

HP 48 Graphics

By R. Ray Depew

A GRAPEVINE PUBLICATION

HP 48 GRAPHICS

by
R. Ray Depew

Grapevine Publications, Inc.

P.O. Box 2449

Corvallis, Oregon 97339-2449 U.S.A.

Acknowledgments

Thanks once again to Hewlett-Packard for their top-quality products

and documentation. Thanks also to Chris, Dan and John for their

patience, enthusiasm and professional expertise in polishing and

presenting this book, a project that stretched across many months and

a move to another state.

Pen-and-ink illustrations by Robert L. Bloch.

© 1991, by R. Ray Depew and Solve and Integrate Corporation. All

rights reserved. No portion ofthis book or its contents, nor any portion

of the programs contained herein, may be reproduced in any form,

printed, electronic or mechanical, without written permission from R.

Ray Depew, Solve and Integrate Corporation and Grapevine Publica-

tions, Inc.

Printed in the United States ofAmerica

ISBN 0-931011-33-7

First Printing — February, 1991

Notice OfDisclaimer: Neither the authors, nor Solve and Integrate Corporation nor Grapevine

Publications, Inc. make any express or implied warranty with regard to the keystroke procedures

and program materials herein offered, nor to their merchantability nor fitness for any particular

purpose. These keystroke procedures and program materials are made available solely on an “as

is” basis, and the entire risk as to their quality and performance is with the user. Should the

keystroke procedures and program materials prove defective, the user (and not the authors, nor

Solve and Integrate corporation, nor Grapevine Publications, Inc., nor any other party) shall bear

the entire cost of all necessary correction and all incidental or consequential damages. Grapevine

Publications, Inc. shall not be liable for any incidental or consequential damages in connection

with, or arising out of, the furnishing, use, or performance of these keystroke procedures or

program materials.

To my sweet wife, Valerie, in gratitude for her

constant encouragement, support and tolerance

when things got a little crazy—and for her cookies,

which helped me get through the late-night bug-

hunts and other tribulations they never tell you

about when you start writing a book.

CONTENTS

! INtroductioneeeeeeeeenineiiiinneeiecisseeeecssseneecsssnnneccsssnnssessssanssssssns 8

What This Book Is Aboutc.ccoovviiiiiiiiiiiiiini9

Plotting a Simple Function..........ccceevviiiiiiiiiiiie,10

Solving Within the Plotter................c 13

Freehand GraphiCS..........cccooiiiiiiiiiiiiiee14

Grobbing Aroundoooeiiiiiiiiie16

What Next?..ote18

Notes on Using This BoOKeevuuiiiiiiiiiiiiiiieieeieiieeiiiieiiies 20

: The EQuationWriter....ccccviciecienccccinsncscsnsecscssssecccsssssssssssscsssees24

Preparationsccoooeeiiiiiee25

Opening Remarksooooiiiiiiiiiiiiiiieeeeeee25

So What Does It D07..o27

EXamples........ooiiieeieiiieeeee28

Using the EquationWriter...........cccoooiiiiiiiiiiiiieceeee 30

The Selection Environmentccooooiiiiiiiiiiiiieneeeee 32

A Fourier Series Example........ccccvvvvvviiiiiiiiiiiieeeeeeeeeieeeeeeees 34

Test Your SKill...35

Other ThingS....ccooooiieeiiieieeeeeeee38

Closing RemarksS.......ccooeieeiiiiiiiiieeeeee39

 3: The SOlVer..ceeeeeeeeeeeecereecereesesecseeosses 40

Opening Remarkscooooeiiiiiiiiiiieee41

Preparationscccoooiiiiiiiiiiiiie41

Apples and Oranges........ccccceeeeeeeieeioiiiiiiiiiiieeeeeeeeeeeee42

The Ideal Gas Lawcccccooieoiiiiiiiiicieeeeeee45

The Time Value of MONeYcooeeeeeiiiiiiiiiiiieee,48

A Third-Degree Polynomial.........cccccccovveimeieiiinnniniiiiiiiiiiinn, 50

Customizing the Solveroiiiiiiiiiiiiiiicceee,52

Linking Equations: Solving Several at Once..................... 59

Using the Solver on Ill-Mannered Functions...................... 64

Using the Solver Inside the Plotter...........ccccoiiiiiiiiiiiiiiiiinnni. 70

Programmable Use of the Solver..........ccccooiiiiiiiiiiiiiiiiniiinnnnnn. 79

REVIEWee81

4: What’s @ GIrob?ieieieenniseneseesssiesscsssssssssssssssssssssssssssssssssssse82

Opening Remarkscooviiiiiiiiiiiiiieiiceeeeee83

A Clean Slateccooeeeeeeiiieiieieeeeeeeeee83

What Is @ Grob?........oooiiiiiiiiiiiiiieeeereeee84

Pixel Numbers vs. User Units.......cccoeeiiiiiiiiiiiiniiiiiiiiieeeeceeenn, 86

“Roll Your Own” Grobs..........ccevvviriiiiriiiiiiiiiieeeeeeeeeeeeeeeeeeesiinennens 89

The Hexadecimal Bitmapooveeiiiiiiiiiiiiieeeeeeee,90

The SEE Programcccccooooiiiiiiiieeeeeieeeeeeee92

What Does a Grob Eat?.........cccooviiiiiiiiiee93

The Grob as ICOMNouviuiiiiiiiciieiecieeeee95

ROVIOWeeetaaaas97

 5: Graphics BasSiCs ..cceniciiiccicisnsnnssssnennssssseseeceseseesasessasessessanes98

The Graphics Functionsccccecvveeviieiiiiiiiiiiiieiicccecccieee 99

The PVIEW BUg ..coooiiiiiiiieeeeeeeeeeeee101

The Secrets of PPARuuiieeeeeeeee103

The PLOTR MeNU.....cccovvviiiiiiciieiiee105

The PRGHIETIM MENU..o,110
Other Graphics Commandscoeeeeeeiiiiiiiiiiiieeen 115

Building a ToolboX........ccccuviiiiiiiiiiiiiieee116

Sines and Big Sinesccccccccciiiiiiiiiiiiiieeeeeeee 118

REVIEWoo120

6: Graphics IMProvements.......ceeeeeeeeeeeeeeeeeeeeceeececeesecssssssnne 122

Opening Remarkscccccoiiiiiiiiiiiiiiiiiiieeeeeee,123

Labelling the AXeSooooiviiiiiiiiiieiieeeeeeeeeeeeeeeeeeeeeeeeeeeeee 124

Connecting the Dotsccccoviiiiiiiiiiice,125

Adding Text to GraphicCscoooviiiiiiiiiiiiiiiiiiiiieee 126

Adding Graphics to Enhance PlotS...........ccccovviiiiiiiiininnnne.... 134

ReVIEWoo136

7: Freehand Drawing ...eeeeeeceecccccteeseeeessesssssssesssss 138

How t0 Do Ttoo139

Drawing a Voltmeter Facecccccvvvvveiiieiiiiiiiiiiiiiiiieinn. 141

ROVICWeeee145

8. Programmable Graphics Applications......cccccceeeeereeeeeeeeceee 146

INtroductionccoeeeeieeeee147

Programmable Scanning Inside a Big Grob........................... 148

Generating a Stripchartcccooiviiiiiiiis164

An Analog Voltmeter..........ccccuvveiiiiiiiiiiciieeeeee,176

Plots with Two Independent Variablesc.....oooooii. 182

A Contour-Plotting Programccoeeoiiiiiiiiiieiiiiiiiieeeeeeeeeenn, 188

Driving a Bulldozer Around the Display......cccccooeeeeiieiininninn, 196

A Friendly Game of Checkers........cccooevveeieieeeeeiieeiiiiiiiiiiiiiienee, 200

A Calendar Demo............uuuviueiiniiiiiiiiiieeeeeeeeee230

More SUGEESTIONSccovvvuiiiiiieiiiiiiiiieeeeeeeeee e e vaaaens 236

9. Graphics Beyond the 48.........ieeeeereeeeeeerecscsccsscscessscssssees238

Printing Graphics on the Infrared Printer............................. 239

Printing Graphics on a Larger Printercccccoeeeeeeiiiiiini, 240

Printing Graphics on a Pen Plotter.........cccccooeeviiiviienniiinnnnnnn. 258

Grobs and Other Computerscooevvvviiieeeeiieiiiiiieeeeeeeeeen. 259

Graphics Between Two 48’S.........cccccooviviiviiiiiiiiiicciieeeee261

Final Thoughtscccooooimiiiiiieeeeeeeeee,262

APPENAICES ccuuriecreeiieeiarrercssensecsssssssssccccssssssssssessssssssssssssssssssssesssssss264

A. Review of the Hexadecimal Number System.................. 265

B. Graphics Commands and Operations..............ccccvveueennn.n. 272

C. User-Named ODbjectscovvvuvimerieiiiiiiiieeeeeeeeeeeeeeeeeiiiinn. 282

INAeXoo290

Other Books and Informationc..ooooeimiioiiiiiiiieiieeeeeeaennn. 298

1. INTRODUCTION

What This Book Is About

The HP 48 calculator (“48” for short) is the latest in a long line ofgreat

handheld calculators from Hewlett Packard Company. It combines

nearly all of HP’s most popular features into one package.

The 48 makes handheld problem-solving and/or data manipulation

easier than ever before. Among other new capabilities,it offers you the

EquationWriter, the Solver, and the Plotter.

¢ With the EquationWriter, you can enter an equation in textbook

notation—just the way you normally see it on paper (as opposed

to algebraic notation, which forced you to count parentheses and

put all your terms on one line).

e With the most powerful version of HP Solve to date, you may

never have to write another program again: The 48 Solver lets

you solve your equation directly from the equation form, rather

than having to translate it into a program.

* Oneofthe greatest—but most neglected—features ofthe 48isits

Plotter, and more generally, its graphics capability. You can

manipulate the entire 64x131-pixel display, with many powerful

built-in functions. And you needn’t stop at 64x131 pixels. This

book will show you how that display is only a small window into

a much larger world of graphics power.

First, takejust a moment to see these three capabilities in action. This

isjust a “warmer-upper” to pique your interest—so don’t worry—you’ll

get more explanation on all of this in the chapters to come....

What This Book Is About 9

Plotting a Simple Function

Set your display mode to FIX 2 (2]sPc]efa]F]IJX]ENTER)). Then start

with this simple quadratic function:

y=x+4)(x-3)

To enter the EquationWriter, press (that’s the (&q)ENTER]

key). Now, press the following keys (ifyou make a mistake, backspace

it out by pressing the (@) “backspace” key, as necessary):

Y&&0 HER) G0XP)

Your display should now look like this:

Y=(H+4] (K-3)0

 PARTS|PROE |HYP|MATR[VECTR|EASE

Press to exit the EquationWriter and put your equation onto the

Stack. Start the application by pressing (G]PLOT).... The first

page of menu keys will appear on the bottom line of the display.

Now store your quadratic equation by pressing the ElfI® menu key.

The Status Area at the top of the display should say:

10 1. INTRODUCTION

Plot type: FUNMCTIOH

EQ: '"Y=(H+d42x(-3

To enter the Plotter itself, press [dXtlld now. Then press A1)

[(G)PREV), to reset the plotting parameters to their defaults.

Next, enter the x-domain (the desired range ofx-values). Use a domain

of, say, -5 to 5: Press) HLIH

Now you can simply let the 48 calculate the y-range automatically and

then plot the function—just press [EITHIN...

The display will blank out, then fill with a parabola asthe 48 calculates

and plots each point. Now press |Kild948to label the axes. Your display

should then look like this:

18007 &

fll-.h"“ -...l-.- T

+ l." t i + } } + i ey :.-.l ¥ !-.

-5.0, g
-"-._ -e |

200M[2-E0R[CENT[COORDILAEEL|FCH|

Plotting a Simple Function 11

Adjusting Your Plot

Of course, you can change your y-range—it doesn’t have to be the one

that the machine automatically calculated.

Press(ATTN). Now, to choose a y-range of—20 to 30, type in the coordinates

of the lower left and upper right hand corners of the plot: (-5, —ZH)

(5, 38), and press (NxT)(NxT)IIRANXT).

Now, instead of pressing [EITHIN, press ETEHIMTTIRL...Your previous

parabola and freehand drawing exercise is erased, and a new parabola

is drawn in its place. Press [K;l:138 to label the axes.

But notice this: Press (=]«), then press and hold down (a). The display

scrollsdown as the cursor travels up the y-axis toy=30.... Now where’s

your parabola? Press and hold (¥)to bring it back into sight. The point

here is that you can make your plots larger than the display.

So keep in mind that you can use either [EITH'N or [TTiI®] to plot the

function. BT will calculate the y-range for you—to fit the display.

But [ITT¥] allows (requires) you to specify your own y-range.

Both functions have their uses: For example, use [EITH to give you a

“feel” for where your function plot will lie. Then use [dI&l and [TT1%]

to stretch or shrink your plotting range, in a way similar to the

functions provided in the PLOT menus (read about Fi[§l in your 48’s

Owner’s Manual).

12 1. INTRODUCTION

Solving Within the Plotter

You can do more with your parabola than just look at it and marvel:

Hidden in that display is a graphics cursor, shaped like a crosshair.

Press (v) and (€)a couple of times to find it.

Now, find out what the two roots of this function are: Press and hold

(«) until the crosshair is close to the left side of the plot, where the

function crosses the x-axis. Now press LEI0EA ...

The crosshair zeroes in on the root and the bottom line of the display

tells you that the root is at =4.010!

Press (=) to get the menu back, and then to find the slope of the

function at this root point (x=-4).... The slope is =7.001. Now (v) and

(»]») to find the cursor, then press and hold (») to get to the right side

of the screen. Now use [[I[illl and again to find that the slope

at the positive root is 7.0, as it should be.

Press ()33 to find the extremum, or lowest point on the function.

It’s at £=0.50,.-12.85). Press(—)to bring back the menu, then («]<[<]

IZE3A to find the function value at the current location.

As you can see, you can utilize most of the capabilities of the Solver

without ever leaving the Plotter application. And while this quadratic

function was admittedly simple, you can do these same things with

much more complicated functions—you’ll see how in later chapters.

Now press to return to the Stack display.... See? The roots,

that you just calculated from inside the Plotter have also been placed

on the Stack—for your subsequent use (and calculating enjoyment)!

Solving Within the Plotter 13

Freehand Graphics

Using the built-in capabilities ofthe Plotter and Solver are perfect for

many needs. But when you want to create custom graphics of your

own, that’s a job for the GRAPHICS menu.

Often the 48 gives you more than one way to do things. For example,

HPguessedthatmostpeople would oftenuse theGRAPHICS menuwhen

a plot was being displayed—so the GRAPHICS menu comes up auto-

matically when you press [EITLI'E or [Ti®]. But you can get to the

GRAPHICSmenuanytimeyouwant: Press (dothatnow).

You’ve seen the first page of this menu, but press and see this:

MONEEER

Using the (a}, (v), () and (¢) keys, put the cursor about an inch to the

right ofthe origin. Now press (multiply), then (») a few times. You’ll

see an ¥ where the cursor appeared originally—but now the cursor is

sliding to the right. Now press [H[d}.... You'll eventually see this:

 -5.00 5.00
oy

00T+ |0OT- |LIME |TLIME| EOX [CIRCL

You’re doing freehand drawing on a plot drawn by the 48!

14 1. INTRODUCTION

Next look at the menu items labeled [ITLEN and ITLES.

turns pixels on (makes them black), while [[IIlEl turns pixels

off (makes them white). The [annunciator appears in the [T or

ITmenu key label to indicate which one is active.

Experiment with [I'/JEN and [IIHEN by pressing each once...then

twice...while moving the cursor around....

See? If is activated, to deactivate it, press the menu key

once more. The annunciator will turn off—so you can move the cursor

about freely, without trailing a black line behind you. In the same way,

if[lis activated, press [dLEl a second time to move around with-

out erasing whatever images you’ve just finished making.

Freehand Graphics 15

GrobbingAround

For the next exercise, press (ATTNJuntil you return to the Stack. Now,

carefully type (without quotation marks):

GROB 3 & 163878384844

You should see Graphic 3 % 6 on Level 1 of the Stack. Now press the

following keys:

\EI8 TSl (S70)(IGRAPH)

You should see a small arrow in the upper left corner ofthe display, like

this:

 BTAR

You've done freehand drawing without even using the GRAPHICS

menu. (Actually, you have created a grob—more on that soon.)

16 1. INTRODUCTION

Is It Real—Or Is It...2

Now, just for fun, press to return to the Stack display. Then fill

the lowest four levels ofthe Stack with any objects you want, and press

the following keys:

L etk RICT

Look at the menu. That’s the first page of the GRAPHICS menu....

What’s it doing in the Stack display?

Press once. If the [IEl annunciator isn’t on, press [TLEN once

to turn it on. Then use the arrow keys to move the cursor around the

display.... You're drawing all over your Stack display!

The secret? You’re not really drawing on the Stack display (and you can

confirm this by pressing to return to the real Stack display).

Rather, you've created a grob image of the Stack display—and stored

itin the graphics display. The advantages ofthis feature for document-

ing your programs and creating friendly output should be obvious—

and you’ll see other uses for this later on, too!

Grobbing Around 17

What Next?

By this time, hopefully, you've gotten a taste—and whetted your

appetite—for what the 48 can do. Ofcourse, it would take several books

to tell you all the great things it can do, but this book is to show you how

to use the new graphical features in the 48.

To do that, this book is divided into three parts:

18

1. Beyond-the-Manual Basics

To give credit where credit is due, HP has carefully documented

justabout every feature they built into the machine. Butfaceit—

it’s hard to show you everything a new application can do in a

manual ofany reasonable size. Sothat’s what the first part ofthe

book will do with the graphical features:

Chapter 2 should help you be more comfortable—and more

effective—with the EquationWriter.

Chapter 3 shows you how to unlock the real power ofthe Solver.

You have already seen how it looks in its “Sundaybest”—running

inside the Plotter—but wait until you see it “getting down and

dirty,” in its work clothes!

Chapter 4 teaches you the basics—the “care and feeding”—of

grobs, thegraphics objects in the 48. You'll learn how to conjure

them up and manipulate them as easily as any other object.

1. INTRODUCTION

2. Advanced Use—the Graphics “Power Tools:”

Chapters 5-7 go beyond the basics. To help you in effectively

using graphics, you’ll build a toolkit of convenient and useful

routines for storing and recalling grobs, combining text and

graphics, etc.

Next, you’ll see how to use those tools: You'll tip your head

sideways and learn how to do “sideways plotting”—strip charts,

waveforms and the like. And you’ll see how to create and use

freehand graphics in the display.

3. Full-Blown Applications:

Chapters 8 and 9 present several self-contained applications

that use programmable Plotter and Solver commands.

Some of these applications are useful as is, while others are

offered in hopes that you’ll then alter them foryour ownpurposes

(“Oh wow—if I change that one subroutine I can ...”).

Keep in mind, however, that this book is not necessarily meant to be

read from cover to cover. Here are a few suggestions....

What Next? 19

Notes on Using this Book

Of course, read this book with your 48 by your side. You needn’t do

every example or program here, but it’s a lot easier to try things—or

clarify them—right away, rather than waiting until later, when you've

forgotten what was so mystifying and/or exciting.

Also,if this is your own personal copy of this book, then by all means,

write in the margins, inside the covers, etc. Make the book useful to

you. Keep a highlighter and a notepad handy—and use them.

First Note: As you can tell from those opening “warmer-upper”

keystrokes, this book assumes that you already know a few things

about your 48. You should know how to:

¢ Name objects, edit them, store/recall them—and how to ma-

nipulate them on the Stack (e.g. or them, etc.);

* Use menus and menu keys—and the and keys;

* Use the MODES menu to set display and calculations modes;

¢ Use directories and “move” through a directory structure;

* Build strings, algebraic expressions/equations, binary

integers, and programs.

This book may occasionally offer reminders on some of these basics,

but that’s about it. For a good tutorial on all these sorts oftopics, read

An Easy Course in Using the HP 48

This book is available from your HP dealer or from the publisher.

20 1. INTRODUCTION

Or, ifyou simply need some “brushing-up” as you go, here’s how to use

your 48 Owner’s Manual (“OM”) alongside this book:

e First, carefully reread the OM’s chapter called “Objects” (that’s

Chapter 4)

¢ Even if your first impression of the EquationWriter (“EW”)

wasn’t exactly thrilling, at least work through the examples in

Chapter 16 of the OM. The EW is something new—far ahead of

other machines—and its only shortcoming is its speed (for best

results, keep a stack ofhomemade oatmeal-chocolate-chip cook-

ies nearby, to pass the time while the 48 redraws the display).

¢ Before you start on Chapter 3 here, skim once more through

chapter 17 in the OM (just work through the examples they

provide). The basic Solver is easy to learn, and once you under-

stand it, Chapter 3 in this book will be much more useful.

¢ When you've reached the end of Chapter 3 here, you're ready for

aseriousintermission. Watch some mentaljunk food on network

TV. Eat some real junk food. Eat some real food. Take a nap.

¢ When you come back, reread Chapters 18 and 19 in the OM.

Then work through Chapter 4 here, to learn the fundamentals of

grobs—and some “good habits” you should consider adopting.

¢ After that, you can pick and choose among the remaining chap-

ters in this book. Ifyou don’t understand something, come back

to Chapters 2-4—or to the index of the OM—for help. If some-

thing here is still unclear, write to the publisher.

Notes on Using this Book 21

Second Note: There are 4 kinds of “features” in any computer—

including the 48:

¢ Documented Features. Designed features described or at

least mentioned in the Owner’s Manual.

¢ Undocumented features. Designed features which work pre-

dictably—and sometimes usefully—but neverthelessdon’t make

it into the Owner’s Manual for various reasons.

¢ Unsupported Features. Features or operations that HP “ac-

cidentally” left accessible to users but were never intended for

use by the general buying public. These features can greatly

enhance your calculator’s capabilities, but their misuses often

carry drastic consequences (e.g. Ilemory Clear). So these fea-

tures are neither encouraged nor documented by HP.

* Buags. Abugis simply a design mistake in program code. Abug’s

behavior may be predictable or erratic, but its consequences are

undesirable. Ifyou find a bug in your 48’s operation, report it at

once to HP. Ifyou find a bugin any code in this book, please write

to the publisher.

This book will use primarily Documented Features, so that all its

examples and programs will work on all 48’s. You’ll also encounter a

small handful ofUndocumented Features that HP publicized after

the manuals were written—plus a couple of Buas.

22 1. INTRODUCTION

Third Note: The procedures, examples and programs in this book

won’t hurt your 48. None ofthe ideas and procedures described should

give you the dreaded Memory Clear (ifyou get such a message, retrace

your steps very carefully, to see whereyou went wrong). In general, if

you fear memoryloss—for whatever reason—it’s a good idea to back up

your valuable files frequently.

All the examples in this book worked on 48 ROM version A. Ifyou use

them exactly as they appear in this book (forgiving typos), they should

work fine on your 48 as well. But feel free to experiment, too. Try some

things differently from the way the book does it, and see if you can

improve on the ways you see them done here.

Fourth Note: Go!

Notes on Using this Book 23

~—

=Xe

=

S ll‘)“nhuU

2
.‘btv\ao

'
\‘\

2. THE EQUATIONWRITER

Preparations

First, you need to create a directory for this chapter—so you don’t

clobber anything you may already have going:

Press (&JHOME), then type ' G. CHE' o1l G.CHE Fy=te

into this brand-new G.CH2 directory.

The menu items should now all be blank, and the Status Area at the

top of the display should show 1 HOME G.CHE2 }

Opening Remarks

The EquationWriter (EW) is one of the 48’s most exciting features—

perhaps setting it apart from all other handheld machines. In a world

that turns on legal questions of “look and feel,” the EW display may

look like some brand-x displays you’ve seen, butitfeels quite different.

Its one drawback—and you might as well recognize it right now—is

this: The EquationWriter is SLow. This may be enough to deter you

from using it (a matter ofpersonal choice) but atleast read this chapter

before deciding. Often the slowness doesn’t matter.

Ever since the first FORTRAN compiler or BASIC interpreter let you

enter equations on a digital computer, you’ve been forced to cram the

normal, two-dimensional equations you're used to seeing on paper (i.e.

textbook notation) into the single line of display characters (algebraic

notation) understood by the software. There had to be a better way....

Preparations /| Opening Remarks 25

Thereis abetter way: Even with the EW’s not-so-blinding speed, it will

usually take you far less time to enter an equation correctly into the

EquationWriter than with the “algebraic” form.

As you discover this, you'll probably go through these three typical

stages with the EW:

e Excitement & Delight: “Wow—Ilook at what this can do!”

Typically, this lasts about twice as long as it takes you to work

through the EW chapter in the Owner’s Manual.*

* Frustration & Discouragement: Fed up with its slowness—

or not yet completely understanding it—many are tempted to

abandon the EW in favor of the Command Line editor. These

people mayhave as much trouble trying to debugtheir algebraics

but they don’t realize it, having accepted line editors and their

attendant frustrations as the cost of machine algebraics.

* For those who survive, there’s the third stage, characterized by

your high school band teacher’s pet motto: “Proficiency comes

through practice” (translation: “Use It Or Lose It”).

Actually, the EW and the Command Line Editor (CLE) are both useful

in certain situations: If the EW’s slowness bothers you, then use it

strictly as an equation writer, or viewer, but not as an editor.

*By the way, have you worked through that chapter yet? If not, put a bookmark—not a cookie—

here, and go do all the examples in that chapter.

26 2. THE EQUATIONWRITER

So What Does It Do?

When you write an equation on paper...

a3+1

[x*—22x+1

Inx+x dx

3Inx+e*?
b3-4.32

...you use this textbook notation, an easy way for your brain to under-

stand the problem: It detects visualpatterns (position, size, enclosure,

etc.) to give you an immediate grasp of what’s being said.

Compare that with the computerized algebraic notation for the above

expression:

J(b*3-4.32, a"3+1, J((w"3-2d#u+]1)
#CLNCe) +520 0 2 (35LNCI+ERP(-4, 2] 0,)

It’s not so clear at one glance, is it? So the EW lets you enter and view

the expression in whichever notation you prefer (inside the 48 it’s

always represented the same way, no matter which way you enter it).

Then, after you’ve entered the equation, the EW also provides several

tools for manipulating and modifying it. It can even recognizeparts of

the equation to modify, using the properties of algebra and calculus!

So What Does It Do? 27

Examples

Like the Command Line, you can use the EW to write algebraic ex-

pressions, equations and unit objects. An algebraic expression is half

an equation; an equation is two algebraic expressions joined by an

equal sign (=). For example, the positive root of a quadratic equation

is this algebraic expression:

—-B++B*-4AC
2A

How would you enter this, using the EW?

28

To Do This Press This

Enter the EW and start a numerator. (a)

Use instead of (X3—it looks better. (—Je)B]Hxa)B]YN2]

Close the exponent.)

Forgetting to close subexpressions with (»)is a common EW error!

Imply a between a number and the =)(4)(@)A)X)(«]c)

letter following it. The letter is taken as

the start of a variable or function name.

Close the subexpression opened by (x).)

Close the numerator/start the denominator. (»)

Again, imply the (X).

Close the denominator.)

Place the expression onto the Stack.

2. THE EQUATIONWRITER

Complex unit objects are also easy to assemble with the EW. Look, for

example, at:

The universal gas constant, R: The gravitational constant, G:

kg-m
R=8.315— G, =9.8 2gN

mol - K § -

To enter R using the EW:

l2) (_ denotes a unit object)

IonTs)(vxT) EIEEI()
onTs) [REEEJPrev)IR()
(SonTs) (vxT)TI()

Then press to put this constant onto the Stack.

To enter G

(«]EQUATION 2l2
wlEE] LTS(/)
LTET E5~X2) ()()

(E)ONTS) (vxT)[TT()

Then press to put this constant onto the Stack.

Examples 29

Using the EquationWriter

This would be a good place to insert a table of all the keystrokes used

in the EW. But your HP Owner’s Manual already has a complete

table—and the Quick Reference Card has a keyboard diagram. Any-

way, to be really proficient with the EW, just remember these...

Rules of Thumb:

e (»),(a)and («)(not(«)) are the most frequently used keysin the EW.

e Use (a) to start a numerator, then (») to finish it and start the

denominator (incidentally, (v) acts identically to (»)).

* (»)finishes all subexpressions (“it slices...it dices”):

It finishes powers, as in y*

It finishes numerators and starts denominators

It finishes denominators and exit the fraction

It finishes square roots and other roots: x/y

It finishes mathematical functions, such as sin (x)

It jumps to the next parameter when constructing a

derivative, an integral or a sum

It exits a parenthesized subexpression, such as a + (b +¢)

It finishes any pending subexpression (and (=]») finishes

all pending subexpressions).

30 2. THE EQUATIONWRITER

e (w)isthe only real editing key you have. Each time you press (),

it “undoes” the last keystroke in the equation. Pressit repeatedly

togo asfar back in the equation as you want (the pause is always

longest after the first press).

¢ Ifyounotice an error deep inside your equation, your options are

limited. Do not press (4)in an attempt to move the cursor to the

error and correct it (4) takes you to the Selection Environment—

an upcoming topic).

e Most analytical functions, such as those in the MaTH menu and

the powerful IFTE function, work inside the EW. If a function

requires parameters, you enterthe function, then the parameters,

separated by (SPC), and finally (») to close the parameter list. For

example, to enter the function IFTE(A, By C), you would press

LA NXT)(NXT)HIEE (@]A)(sPC)(e)B)(SPC) ()C)().

e All the UNITS menus work inside the EW.

There are 3 ways to exit the EW:

. puts the equation on the Stack as an algebraic, then exits

gracefully.

. gives up in disgust and slams the (usually) unfinished

equation into the Command Line for further editing. After ed-

iting, you can press to return to the EW, and again

to place the equation onto the Stack.

. is the “panic button.” It dumps the whole thing into the

waste basket and escapes to the safety of the Stack display.

Using the EquationWriter 31

The Selection Environment

If you accidentally pressed the (€] key while practicing with the EW,

you may have noticed that you had to wait a terribly long time for the

display to do anything. Go ahead—try it now—then go get a cookie....

When the smoke finally clears, you’ll find that you can now use the

arrow keys to drive very quickly around the equation, highlighting

various terms and operators along the way. You'll also see this menu:

RULES| EDITEXPRSUE REPL EXIT

This is the Selection Environment, where you can easily select various

parts of the equation you're building, to edit or rearrange them.

The last menu item, §h{il, simply sends you back to the normal EW

display—but look at what the other menu items do for you:

{83 is a compilation of rules for algebraic manipulation—to let you

massage the form of your equation or expression.

EH058 and IFTA generally work together to let you select the high-

lighted portion of the equation and throw it onto the Command Line

for individual editing. You can then press to put this edited

expression back into your equation, or to abort the edit and re-

turn to the EW.

32 2. THE EQUATIONWRITER

Try one—key in the Ideal Gas Law:

 pV = nT(8.315 !)
mol- K

Now press («) and use the arrow keys to move the highlight around,

pressing occasionally. Notice these things:

If the first - is highlighted, [Fdda@ includes p - V.

If the = is highlighted, then includes the whole equation.

If the _ is highlighted, includes the unit object.

Ifthe ———— ishighlighted, then [3dd@ includesjust the units.

If the - between mol and K is highlighted, includes only the

denominator of the units.

Pressing [3dA a second time highlights only the operator (but

pressing[Id@when a term is highlighted doesn’t do anything).

BEIH extracts a copy of the highlighted operator, term or expression

and puts it on the Stack. replaces the highlighted term or ex-

pression (but not operator) with the object on Stack Level 1.* These are

useful when you have an often-repeated sub-expression, or when you

want to modify only a small part of the equation.

*WarNING: [IddM copies, then drops the object on Level 1. It’s gone. can get it back

for you, but it will also undo your last equation-editing session.

The Selection Environment 33

A Fourier Series Example

Here’s a fun equation for playing with the PLOT functions, so key it in

now as EW practice. This is the Fourier Series representation for a

full-wave rectified sine wave:

N

2A 4A = cosnwt
)=———

o) T T 4n* -1
n=1

where A is the amplitude ofthe wave, wis its frequency,and N__is the

highest harmonic you wantto include (see MULTIPLOT in Chapter 8 for

an application which uses N_).

You should be able to enter that equation into the EW without much

trouble, but here are a few reminders to help:

Enter f(¢) as just plain f (eJ&]F)).

* T is(&JsPo).

e Use W (@]P]w))—not Ww—for w (omega).

* Enterthe summation as)eNGIMG]A]
EXI))Cos)(NXWX(eDEHWXa0
@650

e Don’t use for the 4n? term. Instead, use (4)(aJ&92]»).

Work at this until you get it. Then press to put the completed

equation onto the Stack, and name it FOYAY: ("]a)e]Fo)Ya]Y))sTO).

34 2. THE EQUATIONWRITER

Test Your Skill

At this point, you should have worked through the EWexamples in the

Owner’s Manual. If not, do it—now. Then here’s a simple self-test:

The classical expression for the behavior of a series RLC circuit is

v=L£+1R+lj'1dz
dt Co

1. Enter this equation with the EW and store it as ELC.

2. Rewrite the equation as

d 1
v=L—(l.e")+1e"R+— 1.e" dtey snere k[

and save it as ELCEXP (for RLC EXPonential).

3. Rewrite the equation as

d,, . . 1
V:LE(AO sinat) + A, sma)tR+E A, sin ot dt

0

and save it as ELCPER (for RLC PERodic).*

Turn the page to see the EW solutions....

*There. That takes care ofabout 25% ofyour undergraduate electronics textbook. The 48 can now

solve symbolically for any one of the variables, via ISOL. It can simplify the equations by solving

theintegral and the first derivative, and differentiate or integrate, too. But that’s for another book.

A Fourier Series Example / Test Your Skill 35

Solutions

36

Press to enter the EquationWriter, then:

OEUEE0EROECEGOEN0LENRAEE
BHOBECEE)D) ATo1> STIENTER)

You should then see 'v=L*at (I)+I*R+1-C*S(H, t, I, L)'

at Stack Level 1.

Press (']oJo]R]L)(c]@]STO) to store this.

()JEQuUATION)enters the EW. Then press (o]1eJ&o))eX()
X)(@JJT)([ENTER), to put the expression 'Io*EXP(s#*t)'

onto Stack Level 1.

Now press XS(v), then (@) to the first I, and

press [I3dM. Next, () to the second I, and press [I3dM; then ()

to the last I, and press IT3dM(ENTER).

On Level 1, you should now see

'y=L#at (To*EKP(s#t))+Io*EXP(s#t)=R+1-C+/(B, {,
[o*¥ExP(s#t), 10!

(The line breaks will be different than those shown here.)

Press (']o]a]R]L)(C]E]X]P]@]STO) to store this.

2. THE EQUATIONWRITER

3. [GJEQuATION)enters theEW (alternatively, you could do the entire

problem at the Command Line—always keep this in mind).

Then press (@] AleJa)0)SIN)(@]2W)(X)(@J&]T)ENTER), to put

'"Ho*SINCw*t)'

onto Stack Level 1.

Now press XSl(v), then (9 to the first I, and

press [I3dM Next,) to the second I, and press [I3dM; then (»)

to the last I, and press IIIIM(ENTER).

On Level 1, you should now see

'v=L#at (Ro*SINCuxt))
+Ao*SINCw*t)*R+1-CxJ(B, 1, Ao*SINCu%t), 10!

(The line breaks will be different than those shown here.)

Press (']Ja]o]R]L)Cc]P]E]R]@]STO) to store this.

How did you do on this little self-test?

Ifyou need more practice, do it now, on your own—or go back over the

examplesintheHP Owner’s Manual, or read Grapevine’s Easy Course

in Using the HP 48.

Test Your Skill 37

Other Things

Here are a few other EW tidbits to know:

Printing: Ifyou press(ONJand simultaneously, you can print out

the current EW equation.

However, (STO)([ENTER)(SWAP)(JPRNT)I3 will give you a better print-

out, especially for longequations (the HP82240B printereven provides

cutting lines for splicing together composite printouts).

Viewing: Ifyour equation is larger than the 131x64 display, pressing

from inside the EW will let you scroll your equation across

the display, using the arrow and right-shifted arrow keys. Then just

press from scrolling mode to return to the normal EW display.

38 2. THE EQUATIONWRITER

Closing Remarks

One of the best uses for the EW is to build—and later, to view—your

own libraries of equations, constants and units. That way, you won’t

have to decipher the algebraic notation used on the 48 Command Line

and in the rest of the world. A single glance in the EW will tell you

everything you need to know about the equation.

Hopefully a faster version of the EW is in the offing, but until then,

don’t give up on it too easily. Remember the words ofMr. Whetstone,

your high school band teacher: “Proficiency comes through practice.”

Other Things / Closing Remarks 39

(]
),"
< J

\r\ \
-) \

77 (ZZ 2

@fiflnmunm/ 2
A //S

,

—- < \.

J

 -AL
>

Z

W/

r ,di/// Q

L vy s i oE s S A /

:.; .ga—”#,’,.’ 7

sLoWSSXY
L 777y2, VPP

oZ 7 ~ZY

o0 =
7 S o //,/«/,/' X - //,/ 7 :. z 'f‘;"‘,,'//, 'l.////"/

LseS2S . b

3: THE SOLVER

Opening Remarks

This is the most sophisticated Solver HP has yet produced. The more

you use it, the more valuable you’ll find it to be. In many cases, the

problems you used to solve by writing programs can be handled more

easily and quickly with the Solver.

