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Introduction

The words calculator, calculate, and calculus come from the Latin word “calculus,”
which refers to small stones used in reckoning. The Calculus Companion features the
HP 48G or HP 48GX calculator, provides a rich selection of problems to support our
assumption that calculus is best learned through problem solving and calculation, and is
organized to facilitate the learning of calculus. The Calculus Companion is intended to
supplement an “average” calculus text and to be a “companion” to a student studying
calculus.

In the last decade of the twentieth century we are at the beginning of a revolution in the
use of computing technology in the physical, engineering, and mathematical sciences. Peter
Lax, a leading U.S. applied mathematician, said that this revolution is altering the face of
applied mathematics. Programmable handheld calculators with numerical, graphical, and
symbolical capabilities are part of this revolution.

 

Numerical, Graphical, and Symbolical Exposition, Problem Solving, and Learning

Placed in the middle of the the HP 48 keyboard, on the 7, 8, and 9 keys, are SOLVE,
PLOT, and SYMBOLIC. These keys give quick access to the numerical, graphical, and
symbolical power of the HP 48. Numerical, graphical, and symbolical approaches to ex-
position, problem solving, and learning are used throughout the Calculus Companion. We
have tried to express the viewpoint, mostly by example, that picking up a graphics calcula-
tor to explore an idea or problem numerically or graphically is a normal and valuable part
of learning or using mathematics.

 

Problems for Examples, Problems for Exercises, and Student Projects

Our examples, exercises, and projects were chosen to more nearly resemble real problems
and to make use of the power of the HP 48. We have not thought it useful to simply give
lists of traditional problems and ask that they be solved with the help of a calculator.

° We have given problems that help students learn, understand, and apply calculus
better, through encouraging students to approach problem solving using numerical,
graphical, and symbolical techniques

° We have divided the exercises into A, B, and C sets, in an attempt to provide for a
variety of students. Some students will be interested in programming their calculators,
some will be interested in more challenging problems, and some will be interested in
a deeper analysis of a topic. The A exercises are more or less at the same level and
cover the same ideas as the examples. The B exercises ask the student to go beyond
the content and level of the examples and may include some programming. The C
exercises are more ambitious yet or explore topics such as error analysis.

° We give several “Projects,” which are problems suitable for a student writing project
or group work.

iil
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Order of Chapters and Content

The order of the chapters is close to that of an average calculus text. However, topics
or ideas on which the impact of the HP 48 was seen (by us) as not important were omitted.
We have omitted entirely or given brief treatments of other topics for reasons of space.
The main chapter on graphing, Chapter 3, follows Chapter 1 (Functions and Limits) and
Chapter 2 (Derivatives) because the latter two chapters are at the beginning of most calculus
courses. We want to keep the student focused on calculus, not on the bells and whistles of
the HP 48. Chapter 3 comes at a point where students have reasons for wanting to graph a
function. On the other hand, graphing is a strong feature of the HP 48 and is in fact useful
in Chapters 1 and 2. We have therefore included pieces of “how to graph” in Chapters 0
and 1. Chapter 0 (HP 48 Nuts and Bolts) is a good introduction to the HP 48 and may
be studied at different levels of intensity, depending on the student. Chapter 6 (Solving
Systems of Linear Equations with the HP 48) was written for use in §7.5, Partial Fraction
Calculations. For this purpose we give programs for exact arithmetic. These programs may
be adapted for use in a simplex algorithm for solving a linear program.

 

Other Distinguishing Features

The Calculus Companion has several useful features.

e Front and back end papers give tips on trouble-prevention and trouble-shooting, and
include a Program Index.

° In To the Student, which precedes Chapter 0, we urge students to take advantage
of five tools for learning calculus: themselves, their instructor, their calculus text-
book, the Calculus Companion, and their HP 48. We also summarize the key strokes
needed for numerical, graphical, and symbolical calculations, and for differentiating
or integrating a function.

e Each chapter and section begins with a preview of the main ideas to be discussed.
eo The main ideas in a typical section are presented through a series of examples, written

in a problem/solution format.
° An input/output format is used in the examples to make it easier to learn to use the

HP 48. The key strokes used to input numbers, functions, and commands are shown
on the left and the resulting HP 48 screen is shown on the right.

° We explore more of the numerical side of calculus than has been included in traditional
courses, not simply because the capabilities of the HP 48 make this possible but
because many students will use calculus in this way.

° Most chapters include programs. Students can use these programs in learning/using
calculus, whether or not they are interested in learning to program. Students who
have programmed in BASIC, PASCAL, or FORTRAN quickly learn to program the
HP 48. Students and instructors differ widely on the value of programming. Some
wish to use the rich array of HP 48 built-ins. Their interest is more nearly in finding,
say, the numerical value of an integral than in understanding numerical integration.
By offering programs for various algorithms we have given students, instructors, and
other readers a choice. Most programs are listed in a Program Index.

° Answers to most exercises are included.
° Although we have written with the HP 48G in mind, we use the broader term HP 48

when we need to refer to a calculator. Most of the graphical, numerical, and symbolic
calculations we discuss can be done on either the HP 48G or the HP 48S. Many of
the calculations and programs can be done on the HP 28S.
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To the Student

 

Calculus and your two HPs

There now exist machines that can work most routine calculus problems quickly and
accurately. The HP 48 calculator is such a machine and with calculus is the focus of this
book. Sound easy? You might even wonder why bother studying calculus if a machine can
do it all. Of course, the answer is that you need to know the ideas of calculus before you
can effectively use the HP 48. At the same time, these calculators provide an interesting
context in which you can learn the ideas of calculus. You will soon see that the HP 48 is
a very powerful machine, one that can be teamed with an even more powerful machine:
your head! By combining your two HPs—your HP 48 and your Head Power—with what
you read in this book, you will find that learning and using calculus is both rewarding and
enjoyable.

 

What this book is and what it is not

First, this book does not systematically cover the usual calculus syllabus. For that you
need a regular calculus book. You also need a regular instructor. Friendly advice: go to
class regularly, listen carefully to what your instructor is trying to teach you, then use your
calculus book, this book, and the HP 48 to supplement not replace your instructor’s efforts.

This book is not a calculator manual. On the other hand, we have tried to anticipate
what you must know about the HP 48 and discuss it as needed. No previous calcula-
tor/computer experience is required. The object of the book is to help you understand the
concepts and the value of calculus through the use of the HP 48. The HP 48 is a very
sophisticated machine, having many other uses besides in calculus. We do not attempt to
teach you everything there is to know about this machine; nor do we even attempt to teach
you everything about it that relates to calculus. We concentrate only on what is needed,
introducing it gradually so that you will be able to develop confidence in the machine. For
our purposes, the most basic aspects of the HP 48—the “nuts and bolts”—are outlined in
Chapter 0.

Beginners are advised to read Chapter 0 carefully with an HP 48 in hand. The ideas
and notation introduced there will be used throughout the book. Even if you are an
experienced HP 48 user, you should at least scan Chapter 0. If you get impatient and want
to learn more or learn faster, read the HP 48 Owner’s Manual. This manual is written for a
broad readership and contains more information and terminology than we need. Those who
want additional breadth and depth concerning the HP 48 may want to consult William C.
Wickes’ book HP-48 Insights. [Larken Publications, Corvallis, Oregon]. For those who want
additional challenges, there are a few unusual calculator applications in the (C) exercises
of this book.

A basic feature of this book is a collection of problems on both the concepts of calculus
and its applications. The problems often require a fair amount of calculation. Without a
machine like the HP 48 to do the “dirty work” of number-crunching and symbolic manip-
ulation, taking on such problems would not be practical. Another feature of the book is a
collection of short programs which may be used both to doublecheck answers to textbook
problems and to shorten certain algorithms. Except for Chapter 0, the book parallels most
calculus textbooks in context and order of topics.
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HP 48G or HP 48GX?

If you have not yet purchased an HP 48, you may be wondering which machine to get,
the HP 48G or the HP 48GX? The X in HP 48GX stands for expandability, which means
that the HP 48GX can accommodate certain expansion cards. That, cost, and added
memory are the only differences; everything else, including I/O capability, is the same.
Expansion cards include memory cards, application cards, and a card for connecting the
HP 48 to an overhead projector—none of which is needed to learn calculus. The practical
choice for most students will be the HP 48G; for a few—Ilike teachers who want to use it
in their instruction and students with special needs—the added expense for the HP 48GX
might be worth it.

 

Friendly advice

Scattered throughout this book you will find occasional boxed-in remarks like the ones
shown below. Pay special heed to these; they contain advice that can save you a lot of
trouble down the road.

 

It is important that you use the graphing capabilities
of the calculator to supplement rather than bypass
what your instructor is trying to teach you.   
  

Leave your calculator in radians mode
throughout your study of calculus.   
 

| KEY TO RPN: Think action key last!
 

Always look for ways to check the
reasonableness of your answer.   
 

 To get out of a jam: PRESS
  

 

| Don’t forget to use your other HP!
 

 

Timesaving Keystrokes

 

 

 
 

 

  

To do this Key in this See page

2+3 2 [spc] 3 + or'2+3 3-5
V25 25 or 25' [EVAL 3-5
23 2 3 |y*| or '2 3 3-5

graph y = f(z) F(X) [EQ] [DrRAX| [DRAW] 26-27
evaluate f(x) at x = a f(X) a 19

write a program use KK > 14

calculate == f(z) f(X) X 0 85

calculate [° f(z)dz a b f(X) X J 200-202
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Chapter 0

HP 48 Nuts & Bolts

0.0 Preview

0.1 Calculation Methods

0.2 The Stack

0.3 The Keys; Notation to Be Used in This Book

0.4 Simple Programming

0.5 Organizing and Changing Things

0.6 Graphing

0.7 Loops & Branches

 

0.0 PREVIEW

In this chapter we summarize those capabilities and features of the HP 48 to be used and
built upon in this book. We also introduce a small number of short programs (§ 4-8), some
of which you may wish to transfer over to your own calculator. You should read this chapter
with an HP 48 in hand, but wait until Example 1 before trying it out.

 

0.1 CALCULATION METHODS

Imagine carrying out the following calculation. How would you do it?

sin(0.68 + 1.2/6 — 41])

Notice that you would necessarily carry out the operations in the following order:

4! = 24

6 —24 = —18
| — 18] = 18
V18 = 4.24264068712
1.2 x 4.24264068712 =~ 5.09116882454
0.68 + 5.09116882454 ~ 5.77116882454
sin(5.77116882454) ~ —0.489936127325



2 0. HP 48 Nuts & Bolts

Concerning the calculation, note the following:

(i) The order of calculation is opposite from the way the expression is written. The first
thing calculated, the factorial, is the last thing to appear in the expression; the last
thing calculated is the first thing to appear in the expression.

(ii) The expression involves the following seven functions:

sin + |] ! (functions of one variable)
+ —- x (functions of two variables)

(iii) Commonly used functional notation is not uniform. For example, sin is written in
front of (i.e., to the left of) its argument, ! is written behind its argument, | - | is
written around its argument, /~ is written in front of and above its argument, + and
— are written between their arguments, and, often, x (for multiplication) isn’t even
written!

 

Polish Notation and Reverse Polish Notation

A general purpose notational system, credited to Polish logician, Jan Lukasiweicz, is based
on the idea of always writing function names in front of their arguments. Thus, 2 + 5 in
this so-called “Polish system” would be written +(2,5), and the expression above would be
written as follows:

sin(+(0.68, x (1.2, sqrt(abs(—(6, fact(4)))))))

Unfortunately, this notation appears strange to people accustomed to conventional no-
tation, and, like the metric system in this country, acceptance does not come easily. Nev-
ertheless, it is a logical, algorithmic way of evaluating expressions. The Polish notation
enables us to drop parentheses altogether:

sin + 0.68 x 1.2 sqrt abs — 6 fact 4

The evaluation scheme would be to move from right-to-left, evaluating functions as we
come to them. Reverse Polish notation, RPN for short, is the left-to-right analogue of the
above system. Thus, in RPN function names are always written after their arguments. For

example, 2 + 5 in RPN would be (2,5)+ , sin(r/6) would be ((r,6)/)sin, v7 would be
(7)v/, ete.. The above expression would then be written as

((0.68, (1.2, (((6, (4)fact)—)abs)sqrt) x )+) sin

As with the Polish system, parentheses can be eliminated:

068 1.2 6 4 fact — abs sqrt x + sin (1)

To evaluate an expression, read from left-to-right evaluating functions as you come to
them, remembering that functions act on numbers to their left. In the above illustration,
the first function is fact, a function of one variable, so it operates on 4 (the number to the
left of it); next comes —, a function of two variables, which operates on the two numbers
to its left, 6 and 24 (= 4 fact); and so on.
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The Three HP 48 Choices: RPN, “Tick” & the EquationWriter

The HP 48 offers a choice of notational systems for calculations. First, there is RPN
(discussed above and below). Second, there is the “usual system” where *% denotes mul-
tiplication,” exponentiation, etc. This system is implemented on the HP 48 by putting
single quotes ' ' around expressions to be evaluated. We refer to single quotes as “ticks”
and to the corresponding evaluation system as the “tick” system.

Finally, there is the EquationWriter system which allows entry of mathematical expres-
sions in close-to-textbook form. This allows you to neglect some multiplication signs (e.g.,
the EquationWriter understands what you mean when you type 2x — 3y), enter fractions in
the customary horizontal-bar form, make radicals over long complicated expressions, type
elevated exponents, enter summation and integration signs with upper and lower limits,
etc. The EquationWriter system works well if you don’t make mistakes; however, if you do
make mistakes, correcting them can be annoying and time-consuming.

We suggest that you try out all three notational systems and decide which one suits
you best. It is likely that you will find that one system works best in certain situations
and another one in other situations. Whatever you decide, we strongly recommend that
you take time to practice RPN. It will be time well spent, and the payoff will be less
typing, fewer mistakes (caused by misplaced parentheses), and a better understanding and
appreciation of HP 48 programming.

Below we illustrate RPN and “tick”. You will find additional examples in your Owner’s
Manual. We leave it to you to learn about the EquationWriter system from your Owner’s
Manual. In this book, we will make little use of that system.

The key to success in understanding, using, and appreciating RPN is to always think:

| ACTION KEY LAST!|
 

 

To do 2 +2, + is the action, so + comes last (i.e., after 2 2); to do v/49, v/ is the action,
so / comes last (i.e., after 49); to do sinz, sin is the action, so sin comes last (i.e., after
x); etc..

In the following examples, we assume that you are familiar with the layout of the HP
48 keyboard. The primary keys are shown on the front cover of this book and that’s all
you need to worry about for now. You will find more detailed diagrams in your Owner’s
Manual. The table shown on the front cover gives names and locations of 100 special keys.
Here, the notation m, n following a key name means that the key is located in the mth row
from the top, nth key to the right. For instance, ATAN, designated by 4, 3, is located in
the 4th row, 3rd key to the right (in orange letters, next to TAN).

EXAMPLE 1. Use your HP 48 to calculate 2 + 2 using: (a) RPN; (b) tick notation.

 

 

SOLUTION.

(a) { HOME }

7
2: 2
1: 2   
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{ HOME }

4:
3:

:

(b) ['] { HOME 2}

7
2: 4
I: 1242"
II

* HOME 3
4:
3:

: :
ss

vPoints to note

1. Boxed-in words like and represent single keystrokes.

For key locations, see the front cover of this book.

2. Observe how the right-hand tick mark moves to the right as you enter

new data.

Thanks to user-friendly features of the HP 48, the above solutions can be
shortened as follows:
 

 

  
 

 

 

(a') { HOME }

+ 4:
3: 4

: :

(b') ['] { HOME }

7 ;
2
IEI——— 

vPoints to note

1. You don’t have to bother pressing |[ENTER| or before an action
key.

2. When you enter non-action data (like numbers and letters), you can

enter them together with spaces in between instead of one-by-one.
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EXAMPLE 2. Calculate 1/16 + 9 using: (a) RPN; (b) tick.

 

 

  
 

 

 

SOLUTION.

(a) [6] { HOME }

[9 3: 3

Tt :
| ———

(b) ['] B { HOME }

i E 7
EVAL 2: :

 
vPoints to note

1. The purple and green shift keys, and ||, allow you to access the

expressions printed in purple and green just above the primary keys;

e.g., [+] produces the parentheses ( ). Notice also how the right-
hand parenthesis, like the right-hand tick, stays to the right as you
enter more data.

2. Observe how the outputs stack up as they are generated. This “stack-
ing” feature of the HP 48 is the topic of the next section.

You can clear the stack by pressing or by pressing [| repeatedly. Do this now. In

what follows, we assume that your VAR menu is empty (i.e., if you press the VAR key, you
should see six blank rectangles at the bottom of the display.)

EXAMPLE 3. Use your HP 48 to form the expression

 

V(x2 — 21)? + (y2 — 31)?

using: (a) RPN; (b) tick notation.

 

 

  

SOLUTION.

(a) la] 1/x { HOME }

[a] [1/z 3
B " Ii 1(CRo-K1)"2412-1

lo] ENTER —
[2] -]

y
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vPoints to note

1. The alpha key [a] (position 6,1) allows you to access the alphabet,

e.g., [o] produces the letter X located just to the right of the

key. (Later we will adopt a simpler notational scheme.)

If you make a mistake while entering the above input, you can

correct it by using the cursor keys [«] [»] , and the left-delete key

[| (or simply press and start over). For additional details,
see the Owner’s Manual.

If you detect a mistake after entering the above input, you can correct

it by first pressing ([9] ), then correct it using [«] , [>] ,

and [=] . For additional details, see the Owner’s Manual.

 

 

  

ib) [1] [+] £ HOME 3
3:

1/x 2: 'J((K2-K1)"2+(Y2-Y..
I: J((Ko-R1)~2+(Y2-Y1
IEIIII

E
R
E
]

8
<
<

S
E
E
E
E
E

=
m
=
]

Z
I
H
R
R
I
E
]

Before starting the next example, clear the stack and set your calculator in radians
mode. If you see RAD in the upper left-hand corner of your display as shown in the
following examples, you're in radians mode; if you don’t, you're not. To get in or out of

radians mode, press .

 

ADVICE: leave your calculator in radians
mode throughout your study of calculus.    

If you must work with degrees, be sure to return to radians mode when you are done.

Use your HP 48 to evaluate the expression

sin(0.68 + 1.24/16 — 4!)

using: (a) RPN; (b) tick notation.
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SOLUTION.

®[ FF Ee
0 [| b| [ere
6 [over] [g
IMTH| |NXT| [PROB : -.489936127325

[1] [=] [mr]
IVECTR| [aBs| [v2]

v' Point to note

We have treated the menu names aE , and as
if they were keys you could press. What you actually press are the
white keys in row 1 directly below those names.

by [1] [si] [] [g]
[8] [+]

 

 

 

 

 

 

 

 

 

E
e

—- =
|e

]
5

[
=
]

= =
|
]

[v
o]

[=
]

>

3LR
? [=
]  

 

Z = 5 : 0 [=
]

EVAL

 

Exercises 0.1

In Exercises 1-5, write out the exact HP 48 keystrokes needed to carry out each cal-
culation using (a) RPN and (b) tick notation. Shorten the total number of keystrokes
whenever possible.

Al. 58 x37

A2. V2+3

A3. 23-32

Ad. 23°

A5. sin(n/12) — cos(m/12)

Use an HP 48 to carry out the indicated calculations as written using (a) RPN and (b)
tick notation. In each case, use as few keystrokes as possible.

1.23 — 4.5
A6.
6 6.78

1
AT ee" 1BTi3
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A8. 517 +4231

A9. (log12 —log10)—*

A10. t + i)
2
 

All. sin(sinl) —sin?1

Al2. 2+vV2+1V2

A13. sin®(X —7) +cos2Y +1

Al4. [A(B—4B)+7((C —4)%? +1))3/2 — D3/2

Al15. 3X4 -5X34+7X2_-_2X +14

 Ale. 1 | 3 +7

 

0.2 THE STACK

The stack of the HP 48 is like a long scroll where you can see only the bottom 4 lines

 

“
N
o
w
r
a
o
N
o
o
)
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For example:

 

   

 

29 8 7 :
41.7 33 3: 41.7

2: 3385 2 33

You can view any upper portion of the stack by using the [a] key.

A A A A A E: 29

4: 8
3: 41.7
2: 33    

To move back down, use ¥. To return to normal stack activities, press [oN]. For all
practical purposes, the stack contains an unlimited number of levels starting with level 1
at the bottom and going on up. Except for certain special stack commands (see Owner’s
Manual), the stack can be manipulated only from the bottom. Notice that when a new line
is added, it is added to the bottom and everything gets pushed up one level. Similarly, if
the bottom line is dropped, everything drops one level. Normally, your concern will be with
what’s on levels 1 and 2 because, typically, you will operate on these levels with functions
of one or two variables, as the following example illustrates.

Start with the above stack configuration and press the “change sign” key , 8

function of one variable. Observe the effect: 85 (the bottom of the stack) is instantly
replaced by —85.
  

4: 8 4: 8

3: 41.7 3: 41.7
2: 33 — 2: 33

1: 85 1: —85      
 

The following example illustrates how RPN and the stack work together. It also il-
lustrates the SST (single-step) feature of the calculator, which proves to be a valuable
programming aid.

EXAMPLE. Carefully key in the following expression exactly as you see it. If you have
trouble doing this, see v' Points to note below.

 

 

 

 

 

 

  

<< HALT 68 12 6 4 RAD HALT

| — ABS * ra !
+ si 7
[EVAL] [PRG] [NxT| [RUN] f

Tr ME 3
 — .

13 times b

You will see the calculation 2:

being carried out step-by-step. 1: -.489936127325
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v' Points to note

1. The French quotes < >, called “program delimiters”, are located next to B (in

purple). You can access them by pressing then . As with '* and ( ) you get
both of the delimiters << >> at the same time and the right-hand one > will move
to the right as you key in the rest of the expression.

Spacing is important. Use the key.

You may key in the words like HALT and ABS (even SIN) either letter-by-letter using
the a key or all at once by accessing the appropriate menu. For a complete set of
menu names, see the back of your Owner’s Manual. Once you learn your way around
the menus, you will find that taking words off of a menu is a little easier than keying
them in letter-by-letter. Also, you will probably find that the easiest way to key in
text is to press and hold down the a key as you do it. For example, here are two ways
of entering the word HALT:

 

INPUT: [PRG] [NxT| |RUN| [HALT

OUTPUT: HALT

INPUT: [a] (hold down) (release a key)

OUTPUT: HALT

Key in! by pressing [MTH| [NXT| [PROB] [1], ABS by pressing

 

 

, v/ by pressing , and * by pressing .

 

Exercises 0.2

In Exercises 1-4, predict the outcome of applying the indicated operations to the given
stack configuration. Use your calculator to check your conclusions.

 

Al.

 

 

3 6 @HE  @
2: 73 (b) [=] (e) =] [=
1: —12 (c)

A2.ry —97.63. 53 @ [-] (c) [=] [swap] [+]

2: 18 Oo) [=] [£7] @ [H] [v°
1: 15 [Note that = |»|]   
 AS () FN

  

3 0 swap| [cos] [-]
2 1.79 (b) [TAN SWAP| [cos
1 1.79 1 /xT S P
 



Ad.

AS.

AG.

AT.

AS.
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4 2

3 sl @ [x] [x] [x] [4 [1] [£]
2 a] 0) [x] [x] [x] [5] [+] [-]
1 5) (© [+] [1]

3 S| @BF) 7) (@[var [i] [war]
> S|) far] 7) 7] © be [] Se
! 1 (©[7] bw |r] 

Suppose that —1 is on line 1 of the stack. Predict the effect of applying the
following sequences of keystrokes:

@ [2 Va ©[a [Jz © [En]
0) a [2] @F Ea [ass] Ei

Repeat Exercise A.6 with —2 on line 1 of the stack. Explain the difference.

Suppose that for each ¢ = 1,---,10, the number ¢ is on the ith level of the
stack. What would happen if you pressed

(a) 9 times? (b) 9 times?

 

B1.

B2.

Predict the outcome of applying the following sequences of keystrokes. What
can you deduce in general?

(2)
(b) SP y® y°
(c) SPC y*
(d) B

(Compare with A.8.) Suppose that for each i = 1,--- ,n, the number ¢ is on
the ith level of the stack. What would happen if you pressed

(a) n — 1 times? (b) n — 1 times?

2) 0 E
H

Q

[e
o]
le
e]
(x
]
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Several-Keys-in-One Principle

Each of the 49 keys of the HP 48 acts as several keys in one. Principal uses are shown at
the beginning of this book (see inside front cover).

To get the idea of the several-keys-in-one principle, consider the key of the HP 48.
This key serves six different purposes, which are distinguished through the use of the alpha

key |] , the left-shift key , and the right-shift key . Table 1 shows how it works.
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Table 1

key name keystrokes

SIN
ASIN (purple)

0 (green) SIN

s a Gn
S [a] [9] [s

’ ol [ bn     
Notice that ASIN and 0 are color-coded and printed on the appropriate sides of the SIN
key so it’s easy to keep things straight.

Other keys have similar multiple uses. You will find a complete list of keys and their
uses at the end of your HP 48 Manual and you may find it useful to scan through that list.
As we mentioned earlier, there is far more here than what is needed for calculus and you
shouldn’t try to learn everything.

Henceforth, we will refer to multiple use keys as if they were single keys independent of
the others. For example, log(arctan(z)) in RPN will take the form:

instead of

lol [iz] [A [ran] r] [v7]

 

Classification of Keys

For our purposes the HP 48 keys can be divided into two categories:

I. those that play a direct role in calculations and programs, and
II. those that don’t.

Category I keys can be further divided into action keys and non-action keys.

Non-action keys include:

1. Number keys: [0] [1] [2] [s] [4] Is] lo] [7] ls] lo} In] [e][
2. Letter keys: ve [a] [b] + [¢] la] ERE

3. Punctuation keys: 0] 1] 0] [{]{] 1} [«]1 [K] [>] ol a ['] [']

4. A few others: “ee

Action keys include:

1. Operation keys: [-] [<] [22] [1/] [Vz] [[]J] El =] [4]

2. Relation keys: [=] <] [>]

3. Special function keys: [SIN] [cos [TaN] [LN] [aTaN| [LOG] [107]
4. Special command keys: [sTO| [EVAL| [RCL| [DROP| [swAP| |—>NUM]

r
e
-

A]  
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5. Menu keys (functions and commands): [ABs] [1] [MIN] [cross] [DoT] [DET] [BEEP]
IDRAX| |[DRAW| [cLLCD| |[R—cC| [—>LcD| [PixON| [FREEZ| [ROT| |DUP| [TAYLR|

6. Combinations: [IF|THEN|[ELSE| [FOR|NEXT| [FOR|[STEP]

Category II keys are also of two types:

1. Menu and directory names: |MTH| [PRG] |MEMORY| [PLOT| |MODES|
|[sYMBOLIC| |[CHARS| |[STACK| |[TEST| |[GROB| |RUN| [MATR|

2. Calculator operation keys: |[ENTER| |[ON| [EDIT| |OFF| [DEL| [NXT| [PREV]

cuzar] [+ [see] [a] [7] [4] [¥]
For a complete list of operations, see the back of your HP 48 Manual.

  

  

  

 

 

Notation Used in This Book

When describing calculations or programs, we will normally not write Category II keys,
often eliminate boxes around names and symbols, and tend to use the program notation of
Table 2.

 

 

Table 2

Preferred notation instead of

x X

/ 3
~ ”

Vv VT
INV 1/x

SQ x?
EXP er    
 

For example, we would write:
T R SQ xX

instead of

A [7d] R [i [Va
V(x2 — 21)? + (y2 — y1)?

and the calculation
 

would be written
X2 XI — SQ Y2 YI — SQ + VV (1)

in RPN and as
"Vv (SQ(X2—-X1)4+SQ(Y2-Y1))!
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in tick notation.
Boxed-in words and symbols will always represent single keystrokes; e.g.,

refers to the [ENTER]key, not . And we will generally not break numerals
or words into single keystrokes; e.g.,we would write

123 ELM STREET

instead of

1] [2] [8] [seq] [E] [&] [m] [spc] [s] [t] [R] [E] [] [7]

 

0.4 SIMPLE PROGRAMMING

A program on the HP 48 is any expression of the form « --- >. Here's a simple and
useful example. Carefully key in the following:

<« CLLCD ".--your name---" 1 DISP "...your address: --"
2 DISP ".--rest of address---" 3 DISP
"...your phone number---" 4 DISP 7 FREEZE >

Note that quotation marks are to be keyed in and that - - - your name. - - | for instance, is to
be replaced by your actual name—limited to 22 characters including spaces.

Next press
If you didn’t make a mistake keying in the program, the HP 48 will put the program

on line 1 of the stack (but you won't see it all); if you did make a mistake, you can easily
correct it using the keys marked:

[«] oe) [a] [ [« [¥]
You can probably guess how to use these keys, but if you need details see the Owner’s

Manual under the topic of editing. Be warned that one mistake often leads to others. If

you get hopelessly tangled in mistakes, just press (which serves as an escape key) and

([DEL] ) to start over.

 

To get out of a jam:

PRESS    
v' Points to note

1. CLLCD, DISP, and FREEZE are commands (hence, action keys) that stand for “clear
liquid crystal display”, “display”, and “freeze”, respectively. You can easily access all

three of these commands by pressing [PRG| [NXT| |OUT|. The command CLLCD
tells the calculator to get rid of all displayed information like stack numbers, mes-
sages, the horizontal line near the top, and any other information in the display area.
(However, it will not get rid of the menu.) DISP follows its arguments. Remem-
ber, this is the nature of RPN. Thus, "--- your name---" 1 DISP means: display
--- your name--- on line 1 (the top line in this context); "--- your address---" 2
DISP means: display --- your address: -- on line 2; etc..

2. When you key in a program like the one above you can either do it as a single line

(which may scroll off the display) or in multiple lines using « ([r] [] ).

3. You are limited to eight display lines (so 9 DISP, e.g., has no meaning) and, as
mentioned above, 22 characters per line.
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Next step: Store your program in memory under the name ID by keying in:

ID

When you now press , you'll see ID in the left-most rectangle of that menu and

when you press the white key under you'll see:

 

YOUR NAME
YOUR ADDRESS
REST OF ADDRESS
YOUR PHONE NO.    

v' Points to note

1. Notice that the quotes you put around --- your name ---, etc. don’t appear on the
display.

2. If you don’t like the name ID, call it something else. The HP 48 allows for a great
variety of menu names (which Hewlett-Packard calls global variables). As exam-
ples, you could name the above program any of the following: 1336 or oWnEr or
ME.MYSELF.AND.I.

3. Instead of ID [STO|, you could have pressed 'ID' [sTO|; in fact, that is what is
suggested by the 48 manual. However, as a safeguard against accidentally re-
placing the contents of a name already in use, we recommend that you enter new
names without tick marks. An exception to this rule is when you want to replace the
contents of a menu name with new contents. (This is often the situation when names
are introduced inside of programs.)

 

 

About Programming Formulas

Among the simplest programs are those for putting formulas on your calculator. In a
typical situation, the formula will consist of an expression E with variables vj, va,..., Un.
To program it, carry out the following steps:

Step 1. Introduce variable symbols, say V1, V2, ... | VN, corresponding to
v1, V2, ..., U, that make sense to the calculator (e.g., that don’t involve
subscripts).

Step 2. Use RPN or tick notation to formulate the calculation of E in terms of
the variable symbols introduced.

Step 3. Key in the following program:

KL — V1 V2 ... VN soekkkokrokkskokk >,

where xksxkkkkkxk* is to be replaced by < E > or 'E', depending on
whether E is in RPN or tick notation. Variable symbols like V1, V2,
++, VN, introduced by — , are called local variables.

To enter the program, press [ENTER]; to save the program, type the name of your

choice then ; to run the program, enter the values of V1, V2, ---, VN on the stack
or on the command line in that order. The simplest way is to separate them by spaces on
the command line.
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EXAMPLE 1.

EXAMPLE 2.

(a) Write a program for finding the volume of a box of length {, width w,
and height h; (b) use the program to find the volume of a 3 x 4 x 5 box.

SOLUTION.

(a) Enter « — L W H << L W H Xx Xx >» >»
or €« — LW H 'LXWxH' >

and name it VBOX: VBOX

 

 

  

(b) 3 4 5 { HOME }
4:
3:
2:

1: 60
{ECEITCIII|

vPoints to note

1. The HP 48 automatically puts spaces around action keys like —

and 3k.

2. You may want to use lowercase letters for local variables as is suggested
by the Owner’s Manual, but uppercase letters require less typing.

3. The above syntax is quite rigid. Introduced local variables must always

be preceded by — (with spaces around it) and either < or ' must
always follow the last local variable.

A more useful example is the distance formula. Using (1) of 0.3, we
obtain the following program:

<€ — XI YI X2 Y2 <« X2 XI — SQ

Y2 YI —- SQ + Vv > >

Store this under the name DIST: DIST .

Use DIST to find the distance between (2.8, 4.56) and (—7.1,0.173).

 

 

  

SOLUTION.

2.8 4.56 -7.1 .173 { HOME 3

:
3
I: 10. 8284702982
Cr |

v' Point to note

To enter negative numbers, use . For example, to enter —7.1,

first enter 7.1 then .
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About Avoiding Errors

When you use a program like DIST, make sure your other HP (Head Power)is fully engaged
at the time. It’s like applying the distance formula itself; you’ve got to know what the
symbols mean. For instance, look what would happen if you got mixed up and entered the
x-coordinates first, then the y-coordinates:

28 —7.1 4.56 .173

This would give you a wrong answer: 7.48292249058.
In this book we will help you guard against making such mistakes by presenting pro-

grams in a two-column format, making it clear just what goes in and what goes out —
plus providing a brief description of what the program steps mean. We will sometimes also
include “Checksum” and “Bytes” as a check against typing errors. You can check these

by putting the name of the program on line 1 of the stack and pressing in the

menu (yes, we do mean ||). See the program box labeled DIST. In addition,
it will help if you can formulate a clear geometric picture in your mind and on paper as to
exactly what the program/formula is supposed to accomplish. For example, see Fig. 2.

 

DIST

Inputs: x, y1, 2, Y2 Output: Distance between

(z1,71) and (w2,y2)

 

 

<< — X1 Y1 X2 Y2 Introduce local variables

X2 X1 —- SQ Y2 Yi Calculate the distance using
- SQ + Vv > > reverse Polish notation

Checksum: #19764d Bytes: 85     

y (X5,¥5)

(X45¥1)
 

d= v (xy -x)2 + (yp- yp 2

 

Figure 2

Here is another tip for avoiding errors:

 

Always look for ways to check the
reasonableness of your answer.   
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The above DIST error could have been caught by noting that the distance sought is
approximately equal to the distance between (3,4) and (—7,0) which by hand calculation

is v116—obviously bigger than 10.

Formulas containing formulas are also simple to program. Mainly you must be careful
to follow the syntax rules for introducing local variables as described in point (3), Example
1. As an example, consider Heron’s formula for the area of a triangle with sides a, b, c.

 

AREA = +/s(s —a)(s — b)(s —¢)

where s is the semiperimeter
1

§ = za +b +c).

Here, the inputs are a, b, and ¢, so we use local variables A, B, and C. The only
question is what to do about s? One way would be to eliminate s altogether, replacing it
by (a + b+ c). A better way is to introduce a fourth local variable S as is illustrated in
the program in the box labeled HERON. Note that to store this program under the name

HERON, enter HERON then press :

 

HERON

Inputs: a, b, c Output: Area of triangle

with sidesa , b, ¢

 

 

<< —»- A B C Introduce local variables A,B,C

A BC+ + 2 / Calculate semiperimeter
—- SS KK Introduce local variable S

S S A - S B - Calculate Heron’s formula

S C — x x kx using reverse Polish notation

> > >

Checksum: #43697d Bytes: 125    
 

EXAMPLE 3. Find the area of a triangle with side lengths 13, 14, 15.

 

 

 

SOLUTION.

13 14 15 { HOME 3
4:
3:
2:
1: 84
CEATES 8ETEITCI  
 

About Function Evaluation

How can we get the machine to evaluate f(z) = > — 2x + 5 at x = 27 We discuss three
methods of doing this and compare their merits.
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FEVAL

Inputs: f(X), a Output: f(X), f(a)

<< 'X' STO Stores a under the name X

DUP Makes a second copy of f(X)
EVAL Evaluates f at a

'X' PURGE > Purges X from the VAR menu

Checksum: #47353d Bytes: 48.5    
 

1. The FEVAL method. First enter and store the program FEVAL (see program
box). Then all you have to do is enter the function and the number you want to evaluate
it at.

 

 

  

x 3 oz 2 9 { HOME }

FEVAL 3:

& 'K"3-2xAe5,

|EsIerer|

This method is easy to apply and does not clutter the VAR menu with unwanted symbols.
To reapply the method to the same function and a different value of a, you need only
DROP the old value off the stack before entering the new value. A slight disadvantage of
this method is that you have to use X as the independent variable (however, see Exercise
B.4).

2. The SOLVE method. First key in the function X 3 — 2 X *% — 5 +
Then press [9] 7) to store the function un-
der EQ and obtain the following menu:

 

EQ: 'X~ 3 -2%xX+5

4:

b=
BO

C2

   X |EXPR=| | |
 

Now use the white keys under X and EXPR= to evaluate f(x) at any number.

 

 

2 { HOME }
4:
3:
2:

1: EXPR: 9
CemJC]  

 

One advantage of this method is that it easily extends to functions of several variables. One
drawback is that it leaves variables on the VAR menu (and that can sometimes be a big
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nuisance). To delete X from the VAR menu, first press , then enter 'X' ([9]

Ex) ).
3. The WHERE method. First key in the function X 3 = 2 X %* — 5

+. (If you went through the SOLVE example above, pressing will do this for you.)

Then enter in braces { } ([9] +) the variable X and the number at which you want

to evaluate the function. Then press the “where” key [1] which you will find in the

[vou] directory ([1] 9 [ST].
 

 

  

{X 2} [1] { HOME }

:

 

Dialog Boxes

The HP 48 uses dialog boxes or “input forms” to make the calculator more friendly for

inexperienced users. For example, when you press , you get a dialog box asking
what you want to solve. When you then select “solve equation”, you get another dialog

box asking you to fill in blanks for EQ and X. Finally, pressing puts the desired
result on the stack. While dialog boxes can be quite helpful—especially for beginners, we
will make little use of them in this book because they require extra keystrokes. If you've
made it this far, you are no longer a “beginner” and you will appreciate knowing how to
take short-cuts.

For keys with green names over them like (green 7), you can bypass dialog

boxes by using (purple) instead of the (green). In this way, you may access command
menus directly and thereby, in general, cut down on keystrokes. For example, in method 2

above, we used instead of (even though is colored green).

Similarly, in method 3, we used (the 9 key) instead of (a

green key).

 

SHORT-CUT: for keys with green names, use (purple)

instead of (green).   
 

We will use such short-cuts regularly throughout this book.
For further information about dialog boxes, see your Owner’s Manual under “input

forms”.



EXERCISES 0.4 21

 

Exercises 0.4

For Exercises 1-15, write an HP 48 program to produce the indicated output from the
given input.

Al.

A2,

A3.

Ad.

AS.

AG.

AT.

AS.

A9.

A10.

All.

Input: Z1, V1, T2, Y2

Output: midpoint of line segment joining (z1,¥:) and (x2, y2).

[Hint: a b R—C yields (a,b).]

Input: (1,41), (22,92)
Output: midpoint of line segment joining (z;,y;) and (x2, y2).

[Hint: arithmetic operations affect pairs just as you might guess; e.g., 5
(1,2) * yields (5,10) and (1,2) (3,4) + yields (4,6).]

Input: 21, y1, 22, Y2
Output: slope of the line segment joining (z1,y1) and (x2, y2).

Input: (x1,1), (z2,y2) where x; # x,

Output: slope of the line segment joining (z1,y:) and (22, y2).

[Hint: (a,b) C—R yields a b]

Input: m, b

Output: equation of line with slope m and y-intercept b.

[Hint: S T = yields S = T)]

Input: m, a

Output: equation of line with slope m and z-intercept a.

Input: a, b, m

Output: equation of line through (a,b) with slope m.

[Suggestion : store this program under the name PTSL (for point-slope).]

Input: z,, y1, T2, y2 with x; # 2

Output: equation of the line through (z1,%:) and (x2, y2)

[Suggestion : store this program under the name SLIN (for slanted line).|

Input: a

Output: equation of the vertical line through (a,0).

[Suggestion : store this program under the name VLIN (for verticalline).|

Input: z1, y1, T2, Y2

Output: equation of the line through (x1, y;) and (x2, y2)

[Hint: use IF THEN ELSE END together with SLIN and VLIN from A.8 and
A9]

Input: x1, y1, 2, y2 With y; # 12
Output: equation of perpendicular bisector of the line segment joining (x1, 1)
and (22,92).
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Al2.

A138.

Al4.

Als.

Ale.

Al7.

A18.

A19.

A20.

AZ21.

[Hint : use PTSL from A.7.]

Input: a, b, b#0

Output: equation of line through the origin parallel to the line ax + by = 1.

Input: I, w, h

Output: surface area of the box with dimensions [ x w x h.

Input: r

Output: area and circumference of circle with radius r.

Input: b, h

Output: area of parallelogram with base b and height h.

Use FEVAL to calculate the function tan~! 2? at the points 0, 1, 100, 10000
and 1000000.

Repeat Exercise A.16 using a user-defined function F. When you are finished,

purge F: 'F!

Repeat Exercise A.16 using SOLVR. When you are finished,

purge X: 'X' [PURG].

Use FEVAL to evaluate the function

at x = 1, 10, 1000, 000000.

Repeat Exercise A.19 using WHERE.

Repeat Exercise A.19 using SOLVR. When you are finished,

purge X: 'X' .

 

For Exercises 1-2, write an HP 48 program to produce the indicated output from the
given input.

B1.

B2.

B3.

B4.

Input: a, b

Output: equation of the line through (a,b) which is tangent to the circle x2 +
y? =a? +b.

Input: a, b,¢, a #0

Output: solutions to az? + bx +c =0

Write an HP 48 program that will produce the vertex of the parabola y =
Az? + Bx + C where A# 0.

Write an HP 48 program that will take as input an arbitrary function f (var),
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an arbitrary variable symbol 'var', and an arbitrary number in the domain of
f to produce as output the value f(a).

 

0.5 ORGANIZING AND CHANGING THINGS

If you worked through the last section with an HP in hand, your VAR menu now
contains names like these:

FEVAL X EQ F SLIN
HERO DIST VBOX ID

If we were to go on, adding more and more names, it wouldn’t be long before confusion
would set in. One way around this problem is to use subdirectories. We will restrict discus-
sion to a two-level structure: (1) the HOME directory—the one that presently contains ID,
DIST, FEVAL,etc.; and (2) a set of subdirectories immediately below the HOME directory.
The reader interested in knowing about a general multi-level structure is referred to the
HP 48 Owner’s Manual.

The idea of directories is simple: you put like things together and unlike things apart.
For example, you might want to put together all of your formula programs in a directory
named FORMS,all function-related stuff in a directory named FUN, all personal stuff in
PERS, addresses of friends in ADD, etc. As you will see, it’s easy to create directories,
and, after learning a few tricks, you'll be able change things around at will.

Your subdirectories might then look like this:

 

 

i

HERO [DIST [VBOX [MID [SLOPE |SLIN
   
 

FORMS

 

 

4:

3:
2:

1
   FEVAL] F | G | H | |
 

FUN

 

 

wal
l
U
U

 

ID | PIN | SS |PAT| CAR [$3333   
 

PERS
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R
R

MOM [MARY [JOSE | DAD [FRED [SANDY
   
 

ADD

To create a FORMS directory, type FORMS, then press from the

([9] [DIR] ) menu. When you now press , you'll see FORM in the left-

most rectangle. Press to get a brand new directory for your formulas. You may
be wondering: must I retype programs like DIST which are already stored in the HOME
directory? Also, how can I get back home? The answer to the first question is no; there’s
a way to transfer menu names from one directory to another and we’ll get to that shortly.

To get back HOME, press the key (I ['] ).
iIn a similar manner, you can create any directory you want.

To manipulate menu names and their contents, you need to know about STO, RCL,
EDIT, and PURG. The term object as used by the Owner’s Manual is quite broad and
includes numbers, algebraic expressions, and programs. Here are four useful tricks:

 

(1) To store an object under the name NAME, type NAME or

['] [sTO]. (Cf. point (3) following ID STO, sec. 0.4.)
(2) To recall the contents of NAME, type ['] :

(3) To edit the contents of NAME,type ['] [NAME| [ENTER] [EDIT], then
use the cursor keys to make the changes you want, then press .

(Note: if after making some changes you change your mind, you can press

to get back where you started).

(4) To delete a name NAME from a menu, type ['] :

The best way to move names and their contents from one directory to another is by
using the MEMORY dialog box. Here’s how to move HERO, DIST, and VBOX from the
HOME directory to the FORMS directory:

(1) Open the MEMORY dialog box by pressing ([r] ).

(2) Use the cursor keys to highlight HERON, then press ; similarly, highlight and
check DIST and VBOX.

(3) Press to open the MOVE VARIABLE(S) dialog box.

(4) Press to access the list of DIRECTORIES.

(5) Use the cursor keys to highlight FORMS,then press .

The following example shows how to use an existing program to create a new program.
We will use FEVAL to create and store a new program called COMP for forming the
composition of two given functions. [Recall that the composition of functions f(x) and
g(x) is the function f(g(z)).]

(i) Recall FEVAL and use EDIT ([9] ) to omit the word DUP inside ofit:

 

 

  
 

 

['] [FEVAL| |[RcL| [EDIT]
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» --- (10 times) --- »

[bi] [Even];
(ii) Store the edited program under the name COMP: COMP

 

 

 

COMP

Inputs: f(z), g(z) Output: f(g(x))

<< 'X' STO Stores g(x) under the name X
EVAL Evaluates f at g(x)
'X' PURGE > Purges X from the VAR menu

Checksum: #35841d Bytes: 45    
 

 

Exercises 0.5

Al. (a) Create a subdirectory called TEST of your HOME directory.

(b) Enter the following program: « HOME > in the TEST directory and

try to name it HOME. What happens? Why? Try to name it hOME.

What happens?

(c) Try to purge the TEST directory. What happens? Purge hOME from the

TEST directory, then purge TEST.

A2. Create a subdirectory called FORMS of your HOME directory and move

HERON into the FORMS directory.

A3. Create a subdirectory called FUN of your HOME directory and move FEVAL
into the FUN directory.

 

0.6 GRAPHING

The subject of calculus is very much concerned with graphs. In fact, it wouldn’t be
far off to say that calculus is the study of graphs. Of particular interest are high points,
low points, steepness, concavity, and points at which concavity changes. The HP 48 is a
powerful grapher and, as such, it can help you significantly in your study of calculus. But
be careful not to bypass the main ideas!

 

REMINDER: It is important that you use the graphing
capabilities of the calculator to supplement rather than
bypass what your instructor is trying to teach you.   

In this section we will discuss the nuts and bolts of HP 48 graphing. For this, we will
assume that you already know how to graph by hand. It’s important that you know that
when the technology seems to fail (as it will from time to time), you could always take
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pencil in hand and make a careful point-by-point plot in an zy-coordinate system. It’s also
important that you understand how the HP 48 makes graphs.

We will discuss and illustrate the following:

I How to make a standard plot using .

II How to change scales using .

IIT How to change the center of a plot using .

IV How to “zoom-in” to another viewing window using .

V How to store a plot using .

VI How to plot two or more curves at once.

VII How the HP 48 makes graphs.

Most of the information here can be found in the Owner’s Manual which is fairly
complete. Our purpose is to focus on what is simplest and what is most important for
calculus. In later chapters we will build on these ideas (see § 1.2 and Chapter 3).

We suggest that you begin by deactivating the “connect” feature of your calculator so
that your graphs will be more accurate and will compare with those illustrated in this book.

To deactivate the connect feature, just change to |CNCT|in the

subdirectory of the directory (press [1|8 [NXT] [FLAG] [CNC ).

I. Standard plots. The standard viewing window for the HP 48 is the rectangle
—6.5 <x <6.5, —3.1 <y < 3.2 in which you can easily plot any function as follows:

 

 

(1) Key in the function of your choice in either RPN or tick notation;
(2) Store the function under the name EQ);

3) Press
Conveniently, the commands EQ, DRAX, and DRAW are grouped together in the first

page of the PLOT menu (1 8).
Before starting Example 1—for that matter almost any new plot—it’s a good idea to

make sure that the standard plot parameters are set. You can do this by pressing in
the PPAR subdirectory of PLOT directory. A simpler way is to use the following program,
also named RESET, which does everything the built-in RESET does plus a little more.
Note that you can access the character ¥ through the CHARS directory.

<« ERASE {PPAR YPAR ZPAR VPAR ¥DAT X Y Z S T A N EQ
PRTPAR IOPAR IERR} PURGE #131 #64 PDIM {RESET}
ORDER > RESET

The program erases the previous graph, sets the standard plot parameters (PPAR),
sets the standard picture dimensions (PDIM), and acts as a general “trash remover”. It
also moves itself to the front of the VAR directory. You may find it useful to put this
extended RESET program on all of your working directories. You may also want to add
other “trash” items to it, like frequently used user-defined function symbols. (See “About
function evaluation” §0.4). Just be careful not to throw out treasures with the trash!

EXAMPLE 1. Make a standard plot of the function f(x) = |0.52 — 1|.



EXAMPLE 2.
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SOLUTION.

5X * ~~
L - ABS [i [pio] he  

[EQ] [DRAX| [DRAW]

    
v' Points to note

1. When you use the above procedure, be sure to enter the function not
the equation,i.e., don’t enter f(x) and =.

2. For standard plots, tickmarks on the coordinate axes represent single
units of length.

Make a standard plot of the function f(z) = .4zsinz

SOLUTION.
 

ON] 4 X * X SIN

 

    
Generally, to obtain a meaningful plot—for that matter any plot at all—you’ll have

to change the scale of one or both of the coordinate axes. In addition, you may want the
center of the viewing window to be someplace else other than at the origin. Features II-IV
are for these purposes.

II. Changing scales. When you change scales on the HP 48, the axes and tickmarks
on the display stay the same; what changes are the numbers the tickmarks represent. The

ZOOM menu makes the process easy.

EXAMPLE 3. Graph the curve f(z) = 22 — 822 — 22 + 10.

 

 

     

SOLUTION.

X 3 ~ 8 X !
SQ kk —- 2 X Xk

“0 4 Sam
l

|[ERASE| [DRAX| [DRAW] 

All we get is a few dots. Obviously, this is less than satisfactory (but
at least we got something!).

We will now use in the graphics menu to magnify the values



28 0. HP 48 Nuts & Bolts

on the y-axis by a factor of 4. Put another way, we will rescale the y-axis
so that we will see 4 times as much of it. (You could replace 4 by any
positive number you'd like but 4 is easiest because that’s the “default”
value.)
 

 

|zooMm| [NxT| [vzourT|
 

 

    
A great improvement! If you're impulsive you might even think

that we’re done (if you're really impulsive, you'll think the graph is a
parabola!). However, if you remember Descartes’ rule of signs or, better
still, know about the asymptotic behavior of polynomials, you know that
there’s more to this graph than meets the eye. In particular, you know
that it must cross the z-axis one more time to the right. Let’s take a look
at twice as much of the z-axis.

: I
lok| [NxT| [HZOUT|

 

 

 

 

+    .
v
 

Progress! Let’s now try to see if we can find the turn-around point

between the two positive zeros. Try another , this time using a
factor of 8.

goon] [zmct] [v]
lok| |ox| [NXT] eh ;

 

 

  

    
Now that’s more like it! Indeed, this captures the essential features

of the graph and that’s about all we can do for now.
Later, after you’ve learned some calculus, you'll want to analyze vari-

ous aspects of graphs very accurately. For now, we can at least make some
fairly good approximations. For example, where does the graph cross the
x-axis on the right? It appears to be at exactly the fourth tickmark, which
would be x = 4 in the standard viewing window. Of course,it isn’t stan-
dard because we’ve magnified both axes. Since the only adjustment to
the x-axis was by a factor of 2, the fourth tickmark is really x = 2-4 = 8.
Is this the exact place where the graph crosses? You can easily check by
calculating f(8) by hand (is it exactly 07). Betterstill, let’s use FEVAL.

To do this, press (to get backto the stack), , (that’s where

f(z) is stored), 8 , then |FEVAL| ({HOME| [FUN| [FEVAL|). The answer:
f(8) = —6. Definitely not 0! Does that mean that there is something
wrong with the calculator? Not at all; it only means that the scale on
the y-axis is so magnified that we can no longer distinguish by eye the
difference between —6 and zero. What is the magnification of the y-axis?
We did magnifications of factors 4 and 8. Therefore, the magnification is
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4-8 = 32. Do we always have to keep track of all of the scaling factors
in order to figure out the scales? Fortunately not. Read on.

Hewlett-Packard has provided a little + cursor for finding coordinates
of points in graphics displays, e.g., points corresponding to tickmarks. To

see how it works, return to the graph of f(z) by pressing [«] . You can

then activate the + cursor (which is hiding at the origin) by using the
cursor keys A ¥ «4 ». To determine the coordinates of any point,
move the + cursor to that point and then press the white key under

(X,Y)|. The coordinates will then be exhibited on the lower line of the
display. To get the graphics menu back, press any white key. For the
graph under consideration, you will find that the first tickmarks on the
positive z- and y-axes have coordinates (2,0) and (0,32), respectively.

v' Points to note

1. The above trial-and-error/refinement method for scaling works quite
well for most functions you will encounter in calculus. A more system-
atic approach would be to start with a sample of functional values over

a specified z-interval or intervals (either by hand or by machine). In
this way, you could make “an educated guess” for a suitable scaling
factor for the y-axis. This is exactly what ZAUTO does. You will find

ZAUTO in the ZOOM directory, and you may find this feature useful

in some situations. If you use this feature, be warned that there is a

danger that you may overlook essential aspects of the graph.

2. You may find it useful to put copies of FEVAL in all directories in

which you will be graphing. The above example is typical. Most

graphing problems require a certain amount of evaluation of functions.

III. Changing the center. For most calculus textbook problems, you’ll be satisfied
with a viewing window centered around the origin. Often, however, the interesting part
of the graph will occur far away from the origin and some other viewing window will be
more appropriate. The CENTR command in PLOT PPAR allows you to specify whatever
viewing window you want; just enter the coordinates (a,b) of your choice of center in the

form (a,b), then press |CENT|. Note that even if you choose a viewing window that does
not contain the coordinate axes, you can always determine coordinates of points by using
the + cursor as explained in the previous example. You can also specify a new center by

positioning the + cursor at the desired point, and then press the white key under in
the ZOOM directory.

EXAMPLE 4. Graph the function f(z) = 27% + 0.5sin(x + 1).

SOLUTION. Start with a standard plot. Press . Then
 

 
X [#/5] © 5 X ANY
+ S X +

NL

EE 

=
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Since it appears that the more ANY
interesting part of the graph is PN +
to the right, we walk the cursor —_ yt]
over to the position shown.
This will be the new center.

 

   
 

     

IV. Zooming-in. Often in the process of graphing with the HP 48, you'll want to take
a closer look at a particular portion of the graph. A nice way to do this is to use BOXZ in
the ZOOM directory to “zoom-in”. Just do the following:

(1) Imagine a rectangle around the portion of the graph you want to zoom in on.

(2) Move the + cursor to any corner of your imaginary rectangle, and then press .

(3) Use the cursor keys to draw your imaginary rectangle, and then press the white key

under i

For a “zoom-in” illustration, see Example 2, §3.1. For further details see the Owner’s
Manual.

V. Storing graphs. Sometimes it’s handy to store graphs so that they can be easily
recalled later or even combined with other graphs. The simplest way of doing this is to

press when the graph is being displayed. When you return to the stack you'll see
a representative of a coded version of the graph in the form of “Graphic m x n”, where
m and n are the pixel dimensions of the graph. You can store this code like you would

any other object: NAME . To retrieve the graph, press then key in:

[sTO| [4]
We will pursue this topic further in subsequent chapters. 

VI. Plotting two or more curves. The HP 48 has a built-in procedure for plotting two
functions fi(x) and fz(z) at the same time. You simply enter the expression f(z) = f2(x)

in RPN or tick, then press [EQ] |[DRAX]| [DRAW].
 

 

EXAMPLE 5. Graph the function f(x) of Example 4 andits negative —f(x) together.

SOLUTION. We use the same PPAR(so don’t press RESET).
 

 

[EQ| [ENTER] [+/-|
E Ne
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To plot three or more functions on the same display, put them in a list, then press

|EQ| |[DRAX| [DRAW].
 

 

EXAMPLE 6. Graph y =sinz, y = cosz, and y = tanz on the same display.

SOLUTION. First press . Then

X X X Sooo
[ran] 3 [ows] DNAA

[EQ] [DrAX| [DRAW]

 

 

 

     

v' Points to note

1. If you enter —LIST character by character, be sure to delete any spaces between
— and L. An easier way is to take —LIST off the LIST subdirectory of the PRG
directory.

2. Another way to plot three or more functions on the display is to do them one at a
time making sure not to use ERASE between plots.

VII. How the HP 48 makes graphs. The HP 48 display is really just a grid that contains
a large number of tiny squares or pixels. Each pixel can be either shaded (on) or unshaded
(off). Pixelsize is roughly 0.47 mm x 0.47 mm. In terms of pixels, the display dimensions
are 131 x 64. Put another way, the distance between adjacent tickmarks is equal to ten
pixels. Given good lighting, the right angle, and good eyesight, these pixels can be seen
with the naked eye. One way to see them clearly is to look closely at the screen image
projected by a classroom display unit.

When it comes to graphing functions, the HP 48 cares only about pixels. This re-
sults in two imperfections. First, only 131 z-values are considered: x = 0, +0.1, £0.2,
--+, £6.5. Second, the corresponding y-values are rounded off to the nearest one-tenth.
Thus, for example, when you tell the HP 48 to draw sinz it will systematically make
dots at (—6.5,—0.2), (—6.4,—0.1), (-6.3,0), (—6.2,0.1), (—6.1,0.2), (—6.0, 0.3), (=5.9, 0.4),
(-5.8,0.5), (—5.7,0.6), (—5.6,0.6), (—5.5,0.7), (—5.4,0.8), (—5.3,0.8), and so on.

To have real control over the graphics environment, you need to know how to make

pixels. One way to do this is by using in the graphics environment. Just press [«]

, then position the graphics + cursor wherever you like and press to make a

dot at that point. By using DOT+ and DOT— (which erases dots) you can make pictures
like the one shown in Fig. 3.

 

HEAD POWER   
Figure 3
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Another way to shade pixels is to use the PIXON command. You just specify the

coordinates in the form (a,b) and press [PIXON].

EXAMPLE 7. Shade the pixel at (3, 1).

SOLUTION.
 

RESET DRAX (3,1)
PIXON [4]
 

   
 

 

Exercises 0.6

A1. Graph each of the following functions using standard plot parameters. In each
case, try to predict the outcome before keying in the function.

(a) sinz (b) —sinz (c) | sinz|

(e) =z +3 (f) 0.2zcosz (g) 0.2z cos? x

(i) sin2z (j) sin®z + cos?z  (k) 1

(m) —3.1 (n) 0 (0) cos? x — sin’ x

(q) sin z (r) sin z (s) sintz

(d) —|sinz|

(h) sin cosz

(1) 3.2

(p) cos2z

(t) sin®z

A2. Graph each of the following functions using standard plot parameters. In each
case, try to predict the outcome before keying in the function.

(a) Va (b) —vZ (c) V=7

(e) x (f) 0.122 (2) —z2

(i) 1-2? Gj) 1.5 — 2? (k) 2 — 22

(m) 0.12°  (n) 0.012 (0) —0.012%

(q) |z| +x (r) 2/3 (s) —(—z)!/3

A3. Graph the upper half of the circle z2 +y2 = 1.

2 2x Y
Ad. Graph th half of — = =raph the upper half of the ellipse 6 225 1

A5. Graph the lower half of the parabola = = y2.

(d) —v~-z

(h) —0.122

(1) 23

(p) |z| — =

(t) 2/3 — (—x)'/?
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72
A6. Graph the upper half of the hyperbola y? = 1.

AT. For each of the following, plot the given pair of functions using standard plot
parameters. In each case, try to predict the outcome before keying in the
functions.

(a) sinz , sin2z (b) sinz , 1.5sinz

(c) sinx , —sinz (d) £|.52 + 1]

(e) |.bx +1], |.5z — 1] (f) £0.2z cos

AS8. Graph the circle z2 + 3? = 6.25.

A9. Graph the ellipse Zo 4 Lo — 1
- rap PS 76 6.25

2
A10. Graph the hyperbola > —y? =1.

A11. Graph the circle (z —2)% + (y + 0.5)% = 4.

A12. Graph the ellipse (z + 3.5)2 + (3y — 1.5)? = 9.

A13. For each of the following, obtain a graph of the given function that contains
all of its interesting features. In each case, specify the scales used.

(a) —x% +62 —4 (b) 23 — 82% + Tx + 17

(c) 24 — 4x2 (d) 3 — 100z + 1

(e) 2sinz — cos (f) sin 152 [Hint: use BOXZ]

 

B1l.Let D, M, and Y denote, respectively, the day, month, and year (last two
digits) you were born. For example, if your birth date was April 14, 1973,
then D = 14, M = 4, and Y = 73. Make a careful sketch of the quadratic
y=Dx?-Yz + M.

B2. (a) Suppose you enter 'X =1' [1/EQ ERASE DRAX DRAW. What output

do you predict? Check your answer.

(b) Use PIXON to graph the line segment from (1,0) to (1,1).
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0.7 LOOPS & BRANCHES

In some of the program structures in this book we use loops and branches. Generally
these will be of the following three types:

I FOR-NEXT loops;
II FOR-STEP loops; and

III IF-THEN-ELSE branches

This section consists of a brief introduction to I-III. The reader interested in a more ex-
tensive treatment of these topics is referred to the Owner’s Manual.

I. FOR-NEXT loops. This is a technique for carrying out repetitive calculations. Sup-
pose, for example, that you wanted to perform five similar calculations C;, Cz, Cs, Cy,
Cs. Of course, you could always get the calculator to do each calculation separately, but
that could amount to quite a bit of work. A more efficient way would be to express the ith
calculation in terms of i then tell the calculator todo C; fori =1, 2, ..., 5. As a particular
example, suppose you wanted to get the calculator to calculate the cubes 13, 23, 33, 43, 53,
One way to do this would be to key in: 1 3 ~ ; then 2 3 ~ ;then 3 3 ~ ; then 4
3 7; and, finally, 5 3 ~ . A simpler way would be to tell the machine: “doi 3 ~ |
fori =1, ---, 5”. Of course you have to tell it in the language the calculator understands,
namely, reverse Polish. The repetitive procedure “doi 3 ~ ,fori=1,-- , 5” in reverse
Polish becomes: 1 5 FOR I I 3 = NEXT. In general, a FOR-NEXT procedure on
the HP always has the following format:

A B FOR 1 sxxxkkkxkkkk NEXT
 

   

where x*xxxx*xxx%* represents any calculation or instructions (usually) involving I. Trans-
lated into English, it says:
 

“do *xxxxxxxxxxx foreach = A, A+1,... , B”
   

The above syntax is strict except that there is nothing special about the index symbol
I. Any other letter would do just as well. Note that the index letter must follow FOR and
is not to follow NEXT. Note also that NEXT is not the same as NXT. All loop and branch
commands (FOR, NEXT, STEP, IF, THEN,---) are located in the BRCH subdirectory of
the PRG directory.

In this book we will use FOR-NEXT loops only in situations where A and B are integers
with A < B.

EXAMPLE 1. (a) Write an HP 48 program to generate the first N triangular numbers

1, 3,6, ---, UAL (b) illustrate the program with NV = 15.

SOLUTION.

3) « - N «1 NTFOR I 111 +
2 / NEXT N LIST >» >» A [STO

[To enter A press a I C.]
 

(b) 15 N «home LOOPS }

2:

1: (136.1015 2] 28
36 45 55 66 78 91
105 120 )

C-1T1T[|
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About Polynomials

Recall that a polynomial is any function of the form

p(x) = ap + a1 + ax? +--+ + ana”,

where ao, aj, +--+, a, are numbers and n is a nonnegative integer (= the degree of the
polynomial). Examples:

A(z) =1—2z + 5x?

B(x) = 4 + 722% + 2x? — 532°

C(x) =2°-1

are polynomials of degrees 2, 6, and 3, respectively.

Polynomials are basic, polynomials are conceptually simple, polynomials are the build-
ing blocks for many other functions, polynomials are important in calculus. Throughout
this book we will be working with polynomials. After you key in a few polynomials, you'll
realize that the process is quite repetitious, so guess what? That’s right, it’s time for
another program.

 

 

 

POLY

Inputs: ag, ai, *++, Gn Output: ap + a1 + a2x® + +++ + anx™

<< DEPTH —- M Assigns local variable M=n +1

0 'P* STO Initializes P= 0
1 M FOR 1 Sets up a loop fromI =1 to M

Xt M1 - 7 Calculates 7 where j = M — 1
* Forms az?
P + 'P' STO Increments P by a,x’
NEXT Ends loop; go on to the next I

P 'P' PURGE Puts polynomial on the stack &
purges P from the VAR menu

COLCT > >» Cleans up parentheses

Checksum: #59317d Bytes: 128    
 

EXAMPLE 2. Use POLY to enter the polynomials A(z), B(x), C(x) above.

 

 

  

SOLUTION.

(a 1 -2 5 { HOME FUN }

4:
3:
2:

1: '1+5#X"2-2%K"
(ETHI
 



36 0. HP 48 Nuts & Bolts

(b) [«] 4 0 7 0 2

0 53 [pory)

c) [« -1 001

vPoints to note

 

HOME FUN }
 

L
3
2

 oePRBER-53K

[pocvRECETFEWaL]|[|
 
 

HOME FUN }
 

S
E
N
T

'—14+§"3!
Lo JRECEV[FEMML]| ||

  

1. For a polynomial of degree n, the input will always consist of exactly
n + 1 numbers.

2. When you apply POLY it is important that you start with an empty
stack.

II. FOR-STEP loops. These are similar to FOR-NEXT loops, the essential difference being
that you get from A to B through noninteger steps. FOR-STEP loops have the following
structure:
 

 
A B FOR 1 skkkkkkkkkkk 5 STEP

 
 

where xxxxxxx0kxxx represents any calculation or instructions (usually) involving I and S is
the step size. Translated into English it says “do sxxsx**x*xx* for each I=A, A+S, A+2S,
etc. until you get to B (more precisely, until you get to last number of the form A+kS
which is less than or equal to B). As with FOR-NEXT structures, the syntax is strict except
for the use of the particular index symbol I. We can use a FOR-STEP loop together with
the PIXON command (§ 0.6) to make a vertical line segment as is illustrated by VSEG (see
program box).

 

VSEG
 

Inputs: a, c, d Output: line seg. from (a,c) to (a,d)
 

<« DRAX

—- A C D

C D FOR Y

AY R-C

PIXON

.1 STEP PICTURE

 
> >

Clears the LCD & draws axes

Defines local vars. corr. to a, c,d

Starts loop from C to D

Forms the ordered pair (AY)
Puts a dot at the point (A,Y)
Ends loop; increments Y by 0.1

Checksum: #24217d Bytes: 87.5   
 

EXAMPLE 4. Draw the line segment from (3, —1) to (3, 1.4).
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SOLUTION.

[RESET] 3 -1 14

SE SO

 

 

    

III. IF-THEN-ELSE branches. We illustrate this idea with the following function which is
defined one way for x > 1 and a different way for x < 1:

f(z) = 2-06 ifx>1

“los+1) ifzx<il

Put another way, the formula says: IF “cz > 1” THEN “do 2 — 0.62” ELSE “do
0.5(z + 1)”. A complete translation into HP 48 language is 'IFTE (X > 1,2 — .6 * X,
5X (X+1))'. In general, 'IFTE (A,B,C)' translated into broken English means: IF A is
true THEN do B ELSE do C. Functions defined using IFTE can be graphed in the usual
way (1 EQ DRAX DRAW). A standard plot of the above function is shown in Fig. 4.

 

 v
Figure 4

 

Exercises 0.7

For Exercises 1-7, write HP 48 programs to perform the indicated chores.

Al. Put the first 100 positive integers on the stack in order (so that 1 is on the top
and 100 is at the bottom).

A2. Put the first 100 positive integers on the stack in reverse order (so that i is on
level i for i =1, 2, ---, 100).

A3. Input: N

Output: {12, 22, ..., N?}

A4.Input: N

Output: {1, 22,33, ..., NN}
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A5. Input: N

Output: {1, 2,6, ---, N!}

A6. Draw the line segment from (—1,2) to (5,2).

A7.Draw the line segment from (0,0) to (3,3).

AS8. Predict the outcomes of the following programs. Check your answers by running
the programs.

(a) « DRAX 3 6 FOR X X 1 R—C PIXON .1 STEP

PICTURE >

(b)< DRAX 1 4 FOR X X -1 R—C PIXON X 1 R—C
PIXON .1 STEP -1 1 FOR Y 1 Y R—C PIXON 4
Y R—C PIXON .1 STEP PICTURE >

A9. [Trick question] What is the degree of the polynomial p(z) = 32! +1 + 223?

A10. [Bad joke] What would youcall the following program? « 'POLY' PURGE

>

A11. [Your personal polynomial] Let A, B, C, D, E, F, G, H, I be the digits
of your social security number, except replace Os by 10s. Form your personal
polynomial as follows: P(x) = A + Bx + Cx? — Dx® + Ex? — Fx® 4 Gaf —
Hz" — I28. [For example, if your SSN is 190-34-7053, then P(x) = 1 + 9x +
1022 — 323 + 42% — 72° + 102° — 527 — 328] Use POLY to enter P(z) on the
stack and store it under the name of your choice (MYPOLY ?) for later use.

A12. Use the HP 48 to graph the function

—2 forz <0

r@-1{ for > 0.

 

For Exercises 1-6, write HP 48 programs to perform the indicated chores.

B1.Input: N

Output: {1, 14+ 3, 1+2 +3, ---, 1+ 3+ +551}

B2. Input: N

Output: {1, 1+4,1+2 +3...) 141+... 4 4}

B3. Input: a, b, ¢

Output: The line segment from (a,c) to (b,c).

B4. Draw the line segment from (—3,0) to (5, 3).

B5. Draw the arc of sinx from xz =0 to x = 7.

B6. Input: N

Output: {VN, VN —1, ---, v2, V1}



Chapter 1

Functions and Limits
|

1.0 Preview

1.1 Defining and Evaluating Functions

1.2 Graphing Functions

1.3 Limits of Functions

PROJECT: Archimedes’ Algorithm

1.4 Evaluation and Zeros of Polynomials

PROJECT: Cardano’s and Ferrari's Methods for
Solving Cubics and Quartics

 

1.0 PREVIEW

The main focus of calculus is the study of functions and the geometric or physical
quantities they describe. Functions are central to the major ideas of calculus and to their
applications in engineering and physics. Calculus is of importance in the study of dynamics,
which is concerned with the motion of material objects subject to forces acting upon them.
Functions are used to describe the position, velocity, and acceleration of such objects. For
example, the function

s = s(t) =10.3e1%%5in0.194t, 0<t<t,

gives the displacement s of a railroad “snubber” (a shock absorber at the end of a track)
when hit by a freight car with mass 10% kilograms and speed 2 meters per second. This
equation holds for 0 <t < t;, where t; is the time upon rebound when the car loses contact
with the snubber. A graph of s and a schematic of the snubber spring and box car (seen
shortly after contact) are shown in Fig. 1. In designing a snubber it is important to know
the maximum displacement of the contact point for a typical impact. An approximate value
for the maximum displacement can be read from the graph.

 

       
 

Ss

0.6

0.4

0.2

QC) QQ) t
P— 1 2 3 4 5

Figure 1
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A more powerful method for finding the maximum value of s depends upon finding the
time t for which the velocity v(t) of the contact point is zero. For this we must differentiate
s to form v, calculate the solution tmax Of the equation v(t) = 0, and, finally, calculate
S(tmax)- In solving v(t) = 0 it is helpful to graph the function v. Learning to use an HP 48
facilitates your ability to graph v, find tmax, and evaluate s(tmax)-

Our main purpose in this chapter is to help you learn to use your calculator in evaluating
functions, graphing functions, and in finding the zeros of functions. We use it also in
discussing the idea of the limit of a function, one of the main ideas of calculus.

 

1.1 DEFINING AND EVALUATING FUNCTIONS

One of the most basic concepts in calculus is that of function. All of the functions used
in elementary calculus are either “built-in” to the HP 48 or can be formed by combining
several built-ins. Such functions are easily evaluated and graphed on the HP 48. Typi-
cal built-ins include the trigonometric functions, the inverse trigonometric functions, the
squaring function, the square root function, the exponential function and its inverse (called
the natural logarithm function), and the hyperbolic functions. Functions which are com-
binations of built-ins, such as the snubber response function, can be defined so that they
become virtually indistinguishable from built-ins. We illustrate these methods in either
examples or problems. In one further example we illustrate the composition of functions.

We begin by defining and evaluating a function by means of the SOLVR, which is on

the 1 SOLVE ROOT menu. First, go to this menu by pressing ||, , and .

Secondly, key in an equation and store it as EQ by pressing EQ (press 9 and then the

white key beneath EQ). Now press :

EXAMPLE 1. The polynomial

1 1
Pz) =x — 5% +5

is sometimes used as an approximation to sin xz, particularly for values of
x not too far from 0. Compare the values of P(x) and sin 2 by calculating
their values for x = 0.0,0.1,...,1.0.

SOLUTION. The comparison of P(z) and sinz is shown in Table 1.
Verify the second column entries using the built-in SIN function. Use
radian mode ("MODES ANGL RAD) and set the calculator to show 6
decimals ("MODES FMT 6 FIX).

The third column was computed with the SOLVR.

"ie Tw{

'X—-X"3/6+X75/120" 4

EQ 3

 

 

   ICEEA I[ I I ]
 

The menu contains the names of the variables in the stored equation
and EXPR=. Next we calculate P(0.1).



EXAMPLE 2.

EXAMPLE 3.
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1 RAD 1USK

X (on SOLVR menu) ra :

3
2:

1: Expr: 0.099833
ICE CIC JC    

Please verify the remaining third column entries in Table 1.
These calculations show that the polynomial P(x) closely approxi-

mates sinz for x € [0,1]. We compare these two functions graphically in
Example 2. Leave EQ on the VAR menu for use in Example 2.

 

 

   

Table 1

x sin P(x)

0.0 0.000000 0.000000

0.1 0.099833 0.099833

0.2 0.198669 0.198669

0.3 0.295520 0.295520

0.4 0.389418 0.389419

0.5 0.479426 0.479427

0.6 0.564642 0.564648

0.7 0.644218 0.644234

0.8 0.717356 0.717397

0.9 0.783327 0.783421

1.0 0.841471 0.841667   
Compare the polynomial P(x) given in Example 1 and sinz by plotting
them together.

SOLUTION.
To get short plot labels, use standard mode ("MODES FMT STD).

If necessary, key in P(x) from Example 1 and store as EQ.

 

 

    

'SIN(X) 3.2]

‘EQ TN X
NXT EENSAE
Reset plot _aal

Check (v') EQ and EQ1

 
To produce the labels in the figure, press [EDIT| [NXT| [LABEL] just

after DRAW is complete. To view the entire screen press [-] .
 

In Examples 1 and 2 we used algebraic style in defining and evaluating
functions. We now discuss program style. In algebraic style “tick” marks
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are used as delimiters. We continue with the function P(x) given in the
first two examples.

SOLUTION. A program defining P(x) is given by

< — X 'X-X"3/6+X75/120' >
The program delimiters < and > must enclose any program. When the
program is run, the command — X results in one number being
removed from the stack and stored as X. This variable—called a “local
variable”—is accessible only within the program and does not appear on
the VAR menu. The last part of this program is an expression defining
the function. The program calculates the value of P(x) and puts it on
the stack.

