M
M

=
R
W
M

0
0
D

W
o
y
W

W
W
W
W

o
ATOR

ARCL "BLOCK"

235

®TOA

63

“TOA

15

“TOA

v

“TOA

*TOA

3

ATOA

1

ATOA

129

RTOA

224

» »wTOR

128

» RTOA

Jv
@
I
™
A

a
n
a
n
a
n

N
o
f
W
0
0
N

R
W

T T

62
XTOA
39
XTOR
161
KTOR
224
XTOA
96
HTOR
B
HTOA
1
HTOR
129
XTOR
225
XTOR

7: Graphics and Plotting 197

W
M

o=
@

o0
00
)

N
f

o
0

0
0

=
)
M

W
O

o
D

0
D

0
0

0
0

0
0

0
0

0
0

0
D

0
0

0
0

0
0
)
)
)
)
]
)
]
N
)

T
T

o
0

0
0
=
M
N

0
0
O
e

e
I

3
0

0
0
)
I
N
R

O
3
P

=

-
b
e
e
0
0
0

o
0
0
O

O
= F
o
O

[
0
e

198

a7

“TOA

a3

“TOR

“TOA

35

*TOA

ez

“TOR

221

“TOA

1832

ATOR

15

“TOR

21

ATOA
53

“TOA

ARCL "BLOCE"
e2350

“TOA

254

“TOA

FETH

LEL "BOT"

CLA

127

“TOA

ARCL "BLOCK"

235

“TOR

232

»TOA

2408

»TOA

224

“TOA

7: Graphics and Plotting

Subroutine BOT,lines 92— 156: Build

the Alpha string that represents the
bottom half of the logo.

185

185

187

188

189

116

111

112

113

114

115

116

117

118

119

128

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

“TOR

192

“TOA

198

®TOA

135

»TOR

129

XTOA

XTOA

“TOAR

XTOA

xTOAR

129

®TOA

224

®TOAR

126

XTOA

30

XTOR

XTOA

xTOR

122

XTOA

®TOR

xTOR

198

XTOR

199

*TOR

225

xTOAR

224

7: Graphics and Plotting 199

144 XTOA
145 248
146 XTOA
147 243
148 HTOA
149 252
156 XTOA
151 ARCL "ELOCK"
1 C;ooc
o St

53 HTORA
4 127
S WTOA

S& RTH

1537 EHMD

Example: Building a Logo. Display the Hewlett-Packard logo. If you
have a printer, modify HPLOGO to print the logo. Then printit.

Execute HPLOGO.

HFELO [fia

Insert the instruction PRLCD after line 14 of HPLOGOto print the logo.

@(PRGM] B(GTO] (] 14 Y: 9. 0000
(V] FRLECD x: 48. 08800

Print the logo.)

BPRINT] (A] FOH I[%@il
HFLD

Using Binary Data to Build a Graphics Pattern. To build the
logo in the previous example, you had to calculate the column print
number for each of 91 columns - a time-consuming effort. The following
program, BINDATA, calculates the column print number when you input
the equivalent sequence of binary numbers in a column pattern.

200 7: Graphics and Plotting

Program:
I
U
v

2
I

Fo
o

0
3

[
0

e
e
e
e
e
D
T

S
D

e
0
o
=
S
2
0

=
O

O
n

—
w
0

0
0

=
]
T

P
0

P
O
[

T
l
)
o
=
e

Ja
o

0
0

[
0

M

{ 68-Byte Pram 2

LEL "EIMDATAR"

CF =4

CF 35

EIHM

LEL 8@
CL¥
STOP

126
KO
WY
GTO &1

XTOR
}_ nn n

LEL &1

AHIF

AYIEHN

CLAH

ATOR

1

EHTEFE

EHL:

Comments:

Lines 02-04: Clear flags 34 and 35.
Set the calculator to Binary mode.

Lines 05-15: Clear the X-register and
suspend program execution for binary
data entry (lines 06—07). Build an
Alphastring of five spaces (line 08).
Testif the binary data (converted to
decimal form) is greater than 126. If
so, go to label 01. If not, enclose the

corresponding HP-42S Alpha charac-
ter in quotes and append two spaces
to the Alpha register.

Lines 16 -25: Append the number in
the X-register (the decimal equivalent
of the binary data) to the Alpha regis-
ter and display the current contents of
the Alpha register (lines 17-18). (The
Alpha register contains the decimal
number equivalent ofthe binary data.
If that number is less than 128, the

Alpha register also contains the
corresponding HP-42S character,
enclosed in quotes). Build the
equivalent column pattern and display
it, beginning at pixel (1, 66) (lines
20-24). Return to label 00 for the
next data entry (line 25).

7: Graphics and Plotting 201

To use BINDATA:

1. An on-pixel has value 1. An off-pixel has value 0.

2. Enter digits beginning at the bottom of the column.

3. If, for example, you enter only
interpreted to be zeros.

4. Press after data entry to
tion is displayed, simply key in
you are ready.

six digits, the bottom two digits are

see the calculation. After the calcula-
the next sequence of numbers when

Example: Using Binary Data to Build a Logo. Columns 16-18 of
the Hewlett-Packard logo in the previous example have the following pixel
patterns.

O
O
O
a
a
n
u
n

J
O
E
B
E
E
R
O
O
O

Column # 16

Last Digit Entered

First Digit Entered

c
O
O
N
E
E
E
R
Q
O

Use BINDATA to calculate the column print number for each column.

Start the program.

Enter the binary data for column 16.

11100000

202 7: Graphics and Plotting

x: @
#...F[HEXM[DECH[OCTH] EINe [LOGIC

224

The column print number for column 16 is 224. There is no equivalent
Alpha character. The column pattern is at the right of the display. Now
enter the binary data for column 17.

01111000 (R/S] "x" 128

The column print number for column 17 is 120. The equivalent HP-42S
characteris "x". (You can therefore either accumulate 120 in the X-
register and execute XTOA, or accumulate character "x" in the Alpha
register. The column pattern is at the right of the display. Enter the
binary data for column 18.

00111110 (R/S] "Toe2 I

The column print number for column 18 is 62. The equivalent HP-42S
Alpha character is ">". Now exit from the program.