The Solver is indeed like another programming language. In the past,

you had to translate the equation(s) into a program, which consisted

of a list of data and operations to perform on the data. But compared

to this Solver, those ingenious and sophisticated programs you used to

use now appear clumsy, slow—and incredibly complicated.

Of course, to do such equations, you can still write step-by-step

programs for the 48, but after reading this chapter, you may decide to

save your programming skills for more worthy challenges.

Preparations

First, you need to create a directory for this chapter—so you don’t

clobber anything you may already have going:

Press (JHOME), then type 'G.CH3' and [N EEEIE]
to get into this brand-new G.CH3 directory.

The menu items should now all be blank, and the Status Area at the

top of the display should show this: £ HOME G.CH3 }

Opening Remarks | Preparations 41

Apples and Oranges

Suppose you go to the store to buy some fruit. Apples cost $.29 each;

oranges cost $.89 each—and you have $20.00 to spend. How many of

each can you buy?

Obviously there are many possible combinations, and the Solver is

idealfor this, because it lets you play “What-If” in your mind: “IfI buy

3 apples, then Icanget that many oranges;ifI buy 10 apples, then Ican

get this many oranges...”, etc.

So here’s the equation to type and onto the Stack:

TOTAL=CSTA*APPLES+CSTO*0RANGES

Then store this equation under the name 'Fruit ', and press

to enter the SOLVE menu:

Ho current equation.
Enter egns press HEW
4:

SOLYR|ROOT|MEWJEDEQ[STEG|CAT
To tell the 48 to use the Fruit equation as the current equation, just

typethename, 'Fruit ', and pressAII%M. The 48 thenstores 'Fruit '

into the reserved name, EQ, the current equation.

42 3: THE SOLVER

Now you should see this:

Current: eauation:
ruit: 'TOTAL=CSTA*AFP..

SOLYE| ROOT MEL |EDEGR
Press to get into the Solver itself. Now things are simple:

(2)o) [mzal
(-X2Xo) [E2Ta]
(-XeY9) [E=Tm]
)[101a] to recall your $20.00 to Stack Level 1.

Pressing a menu key stores a value into a variable name; pressing ()

prior to the menu key recalls the value to the Stack; and pressing (&)

prior to the menu key solves for that variable.

For example, if you buy 8 apples, how many oranges can you buy?

Press (8)[APEL]1) [EAN]... Result: ORANGES: 19.87

Or, if you wanted just 5 of each, how much would this cost?

Press (5)[APPL] (5)MEAM]) [I0TIAl... Result: TOTAL: 5.98

Of course, you could add other items to the equation; the Solver will

allow you multiple pages ofvariable-names; just use and (PREV]to

page through them all ([NXT) is a shortcut back to the first page).

Apples and Oranges 43

Notice the last item in the SOLVER Menu: [FdH

Ifyour equation is a bona fide, “grammatically correct” equation (two

algebraic expressions linked by a =), [3ddidd will solve for each side of

the equation and display the results in Stack Levels 1 and 2. This is

useful in cases where an exact solution may be impossible—or unbe-

lievable—and you want to see ifthe left-hand side really does equal the

right-hand side.

If your “equation”is really just an expression, then will cal-

culate its current value and put this at Stack Level1.

Ifyou see a special on oranges, say, 6 for $8.00, you can quickly see how

“special” the special really is. Just set the number of apples equal to

zero and solve the equation for the corresponding cost of one orange:

(o) laeeL](e) nEANI (o) LTOTA] () [C2T0L....

Some bargain—$1.33 each! Better to buy them singly at $.89!

44 3: THE SOLVER

The Ideal Gas Law

For the next example, take something from chemistry and physics—

the Ideal Gas law: p*V=n*R*T

P is the pressure of the gas

Y is the gas volume

N is the number of moles of the gas

R is the ideal gas constant, 8.315 J/mol-K

T is the absolute temperature of the gas.

Enter this equation, using either the Command Line or the

EquationWriter, sothatyouhave ' p*¥V=n*R#*T' on Level 1 ofthe Stack.

Then store it into a variable: ' IdealGas' (sTo).

Nexttask: Store the value8. 319 intothe variable 'R', and include the

units. To do this, you can use either the UNITS menus or the alpha

keyboard—and either the EW or the Command Line. Either way, you

should get 8.315_J~(mol#K) in Level 1. Then type 'R' (STO).

Now use the Equation Catalog to get your gas equation back. You can

get to the Equation Catalog directly by pressing (=] (if there were

room enough, CAT would be written in blue letters over the (9) key—

just to the right ofALGEBRA).

Then use (a) and (¥) to move the pointer to the IdealGas equation and

pressEIMMA. This is a handy short cut for getting to the Solver or the

Plotter—they share the same Equation Catalog!

The Ideal Gas Law 45

Now use this equation to calculate the number of moles of air in a

typical bicycle tire: Fora27"x1.25" tube, the volume is about 33.13 cubic

inches. Use T =70°F, and P = 80 psi (but to account for atmospheric

pressure, 14.7 psi, you must use 80+14.7, or 94.7 psi).

Press: TlxDHTEEIEN
[E] Jons)IRN
[(TTlT

EXasTven)1]

Solve forn: M_].... Result: Bad Guess(es)—an error message.

When working with unit objects, you must store an initial guess for the

variable you’re solving for.*

So, press MASS el
Now try solving for n again:N_].... Result: nt 1.18_mol

Well, this time you got a result. Too bad it’s wrong.

“Say what?”

Yep, it’s wrong...

*If you get this Bad Guess(es) error while solving for a unit object, press (&) [REVIEW) to get a

summary ofthe contents ofeach variable and ofthe current equation. Often, you’ll have forgotten

to press ()when solving for the unknown, thus inadvertently storing some (incorrect) object there

instead. Remember: Press the unshifted key only to store a value in a named variable! (&) solves

for the variable, () recalls the variable contents to the Stack.

Ifyou want the Solver to ignore units entirely, then you must all variables named in the

equation and re-enter the Solver. That means you’re likely to clobber the Gas Constant, R, which

is, after all, a variable as far as the machine is concerned. Later in this chapter you'll see how to

keep the Gas Constant safe from harm.

46 3: THE SOLVER

This isn’t the fault of the Solver, but stems from a quirk in the way

temperature units are converted. You can read more about this quirk

on page 197 of your Owner’s Manual. The Solver makes no errors

converting other types of units, but it is often suckered into making

relative instead of absolute temperature conversions. And it doesn’t

tell you it’s doing this—itjust gives you the wrong answer. To be safe,

you should always convert temperatures to Kelvins before using them

with the Solver.

So recall the temperature (3)[_I_]) and convert it to Kelvins ((>]UNTS)

[MEE) and then recalculate n:

EJtasT MeNU)TW Result: n: H.14_mol

Now then, for subsequent calculations, if you know that the previous

value of the variable has the correct units, then you can just store a

numeric value on top of it, and it will assume those same units.

Example: Find out how many cubic inches of air at atmospheric

pressure are compressed into that bicycle tire.

OK: Atmospheric pressureis 14.7 psi, so press]

to store the value in p—thus using the psi units re-

maining from last time (you can verify that the units are

correct by watching the status line).

Now press (G]_¥ to find the volume ofuncompressed

gas....

Result: VY= 213.43_in™3

The Ideal Gas Law 47

The Time Value of Money

Next up—for all you finance wizards—is the Time Value of Money

equation.

-N
0=PV+PMT{#}+FVA+D)™

where

PV is the Present Value of the loan or investment.

PMT is the periodic (monthly, annual, ...) PayMenT.

FV is the Future Value of the loan or investment.

N is the Number of periodic payments or compounding periods.

I is the Interest rate per compounding period.

Build this equation using the EW or the Command Line (the EW is

easier) and putitonto Stack Level 1. Then name it—type ' TVoll' (sT0).

This TVoM equation is a mainstay of all business calculators, but it

comesinhandyeven for engineers tryingtobuy houses, figure out their

IRA’s, or calculate the balances on their student loans.

For example, suppose you want to buy a $65,000 home (no,it’s actually

quite a nice house—this is Corvallis, Oregon): You have $5,000 for the

down payment, and you want to finance the rest at 11.5% for 30 years.

Use the Equation Catalog (3)9)) to select the TWoll equation (use (a)

and (¥) to move the pointer to it), and pressENE3.

48 3: THE SOLVER

Now, the Present Yalue is the money you’re going to receive right now,

$60,000 (OK, you may never really hold it in your hand, but the bank

is technically giving it to you to give to the seller). And theFutureYalue

is what you’ll owe the bank at the end ofthe mortgage period—that is,

nothing (hopefully). So press Cey 10 CEv]

Next, since this is a 30-year loan, with monthly payments, N is 30x12,

or 360. And the monthly interest rate will be 11.5%+12, or 0.115+12. So

press [(Yo)oYe5)8)3)3) [1_1] to enter the number of

payments and monthly interest.

Nowjust pressPMIto find that your monthly paymentis $594.17.

The minus sign means that it’s money subtracted from your pocket.

Notice that both the Ideal Gas and the Time Value ofMoney equations

use variables named M orn. So after you've used each equation, you’ll

see not one but two JIZIM labels in your VAR menu. You can press

from either the menu or from the Solver variable menu

to see which is which (or—if it really bothers you—store the two

equations in separate sub-directories inside the G.CH3 directory).

Anyway, since you’ve used a capitalM for one and a smalln for the other,

the Solver can tell them apart, and that’s the main thing. But if you

use the identical variable N in two separate equations in the same

directory, beware—especially ifeither uses a unit object: You'll get all

sorts of nasty messages until you purge the unit-object M.

The Time Value ofMoney 49

A Third-Degree Polynomial

The general form of a third-degree polynomialis

a¥w"3+bEwe+cEn+d

Key in this expression and store it as 'POLY"'.

To find its roots, you set it equal to zero and solve for x. Of course you

can easily do this within the Plotter, as you saw in Chapter 1. But if

you only want one root—or a specific root lying between two known

values—the Solver alone is often faster.

Take the polynomial x*+ 2x>-5x—6. You know by inspection that it has

at least one positive and one negative root (right?... right?...).

Press (remember? (3]9)), move the selection arrow to POLY and

press EN[MIA. Now, enter the coefficients: (1)[_a_J(2)[_E_]

21

Solve for a root by pressing EI___E_—_] You should get ¥ -3.H0.

If that’s the only root you need, you can stop there. To solve for the

positive root, give some huge positive number as a first guess for x, then

solve for x: 18]... Result: @ 2.66

50 3: THE SOLVER

And of course, as long as you’ve gotten this far, why not solve for the

third root?

The Solver lets you enter up to three guesses for an unknown quantity:

e Ifyou enter one guess, such as (0)[_#_]then(&]takes that

guess as the starting point and moves from that point towards

the actual root.

 If you enter two guesses, such as(2o2109=,

then(%Jcalculates the function at both guesses andjudges

by those results whether to stay within the bounds ofthe guesses

or to go outside them.

e If you enter three guesses, such as (\+=)&o+~]

29[&_], then ()& uses the first value as the “best

guess” and the other two values as the probable bounds of the

search.

As you might imagine,it’s often difficult to find the third root unless

your initial guesses are very close, and that’s where the Plotter

becomes extremely useful: In the Plotter, all you have to do is get the

crosshairs close to the root in question and press [IZTIETHfrom the

Plotter menu!

A Third-Degree Polynomial 51

Customizing the Solver

Keeping the Gas Constant a Constant

Lookingback at your IdealGas equation, youjust know that sooner or

later, someone will accidentally press [_E_](instead of([_K_]) when

checking the value of the Gas Constant. So it would be better if you

could take it off the Solver menu altogether—preventing access to it

there. And you can do this: You can design your own variable menu

for use with your equations, omitting variables that don’t vary—like

the Gas Constant. To do so, just put your equation into a list, like this:

{ 'peV=n*R*T' { p ¥ T n } 1}

In this list, the equation comesfirst, followed by a list of the variables

that you do want to appear. Notice that you can put these variables in

any order—maybe with the most frequently used variables first (this

saves a lot of time if you’re solving an equation with more than one

menu page of variables).

Put the above list on Stack Level 1, and press EEYE. You'll

then be asked to name the equation and press (ENTER). Since your

“equation” is now a list object,you must append . EQ to the name so the

Solver will recognize it. Happily, the 48 provides the . E[l for you here;

all youhave todois type IdealGasENTER), asbefore.... The StatusArea

should show

Curtrent equation: IdealGas.ERQ: { 'p*¥V=n...

Press to see your customized menu that hides E_I:

Cr 1y I 1 12N

52 3: THE SOLVER

Running Programs from Inside the Solver

The variable Solver menu list structure can also include executable

programs. Inthe Ideal Gas law, for example, suppose you’re usingyour

48 to monitor the amount ofgas in a pressurized reactor. The volume

and temperature are constant, and you can calculate the quantity of

gas from the measured pressure. Hypothetically you’d have a func-

tional program, READP, to read a pressure sensor and put the value onto

the Stack. But to simulate that process here, just use a trivial READP

(Checksum: # 49658d Bytes: 37.9)—a constant: « 5_atm
»

So replace P in your variable list with a list ofthis form: { " menu label"

{ €prgl® «prg2® €prg3® } }. The "menulabel" is the label that

will appear on the menu; ¥ prgl # is the program that its unshifted

selection will execute. % prg2* and % prg3 * are the programs that the

() and (O})shifted selections of this item will execute, respectively

(but these are optional; you can ignore the shift keys and simplify your

list to { "menu label" < prgl® 31).

Let the unshifted menukeybe the call toREADP. Therefore %prgl * will

be« READP DUP 'p' STO 1 DISP 1 FREEZE *». This reads the

pressure, stores it into the variable name 'P', and displays it in the

StatusArea—just as the Solver would do for a value that you keyed in.

Then ¥ prg2 * will be an empty (“do-nothing”) program, € *, since you

don’t plan to calculate the pressure. And % prg3* willbe¥ p *torecall

the value in P to Stack Level 1—just as any other (}-ed variable key

would do in the Solver.

Thus,the list to replace P becomes{ "p" { « RERDP DUP 'p'

STO 1 DISP 1 FREEZE » « » « p » } 1}

Customizing the Solver 53

Now clear the Stack (?JCLR)) and then type(VAR) (> IIITiI¥ (v) to edit a

copy of IdealGas. EQl. When you’ve finished, your list should look like

this:

{ 'peb=r=R=T' { { "p" { « RERADP DUP 'p' STO 1 DISP
1 FREEZE » « » « p » 3 3 ¥ T n 3 %

Press(ENTER) to put it onto the Stack. Store it as 'REACTOR.EQ'. Then

start the Solver and select BEACTOR. EQ as the current equation. The

Solver display looks a little different, as shown here:

FREACTOR.ER: £ 'p¥V=n ..

M
r
a
O
J
-
p

1
PITPI

If you REVIEW the variables, youll see only ¥, T and n, since P is no

longer a Solver variable (notice that theilitem is white- on-blue,

instead of the blue-on-white). This is how the 48 helps you differenti-

ate between variables and programs in the menu. Try the unshifted

and shifted Ilkey to see how it works....

The unshifted key displays ' 5_atm' in the status line (and notice that

with a slightly more elaborate program in the variable list, you could

make it display Pt 9_atm).

The (§) key does nothing (as you intended), and the (») key puts the

value of 'P' onto the Stack.

54 3: THE SOLVER

A More Versatile TVoM Equation

The next thing to change is your TWol equation a little bit (look back

on page 48 to see the original). As always when customizing with the

Solver, the idea is to make it easier to use:

¢ First,includeafactortoaccount forwhenthe payments are made

(i.e. thebeginning or end ofthe month). This factorisa multiplier

to the PMT:

-N

0=PV+(1+1* Begin?)PMT[%] +FV(+1)™

BeginT will be a true/false variable, with a value of 1 ifpayments

are made at the beginning of the month, or 0 (the default) if

payments are made at the end of the month.

e Next, change all occurrences of I to I#18H. This way, you can

enter 5% interest as (5) [_L_], instead of 11

e Finally, to accommodate interest compounded quarterly or

monthly, introduce a variable called Per (periods per year)—the

number of compounding periods in a year (12 for monthly

payments, 4 for quarterly, 1 for annual, etc.).

Thus, since N is the number of years, N*Per will be the total

number of periods—and payments. And [/ (1B88*Per) will be

the interest per compounding period.

Customizing the Solver 55

By now, the TYolM equation is a monster. In textbook notation, it is:

—NPer

1_(1+ I) »* . ? - er

O:PV+(1+—I——M)PMT 100Per] +FV(1+ !)
100Per 1 100Per

100Per

Or, in algebraic notation,it is:

B=PY+(1+]*Begin?~(188%Per))*PMT*((1-(1+I-(188*Per))™
=(N=Per)-(1-(188%Per)))+FV*(1+]1-(188%Per))"~(N*Per)

Yep, that’s right: You get to build this, using whichever method you

wish—EW or Command Line—to edit the current version of TWall

(quiz: which method would you rather use?). Go...

Finished? OK, now ifyou were to store this equation (don’t do it yet),

the Solver would give you seven variables to juggle, plus the [FdH

item besides. But you can make the equation a bit more friendly, by

attaching this variable list to it:

{NTIPYPNT FY { "SETUP" { « VIEWP » « MDA =»
« BEGEND » } } Per Begin? }

No—you don’t need to re-enter the equation. Using your list-building

process, just put the current monster T¥oll equation on Stack Level 2,

the variablelist on Level 1, then press(2)PRc)INEFEEME....and save

the whole thing in ' TValM.EQ" .

You now have a full-fledged Solver “program”. Select it from the

equation catalog (either or (3)9)) and start the Solver.

56 3: THE SOLVER

You should get a display like the one below.

TVaoM.ER: L '@8=P¥+C1+ .,

w
W
-
h

 —
—

ML 1 ey JBEMTEY1SS

This version ofTVol is more “friendly” than the first one: On the first

page of its two-page menu are the commonly-used variables, plus a

=13 11d menu key. EIJNH serves three functions.

Unshifted will run a program called YIEWP (for “view param-

eters”), which displays the current settings of the variables Per and

Begin?: If Per has a value of 1, 4 or 12, the first status line will show

ANMUAL, QUARTERLY or MONTHLY, respectively; if Per has any other

value, say 5, the first status line will show 2 PERIODS-YEAR. And, if

Begin® contains zero, the second status line will show PMTS AT EMD;

otherwise it will show PMTS AT BEGINNING.

will run a program called MIA to rotate the Solver through

monthly, quarterly or annual payments. And will run the

program BEGEND, which toggles the value ofBegin™ between 1 and 0.

Both MBOA and BEGEND call VIEWP to update the display.

The second page of the variables menu gives you direct access to Per

and BeginT, so you can set bimonthly payments or calculate interest

compounded daily—when Per must have a value other than 1, 4 or 12.

Here are the three programs, YIEWP, MGA and BEGEND:

Customizing the Solver 57

VIEWP

Checksum: # 14516d

Bytes: 415.5

« IFERR 'Per' RCL
THEN DROP ME&A
END
+ per
« [F 'per==%'

THEN "QUARRTERLY"
ELSE

IF 'per==1g¢'
THEN "MOMNTHLY"
ELSE

IF 'per==1'
THEN “ANNUAL"
ELSE

Per IP »STR
" PERIODS-YEARR"
+

END
END

END
*»

1 DISP
IFERR 'Besin®' RCL
THEM DROP BEGEND

'Begin™' RCL
END
+ begin
« IF 'begin'

THEN "PMTS AT BEGINNING"
ELSE "PMTS AT END"
END
¢ DISP 1 FREEZE

'‘Per' RCL

58

MGA

Checksum: # 17323d

Bytes: 164

« JFERR 'Per'
THEN DROP 1
END
+ per
« IF 'per==1'

THEN 4
ELSE

IF 'per==%'
THEN 12
ELSE 1
END

END
»

'Per!

RCL

STO VIEWP

BEGEND

Checksum: # 348H6d

Bytes: 98.5

« JFERR
'Begin?'

THEM DROP A
ELSE NOT
END
'‘Begin™'

RCL

STO VIEWP
3: THE SOLVER

Linking Equations: Solving Several at Once

For this next topic, go back to your “Apples and Oranges” equation.

Suppose you've borrowed your nephew’s little red wagon—which can

hold only 50 pounds—to haul your groceries home. How many apples

and oranges can you afford—and still be able to get them home?

Hmm...to avoid exceeding either your budget or your wagon’s capacity,

you now have two problems. The first is already taken care ofby your

existing Fruit equation:

TOTAL=CSTA=APPLES+CSTO*0RANGES

But now there’s this new equation (key it in and store it as 'bagon'):

LORD=WT. A*APPLES+WT. 0+0RANGES

The Solver lets you link equations in order to solve several at once. To

use this feature, you combine the equation names in a list and give the

list a name ending with . E(! just as you did when modifying the TYoM

equation—this . EQ] ending is used for all non-algebraic objects to be

used with the Solver).

So create the list{ Fruit MWason . To do this, you can either type

it in directly or press (o]0) (VARIGRNDEEI. Then
it and store it as 'Load.EQ".

(Note that the Equation Catalog also comes in handy like this, when

you’re creating lists to link more than two simple equations.)

Linking Equations: Solving Several at Once 59

Now select ' Load. EQ' and start the Solver. Your display will look like

the one below.

Fruit: 'TOTAL=CSTA*AP..

-
t

M
o

1
[roTal[czTal(APPLI[CETOINRAN]EIEE

Notice that the Solver is ready to work on the first equation in the list,

'Fruit'. Butpress and notice the newmenu label: [FE{38). Press

EEEH now to see what it does.

llagon: 'LOAD=WT.A*AFP..

L
R
P

 [LoAR][TA[APPLI[T.0][RAN]EFATE

Get the idea? Ifyou have several equations in your list, suchas £ EQ1

EQZ EQ3 EQ4 I, bumps ER1 to the last place in line, moves all

the other equations up one place, { EQZ EQ3 ECQ4 EQ1 3, and sets

up the Solver to work on EQIZ.

Now press a few times until the Solver returns to ' Fruit '. It’s

time to test all this!...

60 3: THE SOLVER

Press to see that each variablein 'Fruit ' has an assigned

value (the values in the examples at the beginning of this chapter

should still be there: CSTAH should contain B.%9, and C5T0 should

contain B.89).

Now press to go to the 'Wagon' equation. Apples are about

three to a pound,so press [HT.Alto enter an apple’s weight. Now

imagine some big,juicy oranges—about a pint each: Enter[5)[HLI].

Solve for the total weight by pressing JLOAD]....

For another variation on the problem (and to further demonstrate the

“What-If?” nature of the Solver), how much would it cost to fill your

wagon with an equal weight of apples and oranges?

Press (2)5) [LOAD] (o) [DEAN] JAPPL].... Result: Apples: 7l.

Then press (0) [APEL] [OEAN]... Result: Oranges: 5A.

Then [RPPL] [EAN], then BFIEA to get back to the costing

equation, and (GJI0TA].... Result: TOTAL: ¢7.69

That’s the cost of a wagonful of equal weights of apples and oranges.

Linking Equations: Solving Several at Once 61

Another good example ofa set oflinked equations is this set for linear

motion:

v=y, tat

X=X, +%(v0 +v)t

X=X, +VE+ Lot
2

v: =vp +2a(x - x,)

Enter these four equations and store them into 'M1', 'MZ', 'M3' and

'M4', respectively.

Then store the list{ M1 MZ M3 M4 X into 'MOTION.EQ'.

Now you can solve for x, x,, v, v,, a and ¢, if you know any three of them:

You store the three (or more) known values and then use[EE¥and

to cycle through the equations, solving each one in turn,

until there are no more undefined variables.

62 3: THE SOLVER

Solving with linked equations does have some limitations:

* The Solver won’t search for undefined variables nor define or

solve for them automatically. For example,ifyou were to define

everything but the variable ORANGES in the Fruit equation—so

that its value were explicitly implied—but then try to solve for

LOAD in the Wagon equation, you'd still get the error message:

Undefined Variable(s).

¢ In some iterative methods using more than one equation, the

order of solving the equations determines whether the solutions

converge or diverge. The Solver cannot help you avoid diverging

solutions.

Fortunately, there are two workarounds for these limitations:

¢ Sincethe Solveris programmable, you can automate much ofthe

process for use in analysis and design of iterative solutions.

¢ Second, the Multiple Equation Solver application in the HP

Solve Equation Library Card can solve for all the unknowns in

a system of equations, given the necessary minimum number of

independent variables.

For most ofyour needs, the normal interactive Solveris sufficient, but

if you need more, stay tuned for more information on programmabil-

ity—or invest in an HP Solve Equation Library Card!

Linking Equations: Solving Several At Once 63

Using the Solver on Ill-Mannered Functions

Earlierversions ofthe Solver accepted only “well-mannered” functions;

you couldn’t use Solver with square waves, step functions, or other

real-world functions. For those, you had to resort to programming.

Well, no more. The 48’s Solver can handle it all. The key to making it

work is to think ahead. Plan out exactly how you’ll approach your

problemfrom the start. With planning and practice, you can nowmake

the Solver do what used to require a lot more programming.

Try it:

64

1 where x > x,
0 where x < xo}, write a simpleFor the step function y = {

program: « [F 'K=x@'
THEN 1
ELSE ©
EMND

*»

Next, name the program, say, 'Step.EQ"

(Checksum: # 29349d Bytes: 54).

Then select it for use with the Solver, and see:

Step.ER: « IF 'xaxkB' .,

—
r
a
o
0
B

 - : ; I I I

3: THE SOLVER

Just as with an algebraic equation, the Solver examines the program,

extracts variable names and builds a variable menu from those names.

And asyou've seen, you can “lock in” values by specifying a variable list

and omitting the fixed values. For example, change Step.ELll now to

{ « IF '"s2xB' THEM 1 ELSE B END » { ¥ } 2

Now x, is omitted from the menu, so that the Solver appears as

step.ER: L & IF 'wRakB

—
r
a
o
)
-
B

Il Il Il] i ;

Of course, this function is ill-mannered; it can’t be differentiated:

Trying to do so onto the Stack with ()3givesa Bad Argument Type

error; trying it in the Plotter via IZYHIG gives Invalid EQ.

Even rewriting the program as a user-defined function doesn’t help:

€ + w owfl o« [F 'w(uB' THEM @ ELSE 1 END » =

This still isn’t written as an algebraic, and the 48 can differentiate only

algebraics. But also in the (PRGHIAAN menu—on the very last page—

are IFT and IFTE, which can be used in algebraics. For example, this

step function can be rewritten simply as IFTE(®<¥H, B, 1)—and that’s

all there is to it! And IFT and IFTE can be differentiated and inte-

grated—Ilike constant coefficients that pass transparently through the

differentiation or integration.

Using the Solver on Ill-Mannered Functions 65

One problem that has vexed engineers for years—and led to many

ingenious programs—is how to model a real diode. Adiode is a kind of

electronic “One Way” sign, ideally allowing infinite current flow in one

direction (called forward bias) and zero current flow in the other

direction (called reverse bias). Here’s a plot of voltage vs. current for

an ideal diode: Il

Well, a real, solid-state diode isn’t quite that good:

vV 1
. B

Typically, the transition from forward to reverse bias takes place at

about V=0 volts. Under reverse bias (V <0) the current is fairly con-

stant at /)= 1 picoampere to 1 microampere. Under forward bias (V >

0), the diode current follows this relation:*

|4

] = Io (6‘0259 volts __ 1)

*This assumes a constant temperature of300 K. A good electronics text will give you temperature-

dependent expressions for both / and /,.

66 3: THE SOLVER

If the reverse bias voltage exceeds a given value V,, or breakdown

voltage, then the diode loses all effectiveness and becomes essentially

a short circuit—current is very high.

So a good diode equation should model all three areas ofthe V-1 curve,

and it should be continuous. It can be done using two nested

IF...THEN.. ELSE commandsinaprogram—ortwonested IFTE functions

in a single equation:

[=IFTECY<Vb, 1E99+V, IFTECY>8, To*x(EXP(V-.B239)-1), -10))

Type in this equation and call it DIODE. This matches the diode model

very well and maintains a continuous function through the three

regions of forward bias, reverse bias and breakdown.

For example, a typical diode has these characteristics:

10°A

-10V

I

V
B

Storing these two values completely defines your diode—and since the

variables are naturally arranged in the variable menu, you don’t even

need to create a variables list!

Using the Solver on Ill-Mannered Functions 67

The Care and Feeding ofderFN

It may seem strange to have a section on functions in the middle ofthe

Solver chapter, but such considerations of ill-behaved functions are

important for using the Solver inside the Plotter—coming up next.

In many cases you will find it easier to differentiate an equation and

solve for the variables in the resulting first-derivative equation. But

if your original equation contains several functions for which the 48

cannot find a derivative, it will indicate this by creating a dummy

derivative and listing the variables available to solve the problem.

Press (JMTH)TAEIIEEEN (]X[ENTER), then)3} You'll
get the algebraic function 'SIGN(X)'. Now press ("Je]XJENTER) (=)3)

again, to get the function 'derSIGN(-3, 1) ',

“Where did this come from?” you may well ask.

To answer your question, repeat the calculation, but this time create

the algebraic 'o®(SIGN(®))' and press [EVAL. This time you get:

'derSIGNCK, aK(K))'. Now you can see what happened in the first

case:instead ofstopping at a symbolic representation ofthe differential,

the 48 went on and completely evaluated the variables, replacing #

with =3 (currently stored in #) and calculating the derivative of a

constant (1). Press again to see this substitution.

Moral: Ifyouwanttocompletely evaluate a derivativeinone step, use

the Stack method. For symbolic representation ofthe deriva-

tive or for stepwise differentiation, include the derivative into

your algebraic and evaluate tothelevel youneed. See yourHP

OM (pages 420-422) for more details.

68 3: THE SOLVER

Now, next question: Whatis this derSIGN all about?

This is the 48’s way of saying “I don’t know how to differentiate the

function SIGHCK), but I'll use these placeholders for # andd until you

show me how the derivative should be defined.”

You’ll probably face the same problem with many of your own user-

defined functions. When you useXIEon one of these func-

tions, if the 48 can’t find a numerical approximation to the derivative,

it will give you a nasty message and give up.

You can avoid thisby trying all your derivatives beforehand. Ifyou find

aderFNsomewhere in your differentiated expression, then you should

consider how the function should be differentiated.

For example, with SIGN(R), it’s obvious that ' derSIGH(K, dXCKI) ' is

zero everywhere but at x =0, where it is infinitely large. So you could

create the function® + % dw 'IFTE('w==B', 1E499, B)' * andstore

thisas 'derSIGN'. Whenyou evaluatederSIGM after definingit, you’ll

get a result of B (assuming -3 is still stored in ¥).

SIGN is a unary function—it acts on only one argument; percent is an

example of a binary function—it acts on two arguments:

The derivative of '%(K, Y] ' with respect to £ is:

"derg(H, Yy 0Z(K), 0Z(Y))!

Pages 422-423 inthe Owner’s Manual gives a solution for 'det%' . Work

out other user-defined derivatives in the same manner.

Using the Solver on Ill-Mannered Functions 69

Using the Solver Inside the Plotter

The 48 Solver really shines inside the Plotter application, where it’s

even more versatile than in its stand-alone form.

For this example, start with your POLY equation (be sure that a, b, c

and d still contain 1,2, =3 and =6, respectively). Enter the Equation

Catalogeitherbypressing]PLOT){1lorvia the(]3)shortcut. Scroll

down the list until the pointer is beside POLY, and press [N

Once inside the plotter, press (NXT)[331 to reset all plot parameters

to their default values. Press ("[oJ&X)[,then AUTO 39

see what happens....

——

éfi]m CEMT [COORD[LABEL| FCH |

No big deal, right? And you use the F{tltlg]l commands to get to the

interesting part of the curve:

The menu in the display is the GRAPHICS menu (you saw this briefly

in Chapter 1). Press © twice to find the graphics cursor, then press and

hold («4) until the cursor is above and to the left of the leftmost root.

Press EAH to mark the point. Now press and hold (»)to move the

cursor past the rightmost root, then press and hold (v) until the cursor

is about four pixels below the x-axis.

70 3: THE SOLVER

Now pressEdHa second time. The Plotter will redraw the function:

BETHETHEI TNETE
Reminder: Press (ATTN)(«€)(ATTN)(« to toggle between the Stack display

and the current plot. Pressing (4Jsends you from an idle Stack display

(i.e. no Command Line or interactive Stack) to the graphics display.

Pressing returns you to the Stack display. Also, pressing (]«

will go to the graphics display from almost anywhere; the (€] shortcut

is worth remembering.

Press to see the Solver and other function analysis tools. The

Solverisbuiltinto the first two ofthese menu items: [[{iilll and[,

With [[Ii[lifl (as described in Chapter 1), you use the (a)(¥)(«)and(>) keys

to position the graphics cursor near where the curve crosses the x-axis,

then pressA

Try finding the three roots of POLY: -3, -1 and 2....

Using the Solver Inside the Plotter 71

There are some significant differences between the way that the Solver

application works in its stand-alone form and the way it works within

the IRl operation:

72

e The stand-alone Solver solves for any variable you want, but the

E[ikll version solves for the value of the independent variable

which makes the dependent variable go to zero. To solve for a

different variable using [[I'ill, you must change independent

variables from the PLOTR menu. For example, to specify the

variable & as the independent variable, you must type (*)(eJ&]A)

(or ()G, then [ETIFd.

Another difference is that the Solver will display intermediate

results for you if you press any button except while it’s

thinking ([ENTER) is probably the easiest key to find while you’re

watchingthe display). The Solvertells you, with a short message,

how it arrived at the answer, and it puts the numeric result onto

the Stack with the variable name for a tag.

IRl by contrast, doesn’t give you intermediate results or a

message, butit does positionthe cursor exactly on the intersection

(useful for subsequent operations like ElMi[d3). Also it puts the

result onto the Stack as a real number—with the tagFoot : and

displays the numeric result on the graphics display until the next

keystroke.

3: THE SOLVER

e Ifthefunction does not have areal root, such as with ' Y=R"¢+2 "'

the Solver finds a local extremum (minimum or maximum). It

then puts that x-value onto the Stack and the Extremum value

in the Status line.

[H!'h puts the closest approximation onto the Stack and flashes

ERTRERLUM on the graphics display, positioning the cursor at the

extremum of the function and displaying the numeric result.

* Notethatinsomecases(asinthe ' Y=K"E+Z' example cited here),

the Solver and [[T[Ill will return slightly different values of¥ for

the extremum.

o Ikl can return results that are difficult or impossible to coax

out ofthe Solver. Ifthe Solver’s answers don’t make sense, enter

the Plotter, declare your unknown as the independent variable,

and solve for it graphically. And note that if EQ contains a list of

two or more equations, then the Plotter will plot all the functions,

buti1kl will find the roots ofthe first equation, and will

find the points ofintersection between the first two equations in

the list.

Using the Solver Inside the Plotter 73

The majority of equations you’ll plot have an isolated variable on the

left of the equals sign—or no equals sign at all. But you may

occasionally have an equation such as this:

15-2x2=x2+3x+5

The Plotter treats this equation as two separate algebraics, separated

by an equals sign; it plots them both.

 —t—t] —t ."-E\ —t—t

[d!['kl finds only the point where the right hand side of the equation

equals zero. In order to find the roots of the equation, you must use

to find the point(s) where the two function plots intersect.

Ofcourse, you can get around this by subtracting the left side from the

right side to get an equation ofthe form 'B=fn(K) ' but sometimes you

do want to see both sides of the equation separately.

74 3: THE SOLVER

Look at some other items on the FCN menu. At first glance, you might

think that and[l do the same thing, but not quite:

computes the slope of the function at the cursor location (though the

cursor need notbe right on the curve; it will “home in” on the curve once

the result is computed and displayed).

BE computes and plots the derivative of the equation at every x-

valueinthe plot range. It also adds the equation for the first derivative

to the list in EQ (or, if EQ only contains a single equation, then I3l

creates alist with the new equation inserted at the start ofthe list). To

see this, use your POLY plot (pages 70-71)—the EARfed version:

BRIEEREEE
Now, pressing I3 2dds a parabola to the display, since

the first derivative of a cubic function is a quadratic:

 [200M[2-E0%| CENT [COORD|LAEEL] FCH |

And EQis now thislist: { '3¥x*Z+2%(Z¥x)-3"' POLY 3

Using the Solver Inside the Plotter 75

Press [J[3lll two more times (give each press time to draw)....

The list in EQ becomes

{ 6.088 '3x(Z=x)+4' '3=RAE+EZx(2xX)-5' POLY 2

And the next two derivatives—a slanted line and a horizontal line—

appear on the display:

W

\ P
1.__,.-:,':"rJ_."I

A - '-: y

TR
e 4

="
e 4

BBET ATEENT

The item labelled as [fE{3®] simply makes the next equation in the EQ

list the current (“first”) equation. For example, after you have pressed

twice, your display should look like this:

Y e
1.\ l _._-f -

'y VA
S
o 1

1 4

JENF+BE(IXRI-5'

The “first equation” is now the parabola.

76 3: THE SOLVER

For unruly equations, such as 15 -2x2=x>+3x + 5, will swap the

left- side and right-side expressions, and all operations will then

act upon the new right-hand side.

Keep in mind that you can switch back and forth between the Plotter

and Solver at anytime—and use ineither application. Andkeep

in mind also that ifyou alter any other variables used in the equations,

you must redraw the graphics display (by pressingITiHI[IT;I%] in the

Plotter menu).

simply returns the function value at the current cursor location.

