

TECHNICAL ASSISTANCE

The program material, instructions and procedures contained in this book assume that the user has a working knowledge of both surveying and the general operation of the HP-42S calculator.

Technical assistance is limited to verification of the results shown in the various examples used in this book.

If you have any questions or suggestions regarding this book, or other D'Zign publications, please feel free to call us. The number is (209) 297-8025, and someone is available to answer technical questions between the hours of 8:00 A.M. and Noon, (Pacific Time Zone), Monday through Thursday.

Before calling for help, take a look through "The Most Commonly Asked Questions", on the inside of the back cover, and the comment about debugging on page 20 .

WARNING

This software and book are both protected by U.S. Copyright Law (Title 17 United States Code). Unauthorized reproduction and/or sales may result in imprisonment of up to one year and fines of up to $\$ 10,000$ (17 USC 506). Recent changes in the laws make infringement upon software copyrights a felony.

NOTCCE

No express or implied warranty is made by D'Zign or the author with regard to the procedures and program material offered or their merchantability or their fitness for any particular purpose. The procedures and program material are made available solely on an "as-is" basis, and the entire risk as to their quality and performance is with the user. Should the procedures or program material prove defective, the user (and not D'Zign nor any other party) shall bear any and all cost of all necessary correction and all incidental or consequential damages. D'Zign and/or the author shall not be liable for any incidental or consequential damages in connection with or arising out of the furnishing, use, or performance of the keystroke procedures or program material.

HP42S Topography

Library of Congress Catalog Card No. 89-81215
ISBN 0-944889-09-3
Manufactured in the United States of America

Copyright © 1990 by Ted J. Kerber
All rights reserved. No part of this work covered by the copyright hereon may be reproduced or used in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping or information storage and retrieval systems - without written permission of the author.
published by $(D) \mathbb{Z}$ Glendale, California, U.S.A. 1990

```
ISBN 0-944889-09-3
```

The programs included in this booklet are designed to take full advantage of the power of the Hewlett-Packard HP42S calculator. Programming this calculator is really simple, but a bit confusing at first. We will try to walk you through some of the 'harder to find' steps as we proceed.

the operations index

To find a function for the first time, HP has provided an "Operations Index" on pages 310 through 335 of the instruction manual, which tells you exactly what keystrokes to use to type in the function you want.

Even better, this index gives you the page number that you can refer to if you want to know more about the function you are using. If, while typing in a program, you aren't sure how to input a particular function, simply refer to the Operations Index.

Another handy tool is the function catalog. When you stroke the shifted + key, a menu appears in the lower portion of the display. The leftmost key will take you into the function catalog, which contains ALL of the functions. Scroll up or down through the list until you come to the function you want, stroke the corresponding key, and the function is entered as a program step.

the programs

If this is your first try at programming the 42 , we recommend that you read Chapter 8 of the manual before beginning.

The programs included in this booklet have been separated into accessable sub-programs to allow them to be used with other programs at a later date. For instance, if you are using the HP42S Alignment \& Offsets booklet, you will find that a number of the subroutines you need for this program are already in the calculator.

A number of the subroutines will already have been input if you are using programs from the book, "HP42S Surveying Solutions". If a program or subroutine has the same NAME as one you already have (from any D'Zign publication) it is the same as the one in this book.

subroutines

Because of the way the calculator works, we will start by input of some subroutines.

Once the subroutine has been input, its name appears in the menu when you stroke XEC, and all you have to do to add it as a step in the program you are typing in is stroke GTO or XEQ followed by keystroking the key corresponding to the subroutine to input the program step GTO XXX or XEQ XXX.

getting started

Begin by stroking the shift key, then the XEQ key. The display will show a menu which will be blank (if you haven't yet input any programs) except for .END. on the left. The keys just below each of the menu portions will correspond to the menu instruction above it. Stroke the key just below the .END. in the

GILBL :YN"
日2 "YES"
G3 KEY 1 GTO 11
54 "NO"
95 KEY 2 GTD 92
Ă MENIJ
Q STOP

- 8 LBL 01

99 SF 10
10 GTO 03
11 LBL 92
:2 CF 10
131LBL 93
:4 CLMENIS
15 EXITAL:
: 6 RTN display.

Next, go into program mode by stroking the shifted ws key, and you should have a display similar to the one shown to the left. Begin typing in the program "YN" from the listing above.

quick tip

Program steps 03 and 05 use a function which stores the prompt to the menu, and at the same time assigns the key.

