
CALCULUS
WITH THE HP48

SECOND EDITION

LYNN E. GARNER

Calculus with the HP 48

Second Edition

Lynn E. Garner
Brigham Young University

Dellen, an imprint of

Macmillan Publishing Company

New York

Maxwell Macmillan Canada

Toronto

Maxwell Macmillan International

New York Oxford Singapore Sydney

© Copyright 1993 by Macmillan Publishing Company,
a division of Macmillan, Inc.,

Dellen is an imprint of Macmillan Publishing Company.

Printed in the United States of America.

All rights reserved. No part of this book may be reproduced or transmitted in any form or by

any means, electronic or mechanical, including photocopying, recording, or any information
storage and retrieval system, without permission in writing from the Publisher.

Macmillan Publishing Company

866 Third Avenue, New York, New York 10022

Macmillan Publishing Company is
part of the Maxwell Communication
Group of Companies.

Maxwell Macmillan Canada, Inc.

1200 Eglinton Avenue East, Suite 200

Don Mills, Ontario M3C 3N1

ISBN: 0-02-340582-1

Printing: 1 2 3 4 5 Year: 3 4 5 6 7

Preface

There are calculators, scientific calculators, graphing calculators, and the HP 48S
and HP 48SX, the symbol-manipulating graphing calculators. The HP 48 represents the
state of the art in calculators, even blurring the line between calculators and computers.

The HP 48 is a stack-based machine, meaning that operations are performed on
objects already on the stack. That forces "reverse Polish" logic, notable for the fact that no
parentheses are needed in performing complex arithmetic. The 48 handles 20 different data
types, including numbers, complex numbers, vectors, matrices,strings,lists, algebraic
expressions, graphics objects, and programs, as well as managing units (148 plus
compounds) and storing objects in a multi-level menu.

The HP 48 has 32K of RAM and 512K of ROM. It has 2100 built-in commands
organized into 60 menus, with 58 commands on the keyboard. It has a 224-character
symbol set, 150 accessible from the keyboard. The entire keyboard also has a "user" mode,
in which another 270 key assignments can be made. For exchanging files, it has an infrared
read/write port and an RS232 port, with Kermit in ROM;serial interface kits for desktop
computers and printers are available.

Built in are:

enumerical routines for root finding, numerical integration, and finite summations;
algebraic manipulations for expanding, collecting, equation-solving, derivatives, Taylor

polynomials, and some antiderivatives;
operations for complex numbers, vectors, and matrices, including inverses, determinants,

and various norms;
estatistical routines for standard one- and two-variable statistics, including covariance,

correlation, regression (5 models), and upper tail probabilities;
graphic capabilities for 8 types of functions, graphical analysis (zeros, slopes, extrema,

derivative, and area), multiple graphs, some painting, and animation;
«a programming language (RPL) with such high-level constructs as counted and indefinite

loops, branching structures including case statements, and a debugging environment;
«editing environments,including special ones for equations and matrices;
+a built-in clock with alarms, date and time arithmetic, and timed start-up; and
a programmable BEEP command that allows one to play music.

It is not the purpose of this monograph to explain all the features of the HP-48. Rather,its
aim is to give the student a brief tutorial in its basic mathematical uses, and then to explore
the many ways in which the HP 48 can be used to enhance a calculus course. In the
process, the student will become familiar with most ofits mathematical features.

Neitheris it the purpose of this monograph to teach calculus. We assumethat the studentis
looking for a way to speed up and enhance the learning of calculus concepts. The
traditional topics ofthe three-semester "engineering and science" calculus course are dealt
with here, as well as special environments suitable for the various approaches of "reformed"
calculus. Waysto use the calculators in connection with each of the topics are presented.

ili

Therefore,this book is a collection of tutorial helps,tips, tricks, explanations, programs, and
environments that will aid the calculus student to "get the most" from his investmentin the
state-of-the-art technology represented by the HP-48S and HP-48SX.

It has been my pleasure to associate with many students who have come to love the HP 48
as I have. To them for the insights they have given me and for letting me experiment with
their classes I express my gratitude. I am also grateful for the support and encouragement
rendered by the people at Hewlett-Packard in Corvallis. And to my colleagues from across
the country who have helped me understand better how a calculator can be used
appropriately in a math class I am particularly indebted.

Lynn E. Garner
Brigham Young University

iv

Table of Contents

Chapter 1. Basic Use TULOrIAlooueeueeoeieeeeeeeeeeeeeeeeeeee eee eee eases eases esse eeseeens 1
The KEYDOAIT.ccuviiiiiiieeeeceeeectsetesates sates s ae sase sane on 1
TRE STACK...eeecreer ete etter sate eran ens 1

ENTYcottereerste ee eabe eee aae cena scares erae ae nae ean2
OPETALIONS ...ccuvieiiiieeireeeiieeeree ete eeeteeceeee eae ee este sessae eases esse sesssesessasssnsse sans 2
Stack Manipulation............cceeueeeevveeeeeecneeenieceeee cnn, cereeeeeeeeenrrraraeaeanens 3

Data TYPES... eeeiouiiiniiiiiiieiiie citer etre cereetree saaecarae eases sabe seats se ssae sense senses snneees3
MENUS. c..oiiiiiiiiieetcetterttertectet ee ste estes eae steer ae sbae sb se esse srse er ssaesae esse snssaensaensaens4

SOF KEYS...oiiiiiieiieetettecteetceteraeter aera erae caesar ae erae sane en4
Modes.......ccoovviiiiinrreannnne. vteereeennnens veeeees ceeeeeerrteeeeeetaeeeeserrraeaesssnntaeananns4
The VAR MENU.....ccciiiiiiiiiiiiiicteeteectecreercreer settee rre eras enna nss eae snnns4

StOTING..uvviiiiiiiieenieecreeerecereCeeeeeererreeeeeetteaeeaeataaeesnnraraaaean4
ReECAIIINGccoouiiiiiiiiiiecteeeeteecreererectaereserase5
PUTING..coiiiiiiiecereeeeeereeeraeeraeeaees5
RENAMING....cociiiiiiiiiiiiicecereeee5
EdINGceniteectsereeens5
OTEIINE«oiiraecree e sate ees raeennae as 6
SUDAITECIOTIESceouvierieeiiecieeieetceteraestes creas rae sees6
INAVIZALION. ...uviiiiiiieieiiiee eerie eects cera eee etr aes esearee ee eanae eee eanne ee ennnes6

FOrm Of @ NUMDETc..oiiiiiiiiiiiiieceeececeeeeeeeean7
Rounding: Number of Decimal PIaces..........ccccceeeeeriecrienecnieeieeiecvennen.7
Rounding: Number of Significant Digits...........cccceveeviieviieciinieineeieennene,7
Decimals to FraCtionsccueeiieiiiiieeiieciie cee eeeeeeree cvs eeeree erases8
Prime FactOriZation...........cccueiiuiiiiiiiiieniiecececreer etrecress 10

Chapter 2. Use in Precalculus TOPICS..............ccooviviiiiiiiiieeeeieeeeeeecreereae 13
Algebraic Manipulation.........cccueceeeiieiieiniiiiieeie cecececeeeeeters ears ete eee nes 13
SOIVING EQUALIONSviiiiiiiiiiiiieiieciceroree sateen sens eens 13

Isolating a Variableccccooviiiiiiiiiiicieceeeececeeeeeran 13
ROO FINAING....cciiiiiiiiiiiiiiececeeececeecreercreer eteeens 14

Evaluating EXPIeSSIONS.......cccueeiiiiiiieiieiieerienreenreeneeee sere eens ese eseesve esse esse esse enne ones 14
Graphs Of FUNCHONS.........ccciiiiiiiictieceececeeases esses snes 16

PLOt Parameters... .coocueiuiiiiieiieniiectiececeetre etree sree erne ene ene senna 16
DIAWING ..ceiiiiiiiiiiitieieeetcetee cere e esate eerae senses saree esas ae esas senses snnseens 17
SAVINGeitcettesates ee saae se sate setae sates sane 18
ZOOMINGueerruiiiiiieiienrienueeteasseessseessae esse ese essssensse esse snsssenseeessesssessssenses 19
Multiple Graphs.......coceeeieniiiniieieiieteeeeeeeeeereese eevee reese ereessen 19
Zeros and Other Graphical Properties...........coccevveeieieriereenreeieiecece 19
Plotting Unusual FUNCHONSc..coviiiiiiiiieiieceececeever eeeeen 19

ABS and FLOORcoooiiiiiiiiieceeecececeeee 19
Fractional EXpPONentsccceevviriiieiiiecieciecie cieseens20
Routines as Functions c.ccccooviiiiiiiiiieciccececee,20

ANIMATION «...eeeiuiiiiiiiiieniieeeitieeieeeeteeesteeeeteee ete seesae senses erases sstesessaesesessnsseeas 21
SYNhEIC DIVISION... ..cctiiiiiieiiieiieteeeeeeeeeeee eases sete sete seane en21
TrigonometriC FUNCHONS.ccviiiieiiiiiieieetceteraeeveeseesea senna22

ANGLE MOAES.....eooiiiiiiiiiiiiiiieciececececeeerste sree reese sarees22
Teeeeettete cate teste eat ee eat te ebb eee t ates abba ae atta ae a ntaa ee enrteeensaneeensaeaenres22
VALUEScoiiiiiieciieettereee tte setae cares sate a esate ee eaae senses enreeseneaens23
Inverse Trig FUNCHONScccoviiriiiiieciecececreereevee neers23
Applications of TTiZONOMELTYccvuiiiiiiriieniiececeevecare evan25

Table of Contents

Logarithmic and Exponential FUNCHIONS........ccccueiiriieriniiennniieniiiceciieeecence28
LiINEar AIZEDIacciiiiiiiiiiiiiiiritecreercesar ee srre ce santes sabe cs ssaae ss sane es snnne en28

VIBCHOTS.ceviiiiiiiicititteecece tees ce eeriratae eases ssssssnnesssssessnssnsassessssssssnnssaessssses29
Matrices and Determinants.............ceeeueeereirreennreeesneeeeesnneeesesneesssnsee senses30
Systems of Linear EQUAtIONS.........ccccceerriirerenneeenneeenenneennnnnecnsneeesnsnneens31
Gauss-Jordan RedUCHION.........ccuuiiiiiiiiiiiiirieee ce creereee eee eeienese cece ees31

COMDINALOTICS.....uvveteieiiieiereriieeeenireeeesineteesssaeeessnseeesssnnsaessesssaessesssrsssssssnressssnn34
Elementary Plane Analytic GEOMELTY........ccoovuerrrirennunerernieinnnieniieienneensnesennnnees35

Distance FOrmula..........ccccooivriiiiiniiiiiiiiieieeeeeceietennieeenna35
Midpoint FOrmUIa.........ccueoiiiiiiiiiiiiieecreececesieeeecnre ee srne cs snae canes35
The Line on Two POINtS.........coooiiiiiiiiiiiinireeirieeee sree ceeeeeecennnecssnneeens35
The Point on TWO LINES........ccoieeiiiiiiiiieiiiieiennieeee cece eeieeeceineecsnnnee ens 36
COllINEAT POINES.......oviiiieiiiieieeeciie ee eecree ee eeireee ce seaeee ee sesnneneeesessmeneessesnns 37
CONCUITENE LINESuvviiiiiiiiieie cette ciieeeceerae ee seeanene esse snnne cess ssnnsaeesssses37
Distance from a Point to a LINE ccooviiiiiiiiinnnnereneeeeeceece cence cnnneeens38

Chapter 3. Limits and Derivativescccooovveiiiiiiiiiieieciiieee cere ee eieree ee seeneeeens39
LIMES.ceteriseteeee te cesta e esate ee saat tees ease ee ee eaasaee ee sansaeaes sasnasaesesansaeees39

Graphical Evaluationccccuuiiiiiiriniiiiiiieeeee ee eeeieieeeee cece eiiinnene ceca39
Computational Evaluationccooeiviiiiiiirininniiiieieeeee ee eeeeieneneee enone39

FINAING DEIIVALIVES.....uvviiiiiiiiieiiiiiieie ce eeerie tees ee ee eiiaeee cece eee sanirseae ease esse sssnnnnnns 39
ZOOMING ..ccoeeieiiiiriirereeeeeeeetirreaeeeesssssssarseaeesessessssnsreseaeseesessssmsssassesessesanns 39
SIMPLTYING ...eviiiiiiiieciesesses cere ee sree cesar ee ssane een40
EVAIUGLING ..eiiiiiiiiieieciee cececece ee cette eect ee ee seaeee ees sanaae sess saaaae sees40

Higher-order DEIIVALIVESc.uiiieiiiieiiiiiieciiee cite eeiieeeeee eee eereeceeneaessesnaesessnnnes41
Implicit Differentiation.ccuiiiiiiiiiiiiiniieceeeeeereseee eneeee erate coarse ssane sens41
TanENt LINES eeeeecteee eiitre tees ees saarese ae ee ee se sasnnnsaae sess ass snsasannns42
FUNCHON ANALYSIS...cutieseeeerrirae teases sesesereeeee esses snnsnseeaeeecs ss sesssnssnnns43

Points of INlECHIONcciiiiiiiiiiiiiiiiiieeeeeeeee43
ROOt FINAING...cciiiiiiiiiiiiiecececertseeee sereecveansae cesses43

Bisection Method..........cueiiiiiiiiiiieiineiieeeceeccccnnrnnaee ees43
Newton's Method...cececece45

Function Tables Ce rererrereeereeeeerereeeeeeeeeaesesesesesnsssennsnnnnnnnnenennsnnnnnnnres46
Creating Tables of Function Values........cccccocecieiiinnniniiiinnnnnnnnn.47
Difference Tables........c.eooviieiiiiiiiieeiiecececere48

Chapter 4. Integrals and Their Applications..............ccocovviiiiiierniiieennieeeeee,51
The Built-In INtEEIatorccoiiiiiiiiieieeectsessere cece ees ennsaaene 51
Areas, Volumes, and Arc Lengthscooooiiiiiiiiiiiiiiniceeecceeenecece,52
ANTAETIVALIVES. ..c.uuviiieiiiiee citer eeieeeeeeteeetvees erates ssereeeessesessasseesesseessnnsesesssaeessssnes53
Differential EQUAtIONScooiiiiiiiiiiiiiieieiiitie ee eiieee ee eeieee ee seneee ee snnnae es sssansaees 54

SI0PE FIEIAS ...oviiiiiiiieeeeeeeeeeeae55
INEEETAL CUTVES...ouiiiiiiieciiiiieeectseee eeeee esas eeaare ae eee se essnanaee ees 56
Boundary ValueProblems...57

Chapter 5. Transcendental FUNCtionS.............ccccovviiiiiiiiiiiieecereeee59
LIN, €, aNd EXPouoiiiiiiiiieceeerreessere ee se statte ee se saene ae ee snnnneaees 59
Inverse Trigonometric FUNCHONScccuviiiiiiiiiiiiiiiiieeeeececececeessere59
Hyperbolic FUNCHONScoiiiiiiiiiiiiiiceteicccereeecree cere caneeesnnaes59
APPIICALIONS ...coceiiiiiiiie eects eeerie ee eeerre ee eetee esas sstreae ee ssssatae ee ssnsseeeessnnneeeessossnnas60
CUIVE FINEccctrees cesar ee ee saeae cess snseae ee ssannaes60

Functions with Parameters...........ccceveeiiiiiiiiiiiiieieee ee cenineneeece esas seennenenes61
Plotting Data POINLS.......ccuiiiiiiiiiiiieceicenie ee eree ce siieee es sane ee sane eens62
Fitting Curves to Datacccooiiiiiiiiiiiiieceieeeeae62

vi

Table of Contents

The Line on Two POINtS........cccoovveieiiiieeiieieecreeeeceeeeeenene een.62
Least SQUATEs CUIVES.......ccoveerieinieinieennieeenie eerie eecreeesae sense neennns63
CUDIC SPINES......cconiiiniiiiiitieieeeireeste etree rreeae sees sae sae ee saassaesnneens64

Chapter 6. Numerical Integration Theorycccooovevierierieicrieecrieecreeervenen.67
Riemann Sum RULESocviiiirietiececeeectececeeerstecareer ne68
EITOT ANALYSIS.....uiiiiiiiiiiiiiinientcenieecie cette rte ec cee eases esses esas ee ssaes sees nbae snes snns69
Trapezoidal RUIE.......cccuuiiiiiiiiiiiieeiecececreer eeeee erae ee rae sree enneae70
Midpoint RUIE.........cooiiiiiiiiiiiieeteeeeteer cere sree ste erae sree sae eraeerbe sree seen sansannsans71
SIMPSON'S RULEooiiiiiiiiitieecececececesree cave esas se ssae eases71

Chapter 7. Sequences and SEIIeS..............c.coueevveviiriiirieeieenienniennteesreenseessesssesssesssens73
Terms Of @ SEQUENCE.........cociiriiniiiiintietietiecteeie eect ce eee ee eer eeseessaesae essen seensansans73

Sequences by FOrmula.............oooiieiieeieiieeeiiecieceeree creererencenee73
ReECUISIVE SEQUENCES... .c.ueriiriiiieiinriniieie cece renters sre sree se assesses sree sens74

Partial SUMS.......coiuiiiiiiieeeeceeeectscareeresters sr ae saae sera sansa75
GEOMELTIC SETIES.....uiiiuiiieiiieiieeieecreer cette cetera e saree erase sass esaae sense es sanee sans75
Taylor POlynOmIals........cooouiiriiiniiiiiiiiiiieecece eerie cree erasers career ae sera esanae sens75

Chapter 8. Conic Sections and Polar Coordinates................ccccoeveeviiveinrieenneinenns79
Graphs Of COMICS......uiiiiiiiiiiiiciiecececreercree cares eaae se ssae esses erseaeennees79
IMPLICIT FUNCHONScoiiiiiiiiiiiiiciiececeeectseevee cree srae eee sae senna an 79
Rotation of the Coordinate Systemcceeeveeeiveeieeeeineeenreeeerre eevee,eneneeees80
Parametric EQUAtIONScoociirviiiniiiiiiiiieeniee cic ceeereesree sve eee eevee esas snsneessae esse sens 82

Chain RUIE.......ccoouiiiiiiiiiecececeerectacere eres cara e saan eens 82
GIAPRS eeecreaseere eter esrb ete aera eeaae sane eenr eens 83

Polar COOTAINALESeviiiiiiiieiiiieeecieeeceteracece ee ce eaae eee aae ee earae ee sansaesennns 83
GIAPRNSccnaeras eee eee aae ee etar ae eee rae aes nnaeeennns 83

Chapter 9. Solid Analytic GEOMELrYc.ceveerieiinriiiiiecriee creerereerenee85
Points and PIanes..........cooouvieiiiiiiiieceiecieecececececeeeeeraserssana85

The Plane on Three Points...........ccovveeeiiiiiiiiieiecieee cece cere ee eree ce eaae eens 85
Distance from a Point to a Plane...........cccceeeeiviieiiieeiccieeecrieeeeeeeeen85

LINES coeectcetera steer eerste ete eete seats e ett eaae sete a ett estas eas aerae eras ene senraenns86
Line on TWO POINES......couiiiiiiiiiciieceeeceeceeeteceteraerr eaneee 86
Line of Intersection of Two Planesccccoeveevvveeiiieineienneieeie cerca87

Space Curves and Graphs...........ccueouiiiieeiieeieciecececreereres88
Parametric SUMTACEScooiuiiiiiiiiiicececette cetteeens eens91

PLANESccoaaeeeearae ens91
Graphs of Functions of Two Variables...........cccocueeveviviiiniiiiiinieiecineeenns92
QUAAIIC SUITACES«uveitiseeeaaaaae sees esse sssasnnaaeaes92
Surfaces of REVOIULION............covvviiriiiiriiiieicieecieecee cececreerere eaees93
Graphing Parametric Surfacesc.covveeviieeieciieeciieciececeeve evens94

VECIOT FUNCHIONS.citieseects ce etaeecentbeecntaeeesnesennsaesennnnes96
Velocity and ACCEIETAtION.............ccuveeuieeeiereeireereeeieereeresreese ere enna97
CUIVALUTE ...coeiiiieecieeeceeteeeeeeeeeeetteeeeat ee ee eats eeeeaaae se eaae ee eeaae se ennsaeseesssee senses98

Cylindrical COOTAINALEScceeerrerieeirecieeie cre erreereeereesseeesresreeessensaesssenssenssensens98

Chapter 10. Partial Differentiationcc.cooouieiiuiiioieiieeeeeeeeeeeeee eeeeee eens 101
Functions of TWO VariabIes..........ccccecvuieiiieiiiniecie creercreereevee sere sane ens 101

GIAPNSccoeersteears eras ee bae se bae saree saneas 101
CONLOUT MAPS....ciiiiiiiiiiiitienieeenie cette ee ee sire eestae setae saree ssseaessseaesssesnnsanan 101

Partial DETIVALIVESuuiiiiiiiiiieciieecircae eave eeetae conve etree erases este se ssae senses ones 101
Two-Variable Newton's Methodcooovviieiiiieiiiieieceee cece cere secre eevee 101

vil

Table of Contents

GIAGIENLS ...uvveiiiiieiiiieee ee eeiieee ee eerre esas setae esas saree esas sssssaasanssssseessnsnnsseeeessennsnseeesennns 103
Directional DEIIVALIVES........ueeiieiuieiiiiiieiiirieeeniteeessraeeesseessssseeesssneesssssseesssssneessnses 104

Chapter 11. Path Integrals and Multiple Integrals..............ccccccoeviiininnniinnennnennne. 107
Path INtEEIAlSceniteeeerae esse setae esse sssaae esse sssnneaeensnnns 107
Numerical Multiple INtEZration...........ceeeueeerriieirnieirnnneeeneeee eerie sree cesneee sane 108

SIMPLE INEETALScenitcecececeeectscesar ae ee se eneee ee snnnaeen ae 109
Double INtEGTALS ...cuuveiieiiiiiiiieieiteeerencescescere ee sare es saanee sans 110
TTIPIE INLEGTALS.....ouiiiiiiiiieeeeecreercece erree eee e sees asraee esse ensnnnenes 112

Chapter 12. JUSE fOr FUN...cecececrrree ee eertrae esses raeae ee ssnaneeas 115
The Time Value Of MONEYcccccuuiiiiiiiiiiieeecccrieeececiree ee sesrveaeeessssssneeeessessnsases sens 115
CRAOS.....eiiieieetteeteerteerstesreesae ce sree seas ssaa essa se ss snaesennae senses senses estas srnees 116
Public Key Cryptographycccccceeeernieiiniienieennieenseeeeeeesneeessecsssnecsssnessssne ssn 119
IMIUSIC...eeeiiitieeecitte cette cette ees tte cesta ees bae se saas ae sssbaesessssaessnsaasssssaessssssasssssssassssns 123

INACXeerstecette teste se sbae ees r ae senate se bae ees abae se saat as subane 125

viii

Calculus with the HP 48

The HP 48 (S or SX) represents the world standard in a calculator. It is powerful enough to
provide sophisticated learning environments, and at the same time simple enough to get
quick and accurate answers to simple problems. It is an ideal machine for studying
calculus—it is always at hand and it can do anything you want to do in calculus. Itis a
"learning machine" that the student can gradually transform into a "doing machine" suitable
for the professionalin the field.

Our main point of view here is to learn the principles that govern use of the calculator. The
HP 48SXOwner’s Manual (hereafter called the Manual) provides many examples, butit
sometimesfails to tell you the principles involved. Hopefully, by learning the overriding
principles, you will quickly master your machine.

The Keyboard

Take some time to study the keyboard of your HP 48. Note the locations of the various
types of keys: the number keys, the letter keys, and the operation keys. Note other symbols
that occuras labels; you will need them eventually. Many of the keys are menu keys, but
you can't tell by looking in all cases; you will learn them as we go along.

Ofparticular importance are the shift keys. On the HP 48 there are three keys that behave
as shift keys. The blue keyis called the right-shift key, and is used to get the blue labels; the

orange key is called the left-shift key, and is used to get the orange labels. The [a] key is

used to get the letters. While the [o] key is held down with one finger, letters may be

typed with another. Pressing [o] twice "locks" it so that several letters can be typed in

succession without holding down the [o] key. Pressing o] again or pressing

unlocks the a-shift.

The right- and left-shift keys are used with the BE key to get other symbols, including

lower-case letters and Greek letters,that are not printed on the face of the machine; see pp.
52ff of the Manual. The HP 48 has 49 keys with 230 symbols or commands assigned to
them. Of the 224 characters in the HP 48 character set, 150 are directly accessible from the
keyboard.

The HP 48 also has a User keyboard, activated by the command, that is completely
blank; you can assign to the keys anything you want, as described starting on p. 216 of the
Manual. A total of 276 key assignments can be made on the User keyboard.

The Stack

The HP 48 is a stack-based machine, meaning that the basic method of handling data is by
use of a stack. Each new item that is entered into the machine becomes the bottom object on
the stack, and all other objects already on the stack are pushed up to the next higher
positions.

Ch. 1 Basic Use Tutorial

Commands given to the machine are applied to objects already on the stack. For example,
the command +, to add, is interpreted by the machine to mean that the bottom two objects on
the stack are to be taken from the stack and added, and then their sum is to become the new
bottom object. Since two objects are taken off the stack, and only one is placed back on,all
other items on the stack will drop down one position.

Entry

To enter an item into the machine, simply type itin. As you type,the object appears below
the stack in what is called the command line. The end oftyping is signaled by pressing
[ENTER]; that command takes the object from the command line and placesit on the bottom
(level 1) of the stack.

If you make a mistake while typing an item, the back arrow key will erase one

character at a time. The cursor keys may also be used to reposition the cursor on the
command line; the key erases the character on top of which the cursor rests. To erase

the entire object you are typing, before you press the key, press the key (the

key).

To remove the bottom object from the stack, use (the key performs that
function without shifting if there is no command line). may be used repeatedlyto
remove several objects from the stack, one after another. To remove all objects from the
stack, press [CLR].

Operations

As was mentioned above, each command given to the machine applies to the objects already

on the stack. The buttons + |,[- |, [x], and command the machine to take the bottom

two objects from the stack, add, subtract, multiply, or divide, respectively, and put the result
back on the stack. Thus to perform an operation on two numbers, you must first place the
two numbers on the stack. Actually, most commands will also enter the second number for

you, making it unnecessary to press |ENTER| after the second entry.

For example, to multiply 21 by 56, type

21
5621 36 EENCOE)Ee)A

f: 1176
Et (CETCIETY)(FE(RTATEIE

This order of doing things is what is called "reverse Polish" logic.

Ch. 1 Basic Use Tutorial

Other commands work the same way, though they may not operate on exactly two stack

 objects. The exponentiation command and the root command Vy| take two numbers

from the stack, but the , Vx , and commands operate on only the bottom number,

the one in level 1. Still other commands that we will meet take many objects from the stack,
and some do not use stack objects. For example, uses as many stack objects as there
are, and ignores the stack.

Stack Manipulation

DROP] and are examples of stack manipulation commands; thatis, they only move (or
remove) the objects on the stack. Another stack manipulation command on the keyboard is
[SWAP], which, as you might expect, interchanges the bottom two objects on the stack.

Another useful commandis to press to duplicate the object on the bottom of the
stack. It is equivalent to the command found on the PRG STK menu; DUP is used in
a program to duplicate the bottom object.

Other stack manipulation commands are found in the PRG STK menu, described in the
Manual on p. 78.

Data Types

The operations and manipulation commands given above apply not only to numbers on the
stack, but other objects as well. The HP 48 has 20 data types, the most useful of which are
numbers, arrays (matrices), vectors, complex numbers, algebraic objects, lists,strings,
graphics objects, and programs. All data types are available for use at all times, even from
programs, which makes the calculator very powerful. Operations on objects requires
compatibility of data types, however; not just any two things can be added, for example.

To give you an idea of how different objects are treated by the same command, we will

consider the command, addition. If real numbers, complex numbers, or binary integers

occupy both the bottom levels ofthe stack, has the anticipated effect: it replaces them
with their sum. The same is true of vectors and matrices, provided that the arrays have the
same sizes; an array sum is a new array whose entries are the sums of the entries in the old

arrays. For strings and lists, means concatenate; for example, if "AB"is added to

"CDE", the result is "ABCDE". For names and algebraic expressions, yields the

indicated sum, which is presented as an algebraic expression. If is applied to two

graphic objects, the objects are superimposed. will not operate on programs.