Please either key in directly the above program and store it under the
name P or use the HP 48 built-in DEFINE. For this, enter

'"P(X)= X—X"3/6+X 5/120"

and then press . This puts the above program on the VAR menu
under the name P.

The value P(0.4) may be calculated in several ways. The easiest way
is to put the number 0.4 on the stack and press the key beneath P on the
VAR menu. The value 0.389419 is returned to the stack.
 y Ter

P (on the VAR menu)  

  —
O
W
-
R
[
™

0.389419
|ICCTT(RTFTTA(RTI(NF

If we place the expression 'P(0.4)' on the stack and press EVAL] we
obtain the same value as before. Finally, we may use the SOLVR, though
the procedure is slightly different in program style. For this we recall a
copy of the program stored as P to the stack.

 

 

 

   

"P RCL hE 3 1USR

%
BQ 3:

4 1: EXPL 9.383419
 

The value of P(0.4) is on the screen. On the SOLVR, evaluation of
functions defined in program style takes one key stroke less than when
algebraic style is used.

We often prefer to define functions in program style. If a function f is stored as F,
then to x and f(x) correspond the acts of keying in x and pressing the white key beneath
F on the VAR menu. This is mathematically natural and leaves no trace of x on the VAR
menu. On the other hand, program style takes extra key strokes at the time the function is
defined. A function defined in program style and stored as, say, F', may be used for plotting
by putting 'F(X)' on the stack and using it as an algebraic.
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Calculate the amount Pj in a bank account after k quarterly compound-
ings at 7.5% interest per year of an initial amount Fp.

SOLUTION. If an amount Py dollars is deposited in a bank at 7.5% per
year and this amount is compounded 4 times per year, then after 1/4
years the account will have increased to P; dollars, after 2/4 years it will
have increased to P, dollars, ..., where

P, = Py + Py -0.075- (1/4) = Py(1 + 0.075/4)}

Py =P; + P,-0.075- (1/4) = P1(1 4+ 0.075/4) = Py(1 + 0.075/4)?

Ps =P, + P,-0.075- (1/4) = P»(1 4 0.075/4) = Py(1 + 0.075/4)>

In these calculations we have added to the principal P at the beginning
of an interest period the interest earned during the period, where the
interest is found from the formula I = Prt. After k such (1/4)-year
compoundings we have

PP. =PFP._1 + Pi_1-0.075- (1/4) = P._1(1 + 0.075/4)
1

= Py(1 + 0.075/4)* (1)

We may use the SOLVR to evaluate the function Py or we may define
a function P using a program, as in Example 3. Letting FP, = 100, a
program for the function described in (1) is

<« — K '100%1.01875"K' > (2)

We used 1.01875 in the program instead of 14+0.075/4 to avoid dividing
and adding each time the program is executed. Please enter this program
and store it as P. To calculate the amount Py, key in 4 and press P on
the VAR menu. The result is $107.71 (2 FIX). Experiment to find how
long it takes for money to double at 7.5%? (The answer is given at the
end of Example 6.)

Use the program FEVAL in calculating the amounts Ps, Ps, and Piz,
where Py is given in (1). Use 2 FIX (LshMODES FMT 2 FIX).

SOLUTION. We repeat/review FEVAL here. The program is

< 'X' STO DUP EVAL 'X' PURGE >

If you do not have this program on some menu, please enter and store it
as FEVAL. One feature of FEVAL is that the function variable must be
x, not k or some other variable. We calculate P4 using FEVAL as follows.

 

 

  

'100% 1.01875 X! AME 3 1Usk
4 5

3:

2: '100*1, 027K’
1: 107.71
(EETCIT(TTTS(RIE(CE
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Note that with 2 FIX in effect, the number 1.01875 in the expression on
level 2 shows up as 1.02. To calculate Pg, drop Pj, key in 8, and press

. The program returns 116.02. Drop this number, key in 12, and

press . The program returns 124.97.
FEVAL stores as X the number z in level 1, duplicates the expression

for f(x), evaluates one of these expressions using the stored value of z,
and then purges X. FEVAL uses the same algebraic form of f(x) as used
by SOLVR and PLOT, which is often an advantage.

EXAMPLE 6. Form the composition of the functions F(z) = sinz and G(w) = w3 +1
with your HP 48. Do it in both orders.

SOLUTION. The compositions P= FoG and Q = Go F are

P(w) = F(G(w)) = sin(w3 +1) and Q(z) = G(F(z)) =sin®z +1

We use sine and not F' for the sine function. We may form these compo-
sitions of sine and G with the built-in SIN function and the function

LK -=W 'WT34+1' >

Storing the latter as G, we first put 'SIN(G(W))' on the COMMAND

LINE and then press . We obtain the expression 'SIN(W ~3+1)".

Next we put 'G(SIN(X))' on the COMMAND LINE and press :
We obtain 'SIN(X) ~3+1'. (From Example 4: To double your money at
7.5% requires 38 quarters or 9.5 years.)

 

Exercises 1.1

A.1 Use SOLVR in computing the entries of a table in which the values of cos xz and the
polynomial Q(z) = 1 — (1/2!)x? + (1/4!)x* are compared for z = 0.0,0.1,... , 1.0.
Graph these two functions together, as in Example 2.

A.2 An approximation to sin (called a Padé approximation) is the rational function

2520 — 36023 + 11z°

2520 + 6022
 

Use SOLVR in computing the entries of a table in which sinz and the given Padé
approximation are compared for x = 0.0,0.1,...,1.0. Graph these two functions
together, as in Example 2.

A.3 Using the rational function—call it r(z)—given in problem A.2, compare the fol-
lowing three methods of defining and evaluating a function: (i) using program style,
discussed in Example 3; (ii) using the program FEVAL discussed in Example 5;
and (iii) using the program FOFX discussed below. Base your comparison on ease
of use, number of key strokes needed to compute r(.5), the relative speeds of these
methods (estimate as well as you can the time each takes to compute r(.5), starting
with the final key stroke), and the number of things left on the VAR menu. You
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may also wish to consider how these methods compare when both evaluation and
plotting of the function are needed. The program FOFX is

<< 'X* STO EQ —»NUM 'X' PURGE >»

To use FOFX, the function must be stored as EQ on the VAR menu. To evaluate

the function put a number on the stack and press .

A.4In Example 4 an expression Pi for the amount of money in the bank after k
quarterly compoundings was given, namely

Pi = Py(1 + 0.075/4)*

Letting Py = 100, compounding n times per year instead of 4, and letting A(t)
denote the amount of money in the bank at time ¢ (in years), show that

A(t) = 100(1 + 0.075/n)™ = 100((1 + 0.075/n)™)*

A.5 (continuation) Write a program for calculating A(t) and use it to prepare a table
comparing the amounts obtained after 5 years with compounding once a year, semi-
annually, quarterly, daily (assume 365 days), and hourly. What does this mean for
the small investor?

A..6 A commercial for a bank claims that “A penny saved is $1,000 trillion earned. And
that’s only 4% interest for 1,000 years.” Is this honesty in advertising?

A.7 Let the functions f, g, and h be defined by

w# —1
1 —

fl@)=vVe—-2, 222 g(y)=y*+2, —o0o<y < oo; hw) = 1.

Using the methods of Example 6, form and simplify the nine possible composition
pairs. The HP 48 will need your help in simplifying some of the results. Include in
your answer the domain of each composite function.

A..8 Repeat Example 6 but use the program FEVAL instead of the program method.

 

B.1 Graph the “snubber function” given in §1.0. Using this graph, estimate the maxi-
mum displacement of the snubber and the time tax this occurs. Calculate t;.

 

 

   

Table 2

n L, n! Un U,/n!

20 2.42278684677TE18 2.43290200818E18 |2.45307168235E18 1.00829037672

50 3.03634459417E64 1.00332641743

100 9.33262154439E157 1.00166493399

200] 7.88329328671E374 1.00083289978   
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B.2 Verify empirically Stirling’s approximation L,, of n!, where

Ln. = V2rn(n/e)® < n! <V2rn(n/e)*(1+1/(4n)) =U,

Recompute Table 2 and fill in the missing entries. Use STD mode. Notes: 20!
can be calculated on the MATH NXT PROB menu. The number e is a built-in

constant. It is on the MTH NXT CONS menu.

B.3 Closely related to Stirling’s inequality is John Wallis’ (1616-1703) inequality

22n(n)2\?  r(2n+1)

ms (Sam) <5
Obtain estimates for 7 by taking n = 50 and n = 100 in this inequality.

B.4 A complex number xz + iy is represented in the HP 48 by the pair (x,y). Once
entered, complex numbers such as 2 + 3i = (2,3) and —7 + 45 = (—7,4) can be

subtracted with the B key. Simply enter (2,3) and (—7,4) on the stack and

subtract to get (9,—1). The HP 48 has a built-in function ABS for the length or

modulus of a complex number. The modulus of (x,y) is v/z2 + y2. To calculate

the modulus of (—7,4), put (—7,4) on the COMMAND LINE and press ,
which may be found on the MTH REAL NXT or MTH NXT CMPL menus. We
obtain 8.06---. We may use these features of the HP 48 to shorten the calculation
of the distance between points (z1,y;) and (z2,y2) of the (z,y)-plane. Write a
program to calculate the distance between points (z1,y1) and (zz, y2).

B.5 If from an initial point (z1,%;) in the (x, y)-plane we walk a distance r on a “head-
ing” 6 to a destination point (x2, 12), find the coordinates x2 and y, in terms of x,
11, 7, and 6. It is understood that » > 0 and 0 < 6 < 360°. Write a program which
has stack inputs (z1,%1), r, and 6 and returns (z2,y2). Use this program to find
the final destination if the starting point is (3.4, —5.9) and we are given successive
distance/heading pairs (2,45°), (5.2,144.7°), (3.5,269.4°), and (22.8,4.8°). Include
DEG and RAD as the first and last commands in your program.

B.6 Write a program to help you estimate the coordinates of the point on the parabola
with equation y = x? closest to the point (2,0).

 

C.1 Write a program that calculates the angle az — a; (in degrees or radians, as you
think best) from line L; to line Lo, given the slopes m; and my of these lines. The
program should take m; and m, from the stack, where m; is on level 2 and m; on
level 1, and return as — az. Recall that most analytic geometry or calculus texts
define the inclination «a of a line with slope m to satisfy tana =m and 0 < a <7.
Test your program on (at least) the following data: (1) m; = tan 20°, my = tan 45°;
program should return 0.436 --- or 25°. (2) m; = tan 70°, m2 = tan 120°; program
should return 0.873 --- or 50°. (3) m; = tan 170°, mq = tan 120°; program should
return 2.267 --- or 130°. Return your calculator to radian mode after completing
this problem.

C.2 Write a program for the amount of money in the bank at time ¢ if the interest rate,
the initial amount, and the number of compoundings per year are stored on the
VAR menu. The program should take ¢ from the stack and return A(t).
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1.2 GRAPHING FUNCTIONS

The PLOT menu was discussed in Chapter 0, including the meaning of the plot parame-
ters PPAR and the use of RESET. In this section we discuss the scaling keys SCALE, %W,
and XH, the XRNG and YRNG keys, and the zoom key BOXZ. We restrict ourselves to
plot type FUNCTION. The purpose of graphing a function f is to reveal its “interesting”
features. These include z-intercepts of the graph of f (that is, the zeros of f), vertical
and horizontal asymptotes, intervals in which f is decreasing or increasing, and intervals
in which the graph of f lies below or above its tangent line. For most of the functions
found useful in the applications of calculus, the interesting features are relatively close to
the origin. At points far from the origin most functions have settled into a stable pattern.

The scaling keys control the horizontal (width) and vertical (height) scales. In the
default PPAR the scale in both vertical and horizontal directions is 1 unit per tick mark.

Putting 2 on the COMMAND LINE and pressing [*H] multiplies the distance between the
tick marks on the vertical axis by 2. The plot parameters in PPAR are modified accordingly.
Horizontal units (independent variable) can be modified by kW. The default screen, as
specified by the default PPAR, goes from —6.5 to 6.5 in the horizontal direction and from
—3.1 to 3.2 in the vertical. After we have multiplied the height by 2, the parameters
governing the horizontal remain the same and the vertical parameters become —6.2 to 6.4.
To increase the horizontal scale of an existing viewing rectangle by a factor of 1.7 and the
vertical scale by 2.3 we may either enter 1.7 followed by kW and then 2.3 followed by *H
or simply put 1.7 and 2.3 on the stack, in this order, and press SCALE.

EXAMPLE 1. Graph the function f(z) = 52 — 722 + 9x — 15, starting with the default
PPAR.

SOLUTION. In entering f(z) in the input below, note the X on the
PLOT menu after you type '. Using it saves a key stroke for each X.

or =
Reset plot OK| rl

 

 

    
'5%X ~3—TKX X—15' ttt

[DRAW] 1
[EDIT] Ee [LABEL] -a1]
 

 

A disappointing graph. If CONNECT is checked, the graph is a near-
vertical jagged line. If CONNECT is not checked, which we often prefer,
the graph is two or three points (three until the PICTURE menu covers

up the lowest point; to see the entire screen press [-] ). CONNECT is
on the TPLOT OPTS menu.

To explain what has happened, press and on the PIC-

TURE menu. Move the cursor by pressing [>] to find that the pairs

(1.3,-4.1), (1.4,-2.4), (1.5,—0.4), (1.6,2.0), and (1.7,4.6) are on the
graph of f. (We have rounded the y-values to 1 decimal.) Since the
default PPAR gives a viewing window with y-values between —3.1 and
3.2, we see why only two or three of these 5 points were plotted. Since f
changes sign between 1.5 and 1.6, the graph has an x-intercept between
x = 1.5 and x = 1.6. Since f(1.6) = 2.0 and f(1.7) = 4.6, we guess that
f increases rapidly for x > 1.5. For as x increases by just 0.1 from 1.6
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EXAMPLE 3.
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f increases rapidly for x > 1.5. For as x increases by just 0.1 from 1.6
to 1.7, f increases by 4.6 — 2.0 = 2.6. Finally, we find that f(2) = 15,
f(3) = 84, and f(—1) = —36 by further cursor movement. We guess that
we should multiply the vertical scale by 15. After two CANCELSs,

  

  

  
 

 

[PLOT] [PPAR] [NXT] ualy
15 [*H| [NXT| [PLOT] ; .
[ERASE| [DRAX| [DRAW] ws7 as
(DRAX draws the axes) ie}     
Before restoring the normal screen, move the cursor to what appears

to be the single real zero of f, then press [FON | and . After a few
seconds the screen will display ROOT: 1.51703347723. 

By graphing the function f(z) = 23 —82%+18x—11, locate approximately
its local minimum.

SOLUTION. Graph f using the default PPAR. We use CNTR to view
the local minimum of the graph. CNTR shifts the viewing rectangle,it
does not change scale.

Move cursor to (3.6, —1.5) 28 | - - T1041

 

 

+ No

-Y.6T7"     
Press [TRACE|to turn TRACE on and then use «4 or » to locate

approximately the local minimum. Press to obtain coordinates

(3.7, —3.3). Results may vary. Press any key in the top row and then
turn TRACE off. With the cursor located at the local minimum, more
or less, we use ZOOM to locate the minimum more accurately.

ZOOM

Move cursor 3 clicks left and

3 clicks up

Move cursor 6 clicks right and
6 clicks down

 

   
Turning TRACE on again we find the local minimum at (3.72, —3.27),

approximately. Results may vary a little.

In graphing a function it often saves time to make some preliminary rough
estimates. We may use the SOLVR to do this or we may try PLOT
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with the default PPAR. We may wish to use AUTO, which attempts to
choose a reasonable vertical scale. Each of these may help us to display
the main features of the graph. We illustrate with the function f(z) =
zt — 6x + 8x2 + 4.

SOLUTION. Key in, store as EQ, and plot f using the default PPAR.
We may significantly reduce the time needed to plot by storing f(z) in
the factored form

"XkXK (Xk (X—6)+8)+4"

The displayed graph has 10 points. The [-] key may be used to view

the full screen. After [CANCEL], go to the PPLOTmenu, check AU-

TOSCALE, and then press , and . AUTOSCALE gives
a parabolic shape, with the vertical range from —573 to 3775. The ver-

tical range can be verified by pressing and then highlighting
and editing V-VIEW. In a moment we will see that this scale washes out
most of the interesting features of the graph.

What to do next? We may guess at a scale change, perhaps 5%H
(applied to the default PPAR). The resulting figure is quite good. Or
we may use the SOLVR to obtain information to reset the PPAR. The
function f(z) is stored under EQ and is immediately available to the
SOLVR. Use 1SOLVE ROOT SOLVR. After evaluating f(x) for a few
values of x we decided it would be sufficient to evaluate f(z) for x = —2.0,
—1.5,...,4.5,5.0. The results are listed in Table 3. We used 1 FIX.

 

 

Table 3

x f(z) x fx)
—-2.0 100.0 2.0 4.0
~-15 473 25 —0.7
~1.0 19.0 3.0 —5.0
—0.5 68 35 —5.2
0.0 4.0 4.0 4.0
0.5 53 4.5 293
1.0 70 5.0 79.0
1.5 6.8       

We change the viewing rectangle using the above calculations. The
useful range of x appears to lie between —1.0 and 4.0 and that of y
between —6 and 19.

PPAR so aly
—-1 SPC 4 A
—6 SPC 19 STON .
NXT| |NXT| [PLOT] aT A
|[ERASE| |[DRAX| [DRAW]

 

 

 

     
 

This graph shows the main features of f. We may locate the three
“relative extrema” with the cursor, either reading them directly from the



50 1. FuNcTIONS AND LIMITS

screen (press ) or putting them on the stack with ENTER. We find

the left-most relative minimum is at (0.0, 3.9), the relative maximum at
(1.2,7.1), and the other minimum at (3.3, —6.0). Answers may vary. If

is used to obtain coordinates of several points, it saves time in moving

the cursor to a new location if you press again. This key is a toggle
for displaying cursor coordinates.

In this brief section we discussed CNTR, which shifts the viewing window, the use of
the scaling keys SCALE, *%H, *W and BOXZ, and the more direct scaling keys XRNG
and YRNG.

 

Exercises 1.2

A.1 Graph y = cos x using the default PPAR.

A.2 Graph y = cosz and y = x on the same screen using the default PPAR. Through

moving the cursor and pressing [+]to display coordinates, find the point where
these two graphs intersect. Using the built-in COS function, find by systematic
trial and error (or any method you know) a value of x for which cos x = z, accurate
to two decimal places.

A.3 Graph y = tanz and y = —2 on the same screen using the default PPAR. Display
the point with the least positive value of x where these two graphs intersect. Using
the built-in TAN function find a value of = for which tan x = —z, accurate to two
decimal places. In how many points do the full graphs intersect?

A.4 Graph y = cot x using the default PPAR.

A.5 Graph y = csc x using the default PPAR.

A.6 Graph y = 22 + 3.9 + 3.1 using the default PPAR. Display the z-intercepts and
compare with the roots of the quadratic equation z2 + 3.92 + 3.1 = 0.

A.7 Graph y = 22 — 3z — 4. Display the coordinates of the vertex.

A.8 Graph the parabola having the equation y — 0.1 = (z + 0.3)2.

A.9 Graph the function f(z) = z* — 322 + 15. Use the SOLVR in finding a viewing
rectangle. Note that since the graph is symmetric about the y-axis we may restrict
the viewing rectangle to the right half-plane. Find approximate coordinates of
the minimum with z > 0.

A.10 Graph the equation y = (23—102%2+2+50)/(x—2). Find approximate coordinates
of the three z-intercepts and the local minimum.

A.11 Graph the function f(z) = z* +22 — 42 +4 and find the approximate coordinates
of the local minimum.

A.12 Graph the function f(z) = (3x? — 2023 + 2422 + 128)/((x® — 62 + 10)(z? + 5)).
Find the approximate coordinates of the three extrema.

 

B.1 Graph y = 23 — 7.522 + 17.52 — 11. Find estimates of the coordinates of the local
minimum and local maximum. Find coordinates of the single x-intercept.

B.2 Graph y = sinz/(1 — 0.7 cos(xz — 7/20)). Find estimates of the coordinates of the
(repeated) local maximum and local minimum.

B.3 Graph y = z/2 — sinz. Graph y = 2/2 and y = 2/2 — sin on the same screen.
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Describe the graph of y = £/2 — sinz in relation to the line y = z/2.

B.4 Using the default PPAR and DRAW, graph the function

°—ztt+r—1
fle) = x2 — x — 12

Since the denominator of f(z) has zeros at —3 and 4, we may suspect that we have
not yet seen the main features of the graph. Hint: Use the SOLVR to evaluate f
for x = —6,-5,...,5,6.

B.5 Graph f(z) = x sin(1/x) with the default PPAR. To get a reasonably good picture
of the oscillatory behavior near the origin you will need to experiment with both
*H and *W.

B.6 Graph the function f(z) = 1+ (52 —|z|)/2—2% — (x —1)|z —1|. Recall the built-in
function ABS. Explain the three parts of the graph.

B.7 Graph the function f(z) = 23/2//2 — x. Use the default PPAR. Note that PLOT,
when it evaluates the expression stored in EQ at the 137 values —6.8, —6.7,...,
6.7, 6.8, ignores complex numbers and zeros in denominators. This has the effect
of implicitly recognizing the “natural” domain of f. What is the natural domain
of f?

B.8 Graph the function f(x) = —0.25/(|]z — 0.75] — 0.75] + 0.25|), first using the
default PPAR. Use XRNG and YRNG to enlarge the most interesting portions
of the graph. Find approximate coordinates of the local minimum.

B.9 The function

qz2 di 1 5=—"2=>2x
I® == "e—al 2

where qu = My/(M; + Ms) and qo = —M;/(M; + Ms), occurs in the study of
the motion of a satellite in the gravitational field of two bodies of masses M;
and M,. It is understood that the mass of each of the two bodies is much larger
than that of the satellite. For a satellite in the earth/moon system, M; = 1 and
My, = 81.3015, where we have taken the moon as a unit mass. These data result
in a graph that is difficult to scale. Instead, graph f for M; = 0.2 and M,; = 0.6,
working to obtain a well presented figure.

B.10 Describe the interesting features of the graph of f(z) = (32% — 202% + 24z2 +
128)/(64(z* + 1)).

)

 

C.1 Graph the function f(z) = (1 — cos z®)/z'? using the default PPAR and DRAW.
Although the resulting graph is useful for studying f near the origin, its scale
hides other features of the function. First, find a viewing rectangle showing the
oscillatory behavior of this function away from the origin. Next, zoom-in towards
(0,0.5) and note the chaotic features of the graph of f. To say “the” graph of f
may be misleading; say, rather, “a” graph, based upon calculator approximations
of f(x) for values of x near 0. Explain what is happening. It may be useful to
use the fact that

1 x12?0< =08% T°213 < <0.2212 YE 0<z<0

Finally, we note that f may be tamed by multiplying numerator and denominator
by 1+ cosz® and simplifying.
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C.2 Graph the function f(z) = sin(36z). Start with the default PPAR. Try scaling
with 20 kW. Although the graph is attractive and each pixel is correct, it gives
little idea of the graph of f. To set the scaling correctly consider the period of
this trigonometric function.

C.3 Locate the local maximum of the function

1

22, [= + : + :
zd (x-2m)¢ (x —4m)4

between 27 and 47. What is the horizontal asymptote of the graph of f?

C.4 Graph the “difficult” case given in problem B.9.

 

 

 

 

1.3 LIMITS OF FUNCTIONS

We remarked in the Preview of this chapter that the main focus of calculus is the study
of functions and the geometric or physical quantities they describe. In §1.1 and §1.2 we
discussed how to define, evaluate, and graph functions with the help of a calculator. In this
section we discuss the idea of the limit of a function. Our purpose will not be, however, to
explain the idea of limit. This is done in all calculus books. Our purpose, rather, is to give
you some examples of how a calculator may be used in making reasonable guesses about
the values of several kinds of limits. We hope that from these examples and from solving
some related problems your understanding of limit will be deepened.

Most calculus texts introduce the idea of the limit of a function f at a point a, written
as lim;_,, f(x), with an informal definition. For example, lim,_,, f(z) = L means that we
can be sure that f(x) is close to L provided that z is close to a. The function f need not
be defined at a.

An equivalent (also informal) definition of the statement lim,_,, f(z) = L is that the
numbers f(x), f(x2),... must approach L whenever the numbers z;,z5,... approach
a. This definition suggests what is often done in practice. Choose a convenient se-
quence ;, x2, ... of numbers approaching a and check if the corresponding sequence f(z),
f(x2),... approaches a number L. If a = 0, for example, we may take x; = 0.1, zo =
0.01, z3 = 0.001,..., and calculate f(0.1), f(0.01), f(0.001),.... Although such a nu-
merical calculation is not a proof that lim,_, f(z) = L, the “trend” of the sequence of
function values often gives persuasive evidence about the behavior of f(x) near a.

EXAMPLE 1. For our first example we consider the function f(z) = sinx/z, defined for
all z # 0. We wish to compute the limit of this function at a = 0, that
is,

i .  sinz

lim f(z) = lim ==

SOLUTION. Note that the number 0 is not in the domain of f. This is
echoed by the HP 48 in that if you store 'SIN(X)/X' as EQ on the VAR
menu, go to the 1ISOLVE ROOT SOLVR menu and attempt to evaluate
this function at x = 0, the HP 48 will complain about an “Undefined
Result.” Please verify the entries of Table 4. Use the built-in SIN function
for the second column, the SOLVR for the third, and STD mode.
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Table 4

x sin x sinz/x

0.1 9.98334 166468 x 102 0.99833 4166468

0.01 9.99983 333417 x 103 0.99998 3333417
0.001 9.99999 833333 x 104 0.99999 9833333
0.0001 9.99999 998333 x 10~° 0.99999 9998333

0.00001 9.99999 999983 x 10° 0.99999 9999983
0.000001 0.000001 1

0.0000001 0.00000 01 1     
 

Table 4 gives persuasive evidence that lim,sinaz/xz = 1, although
the abrupt transition between the fifth and sixth rows raises questions
about the calculations. In the bottom two rows of the table, the entries
under x and sina are the same. Without attempting to explain how the
HP 48 calculates sinz, it appears to be true that when z is less than
0.00001, the HP 48 does not distinguish between x and sinz. Indeed,
since to 25 decimals the true value of sin(0.000001) is

0.00000 09999 99999 99983 33333,

the HP 48, which is limited to 12 significant digits, can not distinguish
between this function value and 0.000001. The HP 48 has given the best
possible answers within its constraints.

As we consider further examples, we will occasionally notice consequences of the limited
accuracy of the HP 48. The same is true for all calculators or computers. There are practical
limits to the number of significant digits a computing device is able to calculate, store, or
display. For our purposes, this limited accuracy will not matter; usually we will have long
since gotten sufficient numerical evidence to guess a limiting value.

EXAMPLE 2. The bacterium Escherichia coli, usually called E. coli, is found in the
human gut. Under ideal conditions each E. coli cell divides into two
cells 1/3 hour after its own “birth.” The mass of one E. coli cell is
approximately 5-107!3 grams. If at t = 0 we have one cell, the mass m
of cells present at any time t¢ (assuming no deaths, adequate food supply,
ideal habitat, etc.) is

m= f(t) =5-10" 1323 (1)

We show a graph of this function in Fig. 2. The axes are scaled so that
the graph has convenient proportions.

Equation (1) must eventually fail to describe the growing E. coli pop-
ulation since, according to (1), its mass would eventually be larger than
that of the earth. (In problem A.2 we ask you to calculate Doomsday.)
To monitor the growth, estimate the “birth rate” at any time t¢.

SOLUTION. We may take the birth rate as the increase in the total
mass of E. coli per hour. The points A and B in the figure give the
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Figure 2

masses of the population at a fixed time t and a slightly later time t + A.
The increase in mass in this time interval is f(t + h) — f(t). If we divide
this difference by the elapsed time we obtain the “average birth rate”
(grams per hour) in the time interval [t,t + h]. Note that this is the same
as the slope S(h) of the line joining A and B, namely

ft+h)— f(t) 5-1071323(+h) _ 5.701323
(t+h)—t h

23h — 1
h

S(h) = 

= (5.10712 2%)

The rearrangement in the last step (based on the fact that a®*¢ = a®a®)
shows that the average birth rate, or the slope, in the interval [t,t + h]
may be written as a product of two factors, one of which depends upon
h alone. The birth rate R(t) at time t would be the limiting value of the
average birth rate as h — 0, that is,

23h _ 1
 R(t) = lim S(h) =5-10"122% lim

We may gain an idea of R(t) by evaluating the expression (23"* —1)/h for
small values of h. For this please verify the entries of Table 5.

 

 

   

Table 5

h 23h (23h — 1) /h
0.1 1.23114441334 2.31144 41334
0.01 1.02101212571 2.101212571
0.001 1.00208 160508 2.08160 508
0.0001 1.00020 796578 2.07965 78
0.00001 1.00002079463 2.079463
0.000001 1.00000207944 2.07944  
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We observe in the third column a steady decrease in the number
of significant digits. The reason for this is that we are subtracting
numbers which are very nearly equal. For example, in the fourth row
we find 2309901 in the second column, with 12 significant digits; in
the third column we subtract 1 from this and obtain 1.00020 796578 —
1.00000 000000 = 0.00020 796578, which has 8 significant digits. Since 23"
approaches 1 as h approaches 0 (see column 2), the losses will increase
in subsequent rows. Despite the loss in accuracy, we have no reason to
doubt that

R(t) ~ 2.0794 - 5.10713 23 (2)

Please use (2) to show that the “birth rate” of our population of E. coli
at t = 14 hours is approximately 4.6 grams per hour. Perhaps you know
that the limit of the third column entries is 31n2 = 2.07944154168 - - - .

The amount A(t) of money in the bank after t years, assuming $100 was
invested at 7.5% and the amount is compounded n times per year, is
given by

A(t) = 100(1 + 0.075/n)™ = 100((1 + 0.075/n)")*

This function was discussed in Example 4 and problems A.4-A.5 of §1.1.
In problem A.5 we asked about the size of A(5) for n = 1,2,4, 365,
and 24 - 365 = 8760, which correspond to compounding once a year,
semiannually, quarterly, daily, and hourly. We continue this numerical
experiment here, first rearranging the expression for A(t). Letting m =
n/0.075 we may write

A(t) = 100 ((: + =)0 (3)

Since we are interested in how A(t) varies with n,it is enough to examine
the subexpression (1 + 1/m)™ of (3). Please verify the values of this
subexpression, given in Table 6, as m, and so n, becomes large.

 

 

Table 6

n m (1+1/m)™

1 13.33333 33333 2.62288 665433

2 26.66666 66667 2.66900 555024

4 53.33333 33333 2.69322 824158

365 4866.66666 667 2.71800257835

365 - 24 116800 2.71826 897430

200,000 2.71827 503279

400,000 2.71827 843061     800, 000 2.71828012953
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EXAMPLE 4.

SOLUTION. Evaluate the expression '(1+1/M)~M' with SOLVR. Use
the values of m given in Table 6. These calculations offer convincing
evidence—but not proof—that for “continuous compounding”

0.075¢t

A(t) = 100 ( lim (1+ 1/m)™) ~ 100 - 2.71828%07%¢ (4)
m—00

The limiting number 2.71828. - - is denoted by e, after Leonhard Euler, a
Swiss mathematician. Using this notation we may rewrite (4) as

A(t) = 100075 (5)

The exponential function exp(z) = e” is built-in to the HP 48. To calcu-
late 2, for example, we may put 2 on level 1 and then press the e* key.
The value of A(5) for “continuous compounding” is 100e%°75-3, which,
with the help of the EXP key, is equal to $145.50. Please verify this. Fi-
nally, we note that the limiting process lim,» f(m) considered in this
example is different from the limits in Examples 1 and 2. It is different
in that the variable t is not approaching a finite value, but is required
to become larger than any given number, that is, to approach (positive)
infinity.

Estimate the value of 7 by estimating the area of a circle of radius 1. Start
with a circle of radius 1 and inscribe and circumscribe regular polygons
with n = 4,8,16,...,512 sides. Calculate the average A, of the areas
of the nth inscribed and circumscribed polygons. The number A, is an
estimate of 7.
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Figure 3

SOLUTION. If the vertices of the nth polygon are joined to the center
of the circle, we obtain n isoceles triangles, all of which have an angle
wn = 2m/n at the center. One of these triangles is shown in Fig. 3.
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We have bisected the “central” angle w, for the calculation of the two
areas. Let L,, and U,, denote the areas of the inscribed and circumscribed
polygons. Please verify that

n sin w,L, — and U, — nsin w, 2L,

2 1+cosw, 1+cosw,
 

These formulas together with the half-angle formulas (6) show how we
may estimate w. For polygons with 4, 8, 16, 32, ... sides, the number of
sides is doubled at each step and the central angles are halved. We start
with n = 4. Since wy = 27/4 = 7/2, we know the values of sin ws and
cos wy without knowing the value of r+. We have, then,

4-1 4-1
Li = = = —_——=4 2 2 Uy 1+0

If we know cos(27/4) and sin(27/4), we may compute cos(27/8) and
sin(2m/8) using the half-angle formulas

0 — [1+a (6). 1 —cos@
sin 260 = \/—5—— and cos

2

. 1 + cos wy 1
sin wg = —— = —= and coswg=4/ —— =

Letting 8 = w4 we have

2 2 22
From these results we may compute the areas Lg and Ug of the inscribed
and circumscribed polygons. We have

8 sin wg 4 2Lg 8
Lg = =— and Us= =
8 2 V2 ®  l+cosws V2+1

In what follows it is convenient to denote sin w,, by S,, and cos w, by C,.
Using this notation we may describe the steps from w,, to wa,. Assuming
we know n and C,,, we may compute Sz, Con, Lon, and Us, using the
results

n = ——— , L n -_- S. n y U n -_- 7

We have used these formulas in obtaining Table 7. The last column
contains the average A,, = (L,+U,)/2 of the inscribed and circumscribed
areas.

N
=

1 — cos wy _ 1

  

Son =
  

 

 

   

Table 7

n L, Un A,

4 2 4 3

8 2.82842 712475 3.31370 849898 3.07106 781186

16 3.06146 745891 3.18259 787807 3.12203 266849

32 3.12144 515224 3.15172 490742 3.13658 502983

64 3.13654 849056 3.14411 838526 3.14033 343791

128 3.14033 115734 3.14222 363034 3.14127 739384

256 3.14127 725116 3.14175 036939 3.14151 381028

5912 3.14151 380744 3.14163 2087 3.14157 294722 
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We stopped with n = 512 for two reasons. First, since our intent here
is to give an example of a limit process associated with area and not to
obtain an extremely accurate approximation to =, eight values of n are
enough to give a strong sense that lim,An, = 3.1415---. The second
reason is the sudden change in the number of significant digits in the U,
column. One of the steps in the calculation can lead to a loss of accuracy
(this will be explored in a problem) and we thought Usi2 was the first
visible sign of this.

It is not difficult to verify the entries of Table 7. We give a program
which more or less duplicates the steps suggested by (7). Given n and
C, as inputs, we want the program to output 2n and Cs, (for use in the
next step) as well as Lo,, Us,, and Az,. For convenience we write the
program so that it begins with the assumption that the first five levels of
the stack are the previous output. Since only levels 5 and 4 are needed
for the next step, the first two steps in the program CIRC are to drop the
(contents of the) first three levels of the stack and to store (the contents
of) levels 4 and 5. To duplicate the table the initial stack must be 4, 0,
%, %, %, where * stands for any expression or number you care to
put on levels 1, 2, and 3. Executing CIRC once gives the second line of
the table. If CIRC is executed a second time, using for input the output
of the first run, the third line of table is computed. Please enter CIRC
and verify the table.

 

CIRC

Inputs: n CC, 3% 3% 3X Outputs: 2n Cs, Lon Usp Aon
 

 

<< 3 DROPN —- N C Drop numbers in levels 1,2,3;

store numbers in levels 4 and 5

as local variables N and C

1 C - 2 / Compute Sa,

1 C + 2 / Compute Cz,
— S2 C2 Store Ss,, and Cs,

as local variables S2 and C2

2 N kx C2 N S2 =x 2n, Con, and Lo, to stack

DUP 2 x 1 C2 + / Us, to stack

DUP2 + 5 kx > > > Duplicate Uzn; A2n to stack

Checksum: #2075d Bytes: 158.5    
 

 

Exercises 1.3

A.1 Use your calculator to estimate each of the following limits.

 
sin(3x) . sin(5z)

(a) ZO sin(4x) (b) lim, 3x? + 2x

. 2 _
(¢) lim sin(bx*) (d) lim 1 cos

z—0 32 + 2x 6—0 62
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._tanf —sinf Jr-2

(e) a sin® (£) Jig xT — 2

A.2 Referring to Example 2, how long will it take for the mass of E. coli to exceed that
of the earth (whose mass is 5.979-10%4 kilograms)?

A.3 Compute the slope of the line segment AB in Fig. 2 of Example 2, when t = 4
and h = 0.05. Compare this with the birth rate R(4). Explain the result from a
geometric point of view.

A.4 The mass of E. coli present at ¢t = 10 hours is, from (1) of Example 2, 5 - 1013230
grams. Find the time t¢ at which the mass is three times that present at t = 10.
You may either solve for t¢ using logarithms and then use your HP 48 to obtain a
numerical result or you may estimate the value of t using the SOLVR to repeatedly
refine estimates of t.

A.5 To how many compoundings per hour does the last line of the table in Example 3
correspond?

A.6 Assuming that $20 is a “significant” amount of money, for what amount FP, of
initial capital invested for 10 years at 7.5% would the difference between daily and
continuous compounding become significant?

A.7 Verify the formulas for L,, and U, given in Example 4.

A.8 In Example 4, compute the areas Lig and Ue in terms of Lg and Us.

 

B.1 Use your calculator to estimate each of the following limits.

i — t 2 1(a) lim arcsinx arctanzx (b) lim 2 T arctan + COS (x

z—0 x3 a= | 2 sin a

 

x

(©) lim TzphVia?=

 

1 . _ . 2

(d) lim +v V1-v? _ v1—4 arcsinv arcsinv )

(1-v)3 v

B.2 For each number 2 assume the following limit exists and denote it by g(x), that is

_ .. sin(z +h) —sinz

9(@) = fim —————

We wish to graph the function g. For this, define the function

_ sin(z + 0.01) — sinz

- 0.01
 G(x)

We expect that g(x) ~ G(x) and, moreover, the graphs of g and G to be indistin-
guishable for the default PPAR. We may study g through GG, which may be entered
as a user-defined function. Note that G(0) is given in Example 1. Graph G(x).
What function do you think g is?

B.3 What would R(t) in (2) of Example 2 become if E. coli were to divide every 1/4
hour?

B.4 Graph w(x) = (f(z + 0.01) — f(z))/0.01 to find the approximate maximum dis-
placement of the railroad snubber function in §1.1.
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C.1 Identify the probable cause of the loss of signicant digits in computing the table just
following (7) in Example 4. Recalling that CIRC’s outputs include cos w,, estimate
the probable number of significant digits for each of the values n = 4,8, ...,512.
Assume (the true fact) that the computed values of cos w, are within 1.0x10~1°
of their true values.

C.2 The accuracy of Table 7 may be improved by modifying the formula for Ss, in (7).
Show that

o _ [I=Cu T¥Cu _ S..
an 2 1+C, 2Ji+C,

This modification may be used within CIRC to improve the accuracy ofits output.

C.3 For a limiting process in which a number A is known to be larger than each entry
of an ascending sequence L,, and smaller than each entry of a descending sequence
Un, explain why |A — A,| < |U, — L,|/2, where A,, = (L, + U,)/2. (In Example
4, L, and U, are the areas of certain inscibed and circumscribed polygons and
it is clear that the area A of the circle satisfies the inequalities L, < A < Up,
n=1,2,3,....) Note that the inequality |A — A,| < |U. — L,|/2 makes it possible
to state that the error made in approximating the unknown A with the calculated
value A, is less than a certain calculated value. Apply this result and the corrected
table values computed in problem C.2 to estimate |A,, — «| for n = 8, 16, ..., 512.

C.4 The loss of accuracy in the third column of Table 5 in Example 3 can be avoided
by using the EXPM key on the MATH HYP menu. If z is input, EXPM returns a
highly accurate value of e* — 1. Recalculate the last entry of column three of the
table, showing that for A = 0.000001, (23* — 1)/h ~ 2.07944370372. You will need
to use the fact that 2% = e*In2 for all 2.
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ARCHIMEDES’ ALGORITHM

Find 7 to within 0.00001 by calculating inscribed and circumscribed
approximations to the circumference of a unit circle, following the method
used by the Greek mathematician and physicist Archimedes (287-212 BC).
Include an error estimate and an analysis of possible sources of error.
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Start by dividing the central angle of a unit circle into 8 parts, so that
6, = w/4. The angle 20; has chord CD and tangent EK. The lengths 4-CD
and 4- EK are lower and upper approximations to the circumference. Bisect
0, to get 6,. To 6, correspond lengths ¢,, s,, and t,. From s,, and t, the
circumference can be approximated. To 6,4; correspond ¢p41, Sny1, and
tnt1. In the figure these are GL, BL, and (not shown). Show that

2 _ 1+cn 28041 _ 1 t= Sn

ntl 2 Sn Cn+41 " Cn

 

Finally, letting S, = 2"*2s, and T,, = 2"t2t,, which are lower and
upper approximations to the circumference, show that

W
n1+cn Sh
   +1

Cn = S = T = n+1 2 ) n+1 Crt ) n+1 Crt

These recursion relations hold for n = 1,2, 3, .... Initial values of ¢; and S;
are easily found. Values of cz, S2, and T; may be found from the recursion
relations. Next, c3, S3, and T3, and so on.   
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1.4 EVALUATION AND ZEROS OF POLYNOMIALS

In this section we discuss methods for evaluating and finding the zeros of polynomial
functions. We use a combination of a synthetic division program and the powerful built-
ins PLOT and SOLVR. In this we have tried to build on prior knowledge and to use the
calculator as an accurate and rapid plotting or arithmetic device, not as a replacement for
understanding. We minimize dependence on high-level built-ins until the end of Example 3,
where we discuss PEVAL and PROOT. These built-ins provide fast and accurate methods
for evaluating and finding the zeros of polynomials.

Polynomials have been part of mathematics and its applications for over 3500 years.
Both linear and quadratic polynomials were solved in Mesopotamia prior to 1500 B.C..
A thousand years later Mesopotamian (same region but several political systems later)
astronomers used piece-wise linear functions in their tables of motions of the sun, moon,
and planets. Two thousand years after that, near 1500 AD, Italian mathematicians learned
how to solve polynomial equations of the third and fourth degrees. In 1846 the French

mathematician Evariste Galois showed that for polynomials of fifth and higher degrees
there is no hope of finding formulas comparable to those found for the linear, quadratic,
cubic, and quartic cases. It’s like trisecting an angle with straightedge and compass,it just
can’t be done!

Polynomials are essential to the evaluation of the trigonometric, exponential, and log-
arithmic functions. For example, in plotting 'SIN(X)' your HP 48 repeatedly evaluates a
polynomial approximation to sinz, once for each of the 131 pixels across the screen. To
speed up such calculations, efficient methods of polynomial evaluation are required.

We start with the problem of how to evaluate polynomials efficiently and relate this to
synthetic division. We give a synthetic division program. We then turn to approximating
the zeros of polynomials. We use PLOT or synthetic division to gain a rough idea of
the location of the zeros and the SOLVR to find highly accurate approximations to them.
We discuss deflation. We include a project in which we give formulas and programs for
solving cubic and quartic polynomials. We end the section with examples showing the use
of PEVAL and PROOT.

We show in Table 8 the number of multiplications (in columns headed with “x”) and
additions (“+”) required to evaluate polynomials of degrees 1 through 4. On the left the
evaluation is done with the polynomials in traditional form. On the right the evaluation is
done with the polynomials in nested form. We used nested form in Example 3 in §1.2.

 

 

      

Table 8

xX + Traditional Form Nested Form xX +

11 ]aix+ ao xray + ag 111

3|2]|a2?+a1z+ ao z(azz + a1) + ao 212
53 [asx + ax? + a1x + ao z(z(asx + az) + a1) + ao 313
714] asx? + as3x® + a2? + a1 + ao z(x(x(agz + a3) + a2) + ay) +a 4 4 
 

It is apparent from the table that evaluations using nested form are considerably faster
than evaluations using the traditional form. Although the parentheses used in the nested
form may give an impression of greater complexity, they in fact only specify the order in
which the multiplications and additions are done.

The nested form is closely connected to synthetic division, which you may recall from
your study of polynomial equations. We recall that a (real or complex) number c is a zero
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of a polynomial p(x) if and only if (xz — ¢) is a factor of p(x), that is, p(z) = (z — ¢)q(z),
where q(x) is a polynomial. This result shows that we may test whether a number c is a
zero of p(x) by dividing p(z) by the polynomial x — ¢ and noting whether the remainderis
zero. We have

p(z) r
r—c 1@+3

 

where g(x) and r are the quotient and remainder of the division. Multiplying both sides of
this expression by (x — ¢) gives

p(x) =q(@) (2 —0c) +r (1)

We use (1) in three ways:

I If r= 0, then c is a zero of p(x).
IT If r = 0, then the remaining zeros of p(x) are those of q(x).

IIT For all numbers ¢, r = p(c).

Synthetic division is often presented as simply a condensed version of the division of
p(x) by x — c. We recall synthetic division by dividing 2? — 52 + 6 by x — 3, thereby testing
whether x — 3 is a factor and 3 a zero. The coefficients 1, —5, and 6 are put on the top row,
with ¢ = 3 displaced a little to one side. After the initialization step in which a 0 is placed
in the first column of the second row, just under the leading coefficient, the arithmetic steps
are (i) add the two numbers in the first and second row of the “active” column (initially,
the active column is column 1, the left-most) and (ii) multiply the sum by ¢ and record the
product in the second row of the next column. Repeat this pattern until the last column
of the third row has been calculated.

1-5 6 | 3

0 3  —6

1-2 0

The remainder r is the last entry of the third row, 0 in this case, which shows that ¢ = 3
is a zero. The coefficients of the quotient polynomial g(x) precede r in the third row. We
have 22 — 5x +6 = (x — 3)q(z) = (x — 3)(1- x — 2). By II, the remaining zero of p(x) is the
zero of x — 2, namely 2.

The arithmetic of this synthetic division is precisely that found when the nested form
of £2 — 5x + 6 is evaluated at x = 3. Please compare the arithmetic operations in the
above synthetic division to those occurring when z is replaced by 3 in the nested form of
x? — 5x +6:

x? —5x+6=2(r—5)+6

Before giving examples of finding the real and complex zeros of polynomials, we give
the synthetic division program SYND. This program helps with the calculations needed to
locate and find the zeros of polynomials. For SYND we use [a b c¢ | to represent the
polynomial ax? + bx + ¢, and similarly for polynomials of higher (or lower) degree. If a
coefficient is 0, the brackets [ --- | must contain a corresponding 0. To represent 22 + 1,
for example, we use [1 0 1]. The program assumes that the initial stack contains a
polynomial P, in the form |---|, and a number ¢. These inputs correspond to the first row
of the pencil and paper synthetic division algorithm discussed above. The output of SYND
is two polynomials: P on level 2 and @, which corresponds to the quotient polynomial and
the remainder, on level 1. The polynomial P is returned to the stack for possible further
use. Please enter SYND and store it under this name. The program accepts a variable such
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SYND

Inputs: P, c Outputs: P, Q or P, R

<< —= P C P, ¢ — local variables P, C

<< P SIZE OBJ— Store size of P as
DROP —- M M=n+1

<< 0 P 1 0 initializes the second row;

P & 1 initialize third row

1 M 1 — START Start an (m—1)-fold loop
GETI 4 ROLL + DUP Add rows 1 and 2

4 ROLLD C * 3 ROLLD Multiply by c

NEXT GET + End loop & do last addition

M C TYPE 6 If # Is ¢ number or variable?

THEN ROW— P SWAP Number: Outputs P & @Q

ELSE ROLLD M 1 -— Variable: Outputs P & R

DROPN P SWAP END

> > >

Checksum: #2579d Bytes: 190.5    
 

as 'X"' in place of a number c. In this case SYND outputs P and R, where R corresponds
to the remainder. We discuss this after Example 3.

In using SYND it is usually best to go into STD mode. If we wish to divide 2? — 5x + 6
by x — 3, put the polynomial [ 1 —5 6 | on the stack, then 3. Press the key beneath
SYND on the VAR menu. You willsee[1 —5 6]onlevel2and [1 —2 0] on level 1.
This shows that 3 is a zero of the polynomial z? — 52 + 6.

EXAMPLE 1. Use SYND in finding the zeros of p(z) = 623 — 1122 — 3z + 2.

SOLUTION. How do we locate the real zeros, if any, of p(x)? We may
calculate p(c) for several values of ¢, attempting to locate the zeros by
finding sign changes, or we may sketch the graph of p(z). In this example
we do the first of these, using SYND to evaluate p(x). We first look for
rational zeros. Recall that for a polynomial with integer coefficients the
only rational numbers u/v which can be zeros are those for which u is a
divisor of the constant term (2 here) and v is a divisor of the coefficient
of the term of highest degree (6 here). The divisors of 2 are 1 and 2.
The divisors of 6 are 1, 2, 3, and 6. The possiblilites for u/v are (with
duplicates)

+{1/1,1/2,1/3,1/6,2/1,2/2,2/3,2/6}

We try the smallest of the possible rational roots first.

 

0 —11 -3 2 ] Lg POLYX } Usk

Eh
2: [ 6-11 -3 2 ]
1: [ 6 -23 43 -84 ]

|ETKESIII
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Since r = —84 # 0, —2 is not a zero. In the same way we try —1,
—2/3, and, finally, —1/2. We find that ¢ = —1/2 is a zero.

[6 —-11 -3 2] «HOME POLYX } HSK
—.9 4:

3
2: [ 6-11 -32 1]
1: [ 6-14 40]

|ETNTAII|

The quotient polynomial, whose zeros are the remaining zeros of p(x),
is g(x) = 622 — 14x + 4. We could solve this quadratic and be done. Or
we may continue with the list of possible rational roots. We try the latter
and quickly find the remaining zeros 1/3 and 2.

Find the zeros of the polynomial p(z) = 723 — 1022? — 3x + 2.

SOLUTION. This polynomial has no rational zeros, as may be verified
by trying the possiblilities +{1/1,1/7,2/1,2/7}. We use PLOT to help
locate any real zeros. For PLOT we must enter the polynomial as an
algebraic expression. We choose the nested form. We may generate the
nested form for use in PLOT by putting [7 —10 —-3 2] and 'X'
on the stack and running SYDN. It returns

"(=3+(—=10+7%kX) kX)kX+2"

We explain this use of SYND later.

 

|PPAR|

16]V

|RESET| INXT|
 

 

5 [*H] INXT| [PLOT
 

Sede ——
 

-15.5]

A ——

    
Move the cursor to each of the three zeros (please do this from left to

right) and put it on the stack by pressing . After a CANCEL or
two we find

(—.5,0), (.3,0), and (1.6,0)

Answers may vary. We use these estimates in the SOLVR. The first X
below takes the first number of the pair in level 1 as an estimate of a zero.
The second X, which is preceded by 9, starts the solution algorithm.
 

 

  

  

[SOL] [ROOT| |[SOLVR| «WOME POLYX 3 Lusk

X (on SOLVR menu) 3 0

: 2: (:3:0)
I: X: 1.58522774989
CxemJC JC_1C1

The SOLVR displays the message “SOLVING FOR X” during the cal-
culation, followed by “Sign Reversal” and the zero 1.58522774989. Please
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EXAMPLE 3.

find the other two zeros in this way. You may want to use PICK on the

INTERACTIVE STACK (press [a]) to pick the next pair. Otherwise,
you may record the zero and then remove it from the stack. You should
find .353378662978 and —.510034984295. Answers may vary slightly, de-
pending upon the initial estimate. You may have gotten the message
“Zero” instead of “Sign Reversal.” “Zero” means that the HP 48 has
found a number ¢ for which p(c), as evaluated by the calculator, is 0.
“Sign Reversal” means that no number has been found for which p(c¢) is
exactly 0, but two values were found, differing only in the least significant
digit, for which the values of the polynomial have different signs.

There is an automated version of what we have just done. For this,

return to the graph by pressing [«] . The PICTURE menu shown contains

a FCN menu. Press . Now move the cursor to a zero and press

. The HP 48 calculates one of the zeros found above. Press any
ey in the top row to return to the FCN menu. You may obtain all zeros

visible on the screen in this way. To return to the VAR menu, press

and . Purge 'X"' from VAR menu when done.

Find the zeros of the polynomial L(x) = (z*—162>+ 722% —962 +24)/24,
which is one of the Laguerre polynomials used in quantum mechanics. It is
known that the zeros of these polynomials are real, positive, and distinct.

SOLUTION. A rough idea of the size of the largest zero may be obtained
by rearranging L}(z) slightly. We have

24LY (x) = 2° (x — 16) + x(722 — 96) + 24

Since all terms are positive for x > 16 we may restrict our search to
the interval [0,16]. In finding the zeros of L} we may ignore the factor
of 1/24. Keyin[1 —16 72 —96 24] and use SYND to search
for points at which p(x) = 24L}(x) changes sign as = varies from 0 to
16. You should find changes of sign between 0 and 1, 1 and 2, 4 and 5,
and 9 and 10. We use the SOLVR to find these zeros. For this we may
use SYND to generate an algebraic expression for p(x). Assuming that
[1 —16 72 —96 24] ison level 2, DROP level 1, and key in 'X".
Running SYND returns

'(—964(72+(—16+X) kX) *X) kX+24"

Go to the SOLVR by 9SOLVE ROOT, store the polynomial on the stack

as EQ, and press . In Example 2 the initial estimate was a pair

of numbers (of which the SOLVR uses only the first). We have a choice
of a single number, a pair (a,b), or a list containing one, two, or three
numbers. In this example we use a list containing two numbers, which
together define an interval containing a zero. This is generally a better
choice than a single number. For the zero between 0 and 1 we enter
the list { 0 1 }. Put this list on the stack and store it by pressing

on the SOLVR menu. Then press . You should obtain the zero
322547689619. Please find the other three zeros in this way. You should
obtain 1.74576110115, 4.53662029697, and 9.3950709123.
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In Examples 1, 2, and 3 we used synthetic division, plotting, or poly-
nomial evaluation in either finding zeros directly or estimates for the
SOLVR. The powerful built-in PROOT makes these procedures unneces-

 

 
 

 

  

sary.

[1 —16 72 —96 24] «HOME POLYX } Hk
[9soLv| [poLy| [PROOT] 4:
To view, press [v] 3
Use cursor keys to view zeros {: [ .322547689619 1...

|CECTCITECTTIIET
 

The built-in PROOT calculates all zeros of polynomials with real or complex coeffi-
cients. It uses a highly sophisticated algorithm for its calculations. On the same menu
as PROOT is PEVAL, which has the same general purpose as SYND. To explain PEVAL
recall equation (1).

p(x) =q(z)(z —c) +r (1)
Given p(x), the synthetic division algorithm gives both g(x) and r. The output @ of SYND
gives both q(x) and r.

The main difference between SYND and PEVAL is that SYND will accept two forms
of input. For SYND, the bracketed form P of the polynomial p(x) must be on level 2 and
either a number ¢ or a variable 'X' must be on level 1. When the input is a number,
SYND returns P and @, where @ is the quotient polynomial and remainder combined in a
bracketed form. When the input is a variable, SYND returns P and an algebraic form of
the remainder, which, as noted, is the nested form of p(x). PEVAL requires input P and c
and returns the remainder.

We give a second program, whose output is the bracketed form of g(x). It is used when
c is a zero of p(x). In this case, the quotient polynomial ¢(z), whose zeros are the remaining
zeros of p(x), is called a deflated polynomial. The program is called DFLT. The input to
DFLT should be P and ¢, where p(c) = 0.

< SYND OBJ— OBJ— DROP 1 -

SWAP DROP ROW— SWAP DROP >»

Store this program as DFLT. Try DFLT on the polynomial p(x) = 22 — 5x + 6, whose zeros
are 2 and 3. If you deflate p(x) with the zero 2, you should obtain the linear polynomial
x — 3 whose zero is the remaining zero of p(x).

EXAMPLE 4. Use the SOLVR, SYND, DFLT, and QUAD in finding the zeros of the
polynomial p(z) = 3z? + 423 — 222 + 2x + 3.

SOLUTION. Begin by keying in P = [3 4 —2 2 3]. We use
PLOT to locate the real zeros of p, if any. For this enter 'X' and run
SYND. Store and plot by "PLOT, 9EQ, PPAR, RESET, NXT, 10, *H,
NXT, PLOT, DRAX, and DRAW. It appears that p has two complex
zeros and two real zeros. Put the real zeros on the stack by locating them
with the cursor (left-most zero first, please) and then ENTER. This gives
(—1.8,0) and (—.7,0). Answers may vary. Although we could give the
SOLVR initial estimates in the form oflists with two elements, we choose
convenience over caution and use the pairs we got from PLOT. Since the
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equation is already stored, we may go to the SOLVR, enter the first initial
guess, and solve. We obtain —.695164924913 as one zero. Use SWAP to
put the estimate for the second real zero in level 1 and use the SOLVR
again, obtaining —1.7459736875 as the second real zero of p. Answers
may vary slightly. Now go to the VAR menu and purge 'X'. The stack
should contain the two real zeros. We are ready to deflate twice, ending
with a quadratic, which we may solve for the complex zeros of p.

We use the interactive stack to prepare for DFLT. Press A, move the
cursor to level 3, and then ROLLD. Leave the interactive stack by CAN-
CEL. Run DFLT, then SWAP, and DFLT a second time. The quadratic

[3 — 3.32341583724 2.47169972328 |

should be on the stack. We may solve this with QUAD. Start by con-
verting the bracketed form to nested form. For this enter 'X' and then

. The quadratic equation solver QUAD takes two stack inputs, an
algebraic expression on level 2 and the variable 'X' on level 1. Enter 'X"
once more. Before running QUAD go to "MODES FLAG to check on sys-
tem flag 01. We want it “unchecked,” that is, to read “General solutions.”
After OK and CANCEL, run QUAD, which is on the LshSYMBOLIC
menu. If in the expression QUAD leaves on the stack we give to sl the
values 1 and —1 we obtain both zeros of the quadratic. For this we may
use the SOLVR. Store the expression as 'EQ'. In the SOLVR, key in 1
and then press the keys beneath s1 and EXPR=. Repeat this procedure
using s1=—1. The complex zeros of p are found to be

(.55390263954, £.719090935607) = .55390263954 + .7190909356071

Answers may vary a little.
We may reduce this lengthy calculation to a few key strokes with

PROOT.Keyin P=[3 4 —2 2 3] again and run PROOT, which
is found on the 9SOLVE menu under POLY. The result may be inspected

by pressing .

In this section we have discussed a few of the many known techniques for finding zeros
of polynomials. We recalled that a real or complex number c¢ is a zero of a polynomialif
and only if x — ¢ is a factor, noted the connection between synthetic division of p(x) by
x —c¢ and the nested form of p(2), and promoted the advantages for efficient calculation the
nested form has over evaluation of p(x) in its traditional form. We recalled the “rational
roots” theorem. We discussed the use of the SOLVR and the two supplementary programs
SYND and DFLT. We gave a brief description of PROOT and PEVAL.

 

Exercises 1.4

Problems A.1-A.8 use the rational zeros result discussed in Example 1. Only SYND
and QUAD need be used. Optionally, DFLT may be used to reduce the number of
rational numbers tested.

A.1 Use SYND in finding the rational zeros of 23 — 6x2 — x + 30.

A.2 Use SYND in finding the rational zeros of 152% + 1724 — 24922 + 1992 — 30.
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A.3 Use SYND in finding the rational zeros of 17524 — 4523 — 633z2 + 37x + 18. You
may wish to use DFLT to reduce the number of possible rational zeros.

A.4 Use SYND and QUAD in finding the zeros of the polynomial 2° + 32° — 3624 —
4523 + 9322 + 132z + 140, given the real zeros are in the interval [—8,6].

A.5 Find any rational zeros of £2 — 222? — 252 + 50. Why may the search be restricted
to integers?

A.6 Find the zeros of 62% — 72% + 822 — 7x + 2. By noting the alternating signs of the
terms give an argument why this polynomial can have no negative real zeros.

A.7Find the zeros of 223 + 1222 + 13x + 15. Give an argument why this polynomial
can have no positive real zeros.

A.8Find a rational root of the polynomial in Example 5.

Problems A.9-A.14 may be solved using the techniques discussed in Example 2. Use
PLOT and the SOLVR. If the polynomial has only one real zero, use DFLT and QUAD
to find all zeros.

A.9Find the zeros of 22 — 3x + 1.

A.10Find the zeros of 23 + 322 — 3.

A.11Find the zeros of x2 + 622 + 8x — 1.

A.12Find the zeros of z2 4 422 — 10.
A.13 Locate a plane parallel to the base of a hemisperical solid that divides it into two

parts of equal volume. The following formula may be used. If a sphere of radius
a is cut by a horizontal plane h units above the center of the sphere, the volume
of the spherical cap above the plane is m(2a3 — 3a2h + h3)/3.

A.14 A spherical plastic float of radius 10 centimeters is made from material whose
density is 1/4 that of water. To what depth will the float sink in water? Assume
Archimedes’ principle that the float will displace a volume of water equal in weight
to that of the float.

Problems A.15-A.21 may be solved using the techniques discussed in Example 3, using
SYND to detect changes in sign of the given polynomial and the SOLVR, with initial
estimate a list with two numbers, to find the zeros. We give other Laguerre polynomi-
als as well as Jacobi polynomials, Hermite polynomials, Gegengauer polynomials, and
Legendre polynomials, all of which are important in mathematical physics.

A.15 Find the zeros of Ly(z) = (—2% + 92° — 182 + 6)/6.

A.16 Find the zeros of Ls(z) = (—z® + 252% — 2002 + 60022 — 600 + 120)/120.
A.17Find the zeros of the Jacobi polynomial (21/2)(z—1)3+28(z—1)2+21(x—1) +4.

A.18Find the zeros of the Hermite polynomial 16x* — 4822 + 12.

A.19Find the zeros of the Gegenbauer polynomial 192z° — 16023 + 24z.

A.20Find the zeros of the Legendre polynomial (35z% — 30z2 + 3)/8.

Problems A.21-A.23 may be solved using the techniques discussed in Example 4, which
include PLOT, SYND, DFLT, and the SOLVR, as appropriate.

A.21 Find the zeros of 36x — 15723 + 49022 — 49x — 390.

A.22 Find the zeros of 14x — 64x* + 74722 — 309722 + 2989z + 1911, given that 7i is
one zero.

A.23 Find the zeros of 202° + 7224 + 23 — 3122 — 412 — 21.

A.24 Find where the curves y = 5(3z* — 622 + 1) and y = 2(3z° — 523) intersect.
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A.25 A hollow steel ball sinks in water to the depth of its outer radius. If the thickness
of the metal is 1 cm and the density of steel is 7.5 times that of water, find the
outer radius of the ball. Recall problem A.14.

The remaining A problems may have multiple zeros. Use any technique we have dis-
cussed.

A.26 Find the zeros of 3432° — 39224 + 2002x3 — 474522 + 2416x + 448.

A.27 Find the zeros of Tx? — 2% — 4222 + 622 + 63x — 9. There are two multiple zeros.

A.28 Find the zeros of 729x5 — 810x* + 34223 — 72x22 + 8x — 32/81.

 

B.1 Explain the programs SYND and DFLT.

B.2 For polynomials with real coefficients complex zeros occur in conjugate pairs, that
is, whenever a + bi is a zero, so is the conjugate a — bi. The HP 48 representation
of a + bi is (a,b). All of the programs we have used in this section accept complex
numbers as input. Find the zeros of 2% — 23 — 37x + 91, given that —2 + 3i is a
zero. Use DFLT twice and then solve the resulting simple quadratic by hand.

B.3 When using deflation on several zeros it is preferable to find and remove zeros in
the order of their absolute values, smallest first, to minimize error. Check this
using the polynomial

zt — 1111723 + 1121107222 — 1111000732 + 100000074

The zeros of this polynomial are known to be x; = 107, j=0,1,2,3. Determine
these zeros using SYND and DFLT alternately. Use 3, 30, 300, and 3000 as inital
estimates for the SOLVR. Do the entire procedure twice, once in increasing order,
once in decreasing order. Which zeros are more accurate?

B.4 Find the zeros of the Chebyshev polynomial

12828 — 25628 + 1602 — 322% + 1,

finding and deflating as in problem B.3. You may check your own answers by
using the fact that the zeros xi, 2, ...,2rs are given by

2k +1
21 = cos ZELDT k=1,2,...,8.

B.5 Find all zeros of the polynomial

5—A 2 0

 

C.1Let C(p) = uf1 + af be the “arithmetic cost” of the polynomial p(x), where pu
and «a are the smallest number of multiplications and additions (or subtractions)
required to evaluate p(x) in its given form. The factors f; and f, are the costs of
doing one multiplication and addition, respectively. We will use the term “monic”
for a polynomial with leading coefficient 1.
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(a) The polynomial p,(z) = 23 + 722 + 2x — 5 can be written in either of the
forms pa(z) = z(x(x+7)+2)—5 or ps(x) = (x2 +1)(x +7) +(x —12). Show
that the arithmetic costs of p; (x), p2(x), and ps(x) are 4f; +3f2, 2f1+3fz,
and 2f; + 4f2. The form p3(z) of pi1(zx)is called the preconditioned form

of p1(z).
(b) For a third degree monic 23 + az? + bx + ¢, find formulas for coefficients

r, s, and t such that

tar +brtce=@2+r)(z+s) +(x +1)

Show that the arithmetic costs of evaluating this polynomial once, using
traditional, nested, and preconditioned forms (including the cost of pre-
conditioning) are, respectively, 4f1 + 3f2, 2f1 + 3f2, and (2f; + 3f2) +

(f1+2f2).
(c) If it required to evaluate the monic given in part (b) for all values of x

between 0 and 10 at intervals of 0.001, determine which form has least
cost.

C.2 Extend the procedure discussed in problem C.1 to monics of degree n = 2% — 1,
where k > 2 is a positive integer. Specifically, work out the case k = 3, first
expressing 7 + agx® + --- + a,x + ao in the form

(z* + a)(x® + g22® + 1x + qo) + (2° + rex? + TT + 70)

Apply the procedure of problem C.1 to the two cubic polynomials. Find, sepa-
rately, the arithmetic cost of the preconditioning and the cost of one evaluation
of the preconditioned form.

C.31If it is required to evaluate the monic in C.2 for all values of x between 0 and 10
at intervals of 0.001, what is the cheapest method of the three?

C.41In this problem and the next two problems we ask you to establish a simple
method for finding an upper limit for the real zeros of a polynomial. Problem
C.4 may be viewed as an elaboration of the data occurring in synthetic division.
We begin by recalling that the entries on the third line of the synthetic division
of a,z™ +--+ + a1x + ap by x — ¢ are an, ca, + an-1, .... For what follows it
is useful to replace ¢ by x and to define polynomials fi(x), kK = 0,1,...,n. On
each line of the definition (after the first) we give the relation of the function to
the preceding function. These relations are easy to verify.

i fo(x) = Qn

fi(z) = zan + an—1 =zfo(x) + an-1

f2() - ra, + 20p—-1 + Qp—2 = xfi (z) + Qp—2o (2)

 | fa(@) =2"an +--+ 201 + a0 =2fo1(T) + ao

Using these polynomials, show that

fi(x) =(x—c¢) [fo(c)z?~? + filed?2 +--+ fi—1(e)] + fi(c) (3)

for j=0,...,n.

C.5Use (3) in problem C.4 to justify the following procedure for finding an upper
limit for the positive zeros of a polynomial p(x) = a,2™ + --- + a1 + ao, where
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an > 0. Choose a positive number ¢ and try synthetic division. If the entries of
the third row are all nonnegative and the last is positive, then c is an upper limit
for the positive zeros of p(z). (Try this on the polynomial of Example 5. You will
find that ¢ = 0.8 is an upper bound.)

C.6 How may the result of C.5 be used in case a, < 07 How may the result of C.5 be
used to find a lower bound for negative zeros?
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PROJECT

CARDANO’S AND ESRRARI'S METHODS

SOLVING CUBICS AND QUARTICS

Gerolamo Cardano (1501-1576), an Italian physician, mathematician,
and astrologer, was the first to give an algebraic solution of polynomial
equations of degree three, usually called cubics. Lodovico Ferrari (1522—
1565), a student of Cardano, was the first to give an algebraic solution of
polynomial equations of degree four, usually called quartics. Both solutions
were given in Cardano’s book Ars magna (“The Great Skill”), published in
1545 and important in the history of algebra.

 

Cardano’s Method

Fill in the details of the following outline of Cardano’s algebraic solution
of the cubic equation

x2 + ax? +br+c=0, where a, b, and c are real. (1)

Step 1 Show that if x is replaced by y — a/3 in (1) we obtain

2 L 2a3

y+py+q=0, where p = b— = and g=c—2 4 a3 37 (2)

Step 2 Show that if y is replaced by u + v in (2) we may rearrange the
result to obtain

u? +02 + Buu +p)(ut+v)+qg=0 (3)

This arrangement suggests the system of equations

3uv+p=0 “

uw +12 +q=0

Step 3 To express the solutions of (4) in a convenient form we consider
the polynomial x3 — s, where s is a given real or complex number. The
Fundamental Theorem ofAlgebra states that a polynomial of degree n has at
least one solution. By deflation and successive applications of this theorem,
it follows that a polynomial equation of degree n has exactly n zeros, some
of which may be multiple. Thus the equation 22 — s has 3 zeros. Show that
these zeros are

Vs, wis, ws
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where ¢/s denotes one of the cube roots of s and w = —1/2 + iv/3/2 is a
“cube root of unity.”

Show that the system (4) can be solved by using the first equation to
eliminate v from the second equation. The result is a polynomial equation of
degree 6, which may be considered as a quadratic in the variable 43. Show
that the roots of the quadratic equation are

q ¢?  p q ¢*  pA= 12 a 7 p-_3_./9_ PD
3 TV tyr and 2 V7 Taz

Show that for any solution (u,v) of (4) either

uw=A v¥*=8B or uw =B,1v¥=A

Show that the solutions of the system (4) are

(ug, v1), (ug, v2) = (wuy,w?vy), (us, vs) = (wu, wv)

where
= vA and v; satisfies 3uiv; +p=0

Show that the solutions of (1) are

x; =u; + v1 — a/3, To = uz + v2 —a/3, x3 = us + vs —a/3

Step 4 Write two programs which, together, find the zeros of (1). First,
write a program called RCUB (reduced cubic), with input [ 1 0 p ¢ ] and
output ¥1,¥2, and ys on levels 1, 2, and 3. A second program, CARD, with
input [ 1 a b ¢] and output z;, z2, x3 on levels 1-3, can calculate the input
of RCUB and call RCUB. Try RCUB on f(z) = 23 + 92 — 2. The zeros are

22102253739

—.110511268697 + 1 3.00610016825,

—.110511268699 — 1 3.00610016824, and

Try both programs on f(z). Try CARD on g(x) = 23 + x? — 2, whose
zeros are 1 and —1 +i. Verify with RCUB that the zeros of 23 — 3x + 1 are
2c0s 40°, —2 cos 20°, 2cos 80°.
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Ferrari’s Method

Using Cardano’s work on cubics, Ferrari gave an algebraic solution of
the general quartic

zt + ax + ba? + cx + d, where a, b, ¢, and d are real. (5)

We give Birkhoff and MacLane’s arrangement of Ferrari’s method. Fill in
the details of the following outline.

Step 1 Show that the substitution y = x + a/4 in (5) gives an equation of
the form

y' +py’ tay +r (6)

Step 2 Show that for any u whatever, (6) can be rewritten as

(1? + u/2)® — [(u — p)y? — qu + (u?/4 —r)] (7)

Step 3 Recalling that a quadratic polynomial Az? + Bz + C is a perfect
square provided that B2 — 4AC = 0, show that the second term of (7) is a
perfect square provided that u is chosen so that

4(u—p)(u?/4-1)—q*=0 (8)

Step 4 Letting the polynomial in (8) be denoted by f(u), show that f(u)
changes sign in the interval (p, 00). It follows that f(u) has a real zero
uy > p. What happens if ¢ = 0?

Step 5 With u = uj, (7) has the form S$? — T?, which factors into two
quadratic factors, the zeros of each of which are easily found. From this
result the zeros of (5) can be found.

Step 6 Write a program FERR for finding the zeros of (5). Test your
program on the polynomials 2z* + 522 — 82% — 17x — 6, 2% + 22% + = + 2,
x4 — 32% + 6x — 2, and 2% — 22 — 22 — 1. The zeros are —3, —1, —1/2, 2;

(-1+iv3)/2, (1£iVT)/2; -1+ V2, 1+; 1+£V5)/2, (-1+iV3)/2.
   



Chapter 2

Derivatives
[|]

2.0 Preview

2.1 Differentiable Functions and the
Difference Quotient

2.2 Symbolic Derivatives

2.3 Inclination and Intersection;
Reflections from Conics

 

2.0 PREVIEW

A function f is differentiable at x if under increasing magnification its graph looks more
and more like a straight line through (z, f(z)). Geometrically, the derivative f’(x) of f at
x is the slope of the line towards which the magnifications tend. Symbolically, we say that
f(x) is the limit of a quotient function @ defined in terms of 2. In this chapter we discuss
the difference quotient, the symmetric difference, the angle of inclination of a tangent line
to the graph of f, the angle between intersecting graphs, the tangent line approximation,
the reflection properties of conics, and symbolic differentiation.

 

2.1DIFFERENTIABLE FUNCTIONS AND THE DIFFERENCE QUO-

Through the zoom features of the HP 48 it is easy to make immediate, gut-level sense
of the statement that a function f is differentiable at a point zx if it is increasingly line-like
under magnification. We give an example using ZIN on the ZOOM menu.

EXAMPLE 1. Give graphical evidence that the function f(x) = sinz is differentiable at
x =0.

SOLUTION. Graph f(z) = sinz in radian mode and with the default
PPAR. With the graph on the screen, we use ZFACT on the ZOOM
menu to set the horizontal (H-FACTOR) and vertical (V-FACTOR) scale
factors to 0.1. We zoom in with ZIN.

Ee
1 | ,

zIN] [=] eA65

 

 

o
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Since we started with RESET, after ZIN the tick marks on the axes
are separated by 0.1 units. Move the cursor to the first tick mark to the

right of the origin and press . The coordinates of this point should

be (0.1,0). It appears, then, that for —0.3 < = < 0.3 the graph of sinz is
not distinguishable from a straight line through the origin with slope 1.

Press again and repeat ZIN.

oly
a & a a a a a a a on > a

 

 

   -.031]
 

The coordinates of the first tick mark to the right of the origin are
(0.01,0). It thus appears that for —0.032 < x < 0.032 the graph of sinx
is not distinguisable from that of y = x. Further magnification would
show the same thing.

The derivative of a function f at a point z is defined as the limit of the difference

quotient

qr = LENT go )
as h — 0. If this limit exists we denote its value by f’(x) and say that f is differentiable
at x.

If f is given no physical interpretation, the quotient Q(h) is usually interpreted geo-
metrically, as the slope of the “secant” line joining the points (z, f(z)) and (z +h, f(z +h))
on the graph of f. This familiar interpretation is shown in Fig. 1.

  

 

(x+h,f(x+h))

(x,f(x)
 

 
Figure 1

If f(x) is the position of a particle at time xz, then Q(h) is the average velocity of the
particle on the time interval [z,x + h|. In either of these interpretations, = is thought of
as fixed and h as a variable. Geometrically, as h — 0 the secant line turns about (z, f(z)),
tending towards coincidence with the tangent line to the graph at this point. For the
particle, the average velocity approaches the “instantaneous velocity” at time x.
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To calculate the derivative f/(z) of f at x we must know or be able to calculate the value
of f at x and at all points « + h near x. In this case, Q(h) can be calculated for all h near
but not equal to 0. There are, however, applications in which a function is neither known
nor can be calculated at all points x + h near x. For example, the position of a particle may
be known only at times x = 0.0,0.1,0.2,...,10.0 seconds. We may, nonetheless, calculate
its average velocity for each of the intervals [0.0,0.1], [0.1,0.2], ..., [9.9,10.0]. We use the
formula

fle+01) - f(z)¥ z =0.0,0.1,0.2,..., 9.9

Plotting the average velocity data on these short intervals would give some idea of how the
velocity of the particle is changing with time. Why? Because on small time intervals we
expect the average velocity to be very nearly equal to the velocity.

