HP42S
VERTICAL
ALIGNMENT

HP42S
 VERTICAL ALIGNMENT

Library of Congress Catalog Card No. 89-81219 ISBN 0-944889-07-7

Manufactured in the United States of America
2nd printing August 1990

Copyright © 1989 by Ted J. Kerber
All rights reserved. No part of this work covered by the copyright hereon may be reproduced or used in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping or information storage and retrieval systems - without written permission of the author.

Glendale, California, U.S.A. 1989

ISBN 0-944889-07-7

TECHNICAL ASSISTANCE

The program material, instructions and procedures contained in this book assume that the user has a working knowledge of both surveying and the general operation of the HP-42S calculator.

Technical assistance is limited to verification of the results shown in the various examples used in the book.

If you have any questions or suggestions regarding this book or other D'Zign publications, please feel free to call us. The number is (818) 507-7408, and someone is available to answer technical questions from 3:00 A.M. to $5: 30 \mathrm{~A} . \mathrm{M}$. and from $4: 30 \mathrm{P} . \mathrm{M}$ to $6: 30 \mathrm{P} . \mathrm{M}$. (Pacific time), as a service to users from other time zones.

This software and book are both protected by U.S. Copyright Law (Title 17 United States Code). Unauthorized reproduction and/or sales may result in imprisonment of up to one year and fines of up to $\$ 10,000$ (17 USC 506). Copyright infringers may also be subject to civil liability.

Hewlett-Packard has produced a really powerful calculator at a very good price, the HP-42 Scientific Calculator, which lends itself nicely to solving surveying problems. It can not be programmed by insertion of a module, or with a card reader, like the HP-41 series, but it has a really simple system for typing in a program.

the operations index

To find a function for the first time, HP has provided an "Operations Index" on pages 310 through 335 of the instruction manual, which tells you exactly what keystrokes to use to type in the function you want.

Even better, this index gives you the page number that you can refer to if you want to know more about the function you are using. If, while typing in a program, you aren't sure how to input a particular function, simply refer to the Operations Index.

the softkey menus

All of the programs in this booklet take advantage of the "softkey" menu system built into this calculator. When you want to start a program you stroke XEQ and then the softkey corresponding to the program you want, from the menu displayed in the bottom half of the screen.

the programs

The purpose of this booklet is to provide the user with the best, and most flexible system of programs for solving vertical alignment problems possible.

Programs are included for solution of symmetrical and asymmetrical parabolic curves and grade intersection solutions. We have also included routines which will let you store a string of vertical intersection points and then use them as needed for calculation of the curves. The amount of programming which you input depends on your individual needs.

Because some of these are long programs, we suggest that you approach the programming in stages. You are less apt to have programming errors if you don't try to do the whole job at one sitting.

This booklet contains a short routine which can calculate the station and elevation for the intersection of any two grade lines which pass through known points． Once the intersection location is known，minor adjustments are usually made to put the intersection at an even（or at least reasonable）station．

There are keystroke examples included in the text， to allow step－by－step practice with the program．

The use of a printer is not required，but does make the whole job easier，Hewlett－Packard has the InfraRed Printer available for the 42 S ，and one feature of this calculator is that it already has the InfraRed transmitter built in．

subroutines

Because of the way the calculator works，we will start by input of some subroutines．

Once the subroutine has been input，its name appears in the menu when you stroke XEC， and all you have to do to add it as a step in the program you are typing in is stroke GTO or XEQ followed by keystroking the key corresponding to the subroutine to input the program step GTO XXX or XEQ XXX．

getting started

Begin by stroking the shift key，then the XEQ key．The display will show a menu which will be blank（if you haven＇t yet input any programs）except for ．END．on the left．The keys just below each of the menu portions will correspond to the menu instruction above it．Stroke the key just below the ．END．in the

⿹勹巳＂YES＂
93 KEY 1 GTO 01
54 ＂NO＂
95 KEY 2 GTD 92
46 MENU
日 7 STOP
日8 LBL 01
09 SF 10
10 GTO 03
11 LBL 12
12 CF 10
13LBL 93
14 CLMENJ
15 EXITALL
16 RTN display．

Next, go into program mode by stroking the shifted R/S key,
 ए $\because \square$ similar to the one shown to the left. Begin typing in the program "YN" from the last page.

quick tip

Program steps 03 and 05 use a function which stores the prompt to the menu, and at the same time assigns the key.