Data types are described starting on p. 80 of the Manual. More information on operations
is given starting on p. 133.

Ch. 1 Basic Use Tutorial

Menus

On the HP 48 there are a total of 60 menus, counting submenus, listed on pp. 697-8 of the
Manual, and discussed briefly on pp. 55ff.

Most menus have more than six commands, the maximum number that can be visible at one

time. To get the next page of commands, press the key; [PREV] gives the previous
page of a menu.

Soft Keys

The top row of keys under the calculator's display window are called soft keys and are used
to select commands frem a menu. Whatever menu is showing, each soft key has the
meaning of the command in the panel of the menu above that key. When a menu changes,
the meaning of the soft key also changes.

Modes

The MODES menu allows you to select the notation in which numbers are presented, whether
you want angles in radians or degrees, and so forth. Its commands are discussed in the
Manual, starting on p. 220. It is probably good to start by selecting STD, SYM, STK,
ARG, CMD, ML, and RAD. If at any time the machine fails to perform as you expect,
check to see that the modes have not been reset. (Some games change mode settings; many
students have been puzzled at the machine's refusal to draw graphs after they have been
playing Tetris.) Most of the things you want to do in calculus require that SYM (symbolic)
and RAD (radians) modes be set.

The VAR Menu

The VAR menu is the storage place for containers that you create. Whenever an object is
stored in a container other than the stack, it appears on the VAR menu. Press to view
the containers in the VAR menu.

Storing

To store an object, put the object on the bottom ofthe stack. Select a name for the object,
and type in the name, beginning with the single quote mark, '. Then press the button,
and the objectis stored in a container with the name you typed.

For example,to store the object on the bottom of the stack in a container named AB,just
type

1: 1176

AB LL
(type ' first, then hold down Lo] and type

A and B, then release [o])

and press [STO]. 1:p ECESE(TETSERE33

Ch. 1 Basic Use Tutorial

The name AB will appear in the VAR menu.

Recallin

There are several ways to recall the contents of a container. If the container does not contain
a program, simply pressing the soft key under the name of the container will put the
contents of the container on the stack. If the container does contain a program, however,
pressing the soft key will cause the execution of the program. Therefore, a program must

be recalled using [RCL]. The easiest wayis to press the quote mark,| ' |, and then press the
soft key corresponding to the container, thus putting the name of the container on the stack.
Then press . The contentsof the container is placed on the stack. Using also
works with containers of objects other than programs. A shortcut for is to press the
right-shift key and then the soft key corresponding to the container.

Purging

To remove a container (and its contents) from the VAR menu, type the name of the container,

beginning with [] , and then press |PURGE|. To remove several containers at once, make a

list of their names, separated by spaces, and then use |PURGE|. Press to start a list and
then press the soft keys of the containers that you want to remove. When the list is
complete, press and then [PURGE].

Renaming

To change the name of a container, recall the contents and store it under the desired name,
and then purge the old container. There is no provision for renaming in any other way.
This procedure works equally well with variables and with subdirectories.

Editing

There are several ways to change the contents of a container. The first, which is a complete
change-over, is simply to store a new object in the old container.

A second way to change the contents of a containeris to "visit" the container and editits
contents. First type the name of the container,starting with ' (or type ' and then press the
soft key of the container), and then press [VISIT]. The contents of the containeris placed in

editing mode, and the cursor can be moved by pressing the arrow keys; the key
deletes the symbol the cursor covers. If you type with the block cursor, previous text is

written over, pressing changes the cursor shape to an arrow, after which new text is
inserted between previous text. Additional editing mode features are described in the
Manual, starting on p. 111.

At the end of editing, pressing discards the edited object; the original contents of the

container are unaltered. Pressing [ENTER| saves the edited object in the container, replacing

the old one.

Ch. 1 Basic Use Tutorial

To edit the object in level 1 on the stack, press [EDIT]. To edit the object in level # on the
stack, type n and then press [VISIT]. Pressing saves the edited object, and pressing

discardsit, leaving the original unchanged.

Additional editing environments for equations and matrices on the HP-48 are described in
the Manual on pp. 241 and 350.

Ordering

Whenever a new containeris created, it appearsin the first position on the VAR menu.
Therefore,after several containers have been created, you usually discover that you want
them in another order. Fortunately, they can be reordered, using the |ORDER| command on

the MEMORY menu.

To use the command, first create a list of the menu itemsin the order in which you
want them to appear on the menu. This applies to the entire directory, not just the first six
items. Make the list by pressing and then the soft keys in the desired order; end by

pressing [ENTER]. Once thelist is created, call up the MEMORY menu and press [ORDER];
when you return to the VAR menu,the items you specified will be in the order you specified.
If the list you make does not specify all the items in the menu, the unspecified items retain
their relative order, and are grouped together after the specified items.

Subdirectories

It is soon apparent to the casual observer that the VAR menu can become quite unwieldy.
For that reason,it is convenientto create subdirectories, into which related containers can be
organized.

To create a subdirectory, type the name you have chosen forit, and then press (for
"create directory") on the MEMORY menu. When you return to the VAR menu, you will find
the name you typed (or as many letters of it as will show) as first item on the menu. It will
also looklike a file folder, indicating thatit is a subdirectory. Enter the subdirectory by
pressing the soft key below it. You will see a blank menu, waiting for containers to be
created. Anything you store at this point will be stored in the subdirectory. You are now
down one level from the top in the VAR menu. The top levelis called the HOME level; you
can return to it by pressing the command

You can also create subdirectories inside subdirectories. Storing takes place in the current
level of the VAR menu. You can use the contents of any container in the current
subdirectory, or from any container in any subdirectory "up the line", all the way to the
HOME level, simply by calling its name. Programs stored in the current subdirectory or in
any "parent" subdirectory, all the way up to the HOME level, can be called at any time.

Navigation

With several subdirectories, some of them nested within others, navigation around the VAR
menu can become a problem. The current path, listing the subdirectories from the HOME

Ch. 1 Basic Use Tutorial

level down to the current level, is shown at the top of the display whenever the stackis
visible. The PATH command puts the path on the stack.

If you enter any name from the current path, without the single quote mark this time,it is
interpreted as a command to go to that subdirectory.

The command moves you up one level in the current path,to the parent of the current
directory. In a program, this command is known as UPDIR.

Form of a Number

Here we discuss some utilities that change the form of a number in the machine. Some are
built in, and others we must supply for ourselves.

First of all, study the description of the commands STD, FIX, and SCI on the MODES menu,
beginning on p. 220 of the Manual. These commands determine how your calculator will
customarily present numbers to view.

Rounding: Number of Decimal Places

The command RND on the MTH PARTS menu rounds the number on level 2 of the stack to
the number of decimal places specified by the number on level 1. The "number" on level 2
can be real, complex, a vector, or a matrix. As an example of the use of RND, put your

calculator in STD mode, and suppose that you want to invert the matrix | 3 :]

Enter the matrix by typing 1
1: I[12]2 [ENTER] [¥] 3 [SPC] 4 [ENTER] [ENTER]. [34913

Invert it by pressing [1/x]. The result _
involves numbers with 11 decimal places 1: [[-1.Sa ws

showing. EEEEnBeSa:

Tell the machine to take only 9 decimal
places seriously by typing 9 and pressing 1: LL -2

| : 1.5 =.5 1]RND] . The result is probably whatthe EECTSrTeEEEE
machine meant all the time.

Rounding: Number of Significant Digits

The command RND will not work on numbers that must be presented in scientific notation
because they are too large or too small to be displayed otherwise. Also, it will not give the
expected result if your calculator is in SCI or ENG mode. The following program, called
SIG.D, enables you to round the number in level 1 to a specified numberof significant
digits, thus changing the precision without having to change the display mode. The
program is

Ch. 1 Basic Use Tutorial

« » N « XPON LASTARG MANT N 1 - RND SWAP ALOG * » »
checksum: # 28637d

Type in this program and enter it onto the stack. Then type 'S IG. D and press [STO].

For example, if the number 1.23456789E20 1: 1.23456789E20
isin level 1, EECEG3REEAECER

th d 3 [sIG.D dsitto 3 1: 1.23E20e comman rounds it to LEER
significant digits.

A remark or two is in order about the entering of programs. One may type in the symbols
that make up the program asit is written, or one may select the commands from the various
menus. In every case,it is necessary to observe the spacing shown and to distinguish
between the numeral 0 and the letter capital O. Spacing is crucial for commands such as
> Nand LIST, which involve the arrow and letters with or without space between them. If
you type the symbols one at a time, there will sometimes be spaces where you don't want

them. To get LIST, it may be easier to go to the PRG OBJ menu and press the key [LIST].
The same is true for such commands as C*R (found on the PRG OBJ menu) and STO+
(found on the right-shifted MEMORY menu).

Another device that aids in correctly typing a program is the checksum, described on p. 101
of the Manual. This is a binary integer uniquely associated to the contents of the program.
To determine whether you have typed in the program correctly,after it is stored, put the
name of the program on the stack and press [BYTES] on the MEMORY menu. The checksum

and the size of the program are returned;if the checksum is not the same asthat given, then
there is a typing errorin the program. It is assumed that your calculator is in DEC mode,
for the checksums are given as "decimal binary" (base ten) integers.

Decimals to Fractions

The command found on the HP 48 is designed to give a "best guess" fraction

equivalent to the decimal number on level 1 ofthe stack. It is not foolproof, but will reliably
return fractions with denominators of up to about 5 digits. The Manual discusses the *Q
command on p. 136, where it indicates that the accuracy of the command depends on the
display mode ofthe calculator. If the display mode is n FIX, then only the first n decimal
places are used to guess whatthe fraction was. If the display mode is STD,then all 11 or
12 decimal places are used.

As an example of the use of *Q, suppose you want to add the fractions : and on Type the

following:

3 [ENTER] 8 + 5 [ENTER] 12 + 2: «379
1: . 416666666667
CICIEEXRT3313CE

Ch. 1 Basic Use Tutorial

+ 1: . 791666666667
(CICIETY]EX]RTEAEEH

'19-24'

Or you may doit this way:

'3+8+5+ 12 [ENTER] 2: '19-24'
1: '3/8+5712'
(v.00.Le[205.0E00[10PHESPF

[EVAL] 2: '19-24!
1: . 791666666667
[7.1004](var205.E50|IOPHE]ZPRE

>Q|. 2: '19-24'
1: '19-24'
£0]ICEEEICE[TEABEA

The *Q command also works on algebraic expressions, turning the decimal numbers in them
into fractions. For example, if the expression

"3125*%X+.428571428571*Y=.378666666667"
is on the stack,

'.3125%K+
.428571428571 Y=
{30000000:

GETTET

then pressing producesrational 1: '5/16%K+3/7xY=142/

coefficients. EEReeRAE

The command on the ALGEBRA menu takes a decimal number from the stack and
expressesit as a fraction times 7. It will give spurious results if the number on the stack is
not actually a rational multiple of 7.

For example, if the number 1.3463985154 is on the stack,

1: 1.34639685154
EICETETRETEAECEE

pressing will return the number
37% 1: ‘377%

’ 4-HTHAT]1HPPLY]UOTiw

. 3 3n 3
(Note that this is read as 7 mor =, not 7)

There are some limitations to the *Q command that should be discussed. If a decimal
number corresponds to a fraction with k digits in the denominator,it may take a mode
setting of as much as (2k - 1) FIX to recover the fraction. It is therefore clear that with a
denominator of six or more digits, you should not expect to be able to recover the fraction at
all.

Ch. 1 Basic Use Tutorial

One response to this limitation is to use STD mode all the time, but that may be too much
accuracy. Here is a simple example of what can go wrong.

5 2 7 \ osItisafactthat {5 - 5 = 3g. If you type '5/12-2/9 while in STD

mode, the machine returns pop, which you suspect right away is not the right

answer. If you are in FIX mode of 10 orless, however, the machine gives the correct result.
What has happened is that in computing the result, the machine suffered a roundoff error.

The decimal equivalent of= is .194444444444, while the result of the computation is

194444444445. That last digit, the result of a round-offerror,spoils the result in STD
mode.

It is therefore evident that the most appropriate mode for use of the *Q command is
probably 9 FIX. Unfortunately, it is much more convenient to operate in STD mode or
something like 4 FIX mode or a SCI mode. To avoid having to change from the present
mode in orderto use *Q appropriately, the following little program, called D+Q, can be used.

« RCLF 9 FIX SWAP »Q SWAP STOF =»
checksum: # 23425d

Store this program by typing ', holding down the a key and typing D » Q, and then
releasing o and pressing [STO].

This program remembers the mode the machine is in, changes to 9 FIX to apply »Q, and
then returns to the previous mode. With this program stored at the HOME levelof the
VAR menu,it is available for use at all times. (I have assigned the program « DQ » to a
single key on the USER keyboard, so that I don't always have to find the command on the
menu.)

Prime Factorization

The following program, called PFACT, gives the prime factorization ofthe integer in level 1
on the stack. If the integeris already prime, the numberitself is returned. For the symbols
not appearing on the keyboard, see p. 52 of the Manual.

« DUP 'N' STO (> 1 CF
WHILE 1 FC?

REPEAT NI IP 2 » RK
&

WHILE K R N K MOD 8 # AND
REPEAT K 1 + 'K' STO
END
IF KR

THEN N + 1 SF
ELSE K + N K ~ 'N' STO
END

V
v

10

Ch. 1 Basic Use Tutorial

»

END 'N' PURGE 1 CF

checksum: # 14205d

Store the program by typing PF A C T [STO]. As an example of the use of PFACT,

suppose you had to reduce the radical V675. Type

1:

675 675
(ET(IETSCE(TO3

¢ {333 5°53
EETCTTTE(eRACR

to get the prime factorization, which is 3*3*3*5*5, The radical can therefore be reduced

by pulling out two factors each of 3 and 5, so that V675 = 15v/3.

11

Since the calculus constantly refers to precalculus mathematics, it only makes sense that you
should learn to handle precalculus mathematics on the HP calculator in order to do calculus
on it. In this chapter we take a brief look at some of the uses of the HP 48 in precalculus
topics.

Algebraic Manipulation

The symbol-manipulating calculators can do quite a bit of algebraic manipulation. Some
examples of what can be done are shown starting on p. 125 of the Manual. The algebraic
manipulation commands are explained in detail starting on p. 386.

There are some limitations of which you should be aware. Although the calculator will
expand and collect byitself, it will not factor by itself. You can walk it through to get simple
factoring done, but you must do it "by hand". If you use the program EXCO from the
Manual, p. 568, you are sometimes surprised at what the calculator thinks is simplified
form.

Solving Equations

Solving equations is something the calculator can do pretty well. It can do it in either
algebraic form, for some equations, or numerical form, for others.

Isolating a Variable

The command on the ALGEBRA menu can be used to isolate a single occurrence of a
variable in an equation. To use it, enter the equation onto the stack, and then enter the
variable you wish to isolate. Then press [ISOL|.

For example,to solvefor x in the equation x2 + y2 = z2, type the following:

X2+Y[y]2=Z[y] 2 [ENTER] 'X 1}, KA+Y2=22!
GITIETTNTWCRETENA

Bel
The symbol sl in the result stands for £1. That is, the machine gives both solutions to a
quadratic equation. More generally, the machine will use De Moivre's theorem to give you
all n solutionsof an nth-degree equation. The symbol n1 in a result stands for one of the
integers 0, 1,2, ...,n- 1.

For a quadratic equation, the command on the SOLV menu also isolates the variable,
using the quadratic formula. If there is no other variable in the equation, the result is a
numerical answer. If there are other variables, the result is in terms of the other variables.

13

Ch. 2 Use in Precalculus Topics

For example,to solve the equation x2 + 3x + 4 = 0, type in

X [37] 2 +3 * X + 4 [ENTER] ' X 1 R435+4!
GTTEEETTTTECTAYA

[QUAD]. 1: 'K=(-3+s]=*
20y2. 64375131106))~

BLTFREETETTTTECTATA

The resultin this case is given as a pair (s1 = x1) of complex numbers.

Root Finding

There are at least two methods of finding numerical solutions to an equation in a single
variable on the HP 48. For a quadratic equation, |QUAD| returns a numerical solution,

modulo the symbol s1. Suggestions for further handling quadratic equations are given in
the Manual, starting on p. 391.

For other equations, the command on the SOLVE menu is used. First enter the
equation, then the variable, and then an approximation to the desired root. will find
the closest solution to the approximation given.

For example,to find the positive zero of the function x3 + 4x2 -3x -12,type in

'X[y¥]3+4*X[y¥]2-3*X-12 : R3+4xR"2-3xR-12)

'X [ENTER] 2 ’
ATO0A[ATADEYEEEBEEEE

. 1:: 1.73205080757
SAATHDEYEEEBEEE

The Solver offers another way to find roots; we will discuss it next in another context.
Other methods of root finding are possible using programs, and will be discussed in the
appropriate contexts later.

Evaluating Expressions

It is often desired to evaluate an expression involving variables for given values ofthe
variables. The HP Solver environment was created precisely to do that easily. The Solver
creates a menu for the expression and for each variable in it, enabling you to easily "plug in
values and get values out.

For example, suppose that you wish to evaluate the expression a2 + b? for various values
of a and b. First type the expression

TAREBE fendi

14

Ch. 2 Use in Precalculus Topics

Then go to the SOLV menu and store the expression as your equation by pressing

STEQ]. 1:AETHCEEEAEEARTE

This command stores the expression in a container named EQ on the VAR menu. Then
enter the Solver environment by pressing

[SOLVR]. &
CECIECICC]

You will see a special menu with choices labeled A], B], and [EXPR=]. To set A equal to
4, say, and B equal to 5,type

4

[A
]

5 [B]. Then press [EXPR=]
to see the value of the expression. L:_EaPR:6.10312423743

Toevaluateat A=4and B=3,just type 2: EXPR: 6.40312423743

3[BJand press again. Ermr—e :

The value of A remains 4 until you changeit.

2 A a
n

 [

The Solver can also be used to solve for one variable in a formula when the other variables
have values given. This is discussed in the Manual starting on p. 250. To find a zero of a
function f(x), put the function f in the solver, put an approximate value of the zero in the
variable X, and then solve for X by left-shifting and then pressing [X].

Another way to evaluate an expression is to do by hand what the Solver does for you. First,
create a container for each variable in the expression by storing a desired value in each.
Then type in the expression, and use [EVAL]. This procedure is usually used within a
program, where the Solver environmentis not available.

SIN X at x = 0.15, type For example, to evaluate the function f(x) =

X

1s X t 15
(ETCTTET(AEAEER

STO 1:
CE(TESEEA

'S IN (X [ENTER] X [ENTER] 2: SINGH).
ICECTTCEETA

+ 1: 'SIN(X) 7K!
IECE(TESEGERA

i 1: . 996254216493
IE(ETCES)(RE(Te

15

Ch. 2 Use in Precalculus Topics

(Make sure the calculatoris in radian mode!)

After evaluating an expression, the containers for the variables are left on the VAR menu. It
is a good practice to PURGE such containersif they are not going to be used again
immediately. Not only it is good housekeeping, but some function commands don't work
as you expect when there is a container named for the variable on the VAR menu.

Here is a way to clean up after yourself automatically. The following program, SV,sets up
to use the Solver. It creates a subdirectory to hold the equation and the variables used in the
Solver, enters that subdirectory, stores the equation on level 1, and then calls the SOLVER
menu;it also creates a QUIT button on the subdirectory which purges the subdirectory and
everything in it.

« 'S' CRDIR S STEQ « UPDIR 'S' PGDIR » 'QUIT' STO 38 MENU =»
checksum: # 58764d

If you decide to use the Solver, you can fetch or type in your equation, use SV, and solve to
your heart's content. When you are done, press and then [QUIT]; no trace of using
the Solver remains except for the results you left on the stack. If you wish to recall the

equation used before using QUIT,just press first.

If the program SV resides at the HOME level of memory, then it can be called by typing

SV [ENTER],
no matter what level of user memory is current. Exiting by pressing |QUIT| leaves the

memory and the current level of memory unchanged.

Graphs of Functions

The HP 48 has many built-in graphics commands that make for flexible and convenient
plotting of the graphs of functions. Most of these are accessed through commands on the
PLOT menu.

The display on the HP 48 is 131 pixels wide and 64 pixels high. The display can be
thought of as a window showing a portion of the Cartesian plane. The particular portion
shown, and therefore its scale, is controlled by the contents of PPAR,the plot parameters.

Plot Parameters

PPAR contains a list, of the form

{ Xmin, ymin) (Xmax, ymax) indep n (Xaxis, Yaxis) plottype dep}.

The point (Xmin, Ymin) is at the lower left corner of the window, and the point (xmax, Ymax)

is at the upper right corner. "indep" is the independent variable used, X in most simple
cases. The number n is a resolution number, and tells the machine whether you wanta pixel
turned on in each column ofthe display. The point (xaxis, Yaxis) 1s the point at which the
axes intersect, and may or may not be visible through the window. If an axis is shown,it

16

Ch. 2 Use in Precalculus Topics

will have a tic mark every ten pixels. "plottype" identifies the choice made in PTYPE, and
tells which type of graph is to be drawn. "dep"is the dependent variable, Y in most cases.

The default plot parameters are

{ (-65,3.1) (6.5,3.2) X 0 (0,0) FUNCTION Y }.

These parameters put the axes through the center of the screen, with a tic mark every unit.
The container PPAR is on the VAR menu; if no such container is there, entering the PLOT
menu creates one with the default plot parametersin it.

The contents of PPAR can be edited if you want to change them, or you may use the built-in
commands on the PLOT menu. Some of the contents of PPAR are displayed when you
enter the PLOT menu, and others when you enter the PLOTR menu. The points (Xmin, Ymin)

and (xmax, ymax) are changed using and [YRNG]. The command is used
for changing the independent variable, , for changing the dependentvariable, and

, for changing the resolution number. The command adjusts the plot
parameters so as to move the window, without changing its length or width, so that the point

thatis on the stack is shown at the center ofthe screen. The command multiplies
the height and width of the window by the two numbers on the stack, relative to the default
window. resets the default window parameters and erases any previous picture.

Other commands are discussed in the Manual, beginning on p. 291.

Drawing

The basic procedure for getting the graph of a function is to type in the function,store it in
EQ, and DRAW it. To store the function in EQ, enter the PLOT menu and press [STEQ].

That creates a container named EQ on the VAR menu,if one is not already there, and stores

the function in it. The command placesthe function in edit mode if you want to
change the function slightly; the contents of EQ are shown automatically upon entering the
PLOT menu, and again when entering PLOTR. The command on the PLOTR menu

puts the graph into the display. If you do notfirst press [ERASE], the graph is drawn over

whateveris already there; you may create multiple graphs by refraining from using [ERASE].

Now let's try an example. Suppose you want to draw the graph of the line y = : x. Type

‘X+4 : 1: 'K4!
[ENTER] (AGRECENEEAEEEE

Indep: 'X'
and then press to store that x: -6.9 6.9
expression, ys -3.1 3.2

EERECETETBATHKATH[CTT

17

Ch. 2 Use in Precalculus Topics

and finally press DRAW.

Assuming default plot parameters, you will get a nice picture of the line slanting across the
screen, passing through the origin asit should.

Press (actually [ATTN]) to get the stack display back again. Entering the GRAPH menu
recalls the current contents of the display screen, so you can see the picture again, and even
interact with it.

You should now experiment with various functions and plot parameters, to see how the
machine behaves, and how the window works.

If you store an equation such as 'SIN(X) = COS(X)' in EQ,the command plots the
graphs of the left-hand side and of the right-hand side simultaneously; this is another way
to get two graphs on the screen at the same time.

You may also use a procedure instead ofan expression for the function. Suppose you want
to create the graph of the function

sin xi1f x <0

f(x) = fi x2if x20"

1: « IF X 8 <
Type « IF X 0 < THEN ‘SIN(X)' SINGR) ELSE '1-42

ELSE "I - X72" END A.

and press [STEQ] and then [DRAW]. L

TE

Graph storing is automatic on the HP 48; graphs are drawn in a portion of memory called
PICT, which does not change until you command a change. For example, a new graph is
drawn on top of the previous one unless you ERASE the old one first. The contents of
PICT can be stored as a graphics object (another data type) by pressing on the PRG

DSPL menu and then pressing [RCL]. This graphics object can be viewed again by using the

command on the PRG DSPL menu. Also, portions of the display can be selected by
setting a mark and referencing the rectangle of which the mark and the cursor are opposite
corners; this is described on p. 302 and pp. 337ff of the Manual.

Saving

18

Ch. 2 Use in Precalculus Topics

Zooming

Interactive commands for zooming in or out on a picture are built into the ZOOM submenu
of the GRAPH menu, which shows automatically after a graph is plotted. Its use is largely
self-evident and intuitive, and it is described starting on p. 301 of the Manual.

Multiple Graphs

We have already mentioned two ways to get multiple graphs--by failing to erase a previous
graph when plotting a new one, and by storing an equation as the function (the two sides of
the equation are plotted separately). If you wish to interact with several graphs on the
screen at once (zooming, for instance), then the graphs are plotted by making a list of them.
If the list is stored in EQ, then DRAW draws the functions in the order in which they
appear in the list.

Graphics objects can be superimposed by just adding (+) them on the stack. Thisisa
method that can be used in a program that creates graphics objects.

Zeros and Other Graphical Properties

With the graph of a function on the display, a zero of the function is the x-coordinate of a
point at which the graph crosses the x-axis; such a pointis also called an x-intercept of the
graph. A zero can therefore be estimated by noting the x-coordinate of an x-intercept. This
can be done by positioning the cursor on the x-intercept and reading the coordinates by

pressing [COORD].
Betteryet, press and then to get the "exact" value of the zero. Other
commands on the FCN submenu allow you to find extrema and function values, the point of
intersection of two graphs, and slopes and areas. See pp. 307{f of the Manual.

Plotting Unusual Functions

Occasionally functions occur whose formulas cannot be specified in purely algebraic terms.
Such functions include the greatest integer function, the absolute value function, and
perhaps some others. Idiosyncrasies of the calculator makeit difficult to plot graphs of
some other functions, such as those involving fractional exponents. Yet other functions are
defined by different formulas for different parts of their domains. Here we look at some
ways to work around the difficulties imposed by these types of functions.

ABS and FLOOR

The absolute value function, f(x) = Ixl, is known to the calculator as ABS(X). ABS is found
on the MTH PARTS menu. For example, to enter the function f(x) =12x - 51, type
'ABS(2*X-5)". You can also type 2*X-5' and then press [ABS].

The greatest integer function, f(x) = |xJ, is known to the calculator as the FLOOR function,
found on the MTH PARTS menu. For example, to enter the function f(x) = 3x - 1], type

19

Ch. 2 Use in Precalculus Topics

'3*FLOOR(X-1)". You may also type 3 X-1 and then press

and [7]

Fractional Exponents

If the calculator raises a negative numberto a fractional power,it automatically puts the
result in complex number form, even when the result is a real number. That means that
portions of a graph will not be shown when the fractional power of a negative numberis
involved.

To get the machine to show the entire graph, we use the ABS function in conjunction with
the SIGN function, found on the same menu. The SIGN function is defined by

1 ifx>0

SIGN(x) fo ifx=0 .
-1ifx<0

For example, to enter the function f(x) = (x - 2)1/3, we write the product

'SIGN(X-2)*(ABS(X-2)7(1/3)".

This works, because no negative numbers appear to fractional powers, and the cube root of a
negative numberis the negative of the cube root of its absolute value.

 This same function can also be written using the Vy| key, and if x is odd, the calculator will

 return values for negative y. Type 'X-2' [ENTER] 3 Vy| , and the result lookslike

'XROOT(3,X-2)".

Routines as Functions

Sometimes functions are given in "installments," or are defined by different formulas for
different parts of their domains. For example, the function

sinx ifx<(0

f(x) = 1- x2 ifx>0

can be typed as "IFTE(X<0,SIN(X),1-X72/4)". It can also be graphed by any program that
uses DRAW by using the procedure

« JF X¥ 8 < THEN 'SIN(X)>' ELSE '1-X"2-4' END »

as the function. As another example, the function

2x ifx<-1

f(x) =1x2-1if-1<x<2
1-x ifx>2

20

Ch. 2 Use in Precalculus Topics

can be represented by the procedure

&«

IF X -1 ¢«
THEN '2#X'

ELSE
IF -1 X < X 2 < AND
THEN 'X"2-1"
ELSE '1-X'
END

END

Animation

One of the outstanding features of the HP 48 isits ability to handle graphics objects
quickly, creating animation. You can create your own motion pictures that illustrate
situations and concepts much more clearly than still pictures.

