
HP438 Hacker’s ROM

OWNER’S MANUAL

HP438 Hacker’s ROM
July 26, 1995

OWNER’S MANUAL

CONTENTS

<"'LIB—> library, by Detlef Mueller o ° ° ° ° ° ° ° ° . . . 3

Converts libraries to directories and vice versa, and more.

Jazz library, by Mika Heiskanen « ¢ ¢ ¢« &« o o o o« o« o« « « « o 14
Complete software development tool, including assembler,
disassembler, and debugger for System RPL and Assembly Language;
Entry Point Catalog with Search and Disassembly; and a String
Editor with special features for source code editing.

Library 993, the Jazz Entry Point Table Library« « « o« 26
Makes Jazz run very fast (assemble/disassemble hundreds of lines
per second!).

LIBEX (Library Explorer) by Marc Vogel & Régis Duchesne 31
Easiest way to make a subset of a library. It extracts one or
more commands from any library and automatically extracts all of
the referenced library calls as well. The result is placed in a
directory so that <-LIB-> can turn it into a library.

STR33 by Todd Eckrich e« o o o o o 32
Formats any length string to 33-char w1dth 11nes, w1th word wrap.

ED33 by Joseph K Horn ° . o o o o . . o ° o ° o o . o o o o . .o 32

Replacement for the built-1n edltor Uses Jazz’s ED.

HACK Library, by Mika Heiskanen e o o e . e o o o o 33

Replacement for Rick Grevelle’s HACKIT llbrary, plus lots more.

SPORT (Search PORT) by Dave Marsh and Joseph K. Horn 36
Searches GX ports 2+ for any name or library ID.

VV33 by Joseph K. HOIN . ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o o o o o o o o o o o« « 36
Views any object. Uses Jazz’s VV.

MKCOPY by Rick Grevelle and Joseph K. Horn e o o 37
Sets up HP48 for copying ROM cards to multl-port RAM cards.

Code, by Joseph K. Horn and Richard Steventon 38
Converts any object to a Code object and back again.

FBROW by Richard Steventon 39
Fast flag browser with Jazz flags (and many others) 1dent1f1ed

UPD by Joseph K. Horn e o o o o o o o« « . 40
Improved version of UPDIR, espec1ally useful for programmers.

BZM (BZ Menu) by Jack Levy e o o+ s+ e e o e o o« o o 40
Creates a menu for easy use of the BZ object packer/unpacker.

HTRIM (Home-directory Trlmmer) by Simone Rapisarda e« o o 41
Makes selected vars in HOME fully accessible but totally
invisiblel!

About .HackCard -- brief info about the HP48 Hacker’s ROM.

HP48 Hacker’s ROM 1

WHAT IT IS

The HP48 Hacker’s ROM is a 128K collection of the best software
available for System RPL and Assembly Language program development and
maintenance for the HP48 SX and GX, most notably the Jazz library by
Mika Heiskanen. The selection and compilation of the software and its
documentation was made by Joseph K. Horn. The ROMs were produced by
EduCALC as a service to the HP48 enthusiast; EduCALC sells the HP48
Hacker’s ROM at cost, and is making no profit from them.

This documentation assumes the reader is familiar with the terminology
and methodology of HP48 hacking. A great primer for beginners is Jim
Donnelly’s book, "An Introduction to HP 48 System RPL and Assembly
Language Programming” available through EduCALC.

WHY IT IS A GOOD IDEA

Jazz is unquestionably the best hacking tool. But it is over 95K
bytes in size, so keeping it in a 32K RAM card is impossible. ROM'’s
(OTP’s) are cheaper than RAM, so it’s best to burn Jazz into a 128K
ROM. That leaves 33K bytes available for other hacker’s goodies,
which we filled with a baker’s dozen of libraries and programs
specifically designed for hackers. So you can develop software with
this HP48 Hacker’s ROM, and use your expensive RAM card(s) more
wisely.

COPYRIGHT NOTICE

The libraries and programs in the HP48 Hacker’s ROM are by different
authors; some are freeware, and some are giftware. See the copyright
notice for each in its documentation below. The collection as a whole
may be copied if and only if this entire document is also copied. The
person providing the copy of the ROM and this documentation may recoup
costs only, and may not profit from its sale.

DISCLAIMER

The HP48 Hacker’s ROM carries no warranty of any kind. It is offered
on an “"as-is" basis only. It is NOT an HP or EduCALC product, and is
not guaranteed or supported in any way by HP, EduCALC, Joseph K. Horn,
nor any of the authors of the software contained in the card. It uses
(and makes it possible for the user to access) low-level functionality
of the HP48, and as such it can corrupt memory contents, clear memory,
and even cause damage to the HP48’s hardware. THESE ARE THE DANGERS
THAT ALL HACKERS FACE ON A REGULAR BASIS. If you cannot accept these
dangers, then do not use this card. Use of this card constitutes an
agreement to personally accept the consequences of hacking.

2 HP48 Hacker’s ROM

Copyrights & Acknowledgements

<-LIB->

<-LIB-> is a GiftWare release. You may use it as long as you like
without registration, but only for developing non-commercial software.

We would like to thank the following people for their support:

Wlodek Mier-Jedrzejowicz for presenting <-LIB-> to the world.

Rick Grevelle

Mika Heiskanen

Douglas R. Cannon

Joseph K. Horn

Carlos Ferraro

Simone Rapisarda

Fatri Mohamed,

Romain Desplats,
Georg Hoppen

James H. Cloos,

Steve VanDevender,
Chris Maksymiak

Jeoff Krontz,

Chris Spell

Dennis York

for the HACKIT library, the ->DIR
command of <-LIB->, the base of the

sys-stack, many suggestions, exiting
talks and for sending us an HP48GX.

for beta testing, lots of suggestions,
MKROM, DEBUG, and for a great

performance enhancement of the D->LIB
and L->DIR commands.

for beta testing, lots of suggestions,
and for reviewing this document.

for beta testing and suggestions, the
‘HP 48 Resource Allocation Guideline;
Library ID’s’, SORTLS and for
maintaining the ‘48 GDs.

for beta testing and his friendship.

for beta testing and many suggestions.

for suggestions and beta testing.

for suggestions.

for suggestions, beta testing, getting
another GX for Raymond, exiting talks,
and..

..for maintaining the ‘48 archive at
seq.uncwil.edu and for moderating
comp.sources.hp48.

for the kindly permission to publish
the BNF parser generator example.

W.C.Wickes & HP Corvallis for the ‘48 and the RPL tools.

Abbreviations

LID - library id; a number in the range 0..2047, part of any
library, It is used by the HP firmware to identify libraries
while resolving commands, messages etc.

| - used in stack diagrams for ‘or’

Abbreviations denoting objects:

HP48 Hacker’s ROM

ob object of any type
x1lib named or unnamed library command
Xy tagged object - tag x, ob y
prg program (secondary)
bak backup
dir directory
alg algebraic
lib library
libdta 1library data
meta(t) meta object, obn .. obl %n, all ob’s are of the same type t

All other abbreviations are defined in RPLMAN.DOC (like %, # etc.).
[Available on GD4. -jkh-]

Overview

<-LIB-> contains 39 commands, including a library maker (D->LIB), a
library splitter (L->DIR), commands to handle any sort of composite
objects and commands to manage libraries.

Libraries are very useful objects to extend the command set of a 48
in a 'native’ manner, but unfortunately library creation is not
supported by the ‘48 firmware. The HP tools package contains the
program USRLIB.EXE, which provides library creation on a PC; if you
want to move your most often used programs into a library (because of
easier handling and to keep your VARs area clean), you have to collect
them into a subdirectory, add a few control variables, transfer the
directory in binary form to a PC, run USRLIB.EXE on it, and transfer
the created library back to your ‘48, where you can install and test
the library.

<-LIB-> provides the command D->LIB that works on the currently active
directory, allowing you to create a library from this directory on the
48 itself - no transfers, no PC, and no USRLIB.EXE are required.

The input directory stucture of D->LIB is very similar to the
directory structure required by USRLIB.EXE, thus existing USRLIB.EXE
input can be used for a library creation with minor changes (the
difference is the format of the $MESSAGE control variable, see below).

Control Variables

The library creation process is controlled by some variables with
reserved names and only the current directory is searched for their
presence (note: multiple occurences of these names are ignored, only
the contents of the first one found in the current directory is used
for the library creation process):

SROMID

Must contain a real or binary number representing the LID that is
to be given to the library. The LID must be in the range 0..2047.
Negative real numbers are mapped to 0. This is the only control
variable that MUST exist in the current directory !

S$STITLE
Should contain a character string to be used as the name of the
library (note: any other object is converted to a string). The
first few characters of the name are displayed in the LIBRARY menu
label associated to the library, the first 22 characters are

displayed by pressing REVIEW in the LIBRARY menu. If $TITLE is
absent or contains an empty string, no title is generated and the
resulting library doesn’t have a menu label in the LIBRARY menu
(note: you can switch to the library’s command menu by executing
$LID MENU, even if the library doesn’t have a name or is not

4 HP48 Hacker’s ROM

attached).

$CONFIG

Must contain a program to be executed at configuration time. The
configuration code can generally NOT be written in User-RPL, but
simple programs such as \<< 123 ATTACH \>> are Ok - more
complicated programs should take care to leave the stack
unchanged, and be sure NOT TO ERROR ! An error in a configuration
program will cause a warmstart; the configuration code is called
again during the startup process, producing a new error etc. If
you are accidentally trapped by this, you must clear your memory
to remove the faulty library !

SMESSAGE

Must contain a list of strings to be combined into a message table
(note: any other objects are converted to strings). The message
numbers correspond to the list positions. In User-RPL you can
generate errors with your own messages in the following manner:

#32001h DOERR

Message number (here 1)
LID (here #320h = 800)

In Sys-RPL you can use

32001 ERROROUT

In this example an error is generated, using the first message
from the message table of a library with the LID 800.

Note: The message list structure is NOT compatible to USRLIB.EXE.

SVISIBLE

Must contain a list of names of variables to be converted to user-
accessible, named library commands. By default, all variables will

be translated to named library commands. When the SVISIBLE list is
present, only the names in this list are included in the library
hash table. An empty list is Ok, meaning that no hash table is
generated.

SHIDDEN

Must contain a list of names of variables that are to be converted
to unnamed objects in the library. When the $HIDDEN list is
present, those names listed are not entered in the library hash
table. If both $VISIBLE and S$SHIDDEN are present, only S$HIDDEN will
be used.