To access the function, stroke \square PGM.FCN \triangle UP:

You'll receive a prompt, KEY _. Stroke the key number (we'll use 1 as the example), and you will get a prompt, KEY 1 GTO_..

In this case (step 03) answer 01 to complete the program step.

next subroutine

This one has three steps we might want to review before you start:

STO ST Y	To use a store or recall function involving the stack, stroke sTO (or RCL) U This brings up a menu from which
you can select the function to complete	
the program step.	

The program shown below may be typed in as a continuation of the previous one. Just keep adding steps to your program.

This program, "PST" is a subroutine that outputs the station and elevation during calculations.

After typing in the program as shown, stroke xEO, enter alpha mode, and type in "END". When you leave alpha, you should now have step 51 END as a last program step.

There are three more short subroutines to input, below. We can group them where we want them in program
 step (to 00) by stroking $\boldsymbol{\Delta}$.

G1LBL "CL"		16DLBL "ZIP"
92 2REG 00	日9pLBL "FCL"	17 CLA
g3 CLz	16.013	18 CF 21
-4 EREG 11	11/LEL "FN"	19 "4. WON'T WORK!"
05 CLz		20 RYIEW
060	13 ISG	21 STOP
-9 STO 24	14 G	22 GTO "PVI"
08 RTN	15 RTN	

The next one is longer. This time go to the top of "CL" and scroll up one to begin.

Finish by adding END to the program. What you have just typed in is a program which will solve the intersection of two grade lines which pass through known points of station and elevation.

user instructions

prompt: 1st. Sta. + Elev.
Input the first (down-station) station, and stroke

ENTER
Input the elevation for that station and stroke

R/S
prompt: 2nd Sta. + Elev.
Input the second (up-station) station, stroke

ENTER

Input the elevation for that station and stroke

R/S
prompt: 1st. \% Grade?
Input the percent of grade for the line through the first station. If the grade is negative, stroke t/-

R/S
prompt: 2nd \% Grade?
Input the outgoing grade (percent). If negative,

R/S

The output will depend on whether or not you are using a printer. If you are, the output is the first station,
first grade, "P.V.I. is at" will show briefly on the display, then the solution station and elevation will be displayed. This is followed by output of the second grade and the ending station and elevation.

Without the printer you will see the "P.V.I. is at" in the display, and then the program will stop with the intersection station and elevation in the display.

error message

If you give the calculator an impossible set of instructions, WON'T WORK! will appear in the display. This is the equivalent of "data error". If the problem is that you may have stroked a wrong key during input, stroke R/s to start over.

The amount of time that "P.V.I. is at" will be seen in the display is about one second. If you want it to show longer you can add additional pauses (PSE) after step 84 in the program. If you want to see less of it, delete step 85 (or even steps 80 through 86 , and you won't see it at all).

keystroke examples

As examples of the keystrokes used for "PVI", we can use the information shown in the two illustrations to the right.

In the first example we have a $+2 \%$ grade in, passing throuth station $10+00$ at elevation 120.0 , and a -1.6% grade out, passing through station $16+00$ at elevation 125.0 .

The keystrokes are as shown on the next page.
example one
keystroke:
prompt: 1st. Sta. ${ }^{+}$Elev. keystrokes:

prompt:2nd Sta. ${ }^{\uparrow}$ Elev.
keystrokes:
1600 ENTER 125 R/S
prompt: 1st. \% Grade?
keystrokes:
2 R/S
prompt: 2nd \% Grade?
keystrokes:
$1 \cdot 6$ t/ R/S
output:

$$
\begin{aligned}
& \text { 5ta. } \frac{10}{180.00 .000} \\
& \text { Grade } 1=8.006 \% \\
& \text { P: V.I. is }{ }^{\text {t }} \\
& \text { 5ta. 14+0.5.556 } \\
& \text { Elev 12s.1i1 } \\
& \text { Grade } z=-1.604 \% \\
& \text { 5ta. 16+06.000 } \\
& \text { Elev } 125.900
\end{aligned}
$$

example two

keystrokes:

XEO $\mathbb{\#} \geq$ \#

prompt: 1st. St.a. + Elev. keystrokes:

prompt: 2nd Sta. + Elev. keystrokes:

prompt: 1st. \% Grade?
keystrokes:

prompt: 2nd \% Grade?
keystrokes:

3 H/ R/S

output:

$$
\begin{aligned}
& \text { 5t.. } 104+66.000 \\
& \text { Eley } 120.060 \\
& \text { Grade } 1=-2.506 \% \\
& \text { F: } \because \text {. } 1.15{ }^{1} 5
\end{aligned}
$$

$$
\begin{aligned}
& \text { Grade } z=-3.000 \% \\
& \text { 5t. } 16+60.000 \\
& \text { Elev } 164.500
\end{aligned}
$$

The main program for vertical alignment solves grade or vertical curve problems, calculating the elevations at any station along the vertical alignment. You can also solve for the station when the elevation is known, on the tangents and in symmetrical curves.

types of verticals

Vertical curves are usually described as 'crest' or 'sag' verticals, as shown to the right.

The program will also calculate the turning point (high point on crest, low point on sags) station and elevation. When both tangent grades have the same sign, there is no actual turning point, and the program will tell you that there is no high or low point in the curve.

SAG VERTICALS

The symbol, \mathbf{e}, is commonly used to denote the distance from the tangent intersection to the curve. In this program, the value is computed, and shown as the second (POVC) elevation in the curve data.

A symmetricl curve is one in which the lengths of the two tangents are equal. The program allows selection by input of the length, L, if it is a symmetrical curve, or lengths $\mathbf{L 1}$ and L 2 if it is not.

intervals

Automatic calculation of the elevations at a given interval of stationing is possible. The interval instruction is cancelled at the end of each tangent or curve, and must be reset for the next segment. This allows the use of a different interval along the tangent than in the curve.

To allow you to take advantage of the interval option, but still be able to calculate specific stations within the
segment you are calculating, at the end of each tangent or curve you are prompted for additional station input.

the program

To begin typing in the program steps, stroke xEO and then the key under ".END.". Your display, when you enter


```
QU:EM
``` program mode, should be as shown to the right.

Scroll up once and type in the program below. It may be better to not try to do it all at one sitting. When you leave program mode and turn the calculator off, the program pointer will still be at the point where you left off when you turn it back on.
\begin{tabular}{|c|c|c|}
\hline 的 (1174-Byte Prgm) -1 LBL "YA" & 16 PROMPT & 31 RCL 97 \\
\hline 02 XEQ "CL" & 17 FC? 08 & 32 XEQ "PST" \\
\hline 03 XEQ "FCL" & 18 PROMPT & 33 FS?C 03 \\
\hline 04 CF 19 & 19 LBL 29 & 34 GTO 32 \\
\hline 0.5 SF 20 & 20 FS ? 06 & 35 GTO 03 \\
\hline B6 SF 21 & 21 XEQ 04 & 36 RTN \\
\hline 97 SF 91 & 22 STO 97 & 37 LBL I \\
\hline 98 XEQ 90 & 23 RCL 12 & 38 STO 84 \\
\hline 891LBL 03 & \(24 X \leq Y\) ? & 39 RCL 97 \\
\hline 10 FS ? 11 & 25 XEQ 95 & 49 SF 90 \\
\hline 11 XEQ 01 & \(26 \mathrm{R}+\) & 41 FS? 91 \\
\hline 12-LBL 02 & 27 RCL - 90 & 42 GTO 29 \\
\hline 13 XEQ 28 & 28 RCLX 82 & 43 FC? 91 \\
\hline 14 CLA & \(29 \mathrm{RCL}+01\) & 44 GTO 日B \\
\hline 15 FS? 03 & 30 STO Q9 & 45 RTN \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 46PLBL 00 & 812 & 116 LBL 21 \\
\hline 47 "'tStation?" & \(82 \div\) & 117 CF 82 \\
\hline 48 PROMPT & 83 ST0 17 & 118 RCL 15 \\
\hline 49 STO 00 & 84 STO 18 & 119 RCL- 17 \\
\hline 50 "televation?" & 85 SF 08 & 120 STO 12 \\
\hline 51 PROMPT & 86 GT0 23 & 121 RCL + 05 \\
\hline 52 STO 91 & 87-LBL 17 & 122 STO 10 \\
\hline 53 "ヶ\% Grade?" & 88 STO 17 & 123 RTN \\
\hline 54 PROMPT & 89 STOP & 124-LBL 22 \\
\hline 55 1E2 & 990 LBL 18 & 125 CF 83 \\
\hline \(56 \div\) & 91 STO 18 & 126 RCL 10 \\
\hline 57 STO 02 & \(92+\) & 127 RCL- 05 \\
\hline 58PLBL 01 & 93 STO 05 & 128 STO 12 \\
\hline 59 CF 11 & 94 SF 88 & 129 RCL + 17 \\
\hline 60 XEQ 15 & 95 GTO 23 & 130 STO 15 \\
\hline 61 "NEXT" & 96 LBL 25 & 131 RTN \\
\hline 62 PROMPT & 97 STO 12 & 132 LBL 84 \\
\hline 631LBL 24 & 98 SF 81 & 133 RCL +04 \\
\hline 64 XEQ 16 & 99 GTO 24 & 134 RTN \\
\hline 65PLBL 23 & 1001LBL 26 & 1351 LBL 32 \\
\hline 66 FS? 81 & 101 STO 15 & 136 XEQ 35 \\
\hline 67 XEQ 20 & 102 SF 82 & 137 FC? 10 \\
\hline 68 FS? 82 & 103 GTO 24 & 138 GT0 29 \\
\hline 69 XEQ 21 & 1040LBL 27 & 139 SF 03 \\
\hline 70 FS? 83 & 105 STO 10 & 140 GTO 03 \\
\hline 71 XEQ 22 & 106 SF 83 & 141 LBL 36 \\
\hline 72 RCL 15 & 107 GTO 24 & 142 RCL 15 \\
\hline 73 RCL- 00 & 1081 LBL 20 & 143 X ¢ \(>\) Y \\
\hline 74 RCLX 02 & 109 CF 81 & \(144 \mathrm{X}<\mathrm{Y}\) ? \\
\hline 75 RCL+ 01 & 110 RCL 12 & 145 SF 66 \\
\hline 76 STO 16 & \(111 \mathrm{RCL}+17\) & \(146 \mathrm{X} \backslash \mathrm{Y}\) ? \\
\hline 77 GTO 02 & 112 STO 15 & 147 CF 06 \\
\hline 78 RTN & \(113 \mathrm{RCL}+18\) & 148 RTN \\
\hline 79pLBL 19 & 114 STO 10 & 1491LBL 34 \\
\hline 80 STO 05 & 115 RTN & 150 XEQ 35 \\
\hline
\end{tabular}