For unruly equations, IZ¥El returns the value ofthe right-hand side;

the Plotter’s¥is the graphical analog of the Solver’s[

IE31A returns the coordinates ofan extremum ofa curve—but it won’t

tell you if it’s a maximum or minimum. With POLY, pressing

with the cursor just to the left of the origin returns this display:

ERTEM: (-2.12.4.08)
Using the Solver Inside the Plotter 77

performs anumericintegrationonthe “firstequation”in EQ, with

respect to the x-axis. To perform the integration, you just position the

cursor near the starting point, and press or(X)to mark one limit.

Then position the cursor near the other limit and press [EIAZR.... It

takes awhile, and you get only the labeled integral, but it’s easy to do.

Try It: Find the area under the curve between the greatest and least

roots of POLY.

Move the cursor near the smallest root and press [H[1H (=)

EITE] Then move the cursor near the greatest root and press

ATHOBT You'll see:

——

/
RRER: -10.42

78 3: THE SOLVER

Programmable Use of the Solver

There will be occasions when you need to use the Solver in the middle

of a program (as opposed to the other way around). The commands

STEQ and RCEQ are indeed programmable. If you want a user to be

able to store or solve for variables interactively during the program,

you can include the following commands in your program.

To store the equation into EQ and invoke the Solver:

« ... 'egname' STEQ 28 MENU HALT ... =

When the 48 encountersthis,it will store the variable name ' eqname

into EQ, activate the SOLVR menu (menu number 30) and halt pro-

gram execution (the status line will displayHALT). You can then use the

Solver to store values or run other programs from inside the Solver

variable menu—then press when you’re ready to continue the

program.

Alternatively, to avoid halting the program during the Solver, simply

use the ROOT command. Ofcourse, to do so, you need to set up the

Stack so that ROOT finds the arguments it needs:

Stack inputs:

3¢ Symbolic or Program object (the equation)

€% Global variable name

1 Real, Complex, List or Unit object (the first guess)

Stack outputs:

1 Real, Complex or Unit object (the answer)

Programmable Use ofthe Solver 79

Here’s an example of using ROOT. This is a program that calculates

monthly payments for a 5-year, $15,000 loan at different interest rates.

The program (AMRT: Checksum: # £8425d Bytes: Z26) uses the

original TVol equation (page 48) and invokes ROOT to print a table of

payments and interest rates:

« 15688 'PY' STO O
'FYY STO BB 'N' STO
b3 .13
FOR int int DUP

12 - 'I' 570 3
FIn »5TR "+ ' +
'TVaM' 'PMT' -160
FOOT 2 FIn =+5TR +
FE1 OROP .61

STEP
&

Amore polished version would provide prettier output, but atleast this

program illustrates the power of ROOT in a program. You could also

use ROOT to calculate loan amortization schedules. Try it (and then

compare ittoAMORT in theHP Solve Equation Library, ifyou haveit—

you may not be able to beat its speed, but probably its versatility).

Another example idea: You can easily combine

£ ...'IdealGas' STEQ 38 MEMU HALT...

and

« www.ws_mol 'n' STO
'TdealGas' 'p' 1_atm ROOT...

to solve for partial pressures of gases in a plasma chamber or tower.

80 3: THE SOLVER

Review

Okay, set down your calculator, grab a handful ofcookies, and think for

a moment about the 48 Solver application.

You heard it suggested at the start of this chapter that it’s really

another programming language—even another programming envi-

ronment. And you’ve seen the acrobatics the Solver can do:

¢ Youlearned how to customize the Solver menus to fit your needs,

how to protect variables and perform “outside” tasks from inside

the Solver.

¢ You saw how the Solver is integrated with the Plotter applica-

tion, and you learned about differences between the graphical

Solver and the stand-alone Solver.

¢ You were introduced to using the Solver within a program.

As you can see, if your work relies on mathematics to any degree, the

48 Solver can greatly reduce the amount of€ ...programming... * you

do. The HP Solve Equation Library contains 300 prewritten equations

covering dozens of different topics—and new equation libraries are

being compiled constantly.

Ofcourse, % ...programming... ¥ isn’t dead;there will always be needs

forit. But now the Solver can do many ofthe things that formerly had

tobedoneina¥ program *. Sogetcomfortable with the Solver—using

a handheld calculator/computer has never been so easy!

Review 81

g
o
gy

e
ti
ve
lo
os
ar
tr
in
nn
ig
ba
,i
yy
ig
oi
ni
es
gp
oe
sd
rs
se
ns
nd
i

>

R QRIS 3 Do) BEKIA
R R RS RRO
RIS X) '\c‘e'o'\‘.O RRS RGOP BRI 00 80,NN,

2 XSIS5 DRX XI5Ro.o.’,,l'/"4"

2 6% O'W‘c'/

P

25
X \“0:\\20"
OB

%,
3
D

SRR
IR <RRPRIOR,WS P OO @

& “1‘.’(\};\\‘0’0\,’ BRIAQRIORORE %

N \(\\\\\;“t\t"\.\\\&\ SRR ORI
4‘\‘““’”"'@‘3“\’%\\'\““R RAA‘\“; XS N P O %0 ISRNRSN/KA

DSRSR ,"v,;‘,. XSO SOPRINIEHELKXXX AXe
4: WHAT's A GROB?

Opening Remarks

With its ability to manipulate complex information in the forms of

objects, the 48 makes it easy for anyone to do serious graphics on a

handheld machine—something not possible before. Other handhelds

have “large” screens or dot-matrix displays but nothing as accessible

or versatile asthe 48grob (its propername is “graphics object,” but the

48 shortens this to grob).

A Clean Slate

Before you start, set up your machine for some good, hard graphics

work:

¢ First, in your HOME directory, create a directory called TOOLZ%, to

store your programs.

¢ Then, in that TOOL% directory, create another directory called

PIC%E, where you'll store your grobs and do your graphics work.

This will prevent you from clobbering other object names and prevent

both your HOME directory and working directory (PIC%) from becoming

too cluttered. So from now on (unless specifically directed otherwise),

store all programs in TOOL% and all grobs in PIC5. And when actually

using (executing/evaluating) any program or grob, do so from PICS.

Now it’s time to talk about grobs....

Opening Remarks /A Clean Slate 83

What Is a Grob?

A grob is simply another way for the 48 to store data. You're already

familiar with matrix objects, program objects, character string objects,

complex number objects, etc.

A grob isjust another kind ofobject—a pixel-by-pixel description ofan

image that can be displayed on the 48 display, or passed to another 48

or PC, or “dumped” to a printer. A grob can also be manipulated or

combined with other grobs—just as other objects can be manipulated

and combined in various ways.

Create a simple grob to experiment with—plot a sine wave:

If you're not in RADians mode, press (GJRAD. Then press (*)(SIN]a]X]

LEXN WX RESETIGNEIEY] AUTO|

The graphics display should fill with a sine wave—big deal.

Press to exit graphics mode.

84 4: WHAT’s A GROB?

Move into your new PICE directory, and then press D5PL PICT

'SINE' GT0)

PICT is the reserved name in which the 48 stores the current graphics

display (much as EQ is the reserved name in which the 48 stores the

current equation). Therefore, PICT can be (STOJed and [RCL)’ed, but it

cannot be deleted (yes, you can it, but a new PICT will be au-

tomatically created if you then plot a function or press (§]GRAPH)). So

make a mental note: Don’t use PICT as an object name, because the 48

has reserved that name for its own use.

In the above exercise, K4} placed the grob representing the

current graphics display onto Stack Level 1. Then 'SINE' stored

it under that name in your PIC: directory.

Now take a closer look at this grob. Press [[(v), and you'll see

GROB 131 64, followed by a mass of characters.

What do all those characters mean? To get a betteridea, compare them

with an “empty” grob: Press ([ENTER)(=)PLOT)[ddiEI to clear the graphics

display, and then R ['"EMPTY" to store the

blank display as an object called ' EMPTY'. Now JElEEI (v)(or (VAR)

CEHEEE (visiT)) to see GROB 131 64, followed by a mass of zeros.

This is the Stack’s representation ofa grob. The word GROB simply tells

you that the object is a grob. The second “word”, 131, is the numberof

columns ofpixels (dots) in the grob. The third “word”, 6%, is the number

of rows of pixels in the grob. And then the huge “word” after that is a

hexadecimal bitmap of all the pixels themselves, where every digit

represents 4 pixels.

What Is a Grob? 85

Pixel Numbers vs. User Units

Agrob’s size is normally expressed as “m pixels wide by n pixels high.”

For example, the display grob PICT has a normal default size of 131

pixels wide by 64 pixels high. Butyou can also express such dimensions

in user units. Userunits allow you to define the scale and limits of PICT

in more convenient units—to save you a conversion between Cartesian

coordinates and pixel locations every time you want to modify PICT.

Toillustrate this, returntheSINE grob to the graphics display and view

it, by pressing (VAR(JEIRE(>IRey)Pre)FEEMIHHEST0)9.

Each pixel in this 131x64 grob is defined by a list oftwo binary integers,

of the form{ # col #row }. These are “pixel coordinates.” Here are

a few pixel locations expressed in their pixel coordinates:

—{ # 6d # 6d 3

{ #125d # 16d }—

{ #65d # 2°d }—

 { # 138d # 63d X

However, recall that when you plotted the sine wave, the 48 used the

default x-axis range of—6.5 t0 6.5, and it assigned the y-axis range to be

-1.3 to 1.0. These ranges were in user units.

86 4: WHAT’s A GROB?

Agraphical location in user units is expressed in the form ofa complex

number, (x; y). Here are the same four locations as on the previous

page, but expressed in user units rather than in pixel coordinates:

—(-6.5,1.8)

(6.8,8.63)—

(8; 8)—'

(6.5 -1.3%,
Comparing the two diagrams, notice that their scales behave differ-

ently: The pixel coordinate scale always startsat{ # Bd # Bd 12

inthe upperleft-hand corner, and the numbersincrease as you proceed

downward and to the right. But the user-units scale starts at whatever

values you (or, by default, the 48) have defined, and these numbers

increase as you move upward and to the right.

So, which scale should you use? Obviously, user units are much more

convenient in many respects. You do your computations, you plug in

the numbers, you plot them—just as on graph paper.

Anyhow, HP has made the plotting commands versatile enough to

accommodate both scales. And the functions and

allow you to quickly convert from one scale to the other if you

want to see both sets of the numbers.

Pixel Numbers vs. User Units 87

But performing grob manipulations with user units does have a couple

ofdisadvantages. Firstofall, it’s slower. The 48 doesn’t “think” in user

units. When you give it a graphics command with real or complex

arguments, it has to find out what the current graphics scale is, then

convert the arguments tobinary integers (pixel coordinate values) and

then execute the command. This can increase your program execution

time by as much as 50 percent.

Secondly, user units don’t always remain the same. They can differ

from directory to directory and program to program, as you redefine

them. So always check the graphics scale before manipulating grobs,

if you’re going to do so in user units.

With those considerations in mind, you can see that ifyour application

involves a good deal ofplotting and mathematical modeling, then user

units are for you. On the other hand, if your application involves

placing text in grobs, extensive fiddling with bitmaps, or mixing grobs

ofunknownuser units, then you should stay with pixel coordinates. As

a good rule of thumb, if you're doing too many conversions from one

scale to the other, it’s a sure sign that you need to switch to the other

scale.

88 4: WHAT’s A GROB?

“Roll Your Own” Grobs

You have several ways to create a grob (i.e. put one onto the Stack):

MEF:ASE NEEE creates an empty 131x64 grob.

e Tocreate an empty grob ofa specified size, use the FIIGIZN (BLANK)

command. You put the number of rows (as a decimal integer) at

Stack Level 2, and the number ofcolumns (as a decimal integer)

at Stack Level 1, then press] ELAM BN

empty grob will be placed at Level 1.

¢ Toturn any object into a grob, put the object at Level 2 and a real

numberon Level 1. Then press (that’s*GROB).

If the real numberis 1, € or 3, the 48 will use the small, medium

or large font, respectively, to create the grob. If that argument

is B and the object is an algebraic or unit object, its grob will be

created in textbook format—as in the EquationWriter.

. (k1 W BNSiF] copies the current display to a grob.

* Both [TandPLoT)Iwill create a grob named

PICT with a function or statistical data plotted onit. To then put

this grob onto the Stack, you type PICT (from the Stack

display), or (from within the Graphics display).

. converts to a grob directly from the EquationWriter.

* You can also create a grob on the Command Line. For example

(do this now), type GROB 8 £ B83FF (ENTER).... See?

“Roll Your Own” Grobs 89

The Hexadecimal Bitmap

That grob you just created is 2 rows (of pixels) tall and 8 columns (of

pixels) wide. An 8x2 grob therefore has 16 pixels (“picture elements”).

A hexadecimal digit*, expressed in binary form, can hold information

for 4 pixels. For example, the hex numberB (which has a decimal value

of eleven), is expressed in binary as 1011. So the hex number B can

describe a row of4 pixels, where all but the second pixel are “on” (dark);

the second pixelis “off” (light). Similarly, a hex 0 (binary 0000) would

be all pixels “off”, and a hex F (binary 1111) would be all pixels “on”.

The 48 always uses aneven number ofhex digits for each row. Soifyour

grob is between 1 and 8 pixels wide, you’ll need 2 hex digits to describe

that row—even if you use only a few of those pixels.

Since each hexadecimal digit represents 4 pixels in a row, it’s easy to

think of a grob as a collection of 1-row, 4-column bitmaps:

m columns

*Ifyou don’t understand hexadecimal numbers, keep your place here while you read Appendix A.

90 4: WHAT’s A GROB?

In the grob you just created (via GROB 8 £ 83FF), for example, the

digits 83 described the first row of pixels; the digits FF described the

second row.

Unfortunately, HP decided that the bitmaps should read backward

from the conventional ordering ofthe digits in a binary number. That

is, you might naturally ¢think that 83 would describe this bitmap:

hex digit value 8 3

binary place value 8 4 2 1 8 4 2 1

pixel value 1 000 0011

But no—it doesn’t. Rather, the 83 describes this bitmap:

hex digit value 8 3

binary placevalue 1 2 4 8 1 2 48

pixel value 0001 1

Perplexed? It'sunderstandable. This takes some gettingused to—and

to help that process along, take a look at your grob....

The Hexadecimal Bitmap 91

The SEE Program

The 48 doesn’t have a quick command to let you “see” the graphics

representation of a grob on the Stack, so you need to write one now.*

Notice that takes a grob from Stack Level 1 and putsitinto

the reserved variable PICT, and that the command lets you

view and manipulate PICT.** Your Mission: incorporate your obser-

vations into a program, 'SEE' (Checksum: # 9386d Bytes: £9).

Solution: « PICT STO GRAPH
®

In your TOOL% directory, type this on the Command Line

and press (ENTER. Then type 'SEE' (sTO).

Now, with any grob in Stack Level 1, SEE will let you see

it immediately—try it! Use SINE, EMPTY, or your GROB 8

¢ 83FF—whatever.

Create other grobs using the Command Line, and view them using

SEE. Remember: Ifyou use too few digits, the 48 will simply “pad” the

grob with zeros, but ifyou use too many digits,it will give you an error

message.

*Ifyou don’t know how to write programs on the 48, place a bookmark here, skim over the chapter

on “Programming the HP 48” in the Owner’s Manual, then return here.

** Yes, you could use the PYIEN command in place of@§)GRAPH), but PYIEW requires an argument

in Level 1, and it doesn’t allow access to the graphics editing menus—not so handy.

92 4: WHAT’s A GrROB?

What Does a Grob Eat?

A grob eats memory. Lots of it.

Even a 0x0 grob uses 10 bytes of memory. And how would you make a

0x0 grob to see this? A couple of different ways, actually:

GROB 6 6 &)
or

$ 0 # 0 rEro) M cxnrx) BT

What’s more, ifyou were to convert that 0x0 grob to a string, "GROB @

B" . it would use /4 bytes.

As you can see, memory use is of primary consideration when you're

workingwith grobs. So here are two quick utilities to help you measure

grob size:

GSIZE

Checksum: # 5Z16Hd

Bytes: /8

€« » i h
'18+h*(1+IPCCw-12-821"

*

GSIZE takes the row and column arguments from the Stack and gives

you the size of the graphics object itself.

The SEEProgram | What Does a Grob Eat? 93

$SIZE

Checksum: # 4548d

Bytes: 136

« DUPZ SWAP +STR SIZE
SWAP +STR SIZE SKAP
+ w h lu lh
'12+]w+1h+22hE(1+IP(Cu-12-820"

»

$S1ZE takes the row and column arguments and gives you the size of

the string representation of the grob. This is very important to know

if you're uploading grobs in ASCII format to another computer; the 48

must have enough memory to hold both the binary and the ASCII

representations.

Keep these two utilities in your TOOLS directory. They’ll help you

budget your memory resources as you develop graphics applications.

For example, they’ll tell you that a screen-sized, 131x64 grob uses 1098

bytes, and its corresponding string uses 2193 bytes. And a 200x200 grob

needs 5010 bytes in binary and 10018 in ASCII.

As you can see, grobs eat memory in big bytes.

94 4: WHAT’s A GROB?

The Grob as Icon

Grobs that are 21x8 have a special application in the 48. For example,

key in the following list of lists (this is all one object, so don’t hit

until the very end—and ignore the line breaks printed here; there’s

only so much room on a page):

{
{ GROB 21 8
BBBERRR6B31609042858124040218836C00100BRBAEAAAARE "SINE"

{ GROB 21 8
BBBBARR4881806C81185A4903492584C31302458160000B8 "SAW"
{ GROB 21 8
BBBBBASF 1E/88301248581 246301 248881 240EAF3C16668080 "SAUARE" X

{ GROB 21 8

BBBBBBG6Y/301 155350155301155550677501008BBBBBEABA "YEAH!" X
3 MENU (EnTER).

You should see a very interesting menu line. The four grobs you

created are acting as the custom menu labels!*

The current term for pictorial display objects like these is “icon.” You

may be familiar with several icon-based computer interfaces. If you

can fit only 4 or 5 characters oftext into a menu label, you may one day

forget what that label stands for (asin: “Does anybody remember what

EEEH does?”). But an icon can often give more information in the

same amount of space. A picture is worth a thousand words.

*See Chapter 15 of the Owner’s Manual (“Customizing the Calculator”) for more information on

creating custom menus. Youmay want to make anote there that 21x8 grobs can act as menu labels.

The Grob as Icon 95

This example could be the custom menu for a Fourier Series calcula-

tion program. You can easily do similarly for electrical circuit ele-

ments, insect species, heat exchangers, stars, etc.—the list is endless.

To create an icon, follow these steps:

1.

96

In the graphics environment, press (=]CLR[<|>)4), then (X),

then (¥) seven times, then (») twenty times, then EOY|

Use the freehand drawing keys (see chapters 5 and 7) to draw

your icon. Then erase the outline, if you wish.

Press(2]<]a]X), then(¥)seven times, then (») twenty times,

then IEITA, to copy your icon to the Stack.

Arrange your unshifted (and shifted, if any) key actions on

Stack Levels below the icon, specify the Level ofthe icon, and

press KXe

Repeat as needed to create up to 6 icon lists (or more, to create

a multiple-page menu). Finally, give the number of menu

items and press Ed4kE1(—MEMORY i3]l

4: WHAT’s A GrROB?

Review

In this chapter, you created the TOOL% and PICS subdirectories to hold

yourgrobs and yourprograms—and to help you organize yourthoughts.

You also learned:

e how a grob is represented graphically and numerically—and

how much memory it eats;

e how to use the GROB row col nn... notation, so that you can read or

write a grob from the Command Line;

¢ how to create grobs—both empty or with pre-plotted patternsin

them—and how to use them in custom menus.

Review 97

5: GRAPHICS BASICS

The Graphics Functions

Now that you understand what a grob is and how it is built, return to

the built-in graphics functions and run through them briefly. They are

all programmable to some degree, and you're going to see that pro-

grammability at work now, too.

HP chose to scatter the graphics commands among several different

menus (a custom menu might be very handy—food for thought). Some

are in the and menus, some under (PRG-IEIM, and some

under PRGHIITM. For a reference listing of the graphics commands,

see Appendix B.

Now, as you know, you can get to the graphics display by pressing (<

from the normal Stack display. However, the more general form ofthe

command is ((§]GRAPH}—and in a program listing, ((5]GRAPH) gives you

the GRAPH command, which causes the program to halt in the graph-

ics display with the graphics menu active. Then returns you to

the Stack display and continues program execution (note that in a

program, the TEXT command also returns you to the Stack display).

The Graphics Functions 99

To view a grob in the Stack display, put the grob onto Stack Level 1 and

use the *LCD command ((PRG) INEld <[PREV) EedXd'D.

The grob will fill the display with its upper-left pixel in the upper-left

corner ofthe display, overwriting everything except the menu line (and

the menu remains active). *LCD does not halt program execution.

To activate the graphics display without the menu line—and still

without halting program execution—use the PVIEW command.

PVIEW requires an argument in Stack Level 1—the location of the

pixel to be in the upper-left corner ofthe display. Normally, this would

be the row 0, column 0 pixel, so you would put{ # Bd # Bd }in Level

1 and press [{ll[I%] Remember that the first number in this list is the

column number; the second is the row number. Remember also that,

if you wish, you may give the coordinates of the upper-left corner in

user units instead, with a complex number (x yJ, where you choose

the coordinates x and y.

Within the graphics environment, pressing a second time

removes the menu and puts you in a “scrolling mode.” In this scrolling

mode, you can use the arrow keys and (©Jed arrow keys to scan around

alarge grob, with the display acting as a “window” into the grob. Infact,

PVIEW is the programmable equivalent of this scanning capability.

Press(G]GRAPH] a third time to return to the graphics display, or press

to return to the Stack display.

100 5: GrarHics Basics

The PVIEW Bug

The PVIEW command is plagued by a bug (in the 48’s Rev. AROM and

possibly later revisions). So far, this bug hasn’t proven to be seriously

harmful, but it’s a little disconcerting. To check for it, do this:

1. Type 6% STWS [ENTER), then (3)#)][1JENTER[+/=).... You'll get:

184467448737B9351615d. Store it as TEMP (in PICS).

Type GROB 158 1568 8 PICT (s70), to put an oversized grob

into the graphics display.

Create the program € PVIEL .5 WAIT * and put several copies

of it onto the Stack (PVIEW is intended for use in a program; this

program lets you make sure PVIEW is working properly).

Put{ # Bd # Bd 2 onto Stack Level 1 and press (SWAPJEVAL).

You’ll see the upper left corner ofyour grob for just a moment—

PVIEW is working properly.

Put{ # 986d # 98Bd 3 onto Level 1 and press(SWAPJEVAL). You'll

seeBad Arsument Yalue,since{ # 986d # 908Bd Iislocated

far outside the defined grob—PVIEW is still working properly.

Use TEMP toput{ # 18..d # 18.d }onLevel 1. Thisisa

locationjust one pixel above and to the left ofthe grob’s upper left

corner. Press (SWAPJEVAL)....Your 48 will freak out for awhile (the

resalts vary), then return to the Stack display, shaken but intact.

PVIEW should detect all illegal pixel locations—and then display Bad

Araument Yalue to alert you. Well, it does all right when the illegal

argumentis in user units (a complex number) or in pixel values much

too large for the grob—but not when the argument is a pixel location

Jjust beyond the left top edge of the grob.

The PVIEWBug 101

Workarounds

Since PVIEW works correctly with user units, the simplest fix is to

convert all pixel locations to your own user units first. Or, if your

programs use PVIEW a lot, use this program (name it PYUE and put it

into your TOOLS directory; Checksum: # 49837d Bytes: 36):

« IFERR Pw+C
THEN
END
PYIEL

*

PVUE converts the argument to user units and trapsillegal locations.

Unfortunately, it returns the erroneous pixel location to the Stack in

user units, and then C*P® won’t convert back to the original erroneous

pixel values. So here’s a version (Checksum: # 17438d Bytes: 88)

that will return the erroneous pixel location to the Stack (but it won’t

identify the error as a PVIEW error):

« + loc
« [F loc DUP TYPE S SAME

THEN Pr=C
END
IFERE PVIEL
THEN DOROP loc EREREN DOEEE
END

Anyway, you can at least test the pixel values to see if they’re less than

1B60086d (that’s larger than the size of the largest possible grob, but

small enough to get Bad Argument %“Yalue instead of the bug).

Such a filter reduces your chances of getting caught by the bug.

102 5: GRraPHICS Basics

The Secrets of PPAR

Asyoureadin Chapter4,every grob has associated withit a height and

a width, measured in pixels. The height (rows) and width (columns)

appear in the Stack display as Graphic ccc % rrr

or in the Command Line as GROB ccc rrr dddd....

If you ever need to test a grob within a program, the programmable

command SIZE returns the number of columns to Level 2 and the

number of rows to Level 1.

With that in mind, consider this: Associated with the plotting and

graphics routines is a reserved variable nained PPAR (for Plot

PARameters). Like the reserved variables IOPAR and PRTPAR, PPAR

is created (if it doesn’t already exist) only when a graphics routine

invokes it.

That is, PPAR is invoked or created anytime you activate the graphics

environment, even ifyou don’t see the graphics display. Specifically,

PPAR is invoked by:

(JGRAPH) or ()
. or PLOTR

Any drawing function

PVIEW with user units (a complex number)—but not with a list

of binary integers or an empty list)

The Secrets ofPPAR 103

And ofcourse, PPAR canbe STOed, RCLed and PURGed, like any other

variable. The contents of PPAR, however, must follow this pattern:

{ (xmin, ymmj (x3 ym:l indep res axes ptype depend 1}

You set these 7 parameters from the PLOT menu, or by using the PLOT

menu commands inside a program. The default values are:

{ (-6.5,-3.1) (6.5,3.2) » B (B,8) FUNCTION Y I

The short program € PICT SIZE PPAR * will tell you all you need

to know about the graphics display—if you can read it. When inside

the PLOT application, you can press todisplay the plot type,

independent variable and grob limits in user units. In a program, the

best way to get at the PPAR data is to recall the contents to the Stack

and either *LIST or SUB to extract the parts that you need.

Bearin mind that each directory in the 48 hasits own PPAR, which can

cause you trouble ifyou work in user units and switch directories a lot.

For example, if you’re working in DIR1 where PPAR contains xmin='19

and x=18, and then you switch to DIR2 where PPAR contains x.=8

and xm=5. 28, you'll get undesirable results if you use DRAW or any

user-unit commands without first adjustingx. and x__.

Generally speaking, you'll need to get only the plotting limits at the

start of PPAR. In the next section, you’ll see how to get out more

information.

104 5: GRrAPHICS Basics

The PLOTR Menu

The PLOTR menu consists of 3 pages of commands, listed here:

ERASEIDRAR]AUTO[HENGIYENGlINDEP]
[DEPM [PTYPE| RE3S |CEMT [SCALE[RESET
[ARES |DFAN [LAEELL%H |¥l |PDIM

Rather than attack the commands by page, group them according to

what they do:

You’ve already met [AEIE3, IETH and [IEI®]. As mentioned earlier,

when DRAW is executed inside a program,it plots a function without

adding axes or anything else to the plot.

You are already familiar with as well. Remember that LABEL

uses whatever numeric display format is currently active to label the

axes (STD format often causes LABEL to include too many significant

figures in your plot). LABELis programmable.

IITE is a command for drawing axes inside a grob. It is useful inside

a program, used in conjunction with DRAW.*

[{TE3 erases the contents of PICT—and it’s programmable.

The more drastic[Fresets PPAR to its default values, resizes PICT

toits default 131x64 size, and erases the contents of PICT. isnot

programmable, and—unfortunately—it’s not recoverable either (i.e.

there’s no LAST GRAPHICS command). So use with care!

*For example, the MULTIPLOT program in Chapter 8 uses DRAW and DRAX together, where AUTO

obviously wouldn’t work.

The PLOTRMenu 105

The other commands in the PLOTR menu give you direct control over

PPAR—and they’re programmable: [RIU3d[TT3FHEETE

ENGTEBTBTTTandBES2. Also,be aware that(—fed

versions of most of these commands will recall the corresponding

parameters to the Stack (and although these (©Jed functions are not

programmable themselves, you can create little programs to do that).

[ZT3d and [I350 (INDEP and DEPND) specify the independent and

dependent variables by name. Defaults are ¥ and Y—but those won’t

work in equations such as ' Impact=(Mass*Speed™z J1-2'.

You can use a list—instead ofjust a name—to specify the range over

which the function may be plotted. For example, to plot just the first

two revolutions (720°) of a spiral, you'd type { 'Theta' B 728

[ETT3d. Then you could use small programs to recall those parameters:

« PPAR 3 GET « PPAR 7 GET
* (independent variable) ® (dependent variable)

HAEHA sets the resolution of the plot, according to the real or binary

number in Stack Level 1. For example, ifthat numberis3. 88 or# 3d,

then AUTO or DRAW will calculate and plot a function value every

third pixel column in a FUNCTION plot. The programmable version of

Iwould be « PPAR 4 GET
®

Related to RES is system flag —31, the “Curve filling” (“dot-connect-

ing”) flag: When flag —31 is clear, curve filling is enabled; the 48 will

connect each consecutive pair ofplotted points with a straightline. But

when you set flag —31, curvefilling is disabled. So using RES and Flag

—31 can save you a lot of computation time. Notice that Flag —31 can

be set/cleared directly in the MODES menu—with the toggle.

106 5: GrapHICS Basics

BB sets the coordinates where the drawn axes will intersect. A

single complex number is used as the argument. A programmable

version of(i3would be « PPAR 5 GET
»

The 48 gives you three different ways to independently specify values

forx ,y,xandy: L CEMT |5CALE

ll HENGRNG

ll PHIN[PHA]

The M3,1MEIY; 83 (CENTR and SCALE) combination is most useful for

specifying a certain point to be the center of the plot and then scaling

the x- and y- axes relative to each other—as for a polar or conic plot.

CENTR takes a complex number—the center point—as its argument.

SCALE takes two real-number arguments: The x-axis scale and the y-

axis scale—both in units per ten pixels. Thus if (B, B is the center of

your 131x64 grob, and your x-axis scale is, say, 5, then your grob’s x.

will be (-130+2)x(5+10) or —-32.5, and its x_ will be 32.5.

A programmable would be

« PPHB OBJ+ & DROPN
+ £ 7

»

A programmable (- FI4i|834 would be

« PPAR 0OBJ+ & DROPN
SWAP - 18 = C+R PICT
SIZE 1 - B+R ROT SWAP -
FOT EOT B*R 1 - -~ SWAP

The PLOTRMenu 107

The more rectangular FA[H-ITAI combination is the most intuitive

for FUNCTION type plots and general drawing.

and are identical in function, taking two real number

arguments. The first argument is the minimum range value x__; the

second numberisthe maximumrangevaluex. XRNGandYRNG are

programmable, and programmable versions of their (®Jed functions

would be:
« PPAR 1 GET RE forx,x

FPPAR 2 GET FE
%

and « PPAR 1 GET IM fory.,y
FFAR 2 GET IM

¥

PMIN and PMAX aren’t even mentioned in the Owner’s Manual, except

in the Operation Index after all the appendices. To use these two

commands, you must key them in (or assign them to the Custom

keyboard or user keys). Apparently, they were used to set the display

limits on the HP-28, and are included in the 48 for compatibility

purposes. Of course, the 48 stores these sorts of display limits in

PPAR—as the complex numbers PMIN and PMAX. PMIN defines the

J of the graphics display, and PMAX defines

the upper-right corner (x. ymx). Since PMIN and PMAX are not in a

lower-left corner (x_,y
min min

menu, they don’t really have (=) recall capability, but you can see that

the programmable (©}-equivalents could be:

« PPAR 1 GET for PMIN
®

and « PPAR 2 GET for PMAX
»

108 5: GRrapPHICS Basics

The last 3 keys in the PLOTR menu let you manipulate PICT size and

display limits:

PDIM is a powerful function that allows you to reDIMension PICT. It

can affect PICT and PPAR in different ways—best explained on pages

325-326 of the Owner’s Manual.

Band BEIYM are the only programmable “ZOOM” commands in

the 48. Both *H and *W leave PICT unchanged, but they multiply the

height or width, respectively, by an argument. An argument greater

than 1 “zooms out,” showing more range with less detail; an argument

less than 1 “zooms in”, showing less range but more detail.

Be careful with *H and *W! Because PICT remains unchanged, it’s

possible to get plots with different scales superimposed on each other.

For example, here’s what happens when *W is used carelessly:

« ERASE 'Y=SIM(xD)'
STEQ RAD ORAW 2
| ORAW 2 =l DRAW

So to avoid serious trouble, it’s a good idea to always follow a *H or *W

command with ERASE.

The PLOTRMenu 109

The k14 Menu

Most ofthe programmable graphics functions you’ll use are in the (PRG)-

menu. Here they are, listed by menu page:

PICT[PYIEM[LINETLINE]EDHARC_
(IRTPTPGlDAT
#GROJELANGOF|GHORREPLSUE
#LCD|LCD3|CLLCD]DISP[FREEZ TERT

Again, examine these briefly—in related groups:

The commands BOX, LINE and TLINE require two arguments for end-

points ordiagonal corners. Resultsareidentical to those achieved with

the IEEM, INETA and AT in the interactive graphics environment.

You can express the points either in user units—via complex numbers:

(-1.35, 26.6)—as a CAD system does; or as decimal integers repre-

senting the pixel column and row: { # 31d # 55d }. Ineither case,

the first term represents the x-axis and the second term the y-axis. The

top left pixel of a grobis always{ # Bd # Bd 1.

The commandsC*PX and PK+C allow you to convert between the two,

according to the current values of PPAR. Remember that each direc-

tory will have its own PPAR and its own unique user units.

While the interactive graphics environment has a [4|{{48 operation but

no [T, the LEM menu has anI8command but no {4} (you

draw a circle as a 360° arc).

110 5: GRAPHICS Basics

takes four arguments. The first two are the center of rotation

(in Stack Level 4) and the radius of the arc (Level 3). The units (user

vs. pixel) used for these two arguments must match (note that a radius’

user units are x-axis units only; you can’t get an ellipse instead of a

circle—even if you want to). The last two arguments are the starting

anglein Level 2, and the ending angle in Level 1. Angles are measured

and drawn counterclockwise, with zero pointing to the right:

90° (mt/2)

0° or 360°

180° (m) (0 or 2m)

270° (31/2)

In the interactive graphics environment, [Tland[Tldetermine

whether a pixel will be turned on or off as the cursor lands on it.

Pressing one key cancels the other; pressing the same key twice leaves

the pixels untouched as the cursor moves around. In programs, use

PIXON and PIXOFF to do this. They operate on the pixel located at the

coordinates given in Level 1. Again, the pixel may be expressed as a

complex number in user units, or as two binary integers in a list.

To test individual pixels, use the IIHEEN command (it returns a 1 ifthe

pixel is turned on; B if it’s off). And here’s a good utility tool, TPIX

(Checksum: # Z9273d Bytes: 38.9), to toggle any given pixel with-

out having to test it: « [UP
IF PIXT
THEN PIXOFF
ELSE PIXOM
END

®

The FRGHIETN Menu 111

All the grob-building methods mentioned earlier (page 89) are pro-

grammable. Three of these live in the (PRG}-I'EId®M menu:

112

takes the object in Stack Level 2 and turnsit into a grob,

using the font size specified in Level 1. The font size specifier is

a real number between 0 and 3 and is interpreted as follows:

font size grob’s character height (in pixels)

3 10

2 8

1 6 (characters are all uppercase)

0 10 (for text and numbers), or

EW (for algebraics and unit objects)

Try one: Retrievethe TVollalgebraic fromyourE.CH3 directory,

then pressH (ETI EXE1. You'll briefly

see the EquationWriter view of T¥oll before a long

grob is returned to Stack Level 1.

Xl creates a blank grob from width and height arguments

given in Levels 2 and 1.

takes a “snapshot” of the current display and stores it as

a grob on the Stack. This is an excellent tool for documenting

your applications (note that serves the same purpose inside

the EW and the graphics environment).

5: GRAprHICS Basics

Four extremely useful commands allow you to store part of an image

as a grob, and to superimpose a small grob on a larger one:

e SUB lets you extract part of a grob (just as you extract part of a

list or string object). When used with a grob, SUB takes the grob

or PICT from Level 3, and the upper-left and lower-right corners

ofthe area tobe SUB’bed from Stack Levels 2 and 1, respectively.

Try extracting part ofthe SINE grob: Move to the PICS directory.

Press VAREILIMS # S58d # 18d Y @Enmer){ # 85d # 4Bd

ETMNXTINXT)IEITE. You get a36x23 grob. Press(VAR

to view it.

e Thecommands GOR (“Grob OR”), GXOR (“Grob XOR”)and REPL

(“REPLace”) let you superimpose one grob upon another. These

commands all take the same arguments—the target grob (or

PICT), the location, and the grob to be added. The location (Level

2) specifies the spot on the target grob (Level 3) where the upper-

left corner of the grob to be added (Level 1) will go.

Both GOR and GXOR give a kind of transparency effect thanks

to the Boolean logic. GOR will superimpose the pixels ofthe two

grobsin such a way that ifat least one ofthe pair ofcorresponding

pixels is “on” then the pixel in the resulting grob is “on.” GXOR,

on the other hand, will superimpose the pixels so that exactly one

of the corresponding pair must be “on” in order to turn “on” the

pixel in the resulting grob. GXOR, in particular, is useful for

manipulating cursors and other kinds of objects that need to

always be visible within the background—whether it be dark on

light or light on dark.

The Menu 113

ETH and work here much they work within the inter-

active graphics environment. Recall that the interactive menu

also includes a [[JIMcommand, to delete or blank out part of a

grob, but this isn’t in the PRGHIYTAM menu. The best you can do

isto create a grob ofthe right size, usingIKilill, then[I3dMit onto

PICT or the grob.