In our discussion of the difference quotient we use the common “square bracket” nota-
tion. We write

flx+h)— f(z) 2)fle, z +h] =

In what follows we think of (2) with & fixed and z variable. For each xz, we freeze the limit as
h — 0 at a small, fixed value of h, say, h = 0.1. In terms of slope, this amounts to studying
the slope of the graph of f at points (x, f(x)) by approximating them with the slopes
flz, x + h] of the secant lines. In terms of the velocity of a particle, we approximate the
velocity at times x by calculating the average velocities f[x,z + h]. We give two examples.

EXAMPLE 2. Compare the graphs of sin and its difference quotient sin[z, xz + 0.1] by
plotting them simultaneously.

SOLUTION. Store 'SIN(X)' as EQ1 and ' (SIN(X+.1)—SIN(X))/.1' as
EQ2. To plot simultaneously, the first thing we do in PPLOT is to check
(v') the SIMULT option on the PPLOT OPTS screen.
 

 

 

 

eck the LT option

ok] 5) [RESET] LS a a
[oct] [CHOOS| I

eck EQI and EQ2 -3.1]     
 

loKk| [DrAwW| [EDIT]

xr] [caer] []
In the resulting figure, the heights of the two graphs at x are sinz

and the approximate slope of the sine function at the point (z,sinz).
Starting at x = 0, where the slope of the sine curve appears to be near
1 (the angle of inclination is near 45°), the slope decreases as x moves
towards 7/2, where it appears that the tangent line is horizontal. The
graph of sin[z,x + 0.1] is a record of the slopes of the secant lines to
the graph of sinz. As the two graphs are being plotted, try to see them
as curve and “slope curve.” As the plotting starts at the left, the sine
curve starts out on the bottom. Perhaps you noticed that the slope curve
is barely distinguishable from the cosine curve. This demonstration is
strong evidence that d(sinx)/dx = cosz.
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x+h| can become tedious, even for relatively simple functions. We discuss
a way of generating f[x, z+ h] for functions defined in program style. We demonstrate with

the function f(t) = /t. In what follows, the letter F refers to the F variable put on the
VAR menu by DEF.

'F(T)= /T"

TL F 1
T F 3:
As BoeRi23

 

RAD 1Usk
DEF { HOME DIFFX }
 

  
This calculation is illustrated in the next example.

EXAMPLE 3. Plot the position y = f(t) and the average velocity f[t,t+ 0.05] of a mass
hanging from a spring, where

y = f(t) = 0.7sin(27t/3)

Estimate from the graph the position at ¢ = 4.2 and the average velocity
of the mass on the interval [4.2,4.25].

SOLUTION. The velocity of the mass at any time ¢ may be approxi-
mated by calculating the average velocity on the interval [t,t 40.05]. The
calculation is

0.7 sin(2m(t + 0.05) /3) — 0.7 sin(27t/3)
flt, t+ 0.05] = YE 

The period of oscillation is 27/(27/3) = 3 seconds. We plot two periods
to get a sense of the continuing motion. Begin by using DEF on

'F(T)=.7kSIN(2%7%T/3)"

This puts F on the VAR menu, replacing any earlier function stored as
F. We plot f(t) and f[t,t + 0.05] simultaneously.

'T+.05" F 'T

Fo] 05
[+] ‘EQ 'T!

F EQ
IPPLOT|— |RESET)|
at] [CHOOS]

eck EQ1 and EQ2;
then set INDEP to T and

H-VIEW from 0 to 6

The curve with the larger amplitude is the average velocity. The
other curve is the coordinate position of the mass. To find the position
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and average velocity at t = 4.2 turn on TRACE. Use A or Vv to put the

cursor on the position curve, press to display coordinates, and then
trace until ¢ = 4.2. Do the same for the velocity curve. You should find
f(4.2) = 0.41 and the average velocity on the interval [4.2,4.25] to be
—1.2, approximately.

In the above examples, the difference quotient f[x,z + h| was a good approximation to
the function f’(x), for the reason that h was sufficiently small relative to the change in f’.
By contrast, the sketch in Fig. 2 shows a case in which the difference quotient (slope of the
line CB) is at best a fair approximation to f’(x) (slope of the line DCE). The stepsize h
is not small enough or, better, the stepsize is not small enough relative to how rapidly the
slope of the curve is changing. From the figure we see that the slope of line AB is much
closer to the slope of the tangent line DCE than the slope of CB.

  

 

Figure 2

The slope of AB is called the symmetric difference of f. From the figure the symmetric
difference is

flx+h)— f(x —h)
2h

If f is differentiable at x, the limit of the symmetric difference as h — 0 is f/(z) .
We give one example of how information about f at one point can be used to ap-

proximate f at nearby points. Using Fig. 2, the question is how can we approximate
BF = f(z + h), given the values h, f(x), and f’(x)? The standard answer, referred as
the tangent line approximation, is that EF ~ BF. The distance EF is the height of the
tangent line DCE above F. Since the equation of this line is

Y — f(z) = f(z)(X — x),

 

where the running variables of the line equation are X and Y, we see that

flx+h)=BF m= EF =Y = f(z) + f'(z)((x + h) — 2) = f(z) + hf'(z),

so that

f(x +h) = f(x) + hf(z) (3)
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EXAMPLE 4. A car is moving on a straight road. The car is observed passing the 119
mile marker with velocity 63.2 miles per hour (the car is moving towards
the 120 mile marker). Where will the car be after 5 seconds?

SOLUTION. We may answer the question without explicitly using the
tangent line approximation. In the absence of other information, we
assume the velocity is constant and use the formula D = RT. The result
would be that the car is at the 119 + 63.2(5/3600) ~ 119.087 mile point.
The assumption of constant velocity is equivalent to estimating the car’s
position at t = to + 5/3600 seconds knowing its position and velocity at
t = to seconds and using the tangent line approximation. We are neither
given to nor does it matter. We may imagine the position f(t) of the car
at any time t is a specific but unknown function. What we do know is that
f(to) = 119 and v = f’(to) = 63.2. Using the tangent line approximation
(3) we have

f(to + 5/3600) ~ f(to) + hf’ (te) = 119 + (5/3600)63.2 ~ 119.087

In this section we have studied the idea of derivative from two viewpoints. First we
used a graphical approach, magnifying the graph of f at a point (x, f(x)). If f is differen-
tiable there, its graph is increasingly line-like under magnification. Secondly, we used the
difference quotient and symmetric difference to numerically approximate the derivative. In
the next section we study the derivative from a symbolic viewpoint.

 

Exercises 2.1

A.1 Repeat all of Example 1 with f(z) = cos. What is your conclusion?

A.2 Repeat all of Example 1 with f(z) = tanz. Compare f[z,z + .1] with sec®z by
graphing them simultaneously. What is your conclusion?

A.3 Find an approximate value of the maximum velocity of the mass discussed in
Example 3. If you know how to differentiate this function, check your result.

A.4 You may know that the derivative of f(x) = /x is 1/(2\/x) for x > 0. Plot
flz,x + 0.1] and f’(x) together for x > 0.1. How do they compare? Where on
[0.1, 00) do they differ most? Explain.

 

B.1 If the position s(t) (in meters) of a particle moving on a line is known only at times
t = to,t1,1%2,...,tn (in seconds), the velocity can not be found by differentiating
s(t). However, we may approximate the velocity by calculating s[t;,t;41] for i =
0,1,2,...,n — 1. The calculation is easily done by hand when the number of data
points is small. When the data set is larger, the calculation is better left to a
calculator or computer.

(a) The pairs

(0.0,0.0), (0.2,0.06), (0.4,0.18), (0.6,0.34), (0.8,0.54), (1.0,0.78),

(1.2,1.04), (1.4,1.32), (1.6,1.62), (1.8,1.92), (2.0,2.22)

give the positions (t;, s(t;)) of a particle at times tg, t1,...,t10. Calculate
and sketch the velocity v(t;) using v(t;) =~ sti, t; + (tiy1 — t;)] for i =
0,...,10.
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(b) We give a program to calculate velocities as in part (a). The program
assumes that pairs (t;,s(t;)) are on the stack, with (to, s(to)) at the top.
The output is a graph of the velocities. Try the program on the data given
in part (a). In the explanations column of the program we use the brief
notation px to denote the data point (tx, sx). We use the arrow to denote
stack changes. For example, px—1, Px — Pk—1, Pk, Pk—1 Suggests the way the
command OVER changes the stack.

 

VEL
 

Inputs: (to, s(to)),--. , (tn, s(tn)) Outputs: Velocity Graph
 

 

<< CLX

DEPTH

1 — 1 SWAP

START OVER DUP

RE 3 ROLLD

— C-=R

SWAP /

2 —ARRY X+ NEXT
DROP

SCATRPLOT DRAX PICTURE >»  

Clear statistical matrix

Find number (n + 1) of data points
Put 1 and n on the stack

Set k =n; pn—1,pn —

Pn—1,Pn;Pn—1,Pn-1

Pn—1,PnyPn—1,Pn—-1 —

Pn—1;tn—1,Pn, Pn—1

Pn—1,tn—1,Pn,Pn—1 —

Pn-1, ln—1,tn - th—1, Sn — Sn-1

Pn—1tn—1,tn —ln—1,8n — Sp—1 —

Pn—-1,tn—1,Vn—1

Pn—1,tn—1,Vn-1 —

Pn—1, [th—1 Un_1]; store
[tn—1 vn—1] in statistical matrix

Draw graph and axes

Checksum: #38097d Bytes: 77.5  
 

(c) Enter the position data

(0.0,0.0), (0.2,0.2), (0.4,0.6), (0.6,1.1), (0.8,1.7), (1.0,2.2), (1.2,2.2),

(1.4,1.9), (1.6,1.5), (1.8,0.9), (2.0,0.1), (2.2, 0.8), (2.4, —1.4), (2.6,—1.6),

(2.8,—1.3), (3.0,—0.9), (3.2,—0.4), (3.4,0.2), (3.6,0.8), (3.8,1.3), (4.0,1.7)

Before using VEL to plot the velocity data, key in 21 (the number of data.
items) and use —LIST on the OBJ menu on the PRG TYPE menu to save
a copy of this (somewhat tediously entered) data. Store it as DAT. After
recalling it to the stack for use in VEL, use OBJ— to spread it up the stack
for VEL. You will need to DROP one number (the number of entries in

the list) from the stack. Now press [VEL] . These programs use the STAT
 menu to store and plot. SCATRPLOT autoscales the plot. Use the plot to

estimate the maximum and minimum velocities and the times they occur.

(d) If the data in part (c) were velocity data instead of position data, how could
VEL be used to compute approximate values of the acceleration at times
t=0, 02... 2.8?

B.2 Experiment with FEVALto find a method of calculating f[z, x+h], using w instead
of xz to avoid a problem with FEVAL.
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B.3 The program FEVAL assumes that the stack contains an expression for f in level
2 and a number z in level 1. FEVAL returns the function and the value f(z).
Write a program DQEV that assumes the initial stack contains an expression for
f in level 3, a number z in level 2, and a number h in level 1. The program should
return the function and the value f[z,x +h]. The program may itself call FEVAL.
Test your program on a simple function, such as f(z) = /x.

B.4 Write a program DQ which assumes a function f has been stored as F by DEF
on the VAR menu. The inputs to DQ should be z and h on the stack. The
output should be f[z,z + h]. The program DQ should have the form <« —
X H ‘'an expression' >. Test your program on a simple function such as
f(z) =Inz, using 'X' and 'H' as inputs.

B.5 The difference quotient f[x,z + h] is closely connected to the definition of f'(x).
For functions whose tangent lines are not turning too fast relative to the step-
size h, we have observed that f'(z) =~ f[r,x + h]. The “cost” of the difference
quotient is two function evaluations, a subtraction, and a division. At almost the
same cost a considerably better approximation to f’(xz) can be calculated. It is
called the symmetric difference. See Fig. 2. Write a program SDQ which calcu-
lates the symmetric difference. Follow the suggestions in problem B.4. Use the
function f(z) = /z to compare the difference quotient and symmetric difference
approximations. Let h = 0.1. Plot both approximations simultaneously, first set-
ting H-VIEW: 0.1 4 and V-VIEW: 0 1.6. To look more closely at the steepest
part of the graph, set H-VIEW: 0 2. Using the same viewing rectanagle, graph
simultaneously the difference quotient, the symmetric difference, and the derivative

1/(2v/x).
B.6 Use the Mean Value Theorem in showing that the symmetric difference is the

average of two values of the derivative. This suggests why the symmetric difference
often better approximates the derivative than the difference quotient.

 

C.1 The sketch in Fig. 2 of the symmetric difference and the difference quotient suggests
the formeris at least in some cases a better approximation to the derivative than the
latter. Problem B.5 gives evidence for this in a specific case. In problems C.1 and
C.2 we study the two approximations more closely, with x fixed and h variable. In
particular we take f(z) = /z, x = 1, and let h take on values 0.1, ,0.01, 0.001,....
We define the functions A; and A; by

Ay(h) = v1+h-1 _ 1 T+h—VI-H
h 2 and Ag(h) = F————— -

N
o
=

These functions measure how well the difference quotient and symmetric difference
approximate the derivative f’(x) = 1/(2\/z) at x = 1. Verify the entries of Table 1
(you may wish to use the short program given below) and attempt to reconstruct
the reasoning that led to deciding the third and fifth columns would be of interest.
How significant is the improvement?

This program uses DQ from problem B.4, has input Ah, and outputs the second
and third columns. It may be modified to output all columns.

« » H«< 1 HDQ 5 — DUP H / > >

The * symbols denote a loss of accuracy due to the subtraction of two numbers of
nearly equal value. Most of the missing values may be calculated by “rationalizing
the numerators” of the difference quotient and symmetric difference.
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Table 1

h A(R) |Ai(h)/h| Dah) Aa(h)/h?
1 -.0119 [-.119 |[.000628 0628
01 —.00124 |[-—.124 |.00000625 |.0625
001 -.000125 |—.125 |.0000000615 |.0615
0001 —.0000125 —.125 * *
.00001 |-—.000001 |-.1 * *
000001 | * X *       

C.2 Use cases n = 1 and n = 2 of Taylor’s Formula to explain the numerical study of
the functions A; and As in problem C.1. Taylor’s Formula, which is included in
most calculus texts, may be stated as follows: If f and its first n derivatives are
defined and continuous on an interval [a,b] and its (n + 1)st derivative exists on
(a,b), then for any two numbers z,z + h € [a,b], there is a number ¢ between x
and x + h for which

f@ +h) = 1@) + [O@h+  fO@R+++ —[@)h"
| (4)

 rden
The case n = 0 is the Mean Value Theorem, which you have seen. (The most
common form of the Mean Value Theorm follows from Taylor’s Formula by letting
x +h = band x = a.) The expression for A;(h) is easily formed. For A;(h)
apply Taylor’s Formula twice, once to get an expression for f(z + h) and again for
f(z — h). There is no reason why the two values of ¢ you will get are equal.

C.3 Knowing something about how the error in an approximation process behaves can
lead to a significant improvement in estimation. For the function f(z) = /z,
problems C.1 and C.2 suggest that for a given value of z, the error Ay(h) =~ kh?,
where k is a constant. Assuming this is the case we may write

f(x) = SD(z,x +h) ~kh® and f(x) — SD(z,x + h/2) ~ kh?/4 (5)

where SD(z,z + h) is the symmetric difference of f at x with stepsize h. If the
second of the relations in (5) is multiplied by —4 and the result is added to the
first relation, show that

f(z) ~ 35D,z+ h/2) — 28D, z+ h) (6)

This is called Richardson’s extrapolation. We now have three approximations to
f'(z): the difference quotient f[z,z + h], the symmetric difference SD(z, kh), and
the result in (6). Show that for f(x) = \/x these approximations to f/(1) = 0.5,
with h = 0.1, are 0.4880884817, 0.500627750595, and 0.499999311388.
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2.2 SYMBOLIC DERIVATIVES

The procedure or algorithm for calculating the derivative f’(x) of a differentiable func-
tion f at a point x can be stated in the form of a number of rules. For example, if f is a
sum of several differentiable functions u, v, and w, f’(x) may be found by calculating and
adding the derivatives of u, v, and w. If f is a product of two functions u and v, then we use
the “product rule,” according to which f’(z) is a certain combination of u, v, uv’, and v'. If
f(x) = sin(u(z)) is a composite function, where u is a differentiable function, then we apply
the “chain rule” to obtain f(x) = cos(u(z))u’(x). There are altogether between 11 and 33
differentiation rules used in elementary calculus. (The count depends upon several things.
Does one count both addition and subtraction? Does one count both the natural logarithm
function and logarithms to other bases? What about the inverse cosecant function? Etc.)

Your HP 48 “knows” all the differentiation rules of elementary calculus. It does not
always simplify the derivative it obtains in the ways most of us have learned, but the results
are algebraically the same as those obtained by hand. The HP 48 can be used to calculate
the numerical value of f/(z) for specific values of x as well as a symbolic expressions for
an unspecified value of z. It can differentiate equations implicitly and be used to illustrate
the chain rule. We illustrate these features of HP 48 differentiation in a series of examples.

To differentiate symbolically your HP 48 must be in the symbolic mode. Go to the
IYMODES menu and press the key beneath SYM. The SYM mode should be ON, that is,
there should be a small square next to SYM.

EXAMPLE 1. Differentiate the function f(z) = x? symbolically.

SOLUTION. Put the expression 'X~2' on the stack, followed by 'X"',

and then press ER The result '2%X' is returned to the stack. If a
number was returned to the stack instead of this expression, you must
have a variable X stored somewhere on the path between your current
directory and HOME. If this is the case, the result returned to the stack
was the derivative 2x evaluated at the stored value of X.

EXAMPLE 2. Calculate the slope of the graph of the function f(z) = x sinx at x = 1.0.

SOLUTION. First, store the value 1.0 under the name X. Next, put

'X*SIN(X)' on level 2 and 'X"' on level 1. Now press El . The number
1.38177... = sinl + cos 1 is returned to the stack. This is the slope of
the graph at (1, f(1)). Purge X from the VAR menu.

EXAMPLE 3. The method used in Examples 1 and 2 is called “complete differentiation”
to distinguish it from “stepwise differentiation.” The latter may be used
to illustrate the chain rule. Differentiate f(x) = (522 — 7)3 using stepwise
differentiation.

SOLUTION. To motivate the HP 48 notation used for stepwise differ-
entiation, recall that there are several notations used for the derivative
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EXAMPLE 4.

EXAMPLE 5.

of f at a point x.

Li@ or fl) oo Duf@
The HP 48 notation imitates the third of these. To differentiate f(x) =
(522% — 7)3 stepwise,first purge X (if necessary) and then
 

RAD 1USR
HOME DIFFX }19 X((5%X~2-7)"3)" .

|[ENTER| |EVAL| [EVAL] 4:
[EvaL] [Eval] [EVAL] 3

]1:l9symBoLIc| [coLcT|

 
 

  

    ' 30% (=7+3*K"2)"2*X'
DIETSR70FETETTBETET

 

 

The first EVAL differentiates only the outermost function, in this case
g(w) = w3. One ofthe factors in the derivative is g’(522-7) = 3(522-7)2.
The derivative of 522 —7 is indicated but not evaluated. The second EVAL
differentiates the sum 5x2 — 7, the third the product 522, the fourth
differentiates 22, and the fifth EVAL differentiates 2. COLCT simplifies
the result. If before starting a step-by-step differentiation a number is
stored as X, the final result is a number, the derivative evaluated at the
stored value. If we store the number 4 as X and differentiate as before,
we find f/(4) = 639480 after 5 EVALs.

Differentiate the function f(z) = x3, assuming it is defined in program
style and stored as F, that is

LL —- X 'X73" >

SOLUTION. A function defined using “program style” can be differen-
tiated using either the stepwise or complete method. To differentiate f
using the complete method put 'F(X)' and 'X"' on the stack and then

press 9] . To differentiate f using the stepwise method, we EVAL the

expression '0X(F(X))'. In either case, if a number zx is stored as X the
final result will be the number f(x).

Differentiate the composite function cot(z3), first by direct entry and then
by defining each of the functions f(u) = cotu and g(x) = x3 separately
in program style.

SOLUTION. To differentiate cot(z3) by direct entry, key in

'INV(TAN(X3)"

followed by 'X' and El . The result may be rearranged by hand to give

the more traditional form —3z?% csc? (x3).
To do the same calculation using functions defined in program style,

press after entering each of

'COT(U)=INV(TAN(U))' and 'G(X)=X"3'
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To differentiate the composite function cot(z3), put 'COT(G(X))' and

'X"' on the stack and press 9] .

EXAMPLE 6. It is sometimes useful to think of a composite function as the result of
combining several equations by substitution. For example, the composite
function sin v/z may be thought of as the “chained” equations

y=sinw and w=+x

where w is the “chaining” variable. In this context the chain rule is often
written as

dy dydw
COS W L — cos VF——

dr dwdr 2,/T 2./

Model this approach to composite functions and the chain rule on your
HP 48.

SOLUTION. Store the expression 'SIN(W)' as Y and store 'y/X' as

W. To calculate dy/dx put 'Y' and 'X"' on the stack and press 9] . We

find 'COS(y/X)*(1/(2%/X)).

 

Implicit Differentiation on the HP 48

The functions

f(x) = V1 — 2x? and g(x) = —V1-—22

“satisfy” the equation 22 +32 —1 = 0 for —1 < z < 1. This means that if in the equation y
is replaced by either of the expressions v/1 — 22 or —v/1 — z2, the left side of the equation
is identically equal to O for all z € [1,1]. This is summarized by saying that the equation
defines the functions implicitly. The equation x? + y? — 1 = 0 is sufficiently simple that f
and g can be found explicitly by “solving” the equation for y in terms of x. Many equations
cannot be solved in this way but nonetheless define one or more functions implicitly. For
example, the equation siny + (x2? + 2)y + = = 0 defines y as a function of x, but cannot be
solved (in finite terms) for y. Whether an equation can be solved or not, we may wish to
calculate the derivative of any differentiable function f defined by the equation. To prepare
for the discussion that follows, we recall the technique of “implicit differentiation.”

We show the main steps in implicit differentiation for each of the two equations we have

discussed.

2 +1y°—1=0 siny + (22 +2)y+2=0

2x +2yy’ = 0 y cosy +2zy + (22 +2)y +1=0

y= 2 y=201
Y cosy + x2 +2

When we differentiate implicity we make a mental note that, say, y is a function of z,
but rarely write anything down. If we are to use the HP 48 to differentiate implicitly, we
must write something down for it. The way we do this is to replace y by y(z) in equations
like 22 + y% — 1 = 0. We discuss this in the next example.
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EXAMPLE 7. Differentiate the equation 22 + y? — 1 = 0, which implicitly defines y as
a function y(z) of x.

SOLUTION. Purge any variables X or Y.
 

 

 

'X"2+4Y(X) "2 —-1=0 £ROME DIFFX 3 Hk
ENTER 3:
'X' ENTER 5:
0 1: ooery(fy 1)*2*¥(

 [to |Sto JREPY |inPLJINCLY[MELIn]

This result corresponds to 2x + 2yy’ = 0. Leave the final result on
the stack for use in the next example.

We give a short program to rewrite expressions like that left on the screen in Example
7. This program, which depends upon the TMATCH command on the 1SYMBOLIC menu,
replaces all subexpressions Y(X) in an expression by Y and all subexpressions derY(X,1)
by DY.

< {'YX)'Y} TMATCH DROP { 'derY(X,1)' DY} TMATCH DROP >

Please store this program in a DIFFX directory, naming it, say, REPY.

EXAMPLE 8. Differentiate the functions defined implicitly by

2 +y?—-1=0 and siny + (2? + 2)y +z =0

with the help of the program REPY.

SOLUTION. For the first equation, given that the final result of Exam-

ple 7 is on the stack, we simply press . The result is

'2%X+DY%k2%xY=0"

The second equation leads to a more complex result.

 

SNXY(X)+X=0 "OIME DIFFX 3 LUSK
+X=0"

[ENTER] 'X' [ENTER]

. EsaEee
[(ox |Stor JKEP]IPL[INCLYMELEH

 

    

Leave this result on the stack for use in Example 9.

Using the methods of Example 8, the result of differentiating an equation implicitly is
an equation in terms of the variables z, y, and 3’ (X, Y, and DY). Usually we want to
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solve for 3’. If the equation has been copied from the screen (after pressing [v] to produce

a more readable form), it is easy to solve by hand for y’ since the equation is “linear” in
y’. If we do not wish to copy from the screen and do further calculations by hand, there
are several things we may do.

If we wish to calculate 3’ for specific values of x and y, then we may use the SOLVR
and the ALGEBRA menu. This is discussed in Example 9. If we want to write 3’ as a
function of x and y and wish this done by the HP 48, the situation is not quite so easily
handled. We give in Exercise C.1 a program that returns y’ as a function of x and y.

EXAMPLE 9. The equation
siny + (22 +2)y +2 =0 (1)

defines y as a function of xz. Find the derivative of this implicitly defined
function at the point (0.1, —0.0332246220278), which satisfies (1).

SOLUTION. Given that the final result from Example 8 is on the stack,

£HOME DIFF3 Hk

15Q 4

.1 X (on the SOLVR menu) 3

10332246220278 Y : 1DY=—.330078817872"
TOAIEEEMETCETTEBETTERETA

|9SYMBOLIC| |COLCT|

DY"
So, yy’ = —0.330078817872 at (0.1, —0.0332246220278).

 

 

  

 

 

 

In this section we used the symbolic differentiation features of the HP 48 to illustrate
the chain rule and implicit differentiation. When y is defined implicitly, we used the REPY
program and the SOLVR to calculate 3’ at a given point (z,y).

 

Exercises 2.2

A.1 Differentiate each of the following functions symbolically. Purge X from all direc-
tories on the current path before starting.

(a)

(c)

(e)

—32% — 52 +2 (b) V3r —5
223 — 5

7 (@ sinve
[11v22% + 1/(7 + 112))%/? (f) T+ VT +x

A.2 Repeat problem A.1 but instead of obtaining a symbolic result find the values of
the derivatives at x = 2.

A.3 Repeat problem A.1 but use the SOLVR to evaluate the symbolic expressions at
xr = 2.
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A.4 Differentiate each of the following functions using stepwise differentiation.

(a) (22 +1)3 (b) V2z

(0) ae (d) sin32T5
(e) tan(sin(1/T)) (f) In(arctan x)

A..5 Differentiate the function f(z) = vx? + 7z — 2 using the method illustrated in
Example 4. Compute the value of f’(9) using two different methods.

A.6 Differentiate the composite function f(z) = sin(cosz) by (i) direct entry and
complete differentiation, (ii) direct entry and stepwise, (iii) storing

<< — X 'SIN(X)' >as,say,Sand kK — X 'COS(X)' > asC

and using complete differentiation, and (iv) storing as in (iii) and using stepwise
differentiation.

A.7 Use the idea of “chaining variables” as in Example 6 to differentiate the function
defined by

Bw -—-7

Sw? +1

Check the result by hand to see if the HP 48 got the correct answer.

A.8 The length L of a beam in inches is given by L = 0.0737 + 34.7, where T is
the ambient temperature in Fahreheit degrees. The temperature T' is given by
T = 51.04 12.3 sin(nt/12), where t is measured in hours from 6:00 AM. Compute
the rate of change of the length of the beam at 2:00 PM.

A.91In this problem we assume you have stored the program REPY discussed just
before Example 8. For each of the following equations, use REPY in finding
the derivative 3’ of the implicitly defined functions(s). After REPY, solve for gy’
by hand. You may enter the equations as given, or rewrite them in the form

f(x,y) = 0.
(a) py +22%y+1=0
(b) 2 +> -1=0
(c) yz ty) =—a+y
(d) y =sin(z +)
(e) Vy=3z+y*=2+2, —2<z<0
f) 2?+p’ =1, 2>0

(g) Vi—-zy/T+y=22+9% 0<z<1
(bh) Ve —z/y—zyyT=9y—-1, 220

Y and w=+x

A.10 The items (a)—(h) in this problem correspond to the equations given in problem
A.9. In each case, a point (zo, yo) satisfying the corresponding equation is given.
Give the equation of the tangent line to the implicitly defined function at the
given point.

(a) (1,—0.453397651518) (b) (0.5,0.95646559158)
(c) (—1, 1.83928675521) (d) (0.1,0.753750156832)
(e) (—0.5,0.366026175736) (f) (1,0.754877666371)
(g) (0.5, 0.597246449686) (h) (1,0.609611796798)
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A.11 Most calculus texts discuss the differential df of a function f. The value of the
differential df depends upon two numbers, the value of x and an “increment,”
usually denoted by Az or h. Using the latter notation we have df = f/(z)h. The
differential is used in what is often called the “tangent line approximation” to
f(x + h). The approximation is written as

f(x +h) ~ f(z) +df = f(z) + f'(x)h

Use this result to compute approximations for each of the following cases. In
each case compare the tangent line approximation to f(x + h) with the “HP 48
approximation” obtained by a function evaluation at x + h. (The fact that with
a key press or two you are able to obtain better approximations than that given
by the tangent line approximation shows that this kind of problem is becoming
artificial. The idea of the tangent line approximation remains, however, very
important.)

(a) f(z) = Vz? +4, x =2, h = 0.14
(b) f(z) =+/(Tx —3)/(z + 5), x = 4, h=-0.2

(c) f(z) =sinyz, =x=n2/36, h=0.18
@) f(z) =e, z=-1, h=-02

 

B.1 By looking through the Owner’s Manual, determine that there are 27 functions
or operations with which there may be associated a “differentiation rule.” Notes:
Count such functions as ABS and + but do not count such functions as SIGN,
which, when differentiated returns 'derSIGN(X,1)'.

B.2 At the beginning of this section we said “there are between 11 and 33 differenti-
ation rules ...”. Look though your calculus book with the idea of checking this
assertion.

B.3 Demonstrate that the HP 48 knows the differentiation rules by placing each of
'UX) + V(X), 'UX)*V(X)', and 'U(X)/V(X)' on the stack and differenti-
ating with respect to X. Also try 'SIN(U(X))' and 'EXP(SIN(U(X)))"'.

B.4 Write a short program for computing the value of the tangent line approximation
to f(x + h) discussed in problem A.11.

B.5 Suppose the equation f(x,y) = 0 defines y as a function y(z) of z. Using the
tangent line approximation (see problem A.11), estimate y(x + h) for one or more
of the equations defined in problem A.9. Use the specific points given in problem
A.10 and take h = 0.1 in all cases.

B.6 Explain how the program REPY works.

 

C.1 The “natural” method of calculating the derivative 3’ of a function y(z) defined
implicitly by an equation f(x,y) = 0, is based on the Implicit Function The-
orem. You may find this result in your calculus text, probably in the chapter
in which partial derivatives are discussed. It is stated in terms of the partial
derivatives D,f(x,y) and D,f(x,y) of f. It is easy to calculate partial deriva-
tives. The partial derivative of f with respect to x, written D.f(x,y), is calcu-
lated by regarding y as a constant and differentiating with respect to x as usual.
The partial derivative of f with respect to y, written D, f(x,y), is similar. If

f(x,y) = z%y% + 5x + 13y + 9, for example, then D,f(x,y) = 2xy3 + 5 and
Dy, f(x,y) = 3z2y? + 13. The Implicit Function Theorem states that if at a point
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(1,71) the partial of f with respect to y is non-zero, so that, D,f(x1,y1) # 0,
then

—D;f(x1,1)

Dy, f(z, Y1)

For the function f(x,y) = 2? + y? — 1, for which we know that 3’ = —z/y, we

have D.f(x,y) = 2x and D,f(x,y) = 2y. At the point (v/3/2,1/2) we have

y' = —D.f(v/3/2,1/2)/D, f(v/3/2,1/2) = —/3. A program implementing this
result is

y' (x1) =

« - F « FXONEGF Yo / >>

With input 'X~24+Y"2 —1", this program returns '—(2%X/(2%Y))'. Try some
of problems in A.9.

C.2 The program given in problem C.1 has input f(z,y) and output y’. Write a
program with inputs

—D.f(x1,y1)
z,Y), Zi, and 1 ’ and output gy =—=

197

f(x,y), 1 V1 put y Dro)

 

2.3 INCLINATION AND INTERSECTION; REFLECTIONS FROM
CONICS

Apollonius (born 262 B.C.), a near contemporary of Euclid (fl. 295 B.C.), wrote a
work called Conics, the first systematic book on the conic sections. Apollonius discussed
an application of conics to optics in On the Burning Mirror, where he studied the focal
properties of spherical and parabolic mirrors. The use of conic sections in optics continues
today in NASA’s Hubble Space Telescope, put into earth orbit in 1990.

In this section we use the idea of derivative to describe and calculate several geometric
properties of the graph of a function. We touch on the angle of inclination of the tangent
line to a point on a graph and the angle between two graphs at a common point. We
discuss the reflection properties of conics and an application of these to telescopes. We give
programs as appropriate. We assume the idea of implicit differentiation is familiar.

Most calculus texts define the angle of inclination at a point (z, f(x)) of the graph of a
differentiable function f as the angle a such that 0 < a < 7 and, if a # 7/2, tana = f'(x).
If f/(x) # 0, the tangent line to the graph at (z, f(x) intersects the z-axis at a point P.
The angle a is measured from the part of the z-axis to the right of P, counterclockwise
around to the tangent line. We show in Fig. 3 a graph with points at which 0 < a < 7/2
and 7/2 < a < T.

EXAMPLE 1. Find the angles of inclination a; and a; at the points

(z1,y1) = (0.85,0.62973---) and (z2,y2) = (1.25,—0.79790---)

of the graph of f(z) = sin((z + 0.5)3), shown in Fig. 3.
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y

(x,,f(x,))X3:. 1X4 o, Ao 5

\
(X,,f(x,)) 

Figure 3

SOLUTION. To find the angles of inclination at these points we must
find the derivatives f'(z;) and f’(z2). These values are tana; = f/(x;)
and tan az = f’(x2). We use the inverse tangent function to find a; and
as.

The values of tana; and tan a; may be found by hand or through
the symbolic differentiation key. In any case,

tana; = (0.85) = —4.24--- and tana; = f'(1.25) =5.53---

A glance at Fig. 3 and the definition of the angle of inclination (the
definition included the condition that 0 < a < w) shows that a; is a
quadrant II angle and a; is a quadrant I angle. With the values of
f/(0.85) and f’(1.25) on the stack, two presses of the ATAN key, with
an intervening SWAP, results in a; = 1.392--- and a; = —-1.339---
on the stack. These are radian measures of the two angles. In degrees,
a1 & —76.75° and az =~ 79.76°. The first of these is not a quadrant II
angle, contrary to expectation. We must add m or 180 to convert the
angle measures of the inverse tangent function to the usual definition of
the angle of inclination. This is clear when you recall that the domain of
the inverse tangent function is R = (—00, 00), that is, arctan(z) or tan™!
is defined for all values of x, and its range is the interval (—n/2, 7/2).
We find, then, a; ~ 103.25° and a; ~ 79.76°.

If several angles of inclination must be calculated, it is worth writing a program to
reduce the work. We give a program with function f and the number z as inputs and, in
imitation of FEVAL, outputs f and a. The program is named INCL1, for version 1 of a
progiam to compute the angle of inclination.

‘We may test this program by recalculating a; in Example 1.

.85 INCL1
SIN((X45)°3) Pry

180 5

I: 103. 248972717
[+]

 

 

  
We leave as an exercise a version of INCL1 in which the function is defined in program
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INCL1

Inputs: f(x), x Output: a

<< 'X' STO Store x
'X' 0 Compute f(x)
ATAN DUP Compute arctan(f’(z)) and DUP
IF 0 < THEN =n + Add = if arctan(f'(z)) <0
END 'X' PURGE Purge X

NUM > Convert symbolic result

  Checksum: #25857d Bytes: 85.5  
 

style. Also, versions of both of these programs in which the output is in degrees (while
leaving, however, the calculator in radian mode, as always).

EXAMPLE 2. In Fig. 4 we show two curves, a point P at which they intersect, and
the angle from C; to C3. The coordinates of point P are (1.38,1.26), the
slope of C; is m; = 0.638, and the slope of C3 is mg = —2.47. Find the
angle 6,2 from C; to Cs.

 

 
 

(x,y)
3 s

7’
,

zs

B
Y

(=p,0)

Figures 4 and 5

hai 
SOLUTION. Most calculus texts give a formula for calculating the angle
between two curves at a point where they intersect. Suppose f; and fs
are functions and x a point for which f(z) = fz(z). We assume both
functions are differentiable at x, denote their slopes at x by m; and mo,
and refer to the graphs of these two functions as curves C; and Cs. The
angle 612 from C; to C; is given by

mo — My
012 = arctan ——

1+ mam,
(6)
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provided that 1 + mymy # 0. (If this condition holds, the curves are
orthogonal and 6,2 = 7/2.) Applying (6) we have

—2.47 — (0.638)Or = 7
12 arctan (5 + (=2.47)(0.638)

) ~ arctan 5.40 ~ 1.39 (x 79.5°)

A program for calculating the angle between two curves is given in prob-
lem A.8.

 

The Hubble Space Telescope

In the remainder of this section we discuss reflection properties of the three conic sec-
tions and the application of these to the Hubble Space Telescope.

The upper part of the parabola with equation y? = —4pzx is shown in Fig. 5. The
focus of this parabola is the point (—p, 0). Parabolas have the reflection property shown
in Fig. 5. We assume the parabola is acting as a mirror, so that the angles of incidence
and reflection are equal. A horizontal ray of light comes in from the left, is reflected from
the parabola at the point (x,y), and, given that the angles § and 8 are equal, subsequently
passes through through the focus (—p,0) of the parabola. The angles of incidence and
reflection are usually measured from the “normal” to the mirror (the normal is shown as a
dotted line in the figure), so that § and 8 are complements of these angles.

To verify the reflection property of a parabola,it is sufficient to show that

tané = tan 3

or, since m — a = § and tan(m — a) = —tanq, that

—tana = tang (7)

We begin by calculating the slope at the point (x,y). Differentiating the equation y? =
—4px implicitly, we find that

tana = 9’ = —4p/(2y), sothat —tana =2p/y

We show that tan 3 = 2p/y, which will complete the verification. Starting with the obser-
vation from Fig. 5 that 7+ 8+ (7 — a) = 7, we have

tana — tanvy

tan § = tan(a — 7) = Tomes
 

 

2p Y
TyTz+p 2px + 2p +9?

C14 (-2) (1)  aytup— 2m ®
Y +p

2px +2p* _ 2p(p—x) 2p
 wmy-py ylz-p) oy

The hyperbola also has a reflection property. Referring to Fig. 6, where a (silvered)
hyperbola with foci F' and F’ is shown, if a ray of starlight comes in on ray AB, which,
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Figure 6

if extended, would pass through the focus F, then it will reflect from the hyperbola along
line BC, which, if extended, would pass through the other focus F’.

The reflection property will follow if we can show that tana = tan 8. The argument is
similar to the one given above for the parabola. Let the angles CF'T’, BT'F, and BFD
be denoted by 7, 6, and €, respectively. Note that 3 = § —y and a = € — §. The hyperbola
shown in Fig. 6 has equation 22/a? — 52/b% = 1. The foci F and F’ are at (%c, 0), where
c? =a? + v2.

Theslope of the hyperbola at B, with coordinates (x,y), may be found by differentiating
implicitly. From

xr? y? , rb?

Ze! we find V =a (9)

Using this result we calculate tan a and tan 3 separately.

  

  

  

 

tan 3 = tan(é — 7) tan a = tan(e — 6)

tand — tan -y tane — tan é

1 + tanétanvy ~ 1ttanetané

xb? y y xb?
_ ya? z4ec _x—=c ya?

2b y pL 2
ya’zx +c x — cya?

2b? + zb’c — y%a? y2a? — 22h? + xcb?®
ya?(z + c) + xyb? ~ zya? — ca?y + ryb?

b%(a? + cx) —a%b? + zcb?
c’zy + yale zya? — cay + xyb?

b? (cx — a2) b?
To T Cxy—caly cy

The Hubble Space Telescope uses a Cassegrain optical system, which consists of two
mirrors. The larger mirror is parabolic in cross-section and the smaller secondary mirror is
hyperbolic in cross-section. We show in Fig. 7 the arrangement of the two mirrors.
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Figure 7

The primary parabolic mirror is at the origin and has its focus at f. The secondary
hyperbolic mirror has foci at F' and F’. Only the left branch of the hyperbola is used.
The key fact in the arrangement is that the foci f and F' are coincident. This couples the
reflective properties of the two mirrors together. A ray of starlight parallel to the common
axis is shown coming towards the primary mirror. It reflects from the primary to its focus
f, or, rather, the light would pass through f were it not for the hyperbolic mirror. Since
the light is directed towards the focus F' of the hyperbolic mirror, it is reflected so that
it passes through the second focus F’. The primary mirror often has a circular hole in
its center so that the light coming into the focus F’ can be gathered and directed to film
or a measuring instrument. We give equations for the cross-sections of the primary and
secondary mirrors in the next example and illustrate two of the many calculations required
in designing a Cassegrain telescope.

EXAMPLE 3. The equations for the primary and secondary mirrors are

(x+2)* ¢*r=1 (10)y? = —16z and

If the diameter of the primary mirror is to be 1 meter, what is the min-
imum required diameter D of the secondary mirror and what is the di-
ameter of the “dark spot” in the secondary mirror?

SOLUTION. To answer these questions, let Q = (—¢2/16, q) be an ar-
bitrary point on the upper part of the primary mirror. We find the coor-
dinates of the point on the secondary mirror though which the line from
Q to the focus (—4, 0) passes. Since the slope of this line is 16¢/(64 —¢2),
we may write the equation of the line and solve it simultaneously with
the equation of the hyperbola. We have

 

(xz +2)? vr _

y—20 164 (x +4)
¥ 64 — ¢2

Solving the second equation for 2 and substituting into the first equation
we have

64 — q2 2 y2
—-2) —L-=1 12( Tog 7 ) (12) 
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which is quadratic in y. We may now answer the two questions raised
above. For the first we take ¢ = 0.5 and solve (12) for y. This gives the
minimum required diameter of the secondary mirror. For the second we
take q to be the y just found and solve (12) for y. This will give the
diameter of the “dark spot” in the secondary mirror.

We may use QUAD to do most of the work. After purging any vari-
ables Y and Q from the VAR menu, enter (12), put 'Y"' on the stack,

go to the 1ISYMBOLIC menu, and press [QUAD|. The result, which
takes about 20 seconds for the HP 48 to calculate, will be a complex
expression with variables s1 and Q. We use the SOLVR to evaluate this
expression. We expect (12) to have two solutions for a given value of gq,
these corresponding to the two intersections of the line and hyperbola
whose equations are given in (11). Store the result from QUAD as EQ
and go to the SOLVR. Let ¢ = 0.5 and take sl as —1 (why?). Press-

ing gives y ~ 0.1252. The minimum required diameter of the
secondary mirror is 2 - 0.1252 = 0.2503 meters. With 0.1252 still on the
stack, use it as the next value of q¢ (why?). We find the diameter of the
dark spot on the secondary to be 0.0626 meters.

In this section we have given examples illustrating possible uses of the HP 48 in using
the derivative to study the graphs of one or more functions. Examples of calculating the
inclination of a graph at a given point and the angle at which two curves intersect were
given. Conics were studied in the context of their reflection properties.

 

Exercises 2.3

A.1 Sketch the graph of f(x) = 22 — 5x + 2 and find the angles of inclination of the
tangent lines at the points (1,—2) and (3,—4). Do this with and without the
program INCL1. Convert the angles to degree measure.

A.2 Find the largest angle of inclination for the function f(z) = 2% — 7x +10, 2 <
x < 5.5.

A.3 The graphs of the equations y = sinz and y = (2v/2/7)z intersect at the point

(m/4,v/2/2). Sketch these graphs and calculate the two angles of inclination.
Subtract these to get the angle between the two curves.

A.4 Find the angles of inclination at the z-intercepts of the graph with equation
y=2a3—-52% —z +5.

A.5 Find the angles of inclination at the points on the curve with equation y =
x2 + x +1 at which a line through the origin is tangent.

A..6 A shell from a mortar located at the origin of an (x, y)-coordinate system is fired
upwards and to the right, with a muzzle velocity of vy feet per second and at an
angle of §, measured in degrees from the positive z-axis. The path of the shell is
the graph of the equation

—9g 2= x‘ tanfzx
2v2 cos? 6 TY

where g is the acceleration due to gravity. Find the angles of inclination of the
shell’s path as it leaves the mortar and at the point it hits the earth (the z-axis).
Infer these angles without calculation. What are the angles of inclination of the
shell at the 1/4, 1/2, and 3/4 range points?
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A.7 Referring to Fig. 5, find the angle of incidence of a ray at height y = 0.4 coming
into the parabola y? = —16z. What is the slope of the line along which the
reflected ray travels?

A.8Find the angles (in degrees) from the parabola with equation y = 2? + = + 1 to
the line with equation y = x + 2 at each of their points of intersection. Do the
calculation by hand first. Check your results by using the program ABCS (angle
between curves), which follows. The program takes the slopes mi and m2 of the
two curves C; and C; as input and returns the degree measure of the angle from
Cc1 to Cs.

<< —» Ml M2 « M2 M1 DUP2 -

3 ROLLD *% 1 + / ATAN DUP

IF 0 < THEN «= + END « / 180 % > >

Problems B.2, B.7, and C.1 are related to this program or improvements upon it.

A.9 A parabola having horizontal axis, vertex at (h, k), and focus at (h — p,k) has
equation (y — k)2 = —4p(x — h). If the parameter p is assumed to be positive,
this parabola “opens” to the left.

(a) Locate the vertex and focus of the parabola with equation y?+4y—3z+7 =
0. Sketch the graph.

(b) Write an equation of a parabola with vertex at (3,—2) and focus at
(—8,-2).

(c) Show that for the “generic” parabola (y — k)2 = —4p(z — h), each point
(x,y) on the parabola is equally distant from the focus and the line with
equation z = h + p.

(d) What is the “depth” of a parabolic mirror with a 5 meter focal distance
and diameter 1 meter?

A.10 A hyperbola having its “center” at (h, k), vertices at (h —a, k) and (h +a, k), and
foci at (h—¢, k) and (h + c, k) has equation (x — h)?/a? — (y — k)2?/b%® = 1, where
c® =a? +b.

(a) Locate the center, vertices, and foci of the hyperbola with equation
(x — 1)? — gy? = 1. Sketch the graph.

(b) Locate the center, vertices, and foci of the hyperbola with equation
322 — 2y? + 6x + 8y — 6 = 0. Sketch the graph.

(c) Find the standard equation (x —h)?/a% —(y—k)?/b% = 1 for the hyperbola
with foci at (1,—3) and (6, —3) and vertices at (2, —3) and (5, —3).

A.11 The parabolic mirror of a Cassegrain telescope has equation y2 = —16x. The
prime focus of the telescope is to be at (0.2,0) and the vertex of the hyperbolic
mirror is to be at (—3,0). Find the equation of the hyperbolic mirror.

 

B.1 Modify the program INCL1 so that it returns angles in degrees.

B.2 Explain how the program ABCS given in problem A.8 works.

B.3 Discuss how a horizontal ray coming in from the right is reflected from the
parabola (y — k)2 = —4p(z — h), where p > 0.

B.4 Find the minimum required diameter of the hyperbolic mirror of the Cassegrain
telescope described in problem A.11, assuming that the diameter of the primary
parabolic mirror is 1 meter. Also find the diameter of the dark spot on the
secondary mirror and the diameter of the smallest hole in the primary through
which all possible light may reach the focus.
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B.5 The equations

(x + 2.472)2 7?
5.4597 1.8012
 y? = —22.082 and

describe the Hubble Space Telescope, where all dimensions are in meters. The
diameter of the primary mirror is 2.4 meters. By tracing appropriate rays, find
the minimum required diameter of the hyperbolic mirror, the diameter of the
dark spot on the secondary, and the diameter of the smallest hole in the primary
through which all possible light may reach the focus.

B.6 Radio telescopes designed to detect X-rays often use hyperbolic and parabolic
reflectors. The reflectors are arranged as in Fig. 8, although the mirrors are
configured so that the “grazing angles” are much smaller than shown. The co-
ordinate axes are often chosen so that the y-axis passes through the intersection
of the parabola and the right branch of the hyperbola. The equations of the
parabola and hyperbola are

(@—H)? y*
a? b? =1

y> =4p(x —h) and

Letting p = 1, a = 4, and b = 3, and noting that h = H — ¢ — p, find H so that
the y-axis passes through the intersection, as shown in Fig. 8.

 

 

parabola 
hyperbola

Figure 8

B.7 Modify the program ABCS in problem A.8 so that it detects the “perpendicular
case” and gives an appropriate response.

B.8 Write an alternate version of ABCS using INCL1 or INCL2. The inputs should
be fi(z), f2(x), and =.
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C.1 Write a program INCL2 that does the same calculation as INCL1 but assumes the
input function is written in program style. The stack inputs should be a program
defining f(x) and x. The output should be the single number a (the angle of
inclination of the tangent line to the graph of f at the point (z, f(z)), in radians
or degrees, as preferred; we suggest, however, that the calculator remain in radian
mode) or a and the program for f.

C.2 The graph of the equation z2/a? + y2/b® = 1, where a > b, is an ellipse with
horizontal axis, center at the origin, and foci at (—c,0) and (c,0), where ¢2 =
a? — b%. Show that a ray passing through one focus and reflecting from the ellipse
so that the angles of incidence and reflection are the same passes through the
other focus.

C.3 A variation of the Cassesgrain telescope is the Gregorian, which uses parabolas
and ellipses. Sketch the Gregorian telescope with parabola y? = —16z, ellipse
(x + 3/2)%/16 + y2/(39/4) = 1, and diameter of the primary mirror equal to 2
feet. Find the minimum required diameter of the elliptical mirror and the size of
the hole that must be cut from the primary mirror.



Chapter 3

Graphing

3.0 Preview

3.1 Curves Defined by a Function

3.2 Curves Defined Parametrically

3.3 Curves Defined by an Equation

 

3.0 PREVIEW

In §0.6 we discussed the nuts and bolts of HP 48 graphing from a “how-to” point
of view. In §1.2 we continued the discussion of graphing functions. In this chapter, we
assume that you know how to graph using an HP 48 and that you know the geometric
interpretations of the first and second derivatives. We also discuss parametric and polar
plotting which may not appear until somewhat later in your textbook.

Throughout your calculus book you will find problems of the following type:

e a specific function or equation is given; you are asked to
e locate such “interesting features” as zeros, critical points, points of inflection, extrema,

intervals of monotonicity, intervals of concavity, -- -; often you are asked to
eo make a careful sketch of the graph.

The graph often comes last since until recently that has been the hardest part; now,
thanks to graphing calculators, things have changed, and in a way, graphing is now the
easiest part. But one must be careful. You can’t just sit back passively and watch the
machine do the graphing and expect all to turn out right. For one thing, what is right
depends on why you are working the problem. If the problem is modeled after some real
world situation, then that must be taken into account; if you are working the problem for
its own sake, then you need to make sure the machine includes all “interesting features” of
the graph. Moreover, you always have to be on guard for tricks the machine might play on
you.

In this chapter, we will take the following approach to graphing:

start with a function or an equation;
use the HP 48 to make a careful sketch;
ask questions about the interesting features of the graph; then
answer whatever questions we can.

The only thing “wrong” with this approach is that sometimes we’ll run into questions
we're not quite ready for. But that’s not really bad because such questions motivate work
that lies ahead.

Conceptually, this chapter is broken up into three parts corresponding to the following
three kinds of curves:

102
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1. curves defined by a function;
2. curves defined parametrically;
3. curves defined by an equation.

These are not mutually distinct classes; indeed, most familiar curves are definable in
all three ways. All curves to be considered are two-dimensional—typically cast in an (x, y)-
coordinate system. Be alert to the fact that a good understanding of two-dimensional
curves is a prerequisite for studying curves and surfaces in three-dimensional space.

 

3.1 CURVES DEFINED BY A FUNCTION

This section is about those curves that pass the so-called “vertical line test”: any vertical
line will intersect the curve in either one or zero points. Given such a curve C, there will
always correspond a function f whose graph coincides with the curve; that is,

C={(zf(x) :zeD},

where D is the domain of the function.
Curves not of this type often can be divided into pieces that are. For example, the

unit circle 22 + y2 = 1 can be divided into two half-circles defined by fi(z) = v1 — 2? and
fao(x) = —v1 — 22.

To capture all of the interesting features of a graph generally requires making more
than one drawing—usually a large-scale drawing to see what is going on globally and one
or more close-ups to see what’s going on locally. In this section, we will concentrate on
polynomials. If you haven’t already keyed in the programs RESET and POLY from Chapter
0, now might be a good time to do so.

EXAMPLE 1A. Sketch the following sixth degree polynomial:

p(x) = 2% — 32° — 32% + 923 + 22% — 62

SOLUTION. The tacit instructions here are to include all interesting
features. Begin with a standard plot:

0 —6 2 0 i
-3 -3 1 ]

 

 

   
 

Next, adjust the scale on the z-axis (to stretch it out horizontally).

22fv
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Apparently this sketch captures all of the graph’s interesting features. Does it really and
how can we tell?

Generally speaking, this is not an easy question to answer; however, with polynomials
and a few other familiar functions, there are clues. One such clue is provided by the
Fundamental Theorem of Algebra which tells us that a polynomial of degree n has exactly
n complex zeros (counting multiplicities). In particular, this means that a polynomial of
degree 6 will have at most 6 real zeros. In other words, the graph will cross or touch the
x-axis at most 6 times. Notice that the above figure shows 5 crossing points so one more
crossing is possible.

Anotherclue is that a polynomial behaves asymptotically (as x — oo or £ — —o0) like
its highest degree term. Thus, the given polynomial will behave asymptotically like xz.
Therefore, p(x) — oo as x — oo. It follows that the graph has to eventually turn around
and head upward somewhere to the right. Two more clues (both easy to take for granted)
are the Intermediate Value Theorem and the fact that polynomials are continuous. (Do
you see how these facts fit in?)

All things considered, we see that p(x) must have exactly one additional zero and it
must be somewhere to the right. The following scaling locates the errant zero.

10 . :
ZOUT S335

 

 

   -31)
 

 

Figure 1

EXAMPLE 1B. Whatis interesting and what are the questions?

What is interesting about a graph is, of course, relative. Not only does it depend
on the “eye of the beholder”, but it also depends on the coordinate system. A better
question to ask might be “what is uninteresting?” Most people with the background to
study calculus would agree that items of interest include variations in the graph and how
the graph interacts with the coordinate axes. On the other hand, most people wouldn’t
find much of interest about a portion of the graph that gets steeper and steeper indefinitely.

 

TO THE READER: Before reading on,
what five questions would you ask about
the graph in Fig. 17   
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SOLUTION. Reasonable questions to ask include the following:

1. What are the zeros (i.e., the x-intercepts)?
2. What are the extrema (i.e., the high and low spots)?
3. What are the inflection points (i.e., the places where

the concavity changes)?
4. What is the equation of the tangent line to the curve at the

smallest positive zero? At the largest positive zero?

Other reasonable questions (see Fig. 1):

5. What is the area of the shaded region?
6. What is the perimeter of the shaded region?
7. What is the “center” of the shaded region?

We will answer Questions 1-4 below, then return to Questions 5-7 in
Chapter VI.

 

More About Zeros

One way to find zeros is by factoring, but most polynomials of degree n > 5 won’t factor
in a nice way. For a historical account of this phenomenon and other related facts, see
§1.4. As it turns out, the above polynomial does factor nicely, and you might want to stop
here and see if you can do it (the factorization is given below). A more powerful way of
finding zeros is by using the HP 48. However, proceed with caution! In the first place, it
is important to realize that:

 

| Calculators don’t give correct answers|
 

Most of the time calculators give only good approximations; seldom do they give exact
answers. For instance, when the HP tells you that it has found a zero, the real truth is
that it found a zero correct to twelve digits. (When it says “sign reversal,” that means
it can guarantee only eleven digits.) Of course, in most practical situations, eleven- or
twelve-digit accuracy would be more than enough. Nevertheless, it’s important that you
realize that there is a big difference between an exact answer and an approximation (no
matter how good the appproximation)—this is especially true in the subject of calculus
where very large numbers, very small numbers, and numbers very close to other numbers
occur in major ideas. Another reason for being cautious about approximations (one that
may be more easily appreciated by calculus beginners) is that small errors can accumulate
and become big errors.

In the process of finding zeros, the HP 48 may do some surprising things; e.g., it may
find the “wrong” zero. Worse yet, it may even find an extreme point! See, for example,
Exercise B.2; also see §1.4. While this sort of thing won’t happen often, it surely can
happen and when it does, you have to be the one to come to the rescue. To be a good
rescuer, you need to constantly relate (1) what you see with (2) what you are trying to do
with (3) what the calculator is telling you. You also need to have an understanding of how
the calculator finds zeros. In particular, you need to understand the connection between
zero-finding and the Intermediate Value Theorem and Newton’s Method. Chapter 4 gives
you some insight in these matters. For now, if you have any doubts as to whether a zero is
really a zero, you can always check it out by evaluating the function at the alleged zero.

As you already know from § 1.4, here’s the procedure for finding zeros with the HP 48:
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Step 1 Graph the function to “see” the zero(s).

Step 2 Move the + cursor to the approximate location(s) of the zero(s) (the closer the

better) and press in the FCN submenu of the graphics menu.

 

When you return to the stack (press ON twice), you'll find the zero(s) waiting for you.

EXAMPLE 1C.

EXAMPLE 1D.

What are the zeros of p(x) = 25 — 32° — 3x? + 923 + 222 — 627

SOLUTION.
 

zy

INPUT: | 51 a4] >»
-3.25 ag AY 3.25 > .-- etc.

-31 ~

 

    
OUTPUT: Root: —1.41421356238; Root: —1; Root: 0; Root: 1;

Root: 1.41421356238; Root: 3.

This suggests the factorization

p(x) = z(z — 1)(z + 1)(z* — 2)(z — 3)

which is correct as may be checked.

 

REMINDER: f/(a) = the slope of the tangent
line to the curve y = f(x) at the point (a, f(a)). (1)   

What are the extreme points of p(x) = 26 — 32% — 324 + 923 + 222 — 627

SOLUTION. The above display (Example 1C) reveals two high spots
(relative maxima) and three low spots (relative minima). At such points
the tangent lines will surely be horizontal; thus, the derivative (which is
the slope of the tangent line) will be equal to zero. Put another way, the
extrema can be found by finding the zeros of p’(x). How can we find the
zeros of p’(x)? Answer: apply the above 2-step process to p'(x).

Before graphing p’(z), store p(z) under the name P and clear the
stack. Then graph p’(x) using the previous scaling factors:
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P [sto] [per] [P| 1
X [9] tN | EDs

|[ERASE| |DRAX| |DRAW| CY no
1
*

 

    
 

Notice that p’(x) is of degree 5 and that we can “see” all 5 of its
zeros. We may now use ROOT as above to obtain the zeros of p’(z):
—1.24561109254, —0.537807896525, 0.46975521485, 1.22987914899,
2.58378462523.

From the graph of p(x), it is clear which of these are relative minima
and which are relative maxima. Also, recalling that p’(z) > 0 corresponds
to p(x) increasing and p’(z) < 0 corresponds to p(x) decreasing, we could
deduce the same information from the above graph of p’(z). For example,
at the left-most zero notice how p’(z) goes from being negative to being
positive. Therefore, p(x) goes from decreasing to increasing. Therefore,
p(x) has a relative minimum at that point.

The corresponding y-values can be calculated using one of the func-
tion evaluation methods discussed in Chapter 0 (just make sure to use
p(x) not p’(x)). A simpler way is to use the program FPAIRS. See pro-

 

 

 

gram box.

FPAIRS

Inputs: zy, «++, Tn, f(x) Output: (x1, f(x1)), -.., (Tn, f(x)

<< = F KK Introduces local variable F
DEPTH — N Introduces local variable N

1 N FOR 1 Sets up FOR-NEXT loop

RE DUP 'X' STO Makes copy of z,,_,., & stores
it under the name X

F EVAL Calculates f at x,_,,,

R—-C Forms pair (Tn_141 ) f(@y141)

N ROLLD Puts (xy_;,., f(Ty_;,1)) OD top of
NEXT stack; ends FOR-NEXT loop

'X' PURGE >» >» > Purges X; ends program

Checksum: #31114d Bytes: 109    
 

With the zeros of p’(z) on the stack, we may press P to adjoin p(x) then FPAIRS to
obtain the following:

  

  

   

o£AOME FUN } HOME FUN }

3: Root! 1.22987914899 3 (,46975521485,-1. 6.
2: Root: 2.58378462523 — 2: (1.22987914899, .54..
[i '2x%"2+0¥K*3-3%K4— I: (2.58378462523

JERGRG-6XK -28.5418198434) 
[FPnir]:E[PPakJRECET]P| CEANEACNCRKT
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v' Point to note

When you apply FPAIRS make sure there is nothing on the stack other than the z;’s.

EXAMPLE 1E. What are the inflection points of p(x) = 2% — 32° — 32% + 923 + 22% — 62?

SOLUTION. Upward concavity corresponds to f”(x) > 0; downward
concavity to f”(x) < 0. See your book for a discussion of concavity.
Points of inflection are points at which concavity changes. Generally,
the real line breaks up into intervals of upward concavity and downward
concavity with inflection points in between. Inflection points occur among
the points where f(x) = 0. In other words, inflection points can be found
by finding the zeros off" (x). Now how do you think we’ll do that? Same
song, different dance.
 

 

x [a 1

    
Then use ROOT and FPAIRS to get the inflection points:

(—0.97594868615, 0.19317293182)
(—0.0711162399389, 0.433504283806)
(0.891011984907, —0.46710353142)
(2.15605294118,—17.5835736841)

Table 1 summarizes our findings.

 

 

 

 

 

 

Table 1

FUNCTION: p(z) = 2% — 32% — 32% + 923 + 222 — 62

ZEROS EXTREMA INFLECTION POINTS

(—1.24561109254, —1.30804335209)

—2 (relative minimum) (—0.97594868615,0.19317293182)
(—0.537807896525,2.31353350649)

—1 (relative maximum) (—0.0711162399389, 0.433504283806)
(0.46975521485, —1.648208216)

0 (relative minimum) (0.891011984907, —0.46710353142)
(1.22987914899, 0.54391290609)

1 (relative maximum) (2.15605294118, —17.5835736841)
 

(2.58378462523, —28.5418198434)
 (absolute minimum)
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EXAMPLE 1F. Find the equation of the tangent line to the curve y = 2% — 325 — 324 +
9x3 4 22% — 6x at (a) the smallest positive zero; (b) the largest positive
Zero.

SOLUTION. The smallest positive zero of p(x) is x = 1. Thus we want
to find the tangent line to y = p(x) at the point (1,0). By (1), the
slope of this line is p/(1). It is easy to obtain p’(1) = 4 [do this two
ways]. Therefore, the equation of the tangent line is y — 0 = 4(x — 1) or
y = 4x — 4. [Is this a reasonable answer? Look at the first display in
Example 1A, in which the axes have the same scale, and you’ll see that
the answeris yes.]

The largest positive zero is x = 3 and the slope is p’(3) = 168.
Therefore, the equation of the tangent line is y — 0 = 168(x — 3) or
y = 1682 — 504 [a very steep line!

 

About Tangent Lines

Notice how algorithmic our solution to Example 1F is; in fact, you could write out a
general formula for the tangent line in terms of a given function f and a given z-value a
(your book may do this). What does that suggest? Memorizing the formula? Surely not.
Writing a tangent line program? Certainly. But let’s proceed with caution. Even though
the program below will trivialize the process of finding tangent lines and give you quick
solutions to many textbook problems, you can still benefit by working a few such problems
by hand. (Note that “by hand” does not mean using the formula!) The pay-off will be a
better understanding of the geometric interpretation of the derivative as well as the idea
of obtaining the equation of a line from its slope and a point on it. Good advice for most
students: Use the program TLIN (see box) as a double-check on hand calculations, later
as a tool.

Let’s double-check the above results.
 

 

    

 

 

 

P 1 £HIME FUN 3
4:
3:
2%
I: 'Y=—4+4)’
CRTNETAECTTCTT

RAD
P 3 ra FUN }

1: 'Y=-004+168*X'
FEZET]TLIN[FPuik]P_[FEMHL]POLY] 

 

Example 1 illustrates a polynomial of degree 6 that has 6 real zeros, 5 extrema, and
4 inflection points. Such regularity is not typical. In other words, it is not typical that a
polynomial of degree n will have n real zeros, n — 1 extrema, and n — 2 inflection points.
The following example illustrates some of the things that can go “wrong”.
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TLIN

Inputs: f(x), a Output: Equation of tangent

linetoy = f(x) atx =a

<< 'X' STO —- F Stores a in X; defines

local variable F
Y F EVAL F 'X' 0 Calculates the formula

EVAL 'X' X —- X¥ +4 = y = f(a) + f'(a)(z — a) in RPN
EXPAN COLCT Simplifies formula

'X' PURGE >» >» Purges X, ends program

Checksum: #46668d Bytes: 114

EXAMPLE 2. Sketch the polynomial p(x) = 2° — 3z* + 22% + 1 and find its zeros,
extrema, and inflection points.

SOLUTION. The standard plot in Fig. 2(a) suggests that there are ex-
actly two real zeros, at least one relative maximum, and at least one rela-
tive minimum. The zoom-in on these features shown in Fig. 2(b) doesn’t
help much but suggests that we ought to take a closer look at the zero
to the right because it seems to stay zero throughout a short interval.
Another zoom-in confirms our doubts and we see that there are really
two zeros where it first looked like there was only one. See Fig.2(c). (For
a discussion of the zooming-in procedure, see IV of §0.6.)

 

 

L; AN : NL J

; : AN Z ZL

od
(a) Standard (b) Zoom-in #1 (c) Zoom-in #2

plot

 

Figure 2

We can get more information by looking at the derivatives of p(x). First store p(x)

under the name P: EQ 'P' .

 

 

 

 

NL AN iA

(a) y = p'(x) (b) y =p"(x) (c)y =p"(x)

Figure 3
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Observe that p’”’(x) and p”(z) display the same regular behavior we observed earlier.
In particular, p”’(x) is of degree 3 and obviously has exactly 3 real zeros, 2 extrema, and 1
inflection point. (See Figs. 3(b)—(c)). On the other hand, since

p(x) = 52% — 1223 + 62% = 2%(52% — 122 + 6),

it is clear from Fig.3(a) that p/(x) has exactly 3 real zeros, 3 extrema, and 2 inflection
points. It follows that Fig. 2 tells the full story: p(x) has precisely 3 real zeros, 2 extrema,
3 inflection points, and behaves asymptotically like 2°. (Note that if p(x) had more than
3 real zeros, then there would be at least 4 extrema, which would mean that p’(z) would
have at least 4 real zeros.) Using ROOT and FPAIRS, we obtain the summary given in
Table 2.

 

 

 

 

   

Table 2

FUNCTION: p(z) = 2% — 3z* + 22% +1

ZEROS EXTREMA INFLECTION POINTS

(0.710102051445, 1.13389451796)
—0.61803398875 (relative maximum) (0,1)

(1.68989794855, —0.032454518)
1.61803398876 (relative minimum) (0.441742430505, 1.07498617736)

1.75487766627 (1.35825756949, 0.42389382264)  
 

 

Exercises 3.1

For Exercises 1-7, (a) make one or more plots of each function to capture its interesting
features; (b) determine all real zeros, extrema, and inflection points.

Alzt—203 -922 +22 +7

A.2152% — 322% +2422 — 8x — 5

A.3162°% — 82% — 723 — 2?

Adz? —92% +22 —11z +1

A.5 1% — 242° + 1502% — 3

A.6480z* — 144023 + 24022 + 25202 — 1890

A.7 P(x) where P(x) is your personal polynomial as defined in Exercise A.11,
§0.7.

For Exercises 8-10, (a) find the equation of the tangent line to the given curve corre-
sponding to the given z-value; (b) make a sketch of the curve and tangent line.

A8y=(zr+1)3%2

A.9y = zxsindzx; m/2
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A.10y = x — 2sinx; the positive zero
 

A.11 The display to the right represents SN ye
a function f and its derivative f’. A WV sr
Which is which ? [

 

    
A.12 Find the equation of the tangent line to your personal polynomial at the y-

intercept (see A.11, §0.7) and make a sketch of both.

 

B.1 Let q(x) = p(x) + 0.0324545, where p(x) is as in Example 2. Use the Inter-
mediate Value Theorem to explain why ¢(z) has two real zeros near z = 1.7.
Make an HP 48 plot that clearly shows the existence of these two zeros.

B.2 Let q(x) = p(x) + 0.0325 where p(z) is as in Example 2. Graph g(x), move the

+ cursor near x = 1.7, and press . What does the calculator tell you?
Do you believe it 7 Make an HP 48 plot that clearly shows the nonexistence of
zeros near r = 1.7.

B.3 Make a careful sketch of P(x) where P(x) is your personal polynomial (see
A.11, §0.7) and determine all real zeros, extrema, and inflection points for
y = P(x).

 

C.1 Make a careful sketch of your personal polynomial (see A.11, §0.7) and deter-
mine all real zeros, extrema, and inflection points.

 

3.2 CURVES DEFINED PARAMETRICALLY

If z(t) and y(t) are continuous functions on an interval [a, b], then the set of points of
the form (z(t), y(t)), where t ranges over [a,b], generates a curve C. In this situation, we
say that the curve C is defined parametrically; t is called the parameter, and [a, b] is called
the parametrization interval. Many motion problems fit this model and even when there is
no underlying motion, it is convenient to think of a curve as the path of a moving particle,
its position at time t being (z(t), y(t)).

All familiar curves can be represented parametrically. If a curve is defined by y = f(z),
where a < x < b, then a parametrization is given by:

" a<t<b

y= f(t)

If a curve is defined by z = ¢g(y), ¢ < y <d, then a parametrization is given by:

xr =qg(tg(t) c<t<d

y=t



3.2 CURVES DEFINED PARAMETRICALLY 113

If a curve is defined in polar coordinates by r = (0), a < 8 < 3, then a parametrization is
given by:

x = r(t)cos(t(£70 ic
y = r(t) sin(t)

The circle with center (h, k) and radius r can be parametrized by:

fr <9
<t<2n

y = k + rsin(t)

and the line segment from (x1, y;) to (z2,¥2) can be parametrized by:

x= (1—-1t)x, + tx:
0<t<1

y= (1-t)y +ty2

Conceptually, graphing parametric curves is simple. Just plot points of the form
(z(t),y(t)) and join them with a smooth curve. Generally this requires a fairly large num-
ber of calculations and a good deal of care in plotting points. Since the HP 48 is good at
both of these things—calculating and plotting—it makes sense that we put it to work.

The program PARA given below simplifies the procedure for making a parametric plot
described in the Owner’s Manual. Since we will use PARA in the remainder of this chapter
we ask that you enter it into your calculator.

In addition to PARA, you will find the following program useful.

<« ERASE IN OBJ— DROP >» INPUTS

 

 

 

PARA

Inputs: z(T), y(T), a, b, s Output: Graph of x = x(t),

y=y(t),ast<b

<< — XY AB S Introduces local vars. X,Y, A, B, S

XY A B 4 LIST Forms list {X,Y,A,B}, stores it under
'IN' STO PARAMETRIC name IN, begins parametric plot

XY i x + Stores z(T) and y(T") in complex form
'EQ' STO in EQ
T A B 3 —-LIST INDEP Stores T' and endpoints in INDEP

S RES Sets step size = s

DRAX DRAW Plots and displays graph
PICTURE > >

Checksum: #14830d Bytes: 152     
v' Points to note

1. When you use PARA, be sure to use T instead of ¢;

2. The input s represents the step size; for example, if s = 0.1 and the parametrization
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interval is [0, 2], then the program will plot the following twenty-one points: (z(0),y(0)),
(2(0.1), (0.1), (2(0.2),y(0.2)), ---, (2(1.9),y(1.9)), (x(2),y(2)). The value of s is up to
you; your choice should depend on scaling, the length of [a, b], and the length of the
curve. When in doubt, try s = 0.1. If that gives you too few or too many dots, then try
s = 0.05 or 0.2, etc.

3. The purpose of storing {X, Y, A, B} (in IN) is so that you won’t have to re-enter those
quantities if you want to adjust the value of s or make other small changes. Just press

to get 2(T), y(T), a, and b back on the stack, enter your new choice for s, then

press [PARA .
4. To enter i, press |] .

 

Peace of Pi?

If you haven’t already done so, you’ll probably want to set flag —2. This will make it possible
to deal with numbers like m more easily. Just key in —2 SF ENTER. The alternative is to
press —NUM whenever you want to do a numerical calculation involving 7. Put another
way, if you want to work with 3.14159265359 instead of the symbol 7 (as you almost always

will), then key in —2 SF :

EXAMPLE 1. Sketch the parametric curve

x =2cost + 0.75 cos 3t

 

 

t <o6r

y = 2sint — 0.75sin §¢

SOLUTION.

2 T COS
75 4 T %x 3 LP

/ COS * + 2 ppt a Ne bp}
T SIN % .75 4 \ 12
T % 3 / }
SIN x — 0 6 1    
m % .05 [PARA]

EXAMPLE 2A. Sketch the parametric curve x =t2, y = t5 — 6t3 + 8t, —2.2 <t < 2.2.

 

 
 

SOLUTION.

3 5
XW (2.5 0) T vy—- -
ka T 5 > 6 T 3 = . — Irr —

 — 8 T kx + 2.2 AN" .
2.2 .03 1    



EXAMPLE 2B.

EXAMPLE 2C.
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v' Point to note

) , and are in PLOT PPAR.

What are the questions?

 

TO THE READER: Before reading on,
what five questions would you ask ?   
 

SOLUTION. If you gave the same questions as in Example 1B, §3.1,
that’s fine, but let’s be more imaginative. Do you see the region shaped
like a top? (It’s the one enclosed by the left-hand loop.) How about
the football-shaped region? (That’s the one enclosed by the right-hand
loop.) Here are some questions. See how close you can come to guessing
the correct answers.

1. Is the graph symmetric with respect to the x-axis?

2. Is the horizontal measurement of the top-shaped region equal to the
horizontal measurement of the football-shaped region ?

3. Is the vertical measurement of the top-shaped region equal to twice
the vertical measurement of the football-shaped region ?

4. Is the area of the top-shaped region equal to twice the area of the
football-shaped region ?

5. How does the perimeter of the top-shaped region compare with the
perimeter of the football-shaped region ?

6. Do the two inflection points coincide with the first positive x-intercept ?

7. What are the equations of the two tangent lines to the curve at the
first positive x-intercept? The second positive x-intercept ?

8. If you rotate the curve about the z-axis, you'll get a 3-dimensional
“top” and a 3-dimensional “football”. How do their volumes compare ?
Their surface areas?

We will answer Questions 1, 2, 3, 6, and 7 here; Questions 4, 5, and
8 will be answered in Chapter 6.

Determine whether the graph is symmetric with respect to the z-axis.

SOLUTION. The symmetry question amounts to this: if (x,y) is on the
graph, must (xz, —y) also be on the graph? Suppose (z,y) is on the graph.
Then we must have (x,y) = (t2,t°> — 6t> + 8t) for some t between —2.2
and 2.2. But if t is between —2.2 and 2.2, then so is —t, and, therefore,

((=8)%, ((=1)® = 6(=1)* + 8(=1)) = (t*, —(t° — 6¢° + 8t)) = (x, ~y)

is also on the graph. Hence the graph is symmetric.
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EXAMPLE 2D. Determine the horizontal measurement of (a) the top-shaped region; (b)
the football-shaped region.