Here is a program thattakes a list of previously-created graphics objects from the stack and
shows them one after another in an endless loop. If the graphics objects were created
appropriately, an animation is the result. The program runs until you strike any key. If you
strike the ON key, a pile of graphics objects is left on the stack;striking any other key
removes everything from the stack.

« ERASE (# 0d # 0d) PVIEW OBJ» » N
&

DO DUP PICT (# Od # od } ROT REPL N ROLL
UNTIL KEY
END DROP N

» DROPN

checksum: # 55895d

Synthetic Division

One of the major toolsfor finding zeros of polynomials is synthetic division. Here is a
program that takes a list of the coefficients of a polynomial and a multiplier from the stack
and returns the quotient and remainder. I call it SYND.

« > LM

« L L SIZE®B » NS

«1 N

FOR KL KGET S + DUP M * 'S' STO

NEXT » R

21

Ch. 2 Use in Precalculus Topics

« N1 - »LIST M SWAP R
»

checksum: # 30901d

For example, to perform the synthetic division of x2 + 4x - 3 by x - 2,thelist of coefficients
is { 1 4 -3 } and the multiplier is 2. Therefore type

(1,43 [CHs] [ENTER] 2 I: (14-3)
IEEEMOST(RTE(CECTECX

4: (14-3)
SYND]. 3: 2

2: (16)
FSETOT(TA(C2CINE

The original data as well as the quotient and remainder are returned to the stack.

Trigonometric Functions

The trigonometric functions are found on the keyboard of the HP 48. Only the functions
SIN, COS, and TAN are given there; the others are found by using the fundamental
identities,

 1 1
cotx= ——, secx= ——, andcsCc x= ——.

tan x’ cos x’ sin X

Angle Modes

The calculator usually comes set in degree mode, meaning that arguments of trigonometric
functions are assumed to be in degrees. To change to radian mode, and have the machine
treat argumentsof trig functionsas radians, press [RAD]. The annunciator RAD will come on
at the top ofthe display to signal that you are in radian mode.

It is important to be in radian mode for the applications of calculus, including graphs
involving the trig functions. To see a demonstration of that fact, try plotting the function sin
x in degree mode, and then plot it in radian mode. Type 'SIN (X to enterthe sine
function, press , and then [DRAW]. It is a good idea to set your machine in radian
mode now, and leave it there.

TT

In dealing with radians, the number nt will come up a lot. On the HP 48, © and some other
numbers are treated as symbolic constants instead of numerical constants. For example,
when you press the n key and enterit, the expression 'n' appears on the stack. If you

22

Ch. 2 Use in Precalculus Topics

divide by 6, the expression '/6' appears on the stack. Then if you press , the
expression 'SIN(w/6)' appears. To change any of these symbolic expressions into a
number, press [*NUM]. If the calculator is not in SYM mode, the numerical approximation to
7 appears instead of 'n'.

Values

Finding values ofthe trig functions is as simple as pushing the buttons. To find the sine of
1.2 radians, type

1:
1.2 1.2

(CETTECIETY)(TTRET)ETATARE

SIN]. 1: . 932039085967
(ET(IVT)(STRET(TATAOE

Similar sequences are used to find the cosine and tangent function values.

To find the secant of 1.2 radians,type

ge TIEce
and then pressthe key. LemanEon0368133

Values of the cosecant and cotangent function are found similarly.

Inverse Trig Functions

Values of the inverse trig functions arcsine, arccosine, and arctangent are found by pressing
the buttons , , and [ATAN]. The arcsine and arctangent functions always return
a numberin the range from -7t/2 to ©t/2, and the arccosine function always returns a value
between 0 and wt. These are the principal value ranges.

If you want values of the arccotangent, use the formula

1.
arctan _if x > 0

arccot x = 1
5+ arctan —1f x <0

X

For example, to find the arccotangent of 2.5, type

25, 2.5EEOeETETEAEAT]

1: .4pressthe

[1/x]

key, (ENETET)(Ge73iT

23

Ch. 2 Use in Precalculus Topics

and then press [ATAN]. 1: . 380506377112

To find the arccotangent of -1.5, type

55 2: 380506377112
= I: - 666666666667

2: . 380506377112
1: -. 588002603548
[55.PH[NU.#N[SEDr]nL:[ERIE]7.004]

2: . 380506377112
T 2+ + 1: '—.5880082603548+1-2

EIA(TETET(RETRTATANE]

> 2t . 380506377112
[>ruml. 1: . 982793723252

CET RTS fx

These cases must be taken into account in order to get the proper principal value range.

For values of the arcsecant function, use the formula

1.
arccos Lif x >0

arcsec x = 1
- arccos _ if x <0

For values of the arccosecant function, use the formula

. 1.
arcsin if x > 0

arccsc x = 1
- Tu -arcsin if x <0

It may be that the number on the stack is the sine, cosine, or tangent of a rational multiple of
nt. The program « ASIN »Qw SIN », which I call »SQ, will take the decimal number on
the stack and expressit as the sine of a rational multiple of x. The program « ACOS Qn
COS », called »CQ, will express it as the cosine of a rational multiple of &. The number on
the stack must be between -1 and 1 in order for these programs to work. The program «
ATAN »Qr TAN », called »TQ, will express the decimal number on the stack as the tangent
of a rational multiple of wt. If the number on the stack is not actually the sine, cosine, or
tangent of a rational multiple of &t, you will get meaningless results. Your calculator must
also be in radian mode for these programs to be valid.

24

Ch. 2 Use in Precalculus Topics

Applications of Trigonometry

Formulas such as the Law of Sines and the Law of Cosines can be placed into the Solver
for efficient handling in the solution oftriangles and other applications of the trigonometric
functions. Vectors, another topic that often comes up in trigonometry, can be handled
directly, as we discuss below under the heading of Linear Algebra.

The solution oftriangles can also be automated. Here are four programs that handle the
different cases:

ASA: given two angles and the included side
SAS: given two sides and the included angle
SSS: given the three sides
SSA: given two sides and the angle opposite one of them (this is the only

ambiguous case, and there may be one solution, two solutions, or no solution at all)

It is recommended that these programs be placed in a TSOL (for Triangle SOLutions)
subdirectory, whose menu would look like

ASA SAS SSS SSA

SSA is the program

« > abaA

« b A SIN * »H

« a H

IF <

THEN "No Triangle"

ELSE 'a(given)' a = 'b(given)' b = 'A(given)' A =

-17

IF FS?

THEN w NUM

ELSE 180

END » S

« a H

IF ==

THEN S 2 » 'B' SWAP = S 2 » A - 'C' SWAP =

'I(b"2-a"2)' EVAL 'c' SWAP =

ELSE a b

IF 2

THEN b A SIN * a ~ ASIN DUP 'B' SWAP = SWAP

A + S SWAP - DUP 'C' SWAP = SWAP SIN a * A SIN ~ 'c' SWAP =

ELSE b A SIN * a ~ ASIN » B

« BSB -R»C 'B' SWAP = SAB + - BA -

> C C1

25

Ch. 2 Use in Precalculus Topics

« C Cl R»C 'C' SWAP = a C SIN = A SIN
~ a Cl SIN » A SIN ~ R»C 'c' SWAP =

»

END
END

END

checksum: #46041d

To use this program, enter the two sides and the angle onto the stack in the order S, S, A.
Make sure that you are using the same angle mode throughout. Then press [ssa]. The
labeled sides and angles will be left on the stack. If there are two solutions, the answers are
given as ordered pairs;the first entries constitute one solution, and the second entries,
another.

For example, given the sides a = 1, b= 2, and angle A = 30°, put the calculator into degree
mode and type

2: 1

1 2 30 It 2
EEEECEESEEC

4: 'ACgiven)=30'
SSA]. 3: 'B=90'

'C=60'2
I: 'c=1.73205080757"
EENEEEEEEEN

SSS is the program

« » abc

« 'a' a ='b'b="¢c"c= "'"(b"2+c"2-a"2)7(2*bxc)' EVAL

ACOS 'A' SWAP = '(a"2+c™2-b"2)-(2*a*c)' EVAL ACOS 'B' SWAP =

'(a®2+b"2-c"2)7(2*ax*b)' EVAL ACOS 'C' SWAP =
»

checksum: #54546d

To use this program, enter the lengthsof the three sides onto the stack and press[sss]. For
example, if the given sides are 5, 7, and 8,type

26

Ch. 2 Use in Precalculus Topics

4: 'c=8'
5 [ENTER] 7 [ENTER] 8 [sss]. 3: 'f=38.2132107013,

1: 'C=81.7867892983'
EEEIEEEEEEEE

SAS is the program

« > aCb

&

IF a b>

THEN b a 'b' STO 'a' STO

END 'a(given)' a = 'C(given)' C = 'b(given)' b =

'I(a”2+b"2-2*axb*C0OS(C))' EVAL +» c
« acs CSIN = ASIN DUP 'R' SWAP = SWAP C + -17

IF FS?
THEN w >NUM
ELSE 180

END SWAP - 'B' SWAP = 'c' c

checksum: # 46305d

To use this program, enter the sides and the included angle in the order S, A, S. Then press
[SAS]. Again, be consistent in the angle mode used. For example, if the two sides are 1 and

2 and the included angle is 60°, put the calculator into degree mode and type

1 [ENTER| 60 [ENTER] 2 [SAS].

ASA is the program

« > A cB

« 'A(gqiven)' A = 'c(given)' c = 'B(given)' B = -17

IF FS?

THEN nw NUM

ELSE 188

END AB + ->C

« 'C'" C=ASINc*C SIN '"a' SWAP = B SIN c * C SIN

~ 'b' SWAP =
»

27

Ch. 2 Use in Precalculus Topics

checksum: # 13387d

To use this program, enter the angles and the included side in the order A, S, A. Be
consistent with the angle mode. For example,if the angles given are 30° and 60° and the
included side is 4, then type

4: 'B(9iven)=60'
30 [ENTER] 4 [ENTER] 60 [ASA]. 3 'c=90,

. a= 1

1: 'b=3.46410161514'
IEEEEHEEECE

Logarithmic and Exponential Functions

The command returns the common logarithm of the numberin level 1 on the stack.

Thatis,if x is on the stack, returns logx. is the common antilogarithm.

is the natural logarithm, or logarithm base €, and is the natural exponential function.

Logarithms with any positive base b # 1 can be found from the formula
1

logp x = losb

For example,to find log5, type

2: .698970004336

Jali CH
+, 1: 2.32192809489

EETCET)ETRTOSAEANNE]

Exponentiation with any base b > 0 is easily accomplished with the command. For

example,to find (1.7), type

L7 breed

> : . 29634953

Linear Algebra

Linear algebra is the broad area covering systems oflinear equations, matrices, determinants,
and vectors and vector spaces. At the precalculus level, everything we need to do can be
handled very efficiently by the built-in functions ofthe calculator, with the exception of the
Gauss-Jordan reduction technique.

28

Ch. 2 Use in Precalculus Topics

Vectors

A vector in the HP 48 is a set of numbers (coordinates) enclosed in brackets, []. To enter a

vector, start with [0], and then enter the numbers,typing either a space or a comma

between coordinates.

For example,to enter the vector [3 4 -1], type [3 4 1 [ENTER].

Vector addition and subtraction is accomplished using the and - keys,just as with
real numbers. However,if the vectors do not have the same length (number of coordinates),
you will get an error message.

For example,to find the sum of the two vectors [1 2 -2] and [-5 3 2], type

[1 (57) 2 [5°] 2 [of] [ENTE] [5 [1] 23 [12372]ISPC| 3 [SPC| 2 [ENTER] Em(ITTY)(eTRTEATSAED

1: [4501]
[+]. (ETE(TETGTX](ETEETAA]

The scalar product of a number and a vector can be found by using the key. Just place

the vector and the scalar in levels 1 and 2 (in either order) and multiply.

The number of coordinates of a vectoris given by the command on the PRG OBJ
menu. The magnitude or norm or absolute value of a vectoris given by the command
on the MTH VECTR menu.

Dot and cross products of vectors are also defined in the machine. The command

computes the dot product of any two vectors of the same length. The |[CROSS| command

computes the vectorthat is the cross product of two vectors of length two or three. These
will be quite usefulto us later on.

One restriction that is sometimes unhandy is that the entries of a vector must be real
numbers or complex numbers. One cannot use symbols as the coordinates of a vector. If
you wish to do so, you might try using lists, whose entries can be anything, and create
routines to do arithmetic and whatever else you wish with them.

Another way to enter a vectoris to place the coordinates of the vector on the stack, place the

number of coordinates in level 1, and then use the command on the PRG OBJ menu.
For example, to create the vector [3 5 2 1], you may type

3: 2
3 [ENTER] 5 [ENTER] 2 [ENTER] 1 2: 2
ENTER] 4 i 1

[TENIEEEXTAADIVEESAEXT

» ARRY|. 1: [35211]
[EYIERENEXTBIEENAETH

29

Ch. 2 Use in Precalculus Topics

This is the method most often used inside a program. The commands *V2 and *V3 on the
MTH VECTR menu take two or three numbers from the stack and create vectors of the

indicated lengths, as do the commands and on the keyboard.

Matrices and Determinants

A matrix is perhaps best regarded as a vector of vectors. The MatrixWriter environment
described on p. 346 of the Manual is made to make entering, editing, and viewing of

matrices easy. For example, to enter the matrix | 3 2] type [MATRIX| 1 [SPC| 2 | ENTER]

[v] 3 |SPC| 4 |[ENTER| [ENTER].

Arithmetic with matrices is done using the regular arithmetic keys. As with vectors, the
matrices must have the same size (same numbers of rows and of columns) in order to form

sums and differences. Matrices can also be multiplied by using the key, but they must

be conformable. That is, the number of columns of the matrix in level 2 must be the same
as the number of rows of the matrix in level 1.

The product of a scalar and a matrix can be found by using the key. Just place the

matrix and the scalar in levels 1 and 2 (in either order) and multiply.

The command, when applied to a matrix, returnsa list in which the first elementis the
number of rows and the second element is the number of columns. If a matrix is square
(has the same number of rows as columns), then the command on the MTH MATR
menu returns the determinant of the matrix. If the determinant of a square matrix is not
zero, then the inverse of the matrix exists, and the inverse can be found by using the

command.

(Warning: On early versions of the HP-48SX,there may be a bug in the command
that causes trouble when inverting a matrix larger than 7 by 7. For large matrices, put an
identity matrix of the same size on level 2 by using , put the matrix to be inverted on

level 1, and use + |.)

Other commands on the MTH MATR menu are described on p. 359 of the Manual.

A matrix can also be entered by placing its entries on the stack, and then using a list of two

numbersto specify the size of the matrix and using [*ARRY]. For example,the enter the

matrix E 7] we can type

4 2
1 [ENTER] 2 [ENTER] 3 [ENTER] 4 [ENTER] 3 3
(2,2 2 1

1: (22)
[ENEENEXTHABIEENATH

30

Ch. 2 Use in Precalculus Topics

1: [12]»ARRY]. [3

This is most often done in the midst of a program.

A matrix is most easily edited by using the MatrixWriter. With the matrix on level 1, press

[¥], and use the cursor keys to move to the desired entries and edit them. To save the
edited result, press [ENTER]; to discard the edited version, press [ON]; in either case, the
matrix appears again on level1.

Systems of Linear Equations

The built-in matrix functions of the HP 48 enable the solving of systems of linear
equations. Each such system can be represented as a matrix equation of the form AX = B,
with A the coefficient matrix, Xthe column of unknowns, and B the column of constants.

If A is invertible, then X = A-1B, and A-1B can be found by placing the vector B in level 2,
matrix A in level 1, and pressing + |. Even if A is not a square matrix, the same approach
can be used,as is discussed on p. 362 of the Manual. The use of involves some
roundoff error, typically.

Gauss-Jordan Reduction

The Gauss-Jordan reduction method of solving a system oflinear equations begins with the
augmented matrix [A B] of the system AX = B. Then by using elementary row operations,
the matrix is transformed to reduced echelon form, from which the solution of the original
system can be easily read.

The three elementary row operations are (1) interchanging two rows, (2) multiplying a row
vector by a nonzero scalar, and (3) replacing a row vector by the vector sum of that row and
another row. The latter two can be combined and used repeatedly to change the column
containing a chosen nonzero element into a column of zeros, except that the chosen element
will be replaced by a 1. This process is called pivoting, and the chosen elementis called the
pivot. The Gauss-Jordan processsimply pivots on diagonal elements, insofar as that is
possible, until the reduced-echelon form of the matrix is obtained.

In the pivoting process, an entry often is not "zeroed out" as desired, but replaced by a very

small number, such as 1.2x10-11, This is due to round-off error in the calculator. To
overcome the problem, we use the command RND to instruct the calculator how many
decimal places to take seriously.

Here is a program called EXRIJ for exchanging rows I and J of a matrix. It assumes that
the matrix is in level 3 of the stack, I is in level 2, and J is in level 1. The matrix, with rows I
and J interchanged, is returned to level 1.

« > J J

« DUP SIZE 1 GET IDN 'E' STO @ 8 'ECI,I>' STO 'EC(J,d)' STO

1 1 'ECI,Jd)' STO 'ECJ,I)' STO E SWAP = 'E' PURGE

31

Ch. 2 Use in Precalculus Topics

checksum: # 6505d

For example, to interchange rows 1 and 3 of the matrix on the stack in level 1, type

RAD
{€ HOME NU.AN MTRX }

1 [spc] 3 It IL 1234]
[2345]

5 [3456 1]

ERACIRETATIESEI

3158]
[EXRU] [12341]

[SJLE[POTIERRIHen]

The next program is called PIVOT, and is used to pivot on the element in row K and
column L. (The specified element cannot be zero.) It assumes the matrix is in level 3, K is
in level 2, and L is in level 1. The program is

« > AKL
« A SIZE 1 GET » M

« M IDN 'P' STO 1 M
FOR I 'ACI,L>" EVAL 'P(I,K)' STO
NEXT M IDN P ~ A = 9 RND 'P' PURGE

checksum: # 58129d

For example, to pivot on the 2,2 element of the matrix on the stack, type

1: TL 343561]
2 [spc] 2 [2345][sp] ,LT2340

EFASGECANIEE

"4Hap[Prvor]. [-0.33 0.00 9.33.
EFASCEHCATIEEI

EXRIJ and PIVOT are enough now to row-reduce a matrix. You can use them to row-
reduce a matrix "by hand" by simply pivoting on the diagonal elements of a matrix,
interchanging rows when it is necessary because of the appearance of zeros on the diagonal.

The following program, called GJRED, automates the row-reduction process,starting with a
matrixand returning both the matrix and the reduced-echelon form. It also uses the largest
possible element to pivot on ("partial column pivoting"), thereby reducing roundoff error as
much as possible.

32

Ch. 2 Use in Precalculus Topics

« 'A' STO A SIZE OBJ» DROP 'N' STO 'M' STO 1 1 'C' STO 'R'

STO 1 CF
WHILE 1 FC?
REPEAT 'A(R,C)' EVAL ABS 'T' STO R 'K' STO

IF RMK
THEN 1 R + IM

FOR 1
IF 'ACI,C>'" EVAL ABS DUP 'T1' STO T >
THEN T1 'T' STO I 'K' STO
END

NEXT
END
IF T@>

THEN
IF KR #

THEN A R K EXRIJ 'A' STO
END A R C PIVOT 'AR' STO 1 'R' STO+
IF RMD
THEN 1 SF
END

END 1 'C' STO+

IF CN>
THEN 1 SF

END
ENDA (TTI KRCMNA A) PURGE 1 CF

checksum: # 11498d

The command STO+ is found on the right-shifted MEMORY menu.

Often, especially when solving a system of linear equations, you want to see the results of
the Gauss-Jordan reduction in fraction form. The last column of the reduced matrix
contains the solution, if the solution is unique. If the solution is not unique, then a row-by-
row inspection of the reduced matrix is necessary to specify the complete solution. Each
entry of the solution could be isolated and have *Q applied to it, but here is a program that
allowsfor an entire matrix to be transformed into fraction form at once. The program is
called M»Q, and takes the matrix from level 2 and returns lists of the elements, row by row,
in fraction form.

€ >» A

« A SIZE OBJ» DROP >» M N

« 1M

FOR I I N

FOR J 'ACI,J)' EVAL D-»Q

NEXT N »LIST

33

Ch. 2 Use in Precalculus Topics

NEXT

checksum: # 31133d

It should be noted here that the Gauss-Jordan reduction by machine will not always work.
One type of problem that arises is that elements are not really "zeroed out" by the machine,
because of round-off error. Thus the machine sometimes finds a small numberthat is not
zero in a position where there should be a zero, and if that element is used as a pivot, the
outcome is nonsense. That most often takes place when the system is dependent or
inconsistent.

Another problem that arises is that of the "ill-conditioned" matrix. If the determinant of a
square matrix is very large or very small in comparison with the elements of the matrix, then
the machine is going to have difficulty inverting the matrix, whatever method is used. A
simple test for square matrices is to construct the "condition number" of the matrix. If the
condition number is greater than the numberofdigits carried by the machine, then the
machine will have difficulty. For the HP 48, that means the condition number should be no
greater than 11. Without going into the theory, here is a little program, COND, that gives
the condition number of the square matrix that is on the stack.

« > A « A A RNRM LOG A INV RNRM LOG + » =»
checksum: # 49918d

Combinatorics

There are several functions built into HP calculators that calculate certain combinatoric
numbers. These include the factorials, permutations and combinations. On the HP 48, the

commandsare ! |, , and , all on the MTH PROB menu.

To find n!, put n on the stack and press ! |. If the number x on the stack is not a positive
integer, the calculator returns the gamma function I'(x + 1).

To find (3). the number of combinations of n things taken k at a time, put n and k on the

stack and press [COMB]. For example, to compute G). type 5 2 [COMB].

To find P(n,k), the number of permutations of n things taken k at a time, put n and k on the
stack and press [PERM]. For example, to compute P(5,2), type 5 2 [PERM].

These can be used together to compute probabilities, etc. For example, to compute the
probability of a full house in a random draw offive cards from a standard playing deck,
which is

13(3)123)
G)

34

Ch. 2 Use in Precalculus Topics

type 13 [ENTER] 4 [ENTER] 3[COMB] 12[4 2 52 5
[+]. Use D*Q to see the fraction form.

Elementary Plane Analytic Geometry

Many of the operations of analytic geometry are easy to do on the HP 48 because of the
ability ofthe calculator to handle points (it thinksit is handling complex numbers) and
vectors. Here are some tricks and little programs.

Distance Formula

To find the distance between points (a, b) and (c, d) in the plane,just find the absolute value
of the difference of the complex numbers(a, b) and (c, d).

For example, to find the distance between (5, 3) and (7, -1), type

2: (5,3)
1: (7,-1)

(5,3 [ENTER] (7, 1 [+/-] [ENTER (ETCT)ETETORAS

. : -2,4)
A 'h

ABS]. 1: 4, 472135955
ICTETETICAWT

You may type instead of the comma.

Midpoint Formula

To find the midpoint of the segment whose endpoints are (a, b) and (c, d) in the plane,just
find the average of the complex numbers (a, b) and (c, d).

For example, to find the midpoint between (-1, 3) and (2, -3), type

2: (-1,3)

(1[+],3 [ENTER] (2,3 [+] [ENTER] aoreepeeaca

1: (1,0)
+ 2 2

GECETEX](TSHSATEAAT]

* : (.5,0)
 —171.)

The Line on Two Points

This program called PP>L, takes two points (in complex number form) from the stack and
returns the equation ofthe line they determine.

35

Ch. 2 Use in Precalculus Topics

« >» P1 P2
« P1 C>R 1 3 »ARRY P2 CR 1 3 »ARRY CROSS » L

« L 1 GET 'X' * L 2 GET 'Y' * + L 3 GET + @ =
»

checksum: # 46969d

For example, to get the line on the points (1, 2) and (-1, 1), type

2: (1,2)

(1,2 [ENTER] (1 [+/+], 1 [ENTER] LEER

PP>L|. 1: 'X-2*Y+3=0"'

[add 8 No ION [SN ID [SKN RA{NXE 14

The name of the program reminds you to enter two points, and the outputis a line.

The Point on Two Lines

This program, called LL?P, takes two vectors from the stack, representing two lines in the
plane, and returns the point of intersection of the two lines. The line ax + by +c =01s
entered as the vector [a b c¢]. If the two lines are parallel, the result "PARALLEL"is
returned.

« CROSS OBJ» DROP =» ABC
&«

IF C ==
THEN "PARALLEL"
ELSE A C + B C + RC
END

3

checksum: # 27494d

For example, to find the point of intersection of the two lines 3x + 2y - 1 =0and x - 2y + 3
= (, enter the coefficients as vectors:

OosmEm 1a fe]
[+/] , 3 [ENTER] EET(TSTRCOES

The name of the program reminds you to enter two lines, and the result is a point.

36

Ch. 2 Use in Precalculus Topics

Collinear Points

This program, called COL?, takes three points from the stack and determines whether they
are collinear. If so, the line on which they lie is given. Here is the program :

« PPsL 'L' STO CsR 'Y' STO 'X' STO L EVAL OBJ» DROP2
IF ==
THEN "YES" L
ELSE "NO"
END (L XY) PURGE

checksum: # 17469d

For example, to determine whether the points (-1, -3), (1, 4), and (5, 12) are collinear, type

(1,3 [+7] [ENTER] (1,4 3 “HB
[ENTER] (5, 12 [ENTER f 5,13)

ELENRYE3CRN[GA(GEER

1: "NO"

ETS[RYNITSRE[CRBX
[co?].

Then try the points (-1, -3), (1, 4), and (5, 18).

Concurrent Lines

This program, called CON?, takes three vectors, representing three lines in the plane, from
the stack and determines whether the lines all pass through the same point. If so, the point
of intersection is given. The line ax + by + ¢c = 0 is entered as the vector [a b c].

« >» L1 L2

« L1 L2 CROSS DOT
IF 8 ==

THEN "YES" L1 L2 LL»P
ELSE "NO"
END

checksum: # 54109d

For example, to determine whether the lines 2x -y +3 =0,x+4y + 1=0, and 3x + 21y +
2 = (0 are concurrent, type

3: [2-13]

(2,1 [7], 3 (ENTER) (1,4, 1 [ENTER] [3: Lt)
3,21,2 [ENTER] EET[ETE[TE[OMEEX

37

Ch. 2 Use in Precalculus Topics

2: "YES"
[2 (1.99494440004,

(CON. 1H)
CEESEYETSRE[AN(FER

If the message "PARALLEL" appears, it means that the three lines are all parallel (and
hence meet in a pointat infinity).

Distance from a Point to a Line

This program, called D.PTL, takes a point (a, b) and a vector [p q r] from the stack and
returns the distance from the point (a, b) to the line px + qy +r=0.

«> PL
« P C>R 1 3 »ARRY L DOT ABS L OBJ» DROP2 2 »ARRY ABS ~
pd

checksum: # 22512d

For example,to find the distance from the point (5, 3) to the line 3x + 2y - 5 = 0, type

(5,3 [ENTER] [3,2,5 2: 3,5)
ENETTATR[OTCEE

D.PTL|. 1: _ 1. 13760156981

38

rivativ

The capabilities of the HP 48 make possible the investigation of functions in ways never
seen in a calculator before. The HP 48 can find derivatives of all the elementary functions.
Derivatives are presented in unsimplified form,illustrating the various differentiation
formulas. Specifying the independent variable is necessary, so that partial differentiationis
also possible. That makes implicit differentiation possible, for which a simple program is
presented. In this chapter, we mention limits, derivatives and their applications, and function
analysis, including the bisection method and Newton's method for estimating zeros of
functions. We conclude this chapter with environments for handling function tables and
difference tables.

Limits

The evaluation of limits via calculator is sometimes possible, in perhaps a couple of ways.
One is graphical, and the other is computational, but these are really the same thing when
you think aboutit.

Graphical Evaluation

To examine the limit im f(x), try graphing the function f over an interval containing c.

You may then zoom in toward c to "blow up" the picture, and arrive at a conclusion about
the limit in that way.

Computational Evaluation

lim
X—C

expression, and evaluate at values successively nearer to c. You may be able to arrive at a
conclusion about the limit in that way.

