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Introduction to the HP-48

The HP-48 is not just another graphing calculator, but a true “com-

puter in your hand,” with a powerful WYSIWYG (What You See Is What You

Get) symbolic algebra system, a spreadsheet-like matrix environment, and

unit management. This remarkable software comes with its own hardware

that includes a port for file exchange via cable connection to either IBM or

Macintosh computers (using the KERMIT protocol), and a two-way infrared

communications system for wireless transfer from calculator to printer or

another calculator. The expandable version of the HP-48 also includes two

RAM/ROM expansion slots (like disk drives on a computer),

In this paper we attempt to give a brief tour of some of the functionality

of the HP-48. This short guide is not intended to be a substitute for the

owner's manuals. However, we hope that the novice can use it to quickly

sample and get a feel for the machine. For those who desire more detailed

information, particularly on programming, welist several references at the

end.

NOTES:

Helvetica font indicates a labelled key on the HP-48 keyboard. (Examples:

or or [SIN] .) A boxed expression in the HP-48's own font

indicates one of the six white keys directly below the screen. The label for

the key appears along the bottom of the screen once the appropriate menu

is activated. (Example: is found through the or

menus.)
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48. INTRODUCTION TO THE HP-48

GENERAL INFORMATION

1. Busy signal:

Whenever the annunciator (little hourglass) is on at the top of the screen,

the calculatoris “busy” with a calculation. Pressing while the annun-

ciator is on will abort the computation and return you to the stack.

2. Directory:

The calculator's memory is organized in a tree structure consisting of di-

rectories, subdirectories, subsubdirectories, etc. Pressing moves you

up one level in the directory structure. Pressing moves you imme-

diately to the top level of the directory.

3. Shift Keys:

The three keys immediately above the key are shift keys:

in blue in orange for letters

They are associated with the corresponding colored labels or letters

around the other keys. When one of the shift keys has been pressed, its

own label is displayed at the top of the screen. and toggle on and

off. Pressing twice in a row locks the calculator in alpha mode, a third

press unlocksit.

NOTE:In this guide, we will not indicate the shift key except for

special characters not labelled on the keyboard.

4. Entering an object onto the stack:

When you type, the characters appear on the command line until you press

or an operation key which forces automatic entry.

2 |ENTER 1: 2
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5. Deleting characters and objects:

The"backarrow” key is a backspace and will delete the last character you

typed on the command line. If nothing is on the command line, then this

key drops the last entry off the stack. also drops the last entry off

the stack. drops all entries off the stack (but does not clear anything

stored in memory).

6. Numeric display: FIX

4 fixes the numeric display to 4 decimal places.

returns to the default setting of 12 significant digits.

Try this: [= Num] [MODES] 4 [FIX] [STD] 3 [FIX] 4 [FIX] etc.
 

7. Radian mode:

The default setting for the HP-48 is degree mode for angle measure.
toggles between radian mode and degree mode. (RAD is displayed at the

top of the screen when you are in radian mode, but DEG is not displayed

when you are in degree mode.)

8. Storing information in memory:

3 [ENTER] w [sT0
stores 3 under the variable name I}.

9. Recalling stored information from memory:

Ww [ENTER] 1: 3

OR: [var] []

10. Purging stored information from memory

[] [W] makes W disappear from the menu.
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48.2 RPN ARITHMETIC

Like most HP calculators, the HP-48 utilizes Reverse Polish Notation: First

one enters the objects to be operated on, then one applies the operation.

The answers shown for the following examples are for the standard ([STD])

numeric display.

1. Change sign or enter a negative number:

2 [+/-] [ENTER] 1: -2
(Note: pressing [=] makes the calculator attempt to perform subtraction.)

2. Add: 26+ 82

26 82 1: 188

3. Subtract: 36 — 32

86 [ENTER] 32 [—] 1 54

4, Multiply: 62-145

62 45 1: 2790

5. Divide: 35 = 20

85 [ENTER] 20 [=] 1: 4.25

6. Powers: (42)°

42 5 1: 139691232

7. Square root: /20

20 1: 4.472135955

8. Square: (25)°

25 iz 625
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9.

10.

11.

12.

Reciprocal:

o
x
Z
l
—

os [72]
(which is equivalent to 0.0117647058824)

Combinations of arithmetic operations:

. H(3+4)

5 [ENTER] 3 [ENTER] 4 [1] [x]

. 6/10

6 [ENTER] 10 [7]

. 5+23

5 [ENTER] 2 [ENTER] 3 [y*] [1]

. (25+ T)Y5

25 [ENTER] 7 [+] 4 [ENTER] 5 [ENTER] [+] [47]

Trigonometric values:

sin 2 (radian mode)

2 [SIN]

. arctan 1

1 [ATAN]

Logarithms and exponentials:

log 2

2 [log]

1.1764785882¢  E-2

35

18.973665961

13

16

. 989297426826

. 785398163397

. 301629995664

22026. 46357948
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48.3 UNITS

Units of measurement can be attached to numerical quantities by selecting

the appropriate unit from the menu. Unit management is automat-

ically taken care of by the calculator.

2 1: 2_ ft
3 [IN] 2: 2. ft

1: 3. in

1: 27 _ in

Compound units such as mi/hr are handled without any problems.

To simply convert from one unit to another, press the orange shift key

and then the desired unit.

1: 8.75 _ yd

Special constants

Special constants such as 7 and ¢ are displayed in symbolic form

provided (under ) is toggled “on” (indicated by a lit square on

the soft key).

To find 7 in decimal and rational form:

NUM]

Use to control the number of digits used in the numerator and

denominator of the rational form.

To find arcsin .5 as a rational multiple of ,

5 1: .523598775598

[ALGEBRA| [NXT] |[— Q = 1: ‘176% 7
 

To find ¢ in decimal:

[E] [ENTER] [— NUM] [—Q]

NOTE: lowercase letters are activated with : Greek letters are ac-

tivated with : other special symbols (like x) may also be accessed

with one or the other of these shift combinations.
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48.4 ALGEBRAIC NOTATION AND EVALUATING EXPRESSIONS

The key is used to denote symbolic expressions. It is called the “tick”

key and is located as the left-most key in the third row from the top.

1. Using algebraic notation for arithmetic

a. Evaluate ’2 +3

[l 2[+] 3 1: '2+3"
1: 5

b. Evaluate '7(4 +9) — 15

7x] [0] a+] 9 >] [=] 15 1: 'P(4+9)-15"

1: 76

Note the effect of the [»] key. Pressing [0] again opens another set of

parentheses rather than closing the first set.

 

 

2. Decimal to fraction and back:

[ATTN| 2.5 [ENTER] |— Q| 1: 'S/2!

1: 2.5

58 [=] 3 1: '583"

It 19.3333333333

1: ‘58-3!
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SOLVE APPLICATION

The application allows you to work with expressions and func-

tions numerically.

For example, suppose we have stored the expression 2 — 3 under the
-

.

.variable name S

[] x [y"] 2 [5] 3 [ENTER] s [STO]
S |[ENTER

i: 1a 2-3!

Evaluating stored variables using the SOLVER

 

To evaluate Sat + = 3: [soLve] [STED | [SOLYR 3 [EXPR=

1: EXPR: 6

To evaluate S at + = 15: 15 EXPR= to obtai

1: EXPR: 222

NOTE: The letters "EXPR:" are simply labels for your convenience,

and are not recognized by the calculator for computation purposes. For

example, you could press to obtain the sum 228.

If you press the orange shift key and then [X|, the HP-48 will use the

current value of X as a “seed” to find the closest root of the expression.
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48.6 EQUATION WRITER

The Equation Writer uses the screen as a “blackboard” to write ex-

pressions in usual textbook format. To activate, press EQUATION .

The most important key to remember while using the Equation Writer

application is [pb]. Use it whenever you want to proceed to the next “com-

ponent” of an expression. For example, you press [»] whenever you wish

to leave a denominator or get “outside” a radical sign.

If you wish to simply typeset an expression that is already on the

stack, press the down arrow key.

1. To write »* — 2 in the Equation Writer and store in the SOLVER

X 2p] [=] 2 X22

1: '® 2-2!

[Sove] [NEW] Y1 [ENTER]
Current equation:

Yl: Rr 2-2!

(NOTE: when naming an equation or a function, the calculator is locked in

alpha mode.)

2. To enter 5x + | in the Equation Writer and store in the PLOTTER:

[EQUATION] .5 X [+] 1 HX +1

1: '5%K+]!

[PLOT] (NEW | Y2 [ENTER]
 

Plot type: FUNCTION

Ye: 'OORR+]!
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THE CATALOG

1. To display a catalog of entered functions:

[PLOT] (or [soLvE]) [CAT]
Ye: PL

EQ: ve!

fl: Xr 2-2!

NOTES: [NEW] and are both accessed through either or

[MEW] is used to put an equation or function in the catalog. shows

and as available through user defined soft keys. Press each in

turn to obtain them on the stack.

2. To remove functions from the catalog:

 

(or [SOLVE]) [CAT] [NXT]

Move the cursor to indicate the function to be removed and press :
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48.8 ALGEBRA

All ofthe following assume that has been purged from the menu.

1. Expanding expressions and collecting terms

To expand (4+ + 1)?, enter the Equation Writer by pressing

 

[O] ax [+] 1 [»] [y] 2 [ENTER] 1: (axel) C2!
[ALGEBRA] [EXPA | [EXPA | [COLCT | 1: 11+16%R"  2+8#K!
 

[v] gets | + 16.X* + 8." back into the Equation Writer.

2. Solve linear equations

Solve 30 — 1 = 0:

 

 

[EQUATION] 3 x - 1 [ENTER] [] X [ENTER] 2: '3%8-1"
1: Qt

ISOC 1: '%=. 333333333333"
1: 1¥=1,3"

3. Solve Quadratic equations

Solve &* — + — 6 =0.

'X" 2-X-6' [ENTER] [ENTER] 'X [ENTER] 3: Rt 2-K-6'

2: Rh 2=K-6"'
1: 1g

QUAD 1 '®=(14s1%5),2"

NOTE: sl is the calculator’s symbol for +1.

[ENTER] 1 [1] [a] [3] s1 [sTO] [EVAL] 2: "RY 2-8-6!
1: '® = 3

swar] 1 [+/=] [1] [a] (1 s1 [570] [Eval 3 2-46!
2: '® = 3
1: w= 2!

- the solutions tor —r—6=0are r=3 and r = —2.
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48.9 cALcuLuS

(Reminder: Purge \" from the menu.)

1. Differentiation

{ - o
In the Equation Writer, enter RP + 3x- — 15):

ar

x bp] x [] 5s [» 3 x [yf] 2 [»] [2] 15 [ENTER]
1: "OR(K™ S5+3#X~ 2-19)

Press repeatedly, observing the results. Continue untilall 9.X's

are gone. Then press COLCT until the result no longer changes.

Duplicate the result by pressing . To evaluate the derivative

at x = 2:
 

 

2 [ENTER] 'X [STO] [EVAL] 1: 92

To take the derivative of sin r* without seeing the chain rule unfold

step-by-step,first purge the value stored in X: 'X

‘SIN (X * 2 'X 2: 'SIN(R ~~ 2)!
1: Hd

1: 'COS(R © 2)%(2%R)"

2. Integration

dt 
1

Evaluate the definite integral / z
0 1 + t=

[EquaTion] ([] o[] 1x] 1 [=] 1 [&] T[¢7] 2] [B] (] T [ENTER]

to obtain the display 1:' [(8,1,1-(1+T~  2),T)'

Press to duplicate this entry. Now press :

 

 

1: . 785398163397

|ALGEBRA | [NXT] |— Qn] 1: "174 = 7!

Now let's evaluate the indefinite integral / 7 - 3 dt0 2

gets our definite integral onto an editing line. Move the

cursor so thatit is flashing over the upper limit 1. Press (delete) and

type X in its place. Finally, press . To check the integral in the

Equation Writer, press [¥]. Press to return to the stack. Now press

1: 'ATANCX)

If the calculator returns the original integral to you, it means that it

was unable to find an antiderivative for the integrand. To numerically in-

tegrate a definite integral, press NUM] . The accuracy of the computation

is governed by how many decimal places have been specified using :
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48.10 GRAPHING ENVIRONMENT

The Graphics tools on the HP-48 can be subdivided into two basic

environments:

1) graphing (or plotting), and

2) drawing (or constructing).

To view the graphics screen at any time, press . To return to
the stack, press [ATTN] .