Three additional commands that control the display that you will find

useful in polishing many kinds of programs:

114

o [WHNNi]simplyclearsthedisplay. Usually the 48 does it automati-

cally, but sometimes—as with [[JE@ll—you must do it yourself.

Use HIEA to build a text display other than the normal Stack

display. The display is divided into 7 text lines. [[JE#ll takes the

object from Level 2 and displays it in size-2 font (8 pixels high),

on the line specified in Level 1. The upper-most line is numbered

1, the lower-most is numbered 7. I[JE@ also honors NEWLINE’s

(e]P>J=)), so you can get grobs with more than one line of text.

o [J3H keeps parts of the display from updating until some key

is pressed. The Level-1 argumentis an integer indicating which

part(s) to freeze:

1 Status area frozen

Stack/Command Line area frozen

Status and Stack/Command Line areas frozen

Menu area frozen

Menu and Status areas frozen

Menu and Stack/Command Line areas frozen

~
N
o

A
~
W
M

Entire display frozen

5: GraprHICS Basics

Other Graphics Commands

You can also add grobs with the key and invert them with the

key or via the NEG command.

For two grobs of exactly the same size, addition goes pixel-by-pixel,

equivalent to: « grobl { # Bd # Bd 2
orobZ GOR

»

Inverting a grobinverts all the pixels, turning the black ones white and

the white ones black. Just for fun, put the SINE grob onto the Stack.

Then PICT and press (€] to see your creation.

Grobs with row sizes that aren’t multiples ofeight will be inverted only

insofar as their bits actually represent pixels. For example, GROB ¢

¢ BBB6 invertedbecomesGROB € £ 363B. The I's represent the displayed

pixel pairs, but the B’s are placeholders—bits that don’t represent

pixels in the grob.

Use the MEG function to create inverse video effects in your applica-

tions. Addition is useful for combining small grobs quickly or “stamp-

ing” frames and legends onto common-sized grobs.

And MEG and together can do a GAND (“Grob AND”)—the only

Boolean function that HP appears to have omitted. Here’s a GAND

program (Checksum: # 61392d Bytes: 31): « MNEG SWAP
NEG + NEG

»

Store this into your TOOLS directory. Then try it out, using GROB € Z

3808 and GROB 2 Z 1818. Result: GROB 2 Z 166H

Other Graphics Commands 115

Building a Toolbox

With all of its capabilities, the 48 is still missing some useful com-

mands. Such commands are called utilities, and now you’re going to

create them yourself—along with some “standard” grobs for use in

testing/troubleshooting programs. You've already created the SEE

utility (in your TOOLZ% directory), to “view” a grob on the Stack. Also,

you have PYUE to avoid the PVIEW bug, TPIX to toggle pixels, GAMD for

Boolean addition, and GSIZE and $5IZE for memory management.

How about a pair of utilities to store/recall grobs from/to the graphics

display? Suppose you create a gorgeous picture—how do you save it?

Exit tothe Stack display, putthe name ' GORGEOUS' onLevel 1, and use

a program, named STOPIC (Checksum: # 49374d Bytes: 36.5):

« PICT RCL SWAP STO
»

The grob goes onto the Stack and is then SWAP’ped to bring the name

to Level 1. Then the grob is stored and the Stack is left as before. Put

STOPIC into your TOOLS directory.

RCLPIC does the opposite, taking an object name from Stack Level 1

and (only if it’s a grob) storing it into the graphics display. As ECLPIC

avoids using GRAPH and PVIEW,it’s very general and programmable:

« OUP RCLPIC (Checksum: # 34937d

'H:-IEI:JTEEE flfl'%msflgl%n Bytes: 89.3) chastises you if the

ELSE +STR named object isn’t a grob. Store it

"not a GROB!" alongside STOPIC, in your TOOL%
+ DOERR 4

END 1rectory.

116 5: GrapHICS Basics

Nowyou need to create three empty grobs (change to the PIC% directory

now,to stored them there). Create a 200200 grob called BIG; a 131x64

grob called MORMAL; and a 2x2 grob called TINY, as follows:

For each grob, put the numberofcolumns (# 286d, # 131d or# £d) onto

Stack Level 2; the number of rows (£68d, # 64d or # £d) onto Level

1, and select from the (PRG)-IIdM menu. Then type the name

('BIG', "NORMAL' or ' TINY')into the Command Line and press (STO).

Next, create two non-empty grobs:

First,load the Stack with any four objects, then store the Stack display

as a grob, by pressing (PRG)LEIJ® i 'DISPLAY' (sTO).

Second, type GROB 5 8 484BEBEBF1F146848 'ARROW' (sTO), to
build and store an “arrowhead” grob.

With these 5 good grobs to work with, switch to the TOOL% directory to

create a custom menu. This custom menu is defined in a list inside a

program (feel free to modify the list to serve your own needs):

« { PICT BLANK
ERASE +LCO LCD+
+GROB SEE STOPIC
RCLPIC 2

MENU
»

Store this menu-buildingprogram called GRAF¥ (Checksum: # 56853d

Bytes: 67.3) in your TOOLS directory.

Building a Toolbox 117

Sines and Big Sines

In chapter 4, you used a sine wave to illustrate some of the graphics

capabilities ofthe 48. Go back now and repeat the exercise on page 84

(don’t forget to use RADians mode).... Then store this plot in a grob

called SINE (type 'SINE' STOPIC).

Now create a sine wave plot using the BIG grob: Make sure you’re in

thePICS directory. Putthe name 'BIG' on Level 1 and execute RCLPIC.

Press ([3)PLOT), and be sure the current equationis ' Y=SIN(X)'. Then

set XRNGto (-16, 18) andYRNGto(-1.1, 1. 1) (donot press EITHIE—

that would reset XRNG and YRNG). Nowjust press [ddil%l to draw the

plot... (cookie time).

When the plot finishes, press [M;l338 to add the finishing touches, and

then have a look at this monster. With the graphics menu displayed,

the arrow keys have the following functions:

1. Unshifted arrow keys move the cursor within the display “win-

dow.” At the edge of the window, they scroll the display across

the grob—to its actual edge.

2. (Ofed arrow keys jump the cursor to the edge of the window. At

the edge of the window, (®)ed arrow keys jump the cursor and

display to the edge of the grob.

3. (<4 puts you in scrolling mode. Think of scrolling as viewing a

large picture through a small window or frame: You don’t move

the picture, you move the window.

118 5: GraprHICs Basics

Press(&]4)now, to get into scrolling mode. In scrolling mode, no cursor

is visible, and the arrow keys have the following functions:

1. Unshifted arrow keys scroll the display across the grob.

2. (PJed arrow keys jump the display to the edge of the grob.

3. (]« returns you to the interactive graphics environment.

Press to return to the Stack display. Then, in the PICZ directory,

enter the name 'BIGSINE' onto Level 1 and execute STOPIC.

Now you can review both SINE and BIGSINE any time you want—and

you can also practice with other graphics functions on these grobs.

Sines and Big Sines 119

Review

In this chapter, you explored the graphics commands in several ofthe

48’s built-in menus. Then youbegan to augment those commands with

your own graphics “toolbox”—a collection of programs and sample

grobs useful in your own graphics development work.

At this point, then, you should have these programs in TOOLS (PURGE

the object called TEMP from TOOLS and/or from PICT, if it’s still there):

GRAFX

RCLPIC

STOPIC

GAND

TPIX

PYUE

$SIZE

GSIZE

SEE

120

builds a custom menu to make graphics work easier.

recalls a grob to the graphics display.

stores the graphics display in a grob.

does a pixel-by-pixel “AND” of two grobs.

toggles individual pixels on and off.

avoids the 48’s PVIEW bug.

finds the byte-size of a grob’s string representation.

finds the size of a grob, in bytes.

graphically displays the contents of a grob.

5: GrapHICS Basics

And you should have these grobs in PIC%:

BIGSINE

ARROW

DISPLAY

TINY

NORMAL

BIG

EMPTY

SINE

Review

a 200x200 sine-wave plot, with axes

a 5x8 arrowhead

a 64x131 “snapshot” of the Stack display

a blank 2x2 grob

a blank 64x131 grob

a blank 200x200 grob

a blank 64x131 grob

a 64x131 sine-wave plot, with axes

121

GraprPHICS IMPROVEMENTS6

Opening Remarks

The PLOT routines give accurate graphical representations of your

functions or statistical data. Still, a plot like the one below doesn’t tell

you much except the shape ofthe function. For example, you can’t tell

what the 3 roots of the function are—and you may not even recognize

the function.

But the 48 does have a command to give the plot some scale—and then

you can write a program to add text onto the plot anywhere you wish.

You're going to do that here.

Also, you’ll be learning how to use the BOX, LINE, TLINE and CIRCLE

commands to make your plots more informative.

Opening Remarks 123

Labelling the Axes

If you’ve already tried axis labels, you probably got results like these:

1.5]Y

SO VTN
5.0B31AE30P1E 6.2BIIB5I0F1A
A R

200|2-ED%| CENT |[COORDJLABEL| FCH
The axis label format uses the current numeric display format. So an

x-axis label of 2t might be plotted in the following ways, depending on

your current numeric display format: STD 6.28318536718

FIX4 6.2832

SCl1 6.3Ed

Here’s a simple exercise to try the different label formats.

1. Type 'SINE' RCLPIC to put your SINE grob into the graphics

display.

2. Press (]« (or (§]GRAPH)).

3. Press [Kild98. You should see a picture like the one above.

4. Press (ATTN), then [(G]MODES). Change the numeric formatto, say,

FIX4 or SCI 1. Thenrepeat steps 1-3 to see how the labels change.

This technique also works with BIGSINE and other oversized plots.

124 6: GraprHics IMPROVEMENTS

Connecting the Dots

Often, on a graph of a function or statistical data, all the data points

are connected by a straight line. This can be a misleading, distracting

or just-plain-wrong interpolation of the data. Therefore, the 48 lets

you choose plotting with or without lines connecting the data, by

setting W9l (system Flag —31).

To compare, do anAUTO plot of the function 'Y=5IN(K) ' with

option enabled and then disabled. You should see these plots:

;

Y/ -
L

S
BTBT ETHR

.-'-_.‘.,_ .".-_-"'.,_

T s

A
. o -.k_.-__ _x S

T][lT)e

Labelling the Axes /| Connecting the Dots 125

Adding Text to Graphics

Suppose you have a 200x200 grob with a multifunction plot on it and

you want to include the names of the three functions being plotted.

There isn’t a built- in function for adding that text.

You can use the cursor control keys with[land [Tilfl to draw the

individual letters, but that’s tedious—and there’s a better way.

Create a new command (call it GLABEL) that places text into the

graphics display (or into PICT), with the upper left corner of the text

at the coordinates specified. Like most 48 graphics functions, GLABEL

should allow you to specify the coordinates either in user units or in

pixels. Also, you should be able to specify a font size for the text: 1,2

or 3 will select small, medium or large text; 0 will select either large

text or special formatting (textbook or matrix format), whichever is

applicable. Here’s a Stack diagram for GLABEL:

Stack Inputs Stack Outputs

3t Location{ #col #row }or (xy)

€% text string to be placed (None)

1 Textsize®, 1,2 or3)

And here is GLABEL (Checksum: # Z5268d Bytes: 33):

« »GROB PICT 3
ROLLD GOR

»

Store a copy of GLABEL in your TOOLS directory.

126 6: GraprHICcS IMPROVEMENTS

Now make two variations of GLABEL.

Namethe first variation GL} (Checksum: # 68923d Bytes: 113.5):

« »GROB DUPZ PICT
ROT ROT GOR SWAP
DUP TYPE SWAP

GL{ puts a label into the graphics

display and then returns the loca-

IFERR C-=PX tion two pixels below the lower left

EHEN corner of the grob. This will help

when you want to create blocks of
0BJ» OROP 4 ROLL
SIZE # 2d + SWAP
DROP + 2 =+LIST
IF SWAP 1 SAME
THEN Pw=C
END

left-justified text of varying sizes

in your graphics display.

StoreGL{ into the TOOLS directory.

Name the second variation GL* (Checksum: # 3¢747d Bytes: 172):

« »GROB SWAP DUP GL+ puts a label into the graphics

-{EEER SEEEH display, and then returns a loca-

THEN tion two pixels to the right of the

END upperright corner ofthe grob. This
ROT OUPZ SIZE NEG
16d + # Bd SWAP
2 »LIST ROT ADOB
PICT SWAP 4 ROLL
GOR # 2d + # Bd 2
+LIST ADOB
IF SWAP 1 SAME
THEN PX-C
END

Adding Text to Graphics

will help when you want to create

a line of various-sized text in the

graphics display.

StoreGL#* into the TOOLZ directory.

127

Note that before you can use GL* you must write the small utility it

uses: ADDB adds two pixel locations as binary integers.

Here are the Stack diagram and program listing for ADOB:

Stack Inputs Stack Outputs

2% location L 1‘|’col2 #rowz 3

1= location £ #coll #rowl 3 15 new location

{ #col1+# col, # r0w1+1’|= row, 3

And here is ADDB (Checksum: # 18393d Bytes: 91 —store itinto

your TOOL% directory:

« 0BJ+ DOROP ROT
OBJ+ DROP ROT
+ ROT ROT +
SWAP 2 =+LIST

128 6: GrapHICS IMPROVEMENTS

Now look at GL+ once again.

Note that it aligns the bottom edges ofthe text in the graphics display.

Since[, and align to the top left corner of the grob,

GL+ must compute the location ofthe bottom edge as ifyour text were

a 10-pixel high grob. Thatis, since your text will end up as a grob of

height 6, 8 or 10 pixels, depending on the font you use, to align the text

correctly, GL* must account for those differences in height.

As an illustration,first use GLABEL alone to create a line oftext in the

graphics display, using all three fonts. To better see what happens,

incorporate all the commandsinto aprogramand it fromthe Stack.

« { # 6d # 6d } PVIEN
{ # bd # 68d > "TEKT1I"
1 GLABEL (for the first line)
{ # 22d # Bd "TEWTZ"
¢ GLABEL (for the second line)
{ # 54d # Bd } "TEKT3"
3 GLABEL (for the third line)

%

You’'ll see three different sizes oftext, aligned at the top edges,like this:

TETERT2TERT

Byt MOBODYHRITES] |, o THIS. Tt ' STOOL-44 oREAD.

Adding Text to Graphics 129

The largest text font on the 48 (not counting equations and unit

objects) creates grobs that are 10 pixels high. The command sequence

« ... SIZE NEG
16d + ..

»

adjusts the placement of text grobs of any size such that all the text

ends up aligned at the bottom edges.

Now, erase the display, and then use GL* to create a line oftext like the

one you created above, and see the difference. Again, to see it happen,

put all the commands in a program and it from the Stack.

« { # 6d # Bd 3+ PVIEW
{ # Bd # Bd 3 "TEXTL" 1 GL* (for the first line)
"TEXTZ" 2 GL» (for the second line)

"TEXT3" 3 GL+ (for the third line)
»

You'll get the following effect. Notice how the text is aligned on the

bottom edge:

sTEXT2TERT3

130 6: GRraprHICcS IMPROVEMENTS

Now test GLABEL itself:

Move back to PICZ. Put BIGSINE into the graphics display (type

'BIGSINE' RCLPIC). Then (6)-)5J+/=SPC] AL and

sets the correct ranges. Then type (.3, 1)

"Sine Wave Plot" GLABEL (ENTER), and press (@) to see your

creation (use the arrow keys to scan around until you see this display):

1.10 ?Sf' ne Wave Plot

fi

L
TRATEENETE

Nowput{ # 128d # 15d 2 onto Stack Level 3, your name in quotes

onto Level 2 and the numberonto Level 1. Execute GLABEL, then («).

You should see:

1.10 lllfir":.llave Flot

Y Depen|

 EHHEEHEH COORD|LABEL] FCH |

Adding Text to Graphics 131

Now put (8. 35, B.5) onto Level 3, "August 1, 1998" onto Level 2,

and the number 1 onto Level 1. Execute GLABEL, then press(«).... You

should see the date in 6-pixel text below your name, like this:*

10fv5ine Mave Plot

ay Depe

+

#UGU-T 1. 1990

200|2-E0%] CENT |COORD|LAEEL] FCM |

Save this as BIGSINE (in PICZ) again (remember how—page 119?).

Nowtrythis: (ATTN)(=]PLOT)NXT)[dFH creates ablank 131x64 grob. Then

typeum{ # 1d # 2d I "lelcome" (3)vAR[IE™. You should

seel # 1d # 14d }. Now press (€ to see lelcome in the graphics

display. Next, typeaTTN)"to the new")[R"HP-485K"

"Scientific Expandable calculator" ()[EEIE—and press(«€)to

see your creation—a startup screen (more on this in chapter 7)!

Best of all, GLABEL , GL+ and GL{ can be used as subprograms in your

own programs, and they can be easily rewritten as functions—or into

functions. They don’t halt program execution, and they’re not interac-

tive; they take their arguments from the Stack. They’re also fairly tidy:

they clean up the Stack after themselves. However, they do alter PICT

irreversibly, and they don’t include error checking—they assume you

have given them correct inputs.

*WaRrNING: If you execute GLABEL from your TOOLS directory, you may get different results from

those pictured here. GOR and other graphics commands compute user units as specified by PPAR

inthe currentdirectory. Ifyour directories have PPAR’s with differing user units, your results will

be unpredictable. Therefore, it may be advisable to avoid user units in cases like this.

132 6: GraprHICS IMPROVEMENTS

Here’s one more handy routine, called CTR, that centers text around a

given point in a grob. The text is drawn in font size 1:

CTR

Checksum: # 63567d

Bytes: 6H

Stack Inputs Stack Outputs

3t target GROB (may even be PICT)

22 locationt ¥ rowno. ¥ columnno. }

1: "rext" 1: modified GROB

« 1 »GROB DUP SIZE
DROP & -~ ROT EVAL
SWAP ROT - SWAP 2
+LIST SWAP GOR

Store CTR into your TOOLE directory. Then test it and experiment with

it as you wish.

Adding Text to Graphics 133

Adding Graphics to Enhance Plots

Purge PICT and pull out BIGSINE again. Now suppose you want to

label the origin. How do you do this?

Press to get to the drawing menu. Then use the arrow keys to

position the cursor on (0,0) and press (X. Press any arrow key four

times, then [M[M. Now the origin is circled. Next, press the arrow

keys to get the cursor at the 4 o’clock position on the circle. Press

again. Press (b)fifteen times, then (¥) eight times, then LIAIZIA.

You’ve now drawn a line from the circle to some arbitrary point. The

Toggle LINE function draws a line that turns black pixels white and

white ones black. Now press to save the pixel position to the

Stack. Then press to return to the Stack for a moment.

Back in the Stack display, you see the digitized cursor position on Level

1. You wanttolabel the origin as eitherORIGIN or8. BBBH (your choice).

With the cursor position on Level 3, put either "ORIGIN" or# onto Level

2, and 1 onto Level 1. Then execute GLABEL .* Finally, press («).

Move the cursor to just under the B. Now press (X), then (>)repeatedly

to move the cursor to the end ofthe label. Press to underline the

label (you could also use [II'LEH to do all this, but the canned shape

routines are faster in a program and give more predictable results—

use them as much as possible).

*Remember the hazards ofdiffering PPAR’s in different directories (see the footnote on page 132).

134 6: GrapHICS IMPROVEMENTS

Your grob should now look like this.

 00T+0OT-LINE|TLIME]EOH CIRCL

Hmm...in a presentation-quality plot, the title block should probably

be enclosed in some kind of box, no?

All right: Press the arrow keys to get the cursor above and to the left

of thetitle, S5ine bave Plot. Press(X). Now move the cursor below

the date and to the right of the title and your name. Press lEIEM, and

you should see yourtitle block as shown below.

1.1-:__-.-':;ifine Wave Flot
;’i 'T.ag [:'EF'EI.-.ll'lI

sle | |
| \ I I
LT WNETSAR

Save this as BIGSINE (in PIC%) again.

Adding Graphics to Enhance Plots 135

Review

In this chapter you learned how to manipulate the PLOT functions to

display your plot the wayyou want to see it. You learned how to display

the axis labels in different numeric formats.

You also created some programs to place text—of various sizes—

anywhere on a plot. These programs, GLABEL ,GL!.,GL* and ADDB,are

important additions to your toolbox.

You then used some ofthe shape commands (e.g. IENEl, [NI4W, INTA,

L8194 to accent your plot. This is what the shape functions were

originally intended for.

Infact, from now on, you can refer to the shape commands as “freehand

drawing figures.” Together with the freehand drawing commands

EETand EIEEN/[EIFIA, they form the core of the 48’s tre-

mendous graphics capability. And that’s what the next chapter is

devoted to—freehand drawing.

136 6: GrapHICS IMPROVEMENTS

Graphite Grobs*

*Notes, doodles, Cookie Art, etc.

Review / Graphite Grobs 137

A
]

 (i

>

RkATo‘§' o \ \” >

RISZDP _./.e S

) 3

A ‘%%%
\i”'
2
N

s XIRR SRoRN
Y '4“ R

i

1

\“I1

X

<2

L

; ’ %L

7: FREEHAND DRAWING

How to Do It

What if you could turn on your 48, or start a program, and see an

opening display like this?

Welcome

TO THE

HF-485&

With freehand drawing, you can create graphics to give your programs

more pizzazz, simplify and clarify user interaction, or produce more

intuitively understandable, pictorial outputs.

This chapter shows you how to do it.

How to Do It 139

The procedure for creating freehand graphics is this:

1. Use or to create a blank grob—yourdrawingboard.

2. Use HAMH and T,or IIIER—or even and EIGIN3—to

define your user units. Or, just work in pixels.

3. Use IEIEM to draw a single- or double-line around your grob.

4. Use INETA, N[N, etc. as much as possible, and [HE]/ETEER,

EEE / ETIE only when the shapes won’t do. In the Welcome

picture at the start of the chapter, for example, all parts of the

calculator except the keys were drawnwith[H[i[3 andIETI8. The

keys were [TIEl work. The text was done with GLJ and GLABEL .

5. Periodically during your creation (and ofcourse, when it’s done),

save your drawing by typing ' TITLE' (or any other name), then

STOPIC. Remember that your grob is only an object, which can

be lost with a single keystroke.

Now use this program, named OFF1 (store it in your HOME directory:

Checksum: # 38534d Bytes: 68):

« { HOME TOOLS PICS TITLE 32
RCL PICT STO OFF
{ ¥ PVIEM

»

You can add it to your CUSTOM menu, or assign the program to the

key. Then, whenever you use OFF1 to turn the calculator off,

you’ll see your own TITLE grob.*

*With everythingelsethe 48 has,it’s a pity HP didn’t include (or at least document) an AUTOSTART

feature—a flag to activate a user program whenever the machine is turned on.

140 7: FREEHAND DRAWING

Drawing a Voltmeter Face

As another example, here’s how to use freehand drawing figures and

user units to create the face of an analog instrument meter, such as a

voltmeter. You should end up with a grob that looks like this:

Press [@Eto create a blank 131x64 grob. Then press (<)

to get to the graphics environment, and put a frame around the grob

by drawing a box: (P[4(a)XVNxDELER

Now define your drawing area in user units. To make it easier, call the

pivot point of the needle the origin, or (B, B).

Give the arc on the numeric scale a radius of 0.9 unit from the origin.

Then, allowing for tic marks and lettering, your maximum meter

height will be 1.14 units, and your minimum meter height will be -0.12

units. For now, use a meter width of 2.6 units.

Note that you are using arbitrary units right now. When creating a

strip chartor abar graph, you’ll probably want to use more meaningful

units, like dollars/month or thousands of barrels per day, etc.

Drawing a Voltmeter Face 141

You can set your user units in two ways:

¢ Specifythelower-leftandupper-right corners via PMIN and PMAX:

(-1.3,-.12) PMIN (1.3,1.14) PMAX

* Or, specify the x- and y- ranges, using EF{iiId and FAA:

-1.3 1.3 EHHI1d -.12 1.14

Either approach works fine. What you’re doing is setting the plotting

limits in terms of your own units. This diagram illustrates the

relationship between PMIN / PMAX and{3/ EH:

Yna) PMAX=(x,yJ—
YRNG B 1|

C#y,#y 3 :

<.,|o_min | HRNG B

| € #x, #x 3
|

142 7: FREEHAND DRAWING

Now draw a small circle at the pivot point. You can do this from the

Stack or from the GRAPHICS environment.

From the graphics environment, use [4!]1]{1] to find the pixel closest to

(0,0), then (X)(»]»)») (maybe (=) to get the menu back), then .

Or, to draw the pivot circle from the Stack, place these arguments on

the Stack:

4: (B, 0) center of the circle

3 .63 radius of the circle

et B start angle of the circle

1: 366 or6.72832 end angle of circle (° or rad)

Then press (PRG) I'EIJMIETIM (the [[IdM command doesn’t work on the

Stack, and doesn’t work in the graphics environment.)

Next, draw the meter arc, by using(PRG) [NEEMIETAM, with these Stack

arguments: 4: (@, B) center of the arc

3t H.9 radius of the arc

¢t 150rB.¢618 arc start angle (/8 RADians)

l1: 165 0rz2.8798 arc end angle (7n/8 RADians)

Now draw the 6 tic marks in the graphics environment, by “eyeballing”

their locations (you could calculate their locations exactly, but you’ll

get equally good resolution using the interactive commands): Move

the cursor to the point on the arc where the tic mark originates; press

(X). Then move the cursor to the other end of the tic mark, and press

IATA. Repeat this for all six tic marks, evenly spaced.

Drawing a Voltmeter Face 143

Now use the GLABEL utility from Chapter 6 to label the tic marks. You

want to label the tic marks 8,2, 4,6, 8 and 18.

For each label, follow this procedure:

1. Press or{«¢) to get the graphics environment. Move the

cursor to the point above the tic mark where the label belongs,

and press (ENTER).

2. Press to exit graphics. Put the label on Level 1 as a string,

ie "B" "2" "4" etc. Press (1), then execute GLABEL.*

At the end, your grob should look like the figure shown on page 141.

Store this grob by entering 'METER' STOPIC.

Later, you will see how this versatile grob can be used in conjunction

with the RS-232C interface to simulate a wide variety ofmeasurement

Instruments.

*Keep in mind that GOR, GXOR and REPL use the plotting limits in the current directory when

they add datato PICT. This can give you unexpected resultsifyou execute GLABELfrom a directory

with a different PPAR than what you intend.

144 7: FREEHAND DRAWING

Review

In this chapter you've seen the freehand drawing tools and a few

examples for using them to create your own grobs, not necessarily tied

to the normal PLOT routines. You should feel free to explore any other

uses for grobs you can think of.

Keep in mind that a freehand grob can also be created programmati-

cally, by using the commands from within € #. Or, you can useRCLPIC

to recall the (previously stored) grob, or SEE ifthe grob is on the Stack.

And any grob on the Stack can be turned into a program by placing it

on the Command Line and enclosing it in ¥ * brackets.

Now you're ready to see some real applications—examples ofhow you

might put together everything you’ve learned here so far....

Review 145

8: PROGRAMMABLE (GRAPHICS

APPLICATIONS

Introduction

In this chapter you’re going to see several graphics applications. Some

are meant to be used “asis,” while others are given simply as examples

ofwhat you can do with graphics—to be modified or finished to fit your

needs.

Each application begins with a description of the program(s). Then

follows a list ofsubroutines and other variables, then a complete set of

program listings, along with checksums, byte counts, Stack argument

listings (where appropriate), notes and/or comments (where appro-

priate). Occasionally, too, you maysee multiple versions ofaprogram—

just to show you how different your approaches can be.

*The checksum and byte counts given are for a Rev. A machine. To compare checksum and byte

count, enter the program and store it under the indicated name. Then put that name onto Stack

Level 1 and press EYTESH

Introduction 147

Programmable Scanning Inside a Big Grob

These programs automate scanning inside a large grob—say, 300x200.

Descriptions

PSCAN: To display only certain, predetermined parts of the grob, you

can use PSCAN from within a program to display those parts.

SCAN: To examine the grob yourself, use SCAN as a versatile alternative

to the built-in GRAPHICS scrolling mode, moving by pixel, ten pixels,

or across the entire grob.* SCAN treats the 48 display as a window onto

the grob and redefines the numeric keypad as a window control pad;

each numeric key, except(5)and(0), indicates a direction for movement:

¢ The key, for example, moves the grob one pixel up and to the

left (that is, it moves the window one pixel down and to the right).

. moves the grob ten pixels up and to the left.

. moves the grob to the upper left corner of the window.

* Similarly, the other numeric keys move the grob in their direc-

tions: (3)to the lower right, (6] to the right, etc. (5) does nothing).

* (0)exits SCAN in an orderly fashion. is OK for emergencies,

but it will leave the directory cluttered with extra objects.

*You may wish to disable the clock display (clear system flag —40) when using SCAN. A system bug

causes the clock display to appear on the top edge of the grob, where it scrolls off- and on-screen,

as part ofthe grob. Interestingly, the clock even keeps “ticking” as it moves around (at least in Rev.

A calculators). HP will probably fix this in a later ROM revision.

148 8: PROGRAMMABLE GRAPHICS APPLICATIONS

Subroutines

PSCAN, SCAM and these subroutines should all be in the same directory.

SETUP: Creates temporary variables and initializes the 48 prop-

erly for SCAMN and PSCAN.

MUDGE: “Nudges” the graphics display the distance and direc-

tion given in Level 1.

MV Moves 1 pixel in the direction indicated.

My1@: Moves ten pixels in the direction indicated.

MYall: Moves across the entire grob, in the direction indicated.

ADDB: Adds two lists ofthe form{ #rrr # ccc } (see page 128).

PVUE: Corrected version of PYIEl (see page 102).

Alternate Approach

These routines offer another solution, for the sake of comparison.

PSCN An alternate version of PSCAN.

SCN An alternate version of SCAN.

My Combines the functions ofMUDGE, M1, MY18 and Myall

above. Moves the distance indicated (1 pixel, 10 pixels

or all the way) in the direction indicated.

PVU An alternate, program-specific version of PYUE.

Programmable Scanning Inside a Big Grob 149

Listings

SCAN

« SETUP
Cursor PVIEW
00 8 WAIT DUP FP

+ ky kfp
« CHSE

kfp .1 SAME
THEN ky MV1
END

kfp .2 SAME
THEN ky MV1G
END

kfp .3 SAME
THEN ky MVYall
END

END
ky

»

UNTIL 92.1 SAME
END
{ Cursor PSIZE } PURGE

®

Checksum: # 47364d

Bytes: ¢57.5

Stack Arguments

l: (none)

Notes: SCAN uses PICT.

150

(Initialize PICTandvariables)

(Unshifted)

(&)shifted)

()shifted)

(Key zero—exit)

(Remove global variables)

Stack Results

(none)

8: PROGRAMMABLE GRAPHICS APPLICATIONS

P5LHN

« (0BJ» (Break down list into locations; use list size as a counter)

00 DUP 1 + ROLL PVIEW (“Roll up”to the next location,
5 WRIT 1 - use it and discard it)

UNTIL DUP 8 SAME
END

Checksum: # 29476d

Bytes: 67.5

Stack Arguments Stack Results

l: { loc, loc, loc, ... loc, h (none)

Notes: PSCAN uses PICT.

The Stack argument may be given either in user units (com-

plex numbers) or pixel locations{ # rownum # colnum }. Each

set of coordinates in the list represents a location on the grob

that will successively be passed to PYIEl in the program.

Programmable Scanning Inside a Big Grob 151

SETUP

« PICT SIZE DUPZ 2 =LIST
'PSIZE' STO (Save PICTsize)

IF # 64d < SWAP (If PICTis no bigger than the default...
131d < AND

THEN ...offer to view without scrolling or aborting)

IF"GROB is smaller than= (= is NEWLINE; press ()<
display! Look anyuway?"

EII{III:”T'IEI§“ llfi 1 CDNT * }

{ "NO" « B CONT = } 3}
TMENU PROMPT B8 MENU

EHEN { } PVIEW (Press to exit from this)

CONT (CONTbreaks out ofSCANhere)

ELSE { # 6d # Bd 1}
'Cursor' STO (Initialize the cursor)

Checksum: # 2¢6847d

Bytes: 311.5

Stack Arguments Stack Results

1: (none) (none)

Notes: SETUP initializes SCAN and PSCAN.

152 8: PROGRAMMABLE GRAPHICS APPLICATIONS

NUDLE

« Cursor RODB (Add increment to Cursor)

+ Ccursor

« JFERR cursor PVYUE (PYUEtraps the PYIEWN bug—see Ch. 5)
THEN 388 .Z BEEP
DROP

ELSE cursor
ENDI Cursor' STO (Update Cursorfor next time)

Checksum: # 34653d

Bytes: 148

Stack Arguments Stack Results

1: { # column-increment # row-increment 3 (none)

Notes: MNUDGE moves the grob according to the increment given in

Level 1.

The increment must be given in binary integers.

NUDGE is called by MY¥1 and MV18.

Programmable Scanning Inside a Big Grob 153

M1

€« + |y

« CRASE
ky 62.1 SHME (Key up and left)

EHEN { # 1d # 1d } NUDGE

ky 63.1 SAME (Key straight up)
EHEN { # 6d # 1d » NUDGE

ky 64.1 SAME up andright)
ETJEDH { # 18446?449?3?89551615d 1d } NUDGE

ky 7Z2.1 SAME (Key (4) left)
EHEN { # 1d # 6d } NUDGE

ky 73.1 SAME (Key (5) nowhere)
EHEN { # 6d # 6d } NUDGE

ky 74.1 SAME (Key (6), right)
EH%N { #18446744873789351615d # Bd + NUDGE

ky 82.1 SAME ey (1) down and left)
EI"'I.IEDN { # 1d # 18446?448?3?9955 615d } MUDGE

ky 83.1 SHME ey (2} straight down)
EHEF { # &d #18446?448?3?9955 615d } NUOGE

ky 84.1 SAME (Key(3), down and right)
THEN

{ # 18446/948737095516135d
18446/448/3789531615d X

NUDGE
END

END

154 8: PROGRAMMABLE GRAPHICS APPLICATIONS

Checksum: # 48385d

Bytes: 632.9

Stack Arguments Stack Results

1: keycode (none)

Notes: MY1 moves the grob 1 pixel at a time.

You cannot create the large binary integerinlV1 via# 1d

while editing the program. You'llget« ... # 1d MEG ... *,

which won’t work in the program. And # 1 causes

an Invalid Suntaxerrorat« ... # -1d ... =,

To get the large integer, then you must either key it in digit-

by-digit each time (not too thrilling a prospect) or put it onto

the Stack before keying in the program, then pull it into the

program during editing via (GJEDT)EEAIA. This seems far

easier, since the numberisjust the negative ofa smaller, more

familiar integer:

1 (EeNTERFD) Result: # 184467448¢37/890316150d

Then, while creating your program, put the insert cursor (%)

in the space to the right ofwhere you want to place the integer.

Press to get the EDIT menu and to get to the

selection environment. Use(a)and (¥)to select the integer, and

then (ENTER). You’ll return to the program editing, with

the integer in the right place.

Programmable Scanning Inside a Big Grob 155

Y16

€ % Ly

« CRSE
ky 62.2 SAME (Key ()7} up and left)

EHEN { # 16d # 18d } NUDGE

ky 63.2 SHME (Key(] straight up)
EHEN { # 6d # 168d X NUDGE

ky 64.2 SAME ma up andright)
Efl&fi { #18446?449?3?89551686 Bd } NUDGE

ky 72.2 SHME (Key (&)4), Lleft)
EHEN { # 1b6d # 6d > NUDGE

ky 73.Z2 SAME (Key ()5), nowhere)
EHEN { # 6d # Bd } NUDGE

ky 74.2 SHME (Key (5]6}, right)
TE-}I;!I[EJN { #184467446873789551606d # Hd NUOGE

ky 82.2 SAME ey (]1] down and left)
-Il::l}'l.l%fl { #16d #18446?449?3?995 e6B6d I MNUDGE

ky 83.2 SAME ()2} straight down)
EE&F { # &d #18446?448?3?89551686d ¥ MUDGE

ky T?{%Nz SAME (Key(&]3) down and right)

{ # 1844674946737/89531686d
18446744873789551686d 3

NUDGE
END

END
2

®

156 8: PROGRAMMABLE GRAPHICS APPLICATIONS

Checksum: # 386H8d

Bytes: 653.5

Stack Arguments Stack Results

1: keycode (none)

Notes: MY1H moves the grob 10 pixels at a time.

As with V1, to get the large integer here, you must either key

it in digit-by-digit each time or put it onto the Stack before

keying in the program, then pull it into the program during

editing via (GJEDIT)EEAIA. Again, this seems far easier, since

the number is just the negative of a smaller, more familiar

integer:

 # 1BENTER[7/D) Result: # 18446/448757895031666d

Then, while creating your program, put the insert cursor (¥)

in the space to the right ofwhere you want to place the integer.

Press to get the EDIT menu and to get to the

selection environment. Use(a)and(¥)to select the integer, and

then[lENTER). You'll return to the program editing, with

the integer in the right place.

