

NOひGCR

No express or implied warranty is made by D'Zign or the author with regard to the procedures and program material offered or their merchantability or their fitness for any particular purpose. The procedures and program material are made available solely on an "as-is" basis, and the entire risk as to their quality and performance is with the user. Should the procedures or program material prove defective, the user (and not D'Zign nor any other party) shall bèar any and all cost of all necessary correction and all incidental or consequential damages. D'Zign and/or the author shall not be liable for any incidental or consequential damages in connection with or arising out of the furnishing, use, or performance of the keystroke procedures or program material.

HP42S
 SURVEYING SOLUTIONS

Copyright $\bigcirc 1989,1990,1993$ by Ted J. Kerber
All rights reserved. No part of this work covered by the copyright hereon may be reproduced or used in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping or information storage and retrieval systems - without written permission of the author.

published by $D D^{2} \pi x^{n}$ Land Survey a Development
Tollhouse, California, U.S.A. 1993

ISBN 0-944889-14-X

TECHNICAL ASSISTANCE

The program material, instructions and procedures contained in this book assume that the user has a working knowledge of both surveying and the general operation of the HP-42S calculator.

Technical assistance is limited to verification of the results shown in the various examples used in this book.

If you have any questions or suggestions regarding this book, or other D'Zign publications, please feel free to call us. The number is (209) 297-8025, and someone is available to answer technical questions between the hours of 8:00 A.M. and Noon, (Pacific Time Zone), Monday through Thursday.

Before calling for help, take a look through "The Most Commonly Asked Questions", on the inside of the back cover.

WARNING

This software and book are both protected by U.S. Copyright Law (Title 17 United States Code). Unauthorized reproduction and/or sales may result in imprisonment of up to one year and fines of up to $\$ 10,000$ (17 USC 506). Recent changes in the laws make infringement upon software copyrights a felony. Copyright infringers may also be subject to civil liability.

NOFnce

No express or implied warranty is made by D'Zign or the author with regard to the procedures and program material offered or their merchantability or their fitness for any particular purpose. The procedures and program material are made available solely on an "as-is" basis, and the entire risk as to their quality and performance is with the user. Should the procedures or program material prove defective, the user (and not D'Zign nor any other party) shall bear any and all cost of all necessary correction and all incidental or consequential damages. D'Zign and/or the author shall not be liable for any incidental or consequential damages in connection with or arising out of the furnishing, use, or performance of the keystroke procedures or program material.

Table of Contents

introduction 2
angle and bearing conventions - cautions 3
the program, "TRIG" 4
editing "TRIG" 6
"CURVE", a solutions program 9
miscellaneous subroutines 13
coordinate storage 15
the program, "TRAV", for traversing 17
traverse adjustment 33
the program, "INT-X", for intersection solutions 37
miscellaneous utility programs 49
"DUMP" for coordinate output 50
"LOAD", for coordinate input 50
"SPRAY", for radial layout 50
"PRGE", for clearing a file 52
"RP", to set the radius point while traversing 52
" ADJ" for automatic angle adjustment 54
"CLAY", a curve layout program 57
coordinate rotation (transformation) 63
pre-determined areas 77
ultimate sizing 87

INTRODUCTION

Hewlett-Packard has produced a really powerful calculator at a very good price, the HP-42 Scientific Calculator, which lends itself nicely to solving surveying problems. It can not be programmed by insertion of a module, or with a card reader, like the HP-41 series, but it has a really simple system for typing in a program.

the operations index

To find a function for the first time, HP has provided an "Operations Index" on pages 310 through 335 of the instruction manual, which tells you exactly what keystrokes to use to type in the function you want.

Even better, this index gives you the page number that you can refer to if you want to know more about the function you are using. If, while typing in a program, you aren't sure how to input a particular function, simply refer to the Operations Index.

the softkey menus

All of the programs in this book take advantage of the "softkey" menu system built into this calculator. When you want to start a program you stroke XEQ and then the softkey corresponding to the program you want, from the menu displayed in the bottom half of the screen.

the programs

The purpose of this book is to provide the user with a good surveying program for everyday use in solving field and office problems. When we began programming for this book we decided to use a point-storage system, since it is a real timesaver, particularly in the field. We have designed a traverse, inverse and sideshot program for traversing that is inter-related to the intersection program and the curve solutions program, so that you can use them as a more flexible system.

This also means a longer program, so we suggest that you approach the programming in stages. You are less apt to have programming errors if you don't try to do the whole job at one sitting.

These programs do not make any distinction between "bearing-azimuth" and "field angle" traversing. Once you are in the TRAVERSE program, you may use any method of traversing which you want to use.

You may traverse from one point to another by input of the bearing and quadrant code (or azimuth), or you may turn an angle to the next point.

The illustration to the left shows the relationship of these angles, referenced to the backsight and foresight.

Bearings are input with quadrant codes and the quadrants are numbered with the same system that has been used by HewlettPackard since the first surveying programs for handheld HP's came out.

quadrant codes

The bearing is input AND ENTERED, the quadrant code is then input, and a 5 trey is stroked.

And, some CAUTIONS: These programs do not recognize sideshots as different from traverse shots. If you use the angle-adjustment, or either the compass or transit adjustment programs, you will get incorrect answers if the traverse contains sideshots. There are ways to keep this from being a problem.

1. Use point numbers for the sideshots that are high enough to be outside the point numbers used for the traverse itself. If you are doing a traverse that will use point numbers 1 through 7, use numbers 11 and up for the sideshots.
2. Calculate the traverse without the sideshots, adjust it, and then do an INVERSE traverse from point to point to point, setting the sideshots as you go. This is quick and simple, because the coordinates are stored by point number in all of these programs.

TRIG

You are probably anxious to start programming the traverse program to try it out, but we urge you to start with this program, and follow the sequence we have used in this book. This first program will give you some practice in programming your calculator, and does a job for you that you will find handy later.

There are always times, while calculating a traverse, that you need to work a quick trig problem before you can do the next step ... like calculating $\Delta / 2$ to enter the "curve" routine.

If you do that with this calculator you will have lost your place in the program you were running. Later, this program will be related to the traverse program so that it can be called up without losing your place.

degrees, minutes and seconds

Even better, you can perform all of the trig operations without converting to decimal first. This program does the converting for you, and all input and output is in degrees, minutes and seconds.

getting started

We'll do this first program in two stages, which will also give you some editing practice. Begin by stroking the shift key, then the XEQ key. The display will show a menu which will be blank (if you haven't yet input any programs) except for . END. on the left. The keys just below each of the menu portions will correspond to the menu instruction above it. Stroke the key just below the .END. in the display.

Next, stroke the shifted R/S key and the display should be as shown to the

Qu bete Pra D EH. right.

Begin typing in the program steps shown on the next page. The first step, LBL "TRIG", will replace ".END." as step 01. Each of the following steps will be assigned a step number by the calculator as you type in the program steps.

Steps $03,05,07,09,11$ and 13 are typed while in alpha mode. All of the other functions can be accessed through the keyboard and menus. Consult the Operations Index in your owner's manual if you are not sure which keys to stroke.

01 -LPL "TRIG"	15 MENU	291LBL 04
O2 SF 21	16 STOP	30 ASIN
03 "SIN"	17 LRPL 01	$31 \rightarrow$ HMS
*04 KEY 1 GTO O1	$18 \rightarrow H R$	32 RTN
05 "cos"	19 SIN	33LPL 05
O6 kEY 2 GTO OZ	20 RTN	34 ACOS
07 "TAN"	21 LPL 02	$35 \rightarrow$ HMS
O8 KEY 3 GTO 03	$22 \rightarrow H R$	36 RTN
09 "ASIN"	23 COS	37LEL 06
10 KEY 4 GTO 04	24 RTN	38 ATAN
11 "ACOS"	$25 / L B L 03$	$39 \rightarrow$ HMS
12 KEY 5 GTO 05	$26 \rightarrow H R$	40 RTN
13 "ATAN"	27 TAN	41 END
14 KEY o GTO O6	28 RTN	

When all of the steps have been typed in, go back and proof read the program. All of the steps should be the same as shown in the program listing above. If any of them are not, delete the step and re-type it.

try it out

If you stroke the XEQ button now, your display should show a menu with "TRIG" as one of the program options (the only option if you didn't already have any programs stored). Stroking the key under "TRIG" will bring up

If you use the key which corresponds to these menu labels, instead of those on the keyboard, the trig functions work in degrees, minutes and seconds instead of decimal degrees. Try working a few.

[^0]Next, a short editing session. The program, "TRIG", works fine as it is, but we want to expand it to do more.

editing

Editing is done "from the bottom, up". If you go into the program and insert or delete any steps it changes the step number of all of the steps below the step which was added or deleted. If you start at the bottom and work upward you will still be able to find your place.

Stroke the shifted XEQ key (GTO) and then stroke the key under "TRIG" to bring the program to the top of the program memory. Next, stroke the shifted R/S (PRGM) key to go into program mode. You can go to any step in the program by stroking GTO ., followed by the step number (4-digit input is required). Let's start by going to step 16, where a step is to be added.
Stroke

XEO - 0

to get there. Insert the step GTO 98 between steps 16 and 17.

$$
: 7 \text { GTO } \frac{16 \text { STOP }}{17 \text { LPL }} 01
$$

Scroll upwards until the program pointer is at 15 MENU, and then insert

16NEL $98 \frac{15 \text { MENU }}{16 \text { ST:O }}$ the step LBL 98.
14 KEY G GTO 96
15 MENU $\left[\begin{array}{lllll}15 & \text { KEY } & 7 & \text { GTO } & \text { B } \\ 16 & \text { KEY } & 8 & \text { GTO } & 8 \\ 17 & \text { KEY } & 9 & \text { GTO } & 99\end{array}\right.$

Scroll upwards again, to program step 14, and insert the three new steps shown to the left.

Either scroll upwards or stroke GTO .0001, to put the program pointer at step 01 LBL "TRIG", and add
 the step, LBL A.

With the additions to the program that have been made, the END that was originally program step 41 is now at step 47. There are still some more program steps to be added to our program, at the bottom.

Go to program step 46 , which is just above the END, and add the steps shown below.

47LBL B	6 BCEY ? GTD A	7318L 08	$86 \div$
48 "DMS+"	61 KEY 3 GTO A	74 HMS-	$87 \rightarrow$ HMS
49 KEY 1 GTO 07	62 KEY 9 GTO 99	75 RTN	88 RTN
50 "DMS-"	63 LBL 21	7618L 99	891LBL 11
51 KEY 2 GTO 08	64 STOP	$77 \times$ X< ${ }^{\text {¢ }}$	$90 \rightarrow H R$
52 "DMSX"	65 GTO 21	$78 \rightarrow H \mathrm{R}$	$91 \rightarrow R A D$
53 KEY 3 GTO 09	66 LBL 99	$79 \times$	92 RTN
54 "DMS ${ }^{-1}$	67 CLMENU	$80 \rightarrow$ HMS	93 LBL 12
55 KEY 4 GTO 10	68 EXITALL	81 RTN	$94 \rightarrow$ DEG
56 "D \rightarrow R"	69 RTN	821LBL 10	$95 \rightarrow$ HMS
57 KEY 5 GTO 11	701BL Q_{7}	$83 \times$ X< ${ }^{\text {P }}$	96 RTN
58 "R ${ }^{\text {c }}$ "	71 HMS+	$84 \rightarrow H R$	
59 KEY 6 GTO 12	72 RTN	85 X<>Y	

Don't forget to proof read the program when you've finished the programming. A minor error at this stage could go unnoticed now, and be giving wrong answers later.

examples

Try out the new routines with this one: Add $25^{\circ} 15^{\prime} 30^{\prime \prime}$ to $13^{\circ} 40^{\prime} 20^{\prime \prime}$, subtract $6^{\circ} 15^{\prime} 14^{\prime \prime}$, multiply by 3 and then divide by two. The keystrokes are shown below.

To try out the other two functions, $\mathbf{D} \rightarrow \mathbf{R}$ and $\mathbf{R} \rightarrow \mathbf{D}$, try the following:

1. Find the length of a curve which has a radius of 500.00^{\prime} and a central angle of $12^{\circ} 22^{\prime}$ (length $=$ the radius times the central angle, in radians). (answer: 107.9195')

2. Find the central angle of a curve with an arc length of 135.20^{\prime} and a radius of 450.00'. (answer: $17^{\circ} 12^{\prime} 51^{\prime \prime}$)

The trig functions are much easier to use through the program than from the keyboard, and as an additional plus, you will be able to call this program up as a subroutine from other programs. It does happen that you are half-way through a calculation for something else and need to use one of these functions.

fancy output

After you have input the program, "DMS", on page 12 you may want to back up and edit "TRIG". You can have the output read in degrees, minutes and seconds (to the nearest tenth second) by using the subroutine, "DMS".

Add the three steps, CLA, XEQ "DMS" and AVIEW to each of the places in the program that produces an angle as output.

Working from the bottom, upward, this would be between steps 95 and 96,87 and 88,80 and 81,74 and 75,71 and 72,39 and 40,35 and 36,31 and 32 .

This change only costs about 56 bytes of memory, but the enhanced output is clearly an angle, and there is less chance of transposing the numbers when using this form.