SOLUTION. This is really a question about the spacing of the
z-intercepts. How can we find the z-intercepts? They are character-
ized by the zeros of y(t) in the sense that z(t) is an x-intercept if and
only if y(t) = 0. What are the zeros of y(t)? Although we could haul out
the HP 48 zero-finder, it isn’t necessary here because

y=1>—6t>+8t =t(t* — 612 +8) =t(t? — 2)(t2 — 4)

and we see that the zeros of y(t) are precisely 0, £1/2, and +2. It’s im-
portant to note that these are t-values, not z-values. The corresponding
x-values (z-intercepts) are: 0, 2, and 4. So both horizontal distances are
2 (and therefore they are equal).

 

About Derivatives

If we think of y as a function of x, we may apply the chain rule to get dy/dx and d?y/dz?
in terms of dz/dt, dy/dt,d?z/dt?, and d?y/dt? as follows:

dy _ dy/dt _ y(t) (2)
der dz/dt 2'(t)
  

dx
 

dy _d (2) _ a/dt(y'®)/2'®)) _ y"()z'(t) — y'(H)x" (1)
dx dx/dt - x! (t)3 (3)

We will use equations (2) and (3) to obtain answers to Questions 3, 6, and 7.

EXAMPLE 2E. Determine the vertical measurement of (a) the top-shaped region; (b) the
football-shaped region.

SOLUTION. Because of symmetry, the problem reduces to finding the
maximum values of the curve for the two regions. By (2), we see that
the t-values for these maxima will occur among the zeros of y(t). How
can we find the zeros of y(t)? One way is by hand (see Exercise B.8);
another way is by using the HP 48 zero-finder.

  
|DROP||IRESET| [INPUTS] . {

IDROP| [swaP| [Drop] . IN

T 8 T Ah
[INDEP| [DRAX| [DRAW] NZ l —

zoom] [zract] 3
lok| [ok| [HZIN]|

  

 

 x
r
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Next use ROOT to obtain the four zeros: + 0.720676871083,
+1.7551708884. By looking at the sign of y’(t) near these zeros, we
can tell that —1.7551708884 and 0.720676871084 correspond to the two
maxima. Finally, if we evaluate y(t) at these two values we get:

y(—1.7551708884) = 1.7437616351
¥(0.720676871084) = 3.71400799133

Hence, the vertical measurements of the two regions are 7.42801598266
and 3.4875232702.

It is often desirable to go from t-values to the corresponding z- and y-values. The
program TPAIRS, analogous to FPAIRS, gives the pairs (x(t), y(t)) corresponding to an
arbitrary set of t-values. Notice that the program takes x(t) and y(t) from INPUTS so you
don’t have to re-enter those functions.

 

 

 

TPAIRS

Inputs: li, ~ +, tn Output: (z(t1), y(t1)), TH (z(tn), y(tn))

<« DEPTH INPUTS DROP Puts n, z(T),y(T) on stack
DROP —- N X Y Introduces local vars. N, X, Y

1 N FOR 1 Starts FOR-NEXT loop

RE 'T* STO Stores t,_,,, under name T
X EVAL Y EVAL Calculates z(t, _;.,), ¥(ty_;11)

R—-C Forms T(ty_r41); Y(tn_ri1)
N ROLLD Puts (z(ty_;,.),¥(ty_;,.)) OD top
NEXT of stack, ends FOR-NEXT loop

'T* PURGE > >» Purges T, ends program

Checksum: #24875d Bytes: 125    
 

v' Point to note

When you apply TPAIRS make sure there is nothing on the stack other than the t;’s.

We illustrate TPAIRS by applying it to the roots of y'(t).
 

RAD
{ HOME FUN }

: Root! —1.755170808
3: Root: -,7206768710.. 'TPAIRS|
5: Root: .720656871083 [reates|
T: "Root: 157851008884

TPuIL]Pub[INPUT]POLY|FE"nL]

 

INPUT:

     
OUTPUT:  (3.08062484749, 1.7437616351) relative maximum

(.519375152513, -3.71400799134) relative minimum
(.519375152513, 3.71400799134) relative maximum
(3.08062484749, -1.7437616351) relative minimum

EXAMPLE 2F. Find the two inflection points (of the curve shown in Example 2A).
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SOLUTION. By (3), we see that the t-values for inflection points will
be among the zeros of 3” (t)x’(t) —y'(t)x” (t). So we have yet another zero
problem! To solve it, start by entering the function.

  
iInpuTs| [Drop| [DROP| [swaP| [DROP] T &

[ENTER] T 0 2 T * * [swap] 2 * -—

[Suggestion. Double-check this result by hand. Also note that if you had
to work many problems of this type—as you'll have the opportunity to
do in the exercises—you might want to write a program to calculate the
general expression y" (t)2'(t) — y'(t)x" (t). See Exercise B.1.]

Now graph the function and adjust the PPAR.

—
— = — LL

~—"~~

¥

  

 

 

    
The two zeros that you see correspond to the inflection points. Us-

ing ROOTS and TPAIRS, we easily obtain the values: (1.54516312524,
+1.38792331957). Since the first z-intercept occurs at (2,0) the answer
to Question 6 is no (as you probably guessed).

EXAMPLE 2G. Find the equations of the two tangent lines at (a) the first positive z-
intercept; (b) the second positive x-intercept.

SOLUTION. The first positive z-interceptis

(2,0) = (2(£v2), p(x?)
By (2), the slopes are

y(t)  (t°—6t3+8t) 5t* —18t2 48
x! (t) (t2) 2t

= +212 ~ +2.82842712475.

Therefore, the equations of the two tangent lines are

y = +2v2(z — 2) ~ +£2.82842712475(z — 2)

Similarly, the tangent lines at (4,0) are y = +4(x — 4).

 

 

About Tangent Lines

Notice that formula (2) does not apply if 2'(t) = 0. If 2'(t) = 0, special care is required. If
x'(c) # 0, the program TANPAR (see box) will find the equation of the tangent line to the
curve at the point (z(c), y(c)).
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TANPAR

Inputs: z(t), y(t), c such that z’'(c) # 0. Output: Equation of tangent line
to curve x = z(t), y = y(t)

at (z(c),y(c)).

 

 

<< 'T* STO —- X Y Stores c in T}; introd. loc. vars. X,Y

Y 'T' 0 EVAL Calculates 7'(c)
X 'T* 0 EVAL Calculates z'(c)

/ Forms m = y'(c)/z'(c)
'X' X EVAL - x Y Forms m(X — z(c)) + y(c)
EVAL +

'Y' SWAP = Forms Y = m(X — z(c¢)) + y(c)
'T* PURGE >» >» Purges T, ends program

Checksum: #14777d Bytes: 147    
 

For example, we can easily obtain the above tangent lines as follows.

RAD
|INPUTS| [DROP| [DROP] { HOME FUN }
 

 

 

 

'Y=2, 82842712475%(X
-1.99999999999) '

LEZET[TiNP[YPrlk[PuknTLIN[FPuik]
  

 

EXAMPLE 3. Sketch the parametric curve x = 6sin2t, y = 1.5cos 3t, 0 < t < 2.

 

 

 

SOLUTION.

RESET] 6 2 T =x 1
S 15 3 T Cerey

COS * 0 2 SreeLee

mk .03 [PARA Colmer4el)
|     

What are your questions? Do you see the two “hearts” 7? Do you see
the two “boomerangs” 7 Do you see the big “football” ? You'll have the
opportunity to explore a variety of interesting questions about this curve
in the exercises. (See especially §6.3.) Many such questions depend on
being able to find the intersection points.

 

About Self-intersection Points

Notice that a parametric curve like the one in Example 3 intersects itself when two or more
values of ¢ correspond to the same point, i.e., when there exist values t; and t; with ¢; # t3
such that z(t1) = x(t2) and y(t1) = y(t2). Generally, to find such pairs (¢;,%2) is a difficult
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job, but in special cases like this one, things are manageable.
For the curve above, the problem of finding pairs (t,t) is equivalent to solving the

following system:

sin 2t; = sin 2t,
0<t1 <ta <2m (4)

cos 3t; = cos 3ta

If you look at how horizontal lines intersect the curves y = sinz and y = cosz, you'll
see that cosa = cos if and only if 3 = +a + 2n7 for some integer n, and sina = sin 3
iff 8 = a + 2nr for some integer n or 3 = —a + (2n + 1) for some integer n. See Exer-
cise B.6. Applying these conditions to (4) yields the following seven solutions for (t;,t2):
(r/12,17%/12), (x/6,77/6), (57/12,13n/12), (n/2,3n/2), (Tx/12,7/12), (57/6,117/6),
(117w/12,197/12). See Exercise B.7. TPAIRS can then be used to obtain the corresponding
points (z(t), y(t)) which we list in Table 3.

 

 

Table 3

t-values (x(t), y(t)

7/12, 177/12 (3,1.06066017178)
/6, Tr/6 (5.19615242272, 0)

5m/12, 137/12 (3,1.06066017177)
7/2, 3/2 (0,0)

Tn/12, 237/12 (3,1.06066017177)

57/6, 11/6 (—5.19615242266, 0)
117/12, 197/12 (=3,—1.06066017178)     

If we interpret this information in terms of a moving particle, the particle would start
at the point (0, 1.5) at time 0, reach the first intersection point (3, 1.06066017178) at time
t = m/12, the second intersection point (5.19615242272, 0) at time t = 7/6, the third
intersection point (3, -1.06066017177) at time t = 57/12, and so on, finally ending up back
where it started at time 27.

Generally, the problem of finding self-intersection points can be solved by using an
approximation method similar to Newton’s method.

 

About Polar Curves

As mentioned at the beginning of this section, any polar curve r = r(f), a < § < (3, can
be represented in parametric form by setting x(t) = r(t) cost, y(t) = r(t)sint, a <t <
B. Thus, any question about polar curves can be thought of as being a question about
parametric curves. In particular, we can easily obtain a polar graphing program POLR
from PARA. See program box.

The HP 48 also has a built-in POLAR program that works well.

EXAMPLE 4. Graph the four polar curves r = 2 +sin26, r =2+cos26, 0 < § < 2, in
the same coordinate system.
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POLR

Inputs: r(T), a, 83, s Output: Graph of r = r(0),

aff

<< —- R A B S Introduces local vars. R, A, B, S

R T COS x R T SIN x Forms RcosT, RsinT
A B S PARA Hooks onto program PARA

> > Ends program

Checksum: #5467d Bytes: 93

SOLUTION.

IRESET| |POLAR|
2 2 3
SIN + 2 2 4 — ——
* SIN — 2 2
0 x COS + 2 2
0 kx COS -—- 14

6 03

v' Points to note

1. is in PLOT PTYPE.

2. The 0 key is [o] F.

EXAMPLE 5. Graph the curve r = 0sin26, = < 6 < 5.57.

SOLUTION. Begin by [RESET ting, then set the PICTure DIMensions
as follows:

(-13 —13) (1313)

Then enter the function and use POLR:

 

 

T 2 T x SIN

* ONG)
55 % 01 OY

A    
v' Points to note

1. is in PRG PICT.

2. On the display of your calculator you will only be able to see one-
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eighth of the entire OUTPUT at any one time. You can scroll through
the other seven-eighths with the cursor keys.

 

 

  

 

   
 

Figure 4

It is informative to compare this graph with the double spiral r = £0, 0 < § < 6m. See
Fig. 4. What are the coordinates of the intersection points? How far away from the origin
are the extreme points of the lobes 7? Do these points coincide with the intersection points ?
See Exercises C.4.

 

Exercises 3.2

For Exercises 1-14, (a) make one or more plot of the given parametric curves to capture
all interesting features; (b) find all z-intercepts, y-intercepts, extrema, and inflection
points. For inflection points, you may first want to do Exercise B.1.

A.lzxz =2sin2t,y =2cos3t, 0 <t < 2m.

A.2x =2sin3t,y =2cos2t, 0 <t< 2m.

A.3x =2sint —4cos3t, y =sin2t + 3cos2t, 0 <t < 2.

A.4zx =sin2t + cos 3t, y =sin3t + cos2t, 0 <t < 2m.

A.5x =4sin2t,y = 1.5sint + 1.5cos2t +1, 0 <t < 27.

A6zxr=t-sint,y=1-—cost, —4w <t < 4m.

ATx=t—04sint,y=1-0.4cost, —4n <t < 4.

A8zxr=t—2sint,y=1-—2cost, —4n <t < 4r.

A.9x =sint, y =sint +cos2t, 0 <t < 2m.

A.10x = 6sint, y = 1.5sin2t + 1.5cost, 0 < t < 2m.
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A.11x = 5sint, y = 1.5sin3t + 1.5cos2t, 0 <t < 27.

A.12z =5sint, y = 1.5sin2t + 1.5cos 3t, 0 <t < 2.

A.13x = 5sint, y = 1.5sin2t + 1.5sin3t, 0 < t < 27.

A.14x =sin2t + cost, y =sin2t, 0 <t < 27.

A.15Given thecurvez = 12 —3t —2,y =t4 —t2 +t —-2, —2 <t < 2, (a) make a
sketch showing all interesting features; (b) find the absolute minimum point;
(c) find the equation of the tangent line at the positive z-intercept.

A.16 Given the curve x = t* —4t2 41, y = 0.5t5 —4¢3 + 7.5t, —2.5 < t < 2.5, (a) find
all intercepts; (b) find the dimension of the smallest rectangle that contains
the curve.

A.17 Given the curve x = cost —sin2t, y = sin3t, 0 < t < 2m, (a) make a careful
sketch of this bunny-shaped curve; and (b) find the coordinates of the only
self-intersection point and the four ¢-values corresponding to it.

A.18 Given the curve x = 4sint — 2cos3t, y = 3cos2t, 0 <t < 27, (a) sketch this
curve that resembles two kissing ducks; and (b) find all self-intersection points.

A.19 Sketch the limagon » = 1 + 2cosé and find the equations of the two tangent
lines at the origin.

A..20 Sketch the limagon r = 3+ 2 cos and find the points at which the tangent line
is vertical.

A.21 Sketch the polar curve » = 3 + sind. What do you think it is? Find the
horizontal and vertical distances across the curve. What do you conclude ?

A.22 Sketch the four polar curves » = 2.2 £sinf, »r = 2.2 £ cos, in the same
coordinate system and determine the twelve intersection points.

A.23 (a) Sketch the double spiral shown in Fig. 6(b).

(b) Sketch the double spiral r = 0, —4r < 6 < 4.

(c) Sketch the double spiral r = |6|, —47 < 0 < 47.

 

B.1 Write a program to calculate the general expression y"(t)x'(t) — y'(t)x" (t).
Assume that INPUTS contains z(t) and y(t).

B.2 Make a careful plot of the curve x =t2 —3t—4, y = 2t2 —t—12, —o0 < t < 00,
showing its interesting features. What do you think it is? Determine the
coordinates of the left-most point of this curve. Also find its “vertex”.

B.3 Sketch the curve x = sint, y = sint + cost, 0 < t < 27. What do you think it
is? Verify your conjecture.

B.4 Sketch the curve x = sint — cost, y = sint + cost, 0 < t < 27. What do you
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think it is? Verify your conjecture.

B.5 The curve x = 5t2 + 5t — 4, y = 2t3 + 4.5t2 + 3t — 1, —2 < t < 1, contains a
cusp Py

(a) Find the exact coordinates of Pp;

(b) Even though there is no tangent line at Py, the nearby tangent lines T'(P)

approach a limiting line T as P — Py. Find the equation of T' and make

a sketch showing both the cusp and the line T';

(c) Does T pass through the origin ? Explain.

B.6 Verify (a) cosa = cos if and only if 8 = +a + 2nn for some integer n;

(b) sina = sing if and only if 8 = a + 2n7 for some integer n or

B = —a + (2n + 1) for some integer n.

B.7 Apply the results of Exercise B.6 to find the seven solution pairs (t;,t2) of the
system (4).

B.8 Find the exact solutions of 5t* — 18t2 + 8 = 0.

B.9 Sketch the lemniscate 72 = 36 cos 20, —n/4 < # < 7/4 and find the equations
of the two tangent lines at the origin.

 

C.1 Prove that the curve in B.2 represents a parabola.

C.2 Prove that a curve of the form x = asint+bcost, y = csint+dcost, 0 <t < 2m,
represents an ellipse if and only if ad — bec # 0.

C.3 Prove that a curve of the form x = asin(t + a), y = bsin(t + 3), 0 < t < 2m,
represents an ellipse if and only if 8 — a is not a multiple of =.

C.4 (a) Calculate the coordinates of the tips of the nine lobes shown in Fig. 6(a).

(b) Find the ten intersection points of the curves shown in Fig. 6(c).

(c) Compare (a) and (b) and deduce what happens as § — +00.

 

3.3 CURVES DEFINED BY AN EQUATION

Many curves occur in the form f(x,y) = 0. Examples of what we mean are easy to
give, though often not easy to graph:

x? +9? =2.25
5y2 + 10Y = 8z + 19
x? +4y%2 +4 —-8y—8=0
x2 —dzy +4 — x —-5y—3=0
sinz?y + 23 + 3Y = 17
Ty? = 22(1 — x?)

How can we graph such curves? The answer boils down to either (a) solve the equation
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for y in terms of x and use the methods of §3.1 or (b) parametrize the curve and use the
methods of § 3.2.

Generally speaking, neither (a) nor (b) is easy and quite often (b) is preferable to (a).
In this section, we limit discussion to second degree equations. These equations describe the
general conic. The discussion relates to material in your calculus text under the headings
“conic sections” and “rotation of axes”. In §4.3, we discuss more general situations along
with inverse functions and implicitly-defined functions. In §9.2, we discuss the general case
in conjunction with level curves for three-dimensional surfaces.

EXAMPLE 1. Graph the equation 2? + 43° + 4x — 8y — 8 = 0.

SOLUTION. Note that since the equation is quadratic in y, we may

solve for y in terms of x to get y = 1 £ 4/3 —x — 22/4. Clearly, this
equation is equivalent to the given one, and all we have to do is graph
the functions determined by the two signs.

 

Reser] 13 X -
X SQ 4 / —

- .
Send a A a a andl d a
 + [ARG] - =

   
 

vPoint to note

ARG (GREEN EEX) puts the last
(and nothing else). Here, it takes

1—-+/3—z—-12%2/4 (ARG and -).

two arguments on the stack
only two keystrokes to enter

Another way to work this problem is by approach (b). To see this,
first use algebra to put the equation in the form:

@+2® , W-1° _,
 

42

Then think about the trig identity sin?
to the following parametrization:

T= —2+4sint

y=1+2cost

The rest is easy; just use PARA.

22

a + cos? a = 1. This will get you

 

 

 

RES) -2 4 T

SI + 1 2

T COS x + 0
2 mw kk .02
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EXAMPLE 2.

Observe the difference between the two outputs. Typically, parametric
representations will give sharper outputs.

A third way to plot the above equation is to use the HP built-in
plotter. This works for any second degree equation and is based on the
“solve for yy” idea. By a second degree equation we mean one of the
following form:

Az’ + Bzy+ Cy? + Dx + Ey+ F=0

To apply the built-in plotter, enter the entire equation ([9] ), press

CONIC (in PTYPE), then press :

Graph the following second degree equations:

(a) x2 — day + 4° —x —5y—3=0
(b) 422 — 6xy — 4y%2 = 3

 

    

SOLUTION.

(a) X SQ y.a]y
4 X Xx Y xk
~ 4 Y SQ x |
+ X - 5 Y 4 —
x — 3 — 0 = TE Ramana

 

(b) E 4 X SQ ~a.afy

x 5]
Y teeter’ eX

a

 

:
g

o
l :

3

 

w

[S
)%
*

2     
 

What About Interesting Features?

Even though the above graphing process is quite satisfying (to really appreciate it, try
graphing a few second degree equations by hand!), one gets an empty feeling when it comes
to the question of “interesting features”. What about “vertices”, for example? How can we
find them? For conic sections, interesting features include vertices, foci, directrices, centers,
asymptotes, eccentricities, axes, semi-axes, and latus recta. If B = 0, things are easy. In
this case, the equation can readily be put into one of the “standard forms” from which
everything can be easily determined. If B # 0, that’s a different story. Geometrically,
B # 0 means that the curve is “tilted” with respect to the (z,y)-coordinate system. To
effectively analyze tilted curves, one must have a good understanding of rotations.



A

X=XCcos ¢-ysin¢

y= Xxsin ¢ + ycos ¢

 

3.3 CURVES DEFINED BY AN EQUATION 127

Figure 5

 
Rotation of Points

If a point with coordinates (x,y) is rotated counterclockwise about the origin through an
angle ¢, positive or negative, then the new coordinates (Z, 7) are related to the old ones as
shown in Fig. 5.

 ROTPT

 Inputs: (x,y), ¢ Output: (2,9) = counterclockwise
rotation of (x,y) through Z ¢.

 
<< i %k EXP x >»

 
Multiplies the complex numbers

(a,b) and (cos ¢, sin ¢)

Checksum: #6592d Bytes: 29.5   
 

The program ROTPT (see box) will rotate any point about the origin through any
angle. Examples:

(10) © 4 /

01) = 2 / [4/5]

[RoTPT] 10 [RND]

 RAD
{ HOME CURVES }

3:

2

 

(.708710678118
. 707106781187  6,

) 
FEZEY|ROTPY|Pky POLK [INPUT

 

 

OME CURVES }
 

 (1,0)
LEZET[LOTPY]PitkinPOLE[INPUT[Eh]
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y A

x = x(t) r

r:{ as<t<b

y=x(1)

A Xx = x(t) cos ¢ — y(t) sin ¢ NTTTer
rd ; 0 77

y= x(t) sin ¢ + y(t) cos ¢ ZT K
. ] x

asts<b _/

Figure 6

 

About Rotation of Curves

If a curve I" with parametrization x = z(t), y = y(t), a <t <b, is rotated counterclockwise

about the origin through an angle ¢, then the new curve I' can be parametrized in terms
of the old parametrization as indicated in Fig. 6.

The program ROTCV will rotate any parametric curve about the origin through any
angle.

 

ROTCV

Inputs: (T), y(T), a, b, s, ¢ Output: Counterclockwise rotation
of curve through £ ¢.

 

 

<< —- XY AB S P « Introduces loc. vars. X,Y, A,B, S, P

X P COS x Y P SIN Calculates z-value for rotation
x —

X P SIN kx Y P COS Calculates y-value for rotation
Xx +
A B S PARA >» > Graphs rotated curve

Checksum: #51020d Bytes: 136     
EXAMPLE 3. Rotate the curve

x = 4t2
3 —22<t<2.2

y=gt>—t3+4t

through angles 45°, 135°, 225°, and 315° (cf. Example 2A, §3.1).

SOLUTION. Start with a 45° rotation.



3.3 CURVES DEFINED BY AN EQUATION 129

 

 

   
 

Repeat the process
three times using
INPUTS from
the previous plot and
¢=m7/2
(see Exercise B6).   

 

 

 

Rotations of Equations

If a curve I, defined by f(x,y) = 0, is rotated counterclockwise about the origin through an

angle ¢, then the new curve Tis given by the equation f(x cos ¢+y sin @, —x sin ¢p+y cos ¢) =

0. This is because a point (z,y) is on the curve T if and only if its rotation through —¢ is
on the curve I'. In particular, if the given curve is the general conic

Ax? + Bay + Cy* + Dx + Ey+ F = 0,

then counterclockwise rotation of this curve through angle ¢ gives the equation

Az? + Bay + C'y? + D'z + E'y + F' = 0,

where

A’ = Acos? ¢ — Beospsing + C sin? ¢
B’' = B(cos? ¢ — sin? ¢) + 2(A — C) cos ¢sin ¢

C' = Asin® ¢ + Bcos ¢ sin ¢ + C cos? ¢
D' = Dcos¢ — Esin¢
E’' = Dsin¢g + Ecos ¢
F' =F.

You will probably find similar formulas in your textbook. If some of the signs differ
from those in your book, it’s because a counterclockwise rotation of the coordinate axes
through angle ¢ is equivalent to a clockwise rotation of everything else through angle ¢.
(Most textbooks take the former point of view.)

As you can imagine, to find the equation of a rotated curve can involve a lot of tedious
calculation. The HP 48 specializes in tedious calculations, so let’s put it to work.

The program ROTEQ calculates the coefficients A’, B’, C’, D’, FE’, F’, stores them
under the name L, and forms the equation of the rotated curve.

EXAMPLE 4. Obtain parametric and rectangular representations and plots for the coun-
terclockwise rotation of the curve y = x? through 45°.

SOLUTION. First, use ROTCV to make a parametric plot.
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ROTEQ

Inputs: Coefficients A, B, C, D, E, F Output: General conic rotated

of general conic, and £ ¢ counterclockwise through £ ¢

<< — A B CD E Introduces local variables
F P «

P COS P SIN — K Introd. loc. vars. for cos ¢, sin ¢
S « A K SQ x B

K S x x — C S SQ

+ 8 RND B K SQ

S SQ — 3k 2

A C - x K S Calculates A’, B,C’, D', E', F'
* kX +

RND A S SQ *x B Rounds to 8 places

K S 3k

* + C K SQ kx +

8 RND D K x E S xk

— 8 RND D S %x E K

* + 8 RND F

6 —LIST 'L*' STO Forms {A’, B,C’, D', E', F' },
stores as LL

L 1 GET X SQ x

L 2 GET X Y 3% xk

L 3 GET Y SQ x Forms desired equation

L 4 GET X % L 5

GET Y¥ x + F + +

+ + 0 = COLCT >» >» > Simplifies equation

Checksum: #64582d Bytes: 465    
 

 

 

[RESET] T T SQ \
-3 3 05 © 4 / No

   
 

Since ROTCV uses PARA, we may use INPUTS to get a parametric
representation.

INPUT:
x = .707106781186(t — t2)

OUTPUT: —3<t<3
y = .707106781187(t + t2)

To get a rectangular representation rewrite the equation of the curve as
x2 —y = 0 and apply ROTEQ.
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RAD
RESET| 1 0 0 £ HOME CURVES }

 

 
 

0 -1 0 x :

4 / : | SERA4XRY+, SRY2+
.007106/78%x-
.707106/78*Y=0'

LEZET]ROTE[LOTCH[ROTPY]PunPOLK]     

Finally, to get a rectangular plot, use CONIC.

 

~N
[=
]

 

    
Notice again that the rectangular plot is not quite as sharp as the

parametric plot. (Can you figure out why this is so?)

 

A Strategy

As mentioned above, the case B = 0 is easy. If B # 0, the trick is to find an angle ¢ so
that B’ = 0 (so that the rotated curve will be easy to deal with). The following value will
always work:

A-C A-C\?_ tan—1¢ = tan & + +1)

Note that tan~! denotes the inverse tangent function, not 1/tan; on the HP 48, it’s ATAN.
Your textbook probably gives a similar formula for rotation of axes. The calculation of ¢
(between —7r/2 and +7/2) can be made easier with the help of the following program:

« -— ABC <AC-B / DUP SQ 1 + +
ATAN DUP 'PHI' STO >» > ANG

To find the “interesting features” of a second degree curve (vertices, foci, etc.), we may
proceed as follows:

Step 1. Calculate the above angle ¢ and rotate the given curve through that
angle.

Step 2. Use standard methods to find the “interesting features” of the rotated
curve.

Step 3. Rotate the data from Step 2 through the angle —¢.

EXAMPLE 5. Find vertex, focus, and directrix of the parabola x? — 4xy + 4y% — x —
5y — 3 = 0 (cf. Example 2(a)).

SOLUTION.

Step 1. Enter the coefficients of the given equation, calculate ¢ (you
should get 1.10714871779 ~ 63.4°), then apply ROTEQ:
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-1 5

;

 

 

_ RAD
Ly : * { HOME CURVES }

or 1 3e5xgnoe
4.02492236*X~
3.13049517*Y=0"

A331IEDIE[AGEEE
  

 

This is the equation of the rotated curve. Notice that the xy-term is
missing, as it should be. You can easily graph it using CONIC.

DRAX

Step 2.

 

 

    
|

TF

!

It is easy to obtain the following information (rounded to 8
places) for the rotated curve. Consult your book for details (also see
Exercise B.1).

Step 3.
ROTEQ:

vertex = (—0.40249224, —1.21705986)
focus = (—0.40249224, —1.06053510)
directrix: y = —1.37358461

Finally, rotate this information back by using ROTPT and

INPUT: (—.40249224, —1.21705986)

OUTPUT: (—1.26857143,—0.18428571) (= vertex)

INPUT: (—.40249224, —1.06053510)

OUTPUT: (-1.12857143,—0.11428571) (= focus)

INPUT: 0 0 0 0 1 1.37358461

OUTPUT: 1.37358461 + 0.89442719x + 0.4472136y = 0

(= directrix)

You can put the last expression in more familiar form by using ISOL (in
the SYMBOLIC menu).

  
INPUT: Y [isoL| |[ExpA| [ExpA| [coLcT|

OUTPUT: y= —-3.07142853 — 2x

  

Figure 7 shows the given curve together with vertex, focus, and directrix.
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0.5F

 

 

 
Figure 7

 

Exercises 3.3

For Exercises 1-6, (a) graph the equation and identify the conic section; (b) rotate the
conic section through a suitable angle ¢ so that the rotated conic is in standard form; (c)
as appropriate, identify vertices, foci, directrix, center, and asymptotes for the rotated
conic; (d) as appropriate, identify vertices, foci, directrix, center, and asymptotes for
the given curve.

A.152%2 —20xy +202 — 62 +8y—7=0

A.282% + Txy + 8y? = 100

A.392% +122y +4y2 —8x + Ty =0

A442? —6xy —4y2 =3

A.5 342% — 24zy + 413% = 25

A.6 2% — 24zy — 6% — 262 + 12y = 17

A.7 Find equations of two different parabolas through the points (—1, 1), (0, —1),

(2,0).

 

B.1 Write an HP 48 program that will take as input three points (z1,¥1), (z2,¥2),
(3,ys), where x, x2, x3 are distinct, and produce as output the equation
y = ax? + bx +c of the parabola through them. Test your program on Exercise
AT.

B.2 Find equations of two different parabolas through the points (—2, 0), (0, —1),
(2,0).
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B.3 Write a program that will take as input an equation of the form y = ax? +bz+c,
a # 0, and produce as output vertex, focus, and directrix of the parabola.
[Hint: use OBJ— and differentiation to isolate the coefficients a, b, ¢.] Test
your program on step 2 of Example 5.

B.4 Use the program in B.1 to help solve Exercise A.1 and A.3 above. [Hint: for
A.3 rotate an additional 90°.]

B.5 Explain why rectangular plots are generally not as sharp as parametric plots.

B.6 Complete Example 3. [Hint first delete ERASE from INPUTS.|

 

C.1 Graph several parabolas that pass through the points (-2,0), (0,-1), (2,0).
What do you conjecture about the union of all such parabolas?

C.2Let P,, P,, P3, P, be distinct points, no three of which are collinear. Prove or
disprove: (a) there exists at least one parabola that passes through all of the
P;; (b) there exists at most one parabola that passes through all of the P;.
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Zeros of Functions and Applications
EEE

4.0 Preview

4.1 Intermediate Value Theorem

4.2 Bisection Algorithm

4.3 Newton’s Method

4.4 SOLVR and ROOT

4.5 Implicitly Defined and Inverse Functions

 

4.0 PREVIEW

A number c is a zero of a function f if f(c) = 0. Zeros of functions and roots of equations
are closely related ideas. To find the roots of the equation e* = 2 — x, for example, we may
define the function f(z) = e* —2 + x. A number c¢ is a zero of the function f if and only if
c is a root of the equation e® = 2 — x. Problems in which it is necessary to find the zeros
of a function occur throughout calculus and its applications.

In this chapter we discuss several algorithms for finding real zeros of functions, some
inefficient but requiring only that the function be continuous (the bisection algorithm),
others efficient but requiring that the function be differentiable (Newton’s algorithm). For
most functions the algorithms SOLVR and ROOT on the SOLVE menu may be used in
finding zeros efficiently and accurately.

The choice between SOLVR or ROOT and the bisection or Newton’s algorithms is
complex and will differ among users. If a primary goal is to survey several machine-
independent methods for finding zeros, then bisection and Newton’s methods should be
explored.

In §4.2-4.3 we describe the bisection algorithm and Newton’s algorithm and give pro-
grams for their implementation. We discuss the SOLVE menu in §4.4. We show in §4.5
how these algorithms may be used in the study of implicitly defined functions and inverse
functions.

 

4.1 INTERMEDIATE VALUE THEOREM

The first steps in finding the real zeros of a function f are to determine if in fact f has
one or more zeros and, if so, to locate each of its zeros in an interval. Often the existence
of a zero and its location are obvious, either from the graph or a physical interpretation of
the function. For example, if y = f(t) = —gt?/2 + vot + yo is the position of a ball thrown
upwards from height yo above the ground and with initial velocity vo, it is clear that f has
at least one zero since the ball eventually hits the ground (assuming, of course, that vo

135
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is less than escape velocity). If, for example, f(t) = —16t2 + 10t + 30 for all t > 0, then
the ball must hit the ground between t = 0 and t = 2 since f(0) = yo = 30 and f(2) is
obviously negative.

These steps—existence and approximate location of a zero—can be based on the in-
termediate value theorem. This theorem is almost certainly mentioned in your calculus
book.

Intermediate Value Theorem (IVT). If f is a continuous function defined on
an interval I, then f takes on each value between any two of its values.

Note that the domain of f is assumed to be an interval, which is a subset of the z-axis
containing no gaps, that is, no numbers are skipped. Given this assumption, and that f is
continuous, the IVT states that f skips no values. By interval we mean a gap-free piece of
the real line, which may include end points or not. Rays such as [—3, 00) or (—o00, 5) are
intervals. For finding zeros of functions, the IVT can be stated more briefly:

If a continuous function changes sign on an interval I, then it has a zero in I.

We illustrate this theorem with the function f(x) = 2x® — 7x +6, whose graph is shown
in Fig. 1. Since f is negative at x = —3 and positive at x = —2, it must take on —that is,
cannot skip—the value 0, which lies between f(—3) = —27 and f(-2) = 4.

 

 

  

y

y 2
10

5 NL J
-3

* * X X
-3 -2 -1 1 -2 /-1 1

-5 1

-10
-2

Figure 1 Figure 2

EXAMPLE 1. Use the intermediate value theorem to show that the graphs of g(z) =
sinz and h(x) = = + 1 intersect.

SOLUTION. Fig. 2 makes it geometrically clear that the graphs of g
and h intersect. We use the intermediate value theorem as a numerical
test of the intersection. Since g and h are continous on any interval,
the function F(x) = g(x) — h(x) = sinx — x — 1 is continuous. Since
F(—m) =m —1>0 and F(0) = —1 <0, F has a zero between —7 and
0. So there is a number c¢ for which F(c) = g(c¢) — f(c) = 0. It follows
that (c,g(c)) is a point common to the two graphs. It is easy in this
case to locate ¢ more closely. Using the graph as a guide and the HP
48 to evaluate the function, please check that F(—2.0) ~ 0.09 > 0 and
F(-1.9) = —0.05 < 0. The z-coordinate of the point of intersection lies
between —2.0 and —1.9.
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Exercises 4.1

Using the IVT, locate at least one real zero or root of the following functions or
equations. Locate the zeros or roots between successive “tenths,” for example, between
3.7 and 3.8 or between —0.3 and —0.2.

Alf(x)=23-2x-5

A2 f(x) =2"—4zx

A3z=1-23/10
Adz +sinz=1

AS f(x)=xztanz—1, 0<zx<1.5

A6f(r)=x22—422—-2+3

ATf(x)y=lnz—-2+2, z>0

A.8tan’0 —8tan?0 + 5tanf—4=0, 0<z<15

 

B.1 Locate between successive tenths the zeros of the function

fx) = (x —2)Y% + 222-15

B.2 Locate between successive thousandths the three smallest zeros of the equation

cos(68.617+/x) cosh(68.617/) = —1

B.3 Use the IVT to show that if f and g are continuous functions defined on an interval
I and [f(a) — g(a)][f(b) — g(b)] < 0 for points a and b of I, then there is a point w
between a and b for which f(w) = g(w).

 

4.2 BISECTION ALGORITHM

The bisection algorithm is a relatively slow, reliable method for finding approximations
to the real zeros of a function f. It assumes that f is continuous on [a,b] and f(a) f(b) <0.
It follows from the Intermedidate Value Theorem that f has a zero in [a,b]. We use the
function f(x) = 22% — 7x + 6, with a = —3 and b = —2 as an example. The graph of this
function is shown in Fig. 1. Note that f(—3)f(-2) = (-27)(4) <0.

The idea of the bisection algorithm is easy. If f has a zero in an interval I = [a,b] with
midpoint m, then f must have a zero in either the left or right half of I. To determine
which half, that is, which of [a, m] or [m, b] contains a zero, we calculate f(a) and f(m) and
classify the nine possible outcomes. These outcomes are shown in Table 1. The column
headed by “f(a)f(m) > 07” gives a two-way classification of the product f(a)f(m). The
"New Interval” listed in the last column is a half-interval containing a zero.

The length of the half-interval is h/2, where h = (b — a)/2. We refer to h as the half-
length of the interval [a,b]. We continue the bisection until we have found a sufficiently
small interval containing a zero of f.

At each step we begin with an “old” interval [a, b], old midpoint m, and old half-length
h. Using Table 1 we choose a “new” interval, new midpoint m’, and new half-length
h' = h/2. If we wish to approximate a zero ¢ of f (c is in the new interval) to within an
error tolerance E, we continue the bisection algorithm until A’ < E. For

le—m'|<h/2=h"<E (1)
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Table 1

Case f(a) f(m) f@)f(m)>07? New Interval

1 — — Yes Right

2 — 0 No Left

3 — + No Left

4 0 oe No Left

5 0 0 No Left
6 0 + No Left

7 + — No Left

8 + 0 No Left

9 + + Yes Right      
 

We summarize one step of the bisection algorithm in a flowchart. Note that a = m — h.

m, h

EXAMPLE 1.

 

If f(m — h)f(m) > 0, then
— [replace [m — h,m + h| by [m,m + hj — mm, (2)

else replace [m — h,m + h| by [m — h,m)|   
 

Find the one zero of the function f(z) = 223 — 7x + 6.

SOLUTION. A glance at Fig. 1 shows that f has a zero in the interval
[—3, —2]. The first midpoint and half-length are m = —2.5 and h = 0.5.
Referring to the flowchart, since f(m — h)f(m) = (=27)(=7.75) > 0 we
can be certain that f has a zero in [—2.5, —2.0]. The values of m’ and
h' are —2.25 and 0.25. We drop the primes on m and h. Since f(m —
h)f(m) > 0, the next values of midpoint and half-length are —2.125 and
0.125. At this point we may wish to use —2.125 as a sufficiently accurate
estimate of c. We know that |c—(—2.125)| < 0.125. If this approximation
is not sufficiently accurate we continue. Successive values of m are —2.5,
—2.25, —2.125, —2.1875, —2.21875, —2.203125, and —2.2109375. The
half-length for the last midpoint value is 0.0078125. If we use the (not
usually known) information that the zero towards which this sequence of
midpoints is converging is ¢ ~ —2.20470 54233 ---, we may check (1) by
noting that

|e — (—2.2109375)| =~ | — 2.2047054233 — (—2.2109375)|

~ 0.0062320767 < 0.0078125 = h

We give the program BSCT below. The program imitates the flowchart but includes a
refinement that cuts the number of function evaluations in half. The refinement is based
on the observation that in the > 0 case, the next left end point is the old m. Since we have
calculated f(m), we save it on the stack. In the < 0 case, the next left end point is the
old a = m — h. So, we save f(m — h), which we have calculated. BSCT requires that f
be written in program style and stored on the VAR menu as F. BSCT requires the initial
stack to be f(m — h), m, and h, does the calculations for one step, and returns f(m’ — hb’),
m’, and h’ to the stack for use in the next step.
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BSCT

Inputs: f(m — h),m,h Outputs: f(m' — h'),m’,h’

<< 2 / Compute bh’
— FA M HP Store f(m — h), m, and h’ as local

variables FA, M, and HP

<< FA M F DUP2 xx Calculate f(m — h)f(m) & save the two
factors for the next iteration

IF 0 > If f(m—h)f(m)>0
THEN SWAP DROP then put f(m) and
M HP + m’ =m + h' on the stack
ELSE DROP else put f(m — h) and
M HP - END m’ =m — h' on the stack
HP > > Last of output stack: h'

Checksum: #32567d Bytes: 129     
Once started, BSCT should be run repeatedly, until h’ < E.
You may wish to create a new directory, perhaps called ZEROX, in which to store

BSCT and the user-defined function F. We repeat part of Example 1 to show the operation
of BSCT.

EXAMPLE 2. Find the zero c¢ € [-3,2] of the function f(z) = 22° — 7x + 6 to within
an error tolerance of 0.01.

SOLUTION. Use DEF to store f on the VAR menu in the ZEROX
directory, where you have BSCT stored. Given that f has a zero in
[-3, 2], we take a = —3, m = —2.5, and h = 0.5. Put —3 on the stack

and press |F|to put f(m — h) = f(a) on the stack.

RAD 1USK
—2.5 |ENTER HOME ZEROX }

 

 

  

{

s ToNow press 3: 2333085505
5 more times 1: .0078125

|IEEECTYITTXETRTER|

We pressed until A’ in level 1 is less than 0.01. We may say

that m’ = —2.2109375 is within 0.01 of c.

 

Exercises 4.2

Use the bisection algorithm in solving the following problems. In evaluating polyno-
mials it is more efficient to write them in nested form. This is discussed in §1.4. Round
your last calculator result to the nearest 10E. For example, if £ = 0.01, then round to
the nearest 0.1. Answers will be reported this way.

A.1Find the zero of the function f(z) = 5x2 — 7x? + 9x — 41 in the interval [0, 4]. Let
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the error tolerance be FE = 0.0001.

A.2 Find the zero of the function f(z) = —6x°> — 11z* + 2z + 2 in the interval [—1,0].
Let the error tolerance be E = 0.0001.

A.3 Find the two zeros of f(z) = (x — 2)'/3 + 222 — 15 in [5,5]. Use E = 0.001. See
problem B.1 in §4.1 and its answer.

A.4 The volume V (in cubic meters) of 1 mole of a gas is related to its temperature T°
(degrees Kelvin) and pressure P (in atmospheres) by the ideal gas law PV = RT.
A more accurate equation is van der Waals’ equation

(re8)(r) =m
The constant R is 0.08207. For carbon dioxide, a = 3.592 and b = 0.04267. Find
the volume V of 1 mole of carbon dioxide if P = 2.2 atmospheres and T' = 320°K.
Use E = 0.01.

A.5 Find the zeros of the function f(z) = 2% — 4x. Use FE = 0.001. See problem A.2 in
Exercises 4.1.

A.6 Find the three smallest zeros of the equation cos(68.617+/x) cosh(68.617/c) = —1.
Use EF = 0.0001. See problem B.2 in Exercises 4.1.
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Figure 3

B.11If two space vehicles A and B (see Fig. 3) are in the same circular orbit and it
is required that they rendezvous, it is necessary for A to go into what is called
a transfer orbit. To calculate the amount of thrust required to accomplish this
maneuver, given the radius of the original orbit and the values of two angles, the
eccentricity of the transfer orbit must be known. Using the equations of motion of
a body in a central force field and the geometry of the conic sections, the equation
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satisfied by the unknown eccentricity ¢ is

  

ro :pte eve? —1 sind — In=1++e—-1 ee

36092 = 2-1 1+ecosé ve+1—+e—1 tan(6/2)

In this equation it is assumed that € > 1, which gives hyperbolic orbits. The
variables 23 and 6 are described by

p23 = angle between B and the point at which A and B

rendezvous, measured at the time the manuever begins, and

0 = (p12 + ¥23)/2, where

p12 = the angle between A and B at the time the manuever begins

Use the bisection algorithm with error tolerance 0.001 to obtain values of the ec-
centricity € for p32 = 30° and each of the values p23 = 20°, 30°, 40°, and 50°.

Rough Outline of Solution

1. Put your calculator in MODE DEG.

2. Use the values p12 = 30° and p23 = 20° in first defining the function
f. The entire set of data can be covered by modifying f later. (There are
several ways of accomodating the changing values of 23, of which the one
suggested here is not the most elegant.) It is probably easiest to enter the
function in pieces. For example, define functions F1, F2, and F3, using the
program method and the following expressions:

'((1+E*COS(25))/(E*E—1)) "1.5"
'E%/(EXE —1)%SIN(25)/(1+E*COS(25))"
'LN((V(E+1)++v/(E-1)*TAN(12.5))/(v/(E+1)—/(E—1)%TAN(12.5)))"

3. The stack input function f can be defined in terms of F1, F2, and F3.
Store 7 - 20/360 = 7/18 = .174532925199 as a constant.

4. Check your entry of f from f(2) ~ 0.064311593091.

5. Before using BSCT you will need to locate the zero in an interval [a,b|
such that f(a) <0< f(b). Trya=4 and b=>5..

6. With error tolerance 0.001 you should obtain € = 4.48.

7. Return your calculator to radian mode.

B.2 The frequency equation of a vibrating beam is

cos(kA) cosh(k)) = —1

where k? = p/a, a*> = (EIg)/(Ao), p = the natural frequency of the beam in
radians/second, A = 120 in (length of the beam), I = 170.6 in? (elastic moment
of inertia of the beam), E = 3-10° 1b/in? (elastic modulus of the beam material),
o = 0.0661b/in® (density of the beam material), A = 32 in? (cross-sectional area of
the beam), and g = 386 in/sec?® (acceleration of gravity). Find the three smallest
natural frequencies of the beam.
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C.11n structural beams subject to eccentric loading ( “eccentric” means that the di-
rection of the applied force does not pass through the center line of the beam)
the average unit load L is related to the slenderness ratio S (which describes the
geometry of the beam) through the “secant formula”

L Omaxzx

- 1+ sec (0.55V/IL/E)

where 0,4; is the maximum stress, ec/r? is the eccentricity ratio, and E is the
modulus of elasticity. This formula is derived in the book Mechanics of Materials,
Third Edition, by Higdon, Ohlsen, Weese, and Riley. Fig. 4 was adapted from an
illustration in this book. The figure was accompanied by the statement “Digital
computers can also be programmed to solve the formula directly using iterative
techniques.” Using the bisection algorithm, compute data sufficient to plot the
curve corresponding to the eccentricity ratio 0.4. Some of the data you need are
found on the figure. The horizontal axis corresponds to the slenderness ratio S and
the vertical axis to the average unit load L.

 

02 = ec/ r?

30+

   

 

251 O max = 40ksi
20 +—1-2 E = 30,000 ksi

15 4

104

sd Ts

  
20 40 60 80 100 120 140 160 180 200 220

Figure 4

 

4.3 NEWTON’S METHOD

The bisection algorithm is slow, reliable, and requires only that f be continuous. The
algorithm called Newton’s method is usually much faster. For Newton’s method we must
assume that f is differentiable. This assumption is not, however, sufficient to guarantee
success. The successive approximations may wander away from a nearby zero.

We show in Fig. 5 the graph of a function f near a point ¢ where it crosses the z-axis.
Let x; be an initial approximation to ¢. From x; we go up to the point (x, f(x1)) on the
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graph of f. From there we slide on the tangent line down to its x-intercept x2, then rise
from z, to the point (x2, f(x2)), slide on the tangent to its x-intercept x3, and so on. For
functions similar to that in Fig. 5, where the concavity of the graph is the same on both
sides of ¢, the points x, x2, x3, ... converge rapidly to the desired zero c of f.

(x1,f(x1)) /

y

 
  

 

Figure 5

The algorithm for Newton’s method is easily written out from the above description and
Fig. 5. We assume now and in what follows that f has a non-zero derivative throughout
an interval containing c. Let x, be any one of the iterates. The next iterate, x,1, is the
z-intercept of the tangent line at the point (z,, f(z,)). The equation of the tangent line
to the graph of f at (zn, f(x,)) is

y — fxn) = f'(zn) (x — 20)

Setting y = 0 to get the x-intercept we have

T— Tn = —f(xn)/f(20)

Solving for x and denoting this value by z,,; we have Newton’s algorithm

Tnyl = Tn — Lh n=12,... (1) 

We show in Fig. 6 a function f for which Newton’s algorithm does not give an improving
sequence of approximations to a zero ¢ of f. The most prominent feature of this graph is
that it changes concavity at ¢ = 0.

Newton’s algorithm requires more calculation per step than the bisection algorithm
since the iteration step (1) includes two function evaluations, f(x,) and f’(z,). The extra
calculation is often justified by the speed with which the iterates converge to a zero of f.
The number of correct digits usually doubles at each step. Knowing when to stop is a more
difficult question than for the bisection algorithm. We discuss this after we give an example
and a program.

EXAMPLE 1. Use Newton’s method to find the positive zero of the function f(z) =
x —2.
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y

 
Figure 6

SOLUTION. The positive zero is v2 = 1.41421 35623 ---.We take the
first guess x; to be 2. The first few steps of Newton’s algorithm are

x? —2
 

 

 

2vp =m — p= =2- 7 — 15

2 _9 0.2
2 .

222 — 2 0.00694444445— — = 141666666667 —oo" _ |4149156862
T= Tr 2.83333333334

Newton’s method can be programmed in many different ways. Leaving aside the ques-
tion of deciding when an iterate z,, is sufficiently close to a zero, any program requires
at the very least access to f and x,. The program NEWT given here is user-friendly but
inefficient. To use NEWT, f must be stored on the ZEROX menu in program style. NEWT
is inefficient in that it recalculates f’ at each step. It is user-friendly in that besides f, only
one input is required, namely, z,. NEWT outputs z,, and x,so that successive iterates
can be compared. When z,, and z,,4; agree to, say, five decimals,it is often assumed that
Tn+1 approximates a zero of f to four or five decimals.

 

 

 

NEWT

Inputs: xz, Outputs: Tp, Tn

<< —- X Store z,, as a local variable X
<< X DUP F Duplicate z,, for output stack

and calculate f(z)
'F(X)' 'X' 9 Calculate f'(z,)
/ NEG X + Calculate x,41
> >

Checksum: #24330d Bytes: 90    
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Suggestions for other Newton’s method programs are given in problems C.1-C.3.

EXAMPLE 2. Use NEWT in repeating Example 1.

SOLUTION. Use STD mode.
 

 

  

'F(X)=X"2-2" £ROME ZERDK 3 HSK
DEF 4: 2
2 NEWT 3: 1.5
NEWT 2: 1.41666666667
NEWT 1 1.41421568628

EEEa)

The final stack shows x, x2, x3, and x4. If we press [NEWT| twice

more we get 1.41321356237 in levels 1 and 2. These agree with v/2 as
calculated on the HP 48. Note that the number of correct decimals is

more than doubled at each iteration.

To illustrate one method of checking the accuracy of an approximation to a zero c of a
function f, suppose in the example above we stop with x4 = 1.41421568628, hoping that it

will give us an approximation 2 within 0.0001 of v2. Let 2 = 1.4142.

 
2

| 0.0001 | |
1.4141 x= 1.4142 1.4143

Figure 7

To show that |z—+/2| < 0.0001 it is enough to show that f(x —0.0001) f(z 40.0001) < 0.
For, referring to Fig. 7, this condition means that f crosses the axis between the end

points. The crossing point (1/2) must be within 0.0001 of the midpoint. We note that

f(z — 0.0001) f(z + 0.0001) = f(1.4141)f(1.4143) = (—.00032119)(.00024449) < 0

We leave as problem C.3 an adaptation of NEWT which uses this criterion as a stopping
rule.

 

Exercises 4.3

In the A problems use the method associated with Fig. 7 to establish the accuracy
of an approximation. In each problem we give an error tolerance E. It follows from
f(x — E)f(x + E) < 0 that z is within F of a zero of f. For problems in which z; is
not specified you may wish to plot the function to obtain a reasonable value of z;.

A.1Find the real zero of the function f(z) = 23 — 5. Let 2; = 2.0 and E = 0.0001.

A.2 Find the real zero of the function f(z) = —x+cosz. Let ; = 1.0 and E = 0.0001.
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A.3 Find the real zero of the function f(z) = tanz — x, where 3.3 < x < 4.7. Let
x; = 4.6 and E = 0.0001.

A.41n finding acceleration poles in a planetary gear train the equation

tan’ § — 4tan®6 + tan —4 = 0

must be solved. Find the real root. Give your answer in degrees.

A.5 (similar to problem 4) For a second gear train the equation

tan®0 —8tan®6 + 17tanf — 8 =0

must be solved. Find the three real roots. Give your answers in degrees.

A..6 Spherical four-bar linkage mechanisms can be designed to mechanically approxi-
mate given mathematical functions. To generate the function log, x, for 1 < zx <
10, the quintic equation

t° + 1.21355t% + 2.44461t3 + 2.426332 + 1.47224¢t + 1.18747

must be solved (as one step in calculating the lengths of the four bars). Find the
real root. Use E = 0.01.

A.7 Determine the first four positive zeros of the function

f(x) =cosxcoshzx +1

to within 0.001 of their true values. This function becomes very large for relatively
small values of x. For example, f(6) ~ 194.68. This feature makes it difficult to
find approximate locations of its zeros using a graph. To locate approximations to
the zeros you may wish to evaluate f(x) for several different values of x, looking
for sign changes. Try successive integers. Once you have found successive integers
for which f changes sign, use their average as a starting value. For evaluation you
may store f as a user-defined function, say as F, and simply press the key beneath
the VAR menu variable F after entering a number. Or you may use the SOLVE
menu.

A.8 Find all the zeros of the Chebyshev polynomial

128z° — 2562° + 160z* — 3222 + 1

to within 0.00001 of their values. You may wish to plot this function to find initial
guesses. You can cut your work in half by an observation. You may check your
results by using the fact that the zeros xj are given by

xr = cos|[(2k + 1)7/16], k=0,1,...,7

A.9 The equation 2% — 2x — 5 = 0 was used by Wallis in 1685 to illustrate Newton’s
method. It has been included in most subsequent works dealing with the numerical
solution of equations. Find the real root of this equation.
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B.1 Pulleys of radii R and r are connected by a taut belt of total length L. Letting
R = 200 cm, r = 100 cm, and denoting by x the distance between pulley centers,
express L in terms of R, r, and z. Find x to within one decimal place for each of
the values L = 2000, 2100, ...,2800 cm.

B.2 If in the Newton’s method equation (1) f'(x,) is replaced by the difference quotient

f(z) f(Tn-1)

Tn — Tn-1

the resulting formula for x,is called the secant method. If z,, and x,,_; are close
together, f'(x,) and the above difference quotient are very nearly equal. We may
expect the secant method to converge at a rate between those of the bisection and
Newton’s methods. The secant method is usefulif f either fails to have a derivative
or has a derivative which is difficult to calculate. In any case, if it happens that
f(xn) = f(xn-1), the secant method will fail, just as Newton’s method fails if
f(x) = 0. The secant algorithm is given by

Tn —Tn-1

f(zn) - f(xn_1

Tnt1 = Tn — f(2n) n=1,2,...

Use this algorithm in calculating the zero of the function f(z) = cosxz — x. Note
that you will need two starting values, x; and zs.

 

C.1 Modify the program NEWT so that it (1) assumes the user has stored f and f’
in program style on the VAR menu as F and DF and (2) expects as input just x,
does one step of Newton’s method, and leaves on the stack the input for the next
step as well as the preceding iterate, for comparison.

C.2 Modify the program NEWT or the program written in problem C.1 so that the
functions are algebraic expressions, not functions written in program style.

C.3 Write a program with input x; and FE and output the first iterate xz, for which
f(xn — BE) f(z, + E) <0, so that |x, — ¢|] < E, where c is a zero between z,, — E
and xz, + FE.

C.4 Newton’s method may be used to find complex zeros. If you are interested in this
topic you may wish to look up Bairstow’s method in Peter Henrici’s Essentials of
Numerical Analysis with Pocket Calculator Demonstrations, John Wiley & Sons,
New York, 1982. We use the program NEWT given in this section. One of the
difficulties in finding complex zeros is in locating initial approximations.

Weillustrate the procedure with the function f(z) = 23 — 1, which we may

factor as f(x) = (x—1)(xz2 +x +1). The zeros of f are 1 and —1/2+1i/3/2. We use
NEWT in finding one of the complex zeros. Recall that the complex number a + ib
is entered as (a,b). Use DEF to store f on the ZEROX menu and let 2; = (—.4, .8).
After NEWT has run, level 1 will be (—.516666666667,.866666666667). Running
NEWT three more times gives (—.5,.866025403785) in level 1. It is already clear

that the iterates are converging to —1/2 + iv/3/2 = .5 + i.866025403785.
Use NEWT in finding all of the zeros of the polynomial

xt — 52° + 212? + 13x + 49

There are zeros near 3 + 4: and —.5 + 1.31.
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4.4 SOLVR AND ROOT

In this section we discuss how to use the HP 48 algorithms SOLVR and ROOT for
finding zeros of functions. For most functions, SOLVR and ROOT find zeros efficiently and
accurately. The HP 48 manuals contain well written descriptions of SOLVR and ROOT.
Accordingly our discussion is brief.

We start with ROOT, which is the heart of the SOLVR. The differences between the two
are (1) ROOT does not include the user-friendly environment of SOLVR and (2) ROOT can
be used in a program. In what follows we give an example of using ROOT, several examples
of using the SOLVR, and a final example of how ROOT may be used in a program.

EXAMPLE 1.

EXAMPLE 2.

Use ROOT to find the real zero of the function f(z) = 323 —5z2+17z—11.

SOLUTION. The built-in ROOT algorithm is on the 9SOLVE ROOT
menu. ROOT will find a root of an equation f(x) = 0 or a zero of
a function f. It requires three stack inputs: First-in is an algebraic
expression for f. If f entered in program style is stored as F, then 'F(X)"
may be used. Second-in is the name of the variable. Third-in is a single
number or a list of one to three numbers. If a single number or a list
with one number is the input chosen, the number should be a reasonably
good estimate of a zero of f. If a list {a,b} of two numbers is input,
the interval [a,b] should narrowly contain a zero. And if a list {c, a, b} is
input, ¢ should be your best guess for the zero and, as before, the interval
[a, b] should narrowly contain a zero.

Suppose we wish to use a list of two numbers containing a zero as
input to ROOT. To locate bounding numbers of a zero, we evaluated
f(z) for several values of x using the SOLVR. We found f(0.7) ~ —0.521
and (0.8) = 0.936. It follows from the Intermediate Value Theorem that
f has a zero in the interval [0.7,0,8]. The input and output to ROOT
are as follows.
 

 

  

9SOLVE ROOT OPME ZERDK 3 HSK
3%X~3-5%X"2+ 7:
17%kX-11" 3:

ENTER 'X' ENTER 2:

{.7.8} ENTER ROOT 1: . 736028606484
STAIATIEIIATS  

The result, .736028606484, closely approximates one zero of f.

Repeat Example 1 but use the SOLVR instead of ROOT.

SOLUTION. The SOLVR is on the same menu as ROOT (ROOT is
also the name of a directory). Perhaps using the nested form of f shown
below, put f on the stack.
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SOLVE ROOT RM ZEROX } Hs
' Xk(Xk(3%X—5)+17)—11" :
1EQ SOLVR 3:
{7.8} ENTER X 5:

X 1: Ri. 736028606484
CECJCJCC]

Pressing displays a menu showing the variable(s) occuring in

the expression for f. It also shows . We give the SOLVR our

estimate {.7 .8} by keying this in and then pressing [X|on the SOLVR
menu. Pressing the 7 and X keys does two things. It tells SOLVR that
you wish to find a zero of the function f stored as EQ and that f is
regarded as a function of the variable x. The result of 9X is the number
.736028606482, as in Example 1, and the word “Zero.” This means that
the displayed number is an approximation to a zero of f in [0.7,0.8] and,
within the limitations of the calculator, the number is a zero of f. You

may verify this by pressing the key in the SOLVR menu and then

[Expr].

Calculate v/2 by finding the real zero of the function f(z) = 23 — 2.

SOLUTION. Put an algebraic for the function f(z) = 23 — 2 on the
stack, store it as EQ, and use SOLVR in locating between successive
“tenths” the zero of f. You should find f(1.2) = —0.272 and f(1.3) =
0.197. Using {1.2 1.3} as the guess, store this by pressing X. Pressing

4X on the SOLVR menu gives 1.25992104989 (~ v/2) and the message
“Sign Reversal.” This means that the HP 48 was not able to find a HP
48-representable number c¢ such that f(c) = 0. Instead the SOLVR gave
one of a pair of “adjacent” numbers p and gq for which f(p) and f(q)
have different signs. In this case the adjacent numbers are 1.25992104989

and 1.25992104990. You may check with the key that the cor-
responding function values are —0.00000000002 and 0.00000000002.

In the next example we show how ROOT can be accessed through the GRAPHICS
FCN menu.

EXAMPLE 4. Find the zeros of f(z) =x —Inz —2, 2 > 0.

SOLUTION. We use PLOT to obtain estimates of the zeros of f.
 

'X—LN(X)—2"
PLOT 4 EQ
PPAR RESET
0 SPC 6 XRNG _ C6
-1.5 SPC 1.5 YRNG ;
PREV PLOT
DRAX DRAW
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EXAMPLE 5.

Next we use FCN on the PICTURE menu beneath the above display.

 

 

  

FCN £HOME ZERDH 3 Hk
Move cursor to larger zero 3:

ROOT 3:
Move cursor to smaller zero 2: Root: 3.14619322062

ROOT CANCEL 1: Root: .158594339563
[ECCT[NEWT]FING[MAI]S0NT]FJ

 

The zeros of f are on the stack.

In problem C.1 of Exercises 4.2 the “secant formula” was given as

IL Omazx

- 1+ = sec (0.55VI/E)

 

In the formula, 0. = 40 and FE = 30,000. We assume here that
ec/r? = 0.2. The variable L is the average unit load and is the dependent
variable. The independent variable is the slenderness ratio S. We wish
to plot L against S. Since L is implicitly defined by the secant formula,
we must let S take on values in an interval of interest—taken as [0,220]
in problem C.1—and solve the secant formula for L for selected values of
S. This will result in a set of pairs (S, L) from which we sketch a graph,
as in Fig. 4. Write a program whose output is a data set from which the
the “0.2 curve” in Fig. 4 may be plotted. Use ROOT to generate the
pairs and commands in the STAT menu to store and plot these data.

SOLUTION. We may plot a reasonably good graph if we let S increase
from 0 to 220 in steps of 5 units. For each specific value of S we define
the function

H(L) — L _ Omax

1+ sec (0.55VI/E)
 

To use ROOT we need an algebraic expression for H on the stack, the
variable L, and at least one estimate for the zero. Since L varies with S,
we expect the estimate to vary as well. Since it easy to estimate the zero
of H when S = 0, namely, 0maz/(1 + ec/r?), we have a starting place for
the estimates. We may use the calculated zero for S = 0 as an estimate
for the zero corresponding to S = 5, the calculated zero for S = 5 as an
estimate for the zero corresponding to S = 10, and so on. The program
SCNT prepares the stack for ROOT,calls ROOT, and stores the resulting
pair (S,L). After SCNT generates the required data set, we plot using
SCTR on the STAT menu. First, the program.

The program SCNT takes a minute or so to generate the 45 pairs of
data from which the graph is plotted. The data are stored under the name
YDAT, which appears on the VAR menu after SCNT is complete. To plot
DAT we go to the STAT menu. We use VZOUT with V-FACTOR 1.1
to make the horizontal axis visible.
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SCNT

Inputs: None Outputs: XDAT

<< CLY -19 CF Clears the statistical matrix

YDAT & sets data flag
33.33 — L1 Put estimate L; for L

(corresponding to S = 0)
on stack for ROOT

<< 0 220 FOR S Set FOR/STEP loop
'L—-40/(1+.2% Define algebraic for H
INV(COS(.5%S*,/(L/30000))))'
'L' L1 ROOT Complete stack for ROOT

DUP S SWAP —-V2 3X4 DUP L, build vector [S, Lj,
and store in ¥DAT

'L1' STO Save L to use as new L;

5 STEP Increase S by 5

> 'L' PURGE -19 SF>» Clean up & restore data flag

Checksum: #30209d Bytes: 240.5   
 

 

9STAT PLOT SCATR
ZOOM ZFACT

Set V-FACTOR equal to 1.1
OK OK NXT VzZOUT

 

The resulting graph may be compared with the “0.2 curve” in Fig. 4
of problem C.1 in §4.2.

 

Exercises 4.4

A.1 Use ROOT in finding the zero of the equation z cosh(50/z) =z — 10, x > 0.

A.2 Use the SOLVR in finding all of the positive zeros of the Laguerre polynomial
x3 — 922 + 18x — 6.

A.3 The polar curve with equation » = Inf + 6, 0 < § < 27, has a loop. To find the
area of this loop we must find the coordinates of the point where the curve crosses
itself. If you have not yet learned how to find the area of polar curves, find where
the curve crosses itself. If you have learned how to find such areas, determine the
limits of integration and calculate the area of the loop.

A.4 Find the zero of the derivative of the function

f(x) =14+52x —secv0.732, 0<x<3.2

 

B.1 Repeat the work in Example 5 with ec/r?> = 0.4. You will need to modify the
program SCNT in only minor ways.
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B.2 If we were required to find the zeros of each of the family of polynomials

z® — az? + 20023 — 60022 + 600 — 120, o = 24.8,24.85,...,25.2,

we might decide to look for a way to speed the necessary calculations. Since in
finding zeros most of the calculation time is spent in function evaluation, it is
important that the polynomial be evaluated efficiently. We discuss one method of
doing this in what follows. The method depends upon using the programs NSTD
and DFLT discussed in Chapter I. For the discussion we take a = 24.8.

We begin by finding the zero of smallest absolute value, call it 2;. To do this
efficiently, we enter the list Ls = {1 —24.8 200 — 600 600 — 120}. By using NSTD
we easily generate the polynomial in factored form for efficient use by the SOLVR
or PLOT. Using the SOLVR or PLOT we find the smallest zero is near 0.3 and,
with this as the required estimate, find x; = 0.263557337625. Next, with L4 and
x1 on the stack, use DFLT to obtain

{1 —24.5364426624 193.533240497 — 548.992894392 455.308894377}

Using NSTD on this list we find the factored form of the deflated polynomial.
Again using the SOLVR or PLOT we find the smallest zero is near 1.4. The
SOLVR then gives xo = 1.41846415306. We deflate again and continue in this way
until all five zeros (the given polynomial has five positive zeros) are determined.
It is known that if the zeros are determined in order of size, from smallest in
absolute value to largest in absolute value, the use of synthetic division to deflate the
polynomial yields accurate results. We find x3 = 3.46437108483 and, using QUAD,
x4 = 7.8488644354, and x5 = 11.8047429891. Verify these computations using the
SOLVR, NSTD, DFLT, and QUAD. The arrangement of these programs and what
they leave on the stack works out very well for an easy algorithm, interupted only
to record the zeros as they are calculated. Repeat for a = 24.85.

 

C.1 (continuation of problem B.2) Write a program whose input is a value of a and
whose output is the smallest zero of the polynomial in problem B.2. Use the
program to find the smallest zero for a = 24.8,24.85,... ,25.2.

C.2 (continuation of problem B.2) Find to within 0.1 the greatest value of a less than
24.8 at which some of the zeros become complex.

 

4.5 IMPLICITLY DEFINED AND INVERSE FUNCTIONS

We discussed implicitly defined functions in Chapter 2 and gave a program for finding
their derivatives. In this section we use the methods of section 4.4 to graph implicitly
defined functions. Inverse functions are a special case of implicitly defined functions. We
give a program for graphing an invertible function and its inverse on the same graph.

EXAMPLE 1. The equation
3? + 32%y +x —-2=0, r>1 (1)

defines y as a function of x. (See problem C.1.) We denote this function
by f. To study f we wish to prepare a rough graph. Use SOLVR to gen-
erate a small table of points (x,y) = (x, f(z)) and use these in sketching
a graph of f.
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SOLUTION. We let x take on the values 1.00, 1.25, 1.50, 1.75, 2.00, 2.50,
3.00, 4.00, 5.00, 7.00, 9.00, 11.00, 13.00, 15.00, and 19.00 and determine
the corresponding values of y = f(x). The spacing of the x values was
determined by how much the computed y values change with a given
change in x. When y is not changing much with z, the interval between
successive x values may be increased. For x = 1.00 we need an initial
guess y; for SOLVR. For subsequent values of £ we can use the most recent,
y as a guess for the next. For example, we may take for y; corresponding
to x = 1.25 the value of y found by SOLVR for x = 1.00. The starting
value for x = 1.00 may be found graphically or by use of the SOLVR. We
take y; = 0.3 for x = 1.00. Set 4 FIX.
 

 

  

9SOLVE ROOT HIME ZERDK } Hs
'X3%Y"34+3%X2%Y a:
+X-2 3:

9EQ SOLVR 5:
1 X 3Y : Y: 0.3222

Y COCIEmaC_JCJC]

 

This gives thefirst line of Table 2. Leaving this value of y on the stack,
enter 1.25 and press X, press Y (to give SOLVR an updated initial guess),
and then 9 and Y. This gives the second line of Table 2. Continuing in
this way we easily generate the entire table.

These data are plotted in Fig. 8. We leave as problem A.5 the location
of the minimum of this function. We leave as problem C.1 the explicit
solution of (1) for y in terms of z using hyperbolic functions.

 

 

   

Table 2

Zz Y z Y

1.00 0.3222 5.00 —0.0397

1.25 0.1583 7.00 —0.0339

1.50 0.0739 9.00 —0.0287

1.75 0.0272 11.00 —0.0247

2.00 0.0000 13.00 —0.0217

2.50 —0.0267 15.00 —0.0192

3.00 —0.0370 17.00 —0.0173

4.00 —0.0416 19.00 —0.0157  
 

For 0 <x <3 and y > 0 the equation

e®Ov (0.1z + y) =e(1 + 22 — 0.29) (3)

defines y as a function of z. Unlike (1), however, this equation cannot
be solved explicitly for y in terms of x, which means that y can not be
written as a combination of a finite number of “elementary functions” of
x. Estimate the maximum of the function determined by (3).
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y

0.3 7
Graph of the function defined

implicitly by the equation

027 x32 +3x%y+x-2=0

0.1

+ + + X

°. 5 . «10 » e 15 ° *
-0.05 1 ’ 

Figure 8

SOLUTION. Let g denote the function of z determined by (3). We may
use the SOLVR as in Example 1 to calculate Table 3. We show in Fig. 9
a plot of these data.

Table 3

 

x 9) =z g(=)
0.0 0.82 0.9 0.96

0.1 0.90 1.0 0.93

0.2 0.96 1.2 0.84

0.3 1.00 1.4 0.75

0.4 1.02 1.6 0.66

0.5 1.03 1.8 0.56

0.6 1.02 2.0 0.46

0.7 1.01 2.5 0.24

0.8 0.99 3.0 0.05

 

      
The maximum of g is approximately 0.95 and occurs at x ~ 0.5. For

some purposes these values may be good enough. There are several ways
to find Zaz and g(zmaez) more accurately. In Chapter 5 we return to this
problem when we discuss the golden section algorithm. For the moment
we may use the SOLVR to gain confidence in the approximate values of
Tmaz ad g(maz), even to refine them if we wish. For example, we easily
find the following (x, y)-pairs satisfying (3):

(0.49,1.0271), (0.50,1.0273), (0.51,1.0275), (0.52,1.0275)

We leave as a problem which of 0.51 or 0.52 better approximates Tmqz-
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Graph of the function defined

0.2 + implicitly by the equation .

eV(0.1x+ y) =e*(1+2x-0.2y)
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Figure 9

 

Inverse Functions

The problem of finding the inverse of a function is a special case of finding implicitly
defined functions. If a function f is known to have an inverse f~!, we may attempt to find
an explicit formula for f=! by writing an equation y = f(z), solving this equation for z in
terms of y, and, finally, interchanging x and y.

EXAMPLE 3. Find the inverse of the function f defined by

2x —3

x+1’
 y= f(z) = x # —1 (4)

SOLUTION. Since

5
f@)=a3n>0 x # —1

the function f is increasing and so invertible. Solving (4) for x in terms
of y we find

y+3

Interchanging xz and y in (5) so that we may express f=! in terms of the
traditional variable x we find

+3

x—2’
 fT) =~ z #2
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The essential step in Example 3 came in solving (4) for z in terms of y. For the function
f defined in (4) this was easy. For other functions it may difficult or impossible to find an
explicit formula for f~!. An example of an invertible function whose inverse can not be
found explicitly is

f(x) =x —Inz — 2, x>1 (7)

Since f'(x) = (x —1)/x > 0 for x > 1, f is increasing and hence invertible. To find f=! we
write the equation

y=x—Inzr—2

Since f is invertible, this equation defines x as a function of y. If y is any fixed value in the
range of f, we may use SOLVR (or Newton’s method or the bisection algorithm) to find
the zero of the function

g(x) =c—Inx—-2-y

(We have used the notation g, since as y changes, the form of the function changes as well.)
If we repeat this for several values of y, the result is a set S of ordered pairs of the form
(y,z), where x is the zero of g,. Plotting S gives an idea of the graph of f=.

 

Graphing f and f~!

We may graph f=! even though we have no explicit formula for it. Following the
convention that the domain of a function should be on the horizontal axis, it is enough
to reflect the graph of f across the 45°-line. If it is acceptable to use the vertical axis for
the domain of f~!, the graph of f=! is identical to the graph of f! Another approach is
described at the end of Example 4.

To graph f=! and f on the same axes, we must arrange for the horizontal axis to include
both the domain of f and that of f~1. The first program, MAMI, does the calculations for
this. Before listing MAMI, we give the background to understand this program.

If f is an invertible continuous function defined on the interval [a,b], then either f
is increasing or decreasing. The range of f is [c,d], where ¢ = min{ f(a), f(b)} and d =
max{f(a), f(b)}. The graph of f is contained in the rectangle bounded by the lines x = a,
x =0b,y=c and y = d. The graph of f=! is contained in the rectangle bounded by the
linesx =c¢, x =d, y =a, and y = b. In Fig. 10 we show a function f for which a = -2,
b=4,c=-3, and d = 5. To graph both f and f=! on the same axes, we must be ready
to graph anywhere in the rectangle bounded by x =u, x =v, y = r, and y = s, where

u = r = min{a, ¢} and v = s = max{b, d}

For the function f in the figure, u =r = —-3 and v = s = 5.

 

 

 

MAMI

Inputs: a,b Outputs: min{a, c},max{b,d}

<< — AB Store a and b
< A F B F MIN Calculate ¢ =min{f(a), f(b)}
LASTARG MAX Calculate d =max{f(a), f(b)}
B MAX Calculate v = s =max{b, d}
SWAP A MIN SWAP Calculate u = r =min{a, c}
> >

Checksum: #25709d Bytes: 79.5    
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FINV
 

Inputs: a,b Outputs: Graphs of f and f=!
 

<< DUP2 'X' 3 ROLLD

3 —LIST INDEP

{ 'X+i%F(X)' '"FX)+i%*X' }

'EQ' STO
MAMI DUP2 XRNG YRNG
ERASE DRAX DRAW
PICTURE > 

Duplicate a and b; prepare list

for INDEP, to make parameter domain

independent of XRNG & YRNG

Using HP 48 PARAMETRIC form,

prepare equations for both graphs

Store equations

Calculate and store XRNG & YRNG

Graph

Checksum: #24605d Bytes: 158  
 

MAMI takes advantage of the built-in functions MIN and MAX, found on the MTH
REAL menu. MAMI assumes f is on the VAR menu and a and b are on the stack. As
above, ¢ = min{f(a), f(b)} and d = max{f(a), f(b)}.

Please store MAMI on the ZEROX menu.
The graphing is done by the program FINV, which assumes that the PARAMETRIC

PLOT TYPE has been set and that f is a user-defined function stored on the VAR menu.
The inputs to FINV are a and b. It outputs a plot containing the graphs of f and f=! on
their domains. The idea of FINV is that the graphs of f and f=! can be done parametrically.

T=2x
a<z<b a<z <b}

fro

y=2x

Please store FINV on the ZEROX menu (store FINV on the same menu as MAMI).
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EXAMPLE 4.
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Show that f(z) = —5 + (6/49)(x — 4), —3 < x < 4, is invertible and
graph f and f~! together.