Plotting Parameters

To set up graphing with the default (usual) parameters, i.e., with the center

of the screen at the origin, with coordinate axes shown, with each axis

mark representing one unit, and each pixel valued at 0.1 unit, we need

to make sure any different plotting parameters have been purged. To do

this, press (PLOT| [PLOTR | [NXT| [RESET |. The default viewing window is

[-6.5.6.5] x [-3.1, 3.2].

 

PLOT| Glossary

The menu is one of the more extensive (some of the menu keys have

little folder tabs indicating that they bring up menus themselves). Here we

briefly describe most of the keys found under the menu.

PLOTR brings up a plotting parameter screen, showing you the cur-

rent equation, independent and dependent variables, and the r and y

ranges of the viewing window. [PLOTR also brings up its own menu which

will be described below.

PTYPE displays the menu of graph types vou can select.

[NEW] stores a newly typed in expression into the catalog with a name

ofyour choosing. Ifyou do not choose a name, then the expression is given

the name EQ.

puts the expression on the command line for editing. After
editing is complete, replaces the old expression with the new one.

To abort the editing process, press [ATTN] .

STEQ stores an expression under the name EQ.

displays the catalog of stored expressions from which any may

be selected for graphing.

Note that the last four keys on this menu are exactly the same as

those under the menu.
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PLOTR submenu

The keys used most often under the |PLOTR submenu are described here.

ERASE erases the existing graphics screen.

plots the graph within the parameters displayed.

AUTO computes the values of the expression for the « interval and

sets the y range automatically to show a complete graph over the given

domain.
 

KRNG sets a new range for +: press 4 |+/—| [ENTER] 5 [ENTER] [XRNG | to

set the z-range to [—4.5]

YRNG sets a new range for y.

selects a new independent variable from the expression to be

graphed on the horizontal axis: A defines "A" as theindependent

variable.

selects a new dependent variable.

RESET resets the plotting parameters to their default settings.

Interactive zooming features

Once you've drawn a graph, you have an interactive menu available.

Z00M brings up a zooming feature submenu which provides for se-

lective zooming in or out by factors on one or both axes.

a. [XAUTO selects x-axis zoom with automatic y-axis scaling:

Pressing [KAUTO 2 doubles width of r interval, y interval autoscaled.

b. selects x-axis zoom with no change in y.

c. selects y-axis zoom with no change in x.

d. selects zoom factor for both axes.

e. [EXIT takes you back to the top level of the interactive menu.

sets diagonally opposite corners for a new viewing rectangle.

Use cursor keys to fix the two corners by pressing . (The box is
not normally shown. If a box is desired, press for one corner,

for the other corner, then for “zooming in”.

CENT regraphs the function with the cursor's position as the new

center of the Viewing Rectangle with the same interval radii for the r and

y axes.

COORD displays the coordinates of the cursor in the lower left corner

of the screen. Also available through when in graphics environment.
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48.11 FUNCTION GRAPHING EXAMPLES

1. Plotting functions

Enter the function +” —2 named Y1 as detailed earlier, then press

[CAT]. Use [¥] to select = then [PLOTR to obtain

Plot type: FUNCTION

Yl: 7 R~ 2-2

Indep: ' XK’

wi -6.9 6.9

ys -3.1 3.2

If these are not the plotting parameters you see, press RESET |.

[PREV] [ERASE | [DRAW | displays the graph of y = +2 — 2.

(NOTE: [ERASE clears the graphics screen; otherwise, the new graph

will be plotted over whateveris on the existing screen.)

 

The cursor keys now move a small crosshairs around the screen.

COORD displays the coordinates of the cursor in the lower left corner

of the screen (the soft key designators also have disappeared). Pressing

COORD again or [-] removes the coordinates.

The toggles the menu labels on and off. Press the cursor keys

several times while the coordinates are displayed. (The cursor moves much

faster when the coordinates are not displayed.)

LABEL displays left-right and top-bottom endpoints on any axes that

happen to be in the viewing rectangle. They cannot be removed without

pressing [ATTN] [ERASE | [DRAW |.

Reset Y1 for graphing by pressing . If Y1 is the function indi-
cated, press ; if not, select Y1 through , than press :

then press . The calculator will accept the values of » and rescale

the y values for a complete graph of Y1 within the viewing rectangle. To

find out what these y values are, press [ATTN] [PLOT| [PLOTR|. They can

also be displayed on the graph by pressing [=] (this works only if

the y-axis is in the viewing window).

 

 

To graph two functions simultaneously, enter them as the two sides

of an equation F(X) = G(X).
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Interactive function tools

The contains several interactive tools for working with functions

directly in the graphics environment.

ROOT snaps the cursor to the nearest root, displays its value, and

records it on the stack with the label “Root:" .

INTER snaps the cursor to the nearest intersection point, displays

its value, and records it on the stack with the label “Isect:” .

SLOPE calculates the derivative of the function at the cursor location,

displays it, and records it on the stack with the label “Slope:”.

first marks the lower limit of integration. The second time it

is pressed, it computes the definite integral of the function from the first

mark to the current cursor position, displays the value, and records it on

the stack with the label “Area:” .

EXTR snaps the cursor to the nearest extremum, displays its coordi-

nates, and records it on the stack with the label "Extr:"” .

EXIT leaves the function folder.

Pressing shows [F(X) |, which computes the function's value at

the cursor location, displays it, and records it on the stack with the label

“Fx):" .

computes the function's derivative symbolically, then graphsit,

followed by the graph of the original function.

If more than one function is entered into EQ, then |[NXEQ allows you

to cycle through the list.

Interactive drawing tools

leaves a trail for the cursor.

erases a trail for the cursor.

LINE draws a line from the last position point to the existing position

and marks the existing position as the new reference point.

TLINE (for “toggle” line) draws a line from the existing position to the

most previous marked reference point but does not change the reference

point.

draws a box using marked points as diagonal corners.

CIRCL draws a circle using the marked point as center and distance

to current point as radius.
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48.12 OTHER TYPES OF GRAPHS

 
1. [PLOT] [PTYPE | (CONIC | 

Through the equation writer, enter 40% — 3x - y+ y° —4 = 0 (Note: there

must be a multiplication sign between r and y to distinguish it from a single

variable with the name ry.) in the catalog with any appropriate name, e.g.

EL.

Press [ERASE to obtain

 

A
A
 

    

2. PTYPE (POLAR

Through the equation writer, enter R = sin 2.56:

R = [siN] 2.5 F [ENTER] [NEW] P [ENTER]
Plot type: POLAR

P: "R= SIN (2.5 * 60)’

 

Indep: ' X '/

®3 -6.5 6.5

ys -3.1 3.2

Change the Independent variable to 6:

[ lo] © F [INDEP

Set the plotting range for § at approximately 0 < 6 < 4a:

[@ [(3] [al [7] F [sec] o [spc] 12:6 [ENTER] (INDEP]

To plot the Polar graph, press
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3. (PLoT] [PTYPE | [PARA |

First, let's reset the plotting parameters at their default values using

RESET |.

To plot x(t) = t3 and y(t) = t* for 1 <t < 2, we first enter the pair of

coordinate functions in the complex form x(t) + y(t):

[ [a] 7[y"] 8s [3] [] O11 [od 7 [y7] 2 TED
Now, we enter the parameter T as the independent variable along with

its starting and ending values:

{T12
Plot type: PARAMETRIC

EQ: / TA3 + xh 2
Indep: {T12}

Rs -6.3 6.3

ys -3.1 3.2

Finally, erase the graphics screen and draw the curve: [ERASE

 

4. PLOT] (PTYPE | [TRUTH |

Through the equation writer enter y < » + 2 by pressing

lady la] [ 2 [a] x [+] 2 [ENTER] [NEW].
Name it J.

Now enter y° < 9 — ¢* by pressing

Y [iF] 2 [oe] [O] 29 [=] x [y*] 2 [ENTER] [NEW].

Name it K.

Finally, enter J and K in the equation writer by pressing

J [PRG] [TEST ] [AND] Kk [ENTER] [NEM |.

Name it JK.

Set the plotting parameters at their default values and press .

 

This takes several minutes to plot completely.

Press KEYS to see the complete truth set.



TICAP HP 48 Workshop Examples

Based on inputs of the TICAP committee, developed by Dr. Tom Dick of

Oregon State University*

The following conventions are used in this document:

Keys are shown enclosed in straight brackets [ ]. Thus, [SIN] means press the sine
key.

Soft keys are shown in curly brackets { }. Thus, {SEC} means press the top row key
under the legend "SEC" in the display.

The orange colored left-shift key is referred to as [ORANGE]. Press [ORANGE] then

press the key below the orange legend that you wish to access. For instance, to access
PLOT which is printed in orange above the eight key, press the orange key then the eight
key. This instruction would be shortened to [ORANGE] [PLOT] or simply to [PLOT] in
this document.

The blue colored right-shift key is referred to as [BLUE]. It works just like [ORANGE]
except it provides access to the blue legends above the keys. In many examples this
shifted key is omitted from the keystrokes but it still must be pressed to access the blue
commands.

To key in alphabetic characters, first press the [ a ] key then press the key to the left of
and slightly above the alphabetic character. To key in X, you would press [ a ] then the
sixth key in the fourth row. To lock alphabetic mode on press [ a ] twice. You can also

hold the [ a ] key down while you are keying alphabetic characters.

You may wish to press [BLUE] [CLR] (5th row, 6th column) to clear the stack from time
to time. This will get rid ofclutter and make the examples easier to follow.

When the HP 48 beeps at you and you are stuck, press [ON] (1st key, bottom row). the
[ON} key says ATTENTION! to the HP 48 and gets it out of special modes such as the
graphics display mode. When in doubt, press [ON].

When you see the "A" character it means the [)*] key.

*Typographical, and possibly other errors, were contributed by Dennis York ofHewlett-
Packard.

TICAP HP 48 Workshop Examples page 1 of23



I. Functions & Limits

Example 1 Defining your own functions.

To define your own functions, use the [ORANGE] [DEF] key:

 

'SEC(X) = 1/COS(X)' [ORANGE] [DEF] [a Note: when typing, use [>]
CSC(X) = 1/SIN(X)' [ORANGE] [DEF] to move outside parenthesis.
'CTN(X) = I/TAN(X)' [ORANGE] [DEF]   
 

These three trigonometric functions now appear under the [VAR] menu, and you can evaluate
or graph them like any built-in function.

Try them out. [ORANGE] [RAD] toggles between radian and degree mode (RAD shows at
the top ofthe screen when you are in radian mode).

 

  

 

   
 

1) In degree mode:

60 {SEC} returns 1: 2

2) Now, toggle back to radian mode.
To graph y=sec(x), activateORANGE] [PLOT] menu

 

 

 

  

'SEC(X) {STEQ}

{PLOTR} @ Note: if the plot type is not FUNCTION, press
[PLOT] {PTYPE} {FUNC} {PLOTR}

(ERASE) @ Note: to set x and y ranges at default values,
press [NXT] {RESET} [NXT] [NXT] before

{DRAW} .
graphing.
 

 

J NN
ALIA

3) To see how the calculator stores your function as a program, recall it by pressing [ON]
[VAR] [BLUE] {SEC} and see:

 

       
 

1: << X '/COS(X) >>
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I. Functions & Limits

Example 2 Investigating limits numerically.

The SOLVERis a nice tool for investigating limits. It allows you to evaluate a function for a
sequence ofinputs very easily. Try this:
 

 'l + X' [ENTER] SR

I: ag!
 

 

'l / X' [ENTER] Mo
e

° |} 1+X% 1

1 3 1 1

GEECOECRATECRE
 

 

[v%] oh }

t '(1+X)7(1K)!
AXNGEENCIEEHSTHCIE    

1/xWe've built the expression (1 +x) on the stack.

To investigate the function numerically, we send it to the SOLVER:
[SOLVE] {STEQ} {SOLVR}

To evaluate the expression for any value x, use the white {X} key to input the value and the
dark {EXPR=} key to see the output result.

Forinstance,

1 {X} {EXPR=} returns 1: EXPR: 2

Now, investigate lim (1+x)"*

by trying x = 21, 201, 2.001, ..
19, 1.99, 1.999,..

/xThen, investigate Lim (1+x)

bytrying x = 01, 001, 0001,..
0.1, -0.01, -0.001...

[BLUE] [CLR] to clear the display.
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I. Functions & Limits

Example 3 Investigating limits graphically.

1/xNow, let's examine Lim (1 +x)" graphically.

The {STEQ} supplies functions to both the SOLVER and the PLOTTER, so to graph

y = (1 +x)"*, all we need do is:
[PLOT] {PLOTR} {ERASE} {DRAW}

—

[200M[10E01[OORULMFEL]FN

 

   
To investigate the behavior near x=0, we zoom in horizontally. Let's try a factor of 10°:

Press {ZOOM} {X} .000001 [ENTER].