To access the function, stroke \square PGA,FCN \triangle 酐

You'll receive a prompt, KEY_. Stroke the key number (we'll use 1 as the example), and you will get a prompt, KEY 1 GTO_...

In this case (step 03) answer 01 to complete the program step.

next subroutine

This one has 2 steps you'll want to review before you begin input:

02 EREG 00
$05 \mathrm{CL} \mathrm{\Sigma}$
To access this function, go to the "stat" menu (shifted divide key), and scroll down once. It's the second key from the right, and when you stroke it you will be prompted for the 00 to complete the program step.

This one is the leftmost key when you bring up the menu by stroking $\square<$.

To begin input, stroke the shifted XEO key, then the key that corresponds to the menu listing "YN", the program just input.

Scroll upward once with the \triangle key to put the pointer at step 00 , and begin typing in the program steps shown to the right.

When you've finished stroke
 Exit to leave program mode.

The step, CF IND ST X, (in the next group) is input through the FLAGS menu. To get to "IND", stroke the
key, then stroke it again to bring up the menu containing "ST X".

Go back into program mode $\square R / S$. The program pointer should still be at step 08 RTN. Type in the additional steps shown on the next page.

We're going to add one more step, $\mathbf{c 8} 8$ END. Input this step by stroking XEO ENTER, type in END, and then stroke ENTER again.

Input of the "END" step has separated this program from the program "YN". This general method of input will be used for almost all of the programs, starting at the 'top' of one program and then separating the two programs with an END as the last step of the new program. Using this method, we can put the programs in the menu where we want them.

cleaning house

Next, we want to do some editing that will make life easier later. Go to "YN", and then scroll upward to put the pointer at step 16, RTN. Type in a new label, "FILE".

Scroll up again to the RTN, delete it, and replace it with END the same way you just did after "FC日". This should leave the new label as the first step in the display, having separated this new label from the rest of the programming.

Finish typing in the program shown to the left (note that the .END. is already there, at the bottom).

A nother new symbol that you'll be using a lot is the \vdash symbol. It adds to what is already in the alpha register without overwriting it. To input the symbol, stroke ENter to enter alpha mode, and then stroke Enter again.

After you type in step 21, STO 28, if you scroll down one you should see the .END. as step 22. We will leave it there, in place of a regular END command; doing so will keep it out of the menu display from now on.

A nother one to look at; the symbol, 4, is "line feed".
irst"shot \#?4" We use it to control the display. You OMPT ast shot \#?4" can input it by stroking

Go to "FILE", enter program mode, and then scroll upwards with the Δ key until the pointer is at 21 STO 28. Now type in LBL "TOUT", scroll back up to 21 STO 28 and add an END. Stroke Exir XEO TilाI DR/S, and then type in the rest of the program.

Continuing with input, the program shown to the right is a subroutine that lets you decide what type of data will be stored. This is another that may be put in on top of "YN", and it has an END to separate it when you are finished with the input.

During use of the program, this subroutine will bring up a
 as one of the prompts, allowing you to select which kinds of data you want to store.

Stroke the key beneath each of the types you want, and then stroke R/S to continue. This program automatically allocates the correct number of registers to hold data for each shot.

Selecting all three (raw, finished and descriptor) will use ten storage registers for each shot. The raw data stored will be the horizontal and vertical angles, the slope distance and the rod reading.

Finished data can either be as 3 -dimensional coordinates or in the form of station, offset and elevation. This option is offered by this subroutine also, using the menu

Select any (or all) of the options by stroking the keys associated with the menu selecassociated with the menu selec-
tions you want and then stroke R/S to continue with the program.