Note: all visible commands appear as labeled softkeys in the menu
associated to the library, all hidden commands are not, and there

is no way to access them from user scope.

SVARS

Must contain a list of variables that should remain RAM-based -
i.e. the objects of the variables listed in $VARS are not included
in the library and no XLIB pointers are made to substitute their
names. All other variables of the current directory are included
in the library.

Note: You should add all subdirectory names of the current
directory to the list.

SROMID must exist in the current directory, all other control
variables are optional - eg. you can generate libraries containing
only a configuration program or a message table. All control variables
are internally handled by D->LIB to be $VARS and can‘t be accessed
from within the library commands.

HP48 Hacker’s ROM

Command Reference

D->LIB (--> 1lib

Dir to lib; assembles a library from the objects of the current
directory. The creation process is controlled by a few variables
with reserved names (see ‘3.3 Control Variables’).

If you set flag -13 before running D->LIB, it will switch off the
screen while working (for saving time and batteries).

L->DIR ($LID -=-> dir
(x1ib -=> ob

Lib to dir; if the argument is a LID then L->DIR assembles a
directory containing all commands of this library as variables.
The neccessary control variables (see 3.3) are also generated.
D->LIB may be used to recreate the library.

If the argument is an XLIB, then L->DIR recalls its object from
the associated library onto the stack.

If you set flag -13 before running L->DIR on a library, it will
switch off the screen while working.

Note: You cannot use L->DIR to split <-LIB->, this should prevent
users from a memory lost. If you are familiar with the internals
of your ’48, use 'ROMPTR@’ (or XRCL in HACK) to extract single
routines from <-LIB->, but beware of starting the routines in RaAM,

most of them will crash your calc when running alone !

MCFG (-—

Make config; stores a configuration program into a variable named
*SCONFIG’ into the current directory. This configuration program
will attach the generated library to the home directory at
warmstarts (ON-C etc.).

*SROMID’ must exist in the current directory.

ML->D (--> prg

Generates a program with the following interface:

({} --> libdta

The list can contain anything. The program checks for argument
count and type and may error with:

#201 - To Few Arguments - nothing on the stack
#202 - Bad Argument Type - not a list on the stack

*SROMID’ must exist in the current directory.

MD->L (--> prg

Generates a program with the following interface:

(libdta --> {}

The program checks for argument count, type and correct LID and
may error with:

6 HP48 Hacker’s ROM

#201 - To Few Arguments - nothing on the stack
#202 - Bad Argument Type - no library data on the stack
#203 - Bad Argument Value - the libdta wasn’t created by this

1lib

*SROMID’ must exist in the current directory.

Note: Store the programs generated by ML->D and MD->L into variables
in your source directory and use them as an interface to
generate/resolve data associated to the resulting library.

OB-> (prg -=> obl .. obn %n)

(xlib --> $LID %objno)
(arry -=> obl .. obn { $%di .. %dl })
(alg --> obl .. obn %n)
(dir --> obl id .. obn id %n)

(id -=> $)
(libdta -=> {} S$LID)
(bak --> ob id)
(id -=> §)
(ob --> dispatch to OBJ->)

OB-> is an extension to the built-in OBJ->, supporting system level
objects.

->DIR (obl idl .. obn idn %n --> dir)
->PRG (obl .. obn %n -=> prg)
->XLIB ($LID %$cmdno --> x1ib)

(#LID #cmdno --> x1ib)
->ARR (obl .. obn %n -=> arry)

(obl .. obn { %di .. %dl1 } --> arry)
->ALG (obl .. obn %n -=> prg)
->LD ({} SLID --> libdta)
->BAK (ob id --> bak)
->ID ($ -=> id)

Functions to reverse OB->.

About ->ARR:
Generates arrays of any type and any dimension (eg. a four
dimensional array of libraries :-).

$di * .. * %d1 must be = n, obl .. obn must be of the same

type. All possible parameter errors are trapped.

ADRp (ob --> ob #addr)

Get address of ob.

Note: The data stack is a stack of pointers to objects. ADRp
simply returns the value from the top element (about the ’p’, see
‘LIBp’ below).

Sromid
Svisible
Stitle
$config
Svars
Shidden
$message (-=> "S$XXX')

These commands just put a control variable name onto the stack.

HP48 Hacker’s ROM

LBCRC (lib --> 1ib’)
(bak --> bak’)

Recalculates the CRC of a library or backup, useful if you have
patched it because modifying the body of a library or backup
invalidates the CRC included at the end of the body.

RNLIB (1ib $ --> 1ib’)

Renames a library, ie. changes title.

CHLID (1lib % -=> 1lib’)

Change LID; this program allows you to change the LID of a library
if it’s not splittable.

Note: Most time a LID is also hardcoded in the config code - this
can generally not be changed by CHLID. You have to attach the
library manually after a warmstart. Also any library has its LID
coded in a field above any visible command (the error handling
system identifies the command that caused an error using this
field (the Sys-RPL commands ’‘CKn’ copies this values to the
appropriate location)). These fields are not changed by CHLID.

RHASH ($LID --> hxs)

Recall hash table; get a pointer to the hash table of a library.

RLINK ($LID --> hxs)

Recall link table; get a pointer to the link table of a library.

RCFG ($LID --> ob)

Recall config code; get a pointer to the config code of a library.

RMSG (3LID -=> arry)

Recall message table; get a pointer to the message table of a
library.

RTITLE (SLID --> $)

Recall title; get the name of a library.

Note: RHASH, RLINK, RCFG, RMSG and RTITLE don’'t error if the

library associated to $LID didn’t contain the requested item, they
leave the stack unchanged in that case.

RPORT (%$port -=> obl .. obn)

Recalls pointers to all objects of a given port (0/1/2 - 3-33 on a
GX) onto the stack, ignoring the R/W status of that port.

RLIB (:$port:$LID --> 1lib)
($LID --> libn $portn ...)

Recall 1lib; the 1lst case recalls a library from a given port, the
2nd case searches ports 0,1,2 (followed by ports 3-33 on a GX) for

8 HP48 Hacker'’s ROM

libraries with S$LID, returning all found libraries and the port
numbers where they’re stored.

Note: On a SX this command actually returns pointer to libraries
(like RPORT), if you recall a lib and try to purge it while it’s
on the stack, you’ll get a ‘Object in use’ error. Execute NEWOB or
store it into a variable first.

PGLIB (s%¥port:%LID -)
($LID -->)

Purge lib; the 1lst case works like :%port:%LID PURGE, in the 2nd
case the ports are searched in order 0,1,2 (followed by ports 3-33
on a GX) for an active library with S$LID. The difference to PURGE:
if the library is attached to the home directory, it’s detached
before purging. On a SX: Also if there is an inactive library with
the same LID in any other port, it becomes active and is attached
to the HOME directory (if flag 5 is set, its config code is
executed - see STLIB below).

STLIB (1ib $port -)

Store lib into port; there’‘re a few differences to STO:
- The library is installed full; a warmstart isn’t neccessary

and thus not initiated at the next power cycle. All warmstart
volatile variables (stack, PICT) remains intact.

- The library last stored is visible to the ‘48 (in case of
having a library with the same LID installed in another port).

- If flag 5 is clear, the library is attached simply to the
home directory.

- If flag 5 is set, the config code of the library is executed
under warmstart conditions. Usefull for testing a config
code.

Note: This command is currently disabled on a GX !

ACLIB (:$port:sLID -)

Activate library. You can install libraries with the same LID in
different ports, but only one will be visible to the ‘48 at the

time. During warmstarts the ports are searched in order 2,1,0
(most cases), ie. the library stored in the port with the highest
number will be active. ACLIB allows you to switch to any other
library with the same LID at runtime, the effect is immidiate.
ACLIB 1lst detaches the LID from HOME, sets the new priority and
than a) attaches the LID to HOME again if flag 5 is clear, or b)
runs the library config code if flag 5 is set (see STLIB above).

Note: This command is currently disabled on a GX !

LIBp ($LID -=>)

Returns a detailed layout of a library. The map starts with the
title (if exist), followed by the 1lst and last address of the 1lib
and the LID. The remainder lists the contents of the lib, one line

of information for each XLIB entry. Structure of a line:

l1st last xn name t
|||| LXR— Type of the object

Name of the object (if it’s a visible cmd)
XLIB number of the object
Last relative address of the object
Offset to startaddr. of the object

HP48 Hacker’s ROM

The list is sorted by offset. Try 1221 LIBp or 2 LIBp.

Note: If you find unexpected 'holes’ between two XLIBs (> 10
nibbs) or XLIBs embedded in other XLIBS, the library wasn’t
generated using USRLIB.EXE or D->LIB; do not use D->LIB for
recreating it because the ’'holes’ can hold essential data..

Note: This command is currently disabled on a GX !

INSTp (--> { S$LIDn .. $LID1 })

Returns a list of all libraries attached to the current directory,
{ } if none.

Note: You can PURGE libraries even if they are attached to a
subdirectory. INSTp can be used to find such zombie references.

LIBSp (--> { $LID1l .. $LIDn })

Returns a list of all libraries currently installed on your ’48.

Note: We didn’t use the ’?’ postfix because normally it marks a
routine for returning a flag in RPL. The JARGON file, v2.9.9, 01 APR
1992 states:

3. The ‘-P’ convention: Turning a word into a question by
appending the syllable ‘P’; from the LISP convention of appending
the letter ‘P’ to denote a predicate (a boolean-valued function).
The question should expect a yes/no answer, though it needn’t.

At dinnertime:
Q: "Foodp?"
A: "Yeah, I’'m pretty hungry.” or "T!"

At any time:
Q: "State-of-the-world-pP?"
A: (Straight) "I’'m about to go home."
A: (Humorous) "Yes, the world has a state."

so we used ’'p’ for marking routines returning information ;-)

fEVAL (ob -—> ?)

Works like EVAL, but switches the display off first. Speeds up
evaluation by “11%. In case of an error or the ob has finished
execution, the display is switched on again. Not very useful, if
ob prompts for input..

Things to Notice

The library stucture is ‘flat’, so don’t try to include subdirectories
in a library, it can end up in a memory lost.

Not all program objects that execute correctly from global variables
are directly convertable into libraries. Here are some pitfalls:

- Since a library cannot be modified, no library command may be
the target of a STO or PUT operation.