 

 

 

   (SISEHOECEN 
This picture is graphical evidence (but not proof) that our function has a limit as x— 0.
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I. Functions & Limits

Example 3 Investigating limits graphically (continued)

Let's zoom in even further!

{ZOOM} {X} .000001 [ENTER]

dy

EX]SIHHTTEIGT

 

 

    
Wow! What is happening here?

We're seeing the spectacular effects ofround-off error. Since the calculator carries 12

significant digits ofprecision, we will have run into difficulties in evaluating (1 +x)"* when x
is near 10-12. (Remember, we zoomed in by 100 twice.) Indeed, ifwe zoom in by 100 once
more, 1+x will be rounded to exactly 1.

Let's see what happens.

{ZOOM} {X} .000001 [ENTER]
 

 

 

   [oorio-voifen[oarclinteon
 

Press [ON] to leave plot.

The moral is that our graphing calculators are wonderful exploratory tools, but we will need
to make our students aware oftheir limitations so that they use them intelligently.
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II. Graphs & Continuity

Example 1 Removable Discontinuities

When lim f(x) exists, but is not equal to f(a), we say f(x) has a removable discontinuity at

x=a (since we could "fix" the function by redefining f(a)) Graphically, a removable

discontinuity may show up as a "hole" in the graph ofthe function. For instance,let's reset the
plot parametersto their default settings ((PLOT] {PLOTR} [NXT] {RESET}) and then
plot

 

_x’-1
Hs x-1

"X [¥*] 2-1 [ENTER] 1: X"2-1'

X-1 [ENTER] 2: xX"2-1'
1: X-1'

[+] 1: '(X™2-1)/(X-1)

[PLOT] {STEQ} {PLOTR} {ERASE} {DRAW}

V

(SIXTSSHOUTGEE(CIES

 

   
In this case we can see the "hole" at (1,2). However, ifwe graph y = cos(x)tan(x):

 

 

[ON] 'COS(X) [ENTER] 1: 'COS(X)

"TAN(X) [ENTER] 2: 'COSX)'
1: TANCX)'

[X] 1: 'COSX)*TANGX)

[PLOT] {STEQ} {PLOTR} {ERASE} {DRAW}

re
SENETENCCENCOTY   

We see a sine curve with no holes, since none are located precisely at pixel locations.
Press [ON] to leave plot.
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II. Graphs & Continuity

Example 2 Non-removable Discontinuities

Two examples ofnon-removable or essential discontinuities are vertical asymptotes and jump
discontinuities. How these appear on the graphics screen depend on two things:

1) Whether the calculator is in connected mode and draws lines between successively
plotted points.

2) Whether the discontinuity occurs precisely at a pixel location or not.

The toggle for connected modes is found under the [MODES] menu. Press [MODES]

[NXT].

{CNC-} means the calculatoris in connected mode

{CNCT} meansit's not

Tum connected mode off and try graphing y =

[PLOT] '1/(1-X) {STEQ} {PLOTR} {ERASE} {DRAW}

]
id

(SETISEESOE(TI(CTT(CT

 

   
Now, turn connected mode back on and graph again.
[ON] [MODES] [NXT] {CNCT} [BLUE] [PLOT] {ERASE} {DRAW}

J
Va

 

   
Let's edit the expression slightly.

Press [ON] [PLOT] {EDEQ} and use the cursor keys and the delete key [DEL] to change
the expression to '1/(1.01-X)' Then press [ENTER] {PLOTR} {ERASE} {DRAW}.
Since the asymptote does not fall exactly on a pixel, and the calculator is in connected
mode, the vertical asymptote appears to be drawn in.
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II. Graphs & Continuity

Example 2 Non-removable Discontinuities (continued)

To see an example of a function with a jump discontinuity:

[ON] [PLOT] 'ATAN (1/X) {STEQ} {PLOTR} {ERASE} {DRAW}.

he
SENETITOTCET

 

   
Press [ON] to leave plot.

Here's how to create piecewise-defined functions. For example, to define

x+l x <1
f= 2

x‘ x>l

We make use ofthe IFTE (If Then Else) as follows:

TFTE (X<1,X+1,X"2)
 

@ Note: You can find < under [PRG] {TEST}.

   

For functions built up from three or more pieces, we can nest the IFTE's:

TFTE (X<1,X+1,IFTE(X<2,X"2,2-X))'

is the expression needed to define

x +1 x <l

fx)={ x¥* 1<x=2

2—x x >2
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II. Graphs & Continuity

Example 3 Other Types ofFunction Behavior.

Not all discontinuities can be classified as holes, jumps, or asymptotes. Try these examples
(be sure you're in radian mode):

[PLOT] 'SIN(I/X) {STEQ} {PLOTR} {ERASE} {DRAW}.
 

a.
200r 2-0:[CENT [CO0EL]LREEL   

 

 

Now, zoom in horizontally to see some wild oscillatory behavior:
{ZOOM} {X} .1 [ENTER]

 

 [oor[-var|foortfinteL]Fon]  
Repeated zooms do not tame this beast.

 

EENETEETFEEGTN    
Reset your plot parameters to default settings

[ON] [NXT] {RESET}
and try [PLOT] 'X*SIN(1/X) {STEQ} {PLOTR} {ERASE} {DRAW}.
 

 L
  STSTEETHGREENETE
 

Zoom in horizontally to see how we've "damped" those oscillations.
{ZOOM} {X} .1 [ENTER]
 

   
Press [ON] to leave plot.

TICAP HP 48 Workshop Examples page 9 of23



III. The Derivative

Example 1 T.ocal Slope

We can appreciate the idea of a derivative measuring local slope by simply zooming in on the
graph ofa differentiable function.

3

Consider f(x) Es —2x and suppose we want to approximate f'(0) graphically.

[PLOT] 'X"3/3-2*X {STEQ} {PLOTR} [NXT] {RESET} [NXT] [NXT] {ERASE}

AJ
(SIXSICECFES

 

   
Now, let's zoom in with equal scale factors both horizontally and vertically:

{ZOOM} {XY} .1 [ENTER]
 

\
SEHRCAOFTCCIE   

Under magnification, the graph appears straight. This local linearity is a fundamentally
important property of differentiable functions. The slope ofthe line, we say, appears to be -2

and that should be an approximation of f'(0).
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III. The Derivative

Example 2 Graphical Relationships

When we think ofthe process of evaluating the local slope at each point along the graph, we
are describing the derivative function. The behavior of a function and its derivative are closely
related, and we can examine this relationship graphically.

Let's zoom back out to see our graph at the original settings.

{ZOOM} {XY} 10 [ENTER]
 

=D
FTX SEHOAGETATs   

 

 

Now press {FCN} [NXT]

Pressing the {F'} key will graph the derivative ofthe function along with the original function.

|
[WW

[Z00r1]>-1ENT[CO0RCTLnEELTFON

 

   
Now we can see how the sign of f' is related to the increasing and decreasing behavior of f.

Press {FCN}[NXT]{F'} again, and we'll see the graph ofthe second derivative.

|
[XU

SEHRCA(TEXN

 

   
Now we can see how the sign of f' is related to the concavity ofthe graph of f.

Critical points and inflection points,the first and second derivative tests can all be discussed
graphically now.

Press [ON] to leave plot.
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III. The Derivative

Example 3 Chain Rule

The HP 48 knows the rules of differentiation, including the chain. This allows it to
differentiate virtually any "closed form" function encountered in first-year calculus.

We'll illustrate two ways of differentiating on the HP. First, we'll purge any existing value ofx
with X' [PURGE]

1) To differentiate sin(x*) with respect to x:
'SIN(X"2)' [ENTER] 2: 'SIN(X"2)'
x [ENTER] 1: xX

[4] 1: 'COSX™2)*(2*X)'

To take the second derivative, simply differentiate with respect to x again.

X' [ENTER] [2] 1: -(SINx"2)*(2*X)*(2*X))
+COS(X"2)*2!

To simplify a bit,
[ALGEBRA] {COLCT} 1:  '-(4*SIN(X"2)*X"2)+

2*COS(X"2)'

To see the display in textbook format, press [VV] to "typeset" the expression in the
equation writer (this takes a little while).

 

SIN(®)2) +2cos(+)

(ETOGHICTSCRESSEEE    
[ON] [ON] returns you to the stack.

2) To see the chain rule applied step-by-step, use this method
'd X(SIN(X"2))' [ENTER]

Repeated presses ofthe [EVAL] key shows the differentiation step-by-step.

3) Try this. Press [RAD] to toggle to degree mode, and differentiate sin(x).

'SIN(X)' [ENTER}
X' [ENTER]
[5] 1: 'COS(X)*(1/180)
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IV. Applications of the Derivative

Example 1 Newton's Method

The solveris a nice tool for iteration. We can use it to illustrate Newton's method for root-

finding. The iteration formula applied to a function f is

LJ
7'®)

Consider f(x) =x-2sin(x) as an example. First, let's plot the function (reset the plot

parameters to default settings if necessary and make sure that radians mode is set).

[PLOT] 'X-2*SIN(X) {STEQ} {PLOTR} {ERASE} {DRAW}

A
/

(SIISITEGOYATHR(EESG0

 

   
We see that x=0 is a root and there are two other roots evident near x=12.

Now, let's build the iteration formula.

[ON] 'X' [ENTER] [ENTER] [PURGE] to get rid of any X variable that might be

substituted into our symbolic result and to put an extra copy of 'X' on the stack for later.

'X-2*SIN(X)' [ENTER] [ENTER] 3: x!
2: 'X-2*SINX)'
1: 'X-2*SIN)'

'X' [ENTER] [4] 3: 'X'

2: 'X-2*SIN(X)'

1: '1-2*COS(X)'

[+1[-] 1: 'X-(X-2*SIN(X))/

(1-2*COS(X))'

Move to the SOLVER

[SOLVE] {STEQ} {SOLVR}

Enter the initial seed with the white {X} key. Now by pressing {EXPR=} [ENTER] {X}
repeatedly, we obtain the sequence of results. Try starting with initial seed of 0.91. Then
try 0.92, 0.93, etc. to see the sensitivity of Newton's Method.
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IV. Applications of the Derivative

Example 2 Maximizing the Volume of a Box.

Squares are cut from the four corners of a 10X15 rectangle and the "tabs" are folded up to
create an open top box. Determine the maximum volume ofsuch a box.

The objective function in this problem is

V(x)=x(10-2x)15-2x)

Wherex is the side length of one ofthe corner squares cut from the rectangle.

The calculator provides for a variety ofstrategies:

1) Plot V(x) over the interval 0<x <5

X' [ENTER]
'10-2*X’ [ENTER]
'15-2*X [ENTER] [ x] [ x] 1: X*(10-2*X)*(15-2*X)'

[PLOT] {STEQ} {PLOTR} 0 [SPC] 5 {XRNG} {ERASE} {AUTO}
 

@ Note: {AUTO} is an auto-scaling feature.

 
 

 Use the cursor keys and {COORD} to approximate the
maximum.

2) Press [ +] {FCN} and then {EXTR}. This feeds the

cross hair coordinates as a seed to a root finder for the first

denivative.

 

Q.361S346184,132)
 

 

3) We could also plot V'(x)

   [NXT] {F'} and locate its root graphically using the cursor FIRE CSLSININGAAAI

keys and {COORD}
 

4) Use the {ROOT} key in the {FCN} menu to find the root.

 

LL]
€ nore 3

: Fao1.41873543
SRI IOI FIN.

      R0ET: 1.36187330748
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IV. Applications of the Derivative

Example 3 Moving Particle.

Problem: A particle moves along a straight line. It's position at time t is s(z) =#> —2£* —¢

1) Find the average velocity from t=1.99 to t=2.01. First, let's define the position
function:

'S(T) = T"3-2*T"2-T' [ENTER] [DEF].

Now we can evaluate the average velocity as

S(2.01)- S(L99)
2.01- 1.99

2.01 [VAR] {S} 1: -1.969599

1.99 {S} 2: -1969599
1: -2.029601

[-] 1: .060002

02 [+] 1: 3.0001

2) Find the instantaneous velocity at time /=2. First, purge any existing value of

'T' [PURGE]
'S(T)' [ENTER]
'T' [ENTER] [7] 1:  '3*T"2-2*(2*T)-1'

Ifyou like, you can simplify using [ALGEBRA] {COLCT}

Define the velocity function

'V(T)' [ENTER] [SWAP] [=] [DEF]

and evaluate it at t=2

2 [VAR] {V} 1: 3
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IV. Applications of the Derivative

Example 3 Moving Particle (continued)

3) Find the acceleration at =2.