SOLUTION. Since f(z) = (12/49)(x — 4) <0 for -3 <z < 4, f is
decreasing on its domain and is therefore invertible. We use FINV to
graph f and its inverse. We assume that we start in the ZEROX menu
and STD mode.

'F(X)=—5+6/49% (X—4) ~2'
DEF

 

iSend dP rte —————r—
 PLOT PTYPE PARA

VAR
-3 SPC 4 FINV
EDIT NXT LABEL So~—_|

The window is bounded by x = —5, x = 4, y = —5, and y = 4. The
calculations done by MAMI were

    

¢ =min{f(-3),f(4)} = -5 d=max{f(-3),f(4)}=1
u =r = min{a,c} = —5 and v = s = max{b,d} = 4

An alternative approach to graphing f=! is to graph f and then turn
your HP 48 counter-clockwise 90°. After turning, the domain of f=! is
on the horizontal axis but reversed, with the positive end to the left.
To properly implement this approach to graphing f~!, use RESET and
set both XRNG and YRNG. For XRNG use —3 and 4. For YRNG use
f(4) = =5 and f(—3) = 1. We show this in the screen dump below,
which may be compared with the screen dump generated with FINV.

 

PLOT PTYPE FUNC
'5+6/49%(X—4)"20 [A]ER y

1EQ NU
PPAR RESET |
—-3 SPC 4 XRNG I—__
—5 SPC 1 YRNG PREV -5} _
PLOT DRAX DRAW
EDIT NXT LABEL
Turn 90° counter-clockwise

 

    

For implicitly defined functions and inverse functions for which there are no known
finite solution procedures, the numerical schemes we have described may leave one with
a sense that a job has not been completed. This is true, of course, but the observation
needs to be balanced by reflecting upon what is known of most of the elementary functions.
Functions such as sine, cosine, natural logarithm, exponential, and, even, square root are
“known” through tables of values (or, their modern replacement, calculators or computers),
through their graphs (visual tables), and through their properties and inter-relationships.
We do not know these functions in the sense that we can apply a finite number of arithmetic
operations and obtain their exact values. Polynomial functions are among the relatively
few functions we can truly “know” in this way.

In this section we have shown how the SOLVR and PLOT applications can be used to
obtain numerical or graphical information about functions defined implicitly.
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Exercises 4.5

In these problems use your judgement as to the precision of your calculations. Use
Newton’s method for at least one problem. Use the bisection algorithm for at least one
problem. When we say “graph f” we mean find sufficiently many points of the graph
so that its main features are clear.

A.1 Show that the equation

ztany +93 —4=0, r>0, 0<y<m/2

determines y as a function f of x. Graph f for 0 < z < 10. Calculate approximate
values of f(100) and f(1000). Does f have a limit as x — oo? If so, give an
heuristic argument based on the defining equation for the value of this limit.

A.2 Show that the equation

—} +62y+3y>=1+8yvxy, x>0

determines y as a function of xz. For this you may need to recall that for positive
numbers x and y, (z + y)/2 > /zxy. Graph f for 0 < z < 3.0.

A.3 The equation
x + 1ly — 10sin(z — y/9) = 0

determines y as a function of x. Graph f for 0 < x < 2.0. Estimate the maximum
value of f from your graph and determine where it occurs. Verify z,,,, by differ-
entiating the given equation implicitly and solving the equation 3’ = 0. For the
latter you will need a second equation since there are two variables.

A.4 Referring to Example 1 and using the data there, write an equation of the tangent
line to the graph of f at the point (1.25, f(1.25)).

A.5 Find zi, and f(2min) for the function f in Example 1.

A.6 Show that the function

reV1-2

=n
is invertible. Calculate f=1(0.9) to within 0.001 and compare it to a value obtained
by interpolation, using the values of f(0.7) = 0.8341 and f(0.8) = 0.9111.

A.7 Use FINV in graphing f(z) =Inz, 0.1 <x <5 and its inverse. What is f~17?

A.8 Use FINV in graphing f(z) = 23, —2 <x <2. What is f~1?

-l<zr<l1

 

B.1 Show that (3) in Example 2 defines y as a function of x.

B.2 In many calculus books the natural logarithm function In is defined by

no = [ La
pt

These books first show that In is invertible and then define the exponential function
as the inverse of In. Using the ideas of this section (and using the exponential key
on your calculator only for checking), prepare a small exponential table in which
e” is tabulated against z, for z = 0.0,0.1,...,2.0. You may wish to use problem
C.3 in solving this problem.

B.3 Use the function h given in problem C.2 to verify the graph sketched in Fig. 8.

 



160 4. ZEROS OF FUNCTIONS AND APPLICATIONS

C.1Fill in the details of the following argument establishing that the equation (1) in
Example 1 defines y as a function of xz. Let x > 1 be given, fixed but unspecified.
Consider the function

gy) =+32%y +x — 2 (2)

The question is whether g has one and only one zero. If y is such a zero, then the
values = and y satisfy (1) and we would have shown that (1) implicitly defines y as a
function of z. With x fixed, g(y) becomes negative for “sufficiently negative” values
of y and becomes positive for sufficiently large values of y. By the intermediate
value theorem, g has at least one zero. We wish to show it has exactly one zero.
We do this by showing that g is always increasing. By differentiating with respect
to y we have

9'(y) = 3a*(xy® +1) > 0
This makes it clear that for x > 1 the equation (1) defines y as a function of z.

C.2 Show that the function implicitly defined by (1) in Example 1 can be found explic-
itly and, in particular, is given by

h(x) = — sinh (3 sinh™* (22)

Here is an outline of an argument. For cubics of the form

 

yv +py=gq

change the variable by setting y = hz and multiply the resulting equation by k,

where h = 1/4|p|/3 and k = 3/(h|p|). This will result in one of the two forms

422 +32=C or 422 =32+C

For the equation in (1) the first form results. To solve this form use the identity

sinh 30 = 4 sinh® # + 3sinh 6

C.3 Newton’s method can often be used to give a fast algorithm for finding f~!(z) for
given values of z. Show that the iteration scheme

Xr — f(yn)

f'(yn)
Untl = Yn + n=12,...

where y; is a reasonably good approximation to f~!(z), would give approximations
to f~!(x) in most cases. Do problem B.2 using Newton’s method as outlined here.
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Minimization/Maximization of Functions
FE

5.0 Preview

5.1 The Traditional Method and
Using the SOLVR for Minimization

5.2 Bisection Method for Minimization

5.3 Golden Section Search

PROJECT: Optimal Sprayer Problem

 

5.0 PREVIEW

Methods for minimizing or maximizing a function are important in many applications
of calculus. For example, if the net profit P(x) of manufacturing an item depends upon
a labor costs variable x, we may wish to choose x so that P(x) is as large as possible.
Or, if the fraction A(w) of carbon monoxide in the exhaust of an engine depends upon a
variable w related to the air/fuel ratio w, we may be required to choose w so that A(w)
is minimized. Usually such functions as P or A depend upon several variables. In this
chapter we minimize or maximize functions of just one variable. In Chapter 9 we discuss
methods for minimizing or maximizing functions of several variables.

The usual method for minimizing or maximizing functions depends upon the following
result.

Candidate Theorem. Suppose f is defined on an interval I DO (a,b). If f is
differentiable on (a,b) and has local minimum at a point ¢ € (a,b), then f'(c) = 0.

The Candidate Theorem is one of the reasons why finding zeros of functions is impor-
tant. We use this result in an example and several problems. We include a minimization
method not dependent upon having an explicit formula for the function.

We have divided this chapter into three short sections. In the first we review the
traditional method “solve f/(z) = 0 and don’t forget to check the end points”, review
the use of PLOT and Chapter IV in this regard, and discuss the use of the SOLVR in
minimization.

In §5.2 we discuss what Arthur Engel (in Elementary Mathematics from an Algorithmic
Viewpoint) calls the bisection method for minimization, a numerical method for finding the
minimum of unimodal functions. The bisection method is relatively inefficient but is easily
explained and understood. In §5.3 we describe the more efficient golden section search
algorithm.

We discuss most of the algorithms in terms of minimization. This includes maximization
since the local maxima of a function f are the local minima of the function —f.
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5.1 THE TRADITIONAL METHOD AND USING THE SOLVR FOR
MINIMIZATION

The traditional method for minimizing continuous functions is based on two theorems.
The first does not assume the function is differentiable.

Low Point Theorem. Every function f defined and continuous on a closed and
bounded interval I has a minimum.

Recall that a function f has a local minimum at a point ¢ of its domain I if there is
a positive number p such that if z is a point of I and |x — ¢| < p, then f(c) < f(z). A
function f has a minimum (sometimes called an absolute minimum) at a point c¢ of its
domain I if f(c) < f(z) for all in I. The number f(c) is often called the minimum value
of f. Informally, we may refer to ¢ as a minimum point, sometimes denoting it by z,,;n. If
f has a minimum at ¢, then f has a local minimum there as well.

The second result is the Candidate Theorem, stated above. We assume you have used
these theorems to locate a minimum point for a function f defined and continuous on an
interval [a,b] and differentiable on (a,b). The Low Point Theorem states that f has a
minimum at a point ¢ somewhere in [a, b]. If ¢ happens to be in (a,b), then f’(c) = 0 by the
Candidate Theorem. So, the traditional method is to find the zeros of f’ in (a,b). These
zeros are candidates for the minimum point. The only other candidates are the end points
a and b. To minimize f on [a,b] we compare the values of f at each of the candidate points.

We give two examples. In the first we calculate the derivative symbolically and then
use ROOT on the PICTURE FCN menu to find a zero of the derivative. In the second
example we use the SOLVR directly in finding the minimum point.

EXAMPLE 1. Using the traditional method, find the (shortest) distance between the
point (0,1) and the graph of y = sinz.

0,1) |

(x, sin x)

  
n/2

Figure 1

SOLUTION. From Fig. 1 the shortest distance is v/f(Zmin), Where Zmin
is a minimum point for

f(x) =(x—0)24 (sinz —1)%, where 0<z < 7/2

We calculate f(x) and find its zero. For this, purge 'X' from your
current directory and all directories aboveit.



EXAMPLE 2.

5.1 THE TRADITIONAL METHOD AND USING THE SOLVR FOR MINIMIZATION 163

 

'X~24(SIN(X)-1) "2"
ENTER ENTER 'X
ENTER & 9PLOT 4EQ
PPAR RESET
0 SPC 1.6 XRNG PREV
PLOT DRAX DRAW
Move cursor to zero of f’

FCN ROOT CANCEL
SWAP 9SOLVE

 

 

 

 

ROOT 9EQ
SOLVR X (on SOLVR menu)
EXPR=

From the graph of f’ we see that f’ has only one zero c on (0, 7/2),
near x = 0.5. ROOT displays ¢ ~ 0.47872. We back out of PLOT with
two presses of CANCEL and prepare to evaluate f at 0, 7/2, and c using
the SOLVR. We find that the minimum value of f is f(c) ~ 0.52008. The

distance between the point (0,1) and the graph of y = sinx is /f(c) =
0.72116.

Use the SOLVR in finding a minimum point of the function

1, forx=0

z¢, for0<x <2
@ = {

SOLUTION. The function f is continuous at x = 0 since lim;,_,o4 2% =
1. It is differentiable on (0,2). The function f has a minimum on [0, 2]
by the Low Point Theorem. We may locate it with the help of PLOT. To
represent, f we use the convenient IF-THEN-ELSE command IFTE, found
on the PRG BRCH NXT menu. Key in 'F(X)=IFTE(X==0,1,X"X)"'
and then press DEF.

 

'F(X)' ENTER 9PLOT v J
MEQ PPAR
RESET 0 SPC 2 XRNG
0 SPC 2 YRNG PREV
PLOT DRAX DRAW .   

The low point on the graph is near (0.4,0.7). Next we use the SOLVR.
 

 

   

SOLVE ROOT SOLVR ME MINX } 1Usk
4 X 3:

9 X 3:

2:

1: RX: .367879485654
COEIC JC JC

 

 

The HP 48 returned 0.3678--- and the message “Extremum.” We
find f(0.3678---) ~ 0.6922 by using the SOLVR. An automated version
of this is EXTR on the FCN menu. With the plot on the screen, press
FCN, position the cursor, and then EXTR. All of this may be checked
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by direct calculation. The derivative of f is f'(x) = z*(Inz + 1), for
0 <x <2 Weseethat f'(x) = 0 for x = 1/e = 0.3678---. Since
f(0) =1 and f(2) = 4, the minimum of f on [0,2] is 1//e = 0.6922 --.

 

Exercises 5.1

A.1 Use the model of Example 1 in finding the (shortest) distance from (1,2) to the
graph of y = cosz, where 0 <z < 7/2.

A.2 Solve problem A.1 using the SOLVR and its “extremum” feature.

A.3 Find the minimum of the function f(z) = e~12v%sin(0.53z), 0< =z < 12.

A.4 Find the maximum and minimum of the function f(z) = y/xcosz, 0 <x < 2m.

A.5 Find the maximum and minimum of the function f(z) = (£2 +1)/(z® +1), 0<
xr <3.

A..6 Locate all points where the function f(z) = —22% +tanz, 0 < z < 1.4, has a local
maximum or minimum.

A.7 Find the maximum of the function f(z) =2ze™*, 0<z <2.

 

5.2 BISECTION METHOD FOR MINIMIZATION

Some algorithms for finding a minimum point for a function f defined on an interval I
depend upon finding a subinterval [a,b] of I in which f has exactly one local minimum. In
this section we assume we have done the work necessary to select such a subinterval [a, b].
A function f defined on an interval [a,b] is said to be unimodal if it is continuous and has
exactly one local minimum.

We prove one preliminary result (called a lemma, which is a kind of “helping theorem”),
state another result about unimodal functions but defer the proof to a problem, and then
outline the bisection method for minimization.

Lemma. Let f be a unimodal function on [a,b]. Ifa <u <v < band f(u) = f(v),
then u < Topin <0.

(i) (ii) (iii)

Figure 2

Proof. The argument is divided into the three cases shown in Fig. 2. First, suppose f is
constant in [u,v]. If this is so, then each point in (u,v) would be a local minimum. This is
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too many local minima for a unimodal function. If f is not constant, then there is a point
s for which either f(s) < f(u) or f(s) > f(u). These cases are shown in (ii) and (iii).

If (ii) holds, then since f is continuous in [u,v], it has a minimum at, say, w. Since
f(s) < f(u) = f(v), it follows that w € (u,v), which is the conclusion we want. The last
case is impossible for a unimodal function since f decreases on either side of s and so must
have a minimum in each of [a, s) and (s, b].

The main result states an obvious property of unimodal functions.

Unimodal Theorem. A unimodal function f on [a,b] is strictly decreasing on
[@, min] and strictly increasing on [Tmin, b]-

The Unimodal Theorem guarantees the correctness of the bisection method for mini-
mization (BMM), a procedure for locating z,,;». The BMM algorithm starts with a uni-
modal function f on an interval [m — h, m + h| and an error tolerance E. An outline of an
argument showing the correctness of the BMM algorithm is given in problem C.2.

 

BMM Algorithm

Step 1 Divide the current interval [m — h,m + h] into quarters. Denote the interval
[m — h,m] by I, [m — h/2,m + h/2] by Iz, and [m,m + h] by Is. Go to Step 2.

 

 

 

ly
| |

| |
m-nh m- h/2 m m+ h/2 m+ h

I; I

Figure 3

Step 2 Calculate f(m — h/2) and f(m). If f(m — h/2) < f(m), then min € I;. In this
case, replace m by m — h/2 and go to Step 5. Otherwise, go to Step 3.

Step 3 Calculate f(m + h/2). If f(m + h/2) < f(m), then x,,;, € I5. In this case,
replace m by m + h/2 and go to Step 5. Otherwise, go to Step 4.

Step 4 In this case, min € I2. Go to Step 5.

Step 5 Replace h by h/2. The point z,,;, is in the new current interval [m — h, m + h]
and |Zmin —m| < h. If h < E, stop. Otherwise, go to Step 1.

 

We may observe that to cut the “interval of uncertainty” in half, we need two function
evaluations half the time and three function evaluations half the time. Thus on average we
need 2.5 function evaluations to cut the interval containing zi» in half.
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A program for the BMM algorithm follows. It uses a program SD to convert from the
natural input FE, a, and b to E, m, and h. The program SD (for sum and difference) takes
two numbers a and b from the stack and returns m = (a + b)/2 and h = (b — a)/2. The
program SD is

&« OVER - 2 / + LASTARG SWAP DROP >»

Please store SD and BMM in a directory MINX (for optimization). The program BMM
assumes the function f is stored in program style as F on the MINX menu.

 

BMM
 

Inputs: F, a, b Outputs: Tin
 

££ SOD -— E M H

« WHILE E H <
REPEAT
IF MFMH 2 / — DUP2
F >
THEN SWAP DROP
'M' STO
ELSE IF H + DUP 3 ROLLD
F > THEN 'M' STO

ELSE DROP
END
END H 2 / 'H' STO

  

Calculate & store local
variables for FE, m, & h

If h < FE, end WHILE REPEAT

If h > E, select new interval

Calculate f(m) & m — h/2 & DUP2
If f(m)> f(m — h/2), then
f(m) is not needed &
m — h/2 replaces m

If f(m)> f(m + h/2), then
m + h/2 replaces m

m remains the same

End IF THEN command

End IF THEN ELSE command &
h/2 replaces h

 
 

END M End WHILE REPEAT command &
put min on stack

> > Close program delimiters

Checksum: #43752d Bytes: 217

EXAMPLE 1. Find the minimum of f on [0,1], where

fe) = { 1, forx=0

z¥, for0<z <2

This is the same function used in Example 2 of §5.1.

SOLUTION. Enter f in program style, storing it as F on the MINX
menu. Put £ = 0.0001, a = 0, and b = 1 on the stack and run BMM.

'F(X)=IFTE(X==0,1,X"X)' RAPME MINK 3 10sk
DEF

.0001 SPC 0 SPC 2
BMM

 

 

 . 367858886719
IEEEIEEEIETEI
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BMM returns 0.367858886719 within 2 seconds. This number is
within 0.0001 of z,,;,. Recall that z,,;, = 1/e = 0.36787 ---. We easily
find f(0.367858886719) = 0.692200627953.

The BMM algorithm does not require that f be given explicitly, only that we can
calculate its values. We illustrate this with the gamma function, which is a generalization of
the factorial function. The relation between the gamma function and the factorial function
is I'(z) = (x — 1), so that, for example, I'(1) = 0! = 1, I'(2) = 1! = 1, T'(3) = 2! = 2,
I'(4) = 3! = 6,.... The gamma function is defined for all real x except 0,—1,-2,....
Through the gamma function we can assign a value to such things as 0.5!, which otherwise
would not appear to make sense. Specifially, we define 0.5! = I'(1.5) = 0.886---. The
gamma function may be found on the MTH PROB menu.

EXAMPLE 2. Use BMM in locating to within 0.001 the minimum of the gamma function
on (0, 3).

SOLUTION. For the BMM algorithm we need to store the gamma func-
tion as F. Enter 'F(X)=FACT(X-1)' and then press DEF. Enter several
values of = and calculate I'(z). For example, I'(4) = 3! = 6. Before run-
ning BMM we plot the gamma function for x € (0, 3].
 

PLOT 'F(X)' vo /
9EQ PPAR *
0 SPC 3 XRNG
0 SPC 2 YRNG
PREV PLOT
ERASE DRAX DRAW X  

The minimum is near x = 1.5. Recalling that the gamma function is
not defined at x = 0, we may put 0.001, 1, and 2 on the stack as input
for BMM. The algorithm returns 1.4619 --- in a few moments.

 

Exercises 5.2

Use the BMM algorithm/program in solving the following problems.

A.1Find the shortest distance from the origin to the graph of y = e®. Take F = 0.01
and use a rough sketch by hand to estimate a and b.

A.2Find z,,,, to within 0.01 for the function

forx=0

z%, for0<zr<2
rw ={

A.3 Graph and find the minimum of the gamma function on (—2,—1). Use E = 0.001.

A.4 Find the maximum of the function f(z) =1+ 5.22 —sec v0.73z, 0<z <3.2.
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B.1 Think through the program SD used in the BMM algorithm so that you can explain
it to your friends. Writing out the stack history may help. Or use the built-in
debugger. Put 'A', 'B', and 'SD' on the stack, press PRG, NXT, RUN, and
DBUG. Now single step (SST) through the algorithm, watching the commands of
SD appear at the top of the display and the results at the bottom.

B.2 Solve problem A.4 with exact methods. You should obtain z,.;» = v2 and
f(@min) = 1 — (2/3)2%/3.

B.3 Explain the program BMM with the aid of stack diagrams.

B.4 Give an argument for the assertion in Example 2 that z,,;, is in the interval
(3.4, 7.3].

 

C.1 Prove the Unimodal Theorem.

C.2 Verify the BMM algorithm. Use the Unimodal Theorem in verifying Steps 2 and
3. Use the lemma for Step 4. Show that the algorithm eventually stops and, when
it does, |Tmin — m| < E.

C.3 (Depends upon problems A.4 and B.2.) Fill in the details of the following discus-
sion, whose purpose is to show that at least for some functions, we cannot improve
the accuracy of our approximation to zi, by taking E very small. We use the
function f in problem A.4 in the analysis but note that the phenomenon is com-
mon. First, run BMM twice more on this function. Use a = 1 and b = 1.5. First
take £ = 0.0000001 and then E = 0.00000001. The program BMM will return
1.12246131897 each time. Note that from problem B.2, this estimate of min is
incorrect in the sixth decimal place. It appears that we can obtain no better esti-
mate. (You may wish to try smaller values of F if you are in doubt on this point.)
Why? We outline an answer with the help of Taylor’s formula. Letting m = pin,
for each value of h # 0 there is a number v between m and m + h for which

f(m +h) = f(m) + f'(m)h + f"(v)h?/2!

Since f'(m) = 0 and |f”(x)| < 10 for z € [1,1.5] we have

|f(m + h) — f(m)| < 5h, provided that m,m + h € [1, 1.5] (1)

It follows from (1) that if in the BMM algorithm all of the points at which f is being
evaluated are within 10~7 of m, then the function values are not distinguishable by
the HP 48. (Try this on the SOLVR.) Consequently, the algorithm will always bop
down to Step 4 and the estimate for x,,:» will no longer change. Note, however,
that f(x,.in) may be calculated with great accuracy.

 

5.3 GOLDEN SECTION SEARCH

The golden section search (GSS) algorithm is a second algorithm for approximating
Tmin for a unimodal function. It is somewhat more efficient than the BMM algorithm in
that it requires a little less than 1.5 function evaluations to halve the interval of uncertainty
while the BMM algorithm requires 2.5 function evaluations. The idea of a “golden section”
is older than Euclid’s Elements. It is thought by some that many Roman and Greek
buildings have proportions related to the golden section. The profile of one side of the
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Parthenon, for example, is a rectangle whose height to breadth ratio is not far from the

value (—1 + v/5)/2 = 0.62. Such rectangles are called golden rectangles.
The GSS algorithm arises from an attempt to minimize the number of function evalu-

ations needed to locate the minimum. In searching for z,,;, for a unimodal function f on
[a, b], we must evaluate f at least twice. If we have no prior information, we would choose
points u and v symmetrically placed about the midpoint, as in Fig. 4. The question is,
how should we space these points?

u Vv u v u v

a b a b a b

(i) (if) (iii)

Figure 4

Before answering this question we note that no matter how we choose u and v, we may
compare f(u) and f(v) and, from this, shorten the interval of uncertainty, which, at the
beginning,is [a,b]. The three possible outcomes of the comparison are shown in Fig. 4. In
(i) we show the case in which f(u) < f(v). It follows from the Unimodal Theorem in §5.2
that min € [a,v]. The second case is shown in (ii). It follows from the lemma in §5.2 that
Tmin € [u,v]. In the third case we have x; € [u,b]. Ignoring the unlikely second case, we
have reduced the interval of uncertainty from |[a, b] to either [a, v] or [u,b]. It is reasonable
to try to shorten these intervals of uncertainty as much as possible by choosing u and v
close to the midpoint.

In the next iteration of the algorithm we would choose new values 4’ and v’ of u and
v, again choosing them near the (new) midpoint. We see, then, that for two function
evaluations we can almost cut the interval of uncertainty in half. This is better than the
BMM algorithm, where 2.5 evaluations are needed to cut the interval in half.

The GSS algorithm chooses u and v so that only one new function evaluation is needed at
each step (after the first). We show this arrangement in Fig. 5. We have assumed in drawing
the figure that in comparing the function values f(u) and f(v) we found f(u) < f(v).

Figure 5

The points u and v are chosen in [a,b] so that when u’ and ©’ are similarly chosen in
[a,b], either v' = u (shown in Fig. 5) or v = u’. The effect of such choices is that only one
function evaluation is needed at each step of the algorithm, since one of the two required
function evaluations will have been done in the preceding step. The condition v/ = u (or
v = u') is enough to give us the recipe for choosing u and v, as we show next.
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In the interval [a, b], let m = (a+b)/2 be the midpoint and h = (b—a)/2 the half-length.
We may write

u=m—~yh and v =m + vh,

where 0 < vy < 1. To find y we may assume that a = 0 and b = 1. In this case, m = h = 1/2.
We write the new midpoint and half-length as m’ and kh’. Calculating v’ and u separately
we find

1,1 1 1
' = / p= v_Y%4 = w= — -— 1 = —(1 2v'=m'+7~ 5 T75 5 ( +7) 5(5 +357) +9) 2! +7)

1 1 1
u=m-—gh=5-v;=35(1-1)

Imposing the condition v/ = u gives

1 1
(1 2__(1-71+) =51-7)

Y44y-1=0

y=-2+ 50.24

We used only the positive root since vy > 0.
After the first step of the GSS algorithm, we reduce the length of the interval by a

factor of (—1 + v/5)/2 ~ 0.62 (since, from above, the new interval has length v = m +h =
0.5 + 0.24/2 = 0.62) for each function evaluation. This is an improvement over the BMM
algorithm factor of 0.5 for 2.5 evaluations. We refine this comment in a problem. Also in
a problem is a discussion of how 7 is related to Euclid’s golden section.

It is a straightforward job to write out the GSS algorithm and an HP 48 program. We
start with a unimodal function f on an interval [m — h, m + h] and an error tolerance E.

 

GSS Algorithm

Step 1 Let y= —2+ +/5. Calculate (1 —7)/2, (1 +7)/2, u =m — yh, and v = m + yh.
Calculate f(u) and f(v). Go to Step 2.

Step 2 If f(u) < f(v), then z,.;n € [m — h,v]. Calculate

m'=((m—h)+v)/2=m-h(1-7)/2, K=(@-(m-h))/2=nr(1+7)/2,
uw =m'—~h!, and fu’)

Set v/ =u and f(v') = f(u). Go to Step 5.

Step 3 If f(u) > f(v), then Zz,€ [u,m + h]. Calculate

m' =(u+(m+h)/2=m+h(1-7%)/2, Ah =((m+h)—u)/2=~h(1+7)/2,

v =m’ +4h', and fv’)

Set u' =v and f(u') = f(v). Go to Step 5.



5.3 GOLDEN SECTION SEARCH 171

Step 4 If f(u) = f(v), then z,,.;n € [u,v]. In this case, which occurs only rarely, we note
that x,,i, is in both intervals [m — h,v], and [u, m + h]. We may therefore replace in Step
2 the inequality f(u) < f(v) by f(u) < f(v), thus including Step 4 in Step 2.

Step 5 Rename m' and h’ as m and h. We have shown that z,,;, € [m — h,m + hj.
Hence |Zyin — m| < h. If h < FE, we may exit the algorithm. Otherwise, go to Step 2.

 

A program for the GSS algorithm is given below. Please store GSS on the MINX menu.

We assume that the constant —2+ 1/5 has been calculated and stored as GAM on the MINX
menu. GSS uses the SD program discussed with BMM and assumes that f is written in
program style and stored as F' on the MINX menu.

 

 

 

GSS

Inputs: E, a, b Outputs: Tmin

<< SD DUP2 GAM DUP Calculate m & h. Recall v & DUP
1 SD 8 ROLLD 8 ROLLD Calculate (1 + v)/2 & stack down 2
% SWAP SD 2 3k Calculate u and v
F SWAP 2 % F and then f(u) and f(v)
—- GP GM E M H FU FV Store local variables

(1+1)/2, E, m, h, f(u), and f(v)
< WHILE E H < If h < e, end WHILE REPEAT
REPEAT If h > e, select new interval

IF FU FV DUP2 < If f(u) < f(v), then
THEN DROP 'FV' STO f(u) not needed; store f(v)
M GM H x —- GP H x Calculate m’ and h'/
DUP2 GAM %x -— F Calculate u’ and f(u')
'FU' STO Store f(u')
ELSE 'FU' STO DROP fw) = f(v)
M GM H x + GP H Xx Calculate m’ and h/
DUP2 GAM *x + F Calculate v' and f(v’)
'FV' STO Store f(v')
END 'H' STO 'M' STO Store h’ and m’
END M Put z,.:;n on stack

> > Close program delimiters

Checksum: #9913d Bytes: 374    
 

EXAMPLE 1. Find z.,, for the function f given in Example 2 of §5.1, namely,

1, forx=0

z%, for0<zx <2
a) ={

SOLUTION. Running GSS with E = 0.0001, a = 0, and b = 1, gives
0.3679 within 2 seconds. For these data the BMM algorithm is slightly
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EXAMPLE 2.

faster than GSS. For more complex functions or smaller values of F, the
GSS algorithm is faster. Apparently the more complex initialization and
generally heavier “overhead” in the GSS program masks the savings from
the smaller number of function evaluations in some cases.

This example includes definite integrals and the HP 48 built-in numerical
integration function. You may wish to defer it until Chapter VI. However,
the main idea is minimization—using the GSS algorithm—of a function
whose values must be calculated numerically. Find the minimum point
for the function

1 7De
2 ep 1 2 1)sin®tdt 0<zx<2f() 271) F(a? + sin’tdt, 0<z<

It is given that f is unimodal on [0, 2].

SOLUTION. The GSS program will do the heavy labor, provided that
we can define f. Note that f is entered as a program.

 

 

  

<< —- X rE MINX } Usk
< '[(0,7/2, 4:

VA+H(XT241)% 3:

SQ(SIN(T))),T)' —NUM 2:
1 1X + / % 1: 1.064

> > [IEEEEre]522C0fon]Fo
ENTER 'F' STO
MODES FMT 3 FIX
VAR
01 SPC 0 SPC 2 GSS

We set the accuracy factor for the numerical integration by 3 FIX.
This gives estimates for this function f within 0.003. Running GSS with
E = 0.01, a = 0, and b = 2 gives min ~ 1.06 after approximately 20
seconds. The reason for this relatively long execution time is that each
function evaluation requires a numerical integration. The variable IERR
left on the MINX menu is an HP 48 estimate of the error in the numerical
integration.

 

Exercises 5.3

Use the GSS algorithm/program in solving the following problems. Let E = 0.001.

A.1Find the minimum of the unimodal function f(z) =2* —z—-1, =z €[-1,2].

A.2 Find the minimum of the unimodal function f(z) = (x —lnz)/2z, =z € [1,5].

A.3 Find all local maxima and minima as well as the maximum and minimum of the
function f(z) = z* — 22 — 0.42, x € [-1.5,1.5]. Note that this function is not
unimodal in its domain.

A.4 Choose 0 so that the trapezoid in Fig. 6 has maximum area.

A.5 Find the minimum of the unimodal function
 

f(x) = Va? +1002 + 1/(200 — z)2 + 502, x € [0,200]
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Figure 6

B.1 The BMM algorithm takes 2.5 function evaluations (on average) to reduce the
length of the interval by a factor of 0.5. The GSS algorithm takes 1 function

evaluation to reduce the interval by a factor of (—1 + v/5)/2 ~ 0.62. Show that to
reduce an interval of length 1 to an interval of length 0.00001 requires the BMM
algorithm approximately 41 evaluations and the GSS algorithm approximately 24
evaluations.

B.2 An electrician’s cart of width 2 feet is to be moved around a square corner, from an
8 foot hallway into a 5 foot hallway. Find the longest possible length of the cart,
given that it must be rolled around the corner and not tipped in any way.

B.3 A ray of light is traveling from a source at (0,100) to a 200 centimeter mirror on
the z-axis, where it reflects to a receiver at (200,50). This is shown in Fig. 7.

100

50 4 _.# (200,50)

 ! - - ——— Mirror

50 100 150 200

Figure 7

We do not assume that the angle of incidence of the ray at the mirror is the same
as its angle of reflection. Rather, we assume the ray reaching the receiver is the
one taking the least time. This is Fermat’s principle. Find an expression for the
length L(x) of the path followed by the ray shown in the figure Use GSS to find
the minimum of this unimodal function defined on [0,200]. From your result show
that the angles of incidence and reflection of the ray on the z-axis are equal.

B.4 Use GSS in finding the maximum of the function in Example 3 of §4.5.

 

C.1 The idea of a “golden section” was known by the time of the Pythagoreans, several
centuries before Euclid. It occurs in the pentagon, where the diagonals intersect at
the golden section point. The rectangle with sides PR and RQ is a “golden rectan-
gle.” The ratio PR/RQ is (—1 + v/5)/2 =~ 0.62. Euclid’s Elements contains several
results related to the pentagon and its diagonals as well as a simple construction
of the golden section. We show in Fig. 8 a pentagon and the drawing usually given
with Euclid’s result. The construction is given in Book II, Proposition 11 of the
Elements.
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Figure 8

Proposition 11. To cut a given straight line so that the rectangle con-
tained by the whole and one of the segments is equal to the square on the
remaining segment.

Partial proof. Let AB be the given line. The problem is to construct point H so
that AB- BH = AH?. The method given by Euclid is to construct square ABDC,
bisect AC at FE, construct FF = BF, and, finally, construct square AFGH. This
gives a point H. Prove that H is the desired point.

Some mathematical historians argue that II.11 was seen by the Greeks as a
constructive means to find the positive root of the quadratic 22 + ax = a®. Letting
AH be © and AB = BD = a, II.11 may be restated as a - (a — x) = 2? or
x? + ax = a2. Solving the equation 22? + ax — a? we find one positive root,

~1++5
aq——5 a-0.618---

Note that if AB = 1, then AH = (—=1 + v/5)/2 ~ 0.62.

1.5

0.5 (xy)

  X
0.5 1.6 25

Figure 9
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C.2 A particle is moving on the graph defined by the equation

d2%y® — 223° +92y—1=0, for 0<zx <3 (1)

The graph is shown in Fig. 9. Find the point P,,;, of closest approach to the origin.
One way of solving this problem is to use a modification of the GSS program. First,
we imagine that the equation (1) has been solved for y in terms of z, giving y = g(x).
We must minimize the function f(z) = x2 + 32 = 2% + (g(z))?. From Fig. 9 it
is clear that f is unimodal on (0,3). The GSS algorithm requires only that we be
able to calculate f at certain points. Suppose, for example, that the GSS algorithm
requires the value f(0.5). We set x = 0.5 in (1) and solve the resulting equation
for y, using the SOLVR, Newton’s method, or the bisection method (for finding
zeros), whichever method is preferred. Having found y, we can calculate f(z) and
the GSS algorithm/program can continue. It should be apparent that the GSS
algorithm wil! be more efficient here than the BMM algorithm.
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OPTIMAL SPRAYER PROBLEM

 

DISCUSSION

A field irrigation system moves on water-driven wheels wl, w2, ... and
sprays water through evenly-spaced emitters el, e2, ..., as shown in Fig.
10. The entire apparatus moves through the field at a uniform speed. We
assume that each emitter distributes water uniformly in a circular pattern.
Ignoring the special cases of the first and last emitters, determine the spacing
of the emitters so that the water is distributed as uniformly as possible and
no point in the field receives water from more than two emitters.

TT

II
ee
wi w2 w3 w4 w5

Figure 10

 

OUTLINE OF SOLUTION

(1) Let the emitter spray radius be 1 unit. Since no point of the field
receives water from more than two emitters, the problem reduces to
determining the center (c, 0) of the second circle. See Fig. 11. Show
that 1 <ce¢ <2.

(2) Explain why it is useful to find an expression w(x) whose value is
proportional to the water received by points along the vertical line
through (z, 0), where 0 < x < ¢/2. Show that w(x) is given by

w(z) = V1-—22, 0<z<e-1

Vi—22+4+4/1—(x—0¢)?2, c—-1<z<c/2   
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(3)

(4)

(5)

(6)

(7)

 

 
Figure 11

The total amount of water received on [0, ¢/2] is

c/2

/ w(x) dr
0

Assuming here and elsewhere that the proportionality constant men-
tioned above is equal to 1, show that the total amount of water received
on [0,¢/2] is w/4. You may infer this result from the figure, without
calculation.
Show that the average amount of water received on (0, ¢/2|, that is,
the average value of w on [0,¢/2], is m/(2c). (Recall that the average

value of a function f on [a,b] is (f° f(z) dz)/(b— a).
Give an informal argument as to why we may optimize the uniformity
of coverage by minimizing the “average variation” function

c/2

9(0) = (2/0) / (w(x) — 7/(20))?da 1<c<?

Show that g(c) may be reduced to a sum of the form

 4 [e/? ki ke2 1 — 22/1 —(z — 0)? FL Ke2 z2y/1 (z ¢) de + —+—

where k; and ko are specific, numerical constants. You will need to
determine the values of k; and ks.
Use the GSS algorithm in showing that ¢,,;, =~ 1.7. The function g is
not unimodal throughout [1,2]. Use E = 0.05. Set 2 FIX.  
 



Chapter 6

Solving Systems of Linear Equations with
the HP 48
|

6.0 Preview

6.1 Arrays on the HP 48

6.2 The Gauss-Jordan Algorithm

6.3 Solving Equations with
the Divide Key

 

6.0 PREVIEW

Systems of equations like

r+y+2z2= 6

2r—y+ z= 6 (1)

rT—y— z2=-1

are important in both single- and multi-variable calculus. Both integration by “partial
fractions” and using linear functions to approximate functions of several variables require
an understanding of linear systems and facility with an algorithm for solving them.

Using matrices and vectors we may rewrite (1) to resemble a linear equation of the form
ax = b, where a and b are constants and z is the unknown. For this we identify in (1) the
3 x 3 coefficient matrix A, the 3 x 1 matrix B of “right-hand-sides,” and the 3 x 1 matrix
X of “unknowns.”

1 1 2 6 x

A=12 -1 1 6 X=1y (2)
—-1 z1 -1 -1

The 3 x 1 matrices B and X are often called column vectors.
Using the definition of matrix multiplication we may rewrite (1) as the matrix equation

AX =B (3)

B =

  

Some of you may know that the system (3)—and, hence, (1) as well—may be solved
by calculating the inverse A=! of A and then multiplying both sides of (3) by A~!. This is
analogous to solving a system like ax = b by multiplying both sides by the reciprocal ofa,
that is,

ar =b

aYaz) =a"b

lx =a'b

x=>b/a

178
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For matrices

AX =B

AY(AX) =A"'B

IX=A"'B

X=A"'B

We return to this topic in problem B.1 in §6.4.
Our goals in this short chapter are modest. We begin by describing how matrices and

vectors are represented and entered on the HP 48. In §6.2 we discuss the Gauss-Jordan
algorithm for solving a linear system. It is likely that you are familiar with the basic ideas
of this algorithm. Our goals are to stay close to your experience and to provide procedures
and programs to reduce the amount of by-hand arithmetic you must do. We include in
this section programs providing for exact arithmetic when working with rational numbers.
In solving systems of equations, these programs eliminate roundoff error and duplicate the
rational arithmetic occurring in solving equations with rational coefficients by hand. In
86.3 we describe the powerful system solver resident on the HP 48 divide key. We limit
our comments to how-to-do-it since the algorithm used by the HP 48 is beyond our chosen
scope.

 

6.1 ARRAYS ON THE HP 48

Arrays on the HP 48 can represent either matrices or vectors. An array is enclosed by
square bracket | | delimiters. Inside these delimiters individual rows are also enclosed by
[]. The matrices A and B in (2) would appear on the stack as

[1 1 2 |
[ 2 -1 1 |]
[1 -1 -1 |

[| 6
[ 6 or [ 6 6 —1 | (4)
[ -1

Se
em
ed
b
e
e
r
b
r
e
e
d

Either of the two ways shown in (4) of representing B—as an array or as a vector—allows
B to combine with other matrices as a 3 x 1 column vector.

The matrix A can be entered using the MatrixWriter Application. The Owner’s Manual
explains this clearly. We prefer the faster command line entry. We may enter the matrix A
as follows. Use STD mode, to which, by the way, you may change by simply typing STD
and then press ENTER.

 

 

  

9 9 HOME LINX } LUSKOL UL, :
2 SPC -1 SPC 1 SPC 1: [[ 112]
1 SPC -1 SPC -1 [ 2 -
ENTER [1-1-1111]

PIPINEPOE[CUE]RMAT]LEN

 

Store this matrix as A. For B, press [1] , followed by the entries of B separated
with spaces, and then ENTER. Store as B.

Another fast method of entering matrices uses —ARR, which is on the PRG TYPE
menu. To enter the matrix A, for example, key in

1 SPC 1 SPC 2 SPC 2 SPC -1 SPC 1 SPC 1 SPC -1 SPC -1
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and press ENTER. Now enter the size of the matrix,in this case { 3 3 }, and press :

Matrix arithmetic is easy on the HP 48. We give one illustration. The solution to (3)
is the column vector X =[1 —1 3]. It is easy to check this by forming the product AX.
If the product is the same as B, then X is a solution. Bring A back to the stack, enter

X, and press . We observe that the product AX is B. Also try forming the product
of A and X in reverse order. You will get the “Invalid Dimension” error message. Matrix
multiplication is not commutative or, as here, always defined.

If you already know about the inverse of a matrix you may wish to form A=! by putting

A on the stack and pressing the key. In STD mode the result does not fit on the

screen. To view A~! element-by-element, press [v]. The high-lighted element (actually,

the darkened area) is displayed on the command line. You may inspect all elements by
using the cursor keys. Press CANCEL to get back to the normal display. Now recall a copy
of B and form the product A~!B. You should obtain the solution X =[1 —1 3].

 

Exercises 6.1

A.1 Show that

A.2 Show that

A.3 Show that
1 5 4 1 —45

BE : | 10] =|a]
0 7 6 1 —64

1

(3 1 [4 ]-1-s

A.4 Show that

Enter these matrices as [[312]]and [[1][4][-5]]

A.5 Show that
1 3 1 2
1] 1 21-1 4 8 |
-5 -15 -5 -10

Enter these matrices as [[1][4][—-5]] and [[312]].

A.6 Calculate A3, where
[3 —2a=7]
 

B.1 Using any legitimate method, solve the system of equations AX = B by hand,
where A, X, and B are

ala] =f] =F) ela aR
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Next, solve AX = B by multiplying both sides of this equation by C, forming
C(AX) = CB. Since C(AX) = (CA)X, we may form CA first. By hand, show
that the product C'A times X is just X. Thus the solution of AX = B is CB. The
matrix C is called the inverse of A. It is analogous to the reciprocal of a non-zero

number. Enter A and then press . Is the resulting matrix the same as C?
Comment.

 

6.2 THE GAUSS-JORDAN ALGORITHM

Systems such as (1) in §6.1, which is repeated in Example 1 below, may be solved in
many different ways. One way is “by hand.” We give two alternatives, methods which save
labor and reduce error. In this section we solve systems AX = B through row operations,
using the Gauss-Jordan algorithm. We give a program PIV that implements the Gauss-
Jordan algorithm. This algorithm and program are based on familiar ideas. In §6.4 we use

the divide key [+] to “divide” two matrices. This is faster than PIV but depends upon
ideas not familiar to many calculus students.

We explain the Gauss-Jordan algorithm through examples. We assume that in solving a
system of equations you have had some experience with dropping the names of the unknowns
and working with the coefficient matrix or the augmented matrix. The augmented matrix
of a system of equations is the coefficient matrix augmented by the column vector of “right-
hand-sides.” We form an augmented matrix in Example 1.

EXAMPLE 1. Solve the system of equations given on the left in (1) using row operations.
The augmented matrix for this system is shown on the right.

r+y+22= 6 1 1 2 6

2r—y+ z= 6 — 2 -1 1 6 (1)

r—y— z2=-1 1 -1 -1 -1

SOLUTION. We use the number in the {1 1} position (that is, in the
first row, first column position) to eliminate x from the remaining two
equations. Said differently, we “pivot” on the matrix entry in the {1 1}
position. In terms of the augmented matrix, we use row operations so that
in all rows other than the first the first column entry becomes zero. We
may accomplish this by (i) dividing the entire first row by the coefficient
of z, (ii) adding to the second row —2 times the (now modified) first row,
and (iii) adding to the third row —1 times the (now modified) first row.
After all this, the pivot algorithm continues by “pivoting” on the {2 2}
entry, that is, on the —3 in the second row and second column of the
second matrix in (2). Finally, we pivot on the —1 in the {3 3} position
in the third matrix in (1). We have omitted the usual large parentheses
or brackets.

1 1 2 6 1 1 2 6
2-1 1 6 - 0 -3 -3 —6 —-
1-1 -1 -1 0 -2 3 -7

1 0 1 4 1 0 0 1
0 1 1 2 — 0 1 0 -1 (2
0 0 -1 -3 0 0 1 3
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From the last augmented matrix we may read the solution of the
system of equations given in (1). Itisz =1,y = —1, and z = 3.

Much of the arithmetic required for each step in (2) can be condensed into one easily
remembered pattern. We show this in (3). Suppose a pivot element p has been chosen in
the “old matrix.” (We do not choose pivots from the last column, which is not part of
the coefficient matrix.) The “new matrix” resulting from this pivot is formed from the old
matrix by following certain “rules.” We explain (3) in what follows.

=
o

ap — be

 

Gauss-Jordan Pivot Algorithm

Pivot Rule 1 For each choice of pivot, all entries of the new matrix other than those
in the row or column of the pivot are calculated using the formula (ap — bc)/p. This
formula is easily remembered by thinking of it as the “rectangle rule.” Referring to
(3), suppose we wish to calculate the new matrix entry corresponding to the old matrix
entry a. The entries a and p lie at the ends of a diagonal of a rectangle. The entries
b and c lie at the ends of the other diagonal. The new matrix entry corresponding to
the old matrix entry a is the difference of the products on the two diagonals, which is
then divided by the pivot. It makes no difference whether the position of a is above or
below p, or to the right or left of p.

Pivot Rule 2. The entries in the pivot row of the new matrix are formed from the
pivot row entries in the old matrix by dividing them by the pivot p. Thus the entry in
the same position as b is b/p.

Pivot Rule 3. Each entry in the pivot column of the new matrix is 0, except for
the entry in the pivot position, which is 1 (Pivot Rule 2).

 

Try these rules on the calculations in (2), perhaps circling the successive pivots to
anchor the rectangles for the new elements.

We give an HP 48 program for pivoting. The program PIV assumes the stack contains
a matrix A on level 2 and a list {r s} on level 1. The list specifies the entry of A on which
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PIV

Inputs: Aowd, {r s} Outputs: Anew

< DUP2 GET ROT DUP SIZE A, {rs} — {rs}, p, A, {mn}
4 ROLL + OBJ— DROP {r s}, p, A, {mn} —
6 ROLL A, m,n, r,s p

—- M N R S P ( Store m, n, r, s, p as local variables

1 -— I « DO IF I R # Set up outer and inner loops, where

THEN 1 —- J KK I and J are row & column indices;

DO IF J S # THEN DUP skip row & column of pivot

DUP2 {IJ} GET 3 ROLLD A A AA — AaijAA
{1 S} GET SWAP {RJ} GET A, aij, A, A — A, aij, Ais, Qrj

x P / — {IJ} SWAP PUT a;; — ar;Gis/ars replaces a;; in A
END 1 J + 'J' STO UNTIL Advance index j of

J N > END >» inner loop until j > n

END 1 I + 'I' STO UNTIL Advance index 7 of

I M > END > outer loop until i > m

1 N FOR J {RJ} DUP2 GET A — A, {rs}, aj
P / PUT NEXT Finish dividing pivot row by p

1 M FOR I {IS} 0 PUT NEXT Put zeros in entire pivot column
{RS} 1 PUT >» > Restore 1 to pivot position

Checksum: # 49953d Bytes: 428 
 

to pivot. PIV returns the new matrix to level 1, ready for further use. The old matrix is
not saved.

For the purpose of understanding the program PIV we restate the pivot rules in terms
of subscripted matrix entries. We denote the augmented matrix by A and agree that its
dimensions are m rows and n columns. In most applications, n = m + 1. The element
in the i th row and j th column of the old matrix is a;;. The new matrix is formed by
replacing the elements of A by the new entries. Suppose we have chosen ars # 0 as the
pivot, where s # n.

Pivot Rule 1. Replace each element a;;, where i # r and j # s, by

Ars Arg

ArsQij — QrjQis a ArjQig

Pivot Rule 2. Replace each element a,; of the r th row by a,;/a,s.

Pivot Rule 3. Replace each element a;g, i # r, of the s th column by 0.

It is possible to give pivot programshalf the size of PIV, programs relying upon matrix
operations available on the HP 48. We have chosen to give a longer version of PIV for
two reasons. First, we think the longer version is easier to understand, not being based
upon more advanced ideas. Secondly, we may convert this program to an exact arithmetic
program with only six changes (and several auxiliary programs). We do this after an
example.

EXAMPLE 2. Use PIV to solve the system given in Example 1.
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SOLUTION. In what follows we have not reminded you to press the
SPC key between successive matrix elements. We do this to save space.
 

 

 

 

 

  

1 1 2 6 2 -1 HOME LINX 3 Lusk

1 61 —-1 —-1 -1 2%
ENTER 1: [[ 11261]
{3 4} ENTER —ARR [ @-3-3-61
{11} ENTER PIV [0-2 -3 71]

RAD 1USR
{22} ENTER PIV { HOME LINX }

I: [1014]
[B112]
[00 -1-31]

RAD 1USR
{33} ENTER PIV { HOME LINK }

2:

1: [[ 1901]
[10-11
[00131]

CITITAGET[ERT[AXE 

 

The above results duplicate (2).

 

Modifying PIV to Do Exact Arithmetic

To obtain exact solutions to systems of equations with augmented matrices having
rational entries, we may either solve the systems by hand or attempt to use the program
PIV. If we use PIV and want exact solutions, we must be prepared to examine the output
and hope to recognize decimals such as .142857142857 and .666666666667 as 1/7 and 2/3,
thereby recovering the rational solution. In what follows we give programs supporting a
minor revision of PIV called PIVR. The purpose of PIVR is to return exact results. We
note, however, that for input or calculations including rational numbers with very large
numerators or denominators, these programs may fail, for without further programming
the HP 48 cannot store integers having more than 12 digits.

We use the HP 48 representation of complex numbers as a means of storing rational
numbers compactly and within existing data structures. If a and b are integers and b # 0,
we represent the rational number a/b by (a,b). The HP 48 has the convention that all
entries of a matrix must be of the same type, either real or complex. This would mean that
if a 2 x 2 matrix had entries 0, 2/7, 13/(—7), and —3, we would have to enter (0,1), (2,7),
(13,-7), and (—3,1), which is clumsy. The purpose of the first program, RMAT, is to
allow mixed entries on the stack. Upon running RMAT, the entries are put into a standard
format. To enter the given 2 x 2 matrix, for example, we may put 0, (2,7), (13,-7), and —3
on the stack. Next we tell RMAT the size of the matrix by entering { 2 2 }. Upon pressing
RMAT, 0 becomes (0,1), (2,7) becomes (2,7), (13, —7) becomes (—13,7), and —3 becomes
(—=3,1). Entries of the form (3,0) produce a beep, give an error message, and KILL the
program. The program combines these results into a matrix and returns the matrix to the
stack.

In using RMAT (and other programs in this package), we use STD mode to save space
in the display. Also, to simplify entering complex/rational numbers, we suggest going to
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the PMODES FLAG menu and checking 19. With this flag set, if we display the MTH
VECTR menu we may enter (2,3) by pressing 2 SPC 3 and then —V2.

Since RMAT is somewhat longer than the other programs in the package, we display
RMAT and list the others. As we noted earlier, the inputs to RMAT are the entries of an
m x n matrix A, spread on the stack in mixed format, followed by the size { m n } of A.
The output of RMAT is a matrix of complex/rational numbers.

 

RMAT
 

Inputs:Mixed format a;j; { m n } Output: A, formatted
 

<< DUP —» S

<< OBJ— DROP *%x — K

<< 1 K START

IF DUP TYPE 0 ==

THEN 1 R—-C

ELSE IF DUP IM 0 ==

THEN 1024 .5 BEEP CLLCD

“(X,0) not allowed!” 4 DISP
2 WAIT KILL

ELSE IF DUP IM 0 <

THEN NEG
END END END

Duplicate { m n } and store as S
Calculate number of entries (mn)

to be processed; store as K

Set up main loop

If stack entry is a real number z,

then convert it to (x, 1)
If stack entry is (x, 0),

then beep and prepare message;

display message in level 4

Wait 2 seconds & kill program
If stack entry is (x,y), where

y < 0, then convert it to (—z, —y)
End three IF statements

 
K ROLLD Roll down mn entries

NEXT Repeat main loop

S —ARRY Convert stack to array

> > >

Checksum: # 31021d Bytes: 225  
 

To modify PIV so that it does exact arithmetic, we replace , [-] x] , and by
programs PLUS, SBTR, TMES, and DVD for adding, subtracting, multiplying, and di-
viding fractions. These four programs call two utility programs GCD (greatest common
divisor) and CNCL (cancel). The purpose of GCD and CNCL is to reduce fractions to their
simplest form.

To use GCD, two nonzero integers are put on the stack. GCD returns the largest positive
integer dividing both integers without remainder. The program is a minor modification of
William C. Wickes GCD program, given in his HP 48 Insights, Part I.

< WHILE DUP2 MOD DUP 0 #

REPEAT ROT DROP END ROT DROP2 ABS >»
GCD

To use CNCL, two nonzero integers are put on the stack. CNCL removes any common
factors they may have and returns a rational number to the stack in the form (a,b). CNCL
calls GCD.

<« DUP2 GCD DUP 4 ROLLD / 3

ROLLD SWAP / SWAP R—-C >»
CNCL
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Each of PLUS, SBTR, TMES, and DVD takes two complex/rational numbers from the
stack and returns one complex/rational number to the stack.

<< —-— UV UR VIM x V RE U IM
PLUS

* + U IM V IM x CNCL >» >»

<< C—R SWAP NEG SWAP R—C PLUS >» SBTR

<< —- UV « U RE V RE
TMES

* U IM V IM %x CNCL >» >»

<< C-—R SWAP R—-C TMES C—R DUP IF 0 < DVD

THEN R—-C NEG ELSE R—C END >»

The necessary modifications to PIV are as follows. We must replace % by TMES, / by
DVD, — by SBTR, 0 by (0,1), and 1 by (1, 1). There are six modifications in all. Referring
to the program PIV given above, there are three changes on line 10 (%, /, —), one on line
16 (/), one on line 17 (0), and one on line 18 (1). If you choose to make these modifications
and want to keep both PIV and, say, PIVR, then use RCL to get a copy of PIV on the
stack, use EDIT to make the modifications, and then store the result as PIVR.

EXAMPLE 3. Try PIVR on the small system

(2/3) + (1/5)y = 1/7

(—4/3)x + (9/5)y = 2/3

SOLUTION. After putting the elements of the augmented matrix on
the stack, enter the size of this matrix, and then run RMAT. Use PIVR
to pivot on, say, first the {2 1} position and then the {1 2} position.

2 SPC 3 —-V2
Similarly, enter 1/5, 1/7,

—4/3, 9/5, and 2/3
{23} ENTER RMAT
{21} ENTER PIVR
{12} ENTER PIVR

The solution can be read from the final output of PIVR. We find
x = 13/154 and y = 100/231. To view the entire matrix, press ¥. Use the
cursor keys to highlight various elements in the matrix. The highlighted
element can be viewed in the command line.
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EXAMPLE 4. Solve the system with augmented matrix

-9 9 -96 32 174
0 1 -25 25 249
1 1 20 20 280

18 9 51 17 315

SOLUTION. Put all of the entries of the augmented matrix on the
command line, separating them by SPC, and then press ENTER. Key
in { 4 5 } and press ENTER. Use RMAT and then PIVR. Try pivots
{11}, {2 2}, {3 3}, and then {4 4}. The result should agree with

1 0 0 O 1
01 0 0 -1
0 01 0 2
0 0 0 1 12

 

Exercises 6.3

In the following problems use either PIV or PIVR.

A.1 Find the solution to the system

ort —2y + z2=-9

z+ 3y—4z= 0

r+ y+ z= 1

A.2 Find the solution to the system

2x1 + Sx + 4x3 = 4

1 + 4x2 + 3x3

—-r1 + 3x2 + 213 = -5

I p
t

A.3 Find the solution to the system

{z—y+22=2 20 —y—-32=15 2+2=7}

A.4 Find the solution to the system

{ x; + 2x5 — 3x3 = —17, 2x1 — xo = 6, 9x1 + 3x2 + x3 = 9}

A.5 Use PIV in finding the solution to the system with augmented matrix

1.21 2.30 -5.17 6.32
—-2.87 -=-3.59 4.91 5.82
1.53 2.33 =5.25 6.01
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B.1 Describe the full solution set of the system

T+y+ z2=2

rT —y—22=3

B.2 Describe the full solution set of the system

{2x—y+2z-—-w=0,z—2+w=1,3z+y+2z2—-2w=-1}

B.3 Describe the full solution set of the system with augmented matrix

1 2 -3 1 -2
1 1 1 1 0

B.4 Show that the system

{ 3x1 +22 +423 =1, 21 +22 +23 = —1,

—2r, +23 = —1, 21 +x2 —223=0}

has no solution.

B.5 Describe the full solution set of the system

{z—y—24+w=-22+y—z24+w=1,z+4y—z—w=>5}

B.6 Find the full solution set of the system with augmented matrix

2 1 -3 4 0 2
1 -2 1 -1 3 10
3 9 -12 15 -9 -24

B.7 Determine by hand if the homogeneous system (right-hand-sides all zeros)

{z+y+22=0,2+32=0, —-22=0}

has any solution other than x = y = 2 = 0.

B.8 Use PIV or PIVR in determining if the homogeneous system (right-hand-sides all
zeros) with coefficient matrix

1 1 -1 1
—]  -] 1 3
2 2 5 0

has any non-trivial (the zero solution is often called the trivial solution) solutions.

B.9 Use PIV in determining if the homogeneous system (right-hand-sides all zeros)
with coefficient matrix

0.7 13 29 51
3.1 -2.7 16 -48
4.1 -93 5.5 5.7

has any non-zero solutions.
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C.11In this problem we examine the question of how to choose pivots in the context
of an example. We show that it is neither always possible nor desirable to choose
pivots along the diagonal of the augmented matrix. Note that the two systems of
equations in (1) are very nearly identical.

Oz +y=1 10x10+y=1 0
1

T+y=2 r+y=2

The solution of the system on the left is x = 1 and y = 1. Note that we cannot
pivot on the {1 1} position. Not only would PIV fail since a division by 0 would
be attempted, it is in fact not possible to eliminate x from the second equation
by adding to the second equation a multiple of the first equation. However, we
may pivot on any one of the positions {1 2}, {2 1}, or {2 2}. For the system
on the right, the exact solution (you should find it by hand calculation), is = =
1/(1-1.0x107¥)~1landy = (1-2.0x 10713) /(1 —=1.0 x 10713) ~ 1. If we use
PIV and pivot first on the {1 1} position and then on { 2 2}, we find the solution
to be x = 0 and y = 1. What has happened? We show in (2) the results of hand
calculation (on the left) and HP 48 calculation, pivoting on the {1 1} position.
We have denoted 1.0 x 10~!3 by s.

1 1/s 1/s 1 1/s 1/s 2)
0 (s—1)/s (2s—1)/s 0 —-1/s —1/s

When PIV calculated the entry in the {2 2} position of the new matrix it first
multiplied the entries in the {2 1} and {1 2} positions, divided the product by the
pivot, and then subtracted the result from the entry in the {2 2} position, that
is, 1 — (1-1)/s. The HP 48 did the subtraction 1 — 1013 and got —10!3 as the
difference. The HP 48 is unable to calculate sums and differences to more than
12 significant digits without special programming. All calculators and computers
are subject to a similar limitation. The HP 48 got —10'3 instead of the correct
1—1/s and 2 — 1/s in the {2 2} and {2 3} positions. These errors lead in the
next step to the incorrect solution x = 0 and y = 1. To reduce the potential loss
of accuracy in choosing pivots it is usually best to avoid pivoting on (relatively)
small entries. One strategy is to choose a column and then pivot on the entry
having the largest absolute value. Try the given system again, using first {2 1}
and then {1 2} as pivots.

 

6.3 SOLVING EQUATIONS WITH THE DIVIDE KEY

The second method of solving systems of equations AX = B is related to the Gauss-
Jordan algorithm. The algorithm underlying the second method does not calculate the
inverse of A, but factors the coefficient matrix into the Crout LU decomposition using

partial pivoting. To use this algorithm, put B and A on the stack and press [=]. The

resulting vector X is more accurate than X = A~!B, where A™! is calculated using the

key. We use Example 4 of §6.2 to illustrate the method. (We have relabeled Example

4 as Example 1.) See problem C.1 for an elementary discussion of the LU decomposition.
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EXAMPLE 1. Solve the system

—9z + 9y — 962 + 32w = 174

y — 25z + 25w = 249

z+ y+ 202 + 20w = 280

18x + 9y + 51z + 17Tw = 315

(1)

SOLUTION. Equation (1) is equivalent to the matrix equation AX = B,
where

9 9 —96 32 174
lo 1 —25 25 | 249

A=17 1 90 20] and B= [og
18 9 51 17 315

We wish to solve for X. As a memory aid, the solution of ax = b can be
written as = b/a. The arithmetic b/a would be done on the stack by
entering b first. To solve AX = B we enter B first, followed by A.

[] 174 SPC 249 SPC
280 SPC 315 ENTER
-9 SPC 9 SPC
-96 SPC 32 SPC
0 SPC (and so on)
51 SPC 17 ENTER
{44} —ARR [+]

To view the solution vector X press ¥. Use the cursor keys to look
at the entries of X. We find the solution X = [1 —1 2 12 |, with small
rounding errors. Please leave X on the stack so that we may demonstrate
the program CLEAN, which we give below.

To facilitate viewing such solution vectors as X in Example 1 we may use the following
short program.

<< 9 RND STD >

Store this program as, say, CLEAN. If we run CLEAN with the result of Example 1 on the
stack, the vector [ 1 —1 2 12 ] is returned. CLEAN “removes” small rounding errors. It
would be unwise to trust CLEAN too far. In any case, the results of CLEAN should be
checked in the original problem statement.

 

Exercises 6.3

Use the divide key in solving the following problems, which were taken from Exer-
cises 6.3. Use CLEAN if you wish.

A.1 Find the solution to the system

or —2y+ z2=-9

x+3y—4z= 0

r+ y+ z= 1
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A.2 Find the solution to the system

2x1 + 5x2 + 4x3 = 4

ry +420 + 3x3 = 1

—x; + 3x2 + 2x3 = —5

A.3 Find the solution to the system

{x—y+22=2 2x —y—-32=15, 2 +2="7}

A.4 Find the solution to the system

{ x1 + 2x5 — 323 = —17, 22; — 22 = 6, 521 + 322 + 23 = 9}

 

B.1 Solve the system in Example 1 by calculating X = A~!B. Enter and store the

matrices A and B. Put A on the stack and press . This returns A™! to the
stack. Now put B on the stack and press *. The result is X. You may wish to
use CLEAN.

 

C.1 Fill in the details of the following outline of an algorithm for decomposing a square
matrix A into the product of two matrices L and U, where L is lower triangular
(all elements above the diagonal are 0) and U is upper triangular (all elements
below the diagonal are 0). We use the coefficient matrix A in Example 1 of §6.2.

If we were able to write A = LU for a system AX = B, we could then solve
for X by solving the system

LY = B for Y and then the system UX =Y for X. (2)

This is useful in that if we must solve AX = B for many different choices of
B, then once L and U have been found, we may solve, for each B, the simple
systems in (2) instead of forming an augmented matrix and going though the
entire Gauss-Jordan algorithm.

The matrices L and U are formed by reducing A to upper triangular form by
row operations and recording the multipliers used in the reduction. We show the
reduction of A in (3), where we have recorded the multipliers (which are not part
of the matrices shown) in square brackets.

 

1 1 2 1 1 2

2 -1 1 — [—2] 0 -3 -3 —
1-1-1 [<1] o -2 -3

(3)
1 1 2

0 -3 -3
-2] 0 0 -1

The matices L and U are given by

1 0 0 1 1 P)

L=|—-(-2) 1 0 U=|0 -3 3]
~(-1) (=) 1 0 0 -1

Verify that the determinant of A is the product of the diagonal elements of U.
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Integration
EE

7.0 Preview

7.1 Lower and Upper Sums

7.2 Symbolic and Numerical Integration on
the HP 48

7.3 Applications of the Integral

7.4 Midpoint, Trapezoid, and Simpson’s Rules

7.5 Partial Fraction Calculations

 

7.0 PREVIEW

Many applications of calculus depend upon the evaluation of integrals of the form

b

/ f(x) da (1)

If, for example, the shape and density of an object are specified by functions, its center of
mass is specified by the values of several integrals of the form (1). The functions describing
the shape and density may be given as formulas or as tables of values. If the function
f is given as a formula and if the formula is not too complex, (1) may be evaluated by
using the fundamental theorem of calculus. Otherwise, we must approximate (1) in some
way, perhaps using numerical integration. Numerical integration is widely used in applied
mathematics.

If acceleration data for an object are given, either by formula or as a table of values,
one integration will give the velocity of that object at any time t and a second integration
will give its coordinate position. The object can be moving in a line, in a plane, or in space.
Suppose, for example, a bead is sliding on a straight wire and experiences acceleration a(t)
at any time t. Suppose further that at time t = 0 the coordinate position of the bead is zo
and its velocity is vg. From this information we may calculate the velocity v(t) and position
x(t) at any time t. These are given by

t

v(t) = | a(t)dr + vo, and x(t) = | v(T) dT + 20 (2)

Definite integrals are also used in finding areas, surface areas, lengths of curves, and
volumes. In statistics, integrals are used to compute probabilities, expected values (means),
and standard deviations.

192
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We begin with two simple numerical integration rules. They serve as a review of the
definition of the definite integral using upper and lower sums and are part of a numerical
integration package, to be started in §7.1 and completed in §7.4. We give a brief intro-
duction to symbolic and numerical integration on the HP 48 in §7.2. Applications of the
integral to areas, arc lengths, surface areas, and volumes are given in §7.3. In §7.4 we give
programs for the midpoint, trapezoid, and Simpson’s rules. These numerical integration
algorithms provide a good background for junior- and senior-level courses in numerical anal-
ysis. Improper integrals are discussed in examples and exercises. In §7.5 we give programs
to relieve some of the labor associated with “partial fraction calculations.” These depend
upon Chapter 6.

 

7.1 LOWER AND UPPER SUMS

The definite integral (1) of a function f on the interval [a, b] is often defined in terms of
lower and upper sums, that is, in terms of sums of the areas of inscribed and circumscribed
rectangles. Although this approach is applicable to any bounded function f, we restrict our
review to continuous functions which are either increasing or decreasing on [a,b]. In fact,
we consider only increasing functions since everything we say about an increasing function
can be said about decreasing functions, with at most a sign change. This follows from the
fact that if f is decreasing, then —f is increasing.

y
 

 

 

 

 

 

 

 

 

 

          | X

a Xi Xi 1

  
Figure 1

We show in Fig. 1 an increasing function f defined on an interval [a,b]. A partition or
subdivision P, = {a = xo, Z1,...,Zn-1,Zn = b} of [a,b] is shown. The subdivision shown
is regular in that all subintervals [z;, x41] have equal length h, where

h=zj41 —x; =(b—a)/n, j=01,...,n—-1 (3)

The common length h is called the stepsize.
Having chosen P,, the lower sum L,, is the sum of the areas of the inscribed rectangles

(shown in Fig. 1 with dotted tops), while the upper sum Uy, is the sum of the areas of the



194 7. INTEGRATION

circumscribed rectangles. A careful look at Fig. 1 shows that

n—1

L, =h[f(a)+ f(a+h)+ fla+2h) +--+ fla+ (n—1)h)] = hy fla+ jh) (4)
5=0

and

n-—1

Un=hlfa+h) + fla+2h) +--+ fla+nh) =h> fla+(j+1)h) (5)
7=0

The thin rectangle floating on the right side of Fig. 1 is the difference between U, and
Ly. In each subinterval [z;,z;41] the difference between the circumscribed and inscribed
rectangles is the small rectangle with dotted bottom, at the top of the column above the
subinterval. If each of these small rectangles is translated to the right and vertically aligned,
the result is rectangle ABCD. Its area is h{f(b) — f(a)]. We use this result in (6), below.

The number IP f(x) dx is between L,, and U,, and may be approximated by their average

A, = (Ln, +Uy)/2.

 

| % ¢ (x) dx
a

ow,-Lye |
L, n U,

Figure 2

It is easy to see from Fig. 2 that A, is within a distance of (U, — L»)/2 from J f(x) dz,
that is

b

| 1@) dz = Auf < Un = L)/2 = 2170) - S10) (©

 

 
For suppose the numbers L, and U, mark the location of towns on a straight highway.
Suppose also that your pet dog Barkeris lost, but is known to be on the highway, somewhere
between the towns. Barker can not be further from the halfway point than half the distance
between the towns. This should make (6) “easy to see.” The equality in (6) follows from
the comments made earlier about rectangle ABCD. We note again that (6) was derived
on the assumption that f is increasing.

EXAMPLE 1. We use (4), (5), and (6) to find an approximation to the value of I Vr dx.
We also bound the difference between the approximation and the integral.
We take n = 10. Before calculating Lio and U,o we note from the equality
in (6) that if we calculate Lo first, the value of U;p may be calculated
with very little extra labor. We have

Uso = Lo + h[f(1) = £(0)] = Lo + ((1 = 0)/10)[1 = 0] = Lyo + 0.1
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SOLUTION. From (4) we have

10-1

Lio=hY V0+jh=01(V0+ 01+: +09)
j=0

= 0.610509341706

and

Uio = Lio + 0.1 = 0.610509341706 + 0.1 = 0.710509341706

From these results we have

Aro = (Lio + Uo)/2 = 0.660509341705

From (6) we may calculate how far off A;9 can be. We have

1

/ VEdz — Aro < 0.11 — 0]/2 = 0.05
0  

For this integral, whose value is 2/3, the error bound 0.05 is substantially
larger than the actual error.

Example 1 gives a hint of the amount of work required to obtain approximate values of

integrals. If we must find the value of an integral IP f(x) dx for which there is no known
antiderivative F' for the integrand f, we must use some kind of numerical approximation.
In the remainder of this section we give programs for two of the simplest algorithms. In
§7.4 we supplement these with other programs to give a numerical integration package. The
package was first written by Professor Tom Tucker of Colgate University.

Each of the sums L,, and U,, has the same basic form. For each there is a starting value
s of xz. We calculate f(s), increase s by the stepsize h, calculate f(s + h), add it to f(s),
increase s + h by h, ..., continuing until we have calculated f(s) + f(s +h) +--+ f(s +
(n — 1)h). We multiply the completed sum by h. For L, (recall that for the moment we
have restricted ourselves to increasing functions), s = xo = a. For U,, s =x; =a +h.

 

 

 

SUM

Input: s Output: hy7_, f(s + (j — 1)h)

<< 0 1 N Initialize stack: s, (= 0);
set up loop from 1 ton

START OVER Stack — s, X, s

F + Stack — s,X' =X + f(s)
SWAP H + Stack —» Y/, s'=s+h

SWAP NEXT Stack — s’, ¥’; repeat or end loop
SWAP DROP H %x > Stack — hX

Checksum: #31955d Bytes: 65.5     
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The first program is called SUM. Its purpose is to take s from the stack and calculate

hlf(s) + f(s +h) +--+ f(s+(n—-1h)]=hD_ f(s+(—1h)
i=1

The program is written under the assumption that f, n, and h are stored as I, N, and H in
the same directory as SUM. It assumes that f is written in program style and relies upon
stack arithmetic for speed.

As an alternative to SUM, we give a program using the built-in ¥ function. This
program takes s from the stack and uses the stored values of n and h. The heart of the
program is the algebraic expression '¥(J=1,N,F(S+(J-1)%H))', which if put on the stack
and evaluated, would give _7_, f(s + (j — 1)h). The program is

« — S§ <« 'TUJ=LNFS+(J-1)%H)' EVAL H * > >
This program though simpler is slower. Please store one of these programs under the name
SUM.

In the next several paragraphs we give two utility programs and two programs using
SUM. All of this, together with SUM, should be put into a separate directory, perhaps
called INTX. Later, we will suggest a convenient order for listing the programs on the
INTX menu.

Among the purposes of the integration package is to calculate approximations to inte-
grals both rapidly and conveniently, using easily understood algorithms For this it. is useful
to standardize variables and have a convenient way of storing them. We use the variables

f, a, and b (F, A, and B) to specify the integral JP f(z) dx. Use DEF to define and store
fas F.

In calculating an approximation to I f(z) dx we use the variables n and h (N and H).

Since h = (b — a)/n, it need not be entered.
We use the program ABST to store a and b. The program NSTH stores n and calculates

h. These programs are very straightforward.

<< 'B' STO 'A* STO > ABST

and

« 'N' STO B A — N / 'H' STO > NSTH

The objects to be stored are entered in the order listed in the program name. For

ABST, we put a on the stack first, followed by b, and then press . The second
program takes n from the stack, stores it, and then calculates and stores h. The program
NSTH should be executed after ABST since it uses a and b in calculating h.

The INTX menu now contains SUM and the two utility programs ABST and NSTH.
In Example 2 we use them to compute the lower sum L, and the upper sum U, for the

integral I f(x) dz of an increasing function. These were defined in (4) and (5). We worked
through a specific case in Example 1. For an increasing function, the lower sum starts
with f evaluated at a, which is the left boundary of the first subinterval, and continues
evaluating f at left boundaries. The upper sum starts with f evaluated at a + h, the right
boundary of the first subinterval, and continues with the right boundaries. The programs
for L,, and U,, are wonderfully simple.

< A SUM >» LRECT

< A H + SUM >» RRECT

Store these on INTX as LRECT and RRECT (for “left rectangle” and “right rectangle”).
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In Example 1 we calculated

Lio = 0.610509341706 and Uio = 0.710509341706

for the integral Ih vz dz. Using LRECT and RRECT, repeat the calcu-
lation of Lig and Ujp.

 

 

    

SOLUTION.

'F(X)= v/X! Bue Wir 3 HSK
DEF 4:
0 SPC 1 ABST 3:
10 NSTH 2: .610509341706
LRECT RRECT l: . 710509341706

 

ICTCRCRATISTEETT(AEE

The lower sum Lo and upper sum Uj are on the stack. We used
STD mode.

If we wish to change the value of n, we key in, say, 50 and press

. Upon running LRECT and RRECT again you should find (after

a longer wait than for n = 10)

Lso = .656095342214 and Uso = 676095342214

We may calculate Aso by pressing the , 2, and [+] keys. We obtain

Aso = (Lso + Uso)/2 = .666095342215

To measure how well Asq approximates Is Vx dx we use (6).

1

/ Vz dr - Aso < |Uso - Lso|/2 =.01

0  

For this simple integral we can easily show that the approximation Asg
is within 0.0006 of the value of the integral. Using this knowledge, which
in general we cannot know, we note that the error bound (Usp — Lso)/2
is very conservative.