CURVES

This program is a CURVE SOLUTION program. It may be used as a "stand alone" program for solving circular curves, and is also called up as a subroutine from the traverse program.

the program listing:

79 ASIN
8050012
81 GTO O－ 8こLEL 44 83 FS？ 91

84 GTG 03
$85 \mathrm{RCL} \quad 12$
86 TAN
$87 \div$
88 STO 11
89 GTO Dこ
901RL 03
$91 \mathrm{RCL} \div 11$
9．ATAN
93 STO 12
94 LBL O2
95 RCL 11
$96 " R="$
$97 \times E Q \quad 04$
98100
$99 x<y$
$100 \div$
$101 \rightarrow$ DEG
102 GTO 09
103 LPL 08
10450
$105 X$ X Y
$106 \div$
107 ASIN
$108=$
$109 \times$

110 LPL $\square 9$
$111 \rightarrow H M S$
$11 ב-" D="$
113 XEQ＂DMS＂
114 AVJEW
115 ADV
1162
$117 \mathrm{RCL} \times 12$
$118 \mathrm{FS}^{7} \mathrm{O}$
$119+1-$
$120 \rightarrow H M S$
121 ＂DELTA＝＂
12－XEQ＂DMS＂
＊12アドヶ＂
124 LRL 47
125 2
$126 \mathrm{RCL} \times 12$
127 RCL× 11
$128 \rightarrow R A D$
$1295 T 024$
130 ட＂L＝＂
131 ARCL ST x
13：AVIEW
133 RCL 12
134 TAN
135 RCL× 11
$1365 T 020$
137 ＂$T=$＂
$138 \mathrm{ARCL} 5 \mathrm{~T} x$
139 RCL 12
$1405 I N$

141 RCL $\times 11$
$142=$
$143 \times$
144 STO 18
145 ト＂$\quad \mathrm{C}=$＂
146 ARCL ST X
147 AVIEW
148 RCL 11
149 ENTER
$150 \times$
151 RCLX 12
$152 \rightarrow \mathrm{RAD}$
153 STO 19
154 ENTER
155 ENTER
156 RCL 12
157 RCL 11
$158 \rightarrow$ REC
$159 \times$
160 －
161 STO 2
162 FS？82
163 GTO OZ
164 CF 03
1651
166 RCL 12
167 COS
168 －
169 RCL× 11
170 ＂$M=$＂
171 ARCL ST x

172 RCL 12	187 RCL 12	202 RVIEW
1732	188 THN	203 RTN
$174 \div$	189 RCL 11	204－LBL 02
175 TAN	190×12	205 FS？C 93
176 FCLX 20	$191 \times$	206 ＋／－
177 ト＂ts $\mathrm{E}={ }^{\text {¢ }}$	192 RCL 19	207 STO 05
178 ARCL ST X	193 －	208 RCL 18
179 AVIEW	194 ＂Fillet．＂	209 CLMENU
1 SQ STOP	195 CF 9 O	210 GTO＂TRAY＂
181 RCL 22	196 CF 91	211 RTN
：82＂Segment＂	197 LBL Q1	212 LBL 04
：St MEQ Q1	198 H0Y	213 ARCL ST X
184 FCL 19	199 ト＂＝ヶ＂	214 ト＂ヶ＂
185 ＂Sector＂	2日G ARCL ST X	215 END
186 XEQ Q1		

Once the program is typed in（and proof－read）it is automatically added to the catalogue．Stroking XEQ will bring up the program menu，stroking the key which corresponds to CURVE will start up the program，showing a menu of MIH：
One of the following，the central angle（delta），the radius or the degree of curve，must be known． Any one of these AND one other part of the curve data are all that are needed to solve any circular curve．
The output，regardless of which parts are known，will be as shown to the right．
Before you can try it out，there is a little more work to do．The program uses the subroutine， ＂DMS＂，which is part of the next group to be input．Gロのmont＝

$$
\text { 59nnt } 564=9 f t
$$

getor=

$$
54.541 .5391 \mathrm{sq}+\mathrm{t}
$$

$$
\text { Endept }=
$$

$$
\text { E62. } 125 \overline{5} 5 \mathrm{ft}
$$

$$
\begin{aligned}
& \begin{array}{l}
=218.0 \\
= \\
= \\
=
\end{array}
\end{aligned}
$$

These subroutines go into a different part of program memory，and include the last one needed by＂CURVE＂．

Stroking \square xEQ（GTO）brings up the program menu．
Next，stroke 嘈：口曹 $\square R / S$ ，
（PRGM）and the display will be 所（xxx－Ryte Proms as shown to the right．

Scroll upwards with Δ to position the program pointer at 00 ，and begin typing in the following programs：

91PLBL＂C•＊	33 ト＂	65 ARCL $5 T \times$
02 FS？ 81	34 RTN	$56 \vdash^{11}$
03 XEQ 08	35 LBL 86	67 RCL 18
04 CF 29	36 F＂	63 FP
65 FIX 0	37 RTN	69100
06 CLA	38 LBL 07	$70 \times$
0735	39	71 FIX 02
66 XTOA	40 RTN	72 RND
69 CLX	41 LBL 08	73 FIX 01
$10 \mathrm{R}+$	42 CLA	74 XEQ 1
11 ARCL 13	43 ＂SIDESHOT＂	75 MRCL 5 T X
	44 FS？ 55	
13 FLENG	45 PRA	77 CLX
＊14 FIX 64	46 CLA	78 FIX 04
15 5F 29	47 RTN	79 5F 29
$16{ }^{\prime \prime \prime} \mathrm{N}=$	48DLBL＂DMS＂	80 RCL 19
17 RRCL ST z	49 FS？C 19	81 RTN
18 ト＂ц＂	56 CLA	82 LBL 01
19 XEQ IND ST X	51 ENTER	8310
20 ト＂E＝	52 ST0 19	$84 \times\rangle$
ç ARCL ST Y	53 IP	$85 \times$ Y
22 RUIEW	54 CF 29	86 ト＂0＂
23 Rt	55 FIX 00	87 RTN
24 ADV	56 ARCL $5 T x$	88.1 LBL＂CL＂
25 RTN	57.	89 ¿REG 00
27\％${ }^{\text {\％}}$	59100	91 EREG
28 RTN	$60 \times$	92 CL ¢
こ9DLBL 04	61 ABS	930
30 F＂	62 ST0 18	94 ST0 24
31 RTN	63 IP	95 RTN
32－LBL 05	64 XEQ 01	

keystroke tips

Step 57 appends a degree symbol．This is input from the alpha keyboard，through＂MATH＂．

Step 66 and step 76 append the minute and second symbols， respectively，and are both input through the＂PUNC＂key．
＊May be varied to suit user＇s needs．

Information on these keystrokes can be found in the HP42's User's Manual on pages 295 and 296.

There are some program steps which are just spaces, or spaces appended to what is already in the alpha register. For instance, step 12 appends one space, step 27 appends 3 spaces and step 30 appends 4 spaces.

The addition of the spaces and the "line feed" steps is part of what makes the output read correctly whether there is a printer in use or not.

Step 33 appends 5 spaces, step 36 appends 6 spaces, and step 39 appends 7 spaces. When you proof-read the program it is important to check these steps, even though "there isn't anything there".

So far the subroutines that have been input are two that handle display (C+ and DMS), and one (CL) which clears registers 00 through 24 , which are not used for coordinate storage by the other programs. This next group manipulates angles, output and prompts. Go to the end of "CL" (step 95) and type in the following:

141 LBL＂A1＂	173360	204 LBL 04
142 FS？ 89	174 MOD	205 ＊N＊
143 XEQ 17	175 ENTER	296 XEQ 05
$144 \mathrm{X}\langle\gg$	176 SIN	297 ト＂W＂
$145 \rightarrow H R$	177 ASIN	298 RTN
$146 \mathrm{X}\langle\gg \mathrm{Y}$	178 x＜0？	209 LBL 05
147 ENTER	179 ＋／－	210 STO 21
148 ENTER	$180 \rightarrow$ HMS	$211 \mathrm{R} \downarrow$
1492	181 X＜＞Y	212 STO 20
$150 \div$	18290	213 XEQ＂DMS＂
151 IP	$183 \div$	214 RTN
152180	1841	2151LBL 06
$153 \times$	$135+$	216 X＞0？
$154 X<>Y$	186 IP	217 RTN
155 LRSTX	187 STO 21	218360
$156 \times$	188 GTO IND ST X	$219+$
157 COS	1891LBL 81	220 RTN
$158 \mathrm{R} \cdot+$	190 ＂N	221 LBL 17
$159 \times$	191 XEQ 05	2222
160 －	192 ト＂E＊	223 －
161 FS？ 10	193 RTN	224 X＞0？
162 RTN	194－LBL 02	225 RTN
$163 \rightarrow$ HMS	$195{ }^{\circ} \mathrm{S}$	2264
164 GTO＊A日＂	196 XEQ 05	227 ＋
165 ＂BRG＊	197 ト＂E＂	228 RTN
166 XEQ＂AO＂	198 RTN	＊229PLBL＂F．．．＂
$167 \rightarrow H R$	1991LBL 03	2300.013
1681LBL＂B1＂	200 －${ }^{\text {－}}$	231 LBL＂．．．F＂
169－180	201 XEQ 05	232 CF IND ST X
$170 \mathrm{X}\langle>Y$	282 ト＂W＂	233 ISG ST X
171 FS？ 89	203 RTN	234 GTO＂．．．F＂
$172+$		235 END

Before beginning this last short group of subroutines, stroke the shifted XEQ key (GTO), and then the decimal point twice. This will automatically put an end on the programs so far and give you a new starting point. When you enter the program mode you will again see the display

:ET:
Scroll upward once, so that the program pointer is at 00 , and type in the program steps to the right.

pout

This program is "Point OUT" and is used to recall stored coordinates. If you input the point number of a stored pair of coordinates and execute "POUT" the coordinates will be recalled to the display.

After recall the north coordinate is in the y-register and the east coordinate is in the x-register.

pin

This one stands for "Point IN". If you input a point number and execute "PIN" you will be prompted for the north coordinate with $\mathbf{N}=$?. Input the north coordinate and stroke R/S and you will be prompted $\mathbf{E}=$? . Input the east coordinate and stroke R/S. The coordinates are immediately stored under that point number.

日1 LEL "DUT"
-12 RCL 13
И3 2
b4 \times
घ5 24
$46+$
G7 ENTER
58 ENTER
691
15 -
11 RCL IND ST X
12 RCL IND ST Z
13 RTN
14 LBL "IN"
15 RCL 13
162
$17 \times$
1524
$19+$
20 X<>Y
21 STD IND ST Y
22 R \downarrow
231
24 -
25 X<》Y
26 STO IND ST Y
27 RTN
281BL "PIN"
29 STO 13
30 XEQ "PN"
31 GTO "IN"
32LBL "PIUTT"
33 STO 13
34 GTD "OUT"
35 END

After the subroutines at the top of page 17 have been put in, you can try some coordinate storage. Each pair uses two storage registers, or 18 bytes.

sizing

The default size for the number of storage registers available is 25 . This means that registers 00 through 24 may be used for storage. For right now, you need to resize to 50 , so that you will have some registers available for storing coordinates. (see page 87)

The SIZE function is found in the second menu of "MODES". Stroke the shifted $+/-$ key, scroll down once, and stroke the key under SIZE. This brings up a prompt for a four-digit input. Input 0050.

storing coordinates

1. Input the point number and stroke

XEQ ZW
prompt: $\mathrm{N}=$?
2. Input the north coordinate and stroke
prompt: $\mathbf{E}=$?
3.

Input the east coordinate and stroke

The coordinate has been stored under its point number.

recalling coordinates

1. Input the point number and stroke

The north coordinate is in the Y-register and the east coordinate is in the X-register. Later in this book we will be showing you a routine, "LOAD", which calls up "PIN" continuously for input of a group of coordinates.

A few more short subroutines to type in, and then we can start on the TRAVERSE program. Go to C \uparrow and scroll upwards once (to 00) to begin input of these programs:

```
O1\PL_M "PN?"
OZ CF -
\Pi% " PT NO?"
04 PROMPT
05 F5? 2-
O6 XEO O1
O7 RTN
O&\ELTI
01
10-
11 STO 13
1%R+
13 FTN
```

14	1 E	"CODE"	27	RCL-	3
15	STO	2 z	28	$\rightarrow \mathrm{FOL}$	
16	XEQ	"POUT"	29	$\mathrm{F}+$	
1.7	ST\%	24	30	$\rightarrow \mathrm{HMS}$	
18	$R+$		31	RTN	
19	STO	23	321	LBL "	"PN"
20	RCL	玉	33	CLA	
21	FP		34	ト"!	$N=?$
* - -	1 E 3		35	PROMP	
23	\times		36	CLA	
24	$X E Q$	" Роит"	37	$\vdash^{\prime \prime}$	$E=? "$
25	$\mathrm{RCL}-$	24	38	PROMF	
26	$x<y$		39	ENO	

This next program isn't a short one, but the odds are, it's the one you've been anxious to get to. Stroke GTO.. to start with a clean slate, and you can start typing it in.
a traverse program

south azimuth
For our users in Hawaii，Australia and parts of Canada， the program allows for the use of south azimuth．If you want to use this option，simply set flag 89.

The various routines that clear flags do not clear flag 89， so to leave south azmimuth you must clear flag 89 manually．

exit

If you use the traverse program as a way of setting coordinates for various points, instead of just for actual traverses (we all do) the final flag clear routines are bypassed.
91 LBL "EXIT" \quad To other programs this will act
02 XEQ "F..." \quad as though you are still interfaced program to the left, and then 06 CLA assigning it to key 09 in all of 07 END your 'TRAV' menus.

Add the step KEY 9 GTO "EXIT" to each of your menus, just above the "MENU" command (between $271 \& 272,86 \& 87$ and $68 \& 69)$. This will clear the flags.

getting started

 through its clearing routine and then prompts for "PT NO?", at the same time displaying the options menu

Input the point number you want to use, and then stroke the key corresponding to the option:

1. If the point number is that of an already stored pair of coordinates stroke

2. If the coordinates have not yet been stored, stroke

$\mathrm{N}=$?
2a. Input the north coordinate and stroke

E =?
2b.
Input the east coordinate and stroke
3. If this is an existing pair of coordinates, but you want to duplicate them under a new point number for this traverse, stroke

NEW PT NO?