Differentiate V:

'V(T)' [ENTER] 'T' [ENTER] [J] 1: 3*(2*T)4'

Define the acceleration function

'A(T)' [ENTER] [SWAP] [=] [DEF]

and evaluate it at t=2

2 [VAR] {A} 1: 8

4) What's the shape ofthe graph ofs(?) at =2? The answers to 2) and 3) suggest a
positive slope and concave up shape.

To verify by graphing, we must change the independent variable to T

[PLOT] 'S(T) {STEQ} {PLOTR}
[NXT] {RESET} [NXT] [NXT]'T' {INDEP} {DRAW}

.
 

   
Press [ON] to exit plot.
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V. The Integral

Example 1 Estimating Integrals Graphically.

A graphing calculator allows us to make a ball park estimate of a definite integral's value
visually. Forinstance, given

[2x cos(x?)dx

We could first graph the function.

[PLOT] 2*X*COS(X*2)' {STEQ} {PLOTR} [NXT] {RESET} [NXT] [NXT]

i WI
lead

Based on the graph, we might estimate the value of the definite integral to be slightly less than
1.

 

 

    

In fact,

1 5 . 2, X= .
| 2xcos(x’)dx =sin(x?) ] 0 =sin(1) —sin(0) =0.8415

XxX -_—

As an interesting extra credit exercise, use the {AREA} soft key under {FNC} to integrate the
curve from 0 to 1. You may want to zoom in on the region of interest with {Z-BOX}. Use
the {COORD} soft key to display the cursor coordinates as you position the cursor to x=0,
press {AREA}and to x=1 and press {AREA}.

Press [ON] to exit plot.
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V. The Integral

Example2 Estimating Integrals - Using Built-in Integrator.

Now, let's work with a less standard integral and apply our estimation strategy again.

RU

This cannot be evaluated with the usual paper-and-pencil techniques. However, we can still
graph the function.

[PLOT] '{J(1-X"3)' {STEQ} {PLOTR} {ERASE} {DRAW}

3
 

   
The region of interest looks similar to one-quarter ofthe unit circle, so we might guess that
7/4~0.7854 would be close. Ifwe use the built-in HP integration routine, we can see the
EQUATION WRITERin action.

[ON] [EQUATION] [[] 0 [>] 1 [>] [Va] 1-X[y*]3 [>] [>] [>] X
 

  

 

 

[ENTER] [©NUM] gives us 1: .841309263195
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V. The Integral

Example 3 Numerical Integration Techniques

' 3 . Cy
We calculated [ 1 —x"dx = .841309263195 with the HP's numerical integrator. Let's

compare the result with those obtained by some standard numerical integration methods.

 

@ Note: You'll need the integration programs RECL, RECC, RECR, TRAP and
SIMP beamed to you by infrared transfer. With the exceptions ofRECL and
RECR, which are derivatives ofRECC, they are listed below for reference.  
 

 

RECC - Computes the integral of F(X), fromA to B, using N rectangular elements. On entry, Nis in
level 3, A isin level 2, and B is in level 1. Returns the integral based on evaluating each rectangle in
the center. F(X) must be defined. To modify this program so that the elements are evaluated on the

left, change the summation to H*2(I=0,N-1,F(A+I*H). To modify the program so that elements are

evaluated on the right, change the summation to H*2(I=1,N,F(A+I*H). You could also include all

three summations and generate all three results for comparison.
 

 
« 29NAB

« '(B-A)/N' EVAL > H
'H*X(1=0.5,N,F(A+I*H))' »

»

[ENTER] 'RECC' [ENTER] [STO]  

Take variables N, A, B from stack

Compute H.

Compute integral, mid estimate.

Checksum: # 56540d   
 

TRAP - Computes the integral of F(X), from A to B, using N trapezoidal elements. On entry, Nis in
level 3, A is in level 2, and B is in level 1. F(X) must be defined.
 

«2>NAB

«'(B-A)/N'EVAL-2> H

'H/2*(F(A)-F(B)+2*Z(=1,N,F(A+I*H)))' »
»

] ‘'TRAP' [ENTER] [STO]  

Take variables from stack

Compute element width, H

Compute trapezoidal sum

Save in 'TRAP'

Checksum: # 29955d
 

 

SIMP - Computes the integral ofF(X), from A to B, using Simpson's Rule. On entry, the even
number of elements N is in level 3, A is in level 2, and B is in level 1. F(X) must be defined.
  «2>NAB«'(B-A)/N' EVAL->H

"H/6*(F(A)+F(B)+4*F(B-H/2)+
2*X(1=1,N-1,F(A+I*H)+2*F(A+I*H-H/2)))' »

»
[ENTER] 'SIMP' [ENTER] [STO]  

Take variable A, B from stack

Compute element width, H

Compute Simpson's Summation

Save in 'SIMP'
Checksum: # 31730d   
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Using 20 subdivisions for each method, you'll find

(left-rectangle sum)

FX)=V(1-X"3)' [ENTER] [DEF]
20 [ENTER] 0 [ENTER] 1 {RECL} 1: .86229589309

(right-rectangle sum)
20 [ENTER] 0 [ENTER] 1 {RECR} 1: .812295893085

(mid-point rule)

20 [ENTER] 0 [ENTER] 1 {RECC} 1: .842480395875

(trapezoidal rule: average ofleft and right rectangles)

20 [ENTER] 0 [ENTER] 1 {TRAP} 1: .837295893085

(Simpson's rule: weighted average ofmidpoint and trapezoidal)

20 [ENTER] 0 [ENTER] 1 {SIMP} 1: .840752228275
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VI. Sequences & Series

Example 1 Investigating Sequences Numerically.

The SOLVERis also handy for exploring a sequence's behavior. For example, to investigate.

1 ooasi)
n n=l

We enter the formula for the Nth term into the SOLVER

[SOLVE] '1 + I/N' [ENTER] N' [ENTER] [y*] {STEQ} {SOLVR}

Now we can evaluate the Nth term for any integer value N.

10 {N} {EXPR=} 1: EXPR:2.593742460
100 {N} ({EXPR=} 1: EXPR:2.704813829

10000 {N} ({EXPR=} 1: EXPR:2.7181459268
10[EEX]20 {N} ({EXPR=} 1: EXPR:1

What happened? Remember our discussion of round-off errors from before?
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VI. Sequences & Series

Example 2Order ofApproximation

For x close to 0, cos(x) is close to 1, but how close? The order ofan approximation gives us
an indication.

To understand the idea, let's calculate cos(x)-1 for a sequence ofvalues x. This time we'll put
the function in our catalog under the name F.

[SOLVE] 'COS(X)-1' {NEW} F [ENTER] {SOLVR}

05 {X} {EXPR=) 1: EXPR: -.001249739605
1 {X} {EXPR=} 1; EXPR: -.004995834722

1 .

1
2 {X} {EXPR=) EXPR: -.019933422159
4 {X} {EXPR=} EXPR: -.078939005997

When x gets twice as close to 0, cos(x) gets about four (22) times as close to 1. We

describe this by saying the approximation is of order 2.
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VI. Sequences & Series

Example 3 Taylor Polynomials

Now, let's graph cos(x)-1 and some ofits Taylor polynomial approximations. For a second-
degree Taylor polynomial approximation about x=0.

[VAR] {F} X' [ENTER] 2 [ENTER]
[ALGEBRA] {TAYLR}

 

RAD
€ NOME } { NOME }

4
3 'COSCRI-1

e 191

1: 211: '-(. 5X2)!
FLpeJeri]nwuv© OUT]ECAR]OLfount]HOUTeiLE]

A
e

     
[PLOT] {NEW} P2 [ENTER]

We've added the polynomial to our catalog under the name P2.

Now repeat for fourth-degree and sixth-degree Taylor polynomial approximations, adding
them to the catalog under the names P4 and P6,respectively. Now let's graph the original
function F and its three approximations.

We'll plot a list offunctions as follows:

{PLOT} {CAT} gives us access to our catalog.

Use the cursors to point the arrow at F and press {EQ+}

Now point at press {EQ+}
P2,
point at press {EQ+}
P4,
point at press {EQ+}
P6,

You should see the list { F P2 P4 P6 } at the top of screen.

Now press {PLOTR} {ERASE} {DRAW} and watch each ofthe four functions plotted,
one after another. Press [ - ] to "take away" the soft keys for a better view.

\ {J
IX
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DEPARTMENT OF MATHEMATICS

OREGON STATE UNIVERSITY
Kidder Hall 368 Corvallis, Oregon 97331 - 4605

(503) 737- 4686 /E- mail: lastname@math.orst.edu /Fax: (503) 737: 0517

HP-48SX CALCULATOR USE AGREEMENT

I do hereby agree that my borrowing of the HP-48SX pocket calculator #
from the Department of Mathematicsis for my instructional use in MTH
during term,

  

I expressly understand that I am responsible to the Department ofMathematics for the
return of the calculator which I check out.

In the eventthe calculator is not returned in good working condition, I understand that I
will be billed for its replacement and that future registration and transcripts may be
withheld until this bill is paid.

  

  

  

  

  

 

Social Security Number Signature

local phone number Printed Name

local address permanent home address

Calculator checked out on
date

HP-48SX calculator # received in good working order on this date

by  
Date Signature of instructor



Documentation fpr programs
RSum (store funchen vn EQ)

A Lott endpt
B righs- ll

A parfthe Size

R reat # : =oft

 

.5= mid

4. = right
OusApudt- CvValuw

TRAP (Store funckren m EQ) SIM p (Store funchion in EQ)

Inputs: A inputs: A
B as abovt 2

N No (V2 # ofparfiiion

output! Ualue output + vats points )

SLpF  (Slopefreld )

Input ! Functren of X and \

0 UPUT Stopefreld

Euler

Inpusfs: Xo

Yo

AX

derwatrve f(x, 4)

output: pLors Soutien “vo ded. flxy > Sfrang at

(Xo, Go J

Q





26

2.1

EXAMPLE 1

Solution

2. EXPLORING FUNCTION BEHAVIOR

EXPLORING LIMITS NUMERICALLY

When we write

lim f(z) =L

it means that the outputs f(z) can be made arbitrarily close (or even equal)

to a specific real number L simply by requiring that the inputs z are suf-

ficiently close (but not equal) to the real number a. When this is true, we

say that the limit exists and f(z) — L as z — a.

By computing f(z) for a sequence of inputs, z = z;, z,, ..., approach-

ing a from the left (z < a), and for another sequence approaching a from

the right (z > a), we can gather evidence (but not proof) whether or not

lim f(z)
Ir—a

exists and, if it exists, what the limiting value is. If both sequences seem

to stabilize on the same value L, then this is supporting evidence that the

limit exists and lim f(z) = L.

Numerically investigate lim f(z) (if it exists) if f is the function

Viel
f(z) = Vz+i-1]

We will explore the limit by computing f(z) for + sampled closer and closer

to 0 (see Table 2.1).

  

x —IL + (x) Eg(x)

1 6.478902473 7 6.162277666
.01 20.04987607 -.01 19.94987434
.001 63.26136854 -.001 63.22973312
.0001 200.0040001 -.0001 199.9948001
.00001 632.4555320 -.00001 632.4555320
.000001 2000.000000 -.000001 2000.000000

VielTable 2.1 f(x) = ——==—=—— sampled close to 0.
[Vz +1-1|

As the inputs z get closer and closer to 0 both from the left and from

the right, the outputs f(z) appear to get bigger and bigger without stabi-

lizing. This is evidence that the limit does not exist. nu



2.1 EXPLORING LIMITS NUMERICALLY 27

EXAMPLE 2 Numerically investigate lim f(z) (if it exists) if f is the function

jz]
==

Solution Again we can explore the limit by computing f(z) for z sampled closer and

closer to 0 (see Table 2.2) .

f f

  

xX e—X) Heep LE0)

A 2.048808848 -.1 1.948683298

.01 2.004987562 -.01 1.994987437

.001 2.000499875 -.001 1.999499875

.0001 2.000049999 -.0001 1.999949999

.00001 2.000005000 -.00001 1.999995000

.000001 2.000000500 -.000001 1.999999500

Table 2.2 f(z) =SC sampled near 0.
Ve +1- 1|

From both directions, z > 0 and z < 0, the outputs f(z) seem to be

stabilizing toward 2. This is evidence that lim f(z) = 2. nu

We examine a sequence of values in order to find evidence of

a “trend.” Simply taking a single sample very near the limit

point does not give very good evidence whether the limit ac-

tually exists. The limiting value does not have to be infinite

for the limit not to exist.