If we wish to find A, to within 0.001 of fy VT dr, we may use the

error bound in (6) to find n. We have

[ VTde — A < (Un = Ln)/2 = (VI —V0)/(2n) < 0.001 (7)
  

Everything up to the < symbol holds because of (6). We ourselves impose
the condition “< 0.001.” The least integer n satisfying the inequality
1/(2n) < 0.001 is n = 501. This is the value of n needed to guarantee
that A, is within 0.001 of the integral. This is quite a bit of calculation
for modest accuracy. Later we discuss more efficient numerical integral
algorithms.
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Exercises 7.1

In problems A.1-A.4 use the programs ABST, NSTH, LRECT, and RRECT in calcu-

lating the approximation A, to the integral I f(z) dz. The value of n is given in each

problem. You may assume that f is increasing on [a,b].

A.1 Calculate the value of the integral IN v2zx — 3dx by finding an antiderivative and
evaluating it at 2 and 5. Next, calculate Ls, Us, and As by hand, using your HP
48 for no more than square roots and arithmetic. Finally, calculate Ls and Us
using LRECT and RRECT. If you use these programs without clearing the stack
in between, you may calculate As with three keystrokes.

A.2 Calculate Ap for the integral 5 sin vz dz.

x +2
mmm)
rvz +1 )

A.4 The length of the graph of f(z) =e*, 0 <x <1 is given by the integral

[ VITT@Pd = [ V1+edr
0 0

A.3 Calculate Ag for the integral ING —

Calculate Ap.

In the remainder of the A problems the function f is either increasing or decreasing. If
it is decreasing, we may do either of two things. Since —f is increasing if f is decreasing

and I —f(z)dr = — IP f(x) dz, we may work with the function —f, continue to restrict
ourselves to increasing functions, and remember to take the negative of our final result.
A second way is to note that if f is decreasing, then L, and U, are obtained from
RRECT and LRECT,respectively. The approximation A,, and the error bound (U,, —
L,)/2 are calculated as before.

A.5 The time taken for a spherical water tower to drain is given by the value of the
integral

32 "0400 — (H — 60)?
dH

V64.32 Jeo vVH
 

Calculate Ag.

A..6 Calculate the length of the first quadrant portion of the curve with equation 4z2 +
y?2 = 1. The integral obtained is an improper integral for the reason that the
denominator is 0 at one end of the interval. Transform the improper integral into
a proper integral with the trigonometric substitution 2x = sin§. To obtain the
length within 0.01 it is sufficient to calculate Ago. Except for special cases, these
integrals—called elliptic integrals—cannot be calculated in terms of elementary
functions. They have been studied extensively and their values tabulated. They
are important in many physical problems.

A.7 Cheney and Kincaid, in Numerical Mathematics and Computing, introduce a chap-
ter with the following problem. In electrical field theory it is proved that the
magnetic field induced by a current flowing in a circular loop of wire has intensity

4Ir ™/2 x 2

where I is the current, r the radius of the loop, and x the distance from the center
to the point at which the magnetic intensity is being computed, where 0 < x <r.
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This integral is an elliptic integral (see problem A.6). If we wish to evaluate it we
must use a numerical algorithm or look it up in a table of elliptic integrals. Show
that for I = 15.3, r = 120, and x = 84, the value of A;3 ~ 1.36. This value of n
was chosen so that |H(84) — A23| < 0.01.

A.8 The function
2 r 2

erf(x - et dtD=7
is called the error function. Approximate erf(1) using n = 15.

 

B.1 The function .

Site) = | at —00 <x <00
0

occurs in optics and is called the sine integral. It is understood that for t = 0 the
integrand—call it f—has the value 1, which is the limit of sint/t as t — 0. Show
that f is decreasing on [0,7]. Use (6), as exemplified in Example 2 and adapted
to the decreasing case, to choose the number n so that A, is within 0.001 of Si(1).
Using this value of n, calculate A,. For f key in

'F(T)=IFTE(T#0,SIN(T)/T,1)"

and press DEF.

B.2 Using the ideas in problem B.1, find to within 0.001 the value of the integral

1 c_ 1
[=a0 xT

Look up EXPM in the Owner’s Manual. Does its use make a difference here?

B.3 Using a formula in (2), compute v(1) if the acceleration a(t) of an object is given

by a(t) = v1 +1t4 for 0 <t <1. Take vo = 1.5. Choose n so that your result is
within 0.001 of v(1).

B.4 Assume that f is increasing and use (4), (5), and (6) to reduce the calculation
needed to find A, by noting that if U,, is known, then L,, can be found without
calculating a new sum. What happens if f is decreasing?

B.5 Justify using 0.66 + 0.06 as an approximation to the integral in Example 1.

 

 

C.1 Verify that n = 40 is correct in problem A.6.

C.2 Verify that n = 23 is correct in problem A.7.

C.3 Verify that n = 15 is correct in problem A.8.

 

7.2 SYMBOLIC AND NUMERICAL INTEGRATION ON THE HP 48

Most integrals [° f(x) dz for calculating the length of a curve must be done numeri-
cally. For such integrals it is known that no antiderivative F' for f, where F is a finite
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combination of elementary functions, can exist and, therefore, such integrals cannot be
done symbolically. Even for integrals which can be done symbolically, we may choose nu-
merical integration, simply as a matter of expediency. However, for integrals occurring in
a symbolic calculation or depending upon a parameter, we may wish to seek a symbolic,
exact solution. In subsequent calculations such a solution can lead to significant insights or
simplifications. For integrals depending upon a parameter, a symbolic solution can be eval-
uated by simple substitution, avoiding repeated numerical integration for different values
of the parameter.

The purpose of this section is to provide a brief introduction to the built-in symbolic and
numerical integration. At the present time, the kinds of functions that can be done sym-
bolically by the HP 48 is quite limited. The HP 48 can symbolically integrate polynomials.
It can symbolically integrate each of the integrals

b b T

/ sinz dz, / In z dx, and / arcsint dt, (1)
a a 0

as we outline in Example 1. However, it will not integrate symbolically such elementary
integrals as

b b
/ xsin(cx + d) dx or / sin(czx + d) dx

EXAMPLE 1. Integrate symbolically each of the integrals in (1).

SOLUTION. Do these integrations in the HOME directory. Purge any
existing values of A, B, and X so that these variables will be treated

symbolically. We do I sinzdx first. We may enter the “data” a, b,

sinz, and x (the variable of integration) with the EquationWriter or
using algebraic or stack entry. We start with algebraic entry.

 

 

  

' [(A,B,SIN(X),X) ¢HOME 3 Hk
EVAL 4:
EVAL 3:

2:

I:  '-C0OS(B)+COS(A)'
POL:eiFF:[SERING[LINGTINT:  

After the first EVAL, the HP 48 returns a “closed-form” expression with-
out an integral sign, signifying that it found an antiderivative for the
integrand sinz. The second EVAL evaluates the antiderivative at the
limits a and b. This gives cosa — cos b.

We illustrate stack entry with the integral I Inz dx. We put the data

a, b, Inx, and x on the stack and then press . As output we show the
stack just prior to the one EVAL needed for this form of entry.

 

 

  

A ENTER B ENTER Ms 1Usk
'LN(X)' ENTER 5
X ENTER 1: "(XxLN(X)-X)7K(XK) |3=BY-~( (RLN(R)-R)/

IM(K) I (K=A))'!
ATROEENERCIEATETE  
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Press to obtain blnb—b — (alna — a).

We may interpret the value of the integral fo arcsint dt as the area
beneath the graph of y = arcsint from t = 0 to t = x. In this integral ¢
is the integration variable and x is a constant.

 

 

 

0 ENTER X ENTER ROME 3 lusk
"ASIN(T)' ENTER 3
T ENTER 5:

EVAL i 'RAASINCRH(1-472) 
POLFF:[SERD:MINGLING[INT  

The value of the integral is

A(z) = rarcsinz + v1 —22-1

We may find the area beneath the graph of y = arcsint from t = 0 to
t = 0.5 by evaluating A(0.5). Before using the SOLVR to do this, make
a copy of A(x) by pressing ENTER. Using the SOLVR we easily find
A(0.5) ~ 0.128.

Now return to the VAR menu, drop the SOLVR result, and purge
'X'. This leaves A(z) on the stack. Next differentiate A(x) with respect

to x by entering 'X' and pressing 9]. After using COLCT on the
9SYMBOLIC menu we obtain arcsinz. This is what we started with. Is
this a surprise? If so, review the Fundamental Theorem of Calculus.

The HP 48 can integrate polynomials symbolically, provided they are fully expanded.
To integrate

9

2
Ji r?(32% + 3x +1) dx, (2)

4

for example, we must write the integrand as a sum of terms of the form a;x’.

EXAMPLE 2. Integrate symbolically the integral (2).

SOLUTION. We enter the integrand in expanded form. We may enter
fractions in decimal form, calculating them mentally or on the stack, as
required, or as an algebraic expression 'a/b'.

 

 

  

25 ENTER 4.5 ENTER MAES 1Usk
'5%X ~4/8+5%X ~3/4+ rp
X~2' ENTER X 3:

ENTER EVAL 2:
9SYMBOLIC NXT —Q 1: '9564319,24576"

PovEr:[SEEDNG[LNsTINT:  

The “best-guess” fraction returned by pressing , which is found
on the "SYMBOLIC NXT menu, is correct.
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In the next example we give a simple function for which we must use numerical in-
tegration. Neither the HP 48 nor any conceivable computer can integrate this function
symbolically.

In using the HP 48 to approximate an integral I f(z) dx, we may set an accuracy factor
W to shorten the calculation. If we need an approximation to only 2 or 3 significant figures,
we can save time by setting W appropriately. The HP 48 returns both an approximation
A to the integral and a number called the “uncertainty of integration.” The latter is stored
on the VAR menu as IERR. The error, that is the absolute value of the difference between
A and the true value of the integral, is almost certainly less than IERR. The algorithm

used by the HP 48 to calculate a numerical value for I? f(x) dx is a very good one and is
extremely unlikely to fail.

EXAMPLE 3. Calculate the arc length of the graph of y = x2, 0 < x < 2, to 3 significant
figures.

SOLUTION. The arc length s of the graph of y = f(z), a <z <b,is

s= [VITFGRds

Thus we must calculate IZ V1 + 924dx. We use algebraic entry and try
EVAL. The HP 48 returns our entry as a signal that it cannot do this
integral symbolically. To approximate s to 3 significant figures, we try

setting the accuracy factor to 0.0001 by 4 FIX and then press :

 

 

  

'[(0,2,/(1+9%X~4),X)"
COME } 1USR

ENTER EVAL gz
MODES FMT 4 FIX 3:
VAR —-NUM ERR] 2: 8.6303

1: 0.0009
EAATR(UTENAH(RTE(ATE  

We may state with confidence that to 3 significant figures the arc
length s is 8.63.

 

Exercises 7.2

A.1Find symbolically the area beneath the graph of f(z) = vax +1, 0<z <1.

A.2 Find symbolically the integral Je va + 1dz. Use —Q on your answer.

A.3 Find symbolically the area beneath the graph of f(x) =tanz, 0 <z < 1.5.

A.4 Find symbolically the integral [¢tanz dz.

A.5 Find symbolically the area beneath the graph of f(x) = arcsinz, 0 <x <1.

A.6 Find symbolically the integral [© arcsinz dz.

A.7Find an antiderivative of tanx/ cosx by replacing x by t and integrating from 0
to z. Terms not involving x can be dropped.

A.8 Find an antiderivative of arctan x by replacing x by t and integrating from a to
x. Terms not involving x can be dropped.
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A.9 Calculate the arc length of the graph of y = 24, 0 < z <1 to 3 significant figures.

A.10 Approximate the integral fo/2 Jsinz dz to 3 significant figures.

A.11Find to three significant figures the area beneath the semi-circle with equation

y = v1 — x2 and above the line with equation y = 1/3 .

 

B.1 Can the following integrals be done symbolically by the HP 487?

b b b
/ sin(cx + d) dz, / tan(cx + d) dz and / In(cx + d) dz

 

7.3 APPLICATIONS OF THE INTEGRAL

In the preceding sections, we have provided calculator/computer activities designed
to strengthen both your understanding of integrals and your effectiveness in dealing with
them.

What use are integrals? A chapter in your calculus text provides the answer. There you
will find integration formulas for areas, volumes, arc length, centroids among other things.
How do applications arise and how should you and your HP 48 deal with the formulas?

Generally, applications arise as follows. Suppose you are trying to solve a difficult
problem (e.g., trying to find the length of a curve) and discover that you can break up the
problem into a large number of smaller problems (e.g., you could break up the curve into
a large number of small arcs). Suppose, also, that you can approximate solutions to the
smaller problems in such a way that the sum of the approximations gives a good approxi-
mation to the answer to the main problem (e.g., you could approximate the length of each
small arc with the length of a line segment and add them up to get a good approximation
of the total length). Finally, suppose that the approximation gets better and better the
more you subdivide the main problem. When you pass to the limit, you get an integration
formula.

How should you and your HP 48 deal with integration formulas? The bulk of this
section is devoted to that question.

 

Integration Formulas

In your book you will find several formulas like the following:

b

AREA UNDER THE CURVE = / f(z) dz (1)

b

AREA BETWEEN TWO CURVES = / f(z) — g(x) dz 2)

ARC LENGTH = /TTRdr (3)
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ARC LENGTH = / VT)? + y(£)2 dt (4)

SURFACE AREA = / 2rf(2)\/1 + f(z)? dz (5)

b

VOLUME = / 7f(x)? dx (6)

(7)CENTROID = (& o(f(z) — g(x)dxf; 1(f(z)* — g(x)?))

(fx) —g(@)dz [2(f(z) — g(x)dz

What is important about formulas like these? In the first place, it is important that you
understand the derivation process because such understanding will enhance your general
understanding of the applicability of the integral.

Should you memorize all of the integration formulas in your book? The answeris that
you shouldn’t memorize any of them, because the HP 48 can do that for you. In fact, we
will show you in this section how to convert such formulas into calculator keys that will
make it easy for you to work many application problems. Having said that, we must add a
few words of caution.

First, most people still see merit in working problems “by hand” and your instructor
may well want you to do it that way. If so, you can put the programs of this section to
good use as answer-checkers for problems you work by hand.

Second, even though the HP 48 usually does a marvelous job on integration problems,
things can go wrong. One thing you have to worry about is time. The HP 48 can take
an extraordinary amount of time to work some innocent looking problems and you need
to be on the lookout for time-saving devices. Another thing you have to worry about
is accuracy. Usually there’s a trade-off between time and accuracy. In any case, you
should always question the accuracy of the calculator and always look for ways to check
the reasonableness of your answers.

Third—and most important—whether you are applying integration formulas or their
program equivalents, be sure to apply them correctly!

 

On Applying Formulas Incorrectly

The mistake made by most beginners is that they think (or at least hope) that to find
so-and-so, all you have to do is plug the right things into the so-and-so formula. Suppose,
for example, you want to find the length of the portion of the parabola z = y? that lies
between (0,0) and (4,2). If you blindly shove the data “xz = y* between (0,0) and (4,2)”
into either formula (3) or formula (4), disaster will almost surely strike. Even if you get
lucky in the shoving process, you'll find that such luck will be short-lived when you try to
work even the slightest variation of the same problem. See Example 1 for correct ways to
set up this problem.

 

On Applying Formulas Correctly

The trouble with the above formulas is that they are incomplete. What is needed is an
accompanying explanation or a picture corresponding to each formula. For example, in (3)
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it is important to know that the formula refers to a curve of the type y = f(x), a <x <b,
and in (4) that the formula refers to a curve defined parametrically by x = z(t), y = y(t),
a<t<b.

One thing that helps most people is to associate pictures with formulas. In this section,
we will help you do this by including with each program we present a corresponding picture.
 

ADVICE: Always be sure that the problem you are trying to solve
matches the picture shown before you start pressing keys!   
 

The programs in this section are based on the following simple integration procedure.
b

To calculate / f(x) dz, key in the following:

a b f(X) X [ [onNuM|
This procedure combines antidifferentiation and numerical integration. Here’s how it works.
First, the HP 48 tries to antidifferentiate f(X). If it succeeds, it applies the Fundamental
Theorem of Calculus to get the exact answer. If it fails,it tries to do a numerical integration
with relative accuracy of 10~!!. The only trouble is that sometimes it takes a long time to
complete the task. You can always speed things up by asking for less accuracy, as described
in the preceding section. Simply enter k FIX for the value k of your choice. The resulting
error bound will be less than 10~* times the value of the integral.

If you decide to enter the programs of this section in your calculator, you will probably
want to open a new directory APPS for this purpose.

The program LENGTH (see box) is based on formula (4).

 

(x(b),y(b))

  
 

 

 

 

LENGTH

Inputs: z(T), y(T), a, b Output: Length of curve shown

<< 4 ROLL T 0 SQ Calculates formula (4)
4 ROLL T 0 SQ

+ vv T [ -NUM >»

Checksum: #3748d Bytes: 64    
 

EXAMPLE 1. Find the length of the parabola = y? that lies between (0,0) and (4, 2).

SOLUTION. Start by drawing a picture of the problem. See Fig. 3(a).
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Does this picture match the model picture for LENGTH (see box
above program)? The answer is no. However, we can easily reformulate
it so that it does. All we have to do is parametrize the curve as follows:

z(t) =t%, y(t) =t, 0<t <2

The picture then becomes as shown in Fig. 3(b) and we may apply
LENGTH to obtain a quick and easy solution.

 

 

T SQ T 0 fy.A APPS }
2 |LENGTH 4:

3:
2:   jE 4.64678376243
CEise|

Calculation time: about 13 seconds

Error bound: 5 x 10~!! (press IERR)

For an alternate but not so quick solution, see Exercise B.7.

We turn now to the problems posed and left unanswered in §3.1.
These problems all involve the polynomial p(x) = 28 — 32° — 32% + 92° +
222 — 6x. Store p(x) under the name P:

0 -6 2 9 —-3 -3 1 [poLY|] P [STO]

This function will be referred to throughout Example 2.

 
   

y y
21 (4,2) 2¢ (2,1) (4,2)

X=y?

11 1

, X X

(0,0) 1 2 3 4 (0,0) 1 2 3 4

(a) (b)

Figure 3

EXAMPLE 2A. (cf. Question 5, §3.1) Find the area of the shaded region in Fig. 4(a).

SOLUTION. The problem clearly fits the picture model Fig. 4(b) for
formula (1) with a = —1, b = 0, and f(x) = p(x). (For determination of
the zeros of p(x), see Example 1C, §3.1.)

Thus we have

0

AREA = / (2° — 32° — 32* + 92° + 22° — 61) dz,
-1
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EXAMPLE 2B.

 

 

 

  

y

y=Ff(x)

/
1 x | a b X

(a) (b)

Figure 4

and evaluation by the HP 48 is routine.

a oxo] «HOME apps 3
4:

3
1: 1.45952380953
[PLiErk[RECET[LENS]||

Calculation time: about 20 seconds

v' Point to note

Here the calculator gives no integration error because the integrand is a
polynomial. Even so, there is still a small round-off error. The precise re-
sult (which you can easily check by hand) is613/420 = 1.45952380952 - - -.

(cf. Question 6, §3.1) Find the perimeter of the shaded region in
Fig. 4(a).

SOLUTION. Clearly, the perimeter is equal to L + C = 1+ C. See
Fig. 4(a). The problem of finding C fits the model for LENGTH with
z(t) =t, y(t) = p(t), a = —1, and b = 0. So with p(T) stored under the
name P, we may obtain L as follows.

 

T P T FEVAL RAD
21 0 HOME APPS }{

1

 

  4.79454554043
0rTI

Calculation time: 3 minutes

Error bound: 5 x 10~11

Thus, the perimeter is approximately equal to 5.79454554043. Is this
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EXAMPLE 2C.

a reasonable answer? One way to get a rough check on the answer is
to approximate it by the perimeter of the triangle with vertices (—1, 0),
(0,0), and (-.5,2.3) (noting that, by Example 1D, §3.1, the maximum

occurs at (—0.537896525, 2.31353350649)); this gives C =~ 2v/2.32 + 52 =~
4.71 which shows that the answer is indeed reasonable.

(cf. Question 7, §3.1) Find the “center” of the shaded region in Fig. 4(a).

SOLUTION. This is sort of a trick problem because, there is no pre-
viously agreed upon mathematical meaning of the word “center”. The
reason for this is not that the idea is unimportant; rather, there are sev-
eral meaningful interpretations of this concept. What do you think the
“center of a region” ought to mean?

One interpretation is that of centroid, and that is the interpretation
we will take here. A second interpretation is considered in Exercise C.4.

We leave it to the reader to write an HP 48 program correspond-
ing to formula (7) and to verify that the answer to Example 2C is
(—0.516313214 --- ,0.905807352- - - ). See Exercise B.9.

 

About Area Under a Parametrically Defined Curve

By making a change of variable z = x(t), we obtain a parametric version of formula (1):

AREA = /de = /0(0) de (8)

Here the numbers t; and t; correspond to the left- and right-hand endpoints of the z-
interval in that order. Note that t; could be larger than t;. The program AREA (see box)
is based on formula (8).
 

 

y

 

 

   
 

AREA
 

Inputs: xz(T), y(T), ty, to Output: Area of region shown
 

<< 4 ROLL T 0 Calculates formula (4)
4 ROLL * T [ —-NUM >»

 Checksum: #17421d Bytes: 47.5    
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Next we turn to the problems posed but left unanswered in § 3.2.

EXAMPLE 3A. (cf. Question 4, §3.2) Compare the areas enclosed by the two loops of
the curve z = t2, y = t° — 6¢3 + 8t, —2.2 < t < 2.2. See Fig. 5.

SOLUTION. By symmetry (see Example 2C, § 3.2), we may concentrate
on finding the areas of S; and S;. To apply the model for AREA, we need
to know exactly which t-values correspond to which points. Observe the
“time flow”. At time t = —2.2, the “particle” begins its journey at the
point A. From point A, it moves upward to the left, crosses the z-axis
for the first time at time t = —2; traverses the arc Cp from t = —2 to

t = —V/2, crosses the z-axis a second time at t = —V/2; etc. Finally, at
time t = 2.2, it reaches the point B, its destination.

Clearly, the regions S; and S; fit the model for AREA separately.
Before applying the program, store z(t) and y(t) under the names X and
Y. We will refer to these functions throughout Example 3.

 

 

  

 

 

  

T SQ X

T5°6T3 %x — 8T x + Y [sTO]

Now apply AREA.

0 v2 Clie APPS }

3
1: 4.7409826091

|IEIRCTA)EAA(AEHET)

Calculation time: 30 seconds
Error bound: 5 x 10~!1

XY —vV2 -2 Me E APPS }ire o
3

1: 2.30288737098
1%[wkEn]IEEEJRECET[LENS]

Calculation time: 1 minute

Error bound: 3 x 1011

It follows that the areas of the top-shaped and football-shaped regions
are 9.48 and 4.61, approximately. Since the ratio of these areas is ~ 2.1,
the area of the football-shaped region is a little less than half the area of
the top-shaped region. This answers the question posed in § 3.2.

v' Point to note

Even though the integrands here are polynomials, the calculator fails to
recognize that fact and resorts to numerical integration.
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EXAMPLE 3B.

 

 

 
Figure 5

(cf. Question 5, §3.2) Compare the perimeters of the regions of Example
3A.

SOLUTION. By symmetry, the problem reduces to finding the lengths
of the upper arcs C; and C; of S; and S,, respectively. See Fig. 5.
Clearly, each of these arcs fits the model for LENGTH and we can obtain
the lengths of C; and C; as follows.

 

XY 0 v2 "WOME APPS 3;
2
1

 

  7.8874777032

Calculation time: 1 minute, 53 seconds
Error bound: 8 x 101!

 

 

  

X Y -2 —2 RAD
To APPS }

5:
1: 4.18504/78853
EECEAEEEEH

Calculation time: 1 minute
Error bound: 5 x 1011

It follows that the perimeter of the top-shaped region ~ 15.77, the
perimeter of the football-shaped region ~ 8.37, and the ratio of perimeters
is about 1.88 : 1.
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About Volume and Surface Area of a Solid of Revolution generated by a Paramet-
rically Defined Curve

By making the change of variable x = x(t), we obtain the following parametric versions of
formulas (5) and (6):

VOLUME = /’ my(t)2z’ (t) dt (9)
t

tz

SURFACE AREA — / 2ry(t)/ZOF F702dt (10)
t

 

As with formula (8), it is important to understand that t; and t; are the t-values corre-
sponding, respectively, to the left- and right-hand endpoints of the z-interval and that it
may happen that t; is larger than t5. Of course, the result should turn out positive. The
programs VOLUME and SURFACEAREA are based on formulas (9) and (10). See boxes.

 

(x(ty), y(t) (x(1),y(1))
~~ F

(x(t5), (15)y 2’ 2  
 

 

  
  
 

              
 

 

 

 

 
 
 

 

 

VOLUME

Inputs: z(T), y(T), a, b Output: Volume of solid shown

< 4 ROLL T 0 Calculates formula (9)
4 ROLL SQ * «=

 T [ —-NUM >

Checksum: #53538d Bytes: 57

SURFACEAREA

Inputs: z(T), y(T), a, b Output: Surface area of surface shown

< 4 ROLL 4 ROLL Calculates formula (10)
—- X Y

2 m Xx Y xk
X T 0 SQ
Y T 0 SQ
+ v7 *
T [ —-NUM ABS >» >

Checksum: #239d Bytes: 114    
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EXAMPLE 3C. (cf. Question 8, §3.2) Rotating the curve of Example 3A about the z-
axis gives what appears to be a 3-dimensional top and a 3-dimensional
football. Find and compare their volumes and surface areas. See Fig. 6.

y

 

Figure 6

SOLUTION. Clearly, the model for VOLUME and SURFACE AREA
applies to both 3-dimensional objects. Thus, we may obtain the volumes
and surface areas as follows:

 

 

  

X Y 0 V2 RAD
go APPS }

5:
1: 43.5634181298

|ETA)IATIIRCTA)EAA

Calculation time: 28 seconds

Error bound: 5 x 10710

 

 

  

 

 

XY —v2 —2 RAD
:a APPS }

3:
2:

1: 10.0530964914
CukewfvoLu]wviREERIEEE|

Calculation time: 28 seconds
Error bound: 101°

XY 0 V2 RAD

3:
2:

1: 94. 840885826   
CurealvoLu]vw|:when]EGE|

Calculation time: 3 minutes

Error bound: 107°
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XY —v2 -2 ”

5:
1: 25.230483144
RADETECEEECAEAA

Calculation time: 1 minute, 35 seconds
Error bound: 3 x 101°

It follows that the volume of top-shaped region ~ 43.5634181298, the
volumeof football-shaped region ~ 10.0530964914, the surface area of the
top-shaped region ~ 94.840885826, and the surface area of the football-
shaped region ~ 25.230483144. Thus, the ratio of volumes and surface
areas are ~ 4.33333333337 and 3.75898017032, respectively.

 

About Limitations

As you may suspect and may wish to confirm, the above answer of 4.33333333337 is really
41 exactly. This is not obvious and it would have been nice had the calculator told us.
Thus, once again, we see evidence of HP 48 power accompanied by limitations. To be fair
to Hewlett-Packard Co., this is only what should be expected. No matter how good the
technology gets, there will always be limitations.

One such limitation is the time one is willing to wait to get a result. We now give exam-
ples of integration problems that cause time difficulties for the HP 48, then we show how to
combine traditional methods—specifically, “substitution” and “integration by parts”—with
HP 48 power to alleviate the difficulties.

EXAMPLE 4. Evaluate

 

[2a

0 VT
to 4 decimal place accuracy.

SOLUTION. The HP 48 takes over two hours to work this problem
directly, obtaining the answer 1.8090. A far more efficient way to work
the problem is to first make the substitution u = /z. This will transform
the given improper integral into the following proper integral (see your
textbook for the definition and discussion of improper integrals):

1

/ 2 cos u? du
0

Now put the HP 48 to work. It will take only 3 seconds to obtain the
required degree of accuracy! Moreover, in about 6 seconds, we obtain the
answer of 1.8090484758 with error < 2 x 10711,

Why is the first integral so hard for the HP 48 and the second one
so easy? One might think that the difference is explainable in terms of
improper and proper integrals. Example 5 below shows that this is not
the case.
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EXAMPLE 5. Evaluate
2/m

/ sin(1/x) dx
0

to 4 decimal place accuracy.

SOLUTION. As with Example 4, the HP 48 takes over two hours to
work the problem. Note that this integral exists as a Riemann integral
because the integrand is bounded and continuous everywhere except at
0. The trouble here seems to lie more with the oscillatory behavior of the
function sin(1/z) than it does with the fact that sin(1/z) is undefined at
the origin. Indeed, if you replace the lower limit by .001, you'll find that
it still takes about an hour.

Again, we can greatly improve on things by using elementary inte-
gration techniques. We start by making the substitution t = 1/2. This
transforms the given proper integral into the following improper integral:

2/m 00

/ sin(l/z) dx = / t~2sintdt
0 ™/2

Next we integrate by parts three times to obtain the following:

2/m oo

/ sin(l/z) dx = 2[ t=3 cost dt
0 /2

16 ©
-5-6/ t~4sintdt

w/2

16 ©
=Su t~S costdt.

T w/2

Now break up the last integral into two pieces:

oO

/ t~°costdt =I; + I, where
/2

100
I -/ t~%costdt and

T/2

oO

n= | t~° cost dt.
100

For the first part, the HP 48 takes less than a minute to obtain the
result —0.01464 with error < 2 x 107 (using 5 FIX).



EXERCISES 7.3 215

For the second part, we obtain the following approximation:

oO

/ t~Scosti
100

oO

< / |t=° cost| dt
1 00

|I2| =
 

oo 1
< t=5%dt == x10"8

100 4

Thus,

2/m 16
/ sin(1/z) dz ~ — +24 x —0.0146419 ~ 0.1646,
0

where the total error is less than

24 x (2x1077 4.25 x 1078) <5 x 107°,

which gives the desired degree of accuracy.

 

Exercises 7.3

A.1Find the area under the curve y =tan~'z fromz =0 to = = 1.

A.2 Find the area between the curves y =z + 3 and y = 2° + 4z + 3.

A.3 Find the length of the hyperbola zy = 1 from (1,1) to (2, 3).

A.4 Find the length of one arch of the cycloid £ = 0 — sin, y = 1 — cosé.

A.5 Find the length of the cardioid » = 1 + sin 4.

A.6 Find the length of the Lissajous curve x = 2sin2t, y = 2cos 3t, 0 < t < 27.

A.7 (a) Find the length of the curve x = 2sin3t, y = 2cos2t, 0 <t < 2m

(b) Find the length of the curve x = 2sin3t, y = 2cos2t, 7/2 <t < 37/2

(c) Explain the connection between (a) and (b).

A.8 Find the area under one arch of the cycloid x = 0 — sin, y = 1 — cos é.

A.9 Find the area enclosed by the loop of the curve = = t2, y = t3 — 3t.

A.10 Find the perimeter of the loop of the curve z = t?, y = t3 — 3t.

A.11Find the volume of the solid of revolution obtained by rotating the region
bounded by the curves y = 22 and y = 23 about the z-axis.
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A.12 Find the surface area of the solid of revolution obtained by rotating the region
bounded by the curves y = 2? and y = 22 about the y-axis.

A.13 Find the volume of a doughnut having inner radius 1 and outer radius 3.

A.14 Find the area of the region bounded by y = sinz and y = cosz between two
consecutive intersection points. Does it matter which two you take?

A.15 Find the perimeter of the region bounded by y = sinz and y = cos between
two consecutive intersection points. Does it matter which two you take?

A.16 Find the centroid of the region bounded by y = 22 and y = z3.

A.17 Find the centroid of the region bounded by y = sin and y = cos z, x € [0, 7/4].

A.18 Find the volume enclosed by the ellipsoid —-LL + z = 1.

x? oy? 2
A.19 Find the surface area of the ellipsoid =— +L5 + ~ =1.

 

Exercises 1-3 refer to the parametric curve x = 6sin2t, y = 1.5cos3t, 0 < t < 27,
discussed in Example 3 of § 3.2.

B.1 Find the area of (a) one of the “hearts”; (b) one of the “boomerangs”; (c) the
big “football”.

B.2 Find the perimeter of (a) one of the “hearts”; (b) one of the “boomerangs”;
(c) the big “football”.

B.3 If you spin the big “football” about the z-axis, you’ll get a solid that resembles
a 3-dimensional football. Find its volume and surface area.

B.4 Find the area of one of the “ears” in the bunny-shaped curve x = cost — sin 2t,
y =sindt, 0 <t < 2m.

B.5 Find the length of the double spiral » = £60, 0 < 6 < 67 (see Fig. 4, §3.2).

B.6 Write an HP 48 program corresponding to formula (3); also provide a model
picture to accompany the program.

B.7 Use the solution to B.6 to find (an approximation for) the length of the parabola
x = y? between (0,0) and (4,2). Why do you think the HP 48 has trouble with
this calculation?

B.8 Write an HP 48 program corresponding to formula (7); also provide a model
picture to accompany the program.

B.9 Use the solution to B.8 to find the centroid of the region in Fig. ?.
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C.1 Find numbers a and b such [ P(x) dx = 1 where P(x) is your personal poly-

nomial as defined in A.11, §0.7.

C.2 Compare the areas in B.1 and generalize.

C.3 Find the areas and lengths of the nine loops in Example 5, § 3.2.

C.4 Consider horizontal lines that pass through the shaded region in Fig 4(a).
Exactly one of these will divide the region into two equal areas. Find it.
Similarly, there is exactly one vertical line that divides the region into two
equal areas. Find it. Compare the intersection of these two lines with the
centroid of the region (see Example 2C). Is this a reasonable interpretation of
“center”? Explain.

 

7.4 MIDPOINT, TRAPEZOID, AND SIMPSON’S RULES

In §7.1 we discussed two “rules” for approximating 2 f(z) dz, namely, the “left rectan-
gle rule” and the “right rectangle rule.” For increasing functions these two rules correspond
to summing the areas of the inscribed and circumscribed rectangles. We asked then that
you start entering an integration package into your calculator. The heart of the package—
the program that does the actual arithmetic—was called SUM, which with ABST, NSTH,
LRECT, and RRECT will be used to complete the integration package.

This package is much simpler than the HP 48’s built-in numerical integration algorithm.
For this reason it is easier to understand, particularly the control of error. And, as remarked
earlier, it provides an introduction to numerical integration.

We begin by giving geometric or algebraic derivations of the midpoint, trapezoid, and
Simpson’s rules. This is followed by a brief discussion of the accuracy of each of the three
rules. Finally, we give the programs MID, TRAP, and SIMP and work through several
examples.

 

Midpoint Rule

We show in Fig. 7 a typical subinterval in a Riemann sum for IP f(x) dx. The interval

 

     

[a,b] has been divided into n equal subintervals with the points a = xo, 21,...,2, = b, so

y

f

— X

Xj Mpa Xp

Figure 7
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that each subinterval has length (b — a)/n = h. We choose to evaluate f at the midpoint
mj4+1 of the subinterval [z;,z;4+1]. In terms of area, the midpoint rule approximates the
area beneath the graph of f on the interval [z;,z;41] by the rectangle whose height is
f(m;4+1). The Riemann sum corresponding to these choices is denoted by My, where

b n-—1

/ f@) dem fm)(@io — x5)
7=0

Ah)fm) = M, (1)
=0

 

Trapezoid Rule

The trapezoid rule is based on a different approximation to the area beneath the graph
of f on [z;,x;+1]. Instead of the rectangle with height f(m;;;) and width h we use the
trapezoid shown in Fig. 8, with height h and bases y; = f(x;) and y;41 = f(x;j41). (Usually
trapezoids are drawn so that their bases are horizontal; here the bases are perpendicular
to the x-axis.) The area of this trapezoid is its height times the average of its two bases,
that is, A(y; + y;+1)/2. The corresponding Riemann sum 7, is

y

 

   

Figure 8

b n—1 n—1

/ fa)do 30BOEay 2) = 350 +100) = 2)

In (3) we rewrite this sum in two ways, first in the traditional form of the trapezoid rule,
and then in a form convenient for calculation with the program SUM.

b
h

/ f(@)dz = 5 (Yo +2(y1 +y2 ++ Yn-1) + Yn)

sh (vot on teeta +2) (3)
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Simpson’s Rule

To describe the simple idea on which Simpson’s rule is based we reinterpret the trapezoid
rule. Instead of thinking about the trapezoid rule as an approximation to the area beneath
the graph of f by several trapezoids, we may think about it as an approximation in which
we replace f by a different, simpler function g and then integrate g instead of f. The simpler
function g is constructed on the subintervals. The graph of g on [z;,2;4+1] is the straight

line joining (z;,y;) and (Z;+1,y;+1). We may approximateJ f(z) dr by |ak g(x) dx.

The latter integral may be calculated exactly.
Simpson’s rule is based on a different choice of approximating function. Instead of

defining g using the line through two successive points (z;,y;) and (z;4+1,¥;+1), we define
g using the parabola through three successive points. For the trapezoid rule, g is a poly-
nomial of degree one; for Simpson’s rule, g is a polynomial of degree two. We are fitting f
with parabolas instead of straight line segments. Since three successive points come from
two adjacent intervals the number n of intervals in the subdivision must be even. For
this reason, as well as reasons which will become clear later, we change our use of n for
Simpson’s rule. We subdivide the interval [a,b] into 2n subintervals with the subdivision
{a =z, 21,...,T2n-1,T2n = b}.

We show in Fig. 9 three successive points x;_;, x, and x;of a subdivsion. We wish

to approximate LL f(x) dz by 2 g(x) dz, where g is the quadratic function whose

graph passes through the points (z;-1,¥;-1), (z;,¥;), and (z;+1,¥;+1). We take advantage
of the fact that we may translate f to the left or right without changing the value of the
integral. We show the interval [z;—1,z;+1] translated to [—h, h] in the left sketch in Fig.
9. We have relabeled the ordinates as y_1, yo, and ;.

 

  
    

y y

SNS—— Yi ~~

Y_4 Yo Yj-1

X X
h h Xi_y X X11

Figure 9

Let the parabola through the points (—h,y—1), (0,50), and (h,y;) have the equation
y = ax? + bx + c. Simpson’s rule is based on the approximation

Tj41 h

/ f(z) dz ~ / (ax? + bx +c) dx = Zab? + 2ch (4)
xT —hJj—1

The last calculation is exact. Note that 20h3 + 2ch does not depend upon b. We find that
¢ = yo from the condition that the point (0,10) must lie on the parabola. We obtain the
equations (which we can solve for a and b)

y-1 =ah® —bh +c

y1 = ah? + bh +c
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from the conditions that the points (—h,y_;) and (h,y;) must also lie on the parabola.
Adding these equations we find y_; + y1 = 2ah? + 2c. From this result and (4) we have

Tj h h h/ f(@) do ~ 3 (20h +26 +40) = 3 (yt +11 +400)= 5 Wim1 +501 +40) (5)
Jj—1

Adding the approximations for all n pairs of subintervals gives Simpson’s rule:

b
h

/ f(z)dz = = (yo +4y1 +y2) + (y2 +4ys + ys) +]

h
Rotatuys +o + gon)

+2(y2 + ya +--+ + Y2n—2) + Yn] = Sn (6)

When we use M,,, T,, or S, to approximate IP f(z) dx, several kinds of errors may
arise. First, the calculator values for functions or real numbers are themselves usually not
exact. For most problems, these errors will not affect our results. The more serious errors
are implicit in the approximations to f made in the midpoint, trapezoid, and Simpson’s
rules. Fortunately, there are reliable bounds for this kind of error. We state these without
proof, but outline an argument for one of these bounds in problem C.2. The notations M,,,
T,, and S, used in (7)-(9) were given in (1), (3), and (6).

  

  

b —n)3

| fwdan, bi where |f'(z)] <M for all z in [a,b] (7)

b Mb —-a)d
| f@da-T. < —Tg7 where |f"”(x)] <M for all z in [a,b] (8)

b M(b—a)®
| f@das, S Segond where |f®(x)] <M for all z in [a,b] (9)

 

 

We illustrate several of these bounds in the examples just following a brief discussion
of the programs MID, TRAP, and SIMP, which we use to calculate M,, T,, and S,.. Each
program uses the program SUM discussed in §7.1. Recall that SUM assumes that a, b, f,
and n are stored under the names A, B, F, and N, respectively, and that f is written in
program style. SUM has one input, s, which is the “starting point,” that is, the value of x at
which f is first evaluated. The output of SUM is the sum f(s)+ f(s+h)+---+f(s+(n—1)h)
multiplied by h, that is, h 37_; f(s + (j — 1)h).

We give the programs with brief, incomplete explanations, leaving the details to several
problems.

The program MID has no inputs and outputs one number, M,. The starting point for
MID is (zo + x1)/2 =a + h/2.

< AH 2 / + SUM > MID

The program TRAP has no inputs and outputs one number, T,,. We base TRAP on (3).
We use SUM to calculate h(yo + y1 +: + Yn—1), Which is the value returned by LRECT,
and then modify this value to match (3).

<< LRECT BF AF - 2 / H x + >» TRAP
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The program SIMP has no inputs and outputs one number, S,,. In using Simpson’s
rule it is important to keep in mind that the number S,, is based on 2n subdivisions. The
program for S, assumes, however, that n is stored as N. The notation S,, may help
you recall this convention. SIMP uses the programs SUM, MID, and TRAP, following the
formula (which we ask you to verify in a problem)

OM, + T,
Sn 3 (10)

The programs SUM, MID, and TRAP use the value of n stored under N. Thus, they, in
effect, assume the points of the subdivision are a = x¢,z2, +, Z2n—2, T2n. The starting
point of MID, however, is (zo + z2)/2, which is z;.

&« MID 2 % TRAP + 3 / > SIMP

Before we give an example we suggest a convenient ordering of the now completed
integration package. We prefer the order ABST, NSTH, TRAP, SIMP, MID, LRECT,
RRECT, SUM, N, A, B, H, F. To order the programs in the INTX directory, first store
arbitrary values under the names N, A, B, H, and F. The purpose of this is to establish a
place for these variables and thereby prevent them from being inserted at the head of the
INTX menu every time they are stored. Next, form the list { FABST NSTH--- HF } by
pressing { } and then the white keys beneath the names FABST, NSTH ... on the INTX

menu. Finally, press on the "MEMORY DIR menu.

EXAMPLE 1. Use the fact that [2 1/x dx = In2 and the midpoint formula to estimate
In2.

SOLUTION. Suppose we decide to use the midpoint formula with n =
10. We calculate M;¢ using MID and then bound the error afterwards.
Go to the INTX menu.
 

 

    

'F(X)=1/X" OME INTE 3 Husk
DEF 4:
I SPC 2 ABST 3:
10 NSTH 5:
MID 1: .692835360409

E1384CRTRATEEEGXTAEN

 

To bound \

/ 1/x dx — Mio
1

we use (7). For this we need to find an “upper bound” M for |f’(z)| on
[1,2]. Since f'(x) = —1/x2, we see that M = 1 is the least value of M
for which |f’(z)| < M on [1,2]. We have, then,

21
/ — dx — Mio

1 ZT

The actual error (which, usually, we do not know) is | In2—0.69283---| =
0.00031 ---.

Mb-a)* 1 1

24n? 24-102 2400
 < = 0.000416 - -
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EXAMPLE 2. Use the trapezoid rule to approximate the value of the integral

2 2

| ea
0

to within 0.001 of its value.

SOLUTION. We use (8) to determine the number n of subdivisions re-
quired to achieve this accuracy. We first find an upper bound on | f(z)|
as x varies over [0,2]. We have

fz) =e"
f(z) = —2ze~*"
f(z) = —2e% + 4z%e™*

= 2¢7% (22% — 1)

From the last expression, it is not difficult to see that for all z in [0,2],
| f(x) <2-1-7. The factors of 1 and 7 in this bound are the maximum

values of e=*" and 2x2 — 1 on [0,2]. It follows that we may take M = 14
in (8). (This value of M can be lowered , but at a cost. We return to this
point later.) Since we wish to approximate the integral within 0.001, it
follows from (8) that it is sufficient to choose n so that

14(2 —0)3
wt o (}oz < 0.001

Use the SOLVRin showing that the least integer mn satisfying this in-
equality is n = 97.

 

 

  

'F(X)=EXP(-X"2)" PoE wn 3 Hs
DEF 4:
0 SPC 2 ABST 3:
97 NSTH 2:
TRAP 1: . 882078795486

EECRCMETEEEETEEEN]   

After 5 seconds or so, TRAP returns .88207-.-, which is, by our
choice of n, within 0.001 of the true value of the integral.

It is known that [ e™*" dx = 0.8820813907---. We see, then, that
our approximation was calculated to more accuracy than we required.
Perhaps we could have gotten by with a smaller value of n, found by
bounding the size of | f"”(x)| less crudely. Indeed, as we ask you to show
in an exercise, M can be taken as small as 2. If we had used this value of
M in (8) we would have found that n = 37 is sufficient for the accuracy
0.001. Ultimately, we must balance the time it would have taken us to
obtain a smaller upper bound M against the decrease in calculation time
due to a smaller value of n. In this case, the decrease in time amounts
to two or three seconds. As an alternative to the method we used here
to bound the size of |f”(x)|, we may use symbolic differentiation and
graphing to obtain a value of M. We go through this as part of the next
example.



EXAMPLE 3.

7.4 MIDPOINT, TRAPEZOID, AND SIMPSON’S RULES 223

The improper integral
oO

/ Vze™®dr (11)
0

is “improper” since the upper limit is not a real number. This particular
improper integral is convergent since the integrand decreases sufficiently
fast as £ — oo that the area beneath its graph is finite. (It converges by

the comparison test, using the facts that JzZe <e7%forall x > 0,

and f° e~* dx converges.) We wish to calculate the value of this integral
to within, say, 0.001.

SOLUTION. After a change of variable (let x = u?) to simplify the
integrand, we split the integral into two parts by finding a number b such
that the last integral (to which we refer as the “tail”) in

oo 2 oo 4 b 4 oo 4

/ Vze® a= | ule au— | Que du+ [ 2ule™ du
0 0 0 b

is small. We use the trapezoid rule to approximate 2 uledu. We
must choose n for the trapezoid rule and b for the tail so that

/ 2u?e=v" du — T,
0 

 

b 00

< / uedu —T,+ 2ule™™ du
0 b

< 0.001 (12)

 

 
We do this by choosing n and b so that

b
/ ue” du—T,
0  

< 0.0005 and / 2u?e=*" du < 0.0005
b

To bound the tail we use the fact that u2e=*' < u2e~* for u > 1. We
have

oo 4 oo 3 3

/ ule” du < / 2ule™% du = 20
b b

The inequality 20° < 0.0005 is satisfied for b = 2.7.

To find n so that |f, 2u%e™* du —T,| < 0.0005, we use (8). To
choose M, we use the HP 48 to differentiate f(u) = 2uZe=*" twice and
to graph the result. We show the graph of f” on the interval [0,2.7] in
Fig. 10.

 

 

I Y IN
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0 2.7

p %3    
 

Figure 10
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Positioning the cursor on the low point of the graph, we find the
coordinates there to be (0.9, —10.3), more or less. We take M = 10.3.
This leads to n = 58. Using TRAP we find Tss = 0.6127 ---. From our
calculations and (12), we know that the integral (11) is within 0.001 of
0.6127. --.

 

Exercises 7.4

A.1 Calculate In3 = |,(1/x) dx using MID. Take n = 20. How accurate is your value
compared with that returned by the HP 48 built-in LN?

A.2 Calculate fs e~* dz to within 0.001 using TRAP. Follow the outline in Example
2, using an overestimate of M.

A.3 Calculate sin™! 0.5 to within 0.0001 by using TRAP. Use the fact that

 

x

11sin” x = dt, |r| <1| =a Hl

Take n = 18. Compare the calculated value with the well known value of sin™! 0.5.

A.4 Calculate 7 to within 0.0001 by using TRAP on the integral fy 4/(1 + x?) dx.

Take n = 82. Compare your value with the HP 48 built-in .

A.5 Recalculate to within 0.01 the length of the first quadrant portion of the curve
with equation 422 + y? = 1 using (a) MID and (b) TRAP. See problem A.6 in
Exercises 7.1. It is given that | f'(6)| < 0.5 and | f(6)| < 2 for § in [0, 7/2], where

f(0) = 0.54/1 + 3sin? 6.

A..6 Referring to problem B.1 in Exercises 6.1, use TRAP to calculate Si(1) to within
0.001. It is given that |f"(z)| < 1/3 for z in [0, 1].

A.7 By using symbolic integration and evaluation, show that Simpson’s rule gives

exact results for the integral 12 (52° — x2 +32 +5)dx

A.8 Referring to problem A.7 in Exercises 6.1, use TRAP to calculate the value of
H(84) to within 0.01. Use n = 5.

A.9 Show by hand or HP 48 calculator that

[wa-tar= CE

This result is needed in problem C.2.

A.10 The problem described here is taken from The Aircraft Sidestep Maneuver, from a
series on applied mathematics produced at Oklahoma State University. When an
aircraft is making a landing approach in bad weather, the guidance system in use
may require the pilot to align his aircraft with the runway just after the aircraft
emerges from fog. The required maneuver is called the sidestep manuever. Since
the time in which to complete the manuever safely may be limited, close analysis
of the flight path is necessary. Using elementary mechanics (discussed in detail in
the booklet), it can be shown that the coordinates z(t) and y(t) of the aircraft at
any time t (in seconds) are

t t
g ; gx(t) / V COS (£ n | sec kt) dt and y(t) | v sin (£ n|sec ) :
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where

v = 202.54 feet/sec (speed = 120 knots)

k = 0.0349066 radians/sec (2°/sec, rate of bank)

g = 32.2 feet/sec/sec (acceleration of gravity)

Given that the absolute values of the second derivatives of the integrands are
bounded by 1.2 on the interval [0, 7.5], calculate z(7.5) and y(7.5), accurate to
0.5 feet.

 

B.11In the derivation of the trapezoid rule, verify that (3) follows from (2).

B.2 In the derivation of Simpson’s rule, verify that (6) follows from (5).

B.3 Show that T,, may be calculated by the shorter program TRAPZ2:

< LRECT RRECT + 2 / >»

Give a reason why we chose instead to use TRAP. Support your answer with some
empirical evidence.

B.4 Verify (10), which connects Simpson’s rule to the midpoint and trapezoid rules.

B.5 Give clear, concise explanations of the programs MID, TRAP, and SIMP.

B.6 Verify the statement in Example 2 that the maximum of |f”(z)| on [0, 2] is 2.0.

B.7 Show that in problem A.1 the error bound (7) gives | In3 — Mao| < 0.00084. Show
that the actual error is less than 0.00037.

B.8 Verify that in problem A.3, |f”(z)| < 3.1 for x in [0,0.5]. Taking M = 3.1, show
that the error bound 0.0001 is correct with n = 18.

B.9 Verify that in problem A.4, |f”(z)| < 8 for z in [0,1]. Taking M = 8, show that
the error bound 0.0001 is correct with n = 82.

B.10 (Continuation of problem A.10) Verify the accuracy of Table 1, taken from the
The Aircraft Sidestep Manuever. Use 0.1 for the error.

 

 

       

Table 1

t (sec) x (ft) y (ft) t (sec) x (ft) y (ft)

0.0 0.0 0.0 4.0 810.0 12.0

0.5 101.3 0.0 4.5 911.1 17.1

1.0 202.5 0.2 5.0 1012.2 23.5

1.5 303.8 0.6 59.5 1113.2 31.3

2.0 405.1 1.5 6.0 1214.0 40.7

2.5 506.3 2.9 6.5 1314.7 51.7

3.0 607.6 5.1 7.0 1415.1 64.6

3.5 708.8 8.1 7.5 1515.3 79.5  
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B.11 In problem A.6 we stated that |f”(z)| < 1/3 for x in [0, 1]. Show that this is true
by showing that

_ sine xz — (1/302 + (1/525 —---

r xr

=1-(1/3)z% + (1/524 —

  

and then differentiating the last series term-by-term. Also, use Simpson’s rule to
recalculate Si(1) to within 0.001.

B.12 Verify the value of n = 5 in problem A.8.

B.13 In problem A.7 you showed that Simpson’s rule gives exact results for a specific
third degree polynomial. Infer from (9) that this result holds for all third degree
polynomials.

B.14 Fill in the details in Example 2.

B.15 The exponential integral function is defined as

© o—t

Evo) = [ — dt, z>0

Sketch a graph of E; by calculating and plotting E(x), for x = 0.2,0.4,...,1.2.
For graphing, finding F;(z) within 0.1 is sufficient. Begin by finding b such that

the tail It e~t/tdt < 0.05. Next, find a single value of n for, say, the trapezoid
rule, that is suitable for all of the z-values.

B.16 The gamma function is defined by

I'(z) = / t*™le7tdt x>0
0

This function generalizes the factorial function in that

z+1)=2al(x) forx>0 and I'n+1)=n! forn=0,1,2...

Verify that I'(3/2) ~ 0.886 (actual value /7/2) by calculating the value of the
improper integral. To use TRAP for this purpose, we may rewrite the integral
using a substitution (¢ = w?) and integration by parts. Verify that

oo oo b 00

['(3/2) = / t1/2e"tdt = / we" dw = / e~*" dw + / e~*" dw
0 0 0 b

Take as given (see problem B.17) that for b = 2.8, 1. e~" dw < 0.001/2. Next,
find n so that the trapezoid approximation 7; to the second integral is within
.001/2 of its value. Finally, calculate I'(3/2) to within 0.001. Note that the
gamma function is built-in to the HP 48. Find ! on the MTH PROB menu. For
x a positive integer, ! returns z!. For non-integral x, ! returns I'(x + 1). To

calculate I'(3/2), enter 0.5 and press [1] .

B.17 Referring to problem B.16, verify the statement about b by noting that for b > 1/2,

oe —w? *° —w? —b2
e dw < 2we dw =e

b b
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B.18 The normal probability function is

Z(x) =Le

Ver

If z is a random variable having a normal distribution, then the probability P(x)
that x is less than a given value x is given by

1 [=P(zo) = == / o=72/2 go

Use Simpson's rule in calculating a table of values of P(x), accurate in the second
decimal, for zo = —-2.0,-1.8,...,0.0,0.2,...,2.0. Use 0 and PLOT in choosing
M on a suitable interval. Use symmetry and the fact that [= Z(x) dx = 1.

 

C.1Fill in the details of the following argument for the error bound (8) for the trape-
zoid rule. We use the phrase “a polynomial p interpolates a function f on a
subdivision 7 = {zo, z1,...,2,} of [a,b]” if p agrees with f at the points of m,
that is, p(x;) = f(x;), for i =0,1,...,n.

Suppose that p is a polynomial of degree n and p interpolates a function f on a
subdivision 7. Suppose further that f and its first n+1 derivatives are continuous.
Under these circumstances, for each x € [a,b] there is a corresponding number c
in (a,b) for which

 e(z) = f(z) — plz) = FD(eu(), (13)
1

(n+1)!

where w(x) = (x —xo)(x — 21) - ++ (x — 2).
In proving this result note that the function e measures the closeness of the

interpolating polynomial p to f. The number e(x) is the error we would commit
in using p(z) to approximate f(z). Let x € [a, b] be given. If it happens that x is
one of the points in 7, ¢ may be chosen at will since both sides of (13) are zero.
Suppose, then, that x is not in 7. Define the function F on [a,b] by

f(z) — p(x)F(t) = f(t) = p(t) = Cu(t), where C= =="
It is clear that F has n + 1 continuous derivatives. Also,

F(x) = F(x) = F(z) =--- = F(x,) = 0,

so that F is zero for at least n + 2 points of [a,b]. By Rolle’s Theorem, it follows
that F/ must be zero for n + 1 points and F” must be zero for at least n points of
[a,b]. If we continue using Rolle’s Theorem in this way, we see that the (n + 1)st
derivative of F' must be zero at least once in [a,b]. Let such a point be ¢. We
have

0 = f(n+1) nD) f(z) — p(x) (n+1)FE) pH (0) TEE 0
Since p("*V(c) = 0 and w™tV(c) = (n + 1)!, we may rewrite this result as

w(z)fH(c)
(n+ 1)! (14)

e(z) = f(z) — p(x) =
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For the trapezoid rule we use straight line approximations to f on each subin-
terval. We use (14) with n = 1. To minimize fussy notation, we first consider the
subdivision © = {xo,2;}. Letting M be a number such that |f"(z)| < M for all
x € [a,b], we have from (13) that

[w=[rere [paan= [U
O4

a

Letting T = IP p(x) dx, we have with the help of the result in problem A.9

    

b b
/ f(z) do —T| < 7) (2 — a)(z — b) dz| = ==?

From this result it follows that for a subdivision {xo,21,...,2x},

b 3h Mb-a
/ f(z) dz — 3 Wo +21 ++ 2Un-1 + Yn) < mon

 

 

which is the result given in (8).

 

7.5 PARTIAL FRACTION CALCULATIONS

“Partial fractions” is the name given to one of the standard methods of integration. It
is a technique for splitting a rational function—a ratio of two polynomials—into a sum of
simpler rational functions. Splitting a rational function into a sum of simpler fractions is
labor-intensive, particularly if it came from a practical problem. In this section we remind
you of the partial fractions algorithm and use the results of Chapter 6 to help you with the
associated calculations.

A typical partial fractions problem starts life in the form R(x) = p(z)/q(x), where p
and q are polynomials and the degree of p is less than that of q. First we must factor the
denominator into a product of linear or quadratic factors, having no zeros in common. For
problems arising from applications, where most polynomials do not have rational roots, the
factorization step requires a significant amount of calculation. We assume here that the
factorization of q has been done, leaving us with integrands of the form

 

p(x)
R(z) = (1)

g1(x)™ ga()™2 «+ gn(x)™n

where m,,...,m, are positive integers and each of g,(z),..., g(x) is either of the form
rr + s or ax? + bx + ¢. The quadratic factors must be irreducible, that is, b> — 4ac < 0, so
that their zeros are complex numbers.

It is a result from algebra that fractions of the form (1) can be decomposed into a sum
of m; +--+ m, terms. The first m,; terms, which correspond to the factor g;(z)™, have
the form

  

wi(@) wale) | wm(@) 2)
gi(@)  gi1(z)? gi(z)™

If 91(2) = rr + 8, then the polynomials w;,...,w,,, are constants ai,...am,; if g1(x) =
az‘ +bx +c, then the polynomials wy, ..., wn, are polynomials of degree 1, that is, w(x)
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biz +ci,..., Wm; = bm, + ¢m,. The constants a;,...,am, or by,...,bm,,C1,...,cm, are
“unknowns” to be determined. The remaining factors

g2(z)™2,...,gn(x)™"

of the denominator of (1) are handled similarly.
To decompose R(x) into groupsoffractions of the form shown in (2), we must determine

the unknown coefficients. We illustrate the usual procedures with a specific fraction. We
give in (3) the fraction R(x) we wish to decompose and the form the decomposition must
take according to (2).

8x — 220% +452 4+249  bhiz +a a az
= 3

(22 — 6x +25)(2x —1)2 22-62 +25 2x —1 | Gz 1)? (3)
 

The quadratic factor 22 — 6x + 25 is irreducible since (—6)2 —4-1-25 = —64 <0.
One way of determining the unknown coefficients in (3) is to multiply both sides of (3)

by the factored denominator of R(x) and write the result as a polynomial in z. We show
these two steps in

82° — 2222 4 45x + 249 = (biz + ¢1) (2x — 1)? + a, (2? — 6x + 25)(2x — 1)

+ az(x? — 6x + 25) (4)

and

8x3 — 2212 + 45x + 249 = (4b, + 2a;)x + (—4by + 4c1 — 13a; + az)?

+ (by — 4c; + 56a; — 6az)x + (c1 — 25a; + 25a5) (5)

Recalling that two polynomials are equal for all values of x if and only if their coefficients
are the same, we may “equate coefficients” in (5) to obtain the system of equations

4b, + 2a; =8

—4b, + 4c; — 13a; + ap = —22 (6)
6

by — 4c, + 56a, - 6as = 45

C1 — 25a; + 25a2 = 249

The solution of (6) is b; = 1, ¢; = —1, a; = 2, and a; = 12. We may now rewrite (3) as

8x — 220% +450 +249 zx -—1 2 12 7)
  

(x2 — 62 + 25)(2x — 1)2 612 2m_1 tz?

We give two algorithms for solving (6) after describing a second way of determining the
unknown coefficients in (3).

The first way—sketched above—depends upon doing the algebra required to rearrange
(4) to get (5) and then solving the system of equations (6). The second way depends
upon the condition that (4) hold for all values of x. From this we obtain equations in the
unknowns b;, ¢;, a;, and as by replacing x by several numerical values. We then solve a
system of equations.
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For hand calculation it is best to choose values of x so that as many terms as possible
in (4) are zero. For example, if we replace x by 1/2 in (4) we obtain (after some arithmetic)
267 = 89az/4. This gives az = 12. The other factor in the denominator of R(x) has the
complex zeros 3 + 4i. These may be used in the same way as the real zero 1/2, but the
arithmetic is more difficult. We return to this in problem B.1.

Rather than use complex numbers, we replace x by four distinct real numbers, choosing
1/2 as one of the numbers. Letting x = 1/2, —1, 0, 1, we obtain the equations (in which
az has been replaced by 12)

—-9b, + 9c, - 96a, = -210

c1 — 25a; = —51 (8)

bi + + 20a, = 40

The solution of (8) is b; = 1, ¢; = —1, and a; = 2. With the value of a; determined above,
this is the same solution we found earlier.

It is the second method—replacing x by several numerical values—that we use to gen-
erate a system of equations AX = B for finding the partial fraction coefficients.

We discussed in Chapter 6 two methods for solving systems AX = B, namely Gauss-

Jordan pivoting and the divide key [+] . Depending upon your preference between these
methods, we give two programs to generate the matrices needed to finish the job of solving
partial fraction problems. We give PSUB for Gauss-Jordan pivoting and MSUB for the
divide key. Although these programs are connected to an integration technique, they make
use of PIV or PIVR. We therefore suggest putting them on the LINX menu.

We start with a rational function R(x) of the form (1). We decompose R(x) by rewriting
it using (2). Specifically, for each factor g;(z)™ we must write out a sum of terms of the
form (2). An example is given in (3). Next, multiply both sides of the decomposition by
the denominator of R(z), distributing it over the terms of the right side and removing any
common factors. This results in an equation similar to (4). Enter the result into your HP
48. For (4) you would enter

18%X ~3-22%X ~24+45%X+249=(B1%kX+ C1)% (2%X—1) "2

+ALK(X "2— 6%X+25)% (2%X—1)+A2%(X ~2—6%X+25)" (9)

This is the most tedious part, but must be done accurately if the results are to be useful.
Do not key in this expression just yet. We refer to such expressions as (9) as EQ.

We put EQ and a list V of the unknowns on the stack. In this case, the list of
unknowns is { B1 C1 Al A2 }. The program PSUB takes EQ and V as input and returns
the augmented matrix [A|B]. The program MSUB has the same input but returns the
matrices A and B, separately. Each program prompts for z values. After PSUB or MSUB,

we use either PIV or the key to solve the system AX = B.
The program PSUB is the main program. MSUB calls PSUB and then uses the aug-

mented matrix output of PSUB,splitting it into matrices A and B. The list of variables is
V={v,...,vn}.

We illustrate the use of PSUB with a simple partial fractions problem.

EXAMPLE 1. Find A and B in the partial fraction decomposition

1 A 4 B

(x-2)(x+5) z-2 z+5
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PSUB
 

 

Inputs: EQ, V Outputs: The augmented matrix [A|B]
 

& DUP SIZE — EQ V N
< 1 N FOR I CLLCD
“ENTER X” PROMPT
'X' STO
V DUP OBJ— 1 SWAP
START 0 SWAP STO NEXT
EQ —NUM DUP — RHS

<< 1 N FOR K
SWAP DUP K GET 1 SWAP
STO EQ —NUM ROT SWAP

 

Find n; EQ, V & N are local variables

Start main loop & clear screen

Halt for data entry
Store current value of x

Stack: V,vy,...,vn, 1,0

Set all v; to 0

Evaluate EQ with all v; = 0 to get

right-hand-side b;; dup & store b;

Set up inner loop; on i th pass

spread i th row of augmented

vertically on stack;

 

 

 

    

 

OVER - NEG DUP 4 ROLLD details of stack manipulations

— NEXT are left to a problem

DROP2 RHS >» NEXT End outer loop

N DUP 1 + 2 —LIST —ARRY Convert augmented matrix spread
Vv 'X* + PURGE >» > on stack to matrix form

Checksum: # 24742d Bytes: 256.5

SOLUTION. After multiplying by (z — 2)(xz + 5), the decomposition
equation becomes

1=A(x+5)+ B(x —-2)

Enter this equation first and the list {A B} of variables second.

'1=A%(X+5)+B*(X-2)" RE LINK 3 1usk
ENTER {AB} 3:
ENTER PSUB 2:
(PSUB asks: ENTER X) 1: [[ 8-711
5 [+/=] CONT [¢7011]
(PSUB asks: ENTER X) IGEITACETTECERTCARTET

2 CONT

PSUB returns one of the augmented matrices

0 -7 1 7 01
7 0 1 0 -7 1

depending on the order in which —5 and 2 are entered. We do not need
PIV to solve this simple system. We see that

yr yt
(x—-2)(xz+5) z-2 x45

EXAMPLE 2. Find b;, ¢;, a1, and ag in the partial fraction decomposition (3). The
decomposition equation is given in (4) and (9).
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SOLUTION. Carefully enter (9). Store it as EQ. (This is not necessary,
but it saves having to re-enter (9) in case of error.)

 

 

  

EQ {B1Cl1 Al1A2} OME LINK 3 Hs
ENTER PSUB .

(PSUB asks: ENTER X) ts J %9%9°_55" 53 se5 CONT [ 8717-25 25 249 j1 CONT [ 112020 280 1]
0 ONT 1 CONT E:PitPINEPIUE[MCUE]RMNAT]

PSUB returns the augmented matrix

0 0 0 22.25 267
-9 9 -96 32 174
0 1 -=-25 25 249
1 1 20 20 280

(10)

We use PIV to solve the system of equations with (10) as augmented
matrix. We pivot on the positions {2 1}, {4 2}, {3 3}, and {1 4}. We
show the input and result of the first step. We start with (10) on the
stack, as returned by PSUB.

 

{21} ENTER LIOME LINK 3 HSK
PIV 1: [[ 80 0 22.25 26¢7..

1 -1 10. 6666666.

33

 

1 -2525 249
[ © 2 9.333333333..

EEPEEALETTEEEEET

Continue to pivot, using {4 2}, {3 3}, and {1 4} as successive pivot
positions. The result should be the matrix

  

12

1 (11)1.99999...

0 0
0 0
0 1
1 0 —1OS

C
O
O
H

You may remove small rounding errors from this result by using the
program CLEAN. In any case, we infer from (11) the solution b; = 1,
ca =-1,aq =2,,a2 =12.

To use the [+] key instead of PIV we use the program MSUB:

&« PSUB TRN OBJ— 2 GET — N « N —ARRY
+B « {NN} —ARRY TRN B SWAP > > >

This program has the same input as PSUB but instead of returning the
augmented matrix it returns B on level 2 and A on level 1. Key in
MSUB and store it on the LINX menu. A convenient order of LINX
is PIV, PIVR, PSUB, MSUB, RMAT, and CLEAN. The order of the
remaining utility programs is not important.

Recall EQ to the stack and key in the variables {B1 C1 Al A2} once
more. Run MSUB, using the x values .5, —1, 0, and 1. MSUB returns
matrices A and B. You may view B by pressing SWAP. After viewing

and before [+] , press SWAP again.
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EQ {B1Cl1 Al A2} HOME LINK 3 HUSK
ENTER MSUB a:
(MSUB asks: ENTER X) 3:
(MSUB asks: ENTER X) 2:
.5 CONT I: [11-1212]
1 CONT CETvWrCTHCOTEA
0 CONT 1 CONT

 

Exercises 7.5

In A.1-A.4 use PSUB followed by PIV or PIVR, or use MSUB followed by the

[+] key.

A.1 Decompose the fraction

—26 + 23x

B+z)(-7

A.2 Decompose the fraction

213 — 56x + 3822 — 23
(1+ z)(-9 + 2z)(3 + x2)

A.3 Decompose the fraction

7 + 292 + 552% + 2123 + 224

(5 +x) (3++ x2)

 

 

A..4 Decompose the fraction

7 + 692 + 192% + 302% + 42? + 32°

(1+ )3(5 + 22)?
 

 

B.1 In the decomposition of (3) we remarked then that we could have used the complex
zeros 3 +41 in generating a system of equations. We outline here one way of using
such zeros. We begin with a simpler problem. Suppose we wish to decompose the
rational function (222 — 2x — 2)/((z — 3)(x? + 1)). The zeros of the denominator
are 3, i, and —i. For entry into the HP 48, a complex number a + ib is entered as
(a b) or (a,b). Enter the decomposition equation and run PSUB as usual, except
enter 3, (0,1), and (0, —1). You should obtain the matrix on the left.

(10,0) (0,0) (0,0) (10,0) (1,0) (0,0) (0,0) (1,0)
(0,0) (-1,-3) (=3,1) (—4, 2) « 0) (1,0) (0, 0) (1,0)

(0,0) (-1,3) (=3, -1) (—4,2) (0, 0) (0, 0) (1,0) (1,0)

Run PIV as usual, pivoting on, say, the {1 1}, {2 2}, and {3 3} positions. You
should obtain the matrix on the right, from which the solution A = 1, B = 1,
and C = 1 may be read. Returning now to (4), use PSUB with the x values .5,
3 + 4i, 3 —4i, and 0. The values .5 and 0 are for the repeated factor 2x — 1. After
obtaining the augmented matrix, pivot on {4 1}, {1 2}, {2 3}, and {3 4} to obtain
the solution.

 

C.1 Explain to a friend how MSUB works and then write out your explanation.
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8.0 Preview

8.1 Sequences
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8.4 HP Movies

 

8.0 PREVIEW

Sequences and series. Two simple but rich ideas. A chapter in your textbook, bearing a
similar title, will lead you through a study of these two ideas, starting with basic definitions
and ending with work on power series, Maclaurin series, and Taylor series. As you page
through this chapter and contemplate its study, you might get the idea that the work
amounts merely to learning a lot of isolated facts and mastering certain “tests”. While
there’s an element of truth to this, it nevertheless is the study itself that deserves the focus
of your attention. As you go through the study, you will find that the material is quite
different from what you have previously experienced and you will need to take time to enjoy
the scenery. It will stir your imagination, arouse your curiosity, and impress upon you the
logic, elegance, power, and beauty of mathematics. When you are done, you'll have both
appreciation for the subject and its far-reaching “tools” like those which enable you to go
back and forth between functions and their power series representations.

Having said all that, let’s face the fact that the subject is hard for most students. The
HP 48 supplementary material contained herein won’t change that. However, as you will
see, the HP 48 will unlock some doors that will tend to put things down to earth and make
the material easier to comprehend and appreciate. What’s more, it will add a little fun to
your study.

One problem that many students have with sequences and series—for that matter, with
mathematics in general—is that they approach it from an almost purely symbolic point of
view, neglecting numerical and geometric considerations. They seem to think that all one
has to do is shove symbols around the right way and things will turn out o.k. Sometimes
that works, sometimes it doesn’t. When it doesn’t work, the symbol shover can look pretty
silly to those who have a broader perspective.

Before machines like the HP 48 came along, there was an excuse for not going far with
numerical and geometric aspects of the subject: numerical work takes time and geometric
analysis depends on numerical work. Now, thanks to the HP 48 and other such machines,
students no longer have an excuse for failing to understand what goes on numerically and
geometrically.

In this chapter we will show you how to use the HP 48 to enhance your numerical and
geometric understanding of sequences and series. Section 8.1 is devoted to sequences, 8.2
to series, and 8.3 to power series representations. Finally, in section 8.4, we will show you
how to turn the HP 48 into a movie machine, which, among other things, will enable you
to “see” and better appreciate the idea of convergence of power series.

234
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8.1 SEQUENCES

By a sequence (of numbers) is meant any ordered infinite succession of numbers ai, a2,
as, ---. For example, 1, 3 3 ...;orl, -2,3,—4,---;orevenl, 1,1, ---. Note that a
sequence always has infinitely-many terms (the three dots indicate that it goes on forever)
and that the terms of a sequence need not be distinct (i.e., different from one another). A
sequenceis often denoted by curly brackets around its nth term. For example, {£} denotes

the sequence 1, 3, 3 +; {727} the sequence 1,23 ...;and {1+ (-1)"} the sequence

) ) ) ) *

 

Geometric Interpretations

Geometrically, two ways to view a sequence of numbers are: (a) as a sequence of dots on
a number line; and (b) as the graph of the function f(n) = a, whose domain is the set of
natural numbers. These two ways are indicated in Fig.1 for a sequence that starts with
the terms 0.2, 1.3, —0.6, —2.3, —2, and 2.4.

 

 

 

| .

A .

uk Bh aad
-2 <1 0 1 2 _1l :

-21 oo

(a) As a sequence of dots (b) As the graph of a function

Figure 1 Geometric Interpretations of a Sequence

In this section and the next we will develop some HP 48 programs to help you analyze
and make conjectures concerning sequences and series. You may also want to develop some
programs on your own. With this in mind, we suggest that you open a new directory, say
SS, for these special programs.

Thefirst program, which we call DOTS, enables you to view a sequence of numbers as a
sequence of dots (actually tickmarks) on a number line without the burden of a lot of hand
calculation. To run it, enter the Nth term of a sequence (use N instead of n), the endpoints
[ and r of the interval you want to view, a reference point ¢ (to be identified with a long
tickmark), and the number m of dots you want plotted. Note that an important feature of
the output is that the dots will be plotted dynamically thus captivating the order aspect
of a sequence. You'll find it helpful to accompany DOTS with the program INPUTS from
§3.2.
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DOTS

Inputs: a(N), l, r, c, m Output: Dots corresponding to

ai, az, +++, G,, ON the interval

[l, 7] with point c specially marked.

<< — AL RCM Introduces local variables

< RESET {#0 #0} PVIEW
—-65 65 FOR I I © Draws z-axis without tickmarks

R—C PIXON .1 STEP
LR + 2 / 0 R-C Sets PPAR so that viewing
CENTR R L -— portion of the z-axis corresponds to

13 / XW the interval [I, |
-3 3 FOR I C 1 Puts a special tickmark at z = ¢

R—C PIXON .1 STEP
1 M FOR I I 'N!' Makes tickmarks at

STO A EVAL DUP the points a4, az, ---, am

.1 R—C PIXON -.1
R—C PIXON NEXT
'N' PURGE A L R C Purges the name Nj; stores the

4 —LIST 'IN' STO list {a, 1, r, ¢} under the name IN
GRAPH >» >

Checksum: #22378d Bytes: 373.5

EXAMPLE 1. Represent the sequence {57} as a sequence of dots.

SOLUTION. To figure out an appropriate viewing interval and reference
point, note that 0 < 37 <1 foralln=1, 2, ---. Thus, one reasonable

choice (there are others) would be: [ = 0, »r = 1.5, and ¢ = 1. What value
of m should we choose? We will try m = 10 with the idea in mind that
we may want to try a larger value of m later.

N N 1 +
/ 0 15 1

10 [Dos]

 

 

  
To see 20 dots, press ON, then:

veuTs] 20 [pots  
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Note that the long tickmark to the right represents x = 1. To check
approximate values represented by the other marks shown, use the +
cursor and (x,y).

 

The Vocabulary of Sequences

Note that from watching the dots being plotted in the above example,it is clear that they
march steadily to the right. Such a sequence is called increasing. Check your calculus
textbook or ask your instructor for precise definitions of the words increasing, decreasing,
nonincreasing, nondecreasing, and monotone.

You should not confuse the above type of geometric observation—no matter how
convincing—with a proof. (To prove that the sequence {737} is increasing, you would

verify that 57 < Et for all natural numbers nn. Can you do this?)

Other important adjectives for sequences are bounded, unbounded, bounded above,
bounded below, convergent, and divergent. Again, you should check with your text or your
instructor for the exact meanings of these words. From a geometric point of view: a
sequence is increasing if the dots march steadily to the right; decreasing if the dots march
steadily to the left; bounded if all of the dots stay inside of some finite interval; bounded
above if there is a “barrier” to the right so that all of the dots stay to the left of that
barrier; bounded below if there is a “barrier” to the left so that all of the dots stay to the
right of that barrier; convergent if the dots “cluster” at exactly one point. We emphasize
that these interpretations are heuristic and are meant to motivate and explain not replace
the precise definitions you will find in your book.