EXIT v: 1.00800
x: @.0000

(Referto the character table in your owner’s manual (appendix E) and
note that five of the first 127 characters cannot be typed from the HP-42S
keyboard. The character codes are 4, 6, 13, 27, and 30. Program

BINDATA shows you the character corresponding to each of these codes,
but because these characters cannot be typed, you must accumulate the
corresponding character code in the X-register and execute XTOA.)

Multifunction Plots

The program PLOTS3 in this section enables you to plot up to three func-
tions concurrently on the HP 82240A Infrared Printer. It is based on the
program PLOTin the section "Example Programs" in chapter 10 of your
owner’s manual. As in PLOT, you supply to the program the name of the
routine that defines the function you wish to plot. However, in PLOTS3,
you can supply up to three routine names.

7: Graphics and Plotting 203

Here is a flowchart for PLOT3.

&

LBL
00

PLOT3

USE VARIABLE MENU TO

STORE PLOT PARAMETERS

v

INPUT FUNCTION

ROUTINE NAMES

v

PLOT HEADER INFO

AND INITIALIZE

v

SET INITIAL x-VALUE

 CLEAR DISPLAY
Y

(YMIN, YMAX, AXIS,
XMIN, XMAX, XINC)

NO |LABEL AXIS

<«

@YES

NO |DRAW AXIS
 ;

204 7: Graphics and Plotting

OR EACH PIXEL ROW
(1TO 16)

v

v
PRINT DISPLAY

PRINT FINAL
DISPLAY
¥

A
FOR EACH FUNCTION

+ A EVALUATE f(x)
INCREMENT

PLOT PIXEL

X - VALUE

-——=(NEXT FUNCTION

|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

-=—(NEXT PIXEL ROW

To key in PLOT3: Create variables YMIN, YMAX, AXIS, XMIN,

XMAX, XINC, FCN1, FCN2, and FCN3 before program entry.

Here is an annotated listing of the program.

Program:

B8 £ 424-Bute Fram

@1 LEL "FPLOTZ"

BE_' H'-.-'HF: " -.I.-H I H n

B3 MYAR YA
B4 MYAR "AXIS"
A5 MYAR "sMINY

BE MVAR HMAR"
a7 MVYAR "RIHCY

Comments:

Lines 02-07: Declare the menu vari-

ables.

7: Graphics and Plotting 205

=
.
s
=
=

0
3
M
o
0
0

0
0

T
o
C
n
£

- L

17

5
0

0
L
o
0

[
0
e

on
(
)

O
O
G
D

D
0
O

D
l
0
e
O
[

J
u

O
o
=
o
0

0
0
—

206

LEL A

VARMEWLD "PLOTE"

CF =24

CF 33

> CLA

STOF

“ITALL

"FCH1"

HER @7
"FCHzZ"

& HER @7
"FCHE"
HER 87

AL
"Flot of:"
PRA
FI [,I "l"

SF 12
RCL "FCHL®
HER B8
FECL "FCHZ"

HER B8
RCL "FCHE"
HER B8
ACY
CF 12
PRY "MIN"
FRY "YHAR"
PRY "AHIS"
PRY "HMIN"
FRY "HMAR"
FRY "HINC"
ADY
" YMINY
ke PHA St
FRA

7: Graphics and Plotting

Lines 08 - 14: Display the menu and
suspend program execution for data
input.

Lines 15-20: Promptfor the function
names (the subroutine labels).

Lines 21-43: Print the header infor-
mation. (In line 42, there are seven
spaces in the Alpha string before
YMAX.)

43

o
n
o
o
n

on
o
n
o
n
o
o
n
o
d
n

0
0
~
O
O
G
0

O
e

on
n

w
0

- k
e

T
L

—
T
T
T
T
T

O
N
e
O
3

T
o
0

0
0
)

=
g
g

2
N
O
3

o
e

12
RCL “YMAX"

» RCL= "YMIH"

RCL "s®MIN"

STO 81

LEL 86

CLLCD

FC? B0

®ER B3

FC? &1

RER B&

1.81:

sSTO @2

e
’

LEL @1

43,851

ST0O Bzke

LEL &2
"FCH"
RCL 62
+TOR
ASTO ST X
RCL IMD ST =

STR?
HER
120G

GTO
RCL "HIMC®
16

...
.
I
3
0

1
=

T

STO+ 81

Lines 44 -48: Calculate the relative y-
value of one pixel.

Lines 49— 50: Store the first x-value.

Lines 51-58: Clear the display. If flag
00 is clear, label the x-axis. If flag 01 is
clear, draw an axis. Build a loop
counter corresponding to the 16 rows
in the display.

Lines 59-61: Build a loop counter for
the three possible functions. (The
character codes for characters "1", "2",

and "3" are 49, 50, and 51 respectively.
Routine 02 uses these numbers to
create the variables.)

Lines 62-83: Create the Alpha strings
FCN1, FCN2, and FCN3 successively.
Call each string to the X-register, then
recall to the X-register the variable
that matches that string. Test if the
variable has an Alpha string (a func-
tion program name) in it (lines 62—
68). If so, plot a pixel for each func-
tion. Increment the x-value. If the plot
is complete (ifx-value > XMAX), go
to label 03. If the current display is
complete (if rows 1-16 are filled),
then print the display and start a new
one.

7: Graphics and Plotting 207

T
w
0
0

-l
00

03
0
~

an
)
W
r
a
-
3

)
0O
O
0

=
~

Q0
W
0

0
0

w
0

oo
D
0

W
O

0
D

F
o
0
d
M
o

W
O

n
o

=
]
T

W
o
u

0
—
=
0

=
W
0

=
- 1
o
l

.

n

P
t

e
k

e
k

e
k

=
1
T

= o
=

RCL "xMAR"

RCL &1

wey?