EXAMPLE 3 Numerically investigate lim, f(z) (if it exists) if f is the function

f(z) = cos(1/z).

Solution Again we can explore the limit by computing f(z) for z sampled closer and

closer to 0 (see Table 2.3) .

  

x—f f(x) x ff f(x)

0.1 - 0.839071529076 -0.1 - 0.839071529076

0.01 0.862318872288 -0.01 0.862318872288

0.001 0.562379076291 -0.001 0.562379076291

0.0001 - 0.952155368259 -0.0001 - 0.952155368259

0.00001 - 0.999360807438 -0.00001 - 0.999360807438

0.000001 0.936752127533 -0.000001 0.936752127533

0.0000001 -0.907270386182 -0.0000001 - 0.907270386182

0.00000001 - 0.363385089356 -0.00000001 - 0.363385089356 
Table 2.3 f(z) = cos(1/z) sampled near 0.



28

EXAMPLE 4

Solution

2. EXPLORING FUNCTION BEHAVIOR

From both directions, z > 0 and z < 0, the values seem to be not to be

stabilizing at all even though they are confined to values between —1 and

1. This is evidence that the limit does not exist. un

Numerically investigate lim f(z) (if it exists) if f is the function

HEEmror
Vz? —6z +9

Again we can explore the limit by computing f(z) for z sampled closer and

closer to 3 (see Table 2.4) .

 

Xx —tep fx) x —=~IL—% fix)

3.1 2 2.9 -2
3.01 2 2.99 -2
3.001 2 2.999 2
3.0001 2 2.9999 -2

3.00001 2 2.99999 2
3.000001 2 2.999999 2

9r —
Table 2.4 f(z) = 22-6 sampled near 3.

Vz? -6z+9

From the right (z > 3) the values seem to stabilize at 2. From the left

(z < 3) the values seem to stabilize at —2. Although it appears that there is

a limiting value both from the left and from the right, these one-side limits

are not the same. This is evidence that the limit does not exist. We could

summarize this paricular behavior with the notation

Jim f(z) =-2 and Jim, f(z) =2,

but we emphasize that lim f(z) does not exist. u

Machine precision and limits

The numberof digits amachine allocates to representing a numberis called

its precision. Whenever the machine completes one step of a computation

the result is rounded to this number of digits. If a machine has precision 10

its arithmetic operations are referred to as 10-digit arithmetic. It should be

noted that in this machine arithmetic the usual rules of arithmetic (asso-

ciativity of addition, etc.) are not exact and instead can best be understood

in terms of the repeated rounding of exact arithmetic operations.
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Since a machine computation only carries a limited number

of digits, the accuracy of the computed limit may actually

decrease as you sample very close to the limit point. This is

especially true of difference quotients.

EXAMPLE 5 Consider

im 1) = £3) ZT
Jim —=—"—3 where f(z) ==

54321’

that is to say

zz _ _3
lim 54321 54321

z—3 z—-3

A sequence of sample values computed with 10-digit arithmetic is shown

 

in Table 2.5.

x —f

5

f(x)

3.1 0.00001840908673

3.01 0.00001840908673

3.001 0.0000184090867

3.0001 0.000018409087

3.00001 0.00001840909

3.000001 0.0000184091

3.00000001 |0.00001841
3.000000001 |0.0000184

f(z) — £3)
xr —

Table 2.5 Sampled values of for z near 3.

If we combine terms in the expression being computed we find that

f(z) = £3) _ sab — sam
z—-3 z—-3

z—3

— 54321
Tr —

1

~ 54321

= 0.00001840908673 to 10 digits.

 

w
o

forz £3

In this case, then, the limit as computed by the sequence of values is less

and less accurate as z approaches 3. un
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mms EXERCISES

Find numeric evidence that the indicated limits do or do not exist.

3 _ 2
1. lim 2+ (z+1)°-(=z+1)*

T— Xr

lim EF— (@+ 1°

 

2.
z—0 x

oo |=]
Card2

: |=°]4. lim
z—0 [Vz +z2+4-2— 0.25z|

5. lim zIn(|z|)
z—0

6. lim z In(Jz|)"°

7. lim z- 21/12)
z—0

8. lim z!0 . 2(1/1=D
z—0

 

For each of thefollowing limits, find evidence which suggests either that the

limit exists or doesn’t exist.

 

 

  

 

a fein
2 —

1. im  - 12 2 a

13. lim (2-1) In((z- 1)? Rapin ri
15. lim Sign(z — 4) + 15/25 16. lim (cz +3)-Sign(z +3)

3 _5c48 23

+

102?

+

162

+

8
17. Jim, Tew Rs. dmSm

0 tm Ge Im ag

2 _
22. lim, SE “fn inl
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2.2 EXPLORING LIMITS GRAPHICALLY
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With machine graphics, we might be able to estimate the value of a limit

by graphing the function f over an interval containing the “target” a, and

examining the behavior of the graph near zr = a. In fact, we can approach

a in the sense of zooming in by rescaling the horizontal axis.

EXAMPLE 6 Estimate graphically

sin
 

z—0 2

sin x
 Solution Figure 2.1 shows two machine-generated plots of the graph of y = T

 

0.9

0.8]
y= AL 0.7

0.6
05
0.4

0.3

0.2

0.1

y= Sinx

  -0.05 
Figure 2.1 Graphs of y = = 

0.05

The first appears to indicate an output value of 1 at z = 0 (though

we know that 0 is not in the domain of the function). To investigate this

further, in the second graph we show a close-up ofthe graph after we scaled

the horizontalaxis to plot between z = —0.1 and z = 0.1. We see that the

graph of y = =z resembles the horizontal line y = 1. This reinforces our

first impression, so we could say that graphically,

 
T

lim appears to be 1.
z—0
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Definition 1

2. EXPLORING FUNCTION BEHAVIOR
 

The function f has the limit L at z = q, written

lim f(z) =L or f(z) — L as z —a

if and only if the following condition holds: Given any ¢ > 0, there is a

6 > 0 such that |f(z) — L| < ¢ whenever 0 < |z — a| < §.    
Let's examine this condition more closely. Think of the positive num-

ber ¢ (the Greek letter “epsilon” ) as a desired function output error tolerance.

The statement |f(z) — L| < ¢ is just another way of saying that the function

output f(z) needs to be within ¢ of the number L. Now, think of the positive

number §é (the Greek letter “delta” ) as the input error tolerance required to

guarantee our desired output accuracy. The condition 0 < |z—a| < § means

z is within § of a but z # a. Hence, if

a—6<zr<a or a<zc<a+é,

then we must have

L-e< f(z) < L+e.

The formal limit definition says that given any positive output error tol-

erance, we can always find a corresponding positive input error tolerance

that guarantees the desired output accuracy. We can think of the defini-

tion as providing a universal error tolerance test that L must pass in order

to be called the limit of f(z) as x — a.

Graphical interpretation of the formal limit definition

Graphically, the requirements of the formal definition of limit correspond

to the graph of y = f(z) being forced to lie between the horizontal lines

y=L-—cand y = L + ¢ provided the inputs z are between the vertical

lines z = a— 6 and z = a + §. The only exception allowed would be at the

actual value z = a itself. We could also restate the formal definition of limit

in machine graphical terms. Suppose we are given a value ¢ > 0 as our

output tolerance. First, we center the screen at z = a, and we scale the

vertical axis so that the vertical range runs from L —e to L +.

Once the vertical axis has been scaled in this way, our challenge is

to rescale the horizontal axis so that the graph of y = f(z) enters from the

left and leaves only from the right (with the possible exception of a hole or

jump at a). We are not allowed to tamper with the vertical scaling at all;

we must achieve the well behaved graph through horizontal scaling only.

If we are successful, then the distance from a to the edge of the graphing

window is playing the role of é in the formal definition. To say that

f(z) —L as zr —a
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EXAMPLE 7

EXAMPLE 8

Solution

we must be able to achieve this graph goal for any given ¢ > 0.

In the second graph of Figure 2.1, the vertical axis was first scaled so

that any output between 0.995 and 1.005 is machine plotted on the same

horizontal line y = 1. We can think of this line as a very long, thin viewing

window with a vertical range corresponding to ¢ = .005. The fact that the

graph appears identical to this horizontal line over the interval (-0.1,0.1)

and in particular enters this long, thin viewing window from the left and

leaves only from the right suggests that é = 0.1 is a sufficiently small input

tolerance to guarantee that the outputs = are within ¢ = .005 of 1. nu

Since a machine-generated graph is only a finite collection of dots, a

“hole” in the graph may or may not appear. For example, the hole might

occur between two adjacent plotted values and go undetected. In this

example, we do not see the hole in the graph of y = = because the

y-axis itself fills it in.

Graphically determine an estimate for lim f(z) if f is the function

_ (+1 -(=+1)
f(z)

Graphing f with a reasonable viewing window of [-1, 1] x [-2, 2] gives the

graph shown in Figure 2.2.

3 2 27

(x41) (x1) _

-1+

-1

 -2l

_ (z +13 — (z+ 1)?
Figure 2.2 Graph of f(z)

z
with window [1,1] x [-2, 2].

From this graph, it appears that the limit is L = 1. If our initial

vertical range did not include the portion of the graph near 0, we could

have expanded the vertical range until it was visible. uN
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EXAMPLE 9

Solution

2. EXPLORING FUNCTION BEHAVIOR

With the function as above, and ¢ = 0.1, and assuming L = 1 (our candidate

limit), graphically determine a é so that

0<|z|]<é = |f(z)-1|<e.

We need to set the vertical range corresponding to our given ¢, namely

[L—¢,L+¢=[1-0.1,1+0.1 =[0.9,1.1].

Then we need to zoom in horizontally until the graph remains entirely

within the window as it is plotted from left to right. If we set the viewing

window to [-.1,.1] x [.9, 1.1], we obtain the graph shown in Figure 2.3.

1.4

L q 1 i 1.0

-0.08 -0.08 -0.04 -0.02

-

0.02 0.04 0068 008

 0.9.

(z +1) = (z +1)?
- with window [—0.1,0.1] x [0.9, 1.1].Figure 2.3 Graph of f(z) =

In this graph, you can see that the function graph leaves the top and

bottom of the window indicating that our chosen § (in this case § = 0.1)

was too large. We can see, however, that if we choose § = 0.04 the condition

would be satisfied. Setting the horizontal range to [—0.04, 0.04] and graphing

again gives the graph shown in Figure 2.4.

L4H

1.0

0.03 -0.02 -0. 001 002 0.03

 0.9L

(z+12—-(z+1)2
- with window [—0.03, 0.03] x [0.9, 1.1].Figure 2.4 Graph of f(z) =

This suggests that if we take § = 0.04 then

O0<|z|]<é = |f(z)-1]|<e.

Notice that any smaller value é works just as well.
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mmm EXERCISES

For each of the following limits, find evidence which suggests either that

the limit exists or doesn’t exist. If it seems to exists, find an estimatefor é

corresponding to ¢ = 0.01

Vv1-1zt

k im 1-22

<2
2. lim WE)

rz—0 pd

. 2

3. lim Sn)
z—0 Zz

i 1 1
4. lim —-—

z—0 =z sin(z)

22% +z — 1
5. nim 2reodl

m1 3|z+1]-05

6. lim (z-1)%-In((z-1)?%
Tz—1

  

1 z—-1
7. li

rns 7-92 2-32

8. lim Sign(z —4)+ 15/25
z—4

9. lim_ (z+ 3)-Sign(z + 3)
T—

 

3-52 +8
10. li zor

sD dz + 48

3 +1022 + 162 + 8
1. lim TFT

z——12 oz +5

} zt —- 1222 +2 -2

2 30z — 90

} 3-8

13. lim 2-4

: lz + 3]
14. | TTAi CI

) 2¢3 — 22 -122-9

TPT3/2

2—z+1
16. Lh

rant 52 — 5

2 _
17. lim 2% —5%+2
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2.3

Definition 2

Definition 3

2. EXPLORING FUNCTION BEHAVIOR

EXPLORING CONTINUITY GRAPHICALLY

We say a function is continuous at a point when the limit of a function

matches the output at that point. Using the notation of limits, we have the

following definition.

 

The function f is continuous at z = a if and only if

lim f(z) = f(a).

  
 

More explicitly, there are three requirements for a function f to be

continuous at z = a:

1) lim f(z) must exist.

2) f(a) must be defined.

3) These values must match.

Put simply,ifthe function f is continuous at z = a then we can predict

the correct output value f(a) on the basis of the outputs in a neighborhood

of a.