$3 a$.
Input the new point number you want to assign, and stroke

The output will be the point number and coordinates.

Stroking R/S (or any key)* brings up the traversing menu

Output for the direction of the courses may be either BEARING or AZIMUTH. The FIRST (and only the first) time the traversing menu is displayed stroke either or BE. Nothing will seem to have happened, but your output mode is now set.

bearing input

Bearings are input in two steps, the bearing angle is entered, then the quadrant code is input.

1. Input the bearing, stroke

ENTER

2. Input the quadrant code, and stroke
azimuth input
Courses may be entered as azimuths instead of bearings (if the bearing is northeast, it saves keystrokes).
3. Input the azimuth and stroke

input by point code

The bearing between any two stored coordinate pairs may be called up automatically by using "CODE". This 'code' consists of the two point numbers, entered in the form AAA.bbb, where AAA is the first point number, and bbb

```
*If the calculator is set to "printer on".
```

is the second. The second point number must be threedigit input.

1. Input the code for the two points, in the form noted above, and stroke

With this method of input the 'whole' bearing is used, rather than a rounded off re-input number.

setting the direction

This initial direction may be the azimuth or bearing toward the point you want to set. That is, it may be the first direction of the traverse.

It may also be a BASIS OF BEARINGS from which an angle or deflection angle is then turned, to set the direction of the first course of the traverse. If the latter, the direction of the basis of bearings should be the direction toward the first point.

direction by inverse

You can also establish the direction of the first course by inversing to the next point.

1. Input the point number of the coordinates you wish to inverse to and stroke

You can begin a traverse from existing points (in storage) by inversing from the backsight to the instrument point, to begin the traverse.

The direction of the course and the menu will be displayed, and you can choose your next move.

distance input

Distances may be input as horizontal distance or slope distance, using the appropriate keystroke.

1. Input the horizontal distance, stroke
or
2. Input the slope distance, stroke

$\Delta=$?
2a.
Input the vertical or zenith angle, and then stroke

R/S

The horizontal distance will be output. Stroke a/s if you are not using a printer, and the next prompt is displayed:

PT NO?

Except for inversing, you will have this prompt just prior to the output of coordinates, each time. You may assign any point number you want, or just stroke a/s to get the next consecutive point number.

CAUTION!! If you have used "CODE" for a direction, you must input a point number at the PT NO? prompt, or the point number used will be one higher than the bbb portion of the code, by default.

angle input

Angles may be turned as field angles or as deflection angles. For an angle left, stroke the t/- key before

sideshots

The procedure for a sideshot is the same as for any other course, with the exception that you tell the calculator that you are wanting a sideshot.

1. Signal for a sideshot by stroking
2. Input a deflection angle and stroke
or
Input a field angle and stroke

OT:
定:
or
4a. Input a bearing, stroke
4b. Input the quadrant code, stroke
or Input an azimuth, stroke
5. Input an azimuth, stroke
6. Input a horizontal distance, stroke
or

7a. Input a slope distance, stroke
$\Delta=?$
7 b .

$$
\begin{aligned}
& \text { Input the vertical or zenith angle and then } \\
& \text { stroke }
\end{aligned}
$$

PT NO?

curved sides

It is easy to include a curved side in the traverse. The Δ angle is input as positive if the curve is to the right, and negative if the curve is to the left.

The sign of the radius will determine whether or not the area of the curve segment is included in the traverse area. The radius is input as a POSITIVE number to INCLUDE the area, and as a NEGATIVE number to EXCLUDE the area.

Assume that you are at the beginning of the curve, about to do the curve portion. First, establish the direction of the chord

1. Input $\Delta / 2$ and deflect (change sign if the curve is to the left) stroke
or
2a. Input the bearing of the chord, and stroke

2b.
Input the quadrant code, stroke

品:
or
3. Input the azimuth for the curve's chord, and then stroke

THEN

4. Signal that you are traversing a curve by stroking

5. Input the two known parts of the curve, stroking the appropriate keys. If the curve is to the left, Δ must be one of the two known parts in order to signal the direction of the curve. The default is a curve to the right.

The radius must be one of the known parts if the area is to be excluded, so that it may be entered as a negative number. Default radius is positive, and the segment area is automatically included.

PT NO?

6. The next point set will be the E.C. (end of curve) coordinates*. Input the point number you wish assigned if you do not want the next consecutive number, and stroke

a note on inversing

If you do sideshots and then inverse to the next nonsideshot point, the little lable, Inv $x-y$, will show the point number of the last sideshot in the ' x ' position.

If you are printing out the results and want it to show the correct number, manually store the correct number into register 13 before beginning the inverse.

As an example, if you are at point 3 , set sideshots 15 , 16 and 17 , and then want to inverse directly to point 4 ,


```
*A subroutine, "RP", is included in the "OPTIONS" section. If you
```

add this routine to the program, the radius point will also be set.

Traverses may be thought of as either "closed" or "open" traverses. For use with this program, the CLOSED TRAVERSE may be either of two types. What we will call Type A is one similar to the one shown to the right.

In this type of traverse, the line from 1 to 2 is usually a known line which is included in the traverse.

The two points used would be part of a property or monument line, and the basis of bearings would be the bearing of the line.

This type of traverse also closes back to the original point of beginning, and allows the turning of a closing angle, which is turned at the first (and last) point, foresighting the second point.

What we will consider to be a Type B closed traverse is one which begins at one known point and ends at another known point. For this type (below) the basis of bearings is usually obtained by backsighting another known point.

Closes at a known. coordinate and to a course of known bearing.

An OPEN TRAVERSE is one which, while it may begin at a known point, does not close to any point or line which allows adjustment of the traverse.

Does NOT close to a point of known coordinates or a line with a known bearing

An OPEN traverse may also be considered as being an 'unfinished' traverse, in that it could later be used as a portion of a traverse which will be closed.

More often, a traverse of this type is run as part of a topographic survey, where the traverse is considered accurate enough without correction.

For the CLOSED type of traverse, the angular error is usually distributed equally among the angles, prior to adjustment of the traverse.

An optional program for automatic angular adjustment has been included in this book, and may be added to the traverse program later, if you will be wanting that capability in your traversing routine.

Adjustment routines for either COMPASS adjustment or TRANSIT adjustment have also been included in this book, and you can include either or both of them in your programming. You would usually want to adjust the angles of the traverse prior to using either of the adjustment routines.

We can try a keystroke example using the little traverse shown to the right.

The basis of bearings will be the course 4-1, and we assume that these are (found) existing points which can be occupied.

The first two angles will be turned as deflection angles to the right, the
 last two as angles left.

Note that this is an example using a 'basis of bearings'. The course with the known bearing could also have been used directly, that is, we could have started from \#4 and gone to \#1 as the first leg of the traverse.

Stroke XBQ and the key that corresponds to TRAV
prompt: PT NO?
keystrokes:
1 草 EF
prompt: $\mathbf{N}=$?
keystrokes:
300 R/S
prompt: $\mathbf{E}=$?
keystrokes:
3000 R/S
output:
\#
keystrokes:

HETE 207 • 3 ENTER

1 リேT

output:

$$
N 27^{\circ} 3 \bar{\prime} \cdot \overline{0} 0.0{ }^{\prime \prime} E
$$

keystrokes:

output:

$$
\mathrm{N} 34^{\circ} 13^{\prime 64.04 E}
$$

keystrokes:

prompt: PT NO?
keystroke:
output:
$H 0=150.2050$
\# $2 \quad \mathrm{~N}=315.1323$
keystrokes:
$\begin{array}{lllllllll}1 & 2 & 0 & \cdot & 4 & 7 & 0 & 4\end{array}$

output：

keystrokes：

 prompt：PT NO？keystroke：

output：

$H D=206.5500$
\＃3 $\mathrm{E}=\frac{122.937 \%}{}=32.1367$
keystrokes：
$\begin{array}{lllllllllll}1 & 0 & 7 & \cdot & 0 & 9 & 2 & 6\end{array}$

output：
N 32＂09＇18．${ }^{\circ \prime} \mathrm{W}$
keystrokes：

| 1 | 4 | 2 | \cdot | 9 | 配茫要 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | prompt：PT NO？

keystroke：
output：
$H D=142.9000$

keystrokes：

output：
N 27＂30＇16． $\mathrm{H}^{\prime \prime} \mathrm{E}$
keystrokes：
 prompt：PT NO？
keystroke：
R／S

output：

$H O=172.0000$

keystroke：
$8 / \mathrm{B} \triangle \square$
output：
$\Sigma \mathrm{HD}=671.650 \mathrm{Q}$
prompt：TYPE？
This is a closed，type A， traverse so stroke the key which corresponds to＂A＂

output：

$$
\begin{aligned}
& \text { AREA }= \\
& 24898.6429 \mathrm{sq}+\mathrm{tt} \\
& =0.5716 \text { acres }
\end{aligned}
$$

prompt：CLOSING PT\＃？
keystrokes：

1 HEB

output：

Closure：
§ 70＂9日＇06．6＂W
$\mathrm{HD}=$ घ．日ด 2

Pren＝1：93818

As another example of starting with a＇basis of bearings＇， this type＂B＂traverse starts by backsighting down a known course from a point with known coordinates（\＃1， $\mathrm{N} 500 / \mathrm{E} 500$ ）．In the example，traverse point \＃3 closes at a point with known coordinates（\＃4，N 441．4／E 793．5）．

Begin by stroking XEQ，and then the key which corresponds to＂TRAV＂．
prompt：PT NO？
keystrokes：
1） 5 E
prompt： $\mathbf{N}=$ ？
keystrokes：
5000 R／S
prompt： $\mathbf{E}=$ ？
keystrokes：
500 R／S output：

keystrokes：
$\square \square$

7	0	ENTER
	1	HSTMT

keystrokes：
 output：

E 67＂59＇5日．日＂E
keystrokes：

 prompt：PT NO？keystroke：
R／S

output：

$$
\begin{aligned}
& H O=220.30 日 B \\
& \# 2 \quad E=417.4643 \\
& E=70.2546
\end{aligned}
$$

keystrokes：
$356 \cdot 5$
（7） T
output：
N 75＂0日＇20．ロ＂E
keystrokes：
$92 \cdot 4$ \＃\＃FI
prompt: PT NO?
keystroke:

output:

$$
\begin{aligned}
& H 0=92.4040 \\
& \# 3 \quad N=441.370 .5 \\
& E=793.5685
\end{aligned}
$$

keystrokes:

R/S $\triangle \operatorname{BE}$

output:
$\Sigma H D=312.7000$
prompt: TYPE?
This is a closed traverse, type B, so stroke the key which corresponds to "B"
prompt: CLOSING PT\#?
keystrokes:

prompt: $\mathbf{N}=$?
keystrokes:
$\begin{array}{llllll}4 & 4 & 1 & \cdot & 4\end{array}$
prompt: $\mathbf{E}=$?
keystrokes:

```
7 9 3 • 5 R/S output:
```

Closure:
N 16"0日'32.3" N
$H D=0.5307$

Fren= 1:10186

Because this was a type " B " traverse, no area is output, but a closure is calculated. If this had been an "open" traverse, no closure would be given since it does not close to a known point.

NOTE: If the function you want to use is not in the displayed menu when you need it, you can use $\boldsymbol{\nabla}$ or $\boldsymbol{\Delta}$ to go to the other menu. If you are not using a printer while running the program, stroke ars for the next output or prompt.

miscellaneous moves

You can also inverse to unstored coordinates by entering the northing, then input the easting and stroke the $+/$ key before you stroke $\overline{\eta^{+1}} \boldsymbol{H}$. The program will prompt for a point number to be assigned, and then store the coordinates.

Once the traverse has been closed it may be adjusted. We have included two programs for traverse adjustment in this book, "COMPass adjustment" and "TRANsit adjustment".

You will probably only want to put in one of these, and which one you use will depend on the equipment you use for traversing. With a good theodolite and EDM (or a total station) Compass Adjustment is most often used.

subroutines

First, two subroutines which are used by either of the adjustment programs. Go to "Ct", scroll up to 00 and type in the programs shown to the right.
"INV" performs an inversing routine, and is used by an intersection solutions program and a coordinate transformation program later in this book.

The program "BLK" is also used by the transformation program as well as several others. It identifies a block of consecutive points by point number for coordinates manipulation.

Because these are not routines that you will execute from the keyboard, we have placed them at a point in program memory which keeps them out of the way in the program menu.

As always, it is important that you proof-read what you have typed in, before exiting the program.