Another way to examine the limit f(x) 1s by using the Solver with f(x) as the

Finding Derivatives

Zooming

Graphically, the derivative of a function is the slope of its graph. To see the slope
graphically, pick the point on the graph at which you wish to see the derivative and make
that point the center of the display by positioning the cursor on that point and pressing

CNTR|. Then zoom in until the graph appears to be a straight line; the slope ofthatline is

the value of the derivative at that point.

If the graph never appears to be a straight line, no matter how much zooming in you do, then
the curve is not smooth there, and the derivative does not exist.

39

Ch. 3 Limits and Derivatives

To find the derivative of a function algebraically, enter the function, specify its independent

variable, and press [9] . The derivative is displayed.

For example, to find the derivative of f(x) = cos 2x, type

"COS (2 *X [ENTER] 'X 1: 'C0S(2%K)
[55PH[NU.RNLSEDM]nL[ERIE]T.0H)

3). I: '-(SIN(2%X)*2)
GECTEETRTEEAEANE]

The derivative is presented in the form that illustrates the chain rule. You can also see why
being in radian mode is important, if you happened to be in degree mode.

As another example, suppose that from the formula V = nr?h you wish to find Enter

the right-hand side of the formula and differentiate, by typing

: 'w%R™2xH', , 'R!

n*RA2*H [ENTER] 'R (ELE(CTTF(TAXm)
3 T px(2%R) *H'

(FAZERCET)TE)(ETA2A

Simplifying

Since derivatives are given in unsimplified form, you can simplify them somewhat by using
and on the ALGEBRA menu. For many applications, however, a simplified

form is not needed, and the calculator has no trouble working with the unsimplified form. It
sometimes takes longer, however, in unsimplified form.

Evaluating

Evaluating a derivative is done in exactly the same ways that other expressions are evaluated.
There is one additional means, however, that you should be aware of.

If a function f uses the variable X, and a container named X (containing the number c) is on

the current level of the VAR menu, then when the El command is given, not only is the

derivative computed, butit is evaluated at the number ¢ contained in X. The value f '(c), not
the derivative f', is returned. This can be convenient when you want to evaluate the
derivative, but it is not so convenient if you really want the function f'. If you want the
function f ', make sure that no container named X is on the VAR menu.

Here is a way to make sure that no container named X will be present—just delete them all!
The following program, XPRG, will delete any container named X in the current path.

« PATH » P
« 1 P SIZE

FOR K P K GET EVAL 'X' PURGE

40

Ch. 3 Limits and Derivatives

NEXT

checksum: # 62107d

Higher-order Derivatives

Finding higher-order derivatives is no different on the calculator than it is by hand; we just
differentiate again. We must specify the independent variable each time, though.

If you want to automate the finding of higher-order derivatives, you can construct a program
that will return the particular higher-order derivative that you want. Here is one that will take
the function from level 2 and the order n of the derivative from level 1 and return the nth
derivative; this program is called DNDX.

« 1 SWAP START 'K' & COLCT NEXT =»
checksum: # 32234d

For example, if you want the 3rd derivative of f(x) = x? - 4x3, type

'XN5-4%XN3 [ENTER] 3 I: 'R"5-4¥%"3"!
ICEICEETCCETAEER

[DNDX]. 1: '—24+60*K2"
a [NCELIMP]TLIN[FOT00]PRE

|

PCF.2

|

Note that the program assumes that X is the variable; the name of the program reminds you
of that.

Implicit Differentiation

The HP 48 can be programmed to produce the derivative of an implicit function. The theory
behind it is couched in partial derivatives; the formula is based on the theorem thatif f(x, y)

=, then 5dya Here is the program, called IMPD, which starts with the expression

f(x, y) on the stack and returns both the expression f and the derivative-

« DUP 'Y' o COLCT 'FY' STO DUP 'K' o NEG COLCT FY ~ COLCT
'FY' PURGE
»

checksum: # 6634d

For example, given x2 + y3 = 5, the derivative is found implicitly by typing

'XA2+YA3-5[ENTER 1: 'X2+Y"3-5!
[UNI[IMP]TUIN[ROYC0]PoHEPrk

41

Ch. 3 Limits and Derivatives

2: '® 2+Y*3-5"

NPD). Ii 2666660666060xKx
COTETXTER(AETAEE

T i ake th 1t look 2t 1X" 2+Y"3-5"Trypressing to make the result loo fhooAT

Tangent Lines

The simplest application of the derivative of a functionis to find the tangentline to the graph
of the function at a specified point. For example,if y = f(x) is given, then the tangent line to
the graph at (c, f(c)) is y =f(c) + f '(c) (x - ¢). The derivative f '(c) is easily found, as
described above, and a program can be written to take the function f and the number ¢ from
the stack and produce the equation of the tangent line. It might look something like this,
which I call TLIN:

« 'X' STO DUP 'X' o 'K' X - = SWAP EVAL 'Y' SWAP - SWAP = 'K!'
PURGE
»

checksum: # 60926d

For example,to find the line tangent to the curve y = x2 - 4 at the point (3, 5), type

'X 2 - 4 [ENTER] 3 1 Jv
[NL |1MPL]TLIN[ROTC0]PHF |PiF2

'Y-5=6%(X-3)'

This program can be modified to produce the equation of the normalline, just by inserting
the commands INV NEG after the ® symbol, for only the slope is different.

In the graphics environment, the tangentline to a curve at a point can be specified by
digitizing the point of tangency, and the line can be drawn on the screen with the curve. The
following program, called TANL, does the job.

« | 'N' STO EQ DUP
IF TYPE ==

THEN 0BJ» DUP 'N' STO PICK 'CEQ' STO N DROPN
ELSE 'CEQ' STO EQ 1 »LIST STEQ

END EQ SWAP C»R DROP DUP 'K' STO 'K' SWAP - CEQ 'X' o =
CEQ EVAL + STEQ DRAW 'X' PURGE EQ 1 »LIST + STEQ (CEQ X)
PURGE
»

checksum: # 9958d

For example, suppose you have just drawn the graph of a function f, and while the graph is
still up you position the cursorat the desired point of tangency (only the x-coordinate of the

42

Ch. 3 Limits and Derivatives

point is used by the program). Press to digitize the point, then [ON], and then press
[TANL]. The process can be repeated when the new picture is displayed. This program can

also be modified to produce the normal line.

Function Analysis

The HP 48 has built into it some routines for analyzing a function. After a function f is
plotted, the FCN menu leads to several commands for discovering things about the function.

The command finds the zero ofthe function closest to the position of the cursor; the

SLOPE command gives the slope of the function's graph at the x-position ofthe cursor; the

command gives the coordinates of the extremum of the function closest to the
cursor position. These commands, and others,are described starting on p. 307 ofthe
Manual.

Points of Inflection

A point of inflection of a function f can usually be spotted from the graph of f. The
following program, INFL, will take a point from the stack and return the nearest point for
which f'(x) = 0. The best way to get the input point is, while viewing the graph, to position

the cursor near the inflection point and press [ENTER]. Then press and
to get the "actual" coordinates of the inflection point.

« C»>R DROP EQ 'K' PURGE 'K' od 'X' » 'K' 3 ROLL ROOT DUP 'K'

STO EQ EVAL R»C 'X' PURGE
»

checksum: #26417d

This program can be followed by TANL, for example, to draw an inflectional tangent to a
graph.

Root Finding

In addition to the methods already mentioned in Chapter 2 for finding the zero ofa function,
here are two more, the bisection method and Newton's method.

Bisection Method

The bisection method is a means of systematically closing in on a zero of a function when
an interval containing the zero is known. The method uses the continuity of the function
and the fact that the function has opposite signs at the endpoints ofthe interval to locate the
zero. Successively more precise locations are found by repeatedly bisecting the interval and
retaining the half that contains the zero.

The following programs enable one to find an arbitrarily short interval containing a zero of a
given function f, once an interval [a, b] is found for which f(a) and f(b) have opposite signs.
The first program, FABST is just a simple routine that stores the function and the initial

43

Ch. 3 Limits and Derivatives

interval; it has the great value, however, of reminding you how to set up to use the bisection
method. The program is

« 'B' STO 'R' STO 'F' STO A B 2 »ARRY »
checksum: # 22501d

The name of the program reminds you to enter the function f and the endpoints a and b of
the interval,in that order, and then press . The function and the interval are stored

for use by the next program, and the initial interval is placed on the stack for reference.

For example, to set up the bisection method for the function f(x) = x - cos x on the interval

[0, 2], type

2: '%X-COS(X)!

'X- COS (X [ENTER] 0 [ENTER] 2 I: 8
FRECTIEICCTINEISC)FohBE]

FABST|. 1: [B82]
FHEZTIEIZCTINEC]FWwFE

The second program actually does the computation. It finds the midpoint ofthe interval,
tests to see in which half the zero lies, and resets the appropriate endpoint so as to retain the
correct half of the original interval. It also checks to see that the initial interval given really
does contain a zero, and if we happen to hit the zero exactly, that is also made known. The
new intervalis placed on the stack. Here is the program, which I call BISCT.

« AB +2 7 »>NUM 'C' STO A 'X' STO F »>NUM B 'K' STO F »NUM =
IF 8 >

THEN "SAME SIGN"

ELSE A 'X' STO F »NUM C 'K' STO F »NUM =
IF DUP 8 ==

THEN DROP C "IS A ZERO"
ELSE

IF 8 <

THEN C 'B' STO

ELSE C 'A' STO
END A B 2 »ARRY

END
END { C X } PURGE

checksum: # 46422d

For example, once the function and initial interval are stored, press

to get the next interval. a 9 £]

CETEETEII

44

Ch. 3 Limits and Derivatives

Keep pressing for successive 3: it 2
intervals. 5s [5775]

1: [.625 .75]
(ETECECTIIC

You can also automate the application of the bisection method a specified number of times.
Here is a little program that essentially just presses the button n timesfor you. It is
called NBISC.

« 1 SWAP START BISCT NEXT =»
checksum: # 59739d

This program takes the number n from the stack, and calls BISCT that many times. For
example, having stored f, a, and b already, if you wantto press eight timesthe easy

way, type

8 1: [82]
8
(ETECTECTEICCE

[.71875 .79 13:

[NBISC]. 2: [.734375 .75 1
1: . 734375 .7421875

It is convenient to organize these programs into their own subdirectory, perhaps named
BISEC. The complete menu under BISEC might be

FABST BISCT NBISC F A B

Newton's Method

Another application of differentiation is Newton's method for estimating a zero of a
function. The method starts with the function f and an estimate xq of the zero, and uses the

iteration formula xp41 = Fra, to produce (hopefully) better estimates.
n

A simple environmentfor using Newton's method on the HP 48 consists of two programs,
oT for storing the function f and its derivative, and GUESSfor computing xp+1, given

. Here is FSTO:

« XPRG DUP 'F' STO 'K' » 'DF' STO »
checksum: # 10189d

Here is GUESS:

« 'X' STO X X F EVAL DF EVAL ~» - '¥K' PURGE =»
checksum: # 34374d

45

Ch. 3 Limits and Derivatives

The label FSTO reminds you to enter the expression for f(x); pressing not only
stores the function f, but also computes the derived function f ' and stores it under DF. It
first purges any container named X that is accessible, so that the derivative of f and notits
value at some pointis stored in DF. Then, knowing that Newton's method requiresan initial
guess, you enter a numberx, close to the zero you wish to find, and press [GUESS]. The
new estimate x1 appears, along with x(, so that you can compare them. If you wish another

estimate, just press again, and another estimate x, appears. Continue pressing

until you have the accuracy you need, or until the new estimate does not differ from
the previous one.

For example,to find the zero of f(x) = x - cos x that is near .7, type

'X-COS(X 1: 'R-COS(X)'
(IGETERACITEICNEA

7 1s
ICSTECTTET

GUESS]. 0
1 . 739436497848
FZT0[NEWTINNIT]FFPR|

Press three or four more times. 4: . 739436497848
3: . 739085160465
2: . 739085133215
1 . 739085133215
IGECTECOTYGEET

You can also automate the pressing of a specified numberoftimes. The following
program, called NGUESS,takes x from level 2 and a number n from level 1, and presses
|GUESS| n times for you. It assumes that F and DF are already stored.

« 1 SWAP START GUESS NEXT =»
checksum: # 56432d

It is convenient to put these programs into their own subdirectory, perhaps called NWTN.
The complete menu might be

FSTO GUESS NGUESS F DF

Function Tables

One ofthe first things one learns to do with a function is to create a table of values in order
to plot the graph of the function. The following environment makes for easy table creation.
If one already has a table of values, the next environment makes for easy analyzing of the
table.

46

Ch. 3 Limits and Derivatives

Creating Tables of Function Values

Our first special environment is CRTAB,for "Create Table". This subdirectory contains
the following commands and containers:

NVAL BEGX STPSZ FTAB F H
X0 NV

Thefirst four commands are for forming a matrix of evenly-spaced data points for a
function.

NVAL stands for "number of values" and takes an integer from the stack and stores it in
NV. It tells how many values of x to create. The programis« 'NV' STO ».

BEGX stands for "beginning x-value" and takes a number from the stack and stores it in
X0. The programs just« 'X@' STO »,

STPSZ stands for "step size" and takes a number from the stack and storesit in H. The
programis « 'H' STO »,

FTAB stands for "function table" and takes a formula for the function from the stack and
stores it in F. Then using the other data, in creates NV more values for x, evenly spaced a
distance H apart and starting with X0. Then it finds the value of the function at each of
those values of x, and presents a matrix with NV + 1 data points in it. FTAB assumes that
the formula for the function is written in algebraic form with X as the variable. Here is the
program:

« 'F' STO X@ 'X' STO @ NV
START X F EVAL X H + 'X' STO
NEXT NV 1 + 2 2 »LIST »ARRY 'X' PURGE

checksum: # 62566d

For example, suppose we want to create a table of values for the function f(x) = sin x for the
x-values 0.0, 0.1, 0.2, ... , 3.0. Then the beginning x-value is 0, and 30 more values will be
created; NV is therefore 30. The step size is 0.1. We create the table by typing:

RAD 1Usk
30 [NVAL] [BEGX] 0.1 [STPSZ] ' [SIN] X ¢ HOME NU.AN TRENS CRTAB 3
ENTER

—
r
o
w
-
h

'SINCX)'
ETES

RAD 1USR
{ HOME NU.AN TBFNS CRTAB }

1: [[60]
[.]1 9.9833416646..
[.2 .198669339/9.
[.3 .29552020666..

(NVALJEESSTPESPYRE]FH

To read the matrix conveniently, press ¥] to put the matrix in the MatrixWriter.

47

Ch. 3 Limits and Derivatives

Difference Tables

A difference table is a table of function values and their differences. The first column of a
difference table consists of the values of the variable x, and the second column consists of
the values of the function f(x). For sake of simplicity, suppose that the x-values are evenly
spaced a difference h apart; h is called the stepsize of the table.

The first difference in a difference table is Af(x) = f(x + h) - f(x). The first differences

make up the third column in the difference table. The second difference is A2f(x) =
Af(x + h) - Af(x), and occupies the fourth column in the difference table. Higher-order
differences are defined similarly. The table does not really have to be evenly spaced in any
way, and the following programs allow for that.

A divided difference table is the same as a difference table, except that the first differences
are divided by the stepsize, the second differences are divided by the first differences, and so
forth. The first divided difference is thus

Af f(x +h) - f(x)
h h :

You can see why such a value might be desirable if you remember the definition ofthe
derivative.

Similarly, a ratio table is a table of function values and their ratios. The first ratio is

 pry = SEH,

Our next special environmentis for creating difference, divided difference, and ratio tables
of a function given as a matrix of data points. It is called DIFTB for "Difference Tables".
This subdirectory contains the following commands and containers:

NDIF DTAB DDTAB RTAB AC

The command NDIF stands for "number of differences" and takes a number from the stack

and stores it in AC. For example,if you type 3 and press [NDIF|, then the program knows to
construct the first, second, and third differences. The programis« 'aC' STO ».

The command DTAB takes a matrix of data points from the stack and constructs the
difference table, making as many new columns as specified by NDIF. DTAB assumesthat
the matrix has two columns. For example, the output of CRTAB above can be taken
directly into DTAB. Here is the program:

« DUP SIZE 1 GET » M N

« M TRN oC 2 + N 2 »LIST RDM TRN 'M' STO 1 aC
FOR D1 ND -

FOR R 'M(R+1,D+1)-M(R,D+1)' EVAL 'M(R,D+2)' STO
NEXT

NEXT IM

48

Ch. 3 Limits and Derivatives

checksum: # 25379d

The command DDTAB takes a function table from the stack and returns the divided
difference table. Here is the program:

« DUP SIZE 1 GET » M N
« M TRN oC 2 + N 2 »LIST RDM TRN 'M' STO 1 aC

FOR D1 ND -
FOR R '"M(R+1,D+1)-M(R,D+1)' EVAL 'M(R+1,1)-M(R, 1)"

EVAL ~ 'M(R,D+2)' STO
NEXT

NEXT M

checksum: # 13518d

The command RTAB takes a function table from the stack and returns the ratio table. The
program is

« DUP SIZE 1 GET » M N

« M TRN 3 N 2 »LIST RDM TRN 'M' STO 1 N 1 -
FOR R 'M(R+1,2)M(R,2)' EVAL 'M(R,3)' STO
NEXT M

checksum: # 64314d

49

The HP 48 does a very fine job of evaluating definite integrals. The Manual discusses
numerical integration starting on p. 432. You can also program your own numerical
integration routines, as we will discuss in Chapter6.

The Built-in Integrator

Numerical integration requires input of the integrand, the limits, and the variable of
integration, and returns the approximate value ofthe integral and an uncertainty number
(which is almost certainly greater than the difference between the given value and the actual
value). The desired accuracyis indicated by the FIX mode selected;if the mode is 5 FIX,
then a value correct to about 5 decimal places is returned; if the mode setting is STD,the
value correct to about 12 significant digits is returned

Suppose we wish to evaluate the definite integral Jf(x) dx. Several entry methods are

possible, as described below under Antiderivatives. The smallest number of keystrokes is
required if the stack is used as follows: put a in level 4, b in level 3, f(x) in level 2, x in level

1, and press(]]. If the HP 48 "knows" the antiderivative of f(x), then the antiderivative is

shown evaluated at b and a. To simplify what is shown, press again; the value is

given to the accuracy of the mode setting. If the calculator does not happen to "know" the

antiderivative of f(x), then the integral is shown in the form 'f(a,b,f(x),x)'. If you press

at this stage, mostlikely nothing will happen; press to get the approximate value of

the integral. The uncertainty numberis stored in a container named IERR on the VAR
menu.

2

For example, to evaluate the integral Jin x2 dx with five-decimal-place accuracy, type

3: 8.00000
IMODES| 5 [FIX] O [ENTER] 1.2 [ENTER] a see2esd

[518] X 2 X 3
IEEHDBENEETHEOETD

1: 'r(9,1.200008,SIN(X"
0 2),%)"

ETEHDBENEETHEDET

> : 1: 8.49612
ETOTRE)IETHEE(39.0

Press on the VAR menu to see the 2: .
uncertainty number L: 4.368196

’ EEAEETCTEHERTHBTA

51

Ch. 4 Integrals and Their Applications

Since the uncertainty numberis less than 5 x 10-6, we do indeed have five decimalplaces of
accuracy.

To avoid having to reset the mode when you are used to working in STD mode in order to
evaluate a definite integral in a short time (getting all 11 decimal places of accuracy takes
quite a while sometimes), we can write a little program that does it for you. It also resets the
mode you were in before you started, and also displays the contents of IERR rather than
leaving it on the VAR menu for you to purge later. I call the program INT.D,for "INTegrate
with a certain number of Decimal places".

« RCLF » D F
« D FIX »NUM IERR D 1 + RND 'IERR' DUP PURGE »TAG F STOF
»

checksum: # 57739d

This program takes the integral, in the form '[(a,b,f(x),x)', from level 2 and the number of
decimal places desired from level 1 and returns the value ofthe integral to level 2 and the
uncertainty number, labeled IERR,to level1.

Areas, Volumes, and Arc Lengths

The value of a definite integral can be interpreted as area, volume, arc length, or something
else, depending on how the definite integral is set up. In every case, the calculator can
evaluate the definite integral in the same way. It is in setting up the integral that the
differences occur, and even there the calculator can be of help. The following examples will
give you the idea.

The area between curves y = f(x) and y = g(x) over the interval[a, b] is

J f(x) - g(x) Idx .

To set up to evaluate this integral numerically, enter the integrand by typing f(x), then g(x);
then subtract, and then take the absolute value by pressing or by typing AB S
ENTER|.

5
For example, the integrand of 1 | sin x - cos x | dx is created by typing

"SIN (X [ENTER] 'C O'S (X [ENTER] 1: 'ABS(SINCK)-COS(X))

[-] ABS [ENTER]. (EE(TeSTGTEAE

If the function f is positive over [a, b] and the region underf is rotated about the x-axis to

generate a solid of revolution, the volumeof the solid is fn[f(x)]2 dx. To enter the
a

integrand,just type in f, square it, and multiply by T.

52

Ch. 4 Integrals and Their Applications

For example, to find the volume ofthe solid generated by revolving the region under f(x) =

4 - x2 over [0, 2] about the x-axis, we must evaluate the integral n(4 - x2)2 dx. We can

form the integrand by typing

The length of the graph of y = f(x) over[a, b] is fV1 + [f(x)]2 dx. To set up this

integrand, enter f, differentiate it, square it, add 1, and take the square root.

For example,to find the length of the curve y = x2 - 4x + 5 over [-1, 3], we must evaluate

the integral \ 1+ [x2 - 4x + 5)]2 dx. The integrand can be created by typing

1

'XA2-4%X +5 [ENTER|'X |[ENTER|

B 1+|V].

A similar formula can be constructed in the case of parametric equations.

1: 'I(SQ(2*K-4)+1)'
[31.PH[NUWN[SEOH[HL[ERIETTM

Antiderivatives

The HP 48 has a limited ability to find antiderivatives of functions. Antidifferentiation is
done in the context of definite integration, with variable limits. The procedure is to enter the
integral and then evaluate it.

There are three ways to enter the integral. The most elegant wayis to use the
EquationWeriter, as illustrated on pp. 429-430 of the Manual.

For example, to enter Jcos(x) dx in the EquationWriter, type

equation] [1] A 2] B [8] [cos] X [7]
] X . The integral is translated REALL0M
into algebraic form on the stack.

1: 'SINCX)7X (¥) | (X=B)
To evaluate, press [EVAL], F$FINGO/R(R) | (=A

(CTTCITE)(TX)RET(STATSA

in. : 'SIN(B)-SIN(R)'
and then asa omTb

53

Ch. 4 Integrals and Their Applications

A second way to enter the integral is to type it into the command line in algebraic form
directly. To enter the above integral again, type

' = | y y 8)!

[A.B [cos] X[b],X [ENTER]. Aay

The third way is to put the limits, integrand, and variable of integration on the stack,

followed by the [J] command. To evaluate the same integral in this way, type

8,
'COS(X)!

(CEACIETY)ET(GT(AT

1: 'SINCX)70K (X) | (X=B)

[1] SSFINCG-RR) | (X=A

[3E.PH [NUANLEOM]HL[ZERIELT.AH)

: : 'SIN(B)-SINCA)'
brnGmta

A (ENTER| B (ENTER| ' [COS| X |ENTER| X

X
X
—
N
I
W

The HP 48 can give the antiderivatives of polynomials and of any function that is the
derivative of a built-in function, as described on p. 429 of the Manual. You can experiment
to find out what the HP 48 will and won't do in symbolic integration.

Differential Equations

Many applications of the calculus concern differential equations, in which the derivative of a
function is known but the function is not. In case the differential equation can be written in
the form

d
o =m(x, y),

then the idea of a "slope field" or "flow" can aid in getting a picture of what the solutions to
the differential equation are like.

The differential equation above can be thoughtof as specifying, at each point (x, y), a slope
m(x, y). The collection of all slopes so defined is called the slopefield orflow of the
differential equation. A picture of the flow can be obtained by selecting a grid of points in
the plane and, at each point of the grid, drawing a short line segment having the slope
specified by the differential equation.

The environment we create here is the subdirectory FLOW, containing the following
commands and containers:

MSTO ABSTO CDSTO SSTO SLOPE INTCV
ERACV FIELD PLTC M S A
B C D PPAR

54

Ch. 4 Integrals and Their Applications

The command MSTO, for "m store", takes the expression m(x, y), written in the two
variables X and Y, from the stack and stores it in M.

ABSTO takes two numbers from the stack, the interval in the x-direction, and stores them in
A and B. These numbers are used just like XRNG uses them to establish window
parameters.

CDSTO takes two numbers from the stack, the interval in the y-direction, and stores them in
C and D. It behaves like YRNG does.

SSTO takes a number specifying the step size from the stack and stores it in S. This
number sets the grid size.

Here are the programs:

MSTO ABSTO CDSTO SSTO
« 'M' STO « 'B' STO « 'D' STO « 'S' STO
» 'A' STO 'C' STO »

» »

Slope Fields

The program FLOW sets the plot parameters, establishes the grid, and draws the line
segments with the right slopes to show the slope field of the differential equation. It also
stores in the container FIELD a picture of the flow. Here is the program FLOW:

« A B XRNG C D YRNG ERASE (# od # 0d >» PVIEW DRAX B A -
SDC-S 7 > NX NY

« A 'X' STO C 'Y' STO @ NY
START 8 NX

START

IFERR M EVAL
THEN MAXR »NUM

END ATAN » T 'COS(T)>+ SINCT)=*i' »NUM S * 2 ~
DUP NEG 'X+Y*i' »NUM + SWAP 'X+Y=*i' »>NUM + LINE S 'X' STO+

NEXT A 'X' STO S 'Y' STO+
NEXT (X Y } PURGE CLEAR PICT RCL 'FIELD' STO GRAPH

»

For example, to create the flow of the equationo =LY with the window from -4 to 4 in

the x-direction and -3 to 3 in the y-direction and with step size .5, type

55

Ch. 4 Integrals and Their Applications

RAD 1UsSK
HOME NU.AN DIFEQ FLOW 2

{

4:
'X+Y |[ENTER| ' [SIN| X [ENTER] + 3

1 : '(X+Y)/SINCX)!
IESCTS.)RTI0

[MSTO] 4 [+/-] [SPC] 4 [ABSTO] 3
[SPC| 3 [CDSTO| .5 [SSTO| |[FLOW|

b
d
r
r
r

a
r
r
a
n

Integral Curves

The program INTCV for "Integral Curve" draws an integral curve (solution of the
differential equation) on top of the flow diagram, starting with a point specified by the user.
The easiest way to specify the point is by use of the cursor while looking at the flow
--position the cursor, press [ENTER], then [ATTN], then [INTCV]. This program calls the
subroutine PLTC, which uses the Runge-Kutta four-step method to draw the curve.

The program INTCV works well if the solution ofthe differential equation is a function. If
it is a relation, the program may or may not work; you will have to experiment. Just don't
automatically believe everything the calculator says!

The command ERACYVerases integral curves and restores the slope field to its original
form.

Here are the programs:

INTCV

« C»>R 'YQ' STO Yo 'Y' STO 'X@' STO X@ 'XK' STO S S ~ 'H!
STO (# 0d # 0d } PVIEW PLTC H NEG 'H' STO X@ 'K' STO Ye 'Y'
STO PLTC (X X0 Y Y@ H K1 K2 K3 K4) PURGE GRAPH

»

PLTC

« DO X Y RC M EVAL H = 'K1' STO H 2 ~ 'K' STO+ Kl 2 ~
'Y' STO+ M EVAL H = 'K2' STO 'Y' K1 2 ~ STO- K2 2 ~» 'Y' STO+
M EVAL H * 'K3' STO H 2 ~ 'X' STO+ 'Y' K2 2 » STO- K3 'Y!'

STO+ M EVAL H = 'K4' STO 'Y' K3 STO- KI K2 2 *# + K3 2 * + K4
+6 ~ 'Y' STO+ X Y R+C LINE

UNTIL AX >B X<CORCY >O0RDY <OR
END

56

Ch. 4 Integrals and Their Applications

ERACV
« FIELD PICT STO GRAPH =»

To draw an integral curve in the previous example passing through the point (.7, -.8), we

type

(7,8

r
r
r
r
r
r
r
r

We get an error as the curve approaches the origin.