The formal definition of continuity is sometimes expressed using ¢'s

and é's directly instead of the limit requirement:

 

The function f is continuous at z = a if and only if the following con-

dition holds: Given any ¢ > 0, there is a § > 0 such that |f(z) — f(a)| < ¢€

whenever |r — a| < é. If f is continuous at all real numbers, then we

simply say that f is continuous.   
 

Graphically speaking, given any vertical scaling on a viewing window

centered at (a, f(a)), it must be possible to rescale the graph horizontally

so that the function's graph stays in view from the left edge of the screen

to the right.

A function is continuous on the open interval (a,b) if f is continuous

at every value on (a,b). Graphically, a function is continuous on an interval

if there are no “breaks” in the graph of the function.

While graphing is an aid to determining whether a function is con-

tinuous, you will still need to use your knowledge of domain and limits in

order to determine it conclusively.
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Low resolution of the screen can hide breaks in the graph

which will not appear on the screen. A too large viewing win-

dow can also makejumps appear in the graph ofa continuous

function. If a function has a discontinuity at an irrational

number (or any other number with no machine representa-

tion) then the discontinuity may not show up graphically. In

this case, even if we observe discontinuous behavior, it can-

not show up at the “right” place since the right place cannot

be represented.

While we will point out examples ofthese problems, they are the excep-

tional cases. Generally, you can get a very good ideafrom a graph whether

or not a_function is continuous.

Types of discontinuities

Some of the more common kinds of discontinuities are the hole, the jump,

the skip, the pole, and the oscillator. A hole discontinuity occurs where

the function has a limit at some point but is not defined there. This is

illustrated in Figure 2.5.

19

 

x
, *

~~

  

-
—
t

n
N

Figure 2.5 A function with a hole discontinuity at 1.

Ajump discontinuity occurs when the left- and right-hand limits both

exist, but are not equal to each other. This is illustrated in Figure 2.6.
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arctan(1i.r) ~~

-

-4

-
h
l

 24

Figure 2.6 A function with a jump discontinuity at 0.

A skip discontinuity occurs when a limit exists but is not equal to the

function value. This is illustrated in Figure 2.7.

2+

sign(.r’)
 

 
Figure 2.7 A function with a skip discontinuity at 0.

A pole discontinuity occurs when a limit is infinite. This is illustrated

in Figure 2.8.

100+

 

 -100L

Figure 2.8 A function with a pole discontinuity at —1.

An oscillator discontinuity occurs when the function is bounded but

the limit still does not exist. This is illustrated in Figure 2.9.
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sin(1/x)

 

  
Figure 2.9 A function with an oscillator discontinuity at 0.

EXAMPLE 10 Investigate the continuity near 1 of the function

1.7 for |z-1|>10"%°

f(z) = 1.7 for z=1

undefined otherwise

Solution Graphing this function with a viewing window of [0, 2] x [0, 2] results in the

picture shown in Figure 2.10.

2T

 

 
 

Figure 2.10 Graph of f with viewing window [0, 2] x [0, 2].

The graph seems perfectly flat near 1. If 145-1016 (1.0000000000000005)

is not a number representable on the machine, the graph will continue to

look flat no matter how much we zoom in. Even so, it is clear from the

definition that there is a region near 1 in which the function is undefined.

In particular, f is not continuous at 1. un
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EXAMPLE 11 Investigate the continuity of

_ [(1250002] = 1)2 — 1
f(z) = 25000

near input 0.

Solution Selecting a viewing window of [—1, 1]x [-1, 1] gives the graph shown in Figure

2.11.

 

 -1

(125000z] — 1)2 — 1Figure 2.11 Graph of f(z) = 25000
with a viewing window of [1,1] x [-1, 1].

If we zoom in by a factor of 1000, we get the graph in Figure 2.12.

0.001,

 

 

-0.001

 -0.001]

Figure 2.12 Zooming in on the graph of f.

We can verify the observation of a gap by noting that if = is small

enough (but not 0), then

~1 < [25000z| — 1 < 1.

This means that (|25000z| — 1)? — 1 is negative and

V([25000z] — 1)2 — 1
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is undefined. u

EXAMPLE 12 Determine if

_ 0.5cos(z)

~ cos(z)f(z)

is continuous on (-5, 5).

Solution First examine the graph on the interval (-5,5) as shown in Figure 2.13.

 

 

 
5 4 3 2 1 TI 2 3 4 §

-14

. 0.5cos(z) . :
Figure 2.13 Graph of f(z) = ~eos(z) with a viewing window [—5,5] x [—1, 1].

cos(z

Note that the graph appears to be a flat line with a pixel lit in every

column. Even zooming in vertically shows no additional features. However,

this function is not continuous on this interval. Every point at which the

denominator is zero will be undefined. The graph of the denominator y =

cos(z) is shown in the same viewing window in Figure 2.14.

 

 

 

Figure 2.14 Graph of f and the denominator y = cos(z).
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3.2 ESTIMATING DERIVATIVES GRAPHICALLY

EXAMPLE 6

Solution

The key property of a function that is linear at an input z, is that its graph is

straight over some neighborhood of z,. Most functions are not locally linear

in this strict sense, but, remarkably, many functions are differentiable at

most of their inputs. If we examine the graph of a function at such a point

under sufficient magnification, it should look like a straight line.

Using machine graphics, if we zoom in far enough with equal scaling

vertically and horizontally on the graph of a function having a derivative at

that point, then the graph will appear straight. The slope of this straight

line should be reasonably close to the derivative at that point.

To estimate the derivative value f/'(z() graphically, zoom in

on the function's graph at the point (z(, f(z;)) until the graph

appears straight. The slope of this line will be an approxima-

tion to the value f(z).

Estimate the local slope of the graph y = sin(z) at the input z = 0.

Graphing f and zooming in near input 0 we find that the graph looks like

a straight line with slope 1 (Figure 3.1).

 

 

     

1+

ot a er ed
-3 2 -1 1 2 3

1+

0.2

0

-0.2
-0.2 0 0.2

Figure 3.1 Zooming in on the graph of f(z) = sin(z) near 0.

Therefore, we would estimate the slope of the graph of y = sin(z) at

z =0 to be 1. nu

Realize that the numerical and graphical estimation methods are es-

sentially equivalent—to compute the slope ofthe function's graph, we must
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calculate a difference quotient for two points. In a close-up window of the

graph, the two points will necessarily be close together.

With the bounds on the precision of machine computation,

keep in mind that two points chosen too close together could

result in worse, not better accuracy in the calculation of the

difference quotient.

EXAMPLE 7 Find the local slope of the absolute value function f(z) = |z| graphically at

the inputs z, = 2,-3, and 0.

Solution Graphing y = |z| we find that the graph looks like a straight line with slope

1 at z = 2. Similarly, at z = —-3, we find that the graph looks like a straight

line with slope —1. Therefore, the local slope of f at 2 is 1, and the local

slope at —-3 is —1 (see Figure 3.2).

  
   

 

        
  

3+

2+

1+

i ; pep Ebon i
-3 E 1/0 1 2| 3

3.2 0.2 2.2

3 + 0 2 +

2.8 | -0.2 1.8 :
32 3 -28 02 0 02 1.8 2 2.2

Figure 3.2 Zooming in on the graph of f(z) = |z|.

At z = 0, we find that the graph doesn't look like a straight line. More-

over, no matter how much we zoom in, there is always a sharp corner in

the graph at the origin. This corresponds to the fact that the derivative

f'(0) is undefined. nu



EXAMPLE 8

Solution

3. UNDERSTANDING THE DERIVATIVE

Graphically estimate the derivative f'(1) (if it exists) if f is the function

f(z) = arcsin( 
1

ira

Graphing f in a region around 1 yields the graph shown in Figure 3.3.

Even with this rather large-scale view you can see that near input 1 the

graph has a negative slope (it slants downward right to left.)

2

arcsin(1/vV1 +x?)

 4 4 } ]
1 1

1 ’ 2

Figure 3.3 Graphing f(z) = arcsin(1/v/1 + z2) with a square viewing window.

Zooming in near input 1 yields the graph shown in Figure 3.4. The

graph goes down about 7.3 units for 10 units left to right. The slope f/(1)

is therefore about es = —0.73.

«——10 units—
 

~7.3 units

     
Figure 3.4 Zooming in on f near 1.

If the graph of f cannot be made to “straighten out” by zooming in

near a, this is evidence that f is not differentiable at a. This can happen by
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the same mechanisms which can cause f to be discontinuous — jumps,

skips, etc. There are also additional ways in which a function can fail to

be differentiable.

EXAMPLE 9 Graphically estimate f(0) (if it exists) if f is

f(z) = [=*°.

Solution As shown in Figure 3.5, zooming in on the graph of f near 0 results in the

cusp, evident at normal scaling, that becomes sharper and sharper as we

zoom in. Since this graph does not look like a straight line as we zoom in

on the origin, this is evidence that f is not differentiable at « = 0.

11 0.1 0.01 +

w
e

Ixl

 
 

1 1 -0.1 0.1 -0.01

  -1-+ -0.1 -0.01-+

Figure 3.5 Zooming in on the graph of f(z) = |=

EXAMPLE 10 Graphically estimate f/(0) (if it exists) if f is

f(z) = zsin(1/z).

Solution As shown in Figure 3.6, zooming in on the graph of f near 0 exhibits con-

tinued oscillatory behavior with no hint of settling down to a straight line.

This is evidence that the function is not differentiable at 0.



 

~1

xsin{1/x)

 
My

0.1+

 0.14

3. UNDERSTANDING THE DERIVATIVE

0.01

   

 

   -0.01-+

Figure 3.6 Zooming in on the graph of f(z) = zsin(1/z)

mmm EXERCISES

In exercises 1-10, zoom in on the graph of the indicatedfunction at the point

(1,1) to estimate its derivative at z = 1 graphically.

©
N
O
W

2/3

4/3
TZ

TZ

zr +— g~1/2

Tr — arctancz

z — 2%

2.

4.

6.

8.

10.

3/2

3/4
TZ

T+—Z

z+— z-3

T — arccot z

z+— logo

 

In exercises 11-20, zoom in on the graph ofthe indicatedfunction to estimate

its derivative graphically at z = 7/4 and = = 27/3.

11.

13.

15.

17.

19.

r+—sinz

z+— tanc

I +—CSCT

£ — sin z2

z — sin’ z + cos2
xr

12.

14.

16.

18.

20.

TZ +— COST

TT +— Sec

zr+—cotz

z — sin’ z

z — sin 6x
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In exercises 21-40, graphically estimate the indicated derivative (if it exists.)

 

 

21. f'(1) f(z) = z%exp(z) 22. f'(3.81) f(z) = 2

23. f(1) f(z) =sin(sin(sin(z))) 24. F/(1) f(z) = (2 + 1)° + 1)
25. (2) f(z) = 1+ —— 26. f(3.5) f(z) =In(z + 1)

HT

27. f(-19) f(&) = ors 28. f/(1) f(z) = 22-22
2. (0) f(z) = sin(jz]) 30. (0) f(z) = cose)
31. f/(1.5) f(z) = cos®(|z|) + sin*(z)

32. f'(2) f(z) =|z%-8]

33. f(2) f(z) = |= — 4

3a. f(2) f(z) =|? — 4|}

35. f'(0) f(z) = In(1/v/z20.00001)

36. f'(0) f(z) = zIn(1/+/z2 0.00001)

37. f(1) f(z) = In(1/v/z20.00001)

38. f(1) f(z) = In(z)
In(z)

1-2

40. f'(0) f(z) = tan(|z|)

39. f'(1) f(z) =
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5.2 NUMERICAL TECHNIQUES OF INTEGRATION

The Second Fundamental Theorem of Calculus allows us to evaluate a

definite integral provided we can find an antiderivative for the integrand:

b

/ f(z) dz = F(b) — F(a)

where F’' = f.

If a machine such as a calculator or computeris capable of finding an

antiderivative F' for the function f, then the machine can simply use the

Second Fundamental Theorem to evaluate the definite integral.

Sometimes it is difficult or even impossible to find a nice closed form

formula for the antiderivative F. Of course, the First Fundamental Theo-

rem guarantees that we can always find an antiderivative for a continuous

function, but that puts us back where we started—trying to calculate the

signed area under the graph of f.

In this section, we examine some of the numerical approximation

techniques that can be used in evaluating definite integrals. The key idea

to keep in mind is that a definite integral

/ f(z)dz

is defined to be the limiting value of Riemann sums

b

Jim, 2_ fie),
where the interval [a,b] is partitioned into subintervals of length Az, one

input z is chosen from each subinterval, and we sum up the products

f(z)Az for all the subintervals.