Stroke the shifted XBQ key and then the key which corresponds to＂TRAV＂．Enter program mode by stroking the shifted R／S key，scroll upward to program step 00 and type in either＂COMP＂or＂TRAN＂，from the program listings．

COMPass adjustment

日1 LBL＂CDMP＂	$275 T D 85$	53 XE区＂IN＂
$\square 2$ ADV	28 LBL ${ }^{\text {－2 }}$	54 RCL 13
－13＂COMPASS RDJUST＂	29 FICL 13	551
64 FS？घ8	3 ORCL 22	$56-$
－5 AYIEW	$31 \mathrm{X}=\mathrm{Y}$ ？	57 XEQ＂PDIUT＂
－16 RDV	32 БTO घ1	53 ST0 Й
ט7 9	33 XEQ＂ 3 MT＂	59 X＜＞Y
US STO 11	34 ST0 D1	Eด STO Й
09 STO 14	35 STD 15	61 1
1 S STO 15	36 X＜》Y	$625 T 0+13$
11 XEQ＂ELK＂	37 STO Й	
12 XEQ＂POIJT＂	38 STO 14	64 XEQ＂INV＂
13 XEQ＂Г＋．＂	$39 X<>$	65 RCL 旬
14 RDY	4 BCLL － 8	66 STD Q7
151	41 Xく＞Y	67 RCL －1
16 STO +13	$42 \mathrm{RCL}-\mathrm{B} 7$	68 STD DB
17 RCL 10	$43 \rightarrow$ POL	69 XEQ＂OUT＂
13 RCL 日1	44 STD +11	7可 XEQ＂C＋＂
$19+/-$	45 RCL 11	7 I ISC $: 3$
$20 \rightarrow$ REC	46 ECLX 16	72 STD ST X
$21 \mathrm{RCL} \div 56$	$47 \mathrm{STO}+14$	73 HDV
22 ＋／－	48 RCL 11	74 БT0 b2
23 ST0 16	49 RCLX Q 5	75 LBL 日1
$24 \mathrm{X}\langle\gg$	50 ST0＋ 15	76 STOP
$25 \mathrm{RCL} \div 86$	51 RCL 14	77 END
$26+1-$	52 RCL 15	

Typing in the last step，END，will automatically separate the program from＂TRAV＂，but still leaves it just to the right of the＂TRAV＂key in the menu．

TRANsit adjustment

E：LEL＂TEAN＂	$2312 T 0.1$	55 XEQ＂IN＂
12 AOY	29 KEQ＂DUT＂	56 FCL 13
日3＂TRANSIT ADJUST＂	3 ENTER	571
－4 FS？L8	31 RCL－ 98	$58-$
以5 HVIEW	32 RCLX 03	59 STO 13
ES HOY	$33 \mathrm{RCL} \div 89$	69 XEQ＂DIJT＂
Wh SF 25	34 HBS	61 ST0 88
08 BF 86	35 FS？${ }^{36}$	$62 X<>Y$
פ9 RCL V_{2}	$36+1-$	63 STO 97
： $\bar{\square} \mathrm{X}<\overline{\mathrm{a}}$ ？	$375 T 0+14$	641
\therefore LF 日5	33 CLX	65 STO +13
，2 RCL Q	39 RCL 14	66 XEQ＂OUT＂
$: 38<9 ?$	$45+$	67 STO D1
i4 LF 96	41 STO 19	68 X＜＞Y
15 －	42 R＋	69 STO DD
$\therefore 6$ STD 11	43 ENTER	$7 \mathrm{BX} X<>Y$
17 STI 14	44 RCL－ 07	71 RDV
18 XEQ＂ELK＂	45 RCLX 92	72 XEQ＂INY＂
19 左EQ＂POIJT＂	$46 \mathrm{RCL} \div 15$	73 RCL 90
2ら XEQ＂C＋＂	47 RBS	74 STO 97
21 HDV	43 FS？ 05	75 RCL 81
22 LBL 昞	49 ＋／－	76 ST0 88
231	50 STO +11	77 XEQ＂IIT＂
24 STD +13	51 CLX	78 XEQ＂C＋＂
25 RCL 13	52 RCL 11	
26 RCL 22	$53+$	801LBL 81
$27 x=Y$ ？	54 RCL 19	81 STOP

For program step \＃82，type in XEQ END．
If you have decided to input BOTH types of adjustment， you should put in＂TRANS＂above＂COMP＂．You can eliminate program steps 80 and 81 from＂TRANS＂and substitute RTN for END as the last step．This lets the two routines share LBL 01 instead of duplicating the steps．

 $H D=150.2900$
\＃2 $\quad \begin{aligned} & N=315.1323 \\ & E=449.4358\end{aligned}$
S 25＂00＇08．0＂ N
$H D=206.5500$
\＃3 $\quad \begin{aligned} N & =127.9378 \\ E & =362.1367\end{aligned}$
N 82＂99＇18．日＂W
$H D=142.9000$
\＃4 $\quad \begin{aligned} & N=147.4427 \\ & E\end{aligned}=220.5741$
N 27＂3日＇16．0＂E
$H D=172.00 日 G$

As an example，we have re－run the traverse on page 29 ，and the output from both types of correction is shown below．

After you have closed the traverse，stroke XEQ and then the key corresponding to either ＂COMP＂or＂TRAN＂．
prompt：BEGIN ©？
1．Input the beginning point number，then stroke

R／S
prompt：LAST PT \＃
2．Input the last point number in the traverse，stroke

R／S

TRANSIT RDJUST

N 84．13＇03．8＂E $H D=15 \overline{9} .1978$
$\# 2 \quad N=315.1322$

乌 25＂90＇98．6＂ $H D=206.5517$
\＃3 $\quad \begin{aligned} N & =127.9365 \\ E & =362.1332\end{aligned}$
N 82＂ $89^{\prime \prime} 18.6^{\prime \prime} \mathrm{W}$
$H D=142.9020$
\＃4 $\quad \begin{aligned} N & =147.4413 \\ E & =220.5686\end{aligned}$
$N 2^{\circ} 39^{\prime} 15.3^{\prime \prime} E$
$H D=171.9986^{\prime}$

COMPRSS RDJIJST

$$
\begin{array}{ll}
\# 1 \quad & N=390.8909 \\
E & =390.0006
\end{array}
$$

N 84．13＇04．5＂E
$H D=150.1984$

$$
\# 2 \quad \begin{array}{ll}
N=315.1317 \\
E=449.4343
\end{array}
$$

S 25＂00＇09．6＂ W
\＃3 $\quad \begin{aligned} \mathrm{H}=127.9365 \\ E=362.1331\end{aligned}$
$N 82^{\circ} 99^{\prime} 19.9^{n}$
$H D=142.9013^{*}$
\＃4 $\quad \begin{aligned} & N=147.4499 \\ & E=220.5691\end{aligned}$
$N=27.30114 .5$
$H D=171.9986$

The solutions to intersection problems are needed all of the time in surveying. We use an intersection formula to find out where two lines cross, then make that point the new PI or the new lot corner. Or, we need to know how far a point is offset from a given line.

Next to just plain traversing, this is the most used type of calculation in surveying. We've tried to make it easy, with all of the options displayed in the menu at one time.

Any distance input is done with the distance key, and any direction can be input as bearing, azimuth or code.

The "CODE" key may be used to recall a "stored" bearing between two points in storage. The point numbers are input in the form AAA.bbb, where AAA is the first point number and bbb is the second. Three digit input is required for the second point number.

to use the program

Begin by stroking XEQ, and then the key corresponding to INT-X

Begin © PT률

1. Input the beginning point number, stroke

OUTPUT will be the point number and coordinates of the beginning point.

End Pt\#?

2. Input the point number of the ending point, then stroke

Save as \#?

3. Input the point number you wish to assign to the intersection point, then stroke

The prompts and responses on the previous page are the same for all of the intersection routines. Select the type of intersection you need, and follow the keystroke instructions below.
bearing - bearing
1a. Input the first bearing and stroke
ENTER
Input the quadrant code, stroke
or

1 b .
Input the point code for the bearing you want to extract as the first bearing, and then stroke
or
1c.
Input the azimuth of the first course and stroke

2a. Input the bearing of the second line, then stroke

ENTER

Input the quadrant code and stroke
or
2 b .
Input the point code for the bearing you want to extract as the second bearing, and stroke

or
2c. Input the azimuth of the second course and stroke

OUTPUT will be the bearing and distance from the beginning point to the intersection, the point number and coordinates of the intersection point, the bearing and distance from the intersection point to the end point, then the point number and coordinates of the last point.

bearing - distance

la. Input the bearing of the first course, stroking
ENTER
Input the quadrant code, then stroke

or

 E:B1 b .
Input the point code for the bearing you want to extract, and stroke
or
赖:!
1c.
Input the azimuth of the first course, and then stroke

2. Input the distance for the second line, and stroke

OUTPUT will be the bearing and distance from the beginning point to the intersection, the point number and coordinates of the intersection point, the bearing and distance from the intersection point to the end point, then the point number and coordinates of the last point.

Because there are two possible answers with this solution type, a reminder prompt appears

2nd Solution

3. Examine the answers and decide if they are the correct solution. If they are not, go on to the second solution by stroking

Output will be the same as for the first solution with the exception that the first point is not printed out again. The intersection point coordinates in storage will be replaced by the new ones.
distance - distance

1. Input the first distance, stroke
Input the second distance, and then stroke
等:
OUTPUT will be the bearing and distance from the
beginning point to the intersection, the point number and
coordinates of the intersection point, the bearing and
distance from the intersection point to the end point, then
the point number and coordinates of the last point.

2nd Solution

3.

If you want the second solution, stroke

If you do not want the second solution, stroke

Output of the second solution is similar to that of the bearing - distance solution, replacing the original coordinates at the intersection point with the new ones.
offset to a line
la. Input the bearing of the known line (from which the end point is offset) and stroke
ENTER
Input the quadrant code then stroke

or

1b. Input the code for the bearing you want to extract and stroke
or
1c. Input the azimuth of the line and stroke
2.

OUTPUT of the answer will be in the same form as the other intersection routines，with the bearings and distances of both lines given．

the programming

The information on the last few pages describes the way the program works，and now we＇ll look at the programming itself．

As always，there are a couple of related subroutines．

2 ENTER 1

STO ENTER ERTER

This time you will also add a few steps to the traverse program and set up a storage matrix．That is much easier than it sounds， just do the keystrokes shown to the left．

Go to＂INV＂，enter program mode，and scroll up one notch to step 00 and type in the following：

日1 LBL＂E＋A＂	93 RCL 21
可2 XEQ＂F1＂	旬ト＂ヶ＂
のЗ ト＂ヶ＂	101LBL 91
V4 GTD Q1	11 FS ？ 38
可 $L_{\text {LBL }} \mathrm{A} \rightarrow \mathrm{Q}$＂	12 RTN
－6 $6 \rightarrow H R$	13 AVIEW
g7 XEQ＂B！＂	14 RTN

Next，stroke

Enter program mode．
Scroll down until the
日5 FS？ 8 C
program pointer is at 04， and insert the two steps日G 以T0 15 shown to the right．

And，it＇s time to type in another long one．Before starting stroke \square XEO •－to pack what is already in the calculator．Now go to the permanent ．END．by stroking shift，XEQ，．END．，and enter program mode．The display should show

Stroke Δ so that the pointer is at 00 ，and you may begin typing in the program steps listed below．

O1－PL＂INT－X＂	23 STOP	45 STO－O2
O－XEQ d	241 LRL d	46 ＊
03 FS？ 83	2586.099	47 RCLEL
$04 \times E Q 51$	26 LBL H	48 STO 08
05 SF 21	27 CF IND ST x	49 STO－03
06 CLA	28 ISG ST x	50 RCL 19
07 XEQ 10	29 GTO H	$51 \rightarrow H R$
08 CLMENU	30 CLX	52180
091． 50	31 RTN	$53+$
10 ＂PRNG＂	321 Li	54 STO 10
11 KEY 1 GTO F	33 INDEX＂SW＂	55 STO 00
12 ＂CODE＂	34 RCL 07	56 CLX
13 KEY 2 GTO A	35 STOEL	57 GTO＂TRAV＂
14 ＂AZIM＂	$36+$	58 LBL A
15 KEY 3 GTO B	37 RCL 08	59 XEQ＂CODE＂
16 ＂DIST＂	38 STOEL	6OLBL P．
17 KEY 4 GTO G	39 CLX	611
18 ＂O／S＂	40 RTN	62 LPL F
19 ドEY 5 GTO D	41 LBL C	63 SF 10
ご口＂TRAV＂	42 INDEX＂SW＂	$64 \times E Q \quad$＂ 11 ＂
21 KEY 6 GTO C	43 RCLEL	65 LBL e
ご MENU	44 STO O7	66 FC？ 95

67 STO D4	$97 \times E \mathrm{CO}$	127	FS？C 96
68 FS？ 95	98 RCL 04	128	GTO Gz
69 STO 00	$99 \mathrm{RCL}-10$	129	XEQ O2
70 CLX	1005 IN	130	RCL 05
71 FS？ 95	101 RCL× 11	131	$x<12$
72 SF 97	102 STO O7	132	STO 05
73 SF 95	1031 LPL	133	XEQ 01
74 FC ？ 97	104 CF 95	134	GTO O2
75 RTN	$105 \times E Q \quad 00$	135	LBL 10
76 FS？ 97	106 RCL 07	136	CLA
77 GTG a	$107 \times+$	137	＂Pegin a Pt\＃？＂
78 RTN	108 RCL 04	138	ト＂ 5 ＂
791LPL G	109 RCL－ 10	139	FC？ 83
80 FC？ 98	110 RCL 11	140	PROMPT
81 STO 05	$111 \rightarrow \mathrm{REC}$	141	FC？ 83
82 FS？ 98	112 FS？ 96	142	XEQ＂POUT＂
83 ST0 07	113 GTO 05	143	FS？ 83
84 FS？ 95	$114 \mathrm{R}+$	144	XEQ＂OUT＂
85 STO 07	115×2	145	STO 01
86 FS？ 95	116 －	146	$\mathrm{R}+$
87 GTG b	117 SQRT	147	STO 06
88 FS？ 98	$118 \mathrm{R}^{\text {＋}}$	148	CF 10
89 SF 99	119 X	149	R^{+}
90 FS？ 99	$120-$	150	FC？ 83
91 GTO C	121 STO 12	151	XEQ＂C＋＂
92 SF 98	122 LASTX	152	＂End Pt\＃？＂
93 CLX	123 R ＋	153	「＂ヶ＂
94 RTN	$124+$	154	PROMPT
951 LBL D	125 LPL 05	155	STO 16
96 SF 96	126 STO 05	156	XEQ＂POUT＂

157	STO 03	187	$\mathrm{RCL}-\square 4$	217	XEG O1
158	R＋	188	SIN	－18	LPL 02
159	STO O2	189	$-$	-19	CF 10
160	＂Save as \＃？＂	190	STO 05	220	RCL 04
161	「＂ヶ＂	191	GTO 口	21	RCL 05
162	PROMFT	1920	LPL c	22	＋REC
153	$5 T 015$	193	CF 95	223	XEQ 0.3
164	CF 95	194	XEQ 00	224	ADV
165	SF 10	195	RCL 05	225	RCL 04
166	FIX 04	196	$\rightarrow \mathrm{POL}$	2 Z	RCL 05
167	CLX	197	人ヶこ	227	\rightarrow REC
168	RTN	198	RCL 07	228	$\mathrm{RCL}+06$
1691	LPL 00	199	$x+2$	29	STO 08
170	RCL 03	200	－	230	$X<y$
171	RCL－ 01	201	$\mathrm{RCL}-11$	231	$\mathrm{RCL}+01$
172	RCL O－	ごこ	$\mathrm{RCL} \div 05$	23	STO 09
173	RCL－ 06	203	－	233	RCL 15
174	XEG 03	204	\div	234	STo 13
175	STO 10	205	ACOS	235	$\mathrm{R} \downarrow$
176	$x<y$	206	RCL 10	236	XEQ＂IN＂
177	STO 11	207	$X<Y$	237	XEQ＂OUT＂
178	RTN	208	－	238	XEQ＂C＋＂
179	LPL ${ }^{\text {a }}$	209	STO 12	239	RCL 02
180	CF 95	210	LASTX	240	RCL 0.3
181	XEQ 00	211	$\mathrm{RCL}+10$	241	RCL－ 09
182	RCL 00	212	STO 04	242	X＜Y
183	RCL－ 10	213	XEQ O2	243	RCL－ 08
184	SIN	214	RCL 12	244	XEQ 03
185	RCLX 11	215	$x<04$	245	RCL 16
186	RCL OO	216	STO 12	246	STO 13

As always, it's important to proof-read the program before trying it out.