151 FC ？ 10
152 GTO 12
153 SF ด3
154 CF 96
155 XEQ 88
156 LBL 35
157 CLA
158 CLMENJ
159 CF 21
160 ＂Additional Stat＂
161 ト＂ion？＂
162 AYIEW
163 SF 21
164 XEQ＂YN＂
165 RTN
166 LBL 95
167 CLMENIJ
168 FS？C 日 9
169 XEQ 32
170 FS？ 94
171 STOP
172 CF 01
173 ADV
174 RCL 12
175 RCL－日月
176 RCLX 02
177 RCL +01
178 STO Иิ1
179 STO 09
180 RCL 12
181 STO 日ด
182 SF 11
183 CLA
184 ＂BYC＂
185 XEQ 07

186 LF 29
187 FIX 日ด
188 ＂＂
189 ARCL 05
190 ト＂Ft V．С．ヶ＂
191 HYIEW
192 FIX 03
193 ＂trGrade \(\operatorname{In}=\)＂
194 RCL 02
195 1E2
\(196 \times\)
197 HRCL ST X
198 ト＂＂＂
199 AVIEW
2 昀 SF 29
201 CLA
202 RCL 16
203 ST0 69
204 RCL 15
205 CLA
206 ト＂PVI＂
207 KEQ 07
208 ＂Ir ade Out？？ヶ＂
299 PROMPT
21日 FS？ 19
211 ADV
212 FS？ 19
213 GTO 16
214 1E2
\(215 \div\)
216 STO 日 3
217 SIGN
218 RCL 02
219 SIGN
22 и \(X=Y\) ？