GTO &3

ISG a2

GTO &1

FRELCD

GTO aa

LEL B2 Lines 84 -87: Print the final display
FRLCD and stop. (Line 87 enables you to res-
RETH tart the program by pressing [R/S].)
GTO A

LEL o4 Subroutine 04, lines 88— 101: Evaluate
RCL 81 the function at x and plot the
HKER IND ST ¥ appropriate pixel.
SF 24

RCL- "YMIH"

RCLx B8

1
+

CF 24
RCL 82

nlxy

W@7

2 LEL a5 Subroutine 05, lines 102 - 108: Label

2 CF 21 the x-axis.

CLA

ARCL &1

AVIEW

SF 21

RTH

7: Graphics and Plotting

W
0

-
b
b
d
b

M
y
M

M
Y
P
P

g
o

n
£

0
g
e

M T
o
0

0
0

=
)

F
o

0
0
O

on
1
T

P
k

p
k

e
k

e
k

e
k

e
k

i
k

e
k

o
k

e
k

e
k

e
k

e
k

e
k

e
k

e
k

e
k

o
o

Q
3

0
0

Q
0
0
O
O
0
0
O
0
O
M
)

o
0

0
0

=
g

- £ M
=

143
144

LEL 8&

1

RCL "RRIS"

RCL- "YMIHN"

RCLx @&
+./=

1

FIXEL
' +/_

=
—

"aesnena !

AGREAFH

RTH

LEL &7

CF 21

» ASTO ST L

CL¥

AVIEW

FZE

CLA
- e
-t e

SF 21

SF 25

RCL IHD =

CF 25

STE?

ARCL ST =

ACOH

CLD

STOR

AOFF

[N
]

-

£ HLEHG

nEAT

AZTO =

Subroutine 06, lines 109 - 123: Draw
the axis. (In line 120, the Alpha string
is five "multiply” characters: press

B(ALPHA] (] (x] (x] (] (x] (ENTER].)

Lines 124 -146: Prompt for an Alpha
string (function name). If the variable
already contains an Alphastring, that
string is recalled to the Alpha register
as the default.

7: Graphics and Plotting 209

STO IMD =T L

FETH

LEL &= Subroutine 08, lines 147 -153: Print

» CLA the function names.

STR?
ARCL ST ¥
STR?

z FRA
FTH

EHD

To use PLOT3:

210

. Execute PRON and turn on your Infrared Printer.

Write a routine for each function that you want to plot. The current
x-value is in the X-register when the program calls the function rou-
tines. The routines need not recall the current x-value to the X-
register.

. Set the display format to ALL.

Start the program (press FLOTZ).

Supply the plot parameters. For example, specify 20 for YMIN by
pressing 20 WMIH .

. After supplying values for the plot parameters, press [R/S].

a. As prompted, store the name of each function routine in a
function variable. For example, to supply the name TAN for
FCNI1, press TAN at thefirst prompt.

b. If you have already supplied a routine namefor a function
variable, that name is displayed at the prompt. If you want to
leave that name in the variable, simply press (R/S].

c. If you want to plot only two functions, supply names for only
two variables. Leave the Alpha register clear for the third
variable (just press when prompted). If a name is
displayed for the third variable, press to clear the Alpha
register, then press [R/S]. If you wantto plot only one func-
tion, supply a name for only one variable and leave the Alpha
register clear (or clear it) for the other two variables.

7: Graphics and Plotting

Example: Plotting Multiple Functions. Use PLOTS3 to plotthe fol-
lowing functions.

1. y = sinx

2. y = 0.35(Inx) (cosx)

First, write routines to describe the functions.

£ 9-Bute Pram 2

LEL "SIHE"

SIN

EHD

= =
D
o
o

|
0
3
g

1
2

Program: Comments:

..
_
v ™] L 27-Bute Praom Lines 04-05: Ensure that the program

LEL "LHCOz" does not attempt to execute In (0).

1
o

o
)

1
L

[
T

L
N
e

O
3
O

AN
]

- e’ - e’ o P
t

[
I
o
]

i

T
+

-
- -

- o
~

o
y

I
o

|
0
0

=
]

— o
o
D

EHD

Set the Display format to ALL. Execute PRON. Clear flags 00 and 01 to
draw and label the x-axis. Start PLOT3.

ALL < 0

@FRINT) @)FOH ITRIRBRIBLT

BFLAGS) WFLAGS)

FLOTZ

Plot y-values between —3 and 3, and set the axis aty = 0.

3 YMIH AX1S=0

3 VYMAR IETIFSIRBRIETRTETS

0 AXIS

7: Graphics and Plotting 211

Plot x-values between 0 and 720 in increments of 60 per display.

XINC=68
IEICTSETRYICRIEBTNETREEECT

Supply the program name SINE for the first function variable.

SINE SINE_
[RECOE]FGHI

[JK

LMNOPi:[RETUN]bit2)

Supply the program name LNCOS for the second function variable.

LNCOS |LNCDS_ I
TSITSTR(T[

212 7: Graphics and Plotting

Leave the Alpha register clear for the third function variable and start the
plot. The printer output is shown here.

RS] R/S)

Exit from the program. Return the display format to FIX 4.

EXIT
B(DisP]

ENTER

Plot of: fi‘\:>\
SINE
LNCOS

YMIN= -3
YMAX= 3
AXIS= 8
XMIN= 9
XMAX= 728
XINC= 60
¢ YMIN YMAX 3
@ J s\\-.

68 T

128 o T /

158 (A
240 f-.T
388 NT

350 T ;}
420 TN

sek
6o T
668 T e

_ L N
728

v: 720. 0000
x: 723. 7500

7: Graphics and Plotting 213

Plotting Data from a Complex Matrix

In previous programs, you have used:

m PIXEL to turn on individualpixels in the display. You specify the
pixel number in the X- and Y-registers (row number in Y and column
numberin X).

= AGRAPH to display a graphics pattern. You specify the location of
the pattern in the display by placing a pixel number in the X- and Y-
registers (row number in Y and column numberin X).

PIXEL and AGRAPH operate on the numbers in the X- and Y-registers.

The efficiency of these functions is enhanced by enabling them to operate
on a complex matrix in the X-register, where each element of the complex
matrix has the form

x-value + iy-value

When such a matrix is in the X-register, PIXEL turns on each pixel in the
display as specified by the elements in the matrix. For example, consider
the following complex matrix.

1+i10 5+:i20

10+i30 16+i40

If you execute PIXEL when this matrix is in the X-register, pixels (1, 10),
(5, 20), (10, 30), and (16, 40) are each turned on.

214 7: Graphics and Plotting

Similarly, AGRAPH places the graphics pattern that is encoded in the
Alpha register at each position in the display as specified by the elements
in the matrix.