Don't forget to proof-read as you go.
the menu 4.
$-\overline{2} 1$ LBL
02
CLA 63 CF 20 4 ASTO TYPE" CLMENU"
"COORD"
KEY 1 GTO 03
"S-0\%"
KEY 3 GTO 02
MENU
"SELECT TOPO"
HSTO 68
ARCL $\overline{4} 7$
CF 21
PROMPT
LBL 02
5F 28
9 LBL 03

- CLMENU
"RLA

KEY 3 GTO 00
"DESC.
KEY 5 GTO 05
8 MENU
9 ELA

ARCL 87
AUIEW
STOP
5 LBL 00
6 5F 36
72
3 GTO
LBL 81

11
42 GTD 04
43 LBL 05
44 SF 87
454

6 LBL
7 STO
184
24

8 CLX
49 AUIEW
56 STOP
1 RCL 24
5
$x<>y$
$X=Y ?$
85
5 STO 25
57524
8 5F 21
59 SF IND 24
60 CLST
61 ELMENU
52 END
04

Topography (the program) is, as you can see, a combination of shorter programs and subroutines. By keeping each program as short as possible (using separated subroutines) the 'parent' program runs faster.

You may also add programs of your

01DBL "STA"
02 CF 29
63 FIX 00
04 STO 21
05 1E2
$06 \div$
97 ENTER
08 IP
09 ARCL ST X
10 -
11 ト"+"
12 FIX 63
13 1E2
$14 \times$
1510
$16 X>Y$?
17 ト"g"
18 ARCL ST Y
19 RCL 21
20 SF 29
21 FIX 04
22 RTN
"STA" changes the number in the x-register into the form we use for stationing. It can go in right on top of "FILE".

Should you decide to use "STA" for a different program, notice that it does not have an AVIEW at the end, nor does it clear the alpha register before execution. Those two functions need to be added to your parent program when you use this subroutine.

We haven't added an END to the program either, because we'll be adding more to it later.

Steps 05 and 13 are input using the

The next program changes the number in the x-register to the \circ, " form for output of angles. It doesn't have an AVIEW either, but the clearing of the alpha register is optional. If you want it cleared, use the program step SF 19 before executing "DMS" as part of your program. Flag 19 is cleared by the subroutine if it is set.

This one contains an END, so it can go above any of the programs . . . why not just stick it on top of "YN"?

You can go right to the top of "DMS" to input this next one. Scroll up to 00 and begin input. The END will separate them when you've finished.

```
00 < 133-Byte frgm %
02 CF 52
Q2 CF S2 
5 ARCL 26
07 XER 00
F"L
O9 F"DATE:"
C XEQ 01 
1 XEQ O2
}PLBL "TOO"
14 FS? 01
154
16 F5? 02
17 3
197
20 F5? 0
2 FS? 35
237
FS? 06
25
26 F5?
07
27 10
```


On page 8 you input the program, "STA", and we said we'd be adding some more to it. Now is the time, and here are four short programs that go onto the bottom of "STA".

	N and
ASTO IND 24 VREP" is the subroutine that let	
34 ST0 $51 \times$ of the current shot is the same as the	
	last one. This can be handy
36 ASTO IND 24 a series of shots like "top of bank",	
	because the whole descriptor is input
42 DSE 24 "TIN" is short for Topo IN	
the routine that stores the descrip	
$\mathrm{SF}_{52} \mathrm{TBAN}$ retreival under the proper shot numb	
$48 \mathrm{CLA} \quad$ It also stores a copy into variables A ,	
routine.	
MANual is the subroutine for	
ASHF ${ }_{\text {ASTO }} \mathrm{B}$ " a descriptor (the rest of the des	
	is added by menu kestroke)
ASTO "C" 'automatic' menu can be as simple or as	
62 END \quad is described in detail later in this book.	

The next group of subroutines handles the curves, when you are working with Station/Offset. Shots taken within the curve area are reduced to radial shots.

The subroutines also adjust the instrument or backsight information when either or both of them are within the curved portion of the alignment. The shots are not just output as station/offset along a straight baseline, but actually can be plotted relative to a 'real' alignment that includes a circular (horizontal) curve.

These subroutines can also go right on top of "YN".

After you've proof-read that set of routines, let's start with input of the main program, "TOPO". First, go to "TOUT", enter program mode, and then scroll upward to put the pointer at step $127, S F 20$. Insert the step, LBL "TOPO", scroll up again, and add an END.

The new program now has the permanent end, and you can begin to type in the rest of the program. Take your time with the input, and proof-read sections of it as you go.

The portion of the program shown on pages 12 and 13 is not the whole program, but, for now, do this much of it.

NOTE: Steps 61 and 70 refer to a global label with the name" ". This label has 3 blank spaces for a name, and will be input as step 129.

Continue with the input of the additional steps below, and we'll take a breather to look at what we have so far.