- XLIB names are not usable in all contexts in which global names
are valid arguments. This can cause constructs that reference a
named object to fail. For example,

10 HP48 Hacker’s ROM

‘A’ 5 GETI

where A is a list will not work when A is converted to an XLIB

name.

Instead use

A 5 GETI

- XLIB names are not valid as formal variables in algebraics, or
as the independent variable for plotting or solving.

- \->STR applied to a global name that is converted to a ’‘hidden’
library command (see $HIDDEN) returns a null string.

If any visible command starts with the segence ’'\<< \->’ or ’'\->’ it’s
marked in the library as a valid command for algebraics. If you press
its associated softkey in ALG entry mode, you’ll get ’‘name()’.

Multiple occurences of variable names results in an incorrect library
because only the contents of the first one is picked up.

D->LIB needs (1.2 * sizeofsourcedirectory) bytes to be free to
generate a library.

The time D->LIB needs for doing a job depends mainly on the total
number of commands included in the resulting library. Eg. Raymond runs
D->LIB on a ~60kb directory containing ~300 variables; D->LIB needs
“15min on a rev A ‘48 to make the library (not in FAST-mode). Of
course, this is quite faster than using USRLIB.EXE !!!

Reassembling a split library may be dangerous if the original library
was not generated using USRLIB.EXE or D->LIB. There is no guarantee
that the result will work properly - even if no code changes are done.

USRLIB.EXE generates a link table entry for the configuration program;
if you split such a library with L->DIR, you’ll get the configuration
code twice, the first one stored in SCONFIG, the second one stored in
a variable of the generated directory. Purge the variable before using
D->LIB. You also can use LIBp to see the second reference to the
config code.

Quick Reference Guide

Commands

Page 1221.01

D->LIB (--> 1ib) build library
L->DIR (% --> dir) split library
MCFG (-) make config program
ML->D (--> prg) make libdat-> handler
MD->L (--> prg) make ->libdat handler
OB-> (ob -—> 2) split object

Page 1221.02

->DIR (meta(ob,id) --> dir) make directory
->PRG (meta(ob) -=-> prg) make program
->XLIB (% % ## --> x1ib) make XLIB
-=>ARR (meta(ob) -=> arry) make array
->ALG (meta(ob) --> alg) make algebraics
->LD ({} % --> libdta) make library data

HP48 Hacker’s ROM

Page 1221.03

->BAK (ob § --> bak) make backup
->ID ($ --> id) make identifier
ADRp (ob --> ob #) get address of obj
$romid (--> id) get id ’$ROMID’
Svisible (--> id) get id ’SVISIBLE’
$title (--> id) get id ’'S$TITLE’

Page 1221.04

$config (--> id) get id ’'S$CONFIG’
Svars (-=> id) get id ’'$VARS’
$hidden (--> id) get id ’‘SHIDDEN'
Smessage (--> id) get id ’'$MESSAGE’
LBCRC (1lib l bak --> 1lib’ | bak’) recalculate CRC
RNLIB (1ib --> 1lib’) rename library

Page 1221.05

CHLID (1ib % -=> 1lib’) change LID
RHASH (% -=> C#) get hash table
RLINK (% --> C#) get link table
RCFG (% --> prg) get config code
RMSG (% -=> arry) get message table
RTITLE (% -=> §) get title

Page 1221.06

RPORT (% --> ob ...) recall port
RLIB (% --> 1ib % ...) recall library(s)
PGLIB (% | =%:% -—>) purge library
STLIB (1ib % -=>) store library
ACLIB (2%:% -—>) activate library
LIBp (% --> 3§) get library layout

Page 1221.07

INSTp (--> {}) get installed LIDs
LIBSp (-=> {}) get all LIDs on 48
fEVAL (ob -—> ?) fast EVAL

Flag Usage

5 Set: STLIB executes config code of passed library after
installation.
ACLIB executes config code of activated library.
<-LIB->s config code displays a (c) notice.

Clear: STLIB and ACLIB are simply attaching the handled
library to the HOME directory.
<-LIB->s config code doesn’t display (c) notice.

6 Set: L->DIR places the $control variables at the end of the
generated directory.

Clear: L->DIR places the $control variables at the beginning
of the generated directory.

7 Set: L->DIR generates a S$HIDDEN but no S$VISIBLE variable.

Clear: L->DIR generates a SVISIBLE but no SHIDDEN variable.

-13 Set: D->LIB/L->DIR switch the display off while processing
a directory/library (fast mode). [Also, the ABOUT
screen is displayed during a warmstart. -jkh-]

Clear: D->LIB/L->DIR are leaving the display on while working.

12 HP48 Hacker’s ROM

Error Messages

"Missing SROMID"
SROMID is not defined in the current directory

"SROMID Not Real/Binary"
SROMID doesn’t contain a % or HXS object

"SROMID Out of Range"
a) the value of $SROMID is > 2047
b) a % > 2047 was passed to CHLID

"SCONFIG Not a Program"
Because the stack must not change during warmstarts, $CONFIG must
contain a program

"SHIDDEN Not a List"
"SVISIBLE Not a List"

"SVARS Not a List"
"SMESSAGE Not a List"

$XXX must contain a list

*"Found ID Name>16 Chars"

D->LIB found a visible command name which is > 16 chars in size

"Found 0-ID"

D->LIB have found a visible command name with the size 0

"Won’t work on a G"
The initiated operation can’t be executed on a '48G(X).

Ordering Information

The sources of the <-RPL-> and the <-LIB-> libraries consists of more
than 18000 lines of RPL/assembler code (that’s more than 300kb of text
!) and we have spent our free time for more than two years in writing
these, so we decided to release this version as GiftWare - ie. you can
use these as long as you like but only for developing non-comercial
software and only as a private person.

If you think <-LIB-> is useful and that the authors deserve to be
rewarded for the time they have invested in developing this toolkit,
feel free to send one of us (or both ;-) any sort of gift (even only a
postcard will be welcome).

If your gift covers the expense sending you a disk via SnailMail
(costs are: the disk, an envelope, the stamp and our time -> 7$25 or

something equivalent), we will send you the latest *whole* version of
<-LIB-> on a MesS-DOS formatted disk (including the <-RPL-> library
branded with your name in the startup message). Don’t forget to
include your name, address and the disk size you prefer.

Developing commercial software using <-LIB-> requires registration via
the GiftWare concept; companies must send us at least a $50-worth gift
for registration.

Contact addresses:

Detlef Mueller Raymond Hellstern
Bellerbek 33 Liebigstr. 8
D-22559 Hamburg D-30163 Hannover
Germany Germany

e-mail: detlef@dmhh.hanse.de

HP48 Hacker’s ROM 13

JAZZ V4.0

System RPL and Machine Language Development Library

(c) 1995 by Mika Heiskanen & Jan Brittenson

CONTENTS

1. Introduction
1.1 Copyrights & Ackowledgements
1.2 The Jazz Library
1.3 Installing & Deleting the Library

2. Jazz Commands
2.1 The System RPL/Machine Language Assembler
2.2 The System RPL/Machine Language Disassembler
2.3 The System RPL Debugger
2.4 The Machine Language Debugger
2.5 The System RPL Stack
2.6 The Entries Catalog
2.7 The System RPL/Machine Language Editor

2.7.1 The Viewer
2.7.2 The Small Font
2.7.3 The Medium Font

2.8 Entries Table Utilities

1. Introduction

All files of the Jazz library are copyrighted (c) by Mika Heiskanen
unless otherwise noted.

The Jazz library is distributed in the public domain in the hope that
it will be useful, but is provided ‘as is’ and is subject to change
without notice. No warranty of any kind is made with regard to the
software or documentation. The author shall not be liable for for any
error for incidental or consequential damages in connection with the
software and the documentation. So there.

Permission to copy the whole, unmodified Jazz package is granted
provided that the copies are not made or distributed for resale
(excepting nominal copying fees).

Extra credits & acknowledgements:

Jan Brittenson DB program is originally from Jan’s
MLDL library and is still copyrighted
by him. The mnemonics have been
changed to the ones used by HP + some
minor changes has been made.

Mario Mikocevic The small 4x6 font + the basis for the
machine language instruction
disassembler.

Will Laughlin Backward search in ED
Rick Grevelle The medium 6x8 font.
Detlef Mueller Inspiration through RPL48 package.
& Raymond Hellstern
Dan Kirkland Sorting the default tables sensibly
Jens Kerle Bug fixing
Cary McCallister For answering.

14 HP48 Hacker’s ROM

Beta testing & suggestions:

Seth Arnold Bill Levenson
Douglas Cannon Tom van Migem
Carlos Ferraro Mario Mikocevic
Rick Grevelle Detlef Mueller
Joe Horn Richard Steventon
Boris Ivanovich Kurt Vercauteren
Jens Kerle Vladimir Vukicevic
Dan Kirkland Christ van Willegen
Jeoff Krontz Stefan Wolfrum

Will Laughlin

+anyone else who I may have forgotten

1.2 The Jazz Library

The Jazz library provides commands for assembling, disassembling and
debugging both system rpl and machine language. This document
describes only the provided commands, not the languages themselves.
For information on the languages please refer to the tools package
published by HP, especially the files RPLMAN.DOC, RPLCOMP.DOC and
SASM.DOC. Familiarity in the fundamentals is assumed from now on.

Following files available from hpcvbbs.external.hp.com are recommended:

dist/ms-dos/tools.exe HP Tools
dist/hp48g/programming/entries/ent_srt.zip Sorted Entries
dist/hpd48s/programming/entries/entries.zip Address sorted entries
dist/unix/sadhpl05.zip Unix Disassembler

GNU Tools are available from srcml.zems.fer.hr (IP 161.53.64.254)

pub/hp48/tools2.0.4.zip

1.3 Installing & Deleting the Library

To install the Jazz library:

SX: Plug the HP48 Hacker’s ROM into port 1 or port 2.
GX: Plug the HP48 Hacker’s ROM into port 1.

To remove the Jazz library:

Unplug the HP48 Hacker’s ROM.

2. Jazz Commands

2.1 The System RPL/Machine Language Assembler

As opposed to the tools provided by HP Jazz provides only one
command to assemble source code. The assembler assumes the source
code to be RPL unless a switch is made via special tokens.

Command: ASS
Stack: ($ --> ob)
Description: Assemble source string
Keys: ON key aborts assembly
User flags:

1 - Report mode on (slows down assembly considerebly!)