Programmable Scanning Inside a Big Grob 157

Mall

€ % |y

« CRSE
ky 62.3 SAME (Key up and left)

THEN PSIZE
{ # 1844674460737689551485d

18446/44873789551552d 1
RODB

END
ky 63.3 SAME (Key straight up)

THEN Cursor 0BJ» DROPZ
PSIZE OBJ+ ROT DROPZ
64d - 2 =LIST

END
ky 64.3 SAME (Key ()9} up andright)

THEM # Bd PSIZE 0OBJ+ ROT
DROPZ # 64d - & =LIST

END
ky 72.3 SAME (Key left)

THEN PSIZE 0BJ+ DROPZ
131d - Cursor 0OBJ+
ROT DROPzZ 2 =LIST

END
ky 73.3 SAME (Key nowhere)

THEN Cursor
EMD

ky 74.3 SAME (Key (©]6), right)
THEN # Bd Cursor 0BJ-+

ROT DROPZ 2 -=LIST
END

ky 8Z.3 SAME (Key down and left)
THEN PSIZE 0BJ+ DROPZ

131d - # Bd 2 =LIST

k Egg 3 SAMEy . (Key straight down)
THEN Cursor 0BJ+ DROPZ

6d 2 =LIST
END

158 8: PROGRAMMABLE GRAPHICS APPLICATIONS

ky 84.3 SHME (Key (©)3) down and right)
EHEN{#Bd#Bd}

Cursor (Ifno other case is true)

END (CRSE)
»

DUP 'Cursor' STO PVIEW

Checksum: # 44rard

Bytes: 674

Stack Arguments Stack Results

1: keycode (none)

Notes: MVYall moves the grob all the way to one side or corner.

Aswith[M1 andMVY18, to get the large integers here, you must

either key them in digit-by-digit each time or put them onto

the Stack before keying in the program, then pull them into

the program during editing via JEDIT)EELIA. This seemsfar

easier, since the numbers are just the negatives of smaller,

more familiar integers:

131 ENTER[/D) Result: # 18446744873709551485d
64 ENTER(*/2) Result: # 184467448737/89351552d

Then, while creating your program, put the insert cursor (%)

in the space to the right ofwhere you want to place an integer.

Then press EZ3TA, and use (a) and (¥) to select the in-

teger, then (ENTER).

Programmable Scanning Inside a Big Grob 159

Listings for Alternate Approach

Often you may first solve a programming problem in the way clearest

to you, only to discover later that you could have accomplished the

same task more simply, or with less code, less memory usage, better

execution speed, etc. Infact, the very act ofcreating and documenting

the first version often reveals the possibilities for improvement.

This application is a good example of that process. After studying the

previous version, you’ll see how this version “streamlines” it somewhat

(though the effective speed is about the same either way):

PSCN

« 0BJ+ 1
FOR J J ROLL

PYIEW .5 WRIT -1
STEP

»

Checksum: # 12373d

Bytes: 98

Stack Arguments Stack Results

1: { loc, loc, loc, ... loc, 3 (none)

Notes: PSCN is very similar to PSCAN (page 151).

160 8: PROGRAMMABLE GRAPHICS APPLICATIONS

SCH

« { # Bd # Bd > PVIEW (Display PICT)
RCLF 'Flags' STO 64 STUWS (Save current flag settings

before messing with them)
PICT SIZE &4 - B*R 'PY' STO (Re-size PICT if
131 - B*R 'PK' ST0 it’s too small)
B 'CK' STO B 'CY' STO (Initialize variables)

WHILE 8 WARIT DUP 9z.1 # (Get keycode)
REPEAT DUP IP (Dissect it into two

SWAP FP 18 = arguments for M)
ENDNU PVU (Do the move and display the result)

OROP Flags STOF (Restoreprevious flag settings)
{Flags P¥ PY CX CY 2} PURGE (Clean up)

Checksum: # 4H8288d

Bytes: 295

Stack Arguments Stack Results

1: (none) (none)

Notes: SCN behaves like SCAN (page 150).

Programmable Scanning Inside a Big Grob 161

&
T

My

#‘18 1IE12 * SWAP GET

{{113x{813x{-1113
{18x{883{-187:3
{1-13x{B8-13{-1-12373

{ 62 63 64 72 73 74 B2 B3 84 2
ROT POS GET EVAL
f = CY + PY MIN B MAx 'CY' STO
f = CX + P MIN B MAX 'Ck' STO

Checksum: # 57437d

Bytes: 348.5

Stack Arguments Stack Results

2t keycode (integer portion) (none)

1: keycode (tenths digit) (none)

Notes: MY moves the grob asindicated by the two keycode arguments

162

it receives from SCN. Compare this withNUDGE,MY1 MY18, and

MYall on pages 153-159. Note,too, that since only SCN calls

MY—and only once—you could certainly incorporate¥ intoSCH

with no loss of efficiency.

8: PROGRAMMABLE (GRAPHICS APPLICATIONS

Py

« Cx R+B CY R-+B
2 =LIST PVIEW

»

Checksum: # 7£4367d

Bytes: 41

Stack Arguments Stack Results

1: (none) (none)

Notes: PVYU is a program-specific version ofPYUE (page 102). Thatis,

since the assumption is that PYU is to be used only with SCN,

it doesn’t do the type-checkingthat the more generalized PYUE

does. Note,too, that since SCN calls PYU only once, you could

also incorporate PYU into SCH with no loss of efficiency.

Programmable Scanning Inside a Big Grob 163

Generating a Stripchart

Here are two programs which allow you to display data in a stripchart

format. Astripchartrecorderisa mechanismthatdragsastrip ofpaper

at a constant speed under a pen being activated by a signal from an

instrument or sensor. Usually the signal is a 0-5-volt or 4-20-milliamp

signal.

Now, with the advent of low-power signal conditioning modules, you

can read an analog signal input, then convert it to a real number and

transmit it via datacomm lines to a digital computer.*

The 48 has a unique position as a portable instrument controller or

data logger: On the last page of the I/O menu are some low-level

commands with which you can configure your 48 to communicate with

any serial device in the world. These stripchart programs and the VI

program which follows, are intended to demonstrate this capability.

*Signal conditioning modules that do this are available from Omega Engineering, DGH and many

other sources. Most modern test & measurement instruments are now sold with a built-in or

optional serial interface.

164 8: PROGRAMMABLE GRAPHICS APPLICATIONS

Descriptions

STRIP: This program displays an animated (rolling) stripchart on the

display. It may be halted by pressing any key.

PSTRIP: This program prints a stripchart on the infrared printer. The

output is very elementary, but the program is easily modified to add

more detail to the output. It may be halted by pressing any key.

STRIP and PSTRIP do not take their input from the Stack. Instead,

they look for a list called DAPar (“DataAcquisition parameters”), ofthe

form £ minimum-value maximum-value title time-interval }, where

minimum-value andmaximum-value (real numbers) are the chart limits.

title (a character string) is the chart title.

time-interval (a real number) is the minimum interval between

measurements (not used in STRIP). This is given in HMS format—

as hh.mmss, where hh is the number of hours, mm the minutes, and

ss the seconds. The routine Nxt ime uses this time interval to com-

pute the time until the next measurement. The minimum useful

time interval varies from machine to machine, and depends on how

long it takes to execute READY and print the results.

Ifthe programs do not find any list object named DAPar, then they use

this default DApar:

{ag1" @3

Generating a Stripchart 165

Note that in a real setting, where the 48 would be connected to a

voltmeter or other signal conditioning module, the routine READY

would query that instrument or module, and the commands within

READY would typically look like this:

« . "#I1RD" ®MIT DROP
REPEAT
UNTIL BUFLEN DROP
END
SRECY DROP ...

Here, however, for the purposes ofthese demonstration programs, the

input of a real meter is simulated with a random number generator.

Therefore READY becomes simply % RAND
»

166 8: PROGRAMMABLE GRAPHICS APPLICATIONS

Subroutines

STRIP and PSTRIP use several subroutines. The main programs and

the subroutines should all be stored in the same 48 directory.

READY. Program to collect the data from the serial- or infrared-

equipped sensor or instrument.

MkAxis: Draws a y-axis for PSTRIP paper output.

Now?: Performs an elapsed-time (true-false) test.

Pr8: Prints eight pixel rows to the infrared printer.

Variables

DApar: The data-acquisition parameter list

&t (delta-t): The time interval, in ticks, between measurements.

Nut ime: PSTRIPusesal0...UNTIL loop totime readings, rather

thanalarms;the currenttime (in ticks)isincremented

by &t to generate the value Nkt ime. But in a remote

application, PSTRIP could be modified to set alarms

and turn itself off, rather than use such a0 ... UNTIL

loop.

Generating a Stripchart 167

Listings

STRIP

« RCLF 'Flass' STO &4 STUWS (Save current status)
IF DApar DUP TYPE 5 # (Find or create DAPar)

EHEN {81 " @8 } DUP ROT STO

DUP 2 GET SWAP 1 GET DUPZ - (Extract parameter values
+ hi lo diff from OAPar)
« PICT PURGE (Draw the stripchart recorder)

168

{ # 6d # 6d > { # 126d # 63d > BOX
{ # 26d # 11d + { # 126d # 54d BOX
8 120
FOR z z R+B # 53d

¢ =LIST
PIXON z8

STEP
{ # 6d # Bd } PVIEW STD (Showthestripchartrecorder)
PICT { # 268d # 57d }
lo 1 »GROB GOR (Label the reticle)
PICT hi 1 =GROB DUP
SIZE DROP NEG # 121d + # 57d
¢ »LIST SWAP GOR
PICT { # 2d # 2d 2
IF DApar 3 GET DUP SIZE NOT (Draw the title)
EHEN OROP "Press any key to quit." (Default title)

1 +GROB GOR
Do (The data acquisition loop)

READY lo MAX hi MIN lo - diff ~
PICT { # 21d # 12d } { # 119d # 52d } SUB
PICT { # 21d # 13d } ROT REPL
PICT { # 21d # 12d } GROB 99
1 BB0EBHEBBERBERDEROEAEBEABEE REPL
186 = 28 + E=B # 12d 2 =+LIST PIKON

EH%IL KEY

8: PROGRAMMABLE GRAPHICS APPLICATIONS

DROP
»

Flags STOF (Restore status)

{ Flass } PURGE (Delete global variables)
»

Checksum: # ZB965d

Bytes: 899

Stack Arguments Stack Results

1: (none) (none)

Notes: STRIP generates an on-screen stripchart.

DArar may be modified before running the program.

ERT ROCKZ:.

Generating a Stripchart 169

PSTRIP

&« "Printing Stripchart:" 1 DISP
IF DApar OUP TYPE 5 # (Find or create DAPar)

EHEN {a1" 8 } DUP ROT STO

gfig+ DROP HMS+ 29491288 = '&t' STO (Calculate &t)

IF SIZE (Print and display the chart title...
THEN PR1 ¢ OISP
Eth OROP ...unless there isn’t one)

DUPZ ®RNG -56 ¢ YRNG (Setup PICT, draw &print y-axis)
PICT PURGE
PICT { # 68d # 6d » MkRAxis GOR
+ lo hi
« TICKS &t + 'Nwtime' STO (Increment the timer)

00 7 B
FURDDFONCDUFI’L er (Printer can print 8 rows at once)

UNTIL Now?
END (An idle loop: Now? is a T/F test)
RERDV (Read the “voltage”)

lo MAX hi MIN (“Peg the meter” limits)
rowcounter R+*C PIRON
IF rowcounter NOT
THEM Pr8
ETD

STEP
UNTIL KEY
END (End of001loop)

"Stripchart completed" 1 DISP Pr8 DROP
%

{ & Nxtime 3 PURGE (Delete global variables)
*

170 8: PROGRAMMABLE GRAPHICS APPLICATIONS

Checksum: # 457¢6d

Bytes: 472.5

Stack Arguments Stack Results

1: (none) (none)

Notes: PSTRIP generates a stripchart on the HP 82240A/B infrared

printer.

DAPar may be modified before running the program.

-
A
+
-)

ESStrlpchart

—
M
I
0
I
-
B
M -

E
E

E
N

E
E

E
N
I
|
'
1

[5TE|DEJ[05PL|CTRLERCH]TEST

EAT ROCKS.=7 Ty

Generating a Stripchart 171

RERDY

« RAND

Checksum: # 51966d

Bytes: e

Stack Arguments Stack Results

1: (none) a real number

Notes: READY reads a voltmeter or other serial output device. In this

demonstration case, it’s a simple random number generator;

in real applications, this routine would contain the appropri-

ate commands to read the device.

172 8: PROGRAMMABLE GRAPHICS APPLICATIONS

Moy

« TICKS
IF Nxtime 2> DUP
THEN &t 'Mwtime' STO+
END

®

Checksum: # 63658d

Bytes: 8.3

Stack Arguments Stack Results

1: (none) 1 (if it’s time to take another

measurement, or...)

B (..ifit’s not)

Notes: Mow™ updates (increments) the value in Mt ime and returns

a 1l or B to the Stack.

Generating a Stripchart 173

MkeHxis

« PPAR 0BJ» & DROPN (Get PMIN, PMAX)
SWAP RE SWAP IM R=C AXES (Calculate axis intersection)

ERASE DRAX LABEL (Draw axis)
PICT { # Bd # 2d 2
GROB 1 6 HBBEBRARBREE REPL
PICT € # Bd # Bd 2
{ # 136d # 7d 3 SUB (Cut out axis for printing)

»

Checksum: # 3£336d

Bytes: 177

Stack Arguments Stack Results

1: (none) grob for the y-axis

Notes: MkAxis creates the grob for the y-axis of the stripchart.

174 8: PROGRAMMABLE (GRAPHICS APPLICATIONS

Pr8

« PICT
{ # 6d # Bd { # 136d # 7d }
SUB PR1 DROP ERASE

®

Checksum: # 55676d

Bytes: 92

Stack Arguments Stack Results

1: (none) (none)

Notes: Pr8 sends the top 8 pixel rows of PICT to the printer and then

erases PICT.

Generating a Stripchart 175

An Analog Voltmeter

This is a versatile application that lends itselfto infinite modification.

Using the same DApar and READY as used for the stripcharts, the 48

display becomes an analog meter with a swinging needle. With an

analog display, your brain can immediately analyze data without

taking the time to translate from digital representation to a quanti-

tative “picture.” This is probably why digital car dashboards have

disappeared, and the reason for the return ofthe “old-fashioned” dial—

now called “analog” (UGH!)—wristwatch.

Description

The VM application can be used in lieu ofthe stripchart, when you want

instantaneous display of a signal in analog form. YM will draw a volt- -

meter face in the graphics display, label the display according to the

parametersit finds in the list named DApPar, and then swing a needle

back and forth, using a routine called POINT. The needle’s position will

reflect the values it receives from the “voltage-reading” routine, READY.

EAT ROCKS.

-1 2
Simply press any key to halt V. The program and display are simple

enough that you can add other features, such as Out of Range

indicators, auto-ranging, secondary digital readout, etc.

176 8: PROGRAMMABLE GRAPHICS APPLICATIONS

UM takes no input from the Stack. Instead, it looks for a list called

DAPar (“Data Acquisition parameters”), of the form { minimum-value

maximum-value title time-interval }, where

minimum-value and maximum-value (real numbers) are the meter

limits.

title (a character string) is the meter title.

time-interval (a real number) is the minimum interval between

timed measurements (not used in ¥M).

If the program does not find anylist object named DAPar, then it uses

this defaultDApar: { B 1 "" B }

Note that in a real setting, where the 48 would be connected to a

voltmeter or other signal-conditioning module, the routine READY

would query that instrument or module, and the commands within

READV would typically look like this:

« . "#1ED" ®MIT DROP
REPEART
UNTIL BUFLEM OROP
END
SRECY DROP ...

Here, however, for the purposes ofthese demonstrations programs, the

input of a real meter is simulated with a random number generator.

Therefore READY becomes simply « RAND
®

An Analog Voltmeter 177

Subroutines

UM uses the following subroutines, which should be stored in the same

directory as VM:

MAKEFACE: Draws the meter face (if it doesn’t already exist),

except for the needle, title and scale labels.

READVY: Program to collect the data from the serial device, IR

device, or whatever else.

POINT: Erases and redraws the needle, using TLINE.

CTR: Centers text around a point in a grob.

Variables

DApar-: The data-acquisition parameter list

MeterFace: The meter face grob—without needle,titles or scale

labels—created by MAKEFACE.

178 8: PROGRAMMABLE GRAPHICS APPLICATIONS

Listings

M

« RCLF =+ f (Save current status)

« -16 SF -19 SF DEG 64 STHS (Set flags as needed)
(8,.5) CENTR .2 DUP SCALE (Setgraphicsparameters)
IF DApar TYPE 5 # (Find or create UApar)
EH[EJN {@a1" 8 2} 'DArpar' STO

MAKEFACE PICT (Draw the meter face)
{ # 2ld # 56d > DApar 1 GET CTR PICT
{ # 1B4d # 56d } DApar 2 GET CTR PICT
{ # 66d # 2d } DApar 3 GET CTR
DApar 1 GET DUP POINT (Put the needleatfar left)
DO READY DUP ROT POINT POINT (Move the needle)
UNTIL KEY
END
DROPZ £ STOF (Restore previous status)

Checksum: # 4616d

Bytes: 417.5

Stack Arguments Stack Results

1: (none) (none)

Notes: WIMgenerates a working analog meter in the 48 display. DAFar

may be modified before running the program.

An Analog Voltmeter 179

MAKEFALCE

« IF MeterFace TYPE 11 #
THEN PICT PURGE

{ # Bd # Bd } PVIEW
{ # 6d # 6d } { # 136d # 63d 1
BOX (Meter bezel)
{ # 60d # 57d } DUP
3d B8 368 ARC (Needle pivot)
45d 15 165 ARC (Scale)
165 15
FOR n 1 n »V2 .9 n »VZ LINE -38
STEP
PICT RCL 'MeterFace' STO

ELSE MeterFace PICT STO
END{ # 6d # Bd > PVYIEW

®

Checksum: # 53457d

Bytes: 4 18.5

Stack Arguments Stack Results

1: (none) (none)

Notes: MAKEFACE draws the meter face:

180 8: PROGRAMMABLE GRAPHICS APPLICATIONS

POINT

€ 3+ y

& 1
' 15+158=MINC1, MAX(B, (DApar(2)-

V)~(DRpar(2)-DApar(13) 0!
+NUM »V2 (8,8) TLINE

»

»

Checksum: # 6495d

Bytes: 176

Stack Arguments Stack Results

1= signal level (a real number) (none)

Notes: POINT erases and redraws the meter’s needle.

A properly formatted DApar should be in the same directory.

CTR
(see page 133)

RERDY
(see page 172)

An Analog Voltmeter 181

Plots with Two Independent Variables

The 48’s built-in plotter allows you to plot multiple equations at once,

but it allows only one independent variable at a time.

For example, suppose you have the equation, ' Z=®+Y'. Inordertoplot

this with both ¥ and Y as independent variables in the 48’s built-in

PLOT application, you must store several versions ofthe equation with

differentvalues for either® or Y, then create a list containingthe names

of all the versions of the equation.

That’s not as convenient as it could be—with a little help.

Description

MULTIPLOT allows you to plot functions such as z =f(x,y) without all the

headache. Before executing MIULTIPLOT, you do the following:

1. Create the equation just as you would for the PLOT application;

any equation or program that works with PLOT will also work

with MULTIPLOT. However, you must store it under a global

variable name other than EQ.

2. Press to get the PLOTR menu. Set up the ranges, inde-

pendent variable and dependent variable appropriately (see

Chapter 5 for a reminder on how to do this—or you can create an

entirely new PPAR on the Command Line and store it directly.)

182 8: PROGRAMMABLE GRAPHICS APPLICATIONS

3. Onto Stack Level 1 put a list of this form:

{ eqname yname { y, y, .. y } 3} where

eqname is the name of the equation (or the equation itself);

yname is the name of the second independent variable;

Y, ¥,--y,... are the values of that variable to be used in the plot.

MULTIPLOT is remarkably small and simple, since it uses built-in 48

routines to do most ofthe work—and it works at about the same speed

as the Plotter application. Some examples follow the program listing.

You may wish to try your multivariable equation with the built-in

Plotter first, to find a good range for the second independent variable.

Also, note that you can store and recall the equation lists as desired,

effectively saving many different MULTIPLOT applications. And, just

as you save lists ofsingle-variable equations as ' varname.EQ' | so you

might use a standard suffix with two-variable equations—something

such as 'varname.MP'.

Variables

VALS: a list of values for the second independent variable

SIV: the second independent variable’s current value

Plots with Two Independent Variables 183

Listing

MULTIPLOT

« 1 GETI STEQ (Saveequationnamein EQ)
GETI 'SIV' STO GET 'VALS' STO (Save 5I% and YALS)
ERARSE { # 6d # B8d } PVIEN
ORAX LABEL (Draw and label axes)

1 VALS SIZE
FOR n (For each value ...

VALS n GET 'SIV' BCL STO ...storeitin2ndind.var....
DRAW ...and plot the function)

NEXT
{ VALS SIV } PURGE (Clean up)
¢ FREEZE (Freezethedisplay)

*

Checksum: # 183534d

Bytes: 188

Stack Arguments Stack Results

1t { egname yname { Y, Y, - Y, T2 (none)

 Notes: MULTIPLOT generatesa plot ofthe function f(x,y). The function

is plotted in PICT (which is displayed during the plot), and the

program stops with PICT displayed.

Be sure that the PPAR settings are correct.

184 8: PROGRAMMABLE GRAPHICS APPLICATIONS

Example: A Simple Plane

Equation: PLANE: 'Z=x+Y'

Plot parameters: XRNG: 010 YRNG: 0 20

INDEP: K RES: 0

AXES: (8, @)

PTYPE: FUNCTION

DEPND: £

PPAR: { (B,8) (168,28) XK B (B,8) FUNCTION Z I

Level-1 Stack arcument: £ PLANE ¥ { 8 2 4 6 8 18 } X

Result: A series of lines representing contours on the plane:

Note that in this example and the next, the dependent variable in

PPAR does not appear in the algebraic. This simply allows LABEL to

label the y-axis correctly and does not affect the computation at all.

However,in this first example, the dependent variable in PPAR must

be the same as the dependent variable in the equation; an equals sign

makes a lot of difference.

Plots with Two Independent Variables 185

Example: A Fourier Series ofa Full-Wave Rectified Sine Wave

Equation: FOURIER: 'Z*A-r-4*A-n*Z(n=1, Nmax,
COS(n*w*t)7(4*n™2-1))"

(Checksum: # 13515d Bytes: 1£8.5)

Variables: A: 1

w: 1

Plot parameters: XRNG: 0 6.3 YRNG: 01

INDEP: t RES: O

AXES: (B,8)
PTYPE: FUNCTION

DEPND: f

(PPAR): { (B,8) (6.3,1) t B (B,8) FUNCTION f X

Level-1 Stack argument: { FOURIER Mmax { 1 18 } %

Result: A plot of the first several approximations to the Fourier

Series representation of a full-wave rectified sine wave:

Compare this with a similar plot ofthe function ' ABSC{SINCw#*t 1) "' To

see more than one lobe, increase x_from 6.3 to 13 or more.

186 8: PROGRAMMABLE GRAPHICS APPLICATIONS

Example: A Field-Effect Transistor

Equation: IDIDB: 'IFTECYD2VG-Vp, (VD-2-3%(Vbi-Vp)*
CCCVD+Vbi-VGE)~(Vbi-Vp))™1.5-
(CVYbi-VG)~(Vbi-Vp)I™1.5))~
(-Vp—2-3x(Vbi-\Vpl)=(1-(Vbi-(Vbi-
VpJa*1.50), (1-\Gp)nEd!
(Checksum: # 68¢95d Bytes: £88)

Variables: Vbi: 1

Vp: -2.5

Plot parameters: XRNG: 05 YRNG: 01

INDEP: VD RES: 0

AXES: (B, B)

PTYPE: FUMNCTION

DEPND: ID

(PPAR): { (B,8) (5,1) VD B (B,8) FUNCTION ID 2

Level-1 Stack arg: { IDIDB VWG { B -.5 -1 -1.5 -2 } }

Result: Aplot of a theoretical ID-VD curve for a FET. The y-axis is

ID/ID,where ID,is ID at saturation, with zero gate voltage:

un

Compare this curve with those found in typical electronics textbooks.

Plots with Two Independent Variables 187

A Contour-Plotting Program

With MULTIPLOT you were introduced to plotting data in three di-

mensions. But not all three-dimensional data sets can be reduced to

a series of equations. Consider, for example, the need to measure

current uniformity in a plating tank, or temperature distribution on a

heat exchanger fin, or noise levels on a factory floor.

Although such data sets are empirically gathered—not analytically

generated—you can nevertheless analyze them with the contour-plot

approach bymappingthe physical grid ofmeasurementsonto an array.

Description

CONTOUR makes a contour plot, taking data contained in an array and

displaying it as a three-dimensional surface, as seen from above. The

contour lines represent “isovalues”—places on the surface at the same

“altitude,” or value. An example follows the program listing.

CONTOUR takes all ofits arguments from the Stack, including the array

ofdata tobeplotted. However, this array willbe saved asARRAY, so that

you can modify it after running CONTOUR, if you wish.*

*Note that the easiest way to enter array data into the 48 is through the MatrixWriter, (®]MATRIX)

(for more on the MatrixWriter, read Chapter 20 in the Owner’s Manual.)

188 8: PROGRAMMABLE GRAPHICS APPLICATIONS

CONTOUR divides the array into squares, with the points in the array

being the corners of the squares:

A
iJ i, j+1

i+1,j Ai+1,j+1

COMTOUR works on one square at a time, cycling through all possible

contour values. At each contour value, CONTOUR searches for inter-

sections ofthe desired contour line with the sides ofthe square, finding

either zero, two or four intersections per square.

IfCONTOUR finds zero intersections for a given contour value,it skips

to the next value.

Ifit finds twointersections, it determines which two sides ofthe square

are affected. Simple linear interpolation is used to find the points of

intersection, and the contour line segment is drawn in the square.

Ifit finds fourintersections, CONTOUR has encountered a “saddle,” where

two diagonally opposite corners ofthe square are higher than the other

two corners. Saddles are frequently found in the real world—potato

chips, mountain passes, and (of course) a cowboy’s saddle.

A Contour-Plotting Program 189

Saddles are difficult for CONTOUR to draw. It tries to draw a pair of

roughly parallel contour lines, closest to the corners whose average

value comes closest to the contour value. Ifthe value ofthe contour is

equal to the average of all four corners, then CONTOUR draws two

crossing lines in the square.

7 < {

/ \\ \
/ / \ >/ / N ’\\‘ __-

/ -
/ \

/ \ \
/ \ \

Contour value Contour value Contour value

closest to average closest to average equal to average

of upper-left and of lower-left and of all four corners
lower-right corners upper-right corners

In each case, simple linear interpolation determines the points of

intersection. The more points you have, the more accurate CONTOUR is.

Variables

ARRAY: The name in which the given data array will be saved.

Suggestion: Before keying in CONTOUR,store this list into CST in your

TOOL% directory, and then press to use it as a typing aid:

{ ARRAY smallest largest lowlimit hilimit stepsize
range rows cols ii j ul ur 11 lr small big top
bottom left risht contour 3

190 8: PROGRAMMABLE GRAPHICS APPLICATIONS

Listing

COMTOUR

« PICT PURGE DUP 'ARRAY' STO
1 GETI DUP
+ smallest largest (Local variablesformax and min. values)
« DO GETI DUP (Fmd array’s max. and min. values)

smallest MIN 'smallest' ST0
largest MAX 'largest' STO

UNTIL -84 FSTC
END
DROPZ largest smallest DUPZ - (Find array’s range)

6d # Bd » PVIEW ARRAY SIZE EVAL
lowlimit hilimit stepsize (Save array
largest smallest range rous cols parameters)

« 1 rows R=C PMIN
cols 1 R+C PMAK (Set drawing boundaries)
l rows 1 -
FOR ii (For each row...

l cols 1 -
FOR andeach column...

ARRAY ii j 2 =LIST GET wwork the four cor-
ARRAY ii j 1 + 2 =+LIST GET nersofthe square)
ARRAY ii 1 + j 2 *LIST GET
ARRAY ii 1 + j 1 + 2 =LIST GET

DUPH 4 DUPN MIN MIN MIN
EULBLDB MAX MAX MAX

¥

+
O
U
T
h

ul ur 11 1r small bis
top bottom left risht
lowlimit hilimit
FOR contour (For each contour value...

IF 'contour 2 small ...if necessary...
AND contour £ big'

THEN ...find the number o{edge intersections)
'contour > MINCul,ur) AND

contour < MAXCul, ur)’

&

A Contour-Plotting Program 191

+NUM 'top' STO
'contour > MINC11, 1r) AND

contour < MARXC1L, 1r)!
+NUM 'bottom' STO
'contour > MINCul,11) AND

contour £ MARCul, 11)'
+NUM 'left' STO
'contour = MINCur, 1r) AND

contour £ MAXCur, Ir)!
+NUM 'right' STO
'top+tbottom+left+right ' =NUM
CASE (How many intersections?)

OUP 8 == (none...
EHEN DROP ...Skip computations)

DUP 2 == (2 intersections)

THEN DROP
IF top
THEMN

'j+(contour-ul)~ Cur-ul)’
+NUM ii R=»C
IF bottom
THEN to-bottom)
S+contour-110(radiy
»NUM ii 1 + R»C LINME

ELSE (Okay, not top-to-bottom)
IF left (Top-to-left?)
THEN

11+(contour-ul)”

>NUM SHHP R+C LINE
ELSE (Aha—top-to-right)

'ii;(cont?ur-ur)f

>NUM j 1 + SWAP
RB+C LINE

END
END (IF...bot tom...ELSE)

ELSE (ot top, so try bottom edge)
IF bottom
THEN

192 8: PROGRAMMABLE GRAPHICS APPLICATIONS

A Contour-Plotting Program

'j+(contour-11)~
(1r-112'

*NUM i1 1 + R=C
IF left
THEN (Bottom-to-left)

"ii+(contour-ul)~
(11-ul)’

*NUM j SWAP
R+C LINE

ELSE (Bottom-to-right)
'ii;(cont;yr-ur)f

=NUM 4 1 + SWAP
R+C LIME

END
ELSE (Not bottom, either, so. ..

"ii+(contour-ul)~
Cl11-ul)' . .left-to-right)

*NUM 4 SWAP R-=C
"ii+(contour-url)”

(lr-ur)'
sNUM 3 1 + SWAP
R+C LINE

END (IF...bottom...ELSE)
END (IF...top...ELSE)

END (Case of2 intersections)
== (Case of4 intersections—a saddle—

so calculate those 4 intersections)

THEN 'j+Ccontour-ul)<Cur-ul)’'
sNUM i1 R=C
'i+(contour-11)-Clr-11)"
sNUM ii 1 + R=C
"ii+(contour-ul)~(11-ul)’
=NUM 3 SWAP R=C
"ii+(contour-ur)-(lr-ur)’
*NUM 3 1 + SWAP R=C
'"ABS(contour-Cul+1r)-2)!
+>NUM
'"ABS(contour-Cl1+ur)-2)!
+NUM DUP2

193

(Diagonal to upperright)
THEN DROPZ ROT (Closer to ul, 1r)

ELSE
IF > (Diagonal to upper left)
THEN ROT ROT (Closer to 11, ur)
END (So crossover is at midpoint)

END (IF...<...EL5E)
LINE LINE

END (Case of4 intersections)
END (CASE)

END (contour range IF test)

stepsize
STEP (Next contour value)

NEKT (For J loop)
MEXT (For 11 loop)
smallest "Min wvalue" =THG
largest "Max wvalue" =+TAHG
lowlimit "Min contour" =TAG
hilimit "Max contour" =TAG
stepsize "Contour step" =TAG

Checksum: # £1186d

Bytes: ¢47H.5

Stack Arguments Stack Results

9: minimum data value (tagged)

4t low limit (real) maximum data value (tagged)

3% high limit (real) lower contour limit (tagged)

€% step size (real) upper contour limit (tagged)

1 nxm (real) data array contour step size (tagged)

194 8: PROGRAMMABLE GRAPHICS APPLICATIONS

Notes: Clearly, you could shorten the program with shorter variable

names; these were used for clarity. Also, you might explore

alternate ways to arrive at the same solution. As yousawwith

SCAN/PSCAN, there’s always more than one way to do things.

Example

With the Stack setup as follows, useCONTOUR to get the result shown:

4z

3:

2

1

B

o

1

the following array (use the MatrixWriter):

[[8.8 1.3 2.2 6.5 1.3 2.4 1.3 B.5 1
[8.9 1.5 2.5 6.5 6.9 8.5 6.5 1.5]
[1.8 3.8 3.2 1.8 6.5 1.1 2.1 3.8]
[1.9 3.2 4.3 1.6 B.8 2.8 2.7V 3.3]
[1.8 2.1 2.9 1.9 B.5 1.7 2.6 3.7]
[1.5 1.4 1.1 B.1 1.5 2.4 2.9 4.8]
[1.4 8.9 8.5 1.3 2.1 3.2 3.6 4.2 1]
[1.1 8.9 8.5 1.2 2.8 3.9 4.3 4.8 1]

J'f \‘_;-'—“_F;

\

A Contour-Plotting Program 195

Drive a BulldozerAround the Display

This is a fun demonstration ofusing small grobs as “sprites”—objects

that you can move around the display at will.

Description

The mainprogram, called BULLDOZER,uses a list called D0ZDATA, which,

in turn, consists oftwo sublists. The first sublist is a list offour grobs,

showing the bulldozer facing north, east, south and west. The second

sublist is a list offour complex numbers representing those directions.

Thus ifyou tire ofthe bulldozer image, you can always create another

8x8 grob, then make 3 rotated copies, assemble a new D0Z0ATA, and

run the program with your own custom “sprite.”

To start the program,just execute BULLDOZER. A bulldozer will appear

at the bottom ofthe display and start plowing a swath towards the top.

Use the arrow keys to control its direction (it will stop when it hits the

wall at the edge of the display). Note that these arrow keys are not

“north, south, east and west.” Rather, they are “forward, reverse, left-

turn and right-turn.”

196 8: PROGRAMMABLE GRAPHICS APPLICATIONS

A speed factor is built into BULLDOZER; you change the bulldozer’s

speed by increasing or decreasing this number. The speed is stored as

a local variable in the program, in case you want to add a “gas pedal”

key to the program.

Press to halt the program (if you use (ATTN), it may leave a spu-

rious KEY output on the Stack).

Variable

0D0ZDATA: The grob data for BULLOOZER:

{ { GROB 8 8 FFC3/EDASASASAFF (Dozer north)
GROB 8 8 FBIAFFIDICFFIAFB (Dozer east)
GROB 8 8 FFSASASASBFEC3FF (Dozer south)
GROB 8 8 DFS5BFF38BBFFS80F 3 (Dozer west)

{ 6,1 (1,8 (B,-1) C-1,8) 3 }
(North, East, South and West

in complex numbers)

(Checksum: # 33345d Bytes: 172.5)

Drive a BulldozerAround the Display 197

Listing

BULLDOZER

« PICT PURGE { # 6d # Bd } PVIEW
B 131 XKRNG B 63 YRNG (B8,8) (131,63) BOXK (Define area)
0D0ZDATA 1 GET 1 GET ¢61,8) 1 18 (B,1) RCLF
+ cat locn gear speed direction flass
« 58 CF PICT locn cat REPL

00 'gear*direction+locn' EVAL C-2R
8 MAX 62 MIMN SLAP 1 MAX 123 MIN SWAP
B+C 'locn' STO PICT locn cat REPL
.3 speed - WAIT

NTIL
IF KEY
THEM =+ k

« CASE
'k==£5" (Forward)

THEN 1 'gear' STO
END

'k==35" (Reverse)

THEN -1 'gear' STO
END

'k==34" (Left turn)

THEM DOZDATA 0BJ+ DROP
OUP direction POS 1 -
IF DUP B == (You can’t turn

EHEN OROP 4 past 0°)

SLIAP OVER GET
'direction' STO GET 'cat' STO

END
'k==36" (Rightturn)

THEN DOZDATA 0BJ+» DROP
DUP direction POS 1 +
IF DUP 5 == (You can’t turn

EHEH OROP 1 past 360°)

198 8: PROGRAMMABLE GRAPHICS APPLICATIONS

SWAP OVER GET
'direction' STO GET 'cat' STO

END
'k==51"

THEN 58 SF (Quit)
END

END (CASE)
%

END (IF...KEY)
0B FS?

END @0...UNTIL)
flags STOF (Clean up)

*

Checksum: # 6914d

Bytes: 933

Stack Arguments Stack Results

1: (none) (none)

Notes: The bulldozer leaves some “litter” when it turns. And differ-

ent grobs will leave different garbage (the culprits here are the

little cutouts behind the dozer’s blade). This is because the

program turns, increments the position and then writes to the

display. A commercial game machine would fix this by using

a separate sprite for the tracks and/or a “mask” sprite under

the bulldozer. But both approaches are slow here and make

the dozer flicker. So for this demo, just ignore the litter.*

*But in case you're interested in exploring other solutions here’s an observation: A sprite with an

all-black border always leaves tracks; if it has an all-white border, it never leaves tracks.

Drive a BulldozerAround the Display 199

A Friendly Game of Checkers

Here is a checkers game to be played by two 48’s—via the Infrared

interface or wired serial ports.

This is the book’s largest application. If you've been working through

Chapter 8 nonstop to this point, STor! Go get some cookies and milk.

Give your brain a rest. Then come back.

Description

You start the game by executing CHKRS.

Thetitle screen should appear, with two menu keys to choose[lor

%;[4 (okay, so it’s white and blue—give HP a few more years....)

CHECKERS
RED:
BLACK:

Hre you red or black?
10 N3]

200 8: PROGRAMMABLE GRAPHICS APPLICATIONS

After someone has chosen a color, the other player’s coloris set, and the

48’s set up their playing boards accordingly.