2215 GF
222 RCL 03
223 RLL－日2
2242
\(225 \div\)
\(226 \mathrm{RLL} \div 95\)
227 STO 14
228 RCLX 18
229 RCL \(\div 17\)
230 STO 66
231 RCL 18
232 RCLX 03
233 RCL +16
234 STO 11
235 RCL 14
236 RCL 17
237 RCLX 18
\(238 \times\)
239 RCL 17
240 RCLX 92
241 RCL 1 日1
\(242+\)
243 CLA
244 STO 09
245 ＂ \(4 P O Q C\)＂
245 ARCL 09
247 RYIEW
248 RDY
249 RCL 14
250 RCL \(\times 17\)
251 RCL \(\div 18\)
252 STO 08
253 RCL 02
254 RCL 06
2552
\begin{tabular}{|c|c|c|}
\hline \(256 \times\) & 291 STO Q7 & 326 STO 08 \\
\hline \(257 \div\) & 292 RDV & 327 ST0 07 \\
\hline 258 ＋／－ & 293 GT0 08 & 328 CLA \\
\hline 259 STI 13 & 294 RTN & 329 ＂EVC＂ \\
\hline 260 RCL 02 & 2951 LBL 33 & 330 XEQ 97 \\
\hline \(261{ }^{\text {x＋2 }}\) & 296 CLA & 331 SF \(\mathrm{Q}_{1}\) \\
\hline 262 RCL 06 & 297 ＂No Hi／Low Point，＂ & 332 SF 11 \\
\hline 2634 & 298 ト＂じ＂ & 333 GT0 03 \\
\hline \(264 \times\) & 299 HVIEW & 334 RTN \\
\hline \(265 \div\) & 3 3日 CLA & 3351 LBL 13 \\
\hline 266 RCL 81 & 301 RTH & 3361 \\
\hline 267 ＇X＜\({ }^{\prime}\) & 302 LBL 10 & \(337+\) \\
\hline 268 － & 303 FS ？ 08 & 338 STO 12 \\
\hline 269 STO 99 & 304 R 4. & 339 SF 11 \\
\hline 270 FS？ 08 & 305 FS？ 06 & 340 SF 94 \\
\hline 271 XEQ 09 & 306 GT0 12 & 341 GT0 03 \\
\hline 272 RCL 日日 & 397 SF 96 & 342 RTN \\
\hline 273 RCL＋ 13 & 308 FC？ 08 & 343 LBL 11 \\
\hline 274 CLA & 3 S9 RTN & 344 FS？ 11 \\
\hline 275 FC？ 02 & 310 FS？ 68 & 345 GTD 14 \\
\hline \(276 \vdash^{\text {＂}}\) ¢ \(=0 \%\)＂ & 311 SF 11 & 346 XEQ 28 \\
\hline 277 FC？日2 & 312 FS ？ 08 & 347 CLA \\
\hline 278 XEQ Q7 & 313 GTO 11 & 348 FS？ 03 \\
\hline 279 FS？C B2 & 314 RTN & 349 GTO 14 \\
\hline 280 XEQ 33 & 315 LBL 12 & 350 FC？ 90 \\
\hline 281 FIX \({ }^{2} 3\) & 316 FS？\({ }^{\text {a }}\) & 351 PROMPT \\
\hline 282 ＂Grade Dut＝＂ & 317 XEQ 34 & 352 FS？\({ }^{\text {Q }}\) \\
\hline 283 RCL 03 & \(318 \mathrm{CF} \mathrm{O8}\) & 353 XEQ 04 \\
\hline 284 1E2 & 319 CF 96 & 354 LBL 14 \\
\hline \(285 \times\) & 32号 RCL \({ }^{\text {a }}\) & 355 CF 11 \\
\hline 286 ARCL ST \(x\) & 321 STO 02 & 356 STO 07 \\
\hline 287 ト＂\％ヶ＂ & 322 RCL 11 & 357 RCL 10 \\
\hline 288 RVIEW & 323 ST0 01 & \(358 \mathrm{X} \leq \mathrm{Y}\) ？ \\
\hline 289 CF 11 & 324 ST0 69 & 359 GTO 12 \\
\hline 290 RCL 00 & 325 RCL 10 & 360 － \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 361 ST0 13 & 396 STO 69 & 431 XEQ "PST" \\
\hline \(362 \mathrm{x}+2\) & 397 RCL 05 & 432 FS?L 93 \\
\hline 363 RCLX 88 & 398 STO 13 & 433 GT0 34 \\