Errors:
Special error trap simulation is used to enable using

HP48 Hacker'’s ROM 15

the small font for error messages and thus get more
information of the reason for the error.
For the small font to be used the current program (possibly
the kernel) must use SysErrorTrap to trap errors. If the
trap found is different error handling is left to the found
error trap and extra information of the reasons for the
error will be lost, only the actual error number is provided
for the trap.
For programmers conveniece also error traps that start with

":: NOP" cause showing the full error message.

When possible ASS will also output the error position to the
stack so that you can immediately edit the error line/token.

Display when the error is trapped:

Top of display
o———————————+
ErrorMsg line/position
Token/Source line

Comments in RPL mode are:

"** at the start of the line marks the entire line to be a comment.
"(anything)" surrounded by whitespace is considered a comment.

RPL Assembly Mode Tokens

: --> SEMI
{ -=> DOLIST
} --> SEMI
$s -=> DOCOL

SYMBOL --> DOSYMB
UNIT -=> DOEXT

hhhhh --> system binary
#hhhhh --> system binary (from ROM if possible)
ddddd --> system binary
PTR hhhhh --> pointer
ACPTR hhhhh hhhhh --> access pointer, G/GX only
ROMPTR hhh hhh --> rom pointer object
ddd.dd --> real number
% ddd -=> real number (*)
$% ddd --> long real number (*)
C% ddd ddd --> complex number (*)
C%% ddd ddd --> long complex number (*)

(*) ddd can also be -Inf, Inf or NaN

HXS <len> <hh.h> --=> hex number
GROB <len> <hh.h> -=> grob
LIBDAT <len> <hh.h> --> library data
BAK <len> <hh.h> --> backup object
LIB <len> <hh.h> -=> library object
EXT1 <len> <hh.h> --> external type 1, S/SX only
EXT2 <len> <hh.h> --> external type 2
EXT3 <len> <hh.h> --> external type 3
EXT4 <len> <hh.h> --> external type 4
ARRY <len> <hh.h> -=> array
LNKARRY <len> <hh.h> -=> linked array
CODE <len> <hh.h> --> code object
NIBB <len> <hh.h> --> misc nibbles

If <len> is zero then <hh.h> the resulting object will consist
of the prolog indicated by the first token and "00005" length field.
(NIBB indicates no prolog so len must be non-zero)

16 HP48 Hacker’s ROM

$§ "<string>"
"<string>"
ID <string>
LAM <string>
TAG <string> <..>
CHR <char>

XROMWORD

INCLOB <name>

INCLUDE <name>
DEFINE <token> <string>

CODE <newline>

ASSEMBLE

--> string
--> string
--> identifier object
--> lambda identifier object
--> tagged object
--> character object

--> pointer or ROMPTR depending on the
library number the command belongs to
(For example "xDUP" compiles to a
pointer but "xASS" to a rom pointer)

--> Include object stored to a variable
--> Include source code
--> Define substitute for token

Substitution will not be done inside
multipart tokens, for example
"ID <token>" is not allowed

--> Starts machine language assembly
--> Starts machine language assembly

ML Assembly Mode Mnemonics

Opcodes recognized in machine language assembly are all the normal
opcodes indicated by SASM.DOC plus the next new ones as implemented
in GNU Tools:

LCSTR

LASTR

ABASE expr

label ALLOC expr

\ASCII\
\ASCII\

CSTRING \ASCII\

Reversed LCASC
Reversed LAASC
NIBASC with 0O-byte terminator
Sets allocation counter to address
specified by <expr>.
Allocates <expr> nibbles for label
at the allocation counter, then
increases allocation counter by <expr>

ASS can be used to assemble MAKEROM source code with the following
tokens:

XROMID #hhh

XROMID dec

XTITLE <title>

XCONFIG <label>

XMESSAGE <label>

EXTERNAL <label>

XNAME <label>

SNAME <label> <hash>

hNAME <label>

NULLNAME <label>

tNAME <label> <hash>

Defines hex library number.
Defines decimal library number
Defines title to be rest of the line.
If title is missing then nulltitle is used.
Defines the location of the configuration
object via a label. If label is missing then
no config is taken to exist.
Defines the location of the message table
via a label. If label is missing then no
message table is taken to exist.
Defines label to be external. Order of
introduction determines the command number
of the commands in the library so that
visible commands will be first, then

nullnames.
Specifies location of a visible command.
Name: "xlabel" Hash: "label"
Specifies location of a visible command.
Name: "label" Hash: "hash"
Specifies location of a ‘visible’ command.
Name: "label"” Hash: null
Specifies location of a hidden command.
Name: "label" Hash: none
Specifies secondary hash for command.

HP48 Hacker’s ROM 17

XROMID and xTITLE must be used at the start of the source code,
to be specific before any actual code has been output. Also XROMID
must come before any other MAKEROM token.

XCONFIG and XMESSAGE declarations can be anywhere (or absent), but a
suitable location is after the xROMID and xTITLE declarations.

EXTERNAL declaration is needed if the corresponding command is used
before its location is specified by its NAME declaration. Suitable
location is after the header declarations, and it is probably best to
declare all commands.

XNAME, sNAME, hNAME and NULLNAME specify command location, thus they

should be right in front of the object they define as a command. All
but NULLNAME also define the romid/cmd header field properly and thus
require a propfield, typically the value 8 to mark a regular command
and 000 to mark a regular function, for other values please refer to
entries.srt or other documents. Above also define a symbol ’'~label’
having a 6 nibble value, low 3 nibbles containing the romid and high

3 nibbles the command number.

The internal menu display routines stop showing library menus if a
command with no hash is found. Thus any command declared after a
hNAME will not be shown in the library menu, but will of course have
typable/disassemblable command names as usual if so specified by
NAME tokens.

tNAME can be used anywhere after the declaration of the romp the
secondary hash is assigned to, a suitable location is right after the
corresponding NAME location declaration. Note that tNAME can be used
to declare names for NULLNAMEs, thus providing easy access to low
level subroutines if needed. One command can have several secondary
names.

Note that INCLOB does not do any ID --> ROMP conversion work on the
included object like the common DIR --> LIB library builders do.

Example: Jazz MAKEROM source would start like this:

XxROMID 992
XTITLE Jazz v4.0 Fin’95 10.06.95 mheiskan@gamma.hut.fi
xCONFIG JazzCfg
XMESSAGE JazzMsg

EXTERNAL xFNT1 (Fonts always come first in Jazz)
EXTERNAL XFNT2

EXTERNAL XxASS (User ASS command)
EXTERNAL Assemble (Main assembler code object)

[..]
EXTERNAL UnShowSel! (Low level subroutines of SSTK)
EXTERNAL >SelPict!

LABEL JazzCfg (Configuration object)
t: 992 TOSRRP ;

LABEL JazzMsg (Message table)
ARRY hhhhh hhh..h

NIBB 1 8

XNAME ASS

t: CK1 ... ;

[--]

Easier than ASSEMBLE CON(1l) 8 RPL)
Note: the EXTERNAL declarations)
declared fonts to come before ASS)
when assigning command numbers)

P
N
N

P
N
P

18 HP48 Hacker'’s ROM

Missing Tokens and Mnemonics

The following ones for various reasons do not behave as documented in
SASM.DOC or GNU Tools:

Not implemented:

IF, ELSE, ENDIF + any other conditional assembly mnemonic
MACRO \
ENDM
EXITM /
CLRFLAG expr \
SETFLAG expt /

ABS expr

RDSYMB file

CHARMAP file

Dn=HEX hh.h

GOSHORT label

JUMP label

INC(n) label
LINK label

SLINK label

NIBBIN bb..b
NIBGRB bb..b
HEX(n) hh.h
HEXM(n) hh.h
ASC(n) \ASCII\
ASCM(n) \ASCII\

Modified Tokens and Mnemonics

Behaviour changed:

TITLE text

STITLE text

MESSAGE text

DO=D0+ expr
DO=D0- expr
D1=D1+ expr
D1=D1- expr

Ignored:

EJECT, REL, LIST, LISTM,

Expressions in machine language

Factors:

#hh.h
$bb.b
dd.d
=symbol
:symbol
symbol
*

+ - ++ -

Macros not implemented

Flags not implemented

Not Implemented

. (GNU Tools Opcodes)

Text shown on line 1, line 2 cleared

Text shown on line 2
Text shown on line 1, line 2 cleared

\
Allow values between 1 - 256, and

generate multiple opcodes if needed.
/

LISTALL, UNLIST

hex integer
binary integer
decimal integer
global symbol (RPL.TAB checked too)
local symbol
local symbol
PC counter

Local labels

HP48 Hacker’s ROM 19

Operators: Priority:
9

* 8
/ 8
% 8 (modulo)
+ 7
- 7
& 5 (and)
! 4 (or)

Note in particular that ascii factors are not implemented.
As in sasm all symbols must be surrounded with parentheses
when operators are used.

Label generation in machine language

Symbols +, ++, - and -- are location dependant symbols
and refer to the next/previous defined value of the
corresponding symbol. Example:

GOSUB +

CSTRING ’‘Foobar’ l
+ C=RSTK <

DO0=C

- A=DATO

DAT1=A

?2A=0

GOYES

DO=DO0+
D1=D1l+

GONC

+ —
Note: Symbol ++ does not refer to the 2nd + coming up, but

the next ++ label coming up, and similarly for --.

End of string, done

I
O
+

O
W

INCLOB Special Features

INCLOB will behave differently from code than from rpl. Depending on
the type of the object being included it is either included entirely
or the leading nibbles (prolog + possible data fields) are skipped for
following object types:

Prolog Skip Prolog Skip Prolog Skip

DOCODE 10 DOEXTO 10 DOGROB 20

DOCSTR 10 DOEXT2 10 DOARRY 5

DOHSTR 10 DOEXT3 10
DOEXT4 10

Warnings

=A+CON fs,expr and similar instructions allow single nibble fields
(WP,P,S,XS) while SASM errors. These instructions behave badly due to
a hardware bug but are supported by ASS for those who know how to
safely use the commands.

Symbol/label handling is quite secure but allows more than SASM.
For example external values have no significance, thus for example
(=GETPTR)-(=SAVPTR) is valid in Jazz. Relative values are followed
and are significant for most opcodes. For example ‘D0=D0+ label’
will error. Note especially that (labell)-(label2) is absolute.

= EQU and ALLOC require their expression fields to be resolvable on
the first pass.

20 HP48 Hacker’s ROM

2.2 The System RPL/Machine Language Disassembler

Several disassembler commands are provided for different purposes.