The first part of the program uses subroutines to clear 'old' data and flag settings, then calls the subroutines "FILE", "TY" and "TOO". "FILE" prompts for data that will later label your output with the file name and date.
"TY" calls up the menus for selection (see page 7) of type of data to be stored. "TOO" sets the proper flags (based on your responses to the prompts so far) to have the input/output configuration stored as part of the file.

The prompts for setup information come next, the first of these being Height of Inst? . This prompt wants the actual elevation at the center of the scope, not the 'plus rod' from the point you are over. The prompt, Inst. 『?, expects input of 2 pieces of data (either northing, ENTER, easting or station ENTER, offset). The same applies to the prompt for the backsight information.

If you are working in station/offset form, the additional prompt to determine if the points are on a curve will also appear, requiring a yes or no answer. If either or both of the points are on a curve, prompts for curve data input will appear.

If neither the instrument nor backsight station were on a curve a prompt to determine whether or not there is a curve in the topo area will appear.

This allows for the curved portion to be included in the calculations even if the instrument and backsight were both on a tangent.

the menu system

After the input of the rod height，the first of the menus appears，with the prompt to label the shot：

This is as good a place as any to stop and discuss how the menus can be used to best advantage．

駺酸 is a key that allows you to＇add＇or subtract from a shot in those cases where the shot could not be taken directly on the item being shot．

If，for instance，you take a shot to a $14^{\prime \prime}$ diameter power pole with the rod held at the face of the pole，you can input .6 and stroke this key to make the shot equivalent to a shot at the center of the pole．
 when the shot is to a tree．You won＇t be able to see the rod through the branches，so the rodperson holds it to one side ．．．let＇s say 6 ＇to the left．Input 6 thand use this key to adjust the shot to the center of the tree．

FHTA can be used to manually label a shot，or to input a prefix．The calculator is automatically put into alpha mode for input，a descriptor may be typed in，and stroking

If the descriptor was complete，stroke R／S again，to complete the shot．If not completely labeled，the portion input so far will be a prefix to the rest of the descriptor．

臨鲑 brings up the same menu as above，without first going through DEDT］．The first two，TREE and BLDG，add the word to the existing descriptor to complete it．

The remainder of the menu selections will bring up additional menu choices，containing types，then add to the descriptor after the next selection．

射护萑 is a timesaver if the description of the current shot is the same as the last shot．Just stroke this key and the label from the last shot is copied onto the current shot．

When you are adding the descriptor to your shot you can use the keys in combination. For instance, you can use the to bring up the alpha mode and type in 6^{\prime}, stroke

BARB WW BOARD PICKT STON GATE

for selection of the next part of the descriptor.
Let's say that you select "BOARD" . . . when the shots have been downloaded later, the descriptor will be printed out as "6' board fence", and the output shot will look like the one to the right.
shot \#4
Sta. 11+74.533
$0 / 5=3.00$ Right $E L=99.22$

6' Board Fence

If you think of the menu key that just adds a word (TREE, BLDG) as type A, and the menu key (FENC, WALL) which adds a description and then adds a word, as being type B, you can see how the system can not only be customized, but also expanded, to suit your needs.

The type B routines add a suffix after the descriptive. There is also a type C (STRET, ROAD), which does not add the actual word, "street" or "road" to the descriptor, but brings up a new menu for selection.

In the programming that follows we have used "Centerline", "Top of Curb" and "Flowline" as selections. There is also an "Edge of" (LBL 30) which appends either "Pavement" or "Dirt Road", depending on the settings of flags 93 and 94.

If you study the program steps on page 16 , following the paths of one of each type, you will see how to design your own descriptor system. The first descriptor menu is LBL E, and we have begun a second menu (LBLe), by assigning keys 7 and 8 to GTO e.

This menu only has one entry, UTLY, as an example. You can add any others which may occur to you as you use the program.