Note that PIXEL and AGRAPH operate on the rectangular form of the
complex matrix. Before entering numbers into the complex matrix, set the
angular mode to Rectangular.

The program PFIT in this section plots the individual data pairs from the
real n X 2 matrix in the X-register, then fits and plots a curve to that data
using the currently selected statistical model. PFIT creates one complex
matrix and executes AGRAPH to mark each data point with a "+" charac-
ter. PFIT then creates a second complex matrix and executes PIXEL to
plot the forecasted curve.

7: Graphics and Plotting 215

216

PFIT

STORE THE (DATA)
MATRIX IN DATAMTX

v
INDEX DATAMTX

v

XEQ MM TO FIND MIN

AND MAX VALUES, THEN

CALCULATE SCALING
FACTORS

v

PLOT

AXES

v

STORE DATA FROM

DATAMTX IN SUMMATION
REGISTERS

v
 BUILD PLOTTING

MARKER

7: Graphics and Plotting

v
SCALE EACH

X AND y VALUE

v
CREATE COMPLEX MATRIX

OF x AND y VALUES

v
[PLOT THE DATA POINTS |

ICREATE 1 X 22 TEMPORARY

MATRIX AND FILL IT WITH
x -VALUES 1-22

FOR EACH SET 1-6
OF 22 x -VALUES

A
|[FORECAST 22 y -VALUES |

PRINT THE
DISPLAY [SCALE EACH x, y VALUE|

!
|

:
|
|

I
|

& Y(END) . COMBINE x, y MATRICES
|
|
|
|

!

|

INTO A COMPLEX MATRIX

v
PLOT 22 PIXELS

(DRAW THE CURVE)

To key in PFIT:

1. Create variable DATAMTX before program entry.

2. Create label MM when you begin program entry.

7: Graphics and Plotting 217

Here is an annotated listing of PFIT.

Program:

Bae

a1

G2

B4
5
&

av

a3

a9

18

11

12

13

14

15

1e

17

18

19

2a

21

22

23

24

23

218

{ 295-Bute Pram X

LEL "PFIT"

CF

CF

REC

STO “"DATAMT="

INDEX "DATRAMTR"

4

2

—
W
w

#“EG@ "MM"

STO B2

128

STO a1

STO+ @z

REQ

"oy

STO 84

13

ney

MM

STO @3

STOx 84

2

STO- 84

STO- B2

7: Graphics and Plotting

Comments:

Lines 02-06: Clear flags 34 and 35.
Store the matrix thatis in the X- regis-
ter in DATAMTX and index
DATAMTX.

Lines 07-13: Call subroutine MM to

find the minimum and maximum x-

values. Then calculate the x-value scal-

ing factor.

Lines 14-25: Call subroutine MM to
find the minimum and maximumy-
values. Then calculate the y-value scal-
ing factor.

M
a
i

0
=
~

O3
0
0
O
P
D
P

W
r
a
o
=

b
I_

T'
l

O
3

0
0
O
O

-
]

o
D

0
D

e
P
P

0
3

0
0

J
a
F
o

0
0
[
o

45
46
47
48
49
56
51
52
53
54
55

» CLLCD

FCL a4

nra?

RCL= ST =

RCL &2

nra?

CL*

FI=EL

IREG 11
CLE
RCL "DATAMTAH"
I+

CLA
EI

XTOR
7
XTOA
HE>Y
“TOR

RCL "DATAMTH"
TRAMS
STO "DATAMTH"
IHDEX “"DATAMTH"
DIM?
1
N>
GETH
DELR
RCL+ @1
RCL- @2

Lines 26 —33: Plot the axes.

Lines 34-37: Store the data in

DATAMTX into the summation regis-
ters.

Lines 38 —44: Build the "+" character
(used to mark each data point in the
plot).

Lines 45-55: Make the matrix 2 X n
and index it (lines 45-48). Make two
1 x n matrices, where the matrix in the
X- registeris the x-values, and the
matrix in DATAMTX is the y- values
(lines 49 -53). Convert the x-values to
screen coordinates for plotting (lines
54-56).

7: Graphics and Plotting 219

56 RCL "DATAMTE" Lines 56— 59: Convert the y-values to
57 RCL® @3 screen coordinates (lines 56— 58).
52 RCL- &4 Convert the matrices in X and Y to
59 COMFPLEX one complex matrix in X, each ele-

ment of which is: x-value + iy-value
(line 57).

68 1 Lines 60— 64: Subtract 1 + i1 from
&1 EMTER each value (to set the center of the "+"
&2 COMPLEX character at the data point) (lines
63 - 60-63). Place the center of the "+" at
&4 AGREAFH the coordinates defined by each ele-

ment of the matrix (plot the data
points) (line 64).

&3 RCL "REGS" Lines 65-69: Recall the registers
65 1 matrix to the X-register, and redimen-
&7 EMWTER sion it to a 1 X 22 temporary matrix.
B2 22

23 DIM "REGS"

e 21 Lines 70-75: Fill the temporary
71 LBEL 81 matrix with values 0 through 21.
72 STO IHD =T

ra DSE ST W

¥4 GTO @1

Yo STO &8

TE Rt Lines 76 —80: Store the data from the
77 RCL "REGS" registers back into REGS, then clear
TE OHOEY the X-register.
79 5TO "REGS"
=8 Clw

220 7: Graphics and Plotting

o
0

O
O

Q
0

I

O
n

|:
I"

.

O
0
D

0
0

Q
0

D
0

0
0

o
0

0
D

=
~

J
o
o
o
o

o
0

T
N
e

O
3
[
o

s
o
O
O

s
=
G
0

o
0

0
0

=
~

1
o
y

I
o
]

M
-

o
S
S

L
N

B
O

[
T
e
e
e

=
=
T
O

T
0

0
D

=
]

— — [
T

+
=

LEL @&z

EHMTER

RCL+ @z

RCLx @1

FCSTY

RCLx 832

RCL- B4

COMPLER

FIXEL

COMPLE®R

F+

DSE ST ¥
GTO @2
PRLCD
CLY "DATAMTH"

2 RETH

LEL "MM"

RCLEL

ENTER

- LEL @9
I+

Fs? V&

RTH

RCLEL

Lines 81 -84: Establish a loop counter
6.00000 in the Y-register. Change the
values in the temporary matrix to 1
through 22. (These values represent
the first set of 22 x-values.)