Then try the keystroke examples on the following pages, to get the feel of the different routines.

NOTE: Distance-Distance and Bearing-Distance solutions can "blow" if the angle of intersection is close to 90° ! From $89^{\circ} 58^{\prime} 55^{\prime \prime}$ to $90^{\circ} 00^{\prime} 00^{\prime \prime}$ the sine is 1 to the nearest 7 places, and the cosine is 0 at 90°, not allowing division, since the calculator is programmed to not divide if the number in the x-register is 0 .

Quite often, when this happens, the correct answer lies half-way between the answers output as the 1 st and 2 nd solutions. If both solutions lie in the same quadrant and the coordinates are very close in both results, try using the mean northing and easting by averaging the coordinates.

Before beginning with the keystroke examples，we need to store points 1 and 2 in the illustration below．

We＇ll start with an example using the bearing－bearing routine．
prompt：Begin © Pt ？
keystrokes：
1 R／S
output：\＃1 ${ }^{N}=159$. 細明
prompt：End Pt\＃？
keystrokes：
prompt：Save as \＃？
keystrokes：
3 R／S
display： 0.0000
 keystrokes：
$150 \cdot \cdot 3003$ ENTER

display： 0.0000

keystrokes：

| 3 | 2 | 4 | 5 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

2 的
output：

Next, try an example of the offset routine, using the same illustration for this example.
keystrokes:
prompt: Begin © Pt\#?
keystrokes:
1 R/S
output:

prompt: End Pt\#?
keystrokes:
prompt: Save as \#?
keystrokes:
3 R/S
display: 0.0000

Since the bearing that we want (from 1 to 3) is still stored from the last example, let's just call it up from storage:
keystrokes:

When the display clears to 0.0000 and the prompt bar appears, indicate that this is an OFFSET:
keystroke:

output:

$$
\begin{aligned}
& \text { \# } 3 \quad N=184.7571
\end{aligned}
$$

For a last example, which also uses the 'second solution', do the distancedistance intersection, using the same coordinates as in the illustration, and the distances which were output in the first example.

Answer the beginning prompts with the same point numbers as in the other two examples, and then input the first distance keystrokes:

$\begin{array}{llllllll}2 & 3 & 5 & \cdot & 4 & 6 & 7\end{array}$

When the display clears to 0.0000 and the prompt bar appears, input the second distance
keystrokes:

2 9 9 $9 \cdot 5 \times 1$ (3

The output which follows is not the correct answer for the directions we are going:

```
output: \(\Xi 2\) '4 \(^{\prime} 4\) 日. \(4^{\prime \prime} E\)
    \(D_{1} s t=235.467\)
```



```
    N 45"25'59.6"E
    Oist \(=299.513\)
```


prompt: 2nd Solution

keystroke:

\#\#\#

output: N 15"30'29.8"E

$$
01 s t=235.467
$$

$$
\begin{array}{ll}
\# 3 \quad & N=376.8941 \\
E & =237.9586
\end{array}
$$

$532^{\circ} 45^{\prime 1} 10.2^{\prime \prime} E$
$0 \mathrm{i} s t=299.513$

If you are not using a printer while working this routine, you must continue to stroke the R/S key after output, until a new prompt appears or the display clears.

interfacing with "TRAV"

You will have noticed that "TRAV" is also displayed in your prompt bar. You cannot go directly to the traverse program from this program unless you originally started out there.

What you CAN do is go to the intersection program from the traverse program, and then return to the traverse.

1 You can be traversing, get to this

DECISIONS, DECISIONS, DECISIONS!!

We have arrived at a point where you have to decide how to configure your calculator.

point storage

If you have input all of the programs so far, you should be able to store about 210 points, and you have a good basic set of programs for most traverse problems.

From here on, each program you add is a trade for point storage. Decide which programs you really need and how many stored points you actually need for YOUR normal work. To help with this we will tell you how many points each of the following programs will replace.

a recommendation

Adding the routine to the right to the traverse program, and changing the two steps shown, will replace 19 registers, but allows you to use "TRIG", " $\mathbf{A} \rightarrow \mathbf{B}$ " and " $B \rightarrow A$ " without leaving the traverse program. Typing in the programs on the next page adds three valuable programs to your set.

The new routine should go directly above LBL 29 in the traverse program, the other two steps replace existing steps. If you did not do the modification for the intersection program, the step numbers will be 2 smaller.

92LBL 60
93 [LMENIJ
94 "SPRAY"
95 KEY : GTO "GPRRY"
96 "LDAD"
97 KEY 2 GTO "LORD"
98 "DUMP"
99 KEY 3 GTO "OUMP"
1旬 "TRIG"
1 D1 KEY 4 GTO 61
152 " $B \rightarrow A "$
1 103 KEY 5 GTO 62
104 " $\mathrm{A} \rightarrow \mathrm{B}$ "
105 KEY 6 GTD 63
106 KEY 7 GTD 31
107 KEY 8 GTD 15
108 MENI
109 RTN
11 LBL 61
111 SF 33
112 XEQ "TRIG"
113 GTO 15
114 LBL 62
115 XEQ " $B \rightarrow A$ "
116 GTD 15
117 LBL 63
118 XEQ "A \rightarrow B"
119 GTO 15

```
Replace TQ KEY 7 GTO 31 with TO KEY 7 GTO GQ
Replace 89 KEY & GTD 15 with 89 KEY 8 GTD 60
```

We feel that you＇ll get a lot of use out of these three short programs，particularly＂SPRAY＂，which is used for radial stakeout．

U1LEL＂DUMP＂	$26 \mathrm{CF} \mathrm{日g}$	51 X＜＜${ }^{\text {P }}$
G2 XEQ＂ELK＂	27 ＂Inst，W？	$52 \times<\theta$ ？
$\square 3$ X＜＞Y	23 ト＂ヶ＂	53 XEQ Q1
－4 1	29 PROMPT	$54 \rightarrow$ HMS
－5－	З可 XEQ＂POUT＂	5．5 ト＂A己：
06153	31 STO 日 3	56 XEQ＂DMS＂
－7 -	32 R	57 ト＂t HO
日8＋	33 ST0 日7	58 ARCL 23
09 ST0 13	34 ＂Inst，${ }^{\text {－}}$	59 RYIEW
10．LBL E	35 KEQ Q9	6И ROV
11 XEQ＂Jtu	35 FS？ 55	G1 GTO A
12 XEQ＂O＋＂	37 HYIEW	62 LbL 日 1
13 ISc 13	38 RDV	63369
14 GTO E	39 LBL A	$64+$
1.5 RTN	$4 \overline{6}$ CLA	6.5 RTH
16LBL＂$\angle 10 A D$＂	41 ＂Pt，\＃？${ }^{\text {¢ }}$＂	66 LBL 99
17 KEY 9 GTO 10．	42 PROMPT	6.7 FIX 00
18 ＂Point，\＃？4＂	43 XEQ＂PDIUT＂	68 CF 29
19 PRIDMPT	44 CLA	69 ARCL 13
	45 XEQ 99	79 FIX 0^{4}
21 GTO＂LORD＂	46 RCL － 93	71 SF 29
22－LBL＂SPRAY＂	47 X ¢ ${ }^{\text {c }}$ ¢ Y	72 RTN
23 KEY 9 GTO 10	$48 \mathrm{RCL}-\mathrm{g7}$	73－LBL 10
24 SF 21	$49 \rightarrow \mathrm{POL}$	74 CLMENU
25 XEQ＂CL＂	50 STO 23	75 EXITALL
		76 END

All three may be accessed directly from your traverse program，using the new menu（page 49）．A short description of each follows．
dump

\#1	
\#2	
\#3	$\begin{aligned} & N=992.0990 \\ & E=4825.0909 \end{aligned}$
*A	$H=865,0989$

When you stroke prompted for the first and last point numbers you wish to output.

The calculator will print out a complete list (left) of all of the coordinates within that block of stored coordinates.

The printout can be made on the infra-red printer or through your computer, if you are using one of Rush Systems' "hookups". With the hookup, save a little time by setting the "delay" to 0 on your calculator first.

load

This one runs a closed loop on "PIN" for input of coordinates. When you execute this program you will get a new prompt for point number immediately after input of each coordinate pair, eliminating the need for executing "PIN" each time when you want to input a group of coordinates.

spray

When this program is executed it first prompts for the point number of the instrument's location, then prompts for the next point number continuously, inversing to each of the points.
The output is as shown to the right ("Inst @ X " is only output

```
Inst 巴2
1 AZ: 251.29122.6"
3 FR: 217.59'55.4"
4 AZ: 214.09'47.9"
    HD: 475.1245
```

if a printer is being used).

Inverse to the backsight first, setting that azimuth in the gun when you backsight. Turn the azimuth of each of the other points to lay them out.

If you want to lay out a group of unstored points from a provided "dump sheet", simply input them with "LOAD" and then inverse them with"SPRAY".

purging a file

This is another handy utility program, and it's practically free, using only 21 bytes of program space.

Use it to clear a block of stored coordinates when you need to make room for new calculations.

Input the 'code' form for the block of points you want to clear, and THEN execute "PRGE" (short for PuRGE).

The block of coordinates is cleared by storing 0 into each of

G1 LEL "PRIE"
$\text { Ge ST0 } 13$
G3lEL F
64 CLST
日5 XEQ "IN"
46 ISc 13
Q1 OTD F
3 END

Before clearing the coordinates, you might want to print them out, so that you have a permanent record of them. Use "DUMP" for this. Incidentally, if you want more places shown in the output, you can change the output with FIX 06 or FIX 08 before executing "DUMP" (See pg. 12).

setting the radius point

The footnote on page 26 mentioned this program; it adds the radius point to the output when you traverse a curve. It's a trade for about 5 stored points if you add it. Because it is NOT a routine you will be calling up directly, you can add it anywhere in the middle of program memory.

Also, because it doesn't have any local labels, it isn't necessary to have it as a separate program, and it can be tacked on to any of the other subroutines.

	$11+$	21 STO 13
42 CLMENIJ	12 FCL 11	$22 \mathrm{~F}+$
03 RCL Qa	13 +REC	23 XEQ "IN"
04 RCL 12	$14 \mathrm{RCL}+87$	24 XEQ "OUT"
05 FS ? 95	$15 \mathrm{RCL}+\mathrm{V}_{2}$	25 ADY
$66+\%$	$16 \mathrm{X<}$ ¢Y	26 "Radius Pt, "
67-	$17 \mathrm{RCL}+48$	27 FS? 55
9890	$18 \mathrm{RCL}+83$	23 FVIEW
49 FS?C 0^{5}	19 "Rad. Pt,\#?ヶ"	29 XEQ "C+M
$10+\%$	20 PROMPT	30 RTN

The routine is run automatically, but there are a couple of things that you must remember to do.

When the prompt "Rad. Pt\#?" appears, you MUST input a point number before stroking the RUN button.

When the program returns to the traverse routine and prompts for a point number after output of the chord, you MUST input a point number.

You can not just stroke the RUN button for the next consecutive point number. Output is as shown above.

additional programming

The pages which follow contain additional programs which you may add as options to what you already have in your calculator. The number of stored points traded by adding these programs is as follows:

Curve LAYout ± 29 points
Coordinate ROTation ± 39 points
PREdetermined Areas ± 33 points

automatic angle adjustment

After a traverse is closed，but before adjustment by compass or transit method，the angles should be balanced．

If you will refer back to the traverse example on page 30 ， you＇ll note that the original basis of bearings was $\mathrm{N} 27^{\circ} 30^{\prime} 00^{\prime \prime} \mathrm{E}$ ．

After turning the angles through the traverse we ended up with the same line，but it now shows the bearing as $\mathrm{N} 27^{\circ} 30^{\prime} 16^{\prime \prime} \mathrm{E}$ ， indicating that we have $16^{\prime \prime}$ too much angle in the traverse．

	D $=150.2900$
	$\begin{aligned} & N=315.1323 \\ & E=449.4358 \end{aligned}$
	25＊00＇08．0＂W
	$D=206.550 日$
	\＃3 $\quad \begin{aligned} & N=127.9378 \\ & E=362.1367\end{aligned}$
	82＊09＇18．0＂
	$D=142.9000$
	$\begin{aligned} & N=147.4427 \\ & E=229.5741 \end{aligned}$
	27＊30＇16．0＂E
	$D \mathrm{D}=172.009 \mathrm{D}$
$30 \mathrm{Bag} \cdot \mathrm{~g} 224$	

When you divide the $16^{\prime \prime}$ by the 4 traverse points，you get an angular error of $4^{\prime \prime}$ per turn．

While this is an acceptable amount of angular error，it still needs to be adjusted out．That＇s what this program does．
\＃5 $\begin{aligned} & N=30 日 .9024 \\ & E=30 日 . \\ & \end{aligned}$
The program actually recalls，then adjusts，each bearing in the traverse．More，having adjusted the bearing（or azimuth），it goes on to use the new bearing to recalculate （and store）the coordinates of each traverse point．

314 LBL 38
315 XEQ＂\triangle ADJ＂ Cadd this step
Stroke shift，XEQ（GTO），TRAV then shift XEQ 38．Enter program mode，and the program pointer should be at ＂LBL 38＂．The step number may be different，depending on which options you＇ve already installed，but the important thing is that the new step be the first step in LABEL 38.