\hline 364 RCL 13 & 399 RTN & 434 GTD 日8 \\
\hline 365 RCLX 93 & 400LBL 08 & 435 LBL \(\mathrm{Q}_{7}\) \\
\hline \(366+\) & 401 XEQ 28 & 436 SF 20 \\
\hline \(367 \mathrm{RCL}+11\) & 402 CLA & 437 SF 11 \\
\hline 368 STO 09 & 403 FS? 03 & 438 XEQ "PST" \\
\hline 369 RCL 07 & 404 PROMPT & 439 CF 11 \\
\hline 376 XEQ "PST" & 405 FC? 90 & 440 CLA \\
\hline 371 FS? 53 & 406 PROMPT & 441 ADV \\
\hline 372 GTO 34 & 497DLBL 31 & 442 RTN \\
\hline 373 GTO 11 & 408 CF 11 & 443 LBL E \\
\hline 374 RTN & 469 FS? 09 & 444 STO D9 \\
\hline 3751 LBL 09 & 410 XEQ 04 & 445 RCL - 11 \\
\hline 376 RCL 17 & 411 STO 07 & 446 FS? 11 \\
\hline 377 RCL 13 & 412 FS? 03 & 447 XEQ A \\
\hline \(378 \mathrm{X} \leq \mathrm{Y}\) ? & 413 XEQ 36 & 448 CF 11 \\
\hline 379 RTN & 414 FC? 96 & 449 CF 19 \\
\hline 380 RCL 03 & 415 RCL 15 & 450 FS? 181 \\
\hline 381 RCL 08 & 416 FS? 96 & 451 GTO 02 \\
\hline 3822 & 417 RCL 10 & 452 +/- \\
\hline \(383 \times\) & \(418 \mathrm{X} \leq \mathrm{Y}\) ? & 453 RCL 16 \\
\hline \(384 \div\) & 419 XEQ 10 & 454 RCL 92 \\
\hline 385 +/- & 420 R + & \(455 \mathrm{R}+\) \\
\hline 386 STO 13 & 421 RCL- 90 & \(456 \div\) \\
\hline 387 RCL 03 & 422 STO 13 & \(457 \mathrm{R}+\) \\
\hline \(388 \mathrm{X}+2\) & 423 x+2 & 458 LASTX \\
\hline 389 RCL 98 & 424 RCLX 86 & \(459 \div\) \\
\hline 3904 & 425 RCL 13 & 4602 \\
\hline \(391 \times\) & 426 RCLX 02 & \(461 \div\) \\
\hline \(392 \div\) & 427 + & 462 +/- \\
\hline 393 RCL 11 & \(428 \mathrm{RCL}+81\) & 463 ENTER \\
\hline \(394 \mathrm{X}\langle>Y\) & 429 ST0 99 & 464 ENTER \\
\hline 395 - & 430 RCL 97 & 465 x+2 \\
\hline
\end{tabular}
```

466 R+ }494\textrm{RCL}+\mathrm{ 日日
467 -
4 6 8 SQRT
469 -
4 7 0 LRSTX
471 R+
472 +
473 RCL+ 日日
4 7 4 STO 19
475 X<>Y
476 RCL+ 日0
4 7 7 STO 07
4 7 8 SF 19
4 7 9 ~ S F ~ 1 1 ~
4 8 0 ~ X E Q ~ b ~
4 8 1 ~ R C L ~ 1 9 ~
482 STO 07
483 "and "
4 8 4 ~ X E Q ~ " P S T " '
485 AVIEW
4 8 6 ~ C L A
4 8 7 CF 11
4 8 8 CF 19
4 8 9 ~ A D Y ~
490 GTO 08
4 9 1 ~ R T N
492-LBL A
493 RCL\div02
495 STO D7
496 LBL b
497 "Elev. "
4 9 8 ARCL B9
499 卜" at"
5 0 日 ~ R Y I E W
501 SF 11
502 SF 19
503 "Sta "
504 XEQ "PST"
5 0 5 ~ A V I E W ~
506 FC? B1
507 RTN
508 CF 11
5 0 9 ~ R D Y ~
510 GTO 28
5 1 1 ~ R T N
512LBL 15
5 1 3 ~ C L M E N U ~
514 "B.Y.C"
5 1 5 ~ K E Y ~ 1 ~ G T O ~ 2 5 , ~
516 "P.V.I"
517 KEY 2 GTD 26
518 "E.Y.C"
5 1 9 ~ K E T ~ 3 ~ G T O ~ 2 7 ~
5 2 0 . ~ " E N D P " ~
5 2 1 ~ K E Y ~ 6 ~ G T D ~ 1 3 ~