Red moves first, and the two players take turns...

 CHECKERS
FRED:

La BLACK:

YOUR MOVE

...until one player is out of pieces.

CHECKERS
BRED:
BLACK:

WAIT.....

RAD
HOME CH.B CHKERZ: }

—
0
[

"BLHACK WINS"
CHEF|ETUP[REDRAIMYHO]THHO[ZELEC

A Friendly Game ofCheckers 201

In CHKRS, the numeric keypad becomes a “selector control pad.” As

with SCAN, the (5) key is the neutral center of the pad, and the other

non-zero keys act as arrow keys:

K T 4
()

<[&) (6)*

(@))
¢ 1 N

When it’s your move, the 48 will highlight a suggested piece to move.

Its selections are not very smart, so use the numeric keys to move the

highlight to the piece you want to move, and press (ENTER). Then press

one ofthe diagonal-move keys (1), (3),(5) or (7)) to indicate the direction

you wish to move.

If you choose an invalid move, the piece you selected remains high-

lighted and you must re-select the move. Ifit’s a valid move or jump,

the 48 will update the board display, and send the move information

to your opponent’s machine. It will also crown your piece ifthat move

sends it to the 8th row.

When your move is over, the 48 passes control to your opponent’s

machine. At the end of each player’s turn, the 48 checks to see ifboth

of you are still in the game, and then goes through the selection and

movementprocedure again. This cycle continues until one or the other

of the players has no more pieces on the board, at which time both

machines declare the winner.

202 8: PROGRAMMABLE GRAPHICS APPLICATIONS

The checkerboard layout is contained in an 8x8 array, appropriately

called LAYOUT, which is updated during the gameto reflect each move.

The graphic checkerboard is stored in a grob called BOARD. If you ac-

cidentally erase BOARD, don’t worry. The STARTUP routine checks for

the existence of BOARD, and if it doesn’t find it, calls a routine called

MAKEBOARRD to generate a new one. The pieces themselves are stored

as 8x8 grobs called RPIECE, BPIECE, RKING and BKING.

This is indeed a “friendly” game of checkers. A complete and ruthless

game would probably require an entire chapter in this book, so this

version has the following limitations:

¢ It won’t do multiple jumps (but notice that flag 58 has been left

in reserve—for indicating “multiple jump allowed”—so if you’re

ambitious, go for it).

* The forced-jumping rule is not in effect: Ifyou’re in a position to

jump, then you are not forced to “jump or lose the piece.”

* There’s no “boss key” to quickly save the current game status as

your boss walks up. To abort the game, you must press (ATTN}, and

risk leaving junk on the Stack.

A Friendly Game ofCheckers 203

Subroutines

CHKRS is organized in a modular fashion. This keeps each routine

short, easy to understand, and tightly focused.

STARTUP: A routine called initially by CHKRS to check for the ex-

istence ofa checkerboard grob called BUARD. Ifit doesn’t

find BOARD, then STARTUP calls MKBOARD to create one.

STARTUP also prompts the user to choose sides, and

waits for input from either the keyboard or the I/O port.

REORAW: A routine that maps the contents of LAYOUT onto PICT.

MYMOVE: The busiest module in the application, MYMOVE calls

SELECT to suggest a piece to play. It accepts key input

on the direction to move the piece ofyour choice, sending

this information to a routine called YALID.

VALID: The routine that determines whether your proposed

move is legal: You may move only to diagonally adjacent,

unoccupied squares, unless you are jumping. You may

jump only an opponent in a diagonally adjacent square,

and only if the square beyond your opponent’s piece is

empty. Also, only kings may move orjump backwards.

THMOVE: A routine that waits for an "M", "J", "K" or "0" string

from the other machine, then translates the move in-

formation and callsMOVEIT to update LAYOUT and PICT.

When a "D" is received, THMOVE sets flag 59 and exits.

204 8: PROGRAMMABLE GRAPHICS APPLICATIONS

SELECT: This routine simply searches LAYOUT for the first oc-

currence ofyour playing pieces as its suggestion for your

next move. Fortunately, it doesn’t commit to any square

until you press with the square highlighted (The

highlight can be on any square—even an empty one or

one occupied by an opponent—so ifthe chosen square is

not occupied by one of your pieces, the highlight re-

mains). SELECT will not move past the board edges.

MOVEIT: Thisroutine takesthe parameters ofthe validated move

and the piece to be moved and performs the manipula-

tions on LAYOUT and PICT.

MKBOARD: The routine that generates the checkerboard inside a

57x57 grob—called by STARTUP when necessary.

WHOZAT: A small routine that determines which player (if any) is

occupying a given square.

C+L: A utility (quite generally useful) that converts a complex

number (x y) into a list of the form { # row # col 1.

GL: A text formatting routine (see page 127).

GLABEL: A text formatting routine (see page 126).

A Friendly Game ofCheckers 205

Variables

LAYOUT: An 8x8 array listing the entire layout of the checker-

board, created by STARTUP. Row 1 of the array is the

bottom row of the checkerboard. Element values:

B = empty =red piece & = black piece

3 =redking % =black king

Elements on red squares are always zero. Red squares

are identified by adding the row and column indices.

The sum is always even for red, odd for black.

Initial values (red player’s values are shown; exchange

1’s and 2’s for black players initial values):

[(Ca18168181]1

r
s
r
e
l
T
E
e
r
s
S
s
S
M
r
s
m
a
e
e
r
s
s
m
e

N
N
—

S

O
M
N
E
E
E
—

M
N
E
M
N
E
E
E
—

O
M
N
O
E
E
—

M
N
O
M
N
O
E
E
—

O
M
N
E
O
E
O
E
—
D

M
O
M
N
E
E
E
—

O
M
N
O
E
E
—

Checksum: LAYOUT is dynamic; checksums change.

Bytes: 937.3

BOARD: 57x57 grob ofblank checkerboard, created by MKBOARD.

Checksum: #317247d Bytes: 479.5

206 8: PROGRAMMABLE GRAPHICS APPLICATIONS

RPIECE: Grob of a red piece: GROB 8 ¢ B881C3EYEYC381

P

BPIECE: Grob of a black piece: GROB 8 ¢ 8B8814224244281

i

RKING: Grob of a red king: GROB 8 7 BBBBASEFEFC3C3

BKING: Grob of a black king: GROB 8 7 BBBBASE6Z442C3

K

A Friendly Game ofCheckers 207

Listings

CHKRS

« RCLF 'Flass' STO (Save defaults)

-48 CF (Turn off clock display)

STARTUP REDRAL (Initialize game, choose sides...
IF 57 FS? ...draw board—red goes first)
THEN 39 SF (Flag 57 set means: “I'm red”)

ELSE 59 CF (Flag 59 set means: “My turn”)

ge*fl

208

PICT { # 76d # 46d 1}
#34 #8 BLANK REPL
IF 59 F57 (My turn?)
THEM { # 76d # 48d + "YOUR MOVE"

¢ GLABEL MYMOVE
ELSE € # 76d # 4Bd > "WRIT..... "

¢ GLABEL THMOVE
END

UNTIL
IF LAYOUT =STR DUP "1" POS (Game ends when...

SWAP "3" POS OR NOT DUP reds are gone...
EHEN "BLACK WINS" SLAP

IF LAYOUT =»STR DUP "&" POS ...or blacks are gone)
SWAP "4" POS OR MOT DUP

THEN "RED WINS" SLAP
END
OR

EMD
Flags STOF (Restore previous states)
'Flags' PURGE (Clean up)

8: PROGRAMMABLE GRAPHICS APPLICATIONS

Checksum: # 198¢5d

Bytes: 538.5

Stack Arguments Stack Results

1: (none) "BED WINS"

or

"BLACK WINS"

Notes: CHKRS is the main program. Be sure both players have the

same I/O setup. This means checking the status ofIOPAR, and

clearing system flags —33, —34 and -38.

The layout data is stored in the 8x8 array, LAYOUT. Pieces on

squares are identified by number:

B=empty 1 =redpiece £ =black piece

3 = red king 4 = black king

Row 1 in LAYOUT is the first row of the array; Row 1 of the

checkerboard is the bottom row ofthe board—the row nearest

you. This makes for faster computing. Notice also that the

sum ofthe row and column numbers ofa red square is an even

number, while the sum ofrow and column numbers ofa black

square is an odd number. This fact speeds up execution time.

Since the game is played only on the black squares, an 8x4

array could also be used. But this would require monitoring

of zigzag movements, and the additional code would far

outweigh any memory savings from using the smaller array.

All the red squares in the array contain B’s. You could use the

red squares for storing game status,etc., if you incorporate a

A Friendly Game ofCheckers 209

210

“boss key” into your game, but be aware that some sections of

the application check all squares for zeros—you can’t use the

red squares for temporary storage during a game.

These user flags are used:

57 SET: Youarered. CLEAR: You are black.

58 (reserved for use in multiple jumping)

59 SET: Your move. CLEAR: Their move.

After initialization, CHKRS checks flag 57. Since red always

goes first, for the first move CHKRS sets user flag 59 to match

flag 57. It then enters aD0...UNTIL loop, which can be exited

only when one player runs out of playing pieces (or via (ATTN)).

Throughout the game, depending on the status of flag 59,

CHKRS calls either MYMOVE or THMOVE (“THeir MOVE?”).

When it’s your opponent’s move, the 48 monitors the input

buffer for any activity. As soon as some information enters the

buffer, the 48 analyzes it and updates LAYOUT and the display.

To communicate between the two machines, the 48 relies on

the commands XMIT, BUFLEN and SRECV.

XMIT takes a string from Level 1 and transmits it over the

current I/O port. Ifthe transmission is successful, then a 1 is

returned to the Stack; otherwise the unsent fragment of the

string is put into Level 2, and a 8 into Level 1. Use ERRM to

see the cause of the error.

BUFLEN returns the number of characters in the I/O buffer to

Level 2 and puts a 1 to Level 1 if no framing errors or UART

overruns occur. If an error does occur, then BUFLEN returns

the number of characters received before the error to Level 2,

and a B to Level 1.

8: PROGRAMMABLE GRAPHICS APPLICATIONS

SRECV takes the number specified in Level 1, returns that

number of characters from the I/O buffer to Level 2, and

returns a 1 to Level 1 if the data were retrieved successfully.

If an error occurs during SRECV, then Level 2 contains the

data received before the error, and Level 1 contains a zero.

Execute ERRM to see the cause of the error.

CHKRS does not use the error-trapping capability of these

commands, so in order to keep transmission errors to a

minimum, CHKRS uses a small number of short messages to

communicate between machines. Each message is transmit-

ted as a list inside a string—the most efficient way ofpassing

a variable number of parameters. Valid messages are:

"{ (xl, yl:l (xz, y2:| ot 3" Move the piece at(xl,)’1:'

to (ng y2) .

"{ (xpy) CGepyd "J" 3" Jumpthepieceat(xy y,)

to (xz, yz:l , capturing the

opposing piece en route.

"{ (xyyd "K" 3" Crownthe pieceat (x y),

replacing it with a king

of that color.

veep" o3 Done. It’'sthe opponent’s

turn.

The only exception to this “list in a string” rule is the "R" or

"B" that is transmitted at the start ofthe game, when players

are choosing sides.

A Friendly Game ofCheckers 211

212

STRRTUP

IF BOARD TYPE 11 # (Does BOARDalready exist?)
EHEN MKBOARRD (If not, then make it)

BOARD PICT STO (Draw board)

(1,-1) PMIN (19.5714285714,8) PNAK (Set user limits)
{ # 6d # Bd + PVIEM (Display board)
{ # 76d # 5d } "CHECKERS" 3 GLI (Title labels)
" RED:" Z GLI
" BLACK:" & GLABEL
PICT RCL (Set up prompt to choose color)

PICT € # Bd # 43d > # 57d # 14d BLAMK REPL
{ # Bd # 45d } "Are you red or black™ 3 GLABEL
PICT { # Bd # 57d 3}
GROB 21 ¢ FFFDF1919081350556191558135055815129081FFFOF1

(“RED” menu key)

REPL PICT { # 1168d # 5/d 1}
GROB 21 ¥ FFFDF19050815055¢1909571505571915081FFFOF]

(“BLACK” menu key)

REPL
BEEN I0 (Necessary to receive input from the other 48)

UNTIL
IF KEY
THEN DUP

CASE
11 SAME (User chooses red....

EHEN OROP "R" "B" KMIT ... tell opponent)

16 SAME (Userchooses black. ...
THEN "B" "R" kMIT ...tell opponent)
END

B
END

ELSE @
END

8: PROGRAMMABLE GRAPHICS APPLICATIONS

IF BUFLEN DROP DUP (Opponent chosefirst)
EHEN SRECY ROT (What usergets)

OR (WHILEloop ends when one ofthe 3 options is satisfied...
END ...user chooses red or black, or opponent chooses)
CLOSEIO (To save battery life)
SWAP PICT { # Bd # Bd } ROT REPL (Remove prompt)
IF "R" SAME
THEN 57 SF (“I'm red”)
[B1B16B81681] (Red’s startup LAYOUT)

[1816816818]]
[B1B1B181]1]
[BBBBBBHH]
[BB BB BBHBAH]
[Z2B2BZ2B 2B]
[BZBZABZABAZ]
[Z2B2B828208 1]
{ # 78d # 17d >

ELSE 57 CF (“I'm black”)
[[LBZBZBZABZ] (Black’s startup LAYOUT)
[2B8 28028281
[BZ2BZ2BZABCZ]
[BBBBBB A A]
[6 BBBBBHBAH]
[18181818]]
[B1B8168B1681]
[181681818 1]
{ # 76d # Z27d I

END
PICT SWAP 134 CHR
¢ »GROB REPL (Put a “selection arrow” beside user’s color)
'"LAYOUT' STO

Checksum: # 4Z184d

Bytes: 1927.5

A Friendly Game ofCheckers 213

Stack Arguments Stack Results

(none) a real number

Notes: STARTUP draws the checkerboard in PICT, prompts the user to

214

choose a color, communicates this choice to the opponent’s 48,

and sets up pieces on the board to start the game.

If the user chooses a color from the keyboard, then a single-

character string identifying the opposite color ("R" or "B" is

transmitted to the opponent’s 48. Ifthe user doesn’t choose a

color before a "R" or "B" is received from the other machine,

then the 48 acts on that string.

If the user is red, the 48 sets user flag 57 (the “I'm red” flag),

initializes LAYOUT with red pieces in the first three rows, and

calls REDRANW to put the pieces from LAYOUT in the right places

on the board. Similarly, ifthe user is black, the 48 clears user

flag 57, initializes LAYOUT with black pieces in the first three

rows, and calls REDRA.

8: PROGRAMMABLE GRAPHICS APPLICATIONS

REORAN

« PlICBT { # 8d # Bd > BOARD REPL (Redraw a blank board)

FOR y
1 8
FOR

IF wy + 2 MOD (Only check black squares)
THEN PICT w y R=C (Calculate square location)

[I:IF-]ELEHUUT' OVER C-L GET (Check array contents)

DUP 1 SAME (1isaredpiece)

E“EN DROP RPIECE GRXOR

DUP 2 SAME (2 is a black piece)

EHEN DROP BPIECE GOR

OUP 3 SAME (3 is ared king)

THEN DROP RKING GXOR
END

4 SAME (4 is a black king)
THEN BKIMG GrOR
END

DROPZ
END (CASE)

END (IF)
NEXT (FUR loop)

NEXKT (FUR y loop)
»

Checksum: # £5345d Bytes: ¢96.5

Stack Arguments: (none) Stack Results: (none)

Notes: REDRAW redraws the pieces on the checkerboard, according to

the contents ofLAYOUT. It assumes that BOARD already exists

and redraws part of PICT.

A Friendly Game ofCheckers 215

IMYMOVE

« PHILE 59 FST (Loop to find and complete valid move)
REP['_!:EFI]:IS.I-E SELECT 8 WRIT VALID (Select, validate movement)

OUP "®" SAME (Invalid move—try again)

THEN DROP
END

DUP "D" SAME (End ofmove)

EHEN DROP 59 CF

OuP "mM" SAME OVER "J" SAME OR (Move orjump)
THEN 3 DUPN 3 =LIST =STR

«MIT DROP (Tell the other machine...
MOVEIT 59 CF ...update LAYOUT, display, end move)

IF DUP IM 8 == (If a piece reaches row 8...

THEN "K" DUPz 2 =+LIST =+5TR ...“king me”)
#AMIT DROP (Tell the other machine...

MOVEIT 59 CF ...update LAYOUT and display)

ELSE DROP
END (IF)

END
END (CASE)

END (WHILE ... REFPERTloop)
IF 59 FC? (End of turn?)
EHEH { "D" } »S5TR ®MIT DROP (Pass token to other 48)

Checksum: # 43558d

Bytes: 323.5

Stack Arguments Stack Results

1: (none) (none)

216 8: PROGRAMMABLE GRAPHICS APPLICATIONS

Notes: MYMOVE prompts userto select the piece to move, validates the

move, communicates it to the opponent’s 48 (sends "M", "J",

"K' or"D"), updates LAYOUT and the display, and passes the

turn to the opponent (clears flag 59). Notice that if MYMOVE

gets an "®" from VYALID, it repeats SELECT and YALID until

you make a valid move.

A Friendly Game ofCheckers 217

THMOVE

& %%ENIU (Necessary to receive data)

IF BUFLEN DROP DUP (Check buffer for input)
THEN SRECY DROP OBJ» EVAL (Read buffer, evaluate list)

+ move (Store only Level 1 as local variable)

« CRSE
move "D" SAHME (Other 48 passes token to me...

THEM 59 SF ...therefore, it’s my turn)

move "K" SAME (“King me”)
THEN (9,9 SWARP - (Rotate coordinates)

Er‘T[?UE MOVEIT (Update LAYOUTand display)

move "M" SAME
move "J" SAME OR (move orjump)

THEN (9,9) ROT -
(9,9) ROT - (Rotate coordinates)

EN[I]*]DUE' MOVEIT DROP(Update LFI'T'UUI;display)

EMD (CASE)
»

ELSE DROP (No input in buffer yet)

END (IF BUFLEN..)
UMTIL 59 FS7 (that is, UNTIL my turn)
EMD @0 ... UNTIL)
CLOSEID (To conserve batterypower)

®

Checksum: # 35468d

Bytes: 372.5

Stack Arguments Stack Results

1: (none) (none)

218 8: PROGRAMMABLE GRAPHICS APPLICATIONS

Notes: THMOVE receives the data string from the opponent’s 48,

translates it and updates LAYOUT and the display accordingly

(and sets flag 59). It does not validate the opponent’s moves.

A Friendly Game ofCheckers 219

SELECT

« [F 57 FS7 (If’'mred...
THEN 1 3 ...then search for red pieces...

Eth ¢ 4 ...otherwise, search for black pieces)

+ pl pPE (The search for the pieces)
« 'LAYOUT' 1 (Initialize the search)

00 GETI (Search...
UNTIL DUP pl == SWAP

pc == OR ...until a piece is found)

END
1 - (Index is 1 count too high)

»

SWAP DROP DUP 8 ~ CEIL SWAP 8 MOD (Convert counter...

IF DUP B ==
THEN OROP &
END
SWAP R=C ... into a square location—a complex #)
DO HILITE B WAIT (Highlight the square and waitfor...
UNTIL

+ loc key ...key input)
« loc HILITE

CRSE
'key==083.1" own 2 squares)

EHEN C+R 2 - OVER 2Z NUD + MAX R-C @

'key==63.1" (8)—up 2 squares)
EHEN C+R Z + OVER Z NUD? + MIN R=C B

'key==/Z.1' (Key (4}—left 2 squares)
THEM C=R SWAP 2 - OVER 2 MOD
1 + MAX SWAP R+C @
END

'key==74.1" (Key (6)—right 2 squares)
THEM C=»R SWAP 2 + OVER 2 MOD
EHE MIN SWAP R+C @

220 8: PROGRAMMABLE GRAPHICS APPLICATIONS

'key==64.1 AND RE(loc)<8
AND IMCloc)<8' (Key (9}—up and right)

THEN (1,1) + @
END

'key==6Z.1 AND RE(loc)>1
AND IMCloc)<8' (Key (7}—up and left)

THEN (-1,1) + B
END

'key==8Z.1 AND RE(loc)>1
AND IMCloc)>1! (Key (1}—down and left)

THEN (1,1) - B
END

'key==84.1 AND RE(loc)<8
AND IMCloc)>1! (Key (3}—down and right)

THEN (1,-1) + @
END

'key==51.1" ¢ key—select highlighted square)
THEN DUP C-L 'LAYOUT' SWAP GET

DUP OUP 1 == SWAP 3 == OR (If the piece
o7 FC? KOR AMD on the square is my color-...

END ...return its location to Stack)
B (Otherwise,...

END
»

END (Repeat the search)
»

Checksum: # 43368d

Bytes: 984

Stack Arguments Stack Results

1: (none) location of selected piece (complex)

A Friendly Game ofCheckers 221

Notes: SELECT searches LAYOUT for the first occurrence ofthe user’s

222

piece and suggests it as the piece to move. By redefining the

numeric keypad as a direction control pad,it also allows the

user to move the selector around the board to choose a piece

to move. Then, with the highlight on a valid piece, ([ENTER)

selects the piece. SELECT usesHILITE to drawaninverted box

around the indicated square.

Note that to make them applicable to either color, many

routines use the XOR command, as in this sequence from

SELECT: « ... DUP 1 ==SWAP 3 == OR
57 FC? xOR AND ...

®

This says: “Ifthe square has a red piece and I'm red, OR ifthe

square has a black piece and I'm black ... ”, thus eliminating

the need for: € ...

IF 57 FS7
THEN DUP 1 == SWAP 3 == OR
Eth DUP 2 == SWAP 4 == OR

8: PROGRAMMABLE GRAPHICS APPLICATIONS

HILITE

« PICT OVER
GROB 8 8 FF181818181818FF
GROR

»

Checksum: # 4262d

Bytes: 46

Stack Arguments Stack Results

1t squarelocation (complex) same square location (complex)

Notes: HILITE highlights the indicated square by drawing an in-

verse box around it. It also “un-highlights” the square.

A Friendly Game ofCheckers 223

VALID

« OVER DUP
+ oldloc key newloc jumploc
« CASE

'key==62.1" (Key (7}—up and left)
THEN (-1,1)
END

'key==64.1" (Key (9}—up and right)
THEN (1,1)
END

'key==82.1' oldloc WHOZAT
¢ > AND (Key[1}—down and left—kings only)

THEN (-1,-1)
END

'key==84.1"' oldloc WHOZAT
¢ > AND (Key (3}—down and right—kings only)

THEN (1,-1)
END
! (Invalid key)

END (CASE)
IF DUP TYPE 1 == (Complex type means a valid key)
THEN

+ 1inc (Save increment)
« gldloc inc + DUP C=R (Calculate new location)

IF DUP 8 > SWAP 9 < AND SWAP (Ifin bounds ...

DUP B8 > SWAP 9 < AND AND
THEN 'newloc' STO

IF newloc WHOZAT MNOT ... and if nobody’s there...

THEN oldloc newloc "M" ... then do the move)
ELSE newloc DUP (Somebody’s there)

'jumploc' STO
inc + DUP C=R
IF DUP B8 > SWAP 9 < AND

SWAPDUP B > SWAP 9 <
AND AMD (If it’s ajump ...and in bounds...

THEN 'mewloc' STO
IF newloc WHOZAT NOT...far side is vacant

224 8: PROGRAMMABLE GRAPHICS APPLICATIONS

Jjumploc WHOZAT Z MOD...and ctr. piece
5¢ FST KOR AND ...i1stheotherguy...

THEN oldloc newloc "J" ...thenjump)
ELSE "®" (Otherwise, not a validjump)
END (IFfar side is vacant)

ELSE OROP "®" (Jump is out of bounds)
END (IFjump is in bounds)

END (IFnobody’s there)
ELSE OROP "®" (Move is out of bounds)
END (IFmoveisinbounds)

»

END (IFvalid key)
»

Checksum: # 16646d

Bytes: 781

Stack Arguments Stack Results

3: starting location (complex)

€% starting location (complex) ending location (complex)

15 keycodefor move direction "J" or "M" or "RK"

Notes: VALID validates the proposed move passed to it from MYMOVE.

The contents of the string output at Stack Level 1 depend on

whether the move is a valid Jump, a valid simple Move, or an

invalid proposed move ("®"). In the case of an invalid move

proposal, no location values are returned in Levels 2 and 3.

VYALID doesn’t check for “king me” opportunities; MYMOVE does.

VALID uses WHOZAT to determine the target square’s current

occupant.

A Friendly Game ofCheckers 225

MOVELT

« H
+ move PpPlece
« IF move "M" SAME

move "J" SAME OR (Move or Jump)

THEN
+ oldloc newloc (Store start and end locations)
« 'LAYOUT' oldloc C=L (Get piece from LAYOUT)

DUPZ GET 'piece' STO
B PUT (Blank out old LAYOUT location)
'"LAYOUT' newloc C-L
piece PUT (Put piece in new LAYOUT location)
CASE | (Select the appropriate grob)

'Piece==1"
THEN RPIECE
END

'piece==2'
THEN BPIECE
END

'piece==3'
THEM RKING

END

THEN BKING
END

END (CASE)
'piece'’ STO (Store the grob in place of the #)
PICT oldloc piece GROR (Blank out old location)
PICT newloc piece GHOR (Putpiecein new location)
IF move "J" SAME (Extra work needed forjumps..
THEN oldloc newloc + 2 -~ ...findjumpedsquare

'LAYOUT' OVER C+L B PUT ...blank its LAYOUT
PICT SWAP # 8d # &d location and its

ENDBLHNK MEG REPL board location)

newloc (Dummy Stack value—Fkilled by ... END)

END (IFMove orjump)

226 8: PROGRAMMABLE GRAPHICS APPLICATIONS

IF move "K" SAME (“King me”)
THEN

+ loc (Store location)
« 'LAYOUT' loc C=L (Get piece from LAYOUT...

DUPZ GET DUP
'piece' STO 2 + PUT ..and replace it with a king)
PICT loc # 8d # &d
BLANK MNEG REPL (Blank out board location...
PICT loc
CFISE

'piece==1' ... and replace it with a red king...
THEN RKING
END

piece==¢' ...or a black king)
THEN BKING
END

END (CASE)
GROR (The actual replacement)

»

END (IF “king me”)

Checksum: # 56746d

Bytes: r86.5

Stack Arguments Stack Results

3% starting location (complex)

n? ending location (complex)

1: "J" or "M" or "K" (none)

Notes: MOVEIT updatesLAYOUT and PICT according to the move data

received from otherprocesses. Fora"K" (“king me”), the piece’s

location is the Level-2 argument, with no Level-3 argument.

A Friendly Game ofCheckers 227

WHOZAT

« 'LAYOUT' SWAP C»L GET
»

Checksum: # 5341d

Bytes: 46.5

Stack Arguments Stack Results

15 square location (complex) value of LAYOUT there (B-4)

Notes: MWHOZAT determines “who’s at” a given location on the board.

C=L

« C»R SWAP 2 »LIST
»

Checksum: # 34/16d

Bytes: £7.5

Stack Arguments Stack Results

1= square location (complex) array index{ # row # col }

Notes: C3L converts a complex number to an array index.

228 8: PROGRAMMABLE GRAPHICS APPLICATIONS

MBOARRD

« PICT PURGE (Start with a clean slate)

(4, -7) PMIN C(131,56) PMAK (Set user limits)
{ # Bd # 6d } PVIEW (Just for fun, show it being built)
58,586) (56, 56) BOX (Outline of the board)

FOR y
B 49
FOR x

IF w gy + 2 MOD NOT (Sum ofrowand column ofblack
THEN PICT % y R2*C square is not odd in this case)

EEBB 8 8 FFFFFFFFFFFFFFFF GOR (Fill black square)

7
STEP
7

STEP
PICT (B,8) (56,56) SUB
'BOARD' STO (Store as BUARD)

Checksum: # 65383d Bytes: 315.5

Stack Arguments: (none) Stack Results: (none)

Notes: MKBOARD makes a blank checkerboard and stores the grob

under the variable name BOARD.

A Friendly Game ofCheckers 229

A Calendar Demo

With its time and date functions, the 48 is certainly equipped to be a

time management tool. One of the features in most electronic time

managers is some kind ofperpetual calendar, usually presented in the

classic seven-column format. As a final little demo, here’s an example

of what you could do.

Description

The program CALEND displays the current month in seven-column

format, offering menu keys to increment or decrement the day, month

and year. Press any key other than the menu keys to exit the program.

To restore your previous menu (if desired), press (JLAST MENU).

The day-incrementing menu keys in this demonstration version are

not active, although “hooks” (entry points) are included in here so that

you can use them to implement those day keys as you wish.

Some suggestions in that regard: It would be nice to highlight the

current date; the and[Tmenu keys would move the high-

light around. Note, however, that this would require the month to be

displayed with PYIEW not DISP, and would take away some of the

elegance of the routine.

Ofcourse, CALEND could also be embellished to do other useful things:

set and clear appointments, create “to-do” lists, and do other time-

management tasks.

230 8: PROGRAMMABLE GRAPHICS APPLICATIONS

Subroutines

MYR: is the major subroutine behind CALEND. Note that its algo-

rithm uses DISP and not PYIEW to do the display. MYR was

written and modified by several members of the CHIP HP48

user’s group. The version presented here was developed by

RonJohnson and is used with his permission—and with much

appreciation.

A Calendar Demo 231

Listings

CALEMD

« DHTE‘EUP IP SWAP FP 188 = DUP IP SWAP FP 186088 =
T M y

« JFERR
0o
my MYR
{ { "-DRY"

« ;Reserued for future use" DROP CONT
»

{ II_I‘(‘IUNII

« I[F 1 m==
THEM 12 'm' STO 'y' 1 STO-
ELSE 'm' 1 STO-
END
CONT

» }
-YR" « 'y' 1 STO- CONT = 3
"+YR" « 1 'y' STO+ CONT » 2
II+NDN|I

« IF 12 m ==
THEW 1 'm' STO 1 'y' STO+
ELSE 1 'm' STO+
END
CONT

» }
{ II+DHYII

« ;Rigerued for future use" DROP CONT
*

TMENMU HALT B8 MENU
UNTIL B
END

THEM B8 DOERR
END

2

e
T

L
)

®

232 8: PROGRAMMABLE GRAPHICS APPLICATIONS

Checksum: # 36586d

Bytes: 96¢

Stack Arguments Stack Results

1: (none) (none)

Notes: CHLEND displaysa perpetual calendarin classic seven-column

format. It uses the current system date to determine the first

month displayed.

A Calendar Demo 233

234

(Local function 9)
"1 2 34 5 6 ¢ 8 91811 " (Builda
"12 13 14 15 16 17 18 19 28 21 22 " week string)
"Z3 24 25 26 27 28 29 38 31" + +
ROT 3 # 2 - ROT 3 # 1 - SUB

(Local function pP)

IF DUP TYPE 7 == (Display the week string)
THEN INCR OVER SWAP DISP
END
DROP

»

RCLF 8 88184
*+mygpfdniber
« y 16688 -~ m + .B1 + DUP 'd' STO

18.171582 SWAP DDAYS ¢ MOD 'i' STO (Day of week:
B-Sun, 6=Sat)

IF m 12 == (Figure number ofdays in month...
THEN 31 ...where December is a special case)
ELSE 4 DUP 1 + DDAYS
END
'n' STO CLLCD " " (Month-year string—7 spaces)
"JanFebMarAprMaydundul AugSepOct MovDec"
M EUSLDUP 2 - SWAP SUB + " " + STD0 y + 'r!
P

"smT W T F §" (Days-of-week header)
IFni+ 35 < (Leave it out if it doesn’t fit)
THEN 'r!
END
pEVAL 7 i - 'e' STO i 3 #
" " DUP + 1 ROT SUB (First row—9 spaces)
begEVAL + 'r' p EVAL (Display first row)
DO el + 'b' STO e 7 + n MIN

'e! 5T0 (Build subsequent rows)
begEVAL 'r' p EVAL (Display subsequent rows)

8: PROGRAMMABLE GRAPHICS APPLICATIONS

UNTIL e n ==
END
3 FREEZE f STOF

®

Checksum: # 61525d

Bytes: 844.5

Stack Arguments Stack Results

1: month (real number from 1 to 12)

1t year (real number > 158%) (none)

Notes: MYR draws the calendar for any given month and year (the

earliest allowable month is November, 1582).

A Calendar Demo 235

More Suggestions

Now that you’ve seen some working examples of48 graphics, you may

be speculating on the infinite possibilities. Here’s a suggestion or two:

236

¢ The 48 has enough graphics power that you could come up with

agreatPAINT program or grob editor forit, with a display similar

to the one shown below. At a menu line, the user would select

from the available tools—and submenus would select different

brush orfill patterns for each respective tool. Avertical menu on

the right side could be used, via the arrow keys, for object/

variable management or other purposes. Then the rest of the

display would be a window into the grob, which could be scanned

as needed. The current grob would not reside in PICT, but por-

tions of it would be displayed in PICT when being edited.

PRINT would use KEY and WAIT to redefine the keyboard as ap-

propriate. And note that several ofthe routines developed in this

book could be incorporated into PRINT, too.

7 -

e

200%200
m 5010 EYT

& Wt g 9P TERT

The only drawbacks—as with all graphics routines—are memory

use and speed. Consider those your challenges. After all, you’re

the judge as to what’s acceptable and usable.

8: PROGRAMMABLE GRAPHICS APPLICATIONS

¢ Some of the most intriguing home video games are the role-

playing adventure games, where the hero negotiates some large

playing field, encountering monsters and other baddies.

Such a game on the 48, for example, could use an intricately

detailed 800x800 grob as the playing field, and dozens oflittle 8x8

grobs for the hero and the baddies. It wouldn’t be hard.

 \ [HP: 38 MP: 47 5T: 94f
: .'- ”'- @ " . .--_-';'5--':'-. .

&
YOU ENCOUNTER
3 FIREBALLS.

ACTIOMN?

* You've seen a checkers game. How about other familiar games

(Battleship, Tetris, hangman, cards, etc.)? Your only limits are

your imagination (and spare time).

More Suggestions

A,

C

 QO

5 UBATTLESHIP T
()

237

9: GrAPHICS BEYOND THE 48

(OR, “WHAT'Ss THAT FUNNY HOLE IN THE ToP OF My CALCULATOR?”)

Of course, graphics on the 48 are nice in and of themselves, but their

utility increases when you can transfer them to other machines.

Printing Graphics on the Infrared Printer

Although it is possible to send low-level graphics commands to the

HP82240A/B infrared printer, it is faster and more efficient to use the

built-in commands PR1 and PRVAR.

PR1 prints the grob in Stack Level 1. PRVAR prints the grob whose

variable name appearsin Level 1. To print more than one grob, you can

use a list ofvariable names asthe PRVAR argument. Note that PRVAR

prefaces each object with a blank line and the variable name.

The HP 82240A/B printer can print only 166 dot columns. For a grob

wider than 166 pixels, the printer will print the graphic in strips, with

“cut here” dotted lines separating the strips, so you can paste them

together later. You can avoid this problem if you have an Epson-

compatible or PCL-compatible printer (keep reading...).

To print the text representation of a grob, (GROB x y ddd...), it’s best

to convert the grob to a string, a list or a program, and print it via PR1

(or, better yet, upload it to a personal computer and print it from there).

Printing Graphics on the Infrared Printer 239

Printing Graphics on a Larger Printer

To print a graphic on a larger printer, you must translate the grob from

48 language into a language that the larger printer can understand.

Recall from Chapter 4 that a grob is an object of the format

GROB x y bbbbbb....

where x and y are the width and height, respectively, in pixels,

and bbbbbb.... is a hexadecimal bitmap of the grob—in the 48’s

“reversed” notation.

Before you can print the grob, you must separate these three pieces of

information for the printer. This program takes a grob from Stack

Level 1 and separates the information into its three parts on the Stack:

DISSECT

% ESTIR DUP SIZE 6 SWAP SUB

FOR n
DUP DUP " " POS SKWAP OVER
1 - 1 SWAP SUB 0OBJ=
ROT ROT 1 + OVER SIZE SUB

NERT
®

Checksum: # 48662d Bytes: 182

Stack Arguments Stack Results

3: x (a real number)

: y (a real number)

1: GROB x y wbbbbb.... bbbbbb....(a string)

240 9: GrapHICS BEYOND THE 48

Now, you’ll also recall from the discussion in Chapter 4 (see page 90)

that each nybble in the bitmap is presented with the bits reversed from

the normal convention.

Here’s a table that shows the translation between the 48 bitmap and

a “right-reading” bitmap:

48 nybble reversed “right-reading”

hex value bit pattern bit pattern hex value

B 0000 0000 0

1 0001 1000 8

¢ 0010 0100 4

3 0011 1100 C

4 0100 0010 2

9 0101 1010 A

b 0110 0110 6

7 0111 1110 E

8 1000 0001 1

9 1001 1001 9

A 1010 0101 5

B 1011 1101 D

C 1100 0011 3

0 1101 1011 B

E 1110 0111 7

F 1111 1111 F

Notice the symmetry in the table: E translates to 7, and ¢ translates

toE, for example. Also,B,6,9 andF translate into themselves, because

their bit patterns are symmetrical.

Printing Graphics on a Larger Printer 241

From the translation table given above, you can assemble a string to

represent the translated bitmap. The string is composed ofthe entries

in the “right-reading” column ofthe table: "B84CZAGE19503B7F".