One way to approximate the value of a definite integral is to sim-

ply evaluate such a Riemann sum for a particular subinterval size Az

and a particular choice of inputs from those subintervals. This is indeed

the strategy in the first three methods of numerical integration we dis-

cuss. Other approximation techniques can be thought of as improvements

achieved by averaging these results.
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Left endpoint, right endpoint and midpoint rules

The left endpoint, right endpoint, and midpoint rules for approximating

definite integrals are named for the choice of input we make from each

subinterval. The advantage of making these particular selections is that

they are easy to “automate.” That is,it is not difficult to program a machine

to make these selections and then carry out the computation. Let's make

the procedures for carrying out these techniques explicit.

Step 1. Choose a number n of subintervals in the partition of [a, b].

Step 2. Calculate Az = be 

Step 3. Locate the n inputs z,,z,, ..., z,.

Step 4. Evaluate f at each input z; and find the Riemann sum:

3f(zi)Az = f(z1)Az + f(22)Az + f(23)Az +--+ f(zn)Az.
i=1

For the left endpoint rule, our inputs will be

r1=a, z=a+Az, zz=a+2Az, ..., zpo=a+(n-1)Az.

For the right endpoint rule, our inputs will be

zi=a+ Az, zo=a+2Az, zz3=a+3Az, ..., zT,=a+nAz=>0.

For the midpoint rule, our inputs will be

z 3Az SAz (2n — 1)Az
Ti=at =, T2=a+ —5—, Tz=at——, cee, Tn =0+ ———.

Note that our inputs are equally spaced apart under all three rules,

so that once we know the first input z;, the rest are determined:

To=2,+Az, z3=29+ Az, z4=23+Ax, ..., IT, =2,_1+ Az.

Using regular partitions makes it reasonably easy to program these

techniques on a programmable calculator or computer. In fact, we could

write a general program that would handle all three of these techniques.

The syntax of the program will, of course, depend on the particular pro-

gramming language of your calculator or computer system, but the struc-

ture can be described by the following flow chart.
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EXAMPLE 2

Solution

5. UNDERSTANDING INTEGRATION

‘b
PROGRAM RSUM (Rectangle SUM) for approximating J f(x dx

a

 

Comments

a and b are the endpoints of the interval;

Inputs: n = number of subintervals in the partition;
abnifr f is the integrand;  r represents the choice of input

from each subinterval {=0 means left
endpoint, r =1 means right endpoint,
r=0.5 means midpoint).

 

     
  

  

 

DEL = (b-a)hn Calculate the length of each subinterval:
DEL represents Ax.

x=a+ rDEL Initialize for program loop:
i=0 Set x = first input and set

SUM=0 counter; and SUM = 0.

SUM
= SUM + f(x)DEL This loop calculates the

isi+l signed area of the
rectangles corresponding   
to each subinterval and

No adds it to the running total
=P OEL represented by SUM

  

   
Yes

 

 
Output: SUM Display or print final total SUM

  
2

Example of usage: Approximate Ju )dx
1

using the midpoint rule and a partition of size n = 5.

Inputs: 1 2 5 1/x 05 Output: 0.6919

3.5

Approximate / sin®(z) dz using each of the three rules for a partition of
5

size n = 6.

Here a = 0.5,b = 3.5,n = 6, and f(z) = sin®(z). The subinterval size is

b—a 35-05 _

n 6 -
 Az = 0.5.

Using » = 0 (left endpoint rule) in the RSUM program, we obtain

SUM ~ 1.334.
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Using r = 1 (right endpoint rule) in the RSUM program, we obtain

SUM =~ 1.257.

Using r = 0.5 (midpoint rule) in the RSUM program, we obtain SUM =

1.325.
3.5

For comparison, a machine computation yields / sin®(z) dz ~ 1.315,
5

so in this case the midpoint rule gave the best approximation. Hu

The rectangles whose (signed) areas are represented by the terms in

each Riemann sum are illustrated in Figures 5.1 through 5.3. The right

and left endpoint rules are sometimes called right and left rectangle rules.

 1+

 

 

     

 

 

 
 

       
3.5

Figure 5.2 Right rectangle approximation of / sin3(z) dz for a partition of size n = 6.
5

1+  
 

 

 

      

 

 
3.5

Figure 5.3 Midpoint approximation of / sin®(z) dz for a partition of size n = 6.
5
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Notice that if a function f is increasing over a given subinterval, then

the area of the left rectangle is an underestimate of the area under the

graph, while the area of the right rectangle is an overestimate. In this case,

the area of the midpoint rectangle will be between this underestimate and

overestimate (but not necessarily closer to the true area than each of the

endpoint approximations). The situation is reversed when the function f

is decreasing over the subinterval. If the function f is not monotonic over

a subinterval, then the relationship between the true area and the areas

of the left, right, and midpoint rectangles cannot be determined without

closer examination.

As the partition becomes finer and finer (in other words n is chosen

larger and larger) one expects that these Riemann sum approximations

should get closer and closer to the actual value of the definite integral. In

general, this must be true as long as the definite integral exists. However,

for certain choices of n, it is possible that the particular sampling of in-

puts obtained by using the left, right, or midpoint rules may give a terrible

approximation. Since all three of these methods sample at regular spaced

intervals, a function that is periodic or has some graphical symmetry will

be approximated badly for certain partition sizes n. Indeed, it is possible

for a smaller value of n to produce a better result than a larger value in

some cases.

Trapezoidal Rule and Simpson’s Rule

The next two techniques we discuss approximate the value of a definite

integral by using averages of Riemann sums. These techniques generally

produce better results than the right, left, and midpoint techniques.

The trapezoidal rule for a partition of size n is simply the average of

the results obtained by using the right and left endpoint rules for partitions

of size n.

Once you have a program like RSUM,it is easy to calculate the trape-

zoidal approximation:

First, calculate RSUM with r = 0. Call the result LEFT. Next, calcu-

late RSUM with r = 1. Call the result RIGHT. Finally, average the results:

(0.5)(LEFT + RIGHT). Call the resultTRAP.
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3.5

EXAMPLE 3 Approximate | sin(z) dz using the trapezoidal rule for a partition of size

Solution

0.5
n = 6.

We have already determined the results of the right and left endpoint rules

for this definite integral for a partition of size n = 6. Therefore the trape-

zoidal rule approximation is TRAP = (0.5)(1.334 + 1.257) = 1.296. n

The idea behind the trapezoidal rule is that over intervals for which f

is monotonic (either increasing or decreasing,) then one endpoint rule will

give an underestimate and the other endpoint rule will give an overesti-

mate. Hence, averaging the results from these two endpoint rules should

give a better approximation to the value of the definite integral. The trape-

zoidal rule derives its name from the fact that the average of the areas of

the right and left rectangles can be thought of as the area of a trapezoid

with the same base (see Figure 5.4).

 

 

 

 

     

Figure 5.4 Trapezoidal rule is the average of the left and right endpoint rules.

The easiest way to remember the trapezoidal rule is as the average

of the left and right rectangle rules. Figure 5.5 illustrates the trapezoidal

approximation for the definite integral of the previous example.

1+

 

 

 
3.5

Figure 5.5 Trapezoidal approximation of / sin®(z) dz for a partition of size n = 6.
5

An even better approximation to the value of a definite integral can

be obtained by taking a weighted average of the midpoint and trapezoidal
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rules. The motivation behind this strategy is to take into account the con-

cavity of the function's graph over each subinterval.

Figure 5.6 illustrates the midpoint and trapezoidal approximations

over subintervals where the function graph is concave down and concave

up.

 

 

 

 

    

Figure 5.6 Comparing midpoint and trapezoidal approximations.

Look closely at Figure 5.6. Note that for the concave down graph

(the two pictures on the left), the midpoint rule overestimates the area

while the trapezoidal rule underestimates the area. Of the two estimates,

the trapezoidal estimate appears to be approximately twice as far off as

the midpoint estimate. For the concave up graph (the two pictures on the

right), the midpoint rule now underestimates the area while the trapezoidal

rule overestimates the area. Again, the trapezoidal estimate appears to be

approximately twice as far off as the midpoint estimate.

This suggests that the value whose distance to the midpoint estimate

is half as far as the distance to the trapezoidal estimate is a much better

approximation of the actual area under the graph. This is precisely the

motivation behind the approximation technique known as Simpson's rule,

named after the English mathematician Thomas Simpson (1710-61).

The Simpson's rule approximation value can be computed by using a

weighted average of the trapezoidal and midpoint estimates, namely

1 2
Simpson's estimate = 3(Trapezoidal estimate) + 3(Midpoint estimate).

Again, with the RSUM program available, it is easy to program or

calculate the Simpson's rule approximation:

First, calculate TRAP as before.

Next, calculate RSUM with r = 0.5. Call the result MID.

: T
Finally, calculate the weighted averageLLCall the re-

3
sult SIMP.
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3.5

EXAMPLE 4 Approximate | sin®(z) dz using Simpson's Rule for a partition ofsize n =
0.5

6.

Solution We have already determined the results of the midpoint rule and trape-

zoildal rules for this definite integral for a partition of size n = 6. The

Simpson's rule approximation is

1.296  2(1.325)
 ne ~ 1.315.3 5 3 315

Note that this approximation is accurate to three decimal places of the

actual value of the definite integral. nu

Here's another way of thinking about the trapezoidal rule and Simp-

son's Rule. When we subdivide the interval [q,}] into n subintervals, we

obtain the graph of a piecewise linear function by connecting the points

(zi, f(zi)) corresponding to the endpoints of these subintervals. The trape-

zoidal rule is simply the approximation we obtain when we integrate this

piecewise linear function instead of our original function f.

Now, instead ofconnecting the graph points at the ends of each subin-

terval with a straight line segment, suppose we find a parabola which

passes through both of these points and the middle graph point. (Three

noncollinear points determine a parabola just as two points determine a

line; if the two endpoints and the midpoint line up, we can just connect

them with a straight line instead of a parabola.) Figure 5.7 illustrates this

idea for a given subinterval.

 

Figure 5.7 Approximating the graph with a parabola through three points.
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Notice how closely the parabola approximates the graph. Ifwe connect

these parabolic pieces end-to-end for each subinterval, we obtain the graph

of a piece-wise quadratic function. Simpson’s Rule is simply the approx-

imation we obtain when we integrate this piece-wise quadratic function

instead of our original function. Figure 5.8 shows the piece-wise quadratic

fit for the example we computed earlier. The graph appears virtually iden-

tical to the original graph, and consequently, the values of the definite

integrals agreed to three decimal places.

1+

  
 

  

 TG
3.5

Figure 5.8 Simpson’s approximation of / sin®(z) dz for a partition of size n = 6.
5

On the other hand, Simpson's rule requires us to sample almost twice

as many inputs as the trapezoidal rule for the same partition. Indeed, we

essentially have a partition of size 12 for this example, since we sample the

midpoints of each subinterval as well as the endpoints. The approximation

could be improved even more by sampling more inputs and using a piece-

wise cubic function, or by using the first derivative values at the endpoints

to create a cubic spline approximation.

Summary of the numerical integration techniques

Let's summarize by introducing some convenient notation. Suppose we

partition a closed interval [q,)] into n equal-sized subintervals of length

Az = (b—a)/n. Let's label the function outputs at the n midpoints with odd

subscripts:

w=f@+50), w=fe+220), w=ra+ 2D),
up to

tom = flo +SER55
Now let's label the function outputs at the endpoints of the subintervals

with even subscripts, starting with 0:

Yo = f(a), Ya = f(a + Az), Yq = f(a + 2Az),
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up to

Yan = f(a + nAz) = f(b).

With this labeling scheme, we can write down an explicit formula for

each of the rules discussed in this section.

b

Numerical approximations of / f(z) dz for a partition of size n

Left rectangle rule:

b

/ f(z)dz =~ Ln, = Az(yo + y2 + + + Y2n—2)-

b

Right rectangle rule: / f(z) dz =~ R,, where

b

[| f@ de x Ro = Bafa + va+ ++ yan).

Midpoint rule:

b

/ F(z) dz 5% My = Bln +35 +++ Gini}

Trapezoidal rule:

b
L, + R, Az .

/ f(z)de=T, =— = —(Yo +242 + 2y4 + co + 2Yan—2 + Yon )-
a

Simpson's rule:

b 2M, T,
[| f@de x 53 = ZED,

The subscript 2n in the notation S,, for Simpson's rule is to indicate

that we have effectively subdivided our interval [a,}] into 2n subintervals,

since we make use of both the endpoints and midpoints of each of our

original n subintervals. The explicit formula for Simpson's rule is

Az
5 (yo +4y1 + 2y2 + 4ys + 2ya + - + + 2y2n—2 + 4Y2n—-1 + Y2n)-San =
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mmm EXERCISES

Using partitions ofsizen = 2, 4, 8, 16, and 32find the left, right, and midpoint

estimatesfor the definite integrals in exercises 1-6 by using a RSUMprogram

for your calculator or computer.