Command : DIS
Stack: (ob ==> §)
Description: Disassemble object. If stkl is a pointer to a ROM

address only the pointer will be disassembled.

Command: DISXY
Stack: (hxs_address hxs_end_address --> §)
Description: Disassemble memory area.

Guesses start mode, switches mode during
operation if necessary.

Command : DOB
Stack: (ob | #address | hxs_address | "entry" --> $)
Description: Disassemble memory area.

Guess start mode and end address.

Command: DISN

Stack: (hxs_address %N --> §)
Disassemble memory area as machine language only.

Common features for the disassembler commands:

ON key aborts disassembly.

User flags:
disable guess mode
disable machine language disassembly for DIS
disable tabulator, use spaces instead
force generated labels on their own rowso

e
a
N

|

In guess mode the disassembler will try to guess data structures
embedded in machine language. Currently only the following types
are recognized:

GOSUB +

REL(5) + Optional leading size indicator
BSS expr Data is all zeros

+ C=RSTK

GOSUB +

REL(5) + Optional leading size indicator
NIBASC \ASCII\ \ Possibly alternating and spanning
CSTRING \ASCII\ / multiple lines.

+ C=RSTK

GOSUB +

REL(5) + Optional leading size indicator
NIBHEX hh.h Miscellanoues data

+ C=RSTK

The sufficient condition for an ascii guess to be successful is that
the data area should consist mostly (75%) of common ascii characters.
The ascii lines are splitted to CSTRINGs or by newline characters
or so that the maximum length will be 40 chars.

Warnings:

- DOB, DISXY and DISN disassemble areas of memory instead of well
defined objects. Using these commands to disassemble memory in
the temporary object area is dangerous since a possible garbage
collection during run-time can move the memory being disassembled.

HP48 Hacker’s ROM 21

Use only DIS to disassemble objects in tempobl!!!
- Composite history is tracked up to 64 levels. If that is exceeded

a ";" may be output when "}" is due.
- As opposed to the assembler the disassembler cannot handle hidden
hash tables, thus some named ROMPTRs will be disassembled to
"ROMPTR XXX yyy".

- Label values are guessed for Dn=(2) and Dn=(4) instructions if
- Dn=(2) is likely to refer to the IO page
- Dn=(4) is likely to refer to a RAM variable
This works well for disassembling ROM but doesn’t do well when
disassembling a program that uses even-page method in its data
allocation. Benefits are clearly greater though.

2.3 The System RPL Debugger

Command: SDB
Stack: (seco | id | lam | romp --> ?)
Description: Start debugging program indicated by stack level 1.

If the srpl debugger is already running then SDB command will
only show the SDB menu:

->SST - Single step next command
If right-shifted then single-steps rest of
the stream as a single unit

->IN - If possible then enter the program referred to
by the next command, else single step command.

SNXT - Show next commands on status area

Pressed for the second time shows return stack

SST-> - Start continuous ->SST mode, subsequent presses
toggle slow/fast mode, eg whether stack display
is updated after each command or not.
Any other key aborts continuous evaluation

IN-> - Start continuous ->IN mode.

DB - Start DB on next code object

xKILL - The HP48 KILL command
(XCONT can be evaluated through LS+ON keys)

SKIP - Skip next command. If right-shifted then skips
rest of current stream, eg executes a SEMI command.

SEXEC - Execute stkl as the ’‘next’ command.

SBRK - Set breakpoint object to STK1l. If right-shifted
clears breakpoint object.

LOOPS - Browse loop environments. Up/Down to scroll, any
other key to exit.
If right-shifted dumps topmost environment to the
stack.

LAMS - Browse lam environments. Up/Down to scroll lams,
left/right to decrease/increase environment. Any
other key to exit.
If right-shifted dumps topmost environment to the
stack.

IN? - Toggle ->IN mode to never enter into secondaries,
only into IDs/LAMs/ROMPTRs when allowed. Prevents
the debugger from entering into ROM subroutines

22 HP48 Hacker'’s ROM

during continuous debugging.

Note that SDB is meant for debugging system rpl, not user rpl.
Thus some user rpl commands will not be single stepped right when
using SDB. One example is xXHALT, for which the substitute xSHALT
is provided. Note that SDB must be running before SHALT works.

Warnings:
Debugging system-rpl is very hairy and undoubtedly
SDB cannot debug some lesser known commands correctly.
If such commands are found SDB can even cause a crash
and memory loss. This is unfortunately unavoidable since
there really is too much code in ROM to worry about.
SDB should manage to debug all normal programs though.

SDB either enters commands or executes commands (by emulation
if necessary). None of the interactive commands in HP48 ROM
are emulated, most importantly PolOuterLoop. To emulate
POLOuterLoop you need to insert SHALT commands into the
display objects or whatever you want to debug, then start
SDB, then use CONT to reach the point of the SHALT command.

LOOPS and LAMS displays are pretty lame, I’ll try to improve them
later.

2.4 The Machine Language Debugger

Command: D
Stack: (id =-=>)

(romp =-=>)

($Sentry -->)
(#address -->)
(hxs_address -->)
(code -->)

Description: Debug machine language

Screen Keys:

[A] - Screen 1 (general registers)
[B] - Screen 2 (registers A-D)
[C] - Screen 3 (registers RO0-R4)
[D] - Screen 4 (RSTK)
[E] - Screen 5 (memory dump)
[F] - Screen 6 (machine language disassembly)
[MTH] - Screen 7 (breakpoints)
[VAR] - Screen 8 (watchpoints)
[] - Update display
[EEX] - View PICT (if it exists) as long as EEX is down

Arguments:

[0] - Start inputting argument.
[0-9A-F] add digit
[DEL] abort input
[BS] delete last digit
[+/-] negate arg

Movement keys:

[NXT] - Skip instruction (or ARG instructions)
[left] - PC=PC-1 (or -ARG)
[right] - PC=PC+l (or +ARG)
[up] - PC=PC-16 (or -16*ARG)
[down] - PC=PC+16 (or +16*ARG)
[.] - Set mark to PC (or to ARG)
[+/-] - Swap PC and mark
[ENTER] - If ARG then set PC = ARG

HP48 Hacker'’s ROM 23

Debug keys:

[+] - Single step (ARG) instructions
[-] - Single step (ARG) instructions,

debug GOSUBs as a single instruction
[*] - Single step (ARG) instructions with display update.

If no ARG then sets ARG to #FFFFF.
[/] - Single step (ARG) instructions with display update,

debug GOSUBs as a single instruction.
If no ARG then sets ARG to #FFFFF.

[EVAL] - Continue until end or breakpoint

[SIN] - Save current registers
[COS] - Save registers with the saved ones

(first save is done at startup)

ARG + [SIN] = clear cycle counter 1
ARG + [COS] = clear cycle counter 2

Exit keys:

[DEL] - Restore registers & exit
[BS] - Exit now
[1/x] - Exit via reset, press second time to confirm

Breakpoints:

[PRG] - Set breakpoint to ARG
[STO] - Set breakpoint counter to ARG

Options:
[CST] - Toggle option number (next key)

- Ascii/hex mode
- Shift memory dump by 1
Automatic switch between PICT/ABUFF
during debug

- Disable/enable RPL.TAB and DIS.TAB
- Opcode/cycles display~

N
o
v

W

I

Sample screens which can be reasonably reproduced by:

"4#>HXS" DB (or #59CCh DB)

Screen 1 - General CPU State (key [A])

MnemonicC....ceceeceocccnss ceessssses |GOSUBL SAVPTR
Opcode@..cevecececnnns. 8E4CDO
PC, P, Carry, Hex/Dec mode, ST...... @:059D1 P:0 CH ST:298
A.A and C.A....ccececcccscssscscnsnccs A:059CC C:BF4F8

B.A, D.A, and HST.cceeeeeccccccas ... |B:8883E D:0AF58 HST:2

DO and 6 bytes @DO......ccc.... |DO:EBEF8/CCD205700074
Dl and 6 bytes @Dl...ccceecececccens D1:BF4FD/000000000000
Top 3 levels of RSTK..cceeeeeeeessss |RST:00000:00000:00000

Screen 2 - Arithmetic registers (key [B])

MNEemMONiC..ccceeeecsecsccocsccsssnccss GOSUBL SAVPTR
Opcod@..cceeeccccccccnnns cesecssenes . 8E4CDO
PC, P, Carry, Hex/Dec mode, ST.c.... @:059D1 P:0 CH ST:298
Reglster Acecscecsccscncnsne secocces .. |A:6C4475C79A7059CC
Register B...cceececsccossnse ceeesssss |B:000000000008883E
Register C...ccc0. cecssecssscesssns C:36000000077BF4F8
Register D...cceecececccocccoccnns .. |D:000000000000AF58
Top 3 levels of RSTK..... cecsesosvee RST:00000:00000:00000

24 HP48 Hacker’s ROM

Screen 3 - Data registers (key [C])

MNemoniC..ceeeeeeccecacnccs cecesaans
OpPCOdE@.cceeeeeeeceeccccanssscnnsansa
PC, P, Carry, Hex/Dec mode, ST......
Register RO...... ceesscccsescsscsenne
Register Rl....ceceeeeecccnncccncase .
Register R2.....cceeveccccccccscnnns
Register R3....cccceeececcocsccnccacs
Register R4....cceveeececcnncs ceesnn
Top 3 levels of RSTK..ceeeeteeenecas

Screen 4 - Return stack (key [D])

Mnelmnic................‘...

Opcode..... ceessessscssce
PC, P, Carry, Hex/Dec mode, STeeeeeon

and 4...cccccccccccccce
and 5...... ceccecccccne

and 6.cccececcccccns .o
and 7ececcecccccccces .

RSTK levels 0

RSTK levels 1
RSTK levels 2

RSTK levels 3

Screen 5 - Memory dump (key [E])

S9A0=-59AF . ccceeecccccnccnn
59B0-59BF..... cececsccccnne
59C0=-59CF.cccecceccccnccns
59D0-59DF...... ceccccsccns
59EO0=59EF . cccecccccccccann
S59F0=59FF .ccceccccccceccnn
SAOO0=5A0F.cccecceccccnccns
S5A10-5A1F.cccccccccccncans

Locations

Locations
Locations

Locations
Locations
Locations

Locations
Locations

GOSUBL SAVPTR

8E4CDO

@:059D1 P:0 CH ST:298
R0:60000000000409C1
R1:6C4475C79A7059D1

R2:6C4475C79A7DES99

R3:6C4475C79A700000

R4:10000000004BFA18

RST:00000:00000:00000

GOSUBL SAVPTR
8E4CDO

@:059D1 P:0 CH ST:298

RST0:00000 RST4:00000
RST1:00000 RST5:00000
RST2:00000 RST6:00000
RST3:00000 RST7:00000

059A0:56113680913420CC
059B0:4E0156716FCC56FD
059C0:015B38D5E0101D95
059D0:08E4CD08E46C0101
059E0:D230574911191443
059F0:4E4A201101311456
05A00:12280A50143174E7
05A10:8E58D01311741431

current location is indicated by an inverse digit.