```

522 MENU
523 RTN
524 LBL 28
525 CLA
526 CLMENU
527 ＂STA＂
528 KEY 1 GTO 30
529 ＂ELE廿＂
530 KEY 2 GTO E
531 ＂INTYL＂
532 KEY 3 GTD I
533 MENU
534 RTN
535 LBL 16
536 CLMENU
537 ＂L＂
538 KEY 1 GTO 19
539 ＂L 1＂
540 KEY 2 GTO 17
541 ＂L 2＂
542 KEY 3 GTO 18
543 MENJ
544 STOP
545 LBL 39
546 FS？ 11
547 GTO 29
548 FC？ 11
549 GTO 31

If you scroll down once，you will see the permanent end，．END．，still in place．If you decide to add another program later，you will need to add an end to this program before starting．

\section*{user instructions}

Execute＂VA＂to bring up the first prompt．

\section*{prompt: St,at,ion?}

Input any station which has a known elevation and stroke

R/S
prompt: Elevation?
Input the elevation of the station, and then stroke

R/S
prompt: \% Irade?
Input the grade (percent). If the grade is negative, stroke th. Stroke

R/S
prompt: NEXT

\section*{}

At this point you may tell the calculator to stop at a given station (when you are using the automatic interval, it will stop calculation at that station), or you can give it one of the indicated stations along the vertical curve.

To stop calculation at a given station, input the station and stroke
or
Input the station at the desired part of the curve, stroke the appropriate key,

prompt: \#\#\#\#\#\#\#\#\#\#\#
If the curve is symmetrical, input the total length of the curve and stroke

If the curve is asymmetrical, input the length of the first tangent, stroke

Input the length of the second tangent and stroke

\section*{options}

If you want to calculate the station at which a given elevation occurs, input the elevation and stroke

\section*{*:}

The output will be the station at which the elevation

Elev. 125.449 at
 occurs.

\section*{}

Input the first station for which you want to calculate an elevation. Stroke

The output will be the 10+00.000 120.000 station and the elevation.

After output of the initial station, you can set the interval if you like.

Input the interval you would like to use and stroke

Note: The interval-spaced calculations will begin at the last station output. If you calculated an elevation (above) you will want to output a starting station before input of the interval.

The program will continue to calculate the elevations until the next BVC station is reached. If END@ was selected, it will stop at the designated station. If you are not using a printer, continue stroking R/S as the solutions appear.

When a BVC station is reached, the program will automatically output the curve data through the PVI station and elevation. Continue stroking \(\sqrt{6} / \mathbf{S}\) for the output, if you are not using a printer. prompt: Grade Dut?

Input the grade (percent). If negative, th, and stroke

R/S
the output will be the remainder of the curve data, including the turning point and the elevation on the curve at the PVI station (POVC).

At this point you can calculate (symmetrical curve) the station at which a given elevation occurs, if needed.

When the end of the curve is reached, the calculator will prompt for additional (oddball) stations:

or
Answer no if you do not need additional stations. This prompt will continue after each output until you answer "no", Then the EVC information will be output.

\section*{keystroke examples}

In the first example on page 8, the PVI was calculated to be at station \(14+05.556\). A curve using this PVI could still begin and end at even stations. Let's use \(13+00\) and \(15+00\), for a \(200^{\prime}\) vertical curve, by calculating it as an asymmetrical curve with \(\mathrm{L} 1=105.556\) and \(\mathrm{L} 2=94.444\).

We can use this as a first keystroke example, and assume that we want to calculate elevations at 50 ' intervals along the tangent, and \(25^{\prime}\) intervals through the curve.
prompt：Station？
keystrokes：
\(1000 \mathrm{R} / \mathrm{S}\)
prompt：Elevation？
keystrokes：

\section*{120 R／S}
prompt：\％Grade？
keystrokes：
2 R／S
prompt：NEXT

keystrokes：
13000 ETHEX

keystrokes：

keystrokes：
 output：
\(10+00.000 \quad 120.000\)

keystrokes：
500
output：
\begin{tabular}{ll}
\(15+50.000\) & 121.000 \\
\(11+00.000\) & 122.000 \\
\(11+50.000\) & 123.000 \\
\(12+00.000\) & 124.000 \\
\(12+50.000\) & 125.000
\end{tabular}
prompt：Additional St，ation？

keystrokes：
output：

200 Ft \({ }^{\psi} \mathrm{C}\) C PII \(14+85.556\) Eleu 128.111
prompt：Grade Dut？
keystrokes：

\section*{\(1 \cdot 6\) R R／S}
output：
POYC 127.214
Co \(=9 \%\)
Elev
\(127+29.469\)
Grade Out＝－1．600\％