1
1. | V1+z2dz

0
1

3. / arctan(z) dz 4. logy (z) dz
-1
1 2

5. | eT dz
0

Using partitions ofsize n = 2,4, 8, 16, 32 and the resultsfrom exercises 1-6,

calculate TRAP and SIMPfor exercises 7-12. Calculate each integral with a

machine tofive decimal place accuracy and compare these values with the

five estimates you have obtained.

1 0
7. | V1+z2dz 8. / 3° dz

0 -1
1 4

9. / arctan(z) dz 10. J log,(z) dz
—_ 1

3.51 :

1. | e=%dx 12. sin(z3) dz
0 0.5

n
N

w
o 8

[Q
u

8

o
N

S
=
, wn

« =
~
~

8
W
w

N
e
’

Q
O

8

 

 

The table of values below are the minute-by-minute speed readings ofa car

over the second 15 minutes of its trip. Use this table to answer exercises

  

13-14.

time t speed V time t speed V
in minutes in mph in minutes in mph

15 28 23 0

16 24 24 1
17 20 25 1
18 16 26 2

19 12 27 3

20 9 28 4
21 6 29 6

22 3 30 8

13. Estimate the distance covered over the interval [15, 30] using At

minutes and the trapezoidal rule.

14. Estimate the distance covered over the interval [20, 30] using At

minutes and Simpson's Rule.

I p
—

I XC
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15. Using the table ofvalues below for the continuous function f, estimate

the definite integral of f over the entire interval using the trapezoidal rule.

X f(x)
 

1.27319 3.81456
1.27320 3.86714
1.27321 3.90551
1.27322 3.92017
1.27323 4.34405
1.27324 4.66292
1.27325 4.69141
1.27326 4.65674
1.27327 4.61993
1.27328 4.59550
1.27329 4.58799
1.27330 4.52556 

16. Use Simpson's rule to find 5 terms of a sequence approximating

1

| 2%i
0 1+ 22

Let the number of subdivisionsof [0, 1] be 1,2, 3, 4,5. What does the limit of

this sequence appear to be? How many decimal places of accuracy does

as give? Using the trapezoidal approximation and 50 subdivisions of [0, 1],

approximate the same integral. How many decimal places of accuracy do

you get?

 

Exercises 17-20 ask you to estimate

4

/ z3(z — 1)(z - 2)(z — 3)(z — 4) dz
0

using various approximation techniques.

17. Find the trapezoidal estimates for partitions of size n = 16 and n = 32.

18. Find the Simpson's rule estimates for partitions of size n = 4 and

n = 8.

19. Expand the polynomial z?(z — 1)(z — 2)(z — 3)(z — 4) and integrate over

[0, 4] using the Second Fundamental Theorem of Calculus.

20. Which estimate is better, the trapezoidal estimate for n = 32 or Simp-

son's rule for n = 8?
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9.2 COMPARING TAYLOR POLYNOMIALS

The nth degree Taylor polynomial approximation p, to the function f at the

point z = a is defined to be

po(2) = F@)+ F(a)-a)+EDaapLOappsLD

In this activity, you'll see graphically the convergence of Taylor poly-

nomial approximations. In general the higher the degree n for a Taylor

polynomial, the better the approximation. Certainly that is true at the

point z = a. However, at other points, the story may be different.

Some symbolic algebra systems automatically expand and

collect terms in powers of z in polynomial manipulation.

This is less than desirable if you wish to have your Taylor

polynomial expansion in terms of powers of (z — a) instead.

Here's a way to “fool” your system if it behaves this way. Ifyou desire a

Taylor polynomial expansion of the function f about z = a, let your system

find the Taylor polynomial expansion of f(t + a) about t = 0. After the

system has finished simplifying, you can just replace every appearance of

t by (z — a).
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mmm EXERCISES

In exercises 1-10 you are given a function f(z). Find and plot the first

five Taylor polynomial approximations to eachfunction (n = 1, 2, 3, 4, and

5), as well as the graph of the original function at the given point z = a.

You are also given the degrees of two of the Taylor polynomials. For these,

find a point where the Taylor polynomial of lower degree gives a better

approximation than the Taylor polynomial of higher degree, and a point

where the Taylor polynomial of higher degree gives a better approximation

than the Taylor polynomial of lower degree.

1. f(z) = sin(z — 3) exp(z — 3), degrees 1 and 2, near z = 3.

2. f(z) =In(z), degrees 3 and 4, near z = 1.

z+1
3. f(z)= 759 degrees 3 and 4, near z = 0.

4. f(z) =+/z, degrees 2 and 3, near z = 1.
34 2

5. f(z)= irdl degrees 2 and 3, near z = 1.

6. f(z) = arctan(z), degrees 1 and 3, near z = 0.

7. f(z) = 2? + sin(z), degrees 2 and 3near z = 0.

8. f(z)=+Vz2+1, degrees 1 and 2, near z = 1.

9. f(z)= degrees 2 and 3, near z = 5.

10. f(z) = (22+ 1)exp(z), degrees 2 and 3, near z = 0.

 

11. Find a function whose degree 2 Taylor polynomial at 0 is everywhere

(but at z = 0) a better approximation to the function than the degree 1

Taylor polynomial.

12. Find a function whose degree 1 Taylor polynomial at 0 is a better ap-

proximation for all large z than the degree 2 Taylor polynomial.

13. Find the order of agreement between each Taylor polynomial and the

given function at the specified point in exercises 1-10.

14. Explain why the symbolic algebra system strategy discussed above

works.
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Below is an illustration ofan aquarium along with a graph of its water level

as a function of time. When the faucet is on, the water level rises at a

steady rate. Similarly, when the plug is pulled out, the water levelfalls at a

steady rate (but slower than thefaucet’s rate). At various times some events

happen that affect the water level and/or the rate at which the water level

changes. In exercises 16-25 you are asked to identify at exactly what time

the given event occurred.

12

10

 

water 8
level

in
inches 4

= 2

aagalals 0 7 3h
@ (»" aA time in minutes  

16. The plug is pulled out with the faucet turned off.

17. A large rock is pulled out of the aquarium.

18. The plug is pulled out with the faucet turned on.

19. The plug is put in with the faucet turned off.

20. The plug is put in with the faucet turned on.

21. The faucet is turned on with the plug in.

22. The faucet is turned on with the plug out.

23. A bucket of water is dumped into the aquarium all at once.

24. The faucet is turned off with the plug in.

25. The faucet is turned off with the plug out.

 

26. Now, assume that the rock is placed back in the aquarium at ¢t = 20

minutes and the faucet is turned back on. Suppose that the aquarium is

12 inches deep. When will the aquarium overflow?
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21.
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3.5 NEW DERIVATIVES FROM OLD

In this section we will derive more of the basic rules which govern how

the derivatives of functions behave when the functions are combined al-

gebraically or through composition. In the last section we saw that the

derivative of a sum or difference of two functions is simply the sum or dif-

ference of the derivatives, and the derivative of a constant multiple of a

function is the same constant multiple of the derivative.

For products, quotients, and compositions of functions, the rules for

finding derivatives are slightly more complicated. Once we have these

rules, then we will be able to compute the derivative of almost any function

built up from the basic functions.

The product rule

The linearity properties for derivatives are very natural. At first glance,

the derivative rule for a product is surprising. While it would be easy to

remember, let's make it clear:

WARNING: The derivative of a product is NOT the product of

the derivatives.



TEST QUESTIONS FOR CHAPTER 7

For exercises 1 and 2, sketch the slope field of the differential equation

in the region [-2,2] x [—4, 4] and using the slope field, sketch the graph of

the solution to the differential equation with the given initial condition in

the same region.

y 31. -_——=—2. -2) = -17 y(=2)

2. yY=4y: y(1)=-2

For exercises 3 and 4, solve the differential equations given and sketch

the solution to each in the region [-2, 2] x [-4,4].

3. F= y(-2) =-1

4. yy =4y: y(l)=-2

5. Below is the slope field of the differential equation:

 

Y_ 9
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Sketch the solution of the differential equation with the initial condi-

tion: y(0) = -3.



6. Solve the following differential equation with the given initial condi-

tion:

y
= 2; 0) =-3.v y(0)

7. Using your calculator or computer, sketch the solution from 6.

8. Solve the following differential equation with the given initial condi-

tion:

yy = cos(z); y(r)=—-4.

9. Below are experimental bacterial population samples taken 1 hour

apart:

9070, 4995, 4921 and 4848.

Predict the population 4 hours after the last sample.

10. Suppose an animal grows at a rate proportional to its weight. If the

animal weighs 100 pounds at birth and 150 pounds in one month, find its

expected weight in one year. When will the animal weigh 1000 pounds?

11. Awareness of a company’s products often declines exponentially af-

ter an advertising campaign ends. A calculator company launches a new

product with an advertising campaign. Sales rise to a peak of 1500 units

per week. A week after the campaign ends, sales are down to 1300 units

per week. If a company decides to run another campaign when sales fall

to 65% of their peak level, when will the next campaign begin?

12. A cup of black coffee is poured from a pot, whose contents are at

200° F, into a noninsulated cup in a room at 70°F. After a minute, the coffee

has cooled to 190°F. What is the temperature of the coffee after 3 minutes?

How long is required before the coffee reaches a drinkable temperature of

150°F?

13. A certain drug has a half-life of 4 hours in the bloodstream. 500 mg

is injected initially. Two hours later, 200 mg is administered. How many

hours after this second injection will there be 100 mg in the bloodstream?



  

 

 

    

Midterm II

s a _ 1

1. The graph of f:z »— mig is shown below.

"ry

EERE
1 2 3

a7 LL pete
.2 3.2

a. Use the calculator to find £(0).

b. Use the calculator to graph y = f(z) within the same viewing window as y = f(z) above and

sketch below.

1.8 

 

   -1.7 
a) 3.2

c. Evaluate f'(0).

d. Find an equation of the line tangent to the curve at z = 0.



2. Below is the graph of y = f/(z) (the derivative of f : zr — f(z)).

4y

15.2)

-
a
d

 

(18d
Jat)

y =f'(x)

V,
1
2 X

(1. -10)

Over which intervals is the original function f

a. increasing?

b. decreasing?

Over which intervals is the graph of the original function f

c. concave up?

d. concave down?

Find the x-coordinates of the

e. local minimum points of the original function f.

f. local maximum points of the original function f.



3

3. The table below contains information with regard to the height in inches, A : t — A(t), of a spider

on the wall at various times between 1 second and 2 seconds inclusive.

input | 1.0 11 12 13 14 15 16 1.7 18 19 20

output | 3.64 3.65 3.60 3.76 3.85 3.94 4.02 4.09 4.14 417 4.17
 

Estimate the instantaneous speed of the spider at 1.3 seconds.

4. Below is the graph of f and the line tangent to f at z = 2.5.
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a. Find f’(2.5) and find the equation of b. Sketch the derivative of f over

the normal line at z = 2.5. Sketch the interval [0, 7] using the axes above.

this normal line on the axes above.



5. Using f and g given by the graphs and information from the table below, compute the derivatives

indicated in a. - ¢.

 

 

A Ay 5.6 (4.5) y

f*(-4)=3
5) (5.3)

\ _ _ g'(-4)=-7

/ \/ x \_/ x t*(5)=-6

y=1 (x) y=g (x) g'(5)=8     
a. F’(—4) where F : z — f(z)g(z).

b. F'(5) where F : z — [3f(z) + g9(z)]3.

f(9(z))
c. F'(—4) where F : z — .

(=4) 0)

6. a. Sketch a function, f, satisfying the information given in the two tables below.
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For we<x<-4, f'(x)<0 and {" (x) <O. x f(x)

For 4<x<0, f'(x)<0 and f*(x)>0. -4 undefined

mf ne be
For 0<x<3, f'(x)<0 and f"(x)<0. 0 -1 X

For 3<X<e, {'(x)>0 and {"(x)>0. 3 x       

b. Find all critical points of f.

c. Find all inflection points of f.
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7. The position of a car after the brakes have been applied is given by s : t — —11¢> + 88t where s

is in feet and t is in seconds. There is a brick wall 170 feet measured from a point where the

brakes were initially applied. If the car hits the wall traveling at a speed less than 10 mph, the

fender will withstand the impact of the collision and there will be little or no damage.

a. Will this car suffer any major damage? Explain why or why not.

b. How far would the car travel beyond the wall if the wall were not there?

c. What is the acceleration at any time ¢?