Type in the new step，and we＇ll go on to type in the subroutine．

The program can go anywhere into the middle of the subroutine stack．Go to any of the subroutines that starts with program step 01 ，scroll up to 00 ，and begin the input．

日1达＂ 4 ADJ＂	24 ST0 14	47 KEQ＂OUT＂
Q2 RCL 13	$25 \mathrm{R}+$	48 ST0 日8
פ3 ST0 24	$265 T 0 ⿴ 囗 十$	$49 \mathrm{R}+$
－14 1	27 ST0 16	5 STO 07
55＋	2 EPLBL A	51 REL 16
96 STO 22	29 RCL 22	52 RCL 14
日 5 CF 22	35 RCL 13	53 XEQ＂IN＂
Q8＂Error／Turn？${ }^{\text {tr }}$	$31 \mathrm{X}=\mathrm{Y}$ ？	541
59 PROMPT	32 GTO B	$55 \mathrm{STO}+12$
10 FC ？ 22	33 KEQ＂PDUT＂	$56 \mathrm{STO}+13$
11 RTN	34 RCL － QB^{8}	57 GTO A
12 1E4	35 ¢＜＜${ }^{\text {r }}$	58LEL B
$13 \div$	$36 \mathrm{RCL}-\mathrm{B7}$	59 RCL 23
$14 \rightarrow$ HR	$37 \rightarrow P O L$	6 6 XEQ＂PDUT＂
15 ＋／－	$38 \mathrm{X} \backslash\rangle$ Y	61 ST0 98
16 ST0 11	39 RCL 11	62 R
17 CLX	45 RCLX 12	63 STO 97
13 ST0 12	$41+$	64 RCL 24
19 ＂Beginning Pt\＃？ヶ＂	$42 \mathrm{X} \backslash \backslash Y$	65 XEQ＂POUT＂
20 PROMPT	$43 \rightarrow \mathrm{EEC}$	66 RCL－ 6^{6}
21 STO 23	44 STO +16	
22 XEQ＂PDUT＂	45 X Х＜${ }^{\text {c }}$	68 R＋
23 ST0 日8	45 STO +14	69 RCL－ 97
		T0 STO Q2

Now，type in XEQ END，for program step 71．This assures that you won＇t branch to the wrong＂LABEL A＂or ＂LABEL B＂by separating this program from the others．

In order to angle adjust a type＂B＂traverse such as the one on pages 31 and 32 ，it would be necessary to occupy point $\# 3=\# 4$（existing）and turn a closing angle to the known course to determine the angular error．

With this routine installed, part of the traverse closure program will prompt:

Error/Turn?

If you DO NOT want to adjust the angles, return to the closure by stroking

If you DO want to adjust the angles, input the number of seconds of error per turn, and then stroke

R/S

Beginning Pt\#?

This prompt will appear if you ARE adjusting the angles. Input the point number used for the first traverse point, and stroke

R/S

Closure: The calculator will do the adjusting of

N 31"03'29.4" W
$H D=0.0007$

$\operatorname{Prcn}=1: 914501$
the angles and coordinates, then continue with the closure. For the traverse example from pages 29 and 30 , the angle adjustment has reduced the closure error to 0.0007 ', with ten times the precision of the original example.

additional HP-42S programming

Programming Examples and Techniques
Hewlett-Packard. Supplements the 42S owner's manual.
Synthetic Programming on the HP-42S
EduCALC Technical Notes (TN\#24) by Richard Nelson. Free (send a $25 \notin$ stamp with your request) from

EduCALC Mail Store
27953 Cabot Road
Laguna Niguel, CA 92677
Individual solutions booklets (available summer 1989) by D'Zign. Titles will include:
Vertical Alignment EDM Slope Staking Topography
Alignment and Offsets Spiral Curves Urban Surveys

This program makes short work of calculating the layout of curves．Corrected chords are output if the curve is to be staked along an offset by the chord and deflection method，and adjusted tangent distances and offsets are output if you want to stake an offset by the tangent－offset method．

the subroutine，＂STA＂

Q1 LBL＂STA＂There is one subroutine to be input for

We 29
的 FIX 0 日
04 STO 21
И5 1E2
46－
Q ENTER Go to＂INV＂，enter the program mode，
Uis IP and then scroll upward to step 00 to
Q9＂ヶ＂begin typing in the program steps
in ARCL ST 8 shown．
11 －
$12+"+"$ This subroutine changes a number，
13 FIX G 2
14 1E2
15 \％
1610
17 K 8 ？
18 ドら＂
19 ARCL ST Y
20 PCL 21
21 SF 29
22 FIX $44 \quad$ The step＇1E2＇（05 and 14）is input with
23 RTN it is not a routine you would normally call directly from the keyboard，it can go at the end portion of the program catalogue． XXXX．xx，into the＇station＇form， $X X+X X . X x$ ．This enhances the output and makes for one less chance to mistake a number for something else．
＂Station $1,234.56$＂does not read as a station to most surveyors，while $12+34.56$ is immediately recognized as a station even if it isn＇t labeled＂station＂． the＂E＂key just to the left of the clear this program，shown to the left．Since key．Stroke E， 2 and then the＇divide＇（step 05）or＇times＇ （step 14）key to complete the entry．

editing＂CURVE＂

Since this program also uses ＂CURVE＂as a subroutine，you have to do some quick editing．

$$
148 \text { FS? } 95
$$

Go to＂CURVE＂，then go to step 149 GTO＂CLAY＂

147 and insert the two new steps shown to the right．

The new steps inserted into＂CURVE＂will send program execution back to the layout program after the curve data has been calculated．

The main program，＂Curve LAYout＂，should be near the top of program memory，for easy access．Go to＂COMP＂ or＂TRAN＂，（whichever you input），and scroll upward to 00 ．Begin input of the program steps shown below．

O1DLBL＂CLAY＂ 25 CLMENU 49 GTO 02
O－FS？C 95
2b＂B．C．＂
03 GTO 00
27 ドEY 1 GTO O1
515008
04 CF O．
28＂P．I．＂
5．RCL－ 24
05 CF 03
29 ドEY 3 G1． 193
53 5Tッ 0
06 CF 04
07 CF 06
30 ＂E．C．＂
$54 \mathrm{FCl}+20$
31 ドEY 5 GTO OS
5550014
$561 \mathrm{PL} \mathrm{O}_{2}$
09 SF 08
10 SF 09
11 SF 95
32 MENU
57 RCL 06
$58500 \quad 07$
59 XEQ＂STA＂
60 ト＂B．C．＇＂
G1 AVIEW
B2 RCL 14
$63 \times E Q$＂STA＂
64 ト＂P．I．！＂
65 AVIEW
60 RCL 08
67 XEQ＂STA＂
69 －＂E．C．4＂
69 AVIEW
70 LPL O4
71 CLMENU
7玉＂ム \＆く＂

73 REEY－GTO		$1 口 3$ LPL F	133	\times
74 ＂ 4800		104 CLA	134	$\mathrm{RCL} \times 16$
75 ドEY 4 GTO	E	105 XEQ＂STA＂	135	RTN
7s＂T O／S＂		106 AUIEW	136	LEL 03
77 ドEY \＆¢丁すO	C	$107 \mathrm{RCL}-07$	137	FIx 03
78 MENU		108 LPL 08	138	$\rightarrow \mathrm{HMS}$
79 CLA		109 RCL OB	139	＂Chat $=$＂
80 PROMPT		$110 \mathrm{RCL}-\mathrm{O}$	140	FC？ 09
81－LL A		$111 \times Y$	141	$A R C L S T Z$
$825 F 03$		119 LEL 10	142	FS？ 09
83 GTO 10		113 SF 07	143	AFCL ST r
84LPL P．		114 LPL $\square 9$	144	AVIEW
85 CF 07		$115 \mathrm{STO}+07$	145	＂Det．$\langle=$＂
86 SF 03		$116 \times 0 \mathrm{O}$	146	FS？ 05
87 GTO 10		117 RCL 07	147	＋$/-$
88 LEL C		118 FC ？ 07	148	\square
89 CF 09		$119 \times$ OQ 20	149	$X Y$
90 CF OS		12 RCL － 06	150	$X Y^{\prime}$ ？
91 SF 014		121 XEQ $\square 2$	151	360
Q－LBL 10		1ニ－RCL 10	152	HMS＋
93 CLMENU		1：3 FS？ 03	153	XEQ＂DMS＂
94 ＂9／5＂		124 GTO 03	154	AVIEW
95 ドEY 1 GTO	D	125 FS？ 04	155	CLA
96 ＂INTVL＂		126 GTG 04	156	FS？
97 HEY 3 GTO	E		157	GTO 15
98 ＂STA＂		$128 \mathrm{RCL} \div 05$	158	GTO 10
99 HEY 5 GTG	F	129 STO 10	159	LPL O4
100 MENU		130 SIN	160	FIX 03
101 CLA		$131 \mathrm{RCL} \times 11$	161	X Y
10：PROMPT		132 2	162	\rightarrow REC

163	$X \times Y$	180	RTN		197	FS？［16
164	FS？ 05	181	LPL D		198	－＂＇L「＂
165	＋1－	182	STO 15		199	AVIEW
166	RCL 15	183	FIX O－		200	ADV
167	$+$	184	$x 0$ ？		201	FIX 04
168	$X<Y$	185	SF Ob		20	GTO 10
169	${ }^{* D i s t}="$	186	FC？ 05		203	LEL 15
170	ARCL ST X	187	＋1－		204	RCL 08
171	－＂4O／S＝＂	188	$\mathrm{RCL}+11$		205	RCL 09
172	ARCL ST Y	189	$\mathrm{RCL} \div 11$		206	$\mathrm{RCL}+\mathrm{D7}$
173	AVIEW	190	STO 16		207	$X Y$ ？
174	FS？	191	RCL 15		208	$G T O F$
175	GTO 15	19\％	ABS		209	ADV
176	GTO 10	193	＂Offset	$="$	210	0
177	LPL E	194	ARCL ST	x	こ11	STO 09
178	STO 09	195	FC？ 06		212	CF OE
179	SF U2	196	「＂＇RT＂		213	GTO 10
					214	END

To use the curve layout program stroke XEQ, then the key which corresponds to "CLAY". This brings up the

1. Input the two known parts of the curve, the same as when you use the curve calculation program, "CURVE"

Output will be the curve data for the curve, through the output of the chord.

Known Station?

2. Input the station at the B.C., P.I. or E.C. and stroke the key which corresponds to the station input.

Output will be the stations of the B.C., P.I. and E.C., followed by the prompt bar for selection of the type of

3 a.
For deflection and LONG chord,

3b. For deflection and SHORT chord,

3c. For tangent-offset solution, stroke

4. If the curve is to be staked along an offset to centerline, input the offset distance (stroke the $+/-$ key if the offset is to the left of centerline) and stroke

5. If you want to calculate stations at constant intervals, input the interval distance and then stroke
6.

Input the first station for which you want a solution, stroke

Output will be the station and either the deflection/chord or tangent/offset solution to the station.

If you have selected an interval, the program will continue through the curve without further input. When the interval stations have been completed the program will again display the prompt bar, allowing you to input additional stations which were not on even interval stations (inlet locations, etc.).

The example shown to the right is the solution for a curve with a radius of 500.00^{\prime} and a central angle of $30^{\circ} 00^{\prime} 00^{\prime \prime}$, solved for deflection and long chord, along an offset of 10.00^{\prime} left.

An additional station at $11+61.27$ was calculated for the location of the centerline of a driveway.

As always, if you are not using a printer continue to stroke the R/S key for additional output or the next prompt.

You might want to try the same curve to see if you get these answers. If you don't, you should re-proof the program listing for incorrect steps.


```
        \(L=261.7994\)
\(T=133.9746\)
\(L=253.819 h\)
```



```
\(11+33.975 \mathrm{P} . \mathrm{I}\).
12+61.799 E.C.
Offset \(=10.0 \square^{\prime} \mathrm{LT}\)
```



```
\(11+5 \overline{5} .000\)
Chd \(=101.830\)
Def. \(\measuredangle=5\) 543'46.5"
\(11+5\).
```



```
\(12+\overline{9} 6 . \overline{9} 90\)
```



```
\(12+50\). й日
```



```
\(11+61.279\)
Get. \(4=163.783 .14^{3} 24.3^{\prime \prime}\)
```

Coordinate transformation, or bearing rotation, is used to change a traverse from one "grid system" to another. A field traverse may be run without knowing the real basis of bearings, by beginning with an assumed bearing.

All of the normal adjustments can be made and the traverse worked with, new points calculated within the traverse, and so on.

When a basis of bearings becomes known (we finally got the description from the client), the bearings of the traverse may be rotated to match the "deed" bearings.

angle convention

The difference between the assumed (old) bearing along a known line and the deed (new) bearing of the same line is the ROTATION ANGLE. This program accepts the rotation angle as POSITIVE FOR CLOCKWISE and NEGATIVE FOR COUNTERCLOCKWISE.