[^0]

the labeling sequence

To better understand how the system does the writing for you，lets look at what happens in the program when we want to label a shot＂ 6^{\prime} Board Fence＂，a type B case．

First，stroke［龂 to enter the alpha mode．Stroke
 menu in Label E ．

242 KEY 1 GTO 21 Each of the keys is assigned

246 KEY $3 .{ }^{2}{ }^{2} 47$ GTO 23
248 KEY 4 ． GTO 24
249 ＂WALL
250 KEY 5 SGTO 25252
253
KEY
6
7
GTO GTO
26 253 KEY G GTO 254 KEY 8 GTO e
255 FC 92
256 CLA

MENU 58 STQP

22？n．
This menu acts as a prompt for＇what kind＇of fence．When you select board，key 3 sends you to Label 36，which appends the word＂Board＂to what is already in the alpha register，and then sends you to Label 04.
to a specific label，so when you stroke 谓品至，key 4 acts as the branch，and sends you to Label 24．Since this is a type B，Label 24 brings up another menu．

If you will look again at Label E on page 17 , notice that steps 253 and 254 assign Label e to keys 7 and 8. These are the 'scroll' keys, $\boldsymbol{\nabla}$ and $\boldsymbol{\Delta}$.

Lable e, in turn assigns these two keys back to Label E. This is how you set up a second menu. In this case we only have one key assigned, and it goes to IIIIT, for utilities, in Label 31.
 can call up an additional menu of just utility items. As an example, the short program below may be substituted for the original Label e, to handle a lot of the work.

The first menu types in a prefix, the second a suffix, allowing you to spell out "Tele. Pole", "Water Valve", "Storm Manhole", etc.

With these examples, you should be able to write menus that best suit your own needs.

the output

There is an illustration, on page 15 , that shows the output of a typical shot. That example is of a station/offset topo which stored the finished data and the descriptor.

The example to the left is of

$\begin{aligned} & N=4 ; 39 \\ & E=4 ; 9 \\ & L L=92 . \end{aligned}$
¢" 0RK

The number of shots that may be stored is, of course, directly proportional to the amount of memory you have left after you have the program and menus in their final form. You can check available memory by sizing the calculator to 0035 , and then checking the amount of bytes left (MEM, through CATALOG). Dividing this number by 9 , and then adding 35 to it should tell you about what size will work, in terms of registers.

You can again check the number of bytes through MEM, and if you forget what size you are set to, RCL REGS will bring up a matrix as an answer. The first number in the matrix is your current size.
more on prompts
Most of the prompts were described as we wrote the subroutines which call them up, but here are a few additional comments:

1. The prompts for file name and date may be answered with ®/S if you don't need them. The output will show "not given" when the file is output.
2. The date should be input as month, decimal point, day, last two digits of the year.
3. If you are working in coordinate mode, answer the prompt, "curve in topo area?" NO.
4. If you are working in station/offset mode, a curve to the left is input with a negative delta. Stroke $\%$ before a / S if the curve is to the left.
5. Data must be output before additional use of the calculator, to protect the calculator's "environment". There are a number of flag settings and code numbers in storage that tell the output program what to do. Disturbing these settings will prevent output (most likely, "alpha data invalid" when a wrong register is recalled).

debugging assistance

We have always tried to give as much assistance as possible to our users by telephone, but with this program it is not too practical. If you experience difficulty in getting the program to work, send us a note explaining what the program is doing wrong, a print-out of the program and subroutines, and a self-addressed, stamped envelope.

We will try to proof-read the program for you and make suggestions by return mail.

The Most Commonly Asked Questions

The following questions and answers were compiled from the calls and letters we've received in the past $4+$ years that we've been publishing solution books for the HP42S calculator, and are included here in the event that your question is one of them.

Q: How do you type in the END?
A: There are a number of ways . . . one easy way is to stroke XED ENTER and type it in, using the alpha keys. Because you stroked XED first, the calculator will recognize that this is not an alpha input, and substitute the actual function when you stroke ENTER again. You may input any function by this method.

You may also take advantage of the built-in function catalog, stroke \square + (catalog), and then the $\mathbf{F C N}$ menu key. You may scroll up or down with the $\boldsymbol{\nabla}$ oreys, and all of the calculator's functions are in there. When you reach the one you want, just stroke the key under the menu item.

Q: How do you type in the indirect calls, such as step 12 in the first program on page 5?
A: The indirect calls are made by stroking . . In the case of the call above, first stroke $\square 6$ (flags), then 다표 , to bring up the prompt $\left[F_{-}\right.$, then stroke - . Some of the indirect calls give a secondary prompt, requiring another • .

Q: How do I type in a ARCL command?
A: Enter alpha mode before stroking RCL or 5 STO .

[^0]: * The user may vary the menu items to suit his/her own needs. The menus shown in the text are as currently programmed on page 16 .