Lines 85-102: Forecast y-values for a
set of 22 x-values, make a complex
matrix ofx-y data pairs, and plot each
data pair. Repeatfor five more sets of
x-values.

Subroutine MM,lines 103 -120: Find
the maximum and minimum elements

of one column of the matrix for scal-

ing. At the start of the subroutine, the
matrix DATAMTX is indexed with the

index pointer at the top of a column.
At the end of the subroutine, the
minimum element of the column is in

X, the maximum elementis in Y, and

the index pointeris at the top of the
next column.

7: Graphics and Plotting 221

11e ROEY

117 R+

118 RCL ST 2

112 GTO @9

128 RTH

121 EMD

To use PFIT:

1. Select a statistical model. For example, press B[STAT

F.

2. Place a 2-column real matrix of data pairsin the X-register.

3. Press FEIE

Example: Plotting Data from a Compression Process and
Fitting a Power Curve to the Data. Many compression processes
can be correlated using the power curve

P =qV?

where:

P is the pressure.
V is the volume.
-b is the polytropic constant.

Enter the following pressure-volume data in the £LIST matrix.
Then use PFIT to plot the data and to plot a power curve to the data.

v P

10 210
30 40
50 12
70 9
90 6.8

222 7: Graphics and Plotting

Execute program LIST. (If you've deleted the program, you need to key it in
again. The listing is in section "List Statistics" in chapter 6.)

%: 0. 0000
(N(VYI..G

Clear the XLIST matrix, then fill it with the data.

SLIST=[5x2 Matrix J
(Y[IN.T210 [ENTER] 10

40 [ENTER] 30
12 ([ENTER] 50

9 [ENTER] 70 |
6.8 [ENTER] 90 |

Exit from LIST. Recall £LIST to the X-register.

v: 98, 60600
x: [9Sx2 Matrix 1]

Set the statistical model to a powerfit. Execute PRON if you have a
printer. Execute PFIT.

BSTAT)
(B(PRINT] (4]
B(TOPFCN

 (

Exit from PFIT. Check the correlation coefficient for the data.

EXIT] CORR x: =@, 9939
(R(STNT[T

The correlation coefficient is —0.9939. Check the value of —b.

SLOFE %: -1.6152
(ISRTSIIX

The value of -b is —1.6252. Exit from the STAT menu.

EXIT] [EXIT y: -0.9939
x: -1.6152

7: Graphics and Plotting 223

Index

Special Characters
¥+ function

emulating in LIST program, 176
in programs, 182
stores data from 2-column

matrix to summation regis-
ters, 149, 181, 175

LFORM program, listing of, 181
YLIST matrix

filling column 2 with evenly
spaced integers, 181

in curve fitting example, 220
in LIST program, 176
redimensioning to nm x 2, 181

A
ACC variable. See Accuracy factor
Accuracy factor

affects Integration calculation
time, 130

definition, 134
effect on calculation time, 137

in basic integration, 124
related to uncertainty of

integration, 135
Addressing. See Indirect

224 Index

addressing
AGRAPH function

in HPLOGO program, 195
operates on complex matrices,

213

Algebraic solution. See Explicit
solutions

Angle of twist equation, 131, 125
Approximating an integral that has

an infinite limit, 127 -130

Asymptote, Solver results with,
117

Ead Gues=s{=s) message, 120

Binary data, building a graphics
pattern with, 200-203

BINDATA program,listing of,
201

Branching, 21 -39
conditional, 22 -25

emulating a multirow menu with
KEY GTO, 34-37

emulating a nested menu with
KEY GTO, 37-39

menu-controlled, 29 -39

types of, 21

C
Calculation time

for an explicit solution, 100
for Integration approximations,

129-130

for the Solver, 99

Integration conditions that pro-
long, 143 -145

Case 1 and 2 (Solver) solutions,
how to differentiate
between, 110

Case 1 (Solver) solution,
definition, 109

Case 2 (Solver) solution,
definition, 109

CIRCUIT program,listing of, 87
CLEAR program, listing of, 44
Cocfficient matrix. See MATA
Column norm of a matrix, 151

Column sum of a matrix, 150-151

Complex numbers. See Emulating
the Solver; HP-41 programs,
enhancing with HP-42S data
types; Simultancous equa-
tions, complex-number

Compression process equation,
220

Conditional branching, 22 -25
based on a number test, 24

CONE program, listing of, 81
Conjugate of a complex matrix,

151

Constant matrix. See MATB
Const ant ? message, 121

Constant velocity equation, 39
Controlflags, 47

definition, 47

flag 21 used to control VIEW
and AVIEW functions, 47,

16

Controlled looping, 39-43
definition, 39

DSEfunction in, 39

GTO function in, 39

indirect addressing with, 43
INPUT IND in, 43

ISG function in, 39

STO IND in, 44
XEQ IND in, 45

COORD program,listing of,
158 -160

Coordinate transformations,

156-163
Correlation coefficient, 221
Curve fitting in programs, 194
CUSTOM menu, executing pro-

grams from, 73, 19

D
Data input, prompting for in a

program, 68, 15

Data output, displaying in a pro-
gram, 68, 16

Declaring variables. See MVAR
function

Directing the Solverto a realistic
solution, 80— 82

Discontinuous function, Solver

results with, 113 -114

DISPL program

flowchart for, 40

listing of, 41
Displaying program results. See

Data output

DSE function, in a controlled

loop, 39

Index 225

E
EIZ program, listing of, 89—-90
Electricalcircuits. See Simultane-

ous Equations; Emulating
the Solver

Emulating
a multirow menu, 34-37

a nested menu, 37-39

Y+ function, 176

the Solver, 86-91

END function, 15

Enhancing HP-41 programs, 67—
76

Equation(s)
angle of twist, 131, 125

asymptote, 119

compression process, 220
constant acceleration due to

gravity, 83
constant velocity, 39
ideal gas, 101, 78

localflat region, 121
loop current, 166, 169, 163

math error, 120

multiple linear regression,
182-183

Ohm’s law, 86, 88

pole, 116
relative minimum, 118

setting equal to O for the Solver,
105, 77

sine integral, 136
SSA (triangle solution), 22
SSS (triangle solution), 13
time-value-of-money, 92
triangle solutions, 58 - 59
van der Waals, 101