keystrokes：
25 开正
output：
\begin{tabular}{ll}
\(13+25.000\) & 126.450 \\
\(13+50.000\) & 126.799 \\
\(13+75.000\) & 127.047 \\
\(14+00.000\) & 127.195 \\
\(14+25.000\) & 127.234 \\
\(14+50.000\) & 127.149 \\
\(14+75.000\) & 126.937
\end{tabular}
prompt：
Additional St，ation？

keystrokes：

output：
EYC 15＋90． 800
Elev 126.6 百

The curve below is symmetrical，and we＇ll use it as a second example，at the same time trying out the ELEV option．Assume that we want to know where elevation 108.00 will be in the curve，and where elevation 110.00 will be in the tangent following the curve．

Enter the program by executing＂VA＂．
prompt：Station？
keystrokes：
\(\begin{array}{llllll}1 & 0 & 5 & 0 & R / S\end{array}\)
prompt：Elevation？
keystrokes：
\(166 \mathrm{R} / \mathrm{S}\)
prompt：\％Grade？
keystrokes：
1 ． 5 R／S
prompt：NEXT

keystrokes：
\begin{tabular}{llllll}
1 & 0 & 5 & 0 & \(B\) & 5 \\
\hline
\end{tabular}

keystrokes：

keystrokes：
100500 E 1 E

\section*{output：}

BYC 10＋5日． 19 日
Elev 106．0ดロ

prompt：Grade Out？
keystrokes：
4 R／S
output：
POYC 105.875
\(\mathrm{C}=0 \% 11+04.545\)
Elev 105.591
Grade Out \(=4.000 \%\)

keystrokes：

\section*{1088 B표}
output：

 keystrokes:

output:
\(11+90.000 \quad 105.594\)

keystrokes:
50 ए1]
output:
\(11+50.000 \quad 105.875\)
\(12+00.000 \quad 106.844\)
 keystrokes:
output:
EYCIev \(12+50.890\)
prompt: NEXT
 keystrokes:

16000 HIT

keystrokes:
110 踑

\section*{output:}

keystrokes:

\section*{}
output:
\(13+00.000 \quad 110.500\)

keystrokes:
50 B
output:
\(\begin{array}{ll}13+50.000 & 112.500 \\ 14+00.000 & 114.500 \\ 14+50.000 & 116.500 \\ 15+00.000 & 118.500 \\ 15+50.000 & 120.500 \\ 16+00.000 & 122.500\end{array}\)

Note that the ELEV option, used in a curve, will output two points in most cases. They may NOT be in the curve and, if they occur on the tangents, are not correct for the tangent. Visual inspection of the output will tell you which ones to use.

Also, remember that if you have used the elevation option and want to use the interval option after that, you need to input a starting station first.

\section*{MORE HP42S PROGRAMS}

Spiral Curves (booklet, \$9.50)
Calculate the coordinates to any station, or offset to a station, within a spiral system. Options include coordinate output, auto-inverse, or both.

Calculates intersections of the entrance or exit spiral with a circular curve or straight line.

Triangle Solutions (booklet, \$8.00)
The 42 S version of the most complete triangle solutions program ever available. Solves with any of the following knowns: ASA SAA SAS SSA SSS Area-SS Area-AA Area-SA.

Topography (booklet, \$8.00)
This one turns your 42 S into a manual data collector, complete with a labeling system that you can customize to suit the type of topo work you do.
All shots are stored as finished data, by shot number, for later output. Choice of 3-D coordinates or Station-Offset-Elevation for the output.

EDM Slope Staking (booklet, \$8.00)
Set up anywhere near an alignment and slope stake it. Sets slope stakes from the remote instrument location directly. Includes a three-point resection program for finding the instrument's location by either station-offset or coordinates. All data needed to mark the stake is output (or may be stored), and there is a subroutine for setting the reference stake.

Urban Survey Programs (book, \$20.00)
Contains programs for stakeout (or design) of street intersections, returns, culs-de-sac, bulbs and knuckles. A special program calculates and prorates blocks from the street intersections (with auto-store and auto-inverse of the points) from the street intersection setups for A.L.T.A. surveys.
Also contains layout programs for curb and gutter, or storm/sanitary sewers, which can store the data and later print out cut sheets before leaving the job site.```