Boundary Value Problems

A boundary value problem is a differential equation with an initial or boundary condition
and the problem of finding the value of the function for some particular number. We will
consider boundary value problems of the following form: Given the differential equation

= f(x, y), whose solution y is a function of x, and the condition y(a) = a, find y(b).

The simplest method of estimating a solution to a boundary value problem ofthis sort is
due to Euler. Euler's method is to divide the interval [a, b] into n steps, each of length

h=2-2
n

At the point (a, ov), which is on the graph ofthe solution function y, we take a step of length
h in the x-direction along the line with slope f(a, ®). The new point at which we arrive has
x-coordinate x; = a + h and y-coordinate y; = a + hm(a, a). At that point, we evaluate the
slope function f again to find out which direction to go, and take anotherstep in that
direction. We thus arrive at a second new point with x-coordinate x = x1 + h and y-
coordinate y2 = yi + hf(x1, y1). We continue in this way until we have taken n steps. At
each step, xk+1 = xk + h and yk+1 = yk + hf(xk, yk).

It is easy to implement Euler's method on the HP 48. We start with a subdirectory that we
call EULER whose menu consists of

FABST NSTO aSTO EULR F N
A B ao H

The containers F, N, A, B, a, and H hold the corresponding numbers or functions.

The program EULRcreates a list of the points (xk, yk), starting with the point (a, ot). Here
is the program:

« « 'Y' STOR 'X'" STOA «1 N
FOR K F EVAL H = H 'K' STO+ 'Y' STO+ XY

57

Ch. 4 Integrals and Their Applications

NEXT N 1 + 2 2 »LIST »ARRY (X Y) PURGE
»

checksum: # 21682d
The command STO+ is found on the right-shifted MEMORY menu.

oSTO is just « « STO ».

NSTO stores N and creates H: « 'N' STO B A - N 2 'H' STO ».

FABSTis for storing the function f and the numbers a and b:

« 'B' STO 'A' STO 'F' STO »

The function f is written in terms of the variables X and Y.

For example, suppose we are trying to solve the boundary value problem "Find y(0.3), given

SY _ 4y2/3 and y(0) = 0.2." If we decided to use N = 3, we would type

RAD 1USR
{ HOME NU.AN DIFEQ ELLER }

3:
'4*yA(2/3) |[ENTER| O [ENTER] .3 2 EB)

——————

RAD 1USK
{ HOME NU.AN DIFEQ EULER }

1: [[8.2]
2 [aSTO| 3 [NSTO| [EULR| [.1 .33679807203.

[.2 .53042826011..
[.3 .792534/4182..

CETCSESTCAI

Thus y(0.3) is approximately 0.7925. This procedure should be repeated with N = 6 to get

a comparative value. You will have to use ¥] to read the last entry in the matrix.

58

h r ran ndental Function

All of the elementary functions are built into the HP 48, and evaluating a function is just the
push of a button. For more complicated settings, like tabular functions, methods of curve
fitting can be devised.

LN, e, and EXP

The natural logarithm function is LN. To find the natural logarithm ofx, enter x and press
[LN]. If x is not a positive number, then LN returns a complex numberresult.

The number e is the base of the natural logarithm, and satisfies the property Ine = 1. The
calculator knows e as a symbolic constant; enter a lower-case e, and the calculator puts ‘e’

on the stack. Press to see the value of e.

The natural exponential function is f(x) = eX =exp(x). To evaluate eX, enter x and press

[ex]. The key sequence 1 also gives the value of the numbere.

Other functions on the MTH HYP menu of the HP 48, described on p. 137 of the Manual,
are related to LN and EXP.

The derivatives of the LN and EXP functions are built into the calculator, and can be used in
differentiation and integration problems just as other functions are.

It may be that a number on the stack is the logarithm or exponential of a rational number.
The program « LN »Q EXP », which is called *EXQ, will transform the decimalinto the
exponential of a rational number. The program « EXP »Q LN *, which is called *LNQ,
will transform the decimal into the logarithm of a rational number. Both of these programs
give spurious results if the number on the stack is not actually what you thought it was.

Inverse Trigonometric Functions

The inverse trigonometric functions were discussed in Chapter 2, and the derivatives of
ASIN, ACOS, and ATAN are known to the calculator. The derivatives of the other inverse
trig functions can be computed from these, using the formulas given in Chapter 2.

Hyperbolic Functions

The hyperbolic functions SINH, COSH, and TANH are given on the MTH HYP menu, along

with their inverses. The other hyperbolic functions are coth x = tanh xX’

1 : : :
————, and csch x = =——. Their values are found as for other functions; just
cosh x sinh x

enter x and press the appropriate button, and then use the button for the latter three.

sech x =

59

Ch. 5 Transcendental Functions

Applications

Many applications ofthe transcendental functions are based on formulas that lend
themselves well to treatment by the Solver. For example, the exponential growth model,

Q = Qpekt,

can be typed as 'Q=Q0*EXP(K*T)'. Put this equation on the stack and use the program
SV to get it into the Solver. The values of the known variables for a given problem can be
stored easily and the remaining variable solved for.

An alternative way to use the Solver on an equation like this is to create a subdirectory into
which you can put the formula to be used, together with containers for the variablesin the
formula. To use the Solver, enter the subdirectory and press . Then when you get
through using the Solver, just exit the subdirectory and leave the variables there. For
example, the above equation might be placed in a subdirectory called EXGR (for
"EXponential GRowth model"), the complete menu of which might look like

Q QO K T EQ

Store the equation 'Q=Q0*EXP(K*T)' in EQ, and store zeros in the other containers, just to
get them on the menu. Then, whenever you want to work with the exponential growth
model, enter the subdirectory EXGR,

2:
1:
ICEMCTCEOEETE

(QUITis the program « UPDIR #) and then press on the SOLV menu.

2:
1:
CCICCCEmm]

The equation is automatically set up for you, because itis already stored in EQ. Similar
subdirectories could be set up for other applications, such as the exponential decay model,

Q = Quek,

the logistic model,

Q-=LQ
Qo + (L - Qp)e-kLr

and so forth.

60

Ch. 5 Transcendental Functions

Curve Fitting

Here is a special environment that allows for handling functions in an experimental way or
for fitting to data. It was suggested by MS-DOS software called Twiddle, created by Dave
Lovelock at the University of Arizona. In the HP 48 version, we allow for creating a
function with parameters and graphing it, for plotting the data points of a function given as a
table of values, and fitting curves to the data points.

This environmentis called TWIDL, and consists of the following commands and
containers:

FSTO ASTO BSTO CSTO draw FRCL
SAVE ERASC STODT SCTRP P2LN LNREG
EXREG LOGREG PWREG POLYREG SPLCV POLYFIT
SPLIN A B C ABC POINT
SCAT 2XDAT EQ PPAR PAR

Some of these names are too long for all their letters to show, and the lower case letters in
‘draw’ appear as upper case letters on the menu. All of these commands and containers will
be discussed in the appropriate sections below, except for PPAR and XPAR, which contain
parameters you need not be concerned with here.

Functions with Parameters

Thefirst page of commandsis for working with functions having parameters. For example,
the function f(x) = A sin(Bx + C)is a function of x, but has the unspecified constants A, B,
and C in its formula. We call A, B, and C parameters; for any combination of values ofthe
parameters, a specific function f is obtained. By looking at the function f for various values
of the parameters, we discover properties of the family of sine waves. Similar things can be
done with other families of functions.

FSTO is for "F Store", and invites you to enter a function. It takes a formula, written in
terms of the variable X and the parameters A, B, and C, and stores it in the container EQ.
One or more of the parameters may be missing; a missing parameter simply does not affect
the function. The program is « STEQ ABC ».

ASTO, BSTO, and CSTO are forstoring values of the parameters. Each of them takes a
number from the stack and storesit in the corresponding container, and then displays the
current values ofall the parameters. One value may be changed while the others remain
unchanged. The programs are

ASTO: « 'A' STO ABC »

BSTO: « 'B' STO ABC =»

CST0: « 'C' STO ABC »

draw, which appears as DRAW on the menu, draws the graph of the function, using the
current values of the parameters. It draws over whateveris already in PICT,so that several
graphs may be viewed at the same time. The program is « DRAX DRAW GRAPH ».

FRCL is for "F Recall", and puts the contents of EQ on the stack, in case you wantto edit it
or simply find out whatis there. Itis simply « EQ ».

61

Ch. 5 Transcendental Functions

SAVE on the second page of TWIDLis for saving the current contents of PICT. It stores
the current picture in the container SCAT. The program is « PICT RCL 'SCAT' STO ».

ERASC is for "Erase Curve", and revertsto the last-saved picture. That is, ERASC puts the
contents of SCAT back into PICT. If you save a picture, for example, and then draw some
more curves on top ofit, you can erase the additional curves by using ERASC. The
program is « ERASE SCAT PICT STO GRAPH ».

Several of the above programs call the routine ABC, which displays the current values of
those containers. (Because ABC freezes the display, the calculator appearsto act differently
after its use, but don't be alarmed.) Here is the program:

« A "A" »TAG 1 DISP B "B" »TAG 2 DISP C "C" »TAG 3 DISP 1

FREEZE 2 FREEZE
»

checksum: # 18034d

Plotting Data Points

The next two commands are for working with data points in a graphical setting. They allow
for plotting the points of a data set, so that a visual representation may be made and so that
curves may be drawnto fit the data points.

STODT stands for "Store Data", and takes a matrix of data points from the stack and stores
it in DAT. If the matrix has more than two columns, only the first two will be used;it will

be assumed that the first column contains values of x, and that the second column contains
the corresponding values of f(x). The program is just « STOZ ».

SCTRP stands for "Scatterplot”, and plots the data points in XDAT so that the viewing
rectangle justfits the plotted points. Then, so that data points will not disappear if a curve is
drawn through them, small circles are drawn around the data points. Here is the program:

« SCATRPLOT 2DAT OBJ» 1 GET 1 SWAP
START POINT
NEXT FUNCTION GRAPH

checksum: # 4096d

Here is the program POINT, called by SCTRP:

« R»C CPX # 2d 8 'wx2' »NUM ARC »
checksum: # 381d

Fitting Curves to Data

The remaining commands in TWIDLare for fitting a curve to data points. Once data points
are plotted, then a function may be guessed that will pass through or close to the data points.
If the function involves parameters, they may be adjusted to get a better fit. Thatis, the
commands on the first page of TWIDL may be used to get a curve close to the data points.

The remaining commands create curves of a specific type, relative to data points.

62

Ch. 5 Transcendental Functions

The Line on Two Points

If two points are given, the command P2LN draws the line through those two points. The
usual use of this command is to enter the points from the screen with the cursor. This is
done by positioning the cursor on the desired point and pressing [ENTER]. Whenthis is
done twice, two points are on the stack. Then press to exit the picture, and then press

to get the line through the two points. Here is the program:

« C»R 1 3 »ARRY SWAP C»R 1 3 »ARRY CROSS =» L

« L 3 GET L 2 GET ~ NEG L 1 GET L 2 GET ~ NEG 'X' * + FSTO
draw

»

checksum: # 37686d

Least Squares Curves

A least squares curve for a set {(x;, yj)} of data pointsis the graph of a function y = p(x)
such that the sum of the squares of the errors,

E= 3i pax)?
is a minimum. The finding ofa least squares curve is called regression analysis. The
following table identifies the types of regression curves:

linear regression p(x) =a + bx
exponential regression p(x) = aebx
logarithmic regression px)=a+blnx
power regression p(x) = axb
polynomial regression p(x) =a + bx + cx2 +... + dx?

In each case, the data points are used to determine the parameters a, b, c, ... that minimize the
error E.

In TWIDL,the built-in regression properties of the HP 48 are used to draw regression
curves on a scatterplot. Each of the commands uses the data stored in 2DAT to create the
function p(x) of the model chosen.

LNREG draws the least squares line (linear function) on the scatterplot. Linear regression
is the most commonly used regression method. LNREG takes no argument from the stack,
but uses only the data stored in DAT. The program is « LINFIT ZLINE FSTO draw ».

EXREG draws the least squares exponential curve. It uses only the contents of DAT also.
Its program is « EXPFIT ZLINE FSTO draw ».

LOGREG draws the least squares logarithmic curve. It also uses only XDAT. The
program is « LOGFIT ZLINE FSTO draw =.

PWREG draws the least squares power curve, using only ZDAT. Its program is
« PWRFIT ZLINE FSTO draw =.

63

Ch. 5 Transcendental Functions

POLYREG draws the least squares polynomial of the degree specified. It takes the degree
from the stack and uses the contents of DAT to get the least squares polynomial. The
program is « POLYFIT FSTO draw ». The program POLYFIT thatit calls is

« >» N

« 2DAT DUP SIZE 1 GET » D K

« [[8 JI N11 + DUP 2 »LIST RDM 'M' STO K 'M(1,1)' STO

2Y 1 N

FOR P © 'XKI' STO @ 'KY' STO 1 K

FOR I 'D(I,1)' EVAL P ~ DUP 'XI' STO+ 'D(I,2)'

EVAL += 'XY' STO+

NEXT XY 1 P 1 +

FOR J XI 'M(J,P+2-J)' STO

NEXT

NEXT N 1 + >ARRY N 1 + N 2 =

FOR P 8 'KI' STO 1 K

FOR I 'DCI, 1)" EVAL P © 'XI' STO+

NEXT PN - 1+ N 1 +

FOR J XI 'M(J,P+2-d)' STO

NEXT

NEXT M ~ 'M' STO '"M(N+1)>' EVAL N 1

FOR R 'X' = '"M(R)' EVAL + -1

STEP (XY XI M } PURGE

checksum: # 32070d

Cubic Splines

Another method of fitting a curve to data points is by piecing together cubic curves in a
smooth way so that they form a curve passing exactly through all the data points. Such a
curve is called a cubic spline. The command SPLCYVcreates and draws the cubic spline for
a set of data points. It takes no argument from the stack, using only what is stored in
2DAT. Here is the program:

« RCLZ SPLIN DUP SIZE 1 GET » M N
« I N1 -

FOR I 'X' 'MCI,1)' EVAL - 'Y' STO 'MCI,S)' EVAL Y =*
'MCI,4>" EVAL + Y = 'M(I,3)' EVAL + Y = 'M(I,2)' EVAL + 'Y'

STO
&

IF X "MCI, 1)" EVAL > X '"MCI+1,1)' EVAL < AND
THEN Y

64

Ch. 5 Transcendental Functions

ELSE (0,08)

END
» STEQ DRAW

NEXT 'Y' PURGE GRAPH
»

checksum: #22706d

The program SPLIN that is called by SPLCV is

« DUP SIZE 1 GET » MN

« M TRN (5 NY RDM TRN 'M' STO I N 1 -
FOR I 'MCI+1,1)-MCI,1)' EVAL
NEXT N 1 - »ARRY 'H' STO I N 2 -

FOR I '"M(I+2,2)*HCI)-M(I+1,2)*(M(I+2,1)-
MCI, 1))+MCI,2)*HCI+1)" EVAL 3 = 'H(I)*H(I+1)' EVAL ~

NEXT N 2 - »ARRY 'A' STO I N 3 +=
START ©
NEXT (N 3 } »ARRY 'L' STO 1 'L(1,1)"'" STO 1 'L(N, 1)’

STO 2 N 1 -
FOR I '2%(M(I+1,1)-M(I-1,1))-H(I-1)*L(I-1,2)"' EVAL

'L(I,1)" STO 'HCI)-sL(I,1)' EVAL 'L(I,2)' STO 'C(ACI-1)-H(I-
1)*L(I-1,3))-LCI, 10" EVAL 'L(I,3)' STO

NEXT N 1 - 1
FOR IT 'L(I,3)-L(I,2)=M(I+1,4)' EVAL 'MCI,4)' STO

'(MCI+1,2)MCT,2)) HCI)" EVAL 'HCI)=(M(I+1,4)+2+M(I,4))"' EVAL
3 7 - 'MCI,3)" STO '(MCI+1,4)-MCI,4))s3-HCI)' EVAL 'M(I,5)'

STO -1
STEP (HAL } PURGE M

checksum: # 47144d

The remaining containers are A, B,and C,for holding values of the parameters, EQ, for
storing the function f, and 2DAT, for holding the matrix of data points.

We will demonstrate some ofthe capabilities of TWIDL. Suppose we have the following
table of function values:

=] 1] 21] 3] 41]5X =

f= 1 | 2 | 25] 2 | 3

We wish to view these data points graphically and draw the least squares line and the least
squares parabola through them.

We begin by creating a matrix of the data points:

65

Ch. 5 Transcendental Functions

[MATRIX] 1 [SPC] 1 [ENTER] [W] 2 [SPC] 2 «Wome3
[spc] 3 [spc] 2.5 [spc] 4[spc] 2[spc] 1% [
5 [SPC| 3 [ENTER| [ENTER]

I
r
=
1

A
W
N

N
N
N

Y
Y
,

—
_

Then enter TWIDL,find the second page of ©

the menu, and press o 0

Then press and

and then 2

This makes us wonder what kind offit a
cubic least squares curve would give, so we

type 3

66

In first-year calculus, you learn to approximate definite integrals using the trapezoidal rule
or Simpson's rule, which are simple approximation techniques that work very well for most
definite integrals. Here we will present a few simple programsthat develop these rules, as
well as the rectangle rules (Riemann sum rules).

Begin by creating a subdirectory for numerical integration. We will call it N.INT for
Numerical INTegration. Type

'N.INT [ENTER 1: 'N. INT'
(CET(TET)(FTRET(TATAOE

1:CR DIR [ENTER]. ET STECITSE(ET

Th N.INT| to enter th 1:en press o enter the new
subdirectory.

Our aim is to approximate the integral Tico dx . To do so, we will have to give the

calculator the function f and the limits a and b. We will create a little program that makes
this easy to do. Type in the following program:

« 'B' STO 'A' STO 'F' STO =»
checksum: # 59581d

We will store this program under the label FABST, reminding us to put the entries on the
stack in the orderf, then a, then b. Once you have entered the above program, typing
'FABST [sTO] will store it for us.

To test our little storage program,let's prepare to evaluate E dx. Type the following:

1

2: "17K!

"1+ X [ENTER] 1 [ENTER] 2 I
CETETTIII

FABST]. 1:
ICIICTTi

You will see three new containers in the menu, F, A, and B. You can press them to recall
their contents if you wish to see whether everything worked properly.

67

Ch. 6 Numerical Integration Theory

Riemann Sum Rules

Thefirst approximation we want to consider is a Riemann sum rule. This just uses the
definition of the definite integral, which is the limit of Riemann sums, to get an
approximation as follows. First, the interval [a, b] is subdivided into a number n of
subintervals, all of the same length

b-a
h= —.

n

The subdivision points are then given by

X0=4a,X1=a+h,xp=a+2h,..,xx=a+kh,..,xg=>b.

Next, in each subinterval a value tx is chosen, and a rectangle of height f(tx) and width h is
created. The area of the rectangle is approximately the area under the function f. Finally,
the sum ofall such areas of rectangles is formed, and that is approximately the value ofthe
integral.

The nextstep, then,is to tell the calculator now many subintervals we want. The following
program stores the number n, and also calculates the number h and storesit, using the
previously stored values of a and b.

« 'N'" STO BA -N~- »>NUM 'H' STO =»
checksum: # 29449d

We will store this program under the label NSTO, reminding us thatit stores n. To testit
out, choose the number 4 for n, typing

4 [RTO].
EE—

You should see new containers for N and H.

The most commonly used Riemann sum rules are the left endpointrule,

LER = [f(xg) + f(x1) +... + f{(Xp-1)]h,

the right endpointrule,

RER = [f(x1) + f(x2) + ... + f(xp)]h,

and the midpointrule,

Xp + X1MPR= [f*0551) + F122) +o +flmh

In each ofthese, the numbers tx from the subintervals are always spaced a distance h apart.
The next program forms the basis of each of these Riemann sum rules, and creates the sum
that each of them uses. We will call this program SUM:

« 'X' STO @ 1N

START F »NUM + H 'X' STO+

68

Ch. 6 Numerical Integration Theory

NEXT H * 'X' PURGE

checksum: # 3683d

The command STO+ is found on the right-shifted MEMORY menu on the HP 48.

This program takes a number from the stack as the starting point, storesit as X, and usesit
to evaluate the function f. Then the next value, a distance h to the right, is created,f is
evaluated there, and added to the previous value, and so forth. In this way a sum of
functional values is created. Finally, the sum is multiplied by h, giving the sum of the areas
of the rectangles, and we are done. X is purged to keep the menu clean.

Now we can create the Riemann sum rules very easily. The left endpoint rule starts with the
numbera, so the following program is all that is needed:

« A SUM »

We will store this program under the label LER, for Left Endpoint Rule.

The right endpoint rule starts with the point a + h, so the following program suffices:

« A H+ SUM »

We will store this program under the label RER.

All things should be ready for us to test these programs out now. Pressing

[LER] and[RER] 2: . 759523809525
LEX] an i: * 633553809505

EAIEAETIEEEECED

2
ays : 1 : :

will give us two estimates for J: dx, using n = 4 subintervals.

Error Analysis

We know the actual value of this integral, namely In 2. Let's do a little error analysis. To
makeit easy, we create a little program that immediately shows us how much error thereis
in our estimates. Store the program « 2 LN = » under the label ERR. Then pressing

an
I: 2e352008052
IEEANCAETECEC

gives us the error in the left endpoint rule using the current value of n.

First ofall, let's see what effect changing n has on the error. With n = 4, press

EweEEL be
EAEGAETIEN

69

Ch. 6 Numerical Integration Theory

Then we will multiply n by some factor, say 5. That makes n = 20, so type

20 [NSTO| [LER] [ERR] |RER| |ERR].

6637
28623371035
.01265620123

: -.01234379877
NE AETCE

—
N
W
w
-
h

I

Compare these errors with the previous errors. How are they related? Now let's multiply n
by the factor 5 again, making n = 100. Type

4: .01265620123
100 [NSTO| [LER] [ERR] [RER] [ERR]. 3: “oleans

I: -. 002493750083
IENECEETTCTEC

Compare again. What do you think?

You should have concluded that multiplying n by 5 divides the error by 5, approximately.
In terms of accuracy, if a given n produces one decimal place of accuracy, it will take an n
10 times as large to produce two decimal places of accuracy.

This brings up the question of whether we can get whatever accuracy we like by increasing
n. Let's investigate. With n =4, LER and RER both gave us one decimal place of accuracy,
if we rounded off. Try these again, and estimate the time it takes for the calculator to run the
programs. I get about a second. So let's suppose that we can get one decimal place of
accuracy in one second. That meansit will take 10 seconds to get two decimal places of
accuracy, 100 seconds to get three, and so forth. Whatif we want 12 decimal places of

accuracy? That requires 1012 seconds. Use your calculator to turn that into years.
Discouraging, isn't it?

Whatthis little exercise demonstrates is that something so simple as the Riemann sum rules
will never give us very much accuracy. We have to be smarter than that.

The integrand f(x) = - hasa fairly flat graph, meaning that rectangles do a fair job of

approximating the function. If the integrand had a steeper graph,it is clear that rectangles
would do a poorer job yet. Thus the error in the Riemann sum rules also depends on the
steepness of the graph, which is given by the derivative of the function. Textbooks give the
following error estimate: If If '(x)| <B on [a, b], then the error in approximating

] B(b - a)2
f(x) dx by a Riemann sum rule is no greater than 25

Trapezoidal Rule

You probably noticed when computing errors above that the LER and RER programs had
about the same amountof error, but in opposite directions. That is, one was an overestimate,
and the other, an underestimate. This makes us wonder what would happen if we averaged
the two estimates; will the error cancel out?

70

Ch. 6 Numerical Integration Theory

Let's try it. Store the program

« LER RER + 2 7 »

under the label TRAP. This is the trapezoidal rule. Geometrically, the rectangles on the
subintervals have been replaced by trapezoids. Try TRAP a few times, and try to determine
how multiplying n by a factor affects the error.

You should discover that multiplying n by a factor of k divides the error by a factor of about

k2. Thus, if a given value of n gives one decimal place of accuracy, then about 3 times n will

give two decimal places of accuracy. (Here, 3 =+/10.)

It is also evident that the concavity of the integrand affects the accuracy of the trapezoidal
rule, and that is why the second derivative figures into the error formula:

If If "(x)| <B on [a, b], then the error in approximating Pico dx by the trapezoidalrule is

B(b - a)3
no greater than2

Midpoint Rule

Another obvious way to improve on the left and right endpoint rules is to use the midpoint
of each interval rather than an endpoint. This gives the midpoint rule, whose program is

« H2 A + SUM »

Store this under the label MPR. Experiment with MPR a few times, to see how multiplying
n by a factor affects the error. You should discover the same "quadratic" law that was the
case with the trapezoidal rule.

Simpson's Rule

Since TRAP and MRR have similar error behavior, we wonder if combining them could
reduce the error still further. When we use both MPR and TRAP, we notice that the error
of TRAP is about twice that of MPR, and in the opposite direction. This suggests a
weighted average, as given by the program

« MPR 2 * TRAP + 3 ~ »

Store this under the label SIMP. That's right,it is Simpson's rule. Use SIMP a few times,
to see how the error behaves when n is multiplied by a factor.

You should discover that multiplying n by k divides the error by about k4. One reason for
this is that, by using the midpoints of the subintervals also, we have essentially doubled the
number of subintervals. The textbook error formula for the above program is as follows. If

If(4)(x)I < B on [a, b], then the error in approximating Fico dx by Simpson's sum rule is

71

Ch. 6 Numerical Integration Theory

B(b - a)d
588004 The influence of the fourth derivative instead of the third is ano greater than

surprise.

The complete menu under N.INT is now

SIMP MPR TRAP ERR RER LER
H N NSTO F A B
FABST

It might be more convenient to reorder this menu, so that FABST and NSTO are nearer to
the front. Purge the program ERR and order the menu as follows:

FABST NSTO SIMP TRAP MPR F
RER LER H N A B

This is done by creating the list

NOME CALC INTE NNT
{ FABST NSTO SIMP TRAP 3:

MPR F [ENTER] 2s
1: { FABST NSTO SIMP

TRAP MPR F }
[ZIMP]MPF]TEnPKERLERH

RAD 1USK
{ HOME CALC INTE N.INT }

and then typing O R D E R [ENTER]. 3:
3:

p!
(ETCONISTEICIE

You may also find ORDER on the MEMORY menu.

72

Sequences

Some aspects of the subjects of sequences and series lend themselves to computation. A
few ways in which the HP 48 is useful are presented here.

Terms of a Sequence

If the terms of a sequence are defined by a formula, then the formula can be evaluated just
as a function can be, using the Solver, as discussed in Chapter 2. Thus, as many specified
terms of the sequence can be found as desired, just by evaluating.

Sequences by Formula

A simple program can be written to create specified terms of a sequence, as well. If the
formula, the numberof the first term desired, and the numberof the last term are supplied,
the following program, called SEQ, will create a list of the terms specified.

« > A NI N2
« N1 N2

FOR K K 'N' STO A EVAL

NEXT N2 NI - 1 + »LIST 'N' PURGE

checksum: # 30925d

2
For example, to create the first five terms of the sequencebrtype

2: 'N*2/(2%N+1)'

'NA2/(2%N+1 [ENTER] | [ENTER] 5 LF 1
ICEENII

1: { .333333333333 .8
SEQ]. 1.28571428571

1.77777777778
_2.202020202¢3)

LPO IEEIII

If you want the terms of the sequence in fraction form, insert the command *Q or D»Q into
the program SEQ just before the command NEXT.

73

Ch. 7 Sequences and Series

Recursive Sequences

If a sequence is defined recursively, then a program can be written to produce the next term,
given the preceding terms on which it depends.

For example, the Fibonacci sequence is defined by the recursion a; =0, a2 = 1, and ap42 =
an + an+1 for any n. The following program, called FIB, will produce the next term, given
any two consecutive terms of the Fibonacci sequence.

« DUPZ + »

For example, with 0 in level 2 and 1 in level 1, pressing will produce the next term, 1, in
level 1, moving the others up. Repeated applications of FIB produce successive terms of the
sequence.

To automate the application of FIB,the following program, called NFIB, will take two terms
and the number n of new terms desired from the stack and return the next n terms to the
stack:

« 1 SWAP START FIB NEXT =»

For example, to get the first twelve terms of the Fibonacci sequence, type

2: 0

0 1 10 Li 1
ITECTETI3

7 21
[NFIB]. 3: 34

; :
ITCTETI3

If you want a list of the next n terms of the sequence, the following program, FIBL, will give
it to you.