Screen 6 - ML Instruction Stream (key [F])

PC, P, Carry, Hex/Dec mode, ST...... @:059D1 P:0 CH ST:218
Next 7 instructionsS...cceeececececess .o D1l: GOSUBL SAVPTR

D7: GOSUBL POP#

DD: R1=A

EO: C=0 A

E2: LC(l) 5
E5: GOSUB MAKESN

E9: C=R1l
The next instruction is the one displayed in reverse. Currently,

it will always appear at the top.

Screen 7 - Breakpoint Table Screen (key MTH)

Breakpoint #l....cccceeeececceccncns 1:6100 +02
Breakpoint #2...cccceeeecccccccccnns 2:6104 -02
Breakpoint #3...cccceeecccccsccccnas 3:613A 00
Breakpoints #4-#8: not used...... .o 4:0000 00

5:0000 00
6:0000 00
7:0000 00
8:0000 00

Any breakpoints at the current location are displayed in reverse.

HP48 Hacker’s ROM 25

Warning:
DB uses DO for its own purposes, thus you cannot debug
code that modifies the rpl return stack nor the current
stream.

2.5 The System RPL Stack

The SSTK command starts a new kernel which is a modified version of
the internal one. To exit SSTK just execute SSTK again.

Modifications to the internal kernel:

- Stack has 5 lines, including the interactive stack.
- Flag 3 toggles the stack decompiler:

Set: Use internal decompiler
Clear: Use a system rpl decompiler

- Multi-line mode is not supported.

2.6 The Entries Catalog

EC command is a browser for the entry tables. Since the entries are
listed in address sorted form both RPL.TAB and DIS.TAB are needed
to run EC. [They are in Library 993 in the HP48 Hacker’s ROM. -jkh-]

Keys are:

Up Arrow - Up one entry

Down Arrow - Down one entry

LS + Up Arrow - Up one page

LS + Down Arrow - Down one entry

RS + Up Arrow - Jump to first entry
RS + Down Arrow - Jump to last entry

Right Arrow - View the contents for selected entry
with vv

Alpha - Input find string (entry name grep)
F - Input find string (entry name grep)
NXT - Find next match
LS + NXT - Find previous match
EEX - Toggle grep mode (show only matches)
ENTER - Push entry to stack as :name:address
LS + ENTER - Push entry address to stack
RS + ENTER - Push entry name to stack
0-9 - Find entry starting with input address

Use 0-9A-F to input a more specific
address.

ON - Exit browser
+/- - Toggle beep on/off

2.7 The System RPL/Machine Language Editor

ED is an editor intended for editing rpl and machine language source
code. ED makes no duplicate of the edited string if it is in
temporary object area, thus enabling editing very large strings.
Note that this implies that no backup of the original string is kept!

Note that ED is very fast but since it supports the tabulator
it has to do special calculations whenever the display is scrolled.
Thus scrolling the display when very long lines are present can be
quite slow.

26 HP48 Hacker'’s ROM

As a hopefully useful feature ED will accept an optional cursor
position argument on stack level one. Thus if ASS gives you the error
position you will be able to jump to that position immediately.

Most of the normal character keys are in their normal places, others
can be fetched via the special character browser.

ED also allows an alternate 4x6 font to exist in variable ’FONT.ED’.
No checks are made on the correct format, but obviously the just
starting ED is an easy way to see if there is a problem.

Special keys having different definitions are mostly in the
non-alpha plane. The NS,LS,RS planes are defined as follows:

BSTART |BEND BCOPY BDEL FIND

REPL?

REPLALL

ARG? MEXEC REVERSE UP NEXT

ROW? CHR? MSTART |TOHEX PGUP PREV

POS? CHRCAT |[MEND TOASC TOP STATUS

re STK LEFT DOWN RIGHT

PGDN

RCLSTK1 LSTART |[BOTTOM |LEND

GOTO GOSUB GOYES ~ DFIND

GOLONG |GOSUBL |[GONC CNTRINI

GOVLNG |GOSBVL |[GOC CNTR

EXIT TOGBEEP DEL BS

ASS TOGCASE DELLINE

DOB TOGOVER DELRGHT

alpha 7 8 9 /
SETMK7 |SETMK8 |SETMK9 ()
GOMK7 GOMKS8 GOMK?9 #

1shift |4 5 6 *
SETMK4 |SETMKS |SETMK6 |[]

GOMK4 GOMK5S GOMK6 ASS_RPL

rshift |1 2 3 -
SETMK1 |SETMK2 |SETMK3 |[<<>>

GOMK1 GOMK2 GOMK3 o

REDISP (O . SPC +

’ TAB {}
OFF GOMKO NEWLINE TAB s

Explanations:

TOGBEEP - Toggle beep on/off. Default value is taken from the system
flag.

TOGCASE - Toggle lower/upper case characters.
TOGOVER - Toggle insert/overwrite mode.

DEL - Delete character under cursor
DELLINE - Delete line under cursor
DELRGHT - Delete characters to right of cursor.
BS - Backspace

BSTART - Set block start address
BEND - Set block end address
BCOPY - Copy block/cut to cursor position
BDEL - Delete block (copied to cut)

HP48 Hacker’s ROM

RCLSTK1

FIND

REPL?

REPLALL
NEXT

PREV

DFIND

MSTART
MEND
MEXEC

ARG?
ROW?
POS?
CHR?
CHRCAT

SETMKn
GOMKn
GOMKO

TOHEX
TOASC
REVERSE
ASS

DOB

STK

CNTRINI

CNTR

Special

Pop string from stkl into cursor position

Incremental search. Search is case sensitive if find string
contains lower case characters.
Find/replace with verification
Replace all
Find next match
Find previous match
Find matching delimiter for delimiter under cursor

Start defining macro key sequence
End macro key sequence
Execute macro key

Input repeat count for next key press

Input row to jump to
Input position to jump to
Input character number to insert
Character browser, ENTER key echos chosen character to
cursor position, ON key exits.

Set mark <n>
Jump to mark <n>
Go to previous cursor position

Convert block to hex nibbles (Suitable for NIBASC -> NIBHEX)
Convert block to asc nibbles (Suitable for NIBHEX -> NIBASC)
Reverse chars in block/word
Assemble source code, if error occurs shows the error

message and after a keypress jumps to the error position.
Disassembles entry under cursor using DOB, spans a new
editor to view the disassembly. After exit back to the
original editor the disassembly will be in the clip (if
memory allows) ready to be inserted into the text if so
desired. Special cases:

#hhhhh --> view (like plain entry)
Lhhhhh -=> view
ROMPTR hhh hhh --> view
PTR hhhhh -=> view
ID name --> visit contents (RCL+DIS+ED+ASS+STO)
INCLOB name --> visit contents (RCL+DIS+ED+ASS+STO)
INCLUDE name --> visit text contents (RCL +ED +STO)
GROB hhhhh hh.h --> view grob

Starts a normal SOL. Recursive EDs are allowed. Exit back to
ED with CONT key. All internal markers except cursor
position will be lost.
Initialize counter variable. Number of digits used
determines width of counter, possible leading "“#"
determines a hex counter.
Insert counter into text and increment it. At start the
width is initialized to 1 hex nibble, so for example
pressing

[ARG?] 16 ENTER [CNTR]
will produce "0123456789F"

keys during inputline:

ENTER - Input ok
ON - Cancel
DEL - Delete char
BACKSPACE - Delete previous char
LT/RT - Move left/right. During find input pressing

RT at the end of input will take the next
input char from the current match location,
thus making it easier to complete the match.

NXT - Next match during find input
PREV - Previous match during find input.

28 HP48 Hacker'’s ROM

Special keys in alpha plane:

ALS - = ::\n; (with indent checks)
A RS - - $ "0

ALS + = {\n} (with indent checks)
ARS + = CODE\nENDCODE
A ENTER = \n + indent the same way as the previous line

Notes:

Repetition and macro key execution can be aborted with the ON
key. Repetition, macro save and macro execution are aborted

automatically if an error occurs. Max length of a macro key
sequence is 50 keys.

2.7.1 The Viewer

Command: vv
Stack: ($|grob --> $|grob)
Description: Simple string/grov viewer.

Keys when viewing a string:

Up/Down/Left/Right = scroll display
PRG/STO/ ' /EVAL = scroll onedisplay page
F/NXT = top/bottom
- = slow scrolling
+ = fast scrolling (default)
ON/ENTER = exit

Keys when viewing a grob:

Up/Down/Left/Right = move grob
. = center grob
ON/ENTER = exit

A-F = choose scroll speed 1-6

The grob viewer uses a grob! replacement with automatic
cutting. Masking grobs less than 4 bits wide is not not properly
implemented yet. Viewing is done on the text grob, thus the following
will create a weird effect: :: ABUFF xVV ;

2.7.2 The Small Font

The small font is fixed to ROMPTR 3EO 0 under the name FNTI1.
The format of the font is in assembly:

CON(5) =DOEXTO
CON(5) 256*6+5

Library Data
256 characters, 6 nibbles each

*
%

&
*

NIBHEX ... Char 00

NIBHEX .ceeeo Char 01

NIBHEX ..cce.o * Char FF

2.7.3 The Medium Font

The medium font is fixed to ROMPTR 3EO 1 under the name FNT2.