EXAMPLE 2. Use the program DOTS to make a geometric analysis of the sequence
{a} defined by

sin ZF + cos ZF
Ap = (-)" (1 +mE

forn=1,2,3,---.

SOLUTION.

-1 N~ 1 N «
* 2 / SIN

COS a
+ N  / +
x —-1.5 15 0

50 [pots

 

 

   
 

100 [pots
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1000

 

 

   
EXAMPLE 3. Use DOTS to make a geometric analysis of the sequence {sinn}.

SOLUTION. The dot sequences shown in Fig. 2 correspond to l = —1.1,
r = 1.1, ¢ = 0, and m = 10, 20, 50, 100, 200, respectively. What
conclusions can we draw?

For one thing,it is clear that the sequence is bounded by 1 (| sinn| <1
for all n); also, it is clearly not monotone (it skips all over the place).
Concerning the question of convergence, it appears to cluster at every
single number between —1 and 1 (can that really happen?); it surely
does not appear to be convergent. This conjecture turns out to be right
on target. In other words, it is true that the sequence {sinn} clusters
at every number between —1 and 1. More precisely, it can be shown
that if A is any number between —1 and 1 inclusive, then there exists a
subsequence of {sinn} that converges to A. (This result is not easy to
prove.)

The second program GR makes it possible to view a sequence of
numbers as a function defined on the set {1, 2, 3, -- - } of natural numbers
without a lot of hand calculation. To run it, enter the Nth term of the
sequence and the length m of the interval [0, m] you want to view.

   

 + 

         

(a) 10 terms (b) 20 terms (c) 50 terms

  

 
 +

      

(d) 100 terms (e) 200 terms

Figure 2 A bounded sequence with infinitely-many cluster points?

EXAMPLE 4. Represent the sequence {===} as the graph of a function.n_
n+1

SOLUTION. As in Example 1 we start with m = 10.
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GR
 

Inputs: a(N), m Output: Points (1,a(1)), (2,a(2)),

+, (m,a(m))
 

 

<< — A M « ERASE {#0 #0} Introduces local variables;
PVIEW M 12 / DUP *%W sets appropriate PPAR

55 % 0 R—C CENTR for a good view of the
DRAX interval; draws the axes

1 M FOR I I I 'N' STO Plots points (1, a(1)),
A EVAL R—-C PIXON NEXT (2,a(2)), ---, (m,a(m))
'N' PURGE
A GRAPH RESET >» > Puts a(N) on stack

Checksum: #3231d Bytes: 191.5   
 

EXAMPLE 5.

 RESET] NN 1
+ / 10 [GR]

re de 5 =
 

   
 

To improve to m = 20 all we have to enter is 20 because the program
was nice enough to leave the Nth term of the sequence on the stack.

20 [cr]  

& ddd ttt —t et ——
 

   
 

All the sequence terminology mentioned earlier (increasing, decreas-
ing, convergent, divergent, etc.) can again be described in terms of this
new graphical model. For example, “bounded above” means that there
is a horizontal line such that the graph stays below that line and “con-
vergent” means that the dot sequence that forms the graph has exactly
one horizontal asymptote.

What can we say about the sequence {27} based on our scant graph-

ical findings? For one thing, it appears that the sequence is increasing
(or at least nondecreasing) because the graph is going up as we go to
the right. For another thing, it appears (as it should) that the sequence
is bounded above by 1. In fact, it may even appear that the sequence
converges to 1 (as in fact it does).

Use the program GR to make a geometric analysis of the sequence {a}
of Example 2.
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SOLUTION. We obtain graphs corresponding to m = 50, 100, 200, and
500. See Fig. 3. From these graphs, it is apparent that the sequence has
cluster points at +1.

 

 

    
(a) interval [1, 50]

 

 

    
(c) interval [1,200]

 

 

   
 

(b) interval [1,100]

 

(d) interval [1, 500]

sin &% 4-cos 2 )
Figure 3 Graph of the sequence a, = (—1)" (1+25

EXAMPLE 6. Use GR to make a geometric analysis of the sequence {sinn}.

SOLUTION. The graphs in Fig. 4 corresponding to m = 10, 20, 50, 200,
and 1000 shed some light on our earlier conjecture that the sequence
clusters at every number A between —1 and 1 (see Example 3). From
Fig. 4(e) it is apparent that, asymptotically, the graph gets arbitrarily
close to any line y = A where —1 < A <1.

We turn now to numerical aspects. The program NXT (see box)
exhibits the terms of a sequence starting with any initial value of N. [The
name NXT is acceptable to your calculator even though NXT is already
on the keyboard (a Category I key).]

 

NXT
 

Inputs: none Output: an41
 

STO A

 
<< N 1 4+ 'N!'

EVAL >»

 
Increments N by 1

Evaluates ani

Checksum: #4616d Bytes: 46  
 

 

 

To run NXT, do the following in order:
1. Store the Nth term of the sequence under the name A.
2. Store a starting value of N under the name N.
3. Press NXT as many times as you'd like to see terms.   
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(a) interval [1,10] (b) interval [1,20] (c) interval [1, 50]

 

 

  

 

  

EXAMPLE 7.

(d) interval [1,200] (e) interval
(1, 1000]

Figure 4 Graphs of the sequence {sin n}

Use NXT to generate the first 28 terms of the sequence {37}.

 

 

 

 

 

 

  

SOLUTION.

NN 1+ / £HOME ss 3

A 0 N 4: 5
[sto] [NXT] [NXT] 3: . 666666666667
NXT| [NXT a 72

CTICICTS(R05TATRE

NXT] --- [NXT £HOME ss 3

(24 more times) 4: . 961538461538
3: . 962962962963
2: . 964285714286
1: . 963517241379
ICTCICFS(055CTATE

 

As you watch the first 28 or so terms scroll by, certain things become
evident. For example, it becomes evident that the numbers are getting
larger, i.e., that the sequence is increasing; also that they are staying
less than 1, i.e., the sequence is bounded above by 1; perhaps you may
even suspect that the numbers are getting closer and closer to 1, i.e., the
sequence is converging to 1. Again, we emphasize that all of this is just
evidence, not proof.

The program SEQUENCE (see box) is more elaborate and user-
friendly than NXT. It allows the user to scroll through the sequence
page-by-page, pausing or quitting at will, and not having to worry about
using up the calculator’s memory on an extra long stack.

 

To run SEQUENCE, enter the Nth term of the

sequence, a starting value of N, then press :
To pause, press 1;to continue press 1; to quit press 0.   
 

Note that because of the fairly complicated loop structure of this program,
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SEQUENCE

Inputs: a(N), m Output: Numbers a(m), a(m + 1), ---

<£ 'N' STO 'A*' STO Stores input under names A and N

CLLCD Clears the display

DO Begins first DO-UNTIL-END loop

DO 1 7 FOR 1 Begins second DO-UNTIL-END loop;

NXT 1 displays seven consecutive

DISP NEXT values of the sequence, and continues

UNTIL KEY to display values in blocks of seven

END until a key is pressed

UNTIL
IF 92 #£ Pauses if key other than 0 is pressed;

THEN continues to pause until another key

DO is pressed

UNTIL KEY
END 92 # Exits if key 0 is pressed; continues

1 0 IFTE if key other than 0 is pressed

ELSE 1 Exits if first key pressed is 0

END
END A N Returns Nth term of sequence and

{ A N } PURGE >» last value of N to stack

Checksum: #15007d Bytes: 181   
 

we have presented it in staggered form so that the interested reader can
easily identify the components of each loop. For example, the UNTIL
that goes with the first (outermost) DO is located directly under it six
lines later. If you have trouble understanding this program, don’t worry
about it. This is one program you can safely use as a “black box”.

SEQUENCE makes it possible to obtain useful numerical data about
sequences quickly and smoothly. The data shown in Fig. 5 can be obtained
in a matter of seconds. It is for the same three sequences discussed in
Examples 1-6. By studying the data, see if you can rediscover evidence
of monotonicity, boundedness, and convergence.

In the next section, we will modify SEQUENCEslightly to obtain a
similar program for infinite series.

 

Exercises 8.1

A.1 For each of the following sequences, use the programs DOTS and GR to make
conjectures concerning monotonicity and convergence.

 ET
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(m) ra (n) {re (0) {nn|

ven off) of)
 

B.1 Use any method to make conjectures concerning convergence of the following
sequences.

w{%} o{& o{(i+3)} @uer-y
B.2 Given a, =nT where log denotes log.

(a) Use GR to obtain a graph of the sequence {a,} showing that the values of

a, decrease until n reaches a certain value Ny then increase after that.

(b) Use SEQUENCE to determine the point (No, ay_)-

  

 

C.1 Formulate generalizations of each of the conclusions in B.1 in which the con-
stants 2 and 100 are replaced by arbitrary constants and give proofs of the
generalized statements.

C.2 Let a, — nWGFD for n = 1,2, :.--.

(a) Use the HP 48 to formulate a conjecture.

(b) Prove that the sequence {a,} is bounded and monotone.

(c) Find the limit.

C.3Let a; = 1 and a,4; = sina, for n = 1, 2, --- (so that a; = sinl, a3 =
sin(sin(1)), etc.)

(a) Use the SIN key successively to generate the terms of this sequence and to

make a conjecture.

(b) Prove that the sequence {a,} is bounded and monotone.

(c) Find the limit.

C.4 (a) Write a simple program to generate the terms of the sequence v2, vVv2,

JIT
(b) What do you conjecture?

(c) Prove your conjecture.
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8.2 SERIES

Pretend that you have the naiveté of a sixth grader, that you're good at arithmetic
(including long division), and that you know how to use an HP 48 calculator. (You might
also want to keep in the back of your mind your recently acquired knowledge of sequences.)
You’re about to get a “long addition” assignment. The assignment: carry out the following
operations:

1 1 1
l4=—4=4=4..=17 1tstgtgt (1)

1 1 1
C4 —4..=17 2l+s+5+5 + (2)

1—-14+1—-14+1—-14..=27? (3)

1 1 1
S44. =7 4l+s+3+7+ (4)

Just to make sure there is no misunderstanding about your task, you're supposed to
know absolutely nothing about infinite series and your job is simply to “add them all up”.
The three dots mean that the process is to go on indefinitely and the pattern is to continue.
For instance, to carry out long addition problem (1), after you add 1, 1, 1, and 3, you
must then add 55, 55, and so on, adding all numbers of the form z5, n=0,1,2, ---.

Take your time with the above problems as it will be time well spent. Be especially sure
to take time to make a conjecture about Problem (1). When you have finished, compare
your conclusions with the ones below.

 

Analysis of Problem (1): 1 +4 +1 +14... =7

Most people when given the above instructions will just start adding and see what
happens. Their work would go something like this: Let’s see now, 1 + L is 1.5; then +

gives 1.75; then + 3 : 1.75 +.125 = 1.875; then + <= : 1.875+ 0.0625 = 1.9375; etc. Thanks
to RPN, all these calculations are easy to perform with the HP 48. The simple procedure is
to key in the next power of two, invert it, then add. We can easily automate the procedure
with the following program:

<< S 2 NTINV 4+ St STO N 1 4+ 'N' STO § >

ADDI

To run the program, enter 0 N STO 0 S STO, then press ADDI repeatedly
to obtain as many “partial sums” as you want. The second column of Table 1 shows the
first 20 partial sums.

Observe that the partial sums form a sequence. What can we say about this sequence?
For one thing,it is obviously increasing. Also it appears to be bounded above by 2. Maybe
it even converges to 2. Further evidence supporting the limit of 2 can be obtained by looking
at additional partial sums. If you do this, you will find that the HP 48 gives 1.99999999999
as the 37th partial sum and then gives 2 for all sums beyond that. (Can that really be
true? What do you think?)

We can add geometric credence to the answer of 2 as follows. Start with a piece of
string 2” long, cut it in half, and throw away one of the 1” pieces. Now cut in half the
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remaining 1” piece and throw away half of that. At this stage you will have thrown thrown
away 1 + 3 = 13 inches of string and have left $ inch. Continue the process, at each stage
cutting in half what you have left and throwing away half of that. After N cuts, you will

have thrown away 1 +3 +--+ + (HN! inches of string and be left with (HN? inch.
Even though these arguments are heuristic in nature, they should convince you that

1 1 1
1 —_— -— -— cee —+ts+3+gt 2

exactly!

Before continuing with the other “long addition problems”, let’s be more efficient on
how we put the HP 48 to work on such problems. What we need is a generalization of
ADDI to generate sequences of partial sums. The program NXTX, modeled after NXT for
sequences, fits the bill. See program box.

 

 

 

NXTX

Inputs: none Output: next partial sum

<< S N 1 + 'N Increments N by 1
STO A EVAL Evaluates next term to be added

+ DUP 'S' STO > Forms and stores (IV + 1)st partial sum

Checksum: #36424d Bytes: 68.5    
 

 

To run NXTZX, do the following in order:
1. Store the Nth term under the name A.
2. Initialize both N and S to zero.
3. Press NXTX repeatedly to obtain partial sums.   
 

vPoints to note

1. The HP 48 has a built-in command ¥ (GREEN TAN) for evaluating any sum of the
form

Q

> an =a, +a, teeta,
n=P

To use it, enter n, P, a, in that order and press ¥. For example, here’s how you

  

  
 
 

  

could evaluate 1 + 3 + 1 +3 +.

RESET hme ss }
N 1 5 2 7:
N 1 — 7 3:
INV % 5:

1: 1.9375
(331CELEIEEICELITA[ThA

2. Since X is a special operation key, the HP 48 won’t allow direct entry of 'NXTX"'.
You can do it indirectly as follows: enter the list {NXT X}, use «= to delete the space
between NXT and X, then press OBJ— DROP.

3. NXTZX is more general than ADDI so you can purge ADDI.
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Analysis of Problem (2): 1 +1 +21 +L 4+...=7

As with Problem 1, we begin by calculating partial sums. Observe that the typical term to
be added is the reciprocal of a perfect square, i.e., the nth term is Se Thus, we can use
NXTZX as follows:

INPUT: [RESET] N SQ INV A [sto] 0 N [sTo] 0 S [sTO)

OUTPUT: Table 1, column 3

Table 1 Partial sums

 

 

N Problem (1) Problem (2) Problem (3) Problem (4)

1 1 1 1 1
2 1.5 1.25 0 1.5
3 1.75 1.36111111111 1 1.83333333333
4 1.875 1.42361111111 0 2.08333333333
5 1.9375 1.46361111111 1 2.28333333333
6 1.96875 1.49138888889 0 2.45
7 1.984375 1.51179705216 1 2.59285714286
8 1.9921875 1.52742205216 0 2.71785714286
9 1.99609375 1.53976773117 1 2.82896825397
10 1.998046875 1.54976773117 0 2.92896825397
11 1.9990234375 1.55803219398 1 3.01987734488
12 1.99951171875 1.56497663842 0 3.10321067821
13 1.99975585938 1.57089379818 1 3.18013375513
14 1.99987792969 1.575995839 0 3.25156232656
15 1.99993896485 1.58044028344 1 3.31822899323
16 1.99996948243 1.58434653344 0 3.38072899323
17 1.99998474122 1.58780674105 1 3.43955252264
18 1.99999237061 1.5908931608 0 3.4951080782
19 1.99999618531 1.5936632439 1 3.54773965715
20 1.99999809266 1.5961632439 0 3.59773965715

 
 

What can we say about these partial sums? Clearly, they are increasing. Is there
an upper bound? From what we see in Table 1, it seems safe to conjecture that 2 is an
upper bound. If so, then the sequence must converge to something (remember: a bounded
monotone sequence converges). Could the answer be 1.67 What do you think? If you
look at a few more partial sums, you'll see that 1.6 is ruled out because the terms get
larger than that. A look at longer partial sums doesn’t seem to help much. For example,
according to the HP 48, the 500th partial sum is 1.64293606562, the 1000th partial sum is
1.64393456674, and the 10,000th partial sum is 1.64483407191. Surprisingly, the answer to
this problem turns out to be 72/6 = 1.64493406685- - - !
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Analysis of Problem (3): 1—-1+1-1+4+1—-...=7

This one looks pretty easy. In fact, we don’t even need a calculator to analyze it. Clearly,

1-1+41-141—----=1-D+(1-D+(1-1)+---=04+0+0+---=0.

But wait a minute. Here’s another way of looking at it:

1-1+1-141—--=1+4+(-1+1)+(-1+1)+--=1+4+0+0+---=1

Hmmm. Is the answer 07 Or is it 17 What do you think? Hint: look at column 4 of Table
1. We'll return to this question later.

 

Analysis of Problem (4): 1 +1 +1 +1 +...=7

Here we see that the typical terms to be added are the reciprocals of natural numbers. The
nth term is clearly 1 To get the HP 48 to do the work for us, do the following:

INPUT: [RESET] N INV A [sTo] 0 N [sTo] 0 S [sTO]

OUTPUT: Table 1, last column

What can we say about this sequence of partial sums? Clearly, it is increasing. Is it
bounded above? From what we see it seems safe to conjecture that 10 is an upper bound. If
so, then the sequence of partial sums must converge to something. What do you think it is?
After seeing what happened in Problem (2), you couldn’t be blamed for being cautious. A
look at more partial sums doesn’t seem to shed much light. For example, the 500th partial
sum (according to the HP 48) is 6.792823412997, the 1000th partial sum is 7.48547086047,
and the 10,000th partial sum is 9.78760603576.

Surprisingly, the answer to this problem turns out to be oo! In other words, the sequence
of partial sums is not bounded above. By the way, your calculator would never be able to
discover this fact. Why? See Exercise C.1.

 

About Sequences and Series

Problems 1-4 are examples of infinite series problems. As you will read in your book, an
infinite series is any expression of the form

a +az+az+---

The word series is often used in place of infinite series. Note that outside of the realm of
mathematics, “sequence” and “series” are often used synonymously. In mathematics, they
are completely different concepts. Since this is a common source of confusion, let’s carefully
compare the two concepts:

eo A sequence is an ordered infinite succession of numbers aq, aq, as, ---. There is a
first number, a second number, and so on. They are separated by commas, not plus
signs. The terms themselves may or may not arise from additions.
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e A series is an expression of the form a; + az +as +: --. Nothing more, nothing less. It
is important to observe that associated with any series are two important sequences.

These are:

(i) the sequence of terms: a;, az, as, ---; and
(ii) the sequence of partial sums: ay, a; + a2, a; + az + as, ---.

The adjectives convergent and divergent apply both to sequences and series. Other
adjectives like bounded and monotone apply only to sequences. In view of Problems (1)-
(4), it should come as no shock that a series is said to converge (to L) if its sequence of
partial sums converges (to L). Likewise, a series is said to diverge if its sequence of partial
sums diverges.

 

The Big Question

Given an infinite series, the big question is does it converge or doesn’t it? It may come
as a surprise that the main question is not what is the sum? The reason for this is that
Problem (2) above is far more typical than Problem (1). In other words, it is typical that
convergent series converge to strange numbers.

Let us now discuss Problems (1)—(4) from a more sophisticated point of view. The
series in Problem (1) is an example of a convergent geometric series. As we suspected, it
does indeed converge to 2. Geometric series are discussed in your textbook. They are the
simplest type of series and are easily programmed. See Exercises A.11-12.

The series in Problem (2) is an example of a convergent p-series (with p = 2). You
will find a discussion of p-series in your book following the “integral test”. There are many
proofs of the fact that this series converges to 72/6. Some of these proofs claim to be
“elementary” but none claims to be “easy”.

Does the series in Problem (3) converge to 0 or 17 The answer is neither. It doesn’t
even converge. Why? Because the sequence of partial sums is 1, 0, 1, 0, 1, 0, --- which
clearly diverges.

The series in Problem (4) is called the harmonic series. It is a very special series,
partly because it diverges so slowly. It is a p-series with p = 1 and is often useful as a
counterexample. To get an idea of how slowly it diverges, the 100,000th partial sum is just
a little bigger than 12. Also see Exercise C.1.

 

A User-Friendly Series Program

The program SEQUENCE can easily be modified to obtain a user-friendly program for
scrolling through the partial sums of any series as follows:
 

1. Press [SEQU| |RCL| [EDIT];
2. Replace 'N' [sTO] by 0 'N' [sTo];

Insert 0 'S" after 0 'N' [STO];
Replace NXT by NXT;

Press ;

Type SERIES :

To run SERIES enter the Nth term of the series
and press [SERIES . To pause, press 1;
to continue press 1; to quit press 0.

 

S$
o
R
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A Geometric Interpretation of Series

At the beginning of this chapter, we promised to give both numerical and geometric en-
hancement to both sequences and series. How can infinite series be viewed geometrically?
One way is as “area under a curve”. The “curve” here is the step function whose value is
equal to a, on the interval (n — 1,n). To see the truth of this, note that, for a, > 0, the
nth rectangle has dimensions 1 x a,, and, therefore, the nth rectangle has area equal to a,,.
See Figs. 6 and 7.

 

 

 

 

 

 

    

 

   
  

1 2 3 4 5 6 n-1 n 
(a) Za, = Area under curve Area = a,

Figure 6 Geometric Interpretation of a Series

  

     
  

  

      
  

AREA=2. 92896825397 AREAR=3.59773965715

I

(a) Se1n (b) 2, 1

AREA=1.54976773117 AREA=1.5961632439

I TT

(€) Shy (d) 2, &

Figure 7 Partial Areas Corresponding to Partial Sums

 

Exercises 8.2

For problems A.1-A.10 begin by regarding each as a “long addition” problem. (a) Use
SERIES or NXTZXto calculate several partial sums; and (b) make a guess at the answer.
Then (c) use textbook methods to check for convergence.



EXERCISES 8.2 251

1 1 1 1 1

1 1 1

A2ltortgita™t
4 4 4 4 4

1 1 1
A.4cosl +cosg +cosg teoso +e

1 1 1
A.5sinl +sin—= +sin—+sin—+:--

2 3 4

2 m4 76

Abl-or tm —te

m2 a4 7b
ATl-ort mg —m to

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1
Albe+ ont ototpt

A.11 Write a program that takes as input two numbers a and r, with |r| < 1, and
gives as output the sum of the geometric series a + ar + ar? + ---.

A.12 Use the result of problem A.11 to sum the following series:

1 1 1

@1-3+g5 51
1 1 1 1

(b) == 4 =o+10 ©100 '1000 '10000 @

3 9 27 81(©) = = +oe—6617256 T1022 TT

(d) = 1.1 1.1 1.1

2 3 4 9 8 27 16

 

1

n(n +1)

11

Tn n+l
B.1 Prove your conjecture in A.8. ine:

 

1
C.1 Let S, be the nth partial sum of the harmonic series, i.e., Sp, = 1+ 3 +--+

S
|
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forn=1,2,---.

(a) Prove that S,,_, <nforalln=1,2, ---.

(b) Explain why the HP 48 thinks that 5S, < 40 for all n.

(c) As a practical matter, explain why the HP can’t calculate S,,. [Hint: how

long does it take the HP 48 to calculate Sio00 7]

 

8.3 POWER SERIES

What’s so special about power series? The answer is that they are the natural general-
ization of polynomials and that they are “nice” functions. Recall that a polynomial is any
function of the form:

p(x) = ao + a1 + aga’ + --- + ana,
where NN is a nonnegative integer and ao, ai, az, -- +, an are real numbers. A power series
is any expression of the form

p(x) = ao + a1 + ag’ +--+,

where ag, a1, ao, --- are real numbers. Of course, one big difference between power series
and polynomials is that you have to worry about convergence of the power series. However,
as you can see from your textbook, the convergence situation is quite simple for power series:
corresponding to any given power series, there will be an interval of values of x inside of
which you have convergence and outside of which you have divergence. This interval, called
the interval of convergence, will always have the form (—R, R) for some R, 0 < R < oo.
The power series may or may not converge at the endpoints £ R, but that is a relatively
minor consideration.

Power series are “nice”. You can add, subtract, multiply, or even long-divide them
just like they were long polynomials—provided you stay inside the intervals of convergence
of the power series involved; you can also differentiate or integrate power series term-by-
term as many times as you’d like—provided you do so inside the interval of convergence.
In particular, a power series is of Class C(*), i.e., has derivatives of all orders, inside its
interval of convergence.

There is a rich supply of power series. To get an idea of this, you can form your own
personal power series based on your birthdate as follows. Let AB/CD/EFGH represent the
month/date/year of your birthday. For example, if you were born on Mar. 8, 1973, then
A=0,B=3,C=0,D=8,E=1,F=9, G=7, and H=3. Form your personal power series
as follows:

P(z) =A +Bz + Cz? +--+ Ha’

+ 10A2® + 10Bz® + --- + 10Hz!®

+ 100A+ 100Bz!” + - - - 4+ 100H2?3

+ 1000A2%* + 1000B22® + - --

What is the interval of convergence of your personal power series? As a check on your
answer, the HP 48 gives R = .749894209332. Now how did the HP 48 know your birthday?!
See Exercise B.2.
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The class of power series is so rich, you might get the idea it would contain, in disguise,
some old friends like e*,sinz, and cosz. Indeed, it does. In fact, this is the whole idea
of Maclaurin series and, more generally, Taylor series. Briefly, the following is true for all
“normal” C(*) functions f(z):

£@)= 10) + fOr +La?
(n)LAO,
n!

in (—R, R) where R is the radius of convergence of the power series on the right-hand side
of the equality.

You might have wondered back in § 1.1 how we knew that sinz ~ r — 3x3 + 2d. The
mystery unravels once you look at the Maclaurin series expansion for sin x:

1
3 TET TT Cn+ 1)

1,.7As you may guess, x — Fa’ + Za’ — zz’ would give even a better approximation to sinx
near 0.

Generally speaking,it is highly desirable to approximate C(>) functions by polynomials
because, as we have pointed out previously, polynomials are conceptually so basic and
simple. Such approximations can generally be obtained by truncating the Maclaurin series
or Taylor series. Of course, one must always worry about approximation errors, but that
will not be our main concern here. We will concern ourselves primarily with the easier
problem of finding truncations of Maclaurin series and Taylor series.

You may have noticed that the HP 48 has a built-in command called TAYLR (located in
the SYMBOLIC menu). A more appropriate name for this command would be MAC since
the built-in program really calculates partial sums of Maclaurin series not Taylor series.
However, as the HP 48 manual points out, Taylor series can be obtained through a process
that amounts to making a translation and following it with the inverse translation. The
programs MAC and TAYLOR (see boxes) clarify and simplify the situation.

1 1 1
sine =z— => +=2"— =z" +--+ (-1)" ntl...

 

 

 

MAC

Inputs: f(z), N Output: Nth degree polynomial

truncation of Maclaurin series for f(x)

<< —- F N Introduces local variables

F X N TAYLR >» > Uses built-in TAYLR program

Checksum: #24531d Bytes: 50    
 

EXAMPLE 1. Find the 8th degree polynomial truncation of the Maclaurin series for

 

COS Z.

SOLUTION.

X COS 8 "ROME ss 3
 

{
3
2

|=, 5¥R2+]74] ¥8"4-
1/61%K"6+1/81¥K"8'

(A373ETTLEA)BEATSCRAIEEE
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TAYLOR
 

Inputs: f(x), ¢, N Output: Nth degree Taylor polynomial
for f(x) about c
 

—- F C N

X C + 'X* STO

F EVAL 'X' PURGE

N MAC

X C —- 'X+ STO

EVAL

'X' PURGE > >

<

 

Introduces local variables
Stores X + C under name X
Forms f(X + c); purges name X
Finds Maclaurin poly. for g(X) = f(X + ¢)
Stores X — C under name X

Evaluates Mac poly. at X —¢

Purges name X

Checksum: #48502d Bytes: 133  
 

 

    
EXAMPLE 2. Find the 5th degree Taylor polynomial for tan~!z about = = 2.

SOLUTION.

X ATAN 2

;

 

Exercises 8.3

A.1 (a) Find the 6th degree polynomial approximation for the Maclaurin series of

(1+ 22)~!, then press EVAL to combine constants. What do you suspect?

Confirm your suspicions by expanding (1 + x

 

RAD
{ HOME SS }

1: '1.16714871779+,2%(
K=2)=,08%(X=2)"2+
2, 9333333333362(X
-2)73-.0096* (X-2)"4
|NEFF3FdBEE

 

 
  

 

     

2)~1 as a geometric series.

(b) Make a sketch showing both yy = (1 + 22?)~! and the polynomial approxi-

mation on the interval [—1, 1].
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A.2 (a) Find the 4th degree Taylor polynomial approximation for (1+ 22?)~! about

Tr = 2.

(b) Make a sketch showing both y = (1 + 22)~! and the approximating poly-

nomial near rz = 2.

A.3 (a) Find the 6th degree polynomial that approximates the Maclaurin series for

€%-2% sin 2x.

(b) Make a sketch showing both y = €%2% sin 2x and the approximating poly-

nomial.

A.4 (a) Find the 5th degree Taylor polynomial for In about = 1. Based on this

information, what would you guess is the Taylor series expansion of Inx

about x = 17

(b) Make a sketch showing both y = Ina and the approximating polynomial.

 

B.1 Find a polynomial p(x) (of as small degree as possible) which approximates
sinz on the interval [—, 7] so closely that the HP 48 can’t tell the difference.
Put another way, how could you design a SIN key for the HP 48?

B.2 Explain why all “personal power series”, as defined in this section, have radius
of convergence equal to 0.1/8 x 0.749894209332.

 

8.4 HP MOVIES

You can make moving pictures on the HP 48 just like movie-producers make animated
cartoons, i.e., by putting pictures together in quick succession. This can be done by the
following 3-step process: (1) encode the pictures to be used; (2) assign names to the codes;
and (3) use the names in a movie-making program.

To encode a picture in the graphics environment, press STO; to encode a picture inside
a program, use PICT RCL. You assign names to codes like you would assign names to
anything else; simply use STO.

Now suppose you have stored a sequence of pictures under the names S1, S2, ---, SN
and want to put them together to make a movie. The program MOVIE makes it easy. See
box.

EXAMPLE 1. Encode the curves y =sin(zx—n(n—1)/2),n = 1, 2, 3, 4, and store them
under the names S1, S2, S3, S4, respectively. Then make a movie with
S1, S2, S3, S4 as its frames and show the movie 10 times. Describe the
effect.

SOLUTION. To encode and store S2 do the following:

Reser] X «2 / - SIN [1] [i
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MOVIE
 

Inputs: n, w, t Output: Movie consisting of frames

S1, S2, ---, SN with w seconds

between frames repeated t times.
 

 

<< —- NWT Introduces local variables

< {#0 #0} PVIEW Accesses graphics environment,
1 T FOR J Begins repetition loop

1 N FOR 1 Begins frames loop

"S* I -»STR + OBJ-— Forms SI

PICT {#0 #0} ROT REPL Shows frame SI
W WAIT
NEXT NEXT > > Ends loops

Checksum: #8960d Bytes: 170.5   
 

EXAMPLE 2.

  

IDRAX| [DRAW| |[sTO| |ON| S2
  

Similarly, you can encode and store S1, S3, and S4. To make the required

4-frame movie and show it 10 times, enter: 4 .1 10 . The effect
will be a sine curve marching steadily to the right. See Fig.8(a) for a
“filmstrip”.

Make an HP 48 movie showing partial sums of the Maclaurin series for
sinx converging to sinz.

SOLUTION. The program CODE encodes and stores frames corres-
ponding to the first ten distinct partial sums. Before running CODE,
purge any of the names S1, ---, S10 which are on the VAR menu. Be
alert to the fact that to run CODE requires about 12.5 Kbytes of memory.
(You can check how much memory you have available by pressing MEM
in the MEMORY directory.)

After you have run CODE, enter: 10 1 1 [MOVIE] to see conver-

gence of the Maclaurin series to sinz. See Fig. 8(b) for a “filmstrip”.

 

Exercises 8.4

A.1 Make a 2-frame movie showing a robot waving its arms. [Hint: for the artwork,
use DOT+ and DOT- as described in §0.6.]

A.2 Encode the curves y = 3sin HE ,n=1,2,3, 4, 5, and store them under the 

+1
names S1, S2, S3, S4, S5, respectively. Then make a movie with S1, S2, S3,
S4, S5 as its frames. Before running it, see if you can predict the outcome.
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CODE

Inputs: none Output: Frames S1, ---, S10

< RESET DRAX Preliminaries

X SIN STEQ DRAW Graphs the curve y = sinzx

PICT RCL 'S1' STO Encodes graph of sin zx; stores it as S1

1 9 FOR I ERASE Begins FOR-NEXT loop; clears display

DRAX X SIN 2 I x 1 -— Sets up argument for MAC program
MAC STEQ DRAW Graphs (2I — 1)st degree Mac. poly.
PICT RCL S1 + Encodes graph of Mac. poly. and sinx

"S* T 1 + STR + Stores code as S(I+1);
OBJ— STO NEXT > ends loop

Checksum: #27815d Bytes: 150.5   
 

 
(a) (b)

Figure 8 Filmstrips

A.3 Make a movie showing a tangent line moving along an interesting curve. De-
scribe the action on a section of the curve that is (a) concave upward; (b)
concave downward. Describe what happens near an inflection point. (Note
that part of the exercise is to figure out what is “interesting” and what is not.)

A.4 Make a movie showing a sequence of secant lines approaching the tangent line
1

to the curve y = 3% at the point (4,2).
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A.5 Make a movie showing partial sums of the Maclaurin series for 1.5 cos 2x con-
verging to 1.5 cos 2x.

 

B.1 Make a movie showing the circle of curvature rolling along a cardioid.

B.2 Make a movie showing a cycloid being generated by a rolling circle.

 

C.1 Make a movie showing a sequence of Riemann sums converging geometrically
and numerically to the integral

7
/ [0.3Vx + 3sin(z + 3) + 2.5] dz.

1

Note that (6,2) CENTR will center the curve so that there is enough space
for a message of the form “AREA = --.”. Use numerical integration to check
yourresult.
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Functions of Several Variables
EE

9.0 Preview

9.1 Functions of Two Variables

9.2 Partial Derivatives, Directional
Derivatives & Gradients

9.3 Tangent Planes and Normal Lines

9.4 Max-Min Problems

9.5 Double Integrals, Triple Integrals
& Line Integrals

 

9.0 PREVIEW

In this chapter we illustrate some ways the HP 48 can serve as companion in the study

of functions of several variables. The reader may wish to open a new directory [xyz] , say,
for the purpose of assembling the programs which will be developed in this chapter. Many
of these can be used as “double-check programs” for problems worked by hand. Others,
like LEVEL (below), perform tasks that no one could reasonably do by hand.

 

9.1 FUNCTIONS OF TWO VARIABLES

The first step towards understanding functions of several variables is to understand
functions of two variables and thefirst step towards understanding functions of two variables
is to understand them geometrically. There are two ways.

 

Representation as a Surface

The best way to visualize a function of two variables is as a surface in an (z, y, 2)-coordinate
system. This is analogous to visualizing a function of one variable as a curve in an (x, y)-
coordinate system. The surface corresponding to a function f(x,y) consists of those and
only those points which have the form (x,y, f(z,y)). You may think of a surface as a
mountain made out of tinted glass. It’s always there, but you may look through it to see
what’s on the other side.
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Conceptually, surface plotting is simple. All you have to do is make a dot corresponding
to each and every point (x,y, f(z,y)). For example, to plot the surface corresponding to
the function

2 32
fy) =3\1-F-3

you might start by taking x = 1, y = 2, calculate f(1,2) ~ 2.3, and then make a dot at (1,
2, 2.3). See Fig. 1(a). You could continue in this way as long as you like, plotting more and
more dots, and you might think the more dots the better. However, this is not the case.

Fig. 1(b) illustrates what happens when all dots are plotted. By contrast, Fig. 1(c) which
shows only the traces and a few vertical sections is obviously superior. Why? The reason
is one that all artists and architects know about: it takes tricks to draw three-dimensional
objects on a two-dimensional object like a sheet of paper. Common tricks employed by
artists, architects, as well as sophisticated computer software like Mathematica, include:
deliberate omissions, use of color, shading, perspective, and different viewpoints.

In calculus, you need not be an artist and you need not know a lot of tricks. You
need only know how to plot points and draw traces and sections. If you are unsure of the
meanings of these words, check your book for clarification.

  

  

 

re

(a) (b) (c)
      
  

Figure 1

The HP 48 has a built-in 3D plot package with limited capabilities—too limited for
our purposes. We encourage readers to experiment with this package, especially with
“wireframe” and “Y-Slice” plots. The plots shown in Figure 2 are Wireframe plots. All
other 3D plots in this chapter were produced by Mathematica.

  

    
 

 

 

Figure 2

 

Representation as a Set of Level Curves

The second way of visualizing functions of two variables is through the use of level curves.
Level curves of a function f(x,y) are curves of the form f(x,y) = ¢ where ¢ is a constant.
[See §3.3 for a discussion of curves defined by an equation] The idea of visualizing a
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function by looking at its level curves is the same as that of visualizing a mountainous
region by looking at a topographic map of the region. Thus, one thinks of level curves as
being in the (x, y)-plane of an (zx, y, z)-coordinate system. As with topographic maps, level
curves are normally shown for a set of equally spaced values of c. In this way, one can tell,
for example, that the surface is steep where level curves are bunched together and gradual
where they are spread out.

Graphing level curves with the HP 48 is simple provided you can either solve f(x,y) = c
for y in terms of x or for x in terms of y or if you can represent the curves parametrically.
[See § 3.1-3.3 for a detailed discussion of curve plotting.] We will illustrate these three cases
with examples, then consider the general case.

2
EXAMPLE 1. Sketch the level curves of f(x,y) = = corresponding to ¢ = £2, +6,

+10, ---, +38.

2
SOLUTION. Clearly, f(x,y) = c is equivalent to y = and we may

generate the required level curves as follows.

 

 

    

RESET) << {#0 #0} NN
PVIEW DRAX -38 Ny
33. FOR C 3 EQ | og
STO C / X SQ AR
% DRAW 4 A ANN
STEP > 77:75 1 XN

What can be said about the surface z = f(x,y) by looking at these
level curves? Before much of anything can be said, one needs to know
which curves go with which values of ¢. This can be done either by
keeping track of the curves as they are drawn or by studying the defining
equation after they are drawn. No matter how you do it, it should be
clear to you that downward parabolas correspond to negative values of ¢
and upward parabolas to positive values of ¢; it should also be clear that
broad parabolas correspond to the large values of |c¢| and narrow ones to
small values of |¢|.

Now imagine taking a walk along the y-axis (which corresponds to
level ¢ = 0). What would the terrain look like, say, from the point
(0,100)? Looking away from the origin, it would be like being in a gentle
valley—much like a plain. Looking towards the origin, one would see
something like a box canyon with extremely high walls around it. From
the negative y-axis, it would be like being on a mountain ridge, gently
sloping far away from the origin but increasingly steep-sided close to the
origin.

EXAMPLE 2. Sketch the level curves of f(x,y) = 2% — 9y? corresponding to ¢ = 0, +4,
+8, +12.

SOLUTION. Recalling that CONIC can be used to graph arbitrary sec-
ond degree equations (see § 3.3), we may generate the required curves as
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EXAMPLE 3.

follows.

RESET| << {#0 #0}
PVI DRAX
-12 12 FOR C
X SQ 9 YY SQ
* — C = EQ
STO CONIC DRAW
4 STEP PICTURE

>

 

 

Can you tell which curve goes with which value of ¢? (Assume standard
plot parameters.) What can you say about the surface z = f(x,y) by
looking at these level curves? In particular, how would you describe the
scenery from the point of view of walking along the z-axis? along the
y-axis? along the lines y = +x/3? See Exercise A.4.

Sketch the level curves of f(x,y) = y + xsiny corresponding to ¢ = 0,
4.5, +1, +£1.5, +2, +2.5, +3.

SOLUTION. Clearly, f(x,y) = c is equivalent to x = (¢ — y)/siny,
and we may represent these curves parametrically by taking y =t¢, x =
(c —t)/sint, then use PARA (see §3.2) to generate the required curves
as follows.

RESET| < {#0 #0} 0) Saino]
ad -3 3 FOR ENN

 

 
c ¢c T -T
SIN / T -—6.25 V ... nhn -..

6.25 .1 PARA 5 oy
STEP > SRE /

Can you tell which curve goes with which ¢? (Cf. Example 4(a) below.)
A 

    
v' Point to note

It is necessary to press after each of the above level curves is drawn.
This is because the program PARA ends with the command PICTURE. If
you wish to have the curves drawn continuously, simply delete PICTURE

from PARA, and after the curves are drawn, press [«]

How can we sketch level curves for functions like f(x,y) = x cosy — ysin(z/2) where it
is difficult or even impossible to solve for one variable in terms of the other one? In other
words, how can we sketch a general curve of the form f(x,y) = 07 (Cf. §3.3.) The program
LEVEL, based on the ideas of § 4.5, provides an answer. It works well for most functions
you are likely to encounter in a calculus course. However, there are limitations and to
understand these limitations you need to be aware of the fact that the program samples
“only” half of the possible z-values and makes only four “guesses” in the y-direction for each
x. Refinements can be made by modifying the step sizes in the program or by adjusting
the plot parameters.

If you use this program, be prepared to do something else while it’s running as it is
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generally very time-consuming!

vPoint to note

If you want to get a quick check on the general form of level curves, use Ps-Contour in the
3D plot package. “Pseudo-Contour” plots for Examples 1 and 2 are shown in Figure 3. For
further details, see your Owner’s Manual.

  

  

INNLLL RSSSS
77/7 7 13Y NV NAN ietemmpSN         

Figure 3

 

LEVEL
 

Inputs: f(X,Y), {c1, +, c2} Output: Level curves f(x,y) = ¢;

(i=1,---,n)
 

 

< 1 %H 'PPAR' RCL
OBJ— 6 DROPN OBJ—
ROT OBJ—
—-— FL BD
AC
{#0 #0} PVIEW DRAX
1 L SIZE FOR
K A B FOR I 1
'X' STO
C D FOR J F L
K GET -
EVAL Y J IFERR ROOT
THEN DROP DROP DROP
ELSE DROP
F L K GET -
EVAL ABS .00001 <
IF THEN X Y
R—C PIXON END 'Y'
PURGE END D C -
4 / STEP B A -
65 / STEP 'X'
PURGE NEXT F L
> >  

Puts the endpoints of the viewing

rectangle (determined by PPAR)
on the stack

Introduces local variables

Enters graphics environment,

draws axes

Begins loops on ¢, x, and y

(in that order)
Forms function f(x,y) — ¢;

Fixes z, looks for zeros of f(x,y) — ¢;
Neglects any root calculation error

Tests value to make sure it really is a
zero and not an extremum

Plots a point corresponding to a zero

Ends loops, cleans up VAR menu

Checksum: # 59221d Bytes: 397  
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EXAMPLE 4. For each of the following, sketch level curves of the given function for the
given values of c¢:

(a) y + xsiny; c¢=-3, —-2.5, —2, —1.5, —1, —.5, 0.

(b) x cosy — ysin(z/2); ¢=0, £2, ---, 6.

(¢) zcosy — ysin(z/2); ¢=0, £1, ---, £6.

SOLUTION.

(a) Y XY
SIN +
{(-3 —25 —2
~15 —1 —.5 0}

ra.

 

 

 

  
 

Compare this result with Example 3.

(b) X Y COS
xX Y X 2 /
SIN * -—
{-6 —4 —20 24 6}

Can you tell which level curve goes with which ¢? Hint: look at the
intercepts.

 

 

 

   
 

 (c) X Y COS *
Y X 2 /
SIN * -—
{(-5 =3 —11 3 5}  

 

    
 

About Evaluation of Functions of Two or Three Variables

As with functions of one variable, there are different evaluation schemes to choose from
for functions of several variables. We will use two analogues of FEVAL (see §0.4) called
F2EVAL and F3EVAL. Other evaluation methods are considered in the exercises.

EXAMPLE 5. Find:

(a) 9(2,1) and g(1,2) if g(x,y) = 3x* — 49°.

(b) f(1,2,3) if f(r,s,t) =e" + +/In(2r — s + 6t).
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F2EVAL
 

Inputs: f(X,Y), a, b Output: (X,Y), (a,b)
 

< 'Y' STO 'X' STO
DUP
EVAL
{X Y} PURGE >

Stores a, b under names X, Y, respectively

Makes a second copy of f(X,Y)

Evaluates f at (a,b)
Purges the names X and Y

Checksum: # 31488d Bytes: 66 
 

 

F3EVAL
 

Inputs: f(X,Y,Z), a, b, c Output: (X,Y, Z), f(a, b,c)
 

 
< 'Z' STO 'Y' STO

'X' STO
DUP
EVAL
{X Y Z} PURGE >

Stores a, b, ¢ under names X, Y, Z resp.

Makes a second copy of f(X,Y, Z)
Evaluates f at (a,b,c)
Purges the names X, Y and Z

Checksum: # 27367d Bytes: 82.5  
 

SOLUTION.

(a) 3 X SQ * 4
Y 3 7 xk

2 1 [Faeval

1
F2EVAL

(b) X Y x
+/-] EX
x + LN

1s Ec,

2 { HOME XYZ }

4
4 35a3

|Crrrss

Z * { HOME XYZ }

P 2 X 4:

6 Z :

Vv + 2: "EXP(-(X2Y*Z))+JLN..
892

 

HOME XYZ }
 

L
7
3
2   SQ)-4*Y"3
1

|EECECemsws|
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v' Point to note

The programs F2EVAL and F3EVAL assume that the variables are X,
Y and X, Y, Z, respectively. It is always easy to make an adjustment in
case other variable symbols are used as in Example 5(b). Alternatively,
F2EVAL and F3EVAL can easily be modified to accept any variable
symbols. See Exercise B.4.

 

Exercises 9.1

A.1 Use the method of Example 1 to sketch the level curves f(z,y) = 3x + 2y
corresponding to levels 0, £1, ---, £6.

1
A.2 Use the method of Example 2 to sketch the level curves of f(x,y) = x + a

corresponding to levels 0, £1, +2, +3, +4.

1
A.3 Parametrize an arbitrary level curve of f(x,y) = ia + 32 and use PARA to

generate the curves corresponding toc =1, 2, ---, 10.

A.4 Make a hand sketch of the level curves of Example 2, showing which levels
correspond to which curves. How would you describe the scenery from the

x
point of view of walking along the z-axis? the y-axis? the lines y = +3 ?

A.5 Use F2EVAL to calculate f(3,2) — f(2,3) where f(x,y) = 17023 — 41zy? +
169° — 19.

A.6 Use F3EVALto calculate g(v/2, 7/4, 7/53) where g(r, 0, ¢) = re=¢ + sin ¢.

 

B.1 Sketch the level curves of f(z,y) = 1%" siny for ¢ = 0, £0.5, +1, +2, +3.
What's special about the cases ¢ = £17

B.2 Sketch the level curves of f(x,y) = sinzsiny for ¢ = 0, £0.2, £0.5, £0.8, +1.
[Suggestion: use both of your HPs.]

B.3 Sketch the level curves of f(x,y) = xsiny — ysinz for ¢ = —4, —2, 0, 2, 4,6.
Use (6,3) as center.

B.4 Modify the programs F2EVAL and F3EVAL to accept arbitrary independent
variables. Rework Exercise A.5 and A.6 using these programs. (Cf. Exercise
B.4,§0.4.)

B.5 Use SOLVE (GREEN 7) to rework Example 5, then press to clean up
the VAR menu.
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9.2 PARTIAL DERIVATIVES, DIRECTIONAL DERIVATIVES & GRA-
DIENTS

Partial derivatives can easily be calculated for many functions on the HP 48 using the
following procedure: enter the function of your choice and the variable of your choice (in
that order), then press the derivative key 9 (GREEN SIN).

EXAMPLE 1. Find f,.(1,2,3) for f(z,y,2) = 2% arctan £-,

 

 

  

SOLUTION.

2 SQ N Z Clie XYZ }

ATAN x Y 0 3:

Z 01 2 3 . | AD1 '2%Z%(INV(1+(X*Z"3..
[: . 106886610369
EEREEREENEE

 

About Directional Derivatives

The directional derivative of a function f(x,y) at (xo, yo) in the direction of a unit vector
v = ai + bj is defined as:

f(zo + at, Yo + bt) - f(xo, Yo)

t

 (1)fo(Zo, Yo) = lim

Like derivatives of a function of one variable, directional derivatives represent slopes
of tangent lines. The number f] (20,0) is the slope of the tangent line to the surface
z= f(x,y) at (zo, Yo, f(To,¥o)) in the direction determined by v. Note that the directional
derivatives f and f} are the same as the partial derivatives f, and fy, respectively. For

further details, see your textbook.
If you apply L’Hospital’s rule together with the chain rule to (1), you will obtain the

following formula for directional derivatives:

fy (20,0) = fz(zo, Yo) a+ fy (Zo, Yo) b

This leads to the program DD2 for calculating directional derivatives of functions of
two variables. See box. Note that to apply DD2, the input vector need not be a unit vector.
A slight modification gives a program for calculating directional derivatives of functions of
three variables. See Exercises A.7-8.

EXAMPLE 2. Find the directional derivative of f(x,y) = e® cosy at (0, %) in the direc-
tion 52 — 23.
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DD2
 

Inputs: (X,Y), v= la, bl, Zo, Yo Output: fl(xo, 10)
 

<< — F V X0 YO Introduces local variables

<< V V ABS / V- Normalizes v
—- A B Intro. loc. vars. for the components of v

F X 0 A x FY Calculates the directional derivative

0 B Xx +

X0 'X' STO Yo Stores zp in X, yp in Y

'Y' STO

EVAL {X Y} Evaluates the dir. der. at (zo, yo)
PURGE > >» >

Checksum: # 62651d Bytes: 171.5    
 

SOLUTION.

X EXP Y COS
x [5-2] 0 = {

4 / [pD2] Eh
2
1

 

RAD
HOME XYZ }
 

  . 919145630019
LueJraevnreevnienel]|

 

About Gradients

From the algebraic point of view, gradients are trivial. The gradient of a function f is
defined by Vf = fri + f,J for functions of two variables and by Vf = fyi + f,7 + f.k for
functions of three variables.

The significance of gradients comes from their geometric interpretations. There are
three main interpretations:

(1) If f is a function of two variables, then Vf is perpendicular to all of the level
curves of f. In particular, if a curve is defined by f(z,y) = 0 and if (x, 30) is any point
on the curve, then Vf(zo, 90) is normal (i.e., perpendicular) to the curve at (zo, 70).

(2) If f is a function of three variables, then Vf is perpendicular to all of the level
surfaces of f. That is, if ¢ is any number and if f(xo, yo, 20) = ¢, then Vf(zo, yo, 20) is
perpendicular to the tangent plane to the surface f(z,y, 2) = ¢ at (xo, yo, 20). In particular,
if a surface is defined by f(x,y,2) = 0 and if (zo, yo, 20) is any point on the surface, then
Vf(zo, Yo, 20) is normal to the surface at (zo, yo, 20).

(3) If f is a function of two variables, then Vf represents the direction of steepest
ascent and —Vf the direction of steepest descent. Moreover, |Vf| is the steepest ascent
(= the maximum directional derivative) and —|Vf| the steepest descent (= the minimum
directional derivative).

The programs DEL2 and DEL3 find the gradient of an arbitrary function f of two and
three variables, respectively.
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DEL2
 

Inputs: f(X,Y), a, b Output: Vf(a,b)
 

< 'Y' STO 'X* STO -—
F
F 'X* 0 F 'Y' 0 2
—ARRY {X Y}
PURGE > >

Stores a, b under names X, Y, respectively

Calculates Vf
Cleans up VAR menu

Checksum: # 22866d Bytes: 109 
 

 

DEL3
 

Inputs: f(X,Y,Z), a, b, c Output: Vf(a, b,c)
 

<< 'Z' STO 'Y' STO

'X' STO —-» F

F 'Xr 8 F 'Y'

0 F '2: 0 3
—ARRY {X Y Z}

PURGE > > 
Stores a, b, ¢ under names X, Y, Z, resp.

Calculates Vf

Cleans up VAR menu

Checksum: # 42555d Bytes: 142 
 

EXAMPLE 3.

SOLUTION.

XY SQ
EXP xk Y X

COS x + 0 1

EXAMPLE 4.
point (—1,-3,2).

SOLUTION.

3 X SQ x Y

SQ + 2 Z
SQ *x + -1
~3 2 [oes
[ENTER] ABS

Find a vector perpendicular to the curve rev + ycosx = 1 at (0,1).

 

RAD
HOME XYZ }
 

  

«
7
3
2
1 : [ .3670879441171 1 1]
ICETEEIETAT)GETra

Find the inner unit normal to the ellipsoid 322 + 32 + 22% = 14 at the
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EXAMPLE 5.

FUNCTIONS OF SEVERAL VARIABLES

This is the outer unit normal. Why? The inner unit normal points in the
opposite direction:

ANSWER: [.514495755427 .514495755427 — .685994340569)
(= 0.514495755427 © + 0.514495755427 5

—0.685994340569 k).

Suppose that a mountain has equation z = 3 — 0.0522 + 0.03y? and that
a skier is skiing down the fall line (the line of direct descent down the
mountain). Find the direction pointed by the skier’s skis as a unit vector
in three-dimensional space at the point (3,2, 2.43).

SOLUTION. The direction of steepest descent as a vector in the xy-
plane is given by —Vf. Therefore, a unit vector in that direction is
given by u = —Vf/|Vf|. The slope of the surface in the direction u is

m = —|Vf|, the steepest descent. It follows that the direction pointed
by the skier skis is

Vf
u + mk = —

IVS]
IVflk.

We may normalize and evaluate this expression at (3, 2, 2.43) as follows.

 

 

  

(Note that ARG = GREEN EEX.)

3 pa x “5 x PiA XYZ }_ 5
XX — 3 2 0 1: [ .883502548132

.353481019253
ENTER| ABS / -.30745888675 1]

IEDFEETEGEEGRE(WEN

 

Exercises 9.2

Exercises 1-6 are routine. We suggest that you first work these problems by hand, then
check your results with the HP 48.

A.1Find f.(2,5) where f(x,y) = 4 — 323 — 6°.

A.2 Find
dz

where z = 1/522 + 3y%2 +1.

Q
D

Yli,-1)

A.3Find grs(1,—1,1) where g(r, s,t) = 5r3t — 2s%t + In(r? + s% + 2).

A.4Find the directional derivative of f(x,y) = 2xy® at the point (—1,2) in the
direction 22 — 3 3.
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A.5 Find the gradient of f(x,y) = 125(z2 + y2)~!/2 at the point (4, 3).

A.6 Find a unit vector perpendicular to the surface x32 + 2zy? — y2z3 = 9 at the
point (1,2, —1).

A.7 Write an HP 48 program, DD3, to calculate directional derivatives of functions
of three variables. [Hint: either (1) recall and modify DD2 or (2) use the

formula f) (xo, yo, 20) = Vf(x0, yo, 20) ol and the program DEL3.|

A.8 Use DD3 from Exercise A.7 to find the directional derivative of the function

flz,y,2) = Ts at the point (1,2, 3) in the direction of the point (3, —7, —4). 

 

9.3 TANGENT PLANES AND NORMAL LINES

In this section, we obtain programs to generate equations of tangent planes and normal
lines to a given surface at a given point. We consider the following two situations:

(1) The surface is defined by z = f(z, y);

(2) The surface is defined by g(x,y, 2) = 0.

It is important to be able to deal with both situations and it is essential to distinguish
one from the other before you start applying a formula or a program. An example of (1) is
the paraboloid z = z° +g” (f(x,y) = 22+y?); an example of (2) is the sphere £2 +32 +22 = 4
(g(x,y, 2) = 22 +9? + 22 — 4). Note that (2) is more general than (1) because any equation
of the form z = f(x,y) can be rewritten in the equivalent form f(x,y) —z = 0.

 

About Planes and Lines

To find the equation of a plane, two things are needed: a point on it and a vector perpen-
dicular to it. If the point is (x, 0, 20) and the vector is Ai + Bj + Ck, then the equation
of the plane is:

A(x — x0) + B(y — yo) + C(z — 20) = 0.

To find the equation of a line in three-dimensional space, two things are needed: a
point on it and a vector in the direction of it. If the point is (x, 0, 20) and the vector is
Ai + Bj + Ck, then the equation of the line in parametric form is:

x=x0+ At, y=yo+ Bt, 2=20+Ct, —00 <t< 00.

The programs PLANE and LINE are based on the above formulas.

v' Point to note

The HP 48 has a built-in command called LINE that has nothing to do with the program
we are calling LINE here. (The HP 48 command is for drawing a line in two-dimensional
space.) Because of this, the HP 48 won’t let you name the program in uppercase letters,
but it’s o.k. to use lowercase letters. Enter this as follows:

lo] lo] [1 [of LINE [of [sO]
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PLANE

Inputs: xo, Yo, 20, v=1[a b c Output: equation of the plane through
(zo, Yo, 20) and perpendicular to v

 

 

££ Vo» —- X0 YO Z0 A Introduces local variables

B C « A X X0 - Forms the expression

BY YO — 3k + a(x — zo) + b(y — yo) + c(z — 20)
C Z 20 — x +
EXPAN EXPAN COLCT Simplifies expression

0 = > > Forms equation

Checksum: # 64567d Bytes: 135.5  
 

LINE (see Point to note, above)

Inputs: xg, Yo, 20, v=[a b (| Output: parametric equations of the line
through (xo, Yo, 20) in the direction v

 

 

<< Vo» —- X0 YO Zo Introduces local variables

A B C « X XO0 Forms parametric representation

AT x + = in list form
Y YO B T x +

= Z 720 C

T kk + = 3

—LIST > >

Checksum: # 36251d Bytes: 143   
 

EXAMPLE 1. Find the equation of the plane through the points A = (-1,2,3), B =
(4,-5,8), and C = (2,3, -7).

SOLUTION. Since v = ABxCB =[5 —7 5|x[2 —8 15] isa
vector perpendicular to the plane (why?), we may obtain the equation as

 

 

follows.

-1 2 3 [5 =-75 RAD
[2 -8 35! CROSS, To 2d

3:
1: 165-654-2642  | LINE [EN TEN TENGEE)

v' Point to note

CROSS is in MATH VECTR.
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EXAMPLE 2. Find the equation of the line through the points A = (3,—4,—1) and B

= (6, —-2, 5).

SOLUTION. Clearly, AB = [3 2 6] is a vector in the direction of the
line, so we may obtain the equation as follows.

 

 

  

3 —4 —1 RAD

3 2 6] Lhe XYZ }

2:
[: ( '%=3+3%T' 'Y=—4+2

*#T! 17==1+6*T"' )

How can we find the tangent plane to a surface at a given point
(x0, Yo, 20)? Since we are given a point, all we need is a vector perpendicular to the plane.
Likewise, to find the normal line to the surface at (xq, yo, 20), all we need is a vector in
the direction of the normal line. Obviously, we are talking about one and the same vector.
How can we find it?

Interpretation (2) of the gradient in the previous section gives the answer: if a surface
is defined by g(z,y, 2) = 0, then a normal vector is given by Vg(xo, 30, 20); if a surface is
defined by z = f(x,y), a normal vector is given by f.(zo, yo)? + f,(Z0,%0)7 — k. Consult
your book for additional details.

The programs TN2 and TN3 are based on the above considerations. Use TN2 if the
surface is defined by 2 = f(x,y); use TN3 if it is defined by g(x,y, 2) = 0.

v' Points to note

1. To apply TN2 you need to have TN3 in the same directory.

2. To apply TN3, PLANE and LINE should be in the same directory.

 

TN2

Inputs: f(X,Y), xo, yo Output: equations of tangent plane and

normal line to the surface z = f(x,y)
at (xo, Yo, f(Zo, ¥o))

 

 

<< —- F X0 YO Introduces local variables
<< F 7 -
X0 YO X0 'X Puts z = f(x,y) in form f(z,y) —2=0
STO YO
'Y* STO F Calculates f(xo, yo)
EVAL {X Y}
PURGE TN3 >» >» Applies TN3

Checksum: # 57561d Bytes: 128    
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TN3

Inputs: g(X,Y, Z), xo, Yo, 20 Output: equations of tangent plane and

normal line to the surface g(x,y,2z) = 0
at (xo, Yo, 20)-

<< 4 DUPN DEL3 Calculates Vg

5 ROLL
DROP 4 DUPN Applies PLANE

PLANE 5
ROLLD line > Applies LINE

Checksum: # 63229d Bytes: 63.5

EXAMPLE 3. Find the equations of the tangent plane and normal line to the surface
z = sinz sin 3y at (7w/6,7/4).

SOLUTION.

INPUT: X SIN 3 Y SIN x

6 x 4) [ml
OUTPUT: '.865956483959 + .612372435697*X

—1.06066017178kY —Z = 0"
{'X = .52359877559 + .612372435697T'
'Y = .785398163398 — 1.06066017178*T"'
'Z = .353553390594 — T'}

EXAMPLE 4. Find equations of the tangent plane and normal line to the paraboloid
r=5-—y2/9—-2%/16aty =2,z = —2.

SOLUTION. This equation is equivalent to x + y2/9 + 22/16 — 5 = 0.
Thus, we can generate the required equations as follows:

INPUT: X Y SQ 9 / + Z SQ 16 / + 5
- 549 / — 416 / — 2 —-2 [TN3

OUTPUT: ' —5.69444444445 + X + .444444444444%Y
—.25%Z = 0"
{'X = 4.30555555556 + T''
'Y = 2 + .444444444444%T"
'Z = —2 — 25%T"'}

 

Exercises 9.3

Exercises 1-8 below are routine. We suggest that you first work these problems by
hand, then check your results using the HP 48.

A.1Find an equation of the plane passing through the point (1, —2,3) and having
normal vector n = [2, —3, 4].
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A.2 Find parametric equations for the line that passes through the point (5,-2,1)
and parallel to the vector v = [1,2, 3].

A.3 Find parametric equations of the line that passes through the points (5, —1, 2)
and (3,0, —7).

A.4 Find an equation of the plane passing through the points (1,-2,3), (2,0, —1)
and (—1,4,0).

A.5 Find parametric equations for the line through the point (—3,2,—5) and par-
allel to the x-axis.

A.6 Find an equation of the plane through (—3,2, —5) and parallel to the zz-plane.

A.7Find an equation of the tangent plane to the surface z = 1/4y2 — 22 at the
point (8, —5, 6).

A.8 Find parametric equations for the normalline to the ellipsoid 3z2 4 5y2% +222 =
19 at the point (2,1, —1).

 

For Exercises 1-5 below, (a) write HP 48 programs to perform the indicated tasks; (b)
test your programs on examples or exercises from your calculus book.

B.1 Input: (a1, az, as), [b1, ba, bs]

Output: parametric equations for the line that passes through the points
(a1, a2, as) and (b1, bz, bs)

B.2 Input: [a1, az, as), [b1, ba, bs]

Output: projection of a;t + agg + ask on byt + bog + bak

[You may assume that [by, be, bs] # 0.]

B.3 Input: [a1, az, as], [bi, be, bs], [c1, C2, C3]
Output: area of the triangle with vertices (a1, az, as), (by, be, bs), (c1, cz, 3).

B.4 Input: xo, yo, 20, A, B,C, D

Output: distance from point (xo, yo, 20) to plane Ax + By + Cz = D.

B.5 Input: wv, vg, v3

Output: volume of the parallelepiped determined by v;, va, v3.

B.6 As everyone knows, three points determine a plane. More precisely, three
noncollinear points determine a plane. The following program, PLN3, takes as
input three points in vector (bracket) form and gives as output an equation of
the plane determined by them.

<< —-— ABC << AV-> BA —- CA -

CROSS PLANE >» >»

(a) Use PLN3 to rework Example 1 and Exercise A.1.

(b) What would happen if you were to apply PLN3 to three collinear points?
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9.4 MAX-MIN PROBLEMS

For a differentiable function f(z) of one variable, one way to solve max-min problems
is to carry out the following 2-step procedure:

Step 1. Solve the equation f(z) =0 for =z.

Step 2. Classify each solution as a maximum, a minimum, or neither.

Step 1 can be done by any of the zero-finding methods discussed in Chapter 4; Step 2 is
usually just a matter of looking at the graph of f(x) or other information available. If you
have any doubts about the classification, you can always use one of the traditional methods,
e.g., the second derivative test. For further details, see your text.

For functions of two variables the procedure is similar:

Step 1. Solve the two equations f; = 0, f, = 0 for « and y.
Step 2. Classify each solution as a maximum, a minimum, or neither.

Solving the system in Step 1 is somewhat more difficult than solving the equation f/(z) = 0
and special methods are needed. One such method is the method of steepest descent.

 

The Steepest Descent Algorithm

The method of steepest descent is a numerical algorithm for locating a relative minimum
of a function, starting with a reasonably good guess at its location. It is easily modified to
deal with the case of a relative maximum and can be extended to higher dimensions.

The method is a two-dimensional analogue of the following observation. In searching
for a relative minimum of a function of one variable, we may start with an estimate x; and
look at the sign of f(x). If f/(x;) < 0, we search to the right of x; since the function is
decreasing near z;. If f/(x;) > 0, we search to the left of x;. Note that, in either case, we
search in the direction of descent of the function f(z).

For functions of two variables, things are more complicated because there are infinitely-
many directions to take into account, but the idea is similar: we start with a guess (1,91)
and search in the direction of steepest descent. Recall that the direction of steepest descent
is given by —Vf (see §9.2).

To be more specific, from the first guess (z1,y1) let us proceed in the direction —Vf
until we reach the point where we can descend no farther. Let the coordinates of this low
point be (z2,7y2). We then recalculate the direction of steepest descent at (x2, 2) and head
in this new direction until we reach the point where we can descend no farther. And so
on. In this way we obtain a sequence {(z,,¥.)} of points which evidently converges to the
desired minimum point.

The HP 48 program EXTREME is based on the above algorithm, and can be used to locate
either maxima or minima. As with any other iterative procedure, reliability depends on
the accuracy of the first guess. As always, things can go wrong and you would be flirting
with danger if you failed to have your other HP engaged.

EXAMPLE 1. Figure 4(a) (produced with LEVEL) shows the level curves of

f(x,y) =z 432% +5+a +y
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EXTREME
 

Inputs: f(X,Y), Zn, Yn Output: f(X, Y), Tn+1; Yn+1
 

 

<< — F X1 Y1

<< F X1 Y1 DEL2

DUP

[0 0] # IF THEN
DUP ABS / Vo —

AB «x X1 AT
* + 'X* STO YI B T
* + 'Y' STO F EVAL
'T 0 'T* 0 ROOT

DROP F X1 A
T x + Y1

BT % + {TXY}
PURGE >» ELSE
DROP F X1 Y1 END
> >  

Introduces local variables

Calculates the direction of steepest

ascent [a,b] = Vf/|Vf| at the given

point (Zn, Yn)
Begins IF-THEN-ELSE-END;
allows for two possibilities:

[a,b] #0 and [a,b] =0
If [a,b] # 0, program finds

extreme point (Tn41,Ynt1) of

g(t) = f(xn + at,y, + bt) near t = 0
by solving for the zero of ¢’(t)

near t = 0 and puts f(x,y), Tn41y Ynta

on stack

Cleans up directory

If [a,b] = 0, program returns

f(z, v), Tn, Yn tO stack

Checksum: # 60914d Bytes: 329   
corresponding to ¢ = 0, 1, 2. Figure 4(b) (also produced with LEVEL)
shows the intersection of the two curves

es =4x> + 6xy+y=0

fy=38224+10y+1=0

Figure 4(a) suggests that elevations decrease inwardly and that f has a
relative minimum somewhere inside the inner loop. Make an “educated
guess” at the location of the minimum point, then use EXTREME to
refine your guess.

 

 

  -1.5¢  

 

    
(a) f(x,y) =0,1,2 “b) faery) = 0,

fy(z,v) =0

Figure 4

SOLUTION. From Figure 4(a), a reasonable guess would be
(—1, —0.5); from Figure 4(b), (—0.87,—0.33).
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We apply EXTREME starting with the very rough first guess of

(1,0).

INPUT: X 473 X SQ x Y
+ 5 Y SQ *¥x +

X + Y + -1 0 [eXTREME
OUTPUT: 'X4 + 3%SQ(X)%Y + 5%SQ(Y) + X + Y*

797109531689
—.270520624414

Notice that the output is arranged so that EXTREME may be easily
applied again. We need only continue executing EXTREME to obtain a
sequence {(xn,¥.)} of approximations. The values in Table 1 strongly
suggest that the points (z,,y,) are approaching a limiting value, that
the numbers f(z,,y,) are approaching a relative minimum, and that the
length of the gradient is approaching 0 (as it should).

For this particular function it is not difficult to find the minimum us-
ing direct methods (you are asked to do this in Exercise B.4). The direct
method yields the answers (zo,7%) =  (—0.88632420664---,
—0.33567117978---) and f(Zo, yo) = —0.83257874487 -- -

Table 1 Successive Approximations to a Relative

Minimum of f(x,y) = 2? + 32%y + 592 + x + y

 

 

     

n (Tn, Yn) f(Tn, Yn) [Vf]

1 (—1,0) 0 5

2 (—.797109531689, —.270520624414) —.813663897902 .334907620642

3 (—.885563139165, —.336860830024) —.832564710439 .019927599878

4 |(—.886407055843, —.335735607788) —.832578727064 .000339453236

5 |(—.886323218811, —.335672730015) —.832578744851 .000025944422

6 |(—.886324317078,—.335671265659) —.832578744877 .000000452436

7 (—.886324205332, —.335671181851) —.832578744878 .000000034544

8 |(—.886324206794, —.335671179901) —.832578744878 .0000000006

9 |(—.886324206642, —.335671179787) —.832578744876 .000000000042

10 (—.886324206645, —.335671179784) —.832578744877 .000000000022
 

 

The Second Derivative Test

One way to classify the critical points of a function of two variables is to use the second
derivative test. For details, see your text. The program SDTST (see box) does the routine
calculation for you.

v' Points to note

1. The output is really a white lie based on another white lie. We are telling the machine
that (x10, ¥10) is a critical point when in fact it is only an approximation to a critical point.
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SDTST
 

Inputs: f(X,Y), a, b where (a,b)
is a critical point.

Output: (message) "MAXIMUM
POINT", "MINIMUM POINT",
"SADDLE POINT", "TEST FAILS",
or "NOT A CRITICAL POINT!"
 

SQ F Y
8 SQ + A 'X!
B 'Y' STO EVAL
IF .00001 >
THEN CLLCD "NOT A
CRITICAL POINT!" 3 DISP
3 FREEZE DROP DROP
ELSE EVAL SWAP EVAL
—- D C «
D 0 ==
IF THEN CLLCD
» TEST FAILS" 3 DISP
3 FREEZE ELSE D 0
< IF THEN CLLCD
" SADDLE POINT" 3
DISP 3 FREEZE ELSE
C 0 > IF THEN CLLCD
"MINIMUM POINT"
3 DISP 3 FREEZE
ELSE CLLCD
"MAXIMUM POINT"
3 DISP 3
FREEZE END END
END >» END F
{X Y} PURGE >» >»  

Introduces local variables

Calculates fr; and frzfyy — 2,

at (a,b)
Calculates f2 + f2 at (a,b)

Checks that pointis

critical point

Introduces local variables for

[rz fyy - f2, and [rz

Sets up IF-THEN-ELSE-END

branches for the various

combinations of signs

Checksum: # 54213d Bytes: 518  
 

The machine, in turn, tells us that it is a minimum point. Such white lies are not apt to
cause trouble provided fiz fyy — f2, is continuous which is generally the case.

2. The program will accept critical points or good approximations of critical points, but not
points that are way off. In such cases, it will tell you: "NOT A CRITICAL POINT!" This
feature gives the program a second use, namely as a double-checker of hand-calculated
critical points.

3. To assure that the Checksum and Bytes of your program match the ones given in the
box, put exactly five spaces each in front of TEST FAILS" and SADDLE POINT", and
four spaces each in front of MINIMUM POINT" and MAXIMUM POINT".
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EXAMPLE 2.

EXAMPLE 3.

Use the program SDTST to test the point (Z10,%10)
= (—.886324206645, —.335671179784) of Example 1. (See Table 1.)

SOLUTION.

X 473 X
SQ * Y x5 Y SQ k MINIMUM POINT
+ X + Y +

 

 

—.886324206645
—.335671179784 SEIFEEECENTEEET
[SDTST]

Find and classify the critical points of f(x,y) = 3zy — 23 — 33.

SOLUTION. Here the critical points (0,0) and (1, 1) are easily found by
solving the system:

fe=3y—3z°=0

fy =3c-3y>=0

We classify them using SDTST.

 

3 X x Y x
X37 -Y
3 ~~ —-—0 0

SADDLE POINT

 
sT[EXTRE] YN2TN3 LINE

 

Notice that when you press ON, you find f(x,y) on the stack so that you
can reapply the test to (1,1):

1 1 [SorsT
 

MAXIMUM POINT

 

ZUTZVJERTRE] TN2TNI LINE

 

Exercises 9.4

For Exercises 1-5, find and classify the critical points for each function. We recommend
that you work these problems first by hand, then check your results with the HP 48.

Ad z%(x—1)2 +92

A.2222 + 9? — xy?

A.382% — 3ay — 93



EXERCISES 9.4 281

A.4(z—1)e*(y? —-2y)

A.52zy? — z%y + 4xy

A.6 This problem is concerned with the location of the maximum point of the
function f(x,y) = 20 + 5x — x2 — 2y — 29% + 0.12293 — 0.1239? for —2 < x <5,
—2 < y < 2. Figure 5 shows (a) the surface, (b) some level curves, and (c) the
curves fy = 0, f, = 0. Use all three parts of Fig. 5 to make an “educated guess”
at the location of the maximum point, then use EXTREMEto refine your guess.
Apply EXTREME repeatedly until there is no change, then calculate f and
|Vf| at the point you found. Finally, use SDTST to verify that it is a maximum
point. (Parts (a) of Figures 5-8 were produced by Mathematica.)

  

  

     
   

Figure 5

A.7 This problem is concerned with the location of the minimum point of the
function f(x,y) = 2x2 + 3y? — 10x + 10y — 0.001z%y? + 0.001z%y* — 25 for
—4 <x <8, —4 <y <3. Figure 6 shows (a) the surface, (b) some level curves,
and (c) the curves f; = 0, fy, = 0. Use all three parts of Fig. 6 to make an
“educated guess” at the location of the minimum point, then use EXTREME
to refine your guess. Apply EXTREME repeatedly until there is no change,
then calculate f and |Vf| at the point you found. Finally, use SDTST to verify
that it is a minimum point.
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For Exercises 1-3, find and classify the critical points for each function. Use any method.

B.12z2 — 5x + 8 — 2z2y + 6xy — xy?

B.2 2? —sinz + 23 — 3y?

B.3 (22% —4z —1)(y* — 1)

B.4 Obtain the result of Example 1 by using direct methods to solve the system:

fe=4z+62zy+y=0

fy =32°+10y+1=0

B.5 This problem concerns the location of extrema of the function f(x,y) =

cos(z +y) +sinz + cosy for —27 <x < 2m, —27 < y < 27. Figure 7 shows (a)
the surface, (b) some level curves, and (c) the curves f; = 0, f, = 0. Locate at
least one maximum point and at least one minimum point as follows: (1) select a
high spot and a low spot in Fig. 7(a) (your choice); (2) locate the corresponding
inner loops in Fig. 7(b); (3) locate the corresponding critical points in Fig. 7(c)
and estimate their coordinates; (4) apply EXTREME (repeatedly) to your
estimates to obtain 12-digit approximations to the extreme points; (5) use
SDTST to check your conclusions.

B.6 This problem concerns the location of extrema of the function f(x,y) = x siny—
ysinz for 0 < x < 15, 0 < y < 15. Figure 8 shows (a) the surface, (b)
some level curves, and (c) the curves f; = 0, fy, = 0. Locate at least one
maximum point and at least one minimum point as follows: (1) select a high
spot and a low spot in Fig.8(a) (your choice); (2) locate the corresponding
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Figure 7

inner loops in Fig. 8(b); (3) locate the corresponding critical points in Fig. 8(c)
and estimate their coordinates; (4) apply EXTREME (repeatedly) to your
estimates to obtain 12-digit approximations to the extreme points; (5) use
SDTST to check your conclusions.