volume ofthe frustum ofa right
circular cone, 80

Error Ignore flag, used in error

226 Index

trapping, 50

Error trapping, 49-50
Examples, displays in the manual

may differ from your
displays, 10

Executing a program
from the CUSTOM menu, 73,

19
from the program catalog, 19
with the XEQ function, 73, 19

Explicit solutions
calculation time, 100

faster than iterative solutions, 92

for complex numbers, 88
using with the Solverin pro-

grams, 92 -100
E:t remum message, 117

F

FCAT program

flowchart for, 52

listing of, 53-56

uses programming concepts dis-
cussed in chapter 2, 51

Finding more than one solution
with the Solver, 83 -85

Flag 21
and PROFFfunction, 16

and PRON function, 16

effect on VIEW and AVIEW
instructions, 47, 16

Flag 25, used in error trapping, 50
Flag 77, used in MINMAX pro-

gram, 47

Flag tests, follow do-if-true rule,
46

Flags, 4657

control, 47

current status maintained by
Continuous Memory, 47

Error Ignore, 50
general purpose, 46 —47
have unique meanings for the

calculator, 46

listing of in appendix C of
owner’s manual, 46

Matrix End-Wrap, 47
Numeric Data Input, 93
Printer Enable, 47, 16
system, 47 —48

user, 46 —47

Flat region, Solver results with,
121

Flowchart
definition of, 13
for DISPL program, 40
for FCAT program, 52
for GAS2 program, 102
for MLR program, 184
for PFIT program, 214-215
for PLOT3 program, 204 - 205
for SSA program, 23
for SSA2 program, 27
for SSS program, 15
for TRIA program, 30-31
symbols for, 15

G
GAS program, listing of, 78
GAS?2 program

flowchart for, 102
listing of, 103 -104

General purpose flags, 46 -47
definition of, 46

in LIST program, 47
in MINMAX program, 48

Global label, defines start of a

program, 15

Graphics, 195-203
binary data to build, 200-203

GTO function, in a controlled
loop, 39

H
Horner’s method, 125
HP 82240A Infrared Printer

some examples include optional
instructions for, 11

HP-41 programs, enhancing, 67 -
76

with HP-42S data types, 69
with INPUT function, 68

with menu variables, 71-73

with named variables, 67 — 68

with the two-line display, 69
with VIEW function, 68

HPLOGO program, listing of,
196-200

Ideal gas equation, 101, 78

Improperintegral, definition of,
127

Incorrect results in Integration,
140-143

Indexing (matrix) functions, 146 -
154

Indirect addressing, 43 45
clearing storage registers with,

44
controlled looping with, 43
executing subroutines with,45
initializing data storage registers

with, 43
INPUT function with, 43

SOLVE and PGMSLYVfunc-
tions with, 101-105

STO function with, 44

XEQ function with, 45

Index 227

Infinite limit, approximating an

integral that has an, 127 -
130

Infrared Printer.
some examples include optional

instructions for, 11
See also Printing

INIT program, listing of, 43
Initial guesses, for the Solver,

80-85
INPUT function, 15

brings up variable catalog in
Program-entry mode, 17

enhancing HP-41 programs
with, 68

indirect address with, 43

Integration, 124 -145
ACC variable in, 124

accuracy factor and uncertainty
of integration, 134-139

approximating an integral that
has an infinite limit, 127 -
130

basic use of, 124 -127

calculation time for approxima-
tions, 129-130

conditions that can cause
incorrect results, 140 —143

conditions that prolong calcula-
tion time, 143 -145

limiting the accuracy of, 134
LLIM variable in, 124

more on how it works, 134 -145

MVARfunction in, 124
Solver and, 131 -133

subdividing the interval of
integration, 142 -143

ULIM variable in, 124

uncertainty of. See Uncertainty
of integration

Interactive use of the Solver

228 Iindex

and Integration, 131 -133
and Simultaneous Equations,

168-172

Interpreting the results of the
Solver, 108 - 122

ISG function, in a controlled loop,

39

K
KEY GTO function

emulating a multirow menu
with, 34-37

emulating a nested menu with,
37-39

to build programmable menu,
29

turns on VA annunciator when
assigned to menu key 7 or 8,
34

KEY XEQ function
to build programmable menu,

29
turns on VA annunciator when

assigned to menu key 7 or 8,
34

Keying in programs, helpful hints
for, 17

Keystrokes, required to execute a
program, 19-20

L

LIST program

accumulates statistical data for
plotting, 220

emulating £+ function in, 176
fills XLIST matrix with x-y data

pairs, 176
general purpose flag in, 47
listing of, 176 -179

matrix operations in, 172
List statistics, 175-182
LLIM variable

in basic integration, 124
solving for with the Solver, 131

Local maximum or minimum,
Solver results with, 117

Loop current equations, 166, 169,

163
LVL1 program, listing of, 38 -39

MATA matrix
in MLR program, 172
in Simultaneous Equations

application, 164
solving for an element of, 168

MATB matrix
in MLR program, 172
in Simultaneous Equations

application, 164
Math error, Solver results with,

120

Matrices, 146173

coordinate transformations with
vectors, 156-163

creating a named matrix, 147
filling a matrix element with an

Alphastring, 147
finding the column norm of a

matrix, 151

finding the column sum of a
matrix, 150-151

finding the conjugate of a com-
plex matrix, 151

finding the matrix sum of a
matrix, 151

finding the maximum and
minimum elements of a
matrix, 152 -153

geometric calculations with vec-
tors, 154-156

interactive use of indexing utili-
ties and statistics functions,
149-150

matrix editor and indexing func-
tions, 146 -154

matrix operations in statistics
and graphics programs,
172-173

matrix utility programs, 150 -
154

solving simultaneous equations,
163-168

sorting a matrix, 153 - 154
vector solutions, 154-163

Matrix editor, 146 —154

Matrix End-Wrap flag, in MIN-
MAX program, 47

Matrix sum of a matrix, 151

MATX matrix
in MLR program, 172
in Simultaneous Equations

application, 165
Maximum and minimum elements

of a matrix, 152-153
Menu

multirow, emulating in a pro-
gram, 34-37

nested, emulating in a program,
37-39

programmable, 29
MENU function, 29

Menu keys, 29
Menu variables

enhancing HP-41 programs
with, 71-73

to simulate the Solver, 88

Menu-controlled branching, 29—
39

Messages

Index 229

Bad Guessiesi; 120
Constant?, 121

Extremum, 117

Out of Ranas, 49

Festricted Operation, 56

Sian Rewer=sal, 115

MINMAX program,flags in, 47
MLR program

flowchart for, 184

listing of, 186 -192
matrix operations in, 172

MOTION program,listing of, 84
Multifunction plotting, 203 -213
Multiple linear regression, 182 -