The format of the font is in assembly:

CON(5) =DOEXTO * Library data
CON(5) 256*16+5 * 256 characters, 6 nibbles each
NIBHEX .cccccceccccccccs * Char 00

NIBHEX ¢cccccccccccccscs * Char 01

NIBHEX .¢cccccccccccccscs * Char FF

HP48 Hacker’s ROM 29

2.8 Entries Table Utilities

Command: EA
Stack: ($entry --> hxsaddr)

(hxs_addr --> $entry)
(ob --> hxs_addr)

Description:
Converts between entry name and its address.
For other argument types the address of the object
is given

Command: RTAB
Stack: (=-—> 8§)
Description: Recalls RPL.TAB

Command: DTAB
Stack: (-->8)
Description: Recalls DIS.TAB

Command: RTB->
Stack: (-->8$)
Description: Converts RPL.TAB into readable form

Command: ->RTB
Stack: ($ -—>8")
Description: Converts an entry list into RPL.TAB form

Lines accepted are:
[=]name[whitespace] [EQU #]address\n

optional optional

Note that the input should be sorted, no checks for

that are done. Also the last character in the input
string should be a newline character.

Command : ->DTB
Stack: (=-=>)
Description: Creates a DIS.TAB based on RPL.TAB, stores it

to home directory.

30 HP48 Hacker’s ROM

LIBEX (G/GX ONLY!)

Library Explorer & Extractor, by Marc Vogel and Régis Dechesne.
Documentation by Joe Horn.

This is a terrific library-extraction tool. It is the only tool yet
written that extracts a command AND ALL OF ITS EXTERNAL CALLS into a
directory, thus automating the otherwise tedious task of making
subsets of large libraries. It is also the only tool that optionally
extracts all of a function’s header, such as what it does when you
press RULES, ISOL, and derivative; whether it’s allowed in algebraics,
what it does in the EquationWriter, and more.

It can break an entire Library or just one function. And it can break
ROM Library and recover ALL external calls to other libraries (XLIBs).

Parameters for LIBEX

Option 1: Number of the Library to break
In this case the entire library is extracted.

Option 2: List of XLIB/Functions/Commands
Only the specified ones are extracted.
External calls are extracted if specified by

SETPREF.

Note : if you want to break a ROM Library, set the Recover External
XLIB option to ON.

RCLXLIB is just a XRCL that works with ONE XLIB function put in a
list.

Note: The first SETPREF option (EXT) is what controls whether or not
the library command’s external calls will be extracted as well; this
is needed if you’re trying to make a subset of a library.

The second SETPREF option (DIR) is what controls whether or not a
function’s header will be extracted as well; this is not normally
desired.

‘SPRG’ (when present) is the actual code of the extracted function.
Otherwise, its code will be in a variable named the same thing as the
command being extracted.

To make a sublibrary (a library which is a subset of a larger library)
run SETPREF, set EXT to ON and DIR to OFF, place a list of the desired
commands on the stack, and run LIBEX. Now use the <-LIB-> library to
create a SROMID, STITLE, and then run MCFG and D->LIB.

HP48 Hacker’s ROM 31

STR33

Author: Todd Eckrich (mtefdelphi.com)
[Note: Todd’s program actually was STR22; I modified it to STR33 for
use with Jazz’s ED. -jkh-]

This small program formats text to fit within the 33-character wida
display of Jazz’s ED. The way it does it, however, is different from
other similar programs. A machine code routine simply rearranges the
space and linefeed characters in two passes. The first pass simply
replaces all linefeeds with spaces. The second pass puts a linefeed at
the first space encountered backwards from the 34th character of each
line. As a result, words do not get haphazardly split and the program
is extremely fast. If there are more than 33 consecutive nonspaces,
then the 34th character is replaced with a linefeed. The argument is a
character string. It does not work for formatting source code. It is
intended more for text, especially editing large text files.

ED33
A Fast Object Editor

by Joseph K. Horn

Instead of pressing down-arrow (or EDIT) to edit an object, run ED33.
It formats the object just like the built-in editor, except with
margins 33 wide (instead of the usual 19), and then uses Jazz’s ED to
edit it.

Not for use with System RPL and/or Code objects; use DIS/ED/ASS for
those. ED33 is primarily intended for editing quick-n-dirty User RPL
programs.

32 HP48 Hacker’s ROM

HACK Library V6.0

by Mika Heiskanen.
Offered as-is, strictly for adventuresome hackers.

Name:

Desc:

Stack:

Name:

Desc:

Stack

Name:

Desc:

Stack:

Name:

Desc:

Stack:

Name:

Desc:

Stack:

Name:

Desc:

Stack:

Name:

Desc:

Stack:

COERCE
Object conversions
% -->
hxs -—> #
-—-> %
% -—> %
C%% -=> C%
chr -=> $
TRUE -=> %1
FALSE --> %0

XRCL

RCL replacement
$pk --> ob Calls UPK
id -=> ob
lam --> ob
PICT --> grob
{seco} --=-> seco

{romptr}--> ob
{path} --> ob
{} --> ob
romptr --> ob
hxsaddr--> ob
#addr --> ob
acptr -=> ob
$port -=> Pvars
$1lid --> Libs With port numbers
¢&:1id --> 1lib Works for built-in libs too
tagged --> ob

STO2
STO replacement
Libraries will be immediately in use, a possible configuration
object will be replaced by a TOSRRP call. The code will report
if it suspects TOSRRP is not enough, in which case ON-C should
be done to full execute the configuration object. Lid 4 is
reserved for a crash library and no attach will be done.

ob tag -->)
ob id -->)
ob lam -->)
ob symb -->)
grob pict -->)
backup $port -->)
1lib $port -->)

P
N
S
N
P
N
P
N
P
N
P
N

TIM

Measure execution time in milli seconds

ob --> ? $msecs Not accurate on S

USEND

Send object via IR
?

URECV

Receive object from IR
?

BZ

Compressor / Uncompressor. Very fast, efficient for large
objects.
$bz --> ob | ob --> $bz

HP48 Hacker'’s ROM 33

Name:

Desc:

Stack

Name:

Desc:

Stack

Name:

Desc:

Stack

Name:

Desc:

Stack

Name:

Desc:

Stack

Name:

Desc:

Stack

Name:

Desc:

Stack

Name:

Desc:

Stack

Name:

Desc:

Stack:

Name:

Desc:

Stack:

Name:

Desc:

Stack:

Name:

Desc:

Stack:

Name:

Desc:

Stack:

Name:

Desc:

Stack:

RFU

Uncompress RF’'d object
$Srf --> ob

SYS

SYSEVAL + some conversions
hxs_addr--> ? SYSEVAL
3 --> %%

C% -=> C%%
%3 -—-> %
C3% -=> C%

COD

Convert hex chars to an object. Ignores whitespace.
$ -=> ob

DCOD
Convert object to hex dump. Shows rpl structure
[For a pure hex conversion use ->ASC. -jkh-]
ob --> §

OBJFIX

Fix bad download

Sbad --> ob

VARS
ML VARS replacement
-=> {ids}

VARS?2
SRPL VARS replacement, list nullids too
-=> {ids}

PG
PURGE replacement
tagged -->
id --—>
{ids|tags} -->
PICT -->

PGO
Purge port0 (Calls PG on 0 PVARS)
-

ORD

ML ORDER replacement
{ids} -->

REN

Rename variable
[Caution! Do not use in very-low-memory situations! -jkh-]
idnew idold -->

TB
Tabify srpl/ml source code.

$ ——>' 8
FMT
Convert data strings into readable format. size determines the
nibble count of each word, vars how many shall be put on each
line
$ %$size %vars

ITYPE
Get internal type number of object (as used by Dispatch)
ob --> #type

34 HP48 Hacker’s ROM

Name:

Desc:

Stack

Name:

Desc:

Stack:

Name:

Desc:

Stack

Name:

Desc:

Name:
Desc:

Stack

Name:

Desc:

Name:

Desc:

Name:

Desc:
Stack

Name:

Desc:

Stack

Name:
Desc:

Stack

Name:

Desc:

Stack

Name:

Desc:

Stack

Name:

Name:

Name:

Name:

Name:

Name:

CTIM

Measure cycle count for instruction relative to P= 0
instruction by making a test program with Jazz assembler.
Example: "A=DAT1 A" --> $%13.801 (GX rev P)
$§ --> %cycles

DTEMP

Dump non-bints from tempob area, as many as possible without GC
--> obs

MEM1

Get free memory for cardl, GX only
--> $bytes

CDHD

Set context properly to hidden directory

WKEY
Get key object for next full key press
(==> ob %keycode)

sC
Memory scanner by Rick Grevelle

->ASC
Convert object to hex string. [To see internal structure of
RPL objects, use DCOD instead. -jkh-]

USE

Report objects usage of ids and romptrs.

(ob ==> {})
(rrp =-> { namel {} name2 {} ..)

PMEM
Return free memory in port
($port --> %bytes)

D->LIB [Code by Rick Grevelle. -jkh-]
Create library
(rrp --> 1lib)
(-=> 1lib) CONTEXT used

L->DIR [Code by Rick Grevelle. -jkh-]
Split library. Notes:

- SCONFIG is not converted
- Cannot handle internal HP libraries

(1ib --> rrp
(#lid | slid i hxs_1lid --> rrp)

OB->
Split object

arry --> obs {dims })
seco --> obs %n)
symb --> obs %n)
romp --> %$1id %cmd)
rrp --> obs %n)
backup --> ob id)
id --> §
#addr --> ob)
acptr --> ob)
built-in stuff+
A
A
A
A
A
"
\
A
A
A

->DIR
->PRG
->XLIB

->ALG
->BAK

->ID

HP48 Hacker’s ROM 35

Name: ADDR

Name: LBCRC (lib --> repaired 1lib)
Name: RHASH (#lid %lid hxs_lid --> hash_table)
Name: RLINK (#1lid $1lid hxslid --> linktable)
Name: RCFG (#lid I $1id hxs_Tid --> config)
Name: RMSG (#1lid $1lid hxs lid --> message table)
Name: RTITLE (#1lid | %lid | hxs_lid --> $title)

Name: XGET

Desc: XRECV substitute to enable downloading big objects. (FXRECV)
Stack (id | sport -->)

Name: BZD

Desc: Pack directory.
Stack: (-->)

[Note: This runs BZ on *every* object in the current directory
and replaces the original objects with their BZ'd counterparts
without warning. -jkh-]

Name: USES

Desc: Reports which vars in a directory call an id or romptr.
Stack: (rrp id | romptr --> { })

Name: USED
Desc: Report var refs for an entire dir.
Stack: (rrp --> { }

[Note: the output is a list of the var names in the directory
with each being followed by a list of all the vars which
reference it. This is like the inverse of USE. -jkh-]

Name: GRX2
Desc: GROB expand 2X
Stack: (grob --> biggergrob)

[Note: DON'T USE THIS! It is buggy, and crashes often.
Fixing it is left as an exercise for the student. -jkh-]

Name: BY

Desc: Byte size of any object
Stack: (any --> $size)

[Note: 2.5-byte ROM objects are copied to TEMPOB first.