 

C.1 (a) The curves in Fig. 7(c) resemble straight lines. Show that they are indeed

straight lines and determine their equations.

(b) Find exact formulas for all maxima and minima of the function f(x,y) =

cos(z + y) + sinzx + cos y.
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9.5 DOUBLE INTEGRALS, TRIPLE INTEGRALS & LINE INTE-
GRALS

In this section we show how to use the HP 48 to obtain good approximations for double,
triple, and line integrals. Since all such integrals ultimately reduce to single integrals and
since the HP 48 is an excellent integrator, it shouldn’t come as a surprise that the HP 48
is an effective tool for dealing with these more general integrals.

 

About Double Integrals

In your calculus book you will find a discussion about the connection between double
integrals and iterated single integrals. It is important that you understand the difference
and know what is going on geometrically. Typically, double integrals reduce to iterated
single integrals of one of the two types below. Consult your text for additional explanation.
We again remind you of the importance of understanding the connection between formulas
and pictures (cf §6.3).
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y

y=D(x)

[[saa /[ (L1)) do
R

 y=C(x)
 

WV
)

o
l
-
-
-
-

[[r@naa= |’ / i)is dy
R

  

 

The HP 48 programs DBLY and DBLX correspond to the above formulas. See boxes.
Use DBLY if the first (i.e., inside) integration to be carried out is with respect to y; use
DBLX if the first integration is to be carried out with respect to x.

The HP 48 programs DBLY and DBLX correspond to the above formulas. See boxes.
Use DBLY if the first (i.e., inside) integration to be carried out is with respect to ¥; use
DBLX if the first integration is to be carried out with respect to x.

 

 

 

DBLY

Inputs: a, b, C(X), D(X), f(X,Y) Output: IP (Jo f(x,y) dy) dr

<< 5 DUPN 5 LIST 'IN' Stores input data in a list for

easy recall

STO 'Y' [ 'X' Attempts symbolic integration;
—-NUM STD > settles for a numerical approximation

if symbolic integration is not possible

Checksum: # 4444d Bytes: 70.5    
 

2 (3
EXAMPLE 1. Evaluate / (/ (5 —3z + 2y) iz) dy.

0 1
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DBLX
 

Inputs: ¢, d, A(Y), B(Y), f(X,Y) Output: Ie (Sa f(x,y) dz) dy
Y)
 

STO

 
<< 5 DUPN 5 LIST 'IN' Stores input data in a list for

Xt [oy J Attempts symbolic integration;
—-NUM STD > settles for a numerical approximation

easy recall

if symbolic integration is not possible

Checksum: # 20818d Bytes: 70.5   
 

EXAMPLE 2.

SOLUTION.

STD 0 2 -1 HD

3 5 3 X xk 3

— 2 Y Xx + 3

2
1

 

 

 32
IIAITTCTTWEd(RA  

 

Calculator time: about 20 seconds.

Error bound (press IERR): 0.00000000032.

v' Point to note

As with single integration, you can specify k-digit relative accuracy (for
the k of your choice) by setting the display mode to k FIX. This is gen-
erally a good idea because if you leave the calculator in standard (STD)
mode, it will attempt to obtain 12 digit accuracy. Generally, application
of the programs DBLY and DBLX is quite time-consuming and one is
wise to begin with modest accuracy demands. Unless both integrand and
limits of integration are very simple (as in the preceding example), begin
with either 2 FIX or 3 FIX. You will then have an idea of how long it will
take to obtain better accuracy. The following short program INPUTS
(see § 3.2) makes it easy to experiment with time and accuracy.

< IN OBJ— DROP >» INPUTS

Find // sinxy dA where R is the region bounded by the curves y =

R
ir?+2r—1landy=322+2

SOLUTION. The first step in any such problem is to draw a picture of
the region. Enter, store, and graph the boundary curves as follows:
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X SQ i
2 / 2 X * A
+ 1 - C mpd $ $ dpm +

STO] 2 3 / y
x 2 + D 1

stol C D = 2
[EQ] [DRAX] [DRAW]

Clearly,

b D(z)

// sin xy dA - | (/ sin xy a) dx,
B a C(x)

where C(z) = 222 +2z—1 and D(z) = 2z +2. What are a and b? These
values can be obtained by hand (see Exercise A.14), but it’s easier and
more fun to obtain them using ISECT while in the graphics environment.
Do the following:

1. Press [FON].

2. Move the graphics cursor (+) to the approximate

location of right-most intersection point and press

3. Move the graphics cursor (+) to the approximate

location of left-most intersection point and press

sec]
4. Press twice to return to the stack.

5. Enter RE RE.

The result is shown in Fig. 9(b). (Fig. 9(a) was produced as a “truth plot”.
For details, see your HP 48 manual.) Question: How do you suppose the
calculator knows how to find intersection points? See Exercise A.15.

With a and b already on the stack, we may carry out the required
integration as follows:

 

  

  

RESET| 2 FIX ONE wiz 3
C X Y k 4:

SIN 3:
2:

1: 1.58422254476
[IEEEJEEZEY[INPUY]CK |© |IN |

Calculation time: about 1.5 minutes.

Error bound: 0.024.

Now use [INPUTS| to obtain better accuracy as follows:
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6 FIX [INPUTS CAME XYZ 3

7
>:
1: 1.5836854871
[IEEE[REZET]INPUY]©©IN|

Calculation time: about 6 minutes.
Error bound: 0.0000024.

RAD
{ HOME XY2 }

3:
2k -4.12220008845
1: 1.45553342178

|#TerkINPUT]INJEL: RELY

(a) region R (b) intersection points

Figure 9

 

About Triple Integrals

Like double integrals, triple integrals typically reduce to iterated single integrals. There are
six integration formulas corresponding to the six ways of ordering dz, dy, and dz: dx dy dz,
dx dz dy, dydxdz, dy dz dx, dz dx dy, and dz dy dx. The formula corresponding to dz dx dy
1S

y2 z2(y) z2(z,y)

[[]st Y, 2) dV = / / 9(z, Y, 2) dz

|

dx dy

R Nn z1(y) z1(z,y)

where R is the three-dimensional region

R={(z,9,2) : yn Sy <p, ©1(y) <z<22(y), 21(2,9) <z<22(z,9)}

You can think of R as the solid caught between the surfaces z = z;(z,y) and z = 22(z,y)
and above the two-dimensional region {(z,y) : 11 <y <2, Z1(y) <z <1z2(y)}.

The program TPLZX corresponds to the above formula. See box. Similar programs
can easily be written for the other five situations. Alternatively, variables can be changed
to match those in TPLZX.

EXAMPLE 3. Find [[[In(z + y + 2) dA where R is the hexahedron bounded by the
R

planes 2 =0,y=1,y=2,y=2z,x=0,and z =z + y.
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TPLZX
 

Inputs: a, b, z1(Y), r2(Y), z1(X, Y),

z(X, Y), 9(X, Y)

Output:

I (Jon (Jory) atv, 2)de) de) dy
 

 
&« 7 DUPN 7 LIST 'IN'

STO 'Z' [ 'X'
'Y' [ NUM STD >»

 
Stores input data in a list for

easy recall

Attempts symbolic integration;

settles for a numerical approximation
if symbolic integration is not possible

Checksum: # 44864d Bytes: 83.5  
 

SOLUTION. Think of R as the solid between the planes z = 0 and
2 = = + y and above the trapezoid 1 <y <2, 0 <x <y. See Fig. 10.
Thus:

J[[ mia veer =| ([ (fw++2a) da) dy

We approximate this integral using TPLZX. (You may want to check this
by hand.)

2 FIX 1 2
0Y 0 XY
+ XY + Z

+ LN

Calculation time:

Error bound: 0.05

 

RAD
HOME XYZ }
 

4.4416933561   

{

4

3
2
1
[IEKEJTPLSG[REZET[INPUT]INCELE]

 

about 4.5 minutes.

Use |INPUTS| to obtain more accuracy:

3 FIX INPUTS

Calculation time:
Error bound: 0.005

 

RAD
HOME XYZ }
 

«
7
3
2
1 4.44262433771
IEFLT(0TTITTE

 

 

about 20 minutes.
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X y=1 y=2 y=x

Figure 10

 

About Line Integrals

Line integrals are really curve integrals. There are two kinds:

1) / P(z,y) dz + Q(z, y) dy
C

©) / f(z,y) ds
C

Here, C represents an arbitrary curve in the (z,y)-plane. An integral of type (1) does
not have a simple geometric interpretation; one of type (2) can be thought of as the area
of the “curtain” between the curve C and the curve z = f(z,y) where (x,y) is restricted
to C (e.g., see Example 5).

Evaluation of line integrals is easy once a parametrization of C is known. If a
parametrization is given by x = z(t), y = y(t), a <t < b, then we have

b

/ P(z,y) dz + Q(z, y) dy = / P((t), 3())7'(t) + Q(t), y(®))y'(t)] dt and
C

b

C

The programs LINXY and LINS correspond to the above formulas.

EXAMPLE 4. Find [ 2z(y +1)dz + 22dy, i=1, 2, 3, where
Ci;

(a) Ci: x =t—sint,y=1—cost, 0 <t < 2m;

(b) Ca: x = (4n/+/3)sin(t/3) , y = 2sin(t/2), 0 < t < 2m; and
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LINXY
 

Inputs: P(X,Y), Q(X,Y),

z(T), y(T), a, b

Output: [ P(z,y)dz + Q(z,y) dy
C

 

<< 6 DUPN 6 —LIST 'IN'

STO - F G U V A
B
Uu 'X* STO V 'Y!
STO A B
F EVAL U 'T' 90 xk

G EVAL V 'T' 90 xk

+ 'T* [ —-NUM

{X Y} PURGE >» >

Stores input data in a list for

easy recall

Defines local variables

Forms the integrand

Performs the integration

Checksum: # 2076d Bytes: 204.5 
 

 

LINS
 

Output: [ f(z,y)ds
C
 

 
<< 5 DUPN 5 -—LIST 'IN'

STO —- F U V

A B

U 'X* STO V 'Y!

STO A B

F EVAL U 'T' 8 SQ
Vv 'T' 0 SQ +

 'T' [ —NUM
{X Y} PURGE >» >»

Stores input data in a list for

easy recall

Defines local variables

Sets up the integral

Performs the integration

Checksum: # 62802d Bytes: 197  
 

(c) C3: x =2t,y=—2sin’3t,0<t <7.

Figure 11 shows the curves Ci, C2, and C3. Except for starting and
ending at the same places, these curves apparently have little in common.

SOLUTION.

(a 2 X x Y 1
+ %x X SQ
T T SIN -—
1 T COS -—
0 2 7 *k

 

 

 

RAD
{ HOME XYZ }
4:

3:
1: 39.4784176043
[LINC[LIN]IEEE[TPLZE]RE ET]INPUT]
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EXAMPLE 5.

 

 
 

 

  

 

24 Ca
Ci

11

i 3 5 7
-1

Cs
-3

Figure 11

(b) £HOME XYZ 3
3:

4 rn 3:
3 v / T 3 1: 39.4784176043
/ SIN kx 2 [LINZJUIN:IER[TPLZE[RECETINPUY)
T 2 / SIN
XX 0 2 © Xk

 

RAD
HOME XYZ }
 

°

ol
lg
ll
g]

[E
2
I
Z
I
Z
|

|Z

s
e
l
]

|Z
w
n

i
FoO Y

o

  

 

{

DROP 4:
2 T * 3:

23 T % SIN es
1: 39.4784176044

SQ * |+/- LINZ[LINGERE[TPLIS]RECETINPUT
0 =x LINXY

Calculation times: about 1 minute.

Error bounds: approximately 107°.

Based on the above findings, what do you suspect? How could you obtain
more evidence? See Exercise A.16.

Find the surface area of the solid formed by the intersection of the three
right circular cylinders 22 + 2 =1, 22 + 22 = 1, and 3% + 22 = 1.

SOLUTION. Figure 12(a) shows the surface of interest. It consists of
twelve congruent pieces each of which may be thought of as being further
subdivided into four smaller pieces, as indicated in Fig. 12(b). We may
use line integration to find the surface area of the small shaded piece
since this is the “curtain” between the curve C: x = cost, y = sint,

0<t<m/4 andthecurve z=+1-22% z2+9%=1.
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The area is given by:

sa= [Vi=aras

C

and can be evaluated as follows (it’s also easy to do by hand):

 

1 X SQ - RAD
T COS T SIN

{

0 = 4 / [LIN] :
2
1

 

  . 292893218813
[LINLING]IRFTPLE]RECEINPUY

 

Calculation time: about 15 seconds.

Error bound: 10-11,
Total area ~ 48 x .292893218813 ~ 14.058874503.

 

Exercises 9.5

Exercises 1-9 are routine integration problems. We suggest that you first work these
problems by hand, then check your results with the HP 48.

3 2
A.l / / (4zy? — y) dx dy

—2J-1

n/3 pw/6

A.2 / / (zsiny — ysinx) dy dz
0 0

2 x?

asf / (22° — 3y) dy dx
—-1J3x

Ad //(7x — 4y + 1) dA where R is the region bounded by the curves y = x? and

R

y= Ly +1y=3z+1.

A.5 //(x + y + 1)dA where R is the region bounded by the curves y = 2x,

R
y=+vzx+1, and y =0.

1 3 2
A.6 / / / (2x — 3y + 2) dzdx dy

0 J2 Ja



Figure 12

Z= 1-x2
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a7 [[[zav where R is bounded below by the square 1 <x <2,2 <y <3 and

R
above by the plane zx + y + 2 = 5.

A.8 [@+2) dx +z? dy where C is the curve defined by x = t2, y = 3t,0 < t < 1.

Cc

2 2
A.9 / y dx — 2% dy where C is the ellipse fe + = = 1 oriented in the counterclock-

Cc
wise sense.

A.10 Use DBLX or DBLY to find the area between the curves z = y2? and y = z2.

A.11 Approximate // e=Hv’ dA, where T is the triangle bounded by y =z, y = 0,

T
and z = 1. Give an error bound for your answer.

A.12 Approximate // cos(z?y) dA, where S is the square 0 < x < 7/2,0 < y < 7/2.

Give an error bound for your answer.

A.13 Find the area of the surface bounded below by the curve

x=cosy, 0<y<n/2, 2=0

and above by the curve

z = sin?(mx) cos’ y, © = cosy, 0 <y < 7/2.

Give an error bound for your answer.

A.14 Show that the exact values of a and b in Example 2 are (—4 + 1/70)/3.

A.15 How do you think the HP 48 finds intersection points? [Hints: (1) How would
you do it?; (2) If you move the graphics cursor (+) to any point on the vertical
line through an intersection point and press ISECT, the result is the same as
if you were to place the cursor on the intersection point.]

A.16 (a) Give an example of a curve C4 from (0,0) to (2,0) different from Cy, C,,

and C3 in Example 4;

(b) Calculate / 2z(y + 1) dz + 22 dy;

Ca

(c) What’s going on?
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Chapter 0 Section 0.1

AL) [5] [{ [29] [{ [I] [x]; 246 Aa) [][ [& (x) [B [ [EvaL);
2146  A.2(a) [Vz] [+]; 3.14626436994  A.2(b) [']

[EVAL]; 3.14626436994  A.3(a) [2] [spc] [3] ve] [=];

1 Asm) [10 FB OEE Ea 1 Ad[ [pe 3
; 2.41785163923E24  A.4(b) ['] 7 y" =] y©

[EVAL]; 2.41785163923 E 24 A.5(a)LB [spc] [spc] [1] SPC
[=] [=] IP —.707106781187 sr 0

[+] >] [-] [cog]|[9] [spc] [+] [1] [2] [?] [EVAL]EVAL|; —.707106781187
A.6 —.482300884956 8 20.1897158284 9 25439.6230976
A.10 2.61803398875 A.11 (37550753302 A.12 106157056081
A.16 .564705882352

[=
]

[
+
]
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A.1(a) 5 A.1(b) 151 A.1(c) BEEP (+ Error: Too Few Arguments)
A.1(d) no change A.l(e) 5 A.2(a) 0 A.2(b) BEEP (/ Error: Infinite
Result) A.2(c) O A.2(d) 1 A.3(a) 0 A.3(b) 0 A.4(a) 5
A.4(b) 0  A.4(c) Level 1: 6.68050291345E198  A.5(a) 9  A.5(b) 3
A.5(c) 9 A.5(d) 1 A.5(e) BEEP (SWAP Error: Too Few Arguments)
A.6(a) 1 A.6(b) —1 A.6(c) —1 A.6(d) 1 A.6(e) —1 A.6(f) —1
A7(a) 2 A7(b) —2  A.7(c) —2  A.7(d) 25  A.7(e) (1.99999999999,
—8.48119329392E — 12) A.7(f) 1.14159265359 A.8(a) You would get 10! =

3628800  A.8(b) You would get 14 +--+ 10 = 2%) — 55

B.1(a) 16 B.1(b) 16 B.1(c) 7.62559748498E12  B.1(d) 19683; ale") =
(a®)* only ifa=1o0ra=2 B.2(a) n! B.2(b) mnt
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Al « —- X1 Yl X2 Y2 « X1 X2 + 2 / Yl Y2 + 2 / R-=C
> > A2 << + 2 / > A3 « —- XI Yl X2 Y2 < Y2 Yl
—- X2 X1 = / > > Ad « —- C-oR SWAP / > As KK —
M BKYMX x B+ = >> AK - M AK YM
X * MA x — = > > AT - AB MYM X x
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B M A x — + EXPAN COLCT = >» > A8 « — X1 Yl X2
Y2 << Y Y2 YI —- X2 X1 - / X X1 —- % Y1 + EXPAN EX-
PAN COLCT = >» > A9 « X SWAP = > Al0 « — Xl
Yl X2 Y2 « IF X1 X2 # THEN Xl Yl X2 Y2 SLIN ELSE Xl
VLIN END > >» All < — XI Yl X2 Y2 « XI X2 + 2 /
YI Y2 + 2 / XI X2 — Y2 YI — / PTSL > >» A.12 < A
B < Y AB / NEG X % EXPAN = > >» Al3 < —» L W
H << 2LWXLHZ%+HW*x + % >> Ald< —
R <« 7 R SQ % 2 7 x R x >» >» Al5 << * >» A.16 0,
785398163397, 1.5706963268, 1.57079631679, 1.57079632679  A.19 .707106781188,
1.09454090923, 1.0029994985, 1.000006

Bl< — AB IF BO # THEN A B A B / NEG PTSL
ELSE X A = END > > B2< —» A B C « B SQ 4 A *
C * - / > S <BNEGS + 2 A * / BNEGS - 2 A
X / > > > B3 <x —-— AB CB 2 A kx / NEG C B
SQ 4 A x / — R-C >» >» B44 « — 3 DUPN DROP DUP 4
ROLLD ROT SWAP STO EVAL SWAP PURGE >

 

Chapter 0 Section 0.5

A.1 The HP won’t accept the name HOME because it is a built-in command; it accepts
hOME because it regards it as a different name. Before you can purge a directory name,
you must first purge the contents of that directory.

B.1 « —- N DI D2 « HOME D1 EVAL N RCL N PURGE HOME
D2 EVAL N STO >» >
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Al <« 1 100 FOR I I NEXT >» A2 « 1 100 FOR I 100 IT -—
NEXT > A3 << —-— N 1 N FOR I' I SQ NEXT N LIST >»
> Ad € —- N «1 N FOR I I I~ NEXT N LIST >» >»
A535 << —- N «1 N FOR I I ! NEXT N LIST >» >»
A6 « DRAX -1 5 FOR X X 2 R—C PIXON .1 STEP GRAPH >»
A7T << DRAX 0 3 FOR T T T R—C PIXON .1 STEP GRAPH >
A.9 It doesn’t have a degree because it is not a polynomial. A.10 POLYGON
A.11 Enter 'IFTE (z <0, —-2, 3)' STEQ DRAW

Bl -— NK O0OON1l - FOR I 2 I~ INV + DUP NEXT
DROP N LIST >» > B2 << - N01 N FOR I I INV +
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DUP NEXT DROP N LIST >» > B3 « —- A B C « DRAX
A B FOR X X C R—C PIXON .1 STEP GRAPH >»
B4 << DRAX 0 1 FOR T 8 T % 3 —- 3 T %x R—C PIXON .01
STEP GRAPH > B5< - N<O0ON1- FORINTI —- J

NEXT N LIST >» >
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Chapter 1 Section 1.1

A.3 Using an HP timing program, FEVAL took 0.18 seconds, FOFX took 0.19 sec-
onds, and program style evaluation took 0.12 seconds. A.5 $143.56; $144.50; $144.99;
$145.49; $145.50. The difference between daily and hourly compounding is negligible.
A.6 Yes. Compounding $0.01 once a year at 4% gives $1.08x 10°. A .7 hoh(w) =

w, w# —l ho f(@) =(1-vz-2)/(01+Vr=-2), 222 hogy) = -(1+y*)/B +
y?), —00 <y < 00; foh(w) =+/(-1-3w)/(1+w), -1 <w < -1/3; fo f(z) =
VT —2—2, 22> 6; fog(y) = |yl, —o0 <y < oo; goh(w) = Bw? +2w+3)/(1+w)?, w#

—-1;g0 f(x) =2, x>2;gog(y) = 4y* + y* +6, —00o <y < 00.
B.1 S = 0.56, T = 0.79; t; = 16.2. B.3 n =50: 3126 < 7m £ 3.157; n =
100 : 3.134 < 7 < 3.149. B.4 « — ABS >, with inputs (z1,y;:) and
(z2,y2) on the stack; output is the distance between these points. B.5 Destination
point is (23.3, —3.1). A program for both HP28 and HP48, using basic definitions and
C—R and R—C conversions: <« DEG — P R T « P C-R T SIN R
* + SWAP T COS R *%x 4+ SWAP R—C RAD > >. An alternative
for the HP28 is: « DEG R—C P—R + RAD >. An alternative for the HP48
iss: « DEG -19 SF -15 CF -16 SF —-V2 4+ —-16 CF RAD >.
B.6 Approximately (0.84,0.71). The program « DUP SQ R—-C (2,0) — ABS
> facilitates the calculations. We have not assumed knowledge of minimization tech-
niques based on differentiation.

Cl —» Ml M2 « M2 Ml DUP2 —- 3 ROLLD * 1 + / ATAN
DUP IF 0 < THEN «= + END «7 / 180 * > >.

 

 

Chapter 1 Section 1.2

A.6 —2.8 and —1.1. A.7 After RESET try 2H. (1.5, 6.2). A.9 (1.2,12.8).
A.10 Try —3,11 for XRNG and —50,20 for YRNG. —2.0, 2.7, (5.1,—23.3), 9.3.
A.11 (08,1.8). A.12 —1.3,2.2,4.0.

B.1 (3.2,1.0),(1.9,2.0),(0.9,0.0). B.2 (0.8 2nm, 1.6), (5.5 + 2nm, —1.2).
B.3 The graph of z/2 —sinz is a variation about the graph of 2/2 by sin. B.5 Try
.2%H and .1%kW. B.6 Forx <0, f(z) = x +2;for0 < x <1, f(x) = 2; for
x > 1, f(x) =2(2 —x)x. So, two lines and a parabola. B.7 0,2). B.8 Use —1,7
for XRNG and —2,2 for YRNG. (0.8,0.3). B.9 Try —3,3 for XRNG and —4, 0 for
YRNG. Local maxima at —1.1,.37,1.3. B.10 A difficult graph, partly due to scale.
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It has an x-intercept at 4, horizontal asymptote of y = 3/64, local minima at x = 0, 4,
and local maxima at x ~ —0.37,0.26. Try 0.2,0.3 for XRNG and then use AUTO.

C.1 Partial answer: The inequality shows that for 0 < xz < 0.22, the HP values of f(x)
are incorrect. Tracing the calculation with z = 0.22, 1 — cos 0.22° has only 4 significant
figures on the HP. Actual value, with 8 significant figures, is 6.4275013 x 107°. At the
division, the numberin the fifth decimal place is incorrect. At x = 0.1, calculator value

is 0 while the true value is within 10713 of 0.5. C.3 2~9.2,y=1/v3. C.4 Try
—2,2 for XRNG and —10,0 for YRNG. There are local maxima near —1,.8,1.2.

 

Chapter 1 Section 1.3

A.1(a) 0.75 A.1(b) 25 A.1(c) 0 A.1(d) 0.5 A.l(e) 0.5  A.1(f)
0.209986  A.2 44.4 hours. A.3 4.5 x 107° is slope of AB; R(4) = 4.3 x 1079;
slope of AB is close to slope of tangent line. A.4 10.5283 hours. A.5 6.8 per
hour. A.6 Approximately 3 million dollars.

B.1(a) 0.5 B.1(b) 1 B.1(c) 2 B.1(d) = 4.9. Exact value is v/2(16/3 —
44/2/3. B.3 2.7726-5-1072324¢ B.4 Approximately 0.59 meters.

 

Chapter 1 Section 1.4

A.1 3,5,-2  A.2 3,2/3,02,—5 A.3 2,0.2,-1/7,-9/5 A.4 2,-25 —7,
(-1++v3i)/2 A.5 —5,2,5 A.6 2/3,1/2,4i  A.T —5,(—1+/5i)/2
A.9 —1.87938524157, 0.347296355334, 1.53208888624
A.10 —2.53208888624, —1.34729635533, 0.879385241572
A.11 —3.86080585311, —2.25410168837, 0.114907541477
A.12 1.36523001341, —2.68261500671 + 0.358259359924i
A.13 h=+3a A.14 6.52703644666cm; other zeros out of range.
A.15 0.415774556783, 2.29428036028, 6.28994508294
A.16 0.263560319718, 1.41340305911, 3.59642577104, 7.08581000586, 12.6408008443
A.17 —0.507787629558, 0.132300820777, 0.708820142114
A.18 +1.65068012389, + 0.524647623275
A.19 0, £ 0.442930458136, + 0.798214220989
A.20 +0.339981043585, +£0.861136311594 A.21 -3/4,10/9,2 + 3i

A.22 -3/7,+7i,5/2+i/2  A.28 1,-7/2,-3/5,(—1 £/Ti)/4
A.24 (—1.32693251066, —1.31889412187),

(—0.400224818095, 0.579466878998), (0.470331690691, —0.90233641238),
(1.44005098004,7.29398366658), (2.31677465803,276.118613325)

A.25 43.9846696021  A.26 —1/7,8/7,8/7,(—1 + 3v/3i)/2
A227 1/7,V/3,V3,-V3,—v3  A.28 2/9,2/9,4/9,(1 £14)/9

B.2 —2—3i, (5+ /3i)/2 B.3 In increasing order: 3.14159265359,
31.4159265359, 314.159265359, 3141.59265359. In decreasing order: 3141.59265359,
314.159265565, 31.4159244735, 3.1415945115.
B.5 Polynomial is —\3 + 9% — 18) + 6; 0.415774556784, 2.29428036027, 6.28994508294

C.1(c) The costs of the traditional, factored, and preconditioned forms are 10001(4f; +
3f2), 10001(2f1 + 3f2), and 20003f; + 30005fa. C.2 Cost of preconditioning is 5f; +



302 ANSWERS

8f2; cost of one evaluation is 5f; + 7fs. C.3 For traditional, factored, and precondi-
tioned the costs are 10001(12f; + 7f2), 10001(6f; +7f2), and 5f; + 8f2 +10001(5f; + 7f2),
respectively. Simplifying and assuming that f; > 2f,, which is conservative, the precondi-
tioned is cheapest.
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Chapter 2 Section 2.1

A.1 The difference quotient strongly resembles — sin x, which is the derivative of cos x.
A.2 The derivative is tanz is sec? x. A.3 1.5 meters/sec =~ 1.4w/3 meters/sec
A.4 They are nearly identical graphs. They differ most at x = 0.1, where their values
are 1.31 and 1.58.

B.3 « DUP2 + 4 ROLL SWAP FEVAL SWAP 4 ROLL FEVAL
SWAP 4 ROLLD — SWAP / >» Try 'yX' 'W' 'H' as input.
B4 « —- X H 'FX+H)-F(X))/H' > Store as DQ.
B.5 «x —- X H 'F(X+H)-F(X-H))/(2%H)' > Store as SDQ.

C.1 To extend the program, repeat each step, replacing DQ by SDQ, and inserting SQ
just after H. The regular decrease with kh of the second and fourth columns suggests the
third and fifth. The accuracy of the symmetric difference is better by an order of mag-
nitude, that is, by a power of 10. C.2 A(h) = —h/(8¢*/?) ~ —h/8. Ay(h) =

(h2/32)(1/c/? + 1/¢5/%) ~ h?/16, where l —h<ca <1l<ec; <1+h

 

Chapter 2 Section 2.2

A.2 (a) —17 (b) 15 (c) 0.710775 (d) 0.0551344 (e) 0.118597 (f) 0.348259
A.8 —0.117535 inches/hour A.9 (a) —4xy/(3y? + 22%) (b) —2%/y? (c) —(1 +
y%)/(2xy + 3y® —1) (d) cos(z+y)/(1 —cos(z +y) (e) (3+2vy—3x)/(1 + 4y\/y — 32)

(6) (2032 + )/(30% +22) (9)TIVOLIU HEALY)
z+ 8yVI+yv1l—z/I+y

(h) VI (1 = 2/7— 3zy)

VZ (2 + 22,/ZY + 2./Y)
A.10 (a) y — yo = 0.69308(x — x0) (b) y — yo = —0.27328(x — zo) (¢) y — yo =
—0.80122(x — zo) (d) ¥y — yo = 1.91682(z — x0) (e) y — yo = 1.91068(x — zo) (f)
y—1yo = —0.44425(x — x0) (8) y—yo = —1.50389(x —x0) (h) y—yo = —0.452658(x — x0)
A.11 (a) 2.04667; 2.04718 (b) 1.63852; 1.63763 (c) 0.648859; 624047  (d) 0.220728:
0.236928

B.1 The 27 are: ABS, ACOS, ACOSH, ALOG, ARG, ASIN, ASINH, ATAN, ATANH,
CONJ, COS, COSH, EXP, EXPM, INV, LN, LNP1, LOG,SIN, SINH, SQ, +, —, *, /,
~,V- B4 ( — F X0 H ( F DUP X0 'X' STO EVAL SWAP
'X' 6 H kx + 'X' PURGE )) ))
B.5 Use the equations given in the answer to A.11

Cl) — G XI YI (( G IMPL XI 'X' STO Y1 'Y' STO EVAL
{XY} PURGE )) ))
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Chapter 2 Section 2.3

A.1 At (1,-2), a = 108.43°; at (3,—4), a = 45° A.2 At (2,0), a =108.43° A.3
For line, a = 42.00°; for sine curve, a = 45° A.4 At (—-1,0), a = 85.24°; at 1,
a = 97.13% at 5, = 87.61° A.5 At (=1,1),@ = 135% at (1,3), @ = TL.57°
A.6 0 and 180 — 0; ay/4 = arctan(j tan6); ay = 0; az;y = 180 — arctan(3 tan)
A .7 Angle of incidence = 2.86°. Slope of reflected ray is 0.1003. A.8 At (1,3),
612 = 153.43°; at (—1,1), 012 = 90° A.9 (a) Vertex at (1,—2); focus at (7/4, —2);
opens to right. (b) (y + 2)2 = —4 - 11(z — 3) (c) The squares of the distances are
(h + p — x)? and (x — h + p)?. Rewrite the latter using the equation of the parabola.
(d) 1/80 meter A.10 (a) Center (1,0); vertices (2,0) and (0,0); foci at (1 + v/2,0)

and (1 — v/2,0) (b) Center (—1,2); vertices (—1 + v/3,2); foci (—1 + 5/sqrt5/6,2) (c)
(x—7/2)2/(3/2)? —(y+3)%?/22=1 A.11 (z+1.9)%/1.12 —92/3.2=1
B.1 Assuming the calculator stays in MODE RAD, simply add # / 180 3k after
PURGE. B.3 First, observe that it is no loss of generality to set h = k = 0. Then
use Fig. 7, extending the horizontal ray and the ray reflected to the focus to the other
side of the parabola. The proof given in (7) and (8) can be used. B.4 Minimum re-
quired diameter = 0.2503; diameter of dark spot = 0.0626; diameter of smallest hole
= 0.0156 B .5 Minimum required diameter = 0.256411; diameter of dark spot =
0.02736; diameter of smallest hole = 0.02679 B.6 H=-12 B.7 Copy from A.8,
but after first + add DUP 0 IF == THEN DROP2 90 ELSE . Also, insert
END after last B8 « —» X « X INC1 SWAP X INC1 - DUP
0 IF < THEN180 + END >» >
Cl —- F X «x 'FZ)' 'Z' 0 X 'Z' STO EVAL ATAN DUP
IF 0 < THEN « + END 'Z' PURGE >» > C.3 Minimum required
diameter = 0.747 feet; diameter of hole = 0.116 feet

 

Chapter 3 Section 3.1

A.1 Zeros: —2.05150078168, —0.902312625486, 0.942787602586, 4.01102580458; Ex-
trema: (—1.56970497975, —4.50858331328) rel. min., (0.107532983742, 7.10864271358)
rel. max., (2.962171996, —41.0375593999) abs. min.; Inflection Points:
(—0.822875655532, 0.83300524427), (1.82287565553, —20.3330052441) A.2 Zeros:
—0.282750613112, 1.38095330959; Extremum: (0.828981543581, —6.28484236891) abs.
min.; Inflection Points: (0.4, —6.024), (0.666666666684, —6.18518518521)  A.3 Ze-
ros: —0.25, 0, 1; Extrema: (—0.25, 0) rel. max., (—0.12845892868,
—0.00440129472746) rel. min., (0, 0) rel. max., (0.778458928682, —2.27205870527)
rel. min.; Inflection Points: (—0.2, —0.00192), (—0.0561862178477,
—0.00200396157286), (0.556186217848, —1.42768353842) A.4 Zeros:
0.0910514044938, 9.02292317841; Extremum: (6.73637714341, —719.684974608) abs.
min.; Inflection Points: (0.037346992108, .590111006562), (4.46265300791,
—431.430388788) A.5 Zeros: —0.370603316959, 0.381936710524; Extremum: (0,
—3) abs. min.; Inflection Points: (6, 54429), (10, 99997) A.6 Zeros:
+1.32287565553, 1.5; Extrema: (—0.632782218537, 2946.69399461) abs. min.,
(1.38278221858, 1.06899461) rel. max., (0, 0) rel. max., (1.5, 0) rel. min.; Inflec-
tion Points: (1.44221865525, 0.52883894), (—0.0577813447567, —1743.86217227)
A.8 y=-12.5+14.0625x A.9 y= -9.86960440115 + 6.28318530722x
A.10 y = —3.1049049982 + 1.6380450483x A.11 f is the one that goes through the
origin.

B.1 Clearly, ¢(1) > 0 and ¢(2) > 0. Also, by Example 2, ¢(1.68989794855) < 0.
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B.2 The calculator flashes the word EXTREMUM,then tells you that there is a ROOT
at 1.68989743975.
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Chapter 3 Section 3.2

A.1 z-intercepts: 0, +£v/3; y-intercepts: 0, £v/2; relative maxima: (£v/3, 2), (0, 2);

relative minima: (+v/3, —2), (0, —2); inflection point: (0, 0) A.2 z-intercepts:

+1/2; y-intercepts: —1, 2; relative maximum: (0, 2); relative minimum: (£2, —2);
inflection point: none A.3 z-intercepts: £5.44053852576, —0.02324974005;
y-intercepts: —3.16153529132, 0.014939095, 2.6465961961; relative maxima:
(£3.2227527617, 3.16227766017); relative minima: (£0.11774819461, —3.16227766017);

inflection point: (£1.5081375479, 0.939021878471) A.4 z-intercept: 0; y-intercepts:
0, —2; maxima: (£1.12054722171 1.63417691117); minima: (+1.6654928338,

—0.7082509852), (0, —2) A.5 z-intercepts: £3.99822137144; y-intercepts: —2, 1,
2.5; maximum: (£1.93649167309, 2.6875); minimum: (0, —2) A.6 z-intercepts:
0, £2m, +4m; y-intercept: 0; maxima: (+m, 2), (£37, 2); minima: (0, 0), (0, £27),
(0, +47) A.7 y-intercept: 0.6; maxima: (xm, 1.4), (£3m, 1.4); minima: (0, 0.6),
(£2m, 0.6), (4m, 0.6); inflection points: (£0.7926734425133 + 2nm, 0.84),

(+5.49051188205 + 2nm, 0.84), n = 0,1  A.8 x-intercept: £(% — V3), £(& —
V3), +(3F + V3), +(L= + v3); y-intercept: —1, 1.6380450483; maxima: (+m, 3),
(£37, 3); minima: (0, —1), (£27, —1), (£47, —1) A.9 z-intercepts: —1/2, 1; y-
intercept: 1; maximum: (0.3, 1.125); minima: (—1, —2), (1, 0) A.10 z-intercepts:
—3, £6; y-intercepts: £1.5; maxima: (3.5584219849, 2.64025888957), (—5.0584219849,
0.5535130947); minima: (3.5584219849, —2.64025888957), (—5.05842198409,

—0.5535130947); inflection points: (—1.01963065989, +0.97578211674) A.11 2-

intercepts: —1.54508497188, —5, 4.04508497188; y-intercept: 1.5; maxima: (-5, 0),
(—1.80189805015, 2.45126536676); minima: (—3.4685647168, —1.06237647786), (5, —3);
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inflection point: (0.833333333335, 0.69444444446) A.12 z-intercepts:
—1.54508497188, +5, 4.04508497188; y-intercepts: £1.5; maxima: (—4.11690685633,
2.85894167805), (4.7089265974, 0.335004984445), (1.07464692556, 1.82397326262); min-
ima: (—4.11690685633, —2.85894167805), (1.07464692556, —1.82397326262),

(4.7089265976, —0.335004984445); inflection points: (—2.3158490886, +1.042844254),
(3.48576835002, +0.48415270692) A.13 z-intercepts: 0, £4.7552825815,
+2.93892626147; y-intercept: 0; maxima: (—4.88314795858, 1.8239732626),
(2.8374421468, 2.8589416781); minima: (—2.8374421468, —2.8589416781),
(4.88314795858, —1.8239732626); inflection points: (£4.33012701893, £1.299038106)

A.14 zx-intercepts: 0, £1; y-intercepts: £0.8660254038, 0; maxima: (1+, 1); min-

ima: (—1 + Is —1); inflection point: (0, 0) A.15(b) absolute minimum point =

(1.43653739005, —3.05478406218) A.15(c) y = 1.83279002684x — 9.44382890683

A.16(a) z-intercepts: —2, 1, 6; y-intercepts: £0.8965754721, +3.34606521495
A.16(b) —3.34606521495 < z < 15.0625, —5.078125 < y < 5.078125 A.17(b) self-

intersection point: (0, 3), corresponding t-values: %, Z, 2, i A.18(b) (£2, 1.5),

(0, 2.4515479395)  A.19 y==+v3z  A.20 (5,0), (1, 0), (—1.125,
+0.992156741645) A.21 horizontal distance ~ 6.2976, vertical distance = 6; there-
fore, even though it may appear to be a circle, it is not a circle. A.22 (£2.2,0),

(0, —1.2), (0, 3.2), (+a, +a), and (+a, +a), where a = 1.1v/2 + 0.5

B.1 « INPUTS DROP DROP —- X Y «x Y T 0 T 09 X T 90 *
Y T 0 XT 0 T 0 kk — > > B.2 left-most point = (6.25, —9),

vertex = (—5.25, —12) B.3 An ellipse. B.4 Circle with center (0, 0), radius v/2.
B.5(a) (—5.25, —1.625) B.5(b) y = 0.3x — 0.05 B.5(c) No; T passes through

the point (0, —0.005).  B.8 =+4/(9+ 41/5 B.9 y=+zx

C.4(a) (3.95836368579, —131.428064266), (5.52035400795, 137.57728216),
(7.08618705687, 47.013081025), (8.65380430391, —43.349356455), (10.2223920291,
—133.601548836), (11.7915653248, 136.212947959), (13.3611188323, 46.070813981),
(14.9309330796, —44.04154769), (16.5085005167, —134.566131488), (0, 0)
C.4(b) (3.926990817, —135), (5.4977871438, 135), (7.0685834706, 45),
(8.6393797974, —45), (10.2101761242, —135), (11.780972451, 135), (13.3517687778, 45),
(14.9225651046, —45), (16.4933614314, —135)
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Chapter 3 Section 3.3

A.1(c) vertex: (0.19677398, —4.45424742); focus: (0.19677398, —4.43635887); direc-
trix: y = —4.47213596  A.1(d) vertex: (—3.896, —2.168); focus: (—3.88, —2.16);
directrix: y = —2x — 10 A.2(c) vertices: (£4.71404521, 0); foci: (£3.67784856, 0);
center: (0,0)  A.2(d) vertices: (£3.33333333, +£3.33333333); foci: (+2.60063166,
+2.60063166); center: (0, 0) A.3(c) vertex: (—1.44152858, 0.10667311); focus:
(0.18292998, 0.10667311); directrix: x = —0.21176055 A.3(d) vertex:
(0.080761235, 0.071165840); focus: (0.19022869, —0.093035343); directrix: y = 2x +
0.25450451 A.4(c) vertices: (£4/3/5, 0); foci: (£4/6/5, 0); center: (0, 0);
asymptotes: y = tx A.4(d) vertices: (£0.73484692, +0.24494897); foci:
(£1.03923048, +0.34641016); center: (0, 0); asymptotes: y = 0.52, y = —2x

A.5(c) vertices: (0, £/2); foci: (0, £1); center: (0, 0) A.5(d) vertices:
(£1.13137085, +0.84852814); foci: (+0.8, £0.6); center: (0, 0) A.6(c) center:

(1.4, —2); vertices: (1.4 + /3.6, —0.2); foci: (1.4 £6, —0.2); asymptotes: y + 0.2 =

+/2/3(x — 1.4) A.6(d) center: (1, —1); vertices: (—0.51789328, 0.13841996),
(2.51780328, —2.13841996); foci: (—0.95959179, 0.46969385), (2.95959179,
~2.46060385);  asymptotes: y = 0.041241452 —1.04124145, y = 3.04124144 —4.04124143z
AT y=322-10-1; z=-%y*—Jy+2

B.1 « C-»R 4 ROLL C—R 5 ROLL C—R — X3 Y3 XI Yl X2
Y2 « Yl Y3 — X1 X3 — / Y2 YI — XI X2 — / + X3 X2 -
— A < Yl Y2 — X1 X2 — / X1 X2 + A *¥ - =» B <

YI B XI % — A XI SQ * — Y SWAP A X SQ *x B X x
+ + EXPAN COLCT >» >» >» >» B.2 y= 32% —1; 0.471404522° —
0.94280904xy + 0.47140452y2% — 1.41421356y — 1.88561808317 = 0 B.3 « OBJ—
DROP DROP SWAP DROP —» F «« F F X 0 6 X STO EVAL 2
/ ROT EVAL ROT EVAL 'X' PURGE —- A C B « B 2 A * /
NEG B SQ 4 A x / C —- NEG R—C DUP 4 4 A * INV R-C
+ DUP IM 2 A % INV — Y SWAP = >» >» > B.5 For rectan-
gular plots, the HP 48 fills in pixels uniformly with respect to the z-axis. For parametric
plots, it fills in pixels uniformly with the parametrization interval. As a result, in places
where the graph is very steep, rectangular plots produce relatively few pixels while para-
metric plots will produce many more for a small step size.
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Chapter 4 Section 4.1

Al [2.0,2.1] A.2 [0.3,0.4], [4.0,4.1] A.3 [0.9,1.0] A.4 [0.5,0.6]
A.5 [0.8,09] A.6 [-0.9,-0.8], [0.8,0.9], [4.0,4.1  A.7 [0.1,0.2], [3.1,3.2]
A.8 [1.4,1.5]

B.1 Use 'IFTE(X<2,—(2—X) ~(1/3)4+2%X ~2-15,(X—2) ~ (1/3) +2%X ~2—15)',
[-2.9,-2.8], [2.6,2.7]  B.2 [0.000,0.001], [0.004, 0.005], [0.013,0.014]
B.3 Consider the function h(x) = f(z) — g(x), z € I

 

Section 4.2

A.1 2.236 A.2 —0.578 A.3 —2.89, 2.66. You may wish to enter the function in
the form

< — X 'IFTE(X>2,(X-2)"(1/3)+2%X ~2-15,—(2—X) ~(1/3)+2%X ~2—15)" >

A.4 11.84 cubic meters A.5 0.400, 4.000 A.6 0.0007, 0.0047, 0.0131.

B.1 For p23 = 20°, ¢ = 4.48; for p23 = 30°, ¢ = 2.40; for po3 = 40°, ¢ = 1.53; for

p23 = 50°, € = 1.07 B.2 74.68, 467.99, 1310.39

 

Section 4.3

A.1 1.7100 A.2 0.7391 A.3 4.4934 A.4 75.96° A.5 33.31°, 68.43°,
78.26° A.6 —0.98 A.7 1.875, 4.694, 7.855, 10.996 A.9 2.0945

B.1 In order: 519.1,570.0,620.1,671.3,721.8,772.3,822.7,873.0,923.3. For initial guesses,

observe that  ~ /((L — 3007)/2)2 + 1002. From trigonometry, L = 2(/22 — 1002 +
200m — 100 cos~1(100/x)

 

Cl « —» X < 'X-F(X)/DF(X)' EVAL X > > C.4 —0.4956 +
1.31017 and 2.9956 + 4.0003i
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Section 4.4

A.1 126.632 A.2 0.416, 2.294, 6.290 A.3 Intersection at 6; ~ 0.0133. The lim-
its of integration are from 6; to 6; + m. The area is =~ 9.88. A.4 2.472

B.1 See Fig. 5

C.2 a = 24.5. The two largest roots come together as a decreases. For example, at
a = 24.59, the zeros are 0.2636, 1.4239, 3.3479, 9.48473, and 10.0699.

 

Section 4.5

A.1 y is determined as a function of x since g changes sign and ¢’(y) > 0 for 0 < y <
7/2 and = > 0, where g(y) = xz tany+y3—4; f(1000) ~ 3.12. It appears that y is bounded
as x — oo. To preserve equation as £ — oo, the term xtany — 0. We guess that y — =.
See Fig. A.1

D>
< °
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«2 4 6 8 10 4 .
1.8 .

(J X *1. | 0% 1 15 2 25 3 05 ] 15

Fig. A.1 Fig. A.2 Fig. A.3

A.2 y is determined as a function of x since g changes sign and ¢'(y) > 0, where g(y) =
—x3 + 6zy + 3y? — 8y,/zy — 1. Note that ¢'(y) = 6(x +y —2,/Ty) > 0 for all z,y > 0. See
Fig. A.2 A.3 Maximum at (1.5,0.75), approximately. Solving 1 = 10cos(z — y/9)
and z + 11y — 10sin(z — y/9) simultaneously we find x ~ 1.5542 and y ~ 0.763132.
See Fig. A.3. A.4 y—0.1583 = —0.4563(z — 1.25)  A.5 (3.995, —0.04157). This
may be estimated as at the end of Example 2, though it would be tedious to obtain four
significant figures. Alternatively, from setting the numerator of 3’ equal to zero and the
original equation we find the equations —3zy(zy?+2)—1 = 0 and z°y(xy?+3)+x—2 = 0.
Solve the first for zy? and use the result in the second equation. Solve the result for y,
finding y = (2 — 22/3)/z2. Substitute this in the first equation and simplify to obtain
3x4 —100x3/9 — 8x2 + 24x — 24 = 0. One zero is 3.99542.  A.6 Factoring the positive
exponential from f’(zx), it is not difficult to observe that the remaining factor is > 0 for
—1 <x <1. Using the SOLVR, z =~ 0.784 = f~1(0.9). By interpolation, f~1(0.9) ~ .786.

B.1 Let z € [0,3] be given. Define g(y) = €%°%(0.1z + 3) — e%(1 + 22 — 0.2z). Then
g(0) < 0 & g(y) > 0 for sufficiently large y. So, by IMV, g(y) = 0 for at least one y. For
y >0, ¢'(y) > 0. So, at most one y such that g(y) = 0.
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CHAPTER 5

 

Section 5.1

A.1 Shortest distance = 1.228 A.3 zn ~ 8.1802, f(Zmin) ~ —0.030050 A.4
Tmin ~ 3.2923, f(Tmin) ~ —1.7939, Tmax = 2, (f(Tmax ~ 2.5066  A.5 Tmin = 3,
f(Zmin) = 0.35714, Tmax ~ 0.59607, (f(Tmax ~ 1.1184 A.6 Local minima at 0.0000
and 1.0650; local maxima at 0.26900 and 1.4000 A.T Tmax = 1.0000, f(Zmax) =
0.73576

 

Section 5.2

A.1 0.78 A.2 Usinga = 0.0,b = 0.5, and —f, xmax =~ 0.37 A.3 —-1.57
A.4 9.42 at x. = 2.47
B.4 If x is outside the interval & is moving away from the interval, each distance is
increasing
C1 Ifa <u <v < Ztextmin and f(u) < f(v), then f would have a local minimum in
[@, Zmin], which is impossible.

 

Section 5.3

A.1 znin ~ 0.528; f(Zmin) ~ —0.086 A.2 znin ~ 2.718; f(Zmin) =~ 0.632
A.3 From a plot of f on [—1.5,1.5], with the help of Z-BOX, f is unimodal on
[-1.5,—0.3] and [0, 1.5]. The function —f is unimodal on [—0.3, 0]. Using GSS on these
intervals and calculating f at —1.5 and 1.5 we find z; =~ —0.570 is a local minimum point
and f(x) = 0.00866, x3 ~ 0.791 is an absolute minimum point and f(z3) ~ —0.551, 22 =
—0.222 is a local maximum point and f(z2) ~ 0.0419, 29 ~ —1.5 is an absolute maximum
point and f(xo) ~ 3.4125, and z4 ~ 1.5 is a local maximum point and f(z4) ~ 2.2125
A.4 0=~0.936 A.5 Znin ~ 133.333, f(Zmin) =~ 250

B.1 It takes 2.5m function evaluations in BMM to get (1/2)™ factor. So, to achieve
10~5, BMM needs 2.5(5In10)/In2 = 41.5. Similarly, GSS requires (—51n10)In((—1 +

Vv5)/2) ~ 23.9 B.2 14.1 feet B.3 See problem A.5. If the angles are measured
from the normal to the mirror, then they are ~ 0.927 (radians) or 53.1°

C.1 From BE? = (AB/2)?+ AB? and BE = AB/2+ AH, we have AH? +AB-AH =
AB?. From AB? — AB- BH = AB(AB — AH) = AB - BH we get AH? = AB - BH.
C.2 A solution procedure is to generate y = g(x) values with the program

<< —- X  X 'W' STO '"4%kW72X%XY "3-2%kW™3%kY"24+9%kWkY-1'

'Y' X ROOT > >,

which may be stored as G. Next, store

<< =» X x X SQ X G SQ + >

as F and then use GSS, perhaps with E = 0.001
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CHAPTER 6 ANSWERS

 

Chapter 6 Section 6.2

A.1 [-58/53,138/53,89/53] A.2 [3,-2,2] A.3 [8,4,-1]
A.4 [53/43,-38/43,236/43] A.5 [—1.4760---,—6.6033--- ,—4.5055-- -]

B.1 [5/2 + (1/2)k,—1/2 — (3/2)k,k], for any choice of k  B.2 [1/4,—-1/4,-3/4 +
k, k], for any choice of k B.3 [2 —5r —s,—2 + 4r, r,s], for any choice of r,s B.4
Pivoting on the {1,1},{2,2},and {3,3}-positions, for example, gives a matrix with bottom
row [0,0, 0, 13], which shows no solution B.5 [-3/4+k,3/2,k,1/4], for and choice of
k B.6 [14/5+r —(7/5)s — (3/5)t,—18/5 + r — (6/5)s + (6/5)t,r, s,t], for any choice
of r,s,t B.7 No B.8 [k,—k,0,0] is a solution, for any k B.9 =~ [-1.6740r +
3.3801s, —1.3294r + 2.1030s,r, 5], for all r,s

 

Chapter 6 Section 6.3

A.1 [-1.0943---,2.60377---,16792---]  A.2 [3,—2,2], with CLEAN
A.3 [8,4,—-1] A.4 [2,—2,5], with CLEAN
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Chapter 7 Section 7.1

A.1 73/23 —1/3; Ls = 5.32813 ++; Us = 6.31558 ---; As = 5.82186---  A.2 Aj =
0.31117--- A.3 Ajo =8.11352--- A.4 Ay = 2.00503--- A.5 Decreasing;
Ajo = 1818.96--- A.6 Increasing (after changing variables); As = 1.21105-:-
A.8 Decreasing; 0.84239 -

B.1 Let n = 80; Si(1) ~ 0.946 B.2 Increasing; let n = 360; 1.318; no difference
in final outcome B.3 n = 208; v(1) = 1.5 + 1.089 = 2.589 B4 A, = L, +

(h/2)[f(b) — f(a)]. If f is decreasing, An = Un + (h/2)[f(b) — f(a)].

 

Chapter 7 Section 7.2

Purge a or b from the current and higher directories.
A.1 1.2189---  A.2 2(b+1)%2-2/3 A.3 2.6487---  A.4 —In(cos(b))
A.5 0.5707--- A.6 barcsin(b)+v1 — 2-1 A.7 1/cos(x) A.8 zarctan(z)—
In(1 +22%)/2 A.9 1.60 A.10 1.20 A.11 0.917

B.1 No.
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Chapter 7 Section 7.3

Al ZT — 1in2(~ 0438824573118) A.2 45  A.3 1.13209039331 A.4 8
A5 8 A.6 30.5787478555 A.7(a) 30.4184213031 A.7(b) 15.2092106276
A.7(c) The curves in (a) and (b) generate the same set of points. The difference is
that curve (a) generates this set twice. A.8 9.42477796077 A.9 8.31384387632
A.10 10.7350606813 A.11 0.179519580206 (=~ (27)/35) A.12 11.2498439727

A.13 39.4784176044 A.14 2v2 (~ 2.82842712474); no. A.15 7.64039557806;
no. A.16 (0.6, 0.34285714286) A.17 (0.267303498964, 0.603553390598)
A.18 50.2654824576 A.19 67.672872654.

B.1(a) 108 B.1(b) 21.6 B.1(c) 21.6 B.2(a) 15.639015605
B.2(b) 26.6261172656  B.2(c) 21.9742033213 B.3 Volume ~ 41.3206167666 -- -
Surface area ~ 70.0107085546 B.4 5.26110432798 B.5 359.435746536 B.6
< ROT X 0 SQ 1 + / X [ —NUM >» Model picture is Fig. 4(b)
without shading. B.7 4.6465 The curve has a vertical tangent at (0, 0). B.8
<< -— FGAB<xABXTFG- %x X [ -NUM AB 05 F

SQ G SQ —- %* X [ -NUM R-C A BF G —- X [ —-NUM /
> >

 

Chapter 7 Section 7.4

Al My =1.00824--- A.2 M=2-1-1,n=13,T)5 = 0.74646 - - -
A.3 Tig = 0.52364--- ,m/6 = 0.52359: -- A.4 Tg = 3.14156: - A.5 Mj; =

1.21111... ,T9 = 1.21105--- A.6 Ts = 0.94538: -- A.7 35.25 AS8 Ts =

1.24167 - -- A.10 n = 10 for trapezoid rule, (75) ~ 1515.22, y(7.5) ~ 79.83

B.3 TRAP2 calls SUM twice, adding nearly the same numbers. B.4 5, is based on
2n subdivisions and h = (b — a)/(2n). Since n is stored, the number (b — a)/n = 2h is
stored under H and used in M,, and T,,. Result follows from

To + x2
 My = ( )2hot es = anlar) +o

Tn = 32h[yo + 2(y2 + + + Y2n—2) + Yan] = hyo + 2(y2 + +) + Y2n]

B.6 Graphically, f“(0) = —2 and |f"(z)| < 2 elsewhere. Analytically, maximize the

function f” by finding the zeros of f(z) = —8z(x? — 1)e~*" and checking endpoints of
[0, 2]. B.12 Graphically, |f"(z)| < f"(n/2) = 0.686---, say, M = 0.7. This gives
error less than 0.00905 < 0.01. B.15 Take b=3, M =25> |f(0.2)] =24.56---, n =
31. E1(0.2) = 1.2, E1(0.4) = 0.7, E;(0.6) = 0.4, E1(0.8) = 0.3, E;(1.0) = 0.2, E;(1.2) = 0.1
B.16 M =2,n=86,I'(3/2) ~ 0.886 B.18 Calculate P(0) = 0.5, P(0.2),..., P(2.0).

P(0.2) = 0.54 (1/v2m) [2 e~%/2 dg,etc. Also, P(—0.2) = 1 — P(0.2), etc. Include

(1/27) as part of integrand for calculation of M. For all of the values 0.0,0.2,... ,2.0,
we may take M = 0.4. Then n = 2. P(0.2) = 0.58, P(0.4) = 0.66, P(0.6) = 0.73, P(0.8) =
0.79, P(1.0) = 0.84, P(1.2) = 0.88, P(1.4) = 0.92, P(1.6) = 0.95, P(1.8) = 0.96, P(2.0) =
0.98.
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Chapter 8 Section 8.1

A.1(a) not monotone, converges to 0 A.1(b) decreasing for x > 8, converges to
0. A.1(c) not monotone, converges to 0. A.2(a) +m/2 A.2(b) all real
numbers A.2(c) 0, +1 A.3(a) increasing, converges to 1. A.3(b) decreas-
ing, converges to 1. A.3(c) not monotone, converges to 0. A.3(d) increasing,
converges to e. A.3(e) decreasing, converges to 1. A.3(f) increasing, converges
to mr. A.4(a) bounded, not monotone, not convergent. A.4(b) bounded, de-
creasing, convergent to 0. A.4(c) bounded, decreasing, convergent to 0. A.4(d)
bounded, not monotone, convergent to 0. A.4(e) bounded, not monotone, not con-
vergent. A.4(f) bounded, not monotone, not convergent. A.4(g) bounded,
not monotone, not convergent. A.4(h) bounded, not monotone, convergent to 0.
A.4(i) bounded, increasing, convergent to 1. A.4(j) bounded, decreasing, conver-
gent to 2. A.4(k) unbounded, increasing, divergent. A.4(1) bounded, decreas-
ing, convergent to 0.8 A.4(m) bounded, decreasing, convergent to 0.8. A.4(n)
bounded, not monotone, convergent to 0. A.4(o) bounded, not monotone, conver-
gent to 0. A.4(p) not bounded, increasing, divergent. A.4(q) bounded, decreas-
ing, convergent to 0. A.4(r) unbounded, not monotone, divergent.

B.1(a) converges to 0. B.1(b) converges to 0. B.1(c) converges to e®.
B.1(d) converges to In2. B.2(b) (435, 1729426.51524).

 

Chapter 8 Section 8.2

A.1 In2 A2 e-1 A3 = Ad © A.5 © A6 -1 A.7 0
A8 2 A900 A101-In2 All -— A RA 1R -
> >. A.12(a) 0.75  A.12(b) 3  Ad2(c) &  A.12(d) 1-05=05

C.1(b) consider the series 1 +1073 + 10714 +1071% 4...

 

Chapter 8 Section 8.3

Al(a) 1-22+z2*-25 A.2(a) 0.2-0.16(x —2) + 0.088(x — 2)? — 0.0384(x — 2)3 +
0.01312(z — 2)4 A.3(a) 2z + 0.422% — 1.29322 — 0.264% + 0.240132° + 0.0515608z°
Ada) (z-1)—3(z-1)°+3(z-1)3- 3-1) +Li(z-1)°

 

 

 

           
 

23 123 225 i.
B.1 x — 37 +. 231 will guarantee that the error is < 281 < 107“.

67 was|y : zsjv CL—~~ i, "1 7 Ti
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Chapter 9 Section 9.1

A.4 Starting at (0, 0) and walking along the z-axis in either direction would be an in-
creasingly steep climb. Along the y-axis in either direction would be an increasingly steep
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descent. Along the lines y = +%, you would theoretically stay on level ground; in fact,
footing would be difficult with a wall to your right and a steep drop-off to your left.
A.5 100 A.6 0.999649728498

B.1 The level curves for C = #1 intersect the interval (—x, 7] of the y-axis at exactly
one point.
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Chapter 9 Section 9.2

TOQETT 16 00 104Al -36 A2 -3=-042857T1 A3 -5=-0592 Ad =x

28.8444102037 A.5 [—4, —3] = —4i—3j  A.6 (5i + 9j — 5k)/v/131
A.8 0.0449211581301

 

Chapter 9 Section 9.3

Al 2x -3y+42=20 A2 z2=5+t,y=-2+2t,z=1+3t A.3 zr =3+2t,
y=-t,2=-T+9 Ad 30x +11y+2z=14 Abs z=-34+t,y=2,2=-5
A6 y=2 A7 4x+10y+3z2=0 A8 r=-2-12t,y=1+10t, 2 = —-1 —4t

 

Chapter 9 Section 9.4

A.1 Minima at (0, 0) and (1, 0); saddle point at (0.5, 0) A.2 Minimum at
(0, 0); saddle points at (1, +2) A.3 Maximum at (—1/4, 1/2); saddle point at (0,
0) A.4 Maximum at (0, 1); saddle points at (1, 0) and (1, 2) A.5 Minimum
at (4/3, —2/3); saddle points at (0, 0), (0, —2), and (4, 0) A.6 (2.42954732764,
—0.27210776694) A.7 (2.53559500795, —1.66972010972), —45.8960394318, 5.7x10~1!

B.1 Minimum at (2/3, 7/3); saddle points at (0, 1), (0, 5), and (2, 1) B.2 Mini-
mum at (0.450183611295, 1); saddle point at (0.450183611295, 0) B.3 Maximum at

(v/2/3, 0); minimum at (—+/2/3, 0); saddle points at (1.52568712087, +1),
(—0.258652022505, +1), and (—1.2670350936, +1)
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Chapter 9 Section 9.5

A.1 625 A.2 —0.0049208730168 A.3 12  A.4 —0.0730133288
A5 2v2+1~1.25424723326 A.6 12 A.7 7/12 A851 A9 -20r¢
A.10 1/3 A.11 1.0696750649; error bound 10° A.12 1.63808113709; error
bound 2 x 10~° A.13 0.240477289185; error bound 3 x 10~12
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bisection algorithm, 137

bisection method for mini-

mization, 164

BOXZ, 30

branches, 34

BYTES, 17

candidate theorem, 160

Cardano’s method, 73

Cassegrain telescope, 97

CENT, 26

center, changing, 29

CENTR, CNTR, 29

change sign key, 9

checksum, 17

CNCH,26

CNCT, 26

COMMAND LINE, 44

composition of functions,

24

CONIC, 126

conic sections, 126

conics, reflection properties,

95

critical point, 278

CROSS, 272

Crout LU decomposition,

189

cubics, solving of, 73

cursor keys, 6, 29

curves

defined by a function,

103

defined by an equation,

124

defined parametrically,

112

level, 260

DEF, 42

deflate, 67

delete keys, 14

deleting a name, 24

delimiters, 10

derivative, 76, 116

Descartes’ rule of signs, 28

dialog boxes, 20

difference quotient, 76

differentiation

chain rule, 85

complete, 85

composite functions, 86

implicit, 87

stepwise, 85

directional derivative, 267

divide key for matrices, 189

DOT+, 31

DOT-, 31

double integral, 284

DRAW, 26

e, inside back cover

E. coli, growth rate, 53

editing, 24

elliptic integral, 198

EQ, 19

EquationWriter notation, 3

ERASE, 26

evaluation of functions, 18,

263

EXPM, 60

extreme point, 105, 276

Ferrari’s method, 73

FEVAL, 19

FIX, inside front cover

flag —2, inside back cover

flag —3, inside front cover

FOFX, 45

FOR-NEXT, 34

FOR-STEP, 34

formulas

applying, 204

programming, 15

FPAIRS, 107

FUN, 25

function

evaluation, 18

implicitly defined, 87

inverse, 155

limit of, 52

of several variables, 259

unimodal, 164

function, ways of defining

algebraic style, 41

program style, 41

fundamental theorem of

algebra, 104

gamma function, 167

Gauss-Jordan algorithm,

181

golden section, 173

golden section search, 168

gradient, 268

graphing, 25, 47, 102, 260

XH, 48

HALT, 9

Head Power, To Student

Hubble space telescope, 95

i, inside back cover

ID, 15

IF-THEN-ELSE, IFTE, 34,

37

improper integrals, 213, 223

INDEP, 113

inflection point, 108

input forms, 20

INPUTS, 113

integration by parts, 213

interest compounded, 43

continuously, 56

intermediate value theorem,

136

inverse of a matrix, 178

keys, 11

KEYS, inside front cover

KILL, inside front cover

LABEL, 41
length of curve, 205

LEVEL, 262
level curves, 260

limitations, 212

line integral, 290

lines, 271

local variable, 15

loops, 34
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low point theorem, 165

lower sum, 193

lowercase letters, 16

LU decomposition, 189

MATCH, 88

maximum point, 106, 276

menus, 10

midpoint rule, 217

minimum point, 106, 276

movies, 255

nested form, 62

Newton’s method, 142

normal line, 271

ON key, inside front cover

other HP, To Student

Padé approximation, 44

PARA, 113

parabolas, 126

parametric curve, 112

partial derivative, 267

partial fractions, 228

PDIM, 121

personal polynomial, 38

7, by area, 56

by circumference, 61

peace of, 114

pivot, 181

pixels, 31

PIXON, 32

planes, 271

plot parameters, 26

plotting two or more

curves, 30

POLAR, 120

polar curves, 120

Polish notation, 2

POLR,121

POLY, 35

polynomial, 35, 62

PPAR, 26

program, 14

program index, inside back

cover

PURGE, 24

purging, 24

quartics, solving of, 73

RAD, 6

radians mode, 6

RCL, 24
recalling, 24

RESET, 26
reset memory, inside front

cover
reverse Polish notation, 2

Richardson’s extrapolation,

84
ROOT, 106, 148
root of equation, 135

rotation

of axes, 125

of curve, 128

of equation, 129

of point, 127

RPN, 2

saddle point, 279

SCALE, 47

scales, changing, 27

secant formula, 142

second degree equation, 125

second derivative test, 278

self-intersection points, 119

sequence, 234

geometric interpretations,

235

terms of, 235

vocabulary for, 237

series, 245

associated sequences, 249

geometric, 249

geometric interpretation,

250

harmonic, 249

Maclaurin, 253

power, 252

Taylor, 253

vocabulary for, 249

Simpson’s rule, 219

snubber, 39

SOLVE, 19

SOLVR, 19

spacing, 16

SST, 9

stack, 8

standard plots, 26

STD, inside front cover

steepest ascent/descent,

268

steepest descent algorithm,

276

Stirling’s approximation, 46

storing an object (STO), 24

storing graph (STO), 30
substitution method, 213

surface, 259

area of “curtain”, 290

area of solid of revolu-

tion, 211

plotting, 260

SYMBOLIC, 20

symmetric difference, 80

synthetic division, 62

tangent line, 109, 118

tangent line approximation,

80

tangent plane, 271

Taylor’s formula, 84

“tick” notation, 3

TPAIRS, 117

trapezoid rule, 218

triple integral, 288

trouble-shooting, inside

front cover

unimodal theorem, 165

upper sum, 193

uppercase letters, 16

VAR menu, 15

vertices, 126

volume of solid of revolu-

tion, 211

*W, 115
Wallis’ inequality, 46

WHERE method, 20

white keys, 7

Wickes, William, To Stu-

dent

XRNG,49
(X,Y), 29

YRNG,49

zero of function, 62, 105,

135

ZOOM, 26

zooming-in, 30





Program Index
1

ABCS
ABST
AREA
BMM
BSCT
CIRC
CLEAN
CNCL
CODE
COMP
A
DBLY, DBLX
DD2
DEL2,DEL3
DFLT
DIST
DOTS
DVD
EXTREME
FEVAL
FINV
FOFX
FPAIRS
F2EVAL, F3EVAL
GCD
GSS
GR
HERON
ID
INCL1
INPUTS
LENGTH
LEVEL
LINE
LINXY, LINS
LRECT
MAC
MAMI
MID
MOVIE
MSUB
NEWT
NSTH
NXT
NXTX
PARA
PIV
PIVR
PLANE
PLUS

Angle between curves
Part of integration package
Calculates area under curve
Bisection to minimize f
Bisection to approximate zero of f
Approximations of 7
Removes rounding errors in matrices
Cancel common factors for PIVR
Stores MOVIE frames
Forms composite of two functions

Generates triangular numbers
Calculates double iterated integrals
Calculates directional derivatives
Calculates gradients
Deflates polynomial
Calculates distance between two points
Plots sequence of numbers as dots on number line
Used in PVR
Calculates approximations to extreme points
Evaluates function at given point
Graphs f and f~!
Similar to FEVAL
Generates ordered pairs (z;, f(;))
For functions of two and three variables
Greatest common divisor for PIVR
Golden section search to minimize f
Plots sequence as graph
Calculates area of triangle from its sides
Displays your name, address, and phone number
Inclination of tangent line
Recovers inputs of PARA and integration programs
Calculates length of curve
Draws level curves
Calculates parametric equations of line in 3-space
Calculates line integrals
Part of integration package
Calculates partial sums of Maclaurin series
Used in FINV
Numerical integration by midpoint rule
Shows movie given frames

Prepares partial fraction data for [+] key
Newton’s method to approximate zero of f
Part of integration package
Calculates next term of sequence
Calculates next partial sum
Plots parametric curve
Gauss-Jordan pivots
PIV with exact arithmetic
Calculates equation of tangent plane
Exact addition for PIVR

99
196
208
166
139
58
190
185
257
25
34
285,286
268
269
67
17
236
186
277
19
157
45
107
265
185
171
239
18
15
94
113
205
263
272
291
196
253
156
220
256

232
144
196
240
246
113
182
183,186
272
186
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POLR
POLY
PSUB
REPY
RESET
RMAT
ROTCV
ROTEQ
ROTPT
RRECT
SBTR.
SCNT
SD
SDTST
SEQUENCE
SERIES
SIMP
SUM
SURFACEAREA
SYND
TANPAR
TAYLOR,
TLIN
TMES
TN2,TN3
TPAIRS
TPLZX
TRAP
VBOX
VEL
VOLUME
VSEG

Plots polar curve
Fast polynomial entry
Prepares partial fraction data for PIV or PIVR
Formats for implicit differentiation
Resets standard plot parameters and much more
Formats matrix for PIVR
Rotates parametric curve through given angle
Rotates second degree curve through given angle
Rotates given point through given angle
Part of integration package
Exact subtraction for PIVR
Demonstrates ROOT in program
Forms sum and difference
Classifies critical points
Scrolls through sequence
Scrolls through partial sums of series
Numerical integration by Simpson’s rule
Part of integration package
Calculates surface area of solid of revolution
Polynomial synthetic division
Calculate tangent line equation for parametric curve
Calculate partial sums of Taylor series
Calculates equation of tangent line
Exact multiplication for PIVR
Calculates equations of tangent planes and normal lines
Generates ordered pairs (x(t;), y(t;))
Calculates triple iterated integral
Numerical integration by trapezoid rule
Calculates volume of box
Plots velocity graph from position data
Calculates volume of solid of revolution
Draws vertical line segment

121
35
231
88
26
185
128
130
127
196
186
151
166
279
242
249
221
195
211
64
119
254
110
186
273,274
117
289
220
16
82
211
36















Trouble-Prevention & Trouble-Shooting
 

13.

14.

If the hourglass annunciator 2X won’t go away, try pressing [oN]; if that doesn’t

work, press and at the same time. You could also “reset the memory” so
that the calculator goes back to being like it was when you first took it out of the
box. Just press ON, A, and F simultaneously. Think twice before you do this. Also,
don’t tell enemies or practical jokers how to do this!

If you get hopelessly tangled up, press one or more times. Press to get to

your variables menu. Press [HOME| to get to your home directory.

If the annunciator ((e)) comes on and if you haven’t set alarms, you have to change
the batteries. Be sure the calculator is OFF when you change batteries. See the
Owner’s Manual for additional instructions.
If the calculator won’t allow RPN entry of algebraic expressions like X + 1, clear flag

—3: —3CF
If the calculator puts a number on the stack when you press a letter key (like X), it
probably means that that letter is on your VAR menu and should be purged. If that
doesn’t work, check the VARmenu in higher directories.

If all numbers are shown with, say, two decimals, you are in 2 FIX mode. To get into

standard mode, press in the MODES menu ([9] ).

If you're having trouble graphing, try purging the plot parameters (key in 'PPAR'

or press ).
Troubles in graphing expressions including trig functions often disappear by going to
RADians mode. RAD should be in the upper left-hand corner of the display.

If you get vertical lines when you graph a function, go to page 2 of the PLOT menu

([9] 8 NXT) ) and toggle to CNCHR, then redraw the graph.

To quickly access the graphics environment from the stack, press «€. To leave the

graphics environment, press .

To get rid of the menu in the graphics environment, press MENU (page 2 of EDIT);
to get the menu back, press any white key. [There is no simple way to get rid of the
menu in the stack environment]
To trouble-shoot a program, insert HALT in your program, then use SST to single-
step your way through the program. Or put input data on stack and name of program,

then |PRG| |NXT| [RUN] [DBUG]| [ssT] [ssT], ....
If the HALT symbol doesn’t go away, press :

If R £ Z or R £ £ appears in the upper left-hand corner of the display, it means

you are in polar (cylindrical) or spherical mode. To get rid of either, press:

[VECTR]| [NXT| [RECT]. To get rid of R £ Z, press
If the graphics cursor seems to temporarily delete pixels as you move it around the

viewing window, press in the graphics menu (|EDIT )-
If you are having trouble storing an object, the name you are trying to store it under
is probably being used for something else. The calculator won't let you store an
object under a built-in name; however, you can fool it by using lowercase.

If you have trouble entering a program, check your spacing. Put spaces around —
only if it is being used to define local variables. Be careful not to confuse 0 with O.

To get numerical approximations for = and e (and to get (0, 1) for i), use =NUM. To
automate this, key in —2SF ENTER(to go back, key in —2CF ENTER).

 

 

 

 

 



FEATURES THE NEW ADVANCED CALCULATORS FROM HP: HP 48G® and HP 48GX®— but

not at the expense of lucid discussions of the main concepts of calculus (and Head Power).

In addition, there is an emphasis on approaching problem solving using numerical,

graphical, and symbolical techniques; A, B, C exercise sets; and Student Projects suitable

for group work, among other useful features.

Also of interest:

Hunt, Calculus, 2/e

ISBN 0-06-043046-X

Hunt, Calculus of a Single Variable, 2/e

ISBN 0-673-46927-1

. Schiller/Wurster, Calculus: A Unified Approach, Functions of a Single Variable

ISBN 0-06-500715-8

Shenk, Graphing Calculator Workbook for Calculus: An Exploratory Approach

ISBN 0-06-501724-2

This workbook contains exploratory worksheets and other assignments for a graphing

calculator based course. Substitute pages for popular models are available to adopters only!

Hundhausen/Yeatts, Laboratory Explorations in Calculus with Applications to Physics

ISBN 0-06-501719-6
Excellent resource of problems and activities which effectively bridge the gap between

calculus and physics.

. Sparks/Davenport/Braselton, Calculus Labs Using Mathematica®

ISBN 0-06-501196-1

Interactive labs which get the students personally involved in experimentation, discovery,

and the writing of mathematics.

: Spero, The Electronic Spreadsheet and Elementary Calculus

ISBN 0-673-46595-0
A guide to learning calculus through the use of the spreadsheet.

Turner, A Short Calculus Workbook
ISBN 0-673-46318-4
Hundreds of fully worked examples and semi-programmed solutions.

CONTACT YOUR COLLEGE BOOKSTORE TEXTBOOK MANAGER FOR
INFORMATION ON ORDERING THESE HELPFUL RESOURCES.

ISBN 0-0k-5001k5-k

9"780065"001655 
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