194
Multiple-linear-regression

equations, 182183
Multirow menu

VA annunciator in, 34

(¥] and (4] keys in, 34
emulating in a program, 34-37

MVARfunction
defines variables in Integration

programs, 124

defines variables in Solver pro-
grams, 77

Neighbors, 109
Nested menu, emulating in a pro-

gram, 37-39
Notations, consistent with owner’s

manual, 10

Numeric Data Input flag, 93

230 Index

0
Ohm’s law equation, 86, 88

Jut of Range message, 49

P

Parabolic equation. See
Equation(s), relative
minimum

PFIT program

flowchart for, 214-215
listing of, 216220
matrix operations in, 173

PGMSLYVfunction, indirect

address with, 101 -105

PHONE program,listing of, 45
PIXEL function, operates on com-

plex matrices, 213
PLOT3 program

flowchart for, 204 -205

listing of, 205-210
Plotting, 203 —-222

multifunction plotting, 203 -213
plotting data from a complex

matrix, 213 - 222

Pole, Solver results with, 115

Printer Enable flag, 47, 16

Printing
HPLOGO program results, 200
optionalinstructions for, 11
PLOT3 program results, 212
Q3 program results, 74
SSS program results, 33

PROFF function, and flag 21, 16
Program catalog

executing a program from, 19
globallabels placed in, 19

Program listing
for BINDATA,201
for CIRCUIT,87

for CLEAR, 44
for CONE,81
for COORD, 158-160
for DISPL, 41
for EIZ, 89-90

for FCAT, 53-56
for GAS, 78

for GAS2, 103-104

for HPLOGO, 196 —-200
for INIT,43

for LIST, 176-179
for LVL1, 38-39

for matrix utility programs,
150-154

for MLR, 186192

for MOTION, 84
for PFIT, 216-220

for PHONE,45
for PLOTS3, 205-210
for Q2,69-71

for Q3,72-73
for QSHORT, 75

for ROW1, 35-37
for ZFORM,181

for SHAFT, 132

for SIMUL, 170

for SSA, 24-25
for SSA2, 28-29
for SSS, 17-18
for TORQUIEE,126

for TRAP (revised), 50
for TRIX., 60-65

for TVM2, 93-99

for XVALS, 182

Programmable menu
definition of, 29
in TRIA program, 32

Programming, 12 - 66
branching, 21 -39
controlled looping, 39 -43
curve fitting functions in

programs, 194

defining the program, 15
displaying results, 16
error trapping, 49-50
flags, 46 —57
helpfulhints for keying in pro-

grams, 17
indirect addressing, 43 -45
prompting for data input, 15
simple programming, 12-21
Solver and explicit solutions in

programs, 92 -100

Solver in programs, 92 -105
subroutines, 26 —29

summation-coefficient functions
in programs, 182 -194

Programs

executing from the CUSTOM
menu, 19

executing from the program
catalog, 19

executing with XEQ function,
19

keystrokes required to execute,
19-20

Prompting for data input. See
Data input

PRON function, and flag 21, 16
Providing initial guesses for the

Solver, 80-85

Q
Q2 program,listing of, 69-71
Q3 program, listing of, 72-73
QSHORT program, listing of, 75

Index 231

RCL function, brings up variable
catalog in Program-entry
mode, 17

Realistic solution, directing the
Solver to, 80— 82

Redimensioning ¥LIST matrix,
181

Regression, multiple linear, 182 -

194

Festricted Operation mes-

sage, 56

Root(s) of a function
approximations of, 108
definition of, 105

ideal solutions for, 108
multivariable function roots, 106

Solver’sability to find, 107 -108
Round-off error, can affect Solver

results, 123

ROW1program,listing of, 35-37

S
SHAFT program, listing of, 132
Zian Rewers=al message, 115

Simple programming, 12 -21
SIMUL program, listing of, 170
Simultaneous equations

complex-number, 166 — 168
real-number, 163 -165

Simultaneous Equations, 163 —172
Solver and, 168 -172

Sine integral equation, 136
Solution matrix. See MATX
SOLVE function, indirect address

with, 101 -105

Solver, 77-123

ability to find a root, 107 -108
approximations for whichf(x) is

232 Index

nonzero, 108

Bad Guess{es) message, 120

basic use of, 77-80

calculation time in TVM pro-
gram, 99

cases when a rootis found,

109-115
codes returned to the T-register,

108-109
Constant ? message, 121
differentiating between Case 1

and Case 2 solutions, 110
directing to a realistic solution,

80-82
emulating in a program, 86— 91
explicit solutions and, 92-100
E:xtremum message, 117

finding more than one solution,
83-85

ideal solution, definition, 108
Integration and, 131-133
interpreting the results of,

108 -122

more on how it works, 105 -123

MVAR function in, 77

providing initial guessesfor,
80-85

results may be affected by
round-off error or
underflow, 123

results with a discontinous func-
tion, 113-114

Zign Rewers=al message, 115

Simultaneous Equations and,
168-172

using in programs, 92-105
Sorting a matrix, 153 -154
SSA program

flowchart for, 23

listing of, 24-25
SSA (triangle solution) equations,

22

SSA2 program
flowchart for, 27

listing of, 28 -29
SSS program

flowchart for, 15

listing of, 17-18
SSS (triangle solution) equations,

13
Stack registers, contain results of

the Solver, 108

Statistics, 174 -194
calculating a multiple linear

regression, 182 -194
correlation coefficient, 221
curve fitting in programs, 194
linear or exponential curve

fitting for one-variable data,
181

list statistics, 175-182

matrix indexing utilities and,
149-150

redimensioning XLIST matrix to
execute ¥+, 181

summation-coefficient functions
in programs, 182 -194

STO function
brings up variable catalog in

Program-entry mode, 17
indirect address with, 44

STOP function, 29

Subdividing the intervalof integra-
tion, 142 -143

Subroutines, 26 —29
advantages of, 26
called with XEQ, 26
definition, 26
end with RTN or END,26
in SSA2 program, 26