« > N« NNFIBN 2 + »LIST » »

Type

0 [ENTER] 1 10 2: 0
10
IEECEEEEEETTEE

[FIBL]|. 1: {011235813
21 34 55 89)

IEECEEEEEEEETE

The above techniques used to produce the Fibonacci sequence will work with any
recursively-defined sequence. In fact, the programs NBISC and NGUESS,for
approximating zeros of a function by the bisection method or by Newton's method,
respectively, are just programs for producing some more terms of a sequence. You must

74

Ch. 7 Sequences and Series

determine the exact nature of the programs to use each time, but these examples make the
process evident.

Partial Sums

The nth partial sum of a seriesis just the sum of the first n termsof the series. The HP 48
has a built-in command, ¥., for computing a partial sum. Thisis described and illustrated on
pp. 423-426 of the Manual.

1

) 1 : :
For example, to compute the sum 2» We just enter the sum and evaluate it. The

n=1

Manualillustrates using the EquationWriter environment, so we will illustrate using the
stack. Type

4: 'N'

'N [ENTER] 1 [ENTER] 100 [ENTER 3: 1

'1/N~2 [ENTER] % ANS?
IGEITEGETRETIEE

2:
1: 1.63498390017
IGSCTTGETEETIEEE

Geometric Series

oo

A geometric series is a series of the form) ar". If Ir < 1, then the series converges, and
n=

a : : :
has sum 1-1 Thus, for geometric series, we can find not only terms and partial sums,as

: : a :
above, but also the sum. The environment of the Solver, with the formula 1-7 provides an

excellent setting for finding the sums of various geometric series.

Taylor Polynomials

The HP 48 has built into it the means for computing Taylor polynomials of functions. The
command TAYLR on the ALGEBRA menu takes a function, the independent variable, and the
degree from the stack, and returns the Taylor polynomial of the function of the specified
degree in the independent variable, centered at zero.

For example, to compute the Taylor polynomial of f(x) = cos = of degree 4 about 0, type

75

Ch. 7 Sequences and Series

2: COS(5x82)!
‘COS (5*X/2 [ENTER] 'X [ENTER] 4 | X

CET]ICEETETT)ECTACTA

TAYIR]. 1: '1-3,125%K°2+
39.0625741%%°4

(GTOICEETXENECRAA

You may find it interesting to apply the command or afterward.

The Taylor polynomials for the functions eX, sin Xx,cos x, and In(1 + x) are used quite often.
You may find it convenientto store those polynomials in general form for use in the Solver.
For example, for eX enter the Equation Writer and type K=0[0] Np] XAK/K!

[ENTER] and store the sum for later use. When you put the sum into the Solver, you may
specify the values of N and X, and the Solver will compute the sum for you very quickly.
(Do not specify a value for K—it is a dummy index.) Thisis particularly convenient for
those problems that ask you to tell how many terms of the Taylor polynomial are needed to
achieve a certain accuracy; put in consecutive values for N and watch the output.

Since the Taylor polynomials computed by the calculator are centered at zero, they are
partial sums of Maclaurin series. Thus the TAYLR command can be interpreted as creating
the specified number of terms of the Maclaurin series of the function given.

If you want to compute a Taylor polynomial about some other point c, the substitution of y
+ c¢ for x before the computation and x - ¢ for y afterward will do it. For example,to find

the Taylor polynomial of f(x) = cos : of degree 4 about 1, type "COS (5*X/2

'Y +1 'X [STO] [EVAL] 'Y [ENTER] 4 [TAYLR] ' X [PURGE] 'X - 1
'Y [STO| [EVAL|'Y [PURGE] .

This can be automated, of course; consider the following program, called TAYC.

« > NC

«YY C + 'X' STO EVAL 'Y' N TAYLR 'X' PURGE 'X*' C - '¥!

STO EVAL 'Y' PURGE

»

checksum: # 35391d

This program takes the function f, written in terms of the variable X, from level 3, the degree
n from level 2, and the center ¢ from level 1, and returns the Taylor polynomial of degree n
for f centered at c.

For example, to redo the above example, and get the Taylor polynomial of f(x) = cos2 of

degree 4 about ¢ = 1, type

76

Ch. 7 Sequences and Series

D: 'COS(5%K/2)"
"COS (5*X/2 [ENTER] 4 [ENTER] 1 J: 4

CTHI

balla3003RnR-1)
+2.50357379859* (X-1
)~2+1.5585212086%(X

TTR || |]

If the function given involves other variables than the one specified for use with TAYLR,the
polynomial's coefficients are given in terms of those variables. For use with TAYC,the
function given can involve other variables except for Y, and must use X as the variable
supplied to TAYLR.

77

Chapter 8. Conic Secti | Polar Coordinaf

The HP 48 can produce graphs of conic sections, parametric equations, and polar
coordinates. It can also be programmed to produce the graph of any implicitly-defined
function.

Graphs of Conics

The conic sections, with equations of the form

ax? + bxy +cy2 +dx +ey +f =0,

are special cases of implicitly-defined functions, with equations of the form

f(x,y) =0.

The HP 48 has built-in an environment for plotting the graphs of conic sections, which it
calls the CONIC type. Type in the function f(x, y) and store it as the equation by pressing

on the PLOT menu. Then specify CONIC type by pressing on the PLOT
PTYPE menu. Then draw the graph by pressing on the PLOT PLOTR menu.
(ERASEthe previous graphfirst if you wish.)

For example,to get the graph of x2 + 3xy - 4y2 = 1, type

'XA2+3%¥X*Y-4*%YA2-1[ENTER] 1: '¥"2+3%K*Y-4xY"2-1'
[LETRAAU]EAT(ITY)(ATXRT

[PLOT] [PTYPE| [CONIC] [STEQ] ft

ICECENEEABEART

Indep: 'X'

end: Vo
%: -6.
yi -3.1 3.2
EERERENENEEHECTE

Implicit Functions

To plot the graphs of implicitly-defined functions that are not conic sections, a replacement
for the DRAW command is needed. The following program, IMPG,is a successful

79

Ch. 8 Conic Sections and Polar Coordinates

substitute for DRAW. The plot parameters,etc., are set from the PLOT PLOTR menu, but
then go to the VAR menu and use IMPG instead of DRAW.

« DRAX PPAR OBJ» 6 DROPN C»R 'Y2' STO 'K2' STO C»R 'Y1l' STO
'X1' STO X1 Y2 R»C PVIEW X2 X1 - 5 * 131 ~ 'DX' STO Y2 Yl -

S ¥ 62 ~ 'DY' STO YI 'Y' STO 1 12
START X1 'X' STO EQ »NUM 'Z1' STO DY 'Y' STO+ EQ »NUM 'Z2'

STO 1 26
START DX 'X' STO+ EQ »NUM 'Z4' STO Y DY - 'Y' STO EQ

>NUM 'Z3' STO
IF Z1 Z2 » 8 < Z1 Z3 = 8 < OR Z1 Z4 = 8 < OR
THEN 1 5

FOR K XK DX - DX SK * + 'T' STO Z3 Z1 - K * 5
+ 21 + 'T1' STO 24 22 - K * 5 » Z2 + 'T2' STO

IF T1 T2 * 8 <
THEN T DY T1 = T1 T2 - » ¥ + R»C PIXON

END
NEXT 1 5
FOR J Y DY S ~ J + + 'T' STO 22 Z1 - J * 5 7 Z1 +

'T1' STO 24 23 - J + 5 ~» Z3 + 'T2' STO

IF T1 T2 * 8 <
THEN X DX - DX T1 = T1 T2 - » + T R»C PIXON

END
NEXT

END Z4 'Z2' STO Z3 'Z1' STO DY 'Y' STO+
NEXT

NEXT (X1 X2 Y1 Y2 DX DY Z1 Z2 Z3 Z4 T T1 T2 X Y)» PURGE
GRAPH
»

checksum:# 64113d

The above program is based on an interpolation routine that tests for sign changes in small
boxes, skipping the interiors of the boxes that have no sign changes in order to save time.
Where sign changes occur, every pixel is tested for the sign change, and an unbroken graph
is created.

Rotation of the Coordinate System

In the equation

axZ +bxy +cy?+dx+ey+f=0

of a conic section, the xy-term can be eliminated by a rotation of the coordinate system. The
angle through which the coordinate system should be rotated is given by

80

Ch. 8 Conic Sections and Polar Coordinates

a-c
cot 20 = bo

and the rotation equations
X=UuUcCosQ-VsinQ
y =u sin & + v cos Q,

when substituted for x and y in the original equation, give the new equation of the conic
section in the uv-coordinate system. The process of carrying out these operations can be
very tedious. Using the symbol-manipulation power of the HP 48, this process can be
reduced to a program.

The following program, called ROTCO, for "ROTate COnic", takes the equation of a conic
from level 4 and the coefficients a, b, and ¢ from levels 3, 2, and 1, and returns the
"simplified" equation in the uv-coordinate system. This program also uses the program
EXCO, given in the Manual, starting on p. 569.

« ROT SWAP - SWAP ~ DUP ©
IF ==
THEN DROP wv 4 ~ >NUM
ELSE INV ATAN 2 ~
END » T
« 'U' T COS = 'V' T SIN # - 'X' STO 'U' T SIN = 'V' T COS

* + 'Y' STO EVAL EXCO
» { XY } PURGE

checksum: # 43082d

The equation of the conic should be entered in terms ofX and Y, and the coefficients a, b,
and c¢ must be entered in order. If b = 0, the rotation is unnecessary, and the attempt to use
the program will result in a "division by zero" error. If a uv-term appears in the result, it is
because of round-off error, and it can be eliminated.

For example,to eliminate the xy-term in the equation x2 + 5xy - y2 + x = 8, we type

'XA2+5%X*¥Y-YAN2+X=8|ENTER| 3: "X"2+5xX*Y-Y"2+X=8'
1 [ENTER] 5 [ENTER] 1 [CHS] eg! !

-1
ICTRTXTIT8IEAICA

1: '2.69258240357xU"2+
[ROTCO]. . 000000000006*U*\-

2.69258240357*V"2+
.82806723047*U-

[NEIPD]TLIN[ROTO]PCHEPFE

The program takes a few moments (it's the EXCO part), so be patient.

81

Ch. 8 Conic Sections and Polar Coordinates

Parametric Equations

A pair of parametric equations

(25 wenn
define a curve in the plane from (f(a), g(a)) to (f(b), g(b)), provided that f and g are
continuous functions. The HP 48 can help us find the slope of such a curve, and sketch its
graph.

Chain Rule

The parametric form of the chain rule is

dy _dy/dt _g'(®)
dx — dx/dt ~ f(t)

and gives the slope of the parametric curve. The following little program for the HP takes
the functions f and g from the stack and returns the derivative dy/dx. The name of this
program is PCHR, for "Parametric CHain Rule."

« 'T' 3 SWAP 'T' d 7 »
checksum: # 44999d

The functions for x and y should be entered in terms of T, and in the order x, then y.

For example, if the parametric equations are

X=sint

y=t ~

then to find dy/dx we type

"SIN (T [ENTER] 'T A 3 [ENTER] a SINC

ESTEENETTEAEE

i 1: 13%T72-C0S(T)!
EL KTEEEern

We can even write a programto find the second derivative in parametric equations. If we let
2

y' = then 25 = pga. The following program, called PCR2 (for "Parametric Chair

Rule, 2nd derivative"), will then do the trick. Just like PCHR,it starts with the parametric
functions f and g on the stack.

« SWAP DUP » F « SWAP PCHR F SWAP PCHR » =
checksum: # 11824d

82

Ch. 8 Conic Sections and Polar Coordinates

You may want to use EXCO to simplify the result.

Graphs

The HP 48 has built-in a procedure for drawing the graph of a pair of parametric equations,
as described on p. 332 of the Manual. You must specify PARAMETRIC plot type by
pressing on the PLOT PTYPE menu. Then write the functions x = f(t) and y = g(t) in
the form f(t) + ig(t), a complex number with real part f(t) and imaginary part g(t). Store f(t)

+ ig(t) as the equation by pressing on the PLOT menu. Finally, specify the interval

over which tis to vary; if t runs from a to b, type the list { T a b } and press on the
PLOT PLOTR menu. Then press [DRAW].

For example, to get the graph of the pair of equations x = 3 cos t, y = sin t, with t running
from 0 to 2x, type

[PLOT|[PTYPE| [PARA] ' 3 * T

] +i * [SIN] T [ENTER ATA
1: {(T706.29)(T0629 Lo (106.29)

Indep:i(! 2 6.29 ’, y

(INDEP] NE -6. .
ys -3.1 3.2

[ERAZE|LERHUTD[26.3]YEN'S[INLEP]

ERASE| [DRAW].

T=

Polar Coordinates

Routines for handling polar coordinates and transforming to rectangular coordinates and
back again are built into the HP 48. This makes both computation and graphing easy to do.

The transformation from rectangular to polar coordinates and back again was discussed in
Chapter 2 when we dealt with vectors. Further discussion is found on pp. 169ffofthe
Manual.

Graphs

The HP 48 has a built-in procedure for plotting the graphs of functions in polar coordinates,
as described beginning on p. 330 of the Manual. First, make sure that the calculatoris in
radian mode. Then specify POLAR type by pressing on the PLOT PTYPE menu.
Then type in the equation r = f(8) and store it as the equation. Then set 6 to be the

83

Ch. 8 Conic Sections and Polar Coordinates

independent variable, and DRAW it. (The symbol 0 is a right-shifted F in oo mode.) If you
do not specify a range for the independent variable,the interval [0, 2x] is chosen
automatically. To specify a range [c, d], designate the list { © ¢ d } as the independent
variable.

For example,to plot the graph of r = 2 sin 40, type

[PLOT] [PTYPE| [POLAR] 'R = 2 * 'R=2*SIN(4+8)'

4*0 (8 is a right-shift F) (ETACEEYEEESE

Indep: '0’

|STEQ| [PLOTR| 6 [INDEP] : 2.5 cs

yi -3.1 3.2

EREREETEAHAHCRE

DRAW].

84

Chapter 9. Solid Analytic G

Points and Planes; Vector Methods

In three dimensions, a point has three coordinates, and can be represented readily to the HP
calculator as a vector. Thatis, the point (x, y, z) can be given as the array [x y z]. A plane
in space has an equation of the form ax + by + cz + d = 0, and can be represented to the
calculator as the vector [a b ¢ d]. These ideas are used in the following little programs.

The Plane on Three Points

P3271 is a program that takes three points from the stack and returns the plane they
determine.

«> UV UW

« UV -UWMW- CROSS » A
« A 1 GET 'X' = AR 2 GET 'Y' = + A 3 GET 'Z' = + A U DOT

checksum: # 35634d

For example, to find the plane containing the three points (2, 0, 0), (0, 3, 0), and (0, 0, 5),
type

[2,0,0 [ENTER] [O,3, 0 [ENTER] 3: [288]
[0,0,5 [ENTER] I: [005]

PIsw|tFTPoLfwmwe]|||

[P3>1d. 1: '15%K+10%Y+6x2-30=0

PIsw(l.FTPoLfwwes |||

If the result is ever '0 = (0, it meansthat the three points given are collinear, and hence do not
determine a plane.

Distance from a Point to a Plane

D.PTr is a program that takes a point and a plane from the stack and returns the (shortest)
distance between them. Both the point and plane are entered as vectors.

« >» PPL

« P OBJ» DROP 1 4 »ARRY PL DOT ABS PL OBJ» DROP DROP 3
>ARRY ABS ~

85

Ch. 9 Solid Analytic Geometry

checksum: # 48188d

For example,to find the distance between the point (1, 2, -1) and the plane 3x +2y -4z -7
=(, type

(1,2, 1 [Cis] [ENTER] (3,2, 4 2: ATES
[CHS] , 7 [CHS] [ENTER] CEECOCOTCEI

D.PTr|. 1: . 742781352789

Lines

A line in three dimensions can be represented most easily as a set of three linear parametric
equations in the form

X =Xx0 + at

y =yo + bt
z=zp+CcCt

The following little programs create the parametric equations oflines.

Line on Two Points

PS»L takes two points in space and gives the three parametric equations of the line they
determine.

« > Pl P2
« P1 P2 - 5 D

« 'X' P11 GET D 1 GET 'T' = + = 'Y' Pl 2 GET D 2 GET
'T' % + = '2Z' P1 3 GET D 3 GET 'T' * + =

»

checksum: # 50865d

For example, to find the line on the points (2, 3, 1) and (5,4, 0), type

[2,3,1[ENTER] [5,4 ,0 [ENTER] 2: [2311]

L|. 3: 'K=2-3*T!: Ld

86

Ch. 9 Solid Analytic Geometry

Line of Intersection of Two Planes

n>L takes two planes from the stack and returns the parametric equations ofthe line of
intersection. The plane ax + by + cz + d = 0 is entered as the vector[a b ¢ d].

« >» PQ
« P 0BJ» DROP DROP 3 »ARRY Q ARRY» DROP DROP 3 »ARRY CROSS

> D
« D ABS ©

IF ==
THEN "SAME OR PARALLEL"
ELSE P OBJ» DROP NEG Q OBJ» DROP NEG { 2 4) »ARRY

GJRED » A
« 'AC1,1)' EVAL @

IF ==
THEN '®' D 1 GET 'T' = = 'Y' 'A(1,4)' EVAL D 2

GET 'T' *= + = 'Z' 'A(2,4)' EVAL D 3 GET 'T' * + =
ELSE 'X' 'AC1,4)' EVAL D 1 GET 'T' * + =

'AC2,2)' EVAL ©
IF ==

THEN 'Y' D 2 GET 'T' *= = 'Z' 'A(2,4)' EVAL
D3 GET 'T' * + =

ELSE 'Y' 'AC2,4)' EVAL D 2 GET 'T' * + =
'Z' D 3 GET 'T' * =

END
END

END

checksum: # 33318d

Notice that the above program uses the program GJRED,assuming it is in the same or a
higher directory. If itis in a different subdirectory, then navigation directionsto its location
and back again must be given.

87

Ch. 9 Solid Analytic Geometry

For example, if GJRED isin a
subdirectory called MTRX and the |
program nr?L is located in a | |
subdirectory called AN.G,as in the
diagram, then the command
GJRED in the above program
should be replaced with HOME ah
MTRX GJRED HOME AN.G. | |

GJRED Te-L

To use the program, for example, to find the line common to the planes 3x +2y +z-6=0
and x +4y + 8z - 12 = 0, type

[3,2,1,6[CHs] [ENTER] [1.4, 2: [321-61
8 , 12 [CAs] rTrr

4: [[3216] [1].
eoL. 3: 'X=-.000000001+]12*,.

2: 'Y=3-23#T"'
1: 'Z=10*T"'
PIswCFTw|PisLjvm]||

Space Curves and Graphs

A curve in space is most easily represented parametrically, as

x = f(t)
y=g() ,te [a,b].
z = h(t)

To sketch the graph of a curve in space requires whatis called a perspective transformation
to make the graph appear as though we were actually looking at it. This in turn requires that
we specify the point from which we are looking, and then perform the perspective
transformation on each point we plot.

‘Here is a subdirectory TH.D.G that is an environmentfor plotting space curves (and
surfaces, which we will talk aboutlater). It does so by performing the perspective
transformation on the three spacial dimensions, so that the picture created on the screen
represents the object as seen when looking toward the origin from a specified viewpoint
(VX, VY, VZ) in space. Means are included to allow for magnification by a scale factor S.

The menu under TH.D.G is

SPCRV P.SRF VSTO SSTO M S
VX VY VZ TRANS

TRANSis a subroutine that performs the perspective transformation on a point of three-
space. It uses the matrix M and the scale factor S that are supplied separately, as explained
below. The input to TRANSis the set of coordinates x, y, z of a point in space.

88

Ch. 9 Solid Analytic Geometry

The program is

« 1 4 »>ARRY M SWAP = OBJ» DROP DROP ROT ROT R»C S * SWAP INV
*

»

checksum: # 46002d

VX, VY, and VZ are the coordinates of the viewpoint, and are created by VSTO.

S is the scale factor, and is created by SSTO.

M is the matrix that performs most of the transformation, and is created by VSTO.

SSTO isjust the program « 'S' STO » for storing the scale factor S. I find that a value
of about 20 for S gets most of the picture on the screen, depending on the function and on
the viewing point. You will have to experiment a little.

VSTO is a program for storing the coordinates of the viewpoint and creating the matrix M.
It requires as input the coordinates VX, VY, and VZ (in that order). It is a good idea to
select a viewpoint that will be outside the region of space in which the object to be viewed
lies. The program is

« 'YZ' STO 'VY' STO 'VX' STO VX VY 2 »ARRY ABS 'D1' STO D1 VZ
2 »ARRY ABS 'D2' STO CLZ VY NEG D1 ~ VX D1 ~ @ 8 4 »ARRY 2+
VX VZ = NEG D1 D2 = ~ VY VZ = NEG D1 D2 = ~ D1 D2 ~ @ 4 »ARRY
2+ UX D2 ~ VY D2 ~ VZ D2 ~ D2 NEG 4 »ARRY NEG 2+ 0 8 6 1 4

>ARRY 2+ RCLZ 'M' STO CLZ (D1 D2 } PURGE
»

checksum: # 26746d

The commands involving X in the above program are found on the STAT menu.

P.SRF is a subdirectory for the plotting of surfaces, as will be explained later.

SPCRYVis a subdirectory for plotting the graph of the three parametric equations

x = f(t)
y=g(@t) ,te [a,b]
z = h(t)

in space. The menu for SPCRYV is

XYZST ABSTO DRAGR RCLGR E.OLD N
X Y Z A B PPAR

PPAR contains the plot parameters. Choice of plot parameters is much less important in
this setting than the viewpoint and the scale factor S, so the default plot parameters should
be fine.

A and B are the limits on the parameter T, and are created by ABSTO.

89

Ch. 9 Solid Analytic Geometry

X,Y, and Z are the functionsf(t), g(t), and h(t), and are stored by XYZST.

N is the number of points that will be plotted, and must be stored separately.

E.OLD is a program for erasing the old picture if you don't want the next picture drawn on
top of it, and is simply the program « ERASE ».

RCLGRis a program for recalling the last picture drawn, and is simply « GRAPH ».

DRAGRis the program that does the plotting. The program is

« BA-N~- >NUM 'DT' STO A 'T' STO 1 N
START KX »NUM Y »NUM Z »NUM TRANS PIXON T DT + 'T' STO
NEXT (T DT > PURGE GRAPH

checksum: # 22365d

ABSTO is the program « 'B' STO 'A' STO =». It takes the limits A and B of T from the
stack and stores them.

XYZST takes the three functions f(t), g(t), and h(t) from the stack and stores them. The
functions are entered in algebraic notation, using T as the variable. The program is just

« 'Z' STO 'Y' STO 'X' STO »,

To use this environment, suppose we wish to plot the graph of

X = COs t
y=3sint , te [0, 2x].
z=1t/5

We mustfirst choose a viewpoint, say (20, 10, 15). This we do by entering the subdirectory
TH.D.G and typing

20 [ENTER] 10 [ENTER] 15 a 29

15
(I(CNITNSTI

[vsTO]. We mustalso choose a scale constant S, and 40 is probably a good choice. Type

40 [ssTO]. Then enter the subdirectory SPCRV. If we wantto plot 100 points, we type 100

ENTER| 'N [STO]. To enter the parametric equations, we type

"COS (T[ENTER] '3*SIN(T 3: 'COS(T)!
"T/5 [ENTER] 7 SINT

EECTS[TA[ANYAEA

[XYzsT|. The interval [0, 27] is most easily entered by typing

0 6.29 1 ’9 0

FREE1ATEAECTIE

90

Ch. 9 Solid Analytic Geometry

[ABSTO]. Finally, plot the graph by pressing

Crm

»
[GRAGK].

Parametric Surfaces

The various surfaces mentioned in calculus can all be graphed on the HP 48. This is often a
slow and tedious job, even for the calculator, because so much computation is going on;
some even suggest thatit be left to larger computers entirely. However,it is fun to see what
the calculator can do, so we present the material here for you to use if you want to.

We will describe all surfaces in terms of parametric surfaces. By way of definition, a
parametric surface is the graph of the parametric equations

x =f(u,v)

y =g(u,v) ,uela,b],velcd]
z=h(u,v)

If a value of v is chosen and v is fixed at that value, then the equations become parametric
equations in terms of the single parameter u, whose graph is a space curve; this curve is
called a v-curve of the surface, and the set of all v-curves is called the v-net of the surface.
Similarly,if the value of u is fixed, we get a u-curve, and the set of all u-curvesis called the
u-net of the surface.

By plotting a few curves of each net, a "wire-mesh" model of the surface is obtained; that is
what we will mean by the graph of the surface. Before discussing the environment for
plotting parametric surfaces on the HP 48, we will describe some common surfaces in terms
of parametric equations, and give a few examples.

Planes

A plane in space has an equation of the form ax + by + cz + d = 0. If the z-term is present

(c #0), then we may solve for z and get z = -a Therefore the parametric

equations

u

V

au + bv +d

C

N
<
<
X

give us the plane. The u- and v-nets are lines in that plane parallel to the xz- and yz-planes.

91

Ch. 9 Solid Analytic Geometry

If the z-term is absent, so that the equation ofthe plane is ax + by + d = 0, then the plane is
vertical (parallel to the z-axis). If the y-term is present (b # 0), we may solve for y and get y

ax +d i .
=-—% and the parametric equations

give us the plane. The u-net consists of vertical lines, and the v-net consists of horizontal
lines.

If both the y- and z-terms are absent, then the plane is of the form x = k, and the parametric
equations

b =k

y=u
zZ=V

give us the plane. The u- and v-nets are vertical and horizontal lines again.

Graphs of Functions of Two Variables

The graph of a function z = f(x, y) of two variablesis a surface in space. It is representable
as a parametric surface in the form

X=u

y=v
z = f(u,v)

The u-curves ofthis representation are traces of the surface in planes parallel to the xz-
plane, and the v-curves are traces in planes parallel to the yz-plane.

Quadric Surfaces

The various quadric surfaces can be represented as parametric surfaces using trigonometric
functions. Consider the following examples.

The sphere of radius r centered at the origin can be described at each point P by specifying
two angles, an angle u in the xy-plane from the positive x-axis (corresponding to 6 in
cylindrical coordinates) and an angle v of elevation from the xy-plane to the point P. By
computing the coordinates of P, we find the parametric equations of the sphere to be

X =T COS U COS V TT
y=rsinucosv ,ue [0,2n],ve [5,5].
z=rsinv

The u-net consists ofthe circles of longitude of the sphere, and the v-net consists of the
circles of lattitude.

92

Ch. 9 Solid Analytic Geometry

A portion of the sphere can be obtained by restricting u or v. For example, requiring v €

[0, 5 gives us the upper hemisphere.

The ellipsoid with semi-axes a, b, and c, centered at the origin, is a slight generalization of
the sphere, and has parametric equations

X=acosucosv TT

y=bsinucosv , ue [0,2n],ve [5:5].
Z=CSInyv

2 2
The elliptic paraboloid z == + Ls can be represented as for other functions of two

a¢ b
variables if you want the u- and v-nets to be vertical plane sections. If you want horizontal
sections, the parametrization

X=aucosyv

y=businv , uel0,e),vel0,2n]
Z=1

has asits u-net the set of horizontal plane sections.

A hyperboloid of one sheet can be represented as

x =a cosh u cos v
y=Dbcoshusinv | ue [0, >), ve [02x].
z=csinhu

The v-net is the set of sections by planes containing the z-axis, and the u-net is the set of
horizontal plane sections.

Most of the other quadric surfaces can be represented in similar fashion, perhaps by
interchanging x, y, and z, or can be represented as functions of two variables.

Surfaces of Revolution

Suppose the curve z = f(y), x = 0, y € [c, d] is rotated about the z-axis to obtain a surface of
revolution. If u represents the angle ofrotation at any point, the parametric equations of the
surface are

X =v Ccosu
y=vsinu jue [0,2r],ve [cd].
z =1f(v)

The v-net consists ofcircles traced by points on the original curve, and the u-net consists of
section by half-planes containing the z-axis.