Except when "blocks" of coordinates have been run, you have the option of reviewing or restoring the coordinates to the old system at any time. This program also allows two types of output, with or without the rotated courses also being shown, and the courses may be output as either azimuths or bearings.

input options

There are two types of setup input possible; if the rotation angle is known or if two points in each system are known. The instructions for input of the required information for each of the systems is shown on the following pages. Once the information has been input for either system, the solution steps for transformation of the points are the same for both systems (see solutions).

renumber option

A unique feature within this program allows you to transform points and renumber them at the same time, leaving the original coordinates as they were, in the old system. This can be handy for calculating the location of similar buildings on different lots.

rotation angle known

Call the program up by stroking

Rotation $\measuredangle=$?

1. Input the rotation angle, in degrees, minutes and seconds. If the angle is counterclockwise, change sign with the $+/-$ key, then stroke

R/S

Scale Factor?

2.

If the scale factor is $1: 1$, it is not necessary
to input anything. If it is not 1 , input the
new factor before stroking
R/S

Rotation Pt\#?

3.

Input the point number of the rotation point, stroke

OUTPUT will be the point number and coordinates (if the printer is being used, "Rotating @ \#x" will be output also).

New Coord's?

4a. If the coordinates of the rotation point are the same in the new system as in the old, stroke

4b. If there are different coordinates for this point in the new system, stroke

If the answer to the last prompt was "yes" you will also receive the following prompts:

$$
\begin{aligned}
& \mathrm{N}=? \\
& 4 \mathrm{~b}-1 .
\end{aligned} \quad \text { Input the new north-coordinate, stroke }
$$

 \(\mathrm{E}=\) ?
 4b-2. Input the new east-coordinate, stroke

Next Point？

Stroking any key（beginning input of the next point number）shows the prompt bar．
GO TO "OPTIONS"

two points in each system known

1．When the prompt，Rotation $6=$ ？，is displayed， no input is necessary．Just stroke

Rotation Pt\＃？

2.

Input the point number of the pivot point， stroke

New Coord＇s？

If the rotation point will have new coordinates in the new system stroke 罡都．If the coordinates are the same in both systems， stroke 早署．

If the answer was＂yes＂you will receive the following prompts：

$$
\mathrm{N}=\text { ? }
$$

4a. Input the new north-coordinate, stroke
R/S
E =?
4 b .
Input the new east-coordinate, stroke
R/S
Second Point?
5. Input the point number of the second known point and stroke

R/S
NEW X N \uparrow E
6a. Input the new north-coordinate of the second point and stroke

ENTER

6b. Input the new east-coordinate of the second point and stroke

Next Point?

Stroking any key will bring up the prompt bar.

OPTIONS

At this point in the program you decide on the output you want. This can be just the new coordinates for the transformed points, or you can also calculate the directions and distances between the new coordinates.

1. If you want the distances and BEARINGS output, stroke
2.

If you want the distances and AZIMUTHS output, stroke

You can transform a BLOCK of coordinates automatically， and use either of the above options at the same time．

1．After selection of the output type（above） input the block＇code＇，AAA．bbb，where AAA is the first point number and $b b b$ is the second （three－digit input for the second number）． Stroke

Type？
2．With practice you can reverse some of the stored points by stroking $\rightarrow O L D$ ，but for normal transformation to the new system stroke

OUTPUT will be automatic，transforming all of the points within the block before stopping．

You can change the point numbers as the points are rotated if you stroke 覃是．This option will NOT work if you are rotating a BLOCK of coordinates，and requires input of each point．You may not return to the＂old＂system while using this option either．

After input of the OLD point number in response to the ＂Next Point？＂prompt，and stroking WIEI，you will receive the prompt

NEW PT\＃？

1．Input the number you want the point to have in the NEW system and stroke

OUTPUT will be the transformed coordinates under the new point number．

SOLUTIONS

Next Point?

1.

Input the point number of the point which you wish to transform. (NOTE: the point numbers input for setup have not yet been transformed.

2a. To transform from the "old" system to the "new" system, input the point number and stroke

2b. To transform from "new" system to "old" stroke

The "old" system coordinates will be displayed (or printed out) but are not stored again under the point number.

Store?

2b-1. Answer NO if you do not want to restore the point with the "old" coordinates, YES if you do.

If your answer is yes, the message "STORED" will be seen, briefly, in the display.

Next Point?

Continue repeating solution step $2 a$ and/or $2 b$ as needed.

the program listing

This program uses 700 bytes of programming. This is the equivalent of about 39 point numbers. The program should be input at a place where it is easy to find when you stroke the XEQ key, so why not just put it in at the .END.? Stroke shift, XEQ .END. and enter program mode.

```
00 ( 700-Byte Prgm' ) 03 xEQ "CL" 06 1
O1DLBL "C.ROT" 04 SF 21 07 STO 05
OZ XEQ "Fm" OS SF 10 08 CF z`
```


99	FS？ 09	129	＂OLD＂	159	RCL 16	
100	XEQ 09	130	FS？ 55	160	STO 13	
101	XEQ＂OUT＂	131	AVIEW	161	$R+$	
10%	STO 08	132	STO 16	162	XEQ＂IN＂	
103	$x<y$	133	XEQ＂POUT＂	163	CF 21	
104	ST0 07	134	RCL－ 03	164	＂STORED	
105	$X<y$	135	$x<y$	165	AVIEW	
106	CF 10	136	RCL－ OL	166	SF 21	
107	＂New＂	137	$\rightarrow \mathrm{POL}$	167	GTO a	
108	FS？ 55	138	RCL－ 05	168	STOP	
109	AVIEW	139	$x<y$	1691	LPL 03	
110	XEQ＂C＋＂	140	RCL＋ 04	170	＂Rotation	t\＃？\ddagger
111	LBL a	141	$x<y$	171	PROMPT	
112	FS？ 03	142	$\rightarrow \mathrm{REC}$	172	CLA	
113	GTO 01	143	$\mathrm{RCL}+00$	173	CF 29	
114	XEQ 04	144	$X<>$	174	FIX OO	
115	＂Next Point？＂	145	$\mathrm{RCL}+\mathrm{O1}$	175	＂Rotating	\＃＂
116	PROMPT	146	CF 10	176	ARCL ST X	
117	CLA	147	XEQ＂C＋＂	177	ト＂ヶ＂	
118	FS？02	148	ADV	178	FS？ 55	
119	GTO \mathbf{B}	149	CF 21	179	AVIEW	
120	FS？ 01	150	STORE？＂	180	XEQ＂POUT＂	
121	GTO A	151	AVIEW	181	STO 01	
122	STOP	152	SF 21	182	STG 07	
123	LPL P．	153	CLMENU	183	STO 03	
124	CF 01	154	XEQ＂YN＂	184	R \downarrow	
125	SF Oこ	155	FC？ 10	185	STO 00	
126	XEQ 00	156	CLX	186	STO 08	
127	FS？ 03	157	FC？ 10	187	STO O2	
128	RCL 13	158	GTO a	188	FS？ 55	

The small traverse shown above will be used for the keystroke examples. Before beginning use "LOAD" (or "PIN") to input the coordinates in the "old" system, so that they are in memory.

In this first example we will rotate the bearings 5° to the left. We will also use the auto-inverse option to output the new bearings and distances as the points are rotated.

Stroke

XEQ
prompt: Rotation $\measuredangle=$?
keystroke:
5 t/R R/S
prompt: Scale Factor?
keystroke:
R/S
prompt: Rotation Pt ${ }^{\text {? }}$? keystrokes:

1 R/S
output: Rotating $\# 1$

$$
\text { \#1 }==
$$

prompt: New Coord's?
 keystroke:

prompt：Next Point？ keystrokes：

TBE 2 HE

output：

$$
42^{W}=296.256
$$

prompt：Next Point？
keystrokes：

output：
prompt：Next Point？
keystrokes：
4 河
output：
prompt：Next Point？
keystrokes：
1 포풀
output：
$40^{31}=69^{9} .2^{2}$
prompt：Next Point？

As an example of how the points may be restored to the＂old＂system，stroke

2 퍂In
output：

prompt：STORE？
W雨
keystroke：

軲理

．．．．STORED
prompt：Next Point？
Go ahead and change points \＃3 and \＃4 back to the old system，and you＇ll be ready to try the second example without having to re－input the coordinates．

This is an example of the type where the coordinates of two points are known in each system，and uses ＂new＂coordinates of 200／200 for \＃1 and 300／215 for \＃2．Run this one with AZIMUTH inverse．
keystrokes：

XEO HET

prompt：Rotation $\measuredangle=$ ？ keystroke：
prompt：Rotation Pt\＃？
keystrokes:
1 R/S
output:
Fotat, ing \# \#
prompt: New Coord's?

keystroke:
prompt: $\mathbf{N}=$?
keystrokes:
200 R/S
prompt: $\mathbf{E}=$?
keystrokes:
200 R/S
prompt: Second Point?
keystrokes:
2 R/S
prompt: NEW 2 N \uparrow E
Note that for this prompt the northing is ENTERED, the easting is input, and then RUN is stroked.
keystrokes:
300 ENTER
215 R/S
prompt: Next Point?
keystrokes:
\qquad

2

output:
$H 0=101.1187$

When using this type (two points known) the distance is output as a check, but it is assumed that the azimuth was known, since you knew the new coordinates of both points.
prompt: Next Point?
keystrokes:
3 菏:
output:

$$
\begin{aligned}
& \begin{array}{l}
\mathrm{HZ}=10^{\circ} 4912.6^{\prime \prime} \\
\mathrm{HC}=27.455^{2}
\end{array}
\end{aligned}
$$

prompt: Next Point?
keystrokes:
4 菴
output:
$A Z=226^{\circ} 50^{151.4 n}$
$H D=10.586^{n}$
New

prompt: Next Point? keystrokes:

output:
$A Z=393^{\circ} 26^{\prime} \mathrm{B} 5.3^{\circ}$
$H 0=67.086^{\circ}$

If this problem looks familiar, you'll be happy to know that this program has a quick solution to it.

Quite often the client wants to put type "A" houses on lots $3,5,8$ and 11 . . . type "B" on lots
Use the building's dimensions to set

$$
2 \frac{21}{0} \sqrt{5^{\prime}-c^{2}} \cdot \frac{21}{5} 3
$$

TYPE "A" "dummy" coordinates on each of the corners, as shown to the right, and then rotate them into position.

Pre-calculate the intersection of the setback lines, you already know the bearing of the lot line. With this program you can store dummy points for the different types of buildings being used, and when you rotate them, use the re-number feature to give each lot an individual set of coordinates for layout. And, you will still have the original dummy points to use for the next lot.

Input the dummy points from page 75，and using the＂calculated＂coordin－ ates for the setback corner，shown to the right， we＇ll try it out．

Stroke
xEO H ＋1
prompt：Rotation $\measuredangle=$ ？ keystrokes：

14 R／S
prompt：Scale Factor？
keystroke：
prompt：Rotation Pt\＃？
keystrokes：
1 R／S
output：
Rotating e\＃1

$$
\# 1 \quad E=\text { E. }
$$

prompt：New Coord＇s？

keystroke：
prompt： $\mathrm{N}=$ ？
keystrokes：

| 5 | 3 | 3 | 5 | \cdot | 4 | 1 | R／S |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

prompt： $\mathbf{E}=$ ？
keystrokes：
$\begin{array}{lllllllllll}6 & 1 & 0 & 8 & \cdot & 6 & 8 & \text { R／S }\end{array}$
prompt：Next Point？

keystrokes：

prompt：NEW PT\＃？
keystrokes：
$21 \mathrm{R} / \mathrm{S}$
output：
prompt：Next Point？
keystrokes：
2 草章点
prompt：NEW PT\＃？
keystrokes：
22 R／S
output：

Continue through point number $8=28$ ．You can use ＂DUMP＂to check that the original points are still intact．

PREDETERMINED AREAS

There are two types of solution routines for solving for a predetermined amount of area. These are used to "part the land", or cut off a specific quantity of property from a larger parcel.

The illustration (below) shows a typical use of the type of solution called Line Through A Point. A parcel boundary has been run (points 1 through 4) and the area calculated.

To divide it into two equal parcels, first set two arbitrary points, 5 and 6 (6 is the half-way point along the base 1-4) and calculate the area of one parcel.

In this case, the area of the parcel $1,2,5,6$, 1 was run, and the shaded portion represents the remainder needed to have each parcel contain $\frac{1}{2}$ of the original area.

In this example, point number 6 is used as hinge point, and a line from 6 is intersected with the line from \#5 to \#3 to form a triangle that contains the required amount of area.

Input would be point \#5, the bearing of the line from

TOTAL AREA $=217,8000^{\prime}$
input as BRG 2

input as 2nd point
 5 to 3 , point 6 and the area needed.

Two Sides Parallel is the second of the routines, and defines the boundary of a trapezoidal parcel whose area is predetermined.

If the requirement is that the area be one-half of the original parcel, but with the dividing line parallel to one of the lines of the original parcel, we would use this type of solution.

Input required for this method would be point \#2, the bearing of line $2-3$, point \#1, the bearing of line $1-4$, and the required area. The bearings are input in the direction away from the known points.

the trade

Adding this program to your set will replace about 30 points in storage usage. In addition to the main program there are a couple of short subroutines to be added. We'll start with those.