Summation registers. See X+
function; Summation-

coefficient functions
Summation-coefficient functions,

using in programs, 182 -194
System flags, 47 -48

in MINMAX program, 47

T
Time-value-of-money equation, 92
TORQUE program, listing of, 126
Translations, coordinate. See

Coordinate transformations
TRAP program,listing of, 50
TRIA program

flowchart for, 30-31

listing of, 60— 65
Triangle solutions equations, 58 -

59
TVM2 program,listing of, 93 -99

U
ULIM variable

in basic integration, 124
solving for with the Solver, 131

Uncertainty of integration
definition, 135

is greater than error in final cal-
culation, 135

may be relatively large, 138 -
139

returned to the Y-register, 135
Underflow, can affect SolverV

results, 123

Userflags, 46—47

Index 233

Vv
Valid solution. See Directing the

Solverto a realistic
van der Waals equation, 101
Variable menu

enhancing HP-41 programs
with, 71-73

to simulate the Solver, 88

Variables
ACC, 124
keying in in programs, 17
LLIM, 124

MATA, 164
MATB, 164

MATX, 165
YLIST, 176

ULIM, 124
Vector solutions, 154 -163

VIEW function, 16
brings up variable catalog in

Program-entry mode, 17
enhancing HP-41 programs

with, 68
Volume offrustum ofrightcircu-

lar cone, equation, 80

X
XEQ function

executing a program with, 73, 19
indirect address with, 45

XTOA function
in HPLOGO program, 195
used if corresponding character

cannot be typed, 203
XVALS program,listing of, 182

234 Index

Programming Examples and Techniques
for Your HP-42S Calculator

Programming Examples and Techniques contains examples in mathe-
matics, science, engineering, and finance to help you more fully
utilize the built-in applications in your HP-42S calculator. Programmed
solutions are emphasized. Graphics and plotting with the HP 82240A
Infrared Printer are also addressed.

B Programming

Simple Programming ¢ Branching ¢ Controlled Looping ¢ Indirect
Addressing in Programs ¢ Flags in Programs ¢ Error Trapping

B Enhancing HP-41 Programs

Using Named Variables ¢ Using HP-42S Data Input and Output
Functions ¢ Operations with HP-42S Data Types ¢ Using the Two-
Line Display » Using Menu Variables ¢ Assigning a Program to the
CUSTOM Menu

® The Solver

Basic Use of the Solver ¢ Providing Initial Guesses for the Solver
* Emulating the Solver ¢ Using the Solver in Programs ¢ More on
How the Solver Works

B Integration

Basic Integration ¢ Approximating an Integral That Has an Infinite
Limit ¢ Using the Solver and Integration Interactively ¢ More on
How Integration Works

B Matrices

Using the Matrix Editor and Indexing Functions ¢ Vector Solutions
* Solving Simultaneous Equations ¢ Using the Solver with
Simultaneous Equations ¢ Matrix Operations in Programs

B Statistics

List Statistics » Using the Summation-Coefficient Functions in
Programs ¢ Curve Fitting in Programs

B Graphics and Plotting

Graphics ¢ Multifunction Plots « Plotting Data from a Complex
Matrix

(,5] HEWLETT
'8 pACKARD

Reorder Number

00042-90020
00042-90019 English

0 ""88698"00036" 6Printed in U.S.A. 7/88

	Cover
	Contents
	List of Examples
	How to Use This Manual
	1: Programming
	Simple Programming
	Flowcharting
	Defining the Program
	Prompting for Data Input
	Displaying Program Results
	Executing the Program

	Branching
	Conditional Branching
	Subroutines
	Menu-Controlled Branching

	Controlled Looping
	Indirect Addressing in Programs
	Flags in Programs
	User Flags
	System Flags

	Error Trapping
	A Summary Program
	The Triangle Solutions Program

	2: Enhancing HP-41 Programs
	Using Named Variables
	Using HP-42S Data Input and Output Functions
	Prompting for Data with INPUT
	Displaying Data with VIEW

	Operations with HP-42S Data Types
	Using the Two-Line Display
	Using Menu Variables
	Assigning a Program to the CUSTOM Menu

	3: The Solver
	Basic Use of the Solver
	Providing Initial Guesses for the Solver
	Directing the Solver to a Realistic Solution
	Finding More Than One Solution

	Emulating the Solver in a Program
	Using the Solver in Programs
	Using the Solver and Explicit Solutions in a Program
	Using the SOLVE and PGMSLV Functions with Indirect Addresses

	More on How the Solver Works
	The Root(s) of a Function
	The Solver’s Ability to Find a Root
	Interpreting the Results of the Solver
	Round-Off Error and Underflow

	4: Integration
	Basic Integration
	Approximating an Integral That Has an Infinite Limit
	Using the Solver and Integration Interactively
	More on How Integration Works
	The Accuracy Factor and the Uncertainty of Integration
	Conditions That Can Cause Incorrect Results
	Conditions That Prolong Calculation Time

	5: Matrices
	Using the Matrix Editor and Indexing Functions
	Creating a Named Matrix
	Using the Matrix Editor
	Using Indexing Utilities and Statistics Functions Interactively
	Matrix Utilities

	Vector Solutions
	Geometry
	Coordinate Transformations

	Solving Simultaneous Equations
	Using the Solver with Simultaneous Equations
	Matrix Operations in Programs

	6: Statistics
	List Statistics
	Using the Summation-Coefficient Functions (Σ+, Σ-, and CLΣ) in Programs
	Curve Fitting in Programs

	7: Graphics and Plotting
	Graphics
	Multifunction Plots
	Plotting Data from a Complex Matrix

	Index