Suppose the circle of radius a in the yz-plane, centered at the point (0, b, 0), is revolved
about the z-axis to obtain a torus. If u is the angle ofrotation, and v is the angle of elevation
from the center of the rotated circle to a point on the surface, then the parametric equations
of the torus are

93

Ch. 9 Solid Analytic Geometry

y=(b-acosv)sinu ,u,ve [0,2].
bobsaa

z=asinv

The u-net consists of circular cross-sections by half-planes containing the z-axis, and the v-
net consists of horizontal cross-sections.

Other surfaces of revolution can be represented is a similar fashion.

Graphing Parametric Surfaces

Here is an environment for the graphing of parametric surfaces on the HP 48. Itfits in the
P.SRF subdirectory on the TH.D.G menu mentioned earlier. The complete menu under
P.SRF is

XYZST ABSTO CDSTO NUVST DRAGR RCLGR
NU NV U.N.V X Y Z
A B C D USCR VSCR
SCR PPAR

PPARcontains the plot parameters (default parameters are best).

SCR contains the entire plot of the surface.

VSCR and USCR contain the screens of the v-net alone and the u-net alone.

C and D are the limits of the v-curves; A and B are the limits of the u-curves.

X,Y, and Z are containers for the functions that define the surface.

U.N.V is for putting the u-net and the v-net graphs together into the display. It is the
program

« USCR VSCR + DUP 'SCR' STO PICT STO GRAPH =
checksum: # 14776d

NV is the number of curves in the v-net that are to be plotted. NU is the number of curves
in the u-net.

RCLGRis a subdirectory containing the three commands RCLS, RCLU, and RCLV.

RCLYVis for recalling the v-net. It is the program

« YSCR PICT STO UPDIR GRAPH =».

RCLU puts the graph of the u-net on the screen. It is the program

« USCR PICT STO UPDIR GRAPH =».

RCLSputs the graph ofthe surface (both the u-net and the v-net) on the screen. Itis the
program « UPDIR U.N.V ».

94

Ch. 9 Solid Analytic Geometry

This completes the description of RCLGR.

DRAGRis a subdirectory that contains the commands DRAS, DRAU, and DRAYV, and the

container PPAR.

PPAR contains the plot parameters (default parameters are fine).

DRAYV sketches the v-net; here is the program:

«DC-NUJ~- 'DV' STOBA- NV ~~ 'DU' STO A 'U' STO C 'V' STO

ERASE (# Od # od » PVIEW 1 NU 1 +
START X »NUM Y »NUM Z »>NUM TRANS 1 NV

START DU 'U' STO+ X »NUM Y »NUM Z NUM TRANS DUP 3

ROLLD LINE
NEXT DROP DV 'V' STO+ A 'U' STO

NEXT (U V DU DV) PURGE PICT RCL UPDIR 'VSCR' STO

checksum: # 32157d

DRAU sketches the u-net. Here is the program:

« BA-NY ~~ 'DU' STODC - NU ~ 'DV' STO C 'V' STO A 'U' STO

ERASE (# Od # 6d } PVIEW 1 NV 1 +
START X »NUM Y »NUM Z »NUM TRANS 1 NU

START DV 'V' STO+ X »NUM Y »NUM Z »NUM TRANS DUP 3

ROLLD LINE
NEXT DROP DU 'U' STO+ C 'V' STO

NEXT (UV DU DV)» PURGE PICT RCL UPDIR 'USCR' STO

checksum: # 13721d

DRAS draws both the u-net and the v-net and puts them together, and is the program

« DRAU DRAGR DRAV U.N.V =»,

This completes the description of DRAGR.

CDSTO isfor storing the values C and D, and is the program « 'D' STO 'C' STO ». It
takes the values for C and D from the stack.

ABSTO is just like CDSTO.

XYZSTis for storing the functions that define the surface. It is the program

« 'Z' STO 'Y' STO 'X' STO »,

and takes the three functions from the stack. The functions should be entered in algebraic
form, using U and V as the parameters.

95

Ch. 9 Solid Analytic Geometry

To illustrate the use ofthis environment, suppose we wish to sketch the portion of the
sphere of radius 2, centered at the origin, which lies in the first octant. The parametric
equations for this surface are

y=2silnucosv ,ue [0,5], ve [0,3].
bam

z=2sinv

To enter the functions, we type

2%¥COS(U)*COS(V[ENTER] 3 '2xCOS(UI*COS(V)’
'2%SIN(U)*COS (V [ENTER] 2 BBN,
'2*% SIN (V [ENTER] FRERTOTCEC0AT

. To store the limits for u and v, since they are both the same, we type

 0 7 2 7 0
0 [SWAP 5 1.5787963268

1: 1,5707963268
EE]CT 1)Ts 1)(UT(RCIT

and then press and then [cDSTO]. Finally, we must decide how many curves of
each net to draw; suppose we want 5 curves in the u-net and 4 curves in the v-net. We type
5 4 [NUVST]. Then we press and then press

to get the u-net only, AN

\
L

/ (1

A 1)fr

to get the v-net only, CL

—

7

—

or [DRAS] to get both nets.

|
2 1 \
b——
A

Vector Functions

Vector functions, as in the context of curvilinear motion, can be handled by the HP 48.
Unfortunately, since the entries of arrays must be numbers, functions cannot be put into
vectors. However, functions can be put into lists, and then vector-like routines can be
written for the lists, so that the handling of vector functions can be automated.

96

Ch. 9 Solid Analytic Geometry

Velocity and Acceleration

For example, the velocity and acceleration of a vector (position) function can be computed
by the following little program for differentiating a vector function, called VDIF. It takes a
list of three parametric functions, written in terms of the parameter T, from the stack,
differentiates them, and returns both the function and its derivative to the stack.

« > |

«VV 1 GET 'T' 2 V 2 GET 'T' 2 V 3 GET 'T' & 3 »LIST
»

checksum: # 22898d

For example, given the vector function r(t) = [sin t, t2, 2 - 3t], we compute the velocity by
differentiating. We first construct the list for r, by typing

 ‘STN (T [ENTER] 'T 2 [ENTER 5 SIN
'2 3% T [ENTER] 3 2: od C,I 2-3*T

ITOTTEAFAT]TTT[TAT

(on the PRG OBJ menu). 1: LU 'T"2' '2

(E>EviaSHEEJoLIZT]22TFTh05)

Then we differentiate by pressing

: 2: € 'SINCT)! 'T72! '.,
1: { 'COS(T)" '2*T' -3

IECTTAAEETSTA

We calculate the acceleration by again pressing

[VDIF]. ¢ 'SINCTY! TRY3:

2: { 'COSCT)!' '2*T' -,
1: { '-SINCT)' 28 J
IITPTTIATCATTTETTAT

To evaluate a vector function at a given value of the parameter, the following function is
useful. Itis called VVAL. It assumes that the vector function is in level 2 and the value of T
1s in level 1, and it returns both the function and its value to the stack.

« 'T'" STO DUP » V
« V1 GET »NUM V 2 GET »NUM V 3 GET »NUM 3 »LIST 'T' PURGE
»

checksum: # 23040d

For example, given the vector function above, to evaluate it at t = 5, we create the list of
parametric functions as above, and then type

97

Ch. 9 Solid Analytic Geometry

5 1: ¢ 'SIN(TY" 'T"2' '2
’ -3*T')

IECCETIACATEETRATS

(VVAL). 2: { 'SINCT)' 'T*2' '.,
1: {3308724274663 25

IEEETTIACTTTTT[TAT

Curvature

The following program, called CRVT, computes the curvature of a parametric curve in three-
space, using the formula

lr’ x rll

“= es

Because the curvature in symbolic form is usually very complicated, this program returns
the value of the curvature at a point. The program can be modified, by writing routines for
the cross product and magnitude of vector functions given as lists, to return the symbolic
expression if preferred. This program takes a list of three parametric equations (the
position function r) from level 2 and the value of T from level 1 and returns the value of «.

« > RT

« R VDIF T VVAL OBJ» »ARRY 'RP' STO VDIF T VVAL OBJ» -»ARRY

RP SWAP CROSS ABS RP ABS 3 ~ ~ 'RP' PURGE SWAP DROP SWAP DROP

»

checksum: # 44326d.

For example,to find the curvature of the curve r(t) = [sin t, t2, 2 - 3t] at the point t = 0, we
type

"STN (T [ENTER] ' T A 2 [ENTER] 1: {_'SIN(T)' 'TR2" '2
'2- 3% T [ENTER] 3 [31ST] 0 3)

ITICTIE(FTEE

CRVT]. & ¢ 'SINCT)" 'T~2! 'y

IETTAEEEERTE

Cylindrical Coordinates

Since the rectangular coordinates (x, y, z) and the cylindrical coordinates[r, 6, z] are related
in the same way as rectangular and polar coordinatesin the first two variables, the HP 48
will transform from rectangular to cylindrical coordinates. We use the command POLAR.

98

Ch. 9 Solid Analytic Geometry

The HP 48 will also handle spherical coordinates, as explained on p. 171 of the Manual.

99

rtial Differentiati

The HP 48 can be used to accomplish several thingsin the calculus of several variables,
including graphing functions of two variables, creating contour maps, computing partial
derivatives, and constructing gradients and directional derivatives.

Functions of Two Variables

Graphs

The graph of the function z = f(x,y) is obtained by using the parametric graph unit of
Chapter 10, with the parametric equations

X=1u

y=v :
z = f(u,v)

To get the graph of the portion ofthe surface above the rectangle [a, b] x [c, d], set u to run
from a to b and v to run from c to d. You will get a wire mesh representation of the surface.

It is also possible to get a "hidden line" version ofthe graph, in which parts of the surface
hidden by other parts in front of them are not shown, butit is an intensive job, perhaps best
left to a larger computer.

Contour Maps

Contour maps of the function z = f(x, y) can be created on the HP 48 by using IMP.G from
Chapter 8. To plot the c-level curve of z = f(x, y), plot the implicit graph of f(x, y) - ¢ =0.

Partial Derivatives
Since the independent variable must be specified for the [>] command to work, partial
differentiation is just the same as differentiation, but with other symbols around. The
procedure for getting partial derivatives is identical to that for differentiating functions of
one variable.

Programs can be developed for getting higher-order partial derivatives, mixed partials, and
so forth. Creation of such programsis left to the interested reader.

Two-Variable Newton's Method

Given a system (not usually linear) of two equations in two unknowns

f(x,y)=0

gx,y)=0 ~

101

Ch. 10 Partial Differentiation

there is a two-variable version of Newton's method that takes an estimate of a solution and
returns (hopefully) a better estimate. Without discussing the theory, which can be found in
elementary numerical analysis books, we give here a set of programs for the two-variable
Newton's method. On the calculator, it behaves just like the Newton's method discussed in
Chapter 4.

First comes the program FGSTO:

« DUP 'X' o& 'GX' STO DUP 'Y' & 'GY' STO 'G' STO DUP 'K' »
'FX' STO DUP 'Y' & 'FY' STO 'F' STO
»

checksum: # 23092d

FGSTO takes the two functions f(x, y) and g(x, y) from the stack and stores them and their
partial derivatives for later use.

Then comes the program NEWT?2:

« 'Y' STO 'X' STO X Y F GY * G FY # - »>NUM FX GY * FY GX * -
>NUM DUP 'J' STO ~ X SWAP - FX G * F GX * - »>NUM J ~ Y SWAP -
'Y'! STO 'X' STO XY (XY J } PURGE
»

checksum: # 9370d

NEWT?2 takes the estimate x1 and yj from the stack and returns a new estimate x2 and y>.

As an example,to solve the system of equations

(x - 50)2 - 25y2 = 100
(y - 40)2-x2=400 °

we type

"(X-50)72-25*YA2-100 Bt 002522]Sk
[ENTER] ' (Y -40)A2-XA2- : 1 (Y-48)~2-K~2-4008'
400 FSIVINEWTINNWTLFG]FY

. Then we enter an estimate;if (20, 10) is our guess, we type

20 10 1 20

CEACT04CTRICIC

NEWT2|. 4: 20
3: 10
2: 29.2682926829
1: 2. 48780487805
[GERCT04CTRICI

102

Ch. 10 Partial Differentiation

Press several times. 4: 29. 2682926829
3: 5. 48789487805
2: 39.118305159
1: 3.81740/32881
[FSTINEWTINNWTLF5Fv

4 30.118385159
3 3.81740732881

30. 7436329949
Li 3.3254591324
4CTIX04COT0ICEEC

4: 30. 7436329949
3: 3.3254391324
2: 30. 7963882654
1: 3.27920362187¢
[F527[NEWTINNWTLFJ5Fv

We can have the machine press for us several times, by using a program such as
NNWT2:

« > N

« | N

START NEWT2

NEXT
»

This program takes the estimated solution from levels 3 and 2 and the number of repetitions
from level 1 and returns that many successive estimates.

These programs can be organized into a subdirectory, perhaps called NWT2. The complete
menu might be

FGSTO NEWT2 NNWT2 F G FX

FY GX GY

Gradients

A gradient of a function of three variables is just a vectorfield in which the components are
the partial derivatives. Here is a simple program for computing the gradient of a function of
three variables, and presenting it as a list of functions. It is called GRADI.

« > F

« F 'X' 9 F 'Y" dF 'Z' d 3 »LIST
»

checksum: # 50590d

This program takes a function of three variables, written in terms of X, Y, and Z, from the
stack and returns the gradient asa list of the three partial derivatives.

103

Ch. 10 Partial Differentiation

For example, to find the gradient of the function F(x, y, z) = x2y - 3z, type

i | RA2XY-3%7
XA2%Y-3%Z [ENTER] ETE

GRAD). 1: roxkay R72! -3
IEEEETACTTEETRAS

Here is a little program, called VFVAL,for evaluating a vector field of three variables at a
point. It takes the vectorfield, written as a list, from level 2 and the point, written as a vector,
from level 1. It returns the value of the field as a vector.

« OBJ» DROP 'Z' STO 'Y' STO 'K' STO » F
« F 1 GET »NUM F 2 GET »NUM F 3 GET »NUM 3 »ARRY (XY Z }

PURGE
»

checksum: # 15924d

For example, to evaluate the vectorfield [2xy, x2, 2z] at the point (1, 5, 3), type

12% X * Y [ENTER] ' X A 2 [ENTER] 1, 1gakeyt RoR! x
'2 * Z [ENTER] 3 LIsT| a=Eris[onid[oT[221]Tws

[1,5,3 [ENTER] ALI
IEETEAFEPSEETA

VEVAL)|. 1: [1016]
IEEETIEREETRIE

Directional Derivatives

Vector-handling routines on the HP 48 make the computation of the directional derivative
easy to program. To compute the directional derivative of a function f at a point P in the
direction of a vector v, we form the dot product of the gradient of f at P with a unit vector in
the direction of v. The following program, called DIRDE,takes the function f from level 3,
the point P (written as a vector) from level 2, and the vector v from level 1, and returns the
directional derivative.

«>F P
« F GRADI P VFVYAL V V ABS ~ DOT
»

checksum: # 31755d

104

Ch. 10 Partial Differentiation

For example,to find the directional derivative of the function f(x, y, z) = x2y - 3z at the point
(1, 3, 5) in the direction of v =[1, 2, 1], type

'XA2*Y-3*Z[ENTER|[1,3, 3: 'RA2*Y=3%7!
5 [ENTER] [1,2, I [ENTER] 4 [137]

EREETSAAGETAE[Ad

. : . 3rT
This same program will also work for functions of two variables; just put in zero for the
third component. For example,to find the directional derivative of f(x, y) = x2 - y2 at the
point (4, 1) in the direction of v =[1, 1], type

'X2-YA2 [ENTER] [4,1,0 3: Yee[ENTER] [1, 1,0 [ENTER] 7: [1183
IECEETIATTATTT[A

| {: 4.24264068713
LUCFLnLLRATLSEatd [UFUALLCREE

105

h ral itiple | r

Capabilities of the HP 48 enable the evaluation of path integrals and multiple integrals in a
very efficient manner. Here are some programs that do these things, taking much of the
drudgery out of applications.

Path Integrals

The path integral ofthe vector field F = (M(x, y, z), N(x, y, z), P(X, y, z)) along the curve C:

r(t) = (x(t), y(t), z(t)), t € [a, b], is Jo Fdr = JF(r(t))-r'(t) dt. An environment for the

evaluation of such path integrals is presented here.

Start with a subdirectory for path integrals, perhaps called P.INT, which contains the
following programs and containers:

FSTO RSTO ABSTO PINT IERR M
N p X Y Z A
B XP YP Zp

* XP, YP, and ZP are storage containers for the components of the derivative r'.

+ A and B are storage containers for a and b.

* X,Y, and Z are storage containers for the components of r.

* M, N, and P are storage containers for the components of F.

« [ERR is a containerfor the error of integration.

* PINT is the program that does the calculation. The program is

« RCLF A B M EVAL XP = N EVAL YP * + P EVAL ZP = + 'T' 5 FIX
J »>NUM SWAP STOF
»

checksum: # 15922d

This program evaluates F at r(t), forms the dot product with r'(t), and then uses the
machine's built-in numerical integration routine to evaluate the integral. The number .00001
= 107 is specified as the error tolerance; to change the tolerance, change the number 5 in the
program. The result of the program is two numbers: the value of the integral is placed on
the stack and the maximum erroris stored in IERR.

ABSTO is the program « 'B' STO 'RA' STO » for storing the limits a and b of the
parameter, describing the curve C. These become the limits of the integralthat is evaluated.

RSTO is the program

107

Ch. 11 Path Integrals and Multiple Integrals

« DUP 'T' & 'ZP' STO 'Z' STO DUP 'T' & 'YP' STO 'Y' STO DUP
'T' o& 'XP' STO 'X' STO
®

checksum: # 8136d

for storing the vector function r of which the curve C is the graph. The program also
computes and stores the derivative r'. The components X, Y, and Z of r should be entered
onto the stack in that order, using T as the parameter.

FSTO is the program « 'P' STO 'N' STO 'M' STO » for storing the three components
of the vector field F. The components M, N, and P should be entered onto the stack in that
order, using variables X, Y, and Z.

To illustrate, suppose we wish to find the path integral of F(x, y,z) =(x +y+2z,2x-y - 2,
X - y + 3z) over the circle C: r(t) = {cos t, sin t, 0), te [0, 21]. We type

'X+Y+Z[ENTER] '2*X-Y-Z 3: Lo BIL

[ENTER] 'X - Y +3 * Z [ENTER] g GE5L5
IEICTETTGINE

3: 'COS(TY |

(T [ENTER] O dei IGEISTCTSETEAA

: 0
0 [ENTER] 7 [ENTER] 2 *[*NUM| Eneaaarl8

1: 3.14159293912
IEISCTSITNEE

Press [IERR] t th ibl : 2: 3.14159293912
SRbi {: 7.43530876851E-5

[F10[hor0JuezPINTTERE[1

Numerical Multiple Integration

The most straightforward approach to numerical integration for multiple integrals is to
express them as iterated integrals and then use a nested Simpson's rule.

The version of Simpson's rule developed in Chapter 6 has quite a bit of inefficiency built
into it, so we will first give a streamlined version of Simpson's rule for a definite (simple)
integral, then for double iterated integrals, and finally for triple iterated integrals.

It is best to organize these programs into three subdirectories of a single directory M.INT
(for Multiple INTegration). The three subdirectories could be called INT1, INT2, and
INT3, or maybe S.INT, D.INT, and T.INT, for simple, double, and triple integrals,
respectively. We will choose the former.

108

Ch. 11 Path Integrals and Multiple Integrals

Simple Integrals

In the subdirectory INT1, there are several programs and storage containers for evaluating
integrals of the form

Joo dx.

The complete menu under INTis:

FABST NSTO SIMP1 F N A
B H

H is a container for storing the step size.

A and B are containers for storing the limits of the integral.

N is a container for storing half the number of subintervals. This number N is the same as
the number N in Chapter 7; in Simpson's rule, the number of subintervals is 2N, since
midpoints of the major subintervals are used, too.

F is a container for storing the integrand f(x).

SMP1is the fast version of Simpson's rule for the integral, and is the program

« A 'X' STOF EVAL 1 N 2 = 1 -
FOR I H X + 'X' STO F EVAL 2 = DUP 'T' STO + I 2 ~ DUP IP

IF #
THEN T +

END

NEXT B 'X' STO F EVAL + H #* 3 » {(X T } PURGE
»

checksum: # 22096d

NSTO is the program

« 'N' STOBARA-N2 * ~ '"H" STO »,
checksum: # 48933d

which not only stores N, half the number of subintervals involved, but also computes H, the
step size.

FABST is the program « 'B' STO 'A' STO 'F' STO » for storing the integrand f(x)
and the limits a and b. The name of the program reminds you to enter f, then a, and finally
b. The function f should be written in algebraic form in terms of the variable X.

To illustrate the use ofthis environment, suppose we wish to evaluate the integral

1dx, using N =4. We would type the following:

1

109

Ch. 11 Path Integrals and Multiple Integrals

2: "1X!

'1/X [ENTER] 1 2 It
EEECREEEEEEEEC

[FABST] 4 [NSTO] [smp1]. Leraro10438663

Double Integrals

The subdirectory INT2 consists of programs and containers for evaluating double integrals
of the form

b §x)
J f(x, y) dy dx.
a cx)

The complete menu under INT? is

FABST CDSTO MNST SMP2 F M
N A B CX DX KSTO
SMP1 H

H is a container for storing the "outer" stepsize.

SMP1is the program

« C'Y' STOF EVAL 1 N 2 = 1 -

FOR J KY + 'Y'" STO F EVAL 2 * DUP 'T' STO + J 2 ~ DUP IP

IF #

THEN T +

END

NEXT D 'Y' STO F EVAL + (Y T } PURGE

checksum: # 60313d

KSTO is the program

« 'X¥' STO DX EVAL DUP 'D' STO CX EVAL DUP 'C' STO - N 2 = ~

'K' STO
»

checksum: # 31931d

A, B, CX, and DX are containers for storing the limits a, b, c(x), and d(x).

M and N are containers for storing M and N, half the numbers of intervals in the inner and
outer subdivisions.

F is a container for storing the integrand f(x,y).

110

Ch. 11 Path Integrals and Multiple Integrals

SMP2 is the main program:

« A KSTO SMP1 1 M2 = 1 -

FOR I H X + KSTO SMP1 2 = DUP 'T' STO + I 2 ~ DUP IP

IF #

THEN T +

END

NEXT B KSTO SMP1 + H * 3 » { X T C D K } PURGE

checksum: #2151d

MNSTis the program

« 'N' STO 'M' STOBA-M2 * ~» 'H'" STO »,
checksum: # 56443d

for storing the numbers M and N, there being 2M subintervals in the X-direction and 2N
subintervals in the Y-direction. It also computes the step size H in the X-direction.

CDSTO is the program « 'DX' STO 'CX' STO », for storing the limits c(x) and d(x).
They are to be entered in algebraic form in terms of the variable X, and in that order.

FABST is the program « 'B' STO 'A' STO 'F' STO =, for storing the integrand and the
first two limits. The function f(x, y) should be entered in algebraic form, using the variables
Xand Y.

As an illustration ofthe use of this environment, suppose that we wish to estimate the
5 x2

iterated integral J J e¥/X dy dx with M = N = 5. We would type the following:
J oox

"EXP (Y/X [ENTER] .1 [ENTER] .5 2: BPA!
5
CETEcSE

FABST 2: 873

' XA 3 [ENTER] ' X * 2 [ENTER] EET———

2
5[ENTER] CETTEEEI

: 3.33054612819E-2

111

Ch. 11 Path Integrals and Multiple Integrals

Triple Integrals

The subdirectory INT3 contains programs and containers for evaluating triple integrals of
the form

1 oh "i y, z) dz dy dx.
a c(x) e(x,y

The complete menu under INT3 is as follows:

FABST CDEGS MNPS SMP3 F M
N Pp A B CX DX
EXY GXY KSTO SMP2 LSTO SIMP1
H

H is a container for storing the stepsize H.

SMP1is the program

« E 'Z' STOF EVAL 1 P 2 = 1 -

FOR UL Z + 'Z' STO F EVAL 2 = DUP 'T' STO + U 2 ~ DUP IP

IF #

THEN T +

END

NEXT G 'Z' STO F EVAL + L = 3 » { Z T } PURGE

checksum: # 31372d

LSTO is the program

« 'Y' STO GXY EVAL DUP 'G' STO EXY EVAL DUP 'E' STO - P 2 * ~

'L' STO
»

checksum: # 38671d

SMP?2is the program

« C LSTO SMP1 1 N 2 = 1 -

FOR J KY + LSTO SMP1 2 * DUP 'T' STO + J 2 ~ DUP IP

IF #

THEN T +

END

NEXT D LSTO SMP1 + K = 3 » {(Y T } PURGE

checksum: # 8655d

KSTO is the program

112

Ch. 11 Path Integrals and Multiple Integrals

« '¥' STO DX EVAL DUP 'D' STO CX EVAL DUP 'C' STO - N 2 = ~
'K' STO
»

checksum: # 31931d

A, B, CX, DX, EXY, and GXY are containers for storing the limits of the integrals.

M, N, and P are containers for storing the numbers M, N, and P.

F is a containerfor storing the integrand f(x, y, z).

SMP3 is the main program:

« A KSTO SMP2 1 M2 = 1 -
FOR I H X + KSTO SMP2 2 = DUP 'T' STO + I 2 ~ DUP IP

IF #
THEN T +

END
NEXT B KSTO SMP2 + H = 3 » (X TC DEG KL }» PURGE

checksum: # 18400d

MNPS is the program

« 'P' STO 'N' STO 'M' STO BA -M2 * ~» 'H' STO »
checksum: # 40817d

for storing the numbers M, N, and P that determine the numbers of subintervals in each
direction, and also computing the outermost stepsize H.

CDEGSis the program « 'GXY' STO 'EXY' STO 'DX' STO 'CX' STO » for storing
the limits c(x), d(x), e(X, y), and g(x, y). These functions should be entered in that order,
using X and Y as the variables.

FABST is the program « 'B' STO 'R' STO 'F' STO », for storing the integrand f(x, y,
z) and the limits a and b. The function f should be entered in algebraic form, using the
variables X, Y, and Z.

As an illustration in the use of this environment, suppose we wish to evaluate the integral
2 2

y
| f a + xyz) dz dy dx, using M = N =P =4. We would type

X Xy

'1+X *Y * Z [ENTER] 0 [ENTER] 1 2: LeRevaz)
1
CTEEHXTEXE]IC

113

Ch. 11 Path Integrals and Multiple Integrals

FABST 4: Tg!
' ' ' 3: ! nn!X [ENTER] 'X A 2 [ENTER] 'X * Y 3: 3G!
[ENTER] ' X * Y A [ENTER] I: RxyN2!

(ETE3(XTEE)IIT

3: 4
4 [ENTER] [ENTER] [ENTER] er 3

[ET]Ir(XTIEEI

1: 1.88640696485E-2
[spr3). [ET]Or(XTETNC

Applications of multiple integrals proceed just as in the examples above. In every case,
construct the multiple integral, express it as an iterated integral, renaming the variablesif
necessary in order to match the programs above, and use the appropriate program to
evaluateit.

114

Just

The HP 48 can be used for many things in addition to calculus problems. Some of them
are so much fun that we cannotresist including them here for the interested reader to play
with. Some of them are useful at the same time.

The Time Value of Money

The following program relates the present value, future value, payment , interest rate, and
number of payments in "time value of money" problems. It assumes a regular payment
schedule with equal payments and a fixed periodic interest rate. It is suitable for figuring
such things as amortization and annuities.

The program creates a formula relating the above values and putsit in the Solver, where the
user can enter the known values and solve for the remaining one. Upon completion of the
exercise, a QUIT button appears on the VAR menu, allowing the user to delete the variables
created and leave the VAR menu undisturbed.

Here is the program:

« 'S1'" CRDIR S1 '"(1- EXP(-N*LNP1(I-180)))*PMNT*100/1+PV=-
(FV<EXP(-N*LNP1CI-108@6)))' STEQ « UPDIR 'S1' PGDIR » 'QUIT'
STO 368 MENU
»

checksum: # 34542d

Let's illustrate. Suppose you want to buy a car for $5000. You can get 13.5% annual
interest at the credit union for a four-year contract, and you wantto find out what the
monthly payment will be. Press [TVM]. Then enter the data: the present value is 5000, the
future value is 0, and the number of months is 48; the annual interest rate is 13.5, so the
monthly interest rate is 13.5 + 12. Then we want to solve for PMT. So we type

D 1USR
OME DEMO S1 }

RA
LH
4:

3
1:
CROCCeMT]Cay1CEYIEE

» >D 1Usk
{ HOME DEMO sl }

4:

5000 [BV] 0 [FV] 48 [N] 13.5 [ENTER] 12+ 3:
[1] (left-shift) [PMT]. I: PMT: -135.381614767

TITdWTWE

The negative sign indicates money going out.