125 GTO 02 If you are going to add＂PRE－A＂to your 126 LBL＂BR＂program file，the program steps shown 127 ＂ 48 Brg＂to the left are the ones that will be doing 128 XEQ 01
129 GTO＂A1＂A lot of program steps can be saved by 130 LBL＂DS＂inserting them into the subroutine stack， because they use the same processing 131 CF 29 labels as some of the other subroutines．
132 FIX 90
133 ARCL 13
134 ト＂Dist＂
135 GTO 02
136 LBL 01
137 CF 29
138 FIX 00
139 ARCL 13
1481 LBL 02
Go to program＂A日＂，enter program mode，and scroll down two steps so that the pointer is at 124 SF 85．Begin typing in the new steps（shown to the left）．

After they have been entered，scroll down once．Step 141 should be XEQ 06.

It wouldn＇t hurt to proof－read the new steps．Make sure that step 134 is ＂append，space，Dist＂．

the program listing

This program can fit in nicely between＂INT－X＂and ＂CURVE＂in the main menu．

00 ：5コニ－Pute Prgm ，

37	RCL 16	67	RCL 06	97	ARCL 17
38	XEQ＂PGUT＂	68	\times	98	XEQ 04
39	STO 04	69	\div	99	XEQ ごこ
40	$x<y$	70	2	100	RCL 05
41	STO 03	71	x	101	cos
42	XEQ＂PR＂	72	STO 09	102	ACOS
43	STO 05	73	RCL 15	103	RCL 23
44	＂Next Pta？ 4 ＂	74	STO 13	104	＋
45	PROMPT	75	RCL 05	105	\rightarrow HMS
46	STO 17	76	RCL 06	106	RCL 09
47	1	77	\rightarrow REC	107	XEQ OS
48	$+$	78	RCL 09	108	ARCL 17
49	STO 2	79	－	109	－＂－＂
501	LPL 08	80	＋1－	110	ARCL 16
51	＂Req＇d Area？${ }^{\text {c／}}$	81	$\rightarrow \mathrm{POL}$	111	XEQ 04
52	PROMPT	82	X Y	112	XEQ 2 Z
53	STO 08	83	RCL 05	113	FC？ 00
54	FS？ 01	84	＋	114	STOP
55	GTO D1	85	COS	115	RCL 07
56	FC？ 00	86	＋i－	116	RCL 05
57	GTO Oz	87	ACOS	117	－
58	XEQ OO	88	RCL 23	118	RCL 09
59	RCL O5	89	$X<Y$	119	$\rightarrow \mathrm{REC}$
60	－	90	－	120	RCL 03
61	STO 05	91	$\rightarrow \mathrm{HMS}$	121	$+$
62	LPL \square^{2}	92	$X<Y$	1ご	X Y Y
63	RCL 08	93	CF 10	123	RCL 04
64	RCL 05	94	XEQ Ob	124	＋
65	SIN	95	ARCL 15	125	RCL 17
66	APS	96	＋＂－＂	126	STO 13

127	R+	157	PI	187	RCL OE
128	XEQ "IN"	158	\rightarrow DEG	189	2
129	xEQ "OUT"	159	RCL 07	189	\times
130	FIX 04	160	RCL- 02	190	X Y Y
131	ADV	161	cos	191	\div
132	XEQ "C+"	162	ACOS	192	STO 09
133	STOP	163	-	193	RCL 11
134*	LPL 00	164	STO 11	194	SIN
135	360	165	LPL OZ	195	\div
136	RCL 01	166	RCL 06	196	STO 24
137	RCL 04	167	$x+2$	197	RCL 11
138	-	168	RCL 11	198	RCL 23
139	RCL OO	169	cos	199	
140	RCL 03	170	LASTX	200	-
141	-	171	SIN	201	\rightarrow HMS
142	$\rightarrow \mathrm{POL}$	172	\div	202	$X<\gamma$
143	STO 06	173	RCL 12	203	XEQ 06
144	R +	174	cos	204	ARCL 15
145	$\times 0^{\prime}$	175	LASTX	205	ト"-"
146	+	170	SIN	206	ARCL 17
147	STO 07	177	\div	207	XEQ 04
148	RTN	178	+	208	XEQ 22
149*	LPL 01	179	STO 10	209	XEQ 07
150	FC? 00	180	RCL× 08	210	RCL 09
151	GTO OE	181	z	211	RCL 12
152	XEQ OO	182	\times	212	SIN
153	RCL- 05	183	-	213	\div
154	cos	184	SQRT	214	STO 10
155	ACOS	185	STO 14	215	RCL 12
156	STO 12	186	$\mathrm{RCL}+\mathrm{Ob}$	216	RCL 23

217	$+$	240	RCL 17	26.3	$\mathrm{R}+$
218	\rightarrow HMS	241	STO 13	264	XEQ＂A \rightarrow P＂
219	$X<\gamma$	242	RCL OO	265	RTN
20	XEQ OS	243	RCL 01	266	LBL 07
21	ARCL 2	244	XEQ＂IN＂	267	RCL 23
ごこ	ト＂－＂	245	XEQ＂OUT＂	268	\rightarrow HMS
23	ARCL 16	246	ADV	269	RCL 14
224	XEQ 04	247	XEQ＂C＋＂	270	XEQ 06
25	XEQ 22	248	ISG 13	271	ARCL 17
226	FC？ 00	249	STO ST X	ごこ	ト＂－＂
－27	GTO 03	250	RCL \square^{3}	273	ARCL ご
28	RCL O－	251	RCL 04	274	XEQ 04
ご9	RCL 24	252	XEQ＂IN＂	275	XEQ ご
230	\rightarrow REC	253	XEQ＂OUT＂	276	RTN
231	$5 T O+00$	254	ADV	277	LPL 04
232	$X<y$	255	XEQ＂C＋＂	278	ASTO 13
233	$5 T 0+01$	256	ADV	279	CLA
234	RCL 05	257	RTN	280	RTN
235	RCL 10	2581	LPL ここ	281	LPL D6
236	\rightarrow REC	259	CF 10	28こ	CLA
237	$5 T 0+03$	260	XEQ＂DS＂	283	FIX 00
238	X Y Y	261	ト＂ヶ＂	284	CF こ9
239	STO＋ 04	262	AVIEW	285	END

choosing the type
The type of solution to be used is selected by your response to the first prompt：

Triangle？

If you want to use the LINE THROUGH A
 the TWO SIDES PARALLEL routine，stroke シ＂：

line through a point

1st Pt\#?

1. Input the point number for the first point (the "hinge" point) and stroke

R/S

2nd Pt\#?

2. Input the point number which represents the fixed point and stroke

R/S

Brg $2=$?
3.

Input the known bearing of the fixed line from the second point, and stroke

ENTER

Input the quadrant code in the direction away from the known point, then stroke

R/S

Next Pt\#?

4.

Input the UNUSED point number you want to assign to the intersection point, stroke

R/S

Req'd Area?

5. Input the required area in square feet (or square meters, etc.) and stroke

R/S

OUTPUT will be the distance and bearing from the hinge point to the new calculated point, then the distance and bearing along the known course from the new point to the second point, followed by the coordinates of the new (intersection) point.

EXIT

two sides parallel

1st Pt\#?

1. Input the point number of the first point

Brg $1=$?

2.

Input the bearing from the first point
ENTER
Input the quadrant code, in the direction away from the point, and stroke

R/S

2nd Pt\#?

3.

Input the point number of the second fixed point and stroke

R/S

Brg $2=$?
4.

Input the bearing of the line radiating from the second fixed point and stroke

ENTER

Input the quadrant code, in the direction away from the point, and stroke

Next Pt\#?
5.

Input the next UNUSED point number. This point number will be assigned to the point along the line defined by bearing 1 . The next highest point number will be assigned to the point along bearing 2. Stroke

R/S

Req'd Area?

6.

Input the required area and stroke
R/S
OUTPUT will be the distances and bearings of the three lines, followed by the coordinates of the two new points.

We will begin the keystroke examples with the triangular, or line through a point routine. The illustration to the right will be used for the example.

Input the coordinates for points \#1 and \#2 (from the example) with "LOAD" or "PIN" before beginning this example. Begin the program by stroking

prompt: Triangle?

keystrokes:
prompt: 1st Pt\#?
keystrokes:
1 R/S
prompt: 2nd Pt\#?
keystrokes:
2 R/S
prompt: Brg $2=$?
keystrokes:
$\begin{array}{llllllll}1 & 0 & \cdot & 3 & 0 & 2 & \text { ENTER }\end{array}$
1 R/S
prompt: Next Pt\#?
keystrokes:
3 R/S
prompt: Req'd Area?
keystrokes:
$\begin{array}{llllll}1 & 4 & 0 & 0 & 0 & R / S\end{array}$
output:

$$
\begin{aligned}
& \text { 1-8 0ist = 218.2180 } \\
& \text { N630日1'37.7"E } \\
& \text { 8-2 Dist = 1et. } 6871
\end{aligned}
$$

keystroke:

It is always a good idea to run an inverse traverse to check the area.

The next example uses the same coordinates for points \#1 and \#2, so you won't have to input new coordinates.

For the example of the two sides parallel routine, we will use the illustration shown to the right.

Begin by stroking
prompt: Triangle?
keystrokes:
듶ㅍN
prompt: 1st Pt\#?
keystrokes:
1 R/S
prompt: Brg $1=$?
keystrokes:

| 5 | 0 | \cdot | 1 | 2 | 1 | ENTER |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

1 R/S
prompt: 2nd Pt ?
keystrokes:
2 R/S
prompt: Brg $2=$? keystrokes:
$\begin{array}{llllllll}1 & 0 & \cdot & 3 & 0 & 2 & \text { ENTER }\end{array}$
1 R/S
prompt: Next Pt\#?

keystrokes:
3 R/S prompt: Req'd Area? keystrokes:

7000 R/S output:

$$
\begin{aligned}
& \mathrm{i}-3 \mathrm{Dist}=5 \mathrm{~B} .9226
\end{aligned}
$$

$$
\begin{aligned}
& \text { 3-4 Dist }=142.5946
\end{aligned}
$$

$$
\begin{aligned}
& 4-2 \text { Dist }=44.6113
\end{aligned}
$$

$$
\begin{aligned}
& \# 3 \quad N=422.594 \frac{1}{E}=264.1245 \\
& \text { \#4 } \quad \begin{aligned}
\mathrm{N} & =389.864 \\
\mathrm{E} & =398.1540
\end{aligned}
\end{aligned}
$$

ultimate sizing

After you have input all of the programs you are planning to use, you can re-size the calculator to hold the maximum number of coordinate pairs. Each pair of coordinates occupies two registers, so you want to size with as many registers as you can.
1.
2. Check the available memory (hold down the

Size to 0025. key under MEM, in CATALOG), and jot down the number.

This is the number of bytes available. Divide by 9 (each register uses 9 bytes) and add 23 to this new number.
3. Re-size to the number you just calculated.
4.

To calculate the number of points you can store, divide the number you jotted down by 18 and subtract 1 .

adding more programs

If, at a later date, you decide to add more programs to what you now have in the calculator, re-size to 0025 before beginning, and then repeat the process above after you are done.

MORE HP42S PROGRAMS

We have a number of new booklets, and another book, of programs for the HP42S in the works! Here are some of the titles:

Vertical Alignment (booklet, \$10.00)
Calculates CONTINUOUS vertical alignment without changing back and forth between Grade and Curve routines. Calculates vertical intersections, symmetrical or asymmetrical vertical curves. Solves for station when the elevation is known, or the station can be given, to calculate the elevation.

Spiral Curves (booklet. 00)
 00

Calculates intersections of the entrance or exit spiral with a circular curve or straight line.

Topography (booklet, \$10.00)
This one turns your 42 S into a manual data collector, complete with a labeling system that you can customize to suit the type of topo work you do. All shots are stored as finished data, by shot number, for later output. Choice of $3-\mathrm{D}$ coordinates or Station-Offset-Elevation for the output.

EDM Slope Staking (booklet, $\$ 10.00$)
Set up anywhere near an alignment and slope stake it. Sets slope stakes from the remote instrument location directly. Includes a three-point resection program for finding the instrument's location by either station-offset or coordinates. All data needed to mark the stake is output (or may be stored), and there is a subroutine for setting the reference stake.

Alignment/Offsets (booklet, $\$ 10.00$)
Follows any alignment's circular curves and tangents, letting you calculate the coordinates or radial ties to any station or offset to a station. Coordinate output, auto-inverse, or both.

Triangle Solutions (booklet, \$10.00)
The 42 S version of the most complete triangle solutions program ever available. Solves with any of the following knowns: ASA SAA SAS SSA SSS Area-SS Area-AA Area-SA.

keep in touch

As always, we're anxious to make programs available to surveyors who need them. Make sure that we have your name and address on file so that we can send you the 42 S Newsletters as they are published. These newsletters contain useful hints and additional programming.

The Most Commonly Asked Questions

The following questions and answers were compiled from the calls and letters we've received in the past 4+ years that we've been publishing solution books for the HP42S calculator, and are included here in the event that your question is one of them.

Q: How do you type in the END?

A: There are a number of ways . . . one easy way is to stroke XED ENTER and type it in, using the alpha keys. Because you stroked XED first, the calculator will recognize that this in not an alpha input, and substitute the actual function when you stroke ENTER again. You may input any function by this method.

You may also take advantage of the built-in function catalog, stroke $\square \pm$ (catalog), and then the $\boldsymbol{\text { LTM }}$ menu key. You may scroll up or down with the $\boldsymbol{\nabla}$ or keys, and all of the calculator's functions are in there. When you reach the one you want, just stroke the key under the menu item.

Q: How do you type in the indirect calls, such as step 138 in the CURVE program on page 10?
A: The indirect calls are made by stroking - . In the case of the call above, first stroke $\quad 6$ (flags), then 劃異, to bring up the prompt F F_- 2, then stroke - Some of the indirect calls give a secondary prompt, requiring another -

Q: How do I type in a ARCL command?

A: Enter alpha mode before stroking $\mathbf{~ C C L ~ o r ~ S T O ~ . ~}$

[^0]: * To access the function, stroke \square PGM.FCN \triangle THET