Thus, in a program, translating a nybble becomes as simple as

« ... "B123456/59ABCOEF"
"884CZAGE19503B7F"
ROT POS DUP SUB ...

»

And you can build this sequence into a routine for translating bitmaps

ofany size. The followingprogram will take a bitmap stringfrom Stack

Level 1 and replace it with a translated string:

TRAMSLATE

« DUP SIZE
+ map len
« 1 len

FOR j
"8123456789ABCOEF" "B84CZAcE19503B7F"
map j j SUB POS DUP SUB
map j ROT REPL 'map' STO

MERT
map

Checksum: # 58829d Bytes: 171.5

Stack Arguments Stack Results

1: bbbbbb....(a string) bbbbbb....(a string)

Note: Togetyouroriginal stringback again,just executeTRANSLATE

a second time—the translation table is symmetrical.

242 9: GRrapHICS BEYOND THE 48

Formatting Quitput for the Printer

The most common printer protocols in use today are Epson and PCL.

Most printers—including laser printers—offer Epson compatibility,

either built-in or as an option. PCL is the Printer Control Language

used by all HP printers, including the HP LaserdJet and DeskJet. Most

laser printers offer built-in PCL compatibility.

The main difference between the two protocols is that PCL uses raster

graphics—receiving data in 8-dot rows—while Epson uses column

graphics—receiving data in 8-dot columns:

PCL-Protocol Printers Epson-Protocol Printers

l byte l” byte 2‘ byte 3-1 llayte 1 byte2 byte3

---------------------- . etc. o[e]

Each byte here represents 8 dots* of graphic output.

In PCL, each bit represents one dot in a row, with the least significant

bit on the right. Bytes are sent to the printer as characters, so a row

of four black dots followed by four white dots would have a character

value of # 111160886b (that’s # FBh or # 246d).

By contrast, in Epson, the least significant bit goes at the bottom of a

column ofbits. Bytes are sent to the printer as characters, so a column

offour black dots atop four white dots would have a character value of

11118086b (that’s # FBh or # 248d).

*Dots are printer data, as opposed to pixels, which are display data.

Printing Graphics on a Larger Printer 243

So suppose you wanted to print this 19x15 graphics object:

On the 48, you would describe this object as

GROB 19 15
18FB48 1668348 118440 SBBG48 9BB54H
248158 SABZ58 548158 SBBBSH 548158
98FE48 900848 118448 166348 18FB40

(rows are separated for clarity)

Running the bitmap string through TRANSLATE would then give you:

B1FBZ8 B6BCZB 880Z<H 90B128 SBB1Z8
AZBEAB AS14AB AZBSAB ABBBAB AZBBAA
91F128 960178 880228 BeHLZB B1FBZH

244 9: GraprHIcSs BEYOND THE 48

To successfully print the grob, a PCLprinter would need to see a string

of the form "%6 M= ..." where

X 1SCHR(129) or 81h

G iS CHR(240) or FOh

IS CHR(32) or 20h (<space>)

P isCHR(134) or 86h

® §SCHR(12) or OCh (<Form Feed>)

As you can see, the PCL data string can be readily obtained directly

from the TRANSLATE’d bitmap string (compare for yourself).

On the other hand, an Epson printer would expect to see a string ofthe

form "vwmm " where

Y 1SsCHR (255) or FFh

® iSCHR(0) or 00h (<NUL>)

® §SCHR(7) or07h (<BEL>)

® jSCHR(24) or 18h (<CAN>)

iSCHR(32) or 20h (<space>)

This Epson string is not so easy to obtain from the TRAMSLATE’d string.

In fact, it’s probably easier to write an Epson print program on the 48

which stores the grob in PICT and builds the Epson data string by

testing individual pixels.

Printing Graphics on a Larger Printer 245

Printer Control Codes

When printing graphics, you must send control codes to the printer,

warning it that the next batch of data it receives is graphics data

instead of text. Otherwise, your printer will act unpredictably.

For PCL printers, use these commands, each sent as a string:*

"<esc>*rA" (Start raster graphics)

"<gsc>*bull..." (Printthe next “n” bytes asgraphics data. Foryour

19x15 grob, you’d repeat this string 15 times—once

for each row. The first part ofthe command, then,

would be "<esc>*b3Wxd <esc>*b3bp= "

"<cr><LF>" (Print the buffer, advance to the next line and

return to the left margin)

"<Esc>#rB" (End raster graphics)

These PCL control codes are for the HP Thinkdet, QuietJet, Deskdet

and Laserdet printers, and any other printers which understand PCL.

Keep in mind that your display grobs printed at 300 dpi will become

postage-stamp size. But on some printers, (for example, the Deskdet

and Laserdet), you can select from different dot pitches. To change dot

pitches in PCL printers, use these commands.

"<esc>*¥tPOR" Set dot pitch to 75 dpi—Desket or Laserdet only)

"<esc>*¥t 1BBR" Set dot pitch to 100 dpi—Deskdet or Laserdet only)

"<esc>*#t15BR" Set dot pitch to 150 dpi—Deskdet or Laserdet only)

"<Esc>*t3BBR" Set dot pitch to 300 dpi—Desket or Laserdet only)

"<Esc>*t96R" Set dot pitch to 96 dpi—QuietJet only—default)

"<esc>*t 192R" Set dot pitch to 192 dpi—QuietJet only)

*<ESC>isCHR (27) (“Escape”); <CR>is CHR (13) (“Carriage Return”); <LF>is CHR (10) (“Line Feed”).

246 9: GRrapHICS BEYOND THE 48

For Epson printers, use these commands, each sent as a string:*

"<gsc>H8" (Set the line spacing to 8-dot rows)

"<psc>Knm..." (Print the next “n+(256xm)” bytes as graphics data.

For the 48, usually you’ll have less than 256 bytes

per row, so m=0. In the example grob, you have 19

columnsofdata, sonwillbe CHR (19);you have 15

rows of data, so you’ll have to send such a string

twice: "<gscoKmmymmm 1

and "<gsc>Kww"

The first two ® ™ in each string are CHR (19) and

CHR (0), respectively, and then the actual data

commences—uwith Y= u® __ for example, in the

first string, as shown on page 245)

"<crR><LF>" (Print the buffer, advance to the next line and

return to the left margin)

"<gsc>g" (Reset the line spacing to 6 lines per inch)

These Epson control codes are for printers that print at 96 dpiin “single-

density” mode (<ESC>K selects “single-density” printing). The codes

will work with printers of other dot pitches, also—even with the 300-

dpi Epson emulation on most laser printers. But as you know, at that

resolution, your 131x64 display-sized grobs start looking like postage

stamps. You’ll need to modify your printing program to print a square

of several dots for each pixel in your grob.

For more information on printer control codes, consult the owner’s

manual for your printer.

*<ESC>isCHR (27) (“Escape”); <CR>is CHR (13) (“Carriage Return”); <LF>is CHR (10) (“Line Feed”).

Printing Graphics on a Larger Printer 247

The basic algorithm for a printer driver is as follows:

248

. Clear system flag —33, to route non-printing I/O through the

infrared port, and set system flag —34, to route printer output

through the serial port.

. Epson: Set theline spacing on yourprinter—typically 8 for most

Epson printers. PCL: Set the dot pitch, if applicable; enable

raster graphics.

. PCL: Use the “translation string” to translate the grob data to

a “right-reading” bitmap. Epson: Store the grob in PICT and

extract data, 1 column of 8 pixels at a time.

. Build the graphics data string for the first row of data. Preface

it with the appropriate printer control code (see previous page).

. Build data strings for all subsequent rows of data. Preface each

string with the appropriate printer control code, and append

them to the data string (for every case with the 48, the printer

control codes will be identical).

. Send the data string to the printer, making sure to end the line

with a <CR> only. Note that on the 48, the <CR><LF > is auto-

matic. But you can disable the <L.F> by setting system flag —38,

executing@ TRANSIO, and then storing a null string ("") in the

fourth field of PRTPAR.

. Epson: Reset the line spacing to 6 lines per inch. PCL: End or

disable raster graphics; reset the dot pitch, if necessary.

. Restore system flags, if necessary.

9: GrarHICs BEYOND THE 48

Avoiding Problems

Laserprintersdon’tprintto the paperuntiltheyreceivea<Form Feed>,

which is CHR (12). If you're printing to a laser printer, you won’t see

any output until either the end of the page has been reached, or you

send a CHR (12) to the printer.

However, if you store this program, FF, in your HOME directory, then

you can send a <Form Feed> simply by executingFF, or by including

it in any program:

FF: « 12 CHR PR1 DROP
»

Checksum: # ¢7456d Bytes: 34.5

It is strongly recommended that you use handshaking on both your

printer and the 48. This gives the printer a chance to say “wait a

minute, 'm busy” without either the 48 or the printer losing any data.

You can select XON/XOFF handshaking on the 48 by setting the fourth

parameter in the IOPAR reserved variable to 1 (for more information

on using IOPAR, see Chapter 32 of the Owner’s Manual).

Printing Graphics on a Larger Printer 249

Two Sample Printing Programs

Combining all the above information into one place, you should be able

to create a program to suit your needs and your printer. Use these two

programs as examples.

PRGROB1

« DUP SIZE PICT RCLF (Save defaults)
TD (Select standard numeric notation)

¢ CHR "AB" + (Set dot pitch to 8)
¢r CHR "K" + (Beginning of data string)
ef CHR "z" + (Reset dot pitch to default)

250

(Temporary storage variable)
+ g ¥ Yy picty flags dpB dat re t
« gr PICT STO

-33 CF -34 SF -38 SF (IR I/0, serial printing, auto LF)

dr8 PR1 DROP
v B*R 256 MOD CHR dat
OVER + 'dat' STO (Build <Esc>Kto <esc>Kn)
v B»R SWAP NUM - 256 ~ CHR
dat SWAP + 'dat' STO0 (Build <Esc>Knto <Esc>Kknm)
nu (Initialize data string)
By B*R 8 ~ CEIL
FOR bisrouw

dat + (Initialize line data)

B % B2R
FOR col

8 T')t ' STOD (Initialize column data)

FOR row (Test eachpixel)
col R+B
bisrow 8 * row + R3B
¢ »LIST PIK? (Returns 1 or 8)
2 ¢ row - ™ ¥ 't' STO+ (Increment col. data)

MEXRT (Next row)

9: GraprHICS BEYOND THE 48

t CHR +
NEXT (Next column)

NEKT (Next big row)
PR1 DOROP re PR1 DROP (Print grob, reset printer)
pictx PICT STO flags STOF (Restore previous states)

»

Checksum: # 61444d

Bytes: 949

Stack Arguments Stack Results

1: GROB x y bbbbbb.... (none)

Notes: PRGROBI prints a grob on an Epson-compatible printer, de-

stroying PICT in the process.

Printing Graphics on a Larger Printer 251

« DISSECT TRAWSLATE

252

PRGROBZ

(Get width, heightand bitmap)
RCLF (Saveprevious states)

570 (Select standard numeric notation)
ef CHR "=#t75R" + (Set dot pitch to 75 dpi—96 for QuietJet)

ef CHR "=rp" + (Begin raster graphics)
¢f CHR "#rB" + (End rastergraphics)

7 CHR "=p" + (Beginning of data string)
B (Temporary storage variable)
+ w y map flags dpfS besrg endrg dat t
« -33 CF -34 SF -38 SF (IR1/0,...

B TRANSIO 'PRTPAR' DUP
3 18668 PUT 4 "" PUT ...serial printing, disable LF)
endrg PR1 DROP (Garbage collection on the printer)

de?S PR1 DROP (Set dot pitch)
bearg PR1 DOROP (Begin raster graphics)
map SIZE y ~
OuP 't' STO (Data string length per row)

dat SWAP 2 -~ + "W"
+ 'dat' STO (Build <ESc>bto <Esc>bnll)
;" (Initializedata string)

Y

FOR rouw
dat + (Initialize line data)

row 1 -t # 1 + rout =
FOR char

map char
DUP 1 + SUB (Read bitmap for next 8 bits)
"#" SWAP + "h" + OBJ+
E*R CHR + (Add to data string)

STEP (Next character)
NEXKT (Next row)

PRl DOROP endrs PR1 DROP (Prt. grob, end raster graphics)

12z CHR PR1 DROP (Form feed—optional)
flags STOF (Restore previous states)

9: GraprHICS BEYOND THE 48

Checksum: # 23778d

Bytes: 595

Stack Arguments Stack Results

1: GROB x y bbbbob.... (none)

Notes: PRGROBZ prints a grob on a PCL-compatible printer.

Printing Graphics on a Larger Printer 253

The Hard Work’s Already Done

Fortunately, HP has already provided print routines that do all this for

you, in the form oftwo public-domain libraries called EPSPRINT.LIB

and PCLPRINT.LIB.

These libraries are available on the HP 82208A Serial Interface Kit

disk,orare downloadable fromthe HPCalculatorBulletinBoard System

(BBS). Instructions for using the libraries are located in two other files

called EPSPRINT.TXT and PCLPRINT. TXT.*

Using EPSPRINT

Once installed, the EPSPRINT library appears in the Library menu as

Jdd31. When selected, it shows this menu: FIFIETITIELR

Pressing [Hdi[f] modifies PRTPAR and system flags —33 and —34 to

send all printer output to an Epson-compatible printer over the serial

interface, using XON/XOFF flow control. It uses a “hook” in the 48’s

operating system to activate the Epson graphics printer driver. Text

is output in the printer’s current font, and graphics is output at 60 dpi

(you can modify PRTPAR to set it to 120 or 240 dpi, but 240 dpi is not

recommended).

Pressing [dd[dd returns PRTPAR and flags —33 and —34 to their turn-

on states, allowing you to continue using the infrared printer. You may

ignore [Adi[d3 if you don’t use an infrared printer.

*For more information on the HP BBS, contact HP Calculator Technical Support at (503) 757-2004.

254 9: GRraprHICS BEYOND THE 48

Pressing [ELEIEA with an argument of 1, Z or 4 causes EPPRT to use the

given magnification factor in printing graphics (the default is 2). For

example, 4 causes every pixel in the grob to be printed as a

square, 4 dots x 4 dots.

All 48 printingcommandsexcept ON-PRINTworknormally with EPPRT.

ON-PRINT does unpredictable nasties with your printer and should

not be used. Use PRLCD instead. Also, you can automate your Epson

printing somewhat by storing these routines in your HOME directory:

EPRI: « EPON PR1 EPOFF
>

Checksum: # 18483d Bytes: 37

EPRVAR: « EPON PRVYAR EPOFF
®

Checksum: # 51587d Bytes: 39

Printing Graphics on a Larger Printer 255

Using PCLPRINT

The PCLPRINT library appears in the Library menu as [[dddl When

you selectit, you see this menu: [[FIFIFTNTETHIEETR

Similar to [Hdi[f} in EPPRT, EId' also modifies PRTPAR and system

flags —33 and —34, but it does so in order to send all printer output to

a PCL-compatible printer over the serial interface, using XON/XOFF

flow control. It, too, uses a “hook” in the HP-48’s operating system to

activate the PCLgraphics printer driver. Textis outputinthe printer’s

current font.

Aacts much like dFd , allowing you to continue using the in-

frared printer (and likewise, you may ignore [[Idi[d3 ifyou aren’t using

an infrared printer).

ITIM takes an argument from Stack Level 1 and uses it to set the

printer to the proper dot pitch. This could be 75, 150 or 300 dpi for a

Deskdet or Laserdet (doesn’t apply to other printers).

Unlike the [E[iIcl in EPPRT, theIRin HPPRT can take any integer

as an argument for the magnification factor. Entering n [ZLIH causes

every pixelin the grob tobe printed as a square, n dots xn dots (no default

is given, but it appears to be 1).

For a 300 dpi printer,]| IZGI will give you a postage-stamp sized image

of a 131x64 grob. Agrob printed at ¢ IELIEM is about the same scale as

an HP82240A/B printout, and a grob printed at &6 XTIl is about the

same scale as the 48’s LCD display.

256 9: GRrapHICS BEYOND THE 48

All 48 printingcommands except ON-PRINTwork normally with HPPRT.

ON-PRINT has the same problems in HPPRT as in EPPRT.

However, when printing to a LaserdJet series printer, note that the

Laserdet prints to a buffer, not directly to the paper. The buffer is

printed onto the paper either when the buffer is full, or when a form-

feed character (ASCII # 12d) issenttothe printer. Soifyou’re putting

several graphics on one page, be sure to send a CR (there’s ailkey

in the PRINT menu) after each grob to provide some white space.

Whenyou’rereadytoeject the page, you'llneedtosenda<Form Feed>

character to the printer (you can use your FF program to do this).

Also, you can automate your PCL printing somewhat by storing the

following two routines in your HOFME directory.

HPR1: « HPON PR1 HPOFF FF
»

Checksum: # 3872¢d Bytes: 472.5

HPRVAR: « HPON PRVAR HPOFF FF
»

Checksum: # 336878d Bytes: 44.5

You may omit the FF’s in these two routines if you’re not using a

Laserdet, or if you wish to put multiple printouts on one page.

Printing Graphics on a Larger Printer 257

Printing Graphics on a Pen Plotter

With the advent of high-resolution, wide-carriage, color dot-matrix

printers, pen plotters seem to be disappearing quickly. Still, a pen

plotter can be used as a graphics output device. The algorithm for a

plotter driveris very simple—and fast, since pixels can be printed “on

the fly,” without waiting to build large graphics command strings.

The basic algorithm for a plotter driver is as follows:

1. Set the pen width and pixel spacing for the plotter—typically 0.3

mm or 0.65 mm.

2. Either use TRANSLATE to translate the grob’s data to a “right-

reading” bitmap, and then process the bitmap; or store the grob

in PICT, and scan PICT, pixel by pixel.

3. With pen UP, scan the paper, row by row. At each pixel location,

putthe penDOWNifthe pixelis “dark” inthatlocation, and draw

a small square. Then put the pen UP again to resume scanning.

You may also wish to draw an outline box around your grob after it is

completed.

258 9: GRrapHICS BEYOND THE 48

Grobs and Other Computers

Since integrated text and graphics are taken for granted on computers

thesedays, it would be nice to be able to include grobs in your computer

work.

For example, if you're writing a lab report on your PC and have some

important data stored in your 48, you can upload the numeric data to

your computer, butyou might also wanttoinclude the impressive graph

you made on the 48 to avoid having to duplicate it in a spreadsheet.

Or suppose your report contains several long, involved equations like

the ones in Chapter 3 in this book. Using the two-dimensional EW

version is an easyway to get “textbook” notation in your report without

having to buy the mathematics add-on for your word processor.

By virtue of their (admittedly) superior raw computing power, con-

version of raw grobs to computer-format graphics is best done by the

computers. DISSECT and TRANSLATE are trivial on a PC, but the grob-

to-graphics conversion problem is complicated by the fact that there

doesn’t yet exist a standard computer graphics format.

Here, Hewlett-Packard comes to the rescue again. HP has developed

programs called GROB2TIF.EXE and TIF2GROB.EXE for MS-DOS

computers, and one called GROBer for Macintosh computers.

Printing Graphics on a Pen Plotter /| Grobs and Other Computers 259

GROB2TIF .EXE converts grobs to TIFF files, which can be used, or at

least converted into something else, by the most popular word-pro-

cessing and desktop-publishing programs. TIF2GROB . EXE converts

TIFF files to grobs for use on the 48.

The GROBer allows you to convert grobs to Macintosh graphics for use

with any Macintosh package, and to convert Macintosh graphics to

grobs. Some ofthe finest 48 graphics to appear to date were taken from

the Macintosh.

GROB2TIF .EXE is available on the HP82208A Serial Interface Kit

disk for MS-DOS machines. The GROBer is available on the HP82209

Serial Interface Kit disk for Macintoshes. Both programs are also

available from the HP Calculator BBS (see the footnote on page 254).

TIF2GROB.EXE is available only from the HP Calculator BBS.

260 9: GRrapHICS BEYOND THE 48

Graphics Between Two 48’s

It’s hard to think of a serious use for two-machine graphics besides

games or cool-looking demos, but some people take their games and

their demos very seriously.

As you've seen with the CHKRS program,it is quite straightforward to

create some two-player games on the 48, with two machines connected

via IR or the serial port.

Awell-behaved game program shows the board from the player’s point

ofview and passes a token to keep track ofwhose move it was. Askilled

game program checks for invalid moves (such as moving backwards in

checkers) and allow for complex moves (such as double-jumping in

checkers), and—of course—it would keep score.

Graphics Between Two 48’s 261

Final Thoughts

This book is only the beginning. It has shownyoujust a few ofthe great

graphicstricks the 48 cando, and howyou can use these graphics tricks

to your advantage. And in the process, hopefully, you’ve become more

comfortable with the machine, by working through the exercises and

trying the applications (and maybe you also have a better idea ofhow

to use the EquationWriter, the Solver and the Plotter).

Allthat remainsis for youto find real uses for these tools—applications

in yourjob, studies or hobbies. As you use the 48, you will undoubtedly

become more skilled with it and thus it will become the more useful to

you in return. Again, remember what your high school band teacher

told you:

“Proficiency comes through practice.”

Above all, have fun!

262 9: GrapHICS BEYOND THE 48

More Graphite Grobs

Final Thoughts 263

APPENDICES

A: Review of the Hexadecimal

Number System

“Hexadecimal” is a word derived from the Latin roots for six (“hexa-")

and ten (“decimal”). Itis a form ofexpressing numbers in base sixteen.

“Hexadecimal” is often abbreviated to “hex.”

The Decimal System as an Example ofCounting Systems

Most human beings count in the decimal, or base-ten, number system

(though you may have heard also of the binary, or base-two, number

system). In base ten, you use the numerals from 0 to 9. To count past

nine, you need some way to indicate the overflow, so you use a second

digit—the “tens” digit—to count the “number ofoverflows.” Likewise,

when you run out of digits to express the “overflows,” you add a third

digit—a “hundreds” digit—to count the “overflows of overflows.” And

so on, until you have enough digits to express any given number.

So, proceeding from right to left, the first digit represents the number

of“ones,” or 10°, in the number; the second digit represents the number

ofwhole sets often (10'); the third digit represents the number ofwhole

sets of a hundred (10?), etc. Thus, the nth digit represents the number

of whole sets of 10*! in the number.

So you could think of the number 3401 as:

3x10% + 4x10% + 010! + 1x10°

A: Review ofthe Hexadecimal Number System 265

Significant Digits

Obviously, changing the leftmost digit in the number has a greater

effect on the number than changing the rightmost digit. That is, the

leftmost digit is the most significant digit; and the rightmost digit is

the least significant digit. For example, if you see a house selling for

$63,499 and one selling for $63,500, you’d say they both cost the same.

One dollar isn’t very significant compared to sixty thousand dollars.

The right-to-left order of increasing significance is a convention used

in other place-value numbering systems, including binary and hexa-

decimal.

Hexadecimal Values

Computers count in binary, using only the numerals 0 and 1. That’s

difficult for humans to comprehend and uses a lot of space in displays

and printouts. A more convenient way to organize binary data is to

group the binarydigits (bits) togetherin groups offour, and assign each

group a single value.

Look at the table on the opposite page. You'll see that a group of four

bits can range from 0000, with a value of zero, to 1111, with a value of

fifteen. That’s sixteen values, which is why sixteen—hexadecimal—is

such a convenient number base to use when working with computers.

266 APPENDICES

Ofcourse, when expressing number values, you have only ten conven-

tional Arabic numerals (0-9). But when counting in hexadecimal, you

must go all the way to fifteen before adding a second numeral as a

“counter of overflows.” So the letters A-F are used as numerals to rep-

resent the values ten through fifteen in hexadecimal.

Decimal Binary Hex

0 0000 0

1 0001 1

2 0010 2

3 0011 3

4 0100 4

5 0101 5

6 0110 6

7 0111 7

8 1000 8

9 1001 9

10 1010 A

11 1011 B

12 1100 C

13 1101 D

14 1110 E

15 1111 F

In the 48, integer objects can be expressed as binary, decimal, hex or

octal (base eight). The # sign before the number means that it’s an

integer, and the b/d/h/o suffix indicates its number base. You can

convert these integer number formats from one base to another using

the 48’s BASE menu, or use the following table (for the corresponding

48 display characters, see Appendix C in the Owner’s Manual):

A: Review ofthe Hexadecimal Number System 267

 Binary Decimal Hex. Binary Decimal Hex.

BPBPBBAKBL # BOBBd # B6h # 0BlBBEBBb # B32d # 26h

bBBBBBB1b # BB1d # Blh # 00106661b # B33d # Zlh

0BoBBB1Bb # BB2d # Bzh # 0BlBBB1Bb # B34d # 2Z2h

0BPBBB11b # BB3d # B3h # 0BlBBB11b # B35d # 23h

pBOBO1BBL # BB4d # B4h # 0BlB01BBb # B36d # 24h

pBPBO1B1b # BB5d # B5h # 0B160161b # B37d # 25h

0BBOB116b # BBed # B6h # 0B160116b # B38d # 26h

0B0BR111b # BB/d # B/h # pB166B111b # B39d # 2¢h

B0BB10BBBb # BB8Bd # B6h # 0b1616BBb # B46d # 28h

pBBB16B1L # BB9d # BSh # 0B1616681b # B41d # 25h

00BB16016b # Bl16d # BAh # 06161616b # B42d # ZAh

pBpB1B11b # B11d # BBh # 0B161611b # B43d # ZBh

0boBl1BBb # Bled # BCh # 0B161166b # B44d # 2Ch

0B0B1161b # B13d # BDh # 0B161181b # B45d # 2D0h

0oBB1116b # Bl14d # BEh # oB161116b # B46d # ZEh

bBoB1111b # B15d # OFh # 0B161111b # B47d # 2Fh

0BoloBoBb # Bled # 16h # 0B110BBBb # B48d # 36Bh

08016061 # B17d # 11lh # 601160B1b # B49d # 31h

bbO1BBlBb # B18d # 1Zh # 0pl16616b # B56d # 3Zh

0Bo1BB11b # B19d # 13h # pol116B11b # B51d # 33h

bBo1O01BBb # BZ26d # 14h # pBl11616Bb # B52d # 34h

BoA16161b # B21d # 15h # 061160161b # B53d # 35h

0B0160116b # B22d # 16h # 061168116b # B54d # 36h

0BO16111b # B23d # 17h # 66118111b # B55d # 3¢h

0BB110BBb # B24d # 18h # 0B1116BBb # B56d # 3Bh

0B011661b # B25d # 1Sh # 001116681b # B5/d # 3%h

0B0116816b # B26d # 1Ah # 061116816b # B58d # 3Ah

0BO11611b # BZ27d # 1Bh # 0B1116811b # 659d # 3Bh

0pBl11166b # 628d # 1Ch # po111166b # BeBd # 3Ch

bBO11181b # B29d # 1Dh # 06111161b # Be6ld # 30h

06011116b # B36d # 1Eh # 60111116b # B62d # 3Eh

06011111b # B31d # 1Fh # 068111111b # B63d # 3Fh
268 APPENDICES

3
=

3
=
3
S
3
S
S
3
S
3
3
S
3
S
S
3
3
3
3
I
I
I
I

 Binary Decimal Hex.

p160bBBEBb # Be4d # 46h

p1606BB1b # B65d # 41h

p1606016b # Beed # 4Zh

p16060811b # B6/d # 43h

B16061686b # B68d # 44h

B16808181b # B6Sd # 45h

p1668116b # B76d # 46h

p16668111b # B71d # 4¢h

plpB16BBb # B72d # 46Bh

B18616881b # B73d # 4Sh

p1601816b # B74d # 4Ah

p1601811b # B75d # 4Bh

p1601166b # B76d # 4Ch

p166811681b # B77d # 4Dh

p16081116b # B678d # 4Eh

B1601111b # 679d # 4Fh

p1616066b # B8Bd # SBh

p16166681b # B81d # Slh

p1616016b # BB2d # SZh

p16166811b # B83d # 53h

p1618166b # B84d # S54h

p168168181b # B85d # 5S5h

p168168116b # BBed # S6h

g18168111b # B87d # S¢h

p1611666b # BB8d # S5S8h

p1p116681b # B895d # 55h

p1611816b # B98d # SAh

B1611811b # B91d # S5SBh

p16811166b # B92d # SCh

g1811181b # 693d # 5SDh

g1811116b # B94d # SEh

g1811111b # B95d # SFh =
3
=

3
=
=
S

S
F
S
S

3
E
S
S
S
S
S
S

3
=

3
=

3
=

3
=
=
=
S
S
3
=
A
M
M
M
I
I
I

A: Review ofthe Hexadecimal Number System

 Binary Decimal Hex.

B1166B6Bb # B96d # 6Bh

1166081b # B97d # 61h

B11606816b # 698d # 62h

B1166811b # 699d # 63h

p1160166b # 168d # 64h

B11668181b # 181d # 65h

p1166116b # 162d # 66h

p1166111b # 183d # 6&¢h

B1101666b # 164d # 68h

p1181681b # 185d # 65h

pl1161016b # 186d # 6Ah

p1101611b # 18/d # 6Bh

p1181166b # 188d # 6Ch

p1101181b # 1689d # 6Dh

B1181116b # 1186d # 6Eh

B1181111b # 111d # 6Fh

p1116606Bb # 112d # 7Bh

p11166681b # 113d # 7lh

p1116816b # 114d # 72Zh

p1116611b # 115d # 73h

p1110166b # 116d # 74h

p111681681b # 117/d # 75h

B1118116b # 118d # v6h

B11168111b # 119d # 7¢h

B1111686b # 126d # 7Bh

pl1111661b # 121d # /Sh

p11116816b # 122d # ¢Ah

p1111611b # 123d # ¢Bh

B1111166b # 124d # 7Ch

B1111181b # 125d # ¥7Dh

B1111116b # 126d # ?Eh

B1111111b # 127d # 7Fh

269

 Binary Decimal Hex. Binary Decimal Hex.

180B0BRBLD # 128d # 86h # 101606BBb # 166d # ABh

106B0BB1b # 129d # 8lh # 1816B6B1b # 161d # Alh

1606BB16b # 136d # B8zh # 16166B16b # 162d # AZh

160660611b # 131d # 83h # 10166611b # 163d # A3h

16060166b # 132d # B84h # 10160166b # 164d # A4h

160608181b # 133d # 85h # 10168181b # 165d # ASh

16060116b # 134d # 86h # 101608116b # 166d # A6h

16608111b # 135d # 8¢h # 18168111b # 167/d # A/h

160616B6b # 136d # 86h # 101616B6b # 168d # ABh

1000160681b # 137d # 8Sh # 10161601b # 169d # ASh

16601016b # 138d # BAh # 10161616b # 176d # AAL

166061611b # 139d # 8Bh # 181601011b # 171d # ABh

16001166b # 146d # 8Ch # 160161166b # 172d # ACh

10601181b # 141d # 8Dh # 101601181b # 173d # ADh

16061116b # 142d # BEh # 161681116b # 174d # AEh

16601111b # 143d # 8BFh # 18161111b # 17/5d # AFh

10016066b # 144d # 96h # 10110666b # 176d # BBh

16016081b # 145d # Slh # 1681166601b # 177d # Blh

16016016b # 146d # 9zh # 16116616b # 178d # BZh

166166811b # 147d # 93h # 101166011b # 179d # B3h

16010166b # 148d # 94h # 168110166b # 186d # B4h

16018181b # 149d # 95h # 181181681b # 181d # BSh

16018116b # 156d # 96h # 18118116b # 182d # B6h

160168111b # 151d # 97h # 18118111b # 183d # B¢h

16011686b # 152d # 98h # 10111666b # 184d # BBh

168011681b # 153d # 9%h # 1681116681b # 185d # BSh

16011616b # 154d # 9Ah # 16111616b # 186d # BAh

16011611b # 155d # 9Bh # 18111611b # 187d # BBh

10611166b # 156d # SCh # 16111166b # 188d # BCh

16811181b # 15°d # 9Dh # 18111181b # 189d # BDh

16011116b # 158d # 9Eh # 18111116b # 198d # BEh

16011111b # 159d # 9Fh # 18111111b # 191d # BFh
270 APPENDICES

=
S
F
S

S
F
3
3

S
F

S
F
S
S
S

S
F
3
S

S
F
S
3
S
3
S
S
3

3
=
3
3
S

3
=
M
I
I
I
S

 Binary Decimal Hex.

1160606666b # 192d # CBh

11666681b # 193d # Clh

11606816b # 194d # Czh

11606011b # 195d # C3h

116608166b # 196d # C¢h

11668181b # 197/d # CSh

11666116b # 196d # Ceh

11666111b # 199d # C¢/h

116601666b # 206d # CBh

11601681b # 281d # CSh

11661816b # 202d # Chh

11601811b # 2683d # CBh

11601166b # 284d # CCh

116811681b # 205d # COh

11661116b # 206d # CEh

11861111b # 2687d # CFh

11016666 # 2688d # DBh

11816681b # 2689d # Dlh

11016616b # 216d # DZzh

11816611b # 211d # D3h

11818166b # 2l2d # D4h

11818181b # 213d # D5h

11818116b # 214d # Doh

11818111b # 215d # D¢h

11811666b # 2l6d # DBh

11811681b # 21/7d # DSh

11611816b # 218d # DAh

11811611b # 219d # DBh

11811166b # 226d # DCh

118111681b # 221d # DDh

11811116b # 222d # DEh

11811111b # 223d # DFh S
E

S
E

S
F
3
S

3
=
S
S
3
S
3

S
F
3
3
S

3
=

3
=
3

3
=
2
=
%
S

3
=
2
3
3
3
=
=
H
I

A: Review ofthe Hexadecimal Number System

 Binary Decimal Hex.

111060686 # 224d # EBh

111066081b # 225d # Elh

11166616b # 226d # E2h

111668611b # 227/d # E3h

111601666 # 228d # E4h

11168181b # 229d # E5Sh

111668116b # 2386d # E6h

11166111b # 231d # E/h

11101666b # 232d # EBh

11101661b # 233d # ESh

11161816b # 234d # EAh

11161811b # 235d # EBh

11101166b # 236d # ECh

11181161b # 237d # EDh

11181116b # 238d # EEh

11161111b # 239d # EFh

11116666b # 246d # FBh

111166681b # 241d # Flh

111166816b # 242d # Fzh

11116811b # 243d # F3h

11110166b # 244d # F4h

111161681b # 245d # F5h

11118116b # 246d # F6h

11118111b # 24/d # F¢h

11111666b # 248d # FBh

11111661b # 249d # FSh

11111816b # 256d # FAh

11111811b # 251d # FBh

11111166b # 252d # FCh

11111181b # 253d # FDh

11111118b # 254d # FEh

11111111b # 255d # FFh

271

B: Graphics Operations and Commands

Setting/Checking Graphics Parameters

Operation
(Interactive)

05PL SI2E
OEJ SIZE

[IPLon)HE3I

(2P[LTIEd

PNEILTE]

(EIPoDLT

EPLoNEIEL]

PEER

PPETER

GRY(ISRES| CHCT

272

Command
(Programmable)

SIZE

'PPAR' PURGE
PICT PURGE
PICT DROP

INDEP

PPAR 3 GET

DEPND

PPAR ¢ GET

RES

PPAR 4 GET

-31 CF

Description

Returnstheheightand
width of the grob, in
pixel units (page 103).

Resets plot parameters
to defaults (page 105).

Specifies independent
variable (page 106).

Recalls independent
variable (page 106).

Specifies dependent
variable (page 106).

Recalls the dependent
variable (page 106).

Specifies the plot reso-
lution (page 106).

Recalls plot resolution

(page 106).

Enables curve filling
(page 106).

APPENDICES

Operation
(Interactive)

&5MODES) 4,[%}

(=Pron)EHE

(=PEHE

13,00

(2JPLOT) (44

([=>PLOT) EIN; 183

(2JPLOT) (keI8-

(2PronHATR

[2IPLoT)AT

(2PLOT)sl

Command

(Programmable) Description

-31 SF Disables the curve fill-

ing (page 106).

AXES Specifies the intersec-
tion ofaxes (page 107).

PPAR 4 GET Recallstheintersection
of axes (page 107).

CENTR Specifies the center of

PICT (page 107).

PPAR 0OBJ+ Recalls center of PICT

6 OROPN + 2 ~ (page 107).

SCALE Setsthexandyplotting
scales (page 107).

PPAR 0OBJ- Recalls x and y plotting

& OROPN SWAP - scales (page 107).
18 = C+R PICT
SIZE 1 - B=R ROT
SWAP ~ ROT ROT
BsR 1 - -~ SHWAP

XRBNG Sets the x-axis range
(page 108).

PPAR 1 GET RE Recallsthex-axisrange
PPAR 2 GET RE (page 108).

YRNG Sets the y-axis range
(page 108).

B: Graphics Operations and Commands 273

Operation Command
(Interactive) (Programmable)

(oPon)HAIH « PPAR 1 GET IM
PPAR 2 GET IM

%

PMIN

« PPAR 1 GET
%

PMAX

« PPAR £ GET
»

=Ere] PDIM PDIM

DET|XH "W

*H

Creation/Manipulation of Grobs

(Graph)(sT0) « PICT RCL
3

(EW)(sT0) « B »GROB
»

LCD*

274

Description

Recalls y-axis range
(page 108).

Sets PMIN (page 108).

Recalls PMIN (page
108).

Sets PMAX (page 108).

Recalls PMAX (page
108).

Changes PICT size or
user units (page 109).

Changes x-axis range
(page 109).

Changes y-axis range

(page 109).

Puts PICT onto Stack

(pages 89, 112).

Turns equation into a
grob (pages 89, 112).

Turns Stack display

into a grob (“snapshot”)
(pages 89, 112).