To exit the Solver, press

115

Ch. 12 Just for Fun

RAD 1UsSK
{ HOME DEMO S1 }

4

3
&
I7CEIT
RAD 1USR
HOME DEMO S1 }{

4:

and then 3

L:

GIRIIIEE

1UsSk
¢ROME DEMO }

4:

andfinally [QUIT]. 3

1:

The VAR menu is returned to its originalstate.

Chaos

Chaos is a subject that is gaining a lot of interest lately. The simplest approach to chaosis
in terms of a non-linear feedback system, a non-linear function whose outputis the input for
the function again. Let's make it concrete.

Suppose we have a population of creatures with non-overlapping generations, such as
temperate-zone insects. Each year's population depends on the previous year's population,
as well as on other factors. The function that describes this yearly dependenceis called the
reproduction curve for the species. A typical reproduction curve depends on both the
number of individuals from the previous year and the difference between that number and
the carrying capacity of the environment, the number of individuals the environment will
support. We will use the reproduction curve

f(p) = ap(1 - bp),

where a and b are constants and p is the previous year's population.

If we analyze the function f, we see that the constant b determines the maximum size of the
population. Because a population cannot be negative, the factor 1 - bp must be positive, so p

must be less than > That is, . is the carrying capacity of the environment. Also, the

i a i 1
function f has as its maximum the number iB if this number is to be less than Bb’ then the

value of a must be less than 4. Clearly a must be positive. The actual value of a depends on
the environment and on factors relating to the species under consideration.

If P1 is the population one year, then the population the next year will be p2 = f(p1); the next
year's population will then be p3 = f(p2), and so forth. The numbers pi, p2, p3, ... are the
numbers of individuals in the successive generations. These numbers are found by iterating
the function f, starting with pj.

116

Ch. 12 Just for Fun

The next question is this: Given a particular value of a, whatis the long-term behavior ofthe
population? We discoverthat for some values of a, the population behavior is very
predictable, but for other values, the behavior is inherently unpredictable.

To have the HP 48 help us see this, we will create an environment that makes for easy
computing and also graphical display of the numbers. I call the subdirectory CHAOS,
whose menu items are

ASTO BSTO P1STO WEB ARNG ATTR
CSCAD PN F A B Pl
Al A2 EQ CPAR CASCD PPAR
DA

DA is a storage container used by the program ATTR.

CASCD is a container used for storing a picture by the programs ATTR and CSCAD.

EQ is for storing a function to be graphed, and is used by the program WEB.

Al and A2 are containers used by ATTR.

A, B, and P1 are containers for storing the values of the constants a and b and the first
population pj.

F is the container holding the function 'A*X*(1-B*X)'. We switch to the variable X to
make graphing easier.

PN is a program that takes a given population from the stack and tells the next population.
Itis« DUP 'X' STO F EVAL 'X' PURGE ».

CSCAD is a program that displays the attractor or bifurcation cascade created by ATTR.
The program is « CASCD PICT STO CPAR 'PPAR' STO GRAPH ».

ATTR is a program for drawing the attractor of the reproduction curve, using the current
value of b and a range of values of a. The program computes 200 generations of the
population and then plots the next 50 generations in the same column of pixels for 131
values of a. The resulting picture often shows a bifurcation or period doubling of the
population, quickly degenerating into chaotic behavior. It takes an hour or so to construct
the cascade. The program is

« ERASE A1 @ R-»C PMIN AZ 1 R»C PMAX PPAR 'CPAR' STO Al 'A’

STO 1 131
START .5 'X' STO 1 200

START F EVAL 'X' STO
NEXT 1 50
START A F EVAL DUP 'X' STO R»C PIXON
NEXT Al 1 R»C PVIEW A DA + 'A' STO

NEXT 'X' PURGE PICT RCL 'CASCD' STO

checksum: # 32438d

117

Ch. 12 Just for Fun

ARNG is a program for storing the beginning and ending values of a to be used by ATTR
is constructing the cascade. The program is

« > BC

« BC MIN 'A1' STO B C MAX 'A2' STO AZ Al - 138 ~- 'DA' STO

»

checksum: # 11657d

WEB is a program for displaying graphically the successive generations, starting with pi.
The graph of f and the line y = x are drawn, and a line segment from the point (pj, 0) to the
point (p1, p2). Then a line segmentis drawn from (p1, p2) to (p2, p2) on the line y =x, and
then a line segment from (p2, p2) to (p2, p3). This process continues for 50 generations.
The resulting picture,called a web diagram, shows only a few linesif the populations are
periodic, but may lines if the behavior is chaotic. The similarity of the picture to a spider's
web gives us the name of the diagram. The program is

« 8 1 XRNG 8 A B 4 = ~ YRNG ERASE (# 0d # od) PVIEW F STEQ

DRAX DRAW 'X' STEQ DRAW P1 @ R»C P1 P1 'X' STO F EVAL DUP 'X'
STO R»C DUP 'P' STO LINE 1 50

START P X X R»C LINE X X R»C X F EVAL DUP 'X' STO R»C DUP
'P' STO LINE

NEXT (X P)} PURGE GRAPH

checksum: # 18576d

P1STO is for storing py, and is«'P1' STO =,

BSTO is for storing b, and is « 'B' STO =».

ASTO is for storing a, and is « 'A' STO =»,

By playing with the web diagram and by looking at the attractor, you can discover that for 0
<a <1 the popuation dies out and for 1 < a < 3 the population stabilizes. For 3 <a <3.5 the
population becomes periodic of period 2. Somewhere in the vicinity of a = 3.5 the
population's period doubles to 4, and for a slightly larger value of a, jumps to period 8. For
only a slightly larger value, the population appears to be chaotic. Here is the bifurcation
cascade for values of a between 3.4 and 3.9:

118

Ch. 12 Just for Fun

Public Key Cryptography

Public key cryptography refersto a system of encoding messages so that a message may be
transmitted over public channelsto a receiver, but only the intended receiver can read it.
This scheme was devised by Rivest, Shamir, and Adelman in 1978, and also allows for
insuring that only the purported sender could have sent the message. This system makes
for convenient and secure communications.

Each participant in a public key system publishes a public key consisting of two positive
integers, a modulus M and an encryption key E. The participant keeps secret a third positive
integer, the decryption key D. Anyone who wishes to send the participant a message uses
the encryption key E and the modulus M to encode the message as described below, but
without knowledge of the decryption key D, no one (not even the sender) can recover the
message from the code.

To encode a message, two steps are taken. First, the message is separated into blocks of
letters of a specified length, called a message block. Each letter in the message block is
replaced by the two-digit integer indicating its usual place in the alphabet: A becomes 01, B
becomes 02, ... , Z becomes 26. A space is assigned the number 00. Thus each message
block becomes a block of digits twice as long, called a plaintext block.

Second, a plaintext block P is transformed into a code block using the so-called exponential
cipher P — PE (mod M). Thatis, the numberP is raised to the power E and PE is divided
by M; the remainder becomes the code block. The only practical way to carry out the
encoding, of course, is by computer.

To decode a communication, the receiver uses the same exponential cipher on each code
block C, but employs his decryption key: C — CP (mod M). If there are no flawsin the
design, then the original plaintext block is recovered.

As you may suspect, the numbers M, E, and D must be chosen carefully to make this work.
Two prime numbers p and q are selected and M = pq. Then D and E are chosen so that DE
= 1 (mod (p-1)(g-1)). That is, DE is one more than a multiple of (p-1)(g-1). If this is done,

then
P — PE — (PE)D = pl+k(p-1)(g-1) = P.(P(P-D(@-D)k = P (mod M)

because of a theorem of Fermat: P®-1@-1) = 1 (mod pq).

The encryption can be made secure by choosing large primes p and q. It has been shown
that the simplest way to "break" the code is to factor the modulus M to find the primes p
and q, and then knowing E,to construct D. If p and q have about 100 digits each,it will take
so long to factor M (it would take years, using the best current technology) that breaking the
code will have no practical effect.

A simple public key system that can be demonstrated on the HP 48 is given here. Itis
designed for message blocks of three letters, so that plaintext blocks have six digits. A
modulus should be six or seven digits, but larger than 262626, the largest block of plaintext.
For example,if primes p = 521 and q = 523 are chosen, then M = 272483. If E = 2141 is
chosen, then D = 37781.

The public key environment consists of utilities for storing the numbers M, E, and D, a
routine for carrying out the exponential cipher, a program for encoding a message, and a
program for decoding the code blocks received. These all reside in a directory called
PKEY.

119

Ch. 12 Just for Fun

The utilities MSTO, ESTO, and DSTO take the respective numbers from the stack and store
them under the appropriate label.

MSTO: « 'M' STO »

ESTO: <« 'E' STO »

DSTO: « 'D' STO »

The program ENCOD takes a message from the stack, written as a string using only capitol
letters and the space, and breaksit into message blocks. Each message block is encoded
using M and E, and a list of the code blocksis the result. For example, using the values of
M and E above, the message "THIS IS A MESSAGE" is transformed into the list { 73825
168834 201767 134462 67143 240016). Here is the program:

« >» §S

«

WHILE S SIZE 3 ~ FP 0B #

REPEAT S " " + 'S' STO

END (» 1 S SIZE 3 ~

FOR K S '3%K-2' EVAL DUP SUB S '3*K-1' EVAL DUP SUB S

'3%K' EVAL DUP SUB » F G H
&

IF F n nN ==

THEN ©

ELSE F NUM 64 -

END
IF G n n

THEN ©

ELSE G NUM 64 -

END
IF H n n

THEN ©
ELSE H NUM 64 -

END >» N QR

« '10000=N+100=Q+R' EVAL E EXPCI +
»

NEXT

checksum: # 112d

The program DECOD takes a list of code blocks from the stack and recovers the message
they represent. It uses the number D in the exponential cipher, and then recovers the
message from the plaintext. For example, using the values of M and D above,the list

120

Ch. 12 Just for Fun

(144651 1300840 158560 164226 9157 5052) is transformed into the message "HOPE
YOU ARE WELL". Here is the program:

« DUP SIZE » CL
g Wn 1 L

FOR I C I GET D EXPCI » T
« T 100066 - IP DUP

NEXT

IF ==
THEN DROP " "
ELSE 64 + CHR
END + T 10606 ~
IF 8 ==
THEN DROP "

ELSE 64 + CHR
END + T 1060 ~
IF 0 ==
THEN DROP " "

ELSE 64 + CHR
END +

IP 188 - FP 106 = DUP

FP 1066 = DUP

checksum: # 20010d

Finally, the routine EXPCI performes the exponential cipher. It takes a block and the
exponent (E or D) from the stack and returns the transformed block. Here is the routine:

«> PA
« APPAP1 » KI B K3 K4 KS K6

&

DO
WHILE K4 1 >
REPEAT K4 2 ~ IP 'K4' STO Ké6 2 * 'Ké6' STO K3 K3 =

M MOD 'K3' STO
END K1 Ké - 'K1' STO K1 'K4' STO 1 'Ké' STO KS K3

* M MOD 'KS' STO B 'K3' STO
UNTIL KI 1 <

END KS

checksum: # 12700d

121

Ch. 12 Just for Fun

Because anyone can send a message to a participant in a public key system,it is desirable to
know for sure who has sent the message. For example, a bank would be reluctant to act on
a request to alter an account unless it were absolutely sure that the owner of the account
made the request. A participant in a public key system can send another participant a
signaturized message, so that the receiver knows that only the sender could have sent the
message; the security ofthe cipheris preserved, and public communication channels can
still be used.

A signature is something that is unique to a person;in a public key system, the unique thing
about each participantis his decryption key. Therefore, before sending a code block, the
sender may sign it by applying the exponential cipher with his decryption key to it. The
receiver, knowing thatit is a signed block,first applies the exponential cipher with the
purported sender's published encryption key, and then decodes the output in the usual way.
If a sensible message is recovered, then the receiver knows that only the purported sender
could have sent the message, for no one else could have used the sender's secret decryption
key.

To outline this process, let the sender have modulus m, encryption key e, and decryption key
d, and let the receiver have modulus M, encryption key E, and decryption key D. The action
on a block P of plaintext is as follows:

P — PE (mod M) encryption
PE — (PE)d (mod m) signaturizing
(PE)d — [(PE)d]e = PE (mod m) designaturizing
PE — (PE)D =P (mod M) decryption

Onepractical problem arises here: Because two moduli are involved,it is possible that the
output block from one process may be larger than the other modulus. However, if the
moduli are large and nearly the same size, the probability of that happening is very small. If
it does happen, it will only be in isolated blocks, and a message of any size can be
reconstructed from the context of the recoverable portion.

Here are signaturizing and designaturizing routines for the HP 48. They take a list of code
blocksfron the stack and use the stored values of the modulus and the appropriate key to
perform or undo the signaturization.

SIG: « DUP SIZE » L N «1 N FOR KL K GET D EXPCI NEXT N LIST » »
checksum: # 63937d

DESIG: « DUP SIZE » L N « 1 N FOR KL K GET E EXPCI NEXT N LIST » »
checksum: # 62740d

To enable you to play with a public key system a little, here are a few keysthatfit the PKEY
environment:

122

Ch. 12 Just for Fun

Music on the HP 48

The BEEP command on the HP 48 can be programmed to create tunes--simple tunes, at
least, for only one tone can be created at a time. Here is an environment for creating music
on the HP 48. It allows for writing a tune in a simple way, composing it into a list that can
be played, and selecting the key and the tempo in which it is played.

A tune is a list of notes and time values. A note is expressed in half-steps from the tonic
(first note in the octave, or 'do'), with steps up being positive and steps down being negative.
For example, if the tonic is C, then F is expressed as 5 and FS (F sharp) is expressed as 6;
A below Cis expressed as -3. Time values are relative durations. If a quarter note has time
value 1, then a half note has value 2, an eighth note has value .5, and a dotted quarter note
has value 1.5. For example, the following tune is just the major scale:

(1214151719111 1121)

Here is another tune you should recognize:

(8 .250 .2521081514280 .250 .2521080171528
250 .25121915142210 .25108 .259 1517152)

Once a tune is written, a composer translates the half-step designations into frequencies and
rearranges the list for rapid play. Then a player takes the composed list from the stack and
"BEEPs it out".

I keep the environmentin its own subdirectory, called MUZC. The full menu of this
environment is

COMP PLAY TEMP SET.T SCALE TONIC
DURA NOTES

I will describe these items in reverse order.

NOTESis a subdirectory for storing the notes of the 12-tone scale. Here is a printout for
the even-tempered scale; just store the values in containers with the given names.

NOTES C 523.3 F 698.5
DIR CS 554.4 FS 740

AR 440 D 587.3 G 784
AS 466 DS 622.3 GS 831
B 494 E 659.3 END

DURA (for "Duration") is used to compute the actual duration of a note from the time value
of the note and the tempo specified in TEMP. The simple program is « 68 TEMP ~ ».

TONIC is the containerfor the frequency ofthe tonic, or first note in the octave. Its
contents are determined by SET.T.

SCALE is a container in which I store the major scale above. It helps me a bit in writing
tunes, to remind me of the numbers of half-steps of the various notes.

123

Ch. 12 Just for Fun

SET.T (for "Set Tonic") is a program for setting the tonic, or key, in which a tune will be
played. It takes a note (A, B, CS, etc.) from the stack and stores the appropriate frequency
in TONIC. The program is « NOTES RCL UPDIR 'TONIC' STO ».

TEMP is a container for the tempo. Store a value of about 220 for a tune based on quarter
notes.

PLAY is the player, that takes a playable list from the stack and plays the tune. Here is the
program:

« OBJ» » D «1 D 2 ~ START TONIC * SWAP DURA * BEEP NEXT » =»
checksum: # 32213d

COMP is the composer, that takes a tune from the stack, transformsit into a playable list,
and returns the playablelist to the stack. Once a tune is written, the playable list may be
stored in place of the tune itself. Here is the program:

« DUP SIZE » L S
« S271

FOR KL K2 * GET LK 2 #1 - GET » T
« '27(T-12)' »NUM
» -1

STEP S »LIST

checksum: # 26187d

To create your own music,first write the tune as a list of notes (half-steps from the tonic)
and time values, and store it under a convenient name, say TUNE. Then put the tune on the
stack by pressing , then press |COMP|, and when it is done, press [PLAY|. Edit the

tune until it is satisfactory, and then store the playable list (the output of COMP) in [TUNE].

Thereafter,to play the tune, simply press and then [PLAY].

124

ABC 62
ABS 19
absolute value 29

function 19
ABSTO 55, 90, 95, 107
acceleration 97
amortization 115
analytic geometry 35
animation 21
annuities 115
antiderivative 51
antiderivatives 53
area 52
ARNG 118
ASA 27
ATTR 117
axes 16
aSTO 58, 118

back arrow 2
BEGX 47
BISCT 44
bisection method 43
boundary value problem 57
BSTO 118
bug 30
carrying capacity 116
>CQ 24
CDEGS 113
CDSTO 55, 95, 111
>EXQ 59
chaos 116, 117
checksum 8
>LNQ 59
COL? 37
collect 13
combinations 34
combinatorics 34
command 2

graphics 16
command line 2
COMP 124
CON? 37
COND 34
condition number 34
conic sections 79
Contour maps 101
coordinates 19
2Q 8, 33
cross product 29
CRVT 98

Index

cryptography 119
CSCAD 117
SQ 24
>TQ 24
cubic spline 64
curvature 98
curve in space 88
curvilinear motion 96
cylindrical coordinates 98
D.PTL 38
D.PTn 85
data points 62
D-»Q 10
DDTAB 49
De Moivre's theorem 13
DECOD 120
decryption key 119
definite integrals 51
derivative 40

evaluating 40
higher-order 41
value 40

DESIG 122
determinants 28
difference table 48
differential equations 54
DIFTB 48
DIRDE 104
directional derivative 104
display 16

saving 18
distance 35, 85

point to line 38
point to plane 85

divided difference table 48
DNDX 41
dot product 29
DRAGR 90, 95
DRAS 95
DRAU 95
DRAV 95
DRAW 17

equations 18
procedures 18

DSTO 120
DTAB 48
DUP 3
DURA 123
E.OLD 90
edit 5

125

editing environments 6
ellipsoid 93
elliptic paraboloid 93
ENCOD 120
encryption key 119
EQ 15, 17
equation

quadratic 13
solving 13

numerically 14
equations

differential 54
linear 28, 31

EquationWriter 53, 75
ERACYV56
ERASC 62
erase 17, 18
ERR 69
error analysis 69
error formula 70, 71
error of integration 107
ESTO 120
EULER 57
Euler's method 57
EULR 57
EXCO 13, 81
expand 13
EXPCI 121
exponential 28
exponential cipher 119
exponential decay 60
exponential function 59
exponential growth 60
expressions

evaluating 14
EXREG 63
EXRIJ 31
extremum 43
FABST 43, 58, 67, 109,
111,113
factor 13
factorials 34
families of functions 61
feedback 116
FGSTO 102
FIB 74
FIBL 74
Fibonacci sequence 74
fitting to data 62
FLOOR 19

FLOW 54, 55
Fractional Exponents 20
FRCL 61
FSTO 45, 61, 108
FTAB 47
function

exponential 59
hyperbolic 59
logarithmic 59
trigonometric 22
zero of 43

function of two variables
graph 92

functions
families of 61
procedures as 20

future value 115
Gauss-Jordan reduction 31
geometric series 75
geometry 35
GJRED 32, 87
GRADI 103
graph

multiple 19
type 79, 83, 84

graphics objects 21
graphs

functions 16
greatest integer function 19
GUESS 45
higher-order derivatives 41
HOME 6
hyperbolic functions 59
hyperboloid, one sheet 93
IERR 51, 107
IMP.G 101
IMPD 41
IMPG 79
implicit differentiation 41
INFL 43
INT.D 52
INT1 109
INT2 110
INT3 112
INTCV 56
integral curve 56
intercept 19
interest rate 115
isolate 13
keyboard 1
KSTO 110, 112
law of cosines 25
law of sines 25
least squares curve 63

Index

left endpoint rule 69
length 53
LER 68, 69
limits 39
line 37, 86, 87

normal 42
tangent 42

LLP 36
LNREG 63
logarithms 28
logistic model 60
LOGREG 63
LSTO 112
M.INT 108
Maclaurin series 76
manipulation 13
matrices 28
matrix 30

editing 31
inverse 30

MatrixWriter 30, 31
MQ 33
menu 4

page 4
reordering 6

midpoint 35
midpoint rule 71
MNPS 113
MNST 111
mode 22
modes 4
modulus 119
MPR 68, 71
MSTO 55, 120
music 123
N.INT 67
natural logarithm 59
navigation 6, 87
NBISC 45
NDIF 48
net 91
NEWT2 102
Newton's method 45, 102
NFIB 74
NGUESS 46
NNWT2 103
normal line 42
NOTES 123
NSTO 58, 68, 109
numerical integration 51,
108
NVAL 47
operation 2
order 6

126

P.INT 107
P.SRF 89, 94
P1STO 118
P2LN 63
P3»1 85
parameters 61
parametric equations 53

chain rule 82
graphs 83

parametric surface 91
partial derivatives 101
partial sum 75
path integral 107
payment 115
PCHR 82
PCR2 82
permutations 34
PFACT 11
PICT 18
PINT 107
PIVOT 32
pivoting 31
PKEY 119
plane 85, 87, 91
PLAY 124
plot parameters 16
PLTC 56
PN 117
POINT 62
point ofinflection 43
polar coordinates 83
POLYFIT 64
POLYREG 64
population 116
PPAR 16
PP>L 35
present value 115
prime factorization 10
principal value range 24
probabilities 34
program

entering 8
PSL 86
public key 119
purge 5, 16
PWREG 64
722
nL 87
quadric surfaces 92
RAD 4
radian mode 22
ratio table 48
RCLGR 90, 94
RCLS 94

RCLU 94
RCLV 94
recall 5
recursive sequences 74
reduced-echelon form 31
regression 63
renaming 5
reorder 72
reproduction curve 116
RER 68, 69
resolution number 16
reverse Polish 2
Riemann sum rule 68
right endpoint rule 69
RND 7, 31
root 14
rotation 80
rotation equations 81
ROTCO 81
round-off error 31, 34
row operations 31
row-reduce 32
RSTO 107
RTAB 49
Runge-Kutta 56
SAS 27
SAVE 62
scalar 30
scalar product 29
SCALE 123
SCTRP 62
SDAT 62
SEQ 73
sequence 73
SET.T 124
shift keys 1
SIG 122
SIG.D 7
SIGN 20
signature 122
SIMP 71
Simpson's rule 71, 108

Index

slope 43
slope field 54
SMP1 109, 110, 112
SMP2 111, 112
SMP3 113
soft key 4, 5
solution oftriangles 25
Solver 14, 15, 25, 60, 73,
75
SPCRYV 89
sphere 92
spherical coordinates 99
SPLCV 64
SPLIN 65
SSA 25
SSS 26
SSTO 55, 89
stack 1

entry 2
stack manipulation 3
STODT 62
store 4
STPSZ 47
subdirectories 6
subdirectory 87
SUM 68
surface

parametric 91
of revolution 93

surfaces 91
SV 16, 60
SYM 4
symbolic integration 54
SYND 21
synthetic division 21
systems of lin. eq. 31
syzygy 127
table 46
tangent line 42
TANL 42, 43
TAYC76
Taylor polynomials 75, 76

127

TEMP 124
TH.D.G 88
time value of money 115
time values 123
TLIN 42
TONIC 123
torus 93
TRANS 88
TRAP 71
trapezoidal rule 71
triangles 25
trigonometric functions 22

inverse 23
values 23

tune 123
TWIDL 61
U.N.V 94
uncertainty number 51
UPDIR 7
User keyboard 1
var menu 4
variable

isolating 13
VDIF 97
vector 29
vector products 29
vectors 28
velocity 97
VFVAL 104
visit 5
volume 52
VSTO 89
VVAL 97
WEB 118
window 16
XPRG 40
XYZST 90, 95
zero 19, 43
zoom 39
zooming 19

ISBN 0-02-340582-1

| | 90000>

9 "780023"405822 Il

	Cover
	Table of Contents
	Chapter 1. Basic Use Tutorial
	The Keyboard
	The Stack
	Entry
	Operalions
	Stack Manipulation

	Data Types
	Menus
	Soft Keys
	Modes
	The VAR Menu
	Storing
	Recalling
	Putting
	Renaming
	Editing
	Ordering
	Subdirectories
	Navigation

	Form of a Number
	Rounding: Number of Decimal Piaces
	Rounding: Number of Significant Digits
	Decimals to Fractions
	Prime Factorization

	Chapter 2. Use in Precalculus Topics
	Algebraic Manipulation
	Soiving Equations
	Isolating a Variable
	Root Finding

	Evaluating Expressions
	Graphs of Functions
	Plot Parameters
	Drawing
	Saving
	Zooming
	Multiple Graphs
	Zeros and Other Graphical Properties
	Plotting Unusual Functions
	ABS and FLOOR
	Fractional Exponents
	Routines as Functions

	Animation

	Synthetic Division
	Trigonometric Functions
	Angle Modes
	π
	Values
	Inverse Trig Functions
	Applications of Trigonometry

	Logarithmic and Exponential Functions
	Linear Algebra
	Vectors
	Matrices and Determinants
	Systems of Linear Equations
	Gauss-Jordan Reduction

	Combinatorics
	Elementary Plane Analytic Geometry
	Distance Formula
	Midpoint Formula
	The Line on Two Points
	The Point on Two Lines
	Collinear Poines
	Concurrent Lines
	Distance from a Point to a Line

	Chapter 3. Limits and Derivatives
	Limits
	Graphical Evaluation
	Computational Evaluation

	Finding Derivatives
	Zooming
	Simplfying
	Evaluating

	Higher-order Derivatives
	Implicit Differentiation
	Tangent Lines
	Function Analysis
	Points of Inflection
	Root Finding
	Bisection Method
	Newton's Method

	Function Tables
	Creating Tables of Function Values
	Difference Tables

	Chapter 4. Integrals and Their Applications
	The Built-In Integrator
	Areas, Volumes, and Arc Lengths
	Antiderivatives
	Differential Equations
	Slope Fields
	Integral Curves
	Boundary Value Problems

	Chapter 5. Transcendental Functions
	LN, e, and EXP
	Inverse Trigonometric Functions
	Hyperbolic Functions
	Applications
	Curve Fitting
	Functions with Parameters
	Plotting Data Points
	Fitting Curves to Data
	The Line on Two Points
	Least Squares Curves
	Cubic Spines

	Chapter 6. Numerical Integration Theory
	Riemann Sum Rules
	Error Analysis
	Trapezoidal Rule
	Midpoint Rule
	Simpson's Rule

	Chapter 7. Sequences and Series
	Terms of a Sequence
	Sequences by Formula
	Recursive Sequences

	Partial Sums
	Geometric Series
	Taylor Polynomials

	Chapter 8. Conic Sections and Polar Coordinates
	Graphs of Conics
	Implicit Functons
	Rotation of the Coordinate System
	Parametric Equations
	Chain Rule
	Graphs

	Polar Coordinates
	Graphs

	Chapter 9. Solid Analytic Geometry
	Points and PIanes
	The Plane on Three Points
	Distance from a Point to a Plane

	Lines
	Line on Two Points
	Line of Intersection of Two Planes

	Space Curves and Graphs
	Parametric Surfaces
	Planes
	Graphs of Functions of Two Variables
	Quadric Suifaces
	Surfaces of Revolution
	Graphing Parametric Surfaces

	Vector Functions
	Velocity and Acceleration
	Curvature

	Cylindrical Coordainates

	Chapter 10. Partial Differentiation
	Functions of Two VariabIes
	Graphs
	Contour Maps

	Partial Derivatives
	Two-Variable Newton's Method
	Gradients
	Directional Derivatives

	Chapter 11. Path Integrals and Multiple Integrals
	Path Integrals
	Numerical Multiple Integration
	Simple Integrals
	Double Integrals
	Triple Integrals

	Chapter 12. Just for Fun
	The Time Value of Money
	Chaos
	Public Key Cryptography
	Music

	Index