-jkh-]

SPORT (Search PORT)
Fast GX Port Searcher by Dave Marsh

Modified by Joe Horn

INPUT: Name or Library ID (GX ONLY!!!)

OUTPUT: List of all the ports in which that name or library resides.

Typical runtime: 0.2 seconds.

Note: Works with any configuration of RAM and/or ROM cards, up to 128K
in port 1 and 1 Meg in port 2.

vv33
A Fast Object Viewer

by Joseph K. Horn

Like VV, except VV33 works with any kind of object.

Not for use with System RPL and/or Code objects; use DIS/VV for those.
VV33 is primarily intended for viewing User RPL programs.

36 HP48 Hacker'’s ROM

MKCOPY

Make ’‘COPY’ in RAM

by Rick Grevelle and Joseph K. Horn.

MKCOPY creates a powerful ROM-copier program and stores it into a
variable called ’'COPY’ in your current directory. MKCOPY is safe, but
COPY is very dangerous. Read the following VERY carefully.

Documentation for the ’‘COPY’ program:

GX ONLY! 1Intended ONLY for those who OWN an application ROM card AND
a port 2 RAM card (e.g. HP 1-Meg RAM card), and wish to copy the ROM
card into the RAM card so that port 1 is free for other uses.

NOTICE!!! This is NOT intended for use by software
pirates and other scurvy marauders. COPYing ROM
cards that you do not own (or making copies of your
ROM cards for other people) is illegal, immoral, and
stupid. 1It’s illegal because it hurts commerce. It’s
immoral because it denies a worker his just wages.
And it’s stupid because it discourages good
programmers from writing better programs. DON'T.

WARNING! This is a "bit copier", that is, it makes an EXACT copy of
the card which is in port 1. This can be excellent, or nightmarish.
The previous contents of the target port will be totally overwritten
and irretrievably lost. If port 1 contains code that cannot run in
port 2 or above, COPY will copy it anyway, which can cause a crash if
you turn your HP48 back on without removing the new copy.

KNOW WHAT YOU'RE DOING. WHEN IN DOUBT, DON’T. YOU HAVE BEEN WARNED!

INSTRUCTIONS:

First, create the COPY program by running MKCOPY in the HP48 Hacker'’s
ROM, if you haven’t already done so. Then turn off your HP48 and
remove the Hacker’s ROM. Plug the desired ROM card into port 1, and
make sure a RAM card is in port 2.

Turn the HP48 back on. Input the PORT number (2 through 33) which you
wish to RECEIVE the copy. Run COPY. When the copying is finished,
the HP48 will turn itself off. DO NOT TURN BACK ON until at least one
of the cards is removed. If the ROM card that was copied is a card
that must be run from port 1 (such as the Hacker’s ROM) then be sure
to remove the copy from port 2 before turning the HP48 back on.

Possible Error Message:

Port Not Available (either port 1 contains no card, or the target port
doesn’t exist).

Note: if the copy causes the HP48 to refuse to turn on (for example, a
library’s configuration routine might go into an endless loop), DON'T
PANIC. You need not lose the entire contents of your RAM card in slot
2. All you have to lose is the offending libraries which COPY copied
from port 1 to your RAM card. This can be done by removing the RAM
card from slot 2 and then copying the XPUB library (on GD10) into RAM.
XPUB prevents libraries from running their configuration routines.
Purge the offending libraries, and then purge XPUB.

Disclaimer: This is dangerous software. Use at own risk.

HP48 Hacker’s ROM 37

Code

‘Code’, a program that converts any HP48 object into a Code object,
and back again. By "Ram" Gudavelli, Richard Steventon, & Joe Horn.

Input: any

Output: Code (if input was non-Code)
or: obj (of input was Code)
or: "Undefined Result" error (if Code was not created by ‘Code’)

There is a small outside chance that ’Code’ will mistakenly think that
a Code object was created by ’‘Code’ which in fact was not, but the

probability is extremely low, about 30 in a million. 1I’ve been unable
to date to make it crash. 1It’s still a good idea to backup memory
before running it willy-nilly on Code objects that ‘Code’ didn‘t
create.

The ->Code logic is by ram.gudavelli@nybble.com.
The Code-> logic is by Richard Steventon (lstevent@cs.uct.ac.za).
The safeguards & auto-selection were added by Joe Horn.

Suggestion: You can greatly speed up your HP48’'s keyboard response in
USER mode by making sure that each of your assignments is a single
object. If you have any program objects assigned to keys, use Code
to convert them to Code objects, and reassign them.

38 HP48 Hacker’s ROM

FBROW

Fast Flag Browswer

by Richard Steventon

Features:

- 10 minute timeout to save batteries.
- Very fast (this is important ;)
- Postcard-ware (more about this later).

- Up and Down Arrow keys to scroll up and down
- [NXT] changes between user and system flags
- [+/-] toggles the flag highlighted by the scroll bar
- RS + Up/DnArrow keys = Top/Bottom of flag list
- [ENTER] saves flag changes and exits
- [ATTN] exit and don’t save changes
- [H] Help/info screen (with cute GROB)
- [0] to [6] jump to that flag base eg [2] sets flag 21 to the top.
- Other keys result in a "DoBadKey" beep.

Postcard-ware:

Postcard-ware means that you *should* (ie please) send me a postcard
to say thanks if you find FlagBrowser v3.0 useful. If I get a lot of
postcards (more than 1), maybe people (my mother) will believe me when
I tell them I am working (on my HP) and not "playing”. This will mean
that I will have more time to produce other things for the hp48 ! So,
here is my address again in case you can’t bear to press the [h] key
in FlagBrowser:

Richard Steventon
7 Sun Valley Avenue
Constantia, 7800

South Africa

Credits:

Joe Horn for his patience and extensive testing.
Mika for Jazz, DB (without which, I could not have done FlagBrowser),

and his kind permission to use his keyhandler from ED.
Mozgy for permission to include FNT1 in the binary.
Dan Kirkland for the phrase "Mine WILL be better!"
Jon Paine for lending me his GX and organising a cheap one for me.
Bill Wickes and Raymond Hellstern for their flag browsers.
My girlfriend, who put up with me while I "played"” for many hours.
Everybody on IRC channel #hp48 for comments, encouragement, etc

That is about it...

If you have any questions/comments/flames/lawsuits/etc then feel
free to email me.

-Richard Steventon

ps, to contact me: <email> lstevent@cs.uct.ac.za (until 28 Feb 1996)
IRC RichardS on channel #hp48 (normally lpm GMT)

HP48 Hacker’s ROM 39

UPD

UPDIR done right!

by Joseph K. Horn

Assign << 1:UPD EVAL >> to your UP (UPDIR) key. Better yet, assign
this:

Dolst/2nd+:
XUPDIR

TAG 1

ID UPD

XEVAL
.
’

This will solve a major headache of HP48 usage, especially for
programmers who have many variables in RAM. We’ve all experienced
this: every time you press the UP key to execute UPDIR, it resets the
menu to page 1, and so you always have to press NXT, NXT, NXT... to
get back to the menu page that you just came up from. I always used
to press NXT too many times, and have to then press PREV to back up a
page or two. It’s a waste of time. 1It’s aggravating. And now it’s
unnecessary.

With ‘UPD’ assigned to your UP key, and you’ll love the way it does
UPDIR, automatically jumping to the menu page containing the directory
that you just came up from. And it’s VERY fast. You’ll never have to
wade through your VAR menu again!

Hacker’s note: UP will act the same as UPDIR if you run it from a
hidden directory.

BZM

BZ Menuline

by Jack Levy

For those of you that have used BZ and wanted to create string or
program
compressions, here is a menuline that will allow you to do so. Once you
execute BZM, a menu appears with four options:

BZ - Execute BZ compressor on the levell argument.

SFX (Self-Extracting) - Intended for compression of strings,
lists, or other non-program objects. First executes BZ on the
levell argument, then attaches a BZ to the end of the compression
string. Thus, when the result is stored in a variable, when you
press the variable key, the string will come up without the need
for you to run UBZ.

EXE (Self-Extracting-and-Executing) - Intended for compression of
programs. Executes BZ on the levell argument, then attaches a
UBZ EVAL at the end of the string. When the result is stored in
a variable, executing this variable will result in your program
being run with no need for manual decompression.

UBZ (Un-BZ) - Unpacks the levell BZ’'d argument. If the argument
is a SFX or EXE created argument (see above), it will extract the
compressed string and execute UBZ as normal.

Caution: Do not use UBZ on programs that were not created by SFX or
EXE, or undesired results will occur.

40 HP48 Hacker’s ROM

HTRIM

HOME directory Trimmer

by Simone Rapisarda

HTRIM is a sys-RPL program that I use to hide variables in the HOME
directory so to keep it a clean and tidy (yes, you’ve read well: HOME
directory, not Hidden directory!).

HTRIM is distributed in the hope that it will be useful; even if it
has been tested (on a HP48 revision E) it makes use of undocumented
features,so use it at your own risk: I take no responsibility for any
damage caused by its use or misuse. HTRIM and this article are
Copyright (C) 1993 by Simone A. Rapisarda. Non-commercial distribution
is allowed and encouraged if this article, unchanged, accompanies the
unmodified program.

HTRIM is also a command in the SmartKeys library. You can use HTRIM in
other libraries or programs only if these are Public Domain or
Freeware. Anyway this should be done only with my consent and their
use and origin must be reported in the documentation of the software.

Here is what the SmartKeys manual says about HTRIM:

temmme+

| HTRIM | (Homedir-TRIM)
o+

Stack: { id id id ... } or %0

It works only in the HOME directory.

If the argument is a List HTRIM orders the variables specified in the
List as the built-in command ORDER does, the only difference is that
all the remaining variables becames hidden: you can still use them as
usual but they won’t appear on the VAR menu and in the List created by
the VARS command. To hide all the variables use an empty List. If the
argument is the Real 0, HTRIM brings back to light all the hidden
variables. This command is very useful to keep clean and tidy the VAR
menu of the HOME directory.

HP48 Hacker'’s ROM 41

	Cover
	Contents
	<-LIB->
	Jazz
	Library 993
	LIBEX
	STR33
	ED33
	HACK
	SPORT
	VV33
	MKCOPY
	Code
	FBROW
	UPD
	BZM
	HTRIM