APPENDICES

Operation Command

(Interactive) (Programmable)

(1 e +GROB

BLANK

« GROB x y B
»

G9 05PLGOF GOR

D5PL

|

GHOF GXOR

A REPL
G@O] 0eJ REPL
(Graphics) L1434 "

D3PL] SUE SUB
OEJ SUE

(Graphics) IHT:H

(Graphics)
(Graphics)

ERASE ERASE
(Graphics)(CLR)

(Stack) +

(Stack) NEG

B: Graphics Operations and Commands

Description

Turns any object into a
grob (pages 89, 112).

Creates a blank grob
(pages 89, 112).

Superimposes one grob
upon another, OR’ing

pixels (page 113).

Superimposes one grob

upon another, XOR’ing
pixels (page 113).

Superimposes one grob
upon another, replac-

ing target grob pixels
(page 113).

Creates subgrob from
parent grob (page 113).

Erases (“blanks out”)
part ofgrob (page 114).

Erases (blanks out) all

of PICT (page 105).

Adds (GOR’s)two grobs
ofsame size (page 115).

Inverts a grob, toggling

each pixel (page 115).

275

Accessing, Viewing/Displaving Grobs

Operation Command
(Interactive) (Programmable) Description

(Stack) (¢ GRAPH Enters graphics envi-
(Stack/CL) ronment (page 99).

(GRYGes]ALTAO AUTO (Draws all or some of
PICT (pages 89, 105).

GronM DRAW (Draws all or some of
PICT (pages 89, 105).

(Graphics) (G« « { 3 PVIEW Enters scrolling mode
(EW) (G]9 & (page 100).

(Scrolling) («),(a),(¥),(») Scrolls through grob.
(pages 100, 118-119).

(Scrolling) Jumps to edge of dis-

P9Iy, play orgrob (pages 100,
118-119).

(Scrolling) (]« Exits scrolling mode to
EW or graphics (pages
100, 118-119).

(Scrolling) Exits scrolling mode to
EWor Stack(page 100).

[N TEXT Exits graphics envi-
(Graphics)(ATTN) ronment (page 99).

ELTN T PVIEW Views selected portions
of PICT (page 100).

DSPL [>LCD *LCD Displays grob in Stack
display (page 100).

276 APPENDICES

Editing/Drawing on Grobs

Operation Command
(Interactive) (Programmable)

&Pron)BT AUTO

(&)PLon)[T DRAW

GPoDITH DRAX

(G)PLoT) NI3dN LABEL

1ET PX+C

DSPL C*PX

D5PL EOY BOX

(Graphics)El

B: Graphics Operations and Commands

Description

Plots a curve in PICT.

Graphics environment

is active. AUTO erases
PICT, rescales y-axis,

plots axes and the
curve (page 105).

Plots a curve in PICT.
DRAW does not rescale

y-axis. When used in a

program, DRAW does
not erase PICT or draw

axes (page 105).

Drawsthex-andy-axes

(page 105).

Labelsx- andy- axes (or
PICT boundaries), us-

ing current number
format (page 105).

Converts pixel coordi-
nates into user units

(page 110).

Converts user units
into pixel coordinates
(page 110).

Draws a box in PICT

(page 110).

277

Operation
(Interactive)

D5PL LIME
(Graphics) I41:15

LT
(Graphics) LIRIL1S

(Graphics) [M]4%

D5PL JPIHOM]
(Graphics) [T'REE

bSPL JPINOF

(Graphics)[T

I

278

Command

(Programmable)

LINE

TLINE

ARC

PIXON

PIXOFF

PIX?

Description

Draws a line in PICT

(page 110).

Draws a line in PICT,

toggling pixels (page
110).

Draws a circle or arcin
PICT. isn’t pro-
grammable; use a 360°
arc (pages 110-111).

Turns a pixel on (page
111).

Turns a pixel off (page
111).

Tests pixel status:
l=0on HB=off

(page 111).

APPENDICES

Printing Graphics

Operation

(Interactive)

<PRNT)2N

(IPRNT)AT

GG| PESTC

)PRINT) [H91

Command

(Programmable)

PR1

PRVAR

PRST

PRSTC

« ... *5TR
PRI ...
»

« ... 1 =»LIST PRl ..
®

PRLCD

B: Graphics Operations and Commands

Description

Prints grob in Level 1,

in graphics mode (page
239).

Prints grob(s) named
in Level 1, in graphics
mode (page 239).

Prints the contents of

Stack—grobs in com-
pact mode:

Grarhics nxm

Prints a grob in text
mode. Note that a list

uses less memory than
a string.

Prints display. Note:
Do not use
with EPSPRINT.LIB

or PCLPRINT.LIB

(pages 255, 257).

279

Miscellaneous Graphics Commands

Operation

(Interactive)

I

DpSPL JCLLCD

D5PL DISP

D5PL JFREEZ

GGI|PTYPE

(Graphics)

(Graphics)
(Graphics) [ot]1]:1)

280

Command

(Programmable)

PICT

CLLCD

DISP

FREEZE

Description

Specifies the current

graphics object.

Use « ...PICT RCL...
»

toput contentsontothe

Stack.

Clears (blanks out) the
display (page 114).

Displays a line of text
(page 114.

Freezes all or part of

the display until next
keystroke (page 114).

Offers user a selection
ofindividual plot types
—which are program-
mable.

Returns cursor coordi-

nates to Stack.

Displays cursor coor-
dinates in user units.
(+), (=) or any menu key
will restore menu(page
143).

APPENDICES

Operation Command
(Interactive) (Programmable)

(Graphics) ()
(Graphics)

(Graphics)
(Graphics)

(Graphics)
(Graphics)

(Graphics)

BARPLOT

HISTPLOT
SCATRPLOT

J) 2] - 2
n
j
u
n

>|
|>

S)
|4
A o
=

x
||

e
[

B: Graphics Operations and Commands

Description

Hides/restores Graph-
ics menu. (-] or any
menu key restores the

menu.

Marks current cursor

location for BOX, LINE,

etc.

Toggles cursor style—

overwrite vs. invert.

Menuofgraphic Solver
functions (page 71).

Generates statistical
plots. Refer to the HP
Owner’sManualChap-
ter 21, “Statistics,” for

more information.

281

C: User-Named Objects

Alphabetically (objects named by other objects are also listed here,

Name

ADDB

AMRT

ARROW

BEGEND

BIG

BIGSINE

BKING

BPIECE

BULLDOOZER

CALEND

CHKRS

CONTOUR

CTR

C-L

DIODE

282

i
y

i
y

among the References)

PATH

HOME TOOL: }

HOME G.CHI }

HOME

HOME

HOME

HOME

HOME

HOME

HOME

HOME

HOME

HOME

HOME

HOME

HOME

TOOL* PIC: }

G.CH3 }

TOOL*

TOOL*

TOOL:

TOOL:

TOOL:

TOOL*

TOOL:

TOOL=

TOOL:

TOOL=

PIC: }

PICZ:

PIC: }

PIC: }

}

}

}

}

}

}

G.CH3 }

References

PY,FY,N, I, PMT
T4oM

VIEWP

DOZDATA

MYR

Flags, SETUP,
REDRAL, GLABEL,
MYMOVE, THMOVE,
LAYOUT

ARRAY

ILV,Vb, Io

Page

128

80

117

58

117

118

207

207

198

232

208

191

133

228

67

APPENDICES

Name

DISPLAY

DISSECT

DOZDATA

EMPTY

EPR1

EPRVAR

FF

FOURIER

FOYRY

Fruit

G.CHZ

G.CH3

GAND

GLABEL

GLL

GL»

GRAFA

GSIZE

HILITE

HPR1

M
i
y
o

e
y

HOME

HOME

HOME

HOME

HOME

HOME

HOME

HOME

HOME

HOME

HOME

HOME

HOME

HOME

HOME

HOME

HOME

HOME

HOME

HOME

C: User-Named Objects

PATH

TOOL®

TOOL=*

TOOL*

TOOL=

TOOL=

TOOL=®

TOOLS

TOOL=

G.CHE

5.CH3

TOOL®

TOOL®

TOOLS

TOOL=

TOOL:

TOOLS

TOOL=

TOOLS

References

PICS }

}

PIC: }

PICS }

}

}

}

} A, Nmax, w, t

1 f,A,n, Nmax, w, t

} CSTA, APPLES,

CSTO, ORANGES,

TOTAL

}

}

}

} HODB

1 SEE, STOPIC,

RCLPIC

}

}

1 FF

117

240

197

85

255

255

249

186

34

42

25

41

115

126

127

127

117

93

223

257

283

Name

HPRYAR

IdealGas

IDIDA

Load.EQ

M1

ME

M3

M4

MAKEFACE

MkAxis

MKBOARD

MOTION. EQ

MOVEIT

MEA

MULTIPLOT

MY

MY1

My18

Myall

284

A
i
y

o
y

o
o

o
A
P

r
y

i
y

o
y

o
e

HOME

HOME

HOME

HOME

HOME

HOME

HOME

HOME

HOME

HOME

HOME

HOME

HOME

HOME

HOME

HOME

HOME

HOME

HOME

PATH

TOOLS

G.CH3

TOOL®

G.CH3

G3.CH3

G.CH3

G.CH3

G.CH3

TOOL*

TOOL:

TOOL:

G.CH3

TOOL=

G3.CH3

TOOL®

TOOL=

TOOL=*

TOOL=

TOOL=

e
O

g
g

g
W

N
l

e
l

e
l

g
e
l

g
e

b
l

e
l

b
g

M

References

FF

P,V R, T

VO, VG, Ve, Vbi

Fruit, Wagon

Y ulat

wwB ud ut

wwH uta

Y vla, x, wd

MeterFace

BOARD

M1, M2, M3, M4

LAYOUT, C-L,
RPIECE, BPIECE
RKING, BRING,

Per, VIELP

SIV, VALS

Cx, CY, P, PY

NUDGE

NUDGE

PSIZE, AOOB,
Cursor

257

45

187

59

62

62

62

62

180

174

229

62

226

58

184

162

154

156

158

APPENDICES

Name PATH References Page

MYMOVE { HOME TOOLS % SELECT, VALID, 216

MOVEIT

MYR { HOME TOOLS % 234

NORMAL { HOME TOOLS PICS } 117

Now? { HOME TOOLS % Nwt ime, &t 173

NUDGE { HOME TOOLS } Cursor, ADOB, PYUE 153

OFF1 { HOME } TOOLS, TITLE,PICS 140

PICS { HOME TOOL: % 83

PLANE { HOME TOOLS % Z, 8, Y 185

POINT { HOME TOOLS % DARpar 181

POLY { HOME G.CH3 } a,x, b, c,d 50

Pr8 { HOME TOOLS % 175

PRGROB1 { HOME TOOLS } 250

PRGROBZ { HOME TOOLS 3 DISSECT, 252

TRANSLATE

PSCAN { HOME TOOLS } 151

PSCN { HOME TOOLS % 160

PSTRIP { HOME TOOLS % DApar, &t , Nxtime, 170

Pr8, Now?

PYU { HOME TOOL: % CK, CY 163

PVUE { HOME TOOL: % 102

R { HOME G.CHI } 45

RCLPIC { HOME TOOLS % 116

C: User-Named Objects 285

Name

REACTOR.EQ 1€

RERDP

RERDY

REDRAW

RKING

RLC

RLCEXP

RLCPER

RPIECE

$SIZE

SCAN

SCN

SEE

SELECT

SETUP

SINE

286

i

i

i

i
y
o
y
o
e

HOME

HOME

HOME

HOME

HOME

HOME

HOME

HOME

HOME

HOME

HOME

HOME

HOME

HOME

HOME

HOME

PATH

G.CH3

G.CH3

TOOL*

TOOL®

TOOL*

G.CHd

G.CHd

G.CHE

TOOL=*

TOOLS

TOOL*

TOOL*

TOOL®

TOOLZ®

TOOL®

TOOL*

References Page

1 p,V,n,R, T, READP 54

} 53

} 172

1 BOARD, LAYOUT, 215

C-L, RPIECE,

BPIECE, RKING,

BKING

PICS } 207

1 wL,RC,t,I 35

} L, RC 1t Ios 35

} yL,R,C,t, Ao, w 35

PICS } 207

} 93

} Cursor, MV1,MY¥18, 150

MYall, PSIZE

} Flags,PY,PX,CK, 161

CY, My PYU

1 92

} LAYOUT, HILITE, 220

C-L

1 PSIZE, Cursor 152

PIC: } 85

APPENDICES

Name

STARTUP { HOME

Step.EQ { HOME

STOPIC { HOME

STRIP { HOME

THMOVE { HOME

TINY { HOME

TITLE { HOME

TOOLS { HOME

TPIX { HOME

TRANSLATE € HOME

TVoM { HOME

TVoll. EQ { HOME

VALID { HOME

VIELP { HOME

UM { HOME

blagon { HOME

WHOZAT { HOME

C: User-Named Objects

PATH

TOOLS

G.CH3

TOOL*

TOOL*

TOOL*

TOOL*

TOOL=*

TOOL=

TOOL=*

G5.CH3

G.CH3

TOOL®

G3.CH3

TOOL=*

G3.CH3

TOOL:

e
b

g
M

PIC: }

PICE }

o
g

References

BOARD, MKBOARD,
GLJ, GLABEL,
LAYOUT

n, vl

Flags, DApar

MOVEIT

PV PMT, I, N, FY

PV I, Besin?, Per,

PMT, N, FY, VIEWP,
MEA, BEGEND

WHOZAT

Per, MAA, Begin®

DArar, MAKEFACE,

CTR, POINT

LOAD, WT.A,
APPLES, WT. O,
ORANGES

LAYOUT

64

116

168

218

117

140

83

111

242

48

56

224

58

179

59

228

287

By Directory (Last*First)

288

Directory PATH Name

{ HOME }

i HOME TOOLS }

OFF1
TOOLS
G.CH3
G.CHZ

HPRYAR
HPR1
EPRVAR
EPR1
PRGROE?
PRGROE1
FF
TRANSLATE
DISSECT
YR
CALEND
MKEORRD
CsL
WHOZAT
MOVETT
VALID
HILITE
SELECT
THNOVE
MYMOVE
REDRAM
STARTUP
CHKRS

Directory PATH Name

{ HOME TtoOOLs } BULLDOZER

(cont.) COMTOUR

1DIDA

FOURIER

PLANE

MULTIPLOT

POINT

MAKEFACE

VM

Pr8

MkAwis

Now™

RERDY

PSTRIP

STRIP
PYU

My

SCN

PSCN

Mall

My1B

M1

NUDGE

SETUP

PSCAN

SCAN

APPENDICES

Directory PATH

{ HOME TOOLS }

(cont.)

{ HOME TOOL: PICS }

C: User-Named Objects

Name

CTR
ADOB
GL»
GLL
GLABEL
GRAFX
RCLPIC
STOPIC
GAND
TPIR
PYUE
$SIZE
GSIZE
SEE
PICS

BKING
RKING
EPIECE
RPIECE
DOZDATA
METER
BIGSINE
ARROW
DISPLAY
TINY
NORMAL
BIG
EMPTY
SINE

Directory PATH Name

{ HOME G.CH3 I AMRT

OI0DE

Step.EQ

MOTION.EQ

M4

M3

Me

M1

Load. EQ

blagon

BEGEND

MGA

WIELP

TVol. EQ

REACTOR. EQ

RERDP

POLY

TVoM

R

IdealGas

Fruit

1 HOME G.CH2 } RLCPER

RLCE®P
RLC
FOYRY

289

Subject Index

(Entries do not include user-named objects—see Appendix C)

Adding two grobs, 275

Algebraic notation, 9, 25

Analog, 176

Analytical functions:

use in EW, 31

Apples and oranges, 42, 59

ARC, 110-111, 140, 143, 278

AKEAg
Arrow keys:

in EW, 100

in GRAPHICS environment, 118

in Plotter, 118

in scrolling mode, 118

AUTO (see also DRAW), 11-12, 89, 105,

275, 277

AXES, 107, 273

Axes, labelling, 11

Band teacher, high school, 26, 39, 262

Battleship, 237

Bias (diode), 66-67

Bicycle tire, 46

Bitmap, 85, 90-91

BLANK,89, 112, 140, 275

BOX, 110, 135-136, 141, 277

Breakdown voltage (diode), 67

Bugs, 21

clock display, 148

PVIEW, 101-102

Bulldozer, 196

290

Calendar, 230

(see Equation Catalog), 45

Centering a plot, 107, 240

CENTR, 107, 140, 273

Checkers, 220

14N, 14,110, 134, 136, 140, 143,278

CLLCD, 114, 280

Clock display bug, 148

[T44d, 106, 125, 272, 273

Columns(in grob), 243

Connected vs. unconnected plots, 125

Converting grobs, 259

Cookie(s), 21, 32, 81, 95, 118

, 280

Corvallis home prices, 48

Current equation (see EQ)

Curve filling, 106

Custom menus, 140

containing icons, 95-96

in Solver, 52-53

including programs in, 53

C*PX, 87, 110, 277

KEW 275

GRAPHICS environment, 114

programmable equivalent, 114

DEPND, 106, 272

der(FNJ, 68
Diode, 66-67

equation for, 67

APPENDICES

Diode (cont.):

ideal vs. real, 66

DISP, 114, 280

Dot spacing, 246

[N, 15,17, 111, 126, 134, 136, 140,

278

[Ti8, 15, 111, 126, 136, 140, 278

DPI, 256

DRAW (see also AUTO), 12, 89, 105,

275, 277

DRAX, 105, 277

[EEN, 17
duplicate variables, 49

East, 198

Easy Course on HP 48, 20, 37

EPOFF, 254

EPON, 254

EPSPRINT.LIR 254

EQ (current equation), 42

Equation Catalog:

linking equations, 59

shortcut to, 45

use by Solver and Plotter, 45

EquationWriter, 9, 24-39

ease of use, 9, 27

examples, 10, 28, 33-34

exercises/self-test, 35-37

exiting, 31

rules of thumb, 30

scrolling, 38

Selection Environment, 32

speed, 21, 25, 39

stages of familiarity, 26

Index

EquationWriter (cont.):

textbook notation, 9, 25

use with algebraics, unit objects,

28-29

use with analytical functions, 31

vs. Command Line, 26, 56

ERASE, 12, 105, 109, 140, 275

EW (see EquationWriter)

Expressions, 32-33

IFI3A (see Selection Environment)

R, 44

i, 13
Extremum, 13, 77

reported by ROOT, 73

reported by Solver, 73

EQ:

for lists, 52, 54, 59

for programs, 64-65

0, 71-72, 89

Fontsizes, 89, 112, 126

Form feed, 249, 257

Fourier series:

custom icon menu, 96

with EW, 34

with MULTIPLOT, 186

Freehand drawing, 16, 96, 136, 138-

145

adding to graphics, 14, 134

example, 134, 139

procedure, 140

FREEZE, 114, 280

=
in Plotter/Solver, 75, 77

291

IE (cont.):
vs. Bidg, 75

IETN, 13, 77

Games:

between two machines, 220

playing field, 237

role-playing adventure, 237

sprites, 196

video, 237

Gas constant (R):

EW example, 29

Solver example, 45, 52

Selection Environment example, 33

GOR,113, 132, 144, 275

Graphics between two 48’s, 220, 261

Graphics cursor, 13

moved by arrow keys, 14

GRAPHICS environment, 14, 99, 275

called by DRAW, AUTO, 14, 70

entering, 14, 141, 275

viewingwithout halting a program,

100

Graphics object (see grob), 16, 18

Gravitational constant (G), 29

GROB..., 16

Grob, 16, 18

adding two together, 275

as icon, 95-96

bitmap (hexadecimal), 85, 90-91

converting to other picture formats,

259-260

creating, 16, 84-85, 89, 92

default size, 86

292

Grob (cont.):

definitions, 84

find memory requirements of, 93

graphite, 137, 263

in menus, 95-96

inverting, 115

maximum size, 102

size, 85, 103

viewing in the Stack, 85, 89, 100

GROBer, 259-260

GROB2TIF.EXE 259-260

Guesses (Solver), 50-51

GXOR, 113, 144, 275

*GROB,89, 112, 275

Hexadecimal:

bitmap, 85, 90-91

digits, 90, 92

number system, 263-271

High school band teacher, 26, 39, 262

Highlighter, 20

HOME directory, 140

HP Calculator BBS, 254, 260

HP Solve Equation Library Card, 63,

80

HP 48 calculator, 9

HP 82240A/B printer, 239

HPOFF, 256

HPON, 256

HPPRINT.LIR 254, 256

*H, 109, 274

APPENDICES

Icon:

creating, 95-96

in custom menus, 95

Ideal Gas Law, 33, 45, 52

IFT, 65

IFTE, 65,67

Ill-mannered functions, 64

INDEP, 106, 272

Independent variables, 106

multiple, 182

Instrument control, 164

Integral inside Plotter, 78

Integrated text and graphics, 259

Intermediate results, 72

:
in Plotter/Solver, 71, 73-74

vs. ROOT, 73-74

Junk food:

mental, 21

real, 21

43k 281

LABEL, 11-12, 105, 118, 277

Labelling axes, 11, 105, 124

LCD*, 274

example, 17, 89

use in documentation, 17, 112

LINE, 110, 134, 136, 140, 143, 278

Linear motion, 62

Index

Linked equations:

in Plotter, 62

in Solver, 59, 62

limitations, 63

rotating with NXEQ, 60, 62

vs. Multiple Equation Solver, 63

*LCD,100, 276

Macintosh graphics, 259-260

MAG, 255-256

Magnification, 255

ELTTE, 281

MatrixWriter, 195

Memory, 23, 236

grob requirements, 93

Multiple Equation solver (see HP Solve

Equation Library Card)

NEG, 115, 275

North, 198

Notepad, 20

LEE
in Plotter, 77

in Solver, 60, 77

(oN-PRINT), 38, 255, 257, 279

Owner’s Manual (OM), 21, 26, 30

PRINT (suggestion), 236

Parabola, 11, 13

PDIM, 12, 109, 140, 274

293

PIC%, 83, 85, 117-119, 131-132, 134

PICT, 16-17, 85, 280

purging, 85

recalling , 85

storing, 85

Pitch, dot, 246, 248, 250, 252

Pixel:

coordinates, 280

turning on and off, 15, 278

Pixel number, 86-88

vs. user units, 86-88, 142

format, 86

PIXOFF, 111, 136, 140, 278

PIXON, 111, 136, 140, 278

PIX?, 111, 278

(see Plotter), 11, 105

Plotter, 9

example, 9

Solver within, 13

Plotter driver, 258

PMAX, 108, 142

PMIN, 108, 142

Polynomial, third-degree:

finding roots in Solver, 50

in Plotter, 70

PPAR, 103

contents and usage, 104

creating, 103

default values, 104

in each directory, 104, 110, 132,

144

Printer:

Epson, 243, 245, 247, 250

HP 82440A/B, 239

Infrared (IR), 239

294

Printer (cont.):

LaserdJet/Deskdet, 243

PCL, 243, 245, 247, 250

Printer driver:

algorithm, 248

construction considerations, 249

control codes, 246

EPSPRINT, 254

HPPRINT, 254

plotters, 258

usage, 249, 251, 253-254, 256

Printing:

equation, 38

with (ON}-(PRINT), 38, 255, 257

with PR1, 38

Printing grobs, 231-260

limitations ofHP 82240 A/B, 239

text representation, 239

PRLCD, 279

Programs inside Solver, 53

PRST, 279

PRSTC, 279

PRTPAR, 248

PRVAR, 279

PR1, 279

, 280

PVIEW, 100, 276

bug, 101

in programs, 100

usage, 100

PX*C, 87, 110, 277

Raster graphics, 243

RCEQ, 79

APPENDICES

REPL, 144, 275

in programs, 113

in Selection Environment, 33

RES, 272

3, 11, 105, 141, 272

Right-readingbitmap strings, 241-242

RLC circuit, series, 35-36

ROM versions, 23

ROOT, 13

in Plotter, 71-73

in a program, 79

vs. ISECT, 73-74

with multiple equations, 73

Rows (in grob), 243

SCALE

Scanning inside a big grob, 148

Scrolling mode:

in EW, 100, 276

in GRAPHICS environment, 100,

118-119, 148, 276

Selection Environment (in EW):

00, 32
313, 32-33

REPLBER
TH, 32
ETA, 33

Serial Interface Kit, 254, 260

Shape commands, 134, 136

Signal conditioning, 164

Sine wave, 84, 118

full-wave rectified, 34, 186

SIZE, 103, 272

Index

, 13
vs. EE, 75

“Snapshot” (see LCD?), 112

Solver, 9, 41-81

another programming language,

41, 56, 81

custom menus, 52-54, 56

customizing, 52, 55, 81

error message(s), 46, 63, 65

examples, 42, 45, 48, 50, 52, 55, 60,

64, 66

finding roots, 50

guesses, 50-51

ill-mannered functions, 64

in a program, 63, 79, 81

in Plotter, 13, 51, 70-78, 81

including programs, 53

intermediate results, 72

linking equations, 59, 60, 62-63

menu keys, 43

protecting variables, 52

shortcut from Equation Catalog,

45

solving postfix programs, 64

using .EQ, 52, 54, 59, 64

unit objects, cautions, 46-47, 49

vs. programming, 9, 41

(see Solver)

South, 198

Step functions, 64

STEQ, 10, 79

(sT0)(grob fromEW or GRAPHICS), 274

Stripchart, 168

SUB, 275

in programs, 113

295

SUB (cont.):

in Selection Environment, 33

Subexpressions, 33

closing with (»), 30

closing with (2]»), 30

Temperature units, cautions, 46-47

TEXT, 99, 276

Text in graphics, 126-133

Textbook notation:

two dimensional, 25

vs. algebraic, 9

TIF2GROB.EXE 259-260

TIFF files, 260

Time Management, 230

Time Value of Money, 48, 55

equation for, 48

more versatile version, 55-56

Solver example, 48, 55

Title page, 139

TLINE, 110, 134, 136, 278

Token, 261

Toolbox, 116, 120

Toolkit, 19

TOOL%, 83, 92, 94, 115-116, 126-128,

132

TRANSIO, 248

Translation string, 241-242

converting grobs, 259

printing grobs, 241, 244-245

uploading and downloading grobs,

259-260

Two-machine graphics, 261

296

Undocumented features, 22, 115

Unit objects:

use in EW, 29

use in Solver, cautions, 46-47

User-defined derivative, 68-69

User units, 86-88, 140-141

defined via PPAR, 108

disadvantages, 88

vs. pixel number, 86-87, 142

Voltmeter, 176-181

face, 141

Welcome screen, 138-139

West, 198

Whetstone, Mr., 39

*W, 109, 274

XON/XOFF, 249, 254

XRNG,11, 108, 140, 142, 273

x-range:

default, 86

setting, 11, 108

y-range:

adjusting, 12

automatic setting, 11, 108

default, 86

YRNG,108, 140, 142, 273

ELTE], 12, 70, 109
BRI, 70-71

APPENDICES

Index 297

About the Author

RayDepew is a very normal guy who happens toown anHP

48 and likes to write. HP 48 Graphicsis his first published

work. His other projects in various stages of completion

include a compilation of children’s stories, additional soft-

ware for the HP 48, and some musical compositions that

may never see the light ofday. To make some money on the

side, Ray works as an IC engineer for Hewlett-Packard. He

lives in Loveland, Colorado, with his wife, four children,

and a Dalmatian named “Lazer Jet.” When not working,

writing, or fixing up the house, he likes to spend time in the

Rockies, read, make music, play with his family (and the

dog), and eat oatmeal- chocolate chip cookies.

If you have comments or suggestions about this book, he

would appreciate hearing them. You can write to him in

care of the publisher:

Grapevine Publications, Inc.

P.O. Box 2449

Corvallis, Oregon 97339-2449 U.S.A.

Other Grapevine Books

Grapevine has other books about your HP 48—and also for your

computer and favorite software. Below are descriptions ofjust two of

them. Fordetails on the complete list oftitles, send for a free catalogue

(see following pages).

An Easy Course in Using

the HP 48

Here’s the fast, easy, friendly way

to get “up-to-speed and crunch-

ing” on the HP 48. This fasci-

nating,in-depth course takes you

atyour pace—with nojargon, no

mysteries, no frustrations giving

you quick, hands-on, practical

lessons on the Command Line

and the Stack, the objects you

can build and manipulate there,

names and algebraics, prob-

lem-solving, matrices, calcu-

lus, and of course, how to pro-

gram and customize the HP 48

for yourself. It's all there—with

examples, diagrams, self-tests,

humor and that sharp, readable

clarity as only Grapevine doesiit.

Don't miss it!

HP 48

Programming Utilities

From the software folks at Solve

and Integrate Corp. comes this

elegant, instructive, superbly

usefulbook of“pre-fab”program

routines for the HP48. Afterall,

why spend the time to reinvent

wheels that have already been

done for you—short routines for

manipulating strings, arrays,

real numbers, vectors, and many

other object types. You get list-

ings, comments and discussions

too. This great book will become

your constant companion as you

program, a sourcebook of code

and object lessons in clean,effi-

cientprogramming(available in

May, 1991—-call for details).

Item # BookTitle | Price

~Personal ComputerBooks . o o

34 An Easy Course in Using Lotus 1-2-3 $ 22

28 Lotus Be Brief 11

30 An Easy Course in Using DOS 22

29 A Little DOS Will Do You 11

N/A An Easy Course in Using WordPerfect 22

32 Concise and WordPerfect 11

N/A An Easy Course in Using dBASE 22

jj:':"_iHewlett-PackardCalculator Books , ...

19 An Easy Course in Using the HP-19BII $22
22 The HP-19B Pocket Guide: Just In Case 6

20 An Easy Course in Using the HP-17B 22

23 The HP-17B Pocket Guide: Just In Case 6

05 An Easy Course in Using the HP-12C 22

12 The HP-12C Pocket Guide: Just In Case 6

31 An Easy Course in Using the HP 48 22

33 HP 48 Graphics 20

18 An Easy Course in Using the HP-28S 22

25 HP-28S Software Power Tools: Electrical Circuits 18

27 HP-28S Software Power Tools: Utilities 20

26 An Easy Course in Using the HP-42S 22

24 An Easy Course in Using the HP-22S 22

21 An Easy Course in Using the HP-27S 22

 CurriculumBooks .
‘14 ‘ Problem-Solvmg Sltuatlons A Teachers Resource Book | ‘ o $15

(Prices are subject to change without notice)

Grapevine Publications, Inc.

626 N.W. 4th Street P.O. Box 2449

Corvallis OR, 97339-2449

For Orders and Order Information Call:

1-800-338-4331 (or 503-754-0583)

Fax: 503-754-6508

To Order Grapevine Publications books:

= (Call to charge the books to VISA/MasterCard, or

Sendthis OrderForm to: Grapevine Publications, P.0.Box 2449 Corvallis, OR97339

Qty. |Item # Book Description Unit Cost| Total

Shipping Information: Subtotal
Post Office shipping and handlingccccecueeveennee ADD $ 2.50 Shipbi

(allow 2-3 weeks for delivery).......ccccceceviiniivincnnnens or : 1pp1ng

UPSshipping and handlingcc...ccucevveerverrenrennn.ADD $ 4.00 See shipping Info.
(allow 7-10 days for delivery)ccccccevevenccvcrvcnnne or

International Mail: Surface PostceccrsscnssccssossecceADD $ 5.00 TOTAL

(allow 6-8 weeks for delivery)

Air Parcel (Please contact us for the correct amount or add $10

per book to Canada and Mexico. Add $25 per book to all other

countries. We will refund any cash excess, or charge exact

shipping cost to credit cards. Allow 2-3 weeks for delivery)

Payment Information

U Check enclosed (Please make your check payable to Grapevine Publications, Inc.)
(International Check or Money Order must be in U.S. funds and drawn on a U.S. bank)

U VISAorMasterCard # Exp.date

Your Signature

Name Phone ()

Shipping Address

(Note: UPS will not deliver to a P.O. Box! Please give a street address for UPS delivery)

City State Zip Country

HP 48 Graphics

Reader Comments

We here at Grapevine like to hear feedback about our books.

It helps us produce books tailored to your needs. If you have

any specific comments or advice for our authors after reading

this book, we’d appreciate hearing from you!

Which of our books do you have?

Comments, Advice and Suggestions:

May we use your comments as testimonials?

Your Name; Profession:

City, State:

How long have you had your calculator?

Please send Grapevine Catalogues to these persons:

Name

Address

City State Zip

Name

Address

City State Zip

To Order Grapevine Publications books:

= Call to charge the books to VISA/MasterCard, or

Sendthis OrderForm to: Grapevine Publications, P.O0.Box2449 Corvallis, OR97339

Qty. |Item # Book Description Unit Cost| Total

Shipping Information: Subtotal
Post Office shipping and handlingccccccecceveunenen. ADD $ 2.50 Shippi

(allow 2-3 weeks for delivery)......c.ccceecveereercvennnnn. or ; l_pplng

UPS shipping and handlingccccecceeeeevenernicencnnnnneADD $4.00 See shipping Info.

(allow 7-10 days for delivery)ccccceccevuencenvcancnee

International Mail: Surface PostccccecrseveecscsnaececesADD $ 500 TOTAL

(allow 6-8 weeks for delivery)

Air Parcel (Please contact us for the correct amount or add $10

per book to Canada and Mexico. Add $25 per book to all other

countries. We will refund any cash excess, or charge exact

shipping cost to credit cards. Allow 2-3 weeks for delivery)

Payment Information

U Check enclosed (Please make your check payable to Grapevine Publications, Inc.)
(International Check or Money Order must be in U.S. funds and drawn on a U.S. bank)

U VISAorMasterCard # Exp.date

Your Signature

Name Phone ()

Shipping Address

(Note: UPS will not deliver to a P.O. Box! Please give a street address for UPS delivery)

City State Zip Country

HP 48 Graphics

Reader Comments

We here at Grapevine like to hear feedback about our books.

It helps us produce books tailored to your needs. If you have

any specific comments or advice for our authors after reading

this book, we’d appreciate hearing from you!

Which of our books do you have?

Comments, Advice and Suggestions:

May we use your comments as testimonials?

Your Name: Profession:

City, State:

How long have you had your calculator?

Please send Grapevine Catalogues to these persons:

Name

Address

City State Zip

Name

Address

City State Zip

HP 48 Graphics

Here’s a fascinating look at the potential ofthat big display on

your HP 48. HP engineer Ray Depew shows you how to build

graphics objects (“grobs”) and use them to customize displays

with diagrams, pictures, labels, titles, multiple plots, games, and

menu icons.

The book begins with a good in-depth review of the

EquationWriter, the SOLVE and the PLOT applications. Next, it

guides you through the locations and uses of the 48's built-in

graphic commands. Then you learn to build your own grobs and

combine them into some extensive application programs. There's

even a chapter that discusses transferring your HP 48 Graphics

to other computers or printers.

So don’t miss this insightful—and fun— excursion into the

world ofHP 48 Graphics. It adds a whole new dimension to your

use of this powerful machine.

ISBN 0-931011-33-7

52000>

Grapevine Publications, Inc. ||
626 N.W.4thSt. P.O.Box2449 Corvallis, OR 97339 U.S.A. 9 "7809317011337

N J

	Cover
	Contents
	1. Introduction
	What This Book Is About
	Plotting a Simple Function
	Solving Within the Plotter
	Freehand Graphics
	Grobbing Around
	What Next?
	Notes on Using This Book

	2. The EquationWriter
	Preparations
	Opening Remarks
	So What Does It Do?
	Examples

	Using the EquationWriter
	The Selection Environment
	A Fourier Series Example

	Test Your Skill
	Other Things
	Closing Remarks

	3. The Solver
	Opening Remarks
	Preparations
	Apples and Oranges
	The Ideal Gas Law
	The Time Value of Money
	A Third-Degree Polynomial
	Customizing the Solver
	Linking Equations: Solving Several at Once
	Using the Solver on Ill-Mannered Functions

	Using the Solver Inside the Plotter
	Programmable Use of the Solver
	Review

	4. What’s a Grob?
	Opening Remarks
	A Clean Slate
	What Is a Grob?
	Pixel Numbers vs. User Units
	“Roll Your Own” Grobs
	The Hexadecimal Bitmap
	The SEE Program
	What Does a Grob Eat?
	The Grob as Icon
	Review

	5: Graphics Basics
	The Graphics Functions
	The PVIEW Bug
	The Secrets of PPAR
	The PLOTR Menu
	The [PRG]-DSPL Menu
	Other Graphics Commands

	Building a Toolbox
	Sines and Big Sines

	Review

	6. Graphics Improvements
	Opening Remarks
	Labelling the Axes
	Connecting the Dots
	Adding Text to Graphics
	Adding Graphics to Enhance Plots
	Review

	7. Freehand Drawing
	How to Do It
	Drawing a Voltmeter Face

	Review

	8. Programmable Graphics Applications
	Introduction
	Programmable Scanning Inside a Big Grob
	Generating a Stripchart
	An Analog Voltmeter
	Plots with Two Independent Variables
	A Contour-Plotting Program
	Driving a Bulldozer Around the Display
	A Friendly Game of Checkers
	A Calendar Demo
	More Suggestions

	9. Graphics Beyond the 48
	Printing Graphics on the Infrared Printer
	Printing Graphics on a Larger Printer
	Printing Graphics on a Pen Plotter
	Grobs and Other Computers
	Graphics Between Two 48’s
	Final Thoughts

	Appendices
	A. Review of the Hexadecimal Number System
	B. Graphics Commands and Operations
	C. User-Named Objects
	Index
	Other Books and Information

